Dedicated to a better Brisbane BRISBANE CITY COUNCIL BRISBANE WATER

SP306 - Coronation Drive Pump Station

Operation \& Maintenance Manual Contract No. BW30079-02/03

Volume No. 2

Section 4

Coronation Drive Pump Station - SP306 Operation \& Maintenance Manual Table of Contents
Vol Sect
Description
Pages

\begin{tabular}{|c|c|c|c|}
\hline 1 \& \& Table of Contents \& 5 \\
\hline \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \& \& \begin{tabular}{l}
A complete electronic copy of the Operation \& Maintenance Manual is available on CD Note: Click on the blue underlined Hyperlinks below to open the required document. \\
Revision Control Coronation Drive O \& M Manual O\&M Manual Changes Log
\end{tabular} \& 1
1 \\
\hline 1 \& 1 \& System Overview - Summary \& \\
\hline \& \& \begin{tabular}{l}
HVAC Introduction and System Overview Including the following:- \\
Introduction \\
Description of Equipment and Process Design Details \\
Design Criteria \\
Process Design \\
Operation Modes \\
Modifications to Existing Plant
\end{tabular} \& 5 \\
\hline 1 \& 2 \& Pump Station Location \& \\
\hline \& \& SP306 Location Map \& 1 \\
\hline 1 \& 3 \& Pump Station Equipment Operation \& \\
\hline \& \& \begin{tabular}{l}
BW - Functional Specification (rev 1.01) for Coronation Drive Pump Station SP-306 \\
(Note:- This is in addition to the standard functionality as described in Standard Functional Specification SPSV3) \\
Including the following:- \\
Introduction \\
General Purpose Description \\
Equipment Installed \\
Control Philosophy \\
Site Specific Values \\
Non Standard Control \\
HVAC-HPS Functional Specification
\end{tabular} \& 14
57

25

\hline
\end{tabular}

Coronation Drive Pump Station - SP306 Operation \& Maintenance Manual Table of Contents

Vol Sect
Description
Pages

2	Proprietary Equipment Manuals/Maintenance and Service		
2	1	Grundfos Pumps - Pump Testing ,Commissioning, Test Certificates OCT1 Oil Condition Transmitter, SAR12	
		Grundfos S2 Pump Operating Instructions Schedule C4 from Contract - Contractor Pump Guarantee Factory Acceptance Tests (FAT) - Pumps Including the following:- - Workshop Tests Results - Pumps - Q\&H Test Results - Workshop - Pumps - Operating Envelope - Pumps - Volute Casing Hydrostatic Test Reports - Electric Motors - Test Reports OCT1 Oil Condition Transmitter Installation Instructions SARI 2 (Tritronics R.T.W.) Pump Insulation Resistance \& Seal Oil Monitoring Device and Control Relay Pump Nameplate Details PDF Document or Word Document	14 2 11 4 2 1
2	2	GE Fanuc PLC Series $90{ }^{\text {TM }}-30$	
		```GE Fanuc - PLC Series \(90^{\mathrm{TM}}-30\) Brochure GE Fanuc - PLC Series \(90^{\mathrm{TM}}-30\) Installation and Hardware Manual (Document Contained on CD-ROM Only) GE Fanuc - Series \(90^{\text {TM }}\)-30 Programmable Controller Troubleshooting Guide BW PLC Physical I/O List - Summary BW PLC Physical I/O List - Complete Excel Spreadsheet RTU Configuration / Settings```	$\begin{aligned} & 2 \\ & 445 \\ & 18 \\ & 3 \\ & 18 \\ & 1 \end{aligned}$
2	3	Cathodic Protection	
		Note: Cathodic Protection has not been installed at Coronation Drive Pump Station SP306	
2	4	Main Switchboard \& Associated Equipment	
		Technical Manuals and Data Sheets   C191HM Powermeter and Harmonic Manager Installation \& Operation Manual   C191HM Powermeter and Harmonic Manager Modbus Communications Ref Guide   Multitrode MTR Data Sheet   Multitrode MTRA Data Sheet   Multitrode MTR Wiring Diagrams   Terasaki MCCB's and Contactors Technical Data Sheets   Sprecher+Schuh / Terasaki \& ACS Contactors Data Sheets   Miniature Circuit Breakers - Earth Leakage Module Data Sheets   Erico Surge Filter Installation Instructions   Terasaki TemBreak Circuit Breaker BTS Schematic XMC Motor Operator   Terasaki Transfer and Load Break Switches (Including Test Sheet and Schematic)   Tyco Phase Fail Relay   Sprecher+Schuh 22.5 mm Pushbutton and Indicator Lights   Eriflex Bus Bar Data Sheet / Brochure	

Coronation Drive Pump Station - SP306 Operation \& Maintenance Manual Table of Contents

Vol	Sect	Description	Pages
		Matsushita NASI TH Hour Meter Data Sheet   EMC Fans Data Sheet   PowerHouse AC/DC Converter \& API series DCDC Converter Data Sheets Vega Well 72 4-20mA Hart Pressure Transmitter Operating Instructions Vega Well 72 Pressure Transmitter Test Certificate   Vega Vegadis 12 Adjustment Module for the Pressure Transmitter Operating Instructions   Vega PLICSOM Indicating and Adjustment Module - Operating Instructions Vega Vegabar 64 4-20mA HART Pressure Sensor Operating Instructions	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 48 \\ & 2 \\ & 8 \\ & 19 \\ & 72 \end{aligned}$
2	5	Variable Speed Drive Manuals and Parameter Settings VFD Settings and Parameters Danfoss VFD (VLT ${ }^{3} 6000$ HVAC) Operating Instructions Danfoss VFD Instruction Manual Modbus RTU	$\begin{aligned} & 8 \\ & 170 \\ & 33 \end{aligned}$
2	6	ITP Procedure, Test Sheets and Factory Acceptance Tests   SAT - Switchboard Pre-Commissioning   FAT - MPA Factory Acceptance Test - Switchboard - VSD Drives - Power Meter etc. Pump Pre-Commissioning Test Sheets	13 25 2
2	7	Valves   AVK Sluice Gate Valves   Expert 600 Knife Gate Valve - Factory Test Certificate and Data Sheet Dobbie Dico Reflux Valves - Drawings   TYCO RPZ-DCV 03 Maintenance Instructions TYCO RPZ-DCV 05 Maintenance Instructions	$\begin{aligned} & 4 \\ & 9 \\ & 4 \\ & 2 \\ & 2 \end{aligned}$
2	8	Pipes	
		$\begin{aligned} & \text { TYCO Dismantling Joints - Data Sheets } \\ & \text { TYCO Flanged Fittings } \\ & \text { Uni-Flange Adapter Flange Series Catalogue } \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \\ & 7 \end{aligned}$
2	9	Wet Well Washer	
		McBerns Automatic Well Washer	3
2	10	Wet Well Lining System	
		Corrosion Protection Services (CPS) Sewerage Lining System.	10
2	11	Supplier Contact Details	
		Suppliers Index and Contact Information	3
2	12	Maintenance	
		Maintenance details as supplied by manufacturers / suppliers.   TYCO RPZ-DCV 03 Reduced Pressure Zone Double Check Valve Maintenance Instructions   TYCO RPZ-DCV 05 Maintenance Instructions HVAC Operation and Maintenance Document	$\begin{aligned} & 2 \\ & 2 \\ & 13 \end{aligned}$

[^0]
## Coronation Drive Pump Station - SP306 Operation \& Maintenance Manual Table of Contents

Vol	Sect	Description	Pages	
3		Drawings		
		An electronic copy of all drawings is available on the CD-ROM.   As Constructed Drawings   Electrical - As supplied by the Contractor   Cable Schedule   Civil (Additional Pipework drawings 486/5/7-KJ025 to KJ028 available after registration)	$\begin{aligned} & 17 \\ & 1 \\ & 3 \end{aligned}$	
4		Training / System Testing / Pre-Commissioning / Installation Method Statement / QA Records		
4	1	BW: Site Based Training		
		To be completed and added to manual	-	
4	2	BW: System Integration Testing		
		BW - Functional Specification (rev 1.01) for Coronation Drive Pump Station SP-306   SAT - BW Site Acceptance Test Document NCS IDTS   SAT - BW Site Acceptance Test Document NCS On-Site   FAT - BW Factory Acceptance Tests IDTS NCS   HVAC Pump Performance Testing Procedure   HVAC-HPS Commissioning Plan - For Approval   HVAC-HPS Switchboard Commissioning Functional Test Sheet - Incomplete   Stage 1 System Integration Testing Procedure   Redirection of Heroes Avenue Pump Station SP103   Notes: Site Commissioning Work 19/20 \& 21 February 2007   Stage 2 System Integration Testing Procedure   Coronation Drive Pump Station SP306 (New Rising Main) to North Quay   Existing S1 Sewer Connection   Notes: Site Commissioning Work Wednesday 14 March 2007   Final Commissioning of SP306 carried out on Friday $27^{\text {th }}$ April 2007	$\begin{aligned} & 14 \\ & 3 \\ & 6 \\ & 5 \\ & 3 \\ & 12 \\ & 2 \\ & \\ & 36 \\ & \\ & 35 \\ & 2 \end{aligned}$	
4	3	Method Statements		
		Method Statement - HVAC-HPS - Procedure to carry out work CPS Site Management Plan. - CPS Sewage Lining System	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	
4	4	Installation QA Records / Test Reports		
		HVAC/HPS Hydrostatic/Pneumatic Pressure Test Report-From pump base to valves HVAC-HPS Piping Checklist - Pre Hydro	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	
4	5	Certificates		
		AS3000 Compliance Certificate (Final Cert. Requested from HVAC - Gordon Waddell 20/04/07) Vega Well72 Pressure Transmitter Test Certificates   Vega BAR64 Pressure transmitter Test Certificate   Grundfos Pump Hydrostatic and Motor Test Certificates	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 4 \end{aligned}$	
	Date: W DR tationlC	May 2007 Rev 1 Page 4 of 5   IN1255 Des_Constl8890 Transport\|S1 Luggage PTISQSJ Redirect Heroes Ave (s1)	6   mmissioninglo\&MM Coronation Drive SP3061Table of Contents - SP306.doc	-05/07

BRISBANE CITY COUNCIL
Brisbane Water
SP306 Coronation Drive Pump Station
Coronation Drive Pump Station - SP306 Operation \& Maintenance Manual Table of Contents
Vol Sect Description Pages

		Calibration Report for Pressure Gauge used during the HVAC/HPS   Hydrostatic/Pneumatic Pressure Test	1
$\mathbf{5}$		Appendices	
$\mathbf{5}$	$\mathbf{1}$	Extras	
		Manual covers for the printed version   Manual spine labels for the printed version	5
		Operation \& Maintenance Manual CD Cover	2
	Drawings CD Introduction Page	1	
		1	



# SERIES C191HM POWERMETERS <br> COMMUNICATIONS <br> Modbus Communications Protocol <br> <br> REFERENCE GUIDE 

 <br> <br> REFERENCE GUIDE}

## C191HM Powermeter \& Harmonic Manager



## Installation and Operation Manual

## LIMITED WARRANTY

The manufacturer offers the customer an 24-month functional warranty on the instrument for fautty workmanship or parts from date of dispatch from the distributor. In all cases, this warranty is valid for 36 months from the date of production. This warranty is on a return to factory basis.
The manufacturer does not accept liability for any damage caused by instrument malfunction. The manufacturer accepts no responsibility for the suitability of the instrument to the application for which it was purchased.

Failure to install, set up or operate the instrument according to the instructions herein will void the warranty.
Your instrument may be opened only by a duly authorized representative of the manufacturer. The unit should only be opened in a fully anti-static environment. Failure to do so may damage the electronic components and will void the warranty.

## NOTE

The greatest care has been taken to manufacture and calibrate your instrument. However, these instructions do not cover all possible contingencies that may arise during installation, operation or maintenance, and all details and variations of this equipment are not covered by these instructions.
For additional information regarding installation, operation or maintenance of this instrument, contact the manufacturer or your local representative or distributor.

Please read the instructions this manual before performing installation, and take note of the following precautions:
$\sigma^{5}$ Ensure that all incoming AC power and other power sources are turned OFF before performing any work on the instrument. Failure to do so may result in serious or even fatal injury and/or equipment damage.
G. Before connecting the instrument to the power source, check the labels on the side of the instrument to ensure that your instrument is equipped with the appropriate power supply voltage, input voltages, currents and communication protocol for your application.
$G^{\circ}$ Under no circumstances should the instrument be connected to a power source if it is damaged.
$G^{\circ}$ To prevent potential fire or shock hazard, do not expose the instrument to rain or moisture.

CP The secondary of an external current transformer must never be allowed to be open circuit when the primary is energized. An open circuit can cause high voltages, possibly resulting in equipment damage; fire and even serious or fatal injun. Ensure that the current transformer wiring is made through shorting switches and is secured using an external strain relief to reduce mechanical strain on the screw terminals, if necessary.

Setup procedures must be performed only by qualified personnel familiar with the instrument and its associated electrical equipment.

CO DO NOT open the instrument under any circumstances.
Modbus is a trademark of Modicon, Inc.

C

BG0280 Rev. A3

## Table of Contents

Quick Start ..... iv
Chapter 1 Introduction ..... 1
1.1 About This Manual .....  .1
1.2 About The C191 HM ..... 1
Chapter 2 Installation ..... 7
2.1 Mechanical Installation .....  7
2.2 Electrical Installation 8
Chapter 3 Using The Menus ..... 17
Chapter 4 Setup Menus ..... 19
4.1 Basic Setup Menu. ..... 19
4.2 Communications Port Setup Menu ..... 21
4.3 Digital Input Setup Menu ..... 22
4.4 Analog Output Setup Menu. ..... 23
4.5 Pulsing Output Setup Menu ..... 25
4.6 Alarm/Event Setpoints Setup Menu. ..... 26
4.7 Relay Operation Control Menu ..... 31
4.8 Display Setup Menu ..... 32
4.9 User Selectable Options Menu ..... 34
4.10 Access Control Menu ..... 36
4.11 Reset/Synchronization Menu. ..... 37
Chapter 5 Data Display ..... 38
5.1 Navigating in the Display Mode ..... 38
5.2 Data Display Formats ..... 41
5.3 Self-Test Diagnostics Display. ..... 45
Chapter 6 Viewing Status Information ..... 46
6.1 The Status Information Menu, ..... 46
6.2 Status Display Formats ..... 46
Appendix: Technical Specifications. ..... 48
Index ..... 52

## Quick Start

TYPICAL INSTALLATION
Wiring Mode 4LL3 (see Section 2.2.4 for full instructions)


SETUP-(see Chapter 4 for full instructions)
Setups can be performed directly on the front panel or via PComTest communication software.


Press $\pi \Downarrow$ to scroll to desired option.

Basic and Communications Default Setups

Codut			
Conf	Wiring mode	$4 \operatorname{Ln} 3$	4 wire Wye using 3PTs (3 element), line to neutral voltage readings
Pt	TT ratio	1.0	The phase potential transformer ratio
Ct	CT primary current	5	The primary rating of the phase current transformer, A
d. $P$	Power demand period	15	The length of the demand period for power demand calculations, in minutes. $\mathrm{E}=$ extemal synchronization (1)
n.dp	Number of power demand periods	1	The number of demand periods to be averaged for sliding window demands 1 = block interval demand calculation
A.dP	AmpereNoll demand period	900	The length of the demand period for voltampere demand calculations, in seconds $0=$ measuring peak current
buF	Averaging buffer size	8	The number of measurements for RMS sliding averaging
$r s t$	Reset enable/disable	oiS	Protects all reset functions, both via the front panel or communications.
Frea	Nominal frequency	501, 60	The nominal power utitity frequency, Hz
LoAd	Maxinum demand load current	0	The maximum demand load current used in TDD calculations ( $0=$ CT primary current)
Prot	Communications protocol	ASCII	ASCII protocol
Adidr	Address	0 (ASCII)	Powermeter address
bAud	Baud rate	9600	9600 bps
dAtA	Data format	$8 n$	8 bits, no parity
CPtb	ASCII compatibility mode		Disables ASCII compatibitity mode (For more information, see ASCII Communications Prolocol Reference Guide)

## Chapter 1 Introduction

### 1.1 About This Manual

This manual is intended for the user of the C191HM Powermeter. This Powermeter is a microprocessor-based instrument used for the measurement, monitoring, and management of electrical parameters.
This chapter gives an overview of this manual and an introduction to the C191HM.

Chapter 2, Installation, provides instructions for mechanical and elecirical installation.

Chapter 3, Using the Menus, presents the structure of menus for setup and status viewing.
Chapter 4, Setup Menus, provides instructions for performing parameter setup via the front panel.
Chapter 5. Data Display, guides you through the display pages.
Chapter 6, Viewing Status information, tells you how to access additional status information on the instrument. This information may be useful during installation.
Technical Specifications for the C191HM are found in the Appendix.

### 1.2 About The C191HM

The C 191 HM is a compact panel mounted three-phase AC Powermeter and Harmonic Manager, specially designed to meet the requirements of users ranging from electrical panel builders to substation operators. The C 191 HM provides basic voltage, current, frequency, power, power factor and energy measurements, plus total harmonic.distortion (THD, TDD and KFactor) and individual harmonic measurements.
The C 191 HM is suitable for mounting on $136 \times 136 \mathrm{~mm}$ square cutouts.

## Features

## Display

The front panel features bright LED displays (three windows, up to 45 pages) with adjustable display update time. Display auto scroll is available on the main screen with a programmable scroll interval of 2 to 15 seconds. Automatic return to the main screen is available after 30 seconds of uninterrupted use. The front panel also includes:

- bar graph showing percentage load with respect to user-definable nominal (100\%) load current
- alarm LED providing a local indication when a predefined alarm condition appears. The alarm LED is shut off manually (by pressing on both up and down keys more than 5 sec )
- RXD/TXD LEDs showing communications receive/transmit status

Setup is menu driven, with optional password protection. 16 programmable setups are provided for alarm and control functions (for programmable parameters, see 'Measured Parameters' below).

Communications are available using an RS-232 or RS-485 standard (factory set), with ASCIIModbus (and optional DNP3.0) protocols. 120 user assignable registers are available in ASCIIModbus protocols.

Eight relays are provided for energy pulsing (KYZ) or alarm and remote control. Contacts of six relays may switch loads up to $250 \mathrm{~V}, 5 \mathrm{~A}$ AC and are recommended for alarm and remote control; contacts of two relays may switch loads up to $250 \mathrm{~V}, 3 \mathrm{AAC}$ and may be used for energy pulsing.
One optically Isolated analog output is provided for remote monitoring or control. Current loop options are $0-20$ and $4-20 \mathrm{~mA}$. The analog output must be used with an external power supply.

Four counters are provided for counting user-defined events or their duration. These can be used for counting total operation time of generators or overload time of transformers or power lines. The counters are operated and released by user-defined triggers.
One digital input can be used as a status input for monitoring extemal contacts or as an extemal synchronization input for power demand interval synchronization. When no external synchronization pulse is provided, the power demand interval can be synchronized through communications.

Three user-selectable options are provided:
Power calculation mode

## Energy rollover value

This option specifies the point at which the energy value rolls over to zero.

## Phase energy calculations mode

This option is used to enable or disable phase energy calculations.

## Measured Parameters

Note: Real-time values are measured over 1 cycle of fundamental frequency; Average values are of 8,16 or 32 reat-lime values

为碞			2- 2	Output	
Earamotercemo	Splayt	com	Soặọ	Pulse	Alarm
Average Amps, Volis, Frequency			$\begin{aligned} & \$=\text { setup } \\ & \text { \# }=\text { setu } \end{aligned}$	via PC via panel	
Average RMS voltage per phase.L-N	$v$	V	\#\$		\$ $\$$
Average RMS voltage per phase L-L (1)	$\checkmark$	V	(1)		(1)
Average RMS current per phase	$v$	$v$	\#\$		\#\$


$\square$	20isich		Tr ${ }^{\text {a }}$		
	\%play		Whajog	(PYMs\%	Alarm
Average frequency	$\checkmark$	$V$	\#S		\#\$
Average neutral current	$V$	$V$	\#\$		\# ${ }^{\text {\% }}$
Voltage \& current unbalance	V	$V$			
Amps 8 Volt Demand Parameters					
Ampere demand per phase		$V$			\#\$
Volt demand per phase		$v$			\#\$
Ampere maximum dermand per phase	$v$	$V$			
Voltage maximum demand per phase	V	V			
Average Power Values					
Average active power per phase	$v$	$V$			
Average reactive power per phase	$V$	$v$		.	
Average apparent power per phase	$V$	$V$			
Average total active power	$V$	$V$	\#\$		\#\$
Average total reactive power	$V$	$V$	\#\$		\#
Average total apparent power	$v$.	$V$	\#\$		\#
Average power factor per phase	$V$	$v$			
Average total power factor	$v$	$V$	\#\$		\#\$
Power Demand Parameters					
Active power accumulated demand		$v$	\#\$		\#\$
Apparent power accumulated demand		$V$	\#\$		\#\$
Active power demand		$V$			\#\$
Active power sliding demand		$V$			\#\$
Apparent power demand		$V$			\#\$
Apparent power sliding demand		$v$			\#\$
Active power predicted demand		$v$			\#\$
Apparent power predicted demand		$\checkmark$			\#\$
Active power maximum demand	$v$	$v$			
Apparent power maximum demand	V	$\checkmark$	,		
Energy Per Phase					
Active energy import per phase	V	$V$			
Reactive energy import per phase	V	$v$			
Apparent energy per phase	V	$v$			
Total Energy					
Total active energy import	$V$	V		\#\$	
Total acive energy export	$v$	V		\#\$	
Total reactive energy import	$V$	$v$		\#\$	
Total reactive energy export	V	$V$		\#\$	
Total reactive energy net		V			
Total reactive energy absolute			.	\#\$	
Total apparent energy .	v	V		\#\$	
Min/Max Log.					
Min/Max volts	V	V			

Chapter 1 Introduction
3

Parameter		$\operatorname{com}$	$\square$   장․ Habog	\%quput	Aami
Min/Max amps, neutral current	$v$	$v$			
Min/Max frequency	$v$	$v$			
MinMax kW, kvar, KVA, PF	$v$	$v$			
Real-time Amps, Volts, Frequency					
RT RMS voltage per phase L-N		$v$	\#\$		\#\$
RT RMS voltage per phase L-L (1)		$v$	(1)		(1)
RT RMS current per phase		$v$	\#\$		\# ${ }^{\text {S }}$
RT frequency		$v$	\# ${ }^{\text {\$ }}$		\#\$
RT neutral current		v			
Real-time Power Values					
RT active power per phase		$v$			
RT reactive power per phase		$v$			
RT apparent power per phase		$v$			
RT total active power		V	\#\$		
RT total reactive power		$v$	\#\$		
RT total apparent power		$v$	\# $\$$		
RT power factor per phase		$v$			
RT total power factor		$v$	\#\$		
Real-time Harmonic Values					
RT voltage THD per phase		$v$			\#S
RT current THD per phase		$v$			\#
RT current TDD per phase		$v$			\#S
RT K-Factor per phase		V			\#\$
Average Harmonic Values					
Average Voltage THD per phase'	$v$	$v$			
Average Cument THD per phase	$v$	$v$			
Average Cument TDO per phase	$v$	$v$			
Average K-Factor per phase	$v$	$v$			
Fundamantal Frequency Values (H01)					
Voltage \& current per phase		$v$			
kW, PF per phase	V	$v$			
kvar, KVA per phase		$v$			
Total KW, PF	v	$v$			
Total kvar, kVA		$v$			
Individual Harmonics' Distortion					
Voltage harmonics 1-40 per phase		$v$			
Current harmonics 1-40 per phase		$v$			
Odd voltage harmonics 3-39 per phase	$v$				
Odd current harmonics 3-39 per phase	$v$				
High odd voltage harmonics 3-39 triggers					\#\$
High odd current harmonics 3-39 triggers					\#\$


(1) For $4 \operatorname{Ln} 3$ and $3 \operatorname{Ln} 3$ wiring configurations line to line and line to neutral voltages are displayed and transmitted via communication simultaneously; analog output and set points use line to neutral voltages. For other configurations only line to line voltages are used.

## Instrument Dimensions



Figure 1-1 C191HM Dimensions

[^1]
## Chapter 2 Installation

### 2.1 Mechanical Installation

Prepare the panel cutout, $136 \times 136 \mathrm{~mm}$, prior to mounting.
STEP 1: Place the instrument through the cut-out.
STEP 2: Assemble the latches onto the outer wall of the enclosure.
STEP 3: Tighten the screws.


Figure 2-1 Mounting the C191HM

### 2.2 Electrical Installation



### 2.2.1 Power Supply Connection

The power supply can be dedicated-fused, or from a monitored voltage if it is within the instrument's power supply range. Use an external circuit breaker or switch.
$A C$ power supply: line to terminal 12; neutral to terminal 10.
DC power supply: positive to terminal 12; negative to terminal 10.

### 2.2.2 Current Inputs

Connect the instrument to the current transformer as shown in Figures 2-2 through 2-8.

### 2.2.3 Ground

Connect the chassis ground C191HM terminal to the switchgear earth ground using dedicated wire of greater than $2.5 \mathrm{~mm}^{2} / 13$ AWG.

### 2.2.4 Voltage Inputs

Input of 690V (Standard): Use any of the seven wiring configurations shown in Figures 2-2 through 2-8.
Input of 120 V (Option U): 120 V input usually implies use of a potential transformer (PT). The PT requires use of any of the four wiring configurations shown in Figures 2-4 through 2-7.

Wiring Configuration (See parameter setup instructions in Section 4.1)	Wlring	
	Setup Mode	Connection
3-wire direct connection using 2 CTs (2-element)	3dir2	Figure 2-2
4-wire WYE direct connection using 3 CTs (3-element)	4Ln3 or 4LL3.	Figura 2-3
4-wire WYE connection using 3 PTs, 3 CTs (3-element)	4Ln3 or 4LL3	Figure 2-4
3-wire open delta connection using 2 PTs, 2 CTs (2-element)	30 P 2	Figure 2-5
3-wire open delta connection using 2 PTs, 3 CTs ( 2 -element)	30P3	Figure 2-6
4-wire WYE connection using 2 PTs, 3 CTs ( 2 m-element)	3 Ln 3 or3Ll 3	Figure 2-7
4 -wire delta direct connection using 3 CTs (3-element)	4Ln3 or 4LL3	Figure 2-8



Figure 2-2
Three Wire Direct
Connection Using 2 CTs (2-element)
Wiring Mode $=3$ dir2 .
Chapter 2 Installation 9


10 Chapter 2 installation


Chapter 2 Installation
11


Figure 2-8 Four Wire Delta Direct Connection Using 3 CTs (3 element) Wiring Mode $=4 \mathrm{LL} 3$ or 4 L nS

2:2.5 -Relay
Eight relays are provided for energy pulsing, alarms or remote control.


Figure 2-9 Relay Connection

### 2.2.6 Status Input

One status input is provided for status monitoring or external synchronization input for power demand period.


Figure 2-10 Status Input Connection

### 2.2.7 Analog Output

The C191HM provides one optically isolated analog output with current output options of $0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$ (current loop load of up to 500 Ohm ). The analog output must be used with a 24 V DC external power supply.


Figure 2-11 Analog Output Connection

### 2.2.8 Communications

The C191HM is provided with an RS-232 or RS-485 communication port. Connections can be made as follows:

RS-232: distance of up to 15 meters, one C191HM to one computer/PLC, using a flat or twisted pair cable of $0.33 \mathrm{~mm} 2 / 22$ AWG
RS-485: distance of up to 1200 meters, up to 32 instruments on one multi-drop line


Figure 2-12 Connection for 25-pin Modem Connector


Figure 2-13 Connection for 9-pin Modem Connector


Figure 2-14 RS-232 Simple 3-Wire Computer Connection, 25-pin


Figure 2-15 RS-232 Simple 3-Wire Computer Connection, 9-pin


Figure 2-16 RS-485 Multi-drop Computer Connection
NOTE: Where an RS-232/RS-485 converter is used on a computer connection, Rt is not applicable since it is built in to the converter.

Activity on the communications port lines is indicated via the TXD and RXD LEDs, on the front panel and via the Status Information menu (see Chapter 6).
A full description of the communication protocols may be found in the C191HM ASCII, Modbus and DNP3.0 Communications Manuals provided with your instrument.

## Chapter 3 Using The Menus

Press and release SELECT to enter the setup mode. The primary menus will appear:


- Status Information Menu (see Chapter 6)
- Setup Options Menu
- Selup Change Menu (see Chapter 4)

Press SELECTagain to activate the window of the desired primary menu.
Press ENTER
Select CHG to initialize or modify the instrument setup, or to clear the accumulated values stored in the instrument. Entry to this menu can be protected by a password.


Select StA to view extended status information which may be useful during installation and in certain applications.

Select OPS for viewing (not editing) the instrument setup options.

	$\rightarrow$	OPS	$\rightarrow$	Stera

After selecting either OPS or CHG, the list of setup menus is displayed in the upper window. Figure 3-1 presents a complete menu list. Depending on the model of your instrument, some menus may not appear.

## Password

The Setup Change Menu can be secured by a user-defined password comprised of 4 digits. The instrument is shipped with password protection disabled. To enable password protection, go to the Access Control Menu (see Section 4.10)

The Password Menu appears if password protection is enabled.
PASS园 0000 E
To enter a password:
$\checkmark$ Set the first digit using the up and down arrow keys.
$\checkmark$ Press SELECT to advance to the next digit.
$\checkmark$ Set the other password digits in the same manner.
$\checkmark$ Press ENTER to continue setup. If your password is incorrect, you will return to the Primary Selection Menu.


Figure 3-1 Menu Structure

78 Chapter 3 Using the Menus

## Chapter 4 Setup Menus

NOTE: Instrument setup can be performed directly on the front panel using the setup menus or via communications using PComTest communication software. PComTest is supplied with your instrument and provides full setup capabilities for your instrument For information on using PComTest refer to the user documentation supplied with your instrument.

Setup	Display	PComTest		
Basic	+	+		
Commúnication port	++	+		
User Selectable options	+	+		
Analog output	+	+		
Digital inputs	+	+	++ Recommended method	
AlarmVvent set points	+	+		
Pulsing output	+	+		
Pulse counter	+	+		
Assignable registers	+	++		
Display	++	-		

### 4.1 Basic Setup Menu

This menu contains the basic configuration options which define the general operating characteristics of your instrument, such as wiring mode, input scales, the size of the RMS averaging buffer, etc. Table 4-1 lists the basic setup options, their code names and applicable ranges.

Activate the middle window to scroll through the list of available options, and then activate the lower window to set the option value.

## bASc目 <br> ConF: <br> 4L-n :

## To select and view a setup option:

$\checkmark$ Press SELECT to activate the middle window
$\checkmark$ Use the up/down arrow keys to scroll to the desired option. The current value for this option appears in the lower window.
To change the value of the selected option:
$\checkmark$ Press SELECTO make the lower window active.
$\checkmark$ Press the up/down arrow keys to scroll to the desired value.
$\checkmark$ Press ENTER to store the selected value, or press ESC O quit the setup menu.

Table 4-1 Basic Setup Options (* default setting)

ConF	Wiring mode	30P2	3-wire open delta using 2 CTs (2 element)
		4Ln3*	4 wire Wye using 3 PTs (3 element), line to neutral voltage readings
		3dir2	3 -wire direct connection using 2 CTs (2 element)
		4113	4-wire Wye using 3 PTs (3 element), line to line voltage readings
		30P3	3-wire open delta using 3 CTs (21/2 element)
		$3 \operatorname{Ln} 3$	4-wire Wye using 2 PTs ( $21 / 2$ element), line to neutral voltage readings
		3LL3	4-wire Wye using 2 PTs ( $21 / 2$ element), Ine to line voltage readings
Pt	PT ratio	$10^{*}-6,500.0$	The phase potential transformer ratio
Ct	CT primary current	$\begin{aligned} & 1-6,500 A \\ & (5 *) \end{aligned}$	The primary rating of the phase current transformer
d.P	Power demand period	$\begin{aligned} & 1,2,5,10 \\ & 15^{*}, 20,30 \\ & 60, \mathrm{E} \end{aligned}$	The length of the demand period for power demand calculations, in minutes. $E=$ external synchronization (1)
n.dp	Number of pówer demand periods	$\begin{aligned} & 1-15 \\ & (1) \end{aligned}$	The number of demand periods to be averaged for sliding window demands   1 = block interval demand calculation
AdP	Ampere/Volt demand period	$\begin{aligned} & 0-1800 \mathrm{~s} \\ & \left(900^{4}\right) \end{aligned}$	The length of the demand period for volt/ampere demand calculations $0=$ measuring peak current
buF	Averaging buffer size	8*,16,32	The number of measurements for RMS sliding averaging
rSt	Reset enable/disable	diS* , En	Protects all reset functions, both via the front panel or communications.
Freg	Nominal frequency	$50,60 \mathrm{~Hz}$ (1)	The nominal power utility frequency
LoAd	Maximum demand load current	$\begin{aligned} & 0-6,500 A \\ & (0 *) \end{aligned}$	The maximum demand load current used in TDD calculations ( $0=$ CT primary current)

(1) When the power demand period is specified in minutes, synctronization of the demand interval can be made through communications (see the C191HM ASCIMModbus Reference Guides) or via the front panel (see Section 4.11). If the power demand period is set to External Synchronization, an external synchronization pulse denoting the start of the next demand interval can be provided through a digital input or can be simulated by using the synchronization command sent via communications.
(2) 60 Hz default for North America; elsewhere, default is 50 Hz .

NOTES

1) The maximum value for CT PRMARY CURRENT $\times$ PT RATIO is $10,000,000$. If this product is greater, power related values will be zeroed.
2) Aways specify WARING MODE, PT RATIO and CT PRIMARY CURRENT prior to setting up alarm setpoints, otherwise the alarm/event setpoints which use these parameters will automatically be disabled.

### 4.2 Communications Port Setup Menu

## 

This menu allows you to access the communications port options that the C191HM uses to communicate with a master computer. Table 42 lists the communications options, their code names and applicable choices.

Activate the middle window to scroll through the list of available options, and then activate the lower window to set the option value.

## To select and view a setup option:

$\checkmark$ Press SELECTIO activate the middle window.
$\checkmark$ Use the up/down arrow keys to scroll to the desired option. The option setting will appear in the lower window.
To change the selected option:
$\checkmark$ Press SELECTIT activate the lower window.
$\checkmark$ Press the up/down arrow keys to scroll to the desired value.
$\checkmark$ Press ENTER to store the selected value or press ESC fo quil the setup menu.

Table 4-2 Communications Options (* default setting)

Prot	Communications protocol	ASCll* ru	ASCII protocol Modtus RTU protocol
Addr	Address	$\begin{aligned} & \text { 0*-99 ASCII } \\ & \text { 1+-247 Modbus } \\ & \hline \end{aligned}$	Powermeter address
baud	Baud rate	110   300   600   1200   2400   4800   $9600+$   19.20	110 baud 300 baud 600 baud 1200 baud 2400 baud 4800 baud 9600 baud 19,200 baud
dALA	Data format	$\begin{aligned} & 7 E \\ & 8 n * \\ & 8 E \\ & \hline \end{aligned}$	7 bits, even parity   8 bits, no parity   8 bits, even parity
CPPtb	ASCII compatibility mode	dis*, En	Disableslenables ASCII compatibility mode. For more information, see ASCII Communications Protocol Reference Guide

### 4.3 Digital Input Setup Menu

## 

This menu is used to set up a digital input provided by the C191HM.
The digital input can be configured as:

- a status input to monitor external contact status, or
- an extermal synchronization pulse input to receive an extemal synchronization pulse indicating the beginning of a new demand interval for power demand measurements.

The setup menu is used for allocating an external synchronization pulse input. If you do not allocate the digital input as an external synchronization input, it is automatically configured as a status input
External To change the digital input allocation: synchronization $\checkmark$ Press SELECT to activate the middle window.
input
$\checkmark$ Use the up/down arrow keys to set the input allocation status.

E.Snc 园
1 园
\%

$\checkmark$ Press ENTER to store your new inputs allocation.
$\checkmark$ Press ESC to leave the allocation unchanged or to quit the menu.
"1" indicates that the input is allocated as the external synchronization pulse input; " 0 " indicates that the input is allocated as the status input.

## NOTES

1. A digital input configured as the status input can be monitored via the Status Information Menu (see Chapter 6) and communications.
2. If the digital input has been allocated as the extemal synchronization pulse input, synctronization of the demand interval through communications is not available.

### 4.4 Analog Output Setup Menu

[This section is relevant to instruments ordered with this option.]


This menu allows you to set up an output value and its zero and full scales for the internal analog output Table 4-3 explains the analog output setup options, and Table 4-4 lists all measurement parameters that can be directed to analog output.


## To view the setup options for the analog output:

$\checkmark$ Press SELECT to activate the middle window.
$\checkmark$ Use the up/down arrow keys to scroll to the desired option. The value associated with this option is displayed in the lower window.
To change the setup options for the selected channel:
$\checkmark$ Press SELECT to activate the lower window.
$\checkmark$ Use the up/down arrow keys to scroll to the desired value.
$\checkmark$ Press ENTER to store the selected value, or press ESC to leave the value unchanged.
$\checkmark$ Press ENTER again to store the setup for the channel.
To quit the setup without changes:
$\checkmark$ From the middle or lower window, pressESC].
To quit the menu:
$\checkmark$ From the upper window, press ESC or ENTER
NOTES

1. Except for the signed power factor, the output scale is linear within the value range. The scale range will be inverted if the full scale specifted is less than the zero scale.
2. The output scale for the signed power factor is symmetrical with regard to $\pm 1.000$ and is linear from -0 to -1.000 , and from 1.000 to +0 (note that $-1.000 \cong+1.000$ ). Negative power factor is output as $[1.000$ mirus measured value], and non-negative power factor is output as $[+1.000$ minus measured value]. To define the entire range for power factor from -0 to +0 , the scales would be specified as $-0.000 / 0.000$.
3. Each time you select the output parameter for the analog channel, its zero and full scales are set by default to the lower and upper parameter limits, respectively.

Table 4-3 Analog Output Setup Options

OutP	Output parameter	The output parameter for the analog output channel
Lo	Zero scale (0/4 mA)	The reading of the parameter corresponding to a zeroscale current output
Hi	Full scale (1/20 mA)	e reading of the paran rent output


none	Output disabled		0
r. $\cup 1$	Vottage L1/212	VkVV	0 to Vmax
r. U2	Voltage L2/23	VikV	0 to Vmax
r. 43	Voltage L3/231	VikV	0 to Vmax
r. C 1	Current $\mathrm{L1}$	A	0 to $\mathrm{m}_{\text {max }}$
r. ${ }^{\text {C2 }}$	Current L2	A	0 to $\mathrm{m}_{\text {max }}$
r. Cl	Current L3	A	0 to max
r. $P$	Total KW	SWM M	- Pmax to Pmax
r. $q$	Total kvar	kvarMivar	-Pmax to Prax
r. S	Total ${ }^{\text {VVA }}$	kVAMVA	0 to Pmax
r. PF	Total PF		-0.000 to 0.000
r. PF.LG	Total PF lag		0 to 1.000
r. PF.Ld	Total PF lead		0101.000
r. Fr	Frequency (1)	H2	0 to 100.00
Averago Moasuremonter			
A. $U_{1}$	Votage L1/L12	V/kV	0 to Vmax
A. $\cup^{2}$	Vottage L2/23	VkV	010 Vmax
A. 43	Voltage L3/L31	VkV	0 to Vmax
A. Cl	Current L1	A	0 to lmax
A. C 2	Current $\mathrm{L}_{2}$	A	0 tolmax
A. C3	Current L3		0 10 max
A. $P$	Total kW	KWMON	-Pmax to Pmax
A. q	Total kvar	kvar/Mvar	- Pmax to Pmax
A. ${ }^{\text {S }}$	Total KVA	kVAMVA	0 to Pmax
A. PF	Total PF		-0.000 to 0.000
A. PF.LG	Total PF lag		0 to 1.000
A. PF.Ld	Total Pf lead		0 to 1.000
A. neU.C	Neutral current		0 to Imax
A. Fr	Frequency (1)	H	0 to 100.00
Accd.P	Accumulated kW	KWMwn	0 to Pmax
Accd. ${ }^{\text {S }}$	Accumulated kV	kVAMVA	0 to Pmax

Imax ( $20 \%$ over-range) $=1.2 \times$ CT primary current [ A ]
Direct wiring (PT Ratio $=1$ ):
$\mathrm{Vmax}(690 \mathrm{~V}$ input option) $=828.0 \mathrm{~V}$
$V \max (120 \mathrm{~V}$ input option $)=144.0 \mathrm{~V}$
Pmax $=(I \max \times V \max \times 3)[\mathrm{kW} \times 0.001] @$ wiring modes 4Ln3, 3Ln3
$P_{\max }=(I \max \times V \max \times 2)[\mathrm{kW} \times 0.001] @$ wiring modes 4l13, 30P2, 3+2,30P3,313

NOTE:_Pmaxis rounded to nearest-whole KW .units
If P max is more than 9999.000 KW , it is truncated to 9999.000 kW
Wiring via PTs (PT Ratio > 1):
Vmax $(690$ V input option) $=144 \times$ PT Ratio [V]
Vmax ( 120 V input option) $=144 \times$ PT Ratio $(\mathrm{M})$
$P_{\max }=\left\langle\operatorname{lmax} \times V_{\max } \times 3\right.$ )/1000[MW $\left.\times 0.001\right] @$ wiring modes 4Ln3, 3Ln3

NOTE: Pmax is rounded to nearest whole kW units.
(1) The actual frequency range is $45.00-65.00 \mathrm{~Hz}$

### 4.5 Pulsing Output Setup Menu



This menu allows you to program any of the elght relays provided by your C191HM instrument to output energy pulses. Relays \#7 and \#8 are especially recommended for use as pulsing relays because of their high endurance. Available pulsing parameters are listed in Table 4-5.


## To select a pulse relay:

$\checkmark$ Use the up/down arrow keys to scroll to the desired relay. The pulsing parameter assigned to the relay is displayed in the middle window, and the amount of unithours per pulse is displayed in the lower window.
To change the pulse relay setup:
$\checkmark$ Press [ [EELECT]:o activate the middle window.
$\checkmark$ Use the up/down arrow keys to scroll to the desired output parameter. Selecting nonE disables pulsing through this relay.
$\checkmark$ Press (SELECT)to activate the lower window.
$\checkmark$ Use the up/down arrow keys to set the amount of unithours per puise. The available range is 1-9999.
$\checkmark$ Press ENTER to store the new setup, or press ESC to quit the setup without changes.
To quit the pulsing setup menu:
$\checkmark$ From the upper window, pres ESC or ENTER
Table 4-5 Pulsing Output Parameters

none	Output disabled	
Ac.Ei	Active energy import	kWh import (positive)
Ac.EE	Active energy export	kWh export (negative)
rE.EI	Reactive energy import	kvarh import (inductive)
rE.EE	Reactive energy export	kvarh export (capacitive)
rE.Et	Reactive energy tolal	kvarh total (absolute)
APEI	Apparent energy total	kVAh total

## NOTES

1. If your instrument is not equipped with the optional relay, then this setup parameter will not appear on the display.
2. You will not be able to store your setup in the instrument if you assigned a parameter to relay output with a zero number of unit-hours per pulse.
3. If a relay you allocated for pulsing has been manually operated or released, it reverts automatically to normal operation.
4. If a relay you allocated for pulsing has been engaged by an alarm/event setpoint, the setpoint is automatically disabled.

### 4.6 Alarm/Event Setpoints Setup Menu



Your instrument provides 16 alarm/event setpoints that can monitor a wide variety of events; in turn, these events can be programmed to trigger specific actions. This menu is used to specify the events to be monitored by the setpoints, and actions to be triggered by those events.
To program a setpoint, you might need to define up to six setup parameters which include: the setpoint trigger parameter, operate and release limits, optional operate and release delays, and the setpoint action. Table 46 explains the setpoint setup parameters. For the entire list of available triggers and setpoint actions, refer to Tables 4-7 and 4-8.
Example:


Setpoint action The action to be triggered is operation of relay\#1.

To select a setpoint:
$\checkmark$ Scroll to the desired setpoint using the up/down arrow keys.
To view the setup options for the setpoint:
$\checkmark$ Press SELECTIt activate the middle window.
$\checkmark$ Use the up/down arrow keys to scroll to the desired setup option. The value associated with this option is displayed in the lower window.

## To change the selected setup option:

$\checkmark$ Press SELECT to activate the lower window.
$\checkmark$ Use the up/down arrow keys to scroll to the desired value.
$\checkmark$ Press ENTER to store the new value.
$\checkmark$ Press ESC to leave the value unchanged.
To store your new setup for the setpoint:
$\checkmark$ From the middle window, pres EENTER.
To quit the setpoint setup without changes:
$\checkmark$ From the middle window, pres ESC.
To quit the setpoints setup menu:
$\checkmark$ From the upper window, press ESC or ENTER
NOTES

1. If your instrument is not equipped with the optional relay, then these setup parameters will not appear on the display.
2. When you enter the setpoints setup menu at the protected level, monitoring setpoints is temporarily suspended until you return to the main setup menu.
3. Each time you select a new trigger parameter, the operate and release limits are set by default to zero.
4. You will not be able to store your setpoint setup to the instrument if a setpoint action is directed to a relay allocated for pulsing.
5. The setpoint action directed to a relay output can be overridden using commands sent via communications. A relay can be manually operated or released. When the relay reverts to normal operation, it is automatically retumed under setpoint control.

Table 4-6 Setpoint Setup Options (middle window)

Code	Roption	Descripiout 0 ,
trig	Trigger parameter	The measurement parameter or signal to be monitored by the setpoint.
$\begin{aligned} & \text { On } \\ & \text { OFF } \end{aligned}$	Operate limit Release Emit	The threshold at which the setpoint becomes operative. The threshold at which the setpoint Is released (bermes inoperative).
Ond	Operate delay	The time delay ( 0.1 second resolution) bafore operation when the operate condition is fulfilled.
OFF' ${ }^{\text {d }}$	Release delay	The time delay ( 0.1 second resolution) before release when the release condition is fulfilied.
Act	Setpoint action	The attion performed when the setpoint is operative.

Table 4-7 Setpoint Triggers (lower window, when middle window is triG)



A. PF.Ld	Low total PF Lead		0109.000
ArneU.C	High neutral current	A	0 to Imax
Ar Hi.Fr	High frequency 0	Hz	0 to 100.00
Ar Lo.Fr	Low frequency 0	Hz	0 to 100.00
Hid.U1	High volt demand L1 (3)	V	0 to Vmax
Hid.U2	High volt demand L2 ${ }^{(1)}$	$V$	0 to Vmax
Hid.U3	High volt demand L3 (3)	V	0 to Vmax
Hid.C1	High ampere demand L1	A	0 to Imax
Hid.C2	High ampere demand L2	A	0 to Imax
Hid.C3	High ampere demand L3	A	0 to Imax
Hi d.P	High block interval kW demand	kW	0 to Pmax
Hi d.S	High block interval kVA demand	kVA	0 to Prmax
Hi Sd.P	High sliding window KW demand	KW	0 to Pmax
Hi Sd.S	High sliding window KVA demand	kVA	0 to Pmax
Hi Ad.P	High accumulated kW demand	kW	0 to Prmax
Hi Ad.S	High accumulated kVA demand	kVA	0 to Pmax
Hi Pd.P	High predicted sliding window kW demand	kW	0 to Ptmax
HiPd.S	High predicted sliding window kVA demand	kVA	0 to Pmax
Hd03.U	High voltage harmonic H03	\%	0 to 100.00
Hd05.U	High voltage hamonic H05	\%	0 to 100.00
Hd39.U	High voltage harmonis H39	\%	0 to 100.00
Hd03.C	High current harmonic H03	\%	0 to 100.00
Hd05.C	High current harmonic H05	\%	0 to 100.00
Hd39.C	High current harmonic H39	\%	0 to 100.00

For parameter limits, see notes to Table 4-4.
(1) The setpoint is operated when the actual phase sequence does not match the indicated normal phase rotation.
(2) The actual frequency range is $45.00-65.00 \mathrm{~Hz}$
(3) When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

## Table 4-8 Setpoint Actions (lower window, when middle window is Acf)

\% 6 ¢	
NonE	No action 0
aldr	Assert local alarm (0)
rEL. 1	Operate relay \#1 ${ }^{(3)}$
rEL. 2	Operate relay \#2
rel. 3	Operate relay \#3
rEL. 4	Operate relay \#4
rel 5	Operate relay \#5
rell 6	Operate relay \$ $\mathbf{H}^{6}$
rel. 7	Operate relay \#7
rEL. 8	Operate relay \#8
In.Cn. 1	Increment counter \#1
In.Cn. 2	Increment counter \#2
m.Cn. 3	Increment counter \#3
In.Cn. 3	Increment counter ${ }^{\text {d }}$
in.Cn. 4	Increment counter\#4
ti.Cn. 1	Count operating time using counter \#1 (4)
ti.Cn. 1	Count operating time using counter \#2
İ.Cn. 1	Count operating time using counter
ti.Cn. 1	Count operating time using counter \#4

(1) When a setpoint is operated, its status is always stored to the alarm status register even if no action is assigned to the setpoint. The alam status register can be polled and cleared through communications.
(8) This action causes the alarm LED on the front panel to blink that glves the user a local alarm Indication. The alarm LED operates in latched mode, ie., even if an alam condition disappears, the alarm LED is still blinking until the user acknowledges the alarm from the front panel (see Section 5.1). An alarmLED can be operated from any number of setpoints using an OR scheme.
(3) Alarm relays operate in unlatched mode. This means that a relay is operated while an alarm condition is present and is automatically released when an alarm condition disappears. Each relay can be operated from any number of setpoints using an OR scheme, i.e., a relay will bo in operate state while either of the alarm conditions is still present.
(4) This action converts a common event counter to the time counter which measures time at 0.1 hour resolution while the setpoint is in the operated state. Each time counter has a non-volatile shadow counter that counts time at 1 second resolution before the corresponding time counter is incremented. The time counters can be inspected via the Status information Menu. They are labeled by an hour mark in the middle window.

### 4.7 Relay Operation Control Menu 

This menu allows you to set the relay operation mode: non-failsafe or failsafe. Failsafe relay operation is the opposite of normal operation where-relay contacts are closed when a relay is operated (activated), and are open when a relay is released (de-activated). In failsafe mode, an alarm is activated by a norenergized relay which will open in all cases when an alarm condition is present or an alarm setpoint is not operational either due to a loss of control power or due to corruption of the setpoint setup configuration. A failsafe relay is closed only if it is under setpoint control and no alarm conditions exist, or if it is manually operated via communications.


To select a relay:
$\checkmark$ Press SELECT to activate the middle window, and then use the up/down arrow keys to scroll to the desired relay.
To change the relay operation mode:
$\checkmark$ Press SELECTto activate the lower window.
$\checkmark$ Use the up/down arrow keys to set the desired option. Select nor for normal (non-failsafe) relay operation, or select FSAFE for failsafe relay operation.
$\checkmark$ Press ENTER to store your new selting or press [ESC] to leave your previous setting unchanged.
To quit the setup menu:
$\checkmark$ From the middle window, press ESC or ENTER.

## NOTES

1. You will not be able to change the relay operation mode if a relay has been allocated for pulsing.
2. When a failsafe relay is allocated for pulsing, it automatically reverts to normal operation.

### 4.8 Display Setup Menu <br> 

This menu allows you to view and change display properties. Table 4-9 lists available options with their code names and applicable ranges.

Table 4-9 Display Options (* default setting)


[^2]
## 4．9 User Selectable Options Menu 

This menu allows you to change options which relate to the instrument features and functionality．Table 4－10 lists all available options with their code names and applicable ranges．

OPTS图
P．CAL圈
PEAC閣

## To select an option：

$\checkmark$ Press SELECT to activate the middle window，and then use the up／down arrow keys to scroll to the desired option．
To change the selected option：
$\checkmark$ Press SELECT to activate the lower window．
$\checkmark$ Use the up／down arrow keys to set the desired value．
$\checkmark$ Press ENTER lo store your new setting or ESC o leave the previous setting unchanged．
To quit the display setup menu：
$\checkmark$ From the middle window，pres ESC or ENTER

Table 4－10 User Seléctable Options（＊default setting）

P．CAL	Power calculation mode（1）	$\begin{aligned} & \text { rEAC } \\ & n A c t \end{aligned}$	Using reactive power Using non－active power
roll	Energy roll value（1）	$\begin{aligned} & 10 . E 4 \\ & 10 . E 5 \\ & 10 . E 6 \\ & 10 . E 7 \\ & 10 . E 8^{\star} \end{aligned}$	$\begin{aligned} & 10,000 \mathrm{kWh} \\ & 100,000 \mathrm{kWh} \\ & 1,000,000 \mathrm{kWh} \\ & 10,000,000 \mathrm{kWh} \\ & 100,000,000 \mathrm{kWh} \end{aligned}$
Ph．En	Phase energy measurements	dis＇，En	Enables／disables measurements of energies per phase

（1）Power calculation mode（P．cAL）：
Mode 1：Reactive power calculation（rEAc）
Active power $P$ and reactive power $Q$ are measured directly and apparent power

$$
S=\sqrt{P^{2}+Q^{2}}
$$

Mode 2：Nor－active power calculation（nAct）
Active power is measured directly，apparent power $S=V \times I$（where $V, I-\mathrm{ms}$ voltage and currents）and non－active power $N=\sqrt{S^{2}-P^{2}}$
Mode 1 is recommended for electrical networks with low harmonic distortion（voltage THD $<5 \%$ ，current $\mathrm{THD}<10 \%$ ）；Mode 2 is recommended for all other cases．
i.e., energy is displayed up to 9.999 MWh (Mvarh, MVAh) with resolution 0.001 MWh .

$\begin{aligned} & \text { Rollover } \\ & \text { Value. } \end{aligned}$	Maximum Energy kWh (kvarh, kVAh)	Maximum Display Reading MWh (Mvarh, MVAh)	Display Resolution MWh (Mvarh, MVAh)
$10 . \mathrm{E}$	9,999	9.999	0.001
10.E5	-99,999	99.999	0.001
10.E6	999,999	999.99	0.01
10.57	9,999,999	9,999.9	0.1
$10 . \mathrm{E} 8$	99,999,999	199,999	1

The roll value may be changed in accordance with the average load of the power fine For example, if average power is 400 kW and the counter must be reset every 3 months ( 2160 hours), then energy during this period equals 864000 kWh ( 6 digits) and the roll vaiue $=10 . \mathrm{E}$.

## 4．10 Access Control Menu


This menu can be only accessed via the Setup Change Menu（CHG）．It is used in order to：
－change the user password
－enable or disable password check

## To view an option setting：

$\checkmark$ Press SELECT to activate the middle window．
$\checkmark$ Use the up／down arrow keys to scroll to the desired option（PASS or Ciri）．


ACCS $\mathbf{R}^{2}$
PASS目
8780 目


	Accs ${ }^{\text {柬 }}$
	Ctry
	OFF 园

To change the passworct
$\checkmark$ Press SELECTIto activate the lower window．
$\checkmark$ Use the up／down arrow keys to modify the password．The password can be up to four digits long．
$\checkmark$ Press ENTER to store your new password，or ESC to leave the password unchanged．
To enable／disable password checking：
$\checkmark$ Press SELECT to activate the middle window，and then use the up／down arrow keys to move to the CtrL entry．
$\checkmark$ Press SELECTIT activate the lower window．
$\checkmark$ Use the upldown arrow keys to change the password checking status：seled OFF to disable password protection，or select On to enable password protection．
$\checkmark$ Press SELECT to store your new option，or ESC）leave the option unchanged．
To quit the setup menu：
$\checkmark$ From the middle window，press ESC O ENTER




### 4.11 Reset/Synchronization Menu

## 

This menu allows you to reset to zero the accumulators and Min/Max registers in your instrument, and also to synchronize the power demand interval. The menu can be only accessed via the Setup Change Menu (CHG). If the reset is disabled from the Basic Sefup Menu (see Section 4.1), you will not be able to enter this menu.
The following designations are used in the menu to specify a data location to be affected:

EnrG	Resets total accumulated energies
dind	Resets all total maximum demands
P.dnd	Resets total power maximum demands
A.dnd	Resets volt/ampere maximum demands
Cnt	Resets all event/time counters
Cnt1	Resets counter\#1
Cnt2	Resets counter\#2
Cnt3	Resets counter\#3
Cnt4	Resets counter \# 4
Lo.Hi	Resets Min/Max registers (does not affect maximum demands)
d.Snc	Provides synchronization of the power demand interval (see NOTES below)



To reset the desired locations:
$\checkmark$ Press SELECT to activate the middle window, and then use the up/down arrow keys to scroll to the desired data location entry.
$\checkmark$ Press SELECT to activate the lower window.
$\checkmark$ Press and hold ENTER for about 5 seconds until the do label is replaced with done, and then release the key. You will return to the middle window.
$\checkmark$ Press Esc to quit the menu.

## NOTES:

1. If the $C H G$ menu is not secured by a passw ord, fast reset of the Min/Max registers, maximum demands and energies can be done from the data display mode (see Section 5.1) and counters from the Status Information Menu (see Section 6.1) without entering the reset menu.
2. If you select the d. Snc entry, take into consideration the following:

- Synchronization of the instrument's internal timer requires that the power demand period be specified in minutes (see Section 4.1, Basic Setup Options). If more than 30 seconds pass from the beginning of the current demand interval, the new demand interval slarts immediately; otherwise synchronization is delayed until the next demand interval.
- Synchronization occurs exactly 5 seconds from the time you first press EENTER while you hold the key.


## Chapter 5 Data Display

### 5.1 Navigating in the Display Mode

The front panel has a simple interface that allows you to display numerous measurement parameters in up to 45 display pages. For easier reading, the parameters are divided into three groups, each accessible by a designated key. These are:

- Common measurements
- no selection key
- MinNMax measurements
- selected by the [MAXMIN key
- Total Harmonic measurements
- selected by the MESC key
- Individual Harmonics measurements
- Energy measuroments
- selected by the HJESC key
- selected by the ENERGY key

The up/down arrow keys are used as follows in the Display Mode:


Scrolls through the pages downward (forward)
Scrolls through the pages upward (backward)
$\pm \downarrow$ Returns to the first page within current measurement group
$\rightarrow$ When pressed for 5 seconds, clears the alarm LED


The front panel display is updated approximately twice per second; you can adjust the display update rate via the Display Setup Menu (see Section 4.8). Table 5-1 lists all displayed parameters and their LED indicators.

## Load Bar Graph

The load bar graph displays the amount, in percent, of the current load with respect to user-defined nominal load current. The highest current measured by the C191HM is divided by the nominal load current as delined in the Display Setup Menu (see Sectlon 4.8) and expressed as a percent by the LEDs ( $40 \%$ to $110 \%$ ) which are lit. For example, if all LEDs up to and including $90 \%$ are lit, this means that the load is $90 \%$ of the nominal load current. If the nominal load current is set to 0 , it is taken from the CT primary current setup.

## Alarm LED

The blinking Alarm LED gives you an alarm indication. It is controlled by the alarm/event setpoints (see Section 4.6) and operates in latched mode. Even if alarm conditions are no longer present, the alarm LED will continue to blink. To clear the alarm LED, press the up/down arrow keys simultaneously for 5 seconds.
Auto Scroll
If display Auto Scroll option is enabled (see Section 4.8), the common measurements display (main screen) will scroll automatically after 30 seconds of uninterrupted use.
$\checkmark$ To stop auto scrolling at the current page, press either arrow key.

## Auto Return to the Main Screen

If display Auto Return option is enabled (see Section 4.8), the display will automatically return to the main screen from any other measurement screen after 30 seconds of uninterrupted use.

## Fast Reset of Accumulated Data

When changing data via the front panel is not secured by a password, you can reset the Min/Max registers, maximum demands and energies from the display mode without entering the reset menu.

## NOTES

1. The common measurements display does not have a designated indicator LED. If no indicator LED is lit up below the display, this means that the common measurement parameters are being displayed at this time. To retum to the common measurements from another group, press the illuminated key until it goes out.
2. When you move to another measurement group, the instrument stores your last location; when you retum to the previous group, the instrument restores the last page. At power up, the instrument always returns to the common measurements group and shows you the last page that was displayed prior to loss of power.

## Selecting a Display Page

$\checkmark$ Press the down/up arrow keys to scroll through display pages.

## Selecting Common Measurements

$\checkmark$ Press the key pointed to by the illuminated round LED below the front panel display. If no LED is lit up, this means that the front panel displays the common measurements parameters.

## Selecting Min/Max Measurements

$\checkmark$ Press the $\operatorname{MAXMiN}$ key. Use the up/down arrow keys to scroll through Min/Max measurements.

## Selecting Total Harmonic Measurements

$\checkmark$ Press the HESC key untll the THDTDDD LED is illuminated. Use the up/down arrow keys to scroll through the different harmonic parameters.

## Selecting Individual Voltage Harmonics Measurements

$\checkmark$ Press the H/ESC key until the HARMONICS LED is illuminated and volts LEDs at the right are lit. Use the up/down arrow keys to scroll through the different harmonics readings.

## Selecting Individual Current Harmonics Measurements

$\checkmark$ Press the H/ESC key until the HARMONICS LED is illuminated and amps LEDs at the right are lit. Use the up/down arrow keys to scroll through the different harmonics readings.

## Selecting Energy Measurements

$\checkmark$ Press the ENERGY key. Use the up/down arrow keys to scroll through the different energy readings.

## Fast Reset of Accumulated Data

$\checkmark$ Select a display page where the data you want to reset is displayed. To reset:

- Min/Max log registers: select a Min/Max page from the Min/Max measurements display (where a MAX or MIN round LED is illuminated).
- Ampere and volt maximum demands: select the ampere or volt maximum demand page from the Min/Max measurements display (where a MAX DMD LED is illuminated, and volts or amps LEDs at the right are lit).
- Power maximum demands: select the power maximum demand page from the Min/Max measurements display (where a MAX DMD LED is illuminated, and KVAMMVA and kW/MW LEDs at the right are lit).
- Total and phase energies: select the energy measurements display.
$\checkmark$ While holding the SELECTKey, press and hold ENTER For about 5 seconds. The displayed data is reset to zero.


## 5.2-Data-Display-Formats

Table 5-1 specifies all front panel local displays available in the display mode. The display windows are labeled in the table as follows: $1=$ upper window, $2=$ middle window, 3 = lower window.
Table 5-1 Displayed Parameters

1	1	V1/V1-2	Voltage L12	4	V/kV
1	2	V21N2-3	Voltage L. 23	4	V/kV
1	3	V3/V3-1	L. Vollage L31	4	V kV
2	1	V1N1-2	Voltage L1 ©	4	V/kV
2	2	V2N2-3	Voltage L2 (8)	4	V/kV
2	3	V3N3-1	P. Voltage L3 0	4	VikV
3	1	A1	Current L1	4	A
3	2	A2	Current L2	4	A
3	3	A3	Current L3	4	A
4	1	kVA	Total KVA	4	kVAMVA
4	2	PF	Total power factor	4	
4	3	kW	Total KW	4	KWMWW
5	1	ANEUT	Neutral current	4	A
5	2	Hz.	Frequency	4	Hz
5	3	kvar	Total kvar	4	kvar/Mvar
6	1		Ph.L1 ${ }^{(9)}$		Label
6	2	PF	Power factor L1	4	
6	3	kW	kWL1	4	KWMaN
7	1	kVA	kVA L1	4	kVAMMVA
7	2		Ph.L1 1 (1)		Labed
7	3	kvar	kvar L1	4	kvar/Mvar
8	1		Ph.L2 ${ }^{(1)}$		Label
8	2	PF	Power factor L2	4	
8	3	kW	kW L2	4	KWMM
9	1	kVA	kVA L2	4	kVAMVA
9	2		Ph.L2 (4)		Labe!
9	3	kvar	kvar L2	4	kvar/Mvar
10	1		Ph.L3 (1)		Label
10	2	PF	Power factor L3	4	
10	3	kW	kWL3	4	KWMN
11	1	kVA	kVA L3	4	kVAMVA
11	2		Ph.L3 (1)		Labe!
11	3	kvar	kvar L3	4	kvar/Mvar
12	1		H01 (Fundamental harmonic)		Label
12	2	PF	H0? total power factor	4	
12	3	kW	H01 total KW	4	HW/MM
13	1		H1.L1 (4)		Label
13	2	PF	H01 power factor $\mathrm{L1}$	4	
13	3	kW	H01 KWL1	4	KWMAN




(1) Display readings for all electrical quantities except Min/Max $\log$ and energies are sliding average values.
(2) When using direct wiring (PT Ratio $=1$ ), voltages are displayed in 0.1 V units, ourrents in 0.01 A units, and powers in $0.001 \mathrm{~kW} / \mathrm{kvar} / \mathrm{kVA}$ units. For wiring via PTs (PT Ratio > 1), voltages are displayed in 1 V units, currents in 0.01 A units, and powers in 0.001 MW/Avar/MVA units. When the value width is over the window resolution, the right most digits are truncated
(5) By default, the maximum range for energy readings is $99,999,999 \mathrm{MWh} /$ Mvarh/MVAh. Beyond this value, the reading will roll over to zero. When the energy reading exceeds the window resolution, the right-most digits are truncated. To avoid truncation, you can change the energy roll value to lower limit via the User Selectable Options menu (see Section 4.9). Negative (exported) energy readings are displayed without a sign.
(4) Per phase power and power factor readings are displayed only in 4LN3/4LL3 and 3LN3R3LL3 wiring modes (see Section 4.1) if the phase powers display is enabled in the Display Setup menu (see Section 4.8).
(5) - Phase energy readings are displayed only in 4LN3/4LL3-and 3LN3/3LL3 wining modes if they are enabled in the User Selectable Options menu (see Section 4.9).
(1) When the 4LN3 or 3LN3 wining mode is selected, the voltages will be line-to-neutrat; for any other wiring mode, they will be line-to-line voltages.
(1) Displayed only in the 4LN3 or 3LN3 wiring mode.

### 5.3 Self-Test Diagnostics Display

The C191HM periodically performs selftest diagnostics during operation. If the instrument fails the test, it discards the last measurement results, and an error code is displayed for one second on all LEDs. Error codes are listed in Table 5-2 Code ' 8 ' indicates normal operation.

Frequent failures may be the result of excessive electrical noise in the region of the instrument. If the instrument continuously resets itself, contact your local distributor.

Table 5-2 Self-Test Diagnostic Codes

ROM error
RAM emtor
Watch dog timer reset
Sampling failure
Out of control trap
Timing fallure
Normal power up
External reset (warm restar)
NOTE
The C191HM provides a self-check alarm register accessible through communications that indicates possible problems with instrument hardware or setup configuration. The rardware problems are indicated by the appropriate bits which are set whenever the instrument fails self-st diagnostics or in the event of loss of power. The setup configuration problems are indicated by the dedicated bit which is set when either configuration register is cormupted. In this event, your instrument will use the default configuration. For more information on the self-check alarm register, refer to the communications reference guides shipped with your instrument.

## Chapter 6 Viewing Status Information

Through the Status Information Menu (StA), it is possible to view the status of various instrument features.

### 6.1 The Status Information Menu


To enter the Status Information Menu:
$\checkmark$ From the display mode, pres $\ddagger$ SELECT to enter the Primary Selection Menu.
$\checkmark$ Press SELECT to activate the StA window.
$\checkmark$ Press ENTER.
To select a display page:
$\checkmark$ Press the up/down arrow keys to scroll through the display pages.
To quit the menu and return to the display mode:
$\checkmark$ Press ESC Ior ENTER

## Front Panel Display

When you are in the Status information Menu, the front panel display is updated approximately four times per second and shows you a wide variety of status information that you can review by scrolling through display pages.
The status parameters are designated by the abbreviated labels in the upper and/or middle window. The upper window flashes, indicating that you are in the menu display.

## Fast Reset of Counters

When changing data via the front panel is not secured by a password, you can reset the counters from the Status Information Menu display without entering the reset menu:
$\checkmark$ Select a display page where the counter you want to reset is displayed.
$\checkmark$ While holding the SELECT key, press and hold ENTER for about 5 seconds. The displayed data is reset to zero.

### 6.2 Status Display Formats

Table 6-1 lists all the displays available from the Status Information Menu. The display windows are labeled in the table as follows: $1=$ upper window, $2=$ middle window, $3=$ lower window.

Table 6-1 Status Information Display

$\begin{array}{r} 1 \\ 1 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	PHAS   rot   Phase rotation sequence (POS/NEG/ERR)	4	Labe! Label
2 2 2	1 2 3	r   Relay \#1 - \#4 status   Relay \#5 - \#8 status	4 4	Label
3   3	1 3	St.In   Status input	1	Label
4 4	1	Cnt. 1   Counter \#1	5	Label
5	1 3	Cnt. 2 Counter \#2	5	Label
6	1 3	Cnt. 3   Counter $\# 3$	5	Label
7 7	1 3	Cnt. 4 Counter \#4	5	Label

## Appendix: Technical Specifications

## Input and Output Ratings

3 galvanically isolated voltage inputs	$\begin{aligned} & 690 \mathrm{~V} \\ & \text { (standarc) } \end{aligned}$	DIRECT INPUT ( 690 V line-to-line voltage and 400 V line-to-neutral) Burden: $<0.5 \mathrm{VA}$   INPUT USING PT Burden: <0.15 VA
	120 V :   (optional)	INPUT USING PT (120V line-to-line voltage) Burden: <0.1 VA
3 galvanically isolated current inputs	$\begin{aligned} & 5 A: \\ & \text { (standard) } \end{aligned}$	INPUT VIA CT with 5A secondary output Burden: $<0.1$ VA   Overload withstand: 10A RMS continuous, 250A RMS for 1 second
	1 A: (optional)	INPUT VIA CT with 1A secondary output Burden: $<0.02$ VA   Overload withstand: 2A RMS continuous, 50A RMS for 1 second
Voltage and current input terminals		UL recognized Screws: Brass, M4 Maximum wire section: $2.5 \mathrm{~mm}^{2}$ (12 AWG)
Optically isolated communication port		EIA RS-485 or RS-232 standard (factory sel) Maximum wire section: $1.5 \mathrm{~mm}^{2}$ ( 14 AWG )
Relay outputs		5 relays rated at $5 \mathrm{~A}, 250 \mathrm{VAC} / 5 \mathrm{~A}, 30 \mathrm{VDC} /$ $0.5 \mathrm{~A}, 110 \mathrm{VDC} 2$ contacts (SPST Form A) 1 relay rated at $5 \mathrm{~A}, 250 \mathrm{~V}$ AC / $5 \mathrm{~A}, 30 \mathrm{~V}$ DC $/$   $0.5 \mathrm{~A}, 110 \mathrm{~V}$ DC 3 contacts (SPDT Form C) 2 relays rated at $3 \mathrm{~A}, 250 \mathrm{~V} \mathrm{AC} \mathrm{/} 3 \mathrm{~A}, 30 \mathrm{~V}$ DC /   $0.5 \mathrm{~A}, 110 \mathrm{VDC} 2$ contacts (SPST Form A) Maximum wire section: $1.5 \mathrm{~mm}^{2}$ (16 AWG)
$\begin{array}{\|c\|} \hline \text { Analog output (optional) } \\ 4-20 \mathrm{~mA} \\ 0-20 \mathrm{~mA} \\ \hline \end{array}$		Accuracy $0.5 \%$, Non-linearity $0.2 \%$ Load up to 510 Ohm   24 V DC external power supply required
Status input		Dry contact for extemal synchronization or monitoring


Display	3 windows high-brightness seven-segment digit LEDs   3 color LED bar graph 40-1 $10 \%$

```
Power Supply
Galvanically isolated power
supply (factory set)
1208230V AC / 1208220V VC
12 VDC
24 VDC
48V DC
85-265V AC 50/60 Hz and 88-290V DC 10W
9.6-19 V DC
19-37VDC
37-72VDC
```


## Environmental Conditions <br> Operating temperature $\quad-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$ <br> Storage temperature $\quad-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$ <br> Hurnidity $\quad 0$ to $95 \%$ non-condensing

Construction   Instrument body	Case enclosure: fiame resistant ABS \& Polycarbonate Blend               Dimensions: $144 \times 144 \times 86 \mathrm{~mm}\left(5.67 \times 5.67 \times 3.39{ }^{\prime \prime}\right)$   Mounting: $136 \times 136 \mathrm{~mm}$ square cut-out (DIN 43700$)$   Instrument weight

Standards Compliance
UL File \#E129258 Pending
CE:
EMC: 89/336/EEC as amended by 92/31/EEC and 93/68/EEC
LVD: 72/23/EEC as amended by 93/68/EEC and 93/465/EEC
Harmonized standards to which conformity is declared:
EN55011:1991; EN50082-1:1992; EN61010-1:1993; A2/1995
Installation Category II, Pollution Degree 2
EN50081-2:1994 EMC Generic Emission Standard - Industrial Environment
EN50082-2:1995 EMC Generic Immunity Standard - Industrial Environment
EN55022: 1994 Class A
EN61000-4-2: 1995 Electrostatic Discharge
EN61000-4-4: 1995 Electrical Fast Transient
EN61000-4-8: 1993 Power Frequency Magnetic Field
ENV50140: 1993 Radio Frequency Electromagnetic Field, Amplitude Modulated
ENV50204: 1995 (200Hz) Radio Frequency Electromagnetic Field, Pulse
Modulated
ENV50141: 1993 Radio Frequency Common Mode, Amplitude Modulated
ANS! C37.90.1: 1989 Surge Withstand Capability
ANSI IEEE C62.41-1991 Surge Voltages in Low-Voltage AC Power Circuits

Measurement Specifications

	Full scale		Accuracy, \%			Range	Display resolution (\%Rdg) (2)   @ range
			Rdg	FS	Conditions		
Vollage	$120 \mathrm{~V} \times \mathrm{PT}$   $@ 120 \mathrm{~V}^{\prime}$   $400 \mathrm{~V} \times \mathrm{Pr}$   $@ 690 \mathrm{~V}$   $208 \mathrm{~V} \times \mathrm{Pr}$   $@ 120{ }^{\prime}$   $690 \mathrm{~V} \times \mathrm{Pr}$   $@ 690 \mathrm{~V}$	For $\operatorname{Ln}$ reading and for   30P2/30P3   wiring modes   For LL reading except   30P2/30P3   w ling modes		0.25	10\% to 120\% FS	0 to 999,000V	Direct wiring (PT=1):   $0.1 \mathrm{~V} @ 0.1 \mathrm{~V}$ to 899.9 V   Wiring via PTs (PT>1):   0.001 kV @ 0.001 kV to 9.999 kV   $\leq 0.1 \%$ @ 10.00 kV to 999.0 kV   Starting vollage $1.5 \% \mathrm{FS}$
Line current	CT PRIMARY CURRENT			0.25	2\% to 120\% FS	0109999 A	$\begin{aligned} & \hline 0.01 \mathrm{~A} @ 0.01 \mathrm{~A} \text { to } 99.99 \mathrm{~A} \\ & \text { s0.1\% @ 100.0 A to } 9999 \mathrm{~A} \\ & \text { Starting current 0.5\% FS } \end{aligned}$
Aclive power	$0.36 \times$ PTxCT \& 120 V input $1.2 \times$ PTXCT @ 690 V input			0.5	PF\% 20.5 (1)	$\begin{aligned} & -2,000,000 \mathrm{to} \\ & +2,000,000 \mathrm{~kW} \end{aligned}$	Direct wiring ( $\mathrm{P}^{2}=1$ ):   $0.001 \mathrm{~kW} @ 0.001 \mathrm{~kW}$ to 9.999 kW   Wiring via PTs (PT>1):   0.001 MW @ 0.001 MW to 9.999 MW   s0.1\% @ 10.00 MW to 2000 MW
Reactive power	$0.36 \times$ PTxCT @ 120 V input $1.2 \times \mathrm{PT} \times \mathrm{CT}$ @ 690 V input			0.5	PPF $\leq 0.9$ (1)	$\begin{aligned} & -2,000,000 \text { to } \\ & +2,000,000 \text { kvar } \end{aligned}$	Direct wifing ( $\mathrm{PT}=1$ ):   0.001 kvar @ 0.001 kvar to 9.999 kvar Wiring via PTs (PT>1):   0.001 Mvar @ 0.001Mvar to 9.999 Mvar   50.1\% @ 10.00 Mvar to 2000 Mvar
Apparant power	$0.36 \times$ FTxCT © 120 V input 1.2xPTxCT \& 690V input			0.5	$\|\mathrm{PF}\| 20.5$ (1)	$\begin{aligned} & 010 \\ & 2,000,000 \mathrm{kVA} \end{aligned}$	Direct wiring (PT=1):   0.001 kVA @ 0.001 kVA to 9.999 kVA   Wiring via PTs (PT>1):   0.001 MVA @ 0.001MVA to 9.999 MVA   s0.1\% @ 10.00 MVA to 2000 MVA
Power faclor	1			1	$\begin{aligned} & \|\mathrm{PF}\| \geq 0.5 \\ & i \geq 10 \% \mathrm{FSI} \end{aligned}$	-0.999 to +1.000	0.001
Frequency			0.1			45.00 to 65.00 Hz	0.01 Hz


Parameter	Full scale	Accuracy, \%			Range	$\begin{gathered} \text { Display resolution (\%Rdg) © } \\ \text { @ range. } \end{gathered}$
		Rdg	FS	Conditions		
Neutral (unbalanced) current	CT PRIMARY CURRENT	-	0.5	2\% to 120\% FS	0 10 9996a	$\begin{aligned} & 0.01 \mathrm{~A} @ 0.01 \mathrm{~A} \text { to } 99.89 \mathrm{~A} \\ & 50.1 \% @ 100.0 \mathrm{~A} \text { to } 9999 \mathrm{~A} \\ & \text { Starting current } 0.5 \% \mathrm{FS} \end{aligned}$
Ampera demand						
KWdemand' block \& sliding) same		same as for kW				
KVA demand (block	sliding)	same as forkVA				
Total Harmonic Distortion   THD U(I), \% U1 (If)	999.9	1.5		$\begin{gathered} \geq 0.1 \% \text { FS, } \\ \mathrm{U}(\mathrm{I}) \geq 10 \% \mathrm{FSU} \\ (\mathrm{FSI}) \end{gathered}$	0 to 999.9	0.1
$\begin{aligned} & \text { Total Demand } \\ & \text { Distortion } \\ & \text { TDO }(1), \% \\ & \hline \end{aligned}$	100		1.5	$\begin{aligned} & \geq 1 \% \text { FS, } \\ & I \geq 10 \% \text { FSI } \end{aligned}$	0 to 100	0.1
Active energy Import \& Export		according to power accuracy (3)			0 to 99,999 MWh	$1 \mathrm{kWh} @ 1$ to 99,999 kWh 10 kWh @ 100 to 999.99 MWh 100 kWh @ 1,000 to $9,899.9 \mathrm{MWh}$ 1 MWh @ 10,000 to $99,999 \mathrm{MWh}$
Reactive energy import \& Export		according to power accuracy (3)			0 to 99,939 Mvarh	1 kvarh @ 1 to 99,999 kvarh 10 kvarh © 100 to 999.99 Mvarh 100 kvam @ 1,000 to 8,999.9 Mvarh 1Mvarh @ 10,000 to 88,999 Mvarh
Apparent energy	. .	according to power accuracy ${ }^{(3)}$			0 to 99.989 MVAh	1 kVAh@ 1 to 99,999 kVAh 10 kVAh (6) 100 to 998.99 MVAh 100 KVAh@ 1,000 to 9,999.9 MVAh 1MVAh © 10,000 to 99,999 MVAh

FSU = voltage full scale $\quad$ FSI $=$ current full scale $\quad U_{1}=$ voltage fundamental
(1) @ $10 \%$ to $120 \%$ of voltage FS and $2 \%$ to $120 \%$ of current FS © Higher resolutan is achievable via communications
(3) Where the current is $>10 \% \mathrm{FS}$, the energy accuracy is better than $1.5 \%$ Rdg.

## Additional Notes

1. Accuracy is expressed as $\pm$ (percantage of reading + percentage of full scale) $\pm 1$ digit This does nat include inaccuracies introduced by, the Spernal
rence ogerating temperature: $20-25^{\circ} \mathrm{C}$ 3. Ordinary measurement error is conslderably less than the specified accuracy which indicates maximum error:

## Index

## A mounting. 1.7

accuracy, 51
active energy, 3, 51
active power, $3,4,34,50$
alarms, 13
ampere demand, 20, 29, 42
analog output, 2, 5, 8, 14, 23, 24
analog outputs, 20

## $B$

basic setup, 19
burden, 48

## C

communications, 51
CT, 1, 2, 9, 20, 24, 32, 39, 48, 50, 51
CT PRIMARY CURRENT, 20, 50, 51
current inputs, 8,48
current transformers, 51

## D

demand, 2, 3, 14, 20, 22, 24, 29, 37, 40, 42, 43, 51
demand period, 14, 20, 37
display, 1, 26, 27, 31, 32, 33, 34, 37, 38, 39. $40,41,44,46$
display mode, 32, 37, 39, 41, 46
E
energy, 1, 2, 3, 13, 25, 34, 35, 40, 44, 45, 51 external synchronization, 2, 14, 20, 22, 48

## F

frequency, $1,2,3,4,20,28,29,42,50$.
I
inputs, 22, 48
L
Load bar graph. 39

## M

measurement, 51
menu, 17, 19, 21, 22, 23, 25, 26, 27, 31, 32, $33,34,36,37,44,45,46$
Modbus, ii, 16, 20; 21
open delta, 9, 20
options, 14
overload withstand; 48

## P

panel cut-out. 7
password, 2, 17, 36, 37, 39, 46
PComTest 19
power, $i, 2,3,4,8,14,20,22,23,31,34$,
$35,37,39,40,41,42,44,45,48,50,51$
power demand, 2, 3, 14, 20, 22, 37
power factor, 50
power source, i. 8
power supply, 48
PT, 9, 20, 24, 25, 44, 48, 50, 51
PTRATIO, 20
pulsing. 2, 13, 25, 26, 27, 31

## R

reactive energy, 3,51
reactive power, 3, 4, 34, 50
relays, $2,13,25,30,48$
reset, 20, 35, 37, 39, 40, 45, 46
self tests, 45
setpoints, $20,26,27,30,39$
setup menus, 17, 19
setup mode, 17
sfiding demand, 3
standards, 48, 49
status, $1,2,14,17,22,30,36,46,47$
T
technical specifications, 48
terminals, ii, 8, 9,48
V
voltage inputs, 48
wiring configuration, 5, 9
Wye, 20


## Table of Contents

1 GENERAL ..... 4
2 MODBUS FRAMING ..... 5
2.1 Transmission Mode ..... 5
2.2 The RTU Frame Format ..... 5
2.3 Address Field ..... 5
2.4 Function Field ..... 5
2.5 Data Field ..... 6
2.6 Error Check Field. ..... 6
3 MODBUS MESSAGE FORMATS ..... 7
3.1 Function 03 - Read Multiple Registers ..... 7
3.2 Function 04 - Read Multiple Registers ..... 7
3.3 Function 06 - Write Single Register ..... 7
3.4 Function 16 - Write Multiple Registers ..... 8
3.5 Function 08 - Loop-back Communications Test ..... 8
3.6 Exception Responses ..... 9
4 PROTOCOL IMPLEMENTATION ..... 10
4.1 Modbus Register Addresses ..... 10
4.2 Data Formats ..... 10
4.2.1 16-bit Integer Format ..... 10
4.2.2 32-bit Modulo 10000 Formal ..... 11
4.2.3 32-bit Long Integer Format ..... 11
4.3 User Assignable Registers ..... 11
5 POWERMETER REGISTERS DESCRIPTION ..... 13
5.1 Basic Data Registers ..... 13
5.2 Basic Setup ..... 14
5.3 User Selectable Options Setup ..... 15
5.4 Communications Setup ..... 15
5.5 Rese//Synchronization Registers ..... 16
5.6 Instrument Status ..... 16
5.7 Extended Status ..... 17
5.8 Extended Data Registers ..... 19
5.9 Analog Output Setup. ..... 25
5.10 Digital Input Allocation ..... 26
5.11 Alarm/Event Setpoints ..... 27
5.12 Pulsing Setpoints ..... 30
5.13 Relay Operation Control ..... 31
5.14 Min/Max Log ..... 31
5.15 Phase Harmonics ..... 32

Every effort has been made to ensure that the material herein is complete and accurate. However, the manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this book. Notification of any errors or misprints will be received with appreciation.

For -further information-regarding-a-particular-installation;-operation-or-maintenance-of-equipment, contact the manufacturer or your local representative or distributor.

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the manufacturer.

Modbus is a trademark of Modicon, inc.

BG0282 Rev.A1

2

## 1 GENERAL

This document specifies a subset of the Modbus serial communications protocol used to transfer data between a master computer station and the C191HM. The document provides the complete information necessary to develop a third-party communications software capable of communication with the Series C191HM Powermeters. Additional information conceming communications operation, configuring the communications parameters, and communications connections is found in "Series C191HM Powermeters, Instaltation and Operation Manual".

## IMPORTANT

1. In 3-wire connection schemes, the unbalanced current and phase readings for power factor, active power, and reactive power will be zeros, because they have no meaning. Only the total three-phase power values can be used.
2. In 4LN3, 4LL3, 3LN3 and 3LL3 wiring modes, harmonic voltages will represent line-to-neutral voltages. In a 3 -wire direct connection, harmonic voltages will represent line-bo-neutral voltages as they appear on the instruments input transformers. In a 3 -wire open delta connection, hamonic voltages will comprise L12 and L23 line-to-line voltages.
3. Most of the instrument advanced features are configured using multiple setup parameters that can be accessed in some contiguous registers. When writing the setup registers, it is recommended to write all the registers at once using a single request, or to clear (zero) the selup before writing into separate registers.

## 2 MODEUS FRAMING

## F

### 2.1 Transmission Mode

The protocol uses the Modbus Remote Terminal Unit (RTU) transmission mode. In RTU mode. data is sent in 8 -bit binary characters. The 8 bit even parity or 8 bit no parity data format must be selected when configuring the instrument communications. The data format is shown in the following table.

Tabie 2-1 RTU Data Format

Wield	
Start bit	1
Data bits 0	8
Parity (optional)	1
Stop bit	1

(1) Least significant bit first

### 2.2 The RTU Frame Format

Frame synchronization is maintained in RTU transmission mode by simulating a synchronization message. The receiving device monitors the elapsed time between receptions of characters. If three and one-half character times elapse without a new character or completion of the frame, then the device flushes the frame and assumes that the next byte received will be an address. The frame format is defined below.

The maximum query and response message length is 256 bytes including check characters.

## RTU Message Frame Format <br>  

### 2.3 Address Field

The address field contains a user assigned address (1-247) of the instrument that is to receive a message. Address 0 is used in broadcast mode to transmit to all instruments (broadcast mode is available only for functions 06 and 16). In this case all instruments receive the message and take action on the request, but do not issue a response. In the C191HM, the broadcast mode is supported only for register addresses 287-294 and 301-302 (reset energies and maximum demands), 3404-3415 (resetclear registers), and 4352-4358 (real-time clock registers).

### 2.4 Function Field

The function field contains a function code that tells the instrument what action to perform. Function codes used in the protocol are shown below in Table 2-2.

Table 2-2 Modbus Function Codes

WCodenk	Meanifginurabus  	Kation
03	Read holding registers	Read multiple registers
04	Read input registers	Read multiple registers
06	Preset single register	Write single register
16	Preset multiple registers	Write multiple registers
08	Loop-back test	Communications test

NOTE Broadcast mode available only for functions code 06 and 16.

### 2.5 Data Field

The data field contains information needed by the instrument to perform a specific function, or data collected by the instrument in response to a query.

IMPORTANT Fields composed of two bytes are sent in the order high byte first, low byte second.

### 2.6 Error Check Field

The error check field contains the Cyclical Redundancy Check (CRC) word. The start of the message is ignored in calculating the CRC. The CRC-16 error check sequence is implemented as described in the following paragraphs.

The message (data bits only, disregarding start/stop and optional parity bits) is considered one continuous binary number whose most significant bit (MSB) is transmitted first. The message is pre-multiplied by $x^{16}$ (shifted left 16 bits), and then divided by $x^{16}+x^{15}+x^{2}+1$ expressed as a binary number ( 11000000000000101 ). The integer quotient digits are ignored and the 16 -bit remainder (initialized to all ones at the start to avoid the case of all zeros being an accepled message) is appended to the message (MSB first) as the two CRC check bytes. The resulling message Including CRC, when divided by the same polynomial $\left(x^{16}+x^{15}+x^{2}+1\right)$ at the receiver will give a zero remainder if no errors have occurred. (The receiving unit recalculates the CRC and compares it to the transmitted CRC). All arithmetic is performed modulo two (no carries).

The device used to serialze the data for transmission will send the conventional LSB or right-most bit of each character first. In generating the CRC, the first bit transmitted is defined as the MSB of the dividend. For convenience, and since there are no carries used in the arithmetic, let's assume whlle computing the CRC that the MSB is on the right. To be consistent, the bit order of the generating polynomial must be reversed. The MSB of the polynomial is dropped since it affects only the quotient and not the remainder. This yields 1010000000000001 (Hex A001). Note that this reversal of the bit order will have no effect whatever on the interpretation $\sigma$ bit order of characters external to the CRC calculations.

The step by step procedure to form the CRC-16 check bytes is as follows:

1. Load a 16 -bit register with all 1 's.
2. Exclusive $O R$ the first 8 -bit byte with the low order byte of the 16 -bit register, puting the resull in the 16-bit register.
3. Shift the 16 -bit register one bit to the right.

4a. If the bit shifted out to the right (flag) is one, exclusive OR the generating polynomial 1010000000 0001 with the 16 -bit register.
4b. If the bit shifted out to the right is zero, retum to step 3 .
5. Repeat steps 3 and 4 until 8 shifts have been performed.
6. Exclusive $O R$ the next 8 -bit byte with the 16 -bit register.
7. Repeat step 3 through 6 until all bytes of the message have been exclusive ORed with the 16 -bit register and shifted 8 times.
8. When the 16 -bit CRC is transmitted in the message, the low order byte will be transmilted first, followed by the high order byte.

For detailed information about CRC calculation, refer to the Modbus Protocol Reference Guide.

3 MODBUS MESSAGE FORMATS

### 3.1 Function 03 - Read Multiple Registers

This command allows the user to obtain contents of up to 125 contiguous registers from a single data table.

Request

instriment Address:	Fiñction (03)	stating Addéss.	Wordcountacerachecre
16yte	9byte	2bythem	2 bytes 5


Starting Address Word Count	Address of the first register to be read   The number of contiguous words to be read
Response	
Bidules  	

The byte count field contains quantity of bytes to be returned.

### 3.2 Function 04 - Read Multiple Registers

This command allows the user to obtain contents of up to 125 contiguous registers from a single data table. It can be used instead of function 03.

Request

mithmint:		
Ftuatast.		
Hferter		

Starting Address Address of the first register to be read
Word Count The number of contiguous words to be read

## Response



The byte count field contains quantity of bytes to be relurned.

### 3.3 Function 06 - Write Single Register

This command allows the user to write the contents of a data register in. any data table where a register can be written.
Request


Starting Address: Address of the register to be written	
Data Value	Data to be written to the register

Data Value
Data to be written to the register
Response
The normal response is the retransmission of the write request.

### 3.4 Function 16 - Write Multiple Registers

This request allows the user to write the contents of multiple contiguous registers to a single data table where registers can be written.

## Request



Starting Address Address of the first register to be written
Word Count . The number of contiguous words to be written
Byte Count The number of bytes to be written

Response


### 3.5 Function 08 - Loop-back Communications Test

The purpose of this request is to check the communications link between the specified instrument and PC.

Request


Diagnostic Code	Designates action to be taken in Loop-back test. The protocol supports only
	Diagnostic Code 0 - return query data.
Data	Query data. The data passed in this field will be returned to the master through the   instrument. The entire message returned will be identical to the message   transmitted by the master, field-per-field.

Response


The normal response is the retransmission of a test message.

### 3.6 Exception Responses

The instrument sends an exception response when errors are detected in the received message. To indicate that the response is notification of an error, the high order bit of the function code is set to 1.


Exception response codes:
01 - Illegal function
02 - Illegal data address
03 - lliegal data value
06 - Busy, rejected message. The message was received without errors, but the instrument is being programmed from the keypad (only for requests accessing setup registers).

NOTE When the character framing, parity, or redundancy check detects a communication error, processing of the master's request stops. The instrument will not act on or respond to the message.

## 4 PROTOCOL IMPLEMENTATION

### 4.1 Modbus Register Addresses

The C191HM_Modbus_registers_are referred_to by using_addresses_in_the_ange_of_o_to_65535. From within the Modbus applications, the C191HM Modbus registers can be accessed by simulating holding reglsters of the Modicon 584, 884 or 984 Programmable Controller, using a 5 digit " 4 XXXX " or 6 digit " 4 XXXXX " addressing scheme. To map the C191HM register address to the range of the Modbus holding registers, add a value of 40001 to the C 191 HM register address. When a register address exceeds 9999 , use a 6 -digit addressing scheme by adding 400001 to the C191HM register address.

### 4.2 Data Formats

The C191HM uses three data formats to pass data between a master application and the instrument: a 16 -bit integer format, a 32-bit modulo 10000 format, and a 32 -bit long integer format.

### 4.2.1 16-bit Integer Format

A 16 -bit data is transmitted in a single 16 -bit Modbus register as unsigned or signed integer (whole) numbers without conversion or using pre-scaling to accommodate large-scale and fractional numbers to a 16 -bit register format. Scaling can be made using either the LIN3 linear conversion, or decimal pre-scaling to pass fractional numbers in integer format.

## Non-scaled data

The data will be presented exactly as retrieved by the communications program from the instrument. The value range for unsigned data is 0 to 65535 ; for signed data the range is -32768 to 32767.

## LIN3 (Linear) Scaling

This converslon maps the raw data received by the communications program in the range of 0 9999 onto the user-defined LO scale/HI scale range. The conversion is carried out according to the formula:

$$
Y=(X / 9999) \times(H I-L O)+L O
$$

where:
$Y$ - the true value in engineering units
$X \quad$ - the raw input data in the range of 0-9999
LO, HI - the data low and high scales in engineering units
When data conversion is necessary, the HI and LO scales, and data conversion method are indicated for the corresponding registers.

## EXAMPLE

Suppose you have read a value of 5000 from register 256 that contains a voltage reading (see Table 51). If your instrument has the 144 V input option, and you use potential transformers with the ratings of $22,000 \mathrm{~V}: 110 \mathrm{~V}=200$, then the voltage high scale is $\mathrm{HI}=144 \times 200=28,800$, and in accordance with the above formula, the voltage reading in engineering units will be as follows:

$$
5000 \times(28800-0) / 9999+0=14401 \mathrm{~V}
$$

When a value is written to the instrument, the conversion is carried out in reverse to produce the written value in the range of 0-9999:

$$
X=9999 \times(Y-L O) /(H I-L O)
$$

## Decimal Scaling

Decimal pre-scaling can be used to accommodate fractional numbers to an integer register format. Fractional numbers pre-multiplied by 10 in power $N$, where $N$ is the number of digits in the fractional-part-For-example,-the-frequency-reading-of-50:01- Hz -is-transmitted-as-5001-having been pre-multiplied by 100 . Whenever a data register contains a fractional number, the register measurement unit is given with a multiplier $\times 0.1, \times 0.01$ or $\times 0.001$, showing an actual register resolution (the weight of the least significant decimal digit). To get an actual fractional number with specified precision, scale the register value with the given multiplier. To write a fractional number into the register, divide the number by the given multiplier.

### 4.2.2 32-bit Modulo 10000 Format

The short energy registers 287-294, and 301-302 are transmitted in two contiguous 16-bit registers in modulo 10000 format. The first (low order) register contains the value mod 10000, and the second (high order) register contains the value/10000. To get the true energy reading; the high order register value should be multiplied by 10,000 and added to the low order register.

### 4.2.3 32-bit Long Integer Format

In a 32 -bit long integer format, data is transmitted in two adjacent 16-bit Modbus registers as unsigned or signed long integer (whole) numbers. The first register contains the low-order word (lower 16 bits) and the second register contains the high order word (higher 16 bits) of the 32-bit long number. The low-order word always starts at an even Modbus address. The value range for unsigned data is 0 to $4,294,967,295$; for signed data the range is $-2,147,483,648$ to $2,147,483,647$.

A 32 -bit data can be transmitted without conversion as is, or by using decimal pre-scaling to transform fractional numbers to an Integer format as described above (see Decimal Scaling in Section 4.2.1).

### 4.3 User Assignable Registers

The C191HM contains the 120 user assignable registers in the address range of 0 to 119 (see Table 4-1), any of which you can map to either register address accessible in the instrument. Registers that reside in different locations may be accessed by a single request by re-mapping them to adjacent addresses in the user assignable registers area.

The actual addresses of the assignable registers which are accessed via addresses 0 to 119 are specified in the user assignable register map (see Table 42). This map occupies addresses from 120 to 239, where map register 120 should contain the actual address of the register accessed via assignable register 0 , register 121 should contain the actual address of the register accessed via assignable register 1 , and so on. Note that the assignable register addresses and the map register addresses may not be re-mapped.

To build your own register map, write to map registers (120 to 239) the actual addresses you want to read from or write to via the assignable area (0 to 119). Note that long word registers should always be aligned at even addresses. For example, if you want to read registers 7136 (real-time voltage of phase A, word) and 75767577 ( kWh import, long word) via registers $0-2$, then do the following:

- write 7576 to register 120
- write 7577 to register 121
- write 7136 to register 122

Reading from registers $0-2$ will retum the kWh reading in registers 0 (low word) and 1 (high word), and the voltage reading in register 2.

## Table 4-1 User Assignable Registers


(1) - depends on the mapped register

Table 4-2 User Assignable Register Map

Register address for user data 0	120	2	RW	240 to 9999
Register address for user data 1.	121	2	RW	240 to 9999
Register address for user data 2	122	2	RW	240 to 9999
Register address for user data 119	239	2	RW	240 to 9999

## 5 POWERMETER REGISTERS DESCRIPTION

### 5.1 Basic Data Registers

## Table 5-1 Basic Data Registers

						ExHIgh	Cone
Voltage L1/L12 (6)	256	2	R	0.1V/1V	0	Vmax	LIN3
Voltage L2L23 (0)	257	2	R	$0.1 \mathrm{~V} / 1 \mathrm{~V}$	0	$V$ max	LIN3
Voltage L3/31 ${ }^{\text {c }}$	258	2	R	0.1V/1V	0	$V$ max	LIN3
Current L1	259	2	R	0.01A	0	Imax	LIN3
Current L2	260	2	R	0.01A	0	Imax	LIN3
Current L3	261	2	R	0.01A	0	Imax	LIN3
kW L1	262	2	R	$0.001 \mathrm{~kW} / 1 \mathrm{~kW}$	-Pmax	Pmax	LIN3
kW L2	263	2	R	$0.001 \mathrm{~kW} / 1 \mathrm{~kW}$	-Pmax	Pmax	LIN3
kW L3	264	2	R	$0.001 \mathrm{~kW} / 1 \mathrm{~kW}$	-Pmax	$P \max$	LIN3
kvar L1	265	2	R	0.001kvar/1kvar	-Pmax	Pmax	LIN3
kvar L2	266	2	R	0.001kvar/1kvar	-Pmax	$P \max$	LIN3
kvar L3	267	2	R	$0.001 \mathrm{kvar} / 1 \mathrm{kvar}$	-Pmax	Pmax	LIN3
kVA L1	268	2	R	0.001 kVA 1 kVA	-Pmax	Pmax	LIN3
kVA L2	269	2	R	0.001 kVA 1 kVA	-Pmax	Pmax	LIN3
kVA L3	270	2	R	0.001 kVA 1 kVA	-Pmax	Pmax	LIN3
Power factor L1	271	2	R	0.001	-1.000	1.000	LIN3
Power factor L2	272	2	R	0.001	-1.000	1.000	LIN3
Power factor L3	273	2	R	0.001	-1.000	1.000	LIN3
Total power factor	274	. 2	R	0.001	-1.000	1.000	LIN3
Total kW	275	2	R	$0.001 \mathrm{~kW} / 1 \mathrm{~kW}$	-Pmax	Pmax	LIN3
Total kvar	276	2	R	0.001kvar/1kvar	-Pmax	Pmax	LIN3
Total kVA	277	2	R	0.001kVA1kVA	-Pmax	Pmax	LIN3
Neutral current	278	2	R	0.01A	0	Imax	LiN3
Frequency	279	2	R	0.01 Hz	45.00	65.00	LiN3
Max. sliding window kW demand (5)	280	2	RNW	$0.001 \mathrm{~kW} / 1 \mathrm{~kW}$	-Pmax	Pmax	LIN3
Accumulated kW demand	281	2	RNW	$0.001 \mathrm{~kW} / 1 \mathrm{~kW}$	-Pmax	Pmax	LIN3
Max. sliding window kVA demand (5)	282	2	RNW	0.001 kVA 1 kVA	-Pmax	Pmax	LIN3
Accumulated kVA demand	283	2	RWN	0.001 kVA 1 kVA	-Pmax	Pmax	LIN3
Max. ampere demand L1	284	2	RNW	0.01A	0	Imax	LIN3
Max. ampere demand L2	285	2	RWN	0.01A	0	Imax	LIN3
Max. ampere demand L3	286	2	RWN	0.01A	0	Imax	LIN3
kWh import (low)	287	2	RNW	1 kWh	0	9999	NONE
kWh import (high)	288	2	RWN	$10,000 \mathrm{kWh}$	0	9999	NONE
kWh export (low)	289	2	RNW	1 kWh	0	9999	NONE
kWh export (high)	290	2	RWW	$10,000 \mathrm{kWh}$	0	9999	NONE
+kvarh net (fow) (3)	291	2	RWN	1kvarh	0	9999	NONE
+kvarh net (high) (3)	292	2	RWN	10,000 kvarh	0	9999	NONE
-kvad net (low) (4)	293	2	RWN	1kvarh	0	9999	NONE
-kvarh net (high) (4)	294	2	RNW	10,000 kvarh	0	999	NONE
Voltage THD L1/L12.	295	2	R	0.1\%	0	999.9	LIN3
Vottage THD L2N.23	296	2	R	0.1\%	0	999.9	LIN3
Voltage THD L3	297	2	R	0.1\%	0	999.9	LIN3
Current THD L1	298	2	R	0.1\%	0	999.9	LIN3
Current THD L2	299	2	R	0.1\%	0	999.9	LIN3
Current THD L3	300	2	R	0.1\%	0	999.9	LIN3
kVAh (low)	301	2	RNW	1kVAh	0	9999	NONE
kVAh (high)	302	2	RNW	$10,000 \mathrm{kVAh}$	0	9999	NONE


(1) The parameter limits are as follows:

Imax $(20 \%$ over-range $)=1.2 \times$ CT primary current $[A]$
Direct wing (PT Ratio $=1$ ):
$\mathrm{Vmax}(690 \mathrm{~V}$ input option) $=828.0 \mathrm{~V}$
$V_{\text {max }}(120 \mathrm{~V}$ input option $)=144.0 \mathrm{~V}$
$P_{\max }=\left(\operatorname{lnax}_{\mathrm{m}} \mathrm{V} \max \times 3\right.$ ) [KW x 0.001 ] if wing mode is $4 \mathrm{LN3}$ or 3 LN 3
$P_{\max }=(\operatorname{lmax} \times V \max \times 2) \mathrm{KW} \times 0.001 \mathrm{j}$ if wing mode is $4 \mathrm{LL} 3,30 \mathrm{P} 2,3 \mathrm{IIR2}, 30 \mathrm{P} 3$ or $3 L L 3$
Wiring via PTs (PT Ratio > 1):
Vmax $(690 \mathrm{~V}$ input option) $=144 \times$ PT Ratio $(\mathrm{V})$
$V$ max $(120 \mathrm{~V}$ input option $)=144 \times$ PT Ratio V )
$P_{\max }=\left(\operatorname{lmax} \times V_{\max } \times 3\right) / 1000$ [MW $\times 0.001$ ) if wining mode is 4 LN 3 or 3LN3
$P_{\max }=\left(I \max \times \mathrm{Vmax}^{2} \times 2 \mathrm{y} 1000\right.$ [MW $\times 0.001$ ] if wining mode is 4LL3.3OP2, 3DIR2, 3OP3 or 3LL 3
(4) When using direct wiring (PT Ratio $=1$ ), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in $0.001 \mathrm{~kW} / k v a r / k V A$ units. For wiring va PT (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01 A units, and powers in 0.001 MW/Mvar/MVA units. When the value width is over the field resolution, the right most digits are truncated. All values are transmitted with a decimal point.
(3) Positive readings of kvarh net
(4) Negative readings of kvarh net
(5) To get block interval demand readings, specify the number of demand periods equal to 1 (see Table 5-2)
(6) When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.
NOTE Writing a zero to one of registers 280-286 causes reset of all maximum demands. Writing a zero to one of registers 287-294 and 301-302 causes reset of all accumulated energies.

### 5.2 Basic Setup

Table 5-2 Basic Setup Registers


(1) The wiring mode options are as follows:

30P2-3-wire open delta using 2 CTs (2 element)
4LN3 - 4-wire WYE using 3 PTs (3 element), line to neutral voltage readings
3DIR2-3-wire direct connection using 2 CTs (2 element)
4LL3 - 4-wire WYE using 3 PTs (3 element). line to line voltage readings
3OP3-3-wire open delta using 3 CTs (2 1/2 element)
3LN3 - 4-wire WYE using 2 PTs ( $21 / 2$ element), line to neutral voltage readings
3LL3 - 4-wire WYE using 2 PTs (2 $1 / 2$ element), line to line voltage readings
(1) Synchronization of power demand interval can be made through a digital input or via communications using the Synchronize power demand interval command (see Table 5-5).

### 5.3 User Selectable Options Setup

Table 5-3 User Selectable Options Registers

(1) For short energy registers (see Table 5-1), the maximum roll value will be $1 \times 10^{8}$ for positive readings and $1 \times 10^{7}$ for negative readings.

### 5.4 Communications Setup

Table 5-4 Communications Setup Registers


When changing the instrument address, baud rate or, data format, the new communications parameters will take-effect 100 ms after the insIrument responds to the master's request.

### 5.5 Reset/Synchronization Registers

Table 5-5 Reset/Synchronization Registers

		Sizizese	56mben	
Clear total energy registers	3404	2	W	0
Clear total maximum demand registers	3405	2	W	$\begin{aligned} & 0=\text { all maximum demands } \\ & 1=\text { power demands } \\ & 2=\text { vollampere demands } \end{aligned}$
Reserved	3406-	2		
	3407			
Clear event/ume counters	3408	2	W	$0=$ all counters   1-4 = counter \#1-\#4
Clear Min/Max log	3409	2	W	0
Reserved	3410-	2		
	3419			
Synchronize power demand interval (1)	3420	2	W	0

(1) 1) If the power demand period is set to Extemal Symechronization (see Table 5-2), writing a zero to this location will simulate an external synchronization pulse denoting the start of the next demand interval. The synchronization requests should not follow in intervals of less than 30 seconds, or the request will be rejected. This function is not permitted if the external synchronization is implemented by hantware, i.e., the digital input is configured as an external synchronization pulse input.
2) If the power demand perod is specified In minutes, writing a zero to this location provides synchronization of the instrument's internal timer with the time of reception of the master's request. If the time expired from the beginning of the current demand interval is more than 30 seconds, the new demand interval staris immediately, otherwise synchronization is delayed until the next demand interval.

### 5.6 Instrument Status

Table 5-6 Instrument Status Registers

(1) Writing a value of 65535 into register 2560 will cause the instrument to perform a warm restart

## Table 5-7 Relay Status

Bit number	Relay \#8 status
0	Relay\#7 status
1	Relay \#6 status
2	Relay \#5 status
3	Relay \#4 status
4	Relay \#3 status
5	Relay\#2 status
6	Relay \#1 status
7	Not used (permanently set to 0)



### 5.7 Extended Status

Table 5-9 Extended Status Registers

 		ESizatic		
Relay status	3452	2	$R$	see Table 5-10
Reserved	3453	2	R	Read as 0
Status inputs	3454	2	R	see Table 5-11
Setpoints status	3455	2	R	see Table 5-12
Log status	3456	2	$R$	see Table 5-13
Reserved	3457-	2	R	Read as 0
	3473			
Setpoint alarm status	3474	2	RWN	see Table 5-14
Self-check alarm status	3475	2	RW	see Table 5-15

## Table 5-10 Relay Status



0	Relay \#1 status
1	Relay \#2 status
2	Relay \#3 status
3	Relay \#4 status
4	Relay \#5 status
5	Relay \#6 status
6	Relay \#7 status
7	Relay \#8 status
$8-15$	Not used (permanently set to 0)

Bit meaning: $0=$ relay is not energized, $1=$ relay is energized
Table 5-11 Status Inputs


Bit meaning: 0= contact open, $1=$ contact closed

Table 5-12 Setpoints Status


Bit meaning: $0=$ setpoint is released, $1=$ setpoint is operated
Table 5-13 Log Status


Bit meaning: $0=$ no new $\log$, $1=$ new $\log$ recorded the new log flag is reset when the user reads the first log record after the flag has been set)

Table 5-14 Setpoint Alarm Status


Bit meaning: $1=$ setpoint has been operated
The setpoint alarm register stores the status of the operated setpoints by setting the appropriate bits to 1. The alarm status bits can be reset all together by writing zero to the setpoint alarm register. It is possible to reset each alarm status bit separately by writing back the contents of the alarm register with a corresponding alarm bit set to 0 .

Table 5-15 Self-check Alarm Status

0	Reserved
1	ROM error
2	RAM error
3	Wâtchinog timer reset
4	Sampling failure
5	Out of control trap
6	Reserved
7	Timing failure
8	Loss of power (power up)
9	External reset (warm restart)
10	Configuration cormupted
11-15	Reserved

The self-check alarm register indicates possible problems with the instrument hardware or setup configuration. The hardware problems are indicated by the appropriate bits which are set whenever the instrument fails self-test diagnostics or in the event of loss of power. The setup configuration problems are indicated by the dedicated bit which is set when either configuration register is corrupted. In this event, the instrument will use the default configuration. The configuration corrupt bit may also be set as a result of the legal changes in the setup configuration since the instrument might implicitly change or clear other setups if they are affected by the changes made.

Hardware fault bits can be reset by writing zero to the self-check alarm register. The configuration corrupt status bit is also reset automatically when you change setup either via the front panel or through communications.

### 5.8 Extended Data Registers

The following table lists all registers containing the data measured by the instrument. Notice that these registers are arranged into groups which are not located at adjacent addresses. You can re-map these registers into adjacent addresses to access multiple data from different data groups by using a single request. Refer to Section 2.9 for information on the user assignable registers.

Along with the register address, the table shows for each data item its data identifier (ID). This is a one word containing a data group ID in the high byte and the parameter offset in a group in the low byte. Data IDs are used to specify input or output parameters whenever a dala parameter specification is needed, for example, when selecting analog output parameters or reading Min/Max log records.

Table 5-16 Extended Data Registers


-taparaden wo	$516.6$					Yonito	tow	cale
		Tom，		，				
Counter \＃4	$\begin{aligned} & 7062 \\ & 7063 \end{aligned}$		13062－13063	2563	RNW		0	99999
Voltage L1／L12（1）	7136	LIN3	13312－13313	3072	R	$0.1 \mathrm{~V} / 1 \mathrm{~V}$	0	Vmax
Voltage L2L23（0）	7137	LIN3	13314－13315	3073	R	$0.1 \mathrm{~V} / 1 \mathrm{~V}$	0	Vmax
Voltage L3／L31（0）	7138	LIN3	13316－13317	3074	R	$0.1 \mathrm{~V} / 1 \mathrm{~V}$	0	$V$ max
Current L1	7139	LIN3	13318－13319	3075	R	0．01A	0	Imax
Current L2	7140	LIN3	13320－13321	3076	R	0．01A	0	Imax
Current L3	7141	LIN3	13322－13323	3077	R	0．01A	0	Imax
kW L1	7142	LIN3	13324－13325	3078	R	$0.001 \mathrm{~kW} / 1 \mathrm{~kW}$	－Pmax	Pmax
kW L2	7143	LIN3	13326－13327	3079	R	$0.001 \mathrm{~kW} / 1 \mathrm{~kW}$	－Pmax	Pmax
kW L3	7144	LIN3	13328－13329	3080	R	$0.001 \mathrm{~kW} / 1 \mathrm{~kW}$	－Pmax	Pmax
kvar L1	7145	LIN3	13330－13331	3081	R	$0.001 \mathrm{kvar} / 1 \mathrm{kvar}$	－Pmax	Pmax
kvar L2	7146	LIN3	13332－13333	3082	R	0．001kvar／1kvar	－Pmax	Pmax
kvar L3	7147	LIN3	13334－13335	3083	R	0．001kvar／1kvar	－Pmax	Pmax
kVA L1	7148	LIN3	13336－13337	3084	R	0．001kVA1kVA	0	Pmax
kVA L2	7149	LIN3	13338－13339	3085	R	0.001 kVA 1 kVA	0	$P_{\text {max }}$
kVA L3	7150	LIN3	13340－13341	3086	R	0.001 kVA 1 kVA	0	Pmax
Power factor L1	7151	LIN3	13342－13343	3087	R	0.001	－1．000	1.000
Power factor L2	7152	LIN3	13344－13345	3088	R	0.001	－1．000	1.000
Power factor L3	7153	LIN3	13346－13347	3089	R	0.001	－1．000	1.000
Voltage THD L1／L12	7154	LIN3	13348－13349	3090	R	0．1\％	0	999.9
Voltage THD L2A 23	7155	LIN3	13350－13351	3091	R	0．1\％	0	999.9
Voltage THD L3	7156	LIN3	13352－13353	3092	R	0．1\％	0	999.9
Current THD L1	7157	LIN3	13354－13355	3093	R	0．1\％	0	999.9
Current THD L2	7158	tIN3	13356－13357	3094	R	0．1\％	0	999.9
Current THD L3	7159	LIN3	13358－13359	3095	R	0．1\％	0	999.9
K－Factor L1	7160	LIN3	13360－13361	3096	R	0.1	1.0	999.9
K－Factor L2	7161	LIN3	13362－13363	3097	R	0.1	1.0	999.9
K－Factor L3	7162	LIN3	13364－13365	3098	R	0.1	1.0	999.9
Current TDD L1	7163	LIN3	13366－13367	3099	R	0．1\％	0	100.0
Current TDD L2	7164	LIN3	13368－13369	3100	R	0．1\％	0	100.0
Current TDD L3	7165	LIN3	13370－13371	3101	R	0．1\％	0	100.0
Voltage L12	7166	LIN3	13372－13373	3102	R	$0.1 \mathrm{~V} / 1 \mathrm{~V}$	0	$V$ max
Voltage L23	7167	LIN3	13374－13375	3103	R	$0.1 \mathrm{~V} / 1 \mathrm{~V}$	0	Vmax
Voltage L31	7168	LIN3	13376－13377	3104	R	$0.1 \mathrm{~V} / 1 \mathrm{~V}$	0	$V$ max
Reatimethay								
Total kW	7256	LIN3	13696－13697	3840	R	$0.001 \mathrm{~kW} / 1 \mathrm{~kW}$	－Pmax	Pmax
Total kvar	7257	LIN3	13698－13699	3841	R	0．001kvar／1kvar	－Pmax	Pmax
Total KVA	7258	LIN3	13700－13701	3842	R	0.001 kVA 1 KVA	0	Pmax
Total PF	7259	LIN3	13702－13703	3843	$R$	0.001	－1．000	1.000
Reserved	7260		13704－13705	3844	$R$		0	0
Reserved	7261		13706－13707	3845	R		O	0
Reserved	7296		13824－13825	4096	R		0	0
Neulral current	7297	LIN3	13826－13827	4097	R	0．01A	0	Imax
Frequency（1）	7298	LIN3	13828－13829	4098	R	0.01 Hz	0	100.00
Voltage unbalance	7299	LIN3	13830－13831	4099	R	1\％	0	300
Current unbalance	7300	LIN3	13832－13833	4100	R	1\％	0	300
Voltage L1／L12（6）	7336	LIN3	13952－13953	4352	R	0．1V／1V	0	$V$ max
Voltage L2／L23（6）	7337	LIN3	13954－13955	4353	R	$0.1 \mathrm{~V} / 1 \mathrm{~V}$	0	$V$ max
Voltage L3／L31（6）	7338	LIN3	13956－13957	4354	R	$0.1 \mathrm{~V} / 1 \mathrm{~V}$	0	$V$ max
Current L1	7339	LIN3	13958－13959	4355	R	0．01A	0	Imax
Current L2	7340	LIN3	13960－13961	4356	R	0．01A	0	Imax
Current L3	7341	LIN3	13962－13963	4357	R	0．01A	0	Imax

# Dedicated to a better Brisbane BRISBANE CITY COUNCIL BRISBANE WATER 

SP306 - Coronation Drive Pump Station

## Operation \& Maintenance Manual Contract No. BW30079-02/03

Volume No. 2
Section 4


[^0]:    Issue Date: May 2007 Rev 1
    30/05/07
    G:I185 SEW_DRAINL255 Des_Const18890 TransportIS1 Luggage PTISQSJ Redirect Heroes Ave (s1)l6
    ImplementationlCommissioningIO\&MM Coronation Drive SP306ITable of Contents - SP306.doc

[^1]:    6

[^2]:    To select a display option:
    $\checkmark$ Press SELECTIT activate the middie window, and then use the up/down arrow keys to scroll to the desired option.
    To change the display option:
    $\checkmark$ Press SELECTIO activate the lower window.
    $\checkmark$ Use the up/down arrow keys to set the desired option.
    $\checkmark$ Press ENTER to store your new setting or press ESC to leave your previous setting unchanged.
    To quit the display setup menu:
    $\checkmark$ From the middle window, pres EESC or ENTER

