SAFETY IN DESIGN PROCEDURE

PRO662
Revision Control

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Revision Details</th>
<th>Responsible Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAFT</td>
<td>23/07/2018</td>
<td>Clarification of framework</td>
<td>Hendrik Tait</td>
</tr>
<tr>
<td>Rev A</td>
<td>03/08/2018</td>
<td>Concept for internal comment</td>
<td>Hendrik Tait</td>
</tr>
<tr>
<td>Rev B</td>
<td>08/08/2018</td>
<td>Update Executive Summary & Roles & Responsibilities</td>
<td>Hendrik Tait</td>
</tr>
<tr>
<td>Rev C</td>
<td>15/08/2018</td>
<td>Refine Contents List & update document</td>
<td>Hendrik Tait</td>
</tr>
<tr>
<td>Rev D</td>
<td>20/08/2018</td>
<td>Update comments received</td>
<td>Hendrik Tait</td>
</tr>
<tr>
<td>Rev 0</td>
<td>29/08/2018</td>
<td>Issue for TEG Review and Comment</td>
<td>Hendrik Tait</td>
</tr>
<tr>
<td>Rev 01</td>
<td>15/10/2018</td>
<td>Issue for TEG Review and Approval</td>
<td>Hendrik Tait</td>
</tr>
<tr>
<td>Rev 02</td>
<td>01/11/2018</td>
<td>Issue for QUU use</td>
<td>Ken Vaheesan</td>
</tr>
</tbody>
</table>

Document Consultation

<table>
<thead>
<tr>
<th>Revision</th>
<th>Name</th>
<th>Position / Function</th>
<th>Comments Received</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAFT</td>
<td>Alan White</td>
<td>Project Manager</td>
<td>Y</td>
<td>23/07/2018</td>
</tr>
<tr>
<td>Rev A</td>
<td>Steve Bourke</td>
<td>Principal Engineer, Electrical</td>
<td>Y</td>
<td>03/08/2018</td>
</tr>
<tr>
<td>Rev B</td>
<td>Alan White</td>
<td>Project Manager</td>
<td>Y</td>
<td>08/08/2018</td>
</tr>
<tr>
<td></td>
<td>Steve Bourke</td>
<td>Principal Engineer, Electrical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rev C</td>
<td>Alan White</td>
<td>Project Manager</td>
<td>Y</td>
<td>20/08/2018</td>
</tr>
<tr>
<td></td>
<td>Steve Bourke</td>
<td>Principal Engineer, Electrical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rev D</td>
<td>Alan White</td>
<td>Project Manager</td>
<td>Y</td>
<td>24/08/2018</td>
</tr>
<tr>
<td></td>
<td>Scott Stevens</td>
<td>Civil</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harald Kemmetmuller</td>
<td>Mechanical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steve Bourke</td>
<td>Principal Engineer, Electrical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rev 0</td>
<td>Joann Kirby</td>
<td>External Peer Reviewer</td>
<td>Y</td>
<td>29/08/2018</td>
</tr>
<tr>
<td>Rev 01</td>
<td>Jack Ziebarth</td>
<td>QUU TEG feedback</td>
<td>Y</td>
<td>17/09/2018</td>
</tr>
<tr>
<td></td>
<td>Internal stakeholders</td>
<td>Workshop feedback</td>
<td>Y</td>
<td>21/09/2018</td>
</tr>
<tr>
<td></td>
<td>Robyn Donaldson</td>
<td>QUU Safety feedback</td>
<td>Y</td>
<td>10/10/2018</td>
</tr>
<tr>
<td></td>
<td>Frank Fornsier</td>
<td>QUU Planning feedback</td>
<td>Y</td>
<td>15/10/2018</td>
</tr>
<tr>
<td></td>
<td>Punu Gunasinghe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sebastian Horvath</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rev 02</td>
<td>Ken Vaheesan</td>
<td>QUU TEG approval</td>
<td>Y</td>
<td>01/11/2018</td>
</tr>
<tr>
<td></td>
<td>Ron Hyde</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kym Bancroft</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1. **INTRODUCTION** ... 5
 1.1 Purpose .. 5
 1.2 Acronyms and Abbreviations .. 5
 1.3 Reference Documents .. 7
 1.4 Applicable Standards & Regulations .. 8
 1.4.1 Australian Standards .. 8
 1.4.2 Acts, Regulations and Codes of Practice ... 9
 1.4.3 Codes of Practice (Queensland) .. 9
 1.5 Definitions ... 10
 1.6 The Safety in Design Methodology .. 13
 1.6.1 The QUU Safety in Design Framework .. 13
 1.6.2 Roles and Responsibilities ... 15
 1.7 Hazard Studies / Safety in Design Tools .. 18
 1.7.1 Pre-requisites .. 19
 1.7.2 The HAZID Process .. 20
 1.7.3 The HAZOP Process .. 21
 1.7.4 The CHAZOP Process ... 23
 1.7.5 The CHAIR Process .. 25

2. **PROJECT RISK ASSESSMENTS** ... 27
 2.1 The Purpose .. 27
 2.2 Timing .. 27
 2.3 Typical Input Documents ... 27
 2.4 Team ... 27
 2.5 Methodology ... 28

3. **SAFETY IN DESIGN REPORT REQUIREMENTS** ... 29
 Table of Contents .. 29
 Executive Summary .. 29
 3.1 Introduction ... 29
 3.1.1 Purpose of the Report ... 29
 3.1.2 Assumptions .. 29
 3.1.3 Amendment of Report .. 29
 3.1.4 Reference Document List .. 30
 3.1.5 Standards and Regulation ... 30
 3.1.6 Abbreviations List ... 30
 3.2 Hazard Studies conducted ... 30
 3.2.1 QUU Milestone 1, 2, 3, 4, 5 & 6 – Outstanding Issues ... 30
 3.2.2 Risk reduction to ALARP .. 30
 3.2.3 Residual risks to be escalated ... 30
<table>
<thead>
<tr>
<th>Appendices</th>
<th>.. 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDICES</td>
<td>.. 31</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Safety in Design Functional Flowchart ... 31</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Resources Map for Hazard Study and Risk Assessment Workshops .. 32</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Consequence Descriptors (normalised for SID) .. 33</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 Purpose

This Procedure outlines the framework pertaining to SID principles and techniques applied during the delivery phases of all QUU projects.

This Procedure has been developed to assist Contractors and internal QUU persons with the continuous improvement of all SID processes, by:

- A more integrative approach to SID, as depicted in figure 1 below. For guidance on implementation of early hazard prevention strategies for design, i.e. finally towards more efficient SID delivery.

- To meet the minimum regulatory obligations relating to safe design, in terms of the given QUU WUC requirements. For guidance on the selection of appropriate design review techniques, towards more effective SID delivery.

NOTE that this Procedure reflects the minimum QUU expectations and that any additional SID processes, that may be required by local legislation or practice, must also be complied with.

![Figure 1 Integrated application of Safety in Design](image)

1.2 Acronyms and Abbreviations

In this Procedure, the following acronyms & abbreviations apply:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARP</td>
<td>As low as reasonably practicable – Refer Section 1.5 (this Procedure) for</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>AS</td>
<td>Australian Standard</td>
</tr>
<tr>
<td>CHAIR1</td>
<td>Construction Hazard Assessment Implication Review</td>
</tr>
<tr>
<td>CHAIR2</td>
<td>Focuses on construction and demolition issues and is performed just prior to construction, when the full detailed design is known.</td>
</tr>
<tr>
<td>CHAIR3</td>
<td>Focuses on maintenance and repair issues and is performed at the same time as the CHAIR 2 study.</td>
</tr>
<tr>
<td>CHAZOP</td>
<td>Control/Computer HAZOP studies</td>
</tr>
<tr>
<td>C&I</td>
<td>Control and Instrumentation</td>
</tr>
<tr>
<td>CIP</td>
<td>Capital Investment Plan</td>
</tr>
<tr>
<td>CMP</td>
<td>Construction Management Plan</td>
</tr>
<tr>
<td>D&C</td>
<td>Design and Construct</td>
</tr>
<tr>
<td>EI&C</td>
<td>Electrical, Instrumentation & Control Systems</td>
</tr>
<tr>
<td>FR</td>
<td>Feasibility Report</td>
</tr>
<tr>
<td>FS</td>
<td>Functional Specification</td>
</tr>
<tr>
<td>GA</td>
<td>General Arrangement drawing (equipment)</td>
</tr>
<tr>
<td>HAZID</td>
<td>Hazard Identification</td>
</tr>
<tr>
<td>HAZOP</td>
<td>Hazard and Operability Studies</td>
</tr>
<tr>
<td>MCPS</td>
<td>Minor Capital Project submission</td>
</tr>
<tr>
<td>OR&ES</td>
<td>Operational Renewals and Enhancement submission</td>
</tr>
<tr>
<td>ORR</td>
<td>Operational Risk Register – QUU template TEM190 or equivalent, includes:</td>
</tr>
<tr>
<td></td>
<td>• Sewage Treatment Risk Management Register (STRMR), or</td>
</tr>
<tr>
<td></td>
<td>• Network Management Risk Register, Safety (NMRRS)</td>
</tr>
<tr>
<td>P&ID</td>
<td>Piping and Instrumentation Diagram</td>
</tr>
<tr>
<td>PCBU</td>
<td>Person conducting a Business or Undertaking</td>
</tr>
<tr>
<td>PCN</td>
<td>Process Control Narrative</td>
</tr>
<tr>
<td>PFD</td>
<td>Process Flow Diagram</td>
</tr>
<tr>
<td>PM</td>
<td>Project Manager</td>
</tr>
<tr>
<td>PRR</td>
<td>Project Risk Register represented by the TEM183 template</td>
</tr>
<tr>
<td>QLD</td>
<td>Queensland</td>
</tr>
<tr>
<td>QUU</td>
<td>Queensland Urban Utilities</td>
</tr>
</tbody>
</table>
1.3 Reference Documents

In this Procedure, the following QUU reference documents apply:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP71</td>
<td>Electrical Safety Management Plan</td>
</tr>
<tr>
<td>PRO84</td>
<td>Risk and Opportunity Management Procedure</td>
</tr>
<tr>
<td>PRO125</td>
<td>Safety Guide – Safety Risk Assessment Procedure</td>
</tr>
<tr>
<td>PRO359</td>
<td>WHS Resources, Responsibility and Accountability Procedure</td>
</tr>
<tr>
<td>PRO521</td>
<td>Safety in Design Standard Operating Procedure</td>
</tr>
<tr>
<td>PRO370</td>
<td>Gateway Decision Process for Capital Works</td>
</tr>
<tr>
<td>STD132</td>
<td>WHS Resources, Responsibility and Accountability Standard</td>
</tr>
<tr>
<td>TMS1651</td>
<td>Machine Safety Implementation</td>
</tr>
<tr>
<td>TEM579</td>
<td>QUU HAZID electronic recording template</td>
</tr>
<tr>
<td>TEM580</td>
<td>QUU HAZOP electronic recording template</td>
</tr>
<tr>
<td>TEM581</td>
<td>QUU CHAZOP electronic recording template</td>
</tr>
<tr>
<td>TEM582</td>
<td>QUU CHAIR electronic recording template</td>
</tr>
<tr>
<td>TEM183</td>
<td>QUU Project Risk Register (PRR)</td>
</tr>
</tbody>
</table>

Please note: Printed copies of this document should be verified for currency against online version.
1.4 Applicable Standards & Regulations

SID processes employed, must fulfil the requirements of statutory Local, State and Commonwealth Authorities and current applicable Australian Standards. Alternatively, where no Australian Standard exists, work must conform to the most current and applicable International Standard. Where conflict exists between different Codes, Standards or Regulations, the most onerous conditions of specification must apply unless accepted otherwise in writing by QUU.

The Contractor must not deviate from the provisions of the relevant standard without first obtaining agreement in writing from QUU. Particular standards and regulations relevant to the work include but are not necessarily limited to the following:

1.4.1 Australian Standards

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 31000</td>
<td>Risk Management - Principles and Guidelines</td>
</tr>
<tr>
<td>AS 4024</td>
<td>Safety of Machinery</td>
</tr>
<tr>
<td>AS 4801</td>
<td>Occupational Health and Safety Management Systems</td>
</tr>
<tr>
<td>AS 61508</td>
<td>Functional safety of electrical/electronic/programmable electronic safety-related systems</td>
</tr>
<tr>
<td>AS IEC 61511</td>
<td>Functional safety - safety instrumented systems for the process industry sector</td>
</tr>
<tr>
<td>AS IEC 61882</td>
<td>Hazards and Operability (HAZOP) studies</td>
</tr>
</tbody>
</table>
1.4.2 Acts, Regulations and Codes of Practice

The current Acts, Regulations and statutory requirements of the State of Queensland, Australia, must be complied with, including:

- Queensland Building Act 1975
- Queensland Building Fire Safety Regulation 2008
- Queensland Electrical Safety Act 2002
- Queensland Electrical Safety Regulation 2013
- Queensland Environmental Protection Regulation 2008
 - Environmental Protection (Air) Policy 2008
 - Environmental Protection (Noise) Policy 2008
 - Environmental Protection (Water) Policy 2008
- Queensland Fire Emergency Act 1990
- Queensland Registered Professional Engineers Act 2002
- Queensland Work Health and Safety Act 2011
- Queensland Work Health and Safety Regulation 2011

1.4.3 Codes of Practice (Queensland)

- National Construction Code 2016, volumes 1, 2, 3 and The Guide
- Queensland Electrical Safety Code of Practice 2013 – Managing electrical risks in the workplace
- Queensland Electrical Safety Code of Practice 2010 - Working near overhead and underground electric lines

Other Queensland Work Health and Safety related Codes of Practices for design, build, maintain and demolition requirements

- Abrasive blasting code of practice 2013
- Concrete pumping code of practice 2005
- Confined spaces code of practice 2011
- Demolition work code of practice 2013
- Excavation work code of practice 2013
- First aid in the workplace code of practice 2014
- Formwork code of practice 2016
- Hazardous manual tasks code of practice 2011
- How to manage and control asbestos in the workplace code of practice 2011
- How to manage work health and safety risks code of practice 2011
- How to safely remove asbestos code of practice 2011
- Labelling of workplace hazardous chemicals code of practice 2011
- Managing noise and preventing hearing loss at work code of practice 2011
- Managing risks of hazardous chemicals in the workplace code of practice 2013
- Managing risks of plant in the workplace code of practice 2013
- Managing the risk of falls at workplaces code of practice 2018
- Managing the work environment and facilities code of practice 2011
- Mobile crane code of practice 2006
- Safe design of structures code of practice 2013
- Scaffolding code of practice 2009
- Steel construction code of practice 2004
- Tilt-up and pre-cast construction code of practice 2003
- Tower crane code of practice 2017
- Traffic management for construction or maintenance work code of practice 2008
- Welding processes code of practice 2013

1.5 Definitions

In this Procedure the following definitions apply, so as to provide a common basis for understanding of the overall intent of the QUU SID framework.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARP</td>
<td>The ALARP principle is that the existing controls have reduced the residual risk as low as reasonably practicable, to demonstrate ALARP the cost/effort involved in reducing the risk further would be grossly disproportionate to the benefit/risk reduction gained.</td>
</tr>
</tbody>
</table>

PRO84, QUU Risk and Opportunity Management Procedure, pg15
Code of Practice

A code of practice provides practical guidance for people who have work health and safety duties. These codes give guidance on:

- how to achieve the standards required under the Act
- effective ways to identify and manage risks.

NOTE that from 1 July 2018 persons conducting a business or undertaking are required to comply with an approved code of practice under the QLD Work Health and Safety Act 2011.

Alternatively, duty holders can follow another method, such as a technical or an industry standard, to manage hazards and risks, as long as it provides an equivalent or higher standard of work health and safety to the standard required in the code.

Contractor / Principal Contractor

The entity bound (including sub-Contractors appointed by the Contractor) to execute the work having responsibility for design, manufacture and supply, delivery, documentation and other functions as further defined in the documents related to the work.

PRO395 Addendum – Queensland Urban Utilities Addendum to SEQ Water Supply and Sewerage Design & Construction Code

Gateway Processes

Gateway decision processes are generally applied to QUU programs or projects at key decision points. The processes describe a series of decision gates through which a proposed project must proceed. In terms of this guideline, SID advice is provided to decision makers from both internal and independent third parties, as required, to support the decision-makers at the various gates.

- **Gate 1** Project Creation
- **Gate 2** Project Justification
- **Gate 3** Pre-market Submission
- **Gate 4** Post-market Submission
- **Gate 5** Project Closure and Review
- **Gate 6** Benefits Realisation

QUU PRO370, Gateway Decision Process for Capital Works

Project Documentation

Governing technical documents for the specific items(s) for the specific works included or referenced in the Contract
| Project Milestones | **Point within a project where progress is verified by the completion of a design activity or a point which marks the start of a design activity. The Contractor must submit a complete set of documents applicable to each milestone. The documentation and delivery milestones, nominated in the SDRL for the project, are typically -**
Milestone 1 Investigation Work
Milestone 2 Concept Design
Milestone 3 Approvals
Milestone 4 Design Development
Milestone 5 Full Design Detail
Milestone 6 Final Approved Design
Quu Infrastructure Delivery: Project Specification, Part A - Standard General Specifications |
| Reasonably Practicable | **Reasonably practicable means that which is, or was at a particular time, reasonably able to be done to ensure health and safety, taking into account and weighing up all relevant matters including:**
- the likelihood of the hazard or the event concerned occurring the degree of harm that might result from the hazard or
- the risk what the person concerned knows, or ought reasonably to know, about the hazard or event, and ways of eliminating or minimising the risk
- the availability and suitability of ways to eliminate or minimise the risk
- after assessing the extent of the risk and the available ways of eliminating or minimising the risk, the cost associated with available ways of eliminating or minimising the risk, including whether the cost is grossly disproportionate to the risk.
| SFAIRP | **Safe Work Australia introduced a model Workplace Health and Safety Act 2011. It places an obligation upon employers and PCBU’s to reduce risks to health and safety so far as is reasonably practicable (SFAIRP).**
In conclusion, all duties under the WHS Act are qualified by the term 'reasonably practicable' – Refer definition in this table, above.
| Supplier Data Register (SDR) | **The supplier data register provides a tabular listing including but not limited to deliverable type code, specification reference, and description of the deliverable type as per the code. The document must also specify date required to submit** |
the deliverable, as well as identify whether the deliverable is for mandatory approval or information only. The SDR is issued by the Contractor to QUU on a regular periodic basis and minimum update is fortnightly. The SDR is used by QUU to track the status of all documentation on the project.

| Squad checks | Is a multi-discipline engineering review by the Contractor, of all the design documentation, done under the supervision of the designated RPEQ’s. To ensure that the design is fit for purpose and meets the project requirements, signed off as approved and ready for scheduled hazard study. |

1.6 The Safety in Design Methodology

Currently, the SID process is left until the design is almost complete, before conducting the review session (so-called HAZOP etc.) resulting in many things to belatedly require fixing in the design. The purpose of this procedure is to improve the efficiency and effectiveness of the SID practice.

PRO521, the SID standard operating procedure, and related PRO125, General Risk Assessment procedure, emphasises

- EARLY INTERVENTION: The aim of SID is to ensure the health and safety of persons who may have interactions with the infrastructure being designed by considering hazards as early as possible in the planning and design approach.

- ALL AFFECTED PARTIES: SID practices take into consideration the safety of all persons who may interact with the infrastructure being designed. This includes those who construct, operate, clean, maintain and demolish the infrastructure.

- LIFECYCLE: SID involves successfully balancing a wide set of design objectives (i.e. practicality, aesthetics, cost, functionality), without compromising the health and safety of those persons potentially affected by the infrastructure over its life.

1.6.1 The QUU Safety in Design Framework

The SID functional flowchart, depicted in Appendix A of this Procedure, outlines the extent and boundaries of the SID application at QUU, highlighting the overall workflow pertaining to:

1.6.1.1 Requirements

QUU, in conjunction with any likely outsourced planning function(s), starting the process off with a well-structured internal scoping of the prospective project – making sure to identify and highlight critical hazards and potential flaws that may have a major design impact on a project, giving due consideration to the QUU Gateway Decision Process for Capital Works, by

- Gate 1 – Project Creation: Permission for the project to be created and enter the CIP

Stakeholder identification and engagement pertaining to download the associated ORR and establish the initial PRR to inform amongst other, the Safety in Design requirements.
• Gate 2 – Project Justification: Permission for the project to proceed from planning and solution identification to detailed design and delivery
 i. Review initial PRR ex Gate 1
 ii. Assess/options evaluation – identify risks with each option
 iii. Identify project Scope that can be delivered with minimal risk – Lock in preferred options, include risk assessment.

NOTE whilst every endeavour has been made to refer to critical Safety in Design tools, this procedure should not restrict the Facilitator from engaging another appropriate Safety in Design tool.

• Gate 3 – Pre-market submission: Permission to approach the market with an agreed procurement and delivery strategy

Handover project/program to Infrastructure Delivery.

Hazards raised during planning and recorded in the project risk register template, TEM183 is communicated in Project Documentation

• Gate 4 – Post Market Submission: approval of contracts to engage the preferred supplier

SID track record of Contractor

• Gate 5 – Project Closure and Review

QUU PM making sure residual project risks i.e. Admin Controls and outstanding Medium or higher risks are uploaded to the pertinent ORR.

1.6.1.2 Integrated Design

Safety consideration during design development – NOTE that, in the process of designing projects, it will not always be possible to clearly delineate who has responsibility, and in which circumstances, for the elimination or minimisation of hazards associated with the project. The duties may be concurrent and overlapping.

In practical terms, success in the delivery of SID, strongly depends on whether

• it forms a key part of the Contractor’s SMP for the project.
• is integrated with all the Contractor’s design processes (including outsourced 3rd party and/or vendor design activities)
• is fully implemented on the project, with identified risk prevention actions satisfactorily addressed and reported on in the final report – Refer Section 3 of this Procedure.

1.6.1.3 Due-diligence

The emphasis is on the corporate governance responsibilities. Designers must show that they have taken reasonable steps to address all the credible hazards associated with the design.

The tab colours legend for the hazard studies template/spreadsheet Doc Numbers. TEM579 to 582 respectively, are:

• Red - Introductory pages, which must be filled out by the Contractor in collaboration with the designer, prior to the SID workshop and not altered during the workshop.
• Green - Working pages or node sheets, which are to be used during the workshop.
• Blue - Closure pages, which are to be used by the Contractor, after the workshop, once agreed actions have been implemented and closed.
• Grey - Template sheets. These sheets are not to be altered at any time (with the exception of the guidewords set to be adjusted only if necessary prior to the workshop) as the overall spreadsheet functionality is dependent on these.

1.6.1.4 Reporting
The outcomes from the SID (Hazard studies) sessions conducted are recorded in the relevant QUU electronic template, respectively – HAZID template TEM579, HAZOP template TEM580, CHAZOP template TEM581 and the CHAIR template TEM582 respectively. Section 3 of this Procedure describes the specific format and typical topics that the Contractor must cover in the SID Report to be submitted to QUU, for acceptance at the specified project milestones, as nominated in the project documentation.

The outcomes of the associated project risk workshops are recorded in the designated project risk register (PRR, template TEM183), provided with the tender documents, which entail

1. QUU Planning Group is responsible for pre-populating the register with project specific risks, nominated at Gates 1 & 2.
2. The Contractor must schedule and conduct project risk workshop(s) as required during Gates 3 & 4. The up to date PRR must be submitted to QUU on request.
3. The QUU PM is finally responsible for uploading of the residual risk items into the pertinent ORR, at Gate 5.

1.6.2 Roles and Responsibilities

Roles and responsibilities, from a SID perspective, can be complex and it should be noted that "some design tasks, although related, may be controlled by different parties due to the contractual arrangements. In a design and construct or collaborative project delivery model, the primary collaboration will be between the QUU PM and the Contractor PM, with participation of the Designer subject to the terms of their engagement”, as depicted in Figure 2 below.
The following table highlights the key roles engaged and corresponding responsibilities for safe design outcomes from the delivery of QUU projects.

<table>
<thead>
<tr>
<th>Persons with Control</th>
<th>Responsibility for achieving safe design outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Manager</td>
<td>An appropriately qualified person who has been assigned the responsibility to manage a fixed asset design or modification on behalf of (i) QUU or (ii) the Contractor respectively. The PM is the single point of contact, typically responsible for:</td>
</tr>
<tr>
<td></td>
<td>- Ensuring compliance with this procedure for their project</td>
</tr>
<tr>
<td></td>
<td>- Ensuring all actions are adequately completed</td>
</tr>
<tr>
<td></td>
<td>- Selecting suitably qualified facilitators for hazard studies</td>
</tr>
<tr>
<td></td>
<td>- Lessons learned are communicated to QUU stakeholders</td>
</tr>
<tr>
<td>Designer</td>
<td>A person who conducts a business or undertaking (PCBU) whose profession, trade or business involves:</td>
</tr>
<tr>
<td></td>
<td>(i) Preparing sketches, plans, drawings, documents, directions, or advice (verbal or written) for infrastructure, facility or equipment including variations to existing infrastructures, facilities and equipment.</td>
</tr>
<tr>
<td></td>
<td>(ii) Making decisions for incorporation into a design that may affect the health and safety of persons who construct, use or carry out other activities in relation to the structure.</td>
</tr>
<tr>
<td></td>
<td>Note that a person conducting a business or undertaking who alters a design without consulting the original designer will assume the duties of a designer. Any changes to the design of a structure may affect the health and safety of those who...</td>
</tr>
<tr>
<td>Contractor</td>
<td>The Contractor has duties to confirm that the construction work is planned and managed in a way that eliminates or minimises health and safety risks so far as is reasonably practicable. The Contractor may also be a designer if they undertake design work or if they alter or modify a design without consultation with the original designer. Design changes must also be certified by RPEQ and the Contractor must confirm, in the SID Report, that any changes they make to the design does not create additional risks to health and safety.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Facilitator & Scribe (workshop)</td>
<td>The workshop is performed by a group of people who are involved in the design and construction of the project, the composition of the team being dependent on the scope and nature of the design under review – Refer Appendix B of this Procedure, for a Resources Map for different SID workshops. Note that the success of the workshop is strongly dependent upon the ability of a facilitator to select and use the experience and expertise of the study team to critically evaluate the design. It is recommended that the facilitator should have the following attributes:</td>
</tr>
<tr>
<td></td>
<td>• Facilitator must have an engineering qualification relevant to the project scope;</td>
</tr>
<tr>
<td></td>
<td>• Facilitator must be independent and not involved or connected with the design of the specific project, in any way;</td>
</tr>
<tr>
<td></td>
<td>• An understanding of the principles of SID and construction with, as a minimum, a broad understanding of the project;</td>
</tr>
<tr>
<td></td>
<td>• The ability to bring out the views of a diverse range of people participating in the workshop to constructively challenge the design concept;</td>
</tr>
<tr>
<td></td>
<td>• The ability to keep workshop on track and moving along (issues that can’t be resolved relatively quickly should be listed for action outside the workshop).</td>
</tr>
<tr>
<td></td>
<td>NOTE that the facilitator nomination must be accepted, by the QUU PM, before a SID workshop commences.</td>
</tr>
<tr>
<td>Registered Professional Engineer of Qld (RPEQ)</td>
<td>All workers and Contractors performing work related to QUU assets shall comply with the Queensland Professional Engineers Act 2002 (PE Act):</td>
</tr>
<tr>
<td></td>
<td>• professional engineering services for Queensland are...</td>
</tr>
</tbody>
</table>
required to be carried out by a registered professional engineer of Queensland (RPEQ); and

- a person can carry out professional engineering services for Queensland whilst unregistered if they are carrying out the services under the direct supervision of a RPEQ who is responsible for the services.
- A professional engineering service is defined as a service that requires, or is based on, the application of engineering principles and data to a design, or to a construction, production, operation or maintenance activity, relating to engineering.

Note the requirement for RPEQ is not limited to design.
Final design documents are to include a record of the RPEQ responsible for the work.
The Board of Professional Engineers of Queensland (BPEQ) regulates the profession of engineering in Queensland. The main function of BPEQ is the administration of the PE Act and managing the RPEQ system.

The Table, depicted in Appendix B of this Procedure, defines the minimum expertise required for conducting SID workshops.

1.7 Hazard Studies / Safety in Design Tools

The overall intent of SID is to systematically and comprehensively identify and assess hazards and associated risks to Health, Safety, Environment and Financial Performance and examine whether actual and potential negative impacts can be avoided, or their magnitude reduced, during design.

Due diligence requirements emphasise the corporate governance responsibilities of QUU and Contractors and must demonstrate that reasonable steps were taken to:

- acquire and update their knowledge of health and safety and environmental matters
- understand the operations being carried out by the PCBU in which they are employed, and the hazards and risks associated with the operations
- ensure that the PCBU has, and uses, appropriate resources and processes to eliminate or minimise health and safety and environmental risks arising from work carried out
- ensure that the PCBU has appropriate processes in place to receive and respond promptly to information regarding incidents, hazards and risks
- ensure that the PCBU has, and uses, processes for complying with duties or obligations under the *Work Health and Safety Act 2011* (the WHS Act) and for verifying compliance with those duties.
The purpose of this section is then to highlight the practical execution of SID, by the assessment and elimination or control of hazards, associated with QUU projects, using recognised technical hazard studies and SID tools, to make sure that –

- a rigorous process has been conducted to identify and analyse all possible hazards / adverse events that may arise
- all such adverse events / hazards are reduced to ALARP – Hierarchy of Controls apply
 - PM, Designer and Contractor are responsible until they formally pass the prevention of the risk to QUU
 - Presence and effectiveness of engineered risk preventions must be referenced in the PRR
 - The pertinent ORR must contain references to the documents and systems which show how the residual risk is controlled

1.7.1 Pre-requisites

The pre-requisites for planning and execution of the hazard study workshops, entail

- The Contractor must appoint the Facilitator and Scribe – in accordance with Section 1.6.2 of this Procedure. QUU will nominate the facilitator if the Contractor’s proposed candidate is not accepted by the QUU PM.
- The Contractor must schedule and issue workshop invitations timely (i.e. minimum notice period is 10 business days before workshop is held).
- The Contractor must compile, in conjunction with the Facilitator and Scribe, the
 i. Agenda and
 ii. Design documentation pack for review. The Contractor must issue design documents, a minimum of 10 days prior to the workshop for preview by all nominated attendees.

NOTE: QUU review period is 10 business days, unless specified otherwise in the project documentation. QUU stakeholder review comments must be returned to the Contractor and the SID studies based on QUU review comments being incorporated into the design. The project schedule must make adequate allowance for design documentation review period, followed by SID workshops.

- The Contractor must pre-populate associated register(s), done in conjunction with the Facilitator, for presentation at the workshop session (preliminary input information)
 - The Hazard studies templates – TEM579, TEM580, TEM581 & TEM582, and,
 - The project risk register – TEM183
- QUU will make available and monitor key resources required for each workshop session. Where QUU does not provide the independent faculty engineer(s), the Contractor must provide independent engineers, acceptable to the QUU PM.

NOTE every nominated team member must delegate a suitable responsible person with decision making authority to attend in place thereof.
• Note that QUU review comments to the design documentation must be returned to the Contractor before the SID workshop is held. The SID workshop must be based on the QUU review comments being actioned or addressed in the design documentation.

• Where 3D model is specified for the Project, the model must be reviewed and accepted by the stakeholders.

1.7.2 The HAZID Process

1.7.2.1 The Purpose
Support the design activity by the identification of significant hazards associated with the design for a project and to develop adequate safeguards to control any imposed risks. Furthermore, the HAZID must consider early constructability and commissioning so design can allow for these phases to be efficiently completed and de-risk the project.

1.7.2.2 Timing
Contractor must undertake the HAZID during the concept design Gate – generally done at 30% design progress, usually during the project milestone 2 Gate. The Project Documentation will define milestone when HAZID must be done.

1.7.2.3 Typical Input Documents for HAZID
• Equipment GAs – mandatory
• Site Layouts and Elevations – mandatory
 Where 3D model is specified for the Project, the model must be provided showing access, egress and layout of all equipment items including location of operator control facilities.
• Existing Process Flow Diagram (PFD) for any brownfields Projects.
• The Contractor pre-populates the electronic HAZID template for validation and update during the HAZID workshop – Refer TEM579 for standard HAZID template.

1.7.2.4 Team
The team composition must be agreed between the QUU PM and the Contractor PM. It normally, as a minimum, includes:
• Independent Facilitator supported by Scribe
• Project Manager(s) – QUU and Contractor
• Designer (e.g. electrical, mechanical, civil/structural, process engineers)
• Independent technical specialists, as required (e.g. electrical mechanical, civil/structural, process engineers)
• QUU Operations representation (site)
• QUU Maintenance representation (site)
• QUU Health & Safety representative
• A competent 3D operator (if 3D model is applicable)

Refer Appendix B - Resources Map for Hazards and Risk Assessment workshops.
1.7.2.5 Methodology
Practically, it is a guideword driven process, similar to HAZOP, to review preliminary hazards associated with a project, which amounts to in brief:

- Confirm session is duly represented (establish a quorum – Attendance register signed)
- “Breakdown Structure” defined in the AGENDA – Refer TEM579 for electronic template details
- Outline design intent and allow time for clarification questions.
 - Where 3D model is specified for the Project – walk thru the model to familiarise stakeholders
 - Where 3D model is not specified for the Project – provide photos of existing site and equipment.
- Review previous actions and update any progress to date (as applicable)
- Apply custom HAZID guidewords, embedded in template TEM579, to stimulate discussions regarding potential hazardous events and their associated consequences. Refer list of HAZID guidewords in TEM579.
- The Scribe records significant hazard outcomes in the HAZID record, TEM579, for Contractor distribution to all involved parties.

1.7.2.6 Post workshop activities
The actioned parties undertake appropriate risk prevention activities before final closure and sign-off of actions noted. Done by Contractor in collaboration with QUU persons at the workshop.

1.7.3 The HAZOP Process

1.7.3.1 The Purpose
To review the detailed design and/or procedures to identify hazards and significant operability problems, in particular, due to abnormal modes of operation.

1.7.3.2 Timing
Required for projects involving the process operations, at all QUU sites. The HAZOP workshop is generally done at milestone 2 and outstanding items revisited at milestone 4 design completion. The Project Documentation will define the milestone when HAZOP must be done.

1.7.3.3 Input Documents for HAZOP
- Piping & Instrumentation Diagram (P&ID) – mandatory
- Process flow diagrams (PFD) – optional
- Process Control Narrative (PCN) – mandatory
- Functional Specification (FS) – optional
- Instrument loop diagrams – optional
- Single line diagrams (SLD) – optional
- Plant layout drawing and equipment general arrangement (GA) – mandatory
- Isolation / pressure relief philosophy – mandatory
- Commissioning plans and procedures – optional
- Safety Data sheets (formerly MSDS) – mandatory
- The Contractor pre-populates the electronic HAZOP template for validation and update during the HAZOP workshop – Refer TEM580 for standard HAZOP template.

1.7.3.4 Team
The team composition must be agreed between the QUU PM and the Contractor PM. It normally, as a minimum, includes:

- Independent Facilitator supported by the Scribe
- Project Manager(s) – QUU and Contractor
- Designer (e.g. process, mechanical and C&I engineers)
 Note: civil/structural and electrical engineers are not required at HAZOP, unless specified otherwise by QUU
- Independent technical specialist, as required (e.g. process, mechanical and controls & instrument engineers)
- QUU Operations representation (site)
- QUU Maintenance representation (site)
- Depending on the type of process to be reviewed, attendance by others may be required, e.g. QUU Health & Safety, Environment. The QUU PM will determine if required.

Refer Appendix B - Resources Map for Hazards and Risk Assessment workshops.

1.7.3.5 Methodology
HAZOP studies are conducted in general accordance with AS IEC 61882, which amounts to in brief:

- Confirm session is duly represented (establish a quorum – Attendance register signed)
- The Designer outlines the design intent and allow time for clarification questions by
 - Explaining the design and its representation.
 - Explaining how a defined deviation can occur and the corresponding system response
 - Explaining the operational context within which the element under study will operate, the operational consequences of a deviation and the extent to which deviations may be hazardous
- Specialist(s) – provide expertise relevant to the system and the study. May be called upon for limited participation with the role revolving amongst different individuals
- Review previous actions and update any progress to date (as applicable)
• So-called NODES defined in the AGENDA and highlighted on master P&ID’s – The detailed “Node by Node” study commences at this point. Apply HAZOP guidewords, embedded in template TEM580, to stimulate discussions regarding deviations from the design intent for adequate understanding of potential causes/consequences and associated safeguards provided in the design.

• If, in the opinion of the team, the combination of the consequences and the likelihood of occurrence are sufficient to warrant action, as the existing safeguards are not deemed adequate, then additional risk prevention action(s) is required.

• The Scribe, as instructed by the Facilitator, must record significant hazard outcomes in the HAZOP record TEM580 and reach consensus on matters arising.

1.7.3.6 Post workshop activities
The actioned parties undertake appropriate risk prevention activities before final closure and sign-off of actions noted. Note that for major risk areas, a situation may require more quantitative assessment – to be done off-line by the Contractor

1.7.4 The CHAZOP Process

1.7.4.1 Purpose
The importance of electrical, electronic and programmable electronic systems in safety related applications, is steadily growing. If the control system is sufficiently complex for the facility, it may be useful to consider this system in a separate HAZOP (sometimes referred as a CHAZOP; the ‘C’ prefix used to indicate computer based – both control and protective) or as a discrete component of a more general HAZOP.

CHAZOP must be looked at as three distinctly different, but consecutively run Gates. Each Gate involves a systematic and critical review using guidewords similar to those used in HAZOP.

• System CHAZOP
• Loop CHAZOP
• Sequence CHAZOP

All projects with control systems components must have a CHAZOP unless specified otherwise in the Project Documentation.

1.7.4.2 Timing
Starting the CHAZOP typically requires that the control system design meets the requirements set out in the control system functional specification and that

(i) the HAZID is completed and
(ii) a design review and process HAZOP has been completed and all outstanding items are actioned.

• The System CHAZOP is undertaken prior to ordering the Automation / Control / Protection system equipment.
• The Loop CHAZOP is undertaken when any critical instrument loops have been configured and certainly before all loops design are completed. This will identify the requirements for the entire system and set standards for further design.
• The sequence CHAZOP is undertaken, similar to Loops, once any sequences within a system have been documented in the functional specification. This will identify particular requirements of the system and set standards for further design.

The Project Documentation will define milestone when CHAZOP must be done.

1.7.4.3 Typical Input Documents for CHAZOP

• Piping & Instrumentation Diagram (P&ID) – mandatory
• Process Control Narrative (PCN) – mandatory
• Functional Specification (FS) – mandatory
• Instrument loop diagrams – mandatory
• Single line diagrams (SLD) – optional
• Commissioning plans and procedures – mandatory

• The Contractor pre-populates the electronic CHAZOP template for validation and update during the CHAZOP workshop – Refer TEM581 for standard CHAZOP template.

1.7.4.4 Team

The team composition must be agreed between the QUU PM and Contractor PM and must include the following resources:

• Independent Facilitator supported by the Scribe
• Project Manager(s) – QUU and Contractor
• Designer (e.g. process and controls & instrument engineers)
 Note: electrical engineers only required during electrical protection system review, unless specified otherwise by QUU
• Independent technical specialist, as required (e.g. process and controls & instrument engineers)

• QUU Operations representation (site)
• QUU Control System maintenance representation

Refer Appendix B - Resources Map for Hazards and Risk Assessment workshops.

1.7.4.5 Methodology

Considered where the process demands a control system with high reliability and complexity. All QUU projects with Control and Instrumentation scope require a CHAZOP. In such cases, a CHAZOP study entail, in brief:

• Confirm session is duly represented (establish a quorum – Attendance register signed)
• The “breakdown structure” must be defined in the AGENDA – Refer TEM581 for electronic template details.
• Outline applicable Gate of the design System/Loop/Sequence and allow time for clarification questions
• Review previous actions from SID workshops and update any progress to date with required control system, process control functionality

• The detailed study commences at this point. Apply applicable CHAZOP guidewords, embedded in template TEM581, to stimulate discussions regarding deviations from the design intent for adequate understanding of potential causes/consequences and associated safeguards provided in the design.

• If, in the opinion of the team, the combination of the consequences and the likelihood of occurrence are sufficient to warrant action, as the existing safeguards are not deemed adequate, then additional risk prevention action(s) is recommended.

• The Scribe, as instructed by the Facilitator, must record significant hazard outcomes in the CHAZOP record and refer to TEM581 and reach consensus on matters arising.

1.7.4.6 Post workshop activities
The actioned parties undertake appropriate risk prevention activities before final closure and sign-off of actions noted. Note that for major risk areas, a situation may require more quantitative assessment – to be done off-line by the Contractor.

1.7.5 The CHAIR Process

1.7.5.1 The Purpose
Construction hazard assessment implication review (CHAIR) is a tool to assist designers, constructors, QUU and other key stakeholders to come together to reduce construction, maintenance, repair and demolition project risks.

1.7.5.2 Timing
The CHAIR workshop must occur before 100% design is issue. It typically occurs around 80% design at milestone 5 completion with the CHAIR2 part focusing on construction and demolition issues and is performed just prior to construction, when the full detailed design is known. The CHAIR3 part focuses on maintenance and repair issues and is performed at the same time as the CHAIR2. The Project Documentation will define the milestone when CHAIR must be done.

1.7.5.3 Typical Input Documents for CHAIR
• Equipment GAs, installation details, site plans showing laydown areas and access ways etc. – mandatory
 Note that, where 3D model is specified for the Project, the model must be complete, before the CHAIR workshop commences.
• Construction methodology – mandatory
• Commissioning plans and procedures – mandatory
• The Contractor pre-populates the electronic CHAIR template for validation and update during the CHAIR workshop – Refer TEM582 for standard CHAIR template.

1.7.5.4 Team
Performed by a group of people who are involved in the design and construction of the project, the composition of the team being dependent on the scope and nature of the
design under review. The team composition must be agreed with the QUU PM. It normally, as a minimum, must include:

- Independent Facilitator supported by a Scribe
- Project Manager(s) – (QUU and Contractor)
- Designers (e.g. electrical, mechanical, civil/structural engineers)
 Note: process and C&I engineers are optional
- Site construction Contractor and representatives
- Commissioning representation (QUU Manager and Contractor engineer)
- Operations representation (site)
- Maintenance representation (site)
- A competent 3D model operator (if 3D model is applicable)

Refer Appendix B - Resources Map for Hazards and Risk Assessment workshops.

1.7.5.5 Methodology
A CHAIR provides a structured forum to ensure there is opportunity to foresee construction, maintenance, repair and demolition hazards, so the hazards can be eliminated or reduced to ALARP, as part of the design process.

- Confirm session is duly represented (establish a quorum – Attendance register signed)
- Outline the construction process and partition CHAIR into logical blocks of appropriate size, in the AGENDA – Refer TEM582 for electronic template details.
- Review previous actions from SID workshops and update any progress to date (as applicable).
- Walk through the 3D model, where 3D model is specified in the Project Documentation.
- The detailed study commences at this point. For each logical block, use various guidewords, embedded in template TEM582, to assist with the identification of safety aspects/issues. Assess whether the proposed risk controls (i.e. expected safeguards, etc.) are appropriate and conform the risk SFAIRP.
- The Contractor must record significant constructability outcomes in the electronic record, TEM582 and reach consensus on matters arising.
- The Scribe records significant hazard outcomes in the CHAIR record on display, for Contractor distribution to all involved parties at completion of the workshops.

1.7.5.6 Post workshop activities
The Contractor undertakes appropriate risk prevention activities before 100% design documentation is issued for review.
2. PROJECT RISK ASSESSMENTS

PRO84 QUU Risk and Opportunity Management Procedure outlines the QUU risk and opportunity management framework, which is a business wide risk management process with a governance structure and processes that are based on AS/NZS ISO 31000 Risk Management – Principles and Guidelines.

Risk assessment is a collaborative process between the contractor (designer) and QUU. QUU stakeholders must participate in the project risk workshop and the contractor must get QUU stakeholder acceptance of the proposed controls and residual risk levels.

The Contractor must include in the CMP a detailed risk analysis of every aspect of WUC, that presents potential risks to the project. This includes but is not limited to anything that could cause delays, develop into unsafe work practices, cause an environmental incident or place the installation of the equipment and other works in jeopardy.

2.1 The Purpose

The risk analysis must document the policies and processes used by the Contractor to manage the project risks in accordance with the principles of AS/NZS/ISO 31000.

2.2 Timing

Project risk and opportunity workshops must be conducted on a regular basis, in accordance with the project delivery schedule. Done at the end of each SID workshop as a minimum.

2.3 Typical Input Documents

The project risk register (PRR) template, TEM183, is provided with the tender documents issued by QUU to the Contractor, which must contain important project specific risks nominated in Gate 1 and 2.

2.4 Team

The team composition must be agreed between the QUU PM and the Contractor PM and may include the following resources:

- Project Manager(s) – QUU and Contractor
- Facilitator supported by the Scribe
- Designer (e.g. civil/structural, mechanical, electrical, C&I, process engineers)
- Independent Engineer (e.g. civil/structural, mechanical, electrical, C&I, process engineers)
- QUU Operations representative
- QUU Maintenance representative
- QUU Health & Safety representative
- QUU Environmental representative
- Contractor site supervisor

Refer Appendix B for mandatory participants at a project risk assessment workshop.

Note: QUU performs RA without contractor present and especially in early Gates 1, 2 3 and on ad hoc projects that are not capital works.
2.5 Methodology

- Gates 1, 2 & 3: Infrastructure Services (Planning) and Portfolio Investment (Planning) must collate all existing ORR entries pertinent to scoping of a project. An internal risk assessment must be conducted and ensure important project specific risks are incorporated into the project SOW.

- Gates 4 and 5: The Contractor must schedule and conduct project risk workshop(s) as required, which must assess Consequence Category, as a minimum: Health, Safety, Environment, Financial Performance, using the Consequence Descriptors (normalised for SID), cited in Appendix C of this Procedure. Minutes of these risk workshops and the PRR must be maintained and updated regularly, by QUU PM, as required throughout the phases of project delivery. This up to date PRR must be submitted on request by the Contractor, at any stage of the Project delivery.

- The QUU PM updates the PRR items at Gate 6 to the pertinent ORR. Only items that need to be managed by Operations get uploaded to the ORR. Note that all identified risks get recorded in the PRR, including validating preventions and precautions for risk reduction, to ALARP.

- Note that only Medium and above risks are uploaded to the pertinent ORR.
3. SAFETY IN DESIGN REPORT REQUIREMENTS

The Contractor must provide a SID Report and submit the report and updated PRR within 10 business days of the SID workshop completion.

The following sections describe the specific format and typical topics that the Contractor must cover in the SID reports submitted to QUU at each project milestone.

Table of Contents

This section must list all the sub section numbers and page numbers in the SID Report.

Executive Summary

Summary of SID processes to date. The summary must highlight (i) level of hazard reduction by design and (ii) any higher than LOW risks recorded in the PRR that are likely to require significant scope changes or control measures with significant associated costs.

3.1 Introduction

This section must provide a concise summary of
- Background details of the project
- Scope of the project and applicable Design and/or Construct Gates
- The Contractor’s SID processes and methodology adopted for the project

3.1.1 Purpose of the Report

The purpose of the report is to provide a record of the hazard identification activities undertaken and findings. The intent of the hazard studies is to provide the evidence that the appropriate reliable hazard identification activities have been carried out in accordance with the relevant process standard.

3.1.2 Assumptions

This section lists and discusses all assumptions made in undertaking the SID delivery on the project

3.1.3 Amendment of Report

The SID report must be written by the Contractor, for final review by the Facilitator, before being issued to QUU.

The Contractor must provide QUU with an approved management of change (MOC) methodology pertaining to any amendment to SID workshop reports and/or any design modifications and/or additions resulting.
3.1.4 Reference Document List

This section contains a table listing all documents by QUU number and revision number that are referred to in compiling the SID Report. Where no QUU document number(s) exist, the Contractor must consult QUU to generate new document numbers.

3.1.5 Standards and Regulation

All Australian and International standards (where relevant) to the report must be listed in a table in this section. The version and title must be indicated. All documents such as hazard study registers are included in the Appendix of the SID report, for future reference.

3.1.6 Abbreviations List

This section contains a table indicating all abbreviations and acronyms used throughout the report – Refer Table in Section 1.2 of this Procedure.

3.2 Hazard Studies conducted

This section highlights the HAZID, HAZOP, CHAZOP, CHAIR workshop outcome report(s), with particular reference to design evidence pertaining to Action Closure and Sign-off records. This SID report must be prepared and maintained as a live document during the design and construction phase of the project. Separate section required for each workshop.

3.2.1 QUU Milestone 1, 2, 3, 4, 5 & 6 – Outstanding Issues

The PRR contains notes and references that support Close Out of risk items - highlight any outstanding issues.

3.2.2 Risk reduction to ALARP

This section details risks that have been reduced, but still need to be managed by the Contractor during construction and by the Operations Manager according to a documented SOP.

3.2.3 Residual risks to be escalated

Details risks that were neither eliminated or able to be reduced to LOW risk, by changes to the design, as per QUU risk criteria, cited in Appendix C of this procedure.

Appendices

List the project SDR by Doc No and Title
Appendix A Safety in Design Functional Flowchart

Requirements

Integrated Design

Due Diligence

Reporting

Integrated Risk in BLACK
Integrated Safety in Design in RED

Gate 1 - Hazards downloaded from pertinent ORR
Gate 2 - Planning Risk Assessment
Gate 3 - Hazards communicated in project SOW
Gate 4 - Safety in Design track record of Contractor

Design SQUAD Checks
Contractor’s RPEG / Supervising Eng Sign-off

HIGH & EXTREME Risk
STOP and raise

= LOW Risks

Update Project Risk Register (PRR, TEM183) - bottom up operational risk & opportunity assessments -

RISK CATEGORY
Scope
Time / Schedule
Financial
Health & Safety
Resources
Environment
Design
Political / Reputation
Legal Compliance
Other Projects / Business as usual

NOTE Consequence Descriptors for Health, Safety, Environment and Financial Performance, cited in Appendix C of the PRO662 SDI Guidelines

HAZID, HAZOP, TEM579, TEM580, CHAZOP, TEM581, CHAIR, TEM582

ACTION
Design Control
Closure & Sign-off

= LOW Risks
Complete

Residual Safety in Design risks and Record of Controls reference in PRR and pertinent ORR

Gate 5 - “Reasonably Practicable” risk reduction highlighted in Safety in Design Report (G24)
Appendix B Resources Map for Hazard Study and Risk Assessment Workshops

<table>
<thead>
<tr>
<th>Team Member</th>
<th>SID Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HAZID</td>
</tr>
<tr>
<td>Project Manager – QUU and Contractor</td>
<td>M</td>
</tr>
<tr>
<td>Facilitator</td>
<td>M</td>
</tr>
<tr>
<td>Scribe</td>
<td>M</td>
</tr>
<tr>
<td>Designer – faculty list below</td>
<td>Process</td>
</tr>
<tr>
<td></td>
<td>Civil/Structural</td>
</tr>
<tr>
<td></td>
<td>Mechanical</td>
</tr>
<tr>
<td></td>
<td>Electrical</td>
</tr>
<tr>
<td></td>
<td>Instrumentation and Control System</td>
</tr>
<tr>
<td>Independent Technical Specialists</td>
<td>Process</td>
</tr>
<tr>
<td></td>
<td>Civil/Structural</td>
</tr>
<tr>
<td></td>
<td>Mechanical</td>
</tr>
<tr>
<td></td>
<td>Electrical</td>
</tr>
<tr>
<td></td>
<td>Instrumentation and Control System</td>
</tr>
<tr>
<td>Operations representative (QUU)</td>
<td>M</td>
</tr>
<tr>
<td>Maintenance representative (electrical / mechanical)</td>
<td>M</td>
</tr>
<tr>
<td>Health & Safety representative (QUU)</td>
<td>M</td>
</tr>
<tr>
<td>Site supervisor (Contractor)</td>
<td>NR</td>
</tr>
<tr>
<td>Commissioning engineers (QUU & Contractor)</td>
<td>TBA</td>
</tr>
<tr>
<td>Environmental representative (QUU)</td>
<td>TBA</td>
</tr>
</tbody>
</table>

M mandatory attendance at SID workshop
TBA to be advised by QUU PM, depending on Project Scope
NR not required
Appendix C Consequence Descriptors (normalised for SID)

Extracted from PRO84 Section 8 Risk Criteria, for Safety in Design application

<table>
<thead>
<tr>
<th>Health & Safety</th>
<th>Environment</th>
<th>Financial Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employees, contractors & public are impacted in terms of injury, illness</td>
<td>Further guidance on consequence ratings of environmental impacts, please see Environmental Aspects and impacts Guide (PRO249)</td>
<td>Financial losses or unplanned expenditure is incurred by QUU</td>
</tr>
<tr>
<td>Catastrophic</td>
<td>Fatality and/or amputation of a limb/appendage. Long term/terminal illness resulting in a lost time injury greater than 1 month Permanent disability.</td>
<td>Long term (>5 years) impact to the natural environment; and Widespread impact and public concern. There is a duty to notify the Regulator of this event.</td>
</tr>
<tr>
<td>Major</td>
<td>Serious/hospitalisation injury resulting in a lost time injury greater than 2 days Long term disability.</td>
<td>Medium to long-term (1-5 years) impact to the natural environment; and localised (catchment or suburb) impact and a high level of public concern. There is a duty to notify the Regulator of this event.</td>
</tr>
<tr>
<td>Moderate</td>
<td>Illness < 4 days resulting in a lost time injury of 1 to 2 days. Near miss relating to high risk activity. Short term disability / suitable duties Injuries Medical Treatment Injury</td>
<td>Temporary (1 month to 1 year) impact to the natural environment; and Controlled site impact with a moderate level of public concern. There is a duty to notify the Regulator of this event.</td>
</tr>
<tr>
<td>Minor</td>
<td>First Aid Near miss relating to non-high risk activities, including manual handling near miss Short term illness</td>
<td>Transient (< 1 month) impact to the natural environment; and Controlled site, single local impact with low level of public concern. There is a duty to notify the Regulator of this event.</td>
</tr>
<tr>
<td>Insignificant</td>
<td>Other Near miss events.</td>
<td>No impact or potential impact. No public concern. No offence. There is no duty to notify the Regulator of this event.</td>
</tr>
</tbody>
</table>