QUEENSLAND Urban Utilities

OPERATIONS \& MAINTENANCE MANUALS

ELECTRICAL EQUIPMENT

REFURBISHMENT OF PRIMARY SETTLING TANKS 1 \& 2 AT LUGGAGE POINT WRP

Table Of Contents		
SECTION 1	INTRODUCTION	
	1.1	GENERAL DESCRIPTION
	1.2	ELECTRICAL
	1.3	PURPOSE OF MANUAL
	1.4	ELECTRICAL CONTRACTOR
SECTION 2	SERVICE \& MAINTENANCE CONTACT DETAILS	
	2.1	CLIENT SERVICES CONTACT DETAILS \& FLOW CHARTS
	2.3	HEYDAY GROUP 24-HOUR SERVICE FLYER
SECTION 3	SWITCHBOARDS/ CONTROL PANELS	
	3.1	GENERAL DESCRIPTION
	3.2	MAINTENANCE
		3.2.1 Safety Switch Testing
	3.3	SCHEMATICS
SECTION 4	EQUIPMENT LISTINGS	
	4.1	GENERAL DESCRIPTION
	4.2	MAINTENANCE
	4.3	DRAWINGS / INSTALLATION MANUALS
	4.4	BROCHURES
SECTION 5	ELECTRICAL ACCESSORIES	
	5.1	GENERAL DESCRIPTION
	5.2	CABLE TRAY
	5.3	ACCESSORIES MANUFACTURER'S PARTS LIST
	5.4	ACCESSORIES BROCHURES
SECTION 6	CABLING	
	6.1	GENERAL DESCRIPTION
	6.2	MANUFACTURER'S PARTS LIST
	6.3	CABLING BROCHURES
SECTION 7	TESTING \& COMMISSIONING	
SECTION 8	AS INSTALLED DRAWINGS	

Heyday Group

SECTION 1 INTRODUCTION

1.1 GENERAL DESCRIPTION

Refurbishment of Primary Settling Tanks 1 and 2 at Luggage Point Waste Water Treatment Plant.

1.2 ELECTRICAL

Supply and install new cable paths, cabling, control panels and earthing for the electrical operation of the Primary Settling Tanks 1 and 2.

1.3 PURPOSE OF MANUAL

The purpose of this manual is to demonstrate to the operator how to operate the complete electrical system and how to execute periodical services and preventative maintenance procedures. The O\&M manual is divided into various sections that relate back to the Table of Contents at the front of the manual. Please refer to the As Installed Drawings in this manual for detailed locations of all electrical equipment.

1.4 ELECTRICAL CONTRACTOR

The Electrical Contractor for this project was Heyday Group whom can be contacted as per the following details.

If you require any periodical maintenance operations to be carried out or emergency breakdowns, please see Section 2 of this manual for Heyday Group's 24-Hour Service contact details.

SECTION 2 SERVICE \& MAINTENANCE CONTACT DETAILS

2.1 CLIENT SERVICES CONTACT DETAILS \& FLOW CHARTS

2.3 HEYDAY GROUP 24-HOUR SERVICE FLYER

Heyday Group

24-Hour Service

Heyday Group Pty Ltd
Heyday Electrics ACC Technoiogies
Phone: 1800803115
For more than 30 years the Heyday Group has been providing electrical, data \& communication solutions to corporate Australia. Our specialist support for your electrical \& data requirements includes a comprehensive range of technical services.

DATA \& VOICE SERVICES

- Category 5E, 6, 7, SFTP \& Fibre Optic Structured Cabling Systems
- Installation, Maintenance, Moves, Adds \& Changes (MAC) Services
- Network Integration
- Telephone Systems
- Design \& Certification for all Major Cabling System Vendors
- Network Hardware
- Patching \& Jumpering Services
- Communication Cabling Audits

ELECTRICAL SERVICES

- Emergency \& Exit Light Testing, Repairs \& Certification
- Tagging \& Testing Portable Equipment \& Appliances
- RCD Protection Installation \& Testing
- Commercial \& industrial Installations \& Maintenance
- Switchboard Audits, Thermal Imaging \& Repairs

Power Monitoring

- Installation \& Service of UPS \& Surge Protection
- Generator Electrical Testing \& Maintenance

CONTACT IIS:

Heyday Group

SECTION 3 SWITCHBOARDS/ CONTROL PANELS

3.1 GENERAL DESCRIPTION

PST 1 and 2 Bridge Control Panel

Manufacturer:	Powertek Australia Pty Ltd		
Model:	Custom Build		
Supplier Contact:	Peter Freeman		
Address:			47 Elizabeth St, Devonport 7310
Phone:			
Facsimile:			
	0364234840		

3.2 MAINTENANCE

- Check Labels are in place.
- Perform trip test on the Safety Switch circuit breakers monthly.
- Shutdown Switchboards and retention connections - 12 monthly periods.
- Check and replace if required faulty pilot lamps - 6 monthly periods.
- Visual checks for HR joints on terminals -12 monthly periods.
- General repairs to damaged or faulty components - as required.

3.2.1 Safety Switch Testing

The bridge supply is protected by Residual Current Devices which should be tested each month, this is a simple matter of pressing the test switch on the Poly Phase Din T circuit breaker located in the MCC Marshalling Cubicle, when pressed the circuit breaker should trip off disconnecting the power. If it does not trip off, call your electrician as the safety switch could be faulty.

Every 3-months the safely switch must be tested using an electronic ELCB Tester. This tester tests the tripping time and current to check that the safety switch is tripping within the required codes. This test should only be preformed by a licensed electrician.

3.3 SCHEMATICS

Drawing No.	Revision	Description
$486 / 7 / 5-$ UTL224E	N	Circuit Diagram Bridge Control Panel
$486 / 7 / 5-$ UTL225E	F	Circuit Diagram Bridge Control Panel
$486 / 7 / 5-$ UTL286E	M	Front Panel Layout
$486 / 7 / 5-$ UTL287E	L	Control Panel Layout

poctid. Manve
Acive 1 E6058012

SECTION 4 EQUIPMENT LISTINGS

4.1 GENERAL DESCRIPTION

Supplied items
ALL EQUIPMENT FOR CONTROL PANEL IS INCLUDED WITHIN THE DRAWING

Quantity	Type Product Code	Description	Supplier
2	N1OO SERIES	FORWARD/REVERSE CONTROLLER	NHP
1	N100 SERIES	EMERGENCY STOP	NHP
8	CARLO GAVASSI	PROXIMITY SWITCHES 24VDC	NHP

4.2 MAINTENANCE

- Maintenance is essential to ensure ongoing service of plant and reduce breakdown situations
- Carry out checks as per manufacturers recommendations
- Visual inspection of components on a regular basis is recommended.
- General repairs as required.
- Earthing shall be tested on a regular basis TEST POINT LOCATED ON OLD LOCAL CONTROL PANEL.

4.3 DRAWINGS/ INSTALLATION MANUALS

Please see attached drawings for installed equipment..

4.4 BROCHURES

Please see attached brochures for installed equipment..

Electrical Data

		CA7-9	CA7-12	CA7-16	CA7-23	CA7-30	CA7-37	CA7-43	CA7-60	CA7-72	CA7-85
Rated Insulation Voltage $\boldsymbol{U}_{\mathbf{i}}$											
IEC, AS, BS, SEV, VDE 0660	[V]						690 V				
UL; CSA	[V]						600 V				
Rated Impulse Voltage $\boldsymbol{U}_{\text {imp }}$	[kV]						8 kV				
Rated Voltage $U_{\text {e }}$ - Main Contacts											
AC 50/60Hz	[V]				200, 208,	30, 240, 38	0, 400, 415	460, 500,	75, 690V		
DC	[V]				24,	8, 110, 115	, 220, 230,	00, 440V			
Operating Frequency for AC Loads	[Hz]						$\ldots . .60 \mathrm{~Hz}$				

Switching Motor Loads

Standard IEC Ratings												
AC-2, AC-3, AC-4	230 V	[A]	12	15	20	26.5	35	38	44	62	72	85
DOL \& Reversing	240 V	[A]	12	15	20	26.5	35	38	44	62	72	85
$50 \mathrm{~Hz} / 60^{\circ} \mathrm{C}$	400 V	[A]	9	12	16	23	30	37	43	62	72	85
	415 V	[A]	9	12	16	23	30	37	43	60	72	85
	500 V	[A]	7	10	14	20	25	30	38	55	67	80
	690 V	[A]	5	7	9	12	18	21	25	34	42	49
	230 V	[kW]	3	4	5.5	7.5	10	11	13	18.5	22	25
	240 V	[kW]	3	4	5.5	7.5	10	11	13	18.5	22	25
	400 V	[kW]	4	5.5	7.5	11	15	18.5	22	32	40	45
	415 V	[kW]	4	5.5	7.5	11	15	20	22	32	40	45
	500 V	[kW]	4	5.5	7.5	13	15	20	25	37	45	55
	690 V	[kW]	4	5.5	7.5	10	15	18.5	22	32	40	45
UL/CSA/IEC												
DOL \& Reversing	115 V	[A]	9.8	9.8	16	24	24	34	34	56	56	80
$60 \mathrm{~Hz} / 60^{\circ} \mathrm{C} \quad 1 \varnothing$	230 V	[A]	10	12	17	17	28	28	40	50	68	68
	115 V	[HP]	1/2	1/2	1	2	2	3	3	5	5	7-1/2
	230 V	[HP]	1-1/2	2	3	3	5	5	7-1/2	10	15	15
	200 V	[A]	7.8	11	17.5	17.5	25.3	32.2	32.2	48.3	62.1	78.2
	230 V	[A]	6.8	9.6	15.2	22	28	28	42	54	68	80
	460 V	[A]	7.6	11	14	21	27	34	40	52	65	77
	575 V	[A]	9	11	17	17	27	32	32	52	62	62
	200 V	[HP]	2	3	5	5	7-1/2	10	10	15	20	25
	230 V	[HP]	2	3	5	7-1/2	10	10	15	20	25	30
	460 V	[HP]	5	7-1/2	10	15	20	25	30	40	50	60
	575 V	[HP]	7-1/2	10	15	15	25	30	30	50	60	60
Maximum Operating Rate (at max. amps)	AC2	[ops/hr]	450	450	450	400	400	400	400	300	250	200
	AC3	[0ps/hr]	700	700	700	600	600	600	600	500	500	500
	AC4	[ops/hr]	200	150	120	80	80	70	70	70	60	50

Electrical Data

Switching Motor Loads (continued)

AC4 (200,000 Op. Cycles)	230 V	$[\mathrm{~A}]$	4.3	6.6	9	10	12	14	16.5	25.5	31
50 Hz	240 V	$[\mathrm{~A}]$	4.3	6.6	9	10	12	14	16.5	25.5	31
	400 V	$[\mathrm{~A}]$	4.3	6.6	9	10	12	14	16.5	25.5	31
	415 V	$[\mathrm{~A}]$	4.3	6.6	9	10	12	14	16.5	25.5	31
	500 V	$[\mathrm{~A}]$	4.3	6.6	9	10	12	14	16.5	25.5	31
		690 V	$[\mathrm{~A}]$	4.3	6.6	9	10	12	14	16.5	25.5
	230 V	$[\mathrm{~kW}]$	0.75	1.5	2.2	2.2	3	3.7	4	6.3	7.5
		240 V	$[\mathrm{~kW}]$	0.75	1.5	2.2	2.2	3	4	4	7.5
		400 V	$[\mathrm{~kW}]$	1.8	3	4	4	5.5	6.3	7.5	13
		415 V	$[\mathrm{~kW}]$	1.8	3	4	4	5.5	6.3	7.5	13
		500 V	$[\mathrm{~kW}]$	2.2	3.7	5.5	5.5	7.5	7.5	10	15
		690 V	$[\mathrm{~kW}]$	3	5.5	7.5	7.5	10	11	15	22

AC Elevator Control Ratings

UL / CSA	Max FLC	$[\mathrm{A}]$	8.0	11.0	16.0	21.0	27.0	31.0	37.0	43.0	54.0
500,000 operations	200 V	$[A]$	7.8	11.0	11.0	17.5	25.3	25.3	32.2	32.2	48.3
	230 V	$[\mathrm{~A}]$	6.8	9.6	15.2	15.2	22.0	28.0	28.0	42.0	54.0
	460 V	$[\mathrm{~A}]$	7.6	11.0	14.0	21.0	27.0	27.0	34.0	40.0	52.0
	575 V	$[\mathrm{~A}]$	6.1	9.0	11.0	17.0	22.0	27.0	32.0	41.0	52.0
200 V	$[\mathrm{HP}]$	2	3	3	5	$7-1 / 2$	$7-1 / 2$	10	10	15	20
	230 V	$[\mathrm{HP}]$	2	3	5	5	$7-1 / 2$	10	10	15	20

Electrical Data

			CA7-9	CA7-12	CA7-16	CA7-23	CA7-30	CA7-37	CA7-43	CA7-60	CA7-72	CA7-85
AC-1 Load, $3 \varnothing$ Switching Ambient Temperature $40^{\circ} \mathrm{C}$	1 th	[A]	32	32	32	32	65	65	85	100	100	100
	230 V	[kW]	13	13	13	13	26	26	34	40	40	40
	240 V	[kW]	13	13	13	13	27	27	35	42	42	42
	400 V	[kW]	22	22	22	22	45	45	59	69	69	69
	415 V	[kW]	23	23	23	23	46	47	61	72	72	72
	500 V	[kW]	28	28	28	28	56	56	74	87	87	87
	690 V	[kW]	38	38	38	38	77	78	102	120	120	120
Ambient Temperature $60^{\circ} \mathrm{C}$	$I_{\text {th }}$	[A]	32	32	32	32	65	65	80	100	100	100
	230 V	[kW]	13	13	13	13	26	26	32	40	40	40
	240 V	[kW]	13	13	13	13	27	27	33	42	42	42
	400 V	[kW]	22	22	22	22	45	45	55	69	69	69
	415 V	[kW]	23	23	23	23	46	46	57	72	72	72
	500 V	[kW]	28	28	28	28	56	56	69	87	87	87
	690 V	[kW]	38	38	38	38	77	77	95	120	120	120
Max Operating Rate	[ops/	/hour]	1,000	1,000	1,000	1,000	1,000	1,000	300	600	600	600
Continuous Current (UL/CSA)												
General Purpose Rating ($40^{\circ} \mathrm{C}$)	Open	[A]	25	25	30	30	45	55	60	90	90	100
	Enclosed	[A]	25	25	30	30	45	55	60	90	90	100
Max. Operating Rate	[ops/	/hour]	1,400	1,400	1,200	1,200	1,200	1,000	1,000	700	700	600
Lighting Loads (1)												
Elec.Dischrg.Lamps-AC-5a, single compensated	Open	[A]	22.5	25	28	29	40.5	45	77	81	85	90
	Enclosed	[A]	22.5	25	28	29	37	41	57	77	81	90
Max. capacitance at prospective short circuit current available at the contactor	10kA	[$\mu \mathrm{F}$]	1,000	1,000	1,000	1,000	2,700	2,700	3,200	4,000	4,000	4,700
	20kA	[$\mu \mathrm{F}$]	500	500	500	500	1,350	1,350	1,600	2,000	2,000	2,350
	50kA	[$\mu \mathrm{F}]$	200	200	200	200	540	540	640	800	800	940
Incandescent Lamps - AC-5b,												
Switching power transformers AC-6a 50 Hz												
Inrush												
$\overline{\text { Rated transformer currrent }}$												
		[A]	10.9	10.9	10.9	10.9	20	20	23	40.8	40.8	40.8
$\mathrm{n}=30$	230 VAC	[kVA]	4.3	4.3	4.3	4.3	8	8	9.2	16	16	16
	240 VAC	[kVA]	4.5	4.5	4.5	4.5	8.3	8.3	10	17	17	17
	400 VAC	[kVA]	7.5	7.5	7.5	7.5	14	14	16	28	28	28
	415 VAC	[kVA]	7.8	7.8	7.8	7.8	14	14	16	29	29	29
	500 VAC	[kVA]	9.4	9.4	9.4	9.4	17	17	20	35	35	35
	690 VAC	[KVA]	13	13	13	13	24	24	27	49	49	49
$\mathrm{n}=20$		[A]	16.3	16.3	16.3	16.3	30	30	34.5	61.3	61.3	61.3
	230 VAC	[kVA]	6.5	6.5	6.5	6.5	12	12	13.7	24.4	24.4	24.4
	240 VAC	[kVA]	6.8	6.8	6.8	6.8	12.5	12.5	14.3	25.5	25.5	25.5
	400 VAC	[kVA]	11.3	11.3	11.3	11.3	20.8	20.8	23.9	42.5	42.5	42.5
	415 VAC	[kVA]	11.7	11.7	11.7	11.7	21.6	21.6	24.8	44.1	44.1	44.1
	500 VAC	[kVA]	14.1	14.1	14.1	14.1	26	26	29.9	53.1	53.1	53.1
	690 VAC	[kVA]	19.5	19.5	19.5	19.5	35.9	35.9	41.2	73.3	73.3	73.3
$\mathrm{n}=15$		[A]	22	22	22	22	40	40	46	82	82	82
	230 VAC	[kVA]	2.3	2.3	2.3	2.3	4.3	4.3	5.0	8.8	8.8	8.8
	240 VAC	[kVA]	2.4	2.4	2.4	2.4	4.5	4.5	5.2	9.2	9.2	9.2
	400 VAC	[kVA]	4.1	4.1	4.1	4.1	7.5	7.5	8.6	15.3	15.3	15.3
	415 VAC	[kVA]	4.2	4.2	4.2	4.2	7.8	7.8	8.9	15.9	15.9	15.9
	500 VAC	[kVA]	5.1	5.1	5.1	5.1	9.4	9.4	10.8	19.1	19.1	19.1
	690 VAC	[kVA]	7.0	7.0	7.0	7.0	12.9	12.9	14.9	26.4	26.4	26.4

[^0]
Electrical Data

			CA7-9	CA7-12	CA7-16	CA7-23	CA7-30	CA7-37	CA7-43	CA7-60	CA7-72	CA7-85
Switching power transformers AC-6a 60 Hz												
Inrush	$=\mathrm{n}$											
Rated transformer currrent												
		[A]	10.9	10.9	10.9	10.9	20	20	23	40.8	40.8	40.8
$\mathrm{n}=30$	200 VAC	[kVA]	3.8	3.8	3.8	3.8	6.9	6.9	8.0	14.1	14.1	14.1
	208 VAC	[kVA]	3.9	3.9	3.9	3.9	7.2	7.2	8.3	14.7	14.7	14.7
	240 VAC	[kVA]	4.5	4.5	4.5	4.5	8.3	8.3	9.6	17	17	17
	480 VAC	[kVA]	9.1	9.1	9.1	9.1	16.6	16.6	19.1	33.9	33.9	33.9
	600 VAC	[kVA]	11.3	11.3	11.3	11.3	20.8	20.8	23.9	42.4	42.4	42.4
	660 VAC	[kVA]	12.5	12.5	12.5	12.5	22.9	22.9	26.3	46.6	46.6	46.6
$\mathrm{n}=20$		[A]	16.3	16.3	16.3	16.3	30	30	34.5	61.3	61.3	61.3
	200 VAC	[kVA]	5.6	5.6	5.6	5.6	10.4	10.4	12	21.2	21.2	21.2
	208 VAC	[kVA]	5.9	5.9	5.9	5.9	10.8	10.8	12.4	22.1	22.1	22.1
	240 VAC	[kVA]	6.8	6.8	6.8	6.8	12.5	12.5	14.3	25.5	25.5	25.5
	480 VAC	[kVA]	13.6	13.6	13.6	13.6	24.9	24.9	28.7	51	51	51
	600 VAC	[kVA]	16.9	16.9	16.9	16.9	31.2	31.2	35.9	63.7	63.7	63.7
	660 VAC	[kVA]	18.6	18.6	18.6	18.6	34.3	34.3	39.4	70.1	70.1	70.1
$\mathrm{n}=15$		[A]	22	22	22	22	40	40	46	82	82	82
	200 VAC	[kVA]	7.5	7.5	7.5	7.5	13.9	13.9	15.9	28.4	28.4	28.4
	208 VAC	[kVA]	7.8	7.8	7.8	7.8	14.4	14.4	16.6	29.5	29.5	29.5
	240 VAC	[kVA]	9	9	9	9	16.6	16.6	19.1	34.1	34.1	34.1
	480 VAC	[kVA]	18.1	18.1	18.1	18.1	33.3	33.3	38.2	68.2	68.2	68.2
	600 VAC	[kVA]	22.6	22.6	22.6	22.6	41.6	41.6	47.8	85.2	85.2	85.2
	660 VAC	[kVA]	24.9	24.9	24.9	24.9	45.7	45.7	52.6	93.7	93.7	93.7

DC-1 Switching $-60^{\circ} \mathrm{C}$

Electrical Data

			CA7-9	CA7-12	CA7-16	CA7-23	CA7-30	CA7-37	CA7-43	CA7-60	CA7-72	CA7-85
Capacitor Ratings (1)												
Capacitor Switching AC-6b-50Hz												
Single Capacitor - $40^{\circ} \mathrm{C}$	230 V	[kVar]	8	8	8.5	9	14	14	24	28	28	28
	240 V	[kVar]	8	8	8.5	9	14	14	24	29	29	29
	400 V	[kVar]	8	8	10	12.5	20	24	35	48	48	48
	415 V	[kVar]	8	8	10	12.5	20	25	35	50	50	50
	500 V	[kVar]	8	8	10	12.5	20	25	35	50	55	60
	690 V	[kVar]	8	8	10	12.5	20	25	35	50	55	60
Single Capacitor - $60^{\circ} \mathrm{C}$	230 V	[kVar]	8	8	8.5	9	12.5	12.5	18	28	28	28
	240 V	[kVar]	8	8	8.5	9	12.5	12.5	18	29	29	29
	400 V	[kVar]	8	8	10	12.5	20	21.5	30	42	48	48
	415 V	[kVar]	8	8	10	12.5	20	22	30	42	50	50
	500 V	[kVar]	8	8	10	12.5	20	25	30	42	50	55
	690 V	[kVar]	8	8	10	12.5	20	25	30	42	50	55
Capacitor Bank-40 ${ }^{\circ} \mathrm{C} 2$	230 V	[kVar]	5	5	8	9	12.5	14	20	28	28	28
	240 V	[kVar]	5	5	8	9	12.5	14	20	29	29	29
	400 V	[kVar]	5	5	8	10	15	20	25	40	48	48
	415 V	[kVar]	5	5	8	10	15	20	25	40	50	50
	500 V	[kVar]	5	5	8	10	15	20	25	40	50	50
	690 V	[kVar]	5	5	8	10	15	20	25	40	50	50
Capacitor Bank-60 ${ }^{\circ} \mathrm{C} 2$	230 V	[kVar]	5	5	8	9	12.5	12.5	18	28	28	28
	240 V	[kVar]	5	5	8	9	12.5	12.5	18	29	29	29
	400 V	[kVar]	5	5	8	10	15	20	25	40	48	48
	415 V	[kVar]	5	5	8	10	15	20	25	40	50	50
	500 V	[kVar]	5	5	8	10	15	20	25	40	50	50
	690 V	[kVar]	5	5	8	10	15	20	25	40	50	50
Capacitor Switching - 60Hz												
Single Capacitor $-40^{\circ} \mathrm{C}$	200 V	[kVar]	5	5	8	9	12.5	14	20	28	28	28
	230 V	[kVar]	5	5	8	9	12.5	14	20	29	29	29
	460 V	[kVar]	5	5	8	10	15	20	25	40	50	50
	600 V	[kVar]	5	5	8	10	15	20	25	40	50	60
Capacitor Bank-40 ${ }^{\circ} \mathrm{C} 2$	200 V	[kVar]	5	5	8	10	12.5	12.5	18	28	28	28
	230 V	[kVar]	5	5	8	10	12.5	12.5	18	29	29	29
	460 V	[kVar]	5	5	8	10	15	20	25	40	50	50
	600 V	[kVar]	5	5	8	10	15	20	25	40	50	50

[^1]Electrical Data

| | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resistance and Watt Loss $/$ e AC3
 Resistance per power pole | | | CA7-9 | CA7-12 | CA7-16 | CA7-23 | CA7-30 | CA7-37 | CA7-43 | CA7-60 | CA7-72 | CA7-85 |
| Watt Loss - 3 power poles | | $[\mathrm{m} \Omega]$ | 2.7 | 2.7 | 2.7 | 2.0 | 2.0 | 2.0 | 1.5 | 0.9 | 0.9 | 0.9 |
| Coil and 3 power poles | AC | $[\mathrm{W}]$ | 0.66 | 1.2 | 2.1 | 3.2 | 5.4 | 8.2 | 8.3 | 9.7 | 14.0 | 19.5 |
| | DC | $[\mathrm{W}]$ | 3.3 | 3.8 | 4.7 | 6.2 | 8.4 | 11.2 | 11.5 | 11 | 13.8 | 17.5 |
| Coil Only | AC | $[\mathrm{W}]$ | 2.7 | 7.2 | 8.1 | 12.4 | 14.6 | 17.4 | 18.4 | 11 | 13.8 | 17.5 |

Short-Circuit Coordination
Contactors, or Contactors with Solid-State
and Bimetallic Overload Relays

DIN Fuses - gG, gL											
Available Fault Current	[A]					100,000					
Type "1" (690V)	[A]	50	50	50	63	100	125	160	200	250	250
Type "2" (690V)	[A]	25	35	35	40	80	80	100	160	160	160
BS88 Fuses											
Available Fault Current	[A]					80,000					
Type "1" (690V)	[A]	25	32	35	50	63	80	100	100	125	160
Type "2" (690V)	[A]	25	32	35	50	63	80	100	100	125	160
UL Class K1, RK1, K5 and RK5 Fuses											
Available Fault Current	[A]	5000	5000	5000	5000	5000	5000	5000	5000	10000	10000
Max. Fuse (600V)	[A]	35	40	70	90	110	125	150	200	250	300
UL Class CC Fuses											
CSA HRCI-MISC Fuses											
Available Fault Current	[A]					100,000					
Type "2" (600V)	[A]	15	20	20	30	~	\sim	\sim	~	~	\sim
UL Class J Fuses											
UL Class K1, RK1 Fuses											
CSA HRCI- J Fuses											
Available Fault Current	[A]					100,000					
Type "2" (600V)	[A]	15	20	20	30	40	50	50	80	100	100
Short Time Current Withstand Ratings											
$\mathrm{I}_{\text {cw }} 60^{\circ} \mathrm{C}$	[A]	210	210	290	380	480	525	650	1,110	1,150	1,250
4 s	[A]	140	150	220	280	360	390	480	820	860	910
10 s	[A]	100	120	175	220	290	310	375	640	680	710
15 s	[A]	90	100	150	200	250	270	325	560	600	620
60 s	[A]	60	60	90	125	170	175	200	350	370	380
240 s	[A]	40	40	50	60	100	100	120	190	190	200
900 s	[A]	30	30	38	38	524	60	75	108	108	120
Off Time Between Operations	[Min.]	20	20	20	20	20	20	20	20	20	20

(1) When used as a Branch Circuit Protection device, NEC 430-152 defines the maximum rating of an Inverse-time circuit breaker to be sized at 250% of the motor nameplate FLA for most applications.

Electrical Data

Short Circuit Coordination l_{e} AC3
Type 2 Coordination Combinations (contactor, overload and fuses) —Per UL 508 and IEC 947-4-1

Contactor	Overload Relay	Withstand Rating	Maximum Voltage	Max. Amp Rating (UL Class CC or J Fuses)
	CEP7-M/A/B32-0.32...	100 kA	600 V	1
	CEP7-M/A/B32-1.0...	100 kA	600 V	2
	CEP7-M/A/B32-2.9...	100 kA	600 V	6
	CEP7-M/A/B32-5...	100 kA	600 V	10
	CEP7-M/A/B32-12...	100 kA	600 V	15
CA7-12...	CEP7-M/A/B32-12...	100 kA	600 V	20
CA7-16...	CEP7-M/A/B32-32...	100 kA	600 V	20
CA7-23...	CEP7-M/A/B32-32...	100 kA	600 V	30
CA7-30...	CEP7-M/A/B37-37...	100 kA	600 V	40
CA7-37...	CEP7-M/A/B37-37...	100 kA	600 V	50
CA7-43...	CEP7-M/A/B45-45...	100 kA	600 V	50
CA7-60...	CEP7-M/A/B85-85...	100 kA	600 V	80
CA7-72...	CEP7-M/A/B85-85...	100 kA	600 V	100
CA7-85...	CEP7-M/A/B85-85...	100 kA	600 V	100

UL Listed Combinations (contactor, overload and circuit breaker) - Per UL 508

Contactor	Overload Relay	Withstand Rating	Maximum Voltage	Max. Amp Rating (UL Listed Circuit Breaker)
CA7-9... 12	CEP7-M/A32-2.9... 12	5kA	480V	30
	CT7-24-0.16... 10			
CA7-12	CT7-24-16			
CA7-16... 23	CEP7-M/A32-2.9... 32	5kA	480 V	50
	CT7-24-0.16... 16			
CA7-23	CT7-24-24			
CA7-30... 37	CEP7-M/A37-12...37	5 kA	600 V	125
	CT7-24-16...CT7-45-30			
CA7-37	CT7-45-45			
CA7-43	CEP7-M/A45... 45	5kA	600 V	125
	CT7-45-30... 45			
CA7-60	CEP7-M/A85... 85	5kA	600 V	250
	CT7-75-30... 60			
CA7-72	CEP7-M/A85... 85	10kA	600 V	250
	CT7-75-30...75			
CA7-85	CEP7-M/A85... 85	10kA	600 V	250
	CT7-75-30...CT7-100-90			

Mechanical Data

Terminations - Power

Description

One saddleclamp per pole: cross, slotted or Pozidrive screw

品

Dual connection; one saddleclamp and one box lug per pole; cross, slotted or Pozidrive screw

Dual connection; two box lugs per pole Allen Head: Am, 5/32

Terminations - Control Description

Coils	1 or 2	$\left[\mathrm{~mm}^{2}\right]$
Wires		$[A W G]$
Control Modules	1 or 2	$\left[\mathrm{~mm}^{2}\right]$
Wires		$[\mathrm{AWG}]$
Torque Requirement		$[\mathrm{Nm}]$
		$[\mathrm{Lb}-\mathrm{in}]$

Combination Screw Head: Cross, Slotted, Pozidrive
$1.5 . . .6$
$16 . .12$
$1.5 . .6$
$16 . .12$
$1 . . .2 .5$
$9 . . .13$

IP 2LX per IEC 529 and DIN 40050 (with wires installed)
Safe from touch by fingers and back-of-hand per VDE 0106; Part 100

Environmental and General Specifications

Lug Kit and Paralleling Link Specifications

Coil Data

			CA7-9	CA7-12	CA7-16	CA7-23	CA7-30	CA7-37	CA7-43	CA7-60	CA7-72	CA7-85
Voltage Range												
AC: $50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 50 / 60 \mathrm{~Hz}$	Pickup	$\left[\mathrm{x} U_{\mathrm{s}}\right.$]	0.85...1.1									
	Dropout	$\left[\mathrm{x} U_{s}\right]$	0.3...0.6									
DC	Pickup	$\left[\mathrm{x} U_{s}\right]$	$0.8 \ldots 1.1$ (9V coils $=0.65 \ldots 1.3 ; 24 \mathrm{~V}$ coils $=0.7 \ldots 1.25$)									
	Dropout	$\left[\mathrm{x} \mathrm{U}_{\mathrm{s}}\right]$	0.1...0.6									
Coil Consumption												
AC: $50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 50 / 60 \mathrm{~Hz}$	Pickup	[VAW]	70/50	70/50	70/50	70/50	80/60	80/60	130/90	200/110	200/110	200/110
	Hold-in	[VAW]	8/2.6	8/2.6	8/2.6	9/3	9/3	9/3	10/3.2	16/4.5	16/4.5	16/4.5
True DC Coils (CA7C)	Pickup	[W]	6.5	6.5	6.5	9.2	9.2	9.2	10.1	-	-	-
	Hold-in	[W]	6.5	6.5	6.5	9.2	9.2	9.2	10.1	-	-	-
Two Winding DC Coils	Pickup	[W]	120	120	120	200	200	200	200	200	200	200
(CA7Y \& CA7D)	Hold-in	[W]	1.1	1.1	1.1	1.2	1.2	1.2	1.3	4.5	4.5	4.5
Operating Times												
AC: $50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 50 / 60 \mathrm{~Hz}$	Pickup	[ms]	15... 30	15... 30	15... 30	15... 30	15... 30	15... 30	15... 30	20... 40	20... 40	20... 40
	Dropout	[ms]	10... 60	10... 60	10... 60	10... 60	10... 60	10... 60	10... 60	10... 60	10... 60	10... 60
with RC Suppressor	Dropout	[ms]	10... 60	10... 60	10... 60	10... 60	10... 60	10... 60	10... 60	10... 60	10... 60	10... 60
True DC Coils (CA7C) without Suppression with Integrated Suppression with External Suppression	Pickup	[ms]	40... 70	40... 70	40... 70	40... 70	50... 80	50... 80	50... 80	-	-	-
	Dropout	[ms]	7... 15	7... 15	7... 15	7... 15	7... 15	7... 15	7... 15	-	-	-
	Dropout	[ms]	14... 20	14... 20	14... 20	17... 23	17... 23	17... 23	17... 23	-	-	-
	Dropout	[ms]	70... 95	70... 95	70... 95	80... 125	80... 125	80... 125	80... 125	-	-	-
Two Winding DC Coils (CATY/D) with Internal Suppression	Pickup	[ms]	17... 26	17... 26	15... 27	15... 27	15... 27	15... 27	15... 27	20... 40	20... 40	20... 40
	Dropout	[ms]	9... 20	9... 20	14... 24	14... 24	14... 24	14... 24	14... 24	20... 35	20... 35	20... 35

Auxiliary Contacts

Continuous Current Rating per UL／CSA

Rated Voltage	AC	［V］	600 max．	600 max．	600 max．
Continuous Rating	$40^{\circ} \mathrm{C}$	［A］	10A general purpose	10A general purpose	10A general purpose
			Heavy pilot duty（A600）	Heavy pilot duty（A600）	Heavy pilot duty（A600）
Continuous Rating	DC	［A］	5A， 600 max． Standard pilot duty（P600）	2．5A， 600 max． Standard pilot duty（Q600）	2．5A， 600 max． Standard pilot duty（Q600）

Short－Circuit Protection－gG Fuse

Type 2 Coordination［A］	20	10	10
Rated Impulse Voltage $U_{\text {imp }} \quad[\mathrm{kV}]$	8	8	6
Insulation Voltage（between control and load circuit） per DIN，VDE 0106，Part 101 （NAMUR recommendation）	380	440	440
Contact Reliability（per DIN19240 without contamination， normal industrial atmosphere）	$\begin{gathered} \hline 17 \mathrm{~V} \\ 10 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 17 \mathrm{~V} \\ 5 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \hline 17 \mathrm{~V} \\ 10 \mathrm{~mA} \end{gathered}$
Mechanically Linked Contacts（per IEC 60947－5－1 Annex L（SUVA Third－party certified）	Mutually unrestricted between all NO and NC contacts	Mutually unrestricted between all NO \＆ NC contacts．CZE \＆CV7 not mechanically linked with contactor main contacts	Mutually unrestricted between all NO and NC contacts

Terminals

Terminals Terminal Type			毕	毕	毞
Maximum Wire Size per IEC 947－1			$2 \times$ A4	$2 \times$ A4	$2 \times$ A4
Flexible with Wire－	1 Conductor	［ mm^{2} ］	1．．． 4	0．5．．．2．5	0．5．．．2．5
－End Ferrule	2 Conductor	［ mm^{2} ］	1．．． 4	0．75．．．2．6	0．75．．．2．6
－7 Solid／Stranded－	1 Conductor	［ mm^{2} ］	1．5．．． 6	0．5．．．2．5	0．5．．．2．5
Conductor	2 Conductor	［ mm^{2} ］	1．5．．． 6	0．75．．．2．6	0．75．．．2．6
Recommended Tightening Torque		［ Nm ］	1．．． 2.5	1．．．1．5	1．．．1．5
Max．Wire Size per UL／CSA		［AWG］	16．．． 10	18．．． 14	18．．． 14
Recommended Tightening Torque		［lb－in］	9．．． 22	9．．． 13	9．．． 13

Accessories

Latch Attachment Release，CV7－11		
Coil Consumption	$[$［VA／W］	AC 45／40
	$[\mathrm{W}]$	DC 25W
Contact Signal Duration	$[\mathrm{min} / \mathrm{max}]$	$0.03 . .15 \mathrm{~s}$
Timing Attachment，CRZE7，CRZA7		
Reset Time		
at min．time setting	$[\mathrm{ms}]$	10
at max．time setting	$[\mathrm{ms}]$	70
Repeat Accuracy		$\pm 10 \%$

Contact Ratings（Per NEMA／UL A600 \＆Q600）

Standard	Circuit Voltage	Make （Amps／VA）	Break （Amps／VA）	Continuous Amps
A600	120AC	$60 \mathrm{~A} / 7200 \mathrm{VA}$	$6 \mathrm{~A} / 720 \mathrm{VA}$	
	240 AC	$30 \mathrm{~A} / 7200 \mathrm{VA}$	$3 \mathrm{~A} / 720 \mathrm{VA}$	10
	480AC	$15 \mathrm{~A} / 7200 \mathrm{VA}$	$1.5 \mathrm{~A} / 720 \mathrm{VA}$	
	600AC	$12 \mathrm{~A} / 7200 \mathrm{VA}$	$1.2 \mathrm{~A} / 720 \mathrm{VA}$	
Q600	125DC	$0.55 \mathrm{~A} / 69 \mathrm{VA}$	$0.55 \mathrm{~A} / 69 \mathrm{VA}$	
	250DC	$0.27 \mathrm{~A} / 69 \mathrm{VA}$	$0.27 \mathrm{~A} / 69 \mathrm{VA}$	2.5
	$301-600 \mathrm{DC}$	$0.1 \mathrm{~A} / 69 \mathrm{VA}$	$0.1 \mathrm{~A} / 69 \mathrm{VA}$	

Determining Contact Life

To determine the contactor's estimated electrical life, follow these guidelines:

1. Identify the appropriate Utilization Category from Table A.
2. On the following pages, choose the graph for the Utilization Category selected.
3. Locate the Rated Operational Current $\left(l_{\mathrm{e}}\right)$ along the bottom of the chart and follow the graph lines up to the intersection of the appropriate contactor's life-load curve.
4. Read the estimated contact life along the vertical axis.

Table A - IEC Special Utilization Categories, AC Ratings (1)

	Category	Typical Applications	Rated Current	Conditions for testing electrical life						ps.	Conditions for testing making and breaking capacity						ps.
				Make			Break				Make			Break			
				I/le	U/Ue	cos	Ic/le	Ur/Ue	cos		I/Ie	U/Ue	cos	Ic/le	Ur/Ue	cos	
	AC-1	Non-inductive or slightly inductive loads, resistance furnaces	All values	1	1	0.95	1	1	0.95	6000	1.5	1.05	0.8	1.5	1.05	0.8	50
	AC-2	Slip-ring motors: Starting, plugging	All values	2	1.05	0.65	2	1.05	0.65	6000	4	1.05	0.65	4	1.05	0.65	50
	AC-3	Squirrel-cage motors: Starting, switching off motors during running	$\begin{aligned} & l e \leq 17 \mathrm{Amp} \\ & 17 \mathrm{Amp}<l e \leq 100 \mathrm{Amp} \\ & l e>100 \mathrm{Amp} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.35 \\ & 0.35 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.17 \\ & 0.17 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.35 \\ & 0.35 \\ & \hline \end{aligned}$	6000	$\begin{aligned} & \hline 10 \\ & 10 \\ & 8 \AA \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.35 \\ & 0.35 \\ & \hline \end{aligned}$	$\begin{array}{r} 8 \\ 8 \\ 6 \tilde{A} \end{array}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.35 \\ & 0.35 \\ & \hline \end{aligned}$	50
\bigcirc	AC-4	Squirrel-cage motors: Starting, plugging, inching 5	$\begin{aligned} & l e \leq 17 \mathrm{Amp} \\ & 17 \mathrm{Amp}<l e \leq 100 \mathrm{Amp} \\ & l e>100 \mathrm{Amp} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0.65 \\ & 0.35 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0.65 \\ & 0.35 \\ & 0.35 \end{aligned}$	6000	$\begin{array}{r} 12 \\ 12 \\ 1000 \end{array}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \hline 0.65 \\ & 0.35 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 8 \AA \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \hline 0.65 \\ & 0.35 \\ & 0.35 \end{aligned}$	50
z	AC-5a	Switching of electric discharge lamp control		2	1.05	0.45	2	1.05	0.45	6000	3	1.05	0.45	3	1.05	0.45	50
	AC-5b	Switching of incandescent lamps		1	1.05		1	1.05		6000	1.5	1.05		1.5	1.05		50
	AC-6a	Switching of transformers										derived	om AC-3	rating (x 0	0.45)		
	AC-6b	Switching of capacity banks									Dep	nds on cir	uit cond	ons of app	plication		
	AC-12	Control of resistive loads and solid state loads with isolation by opto couplers	All values	1	1	0.9	1	1	0.9	6050							
	AC-13	Control of solid state loads with transformer isolation		2	1	0.65	1	1	0.65	6050	10	1.1	0.65	1.1	1.1	0.65	10
	AC-14	Control of small electromagnetic loads	$\leq 72 \mathrm{VA}$	6	1	0.3	1	1	0.3	6050	6	1.1	0.7	6	1.1	0.7	10
	AC-15	Control of electromagnetic loads	$\geq 72 \mathrm{VA}$	10	1	0.3	1	1	0.3	6050	10	1.1	0.3	10	1.1	0.3	10
\%	AC-20	Connecting and disconnecting under no load conditions		No testing required													
$\begin{aligned} & \pm \\ & 3 \end{aligned}$	AC-21	Switching of resistive loads, including moderate overloads	All values	1	1	0.95	1	1	0.95	10000	1.5	1.05	0.95	1.5	1.05	0.95	5
	AC-22	Switching of mixed resistive \& inductive loads, including moderate overloads	All values	1	1	0.8	1	1	0.8	10000	3	1.05	0.65	3	1.05	0.65	5
	AC-23	Switching of motor loads or other highly inductive loads	All values	1	1	0.65	1	1	0.65	10000	10	1.05	0.45	8	1.05	0.45	5

Legend

Ue Rated operational voltage
\boldsymbol{U} Voltage before make
Ur Recovery voltage
le Rated operational current
I Making current
Ic Breaking current
L Inductance of test circuit
R Resistance of test circuit
(1) Utilization categories and test conditions for AC \& DC. For contactors according to IEC 158-1, starters according to IEC 292-1 ... 4 and control switches according to IEC 337-1 and IEC 337-1A.
(2) With a minimum value of 1000 A for / or $/ c$.
(3) With a minimum value of 800 A for $I c$.
(4) With a minimum value of 1200 A for l.
(5) Plugging is understood as stopping or reversing the motor rapidly by reversing the motor primary connections while the motor is running. Inching [or jogging] is understood as energizing a motor once or repeatedly for short periods to obtain small movements of the driven mechanism.

Determining Contact Life

To determine the contactor's estimated electrical life, follow these
guidelines:

1. Identify the appropriate Utilization Category from Table A.
2. On the following pages, choose the graph for the Utilization Category selected.
3. Locate the Rated Operational Current (I_{e}) along the bottom of the chart and follow the graph lines up to the intersection of the appropriate contactor's life-load curve.
4. Read the estimated contact life along the vertical axis.

Table A - IEC Special Utilization Categories, DC Ratings

Category	Typical Applications	Rated Current	Conditions for testing electrical life						Ops.	Conditions for testing making and breaking capacity						Ops.
			Make			Break				Make			Break			
			I/le	U/Ue	cos	Ic/le	Ur/Ue	cos		I/le	U/Ue	cos	Ic/le	Ur/Ue	cos	
DC-1	Non-inductive or slightly inductive loads, resistance furnaces	All values	1	1	1	1	1	1		1.52	1.12	12	1.52	1.12	12	
DC-2	Shunt-motors: Starting, switching off motors during running	All values	2.5	1	2	1	0.1	7.5		4	1.1	2.5	4	1.1	2.5	
DC-3	Shunt-motors: Starting, plugging, inching	All values	2.5	1	2	2.5	1	2		4	1.1	2.5	4	1.1	2.5	
DC-4	Series-motors: Starting, switching off motors during running	All values	2.5	1	7.5	1	0.3	10		4	1.1	15	4	1.1	15	
DC-5	Series-motors: Starting, plugging, inching	All values	2.5	1	7.5	2.5	1	7.5		4	1.1	15	4	1.1	15	
DC-15	Electromagnets for contactors, valves, solenoid actuators	All values	1		$6 \times \mathrm{P} 3$	1		$6 \times P$ (3)		1.1	1.1	$6 \times P 3$	1.1	1.1	$6 \times \mathrm{P} 3$	

Legend

Ue Rated operational voltage
\boldsymbol{U} Voltage before make
Ur Recovery voltage
Ie Rated operational current
I Making current
Ic Breaking current
L Inductance of test circuit
R Resistance of test circuit
(1) Utilization categories and test conditions for AC \& DC. For contactors according to IEC 158-1, starters according to IEC 292-1 ... 4 and control switches according to IEC 337-1 and IEC 337-1A.
(2) Only according to VDE.

3 $P=$ Ue \times le rated power [W]. The value " $6 \times \mathrm{P}$ " has been derived from an empiric relationship which covers most magnetic loads for $D C$ up to an upper limit of $P=50 \mathrm{~W}$.

Life-Load Curves

- Locate the Rated Operational Current $\left(I_{e}\right)$ along the bottom of the chart and follow the graph lines up to the intersection of the appropriate contactor's life-load curve.
- Read the estimated contact life along the vertical axis.

NOTE: The life-load curves shown here are based on Sprecher+Schuh tests according to the requirements defined in IEC 947-4-1. Since contact life in any given application is dependent on environmental conditions and duty cycle, actual application contact life may vary from that indicated by the curves shown here.
(1) 575 V applications use 90% of curve value.

AC-2

AC-3
(to 460V)

Life-Load Curves

- Locate the Rated Operational Current $\left(I_{e}\right)$ along the bottom of the chart and follow the graph lines up to the intersection of the appropriate contactor's life-load curve.
- Read the estimated contact life along the vertical axis.

AC-3 (to 575V)

NOTE: The life-load curves shown here are based on Sprecher+Schuh tests according to the requirements defined in IEC 947-4-1. Since contact life in any given application is dependent on environmental conditions and duty cycle, actual application contact life may vary from that indicated by the curves shown here.

Life-Load Curves

Contact Life for Mixed Utilization Categories

AC-3 and AC-4
In many applications, the utilization category cannot be defined as either purely $\mathrm{AC}-3$ or AC-4. In those applications, the electrical life of the contactor can be estimated with the following equation:

$$
\mathrm{L}_{\text {mixed }}=\mathrm{L}_{\mathrm{ac} 3} /\left[1+\mathrm{P}_{\mathrm{ac} 4} \times\left(\mathrm{L}_{\mathrm{ac} 3} / \mathrm{L}_{\mathrm{ac} 4}-1\right)\right] \text {, where: }
$$

$L_{\text {mixed }}$ Appoximate contact life in operations for a mixed
AC-3/AC-4 utilization category application.
$\mathrm{L}_{\text {ac3 }}$ Approximate contact life in operations for a pure AC-3 utilization category (from the AC-3 life-load curve).
$\mathrm{L}_{\text {ac4 }}$ Approximate contact life in operations for a pure AC-4 utilization category (from the AC-4 life-load curve).
$\mathrm{P}_{\mathrm{ac} 4} \quad$ Percentage of AC -4 operations

NOTE: The life-load curves shown here are based on Sprecher+Schuh tests according to the requirements defined in IEC 947-4-1. Since contact life in any given application is dependent on environmental conditions and duty cycle, actual application contact life may vary from that indicated by the curves shown here.

Operating Rates

The estimated contact life shown in the life-load curves is based on the standard operating rates shown in Table B below. For applications requiring a higher operating frequency, the maximum operating power (Pn in kW or HP) for a given contactor must be reduced to maintain the same contact life.

To find a contactor's maximum operating power, for an operating rate greater than shown in Table B, follow these guidelines:

1. Identify the appropriate curve for the contactor and utilization category from Table B.
2. Locate the appropriate Maximum Operating Rate curve on the following pages.
3. Locate the intersection of the curve with the application's operating rate ($0 \mathrm{ps} / \mathrm{hr}$.) found on the vertical axis.
4. Read the percent of maximum operating power (Pn) of the contactor from the horizontal axis.
5. Multiply the \% maximum power by the standard power rating. Example: The contactor selected for an AC-4 utilization category application is a CA7-16 (10HP at 460V), however, the application requires an operating rate of $200 \mathrm{ops} / \mathrm{hr}$., compared to the standard operating rate of $120 \mathrm{ops} / \mathrm{hr}$. as shown in Table B.
6. Locate the AC-4 Maximum Operating Rate curve on the following pages.
7. Locate the intersection of $200 \mathrm{ops} / \mathrm{hr}$ on the CA7-16 curve. The data shows that the maximum operating power of the CA7-16 contactor in this application is 60%.
8. Therefore, the maximum horsepower that can be switched by the CA7-16 contactor in this application is $6 \mathrm{HP}(0.60 \times 10 \mathrm{HP})$.

Table B - Standard Operating Rates by Contactor and Utilization Category

| Contactor | AC-1
 Max. ops/hr. | AC-2
 Max. ops/hr. | AC-3
 Max. ops/hr. | AC-4
 Max. ops/hr. | AC-4 @ I for 200K ops.
 Max. ops/hr. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Operating Parameters and Start Time | | | | |
| | | | 40% Duty Cycle
 250ms $\mathbf{1}$ | 250 ms | 250 ms |
| CA7-9 | 1000 | 500 | 700 | 200 | 400 |
| CA7-12 | 1000 | 500 | 700 | 150 | 300 |
| CA7-16 | 1000 | 500 | 700 | 120 | 240 |
| CA7-23 | 1000 | 400 | 600 | 80 | 160 |
| CA7-30 | 1000 | 400 | 600 | 80 | 160 |
| CA7-37 | 1000 | 400 | 600 | 70 | 140 |
| CA7-43 | 1000 | 400 | 600 | 70 | 140 |
| CA7-60 | 800 | 300 | 500 | 70 | 140 |
| CA7-72 | 800 | 250 | 500 | 60 | 120 |
| CA7-85 | 600 | 200 | 500 | 50 | 140 |

[^2]
Operating Rate Curves

AC-1
Non or slightly inductive loads, resistance furnaces; $U_{\mathrm{e}}=230 \ldots 690 \mathrm{VAC}$

sprecher+
 schuh

Technical Information

Operating Rate Curves

AC-3

AC-4

U (Contactors \& Reversing Contactors)

- Dimensions are in millimeters (inches)
- Dimensions not intended for manufacturing purposes

Reversing Contactors, Capacitor Contactors \& Accessories (+...)

Contactors with...	Dim. $[\mathrm{mm}]$	Dim. [inches]	
auxiliary contact block - front mounting	2-, or 4-pole	$\mathrm{c} / \mathrm{c} 1+39$	$\mathrm{c} / \mathrm{c} 1+1-37 / 64$
(CAQ7) capacitor switching deck - front mounting	$\mathrm{c} / \mathrm{c} 1+39$	$\mathrm{c} / \mathrm{c} 1+1-37 / 64$	
auxiliary contact block - side mounting	1-, or 2-pole	$\mathrm{a}+9$	$\mathrm{a}+23 / 64$
pneumatic timing module		$\mathrm{c} / \mathrm{c} 1+58$	$\mathrm{c} / \mathrm{c} 1+2-23 / 64$
electronic timing module	on coil terminal side	$\mathrm{b}+24$	$\mathrm{~b}+15 / 16$
reversing contactor w/mech. interlock	on side of contactor	$\mathrm{a}+9+\mathrm{a}$	$\mathrm{a}+23 / 64+\mathrm{a}$
mechanical latch		$\mathrm{c} / \mathrm{c} 1+61$	$\mathrm{c} / \mathrm{c} 1+2-31 / 64$
interface module	on coil terminal side	$\mathrm{b}+9$	$\mathrm{~b}+23 / 64$
surge suppressor	on coil terminal side	$\mathrm{b}+3$	$\mathrm{~b}+1 / 8$
Labeling with...	label sheet	+0	+0
	marking tag sheet with clear cover	+0	+0
	marking tag adapter for V7 Terminals	+5.5	$+7 / 32$

	Catalog Number	a	b	C	c1	c2	\varnothing d	d1	d2
Two Winding DC Contactors	CA7-9Y...CA7-23Y	$\begin{gathered} 54 \\ (2-9 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 90 \\ (3-35 / 64) \end{gathered}$	$\begin{gathered} 80.5 \\ (3-11 / 64) \\ \hline \end{gathered}$	$\begin{gathered} \hline 75.5 \\ (3-3 / 32) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6 \\ (1 / 4) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2-4.5 \\ & (2-3 / 16) \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ (2-23 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ (1-25 / 64) \end{gathered}$
	CA7-30Y, CA7-37Y	$\begin{gathered} 54 \\ (2-9 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 90 \\ (3-35 / 64) \end{gathered}$	$\begin{gathered} 97.5 \\ \text { (4) } \\ \hline \end{gathered}$	$\begin{gathered} 92.6 \\ (3-49 / 64) \end{gathered}$	$\begin{gathered} \hline 6.5 \\ (17 / 64) \\ \hline \end{gathered}$	$\begin{aligned} & 2-4.5 \\ & (2-3 / 16) \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ (2-23 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ (1-25 / 64) \end{gathered}$
	CA7-43Y	$\begin{gathered} 63 \\ (2-31 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 90 \\ (3-35 / 64) \end{gathered}$	$\begin{gathered} \hline 100.5 \\ (4-7 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 95.6 \\ (3-7 / 8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.5 \\ (17 / 64) \\ \hline \end{gathered}$	$\begin{aligned} & 2-4.5 \\ & (2-3 / 16) \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ (2-23 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 45 \\ (1-25 / 32) \\ \hline \end{gathered}$
	$\begin{aligned} & \text { CA7-60D...CA7-85D } \\ & \text { CAN7-72D, CNX-218D } \end{aligned}$	$\begin{gathered} 81 \\ (3-3 / 16) \end{gathered}$	$\begin{gathered} 131 \\ (5-5 / 32) \end{gathered}$	$\begin{gathered} 117 \\ (4-49 / 64) \end{gathered}$	$\begin{gathered} 111.5 \\ (4-35 / 64) \end{gathered}$	$\begin{gathered} \hline 8.5 \\ (21 / 64) \end{gathered}$	$\begin{aligned} & 4-5.4 \\ & (4-7 / 32) \end{aligned}$	$\begin{gathered} 100 \\ (3-15 / 16) \end{gathered}$	$\begin{gathered} 55 \\ (2-11 / 64) \end{gathered}$

Reversing Contactors, Capacitor Contactors \& Accessories (+...)

	Contactors with...	Dim. [mm]	Dim. [inches]
auxiliary contact block - front mounting	2-, or 4-pole	$\mathrm{c} / \mathrm{c} 1+39$	$\mathrm{c} / \mathrm{c} 1+1-37 / 64$
auxiliary contact block - left side mounting	$1-$-, or 2-pole	$\mathrm{a}+9$	$\mathrm{a}+23 / 64$
pneumatic timing module		$\mathrm{c} / \mathrm{c} 1+58$	$\mathrm{c} / \mathrm{c} 1+2-23 / 64$
electronic timing module	on coil terminal side	$\mathrm{b}+24$	$\mathrm{~b}+15 / 16$
mechanical latch		$\mathrm{c} / \mathrm{c} 1+61$	$\mathrm{c} / \mathrm{c} 1+2-31 / 64$
interface module	on coil terminal side	$\mathrm{b}+9$	$\mathrm{~b}+23 / 64$
Labeling with...	label sheet	+0	+0
	marking tag sheet with clear cover	+0	+0
	marking tag adapter for V7 Terminals	+5.5	$+7 / 32$

INDUSTRIAL SWITCHGEAR \& AUTOMATION SPECIALISTS

RUGGED, SPACE SAVING AND MODULAR

Sprecher + Schuh's innovative contactor solution for demanding applications ranging up to 45 kW .

It goes without saying; unparalleled performance and uncompromising reliability are synonymous with the Sprecher + Schuh brand. Over one hundred years of design experience and rigorous testing have blended together to bring you the CA 7 range of switching contactors. The CA 7 represents the most modern and flexible power
 contactor available on the market. Meeting and far exceeding today's demanding industrial and automation applications.

Why you should make the CA 7 your number one choice in contactors!

- Four compact sizes
- High power to size ratio
- Ten convenient current ranges
- High mechanical and electrical life span
- Available in 3 and 4 pole versions
- Choice of AC or DC coil operation
- Modular accessories suite that is common and interchangeable across the entire range
- Reversible coil placement provides total flexibility (top or bottom mounting)
- Dual power terminals - ease up and speed up wiring
- Tested, verified and approved to Type 1 and Type 2 short circuit coordination
- Positively guided (force guided) mechanically linked contacts that meet the stringent IEC 60947-5-1 standard
- Precision manufactured in Switzerland to exacting international standards

Four compact sizes - ten convenient ranges

FEATURES AND APPLICATIONS

Features

- Compact Dimensions
- Efficient modular design
- Rugged construction
- High switching capacity
- Low power requirements
- Safe Design
- AC and DC coil types
- Supplied with screw in terminals
- Extremely high electrical and mechanical life span
- 45 kW versions @ 690 V AC
- Control relay available
- Clip on accessories
- DIN rail or screw mounting
- Rated at $60{ }^{\circ} \mathrm{C}$
- Auxiliary contacts suitable for low-voltage switching

Applications include

- Small to medium motor control
- Distribution
- Lighting loads
- Heating systems
- Office machines
- Swimming pool and sauna control
- Refrigeration control
- Household appliances
- Small conveyor systems
- Lifting equipment
- Commercial kitchen equipment
- Sprinkling and irrigation control
- Construction site lifts
- Heat pumps
- Waste water pumps

The CA 7 modular approach to motor protection

You can choose the type and level of motor protection by utilising a CA 7 contactor with any one of Sprecher + Schuh's overload protection devices. The modular design concept of the ACS system and the flexibility of the CA 7 contactor and its accessories suite makes this task an easy one. Let Sprecher + Schuh expertise solve your motor protection needs.

The choice is obvious ... CA 7

Choosing one of CA 7's many functional accessories will ensure a perfect match for your application. The CA 7 is available in both three (3) and four (4) pole contactor versions, with AC or DC operated coils. Whatever the application and no matter how complex it could be the CA 7 will undoubtedly be your winning solution. Make the swtich and choose the long trusted name in motor protection ... Sprecher + Schuh.

CT 7K

CT 7

KTA 7

THE CA 7 IS EQUALLY AT HOME IN A CONTROL AND AUTOMATION ENVIRONMENT

Should your application require complex switching via a PLC, contactor latching, remote release of a mechanical interlock or the implementation of simple timing circuits then the CA 7 is the contactor to choose. Its vast array of accessories and auxiliaries will simplify your installation and save you time and money. Not forgetting Swiss reliability which will give you an added peace of mind!

PLC driven CA 7

Accessories to suit CA 7 contactors
Top mounting auxiliary contact blocks

N/O	N/C	Position	Suit CA 7...	Cat. No.
1	0	11	All	CS 7-PV-11
0	2	03	All	CS 7-PV-02
2	0	20	All	CS 7-PV-20
1	1	S11	CA 7-9...23	CA 7-PVS11
1	1	11	CA 7-30...85	CA 7-PV-11
0	2	02	CA 7-30...85	CA 7-PV-02
1 L	1 L	L11	CA 7-30...85	CA 7-PV-L11
2	2	22	All	CS 7-PV-22
2	2	22	CA 7-30...85	CA 7-PV-22
2	2	S22	CA 7-9...23	CA 7-PV-S22
$1+1 \mathrm{E}$	$1+1 \mathrm{~L}$	L22	All	CS 7-PV-L22
3	1	31	All	CS 7-PV-31
4	0	40	All	CS 7-PV-40
0	4	04	All	CS 7-PV-04

Side mounting auxiliary contact blocks

N/O	N/C	Position	Suit CA 7...	Cat. No.
0	1	01	All	CA 7-PA-01
1	0	10	All	CA 7-PA-10
0	2	02	All	CA 7-PA-02
1	1	11	All	CA 7-PA-11
2	0	20	All	CA 7-PA-20
E1	L1	L11	All	CA 7-PA-L11
1	0	10	All	CA 7-PA-H10

Auxillary contact 2 pole side mount

THE CA 7, NOT J UST A CONTACTOR ...

Don't be fooled by its compact size, the CA 7 is not just any contactor. With its vast array of functional accessories and options, fully fitted out the CA 7 becomes an integral part of the ACS (advanced control systems) solution. Whether your application involves power distribution, heating and ventilation or complex motor control, the CA 7 is more than up to the challenge.
Simplicity and time is the key to any electrical installation. Sprecher + Schuh has designed the CA 7 series of contactors and associated accessories with this philosophy in mind. A simple ... snap, click and twist and the contactor is easily fitted out with the latest set of auxiliaries, suppression devices, timers or any of the other ACS components.

The CA 7 features a simple ... "snap, click and twist" connection philosophy!

Replaceable and fully reversible coils simplify system installation. Whether you require a top or bottom mounted coil the procedure for reversal is quick and effortless.

THE CA 7 SOLUTION TO MOTOR CONTROL CONNECTIVITY

CA 7 contactor motor protection cross reference (direct mounting)

	KTA 7-25S, 25H and 45H, KTB-25S, 25 H and 45H and KTC-25S, 25 H and 45 H.		CEP 7-ED1AB to CEP 7-ED1EB CEP 7-EEAB to CEP 7-EEEB CEP 7S-EEPB to CEP 7S-EESB
	CT 7K-17-0.15 to CTK-17-9.0		CEP 7-EEED to CEP 7-EEFD and CEP 7S-EETD
	CT 7K-17-12.5		CEP 7-EEGE and CEP 7S-EEUE
	CT 7K-17-17.5		CEP 7-C1-23-2 to CEP 7-C1-23-25
	CT 7-24-0.16 to CT 7-24-10		CEP 7-C1-43-5 to CEP 7-C1-43-45
	CT 7-24-16 to CT 7-24-24		CEP 7-C1-85-45 to CEP 7-C1-85-25
	CT 7-24-30		CEP 7-C2-23-2 to CEP 7-C2-23-25
	CT 7-45-45		CEP 7-C2-43-5 to CEP 7-C2-43-45
	CT 7-75-30 to CT 7-75-75		CEP 7-C2-85-45 to CEP 7-C2-85-25

"The most modem and flexible power contactor available on the market."

ELECTRICAL ENGINEERING PRODUCTS PTY LTD
Melbourne Sydney Newcastle Brisbane Townsville Rockhampton Toowoomba Cairns Adelaide Perth Darwin Hobart Auckland Christchurch PH: $+61394292999+61297483444+61249602220+61739994999+61747790700+61749272277+61746344799+61740356888+61882979055+61892771777+61889472666+61362289575+6492761967+6433774407$ FAX: $61394291075+61296484353+61249602203+61733999712+61747751457+61749222947+61746331796+61740356999+61883710962+61892771700+61889472049+61362899757+6492761992+6433774405$

D7 Control and indication units 22.5 mm

New D7...Experience a touch of quality

Introducing the all new D7 range from Sprecher + Schuh. The D7 range is the latest in a long line of quality 22.5 mm control and signalling equipment from a company with a long built reputation for combining high quality manufacturing skills and attention to detail to produce only the finest quality products.

Available in both thermoplastic and metal variations, the D7 range incorporates all the features that you have come to expect from Sprecher + Schuh and raises the bar one step further with a functional low profile design and all new stylish appearance.

Once you get past the new appearance you will find the D7 range has some unique features incorporated, such as improved operational feel on the pushbuttons for a positive "tactile" response and a new positive detent on selector switches. In addition optional time saving cage style termination on contact blocks, improved LED illumination on pilot lights and hard wearing laser engraving have also been included.

Utilising state of the art modelling technologies and finite element analysis, you can be sure every component used in the D7 range has been optimised for durability and reliability with the aim of providing the ultimate in control and indication.

Designed and manufactured to meet the most exacting performance specifications, the new D7 range is the pushbutton to use in today's demanding environments.

D7 Control and indication units 22.5 mm D7 at a glance

"Auto Break" Safety contacts

Separation of the contact block assembly from the front operator or mounting latch can prevent an Emergency Stop from shutting down the controlled process in an emergency.
Correct contact block installation is critical to ensure that the normally closed contacts will open when the emergency stop operator is active. The exclusive Sprecher + Schuh "Auto Break" contact block monitors itself to ensure it is always correctly installed.
A normally open "Auto Break" contact is physically moulded and wired in series with a standard set of normally closed contacts. When correctly installed the operator creates a maintained pressure on the normally open "Auto Break" contact and automatically closes the contact. In this state the normally closed contact operates as normal.
If the contact block assembly should separate from the front operator, the pressure releases and the "Auto Break" contact will automatically open. Because the "Auto Break" contact is wired in series with the normally closed, the opening of either set of contacts will open the circuit controlled by the emergency stop operator.

sprecher+
 schuh

D7 Control and indication units 22.5 mm

Design

- Functional low profile appearance
- Ergonomic easy to operate handles
- Reduced depth contact blocks
- Improved positive "tactile" operation on pushbuttons
- Improved "positive detent" on rotary selector switches
- Durable two colour plastic caps and laser engraving

Improved safety

- Unique "Auto Break" self-monitoring emergency contact system - IP 20 touch protection
- Tamperproof rear fixing nut

Time saving

- New design snap-lock, twist-to-reset rotating collar on coupling plate for easier mounting and assembly
- Snap-on components
- Redesigned anti-rotation tab

Flexibility

- Thermoplastic or metal operators
- Latching or impulse operators
- Five different colour choices
- Maximum of six contact blocks
- Full voltage and transformer lamp blocks

Improved reliability

- IP $65 / 66$ sealing across the range for reliability in dusty and wet conditions
- Improved vibration resistance
- Continuous wiping contacts for improved reliability
- Tested to IEC 947
- Positive detent on rotary switches which ensures operation will not "hang up" between positions

Contact blocks

- Improved mounting from "Snapsecure" snap-fit mounting system
- Colour coded plungers for easy identification
- Optional Quadfurcated Gold contacts for improved low voltage switching
- Optional spring clamp termination on contact blocks for reduced wiring time

D7 Control and indication units 22.5 mm

Complete panel mounted standard units

Non-Illuminated momentary pushbuttons

D7P-F3-PX10

D7M-F4-MX01

D7P-E4-PX01

D7M-E4-MX01

- Metal or plastic options
- Improved momentary action for fast response
- Low mounting depth from panel

Pushbuttons Description	Contact	Plastic body Cat. No. ${ }^{1}$)	Price \$	Metal body Cat. No. ${ }^{1}$)	Price \$
With Green insert	-	D7P-F3-PX10	25.50	D7M-F3-MX10	29.70
With Red insert	\square	D7P-F4-PX01	25.50	D7M-F4-MX01	29.70
With Blue insert	\square	D7P-F6-PX10	25.50	D7M-F6-MX10	29.70

Dimensions in (mm)
Extended pushbutton
Description $\begin{array}{ll}\text { Contact } & \begin{array}{l}\text { Plastic body } \\ \text { Cat. No. }{ }^{1} \text {) }\end{array}\end{array}$

Metal body
Price $\$$ Cat. No. ${ }^{1}$) \qquad Price \$
With Red insert

| D7P-E4-PX01 | 27.50 | D7M-E4-MX01 | 31.80 |
| :--- | :--- | :--- | :--- | :--- |

Non-Illuminated momentary pushbuttons with labelled inserts

D7P-E402-PX01

D7M-F301-MX10

- Laser etched markings for improved abrasion resistance

Pushbuttons Description	Contact	Plastic body Cat. No. ${ }^{1}$)	Price \$	Metal body Cat. No. ${ }^{1}$)	Price \$
With Green insert labelled "Start"		D7P-F301-PX10	26.50	D7M-F301-MX10	31.20
With Red insert labelled "Stop"		D7P-F402-PX01	26.50	D7M-F402-MX01	31.20
With Blue insert labelled "Reset"	-	D7P-F607-PX10	26.50	D7M-F607-MX10	31.20
With extended Red insert labelled	\checkmark	D7P-E402-PX01	29.00	D7M-E402-MX01	33.00

Note: ${ }^{1}$) Add suffix " $b x^{\prime \prime}$ for special box/hang-sell packaging eg: D7P-F3-PX10bx

Front-of-Panel (Operators) (1)

Back-of-Panel Components ${ }^{1}$)

Notes: ${ }^{1}$) Performance data given in this publication is provided only as a guide for the user in determining suitability and do not constitute a performance warranty of any kind. Such data may represent the results of accelerated testing at elevated stress levels, and the user is responsible for correlating the data to actual application requirements. ALL WARRANTIES AS TO ACTUAL PERFORMANCE, WHETHER EXPRESS OR IMPLIED, ARE EXPRESSLY DISCLAIMED.
${ }^{2}$) Momentary mushroom operators are IP 65, multi-function operators have no Type 13 rating. Plastic operators with keys have no Type 4X rating.
${ }^{3}$) Operating temperatures below $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ are based on the absence of freezing moisture and liquids.
${ }^{4}$) Low voltage contacts are recommended for applications below $17 \mathrm{~V}, 5 \mathrm{~mA}$.

Miniature circuit breakers

Din-T6 series 6 kA MCB
 - Standards AS/NZS 4898
 - Approval No. N17481
 - Current range 2-63 Amps 1, 2 and 3 pole
 - Sealable and lockable handle
 - Available in curve type C and D
 - Mounts on CD chassis (250 A and 355 A)

1 pole 1 module

In (A)	C - Curve 5-10 In
2	DTCB6102C
4	DTCB6104C
6	DTCB6106C
10	DTCB6110C
13	DTCB6113C
16	DTCB6116C
20	DTCB6120C
25	DTCB6125C
32	DTCB6132C
40	DTCB6140C
50	DTCB6150C
63	DTCB6163C

2 pole 2 modules

2	DTCB6202C
4	DTCB6204C
6	DTCB6206C
10	DTCB6210C
13	i
16	DTCB6213C
20	DTCB6216C
25	DTCB6220C
32	DTCB6232C
40	DTCB6240C
50	DTCB6250C
63	DTCB6263C

3 pole 3 modules

2
DTCB6302C
4
DTCB6304C
6
DTCB6306C
10

Short circuit capacity 6 kA

In (A)	2-63	
1 P	240 V AC	
2 P	240-415 V AC	
3 P	240-415 V AC	
DC use	1 P	$2 \mathrm{P}^{1}$)
Short circuit	20 kA	25 kA
Max.voltage (DC)	48 V	110 V

Use at DC
When using Din-T6 in a DC application the magnetic tripping current is approximately 40% higher than in AC 50/60 Hz.

Shock resistance (In X, Y, Z directions).
20 g with shock duration 10 ms (minimum 18 shocks). 40 g with shock duration 5 ms (minimum 18 shocks).

Vibration resistance (In X, Y, Z directions). 3 g in frequency range 10 to 55 Hz (operating time at least 30 min).
According to IEC 60068-2-6.
Storage temperature
From $-55^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$, according to IEC 88 part 2-1 (duration 96 hours).

Operating temperature
From $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$, according to VDE 0664 parts 1 and 2.

Use at 400 Hz
At 400 Hz the magnetic trip current is approximately 50% higher than in AC $50 / 60 \mathrm{~Hz}$.

Notes: ${ }^{1}$) 2 pole MCB connected in series. The line side is the "0FF" (bottom) side of the MCB, and connects to CD chassis tee-offs.
i Available on indent only.

Din-T MCBs Technical data

Characteristics according to BS EN 60898

Miniature Circuit Breakers are intended for the protection of wiring installations against both overloads and short-circuits in domestic or commercial wiring installations where operation is possible by uninstructed people

Tripping characteristic curves

Magnetic release

An electromagnet with plunger ensures instantaneous tripping in the event of short-circuit. The NHP Din-T range has 3 different types, following the current for instantaneous release: types B, C and D curve.

Icn (A)	Test current	Tripping time	Applications
B	$3 \times$ In	$0.1<\mathrm{t}<45 \mathrm{~s}(\mathrm{In} \leq 32 \mathrm{~A})$	Only for resistive loads eg:
	$5 \times$ In	$0.1<\mathrm{t}<90 \mathrm{~s}(\mathrm{In}>32 \mathrm{~A})$	- electrical heating
		$\mathrm{t}<0.1 \mathrm{~s}$	- water heater
		- stoves.	

C	$\begin{aligned} & 5 \times \text { In } \\ & 10 \times \text { In } \end{aligned}$	$\begin{gathered} 0.1<t<15 \mathrm{~s}(\mathrm{In} \leq 32 \mathrm{~A}) \\ 0.1<\mathrm{t}<30 \mathrm{~s}(\mathrm{In}>32 \mathrm{~A}) \\ \mathrm{t}<0.1 \mathrm{~s} \end{gathered}$	Usual loads such as: - lighting - socket outlets - small motors
D	$\begin{aligned} & 10 \times \text { In } \\ & 20 \times \text { In } \end{aligned}$	$\begin{gathered} 0.1<\mathrm{t}<4 \mathrm{~s}(* *)(\mathrm{In} \leq 32 \mathrm{~A}) \\ 0.1<\mathrm{t}<8 \mathrm{~s}(\mathrm{In}>32 \mathrm{~A}) \\ \mathrm{t}<0.1 \mathrm{~s} \end{gathered}$	Control and protection of circuits having important transient inrush currents (large motors)

Thermal release

The release is initiated by a bimetal strip in the event of overload. The standard defines the range of releases for specific overload values. Reference ambient temperature is $30^{\circ} \mathrm{C}$.

Test current	Tripping time
$1.13 \times$ In	$\mathrm{t} \geq 1 \mathrm{~h}($ In $\leq 63 \mathrm{~A})$
	$\mathrm{t} \geq 2 \mathrm{~h}($ In $>63 \mathrm{~A})$
$1.45 \times$ In	$\mathrm{t}<1 \mathrm{~h}(\operatorname{In} \leq 63 \mathrm{~A})$
	$\mathrm{t}<2 \mathrm{~h}(\mathrm{In}>63 \mathrm{~A})$
$2.55 \times$ In	$1 \mathrm{~s}<\mathrm{t}<60 \mathrm{~s}(\operatorname{In} \leq 32 \mathrm{~A})$
	$1 \mathrm{~s}<\mathrm{t}<120 \mathrm{~s}(\operatorname{In}>32 \mathrm{~A})$

Rated short-circuit breaking capacity (Icn)
Is the value of the short-circuit that the MCB is capable of withstanding in the following test of sequence of operations: $0-\mathrm{t}-\mathrm{CO}$.
After the test the MCB is capable, without maintenance, to withstand a dielectric strength test at a test voltage of 900 V . Moreover, the MCB shall be capable of tripping when loaded with 2.8 In within the time corresponding to 2.55 In but greater than 0.1 s .

Service short-circuit breaking capacity (Ics)
Is the value of the short-circuit that the MCB is capable of withstanding in the following test of sequence of operations: $0-\mathrm{t}-\mathrm{CO}-\mathrm{t}-\mathrm{CO}$.

After the test the MCB is capable, without maintenance, to withstand a dielectric strength test at a test voltage of 1500 V . Moreover, the MCB shall not trip at a current of 0.96 In. The MCB shall trip within 1 h when current is 1.6 In .

0 - Represents an opening operation
C - Represents a closing operation followed by an automatic opening.
t - Represents the time interval between two successive short-circuit operations: 3 minutes.

The relation between the rated short-circuit capacity (Icn) and the rated service short-circuit breaking capacity (Ics) shall be as follows:

Icn (A)	Ics (A)
≤ 6000	6000
>6000	0.75 Icn min. 6000
≤ 10000	0.75 Icn min. 7500

In both sequences all MCBs are tested for emission of ionized gases during short-circuit (grid distance), in a safety distance between two MCBs of 35 mm when devices are installed in two different rows in the enclosure. This performance allows the use of any NHP/Terasaki enclosure.

35 mm

Din-T MCBs Technical data

Tripping curves according to EN 60898

The following tables show the average tripping curves of the Terasaki Din-T MCBs based on the thermal and magnetic characteristics.

Curve C

Din-T MCBs Technical data

Influence of ambient air temperature on the rated current

The maximum value of the current which can flow through an MCB depends on the nominal current of the MCB, the conductor cross-section and the ambient air temperature.
The values shown in the table below are for devices in free air. For devices installed with other modular devices in the same switchboard, a correction factor (K) shall be applied relative to the mounting situation of the MCB, the ambient temperature and the number of main circuits in the installation.

No of devices	K 1)
2 or 3	0.9
4 or 5	0.8
6 or 9	0.7
>10	0.6

Calculation example

Within a distribution board consisting of eight 2 Pole, 16 A , ' C ' curve type MCBs, with an operating ambient temperature of $45^{\circ} \mathrm{C}$, which is the highest temperature the MCB can operate at without unwanted tripping?

Calculation

The correction factor $\mathrm{K}=0.7$, for use in an eight circuit installation: $16 \mathrm{~A} \times 0.7=11.2 \mathrm{~A}$
As the MCB is working at $45^{\circ} \mathrm{C}$ it shall be given another factor ($90 \%=0.9$):
In at $45^{\circ} \mathrm{C}=$ In at $30^{\circ} \mathrm{C} \times 0.9=11.2 \mathrm{~A} \times 0.9=10.1 \mathrm{~A}$.

Note: ${ }^{1}$) Applicable for MCBs working at maximum rated currents.

The thermal calibration of the MCBs was carried out at an ambient temperature of $30^{\circ} \mathrm{C}$. Ambient temperatures different from $30^{\circ} \mathrm{C}$ influence the bimetal and this results in earlier or later thermal tripping.

10 A

16-40 A

50-63A

Din-T MCBs Technical data

Effects of frequency on the tripping characteristic

All the MCBs are designed to work at frequencies of $50-60 \mathrm{~Hz}$, therefore to work at different values, consideration must be given to the variation of the tripping characteristics. The thermal tripping does not change with variation of the frequency but the magnetic tripping values can be up to 50% higher than the ones at $50-60 \mathrm{~Hz}$.

Tripping current variation

$\mathbf{6 0 ~ H z}$	$\mathbf{1 0 0 ~ H z}$	$\mathbf{2 0 0 ~ H z}$	$\mathbf{3 0 0} \mathrm{Hz}$	$\mathbf{4 0 0} \mathrm{Hz}$
1	1.1	1.2	1.4	1.5

Power losses

The power losses are calculated by measuring the voltage drop between the incoming and the outgoing terminals of the device at rated current.

Power loss per pole

In (A)	Voltage drop (V)	Energy loss (W)	Resistance (mOhm)
0.5	2.230	1.115	4458.00
1	1.270	1.272	1272.00
2	0.620	1.240	310.00
3	0.520	1.557	173.00
4	0.370	1.488	93.00
6	0.260	1.570	43.60
8	0.160	1.242	19.40
10	0.160	1.560	15.60
13	0.155	2.011	11.90
16	0.162	2.586	10.10
20	0.138	2.760	6.90
25	0.128	3.188	5.10
32	0.096	3.072	3.00
40	0.100	4.000	2.50
50	0.090	4.500	1.80
63	0.082	5.160	1.30
80	0.075	6.000	0.90
100	0.075	7.500	0.75
125	0.076	9.500	0.60
2			
2			

Limitation curves

Let-through energy $\mathrm{I}^{2} \mathrm{t}$

The limitation capacity of an MCB in short-circuit conditions, is its capacity to reduce the value of the let-through energy that the short-circuit would be generating.

Peak current Ip

Is the value of the maximum peak of the short-circuit current limited by the MCB.

[^3]
Din-T MCBs Technical data

Din-T 6
6 kA
C curve
$\mathbf{I}^{\mathbf{2}} \mathbf{t}$ Let-through energy at 240/415 \mathbf{V}

Id Limited peak current at 230/400 V

Din-T MCBs Technical data

Use of standard MCB for DC use

For MCBs designed to be used in alternating current but used in installations in direct current, the following should be taken into consideration:

- For protection against overloads it is necessary to connect the two poles to the MCB. In these conditions the tripping characteristic of the MCB in direct current is similar to alternating current.
- For protection against short-circuits it is necessary to connect the two poles to the MCB. In these conditions the tripping characteristic of the MCB in direct current is 40% higher than the one in alternating current.

Use in DC selection table

| Series | Rated
 current (A) | 48 V 1 pole
 Icu (kA) | 110 V 2 poles in series
 Icu (kA) | 250 V 1 pole
 Icu (kA) | 440 V 2 poles in series
 Icu (kA) |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Din-T 6 | $0.5 \ldots .63 \mathrm{~A}$ | 20 | 25 | - | - |

Din-T MCBs Technical data

Text for specifiers

MCB Series Din-T 6

■ According to EN 60898 standard

- For DIN rail mounting according to DIN EN 50022; EN 50022; future EN 60715; IEC 60715 (top hat rail 35 mm)
- Grid distance 35 mm
- Working ambient temperature from $-25^{\circ} \mathrm{C}$ up to $+50^{\circ} \mathrm{C}$
- Approved by CEBEC, VDE, KEMA, IMQ.
- 1 pole is a module of 18 mm wide
- Nominal rated currents are: 0.5/1/2/3/4/6/10/13/16/20/25/32/40/50/63 A
- Tripping characteristics: B,C,D (B curve Din-T 10 only).
- Number of poles: 1 P, 1 P+N, 2 P, 3 P, 3 P+N, 4 P
- The short-circuit breaking capacity is: $6 / 10 \mathrm{k} A$, energy limiting class 3
- Terminal capacity from 1 up to $35 \mathrm{~mm}^{2}$ rigid wire or 1.5 up to $25 \mathrm{~mm}^{2}$ flexible wire.
- Screw head suitable for flat or Pozidrive screwdriver
- Can be connected by means of both pin or fork busbars
- The toggle can be sealed in the ON or OFF position
- Rapid closing
- Both incoming and outgoing terminals have a protection degree of IP 20 and they are sealable
- Isolator function thanks to Red/Green printing on the toggle.
- Maximum voltage between two phases; $440 \mathrm{~V} \sim$
- Maximum voltage for utilisation in DC current: 48 V 1 P and 110 V 2 P
- Two position rail clip
- Mechanical shock resistance 40 g (direction $\mathrm{x}, \mathrm{y}, \mathrm{z}$) minimum 18 shocks 5 ms half-sinusoidal acc. to IEC 60068-2-27
- Vibration resistance: 3 g (direction $\mathrm{x}, \mathrm{y}, \mathrm{z}$) minimum 30 min . according to IEC 60068-2-6
- Extensions can be added on both left or right hand side
- Auxiliary contact
- Shunt trip
- Undervoltage release
- Motor operator
- Panelboard switch
- Add-on RCD can be coupled.

Din-T MCBs Technical data

Din-T6

Series		AS/NZS 4898
Standards (Aust / NZ / International)		IEC 60898
Tripping characteristics		C, D
Nominal current	A	C/D(0.5-63)
Calibration temperature	${ }^{\circ} \mathrm{C}$	30
Number of poles (\# mod)		1/2/3/4
Neutral pole protected		yes
Nominal voltage Un AC 1 P	V	240/415
$3 \mathrm{P} / 4 \mathrm{P}$	V	415
DC 1 P^{1})	V DC	48

[^4]Din-T MCBs Technical data
Miniature circuit breakers - Din-T 6

Dimensions in mm.
3

EL-FI CTM

Current Transformer Monitor

(FOR MOUNTING ON STANDARD DIN-RAIL 35MM)

Fig. 1

Fig. 2
FI

* Cable length supplied, in meter (m) : 1.0

Fig.	Type	I prim	I sec.	Part number	Suitable to;
1	CTM010	10 A	0.055 A	$01-2471-10$	M10, M20, DCM
1	CTM025	25 A	0.055 A	$01-2471-20$	M10, M20, DCM
1	CTM050	50 A	0.055 A	$01-2471-30$	M10, M20, DCM
2	CTM100	100 A	0.055 A	$01-2471-40$	M10, M20, DCM

emotron

EL-FI ${ }^{\circledR}$ M20

SHAFT POWER MONITOR

 INSTRUCTION MANUALMotor shaft output power measurement

TABLE OF CONTENTS

1 Inside the box...
2 Safety
3 Wiring
4 Selection current transformer
5 Operation
6 Programming
6.1 Set Measurement Unit "HP" or "kW"
6.2 Set RATED MOTOR POWER and CURRENT (Windows 41, 42)
6.3 Set NUMBER OF PHASES (Window 43)
6.4 Monitor Function (Window 05)
6.5 Set the START DELAY (Window 31)
6.6 Set Alarm levels with AUTOSET
6.7 Set the RESPONSE DELAY (Window 32)

7 Advanced features
8 Troubleshooting
9 Technical data
10 Parameter list
11 Service

1 INSIDE THE BOX

This instruction manual describes the installation and commissioning of the M20 load monitor. The M20 supervises induction motor driven equipment and provides alarms when abnormal conditions are detected. The M20's ability to provide reliable monitoring \& protection ensures production equipment is optimised and expensive breakdowns and interruptions are minimized. Due to the special method of subtracting motor power losses, the monitor is able to accurately measure the shaft power supplied by the motor to the application. This advanced technique allows the M20 to monitor the "application" load only as opposed to the "total" motor load, which includes the varying motor losses.

- Check the delivery. Your shipment should contain the M20 load monitor, a current transformer and this instruction manual.
- Check carefully that the ordered equipment complies with the motors input voltage and that the current transformer rating is as stated on the delivery packaging.
- Check that the contents have not been damaged in shipping.

Note!

If in doubt contact your supplier before starting to install or commissioning the product.

2 SAFETY

- Study this manual thoroughly before installing and using the monitor.
- The monitor must be installed by qualified personal.
- Always disconnect supply circuits prior to installing.
- The installation must comply with standard and local regulations.
- Pay special attention to this SAFETY section and the part marked "CAUTION!" in the OPERATION section.
- Should questions or uncertainties arise, please contact your local sales outlet or see section 11 SERVICE.

Note!

Do not remove or break the seal on the housing. The warranty will be cancelled.

3 WIRING

This wiring example shows how the M20 can be used to control the starting and stopping circuit of the motor. Other wiring configurations are possible.

1. The current transformer CTMxxx must be placed in the same phase that is connected to terminal 9, phase L1.
2. For single-phase connection see fig 2.

Fig 1. Connection example

Note!

If the START/STOP is connected according to fig. 1 , it is recommended that terminals 6 and 7 be by-passed during programming. After the programming is completed the by-pass must be taken out.

ALTERNATIVE EXAMPLE FOR SINGLE-PHASE CONNECTION

This wiring example shows the deviant power connection to be made with regard to a single-phase connection. Refer to fig. 1 for the remaining wiring.

Fig 2. Single-phase connection example.

EXAMPLE - DIGITAL INPUT

The Digital Input use the terminals 5 (DIG) and 6 (C-reference). It can have either a VAC or a VDC signal. Connect "+" to terminal 5 (DIG) and "-" to terminal 6 for VDC signal. See also section 7 ADVANCED FEATURES.

Fig 3. Wiring example for digital input.

4 SELECTION CURRENT TRANSFORMER

FOR MOTORS LESS THAN 100A

1. Check the rated motor current on the motor plate.
2. Compare this value with the current in table 1 .
3. From table 1, select the current transformer and the appropriate numbers of windings.

Note!

Max length of the CTM cable is 1 m (39.37 in).

EXAMPLE:

- Rated motor current $=12 \mathrm{~A}$.
- Select 10.1-12.5A from the first colon in table 1.
- This gives:
- CTM025 with 2 windings.

RATED MOTOR CURRENT [A]	CURRENT TRANSFORMER TYPE NUMBER OF WINDINGS			
	CTM 010	CTM 025	CTM 050	CTM 100
	10			
$1.01-2.0$	5			
$2.01-3.0$	3			
$3.1-5.0$	2			
$5.1-10.0$	1			
$10.1-12.5$		2		
$12.6-25.0$		1		
$26.0-50.0$			1	
$51.0-100.0$				1

Table 1. CT less than 100A.

Note!

Normally the appropriate Current Transformer (CT) will have been ordered and shipped with the M20, check that this is the case; contact the supplier if in doubt.

Fig 4. Example CTM 025 with 2 windings for an 12 A motor.

Note!

The transformer connection and orientation are not polarity sensitive, but must be connected to L1.

Fig 5. Example 1 and 3 windings.

FOR MOTORS GREATER THAN 100A

1. Check the rated motor current on the motor plate.
2. Compare this value with the current in table 2.
3. Select from table 2 the primary and the secondary current transformer and the appropriate numbers of windings.

EXAMPLE :

- Rated motor current $=260 \mathrm{~A}$.
- Select 251-500A from the first colon in table 2.
- This gives:
- Primary transformer 500:5, 1 winding.
- CTM010 with 2 windings.

RATED MOTOR CURRENT [A]	CURRENT TRANSFORMER TYPE and NUMBER OF PRIMARY WINDINGS
$101-150$	$150: 5+$ CTM 010 1$+2$

Table 2. CT greater than 100 A

Note!

Normally the appropriate Current Transformer (CT) will have been ordered and shipped with the M20, check that this is the case; contact the supplier if in doubt.

Fig 6. Example of a CTM 010 with 2 windings and a primary transformer $500: 5$ with 1 winding for a 260 A motor.

Note!

The transformer connection and orientation are not polarity sensitive, but must not be connected to L1.

5 OPERATION

Overview

Control terminals:

1 S1 Current transformer input
2 S2 Current transformer input

+ Analog output
4 - Analog output
5 DIG External RESET or AUTO SET or Block Pre-Alarm
6 C Common: RELAY, DIG
7 R1 Main Alarm Relay 1
8 R2 Pre-Alarm Relay 2

LCD display:

iz Function (window) number
(23) Function Value
\triangle Warning signal
(1) Start-, response delay or block timer active
Parameter locked
Voltage indicator
A Current indicator
mA Milliamp indicator
kW Kilowatt indicator
S Second indicator
\% Per cent indicator

NEXT key:

Proceeds to next window. If no key is pressed for 1 minute the display returns to window 01 automatically.
AUTO SET key:
Press for 3 seconds during normal and stable load to apply the automatic setting of the alarm levels. Not available if Parameter Locked.

To reset ALARM

9 L1 Motor phase
11 L2 Motor phase
13 L3 Motor phase

Use the NEXT key to scroll through the function menu.

WINDOW MENU

- The ALARM window 00 only appears if an Alarm output is active.
- The Actual Load window 01 Appears after power up.
- Use the $\underset{\text { nerr }}{\rightarrow}$ key to scroll through the menu.
- The Actual Load window will appear automatically if no keys are pressed for longer than 1 minute.
- If the PARAMETER LOCK is on, only windows $0102 \quad 03 \quad 04$ are visible.
- Window 05 selects the monitor function, see section 6:4.

HOW TO CHANGE A VALUE

Example setting the RATED MOTOR CURRENT in window 42.

1. Press $\underset{\text { nerr }}{\rightarrow}$ until the window number 42 appears.

2. Press + or - until the desired value is reached (e.g. 23A).

3. Press $\underset{\text { emter }}{\square}$ to confirm and save the change.
```
Note!
If the value is NOT to be changed, press the \(\xrightarrow[\text { NEXT }]{\rightarrow}\) before the ENTER is pressed.
```


CAUTION!

Make sure that all safety measures have been taken before switching on the supply voltage and starting the motor/machine in order to avoid personal injury.

6 PROGRAMMING

6:1 Set Measurement Unit "HP" or "kW"

Selecting the unit of measurement

The unit of measurement can be set to kilowatts or Horsepower both as absolute or relative values. This setting is valid for the alarm levels, rated motor power and the actual load readout in window 01.

Measurement Unit	Readout load window 01	Rated power window 41	Alarm levels windows 11,12,13,14
Kilowatt relative value (def.)*	$\%$	kW	$\%$
Horsepower absolute value	HP	HP	HP
Horsepower relative value*	$\%$	HP	$\%$
Kilowatt absolute value	kW	kW	kW

* Measured shaft power as \% of rated power.

Programming

1. Go to window 01.
2. Press and hold Fiser and + simultaneously for 3 seconds.
3. The next unit of measurement is set and appears for 2 sec , (see examples). Repeat to select the desired measurement unit according to the table.

6:2 Set RATED MOTOR POWER and CURRENT (Windows 41, 42)

The RATED MOTOR POWER and the RATED MOTOR CURRENT must be set in window 41 and 42.
Example motor plate:

TYPE: T56BN/4		NR: 948287		Prot. IP: 54	
Serv: S1		$\cos \varphi: 0.78$		Is. CI:F	
V:Y/ ${ }^{\text {d }}$	Hz	KP	kV	RPM	A:Y/D
240/415	50	3	2.2	1400	(5.6/9.4
260/440	60	3	2.2	1680	5.8/9.7

Programming

1. Go to window 41 (default $=2.2 \mathrm{~kW})$.
2. Press - or + to set the RATED MOTOR POWER as indicated on the motor plate (see example).
3. Press $\underset{\text { enter }}{\underset{\text { to }}{ }}$ to confirm the change.
4. Go to window 42 (default $=5.6 \mathrm{~A})$.
5. Press - or + to set the RATED MOTOR CURRENT as indicated on the motor plate (see example).
6. Press $\underset{\text { amer }}{\rightleftarrows}$ to confirm the change.

6:3 Set NUMBER OF PHASES (Window 43)

The NUMBER OF PHASES must be set according to number of motor phases. Default is 3 phase.

Programming

1. Go to window 43 (default $=3 \mathrm{PH})$.
```
4\exists \exists \FFH
```

2. Press - or + to set the NUMBER OF PHASES to 1 if a singlephase motor is used.
3. Press $\underset{\text { enter }}{\leftrightarrows}$ to confirm the change.

Luggage Point STP Refurbishment of PST 1 \& 2 OM Manual - Electrical Equipment
6:4 Monitor Function (Window 05)

Monitor (Protection)	Indication in window 05	Alarm	Output Relay (default)
OVER- and UNDERLOAD (default)	—	MAX Main-Alarm	Relay 1 (NC): 6-7
		MAX Pre-Alarm	Relay 2 (NO): 6-8
		MIN Pre-Alarm	Relay 2 (NO): 6-8
		MIN Main-Alarm	Relay 1 (NC): 6-7
OVERLOAD	-	MAX Main-Alarm	Relay 1 (NC): 6-7
		MAX Pre-Alarm	Relay 2 (NO): 6-8
UNDERLOAD	-	MIN Pre-Alarm	Relay 2 (NO): 6-8
		MIN Main-Alarm	Relay 1 (NC): 6-7

Over- and underload monitor

MAX Main Alarm level [11]
MAX Pre-Alarm level [12]

AUTOSET level

MIN Pre-Alarm level [13]

MIN Alarm level [14]

Fig 7. Over- and underload monitor.

Programming

1. Go to window 05 . The default selection is OVER- and UNDERLOAD monitor.
2. Press - or + to select UNDERLOAD or OVERLOAD monitor.

3. Press $\underset{\underset{\text { anter }}{ }}{\leftrightarrows}$ to confirm the change.

6:5 Set the START DELAY (window 31)

A START DELAY must be set to allow the motor and machine to speed up and to allow the power in-rush currents to be ignored by the monitor.

Programming

1. Determine in seconds, how long it takes for the motor and machine to reach speed and for the power in-rush to pass. This will be the minimum START DELAY.
2. Go to window 31 (default $=2.0 \mathrm{~s}$).
3. Press - or + to set the determined START DELAY time in seconds.
4. Press $\underset{\text { enter }}{\sim}$ to confirm the change.

Example: Start Delay 2.0 s

Start Delay [31]
Fig 8. Start Delay.

6:6 Set Alarm levels with AUTOSET

The AUTOSET command performs a measurement of the actual motor load and automatically sets the relevant Alarm levels depending on the selected monitor function.

Protection (Monitor function window 05)	Alarm	Margin Value (Default margins)	Margins (Windows)	Alarm Level at AUTOSET
OVER- and UNDERLOAD (Default)	MAX Main-Alarm	16\%	21: MAX Main Alarm margin	Normal machine load+Window 21
	MAX Pre-Alarm	8\%	22: MAX PreAlarm margin	Normal machine load+Window 22
	MIN Pre-Alarm	8\%	23: MIN PreAlarm margin	Normal machine load-Window 23
	MIN Main-Alarm	16\%	24: MIN Main Alarm margin	Normal machine load-Window 24
OVERLOAD	MAX Main-Alarm	16\%	21: MAX Main Alarm margin	Normal machine load+Window 21
	MAX Pre-Alarm	8\%	22: MAX PreAlarm margin	Normal machine load+Window 22
UNDERLOAD	MIN Pre-Alarm	8\%	23: MIN PreAlarm margin	Normal machine load-Window 23
	MIN Main-Alarm	16\%	24: MIN Main Alarm margin	Normal machine load-Window 24

Programming

1. Start the motor and let it run at the normal machine load, until the START DELAY has expired.
2. Press for 3 seconds. This can be done in any window.
3. The display shows "SEt", to confirm that the AUTOSET level has been measured and the Alarm levels have been set. The display reverts to window 01.

4. If the alarm levels are too high or too low, readjust the appropriate MARGINS (see table above) and perform a new AUTOSET. Alternatively, alarm levels can be set manually - see section 7 .

6:7 Set the RESPONSE DELAY (Window 32)

A RESPONSE DELAY allows the machine to remain in an over- or underload condition for a specific time before the alarm relays are activated.

Programming

1. Determine in seconds, how long an under- or overload condition is allowed. This depends on machine properties and behavior. This will be the RESPONSE DELAY.
2. Go to window 32 (default $=0.5 \mathrm{~s}$).
3. Press - or + to set the determined RESPONSE DELAY time in seconds.
4. Press $\underset{\text { anter }}{\leftrightarrows}$ to confirm the change.

Example: RESPONSE DELAY

S

Fig 9. Response Delay.

7 ADVANCED FEATURES

Set ALARM LEVELS manually (Window 11-14)

The alarm levels can be set manually, without using the AUTOSET. Also after an AUTOSET has been performed, these levels can be readjusted e.g. for fine-tuning.

Protection (Monitor function window 05)	Alarm levels (Window)	Default
	11: MAX Main Alarm	100%
	$12:$ MAX Pre-Alarm	100%
	$13:$ MIN Pre-Alarm	0%
	$14:$ MIN Main Alarm	0%
OVERLOAD	$11:$ MAX Main Alarm	100%
	$12:$ MAX Pre-Alarm	100%
UNDERLOAD	$13:$ MIN Pre-Alarm	0%
	$14:$ MIN Main Alarm	0%

Set MARGINS (window 21-24)

The MARGINS for the AUTOSET can be changed manually. After the adjustment, the AUTOSET action must be performed once again to activated the new margins.

Protection (Monitor function window 05)	Window	Default
	21: MAX Main Alarm margin	16%
	22: MAX Pre-Alarm margin	8%
	23: MIN Pre-Alarm margin	8%
	24: MIN Main Alarm margin	16%
OVERLOAD	21: MAX Main Alarm margin	16%
	22: MAX Pre-Alarm margin	8%
UNDERLOAD	23: MIN Pre-Alarm margin	8%
	24: MIN Main Alarm margin	16%

Set HYSTERESIS (Window 33)

The HYSTERESIS of an Alarm level prevents the alarm relay "chattering" if the load fluctuates even in a normal "stable" condition. Apply also for prealarm. This feature is normally only used if the "Main Alarm Latch" (Window 61) is set to "OFF". Default $=0 \%$.

Fig. 10 Hysteresis

Set MAIN ALARM LATCH (Window 61)

The MAIN ALARM LATCH keeps the MAIN ALARM output active, even if the alarm condition has been removed (relay R1). A latched alarm output can be reset by:

- the reset key
- external reset via Digital input (see window 81).
- switching of the power of the monitor (see also "Wiring").

Default $=$ OFF.

Set ALARM AT NO MOTOR CURRENT (Window 62)

The "ALARM AT NO MOTOR CURRENT" gives an alarm if the motor current becomes zero (ON). Default $=$ OFF (No alarm at no motor current).

Set RELAY OUTPUTS (Window 63 and 64)

The RELAY OUTPUTs R1 and R2 can be set to NO or NC contacts.

Note!

If the power to the load monitor is switched off the relay contacts are allways in the NO.

Set DIGITAL INPUT (window 81)

The DIGITAL INPUT can be set for:

RES: External RESET (Default)	to reset an Alarm.
AU: External AUTOSET	to perform an AUTOSET with an external command.
bLo: Block Pre-Alarm	to block the Pre-Alarm function and start the Block timer. If the input is high a Pre-Alarm is blocked, e.g. it is neglected. See also window 82.

Set BLOCK TIMER (window 82)

To set the timer for the blocking time after the Block command is released (see also window 81). Default $=0.0 \mathrm{sec}$.

Fig 11. Block timer

Set ANALOG OUTPUT (Window 91)

The ANALOG OUTPUT provides an analog signal of either $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ signal which represents the motor shaft power. The signal can be inverted. Full scale: rated motor power. To set P-span/scaling (full scale) see below.

Fig 12. Analog Output.

Set ANALOG OUTPUT LOAD RANGE: P-span (window 92-93)

With window 92 and 93 the full scale of the analog output can be set according to the minimum and maximum load (P -span).

1. In Window 91, press RESET and + for two seconds until "on" shows. Windows 92 and 93 are now active.
2. Set the lowest load value in window 92 (e.g. 20\%)
3. Set the highest load value in window 93 (e.g. 55\%)
The full scale of the analog output is now set between 20% and 55% load.

Fig. 13.

See figure 13. To inactivate: Press
RESET and + for two seconds until "OFF" shows in Window 91.Windows 92 and 93 are now inactive.

LOCK PARAMETERS (Window 04)

To avoid unintentional change of parameter settings the programming can be locked by entering the code " 369 " in window 04 . Now only the motor variables LOAD [01], VOLTAGE [02] and CURRENT [03] can be checked. Follow the same procedure to UNLOCK the monitor. The AutoSet button is disabled when parameters are locked. AutoSet via Digital Input is always active if window 81 is set to AU (AutoSet).

Note!
The "Lock" symbol appears in all windows.

Reset to FACTORY DEFAULTS (Window 99)

The FACTORY DEFAULTS are reset by entering "dEF" in window 99. If Window 99 shows "USr" it indicates that the settings have been changed to user specific settings.

View ALARM MESSAGE (Window 00)

In an alarm condition, the window 00 appears automatically. The window indicates the following Alarm conditions. Window 00 is always blinking.

8 TROUBLESHOOTING

Problem	Solution
Window 01 always shows zero load, even if the motor is running	- Check the connection of the current transformer(s). - Check that value of the rated motor power in window 41 is the same as the rated motor power on the motor plate. - Check that window 03 shows a phase current value in correspondents with the rated motor current.
Window 01 shows an improper power value when the motor is running	- Check that the current transformer is connected in phase L1.
Window 03 shows an improper value of the phase current	- Check that current transformer has been selected according to the tables 1 and 2. - Check that the number of windings is according to table 1 and 2. Check that the value of the motor current in window 42 is the same as the value of the motor current on the motor plate.
The monitor never gives an alarm	- Check that window 01 shows a value greater than zero. - Check the alarm levels in windows 11 to 14. If not correct readjust the levels or perform an AUTOSET.
The monitor always gives an alarm	- Check the alarm levels in windows 11 to 14. If not correct readjust the levels or perform an AUTOSET. - Check if the monitor is programmed for "latched alarm" (window 61=on). If so reset the monitor by pressing the reset key.
Window 00 shows "LU" or "OU". Under- or over voltage alarm.	Switch off the supply: - Check that the supply voltage is corresponding with the voltage range on the monitor type plate.
Window 01 shows "oor". "Out Of Range" alarm.	The measured shaft power is higher than 125% of the rated motor power programmed in window 41.
Window 03 shows "oor". "Out Of Range" alarm.	- The measured motor current is higher than 125% of the rated motor current programmed in window 42.
The alarm relays are not switching	- Check that the wire links between terminals 6 and 7 are removed according to "Wiring".

9 TECHNICAL DATA

Dimensions (WxHxD)	$45 \times 90 \times 115 \mathrm{~mm}\left(1.77^{\prime \prime} \times 3.54 " \times 4.53^{\prime \prime}\right)$
Mounting	35 mm DIN-rail 46277
Weight	$0.30 \mathrm{~kg}(10.5 \mathrm{oz})$
Supply voltage ($\pm 10 \%$)	$\begin{aligned} & 1 \times 100-240 \text { VAC, } 3 \times 100-240 \text { VAC, } 3 \times 380-500 \text { VAC, } 3 \times 525- \\ & 600 \text { VAC, } 3 \times 600-690 \text { VAC } \end{aligned}$
Frequency	50 or 60 Hz
Current input	Current transformer; CTM 010, 025, 050 and 100 (>100A extra transformer needed)
Power consumption	max 6 VA
Start-up delay	1-999 s
Hysteresis	0-50\% of rated motor power
Response delay	0.1-90 s
Relay output	5 A/240 VAC Resistive, 1.5 A/240 VAC Pilot duty/AC12
Analog output	max load 500 ohm
Digital input	max 240 VAC or 48 VDC. High: ≥ 24 VAC/DC, Low:<1 VAC/DC. Reset >50 ms
Fuse	max 10 A
Terminal wire size	Use $75^{\circ} \mathrm{C}$ copper (CU) wire only. 0.2-4.0 mm^{2} single core (AWG12). 0.2-2.5 mm ${ }^{2}$ flexible core (AWG14), stripped length 8 mm (0.32")
Terminal tightening torque	0.56-0.79 Nm (5-7 lb-in)
Accuracy	$\pm 2 \%, \pm 1$ unit cos phi>0.5; excl. current transformer; $+20^{\circ} \mathrm{C}$ ($+68^{\circ} \mathrm{F}$)
Repeatability	± 1 unit $24 \mathrm{~h} ;+20^{\circ} \mathrm{C}\left(+68^{\circ} \mathrm{F}\right)$
Temperature tolerance	$\max 0.1 \% /{ }^{\circ} \mathrm{C}$
Operating temperature	-20 to $+50^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$
Storage temperate	-30 to $+80^{\circ} \mathrm{C}\left(22^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$
Protection class	IP20
Approved to	CE, cUL and UL and CSA standard (up to 600 V)

Dismantling and disposal

The housing is made of recyclable plastic, $\mathrm{PC} / \mathrm{ABS}$ and the circuit board contain small amount of tin and lead. When disposing, the parts must be handled and recycled in accordance with local regulations.

EU (European Union) specifications

EMC EN 50081-1, EN 50081-2,

Electrical safety
Rated insulated voltage
Rated impulse withstand voltage Pollution degree

EN 50081-1, EN 50081-2,
EN 50082-1, EN 61000-6-2
IEC 947-5-1
690 V
4000 V
2

Terminals 3, 4, 5, 6, 7 and 8 are basic insulated from the line.
Terminals 3 and 4 are basic insulated from terminals 5, 6, 7 and 8 .

US specifications

FCC (Federal Communications Commission). This equipment has been tested and found to comply with the limits for a class A digital device pursuant to the Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference, in which case, the user will be required to correct the interference at their own expense.

Canada specifications

DOC (Department of communications). This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus as set out in the Canadian interference-Causing Equipment Regulations. Le présent appareil numérique n'ément pas de bruits radio-électriques dépassant les limites applicables aux appareils numériques de la Classe A prestite dans le Régelement sur le brouillage radioélectrique édicté du Canada.

10 PARAMETER LIST

Window	Function	Range	Default	Custom	Symbol
00	Alarm indication				
01	Measured shaft power in \% rated power	0-125	0-125		\%
	Measured shaft power in kW	0-745			kW
	Measured shaft power in \% rated power	0-125			\%
	Measured shaft power in HP	0-999			
02	Measured line voltage	$90-760$ V			V
03	Measured current	0.00-999 A			A
04	Parameter lock	0-999			-
05	Monitor function	OVER- and UNDERLOAD, OVERLOAD, UNDERLOAD	OVERLOAD and UNDERLOAD		
11	MAX Main Alarm (relay R1)	0-125	100		\%
		0-745	2.2		kW
		0-125	100		\%
		0-999	3		
12	MAX Pre-Alarm (relay R2)	0-125	100		\%
		0-745	2.2		kW
		0-125	100		\%
		0-999	3		
13	MIN Pre-Alarm (relay R2)	0-125	0		\%
		0-745	0		kW
		0-125	0		\%
		0-999	0		

Window	Function	Range	Default	Custom	Symbol
14	MIN Main Alarm (relay R1)	0-125	0		\%
		0-745	0		kW
		0-125	0		\%
		0-999	0		
21	MAX Main Alarm margin	0-100	16		\%
22	MAX Pre-Alarm margin	0-100	8		\%
23	MIN Pre-Alarm margin	0-100	8		\%
24	MIN Main Alarm margin	0-100	16		\%
31	Start delay	1-999	2		s
32	Response delay	0.1-90	0.5		s
33	Hysteresis	0-50	0		\%
41	Rated motor power	0.10-745	2.2		kW
		0.13-999	3		
42	Rated current	0.01-999	5.6		A
43	Number of phases	1PH/3PH	3PH		
61	Main alarm latch	on/OFF	OFF		
62	Alarm at no motor current	on/OFF	OFF		
63	Main Alarm relay R1	nc/no	nc		
64	Pre-Alarm relay R2	nc/no	no		
81	Digital input	rES/AU/bLo	rES		
82	Block timer	0.0-90	0.0		s
91	Analog output	$\begin{aligned} & \hline 0.20 / 4.20 / 20.0 / \\ & 20.4 \end{aligned}$	0.20		
92*	Analog Out low value	0-100	Not used		
93*	Analog Out high value	0-125	Not used		
99	Factory defaults	dEF/USr	dEF		

* Optional parameters, see section 7.

11 SERVICE

This manual is valid for the following model:
EL-FI M20
Document number: 01-2551-01
Document version: r2
Date of release: 2003-04-15
Emotron AB reserves the right to alter product specifications without prior notification. No part of this document may be reproduced without permission from Emotron AB.

For more information contact your local sales outlet or one of the Emotron companies below or visit us at: www.emotron.com
Emotron AB, Headquater, Sweden
Mörsaregatan 12, Box 22225
SE-250 24 Helsingborg, Sweden
Tel. +46 42169900
Fax +4642169949
Emotron Antriebssysteme GmbH, Germany
Tel. +49394392050
Fax +49394392055
Emotron B.V., The Netherlands \& Belgium
Tel. +31497389222
Fax +31497386275
Emotron El-Fi SA, Spain
Tel. +34 932091499
Fax +34932091245
Emotron Inc., USA
Tel. +1 (419) 841-7774
Fax +1 (419) 843-5816
K.K: El-Fi, Japan

Tel. +81 425288820
Fax +81425288821

Protected by utility patent SE 9703952-3
International utility patent application pending WO 9925049

55 Series - Miniature General Purpose Relays 5-10 A

Plug-in or P.C.B. versions
AC or DC coils

- Lockable test button and mechanical flag indicator as standard on 2 and 4 CO relays types
- Sockets and accessories: see 94, 99 and 86 series
- RT III (wash tight) version a vailable

Contact specifications

Contact configuration	
Rated current/ M aximum peak current	A
Rated voltage/ M aximum switching voltage	V AC
Rated load in AC1	VA
Rated load in AC15 (230 VAC)	VA
Single phase motor rating (230 VAC)	kW
Breaking capacity in DC 1: 30/110/220V	A
M inimum switching load	mW
(V/ mA)	
Standard contact material	

Coil specifications
Nominal voltage $\left(U_{N}\right)$
$V A C(50 / 60 \mathrm{~Hz})$
$V D C$

	V DC
Rated power AC/DC	VA $(50 \mathrm{~Hz}) / \mathrm{W}$

O perating range	$\mathrm{AC}(50 \mathrm{~Hz})$
	DC
Holding voltage	$\mathrm{AC} / \mathrm{DC}$
M ust drop-out voltage	$\mathrm{AC} / \mathrm{DC}$

Technical data
Mechanical life AC/ DC

Electrical life at rated load AC1	cycles
O perate/ release time (bounce included)	ms

Insulation according to EN 61810-5
Insulation between coil and contacts $(1.2 / 50 \mu \mathrm{~s}) \mathrm{kV}$

Dielectric strength between open contacts VAC
A mbient temperature range ${ }^{\circ} \mathrm{C}$
Environmental protection
Approvals: (according to type)

55 Series - Miniature General Purpose Relays 5-10 A

- Plug-in or P.C.B. versions
- AC or DC coils
- Lockable test button and mechanical flag indicator as standard on 2 and 4 CO relays types
- Sockets and accessories: see 94, 99 and 86 series
55.32

55.33

142536

${ }_{13}-14$
$\begin{array}{llllllll}1 & 5 & 2 & 6 & 3 & 74 & 8\end{array}$
 ${ }_{13}{ }^{3}-{ }_{14}$ A1 A2

Contact specifications
Contact configuration

Rated current/ M aximum peak current A
Rated voltage/ M aximum switching voltage V AC

Rated load in AC1
Rated load in AC15 (230 VAC)
Single phase motor rating (230 VAC)
Breaking capacity in DC $1: 30 / 110 / 220 \mathrm{~V} \quad \mathrm{~A}$

M inimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	

Coil specifications
Nominal voltage $\left(U_{N}\right) \quad$ VAC $(50 / 60 \mathrm{~Hz})$
Rated power AC/DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$

O perating range
Holding voltage AC/DC

M ust drop-out voltage AC/DC
Technical data
Mechanical life AC/DC
Electrical life at rated load AC1
0 perate/ release time (bounce included) ms

Insulation according to EN $61810-5$
Insulation between coil and contacts $(1.2 / 50 \mu \mathrm{~s}) \mathrm{kV}$

Dielectric strength between open contacts VAC
A mbient temperature range ${ }^{\circ} \mathrm{C}$
Environmental protection
Approvals: (according to type)

ORDERING INFORMATION

Example: a 55 series plug-in relay, 4 CO contacts, coil rated 12 V DC with a lockable test button and mechanical indicator.

$3=3$ pole, 10 A
$4=4$ pole, 5 A
Coil version
8 = AC ($50 / 60 \mathrm{~Hz}$)
$9=D C$
Coil voltage
see coil specifications

Only combinations in the same row are possible Preferred versions

	coil version	A	B	C	D
$55.32 / 34$	AC/DC	0	0	4	0
$55.12 / 13 / 14$	AC/ DC	0	0	0	0
55.33	AC/DC	0	0	0	0

All versions

	coil version	A	B	C	D
$55.32 / 34$	AC/ DC	$0-2-5$	0	0	$0-6$
	AC	$0-2-5$	0	$2-3-4-5$	$0-6$
	AC	$0-2-5$	0	54	1
	DC	$0-2-5$	0	$2-4-6-7-8-9$	$0-6$
	DC	$0-2-5$	0	$74-94$	1
5.33	AC/ DC	$0-2-5$	0	0	$0-6$
	AC	$0-2-5$	0	$1-3-5$	$0-6$
	DC	$0-2-5$	0	$1-6-7-8-9$	$0-6$

POSSIBLE OPTIONS

LO CKABLE TEST BUTTO N AN D MECHAN ICALFLAG IN DICATO R (0040)
The dual-purpose Finder test button can be used in two ways:
Case 1) The plastic pip (located directly above the test button) remains intact. In this case, when the test button is pushed, the contacts operate. W hen the test button is released the contacts return to their former state.

Case 2) The plastic pip is broken-off (using an appropriate cutting tool). In this case, (in addition to the above function), when the test button is pushed and rotated, the contacts are latched in the operating state, and remain so until the test button is rotated back to its former position. In both cases ensure that the test button actuation is swift and decisive.

55 Series - Miniature General Purpose Relays 5-10 A

TECHNICAL DATA

INSULATION

IN SULATIO N according to EN 61810-5	insulation rated voltage	V	250
	rated impulse withstand voltage	kV	3.6
	pollution degree	2	
	overvoltage category	III	

IMMUNITY

CON DUCTED DISTURBAN CE IM M UN ITY	BURST (according to EN 61000-4-4) level $4(4 \mathrm{kV})$
	SURG E (according to EN 61000-4-5) level $4(4 \mathrm{kV})$

OTHER DATA

CONTACT SPECIFICATIONS

F 55

Electrical life vs AC1 load.
$\mathbf{1}=4$ CO relay type (5 A).
$\mathbf{2}=2-3$ CO relay type (10 A).

H 55

Breaking capacity for DC1 load.
$1=2-3$ CO type.
$\mathbf{2}=4$ CO type.
$\mathbf{A}=$ Load applied to 1 contact
$\mathbf{B}=$ Load applied to 2 contacts in series
$\mathbf{C}=$ Load applied to 3 contacts in series
$\mathbf{D}=$ Load applied to 4 contacts in series

- W hen switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load.
Note: the release time of load will be increase.

55 Series - Miniature General Purpose Relays 5-10 A

COIL SPECIFICATIONS

AC VERSION DATA

Nominal voltage U_{N}	Coil code	O perating range		Resistance R	Rated coil consumption Iat $\mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz})$
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\max }$		
V		V	V	Ω	mA
6	8.006	4.8	6.6	12	200
12	8.012	9.6	13.2	50	97
24	8.024	19.2	26.4	190	53
48	8.048	38.4	52.8	770	25
60	8.060	48	66	1,200	21
110	8.110	88	121	4,000	12.5
120	8.120	96	132	4,700	12
230	8.230	184	253	17,000	6
240	8.240	192	264	19,100	5.3

DC VERSION DATA

Nominal voltage U_{N}	Coil code	O perating range		Resistance R	Rated coil consumption I at U_{N}
V		V	V	Ω	mA
6	9.006	4.8	6.6	40	150
12	9.012	9.6	13.2	140	86
24	9.024	19.2	26.4	600	40
48	9.048	38.4	52.8	2,400	20
60	9.060	48	66	4,000	15
110	9.110	88	121	12,500	8.8

R 55 AC

O perating range (AC type) vs ambient temperature.
1 - Max coil voltage permitted.
2 - M in pick-up voltage with coil at a mbient temperature.

R 55 DC

O perating range (DC type) vs a mbient temperature.
1 - Max coil voltage permitted.
2 - M in pick-up voltage with coil at a mbient temperature.

94 Series - Sockets and Accessories for 55 Series Relays

Approvals (according to type):

Relay type	55.32		55.33		55.32, 55.34	
Colour	BLUE	BLACK	BLUE	BLACK	BLUE	BLACK
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 094.71 supplied with socket packaging code SMA	94.02	94.02 .0	94.03	94.03 .0	94.04	94.04 .0
M etal retaining clip	094.71					
Plastic retaining and release clip	094.01					
6 -way jumper link for 94.02, 94.03 and 94.04 sockets	094.06	094.06.0	094.06	094.06.0	094.06	094.06.0
Identification tag	094.00 .4					
M odules (see table below)	99.02					
Timer modules	86.10, 86.20					
Sheet of marker tags for retaining and release clip 094.01	060.72					

-RATED VALUES: $10 \mathrm{~A}-250 \mathrm{~V}$
DIELEC TRIC STREN G TH: $\geq 2 \mathrm{kV}$ AC
PRO TECTIO N CATEG O RY: IP 20 AM BIEN T TEM PERATURE: $(-40 \ldots+70)^{\circ} \mathrm{C}$
(반) SCREW TO RQ UE: 0.5 Nm
W IRE STRIP LEN G TH: 8 mm
MAX W IRE SIZE:

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AW G	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

6-way jumper link for 94.02, 94.03 and 94.04 sockets
6-w an jorn

99.02 modules for $94.02,94.03$ and 94.04 sockets		BLUE
Diode** (+A1)	(6...220) V DC	99.02.3.000.00
Diode (inverted polarity)	(6...220) V DC	99.02.2.000.00
LED	(6...24) V DC/AC	99.02.0.024.59
LED	(28...60) V DC/AC	99.02.0.060.59
LED	(110...240) V DC/AC	99.02.0.230.59
LED + Diode** (+A1)	(6...24) V DC	99.02.9.024.99
LED + Diode** (+A1)	(28...60) V DC	99.02.9.060.99
LED + Diode** (+A1)	(110...220) V DC	99.02.9.220.99
LED + Diode (inverted polarity)	(6...24) V DC	99.02.9.024.79
LED + Diode (inverted polarity)	(28...60) V DC	99.02.9.060.79
LED + Diode (inverted polarity)	(110...220) V DC	99.02.9.220.79
LED + Varistor	(6...24) V DC/AC	99.02.0.024.98
LED + Varistor	(28...60) V DC/AC	99.02.0.060.98
LED + Varistor	(110...240) V DC/AC	99.02.0.230.98
RC circuit	(6...24) V DC/AC	99.02.0.024.09
RC circuit	(28...60) V DC/AC	99.02.0.060.09
RC circuit	(110...240) V DC/AC	99.02.0.230.09
No - remanence (62 k Ω / 1W)	(110...240) V AC	99.02.8.230.07

**For DC supply, apply the positive to terminal A1. M odules in Black housing are available on request.

94 Series－Sockets and Accessories for 55 Series Relays

Approvals
（according to type）：
CE（B）© ©

GOST $\Leftrightarrow c{ }_{c} \mathbf{I}_{\mathrm{US}}$

－RATED VALUES： $10 \mathrm{~A}-250 \mathrm{~V}$ －DIELEC TRIC STREN G TH： $\geq 2 \mathrm{kV} \mathrm{AC}$
－PRO TECTIO N CATEG O RY：IP 20
－AM BIEN T TEM PERATURE：
$(-40 \ldots+70)^{\circ} \mathrm{C}$
（－7）SCREW TO RQ UE： 0.5 Nm －W IRE STRIP LEN G TH： 8 mm
－M AX W IRE SIZE：

	solid wire	stranded wire
mm^{2}	$1 \times 2.5 / 2 \times 1.5$	$1 \times 2.5 / 2 \times 1.5$
AW G	$1 \times 14 / 2 \times 16$	$1 \times 14 / 2 \times 16$

Relay type	55.32		55.33		55．32， 55.34	
Colour	BLUE	BLACK	BLUE	BLACK	BLUE	BLACK
Screw terminal socket：panel or 35 mm rail（EN 50022）mount retaining clip 094.71 supplied with socket packaging code SMA	94.72	94．72．0	94.73	94．73．0	94.74	94.74 .0
Retaining clip	094.71					
M odules（see table below）	99.01					

94.73

94.72

Approvals （according to type）：
C \in（6）GOST
（B）${ }^{2} \mathbf{N L}_{u S}^{\circ}$
－RATED VALUES： $10 \mathrm{~A}-250 \mathrm{~V}$ －DIELECTRIC STREN GTH：$\geq 2 \mathrm{kV}$ AC
－PRO TECTIO N CATEG ORY：IP 20
－AM BIEN T TEM PERATURE：$(-40 \ldots+70)^{\circ} \mathrm{C}$
－fㅏㄴ SCREW TO RQ UE： 0.5 Nm
－W IRE STRIP LEN G TH： 9 mm
－MAX W IRE SIZE：

	solid wire	stranded wire
mm^{2}	$1 \times 2.5 / 2 \times 1.5$	$1 \times 2.5 / 2 \times 1.5$
AW G	$1 \times 14 / 2 \times 16$	$1 \times 14 / 2 \times 16$

娄图图園 No

94.74

| 55.32 |
| :--- | :--- |

| 94.74 | | |
| :--- | :--- | :--- | :--- |
| | $\mathbf{5 5 . 3 2}$ | BLACK |
| | BLUE | 94.82 .0 |
| | 94.82 | |
| | | 094.71 |
| | 99.01 | |

94.82

$\mathbf{9 9 . 0 1}$ modules for $94.72,94.73,94.74$ and 94.82 sockets

Diode＊＊（＋A1）	（6．．．220）V DC	99．01．3．000．00
Diode（inverted polarity）	（6．．．220）V DC	99．01．2．000．00
LED	（6．．．24）V DC／AC	99．01．0．024．59
LED	（28．．．60）V DC／AC	99．01．0．060．59
LED	（110．．．240）V DC／AC	99．01．0．230．59
LED＋Diode＊＊（＋A1）	（6．．．24）V DC	99．01．9．024．99
LED＋Diode＊＊（＋A1）	（28．．．60）V DC	99．01．9．060．99
LED＋Diode＊＊（＋A1）	（110．．．220）V DC	99．01．9．220．99
LED＋Diode（inverted polarity）	（6．．．24）V DC	99．01．9．024．79
LED＋Diode（inverted polarity）	（28．．．60）V DC	99．01．9．060．79
LED＋Diode（inverted polarity）	（110．．．220）V DC	99．01．9．220．79
LED＋Varistor	（6．．．24）V DC／AC	99．01．0．024．98
LED＋Varistor	（28．．．60）V DC／AC	99．01．0．060．98
LED＋Varistor	（110．．．240）V DC／AC	99．01．0．230．98
RC circuit	（6．．．24）V DC／AC	99．01．0．024．09
RC circuit	（28．．．60）V DC／AC	99．01．0．060．09
RC circuit	（110．．．240）V DC／AC	99．01．0．230．09
No－remanence（62 k Ω／1W ）	（110．．．240）V AC	99．01．8．230．07

＊＊For DC supply，apply the positive to terminal A1．Modules in Black housing are available on request．

94 Series - Sockets and Accessories for 55 Series Relays

Approvals (according to type):

Relay type	$\mathbf{5 5 . 3 2 , 5 5 . 3 4}$	
Colour	BLUE	BLACK
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 094.71 supplied with socket packaging code SM A	94.84 .1	94.84 .10
Retaining clip		094.71
Identification tag	094.80 .2	
Modules (see table below)	99.80	

(\in © GOST 딘

- RATED VALUES: $10 \mathrm{~A}-250 \mathrm{~V}$ - DIELEC TRIC STREN G TH: $\geq 2 \mathrm{kV}$ AC - PRO TECTIO N CATEG ORY: IP 20 - AM BIEN T TEM PERATURE: $(-40 \ldots+70)^{\circ} \mathrm{C}$

$$
\text { (i) SCREW TO RQ UE: } 0.5 \mathrm{Nm}
$$

W IRE STRIP LEN GTH: 7 mm
MAX W IRE SIZE:

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AW G	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

in

$\mathbf{9 9 . 8 0}$ modules for 94.84 .1 sockets

Diode** (+A 1)	(6...220) V DC
LED	(6...24) V DC/ AC
LED	(28...60) V DC/ AC
LED	(110...240) V DC/AC
LED + Diode** (+A 1)	(6...24) V DC
LED + Diode** (+A1)	(28...60) V DC
LED + Diode** (+A1)	(110...220) V DC
LED + Varistor	(6...24) V DC / AC
LED + Varistor	(28...60) V DC/AC
LED + Varistor	(110...240) V DC/AC
RC circuit	(6...24) V DC / AC
RC circuit	(28...60) V DC/ AC
RC circuit	(110...240) V DC/AC
N o - remanence (62 k $/ 1 \mathrm{~W}$)	(110...240) V AC

** For DC supply, apply the positive to terminal A1. Modules in Black housing are available on request. Green LED is standard. Red LED available on request.

Relay type	55.32		55.33		55.32, 55.34	
Colour	BLUE	BLACK	BLUE	BLACK	BLUE	BLACK
P.C.B. socket retaining clip 094.51 supplied with socket packaging code SM A	94.12	94.12.0	94.13	94.13 .0	94.14	94.14 .0
M etal retaining clip	094.51					

Approvals (according to type):

($\boldsymbol{\epsilon}$ © $\mathrm{c} \mathrm{N}_{\text {US }}^{\circ}$

-RATED VALUES: 10 A - 250 V - DIELECTRIC STREN G TH: $\geq 2 \mathrm{kV} \mathrm{AC}$

- AM BIEN T TEM PERATURE: $(-40 \ldots+70)^{\circ} \mathrm{C}$

Copper side view

94 Series - Sockets and Accessories for 55 Series Relays

Approvals (according to type):

- RATED VALUES: 10 A - 250 V
- DIELECTRIC STREN G TH: $\geq 2 \mathrm{kV} \mathrm{AC}$
- AM BIEN T TEM PERATURE: $(-40 \ldots+70)^{\circ} \mathrm{C}$

Relay type	55.32		55.33		55.32, 55.34	
Colour	BLUE	BLACK	BLUE	BLACK	BLUE	BLACK
Panel mount solder socket: 1 mm thick panel retaining clip 094.51 supplied with socket packaging code SMA	94.22	94.22 .0	94.23	94.23 .0	94.24	94.24 .0
M etal retaining clip	094.51					

	Relay type	55.32		55.33		55.32, 55.34	
	Colour	BLUE	BLACK	BLUE	BLACK	BLUE	BLACK
	Panel mount socket: M 3 screw mount - solder connections retaining clip 094.51 supplied with socket packaging code SM A	94.32	94.32 .0	94.33	94.33.0	94.34	94.34 .0
94.34	M etal retaining clip	094.51					

Approvals (according to type):

CE (1) cil ${ }_{\text {US }}^{\text {css }}$
 GOST

- RATED VALUES: 10 A - 250 V
- DIELEC TRIC STREN G TH: $\geq 2 \mathrm{kV} \mathrm{AC}$
- AM BIEN T TEM PERATURE: $(-40 \ldots+70)^{\circ} \mathrm{C}$

Sheet of marker tags for retaining clip 094.01 (72 tags)
060.72

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.
Code options according to the last three letters:

A Standard packaging

SM M etal retaining clip
SP Plastic retaining clip
SX No retaining clip

WARNING LIGHTS

Lampalarm Xeno

\square Stainless steel
$\square 6 \mathrm{~J}$ xenon
\square IP67
■ Wide choice of voltages

SPECIFIGATIONS

VOLTAGE	
12/24Vac/dc	
110Vac	
240Vac	

CURRENT	GANDEL/A
$1.8 / 0.85 \mathrm{~A}$	$3,000 \mathrm{Cd}(\mathrm{p})$
130 mA	$2,000 \mathrm{Cd}(\mathrm{p})$
100 mA	$5,000 \mathrm{Cd}(\mathrm{p})$

Flash Rate:	65
Flash Energy:	6

Voltage Tolerance: $\pm 10 \%$ (ac 50/60Hz)
Protection: IP67
Temp Rating (${ }^{\circ} \mathbf{C}$): $\quad-30$ to +40
Cable Entry: Through base

Construction:

Weight:

ORDER CODE

SIRM2502440*
SIRM2511040*
SIRM2524040*

12/24Vac/dc 110Vac
240Vac

**SPECIFY COLOUR A = Amber, B = Blue, C = Clear, G = Green, R = Red
ACCESSORIES AND SPARE PARTS
SIR3999060
6 Joule Xenon Tube

PULS
ロIMתUSION C-Series CS5.241, CS5.241-C1, CS5.241-S1

24V, 5A, Single Phase Input

1. General Description

The Dimension C-Series are cost optimized power supplies without compromising quality, reliability and performance. The C-Series is part of the Dimension power supply family, existing alongside the high featured Q-series.
The C series includes all the essential basic functions and the devices have a power reserve of 20%. This extra current may even be used continuously at temperatures up to $+45^{\circ} \mathrm{C}$. The most important features are the small size, the high efficiency and the wide temperature range.
The Auto-select input makes worldwide installation and usage very simple. Defects or system failures caused by wrongly set switches can not occur.

C-Series

3. Order Numbers

Power Supply	CS5.241	Standard unit CS5.241-C1 Conformal coated PC- boards
	CS5.241-S1	Quick-connect spring- clamp terminals
Accessory	ZM1.WALL	Wall mount bracket ZM11.SIDE YRM2.DIODE mount bracket

Power Supply

- AC 100-120 / 200-240V Auto Select Input
- Efficiency up to 90.2%
- Width only 32 mm
- 20% Output Power Reserves
- Full Output Power Between $-25^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}$
- Minimal Inrush Current Surge
- 3 Year Warranty

2. Short-form Data

Output voltage Adjustment range	DC 24V	
	24-28V	
Output current	5-4.3A	ambient $<60^{\circ} \mathrm{C}$
	6-5,1A	ambient $<45^{\circ} \mathrm{C}$
Output power	120W	ambient $<60^{\circ} \mathrm{C}$
	144W	ambient $<45^{\circ} \mathrm{C}$
Output ripple	< 50mVpp	20 Hz to 20MHz
Input voltage	$\begin{aligned} & \text { AC 100-120 / } \\ & 200-240 \mathrm{~V} \end{aligned}$	Auto-select Input
Mains frequency	$50-60 \mathrm{~Hz}$	$\pm 6 \%$
AC Input current	typ. 2.05 / 1.23A	at 120 / 230Vac
Power factor	typ. 0.56 / 0.47	at 120 / 230Vac
AC Inrush current	typ. 3A peak	
DC Input	not allowed	
Efficiency	typ. 89.4 / 90.2\%	at 120 / 230Vac
Losses	typ. 14.5 / 13.2W	at 120 / 230Vac
Temperature range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	operational
Derating	$3 \mathrm{~W} /{ }^{\circ} \mathrm{C}$	+60 to $+70^{\circ} \mathrm{C}$
Hold-up time	typ. $80 / 78 \mathrm{~ms}$	at 120 / 230Vac
Dimensions	$32 \times 124 \times 117 \mathrm{~mm}$	WxHxD

4. Markings

24V, 5A, Single Phase Input

1. General Description .. 1
2. Short-form Data .. 1
3. Order Numbers.. 1
4. Markings... 1
5. AC-Input.. 3
6. Input Inrush Current Surge 4
7. Hold-up Time... 4
8. Output .. 5
9. Efficiency and Power Losses................................ 6
10. Functional Diagram... 7
11. Reliability .. 7
12. Front Side and User Elements............................. 8
13. Terminals and Wiring.. 8
14. EMC... 9
15. Environment.. 11
16. Protection Features ... 11
17. Safety ... 12
18. Dielectric Strength .. 12
19. Approvals.. 13

INDEX

Page

20. Fulfilled Standards 13
21. Used Substances 13
22. Physical Dimensions and Weight 14
23. Installation and Operation Instructions 14
24. Accessory 15
25. Application Notes 16
25.1. Peak Current Capability 16
25.2. Charging of Batteries 16
25.3. Back-feeding Loads 16
25.4. Output Circuit Breakers 17
25.5. Inductive and Capacitive Loads 17
25.6. Series Operation 18
25.7. Parallel Use to Increase Output Power 18
25.8. Parallel Use for $1+1$ Redundancy. 18
25.9. External Input Protection 19
25.10. Operation on Two Phases 19
25.11. Use in a Tightly Sealed Enclosure 19
25.12. Mounting Orientations 20

Intended Use

The power supply shall only be installed and put into operation by qualified personnel.
This power supply is designed for installation in an enclosure and is intended for the general use, such as in industrial control, office, communication, and instrumentation equipment. Do not use this device in aircraft, trains and nuclear equipment, where malfunctioning of the power supply may cause severe personal injury or threaten human life.

Terminology and Abreviations

PE and $\left.{ }^{(}\right)$symbol

 Earth, GroundT.b.d.

AC 230V

230Vac

PE is the abbreviation for Protective Earth and has the same meaning as the symbol \mathcal{E}. This document uses the term "earth" which is the same as the U.S. term "ground". To be defined, value or description will follow later. A figure displayed with the AC or DC before the value represents a nominal voltage with standard tolerances (usually $\pm 20 \%$) included.
E.g.: DC 12 V describes a 12 V battery disregarding whether it is full (13.7 V) or flat (10 V) As long as not otherwise stated, AC 100 V and $A C 230 \mathrm{~V}$ parameters are valid at 50 Hz and $A C$ 120 V parameters are valid at 60 Hz mains frequency.
A figure with the unit (Vac) at the end is a momentary figure without any additional tolerances included.

DISCLAIMER

The information presented in this document is believed to be accurate and reliable and may change without notice.

PULS

CS5.241, CS5.241-C1, CS5.241-S1
ロIMNENSION C-Series

24V, 5A, Single Phase Input

5. AC-Input

AC input	nom.	$\begin{aligned} & \text { AC } 100-120 \mathrm{~V} / \\ & 200-240 \mathrm{~V} \end{aligned}$	auto-select input, TN-, TT-, IT-Mains, see Fig. 5-1		
AC input range		$\begin{aligned} & 90-132 \mathrm{Vac} \\ & 180-264 \mathrm{Vac} \\ & 85-90 \mathrm{Vac} \\ & 264-300 \mathrm{Vac} \end{aligned}$	100-120V range, continuous operation 200-240V range, continuous operation Short term or with output derating <0.5 s		
Input frequency	nom.	$50-60 \mathrm{~Hz}$	$\pm 6 \%$		
		AC 100V	AC 120V	AC 230V	
Input current	typ.	2.34A	2.05A	1.23A	at 24V, 5A see Fig. 5-3
Power factor *)	typ.	0.58	0.56	0.47	at 24V, 5A see Fig. 5-1
Crest factor **)	typ.	2,9	3,1	3,7	at $24 \mathrm{~V}, 5 \mathrm{~A}$
Start-up delay	typ.	740 ms	900 ms	720 ms	see Fig. 5-2
Rise time	typ.	8 ms	8 ms	8 ms	0mF, 24V, 5A, see Fig. 5-2
	typ.	25 ms	25 ms	25 ms	$5 \mathrm{mF}, 24 \mathrm{~V}, 5 \mathrm{~A}$, see Fig. 5-2
Turn-on overshoot	max.	400 mV	400 mV	400 mV	see Fig. 5-2
Turn-on voltage	typ.	75Vac	75Vac	N/A	steady-state value, see Fig. 5-1
Shut-down voltage	typ.	55 Vac	55 Vac	N/A	steady-state value, see Fig. 5-1

*) The power factor is the ratio of the true (or real) power to the apparent power in an AC circuit.
${ }^{* *}$) The crest factor is the mathematical ratio of the peak value to the RMS value of the input current waveform

Fig. 5-3 Input current vs. output load

Fig. 5-2 Turn-on behavior, definitions

Fig. 5-4 Power Factor vs. output load

6. Input Inrush Current Surge

An active inrush limitation circuitry limits the input inrush current after turn-on of the input voltage.
The charging current into EMI suppression capacitors is disregarded in the first milliseconds after switch-on.

		AC 100V	AC 120V	AC 230V	
Inrush current	max.	$10 \mathrm{~A}_{\text {peak }}$	$10 \mathrm{~A}_{\text {peak }}$	$10 \mathrm{~A}_{\text {peak }}$	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	typ.	$3 \mathrm{~A}_{\text {peak }}$	$3 \mathrm{~A}_{\text {peak }}$	$3 \mathrm{~A}_{\text {peak }}$	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Inrush energy	typ.	$1 \mathrm{~A}^{2} \mathrm{~s}$	$1 \mathrm{~A}^{2} \mathrm{~s}$	$1 \mathrm{~A}^{2} \mathrm{~s}$	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Fig. 6-1 Input inrush current, typical behavior

A:
Input: Output: Ambient:

Upper curve:
Medium curve: Input voltage 500 V / DIV
Lower curve: Output voltage 20V / DIV
Time scale: 100 ms / DIV

7. Hold-up Time

	AC 100V				AC 120V
Hold-up Time	typ.	109 ms	165 ms	161 ms	$2,5 \mathrm{~A}, 24 \mathrm{~V}$, see Fig. 7-1
	typ.	50 ms	80 ms	78 ms	$5 \mathrm{~A}, 24 \mathrm{~V}$, see Fig. 7-1
	typ.	37 ms	62 ms	63 ms	$6 \mathrm{~A}, 24 \mathrm{~V}$, see Fig. 7-1

Fig. 7-1 Hold-up time vs. input voltage

Fig. 7-2 Shut-down behavior, definitions

Note: At no load, the hold-up time can be up to several seconds. The green DC-ok lamp is on during this time.

8. Output

Output voltage	nom.	24V	
Adjustment range	\min. max.	$\begin{aligned} & 24-28 \mathrm{~V} \\ & 30 \mathrm{~V} \end{aligned}$	guaranteed at clockwise end position of potentiometer
Factory setting		24.1 V	$\pm 0.2 \%$, at full load, cold unit
Line regulation	max.	70 mV	90 to 132Vac or 180 to 264 Vac
Load regulation	max.	100 mV	static value, $0 \mathrm{~A} \rightarrow 5 \mathrm{~A} \rightarrow 0 \mathrm{~A}$
Ripple and noise voltage	max.	50 mVpp	20 Hz to 20 MHz , 500 hm
Output capacitance	typ.	$1800 \mu \mathrm{~F}$	
Output current	nom.	6A U)	at 24 V , ambient $<45^{\circ} \mathrm{C}$, see Fig. 8-1
	nom.	5A	at 24 V , ambient $<60^{\circ} \mathrm{C}$, see Fig. 8-1
	nom.	5.1A U)	at 28 V , ambient $<45^{\circ} \mathrm{C}$, see Fig. 8-1
	nom.	4.3A	at 28 V , ambient $<60^{\circ} \mathrm{C}$, see Fig. 8-1
Output power	nom.	144W U)	ambient $<45^{\circ} \mathrm{C}$
	nom.	120W	ambient $<60^{\circ} \mathrm{C}$
Short-circuit current	min.	10A	load impedance 200 mOhm , see Fig. 8-1
	max.	14A	load impedance 200 mOhm , see Fig. 8-1

U) The unit may respond with a thermal shut-down when continuously loaded with more than 120 W and operated with a mains voltage of 100 V or below.

Fig. 8-1 Output voltage vs. output current, typ.

Peak current capability (up to several ms)

The power supply can deliver a peak current which is higher than the specified short term current. This helps to start current demanding loads or to safely operate subsequent circuit breakers.
The extra current is supplied by the output capacitors inside the power supply. During this event, the capacitors will be discharged and causes a voltage dip on the output. Detailed curves can be found in chapter 25.1.

Peak current voltage dips	typ.	from 24 V to 18.5 V	at 10 A for 50 ms , resistive load
	typ.	from 24 V to 22 V	at 25 A for 2 ms , resistive load
typ.	from 24 V to 20 V	at 25 A for 5 ms , resistive load	

PULS

9. Efficiency and Power Losses

		AC 100V	AC 120V	AC 230V	
Efficiency	typ.	88.8%	89.4%	90.2%	$5 \mathrm{~A}, 24 \mathrm{~V}$
Power losses	typ.	1.9 W	2.0 W	1.7 W	0 A
	typ.	9.1 W	8.8 W	8.2 W	$2.5 \mathrm{~A}, 24 \mathrm{~V}$
	typ.	15.3 W	14.5 W	13.2 W	$5 \mathrm{~A}, 24 \mathrm{~V}$
	typ.	19.4 W	18.2 W	16.1 W	$6 \mathrm{~A}, 24 \mathrm{~V}$

Fig. 9-1 Efficiency vs. output current at 24V

Fig. 9-3 Efficiency vs. input voltage, 24V, 5A

Fig. 9-2 Losses vs. output current at $\mathbf{2 4 V}$

Fig. 9-4 Losses vs. input voltage, 24V, 5A

10. Functional Diagram

Fig. 10-1 Functional diagram

11. ReLIABility

		AC 100V	AC 120V	AC 230V	
Lifetime expectancy	min.	52000 h	58000 h	72000 h	$40^{\circ} \mathrm{C}, 24 \mathrm{~V}, 5 \mathrm{~A}$
	min.	27000 h	34000 h	42000 h	$40^{\circ} \mathrm{C}, 24 \mathrm{~V}, 6 \mathrm{~A}$
	min.	135000 h	128000 h	144000 h	$40^{\circ} \mathrm{C}, 24 \mathrm{~V}, 2,5 \mathrm{~A}$
	min.	142000 h	15 years	15 years	$25^{\circ} \mathrm{C}, 24 \mathrm{~V}, 5 \mathrm{~A}$
MTBF SN 29500, IEC 61709		63800 h	661000 h	869000 h	$40^{\circ} \mathrm{C}, 24 \mathrm{~V}, 5 \mathrm{~A}$
		542000 h	562000 h	739000 h	$40^{\circ} \mathrm{C}, 24 \mathrm{~V}, 6 \mathrm{~A}$
MTBF MIL HDBK 217F		1077000 h	1111000 h	1495000 h	$25^{\circ} \mathrm{C}, 24 \mathrm{~V}, 5 \mathrm{~A}$
		552000 h	546000 h	574000 h	$40^{\circ} \mathrm{C}, 24 \mathrm{~V}, 5 \mathrm{~A}$, Ground Benign GB40
	497000 h	491000 h	517000 h	$40^{\circ} \mathrm{C}, 24 \mathrm{~V}, 6 \mathrm{~A}$, Ground Benign GB40	
		78800 h	775000 h	800000 h	$25^{\circ} \mathrm{C}, 24 \mathrm{~V}, 5 \mathrm{~A}$, Ground Benign GB25

The Lifetime expectancy shown in the table indicates the operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors.
Lifetime expectancy is specified in operational hours. Lifetime expectancy is calculated according to the capacitor's manufacturer specification. The prediction model allows a calculation of up to 15 years from date of shipment.
MTBF stands for Mean Time Between Failure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product.

12. Front Side and User Elements

Fig. 12-1 Front side

Output Terminals
Screw terminals
(Spring-clamp terminals on the CS5.241-S1)
$+\quad$ Positive output

- Negative (return) output Dual pins per pole

Input Terminals

Screw terminals (Spring-clamp terminals on the CS5.241-S1)
N ... Neutral input
L... Line (hot) input
© ${ }^{(1)}$.. PE (Protective Earth) input

Output voltage potentiometer
Open the flap to tune the output voltage. Factory set: 24.1V

DC-on lamp (green)
On when the voltage on the output terminals is > 21 V

13. Terminals and Wiring

Type	Screw terminals (CS5.241, CS5.241-C1),); Spring-clamp terminals (CS5.241-S1)
Solid wire	$0.5-6 \mathrm{~mm}^{2}$
Stranded wire	$0.5-4 \mathrm{~mm}^{2}$
American wire gauge	20-10 AWG
Ferrules	allowed, but not required
Wire stripping length	$7 \mathrm{~mm} / 0.275$ inch
Screwdriver	3.5 mm slotted or Pozidrive No 2 (only for screw terminals)
Recommended tightening torque	0.8 Nm , 7lb.in (only for screw terminals)
Instructions:	
a) Use appropriate copper cable $60^{\circ} \mathrm{C}$ for ambient up to $45^{\circ} \mathrm{C}$ $75^{\circ} \mathrm{C}$ for ambient up to $60^{\circ} \mathrm{C}$	that are designed for an operating temperature of: d inimum.
b) Follow national installation cod	des and installation regulations!
c) Ensure that all strands of a str	nded wire enter the terminal connection!
d) Up to two stranded wires with e) Do not use the unit without	the same cross section are permitted in one connection point (except PE wire). connection.

PULS

14. EMC

The CE mark is in conformance with EMC guideline 89/336/EEC and 93/68/EEC and the low-voltage directive (LVD) 73/23/EWG. A detailed EMC Report is available on request.

EMC Immunity	EN 61000-6-2 EN 61000-6-1		Generic standards	
Electrostatic discharge	EN 61000-4-2	Contact discharge Air discharge	$\begin{aligned} & 8 \mathrm{kV} \\ & 15 \mathrm{kV} \end{aligned}$	Criterion A Criterion A
Electromagnetic RF field	EN 61000-4-3	$80 \mathrm{MHz}-1 \mathrm{GHz}$	10V/m	Criterion A
Fast transients (Burst)	EN 61000-4-4	Input lines Output lines	$\begin{aligned} & 4 \mathrm{kV} \\ & 2 \mathrm{kV} \end{aligned}$	Criterion A Criterion A
Surge voltage on input	EN 61000-4-5	$\begin{aligned} & \mathrm{L} \rightarrow \mathrm{~N} \\ & \mathrm{~N} / \mathrm{L} \rightarrow \mathrm{PE} \end{aligned}$	$\begin{aligned} & 2 \mathrm{kV} \\ & 4 \mathrm{kV} \end{aligned}$	Criterion A Criterion A
Surge voltage on output	EN 61000-4-5	$\begin{aligned} & +\rightarrow- \\ & +/-\rightarrow \mathrm{PE} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~V} \\ & 500 \mathrm{~V} \end{aligned}$	Criterion A Criterion A
Conducted disturbance	EN 61000-4-6	0,15-80MHz	10 V	Criterion A
Mains voltage dips	EN 61000-4-11	0% of 100 Vac 40% of 100 Vac 70% of 100 Vac 0% of 200 Vac 40% of 200 Vac 70% of 200 Vac	0Vac, 20ms $40 \mathrm{Vac}, 200 \mathrm{~ms}$ $70 \mathrm{Vac}, 500 \mathrm{~ms}$ $0 \mathrm{Vac}, 20 \mathrm{~ms}$ $80 \mathrm{Vac}, 200 \mathrm{~ms}$ $140 \mathrm{Vac}, 500 \mathrm{~ms}$	Criterion A Criterion C Criterion A Criterion A Criterion C Criterion A
Voltage interruptions	EN 61000-4-11		OVac, 5000 ms	Criterion C
Input voltage swells	PULS internal standard		$300 \mathrm{Vac}, 500 \mathrm{~ms}$	Criterion A
Powerful transients	VDE 0160	over entire load range	750V, 1.3ms	Criterion A

Criterions:

A: Power supply shows normal operation behavior within the defined limits.
C: Temporary loss of function is possible. Power supply might shut-down and restarts by itself. No damages or hazards for the power supply occur.

Switching frequency	175 kHz to 225 kHz
	100 kHz to 130 kHz

input voltage dependent 24V, 2.5A
input voltage dependent $24 \mathrm{~V}, 5 \mathrm{~A}$

EMC Emission	EN 61000-6-4	Generic standards
Conducted emission	EN 55011, EN 55022, FCC Part 15, CISPR 11, CISPR 22	Class B, input lines
	EN 55022	Class A, output lines
Radiated emission	EN 55011, EN 55022	Class B
Harmonic input current	EN 61000-3-2	>2.7 A output current not fulfilled
Voltage fluctuations, flicker	EN 61000-3-3	fulfilled
This device complies with FCC Part 15 rules. Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.		

Above an average output current of 2.7A, the harmonic current standard EN61000-3-2 is not fulfilled.
Please note:
A power supply has to comply with EN 61000-3-2 (Standard for harmonic input current) when:

1) the end-device is used within the European Union and
2) the end-device is connected to a public mains supply with a nominal voltage $\geq 220 \mathrm{Vac}$ and
3) the power supply is:

- fitted in an end-device with an average input power in excess of 75W or
- fitted in an end-device with a continuous input power in excess of 75 W or
- part of a lighting system.

Exceptions:

End-devices for professional applications with an input power $>1000 \mathrm{~W}$ do not need to fulfill EN 61000-3-2.

Comments:

- The average input power must be determined in accordance with EN 61000-3-2.
- Industrial mains supplies with their own transformer are considered to be "non-public".
- Where individual self-contained items of equipment are installed in a rack or case (e.g. devices connected in parallel), they are regarded as being individually connected to the mains supply. The rack or case need not be tested as a whole. Alternatively it is also permitted to assess the whole rack or case. This is recommended for devices used in professional applications with an input power greater than 1000 W .

24V, 5A, Single Phase Input

15. Environment

Operational temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$	reduce output power according Fig. 15-1
Output de-rating	$1.6 \mathrm{~W} /{ }^{\circ} \mathrm{C}$	$45-60^{\circ} \mathrm{C}$ ($113^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$),
	$3 \mathrm{~W} /{ }^{\circ} \mathrm{C}$	$60-70^{\circ} \mathrm{C}$ ($140^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$),
Storage temperature	-40 to $+85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	storage and transportation
Humidity	5 to 95% r.H.	IEC 60068-2-30 Do not energize while condensation is present
Vibration sinusoidal	$2-17.8 \mathrm{~Hz}: \pm 1.6 \mathrm{~mm} ; 17.8-500 \mathrm{~Hz}: 2 \mathrm{~g}$ 2 hours / axis	IEC 60068-2-6
Shock	$30 \mathrm{~g} 6 \mathrm{~ms}, 20 \mathrm{~g} 11 \mathrm{~ms}$ 3 bumps / direction, 18 bumps in total	IEC 60068-2-27
Altitude	0 to 6000 m (0 to 20000 ft)	Reduce output power or ambient temperature above 2000 m sea level.
Output de-rating (for altitude)	$7.5 \mathrm{~W} / 1000 \mathrm{~m}$ or $5^{\circ} \mathrm{C} / 1000 \mathrm{~m}$	above 2000m (6500ft), see Fig. 15-2
Over-voltage category	III	EN 50178, altitudes up to 2000m
	II	Altitudes from 2000 m to 6000 m
Degree of pollution	2	EN 50178, not conductive

Fig. 15-1 Output current vs. ambient temp.,

Fig. 15-2 Output current vs. altitude, 24V

The ambient temperature is defined 2 cm below the unit.

16. Protection Features

Output protection	Electronically protected against overload, no-load and short-circuits	
Output over-voltage protection	typ. 35Vdc max. 39Vdc	In case of an internal power supply defect, a redundant circuitry limits the maximum output voltage. The output shuts down and automatically attempts to restart.
Output over-current protection	electronically limited	see Fig. 8-1
Degree of protection	IP 20	EN/IEC 60529
Penetration protection	$>3.5 \mathrm{~mm}$	e.g. screws, small parts
Over-temperature protection	yes	output shut-down with automatic restart
Input transient protection	MOV	Metal Oxide Varistor
Internal input fuse	T4A H.B.C.	not user replaceable

Note: In case of a protection event, audible noise may occur.

17. SAFETY

Input / output separation	SELV	IEC/EN 60950-1
	PELV	EN 60204-1, EN 50178, IEC 60364-4-41
	double or reinforced insulation	
Class of protection	I	PE (Protective Earth) connection required
Isolation resistance	$>5 \mathrm{MOhm}$	input to output, 500 Vdc
PE resistance	$<0.1 \mathrm{hmm}$	between housing and PE terminal
Touch current (leakage current)	typ. 0.24 mA	$100 \mathrm{Vac}, 50 \mathrm{~Hz}, \mathrm{TN}$ mains
	typ. 0.35 mA	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$, TN mains
	typ. 0.40 mA	$230 \mathrm{Vac}, 50 \mathrm{~Hz}$, TN mains
	$<0.36 \mathrm{~mA}$	$110 \mathrm{Vac}, 50 \mathrm{~Hz}$, TN mains
	$<0.53 \mathrm{~mA}$	$132 \mathrm{Vac}, 60 \mathrm{~Hz}$, TN mains
	$<0.60 \mathrm{~mA}$	$264 \mathrm{Vac}, 50 \mathrm{~Hz}$, TN mains

18. Dielectric Strength

Fig. 18-1 Dielectric strength

		A	B	C
Type test	60 s	2500 Vac	3000 Vac	500 Vac
Factory test	5 s	2500 Vac	2500 Vac	500 Vac
Field test	5 s	2000 Vac	2000 Vac	500 Vac

Type tests and factory tests:
Conducted by the manufacturer. Do not repeat test in field!
Rules for field test:
Use appropriate test equipment which applies the voltage with a slow ramp! Connect L and N together as well as all output poles.
The output voltage is floating and has no ohmic connection to ground.
To fulfill the PELV requirements according to EN60204-1 § 6.4.1, we recommend that either the + pole, the - pole or any other part of the output circuit shall be connected to the protective earth system. This helps to avoid situations in which a load starts unexpectedly or can not be switched off any more when unnoticed earth faults occur.

19. Approvals

IEC 60950-1	IECEE CB SCHEME	CB Scheme, Information Technology Equipment
UL 508	(U) LISTED IND. CONT. EQ	LISTED as Industrial Control Equipment E198865
UL 60950-1	c	RECOGNIZED E137006 recognized for the use in U.S.A. (UL 60950-1) and Canada (C22.2 No. 60950) Information Technology Equipment, Level 3
Marine pending	(G) $A B S$	GL (Germanischer Lloyd) classified and ABS (American Bureau for Shipping) PDA for marine and offshore applications. Environmental category: C, EMC2

20. Fulfilled Standards

EN 61558-2-17	Safety of Power Transformers
EN/IEC 60204-1	Safety of Electrical Equipment of Machines
EN/IEC 61131-1	Programmable Controllers
EN 50178	Electronic Equipment in Power Installations

21. Used Substances

The unit does not release any silicone and is suitable for the use in paint shops.
Electrolytic capacitors included in this unit do not use electrolytes such as Quaternary Ammonium Salt Systems.
Plastic housings and other molded plastic materials are free of halogens, wires and cables are not PVC insulated.
The production material within our production does not include following toxic chemicals:
Polychlorized Biphenyl (PCB), Polychlorized Terphenyl (PCB), Pentachlorophenol (PCP), Polychlorinated naphthalene (PCN), Polybrom Biphenyl (PBB), Polybrom Bipheny-oxyd (PBO), Polybrominated Diphenylether (PBDE), Polychlorinated Diphenylether (PCDE), Polydibromphenyl Oxyd (PBDO), Cadmium, Asbest, Mercury, Silicia

22. Physical Dimensions and Weight

Weight

500g / 1.1 lb
DIN-Rail Use 35 mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15 mm . The DIN-rail height must be added to the depth $(117 \mathrm{~mm})$ to calculate the total required installation depth.
Electronic files with mechanical data can be downloaded at www.pulspower.com

Fig. 22-1 Front view

Fig. 22-2 Side view

23. Installation and Operation Instructions

Mounting Orientation:

Output terminal must be located on top and input terminal on the bottom. For other orientations consult factory.

Cooling:

Convection cooled, no forced cooling required. Do not cover ventilation grid (e.g. cable conduits) by more than 30\%!

Installation clearances:

40 mm on top, 20 mm on the bottom, 5 mm on the left and right side are recommended when loaded permanently with full power. In case the adjacent device is a heat source, 15 mm clearance are recommended.
Risk of electrical shock, fire, personal injury or death!
Do not use the unit without proper earth connection (Protective Earth). Use the pin on the terminal block for earth connection and not one of the screws on the housing.
Turn power off before working on the power supply. Protect against inadvertent re-powering.
Make sure the wiring is correct by following all local and national codes.
Do not open, modify or repair the unit.
Use caution to prevent any foreign objects from entering into the housing.
Do not use in wet locations or in areas where moisture or condensation can be expected.

Service parts:

The unit does not contain any service parts. The tripping of an internal fuse is caused by an internal defect. If damage or malfunctioning should occur during operation, immediately turn power off and send unit to factory for inspection!

PULS

24. ACCESSORY

ZM1.WALL Wall mounting bracket

This bracket is used to mount Dimension units onto a flat surface without utilizing a DIN-Rail. The two aluminum brackets and the black plastic slider of the unit have to be detached, so that the two steel brackets can be mounted.

Fig. 24-1 ZM1.WALL Wall Mounting Bracket

Fig. 24-2 Assembled Wall Mounting Bracket

ZM11.SIDE Side mounting bracket

This bracket is used to mount Dimension units sideways with or without utilizing a DIN-Rail. The two aluminum brackets and the black plastic slider of the unit have to be detached, so that the steel brackets can be mounted.
For sideway DIN-rail mounting, the removed aluminum brackets and the black plastic slider need to be mounted on the steel bracket.

Fig. 24-3 ZM13.SIDE Side Mounting Bracket

Fig. 24-4 Side Mounting with DIN-rail brackets

CS5.241, CS5.241-C1, CS5.241-S1

25. Application Notes

25.1. Peak Current Capability

Solenoids, contactors and pneumatic modules often have a steady state coil and a pick-up coil. The inrush current demand of the pick-up coil is several times higher than the steady state current and usually exceeds the nominal output current (including the PowerBoost) The same situation applies, when starting a capacitive load.
Branch circuits are often protected with circuit breakers or fuses. In case of a short or an overload in the branch circuit, the fuse needs a certain amount of over-current to trip or to blow. The peak current capability ensures the safe operation of subsequent circuit breakers.
Assuming the input voltage is turned on before such an event, the built-in large sized output capacitors inside the power supply can deliver extra current. Discharging this capacitor causes a voltage dip on the output. The following two examples show typical voltage dips:

Fig. 25-1 Peak load 20A for 50ms, typ.

Peak load 10A (resistive) for 50 ms Output voltage dips from 24 V to 18.5 V .

Fig. 25-2 Peak load 50A for 5ms, typ.

Peak load 25A (resistive) for 5ms Output voltage dips from 24 V to 20 V .

25.2. Charging of Batteries

The power supply shall not be used to charge batteries. Choose Q-Series for charging batteries.

25.3. BACK-FEEDING LOADS

Loads such as decelerating motors and inductors can feed voltage back to the power supply. This feature is also called return voltage immunity or resistance against Back- E.M.F. (Electro Magnetic Force).
This power supply is resistant and does not show malfunctioning when a load feeds back voltage to the power supply. It does not matter, whether the power supply is on or off.
The maximum allowed feed back voltage is 35 Vdc . The absorbing energy can be calculated according to the built-in large sized output capacitor which is specified in chapter 8.

PULS

CS5.241, CS5.241-C1, CS5.241-S1

ロIMENSION
C-Series
24V, 5A, Single Phase Input

25.4. Output Circuit Breakers

Standard miniature circuit breakers (MCBs) can be used for branch protection. Ensure that the MCB is rated for DC voltage, too. The following tests show which circuit breakers the power supply typically trips.
Circuit breakers have huge tolerances in their tripping behavior. Therefore, these typical tests can only be used as a recommendation or for comparing two different power supplies. Furthermore, the loop impedance has a major influence on whether a breaker trips or not. Two tests were performed, representing typical situations:

Test 1: Short circuit with S1 on the power supply end of the cable (loop impedance approx. 20mOhm)
Fig. 25-3 Branch protectors, test circuit 1

Parameters:
Input voltage: 230Vac, load current: 0A
The following circuit breaker tripped during the test:
A- or Z-Characteristic:: equal or smaller 8A
B- Characteristic: \quad no tripping $\geq 6 A$
C- Characteristic: equal or smaller 4A

Test 2: Short circuit with S1 on the load end (additional impedance included; represents longer load wire length).

Parameters:
Input voltage: 230Vac, load current: 0A
The following circuit breaker tripped during the test:
A- or Z-Characteristic:: $\leq 6 A$ and $R=180 \mathrm{mOhm}$
B- Characteristic: no tripping $\geq 6 \mathrm{~A}$
C- Characteristic: $\quad \leq 3 \mathrm{~A}$ and $\mathrm{R}=270 \mathrm{mOhm}$

What does this resistance mean in wire length?

								$\mathbf{0 . 5 \mathbf { m m } ^ { \mathbf { 2 } }}$	$\mathbf{0 . 7 \mathbf { m m } ^ { \mathbf { 2 } }}$	$\mathbf{1 . 0 \mathbf { m m } ^ { \mathbf { 2 } }}$	$\mathbf{1 . 5 \mathbf { m m } ^ { \mathbf { 2 } }}$	$\mathbf{2 . 5 \mathbf { m m } ^ { \mathbf { 2 } }}$	$\mathbf{4 . 0 \mathbf { m m } ^ { \mathbf { 2 } }}$
$\mathbf{1 8 0 m O h m}$	5.0 m	7.0 m	10 m	15 m	25 m	40 m							
$\mathbf{2 7 0 m O h m}$	7.5 m	10.5 m	15 m	23 m	38 m	60 m							

Example:

Which wire gauge must be used to trip a C-Characteristic circuit breaker with a rating of 3A? The load wire length is 21m.
Answer: A 3A C-Characteristic circuit breaker requires a loop impedance of less than 270 mOhm (test results). The wire length table shows that up to 23 m wire with a cross section of $1.5 \mathrm{~mm}^{2}$ are below 270 mOhm . A wire not smaller than $1.5 \mathrm{~mm}^{2}$ shall be used.

25.5. Inductive and Capacitive Loads

The unit is designed to supply any kind of load, including unlimited capacitive and inductive loads.

25.6. Series Operation

The power supply can be put in series to increase the output voltage.

Instructions for use in series:

a) It is possible to connect as many units in series as needed, providing the sum of the output voltage does not exceed 150 Vdc .
b) Voltages with a potential above 60 Vdc are not SELV any more and can be dangerous. Such voltages must be installed with a protection against touching.
c) For serial operation use power supplies of the same type.
d) Earthing of the output is required when the sum of the output voltage is above 60 Vdc .
e) Keep an installation clearance of 15 mm (left/right) between two power supplies and avoid installing the power supplies on top of each other.

Note: Avoid return voltage (e.g. from a decelerating motor or battery) which is applied to the output terminals.

25.7. Parallel Use to Increase Output Power

The power supply shall not be used in parallel to increase the output power.

25.8. Parallel Use for $1+1$ Redundancy

Power supplies can be paralleled for $1+1$ redundancy to gain a higher system availability. Redundant systems require a certain amount of extra power to support the load in case one power supply unit fails. The simplest way is to put two C-Series power supplies in parallel. In case one power supply unit fails, the other one is automatically able to support the load current without any interruption. This simple way to build a redundant system has two major disadvantages:

- The faulty power supply can not be recognized. The green LED will still be on since it is reverse-powered from the other power supply.
- It does not cover failures such as an internal short circuit in the secondary side of the power supply. In such a virtually nearly impossible - case, the defective unit becomes a load for the other power supplies and the output voltage can not be maintained any more.
This can only be avoided by utilizing decoupling diodes which are included in the decoupling module YR2.DIODE or redundancy module YRM2.DIODE.
Recommendations for building redundant power systems:
a) Use separate input fuses for each power supply.
b) Monitor the individual power supply units. A DC-ok lamp and a DC-ok contact is included in the redundancy module YRM2.DIODE. This feature reports a faulty unit.
c) When possible, connect each power supply to different phases or circuits.

PULS

25.9. External Input Protection

The unit is tested and approved for branch circuits up to 20A. External protection is only required if the supplying branch has an ampacity greater than this. In some countries local regulations might apply. Check also local codes and local requirements.
If an external fuse is necessary or utilized, a minimum value is required to avoid undesired tripping of the fuse.

		B-Characteristic	C-Characteristic
Ampacity	max.	20 A	20 A
	\min.	10 A	6 A

25.10. Operation on Two Phases

Fig. 25-6 Schematic for two phase operation

Instructions for two phase operation:

a) A phase to phase connection is allowed as long as the supplying voltage is below $240 \mathrm{~V}^{+10 \%}$.
b) Use a fuse or a circuit breaker to protect the N input. The N input is internally not protected and is in this case connected to a hot wire.
Appropriate fuses or circuit breakers are specified in section 25.9 "External Input Protection".

25.11.Use in a Tightly Sealed Enclosure

When the power supply is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. The inside temperature defines the ambient temperature for the power supply.
Results from such an installation:
Power supply is placed in the middle of the box, no other heat producer inside the box

Enclosure:
Load:
Input:
Temperature inside the box:
Temperature outside the box:
Temperature rise:

Rittal Type IP66 Box PK 9516 100, plastic, 110x180x165mm
$24 \mathrm{~V}, 4 \mathrm{~A}$; ($=80 \%$) load is placed outside the box
230 Vac
$44.3^{\circ} \mathrm{C}$ (in the middle of the right side of the power supply with a distance of 2 cm) $23.3^{\circ} \mathrm{C}$
21K

PULS

CS5.241, CS5.241-C1, CS5.241-S1
ロIกЛలNSIDN C-Series
24V, 5A, Single Phase Input

25.12. Mounting Orientations

Mounting orientations other than input terminals on the bottom and output on the top require a reduction in continuous output power or a limitation in the max. allowed ambient temperature. The amount of reduction influences the lifetime expectancy of the power supply. Therefore, two different derating curves for continuous operation can be found below:
Curve A1 Recommended output current.
Curve A2 Max allowed output current (results approx. in half the lifetime expectancy of A1).
Fig. 25-7
Mounting
Orientation A
Standard
Orientation

Fig. 25-8
Mounting
Orientation B (Upside down)

Fig. 25-9
Mounting
Orientation C
(Table-top
mounting)

Fig. 25-10
Mounting
Orientation D (Horizontal cw)

Fig. 25-11
Mounting
Orientation E
(Horizontal ccw)

SIRCO M 16 to 125 A

SICRO M with terminal covers

The SIRCO M range of load-break switches offer compact IP 20 finger safe solutions for switching up to and including 125 A . They are ideal for the arduous switching of motors.

Standard mounting is by DIN rail or base mount with screws.
The SIRCO M comes complete with direct mount handle, panel mount, pistol handle complete with shaft. Fourth pole and auxiliary switching can also be achieved with easy clip-on modules - refer accessories.

Front or side operated

	AC 21 400 V (A)	AC 23 400 V (A)	$\begin{aligned} & \text { AC } 23 \\ & 400 \mathrm{~V} \\ & (\mathrm{~kW}) \end{aligned}$	Cat. No. ${ }^{1}$)	Direct handle Price \$	Panel mount handle Price \$
16 A	16	16	5.5	SLBM163P	52.00	101.00
20 A	20	20	9	SLBM203P_	56.00	105.00
25 A	25	25	11	SLBM253P	65.00	114.00
32 A	32	32	15	SLBM323P	76.00	125.00
40 A	40	40	18.5	SLBM403P_	81.00	130.00
63 A	63	63	30	SLBM633P_	101.00	150.00
80 A	80	80	40	SLBM803P	110.00	159.00
100 A	100	100	40	SLBM1003P_ ${ }^{2}$)	183.00	247.00
125 A	125	125	63	SLBM1253P_ ${ }^{2}$)	215.00	279.00

Notes: ${ }^{1}$) Insert D for direct mount handle or leave blank for panel mount pistol handle complete with 320 mm shaft. ${ }^{2}$) Available 2nd quarter 2009

SICRO M
Fitted with:

- 4th pole
- 3- Aux contacts
- Terminal covers

Accessories for SIRCO M switches

Description	Page
Accessories	$11-8$ to $11-10$
Technical data	$11-11$ to $11-14$
Dimensions	$11-15$ to $11-18$
Enclosed options	$11-41$

SLB Standard load-break switches

SIRCO 125 to 4000 A

The SIRCO range of load-break switches offer compact solutions for switching from 125 A to 4000 A . Base mounting is standard.

The SIRCO range are a proven, reliable design that more than suit harsh Australian conditions.

SLB 2003P With panel mount handle

Front operated surface mount

				nou			Panel
	AC 21 400 V (A)	AC 23 400 V (A)	AC 23 400 V (kW)	No. of poles	Cat. No. $\left.{ }^{1}\right)^{2}$)	Direct handle Price \$	mount handle Price \$
125 A	125	125	63	3	SLB1253P	350.00	350.00
				4	SLB1254P	480.00	480.00
160 A	160	160	80	3	SLB1603P	465.00	465.00
				4	SLB1604P	570.00	570.00
200 A	200	200	100	3	SLB2003P	510.00	510.00
				4	SLB2004P_	670.00	670.00
250 A	250	250	132	3	SLB2503P	550.00	550.00
				4	SLB2504P	710.00	710.00
315 A	315	315	160	3	SLB3153P_	690.00	690.00
				4	SLB3154P_	910.00	910.00
400 A	400	400	220	3	SLB4003P_	820.00	820.00
				4	SLB4004P_	1070.00	1070.00
500 A	500	500	280	3	SLB5003P_	1100.00	1100.00
				4	SLB5004P_	1350.00	1350.00
630 A	630	500	280	3	SLB6303P	1250.00	1250.00
				4	SLB6304P_	1620.00	1620.00
800 A	800	800	450	3	SLB8003P	1750.00	1750.00
				4	SLB8004P_	2290.00	2290.00
1000 A	1000	1000	560	3	SLB10003P	2510.00	2510.00
				4	SLB10004P	3380.00	3380.00
1250 A	1250	1250	710	3	SLB12503P	3380.00	3380.00
				4	${ }^{1}$ SLB12504P	4390.00	4390.00
1600 A	1600	1250	710	3	SLB16003P	3990.00	3990.00
				4	SLB16004P	5180.00	5180.00
1800 A	1800	1250	710	3	SLB18003P_	4760.00	4760.00
				4	i SLB18004P	5980.00	5980.00
2000 A	2000	1250	710	3	SLB20003P	5590.00	5590.00
				4	i SLB20004P	7170.00	7170.00
2500 A	2500	1250	710	3	SLB25003P	6610.00	6610.00
				4	i SLB25004P	8370.00	8370.00
3200 A	3200	1250	710	3	SLB32003P_	8440.00	8440.00
				4	i SLB32004P	10900.00	10900.00
4000 A	3200	1250	710	3	SLB40003P_ ${ }^{3}$)	18610.00	18610.00
				4	i SLB40004P_ ${ }^{3}$)	23920.00	23920.00

Notes: ${ }^{1}$) Insert D for direct mount handle or leave blank for panel mount pistol handle complete with 320 mm shaft.
${ }^{2}$) 6 and 8 pole switches available on indent. Refer to NHP.
${ }^{3}$) Supplied with $2 \mathrm{~N} / \mathrm{O}$ and $2 \mathrm{~N} / \mathrm{C}$ auxiliaries as standard.
i Available on indent only

Accessories for SIRCO M switches

Description	Page
Accessories	$11-8$ to $11-10$
Technical data	$11-11$ to $11-14$
Dimensions	$11-15$ to $11-18$
Enclosed options	$11-42$

SLB Standard load-break switches

Accessories

Direct handle 27997012

Selector handle 14731111

S Type External handle

To suit	Description	Cat. No.	Price \$
SLB $125 \ldots 3200$	Stainless steel handle $\left.{ }^{1}\right)$	SLBPHM	$\mathbf{2 9 5 . 0 0}$
SLB $125 \ldots 3200$	IP 65 adaptor ${ }^{2}$)	$\mathbf{2 7 9 9} \mathbf{7 0 1 6}$	$\mathbf{2 1 5 . 0 0}$
SLB $125 \ldots 630$	$10 \mathrm{~mm}-15 \mathrm{~mm}$ shaft adaptor	SLBADAP2	$\mathbf{4 4 . 0 0}$
SLB $800 \ldots 1800$	Shaft $(450 \mathrm{~mm})$	$\mathbf{2 7 9 9} 3019$	$\mathbf{8 2 . 0 0}$

Shafts for external handles

To suit	Shaft length (mm)	Selector	Pistol	Cat
SLBM 16... 125 $5 \mathrm{~mm}^{2}$ shaft	200	\checkmark		[140
	320	\checkmark		140
$\text { SLB } 125 . . .630$ $10 \mathrm{~mm}^{2}$ shaft	320		\checkmark	1400
	500		\checkmark	140
SLB 800... 1800 $12 \mathrm{~mm}^{2}$ shaft	320		\checkmark	140
	540		\checkmark	140
SLB 2000... 4000 $15 \mathrm{~mm}^{2}$ shaft	200		\checkmark	279
	320		\checkmark	279
SLB125...1800	Shaft Lock Device			SLBD
Notes: ${ }^{1}$) Can be direct mounted onto 15 mm shaft otherwise a shaft adaptor is required. ${ }^{2}$) Required for external mount stainless steel handle. ${ }^{3}$) Padlockable in off position as standard, other positions on request ${ }^{4}$) Add handle and switch. i Available on indent only.				

Price Schedule ' $B 2$ '
socomec
Innovative Power Solutions

SLB Standard load-break switches

Accessories

Fourth pole module (Simultaneous switching)

To suit	AC 21 400 V (A)	AC 23 400 V (A)	AC 23 400 V (kW)	Cat. No.	Price \$
SLBM 16... 40	16	16	5.5	22001000	16.00
	20	20	9	- 22001001	17.00
	25	25	11	22001002	20.00
	32	32	15	- 22001003	23.00
	40	40	18.5	22001004	25.00
SLBM 63... 125	63	63	30	- ${ }^{\text {i }} 22001006$	29.00
	80	80	40	22001008	32.00
	100	100	40	22001010^{2})	50.00
	125	125	63	$22001011{ }^{2}$)	58.00

Auxiliary contacts (Early-break)

SLB AUX Contacts 26990031

To suit	Type	Current	(A)	Contacts	Cat. No.

SLBM Mechanical couplings

To suit		Cat. No.	Price \$
SLBM 16...80	Makes two 3P / 4P into 6P / 8P	22696009	56.00
SLBM 16..80	Makes two load break into changeover (I-0-II)	22096009	87.00
SLBM 16...80	Makes two load break into changeover (I-I+I-II)	22996009	$\mathbf{9 5 . 0 0}$

SLB Mechanical coupling

| To suit | | Cat. No. | Price \$ |
| :--- | :--- | :--- | :--- | ---: |
| SLB 125...160 | Makes two 3P / 4P into 6P / 8P | $\mathbf{2 6 9 9} 9170$ | $\mathbf{6 1 0 . 0 0}$ |
| SLB 200...250 | Makes two 3P / 4P into 6P / 8P | $\mathbf{2 6 9 9} 9230$ | $\mathbf{8 5 0 . 0 0}$ |
| SLB 315...630 | Makes two 3P / 4P into 6P / 8P | $\mathbf{2 6 9 9} 9290$ | $\mathbf{1 2 2 0 . 0 0}$ |

Terminal Bolt Sets

To suit	Cat. No.	Price \$
SLB 125... 160	$2030211{ }^{1}$)	12.00
SLB 200... 250	$2032211{ }^{1}$)	20.00
SLB 315... 400	$2030801{ }^{1}$)	20.00
SLB 500... 630	$2032601{ }^{1}$)	31.00
SLB 800... 1000	27SE 3080	31.00
SLB 1250... 1800	27SE 3121	37.00
SLB 2000... 4000	27SE 3210	78.00

[^5]
SLB Standard load-break switches

Accessories

Shroud

Screen

Phase Barriers

14997702

Terminal shrouds and screens (Screw fixing) 4)

To suit	IP rating	Mounting position	No. of poles	Cat. No.	Price \$
SLBM 16... 40	20	top \& bottom	3 Set	22943005	20.00
SLBM 63... 80	20	top \& bottom	3 Set	22943009	29.00
SLBM 100... 160	20	top \& bottom	3 Set	22943016	36.00
SLBM 16... 40	20	top \& bottom	1 Set	22941005	8.00
SLBM 63... 100	20	top \& bottom	1 Set	22941009	12.00
SLBM 125... 160	20	top \& bottom	1 Set	22941011	13.00
SLB 125... 160	20	top or bottom	3	26943014	68.00
	20	top or bottom	4	26944014	86.00
SLB 200... 250	20	top or bottom	3	26943021	119.00
	20	top or bottom	4	[i] 26944021	125.00
SLB 315... 630	20	top or bottom	3	26943051	157.00
	20	top or bottom	4	[i] 26944051	170.00
SLB 800... 1000	screen	top or bottom	3	26983080	97.00
			4	(i) 26984080	112.00
SLB 1250... 1800	screen	top or bottom	3	26983120	163.00
			4	(i) 26984120	170.00
SLB 2000...4000 ${ }^{5}$)		top or bottom		$-{ }^{5}$)	-

Note: One terminal shroud/screen required per side.
Phase barriers

To suit	Mounting position	No of poles	Cat. No.	Price \$
SLB 125... 160	Top or bottom	3	29980033	31.00
	Top or bottom	4	29980034	40.00
SLB 200... 250	Top or bottom	3	29980023	37.00
	Top or bottom	4	29980024	47.00
SLB 315... 630	Top or bottom	3	29980013	44.00
	Top or bottom	4	29980014	53.00
SLB 800... 1800	Top or bottom	3	$-{ }^{5}$)	STD
	Top or bottom	4	$-{ }^{5}$)	STD
SLB 2000... 2500	Top or bottom	3	29980003^{3})	66.00
	Top or bottom	4	$29980004{ }^{3}$)	77.00

Interlocking device - to accommodate Fortress/Haake lock (Lock not supplied)

To suit	Haake	Fortress lock	Cat. No.	Price \$
SLB 125..1800	Bolt lock	H31QDS	$\mathbf{1 4 9 9} \mathbf{7 7 0 2}$	$\mathbf{1 8 4 . 0 0}$
SLB 2000...4000	Bolt lock	H31QDS	SLBLK4 ${ }^{1}$)	$\mathbf{2 7 5 . 0 0}$
SLB 2000...3200	Escutcheon plate		$\mathbf{2 7 9 9}$ 7065	$\mathbf{3 9 5 . 0 0}$
Haake Bolt lock			HSTTHB1RO_ ${ }^{2}$)	$\mathbf{5 2 0 . 0 0}$
Haake Bolt lock key			HSTK1_ ${ }^{2}$)	$\mathbf{1 1 0 . 0 0}$

Notes: ${ }^{1}$) SLB 2000... 3200 requires Cat. No. 27997065.
$\left.{ }^{2}\right)$ Insert key code A,B,C e.g. HSTK1A.
$\left.{ }^{3}\right)$ For $2000 \ldots 2500$ use 2 sets.
${ }^{4}$) Required for 690 V AC applications.
${ }^{5}$) Included as standard with switch.
i Available on indent only.

Technical data and ratings chart SIRCO M SLB 16 to 160 A

Ratings to AS/NZS 3947-3 and IEC 60947-3

Thermal current $\mathrm{Ith}\left(40{ }^{\circ} \mathrm{C}\right)$			16 A	20 A	25 A	32 A	40 A	63 A	80 A	100 A	125 A
Rated insulation voltage and rated operation voltage AC 20/DC 20		V	800	800	800	800	800	800	800	800	800
Rated impulse withstand voltage		kV	8	8	8	8	8	8	8	8	8
Thermal current (60 ${ }^{\circ}$)			12.8	16	20	25.6	32	50.4	64	80	100
Rated operational current AC 21A	400 V	A	16	20	25	32	40	63	80	100	125
	500 V	A	16	20	25	32	40	63	80	100	125
	690 V	A	16	20	25	32	40	63	80	100	125
AC 22A	400 V	A	16	20	25	32	40	63	80	100	125
	500 V	A	16	20	25	32	40	63	80	100	125
	690 V	A	16	20	25	32	40	63	80	100	100
AC 23A	400 V	A	16	20	25	32	40	63	80	100	125
	500 V	A	16	20	25	25	25	63	63	80	100
	690 V	A	16	20	25	25	25	40	40	63	63
Operational power											
AC 23A	400 V	kW	5.5	9	11	15	18.5	30	40	40	63
	500 V	kW	7.5	9	11	15	18.5	33	40	40	63
	690 V	kW	7.5	11	15	15	15	45	45	45	75
Overload capacity Short time withstand current Icw (RMS 0.3s) 400 V											
		kA	2.5	2.5	2.5	2.5	2.5	3	3	5	5
Short-circuit making capacity Icm (kA peak)		kA	6	6	6	6	6	9	9	12	12
Fuse protected short circuit withstand (kA RMS prospective)	$\begin{aligned} & 400 \mathrm{~V} \\ & \mathrm{AC} \\ & \hline \end{aligned}$	kA	50	50	50	50	50	50	50	50	50
	Fuse	A	40	40	40	40	40	80	80	100	125
Mechanical endurance		Ops	100000	100000	100000	100000	100000	100000	100000	100000	100000
Weight (3 pole)		Kg	0.16	0.16	0.16	0.16	0.16	0.26	0.26	0.7	0.7
Tightening torque min/max		Nm	2/2.2	2/2.2	2/2.2	2/2.2	2/2.2	3.5/385	3.5/385	-	-
Connection cable size		mm^{2}	1.5/16	1.5/16	1.5/16	1.5/16	1.5/16	2.5/35	2.5/35	10/70	10/70

Notes: $\quad 240 / 415 \mathrm{~V}$ ratings suitable for use on $230 / 400 \mathrm{~V}$ in accordance with AS $60038: 2000$.

Technical data and ratings chart
 SIRCO SLB 125 to 630 A

Ratings to AS/NZS 3947-3 and IEC 60947-3

Thermal current $\mathrm{Ith}^{\text {th }}\left(40^{\circ} \mathrm{C}\right)$			125 A	160 A	200 A	250 A	315 A	400 A	500 A	630 A
Rated insulation voltage and rated operation voltage AC 20/DC 20		V	800	800	800	800	1000	1000	1000	1000
Rated impulse withstand voltage		kV	8	8	8	8	12	12	12	12
Thermal current (60°)			100	128	160	200	252	320	400	504
Rated operational current AC 21A										
	400 V	A	125	160	200	250	315	400	500	630
	500 V	A	125	160	200	250	315	400	500	630
	$690 \mathrm{~V}^{1}$)	A	125	160	160	200	315	400	400	500
AC 22A	400 V	A	125	160	200	250	315	400	500	630
	500 V	A	125	125	200	250	315	400	400	500
	$690 \mathrm{~V}^{1}$)	A	125	125	125	125	250	250	250	315
AC 23A	400 V	A	125	160	200	250	315	400	500	500
	500 V	A	100	100	160	200	315	315	315	315
	$690 \mathrm{~V}^{1}$)	A	63	63	80	100	160	160	160	160
Rated operational current										
DC 21A	220 V	A	125	160	160	250	315	400	400	630
	500 V	A	125^{2})	125^{2})	$160{ }^{2}$)	$200{ }^{2}$)	315^{2})	$400{ }^{2}$)	$400{ }^{2}$)	$500{ }^{2}$)
DC 22A	220 V	A	125	160	160	250	315	400	400	500
	500 V	A	$125{ }^{3}$)	$125{ }^{3}$)	$160{ }^{3}$)	$200{ }^{3}$)	$315{ }^{3}$)	$315{ }^{3}$)	$315{ }^{3}$)	$500{ }^{3}$)
DC 23A	220 V	A	125	125	160	200	315	400	400	500
	500 V	A	125^{3})	$125{ }^{3}$)	$160{ }^{3}$)	$200{ }^{3}$)	315^{3})	$400{ }^{3}$)	$400{ }^{3}$)	$500{ }^{3}$)
Operational power										
AC 23A	400 V	kW	63	80	100	132	160	220	280	280
	500 V	kW	63	63	110	140	220	220	220	220
	690 V	kW	55	55	75	90	150	150	150	150
Overload capacity	RMS 0.3s	kA	15	15	17	17	25	25	25	25
Short time withstand current Icw RMS 1s$400 \mathrm{~V}$		kA	7	7	9	9	13	13	13	13
Rated peak withstand current (kA peak) 400 V		kA	20	20	30	30	45	45	45	46
Breaking capacity AC 23A	400 V	A	1000	1280	1600	2000	2520	3200	4000	4000
Making capacity AC 23A	400 V	A	1250	1600	2000	2500	3150	4000	5000	6000
Fuse protected short circuit withstand (kA RMS prospective).	400 V AC	kA	100	100	80	50	100	100	100	70
	Fuse	A	125	160	200	250	315	400	500	630
Rated capacitor power		kVAr	55	75	90	115	145	185	230	290
Power dissipation w/pole			1.8	3	4	5.8	7.6	10.8	16	30.9
Mechanical endurance		Ops	10000	10000	10000	10000	5000	5000	5000	5000
Weight (3 pole)		Kg	1	1.1	1.7	1.7	4	4	4.1	4.7
Min. tightening torque		Nm	6.5	6.5	10	10	14.5	14.5	14.5	14.5
Connection cable size		mm^{2}	35/50	50/95	70/95	95/150	150/240	185/240	240/240	2 (150/300)

Notes: ${ }^{1}$) 690 V with terminal shrouds or phase barriers.
$\left.{ }^{2}\right) 2$ poles in series for + and 1 pole for -.
${ }^{3}$) 2 poles in series for each polarity.

Technical data and ratings chart SIRCO SLB 800 to 4000 A

Ratings to AS/NZS 3947-3 and IEC 60947-3

Thermal current $\mathrm{Ith}^{(40}{ }^{\circ} \mathrm{C}$)			800 A	1000 A	1250 A	1600 A	1800 A	2000 A	2500 A	3200 A	4000 A
Rated insulation voltage and rated operation voltage AC 20/DC 20		V	1000	1000	1000	1000	1000	1000	1000	1000	1000
Rated impulse withstand voltage		kV	12	12	12	12	12	12	12	12	12
Thermal current (60°)			640	800	1000	1280	1440	1600	2000	2526	3200
Rated operational current											
AC 21A	500 V	A	800	800	1250	1600	1600	2000	2500	3200	3200
	$690 \mathrm{~V}^{1}$)	A	800	800	1000	1000	1000	2000	2000	2000	2000
AC 22A	400 V	A	800	1000	1250	1600	1800	2000	2000	2500	2500
	500 V	A	800	800	1000	1250	1250	1600	1600	2000	2000
	$690 \mathrm{~V}^{1}$)	A	800	800	1000	1000	1000	1000	1000	1000	1000
AC 23A	400 V	A	800	1000	1250	1250	1250	1250	1250	1250	1250
	500 V	A	630	630	1000	1000	1000	1000	1000	1000	1000
	$690 \mathrm{~V}^{1}$)	A	200	200	500	500	500	800	800	800	800
Rated operational current											
DC 21A	220 V	A	800	1000	1250	1250	1250	2000	2000	2000	2000
	500 V	A	$800{ }^{3}$)	$1000{ }^{3}$)	$1250{ }^{3}$)	$1250{ }^{3}$)	$1250{ }^{3}$)	1250	1250	1250	1250
DC 22A	220 V	A	800	1000	1250	1250	1250	1250	1250	1250	1250
	500 V	A	$800{ }^{3}$)	$1000{ }^{3}$)	$1250{ }^{3}$)	$1250{ }^{3}$)	$1250{ }^{3}$)	$1250{ }^{\text {3 }}$)	$1250{ }^{3}$)	$1250{ }^{3}$)	$1250{ }^{3}$)
DC 23A	220 V	A	800	1000	1250	1250	1250	1250	1250	1250	1250
	500 V	A	800^{3})	$1000{ }^{3}$)	$1250{ }^{3}$)	$1250{ }^{3}$)	$1250{ }^{3}$)	$1000{ }^{3}$)	$1000{ }^{3}$)	$1000{ }^{3}$)	$1000{ }^{3}$)
Operational power											
AC 23A	400 V	kW	450	560	710	710	710	710	710	710	710
	500 V	kW	450	450	710	710	710	710	710	710	710
	690 V	kW	185	185	475	475	475	750	750	750	750
Overload capacity	RMS 0.3s	kA	50	65	100	100	100	100	100	110	110
Short time withstand current Icw $400 \mathrm{~V}$	RMS 1s	kA	26	35	50	50	50	50	50	55	70
Rated peak withstand current (kA peak) 400 V		kA	55	105	105	110	110	110	110	120	120
Breaking capacity AC 23A	400 V	A	6400	8000	8000	8000	8000	10000	10000	10000	10000
Making capacity AC 23A	400 V		8000	10000	10000	10000	10000	12500	12500	12500	12500
Fuse protected short circuit withstand (kA RMS prospective).	400 V AC	kA	50	100	100	100	100	100	100	-	-
	Fuse	A	800	1000	1250	2x800	2x800	2×1000	2×1250	-	-
Rated capacitor power		kVAr	365	460	575	-	-	-	-	-	-
Power dissipation w/pole			39.2	45	85	122	153	178	255	444	916
Mechanical endurance		Ops	3000	3000	4000	4000	4000	3000	2500	2500	2500
Weight (3 pole)		Kg	9.2	9.5	12	12	12	41.5	42.6	56.4	106
Min. tightening torque		Nm	37	37	56	56	56	60	60	60	110
Connection cable size		mm^{2}	2 (185/300)	2 240/4 185	4185 max	6185 max	6185 max	-	-	-	-

Notes: Refer to previous page

Application data load-break / MCCB Socomec load-break switch and TemBreak MCCB co-ordination chart

TemBreak 2 MCCB

Socomec load-break switch	(ExxxNJ model)		(SxxxNJ model)		(SxxxGJ model)		(HxxxNJ model)	
	Cat. No.	(kA)						
SLBM 63	E125NJ	6.5	S125NJ	6.5	S125GJ	6.5	H125NJ	7.5
SLB 125	E125NJ	22	S125NJ	22	S125GJ	22	H125NJ	30
		-	S160NJ	15	S160GJ	15	H160NJ	27
	E250NJ	15	S250NJ	15	S250GJ	15	H250NJ	26
SLB 200	E125NJ	25	S125NJ	36	S125GJ	65	H125NJ	80
		-	S160NJ	30	S160GJ	30	H160NJ	80
	E250NJ	25	S250NJ	30	S250GJ	30	H250NJ	80
SLB 250	E250NJ	25	S250NJ	30	S250GJ	30	H250NJ	50
	E400NJ	25	S400NJ	25	S400GJ	25	H400NJ	35
SLB 315	E250NJ	25	S250NJ	36	S250GJ	65	H250NJ	100
	E400NJ	25	S400NJ	50	S400GJ	65	H400NJ	100
SLB 400	E400NJ	25	S400NJ	50	S400GJ	65	H400NJ	100

TemBreak MCCB
Socomec
load-break
switch Cat. No. (kA) Cat. No. (kA) Cat. No. (kA)

SLB 630	E630NE	35	S630CE	35	TL630NE	24	
SLB 800	XS800NJ	40	XH800PJ	40	TL800NE	28	
SLB 1000	XS1250SE	45	XS1600SE	45	TL1250NE	45	
SLB 1250	XS1250SE	65	XS1600SE	75	TL1250NE	70	
SLB 1600	XS1600SE	75	XS2000NE	60	-	-	
SLB 2000	XS2000NE	60	XS2500NE	60	-	-	
SLB 2500	XS2500NE	60	-	-	-	-	

Notes: Figures based on / valid for $-400 / 415 \mathrm{~V} \mathrm{AC}$.
All Socomec load-break switches can be used in higher prospective fault current level applications, due to the upstream Terasaki TemBreak MCCB reducing the peak let-through current.
Example: SLB 250 can be used in a 30 kA application if there is an upstream S250NJ MCCB.
For other combinations please refer to NHP.

Technical data and dimensions (mm)

SIRCO M SLB 16 to 125 A

SIRCO M 16 to 80 A

Direct operation with handle

External side operation

External front operation

		Overall Dimensions			Terminal shrouds		Switch body			Switch mounting		Connection terminals
Rating A	D min.	D max.	E min.	E max.	AC	F	F1	G	J	M	N	T
16... 40	30	235	100	372	110	45	15	68	15	30	75	15
63... 80	30	235	100	372	110	52.5	17.5	76	17.5	35	85	17.5

(1) 1 switched fourth pole module (1 per device max.) or 1 unswitched neutral pole or 1 protective earth module or 1 auxiliary contact.
(2) 1 auxiliary contact only.

Note: Max 4 additional blocks

SIRCO M 100 A to 125 A

Direct operation with handle

11

Technical data and dimensions (mm)
 SIRCO SLB 125 to 1800 A

SIRCO SLB 125 to 630 A

Direct front operation

SIRCO SLB 800 to 1800 A
Direct front operation

(1) Terminal screens Terminal bolts not supplied with switch

Connection terminal SIRCO 800 to 1000 A

SIRCO 1250 to 1800 A

External front operation

Conventional fixing (from rear): $\mathbf{D}=31$ to 37 mm Fast fixing (external, door closed): $\mathbf{D}=37 \mathrm{~mm}$

Connection terminals

Rating	Switch body			Switch mounting					Connection terminals			
A	F 3p	F 4p	M 3p	M 4p	T	U	V	Y	X1	X2	Z	AA
800	280	360	255	335	80	50	60.5	7	47.5	47.5	46.5	321
1000	280	360	255	335	80	50	60.5	7	47.5	47.5	46.5	321
1250	372	492	347	467	120	90	44	8	53.5	53.5	47.5	288
1600	372	492	347	467	120	90	44	8	53.5	53.5	47.5	288
1800	372	492	347	467	120	90	44	8	53.5	53.5	47.5	288

Shaft table (Standard shaft supplied with switch and handle)

	Minimum distance back-plate to door	Maximum distance back-plate to door	Shaft No.	Shaft length
To suit	125 mm	370 mm	$\mathbf{1 4 0 0 1 0 3 2}$	320 mm
SLB $125 \ldots 160$	135 mm	385 mm	$\mathbf{1 4 0 0 1 0 3 2}$	320 mm
SLB $315 \ldots 630$	165 mm	415 mm	$\mathbf{1 4 0 0 1 0 3 2}$	320 mm
SLB $800 \ldots 1800$	221 mm	463 mm	$\mathbf{1 4 0 1 1 5 3 2}$	$\mathbf{3 2 0} \mathrm{~mm}$

Mechanical

TYPES GB, GBM

GROUND CONNECTOR

For Copper Cable to Bar
High copper alloy ground connector for joining a range of cable to $1 / 4^{\prime \prime}$ thick bar.* Type GB separates cable from bar, GBM clamps cable directly on bar surface. One-wrench installation. UL467 Listed. The high copper alloy cast body and DURIUM ${ }^{\text {™ }}$ bolts, nuts, and lockwashers make the GB and GBM suitable for direct burial in con-

Catalog Number		Conductor	$\begin{gathered} \text { H } \\ \text { Type } \\ \text { GB/GBL } \\ \hline \end{gathered}$	$\begin{gathered} \text { H } \\ \text { Type } \\ \text { GBM } \end{gathered}$	J	$\begin{gathered} \text { W } \\ \text { Type } \\ \text { GB/GBL } \end{gathered}$	$\begin{gathered} \text { W } \\ \text { Type } \\ \text { GBM } \end{gathered}$
Type GB	Type GBM						
GB4C	GBM4C	8 Sol. - 4 Str.	1-1/2	$1 / 2$	3/8	1-1/4	1-1/4
GB26	GBM26	4 Sol. - 2/0 Str.		2	3/8	1-1/2	1-1/2
+GBL30		4 Sol. - 300	2			7/8	0
GB29	GBM29	2/0 Sol. - 250		2	1/2	2	2
GB34	GBM34	300-500	3	2-1/4		2-3/8	2-3/8

+ GBL30 is not UL listed.
Add "GS" suffix for galvanized steel hardware.
* For other bar thicknesses see note at bottom of page E-48.

TYPES GC, GCM

GROUND CONNECTOR

For Two Copper
Cables to Bar

High copper alloy ground connector for joining a wide range of two parallel cables to 1/4" thick bar.* Type GC separates cable from bar, GCM clamps cable to bar surface. One-wrench installation. UL467 Listed. The high copper alloy cast body and DURIUM ${ }^{\text {™ }}$ bolts, nuts, and lockwashers make the GC and GCM suitable for direct burial in concrete or ground.

Catalog Number		Conductor	$\begin{gathered} \text { H } \\ \text { Type } \\ \text { GC/GCL } \end{gathered}$	$\begin{gathered} \text { H } \\ \text { Type } \\ \text { GCM } \end{gathered}$	J		$\begin{gathered} \text { W } \\ \text { Type } \\ \text { GCM } \end{gathered}$
Type GC	Type GCM						
GC4C4C	GCM4C	8 Sol. - 4 Str.	1-1/2	1/2	3/8	1-3/8	1
GC2626	GCM26	4 Sol. - 2/0 Str.	2	/2	3/8	1-3/4	1-3/8
GCL30	GCM30	4 Str. - 300	2	-	-	1	-
GC2929	GCM29	2/0 Sol. - 250	2-1/4	2	-	2-1/4	2
GC3434	GCM34	300-500	2-7/8	2-1/4	1/2	2-7/8	2-5/8

Smooth oval-shank bolts are available upon request for cable-
tray applications (example: GC30G3). Also refer to type GC-CT.
Add "GS" suffix for galavanized steel hardware.

* For other bar thicknesses see note at bottom of page E-48.

Blue highlighted items are industry standard and most frequently ordered.

Proximity Sensors Inductive Thermoplastic Polyester Housing Type IC 40, $40 \times 40 \times 118 \mathrm{~mm}$

Product Description

Inductive proximity switch in standard limit switch housing. Rugged polyester housing. Sensing face adjustable in up
to 5 positions. 2-wire AC/DC for maximum efficiency.

- Rotable-head, 5 positions
- Mounting dimensions in accordance with DIN 43694
- Thermoplastic polyester housing
- Sensing distance: 30 mm
- LED-indication for power and output ON
- Fully protected
- DC types 4-wire NO \& NC, 10-30 VDC
- AC/DC types 2-wire NO or NC, 20-250 VAC/DC
- AC type 2-wire NO \& NC

Ordering Key
IC40CNN30NAT 1
Ind. prox. switch
Housing style
Housing size
\qquad
Housing material
Housing length
Detection principle
Sensing distance
Output type \qquad
Output configuration
Connection

Ordering no
Transistor PNP
Make \& break switching
IC40CNN30PAT1

Type Selection - DC

Rated operating dist. (S_{n})	Ordering no. Transistor NPN Make \& break switching	Ordering no. Transistor PNP Make \& break switching	
$30 \mathrm{~mm}{ }^{1)}$	IC40CNN30NAT1	IC40CNN30PAT1	
${ }^{1)}$ For non-flush mounting			
Type Selection - AC and AC/DC			
Rated operating dist. (S_{n})	Ordering no. Power MOSFET Make switching, AC/DC	Ordering no. Power MOSFET Break switching, AC/DC	Ordering no. Power MOSFET Make \& Break switching, AC
$30 \mathrm{~mm}{ }^{1)}$	IC40CNN30COT1	IC40CNN30CCT1	IC40CNN30TAT1 ${ }^{\text {2 }}$
${ }^{1)}$ For non-flush mounting			

Specifications

	Transistor NPN/PNP	Power MOSFET output AC types
Rated operational voltage (U_{B})	10 to 30 VDC (rippled included)	20 to 250 VAC/VDC (VAC: 45 to 65 Hz)
Ripple	$\leq 15 \%$	-
Rated operational current (l_{e})		
Continuous	$\leq 200 \mathrm{~mA}$	$\begin{aligned} & 5-200 \mathrm{~mA} @ 25^{\circ} \mathrm{C} \\ & 5-160 \mathrm{~mA} @ 70^{\circ} \mathrm{C} \end{aligned}$
Short-time	-	$\leq 2 \mathrm{~A}, \mathrm{t} \leq 20 \mathrm{~ms} \mathrm{(Max}$.1 pulse per s)
No-load supply current (l_{0})	$\leq 25 \mathrm{~mA}$	-
Minimum load current	-	5 mA

CARLO GAVAZZI

Specifications (cont.)

	Transistor NPN/PNP	Power MOSFET output AC types
OFF-state current (I_{r}) (leakage)	$50 \mu \mathrm{~A}$	$\begin{aligned} & \leq 1.7 \mathrm{~mA} @ 120 \mathrm{VAC} \\ & \leq 2.5 \mathrm{~mA} @ 220 \mathrm{VAC} \end{aligned}$
Voltage drop (U_{d})	0.8 to 3.5 V	$\begin{aligned} & \text { Static: } \leq 10.0 \mathrm{~V} \\ & \text { Dynamic: } \leq 8.0 \mathrm{~V} \end{aligned}$
Protection	Reverse polarity, short-circuit	Transient voltages, short-circuit
Power ON delay	$\leq 100 \mathrm{~ms}$	$\geq 10 \mathrm{~ms}$
Frequency of operating cycles (f)	$\leq 100 \mathrm{~Hz}$	$\leq 25 \mathrm{~Hz} \mathrm{AC} ; 40 \mathrm{~Hz} \mathrm{DC}$
Indication for supply ON (LED 2)	LED, green	LED, green
Indication for output ON (LED 1)	LED, red	LED, red
Rated operating dist. (S_{n})	30 mm	30 mm
Repeat accuracy (R) Hysteresis (H) (Differential travel)	$\leq 1 \%$ 3 to 20% of sensing distance	$\leq 1 \%$ 3 to 20% of sensing distance
Effective operating dist. (S_{r})	$0.9 \times \mathrm{S}_{\mathrm{n}} \leq \mathrm{S}_{\mathrm{r}} \leq 1.1 \times \mathrm{S}_{\mathrm{n}}$	$0.9 \times \mathrm{S}_{\mathrm{n}} \leq \mathrm{S}_{\mathrm{r}} \leq 1.1 \times \mathrm{S}_{\mathrm{n}}$
Usable operating dist. (S_{u})	$0.9 \times \mathrm{S}_{\mathrm{r}} \leq \mathrm{S}_{\mathrm{u}} \leq 1.1 \times \mathrm{S}_{\mathrm{r}}$	$0.9 \times \mathrm{S}_{\mathrm{r}} \leq \mathrm{S}_{\mathrm{u}} \leq 1.1 \times \mathrm{S}_{\mathrm{r}}$
Ambient temperature Operating Storage	$\begin{aligned} & -25^{\circ} \text { to }+70^{\circ} \mathrm{C}\left(-13^{\circ} \text { to }+158^{\circ} \mathrm{F}\right) \\ & -30^{\circ} \text { to }+80^{\circ} \mathrm{C}\left(-22^{\circ} \text { to }+176^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & -25^{\circ} \text { to }+70^{\circ} \mathrm{C}\left(-13^{\circ} \text { to }+158^{\circ} \mathrm{F}\right) \\ & -30^{\circ} \text { to }+80^{\circ} \mathrm{C}\left(-22^{\circ} \text { to }+176^{\circ} \mathrm{F}\right) \end{aligned}$
Degree of protection	IP 67 (Nema 1, 3, 4, 6, 13)	IP 67 (Nema 1, 3, 4, 6, 13)
Shock resistance	$30 \mathrm{G} / 11 \mathrm{~ms}$	$30 \mathrm{G} / 11 \mathrm{~ms}$
Vibration resistance	10 to $50 \mathrm{~Hz} / 1 \mathrm{~mm} / 5 \mathrm{~min}$.	10 to $50 \mathrm{~Hz} / 1 \mathrm{~mm} / 5 \mathrm{~min}$.
Housing material	PBT	PBT
Terminal block	4 terminals for $2 \times 2.5 \mathrm{~mm}^{2}$ wires, self-lifting	2 terminals for $2 \times 2.5 \mathrm{~mm}^{2}$ wires, self-lifting
Cable gland	M20 x 1.5	M20 x 1.5
Weight	200 g	200 g
CE-marking	Yes	Yes

Wiring Diagrams

IC40CNN30NAT1

IC40CNN30PAT1

Dimensions

Installation Hints

Table 1
Installation examples
Sensing surface on head ("top"); other orientations of the sensing surface mean deviations from nominal sensing distance.

Table 2
Adjacent mounting
To avoid cross-interference when mounting the sensors next to each other, the given separations (a) should be maintained.

Figure 1

a $(\mathrm{mm}) \geq 40$
$\mathrm{S}_{\mathrm{n}}(\mathrm{mm}) \leq 20$

Extract from the online catalog

USA 10/4,6

Order No.: 1202713
The illustration shows versions USA 10 and USA 10/4,6
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=1202713

Rail adapters, Length: 10 mm , Width: 42.6 mm , Height: 19 mm , Color: gray

Commercial data	$\\|$																					
GTIN (EAN)	$4 \\| 8018$																					
sales group	B224																					
Pack	10 pcs.																					
Customs tariff	39269097																					
Catalog page information	Page 349 (CL2-2011)																					

Product notes
WEEE/RoHS-compliant since: 01/01/2003

[^6]
Technical data

General

Length (b)	10 mm
Height	19 mm
Width (a)	42.6 mm
Color	gray
Inflammability class according to UL 94	V2

Material		PA
Accessories		
Item	Designation	Description
Assembly		
1201028	NS 32 AL UNPERF 2000MM	G rail 32 mm (NS 32)
1201280	NS 32 CU/120QMM UNPERF 2000MM	G-profile DIN rail, deep-drawn, material: Copper, unperforated, height 15 mm , width 32 mm , length 2 m
1201358	NS 32 CU/35QMM UNPERF 2000MM	G-profile DIN rail, material: Copper, unperforated, height 15 mm , width 32 mm , length 2 m
1201002	NS 32 PERF 2000MM	G-profile DIN rail, material: Steel, perforated, height 15 mm , width 32 mm , length 2 m
1201015	NS 32 UNPERF 2000MM	G-profile DIN rail, material: Steel, unperforated, height 15 mm , width 32 mm , length 2 m
0801762	NS 35/ 7,5 CU UNPERF 2000MM	DIN rail, material: Copper, unperforated, height 7.5 mm , width 35 mm , length: 2 m
0801733	NS 35/ 7,5 PERF 2000MM	DIN rail, material: steel galvanized and passivated with a thick layer, perforated, height 7.5 mm , width 35 mm , length: 2000 mm
0801681	NS 35/ 7,5 UNPERF 2000MM	DIN rail, material: Steel, unperforated, height 7.5 mm , width 35 mm , length: 2 m
1201756	NS 35/15 AL UNPERF 2000MM	DIN rail, deep drawn, high profile, unperforated, 1.5 mm thick, material: aluminum, height 15 mm , width 35 mm , length 2000 mm
1201895	NS 35/15 CU UNPERF 2000MM	DIN rail, material: Copper, unperforated, 1.5 mm thick, height 15 mm , width 35 mm , length: 2 m
1201730	NS 35/15 PERF 2000MM	DIN rail, material: steel galvanized and passivated with a thick layer, perforated, height 15 mm , width 35 mm , length: 2000 mm
1201714	NS 35/15 UNPERF 2000MM	DIN rail, material: Steel, unperforated, height 15 mm , width 35 mm , length: 2 m
1201798	NS 35/15-2,3 UNPERF 2000MM	DIN rail, material: Steel, unperforated, 2.3 mm thick, height 15 mm , width 35 mm , length: 2 m

USA 10/4,6 Order No.: 1202713
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=1202713

Diagrams/Drawings

Dimensioned drawing

USA 10/4,6 Order No.: 1202713
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=1202713

Address

PHOENIX CONTACT GmbH \& Co. KG
Flachsmarktstr. 8
32825 Blomberg,Germany
Phone +49 5235300
Fax +49 5235341200
http://www.phoenixcontact.com
© 2012 Phoenix Contact
Technical modifications reserved;

Extract from the online catalog

REL-MR-24DC/21

Order No.: 2961105
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2961105

Pluggable miniature relays, with power contact, 1 PDT, input voltage 24 V DC

REL-MR- 24DC/21 Order No.: 2961105
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2961105

Contact side	
Contact type	Single contact, 1-PDT
Contact material	AgSnO
Maximum switching voltage	$250 \mathrm{~V} \mathrm{AC/DC}$
Minimum switching voltage	5 V (at 100 mA)
Maximum inrush current	(on request)
Min. switching current	10 mA (at 12 V)
Limiting continuous current	6 A
Interrupting rating (ohmic load) max.	140 W (at $24 \mathrm{~V} \mathrm{DC)}$
	20 W (for 48 V DC)
	18 W (for $60 \mathrm{~V} \mathrm{DC)}$
	23 W (for $110 \mathrm{~V} \mathrm{DC)}$
	40 W (for $220 \mathrm{~V} \mathrm{DC)}$
	1500 VA (for $250 \mathrm{~V} \mathrm{AC)}$

General data

Width	5 mm
Height	28 mm
Depth	15 mm
Test voltage relay winding/relay contact	$4 \mathrm{kV} \mathrm{AC}(50 \mathrm{~Hz}, 1 \mathrm{~min})$.
Ambient temperature (operation)	$-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}$
Ambient temperature (storage/transport)	$-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}$
Operating mode	100% operating factor
Mechanical service life	2×10^{7} cycles
Standards/regulations	IEC 60664
	EN 50178
	IEC 62103
Pollution degree	3
Surge voltage category	III
Mounting position	Any
Assembly instructions	In rows with zero spacing

Connection data

Connection method Plug / solder connection

Certificates / Approvals

Certification

CUL, GL, GOST, UL, VDE-PZI, VDE-PZI

Additional products Item General		Designation
2980458	PLC-BSC- 24DC/21/SO46	Description and integrated filter against interference voltages and currents on the control side, input voltage 24 V DC(without relay or optocoupler)
2982799	PLC-BSC- 24UC/ 1/ACT	PLC-BS...-24UC/1/ACT basic terminal block for assembly with pluggable OPT-24DC...solid-state relays or mechanical REL- MR-24DC... relays.All connections of actuators, i.e. the load return lines can be directly connected to the PLC actuator terminal block.
2982809	PLC-BSP- 24UC/ 1/ACT	PLC-BS...-24UC/1/ACT basic terminal block for assembly with pluggable OPT-24DC...solid-state relays or mechanical REL- MR-24DC... relays.All connections of actuators, i.e. the load return lines can be directly connected to the PLC actuator terminal block.

Relay base			
2900262	PLC-BPT- 24DC/ 1/SEN	6.2 mm PLC sensor basic terminal blocks with Push-In connection method, input voltage of 24 V DC (without relay or optocoupler)	
2900445	PLC-BPT- 24DC/21	6.2 mm PLC basic terminal blocks with Push-In connection method, input voltage of $24 \mathrm{~V} \mathrm{DC} \mathrm{(without} \mathrm{relay} \mathrm{or} \mathrm{optocoupler)}$	
2900450	PLC-BPT- 24UC/ 1/ACT	PLC-BPT-24UC/1/ACT basic terminal block for assembly with plug-in OPT-24DC... solid-state relays or REL-MR-24DC... mechanical relaysAll actuator connections, i.e., the load return lines can be directly connected to the PLC actuator terminal block.	
2900446	PLC-BPT- 24UC/21	6.2 mm PLC basic terminal blocks in Push-In connection method, input voltage of 24 V AC/DC (without relay or optocoupler)	
2900447	PLC-BPT- 48DC/21	6.2 mm PLC basic terminal blocks with Push-In connection method, input voltage 48 V DC(without relay or optocoupler)	
2966061	PLC-BSC- 24DC/ 1/SEN	6.2 mm PLC Sensor basic terminal blocks with screw connection method, input voltage 24 V DC(without relay or optocoupler)	
2966016	PLC-BSC- 24DC/21	6.2 mm PLC basic terminal blocks with screw connection method, input voltage 24 V DC(without relay or optocoupler)	

REL-MR- 24DC/21 Order No.: 2961105
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2961105

2966029	PLC-BSC- 24UC/21	6.2 mm PLC basic terminal blocks with screw connection method, input voltage 24 V AC/DC(without relay or optocoupler)
2966090	PLC-BSC- 48DC/21	6.2 mm PLC basic terminal blocks with screw connection method, input voltage 48 V DC(without relay or optocoupler)
2967206	PLC-BSP- 24DC/ 1/SEN	6.2 mm PLC Sensor basic terminal blocks with spring-cage connection method, input voltage 24 V DC(without relay or optocoupler)
2967219	PLC-BSP- 24DC/21	6.2 mm PLC basic terminal blocks with spring-cage connection method, input voltage 24 V DC(without relay or optocoupler)
2967222	PLC-BSP- 24UC/21	6.2 mm PLC basic terminal blocks with spring-cage connection method, input voltage $24 \mathrm{~V} \mathrm{AC/DC(without} \mathrm{relay} \mathrm{or} \mathrm{optocoupler)}$
2967329	PLC-BSP- 48DC/21	6.2 mm PLC basic terminal blocks with spring-cage connection method, input voltage 48 V DC(without relay or optocoupler)

Diagrams/Drawings

Drilling plan/solder pad geometry

Diagram

Circuit diagram

Address

PHOENIX CONTACT GmbH \& Co. KG
Flachsmarktstr. 8
32825 Blomberg,Germany
Phone +495235 300
Fax +495235341200
http://www.phoenixcontact.com
© 2012 Phoenix Contact
Technical modifications reserved;

Extract from the online catalog

REL-MR-60DC/21

Order No.: 2961118
The illustration shows the version REL-MR- 24DC/21
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2961118

Pluggable miniature relays, with power contact, 1 PDT, input voltage 60 V DC

REL-MR- 60DC/21 Order No.: 2961118
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2961118

Contact side	
Contact type	Single contact, 1-PDT
Contact material	AgSnO
Maximum switching voltage	$250 \mathrm{~V} \mathrm{AC/DC}$
Minimum switching voltage	5 V (at 100 mA)
Maximum inrush current	(on request)
Min. switching current	10 mA (at 12 V)
Limiting continuous current	6 A
Interrupting rating (ohmic load) max.	140 W (at $24 \mathrm{~V} \mathrm{DC)}$
	20 W (for 48 V DC)
	18 W (for $60 \mathrm{~V} \mathrm{DC)}$
	23 W (for $110 \mathrm{~V} \mathrm{DC)}$
	40 W (for $220 \mathrm{~V} \mathrm{DC)}$
	1500 VA (for $250 \mathrm{~V} \mathrm{AC)}$

General data

Width	5 mm
Height	28 mm
Depth	15 mm
Test voltage relay winding/relay contact	$4 \mathrm{kV} \mathrm{AC}(50 \mathrm{~Hz}, 1$ min. $)$
Ambient temperature (operation)	$-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}$
Ambient temperature (storage/transport)	$-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}$
Operating mode	100% operating factor
Mechanical service life	2×10^{7} cycles
Standards/regulations	IEC 60664
	EN 50178
	IEC 62103
Pollution degree	3
Surge voltage category	III
Mounting position	Any
Assembly instructions	In rows with zero spacing

Connection data

Connection method Plug / solder connection

Certificates / Approvals

Certification

CUL, GL, GOST, UL, VDE-PZI, VDE-PZI

Additional products		
Item	Designation	Description
Basic terminal block with filter	PLC-BSC-120UC/ 1/SEN/SO46	6.2 mm PLC sensor basic terminal blocks with screw connection method and integrated RCZ filter against interference voltages and currents on the control side, input voltage 120 V AC/ DC(without relay or optocoupler)
2980322		6.2 mm PLC basic terminal blocks with screw connection method and integrated RCZ filter against interference voltages and currents on the control side, input voltage 120 V AC/DC(without relay or optocoupler)
2980319	PLC-BSC-120UC/21/SO46	
2980348	PLC-BSC-230UC/ 1/SEN/SO46	6.2 mm PLC sensor basic terminal blocks with screw connection method and integrated RCZ filter against interference voltages
and currents on the control side, input voltage 230 V AC/		
DC(without relay or optocoupler)		

General		
2980018	PLC-BSC-125DC/21	6.2 mm PLC basic terminal blocks with screw connection technology, input voltage 125 V DC(without relay or optocoupler)
2967332	PLC-BSP-60DC/21	6.2 mm PLC basic terminal blocks with spring-cage connection method, input voltage 60 V DC(without relay or optocoupler)
2967154	PLC-BSP-120UC/ 1/SEN	6.2 mm PLC sensor basic terminal blocks with spring-cage connection method, input voltage $120 \mathrm{~V} \mathrm{AC/DC}$ (without relay or optocoupler)
2967167	PLC-BSP-120UC/21	6.2 mm PLC basic terminal blocks with spring-cage connection method, input voltage $120 \mathrm{~V} \mathrm{AC/DC}($ without relay or optocoupler)
2967170	PLC-BSP-230UC/ 1/SEN	6.2 mm PLC sensor basic terminal blocks with spring-cage connection method, input voltage $230 \mathrm{~V} \mathrm{AC/DC}$ (without relay or optocoupler)
2967183	PLC-BSP-230UC/21	6.2 mm PLC basic terminal blocks with spring-cage connection method, input voltage 230 V AC/DC(without relay or optocoupler)

Relay base

2900279	PLC-BPT- 60DC/21	6.2 mm PLC basic terminal blocks in Push-In connection method, input voltage of 60 V DC (without relay or optocoupler)
2900451	PLC-BPT-120UC/ 1/SEN	6.2 mm PLC sensor basic terminal blocks with Push-In connection method, input voltage of 120 V AC (without relay or optocoupler)
2900456	PLC-BPT-120UC/ 1/SEN/SO46	6.2 mm PLC sensor basic terminal blocks with Push-In connection and integrated RCZ filter against interference currents/voltages on the control side, input voltage $120 \mathrm{VAC/DC}$ (without relay or optocoupler)
2900280	PLC-BPT-120UC/21	6.2 mm PLC basic terminal blocks with Push-In connection method, input voltage of 120 VAC (without relay or optocoupler)
2900453	PLC-BPT-120UC/21/SO46	6.2 mm PLC basic terminal blocks with Push-In connection and integrated RCZ filter against interference currents/voltages on the control side, input voltage $120 \mathrm{~V} \mathrm{AC/DC}$ (without relay or optocoupler)
2900452	PLC-BPT-230UC/ 1/SEN	6.2 mm PLC sensor basic terminal blocks with Push-In connection method, input voltage of 230 V AC (without relay or optocoupler)
2900457	PLC-BPT-230UC/ 1/SEN/SO46	6.2 mm PLC sensor basic terminal blocks with Push-In connection and integrated RCZ filter against interference currents/voltages on the control side, input voltage $230 \mathrm{~V} \mathrm{AC/DC}$ (without relay or optocoupler)
2900281	PLC-BPT-230UC/21	6.2 mm PLC basic terminal blocks with Push-In connection method, input voltage of 230 VAC (without relay or optocoupler)
2900455	PLC-BPT-230UC/21/SO46	6.2 mm PLC basic terminal blocks with Push-In connection and integrated RCZ filter against interference currents/voltages on the control side, input voltage $230 \mathrm{VAC/DC}$ (without relay or optocoupler)
2966100	PLC-BSC- 60DC/21	6.2 mm PLC basic terminal blocks with screw connection method, input voltage 60 V DC(without relay or optocoupler)

[^7]Page 4 / 7

REL-MR- 60DC/21 Order No.: 2961118
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2961118

2966074	PLC-BSC-120UC/ 1/SEN	6.2 mm PLC sensor basic terminal blocks with screw connection method, input voltage $120 \mathrm{~V} \mathrm{AC/DC}$ (without relay or optocoupler)
2966032	PLC-BSC-120UC/21	6.2 mm PLC basic terminal blocks with screw connection method, input voltage $120 \mathrm{~V} \mathrm{AC/DC}$ (without relay or optocoupler)
2966087	PLC-BSC-230UC/ 1/SEN	6.2 mm PLC sensor basic terminal blocks with screw connection method, input voltage $230 \mathrm{~V} \mathrm{AC/DC}$ (without relay or optocoupler)
2966045	PLC-BSC-230UC/21	6.2 mm PLC basic terminal blocks with screw connection method, input voltage $230 \mathrm{~V} \mathrm{AC/DC(without} \mathrm{relay} \mathrm{or} \mathrm{optocoupler)}$

Diagrams/Drawings

Drilling plan/solder pad geometry

Diagram

Dimensioned drawing

REL-MR- 60DC/21 Order No.: 2961118
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2961118

Circuit diagram

Address

PHOENIX CONTACT GmbH \& Co. KG
Flachsmarktstr. 8
32825 Blomberg,Germany
Phone +495235 300
Fax +495235341200
http://www.phoenixcontact.com
© 2012 Phoenix Contact
Technical modifications reserved;

Extract from the online catalog

PLC-RSC- 24DC/21

Order No.: 2966171

The illustration shows the version PLC-RSC-24DC/21

http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2966171

PLC relay, consisting of base terminal block PLC-BSC.../21 with screw connection and pluggable miniature relay with power contact, for assembly on DIN rail NS 35/7.5, 1 PDT, input voltage 24 V DC

		Product notes		
Commercial data		WEEE/RoHS-compliant since: 11/15/2005		
GTIN (EAN)	${ }_{4}\\|\|\\| \|$			
sales group	G220			
Pack	10 pcs.			
Customs tariff	85364190			
Catalog page information	Page 82 (IF-2011)	Please note that the data given		
Technical data				
Coil side				
Nominal input voltage U_{N}	24 V DC			
Nominal input current at $\mathrm{U}_{\mathbb{1}}$	9 mA			
Typical response time	5 ms			

PLC-RSC- 24DC/21 Order No.: 2966171
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2966171

Typical release time	8 ms
Operating voltage display	Yes
Protective circuit	Protection against polarity reversal Polarity protection diode
	Free-wheeling diode Damping diode
Contact side	
Contact type	Single contact, 1-PDT
Contact material	AgSnO
Maximum switching voltage	$250 \mathrm{~V} \mathrm{AC/DC} \mathrm{(The} \mathrm{separating} \mathrm{plate} \mathrm{PLC-ATP} \mathrm{should} \mathrm{be} \mathrm{installed}$ for voltages larger than 250 V (L1, L2, L3) between identical terminal blocks in adjacent modules. Potential bridging is then carried out with FBST 8-PLC... or ...FBST 500...)
Minimum switching voltage	5 V (at 100 mA$)$
Maximum inrush current	(on request)
Min. switching current	10 mA (at 12 V)
Limiting continuous current	6 A
Interrupting rating (ohmic load) max.	140 W (at $24 \mathrm{~V} \mathrm{DC)}$
	20 W (for $48 \mathrm{~V} \mathrm{DC)}$
	18 W (for $60 \mathrm{~V} \mathrm{DC)}$
	23 W (for $110 \mathrm{~V} \mathrm{DC)}$
	40 W (for $220 \mathrm{~V} \mathrm{DC)}$
	1500 VA (for 250 V AC)

General data	
Width	6.2 mm
Height	80 mm
Depth	94 mm
Test voltage relay winding/relay contact	$4 \mathrm{kV} \mathrm{AC}(50 \mathrm{~Hz}, 1 \mathrm{~min})$.
Ambient temperature (operation)	$-40^{\circ} \mathrm{C} \ldots 60^{\circ} \mathrm{C}$
Ambient temperature (storage/transport)	$-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}$
Operating mode	100% operating factor
Mechanical service life	2×10^{7} cycles
Inflammability class according to UL 94	V0
Name	Standards/regulations
Standards/regulations	IEC 60664
	EN 50178
	IEC 62103

PLC-RSC- 24DC/21 Order No.: 2966171
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2966171

Pollution degree	3
Surge voltage category	III
Mounting position	Any
Assembly instructions	In rows with zero spacing
Connection data	
Connection method	Screw connection
Conductor cross section solid min.	$0.14 \mathrm{~mm}^{2}$
Conductor cross section solid max.	$2.5 \mathrm{~mm}^{2}$
Conductor cross section stranded min.	$0.14 \mathrm{~mm}^{2}$
Conductor cross section stranded max.	$2.5 \mathrm{~mm}^{2}$
Conductor cross section AWG/kcmil min.	26
Conductor cross section AWG/kcmil max	14
Stripping length	8 mm
Screw thread	M 3

Certificates / Approvals

Certification
CUL, CUL Listed, GL, GOST, UL, UL Listed

Accessories

Item Designation Description

Assembly

0801762	NS 35/ 7,5 CU UNPERF 2000 MM	DIN rail, material: Copper, unperforated, height 7.5 mm, width 35 mm, length: 2 m
0801733	NS 35/ 7,5 PERF 2000MM	DIN rail, material: steel galvanized and passivated with a thick layer, perforated, height 7.5 mm , width 35 mm, length: 2000 mm
0801681	NS 35/ 7,5 UNPERF 2000MM	DIN rail, material: Steel, unperforated, height 7.5 mm, width 35 mm, length: 2 m
0801377	NS 35/ 7,5 V2A UNPERF 2000 MM	DIN rail, Width: 35 mm, Height: 7.5 mm, Length: 2000 mm, Color: silver
1201756	NS 35/15 AL UNPERF 2000MM	DIN rail, deep drawn, high profile, unperforated, 1.5 mm thick, material: aluminum, height 15 mm, width 35 mm, length 2000 mm

PLC-RSC- 24DC/21 Order No.: 2966171
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2966171

1201895	NS 35/15 CU UNPERF 2000MM	DIN rail, material: Copper, unperforated, 1.5 mm thick, height 15 mm, width 35 mm , length: 2 m
1201730	NS 35/15 PERF 2000MM	DIN rail, material: steel galvanized and passivated with a thick layer, perforated, height 15 mm , width 35 mm, length: 2000 mm
1201714	NS 35/15 UNPERF 2000MM	DIN rail, material: Steel, unperforated, height 15 mm , width 35 mm, length: 2 m
1201798	NS 35/15-2,3 UNPERF 2000MM	DIN rail, material: Steel, unperforated, 2.3 mm thick, height 15 mm, width 35 mm, length: 2 m
2966841	PLC-ATP BK	Separating plate, 2 mm thick, required at the start and end of a PLC terminal strip. Furthermore, it is used for: visual separation of groups, safe isolation of different voltages of neighboring PLC relays in acc. with DIN VDE 0106-101, isolation

Bridges			
2966812	FBST 6-PLC BU	Single plug-in bridge, Length: 6 mm, Number of positions: 2, Color: blue	
2966825	FBST 6-PLC GY	Single plug-in bridge, Length: 6 mm, Number of positions: 2, Color: gray	
2966236	FBST 6-PLC RD	Single plug-in bridge, Length: 6 mm, Number of positions: 2, Color: red	
2967688	FBST 8-PLC GY	Single plug-in bridge, Length: 8 mm, Number of positions: 2, Color: gray	
2966692	FBST 500-PLC BU	Continuous plug-in bridge, Length: 500 mm, Color: blue	
2966838	FBST 500-PLC GY	Continuous plug-in bridge, Length: 500 mm, Color: gray	
2966786	FBST 500-PLC RD	Continuous plug-in bridge, Length: 500 mm, Color: red	

General			
2966508	PLC-ESK GY	Power terminal block, for the input of up to four potentials, for mounting on NS 35/7.5	
2296061	PLC-V8/D15B/OUT	V8-OUTPUT adapter for eight 6.2 mm PLC interfaces (1 PDT, etc./see "Additional Products"). 15-pin D-SUB female connector, control logic: Positive switching	
2296058	PLC-V8/D15S/OUT	V8-OUTPUT adapter for eight 6.2 mm PLC interfaces (1 PDT, etc./see "Additional Products"). 15-pin D-SUB male connector, control logic: Positive switching	
2295554	PLC-V8/FLK14/OUT	V8-OUTPUT adapter for eight 6.2 mm PLC interfaces (1 PDT, etc./see "Supplementary Products"). 14-pos. flat-ribbon cable conection for the PLC system cabling, control logic: Plus switching	
2304102	PLC-V8/FLK14/OUT/M	V8-OUTPUT adapter for eight 6.2 mm PLC interfaces (1 PDT, etc./see "Supplementary Products"). 14-pos. flat-ribbon cable connection for the PLC system cabling, control logic: Minus switching	

PLC-RSC- 24DC/21 Order No.: 2966171
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2966171

| Marking | | ZB 6,LGS:FORTL.ZAHLEN |
| :--- | :--- | :--- | \(\left.\begin{array}{l}Zack marker strip, Strip, white, Labeled, Printed

horizontally: Consecutive numbers 1-10,11-20, etc. up to 491

-500, Mounting type: Snap into tall marker groove, For terminal

block width: 6.2 \mathrm{~mm} , Lettering field: 6.15 \times 10.5 \mathrm{~mm}\end{array}, $$
\begin{array}{l}\text { Zack marker strip, Strip, white, Unlabeled, Can be labeled with: } \\
\text { Plotter, Mounting type: Snap into tall marker groove, For terminal } \\
\text { block width: } 6.2 \mathrm{~mm} \text {, Lettering field: } 6.15 \times 10.5 \mathrm{~mm}\end{array}
$$\right\}\)

Relay

| 2961105 | REL-MR- 24DC/21 | Pluggable miniature relays, with power contact, 1 PDT, input |
| :--- | :--- | :--- | voltage 24 V DC

Relay base

2966016	PLC-BSC-24DC/21	6.2 mm PLC basic terminal blocks with screw connection method, input voltage 24 V DC(without relay or optocoupler)
Tools		
1204517	SZF 1-0,6X3,5	Actuation tool, for ST terminal blocks, also suitable for use as a bladed screwdriver, size: $0.6 \times 3.5 \times 100 \mathrm{~mm}, 2$-component grip, with non-slip grip

Diagrams/Drawings

Diagram

Interrupting rating

Address

PHOENIX CONTACT GmbH \& Co. KG
Flachsmarktstr. 8
32825 Blomberg,Germany
Phone +49 5235300
Fax +49 5235341200
http://www.phoenixcontact.com
© 2012 Phoenix Contact
Technical modifications reserved;

Extract from the online catalog

PLC-BSC-230UC/21/SO46

Order No.: 2980335

The figure shows 120 UC version

http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2980335
6.2 mm PLC basic terminal blocks with screw connection method and integrated RCZ filter against interference voltages and currents on the control side, input voltage 230 V AC/DC(without relay or optocoupler)

Commercial data	$\\|$
GTIN (EAN)	$4\left\\|\left\\|_{095723}\right\\|\right.$
sales group	G 200
Pack	10 pcs.
Customs tariff	85364900
Catalog page information	Page 94 (IF-2011)

http://

www.download.phoenixcontact.com Please note that the data given here has been taken from the online catalog. For comprehensive information and data, please refer to the user documentation. The General Terms and Conditions of Use apply to Internet downloads.

Technical data

Input data

Nominal input voltage U_{N}	230 V AC
Status display	LED
Protective circuit	Bridge rectifier Bridge rectifier
	RCZ filter RCZ filter

PLC-BSC-230UC/21/SO46 Order No.: 2980335
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2980335

Output data	
Compatible components	Miniature relay, REL-MR-60DC/21AU, REL-MR-60DC/21; miniature optocoupler, OPT-60DC/48DC/100, OPT-60DC/24DC/2, OPT-60DC/230AC/1
Connection data	
Conductor cross section solid min.	$0.14 \mathrm{~mm}^{2}$
Conductor cross section solid max.	$2.5 \mathrm{~mm}^{2}$
Conductor cross section stranded min.	$0.14 \mathrm{~mm}^{2}$
Conductor cross section stranded max.	$2.5 \mathrm{~mm}^{2}$
Conductor cross section AWG/kcmil min.	26
Conductor cross section AWG/kcmil max	14
Connection method	Screw connection
Stripping length	8 mm
Screw thread	M 3
General data	
Width	6.2 mm
Height	80 mm
Depth	94 mm
Color	green
Ambient temperature (operation)	$-25^{\circ} \mathrm{C} \ldots 55^{\circ} \mathrm{C}$
Ambient temperature (storage/transport)	$-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}$
Operating mode	100% operating factor
Inflammability class according to UL 94	V 0
Mounting position	Any
Assembly instructions	
Certificates / Approvals with zero spacing	

Certification

CUL, GL, UL

Accessories

Item Designation Description

Assembly		
0801762	NS 35/ 7,5 CU UNPERF 2000MM	DIN rail, material: Copper, unperforated, height 7.5 mm , width 35 mm , length: 2 m
0801733	NS 35/ 7,5 PERF 2000MM	DIN rail, material: steel galvanized and passivated with a thick layer, perforated, height 7.5 mm , width 35 mm , length: 2000 mm
0801681	NS 35/ 7,5 UNPERF 2000MM	DIN rail, material: Steel, unperforated, height 7.5 mm , width 35 mm , length: 2 m
0801377	NS 35/ 7,5 V2A UNPERF 2000MM	DIN rail, Width: 35 mm , Height: 7.5 mm , Length: 2000 mm , Color: silver
1201756	NS 35/15 AL UNPERF 2000MM	DIN rail, deep drawn, high profile, unperforated, 1.5 mm thick, material: aluminum, height 15 mm , width 35 mm , length 2000 mm
1201895	NS 35/15 CU UNPERF 2000MM	DIN rail, material: Copper, unperforated, 1.5 mm thick, height 15 mm , width 35 mm , length: 2 m
1201730	NS 35/15 PERF 2000MM	DIN rail, material: steel galvanized and passivated with a thick layer, perforated, height 15 mm , width 35 mm , length: 2000 mm
1201714	NS 35/15 UNPERF 2000MM	DIN rail, material: Steel, unperforated, height 15 mm , width 35 mm , length: 2 m
1201798	NS 35/15-2,3 UNPERF 2000MM	DIN rail, material: Steel, unperforated, 2.3 mm thick, height 15 mm , width 35 mm , length: 2 m
2966841	PLC-ATP BK	Separating plate, 2 mm thick, required at the start and end of a PLC terminal strip. Furthermore, it is used for: visual separation of groups, safe isolation of different voltages of neighboring PLC relays in acc. with DIN VDE 0106-101, isolation

Bridges

2966812	FBST 6-PLC BU	Single plug-in bridge, Length: 6 mm, Number of positions: 2, Color: blue
2966825	FBST 6-PLC GY	Single plug-in bridge, Length: 6 mm, Number of positions: 2, Color: gray
2966236	FBST 6-PLC RD	Single plug-in bridge, Length: 6 mm, Number of positions: 2, Color: red
2967688	FBST 8-PLC GY	Single plug-in bridge, Length: 8 mm, Number of positions: 2, Color: gray
2966692	FBST 500-PLC BU	Continuous plug-in bridge, Length: 500 mm, Color: blue
2966838	FBST 500-PLC GY	Continuous plug-in bridge, Length: 500 mm, Color: gray
2966786	FBST 500-PLC RD	Continuous plug-in bridge, Length: 500 mm, Color: red

General

2966508	PLC-ESK GY	Power terminal block, for the input of up to four potentials, for mounting on NS $35 / 7.5$

PLC-BSC-230UC/21/SO46 Order No.: 2980335
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2980335

2296087	PLC-V8/D15B/IN	V8-INPUT adapter for eight 6.2 mm PLC interfaces (1 PDT, etc./ see "Additional Products"). 15-pin D-SUB female connector, control logic: Positive switching
2296074	PLC-V8/D15S/IN	V8-INPUT adapter for eight 6.2 mm PLC interfaces (1 PDT, etc./ see "Additional Products"). 15-pin D-SUB male connector, control logic: Positive switching
2296553	PLC-V8/FLK14/IN	V8L-INPUT adapter for eight 6.2 mm PLC interfaces (1 PDT, etc./see "Supplementary Products"). 14-pos. flat-ribbon cable connection for the PLC system cabling, control logic: Plus switching
2304115	PLC-V8/FLK14/IN/M	V8L-INPUT adapter for eight 6.2 mm PLC interfaces (1 PDT, etc./see "Supplementary Products"). 14-pos. flat-ribbon cable connection for the PLC system cabling, control logic: Minus switching
Marking		
1053001	ZB 10:UNBEDRUCKT	Zack marker strip, Strip, white, Unlabeled, Can be labeled with: Plotter, Mounting type: Snap into tall marker groove, For terminal block width: 10.2 mm , Lettering field: $10.5 \times 10.15 \mathrm{~mm}$
1053014	ZB10,LGS:FORTL.ZAHLEN	Zack marker strip, Strip, white, Labeled, Printed horizontally: Consecutive numbers 1-10, 11-20, etc. up to 991 - 1000, Mounting type: Snap into tall marker groove, For terminal block width: 10.2 mm
5060883	ZB10/WH-100:UNBEDRUCKT	Zack marker strip, Strip, white, Unlabeled, Can be labeled with: Plotter, Mounting type: Snap into tall marker groove, For terminal block width: 10.2 mm
Tools		
1204517	SZF 1-0,6X3,5	Actuation tool, for ST terminal blocks, also suitable for use as a bladed screwdriver, size: $0.6 \times 3.5 \times 100 \mathrm{~mm}$, 2-component grip, with non-slip grip
Additional products		
Item	Designation	Description
General		
2966605	OPT-60DC/ 24DC/ 2	Plug-in miniature solid-state relay, power solid-state relay, input: 60 V DC, output: 3-33 V DC/3 A
2966621	OPT-60DC/ 48DC/100	Plug-in miniature solid-state relay, input solid-state relay, input: 60 V DC, output: 3-48 V DC/100 mA
2967963	OPT-60DC/230AC/ 1	Plug-in miniature solid-state relay, power solid-state relay, input: 60 V DC, output: 24-253 V AC/0.75 A
Relay		
2961118	REL-MR-60DC/21	Pluggable miniature relays, with power contact, 1 PDT, input voltage 60 V DC

PLC-BSC-230UC/21/SO46 Order No.: 2980335
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2980335

Pluggable miniature relays, with multi-layer contact, 1 PDT, input voltage 60 V DC

Diagrams/Drawings

Circuit diagram

PLC-BSC-230UC/21/SO46 Order No.: 2980335
http://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=2980335

Address

PHOENIX CONTACT GmbH \& Co. KG
Flachsmarktstr. 8
32825 Blomberg,Germany
Phone +49 5235300
Fax +49 5235341200
http://www.phoenixcontact.com
© 2012 Phoenix Contact
Technical modifications reserved;

SECTION 5 ELECTRICAL ACCESSORIES

5.1 GENERAL DESCRIPTION

There were many different items used though out this project, all fixings were $316 \mathrm{~s} / \mathrm{s}$ as per specification, most items were purchased through local suppliers. The sundry items such as glands, shrouds etc were procured from the local electrical wholesaler.

The Electrical Accessories Were Supplied By:

Name:	Ideal Electrical
Address:	1133 Kingsford Smith Drive Eagle Farm, 4006
Phone:	0738689000
Facsimile:	0738689030

5.2 Cable Tray

All Cable Tray and fixings were NEMA 3 Aluminium.
The Cable Tray Was Supplied By:

Name:	Burndy
Address:	Sunnybank Hills
Phone:	1300287639
Facsimile:	1300329669

5.3 ACCESSORIES MANUFACTURER'S PARTS LIST

Description	Manufacturer	Catalogue No.	Material
Glands	Alco	SSG20-16	316 SS
Glands	Nicote	ALBRGM32-SS	316 SS

5.4 ACCESSORIES BROCHURES

Please see enclosed brochures for illustrations and descriptions on the various glands, ties etc utilised. All electric motors supplied with this project are included within this brochure list.

Alco Cable Glands " ALCBRGM- Stainless Steel Shutter Type Glands for Unarmoured Cable
METAL CABLE GLANDS (IP68)

Home

About Us

Products
Alco Cable Glands
Tools \& Instruments
Flex Metal Conduit \&
Fittings
Flex PVC Conduit \& Fittings
PVC Fittings
Terminals, Lugs \& Links
Alco Heatshrink
Cast Resin
Cable Pulling Lubricants
Watts New

Watts Special

Downloads
Agents
Distributors

Tutorials
Contact Us

APPLICATIONS

For indoor or outdoor use

FUNCTION

Provides water tight seal on cable sheath and provides strain relief.

APPROVALS

IP68
MATERIAL
Stainless Steel
CLAMPING RING
Clamping: Polyamide 6
Sealing: Neoprene

O RING

NBR

TEMPERATURE RANGE

$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Click part no for more info

Part No	Mounting Thread dia x length (mm)	OD Cable Range (mm)		DiameterAcross Flats(mm)	Suitable Shroud Orange*	Box Qty
		min	max			
ALCBRGM16-SS	M16x12	4.0	8.0	19	ALCSG0S	15
ALCBRGM20-SS	M20x12	8.0	14.0	22	ALCSG1S	10
ALCBRGM25-SS	M 25×12	11.0	17.0	27	ALCSG2S	10
ALCBRGM32-SS	M32x15	13.0	18.0	36	ALCSG3S	5
ALCBRGM40-SS	M40x15	18.0	25.0	46	ALCSG3L	4
ALCBRGM50-SS	M50x15	22.0	32.0	55	ALCSG5S	2
ALCBRGM63-SS	M63x18	34.0	44.0	70	ALCSG6S	1

*For black shrouds add B to part no eg ALCSG3SB
Note: Mounting thread pitch is 1.5 mm , unless otherwise specified
Supplied complete with lock nut. NPT and PG fittings available upon request, however lead times apply

316 Stainless Steel - Ball Lock Ties

Cat. No.	Width (mm)	Length $(\mathbf{m m})$	Pack Size
LSY-4.6-100B	4.6	100	100
LSY-4.6-150B	4.6	150	100
LSY-4.6-200B	4.6	201	100
LSY-4.6-360B	4.6	360	100
LSY-4.6-520B	4.6	520	100
LSY-4.6-680B	4.6	679	100
LSY-4.6-840B	4.6	838	100
LSY-4.6-1000B	4.6	1000	100
LSY-7.9-100B	7.9	100	100
LSY-7.9-150B	7.9	150	100
LSY-7.9-200B	7.9	201	100
LSY-7.9-360B	7.9	360	100
LSY-7.9-520B	7.9	520	100
LSY-7.9-680B	7.9	679	100
LSY-7.9-840B	7.9	838	100
LSY-7.9-1010B	7.9	1010	100
LSY-7.9-1200B	7.9	1200	100
LSY-7.9-1300B	7.9	1300	100
LSY-7.9-1400B	7.9	1400	100

Nylon coated ties are also available: Add suffix C to part number eg LSY-7.9-200BC

Continuous Length and Heads 316 Stainless Steel

Cat No.	Width (mm)	Continuous Lengths
LSY-4.6-50XB	4.6	50 mt
LSY-4.6-100XB	4.6	100 mt
LSY-4.6-HEADB	4.6	Box of 100
LSY-7.9-50XB	7.9	50 mt
LSY-7.9-100XB	7.9	100 mt
LSY-7.9-HEADB	7.9	Box of 100

Convenient continuous lengths of band with loose heads. This enables ties of any length to be made on the job, eliminating costly down time and scrap.

InStal\|ation Tool \& Sleeving	
Cat No.	Description
TC1	LSV series pull up tool for use with 4.6 mm and 7.9 mm width ties. Manual tension and cut off.
LSY-Sleeve	PvC Sleeving for Stainless Steel ties. 30 mt roll.

Wide range of sizes

Eleven standard lengths up to 1400 mm long will cover most applicatons but custom lengths are also available. Two widths are offered with minimum loop tensile strengths of 45 kg and 113 kg . Space requirements are minimised by the low head profile.

Fast, easy installation

Thomas \& Betts stainless steel ties are self-locking, requiring no time consuming crimping or folding operations. The strong locking mechanism, incorporating a steel ball, has a low insertion force while the strap section has rounded edges and smooth surfaces making the ties ideal for fast, safe, hand installation.

Cable Ties - Nylon Polyamide 66

HALOGEN FREE

Our ties meet most basic cable tie needs, with choices covering a wide range of requirements for size and strength. One-piece, injectionmoulded construction provides maximum strength and adjustability for securing all sizes of bundles. Extra features such as rounded edges and bent-tip design make installation easy, fast, accurate and secure. Installation tools are not required but are suggested where controlled, uniform tension and cut-off applications are desired.
Split mandrel, loop tensile strength tests show that the most vulnerable stress point for a nylon cable tie is its pawl. There is a trade-off between insertion/pull-up ease and strength of a cable tie. The stronger the pawl, the more
force is required to insert and pull up the strap as it engages the pawl teeth. Cable ties are designed to optimise insertion ease and still meet or exceed all applicable strength requirements. This magnified crosssection illustrates our full four-tooth locking engagement between strap and pawl under load. This intimate contact between pawl and strap teeth, ensures that the strength of the pawl is fully utilised.
Installations under conditions of full tropical sun and/or very low relative humidity, must be referred to CABAC design engineers for evaluation and recommendations.
Exterior applications should use black (U.V. stabilised) ties.

Technical Data
 Conformant Standards
 UL; Mil Spec; IEC; VDE; DIN

Refer

MS 3367 MS 3368-physical dimensions
Mil-S-23190E - testing
Mil-Std-105D - sampling
Mil-C-45662 - test equipment calibration
Mil-1-45208A - QC manual and systems

Smoke Emission

Low smoke / Halogen free

Material

NATURAL - Nylon 66 with additives
BLACK - Nylon 66 with UV stabilisers
Material Tensile Strength
$80 \mathrm{~N} / \mathrm{mm}^{2}$ or 11200 psi

Electrical data

Breakdown voltage $20 \mathrm{kV} / \mathrm{mm}$
Volume resistivity $2 \times 10^{10} \mathrm{ohm} \mathrm{cm}$
Moisture content 2.5% w.v. @ $23 \% / 50 \%$ RH
Operating Temperature
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Flammability
Passed - U.L. 94V-2

UV Stability

Exceeds ASTM-D-4066 with 2.5% carbon black giving nominal 15 years nornal exposure to UV with less than 10% yield in tensile strength.

Multil Toothed Pawl

- 1 -

Cable Ties - Nylon - Halogen Free

Catalogue	Catalogue	Loop	Bundle	Length	Width	Thickness	Packs
No.	No.	Tensile	Diameter	(mm)	(mm)	(mm)	Available
Black	Natural	Strength	(mm)				
(UV Rated)		(kg)					

Standard Duty Tles								
CT98NT	8	22	100	2.5	1.1	$100 / 1000$		
CT98BK	CT90BK	CT140NT	18	33	140	3.6	1.2	$100 / 1000$
CT140BK	CT200NT	22	50	200	4.8	1.3	$100 / 1000$	
CT200BK	CT250NT	22	60	250	4.8	1.4	$100 / 1000$	
CT250BK	CT20NT	22	76	300	4.8	1.4	$100 / 1000$	
CT290BK	CT290NT	22	102	370	4.8	1.4	100	
CT360BK	CT360NT	22	110	430	4.8	1.4	100	
CT430BK		22						

| Heacy Duty Ties | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CT203BK-HD | CT203NT-HD | 54 | 50 | 200 | 7.6 | 2.1 | 100 |
| CT365BK-HD | CT365NT-HD | 54 | 102 | 370 | 7.6 | 2.1 | 100 |
| CT540BK-HD | 54 | 140 | 533 | 7.6 | 2.1 | 25 | |
| CT710BK-HD | CT710NT-HD | 79 | 190 | 710 | 9.0 | 2.1 | 25 |
| CT838NT-HD | 79 | 239 | 812 | 9.0 | 2.1 | 25 | |
| CT1220BK-HD | 79 | 365 | 1220 | 9.0 | 2.1 | 25 | |
| CT1530BK-HD | 79 | 460 | 1530 | 9.0 | 2.1 | 25 | |

The PPA series motor, now extended to 1120 kW , is part of Australia's largest range of electric motors and transmission equipment. CMG's world best practices and technologies, plus our national computerised sales, spare parts and service back-up means we can offer a total commitment to every customer. You can be sure every product supplied by CMG's Motors, Transmission or Drives Divisions will perform exactly to specification, and deliver reliable performance year after year with a minimum of maintenance and downtime. CMG's Technology division is a recognised R \& D leader with professional engineering staff and NATA accredited laboratory provides design, testing, product development and quality control services. When you think Motors, Transmission, Drives or research and development Technology think CMG.

Accreditation No. 14396

All CMG products are regularly redesigned and improved and CMG reserves the right to change the design, technical specification and dimensions without prior notice. E\&OE.

PPA \& PPC High Efficiency cast iron motors H Class - IP66 - Sizes 80 to 500

CMG's premium high efficiency motor range extends to 1120 kW and features all of your engineer's specifications as standard.

- Standard power supply 415 volt, 3 phase, 50 hz

100 to 1100 volts, 40 to 60 Hz optional (motors 710 kW and above are 690 volt minimum).

- AS/NZS1359 frame sizes (IEC frame sizes complying with IEC 60072) Full interchangeability with motors in the field. Both Australian/British and CENELEC frame allocations.
- Full cast iron construction

For durability and reliability in operation.

- TEFC - IP66 enclosure

Maximum Protection against dust and water.

- H Class insulation

With a temperature rise limited to $80^{\circ} \mathrm{C}$ (B class).

- Winding design life of $\mathbf{2 0}$ years

H class insulation, Low temperature rise and High efficiency = 20 years design life.

- Meets high efficiency standards

AS/NZS1359.5-2000 specifies High Efficiency levels (complies with European Eff 1).

- Low noise fan and conical fan cover

PPA complies with most low noise specifications with standard fan.

- Low mechanical vibration

All rotors are balanced to G1 tolerances.

- Cast iron fan and steel fan cover (cast iron fan covers optional)

Meets requirements for use in arduous environments and mining specifications.

- Thru-flushing pressure grease relief valve

Incorporating a V-ring seal enables regreasing without stopping the motor.

- Oversized terminal box with removable gland plate To suit oversized and/or aluminium cables with Bi-metal lugs.
- Thermistors supplied throughout the entire range Auxiliary terminal boxes for thermistors fitted 160 frame and above.
- Anti-condensation heaters, with auxiliary terminal box Fitted to frames 250 and above.
- SPM Vibration sensors

For use with the SPM Vibration Monitor. Fitted to frame sizes 250 and above.

- Central Terminal Box

Designed for easy reversal of the terminal box handing from right to left-hand side.

- Additional external earth screw

Located on the motor foot. Frames 250 and above.

- 2 - Pack Epoxy paint to customers preferred colour

In addition to the epoxy Primer. Top coat is RAL8015-Brown unless otherwise specified.

- Stainless Steel Rating Labels

To ensure maximum life and readability of nameplate.
Motors certified for use in hazardous locations also available (Class 1 Zone 1 Ex e, Class 1 Zone 2 Ex n \& DIP).

Our 3-year warranty provides ultimate peace of mind.

Introduction

This catalogue details CMG's premium range of PPA \& PPC series motors. PPA \& PPC motors are three phase squirrel cage TEFC (IC411) with frame sizes 80 to 500, designed and manufactured in accordance with AS/NZS1359 (IEC 60034 \& 60072). Unless specified "PPA" refers to both PPA and PPC ranges, the difference being the kW/frame allocation.

The catalogue provides all data for frames 80-400 as those motors are normally available ex stock. For data relating to 450 \& 500 frames refer CMG

High Specification Design

In Australia and New Zealand electric motors are installed in a wide range of conditions from the frozen Antarctic to tropical Darwin and dusty deserts. The PPA range is designed to suit these harsh conditions, to provide a combination of high operational reliability and low operating costs in a rugged cast iron enclosure.

20 Year design life

All motors in the PPA range are manufactured with Class H insulation. They are designed to operate with a temperature rise of $80^{\circ} \mathrm{C}$ or less (Class B), providing a thermal reserve in excess of $45^{\circ} \mathrm{C}$ when operating in a $40^{\circ} \mathrm{C}$ ambient. This ample thermal reserve has enabled CMG to provide a motor with a winding design life of $\mathbf{2 0}$ years.

Ultimate protection

The entire PPA range has an enclosure protection rating of IP66. The windings are tropic protected and oil resistant with the motors being weather protected as standard.

Exceeds High Efficiency standard

The PPA range of motors are designed for high efficiency operation in accordance with AS/NZS1359.5:2000 for High Efficiency motors. (Equivalent to European Eff1)

High efficiency not only means lower running costs but also means a reduction in the volume of greenhouse gas discharged into our atmosphere when electricity is produced, assisting the international drive for a reduction of this gas. ($1000 \mathrm{~kW}=1000 \mathrm{~kg} \mathrm{CO}_{2 \mathrm{e}}$)
It is estimated that electric motors account for nearly 30% of all electricity used in Australia/New Zealand, and this percentage is projected to increase. High efficiency means reduced power consumption, and in a large plant this gives a significant cost saving difference.
Aside from the environmental issues, using a high efficiency motor makes sound economic sense. The power cost savings made can pay for the capital cost difference between a high efficiency and a standard efficiency motors in under 1 year. From then the savings continue to accumulate.

A complete selection

PPA series motors can be supplied for use on 100 to 1100 Volt systems and designed to operate on the common world
frequencies of $40 \mathrm{~Hz}, 50 \mathrm{~Hz}$ or 60 Hz . Variations on these standards for the customer's needs are readily available.
The most common power supplies being $380 \mathrm{~V}, 400 \mathrm{~V}, 415 \mathrm{~V}$, $440 \mathrm{~V}, 525 \mathrm{~V}, 690 \mathrm{~V}, 1000 \mathrm{~V}$ and 1100 V .

Thru-flushing grease relief valve

The pressure grease relief valve, incorporating a V-ring seal, eliminates downtime by enabling relubrication of the bearings without stopping the motor.

Standards and specifications

The main dimensions and rated outputs of PPA motors generally conform to AS/NZS1359 (Australian/British kW-frame size allocation table).

The PPC range has a similar specification to that of the PPA range with the $\mathrm{kW} / \mathrm{frame}$ allocation being taken from the CENELEC table. (The term "PPC" is used only where the frame allocation is different from the PPA.)

CMG's technology division is able to conduct full load testing on all motors within the PPA \& PPC ranges in our NATA accredited laboratory. Speed-torque / current / efficiency curves are also available upon request.

Hazardous location certification

The PPA and PPC ranges are now certified in Australia for use in hazardous locations from frames 80 to $400(.55 \mathrm{~kW}$ to 630kW).

Location	Amb	Certificate
Class 1 Zone 1 Exe IIC T	$50^{\circ} \mathrm{C}$	AUS Ex 3852X
Class 1 Zone 2 Exn IIC T_{3}	$60^{\circ} \mathrm{C}$	AUS Ex 3853X
DIP A21 $\mathrm{T}_{\mathrm{A}} \mathrm{T}_{4}$	$50^{\circ} \mathrm{C}$	AUS Ex 3853X

Product code specification

When placing an order, the motor product code should be specified together with details of any additional features required. The product code of the motor is composed in accordance with the following example.

Positions 1 and 2
M3 = metric frame size, 3 phase, single speed.

Position 3

Number of poles
$2=2$ pole $8=8$ pole
$4=4$ pole $\quad \mathbf{A}=10$ pole
$\mathbf{6}=6$ pole $\quad \mathbf{C}=12$ pole
Positions 4 to 8
Rated power output (kW x 100)

Position 9
Mounting arrangement
1 = V1 3 = B3
$4=B 3 / B 5 \quad 5=B 5$

Position 10 to 12

Series
PPA = CMG PPA series
Australian/British kW-frame
PPC = CMG PPC series CENELEC kW-frame (when different to PPA)

Positions 13 and 14

Variation suffix
E = Class 1 Zone 1 Exe
N = Class 1 Zone 2 Exn
$\mathrm{D}=\mathrm{D} \mid \mathrm{P}$
L = LHS terminal box
$\mathbf{R}=$ Airstream rated

Mechanical design

Mountings

CMG PPA Motors are available in the mounting arrangements listed in the table below. For mounting arrangements outside this list please contact CMG.

Materials and construction

 GeneralFrames 80-400 One piece Cast Iron construction
Frames 450-500 Fabricated steel
Endshields
Terminal box
Fan
Fan Cowl
Fasteners

Cast Iron construction Cast Iron construction Bi-directional Cast Iron or fabricated steel Fabricated Steel (Heavy guage) Cast iron optional Corrosion protected (Stainless optional)

Endshields

Endshields are manufactured from close-grained pearlite grey cast iron, having a 250 MPa tensile strength. The endshields are adequately ribbed to provide cooling to the area around the bearing. Their shallow design ensures they remain rigid under the stresses of starting and running, and are designed to withstand the radial and axial forces encountered during most applications.

Stator Frame

Stators are manufactured from close-grained pearlitic grey cast iron having a 250 MPa tensile strength. They are of a one-piece design to ensure that the stator remains rigid under all starting and running conditions.

The ribs are designed to dissipate the optimum amount of heat with the lowest airflow over the motor. This helps to ensure that windage noise is minimized. Adequate spacing between the ribs is maintained to lessen the possibility of blockage due to the build up of dirt.

Shaft

Shafts are manufactured from high tensile steel and adequately proportioned to provided strength and rigidity in operation. Bearing journals are ground to ensure an accurate bearing fit and positioning. Keys are provided with each motor.

Shaft extension run out, concentricity and perpendicularity to the face of standard flange mount motors comply with normal grade tolerance as specified in AS/NZS1359 and IEC60072. Precision grade tolerance is available upon special order.

Non-standard dimensions and shaft materials are available on request.

Rotor

Rugged one piece rotor cages are die cast aluminium. After fitting the rotor core to the shaft the rotor assembly is dynamically balanced for smooth operation.

Finish

All castings and steel parts are painted with a prime coat of 2-pack epoxy primer, followed by a top coat of 2-pack epoxy to the customer's color specification. (Unless otherwise specified, the PPA is painted RAL 8015 - Brown \& 1000V RAL 5019-Harbour Blue).

Special paint systems can be provided to accommodate stringent requirements for motors in corrosive environments. Special coatings may be required to resist substances such as acid, salt water and extreme climatic conditions.

Stainless Steel Labels

The motor nameplate is manufactured from Stainless Steel, with markings embossed, not printed, to provide permanency. Thermistor and Heater labels are all manufactured from Stainless Steel.

Protection

For vertically mounted motors

The PPA series motor can be mounted vertically without the need for additional covers or protection.

In cases where motors are to be mounted with their shaft vertically downwards the fan cover is not equipped with a protective hood as a standard feature. Protective hoods are available upon special request.

Against solar radiation

High solar radiation from exposure to direct sunlight may result in an adverse total motor temperature. In these circumstances motors should be screened by placement of adequate and appropriate sunshades that will not inhibit airflow.

Degree of protection

Standard levels of enclosure protection for all PPA series motors, for both Motor and Terminal box, is IP66. The sintered bronze porous drain plugs are fitted to the lowest point of the motor enclosure, as standard.
IP66 Enclosure protection means dust tight (no ingress of dusts), and protected against heavy seas (water from heavy seas or water projected in powerful jets shall not enter the enclosure in harmful quantities).
Enclosure designations comply with AS1939-1990 (IEC60529). The enclosure protection rating required depends upon the environmental and operational conditions within which the motor is to operate.

Terminal box

Cast iron diagonally split terminal boxes are provided on all motors in the PPA range. They are located on the centre line of the stator allowing easy change of the terminal box from the right hand side to the left.

The terminal box is designed oversize to accommodate fitting of larger than standard cables used to minimise voltage drop over long cable runs. The box's ample dimensions also allow aluminum cables to be terminated using Bi-metal lugs.

Motor frame	Dimensions			Number of	
	HE	HF	entries	Entry / pitch	
$\mathbf{8 0}$	135	125	2	$\mathrm{M} 20 \times 1.5$	
$\mathbf{9 0}$	135	125	2	$\mathrm{M} 20 \times 1.5$	
$\mathbf{1 0 0}$	135	125	2	$\mathrm{M} 20 \times 1.5$	
$\mathbf{1 1 2}$	160	175	1	$\mathrm{M} 25 \times 1.5$	
$\mathbf{1 3 2}$	160	175	1	$\mathrm{M} 25 \times 1.5$	
$\mathbf{1 6 0}$	238	223	1	$\mathrm{M} 50 \times 1.5$	
$\mathbf{1 8 0}$	238	223	1	$\mathrm{M} 50 \times 1.5$	
$\mathbf{2 0 0}$	238	223	1	$\mathrm{M} 50 \times 1.5$	
$\mathbf{2 2 5}$	342	326	1	$\mathrm{M} 63 \times 1.5$	
$\mathbf{2 5 0}$	342	326	1	$\mathrm{M} 63 \times 1.5$	
$\mathbf{2 8 0}$	342	326	1	$\mathrm{M} 63 \times 1.5$	
$\mathbf{3 1 5}$	342	326	1	$\mathrm{M} 63 \times 1.5$	
$\mathbf{3 5 5}$	530	500	Nil	6 mm gland plate	
$\mathbf{4 0 0}$	530	500	Nil	6 mm gland plate	

For data relating to 450 \& 500 frames refer CMG.
A removable gland plate is fitted to all terminal boxes, frame 225 and above (smaller frames optional).
For frames 80 to 315 the gland entry is drilled and tapped with standard metric threads as per the table above. Motors frame 355 and above are fitted with undrilled steel gland plates. (Non ferrous optional)
Neoprene O-ring gaskets are used between all mating surfaces to ensure that the IP66 degree of protection is maintained.

During transportation and storage the conduit entry hole is fitted with a removable plug to limit the ingress of moisture.
The main terminal box is located on the right hand side of the motor when viewed from the drive-end (left hand side optional). The terminal box is supplied as standard, with the conduit entry facing downward and can be rotated through 360° in 90° increments.

Cooling

These motors are fitted with a low noise bi-directional cast iron or fabricated steel fans.
The fan, with its radial blades, and its associated fan cover of a conical shape, is designed to minimize turbulence within the fan housing and allow a smooth transition of air.

The fan and cover are designed to remove the need, in the majority of cases, for special acoustic attenuation needed to meet stringent noise level requirements.

For special applications such as low speed, operation on a VVVF drive or frequent starting and stopping, a separately driven cooling fan is available as an optional extra. See later section on VVVF Drives.
Cooling air flows from the non-drive-end to the drive end. When the motor is installed care should be taken not to impede the airflow into the motor cowl.

As a guide the following minimum dimension BL should be adopted.

Motor	Dimensions
Frame	
$\mathrm{BL}[\mathrm{mm}]$	

For data relating to 450 \& 500 frames, refer CMG.

Additional Earth Terminal

In addition to the earth terminal fitted within the main terminal box an additional external earth, for grounding of the frame, is fitted on the motor foot for frame sizes 250 and above. (Optional on smaller sizes.)

Bearings \& Lubrication

Drive and Non-Drive Bearing Housings

PPA motors with frames 80 to 100 have sealed, nonregreasable bearing housings. The bearings are prelubricated with a lithium based grease. All motors frames 112 and above are fitted with a thru-flushing pressure grease relief valve incorporating a V-ring seal which allows the bearing to be relubricated without stopping the motor.

Bearings

As standard all PPA motors have high quality bearings, made from vacuum degassed steel. The standard bearings in the range are selected to provide long operational life, quiet running and high load carrying capacity.

4 , 6 and 8 pole motors up to 280 frame, and all 2 pole motors, as standard are fitted with high quality deep groove ball bearings. 4,6 and 8 pole motors 315 frame and above are fitted with cylindrical roller bearings on the drive end.

Optional roller bearings

For frame sizes 112 to 280 in applications with increased radial force, cylindrical roller bearings can be substituted for ball bearings at the drive end, in accordance with the accompanying table. When a roller bearing is fitted to the drive end, the non-drive end ball bearing is locked to prevent axial movement.

Shaft Locking Clamps

All motors within the PPA range 200 frame and above are fitted with a substantial shaft-locking clamp to help prevent false brinnelling in transport. The motors should always be transported or stored with this clamp fitted and tensioned to avoid bearing damage.
Once the motor has reached it's final destination and is ready for installation the shaft-locking clamp must be removed to prevent damage and the motor run no-load to confirm that the bearings are in good condition.

After this initial run normal installation can continue with additions of pulleys or couplings.

Bearings Motor Frame	DE Standard	DE Optional	NDE Standard
$\mathbf{8 0}$	6204 ZZ		6204 ZZ
$\mathbf{9 0}$	6205 ZZ		6205 ZZ
$\mathbf{1 0 0}$	6206 ZZ		6206 ZZ
$\mathbf{1 1 2}$	6306	NU306	6306
$\mathbf{1 3 2}$	6308	NU308	6308
$\mathbf{1 6 0}$	6309	NU309	6309
$\mathbf{1 8 0}$	6310	NU310	6310
$\mathbf{2 0 0}$	6312	NU312	6312
$\mathbf{2 2 5}$	6313	NU313	6313
$\mathbf{2 5 0 - 2}$	6313		6313
$\mathbf{2 5 0 - 4 , 6 , 8}$	6315	NU315	6313
$\mathbf{2 8 0 - 2}$	6314		6314
$\mathbf{2 8 0 - 4 , 6 , 8}$	6317	NU317	6314
$\mathbf{3 1 5 - 2}$	6316		6316
$\mathbf{3 1 5 - 4 , 6 , 8}$	NU318		6316
$\mathbf{3 5 5 - 2}$	6318		6318
$\mathbf{3 5 5 - 4 , 6 , 8}$	NU324		6324
$\mathbf{4 0 0 - 2}$	6318		6318
$\mathbf{4 0 0 - 4 , 6 , 8}$	NU326		6326

For data relating to 450 \& 500 frames, refer CMG.

Note: The use of roller bearings is generally not recommended for $\mathbf{2}$ pole motors.

Lubrication

Standard bearings are lubricated with a lithium based rolling contact bearing grease, having an R3 consistency and suitable for operation within the cooling air temperature range of $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. For operation outside this temperature range special lubricants are required.

Special lubricants or additional maintenance may also be required in cases where motors are exposed to a comparatively high degree of pollution, high humidity,
increased or changed bearings loads, or prolonged continuous operation.

For details of grease quantities, re-lubrication intervals and recommended grease types - refer to the installation and maintenance instructions at the end of this catalogue.

Balancing, vibration and noise

Balancing

The rotor is balanced separately to the external cooling fan so that this fan can be removed or changed without altering the balance of the rotor.

All rotors are balanced with a half key to fine tolerances (G1).

Pulleys or couplings used with motors must be appropriately balanced.

Vibration

PPA series motors fall within the limits of vibration severity as set out in Australian Standards AS1359.114:1997 (IEC 60034-14:1996) which are listed below. Values relate to rotating machinery measured in soft suspension.

Vibration severity limit

Motor frame	Maximum RMS vibration velocity [mm/s]		Motor frame
$\mathbf{8 0}$	1.8		Maximum RMS vibration velocity [mm/s]
$\mathbf{9 0}$	1.8	$\mathbf{2 0 0}$	2.8
$\mathbf{1 0 0}$	1.8		2.8
		$\mathbf{2 5 0}$	3.5
$\mathbf{1 1 2}$	1.8	$\mathbf{2 8 0}$	3.5
$\mathbf{1 3 2}$	1.8	$\mathbf{3 1 5}$	3.5
		$\mathbf{3 5 5}$	3.5
$\mathbf{1 6 0}$	2.8	$\mathbf{4 0 0}$	3.5
$\mathbf{1 8 0}$	2.8		
		500 frames, refer CMG.	

Vibration Sensors

Provision for fitting vibration sensors for condition monitoring is standard on all motors, frame size 250 and above. (Optional on smaller sizes).

Vibration levels can be checked with an SPM Monitor, or its equivalent, when the motor is new and on a regular basis usually at the same time as re-greasing. This ensures optimum bearing life is achieved and bearing failures avoided.

Low Noise

The PPA fan cooling system is designed to achieve the required air flow with the minimum of losses which enables the fan to cool the motor whilst keeping noise levels to a minimum

The levels detailed in the table below show the overall sound pressure levels of PPA motors at 1 metre (No Load).

Sound pressure level

Output (kW)	PPA sound pressure level dB(A) at 1 metre			
	3000	$\begin{aligned} & 1500 \\ & \mathrm{r} / \mathrm{min} \end{aligned}$	$\begin{aligned} & 1000 \\ & \mathrm{r} / \mathrm{min} \\ & \hline \end{aligned}$	$\begin{aligned} & 750 \\ & \mathrm{r} / \mathrm{min} \end{aligned}$
0.37	60	58	54	51
0.55	60	58	54	51
0.75	60	58	58	51
1.1	60	62	60	54
1.5	60	62	63	54
2.2	60	62	63	63
3	63	62	67	63
4	63	62	67	63
5.5	74	62	67	63
7.5	74	62	67	63
11	74	72	67	63
15	77	72	67	68
18.5	77	72	71	68
22	77	72	71	68
30	79	72	72	68
37	80	73	72	68
45	80	73	72	68
55	80	73	72	68
75	80	74	73	73
90	82	75	74	73
110	82	76	75	73
132	82	78	77	73
150	83	78	77	73
185	84	79	77	74
200	85	79	77	74
220	87	81	77	74
250	89	83	77	74
280	90	83	77	74
315	90	84	77	74
355	90	85	78	74
400	90	88	78	
450	95	88	78	
500	95	89	78	
560	95	90		
630		90		

Where very low levels are specified alternate devices are available for noise reduction. These include uni- directional fans, separately driven cooling fans, inlet attenuation or full motor attenuation.

Electrical design Operating Parameters

Standard PPA series motors have the design and operating parameters listed below. Performance data is based on this standard.

Three phase 415 Volts, 50 Hz (690V min for 710kW and above)
Ambient cooling air Temperature..... $40^{\circ} \mathrm{C}$
Altitude \qquad up to1000 m
Duty cycle \qquad S1 (continuous)
Rotation \qquad Clockwise viewed from drive end.

Any variation from these operating parameters should be examined and performance data altered in accordance with the information provided in this section.

Voltage and frequency

Standard PPA motors are designed for a power supply of three phase 415 Volts, 50 Hz . Motors can be manufactured for any supply between 100 and 1100 volts and frequencies other than 50 Hz .

Standard PPA and PPC motors are designed to operate on VVVF drives and will provide constant torque provided that the voltage/frequency ratio remains constant i.e. 415:50 = 8.3:1.

Standard PPA motors may operate when connected to certain other non-standard voltages and frequencies. The accompanying table covers some common nonstandard voltages and frequencies. Rated performance data values should be multiplied by the factors to give more realistic operating data values which, if used, will reduce additional motor temperature rise.

Supply [Volts / Hz]	Rated speed	Rated power	Rated current I_{N}	Rated torque T_{N}	Locked rotor torque T_{L}	Break down torque T_{B}
380/50	1.00	0.95	1.00	0.95	0.83	0.83
400/50	1.00	1.00	1.00	1.00	0.93	0.93
415/50	1.00	1.00	1.00	1.00	1.00	1.00
440/50	1.00	1.00	1.00	1.00	1.10	1.10
415/60	1.20	1.00	1.00	0.83	0.69	0.69
440/60	1.20	1.05	1.00	0.87	0.77	0.77
460/60	1.20	1.10	1.00	0.91	0.85	0.85
480/60	1.20	1.15	1.00	0.96	0.92	0.92

For critical applications data should be confirmed.
Standard torque values for alternative supplies are obtainable only with special windings. For these purpose built motors the performance data is the same as for 415 volt motors except for the currents which are calculated with the accompanying formula.

$$
I_{X}=\frac{415 \times I_{N}}{U_{X}}
$$

$$
\begin{aligned}
& \text { Where: } \\
& I_{X}=\text { Current } \\
& I_{N}=\text { Rated current at } 415 \text { volt } \\
& U_{X}=\text { design voltage }
\end{aligned}
$$

Temperature and altitude

Rated and output power specified in the performance data tables apply for standard ambient conditions of $40^{\circ} \mathrm{C}$ up to 1000 m above sea level. Where temperature or altitude differ from the standard, multiplication factors in the table below should be used.

Ambient temperature	Temperature Factor	Altitude above sea level	Altitude Factor
$30^{\circ} \mathrm{C}$	1.06	1000 m	1.00
$35^{\circ} \mathrm{C}$	1.03	1500 m	0.98
$40^{\circ} \mathrm{C}$	1.00	2000 m	0.94
$45^{\circ} \mathrm{C}$	0.97	2500 m	0.91
$50^{\circ} \mathrm{C}$	0.93	3000 m	0.87
$55^{\circ} \mathrm{C}$	0.88	3500 m	0.82
$60^{\circ} \mathrm{C}$	0.82	4000 m	0.77
Effective Power	Rated Power	mperature tor	Altitude Factor

Rotation

For clockwise rotation, viewed from drive end, standard three phase PPA motor terminal markings coincide with the sequence of the phase line conductors.

For counter clockwise rotation, viewed from drive end, two of the line conductors have to be reversed. This is made clear in the accompanying table.

Non-standard motors with the terminal box located on the left, viewed from drive end, have a counter-clockwise rotation for coinciding markings, and reversing two of the line conductors will reverse the rotation to clockwise.

Terminal box location (viewed from D-end)	Sequential connection of L1 L2 and L3	Direction of rotation
Right	U1 V1 W1	Clockwise
	V1 U1 W1	Counter-clockwise
Left	V1 U1 W1	Clockwise

Duty

PPA motors are supplied suitable for S1 operation (continuous operation under rated load). When the motor is to operate under any other type of duty the following information should be supplied to determine the correct motor size.

- Type and frequency of switching (short time, intermittent, periodic, high inertia, braking).
- Load torque variation during motor acceleration and braking (in graphical form).
- Moment of inertia of the load on the motor shaft.
- Type of braking (e.g. mechanical, electrical through phase reversal or DC injection.)
For duty cycles other than S1 please contact CMG.

Insulation

Standard PPA series motors are wound with Class H insulation and winding designs limit the temperature rise to 80K (unless otherwise noted) for which Class B insulation would normally be sufficient. The use of Class H insulation provides an additional safety margin of 45 K , as shown in the accompanying table, together with a design life of 20 years.

Due to their conservative design many sizes in the PPA range of motors have temperature rises considerably less than 80 K and therefore provide even greater safety margins.

	Insulation class		
	B	F	H
Max. Permissible winding temp. $\left({ }^{\circ} \mathrm{C}\right)$	130	155	$\mathbf{1 8 0}$
Less ambient temp. $\left({ }^{\circ} \mathrm{C}\right)$	-40	-40	$\mathbf{- 4 0}$
Less hotspot allowance (K)	-10	-10	$\mathbf{- 1 5}$
Equals max. permissible temp. rise. (K)	80	105	$\mathbf{1 2 5}$
Less max. design temp. rise (K)	-80	-80	$\mathbf{- 8 0}$
Equals min. safety margin (K)	--	25	$\mathbf{4 5}$

Connection and starting

PPA motors are suitable for both 415 Volt DOL operation and for use with 415 Volt three phase variable frequency drives. 3 kW and below can also be used with 240 V three phase variable frequency drives.

Alternatively 415 Volt Delta connected motors can be operated DOL in the star configuration with a 720/690 Volt supply or with a 720/690 Volt variable frequency drive. In this latter case the drive must be supplied with an output reactor to protect the winding insulation.

In addition to DOL and Star-Delta starting the following starter options are available through CMG Drives division, and are best supplied together with the motor.

Electronic soft starters

Through the use of an electronic soft starter, which controls such parameters as current and voltage, the starting sequence can be totally controlled. The starter can be programmed to limit the amount of starting current and by limiting the rate of the current increase the startup time is extended.

VVVF Drives

Variable voltage, variable frequency (VVVF) drives are primarily recognized for their ability to manipulate power from a constant 3 phase 50 Hz supply converting it to
variable voltage and variable frequency power. This enables the speed of the motor to be matched to its load in a flexible and energy efficient manner. The only way of producing starting torque equal to full load torque with full load current is by using VVVF drives. The functionally flexible VVVF drive is also commonly used to reduce energy consumption on fans, pumps and compressors and offer a simple and repeatable method of changing speeds or flow rates.

The standard insulation provided on PPA motors can accept a rise time of $3000 \mathrm{~V} / \mu \mathrm{S}$ and a peak voltage of 2600 V . To ensure that this parameter is not exceeded, care should be taken in the selection of the VVVF drive and where necessary suitable output voltage filters should be used.

All drives supplied by the CMG Drives Division will comply with this parameter.

Operation below 30 Hz : motor cooling fan efficiency drops significantly. Hence, in the constant torque application, a separately driven cooling fan should be fitted to provide sufficient cooling of the motor.

Operation between 30 Hz and 50 Hz : In this speed range, the motor is capable of delivering full rated torque with its standard fan.

Operation above 50 Hz : All PPA motors are capable of delivering constant rated power up to 60 Hz . However, most of these motors are suitable to run and deliver constant power at much higher frequency than 60 Hz with maximum being 100 Hz . In the case of application between 60 Hz and 100 Hz , please contact CMG for the advice on suitability.

The PPA range of motors will operate without modification on VVVF drives however under certain conditions additional features should be considered.

EDM Concerns:

Due to an effect caused by harmonics in the waveform capacitive voltages in the rotor can be generated, causing voltage discharge to earth through the bearings. This discharge results in etching of the bearing running surfaces (EDM). This can be controlled with the fitment of appropriate filters to the drive. To further reduce this effect, a partial VVVF drive kit, as described in the Optional Extras section can be used.
CMG recommend the use of these kits for all motors 200kW and above (100kW and above for hazardous location motors).

Thermal protection

Thermistors and RTD's can be installed in both the windings and the bearings.
The bearing temperature monitors assist when used in conjunction with vibration sensors in monitoring the bearing condition and continuing reliability.

Thermistors

PPA motors are fitted, as standard, with one set (3) PTC thermistors selected for a tripping temperature of $145^{\circ} \mathrm{C}$. These thermo-variable resistors have a positive temperature co-efficient, and are fitted one per phase in the motor windings.
Additional sets of thermistors can be fitted with the same or alternate tripping temperatures, if required, for such functions as alarm or spare.
Frames 80 to 132 - The thermistors are terminated within the main terminal box.
Frames 160 and above - The thermistors are terminated in an auxiliary terminal box fitted to the right hand side of the main terminal box.

RTDs

An alternative method of monitoring temperatures is to fit 3 wire PT100 Resistive Temperature Detectors (RTD's). RTD's are terminated in an auxiliary terminal box affixed to the main terminal box. These devices have a linear temperature / resistance gradient and can be used in conjunction with electronic control equipment e.g. PLC's

Anti-condensation Heaters

PPA motors frames 250 and above are fitted with anticondensation heaters (optional on smaller sizes). These heaters are connected during manufacture for $230 / 250$-Volt operation however they can be supplied connected for 400/440 Volt operation against special order. They are terminated in an auxiliary terminal box fitted to the left hand side of the main terminal box.

Speed at partial loads

The relationship between motor speed and degree of loading in a PPA motor is approximately linear up to the rated load. This is expressed graphically in the accompanying graph.

Current at partial loads

Current at partial loads can be calculated using the following formula:

$$
I_{x}=\frac{\text { Pout }_{x}}{\sqrt{3 \times U_{N} \times \cos \varphi_{x} \times \eta_{x}} \times 10^{5} .8{ }^{5} .}
$$

Where:	
I_{x}	$=$ partial load current (amps)
Pout x	$=$ partial load (kW)
$\operatorname{Cos} \varphi \mathrm{x}$	$=$ partial load power factor
η_{x}	$=$ partial load efficiency $(\%)$
U_{N}	$=$ rated voltage

Torque characteristics

Typical characteristics of torque behavior relative to speed are shown in the torque speed curve example below.

CMG PPA motors all exceed the minimum starting torque requirements for Design N (Normal torque) as specified in AS1359.41-1986 (IEC60034-12).

Rated torque can be calculated with the following formula.

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{N}}=\frac{9550 \times \mathrm{P}_{\mathrm{N}}}{\mathrm{n}_{\mathrm{N}}} \quad \text { Where: } & \begin{array}{l}
\mathrm{T}_{\mathrm{N}}=\text { rated torque }(\mathrm{Nm}) \\
\\
\mathrm{P}_{\mathrm{N}}=\text { rated power }(\mathrm{kW}) \\
\mathrm{n}_{\mathrm{N}}=\text { rated speed }(\mathrm{r} / \mathrm{min})
\end{array}
\end{array}
$$

T_{N} - rated torque
T_{L} - starting torque
T_{u} - pull-up torque
T_{B} - brake down torque
n_{N} - rated speed
n_{s} - synchronous (no load) speed

Performance data
 PPA series 415 V 50 Hz
 IP66 Insulation class H, Temperature rise class B

kW	Motor frame		Efficiency[\%]			Power factor, $\operatorname{Cos} \varphi$			Current		$T_{E}{ }^{(1)}$ Time [sec]	Torque				Moment of Inertia	Weight of foot mount motor [kg]
			at \% full load			at \% full load			Full	Locked		Full	Locked	Pull	Break		
			100	75	50	10075			load $\mathrm{I}_{\mathrm{N}}[\mathrm{~A}]$	rotor I_{L} / I_{N}		load $\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	$\begin{aligned} & \text { rotor } \\ & \mathrm{T}_{\mathrm{L}} / \mathrm{T}_{\mathrm{N}} \end{aligned}$	$\operatorname{up}_{\mathrm{T}_{u} / \mathrm{T}_{\mathrm{N}}}$	$\begin{aligned} & \text { down } \\ & T_{B} / T_{N} \end{aligned}$	$\begin{aligned} & \mathrm{J}={ }^{1} / 4 \mathrm{GD}^{2} \\ & {\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]} \end{aligned}$	

3000 r/min = 2 poles

0.55	80A	-19	2880	80.7	80.3	77.1	0.85	0.79	0.68	1.2	7.9	-	1.8	2.7	2.2	3.3	0.0002	20
0.75	80B	-19	2885	81.8	81.6	79.1	0.85	0.79	0.68	1.5	8.0	18	2.5	2.7	2.4	3.2	0.00022	21
1.1	80C	- 19	2880	83.8	84.2	82.4	0.86	0.80	0.69	2.2	8.1	12	3.6	2.9	2.5	3.3	0.00023	24
1.5	90S	- 24	2890	86.3	86.6	84.9	0.88	0.84	0.75	2.8	8.4	16	5	2.7	2.2	3.0	0.0003	29
2.2	90L	- 24	2880	87.1	88.0	87.5	0.87	0.84	0.76	4.1	8.0	12	7.3	2.8	2.2	2.9	0.00035	33
3	100L	- 28	2910	88.2	88.3	86.8	0.89	0.85	0.75	5.4	7.8	12	9.8	2.2	2.0	3.3	0.00073	45
4	112M	-28	2920	87.6	87.6	87.2	0.88	0.86	0.81	7.3	8.9	10	13.1	2.6	1.8	3.6	0.0014	55
5.5	132SA	- 38	2940	89.3	88.8	86.8	0.89	0.86	0.78	9.6	9.3	15	17.9	2.3	1.7	3.6	0.003	84
7.5	132SB	- 38	2940	90.3	90.3	89.0	0.90	0.87	0.81	12.8	8.6	12	24.4	2.2	1.8	3.4	0.0032	88
11	160MA	-42	2930	90.6	90.5	88.9	0.91	0.90	0.83	18.5	6.4	11	35.9	2.0	1.4	2.5	0.054	139
15	160MB	- 42	2940	91.3	91.1	89.8	0.90	0.89	0.84	25.5	6.6	9	48.7	2.1	1.5	2.5	0.056	144
18.5	160L	-42	2940	91.9	92.0	90.9	0.92	0.91	0.86	30.5	7.5	7	60.1	2.7	1.7	2.9	0.066	163
22	180M	-48	2945	92.2	92.1	90.6	0.92	0.90	0.82	36.5	9.0	8	71.3	3.3	1.8	3.4	0.094	217
30	200LA	- 55	2950	92.9	92.7	91.4	0.90	0.88	0.82	50	7.5	8	97.1	2.4	1.7	2.9	0.167	282
37	200LB	- 55	2955	93.3	93.2	92.2	0.91	0.89	0.84	61	7.7	6	120	2.7	1.7	2.9	0.174	290
45	225M	- 55	2975	93.7	93.0	91.4	0.94	0.87	0.84	72	9.5	8	144	2.7	1.9	3.1	0.30	382
55	250S	-60	2975	94.3	94.1	92.9	0.89	0.88	0.83	91	6.5	7	177	2.2	1.6	2.8	0.38	437
75	250M	- 60	2985	94.9	94.5	93.1	0.91	0.89	0.82	122	8.6	5	240	3.0	1.9	3.1	0.47	506
90	280S	- 65	2972	95.3	95.2	94.5	0.90	0.89	0.85	146	7.8	6	289	3.0	2.4	3.2	0.79	645
110	280M	-65	2976	95.1	94.8	93.8	0.92	0.92	0.91	175	7.7	6	353	3.3	2.1	3.4	0.93	723
132	315S	-65	2982	95.6	95.2	94.1	0.93	0.91	0.87	207	6.5	9	423	1.9	1.7	2.9	1.40	1135
150	315M	-65	2979	95.6	95.2	94.2	0.92	0.91	0.88	237	6.4	7	481	2.0	1.7	2.9	1.55	1185
185	315L	-65	2979	95.8	95.4	94.5	0.90	0.88	0.84	298	7.5	6	593	2.1	1.6	2.9	1.73	1240
200	315LXA	-65	2980	95.9	95.7	94.7	0.93	0.92	0.90	312	6.3	6	641	2.0	1.5	3.0	1.81	1280
220	315LXB	-65	2978	95.7	95.4	94.3	0.92	0.91	0.87	348	7.5	6	706	2.7	1.5	2.6	2.00	1320
250	355LA	- 85	2979	95.6	95.2	94.0	0.87	0.85	0.81	416	7.4	7	801	2.1	1.4	2.7	4.46	1630
280	355LB	- 85	2979	96.0	95.8	94.6	0.90	0.89	0.86	452	7.2	7	898	2.0	1.6	2.9	4.87	1700
315	355LC	- 85	2979	96.2	95.9	95.0	0.91	0.91	0.89	501	6.2	7	1010	1.9	1.6	2.8	4.90	1750
355	355LD	- 85	2986	96.7	96.5	95.7	0.92	0.91	0.87	557	7.0	6	1135	2.2	1.9	3.2	5.46	2245
400	355LX	- 85	2985	96.4	96.2	96.0	0.91	0.89	0.87	635	6.2	7	1280	1.8	1.4	2.5	5.60	2420
450	400LA	- 85	2980	96.5	96.6	96.4	0.90	0.89	0.86	721	5.9	6	1442	1.8	1.4	2.5	9.47	2700
500	400LB	- 85	2985	96.5	96.8	96.5	0.91	0.89	0.86	791	6.9	6	1600	2.0	1.7	2.9	11.39	3070
560	400LX	-85	2980	96.7	96.8	96.6	0.91	0.91	0.89	885	6.2	7	1795	1.9	1.5	2.6	11.60	3170

PPC series 415V 50Hz

45	225M	- 55	2975	93.7	93.0	91.4	0.94	0.87	0.84	72	9.5	-	144	2.7	1.9	3.1	0.30	382
55	250M	- 60	2975	94.3	94.1	92.9	0.89	0.88	0.83	91	6.5	7	177	2.2	1.6	2.8	0.38	437
75	280S	-65	2975	94.6	94.8	94.5	0.90	0;89	0.85	123	7.9	6	241	3.0	2.1	3.1	0.67	550
90	280M	-65	2972	95.3	95.2	94.5	0.90	0.89	0.85	146	7.8	6	289	3.0	2.4	3.2	0.79	645
110	315S	-65	2981	95.1	94.5	93.0	0.91	0.89	0.85	178	6.7	9	352	2.0	1.7	3.1	1.15	965
132	315MA	-65	2982	95.6	95.2	94.1	0.93	0.91	0.87	207	6.5	9	423	1.9	1.7	2.9	1.40	1135
160 ${ }^{\text {2) }}$	315MB	- 65	2977	95.6	95.2	94.2	0.92	0.91	0.88	253	6.0	-	513	1.9	1.6	2.7	1.55	1185
200	355LA	- 80	2980	95.5	95.6	95.4	0.89	0.88	0.85	328	6.6	7	641	2.0	1.7	2.7	3.78	1300
225	355LB	- 80	2981	96.4	96.3	95.4	0.93	0.92	0.86	349	6.8	-	721	1.9	1.5	3.1	4.11	1535
250	355LC	- 80	2980	95.5	95.6	95.4	0.89	0.88	0.85	369	6.8	7	801	2.2	1.8	2.8	4.46	1600
280	355LD	-80	2985	96.2	96.2	95.9	0.91	0.89	0.86	445	7.0	7	896	2.0	1.6	2.9	4.87	1700

This data is provided for guidance only. Results are guaranteed only when confirmed by test results. For the performance data of motors above 560kW please refer to CMG.
${ }^{(1)} T_{E}$ time applies to Ex e motors only and is explained in the hazardous areas section.
${ }^{(2)}$ For hazardous locations the rating will be 150 kW and performance data as per PPA.

PPA series 415V 50Hz IP66 Insulation class H, Temperature rise class B

kW	Motor frame	Speed [r/min]	Efficiency[\%]			Power factor, $\operatorname{Cos} \varphi$			Current		$\mathrm{T}_{\mathrm{E}}{ }^{(1)}$ Time [sec]	Torque				Moment of Inertia	Weight of foot mount motor [kg]
			at \% full load			at \% full load			Full	Locked		Full	Locked	Pull	Break		
			100	75	50	100	75	50	$\begin{aligned} & \text { load } \\ & \mathrm{I}_{\mathrm{N}}[A] \end{aligned}$	rotor I_{L} / I_{N}		load $\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	$\begin{aligned} & \text { rotor } \\ & T_{L} / T_{N} \end{aligned}$	$\operatorname{up}_{\mathrm{T}_{U} / \mathrm{T}_{\mathrm{N}}}$	$\begin{aligned} & \text { down } \\ & \mathrm{T}_{\mathrm{B}} / \mathrm{T}_{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \mathrm{J}=1 /{ }_{4} \mathrm{GD}^{2} \\ & {\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]} \end{aligned}$	

$1500 \mathrm{r} / \mathrm{min}=4$ poles

0.55	80A	-19	1440	81.0	80.4	77.0	0.71	0.62	0.49	1.4	6.8	30	3.6	2.7	2.5	3.0	0.0002	21
0.75	80B	- 19	1445	83.1	82.4	79.2	0.72	0.63	0.50	1.8	7.7	28	5	3.3	3.0	3.4	0.00025	23
1.1	90S	- 24	1440	85.7	85.7	83.7	0.77	0.7	0.57	2.4	7.9	35	7.3	3.3	2.6	3.2	0.0005	30
1.5	90L	- 24	1440	85.8	85.7	83.6	0.76	0.68	0.55	3.2	8.1	25	9.9	3.5	2.8	3.2	0.0006	34
2.2	100LA	-28	1455	86.9	86.7	84.8	0.84	0.78	0.66	4.3	8.6	22	14.4	3.7	3.4	4.9	0.0007	40
3	100LB	- 28	1455	87.6	87.6	85.9	0.84	0.79	0.68	5.7	8.7	17	19.7	2.7	2.4	3.3	0.0009	50
4	112M	-28	1445	87.7	88.3	87.7	0.88	0.83	0.74	7.3	7.8	13	26.4	2.7	2.5	3.1	0.002	57
5.5	132S	- 38	1460	89.7	90.1	89.2	0.83	0.78	0.65	10.3	7.7	13	36	2	1.8	3.1	0.003	95
7.5	132M	- 38	1465	91.0	91.4	90.6	0.83	0.77	0.64	13.8	8.7	12	48.9	1.8	1.6	3.3	0.007	98
11	160M	-42	1470	91.8	92.0	91.1	0.85	0.82	0.74	19.6	7.2	20	71.5	2.3	1.6	2.6	0.089	141
15	160L	- 42	1470	91.8	91.7	90.7	0.84	0.81	0.73	27	7.6	12	97.4	2.6	1.6	2.7	0.103	163
18.5	180M	- 48	1475	92.3	92.7	92.2	0.88	0.85	0.81	32	7.3	10	120	2.5	1.8	2.9	0.16	195
22	180L	- 48	1475	92.7	93.1	92.8	0.91	0.88	0.81	36.5	7.1	10	142	2.3	1.7	2.8	0.18	215
30	200L	- 55	1480	93.9	93.9	93.2	0.89	0.84	0.75	51	8.0	15	194	2.4	2.0	3.2	0.31	293
37	225S	-60	1485	94.6	94.6	93.9	0.90	0.88	0.82	61	7.7	12	238	2.4	1.7	2.9	0.53	370
45	225M	-60	1485	94.5	94.5	93.9	0.90	0.87	0.81	74	7.8	13	289	2.1	1.7	2.4	0.58	395
55	250S	- 70	1480	94.5	94.8	94.3	0.90	0.90	0.88	90	7.1	13	355	2.5	1.7	2.7	0.79	487
75	250M	-70	1485	94.8	94.9	94.4	0.91	0.89	0.81	122	7.8	7	482	2.9	2.0	3.0	0.90	536
90	280 S	-80	1489	95.2	95.2	94.5	0.91	0.89	0.84	145	7.4	13	577	2.5	1.9	3.0	1.60	692
110	280M	- 80	1492	95.9	95.9	95.1	0.92	0.90	0.86	174	7.3	7	704	2.4	2.1	3.1	1.89	787
132	315S	- 85	1486	95.6	95.5	94.7	0.87	0.85	0.80	220	6.9	13	848	2.3	1.2	2.6	2.73	1100
150	315M	-85	1486	95.7	95.7	95.0	0.87	0.86	0.81	250	7.1	15	964	2.2	1.2	2.6	3.04	1135
185	315LA	- 85	1487	96.2	96.3	95.8	0.90	0.89	0.80	298	7.1	8	1188	2.4	1.2	2.5	3.43	1280
200	315LB	- 85	1485	95.8	95.8	95.1	0.88	0.86	0.80	330	7.6	7	1287	2.4	1.3	2.7	3.62	1330
220	315LC	-85	1485	95.9	95.9	95.4	0.88	0.87	0.81	364	7.3	7	1415	2.4	1.3	2.7	3.89	1400
250	315LX	- 85	1485	95.9	95.9	95.3	0.88	0.86	0.81	412	8.1	7	1608	2.4	1.4	2.7	4.14	1480
280	355LA	- 110	1489	96.1	95.8	95.0	0.84	0.79	0.73	483	4.8	10	1795	1.6	1.3	2.3	7.82	2080
315	355LB	- 110	1490	96.6	96.5	95.9	0.87	0.86	0.79	520	5.3	10	2019	1.5	1.3	2.4	8.27	2125
355	355LC	- 110	1489	96.5	96.5	95.9	0.88	0.87	0.81	580	5.0	9	2277	1.5	1.3	2.4	8.90	2240
400	355LD	- 110	1490	96.3	96.1	95.3	0.88	0.86	0.80	658	5.1	8	2564	1.4	1.4	2.4	9.76	2340
450	355LX	- 110	1491	97.0	97.0	96.5	0.88	0.86	0.79	734	5.5	8	2882	1.7	1.5	2.6	10.76	2510
500	400LA	- 110	1495	96.9	96.7	96.0	0.88	0.87	0.81	813	5.8	7	3196	1.9	1.6	2.8	18.68	3010
560	400LB	- 110	1490	96.8	96.9	96.7	0.87	0.87	0.83	925	5.2	9	3589	1.7	1.5	2.5	19.70	3200
630	400LX	- 110	1490	96.9	97.0	96.8	0.87	0.86	0.82	1040	5.4	11	4038	1.5	1.2	2.5	21.64	3320

PPC series 415V 50Hz

37	225S	-60	1485	94.6	94.6	93.9	0.90	0.88	0.82	61	7.7	-	238	2.4	1.7	2.9	0.53	370
45	225M	- 60	1485	94.5	94.5	93.9	0.90	0.87	0.81	74	7.8	-	289	2.1	1.7	2.4	0.58	395
55	250M	- 65	1480	94.5	94.8	94.3	0.90	0.90	0.88	90	7.1	13	355	2.5	1.7	2.7	0.79	487
75	280S	- 75	1485	94.9	94.8	94.2	0.90	0.89	0.84	123	6.9	-	482	2.9	2.0	2.9	0.92	655
90	280M	- 75	1489	95.2	95.2	94.5	0.91	0.89	0.84	145	7.4	13	577	2.5	1.9	3.0	1.60	692
110	315S	-80	1484	95.3	95.3	94.5	0.86	0.83	0.77	188	6.3	13	708	2.0	1.3	2.3	1.96	985
132	315MA	- 80	1486	95.6	95.5	94.7	0.87	0.85	0.80	220	6.9	13	848	2.3	1.2	2.6	2.73	1100
$160{ }^{2}$	315MB	- 80	1485	95.6	95.7	95.0	0.87	0.86	0.81	268	6.6	-	1029	2.0	1.1	2.4	3.04	1135
200	355LA	- 100	1488	96.0	95.8	95.1	0.87	0.84	0.78	335	7.5	10	1284	2.3	1.3	2.7	3.62	1480
225	355LC	- 100	1485	95.7	95.8	95.6	0.87	0.85	0.78	376	7.1	-	1447	2.4	1.3	2.7	3.89	1500
250	355LD	- 100	1487	96.1	96.1	95.6	0.87	0.85	0.80	416	7.6	10	1606	2.5	1.4	2.7	4.14	1630
280	355LE	- 100	1485	95.8	95.8	95.4	0.88	0.86	0.80	462	5.3	10	1801	1.5	1.3	2.4	7.82	2080

[^8]PPA series 415V 50Hz
IP66 Insulation class H, Temperature rise class B

kW	Motor frame	$\begin{aligned} & \text { Speed } \\ & \text { [r/min] } \end{aligned}$	Efficiency[\%]			Power factor, $\operatorname{Cos} \varphi$			Current		$\mathrm{T}_{\mathrm{E}}{ }^{(1)}$ Time [sec]	Torque				Moment of Inertia	Weight of foot mount motor [kg]
			at \% full load			at \% full load			Full	Locked		Full	Locked	Pull	Break		
			100	75	50	100	75	50	load $\mathrm{I}_{\mathrm{N}}[\mathrm{A}]$	$\begin{aligned} & \text { rotor } \\ & I_{L} / I_{N} \end{aligned}$		load $\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	$\begin{aligned} & \text { rotor } \\ & T_{L} / T_{N} \end{aligned}$	$\begin{aligned} & \operatorname{upp}_{\mathrm{T}_{U} / \mathrm{T}_{\mathrm{N}}} \end{aligned}$	$\begin{aligned} & \text { down } \\ & \mathrm{T}_{\mathrm{B}} / \mathrm{T}_{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \mathrm{J}={ }^{1} 1_{4} \mathrm{GD}^{2} \\ & {\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]} \end{aligned}$	

1000 r/min = 6 poles

0.37	80A	-19	930	69.3	69.4	65.4	0.71	0.61	0.48	1.1	3.9	-	3.8	1.8	1.4	2.4	0.0004	20
0.55	80B	- 19	930	72.3	72.3	68.5	0.70	0.60	0.46	1.6	4.2	-	5.6	2.1	1.7	2.7	0.0005	21
0.75	90S	- 24	950	79.1	78.8	75.5	0.70	0.61	0.48	1.9	5.4	45	7.5	2.2	1.8	2.7	0.0007	28
1.1	90L	- 24	950	80.6	80.5	77.5	0.70	0.61	0.47	2.7	5.7	18	11.1	2.3	1.8	2.7	0.0009	32
1.5	100L	-28	970	82.4	81.5	78.0	0.72	0.63	0.50	3.6	6.6	19	14.8	2.3	1.8	2.9	0.0017	49
2.2	112M	-28	960	84.0	84.0	81.7	0.73	0.65	0.51	5.0	6.6	33	21.9	2.4	1.7	2.9	0.035	53
3	132S	- 38	975	87.0	87.1	85.5	0.77	0.70	0.57	6.2	6.8	20	29.4	2.0	1.4	2.8	0.007	78
4	132MA	- 38	970	86.9	87.5	86.5	0.79	0.73	0.60	8.2	6.8	14	39.4	2.3	1.8	2.6	0.009	91
5.5	132MB	- 38	970	87.8	88.6	87.9	0.79	0.73	0.62	11	7.0	11	54.1	2.0	1.9	2.6	0.046	100
7.5	160M	- 42	975	89.4	89.5	88.3	0.78	0.73	0.62	15	6.3	24	73.5	2.5	1.9	2.8	0.11	139
11	160L	- 42	970	89.7	89.8	88.5	0.76	0.70	0.57	22.5	6.4	19	108	2.5	1.9	2.6	0.13	161
15	180L	-48	975	90.6	91.1	90.4	0.86	0.81	0.69	27	6.5	13	147	2.4	2.0	2.6	0.25	211
18.5	200LA	- 55	985	91.8	91.9	90.7	0.84	0.79	0.68	33.5	7.0	14	179	2.7	1.9	2.7	0.31	268
22	200LB	- 55	975	91.6	92.2	91.8	0.85	0.83	0.76	39.5	6.8	13	215	2.4	1.8	2.6	0.41	282
30	225M	- 60	985	92.8	92.7	91.6	0.84	0.80	0.75	54	7.3	22	291	2.4	2.0	3.0	0.67	373
37	250S	- 70	985	93.0	93.5	93.1	0.88	0.87	0.82	63	6.5	20	359	2.1	1.6	2.6	0.94	443
45	250M	- 70	990	93.9	94.2	93.7	0.90	0.88	0.83	75	6.9	20	434	2.2	1.8	2.6	1.15	501
55	280S	- 80	994	94.8	94.8	94.3	0.90	0.89	0.87	90	7.4	12	528	2.4	1.9	2.7	1.82	613
75	280M	- 80	992	94.9	95.0	94.3	0.90	0.89	0.83	123	7.7	13	722	2.8	2.1	3.0	2.33	735
90	315S	- 85	991	94.9	94.8	93.9	0.87	0.84	0.77	153	6.5	7	867	2.2	1.8	2.6	4.57	1015
110	315MA	- 85	991	95.5	95.6	95.1	0.86	0.84	0.77	186	6.5	6	1060	2.1	2.0	3.4	4.83	1075
132	315MB	- 85	990	95.4	95.6	95.2	0.87	0.85	0.80	222	6.2	7	1274	2.0	1.5	2.4	5.32	1145
150	315L	-85	990	95.5	95.8	95.5	0.90	0.90	0.89	244	6.1	7	1447	2.3	1.4	2.3	5.95	1170
185	315LX	-85	990	95.8	95.9	95.9	0.88	0.88	0.86	306	4.9	6	1785	2.2	1.3	2.1	6.64	1570
200	355LA	- 110	989	95.8	96.0	95.7	0.87	0.86	0.80	334	5.5	8	1931	1.7	1.1	2.3	8.63	1900
220	355LB	- 110	987	95.7	96.1	96.0	0.88	0.88	0.84	362	5.2	8	2129	1.6	1.0	2.2	9.17	1985
250	355LC	- 110	989	96.1	96.3	96.0	0.87	0.86	0.82	415	5.7	9	2414	1.5	1.1	2.4	9.83	2050
280	355LD	- 110	989	95.9	96.3	96.3	0.88	0.87	0.84	462	5.2	9	2704	1.4	0.8	2.4	10.64	2150
315	355LX	- 110	992	96.1	96.2	95.7	0.88	0.86	0.81	521	6.1	7	3033	1.8	1.2	2.5	11.25	2245
355	400LA	- 110	994	96.6	96.6	96.0	0.88	0.86	0.80	584	8.1	8	3411	2.4	1.3	3.0	16.56	2790
400	400LB	- 110	993	96.9	97.0	96.7	0.88	0.86	0.81	655	7.6	7	3847	2.3	1.3	2.8	19.26	2960
450	400LC	- 110	994	96.6	96.8	96.7	0.88	0.87	0.83	737	7.9	8	4323	2.3	0.8	2.8	20.34	3050
500	400LX	- 110	994	96.7	96.6	96.0	0.87	0.85	0.79	825	8.4	7	4804	2.7	1.4	3.1	21.83	3140

PPC series 415V 50Hz

30	225M	-60	985	92.8	92.7	91.6	0.84	0.80	0.75	54	7.3	-	291	2.4	2.0	3.0	0.67	373
37	250M	-65	985	93.0	93.5	93.1	0.88	0.87	0.82	63	6.5	20	359	2.1	1.6	2.6	0.94	443
45	2805	- 75	990	93.5	93.6	92.8	0.88	0.87	0.80	76	6.3	12	434	2.3	1.8	2.6	1.20	558
55	280M	- 75	995	94.8	94.8	94.3	0.90	0.89	0.87	90	7.4	12	528	2.4	1.9	2.7	1.82	613
75	315S	-80	990	94.4	94.3	93.2	0.86	0.83	0.76	129	6.4	7	723	1.9	1.7	2.5	3.80	930
90	315MA	- 80	991	94.9	94.8	93.9	0.87	0.84	0.77	153	6.5	7	867	2.2	1.8	2.6	4.57	1015
110	315MB	- 80	991	95.5	95.6	95.1	0.86	0.84	0.77	186	6.5	6	1060	2.1	2.0	3.4	4.83	1075
132	315MC	- 80	990	95.4	95.6	95.2	0.87	0.85	0.80	222	6.2	7	1274	2.0	1.5	2.4	5.32	1145
160 ${ }^{\text {2) }}$	315L	- 80	989	95.5	95.8	95.5	0.90	0.90	0.89	259	5.8	-	1545	2.1	1.3	2.1	5.95	1170
185	355LA	- 100	989	95.8	95.9	95.9	0.88	0.88	0.86	306	5.9	8	1786	2.2	1.3	2.1	6.64	1620
200	355LB	- 100	989	95.8	96.2	96.2	0.87	0.86	0.84	334	5.2	8	1931	1.4	0.9	2.2	8.63	1900
225	355LC	- 100	986	95.8	96.0	96.1	0.88	0.87	0.84	372	5.0	8	2179	1.6	0.9	2.2	9.17	2000
250	355LD	- 100	989	95.9	96.2	96.2	0.87	0.86	0.83	417	5.6	9	2414	1.5	0.8	2.4	9.83	2050
280	355LE	- 100	989	95.9	96.3	96.3	0.88	0.87	0.84	462	5.2	9	2704	1.4	0.8	2.2	10.84	2150

[^9]
PPA series 415V 50Hz IP66 Insulation class H, Temperature rise class B

kW	Motor frame	$\begin{aligned} & \text { Speed } \\ & \text { [r/min] } \end{aligned}$	Efficiency[\%]			Power factor, $\operatorname{Cos} \varphi$			Current		$\mathrm{T}_{\mathrm{E}}{ }^{(1)}$ Time [sec]	Torque				Moment of Inertia	Weight of foot mount motor [kg]
			at \% full load			at \% full load			Full	Locked		Full	Locked	Pull	Break		
			100	75	50	100	75	50	$\begin{aligned} & \text { load } \\ & \mathrm{I}_{\mathrm{N}}[A] \end{aligned}$	rotor I_{L} / I_{N}		load $\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	$\begin{aligned} & \text { rotor } \\ & \mathrm{T}_{\mathrm{L}} / \mathrm{T}_{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \operatorname{upp}_{\mathrm{T}_{U} / \mathrm{T}_{\mathrm{N}}} \end{aligned}$	$\begin{aligned} & \text { down } \\ & \mathrm{T}_{\mathrm{B}} / \mathrm{T}_{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \mathrm{J}={ }^{1} / 4 \mathrm{GD}^{2} \\ & {\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]} \end{aligned}$	

$750 \mathrm{r} / \mathrm{min}=8$ poles

1.1	100L	-28	700	76.3	70.5	64.7	0.82	0.54	0.42	2.5	3.5	-	15.0	2.3	1.8	2.8	0.0028	33
1.5	112M	-28	700	78.4	77.3	74.5	0.89	0.60	0.48	3.0	4.0	-	20.5	2.1	1.8	2.8	0.0062	45
2.2	132S	- 38	705	80.9	84.0	84.6	0.73	0.69	0.59	5.2	5.5	20	29.8	2.1	1.5	2.1	0.031	65
3	132M	- 38	705	82.7	85.6	86.2	0.73	0.69	0.59	6.9	5.5	18	40.6	2.1	1.6	2.1	0.040	80
4	160MA	- 42	720	84.2	85.3	85.2	0.77	0.69	0.56	8.6	5.5	12	53.1	2.2	1.7	2.6	0.085	110
5.5	160MB	- 42	720	85.8	87.0	86.7	0.78	0.70	0.57	11.4	5.6	10	73.0	2.3	1.8	2.6	0.10	115
7.5	160L	-42	720	87.2	88.1	87.6	0.76	0.68	0.55	15.7	5.8	8	99.5	2.6	2.0	2.8	0.18	139
11	180L	- 48	730	88.8	89.3	88.6	0.78	0.71	0.56	22.1	6.2	15	144	2.3	1.7	2.7	0.24	205
15	200L	- 55	730	90.0	90.8	90.6	0.78	0.70	0.58	29.7	5.3	11	196	2.1	1.5	2.4	0.37	300
18.5	$225 S$	-60	735	90.7	91.0	90.4	0.77	0.72	0.58	36.9	5.8	12	240	2.3	1.6	2.5	0.60	360
22	225M	- 60	735	91.2	91.5	90.9	0.77	0.72	0.58	43.6	5.9	11	286	2.3	1.6	2.6	0.69	400
30	250S	- 70	740	92.1	92.6	92.5	0.79	0.75	0.63	57.4	5.7	10	387	2.0	1.6	2.4	0.96	565
37	250M	- 70	740	92.7	93.2	93.0	0.80	0.76	0.68	69.4	5.3	11	478	1.9	1.4	2.2	1.15	575
45	280S	-80	745	93.2	93.6	93.4	0.82	0.79	0.71	81.9	5.8	10	577	2.1	1.5	2.4	1.82	650
55	280M	- 80	743	94.0	93.7	92.5	0.80	0.74	0.63	103	6.5	8	707	2.7	2.2	3.0	2.14	678
75	315S	- 85	740	94.4	94.8	94.2	0.82	0.78	0.70	135	4.9	10	968	1.5	1.2	2.0	4.60	1000
90	315M	- 85	740	94.7	94.9	94.8	0.83	0.80	0.72	159	4.9	11	1161	1.5	1.3	2.0	5.32	1100
110	315L	- 85	740	95.2	95.3	95.0	0.83	0.79	0.70	194	5.1	9	1420	1.6	1.2	2.1	5.95	1270
132	315LXA	- 85	740	95.4	95.6	95.2	0.82	0.78	0.71	235	5.3	8	1704	1.6	1.3	2.1	6.70	1480
150	315LXB	-85	740	95.7	95.8	95.7	0.83	0.80	0.73	263	4.7	8	1936	1.2	0.9	1.8	9.11	1680
185	355LA	- 110	740	95.5	95.6	95.1	0.83	0.80	0.73	327	5.1	12	2386	1.9	1.1	2.3	9.87	2125
200	355LB	- 110	740	95.8	96.0	96.0	0.83	0.82	0.75	350	4.8	11	2581	1.3	0.9	1.8	10.64	2400
220	355LB	- 110	740	95.8	96.0	96.1	0.83	0.82	0.76	385	4.7	11	2839	1.2	0.9	1.8	11.19	2580
250	355LX	- 110	742	95.9	95.9	95.9	0.83	0.81	0.75	437	5.2	10	3218	1.6	1.1	2.2	12.48	2650
280	400LA	- 110	745	96.1	96.3	96.2	0.83	0.82	0.75	488	6	13	3589	1.3	1.0	2.4	17.25	3000
315	400LB	- 110	744	95.9	95.8	94.8	0.81	0.77	0.66	565	6.8	12	4043	1.8	1.2	3.2	18.24	3030
355	400LX	- 110	745	96.2	96.5	96.4	0.83	0.82	0.76	618	6.1	11	4551	1.3	0.9	2.4	26.16	3500

PPC series 415 V 50 Hz

18.5	225S	-60	735	90.7	91.0	90.4	0.77	0.72	0.58	36.9	5.8	-	240	2.3	1.6	2.5	0.60	360
22	225M	- 60	735	91.2	91.5	90.9	0.77	0.72	0.58	43.6	5.9	-	286	2.3	1.6	2.6	0.69	400
30	250M	- 65	740	92.1	92.6	92.5	0.79	0.75	0.63	57.4	5.7	10	387	2.0	1.6	2.4	0.96	575
37	2805	-75	740	92.7	93.1	93.0	0.80	0.76	0.69	69.4	5.6	10	478	2.0	1.4	2.2	1.60	625
45	280M	-75	745	93.2	93.6	93.4	0.82	0.79	0.71	81.9	5.8	10	577	2.1	1.5	2.4	1.82	675
55	315S	-80	740	93.7	93.9	93.5	0.82	0.78	0.70	99.6	4.9	10	710	1.4	1.1	2.0	3.60	800
75	315MA	- 80	740	94.4	94.8	94.2	0.82	0.78	0.70	135	4.9	10	968	1.5	1.2	2.0	4.60	1050
90	315MB	- 80	740	94.7	94.9	94.8	0.83	0.80	0.72	160	4.9	11	1161	1.5	1.3	2.0	5.32	1100
110	315L	- 80	740	95.4	95.3	95.0	0.83	0.79	0.70	194	5.1	9	1420	1.6	1.2	2.1	5.95	1270
132	355LA	- 100	740	95.4	95.6	95.2	0.82	0.78	0.71	235	5.3	12	1704	1.6	1.3	2.1	7.60	1530
$160{ }^{2)}$	355LB	- 100	740	95.7	95.8	95.7	0.83	0.80	0.73	281	4.5	-	2065	1.1	0.8	1.7	9.11	1730
185	355LC	- 100	740	95.5	95.6	95.1	0.83	0.80	0.73	326	5.1	12	2388	1.9	1.1	2.3	9.87	2125
200	355LD	- 100	740	95.8	96.0	96.0	0.83	0.82	0.75	350	4.8	11	2581	1.3	0.9	1.8	10.64	2400
225	355LE	- 100	740	95.8	96.0	96.1	0.83	0.82	0.76	385	4.7	11	2804	1.2	0.9	1.8	11.19	2580
250	355LF	- 100	742	95.7	96.1	96.1	0.83	0.82	0.76	438	5.0	10	3218	1.3	0.9	1.9	12.48	2650

[^10]
Dimensions - PPA (Australian/British kW/Frame Sizes) Foot mount B3 (IM1001)

Motor frame	A	AA	AB	AC	AD	B	BB	C	D	DB	E	F	GD	G	H	HA	HD	HE	HF	K	KK	L
80-19	125	35	160	175	152	100	182	50	19	M6	40	6	6	15.5	80	10	210	134	121	10	$\mathrm{M} 2 \mathrm{O}^{2)}$	340
90S - 24	140	40	180	185	158	100	196	56	24	M8	50	8	7	20	90	12	215	134	121	10	$\mathrm{M} 2 \mathrm{O}^{2)}$	375
90L - 24	140	40	180	185	158	125	221	56	24	M8	50	8	7	20	90	12	215	134	121	10	$\mathrm{M} 2 \mathrm{O}^{2}$	400
100L - 28	160	40	200	220	186	140	235	63	28	M10	60	8	7	24	100	14	250	134	121	12	$\mathrm{M} 2 \mathrm{O}^{2}$	450
112M-28	190	50	240	235	210	140	245	70	28	M10	60	8	7	24	112	15	270	160	171	12	M25	470
132S-38	216	60	276	265	230	140	238	89	38	M12	80	10	8	33	132	18	315	160	171	12	M25	525
132M-38	216	60	276	265	230	178	276	89	38	M12	80	10	8	33	132	18	315	160	171	12	M25	565
160M - 42	254	70	325	320	280	210	314	108	42	M16	110	12	8	37	160	20	380	238	223	15	M50	655
160L - 42	254	70	325	320	280	254	354	108	42	M16	110	12	8	37	160	20	380	238	223	15	M50	695
180M - 48	279	70	349	355	305	241	349	121	48	M16	110	14	9	42.5	180	22	420	238	223	15	M50	715
180L - 48	279	70	349	355	305	279	349	121	48	M16	110	14	9	42.5	180	22	420	238	223	15	M50	715
200L - 55	318	70	395	395	325	305	380	133	55	M20	110	16	10	49	200	25	470	238	223	19	M50	805
225S - 60	356	75	435	442	390	286	370	149	60	M20	140	18	11	53	225	25	525	342	326	19	M63	860
225M - 55*	356	75	435	442	390	311	395	149	55	M20	110	16	10	49	225	25	525	342	326	19	M63	855
225M - 60	356	75	435	442	390	311	395	149	60	M20	140	18	11	53	225	25	525	342	326	19	M63	885
250S - 60*	406	80	485	485	415	311	395	168	60	M20	140	18	11	53	250	30	580	342	326	24	M63	930
250S - 70	406	80	485	485	415	311	395	168	70	M20	140	20	12	62.5	250	30	580	342	326	24	M63	930
250M - 60*	406	80	485	485	415	349	433	168	60	M20	140	18	11	53	250	30	580	342	326	24	M63	965
250M - 70	406	80	485	485	415	349	433	168	70	M20	140	20	12	62.5	250	30	580	342	326	24	M63	965
280S - 65*	457	85	550	544	445	368	530	190	65	M20	140	18	11	58	280	35	660	342	326	24	M63	1035
280S - 80	457	85	550	544	445	368	530	190	80	M20	170	22	14	71	280	35	660	342	326	24	M63	1065
280M - 65*	457	85	550	544	445	419	580	190	65	M20	140	18	11	58	280	35	660	342	326	24	M63	1085
280M - 80	457	85	550	544	445	419	580	190	80	M20	170	22	14	71	280	35	660	342	326	24	M63	1115
315S - 65*	508	114	622	700	525	406	508	216	65	M20	140	18	11	58	315	32	775	342	326	28	M63	1155
315S - 85	508	114	622	700	525	406	508	216	85	M20	170	22	14	76	315	32	775	342	326	28	M63	1185
315M - 65*	508	114	622	700	525	457	559	216	65	M20	140	18	11	58	315	32	775	342	326	28	M63	1205
315M - 85	508	114	622	700	525	457	559	216	85	M20	170	22	14	76	315	32	775	342	326	28	M63	1235
315L -65*	508	114	622	700	525	508	610	216	65	M20	140	18	11	58	315	32	775	342	326	28	M63	1255
315L - 85	508	114	622	700	525	508	610	216	85	M20	170	22	14	76	315	32	775	342	326	28	M63	1285
315LX-65*	508	114	622	700	525	508	810	216	65	M20	140	18	11	58	315	32	775	342	326	28	M63	1455
315LX-85	508	114	622	700	525	508	810	216	85	M20	170	22	14	76	315	32	775	342	326	28	M63	1485
355L - 85*	610	145	735	810	675	630	810	254	85	M20	170	22	14	76	355	40	845	530	550	28	BGP ${ }^{1)}$	1630
355L - 110	610	145	735	810	675	630	810	254	110	M20	210	28	16	100	355	40	845	530	500	28	$B G P^{1)}$	1670
355LX-85*	610	145	735	810	675	630	810	254	85	M20	170	22	14	76	355	40	845	530	500	28	$B G P^{1)}$	1760
355LX-110	610	145	735	810	675	630	810	254	110	M20	210	28	16	100	355	40	845	530	500	28	BGP ${ }^{1)}$	1800
400L -85*	686	165	810	910	725	710	920	280	85	M20	170	22	14	76	400	45	935	530	500	35	BGP ${ }^{1)}$	1725
400LX-110	686	165	810	910	725	710	920	280	110	M24	210	28	16	100	400	45	935	530	500	35	BGP ${ }^{1)}$	1765
400LX - 85*	686	165	810	910	725	710	920	280	85	M20	170	22	14	76	400	45	935	530	500	35	$B G P^{1)}$	1805
400LX-110	686	165	810	910	725	710	920	280	110	M24	210	28	16	100	400	45	935	530	500	35	$B G P^{1)}$	1845

450 and 500 frame dimensions available from CMG on request.

* 2 pole motors only	\quad1) 2) BGP
Two Blank Gland Plate	

PPA (Australian/British kW/Frame Sizes) Flange mount B5 (IM3001)

Motor frame	AC	AD	D	DB	E	F	GD	G	HB	HE	HF	KK	L	LA	M	N	P	$S^{3)}$	T
80-19	175	152	19	M6	40	6	6	15.5	130	134	121	M20 ${ }^{\text {) }}$	340	12	165	130	200	12	3.5
90S - 24	185	158	24	M8	50	8	7	20	125	134	121	$\mathrm{M} 20{ }^{2)}$	375	12	165	130	200	12	3.5
90L - 24	185	158	24	M8	50	8	7	20	125	134	121	$\mathrm{M} 20{ }^{\text {2 }}$	400	12	165	130	200	12	3.5
100L-28	220	186	28	M10	60	8	7	24	150	134	121	$\mathrm{M} 20{ }^{2}$	450	14	215	180	250	12	4
112M-28	235	210	28	M10	60	8	7	24	155	160	171	M25	470	14	215	180	250	15	4
132S-38	266	230	38	M12	80	10	8	33	183	160	171	M25	525	14	265	230	300	15	4
132M-38	266	230	38	M12	80	10	8	33	183	160	171	M25	565	14	265	230	300	15	4
160M - 42	320	280	42	M16	110	12	8	37	220	238	223	M50	655	16	300	250	350	19	5
160L - 42	320	280	42	M16	110	12	8	37	220	238	223	M50	695	16	300	250	350	19	5
180M-48	355	305	48	M16	110	14	9	42.5	240	238	223	M50	715	16	300	250	350	19	5
180L - 48	355	305	48	M16	110	14	9	42.5	240	238	223	M50	715	16	300	250	350	19	5
200L - 55	395	325	55	M20	110	16	10	49	270	238	223	M50	805	16	350	300	400	19	5
225S - 60	442	390	60	M20	140	18	11	53	300	342	326	M63	860	18	400	350	450	19	5
225M - 55*	442	390	55	M20	110	16	10	49	300	342	326	M63	855	18	400	350	450	19	5
225M - 60	442	390	60	M20	140	18	11	53	300	342	326	M63	885	18	400	350	450	19	5
250S - 60*	485	415	60	M20	140	18	11	53	330	342	326	M63	930	18	500	450	550	19	5
250S - 70	485	415	70	M20	140	20	12	62.5	330	342	326	M63	930	18	500	450	550	19	5
250M - 60*	485	415	60	M20	140	18	11	53	330	342	326	M63	965	18	500	450	550	19	5
250M - 70	485	415	70	M20	140	20	12	62.5	330	342	326	M63	965	18	500	450	550	19	5
280S -65*	544	445	65	M20	140	18	11	58	380	342	326	M63	1035	18	500	450	550	19	5
280S - 80	544	445	80	M20	170	22	14	71	380	342	326	M63	1065	18	500	450	550	19	5
280M -65*	544	445	65	M20	140	18	11	58	380	342	326	M63	1085	18	500	450	550	19	5
280M - 80	544	445	80	M50	170	22	14	71	380	342	326	M63	1115	18	500	450	550	19	5
315S - 65*	700	525	65	M20	140	18	11	58	460	342	326	M63	1155	25	600	550	660	24	6
315S - 85	700	525	85	M20	170	22	14	76	460	342	326	M63	1185	25	600	550	660	24	6
315M - 65*	700	525	65	M20	140	18	11	58	460	342	326	M63	1205	25	600	550	660	24	6
315M - 85	700	525	85	M20	170	22	14	76	460	342	326	M63	1235	25	600	550	660	24	6
315L -65*	700	525	65	M20	140	18	11	58	460	342	326	M63	1255	25	600	550	660	24	6
315L - 85	700	525	85	M20	170	22	14	76	460	342	326	M63	1285	25	600	550	660	24	6
315LX-65*	700	525	65	M20	140	18	11	58	460	342	326	M63	1455	25	600	550	660	24	6
315LX-85	700	525	85	M20	170	22	14	76	460	342	326	M63	1485	25	600	550	660	24	6
355L -85*	810	675	85	M20	170	22	14	76	490	530	500	BGP ${ }^{1)}$	1630	30	740	680	800	24	6
355L - 110	810	675	110	M24	210	28	16	100	490	530	500	BGP ${ }^{1)}$	1670	30	740	680	800	24	6
355LX-85*	810	675	85	M20	170	22	14	76	490	530	500	BGP ${ }^{1)}$	1760	30	740	680	800	24	6
355LX-110	810	675	110	M24	210	28	16	100	490	530	500	BGP ${ }^{1)}$	1800	30	740	680	800	24	6
400L - 85*	910	725	85	M20	170	22	14	76	535	530	500	BGP ${ }^{1)}$	1725	30	940	880	1000	28	6
400L - 110	910	725	110	M24	210	28	16	100	535	530	500	BGP ${ }^{1)}$	1765	30	940	880	1000	28	6
400LX - 85*	910	725	85	M20	170	22	14	76	535	530	500	BGP ${ }^{1)}$	1805	30	940	880	1000	28	6
400LX - 110	910	725	110	M24	210	28	16	100	535	530	500	BGP ${ }^{1)}$	1845	30	940	880	1000	28	6

450 and 500 frame dimensions available from CMG on request.

Dimensional - PPC (CENELEC kW/Frame Sizes) Foot mount B3 (IM1001)

Motor frame	A	AA	AB	AC	AD	B	BB	C	D	DB	E	F	GD	G	H	HA	HD	HE	HF	K	KK	L
80-19	125	35	160	175	152	100	182	50	19	M6	40	6	6	15.5	80	10	210	134	121	10	$\mathrm{M} 2 \mathrm{O}^{2)}$	340
90S - 24	140	40	180	185	158	100	196	56	24	M8	50	8	7	20	90	12	215	134	121	10	$\mathrm{M} 2 \mathrm{O}^{2}$	375
90L - 24	140	40	180	185	158	125	221	56	24	M8	50	8	7	20	90	12	215	134	121	10	$\mathrm{M} 2 \mathrm{O}^{2}$	400
100L - 28	160	40	200	220	186	140	235	63	28	M10	60	8	7	24	100	14	250	134	121	12	$\mathrm{M} 2 \mathrm{O}^{\text {2 }}$	450
112M - 28	190	50	240	235	210	140	245	70	28	M10	60	8	7	24	112	15	270	160	171	12	M25	470
132S - 38	216	60	276	265	230	140	238	89	38	M12	80	10	8	33	132	18	315	160	171	12	M25	525
132M - 38	216	60	276	265	230	178	276	89	38	M12	80	10	8	33	132	18	315	160	171	12	M25	565
160M - 42	254	70	325	320	280	210	314	108	42	M16	110	12	8	37	160	20	380	238	223	15	M50	655
160L - 42	254	70	325	320	280	254	354	108	42	M16	110	12	8	37	160	20	380	238	223	15	M50	695
180M - 48	279	70	349	355	305	241	349	121	48	M16	110	14	9	42.5	180	22	420	238	223	15	M50	715
180L-48	279	70	349	355	305	279	349	121	48	M16	110	14	9	42.5	180	22	420	238	223	15	M50	715
200L - 55	318	70	395	395	325	305	380	133	55	M20	110	16	10	49	200	25	470	238	223	19	M50	805
225S - 60	356	75	435	442	390	286	370	149	60	M20	140	18	11	53	225	25	525	342	326	19	M63	860
225M - 55*	356	75	435	442	390	311	395	149	55	M20	110	16	10	49	225	25	525	342	326	19	M63	855
225M - 60	356	75	435	442	390	311	395	149	60	M20	140	18	11	53	225	25	525	342	326	19	M63	885
250M - 60*	406	80	485	485	415	349	433	168	60	M20	140	18	11	53	250	30	580	342	326	24	M63	965
250M - 65	406	80	485	485	415	349	433	168	65	M20	140	18	11	58	250	30	580	342	326	24	M63	965
280S - 65*	457	85	550	544	445	368	530	190	65	M20	140	18	11	58	280	35	660	342	326	24	M63	1035
280S - 75	457	85	550	544	445	368	530	190	75	M20	140	20	12	67.5	280	35	660	342	326	24	M63	1035
280M - 65*	457	85	550	544	445	419	580	190	65	M20	140	18	11	58	280	35	660	342	326	24	M63	1085
280M - 75	457	85	550	544	445	419	580	190	75	M20	140	20	12	67.5	280	35	660	342	326	24	M63	1085
315S - 65*	508	114	622	700	525	406	508	216	65	M20	140	18	11	58	315	32	775	342	326	28	M63	1155
315S - 80	508	114	622	700	525	406	508	216	80	M20	170	22	14	71	315	32	775	342	326	28	M63	1185
315M - 65*	508	114	622	700	525	457	559	216	65	M20	140	18	11	58	315	32	775	342	326	28	M63	1205
315M - 80	508	114	622	700	525	457	559	216	80	M20	170	22	14	71	315	32	775	342	326	28	M63	1235
315L - 65*	508	114	622	700	525	508	610	216	65	M20	140	18	11	58	315	32	775	342	326	28	M63	1255
315L - 80	508	114	622	700	525	508	610	216	80	M20	170	22	14	71	315	32	775	342	326	28	M63	1285
315LX-65*	508	114	622	700	525	508	610	216	65	M20	140	18	11	58	315	32	775	342	326	28	M63	1455
315LX-80	508	114	622	700	525	508	610	216	80	M20	170	22	14	71	315	32	775	342	326	28	M63	1485
355L - 80*	610	145	735	810	675	630	810	254	80	M20	170	22	14	71	355	40	845	530	500	28	$B G P^{1)}$	1603
355L - 100	610	145	735	810	675	630	810	254	100	M24	210	28	16	90	355	40	845	530	500	28	$B G P^{1)}$	1670
355LX - 80*	610	145	735	810	675	630	810	254	80	M20	170	22	14	71	355	40	845	530	500	28	$B G P^{1)}$	1760
355LX-100	610	145	735	810	675	630	810	254	100	M24	210	28	16	90	355	40	845	530	500	28	$B G P^{1)}$	1800

400 Frame and above available in PPA series only

*2 pole motors only	1) BGP = Blank Gland Plate
Two conduit entries provided	

PPC (CENELEC kW/Frame Sizes) Flange mount B5 (IM3001)

Motor frame	AC	AD	D	DB	E	F	GD	G	HB	HE	HF	KK	L	LA	M	N	P	$S^{3)}$	T
80-19	175	152	19	M6	40	6	6	15.5	130	134	121	M20 ${ }^{\text {) }}$	340	12	165	130	200	12	3.5
90S -24	185	158	24	M8	50	8	7	20	125	134	121	M20 ${ }^{\text {) }}$	375	12	165	130	200	12	3.5
90L - 24	185	158	24	M8	50	8	7	20	125	134	121	M20 ${ }^{\text {) }}$	400	12	165	130	200	12	3.5
100L - 28	220	186	28	M10	60	8	7	24	150	134	121	$\mathrm{M} 20{ }^{\text {2) }}$	450	14	215	180	250	12	4
112M - 28	234	210	28	M10	60	8	7	24	155	160	171	M25	470	14	215	180	250	15	4
132S - 38	266	230	38	M12	80	10	8	33	183	160	171	M25	525	14	265	230	300	15	4
132M - 38	266	230	38	M12	80	10	8	33	183	160	171	M25	565	14	265	230	300	15	4
160M - 42	320	280	42	M16	110	12	8	37	220	238	223	M50	655	16	300	250	350	19	5
160L - 42	320	280	42	M16	110	12	8	37	220	238	223	M50	695	16	300	250	350	19	5
180M - 48	355	305	48	M16	110	14	9	42.5	240	238	223	M50	715	16	300	250	350	19	5
180L - 48	355	305	48	M16	110	14	9	42.5	240	238	223	M50	715	16	300	250	350	19	5
200L - 55	395	325	55	M20	110	16	10	49	270	238	223	M50	805	16	350	300	400	19	5
225S - 60	442	390	60	M20	140	18	11	53	300	342	326	M63	860	18	400	350	450	19	5
225M - 55*	442	390	55	M20	110	16	10	49	300	342	326	M63	855	18	400	350	450	19	5
225M - 60	442	390	60	M20	140	18	11	53	300	342	326	M63	885	18	400	350	450	19	5
250M - 60*	485	415	60	M20	140	18	11	53	330	342	326	M63	965	18	500	450	550	19	5
250M - 65	485	415	65	M20	140	18	11	58	330	342	326	M63	965	18	500	450	550	19	5
280S - 65*	544	445	65	M20	140	18	11	58	380	342	326	M63	1035	18	500	450	550	19	5
280S - 75	544	445	75	M20	140	20	12	67.5	380	342	326	M63	1035	18	500	450	550	19	5
280M - 65*	544	445	65	M20	140	18	11	58	380	342	326	M63	1085	18	500	450	550	19	5
280M - 75	544	445	75	M20	140	22	14	67.5	380	342	326	M63	1085	18	500	450	550	19	5
315S - 65*	700	525	65	M20	140	18	11	58	460	342	326	M63	1155	25	600	550	660	24	6
315S - 80	700	525	80	M20	170	22	14	71	460	342	326	M63	1185	25	600	550	660	24	6
315M - 65*	700	525	65	M20	140	18	11	58	460	342	326	M63	1205	25	600	550	660	24	6
315M - 80	700	525	80	M20	170	22	14	71	460	342	326	M63	1235	25	600	550	660	24	6
315L - 65*	700	525	65	M20	140	18	11	58	460	342	326	M63	1255	25	600	550	660	24	6
315L - 80	700	525	80	M20	170	22	14	71	460	342	326	M63	1285	25	600	550	660	24	6
315LX - 65*	700	525	65	M20	140	18	11	58	460	342	326	M63	1455	25	600	550	660	24	6
315LX - 80	700	525	80	M20	170	22	14	71	460	342	326	M63	1485	25	600	550	660	24	6
355L - 80*	810	675	80	M20	170	22	14	71	490	530	500	$B G P^{1)}$	1630	30	740	680	800	24	6
355L - 100	810	675	100	M24	210	28	16	90	490	530	500	$B G P^{1)}$	1670	30	740	680	800	24	6
355LX - 80*	810	675	80	M20	170	22	14	71	490	530	500	$B G P^{1)}$	1760	30	740	680	800	24	6
355LX - 100	810	675	100	M24	210	28	16	90	490	530	500	$B G P^{1)}$	1800	30	740	680	800	24	6

400 Frame and above available in PPA series only

* 2 pole motors only	${ }^{\text {1) }}$ BGP = Blank Gland Plate		
	${ }^{\text {2) }}$ Two conduit entries provided.		Mounting Holes: Frames $80-200$ have 4 holes at 45° offset from top
:---			
Frames 225 and above have 8 holes at 22.5° offset from top			

Motors for hazardous areas - PPAE/PPAN/PPAD

Motors used within a hazardous location require a higher level of protection against the risk of harmful occurrences. CMG PPA motors are available in the three most common high protection configurations, Ex e, Ex n and DIP, supplied with protection ratings of IP66. PPA Hazardous area motors are available in motor frame sizes 80 to 400.

Combinations of protection such as Exe and DIP or Exn and DIP are also available.

Australian Standards

AS/NZS 2381.1: 1999 specify general requirements for the selection of electrical equipment, and its installation and maintenance to ensure safe use in areas where flammable materials are generated, prepared, processed, handled, stored or otherwise used, and which are therefore potentially hazardous.

The term 'flammable material' includes gas, vapors, liquids, mists, solids and dusts, but does not include those materials which are specifically manufactured as explosives or materials which are inherently explosive.

The requirements of the listed standards apply only to the use of electrical equipment under normal or near normal atmospheric conditions. The requirements specified for hazardous location electrical equipment are supplementary to and not alternative to any requirements which would apply to equipment and installations in nonhazardous areas. (See AS3000-2000).

Paint
The standard paint colours for PPA hazardous location motors are:

PPA E (Ex e)	Golden Yellow (RAL 1033)
PPA N (Ex n)	Brown (RAL 8015)
PPA D (DIP)	Brown (RAL 8015)

Brown (RAL 8015)
Brown (RAL 8015)

Motor protection types PPAE - Ex e - Range 0.55kW to 630kW

Ex e motor protection designates Increased safety as outlined in AS2380.6-1988.

The increased safety (Ex e) type of protection describes electrical equipment that does not produce arcs or sparks in normal service in which additional measures are applied so as to give increased security against the possibility of excessive temperatures and of the occurrence of arcs and sparks.

Increased safety (Ex e) motors are suitable for Class I, Zone 1, Group IIA,B\&C hazardous areas, and CMG provides for a temperature class of $\mathrm{T} 3\left(200^{\circ} \mathrm{C}\right)$ in a $50^{\circ} \mathrm{C}$ ambient.

Ex e Protection - (t_{E} time)

T_{E} time is the time it takes for the stator winding or rotor cage to heat up from normal operating temperature, at the highest permitted ambient temperature, to the highest permitted limit temperature (temperature class), with the rotor locked and the stator winding loaded with the starting current.

For selection and setting of suitable current dependent protection the t_{E} time and the ratio of locked rotor current to nominal current are used. In the case of a rotor locking, this device must cut off the supply within the specified t_{E} time, which is listed in the performance data.

PPAN - Ex n - Range 0.55kW to 630kW

Ex n motor protection designates Non-sparking as outlined in AS2380.9-1991.

The non-sparking (Ex n) type of protection describes electrical equipment that, in normal operation, is not capable of igniting a surrounding explosive atmosphere, and a fault capable of causing ignition is not likely to occur.

Non-sparking (Ex n) motors are suitable for Class I, Zone 2, Group IIA,B\&C hazardous areas, and CMG provides for a temperature class of $\mathrm{T} 3\left(200^{\circ} \mathrm{C}\right)$ in a $60^{\circ} \mathrm{C}$ ambient.

PPAD - DIP - Range 0.55kW to 630kW

DIP motor protection designates Dust-excluding Ignition Proofing as outlined in AS/NZS61241.1.1:1999.

The Dust-excluding ignition proofing (DIP) type of protection describes electrical equipment which is enclosed so that it excludes dust, and which will not permit arcs, sparks or heat otherwise generated or liberated inside the enclosure to cause ignition of exterior accumulations or atmospheric suspensions of a specific dust on or in the vicinity of the enclosure.

Dust-excluding ignition proofed (DIP) motors are suitable for dust laden hazardous areas, and CMG provides for a temperature class of $\mathrm{T} 4\left(135^{\circ} \mathrm{C}\right)$ in a $50^{\circ} \mathrm{C}$ ambient.

Hazardous area classifications

Hazardous areas fall into two classes: hazards due to flammable gases (vapors or mists) and hazards due to combustible dusts (fibres or flyings), Class I, Zones I, II and A21 respectively, and are briefly explained below.

Gaseous Hazards - Class I

Class I hazards are specified by Zone and Group.
The word 'Zone' is internationally accepted as indicating the probability of the presence of a flammable, combustible or explosive material, and the extent, dimension and shape of the hazardous area and the volume in which the hazardous material can be expected.

AS2430.1-1987 defines three zones:
Zone 0 - an area in which an explosive gas atmosphere is present continuously, or is present for long periods.
Zone 1 - an area in which an explosive gas atmosphere is likely to occur in normal operation.

Zone 2 - an area in which an explosive gas atmosphere is not likely to occur in normal operation and if it does occur it will exist for a short period only.

Groups are defined as follows:
Group I - coal mining (methane)
Group II - other industries
High surface temperatures can cause ignition of flammable gases or vapors therefore the surface temperature of equipment in hazardous areas must not exceed the ignition temperature of these gases or vapors.

Group I electrical equipment may not have a surface temperature that exceeds $150^{\circ} \mathrm{C}$ where coal dust can form a layer, and $450^{\circ} \mathrm{C}$ for internal surfaces where the above risk is avoided by sealing against ingress or dust.

Group II electrical equipment may not have a surface temperature that exceeds its specified temperature class, as listed in the table below.

Temperature class of electrical equipment	Maximum surface temperature of electrical equipment	Ignition temperature of gas or vapor
T1	$\leq 450^{\circ} \mathrm{C}$	$>450^{\circ} \mathrm{C}$
T 2	$\leq 300^{\circ} \mathrm{C}$	$>300^{\circ} \mathrm{C}$
T 3	$\leq 200^{\circ} \mathrm{C}$	$>200^{\circ} \mathrm{C}$
T 4	$\leq 135^{\circ} \mathrm{C}$	$>135^{\circ} \mathrm{C}$
T 5	$\leq 100^{\circ} \mathrm{C}$	$>100^{\circ} \mathrm{C}$
T 6	$\leq 85^{\circ} \mathrm{C}$	$>85^{\circ} \mathrm{C}$

Group specification and characteristics of some common flammable liquids, gases and vapors are listed in the table below.

Material	Boiling point [$\left.{ }^{\circ} \mathrm{C}\right]$	Flash point [${ }^{\circ} \mathrm{C}$]	Ignition temp. [${ }^{\circ} \mathrm{C}$]	Gas group
Acetone	56	-20	465	IIA
Acetylene	-83	Gas	305	IIC
Ammonia	-33	Gas	651	IIA
Benzene	80	12	498	IIA
Butane	-1	Gas	287	IIA
Carbon monoxide	-192	Gas	609	IIA
Ethane	-89	Gas	472	IIA
Ethyl alcohol	78	55	363	IIA
Ethylene	-104	Gas	450	IIB
Heptane	98	-4	204	IIA
Hydrogen	-252	Gas	500	IIC
Hydrogen cyanide	26	-18	538	IIB
Methane	-162	Gas	537	IIA
Propane	-42	Gas	432	IIA
Toluene	111	4	480	IIA

Note the data given in this table is derived from NFPA 325 M . Flashpoint is the lowest temperature at which a material gives off sufficient vapor to form an explosive gas/air mixture in the air immediately above the surface.

Equipment within a specific group may only be used within a location with an equal or less level of hazard. Allowable groups are summarized in the table below.

	Allowable
Gas group	Equipment group
IIA	IIA, IIB, IIC
IIB	IIB, IIC
IIC	IIC

Particle Hazards - DIP

Dust areas cannot be divided into normal and abnormal conditions dependent upon time like gases and vapours since the accumulation of dust, unlike gas, is not selfcorrecting by ventilation over a period of time.

Combustible dusts, fibres or flyings are delineated in AS/NZS61241.3:1999 as follows:
(a) Electrically conductive dusts - Areas in which combustible dusts, fibres or flyings of an electrically conductive nature are present, regardless of particle size, with electrical resistivity $\leq 10^{3} \Omega \mathrm{~m}$.
(b) Electrically non-conductive dusts - Areas in which electrically non-conductive combustible dusts, fibres or flyings of such fineness as to be capable of producing explosive mixtures when suspended in the air.

It should be noted that the distinction between these two types does not affect the selection of equipment for dust areas.

The following table summarizes the relationship between temperature class, surface temperature and cloud or layer ignition temperature (whichever is the lower).

Temperature class of electrical equipment	Maximum surface temperature of electrical equipment	Cloud or layer ignition temperature of dust
T1	$\leq 450^{\circ} \mathrm{C}$	$\geq 500^{\circ} \mathrm{C}$
T2	$\leq 300^{\circ} \mathrm{C}$	$\geq 350^{\circ} \mathrm{C}$
T3	$\leq 200^{\circ} \mathrm{C}$	$\geq 250^{\circ} \mathrm{C}$
T4	$\leq 135^{\circ} \mathrm{C}$	$\geq 185^{\circ} \mathrm{C}$
T5	$\leq 100^{\circ} \mathrm{C}$	$\geq 150^{\circ} \mathrm{C}$
T6	$\leq 85^{\circ} \mathrm{C}$	$\geq 135^{\circ} \mathrm{C}$

Specifications and characteristics of some common combustible dusts are listed in the table below.

Material	Minimum ignition energy [mJ]	Ignition temperature	
		Cloud [${ }^{\circ} \mathrm{C}$]	Layer [${ }^{\circ} \mathrm{C}$]
Aluminium	15	550	740
Cellulose	80	480	270
Corn	40	400	250
Flax	80	230	430
Polypropylene	30	420	-
Rayon	2400	520	250
Rice	50	440	220
Rubber (synthetic)	30	320	-
Sugar	30	370	400
Wheat flour	50	380	360

Slide rails

Slide rails are designed for motor position adjustment. Applications include tension adjustment for belt driven equipment.

CMG stock slide rails to suit frame sizes 80 to 355 .
Rail sets are manufactured from cast iron and provided with mounting bolts and nuts between motor and rail.

Dimensional specifications for the range are set out in the accompanying table

Slide rail Product Code	To suit motor frame	Dimensions [mm]													Weight per set [kg]
		AL	AT	AU	AX	AY	AZ	XA	XB	XC	XD	XE	XF	XG	
MR 080090	$80 / 90$	375	18	25x 13	30	70	48	40	46	8	10	325	25	240	3.5
MR 100132	100 / 112 / 132	480	19	30x 14	37	115	70	45	67	10	10	430	25	335	7
MR 160180	160 / 180	570	19	35×18	48	100	72	60	68	12	11	520	25	390	15
MR 200225	200 / 225	790	32	20x 20	60	180	90	60	86	16	16	730	30	605	35
MR 250280	250/280	940	38	22x 22	72	230	100	65	95	20	16	870	35	725	60
MR 315355	315 / 355	1215	40	30x 30	125	275	122	105	116	24	20	1115	50	915	85

Optional extras

VVVF drives

The PPA motor performs excellently without cogging at low speed when operating in conjunction with a VVVF (Variable Voltage Variable Frequency) Drive.
Two types of VVVF drives kit are available for the PPA range.

VVVF drive kit A

Separately driven cooling fan should be used when the motor speed is required to be reduced below 30 Hz in constant torque mode. For centrifugal fan or pump, no separate cooling fan is required. For all other loads refer to the loadability curve in the section on VVVF Drives.

VVVF drive kit B1 - Standard Motor

Incorporates a single insulated bearing - normally at the non-drive end. It is designed to remove the effect of electrical discharge in the bearings and is available for all frames 315 and larger. CMG recommends it be used for motors of 200 kW and above when connected to VVVF drives.

VVVF drive kit B2 - Hazardous location motors

In hazardous locations earthing brushes are not permitted. In this case two insulated bearings should be fitted.

Dust shields

For use in very dusty environments, shields are available manufactured from either stainless steel or fibreglass. These shields are fitted over the motor in the IM 1001, 2001 or 3001 (horizontal mounted) position and prevent the ribs of the motor from clogging with dust.

Vertical hoods

PPA motors have, as standard, IP66 protection and therefore rain hoods for motors mounted vertically shaft down are not required. However, where additional protection from solids in the atmosphere is required hoods can be fitted.

Special shafts

Special shafts for the full PPA range are available upon request. Special shafts, including double shaft extension, stainless steel, and customer specific are available on request.

Special labels

Additional identification and warning labels in stainless steel (unless otherwise specified) can be fitted to this PPA range, these include:

- Equipment number labels
- Direction of Rotation (Arrow)
- Phasing labels
- RTD labels
- Lubrication instruction labels

Bearing RTDs

In addition to the winding RTD's previously described in this catalogue, bearing RTD's (one per bearing) are available as an option on the full PPA range. These RTD's would be terminated in the winding RTD terminal box or alternatively their own auxiliary box.

Chemical environments

Where the motor is to be installed in harsh chemical conditions optional surface treatment are available to protect against acid and alkaline splashing.

In addition to these surface systems we are able to supply stainless steel hardware (nuts, bolts and screws) plus inlet fan grills manufactured from stainless steel.

The optional extras shown in this section does not represent the total range available. Please refer to CMG for your requirements.

Modifications and variations

Terminal box

PPA motors come as standard with a terminal box on the right hand side viewed from drive end.
The following alternatives are available:

- Left hand terminal box - PPAL
- Removed terminal box (fitted with a blanking plate and threaded conduit entry. Extended leads, including earth connector).

Bearings

CMG can address applications where bearings need special consideration. Attention may need to be given to the following:

- Bearing monitors
- Alternative bearing types
- Low/high temperature bearing grease
- Oil seals
- Non contact labyrinth seals
- Insulated bearings

Shafts

PPA motors come standard with a single output shaft to Australian standard dimensions. The following alternatives are available:

- Double shaft extension
- Special shaft extension
- Stainless steel shaft material type
- Reduced shafts for geared motors

Environmental considerations

Where environmental factors need special consideration CMG can provide the following modifications:

- Winding temperature monitors
- Anti-condensation heaters on motors below frame 250
- Separately driven cooling fans
- Tropic proofing
- Special paint finish

Accessories

Accessories available for CMG PPA motors include:

- Slide rails (refer previous page)
- VVVF drives
- Alternative paint colors
- Rain cowls
- Uni-directional and bi-directional low-noise fans
- Coal/dust shields

Testing services

CMG can provide both type test certificates and individual motor test reports on any CMG SGA motor. Testing is carried out by CMG Technology Pty Ltd in our own NATA accredited test laboratory

Accreditation No. 14396

PPA Motor Installation and Maintenance

The CMG PPA series motor is designed and manufactured to be robust and reliable for minimal maintenance. The following items should be taken into consideration to ensure a trouble free installation and reliable running throughout the motor's life.

Inspection

On receipt of the motor check the following:
\square rating plate details and enclosure are as ordered

- shaft turns freely (in absence of shaft locking clamp)
- motor was not damaged during transport
- condensation drain holes are in the correct position for the motor mounting application (They should be located at the lowest point of the motor when it is in its operating position.)
- If the winding is meggered to earth, ensure that the thermal protectors are not inadvertently damaged. (The thermistor leads should be shorted together whilst meggering takes place)

Storage

When the motor is not for immediate use store as follows:

- Clean location
- Dry location
- Free from vibration (vibration can damage bearings)
- Shaft locking clamps, where supplied, are fitted securely.
- Anti-condensation heaters, where fitted, should be energised if the environment is likely to be damp

Installation

The following items should be considered on installation to ensure motor reliability:

Surroundings

Ensure that the motor is properly protected against ingress of oil, water or dust if construction work is in progress around the motor.

Shaft locking clamp

Motors 200 frame and above are fitted with a shaft-locking clamp. The clamp should remain fitted for as long as possible, preferably until the motor is put into service. Motors that are likely to remain stationary for lengthy periods should have locking clamps refitted. Shaft-locking clamps stop axial movement of the rotor assembly caused by vibration. This causes a phenomenon known as "false brinelling", which eventually leads to premature bearing failure particularly where roller bearings are fitted.

Pulleys and couplings

- Pulleys and couplings should be machined to H 7 limits. Both shaft and bore should be cleaned and lubricated. If the fit is still too tight the pulley or coupling should be heated up in air or oil to approximately $93^{\circ} \mathrm{C}$.
- Shock methods must not be used in removing pulleys and couplings. Proper wheel or pulley removers should be used to prevent shaft and bearing damage.
- Pulleys and couplings should be balanced before the keyway is cut to eliminate vibration caused by lack of
balancing. (Rotor and shaft assemblies have been finely balance during manufacture, and drive end shafts balanced with a half key.)
- When slide rails are used in conjunction with pulley drives the adjusting screw ends should be positioned between the motor and load at drive shaft end and the other diagonally opposite. This helps speedy and accurate belt aligning, tensioning and replacement.

Shafts and keys
Shafts are machined to AS1359.10-1985 dimensions.

Shaft			Key		
Dia.	Tolerance		Length	Size	Seat
19	+0.009	-0.004	40	$6 \times 6 \times 25$	15.5
24	+0.009	-0.004	50	$8 \times 7 \times 32$	20
28	+0.009	0.004	60	$8 \times 7 \times 40$	24
38	+0.018	+0.002	80	$10 \times 18 \times 56$	33
42	+0.018	+0.002	110	$12 \times 8 \times 80$	37.0
48	+0.018	+0.002	110	$14 \times 9 \times 80$	42.5
55	+0.030	+0.011	110	$16 \times 10 \times 80$	49.0
60	+0.030	+0.011	140	$18 \times 11 \times 110$	53.0
65	+0.030	+0.011	140	$18 \times 11 \times 110$	58.0
70	+0.030	+0.011	140	$20 \times 12 \times 110$	62.5
75	+0.030	+0.011	140	$20 \times 12 \times 110$	67.5
80	+0.030	+0.011	170	$22 \times 14 \times 140$	71.0
85	+0.035	+0.013	170	$22 \times 14 \times 140$	76.0
110	+0.035	+0.013	210	$28 \times 16 \times 160$	100

Belt Drives

The belt manufacturer's recommendations for installation, alignment and tensioning must be strictly adhered to when fitting belt drives.

Direct Coupling
Care must be taken in checking alignment of driving and driven shafts. The motor and driven equipment must be in alignment from all aspects.

WARNING: Misalignment of pulleys will lead to premature bearing failure

Connection
Up to and including 3kW 240volt Delta / 415 Volt Star. From 4kW up to 630 kW 415 volt Delta / 720 volt Star. Motors above 630kW 690 volt Delta.

All PPA motors are suitable for both 415 Volt DOL operation and for use with 415 Volt three phase variable frequency drives. 3kW and below can also be used with 240V three phase variable frequency drives. Alternatively 415 Volt Delta connected motors can be operated DOL in the star configuration with a 720/690 Volt supply or with a 720/690 Volt variable frequency drive. In this latter case
the drive must be supplied with an output reactor to protect the winding insulation.

Where special windings are supplied, a separate connection diagram will be supplied with the motor.
All motors are provided with suitable earthing studs.
Running current check
Check the running current of the motor on no load and full load.

Basic maintenance

Bearings

When re-greasing motors ensure that the correct type of grease is used. If in doubt about the existing grease type, clean out old grease thoroughly from bearings and bearing housings, prior to regreasing.

WARNING: Never Mix Grease Types

Grease Replenishment

The addition of fresh grease, to renew the original charge, must be made at a regular intervals.

PPA motors with frames 80 to 100 are fitted with sealed bearing housing (non regreasable).
Thru-flushing Grease valves are fitted to all PPA motors. For frames 112 and above replenishment should be carried out whilst the motor is running. The rotating slinger expels excess grease through an exhaust port in the bearing cap ensuring the correct level of fresh grease is maintained in the bearing housing. See the table for bearing relubrication volumes.

Grease Packing

Assembly

The Thru-flushing Grease Valve operates automatically and cannot be overgreased. This feature eliminates problems associated with overpacking as any excess will be expelled from the housing as the motor operates. (Overpacking can cause churning and over-heating which may result in breakdown of the grease and leakage from the housing. Too little grease can result in dry running and cage wear.)

Bearing

The bearing itself should always be packed as full as possible, working the grease thoroughly into the bearing parts in order to ensure proper lubrication immediately upon starting.

Bearing caps

The most convenient way of packing bearing caps is to fill the inner-bearing cap completely and the outer bearing cap to one third of its capacity, preferably on the opposite side to the exhaust port.

Dismantling

If a motor is dismantled, cover the bearings with plastic sheet or clean lint free rag to prevent ingress of foreign matter. Never use cotton waste.

Removing and Fitting Bearings

If bearings are removed they should be renewed, not refitted. Proper drawing and fitting equipment must be used when removing bearings as the bearings are interference fit on the shaft. Replacement bearings must be the correct size and have the correct internal clearance grade. See the table for bearing sizes and clearances.

Recommended Greases Types

General Purpose Grease (standard)

- Lithium Hydroxy-stearate grease
- NLGI consistency No. 3
- Operating temp. $-35^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$
- High oxidation resistance
- Retains consistency after extreme periods of service
- Contains effective rust inhibitors
- Shell Alvania No. 3 or equivalent.

High Temperature Grease (optional)

- Teflon base with mineral oils
- Operating temp. $-10^{\circ} \mathrm{C}$ to $+260^{\circ} \mathrm{C}$.
- Non melting with high oxidation resistance
- Retains consistency
- Contains rust inhibitors
- Magnalube G or equivalent.

Current

Check periodically that the current drawn is balanced and is the same as at the time of installation.

Cable Terminations

Cable terminations should have all incoming supply leads compressed between two nuts, locked with a locking nut. Other combinations may cause overheating due to high resistance joints.

WARNING: The Correct Clearance Between Live Parts Should Be Maintained

Thermal Protection Devices

Standard
One set (3) of PTC Thermistors are embedded in the head windings and the leads brought out to an auxiliary terminal box, as standard for all PPA motors.

Optional

Other thermal protection devices may be optionally fitted, including Resistance Temperature Detectors (RTD's), additional sets of PTC Thermistors or Bi-metal temperature monitors.

> WARNING: DO NOT APPLY MORE THAN 2.5 VOLTS ACROSS ANY PROTECTION DEVICE

Insulation testing

When checking for insulation resistance (IR) the test voltage must not be applied across the protection device. The correct procedure is to short the entire protector leads together and apply the test voltage between the shorted leads and earth and/or phases. "Meggering" across the terminals of the device, when not shorted, is likely to cause irreparable damage, and must not be carried out.

Table 1: Bearing Size and Relubrication data

Note 1 : The bearings fitted to $80,90 \& 100$ frames are greased for life. For these bearing sizes, refer to the table listed on page 7 .
Note 2: For data relating to 450 \& 500 frames refer CMG.

HEAD OFFICE:

CMG PTY LTD
ABN 15248126938
19 Corporate Avenue, Rowville VIC 3178
P.O. Box 2340 Rowville VIC 3178 Ph: (03) 92374000 Fax: (03) 92374010

VICTORIAN SALES OFFICE
19 Corporate Avenue, Rowville VIC 3178
Ph: (03) 92374040 Fax: (03) 92374050
Sales.VIC@cmggroup.com.au
WESTERN AUSTRALIAN SALES OFFICE
Unit 2, 9 Noble Street
Kewdale WA 6105
Ph: (08) 93535600 Fax: (08) 93532244 Sales.WA@cmggroup.com.au

SOUTH AUSTRALIAN SALES OFFICE
2/24 Richard Street, Hindmarsh SA 5007 Ph: (08) 83408333 Fax: (08) 83408800 Sales.SA@cmggroup.com.au

TASMANIAN SALES OFFICE
112 Tarleton Street, East Devonport TAS 7310
Ph: (03) 64279911 Fax: (03) 64279922
Sales.TAS@cmggroup.com.au

QUEENSLAND SALES OFFICE
2/6 Overlord Place, Acacia Ridge QLD 4110 Ph: (07) 32735366 Fax: (07) 32735877 Sales.QLD@cmggroup.com.au

NORTH QUEENSLAND SALES OFFICE
Cnr. John Vella Drive \& Connors Road, Paget, Mackay NQLD 4740
Ph: (07) 49526244 Fax: (07) 49526277
Sales.NQLD@cmggroup.com.au
NEW SOUTH WALES SALES OFFICE 8/26 Powers Road, Seven Hills NSW 2147 Ph: (02) 96741555 Fax: (02) 96744652

Sales.NSW@cmggroup.com.au

Sales 雷1300 888853
 www.cmggroup.com.au

CMG Electric Motors (NZ) Ltd

AUCKLAND SALES OFFICE
2 Ross Reid Place, East Tamaki, Auckland P.O. Box 58-864 Greenmount Ph: (09) 2739162 Fax: (09) 2739062

Sales.NZ@cmggroup.co.nz

CHRISTCHURCH SALES OFFICE
254 Annex Road, Middleton, Christchurch
Ph: (03) 9631640 Fax: (03) 9631642 Sales.NZ@cmggroup.co.nz

Sales Support 良 0800676722 www.cmggroup.co.nz

CMG Electric Motors UK Ltd
Unit 1 C1 Hortonpark Industrial Estate Hortonwood 7, Telford, Shropshire TF17GP, UK
Ph: 01952602950 Fax: 01952602959

www.cmguk.co.uk
$m \quad 0 \quad t \quad o \quad r \quad s$
transmission
d r i v e s
technology

Home | Checkout | View Basket

HOME ABOUT US
APPLICATION
PRODUCTS TECHNICAL
NEWS \& CASE STUDIES
CONTACT US

Thomasdbetts

Thomas \& Betts Stainless Steel Cable Glands are high quality glands designed for use in severe environments. Made from 316 grade stainless steel, each gland features a wide cable diameter range and UP65 protection.

Applications

Indoor and outdoor use in harsh environments

Standards

AS 1939-1990

Function

Provides seal on cable sheath

Protection Class

IP65

Construction

Body and compression nut
316 Stainless Steel

Part Number	Mounting Thread		Cable Acceptance Details		Across Corners (mm)	$\begin{gathered} \text { Pack } \\ \text { Qty } \end{gathered}$
	$\begin{aligned} & \text { Size } \\ & (\mathrm{mm}) \end{aligned}$	Length (mm)	Overall Diameter			
			Min (mm)	Max (mm)		
SSG-16-8	M16x1.5	10	3.5	8.4	22	50
SSG-20-11	M20x1.5	10	6.4	11.5	22	25
SSG-20-16	M20x1.5	12	11	16.3	27.5	25
SSG-25	M25x1.5	12	15	21	32	25
SSG-32	M32x1.5	12	19	27.7	40	10

Thomasebetis

EMC Catis Aland GABLE GLAND FOR EMG SGREENED CABLE

Thomas \& Betts EMC Cable Glands are high quality glands designed for use with EMC screened cables using a garter spring to earth the screen. EMC glands can also be used with Belden Armoured Cables.

Applications

Indoor and outdoor use with EMC screened cables

Function

Provides seal on cable sheath and earthing of screen

Protection Class

IP65

Construction

Body and compression nut
Nickel plated brass,

Fitting Instructions

1. Screw the gland body into the apparatus.
2. Measure the length of tails required and add about 15 mm to this point.
3. Strip the outer sheath.
4. Cut the screen so that approx 15 mm is exposed.
5. Pass the cable through the gland and ensure that the exposed screen aligns with the garter spring.
6. Tighten gland nut so that the seal grips firmly onto the cable.

Part Number	Mounting Thread		Cable Acceptance Details		Across Corners (mm)	Pack Qty
	Size (mm)	Length (mm)	Overall Diameter			
			Min (mm)	Max (mm)		
SCG-20-10	M20x1.5	10	6.5	10	22	25
SSG-20-13	M20x1.5	10	10	13.5	28	25

Earth Tags

Part Number	Mounting Thread	Earth Bolt Diameter $(m m)$	Inner Carton Pack Quantity
E16	M16	6.35	TBA
E20	M20	6.35	200
E25	M25	6.35	100
E32	M32	6.35	50
E40	M40	6.35	50
E50	M50	6.35	25
E63	M63	6.35	25

Locknuts

Part Number	Mounting Thread	Across Flats Hexagon (mm)	Inner Carton Pack Quantity
L12	$1 / 2$ " X 26 TPI	16	100
LNB-16	$\mathrm{M} 16 \times 1.5$	20.7	100
LNB-20	$\mathrm{M} 20 \times 1.5$	27	100
LNB-25	$\mathrm{M} 25 \times 1.5$	31.6	100
LNB-32	$\mathrm{M} 32 \times 1.5$	40	100
LNB-40	$\mathrm{M} 40 \times 1.5$	48.2	40
LNB-50	$\mathrm{M} 50 \times 1.5$	57.3	25
LNB-63	$\mathrm{M} 63 \times 1.5$	82	20
L250	2.5 BSP	94	6
L275	2.75 BSP	102	6
L300	3.0 BSP	116	6
L325	3.25 BSP	116	6
L350	3.5 BSP	124	6
L400	4.0 BSP	140	4

Extension Nuts for UFPN Glands

Part Number	Suits Gland	Cable Gland		Inner Carton Across Corners (mm)
		Protrusion (mm)	Quantity	
EN20A	UFPN20A	28	40	18
EN20B	UFPN20B	28	37	14
EN20C	UFPN20C	31	39	10
EN25A	UFPN25A	36	42	8
EN32A	UFPN32A	42	45	8
EN32B	UFPN32B	46	47	6

Orange Shrouds

Part Number	Cable Gland						
	UN	UFPN	GN	WGN	FLWN	FLPWB	Carton Pack Quantity
S0-Orange	UN20A UN20B	UFPN20A UFPN20B	GN204 GN206 GN254	WGN162 WGN164 WGN202			150
S1-Orange	UN25A	UFPN20C	GN256	WGN203 WGN204	FLWN202 FLWN203 FLWN204	FLPW203B	140
S2-Orange	UN32A	UFPN25A		WGN206 WGN254	FLWN205 FLWN206	FLPW206B	110
S3-Orange		UFPN32A	GN324 GN326	WGN256	FLWN253 FLWN254		90
S4-Orange	UN40A	UFPN32B			FLWN255 FLWN256	FLPW256B	70
S5-Orange	UN40B UN50A	UFPN40A UFPN40B	GN405	WGN324 WGN326	FLWN323 FLWN324 FLWN325 FLWN326	FLPW326B	50
S6-Orange	UN50B UN63A	UFPN50A UFPN50B	GN503 GN505	WGN403 WGN404 WGN405	FLWN403 FLWN404 FLWN405	FLPW405B	40
S7-Orange	UN63B	UFPN63A UFPN63B	GN636	WGN502 WGN503	FLWN502 FLWN503	FLPW503B	18

BURND Cable Support Systems

 FIRST CHOICE FOR • TRAY • LADDER • STRUT • HYGROUND D EABLE MESH

www.phoenixmetal.com.au

Queensland	Brisbane Branch	Townsville Branch
183 Jackson Road	Unit 2/26-30 Lorna Court	
Sunnybank Hills	Bohle,	
Queensland, 4109	Queensland, 4818	
Phone 0732196108	Phone 1300287639	
Fax 0732196208	Fax 1300329669	
	email burndy.qld@phoenixmetal.com.au	email burndy.qld@phoenixmetal.com.au

New South Wales
1 Tarlington Place
Smithfield
New South Wales, 2164
Phone 0287311288
Fax 0297290522
email burndy.nsw@phoenixmetal.com.au

Victoria
190 Doherty's Road
Laverton North
Victoria, 3026
Phone 0393692988
Fax 0393692418
email burndy.vic@phoenixmetal.com.au

Western Australia

Sales 99-105 McDowell Street, Welshpool, Western Australia, 6106 Pick-up and Despatch 52 Railway Parade, Welshpool, Western Australia, 6106

Phone 0894581188
Fax 0894581182
email burndy.wa@phoenixmetal.com.au

Tasmania

Gordon Wood \& Co
31 Sunderland Street
Moonah
Tasmania, 7009
Phone 0362734455
Fax 0362734734
email wgordon@iinet.com.au

1 Channels

Channels
1.1-1.4

Slotted Channels
1.5-1.7

Back to Back Channels 1.8
Slotted Angle 1.9
2 Nuts \& Bolts
Nuts \& Bolts 2.1-2.5
3 Cantilever Brackets
Cantilever Brackets 3.1-3.2
4 Channel Fittings
Channel Fittings 4.1-4.5
Beam Clamps 4.6
Channel Covers, Joiners \& Hangers 4.7-4.8
Channel Accessories 4.9-4.10
5 Laddertrays
LT1 Laddertrays and Accessories 5.1
LT3 Laddertrays 5.2
LT3 Laddertray Accessories 5.3-5.4
LT5 Laddertrays 5.5
LT5 Laddertray Accessories 5.6-5.7

Laddertray LT3/LT5 - Cable Ladder Flat Covers 5.8
Laddertray Assembly, Horizontal Bend 5.9
Laddertray Assembly, External Riser 5.10
Laddertray Assembly, Internal Riser 5.11
Laddertray Assembly, Tee 5.12
Cable Ducts $5.13-5.14$
Cable Trays 5.15
6 Cable Mesh
Wire Mesh Cable Tray 6.1
Wire Mesh Cable Tray Fixing and Accessories 6.2-6.4
Assembly Guides - 90° Short and Long Radius Bends 6.5
Assembly Guides - Reducers and Tees 6.6
Assembly Guides - Vertical Bends 6.7
7 Steel Ladders
Galvanised Steel Ladders NEMA 1 7.1
Galvanised Steel Riser Ladders NEMA 1 7.2
Galvanised Steel Ladders NEMA 1, Bends 7.3
Galvanised Steel Ladders NEMA 1, Tees 7.3
Galvanised Steel Ladders NEMA 1, Risers 7.4
Galvanised Steel Ladders NEMA 1, Crosses 7.5
Galvanised Steel Ladders NEMA 1, Reducers 7.5-7.6
Galvanised Steel Ladders NEMA 1, Accessories 7.7-7.9
Galvanised and Stainless Steel Ladder NEMA 2 7.10-7.11
Galvanised and Stainless Steel Ladder NEMA 2, Bends 7.12
Galvanised and Stainless Steel Ladder NEMA 2, Tees 7.12
Galvanised and Stainless Steel Ladder NEMA 2, Risers 7.13
Galvanised and Stainless Steel Ladder NEMA 2, Crosses 7.14
Galvanised and Stainless Steel Ladder NEMA 2, Reducers 7.14-7.15
Galvanised and Stainless Steel Ladders NEMA 2, Accessories 7.16-7.17
Galvanised and Stainless Steel Ladder NEMA 3 7.18-7.19
Galvanised and Stainless Steel Ladder NEMA 3, Bends 7.20
Galvanised and Stainless Steel Ladder NEMA 3, Tees 7.20
Galvanised and Stainless Steel Ladder NEMA 3, Risers 7.21
Galvanised and Stainless Steel Ladder NEMA 3, Crosses 7.22
Galvanised and Stainless Steel Ladder NEMA 3, Reducers 7.22-7.23
Galvanised and Stainless Steel Ladder NEMA 3, Accessories 7.24-7.26
Galvanised and Stainless Steel Ladder NEMA 4 7.27-7.28
Galvanised and Stainless Steel Ladder NEMA 4, Bends 7.29
Galvanised and Stainless Steel Ladder NEMA 4, Tees 7.29
Galvanised and Stainless Steel Ladder NEMA 4, Risers 7.30
Galvanised and Stainless Steel Ladder NEMA 4, Crosses 7.31
Galvanised and Stainless Steel Ladder NEMA 4, Reducers 7.31-7.32
Galvanised and Stainless Steel Ladder NEMA 4, Accessories 7.33-7.34

8 Aluminium Ladders

Aluminium Ladders NEMA 2 8.1
Aluminium Ladders NEMA 2, Bends 8.2
Aluminium Ladders NEMA 2, Tees 8.2
Aluminium Ladders NEMA 2, Risers 8.3
Aluminium Ladders NEMA 2, Crosses 8.4
Aluminium Ladders NEMA 2, Reducers $8.4-8.5$
Aluminium Ladders NEMA 2, Accessories 8.6-8.8
Aluminium Ladders NEMA 3 8.9
Aluminium Ladders NEMA 3, Bends 8.10
Aluminium Ladders NEMA 3, Tees 8.10
Aluminium Ladders NEMA 3, Risers 8.11
Aluminium Ladders NEMA 3, Crosses 8.12
Aluminium Ladders NEMA 3, Reducers 8.12-8.13
Aluminium Ladders NEMA 3, Accessories 8.14-8.16
Aluminium Ladders NEMA 4 8.17
Aluminium Ladders NEMA 4, Bends 8.18
Aluminium Ladders NEMA 4, Tees 8.18
Aluminium Ladders NEMA 4, Risers 8.19
Aluminium Ladders NEMA 4, Crosses 8.20
Aluminium Ladders NEMA 4, Reducers 8.20-8.21
Aluminium Ladders NEMA 4, Accessories 8.22-8.24

9 Covers

Cable Ladder Flat Covers NEMA $1 \quad 9.1$
Cable Ladder Flat Covers NEMA 2, NEMA 3, NEMA 4 9.2
Cable Ladder Flat Covers NEMA 2, NEMA 3, NEMA 4
to suit 'Rail In’ Ladders in Western Australia 9.3
Cable Ladder Peaked Covers NEMA $1 \quad 9.4$
Cable Ladder Peaked Covers NEMA 2, NEMA 3, NEMA 4 9.5
Cable Ladder Peaked Covers NEMA 2, NEMA 3, NEMA 4
to suit ‘Rail In' Ladders in Western Australia
Cable Ladder Fitting Covers 9.7-9.14
10 Hyground
Connectors 10.2-10.3
Flexible Copper Braids
10.4-10.6

Introduction

Pioneers of the original Laddertray systems, Burndy are considered by many to have established the benchmark for quality and performance in commercial construction applications.

For over 30 years, it has been widely held that Burndy have been leaders in their field. Their continuous efforts at improving both products and services have been rewarded by a wide and growing user base and resellers.

Established in 1982, Phoenix Metalform, the parent company of Burndy, are a significant participant in sheet metal roll forming and fabrication.

With branch offices throughout Australia, Burndy is always conveniently placed to service it's customers.

Manufactured in a wide range of materials including Hot Dip Galvanised Steel, Aluminium and Stainless Steel, there is a Burndy product to suit your specific application and environmental conditions.

Always striving to meet the growing demands of a sophisticated market, the Burndy range has evolved to provide a genuine one stop shop with the ability to satisfy your cable support needs.

Our mission is to be your first choice for the supply of cable support systems in Australia, and having a dedicated team of professionals is an essential platform in achieving that goal.

You can be assured of Burndy's commitment to continually improving our range, our product quality, our value for money and our delivery turnaround time.

Galvanic Corrosion

One of the prime factors to consider in achieving a long service life is to minimise the destructive effects of galvanic corrosion brought about by having dissimilar metals in close contact and in the presence of an electrolyte.

Dissimilar metals in the presence of an electrolyte (which can be just water) can set up a galvanic couple which will cause the anodic metal to corrode more quickly than it otherwise would.

Metals can be arranged into a chart or table called a galvanic series which gives an indication of which metal will act as an anode and which as the cathode, with the anode suffering an increased rate of corrosion.

This chart provides a straightforward guide to material selection. In simple terms, galvanic
corrosion will increase as the distance between the chosen metals in the table increases.

The effects of galvanic corrosion can be greatly inhibited or even eliminated altogether by methods including:

1. Electrically insulating the two metals from one another through the use of insulating washers or grease.
2. Employing a paint or epoxy coating to seal the metal from contact with an electrolyte.
3. Using metals which are located as closely as possible on the galvanic series table.

The table below shows the position of some common metals in the Galvanic Series.

ANODIC	Magnesium
	Zinc
	Aluminium
	Lead
	Mild Steel
	Cast Iron
Chromium - plated	
	Brass - yellow
	Nickel
	Stainless Steel
	Bronze
Copper	

Material Corrosion Chart

Chemical	Hot Dip Galvanised	Aluminium	Stainless Steel 304	Stainless Steel 316	Fibreglass
Benzene	N/A	R	R	R	NR
Carbon Tetrachloride	N/A	C	R	R	C
Gasoline	R	R	R	R	C
Hydrochloric Acid 40\%	NR	NR	NR	NR	C
Hydrochloric Acid 10\%	NR	NR	NR	NR	R
Hydrochloric Acid 2\%	NR	NR	NR	NR	R
Hydrogen Peroxide 30\%	N/A	R	R	R	C
Hydrogen Peroxide 3\%	N/A	R	R	R	C
Hydrogen Sulphide (Gas)	N/A	R	C	R	R
Mineral Spirits	N/A	R	N/A	N/A	NR
Motor Oil	R	R	R	R	R
Nitric Acid	N/A	C	R	R	C
Phosphoric Acid 2\%	NR	C	R	R	R
Sodium Chloride 25\%	C	C	R	R	R
Sulphuric Acid 2\%	NR	C	NR	R	R
Water-Deionised	C	R	R	R	R
Water-Sea	C	C	R	R	R
Water-Tap	R	R	C	C	R
$\mathbf{R}=$ Recommended $\quad \mathbf{C}$	nditions dep	ant NR	Not Recom		Info not av

The above Corrosion Chart gives an indication of the suitability of materials in a corrosive environment. Although providing a good guide, it is recommended that the use of this table should be supported by actual testing.

Ordering
Code
B4000G
B4000H

B4000 Channel - Steel

| Material Specification | - Thickness $\quad 2.5 \mathrm{~mm}$ (aluminium) |
| :--- | :--- | :--- |
| | - Length $\quad 6$ metres |
| Ordering Details | - Supplied in standard 6 metre lengths. |

Available	Ordering
Finish	Code
Aluminium	B4000A

Note

> - Aluminium channels are manufactured against firm orders only and are non returnable.

B4000 Channel - Aluminium

Material Specification	- Thickness see below	
	- Length 6 metres	
Ordering Details	- Supplied in standard 6 metre lengths.	
	Available	
	Finish	Code
	Galvabond	G
	Hot Dip Galvanised	H

Note - All products are manufactured against firm orders only. They are non returnable and the order cannot be cancelled once manufacturing has commenced.

B1001 Wt $31.4 \mathrm{~kg} / \mathrm{length}$
B3301 Wt 21.8 kg/length

B5501

Wt $40.8 \mathrm{~kg} /$ length

B2001
Wt $21.6 \mathrm{~kg} / \mathrm{length}$

B1001A Wt $31.4 \mathrm{~kg} / \mathrm{length}$

B1001B
Wt $31.4 \mathrm{~kg} / \mathrm{length}$

B1001C

Wt $31.4 \mathrm{~kg} /$ length

Ordering Details	- Supplied in standard 6 metre lengths.
Available Finish	- Duragal

Thread Diameter	Thread Length mm	Zinc Plated	Hot Dip Galvanised	Stainless Steel
M6	20	HS620Z	HS620H	HS620S
	25	HS625Z	HS625H	HS625S
	30	HS630Z	HS630H	HS630S
	40	HS640Z	HS640H	HS640S
	20	HS820Z	HS820H	HS820S
M8	25	HS825Z	HS825H	HS825S
	30	HS830Z	HS830H	HS830S
	40	HS840Z	HS840H	HS840S
	20	HS1020Z	HS1020H	HS1020S
M10	25	HS1025Z	HS1025H	HS1025S
	30	HS1030Z	HS1030H	HS1030S
	40	HS1040Z	HS1040H	HS1040S
	25	HS1225Z	HS1225H	HS1225S
M12	30	HS1230Z	HS1230H	HS1230S
	40	HS1240Z	HS1240H	HS1240S
	50	HS1250Z	HS1250H	HS1250S

Hex Screw

Thread Diameter	Zinc Plated	Hot Dip Galvanised	Stainless Steel
M6	HN6Z	HN6H	HN6S
M8	HN8Z	HN8H	HN8S
M10	HN10Z	HN10H	HN10S
M12	HN12Z	HN12H	HN12S
M16	HN16Z	HN16H	HN16S

Hex Nut
1

Thread Diameter	Thread Length $\mathbf{m m}$	Zinc Plated	Hot Dip Galvanised	Stainless Steel
	16	PS616Z	-	-
M6	20	PS620Z	PS620H	PS620S
	25	PS625Z	PS625H	PS625S
	30	PS630Z	PS630H	PS630S

Thread Diameter	Zinc Plated	Hot Dip Galvanised	Stainless Steel
M6	FW6Z	FW6H	FW6S
M8	FW8Z	FW8H	FW8S
M10	FW10Z	FW10H	FW10S
M12	FW12Z	FW12H	FW12S
M16	FW16Z	FW16H	FW16S

Flat Washer

Thread	Zinc Diameter	Hot Dip Clated	Stainless Galvanised	Steel

Spring Washer

Thread Diameter	Zinc Plated	Hot Dip Galvanised
M6	MW6Z	MW6H
M8	MW8Z	MW8H
M10	MW10Z	MW10H
M12	MW12Z	MW12H

Mudguard Washer

Thread Diameter	Zinc Plated	Hot Dip Galvanised	Stainless Steel
M6	TR6Z	-	-
M8	TR8Z	-	-
M10	TR10Z	TR10H	TR10S
M12	TR12Z	TR12H	TR12S
M16	TR16Z	TR16H	TR16S

Standard length: 3.0 metres.

Rod Coupler

Thread Diameter	Zinc Plated	Hot Dip Galvanised	Stainless Steel
M6	RC6Z	-	-
M8	RC8Z	-	-
M10	RC10Z	RC10H	RC10S
M12	RC12Z	RC12H	RC12S
M16	RC16Z	RC16H	RC16S

Thread Diameter	Zinc Plated	Hot Dip Galvanised	Stainless Steel
M6	B1006Z	B1006H	B1006S
M8	B1007Z	B1007H	B1007S
M10	B1008Z	B1008H	B1008S
M12	B1010Z	B1010H	B1010S

To fit all 41 mm high channels.
Channel Nut with Long Spring

Thread Diameter	Zinc Plated	Hot Dip Galvanised	Stainless Steel
M6	B4006Z	B4006H	B4006S
M8	B4007Z	B4007H	B4007S
M10	B4008Z	B4008H	B4008S
M12	B4010Z	B4010H	B4010S

\qquad

To fit all 21 mm high channels.

Fits all channel sections.
Channel Nut without Spring

Thread Diameter	Zinc Plated	Hot Dip Galvanised	Stainless Steel
M6	B3006Z	B3006H	B3006S
M8	B3007Z	B3007H	B3007S
M10	B3008Z	B3008H	B3008S
M12	B3010Z	B3010H	B3010S

Thread Diameter	Zinc Plated	Hot Dip Galvanised	Stainless Steel
M6	B3016Z	B3016H	B3016S

Fits all channel sections.

Channel Nut without Spring

Thread Diameter	Thread Length mm	Zinc Plated
M6	35	DB635Z
M8	40	DB840Z
M10	40	DB1040Z
M10	60	DB1060Z
M12	60	DB1260Z
M12	75	DB1275Z

Dynabolt 1

Drop In Anchor

Thread Diameter	Anchor	Set In Tool
M6	DI6Z	ST6Z
M8	DI8Z	ST8Z
M10	DI10Z	ST10Z
M12	DI12Z	ST12Z

Wedge Nut
1

Ordering Code: VH10Z (suitable for metal) VH10CZ (suitable for concrete)

Side Hanger M10

Ordering Code: SH10Z
Ordering Code: SH1OZ

Material Specification	- Thickness 2.5 mm
Available Finish	- Hot Dip Galvanised
	- Stainless Steel
Note	- Stainless Steel products are manufactured against firm orders only. They are non returnable and the order
	cannot be cancelled once manufacturing has commenced.
	- Load Capacities are based on the application of a uniformly distributed load.

Ordering Code	Length L	Load Capacity kg
CL150	150	320
CL300	300	260
CL450	450	171
CL600	600	116
CL750	750	102

Cantilever Bracket CL

Ordering Code	Length \mathbf{L}	Load Capacity kg
CLB320	320	445
CLB470	470	376
CLB635	635	338
CLB780	780	279

Cantilever Bracket CLB

Ordering Code	Length L	Load Capacity kg
CLD300	300	610
CLD450	450	506
CLD600	600	372
CLD750	750	259

Available Finish	- Hot Dip Galvanised
Channel	- B1000
Hole Diameters	-14 mm

Two fasteners are required for assembly. Order separately.
$1 \times \mathrm{HS} 1225,1 \times \mathrm{B} 1010 \mathrm{H}$
Not available in stainless steel

Available Finish	- Hot Dip Galvanised
Channel	- B1000
Hole Diameters	-14 mm

Two fasteners are required for assembly. Order separately.
$1 \times$ HS 1225, $1 \times$ B1010H
Not available in stainless steel

B10758H

Hole Diameters

- 14 mm

Surface Finish	Available	
	Finish	Code
	Hot Dip Galvanised	H
	Stainless Steel	S

Note

- Stainless steel products are manufactured against firm orders only and are non returnable.

Ordering Code	A	Wt/kg
B1062	M8	0.071
B1063	M10	0.065
B1064	M12	0.064
B1964	M16	0.064

$\underline{\text { B1062 to B1964 }}$

| B1358 |
| :--- | :--- |

B1031 \quad Wt 0.34 kg

| B1036 |
| :--- | :--- |

Surface Finish

Available	
Finish	Code
Hot Dip Galvanised	H
Stainless Steel	S

Note - Stainless steel products are manufactured against firm orders only and are non returnable.

\qquad

B1033

- Wt 0.32 kg

Surface Finish	Available	
	Finish	Code
	Hot Dip Galvanised	H
	Stainless Steel	S

Note

- Stainless steel products are manufactured against firm orders only and are non returnable.

B1357 Wt 0.33 kg
\qquad

Surface Finish

Available	
Finish	Code
Hot Dip Galvanised	H
Stainless Steel	S

Note

- Stainless steel products are manufactured against firm orders only and are non returnable.

B2224 \quad Wt 0.55 kg

B2228	Wt 0.85 kg

B2072S1 \quad Wt 0.65 kg
B2072A \quad Wt 1.64 kg

B2073
Wt 1.40 kg

Surface Finish	Available	
	Finish	Code
	Hot Dip Galvanised	H
	Stainless Steel	S

Note

- Stainless steel products are manufactured against firm orders only and are non returnable.

B5547H

Packaged with HS1260 and HN12 for assembly.
Fasteners for assembly onto channel must be ordered separately. $4 \times$ B1010 $4 \times$ HS1225

B2815
) Wt 1.39 kg
\square

Packaged with HS1260 and HN12 for

$4 \times$ B1010
$4 \times \mathrm{HS} 1225$

\qquad

Surface Finish	Available	
	Finish	Code
	Hot Dip Galvanised	H
	Stainless Steel	S

Note

- Stainless steel products are manufactured against firm orders only and are non returnable.

Note: Must be used in pairs.

Note: Must be used in pairs.

B2785 \quad Wt 0.41 kg

Note: Must be used in pairs.

\qquad
B1796 \quad Wt 0.49 kg

Sold in three metre lengths.

Suits B5500 channel.
B5580 \quad

Internal Channel Joiner

Hole diameter to suit M10 threaded rod.
B2855 \quad Wt 0.18 kg

Internal Channel Joiner

Supplied complete with PS625 and HN6 for assembly.

External Channel Joiner

Luggage Point STP Refurbishment of PST 1 \& 2 OM Manual - Electrical Equipment

Joiner Box - Two Way

Finish: Zinc plated
Order fasteners separately; $\begin{aligned} & 4 \times \text { B3016Z } \\ & \\ & 4 \times \text { CS616Z }\end{aligned}$
B1220B \quad Wt 0.40 kg

Joiner Box - Two Way

Finish: Zinc plated
Order fasteners separately; $6 \times$ B3016Z $6 \times \mathrm{CS} 6162$
B1221T \quad Wt 0.46 kg

Joiner Box - Two Way

Finish: Zinc plated

Order fasteners separately; $8 \times$ B3016Z $8 \times \operatorname{CS6162}$
B1222C Wt 0.57 kg

Supplied complete with screw
Sold in 20 metre rolls

Product Code	Generic Reference	$\begin{aligned} & \text { weight } \\ & \text { kg } \end{aligned}$
B583 -	2048	0.17
B586	2049	0.18
B589	2050	0.18
B592	2051	0.19
B595	2052	0.19
B598	2053	0.20
B5102	2054	0.21
B5105	2055	0.21
B5108	2056	0.21
B5111	2057	0.22
B5114	2058	0.22
B5117	2059	0.23
B5121	2060	0.23
B5127	2062	0.24
B5133	2064	0.25
B5140	2066	0.27
B5146	2068	0.28
B5152	2070	0.28
B5160	2070-62	0.30
B5165	2070-64	0.31
B5171	2070-66	0.32
B5178	2070-70	0.33
B5191	2070-74	0.35
B5203	2070-80	0.37

Available in zinc plated finish only.
Suits M10 threaded rod only.

Suits M10 threaded rod.

Suits M12 threaded rod.

Suits M10 rod

Available in zinc plated finish only.

Available in zinc plated finish only.

B2675-1

CABLE SUPPORT SYSTEMS

Surface Finish

Note

Available
Finish
Galvabond
Hot Dip Galvanised

Code

G
H - Hot Dip Galvanised products are manufactured against firm orders only.

Minimum production quantities may apply.

Burndy Centre Hold Down Clamp can be used in place of traditional Hold Down Clamps to reduce the overall trapeze width.
Order fasteners separately for installation.
$1 \times H S 1020,1 \times$ B1008

LTCHD

 \qquad -

2 Splices required per length of tray.
Order fasteners separately for installation (per splice plate) $2 \times$ LTBOLT, $2 \times$ LTNUT

LT3S

Order fasteners separately for installation
$1 \times$ HS1025, $1 \times$ B1008
LT3HD

2 TX Brackets required to make a tee, and 4 required to make a cross.
Order fasteners separately for installation (per TX Bracket) $4 \times$ LTBOLT, $4 \times$ LTNUT

LT3TXH

Approximate Length Required to Make a 150 Radius Bend

Tray Size	Length Required metres	Fasteners Required
LT3150	0.7	6
LT3300	0.9	6
LT3450	1.2	8
LT3600	1.4	8

Nominal length 2.0 metres
Order fasteners separately for installation.
LT3RP

Surface Finish

Available
Finish
Zinc Plated
Hot Dip Galvanised

Code
LTNUT / LTBOLT
LTNUTH / LTBOLTH

Both items are ordered separately.
Splice Bolts have a smooth head to eliminate the risk of sheathing the cable during installation.
Special counterbore nuts ensure that correct tension is achieved during installation.

LTNUT and LTBOLT

Standard Finish	Galvabond. Can also be supplied in Hot Dip Galvanised finish against firm orders.
Length	3.0 metres.
Note	Order B3016 and PS620 separately for installation.

Surface Finish	Available	
	Finish	Code
	Galvabond	G
	Hot Dip Galvanised	H
Note	- Hot Dip Galvanised products are manufactured against firm orders only.	
	Minimum production quantities may apply.	

2 Splices required per length of tray.
Order fasteners separately for installation
(per splice plate)
$2 \times$ LTBOLT, $2 \times$ LTNUT
LT5S

Order fasteners separately for installation
$1 \times$ HS1025, $1 \times$ B1008
LT5HD

6 Riser Links required to perform a 90 degree set. Order fasteners separately for installation (per riser link) $2 \times$ LTBOLT, $2 \times$ LTNUT

LT5RL

2 TX Brackets required to make a tee, and 4 required to make a cross.
Order fasteners separately for installation (per TX Bracket) $4 \times$ LTBOLT, $4 \times$ LTNUT

LT5TX

Surface Finish	Available	Code
	Finish	G
	Galvabond	H

Note - Hot Dip Galvanised products are manufactured against firm orders only.

Minimum production quantities may apply.

Order fasteners separately for installation.

LT5RP

Approximate Length Required to Make a 150 Radius Bend

Tray Size	Length Required metres	Fasteners Required
LT5150	0.7	6
LT5300	0.9	6
LT5450	1.2	8
LT5600	1.4	8

Surface Finish

Available	
Finish	Code
Zinc Plated	LTNUT / LTBOLT
Hot Dip Galvanised	LTNUTH / LTBOLTH

Standard Finish Galvabond. Can also be supplied in Hot Dip Galvanised finish against firm orders. Length $\quad 3.0$ metres.
Note Order B3016 and PS620 separately for installation.

DSLT5 (Divider Strip to suit LT5 Laddertray)

- Hot Dip Galvanised Covers are manufactured against firm orders only and are non returnable.
- Hot Dip Galvanising is not recommended for products such as these. Varying degrees of product distortion are likely to occur which may compromise aesthetics.

	Ordering Code	Nominal Width mm	Internal Width mm
	CFLT150G	150	175
	CFLT300G	300	325
	CFLT450G	450	475
	CFLT600G	600	625
	CFLT150H	150	175
	CFLT300H	300	325
	CFLT450H	450	475
	CFLT600H	600	625

Laddertray LT3/LT5 - Flat Cover \rangle

Specifications

- Standard Length 3.0 metres.

Note

- Hot Dip Galvanised Covers are manufactured against firm orders only and are non returnable.
- Hot Dip Galvanising is not recommended for products such as these. Varying degrees of product distortion are likely to occur which may compromise aesthetics.

	Ordering Code	Nominal Width mm	Internal Width mm
	CPLT150G CPLT300G CPLT450G CPLT600G	$\begin{aligned} & 150 \\ & 300 \\ & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & 175 \\ & 325 \\ & 475 \\ & 625 \end{aligned}$
	CPLT150H CPLT300H CPLT450H CPLT600H	$\begin{aligned} & 150 \\ & 300 \\ & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & 175 \\ & 325 \\ & 475 \\ & 625 \end{aligned}$

Laddertray LT3/LT5 - Peaked Cover 1

Making a Horizontal Bend

BURNDY

the Burndy Laddertray system
1 Cut completely through the outer side rail.

Cut through the flanges only of the inner side rail.

Bend the Laddertray to the desired curve radius.
Bend the LT1RP, LT3RP or LT5RP Radius Plate to conform to the outside curve

Bolt the Radius Plate to the outside side rail using Splice Bolts.

BURNDY

the Burndy Laddertray system

1
Cut through the top flange and the web of both side rails but leave the bottom flange intact.

3 Using the Splice Bolts, attach the Riser Link Plates to the side rails, bridging each cut.

Making an Internal Riser

BURNDY

the Burndy Laddertray system

Bend the Laddertray to the desired curve radius.

Using the Splice Bolts, attach the Riser Link Plates to the side rails, bridging each cut.

Cut through the bottom flange and the web of both side rails, but leave the top flange intact.

Making an Tee

BURNDY

the Burndy Laddertray system

cut the tray to length between the rungs.

Surface Finish

Note

Available

Finish

Galvabond
Hot Dip Galvanised
Aluminium
Aluminim and Hot Dio Gavanised product

- Aluminium and Hot Dip Galvanised products are manufactured against firm orders only.

Ordering Code	Width w $\mathbf{m m}$	Height $\mathbf{~ H}$ $\mathbf{m m}$
DCL5050_	50	50
DCL7575_	75	75
DCL100100_	100	100
DCL150100_	150	100

$\begin{array}{ll}- \text { G } & \text { Galvabond } \\ - \text { H Hot Dip Galvanised } \\ \text { A } & \text { Aluminum }\end{array}$
Joining screws (PS610Z) and nuts (FN6Z) sold separately.
Two (2) required per joint. Product code WIZ.
Joining Screws Ordering Code: WIZ x 2 (PS610Z \& FN6Z).
Supplied in standard 2.4 metre lengths.
Other sizes can be manufactured to firm orders in minimum batch quantities of 100 .

Cable Duct - Clip Lid of 100 .

Joining screws (PS610Z) and nuts (FN6Z) sold separately. Two (2) required per joint. Product code WIZ.
Joining Screws Ordering Code: WIZ x 2 (PS610Z \& FN6Z).
Supplied in standard 2.4 metre lengths.
Other sizes can be manufactured to firm orders in minimum batch quantities

Ordering Code	Width \mathbf{W} $\mathbf{m m}$	Height $\mathbf{~ H}$ $\mathbf{m m}$
DSL5050	50	50
DSL7575-	75	75
DSL100100	100	100
DSL150100_	150	100

- G Galvabond

A Aluminum

Surface Finish

Combination Bend Riser

Ordering Code	$\begin{gathered} \text { Width W } \\ \mathrm{mm} \end{gathered}$	Height H mm	Width W1 mm	Width W2 mm
DCT5050 -	50	50	167	287
DCT7575	75	75	192	312
DCT100100	100	100	217	337
DCT150100	150	100	267	387
$\begin{array}{lll} \text { - G Galvabond } \\ - \text { H } & \\ \text { Hot Dip Galvanised } \\ \text { A } & \text { Aluminum } \end{array}$				

Combination Tee

Available	
Finish	Code
Galvabond	G
Hot Dip Galvanised	H
Stainless Steel	S

Surface Finish
Length
Cable Tray

Use M6 x 10 Pan Screw (PS610Z) and M6 Flanged Nut (FN62 $\times 2$) for installation of accessories.
Ordering Code: WIZ x 2 (PS610Z \& FN6Z).
Cable Tray

Length

Code

G

S (Manufactured against firm orders only. Stainless steel products are non returnable and minimum batch quantities may apply).

Safe Load

Ordering Code	Height mm			Wire Dia mm	Safe Load Capability (kg)					Safe Deflection mm
		Width			Support Span (mm)					
		mm	inch		1000	1500	2000	2500	3000	
BCM150	50	150	6	5	228	152	101	68	45	35
BCM300	50	300	12	5	278	186	124	83	55	35
BCM450	50	450	18	5	329	219	146	98	65	35
BCM500	50	500	20	5	354	236	158	105	70	35
BCM600	50	600	24	5	380	253	169	113	75	35

Maximum Load

Ordering Code	Height mm			Wire Dia mm	Maximum Load Capability (kg)					
		Width			Support Span (mm)					Max Deflection mm
		mm	inch		1000	1500	2000	2500	3000	
BCM150	50	150	6	5	532	354	236	158	105	100
BCM300	50	300	12	5	683	456	304	203	135	100
BCM450	50	450	18	5	835	557	371	248	165	100
BCM500	50	500	20	5	861	574	383	255	170	100
BCM600	50	600	24	5	911	608	405	270	180	100

BCM50 Wire Mesh Cable Trays

Ordering Code: BCMCP

Used to join sections of straight mesh cable trays. A minimum of three couplers is required per joint. The coupler is supplied complete with an M6 bolt and an M6 flange nut.
Finish: Z - Zinc Electro Plated
H - Hot Dip Galvanised (made to order)

BCMCP Coupler
,

Ordering Code: BCMSP

Intended for light loads, the BCMSP provides a quick and simple method of joining sections of straight mesh cable trays.
Finish: Z - Zinc Electro Plated
H - Hot Dip Galvanised (made to order)

BCMSP Fast Fix Splicer

Ordering Code: BCMSB

Used to make the joint between two wire mesh cable trays stronger and stiffer. Also used to construct tees, crosses, risers and reducers.

Finish:
Z - Zinc Electro Plated
H - Hot Dip Galvanised (made to order)

BCMSB Strengthening Bar
\rangle

Ordering Code: BCMCPF

An alternative to BCMCP when making bends. Mainly used for smaller wire mesh trays.
Finish: Z - Zinc Electro Plated
H - Hot Dip Galvanised (made to order)

BCMCPF Coupler Fastlock
1

Ordering Code: BCMCG
Facilitates cables to emerge from the cable tray.
Finish: Z - Zinc Electro Plated
H - Hot Dip Galvanised (made to order)

Ordering Code: BCMHH

Used to hang cable trays from an overhead support. Intended for light loads.

Finish: Z - Zinc Electro Plated
H - Hot Dip Galvanised (made to order)

BCMHH Hanging Hook

Ordering Code: BCMT150, BCMT300, BCMT450, BCMT500, BCMT600.

Commonly used for ceiling mounting. M10 rods allow heavier loads to be carried. Requires two M10 (1000 mm long) metric thread rods, two anchor bolts, two flange nuts and two standard M10 nuts.

BCMT series can also be used to support a cable tray from the floor.

Finish: Z - Zinc Electro Plated
H - Hot Dip Galvanised (made to order)

Ordering Code: BCMWB150, BCMWB300, BCMWB450, BCMWB500, BCMWB600.

Used to support wire mesh cable trays from a vertical surface such as a wall.

Width: 150, 300, 450, 500, 600 mm
Finish: Z - Zinc Electro Plated
H - Hot Dip Galvanised (made to order)

BCMWB L Type Wall Bracket
।

Ordering Code: ВСМС150, ВСМСЗ00, ВСМС450, BCMC500, BCMC600.
Used to support wire mesh cable trays from a vertical surface such as a wall.

Width: 150, 300, 450, 500, 600 mm
Designed for heavy loads.
Finish: Z - Zinc Electro Plated
H - Hot Dip Galvanised (made to order)

BCMC Cantilever Bracket
〉

Ordering Code: BCMFS300, BCMFS600

For supporting heavy wire mesh cable trays in under floor installations.

Height: 26.5 mm
Width: $300 \mathrm{~mm}, 600 \mathrm{~mm}$
Finish: Z - Zinc Electro Plated
H - Hot Dip Galvanised (made to order)

M Shaped Floor Support
1

Ordering Code: BCMHD

For connecting a wire mesh cable tray to a supporting channel.

Material Thickness: 1.6 mm
Finish: Z - Zinc Electro Plated
H - Hot Dip Galvanised (made to order)
To be used with a 6 mm Pan Head Screw ordering code PS620Z and 6 mm Trunking Nut ordering code B3016Z. Both are sold separately.

BCMHD

Connector Assembly Number

Nominal Width mm	BCMCP	BCMSB
150	4	1
300	7	1
450	11	1
500	11	1
600	12	1

Connector Assembly Number

Nominal Width $\mathbf{m m}$	BCMCP	BCMSB
150	4	1
300	5	1
450	5	1
500	5	1
600	5	1

Reducers

Nominal Width $\mathbf{m m}$	BCMCP
150	2
300	3
450	4
500	4
600	4

Connector Assembly Number

Horizontal Tees

Vertical Inside and Outside Bend

Specifications	- Length supplied varies according to customer's requirements.	
	- Overall height 75 mm	
	- Cable laying depth 60 mm	
Surface Finish	Available	
	Finish	Code
	Hot Dip Galvanised	H

Nema 1 Riser Ladder
1

Dimensions do not include integral splice plates. For splice plate, add 75 mm .

Order fasteners separately for installation. $4 \times \mathrm{N} 1 \mathrm{SBH}$ (no nuts) required.
Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Ordering Code	Width W $\mathbf{m m}$	Length L $\mathbf{m m}$
N1B1503H	150	450
N1B3003H	300	600
N1B4503H	450	750
N1B6003H	600	900
N1B9003H	900	1200

NEMA 1 Cable Ladder - Bend

Dimensions do not include integral splice plates.
For splice plate, add 75 mm .

	Ordering Code	Width W mm	Length L1 mm	$\underset{\mathrm{mm}}{\substack{\text { Length L2 }}}$
	N1T1503H	150	750	450
	N1T3003H	300	900	600
	N1T4503H	450	1050	750
Order fasteners separately for installation. $6 \times \mathrm{N1SBH}$ (no nuts) required.	N1T6003H	600	1200	900
Non standard radius fittings can be manufactured against firm orders, and are non returnable.	N1T9003H	900	1500	1200

NEMA 1 Cable Ladder - Tee

Order fasteners separately for installation. $4 \times \mathrm{N} 1 \mathrm{SBH}$ (no nuts) required.
Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Ordering Code	Width W mm
N1ER1503H	150
N1ER3003H	300
N1ER4503H	450
N1ER6003H	600
N1ER9003H	900

NEMA 1 Cable Ladder - External Riser
)

Order fasteners separately for installation. $4 \times \mathrm{N} 1 \mathrm{SBH}$ (no nuts) required.
Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Dimensions do not include integral splice plates.
For splice plate, add 75 mm .

Ordering Code	Width W mm
N11R1503H	150
N11R3003H	300
N1IR4503H	450
N1IR6003H	600
N1IR9003H	900

Ordering Code	Width W mm	Length L mm
N1C1503H	150	750
N1C3003H	300	900
N1C4503H	450	1050
N1C6003H	600	1200
N1C9003H	900	1500

Order fasteners separately for installation. $8 \times \mathrm{N} 1 \mathrm{SBH}$ (no nuts) required.
Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Dimensions do not include integral splice plates. For splice plate, add 75 mm .

NEMA 1 Cable Ladder - Cross

Ordering Code	Width W1 $\mathbf{m m}$	Width W2 $\mathbf{m m}$
N1SR300150H	300	150
N1SR450150H	450	150
N1SR450300H	450	300
N1SR600150H	600	150
N1SR600300H	600	300
N1SR600450H	600	450
N1SR900150H	900	150
N1SR900300H	900	300
N1SR900450H	900	450
N1SR900600H	900	600

Order fasteners separately for installation. $4 \times$ N1SBH (no nuts) required.

Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Order fasteners separately for installation.
$4 \times$ N1SBH (no nuts) required.
Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Ordering Code	Width W1 mm	Width W2 mm
N1LHR300150H	300	150
N1LHR450150H	450	150
N1LHR450300H	450	300
N1LHR600150H	600	150
N1LHR600300H	600	300
N1LHR600450H	600	450
N1LHR900150H	900	150
N1LHR900300H	900	300
N1LHR900450H	900	450
N1LHR900600H	900	600

NEMA 1 Cable Ladder - Left Hand Reducer

Order fasteners separately for installation.
$4 \times$ N1SBH (no nuts) required.
Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Ordering Code	Width W1 mm	Width W2 mm
N1RHR300150H	300	150
N1RHR450150H	450	150
N1RHR450300H	450	300
N1RHR600150H	600	150
N1RHR600300H	600	300
N1RHR6000050H	600	450
N1RHR900150H	900	150
N1RHR900300H	900	300
N1RHR900450H	900	450
N1RHR900600H	900	600

Ordering Code: N1VSH

NEMA 1 Vertical Splice Plate

-

Ordering Code: N1HSH

NEMA Horizontal 1 Splice Plate
।

Ordering Code: N1CCS

NEMA 1 Cover Clamp
,

Ordering Code: DSN1

Standard Finish: Galvabond. Can also be made in Hot Dip Galvanised finish against firm orders.

Length: 3.0 metres.
Note: Order B3016 and PS620 separately for installation.

NEMA 1 Divider Strip

Ordering Code: N1HDH

Channel Nut and Bolt sold separately.
Nut: HS830H x 1
Bolt: B1007H x 1

The Nema 1 Splice Hanging Bracket has revolutionised the industry in mid weight cable applications. Effectively it eliminates the need to use strut and conventional hold down brackets in favour of an all encompassing hanger splice. Its the ideal solution for commercial applications and has proved to provide significant labour savings during instatallation when compared to more traditional methods.

Note: 1 Should be used in pairs.
2 Hanging Splice may not offer full load capabilities and should be installed at the quarter point between splice joints to offer the best performance.

NEMA 1 Splice Hanging Bracket

Specifications	- Standard Length 6.0 metres.	
	- Overall height 93 mm	
Surface Finish	- Cable laying depth 75 mm	
	Available	
	Finish	Code
	Hot Dip Galvanised	H
	Stainless Steel	S

Note

- Stainless steel products are manufactured against firm orders only and are non returnable.

Nema 2 Cable Ladder

CABLE SUPPORT SYSTEMS

Order fasteners separately for installation. $8 \times$ Splice Bolts (SBH) \& $8 \times$ Splice Nuts (SNH) required.
Non standard radius fittings can be manufactured against firm orders, and are non returnable.
Stainless Steel is only manufactured against firm orders and is non returnable.

NEMA 2 Cable Ladder - Bend

Order fasteners separately for installation. $12 \times$ Splice Bolts (SBH) \& $12 \times$ Splice Nuts (SNH) required.

Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Stainless Steel is only manufactured against firm orders and is non returnable.

Ordering Code	Width W mm	$\begin{gathered} \text { Length L1 } \\ \mathrm{mm} \end{gathered}$	Length L2 mm
N2T1504	150	1050	600
N2T3004	300	1200	750
N2T4504	450	1350	900
N2T6004	600	1500	1050
N2T9004	900	1800	1350

Order fasteners separately for installation. $8 \times$ Splice Bolts $(\mathrm{SBH}) \& 8 \times$ Splice Nuts (SNH) required.
Non standard radius fittings can be manufactured against firm orders, and are non returnable.
Stainless Steel is only manufactured against firm orders and is non returnable.
NEMA 2 Cable Ladder - External Riser

Dimensions do not include integral splice plates.

Ordering Code	Width W mm
N2ER1504 -	150
N2ER3004 _	300
N2ER4504 -	450
N2ER6004 -	600
N2ER9004 _	900
H Hot Dip Galvanised	

Order fasteners separately for installation. $8 \times$ Splice Bolts $(\mathrm{SBH}) \& 8 \times$ Splice Nuts (SNH) required.

Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Stainless Steel is only manufactured against firm orders and is non returnable.

Ordering Code	Width W mm
N2IR1504 -	150
N2IR3004	300
N2IR4504	450
N2IR6004	600
N2IR9004	900

Dimensions do not include integral splice plates.
Order fasteners separately for installation. $16 \times$ Splice Bolts (SBH) \& 16 x Splice Nuts (SNH) required.
Non standard radius fittings can be manufactured against firm orders, and are non returnable.
Stainless Steel is only manufactured against firm orders and is non

Ordering Code	Width W mm	Length L1 mm	Length L2 mm
N2C1504 -	150	1050	1050
N2C3004	300	1200	1200
N2C4504	450	1350	1350
N2C6004	600	1500	1500
N2C9004	900	1800	1800

NEMA 2 Cable Ladder - Cross

Order fasteners separately for installation. 8 x Splice Bolts (SBH) \& 8 x Splice Nuts (SNH) required.
All Reducers are manufactured against firm orders, and are non returnable.

Ordering Code	Width W1	$\begin{gathered} \text { Width W2 } \\ \mathrm{mm} \end{gathered}$
N2SR300150	300	150
N2SR450150	450	150
N2SR450300	450	300
N2SR600150	600	150
N2SR600300	600	300
N2SR600450	600	450
N2SR900150	900	150
N2SR900300	900	300
N2SR900450	900	450
N2SR900600	900	600

NEMA 2 Cable Ladder - Straight Reducer

Order fasteners separately for installation.
$8 \times$ Splice Bolts (SBH) \& $8 \times$ Splice Nuts (SNH) required.
All Reducers are manufactured against firm orders, and are non returnable.

NEMA 2 Cable Ladder - Left Hand Reducer

Order fasteners separately for installation.
$8 \times$ Splice Bolts (SBH) \& $8 \times$ Splice Nuts (SNH) required.
All Reducers are manufactured against firm orders and are non returnable.

Ordering Code	Width W1 mm	Width W2 mm	1
N2RHR300150	300	150	150
N2RHR450150	450	150	
N2RHR450300	450	300	4
N2RHR600150	600	150	
N2RHR600300	600	300	300
N2RHR600450	600	450	
N2RHR900150	900	150	1
N2RHR900300	900	300	150
N2RHR900450	900	450	5
N2RHR900600	900	600	

NEMA 2 Cable Ladder - Right Hand Reducer

S Stainless Steel

NEMA 2 Splice

Ordering Code: N2VS
Note - Order splice bolts \& nuts separately, SBH or SBS and SNH or SNS.

Ordering Code N2vS
 H Hot Dip Galvanised
 S Stainless Steel

NEMA 2 Vertical Splice

Ordering Code: N2HS
Note - Order splice bolts \& nuts separately, SBH or SBS and SNH or SNS.

NEMA 2 Horizontal Splice

Both items are ordered separately.
Splice Bolts have a smooth head to eliminate the risk of sheathing the cable during installation.
Special counterbore nuts ensure that correct tension is achieved during installation.

Ordering Code: N2CCS

Ordering Code: DSN2
Standard Finish: Galvabond. Hot dip galvanised and stainless steel can be supplied against a firm order.
Note: Order B3016 and PS620 separately for installation.

NEMA 2 Cover Clamp
1

NEMA 2 Divider Strip

-

Ordering Code: HD
Hold Down Bracket can be supplied complete with spring nut (B1008H - M10) and screw (HS1030H).

Hot dip galvanised fasteners are supplied separately.
Note: Should be used in pairs.

NEMA 2 Hold Down Bracket

Specifications	- Standard Length 6.0 metres.	
	- Overall height 130 mm	
Surface Finish	- Cable laying denth 112 mm	
	Available	
	Finish	Code
	Hot Dip Galvanised	H
	Stainless Steel	S

Note

- Stainless steel products are manufactured against firm orders only and are non returnable.

Nema 3 Cable Ladder
-

Nema 3 Cable Ladder has been tested in accordance with the Nema requirements by a NATA certified testing facility. The data displayed is based on physical test results of a 600 wide section and may vary for other widths. The Deflections have been provided as a guide based on continuous spans, and cannot be applied to end spans. Data provided assumes that the installation will be carried out in accordance with Nema VE2, non compliance may affect the overall product performance.

Specifications

> - Standard Length 6.0 metres.
> - Overall height 130 mm
> - Cable laying depth 112 mm

Surface Finish

Note

Available	
Finish	Code
Hot Dip Galvanised	H
Stainless Steel	S

- Stainless steel products are manufactured against firm orders only and are non returnable.

Standard Product in Western Australia

Nema 3 Cable Ladder

[^11]

NEMA 3 Cable Ladder - Bend

Ordering Code	Width w mm	Length L1 mm	Length L2 mm
N3T1504 -	150	1050	600
N3T3004	300	1200	750
N3T4504	450	1350	900
N3T6004	600	1500	1050
N3T9004	900	1800	1350

Order fasteners separately for installation. $16 \times$ Splice Bolts (SBH) \& $16 \times$ Splice Nuts (SNH) required.
Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Stainless Steel is only manufactured against firm orders and is non returnable.

Dimensions do not include integral splice plates.

Ordering Code	Width W
N3ER1504	150
N3ER3004	300
N3ER4504	450
N3ER6004	600
N3ER9004	900

S Stainless Steel

| Ordering Code | Width W
 mm |
| :---: | :---: | :---: |
| N3IR1504_- | 150 |
| N3IR3004_- | 300 |
| N3IR4504_- | 450 |
| N3IR6004_- | 600 |
| N3IR9004_- Hot Dip Galvanised | |
| | 900 |
| S Stainless Steel | |

Order fasteners separately for installation. $16 \times$ Splice Bolts (SBH) \& $16 \times$ Splice Nuts (SNH) required.

Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Stainless Steel is only manufactured against firm orders and is non returnable.

Order fasteners separately for installation.
$32 \times$ Splice Bolts (SBH) \& $32 \times$ Splice Nuts (SNH) required.
Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Stainless Steel is only manufactured against firm orders and is non returnable.

Ordering Code	Width W mm	Length L1 mm	$\underset{\mathrm{mm}}{\substack{\text { Length L2 }}}$
N3C1504	150	1050	1050
N3C3004	300	1200	1200
N3C4504	450	1350	1350
N3C6004	600	1500	1500
N3C9004	900	1800	1800

NEMA 3 Cable Ladder - Cross

Order fasteners separately for installation. $16 \times$ Splice Bolts (SBH) \& $16 \times$ Splice Nuts (SNH) required.

All Reducers are manufactured against firm orders, and are non returnable.

Ordering Code	Width W1 mm	Width W2 mm
N3SR300150	300	150
N3SR450150	450	150
N3SR450300	450	300
N3SR600150	600	150
N3SR600300	600	300
N3SR600450	600	450
N3SR900150	900	150
N3SR900300	900	300
N3SR900450	900	450
N3SR900600	900	600

NEMA 3 Cable Ladder - Straight Reducer

Order fasteners separately for installation.
$16 \times$ Splice Bolts (SBH) \& $16 \times$ Splice Nuts (SNH) required.
All Reducers are manufactured against firm orders, and are non returnable.

NEMA 3 Cable Ladder - Left Hand Reducer

Order fasteners separately for installation.
$16 \times$ Splice Bolts (SBH) \& $16 \times$ Splice Nuts (SNH) required.

All Reducers are manufactured against firm orders and are non returnable.

Ordering Code: N3S
Note - Order splice bolts \& nuts separately, SBH or SBS and SNH or SNS.

NEMA 3 Splice

Ordering Code: N3VS
Note - Order splice bolts \& nuts separately, SBH or SBS and SNH or SNS.

Ordering Code N3VS

- H Hot Dip Galvanised

S Stainless Steel

NEMA 3 Vertical Splice

Ordering Code: N3HS
Note - Order splice bolts \& nuts separately, SBH or SBS and SNH or SNS.

\square
Both items are ordered separately.
Splice Bolts have a smooth head to eliminate the risk of sheathing the cable during installation.
Special counterbore nuts ensure that correct tension is achieved during installation.

SBH Splice Bolt \& SNH Splice Nut

Ordering Code: N3CCS (stainless steel)

NEMA 3 Cover Clamp

Ordering Code: DSN3
Standard Finish: Galvabond. Hot dip galvanised and stainless steel can be supplied against a firm order.

Note: Order B3016 and PS620 separately for installation.

Ordering Code

 DSN3\qquad

NEMA 3 Divider Strip
)
H Hot Dip Galvanised
Stainless Steel

Ordering Code: HD

Hold Down Bracket can be supplied complete with spring nut (B1008H-M10) and screw (HS1030H).

Hot dip galvanised fasteners are supplied separately.
Note: Should be used in pairs.

Ordering Code

Order fasteners separately for installation. $16 \times$ Splice Bolts (SBH) \& $16 \times$ Splice Nuts (SNH) required.

Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Stainless Steel is only manufactured against firm orders and is non returnable.

Ordering Code	Width W $\mathbf{m m}$	Length L $\mathbf{m m}$
N4B1504_	150	600
N4B3004_-	300	750
N4B4504_	450	900
N4B6004_	600	1050
N4B9004_	900	1350
S Hot Dip Galvanised		
S Stainless Steel		

Order fasteners separately for installation. $24 \times$ Splice Bolts (SBH) \& $24 \times$ Splice Nuts (SNH) required.
Non standard radius fittings can be manufactured against firm orders, and are non returnable.
Stainless Steel is only manufactured against firm orders and is non returnable.

Ordering Code	Width W mm	Length $\mathrm{L1}$ mm	Length L2 mm
N4T1504	150	1050	600
N4T3004	300	1200	750
N4T4504	450	1350	900
N4T6004	600	1500	1050
N4T9004	900	1800	1350

NEMA 4 Cable Ladder - Tee

Order fasteners separately for installation. $16 \times$ Splice Bolts (SBH) \& $16 \times$ Splice Nuts (SNH) required.

Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Stainless Steel is only manufactured against firm orders and is non returnable.

Ordering Code	Width W mm
N4ER1504 _	150
N4ER3004	300
N4ER4504	450
N4ER6004	600
N4ER9004	900

NEMA 4 Cable Ladder - External Riser

Order fasteners separately for installation. $16 \times$ Splice Bolts (SBH) \& $16 \times$ Splice Nuts (SNH) required.

Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Stainless Steel is only manufactured against firm orders and is non returnable.

Dimensions do not include integral splice plates.

Order fasteners separately for installation.
$32 \times$ Splice Bolts (SBH) \& $32 \times$ Splice Nuts (SNH) required.
Non standard radius fittings can be manufactured against firm orders, and are non returnable.

Stainless Steel is only manufactured against firm orders and is non returnable.

Ordering Code	Width W $\mathbf{m m}$	Length L1 $\mathbf{m m}$	Length L2 $\mathbf{m m}$
N4C1504_-	150	1050	1050
N4C3004_	300	1200	1200
N4C4504_	450	1350	1350
N4C6004_	600	1500	1500
N4C9004_- H Hot Dip Galvanised			
S Stainless Steel			

NEMA 4 Cable Ladder - Cross

Order fasteners separately for installation. $16 \times$ Splice Bolts (SBH) \& $16 \times$ Splice Nuts (SNH) required.

All Reducers are manufactured against firm orders, and are non returnable.

Ordering Code	Width W1 mm	Width W2 mm
N4SR300150	300	150
N4SR450150	450	150
N4SR450300	450	300
N4SR600150	600	150
N4SR600300	600	300
N4SR600450	600	450
N4SR900150	900	150
N4SR900300	900	300
N4SR900450	900	450
N4SR900600	900	600

NEMA 4 Cable Ladder - Straight Reducer

Order fasteners separately for installation.
$16 \times$ Splice Bolts $(\mathrm{SBH}) \& 16 \times$ Splice Nuts
Order fasteners separately for installation.
$16 \times$ Splice Bolts $(\mathrm{SBH}) \& 16 \times$ Splice Nuts (SNH) required.
All Reducers are manufactured against firm orders, and are non returnable.

Ordering Code	Width W1 mm	Width W2 mm
N4LHR300150	300	150
N4LHR450150	450	150
N4LHR450300	450	300
N4LHR600150	600	150
N4LHR600300	600	300
N4LHR600450	600	450
N4LHR900150	900	150
N4LHR900300	900	300
N4LHR900450	900	450
N4LHR900600	900	600

NEMA 4 Cable Ladder - Left Hand Reducer

Order fasteners separately for installation.
$16 \times$ Splice Bolts (SBH) \& $16 \times$ Splice Nuts (SNH) required.

All Reducers are manufactured against firm orders and are non returnable.
 -

Ordering Code: N4S

NEMA 4 Splice

Ordering Code: N4VS
Note - Order splice bolts \& nuts separately, SBH or SBS and SNH or SNS.
Note - Order splice bolts \& nuts separately, SBH or SBS and SNH or SNS.

Ordering Code: N4CCS (stainless steel)

Supplied complete with cone screw.

NEMA 4 Cover Clamp

Ordering Code: DSN4
Standard Finish: Galvabond. Hot dip galvanised and stainless steel can be supplied against a firm order.
Standard Length: 3.0 metres
Note: Order B3016 and PS620 separately for installation.
Ordering Code
DSN4
$\begin{array}{ll}\text { - } & \\ \text { - } & \text { Galvabond } \\ - & \text { Hot Dip Galvanised } \\ \text { S } & \text { Stainless Steel }\end{array}$

NEMA 4 Divider Strip
)
Ordering Code: HD
Hold Down Bracket can be supplied complete with spring nut (B1008H-M10) and screw (HS1030H).

Hot dip galvanised fasteners are supplied separately.
Note: Should be used in pairs.

Ordering Code

 HD $\begin{array}{ll}\text { - H Hot Dip Galvanised } \\ \text { S } & \text { Stainless Steel }\end{array}$

NEMA 4 Hold Down Bracket
1

- Standard Length 6.0 metres.
- Overall height 100 mm
- Cable laying depth 75 mm

Note - Aluminium products are manufactured against firm orders only and are non returnable.

Nema 2 Cable Ladder - Aluminium

[^12]

Dimensions do not include integral splice plates．

Order fasteners separately for installation．
$8 \times$ Splice Bolts（SBS）\＆ $8 \times$ Splice Nuts（SNS）required．
All aluminium Cable Ladder Fittings are manufactured against firm orders only，and are non returnable．

Ordering Code	Width W $\mathbf{m m}$	Length \mathbf{L} $\mathbf{m m}$
N2B1504A	150	600
N2B3004A	300	750
N2B4504A	450	900
N2B6004A	600	1050
N2B9004A	900	1350

Order fasteners separately for installation．
12 x Splice Bolts（SBS）\＆ $12 \times$ Splice Nuts（SNS）required．
All aluminium Cable Ladder Fittings are manufactured against firm orders only，and are non returnable．

Ordering Code	Width W $\mathbf{m m}$	Length L1 $\mathbf{m m}$	Length L2 $\mathbf{m m}$
N2T1504A	150	1050	600
N2T3004A	300	1200	750
N2T4504A	450	1350	900
N2T6004A	600	1500	1050
N2T9004A	900	1800	1350

Order fasteners separately for installation.
$8 \times$ Splice Bolts (SBS) \& $8 \times$ Splice Nuts (SNS) required.
All aluminium Cable Ladder Fittings are manufactured against firm orders only, and are non returnable.

Dimensions do not include integral splice plates.

Ordering Code	Width W mm
N2ER1504A	150
N2ER3004A	300
N2ER4504A	450
N2ER6004A	600
N2ER9004A	900

NEMA 2 Cable Ladder - External Riser - Aluminium

Order fasteners separately for installation.
$8 \times$ Splice Bolts (SBS) \& $8 \times$ Splice Nuts (SNS) required.
All aluminium Cable Ladder Fittings are manufactured against firm orders only, and are non returnable.

Ordering Code	Width W mm
N2IR1504A	150
N2IR3004A	300
N2IR4504A	450
N2IR6004A	600
N2IR9004A	900

Dimensions do not include integral splice plates.

	Ordering Code	Width \mathbf{W} $\mathbf{m m}$	Length L1 $\mathbf{m m}$	Length L2 $\mathbf{m m}$
Order fasteners separately for installation.	N2C1504A	150	1050	1050
$16 \times$ Splice Bolts (SBS) \& $16 \times$ S Splice Nuts (SNS) required.	N2C3004A	300	1200	1200
All aluminium Cable Ladder Fittings are manufactured against firm	N2C4504A	450	1350	1350
orders only, and are non returnable.	N2C6004A	600	1500	1500
	N2C9004A	900	1800	1800

NEMA 2 Cable Ladder - Cross - Aluminium

Order fasteners separately for installation.
$8 \times$ Splice Bolts (SBS) \& 8 x Splice Nuts (SNS) required.
All aluminium Cable Ladder Fittings are manufactured against firm orders only, and are non returnable.

Ordering Code	Width W1 mm	Width W2 mm
N2SR300150A	300	150
N2SR450150A	450	150
N2SR450300A	450	300
N2SR600150A	600	150
N2SR600300A	600	300
N2SR600450A	600	450
N2SR900150A	900	150
N2SR900300A	900	300
N2SR900450A	900	450
N2SR900600A	900	600

NEMA 2 Cable Ladder - Straight Reducer - Aluminium

Order fasteners separately for installation.
$8 \times$ Splice Bolts (SBS) \& $8 \times$ Splice Nuts (SNS) required.
All aluminium Cable Ladder Fittings are manufactured against firm orders only, and are non returnable.

Ordering Code	Width W1 mm	Width W2 mm
N2LHR300150A	300	150
N2LHR450150A	450	150
N2LHR450300A	450	300
N2LHR600150A	600	150
N2LHR600300A	600	300
N2LHR600450A	600	450
N2LHR900150A	900	150
N2LHR900300A	900	300
N2LHR900450A	900	450
N2LHR900600A	900	600

NEMA 2 Cable Ladder - Left Hand Reducer - Aluminium

Order fasteners separately for installation.
$8 x$ Splice Bolts (SBS) \& $8 \times$ Splice Nuts (SNS) required.
All aluminium Cable Ladder Fittings are manufactured against firm orders only, and are non returnable.

Ordering Code	Width W1 mm	Width W2 mm
N2RHR300150A	300	150
N2RHR450150A	450	150
N2RHR450300A	450	300
N2RHR600150A	600	150
N2RHR600300A	600	300
N2RHR600450A	600	450
N2RHR900150A	900	150
N2RHR900300A	900	300
N2RHR900450A	900	450
N2RHR900600A	900	600

NEMA 2 Cable Ladder - Right Hand Reducer - Aluminium

Ordering Code: N2SA

Note: Order splice bolts \& nuts separately, SBS and SNS.

NEMA 2 Splice Plate - Aluminium
Ordering Code: N2VSA
Note: Order splice bolts \& nuts separately, SBS and SNS.

NEMA 2 Vertical Splice Plate - Aluminium
Ordering Code: N2HSA
Note: Order splice bolts \& nuts separately, SBS and SNS.

NEMA 2 Horizontal Splice Plate - Aluminium

$$
1
$$

Stainless Steel Fasteners and Insulating Bushes
Stainless steel fasteners can be supplied for additional protection in harsh conditions. However these should only be used in conjunction with appropriate insulating bushes in order to prevent electrolytic reaction between dissimilar metals.
Stainless steel screws used in conjunction with insulators are only available in hex head type.
Ordering Codes: HS820S M8 x 20 hex screw
HN8S hex nut
IF8N insulating ferrule
FW8N nylon washer

Ordering Code: DSN2A

Note: Order B3016 and PS620 separately for installation.

NEMA 2 Divider Strip - Aluminium

1

Ordering Code: BIFS

- Or B3016 and P620 ser
-

BIFS Burndy Interface Spacer

Ordering Code: N2CCAS

Nema 2 Cover Clamp for Aluminium
1
-

Ordering Code: HDA

Note: Should be used in pairs.

NEMA 2 Hold Down Unit - Aluminium
Hold Down Unit

- Overall height 120 mm

$$
\text { - Cable laying depth } 95 \text { mm }
$$

Note

- Aluminium products are manufactured against firm orders only and are non returnable.

Nema 3 Cable Ladder - Aluminium

Ordering Code	Cable Laying Width W mm	Width Overall W mm
N3L150A	150	184
N3L300A	300	334
N3L450A	450	484
N3L600A	600	634
N3L900A	900	934

[^13]

Dimensions do not include integral splice plates.

Order fasteners separately for installation.
$8 \times$ Splice Bolts (SBS) \& $8 \times$ Splice Nuts (SNS) required.
All aluminium Cable Ladder Fittings are manufactured against firm orders only, and are non returnable.

Ordering Code	Width \mathbf{W} $\mathbf{m m}$	Length \mathbf{L} mm
N3B1504A	150	600
N3B3004A	300	750
N3B4504A	450	900
N3B6004A	600	1050
N3B9004A	900	1350

1

Order fasteners separately for installation.
$12 \times$ Splice Bolts (SBS) \& $12 \times$ Splice Nuts (SNS) required.
All aluminium Cable Ladder Fittings are manufactured against firm orders only, and are non returnable.

Ordering Code	Width W $\mathbf{m m}$	Length L1 $\mathbf{m m}$	Length L2 $\mathbf{m m}$
N3T1504A	150	1050	600
N3T3004A	300	1200	750
N3T4504A	450	1350	900
N3T6004A	600	1500	1050
N3T9004A	900	1800	1350

$8 \times$ Splice Bolts (SBS) \& $8 \times$ Splice Nuts (SNS) required.
All aluminium Cable Ladder Fittings are manufactured against firm orders only, and are non returnable.

Order fasteners separately for installation.

Ordering Code	Width W mm
N3ER1504A	150
N3ER3004A	300
N3ER4504A	450
N3ER6004A	600
N3ER9004A	900

NEMA 3 Cable Ladder - External Riser - Aluminium

Dimensions do not include integral splice plates.

Order fasteners separately for installation.
$16 \times$ Splice Bolts (SBS) \& $16 \times$ Splice Nuts (SNS) required.
All aluminium Cable Ladder Fittings are manufactured against firm orders only, and are non returnable.

Ordering Code	Width W $\mathbf{m m}$	Length L1 $\mathbf{m m}$	Length L2 $\mathbf{m m}$
N3C1504A	150	1050	1050
N3C3004A	300	1200	1200
N3C4504A	450	1350	1350
N3C6004A	600	1500	1500
N3C9004A	900	1800	1800

NEMA 3 Cable Ladder - Cross - Aluminium

Order fasteners separately for installation. $8 \times$ Splice Bolts (SBS) \& $8 \times$ Splice Nuts (SNS) required.
All aluminium Cable Ladder Fittings are manufactured against firm orders only, and are non returnable.

NEMA 3 Cable Ladder - Straight Reducer - Aluminium

Order fasteners separately for installation.
$8 \times$ Splice Bolts (SBS) \& $8 \times$ Splice Nuts (SNS) required.
All aluminium Cable Ladder Fittings are manufactured against firm orders only, and are non returnable.

Ordering Code	Width W1 mm	Width W2 mm
N3LHR300150A	300	150
N3LHR450150A	450	150
N3LHR450300A	450	300
N3LHR600150A	600	150
N3LHR600300A	600	300
N3LHR600450A	600	450
N3LHR900150A	900	150
N3LHR900300A	900	300
N3LHR900450A	900	450
N3LHR900600A	900	600

NEMA 3 Cable Ladder - Left Hand Reducer - Aluminium

Order fasteners separately for installation.
$8 \times$ Splice Bolts (SBS) \& $8 \times$ Splice Nuts (SNS) required.
All aluminium Cable Ladder Fittings are manufactured against firm orders only, and are non returnable.

Ordering Code	Width W1 mm	Width W2 mm
N3RHR300150A	300	150
N3RHR450150A	450	150
N3RHR450300A	450	300
N3RHR600150A	600	150
N3RHR600300A	600	300
N3RHR600450A	600	450
N3RHR900150A	900	150
N3RHR900300A	900	300
N3RHR900450A	900	450
N3RHR900600A	900	600

NEMA 3 Cable Ladder - Right Hand Reducer - Aluminium

Ordering Code: N3SA
Note: Order splice bolts \& nuts separately, SBS and SNS.

NEMA 3 Splice Plate - Aluminium
।
Ordering Code: N3VSA
Note: Order splice bolts \& nuts separately, SBS and SNS.

NEMA 3 Vertical Splice Plate - Aluminium
Ordering Code: N3HSA
Note: Order splice bolts \& nuts separately, SBS and SNS.

NEMA 3 Horizontal Splice Plate - Aluminium
1
Stainless steel screws used in conjunction with insulators are only available
in hex head type.

Ordering Codes:	HS820S	M8 $\times 20$ hex screw
	HN8S	hex nut
	BTHF	insulating ferrule
	FW8N	nylon washer

Stainless Steel Fasteners and Insulating Bushes
1

Ordering Code: DSN3A

Note: Order B3016 and PS620 separately for installation.

NEMA 3 Divider Strip - Aluminium

-

Ordering Code: BIFS

-

BIFS Burndy Interface Spacer
।
Ordering Code: N3CCAS

Nema 2 Cover Clamp for Aluminium
1
\qquad

Ordering Code: HDA

Note: Should be used in pairs.

The Hold Down Bracket is manufactured from aluminium as standard.

The Channel Nut and Bolt are manufactured from stainless steel as standard.

HDA x 1
HS1030S x 1
B1008S x 1
BIFS $\times 1$
BTHF $\times 1$

Dimensions do not include integral splice plates.

Ordering Code	Width W mm	Length L $\mathbf{m m}$
N4B1504A	150	600
N4B3004A	300	750
N4B4504A	450	900
N4B6004A	600	1050
N4B9004A	900	1350

Order fasteners separately for installation.
$8 \times$ Splice Bolts (SBS) \& $8 \times$ Splice Nuts (SNS) required.
N4B9004A
1350
All aluminium Cable Ladder Fittings are manufactured against firm orders only, and are non returnable.

NEMA 4 Cable Ladder - Bend - Aluminium

Ordering Code	Width W $\mathbf{m m}$	Length L1 $\mathbf{m m}$	Length L2 $\mathbf{m m}$	
	N4T1504A	150	1050	600
	N4T3004A	300	1200	750
Order fasteners separately for installation.	N4T4504A	450	1350	900
$12 \times$ Splice Bolts (SBS) \& $2 \times$ Splice Nuts (SNS) required.	N4T6004A	600	1500	1050
	N4T9004A	900	1800	1350

$12 \times$ Splice Bolts (SBS) \& $12 \times$ Splice Nuts (SNS) required.
All aluminium Cable Ladder Fittings are manufactured against firm orders only, and are non returnable.

Ordering Code	Width W mm
N4ER1504A	150
N4ER3004A	300
N4ER4504A	450
N4ER6004A	600
N4ER9004A	900

NEMA 4 Cable Ladder - External Riser - Aluminium

, memsome	"mm
cink	$\substack { \text { cix } \\ \begin{subarray}{c}{\text { mox }{ \text { cix } \\ \begin{subarray} { c } { \text { mox } } } \end{subarray}$

Order fasteners separately for installation.
$8 \times$ Splice Bolts (SBS) \& $8 \times$ Splice Nuts (SNS) required.
All aluminium Cable Ladder Fittings are manufactured against firm orders only, and are non returnable.

Dimensions do not include integral splice plates.

	Ordering Code	Width \mathbf{W} $\mathbf{m m}$	Length L1 $\mathbf{m m}$	Length L2 $\mathbf{m m}$
Order fasteners separately for installation. $16 \times$ Splice Bolts (SBS) \&	N4C1504A	150	1050	1050
$16 \times$ Splice Nuts (SNS) required	N4C3004A	300	1200	1200
All aluminium cable ladder fittings are manufactured against firm	N4C4504A	450	1350	1350
orders and are non returnable.	N4C6004A	600	1500	1500
	N4C9004A	900	1800	1800

NEMA 4 Cable Ladder - Cross - Aluminium

Order fasteners separately for installation. $8 \times$ Splice Bolts (SBS) \& $8 \times$ Splice Nuts (SNS) required.
All aluminium cable ladder fittings are manufactured against firm orders and are non returnable.

Ordering Code	Width W1 mm	Width W2 mm
N4SR300150A	300	150
N4SR450150A	450	150
N4SR450300A	450	300
N4SR600150A	600	150
N4SR600300A	600	300
N4SR600450A	600	450
N4SR900150A	900	150
N4SR900300A	900	300
N4SR900450A	900	450
N4SR900600A	900	600

CABLE SUPPORT SYSTEMS

Order fasteners separately for installation.
$8 \times$ Splice Bolts (SBS) \& $8 \times$ Splice Nuts (SNS) required.
All aluminium cable ladder fittings are manufactured against firm orders and are non returnable.

Ordering Code	Width W1 mm	Width W2 mm
N4LHR300150A	300	150
N4LHR450150A	450	150
N4LHR450300A	450	300
N4LHR600150A	600	150
N4LHR600300A	600	300
N4LHR600450A	600	450
N4LHR900150A	900	150
N4LHR900300A	900	300
N4LHR900450A	900	450
N4LHR900600A	900	600

NEMA 4 Cable Ladder - Left Hand Reducer - Aluminium

Order fasteners separately for installation.
$8 \times$ Splice Bolts (SBS) \& $8 \times$ Splice Nuts (SNS) required.
All aluminium cable ladder fittings are manufactured against firm orders and are non returnable.

Ordering Code	Width W1 $\mathbf{m m}$	Width W2 mm
N4RHR300150A	300	150
N4RHR450150A	450	150
N4RHR450300A	450	300
N4RHR600150A	600	150
N4RHR600300A	600	300
N4RHR600450A	600	450
N4RHR900150A	900	150
N4RHR900300A	900	300
N4RHR900450A	900	450
N4RHR900600A	900	600

Ordering Code: N4SA

Note: Order splice bolts \& nuts separately, SBS and SNS.

NEMA 4 Splice Plate - Aluminium
)
Ordering Code: N4VSA
Note: Order splice bolts \& nuts separately, SBS and SNS.

NEMA 4 Vertical Splice Plate - Aluminium

Ordering Code: N4HSA
Note: Order splice bolts \& nuts separately, SBS and SNS.

NEMA 4 Horizontal Splice Plate - Aluminium

Stainless steel screws used in conjunction with insulators are only available
in hex head type.

Ordering Codes:	HS820S	M8 x 20 hex screw
	HN8S	hex nut
	BTHF	insulating ferrule
	FW8N	nylon washer

Stainless Steel Fasteners and Insulating Bushes

Ordering Code: DSN4A

Note: Order B3016 and PS620 separately for installation.

NEMA 4 Divider Strip - Aluminium

,

Ordering Code: BIFS

-

BIFS Burndy Interface Spacer
)
Ordering Code: N4CCAS

Nema 4 Cover Clamp for Aluminium
1

Ordering Code: HDA
Note: Should be used in pairs.

Hold Down Unit

Hold Down Unit with Insulators

NEMA 4 Hold Down Unit - Aluminium

- Hot Dip Galvanised \& Galvabond Cable Ladder Covers are manufactured against firm orders only and are non returnable.
- Hot Dip Galvanising is not recommended for products such as these. Varying degrees of product distortion are likely to occur which may compromise aesthetics.

	Ordering Code	Nominal Width mm	Internal Width mm
	CFN1150G	150	182
	CFN1300G	300	332
	CFN1450G	450	482
	CFN1600G	600	632
	CFN1900G	900	932
	CFN1150H	150	182
	CFN1300H	300	332
	CFN1450H	450	482
	CFN1600H	600	632
	CFN1900H	900	932

Specifications

Note

- Standard Length 3.0 metres.
- Hot Dip Galvanised, Stainless Steel \& Aluminium Cable Ladder Covers are manufactured against firm orders only and are non returnable.
- Hot Dip Galvanising is not recommended for products such as these. Varying degrees of product distortion are likely to occur which may compromise aesthetics.

	Ordering Code	Nominal Width mm	Internal Width mm	Length metres
	CFN2150G	150	214	3.0
	CFN2300G	300	364	3.0
	CFN2450G	450	514	3.0
	CFN2600G	600	664	3.0
	CFN2900G	900	964	3.0
	CFN2150H	150	214	3.0
	CFN2300H	300	364	3.0
	CFN2450H	450	514	3.0
	CFN2600H	600	664	3.0
	CFN2900H	900	964	3.0
	CFN2150S	150	214	3.0
	CFN2300S	300	364	3.0
	CFN2450S	450	514	3.0
	CFN2600S	600	664	3.0
	CFN2900S	900	964	3.0
岩	CFN2150A	150	205	3.0
	CFN2300A	300	355	3.0
	CFN2450A	450	505	3.0
	CFN2600A	600	655	3.0
	CFN2900A	900	955	3.0

Note
Covers are common for Nema 2, Nema 3 and Nema 4 in steel and stainless steel. They are also common for Nema 2 and Nema 3 in aluminium.
Not suitable for 'Rail In' Cable Ladders used in Western Australia. For 'Rail In' application, refer to page 9.3

- Hot Dip Galvanised, Stainless Steel \& Aluminium Cable Ladder Covers are manufactured against firm orders only and are non returnable.
- Hot Dip Galvanising is not recommended for products such as these. Varying degrees of product distortion are likely to occur which may compromise aesthetics.

Specifications

Note

- Standard Length 3.0 metres.
- Hot Dip Galvanised \& Galvabond Cable Ladder Covers are manufactured against firm orders only and are non returnable.
- Hot Dip Galvanising is not recommended for products such as these. Varying degrees of product distortion are likely to occur which may compromise aesthetics.

	Ordering Code	Nominal Width mm	Internal Width mm	Length metres
	CPN1150G	150	182	3.0
	CPN1300G	300	332	3.0
	CPN1450G	450	482	3.0
	CPN1600G	600	632	3.0
	CPN1900G	900	932	3.0
	CPN1150H	150	182	3.0
	CPN1300H	300	332	3.0
	CPN1450H	450	482	3.0
	CPN1600H	600	632	3.0
	CPN1900H	900	932	3.0

Nema 1 Cable Ladder - Peaked Cover (15 Degree Peak)
1

- Standard Length 3.0 metres.
- Hot Dip Galvanised, Stainless Steel \& Aluminium Cable Ladder Covers are manufactured against firm orders only and are non returnable.
- Hot Dip Galvanising is not recommended for products such as these. Varying degrees of product distortion are likely to occur which may compromise aesthetics.

	Ordering Code	Nominal Width mm	Internal Width mm	Length metres
	CPN2150G	150	214	3.0
	CPN2300G	300	364	3.0
	CPN2450G	450	514	3.0
	CPN2600G	600	664	3.0
	CPN2900G	900	964	3.0
	CPN2150H	150	214	3.0
	CPN2300H	300	364	3.0
	CPN2450H	450	514	3.0
	CPN2600H	600	664	3.0
	CPN2900H	900	964	3.0
	CPN2150S	150	214	3.0
	CPN2300S	300	364	3.0
	CPN2450S	450	514	3.0
	CPN2600S	600	664	3.0
	CPN2900S	900	964	3.0
	CPN2150A	150	205	3.0
	CPN2300A	300	355	3.0
	CPN2450A	450	505	3.0
	CPN2600A	600	655	3.0
	CPN2900A	900	955	3.0

Note
Covers are common for Nema 2, Nema 3 and Nema 4 in steel and stainless steel. They are also common for Nema 2 and Nema 3 in aluminium.
Not suitable for 'Rail In' Cable Ladders used in Western Australia. For 'Rail In' application, refer to page 9.6

Specifications

Note

- Standard Length 3.0 metres.
- Hot Dip Galvanised, Stainless Steel \& Aluminium Cable Ladder Covers are manufactured against firm orders only and are non returnable.
- Hot Dip Galvanising is not recommended for products such as these. Varying degrees of product distortion are likely to occur which may compromise aesthetics.

	Ordering Code	Nominal Width mm	Internal Width mm	Length metres
	CPCT150G	150	154	3.0
	CPCT300G	300	304	3.0
	CPCT450G	450	454	3.0
	CPCT600G	600	604	3.0
	CPCT900G	900	904	3.0
	CPCT150H	150	154	3.0
	СРСТ300Н	300	304	3.0
	CPCT450H	450	454	3.0
	CPCT600H	600	604	3.0
	CPCT900H	900	904	3.0
	CPCT150S	150	154	3.0
	CPCT300S	300	304	3.0
	CPCT450S	450	454	3.0
	CPCT600S	600	604	3.0
	CPCT900S	900	904	3.0
宕	CPN2150A	150	205	3.0
	CPN2300A	300	355	3.0
	CPN2450A	450	505	3.0
	CPN2600A	600	655	3.0
	CPN2900A	900	955	3.0

Note
Covers are common for Nema 2, Nema 3 and Nema 4 in steel and stainless steel. They are also common for Nema 2 and Nema 3 in aluminium.

Nema 2 / Nema 3 / Nema 4 Cable Ladder Peaked Cover (15 Degree Peak)

	Ordering Code	Nominal Width mm
300 Radius	CER1503 -	150
	CER3003	300
	CER4503	450
Standard for all NEMA 1	CER6003	600
	CER9003	900
450 Radius	CER1504	150
	CER3004	300
Standard for all NEMA 2, NEMA 3 \& NEMA 4	CER4504	450
	CER6004	600
	CER9004	900

- A Aluminum
- G Galvabond
- H Hot Dip Galvanised

S Stainless Steel

Ordering Code	Width W1 mm	Width W2 mm
CSR300150	300	150
CSR450150	450	150
CSR450300	450	300
CSR600150	600	150
CSR600300	600	300
CSR600450	600	450
CSR900150	900	150
CSR900300	900	300
CSR900450	900	450
CSR900600	900	600
- A Aluminum - Galvabond - H Hot Dip Galvanised S Stainless Steel		

Ordering Code	Width W1 mm	Width W2 mm
CLHR300150 _	300	150
CLHR450150	450	150
CLHR450300	450	300
CLHR600150	600	150
CLHR600300	600	300
CLHR600450	600	450
CLHR900150	900	150
CLHR900300	900	300
CLHR900450	900	450
CLHR900600	900	600
- A Aluminum - G Galvabond - H Hot Dip Galvanised S Stainless Steel		

Ordering Code	Width W1 mm	Width W2 mm
CRHR300150	300	150
CRHR450150	450	150
CRHR450300	450	300
CRHR600150	600	150
CRHR600300	600	300
CRHR600450	600	450
CRHR900150	900	150
CRHR900300	900	300
CRHR900450	900	450
CRHR900600	900	600
- A Aluminum - \mathbf{G} Galvabond - Hot Dip Galvanised S Stainless Steel		

Features of Hyground

Hyground connectors are manufactured from pure wrought copper extrusions.

Hyground connectors have a current carrying capacity greater than or equivalent to the conductor.

The simplicity of installation of Hyground connectors means that installation is not affected by the weather.

The crimping process produces a very clear and evident embossing of the Hyground connector. A sound crimp can be
confirmed by a quick visual inspection.
Hyground connectors are safe and simple to use. Installation requiring no special training, protective clothing, elaborate fixtures or cleaning procedures.

All Hyground connectors are clearly marked with a number, conductor size and installation die number.

HYGROUND YGHC

Catalogue Number	Copper Conductor Range		Installation Tooling	
	Run (mm^{2})	Tap (mm²)	Y35/Y750 Die	Y46 Die *
YGHC2C2	10-35	10-35	U-C	U-C
YGHC26C2	50-70	10-35	U-0	U-0
YGHC26C26	50-70	50-70	U-0	U-0
YGHC29C26	95-120	16-70	U997	U997
YGHC29C29	95-120	95-120	U997	U997
YGHC34C26	150-240	16-70	U1011	U1011 or P1011
YGHC34C29	150-240	95-120	U1011	U1011 or P1011
YGHC34C34	150-240	150-240	-	U1011 or P1011

* P-UADP adaptor to be used in Y46 Head to accept U or PU dies.

Hyground YGHC

HYGROUND YGHP

Catalogue Number	Copper Conductor Range		Installation Tooling	
	Run ($\mathrm{mm}^{\mathbf{2}}$)	Tap (mm²)	Y35/Y750 Die	Y46 Die *
YGHP2C2	10-35	10-35	U-0	U-0
YGHP29C2	50-120 (13-15mm rod)	16-35	U997	U997
YGHP29C26	50-120 (13-15mm rod)	50-70	U997	U997
YGHP29C29	50-120 (13-15mm rod)	95-120	U997	U997
YGHP34C2	150-240 (16-19mm rod)	16-35	PU998	PU998 or P998
YGHP34C26	150-240 (16-19mm rod)	50-70	PU998	PU998 or P998
YGHP34C29	150-240 (16-19mm rod)	95-120	PU998	PU998 or P998
YGHP34C34	150-240 (16-19mm rod)	150-240	-	U1011 or P1011

* P-UADP adaptor to be used in Y46 Head to accept U or PU dies.

Catalogue Number	Copper Conductor Range		Installation Tooling			
	Run ($\mathrm{mm}^{\mathbf{2}}$)	Tap (mm^{2})	Y35/Y750 Die		Y46 Die *	
			Run A	Run B	Run A	Run B
YGL2C2	10-35	10-35	U-0	U-0	U-0	U-0
YGL29C2	50-120 (13-15mm rod)	10-35	U997	U-0	U997	U-0
YGL29C29	$35-120$ (13-15mm rod)	35-120	U997	U997	U997	U997
YGL34C2	150-240 (16-19mm rod)	10-35	PU998	U-0	PU998 or P998	U-0
YGL34C29	150-240 (16-19mm rod)	35-120	PU998	U997	PU998 or P998	U997
YGL34C34	150-240 (16-19mm rod)	150-240	U1011	U1011	P1011	P1011

* P-UADP adaptor to be used in Y46 Head to accept U or PU dies.

Hyground YGL

 1

Type D - single layer

Type E - double layer

Type F - triple layer

Flexible Copper Braids - Single Braid

| Catalogue Number | Current Rating
 (Amperes) | Braids in
 Ferrule | Holes in
 Each Ferrule | Braid Weave | Ferrule Finish | Ferrule Dimensions (mm) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | | | | | | |

Flexible Copper Braids - Double Braid

Catalogue Number	Current Rating (Amperes)	Braids in Ferrule	Holes in Each Ferrule	Braid Weave	Ferrule Finish	Ferrule Dimensions (mm)		
L				W	T			
BUB53L30M12	530	2	2	E	Untinned	30	85	9
BTB53L30M12	530	2	2	E	Tinned	30	85	9
BUB60L30M12	600	2	2	F	Untinned	30	85	10
BTB60L30M12	600	2	2	F	Tinned	30	85	10

Flexible Copper Braids - Triple Braid

Catalogue Number	Current Rating (Amperes)	Braids in Ferrule	Holes in Each Ferrule	Braid Weave	Ferrule Finish	Ferrule Dimensions (mm)		
BUB82L30M12	820	3	2	F	Untinned	37	85	14
BUB82L30M12	820	3	2	F	Tinned	37	85	14
BTB100L30M12	1000	3	2	F	Untinned	38	85	19
BTB100L30M12	1000	3	2	F	Tinned	38	85	19

- Standard braid length is $\mathbf{3 0 0} \mathrm{mm}$. - Nominated current ratings are indoor. - Braid material is tinned. © Ferrule tinning is optional.

Installation Tooling

Catalogue Number	Product Description
MD6-8 MY29-3 BM101	Hand Operated Tool. Crimp range $6 \mathrm{~mm}^{2}$ to $120 \mathrm{~mm}^{2}$ Indent Mechanical Tool. Crimp range $16 \mathrm{~mm}^{2}$ to $120 \mathrm{~mm}^{2}$ Threaded Rod Cutter. Cuts 8 mm and 10 mm
Y35 Y750 PAT750XT-18V	12 Ton Hydraulic Tool. Crimp range $16 \mathrm{~mm}^{2}$ to $300 \mathrm{~mm}^{2}$ 12 Ton Hydraulic Tool. Crimp range $16 \mathrm{~mm}^{2}$ to $300 \mathrm{~mm}^{2}$, wide jaw Battery Actuated 12 Tool Hydraulic Tool. Crimp range $16 \mathrm{~mm}^{2}$ to $300 \mathrm{~mm}^{2}$
Y35BH Y750BH Y46BH Y60BHU RHCC245CUAL EP10-1HP-2 FP10 HP10 PT29901-10 PT29901-15	12 Ton Hydraulic Remote Head. Crimp range $16 \mathrm{~mm}^{2}$ to $300 \mathrm{~mm}^{2}$ 12 Ton Hydraulic Remote Head. Crimp range $16 \mathrm{~mm}^{2}$ to $300 \mathrm{~mm}^{2}$ 15 Ton Hydraulic Remote Head. Crimp range $16 \mathrm{~mm}^{2}$ to $630 \mathrm{~mm}^{2}$, copper 60 Ton Remote Hydraulic Head. Crimp range $16 \mathrm{~mm}^{2}$ to $630 \mathrm{~mm}^{2}$ Hydraulic Cutter, copper \& aluminium 240v Electric Hydraulic Pump, 10,000 psi Foot Operated Hydraulic Pump, 10,000 psi Hand Operated Hydraulic Pump, 10,000 psi Hydraulic Hose $10,000 \mathrm{psi}, 3 \mathrm{mtr}$ Hydraulic Hose 10,000 psi, 4.5 mtr
U16 U25 U35 U50 U70 U95 U120 U150 U185 U240 U300	Hexagonal die to crimp $16 \mathrm{~mm}^{2}$ copper connectors Hexagonal die to crimp $25 \mathrm{~mm}^{2}$ copper connectors Hexagonal die to crimp $35 \mathrm{~mm}^{2}$ copper connectors Hexagonal die to crimp $50 \mathrm{~mm}^{2}$ copper connectors Hexagonal die to crimp $70 \mathrm{~mm}^{2}$ copper connectors Hexagonal die to crimp $95 \mathrm{~mm}^{2}$ copper connectors Hexagonal die to crimp $120 \mathrm{~mm}^{2}$ copper connectors Hexagonal die to crimp $150 \mathrm{~mm}^{2}$ copper connectors Hexagonal die to crimp $185 \mathrm{~mm}^{2}$ copper connectors Hexagonal die to crimp $240 \mathrm{~mm}^{2}$ copper connectors Hexagonal die to crimp $300 \mathrm{~mm}^{2}$ copper connectors
P400 P500 P630 P-UADP	Hexagonal die to crimp $400 \mathrm{~mm}^{2}$ copper connectors. Suits Y46 Hexagonal die to crimp $500 \mathrm{~mm}^{2}$ copper connectors. Suits Y46 Hexagonal die to crimp $630 \mathrm{~mm}^{2}$ copper connectors. Suits Y46 Adaptor allows Y46 to accept U-Dies 16-300 mm²
$\begin{aligned} & \text { U-C } \\ & \text { U-0 } \\ & \text { U-997 } \\ & \text { PU998 } \\ & \text { U1011 } \end{aligned}$	Hyground Die Hyground Die Hyground Die Hyground Die Hyground Die
UA12 UA16 UA21.5 UA27 UA35	Hex Die to crimp aluminium connectors $10-35 \mathrm{~mm}^{2}$ Hex Die to crimp aluminium connectors $50-70 \mathrm{~mm}_{2}$ Hex Die to crimp aluminium connectors $95-120 \mathrm{~mm}_{2}$ Hex Die to crimp aluminium connectors $150-185 \mathrm{~mm}_{2}$ Hex Die to crimp aluminium connectors $240-300 \mathrm{~mm}_{2}$
P8A PEN A-13 PENE-8	Aluminium Jointing Compound 225 ml Aluminium Jointing Compound 225 ml Copper Jointing Compound 225 ml

B1000	1.1	B1358	4.1	B3000 series	2.3
B1000T	1.5	B1359	4.3	B3016	2.4
B1001	1.8	B1376	4.4	B3087	4.10
B1001A	1.8	B1377	4.4	B3300	1.2
B1001B	1.8	B1386	4.6	B3300T	1.6
B1001C	1.8	B1458	4.2	B3301	1.8
B1006 to B1010	2.3	B1546	4.3	B3380	4.7
B1026	4.2	B1796	4.6	B4000 Aluminium	1.3
B1031	4.1	B1941	4.1	B4000 Steel	1.3
B1033	4.2	B1964	4.1	B4000T	1.6
B1036	4.1	B2000 Aluminium	1.2	B4001	1.8
B1037	4.2	B2000 Steel	1.1	B4006 to B4010	2.3
B1038	4.2	B2000T	1.5	B4045	4.3
B1044	4.4	B2001	1.8	B4047	4.3
B1045	4.3	B2072A	4.4	B422J	4.7
B1047	4.3	B2072S1	4.4	B5 series	4.9
B1062	4.1	B2073	4.4	B5500	1.4
B1063	4.1	B2224	4.4	B5500T	1.7
B1064	4.1	B2228	4.4	B5501	1.8
B1065	4.1	B2240	4.7	B5547H	4.5
B1066	4.1	B2324	4.1	B5580	4.7
B1067	4.1	B2346	4.4	B922J	4.7
B1068	4.2	B2377Z	4.7	BC series	4.10
B10745H	3.2	B2452	4.5	BCM series	6.1
B10758H	3.2	B2484	4.2	BCMC series	6.4
B1184	4.7	B2539	4.7	BCMCG	6.3
B1186	4.3	B2600	4.9	BCMCP	6.2
B1220B	4.8	B2675	4.10	BCMCPF	6.2
B1221T	4.8	B2676	4.10	BCMFS	6.4
B1222C	4.8	B2749	4.10	BCMHD	6.4
B1271	4.6	B2750	4.10	BCMHH	6.3
B1272	4.6	B2785	4.6	BCMSB	6.2
B1325	4.2	B2786	4.6	BCMSP	6.2
B1326	4.2	B2815	4.5	BCMT series	6.3
B1347	4.3	B2815D	4.5	BCMWB series	6.4
B1357	4.3	B2855	4.7	BIFS	8.7, 8.15, 8.23

BM101	10.6	DSN2	7.17	LTNUT	5.4, 5.7
BTA series	10.5	DSN2A	8.7	MD6-8	10.6
BTHF	8.14, 8.22	DSN3	7.25	MW series	2.2
BUA series	10.5	DSN3A	8.15	MY29-3	10.6
BUB series	10.5	DSN4	7.34	N1B series	7.3
CB series	9.7	DSN4A	8.23	N1C series	7.5
CC series	9.11	EP10-1HP-2	10.6	N1CCS	7.8
CER series	9.9	FP10	10.6	N1ER series	7.4
CFCT series	9.3	FW series	2.2	N1HDH	7.8
CFLT series	5.8	FW8N	8.6, 8.14, 8.22	N1HSH	7.7
CFN1 series	9.1	HD	7.17, 7.26, 7.34	N1IR series	7.4
CFN2 series	9.2, 9.3	HDA	8.8, 8.16, 8.24	N1L series	7.1
CIR series	9.10	HN series	2.1	N1LHR series	7.6
CL series	3.1	HN8S	8.6, 8.14, 8.22	N1RHR series	7.6
CLB series	3.1	HP10	10.6	N1RL series	7.2
CLD series	3.1	HS series	2.1	N1SBH	7.7
CLHR series	9.13	HS820S	8.6, 8.14, 8.22	N1SH	7.7
CPCT series	9.6	IF8N	8.6	N1SHH	7.9
CPLT series	5.8	LT1	5.1	N1SR series	7.5
CPN1 series	9.4	LT1RLG	5.1	N1T series	7.3
CPN2 series	9.5, 9.6	LT1RPG	5.1	N1VSH	7.7
CRHR series	9.14	LT1SG	5.1	N2B Aluminium series	8.2
CSR series	9.12	LT3	5.2	N2B Steel series	7.12
CT1503 to CT9004	9.8	LT3HD	5.3	N2C Aluminium series	8.4
CT75 to CT600	5.15	LT3RL	5.3	N2C Steel series	7.14
CTB series	5.15	LT3RP	5.4	N2CCAS	8.7
CTT series	5.15	LT3S	5.3	N2CCS	7.17
DB series	2.4	LT3TXH	5.4	N2ER Aluminium series	8.3
DCB series	5.14	LT5	5.5	N2ER Steel series	7.13
DCL series	5.13	LT5HD	5.6	N2HS	7.16
DCT series	5.14	LT5RL	5.6	N2HSA	8.6
DI series	2.4	LT5RP	5.7	N2IR Aluminium series	8.3
DSL series	5.13	LT5S	5.6	N2IR Steel series	7.13
DSLT3	5.4	LT5TX	5.6	N2L Aluminium series	8.1
DSLT5	5.7	LTBOLT	5.4, 5.7	N2L Steel series	7.10, 7.11
DSN1	7.8	LTCHD	5.3	N2LHR Aluminium series	8.5

N2LHR Steel series	7.15	N3VSA	8.14	P-UADP	10.6
N2RHR Aluminium series	8.5	N4B Aluminium series	8.18	RC series	2.3
N2RHR Steel series	7.15	N4B Steel series	7.29	RHCC245CUAL	10.6
N2S	7.16	N4C Aluminium series	8.20	SA series	1.9
N2SA	8.6	N4C Steel series	7.31	SB	7.16, 7.25
N2SR Aluminium series	8.4	N4CCAS	8.23	SBH	7.33
N2SR Steel series	7.14	N4CCS	7.34	SH10Z	2.4
N2T Aluminium series	8.2	N4ER Aluminium series	8.19	SN	7.16, 7.25
N2T Steel series	7.12	N4ER Steel series	7.30	SNH	7.33
N2VS	7.16	N4HS	7.33	SW series	2.2
N2VSA	8.6	N4HSA	8.22	TR series	2.2
N3B Aluminium series	8.10	N4IR Aluminium series	8.19	U1011	10.6
N3B Steel series	7.20	N4IR Steel series	7.30	U16 to U300	10.6
N3C Aluminium series	8.12	N4L Aluminium series	8.17	U-997	10.6
N3C Steel series	7.22	N4L Steel series	7.27, 7.28	UA12 T0 UA35	10.6
N3CCAS	8.15	N4LHR Aluminium series	8.21	U-C	10.6
N3CCS	7.25	N4LHR Steel series	7.32	U-0	10.6
N3ER Aluminium series	8.11	N4RHR Aluminium series	8.21	VH10 series	2.4
N3ER Steel series	7.21	N4RHR Steel series	7.32	WN10Z	2.4
N3HS	7.24	N4S	7.33	Y35	10.6
N3HSA	8.14	N4SA	8.22	Y35BH	10.6
N3IR Aluminium series	8.11	N4SR Aluminium series	8.20	Y46BH	10.6
N3IR Steel series	7.21	N4SR Steel series	7.31	Y60BHU	10.6
N3L Aluminium series	8.9	N4T Aluminium series	8.18	Y750	10.6
N3L Steel series	7.18, 7.19	N4T Steel series	7.29	Y750BH	10.6
N3LHR Aluminium series	8.13	N4VS	7.33	YGHC series	10.2
N3LHR Steel series	7.23	N4VSA	8.22	YGHP	10.2
N3RHR Aluminium series	8.13	P400 to P630	10.6	YGL	10.3
N3RHR Steel series	7.23	P8A	10.6		
N3S	7.24	PAT750XT-18V	10.6		
N3SA	8.14	PC10Z	4.10		
N3SR Aluminium series	8.12	PEN A-13	10.6		
N3SR Steel series	7.22	PENE A-8	10.6		
N3T Aluminium series	8.10	PS series	2.1		
N3T Steel series	7.20	PT29901 series	10.6		
N3VS	7.24	PU998	10.6		

Queensland

Brisbane Branch

183 Jackson Road
Sunnybank Hills
Queensland, 4109
Phone 0732196108
Fax 0732196208
email burndy.qld@phoenixmetal.com.au

New South Wales

1 Tarlington Place
Smithfield
New South Wales, 2164
Phone 0287311288
Fax 0297290522
email burndy.nsw@phoenixmetal.com.au

Victoria

190 Doherty's Road
Laverton North
Victoria, 3026
Phone 0393692988
Fax 0393692418
email burndy.vic@phoenixmetal.com.au

Western Australia

Sales 99-105 McDowell Street, Welshpool, Western Australia, 6106
Pick-up \& Despatch 52 Railway Parade, Welshpool, Western Australia, 6106
Phone 0894581188
Fax 0894581182
email burndy.wa@phoenixmetal.com.au

Tasmania

Gordon Wood \& Co

31 Sunderland Street
Moonah
Tasmania, 7009
Phone 0362734455
Fax 0362734734
email wgordon@inet.com.au

Townsville Branch

Unit 2/26-30 Lorna Court
Bohle
Queensland, 4818
Phone 1300287639
Fax 1300329669
email burndy.qld@phoenixmetal.com.au

SECTION 6 CABLING

6.1 GENERAL DESCRIPTION

All new cabling was supplied as per specification. Cabling was low amperage and or control.

The Cabling was Supplied By:

Name:	Haymans Electrical Wholesalers
Address:	Chester Street, Fortitude Valley
Phone:	0733700333
Facsimile:	0733700355

6.2 MANUFACTURER'S PARTS LIST

Description	Size	Cores	Location
Orange Circular	1.5 mm 2	$2+$ earth	Emergency Stops
Orange Circular	1.5 mm 2	$3+$ earth	Drive Motors
Control	1.5 mm 2	$6+$ earth	Controllers
Control	1.5 mm 2	8+earth	Draw Off Actuators
Control	1.5 mm 2	$24+$ earth	Cable Reeler

6.3 CABLING BROCHURES

Please refer to attached brochures for illustrations and descriptions on the various outlets and accessories used.

APPLICATION

For mains, submains and subcircuits unenclosed, enclosed in conduit, buried direct or in underground ducts for buildings and industrial plants where not subject to mechanical damage.

Suitable for glanding.

STANDARD	AS/NZS 5000.1: 2005
VOLTAGE	$600 / 1000 \mathrm{~V}$
CONDUCTOR	Copper $1.5-150 \mathrm{~mm}^{2}$
INSULATION	PVC, V-90
	 Green/Yellow
SHEATH	PVC, 5V-90
	Orange

MAX. OPERATING TEMP.

AS/NZS 5000.1: 2005

Copper 1.5-150mm ${ }^{2}$
PVC, V-90
Red, White, Blue \&

PVC, 5V-90
$90^{\circ} \mathrm{C}$

Item Number	Conductor		Overall Diameter		Approx. Masskg/km	Minimum Installed Bending Radius mm	Standard Packing		
	mm^{2}	(No./mm)	mm	mm			100 m	200m	500m
18206131	1.5	7/0.50	10.9	11.6	180	70	\checkmark	\checkmark	\checkmark
18550131	2.5	7/0.67	12.1	12.9	240	75	\checkmark	\checkmark	\checkmark
18918131	4	7/0.85	13.8	14.6	330	90	\checkmark	\checkmark	\checkmark
19038131	6	7/1.04	15.0	15.8	375	95	\checkmark	\checkmark	\checkmark
19127131	10	7/1.35	17.1	17.9	540	105	\checkmark	\checkmark	\checkmark
19220131	16	7/1.70	19.3	20.3	770	120	\checkmark	\checkmark	\checkmark
19277131	25	7/2.14	22.9	24.0	1095	145			\checkmark
61820131	35*	7 strands	24.4	25.5	1425	155			\checkmark
62405131	50*	19 strands	27.8	29.0	1900	175			\checkmark
62710131	70*	19 strands	32.2	33.5	2675	200			\checkmark
62800131	95*	19 strands	36.4	37.8	3575	225			\checkmark
62830131	120*	19 strands	39.9	41.3	4435	250			\checkmark
62836131	150*	19 strands	44.3	45.8	5490	275			\checkmark
62837131	185*	37 strands	49.4	51.1	6935	305			\checkmark
62882131	240*	37 strands	56.3	58.1	9185	350			\checkmark

*Conductors are circular compacted

CONDUCTOR	CURRENT RATING (a)			ELECTRICAL CHARACTERISTICS			
Nominal Area	Unenclosed In Air A	Non-metallic wiring enclosure in air	A	Maximum DC Resistance @ $20^{\circ} \mathrm{C}$ Ω / km	Maximum AC Resistance @90․ ת/km	Equivalent Star Reactance Ω / km	3 Phase Voltage Drop $@ 90^{\circ} \mathrm{C}$ mV/Am (b)
1.5	15	13	19	13.6	17.3	0.111	30.0
2.5	22	18	26	7.41	9.45	0.102	16.4
4	29	24	34	4.61	5.88	0.102	10.2
6	37	31	43	3.08	3.93	0.097	6.80
10	51	42	57	1.83	2.33	0.091	4.05
16	68	56	74	1.15	1.47	0.086	2.55
25	91	79	96	0.73	0.927	0.085	1.61
35	110	92	115	0.52	0.669	0.083	1.17
50	135	110	140	0.39	0.494	0.080	0.87
70	170	140	175	0.27	0.343	0.077	0.61
95	215	165	210	0.20	0.248	0.077	0.45
120	245	195	240	0.15	0.197	0.074	0.37
150	280	225	270	0.12	0.160	0.074	0.31
185	325	260	310	0.10	0.129	0.074	0.26
240	385	305	370	0.08	0.100	0.074	0.22

(a) Based on $40^{\circ} \mathrm{C}$ ambient air temperature and where applicable, burial depth of 0.5 m , soil temperature of $25^{\circ} \mathrm{C}$ and soil resistivity of $1.2^{\circ} \mathrm{C} . \mathrm{m} / \mathrm{W}$.
(b) For single phase voltage drop, multiply by 1.155 .

The above information is from the following sources:
AS/NZS 3008.1.1:1998 (tables 12, 30, 35, 42)
AS/NZS 1125:2001 (table 2.3)
For installation with thermal insulation refer to AS/NZS 3008 for de-rating factors.
Do not put in direct contact with polystyrene, polyurethane or similar thermal insulation materials.

ACTIVE / CONDUCTOR			EARTH CONDUCTOR			
Nominal Area	Nominal Diameter	Minimum Insulation Thickness	Nominal Area	 Diameter of Wires	Minimum Insulation Thickness	
$\mathbf{m m 2}$	mm	mm	$\mathrm{mm2}$	No/mm	mm	
1.5	1.5	0.8	1.5	$7 / 0.50$	0.6	
2.5	2.0	0.8	2.5	$7 / 0.67$	0.7	
4	2.5	1.0	2.5	$7 / 0.67$	0.7	
6	3.1	1.0	2.5	$7 / 0.67$	0.7	
10	3.9	1.0	4.0	$7 / 0.85$	1.0	
16	4.9	1.0	6.0	$7 / 1.04$	1.0	
25	6.4	1.2	6.0	$7 / 1.04$	1.0	
35	7.0	1.2	10	$7 / 1.35$	1.0	
50	8.1	1.4	16	$7 / 1.70$	1.0	
70	9.8	1.4	25	$7 / 2.14$	1.2	
95	11.4	1.6	25	$7 / 2.14$	1.2	
120	12.9	1.6	35	7 strands	1.2	
150	14.3	1.8	50	19 strands	1.4	
185	16.0	2.0	70	19 strands	1.4	
240	18.4	2.2	95	19 strands	1.6	

4.1.3.3.1.1.5

General Cable

General Cable Australia Pty Ltd
Sales: 1300363282
Fax: 1300363382
www.generalcable.com.au

Diagrams of cables are illustrative only and are not necessarily to scale.
General Cable New Zealand Limited and General Cable Australia Pty Ltd reserves the right to change or vary the construction of any of their products without notice. Whilst every care has been taken in the preparation of this publication, General Cable New Zealand Limited and General Cable Australia Pty Ltd accept no liability of any kind and are not responsible for the results of any actions taken on the basis of this information or resulting from errors or omissions. This technical data sheet is intended as a guide only; any person using it must make reference to the appropriate local standards or authorities. All rights reserved. No part of this work covered by copyright may be reproduced or copied in any form or by any means without the written permission of General Cable New Zealand Limited. or General Cable Australia Pty Ltd. © 2001 .

CIRCULAR PVC 2C + E COPPER

APPLICATION

For mains, submains and subcircuits unenclosed, enclosed in conduit, buried direct or in underground ducts for buildings and industrial plants where not subject to mechanical damage.

Suitable for glanding.

STANDARD	AS/NZS 5000.1: 2005
VOLTAGE	600/1000V
CONDUCTOR	Copper 1.5-95mm²
INSULATION	PVC, V-90
	Red, Black, \& Green/Yellow
SHEATH	PVC, 5V-90
	Orange
MAX. OPERATING TEMP.	$90^{\circ} \mathrm{C}$

AS/NZS 5000.1: 2005

Copper 1.5-95mm²
PVC, V-90
Red, Black, \& Green/Yellow
PVC, 5V-90
Orange
$90^{\circ} \mathrm{C}$

$\begin{aligned} & \text { Item } \\ & \text { Number } \end{aligned}$	Conductor		Overall Diameter		Approx. Mass kg/km	Minimum Installed Bending Radius mm	Standard Packing		
	mm ${ }^{2}$	(No./mm)	$\begin{gathered} \text { vinimum } \\ \mathrm{mm} \end{gathered}$	\qquad			100 m	250m	500m
18203131	1.5	7/0.50	10.0	10.7	150	65	\checkmark	\checkmark	\checkmark
18454131	2.5	7/0.67	11.2	11.8	200	70	\checkmark	\checkmark	\checkmark
18913131	4	7/0.85	12.7	13.4	240	80	\checkmark	\checkmark	\checkmark
19033131	6	7/1.04	13.8	14.5	300	85	\checkmark	\checkmark	\checkmark
19120131	10	7/1.35	15.5	16.3	420	100	\checkmark	\checkmark	\checkmark
19213131	16	7/1.70	17.5	18.4	580	110	\checkmark	\checkmark	\checkmark
19273131	25	7/2.14	21.1	22.1	810	135			\checkmark
19320131	35*	19 strands	22.3	23.3	1060	140			\checkmark
19370131	50*	19 strands	25.3	26.4	1410	160			\checkmark
19420131	70*	19 strands	28.8	29.9	1960	180			\checkmark
19470131	95*	19 strands	32.9	34.1	2560	205			\checkmark

[^14]| CONDUCTOR | CURRENT RATING（a） | | | ELECTRICAL CHARACTERISTICS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nominal Area | Unenclosed In Air A | Non－metallic wiring enclosure in air
 A | Buried In Ducts裂烈学 \qquad | Maximum DC Resistance ＠ $20^{\circ} \mathrm{C}$ Ω / km | Maximum AC Resistance ＠ $90^{\circ} \mathrm{C}$ Ω / km | Equivalent Star Reactance
 Ω / km | Single Phase Voltage Drop $@ 90^{\circ} \mathrm{C}$
 mV／Am |
| 1.5 | 18 | 14 | 22 | 13.6 | 17.3 | 0.111 | 34.7 |
| 2.5 | 26 | 20 | 31 | 7.41 | 9.45 | 0.102 | 18.9 |
| 4 | 34 | 26 | 40 | 4.61 | 5.88 | 0.102 | 11.8 |
| 6 | 44 | 34 | 51 | 3.08 | 3.93 | 0.0967 | 7.9 |
| 10 | 60 | 47 | 68 | 1.83 | 2.33 | 0.0906 | 4.7 |
| 16 | 80 | 63 | 88 | 1.15 | 1.47 | 0.0861 | 2.9 |
| 25 | 105 | 88 | 115 | 0.73 | 0.927 | 0.0853 | 1.9 |
| 35 | 130 | 105 | 140 | 0.52 | 0.669 | 0.0826 | 1.4 |
| 50 | 160 | 125 | 165 | 0.39 | 0.494 | 0.0797 | 1.0 |
| 70 | 200 | 155 | 205 | 0.27 | 0.343 | 0.0770 | 0.7 |
| 95 | 250 | 190 | 250 | 0.19 | 0.248 | 0.0766 | 0.5 |

（a）Based on $40^{\circ} \mathrm{C}$ ambient air temperature and where applicable，burial depth of 0.5 m ，soil temperature of $25^{\circ} \mathrm{C}$ and soil resistivity of $1.2^{\circ} \mathrm{C} . \mathrm{m} / \mathrm{W}$ ．

The above information is from the following sources：
AS／NZS 3008．1．1：1998（tables 9，30，35，42） AS／NZS 1125：2001（table 2．3）

For installation with thermal insulation refer to AS／NZS 3008 for de－rating factors．
Do not put in direct contact with polystyrene，polyurethane or similar thermal insulation materials．

ACTIVE／CONDUCTOR			EARTH CONDUCTOR			
Nominal Area	Nominal Diameter	Minimum Insulation Thickness mm	Nominal Area	Number \＆ Diameter of Wires No／mm	Minimum Insulation Thickness mm	
1.5	mm	1.5	0.8	1.5	$7 / 0.50$	
2.5	2.0	0.8	2.5	$7 / 0.67$	0.6	
4	2.5	1.0	2.5	$7 / 0.67$	0.7	
6	3.1	1.0	2.5	$7 / 0.67$	0.7	
10	3.9	1.0	4	$7 / 0.85$	0.7	
16	4.9	1.0	6	$7 / 1.04$	1.0	
25	6.4	1.2	6	$7 / 1.04$	1.0	
35	7.0	1.2	10	$7 / 1.35$	1.0	
50	8.1	1.4	16	$7 / 1.70$	1.0	
70	9.8	1.4	25	$7 / 2.14$	1.0	
95	11.4	1.6	25	$7 / 2.14$	1.2	

4．1．3．1．1．1．4

Theneral Cable
General Cable Australia Pty Ltd
Sales： 1300363282
Fax： 1300363382
www．generalcable．com．au

Diagrams of cables are illustrative only and are not necessarily to scale．
General Cable New Zealand Limited and General Cable Australia Pty Ltd reserves the right to change or vary the construction of any of their products without notice．Whilst every care has been taken in the preparation of this publication，General Cable New Zealand Limited and General Cable Australia Pty Ltd accept no liability of any kind and are not responsible for the results of any actions taken on the basis of this information or resulting from errors or omissions．This technical data sheet is intended as a guide only； any person using it must make reference to the appropriate local standards or authorities． All rights reserved．No part of this work covered by copyright may be reproduced or copied in any form or by any means without the written permission of General Cable New Zealand Limited．or General Cable Australia Pty Ltd．
（c） 2001 ．

APPLICATION

For control circuits unenclosed, enclosed in conduit, buried direct or in underground ducts for commercial, industrial, mining and electricity authority systems where not subject to mechanical damage.

Suitable for glanding.

STANDARD
 VOLTAGE
 CONDUCTOR
 INSULATION

SHEATH

AS/NZS 5000.1
600/1000V
Copper $1.5 \mathrm{~mm}^{2}$
PVC, V-90
White (with markings) \&
Green/Yellow
PVC, 5V-90
Orange, Black

MAX. CONTINUOUS OPERATING TEMP. $75^{\circ} \mathrm{C}$

$\begin{aligned} & \text { Item } \\ & \text { Number } \end{aligned}$	Conductor			Overall Diameter		Approx. Mass kg/km	Minimum Installed Bending Radius mm	Standard Packing	
	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Cores } \end{gathered}$	mm ${ }^{2}$	(No./mm)	$\begin{aligned} & \mathrm{Min} \\ & \mathrm{~mm} \end{aligned}$	Max mm			500m	1000m
15037***	$2 C+E$	1.5	7/0.50	10.3	11.0	130	70	\checkmark	\checkmark
15038***	$3 C+E$	1.5	7/0.50	11.1	11.8	155	75	\checkmark	\checkmark
15039***	$4 C+E$	1.5	7/0.50	12.0	12.8	185	80	\checkmark	\checkmark
15071***	$5 C+E$	1.5	7/0.50	13.0	13.8	210	85	\checkmark	\checkmark
15072***	$6 \mathrm{C}+\mathrm{E}$	1.5	7/0.50	13.0	13.8	230	85	\checkmark	\checkmark
15074***	$7 C+E$	1.5	7/0.50	13.9	14.8	260	90	\checkmark	\checkmark
15076***	$8 \mathrm{C}+\mathrm{E}$	1.5	7/0.50	14.9	15.8	285	95	\checkmark	\checkmark
15077***	$9 C+E$	1.5	7/0.50	16.1	17.1	320	105	\checkmark	\checkmark
15073***	$10 \mathrm{C}+\mathrm{E}$	1.5	7/0.50	16.1	17.1	340	105	\checkmark	\checkmark
15075***	$12 C+E$	1.5	7/0.50	17.3	18.4	390	110	\checkmark	\checkmark
15078***	$15 C+E$	1.5	7/0.50	18.2	19.3	460	120	\checkmark	\checkmark
15084***	$20 \mathrm{C}+\mathrm{E}$	1.5	7/0.50	20.1	21.3	580	130	\checkmark	\checkmark
15079***	$25 C+E$	1.5	7/0.50	22.7	24.1	700	145	\checkmark	\checkmark
15081***	$30 C+E$	1.5	7/0.50	24.4	25.9	820	155	\checkmark	\checkmark
15082***	$40 C+E$	1.5	7/0.50	27.3	28.8	1050	175	\checkmark	\checkmark
15083***	$50 C+E$	1.5	7/0.50	30.0	31.7	1290	190	\checkmark	\checkmark

Replace part number suffix "***" with:

016 = Black
131 = Orange

CONDUCTOR	CURRENT RATING (a)			ELECTRICAL CHARACTERISTICS			
Number of Cores	Unenclosed Touching (8) \qquad A	Non-metallic wiring enclosure in air A		Maximum DC Resistance @ $20^{\circ} \mathrm{C}$ Ω / km	Maximum AC Resistance $@ 75^{\circ} \mathrm{C}$ Ω / km	Equivalent Star Reactance Ω / km	Single Phase Voltage Drop $@ 75^{\circ} \mathrm{C}$ mV/A.m
$2 \mathrm{C}+\mathrm{E}$	18	14	22	13.6	16.5	0.111	33.0
$3-50 C+E$	15	13	19	13.6	16.5	0.111	33.0

(a) Based on $40^{\circ} \mathrm{C}$ ambient air temperature and where applicable, burial depth of 0.5 m , soil temperature of $25^{\circ} \mathrm{C}$ and soil resistivity of $1.2^{\circ} \mathrm{C} . \mathrm{m} / \mathrm{W}$. Based on 2 to 4 cores fully loaded with the remainder of the cores $<35 \%$ loaded.

The above information is from the following sources:
AS/NZS 3008.1.1:1998 (tables 12, 30, 35, 42) AS/NZS 1125:2001 (table 2.3)

For current ratings using other installation conditions refer to AS/NZS 3008.1.1.
Do not install in direct contact with polystyrene or polyurethane insulation materials.

ACTIVE / CONDUCTOR				EARTH			
Number of Cores	 Diameter of Wires No/mm	Nominal Diameter	Minimum Insulation Thickness	Nominal Area.	 Diameter of Wires	Minimum Insulation Thickness	
$2-50 \mathrm{~mm}+\mathrm{E}$	$7 / 0.50$	1.5	0.8	1.5	$7 / 0.50$	0.6	

General Cable

General Cable Australia Pty Ltd
Sales: 1300363282
Fax: 1300363382
www.generalcable.com.au

Diagrams of cables are illustrative only and are not necessarily to scale.
General Cable New Zealand Limited and General Cable Australia Pty Ltd reserves the right to change or vary the construction of any of their products without notice. Whilst every care has been taken in the preparation of this publication, General Cable New Zealand Limited and General Cable Australia Pty Ltd accept no liability of any kind and are not responsible for the results of any actions taken on the basis of this information or resulting from errors or omissions. This technical data sheet is intended as a guide only; any person using it must make reference to the appropriate local standards or authorities. All rights reserved. No part of this work covered by copyright may be reproduced or copied in any form or by any means without the written permission of General Cable New Zealand Limited. or General Cable Australia Pty Ltd. © 2001 .

SECTION 7 TESTING \& COMMISSIONING

This section is a review of all testing carried out onsite on completion of works and during the commissioning process.

Grounding System Test Certificate

Site:	Luggage Point WTP - Settling Tank Earthing \& Equipotential Bonding
Customer:	Heyday Group
Address:	Main Beach Road, Myrtletown, Qld, 4008
Test Date:	10/02/12
Configuration:	$70 \mathrm{~mm} 2 \mathrm{G} / \mathrm{Y}$ bonded from Main Earth to structure, bonding with $25 \times 3 \mathrm{~mm}$ stainless strap.
Purpose of Grou	ng System: Earthing System and Equipotential Bonding
Test Meter:	AEMC 6470
Readings:	3.04 Ohms (Fall of Potential - Earth Resistance Test) <0.5 Ohms for all metal components throughout structure
Soil Conditions:	Average, Rain in recent days
Comments:	The visual inspection, test results and installed Earthing System, are in accordance with the Australian Standard AS/NZS 3000:2007 Wiring Rules
Testing Officer:	Trent Brumwell

Signed:

Inspection \& Test Checklist
ITC : 8
Management (QA) System ISO9001

$$
1
$$

$$
\text { Sheet: } 1 \text { of } 45
$$

Client:	EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet:	10 C 45
Contract Manager:	Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor:	David Campbell		Date:	
Check Authorised		Signature:		Check Delegated	C.7.19	. Signat	C	

inspection and test checklist for: Point to Point Testing - Cable \#_IES-OI

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECTLABELLING		$\begin{aligned} & \text { CORRECT } \\ & \text { TERMINATION } \end{aligned}$		FINAL CHECK AND NO DAMAGE	
	$\begin{gathered} \text { CHECK } \\ \mathrm{BY} \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \text { BY } \\ \hline \end{array}$	DATE	$\begin{gathered} \text { C-1ECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	COMMENT
RED	C2X	$20-1-12$	Cht	201/ 2	e.st	$20-1-12$	$c^{2} \angle 1$	$20-1-12$	(7) 4	OK
B LOACK	c2t	20-1-12	$e 27$	20-1-12	$\text { e) } 1$	$20-1 / 12$	(c)	20-1-12	e2k	0π
6nf8A.	ekx.	$20-1-12$	c) t	20-1-12	c2k	20-1-12	122%	$20-112$	C2x	OK.

COMMENTS:
NCR No:

FINAL ACCEPTANCE:	NAME	SIG VATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY GROUP					
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

ACCEPTANCE CRITERIA: AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) SIPECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Insper:tion \& Test Checklist
ITC : 8
Management (QA) System ISO9001

Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet:	20 f .45.
Project Manager:	Terry Fisher	Site Supervisor: David Campbell	David Campbell		Date:	
Signature:		Check Delegated To: C, T. Algate		Signature: $¢ 2 \times$		

inspection and test checklist for: Point to Point Testing = Cable \# $1 \angle 5-02$.

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		CORRECTERMINATION		FINAL CHECK AND NO DAMAGE	
	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CTECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \text { BY } \\ \hline \end{array}$	COMMENT
BKOWN	e2t	20-1/12	C2\%	$20 \% 12$	(2) A	$20-1 / 12$	$C 2 R$	$20-1 / 2$	(2) A	OK
WHITE	e2k	$20-1-12$	e2t	$20-1-12$	(2)	20-1-12	12k	$20-1-12$	(2x	01
13 LUE.	c2t)	20-1-12	c2t	20-1/12	$2 \mathrm{~L}$	$20-1-12$	C.2k	20-1-12	C24	OR
6 WNEN.	C2x	$20.1 \cdot 12$	02 L	$20 \cdot 1 * 12$	C20	$20 \cdot 1-12$	(1)	$20-1-12$	PNL	OR

COMMENTS:
NCR No:

FINAL ACCEPTANCE:	NAME	SIGIIATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY GROUP					
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

AUTHORITY (IF APPLICABLE) \quad ASCEPTANCE CRITERIA: ASER (1TP (1) AS3000:2000 WIRING RULES. (2) SF'ECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Inspection \& Test Checklist
 ITC : 8

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet:	3 Of 46
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor: David Campbell	David Campbell		Date:	
Check Authorised By:	Signature:		Check Delegated To: C-7. Algate Signat			CNO	

inspection and test checklist for: Point to Point Testing - Cable \# ILS-O3.

NCR No:

FINAL ACCEPTANCE:	NAME	SIG VATURE	POSITION	APPROVED (YES/NO)	DATE
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

Inspection \& Test Checklist
ITC : 8
Heyday Electrics

Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet:	$40 f 45$
Project Manager:	Terry Fisher	Site Supervisor:	David Campbell		Date:	
Signature:		Check Delegated To: P T. Algate $^{\text {a }}$		Signature: C		

inspection and test checklist for: Point to Point Testing = Cable \#_ILS-O4.

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		$\begin{aligned} & \text { CORRECT } \\ & \text { TERMINATION } \end{aligned}$		FINAL CHECK AND NO DAMAGE		
	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \end{gathered}$	DATE	$\begin{gathered} \mathrm{CHECK} \\ \mathrm{BY} \end{gathered}$	DATE	$\begin{array}{\|c\|c\|} \hline \mathrm{CHECK} \\ \mathrm{BY} \end{array}$		COMMENT
13 ROWN.	Pd	20.1-12	C2A	20-1-12	CLY	207-12	\cdots	$20-1 e^{-12}$	C2F	OR	
WHITE.	C2t	$20-1 / 12$	e2t	$20-1-12$	e2t	$20-1 / 2$	21	20-1-12	22	OR	
BLOIE	e2t	$20-1-12$	C2t	$20-1 / 2$	Cret	$20-1-12$?2F	20-1-12	C2R	OK	
6RE6n/ YEalow	CLH.	$20 \%-12$	e2k.	$20-12$	C27.	$20-1-12$	c? 20.	20-1-12	C2r.	OK.	
-											

COMMENTS:
NCR No:

FINAL ACCEPTANCE:	NAME	SIG NATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY GRoup					
CLIENT (REPRESENTATIVE)					
Authority (IF Applicable)					

ACCEPTANCE CRITERIA: AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) S DECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Inspection \& Test Checklist
ITC : 8
Management (QA) System ISO9001

Client:	EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet:	5 Of 45
Contract Manager:	Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor:	David	obell	Date:	
Check Authorised By:		Signature:		Check Delegated To: C.T. Algafe S				

inspection and test checklist for: Point to Point Testing = Cable \# lLs-0.5.

CORE \#	RESISTANCE		INSULATION RESISTANCE		$\begin{aligned} & \text { CORRECT } \\ & \text { LABELLING } \end{aligned}$		$\begin{aligned} & \text { CORRECT } \\ & \text { TERMINATION } \end{aligned}$		FINAL CHECK AND NO DAMAGE	
	$\begin{array}{\|c} \hline \text { CHECK } \\ \mathrm{BY} \\ \hline \end{array}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{gathered} \mathrm{CHECK} \\ \mathrm{BY} \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \end{gathered}$	COMMENT
BMOWN.	C2t,	20-1-12	CLT	$20-1 / 12$	C)ebo	$20-1-12$	"RY	- $-1-12$	C2\%	$0 / 1$
WHITE.	Q2t	20-1-12	c2t.	$20-1 / 12$	Cht	$20-1 / 2$	(2)	$20 \cdot 1 \% 2$	cat	01
BLUA.	C2t	$20-1-12$	C2\%	$10-1-12$	e2t	$20 \cdot 1 \cdot 12$	($2 \cdot 27$	$20-1-12$	Cरt,	$0 / 6$
	C2A	20-1-12	e2t.	$20-1>2$	C29)	20-1.12	(i)27	20-1.12	C24.	OK.

COMMENTS:
\qquad

FINAL ACCEPTANCE:	NAME	SIG NATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY GROUP					
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

Inspection \& Test Checklist
ITC : 8
Management (QA) System ISO9001

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet:	6 Of 45
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor: David Campbe			Date:	
Check Authorised By:	Signature:				Signature: $C 24$		

inspection and test checklist for: Point to Point Testing = Cable \#_1Ls-of.

CORE \#	RESISTANCE		INSULATION RESISTANCE		$\begin{aligned} & \text { CORRECT } \\ & \text { LABELLING } \end{aligned}$		CORRECTTERMINATION		FINAL CHECK AND NO DAMAGE	
	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	CHECK BY	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { C HECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \text { BY } \\ \hline \end{array}$	COMMENT
BHown.		$20-1-12$	CLK	20-1-12	C2\%	20-1-12	$1 e 2 t$	$20-1 / 12$	Cry	O/1
WHITK	e2F	$20-1.12$	CLL	20-1-12	CLA	$20-1-12$	c 24	$20-1.12$	e2t	OR
BLUC	221	$20-1-12$	e2t	$20 \%-12$	e2	20.112	128	$20-1-12$	CLt	OR
CR/Y\&Lhan.	C2x	$20-1-12$	e2x	20\% $1 / 12$	CLt	20-1-12	cinet.	20-1-12	e2x.	OK.

COMMENTS: \qquad
NCR No:

FINAL ACCEPTANCE:	NAME	SIGVATURE	POSITION	APPROVED (YES/NO)	DATE
HEYdAY Group					
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

ACCEPTANCE CRITERIA: AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) SIPECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Inspertion \& Test Checklist
ITC : 8
Management (QA) System ISO9001

Heyday Electrics ACC Technologies Heyday Communications Heyday Fire Technologies

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Shee	7 Of 46
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor: David Campbell	David Campbell		Date:	
Check Authorised By:	Signature:		Check Delegated To: CT Algote.		Signature:		

inspection and test checklist for: Point to Point Testing - Cable \# lls-of.

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		CORRECT IERMINATION		FINAL CHECK AND NO DAMAGE		
	$\begin{gathered} \text { CHECK } \\ \mathrm{BY} \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{array}$	DATE	$\begin{gathered} \text { C IECK } \\ B Y \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \text { BY } \\ \hline \end{array}$		COMMENT
Brown.	CL\%	$20-1-12$	C2t	$20-1 \sim / 2$	CLT	20-1/12	C2H,	20-1-12	CRK	OM	
WHITE	C2t	$20-1-12$	ert	$20-1-12$	CLt	$20-1-12$	Cरण	20-1-12	e2	Or	
BLUF.	C2\%	$20-1-12$	C2t	20-1-12	cut,	20-1-12	C2x	$20-1-12$	e2\%	0π	
Crifth/4allow	e2x.	$20-1-12$	C2\%	20-1-12	e2x.	$20 \cdot 1.12$	C	20-1-12	C2R.	OR.	

COMMENTS:
NCR No:

FINAL ACCEPTANCE:	NAME	SIG VATURE	POSITION	APPROVED (YES/NO)	DATE
HEyday Group					
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

AUTHORITY (IF APPLICABLE)
AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) SP ECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Inspection \& Test Checklist
ITC : 8
Heyday Electrics

Client:	EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet:	Of 44.5 .
Contract Manager:	Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor:	David Campbell		Date:	
Check Authorised By:		Signature:		Check Delegated To: C.T.Algate		Signature: $C \alpha$		

inspection and test checklist for: Point to Point Testing - Cable \# las-oq.

NCR No:

FINAL ACCEPTANCE:	NAME	SIG VATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY Group					
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

ACCEPTANCE CRITERIA: AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) SIPECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Inspection \& Test Checklist

ITC : 8
Heyday Electrics

Client:	EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet:	90 f 45
Contract Manager:	Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor:	David Campbell		Date:	
Check Authorised By:		Signature:		Check Delegated To: <2 \%		Signature: e. T. Algate.		

inspection and test checklist for: Point to Point Testing - Cable \#_ILs-10.

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECTLABELLING		CORRECT TERMINATION		FINAL CHECK AND NO DAMAGE	
	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{array}{c\|} \hline \text { CHECK } \\ \text { BY } \end{array}$	DATE	$\begin{gathered} \text { C-但CK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \end{gathered}$	COMMENT
Brawn	C/u	$20-1-12$	QLt	20-1-12	OLX	$20-1-12$	$62 x$	$20-12$	C2	
以HITE.	(2) 27	20-1-12	C2t	20-1-12	C. ${ }^{4}$	$20-1-12$	1220	$20-1-12$	(1) 2	6K
BLUE.	e2 +	20-1-12	C2H	$20-1-12$	028	$20-1-12$	C2\%	$20-1-12$	22d,	OK
CnE6N/ YGWNa,	C20t	20-1-16	Chot	$20-112$	C2x	$20-1-12$	(2)	20\%12	C2\%	OK.
							(C)			

COMMENTS:
NCR No:

FINAL ACCEPTANCE:	NAME	SIG VATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY GROUP					
Client (Representative)					
AUTHORITY (IF APPLICABLE)					

AUTHORITY (IF APPLICABLE)

Management (QA) System ISO9001

Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Shee	Of 45
Project Manager:	Terry Fisher	Site Supervisor:	David Campbell		Date:	
Signature:		Check Delegated	ス	Signa	e	lgate

inspection and test checklist for: Point to Point Testing - Cable \# ILU-12

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		CORRECT IERMINATION		FINAL CHECK AND NO DAMAGE	
	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	COMMENT
PED.	C2F	20^{-1-12}	CNK	2e- $-1-12$	Colt	20-1-12	E	20-1-12	exy	$0 F 1$
BLIFCK.	C2\%	20-1-12	C2K	$20-1-2$	CLT	$20-1-12$	C, 21	$20-1-12$	e 24	QK
$6 \mathrm{~N} / \mathrm{y}$ /fiow.	28	$20-1-12$	C2t	20-1-12	C2t	$20-1-12$	C2L	$20-1-12$	C2F	OK.

COMMENTS:
NCR No:

FINAL ACCEPTANCE:	NAME	SIG VATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY GROUP					
Client (Representative)					
AUTHORITY (IF APPLICABLE)					

AUTHORITY (IF APPLICABLE)
ACCEPTANCE CRITERIA: AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) SFECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Inspection \& Test Checklist
ITC : 8
Management (QA) System ISO9001

Heyday Electrics ACC Technologies Heyday Communications Heyday Fire Technologies

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet:	11 Of 4.5
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor:	Dav	pbell	Date:	
Check Authorised By:	Signature:		Check Delegated To:	2 T. 1 Od, Signature:			

InsPECTION AND TEST CHEGKLIST FOR: Point to Point Testing - Cable \#_ /m-12

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECTLABELLING		CORRECT ERMINATION		FINAL CHECK AND NO DAMAGE	
	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	COMMENT
Brown	C2I	$20-1-12$	C2A	20-1-12	(22)	20-1-12	CR	20-1-12	CL_{2}	$0 / 1$
WHITF.	1	$20-1-12$	C2F	20-1-12	27	$20 \% 12$	CLR	20-1-12	027	OK
BLU6.		20-1-12	Q2F	20-1-12	2 LF	20-1-12	C L\%,	20-1-12	?24	OK
Gn/ yfllow.	021	$20-1-12$	CLO^{2}	$20-1-12$	C2t	20-1/12	[7/	20-1-12	C2\%	OK.
- \%										

COMMENTS:
NCR No:

FINAL ACCEPTANCE:	NAME	SIG VATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY GROUP					
Client (Representative)					
AUTHORITY (IF APPLICABLE)					

AUTHORITY (IF APPLICABLE)
ACCEPTANCE CRITERIA: AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) SF'ECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Inspection \& Test Checklist
ITC : 8
Management (QA) System ISO9001

Heyday Electrics ACC Technologies Heyday Communications Heyday Fire Technologies

Heyday Group

Client:	EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet: 12 Of 45
Contract Manager:	Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor: David Campbell	David Campbell		Date:
Check Authorised By:		Signature:		Check Delegated To: $C_{\text {2. Algate }}$		Signature: e	

Check Authorised By:
inspection and test checklist for: Point to Point Testing - Cable \#

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		$\begin{aligned} & \text { CORRECT } \\ & \text { ERMINATION } \end{aligned}$		FINAL CHECK AND NO DAMAGE	
	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{gathered} \hline \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \text { C IECK } \\ B Y \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{array}$	COMMENT
BNOWN	$C \angle \pi$		CLI		27.		cit		C2\% 7	QK
WHITE-	027		CRT		2α		čat		e2x	6K
BLCK.	27		$\mathrm{e} 2 \pi$		2.2/		C2K		e $i t$	OK
CN/YCLOW	27				O2t		62		Oht	OK.
			c2et							

COMMENTS: \qquad
NCR No:

FINAL ACCEPTANCE:	NAME	SIG JATURE	POSITION	APPROVED (YES/NO)	DATE
Heyday Group					
Client (Representative)					
AUTHORITY (IF APPLICABLE)					

AuTHORITY (IF APPLICABLE)
ACCEPTANCE CRITERIA: AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) SFFCIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Inspection \& Test Checklist
ITC: 8
Management (QA) System ISO9001

Heyday Electrics ACC Technologies Heyday Communications Heyday Fire Technologies

Client:	EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet: 13 Of 45
Contract Manager:	Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor:	David Campbell		Date:
Check Authorised By:		Signature:		Check Delegated To:		Signature:	

inspection and test checklist for: Point to Point Testing = Cable \#_ m-14

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECTLABELLING		CORRECT ERMINATION		FINAL CHECK AND NO DAMAGE		
	CHECK $B Y$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	CHECK BY	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$		COMMENT
Bhown	C人A	20-1-12	$l<\frac{1}{4}$	20-1/12	C2t	20) 1.12	(2)	20^{-1-12}	Calt	OK	
WHITE	e $2 t$	$20-1-12$	c27	<0-1-12	C2\%	20.1.12	CLI	$30-1012$	024	OK	
BWE	CL	26) $-1-10$	$c^{2} t$	$20-1-12$	C2t	20-1-12	2	20-1-14	C2A	OK.	
Cn/yElcow	C2t	10-1-12	e 2x	20-1-12	C2t	20-1-12	(22L	20-1-12	C2 2	ck.	

COMMENTS:
NCR No:

FINAL ACCEPTANCE:	NAME	SIGVATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY GRoup					
Client (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

AUTHORITY (IF APPLICABLE)
ACCEPTANCE CRITERIA: AS PERITP = (1) AS 3000:2000 WIRING RULES. (2) SF ECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Inspection \& Test Checklist
ITC : 8
Management (QA) System ISO9001

Heyday Electrics ACC Technologies Heyday Communications Heyday Fire Technologies

inspection and test checklist for: Point to Point Testing = Cable \# 1 m-15

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		$\begin{aligned} & \hline \text { CORRECT } \\ & \text { ERMINATION } \\ & \hline \end{aligned}$		FINAL CHECK AND NO DAMAGE		
	$\begin{gathered} \hline \text { CHECK } \\ \mathrm{BY} \end{gathered}$	DATE	$\begin{gathered} \hline \text { CHECK } \\ \mathrm{BY} \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \text { BY } \\ \hline \end{array}$	DATE	$\begin{gathered} \text { CHECK } \\ B Y \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$		COMMENT
BNOWN		20-1-12	Cl	$26 \%-12$	CNy	$20 \% 12$	Cobl	$207-12$	Cilots	$O R$	
WMITE	elt	$20-1-12$	(2)	20-1-12	P2ot	60-1. 2	, 0	10-1-12	327	OK	
BLUE	c2\%	$20-1-12$	elt	20-1-12	C2t	$20-1.12$	E2L	$20-1-12$	C?A)	QK	
Qn/yrehon	ekt	20-1-12	02\#	$20-1 / 12$	a2\%	20-1-12	C)	20-1-12	27	OK.	

COMMENTS: \qquad

FINAL ACCEPTANCE:	NAME	SIG VATURE	POSITION	APPROVED (YES/NO)	DATE
Heyday Group					
Client (Representative)					
AUTHORITY (IF APPLICABLE)					

AUTHORITY (IF APPLICABLE
ACCEPTANCE CRITERIA: AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) SpECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Inspection \& Test Checklist
ITC : 8
Management (QA) System ISO9001

Heyday Electrics ACC Technologies Heyday Communications Heyday Fire Technologies

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet: 15 Of 45
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor: David Campbell ${ }^{\text {d }}$ Date:			
Check Authorised By:	Signature:		Check Delegated To: C. T. Algatel			

inspection and test checklist for: Point to Point Testing - Cable \#

NCR No:

FINAL ACCEPTANCE:	NAME	SIG VATURE	POSITION	APPROVED (YES/NO)	DATE
Heyday Group					
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

AUTHORITY (IF APPLICABLE)
ACCEPTANCE CRITERIA: AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) SF ECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Inspestion \& Test Checklist
ITC : 8
Management (QA) System ISO9001

Heyday Electrics ACC Technologies Heyday Communications Heyday Fire Technologies

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet: / 6 Of 45
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor:	Campbell		Date:
Check Authorised By:	Signature:		Check Delegated To:	C.Ti	. Signatur	

inspection and test checklist for: Point to Point Testing - Cable \# 20

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECTLABELLING		$\begin{aligned} & \text { CORRECT } \\ & \text { TERMINATION } \end{aligned}$		FINAL CHECK AND NO DAMAGE		
	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$		COMMENT
Brown	OLA	230-112	$c 2 t$	20-1-12	ent	20\% 12	C2\%	$20 \% \cdot 12$	C+A	$0 / 1$	
WH17	0)/	20-1-12	027	20-1-12	C27	20.1.12	021	20.1.12	Cho	(1)	
BLUL.	027	$20-1-12$	C2t	$20-1.12$	027	20.1.12	(22/	20.1.12	C2O,	011	
GN/yPLEO.	C2x	20-1-12	22\%	20.1.12	P17	20.1 .12	(22)	20.1 .12	(22)	$O K$	

COMMENTS:
NCR No:

FINAL ACCEPTANCE:	NAME	SIGIATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY GROUP					
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

AUTHORITY (IF APPLICABLE)
AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) SFECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Inspection \& Test Checklist
ITC : 8
Managernent (QA) System ISO9001

inspection and test checklist for: Point to Point Testing - Cable \#

CORE \#	RESISTANCE		INSULATION RESISTANCE		$\begin{aligned} & \hline \text { CORRECT } \\ & \text { LABELLING } \\ & \hline \end{aligned}$		CORRECT TERMINATION		FINAL CHECK AND NO DAMAGE		
	$\begin{array}{\|c\|} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{array}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{array}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \hline \text { CHECK } \\ \text { BY } \end{gathered}$		COMMENT
1	CTA	$20-1-2$	Cra	$208 \cdot 12$	CH	$20 \% 12$	CTA	20-1.12	C1/	$0 / 1$	
2	CTA	$20-1 / 2$	CTA	$20 \cdot 104$	CTA	10-1.12	CTP	20.1.12	$C T / P$	OH1	
3	CTA	$20-1-12$	CTA	C0-1-14	CTA	$20-1.12$	CTA	$20 \cdot 1.2$	CT/R	0π	
4	CTA	$20 \% 12$	CTA	201.12	CT/A	20-1.12	CTA	20-1-12	CTA		
5	$C T A$	10.1 .12	CTA	60-1-12	CTA	20-1-12	CT/	20-1.12	CTH	Qt	
6	QTA	$20 \cdot \% / 2$	CTA	10-1.12	CT/7	20-1.12	CTA	20.1.12	CTA	OR	
7	CTA	$20 \cdot 1 \cdot 12$	CT/F	20-1-15	CT/A	201%	CTA	20-1.12	$C T A$	OK	
	CTA	$20 \cdot 1 \cdot 12$	CT/A	$20-1-12$	CTA	$20 \% \% 2$	CT/A	$20.1 \cdot 12$	CT/1	OR	
9	$C T A$	20.1.12	CTA	$20-1-12$	CTA	20-1.12	CTA	20.1.12	er/t	$0 \wedge$	
10	CTA	20.1 .12	$C T A$	20-1-12	$C T /)^{2}$	20.1 .12	17 A	20.1 .12	CTA	Or	
17	C7/	20.1 .12	CTA	20%	CTA	20-1.12	$12 \mathrm{~T} / 9$	$20-1.12$	CTA	OK	
12 13	CTA	$20 \cdot 1 \cdot 12$	CTA	20-1.12	CTA	20-\%	TTA	20.1.14	CTA	OK	
13	CTA	20.1.12	CTA	10-1-12	CTA	$20-1 \cdot 12$	CTA	20.1.12	CITA	OK	
$\frac{14}{15}$		20.1.12	CTA	20-1-12	C1/P	$20^{-1 \cdot 12}$	U立 A	20\% 12	CTA	OK	
$\frac{15}{16}$	$C T A$	20.1.14	$C T A$	$10-1.12$	CTA	20-1.12	CTA	20.1.12	CTA	OR	
$\frac{16}{17}$	CTA	20.1 .12	CTA	20-1-12	$\mathrm{CNA}^{\text {c }}$	$20 \% 12$	CTA	$20.1 \cdot 12$	CTA	$0<$	
17	CTA	$20 \cdot 1 \cdot 12$	CTA	$20-1.12$	GA	20.1 .12	CTA	20.1 .14	CTA.	OK,	

			NCR No:		
FINAL ACCEPTANCE:	NAME	SIGIVATURE			
HEYDAY GROUP		SIG WATURE	POSITION	APPROVED (YES/NO)	DATE
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

Heyday Electrics ACC Technologies Heyday Communications Heyday Fire Technologies

Heyday Group

 \section*{Inspection \& Test Checklist
 \section*{Inspection \& Test Checklist

 ITC : 8

 ITC : 8

 Management (QA) System ISO9001}

 Management (QA) System ISO9001}| Client: EPW | Project Name: | Luggage Point Settling Tanks 1\&2 | | Job No: | QEM14755 | Sheet: 18 Of 45 Date: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contract Manager: Terry Fisher | Project Manager: | Terry Fisher | Site Supervisor: | David Campbell | | |
| Check Authorised By: | Signature: | | Check Delegated To: | C TAlgate | Signature: C | |

inspection and test checklist for: Point to Point Testing = Cable \# 4631

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		$\begin{aligned} & \text { CORRECT } \\ & \text { TERMINATION } \end{aligned}$		FINAL CHECK AND NO DAMAGE	
	$\begin{gathered} \hline \text { CHECK } \\ B Y \\ \hline \end{gathered}$	DATE	CHECK BY	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ B Y \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	COMMENT
18	C/P	$20 \% 12$	CA	$20 \cdot 1 \cdot 12$	$C A$	20:1.12	CA	$20 \cdot 12$	CA	OK
19	C / A	$20 \cdot 1 \cdot 12$	CA	20.1 .12	CHt	$20 \cdot 1 \cdot 12$	$C A$	20\%\%2	C/A	$0<$
20	C $/ 4$	$20 \cdot 1 \cdot 12$	$C A$	20.1 .12	CM	$20.11 / 2$	C / A	20\%\%12	$C H$	OR
21	C/A	$20 \cdot 1-12$	CA	20.1 .12	$C A$	$20 \cdot 1 \cdot 12$	CA	20.1 .12	$C A$	OK
22	$C A$	$20 \cdot 1 \cdot 12$	C / B	20:1.12	$C / 7$	$20 \cdot 1 \cdot 12$	$C A$	20.1 .12	$C A$	0 O
23	$C 17$	20.1.12	$C \cdot /$	$20 \cdot 1 \cdot 12$	CH	20.1.12	$C A$	$20 \cdot 1 \cdot 12$	$C A$	OR
24.	CH	$20 \cdot 1 \cdot 12$	CR	$20 \cdot 1 \cdot 12$	CP	$20 \cdot 1 \cdot 12$	$C A$	$20 \% 12$	$C A$	OK,

COMMENTS:

FINAL ACCEPTANCE:	NAME	SİINATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY GRoup					
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

AUTHORITY (IF APPLITERIA: AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) !SPECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

inspection and test checklist for: Point to Point Testing = Cable \# 1200

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		CORRECT TERMINATION		FINAL CHECK AND NO DAMAGE		
	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \text { BY } \\ \hline \end{array}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{aligned} & \mathrm{HECK} \\ & \mathrm{BY} \end{aligned}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \text { BY } \end{array}$		COMMENT
1	C/t	20-1.12	C/I	20\%1/12	C/F	20.1/12	CH	20./.12	CH	ch\%	
2	C/4	20.1.12	$C A$	10.1.12	CMP	20\% 20	$C \cdot /$	20.1.12	$C A$	QK	
3	CA	$20 \cdot 1 \cdot 12$	$C A$	20\% 12	$C / 7$	20.1.12	C17	20.1.12	C/9	OK	
4	CA	20.1.12	CA	$20 \cdot 1 \cdot 12$	$C \cdot$	$20 \% 12$	C/T	$20 \cdot 1 \cdot 12$	CA	OK	
5	C/P	20:1.12	$C A$	20.1 .12	$C A$	20.1.12	$C A$	$20 \cdot 1 \cdot 12$	$C / 4$	OK	
6	$C A$	20.1 .12	$C A$	20.1 .12	$C H$	20\%12	$C A$	$20 \% .12$	$C A$	$0 K$	
6N/YCLOW.	CA	20.1.12	$C A$	$20 \cdot 1.12$	$C A$	20.1\%2	$C A$	20,12	CA.	OK	

NCR No:

FINAL ACCEPTANCE:	NAME	SIG NATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY GROUP					
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

inspection and test checklist for: Point to Point Testing = Cable \# |/

CORE \#	RESIS	TANCE	$\begin{aligned} & \text { INSUL } \\ & \text { RESIS } \end{aligned}$	ATION TANCE	$\begin{aligned} & \text { COR } \\ & \text { LABE } \end{aligned}$	$\begin{aligned} & \text { RECT } \\ & \text { LLING } \end{aligned}$	$\begin{aligned} & \text { CORF } \\ & \text { TERMII } \end{aligned}$	$\begin{aligned} & \text { RECT } \\ & \text { VATION } \end{aligned}$		FINAL CHECK AND NO DAMAGE
	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \mathrm{BY} \end{gathered}$	COMMENT
Brown	C/f	$2 /-214$	CR	$2 /-2-12$	CA	2/-2-12	CR	2/-2-12	CR	124
WHITE	CRL	$21-2-12$	C14	$21-2-12$	CA	$21-2-14$	$\cdots A$	21-2-12	CA	0/1
G3NG.	C1F	$21-2-12$	- C17	- $1-2-12$	$C \mathrm{~F}$	$2 /-2 \cdot 12$	C/1t	$21-2-12$	C/f	0π
$6 \mathrm{~L} / \mathrm{HFLN}$	$C / 7$	$21-2-19$	CA	$2 \sqrt{-2-12}$	C13	21-2-12	CM	$2 /-2 / 12$	OA	OK
OMMENTS:										

[^15]
inspection and test checklist for: Point to Point Testing = Cable \# 1

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		CORRECT TERMINATION		FINAL CHECK AND NO DAMAGE		
	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{array}{c\|} \hline \text { CHECK } \\ \text { BY } \\ \hline \end{array}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$		COMMENT
1	CAT	21-2-12	C/A	$2 /-2-12$	CA	21-2-12	CA	2)-2-12	C/P	10/1	
2	C/t	2/-2-12	$C A$	$21-2-12$	CAP	21-2-12	$C A$	21-2-12	C/7	$0 / 1$	
3	$C A$	$21.2-12$	C/9	2/-2.12	C/7	$21-2-12$	$C A$	21-2-12	$C A$	QR	
4	CH	2/-2-12	CA	2/-2-12	$C A$	21-2-12	CAP	2/-2-12	CA	$0 /$	
5	C月	2/-2-12	$C A$	2/-2-12	CA	21-2-12	C/7	21-2-12	$C A$	OK	
6	C/7	$2 /-2-1=$	CA	2/-2-12	$C A^{\prime}$	21-3-12	CA	2/-2-12	CA	OK	
E	$C A$	$21.2-12$	$C A$	2/-2-12	CH	2/-2-12	GA	$21 / 2 \cdot 12$	617	OK	

NCR No:					
FINAL ACCEPTANCE:	NAME	SIG VATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY Group			POSITON	APPROVED (YES/NO)	DATE
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

[^16]
Inspection \& Test Checklist ITC : 8 Managernent (QA) System ISO9001

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet: 22 Of 45
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor:	David Campbell		Date:
Check Authorised By:	Signature:		Check Delegated To:	C.T.	Signat	C2\%

inspection and test checklist for: Point to Point Testing = Cable \# 5

inspection and test checklist for: Point to Point Testing = Cable \# 7

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		CORRECT「ERMINATION		FINAL CHECK AND NO DAMAGE	
	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \text { BY } \end{array}$	DATE	$\begin{gathered} C \text { HECK } \\ B Y \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \text { BY } \end{array}$	COMMENT
RED	CP	22-2-12	CH	22.2-12	C/t	22-2.12	隹	$27 \cdot 2 \cdot 12$	CA	O/T
BLACK.	CH	22-2-12	$C A$	$22 \cdot 2 \cdot 12$	CA	2-2-12	3 A	22-2-12	CH	ORL
ERLTH:	CH	$22-2-12$	$C A$	22.2.12	$C A$	22-2-12	CH	22-2-12	CA.	O/4

			NCR No:		
FINAL ACCEPTANCE:	NAME	SIG VATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY GROUP					
Client (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

[^17]
inspection and test checklist for: Point to Point Testing = Cable \# 14

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECTLABELLING		CORRECT TERMINATION		FINAL CHECK AND NO DAMAGE	
	$\begin{gathered} \hline \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{array}$	DATE	$\begin{gathered} \text { C-IECK } \\ \text { BY } \end{gathered}$	DATE	CHECK BY	COMMENT
1	C/F	$22.2-12$	CH	22-2-12	CA	$22.2-12$	CPA	$22 \cdot 2 \cdot 12$	C/F	OA
2	C/P	$22 \cdot 2-12$	C/ 19	2.2-2-12	CA	22-2-12	CPI	$22 \cdot 2 \cdot 2$	C/f	OR
3	CPF	$22-2 \cdot 12$	CA	$22-2-12$	CA	2.2-2-14	Cff	22-3-12	$P A$	OK
4	$C B^{2}$	22-2-12		$22-2-12$	CH	22-2-12	CA	22-2-12	CA	OK
5	CH	2.2-2.12	$C A$	22-2-12	CW	22-2-12	CA	22-2-12	CA	OR
6	CH7	22-2-12	CA	22-2-12	CP7	$22-2 \cdot 12$	$C A$	$2 \cdot 2 \cdot 2 \cdot 12$	Cft	OK
7	CR	22-2-12	CA	$22-2-12$	CA	22-212	Cff	22-2-12	Of	ORT
8	CA	$22-2-12$	$6 / 7$	$22 \cdot 2-12$	CA	22-2-12	CA	22-2-12	CA	O/R
E,	CM	$22 \cdot 2-12$	CA	$22-2-12$	CA	$22-2 / 2$	Cff	22-2-12	CA.	OK

COMIMENTS:
NCR No:

FINAL ACCEPTANCE:	NAME	SIGIATURE	POSITION	APPROVED (YES/NO)	DATE
Heyday Group					
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

ACCEPTANCE CRITERIA: AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) SF'ECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Inspection \& Test Checklist
 ITC : 8
 Management (QA) System ISO9001

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet: 25	Of 465
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor:	David Campbell		Date:	
Check Authorised By:	Signature:		Check Delegated To:	C.T.Algate	Signature: 28		

inspection and test checklist for: Point to Point Testing - Cable \#

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		CORRECT TERMINATION		FINAL CHECK AND NO DAMAGE	
	$\begin{array}{\|c\|} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{array}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \text { BY } \\ \hline \end{array}$	DATE	$\begin{gathered} \mathrm{CHECK} \\ \mathrm{BY} \end{gathered}$	DATE	$\begin{gathered} \mathrm{CHECK} \\ \mathrm{BY} \end{gathered}$	COMMENT
1	CR	$21-1-12$	CA	$21-1 / 12$	CH	$4-1 / 12$	- $1 / 7$	-2/-1-12	C/19	104
2	C/f	$21-1-12$	CAt	$21-1-12$	C/F	2/-1-12	$C A$	$21-12$	CA	01
3	C / P	$21-1-12$	CA	$21-1-12$	CA	21-1-12	C/t	$21-12$	C / A	
4	CP	21-1-12	CA	$21-1-12$	$C A$	$21-1-12$	CAT	2/-1-12	CF	12 N
5	CA	$21-2-12$	CA	$2-1-12$	CH	$21-1-12$	$\mathrm{CH}^{\text {CH }}$	$2 /-1-12$	CA	OK
6	$C \cdot$	$21-1-12$	CA	$21-1-12$	CF	$21-1 / 2$	$C A$	$21-1-12$	Clf	OR
E	$C A$	$21-1-12$	CA	$2 /-1-12$	$C A$	$21-1-12$	CP	$21-1-12$	CA.	OK

COMMENTS:

					NCR No:
FINAL ACCEPTANCE:	NAME	SIG VATURE	POSITION		
HEYDAY Group		SIGATURE	POSITION	APPROVED (YES/NO)	DATE
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

ACCEPTANCE CRITERIA: AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) SF'ECIFICATION. (3) LATEST ISSUE OF DRAWINGS.
Inspection \& Test Checklist
ITC : 8
Management (QA) System ISO9001

Heyday Group

Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet: 26 Of 45
Project Manager:	Terry Fisher	Site Supervisor:	David	bell	Date:
Signature:		Check Delegated To: E.T.Algatel. Signature:			

inspection and test checklist for: Point to Point Testing = Cable \# 23.

ACCEPTANCE CRITERIA: AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) SF ECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Inspection \& Test Checklist
 ITC : 8 Management (QA) System ISO9001

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet: 27 of 45
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor: David Campbell	David Campbell		Date:
Check Authorised By:	Signature:		Check Delegated To: C.T. Algate		signature: e	

inspection and test checklist for: Point to Point Testing = Cable \# 25.

CORE \#	RESISTANCE		INSULATION RESISTANCE		$\begin{aligned} & \text { CORRECT } \\ & \text { LABELLING } \end{aligned}$		CORRECT「ERMINATION		FINAL CHECK AND NO DAMAGE	
	$\begin{gathered} \text { CHECK } \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{array}{\|c\|c\|} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{array}$	DATE	$\begin{gathered} \mathrm{CHECK} \\ \mathrm{BY} \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \end{gathered}$	COMMENT
1	C/t		CA		CPI		- 017		CA	$0 / \mathrm{l}$
2	$6 / 7$		CH		CA		\cdots		CA	E/1
3	$c / 8$		$C A^{4}$		$C A^{2}$		- 17		$C A$	QK
$\frac{4}{5}$	C/F		CH		$C 17$		$C A$		$C A$	OK
6	C/F		Cft		C/t		$C A$		CH	0/1
6	C/		CA		C/P		A		CW	0%
IV	O/t		CA		$C A$		Q/4		CH.	CK.
MEN										

			NCR No:		
FINAL ACCEPTANCE:	NAME	SIGNATURE			
HEYDAY GROUP		SIGNATURE	POSITION	APPROVED (YES/NO)	DATE
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					
ACCEPTANCE CRITERIA:					

Inspection \& Test Checklist

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet: 28 of 45
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor:	David Campbell		Date:
Check Authorised By:	Signature:		Check Delegated To: C. T. Algate Signature:			

inspection and test checklist for: Point to Point Testing = Cable \#

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		CORRECT \|ERMINATION		FINAL CHECK AND NO DAMAGE		
	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \mathrm{C} \\ \hline \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{gathered} \hline \text { CHECK } \\ \text { BY } \end{gathered}$		COMMENT
1	C17	$21-112$	CH	$21-1-12$	BP	21-1-12	- /f	$21-1-12$	P/1F	$0 / 1$	
2	C/P	$21-1-12$	CH	$21-1-12$	Clf	$21-1-12$	DIF	21-1-12	C/4	BR	
3	C19	21 $-1-12$	C19	$21-1-12$	CA	$21-1-12$	3 P	$21-1-12$	CAT	OK	
4	C/f	21-1-12	CM	21-1-12	C/1	$21-1-12$	OH1	21-1-12	Cl^{2}	OR	
5	ctt	2/ $1-12$	$C A$	$21-1-12$	CM ${ }^{2}$	$21-1-12$	NH.	2/-1-12	CPt	OR	
6	C/7	$21-1-2$	C/T	$21-1-12$	C)	$21-1-12$	$1 / 7$	$21-1-12$	CA	OM	
7	C/7	2/-1-12	C1F	$2-1-12$	C/f	$21-12$	3	24-1-12	Cf	OK	
8	CA	$21-1-12$	C/7	$21-1-12$	CPI	$21-1-12$	17	$21-1-12$	CFP	OK	
E	CM	$2 /-1-72$	C19	21-1-12	C/F	$2 /-1 / 2$	$3 / 9$	21-1-12	CHP	$0 k$.	

			NCR No:		
FINAL ACCEPTANCE:	NAME	SIGNATURE	POSITION	APPROVED (YES/NO)	DATE
Heyday Group				APPROVED(YES/NO)	DATE
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

Inspection \& Test Checklist
 ITC : 8
 Management (QA) System ISO9001

inspection and test checklist for: Poïnt to Poínt Testing = Cable \#

Inspection \& Test Checklist
 ITC : 8
 Management (QA) System ISO9001

Client: EPW	Project Name:	Luggage Point Settling Tanks 182		Job No:	QEM14755	Sheet: 30 of 45
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor:	David	pbell	Date:
Check Authorised By:	Signature:		Check Delegated To: C.T. Algate. Signa			

inspection and test checklist for: Point to Point Testing = Cable \# 10

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECTLABELLING		CORRECTTERMINATION		FINAL CHECK AND NO DAMAGE	
	$\begin{array}{\|c\|} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{array}$	DATE	$\begin{array}{\|c} \hline \mathrm{CHECK} \\ \mathrm{BY} \end{array}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \mathrm{BY} \end{gathered}$	COMMENT
BNOWN	CPA	$20-1-12$	CM	20-1-12	CH	$20-1-12$	-64	20.1.12	CIT	04
WMVITH.	elt	20-1-12	Clf	20-1-12	CA	$20-1-12$	- 7	20\% 12	CH	6π
BLUF	C/7	$20-1-12$	$C H^{\prime}$	$20-1-12$	C CH	20\%12	\cdots	20-1-12	CH	$0<$
E.	C17	20-1-12	$C H$	20-1-12	CH	20-1.12	$B A$	20.1.12	C/A.	COK.
MMENTS:										

Inspection \& Test Checklist
ITC : 8
Management (QA) System ISO9001
Heyday Electrics ACC Technologies Heyday Communications Heyday Fire Technologies

inspection and test checklist for: Point to Point Testing - Cable \# 13

Inspection \& Test Checklist
 ITC : 8
 Management (QA) System ISO9001

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet: 32	Of 45
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor: David Campbell	David Campbell		Date:	
Check Authorised By:	Signature:		Check Delegated To: C. T. Algeule		Signature: ${ }^{\text {c }}$		

inspection and test checklist for: Point to Point Testing = Cable \#

			NCR No:		
FINAL ACCEPTANCE:	NAME	SIGNATURE	POSITION		
HEYDAY GROUP		SIGATURE	POSITION	APPROVED (YES/NO)	DATE
Client (Representative)					
AUTHORITY (IF APPLICABLE)					

Heyday Group

Inspection \& Test Checklist
 ITC : 8
 Management (QA) System ISO9001

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet:3	Of 45
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor: David Campbell	David Campbell		Date:	
Check Authorised By:	Signature:		Check Delegated To: C.T. Algate		Signature:		

inspection and test checklist for: Point to Point Testing - Cable \#

CORE \#	RESISTANCE		INSULATION RESISTANCE		$\begin{aligned} & \text { CORRECT } \\ & \text { LABELLING } \end{aligned}$		CORRECTERMINATION		FINAL CHECK AND NO DAMAGE	
	$\begin{gathered} \text { CHECK } \\ \mathrm{BY} \end{gathered}$	DATE	$\begin{array}{\|c\|c\|} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{array}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ B Y \\ \hline \end{array}$	DATE	$\begin{aligned} & \text { CHECK } \\ & \text { BY } \end{aligned}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	COMMENT
RED	C/f	$21.1 / 12$	CM	$21 \cdot 1 \cdot 12$	C17	$21 \cdot 1 \cdot 12$	$1 / 7$	$21 \cdot 12$	$P A$	OR.
BLVG.	C17	$21 / 12$	CH	$21 \cdot 1 \cdot 12$	CA	$21 \cdot 1 \cdot 12$		$21 \% 12$	$\frac{\mathrm{Clt}}{\mathrm{CH}}$	OK
E	CH	$2 / 1 \cdot 12$	CPF	$2 / .7 .12$	CAF	$2 / \cdot / \cdot 12$		$21 \cdot 1 \cdot 12$	CPA.	OK

Inspection \& Test Checklist
 ITC : 8 Management (QA) System ISO9001

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet: 34 Of 45
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor:	Davi		Date:
Check Authorised By:	Signature:					

inspection and test checklist for: Point to Point Testing = Cable \#

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		CORRECT ERMINATION		FINAL CHECK AND NO DAMAGE		
	$\begin{gathered} \hline \text { CHECK } \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ B Y \\ \hline \end{array}$	DATE	$\begin{gathered} \text { CIECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$		COMMENT
1	C/A	$21 \cdot 1 \cdot 12$	CPA	$2 / \cdot 1 \cdot 12$	C/f	$21 \cdot 12$	-77	$21 \cdot 1 / 2$	PA	011	
2	e/f	21.1 .12	CH	$21.1 \cdot 12$	CA	4.1.12	$1 / 17$	$4 \cdot 1 \cdot 12$	CP	10/1	
3	C/t	21.1 .12	CA	21.112	$C A$	21.1 .12	C/7	211.12	CII	OH.	
4	C/7	$21 \cdot 1 \cdot 12$	CA	21.1-12	CA	21.1.12	CA	21.1 .14	Q/f	OR	
5	C1F	$21.1 \cdot 13$	CAF	$2 / 1 / 12$	CA	21.1 .12	$0 / 4$	$21.1 \cdot 12$	CA	OM.	
6	CAF	$21.1 / 2$	CA	W\%1.12	6 A	21.1112	$1 / 7$	$2 / 1 / 12$	CA	OR	
7	O19	$21 \cdot 1 \cdot 12$	QP	21.1 .12	OH	21.1 .12	0	21.1.12	CA	OR	
8	C/P	$21 \cdot 1 \cdot 12$	Cl^{4}	21.1 .12	CH	21.1 .12	に17	$21 \cdot 1 \cdot 12$	Q14	OR	
E.	$C A$	$21 \cdot 1 \cdot 12$	$C A$	21.1612	CA	21.1 .12	13	21:1/12	CA.	OK.	

			NCR No:		
FINAL ACCEPTANCE:	NAME	SIGN.ATURE	POSITION		
HEYDAY GROUP		SIGMTURE	POSTION	APPROVED (YES/NO)	DATE
Client (Representative)					
AUTHORITY (IF APPLICABLE)					

Inspertion \& Test Checklist
ITC: 8
Management (QA) System ISO9001

inspection and test checklast for: Point to Point Testing = Cable \# 16.

CORE \#	RESISTANCE		INSULATION RESISTANCE		$\begin{aligned} & \text { CORRECT } \\ & \text { LABELLING } \end{aligned}$		CORRECT ERMINATION		FINAL CHECK AND NO DAMAGE		
	$\begin{array}{\|c\|} \hline \mathrm{CHECK} \\ \mathrm{BY} \end{array}$	DATE	$\begin{gathered} \text { CHECK } \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \text { BY } \\ \hline \end{array}$	DATE	$\begin{gathered} \text { CIECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{array}$		COMMENT
1	eA	$2+112$	C/7	2/1/12	C/P	$21 \cdot 1 \cdot 12$	-17	$21.1 \cdot 12$	CPT	OK	
$\frac{2}{3}$	CAF	21.12	C/7	$21 \cdot 1 \cdot 12$	C/7	$211 / 12$	177	21.112	C/4	OK	
3	CPI	$21 \cdot 1 \cdot 12$	CA	$2 \cdot 1.12$	$\mathrm{Clt}^{\text {ch }}$	21/1.12	QP	21.112	CTF	OR	
4	C/F	$21 \cdot 1 \cdot 12$	C C	$21 \cdot 1 \cdot 12$	$C / 7$	21.1 .12	CIf	21.1 .12	CAF	QR	
5	C/B	21.1 .14	CB	$21 \cdot 12$	C/P	21.1.12	$C A$	211/12	C/	OK	
6	$C / 7$	$21 \cdot 1 \cdot 12$	CPf	$21 \cdot 1 / 2$	CH^{4}	2/1/12	Chf	$21 \cdot 1 \cdot 12$	CH	OK	
原。	CA.	21.1 .12	C17	$21 \cdot 1 \cdot 12$	CTP	211/12	CP	21.1 .12	CH.	OK.	

					NCR No:
FINAL ACCEPTANCE:	NAME	SIGN:ATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY GROUP					
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

Inspection \& Test Checklist ITC : 8
 Management (QA) System ISO9001

Client:	EPW	Project Name:	Luggage Point Setling Tanks 1\&2		Job No:	QEM14755	Sheet: 36 of 45
Contract Manager:	Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor: David Campbell			Date:
Check Authorised By:		Signature:		Check Delegated To: CT/Algoute		Signature:	

inspection and test checklist for: Point to Point Testing = Cable \# 27

Inspection \& Test Checklist
ITC : 8
Management (QA) System ISO9001

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet:37 of 45
Contract Manager: Terry Fisher	Project Mianager:	Terry Fisher	Site Supervisor: David Campbell			Date:
Check Authorised By:	Signature:		Check Delegated To: O. Alor			

inspection and test checklist for: Point to Point Testing = Cable \# 30

CORE \#	RESISTANCE		INSULATIONRESISTANCE		CORRECT LABELLING		$\begin{aligned} & \text { CORRECT } \\ & \text { ERMINATION } \end{aligned}$		FINAL CHECK AND NO DAMAGE		
	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \text { BY } \\ \hline \end{array}$	DATE	$\begin{gathered} \hline \text { CHECK } \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{aligned} & \text { CHECK } \\ & \text { BY } \end{aligned}$	DATE	CHECK		COMMENT
1	C/H	$2 / \cdot 2 \cdot 12$	Clt	$21 \cdot 2 \cdot 12$	CA	$21 \cdot 2 \cdot 12$	CH	$21 \cdot 2 \cdot 12$	CP	Ofl	
$\frac{2}{3}$	$C A$	$21 \cdot 2 \cdot 12$	Clt	$121.2 \cdot 12$	C/P	$2 \cdot 12 \cdot 12$	\cdots	2/.2.12	CA	OK	
4	CA	$21 \cdot 2 \cdot 12$	CP	$21.2-12$	CA	2/.2.12	17	$2 \cdot 2 \cdot 12$	$C A$	QK	
$\frac{4}{5}$	C/7	$21 \cdot 2 \cdot 12$	CP	$2 \cdot 2 \cdot 12$	CA	21.212	17	$21.2 \cdot 12$	CP	OR	
6	CM	$21.2 \cdot 12$	CA	$21.2 \cdot 12$	CA	$2 / \cdot 2 \cdot 12$	\%	$21.2 \cdot 12$	$C \cdot /$	OK	
E	C/A	$21 \cdot 2 \cdot 12$	C/P	$26.2 \cdot 12$	CA	$21.2 \cdot 12$	137	$21.2 \cdot 12$	$C A$	OK	
	C17.	2/.2.12	C/P	$2 / 12 \cdot 12$	CB	21.2 .12	C/f	$2 / \cdot 2 \cdot 12$	$C A^{\prime}$	OK	
MMENTS:											

NCR No:

			NCR No:		
FINAL ACCEPTANCE:	NAME	SIGNATURE			
HEYDAY GROUP		SIGN	POSITION	APPROVED (YES/NO)	DATE
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					
ACCEPTANCE CRITERIA:					

Inspection \& Test Checklist
ITC : 8
Heyday Electrics
ACC Technologies
Managenient (QA) System ISO9001
Heyday Group

inspection and test checklist for: Point to Point Testing = Cable \# 28

FINAL ACCEPTANCE:	NAME		NCR No:		
HEYDAY GRoup	NAME	SIGN, TURE	POSITION		
CLIENT (REPRESENTATIVE)			POSITON	APPROVED (YES/NO)	DATE
AUTHORITY (IF APPLICABLE)					
ACCEPTANCE CRITERIA:					

Inspection \& Test Checklist

ITC : 8
Heyday Electrics ACC Technologies
Management (QA) System ISO9001

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet: 39. Of 45
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor:	David Campbell		Date:
Check Authorised By:	Signature:		Check Delegated To:		Signature:	

inspection and test checklist for: Point to Point Testing = Cable \# 31

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		CORRECT TERMINATION		FINAL CHECK AND NO DAMAGE		
	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \mathrm{BY} \\ \hline \end{array}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \text { BY } \\ \hline \end{array}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \mathrm{BY} \\ \hline \end{array}$	DATE	$\begin{gathered} \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$		COMMENT
1	CM	21-1.12	C/7	$21 \cdot 1 \cdot 12$	CA	$21.1 \cdot 12$	-A	$2 / \cdot 1 \cdot 12$	Clf	OK.	
$\frac{2}{3}$	C/t	$21 \cdot 1 \cdot 12$	C/T	21.1 .12	CA	28.1 .14	Cll	21.1.12	DM	OK.	
3	C17	$21 \cdot 1 \cdot 12$	CA	$2 \cdot 1 \cdot 12$	C, 7	$21 \cdot 1 \cdot 12$	Clt	21.1.12	$\mathrm{Cl}^{\text {c }}$	OK	
4	C/F	$21 \cdot 1 \cdot 12$	$C A$	$21 \cdot 1 \cdot 12$	CA	$21 \cdot 112$	18	21.1.12	CA	OK	
5	CA	21.1.12	$C A$	$2 \cdot 1 \cdot 12$	C/7	$21 \cdot 1 \cdot 12$	- /H	$26 \cdot 1 \cdot 12$	CA	OR	
6	C/7	$21 \cdot 1 \cdot 12$	0	$2 \cdot 1 \cdot 12$	CAT	$21 \cdot 1 \cdot 12$	\%	$21 \cdot 1.12$	CT	OK	
F	CP	$21 \cdot 1 \cdot 12$	CP7	$21 \cdot 1 \cdot 12$	Cf	$21 \cdot 1 \cdot 12$	\% 7	21.1.12	CA	OK =	

Inspection \& Test Checklist
ITC : 8

inspection and test checklist for: Point to Point Testing - Cable \#

FINAL ACCEPTANCE:	NAME			NCR No:	
HEYDAY GROUP	NAME	SIGNATURE	POSITION		
CLIENT (REPRESENTATIVE)			POSITION	APPROVED (YES/NO)	DATE
AUTHORITY (IF APPLICABLE)					
ACCEPTANCE CRITERIA:					

Inspection \& Test Checklist
 ITC : 8
 Management (QA) System ISO9001

Client: EPW	Project Name:	Luggage Point Settling Tanks 1\&2		Job No:	QEM14755	Sheet: 41 of 45
Contract Manager: Terry Fisher	Project Manager:	Terry Fisher	Site Supervisor: David Campbell			Date:
Check Authorised By:	Signature:		Check Delegated To: e - 7. Algate		signature: Cl	

inspection and test checklist for: Point to Point Testing = Cable \# pit reurl z.

			NCR No:		
FINAL ACCEPTANCE:	NAME	SIGAATURE			
HEYDAY GROUP		SIGATURE	POSITION	APPROVED (YES/NO)	DATE
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

Heyday Group

 \section*{Inspection \& Test Checklist
 \section*{Inspection \& Test Checklist

 ITC : 8

 ITC : 8

 Management (QA) System ISO9001}

 Management (QA) System ISO9001}eyday Electrics
ACC Technologies Heyday Communications Heyday Fire Technologies

inspection and test checklist for: Point to Point Testing = Cable \# Mruts.

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		CORRECT TERMINATION		FINAL CHECK AND NO DAMAGE	
	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \text { BY } \\ \hline \end{array}$	DATE	$\begin{gathered} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { C HECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	COMMENT
Bhown	CPA	$21 \cdot 1 \cdot 12$	CP7	$21 \cdot 1 \cdot 12$	C/F	$21 \cdot 1 \cdot 12$	- CPT	$21 \cdot 1 \cdot 12$	CHP	θR
BLUL.	CA	21.1 .12	CA	$21 \cdot 1 \cdot 12$	CA	$21 \cdot 1 \cdot 12$	CIF	$21.1 \cdot 12$	$C A^{\prime}$	OK.
E.	$C A$	21.1 .12	CH	2/.1.12	C/F	$21 \cdot 1 \cdot 12$	CP	21.1 .12	CA	OK.
MMENTS:										

inspection and test checklist for: Point to Point Testing = Cable \# sump pump I.

CORE \#	RESISTANCE		INSULATION RESISTANCE		CORRECT LABELLING		$\begin{aligned} & \text { CORRECT } \\ & \text { IERMINATION } \end{aligned}$		FINAL CHECK AND NO DAMAGE	
	$\begin{array}{\|c\|c\|} \hline \text { CHECK } \\ \mathrm{BY} \\ \hline \end{array}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ 3 Y \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \mathrm{CHECK} \\ \mathrm{BY} \\ \hline \end{array}$	COMMENT
BHOWN.	$C A$	21/1•12	CA	21\%1/2	CPA	21.1./2	$-\frac{01}{7}$	2/1/12	Blf	
WHITE	$C / 4$	21.1.12	$C H$	$21.1 \cdot 12$	CF	21.118	$\angle B$	$21 / 1 / 2$	EIt	QR
SWNE.	$C 19$	21.1.12	CA	$21 \cdot 1 \cdot 12$	CH	$21 \cdot 1 \cdot 12$	17	$21 / 1 / 2$	$6 \rightarrow$	OK
E.	QP.	$21 \% 12$	CP	21.1.12	CH	21.1 .12	CPA	$26 \cdot 1 \cdot 2$	Clt.	OK.

					NCR No:
FINAL ACCEPTANCE:	NAME	SIGN ATURE	POSITION	APPROVED (YES/NO)	DATE
HEYDAY GROUP					
AUTHORITY (IF APPLICABLE)					

[^18]
Inspection \& Test Checklist
 ITC : 8
 Management (QA) System ISO9001

Heyday Group

inspection and test checklist for: Point to Point Testing = Calble \# sump pump 2.

CORE \#	RESIS	TANCE	$\begin{aligned} & \text { INSUL } \\ & \text { RESIS } \end{aligned}$	ATION TANCE	$\begin{aligned} & \mathrm{COR} \\ & \mathrm{LABE} \end{aligned}$	$\begin{aligned} & \text { RECT } \\ & \text { LLING } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CORI } \\ & \text { ERMII } \end{aligned}$	$\begin{aligned} & \text { RECT } \\ & \text { NATION } \\ & \hline \end{aligned}$		FINAL CHECK AND NO DAMAGE
	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \mathrm{BY} \\ \hline \end{array}$	DATE	$\begin{gathered} \text { CHECK } \\ \mathrm{BY} \\ \hline \end{gathered}$	DATE	$\begin{array}{\|c\|} \hline \text { CHECK } \\ \text { BY } \\ \hline \end{array}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	COMMENT
BNOWN	CP	$2 \% 1 / 12$	Cf	$21.1 \cdot 12$	CA	$21 \% 2$	C:A	$21 / 1 \cdot 12$	CH^{4}	O/T
WHITG.	C/I	$21 \cdot 1 \cdot 12$	CA	$21 \cdot 1 \cdot 12$	CH	$21.1 \cdot 12$	$l^{\prime} 10$	2/1/12	CAt	OK
BLICt.	$C / 7$	$21 \cdot 1 \cdot 12$	CA	$21 \cdot 1 \cdot 12$	CB^{2}	$21 \cdot 12$	-A	21.1.12	CH	OK.
E.	$C A$	$21 \cdot 1 \cdot 12$	CA	$21 \cdot 12$	CH	$21 \cdot 1 \cdot 12$	C/7	21.1.12	CP	OK
[-	\square	

Heyday Group Pty Ltd ABN 82121276168
Heyday Electrics ACC Technologies

Heyday Group

inspection and test checklist for: ELECTRICAL EQU\|PMENT / ACCESSORIES

$\begin{gathered} \text { ITEM } \\ \text { BRIDGE. } \end{gathered}$	CORRECT TYPE / COLOUR		CORRECT ALIGNMENT LOCATION		CORRECT FIXING AND MADE SAFE		CORRECT LABELLING		CORRECT TERMINATION		CORRECT EARTHING		CORRECTIPRATING		CORRECT CLASSIFICATION		FINAL CHECKAND NODAMAGE	
	$\begin{aligned} & \text { CHECK } \\ & \text { BY } \end{aligned}$	DATE		DATE		DATE		DA		DA		DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DA	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE
-															年		U1/	
		$14 \cdot 2 \cdot 12$						14	C/f	$14 \cdot 2 \cdot 12$		$2 \% 2$	c/7	$4 \cdot 2 \cdot 12$			P/	
op			CA			$14 \cdot 2 \cdot 12$	7	1	CAT	$14 \cdot 2 \cdot 12$	CA	$14 \cdot 2 \cdot 12$	C/P	$14.2 \% 12$		$4 \cdot 2 \cdot 1$		
? 10	- CA		4	$14 \cdot 2 \cdot 12$	C	14.2.1	C/7	$14 \cdot 2 \cdot 12$	C/f	$14 \cdot 2 \cdot 12$	CH	$14 \cdot 2 \cdot 12$	CA	$4 \cdot 2 \cdot 12$		'2.12		
	-CA		4	$14^{\prime} \mathrm{B}^{2} / 2$	C		A	,	CA		/4	$14 \cdot 2 \cdot 12$	CP	$14 \cdot 2 \cdot 12$		- 21		
11 Aass	- CA	$14 \cdot 2 \cdot 12$	C/f	14.2.12	右	$14 \cdot 2 \cdot 12$	CM	14.2	CH	$2 \cdot 12$,		CA	2.12		$14 \cdot 2 \cdot 1$		
	- C/A	$14 \cdot 2 \cdot 12$			CA			14.2	CA	$2 \cdot 1$,	$14 \cdot 2 \cdot 12$	CR	. $2 \cdot$		4.2.12	,	
		14			CA		19		CH	$14 \cdot 2 \cdot 1$		$14.2 \cdot 1$	CA	12		$4 \cdot 2 \cdot 12$	A	
S/2 lowsnumi	-CA		CPI				CPt		$0 \cdot 1$	$4 \cdot 2 \cdot 1$	CA		CA	$2 \cdot 1$		$\cdot 2 \cdot 1$		
for wrme Limit									C/T			14.21	CA	-1		$4 \cdot 2 \cdot 12$		
							CIT					14.	CA	- $6 \cdot 1$		4.2.12		
cels Reterer mol							CA						CA			4.		
1 moron																$4 \cdot 2 \cdot 1$		
2 mor							C/A		1			$14 \cdot 2 \cdot 1$	CA	4.2.		12		
106				\%			Clt	14.2	CM	12	CH	14.4 .1	CA	$4 \cdot 2 \cdot 1$		$4 \cdot 2 \cdot 12$		
REVLIMIT FIXLP			,	$14 \cdot 2 \cdot 12$		$14 \cdot 2 \cdot 12$	CA	14.2	C/A				CH			14.2.12	T	4212
FWD LIMTIT FIVR	(7)	¢ 21	CA	$14 \cdot 2 \cdot 12$	CA.	$14 \cdot 2 \cdot 12$	C/7	$14.21 / 2$	G/	$14 \cdot 2 \cdot 12$,	$14 \cdot 2 \cdot 1$	CA	14.2 .1	CA	$14 \cdot 2 \cdot 12$	C/A	$14 \cdot 2 \cdot 12$

FINAL ACCEPTANCE:	NAME	SIGNATURE	POSITION	APPROVED (YES/NO)	DATE
HEyday Group					
CLIENT (REPRESENTATIVE)					
AUTHORITY (IF APPLICABLE)					

ACCEPTANCE CRITERIA: AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) SPECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

Heyday Group

Inspection \＆Test Checklist
ITC： 8
Heyday Electrics ACC Technologies Heyday Communications Heyday Fire Technologies

inspection and test checklist for：ELECTRICAL EQUIPMENT／ACCESSORIES

ITEM	CORRECT TYPE／ COLOUR		CORRECT ALIGNMENT LOCATION		CORRECT FIXING AND MADE SAFE		CORRECT LABELLING		CORRECT TERMINATION		CORRECT EARTHING		$\begin{gathered} \hline \text { CORRECT } \\ \text { IP } \\ \text { RATING } \end{gathered}$		CORRECT CLASSIFICATION		FINAL CHECK AND NO DAMAGE	
	$\begin{array}{\|c} \hline \text { CHECK } \\ \text { BY } \end{array}$	DATE	CHECK BY	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \hline \end{gathered}$	DATE	$\begin{gathered} \text { CHECK } \\ \hline \end{gathered}$	DATE	$\begin{array}{\|c\|c\|} \hline \text { CHECK } \\ \text { BY } \\ \hline \end{array}$	DATE	$\begin{gathered} \text { CHECK } \\ \text { BY } \end{gathered}$	DATE
SHUNT SU．	cit		－ 7		E？	尔 $21 /$	会年				宕行		云		／1	析	E允	
S／S／F／RSW	C／t	$14 \cdot 2 \cdot 12$	c／4	$2 \cdot 12$	A	$14 \cdot 2 \cdot 12$	c／7	14	AA	$14 \cdot 2 \cdot 12$	CA	$14 \cdot 2 \cdot 12$	CA	$14 \cdot 2 \cdot 12$		$4 \cdot 2 \cdot 12$	CA	
S／SI MOTOR	CA	$14 \cdot 2 \cdot 12$	C月	$14 \cdot 2 \cdot 12$	CA	$14 \cdot 2 \cdot 12$	C／P	$2 \cdot 12$	CA	$14 \cdot 2 \cdot 12$	CP	14．2\％	CA	$14 \cdot 2 \cdot 12$		$14 \cdot 2 \cdot 12$	$C \beta$	
S／SI FIND Mmit．	C／t	$14.2 \cdot 12$	CH	12	CA	14	C／7	14．3＇12	CA	$14 \cdot 2 \cdot 12$	C A	14．2．12	C／P	$14 \cdot 212$	／	$\cdot 2 \cdot \sqrt{2}$	C／A	
S／SI REV HIMIT．	C	$14 \cdot 2 \cdot 12$	9	14.2 .12	CA	，	c／f	4．2．12	CA	2．1	C／A	$4 \cdot 2 \cdot 1$	CA	14.2 .12	A	$14 \cdot 2 \cdot 12$	CA	
IA Conraol	C／4	14.2 ．	6.9	14.2 .12	C／7	$14 \cdot 2 \cdot 12$	C／A	$14 \cdot 2 \cdot 1$	CA	$14 \cdot 2 \cdot 1$	CA	$14 \cdot 2 \cdot 12$	CA	$4 \cdot 2 \cdot 12$	C／t	$14 \cdot 2 \cdot 1$	CA	
A／B COntrol	CHT	$14 \cdot 2 \cdot 12$	O／G	$14 \cdot 2 \cdot 12$	$C A$	$14 \cdot 2 \cdot 12$	O／P	$18 \cdot 2 \cdot / 2$	C／t	$14 \cdot 2 \cdot 12$	CA	． 12	$C A$	$14 \cdot 2 \cdot / 2$	CA	$4 \cdot 2 \cdot 12$	Cl	
1 C control	CHF	14	$C A$		14	$14^{\circ} 2 \cdot / 2$	CA	$14 \cdot 2 \cdot 12$	CA	$14 \cdot 2 \cdot 12$	CA	$14 \cdot 2 \cdot 12$	CA	$4 \cdot 2 \cdot 1$	CA	$4 \cdot 2 \cdot 12$	C17	
1 1	CH	$\cdot 2 \cdot 1$	CH		$C A^{7}$	14.2	CA	2.	CAT	$14 \cdot 2 \cdot$	CM	$2 \cdot 1$	CA	$14.2 \cdot 12$	CA	． $2 \cdot 1$	CA	
1 is moron	C／H	$14 \cdot 2 \cdot 12$	CH	$14 \cdot 2 \cdot 12$	CA		$C A$	$14 \cdot 2 \cdot 1 / 2$	CA	$14 \cdot 2 \cdot 12$	$C A$	$14 \cdot 2 \cdot 12$	CA	$4 \cdot 2 \cdot 1$	C／7	．	$C{ }^{\text {c }}$	
1 l moton	edt	$14.2 \cdot 12$	$C A$	2．12	CA	14.	$C A$	必．2	OA	$14 \cdot 2 \cdot 12$	CP	4． $2 \cdot 1$	CA	$4 \cdot 2 \cdot 12$	cA	$4 \cdot 2 \cdot 12$	CH	
RA9DAR／	CAt	$2 \cdot$	$C A$	$14 \cdot 6 \cdot 12$	1	$14 \cdot 6$	CA		CA	$14 \cdot 2 \cdot 12$	CA	$14 \cdot 2 \cdot 1$	$C A$	$4 \cdot 2 \cdot 1$	C19	． $2 \cdot 1$	CT	
LIGMT／	C／7	$14 \cdot 2 \cdot 16$	CA		C／7	$14.2 \cdot 12$	C／7	14．2．	CA	$4 \times 2 \cdot 12$	CA	4．2．1	CA	$14 \cdot 2 \cdot 12$	CA	$14 \cdot 2 \cdot 1$	CPt	$14 \cdot 2 \cdot 12$
\＄2／F COMTROL	$C M$	$14.2 \cdot 12$	A	$14 \cdot 2 \cdot 12$	CA	$14 \cdot 2$	CA	14.2 ．	CA	－ $2 \cdot$	CA	$4 \cdot 2 \cdot 1$	C／A	$14.2 \cdot 12$	CA	$14.2 \cdot 12$	CAP	14
2B CONTROL	C／I	$14 \cdot 2 \cdot 12$	$C A$	2.12	CAT	14.6 .12	C／P	$14 \cdot 2 \cdot 12$	CA	14．2\％2	$C A$	4．2．1		14． $2 \cdot 12$	CA	$14 \cdot 2 \cdot 12$	CAP	$14.2 \cdot 12$
7 CCONTMOL	CA	$14 \cdot 2 \cdot 12$	C19	$14 \cdot 2 \cdot 12$	CH．	$14 \cdot 2 \cdot 12$	C／7	$14 \cdot 2 \cdot 12$	CA	$14 \cdot 2 \cdot 12$	CA	$14 \cdot 2 \cdot 12$	C／t	14.2 .12	$C A$	$14 \cdot 2 \cdot 12$	CP	$14 \cdot 2 \cdot 12$
MADAR 2			1 A		CA	$14 \cdot 2 \cdot 12$	CM	$14 \cdot 2 \cdot 12$	CA	$14 \cdot 2 \cdot 12$	CA．	$14 \cdot 2 \cdot 12$	CH．	14.2 2．	CA	$14 \cdot 2 \cdot 1$	17	

COMMENTS：

FINAL ACCEPTANCE：	NAME	SIGNATURE	POSITION	APPROVED（YES／NO）	DATE
HEYDAY Group					
CLIENT（REPRESENTATIVE）					
AUTHORITY（IF APPLICABLE）					

ACCEPTANCE CRITERIA：AS PER ITP $=$（1）AS3000：2000 WIRING RULES．（2）SPECIFICATION．（3）LATEST ISSUE OF DRAWINGS．

[^0]: (1) CA7 ratings for lighting loads are provided for technical reference. For cUL rated and labeled devices, see CAL7 contactors listed in this section.

[^1]: (1) CA7 capacitor ratings are provided for technical reference. For cUL rated and
 labeled devices, see CAQ7 contactors listed in this section.
 (2) CA7-9 \ldots CA7-30 $=\mathrm{L}$ min. $30 \mu \mathrm{H} ; \quad \mathrm{CA} 7-37 \ldots \mathrm{CA} 7-85=\mathrm{L} \min .6 \mu \mathrm{H}$

[^2]: (1) Duty Cycle or Load Factor - Defined as the "on" time for a given operating cycle per hour including the "start time." A 40\% Duty Cycle is calculated in the following manner:
 Contactor switches six (6) times per minute (tpm), 250ms start time;
 40\% duty cycle.
 To determine the "on" time and "off" time:

 - Operations per hour $=360 ;[60 \mathrm{~min} \times 6 \mathrm{tpm}=360]$
 - One operating cycle $=10 \mathrm{sec} ;[60 \mathrm{~min} \div 6 \mathrm{tpm}=10 \mathrm{sec}]$
 - "On" time at 40% duty cycle $=4 \mathrm{sec}$; $[10 \mathrm{sec} \times 0.4(40 \%)=4 \mathrm{sec}]$
 - 4 sec "on" time includes the start time of 250 ms
 - "Off" time at 40% duty cycle $=6 \mathrm{sec}$; $[10 \mathrm{sec}-4 \mathrm{sec}=6 \mathrm{sec}]$

[^3]: See following pages

[^4]: Notes Refer pages 3-23, 24 for information on SAFE-T MCBs. ${ }^{1}$) Preferred values of rated control supply voltage (IEC $\left.\left.60947-2\right): 24 \mathrm{~V}, 48 \mathrm{~V}, 110 \mathrm{~V}, 125 \mathrm{~V}, 250 \mathrm{~V} \quad{ }^{3}\right) 10(125 \mathrm{~V} \mathrm{DC})$

[^5]: Note: $\quad{ }^{1}$) Included as standard with switch.
 ${ }^{2}$) Available 2nd quarter 2009.
 i) Available on indent only.

[^6]: http://
 www.download.phoenixcontact.com Please note that the data given here has been taken from the online catalog. For comprehensive information and data, please refer to the user documentation. The General Terms and Conditions of Use apply to Internet downloads.

[^7]: PHOENIX CONTACT GmbH \& Co. KG
 http://www.phoenixcontact.com

[^8]: This data is provided for guidance only. Results are guaranteed only when confirmed by test results. For the performance data of motors above 630kW please refer to CMG.
 ${ }^{(1)} T_{E}$ time applies to Exe motors only and is explained in the hazardous areas section.
 ${ }^{(2)}$ For hazardous locations the rating will be 150 kW and performance data as per PPA.

[^9]: This data is provided for guidance only. Results are guaranteed only when confirmed by test results. For the performance data of motors above 500 kW please refer to CMG.
 ${ }^{(1)} \mathrm{T}_{\mathrm{E}}$ time applies to Ex e motors only and is explained in the hazardous areas section.
 ${ }^{(2)}$ For hazardous locations the rating will be 150 kW and performance data as per PPA.

[^10]: This data is provided for guidance only. Results are guaranteed only when confirmed by test results. For the performance data of motors above 355 kW please refer to CMG.
 ${ }^{(1)} T_{E}$ time applies to Ex e motors only and is explained in the hazardous areas section.
 ${ }^{(2)}$ For hazardous locations the rating will be 150 kW .

[^11]: Nema 3 Cable Ladder has been tested in accordance with the Nema requirements by a NATA certified testing facility. The data displayed is based on physical test results of a 600 wide section and may vary for other widths. The Deflections have been provided as a guide based on continuous spans, and cannot be applied to-end spans. Data provided assumes that the installation will be carried out in accordance with Nema VE2, non compliance may affect the overall product performance.

[^12]: Nema 2 Cable Ladder has been tested in accordance with the Nema requirements by a NATA certified testing facility. The data displayed is based on physical test results of a 600 wide section and may vary for other widths. The Deflections have been provided as a guide based on continuous spans and cannot be applied to end spans. Data provided assumes that the installation will be carried out in accordance with Nema VE2. Non compliance may affect the overall product performance.

[^13]: Nema 3 Cable Ladder has been tested in accordance with the Nema requirements by a NATA certified testing facility. The data displayed is based on physical test results of a 600 wide section and may vary for other widths. The Deflections have been provided as a guide based on continuous spans and cannot be applied to end spans. Data provided assumes that the installation will be carried out in accordance with Nema VE2. Non compliance may affect the overall product performance.

[^14]: * Conductors are circular compacted.

[^15]: ACCEPTANCE CRITERIA: AS PER ITP = (1) AS3000:2000 WIRING RULES. (2) SIPECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

[^16]: ACCEPTANCE CRITERIA: AS PER ITP $=(1)$ AS3000:2000 WIRING RULES. (2) SIPCIFICATION. (3) LATEST ISSUE OF DRAWINGS

[^17]: ACCEPTANCE CRITERIA: AS PER ITP $=$ (1) AS3000:2000 WIRING RULES. (2) SF ECIFICATION. (3) LATEST ISSUE OF DRAWINGS.

[^18]: ACCEPTANCE CRITERIA: AS PER ITP $=$ (1) AS3000:2000 WIRING RULES. (2) SPE:CIFICATION. (3) LATEST ISSUE OF DRAWINGS.

