UrbanUtilities

Trunk Water Main Design and Gonstriuction Gode

Andendum to SEQ Service Providers Edifion of the WSAA Water Supply Goule V1.3 August 2019

Fehruary 2021

Document Change History

Version History

Version	Authors	Issue Purpose	Signature	Date
1.0	Various	Draft		14-Dec-20
1.1	Various	Final - Issued for Use		3-Feb-21

Prepared By

Name	Andrew McGrath			
Position	Senior Engineer - Standards			
Signature	A. Nce Grath	Date	2-Feb-2021	

Approved By

Name				
Position	Principal Civil Engineer	Date	3-Feb-2021	
Signature	J.Kane	Dane		

Endorsed By

Committee	Technical Standards Committee	Date	Jan-2021

COPYRIGHT

The Urban Utilities Trunk Water Main Design and Construction Code and its contents (including without limitation documents, text, designs and graphics), are subject to copyright under the laws of Australia and, through international treaties, other countries. The copyright materials and other intellectual property rights in this Trunk Water Main Standard are owned and retained by Urban Utilities and third parties.

TABLE OF CONTENTS

Introduction 10
Background 10
Scope and Limitations 10
Document Hierarchy 11
Feedback and Information 11
Conditions of Supply of the Urban Utilities TWM Code. 11
PART 1: PLANNING AND DESIGN 12
1 General 12
1.1 Scope 12
1.2 Planning and design 12
1.2.2 Scope and requirements 12
1.2.3 Concept Plan Format. 13
1.2.4 Critical Infrastructure Protection 13
1.2.4.1 Asset Categorisation 13
1.2.5 Detailed Design 13
1.2.5.1 Designer's needs and responsibilities 13
1.2.5.2 Requirements to be addressed 13
1.2.5.3 Design Outputs 14
1.2.6 Design Life 15
1.2.7 Instrumentation and Control Systems 16
2 System Planning 16
2.3 Demands 16
2.3.4 Peak Demands 16
2.3.4.1 General 16
2.5 System Hydraulics. 16
2.5.2 Network Analysis 16
2.5.3 Operating Pressures 16
2.5.3.2 Maximum allowable service pressure 16
2.5.3.3 Minimum Service Pressure. 16
2.6 Water Quality 16
2.6.1 General 16
2.10 Trenchless Techniques for Pipelaying. 16
2.11 Future System Expansion. 17
3 Hydraulic Design 17
3.1 Sizing. 17
3.1.1 General 17
3.1.6 Sizing by Analysis 17
3.1.6.2 Head Losses 17
3.1.6.3 Hydraulic Roughness Values 17
3.1.6.4 Flow Velocities 17
3.3 Pressure Class of System Components 18
3.3.1 Gravity Systems 18
3.5 System Test Pressure 18
3.8 Pipeline Components Minimum Pressure Class 18
4 Products and Material 18
4.1 General 18
4.3 Ductile Iron Systems 21
4.3.1 Product Specifications 21
4.3.6 Flanged Joints 21
4.3.7 Diametral Deflection 21
4.5 PE Pipeline Systems 21
4.6 Steel Pipeline Systems 22
4.6.2 Sizes and Configurations 22
4.6.3 Joints 22
4.6.5 Flanged Joints 22
4.6.6 Closing Joints 22
4.6.7 Steel Fittings 22
4.7 GRP Pipeline Systems 23
4.8 Protection Against Degradation 23
4.8.3 Protection Against Damage to Coatings 23
4.8.5 Cathodic Protection 23
4.8.7 Protection Against Contaminated Ground 24
4.8.8 Bolted Connections 24
5 General Design 24
5.1 General Requirements 24
5.1.1 Design Tolerances 24
5.1.4 Environmental Consideration 24
5.1.5 Pipe Socket Direction 25
5.3 Water Main Access 25
5.4 Location of Water Mains 25
5.4.2 Water Mains in Road Reserves 25
5.4.2.1 General 25
5.4.2.2 Location in Footway 27
5.4.2.3 Location in Carriageway 27
5.4.3 Location in Other Than Dedicated Public Road Reserves 27
5.4.4 Water Mains in Easements. 27
5.4.8 Contaminated Sites 27
5.4.9 Crossings 27
5.4.9.1 General 27
5.4.9.2 Requirements for Encased Pipe Installations 28
5.4.10 Railway Reserves 28
5.4.11 Crossing of Creeks and Drainage Reserves 29
5.4.12 Overhead Power Lines and Transmission Lines 29
5.4.13 Water Mains in Conjunction with Landscaping and/or Other Development 29
5.4.14 Water Mains on Curved Alignments 30
5.4.15 Location Markers 30
5.5 Trenchless Technology 30
5.6 Shared Trenching 30
5.9 Connection of New Mains to Existing Mains 30
5.10 Termination Points 31
5.10.2 Temporary ends of water mains 31
5.10.3 Chlorination Assemblies. 31
5.10.4 Flushing Points 31
5.11 Property Services 31
5.12 Obstructions and Clearances 31
5.12.5 Underground Obstruction and Services 31
5.12.5.1 Mains 32
5.12.5.2 Clearance Requirements 32
5.12.6 Deviations of Water Mains 33
5.12.6.1 General 33
5.12.6.2 Horizontal Deviation of Water Mains 33
5.12.6.3 Vertical Deviation of Water Mains 33
5.12.6.4 Curving of Pipes to Avoid Obstructions 33
5.14 Reticulation Connections 34
7 Structural Design 34
7.4 External Forces 34
7.4.2 Pipe Cover 34
7.4.4 Pipe Embedment 35
7.5 Geotechnical Considerations 35
7.6 Concrete Encasement 36
7.6.1 General 36
7.7 Water Mains in Unstable Ground 37
7.7.1 General 37
7.8 Above Ground Water Mains 38
7.9 Pipe Anchorage 38
7.9.2 Thrust Blocks 38
7.9.2.1 General 38
7.9.2.2 Concrete Thrust Blocks 38
7.9.2.4 Timber and Recycled Plastics Thrust Blocks 38
7.9.5 Restrained Elastomeric Seal Joint Water Mains 38
7.9.6 Restraint Requirements for Special Situations 39
7.9.6.5 PE Mains 39
7.10 Bulkheads and Trenchstops 39
8 Appurtenances. 39
8.1 Valves - General 39
8.1.2 Valve Siting Principles 40
8.1.6 Valve Pits 40
8.1.7 Nameplates 40
8.2 Stop Valves 41
8.2.1 Product Specifications 41
8.2.2 Installation Design and Selection Criteria 41
8.2.2.2 Gate Valves 41
8.2.2.3 Butterfly Valves 41
8.2.3 Stop Valves for Transfer/Distribution Mains 42
8.2.6 Bypass of Stop Valve 42
8.2.7 Stop valves - location and arrangements 42
8.2.7.1 General 42
8.2.7.3 Arrangment 2 43
8.3 Control Valves 43
8.3.3 Pressure Reducing Valves (PRV) 43
8.4 Air Valves (AV) 43
8.4.2 Installation Design Criteria 43
8.4.4 Air Valve Size 43
8.4.5 Air Valve Locations 44
8.4.6 Use of Hydrants as an Alternative to Air Valves 44
8.6 Scours and Pump-Out Branches 44
8.6.1 Scours - Location and Arrangements 44
8.6.2 Design 45
8.6.4 Scour Size 45
8.6.5 Scour Location 46
8.7 Swabbing Points 46
8.8 Hydrants 46
8.8.4 Hydrant Types 47
8.8.7 Hydrant Size 47
8.8.8 Hydrant Spacing 47
8.8.9 Hydrant Location 47
8.9 Disinfection Facilities 47
8.9.1 General 47
8.10 Surface Fittings 48
8.10.2 General 48
8.10.3 Marking of Surface Fittings 48
8.11 Appurtenance Location Marking 48
8.11.2 Marker Posts and Plates 48
8.11.3 Pavement Markers 48
8.12 Flowmeters 48
8.13 Sample Points 48
9 Design Review and Drawings 49
9.2 Design Drawings 49
9.2.1 General 49
9.2.3 Scale 49
9.2.4 Content of Design Drawings 49
9.2.4.1 Locality Plan (refer to SEQ AIS for additional requirements) 49
9.2.4.2 Site Plan (refer to SEQ AIS for additional requirements) 49
9.2.4.3 Tabulations (refer to SEQ AIS for additional requirements) 50
9.4 Recording of Work As-Constructed Information 50
PART 2: CONSTRUCTION 51
10 General 51
10.1 Scope 51
11 General Construction 51
11.1 General 51
11.1.1 Personnel Qualifications 51
11.1.2 Inspection and Test Plans 52
11.5 Protection of Property and Environment 52
11.5.1 Protection of Other Services 52
11.5.2 Disused/Redundant Water Mains 52
12 Products and Materials 52
12.1 Authorised Products and Materials 52
12.1.1 General 52
12.1.2 Pressure Pipes and Fittings 52
15 Pipe Laying, Jointing and Connecting 55
15.1 Installation of Pipes 55
15.1.4 Laying 55
15.2 Authorised Products and Materials 55
15.2.3 Curving of Pipe 55
15.12 Marking Tapes 55
15.12.1 Non-detectable Marking Tape 55
15.12.2 Detectable Marking Tape 55
15.12.3 Tracer Wire 56
15.13 Valves, Hydrants and Surface Boxes and Fittings 56
15.13.3 Distance between Fittings 56
15.19 Flanged Joints 56
15.20 Welding of Steel Pipes 56
15.20.3 Reinstatement of Cement Mortar Lining 56
15.21 Welding of PE Pipelines 56
15.21.1 Repairs 57
16 Pipe Embedment and Support 57
16.2 Embedment Materials 57
16.3 Compaction of Embedment. 57
16.3.2 Compaction Trials / Pre-qualification of Embedment Compaction Method 57
16.3.2.1 General 57
16.3.2.2 Test Method 57
16.3.2.3 Interpretation and Applicability 57
16.3.3 Compaction Control 58
18 Swabbing 58
18.1 General 58
19 Acceptance Testing 58
19.2 Visual Inspection 58
19.3 Compaction Testing 58
19.3.1 General 58
19.3.3 Embedment Compaction Testing 59
19.3.3.1 Applicable pipe sizes 59
19.3.3.2 Frequency and location of embedment tests 59
19.3.3.3 Retesting 59
19.3.4 Trench fill compaction testing 59
19.3.4.1 Trafficable Test Zone 59
19.3.4.2 Non-trafficable Test Zone. 59
19.3.4.3 Property Services 59
19.3.4.5 Retesting 59
19.3.5 Other Fill Compaction Testing 60
19.3.5.4 Frequency and Location of Tests 60
19.3.5.5 Retesting 60
19.7 Water Quality Testing 60
19.7.1 General 60
19.7.2 Test Procedure 60
19.7.3 Satisfactory Water Quality Test 61
19.8 Polyethylene Pipelines Installed Using HDD Techniques 61
20 Disinfection 61
20.1 Application 61
20.2 Flushing of Disinfection Water 61
22 Connections to Existing Water Mains 62
22.1 General 62
24 Work As-Constructed Details 62
25 Standard Drawings 62

APPENDICES

Appendix TWM-A:	Example Project Drawings (For Guidance Only)
Appendix TWM-B:	Relevant SEQ Code Standard Drawings (For Guidance Only)
Appendix TWM-C:	Relevant Urban Utilities Documents
Appendix TWM-D:	Relevant Code and Industry Documents

Introduction

This Trunk Water Main Design and Construction Code (TWM Code) is an Urban Utilities addendum to the SEQ Water Supply Design and Construction Code (SEQ Water Code) and is intended to assist engineering consultants prepare design documentation for proposed trunk water mains to be owned and operated by Urban Utilities.

This document must be read in conjunction with the current version of the SEQ Water Code [which at the time of writing this document is the SEQ Service Providers Edition of the WSAA Water Supply Code Version 1.3 (August 2019)].

For information on abbreviations, acronyms and definitions used within this document, please refer to the current SEQ Water Code.

Urban Utilities will update this document as Urban Utilities' technical requirements for trunk water mains evolve over time, or until such time that the scope of the SEQ Water Code is broadened to include trunk water main requirements.

Urban Utilities reserves the right to specify or approve other trunk water main design and/or construction requirements for projects and/or developments. Before commencement of any construction, Urban Utilities' approval shall be obtained for any design and/or installation that does not comply with this document.

Background

Currently the SEQ Water Code provides design and construction requirements for South-East Queensland Service Provider (SEQ-SP) reticulation mains up to and including 300 millimetres (mm) nominal bore in size, and only guidance for SEQ-SP trunk water mains.

The intent of this Urban Utilities TMW Code is to provide greater clarity regarding Urban Utilities requirements for the design and construction trunk water mains built on behalf of (or donated to) Urban Utilities.

Scope and Limitations

This TWM Code is only applicable for the design and construction of trunk water mains to be owned and operated by Urban Utilities. For information regarding design and construction requirements for trunk water mains (to be) owned and operated by other agencies (e.g. City of Gold Coast, Logan City Council, Redland City Council, Unitywater, Seqwater, etc.) please contact them directly.

Please note, Seqwater has separate requirements for work near its Trunk Water Main Network. These requirements can be obtained by contacting consents@seqwater.com.au - or alternatively telephone Seqwater on (FREECALL) 1800771497 for further information.

The Project Proponent is responsible for obtaining all third-party approvals relating to the design and construction of Urban Utilities trunk water main infrastructure. All third-party approvals shall be obtained by the Project Proponent and submitted to Urban Utilities during the trunk water main design phase. It is the Project Proponent's responsibility to prepare the design in accordance with the requirements of all relevant stakeholders.

Please note, any endorsement of the design documentation by Urban Utilities does not infer that any other agency has endorsed/approved the design.

The Project Proponent (and their consultants/agents) are responsible for ensuring that all works are executed in accordance with Urban Utilities requirements, as well as sound engineering principles and practices.

All designs shall be prepared and certified by a Registered Professional Engineer of Queensland (RPEQ) considering all relevant construction, operational, maintenance, repair and demolition aspects of the proposed works. As-constructed works shall be certified by a Registered Professional Engineer of Queensland (RPEQ).

Document Hierarchy

If there is a discrepancy between this document and the SEQ Water Supply \& Sewerage Design Criteria (SEQ WS\&S Design Criteria), the SEQ WS\&S Design Criteria shall take precedence.

If there is a discrepancy between the TWM Code and the SEQ Service Providers Edition of the Water Supply Code (SEQ Water Code), the TWM Code shall take precedence for all matters relating to Trunk Water Mains.

Where the underlying SEQ Water Code requirements are not shown in this document, the SEQ Water Code requirements shall apply.

If there is a discrepancy between the TWM Code text and the TWM Code Appendices (including details shown in the Example Drawings, the TWM Code text shall take precedence.

Where a discrepancy exists between the TWM Code and any other relevant document (including Urban Utilities documents/specifications/requirements), please consult with Urban Utilities to seek advice regarding which requirement takes precedence.

Feedback and Information

Please direct all comments and suggestions regarding this document by email to: standards@urbanutilities.com.au.

For further information on the South East Queensland Water Supply and Sewerage Design Construction Code (SEQ Code), or to provide comments and suggestions, visit www.seqcode.com.au.

Conditions of Supply of the Urban Utilities TWM Code

The TWM Code is supplied subject to the following understandings and conditions:

- The TWM Code is copyright and apart from any use as permitted under the Copyright Act 1968, no parts of the documents may be sold, reproduced, stored in a retrieval system or transmitted in any form or by any means without the prior permission in writing of Urban Utilities.
- The TWM Code is intended for use in connection with Urban Utilities related projects only.
- Urban Utilities does not warrant the applicability of the TWM Code and SEQ Water Supply \& Sewerage Design \& Construction Code to climates, topography, soil types, water characteristics and other local conditions and factors that may be encountered outside Urban Utilities area of operation.
- The holder of the TWM Code acknowledges that they may contain errors and/or omissions.
- Urban Utilities accepts no responsibility for the incorrect application of the TWM Code by the holder or any other party.

Any details not currently denoted in the TWM Code shall be referred to Urban Utilities.

URBAN UTILITIES TRUNK WATER MAIN DESIGN AND CONSTRUCTION CODE - ADDENDUM TO SEQ SERVICE PROVIDERS EDITION OF THE WSAA WATER SUPPLY CODE OF AUSTRALIA V1.3 (AUG 2019)

USING THE TWM CODE

- This TWM Code shall be read in conjunction with the SEQ Water Supply Code text.
- Urban Utilities trunk water main requirements consist of the requirements within the TWM Code, as well as the SEQ Water Supply Code text.
NOTE: the entire SEQ Water Supply Code text has not been duplicated within this document
- Where an SEQ Water Supply Code clause is not detailed within the TWM Code, refer back to the SEQ Water Supply Code for the requirements.

TWM CODE CLAUSE NUMBERING

- Not all clauses from the SEQ Water Supply Code are shown in this TWM Code. As a result, the clause numbering within the TWM Code is not always sequential - this is not an error.
- Generally, only Clauses which contain amendments to the SEQ Water Supply Code text, specifically for the design and construction of Urban Utilities trunk water mains, are shown in this document.
- Clause numbering and clause headings used in the TWM Code correspond with the same clause numbering \& headings used in the SEQ Water Supply Code text.

TMW CODE TEXT COLOURING

Black Text: SEQ Service Providers Edition of the WSAA Water Supply Code
Green Text: Amendments to the SEQ Service Providers Edition of the WSAA Water Supply Code text, specifically relating to the design and construction of Urban Utilities trunk water mains.

PART 1: PLANNING AND DESIGN

1 General

1.1 Scope

The Reader should be aware that:
(a) Specific design parameters relevant to this document are contained within the SEQ WS\&S Design Criteria
(b) Where there is conflict between this Code and the SEQ WS\&S Design Criteria, the latter shall take precedence.

1.2 Planning and design

1.2.2 Scope and requirements

The nominated requirements of the SEQ-SPs planners and designers will be in accordance with the SEQ Water Supply and Sewerage Design Criteria and the Queensland Department of Environment and resource Managements Planning Guidelines for Water Supply and Sewerage Schemes. The SEQ Water Supply and Sewerage Design Criteria takes precedence over all other planning advice.

1.2.3 Concept Plan Format

The concept plan shall:
(d) identify special requirements of the Water Agency including, but not limited to:
(iii) Layout of mains together with the development layout, and
(iv) Key to network analysis e.g. node points, elevation, demand, and
(v) Size and type of mains indicated graphically and distinguished by colour and/or line type, and
(vi) Design parameters - number of lots, number of ET, design flows, and
(vii) Legend of Domain types (residential, Industrial etc.), and
(viii) Supply points and pressure or Hydraulic Grade Line (HGL) as supplied by SEQ-SPs, and
(ix) Location of pumps, pressure reducing valves and reservoir Top Water Level (TWL) and volume and a listing of proposed easements and land to be dedicated to SEQ-SPs, and
(x) Limit of water district serviced by the mains, and
(xi) Proposed contours for the entire development at a minimum of 5 m intervals, and
(xii) Connections to adjoining and/or future developments as directed by SEQ-SPs, and
(xiii) Valve layout including standard cross connections where specified by SEQ-SPs for Class A+ nondrinking water systems where a non-drinking water supply is not immediately available.
(xiv) Consideration of existing and proposed infrastructure (e.g. roads, road improvements, proximity of drainage infrastructure, etc.) when determining location of appurtenances, connections and scour outlets.

The plan shall also consider and address as necessary:
(B) Site Access, Tenure, Environment and Environment (STEP) as well as land use planning requirements. (Refer to Urban Utilities Documents FOR325, PRO372 and FOR608)

1.2.4 Critical Infrastructure Protection

1.2.4.1 Asset Categorisation

Concept plans shall address, as necessary, asset categorisation that relates to the consequences of loss of asset function - refer to Urban Utilities. Asset categorisation shall be determined by the relevant State and Federal rating system for critical infrastructure in consultation with the Water Agency (Refer to Queensland government website e.g. search <safeguarding.qld.gov.au/resources/critinfra>).

1.2.5 Detailed Design

1.2.5.1 Designer's needs and responsibilities

The design of the works shall be carried out under the direction of and certified by a Registered Professional Engineer of Queensland (RPEQ) as defined by the Professionals Engineers Act (Qld).

The Designer shall obtain the written approval from Urban Utilities or Urban Utilities delegate for any variations to the requirements of the latest TMW Code, as amended by Urban Utilities prior to the submission of the final design.

1.2.5.2 Requirements to be addressed

The Designer shall provide a Basis of Design Report for the proposed trunk water main works, which shall address, inter alia, the:
(a) Water Agency's policies, customer charters and contracts;
(b) Water Agency's standards not otherwise contained or referenced by this Code;
(c) hydraulic adequacy of the system;
(d) ability of the water system to maintain acceptable water quality;
(e) critical infrastructure protection measures;
(f) structural adequacy of system components for the design life;
(g) ease of operation and maintenance of pipeline system components;
(h) OH\&S requirements including Section 30B of the Queensland WH\&S Act 1995;
(i) environmental requirements including environmental and community impact of the works;
(j) easement requirements;
(k) minimisation of life cycle costs;
(I) resistance of each component to internal and external corrosion or degradation for the design life;
(m) system flexibility and robustness to functional changes; and
(n) constructability and methods of construction;
(o) physically confirmed locations and alignments of Urban Utilities and other Utilities (or agencies) infrastructure which may be impacted by the proposed works in accordance with AS 5488.1 Classification of subsurface utility information Part 1: Subsurface utility information Quality Level A requirements;
(p) scope of work, including all water supply connections, disconnections and diversions to enable the proposed infrastructure to be successfully constructed. (Prior consultation with Urban Utilities is required to determine whether there are any existing network limitations/constraints that will influence how, when and where network connection, disconnection, augmentation and/or diversion arrangements are to be designed);
(q) all work associated with the potholing and survey of services shall ensure that service locations and alignments are accurately reflected in the design drawings;
(r) that proposed water infrastructure terminates at a location and in a way that facilitates ease of future connection to the network, whilst minimising disruption to the community and the need to obtain private landowner's consent;
(s) factors that will impact the design of the infrastructure - including water chemistry of source water, ground conditions (e.g. acid sulphate soils, areas with known mining subsidence, ground containing hydrocarbons etc.);
(t) impacts to Stakeholders, customers, community, Local Authority, Road Authorities and service providers (e.g. Rail Authority);
(u) extents and location of mechanical protection (i.e. pipe enveloper or concrete encasement) on existing trunk water main;
(v) extents, location and status of existing water network pipeline anti-corrosion measures (e.g. cathodic protection systems); and
(w) Existing water network upsizing / augmentation proposed works.

In addressing the above requirements, the Basis of Design Report shall be developed in accordance with relevant Queensland legislation and regulations, Codes of Practice, Australian Standards and Urban Utilities technical standards.

1.2.5.3 Design Outputs

Design Drawings and Specifications for construction purposes shall clearly address the issues of a project. The design output shall include, but not be limited to:
(a) Design drawings showing, as appropriate, location of pipelines, valves, hydrants, pump stations, reservoirs and buildings, PRVs, cross connections to other Agencies (e.g. Seqwater) pipe materials, size, pressure class, jointing methods and corrosion protection measures.
(b) Detailed construction drawings showing the location of all relevant obstructions, as well as all existing services within and around the vicinity of the works areas, that have been accurately located using
non-destructive methods (e.g. pot-holing).
(c) Specifications for products, materials, site investigation, excavation / trench details and other technical matters.
(d) Documentation of design assumptions, constraints and issues relevant to the design and not otherwise noted in the Concept Plan or Design Drawings or Specifications.
(e) Any variations to this TWM Code, and the reason for the variation, shall be highlighted in a boxed note on the design drawings
(f) Basis of Design Report
(g) Safety in Design Report
(h) Detailed drawings and relevant specifications (including structural, electrical, mechanical, control system, process logic, civil and hydraulic design). Refer to Appendix TWM-C for list of relevant Urban Utilities Documents;
(i) Design Report (inclusive of calculations, geotechnical report, hydraulic analysis including transient analysis, water quality (at least L'Angelier Index to check corrosivity of the water being conveyed if a cement-lined pipe is proposed), design criteria in relation to geotechnical and imposed load assumptions, survey and electrical investigations, environmental report and cultural heritage report;
(j) Inspection and test plan;
(k) Plans detailing any additional easement requirements where the trunk main is to be temporarily located within private property as part of the works;

Refer to Appendix TWM-A for relevant Example Project Drawings which are provided as guidance only to show typical minimum requirements.

In addition, refer to Appendix TWM-B for a list of relevant SEQ Water Supply Standard Drawings that may also be used for guidance only, even though these drawings are not intended for use in trunk water main designs.

The Example Project Drawing and SEQ Code Standard Drawings are not suitable for construction without further engineering design.

1.2.6 Design Life

Asset Design Lives shall be in accordance with Table 1.2 below:

Table 1.2 - ASSET DESIGN LIVES

ASSET DESCRIPTION	DESIGN LIFE
Trunk Water Mains (and all appurtenances including valve pits/chambers)	100 years
Pumps	20 years
Valves	30 years
SCADA	15 years
Buildings / Structures	Refer to Urban Utilities for requirements
Reservoirs	Refer to Urban Utilities
	for requirements

1.2.7 Instrumentation and Control Systems

All designs incorporating monitoring and control equipment shall comply with Urban Utilities requirements. Refer to Appendix TWM-C for list of relevant Urban Utilities Documents.

2 System Planning

2.3 Demands

2.3.4 Peak Demands

2.3.4.1 General

The SEQ Water Supply and Sewerage Design Criteria define the demands to be used and their various Peaking Factors.

2.5 System Hydraulics

2.5.2 Network Analysis

Urban Utilities requires a network analysis. Specific advice will be given at the Concept Plan stage where a network analysis is not required.

2.5.3 Operating Pressures

2.5.3.2 Maximum allowable service pressure

Urban Utilities will provide specific advice on the need for a PRV at the Concept Plan stage.

2.5.3.3 Minimum Service Pressure

Urban Utilities requires a network analysis. Specific advice will be given at the Concept Plan stage where a network analysis is not required.

Refer to SEQ WS\&S Design Criteria for Drinking Water Single Supply Service Pressure Limits

2.6 Water Quality

2.6.1 General

Water Quality shall be measured at the distribution main offtakes in accordance with the Water Quality Verification program described in Urban Utilities Drinking Water Quality Management Plan (DWQMP).

2.10 Trenchless Techniques for Pipelaying

Trenchless techniques shall be evaluated for alignments:
(a) passing through:
(i) environmentally and culturally sensitive areas;
(ii) built-up or congested areas to minimise disruption and reinstatement; and
(iii) other areas, particularly where the location is not suitable for trenching e.g. railway and freeway crossings, and
(b) where the impact of the works on existing pavements and trees can be reduced.

Refer to Urban Utilities Documents TMS1582 \& TMS1583 for the Horizontal Directional Drilling specification and Microtunnelling \& Pipejacking Specification respectively.

2.11 Future System Expansion

The Planner shall make allowance for existing and future land use zonings and possible rates of development based on the Urban Utilities defined planning.

3 Hydraulic Design

3.1 Sizing

3.1.1 General

Water mains shall be sized in accordance with the SEQ WS\&S Design Criteria so that Urban Utilities can comply with regulatory and/or customer contract/agreement requirements.

3.1.6 Sizing by Analysis

3.1.6.2 Head Losses

To facilitate economic designs, the design shall be conducted to achieve less than the following head losses, unless alternate heal loss rate limits are specified or approved by Urban Utilities:
(b) 3 m head/km for \geq DN 200 (CIOD) or \geq DN 250 (ISO)

Head loss shall be calculated using computer models or hydraulic formulas in consideration of the SEQ WS\&S Design Criteria or where approved AS 2200. Urban Utilities may specify a preferred or mandated head loss calculation procedure.

3.1.6.3 Hydraulic Roughness Values

Refer SEQ WS\&S Design Criteria for the defined Pipe Friction calculation and hydraulic roughness values.

3.1.6.4 Flow Velocities

The design shall ensure that acceptable flow velocities are achieved within the supply network. Refer SEQ WS\&S Design Criteria for the defined Flow velocity values.

3.3 Pressure Class of System Components

3.3.1 Gravity Systems

For gravity systems, the PN of pipes and fittings shall be not less than the design pressure and a minimum of PN16 for general Operational needs.

3.5 System Test Pressure

The system test pressure applied to each section of a water mains network shall be such that:
(b) At the lowest point in the test section, the test pressure shall be the greater of:
(i) 1.25 times the system design pressure;
(ii) 120 m head (refer to SEQ Code Standard Drawing SEQ-WAT-1205-1).

3.8 Pipeline Components Minimum Pressure Class

The minimum pressure class for trunk water pipe and fittings shall be Class 16.
In addition to the above, the pipe and fittings pressure class shall always be greater than the design pressure.
Refer to Table 4a and the current SEQ Accepted Civil Infrastructure Products and Materials (IPAM) List for minimum pressure class pipe component requirements for Urban Utilities.

4 Products and Material

4.1 General

Products for which inadequate performance or premature failure may jeopardise the meeting of Urban Utilities "Standards of Service" or the economic life of the TWM system require authorisation for use by Urban Utilities prior to incorporation into the works.

Materials accepted by SEQ-SPs for water mains are listed in the SEQ Water Supply and Sewerage Design and Construction Code Accepted Civil Infrastructure Products and Materials list. In addition, the following limitations apply:
(a) The SEQ Accepted Civil IPAM list is intended for use for reticulation infrastructure, and only guidance for trunk infrastructure. All pipes and fittings require Urban Utilities approval.
(b) Accepted pipe material for trunk water mains shall be in accordance with Table 4a.

Table 4a -ACCEPTABLE PIPE MATERIALS FOR TRUNK WATER MAINS

CHARACTERISTIC	TRUNK WATER MAIN PIPE MATERIAL SUITABILITY		
	Mild Steel	Ductile Iron	Polyethylene (PE100)
Acceptable to Urban Utilities	Yes	Yes	Conditional*
Minimum Pipe Pressure Class:	PN16	PN35	PN16
Accepted Sizes:	$\begin{gathered} \text { OD406, 457, 508, } \\ 610,762,914,1016 \\ \text { and } 1290 \end{gathered}$	DN375, 450, 500, 600 and DN750 (ISO Sized DI pipes shall not be used where practicable, and requires prior written approval by Urban Utilities)	$\begin{gathered} \hline \text { DN450, 560, 630, } \\ 800,900 \end{gathered}$
Accepted Internal Pipe Lining:	General Purpose Portland Cement Lining with Seal Coat	General Purpose Portland Cement Lining with Seal Coat	n/a
	Fusion Bonded Polyethylene lining	Factory applied Polyurethane lining	
Accepted External Pipe Coating	Fusion Bonded Polyethylene Coating	Zinc-Aluminium $400 \mathrm{~g} / \mathrm{m}^{2}$ with epoxy coating	n/a
Acceptable Installation Techniques	Open Trench	Open Trench	Open Trench*
			HDD
Acceptable Jointing where mechanical protection (i.e. pipe enveloper or concrete encasement) of trunk water main pipework is not required	RRJ	RRJ	Butt Welded
	Flanged	Flanged	Flanged
	Welded		E-F*
			Mechanical (Gripper)*
Acceptable Jointing where mechanical protection (i.e. pipe enveloper or concrete encasement) of trunk water main pipework is required	Welded joints	No joints allowed	Butt welded joints only

*Proposed jointing products and systems require prior written approval from Urban Utilities with the design to include, but not limited to, design calculations for fittings and system thrust restraint and design life compatibility between individual system components.

Any pipe materials that are not listed in Table 4a (above) are not accepted by Urban Utilities for trunk water mains.

Guidance on pipe material selection shall consider site and pipe protection characteristics, as summarised in Table 4b.

Table 4b - PIPE MATERIAL SELECTION CONSIDERATIONS FOR TRUNK WATER MAINS

SITE \& PIPE PROTECTION CHARACTERISTICS	TRUNK WATER MAIN PIPE MATERIAL SUITABILITY		
	Mild Steel	Ductile Iron	Polyethylene (PE100)
Pipework located within corrosive or acid sulphate soils	Preferably not (unless cathodic protection is considered)	Preferably not (Zinc-Aluminum Coated Pipes may be considered)	Yes
Pipework located in contaminated ground (i.e. ground contaminated by organic compounds, such as hydrocarbons and chlorinated hydrocarbons)	Yes - with welded joints	Preferably not	No
Pipework located in reactive soils (i.e. typically clay-type soils that swell when wet and shrink when dry)	Yes - with welded joints	Yes - RRJ	Yes
Pipework located in areas prone to mining subsidence and ground movement	Yes - RRJ or welded joints	Yes - RRJ	Yes
Pipework located near overhead power lines and transmission towers (refer Cl 5.4.12)	Preferably not (unless surge diverters or cathodic protection is installed)	Preferably not	Yes
Pipework conveying drinking water with corrosive water chemistry	Yes - provided pipe has cement lining with bitumen seal coating or other accepted internal lining	Yes - provided pipe has cement lining with bitumen seal coating or other accepted internal lining	Yes
Cathodic Protection (CP) Requirements	CP shall be considered where pipework: crosses creeks; is installed within corrosive / acid sulphate soils, is susceptible to stray current corrosion	Urban Utilities does not typically install cathodic protection on DI mains	n/a

Pipeline materials selection should be carefully considered to ensure adequate strength to enable the asset to behave in the manner for which it is designed for the duration of it specified service life without being uneconomical. Materials selection process shall consider the following factors: pressure rating, structural behaviour, operational regimes, environmental setting, installation methods and asset criticality.

The asset criticality assessment of the proposed installation shall be assessed in conjunction with Urban Utilities and shall consider as a minimum: operating pressures, risk profile, loss effect, network redundancy and operability.

Assets that have a consequence of failure of High Significance or Most Significance are considered critical assets.
E.g. A transfer supply main between major supply points (reservoirs), where failure could result in widespread supply outages for (>15hr but <25hrs), third-party damage and reputational damage would likely be considered as having an asset consequence of failure of 'High Significance'. As such, the material selection for such an asset may be a fully welded mild steel pipeline.

Refer to Urban Utilities Document PRO84 Urban Utilities Risk Management Procedure

4.3 Ductile Iron Systems

4.3.1 Product Specifications

DI pipe class shall be PN35. DI fittings shall be minimum PN16.
Ductile Iron Pipe (Cast Iron Outside Diameter - CIOD) shall be used unless otherwise agreed by Urban Utilities.

4.3.6 Flanged Joints

PN16 flange dimensions and associated bolting details shall be in accordance with Figure B5 of AS 4087.

Flanged joints (including screw-on flanges) shall not be subject to moment forces and shall not to be used underground unless special provision is made to either fully support the pipe or incorporate flexible joints.

4.3.7 Diametral Deflection

DI pipes are to be designed to limit diametral deflection of the pipe to 2% of the pipe diameter.

4.5 PE Pipeline Systems

PE pipes and fittings shall comply with AS/NZS 4129 and AS/NZS 4130 with minimum PN16 pressure rating. PE pipe equivalent sizes shall be as per Appendix B of the current version of the SEQ Water Code.

PE pipe material is generally not preferred from a maintenance and repair perspective due to the cost and availability at which spare parts can be obtained. Where PE pipe material has been approved for use for at specific location, provision of critical spares shall be provided to Urban Utilities as part of the Works (i.e. nominal straight length of pipe +2 approved mechanical couplings).

When approved by Urban Utilities, PE trunk water main systems shall be butt welded where practicable.

The use of electro-fusion or mechanical joints on PE trunk water mains (including at connection points) requires the prior written approval of Urban Utilities.

Where Urban Utilities allows the use of PE pipework and fittings, the PE fittings (and associated PE welding box) shall be provided by a single supplier that preferably has an associated PE welding Quality and Assurance software application, so that all records relating to the PE welds are provided to Urban Utilities at no cost, and in accordance with the product manufacturers requirements.

Only full-face full-bore PE flanges with stainless steel (SS 316) backing rings shall be permitted for flange connections (including valve connections). This is because PE stub flanges which are not full face may rotate due to relaxation of the PE stub flange material.

PE Pipes are to be designed to limit the diametral deflection of the pipe to 4% of the pipe diameter.

4.6 Steel Pipeline Systems

4.6.2 Sizes and Configurations

Steel pipe and fittings shall be minimum Grade 250 , minimum yield strength 250 MPa and conform to the requirements of AS 1579.

Steel pipes and fittings shall be minimum PN16.

All steel pipes and fittings shall have a minimum wall thickness of 6 mm .

Steel pipes are to be designed to limit diametral deflection of the pipe diameter to prevent spalling of cement mortar lining.

- For welded MSCL pipe, diametral deflection shall be no more than 3\%
- For RRJ MSCL pipe, diametral deflection shall be no more than 2%

4.6.3 Joints

Refer to SEQ Code Standard Drawings SEQ-WAT-1313-1, SEQ-WAT-1400-1, SEQ-WAT-1401-1, SEQ-WAT-1402-1, SEQ-WAT-1403-1 and SEQ-WAT-1405-1 for guidance regarding jointing of steel pipework.

4.6.5 Flanged Joints

Refer to SEQ Code Standard Drawings SEQ-WAT-1313-1, SEQ-WAT-1403-1, SEQ-WAT-1404-1 and SEQ-WAT-1405-1 for guidance regarding flanged joints.

4.6.6 Closing Joints

Provision is to be made for a collar closing joint where the trunk water main runs between two anchored points e.g. bends or valve pits. The construction procedure shall be to construct a bend and anchor block with one full pipe on each side and then lay the intermediate pipes. The closing pipe is cut to suit and collared into the trunk water main. The gap between pipes at a closing joint shall be minimised as much as practicable.

Collars are to be noted on the drawings as providing a gap no greater than 10 mm on pipes < DN750 and 20 mm on pipes \geq DN 750 .

On pipes < DN750, seal welds are required on collar joints to enable testing of the joint.

4.6.7 Steel Fittings

Steel fittings shall be factory fabricated and shall be manufactured from pipe produced by a manufacturer that is certified to AS1579.

Fittings shall be manufactured with sufficient strength and stiffness to withstand all hydraulic, earth and surface loads. Where the pipeline is operating at or near design maximum pressures, fitting strength shall be considered in the design calculations for the approved detailed design. Depending on the situation, additional reinforcement of the steel fitting may be required by increasing the localised thickness of the pipe. Steel tees, crotch plate reinforcement (also known as compensating rings) may be required. Where required, reinforcing plates, compensating rings or crotch plate reinforcement shall be designed and detailed on the Design Drawings.

4.7 GRP Pipeline Systems

GRP pipes and fittings shall not be used for trunk water mains.

4.8 Protection Against Degradation

4.8.3 Protection Against Damage to Coatings

Double thickness of PE sleeving shall be specified for insertion between coated fittings, valves and other appurtenances and thrust and anchor blocks. PE sleeving shall be $200 \pm 20 \mu \mathrm{~m}$ thick, in accordance with AS 3680: Polyethylene sleeving for ductile iron pipe (2008).

Constructors shall be required to repair any damaged sleeving in accordance with the pipe and/or fitting manufacturer's instructions.

4.8.5 Cathodic Protection

Any mild steel or ductile iron pipe systems will be assessed in accordance with AS/NZS 2832 and AS/NZS 4853, with the resulting technical report referred to Urban Utilities for a decision on the requirement for cathodic protection. Typically, Urban Utilities only requires cathodic protection on mild steel pipework. Refer to Table $4 b$ for pipe material selection considerations.

Cathodic Protection shall be considered as part of an overall system / asset-specific philosophy for the trunk water main and interconnecting assets. In addition, consideration of the existing CP system is required when determining if and how CP is to be installed for the new steel trunk water main works.

Mild steel trunk mains shall be designed to enable connection to adjacent or future Urban Utilities cathodic protection systems (if required). This may be achieved by installing bonding at the ends of the steel pipework.

Cathodic Protection is typically required where mild steel mains are:
(a) crossing a river
(b) crossing a railway
(c) fully or partially located within reactive soils (based on soil testing)
(d) fully or partially located within corrosive soils (based on soil testing)

Electrical isolation of fittings shall be provided at the flanges, where required, to prevent electrical current continuing along the pipeline (e.g. at flowmeters, valves in pits, etc.) or draining to ground via equipment in direct ground contact (e.g. buried valves).

Isolation of cathodic protection is preferred at all offtakes.

All scour valves, air valves and line valves, including equipment in direct contact with the ground are to be electrically isolated from the trunk main with the use of approved insulated bolt sets and gaskets, or isolating flanges.

When steel mains are laid in proximity to power lines, e.g. high voltage transmission lines and railway overhead power lines, the design of cathodic protection systems shall consider Low Frequency Induction (LFI) and Earth Potential Rise (EPR). Earth mats may be required for fittings in these locations.

Third party CP systems may also cause damage to Urban Utilities pipework. As such, the Designer is responsible for investigating and mitigating any adverse impacts on Urban Utilities assets from third party CP systems.

The cathodic protection Designer shall have a minimum of five years' experience in design, installing and servicing the types of systems required in the design.

Please note, ongoing maintenance costs of impressed current CP systems in Queensland are high, as these systems must be (re)registered/ every 5 (five) years. Consideration of whole of lifecycle cost shall be used to inform appropriate selection of trunk water main pipe material and arrangement.

Refer to Urban Utilities document TMS1595 - Pipeline Cathodic Protection Technical Specification

4.8.7 Protection Against Contaminated Ground

A contaminated ground investigation and assessment shall be carried out by a suitably qualified independent consultant and shall:
(a) Recommend suitable pipe material/s to be used for trunk water mains located within contaminated land that shall be submitted to Urban Utilities for consideration and approval.

4.8.8 Bolted Connections

Refer to SEQ Code Standard Drawing SEQ-WAT-1313-1 for guidance on bolted connection requirements.
All buried bolted connections to be protected with a petrolatum system (such as Denso tape or equivalent).

5 General Design

5.1 General Requirements

5.1.1 Design Tolerances

Horizontal alignment shall be referenced in accordance with the SEQ D\&C Asset Information Specification requirements, and where possible, to local property boundaries. Levels shall be referenced to AHD.

5.1.4 Environmental Consideration

Full details of the environmental management plan and mitigation works shall be shown on the Design Drawings and submitted to relevant Authority for approval.

A Site Access, Tenure, Environment and Planning (STEP) Assessment shall be completed as part of the design

5.1.5 Pipe Socket Direction

Trunk water main pipework with socket connections shall be designed and detailed with sockets facing up grade. This is particularly important in the case of pipes \geq DN900 or on grades $>1.5 \%$.
Sockets may be laid facing grade down on grades $\leq 1.5 \%$ for short distances to avoid the necessity and cost of manufacturing a double socket transition piece.

5.3 Water Main Access

Access into water mains shall be provided for water mains \geq DN750. The access facility shall be 600 mm diameter clear openings located at 300 m maximum spacing. The locations of person access facilities shall be shown on the Design Drawings and Work As Constructed drawings.

Buried access facilities are not acceptable. Water main access facilities shall be located adjacent to the following where practical:
(a) trunk main tees (including air valve tees, scour valves tees, trunk main branches)
(b) isolation valves
(c) pressure reducing valves
(d) flow meters
(e) bends > 22 degrees
(f) where closing joints are used.

Where the trunk water main crosses a water course, trunk water main access shall also be provided on the creek bank to allow the lowest section of the trunk water main to be pumped out.

Refer to SEQ Code Standard Drawing SEQ-WAT-1404-1 for guidance on a typical water main access arrangement.

5.4 Location of Water Mains

5.4.2 Water Mains in Road Reserves

5.4.2.1 General

Water mains are generally laid in road reserves. All mains in the road reserve shall be located in the water main allocation as required by relevant road authority.

For the purpose of this clause road carriageways includes trafficable driveways into commercial and industrial premises.

For trunk mains located in road reserves, the following design requirements shall be evaluated and incorporated wherever practicable:
(f) Clearances from other utility services, such as electricity and telecommunication cables, gas mains, stormwater drains and sewers shall be specified. This is especially important where thrust blocks exist for bends, tees and valves as the thrust block size often needs the physical space of the adjoining Allocation to be properly founded for its design function.

Trunk water mains ≤ 300 NB shall preferably be installed in designated road service corridor where possible.

Where this is not possible, trunk water mains ≤ 300 NB may be installed in the road shoulder, or alternatively in the kerb side lane - subject to Road Authority and Urban Utilities approval.

Trunk water mains > 300 NB shall preferably be installed in the road shoulder, or alternatively in the kerb side lane. Trunk water mains > 300 NB shall not be installed in the road verge or footpath.

Local Council and State road water main service corridors are not generally applicable to or relevant for mains > 300 NB.

Alignment of the trunk water mains within Council or State road reserves requires the prior approval of the relevant Road Authority/ies, before Urban Utilities will consider accepting the design.

Where a trunk main is to be located in the road shoulder, the spacing between the centerline of the main and the kerb shall be sufficient to enable a tracked vehicle to undertake trunk water main repair/replacement works without damaging the kerb and channel.

Trunk water mains shall have mechanical protection (i.e. be installed within a pipe enveloper or concrete encasement) where they are located under bikeways and/or roadways constructed of concrete.

Where applicable, trunk water mains shall be laid straight through roundabouts.

Where possible, a trunk water main shall be located on the alternate side of the street to the sewer location.

Where a trunk water main was originally laid in the road reserve, but due to proposed road works (e.g. road widening) is now proposed to be located in a different relative location (e.g. trunk water main was originally located in road shoulder, but is now proposed to be located elsewhere - such as road carriageway or footpath), the trunk water main shall be relocated to an appropriate alignment and constructed in an appropriate material for the location.

Where a proposed road crosses an existing AC trunk water main or trunk water main of any other material no longer approved by Urban Utilities, the trunk main shall be replaced/relocated to an appropriate alignment and constructed in an appropriate material for the location.

As AC mains are highly susceptible to damage from new works, changes in loading, pipe support and vibration, existing AC mains shall be rot be protected using concrete encasement.

Where a trunk water main is required to be relocated, consult with Urban Utilities regarding the preferred and acceptable trunk water main alignments.

Refer to Clause 4.1 for information regarding appropriate/approved materials.

Where an existing trunk water main has mechanical protection (pipe enveloper or concrete encasement), and the proposed works require extension of the mechanical protection, consult with Urban Utilities regarding whether mechanical protection on the existing main is acceptable, or whether relocation of the main is required.

All water main appurtenances shall be able to be accessible to maintenance vehicles and shall not be restricted by any proposed road upgrades or other improvements. In addition, water main appurtenances shall be able to be operated from the finished surface level.

Minimising traffic impacts and the need for traffic control when operational and maintenance activities are undertaken shall be considered when determining the location of trunk water main appurtenances.

Appurtenances shall not be located in the trafficable section of the road carriageway.

5.4.2.2 Location in Footway

Wherever practicable, water mains shall be laid on the opposite side of the road to the sewer. As the sewer is usually laid on the high side, the water main, in such cases, will be laid on the low side.

5.4.2.3 Location in Carriageway

Where the trunk water main is proposed to be located in a road carriageway, written approval of the alignment and level of the main shall be obtained from the road authority and Urban Utilities.

5.4.3 Location in Other Than Dedicated Public Road Reserves

Permanent trunk water mains shall not be located within private property.

Where a temporary trunk water main is located on private property, written approval of the landowner is required, and an easement or land tenure shall be provided.

5.4.4 Water Mains in Easements

Refer to Table 5.2 in the SEQ Water Code for default easement guidelines.

If a temporary trunk water main cannot be placed in a road reserve, an easement will be required. In this circumstance, consideration shall be given to access arrangements for operational and maintenance reasons.

If scour valves are located within an easement, then consideration shall be given to obtaining easements for the drainage path of any water which may leave the pipe easement. Alternatively, pump-out scour arrangements may be considered.

The Project Proponent shall arrange for the provision of any easements over private property and registration of such easements. Easement registration in favour of Urban Utilities is required prior to connection of the trunk main to the existing water supply network.

5.4.8 Contaminated Sites

A register of contaminated land sites is held by the DEHP Contaminated Land Unit. Details of works to be carried out on a contaminated site shall be referred to the Environmental Officer of relevant authority for approval.

5.4.9 Crossings

5.4.9.1 General

The design of trunk water main crossings of controlled access roads (e.g. freeways and major arterials),
railways and waterways shall include mechanical protection of the main. The installation of pre-cast reinforced concrete slabs over the water main as a means of providing mechanical protection is not permitted.

Mechanical protection shall preferably be provided by installing a pipe enveloper (encasing pipe). Where this is not practical, concrete encasement of the trunk water main may be considered and is subject to acceptance by Urban Utilities. Refer to Cl 7.6.1 Concrete Encasement - General for guidance only regarding concrete encasement.

All surface fittings shall be positioned outside the controlled road reserve, rail corridor/land or waterway embankments.

The design shall include drawings showing the reinstatement of road layers for open cut crossings. These details must be approved by the relevant corridor owner/Authority.

Trunk water main crossings shall be designed as buried pipelines using trenchless techniques unless approved otherwise by Urban Utilities.

The Designer shall consult with the relevant reserve/corridor Authority to ensure Urban Utilities requirements as well as those of the relevant reserve/corridor Authority are satisfied as part of the design process.

The design of crossings shall consider:

- the ultimate width of the corridor/reserve being crossed, as well as the associated enveloper/concrete encasement extents.
- specific requirements of the reserve/corridor authority
- public utility plant crossings and clearances
- impact of proposed road pavement design over newly constructed main (where relevant)
- the temporary works requirements associated with the various construction methods

Refer Cl 5.4.10 for additional requirements where trunk water mains are located within railway reserve/corridor or rail land.

5.4.9.2 Requirements for Encased Pipe Installations

Only welded steel or butt-welded PE pipework shall be installed within encased pipes. A sufficient annulus dimension shall be specified so that the main can be secured in place using an approved spacer system. The annulus between the trunk water main and the encasing pipe shall be grouted.

Refer to Standard Drawings SEQ-WAT-1212-1, SEQ-WAT-1213-1 and SEQ-WAT-1214-1 for guidance only on typical arrangements

5.4.10 Railway Reserves

Where a trunk water main crosses a railway reserve/corridor or rail land, agreement on terms and conditions which is acceptable to Urban Utilities and the Railway Manager is required.

Refer to SEQ Code Standard Drawing SEQ-WAT-1213-1 for guidance only regarding typical buried water mains crossings railways.

5.4.11 Crossing of Creeks and Drainage Reserves

Acceptable options for creek and drainage reserve crossings include:
(a) mains laid under the creek bed
(b) mains attached to bridges
(c) mains laid within an enveloper/encasing pipe.

Where a creek or drainage crossing is proposed, consult with Urban Utilities regarding whether there is a preferred crossing arrangement, pipe material and jointing method to be used.

Refer to Clause 5.3 for trunk water main access requirements for mains \geq DN750.
Refer to SEQ Code Standard Drawings SEQ-WAT-1211-1, SEQ-WAT-1312-1 and SEQ-WAT-1212-1 for guidance only regarding relevant creek/drainage crossing concepts.

5.4.12 Overhead Power Lines and Transmission Towers

Overhead power lines are a hazard for trenching and mechanical handling of pipes. Inducted currents in the water main may be a safety hazard or induce corrosion. Water mains shall be located as far as practicable away from overhead power lines and transmission towers.

Investigations shall also be carried out, with reference to AS/NZS 4853, to determine potential safety risks where:
(a) welded steel pipelines simultaneously run parallel and close to high voltage power lines i.e. for more than 1 km parallel and within 500 m of powerlines $>50 \mathrm{kV}$;
(b) metal pipelines are located within 5 m of a transmission tower; or
(c) metal pipeline access is within 50 m of a transmission tower.

NOTE: The above distances are indicative only
Where the distance from a metal water main to a power line or transmission tower is within the distances stated in this Clause, an electrical study considering earth potential rise and low frequency induction, as well as a report detailing the procedures to be adopted for the construction and maintenance of the main, shall be provided by an RPEQ. This written report is to be provided to Urban Utilities before the detailed design is finalised.

Following report submission, the Designer is to consult with and incorporate feedback and requirements provided by Urban Utilities relevant Electrical and Cathodic Protection stakeholders.

5.4.13 Water Mains in Conjunction with Landscaping and/or Other Development

If at the time of preparing a water main design it is known or reasonably expected that landscaping or development will take place over the installed water main, then the design shall address the following:
(c) Structural design - provision of a structural slab over the trunk watermain as a means of providing mechanical protection is not acceptable.
(h) Building over or near assets considerations - where practicable, trunk water mains shall be clear of landscaping and/or other development. Where it is not practicable, consult with Urban Utilities to obtain approval for any proposed landscaping and/or development.

5.4.14 Water Mains on Curved Alignments

Where trunk network layouts include curved alignments, the Designer shall determine the most appropriate pipeline material and/or combination of components to achieve the required alignments.

5.4.15 Location Markers

Refer to Example Project Drawings 486/4/6-0050-016 and 462006003 in Appendix TWM-A for guidance only regarding typical marker post arrangements.

Refer to SEQ Code Standard Drawings SEQ-WAT-1300-1 and SEQ-WAT-1300-2 for guidance regarding road and pavement markers, as well as identification marker posts.

On State controlled roads where kerb and marker posts are not able to be installed, marker plates and tags pinned to concrete crash barriers may be considered as a suitable alternative option by Urban Utilities.

5.5 Trenchless Technology

Where a PE trunk water main is installed using trenchless technology, only butt-weld pipe joints are accepted. Stress analysis shall be undertaken to verify pipe material performance under installation loading.

Where a mild steel trunk water main is installed using trenchless technology, only welded pipe joints are accepted.

Pipework with rubber ring joints (RRJ), flanged joints (FL), electrofusion (EF) joints or mechanical joints shall not be installed using trenchless techniques or within mechanical protection (i.e. pipe enveloper or concrete encasement).

5.6 Shared Trenching

Common trenching for different/multiple Utility Entities shall not be permitted.

Shared trenches shall only be permitted for drinking and non-drinking water mains.

The minimum vertical and horizontal clearances between Urban Utilities trunk water mains and other utilities shall be in accordance Table 5.5 contained within this document.

5.9 Connection of New Mains to Existing Mains

All works on the existing water supply system shall be considered as "live works" and will be controlled by Urban Utilities or their designated agent at the Constructor's cost. These works shall be clearly delineated on the Design Drawings and shown in sufficient detail such that the works can be readily constructed.

If the proposed trunk main crosses a roadway adjacent to the connection point, the full length of the trunk main at the road crossing shall be included in the "live works".

The connection point to the existing system shall be located to minimise disruption of supply to customers and be subject to Urban Utilities approval.

Refer to SEQ Code Standard Drawings SEQ-WAT-1105-1, SEQ-WAT-1105-2 and SEQ-WAT-1105-3 for guidance regarding connection details of new mains to existing mains.

An Urban Utilities Network Access Permit is required to be obtained for all works being undertaken near or over Urban Utilities infrastructure.

5.10 Termination Points

5.10.2 Temporary ends of water mains

In order to eliminate shut-offs, and disruption of services to existing customers, the main shall be terminated as required by Urban Utilities.

Future extension of the trunk water main shall be considered as part of the temporary end design.

5.10.3 Chlorination Assemblies

Chlorination/disinfection assemblies are required on all new mains to enable chlorination / disinfecting, swabbing (where required) and sampling for water quality testing purposes.

Chlorination/disinfection assemblies shall consist of the following elements, which shall be shown as part of the design:
(a) pitot point (chlorination/disinfectant injection point);
(b) swab entry and exit points (where required by Urban Utilities on specific works); and
(c) test point(s).

Test points shall be installed at the end of all new mains for the purposes of checking the disinfectant concentration during commissioning and operation of the mains.

Hydrants and air valves may be used instead of pitot points (chlorination/disinfectant injection points) and test points.

Refer to SEQ Code Standard Drawing SEQ-WAT-1410-1 for guidance regarding chlorination test point arrangements.

5.10.4 Flushing Points

Flushing points shall not be installed on trunk water mains. Scours shall be used to drain and flush the trunk water main.

5.11 Property Services

Water Services shall not be installed on trunk water mains.

5.12 Obstructions and Clearances

5.12.5 Underground Obstruction and Services

5.12.5.1 Mains

The Designer shall confirm the position and depth all infrastructure (including any fibre optic conduit) has been accurately located by non-destructive methods such as hydro-vacuum potholing systems.

5.12.5.2 Clearance Requirements

For trenched and trenchless installations, clearances from other service utility assets shall not be less than (and preferably exceed) the minimum vertical and horizontal clearances shown in table 5.5.

Water mains shall be located with sufficient clearance to structures to allow for maintenance and operation activities and provide protection against damage from pipeline bursts.
The minimum horizontal clearance between pipe enveloper/encasement extents and the closest trunk water main pipe joint clear of the enveloper/encasement shall be 600 mm .

Where new services interfere with an existing thrust block's integrity, then an engineering assessment is required to determine the minimum clearances (the minimum clearance shall be the larger of Table 5.5 or the determined value).

Table 5.5 CLEARANCES BETWEEN URBAN UTILITIES WATER MAINS AND OTHER UNDERGROUND SERVICES

Utility (Existing or proposed service)	Minimum Horizontal Clearance to new Urban Utilities Trunk Water Main (mm)		Minimum Vertical Clearance to new Urban Utilities Trunk Water Main (mm)
	≤ 375 NB	> 375 NB	
SEQ-SP Water Mains ${ }^{2} \leq 375$ NB	600^{3}	1000	300
SEQ-SP Water Mains ${ }^{2}>375$ NB	1000	2000	500
$\begin{aligned} & \text { QBWSA }^{8} \text { Water mains }{ }^{2} \\ & \leq 200 \text { NB } \end{aligned}$	300	$300 / 600^{9}$	150/300 ${ }^{9}$
QBWSA ${ }^{8}$ Water mains ${ }^{2}$ >200 and ≤ 375 NB	600	600/1000 ${ }^{9}$	150/300 ${ }^{9}$
$\begin{aligned} & \text { QBWSA }^{8} \text { Water mains }{ }^{2} \\ & >375 \text { and } \leq 600 \text { NB } \\ & \hline \end{aligned}$	600	600/1000 ${ }^{9}$	$300 / 500^{9}$
$\begin{aligned} & \text { QBWSA }{ }^{8} \text { Water mains }{ }^{2} \\ & >600 \text { NB } \end{aligned}$	1000	1000/2000 ${ }^{9}$	$300 / 500{ }^{9}$
Gravity Sewers ≤ 300 NB	10005/600	1000	$500{ }^{4}$
Gravity Sewers > 300 NB	10005/600	1000	$500{ }^{4}$
Sewers - Pressure	$1000{ }^{5}$	$1000{ }^{5}$	500
Sewers - Vacuum	1000	1000	500
Gas Mains	600	1000	500
Telecommunication conduits and cables	600	600	300
Electrical conduits and cables	1000	2000	$500^{4,7}$
Electrical and communication poles	1000	2000	N/A ${ }^{7}$
Stormwater Drains ≤ 300 NB	600^{3}	1000	$150{ }^{4}$
Stormwater Drains > 300 NB	600^{3}	2000	$300{ }^{4}$
Kerbs	600^{6}	$600{ }^{6}$	900

Notes:

1. Vertical clearances apply where water mains cross one another and other utility services, except in the case of sewers where a vertical separation shall always be maintained, even when the main and sewer are parallel. The main should always be located above the sewer to minimise the possibility of backflow contamination in the event of a main break.
2. Water mains includes mains supplying drinking water and non-drinking water.
3. Clearances can be further reduced to 300 mm for distances up to 2 m where mains are to be laid past installations such as concrete pits, providing the structure will not be destabilised in the process.
4. Water mains (including water services and fire hydrant offtakes) should always cross over sewers, stormwater drains, gas mains and electrical conduits unless written approval is obtained from SEQ-SPs. For cases where there is no alternative and the main must cross under other services, the design shall nominate an appropriate trenchless construction technique in accordance with Clause 5.5 or other water main construction and protection treatment (e.g. welded mild steel main within pipe enveloper or concrete encasement, which is effectively joint-free in the vicinity of other services.
5. Where a parallel sewer is at the minimum vertical clearance lower than the water main (500 mm), maintain a minimum horizontal clearance of 1000 mm . This minimum horizontal clearance can be progressively reduced to 600 mm as the vertical clearance is increased to 750 mm .
6. Clearance from kerbs shall be measured from the nearest point of the kerb.
7. An additional clearance from high voltage electrical installations should be maintained above the conduits or cables to allow for a protective barrier and marking to be provided.
8. QBWSA is the Queensland Bulk Water Supply Authority trading as Seqwater, established under the South East Queensland Water (Restructuring) Act 2007 (Qld). For further information and requirements refer to: https://www.seqwater.com.au/working-near-water-infrastructure
9. Larger minimum clearance applies when new Urban Utilities water main size is $>375 \mathrm{~mm}$ NB.

5.12.6 Deviations of Water Mains

5.12.6.1 General

Joint deflections in accordance with the pipe manufacturers recommendations may be used to achieve required pipe deviations

5.12.6.2 Horizontal Deviation of Water Mains

Horizontal deviation of trunk water mains shall be achieved by using:

- Joint deflections in accordance with the pipe manufacturer's requirements
- Bend fittings or welded mild steel pipes
- A combination of the above two methods

5.12.6.3 Vertical Deviation of Water Mains

Vertical deviation of trunk water mains shall be achieved by using:

- Joint deflections in accordance with the pipe manufacturer's requirements
- Bend fittings or welded mild steel pipes
- A combination of the above two methods

5.12.6.4 Curving of Pipes to Avoid Obstructions

Curving of ductile iron and mild steel pipes to avoid obstructions shall be in accordance with Cl 5.12.6.1, 5.12.6.2 and Cl 5.12.6.3.

Curving of PE pipes including limiting the radius of curvature shall be in accordance with both PIPA Guideline POP202 and the pipe manufacturer's requirements.

5.14 Reticulation Connections

Reticulation connections from a trunk water main shall be as agreed with Urban Utilities. Where a reticulation branch is to be installed off a trunk water main, the reticulation branch shall be a flanged tee and fitted with a double flanged metal seated gate valve or double flanged resilient seated gate valve.

7 Structural Design

7.4 External Forces

7.4.2 Pipe Cover

Water mains shall have sufficient cover to:
(a) ensure any vehicular loading that is in excess of the loading capability of the water main, is transferred to the soil strata beyond the water main;
(b) suit the height dimensions (locally) of fittings such as valves and hydrants
(c) meet the requirements of the road Owner (for water mains in road reserves); and
(d) meet any special requirements of the Water Agency

Standard minimum depths of cover for water mains shall be in accordance with Table 7.2. In areas that are subject to extremely cold conditions, cover shall be sufficient to prevent frost penetrating to the water main.

Table 7.2 MINIMUM DEPTHS OF PIPE COVER (mm)

Location	$\leq \mathbf{2 0 0} \mathbf{~ m m ~ N B ~}$	$\mathbf{> 2 0 0} \mathbf{~ m m ~ N B ~}$
Non-trafficable areas, driveways, verges/footways	600	$\mathbf{1 , 0 0 0}$
Carriageways of sealed local roads	600	1,000
Carriageways of unsealed roads	750	1,000
Carriageways of major roads, embankments	750	1,000
Industrial and Commercial Areas	750	1,000
Carriageways of motorways/freeways	1,200	1,200

Trunk mains ≤ 300 NB shall have a maximum depth to invert of 1.5 m , unless a special design for the pipeline and its installation is submitted to and approval by Urban Utilities.

Trunk mains > 300 NB shall have a maximum pipe cover of 1.5 m , unless a special design for the pipeline and its installation is submitted to and approved by Urban Utilities.

Where a smaller pipe connects to a larger pipe, then the smaller pipe must achieve the required depth within 20 m . This may be achieved by pipe deflection; however, if adjacent services or pipe deflections do not allow this, then either:

- Welded mild steel bends shall be used when the larger pipe is mild steel; or
- flanged ductile iron bends shall be used when the larger pipe is ductile iron.

In a road carriageway, the depth of cover shall be measured from the road shoulder or lip of kerb. Where site works will reduce the depth of cover below the required pipe cover, the main shall be redesigned to provide the required cover.

7.4.4 Pipe Embedment

Refer to SEQ Code Standard Drawings SEQ-WAT-1201-1, SEQ-WAT-1202-1, SEQ-WAT-1203-1 and SEQ-WAT-1204-1 \& 2 for guidance on embedment types.

7.5 Geotechnical Considerations

A geotechnical investigation including field testing is required to determine ground conditions before detailed design of Urban Utilities infrastructure is undertaken.

As a minimum, field testing shall determine the presence of mining subsidence and acid sulphate soils (where relevant), as well as soil grading, soil bearing strength and Emerson Class to check dispersion.

Embedment support shall be suitable for the location and constraints encountered on site. Pipe/embedment support utilising hardwood piles is not permitted.

Geotechnical investigation along the trunk water main route is required to justify the trench design.
Filter fabric wrapped around the pipe embedment is required if the native soil is migratory.
If the native soil is non-cohesive, filter fabric around the pipe embedment is required if the grading analysis confirms the soil is classified as 'sand', in accordance with AS1726:2017 Geotechnical Site Investigations.

Migratory clay can be identified using the Emerson Dispersion Index test or the Pinhole test. Both tests shall be carried out if the soil bearing strength is $<50 \mathrm{kPa}$. Where soil bearing strength is $\geq 50 \mathrm{kPa}$, either the Dispersion Index test or Pinhole test shall be undertaken, as nominated by the Designer.

The bearing strength test requirement is not only related to whether the native material is migratory. It is used to determine whether a more onerous trench design is required. If the native soil is a very weak cohesive material, it can migrate into the trench and/or cause settlement of the pipe in the trench - a dispersion test does not identify this issue.

Table 7.2a provides guidance for designers regarding embedment support requirements.

Table 7.2a EMBEDMENT SUPPORT TYPE BASED ON NATA-CERTIFIED GEOTECHNICAL DATA

EMBEDMENT SUPPORT TYPE SHALL BE BASED ON REPRESENTATIVE NATA-CERTIFIED GEOTECHNICAL DATA FROM THE PROPOSED TRENCH DEPTH				
DISPERSION		Soil Bearing Strength (kPa) Note 3	Embedment support type	Requirement
Emerson Class Note 1	Pinhole Test ${ }^{\text {Note } 2}$			
Not 1, 2 or 3	Not ND1 or ND2	> 50	Type 3/C is acceptable	NATA-certified test results only
1, 2 or 3	ND1 or ND2	> 50	Type 4/D minimum	NATA-certified test results only
Any value	Any valve	< 50	Specific Design	Interpretive report

Note:

1. AS 1289.3.8.1:2017 Methods of testing soils for engineering purposes - Soil classification tests - Dispersion Determination of Emerson class number of a soil
2. AS1289.3.8.3:2014 Soil classification tests - Dispersion - Determination of pinhole dispersion classification of a soil
3. As specified on Drawing SEQ-SEW-1200-1 and SEQ-WAT-1200-1, a special geotechnical assessment is required when soil bearing strength is less than 50 kPa . The resultant interpretive report must recommend design parameter values to be adopted for the design.

The Designer shall provide an interpretive report when native soil is identified as having less than 50 kPa bearing strength. The certifying Design RPEQ shall address the report's finding in the design:
(a) justifying that a more onerous design is not required; or
(b) justifying whether one of the details shown on SEQ Code standard drawings (such as SEQ-SEW-1204-1) would be adequate; or
(c) providing a specific design, including whether structural support and/or filter fabric would be appropriate and if so, the type(s) required.

Note that SEQ-SEW-1204-1 also requires filter fabric to fully wrap the embedment.

It is incumbent upon the certifying design RPEQ to ensure that the correct filter fabric is specified.
Geotextile filter failures are grouped into four categories: inadequate design, atypical soils, unusual permeants, and improper installation, as follows:

- poor fabric selection, poor fabric design, socked drainage pipe and reversing flow conditions.
- fine grained soils, gap-graded soils, dispersive clays and ochre.
- sludges, turbid water, alkaline water, leachates and agricultural waste liquids.
- intimate contact and completely adhesive clogging of surfaces.

Refer to SEQ Code Standard Drawings SEQ-WAT-1201-1, SEQ-WAT-1202-1, SEQ-WAT-1203-1 and SEQ-WAT-1204-1 \& 2 for guidance on embedment types A to N.

7.6 Concrete Encasement

7.6.1 General

Where mechanical protection of a trunk water main is required, using a pipe enveloper rather than concrete encasement is the preferred approach. Concrete encasement of trunk water mains requires prior Urban Utilities written approval.

For major roadways and railways, mechanical protection shall extend at least 2000 mm horizontally beyond the property boundaries. For water ways, mechanical protection shall extend at least 2000 mm horizontally
beyond the riparian zone.
Non-flexible pavements (i.e. rigid concrete pavements) over the top of the water main will not be acceptable as mechanical protection.

Where approved in writing by Urban Utilities, concrete encasement/surrounding works shall be carried out in one continuous pour without horizontal joints. Concrete shall be poured on only one side of the pipe until the concrete has risen at least 25% of the pipe diameter on the opposite side.

Where it is necessary to concrete encase a section of plastic pipe material, a heavy duty 3 mm thick polyethylene material shall be placed between the concrete and the PE pipe to minimise imposed loadings, particularly where the pipe emerges from the concrete block. In addition, plastic pipework installed within 1 m of the concrete encasement limits, shall have cement stabilised sand pipe embedment to prevent potential pipe movement and settlement.

Only the following pipe material and jointing method shall be used where a trunk water main is concrete encased:

- Mild steel - welded joints
- PE - butt-welded joints
- Ductile iron - no joints (i.e. no RRJ, flanged or mechanical joints shall be located within the concrete encasement)

No pipe joints shall be installed within 600 mm of the concrete encasement.
Rocker pipes (typically 600 mm or $2 \times$ NB long, whichever is larger) may be required:

- at each end of the transition from the concrete encased pipe to the natural trenched section of the main
- at each end where a trunk water main crosses over a rigid structure (e.g. a reinforced concrete box culvert)

Refer to SEQ Code Standard Drawing SEQ-WAT-1203-1 for guidance regarding concrete encasement (Type I) embedment.

7.7 Water Mains in Unstable Ground

7.7.1 General

All water mains proposed to be located within unstable ground, slip areas and mine subsidence areas shall as part of the design process and prior to commencing the detailed design:
(a) Have a geotechnical stability investigation and report prepared and certified by an appropriately qualified RPEQ
(b) Require a risk assessment to be undertaken following the geotechnical stability investigation in collaboration with Urban Utilities. The risk assessment shall specifically consider the appropriate pipe material and jointing to be used.

Risk mitigation measures may include continuous ground and pipework monitoring to be used to determine ground movement, as well as impacts to Urban Utilities infrastructure.

7.8 Above Ground Water Mains

Where above ground water mains are unavoidable, the following shall be satisfied:
(a) Pipes are to be supported on piles, cradles or alignment blocks as appropriate with detail designs addressing potential settlement and corrosion at supports.
(b) Pipes shall be laid with invert not less than 450 mm nor more than 900 mm above ground level.
(c) Retaining walls shall be provided where the pipe enters and leaves the trench.
(d) The position of the pipe shall be approved by the relevant Authorities where the pipe crosses creeks and other areas subject to flooding.

Where relevant, the design shall incorporate allowance for expansion at bridge expansion joints and at ends of the bridge.

Above ground trunk water mains crossings creeks and waterways shall be designed to satisfy impact and debris loading requirements within AS5100 Bridge Design.

7.9 Pipe Anchorage

7.9.2 Thrust Blocks

7.9.2.1 General

The preferred thrust restraint shall be reinforced concrete anchor blocks.

Pipe material, joint selection and ground condition shall be appropriately considered so that no thrust block exceeds $30 \mathrm{~m}^{3}$, regardless of the trunk water main diameter. An alternative to standard thrust blocks may include bored piles

Thrust restraints shall take into account future maintenance requirements and access to the trunk water main.

Thrust blocks and the zone of influence shall not protrude outside the easement or outside the space allocated in roadways.

Concrete thrust/anchor blocks shall not obstruct the removal of bolts and nuts at flanged joints.

7.9.2.2 Concrete Thrust Blocks

Thrust blocks shall be designed using the greater of following pressure requirements:
(a) 1200 kPa pipeline test pressure; and
(b) the System Test Pressure of the specific pipeline.

7.9.2.4 Timber and Recycled Plastics Thrust Blocks

Timber and recycled plastic thrust blocks shall not be used.

7.9.5 Restrained Elastomeric Seal Joint Water Mains

The use of restrained elastomeric seal joints on trunk water mains is not accepted by Urban Utilities. This is to eliminate the potential WH\&S risks associated with field staff unknowingly undertaking responsive repair works

7.9.6 Restraint Requirements for Special Situations

7.9.6.5 PE Mains

Generally, a fully restrained PE pipe system does not require the use of anchorage. The restrained system may be provided through welded joints, restrained couplings or flanges. The Designer shall assess the need for pipe anchorage in any partially or fully restrained PE pipe system (e.g. ends of mains or transition between different pipe materials).

Valves shall be restrained to prevent shear loads being transferred to the PE pipe.
Refer to SEQ Code Standard Drawing SEQ-WAT-1206-1 for guidance only regarding typical thrust and anchor blocks for valves.

The transition areas between PE and other unrestrained pipelines (e.g. RRJ pipes) shall be appropriately restrained with concrete thrust blocks and/or thrust restraints. An unrestrained fitting installed on PE pipework is not permitted.

7.10 Bulkheads and Trenchstops

Bulkheads shall be provided for pipelines designed to be laid at abnormal grades in accordance with the SEQ Water Code Table 7.5. Bulkheads may also be required adjacent to the kerb and gutter shoulder of sealed carriageways to support the edge of the carriageway formation.

In addition to the grade of the water main, when determining the use of bulkheads and trenchstops, trench location, annual rainfall, native soil permeability, natural water table, the occurrence of underground streams and other Urban Utilities nominated criteria shall also be taken into consideration. Urban Utilities' consent in writing is required for the use of bulkheads and trenchstops. Where wide trenching with step batters is used, trenchstops and bulkheads should not extend above the lowest un-stepped trench section.

Where required, bulkheads and trenchstops shall be designed in accordance with AS/NZS 2566.2 and Table 7.5 of the SEQ Water Code.

When the grade is $\geq 30 \%$, the pipeline shall be fully welded (i.e. welded mild steel pipe or butt-welded PE pipe).
Trench drainage shall not cause bolted fittings to become submerged for long periods of time.
Trench drainage shall not affect land use of property owners.
Refer to SEQ Code Standard Drawings SEQ-WAT-1209-1 and SEQ-WAT-1210-1 for guidance only regarding typical trench bulkheads, trenchstop and trench drainage arrangements.

8 Appurtenances

8.1 Valves - General

Refer to Appendix TWM-C for a list of relevant Urban Utilities general mechanical specifications.

Refer to Example Project Drawing 486/4/6-0050-018 and 462003034 in Appendix TWM-A for guidance regarding stop valve arrangements \leq DN450 on trunk water mains.

Refer to Example Project Drawing 412015-EG-VP-DN600DI-L and 412015-EG-VP-MS in Appendix TWM-A for guidance regarding typical valve pit arrangements for valves larger than DN450.

8.1.2 Valve Siting Principles

Valves, hydrants and scours shall not be installed in road carriageways where an alternative location is available.

Trunk water main valves < DN450 are not required to be installed within a valve pit, provided that no gearbox is required to operate the valve. An assessment of the running torque and on/off torque shall be undertaken based on hydraulic conditions on site. High head applications may require a 4:1 gearbox and valve pit for access.

All valves larger than DN450 shall be installed within valve pits.

Gate valves shall be installed upright where practicable.

8.1.6 Valve Pits

In all cases where a stop valve is installed within a valve pit, a thrust-type dismantling joint shall be provided within the valve pit, on the downstream side of the valve.

Thrust restraints shall be provided for line valves either in the walls of the valve pit or using line anchors.

Where practicable, valve pits shall be designed to self-drain and not be subject to reverse inundation. Where this is not possible, the valve pit shall have a sump pit to assist in the use of pumping equipment to drain the pit. Pit lids shall have an opening through the pit lid to allow sump pump removal without entering the pit.

The valve pit drainage shall be appropriately designed by the Designer.

Permanent sump pumps shall only be provided in pits located in water charged ground or where valve pit is located in areas where frequent flooding or ingress via top slab / covers occurs.

For some valve pits, level sensors may be required to avoid valves being submerged for excessive time.
Refer to Example Project Drawing 412015-EG-VP-DN600DI-L and 412015-EG-VP-MS in Appendix TWM-A for guidance regarding typical valve pit arrangements for valves larger than DN450.

8.1.7 Nameplates

A nameplate manufactured from grade 316 stainless steel in accordance with AS 1449 Wrought alloy steels Stainless and heat resisting steel plate, sheet and strip shall be fixed to the body of the valve by means of grade 316 stainless steel screws and stamped or engraved with the following information:

- \quad tag number (provided by Urban Utilities)
- pump number
- manufacturer's name
- model / type descriptor
- size (DN)
- rated pressure
- design flow rate
- weight
- date of manufacture.

A second identical nameplate shall be supplied loose.

A third nameplate shall be installed on top of the slab near the valve spindle cover or access opening with the following information:

- valve number
- direction to open
- number of turns to fully open
- "CONTACT URBAN UTILITIES CONTROL ROOM BEFORE OPERATING THIS VALVE. Refer to Urban Utilities Network Access Permit for phone number to be used."

8.2 Stop Valves

8.2.1 Product Specifications

All valves shall be double flanged.
Wafer and lugged type valves shall not be used.
Knife Gate valves shall not be used.

8.2.2 Installation Design and Selection Criteria

8.2.2.2 Gate Valves

Resilient seated sluice gate valves shall not be used on trunk water mains. Only metal seated gate valves certified to AS2638.1 Gate valves for waterworks purposes - Metal Seated shall be used. Valves are to be manually operated unless directed otherwise by Urban Utilities.

All gate valves larger than DN450 or which require gearboxes, shall be installed in a valve pit.
Under special circumstances and only with Urban Utilities approval, the valve chamber may provide access to the gearbox only.

8.2.2.3 Butterfly Valves

Butterfly valves shall comply to AS 4795.2 and be installed with the spindle in the horizontal plane and the lower part of the disc shall move in the same direction as the flow with the valve open. The valves shall be heavy pattern double flanged valves of the seal on body type. The sealing surfaces of the valves shall bed on the metal face of the pipework flanges and not on the cement lining.

8.2.3 Stop Valves for Transfer/Distribution Mains

Double isolation by closure of two isolation valves at adjacent sites shall be provided before confined space entry into the trunk water main is considered.

Isolation valves may be sized at 75% of pipeline diameter subject to pigging requirements and Urban Utilities approval.

Stop valve locations need to consider topography, accessibility, operational requirements, flooding, high risk areas, minimising water loss and minimising the quantity and duration of community water service disruption. High risk areas include but are not limited to the following: creek crossings, rail crossings, main road crossings, steep terrain, mine subsidence areas, sensitive environmental areas and locations where there is a higher risk of pipe failure e.g. acid sulphate soil areas.

Only metal seated gate valves (MSVs) shall be used on trunk water mains.
Refer to Clause 5.14 regarding acceptable stop valves for reticulation connections.
Tapered connectors may be concentric or eccentric as appropriate and subject to Urban Utilities approval.
For trunk water mains, valves spacing shall be provided to meet Urban Utilities operational and maintenance requirements. Typically section valves should have a maximum spacing of 2 km where there are only a few connections. Within the CBD or dense urban settings, maximum valve spacings of 1 km should be considered. Trunk main drain down time between section valves should be ideally 4 hours and no more than 8 hours (i.e. one shift).

8.2.6 Bypass of Stop Valve

The bypass valve connections shall not be cast integral with the main stop valve.
DN225 bypass valves and pipework shall not be used.

By-pass arrangements complete with gate valves are to be provided around all main line valves greater than DN300 unless directed otherwise by Urban Utilities.

The default sizes of bypasses for stop valves shall be:
(a) DN100 for water mains $<600 \mathrm{~mm}$ nominal bore;
(b) DN150 for water mains $>600 \mathrm{~mm}$ and $<1050 \mathrm{~mm} \mathrm{NB}$; and
(c) DN200 for water mains > 1050 mm and $<1200 \mathrm{~mm}$ NB.

Refer to SEQ Code Standard Drawings SEQ-WAT-1308-1 and SEQ-WAT-1406-1 for guidance regarding typical valve bypass arrangements.

8.2.7 Stop valves - location and arrangements

8.2.7.1 General

All valves shall be double flanged.
Refer to SEQ Code Standard Drawing SEQ-WAT-1103-1 for guidance regarding typical distribution and transfer main arrangements.

8.2.7.3 Arrangement 2

Where a stop valve is located on the opposite side of the road to the trunk main, the pipework between the tee and the valve shall be thrust restrained.

8.3 Control Valves

8.3.3 Pressure Reducing Valves (PRV)

Refer to SEQ Code Standard Drawing SEQ-WAT-1309 set for guidance regarding typical appurtenance installation arrangements for passive and active pressure reducing valves (PRV).

8.4 Air Valves (AV)

8.4.2 Installation Design Criteria

Air valve arrangements shall comply with, inter alia, the following requirements:
(a) Air valves shall be located within pits that have access lids located at the finished surface level;
(b) All valves shall be no deeper than 1.5 m below ground the finished surface level;
(This is to reduce complications when inspecting as well as undertaking operations and maintenance activities)
(c) the minimum cover to the trunk water main is $\geq 1.0 \mathrm{~m}$;
(d) An isolation valve shall be provided adjacent to air valves to facilitate air valve maintenance. The isolating valve used with air valves shall be a double flanged butterfly valve with lever and be the same size as the air valve. For DN100 air valves, a combined hydrant isolator fitting shall be used in-lieu of isolation valve;
(e) Where the air valve is offset from the trunk main (usually in instances where the trunk main is within the sealed section of the road pavement), an additional isolation valve may need to be installed on the offset pipework at the branch from the trunk water main - refer to Urban Utilities for requirements;
(f) The isolation valve/s associated with the air valve arrangement shall be operable from finished surface level;
(g) Concentric reducers on offset air valve arrangements are not permitted;
(h) Pressure test points are to be incorporated in all air valve assemblies to enable pressure test gauges to be manually connected for testing;
(i) Air valves on pipes less than DN750 shall include a branch equal to the air valve size.
(j) Air valves on pipes DN750 and greater shall include a DN600 access branch also serving as an air collection chamber; and
(k) Following a hydraulic and pressure transient analysis being undertaken, all valves and associated valving arrangements shall be appropriately selected and designed respectively, to ensure they are suitable for the range of operating conditions that will be experienced.

Refer to Example Project Drawings 486/4/6-0050-016, 486/4/6-0050-022, 462003007, 462006010, and 412015-EG-AVP-DN375 in Appendix TWM-A for guidance regarding typical air valve arrangements.

8.4.4 Air Valve Size

Air valves shall be sized based on filling and draining requirements and minimum drain down times. The Designer shall undertake air valve sizing and selection in consultation with Urban Utilities.

Transient analysis is unlikely to affect air valve selection as air valve activation is not permitted during subatmospheric conditions.

8.4.5 Air Valve Locations

When required on large mains, air valves shall be located:
(a) At summits (high points).
(b) At intervals of not more than 800 m on long horizontal, ascending and descending sections.
(c) At significant increase in downward slope (See SEQ Water Code Figure 8.23).
(d) At significant reduction in upward slope (See SEQ Water Code Figure 8.23).
(e) On the downstream side of PRVs.
(f) On the downhill side of major isolating valves.
(g) At blank ends.
(h) As close as possible to property boundaries or existing fence lines to avoid impacts on the landowner and the private property.

8.4.6 Use of Hydrants as an Alternative to Air Valves

For pipelines less than 450 NB, fire hydrants may be used in lieu of air valves with the approval of Urban Utilities. Typically, hydrants on trunk water mains are used in instances where the grade of the pipeline is relatively flat and there is potential for localised air entrapment to occur - especially during re-filling.

Where Urban Utilities approves hydrants to be installed on a trunk water main, an approved hydrant/isolator fitting with a DN100 flange shall be used.

Refer to Example Project Drawing 486/4/6-0057-009 in Appendix TWM-A for guidance regarding a typical trunk water main hydrant arrangement.

Where hydrants are installed as an alternative to an air valve, the hydrant will have identification markings consistent with those used for air valves. As these hydrants are not intended for fire fighting purposes, they shall not have identification markings the same as a typical hydrant.

8.6 Scours and Pump-Out Branches

8.6.1 Scours - Location and Arrangements

Urban Utilities requires scours for water mains > 200 NB.

A flanged scour tee shall be used at the scour branch.

Refer to Example Project Drawings 486/4/6-0050-017, 486/4/6-0050-020, 462003006, 462003036, 462006009 and 4125015-EG-SCVP-DN375-600 in Appendix TWM-A for guidance regarding typical scour arrangements.

Refer to SEQ Code Standard Drawing SEQ-WAT-1307-2 for guidance regarding typical scour details.

8.6.2 Design

Scours and pump-out branches are provided in the distribution network for maintenance purposes. They are designed to allow draining of water from the mains by gravity or use of a mobile pump.

Scours are also provided for the removal of sediment.
At creek and river crossings, the scour tee and the scour outlet shall be installed at a level equal to or just higher than the mean water level in the watercourse.

The design drawings shall detail appropriate erosion protection and control measures (e.g. headwalls, stone pitching, etc.).

A dewatering pit may be required to de-chlorinate the water before discharge. The discharge of chlorinated water shall comply with the Urban Utilities Site Access, Tenure, Environment and Planning (STEP) Assessment requirements. Refer to Urban Utilities document FOR325 STEP Assessment.

Scour arrangements may include the use of an orifice plate to manage discharge velocities through the scour, as well as prevent scour valve cavitation. Consult with Urban Utilities where an orifice plate is proposed.

Scour arrangements shall:
(a) drain the water main by gravity and/or have provision for pump out within a specified time in accordance with Table 8.3;
(b) have a diffuser fitted at the discharge point if there is a likelihood of environmental or asset damage;
(c) not be subject to inundation from a flood due to a 1 in 2 year storm event;
(d) be located so as to permit safe access and operation;
(e) be appropriately located so that they are not submerged for extended periods of time;
(f) take into consideration the receiving environment and the local surrounding where the scour discharges, and the potential need for any drainage easement; and
(g) not erode/damage the local Authority's infrastructure/assets (e.g. headwalls, drains, etc.) due to operating the scour valve.

Table 8.3 MAXIMUM WATER MAIN DRAINAGE TIMES

Main size Nominal Bore (NB)	Maximum drainage time \mathbf{h}
<375	1
$375-750$	2
>750	4

8.6.4 Scour Size

Scour sizes are based on the need to drain a section of main within a time stipulated in Table 8.3. Scours shall be sized in accordance with Table 8.4.

Table 8.4 MINIMUM SCOUR SIZE

Main size Nominal Bore (NB)	Maximum drainage time \mathbf{h}
≤ 200	80
$>200-<375$	100
$>375-\leq 750$	150
>750	200

8.6.5 Scour Location

Scours shall be located at:
(a) low points at the ends of water mains;
(b) low points between in-line stop valve; and
(c) at the end of the trunk main to meet chlorination and maintenance requirements.

Scours shall drain to a point where the discharge is readily visible and accessible, to prevent the scour valve inadvertently being left open.

Typical discharge locations include:

(i) an approved open stormwater structure, or a pit that should be pumped out each time the scour is operated (sometimes called a pump scour);
(ii) an open grated street drainage gully; and
(iii) a natural water course (with energy dissipater).

Scour locations need to consider topography, accessibility, operational requirements, flooding and suitability of environment for discharge.

8.7 Swabbing Points

Swabbing points are not required under normal conditions.
Swabbing/pigging stations are usually only required where flow velocities are low, which typically occurs where only early stage development is being supplied off a trunk water main that has been sized based on ultimate demand.

Provided that initial flow in the trunk water mains provides a shear stress > 4 kPA , swabbing points in the trunk water main will not be required, unless directed otherwise by Urban Utilities.

All proposed swabbing points require Urban Utilities approval.
Refer to SEQ Code Standard Drawing SEQ-WAT-1318-1 for guidance regarding typical swabbing chamber arrangements.

8.8 Hydrants

Hydrants on trunk water mains shall not be used unless approved by Urban Utilities. Hydrants shall only be installed on trunk water mains for localised manual air release purposes.

Refer to Clause 8.4.6 regarding the use of hydrants as an alternative to air valves.

8.8.4 Hydrant Types

Combined hydrant/Isolation valve assemblies shall be used where hydrants are required to be installed on trunk water mains. All hydrants shall be spring hydrants.

Refer to Example Drawing 486/4/6-0057-009 in Appendix TWM-A for guidance only regarding combined valve/hydrant arrangements and associated access pit.

8.8.7 Hydrant Size

Spring hydrants shall have 100 mm NB risers and DN100 flanges.

Where PE pipe material is accepted by Urban Utilities, the PE flange that connects to the hydrant shall be full face with SS316 backing rings and the bolting configuration shall match the DN100 flange on the hydrant. Buttwelded joints shall be used for PE hydrant arrangements (including tees).

8.8.8 Hydrant Spacing

Hydrants on trunk water mains shall not be used unless approved by Urban Utilities. Hydrant spacing/location for trunk water mains shall be determined in consultation with Urban Utilities.

There are no minimum or maximum spacing requirements for hydrants located on trunk water mains, as these hydrants are intended for localised air release requirements purposes, rather than fire fighting purposes.

Disregard Appendix H of the SEQ Water Code.

8.8.9 Hydrant Location

Where Urban Utilities requires a hydrant to be installed on a trunk water main, the hydrant shall primarily be located to effectively enable localised manual air release from the trunk main to be undertaken. If possible, it is also preferable for the hydrant to be located in line ($+/-200 \mathrm{~mm}$) with the side real property boundary, to minimise potential impacts to local residents.

8.9 Disinfection Facilities

8.9.1 General

Disinfection and water quality requirements shall be in accordance with SEQ Water Code Appendix IDisinfection of Water Mains and Water Quality Compliance Specification.

Swabbing is not required by Urban Utilities under normal conditions as per Clause 8.7 and Clause 18.1.

Refer to SEQ Code Standard Drawing SEQ-WAT-1410-1 for guidance regarding a typical chlorination test point detail.

8.10 Surface Fittings

8.10.2 General

The design of surface fittings shall consider safe access for the operation of the fittings.
Refer to SEQ Code Standard Drawings SEQ-WAT-1305-1 and SEQ-WAT-1306-1 for guidance regarding typical valve surface boxes arrangements where the isolation valve is \leq DN450 in size.

8.10.3 Marking of Surface Fittings

Hydrants on trunk water mains are not intended to be used for fire-fighting purposes and shall have identification markings consistent with an air valve.

Refer to SEQ Code Standard Drawing SEQ-WAT-1300-1 for guidance regarding typical surface fitting pavement markers.

8.11 Appurtenance Location Marking

8.11.2 Marker Posts and Plates

Marker posts shall be installed adjacent to the appurtenances, but clear of the road carriageway.

All marker posts for the non-drinking water components shall have the non-drinking water sign or letters NDW added to the lettering on the indicator plates and top of the marker posts painted purple.

Refer to SEQ Code Standard Drawing SEQ-WAT-1300-2 for guidance regarding typical surface fitting identification marker posts.

8.11.3 Pavement Markers

The pavement markers shall meet the requirements of the relevant road authority.

Refer to SEQ Code Standard Drawings SEQ-WAT-1300-1 and SEQ-WAT-1300-2 for guidance regarding typical surface fitting pavement markers and identification marker posts.

8.12 Flowmeters

A flowmeter shall not be directly buried. Flowmeters shall be installed within pits.

Refer to Example Project Drawings 462004005 and 486/4/25-0005-002 in Appendix TWM-A for guidance regarding typical flowmeter arrangements.

8.13 Sample Points

Sample points are to be detailed on the design drawings and installed during construction. The number and location/s for the sample points shall be approved by Urban Utilities.

9 Design Review and Drawings

9.2 Design Drawings

9.2.1 General

All design drawings shall be clear, uncluttered, without conflicting/illegible text/linework; at a scale that achieves these objectives and in accordance with the SEQ D\&C Asset Information Specification (AIS).

9.2.3 Scale

All drawings shall comply with scale requirements in the SEQ D\&C Asset Information Specification.

9.2.4 Content of Design Drawings

The content of the Design Drawings shall be in accordance with the Urban Utilities TWM Code and the SEQ D\&C Asset Information Specification.

9.2.4.1 Locality Plan (refer to SEQ AIS for additional requirements)

Generally the following information relevant to the proposed water main installation works shall be shown on the Locality Plan:
(a) the location of the development relative to surrounding areas;
(b) the property or development boundary shown with a heavy line;
(c) existing and proposed road boundaries;
(d) sufficient street names and major topographical features to easily locate the development;
(e) sufficient details of the local mains to clearly show the scope and extent of the "live connection works"; and
(f) the UBD map reference number (where available).

9.2.4.2 Site Plan (refer to SEQ AIS for additional requirements)

Generally the following information relevant to the proposed water main installation works shall be shown on the Locality Plan:
(a) cadastral information including streets, street names, lot boundaries and numbers and easement locations;
(b) proposed and existing water mains diameter (DN), material type, pressure class (PN), diameter;
(c) water main location (offset) from property boundary;
(d) "Live" water connections to be built, including mains and fittings;
(e) mains to be substituted and associated fittings;
(f) mains to be disused;
(g) sufficient details of the existing system for the "live connections";
(h) Urban Utilities "As Constructed" reference or file number for all existing mains affected by the live connections;
(i) list of all proposed fittings, including "live" connections. The lists shall be located near the point of placement on the plan;
(j) diagrammatic sketch of pipe fitting arrangements;
(k) hydraulic force in kN and direction indicated by an arrow at each bend, junction and dead-end (refer SEQ Code Standard Drawing SEQ-WAT-1205-1);
(I) details of all existing and proposed structures and utilities that may affect the works, including the cover, size and alignment;
(m) overhead high voltage power lines and support towers;
(n) water service sizes, material and entry points for each lot;
(o) location of service conduits;
(p) allotments with zero lot alignments; and
(q) a bold line drawn around the development property or site.
(r) all mild steel pipe specials shall be detailed.

9.2.4.3 Tabulations (refer to SEQ AIS for additional requirements)

The following tabulations and its details shall be shown on the drawings:

Asset register:

(a) name of Subdivision or Development;
(b) Development site address;
(c) application numbers from relevant Urban Utilities delegate;
(d) Urban Utilities delegate approval date;
(e) material and total length of each diameter of main;
(f) date works complete; and
(g) Drawing or Detail Plan numbers.

Urban Utilities Connections and Substitution
(a) street name and location;
(b) length, diameter and material of each main; and
(c) commencement and completion date.

Disused Mains

(a) street name;
(b) length, diameter and material of each main;
(c) "As constructed" folio and year;
(d) number of fire hydrants on the length of main;
(e) number of air valves on the length of main;
(f) number of isolation valves on the length of main;
(g) number of scour valves on the length of main;
(h) number and type of cathodic protection locations on the length of main;
(i) number, type and size of PRVs on length of main;
(j) number of water quality sampling points on the length of main;
(k) number and size of pigging/swabbing points on the length of main; and
(I) number, size and type of flowmeters on length of main.

9.4 Recording of Work As-Constructed Information

The design drawings shall be prepared so that the as-constructed information can be readily incorporated and comply with Urban Utilities ADAC requirements contained within the current SEQ D\&C Asset Information Specification.

All Operations and Maintenance (O\&M) Manuals provided to Urban Utilities at Asset Handover shall be reflective of the as-constructed information.

PART 2: CONSTRUCTION

10 General

10.1 Scope

Construction of Urban Utilities assets shall comply with all relevant Australian Standards, local, state and federal by-laws, building approvals and current legislation requirements. Construction requirements shall include, but not be necessarily limited to the following requirements:
(a) Urban Utilities Technical Requirements - refer Appendix TWM-C for details regarding relevant Urban Utilities documents
(b) Safety in Design including protection of people, services, property and the surrounding environment and heritage areas
(c) Community and stakeholder consultation
(d) Urban Utilities Planning and Design requirements
(e) Delivery of all materials including pipes, mechanical couplings, fittings and valves
(f) Protection and safe storage of all products and materials
(g) Visual inspection of all line pipes, mechanical couplings, fittings and valves from the suppliers and report defects before installation
(h) Laying and jointing of pipes
(i) Repair of pipe coatings
(j) Supply and application of field coatings to mild steel pipes and flanged joints
(k) Supply and installation of all concrete thrust blocks, bulk heads, pipe supports, pipe welding, etc. required for the anchoring of line pipes and fittings as nominated on the drawings
(I) Location, exposure and protection of all existing services and public utilities along the pipeline route impacted or potentially impacted by construction
(m) All dewatering and groundwater disposal in accordance with the Environmental Management Plan and Environmental Work Method Statements developed
(n) All activities relating to spoil handling and disposal in accordance with the Environmental Management Plan and Environmental Work Method Statements
(o) All activities related to the filling, disinfection, flushing, testing and commissioning of the pipeline
(p) All activities related to obtaining and undertaking work in accordance with Urban Utilities Network Access Permit/s;
(q) All activities related to the reinstatement of works areas such as roads, landscaping, temporary and permanent protection structures, etc.

In addressing the above requirements, construction of the TWM shall be in accordance with the approved design documentation.

11 General Construction

11.1 General

11.1.1 Personnel Qualifications

During any construction activity at least one person on site must have completed a pipe laying training course approved by the supplier and appropriate to the pipeline under construction. The training course must have been completed within the last 10 years.

The Constructor will provide documented evidence of such qualification to Urban Utilities prior to commencement of the works.

11.1.2 Inspection and Test Plans

The Constructor shall submit inspection and test plans (ITPs) to the Urban Utilities representative for verification before commencing work on activities covered by the project quality plan. The ITPs shall include where applicable observations, measurements or tests at the Constructor's facilities.

11.5 Protection of Property and Environment

11.5.1 Protection of Other Services

The Project Proponent or its Constructor/s shall be responsible for any damage they cause to existing services. If the Project Proponent or its Constructor damages any existing services, they shall arrange for the relevant service authority to make good such damage and the cost thereof shall be borne by the Project Proponent or its Constructor. If in the opinion of Urban Utilities, the failure or damage causes an emergency situation, then remedial action will be taken by Urban Utilities and the full cost of such action shall be borne by the Project Proponent or its Constructor.

11.5.2 Disused/Redundant Water Mains

All fittings, walls, etc. related to the pipeline need to be removed entirely or removed to a depth of at least 600 mm .

12 Products and Materials

12.1 Authorised Products and Materials

12.1.1 General

All pipe materials and fittings shall be approved by Urban Utilities. All materials and fittings shall be installed to the manufacturer's specifications.

Refer to the current SEQ Code Accepted Civil and Mechanical Infrastructure Products and Materials Lists for guidance only regarding products accepted by Urban Utilities.

12.1.2 Pressure Pipes and Fittings

All pipe materials and fittings to be used in Urban Utilities trunk water main network shall be authorised by Urban Utilities.

The SEQ Code Civil \& Mechanical Infrastructure Products and Materials List are not intended for trunk infrastructure and should be used as guidance only.

All material and fittings shall be installed to the manufacturer's specifications.

Installation of pipes and fittings shall comply with the following:

PVC Pipe:

PVC shall not be used for trunk water mains.

Ductile iron pipe and fittings:

Ductile iron pipes shall not be cut within 1.5 m of the socket and in general the minimum length of spigot-spigot ductile iron pipe shall be 600 mm .
(This requirement relates to outer diameter of ductile iron pipe varying within this length which can cause incorrect seal at the rubber joint. Short lengths of pipe have the potential to compound joint rotation increasing the possibility of spigot and socket disengagement.)

Ductile iron or cast iron spigots shall not be joined to PVC sockets.

FBE Coated Flanges:

FBE coated flanges shall be joined by Grade 316 stainless steel bolts, nuts and washers. The flange connections and associated bolts shall be covered with a protective wrapping (e.g. Denzo wrapping or equivalent) to ensure bolt threads stay clean and free from material.

Restrained Joint Rubber Sealing Rings

Restrained joint rubber sealing rings shall not be used on trunk water mains.
Mild Steel Pipes and Fittings - Weld Collar Joints
Weld collars for steel pipe jointing shall satisfy the following requirements:

- Be manufactured from Grade 250 rolled plate
- Have minimum thickness of 6 mm
- Have a minimum yield strength of 250 MPa
- Have a minimum width of 150 mm .

The external coating of the pipe shall be terminated 100 mm to 125 mm from the pipe ends, and spiral welds shall be ground flush in this zone.

Welded joints shall be checked with a pneumatic test of the weld integrity. An air nozzle shall be attached to the pipe plate in the air space between the welds, and the annulus pressurised to 100 kPa to check the weld for leaks.

Mild Steel Pipes and Fittings - Welded Slip-In Joints (SSJ)

Slip-in type joints shall be suitable for field welding from the outside only.
The pipe overlap at the slip-in joint shall be the greater of:

- three (3) times the pipe wall thickness; and
- 30 mm .

The spigot pipe end shall have mortar lining finished flush with the pipe end. The belled pipe end shall have the mortar lining terminating short of the pipe end, so that the gap of the cement mortar lining at the pipe joint is no greater than 15 mm . Exposed steel (not fusion bonded epoxy coated or cement lined) shall be protected with 2 pack epoxy approved for use in drinking water.

Mild Steel Pipes and Fittings - Rubber Ring Joint (RRJ)

RRJ pipes shall be jointed in accordance with manufacturer's requirements. At all locations around a joint, irrespective of whether the pipes forming the joint are deflected or not, the pipe manufacturer's

Urban Utilities Trunk Water Main Code | February 2021, V.1.1 (TMS1727)
recommendation regarding minimum depth of penetration of the spigot into the socket shall be attained.
RRJ mild steel pipework shall be electrically continuous over its entire length. To provide electrical continuity, an electrical continuity cable shall be installed over each rubber ring joint. Refer to Urban Utilities Standard Technical Specification: TMS1595 Cathodic Protection of Pipelines and Structures.

Mild Steel Pipes and Fittings - Flanged Joints

Flanged joints shall conform to the requirements of AS 4087 (for pipes up to and including DN1200). The flanges shall be raised face steel flanges. Flanges shall comply with AS 4087 Figure B. 7 unless connecting to existing pipe, in which case the connecting flange shall match existing.

Bolts, nuts and washers shall be stainless steel. Nuts and bolts for flanged fittings shall comply with AS 4087 Appendix C. All flanges shall be drilled off-centre. Flanges shall have a minimum pressure rating PN16.

Buried joints shall be protected by a corrosion protection wrapping system approved by the pipe supplier for a 100 year life of the whole pipeline. Insulation joints shall be provided where dissimilar metals are flange jointed.

Refer SEQ Code Standard Drawing SEQ-WAT-1313-1 for guidance regarding typical bolting details for flanged joints.

Mild Steel Pipes and Fittings - External pipe coating reinstatement at welded joints

Reinstatement of the external pipe coating at all welded joints shall be undertaken using heat shrink sleeve system (Raychem, Canusa or equivalent) or petrolatum tape wrap system (Denso or equivalent), in accordance with the manufacturer's requirements.

Polyethylene Pipes and Fittings

PE pipework and fittings shall be butt-welded unless approved otherwise by Urban Utilities.
All jointing of PE pipework and fittings shall be carried out by a suitably qualified and experienced person.
PE pipe has a high coefficient of expansion $\left(0.18 \mathrm{~mm} / \mathrm{m} /{ }^{\circ} \mathrm{C}\right)$ and must be installed in the trench such that no thermal induced stresses develop in the pipe or fittings.

The backfilling of side support and overlay zones shall not be placed when the ambient temperature adjacent to the pipe falls outside the range $12-27^{\circ}$. The pipe shall be snaked horizontally in the trench to allow for thermal movement.

All PE pipes > DN315 shall be supplied with a "Certificate of Compliance" from the pipe manufacturer confirming compliance with AS/NZS 4130 Polyethylene (PE) pipes for pressure applications, AS/NZS 4131 Polyethylene compounds, PIPA POP004 Polyethylene pipe and fittings compound.

The certificate shall include inter alia:
(a) Product Specification sheets
(b) Product Certificate of Analysis (for all batches)
(c) QA Production Performance Sheets
(d) OIT Testing Results
(e) Extrusion Report sheets
(f) Extrusion Line checklists
(g) Ovality Check sheets

15 Pipe Laying, Jointing and Connecting

15.1 Installation of Pipes

15.1.4 Laying

PE Pipe

In the case of PE systems, PE has a relatively high co-efficient of thermal expansion. When long lengths of welded pipe are being installed in warm weather, the excavation backfill shall be placed as soon as practicable. This will allow the pipe to cool to ambient temperature and contract fully before making lateral connections or tying-in to an existing network.

Pipes strings shall be assembled on pipe rollers. The method of handling and installing the pipe strings shall not overstress the pipe structure.

Pipe installation and backfilling, as appropriate, shall be carried out in the early morning whenever practical. This is to minimise pipe contraction on cooling. Particular care shall be exercised when installing the pipe in the vicinity of tees or other fittings which are required to be positioned at a precise chainage.

Weld pre-qualification and testing of PE pipes and fitting shall be undertaken in accordance with WSA 01 Polyethylene Pipeline Code of Australia, Version 3.1 (2004). Additional weld testing may be required, as directed by Urban Utilities.

15.2 Authorised Products and Materials

15.2.3 Curving of Pipe

Curving of PE pipe shall comply with both the PIPA guidelines POP202 and the pipe manufacturer's requirements.

At the time of writing, the minimum allowable bend radius as per PIPA guidelines POP202 is:

- $15 \times$ Pipe OD for PE100 PN16 (SDR11) pipe
- $12 \times$ Pipe OD for PE100 PN2O (SDR9) pipe

15.12 Marking Tapes

15.12.1 Non-detectable Marking Tape

Non-detectable marking tape shall not be used on trunk water mains.

15.12.2 Detectable Marking Tape

Only detectable tape shall be used. Lay tape on top of the pipe embedment. Lay the tape over the embedment to form a continuous connection between valves and/or hydrants. Strip the ends of the tape to expose its conducting wires. Connect bare wires to a nut or bolt of a valve or hydrant to form an electrical connection of
the wire to the valve or hydrant.

15.12.3 Tracer Wire

Where trenchless installation is used, install an approved tracer wire with the pipe and attach each end of the tracer wire to a valve or hydrant as per Clause 15.12.2.

15.13 Valves, Hydrants and Surface Boxes and Fittings

15.13.3 Distance between Fittings

Distances between adjacent socketed fittings shall be separated by a 600 mm long straight length of pipe.

15.19 Flanged Joints

Refer SEQ Code Standard Drawing SEQ-WAT-1313-1 for guidance regarding typical bolting details for flanged joints.

15.20 Welding of Steel Pipes

15.20.3 Reinstatement of Cement Mortar Lining

Due to confined space entry constraints, it is not possible to reinstate the cement mortar lining of welded pipes < DN750.

For pipes < DN750, treat the unlined internal surface (i.e. projection beyond cement mortar lining of the joint) as specified in the relevant WSAA Product Specification or WSAA appraisal.

15.21 Welding of PE Pipelines

Butt fusion (and electrofusion where approved by Urban Utilities) welding may be used for joining pipe -topipe or fitting-to pipe. All welding shall be performed by welders who have successfully completed training by a Registered Training Organisation, endorsed by the Plastics Industry Pipe Association for the relevant welding method(s), fitting type(s) and pipe/fittings size(s).

Refer to the Plastics Industry Pipe Association who provides the following technical guidelines for electrofusion welding - POP001 and butt welding - POP003.

Weld pre-qualification and testing of PE pipes and fitting shall be undertaken in accordance with WSA 01 Polyethylene Pipeline Code of Australia, Version 3.1 (2004). Additional weld testing may be required, and shall be undertaken by the Constructor, as directed by Urban Utilities.

Where possible, all PE welding parameters and information shall be accurately recorded for every welded joint undertaken, via the proprietary Quality Assurance welding software application of the PE welding box supplier. This information shall be provided to Urban Utilities in both written and electronic formats, prior to the works going 'On-Maintenance'.

15.21.1 Repairs

Permanent repair of PE pipelines generally involves cutting out the damaged section and replacing it with a new pipe using fusion jointed or mechanical thrust restraint couplings.

16 Pipe Embedment and Support

16.2 Embedment Materials

Embedment material for water mains shall be 5 or 7 mm nominal single sized aggregate as per WSA PS-351.

16.3 Compaction of Embedment

16.3.2 Compaction Trials / Pre-qualification of Embedment Compaction Method

16.3.2.1 General

With reference to Clause 19.3.3.1, pre-qualification of the pipe embedment material and process, as detailed below, is an alternative to conducting embedment compaction testing of pipes of size $\leq 300 \mathrm{~mm}$ (DN355 PE).

16.3.2.2 Test Method

Install a length of pipe at least 4 m long in a trench having minimum side clearance of 200 mm and in native soil having a bearing capacity > 50 kPa . Bed the pipe and place and compact embedment in accordance with Clauses 16.1 to 16.3.1 inclusive.

Record the Product Specification or equivalent specification to which the embedment material conforms. Record the compaction method in a format suitable for use as an on-site work instruction.

Conduct compaction testing at the spring line of a complete embedment zone and along the pipe length at its mid-point and at locations 1 m either side. Assess results of compaction tests for compliance with SEQ Water Code Table 19.1 as appropriate. Record compaction tests results.

Retain records of the compaction method and trial reports.

16.3.2.3 Interpretation and Applicability

Provided that all compaction test results conform to the requirements of Table 19.1, as appropriate, prequalify the compaction method for pipelaying subject to:
(a) the diameter of the pipe being the same as that used in the pre-qualification test;
(b) the actual embedment material used in construction being the same as used in the pre-qualification test;
(c) the documented pre-qualified compaction method being used; and
(d) the native soil having a bearing capacity $>50 \mathrm{kPa}$.

16.3.3 Compaction Control

Compact the embedment zone to comply with SEQ Water Code Table 19.1, as appropriate.
Undertake embedment compaction testing as specified in Clause 19.3.3.

18 Swabbing

18.1 General

Swabbing is not required by Urban Utilities under normal conditions unless specified by Urban Utilities on a case by case basis.

19 Acceptance Testing

19.2 Visual Inspection

The whole of the Works shall be visually examined for completeness and an acceptable standard of workmanship and finish. Visual examination will be either indirectly with the use of CCTV as or directly as appropriate for internal surfaces of pipelines and other parts respectively. Direct visual examination shall be undertaken with strong portable lighting.

19.3 Compaction Testing

19.3.1 General

Refer to Table 19.1 and associated notes in SEQ Water Code regarding minimum compaction of embedment, trench, embankments and other fills.

Test methods for determining the degree of compaction shall comply with the appropriate part of AS 1289.
(a) The Constructor (or the Designer for development works) shall be responsible for all compaction testing and shall arrange for the testing to be carried out by a NATA certified Test Laboratory. Modified compaction tests shall be used.
(b) Prior to commencing work the Constructor / Designer shall prepare test plan showing the number of tests and depths in each zone where tests are to be carried out.
(c) The Laboratory shall randomly select test locations in each zone. The road authority supervisor may direct the Laboratory to undertake additional tests in any zone. The test locations shall be uniformly distributed over the works.
(d) Testing shall not be clustered within a zone or at boundaries of a zone. In deep trenches where more than 1 layer is to be tested, the test locations shall, where practicable, be staggered from those layers above or below by at least 5 m for water mains and 2 m for water services.
(e) The compaction tests including retests shall be carried out at the Constructor's / Designer's cost until satisfactory compaction levels are achieved.

19.3.3 Embedment Compaction Testing

19.3.3.1 Applicable pipe sizes

Undertake compaction testing of pipeline embedment for trunk water mains $>300 \mathrm{~mm}$ NB. Except where the Urban Utilities representative nominates random confirmatory tests, do not undertake compaction testing of pipeline embedment for trunk mains $\leq 300 \mathrm{~mm}$ NB where:
(a) the allowable bearing pressure of the native soil is $\geq 50 \mathrm{kPa}$;
(b) pipe laying and embedment compaction was carried in accordance with this Code; and
(c) a pre-qualified compaction method was used in accordance with Clause 16.3.2.
19.3.3.2 Frequency and location of embedment tests

For trunk water mains > 300 mm NB, test at the spring line ($\pm 100 \mathrm{~mm}$) of a complete embedment zone for each 50 lineal metres of pipeline or part thereof.

19.3.3.3 Retesting

If one or more of the initial test results do not comply with SEQ Water Code Table 19.1, conduct two additional tests in the zone represented by the initial test. If anyone of the repeat tests does not comply, re-compact the full zone and continue repeat testing. Continue this cycle until the embedment compaction test results comply with SEQ Water Code Table 19.1.

19.3.4 Trench fill compaction testing

19.3.4.1 Trafficable Test Zone

For trenches located in trafficable area, assume the depth of trench to be the full depth of trench fill i.e. from the surface of the trench fill to the top of the pipe embedment.

Refer SEQ Code Standard Drawing SEQ-WAT-1200-2 for guidance regarding typical embedment and trenchfill arrangements.

The Road Owner may specify additional compaction testing requirements.

19.3.4.2 Non-trafficable Test Zone

For trenches located in a non-trafficable area, assume the length of trench represented by a test to be 50 m either side of the location at which a test is made. Assume the depth of trench to be the full depth of fill.

19.3.4.3 Property Services

This clause does not apply to trunk water mains.

19.3.4.5 Retesting

If one or more of the initial test results do not comply with SEQ Water Code Table 19.1, conduct two additional tests in the zone represented by the initial test. If any of the repeat tests does not comply, re-compact the full zone and continue repeat testing. Continue this cycle until the trench fill compaction test results comply with

19.3.5 Other Fill Compaction Testing

19.3.5.4 Frequency and Location of Tests

For compacted material located in a trafficable zone, conduct one test in each 300 mm of the depth of fill and each $300 \mathrm{~m}^{2}$ of area or part thereof.

For compacted material located in a non-trafficable zone, conduct one test in each 900 mm of the depth of fill and each $1200 \mathrm{~m}^{2}$ of area or part thereof.

Urban Utilities may at its discretion, direct the Constructor to undertake additional random confirmatory tests.

19.3.5.5 Retesting

For non-trafficable areas, if one or more of the initial test results do not comply with SEQ Water Code Table 19.1, conduct two additional tests in each of the areas of the relevant depth of fill represented by the initial failed test(s). If any of the additional tests do not comply, re-compact the represented compacted material zone and repeat the testing. Continue this cycle until the compaction test results comply.

For trafficable areas, if any test results do not comply with SEQ Water Code Table 19.1, re-compact the represented compacted material zone and repeat the testing.

19.7 Water Quality Testing

19.7.1 General

It is compulsory for all new mains to pass bacteriological tests. Constructors / Designers are responsible to arrange the tests.

Urban Utilities shall be consulted as to the maximum allowable period between a successful test being obtained and the connection of a new main to the water supply network, as retests will be required where this limit is exceeded. Constructors / Designers are responsible for the costs associated with water quality testing.

Conduct a bacteriological test on all new mains following satisfactory completion of swabbing/flushing and pressure testing of the water main

19.7.2 Test Procedure

Conduct a bacteriological test on all new mains following satisfactory completion of swabbing/flushing, pressure testing and/or disinfection of the water main as follows:
(a) Scour past the sampling point.
(b) Engage a Recognised Testing Laboratory accredited for the test to collect representative water samples from the test section of the water main.
(c) Dispose of testing water in accordance with the relevant environmental Regulator and Urban Utilities requirements.

19.7.3 Satisfactory Water Quality Test

Accept a section of water main if:
(a) the test results fall within the water quality parameter limits specified in Appendix I - Disinfection of Water Mains and Water Quality Compliance Specification for drinking water and/or non-drinking water mains of the SEQ Water Code; or
(b) The water quality parameter test results in the test section of water main are no worse than the water quality parameter test results measured by testing an influent sample of existing mains water, provided that the influent sample was collected by the Recognised Testing Laboratory at the same time as water sample from the test section of water main was collected.

19.8 Polyethylene Pipelines Installed Using HDD Techniques

An additional 3 m length of pipeline shall be butt-welded to the leading end of the pipe string prior to placement. After the pipeline has been pulled through sufficiently to expose the additional 3 m length, an Urban Utilities representative and the Constructor shall jointly examine it.

If the pipe length is significantly damaged, as defined below, complete replacement of the entire HDD pipeline shall be undertaken.

Significantly damage is defined as:
(a) Scratches deeper than 10% of the pipe wall thickness are evident.
(b) Any evidence of plastic failure of the pipe due to tensile forces (e.g. necking or reduction in outside circumference compared with the supplied pipe).

20 Disinfection

20.1 Application

Swabbing is not required by Urban Utilities under normal conditions as per Clause 18.1.

20.2 Flushing of Disinfection Water

The minimum flushing velocity criteria shall be the greater of $1.0 \mathrm{~m} / \mathrm{s}$ or the design flow to re-suspend solids. The requirement shall be to initially flush from an upstream hydrant to test for baseline turbidity levels of source water prior to flushing the trunk water main. In some circumstances, more than a single hydrant may need to be used).

During flushing operation, regularly test flushing conveyance at the discharge end to test the turbidity levels will be required. Flushing operations will be required to continue until at least more than one volume or slug of new pipeline length has passed and a minimum turbidity reading of <1.0 (NTU) from the source baseline requirement, is achieved. Consideration for disposal of water to achieve the desired velocity should be considered, particularly for larger pipes.

No disinfection water shall be permitted to enter the reticulation system or be discharged to the storm water drains or waterways unless approved by the regulator i.e. DEHP.

Refer to Urban Utilities document FOR325 - Site Access, Tenure, Environment and Planning (STEP) Assessment that was completed as part of the Design Process for De-chlorination requirements.

22 Connections to Existing Water Mains

22.1 General

All works on the existing trunk water system shall be considered as "live works" and will be controlled by the Urban Utilities or their delegates and shall be at the Constructor's cost. The installation details shall comply with the details given in Clause 5.9.

24 Work As-Constructed Details

Prepare and submit asset as-constructed data and asset manuals to Urban Utilities in accordance with the SEQ D\&C Asset Information Specification.

25 Standard Drawings

No Standard Drawings have currently been developed to reflect Urban Utilities Trunk Water Main requirements. Instead Urban Utilities has a number of Example Project Drawings that are provided for guidance only to show minimum requirements. These Urban Utilities Example Project Drawings are not suitable for construction. The detailed design shall be an RPEQ certified engineering design for the specific site/s and conditions of the project.

In the event that there is a discrepancy between the TWM Code text and the Example Drawings in Appendix TWM-A, the TWM Code text takes precedence.

Refer to Appendix TWM-A for example project drawings that provide guidance regarding typical trunk water main arrangements and requirements.

Refer to Appendix TWM-B for a list of relevant SEQ Code Standard Drawings that may also be used for guidance when developing trunk water main designs.

APPENDIX TWM-A

Example Project Drawings

(For Guidance Only)

Below is a list of example project drawings which are provided for guidance only to show typical minimum requirements. Please note that these drawings are not suitable for construction without further engineering design detail. The below drawings are not to be referred to or referenced within Design Drawings and Documentation.

List of Example Project Drawings

Example Project Drawing Number	Example Project
$486 / 4 / 6-0050-001$ to 006,	Noble Street Trunk Water Main
$486 / 4 / 6-0050-020$ to 022	
$462003001-462003026$,	Rochedale Trunk Main
$462003031-462003036$,	
462003061	
$462006001-462006011$	Kangaroo Gully Road Trunk Water Main Extension
$486 / 4 / 25-$ WM003	One Segment C.I. Cover and Frame for Water Supply and Recycled Water Valve Pits
$486 / 4 / 25-$ WM004	Cover and Frame for Water Supply, Sewerage and Recycled Water Air Valve Pit
$412015-$ EG-AVP-DN375	Air Valve Pit for Mains DN375 MS/DI and Greater
$412015-$ EG-SCVP-DN375-600	Scour Maintenance Pit for Mains DN375 up to DN600 MSCL/DICL
$412015-$ EG-VP-DN600DI-L	DN600 Valve Pit DI Wall Pipe
$412015-$ EG-VP-MS	DN600 Valve Pit MS Wall Pipe
462004005	DN450 Flowmeter Pit General Arrangement
$486 / 4 / 25-0005-002$	General Arrangement - Flow Meter Facility
$486 / 4 / 6-0057-009$	Hydrant Pit with Isolating Valve

UrbanUtilities

NOBLESTREET TRUNK WATERMMAN WULSTON BRISSUNE DETAMLEDOESUGN

NOTE: REFER TO SEQ WEBSITE FOR ALL STANDARD DETAILS www.seqcode.com.au

61. THIS DRAWING SHALL BE READ In conuunction
WITH OTHER CONTRACT DOCUMENTATION AND DRAWINGS.

G2. ALL MATERRALS AND WORKMANSHP SHALL BE THE CURDENT STANDARES RUUSTRENTS THE CUREN STANDARD AUSTRALLA
SPECIFICTIONS AND CODES AND THE BY-LAWS
OE RELENANT BUDNG AUTHOTY DF RELEVANT BUILDING AUTHORITY
G3. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS ON SITE PRIOR TO ANY
CONSTRUCTION. DRAWIIGS SHALL NOT B CONSTRU
SCALED.
64. ANY DISCREPANCY SHALL BE REFERRED TO THE WORK.
65. NO SUBSTTTUTE MATERIALS Shall be used
WITHOUT THE WRITTEN APRPOVAL OF THE WITHOUT THE WRIT
SUPERITTENDNT.

66. THE POSITIONS OF THE SERVVICES BELIEVED TO GUARANTE IS GIVEN OR IMPLEDD TO THE | ACCURACY OR COMPLETENESS OF SUCH |
| :--- | ForMation.

THE CONTRACTOR SHALL MAKE HMSELF FULLY
CONERSAT WTH ALL EXISTING SERVIIES AND
STREKTUAS STRUCTURES WTHIN AND ADAACENT TO SITE OF
WORK AND SHAL E RESPONSIBE E FOR AV Work and shall ie responsible for any
Damage to these services ano structures URING THE COURSE OF THE CONTRACT
67. ALL WORK SHALL BE CARRIED OUT IN ELECTRCITY WATT AND WOERENLAAE HEALTH AND SAFET
GUIELINES
68. ALL DIMENSIONS GIVEN ARE NOMINAL ONLY. THE CONTRACTOR IS RESPONSIBLE FOR CONFIRM
ALL DIMENSIONS PRIOR TO FABRICATION.
69. ALL DIMENSIONS ARE IN MLLIMETRES UNLESS
OTHERWISE NOTED.

STEEL PIPEWORK NOTES
P1. MS PIPE TO BE FULY WELDED EXCEPT THE PIPE
SECTIONS WITHIN CHAMBERS WHERE FLANGED ONNECTIONS SHALL EE PROVIDED.

P2. MS PIPE TO BE 660 mm DIA AND 8 mm THCK
INTERNALLY CEMENT LINED.
P3. MIN. PIPE COVER TO Be in accordance with
SEQ-WAT-1200-2A.
P4. MS PIPE BENDS AS PER SEQ-WAT-1403-1
FOUNDATION NOTES
F1. REEER TO THE GEOTECHNICAL INvESTIGATION
REPORT DATED JUNE 2013. PREPARED BY GROUND ENGINEERNG FOR QUU. F2. \quad BACKFILLLING AROUND THE STPUCTURE TO BE
CARRED OUT TO SOUND ENGINEERING STANDARDS.
F3. ANY AREAS OF SOFT OR UNSTABLE MATERIAL ARE TO BE REMOVED DOWN TO AN ACCEPTABLE
FOUNOING MATERIAL ANO REPLACE WTHH FIL AS FOUNDNG M
SPECIFIED.
F4. Select fill to be an approved granular sand OR GRAVEL MATERIAL HAVING A PLASTICITY INOEX
 AND DELETERRIOUS MATTER. 100% SHALL PASS A 37.5m SEVE.

REINFORCED CONCRETE

1. ALL CONCRETE WORK SHALL COMPLY WITH
 CODE A.S. 3600 -2009 AND THE BRISBANE WATER
REEERENE SPEIIICATONS FOR CONCRETE WORK. REFERENCE SPECIICATITO
ISP44, SP45 ANO TR10).
C2. THE EXPOSURE CLASSIIFLCATON OF THE CONCRET Shatl be - - MEMBERS IN CONTACT WITH Ground - C1/C2
2. All concrete shall be grade s40, TYPE GB CEMENT, WATER CEMENT RATIO =.42 UNLESS
OTHERWISE NOTED. MNIMUM CEMENTITIUS CONTENT $400 \mathrm{~kg} / \mathrm{m}^{3}$ (REFER PROJECT SPECLFICTION).

 OTHERWISE.
50 mm : WHER 70 mm : WHERE CONCRETE IS CAST AGAINST GROUND.
(5. THE MAXXIMUM SIZE OF AGGREGATE in the concrete SHALL BE 20 mm .
C6. FORMWORK SHALL BE IN ACCORDANCE WITH A.S. 3610-1995 UNLESS OTHERWISE NOTED. CONCRETE
EXPOSET TO VIEW SHALL BE TO CLASS 2 , EISEWHERE EXPOSED TO
TO CLASS 3.
C7. STEEL RINFORCEMENT TO BE DEEFRMED BARS
STRENGTH GRADE 500 DUCTHTMY CASS STRENGTH GRADE 500 . DUCTILTY CLASS N TO
ASNST $4671: 2001$ ISOW AS N--" ON THE

 TOP FACE (SHAPE AND LOCATION TO AS/NZS

 SL82.
c8. Fabric reinforcement Laps: FOR S1 $=52$
FORS1-S2 $\cdots{ }_{\mid S 2}$

CONDUITS, PPES ETC. MUS
cOVER OF THE CONCRETE.
c10. ALL EXPOSED EXTERNAL CORNers TO HAVE 25
3. no reminopement is to be welded to or maike
 SPACIN BETWEN TEE PIPE ETTERNAL SURFACE AN
RENINOREMENT SHOUDD BE 30 mn.

STRUCTURAL STEELWORK
S1. ALL STRRCCURAL STEEL WORK SHALL COMPLY TO AS $4100-1998$
PRACTICE

S2. ALL structural steel shall be in accordance
S3. UNO ALL BOLTS, NUTS AND WASHERS SHALL BE GALVANSED AND SHALL BE GRADE 8.8/S
HGH STRENGTH BITIN ACCORDANE W W HIGH STRENGTH BOLT IN ACCORDANCE WITH AS 125?
SNUG TIGHTENED.
54. ALL MASONRY ANCHORS SHALL BE STAINLESS STEEL
 STEEL AND GALVANIING.
ALL WELDS SHALL BE 6mm CONTINUOUS FLLET WELDS (ELEXXX ELECTRODE OR W5OX) UNLESS NOTED
OTHERWISE. WELING SHALL BE CARRED OUT IN OTHERWISE. WELDING SHALL BE CARRRED OUT IU
ACCORDANC WTH AS1554 $1-2004$ THE THROA
 SECTINS SHALL BE EQ
THE PARENT METAL.
UNLESS Noted otherwise, grout shall be ci:S3 WITH MINMUM WATER CONTENT, AND SHALL B
PACKED TIGHT UNDER RELEVANT MEMBERS.
UNLESS NOTED OTHERWISE ALL STEEL WORK Is To UNLESS NOTED OTHERWISE ALL STEEL WON
HAVE HE FOLLOWING PROTECTVE COATING
SYSTEM:-SYSTEM:-
-HOT-DIP GalvansIIIG COMPLYing with

 AREAS TO BE TOUCHED UP TO MATCH ORIGINAL

ENVIRONMENTAL ISSUES

E1. For detalled environmental reaurements
REEER To THE ENVIRONMENTAL MANAGEMENT ReFER
PLAN.

E2. ALL ENVIROMMENT PROTECTION MEASURES COMMENEEMENT OF CONSTRUCTION WO CoMMENCEMENT OF CO
INCLUDUNG CLEARING.

VEGETATION PROTECTION
E3. No TREES SHALL BE REMOVED without the
APPROVAL OF THE SUPERNTENDENT.
E4. PLACE TREE GUARDS AROUND ANY TREE WITHI
4METRES OF MACHINRY OPERATION
E5. TRIM SEVERED Roots Cleanly above
DAMAGED AREA AND TREAT WITH A SUUTABLE FUNGIIID.

REHABILITATION

E6. REISTATEMENT OF PREDISTURBANEE SOL
ALL DISTURRED AREAS SHALL BE LEFT IN A STABLE CONDITION. THIS WIL INVOLVE SEEDNG OR TURFING WITH APPROPRRIATE GRASS SPECIES. ANY DIITURB
SLOPES SHALL BE COVERED WTH AN EROSION CONTROL PROOUCT OF THE TYPE THAT DOES NOT
\square
$\underbrace{\text { Design Check }}_{\text {DESIGN }}$

$\left.\right|_{\mid} ^{\text {ASSETPROUECT }}$| NOBLE STREET |
| ---: |
| TRUNK WATER MAIN |
| WLSTON BRIISBAAE |
| DETAILED DESIGN | SUUN WATER MAN

STANDARD NOTES

As Constructed detalls
I CERTIFY THAT THE "AS CONSTRUCTED" DETAILS RECORD OF THE WORKS
SICNE: Pate
NMME O. SIIMNTOR
or
Y NAME
TARRT PATE. FIMSH PATE

Comments ncorpoorat FUNDEDBY Q..U.U. (r) ExTERNAL ()

ROCHEDALE WATER INFRASTRUCTURE UPGRADE

ROCHEDALE RESERVOIR NB450 INLET AND NB450 OUTLET TRUNK WATER MAINS

LOCALITY PLAN

signaturue
NAUE.
QUENSL
(UrBANU Utilities
 462003001 ITR

DESIGN CRITIERA
 TO BE $18 \mathrm{k} / \mathrm{Nm}^{3}$ AND FULLY SATURATED.

DC2 DESIGN LIVE LOAD - WHEEL LOAD W8O
(WTHIN ROAD AND (WITHIN ROAD AND FOR LIGHT VEHICLE TRAFFIC IN FOOTPATHS) DC3 MAXIMUM TEST PRESSURE FOR THE WATER MAINS-
NB450 INET NB450 NLET

NB50 OUTLET | RL 445.00 |
| :--- |
| RL 170.00 |

NB375 PUMP STATION DISCHARGE -
DC4 MINIUUM COVER TO PIPELINE SHALL BE $\quad \begin{aligned} & -1200 \mathrm{~mm} \text { IN ROAD RESERVES UNO } \\ & -750 \mathrm{~mm} \text { ELSEWHERE UNO }\end{aligned}$

GENERAL
G1 NO DIMENSION SHALL BE OBTAINED BY SCALING.
G2 ALL DIMENSIONS ARE IN MLLIMETRES UNO.
G3 All Chalinages and levels are in metres uno.
G4 AlL DIMENSIONS RELEVANT TO SETTING OUT AND OFF-SITE WORK SHALL BE VERIFIED BY HE CONTAACTOR BEFORE CONSTRUCTION AND AABRICAT.
DO NOT OBTAIN DMENSIONS BY SCALING OFF THE DRAWINGS.
G5 WORKS MUST BE EXECUTED IN ACCORDANCE WTH SEQ WATER SUPPLY AND - WATER SUPPLY CODE OF AUSTRALIA WSA 03-2011 V3. 1

G6 THESE DRAWINGS SHALL BE READ IN CONUUNCTION WTHTHE FOLLOWING
-QUEENLLAND URBAN UTLITIES TECHNCAL SPECIICATIONS.

- SEE WATER SUPAY AND SEWERACEDESIGN CONTTUCTION CODE (SEQ WS\&
DQC COOE) INCORPORATNG WATER COOE OF AUSTRALI WSA O3-2011 V3.1. - OTHER WRITTEN INSTRUCTIONS MAY BE ISSUED THROUGHOUT THE COURSE OF THE ALLDISCREPANCIES SHALL BE REEERRED TO THE SUPERINTENDENT FOR DECISION
BEFORE PROCEEDING WTH THE WORK.
67 ALL PIPES AND MATERIALSSHALLL COMPLY WITH THE SEQ WS\&S D\&C CODE ACCEPTED civil products and materills' LIST.

NOMINATION OF PROPRIETARY ITEMS DDES NOT INOICATE EXCLUSIVE PREFERENCE BUT INOICATES THE REQURED PROPERTIES OF THE TTEM. SIILLAR ALTERNATVES

G10 ONLY QUU PERSONNEL OR APPROVED OR ACCREDTED OPERATORS MUST OPERATE
THE EXISTING WATER NETWORK.
G11 ALL LIIE WORKS SHALL BE CARRIED OUT BY AN APPROVED QUU PROVIIDR AT THE
CONTRACTORS EXPENSE.
G12 AL NEW MANS SHALL BE REQUIRED TO PASS BOTH BACTERIAL AND PRESSURE
TESTNG PRIOR TO LIE CONNECTON.
G13 PRESSURE TESTING MUST Not be undertaken against existing valves.
THE CONTRACTOR SHALL UNDERTAKE ALL TEMPORARYY PERMANENT AND PROPOSED
WORKS TO ENSURE ASAFE WORK SITE INCCUDNG EXCAVATON AND STABLITY OF WORKS TO ENSURE A SAFE WORK STEE, INCLUDING EXCAVATION AND
EXISTING INFRASTRUCTURE ADJACENT TO THE PROPOSED WORKS.

G16 HaNDLING OF ASBESTOS CEmENT PIPES SHALL BE CARRIED OUt IN ACCORDANCE WITH WORK HEALTH AND SAFETY (WHRSS) ACT 2011, THE WHZS QUEENSLLAND CODE OF

G17 IF ANY ADOTIIONAL INFORMATION IS REQUIRED PLEASE CONTACT THE QUEENSLAND
URBAN UTLITIES AUIT AND COMPLIANCE OFFICER.

SV1. SUBSURFACE UTLITY INFORMATION (SUI) QUALITY IDENTIFICATION AS PER AS5488.
SV2. Pothole information can be sourced on the surver drawings listed on
SHEET oog.

PERMITS

PR1. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL PERMTS AND APPROVALS

ENVIRONMENTAL MANAGEMENT

E2 CONTACT THE DEPARTMENT Of TRANSPORT AND MAIN ROADS, ONE WEEK PRIOR TO
CONSTRUCTON FOR REMOVAL OR REPLACEMENT OF EXISTING TREES.

e5 For trench installations tree roots must be exposed by hand excavation. TREE ROOTS MUST BE CUT CLEANLY AND A BITUMINOUS FUNGICIDAL SEALANT APPLIED
TO THE CUT SURFACE.

E6 \quad BACKFILL AROUND TREE ROOTS USING A AIXTURE OF THREE PARTS TOPSOLL TO ONE
PART COMPOST. LIGHTLL COMPACTED.
ET EXCAVATION UNDER TREE CANopiES TO BE BACKFILED AS SOON AS POSSIBLE.
E8 TOPSOIL AND SUBSOLL MUST BE STOCKPILED SEPARATELY.
E9 PLACE APPROPRRIATE SEDIMENT CONTROLS AROUND STOCKPLLES
E10 No soll must be stockpled within 5m Of ANY CREEK or water course
E11 IF YOU SUSPECT FIRE ANTS ON STTE CALL D.P.I. ON 132523.

PRIVATE PROPERTY ACCESS

PP1 THE CONTRACTOR MUST UNDERTAKE AND RESOLVE ALI MATTERS REGARDNG ENTTY
INTO PRVATE PROPERTY NCLUDING CONSTRUCTION ACCESS, AT THE CONTRACTOR' OWN COST. NO WORK SHALL COMMENC W WTHIN AN PCRIVTT A PROP HE CRTVTYATTIT THE
 ALL OWNERSRESIDENTS HAVE BEEN PROVIIDED WTHTHE NECESSARY NOTCES OF
ENTRY.

SHUT PLAN

SP2 Notwithtaning that THE SHUT PLAN HAS BEEN APPROVED, IMMEDIATELY BEFORE
 WORKS UNDER THIS ONTRACT, THE CONTEACTOR SHALL OBTAIN THE

SP3 THE CONTRACTOR SHALL IMPLEMENT A TRAL OF THE SHUT DOWN PLAN. THIS SHOULD
BE CARRIED OUT A MNINUM OF 5 SUSSINESS DAYS PRIOR TO WORK COMMENCING ON BECAR
SITE.

2/ ALL FLANGE BOLT HOLE ORIENTATION SHALL BE OFF-CENTRE UNO
P3 ALL FLANGE BOLT SETS SHALL BE AA-80 GRADE 316 STANLESS STEEL.
 DTHER LLANGE GASKETS SHALL BE 3 Im THICK ELASTOMERIC AlL gate
COATING.
P6 CONCRETE THRUST BLOCKS SHALL BE PROVIDED BEHIND ALL NEW BURIED PIPEWORK, BENDS AND TEES AS SHOWN ON THE DRAWINGS. FOR DETALS REFER SEQ WSSSS D\& CODE STD DRG SEQ-WAT-1205-1.
P7 DO NOT PRESSURISE PIPEWORK UNTL MINMUM 7 DAYs AFTER POURING ALL
P8 THE CONSTRUCTION OF THE WATER MAIN SHOWN ON THESE DRAWINGS SHALL BE COMPLING WTH THIS REQUIIEMENT WIL NOT BE PERMITTED TO CONNECT NTO THE
QUU NETWORK.
P9 WHERE CONNECTING TO EXIITTNG PIIEWORK, THE LLVEL, DIAMETTER AND MATERIAL OF THE EXITTING PPEEWORK SHALL. BE C
ORDERING PIPEWORK AND FITTNGS.
P10 THE MINIMUM CLEARANCE TO EXISTING SERVICES IS TO BE IN ACCORDANCE WITH THE SEQ WATER SUPP YY AND SEWERAGE DESIGN \& CONSTRUCTION CODE (2013) UNLESS
OTHERWISE SHOWN

P11 CONTRACTOR TO OBTAIN PRIOR APPROVAL OF THE SUPERINTENDENT AND QUU's
AUDIT AND COMPLANCE OFFICER FOR ANY DEVVATIONS REQUIIED TO AVOID EXISTING PRESSURE \& BACTERIAL TESTING TO BE CARRIED OUT IN ACCORDANCE WITH QUUWSA NON METALLIC PIPES SHALL HAVE DETECTABLE MARKER TAPE INSTALLED FER TO QUU STANDARDS.
WATER SUPPLY- BLUE PIPELINES SHALL NOT BE CONSTRUCTED IN UNCONTROLLED FILL.
CETTIFCTES SALL BE
CODED
 DENSITY OF NO LESS THAN N55\% OF
ACCORDANCE WITH A.S. 1289.5.1.1.
P15 ALL OPEN ENDS OF DISUSED WATER MAINS MUST BE EFFECTIVELY PLUGGED.
P16 DIIUSED MANS SHALL COMPLY WTH REQUIREMENTS SET OUT IN WSAQUU
STANDARAS.
P17 PRIME, CAULK AND WRAP ALL BURIED FLANGES AND BOLTS WITH DENSO PETROLATU
P18 TUNNEL BORE OR DIRECTIONAL DRILL UNDER EXISTING STAMPED OR REINFORCED UNDER SIGNFIICANT TREES AS ADVISED BY LOCAL COUNCIL-
P19 PIPE EMBEDMENT MATERILL SHALL BE 5 TO 7 mm SINGLE SIZED MATERILL THAT

P20 PIPE DIAMETER EQUIVALENTS IN DIFFERENT PIPE MATERILLS:-

NOMINAL BORE	POLYETHYLENE PE	dUCTILE IRON DI	$\begin{aligned} & \text { MLD STEEL } \\ & \text { Ms } \end{aligned}$
NB100	OD 125	DN100	OD 114
NB150	OD 180	DN150	OD 168
NB375	OD 450	DN375	$0 \mathrm{CO6}$
N8450	OD 560	DN450	OD 508
NB500	00630	DN500	O0 559

THRUST \& ANCHOR BLOCKS
PROCORDNC WTHTH SEOCKS DESIGNED FOR THE TEST PRESSUREIN ACOORTANEE WTH THE
CONTRCTION CODE.
T2 the bearing face of the thrust restraint must be cast against undisturbed GROUND.

T3 CONCRETE MUST NOT SPILL OVER PIPE JOINTS.
T4 VERTICAL THRUST Blocks must be embedded at a minmum of 250 mm Into UNDISTUREED GROUND.

T5 CONCRETE MUST BE CURED 7 DAYS (MIN) PRIOR TO CHARGING MAIN.
T6 UNREINFORCED CONCRETE SHALL BE A MINMUM OF N20. REINFORCED CONCRETE SHALL BE AMINMUM OF N32.

7 THE CONTRACTOR SHALL CONFIRM BEARING CAPACITY PRIOR TO CONSTRUCTION OF

UCTILE IRON PIPES AND FITTINGS (DICL \& DIFC)
D11. ALL DUCTLLE ROON PPEES AND FITTINGS SHALL COMPLY WITH ASNZS 2280 AND WSA
DI2. NON.FLANGED DUCTILE IRON PIPES SHALL BE CLASS PN35. FLANGED DUCTLE IRON
PIPES SHALL BE FLANGE CLASS. ALL DUCTLL IRON FITTNGS SHALL BE PN35.
OI3. ALLDICLPPITES AND FITTINGS SHALL- BE IN ACCORDANCE WITH ASNZS 2880 AND
INTERNALLY CEMENT LINED WTH SEAL COAT OVER.
EXTERNALLY COAATED WITH A MIN AOOgss ZINCALUM PROTECTION LAYER WITH
100 MCRON SYTHETIC TOP COAT SEALER.
DI4. DICL PIPES AND FITTINGS IN CORROSIVE AREAS SHALL BE WRAPPED WITH A POLYETHYLLNE SLEEVVE. SLEEVING SHALLL BE SUPPLLED IN ACCORDANCE WITH S3380 AND INSTALIED IN ACCORDANCE WITH AS3681

DI5 DIFC PIPES AND FITTINGG SHALL BE INTERNALY AND EXTERNALLY COATED WTH
DI6. FLLANGES ON DUCTLLE RON PRPES AND FITTINGS SHALL BE CLASS PN16 IN
ACCORDANCE WITH ARNZS 4087 UNO.

3	1500.191	for construction				
2	1897,	fr Revised				
1	180218	S				
Rev.	DATE	AMENOMENT	DESIIN	Nomen		OUU.

QuU CIP CODE	воWDaABo
Quu desige wo No.	P8013175
aut const. wio No.	
funoed by auu (r)	ExtenNal ()

DRAATtED	
DRAATMG REVEW	
QUU CAD FLE	
QUU TRM FLE	

Design

STEEL PIPEWORK NOTES

SP2. ALL PIPES AND FITTINGS SHALL BE FABRICATED FROM STEEL WTH A MINIMUM YIELD
STRENGTH OF 250 MPa.
SP3. THE FABRICATOR SHALL UUDERTAKE PIPE AND FITTING STRUCTURAL DESIGN BASED ON AN ALOWA ABLE OPERAT ING PRESSURE
SHALL BE I I ACCORDANCE WITH AWWA M11.
SP4. FABRICATOR SHALL SUBMTT FULL FABRICATION (SHOP) DRAWIGGS AND RELEVANT CALCULATIONS PRIOR TO COMMENCEMENT OF MANUFACTURE THIS SHALL
CONTITUTE AHOLD POINT WTHIN THE FABRICATOR'S QUALTY ASSURANE PLAI AND MANUFACTURE SHALL NOT COMMENCE WITHOUT THE APPROVAL OF THE

S5. MSCL PIPES AND FITTTNGS SHALL BE EXTERNAL COATED AS NOTED ON THE DRAWINGS
IN ACCORDANCE WTHTHE THE FOOWING: NACCORDANCE WTTH THE HOLLOWING:
FBP - FUSION BONDED POLYETHYLENE IN ACCORDANCE WITH AS4321.
 ASINZS 3750.14, OR ULTRA HIGH BUI
ACCORDANCE WTH ASNZS 3750.2

SP6. MSCL PIPES AND FITTINGS SHALL BE INTERNALLY CEmENT LINED IN ACCORDANCE
WTHASA281.
SP7. ALL flanges shall be in accordance with standards noted on the drawing. ALL FLLANGE HOLES SHALL BE OFF-CENTRE, UNO.
ALL FLANGES SHALL BE ATTACHED IN ACCORDANCE WITH AS40411
SP8. FLANGES SHALL BE EPOXY COATED WITH TANKGUARD 412 ON ALL NON SEALING

Sp9. MILD STEEL FITTINGS WITH WELDED COLLAR JOINTS SHALL BE I ACCORDANCE WITH SER STANDARD DRAWINGS SEQ-WAT-1400-1 AND SEQ-WAT-1402-1 OR AS OTHERWISE DIRECTED BY THE SUPERINTENDEN.

SP10. MSCL PIPEWORK SURFACE PREPARATION FOR SITE WELDING REMOVE ALL RUST, MILLSCALL AND AL
GRIND SMOOTH ANY RAISED AREAS
WIRE BRUSH ALL SURFACESTO BE WRAPPED, REMOVE LOOSE DIRT AND RUST ENSURE NO FREE MOISTURE IS PRESENT

SP11. FOR WRAPPING FLANGES, APPLY PETROLATUM SYSTEM SUCH AS 'DENSO' OR APPROVED EQUUVALENT IN ACCORDANCE WI
SPECIFICATION AND SEQ / WSA STANDARDS.

SP12. WELD JOINTS (COLLAR/ BUTT WELDED JONTS) SHALL BE PROTECTED BY MEANS OF EAT SHRINK SLEEVE. HEAT SHRIN SLEENG SHALL E ATHELEDNACCORDANCE

POLYETHYLENE PIPES (PE)

ALL PE PIPES AND FITTINGS SHALL BE MATERIAL GRADE PE100 AND IN ACCORDANCE
WITH AS2333, AS4130, AS4131 AND AS4129.
PE2 ALl PE PPES AND FITTINGS SHALL BE BUTT WELDED OR ELECTROFUSION FUSED
UNLESS NOTED OTHERWISE.
PE3 PE PIPEE WTHH CRACKS, SCORES OR SCRATCHES DEEPER THAN 10\% OF THE WALL
PE4 PE WELDING MUST ONLY BE CARRIED OUT BY CERTIFED PERSONS
(a) IN ACCORDANCE WITH PARTEC REQUIREMENTS AND
(b) WHO HAC SUCCESSFULLY CARRIED OUT PREVIOUS PE PRESSURE PIPING WELING
PROUECTS O F THIS SIZE.
 AS2033, AE2566.2AND TH
RECOMENATIONS.

PE6 Joints shall only be made between plpe materials of the same grade as DEFINED N AS4430. PILOT WELDS SHALL BE MADE AND TESTE
JONTS BETWEEN IPES FROM DIFFRENT MANUFACTURERS

PET FUSION BUTT-WELDED JOINTS SHALL ACHEVE AT LEAST 90\% OF THE TENSLE
STRENGTH OF THE PARENT PIPE. INTERNALWELO BEADS SHAL BE REMOVED
PE8 ALL WELDING SHALLL BE PERFORMED UNDER CONTROLED ENUIRONMENTAL AND WATER CONTAMINTION SHELTTERS SHALL REMAN IN PLACE UNTIT COVMPLETION CF THE JINT COOLING PERIOD. PIPE ENDS SHALLEE BLOCKED OFF TO PREVENT WIND

PE9 WELDING MACHINES UING HAND WOUND CARRIAGES WTHOUT PRESSURE GAUGES
SHALL NOT BE SSED. AT ALL TMES THAT WELING IS I PRRGRESS, THE WELDER
 WELD.

PE10 ALL FABRICATED PE FITTINGS AND ASSEMBLES SHALL BE DESIIGNED WITH A PRESSURE
RATIN OF PN16.
PE11 Abolt toraue design is reauired for pe flanges. The design is reauired to CoNSIDER THE ACTUAL DIMENSIONS OF THE PE FLANGES, MATING GLANGES AND
GASKET DMENSIONS (NOTNG THERE I S VRIANCE DEEENDNG ON SUP PLERS). THE

SITEWORKS
SW1. DETALLS OF SERVICES SHOWN ON THE DRAWINGS ARE INICATVE ONLY AND MAY NOT NCLLUDE ALL EXISTING UNDERGROUND AND OVERHEAD SERVICES. PRIOR TO ANY
DEMOLTION, EXCAVATION OR CONSTRUCTON THE CONTRACTOR SHAL CONTACT THE RELLVANT AUTHORITY TO ASCERTAIN THE POSSIBLE LOCATION OF ALL SERVICES
 WORRS SHALL BE LOCATED BY POTHOLING OR OTHER APPROVED METHOD TO
CONFIRM DEPTHS AND LOCATONS. THE SUPERITTENDENT SHALL BE NOTFIED MMEDIATELY OF ANY CONFLLCTS BETWEEN THE PROPOSED WORRS AND ANY EXIITTNG SERVICES AND AT LEAST THREE (3) WORKING DAYS PRIOR TO
COMMENCEMENT OF ANY CONSTRUCTON ACTVITY THAT MAY AFFECT THOSE COMMENE
SERVICES.
SW2. PROTECT AND MAINTAI EXIITING SERVICES TO THE SATIFACACTION OF THE RELEVANT SUPPORT OF THE SERVVICESSI IS ISNLY ALLOWED WITH PRIOR APPROVAL OF THE
RELEVANT AUTHORITY OR ONWER

SW3. IF A AERVICE IS DAMAGED DURING CONSTTUCTION IMMEDATEYY REPORT THE
 OPTIONS. IF REPARS ARE DIRECTED, OBTAIN WRITTEN CONF FRMATION FROM T
AUTHORITY OR OWNER THAT THE REPAR HAS BEEN CARRIED OUT TO THER ASTISACTION. IF THE OWNER CANVOT BE CONTACTED WTHH A REASONABEE TIME

SW4. ANY DAMAGE TO EXISTING INRASTRUCTURE OR SERVICE BY THE CONTRACTOR SHALL BE RECTIFED AT THE CONTRACTOR EXPENSE.
SW5. RESTERE ALL SURFACES TO MATCH PRE-EXISTING SURFACES UNLESS NOTED
OTHERMISE.

SW6. ALL EXISTTNG FEATURES (eg. ROADS, FENCES, DRVEWAYS, GARDENS, PATHS,
STORMWATTR ETC. ARE TO BE RE-NSTATED WHERE DISTUREED BY THE WORKs.
SWT. KEEP GROUNDWORKS FREE OF SURFACE WATER. PROVIDE AND MAITTAN SLOPES,
 SATISFACTORR DRAINAGE. PLACE CONSTRUCTTON INCLUDING FILLING, PAUING,
STRUCTURES, SERVVCES, ANO THE LIKE ON GROUND FROM WHICH SURFACE WATER TRUCTURES, SERVVCES, AND THE LIIE ON GROUND FROM WHICH SURFACE WATE

C5. CONCRETE SHALL BE COMPACTED BY MECHANICAL VBRATION
C6. REINFORCEMENT IS REPRESENTED DIAGRAMMATCALLY. IT IS NOT NECESSARLY Shownin tue prouection.

C7. REINFORCEMENT ABBREVIATIONS
N- DENOTES GRADE 500N HOT ROLLED DEFORMED BARS TO ASNZS 467
R- DENOTES GRADE 250 R HOT ROLLED PLAIN BARS TO ASNZS 4671 SL - DENOTES HARD DRAWN WIRE REINFORCIIG FABRIC TO ASNZSS 4671 W- DENOTES HARD DRAWN PLAIN WIRE TO ASNZSS 467

REINFOR
$\begin{array}{lllll}\text { B } & \text { BOTTOM FACE } & \text { HORIZ } & & \text { HORIZNTAL } \\ \text { BB } & \text { BOTTOM BOTTOM (LAID FRST) } & \text { IL } & \text { INNER LAYE }\end{array}$
CP CENTRALY PLACED INTF INTERNAL FACE $\begin{array}{ll}\text { EF } & \text { EACH FACE } \\ \text { ES } & \text { EQUALLY SPACED }\end{array}$ $\begin{array}{lll}\text { EW } & \text { EACH WAY } & \text { T } \\ \text { EXTF } & \text { EXTERNALFACE } & \text { TT }\end{array}$ $\begin{array}{llll}\text { EXTF } & \text { EXTERNAL FACE } & \prod_{\text {FF }} & \text { TOP TOP (LAID LAST) } \\ \text { FF } & \text { FAR FACE }\end{array}$

C9. REINFORCEMENT SHALL NOT BE WELDED WITHOUT THE APPROVAL OF THE
SUPERRITENDENT. UNLESS SHOWN ON THE STRUCTURAL DRAWINGS.
C10. ALL REINFORCING FABRIC SHALL COMPLY WTH ASNZS 4671 AND SHALL BE SUPPLIED AS FLAT SHEETS.
C11 ALL RENFORCEMENT SHALL BE WIRED TO AND SUPPORTED BY APPROVED CHARS TO

3					
2	1 1807. A Notes C2 28 C 3 REVISED				
1					
	. DATE AMENOMENT				

OUU CIP CODE	воwDaso
auu design wo No.	P801375
auu conss. woo No.	
funoed by auu (r)	External ()

ORAFTED	
DRATING REVIEN	
QUU CAD FLE	46200303
QUU TRMM FLE	

Oesign review
RPEQ Na

REINFORCED CONCRETE
C1. ALL CONCRETE WORK, INCLUDING COMPAACTION OPEEATIONS, SAMPLING, TESTING,
CURING ADD FINSHES SHALL EE IN ACCORDACN WITH AS 3 SOO
THE FOLLOWING TABLE OF CONCRETE CLLASSES SHALL APPLY. THE SLUMP RANGE
SPECIFIED SUPERSEDES THE SUUMP TOLERANCE IN AS 139 Al ALL CEMENT SHALL BE

BEEP DEWTTERING SYYTEM OPERATING DURING COMPACTON F ANY BACKEULNG IS COMPLETE

9. EXCAVATE AND STOCKPILE ALL TOPSOLL AND USE FOR RESTORATION, AFTER COMNLETTNG BACKFILLING OPERATIONS. USE EQUVVALENT IMPORTED MATERIAL TO
10. TOPSOLL, CLEARED VEGETATION, OLD WORKS, RUBBISH AND EXCAVATED MATERAL
NOT REOURED FOR RESTORATON WORK AND SUTABLE FOR RECYCLING TO BE NOT TEOUIRED DOR RESTORATION WORK AND SUITABLE FOR RECYCLING TO BE
REMOVED FROM SITE AND DISPOSED OF IN AN ACCEFTABLE MANNER AT THE EXPENSE REMOVED FROM STTEAN
OF THE CONTRACTOR.

SW11. CLEAR VEGETATION AND GRUB OUT ROOTS ETC. FILL HOLES WITH GRANULAR MATERIAL COMPACTED TO 95\% STD. COMPACTION I I ACCORDANCE WITH AS1289.5.2.
C3. QUALTTY OF CONCRETE ELEMENTS SHALL BE:-

ELLMENT	EXPOSURE CLASSIFICATION	MINIMUM COVER T RENFORCEMENT (m)	CONCRETE GRADE
PRECAST CONCRETE	B1	40	N40
THRUST BLOCKS (RENFORCED)	B 1	60	N32

ABBREVIATIONS	
AHD - AUSTRALIAN HeIGHt datum	$\begin{array}{ll}\text { MAX - MAXIMUM } \\ \text { MIN } & \text { - MINIMUM }\end{array}$
втм - воттом	NB - Nominal bore
CFw - Continuous fllet weld	NF - Near face
	Nom - NoMInal
	NTS - Not to scale
cl - CENTRES	od - outide diameter
	PE -Polyethylene
	QUU - QueEnsland urban utlities
	qty - quantity
	RC -REINFORCED CONCRETE
$\begin{array}{ll} \text { EF } & \text { - EACH FACE } \\ \text { ES } & \text { EQUALLY SPACED } \\ \text { EW } & \text {-EACH WAY } \end{array}$	REQD-REQUIRED
	RL - REDUCED LEVEL
	SS - stanless steel
FBP FF - FUSION BONDED POLYETMLE FF -FARFACE	STL - STEEL
	tbC - To be Confirmed
GALV - GALVANISED	UNO - UNLESS Noted otherwise
	AS CONSTRUCTED DETALLS FOR REV.
	I CERTIFY THAT THE "AS CONSTRUCTED" DETAILS SHOWN ON THIS PLAN ARE A TRUE AND ACCURATE RECORD OF THE WORKS.
	NAME:
	RPE. No.
	COMPANY NAME

12. STEEL REINFORCEMENT SHALL COMPLY WTH ASNZS 4671. ACCEPTABIE MANUTACTURERS AND PROCESSORS OF STEEL LEINFORCEMENT MUST HOLD A VALD
CERTIICATE O APROVAL, ISUUED BT HE AUSTRALAN CERTIFCATION AUTHORITY
 MAY BE APPROVED IN WRITING BY THE SUPERINTENDENT. THE CONTRACTOR SHAL
PROVIDE EVICENCE OF COMPLANCE BEFORE ANY RENFORCEMENT IS SUPPLIED TO
THE PROJCCT THE PROJECT.

C13. ALL EXTERNAL EDGES SHaLL BE ChamFERED $15 \times 15 \mathrm{~mm}$ UNLESS NOTED OTHERWISE.
C14. CURE ALL EXPOSED CONCRETE BY APPROVED CURING COMPOUND OR BY COVERING WTH A UV RESISTANT PLASTIC WATER PROOF SHEET. ENSURE PLASTIC SHEET DOES APPLCATION OT THE PLASTIC SHEET AND PROVIDE WATER PROOF SEALED JOINTS
WHERE NECESSARYO JIIN PASTIC SHEETS. WHERE NECESSARY TO JOIN PLASTIC SHEETS.

SURVEY DATUM

Horiz. Datum Origin	MGA94 256
Vert. Datum AHD Orinin RL RPM 21911 53.720	

SURVEY NOTES

1. VIIILLE SERVICES ONLY HAVE BEEN LOCATED.

PRIOR TT ANY DEMMLITION, EXCANATION OR
CONSTRUCTON ON THE SITE. THE RELEVANT COOSTRUCTION OO THE SITE. THE RELEVAAT
AUTHRTTY SHOLD DE CONACCED OR POSSIBLE AUTHORITY SHOURD BE CONTACTED FOR POSSIBLE
-COATIN OFUTHR UNDERGROUD SERVICES ND DETALLED LOCATON OF AlL SERVICES.
MGA COORDINATES \& AHD ELEVATIONS DERIVED
FROM GPS SURVEY
BOUNDARIES SHOWN ARE COMPLLED FROM DCDB
DATA.
4. SITE SURVEY CONTAINS SURVEY DATA PROVIIDED BY EXTERNAL LOURCES. LAND SURVEYING
DYNAMICS GIVES NO WARAATY IN RELATON TO THE ACCURACY, RELIABLITYY COMPLETENESS OR SUITABBLITY OF THE DATA AND ACCEPTS NO
UABLITY INCUDING WITHOUT LITITATION

SURVEY DRAWINGS

OO KEY PLAN
12382-DTM-01
${ }^{12382-D T M-2 ~}$

EXISTING SERVICES

Existing Station Coordinates				
	Easting	Northing	RL	Type
CP4	511364.037	6949695.325	576	URVEY STATION
CP12	511573.265	6950938.217	54.30	SURVEY STATION
CP14	511479.321	6950500.406	50.867	SURVEY STATION
CP16	511418.166	6950126.668	55.1	SURVEY STATION
CP20	511911.176	6949785.419	70.604	RAMSEt NAIL
CP21	511834.545	6949786.273	68.435	TEMP STATION
CP22	511286.900	6949433.575	49.448	SURVEY STATION
CP23	511297.112	6949432.000	49.893	SURVEY STATION
CP24	511306.250	6949440.561	50.506	SURVEY STATION
CP26	511324.499	6949428.774	50.998	SURVEY Station
CP27	511315.639	6949415.741	50.673	SURVEY STATIC
CP28	11308.875	6949417.205	50.232	SURVEY STATIO
CP32	511382.934	6949880.12	53.5	SURVEY STATION
CP33	511400.382	6950039.913	51.35	SURVEY STATIO
P38	511459.017	6950200.970	58.40	SURVEY STAT
CP39	512060.469	6949788.738	74.991	TEMP STATION
CP40	512611.621	6949323.975	87.987	SURVEY Station
CP41	511975.760	6949759.984	72.479	SURVEY Station
CP42	511404.727	6949401.745	55.001	SURVEY Station
CP43	511438.331	6949395.755	56.188	SURVEY STATION
CP44	512007.033	6949762.250	73.398	TEMP STATION
CP46	511536.757	6950739.666	51.338	NAIL
CP47	511527.898	6950692.245	49.311	scw in Conc
CP48	511517.706	6950629.413	48.420	SURVEY Station
CP49	511517.706	6950629.413	20	SCREW IN CONC
CP50	511547.821	6949377.041	60.629	PIN
CP51	512272.962	6949746.125	80.180	NAIL
CP56	512424.888	6949709.176	82.948	SURVEY Station

3	14.00118	for construction					QuU CIP CODE	вошоaso
2	180078						aud design wio No.	P8013175
1	180278	Stied for tender					aut const. wo No.	
REV.	date	AMENOMENT	desion	Iosici	N	OUU	Funoed by aut (n)	External ()

DESIGN
SURVEY DATA AND LEGEND

AS CONSTRUCTED DETALLS FOR REV.		
I CERTIFY THAT THE "AS CONSTRUCTED" DETAILS THIS PLAN ARE A TRUE ANDRECORD OF THE WORKS.		
SIINATURE -		
RPEO		
Companr name		
Start date:	Emshdate	

Benolo	chanage	1	ns	Easting	Northng	horzontal beno	Vertical bend	Compouno beno
TEE	${ }^{-6.427}$	${ }^{43,330}$	${ }_{43,330}$	511856.64	6553280633			
$22 / 2^{2}$ BENO (${ }^{\text {(}}$	${ }^{-4.624}$	${ }^{42.582}$	${ }^{45.004}$	511854.188	6953242304	0.0	${ }^{225}$	${ }^{225}$
$6^{\circ} \mathrm{BENO}(H)$	2.318	42.579	${ }^{44.830}$	511853643	695322000	62	0.0	${ }_{6} 2$
$90^{\circ} \mathrm{EEND}(\mathrm{H})$	4.815	${ }^{2} 2.569$	44.402	518852713	695314.489	90.0	0.0	90.0
$50^{\circ} \mathrm{END}(\mathrm{CC}$	23.399	42.532	${ }^{44.887}$	518871.41	6553121258	494	${ }^{1.3}$	494
$42^{\circ} \mathrm{BEND}$ (C)	44.081	42.210	44.149	511882431	695059520	422	42	${ }_{423}$
sc.sc connector (M)	67.56	${ }^{39.892}$	${ }^{41.730}$	51188727	6550372052	- 0.0	3.	${ }^{3} 0$
SC.SC Connector (H)	99.536	${ }^{38.442}$	${ }^{40.156}$	511873888	6953000478	32	0.0	32
SC.SC Convector (C)	1005.57	38.171	39.974	51187307	6953944,59	32	${ }^{24}$	40
Sc.sc connector ($)$	203.100	29.530	${ }^{31.338}$	511888.56	6552977.50	0.	25	${ }^{25}$
sc.sc connector (M)	216.093	28.990	30.775	511887964	655292907	,	25	S

NB450 INLET PIPELINE SETTING OUT DETAILS

\qquad

	1953.387	48.42	50.737	511610382	695120.807	93	0.7	94
	1996.075	49.670	51.979	51150680	6551169.189	93	0.3	${ }^{93}$
S.SC Coonvector (c)	2517.519	46.085	48.088	515150473	6550659.912	25	0.0	${ }^{25}$
45° BENO (M)	2532.717	46.036	48.012	511507.34	6550600046	0.	449	449
$45^{\circ} \mathrm{BENO}$ ($\mathrm{M}^{\text {a }}$	2533,20	46.736	48.011	5115071.188	6550809359	0.	44.9	4.9
$45^{\circ} \mathrm{BENO}$ (M)	2539.222	46.736	48.021	51.51505961	${ }_{6550383883}$	0.	${ }_{4}^{4.8}$	448
$45^{\circ} \mathrm{BENO}$ (M)	2539.725	46.237	48.02	511150586	6550633.191	0.	44.7	44.7
11//sc.scceeno (H)	2542.253	46.245	48.031	511505331	6550802718	7	0.0	74
SCSSC Connector (c)	2551.851	46.33	48.104	511504595	6556821.152	25	0.0	${ }^{25}$
SC.SC Convectoo (H)	2557.830	46.373	48.153	511503824	6550615218	24	0.0	${ }^{24}$
SC.SC Coonvector (M)	2900.375	57.54	59.286	511447226	6950277391	0.0	${ }^{23}$	${ }^{23}$

SC.SC Connectoon (M)	2900.375	57.584	59.286	51147228	655027.381	0.0	${ }^{23}$	${ }^{23}$
$90^{\circ} \mathrm{SCSCSCEND}(H)$	3299.59	49.20	53.27	511381289	6998888574	900	0.0	00.0
Joln defletion (c)	3667.334	63.72	65.261	511743.957	694822.777	1.1	0.3	1
SC.SC Convector (c)	3678.834	64.263	65.594	51175.260	699820.556	2.2	0.9	
Jont oeflection (H)	${ }_{3690.334}$	64.42	65.940	51176.473	699881.103	22	0.0	
sc.sc Coonvector (c)	3701.834	64.55	66.281	51177.580	699815.122	22	0.9	
Jont deflectoo (H)	3713.34	64.220	66.630	511788.54	694811.778	22	.0	22
Jolv deflectoo (H)	${ }_{3724.834}$	65.254	66.93	51179.410	694880.895	22	60	
Jolv deflection (H)	3736.334	65.589	67.307	511810.02	699883.659	22	0.	
Joint deflection (H)	3777.834	65.924	67.651	51182.623	699999.017	20	0.	20
Jont defiction (H)	3759.334	66.258	67.96	511830.973	6999794.04	0.4	0	
Jolv deflection (H)	3770.834	66.53	68.328	511841287	694788.916	1.3	0	${ }^{1.3}$
Jont deflection (H)	${ }_{3782334}$	66.97	68.647	51185.717	699984.068	19	0.0	
Jont deflection (H)	3788.84	67.05	68.815	511857.006	694781.817	1.3	0.0	
Jont deflection (H)	3793.834	67.26	68.97	511822345	699979.682	1.3	0.0	13
Jolv doflection (H)	3799.584	67.29	69.137	511867.72	699977.65	1.3	0.0	
Joint deflection (H)	${ }_{3005,334}$	67.59	69.312	51187.157	${ }^{6999775.767}$	${ }_{1}^{1.3}$	0.0	${ }^{1.3}$
Jolv deflection (H)	3811.084	67.764	69.478	51187.625	699773.988	${ }_{1}^{13}$	0.0	${ }^{13}$
Jolit deflectow (c)	${ }_{3816.834}$	67.31	69.634	511884.31	699972.330	13	0	${ }^{13}$
Jolv deflection (H)	3822.584	68.96	69.796	51188.671	699770.73	1.3	,0	
Jolv deflection ((H)	${ }_{3828.344}$	68.26	69.961	51185.244	${ }^{6999769.377}$	13	0	13
Jolv doflection (H)	${ }_{3834,084}$	68.427	70.12	51190.847	699768.085	13	0.0	${ }^{1.3}$
Joint ofeliction (H)	${ }_{3839.834}$	68.52	70.297	51190.477	6999766.916	13	${ }^{0.0}$	${ }^{13}$
Joint ofeliction (H)	${ }^{3845.584}$	68.78	70.464	511912.131	699765.870	1.3	0.0	
Jolv deflection(H)	${ }_{3851.344}$	68.93	70.629	511917807	6999764.499	1.3	0	${ }^{13}$
Joint deflection (H)	${ }_{3857.084}$	69.88	70.793	511923.502	699764.153	1.3	0.0	${ }^{13}$
Join deflecton (C)	3862.834	69.23	70.950	51192.212	699763.482	13	0.0	${ }^{13}$
Joint deflection (H)	${ }_{3688.584}$	69.42	71.106	511934.936	${ }^{6999762.36}$	${ }^{13}$	0.0	
Join oetilecton(H)	${ }^{3874.334}$	69.58	71.272	51190.671	${ }^{6999762.516}$	1.3	0.0	${ }^{1.3}$
Joint deflection (H)	3880.084	69.73	71.43	51196414	699762.23	1.3	0.0	${ }^{13}$
	${ }^{3885.840}$	69.220	71.60	511952.167	${ }^{6999762.055}$	1.3	0.0	${ }^{13}$
Joni deflecton (H)	3891.584	70.086	71.77	511957.911	${ }^{6999762.013}$	1.3	0.	

6	2005, 19						QuU CIP CODE	воwdaseo
5	1030619						aUu desilien wio no.	P8013175
4	1063,19						auu const. wio No.	
REV.	date	AmENDMENT	DEsigen	Nosion		OUU	funoed by aut (n)	ExTERNAL ()

dratied	
drafting revew	
auU CAD FLIE	462003010
OuU TRMM FLE	

DRAMNG TTLE
NB450 RESERVOIR
INLET PIPELINE nle PIPELINE

GENERAL
 S2 DIENSIONS INMLIIN

59 Nomitr xelievart authoritis

G12 ALL ENVIROMMENTA PROTECTIOMMEASURES SHOULD BE MPLEMENTED PRIOR TO
6i3 AL WOR SHAL BE CARRED OUT N COMPLANCE WTH THE OUEESLAND EEECTRLCIT
G14 CONNETTON OF THE WORKS TV THE LIVE SYTEM SHALL BE CARRED OUT B
CONTRACTOR UNOR OUU SUPRRYIION.

G16 All dimensions given are nominal onr. THE Contractor IS responsibl for

GEOTECHNICAL AND FOUNDATIO

PIPELINES

P2 THE MIIMUU CLEARANCETO EXITTNG SERVICES To EEAS PRR WSANOUU

P4 Ppeline to be tunnel bored h hod for Extent nulcated on drawnngs

.

THRUST RESTRAIN
t1 thrust restanit for ppeline has been desin for a maximum test pessurne of 1200 kea

CONCRETE

C1 CONCRETE WORKMANSHIP AND MATERALISTO COMPIY YTH A A 3800 , AS 3610

${ }^{\text {C6 }}$ CESIIN, CERTIFCCATON, CONSTRUCTION AND PERFORII

Concrete stucture	CONCRETE STRENGTH ${ }^{\text {c }}$	temprature limit
NORMAL CONCRETE IN OOTINGS, BEAMS, COLUMNS WALLS AND SLABS.	EQUAL TO OR LESS THAN 32 MPa	DEGREES C
CONCRETE SECTIONS EQUAL TO OR GREATER THAN 600 mm THICK.	EQUAL TO OR MORE THAN 40 MPa	27 DE
MASS CONCRETE SECTIONS GREATER TH	EQUAL TO OR MORE THAN 40 MPa	27 DEGREES C

REINFORCEMENT

Follows:
R - Structural grad 250 PLAN round bars

w - SteEl renimoring wre grab 500

REINFORCEMENT
${ }^{2} 6$ TRUE PROUECTON.
Co

BAR SIIE	LAP LENGTH ((m)
N12	350
N16	500
N20	600

ABRIC RENFORCEMENT LAPs
FORS $1=S 2$

$$
\underset{\text { FORS } 1<\mathrm{S} 2}{ }
$$

MNITM E E Mractrs on The communtr ouring construucton

ES ENSURE THERE IS NO SPREAD OF DECLARED PESTIS

EMRTAGE

Hazaroous materlals:

Environmentalissues

ad holl be stockplled separately

E15 All sTockples should be located outside the canopy Edge of Existing trees to

E18 PRE-IISTURBANCE Sol Proflles Ano compactoon LevELS ARE To Be Renstated.

Ez2 ANY TRES WHHCH NED TO BE REDLACED AR TO EE REPLACED WTH SIMLLAR TYE AND

NoIs ANo vispation:

E23 WORKS Should not Occur outside the hours specifile by bce

 reaurement

E29 Ensure the waste watrer Is not dicharged nto sensitive areas
QLD URBAN UTILITIES

1	งUL 19	ISSUE For construction			
	date	Amenoment			

QuU CII COOE	Bowoatosoz
QuU design wo no.	P8016675
auc const. wo No.	P8017273

ORAFTED	
ORAFTNG REVEW	
QUU CAD FLE	A6200002.OWG
QUU TRM FLIE	PII372

DEESIGN
ASSETPROJECT
WATER TRUNK MAIN
EXTENSION
KANGAROO GULLY ROAD
BELLBOWRIE

TRENCH DETAIL IN BCC ROAD CH -4.000 TO CH 578.277
(CH 578.277 TO CH 703.714 - REFER TO DETAIL ON DRG. 462006006 FOR TRENCH RESTORATION WIDTH)

TRENCH DETAIL IN BCC VERGE

SURVEY NOTES AND SURVEY CONTROL STATIONS TABLE:

1. VERTICAL DATUM EASED NA ADD PSM 177881
2. MGA GRID AZMUTH ADOPTED.

Control points data					
point	ING	grtung	Elevation	COOE	
	487906.5610	69520208820	18.1070	sves	tenp_stn
1223	488822.3550	6951581.230	21.0760	sVCP	SCREW
9000	487917.4450	6952137.5520	15.8380	(gin
767	487890.6010	69519993870	18.9120	sves	IRON_PIN
671	488913.6430	69951428867	16.1270	svcs	Nallcounc
835	487883.8950	6951847.5750	18.4330	sv cs	Nal/KERB
865	487888.9380	69551831.6909	18.2100	svcs	Nalıkerb
881	487880.6340	6951830.530	18.8880	cs	NAL/KERB
1056	487856.6070	951708.7670	19.534		Nalukerb
1057	487856.7430	6951709.7250	19.5110	sucs	NALLKERB
1090	487863.8510	6951751.230	19.2690	svcs	Nalıkerb
1650	487829.8560	6955131.1410	22.5570	sves	Nal/KERB
1778	487827.0780	6951514.8920	23.0430	sv cs	
293	488912.1330	6995212.1880	17.8880	S	${ }^{\text {E }}$
899	487882.5790	6951821.9880	19.0620	sves	PEG
1052	487856.5910	6951687.590	20.3800		PEG
2085	48793.6960	6951438.6140	27.9640	LS	${ }^{\text {EG }}$
2107	48778.5200	6951407.5040	28.850	svcs	PEG
2116	48796.4880	6951460.0460	28.5520	svcs	PEG
517	487888.8270	6951889.6380	18.4830	svcs	Screw
672	488899.2390	695033.0180	18.3400	sves	Screw/
1593	487830.770	6951599.190	21.8840	svcs	screw/con
1798	488724.5040	6951511.0880	23.5630	svcs	screw/c
1027	487845.9810	699516463360	19.9900	svcs	screw/
1091	${ }^{487884.2370}$	6951753.250	19.5540	svcs	ScRew/
1744	487816.9350	6951477.240	25.3510	sves	Splike
768	487887.9280	69951840.8420	18.4880	svcs	CAD
864	487886.7320	951830.5930	18.3340	SVPSM	screw
1055	487856.2220	6951706.430	19.5460	sVPSM	ScRew
1092	487885.1220	6951758.390	19.2290		
179					

EGEND: PROPOSED TRUNK WATER MAIN ISTING TRUNK WATER Existing sewerage ExISTING sEwER RISING MA EXISTING SEWER RISIG MAN
XXSTING SToRMMATER Ex|sting Electracitr EXXITNG TLECOMMUNICATION
EXSTTMG TELSTRAOPTIC CIBPE XISTING TELITrTA Optic FII Exsting EDge of bitumen Existing fence line

TYPICAL MARKER POST

	JUL 19	ISSUE For constructonameno post			
		Amenoment			

OUU CIP CODE	Bowoanobor	drafted	
aud desige wio No.	P8016675	dratting revew	
auu const. wo No.	P8017273	QuU cad fle	ws
funded by aut	ExTER	@uU trim Fle	P13372

DEESIGN REVEN

SECTION(A)
CONNECTION TO EXISTING DN600 MSCL TRUNK MAIN SCALE 1:50 (A1)

NOTE:

FOR PROJECT NOTES, REFER
TO DRAWING NO. 46206002
2. DN375 CUT-IN TO THE DN600 MSCL PRESSURE (LIVE NETWORK) BY A SPECIALST SUBCONTRACTOR APPROVED BY QUU.
3. ITEM 1 TO BE WELDED TO THE TRUNK MAIN FIRST \& THEN THE REINFORCEMENT
COLLAR (IN PARTS) TO BE WELDED TO THE COLLAR (IN PARTST) TO BE WELDED

| As CONSTRUCTED DETALLS FOR REV. . |
| :---: | :--- |

 SIgnture: NAME:
RPE. No: PEENO:ENSH DATE

APPENDIX TWM-B

List of Relevant SEQ Code Standard Drawings

(For Guidance Only)

Below is a list of relevant SEQ Code Standard Drawings that may be used for guidance only when designing trunk water mains. Please note that the below drawings are generally not suitable for construction without further engineering design detail.

The current version of the below drawings can be obtained from the SEQ Code website at: http://www.seqcode.com.au/seq-water-supply-code/

SEQ Code Standard Drawing Number	Drawing Title
SEQ-WAT-1103-1	Typical Mains Construction - Distribution and Transfer Main Arrangements
SEQ-WAT-1105-1	Typical Connection to Existing Mains - Sheet 1 of 2
SEQ-WAT-1105-2	Typical Connection to Existing Mains - Sheet 2 of 2
SEQ-WAT-1105-3	Typical Connection to Existing Steel Mains
SEQ-WAT-1200-2	Embedment and Trenchfill - Typical Arrangement
SEQ-WAT-1201-1	Standard Embedment - Typical Flexible \& Rigid Pipes
SEQ-WAT-1202-1	Typical Special Embedment - Inadequate Foundations Requiring Over Excavation \& Replacement
SEQ-WAT-1203-1	Typical Special Embedment - Concrete \& Stabilised Embedment and Flexible Joint Details
SEQ-WAT-1205-1	Typical Thrust Block Details - Mass Concrete
SEQ-WAT-1206-1	Typical Thrust and Anchor Blocks for Valves
SEQ-WAT-1208-1	Typical Restrained Joint System - DN100 to DN375 DI Mains
SEQ-WAT-1209-1	Typical Trench Drainage - Bulkheads and Trenchstop
SEQ-WAT-1210-1	Typical Trench Drainage - Trench Systems
SEQ-WAT-1211-1	Typical Thrust Block Details - Under Obstructions
SEQ-WAT-1212-1	Typical Buried Crossings - Major Roadways
SEQ-WAT-1213-1	Typical Buried Crossings - Railways
SEQ-WAT-1214-1	Typical Buried Crossings - Bored and Jacked Encasing Pipe Details
SEQ-WAT-1300-1	Typical Valve, Hydrant and Water Main Road Crossing - Road and Pavement Markers
SEQ-WAT-1300-2	Typical Valve and Hydrant Identification Marker Posts
SEQ-WAT-1301-1	Typical Valve Installation - General Arrangements
SEQ-WAT-1305-1	Typical Surface Fitting Installation - Valve and Hydrant Surface Boxes - Trafficable and Non-trafficable
SEQ-WAT-1306-1	Typical Surface Fitting Installation - Valve and Hydrant Surface Boxes - Support and Surround Details
SEQ-WAT-1309-1	Typical Appurtenance Installation - Passive Pressure Reducing Valves (PRV)
	Ty
Ty	

SEQ Code Standard Drawing Number	Drawing Title
SEQ-WAT-1309-2	Typical Appurtenance Installation - Active Pressure Reducing Valves (PRV) - DN100 to DN300
SEQ-WAT-1309-3	Typical Appurtenance Installation - Active Pressure Reducing Valves (PRV) - DN100 to DN150
SEQ-WAT-1309-4	Typical Appurtenance Installation - Active Pressure Reducing Valves (PRV) - DN200 to DN300
SEQ-WAT-1312-1	Aerial Crossings - Typical Bridge Crossing Concepts
SEQ-WAT-1313-1	Flanged Joints - Typical Bolting Details
SEQ-WAT-1318-1	Typical Arrangement - Main Swabbing Chamber
SEQ-WAT-1400-1	Typical Steel Pipe Jointing - Butt Welding of Joints
SEQ-WAT-1401-1	Typical Steel Pipe Jointing - Rubber Ring Joint Spigot Band Specials
SEQ-WAT-1402-1	Typical Steel Pipe Jointing - Welded Pipe Collars
SEQ-WAT-1403-1	Typical Steel Pipe Jointing - Bends
SEQ-WAT-1404-1	Typical Steel Fabrication - Access Opening for Pipes ~ DN750
SEQ-WAT-1405-1	Typical Steel Fabrication - Dismantling and Flexible Joints
SEQ-WAT-1406-1	Typical Steel Fabrication - Valve Connection and Bypass
SEQ-WAT-1407-1	DI Installation - Valve Bypass Arrangement - Typical DI Pipe Fittings
SEQ-WAT-1408-1	Typical Joint Corrosion Protection - Cement Mortar Lined Steel Pipe > DN750 to DN1200
SEQ-WAT-1410-1	Typical Chlorination Test Point Details

APPENDIX TWM-C

Relevant Urban Utilities Documents

Below is a list of relevant Urban Utilities Documents relating to the design and construction of trunk water mains to be owned and operated by Urban Utilities.

Planning Documents

Document Title	Document Type
Urban Utilities Water Netserv Plan	Public
SEQ Code Design Criteria	Public
Urban Utilities Network Planning Criteria	Internal
Urban Utilities Network Planning Criteria - Water Design Demands by Supply Zone	Internal

Development Services Documents

Document Title	Document Type
Urban Utilities Water Netserv Plan	Public
Service Advice Notice	Advice
Urban Utilities Major Works Design Package Criteria	Public
Water Approval Decision Notice	Advice

Government Client Services Documents

Document Title	Document Type
Project Specific Impact Assessment	Advice
Project Specific Design Scrutiny	Advice
Project Specific Construction \& Assurance	Advice

Strategic Asset Management Documents

Document Title	Document Type
Asset Life Cycle Plans (Draft)	Internal

Risk Management Documents

Document ID	Document Title	Document Type
PRO84	Urban Utilities Risk Management Procedure	Available on Request
PRO662	Safety in Design	
TEM529	Safety in Design Report Appendix A	
FOR988	Safety in Design Assessment Record Appendix B	

Water Quality Documents

Document Title	Document Type
Urban Utilities Drinking Water Quality Management Plan (DWQMP)	Public
Appendix I of SEQ Water Supply D\&C Code	For Purchase

Infrastructure Delivery - General Engineering Requirements

Document ID	Document Title	Document Type
TMS1647	Equipment Tag Naming Technical Specification	Available on Request
TEM529	Safety in Design Report (Appendix A)	
FOR988	Safety in Design Assessment Record (Appendix B)	
FOR989	CHAIR, HAZOP, and CHAZOP Templates	
PRO307	Drafting Guidelines - Contract Requirements	
PRO395	SEQ Water and Sewerage Design and Construction Specification 1	
PRO662	Safety in Design	

Infrastructure Delivery - Civil and Structural Requirements

Document ID	Document Title	Document Type
TMS827	General Requirements	Available on Request
TMS1437	Technical Specification for Civil Works	
TMS1439	Technical Specification for Concrete Structures	
TMS1434	Technical Specification for Steel Structures	
TMS1435	Technical Specification for Design and Construction of Water and Sewerage Main Systems	
TMS1581	Drinking Water Reservoirs and Tanks Specifications	
TMS1582	Specification for Horizontal Directional Drilling	
TMS1583	Microtunnelling and Pipejacking Specification	

Infrastructure Delivery - Civil and Structural Checklists

Document ID	Document Title	Document Type
CHE423	Water Main Design	Available on Request
CHE424	Structural Design	
CHE425	Project Technical Requirements	
CHE506	Check List Drawings General	
CHE508	Check List Drawings Reinforced Concrete	
CHE509	Check List Drawings Structural Steelwork	
CHE510	Check List Drawings Water Mains	

Infrastructure Delivery - General Mechanical Specifications

Document ID	Document Title	Document Type
TMS1638	Technical Specification for Water Booster (Water Supply Network)	Available on Request
TMS1639	General Mechanical Works Standard Specification	

Infrastructure Delivery - Mechanical Equipment Schedules \& Data Sheets

Document ID	Document Title	Document Type
FOR883	Mechanical Equipment Schedule	Available on Request
FOR886	Valve Schedule	
FOR995	WRAP Sheet and Associated Risk Assessment Form	

Infrastructure Delivery - Electrical Specifications

Document ID	Document Title	Document Type
TMS62	Preferred Equipment List (Electrical and Instrumentation)	Available on Request
TMS76	Corrosion Protection for Mechanical and Electrical Equipment Structures	
TMS117	Security, Access, Control, and CCTV	
TMS1200	Electrical Installations	
TMS1201	Instrumentation Installation	
TMS1203	General Requirements for Hazardous Area Installation Technical Specification	
TMS1595	Pipeline Cathodic Protection Technical Specification	
TMS1621	Typical Pump Station Maximum Demand Template	
TMS1651	Power System Analysis Finalisation Procedure	

Infrastructure Delivery - Electrical Data Sheets

Document ID	Document Title	Document Type
FOR893	Instrument Schedule	Available on Request

Infrastructure Delivery - Electrical Checklists

Document ID	Document Title	Document Type
CHE68	Site Inspection Checks Cables	Available on Request
CHE135	Pre Factory Inspection Tests	
CHE136	Site Inspection Checks Field Equipment	

Infrastructure Delivery - Control System Requirements

Document ID	Document Title	Document Type
FOR603	CSMS Change Management Form	
PRO396	Control Systems Change Management Procedure	
PRO541	Qualification of Control System Integrators	
TEM514	Functional Specification Template for Complex Sites	
TEM515	Functional Specification Template Standard and Non Complex Sites	
TMS200	SSM087 Standard PRV Site Functional Specification	
TMS828	Standard Functional Specification Reservoir Sites	
TMS849	Citect SCADA Configuration Standard	
TMS1151	Preferred Equipment List - Control Systems	
TMS1202	Control System Implementation for Network Assets Specification	
TMS1229	PLC Programming and Configuration Standard	
TMS1648	Electrical Instrumentation and Control System Design Criteria	

Environmental Requirements

Document ID	Document Title	Document Type
FOR325	Site Access, Tenure, Environment and Planning (STEP) Assessment	Available on Request
PRO372	STEP Assessment Guideline	
FOR608	STEP Assessment Spreadsheet	

APPENDIX TWM-D

Relevant Code and Industry Documents

Below is a list of relevant SEQ Cpde. WSAA and PIPA documents relating to the design and construction of trunk water mains to be owned and operated by Urban Utilities.

Relevant SEQ Code Documents

Document Title	Document Type
SEQ Service Providers Edition of the WSAA Water Supply Code, Version 1.3 (August 2019)	For Purchase
SEQ Code Standard Drawings	Public
SEQ Code Water Supply and Sewerage Design Criteria	Public
SEQ Accepted Civil Infrastructure Products \& Materials List	Public
SEQ Accepted Mechanical Products \& Materials List	Public
SEQ Code Asset Information Specification	Public

To purchase a copy of the SEQ Service Providers Edition of the Water Supply Code of Australia, refer to https://www.wsaa.asn.au/shop

For more details regarding the SEQ Water Supply and Sewerage Design and Construction Code, refer to: www.seqcode.com.au.

Relevant WSAA Documents

Document Title	Document Type
SEQ Service Providers Edition of the WSAA Water Supply Code, Version 1.3	For Purchase
WSA 03-2011 Water Supply Code of Australia, Version 3.1	For Purchase
WSA 01-2004 Polyethylene Pipeline Code, Version 3.1	For Purchase
WSAA Product Specifications	Public

To purchase relevant WSAA Code, refer to: https://www.wsaa.asn.au/shop
To obtain the latest version of the WSAA Product Specifications, refer to:
https://www.wsaa.asn.au/shop/category/11

Relevant Plastics Industry Pipe Association of Australia (PIPA) Technical Guideline Documents

Document ID	Title	Document Type
POPO01	Electrofusion Jointing of PE Pipe and Fittings for Pressure Applications	Public
POP003	Butt Fusion Jointing of PE Pipes and Fittings - Recommended Parameters	
POP004	Packaging, Handling and Storage of Polyethylene Pipes and Fittings	
POP004A	Supplementary List - Materials Specific to Electrofusion and Moulded Fittings	
POP005	Packaging, Handling and Storage of Polyethylene Pipes and Fittings	
POP006	Derating Requirements for Fittings	
POP007	Metal Backing Flanges for Use with Polyethylene (PE) Pipe Flange Adaptors	
POP010A	Part 1: Polyethylene Pressure Pipes Design for Dynamic Stresses	
POP010B	Part 2: Fusion Fittings for Use with Polyethylene Pressure Pipes Design for Dynamic Stresses	
POP013	Temperature Rerating of PE Pipes	
POP014	Assessment of Polyethylene Welds	
POP018	Polyethylene Drinking Water Pipes in Contact with Chlorine and Chloramine Disinfectants	

To obtain the latest PIPA Technical Guidelines, refer to: https://pipa.com.au/technical/pop-guidelines/

