OUEENSLAND
Urban Utilities

ELECTRICAL SWITCHBOARD OPERATION AND MAINTENANCE MANUAL FOR

QUEENSLAND URBAN UTILITIES SEWAGE PUMPING STATION

TSR06 - HEROES AVENUE

Developed by:

J \& P RICHARDSON INDUSTRIES CAMPBELL AVENUE WACOL QLD 4076

ELECTRICAL SWITCHBOARD OPERATION AND MAINTENANCE MANUAL FOR QUEENSLAND URBAN UTILITIES SEWAGE PUMPING STATION TSR06 - HEROES AVENUE

DOCUMENT CHANGE HISTORY

Version History

Version	Author	Issue Purpose	Signature	Date
1	Darren McKlaren	Draft for Comment		

Reviewed by

Version	Author	Position	Signature	Date

CONTENTS

1 Introduction
1.1 Operating Instructions

2 Description of Operation
2.1 Mode Selector
2.2 Manual Emergency Control
2.3 Manual Control
2.4 Automatic Control

3 Electrical Equipment list
4 Test Results
5 "As Installed" Red Penned Drawings
6 Service \& Maintenance

7 Electrical Equipment Technical Information

1 INTRODUCTION

These operating instructions cover the Sewage Pumping Station electrical equipment supplied by J \& P Richardson Industries Pty Ltd in 2014.

1.1 OPERATING INSTRUCTIONS

Normal operation of the pumping station is in the automatic mode with control by means of a Motorola RTU, which receives level signals from the Level Measurement System in the wet well.

Manual controls and Manual Emergency operation of the station is available by means of selector switches on the common control compartment of the switchboard.

2 DESCRIPTION OF OPERATION

2.1 MODE SELECTOR

The station can be operated either in Local-Remote (automatic) or manual emergency mode with selection being made by means of the mode selector switches mounted on common control section escutcheon of the switchboard. The selector switch designated for Manual Emergency Mode is made by means with the following mode selections OFF-ON.

2.2 MANUAL EMERGENCY CONTROL

Each pumping unit can be run in manual emergency control from the common control section by: -

1. Selecting the "ON" setting on the "MODE SELECTOR SWITCH" as described in Clause 2.1.
2. The Duty Pump will start.
3. After a time delay, the Standby Pump will start.
4. Return the selector switch back to "OFF".

N.B. DO NOT LEAVE THE STATION IN MANUAL EMERGENCY CONTROL WHILE UNATTENDED

2.3 MANUAL CONTROL

For manual control of the station: -

1. Select the "MANUAL" position on the "MODE SELECTOR SWITCH" on the common control section escutcheon.
2. Starting and stopping of each pump is now controlled via the "START" and "STOP" push buttons located on the common control section escutcheon.
3. To return to Automatic Control, return the selector switch back to "REMOTE".

N.B. DO NOT LEAVE THE STATION IN MANUAL CONTROL WHILE UNATTENDED

2.4 AUTOMATIC CONTROL

For automatic control of the station: -

1. The "MODE SELECTOR SWITCH" on the common control section should be in the "REMOTE" position.
2. The automatic starting and stopping of the pumps is controlled by signals from the Motorola RTU.

For NORMAL OPERATION, each of the pump selector switches should have "EMERGENCY PUMP OFF" mode selected.

In the REMOTE mode the selected Duty Pump unit will start automatically as pre-set by the level in the wet well. In the event of the duty pump not being capable of supplying enough flow to continue draining the wet well and the well level rises to a second pre-set level, then the Standby Pump unit will automatically start to provide additional pumping. The supplementary pump unit also takes over for the respective pump duty on the occurrence of the Duty Pump unit failing. Duty and Standby pump delegation is assigned via the RTU programming.

3 ELECTRICAL EQUIPMENT LIST

This list is to be used in conjunction with Sheet 16 of the electrical switchboard drawings (refer Section 5).

ITEM	DESCRIPTION	SUPPLIER	MANUFACTURER	CATALOGUE NUMBER
1	METERING ISOLATOR	SOCOMEC	SOCOMEC	SLB 630 3P
2	BASIC TRANSFER SWITCH	SCHNEIDER	SCHNEIDER	NSX630H/ MICROLOGIC 6.0A
3	- TO SUIT MAIN SWITCHES Q2 \& Q3	SCHNEIDER	SCHNEIDER	Q3 - c/w AUX CONTACTS
4	Q4 PUMP 1 CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	NSX630H/ MICROLOGIC 6.3M
5	Q5 PUMP 2 CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	NSX630H/ MICROLOGIC 6.3M
6	Q6 DRYWELL SUMP PUMP CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	NSX100N - MA12.5
7	Q7 ESS SERVICES DB - MAINS SUPPLY - CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	NSX160N-TM40D
8	Q8 SUB-DISTRIBUTION BOARD CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	NSX160N - TM100D
9	Q9 EM. STORAGE DEWATERING PUMP CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 3P-10A
10	Q10 STATION MAINS PHASE FAILURE CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 3P-6A
11	Q11 PUMP BUILDING 15A GPO CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H RCBO Type AC 30mA 16A
12	Q12 RTU LAPTOP GPO CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H RCBO Type AC 30mA 10A
13	Q13 DRY WELL LIGHTING CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H RCBO Type AC 30mA 6A
14	Q14 DRY WELL VENT FAN CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H RCBO Type AC 30mA 10A
15	Q15 GENERATOR AUXILLARY SUPPLY CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H RCBO Type AC 30mA 10A
16	Q16 PUMP BUILDING EXTERNAL AREA LIGHTING CCT BKR	SCHNEIDER	SCHNEIDER	C60H RCBO Type AC 30mA 6A
17	Q17 SURGE FILTER CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 1P - 10A
18	Q18 EM PUMP CNTRL \& SURCHARGE IMMINENT CB	SCHNEIDER	SCHNEIDER	C60H 1P - 6A
19	Q19 SPARE CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 1P - 6A
20	Q20 PUMP BUILDING 3 PHASE OUTLET CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 3P - 20A
21	Q21 PUMP BUILDING INTERNAL LIGHTING CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H RCBO Type AC 30mA 6A
22	Q22 PUMP BUILDING 10A GPO'S CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H RCBO Type AC 30mA 10A
23	Q23 VALVE PIT SUMP PUMP POWER SUPPLY	SCHNEIDER	SCHNEIDER	C60H RCBO Type AC 30mA 10A
24	Q24 SPARE	SCHNEIDER	SCHNEIDER	C60H RCBO Type AC 30mA 10A
25	Q25 SPARE CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 3P-20A
26	Q26 GANTRY CRANE SUPPLY CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 3P - 20A
27	Q27 ODOUR CONTROL SUPPLY CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 3P - 20A
28	Q28 CHEMICAL DOSING SUPPLY CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 3P - 20A
30	Q30 RTU POWER SUPPLY CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 1P - 6A

Sewerage Pump Station Operation and Maintenance Manual

31	Q31 SURGE FILTER ALARM RELAY CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 1P - 4A
32	Q32 FLOWMETER 240VAC SUPPLY CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 1P - 4A
33	Q33 SPARE	SCHNEIDER	SCHNEIDER	C60H 1P - 4A
35	Q40 SWITCHROOM 3 PHASE OUTLET CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 3P-20A
36	Q41 SWITCHROOM AIR CONDITIONER 1 CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 1P - 16A
37	Q42 SWITCHROOM AIR CONDITIONER 2 CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 1P - 16A
38	Q43 SWITCHROOM 10A GPO'S CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H RCBO Type 30mA 10A
39	AUXILLIARIES CONTROL PLATE	SCHNEIDER	SCHNEIDER	ACP
40	INTERLOCKING \& TERMINAL BLOCK UNIT	SCHNEIDER	SCHNEIDER	IVE
41	AUTOMATIC TRANSFER SWITCH CONTROLLER	SCHNEIDER	SCHNEIDER	UV150
42	PUMP 240VAC CONTROL CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 1P - 4A
43	24VDC CONTROL CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 1P - 6A
44	BATTERY SHORT CCT PROTECTION CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 2P-10A
45	DISTRIBUTION BOARD CHASIS	SCHNEIDER	SCHNEIDER	MSC 18-48 POLE
46	EMERGENCY LIGHTING TEST KIT	NHP	NHP	CPELK1
47	F1-2 - SURGE DIVERTER CIRCUIT FUSES	NHP	NHP	NC63 c/w TIS63L
48	SURGE DIVERTER	CRITECT	CRITECT	TDS1100-2SR-277
49	SURGE FILTER ALARM RELAY - SFAR	CRITECT	CRITECT	DAR-275V
50	SURGE REDUCTION FILTER - SRF	CRITECT	CRITECT	TDF-10A-240V
51	ENERGEX PHASE FAILURE RELAY PFRE	SCHNEIDER	SCHNEIDER	RM17TG20
52	STATION PHASE FAILURE RELAY - PFRS	SCHNEIDER	SCHNEIDER	RM17TG20
53	GENERATOR PHASE FAILURE RELAY - PFRG	SCHNEIDER	SCHNEIDER	RM17TG20
54	MAIN NEUTRAL \& EARTH LINKS	CLIPSAL	CLIPSAL	COPPER BAR
55	DIST. BD NEUTRAL LINK	CLIPSAL	CLIPSAL	BP165D48
56	DIST. BD EARTH LINK	CLIPSAL	CLIPSAL	BP165D48
57	SURGE DIVERTER NEUTRAL LINK	CLIPSAL	CLIPSAL	L5A
58	INSTRUMENT EARTH LINK	CLIPSAL	CLIPSAL	L13/25A
59	FILTERED SUPPLY NEUTRAL LINK	CLIPSAL	CLIPSAL	L7
61	F4-9 - PHASE FAILURE - FAULT LIMITING FUSES	NHP	NHP	6AMP
62	PUMP VARIABLE SPEED DRIVES \& SEMICONDUCTOR FUSES	DANFOSS	DANFOSS	Model \#: FC202N160T4E5MH1TGC7xxSxxxxA NBKCxxxxDx + Safe Stop
63	REMOTE KEYPAD MOUNTING KIT	DANFOSS	DANFOSS	130B1107
64	SPEED POTENTIONMETERS $1 \mathrm{k} \Omega 1 \mathrm{~W}$ 1 Turn	NHP	NHP	D7P-POT3
65	EMERGENCY PUMPING RELAY - K1	IDEC	IDEC	RH2B-ULD-DC24V
66	VSD RUNNING RELAY - K2	IDEC	IDEC	RH4B-ULD-DC24V
67	PUMP INTERLOCK RELAY - K3	IDEC	IDEC	RH1B-ULD-DC24V
68	PUMP EM.STOP RELAY - K4	IDEC	IDEC	RH4B-ULD-DC24V

69	PUMP CONTROL CCT POWER ON RELAY - K5	IDEC	IDEC	RH1B-ULD-DC24V
70	PUMP MOISTURE IN OIL RELAY - K7	 FUCHS	PEPPEL \& FUCHS	KFD2-ER-1.6
71	PUMP MOISTURE IN STATOR RELAY - K8	 FUCHS	PEPPEL \& FUCHS	KFD2-ER-1.6
72	PUMP BEARING TEMPERATURE RELAY - K9	MOORE INDUSTRIES	MOORE INDUSTRIES	CPA/TPRG/2PRG/24VDC/DIN
73	PUMP RUN COMMAND RELAY - K20	IDEC	IDEC	RH1B-ULD-DC24V
74	PUMP FAULT RESET RELAY - K21	IDEC	IDEC	RH1B-ULD-DC24V
75	PUMP EMERGENCY MODE INTERRUPT RELAY - K22	IDEC	IDEC	R

104	GENERATOR FAULT RELAY- GFR	IDEC	IDEC	RH1B-ULD-24VDC
105	GENERATOR WARNING RELAY - GWR	IDEC	IDEC	RH1B-ULD-24VDC
106	GENERATOR LOW FUEL RELAY - GLFR	IDEC	IDEC	RH1B-ULD-24VDC
107	GENERATOR MEDIUM FUEL RELAY - GMFR	IDEC	IDEC	RH1B-ULD-24VDC
108	GENERATOR RUNNING RELAY - GRR	IDEC	IDEC	RH1B-ULD-24VDC
109	GENERATOR CANOPY DOOR RELAY - GDR	IDEC	IDEC	RH1B-ULD-24VDC
110	GENERATOR CB STATUS RELAY - GCB	IDEC	IDEC	R

149	ETHERNET 8 PORT SWITCH	MOXA	MOXA	EDS-208
150	GRAPHIC DISPLAY	REDLION	REDLION	G306A000
153	CHEMICAL DOSING TRANSIENT BARRIER CD-TB1	CRITEC	CRITEC	UTB-30SP
157	INTERNAL COAX CABLE	TRIO	TRIO	TRIO - SMAM/NM/TL23
158	EXTERNAL COAX CABLE	RF INDUSTRIES	RF INDUSTRIES	ANDREW - CNT400
159	COAX PLUG	PULSE	PULSE	N-203HS
160	U CLAMPS	RF INDUSTRIES	RF INDUSTRIES	UNV
164	MINIATURE THERMAL CIRCUIT BREAKER	PHOENIX CONTACT	PHOENIX CONTACT	TCP 'x'A + UK6FSI/C
$\begin{aligned} & 164 . \\ & 1 \\ & \hline \end{aligned}$	THROUGH TERMINALS	PHOENIX CONTACT	PHOENIX CONTACT	PT2.5
$\begin{aligned} & 164 . \\ & 2 \end{aligned}$	DISCONNECT TERMINALS	PHOENIX CONTACT	PHOENIX CONTACT	PT2.5-MT
$\begin{aligned} & 164 . \\ & 3 \\ & \hline \end{aligned}$	THROUGH TERMINALS	PHOENIX CONTACT	PHOENIX CONTACT	PT4
$\begin{aligned} & 164 . \\ & 4 \\ & \hline \end{aligned}$	DUAL LEVEL TERMINALS	PHOENIX CONTACT	PHOENIX CONTACT	PTTB2.5
$\begin{aligned} & 164 . \\ & 5 \\ & \hline \end{aligned}$	GROUP MARKER CARRIER	PHOENIX CONTACT	PHOENIX CONTACT	UBE
$\begin{aligned} & 164 . \\ & 6 \\ & \hline \end{aligned}$	PLUG-IN BRIDGE	PHOENIX CONTACT	PHOENIX CONTACT	FBS
$\begin{aligned} & 164 . \\ & 7 \\ & \hline \end{aligned}$	TEST PLUG	PHOENIX CONTACT	PHOENIX CONTACT	PS-5
$\begin{aligned} & 164 . \\ & 8 \\ & \hline \end{aligned}$	COVER PROFILE (SHROUDING) + CARRIER PLATE	PHOENIX CONTACT	PHOENIX CONTACT	AP-2 + AP2-TU
170	LAPTOP GPO - TWIN 10A	CLIPSAL	CLIPSAL	$25+449 \mathrm{~A}+449 \mathrm{AP}$
179	$\begin{aligned} & \text { 240VAC/24VDC FLOAT BATTERY } \\ & \text { CHARGER - BC1 } \end{aligned}$	INNOVATIVE ENERGIES	INNOVATIVE ENERGIES	SR250K
180	ANCILLARY SUPPLY CHANGEOVER CONTACTOR - K50	SPRECHER \& SCHUH	$\begin{aligned} & \text { SPRECHER \& } \\ & \text { SCHUH } \end{aligned}$	CA7
181	LIGHTING ISOLATION CONTACTOR K51	IDEC	IDEC	RH4B-ULD-DC24V
182	$\begin{aligned} & \text { Q50 ESS SERVICES DB - ANCILLARY } \\ & \text { SUPPLY - CCT BKR } \end{aligned}$	SCHNEIDER	SCHNEIDER	NSX100N - TM40D
183	Q51 ESS SERVICES DB MAIN CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 1P - 32A
184	Q52 ANCILLARY BATTERY CHARGER CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 1P - 4A
185	Q53 SWITCHROOM VENTILATION FAN CCT BREAKER	SCHNEIDER	SCHNEIDER	C60H 1P - 6A
186	Q54 SWITCHROOM INTERNAL LIGHTING CCT BREAKER	SCHNEIDER	SCHNEIDER	C60H RCBO Type AC 30mA 6A
187	Q55 SWITCHROOM EXTERNAL LIGHTING CCT BREAKER	SCHNEIDER	SCHNEIDER	C60H RCBO Type AC 30mA 6A
188	Q56 SWITCHROOM EMERGENCY LIGHTING CCT BREAKER	SCHNEIDER	SCHNEIDER	C60H RCBO Type AC 30mA 6A
189	Q57 SPARE CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 1P - 4A
190	Q58 SPARE CIRCUIT BREAKER	SCHNEIDER	SCHNEIDER	C60H 1P - 4A
191	Q59 ESS SERVICES - MAINS SUPPLY CONTROLCB	SCHNEIDER	SCHNEIDER	C60H 1P - 4A
192	Q60 ESS SERVICES - ANCILLARY SUPPLY CONTROL CB	SCHNEIDER	SCHNEIDER	C60H 1P - 4A
193	CORROSION INHIBITOR	CORTEC	CORTEC	VPCI-110 OR 111

4 TEST RESULTS

 alternative methods are acceptable, AS3017:2007 may be applied through legislative requirements made in each State parameters to verify AS3000:2007 safety requirements, however these methods are provided for guidance and other AS/NZS 3017 Electrical Installations - Verification Guidelines provides inspection, test methods and test acceptance AS3000:2007 tests considered as mandatory, prior to execution of the Factory Acceptance Test. This section is aimed to ensure that the switchboard manufacturer has carried out and documented all applicable construction, alteration, addition or repair, it shall be inspected and tested to verify that the installation is safe to energize
and that it will operate correctly in accordance with the requirements of AS3000:2007. AS/NZS 3000:2007 requires that prior to placing an electrical installation or any part thereof in service following its

$\operatorname{sice} / \mathrm{g} / \mathrm{bl}$	ətDO	9\# wooy pıdoquગ!!Ms Kıdıoduə1 90-४SI

Note: Printed copies of this document should be verified for currency against the published electronic copy. GLOZ/EO/EZ :pəyu!d e Ll-VO :plool
Note：Printed copies of this document should be verified for currency against the published electronic copy．
Company Name

．．．．．．．．．．．．．．．．әфра
Company Electrical Licence No． 756

1•६ UO！！つəS LOOZ：／LIOES甘 					 ィоłวnpuos би！чдDә u！pw（D 	$1 *$
sұuәumos puo stinsəy	$\begin{gathered} \text { חกס } \\ \text { pəu6! } \end{gathered}$	V／N	［oy	33V	uo！！d！ısseg 人！！＾！！つヲ	＇ON سə！

[^0]CA17a－Factory Inspection Tests
Note：Printed copies of this document should be verified for currency against the published electronic copy．

Company Electrical Licence No． 756

Contractor＇s Signature ．．E．A ．．．nnefon．．．．．．．．．．．．．．．．．．．．．．．．．．．．

[^1]Note: Printed copies of this document should be verified for currency against the published electronic copy.
Printed: 23/03/2015

sə!ułsnpu| uospıeчэ! y d 8 r ouren Kuedwos

 					słsəł əวuənbəs əsDud \ə (sәyכ!!мs əןod ə\|ธิu!s 6u!pnןu!) tsəł suo!!əəuuoว 人t!!pod t! ub su!putaunsueつ (10 	$\varepsilon \cdot \forall$
słuәumos pud stInsəy	กกO pəuந!!	V/N		33V		-ON แəझ\|

(U) Urbañ

Note: Printed copies of this document should be verified for currency against the published electronic copy. \begin{tabular}{l}
:pejuld

:p1 200

\hline

GLOZ/E0/EZ

BLL-

\hline 0
\end{tabular} 91 : ^әу

Owner: Alfonso Chavez
七乙 fo s abed

Company Electrical Licence No. 756
Company Name J \& P Richardson Industries

Contractor's SignatureE.G.....Snsuch..........................

> CA17a - Factory Inspection Tests
Note: Printed copies of this document should be verified for currency against the published electronic copy.

Note: Printed copies of this document should be verified for currency against the published electronic copy eLL-VO :ploog
Note: Printed copies of this document should be verified for currency against the published electronic copy

Queensland Urban Utilities Electrical Inspector

Company Name J \& P Richardson Industries

C. 26	Lap top support tray provided including 1/4 turn wing knob on laptop support shelf. Knobs types that cannot be operated by hand are not acceptable.	-	7	JPR Laptop Tray Fitted.
C. 27	Drawings \& log book holder provided	r		
C. 28	Aerial support is adjustable	-		
C. 29	A minimum clearance of 55 mm shall be provided around the Redlion HMI to other components mounted in common controls door.	I		
C. 30	Check that selector switches are correctly engraved	7		
C. 31	Check that Indicators are fitted with correct coloured bezels	γ		

Note: Printed copies of this document should be verified for currency against the published electronic copy.

Note：Printed copies of this document should be verified for currency against the published electronic copy

Owner：Alfonso Chavez
문

$$
\begin{array}{l|}
\hline 0 \\
0 \\
\hline
\end{array}
$$

$$
\begin{array}{l|l|}
\hline 0 \\
i n \\
\hline
\end{array}
$$

io

\square | 0 | 0 | 0 |
| :--- | :--- | :--- |
| ω | is | - |

Item No．	Activity Description
D．1	N／L \＆E／L have adequate bolts Neutral \＆Earth

ne work complies with the requirements of AS／Nzs 3000.
Neutral \& Earth
Earth bar / earth connections fitted \& OK
All neutral connections are accessible
MEN connections provided
Neutral
Surge diverter ec
Confirm a Dire
earth bar to switchboard chassis
Contractor's Signature
uo!

$$
\text { u!pu lof sHoq əןDnbəpD ə^Du } 7 / \exists 87 / \mathrm{N}
$$

Incex

3000

Note: Printed copies of this document should be verified for currency against the published electronic copy
 eLL- $\forall O$: pl 000

 eLI- $\forall \mathrm{O}$: pl 00 O

Owner: Alfonso Chavez

........................
Gil

(1)
Note: Printed copies of this document should be verified for currency against the published electronic copy :pəəuld : pl 200 C LOZ/EO/६て
eLL-

Note：Printed copies of this document should be verified for currency against the published electronic copy． Printed：23／03／2015 Doc Id：CA－17a Contractor＇s Signature ．．．．．．．．．．．．．．in．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Company Name J \＆P Richardson Industries
Queensland Urban Utilities Electrical Inspector

קןpg
Owner：Alfonso Chavez
ャて $\downarrow 0$ レて ә6ed

						S＇J
				1	－əк！̣р би！puodsәлоว st！dots Kimpnton solots－ヨ toyt mulyuo	も・
		5		$/$		$\varepsilon \cdot \pm$
				／	sұuәuodmos ןDэ！	で」
				\bigcirc		L＇』
sұuәumos pus stInsəy	กกO peu6！s	V／N	［0¢	30V	uo！！d！ısəa K！！ヘ！！つV	－ON山əサI

switchboard meets all operational requirements．
 Printed：23／03／2015 BLL－ヲO ：ploog

sə！ıısnpu｜uospıeчэ！y d8 8 əmen Kuedmos
Contractor＇s Signature

$$
\begin{array}{|l|l|}
\hline \text { pətsət suo!tount IDnuow } & t \iota^{\circ} \ddagger \\
\hline
\end{array}
$$

ouodsə」ıつ	noid חly arb	

人jddns ıəmod כa＾૪乙 to tndıno pıoכəy Ol｀』

\boldsymbol{i}
\mathbf{i}

 display parameters are－displaying correctly．

$\rightarrow \rightarrow$
Note: Printed copies of this document should be verified for currency against the published electronic copy.
sLOZ/EO/\&Z :paluud

4．NCRs are to
2．FAT results to be approved by Queensland Urban Utilities Electrical Inspector．
3．Pre－FAT results to be approved by Queensland Urban Utilities Electrical Inspector
stinsəd I $\forall\rfloor \cdot 1$
：sə⿰丿N

			pəృDəuəつ syつn dolow
		7	
słuəmuos pud st｜nsəy	ON	S3A	stinsey IVJ｜bu！

This section is to be completed only at the conclusion of the FAT：

J. \& P. RICHARDSON INDUSTRIES PTY LTD

114 Campbell Avenue, WACOL QLD 4076
Ph: (07) 32712911 - Fax: (07) 32713623
E-mail: jpr@jpr.com.au

SWITCHBOARD \& SHEETMETAL INSPECTION REPORT

J. \& P. RICHARDSON INDUSTRIES PTY. LTD.

114 Campbell Avenue, WACOL QLD 4076

- Ph: (07) 32712911 - Fax: (07) 32713623

E-mail: jpr@jpr.com.au

SWITCHBOARD / SHEETMETAL INSPECTION CHECKLIST

CliEnt: QuU				JOB NO: $\mathrm{m} / \mathrm{S} 7400$	
PRODUCT DESCRIPTION: TRR - O6 TRANS PORTA 3 GAWING\& SCHEDULE NUMBERSSWITCHROOM MAIN SWBD$486 / 5 / 7-0523-000$ RSUA					
CONSTRUCTION	QUALITY		COMPLIANCE WITH DRAWINGS		REMARKS OR ACTION
	GOOD	POOR	YES	NO	
1. Folds	/		/		
2. Welds	Γ		r		
3. Edges / File		+	\checkmark		
4. Gauge			\checkmark		
5. Material	,		\checkmark	.	
6. Ventilation Openings / Filter Bracket		.	7	-	
7. Water Ingress Test			\sim / A.		
8. Equipment Mounting Arrangement		.	\cdots		
9. Doors Stiffened ${ }^{\text {a }}$					
10. Escutcheons and Lexan Covers		$\stackrel{ }{*}$	\checkmark		
11. Cable Saddles	1		N / A		$\cdots 3$
12. Grinding -			\bigcirc	.	
13. Door Stays Fitted			V / A		
14. Earth Studs			1	=	,
15. Rubber Retainer			N / A		
16. Drawing Holder			\checkmark		
17. Hat Sections			N / A	.	
18. Locking Bars Fitted.	.		N / A		
19. External Crevice Welded and Ground			,		
20. Legend Cards			\checkmark		-
21. General Conditions Satisfactory	-		Γ		
22. Cabinet Clear		-	γ		- .
23. Job Name and Number Marked on Board and Panels			7		$\because \quad$ -
24. Lap Top Tray			l		
25. Gland Plates Fitted -			7		
26. Sunshields Fitted		-	N / A		

J. \& P. RICHARDSON INDUSTRIES PTY. LTD.

114 Campbell Avenae, WACOL QLD 4076
Ph: (07) 32712911 - Fax: (07) 32713623
E-mail: jpr@jpr.com.au

SWITCHBOARD / SHEETMETAL
 INSPECTION CHECKLIST

CONSTRUCTION	QUALITY		COMPLIANCE WITH DRAWINGS		REMARKS OR ACTION
.	GOOD	POOR	YES	NO	.
27. Mullion Welded to Divider				\bigcirc	
28. Double Hinge Meter Panel Fitted			N / A		¢ .
29. Plinth Fitted	.		\checkmark		
30. Wall Mount Brackets			-		.
31. . Light Switch Brackets .			N / A		
32. Cowls	\square		- N/A		.
-INSPECTED BY: SiTceesl	DATE: $14 / 4 / 15$				

AFFIX STATUS HERE
Yellow
Green

Red
Awaiting Inspection
Inspected/Tested Passed
Inspected/Tested Awaiting Rectification

SWITCHBOARD ELECTRICAL INSPECTION \& TEST REPORT

J. \& P. RICHARDSON INDUSTRIES PTY LTD

114 Campbell Avenue, WACOL QLD 4076
Ph: (07) 32712911 -Fax: (07) 32713623

SWITCHBOARD CONTINUITY \& INSULATION TEST REPORT

J. \& P. RICHARDSON INDUSTRIES PT LTD

114 Campbell Avenue, W'ACOI. QLD 4076 Ph: (07) 32712911 - Fax: (07) 32713623

SWITCHBOARD ELECTRICAL INSPECTION \& TEST REPORT PRIMARY \& SECONDARY INJECTION TESTS

 114 Campbell Avenue, WA COL QLID 4076 Ph: (07) 32712911 - Fax: (07) 32713623 E-mail: jpr@jpr.com.au

SWITCHBOARD ELECTRICAL INSPECTION \& TEST REPORT EARTH LEAKAGE TEST

Customer Name: Queensland Urban Utilities
JPR Job No: $M>4000$ Item: TSR-06 Non Switchboard.

Comments:-

J．\＆P．RICHARDSON INDUSTRIES PTY LTD

114 Campbell Avenue，WACOL QLD 4076
Ph：（07） 32712911 －Fax：（07） 32713623
E－mail：jpr＠jpr．com．au
SWITCHBOARD \＆SHEETMETAL INSPECTION REPORT

Customer Name：QUEENSLAND URBAN UTILITIES Item：TSR－06 TRANSPORTABLE SWITCHROOM CABLING TIER			Job No：M74000／S74000		
			$\begin{array}{\|l} \hline \text { Drawing No: 486/5/7-0523-000 (REV. A) } \\ \text { to 486/5/7-0523-070 (REV. A) } \\ \hline \end{array}$		
TASK	PRODUCT DETAIL	$\begin{gathered} \hline \text { INSPECTE } \\ \text { D BY } \\ \hline \end{gathered}$	DATE	$\begin{aligned} & \hline \text { PASS / } \\ & \text { FAIIL } \\ & \hline \end{aligned}$	CORRECTIVE ACTION REOUEST OR COMMENTS
Design	Documents	D．MC	23／03／2015	\checkmark	
Drafting	Documents	D．MC	23／03／2015	\checkmark	
Sheetmetal （Refer F1018 for details）	Switchboard		11		
	Doors	6 E	C， 1	刀f＇	
	GetrPanels				
Painting					
Process	Powder／Wet				
Min DFT（40 STD）					
Cure Test		1			
Colour Exterior		1）	1		
Colour Internal		N101	olos ${ }^{\prime}$	P	H
Colour Panels		viv		Afory	
Cubicle Erection	Dure	O．Tceoge	1415105	Pas	
Electrical Fitout					
（In accordance with drawings）					
Inspection \＆Test （Refer to F1019）					
Packing	－ 1	1			Jタに号
Comments：Cul Reas stowi wiy elo $1 / 15$					
NOTE：－Manufacture is not to proceed to the next process until the item has passed inspection					
Affix Status Here：－					
Yellow	Awaiting Inspection				
Green	Inspection \＆Test Passed				
Red	Inspection \＆Test Failed，Awaiting Rectification				

J. \& P. RICHARDSON INDUSTRIES PTY. LTD.

114 Campbell Avenae, WACOL QLD 4076
Ph: (07) 32712911 - Fax: (07) 32713623
E-mail: jpr@jpr.com.au

SWITCHIBOARD / SHEETMPTAL INSPECTION CHECKLIST

CONSTRUCTION	QUALITY		COMPLIANCE WITH DRAWINGS		REMARKS OR ACTION
* .	GOOD	POOR	YES	NO	.
27. Mullion Welded to Divider			$1 \mathrm{~m} / \mathrm{A}$		
28. Double Hinge Meter Panel Fitted			N/4		- .
29. Plinth Fitted	.		$\sqrt{ }$		
30. Wall Mount Brackets			$N /$.
31. Light Switch Brackets .			N/		
32. Cowls	,		N/1		.
,INSPECTED BY: G	DATE: $00 / 0415$				

AFFIX STATUS HERE
Yellow Green Red

Awaiting Inspection
Inspected/Tested Passed
Inspected/Tested Awaiting Rectification

J. \& P. RICHARDSON INDUSTRIES PTY. LTD.

114 Campbeill Avenue, WACOL QLD 4076

- Ph: (07) 32712911 - Fax: (07) 32713623

E-mail: jpr@jpr.comau

SWITCHBOARD / SHEETMETAL INSPECTION CHECKLIST

CLIENT: QuU			.	JOB NO: $1 / \mathrm{S} 74000$	
PRODUCT DESCRIPTION: ISR-06 TRANSPORT ABLE SWl ${ }^{2}+\mathrm{CHOOn}$ CABLING TIER			DRAWING \& SCHEDUEE NUMBERS $482 / 5 / 7-0523-000(R E \cup A)+0$ $42 x / 5 / 2-0523-070(22$		
CONSTRUCTION	QUALITY		COMPLIANCE WITH DRAWINGS		REMARKS OR ACTION
	GOOD	POOR	YES	NO	
1. Folds					
2. Welds			7		
3. Edges / File *					
4. Gauge					
5. Material	.				
6. Ventilation Openings / Filter Bracket			N/A	.	
7. Water Ingress Test			N:A		
8. Equipment Mounting Arrangement		.	V		
9. Doors Stiffened *	*		$\mathrm{N} / / \mathrm{H}$		
10. Escutcheons and Leran Covers		\checkmark	\checkmark		
11. Cable Saddles	+		N/K	.	, *
12. Grinding			$\sqrt{1}$.	
13. Door Stays Fitted		-	N/1		
- 14. Earth Studs			\checkmark	?	-
15. Rubber Retainer			N/A		
16. Drawing Holder	-		N/A		
17. Hat Sections			N/A	.	
18. Locking Bars Fitted	,		N/A		
19. External Crevice Welded and Ground			1		
20. Legend Cards :			N / A		\cdots -
21. General Conditions Satisfactory	-		17		.
22. Cabinet Clean		,			-
23. Job Name and Number Marked on Board and Panels					\because
24. Lap Top Tray					
25. Gland Plates Fitted					
26. Sunshields Fitted		-	$N / 1 /$		

J. \& P. RICHARDSON INDUSTRIES PTY LTD

114 Campbell Avenue, WACOL QLD 4076
Ph: (07) 32712911 - Fax: (07) 32713623
E-mail: jpr@jpr.com.au

SWITCHBOARD \& SHEETMETAL INSPECTION REPORT

J. \& P. RICHARDSON INDUSTRIES PTY. LTD.
. 114 Campbell Avenue, WACOL QLD 4076 Ph: (07) 32712911 - Far: (07) 32713623

E-mail: jpr@jpr.com.au

SWITCHBOARD / SHEETMETAL
 INSPECTION CHECKLIST

Yellow
Green
Red

Awaiting Inspection
Inspected/Tested Passed
Inspected/Tested Awaiting Rectification

J. \& P. RICHARDSON INDUSTRIES PRY. LTD.

114 Campbell Avenue, WACOL QLD 4076

- Ph: (07) 32712911 - Fax: (07) 32713623

Email: jpr@jpr.comau

SWITCHBOARD / SHIEETMETAL INSPECTION CHECKLIST

CLIENT:

Que

Job No: $M / S 74000$
PRODUCT DESCRIPTION: ISR-O6 TRANSPORTABLE SWITCHRCOOM MAAS
cONSTRUCTION

J. \& P. RICHARDSON INDUSTRIES PTY LTD

114 Campbell Avenue, WACOL QLD 4076
Ph: (07) 32712911 -Fax: (07) 32713623
E-mail: jpr@jpr.com.au

SWITCHBOARD \& SHEETMETAL INSPECTION REPORT

J. \& P. RICHARDSON INDUSTRIES PTY. LTD.

114 Campbell Avenue, WACOL QLD 4076
a Ph: (07) 32712911 - Fax: (07) 32713623
E-mail: jpr@jpr.com.au

SWITCHBOARD / SHEETMETAL INSPECTION CHECKLIST

ClIENT: QuU				JOB NO: $1 / \mathrm{S} 74000$	
PRODUCT DESCRIPTION: TSR-OV TRASPORTABLF SWITCItRODM MARSHACLIAB-BOX MBOL			DRAWING \& SCHEDUEE NUMBERS		
CONSTRUCTION	QUALITY		COMPLIANCE WITH DRAWINGS		REMARKS OR ACTION
	GOOD	POOR	YeS	No	
1. Folds			\checkmark		
2. Welds			7		
3. Edge / File			\checkmark		
4. Gauge					
5. Material					
6. Ventilation Openings / Filter Bracket		.	7	.	
7. Water Ingress Test			,		
8. Equipment Mounting Arrangement			\%		
9. Doors Stiffened			1		
10. Escutcheons and Leran Covers		$\stackrel{ }{ }$,		
11. Cable Saddles	'		N / A	f	
12. Grinding -			\cdots		
13. Door Stays Fitted			7		
- 14. Earth Studs			/	,	
15. Rubber Retainer			N / A		
16. Drawing Holder			\checkmark		
17. Hat Sections			1		
18. Locking Bars Fitted.			1		
19. External Crevice Welded and Ground			\checkmark		
20. Legend Cards is	.		N / N		-
21. General Conditions Satisfactory	- .		$1 /$		
22. Cabinet Clean		-	$1 /$		-
23. Job Name and Number Marked on Board and Panels			7		-
24. Lap Top Tray			$N / 1+$		
25. Gland Plates Fitted -			5		
26. Sunshields Fitted			N / A		

SWITCHBOARD / SHEETMETAL

 INSPECTION CHECKLIST| - CONSTRUCTION | QUALITY | | COMPLIANCE WITH DRAWINGS | | REMARKS OR
 ACTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | GOOD | POOR | YES/ | NO | . |
| 27. Mullion Welded to Divider | | | \checkmark | | |
| 28. Double Hinge Meter Panel Fitted | | | $N(A$ | - | - . |
| 29. Plinth Fitted | . | | N / H | | |
| 30. Wall Mount Brackets | | | $\sqrt[3]{ }$ | | , |
| 31. . Light Switch Brackets . . | | | $\sqrt{1}$ | | |
| 32. Cowls | | | N / T | | - |
| -INSPECTED BY: GN ! | DATE: | \bigcirc | $4 / 15$ | | [|

Yellow Green Red

Awaiting Inspection
Inspected/Tested Passed
Inspected/Tested Awaiting Rectification

	ES 7ndul 8 gopeu \forall	عS 7ndul 8ojeuv	\＆S 7 ndu｜${ }^{\text {gojeu＊}}$	uolpJunf on	ゅS 7ndul goleuv	ววınos โ əวuว入əృวy	STE
\％	0	0	0	00工	00T	әЈuวлวfวy fosəıd	0．0TE
	uns	uns	uns			uo！łวun」 əวuəฝəృəy	ヤ0¢
Wdy	$00.005^{\prime} \tau$	OS	OS	OS	OS	әэuәıəృวy unu！xew	ع0E
$M>$	七¢	09T	09T	091	09T	（Mস）7！w！\downarrow ләмоd әуелg	こLて
myo	ε	t	t	t	7	（سц\％）107s！səy əyeıg	LIて
	əuon	วuon	2uon	65 łndu！jet！e！！	6T 7ndu！［e7！ 3 ！ 0	วכ＿nos 107s！w」əપ1	ع6T
	I d！$\dagger 7$ y $\perp 3$		T d！ 17 y $\lrcorner 3$	d！ı7 Jots！maวy		uo！	06T
\wedge	00t	00t	00t	STD	STb		S＇SST
\wedge	00t	00t	00t	SIt	STD	\wedge－э！¢！ләұวелечว \ddagger / \wedge	ガSSI
\wedge	00t	00t	00t	STt	STD		¢＇SSL
\wedge	00t	OOt	00t	STD	STD	\wedge－э！¢！${ }^{\text {¢ }}$－	て＇SSI
\wedge	00t	00t	00t	STt	STヵ	\wedge－э！¢！גəұวе」ечว $1 / \wedge$	L＇SSL
\wedge	9 ${ }^{\circ}$	9＇L	9＇I	L＇L	L＇L		O＇SSI
ய40	てT6．19T	てL6．L9โ	2L6．L9T	と8でもくT	と8でヤくて	（2fy）asuets！say sso7 uodı	9を工
แบ०	$69 \angle て ' \varepsilon$	$68 \downarrow^{\circ} \varepsilon$	$68 \nabla^{\circ} \mathrm{E}$	$66 T 9^{\circ} \mathrm{E}$	66T9＊${ }^{\circ}$	（4X）әэиеґวeәу u！ew	SEL
uyO	8tで．0	6てET＊0	6てEI＊0	6LEL＇0	6LET＇0	（2X）әэueұวeวy ว8eyeวา doł0y	七\＆L
myo	8LO 0	TE80 0	IE80＇0	2980 0	2980 0		$\varepsilon \varepsilon \tau$
w40	TS00 0	七500＇0	૪S00＇0	$\angle 500^{\circ} 0$	$\angle 500{ }^{\circ}$	（ıy）əכuełs！səy dołoy	LEL
w40	SSOO＊	$8500{ }^{\circ}$	8500＊0	$900^{\circ} 0$	9000	（sy）ajuełsisay dołełs	0عL
\forall	962	8LZ	8Lて	8L2	8Lて	quadinj 1070W	七てL
\wedge	00t	00t	00t	STt	STb	วรE孔10＾1010W	てZL
	pəqeuz	propeu3	рә¢quヨ	pəlqes！a	pəopes！a	dכ7 Uo Кә＞［uo oqn＊］	てヤ0
	pəıqеuヨ	pəpeuヨ	pəıquヨ	pəlqes！a	pəoqes！a	dכ7 uo রә＞＞［孔О］	Lセ0
	рәןqeu尹	рə¢qеuヨ	pəjqeuz	pelqes！0	pelqes！0	dכ7 uo кәу［uo pueh］	Ot0
	рәуu！！70N	рayu！ 70 N	рәyu！ 70 N	I dn－7əs	乙 dn－ұəs	ot payu！dn－qas s！ 41	ZIO
	I dn－łəS	dn－zəs ！＋inw	dn－72S ！\dagger n W	dn－7כS ！\dagger nW	dn－ұวS！！${ }^{\text {n }}$ W		0T0
	Wdy	zH	zH	zH	zH	7！un pards Jo70W	200
7！un	dinłes Kıjołjes	\rightarrow dnıes	ε dnłəS	zdnłəs	I dnłas	amen	Q1

myo	S＇Z	$9^{\circ} \mathrm{E}$	$9^{\circ} \mathrm{E}$	9＇を	9＇E	（myo）」ots！səy әyeגg	T80ع
dy	$\varepsilon \cdot ร દ \varepsilon$	9＊七て	9＇tLZ	9＇もして	9＊ャtて	［dH］дәмод paəds 48！	โع6Z
MH	0SZ	091	09T	09โ	091		0ع6Z
zH	0	0	0	0ε	0ε	［zH］pəəds 48！ H	6Z62
Wdy	0	0	0	006	006	［Wdy］pəədS 48！${ }^{\text {d }}$	8262
dy	$\varepsilon \cdot ร \varepsilon \varepsilon$	$9 . \downarrow$ IZ	9＊ャLZ	9＇カちて	9 9「て	［dH］damod paəds M07	Lて6Z
M 1	OSZ	091	09T	09T	091	［M才］」əмоd pəads mo7	9262
zH	0	0	0	0ε	0ε	［zH］prads M07	S26Z
Wdy	0	0	0	006	006	［Wdy］paəds Mo7	七26Z
zH	OT	OT	0L	0ε	0ε		ャT6Z
Wdy	00ε	00E	00ε	006	006	［Wdy］paəds ${ }^{\text {ceara }}$	$\varepsilon \tau 6 乙$
zH	0	0	0	0ε	0ε	［zH］pəads｜I！${ }^{\text {2d }}$ ！d	2062
Wdy	0	0	0	006	006	［Wdy］paads II！J ad！d	T062
\％	0 S	0 S	OS	T9	โ9		\＆ЪSZ
zH	0	0	0	0ε	0ε	［zH］paəds dn－әуем	とカてて
Wdy	0	0	0	006	006	［Wdy］pards dn－ayeM	てぃてて
zH	0	0	0	0ε	0ε	［zH］pəədS MO7 MO［J－ON	$62 て 2$
Wdy	0	0	0	006	006	［Wdy］prads MO7 Molj－on	8ててZ
	$\varepsilon 8^{\circ} 0$	78.0	78.0	$\varepsilon 8.0$	$\varepsilon 8 \cdot 0$	！ 4 dsoj dołOW	とカヤL
		OL x fəsa」 ग！̣emołn	OL x ¢əsə」 כ！＋emołn			әроW łəsəy	0てもT
	00τ	00T	00T	0	OS		SZ9
	00＇005＇T	OS	OS	OS	05		ST9
	uolpeado on	uo！perado on	uopjerədo on			রеןəy uolpound	L＇0ヤS
	uo！perado on	uolperado on	uolteredo on	su！uuny	gutuuny	Nepry uoltound	0．0ヶS
	uo！	uo！perədo on	uo！terado on	ұәsəy	ұəsəy	ұndul ןeł！s！o Z／0EX ןeu！uxa！	9IS
	uolyedado on	uo！perədo on	uolfedzdo on	0 7！q ұวəəəs dn－7əS	0 7！9 ұวəjəs dn－7as		カTS
	uolperado on	uo！perədo on	uolpeızdo on		uo əวuว」əృə」 łəงə」d		EIS
\forall	¢．9ヵ¢	て＇દદZ	て＇とદて	て＇દとZ	て＇દદ乙		LSt
\％	S＇โヤT	6．LヤL	6．LもT	でくもて	て＇\angle ¢	วpow Jotow t！w！${ }^{\text {anbıo」 }}$	97t
2H	0	0	0	0ε	0ε	［zH］t！	てLt
Wdy	0	0	0	006	006	［Wdy］f！u！ 1 MO7 pards dotow	LTち
5	08I	08 L	08T	OT	OT	әu！ 1 UMOO duey I duey	ても¢
S	06	06	06	OT	OT	әس！ d_{\cap} duey I dury	Iヵ¢
	uo！tounf ON	uoltount on	uo！${ }^{\text {unf }}$ ON	ES 7ndul gojeuv	uoltount on	əวınos 乙 əวuə」əృวบ	91E

	I	2	2	2	2	ssəıpp \forall	LE8
						z dund	
	I	〕	τ	τ	I	ssajpp \forall	IE8
							mn_{d}
+!un	dnłas RuO̧Je」	t dnłəs	ε dnłəs	z dnłəs	I dnłəs	amen	01

	ES Indul 8ojeut	£S łndul gojeuv	ES 7ndul soleuv	uo！puanf on	tS \ddagger ndul		STE
\％	0	0	0	001	001		0．01E
	mns	uns	uns				†0¢
Wdy	00．005＇โ	OS	OS	0 S	0 S	әวนәдəəบ unu！xew	ع0¢
M 1	七\＆Z	091	097	09โ	091		てLて
myo	ε	t	t	t	t	（w५o）dots！səy ayedg	ILZ
	әuоN	әuon	әuon	6τ Indu！！et！${ }^{\text {a }}$ ！			ع6I
	［ d！ 17×1 ¢	โ d！ 17 ¢ 1 ］	［ d！\ddagger ¢ ¢ 1 ］	d！ı7 」075！uxa 1			06I
\wedge	00t	00t	00t	SIt	SIt	Λ－э！̣s！גәұЈелечว f／＾	¢．SSI
\wedge	00t	00t	00t	stt	SIt		t｀乌らT
\wedge	00t	00t	00t	SIt	SIt		$\varepsilon \cdot \varsigma S I$
\wedge	00t	00t	00t	SIt	SIt		でSらL
\wedge	00t	00t	00t	SIt	SIt	\wedge－э！̣ร！גәјелечว＋／＾	I＇SSI
\wedge	9＇L	9＇I	$9 \cdot \tau$	$\angle \cdot \tau$	L＇I	\wedge－ว！	0．5SI
ш40	てT6＇โ9โ	てL6＇L9I	2T6＊T9โ	¢8でヤくโ	と8でゅく็	（әју）วэueıs！səy ssop uod	9عI
แ40	69Lでを	68 t＇$^{\circ} \mathrm{E}$	$68 \mathrm{t}^{\prime} \varepsilon$	$66 \tau 9 \cdot \varepsilon$	$66 T 9{ }^{\circ} \mathrm{E}$	（4х）әЈuеұวeәy u！ew	S\＆I
ш40	8ヵで「0	6てを1＊0	6Z¢T＊0	6LEL＇0	6LEt＇0		七\＆
щч0	8L0＇0	โع80\％	โع8000	29800	2980＇0		$\varepsilon \varepsilon \tau$
шч0	ISOO＇0	tS00\％	tS00＇0	LSOO＇0	$\angle 500 \cdot 0$	（גy）әJuexs！spy doloy	โદโ
шч0	SS00\％	8500＇0	8500\％	9000	900\％	（sy）əכuets！səy د07ets	0¢L
\forall	962	8LZ	$8 \angle 乙$	8Lて	8Lて	łuadnj dołow	ャてL
\wedge	00t	00t	00t	SIt	STt		ててI
	рәjqeuヨ	рәןqeuヨ	рәןqеuヨ	pəplqs！0	pə｜qes！a		てち0
	рəןqеuヨ	рə¢¢ещ	рə¢¢еuヨ	pəqes！0	pəjqes！	dכ7 uo＾а入［H0］	Ito
	рәןqeug	pəiqeug	priqeul	priqes！o	рәıqes！o	dכ7 uo Кәу［uo pueh］	0t0
	рәyu！ 10 N	рә＞¢！ 1 70N	рәуu！İ ${ }^{\text {N }}$	I dn－łəS	乙 dn－łəS		てL0
	I dn－łəS	dn－łəS！！\dagger n\％	dn－łəS！！	dn－łəS ！\ddagger InW	dn－zəs ！${ }^{\text {InW }}$		010
	Wdy	ZH	2 H	2H	2 H	t！un pards 1070W	200
7！un	dintas KıO̧Jes	† dinłas	ε dnłวS	2 dn ¢ ${ }^{\text {a }}$	I dnłวS	auren	al

mч0	$\mathrm{S}^{\prime} \mathrm{Z}$	$9{ }^{\circ} \mathrm{E}$	9＇E	$9 . \varepsilon$	$9{ }^{\circ} \mathrm{E}$	（myo）10¢s！səy ayeag	โ80¢
dy	$\varepsilon \cdot \varsigma \varepsilon \varepsilon$	9＊カIZ	9＊ャโて	9＇ャレて	9＇ttz	［dH］גəмоd pəads 48 ！${ }^{\text {d }}$	Lع6Z
M ＊	OSZ	091	091	091	09โ	［My］dәMOd pəadS 48！${ }^{\text {［ }}$	0862
2 H	0	0	0	0ε	0ε	［2H］pəədS 48！	6262
Wdy	0	0	0	006	006	［Wdy］pəads 48！ H	8262
dy	ع＇ระદ	9＇ャIて	9＇カIて	$9 \times \downarrow$ ¢	9＇tuz	［dH］」əmod pəədS MO7	LZ6Z
M 3	0SZ	091	091	091	09โ	［My］dәMod pəads Mo才	9262
zH	0	0	0	0ε	0ε	［zH］paads Mo7	S262
Wdy	0	0	0	006	006	［Wdy］pəəds M07	七て6Z
zH	OI	0L	0I	0ε	0ε	［zH］prads seaza	カL6Z
Wdy	008	00ε	00ε	006	006	［Wdy］pards $\frac{1}{}$ Ie」a］	عI6Z
2 H	0	0	0	0ε	0ε	［zH］pəads II！\ddagger ad！d	2062
Wdy	0	0	0	006	006	［Wdy］paads II！${ }^{\text {ad }}$ ad！	1062
\％	0 S	OS	05	19	โ9		$\varepsilon \dagger S Z$
2 H	0	0	0	0ε	0ε	［ zH ］pəads dn－ə＞＞＞ M	とャてZ
Wdy	0	0	0	006	006	［Wdy］pazds dn－əy＞ M	てもてZ
2 H	0	0	0	0ε	0ε	［zH］prads MO7 MOIJ－ON	6てZて
Wdy	0	0	0	006	006	［Wdy］pazds Moj Moly－on	8ててZ
	ع8\％	780	780	£8＇0	$\varepsilon 8^{\circ} 0$	！4dsoj dolow	と切
						apow zasay	OZカT
	001	00L	00T	0	OS		Sて9
	00\％00s＇t	OS	OS	0 S	05		SI9
	uolyerado on	uolyenado on	uo！terado on			Керəy uo！pound	L．0tS
	uoplejado on	uolpeıado on	uolterado ON	su！uuny	suluuny	керәу uo！	0．0tS
	uolzeardo ON	uoltedado on	uo！peardo ON	łəsəy	łəsəy	łndul fel！s！a z／0¢X｜eu！uxal	95S
	uolienado on	uolpedado on	uotreazdo on				$\dagger \tau 5$
	uolqe．ado ON	uolfeıado on	uo！peado on				$\varepsilon \tau 5$
\forall	S＇9t¢	て＇દદて	て＇દદ乙	でદદて	でとદて		TSt
\％	s＇tot	6＊T力	6＇โヵโ	でくカI	でしカI	әpow dołow t！！ 1 2nbrol	9It
zH	0	0	0	0ε	0ε	［ ZH$]$＋！u！ 7 M 07 paads 1070W	て，
Wdy	0	0	0	006	006	［Wdy］t！u！ 1 MO7 pazds lołow	ILヵ
s	085	085	085	OI	OT	әس！ 1 имоの duey I dmey	てヵ¢
s	06	06	06	OI	OT	zu！$\frac{1}{\text { d }}$ d dusey I dury	น七 ε
	uo！puunf on	uo！	uo！punf on	£S łndul sojeu＊	uo！puunf ON		9TE

	1	2		2		2		2		ssəıpp \forall	LE8
										$\mathrm{zdm}_{\text {d }}$	
	I	L		I		τ		I		ssəıpp \forall	IE8
											mn_{d}
ว!un	dnłes Kiozje		t dinłəs		ε dinłəs		z dinłos		I dinłas	amen	al

J. \& P. RICHARDSON INDUSTRIES PTY LTD

114 Campbell Avenue, WACOL QLD 4076
Ph: (07) 32712911 - Fax: (07) 32713623
E-mail: jpr@jpr.com.au
SWITCHBOARD \& SHEETMETAL INSPECTION REPORT

Affix Status Here: -

Yellow	Awaiting Inspection
Green	Inspection \& Test Passed
Red	Inspection \& Test Failed, Awaiting Rectification

J. \& P. RICHARDSON INDUSTRIES PTY. LTD.

114 Campbell Avenue, WACOL QLD 4076

- Ph: (07) 32712911 - Fax: (07) 32713623

E-mail: jpr@jpr.com.au

SWITCHBOARD / SHEETMETAL INSPECTION CHECKLIST

CLIENT: Quv			JOB NO: $1 / \mathrm{S} 74000$		
PRODUCT DESCRIPTION: TSR -OG TRANS PORT ABLE SWITCHROOM RTUQABINET			DRAWING \& SCHEDUEE NUMBERS $486 / 5 / 7-0523-000(R F U / A)+0$$48 / 5 />-0523-070(210$		
CONSTRUCTION	QUALITY		COMPLIANCE WITH DRAWINGS		REMARKS OR ACTION
	GOOD	POOR	YES	NO	
1. Folds			\checkmark		
2. Welds					
3. Edges / File					
4. Gauge					
5. Material			$\%$		
6. Ventilation Openings / Filter Bracket.		-	N/A		
7. Water Ingress Test					
8. Equipment Mounting Arrangement					
9. Doors Stiffened			1		
10. Escutcheons and Lexan Covers		\checkmark	\checkmark		
11. Cable Saddles			1		
12. Grinding					
13. Door Stays Fitted			$1 /$		
14. Earth Studs			$1 /$		*
15. Rubber Retainer			N/M		
16. Drawing Holder			N / A		
17. Hat Sections			\checkmark		
18. Locking Bars Fitted					
19. External Crevice Welded and Ground			\checkmark		
20. Legend Cards			N / N		
21. General Conditions Satisfactory			$\sqrt{1}$		
22. Cabinet Clean		,			'
23. Job Name and Number Marked on Board and Panels					.
24. Lap Top Tray			$1 /$		
25. Gland Plates Fitted			$1 /$		
26. Sunshields Fitted		,	γ		

J. \& P. RICHARDSON INDUSTRIES PTY. LTD.

114 Campbell Avenue, WACOL QLD 4076
Ph: (07) 32712911 - Fax: (07) 32713623
E-mail: jpr@jpr.com.au

SWITCHBOARD / SHEETMETAL INSPECTION CHECKLIST

Yellow Green Red

Awaiting Inspection
Inspected/Tested Passed
Inspected/Tested Awaiting Rectification

J. \& P. RICHARDSON INDUSTRIES PTY LTD

114 Campbell Avenue, WACOL QLD 4076
Ph: (07) 32712911 - Fax: (07) 32713623
E-mail: jpr@jpr.com.au
SWITCHBOARD \& SHEETMETAL INSPECTION REPORT

Customer Name: QUEENSLAND URBAN UTILITIES			Job No: M74000 / S74000			
Item: TSR-06 TRANSPORTABLE SWITCHROOM SPARES CABINET			Drawing No: 486/5/7-0523-000 (REV. A) to 486/5/7-0523-070 (REV. A)			
TASK	$\begin{gathered} \hline \text { PRODUCT } \\ \text { DETAIL } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { INSPECTE } \\ \text { D BY } \\ \hline \end{array}$	DATE	$\begin{aligned} & \hline \text { PASS / } \\ & \text { FAIIL } \end{aligned}$	CORRECTIVE ACTION REQUEST OR COMMENTS	
Design	Documents	D.MC	23/03/2015	\checkmark		
Drafting	Documents	D.MC	23/03/2015	\checkmark		
Sheetmetal (Refer F1018 for details)	Switchboard		$0.4^{\prime \prime}$			
	Doors	cid ${ }^{18}$		p!)		
	Cellipanets					
Painting						
Process	Powder / Wet					
Min DFT (40 STD)						
Cure Test						
Colour Exterior		$1) 1$	1		H1	
Colour Internal		V13	01100^{-15}	V_{14}		
Colour Panels						
Cubicle Erection	Dave	JiTcenge	$15 / 5115$	Pass		
Electrical Fitout (In accordance with drawings)						
Inspection \& Test (Refer to F1019)						
Packing		1			Lod	
Comments: CW Reqs lRow W/Wy o1/05/15						
- ..						
NOTE: - Manufacture is not to proceed to the next process until the item has passed inspection						
Affix Status Here: -						
Yellow	Awaiting Inspection					
Green	Inspection \& Test Passed					
Red	Inspection \& Test Failed, Awaiting Rectification					

J. \& P. RICHARDSON INDUSTRIES STY. LTD.

114 Campbell Avenue, WACOL QLD 4076

- Ph: (07) 32712911 - Far: (07) 32713623

Email: jpr@jpr.com.au

SWITCHBOARD / SHEETMETAL INSPECTION CHECKLIST

CLIENT:

JOB NO: $M / S 74000$

CONSTRUCTION

1.	Folds
2.	Welds
3.	Edges / File
4.	Gauge
5.	Material
6.	Ventilation Openings / Filter Bracket

7. Water Ingress Test
8. Equipment Mounting Arrangement
9. Doors Stiffened
10. Escutcheons and Lean Covers
11. Cable Saddles
12. Grinding
13. Door Stays Fitted
14. Earth Studs
15. Rubber Retainer
16. Drawing Holder
17. Hat Sections
18. Locking Bars Fitted
19. External Crevice Welded and Ground
20. Legend Cards
21. General Conditions Satisfactory
22. Cabinet Clean
23. Job Name and Number Marked on Board and Panels
24. Lap Top Tray
25. Gland Plates Fitted
26. Sunshields Fitted
J. \& P. RICHARDSON INDUSTRIES PTY. LTD.

114 Campbell Avenue, WACOL QLD 4076
Ph: (07) 32712911 - Fax: (07) 32713623
E-mail: jpr@jpr.com.au

SWITCHBOARD / SHEETMETAL INSPECTION CHIECKLIST

CONSTRUCTION	QUALITY		COMPLANCE WITH DRAWINGS		REMARKS OR ACTION
. . .	GOOD	POOR	YES	NO	.
27. Mullion Welded to Divider			N		
28. Double Hinge Meter Panel Fitted			M/f	-	- .
29. Plinth Fitted	\% .		\checkmark		
30. Wall Mount Brackets			$\mathrm{m} /$		-
31. . Light Switch Brackets .			n / f		
32. Cowls	1		N		*
INSPECTED BY: Gliny !	DATE: 9-4-1)				

AFFIX STATUS HERE
Yellow
Green
Red

Awaiting Inspection
Inspected/Tested Passed
Inspected/Tested Awaiting Rectification

APPROVED BY:	ELECTRICAL SAFETY MANAGER	DATE $22,2,5,15$
LOCATION:	WACOL WORKSHOP	

APPROVED BY: LOCATION:

ELECTRICAL SAFETY MANAGER
WACOL WORKSHOP
DATE $25,5,15$

TESTING SWITCHBOARDS AND CONTROL PANELS WITHIN OUR MANUFACTURING PREMISES

APPROVED BY: LOCATION:

ELECTRICAL SAFETY MANAGER
WACO WORKSHOP

DATE

APPROVED BY: LOCATION:

ELECTRICAL SAFETY MANAGER
WACOL WORKSHOP

J. \& P. RICHARDSON INDUSTRIES PTY. LTD.

114 Campbell Avenue, WACOL QLD 4076
Ph: (07) 32712911 - Fax: (07) 32713623
E-mail: jpr@ipr.com.au ABN: 23001952325

LV CIRCUIT TEST SHEET

CUSTOMER: Qu
JOB NO: $M 74000$ DESCRIPTION: SW|BD CONTAINER
KC / DISTRIBUTION BOARD NO: TSR-06

Tested By: CKIPPEN	Date: $18 / 5 \quad 15$	Certificate No: C2862

SP103 Heroes Avenue SPS - TSR06 Transportable Switchboard Container - OM Manual

Customer:	Q QU	Sheet 1 of 2		Date:	$19 / 5 / 15$
Project:	TSR-06 Temporary Switchboard Room Nob	Heroes Avenue			
Job No:	$M>4000$	Constructed By:	CHippen	Tested By:	E Ensor

Switchboard Defects to be Rectified

Customer:	QUM	Sheet 2 of 2		Date:	$21 / 5 / 15$
Project:	TSR-06 Temporary Switchboard Room Nob	Heroes Avenue			
Job No:	$M-74000$	Constructed By:	C Kipped	Tested By:	E Ensor.

114 CAMPBELL AVENUE, WACOL, BRISBANE, QLD. 4076 POSTAL ADDRESS: P.O. BOX 124, SUMNER PARK, QLD. 4074
Phone: (07) 32712911 - All Hours Fax: (07) 32713623

ELECTRICAL CONTRACTORS \& ENGINEERS

Lic No. 756
Email: jpr@jpr.com.au
INDUSTRIAL - COMMERCIAL - MINING

- ELECTRICAL INSTALLATION AND MAINTENANCE
- 24 HOUR

BREAKDOWN SERVICE

- SWITCHBOARD DESIGN

AND MANUFACTURE

- DATA \&

COMMUNICATIONS

- HIGH VOLTAGE INSTALLATIONS
- ELECTRICAL ENGINEERING, PLC \& PROCESS SOFTWARE DESIGN
- OVERHEAD RETICULATION \& UNDERGROUND RETICULATION
- ROADWAY LIGHTING \& TRAFFIC SIGNALLING
- MUNICIPAL PUMPING INSTALLATIONS
- PUMPING EQUIPMENT MECHANICAL SERVICE \& REPAIRS
- SHEETMETAL

FABRICATION

BRANCHES

EAGLE FARM PH: (07) 38683535

IPSWICH PH: (07) 32811399

TOOWOOMBA PH: (07) 46343800

GOLD COAST PH: (07) 55916340

SUNSHINE COAST PH: (07) 54765133

CHINCHILLA PH: (07) 46627452

YATALA

 PH: (07) 33861355
dmck0150/ma
Job No: C74000

Email To: john.clayton@urbanutilities.com.au
16 July 2015
Queensland Urban Utilities
Attention: Mr. John Clayton
Dear Sir,

Certificate of Compliance TSR06 Temporary Switchroom No. 6 (Heroes Avenue)

Please be advised that the abovementioned switchboard and its containing equipment has been manufactured as per our offer and supplied drawings 57-0523-Set_B.

All applicable work was carried out to AS3000:2007 and has been tested in accordance with the prescribed procedure and that such work complies in every respect with the requirements of the electrical safety regulation 2002.

Thank you for your order, we trust that yourself and your team has been impressed by our commitment to QUU and we look forward to assisting you in the future.

Should you require any further information or clarification please do not hesitate in contacting the undersigned.

Yours faithfully,

Darren McKlaren
Technical Officer
Estimator
J \& P Richardson Industries Pty Ltd

5 "AS INSTALLED" RED PENNED DRAWINGS

6 SERVICE \& MAINTENANCE

This product is designed to operate under specific environmental, supply and load conditions. Should these conditions change, consult a licenced electrician or electrical engineer before operating this product.

These procedures are to be performed only by a licenced electrician as they may expose live equipment.
The Switchgear and Control gear Assembly is essentially maintenance free, however the following safety measures and routine maintenance is recommended.

Where fitted, ensure cabinet vents and filters are clear and clean.
During operation, ensure all doors and covers are secure and closed.
All faults are to be investigated and repaired by an appropriately licenced electrician.
All components to be operated in accordance with manufacturers data.
The protective devices within switchboards are designed to operate in the event of a short circuit or overload condition. In the event of these devices operating under such conditions the device or devices must be inspected and tested by a suitably trained person to ascertain its condition prior to reconnecting the protective device to the supply.

Periodic checks should ensure

The switchboard is clean and free of any contaminants, which could reduce the insulation properties of the switchboard.
All entries are sealed to ensure no vermin can enter.
There is no evidence of overheating, arcing or moisture.
The earthing system is maintained and is adequate to allow correct operation of protective devices.
Insulation resistance is maintained to appropriate levels.
Check terminations for correct tension.
Test operation of protective devices.
Re-calibrate instrument loops as required.
Refer to AS-INSTALLED electrical drawings for details of protection equipment settings.
No special tools or equipment are required to perform routine maintenance.

7 ELECTRICAL EQUIPMENT TECHNICAL INFORMATION

SLB Standard load-break switches
 SIRCO 125 to 4000 A

The SIRCO range of load-break switches offer compact solutions for switching from 125 A to 4000 A . Base mounting is standard.
The SIRCO range are a proven, reliable design that more than suit harsh Australian conditions.
The switches come complete with extended shaft and door mountable pistol grip handle.
Available in three and four pole versions with a large range of accessories to choose from.
Front operated surface mount
(Supplied with external handle and shaft)

SLB 125... 630

AC $21400 \mathrm{~V} \quad \mathrm{AC} 23400 \mathrm{~V} \quad$ AC 23400 V

125 A	(A)	(A)	(kW)	No. of poles ${ }^{1}$)	Cat. No.
	125	125	63	3	SLB 125 3P
				4	SLB 125 4P
160 A	160	160	80	3	SLB 160 3P
				4	SLB 160 4P
200 A	200	200	100	3	SLB 200 3P
				4	SLB 200 4P
250 A	250	250	132	3	SLB 250 3P
				4	SLB 250 4P
315 A	315	315	160	3	SLB 315 3P
				4	SLB 315 4P
400 A	400	400	220	3	SLB 400 3P
				4	SLB 400 4P
500 A	500	400	280	3	SLB 500 3P
				4	SLB 500 4P
630 A	630	500	280	3	SLB 630 3P
				4	${ }^{\text {i }}$ SLB 630 4P
800 A	800	800	450	3	SLB 800 3P i SLB 8004 P

Notes: ${ }^{1}$) 6 and 8 pole switches available on indent. Refer NHP. i Available on indent only.

SLB 800... 3150

Technical data and dimensions (mm)

COMO M SLB 20 to 100 A

COMO M 20 to 40 A

COMO M 63 to 100 A

COMO M Selector handle door drilling

COMO M Pistol handle door drilling

Technical data and dimensions (mm)

 SIRCO SLB 125 to 2500 A

 SIRCO SLB 125 to 2500 A}

SIRCO 125 to 2500 A

Rating	Overall dimensions		Terminal shrouds		Switch body									Switch mounting				Connection terminals												
A		D		AD	$\begin{array}{\|l} \hline \mathrm{F} \\ 3 \mathrm{p} \\ \hline \end{array}$	$\begin{aligned} & F \\ & 4 p \end{aligned}$	G	H	$\begin{aligned} & \mathrm{J} 1 \\ & 3 \mathrm{p} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J1} \\ & 4 \mathrm{p} \\ & \hline \end{aligned}$	J2	K	BC		$\begin{aligned} & M \\ & 4 \mathrm{p} \end{aligned}$		R	T	U	U1	v	W	$\begin{aligned} & \text { X1 } \\ & 3 \mathrm{p} \\ & \hline \end{aligned}$	$\begin{aligned} & x_{1} \\ & 4 \mathrm{p} \\ & \hline \end{aligned}$	X2	Y	z	AA	BA	CA
125	120	124... 354	235	50	140	170	93	65	45	75	75	31.5	80	120	150	65	5.5	36	20	20.5	25	9	28	22	20	3.5	20.5	135	115	10
160	120	124... 354	235	50	140	170	93	65	45	75	75	31.5	80	120	150	65	5.5	36	20	20.5	25	9	28	22	20	3.5	20.5	135	115	10
200	130	135... 365	290	60	180	230	108	75	55	105	105	34	115	160	210	80	5.5	50	25	25.5	30	11	33	33	27	3.5	22.5	160	130	15
250	130	135... 365	290	60	180	230	108	75	55	105	105	34	115	160	210	80	5.5	50	25	25.5	30	11	33	33	27	3.5	22.5	160	130	15
315	165	167... 397	401	89	230	290	170	110	75	135	135	55	115	210	270	140	7	65	32	45.5	37.5	11	42.5	37.5	37.5	5	36	235	205	15
400	165	167... 397	401	89	230	290	170	110	75	135	135	55	115	210	270	140	7	65	32	45.5	37.5	11	42.5	37.5	37.5	5	36	235	205	15
500	165	167... 397	401	89	230	290	170	110	75	135	135	55	115	210	270	140	7	65	32	45.5	37.5	13	42.5	37.5	37.5	5	36	235	205	15
630	165	167... 397	400	89	230	290	170	110	75	135	135	55	115	210	270	140	7	65	45	45.5	50	13	42.5	37.5	37.5	5	36	260	220	20

Castell Drilling

Rating	Switch body		Switch mounting				Connection terminals				
A	F 3p	F 4p	M 3p	M 4p	T	U	V	Y	X1	X2	Z
800	280	360	255	335	80	50	60.5	7	47.5	47.5	46.5
1000	280	360	255	335	80	50	60.5	7	47.5	47.5	46.5
1250	372	492	347	467	120	90	44	8	53.5	53.5	47.5
1600	372	492	347	467	120	90	44	8	53.5	53.5	47.5
1800	372	492	347	467	120	90	44	8	288		

Rating

Rating A	A 3p	Overall dimensions	M 4p	Switch mounting
2000	372	492	347	M 4p
2500	372	492	347	467

Technical data and dimensions (mm)

SIRCO SLB 3150 to 4000 A

SIRCO 3150 A

Castell Drilling

Switch mounting

Rating A	A 3p	Overall dimensions	A 4p	M 3p	Switch mounting
3150	372	492	347	467	

SIRCO 4000 A

Castell Drilling

Rating					
A	Overall dimensions		Switch body		F 4p

SIRCO Connection terminals - 800 to 4000 A

800-1000 A

1250-1800 A

2000-2500 A

$3150-4000$ A

Technical data and ratings chart

SIRCO SLB 125 to 630 A

Ratings to AS 3947-3 and IEC 60947-3

Note: $240 / 415 \mathrm{~V}$ ratings suitable for use on $230 / 400 \mathrm{~V}$ in accordance with AS $60038: 2000$.

Compact NSX

Moulded-case circuit breakers and switch-disconnectors
Measurement and communication
from 100 to 630 A

Catalogue 2008

Compact NSX Next-generation circuit breakers

Today, next-generation Compact NSX circuit breakers provide an intelligent outlook and set the standards of tomorrow. A power monitoring unit enhances their invariably impeccable protective functions. For the first time, users can monitor both energy and power, offering new performance in a remarkably compact device.

Compactness, discrimination and modularity - all of the features which defined the success of the Compact NS generation of circuit breakers combined with new functions for safe, easy monitoring and management of installations.

The new range of Compact NSX circuit breakers stands out from the crowd, thanks to its electronic intelligence. Through direct access to in-depth information, and networking via open protocols, Compact NSX lets operators optimise the management of their electrical installations.

Far more than a circuit breaker, Compact NSX is a measurement and communication tool ready to meet energy-efficiency needs through optimised energy consumption, increased energy availability, and improved installation management.

Safety and performance

Compactness, discrimination and modularity - new Compact NSX circuit breakers incorporate advanced monitoring and communication functions, from 40 amps up, combined with impeccable protection.

Expert technology

A roto-active contact breaking principle provides each circuit breaker with very high breaking capacity in a very small device, remarkable fault current limitation performance, and endurance.
$>$ Compact NSX benefits from a patented double roto-active contact breaking concept, together with a reflex tripping system for ultimate breaking.
> Exceptional fault current limitation guarantees robust, reliable protection and, above all, reduces the causes of component aging, thus extending service life for installations.

New breaking capacities

New performance levels for Compact NSX improve application targeting: > 25 kA - standard low short-circuit level applications, e.g., for service businesses,
> 36-50 kA - standard applications (industrial plants, buildings and hospitals),
> 70-100 kA - high performance at controlled cost,
> 150 kA - demanding applications (maritime).

Enhanced protection for motors

Compact NSX meets the requirements of IEC 60947-4-1 standards for protection of motors:
> well adapted to motor-starting solutions up to 315 kW at 400 V , providing protection against short circuits, overloads, phase unbalance and loss,
> also enables set-up of additional protection systems for starting and braking with the motor running, reverse braking, jogging or reversing in complete safety,
> add a Schneider Electric contactor; Compact NSX complies with the requirements of so-called type 2 coordination.

Reduced installation costs

Optimising installations allows for achieving up to 30 \% savings:
$>$ considerable savings at the time of installation, thanks to total discrimination with miniature circuit breakers,
> smaller devices, more economic switchboards mean best overall installation cost, without overcalibration.

The trip units are now true circuit breaker control systems.

With the integration of electronics, trip units have gained in speed and accuracy.

Greater reliability and better

 discrimination allows more refined settings, especially for time delays.
Monitoring and management

Compact NSX is a single device, which contains a monitoring unit to control energy consumption and power.

Integrated monitoring

> The new Compact NSX range incorporates Micrologic electronic trip units in the circuit breaker, offering both:

- an accurate power monitoring unit,
- a highly reliable protective device.
> A Micrologic electronic tripping device combines next-generation sensors:
- an "iron" sensor for the power supply to the electronics,
- an "air" sensor (Rogowski coils) for measurement, guaranteeing high accuracy.
> These electronic systems are designed to withstand high temperatures $\left(105^{\circ} \mathrm{C}\right)$, ensuring reliability under severe operating conditions.
> The originality lies in how Compact NSX measures, processes and displays data, either directly on screen, on the switchboard front panel, or via a monitoring system.

-10 \%
Monitoring consumption can reduce energy costs by as much as 10%.

Accessibility of information...

To keep costs under control and ensure service continuity, relevant information must be available in real time:
> a kilowatt-hour meter helps optimise costs and their allocation,
$>$ harmonic distortion rate shows the quality of electrical supply,
$>$ alarm notification secures operational control and maintenance planning,
> event logs and tables, activated continuously, ensure the installed equipment base operates correctly, so energy efficiency is maximized.

...for power monitoring

> Together with power monitoring software (e.g., PowerLogic), the Compact NSX Modbus communication interface provides operators with a parameter set and tools that make system monitoring very easy.
$>$ Operators have real-time data to control energy availability, to monitor power supply quality, to optimise consumption of different applications or zones, reducing load peaks and continuously supplying priority loads, and to draw up maintenance schedules.
> A software utility (RSU) allows protection and alarm configuration, in addition to testing communications with all installed devices.

Logiciel de supervision PowerLogic ION-E

Measurement functions are controlled
by an additional microprocessor.

Protection functions are electronically managed independently of measurement functions.

An ASIC (Application-Specific Integrated Circuit) is common to all trip units, which boosts immunity to conducted or radiated interference and increases reliability.

Simplicity

Compact NSX takes the principles of easy installation and use -

 which made its predecessor so successful - to a higher level.

Simple in design

Compact NSX is mounted and wired reusing the same measurements as Compact NS.

Cut-outs are the same whatever the type of handle. Engineering drawings are the same, so installation and connection layouts can be used on new projects, simplifying extensions or retrofits, and reducing maintenance costs.

Integration in help software, for parameter settings and switchboard installation, further eases design.

Simple to install

> A Limited Torque Screw (LTS) system ensures proper installation of the tripping device, for added flexibility. It insures each screw is aligned correctly and tightened to the required torque. The LTS system thus avoids the need for a torque wrench.
> A transparent lead-sealable cover protects access to tripping device switches and prevents settings from being changed.
> The new electrical control adjustment also has a transparent lead- sealable cover to prevent it from being operated accidentally.
$>$ Compact NSX has an optional functional terminal shield that offers excellent protection against direct contact (IP40 on all sides, IP20 at cable entry points) and easy installation.
> All Compact NSX devices can be equipped with a communication function via a pre-wired connection with a Modbus interface module. When the Modbus address is declared, the Compact NSX device is integrated into the network.

65 \%

time savings in installation compared with a classic monitoring solution.
> There are four levels of functionalities:

- communication of device status: On/Off position, trip indication and fault-trip indication,
- communication of commands: open, close, and reset,
- communication of measurements: mainly I, U, f, P, E, and THD,
- communication of operating assistance data: settings, parameters, alarms, histograms and event tables, and maintenance indicators.
> The switchboard "plug \& play" display unit connects to the trip unit without any special settings or configuration. A cable fitted with an RJ45 connector allows for easy integration with communications networking.

Simple to use

> Users customise time-stamped alarms for all parameters, assign them to indicator lights, choose display priorities, and configure time delay thresholds and modes.
$>$ Event logs and tables are continuouslyactivated. Providing a wealth of information, they enable users to ensure that the installed equipment base operates correctly, to optimize settings, and to maximise energy efficiency.
> Local and remote displays offer easy access to operators and provide the main electrical values: I, U, V, f, energy, power, total harmonic distortion, etc. The user-friendly switchboard display unit with intuitive navigation is more comfortable to read, and offers quick access to information.

Performance, yet unimposing. Compact NSX perfectly blends into its environment.

Attractively designed.
The front of Compact NSX circuit breakers has an attractive curved profile.
Measurements are easy to read on a backlit LCD display. Screen navigation is intuitive and settings are simplified by immediate readouts in amps.

Service continuity

Compact NSX makes discrimination its main advantage in minimising the impact of short circuits, ensuring service continuity for installations.

Total discrimination

Thanks to its 30 years of experience, Schneider Electric, with Compact NSX, offers perfect mastery of discrimination for ever more reliable service continuity. Compact NSX circuit breakers strongly limit fault currents, occurring as the result of short-circuits, which reduces installation downtime and avoids overdimensioning cables.
When several circuit breakers are used in series, the downstream circuit breaker trips as close as possible to the fault, isolating only the circuit concerned. The upstream circuit breaker is not affected and allows the other circuits to remain operational.

Service continuity

Adding an SDTAM module allows remote indication of motor overloads and actuation of a contactor, ensuring total service continuity: $>$ the SDTAM switches the contactor instead of tripping the circuit breaker,
> the module allows for machine restart directly from the contactor without having to operate circuit breakers.

Preventive maintenance

Maintenance indicators provide information on the number of operations, level of wear on contacts and total load rates. This makes it far easier to monitor equipment ageing and optimise investments over time. Maintenance s now preventive, avoiding faults.

Schneider Electric expertise

Schneider Electric commits to reducing energy costs and CO_{2} emissions for its customers. It offers products, solutions and services that integrate with all levels of the energy value chain. Compact NSX is part and parcel of the Schneider Electric energy efficiency approach.

Solutions for the future

With Compact NSX, Schneider Electric works through flexible solutions for commercial and industrial buildings, Schneider Electric commits to help customers gradually move towards an active approach to their energy efficiency. It helps get more return from investments and future design solutions.

Energy performance contracts

An energy performance contract offers innovative service to modernise technical installations.

The objective is dramatically to reduce energy costs, whilst improving comfort and safety, all in an environmentally-responsible way.

Environmentally responsible

Schneider Electric meets the expectations of its markets with products adapted to the practices of the 190 countries where it is present and strongly commits to respect the norms and directives of each of those countries.

- Compact NSX, like all the products in its LV ranges, is a product designed to comply with all European directives for the environment. It has also received international certifications and approval from independent agencies.
- In compliance with ISO 14001 standards, all of its factories are non-polluting.
- Designed for easy disassembly and recycling at end of life, Compact NSX complies with environmental directives RoHS* and WEEE**.
yote 30 \%
savings in energy costs

steps

>Diagnosis
>Proposals
>Implementation
$>$ Follow-up

[^2]

Presentation

Functions and characteristics

Installation recommendations
\qquad
Dimensions and connectionC-1D-1Additional characteristicsE-1
\qquad

Catalogue numbers
\qquad

Glossary

Introduction
Overview of applications A- 2
General characteristics of the Compact NSX range A-4
Characteristics and performance of Compact NSX circuit breakers from 100 to 630 A A-6
Compact NSX trip units A-8
Overview of trip units for Compact NSX A-10
Protection of distribution systems
TM thermal-magnetic and MA magnetic trip units A-14
Micrologic 2 and 1.3-M trip units A-16
Micrologic 5 / 6 A or E trip units A-18
Power Meter functions
Electronic Micrologic 5/6A or E A-20
Operating-assistance functions
Micrologic 5 / 6 A or E trip units A-22
Switchboard-display functions
Micrologic 5 / 6 A or E trip units A-24
Compact NSX communication
Communications modules A-26
Networks and software A-28
RSU and RCU utilities A-30
Supervision software A-31
Accessories for Micrologic trip units A-32
Earth-leakage protection
Add-on protection against insulation faults using a Vigi module or Vigirex relay A-34
Motor protection
General information on motor feeders A-36
Motor-feeder characteristics and solutions A-38
Compact NSX motor-feeder solutions A-39
MA and Micrologic 1.3-M instantaneous trip units A-40
Micrologic 2-M electronic trip units A-42
Micrologic 6 E -M electronic trip units A-44
Special applications
Protection of public distribution systems with Micrologic 2-AB A-48
Generator protection with Micrologic 2.2-G A-50
Protection of industrial control panels A-52
$16 \mathrm{~Hz} 2 / 3$ network protection A-53
Micrologic 5 A-Z trip unit A-53
Protection of 400 Hz systems A-54
Switch-disconnectors
Overview of applications A-56
Switch-disconnector functions A-57
Characteristics and performance of Compact NSX switch-disconnectors
Characteristics and performance of Compact NSX switch-disconnectors from 100 to 630 NA A-58
Source-changeover systems
Presentation A-60
Manual source-changeover systems A-61
Remote-operated and automatic source-changeover systems Coupling accessory on base plate A-62
Accessories and auxiliaries
Overview of Compact NSX100 to 630 fixed version A-64
Overview of Compact NSX100 to 630 plug-in and withdrawable versions A-66
Device installation A-68
Connection of fixed devices A-70
Connection of withdrawable and plug-in devices A-72
Insulation of live parts A-73
Selection of auxiliaries for Compact NSX100/160/250 A-74
Selection of auxiliaries for Compact NSX400/630 A-76
Connection of electrical auxiliaries A-78
Indication contacts A-80
SDx and SDTAM modules for Micrologic A-81
Motor mechanism A-82
Remote tripping A-83Rotary handlesA-84Additional measurement and indication modulesA-86LocksA-88
A-88
Sealing accessories A-89
Individual enclosures A-91
Installation recommendations B-1 C-1
Wiring diagrams
Additional characteristics
Catalogue numbers
Glossary E-1
F-1 G-1

Introduction

Overview of applications

Functions

Compact NSX100 to 630 offers high performance and a wide range of interchangeable trip units to protect most applications. Electronic versions provide highly accurate protection with wide setting ranges and can integrate measurement, metering and communication functions. They can be combined with the FDM121 switchboard display unit to provide all the functions of a
Power Meter as well as operating assistance.

Compact NSX equipped with Micrologic 5 / 6 trip units offer type A (ammeter) or E (energy) metering functions as well as communication. Using Micrologic sensors and intelligence, Compact NSX provides access to measurements of all the main electrical parameters on the built-in screen, on a dedicated FDM121 display unit or via the communication system.

Operating assistance - page A-22

Integration of measurement functions provides operators with operating assistance functions including alarms tripped by user-selected measurement values, time-stamped event tables and histories, and maintenance indicators.

Switchboard display unit - page A-24

The main measurements can be read on the built-in screen of Micrologic 5 / 6 trip units.
They can also be displayed on the FDM121 switchboard display unit along with pop-up windows signalling the main alarms.

Communication
 page A-26

Compact NSX equipped with Micrologic 5 / 6 trip units provide communication capabilities. Simple RJ45 cords connect to a Modbus interface module.

Applications

Protection of distribution systems (AC 220/690 V) page A-14

Compact NSX devices are equipped with MA or TM

 thermal-magnetic trip units or Micrologic $2 / 5$ / 6 electronic trip units to provide protection against shortcircuits and overloads for:b distribution systems supplied by transformers
b distribution systems supplied by engine generator sets
b long cables in IT and TN systems.

They can be easily installed at all levels in distribution systems, from the main LV switchboard to the subdistribution boards and enclosures.
All Compact NSX devices can protect against insulation faults by adding a Vigi module or Vigirex relay.

Protection of

motors
(AC 220/690 V) page A-36

The Compact NSX range includes a number of versions to protect motor applications:
b basic short-circuit protection with MA magnetic trip units or the electronic Micrologic 1-M version, combined with an external relay to provide thermal protection
b protection against overloads, short-circuits and phase unbalance or loss with Micrologic 2-M trip units
b more complete protection against overloads and short-circuits with additional motor-specific protection (phase unbalance, locked rotor, underload and long start) with Micrologic 6 E-M trip units. These versions also offer communication, metering and operating assistance.
The exceptional limiting capacity of Compact NSX circuit breakers automatically provides type-2 coordination with the motor starter, in compliance with standard IEC 60947-4-1.

Protection of special applications > page A-48

Special applications:

The Compact NSX range offers a number of versions for special protection applications:
b service connection to public distribution systems

- page A-48
b generators - page A-50
b industrial control panels $>$ page A-52

with:

v compliance with international standards
IEC 60947-2 and UL 508 / CSA 22-2 N14
v compliance with US standard UL 489
v installation in universal and functional enclosures.
b $16 \mathrm{~Hz} 2 / 3$ systems - page A-53
b 400 Hz systems - page $\mathrm{A}-54$

Control and

isolation using
switch-
disconnectors
page A-56

A switch-disconnector version of Compact NSX circuit breakers is available for circuit control and isolation. All add-on functions of Compact NSX circuit breakers may be combined with the basic switch-disconnector function, including:
b earth-leakage protection
b motor mechanism
b ammeter, etc.

For all these applications, circuit breakers in the Compact NSX range offer positive contact indication and are suitable for isolation in accordance with standards IEC 60947-1 and 2.

Source changeover systems

To ensure a continuous supply of power, some

 electrical installations are connected to two power sources:b a normal source
b a replacement source to supply the installation when the normal source is not available.
A mechanical and/or electrical interlocking system between two circuit breakers or switch-disconnectors avoids all risk of parallel connection of the sources during switching.

A source-changeover system can be:
b manual with mechanical device interlocking b remote controlled with mechanical and/or electrical device interlocking
b automatic by adding a controller to manage switching from one source to the other on the basis of external parameters.

For information on other switch-disconnector ranges, see the Interpact (offering positive contact indication and visible break) and Fupact (fusegear) catalogues.

Introduction

General characteristics of the Compact NSX range

Standardised characteristics indicated on the rating plate:
1 Type of device: frame size and breaking capacity class
2 Ui: rated insulation voltage.
3 Uimp: rated impulse withstand voltage.
4 Ics: service breaking capacity.
5 Icu: ultimate breaking capacity for various values of the rated operational voltage Ue
6 Ue:operational voltage.
7 Colour label indicating the breaking capacity class.
8 Circuit breaker-disconnector symbol.
9 Reference standard.
10 Main standards with which the device complies Note: when the circuit breaker is equipped with an extended rotary handle, the door must be opened to access the rating plate.

Compliance with standards

Compact NSX circuit breakers and auxiliaries comply with the following: b international recommendations:
v IEC 60947-1: general rules
v IEC 60947-2: circuit breakers
v IEC 60947-3: switch-disconnectors
v IEC 60947-4: contactors and motor starters
v IEC 60947-5.1 and following: control circuit devices and switching elements; automatic control components
b European (EN 60947-1 and EN 60947-2) and corresponding national standards:
v France NF
v Germany VDE
v United Kingdom BS
v Australia AS
v Italy CEI
b the specifications of the marine classification companies (Veritas, Lloyd's Register of Shipping, Det Norske Veritas, etc.), standard NF C 79-130 and recommendations issued by the CNOMO organisation for the protection of machine tools.
For U.S. UL, Canadian CSA, Mexican NOM and Japanese JIS standards, please consult us.

Pollution degree

Compact NSX circuit breakers are certified for operation in pollution-degree III environments as defined by IEC standards 60947-1 and 60664-1 (industrial environments).

Climatic withstand

Compact NSX circuit breakers have successfully passed the tests defined by the following standards for extreme atmospheric conditions:
b IEC 60068-2-1: dry cold ($-55^{\circ} \mathrm{C}$)
b IEC $60068-2-2$: dry heat $\left(+85^{\circ} \mathrm{C}\right)$
b IEC 60068-2-30: damp heat (95% relative humidity at $55^{\circ} \mathrm{C}$)
b IEC 60068-2-52 severity level 2 : salt mist.

Environment

Compact NSX respects the European environment directive EC/2002/95 concerning the restriction of hazardous substances (RoHS).
Product environment profiles (PEP) have been prepared, describing the environmental impact of every product throughout its life cycle, from production to the end of its service life.
All Compact NSX production sites have set up an environmental management system certified ISO 14001.
Each factory monitors the impact of its production processes. Every effort is made to prevent pollution and to reduce consumption of natural resources.

Ambient temperature

b Compact NSX circuit breakers may be used between $-25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$. For temperatures higher than $40^{\circ} \mathrm{C}\left(65^{\circ} \mathrm{C}\right.$ for circuit breakers used to protect motor feeders), devices must be derated (pages B-8 and B-9).
b Circuit breakers should be put into service under normal ambient, operatingtemperature conditions. Exceptionally, the circuit breaker may be put into service when the ambient temperature is between $-35^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$.
b The permissible storage-temperature range for Compact NSX circuit breakers in the original packing is $-50^{\circ} \mathrm{C}{ }^{(1)}$ and $+85^{\circ} \mathrm{C}$.
(1) $-40^{\circ} \mathrm{C}$ for Micrologic control units with an LCD screen.

- M

Electromagnetic compatibility

Compact NSX devices are protected against:
b overvoltages caused by circuit switching (e.g. lighting circuits)
b overvoltages caused by atmospheric disturbances
b devices emitting radio waves such as mobile telephones, radios, walkie-talkies, radar, etc.
b electrostatic discharges produced by users.
Immunity levels for Compact NSX comply with the standards below. b IEC/EN 60947-2: Low-voltage switchgear and controlgear, part 2: Circuit breakers:
v Annex F: Immunity tests for circuit breakers with electronic protection
v Annex B: Immunity tests for residual current protection
b IEC/EN 61000-4-2: Electrostatic-discharge immunity tests
b IEC/EN 61000-4-3: Radiated, radio-frequency, electromagnetic-field immunity tests
b IEC/EN 61000-4-4: Electrical fast transient/burst immunity tests
b IEC/EN 61000-4-5: Surge immunity tests
b IEC/EN 61000-4-6: Immunity tests for conducted disturbances induced by radiofrequency fields
b CISPR 11: Limits and methods of measurement of electromagnetic disturbance characteristics of industrial, scientific and medical (ISM) radio-frequency equipment.

Discrimination

Compact NSX reinforces the discrimination capabilities of the Compact NS range by applying the rapid calculation capacity of the Micrologic trip units.
Total discrimination is now possible between NSX100 and modular Multi 9 circuit breakers rated y 63 A (see page A-8).

Suitable for isolation with positive contact indication

All Compact NSX circuit breakers are suitable for isolation as defined in IEC standard 60947-2:
b The isolation position corresponds to the O (OFF) position.
b The operating handle cannot indicate the OFF position unless the contacts are effectively open.
b Padlocks may not be installed unless the contacts are open Installation of a rotary handle or a motor mechanism does not alter the reliability of the position-indication system.
The isolation function is certified by tests guaranteeing:
b the mechanical reliability of the position-indication system
b the absence of leakage currents
b overvoltage withstand capacity between upstream and downstream connections. The tripped position does not insure isolation with positive contact indication. Only the OFF position guarantees isolation.

Installation in class II switchboards

All Compact NSX circuit breakers are class II front face devices. They may be installed through the door of class II switchboards (as per IEC standards 61140 and 60664-1) without downgrading switchboard insulation. Installation requires no special operations, even when the circuit breaker is equipped with a rotary handle or a motor mechanism

Degree of protection

The following indications are in accordance with standards IEC 60529 (IP degree of protection) and IEC 62262 (IK protection against external mechanical impacts).

Bare circuit breaker with terminal shields

b With toggle: IP40, IK07.
b With standard direct rotary handle / VDE: IP40 IK07
Circuit breaker installed in a switchboard
b With toggle: IP40, IK07.
b With direct rotary handle:
v standard / VDE: IP40, IK07
v MCC: IP43 IK07
v CNOMO: IP54 IK08
b With extended rotary handle: IP56 IK08
b With motor mechanism: IP40 IK07.

Functions and characteristics

Introduction

Characteristics and performance of Compact NSX circuit breakers from 100 to 630 A

Compact NSX100/160/250.

Compact NSX400/630.
(1) OSN: Over Sized Neutral protection for neutrals carrying high currents (e.g. 3rd harmonics).
(2) ZSI: Zone Selective Interlocking using pilot wires
(3) 2P circuit breaker in 3P case for B and F types, only with thermal-magnetic trip unit.

Common characteristics			
Rated voltages			
Insulation voltage (V)	Ui		800
Impulse withstand voltage (kV)	Uimp		8
Operational voltage (V)	Ue	AC $50 / 60 \mathrm{~Hz}$	690
Suitability for isolation		IEC/EN 60947-2	yes
Utilisation category			A
Pollution degree		IEC 60664-1	3

Characteristics as per Nema AB1

Breaking capacity (kA rms)	AC 50/60 Hz 240 V	
	480 V	
600 V		
Characteristics as per UL 508		
Breaking capacity (kA rms)	AC $50 / 60 \mathrm{~Hz}$	240 V
	480 V	
	600 V	

Protection and measurements

Short-circuit protection	Magnetic only	
Overload / short-circuit protection	Thermal magnetic	
	Electronic	
	with neutral protection (Off-0.5-1-OSN) ${ }^{(1)}$	
	with ground-fault protection	
	with zone selective interlocking (ZSI) ${ }^{(2)}$	
Display / I, U, f, P, E, THD measurements / interrupted-current measurement		
Options	Power Meter display on door	
	Operating assistance	
	Counters	
	Histories and alarms	
	Metering Com	
	Device status/control Com	
Earth-leakage protection	By Vigi module	
	By Vigirex relay	
Installation / connections		
Dimensions and weights		
Dimensions (mm)	Fixed, front connections	2/3P
W $\times \mathrm{H} \times \mathrm{D}$		4 P
Weight (kg)	Fixed, front connections	2/3P
		4 P
Connections		
Connection terminals	Pitch	With/without spreaders
Large Cu or Al cables	Cross-section	mm^{2}

Common characteristics			
Control			
	Manual	With toggle	b
	With direct or extended rotary handle	b	
	Electrical	With remote control	b
		b	

With Micrologic electronic trip units, Compact NSX stands out from the crowd. Thanks to the new generation of sensors and its processing capability, protection is enhanced even further. It also provides measurements and operating information.

Thermal-magnetic or electronic trip unit?

Thermal-magnetic trip units protect against overcurrents and short-circuits using tried and true techniques. But today, installation optimisation and energy efficiency have become decisive factors and electronic trip units offering more advanced protection functions combined with measurements are better suited to these needs. Micrologic electronic trip units combine reflex tripping and intelligent operation. Thanks to digital electronics, trip units have become faster as well as more accurate and reliable. Wide setting ranges make installation upgrades easier. Designed with processing capabilities, Micrologic trip units can provide measurement information and device operating assistance. With this information, users can avoid or deal more effectively with disturbances and can play a more active role in system operation. They can manage the installation, anticipate on events and plan any necessary servicing.

Accurate measurements for complete protection

Compact NSX devices take advantage of the vast experience acquired since the launch of Masterpact NW circuit breakers equipped with Micrologic trip units. From 40 amperes on up to the short-circuit currents, they offer excellent measurement accuracy. This is made possible by a new generation of current transformers combining "iron-core" sensors for self-powered electronics and "aircore" sensors (Rogowski toroids) for measurements.
The protection functions are managed by an ASIC component that is independent of the measurement functions. This independence ensures immunity to conducted and radiated disturbances and a high level of reliability.

Numerous security functions

Torque-limiting screws

The screws secure the trip unit to the circuit breaker. When the correct tightening torque is reached, the screw heads break off. Optimum tightening avoids any risk of temperature rise. A torque wrench is no longer required.

Easy and sure changing of trip units

All trip units are interchangeable, without wiring. A mechanical mismatch-protection system makes it impossible to mount a trip unit on a circuit breaker with a lower rating.

"Ready" LED for a continuous self-test

The LED on the front of the electronic trip units indicates the result of the self-test runs continuously on the measurement system and the tripping release. As long as the green LED is flashing, the links between the CTs, the processing electronics and the Mitop release are operational. The circuit breaker is ready to protect. No need for a test kit. A minimum current of 15 to 50 A , depending on the device, is required for this indication function.
A patented dual adjustment system for protection functions.
Available on Micrologic 5 / 6, the system consists of:
b an adjustment using dials sets the maximum value
b an adjustment, made via the keypad or remotly, fine-tunes the setting. This setting may not exceed the first one. It can be read directly on the Micrologic screen, to within one ampere and a fraction of a second.

Coordinated tripping systems

Compact NSX detects faults even faster and its tripping time is reduced. It protects the installation better and limits contact wear.

Because it directly actuates the mechanism, it precedes the trip unit by a few milliseconds.

Compact NSX100 with Micrologic for total discrimination with Multi 9 devices rated y 40 A or a C60. Better coordination between protection functions reduces the difference in ratings required for total discrimination.

Unmatched discrimination

Discrimination
Compact NSX provides maximum continuity of service and savings through an unmatched level of discrimination:
b given the high accuracy of measurements, overload discrimination is ensured even between very close ratings
b for major faults, the fast processing of the Micrologic trip units means the upstream device can anticipate the reaction of the downstream device. The upstream breaker adjusts its tripping delay to provide discrimination b for very high faults, the energy of the arc dissipated by the short-circuit in the downstream breaker causes reflex tripping. The current seen by the upstream device is significantly limited. The energy is not sufficient to cause tripping, so discrimination is maintained whatever the short-circuit current.

For total discrimination over the entire range of possible faults, from the long-time pick-up Ir to the ultimate short-circuit current Icu, a ratio of 2.5 must be maintained between the ratings of the upstream and downstream devices.
This ratio is required to ensure selective reflex tripping for high short-circuits.

Understanding the names of Micrologic electronic trip units

Examples

Micrologic 1.3	Instantaneous only	400 or 630 A		Distribution
Micrologic 2.3	LS 1	400 or 630 A		Distribution
Micrologic 5.2 A	LSI	100,160 or 250 A	Ammeter	Distribution
Micrologic 6.3 E-M	LSIG	400 or 630 A	Energy	Motor

(1) $L S_{0}$ I protection is standard on Micrologic 2. To ensure discrimination, it offers short-time protection S_{0} with a non-adjustable delay and instantaneous protection.

Functions and characteristics

Introduction
Overview of trip units
for Compact NSX

Compact NSX offers a range of trip units in
interchangeable cases，whether they are magnetic， thermal－magnetic or electronic．Versions 5 and 6 of the electronic trip unit offer communication and metering． Using Micrologic sensors and intelligence，Compact NSX supplies all the information required to manage the electrical installation and optimise energy use．

Compact NSX100／160／250

Compact NSX400／630

Type of protection and applications

MA magnetic	TM－D thermal－magnetic

b Distribution and motors

b Distribution
b Generators

Circuit breakers and trip units
 motors

TM－G Generators

1．3－M Distribution and
motors

Settings and indications

Adjustment and
reading
Pick－up set in amps using dials
Non－adjustable time delay

Adjustment and

reading

Pick－up set in amps using dials
Non－adjustable time delay

The capabilities of Micrologic $5 / 6$ A and E trip units come into full play with the FDM121 switchboard display unit.
When the two are connected via a simple cord with RJ45 connectors, the combination offers full Power Meter capabilities and all the measurements required to monitor the electrical installation.

Ammeter Micrologic (A)

I measurements

Current measurements

b Phase and neutral currents I1, I2, I3, IN
b Average current of the 3 phases lavg
b Highest current of the three phases Imax
b Ground-fault current Ig (Micrologic 6.2 / 6.3A)
b Maximeter/minimeter for I measurements

Operating and maintenance assistance

Indications, alarms and histories
b Indication of fault types
b Alarms for high/low alarm thresholds linked to I measurements
b Trip, alarm and operating histories
b Time-stamped tables for settings and maximeters

Maintenance indicators

b Operation, trip and alarm counters
b Operating hours counter
b Contact wear
b Load profile and thermal image

Communication

b Modbus with add-on module

Protection of distribution systems
 TM thermal-magnetic and MA magnetic trip units

TM thermal-magnetic and MA magnetic trip units can be used on Compact NSX100/160/250 circuit breakers with performance levels $B / F / H / N / S / L$.
TM trip units are available in 2 versions:
b TM-D, for the protection of distribution cables b TM-G, with a low threshold, for the protection of generators or long cable lengths.
Vigi modules or Vigirex relays can be added to all the circuit breakers to provide external earth-leakage protection.

Note: All the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

TM-D and TM-G thermal-magnetic trip units

-	Ir		TM 250 D $250 \mathrm{~A} / 40^{\circ} \mathrm{C}$	

Circuit breakers equipped with thermal-magnetic trip units are used mainly in industrial and commercial electrical distribution applications: b TM-D, for protection of cables on distribution systems supplied by transformers b TM-G, with a low pick-up for generators (lower short-circuit currents than with transformers) and distribution systems with long cable lengths (fault currents limited by the impedance of the cable).

Protection

\qquad

Thermal protection (Ir)

Thermal overload protection based on a bimetal strip providing an inverse time curve $I^{2} \mathrm{t}$, corresponding to a temperature rise limit. Above this limit, the deformation of the strip trips the circuit breaker operating mechanism.
This protection operates according to:
b Ir that can be adjusted in amps from 0.7 to 1 times the rating of the trip unit (16 A to
250 A), corresponding to settings from 11 to 250 A for the range of trip units
b a non-adjustable time delay, defined to ensure protection of the cables.

Magnetic protection (Im)

Short-circuit protection with a fixed or adjustable pick-up Im that initiates instantaneous tripping if exceeded.
b TM-D: fixed pick-up, Im, for 16 to 160 A ratings and adjustable from 5 to $10 \times \ln$ for 200 and 250 A ratings
b fixed pick-up for 16 to 63 A ratings.
Protection against insulation faults
Two solutions are possible by adding:
b a Vigi module acting directly on the trip unit of the circuit breaker
b a Vigirex relay connected to an MN or MX voltage release.

Protection versions

b 3-pole:
v 3P 3D: 3-pole frame (3P) with detection on all 3 poles (3D)
v 3P 2D: 3-pole frame (3P) with detection on 2 poles (2D).
b 4-pole:
v 4P 3D: 4-pole frame (4P) with detection on 3 poles (3D).
v 4P 4D: 4-pole frame (4P) with detection on all 4 poles (same threshold for phases and neutral).

MA magnetic trip units

In distribution applications, circuit breakers equipped with MA magnetic-only trip units are used for:
b short-circuit protection of secondary windings of LV/LV transformers with overload protection on the primary side.
b as an alternative to a switch-disconnector at the head of a switchboard in order to provide short-circuit protection.
Their main use is however for motor protection applications, in conjunction with a thermal relay and a contactor or motor starter (see "Motor protection", page A-36).

Protection

\qquad

Magnetic protection (Im)

Short-circuit protection with an adjustable pick-up Im that initiates instantaneous tripping if exceeded.
b $\operatorname{lm}=\ln \mathbf{x} \ldots$ set in amps on an adjustment dial covering the range 6 to $14 x \ln$ for 2.5 to 100 A ratings or 9 to $14 \operatorname{In}$ for 150 to 220 A ratings.

Protection versions

b 3-pole (3P 3D): 3-pole frame (3P) with detection on all 3 poles (3D).
b 4-pole (4P 3D): 4-pole frame (4P) with detection on 3 poles (3D).

(1) For temperatures greater than $40^{\circ} \mathrm{C}$, the thermal protection characteristics are modified. See the temperature derating table.

Functions and characteristics

Protection of distribution systems
 Micrologic 2 and 1.3-M trip units

Micrologic 2 trip units can be used on Compact NSX100 to 630 circuit breakers with performance levels B/F/H/N/S/L.
They provide:
b standard protection of distribution cables
b indication of:
v overloads (via LEDs)
\checkmark overload tripping (via the SDx relay module). Circuit breakers equipped with Micrologic 1.3-M trip units, without thermal protection, are used in certain applications to replace switch-disconnectors at the head of switchboards. Micrologic 1.3-M trip units are dedicated to Compact NSX400/630 A circuit breakers.

Micrologic 2

Circuit breakers equipped with Micrologic 2 trip units can be used to protect distribution systems supplied by transformers. For generators and long cables, Micrologic 2-G trip units offer better suited low pick-up solutions (see page A-50).

Protection

Settings are made using the adjustment dials with fine adjustment possibilities.
Overloads: Long time protection (Ir)
Inverse time protection against overloads with an adjustable current pick-up Ir set using a dial and a non-adjustable time delay tr .
Short-circuits: Short-time protection with fixed time delay (Isd)
Protection with an adjustable pick-up Isd. Tripping takes place after a very short delay used to allow discrimination with the downstream device.
Short-circuits: Non-adjustable instantaneous protection Instantaneous short-circuit protection with a fixed pick-up.

Neutral protection

b On 3-pole circuit breakers, neutral protection is not possible.
b On four-pole circuit breakers, neutral protection may be set using a three-position switch:
v 4P 3D: neutral unprotected
$v 4 P 3 D+N / 2$: neutral protection at half the value of the phase pick-up, i.e. $0.5 \times \mathrm{lr}$
v 4P 4D: neutral fully protected at Ir.

Indications.

Front indications
b Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.
b Orange overload pre-alarm LED: steady on when I > 90% Ir
b Red overload LED: steady on when I > 105 \% Ir

Remote indications
An overload trip signal can be remoted by installing an SDx relay module inside the circuit breaker.
This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is reclosed. For description, see page A-81.

Micrologic 1.3-M for magnetic protection only

Micrologic 1.3-M trip units provide magnetic protection only, using electronic technology. They are dedicated to 400/630 A 3-pole (3P 3D) circuit breakers or 4pole circuit breakers with detection on 3 poles (4P, 3D) and are used in certain applications to replace switch-disconnectors at the head of switchboards. They are especially used in 3-pole versions for motor protection, see page A-40.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

SDx remote indication relay module with its terminal block.

(1) If the trip units are used in high-temperature environments, the Micrologic setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.

Micrologic 1.3-M

Ratings (A)	In at $65{ }^{\circ} \mathrm{C}$	320	500	$\stackrel{\rightharpoonup}{\longrightarrow} \text { sd }$
Circuit breaker	Compact NSX400	b	-	
	Compact NSX630	b	b	
S Short time protection				
Pick-up (A) accuracy ± 15 \%	Isd	adjustable directly in amps		
		9 settings: $1600,1920,2440,2560$, $2880,3200,3520,3840,4160 \mathrm{~A}$	9 settings: $2500,3000,3500,4000$, $4500,5000,5500,6000,6500 \mathrm{~A}$	
Time delay (ms)	tsd	non-adjustable		
	Non-tripping time Maximum break time	$\begin{aligned} & 20 \\ & 60 \end{aligned}$		
I Instantaneous protection				
Pick-up (A) accuracy ± 15 \%	li non-adjustable	4800	6500	
	Non-tripping time Maximum break time	$\begin{aligned} & 0 \\ & 30 \mathrm{~ms} \end{aligned}$		

Functions
 and characteristics

Protection of distribution
 systems
 Micrologic 5 / 6 A or E trip units

Micrologic 5 / 6 A (Ammeter) or E (Energy) trip units can be used on Compact NSX100 to 630 circuit breakers with performance levels $B / F / H / N / S / L$. They all have a display unit.
They offer basic LSI protection (Micrologic 5) or LSI and ground-fault protection G (Micrologic 6).
They also offer measurement, alarm and communication functions.

Trip unit menus.

Display of interrupted current.

SDx remote indication relay module with its terminal block.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

Protection

Settings can be adjusted in two ways, using the dials and/or the keypad . The keypad can be used to make fine adjustments in 1 A steps below the maximum value defined by the setting on the dial. Access to setting modifications via the keypad is protected by a locking function displayed on the screen and controlled by a microswitch 0 . The lock is activated automatically if the keypad is not used for 5 minutes. Access to the microswitch is protected by a transparent lead-sealable cover. With the cover closed, it is still possible to display the various settings and measurements using the keypad.

Overloads: Long time protection (Ir)

Inverse time protection against overloads with an adjustable current pick-up Ir set using a dial or the keypad for fine adjustments. The time delay $\mathbf{t r}$ is set using the keypad.
Short-circuits: Short-time protection (Isd)
Short-circuit protection with an adjustable pick-up Isd and adjustable time delay tsd, with the possibility of including a portion of an inverse time curve ($I^{2} \mathrm{t} O n$).
Short-circuits: Instantaneous protection (li)
Instantaneous protection with adjustable pick-up li.
Additional ground fault protection (lg) on Micrologic 6
Residual type ground-fault protection with an adjustable pick-up Ig (with Off position) and adjustable time delay $\mathbf{t g}$. Possibility of including a portion of an inverse time curve (I^{2} t On).

Neutral protection

b On 4-pole circuit breakers, this protection can be set via the keypad:
v Off: neutral unprotected
v 0.5: neutral protection at half the value of the phase pick-up, i.e. 0.5 x Ir v 1.0: neutral fully protected at Ir
v OSN: Oversized neutral protection at 1.6 times the value of the phase pick-up. Used when there is a high level of 3rd order harmonics (or orders that are multiples of 3) that accumulate in the neutral and create a high current. In this case, the device must be limited to $\mathrm{Ir}=0.63 \times \mathrm{In}$ for the maximum neutral protection setting of $1.6 \times \mathrm{Ir}$. b With 3-pole circuit breakers, the neutral can be protected by installing an external neutral sensor with the output (T1, T2) connected to the trip unit.

Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of Micrologic control units to provide zone selective interlocking for short-time (Isd) and ground-fault (lg) protection, without a time delay. For Compact NSX 100 to 250, the ZSI function is available only in relation to the upstream circuit breaker (ZSI out).

Display of type of fault \qquad
On a fault trip, the type of fault (Ir, Isd, li, Ig), the phase concerned and the interrupted current are displayed. An external power supply is required.

Indications \qquad

Front indications

b Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.
b Orange overload pre-alarm LED: steady on when I > 90% Ir
b Red overload LED: steady on when I > 105 \% Ir

Remote indications

An SDx relay module installed inside the circuit breaker can be used to remote the following information:
b overload trip
b overload prealarm (Micrologic 5) or ground fault trip (Micrologic 6).
This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is closed.
These outputs can be reprogrammed to be assigned to other types of tripping or alarm. The module is described in detail in the section dealing with accessories.

(1) If the trip units are used in high-temperature environments, the Micrologic setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.
(2) For 40 A rating, the neutral N/2 adjustment is not possible.

Functions and characteristics

Power Meter functions

Electronic Micrologic 5 / 6 A or E

In addition to protection functions, Micrologic 5 / 6 trip units offer all the functions of Power Meter products as well as operating-assistance for the circuit breaker.
b display of settings
b measurement functions:
v Ammeter (A)
v Energy (E)
b alarms
b time-stamped histories and event tables
b maintenance indicator
b communication.

Micrologic built-in LCD display showing an energy measurement

FDM121 display: navigation.

Current.

Power.
Consumption.

Examples of measurement screens on the FDM121 display unit.

Micrologic A and E measurement functions are made possible by Micrologic intelligence and the accuracy of the sensors. They are handled by a microprocessor that operates independent of protection functions.

Display

Micrologic LCD

The user can display all the protection settings and the main measurements on the LCD screen of the trip unit.
b Micrologic A: instantaneous rms current measurements
b Micrologic E: voltage, frequency and power measurements and energy metering, in addition to the measurements offered by Micrologic A
To make the display available under all conditions and increase operating comfort, an external power supply is recommended for Micrologic A. It is indispensable to:
b display faults and interrupted current measurements
b use all the functions of Micrologic E (e.g. metering of low power and energy values)
b ensure operation of the communication system.
The external power supply can be shared by several devices. For description, see page A-32.

FDM121 display unit

An FDM121 switchboard display unit can be connected to a Micrologic trip unit using a prefabricated cord to display all measurements on a screen. The result is a veritable 96×96 mm Power Meter.
In addition to the information displayed on the Micrologic LCD, the FDM121 screen shows demand, power quality and maximeter/minimeter values along with alarms, histories and maintenance indicators.
The FMD121 display unit requires a 24 V DC power supply. The Micrologic trip unit is supplied by the same power supply via the cord connecting it to the FDM121.

PC screen

When the Micrologic, with or without an FDM121 switchboard display unit, is connected to a communication network, all information can be accessed via a PC.

Measurements

\qquad

Instantaneous rms measurements

The Micrologic A and E continuously display the RMS value of the highest current of the three phases and neutral (Imax). The navigation buttons \rightarrow can be used to scroll through the main measurements.
In the event of a fault trip, the current interrupted is memorised.
The Micrologic A measures phase, neutral, ground fault currents.
The Micrologic E offers voltage, frequency and power measurements in addition to the measurements provided by Micrologic A

Maximeters / minimeters

Every instantaneous measurement provided by Micrologic A or E can be associated with a maximeter/minimeter. The maximeters for the highest current of the 3 phases and neutral, the demand current and power can be reset via the trip unit keypad, the FDM121 display unit or the communication system.

Energy metering

The Micrologic E also measures the energy consumed since the last reset of the meter. The active energy meter can be reset via the keypad and the FDM121 display unit or the communication system.

Demand and maximum demand values

Micrologic E also calculates demand current and power values. These calculations can be made using a block or sliding interval that can be set from 5 to 60 minutes in steps of 1 minute. The window can be synchronised with a signal sent via the communication system. Whatever the calculation method, the calculated values can be recovered on a PC via Modbus communication.
Ordinary spreadsheet software can be used to provide trend curves and forecasts based on this data. They will provide a basis for load shedding and reconnection operations used to adjust consumption to the subscribed power.

Power quality

Micrologic E calculates power quality indicators taking into account the presence of harmonics up to the 15th order, including the total harmonic distortion (THD) of current and voltage.

(1) Absolute mode: E absolute $=E$ out $+E$ in; Signed mode: E signed $=E$ out $-E$ in.
(2) Available via the communication system only.

Additional technical characteristics

Measurement accuracy

Accuracies are those of the entire measurement system, including the sensors:
b Current: Class 1 as per IEC 61557-12
b Voltage: 0.5%
b Power and energy: Class 2 as per IEC 61557-12
b Frequency: 0.1%.

Micrologic built-in LCD display.

FDM121 display: navigation.

Overpower alarm.

Alarm pick-up and drop-out.

Examples of operating-assistance screens on the FDM121 display unit.

Personalised alarms with time-stamping
 Alarm types
 The user can assign an alarm to all Micrologic A or E measurements or events: b up to 12 alarms can be used together:
 \checkmark two alarms are predefined and activated automatically:
 - Micrologic 5: overload (Ir)
 - Micrologic 6: overload (Ir) and ground fault (lg)
 v thresholds, priorities and time delays can be set for ten other alarms.
 b the same measurement can be used for different alarms to precisely monitor certain values, e.g. the frequency or the voltage
 b alarms can also be assigned to various states: phase lead/lag, four quadrants, phase sequence
 b selection of display priorities, with pop-up possibility
 b alarm time-stamping.
 Alarm settings
 Alarms cannot be set via the keypad or the FDM121 display unit. They are set via communication with the PC. Set-up includes the threshold, priority, activation delay before display and deactivation delay. It is also possible to reprogram the standard assignment for the two SDx relay outputs to user-selected alarms.

Alarm reading

Remote alarm indications
b reading on FDM121 display unit or on PC via the communication system
b remote indications via SDx relay with two output contacts for alarms.

Histories and event tables

\qquad

Micrologic A and E have histories and event tables that are always active.

Three types of time-stamped histories

b Tripping due to overruns of Ir, Isd, li, Ig: last 17 trips
b Alarms: last 10 alarms
b Operating events: last 10 events
Each history record is stored with:
b indications in clear text in a number of user-selectable languages
b time-stamping: date and time of event
b status: pick-up / drop-out
Two types of time-stamped event tables
b Protection settings
b Minimeters / maximeters

Display of alarms and tables

The time-stamped histories and event tables may be displayed on a PC via the communication system.

Embedded memory

Micrologic A and E have a non-volatile memory that saves all data on alarms, histories, event tables, counters and maintenance indicators even if power is lost.

Maintenance indicators

Micrologic A and E have indicators for, among others, the number of operating cycles, contact wear and operating times (operating hours counter) of the Compact NSX circuit breaker.
It is possible to assign an alarm to the operating cycle counter to plan maintenance.
The various indicators can be used together with the trip histories to analyse the level of stresses the device has been subjected to.
The information provided by the indicators cannot be displayed on the Micrologic LCD. It is displayed on the PC via the communication system.

Management of installed devices

Each circuit breaker equipped with a Micrologic 5 or 6 trip unit can be identified via the communication system:
b serial number
b firmware version
b hardware version
b device name assigned by the user
This information together with the previously described indications provides a clear view of the state of the installed devices.

[^3](2) Available via the communication system only.

Additional technical characteristics

Contact wear

Each time Compact NSX opens, the Micrologic 5/ 6 trip unit measures the interrupted current and increments the contact-wear indicator as a function of the interrupted current, according to test results stored in memory. Breaking under normal load conditions results in a very slight increment. The indicator value may be read on the FDM121 display. It provides an estimation of contact wear calculated on the basis of the cumulative forces affecting the circuit breaker. When the indicator reaches 80%, it is advised to replace the circuit breaker to ensure the availability of the protected equipment.

Circuit breaker load profile

Micrologic 5/ 6 calculates the load profile of the circuit breaker protecting a load circuit. The profile indicates the percentage of the total operating time at four current levels (\% of breaker In):
b 0 to 49% In
b 50 to 79% In
b 80 to 89% In
b $u 90 \%$ In.
This information can be used to optimise use of the protected equipment or to plan ahead for extensions.

Switchboard－display functions
 Micrologic 5 ／ 6 A or E trip units

Micrologic measurement capabilities come into full play with the FDM121 switchboard display．It connects to Compact NSX via a simple cord and displays Micrologic information．The result is a true integrated unit combining a circuit breaker and a Power Meter． Additional operating assistance functions can also be displayed．

FDM121 display．

Surface mount accessory．

Connection with FDM121 display unit．

FDM121 switchboard display

The FDM121 is a switchboard display unit that can be integrated in the Compact NSX100 to 630 A system．It uses the sensors and processing capacity of the Micrologic trip unit．It is easy to use and requires no special software or settings．It is immediately operational when connected to the Compact NSX by a simple cord． The FDM121 is a large display，but requires very little depth．The anti－glare graphic screen is backlit for very easy reading even under poor ambient lighting and at sharp angles．

Display of Micrologic measurements and alarms

The FDM121 is intended to display Micrologic 5 ／ 6 measurements，alarms and operating information．It cannot be used to modify the protection settings． Measurements may be easily accessed via a menu．
All user－defined alarms are automatically displayed．The display mode depends on the priority level selected during alarm set－up：
b high priority：a pop－up window displays the time－stamped description of the alarm and the orange LED flashes
b medium priority：the orange＂Alarm＂LED goes steady on
b low priority：no display on the screen．
All faults resulting in a trip automatically produce a high－priority alarm，without any special settings required．
In all cases，the alarm history is updated．
If power to the FDM121 fails，all information is stored in the Micrologic non－volatile memory．The data can be consulted via the communication system when power is restored．

Status indications and remote control

When the circuit breaker is equipped with the BSCM module（page A－27），the FDM121 display can also be used to view circuit breaker status conditions：
b O／F：ON／OFF
b SD：trip indication
b SDE：Fault－trip indication（overload，short－circuit，ground fault）

Main characteristics

b $96 \times 96 \times 30 \mathrm{~mm}$ screen requiring 10 mm behind the door（or 20 mm when the 24 volt power supply connector is used）．
b White backlighting．
b Wide viewing angle：vertical $\pm 60^{\circ}$ ，horizontal $\pm 30^{\circ}$ ．
b High resolution：excellent reading of graphic symbols．
b Alarm LED：flashing orange for alarm pick－up，steady orange after operator reset if alarm condition persists．
b Operating temperature range $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ．
b CE／UL marking．
b 24 V DC power supply，with tolerances $24 \mathrm{~V}-20 \%(19.2 \mathrm{~V})$ to $24 \mathrm{~V}+10 \%(26.4 \mathrm{~V})$ ． When the FDM121 is connected to the communication network，the 24 V is supplied by the communication system wiring system．
b Consumption 40 mA ．

Mounting

The FDM121 is easily installed in a switchboard．
b Standard door cut－out $92 \times 92 \mathrm{~mm}$ ．
b Attached using clips．
To avoid a cut－out in the door，an accessory is available for surface mounting by drilling only two 22 mm diameter holes．
The FDM121 degree of protection is IP54 in front．IP54 is maintained after switchboard mounting by using the supplied gasket during installation．

Connection

The FDM121 is equipped with：
b a 24 V DC terminal block：
v plug－in type with 2 wire inputs per point for easy daisy－chaining
V power supply range of $24 \mathrm{~V}-20 \%(19.2 \mathrm{~V})$ to $24 \mathrm{~V}+10 \%(26.4 \mathrm{~V})$
b two RJ45 jacks．
The Micrologic connects to the internal communication terminal block on the Compact NSX via the pre－wired NSX cord．Connection to one of the RJ45 connectors on the FDM121 automatically establishes communication between the Micrologic and the FDM121 and supplies power to the Micrologic measurement functions．
When the second connector is not used，it must be fitted with a line terminator．

Product identification.

Metering: sub-menu.

Metering: meter.

Quick view.

Metering: U average.

Services.

Navigation

Five buttons are used for intuitive and fast navigation.
The "Context" button may be used to select the type of display (digital, bargraph, analogue).
The user can select the display language (Chinese, English, French, German, Italian, Portuguese, Spanish, etc.) Other languages can be downloaded.

Screens

Main menu
When powered up, the FDM121 screen automatically displays the ON/OFF status of the device.

When not in use, the screen is not backlit. Backlighting can be activated by pressing one of the buttons. It goes off after 3 minutes.

Fast access to essential information

b "Quick view" provides access to five screens that display a summary of essential operating information (I, U, f, P, E, THD, circuit breaker On / Off).

Access to detailed information

b "Metering" can be used to display the measurement data (I, U-V, f, P, Q, S, E, THD, PF) with the corresponding min/max values.
b Alarms displays active alarms and the alarm history.
b Services provides access to the operation counters, energy and maximeter reset function, maintenance indicators, identification of modules connected to the internal bus and FDM121 internal settings (language, contrast, etc.)

Compact NSX communication

Communications modules

All Compact NSX devices can be equipped with the communication function via a prewired connection system and a Modbus network interface.
The interface can be connected directly or via the FDM121 switchboard display unit. Four functional levels can be combined to adapt to all supervision requirements.

Four functional levels

The Compact NSX can be integrated in a Modbus communication environment. Four functional levels can be used separately or combined.

Communication of status indications

This level is compatible with all Compact NSX circuit breakers, whatever the trip unit, and with all switch-disconnectors. Using the BSCM module, the following information is accessible:
b ON/OFF position (O/F)
b trip indication (SD)
b fault-trip indication (SDE).

Communication of commands

Also available on all circuit breakers and switch-disconnectors, this level (communicating remote control) can be used to:
b open
b close
b reset.
Communication of measurements with Micrologic 5 / 6 A or E
This level provides access to all available information:
b instantaneous and demand values
b maximeters/minimeters
b energy metering
b demand current and power
b power quality.
Communication of operating assistance with Micrologic 5/6 A or E
b protection and alarm settings
b time-stamped histories and event tables
b maintenance indicators.

Communication components and connections

Modbus interface module

Functions

This module, required for connection to the network, contains the Modbus address (1 to 99) declared by the user via the two dials in front. It automatically adapts (baud rate, parity) to the Modbus network in which it is installed.
It is equipped with a lock-out switch to enable or disable operations involving writing to Micrologic, i.e. reset, counter reset, setting modifications, device opening and closing commands, etc.
There is a built-in test function to check the connections of the Modbus interface module with the Micrologic and FDM121 display unit.

Mounting
The module is mounted on a DIN rail. A number of modules may be clipped one next to the other. For this, a stacking accessory is available for fast clipconnection of both the Modbus link and the 24 V DC supply.
The Modbus interface module supplies 24 V DC to the corresponding Micrologic, FDM121 display and BSCM module. Module consumption is $60 \mathrm{~mA} / 24 \mathrm{~V}$ DC.

1 Five-point Modbus and 24 V DC connector
2 Two Modbus address dials (1 to 99)
3 Modbus traffic LED
4 Lock-out to disable writing to the NSX
5 Test LED
6 Test button
7 Two connectors for RJ45 cable

BSCM module

Functions

The optional BSCM Breaker Status \& Control Module is used to acquire device status indications and control the communicating remote-control function.
It includes a memory used to manage the maintenance indicators.

Status indications

Indication of device status:
O/F, SD and SDE.

Maintenance indicators

The BSCM module manages the following indicators:
b mechanical operation counter
b electrical operation counter
b history of status indications. It is possible to assign an alarm to the operation counters.

Controls

The module can be used to carry out communicating remote control operations: (open, close and reset) in different modes (manual, auto).

Mounting

The BSCM module can be installed on all Compact NSX circuit breakers and switch-disconnectors. It simply clips into the auxiliary contact slots. It occupies the slots of one O/F contact and one SDE contact. The BSCM is supplied with 24 V DC power automatically via the NSX cord when the communication system is installed.

Compact NSX communication

 Networks and software
Modbus

Modbus is the most widely used communication protocol in industrial networks. It operates in masterslave mode. The devices (slaves) communicate one after the other with a gateway (master) Masterpact, Compact NSX, PowerLogic and Sepam products all operate with this protocol. A Modbus network is generally implemented on an LV or MV switchboard scale.
Depending on the data monitored and the desired refresh rate, a Modbus network connected to a gateway can serve 4 to 16 devices. For larger installations, a number of Modbus networks can be connected to an Ethernet network (TCP/IP/Modbus protocol) via their gateways.

Compact NSX uses the Modbus communication protocol, compatible with SMS PowerLogic supervision systems.
Two downloadable utilities facilitate implementation of communication functions.

Micrologic utilities

b Two utilities, RSU and RCU, presented on the next page, are available to assist in starting up a communicating installation. Intended for Compact NSX and Masterpact, the software can be downloaded from the Schneider Electric internet site.
b The "Live update" function enables immediate updating to obtain the most recent upgrades. These easy-to-use utilities include starting assistance and online help. They are compatible with Microsoft Windows 2000, XP and Vista.

RSU configuration screen for a Micrologic 5.2.

RCU mini-supervision screen for current measurements.

Gateway

The gateway has two functions:
b access to the company intranet (Ethernet) by converting Modbus frames to the TCP/IP/Modbus protocol
b optional web-page server for the information from the devices.
Examples include MPS100, EGX400 and EGX100.

MPS100

b Plug and play device. It comes loaded with a webpage application for graphic display of currents and voltages and viewing of circuit-breaker status and power and energy values.
To use the application, simply declare the Modbus addresses of the connected slaves. Automatically recognised devices include all Masterpact and Compact NSX Micrologic trip units and the PM500/700/800 and PM9c power monitoring units. b Can be used for automatic alarm notification via a messaging server available on the site intranet or via mobile phones (e-mail converted into SMS).
b Can be used for logging of data that can be automatically sent as e-mail attachments, e.g. a weekly consumption report.

Web page.

Functions and characteristics

Compact NSX communication

RSU and RCU utilities

Two utilities, RSU and RCU, are available to assist in starting up a communicating installation.
They can be downloaded from the Schneider Electric internet site and include a "Live update" function that enables immediate updating.

RSU: Micrologic Remote Setting Utility.

RSU (Remote Setting Utility)

This utility is used to set the protection functions and alarms for each Masterpact and Compact NSX device.
After connection to the network and entry of the circuit-breaker Modbus address, the software automatically detects the type of trip unit installed.
There are two possible operating modes
Off-line with the software disconnected from the communication network
For each selected circuit breaker, the user can do the following.
Determine the protection settings
The settings are carried out on a screen that shows the front of the trip unit. The Micrologic setting dials, keypad and screen are simulated for easy use of all Micrologic setting functions.
Save and duplicate the protection settings
Each configuration created can be saved for subsequent device programming. It can also be duplicated and used as the basis for programming another circuit breaker.

On-line with the software connected to the network

Similarly, for each selected circuit breaker, the user can do the following.

Display the current settings

The software displays the trip unit and provides access to all settings.

View the corresponding protection curves

A graphic curve module in the software displays the protection curve corresponding to the settings. It is possible to lay a second curve over the first for discrimination studies.

Modify settings in a secure manner

b There are different levels of security:
v password: by default, it is the same for all devices, but can be differentiated for each device
v locking of the Modbus interface module which must be unlocked before the corresponding device can be set remotely
v maximum settings limited by the positions of the two dials on the trip unit.
These dials, set by the user, determine the maximum settings that can be made via the communication system.
b Settings are modified by:
v either direct, on-line setting of the protection settings on the screen
v or by loading the settings prepared in off-line mode. This is possible only if the positions of the dials allow the new settings.
All manual settings made subsequently on the device have priority.

Program alarms

b Up to 12 alarms can be linked to measurements or events.
b two alarms are predefined and activated automatically:
v Micrologic 5: overload (Ir)
v Micrologic 6: overload (lr) and ground fault (lg)
b thresholds, priorities and time delays can be set for 10 other alarms. They may be selected from a list of 91 alarms

Set the outputs of the SDx relays

This is required when the user wants to change the standard configuration and assign different signals to the 2 outputs of the SDx relay.

RCU: Remote Control Utility for communication tests.

RCU (Remote Control Utility)

The RCU utility can be used to test communication for all the devices connected to the Modbus network. It is designed for use with Compact NSX, Masterpact, Advantys OTB and Power Meter devices. It offers a number of functions.

Mini supervisor

b Display of I, U, f, P, E and THD measurements for each device, via navigation b Display of ON/OFF status
Open and close commands for each device
A common or individual password must first be entered.

When all functions have been tested, this utility is replaced by the supervision software selected for the installation.

Supervision software

Schneider Electric electrical installation supervision, management and expert system software integrates Compact NSX identification modules.

Connection symbol for Compact NSX compatible modules.

PowerView software.

SMS software screen.

Types of software

Masterpact and Compact NSX communication functions are designed to interface with software dedicated to electrical installations:
b switchboard supervision
b electrical installation supervision
b power system management: electrical engineering expert systems
b process control
b SCADA (Supervisory Control \& Data Acquisition), EMS (Enterprise Management System) or BMS (Building Management System) type software.

Integration of Compact NSX

Compact NSX devices are integrated via Modbus interface modules connected via FDM121 display units or NSX cords.
For easy connection of the different modules, the prefabricated cables are identified by ULP (Universal Logic Plug) symbols. The connection points on compatible modules are marked in the same manner.

Schneider Electric solutions

Electrical switchboard supervision via MPS100 or EGX400 Web servers

A simple solution for customers who want to consult the main electrical parameters of switchboard devices without dedicated software.
Up to 16 switchboard devices are connected via Modbus interfaces to an MPS100 or EGX400 Ethernet gateway integrating the functions of a web page server. The embedded Web pages can be easily configured with just a few mouse clicks. The information they provide is updated in real time.
The Web pages can be consulted using a standard Web browser on a PC connected via Ethernet to the company Intranet or remotely via a modem. Automatic notification of alarms and threshold overruns is possible via e-mail or SMS (Short Message Service).

Electrical installation supervision via PowerView software
PowerLogic ${ }^{\circledR}$ PowerView software is ideally suited to the supervision needs of small system applications, monitoring up to 32 devices. Installed on a PC under Windows, it represents a cost-effective and easy-to-implement power-monitoring solution that offers:
b automatic detection of compatible devices
b real-time monitoring of data including power consumption
b a report generator with a number of pre-defined reports that can be exported to Excel
b cost allocation
b time-stamped data-logging possibilities
b Modbus serial and Modbus TCP/IP compatible communication.
SMS electrical engineering expert system software
PowerLogic ${ }^{\circledR}$ SMS is a family of web-enabled software products for high-end powermonitoring applications. It is designed for large power systems.
SMS products offer detailed analysis of electrical events, long-duration data logging and extensive, economical report-building capabilities (e.g. consumption monitoring and tariff management).
A wide variety of screens can be displayed in real time, including more than 50 tables, analogue meters, bargraphs, alarms logs with links to display waveforms and predefined reports on energy quality and service costs.

Other software

Compact NSX devices can forward their measurement and operating information to special software integrating the electrical installation and other technical facilities:
b SCADA process control software: Vijeo CITECT
b BMS Building Management System software: Vista.
Please consult us.

Functions and characteristics

Accessories for

 Micrologic trip units
External neutral current transformer (ENCT)

The external transformer is a sensor required for a three-pole circuit breaker in a system with a distributed neutral to measure the neutral current in order to: b protect the neutral conductor
b protect against insulation faults.
This current transformer can be connected to Micrologic 5 / 6 trip units. The transformer rating must be compatible with that of the circuit breaker.
Required current transformers for different circuit breaker models

Type of circuit breaker	Rating	Catalogue number
NSX100/160/250	$\frac{25-100 \mathrm{~A}}{\text { LV429521 }}$	
NSX400/630	$400-630 \mathrm{~A}$	LV430563

External neutral voltage tap (ENVT)

The neutral voltage transformer is required for Micrologic E power metering with a three-pole circuit breaker in a system with a distributed neutral. It is used to connect the neutral to the Micrologic trip unit to measure phase-to-neutral (Ph-N) voltages.

External 24 V DC power-supply module

Use
An external 24 V DC power supply is required for installations with communication, whatever the type of trip unit.
On installations without communication, it is available as an option for Micrologic 5/6 in order to make it possible to:
b modify settings when the circuit breaker is open
b display measurements when the current flowing through the circuit breaker is low (15 to 50 A depending on the rating)
b maintain the display of the cause of tripping and interrupted current.

Characteristics

A single external 24 V DC supply may be used for the entire switchboard.
The required characteristics are:
b output voltage: $24 \vee \mathrm{DC} \pm 5 \%$
b ripple: $\pm 1 \%$.
b overvoltage category: OVC IV - as per IEC 60947-1
External 24 V DC power-supply modules with an output current of 1 A are available:

Available external power-supply modules			Cat. no.
Power supply	V DC (± 5 \%)	24/30	54440
		48/60	54441
		100/125	54442
	VAC (+10 \%,-15 \%)	110/130	54443
		200/240	54444
		380/415	54445
Output voltage		24 V DC (± 5 \%)	
Ripple		± 1 \%	
Overvoltage category (OVC)		OVC IV - as per	

An external 24 V DC power-supply module with an output current of 3 A is also available:

Configuration and maintenance module (cat. no. TRV00911).

Using the configuration and maintenance module.

Test battery

This pocket battery connects to the Micrologic test connector. It powers up the Micrologic and the Ready LED. It supplies the screen and allows settings to be made via the keypad.

Battery module

The battery module is a back-up supply for the external power-supply module. The input/output voltages are 24 V DC and it can supply power for approximately three hours (100 mA).

24 V DC power-supply terminal block

The 24 V DC power-supply terminal block can be installed only on Micrologic 5/6 trip units. It is required to power the trip unit when the trip unit is not connected to an FDM121 display unit or to the communication system. When used, it excludes connection of an NSX cord.

NSX cord

b For voltage U y 480 V , available in 3 prefabricated lengths: $0.35 \mathrm{~m}, 1.3 \mathrm{~m}$ and 3 m . b For voltages $U>480 \mathrm{~V}$, a special 1.3 m cord with an insulation accessory is required.
b A set of cords with RJ45 connectors is available to adapt to different distances between devices.

Maintenance case

The case includes:
b configuration and maintenance module
b power supply (110... 220 V AC / 50-60 Hz 24 V DC - 1 A)
b special cable for connection to the trip-unit test connector
b standard USB cable
b standard RJ45 cable
b user manual
b optional Bluetooth link (to PC).

Configuration and maintenance module

Included in the maintenance kit, this module tests Micrologic operation and provides access to all parameters and settings. It connects to the Micrologic test connector and can operate in two modes.
b Stand-alone mode to:
v supply the Micrologic and check operation via the Ready LED
v check mechanical operation of the circuit breaker (trip using pushbutton).
b PC mode, connected to a PC via USB or Bluetooth link. This mode provides access to protection settings, alarm settings and readings of all indicators. Using the associated RSU software utility, it is possible to store, in a dedicated file for each device, all the data that can transferred to another device.
This mode also offers operating-test functions:
v check on trip time delay (trip curve)
v check on non-tripping time (discrimination)
v check on ZSI (Zone Selective Interlocking) function
v alarm simulation
v display of setting curves
v display of currents
v printing of test reports.

There are two ways to add earth-leakage protection to any three or four-pole Compact NSX100 to 630 circuit breaker equipped with a magnetic, thermal-magnetic or Micrologic 2, 5 or 6 trip unit:
b by adding a Vigi module to the circuit breaker to form a Vigicompact NSX
b by using a Vigirex relay and separate toroids.

Vigicompact NSX100 to 630.

Earth-leakage relay.

[^4]
Circuit breaker with add-on Vigi module (Vigicompact NSX)

b For general characteristics of circuit breakers, see pages A-6 and A-7. b Add-on Vigi modules. Earth-leakage protection is achieved by installing a Vigi module (characteristics and selection criteria on next page) directly on the circuit breaker terminals It directly actuates the trip unit (magnetic, thermal-magnetic or Micrologic).

Circuit breaker combined with a Vigirex relay

Compact NSX circuit breaker + Vigirex relay

Vigirex relays may be used to add external earth-leakage protection to Compact NSX circuit breakers. The circuit breakers must be equipped with an MN or MX voltage release. The Vigirex relays add special tripping thresholds and time delays for earth-leakage protection.
Vigirex relays are very useful when faced with major installation constraints (circuit breaker already installed and connected, limited space available, etc.).

Vigirex-relay characteristics

b Sensitivity adjustable from 30 mA to 250 mA and 9 time-delay settings (0 to 4.5 seconds).
b Closed toroids up to 630 A (30 to 300 mm in diameter), split toroids up to 250 A
(46 to 110 mm in diameter) or rectangular sensors up to 630 A .
b $50 / 60 \mathrm{~Hz}, 400 \mathrm{~Hz}$ distribution systems.

Options

b Trip indication by a fail-safe contact
b Pre-alarm contact and LED, etc.

Compliance with standards

b IEC 60947-2, annex M
b IEC/EN 60755: general requirements for residual-current operated protective devices
b IEC/EN 61000-4-2 to 4-6: immunity tests
b CISPR11: radio-frequency radiated and conducted emission tests
b UL1053 and CSA22.2 No. 144 for RH10, RH21 and RH99 relays at supply voltages up to and including 220/240 V.

Vigicompact NSX100 to 630 circuit breakers with earth-leakage protection

Addition of the Vigi module does not alter circuit-breaker characteristics:
b compliance with standards
b degree of protection, class II front-face insulation
b positive contact indication
b electrical characteristics
b trip-unit characteristics
b installation and connection modes
b indication, measurement and control auxiliaries
b installation and connection accessories.

Dimensions and weights		NSX100/160/250	NSX400/630
Dimensions	3 poles	$105 \times 236 \times 86$	$135 \times 355 \times 110$
W $\times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	4 poles	$140 \times 236 \times 86$	$180 \times 355 \times 110$
Weight (kg)	3 poles	2.5	8.8
	4 poles	3.2	10.8

Vigi earth-leakage protection modules

Compliance with standards
b IEC 60947-2, annex B.
b Decree dated 14 November 1988 (for France).
b IEC 60755, class A, immunity to DC components up to 6 mA
b operation down to $-25^{\circ} \mathrm{C}$ as per VDE 664.

Remote indications

Vigi modules may be equipped with an auxiliary contact (SDV) to remotely signal
 tripping due to an earth fault.

Use of 4-pole Vigi module with a 3-pole Compact NSX

In a 3-phase installation with an uninterrupted neutral, an accessory makes it possible to use a 4-pole Vigi module with connection of the neutral cable.

Power supply

Vigi modules are self-supplied internally by the distribution-system voltage and therefore do not require any external source. They continue to function even when supplied by only two phases.

Vigi module selection

1 Sensitivity setting
2 Time-delay setting (for selective earth-leakage protection). 3 Lead-seal fixture for controlled access to settings.
4 Test button simulating an earth-fault for regular checks on the tripping function
5 Reset button (reset required after earth-fault tripping).
6 Rating plate
7 Housing for SDV auxiliary contact.

Plug-in devices

The Vigi module can be installed on a plug-in base Special accessories are required (see catalogue number chapter).

Type	Vigi ME	Vigi MH	Vigi MB
Number of poles	3, $4^{(1)}$	3, $4^{(1)}$	$3,4{ }^{(1)}$
NSX100	b	b	-
NXS160	b	b	-
NSX250	-	b	-
NSX400	-	-	b
NSX630	-	-	b
Protection characteristics			
Sensitivity	fixed	adjustable	adjustable
$1 \Delta n(A)$	0.3	0.03-0.3-1-3-10	0.3-1-3-10-30
Time delay	fixed	adjustable	adjustable
Intentional delay (ms)	< 40	0-60 ${ }^{(2)}-150{ }^{(2)}-310^{(2)}$	0-60-150-310
Max. break time (ms)	< 40	< $40<140<300<800$	< $40<140<300<800$
Rated voltage VAC $50 / 60 \mathrm{~Hz}$	200... 440	200... 440-440... 550	200...440-440... 550

(1) Vigi 3P modules may also be used on 3P circuit breakers used for two-phase protection.
(2) If the sensitivity is set to 30 mA , there is no time delay, whatever the time-delay setting.

Operating safety

The Vigi module is a user safety device. It must be tested at regular intervals (every 6 months) via test button.

Functions and characteristics

Motor protection
 General information on motor feeders

The parameters to be considered for motor-feeder protection depend on:
b the application (type of machine driven, operating safety, frequency of operation, etc.)
b the level of continuity of service required by the load or the application
b the applicable standards for the protection of life and property.
The required electrical functions are:
b isolation
b switching, generally at high endurance levels
b protection against overloads and short-circuits, adapted to the motor
b additional special protection.
A motor feeder must comply with the requirements of standard IEC 60947-4-1 concerning contactors and their protection:
b coordination of feeder components
b thermal-relay trip classes
b contactor utilisation categories
b coordination of insulation.

Motor-feeder function

A motor feeder comprises a set of devices for motor protection and control, as well as for protection of the feeder itself.

Isolation

The purpose is to isolate the live conductors from the upstream distribution system to enable work by maintenance personnel on the motor feeder at no risk. This function is provided by a motor circuit breaker offering positive contact indication and lockout/ tagout possibilities.

Switching

The purpose is to control the motor (ON / OFF), either manually, automatically or remotely, taking into account overloads upon start-up and the long service life required. This function is provided by a contactor. When the coil of the contactor's electromagnet is energised, the contactor closes and establishes, through the poles, the circuit between the upstream supply and the motor, via the circuit breaker.

Basic protection

b Short-circuit protection
Detection and breaking, as quickly as possible, of high short-circuit currents to avoid damage to the installation. This function is provided by a magnetic or thermalmagnetic circuit breaker.
b Overload protection
Detection of overload currents and motor shutdown before temperature rise in the motor and conductors damages insulation. This function is provided by a thermalmagnetic circuit breaker or a separate thermal relay.

Overloads: 1 < 10 x ln

They are caused by:
b an electrical problem, related to an anomaly in the distribution system (e.g. phase failure,
voltage outside tolerances, etc.)
b a mechanical problem, related to a process malfunction (e.g. excessive torque) or damage to the motor (e.g. bearing vibrations).
These two causes will also result in excessively long starting times.
Impedant short-circuits: $\mathbf{1 0}$ x In < l < $50 \times$ In
This type of short-circuit is generally due to deteriorated insulation of motor windings or damaged supply cables.
Short-circuits: I> 50 x In
This relatively rare type of fault may be caused by a connection error during maintenance.
b Phase unbalance or phase loss protection
Phase unbalance or phase loss can cause temperature rise and braking torques that can lead to premature ageing of the motor. These effects are even greater during starting, therefore protection must be virtually immediate.

Additional electronic protection

b Locked rotor
b Under-load
b Long starts and stalled rotor
b Insulation faults.

Motor-feeder solutions

Standard IEC 60947 defines three types of device combinations for the protection of motor feeders.

Three devices

b magnetic circuit breaker + contactor + thermal relay.

Two devices

b thermal-magnetic circuit breaker + contactor.

One device

b thermal-magnetic circuit breaker + contactor in an integrated solution (e.g.
Tesys U).

\left.| | |
| :--- | :--- |
| | Device coordination |
| | The various components of a motor feeder must be coordinated. Standard |
| | IEC 60947-4-1 defines three types of coordination depending on the operating |$\right]$

Functions
and characteristics

Motor protection
 Motor-feeder characteristics and solutions

The trip class determines the trip curve of the thermal protection device (inverse-time curve) for a motor feeder.
Standard IEC 60947-4-1 defines trip classes 5, 10, 20 and 30.
These classes are the maximum durations, in seconds, for motor starting with a starting current of 7.2 Ir , where Ir is the thermal setting indicated on the motor rating plate.

Example: In class 20, the motor must have finished starting within 20 seconds (6 to 20 s) for a starting current of 7.2 Ir .

Standardised values in kW

Rated operational power	Standardised values in kW currents le (A) for:			
	230 V	400 V	500 V	690 V
kW	A	A	A	A
0.06	0.35	0.32	0.16	0.12
0.09	0.52	0.3	0.24	0.17
0.12	0.7	0.44	0.32	0.23
0.18	1	0.6	0.48	0.35
0.25	1.5	0.85	0.68	0.49
0.37	1.9	1.1	0.88	0.64
0.55	2.6	1.5	1.2	0.87
0.75	3.3	1.9	1.5	1.1
1.1	4.7	2.7	2.2	1.6
1.5	6.3	3.6	2.9	2.1
2.2	8.5	4.9	3.9	2.8
3	11.3	6.5	5.2	3.8
4	15	8.5	6.8	4.9
5.5	20	11.5	9.2	6.7
7.5	27	15.5	12.4	8.9
11	38	22	17.6	12.8
15	51	29	23	17
18.5	61	35	28	21
22	72	41	33	24
30	96	55	44	32
37	115	66	53	39
45	140	80	64	47
55	169	97	78	57
75	230	132	106	77
90	278	160	128	93
110	340	195	156	113
132	400	230	184	134
160	487	280	224	162
200	609	350	280	203
250	748	430	344	250
315	940	540	432	313

Trip class of a thermal-protection device

The motor feeder includes thermal protection that may be built into the circuit breaker. The protection must have a trip class suited to motor starting. Depending on the application, the motor starting time varies from a few seconds (no-load start) to a few dozen seconds (high-inertia load).
Standard IEC 60947-4-1 defines the trip classes below as a function of current setting Ir for thermal protection.
Trip class of thermal relays as a function of their Ir setting

Class	$1.05 \mathrm{Ir}^{(1)}$	1.2 Ir ${ }^{(1)}$	$1.5 \mathrm{lr}{ }^{(2)}$	$7.21{ }^{(1)}$
5	$\mathrm{t}>2 \mathrm{~h}$	$t<2 h$	$\mathrm{t}<2 \mathrm{mn}$	$2 \mathrm{~s}<\mathrm{ty} 5 \mathrm{~s}$
10	$t>2 \mathrm{~h}$	$t<2 h$	$\mathrm{t}<4 \mathrm{mn}$	$4 \mathrm{~s}<\mathrm{ty} 10 \mathrm{~s}$
20	$\mathrm{t}>2 \mathrm{~h}$	$t<2 h$	$\mathrm{t}<8 \mathrm{mn}$	$6 \mathrm{~s}<\mathrm{ty} 20 \mathrm{~s}$
30	$\mathrm{t}>2 \mathrm{~h}$	t<2h	$\mathrm{t}<12 \mathrm{mn}$	$9 \mathrm{~s}<\mathrm{ty} 30 \mathrm{~s}$

(1) Time for a cold motor (motor off and cold).
(2) Time for warm motor (motor running under normal conditions).

Currents of squirrel-cage motors at full rated load

Standardised values in HP

Rated operational power	Indicative values of the rated operational currents le (A) for						
	$\begin{aligned} & 110- \\ & 120 \mathrm{~V} \end{aligned}$	200 V	208 V	$\begin{aligned} & 220- \\ & 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 380- \\ & 415 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 440- \\ & 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 550- \\ & 600 \mathrm{~V} \end{aligned}$
hp							
1/2	4.4	2.5	2.4	2.2	1.3	1.1	0.9
3/4	6.4	3.7	3.5	3.2	1.8	1.6	1.3
1	8.4	4.8	4.6	4.2	2.3	2.1	1.7
$11 / 2$	12	6.9	6.6	6	3.3	3	2.4
2	13.6	7.8	7.5	6.8	4.3	3.4	2.7
3	19.2	11	10.6	9.6	6.1	4.8	3.9
5	30.4	17.5	16.7	15.2	9.7	7.6	6.1
$71 / 2$	44	25.3	24.2	22	14	11	9
10	56	32.2	30.8	28	18	14	11
15	84	48.3	46.2	42	27	21	17
20	108	62.1	59.4	54	34	27	22
25	136	78.2	74.8	68	44	34	27
30	160	92	88	80	51	40	32
40	208	120	114	104	66	52	41
50	260	150	143	130	83	65	52
60	-	177	169	154	103	77	62
75	-	221	211	192	128	96	77
100	-	285	273	248	165	124	99
125	-	359	343	312	208	156	125
150	-	414	396	360	240	180	144
200	-	552	528	480	320	240	192
250	-	-	-	604	403	302	242
300	-	-	-	722	482	361	289

Note: $1 \mathrm{hp}=0.7457 \mathrm{~kW}$.

Asynchronous-motor starting parameters

The main parameters of direct on-line starting of three-phase asynchronous motors (90% of all applications) are listed below.
b Ir: rated current
This is the current drawn by the motor at full rated load (e.g. approximately 100 Arms for 55 kW at 400 V).
b Id: starting current
This is the current drawn by the motor during starting, on average 7.2 In for a duration td of 5 to 30 seconds depending on the application (e.g. 720 Arms for 10 seconds). These values determine the trip class and any additional "long-start" protection devices that may be needed.
b I"d: peak starting current
This is the subtransient current during the first two half-waves when the system is energised, on the average 14 In for 10 to 15 ms (e.g. 1840 A peak).

The protection settings must effectively protect the motor, notably via a suitable thermal-relay trip class, but let the peak starting current through.

Typical motor-starting curve

Compact NSX motor-feeder solutions

Compact NSX motor circuit breakers are designed for motor-feeder solutions using:
b three devices, including an MA or $1.3-\mathrm{M}$ magneticonly trip unit
b two devices including a TM-D or 2-M thermal-
magnetic trip unit.
They are designed for use with contactors in the AC3 utilisation category (80% of all cases) and they ensure type-2 coordination with the contactor.
For the AC4 utilisation category, the difficult conditions generally make it necessary to oversize the protection circuit breaker with respect to the AC3 category.

Compact NSX motor-protection range

Compact NSX trip units can be used to create motor-feeder solutions comprising two or three devices. The protection devices are designed for continuous duty at $65^{\circ} \mathrm{C}$.

Three-device solutions

b 1 NSX circuit breaker with an MA or Micrologic 1.3-M trip unit
b 1 contactor
b 1 thermal relay.

Two-device solutions

b 1 Compact NSX circuit breaker
v with a Micrologic 2.2-M or 2.3-M electronic trip unit
v with a Micrologic 6 E-M electronic trip unit. This version offers additional protection and Power Meter functions.
b 1 contactor.

MA magnetic trip units are used in 3-device motorfeeder solutions. They can be mounted on all Compact NSX100/160/250 circuit breakers with performance levels B/F/H/N/S/L.
They provide short-circuit protection for motors up to 110 kW at 400 V .

Micrologic 1.3-M trip units are used in 3-device motorfeeder solutions on Compact NSX400/630 circuit breakers with performance levels $B / F / H / N / S / L$.
They provide short-circuit protection for motors up to 250 kW at 400 V .
They also provide the benefits of electronic technology: b accurate settings
b tests
b "Ready" LED.

MA magnetic trip units

Circuit breakers with an MA trip unit are combined with a thermal relay and a contactor or a starter.

Protection

Magnetic protection (Im)

Short-circuit protection with an adjustable pick-up Im that initiates instantaneous tripping if exceeded.
b $\mathbf{I m}=\ln x \ldots$ is set on an adjustment dial in multiples of the rating:
v 6 to $14 x \ln (2.5$ to 100 A ratings)
v 9 to $14 \times \ln$ (150 to 200 A ratings)
Protection version
b 3-pole (3P 3D): 3-pole frame (3P) equipped with detection on all 3 poles (3D).
Micrologic 1.3-M trip units

Circuit breakers with a Micrologic 1.3-M trip unit are combined with a thermal relay and a contactor.

Protection

\qquad

Settings are made using a dial.
Short-circuits: Short-time protection (Isd)
Protection with an adjustable pick-up Isd. There is a very short delay to let through motor starting currents.
b Isd is set in amperes from 5 to $13 \times \mathrm{ln}$, as follows:
v from 1600 to 4160 A for the 320 A rating.
v from 2500 to 6500 A for the 500 A rating.
Short-circuits: Non-adjustable instantaneous protection (Ii)
Instantaneous protection with non-adjustable pick-up li.

Protection version

b 3-pole (3P 3D): 3-pole frame (3P) equipped with detection on all 3 poles (3D).

Indications

Front indications
b Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.

Micrologic 1.3-M

(1) Motor standards require operation at $65^{\circ} \mathrm{C}$. Circuit-breaker ratings are derated to take this requirement into account.

Motor protection
 Micrologic 2－M electronic trip units

Micrologic 2－M trip units provide built－in thermal and magnetic protection．They are used in 2－device motor－哀 feeder solutions on Compact NSX100 to 630 circuit breakers with performance levels B／F／H／N／S／L．
They provide protection for motors up to 315 kW at 400 V against：
b short－circuits
b overloads with selection of a trip class（5， 10 or 20 ） b phase unbalance．

SDTAM remote indication relay module with its terminal block．

Circuit breakers with a Micrologic 2.2 ／2．3－M trip unit include protection similar to an inverse－time thermal relay．They are combined with a contactor．

Protection

Settings are made using a dial．
Overloads（or thermal protection）：Long－time protection and trip class（Ir） Inverse－time thermal protection against overloads with adjustable pick－up Ir． Settings are made in amperes．The tripping curve for the long－time protection，which indicates the time delay tr before tripping，is defined by the selected trip class．

Trip class（class）

The class is selected as a function of the normal motor starting time．
b Class 5：starting time less than 5 s
b Class 10：starting time less than 10 s
b Class 20：starting time less than 20 s
For a given class，it is necessary to check that all motor－feeder components are sized to carry the 7.2 Ir starting current without excessive temperature rise during the time corresponding to the class．

Short－circuits：Short－time protection（Isd）

Protection with an adjustable pick－up Isd．There is a very short delay to let through motor starting currents．
Short－circuits：Non－adjustable instantaneous protection（li） Instantaneous protection with non－adjustable pick－up li．

Phase unbalance or phase loss（lunbal）（啇）

This function opens the circuit breaker if a phase unbalance occurs：
b that is greater than the 30% fixed pick－up lunbal
b following the non－adjustable time delay tunbal equal to：
v 0.7 s during starting
$v 4 \mathrm{~s}$ during normal operation．
Phase loss is an extreme case of phase unbalance and leads to tripping under the same conditions．

Indications

Front indications

b Green＂Ready＂LED：flashes slowly when the circuit breaker is ready to trip in the event of a fault．
b Red alarm LED for motor operation：goes ON when the thermal image of the rotor and stator is greater than 95% of the permissible temperature rise．

Remote indications via SDTAM module

Compact NSX devices with a Micrologic 2 can be equipped with an SDTAM module dedicated to motor applications for：
b a contact to indicate circuit－breaker overload
b a contact to open the contactor．In the event of a phase unbalance or overload， this output is activated 400 ms before circuit－breaker tripping to open the contactor and avoid circuit breaker tripping．
This module takes the place of the MN／MX coils and an OF contact．

(1) Motor standards require operation at $65^{\circ} \mathrm{C}$. Circuit-breaker ratings are derated to take this requirement into account.
(2) The unbalance measurement takes into account the most unbalanced phase with respect to the average current.

Unbalance of phase currents and voltages

Additional technical characteristics

Phase unbalance

An unbalance in three-phase systems occurs when the three voltages are not equal in amplitude and/or not displaced 120° with respect to each other. It is generally due to single-phase loads that are incorrectly distributed throughout the system and unbalance the voltages between the phases.
These unbalances create negative current components that cause braking torques and temperature rise in asynchronous machines, thus leading to premature ageing.

Phase loss

Phase loss is a special case of phase unbalance.
b During normal operation, it produces the effects mentioned above and tripping must occur after four seconds.
b During starting, the absence of a phase may cause motor reversing, i.e. it is the load that determines the direction of rotation. This requires virtually immediate tripping (0.7 seconds). Starting time in compliance with the class (Micrologic 2-M)
For normal motor starting, Micrologic 2-M checks the conditions below with respect to the thermal-protection (long-time) pick-up Ir:
b current > 10% x Ir (motor-off limit)
b overrun of 1.5 x Ir threshold, then return below this threshold before the end of a 10 s time delay.
If either of these conditions is not met, the thermal protection trips the device after a maximum time equal to that of the selected class.
Pick-up Ir must have been set to the current indicated on the motor rating plate.
Long starts (Micrologic 6 E-M)
When this function is not activated, the starting conditions are those indicated above.
When it is activated, this protection supplements thermal protection (class).
A long start causes tripping and is characterised by:
b current > 10 \% x Ir (motor-off limit) with:
b either overrun of the long-time pick-up (1 to $8 \times \operatorname{lr}$) without return below the pick-up before the end of the long-time time delay (1 to 200 s)
b or no overrun of the long-time pick-up (1 to $8 \times \operatorname{lr}$) before the end of the long-time time delay (1 to 200 s).
Pick-up Ir must have been set to the current indicated on the motor rating plate.
This protection should be coordinated with the selected class.

Motor protection
Micrologic 6 E-M electronic trip units

Micrologic 6.E-M is used in 2-device motor-feeder solutions.
It provides the same protection as Micrologic 2-M: b short-circuits
b overloads with selection of the same trip classes (5,
10 or 20), plus trip class 30 for starting of machines with high inertia.
In addition, it offers specific motor-protection functions that can be set via the keypad.

SDTAM remote indication relay module with its terminal block.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

Protection

The protection functions are identical to those of Micrologic 2-M and can be fineadjusted via the keypad $\boldsymbol{\square}$.
Access to setting modifications via the keypad is protected by a locking function that is controlled by a microswitch \boldsymbol{O}. The lock is activated automatically if the keypad is not used for 5 minutes. Access to the microswitch is protected by a transparent lead-sealable cover. It is possible to scroll through settings and measurements with the cover closed.
Overloads (or thermal), class and short-circuits
The long-time, short-time and instantaneous functions are identical to those of Micrologic 2-M.
In addition, there is trip class 30 for long-time protection and a setting for self-cooled or fan-cooled motors (\%).

Ground-fault protection (Ig)

Residual type ground-fault protection with an adjustable pick-up Ig (with Off position) and adjustable time delay $\boldsymbol{t g}$.
Phase unbalance or phase loss (lunbal)
This function opens the circuit breaker if a phase unbalance occurs:
b that is greater than the lunbal pick-up that can be fine-adjusted from 10 to 40% (30 \% by default)
b following the tunbal time delay that is:
v 0.7 s during starting
v adjustable from 1 to 10 seconds (4 seconds by default) during normal operation. Phase loss is an extreme case of phase unbalance and leads to tripping under the same conditions.

Locked rotor (Ijam)

This function detects locking of the motor shaft caused by the load.
During motor starting (see page A-43), the function is disabled.
During normal operation, it causes tripping:
b above the ljam pick-up that can be fine-adjusted from 1 to 8 xlr
b in conjunction with the tjam time delay that can be adjusted from 1 to 30 seconds.

Under-load (lund)

This function detects motor no-load operation due to insufficient load (e.g. a drained pump). It detects phase undercurrent.
During motor starting (see page A-43), the function is always enabled.
During normal operation, it causes tripping:
b below the lund pick-up that can be fine-adjusted from 0.3 to $0.9 \times \mathrm{Ir}$
b in conjunction with the tund time delay that can be adjusted from 1 to 200
seconds.
Long starts (llong)
This protection supplements thermal protection (class).
It is used to better adjust protection to the starting parameters.
It detects abnormal motor starting, i.e. when the starting current remains too high or too low with respect to a pick-up value and a time delay.
It causes tripping:
b in relation with a llong pick-up that can be fine-adjusted from 1 to 8 x Ir
b in conjunction with the tlong time delay that can be adjusted from 1 to 200
seconds.
(see "long starts" page A-43)

Display of type of fault

\qquad
On a fault trip, the type of fault (Ir, Isd, II, Ig, lunbal, Ijam), the phase concerned and the interrupted current are displayed.

Indications

Front indications
b Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.
b Red alarm LED for motor operation: goes ON when the thermal image of the rotor or stator is greater than 95% of the permissible temperature rise.
Remote indications via SDTAM or SDx module
See description on page A-42 for SDTAM and page A-81 for SDx.

[^5](2) The unbalance measurement takes into account the most unbalanced phase with respect to the average current.

Motor protection
 Micrologic 6 E-M electronic trip units (cont.)

Micrologic 6 E-M provides Power Meter functions with energy metering. With the FDM121 display unit, all metering data and operating indicators are available on the switchboard front panel. This version also displays the thermal image of the motor.

Thermal-image alarm.

PC screen with motor thermal image and value monitoring.

Power Meter functions

The built-in Power Meter functions of the Micrologic 6 E-M are the same as those for the Micrologic 6-E presented in the section on distribution (see page A-20). When used exclusively in the three-phase version, neutral measurements are excluded.

Operating-assistance functions

The operating-assistance functions of the Micrologic 6 E-M are the same as those for the Micrologic 6-E presented in the section on distribution (see page A-22).

Special functions for motor feeders

Additional operating functions specifically for motor feeders are available.

Phase sequence

The order in which the phases L1, L2, L3 are connected determines the direction of motor rotation. If two phases are inverted, the direction is reversed.
Information on the direction of rotation is provided. It can be linked to an alarm to detect an inversion in the direction following servicing on the supply under deenergised conditions and disable restarting.

Thermal image of the rotor and stator

Micrologic $6 \mathrm{E}-\mathrm{M}$ offers a thermal-image function.
Taking into account the Ir setting and the class, an algorithm simulates rotor and stator temperature rise. It includes the slow temperature rise of the stator and its metal mass. Also included is the faster temperature rise of the copper rotor. The thermal protection function trips the circuit breaker when the calculated thermal image reaches 100% of the permissible temperature rise.
The communication indicates the thermal-image value as a percentage of the permissible temperature rise. One or more alarms may be assigned to selected thresholds. A red LED on the front signals when the value exceeds 95%. An SDx module with two outputs programmed for thermal-image values can be used to implement other alarm functions.

(1) Absolute mode: E absolute $=$ E out + E in; Signed mode: E signed $=E$ out $-E$ in.
(2) Available via communication system.
(3) The BSCM module (page A-27) is required for these functions.

Functions and characteristics

Special applications Protection of public distribution systems with Micrologic 2-AB

Micrologic $A B$ trip units are used in public distribution systems to limit the current supplied according to the consumer's contract. They are available in 100, 160, 240 and 400 A ratings and are supplied with a lead-seal device to protect the settings.

INV switch-disconnector with visible break.

Compact NSX with Micrologic 2-AB.

Compact NSX circuit breakers equipped with Micrologic AB trip units are installed as incoming devices for consumer installations connected to the public LV distribution system.
With respect to the utility, they have two functions.
b Consumption is limited to the contractual power level. If the limit is exceeded, a fast thermal-protection function trips the device at the head of the consumer's installation without the utility having to intervene.
b Total discrimination is ensured with the upstream fuses on the public distribution system in the event of a fault, overload or short-circuit in the consumer's installation, protecting the utility line.
In addition, they provide the consumer with:
b protection for the installation as a whole, with the possibility of adding a Vigi earthleakage protection module
b the possibility of downstream discrimination.
This type of Compact NSX is often used in conjunction with an Interpact INV switchdisconnector located outside the consumer's building and providing the visible-break function.
This means the operator can directly see, through a transparent cover, the physical separation of the main contacts. The Interpact INV range is also suitable for isolation with positive contact indication.
This means utility operators can work on the service-connection unit after isolating it from the upstream line.

Protection

Settings are made using the adjustment dials with fine-adjustment possibilities and a lead-seal fixture.

Overloads: Long-time protection (Ir)

Inverse-time thermal protection against overloads with an adjustable current pick-up Ir and a very short, non-adjustable time delay $\mathbf{t r}$ (15 seconds for $\mathbf{1 . 5} \mathbf{x} \mathbf{~ I r}$).
Short-circuits: Short-time protection (Isd) with fixed time delay
Short-circuit protection with an adjustable pick-up Isd. The short-time pick-up values are high enough to avoid nuisance tripping in the event of transient current spikes.
Short-circuits: Non-adjustable instantaneous protection
Instantaneous short-circuit protection with a fixed pick-up.

Neutral protection

Available on four-pole circuit breakers only. Neutral protection may be set using a three-position switch:
b 4P 3D: neutral unprotected
b 4P 3D $+N / 2$: neutral protection at half the value of the phase pick-up, i.e. $0.5 \times \mathrm{Ir}$
b 4P 4D: neutral fully protected at Ir.
Indications

Front indications

b Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.
b Orange overload pre-alarm LED: steady on when I > 90% Ir
b Red overload LED: steady on when I > 105 \% Ir

Remote indications

An SDx relay module installed inside the circuit breaker can be used to remote the overload-trip signal. This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is closed.
The module is described in detail in the section dealing with accessories page A-81.

SDx remote indication relay module with its terminal block.

(1) If the trip units are used in high-temperature environments, the Micrologic setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.

Consumer connection diagram.

Technical details

Advantages of the AB trip unit
b Controls the power drawn with respect to contractual power levels. If the contractual level is overrun, the circuit breaker opens and the consumer is not billed excess costs.
b If a short-circuit occurs, the circuit breaker opens and the upstream HRC fuses on utility lines are not affected. No expensive utility servicing is billed to the consumer.

Functions and characteristics

Special applications
Generator protection with Micrologic 2.2-G

Micrologic G trip units are used for the protection of systems supplied by generators or comprising long cable lengths. They can be mounted on all Compact NSX100/160/250 circuit breakers.
With extensive setting possibilities, Micrologic 5 offers the same functions from 100 to 630 A .
A thermal-magnetic trip unit is also available for the NSX100 to 250 (see page A-15).

SDx remote indication relay module with its terminal block.

Circuit breakers equipped with Micrologic G trip units protect systems supplied by generators (lower short-circuit currents than with transformers) and distribution systems with long cable lengths (fault currents limited by the impedance of the cable).

Protection

Settings are made using the adjustment dials with fine adjustment possibilities

Overloads: Long-time protection (Ir)

Inverse-time thermal protection against overloads with an adjustable current pick-up Ir and a very short, non-adjustable time delay tr (15 seconds for 1.5 x Ir).

Short-circuits: Short-time protection (Isd) with fixed time delay

Short-circuit protection with an adjustable pick-up Isd, delayed 200 ms , in compliance with the requirements of marine classification companies.
Short-circuits: Non-adjustable instantaneous protection (li) Instantaneous short-circuit protection with a fixed pick-up required for generator protection.

Neutral protection

b On 3-pole circuit breakers, neutral protection is not possible.
b On four-pole circuit breakers, neutral protection may be set using a three-position switch:
v 4P 3D: neutral unprotected
$v 4 P 3 D+N / 2$: neutral protection at half the value of the phase pick-up, i.e. $0.5 \times \mathrm{lr}$
\checkmark 4P 4D: neutral fully protected at Ir.

Indications

Front indications

b Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.
b Orange overload pre-alarm LED: steady on when I > 90 \% Ir
b Red overload LED: steady on when I > 105 \% Ir

Remote indications

An SDx relay module installed inside the circuit breaker can be used to remote the overload-trip signal.
This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is closed.
The module is described in detail in the section dealing with accessories.

(1) If the trip units are used in high-temperature environments, the Micrologic setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.

Functions and characteristics

Compact NSX circuit breakers are also used in industrial control panels.
They serve as an incoming devices or can be combined with contactors to protect motor feeders:
b compliance with worldwide standards including IEC
60947-2 and UL 508 / CSA 22-2 no. 14
boverload and short-circuit protection
b isolation with positive contact indication, making it possible to service machines safely by isolating them from all power sources
b installation in universal and functional type enclosures
b NA switch-disconnector version.

Industrial control panels

Compact NSX circuit breakers equipped for public distribution or motor protection functions as described in the previous pages can be used in industrial control panels. The accessories for the Compact NSX range are suitable for the special needs of these switchboards.

Auxiliaries

All auxiliaries can be added to the circuit breaker by the user:
b padlocking devices (in the OFF position)
b rotary handle
b status-indication auxiliary contacts (ON, OFF and tripped)
b shunt ($M X$) or undervoltage ($M N$) releases
b early-make or early-break contacts.

Rotary handle

Direct or extended versions for mounting up to 600 mm behind the front:
b black front with black handle
b yellow front with red handle (for machine tools or emergency off as per IEC 204 / VDE 0013).
All rotary handles can be padlocked in the OFF position. Optional door interlock, recommended for MCC panels (motor control centres).
When the device is equipped with an extended rotary handle, a control accessory mounted on the shaft makes it possible to operate the device with the door open. The device can be padlocked in the OFF position in compliance with UL508.

Early-make or early-break contacts

These contacts can be used respectively to supply an MN undervoltage release before the circuit breaker closes or to open the contactor control circuit before the circuit breaker opens.

Special functions

b Indication of thermal overloads with the SDx module.
b Early opening of the contactor for overload faults with the SDTAM module.
b Links with PLCs via the communication system.
b Measurement of all electrical parameters with Micrologic A and E.
b Programmable alarms with Micrologic 5 and 6.

Installation in enclosures

Compact circuit breakers can be installed in a metal enclosure together with other devices (contactors, motor-protection circuit breakers, LEDs, etc.) (see page A-90).

Compliance with North American industrial control equipment standards

Compact NSX devices have received UL508 / CSA 22-2 no. 14 approval for industrial control equipment of the "Manual Motor Controller", "Across the Line Starter", "General Use" and "Disconnecting Means" types.
Type NA devices are switch-disconnectors that must always be protected upstream.
UL508 approval

Circuit breakers	Trip units	Approvals		
Compact NSX100 to 630 F/N/H	TMD, Micrologic 2,5 and 6	General Use		
		Motor Disconnecting Means		
		NA, MA, Micrologic 1.3 M, 2.2 M,		Manual Motor Controller
:---				
Across the Line Starter				

V AC ratings		115	230	460	575
TMD Micrologic 2, 5 and 6	NA, MA Micrologic $1.3 \mathrm{M}, \mathbf{2 . 2} \mathrm{M}$, 2.3 M Micrologic 6.2 E-M and 6.3 E-M				
25	25	3	7.5	15	20
50	50	7.5	15	30	40
100	100	15	30	75	100
160	150	25	50	100	150
$\underline{250}$	220	40	75	150	200
400	320	-	125	250	300
550	500	-	150	350	500

The deratings indicated on pages $B-8$ and $B-9$ apply to TMD, Micrologic 2, 5 and 6 trip units, rated at $40^{\circ} \mathrm{C}$.

16 Hz 2/3 network protection Micrologic 5 A-Z trip unit

Compact NSX circuit breakers may be used on 16 Hz 2/3 systems with special thermal-magnetic and electronic (Micrologic 5 A-Z) trip units.

Phase and isolated neutral interrupted-250/500 V
B and F (3P 2D version) $\quad N$ and H (3P 3D version)

Remark. For an operating voltage > 250 V, the installation

$16 \mathrm{~Hz} 2 / 3$ networks

Single-phase distribution networks with a frequency of $16 \mathrm{~Hz} 2 / 3$ are used for railroad applications in certain European countries.
Breaking capacity for $16 \mathrm{~Hz} 2 / 3$ at $250 / 500 \mathrm{~V}$
Compact NSX circuit breakers of the 3P 2D or the 3P 3D type protect $16 \mathrm{~Hz} 2 / 3$ networks at 250 V or 500 V .
They can be equipped with either:
b a TM-D thermal-magnetic trip unit for Compact NSX100 to 250
b or an electronic Micrologic 5.2 A-Z trip unit for Compact NSX100 to 250 or a 5.3 A-Z for Compact NSX400/630.
The possible breaking-capacity performance levels are B, F, N and H as indicated below.
Breaking capacity Icu

Operating voltage		TMD and Micrologic 5 A-Z trip units			
	Performance	B	F	N	H
$250 \mathrm{~V} / 500 \mathrm{~V}$	Icu (kA)	25	36	50	70

Protection

TM-D thermal-magnetic trip units

Micrologic 5 A-Z trip units

Micrologic 5.2 A-Z and 5.3 A-Z are dedicated to $16 \mathrm{~Hz} 2 / 3$ networks. They use a suitable sampling frequency. The protection settings are identical to those of Micrologic 5 A (see page A-19). They also offer a current-measurement function for this specific frequency.
Trip-unit selection

Wiring for NSX100 to 630 A

2 poles in series - Earthed neutral - 250 / 500 V

N and H (3P 3D version)

Special applications Protection of 400 Hz systems

Compact NSX circuit breakers may be used on 400 Hz systems.

400 Hz distribution systems

The main 400 Hz applications are in aeronautics and certain military ships. Modern aircraft have three-phase $115 / 200 \mathrm{~V} 400 \mathrm{~Hz}$ networks.

Impact on protective devices

Due to the higher frequency, circuit breakers are subjected to additional temperature rise for identical current levels, resulting from higher losses caused by Foucault currents and an increase in the skin effect (reduction in the useful CSA of conductors). To remain within the rated temperature-rise limits of devices, current derating is required.
The power levels of 400 Hz applications rarely exceed a few hundred kW with relatively low short-circuit currents, generally not exceeding four times the rated current.
The standard Compact NSX and Masterpact NT/NW ranges are suitable for 400 Hz applications if derating coefficients are applied to the protection settings. See the derating table below.

Breaking capacity of Compact NSX circuit breakers in $400 \mathrm{~Hz}, 440$ V systems

Circuit breaker	Breaking capacity Icu
NSX100	10 kA
NSX160	10 kA
NSX250	10 kA
NSX400	10 kA
NSX630	10 kA

Trip units equipped with thermal-magnetic protection

The 400 Hz current settings are obtained by multiplying the 50 Hz values by the following adaptation coefficient:
b K1 for thermal trip units
b K2 for magnetic trip units.
These coefficients are independent of the trip-unit setting.
Thermal trip units
The current settings are lower at 400 Hz than at $50 \mathrm{~Hz}(\mathrm{~K} 1<1)$.

Magnetic trip units

The current settings are conversely higher at 400 Hz than at $50 \mathrm{~Hz}(\mathrm{~K} 2>1)$.
Consequently, when the trip units are adjustable, they must be set to the minimum value.
Adaptation coefficients for thermal-magnetic trip units

Circuit breaker	Trip unit	$\begin{aligned} & \ln (A) \\ & 50 \mathrm{~Hz} \end{aligned}$	Thermal at $40^{\circ} \mathrm{C}$		$\begin{aligned} & \operatorname{Im}_{50 \mathrm{~Hz}}(\mathrm{~A}) \\ & \hline \end{aligned}$	Magnetic	
			K1	400 Hz		K2	400 Hz
NSX100	TM16G	16	0.95	15	63	1.6	100
	TM25G	25	0.95	24	80	1.6	130
	TM40G	40	0.95	38	80	1.6	130
	TM63G	63	0.95	60	125	1.6	200
NSX100	TM16D	16	0.95	15	240	1.6	300
	TM25D	25	0.95	24	300	1.6	480
	TM40D	40	0.95	38	500	1.6	800
	TM63D	63	0.95	60	500	1.6	800
	TM80D	80	0.9	72	650	1.6	900
	TM100D	100	0.9	90	800	1.6	900
NSX250	TM100D	100	0.9	90	800	1.6	900
	TM160D	160	0.9	144	1250	1.6	2000
	TM200D	200	0.9	180	1000 to 2000	1.6	$\begin{aligned} & 1600 \text { to } \\ & 3200 \end{aligned}$
	TM250D	250	0.9	225	1250 to 2500		$\begin{aligned} & 2000 \text { to } \\ & 4000 \end{aligned}$

Example

NSX100 equipped with a TM16G with 50 Hz settings $I r=16 \mathrm{~A}$ and $\mathrm{Im}=63 \mathrm{~A}$.
400 Hz settings $\mathrm{Ir}=16 \times 0.95=15 \mathrm{~A}$ and $\mathrm{Im}=63 \mathrm{~A} \times 1.6=100 \mathrm{~A}$.

Protection of 400 H systems (cont.)

Micrologic 5 E trip unit.

MX or MN voltage release.

SDx remote indication relay module with its terminal block.

Protection(cont.)

Micrologic electronic trip units

Micrologic 2.2, 2.3 or 5.2, 5.3 with A or E measurement functions are suitable for 400 Hz . The use of electronics offers the advantage of greater operating stability when the frequency varies. However the units are still subject to temperature rise caused by the frequency.
The practical consequences are:
b limit settings: see the Ir derating table below
b the long-time, short-time and instantaneous pick-ups are not modified (see pages A-17 or A-19)
b the accuracy of the displayed measurements is 2 \% (class II).
Thermal derating: maximum Ir setting

Circuit breaker	Maximum setting coefficient 1	Max. Ir setting at $\mathbf{4 0 0} \mathbf{~ H z}$
NSX100	1	100
NSX250	0.9	225
NSX400	0.8	320
NSX630	0.8	500

Example

An NSX250N, equipped with a Micrologic 2.2, Ir $=250 \mathrm{~A}$ at 50 Hz , must be limited to use at $\mathrm{Ir}=250 \times 0.9=225 \mathrm{~A}$.
Its short-time pick-up with fixed time delay is adjustable from 1.5 to $10 \operatorname{lr}(60$ to 400 A). The instantaneous pick-up remains at 3000 A .

OF auxiliary contacts in 400 Hz networks

Electrical characteristics of auxiliary contacts

Contacts	Standard		Low level	
Utilisation cat. (IEC 60947-5-1)	AC12	AC15	CA12	CA15
Operational current 24 V	6	6	5	3
(A) 48 V	6	6	5	3
110 V	6	5	5	2.5
$220 / 240 \mathrm{~V}$	6	4	5	2
$380 / 415 \mathrm{~V}$	6	2	5	1.5

MN and MX voltage releases for Compact NSX100/630 at 400 Hz and 440 V

For circuit breakers on 400 Hz systems, only 125 V DC MN or MX releases may be used. The release must be supplied by the 400 Hz system via a rectifier bridge (to be selected from the table below) and an additional resistor with characteristics depending on the system voltage.

$\mathbf{U}(\mathrm{V}) \mathbf{4 0 0 ~ H z}$	Rectifier	Additional resistor
$220 / 240 \mathrm{~V}$	Thomson 110 BHz or	$4.2 \mathrm{k} \Omega-5 \mathrm{~W}$
	General Instrument W06 or	
	Semikron SKB at $1.2 / 1.3$	
$380 / 420 \mathrm{~V}$	Semikron SKB at $1.2 / 1.3$	$10.7 \mathrm{k} \Omega-10 \mathrm{~W}$

Note: other models of rectifier bridges may be used if their characteristics are at least equivalent to those stated above.

SDx indication contacts

The SDx module may be used in 400 Hz systems for voltages from 24 to 440 V . An SDx relay module installed inside the circuit breaker can be used to remote the overload-trip signal.
This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is closed.
These outputs can be reprogrammed to be assigned to other types of tripping or alarm (see page A-81).

Functions

 and characteristics
Switch-disconnectors

Overview of applications

A switch-disconnector is a control device that can be
used to open and close a circuit under normal operating conditions.
It is suitable for isolation as indicated on the front by the symbol

Position of switch-disconnectors

Compact NSX switch-disconnectors are used primarily for the following applications:
b busbar coupling and isolation
b isolation of industrial distribution boards and industrial control panels
b isolation of subdistribution boards for modular devices
b isolation of local enclosures
b isolation of final distribution enclosures for commercial applications
b industrial control panel switch-disconnectors.

Compact NSX100 to 630 NA switch-disconnectors are available in fixed, plug-in and withdrawable versions. They use the same accessories and offer the same connection possibilities as the circuit-breaker versions. They may be interlocked with another Compact switchdisconnector or circuit breaker to form a sourcechangeover system.

Compact NSX switch-disconnector.

Compact NSX switch-disconnector equipped with a motor mechanism module.

Suitability for isolation with positive contact indication

Compact NSX switch-disconnectors are suitable for isolation as defined by standard IEC 60947-3. The corresponding conformity tests guarantee: b the mechanical reliability of the position indication, i.e. the O (OFF) position indicated by the control device always reflects the open position of the contacts: v the required distance between contacts is provided v padlocks may not be installed unless the contacts are open b the absence of leakage currents b overvoltage withstand capacity between upstream and downstream connections. Installation of a rotary handle or a motor mechanism does not alter the reliability of the position-indication system.

Emergency-off function

A Compact NSX NA is combined with an MN or MX release connected to an emergency-off button. In an emergency, an operator at a remote location can interrupt the circuit at rated load to isolate the entire switchboard and the downstream loads.

Motor mechanism

Compact NSX NA devices equipped with a motor mechanism module enable remote closing and opening. This function may be combined with the emergency-off function. In this case, the emergency off function is combined with a closing lock-out that must be intentionally reset (electrical diagram with closing lock-out).

Earth-leakage protection

A Vigi module may be added to a switch-disconnector to monitor all leakage currents in the outgoing circuits of the switchboard on which the switch-disconnector is installed. When the Vigi module detects an earth-leakage current, the switchdisconnector interrupts the load current. This function may be combined with the motor mechanism and the emergency-off function using an MN or MX release.

Switch-disconnector protection

The switch-disconnector can make and break its rated current. For an overload or a short-circuit, it must be protected by an upstream device, in compliance with installation standards.
The circuit-breaker/switch-disconnector coordination tables determine the required upstream circuit breaker. However, due to their high-set magnetic release, Compact NSX100 to 630 A switch-disconnectors are self-protected.

Switch-disconnector utilisation category

Depending on the rated operational current and the mechanical durability (A for frequent operation or B for infrequent operation), standard IEC 60947-3 defines the utilisation categories as shown in the table below. Compact NSX NA switchdisconnectors comply with utilisation categories AC22A or AC23A.

Utilisation category		Typical applications		
Infrequent operation	Frequent operation	AC-21B		Resistive loads including moderate overloads ($\cos \varphi=$
:---				
AC-21A	\quad AC-22B \quad	Mixed resistive and inductive loads including moderate		
:---				
overloads ($\cos \varphi=0.65$)				

Compact NSX switch-disconnector equipped with a Vigi module.

Functions and characteristics

Switch-disconnectors
 Characteristics and performance of Compact NSX switch-disconnectors from 100 to 630 NA

Installation standards require upstream protection.
However Compact NSX100 to 630 NA switchdisconnectors are self-protected by their high-set magnetic release.

Switch-disconnectors
 Electrical characteristics as per IEC 60947-3 and EN 60947-3

Conventional thermal current (A)	Ith $60{ }^{\circ} \mathrm{C}$			
Number of poles				
Operational current (A) depending on the utilisation category		AC $50 / 60 \mathrm{~Hz}$		
		220/240 V		
		$380 / 415 \mathrm{~V}$		
		$440 / 480 \mathrm{~V}^{(2)}$		
		500/525 V		
		660/690 V		
		DC		
		250 V (1 pole)		
		500 poles (2 poles in series)		
		750 V (3 poles in series)		
Short-circuit making capacity (kA peak)	Icm	min. (switch-disconnector alone)		
		max. (protection by upstream circuit breaker)		
Rated short-time withstand current (Arms)	Icw	for	1 s	
			3 s	
			20 s	
Durability (C-O cycles)	mechanical			
	electrical	AC		
			440 V	In/2
				In
			690 V	$\ln / 2$
				In
		DC	250 V	$\mathrm{In} / 2$
			500 V	

Positive contact indication
Pollution degree

Protection

Add-on earth-leakage protection	By Vigi module	
	By Vigirex relay	
Additional indication and control auxiliaries		
Indication contacts		
Voltages releases	MX shunt release	
	MN undervoltage releas	
Voltage-presence indicator		
Current-transformer module		
Ammeter module		
Insulation monitoring module		
Remote communication by bus		
Device-status indication		
Device remote operation		
Operation counter		
Installation / connections		
Dimensions (mm)	fixed, front connections	2/3P
WxHxD		4 P
Weight (kg)	fixed, front connections	3P
		4P

Source-changeover systems (see chapter on Source-changeover systems)

Manual source-changeover systems
(1) $2 P$ in $3 P$ case.
(2) Suitable for 480 V NEMA.

A-59

Functions and characteristics

Source-changeover systems Presentation

Some installations use two supply sources to counter the temporary loss of the main supply.
A source-changeover system is required to safely switch between the two sources.
The replacement source can be a generator set or another network.

Service sector:
b hospital operating rooms
b safety systems for tall buildings
b computer rooms (banks, insurance companies, etc.)
b lighting systems in shopping centres, etc.

Industry:
b assembly lines
b engine rooms on ships
b critical auxiliaries in thermal power stations, etc.

Infrastructures:
b runway lighting systems
b port and railway installations
b control systems for military installations, etc.

Manual source changeover

This is the most simple system. It is controlled manually by a maintenance technician and consequently the time required to switch from the normal source to the replacement source can vary.
A manual source-changeover system is made up of:
b two devices (circuit breakers or switch-disconnectors) controlled manually
b mechanical interlocking.
The interlock prevents connection to both sources at the same time, even momentarily.

Remote-operated source-changeover systems

This is the most commonly employed system. No human invention is required. The transfer from the normal to the replacement source is controlled electrically. A remote-operated source-changeover system is made up of two circuit breakers or switch-disconnectors equipped with motor mechanisms and:
b an electrical interlocking system implemented in a number of manners
b a mechanical interlocking system that protects against the consequences of an electrical malfunction and prevents incorrect manual operation.

Automatic source-changeover systems

An automatic controller may be added to the remote-operated source-changeover system for automatic source control according to programmable operating modes.
This solution ensures optimum energy management:
b switching to a replacement source depending on external requirements
b source management
b load shedding
b emergency source replacement, etc.

Manual source-changeover systems

Interlocking of two or three toggle-controlled devices.

Interlocking of two devices with rotary handles.

Interlocking with keylocks.

Interlocking of two or three toggle-controlled devices

Interlocking system

Two devices can be interlocked using this system. Two identical interlocking systems can be used to interlock three devices installed side by side.
Authorised positions:
b one device closed (ON), the others open (OFF)
b all devices open (OFF).
The system is locked using one or two padlocks (shackle diameter 5 to 8 mm).
This system can be expanded to more than three devices.
There are two interlocking-system models:
b one for Compact NSX100 to 250
b one for Compact NSX400/630.

Combinations of Normal and Replacement devices

All toggle-controlled fixed or plug-in Compact NSX100 to 630 circuit breakers and switch-disconnectors of the same frame size can be interlocked. The devices must be either all fixed or all plug-in versions.

Interlocking of two devices with rotary handles

Interlocking system

Interlocking involves padlocking the rotary handles on two devices which may be either circuit breakers or switch-disconnectors.
Authorised positions:
b one device closed (ON), the other open (OFF)
b both devices open (OFF).
The system is locked using up to three padlocks (shackle diameter 5 to 8 mm).
There are two interlocking-system models:
b one for Compact NSX100 to 250
b one for Compact NS400/630.

Combinations of Normal and Replacement devices

All rotary-handle fixed or plug-in Compact NSX100 to 630 circuit breakers and switch-disconnectors of the same frame size can be interlocked. The devices must be either all fixed or all plug-in versions.

Interlocking of a number of devices using keylocks (captive keys)

Interlocking using keylocks is very simple and makes it possible to interlock two or more devices that are physically distant or that have very different characteristics, for example medium-voltage and low-voltage devices or a Compact NSX100 to 630 circuit breaker and switch-disconnector.

Interlocking system

Each device is equipped with an identical keylock and the key is captive on the closed (ON) device. A single key is available for all devices. It is necessary to first open (OFF position) the device with the key before the key can be withdrawn and used to close another device.
A system of wall-mounted captive key boxes makes a large number of combinations possible between many devices.

Combinations of Normal and Replacement devices

All rotary-handle Compact NSX100 to 630 circuit breakers and switch-disconnectors can be interlocked between each other or with any other device equipped with the same type of keylock.

Interlocking of two devices on a base plate

Interlocking system

A base plate designed for two Compact NSX devices can be installed horizontally or vertically on a mounting rail. Interlocking is carried out on the base plate by a mechanism located behind the devices. In this way, access to the device controls and trip units is not blocked.

Combinations of Normal and Replacement devices

All rotary-handle and toggle-controlled Compact NSX100 to 630 circuit breakers and switch-disconnectors can be interlocked. Devices must be either all fixed or all plugin versions, with or without earth-leakage protection or measurement modules.
An adaptation kit is required to interlock:
b two plug-in devices
b a Compact NSX100-250 with an NSX400-630.
Connection to the downstream installation can be made easier using a coupling accessory (see next page).

Functions and characteristics

Source-changeover systems Remote-operated and automatic sourcechangeover systems Coupling accessory on base plate

Remote-operated source-changeover system.

1 Circuit breaker QN equipped with a motor mechanism and auxiliary contacts, connected to the Normal source
2 Circuit breaker QR equipped with a motor mechanism and auxiliary contacts, connected to the Replacement source
3 Base plate with mechanical interlocking
4 Electrical interlocking unit IVE
5 Coupling accessory (downstream connection)

Standard device accessories may be used for the coupling accessory on the base plate.

Remote-operated systems

It is made up of two devices with motor mechanisms, mounted on a base plate and combined with:
b an electrical interlocking unit
b optional mechanical interlocking system.

Electrical interlocking unit (IVE)

Interlocks two devices equipped with motor mechanisms and auxiliary contacts. The IVE unit is mandatory to ensure the necessary time-delays required for safe switching.
Mechanical interlocking system
The mechanical interlocking system is strongly recommended to limit the effects of design or wiring errors and to avoid manual switching errors.

Automatic systems

An automatic controller can manage switching from one source to the other
The controller can be:
b a device provided by the customer
b an integrated BA controller
b an integrated UA controller.
An integrated BA or UA automatic controller manages source transfer according to user-selected sequences that can include source priorities, start-up of a generator, return to the Normal source, etc. An ACP auxiliaries control plate facilitates installation of the BA and UA controllers. The plate includes two circuit breakers to protect the control circuits and two contactors to control the motor mechanisms of the devices.

Coupling accessory on base plate

This accessory may be used with a manual or remote-operated source-changeover system (with or without an automatic controller). It respects the mounting distance between the devices secured to the ACP plate and provides downstream coupling of the two sets of busbars. It is compatible with standard device accessories.
The short terminal shields of the device can be installed on the upstream connectors of the coupling accessory. Downstream, it is possible to use the connection accessories and the long or short terminal shields of the device.

[^6]By combining a remote-operated source-changeover system with an integrated BA or UA automatic controller, it is possible to automatically control source transfer according to user-selected sequences.

BA controller.

UA controller.

Auxiliary control plate for a BA or UA controller.

Functions of the BA and UA controllers

Controller				BA		UA
Compatible circuit breakers				Compact NSX100 to 630 circuit breakers		
4-position switch						
Automatic operation				b		b
Forced operation on Normal source				b		b
Forced operation on Replacement source				b		b
Stop (both Normal and Replacement sources OFF)				b		b
Automatic operation						
Monitoring of the Normal source and automatic transfer from one source to the other				b		b
Engine generator set start-up control						b
Delayed shutdown (adjustable) of engine generator set						b
Load shedding and reconnection of non-priority loads						b
Transfer to Replacement source if one of the Normal source phases is absent						b
Test						
By opening the P25M circuit breaker upstream of the controller				b		b
By pressing the test button on the front of the controller						b
Indications						
Circuit-breaker status indication on the front of the controller: ON, OFF, fault trip				b		b
Automatic-mode indication contact				b		b
Other functions						
Selection of type of Normal source (single-phase or three-phase)						b
Voluntary transfer to Replacement source				b		b
Forced operation on Normal source if Replacement source is not operational						b
Additional test contact (not part of controller) Transfer to Replacement source only if contact closed (e.g. for a UR frequency check)				b		b
Setting of maximum start-up time for the Replacement-source						b
Power supply						
Control voltages ${ }^{(1)}$	220 to	40 V 50	0 Hz	b		b
	380 to	15 V 50	0 Hz	b		b
	440 V	Hz		b		b
Operating thresholds						
Undervoltage	0.35 U	y voltag	y 0.7 Un	b		b
Phase failure	0.5 Un	voltage	0.7 Un			b
Voltage presence	voltage	40.85		b		b
Characteristics of output contacts (dry, volt-free contacts)						
Rated thermal current (A)	8					
Minimum load	10 mA at 12 V					
	AC				DC	
Utilisation category (IEC 60947-5-1)	AC12	AC13	AC14	AC15	DC12	DC13
Operational current (A)	8	7	5	6	8	2
	8	7	5	5	2	-
	8	6	4	4	0.6	-
	8	6	4	3	-	-
	-	-	-	-	0.4	-
	5	-	-	-	-	-
	4	-	-	-	-	-
	-	-	-	-	-	-

(1) The controller is powered by the ACP auxiliaries control plate. The same voltage must be used for the ACP plate, the IVE unit and the circuit-breaker operating mechanisms. If this voltage is the same as the source voltage, then the "Normal" and "Replacement" sources can be used directly for the power supply. If not, an isolation transformer must be used.

Functions and characteristics

Accessories and auxiliaries
Overview of Compact NSX100 to 630
fixed version

Sealable terminal shields

Interphase barriers

$$
\text { Electrical auxiliaries }>\mathrm{A}-80
$$

Protection and measurements $>\mathrm{A}-86$

Vigi module

Current-transformer module

Ammeter module

Functions and characteristics

Accessories and auxiliaries
Overview of Compact NSX100 to 630 plug-in and withdrawable versions

Insulation accessories $>$ A-73

Interphase barriers

Electrical accessories $>\mathrm{A}-78$

Automatic withdrawable auxiliary connector

Manual auxiliary connector

Mechanical accessories $>\mathrm{A}-69$

Chassis side plate

Functions and characteristics

Accessories and auxiliaries
Device installation

Compact NSX circuit breakers may be installed horizontally, vertically or flat on their back, without derating performance levels.
There are three installation versions:
b fixed
b plug-in (on a base)
b withdrawable (on a chassis).
For the last two, components must be added (base, chassis) to the fixed version.
Many connection components are shared by the three versions.

Fixed circuit breakers

Fixed circuit breakers are designed for standard connection using bars or cables with lugs. Bare-cable connectors are available for connection to bare copper or aluminium cables.
For connection of large cables, a number of solutions with spreaders may be used for both cables with lugs or bare cables.

Plug-in circuit breakers

The plug-in version makes it possible to:
b extract and/or rapidly replace the circuit breaker without having to touch the connections on the base
b allow for the addition of future circuits by installing bases that will be equipped with a circuit breaker at a later date
b isolate the power circuits when the device is mounted on or through a panel. It acts as a barrier for the connections of the plug-in base. Insulation is made complete by the mandatory short terminal shields on the device. The degrees of protection are:
v circuit breaker plugged in $=I P 4$
v circuit breaker removed = IP2
\checkmark circuit breaker removed, base equipped with shutters $=I P 4$.

Parts of a plug-in configuration

A plug-in configuration is made by adding a "plug-in kit" to a fixed device. To avoid connecting or disconnecting the power circuits under load conditions, a safety trip causes automatic tripping if the device is ON, before engaging or withdrawing it. The safety trip, supplied with the kit, must be installed on the device. If the device is disconnected, the safety trip does not operate. The device can be operated outside the switchboard.

Accessories

Optional insulation accessories are available.
b Terminal shields to protect against direct contact.
b Interphase barriers to reinforce insulation between phases and protect against direct contact.

Mounting

Mounting through a front panel.

Mounting on rails.

Withdrawable Compact NSX250.

Installation positions.

Connected.

Disconnected.

Withdrawable circuit breakers

In addition to the advantages provided by the base, installation on a chassis facilitates handling. It offers three positions, with transfer from one to the other after mechanical unlocking:
b connected: the power circuits are connected
b disconnected: the power circuits are disconnected, the device can be operated to check auxiliary operation
b removed: the device is free and can be removed from the chassis.

Parts of a withdrawable configuration

A withdrawable configuration requires two side plates installed on the base and two sides plates mounted on the circuit breaker. Similar to the plug-in version, a safety trip causes automatic tripping if the device is ON, before engaging or withdrawing it, and enables device operation in the disconnected position.

Accessories

Accessories are the same as for the base, with in addition:
b auxiliary contacts for installation on the fixed part, indicating the "connected" and "disconnected" positions
b locking by 1 to 3 padlocks (shackle diameter 5 to 8 mm), to:
v prevent insertion for connection
v lock the circuit breaker in connected or disconnected position
b toggle collar for circuit breakers with a toggle mounted through a front panel, intended to maintain the degree of protection whatever the position of the circuit breaker (supplied with a toggle extension)
b telescopic shaft for extended rotary handles. The door can then be closed with the device in the connected and disconnected positions.

Mounting

Mounting on a backplate.

Mounting through a front panel.

pans

Functions and characteristics

Accessories and auxiliaries

Connection of fixed devices

Fixed circuit breakers are designed for standard front connection using bars or cables with lugs.
Cable connectors are available for bare cables. Rear connection is also possible.

Insulated bar.

Small lug for copper cables.

Small lug for AI cables.

Mounting at the back of a switchboard

Mounting behind the front panel with a raiser.

Front connection

Bars or cables with lugs

Standard terminals

Compact NSX100 to 630 come with terminals comprising snap-in nuts with screws: b Compact NSX100: M6 nuts and screws. Compact NSX160/250: M8 nuts and screws
b Compact NSX400/630: M10 nuts and screws.
These terminals may be used for:
b direct connection of insulated bars or cables with lugs
b terminal extensions offering a wide range of connection possibilities.
Interphase barriers or terminal shields are recommended. They are mandatory for certain connection accessories (in which case the interphase barriers are provided).

Bars

When the switchboard configuration has not been tested, insulated bars are mandatory.
Maximum size of bars

Compact NSX circuit breaker			$\mathbf{1 0 0 / 1 6 0 / 2 5 0}$
Without spreaders	pitch (mm)	$\mathbf{4 0 0 / 6 3 0}$	
	maximum bar size (mm)	20×2	45
With spreaders	pitch (mm)	32×6	
	maximum bar size (mm)	45	52.5

Crimp lugs
There are two models, for aluminium and copper cables.
It is necessary to use narrow lugs, compatible with device connections. They must be used with interphase barriers or long terminal shields. The lugs are supplied with
interphase barriers and may be used for the types of cables listed below.
Cable sizes for connection using lugs

Compact NSX circuit breaker	100/160/250	$400 / 630$	
Copper cables	size $\left(\mathrm{mm}^{2}\right)$		
crimping	$120,150,185 \quad 240,300$		
Aluminium cables	$\frac{\text { size }\left(\mathrm{mm}^{2}\right)}{c r i m p i n g ~}$	hexagonal barrels or punching	

Terminal extensions

Extensions with anti-rotation ribs can be attached to the standard terminals to provide numerous connection possibilities in little space:
b straight terminal extensions
b right-angle terminal extensions
b edgewise terminal extensions
b double-L extensions
b 45° extensions.

Spreaders

Spreaders may be used to increase the pitch:
b NSX100 to 250: the 35 mm pitch can be increased to 45 mm
b NSX400/630: the 45 mm pitch can be increased to 52 or 70 mm .
Bars, cable lugs or cable connectors can be attached to the ends.

One-piece spreader for NSX100 to 250

Connection of large cables may require an increase in the distance between the device terminals.
The one-piece spreader is the means to:
b increase the 35 mm pitch of the NSX100 to 250 circuit-breaker terminals to the 45 mm pitch of a NSX400/630 device
b use all the connection and insulation accessories available for the next largest frame size (lugs, connectors, spreaders, right-angle and edgewise terminal extensions, terminal shields and interphase barriers).
It may also be used for Interpact INS switch-disconnectors.
Equipped with a single-piece spreader, Compact NSX devices can be mounted:
b at the back of a switchboard
b behind the front panel with a raiser.
The one-piece spreader is also the means to:
b align devices with different frame sizes in the switchboard
b use the same mounting plate, whatever the device.

Pitch (mm) depending on the type of spreader

Compact NSX circuit breaker	NSX100 to $\mathbf{2 5 0}$	NSX100 to $\mathbf{6 3 0}$
Without spreaders	35	45
With spreaders	45	52.5 or 70
With one-piece spreader	45	-

Bare cables

For bare cables (without lugs), the prefabricated bare-cable connectors may be used for both copper and aluminium cables.
1-cable connectors for Compact NSX100 to 250
The connectors snap directly on to the device terminals or are secured by clips to right-angle and straight terminal extensions as well as spreaders.
1-cable connectors for Compact NSX400 to 630
The connectors are screwed directly to the device terminals.
2-cable connectors for Compact NSX100 to 250 and 400/630
The connectors are screwed to device terminals or right-angle terminal extensions.
Distribution connectors for Compact NSX100 to 250
These connectors are screwed directly to device terminals. Interphase barriers are supplied with distribution connectors, but may be replaced by long terminal shields. Each connector can receive six cables with cross-sectional areas ranging from 1.5 to $35 \mathrm{~mm}^{2}$ each.
Polybloc distribution block for Compact NSX100 to 630
Polybloc connects directly to device terminals.
It is used to connect up to six or nine flexible or rigid cables with cross-sectional areas not exceeding $10 \mathrm{~mm}^{2}$ or $16 \mathrm{~mm}^{2}$, to each pole.
Connection is made to spring terminals without screws.

Maximum size of cables depending on the type of connector

Compact NSX circuit breaker		100/160	250	400	630
Steel connectors	1.5 to $95 \mathrm{~mm}^{2}$	b			
Aluminium connectors	25 to $95 \mathrm{~mm}^{2}$	b	b		
	120 to $185 \mathrm{~mm}^{2}$	b	b		
	2 cables 50 to $120 \mathrm{~mm}^{2}$	b	b		
	2 cables 35 to $240 \mathrm{~mm}^{2}$			b	b
	35 to $300 \mathrm{~mm}^{2}$			b	b
Distribution connectors	6 cables $35 \mathrm{~mm}^{2}$	b	b		
Polybloc distribution blocks	6 or 9 cables $10 / 16 \mathrm{~mm}^{2}$	b	b		

Rear connection

Device mounting on a backplate with suitable holes enables rear connection.

Bars or cables with lugs

Rear connections for bars or cables with lugs are available in two lengths. Bars may be positioned flat, on edge or at 45° angles depending on how the rear connections are positioned.
The rear connections are simply fitted to the device connection terminals. All combinations of rear connection lengths and positions are possible on a given device.

Bare cables

For the connection of bare cables, the 1-cable connectors for Compact NSX100 to 250 may be secured to the rear connections using clips.

Connection of bare cables to NSX100 to 250.

Functions and characteristics

Accessories and auxiliaries Connection of withdrawable and plug-in devices

Connection is identical for both withdrawable and plugin versions. The same accessories as for fixed devices may be used.

Bars or cables with lugs

The plug-in base is equipped with terminals which, depending on their orientation, serve for front and rear connection.
For rear connection of a base mounted on a backplate, the terminals must be replaced by insulated, long right-angle terminal extensions.
For Compact NSX630 devices, connection most often requires the 52.5 or 70 mm pitch spreaders.

Front connection.

Front connection with spreaders.

Rear connection of a base mounted on a backplate.

Connection accessories

All accessories for fixed devices (bars, lugs, terminal extensions and spreaders) may be used with the plug-in base (see pages A-70, A-71).

Bare cables

All terminals may be equipped with bare-cable connectors. See the "Connection of fixed devices" section.

With a 100 to 250 A base

With a 400/630 A base.

Adapter for plug-in base

The adapter is a plastic component for the 100 to 250 base and the $400 / 630$ base that enables use of all the connection accessories of the fixed device.
It is required for interphase barriers and the long and short terminal shields.

DB111342

Adapter for 100 to 250 A-3P base.
Connection with bars or
cables with lugs.

[^7]
Insulation of live parts

Terminal shields are identical for fixed and plug-in/withdrawable versions and cover all applications up to 1000 V .
They exist for the 100 to 250 A and 400/630 A ratings, in long and short versions.

Long terminal shields.

Short terminal shields.

1 Partially cut removable squares.
2 Grids with break marks.

Assembled with captive screws.

Terminal shields

Insulating accessories used for protection against direct contact with power circuits. They provide IP40 degree of protection and IK07 mechanical impact protection.

Terminal-shield types

Compact NSX100 to 250 and NSX400/630 3P or 4P can be equipped with:
b short terminal shields
b long terminal shields.
All terminal shields have holes or knock-outs in front for voltage-presence indicators.

Short terminal shields

They are used with:
b plug-in and withdrawable versions in all connection configurations
b fixed versions with rear connection.

Long terminal shields

They are used for front connection with cables or insulated bars.
They comprise two parts assembled with captive screws, forming an IP40 cover.
b The top part is equipped with sliding grids with break marks for precise adaptation to cables or insulated bars.
b The rear part completely blocks off the connection zone. Partially cut squares can be removed to adapt to all types of connection for cables with lugs or copper bars.
Long terminal shields may be mounted upstream and downstream of:
b fixed devices
b the base of plug-in and withdrawable versions, thus completing the insulation provided by the mandatory short terminal shields on the device
b the one-piece spreader for NSX100 to 250
b the 52.5 mm spreaders for NSX400/630.
Terminal shields and pitch
Combination possibilities are shown below.

Circuit breaker	NSX100/160/250	NSX400/630	
Short terminal shields	35	45	
Pitch (mm)	35	45	52.5
Long terminal shields			

Interphase barriers

Safety accessories for maximum insulation at the power-connection points:
b they clip easily onto the circuit breaker
b single version for fixed devices and adapters on plug-in bases
b not compatible with terminal shields
b the adapter for the plug-in base is required for mounting on plug-in and withdrawable versions.

Rear insulating screens

Safety accessories providing insulation at the rear of the device.
Their use is mandatory for devices with spreaders, installed on backplates, when terminal shields are not used.
The available screen dimensions are shown below.

Circuit breaker		NSX100/160/250	NSX400/630
3 P	$\mathrm{W} \times \mathrm{H} \times$ thickness (mm)	$140 \times 105 \times 1$	$203 \times 175 \times 1.5$
4 P	$\mathrm{W} \times \mathrm{H} \times$ thickness (mm)	$175 \times 105 \times 1$	$275 \times 175 \times 1.5$

Rear insulating screens.

Functions

 and characteristics
Accessories and auxiliaries

Selection of auxiliaries for Compact NSX100/160/250

Standard

All Compact NSX100/160/250 circuit breakers and switch-disconnectors have slots for the electrical auxiliaries listed below.
5 indication contacts (see page A-80)
b 2 ON/OFF (OF1 and OF2)
b 1 trip indication (SD)
b 1 fault-trip indication (SDE)
b 1 earth-fault indication (SDV), when the device is equipped with a Vigi module.
1 remote-tripping release (see page A-83)
b either 1 MN undervoltage release
b or 1 MX shunt release.

Remote indications

Circuit breakers equipped with Micrologic trip units may be equipped with a fault-trip indication to identify the type of fault by installing:
1 indication module with two outputs (see page A-81)
b either an SDx module with Micrologic 2.2 / 5.2 A or E / 6.2 A or E
b or an SDTAM module with Micrologic 2.2 M or 6-2 E-M (motor protection).
This module occupies the slots of one OF contact and an MN/MX release.

All these auxiliaries may be installed with a motor mechanism or a rotary handle.
The following table indicates auxiliary possibilities depending on the type of trip unit.

NA, TMD, TMG, MA
Standard

Micrologic 2 / 5 / 6

Standard
Remote indications via SDx or SDTAM

The SDx or SDTAM uses the OF1 and MN/MX slots. External connection is made via a terminal block in the OF1 slot The 24 V DC supply provides for the Micrologic 5 / 6 display when the device is OFF or under low-load conditions.

Communication

Communication requires specific auxiliaries (see page A-26).

Communication of status indications

b 1 BSCM module.
b 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the BSCM.
Communication of status conditions is compatible with a standard motor mechanism and a rotary handle.
Communication of status indications and controls
This requires, in addition to the previous auxiliaries:
b 1 communicating motor mechanism connected to the BSCM.

Communication of measurements

Available on Micrologic 5/6, the system consists of:
b 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the Micrologic.
Communication of measurements is compatible with a standard or communicating motor mechanism and a rotary handle.
Communication of status indications, controls and measurements
Available on Micrologic 5 / 6, the system consists of:
b 1 BSCM module
b 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the BSCM and the Micrologic
b 1 communicating motor mechanism connected to the BSCM.

Installation of SDx or SDTAM is compatible with communication.
The following table indicates auxiliary possibilities depending on the type of trip unit.

NA, TMD, TMG, MA, Micrologic 2
Communication of status indications

Communication of status indications and controls

Functions

 and characteristics
Accessories and auxiliaries

Selection of auxiliaries for Compact NSX400/630

Standard

All Compact NSX400/630 circuit breakers and switch-disconnectors have slots for the electrical auxiliaries listed below.
7 indication contacts (see page A-80)
b 4 ON/OFF (OF1, OF2, OF3, OF4)
b 1 trip indication (SD)
b 1 fault-trip indication (SDE)
b 1 earth-fault indication (SDV), when the device is equipped with a Vigi module.
1 remote-tripping release (see page A-83)
b either 1 MN undervoltage release
b or 1 MX shunt release.

Remote indications

Circuit breakers equipped with Micrologic trip units may be equipped with a fault-trip indication to identify the type of fault by installing:
1 indication module with two outputs (see page A-81)
b either an SDx module with Micrologic 2.2 / 5.2 A or E / 6.2 A or E
b or an SDTAM module with Micrologic 2.2 M or 6-2 E-M (motor protection).
This module occupies the slots of an MN/MX release.

All these auxiliaries may be installed with a motor mechanism or a rotary
handle.
The following table indicates auxiliary possibilities depending on the type of trip unit.

NA, Micrologic 1.3 M
Standard

Micrologic 2/5/6
Standard

The SDx or SDTAM uses the reserved slot and the MN/MX slots.
External connection is made via a terminal block in the reserved slot.
The 24 V DC supply provides for the Micrologic 5/6 display when the device is OFF or under low-load conditions.

Communication

Communication requires specific auxiliaries (see page A-26).

Communication of status indications

b 1 BSCM module
b 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the BSCM.
Communication of status conditions is compatible with a standard motor mechanism and a rotary handle.
Communication of status indications and controls
This requires, in addition to the previous auxiliaries:
b 1 communicating motor mechanism connected to the BSCM.

Communication of measurements

Available on Micrologic 5/6, the system consists of:
b 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the Micrologic.
Communication of measurements is compatible with a standard or communicating motor mechanism and a rotary handle.
Communication of status indications, controls and measurements
Available on Micrologic 5 / 6, the system consists of:
b 1 BSCM module
b 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the BSCM and the Micrologic
b 1 communicating motor mechanism connected to the BSCM.

Installation of SDx or SDTAM is compatible with communication.
The following table indicates auxiliary possibilities depending on the type of trip unit.

NA, Micrologic 1.3 M, Micrologic 2
Communication of status indications Communication of status indications and controls

Micrologic 5/6

Communication of status indications

Communication of status indications, controls and measurements with or without FDM121 display

Fixed Compact NSX

Fixed Compact NSX.

Withdrawable or plug-in Compact NSX

Automatic auxiliary connectors

Auxiliary circuits exit the circuit breaker via one to three automatic auxiliary connectors (nine wires each). These are made up of:
b a moving part, connected to the circuit breaker via a support (one support per circuit breaker)
b a fixed part, mounted on the plug-in base, equipped with connectors for bare cables up to $2.5 \mathrm{~mm}^{2}$
Micrologic trip unit options are also wired via the automatic auxiliary connectors.

Selection of automatic auxiliary connectors

Depending on the functions installed, one to three automatic auxiliary connectors are required.

Plug-in/withdrawable Compact NSX.

MT: motor mechanism
MTc: communicating motor mechanism.

Withdrawable Compact NSX

Manual auxiliary connectors

As an option to the automatic auxiliary connectors, withdrawable circuit breakers may be equipped with one to three plugs with nine wires each. In "disconnected" position, the auxiliaries remain connected. They can then be tested by operating the device.

Nine-wire manual auxiliary connector

Each auxiliary is equipped with a terminal block with numbered terminals for connection of wires up to:
b $1.5 \mathrm{~mm}^{2}$ for auxiliary contacts and voltage releases
b $2.5 \mathrm{~mm}^{2}$ for the motor-mechanism module.

Circuit breaker	Connector 1		Connector 2	Connector 3
	OF1 MN/MX SD	SDx/ SDTAM	```OF2/SDV / ZSI out \({ }^{(1)}\) SDE NSX cord MT MTc 24 V DC```	OF3 OF4 ZSI in ZSI out
NSX100/160/250	b		b	-
NSX400/630	b		b	b

Connector 1
Connector 2
Connector 3

Functions and characteristics

Accessories and auxiliaries

Indication contacts

One contact model provides circuit-breaker status indications (OF - SD - SDE - SDV).
An early-make or early-break contact, in conjunction with a rotary handle, can be used to anticipate device opening or closing.
ACE / CD contact indicates that the chassis is connected / disconnected.

Indication contacts.

$C E / C D$ carriage switches.

These common-point changeover contacts provide remote circuit-breaker status information.
They can be used for indications, electrical locking, relaying, etc.
They comply with the IEC 60947-5 international recommendation.

Functions

Breaker-status indications, during normal operation or after a fault
A single type of contact provides all the different indication functions:
b OF (ON/OFF) indicates the position of the circuit breaker contacts
b SD (trip indication) indicates that the circuit breaker has tripped due to:
v an overload
v a short-circuit
v an earth fault (Vigi) or a ground fault (Micrologic 6)
v operation of a voltage release
v operation of the "push to trip" button
v disconnection when the device is ON.
The SD contact returns to de-energised state when the circuit breaker is reset.
b SDE (fault-trip indication) indicates that the circuit breaker has tripped due to:
v an overload
v a short-circuit
v an earth fault (Vigi) or a ground fault (Micrologic 6).
The SD contact returns to de-energised state when the circuit breaker is reset. b SDV indicates that the circuit breaker has tripped due to an earth fault. It returns to de-energised state when the Vigi module is reset.
All the above auxiliary contacts are also available in "low-level" versions capable of switching very low loads (e.g. for the control of PLCs or electronic circuits).
Rotary-handle position contact for early-make or early-break functions b CAM (early-make or early-break function) contacts indicate the position of the rotary handle.
They are used in particular for advanced opening of safety trip devices (early break) or to energise a control device prior to circuit-breaker closing (early make).
Chassis-position contacts
b CE/CD (connected/disconnected) contacts are microswitch-type carriage switches for withdrawable circuit breakers.

Installation

b OF, SD, SDE and SDV functions: a single type of contact provides all these different indication functions, depending on where it is inserted in the device. The contacts clip into slots behind the front cover of the circuit breaker (or the Vigi module for the SDV function).
The SDE function on a Compact NSX100-250 A equipped with a magnetic, thermalmagnetic or Micrologic 2 trip unit requires the SDE actuator.
b CAM function: the contact fits into the rotary-handle unit (direct or extended)
b CE/CD function: the contacts clip into the fixed part of the chassis.

Electrical characteristics of auxiliary contacts

Contacts			Standard				Low level			
Types of contacts Rated thermal current (A)			$\begin{aligned} & \text { All } \\ & 6 \end{aligned}$				OF, SD, SDE, SDV 5			
Minimum load			100 mA at 24 V DC				1 mA at 4 V DC			
Utilisation cat. (IEC 60947-5-1)			AC12	AC15	DC12	DC14	AC12	AC15	DC12	DC14
Operational current (A)	24 V	AC/DC	6	6	6	1	5	3	5	1
	48 V	AC/DC	6	6	2.5	0.2	5	3	2.5	0.2
	110 V	AC/DC	6	5	0.6	0.05	5	2.5	0.6	0.05
	220/240 V	AC	6	4	-	-	5	2	-	-
	250 V	DC	-	-	0.3	0.03	5	-	0.3	0.03
	$380 / 440 \mathrm{~V}$	AC	6	2	-	-	5	1.5	-	-
	480 V	AC	6	1.5	-	-	5	1	-	-
	660/690 V	AC	6	0.1	-	-	-	-	-	-

SDx and SDTAM modules for Micrologic

SDx and SDTAM are relay module with two static outputs. They send different signals depending on the type of fault. They may not be used together.

SDx relay module with its terminal block.

SDTAM relay module with its terminal block.

SDx module

The SDx module remotes the trip or alarm conditions of Compact NSX circuit breakers equipped with electronic protection.
The SD2 output, available on all Micrologic trip units, corresponds to the overloadtrip indication.
The SD4 output, available on Micrologic 5/6, is assigned to:
b overload pre-alarm (Micrologic 5)
b ground-fault trip indication (Micrologic 6)
These two outputs automatically reset when the device is closed (turned ON).
For Micrologic 5 / 6, the SD2 and SD4 outputs can be reprogrammed to be assigned to other types of tripping or alarm.

Output characteristics

It is possible to assign a function:
b latching with a time delay. Return to the initial state occurs at the end of the time delay
b permanent latching. In this case, return to the initial state takes place via the communication function.
Static outputs: 24 to 415 V AC / V DC; 80 mA max.

SDTAM module

The SDTAM module is specifically for the motor-protection Micrologic trip units 2.2 M, 2.3 M and 6.2 E-M, 6.3 E-M.

The SDTAM module, linked to the contactor controller, opens the contactor when an overload or other motor fault occurs, thus avoiding opening of the circuit breaker.

Micrologic $\mathbf{2}$ M

The SD4 output opens the contactor 400 ms before normal circuit-breaker opening in the following cases:
b overload (long-time protection for the trip class)
b phase unbalance or phase loss.
The SD2 output serves to memorise contactor opening by SDTAM.

Micrologic 6 E-M

The SD4 output opens the contactor 400 ms before normal circuit-breaker opening in the following cases:
b overload (long-time protection for the trip class)
b phase unbalance or phase loss
b locked rotor
b underload (undercurrent protection)
b long start.
The SD2 output serves to memorise contactor opening by SDTAM.

Output characteristics

Output reset can be:
b manual by a pushbutton included in the wiring diagram
b automatic after an adjustable time delay (1 to 15 minutes) to take into account the motor-cooling time.
Static outputs: 24 to 415 V AC / V DC; 80 mA max.

SDx wiring diagram.

SDTAM wiring diagram with contactor control.

Functions and characteristics

Accessories and auxiliaries Motor mechanism

Compact NSX250 with motor mechanism.

1 Position indicator (positive contact indication)
2 Spring status indicator (charged, discharged)
3 Manual spring-charging lever
4 Keylock device (optional) Locking device (OFF position), using 1 to 3 padlocks, shackle diameter 5 to 8 mm , not supplied
5 I (ON) pushbutton
6 O (OFF) pushbutton
7 Manual/auto mode selection switch. The position of this switch can be indicated remotely
8 Operation counter (Compact NSX400/630)

When equipped with a motor-mechanism module, Compact NSX circuit breakers feature very high mechanical endurance as well as easy and sure operation: b all circuit-breaker indications and information remain visible and accessible, including trip-unit settings and indications
b suitability for isolation is maintained and padlocking remains possible
b double insulation of the front face.
A specific motor mechanism is required for operation via the communication function. This communicating motor mechanism must be connected to the BSCM module to receive the opening and closing orders. Operation is identical to that of a standard motor mechanism.

Applications

b Local motor-driven operation, centralised operation, automatic distribution control. b Normal/standby source changeover or switching to a replacement source to ensure availability or optimise energy costs.
b Load shedding and reconnection.
b Synchrocoupling.

Operation

The type of operation is selected using the manual/auto mode selection switch (7). A transparent, lead-seal cover controls access to the switch.

Automatic

When the switch is in the "auto" position, the ON/OFF (I/O) buttons and the charging lever on the mechanism are locked.
b Circuit-breaker ON and OFF controlled by two impulse-type or maintained signals.
b Automatic spring charging following voluntary tripping (by MN or MX), with
standard wiring.
b Mandatory manual reset following tripping due to an electrical fault.

Manual

When the switch is in the "manual" position, the ON/OFF (I/O) buttons may be used.
A microswitch linked to the manual position can remote the information.
b Circuit-breaker ON and OFF controlled by 2 pushbuttons I/O.
b Recharging of stored-energy system by pumping the lever 8 times.
b Padlocking in OFF position.

Installation and connections

All installation (fixed, plug-in/withdrawable) and connection possibilities are maintained.
Motor-mechanism module connections are made behind its front cover to integrated terminals, for cables up to $2.5 \mathrm{~mm}^{2}$.

Optional accessories

b Keylock for locking in OFF position.
b Operations counter for the Compact NSX400/630, indicating the number of ON/ OFF cycles. Must be installed on the front of the motor-mechanism module.

Characteristics

Motor mechanism			MT100 to MT630
Response time (ms)	opening closing		$\begin{aligned} & <600 \\ & <80 \end{aligned}$
Operating frequency	cycles/minute max.		4
Control voltage (V)	DC		24/30-48/60-110/130-250
	AC $50 / 60 \mathrm{~Hz}$		$\begin{aligned} & 48(50 \mathrm{~Hz})-110 / 130- \\ & 220 / 240-380 / 440 \end{aligned}$
Consumption ${ }^{(1)}$	DC (W)	opening	y 500
		closing	y 500
	AC (VA)	opening	y 500
		closing	y 500

(1) For NSX100 to NSX250, the inrush current is 2 In for 10 ms .

Electrical endurance

Circuit breaker + motor mechanism module, in thousands of operations (IEC 60947 2), at 440 V .

Remote tripping

MX or MN voltage release.

Opening conditions of the MN release.

MN release with a time-delay unit.

Wiring diagram for emergency-off function with MN + time-delay unit.

Opening conditions of the $M X$ release

Note: circuit breaker opening using an MN or MX release must be reserved for safety functions. This type of tripping increases wear on the opening mechanism. Repeated use reduces the mechanical endurance of the circuit breaker by 50%.

MX or MN voltage releases are used to trip the circuit breaker. They serve primarily for remote, emergency-off commands.
It is advised to test the system every six months.

MN undervoltage release

The MN release opens the circuit breaker when its supply voltage drops to a value below 35% of its rated voltage Un.
Undervoltage tripping, combined with an emergency-off button, provides fail-safe tripping. The MN release is continuously supplied, i.e. if supply is interrupted:
b either voluntarily, by the emergency-off button,
b or accidentally, through loss of power or faulty wiring,
the release provokes opening of the circuit breaker.

Opening conditions

Circuit-breaker tripping by an MN release meets the requirements of standard IEC 60947-2.
b Automatic opening of the circuit breaker is ensured when the continuous voltage supply to the release U y 0.35 x Un.
b If the supply voltage is between 0.35 and 0.7 Un , opening is possible, but not guaranteed. Above 0.7 Un, opening does not take place.

Closing conditions

If there is no supply to the MN release, it is impossible to close the circuit breaker, either manually or electrically. Closing is ensured when the voltage supply to the release $\mathrm{U} u 0.85 \times$ Un. Below this threshold, closing is not guaranteed.
Characteristics

Power supply	VAC	$\frac{50}{} 50 / 60 \mathrm{~Hz}: 24-48-100 / 130-200 / 240$
		VDC
	Opening	$12-24-30 / 415-48-60-125-250$
Operating threshold	Closing	0.35 to 0.7 Un
Operating range		0.85 Un
Consumption (VA or W)		Pick-up: 30 - Hold: 5
Response time (ms)		50

Time-delay unit for an MN release

A time delay unit for the MN release eliminates the risk of nuisance tripping due to a transient voltage dip lasting y 200 ms . For shorter micro-outages, a system of capacitors provides temporary supply to the MN at $\mathrm{U}>0.7$ to ensure non tripping.
The correspondence between MN releases and time-delay units is shown below.

Power supply	Corresponding MN release
Unit with fixed delay 200 ms	
48 VAC	48 V DC
220 / 240 V AC	250 V DC
Unit with adjustable delay y 200 ms	
48-60 VAC/DC	48 V DC
100-130 V AC/DC	125 V DC
220-250 V AC/DC	250 V DC

MX shunt release

The MX release opens the circuit breaker via an impulse-type (u 20 ms) or maintained order.

Opening conditions

When the MX release is supplied, it automatically opens the circuit breaker. Opening is ensured for a voltage $\mathrm{U} \mathbf{u} 0.7 \times \mathrm{Un}$.

Characteristics

Power supply	VAC	$\frac{50 / 60 \mathrm{~Hz}: 24-48-100 / 130-200 / 240}{50 \mathrm{~Hz}: 380 / 415 \quad 60 \mathrm{~Hz}: 208 / 277}$
	VDC	$12-24-30-48-60-125-250$
Operating range		0.7 to 1.1 Un
Consumption (VA or W)		Pick-up: 30
Response time (ms)	50	

Circuit breaker control by MN or MX

When the circuit breaker has been tripped by an MN or MX release, it must be reset before it can be reclosed.
MN or MX tripping takes priority over manual closing
In the presence of a standing trip order, closing of the contacts, even temporary, is not possible.
Connection using wires up to $1.5 \mathrm{~mm}^{2}$ to integrated terminal blocks.

Functions and characteristics

Accessories and auxiliaries

 Rotary handlesThere are two types of rotary handle:
b direct rotary handle
b extended rotary handle
There are two models:
b standard with a black handle
b red handle and yellow front for machine-tool control.

Compact NSX with a rotary handle.

Compact NSX with an MCC rotary handle.

Compact NSX with a CNOMO machine-tool rotary handle.

Compact NSX with an extended rotary handle installed at the back of a switchboard, with the keylock option and key.

Direct rotary handle

Standard handle

Degree of protection IP40, IK07.
The direct rotary handle maintains:
b visibility of and access to trip-unit settings
b suitability for isolation
b indication of the three positions O (OFF), I (ON) and tripped
b access to the "push to trip" button.

Device locking

The rotary handle facilitates circuit-breaker locking.
b Padlocking:
v standard situation, in the OFF position, using 1 to 3 padlocks, shackle diameter 5 to 8 mm , not supplied
v with a simple modification, in the ON and OFF positions. Locking in the ON position does not prevent free circuit-breaker tripping if a fault occurs. In this case, the handle remains the ON position after the circuit breaker tripping. Unlocking is required to go to the tripped then the OFF position.
b Keylock (and padlock)
It is possible to install a Ronis or Profalux keylock (optional) on the base of the handle to obtain the same functions as with a padlock.
Early-make or early-break contacts (optional)
Early-make and/or early-break contacts may be used with the rotary handle. It is thus possible to:
b supply an MN undervoltage release before the circuit breaker closes
b open the contactor control circuit before the circuit breaker opens.

MCC switchboard control

Control of an MCC switchboard is achieved by adding a kit to the standard handle. In addition to the standard functions, the kit offers the characteristics listed below.

Higher degree of protection IP

Degree of protection IP43, IK07.
The IP is increased by a built-in gasket.

Door locking depending on device position

b The door cannot be opened if the circuit breaker is ON or in the tripped position. For exceptional situations, door locking can be temporarily disabled with a tool to open the door when the circuit breaker is closed. This operation is not possible if the handle is locked by a padlock.
b Circuit-breaker closing is disabled if the door is open. This function can be deactivated.

Machine-tool control in compliance with CNOMO

Control of a machine-tool is achieved by adding a kit to the standard handle. In addition to the standard functions, the kit offers the characteristics listed below.
Enhanced waterproofness and mechanical protection
b Degree of protection IP54, IK08.
b Compliance with CNOMO E03.81.501N.

Extended rotary handle

Degree of protection IP56, IK08.
The extended rotary handle makes it possible to operate circuit breakers installed at the back of switchboards, from the switchboard front.
It maintains:
b visibility of and access to trip-unit settings
b suitability for isolation
b indication of the three positions O (OFF), I (ON) and tripped.

Mechanical door locking when device closed

A standard feature of the extended rotary handle is a locking function, built into the shaft, that disables door opening when the circuit breaker is in the ON or tripped positions.
Door locking can be temporarily disabled with a tool to open the door without opening the circuit breaker. This operation is not possible if the handle is locked by a padlock.
Voluntary disabling of mechanical door locking
A modification to the handle, that can be carried out on site, completely disables door locking, including when a padlock is installed on the handle. The modification is reversible.
When a number of extended rotary handles are installed on a door, this disabling function is the means to ensure door locking by a single device.

Extended rotary handle (cont.)

Device and door padlocking

Padlocking locks the circuit-breaker handle and disables door opening: b standard situation, in the OFF position, using 1 to 3 padlocks, shackle diameter 5 to 8 mm , not supplied
b with a simple modification, in the ON and OFF positions. Locking in the ON position does not prevent free circuit-breaker tripping if a fault occurs.
In this case, the handle remains in the ON position after the circuit breaker tripping Unlocking is required to go to the tripped then the OFF position. If the door controls were modified to voluntarily disable door locking, padlocking does not lock the door, but does disable handle operation of the device.

Device locking using a keylock inside the switchboard

It is possible to install a Ronis or Profalux keylock (optional) on the base of the rotary handle to lock the device in the OFF position or in either the ON or OFF positions.

Accessory for device operation with the door open

When the device is equipped with an extended rotary handle, a control accessory mounted on the shaft makes it possible to operate the device with the door open.
b The device can be padlocked in the OFF position.
b The accessory complies with UL508.
Early-make or early-break contacts (optional)
The extended rotary handle offers the same possibilities with early-make and/or early-break contacts as the standard rotary handle.

Parts of the extended rotary handles

b A unit that replaces the front cover of the circuit breaker (secured by screws). b An assembly (handle and front plate) on the door that is always secured in the same position, whether the circuit breaker is installed vertically or horizontally. b An extension shaft that must be adjusted to the distance. The min/max distance between the back of circuit breaker and door is:
v 185... 600 mm for Compact NSX100 to 250
v 209... 600 mm for Compact NS400/630.
For withdrawable devices, the extended rotary handle is also available with a telescopic shaft to compensate for device disconnection. In this case, the min/max distances are:
v 248... 600 mm for Compact NSX100 to 250
v 272... 600 mm for Compact NS400/630.

Manual source-changeover systems

An additional accessory interlocks two devices with rotary handles to create a source-changeover system. Closing of one device is possible only if the second is open
This function is compatible with direct or extended rotary handles. Up to three padlocks can be used to lock in the OFF or ON position.

Functions
and characteristics

Accessories and auxiliaries Additional measurement and indication modules

Voltage-presence indicator.

Compact NSX with current-transformer module.

Compact NSX with ammeter module.

Voltage-presence indicator

The indicator detects and indicates that circuit breaker terminals are supplied with power.

Installation

b Mounted in the long or short terminal shields, via the knockouts.
b May be positioned upstream or downstream of the circuit breaker.
b Degree of protection IP40, IK04.
b Not compatible with the motor-mechanism module.
Electrical characteristics
Operates on all networks with voltages ranging from 220 to 550 V AC.

Current-transformer module

This module enables direct connection of a measurement device such as an ammeter or a power meter.

Installation

b The module is installed directly on the downstream circuit-breaker terminals.
b Degree of protection IP40, IK04.
b Class II insulation between front and the power circuits.
b Connection to 6 integrated connectors for cables up to $2.5 \mathrm{~mm}^{2}$.
Electrical characteristics
b Current transformer with 5 A secondary winding.
b Class 3 for the following output-power consumptions:
Accuracy:
v 100 A rating: 1.6 VA
v 150 A rating: 3 VA
v 250 A rating: 5 VA
v 400/600 A rating: 8 VA.

Current-transformer module with voltage measurement outputs

This module enables direct connection of a digital measurement device such as a Power Meter PM700, PM800, etc. (not supplied).

Installation

b The module is installed directly on the downstream circuit-breaker terminals.
b Degree of protection IP40, IK04.
b Class II insulation between front and the power circuits.
b Built-in connectors for cables from 1.5 to $2.5 \mathrm{~mm}^{2}$.

Electrical characteristics

b Rated operational voltage Ue: 530 V
b Frequencies of measured values: $50 \ldots 60 \mathrm{~Hz}$
b Three CTs with 5 A secondary windings for the rated primary current In:
v class 0.5 to 1 for rated power consumption values at the output:

- 125 A, 150 A and 250 A ratings: class 1 for 1.1 VA
- 400/600 A rating: class 0.5 for 2 VA
v Connection using a 2.5 mm 2 cable up to 2.5 m long.
b Four voltage measurement outputs including protection with automatic reset.
v voltage measurement output impedance $3500 \Omega \pm 25 \%$, maximum current 1 mA v The voltage measurement outputs are intended only for measurements (1 mA max.) and may not be used to supply the display.

Ammeter and Imax ammeter modules

Ammeter module

Measures and displays (dial-type ammeter) the current of each phase (selection of phases by 3-position switch in front).
Imax ammeter module
Measures and displays (dial-type ammeter) the maximum current flowing in the middle phase. The Imax value can be reset on the front.

Installation

b Identical for both types of ammeter module.
b The module is installed directly on the downstream circuit-breaker terminals.
b The ammeter clips into the module in any of four 90° positions, i.e. it can be installed of devices mounted both vertically and horizontally.
b Degree of protection IP40, IK04.
b Class II insulation between front and the power circuits.

Electrical characteristics

b Ammeter module: accuracy class 4.5
b Imax ammeter module: accuracy $\pm 6 \%$
b Maximum currents are displayed only if they last u 15 minutes.

Insulation monitoring module

This module detects and indicates an insulation drop on a load circuit (TN-S or TT systems).
Operation is identical to that of a Vigi module, but without circuit-breaker tripping. Indication by a red LED in front.
An auxiliary contact may be installed for remote insulation-drop indications. When insulation drops below a minimum, user-set threshold, the LED goes on and the auxiliary contact switches. The fault indication cannot be cancelled except by pressing the manual reset button.

Installation

b The module is installed directly on the downstream circuit-breaker terminals.
b Degree of protection IP40, IK04.
b Double insulation of the front face.

Electrical characteristics

b Settings: 100-200-500-1000 mA
b Accuracy: -50 +0 \%
b Time delay following insulation drop: 5 to 10 seconds
b AC-system voltage: 200 to 440 V AC.

Locking in the OFF position guarantees isolation as per IEC 60947-2. Padlocking systems can receive up to three padlocks with shackle diameters ranging from 5 to 8 mm (padlocks not supplied). Certain locking systems require an additional accessory.

Control device	Function	Means	Required accessories
Toggle	Lock in OFF position	Padlock	Removable device
	Lock in OFF or ON position	Padlock	Fixed device
$\begin{array}{l}\text { Direct rotary } \\ \text { handle }\end{array}$ Standard MCC CNOMO	Lock in b OFF position b OFF or ON position (1)	Padlock	-
		Keylock	Locking device + keylock
	Lock in b OFF position b OFF or ON position ${ }^{(1)}$	Padlock	-
	Lock in b OFF position b OFF or ON position	Padlock	-
Extended rotary handle	Lock in b OFF position b OFF or ON position with door opening prevented ${ }^{(2)}$	Padlock	-
	Lock in OFF position	Padlock	UL508 control accessory
	b OFF or ON position ${ }^{(1)}$ inside the switchboard	Keylock	Locking device + keylock
Motor mechanism	Lock in OFF position remote operation disabled	Padlock	-
		Keylock	Locking device + keylock
Withdrawable circuit breaker	Lock in b disconnected position	Padlock	-
		Keylock	Locking device + keylock
	b connected position	Keylock	Locking device + keylock

(1) Following a simple modification of the mechanism.
(2) Unless door locking has been voluntarily disabled.

Rotary-handle locking using a padlock or a keylock.

Motor-mechanism locking using a padlock or a keylock.

Sealing accessories

Identification accessories.

Sealing accessories.

Outgoing-circuit identification

Compact NSX100 to 630 can be equipped with label holders supplied in sets of ten (cat. no. LV429226).
They are compatible with escutcheons.

Sealing accessories

Sealing accessories are available. Each bag of accessories contains all the parts required for the types of sealing indicated below.
A bag contains:
b 6 sealing accessories
b 6 lead seals
b 0.5 m of wire
b 2 screws.

Types of seals and corresponding functions
Toggle control

Functions and characteristics

Accessories and auxiliaries
 Individual enclosures

IP55 heavy-duty metal enclosure.

IP55 heavy-duty insulating enclosure.

Individual enclosures are available for Compact/Vigicompact NSX devices with two, three or four poles.
All fixed, front connections are possible, except right-angle, 45°, double-L and edgewise terminal extensions.
All spreaders may be installed in the enclosures intended for Compact/Vigicompact
NSX250 to 630 devices, except the 70 mm spreaders for NSX400/630.

Two models of enclosures

b IP55 heavy-duty metal individual enclosure, with:
v metal enclosure
v door with keylock and cut-out for rotary handle
v extended rotary handle, IP56, IK08, black or red/yellow
v device mounting plate
v removable plate (without holes) for cable entry through bottom.
b IP55 heavy-duty insulating individual enclosure, with:
v polyester insulating enclosure
v transparent cover, screwed, lead sealable, with cut-out for extended rotary handle
v extended rotary handle, IP56, IK08, black or red/yellow
v device mounting plate
v 2 removable plates (without holes) for cable entry through bottom and/or top.

Dimensions ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$ in mm)

b Metal enclosures:
v Compact NSX100/160
$450 \times 350 \times 250$
v Compact NSX250 and Vigicompact NSX100 to 250
v Compact NSX400
v Compact NSX630 and Vigicompact NSX400/630
$650 \times 350 \times 250$
$650 \times 350 \times 250$
b Insulating enclosures:
v Compact NSX100/160
$850 \times 350 \times 250$
v Compact NSX250 and Vigicompact NSX100/160
$360 \times 270 \times 235$
v Compact NSX400/630
$540 \times 270 \times 235$
v Vigicompact NSX250/630
$720 \times 360 \times 235$
$720 \times 360 \times 235$

Escutcheons and protection collars

Escutcheons are an optional feature mounted on the switchboard door. They increase the degree of protection to IP40, IK07. Protection collars maintain the degree of protection, whatever the position of the device (connected, disconnected).

IP30 escutcheon.

[^8]
IP30 or IP40 escutcheons for fixed devices

IP30

The three types are glued to the cut-out in the front door of the switchboard:
b escutcheon for all control types (toggle, rotary handle or motor mechanism)
v without access to the trip unit
v with access to the trip unit
b for Vigi modules, can be combined with the above.

IP40

The four types, with a gasket, are screwed to the door cut-out:
b three escutcheons identical to the previous, but IP40
b a wide model for Vigi and ammeter modules that can be combined with the above.

Escutcheon for toggle without and with access to the trip unit.

Escutcheon for Vigi module.

Wide escutcheon for ammeter.

Accessories and auxiliaries
Escutcheons and protection collars

IP40 escutcheons for withdrawable devices

IP40 for withdrawable devices

The two types, with a gasket, are screwed to the door cut-out
b for rotary handle or motor mechanism: standard IP40 escutcheon
b for toggle with extension: standard escutcheon + collar for withdrawal.

Escutcheon with collar for toggle.

Escutcheon for Vigi module.

Toggle cover.

Standard escutcheon with rotary handle.

Standard escutcheon for motor mechanism.

Standard escutcheon with collar for withdrawal, for toggle.

IP40 for Vigi module on withdrawable devices
The two types, with a gasket, are screwed to the door cut-out b for rotary handle or motor mechanism: standard IP40 escutcheon b for toggle: standard escutcheon + collar for withdrawal.

Escutcheon for Vigi module, with escutcheons for the three types of control.

IP43 toggle cover

Available only for devices with toggles. Fits over toggle and front cover of the device. b Mounted on the front of the circuit breaker.
b Degree of protection IP43, IK07.

Toggle cover.

Retrofit front covers

These replacement front covers make it possible to install NSX devices in existing switchboards containing NS devices by installing the NS-type retrofit covers on the NSX devices.
b NS100 to 250 cover.
b NS400/630 cover.

Functions and characteristics A-1
Operating conditions
Operating conditions B-2
Installation in switchboards
Power supply and weights B-3
Safety clearances and minimum distances B-4
Installation example B-5
Control wiring
Control wiring B-6
Temperature derating
Compact NSX100 to 250 equipped with thermal-magnetic trip units B-8
Compact NSX equipped with electronic trip units B-9 B-9
Power loss/ Resistance
Compact NSX equipped with thermal-magnetic trip units B-10
Compact NSX equipped with electronic trip units B-11
Dimensions and connection C-1
Wiring diagrams D-1
Additional characteristics E-1
Catalogue numbers F-1
Glossary G-1

Altitude derating
Altitude does not significantly affect the characteristics of Compact NSX circuit breakers up to 2000 m . Above this altitude, it is necessary to take into account the decrease in the dielectric strength and cooling capacity of air.
The following table gives the corrections to be applied for altitudes above 2000 metres.
The breaking capacities remain unchanged.

Compact NSX100 to 630

Altitude (m)		$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$
Dielectric withstand voltage (V)		3000	2500	2100	1800
Insulation voltage (V)	Ui	800	700	600	500
Maximum operational voltage (V)	Ue	690	590	520	460
Average thermal current (A) at $40^{\circ} \mathrm{C}$	In x	1	0.96	0.93	0.9

Vibrations

Compact NSX devices resist electromagnetic or mechanical vibrations.
Tests are carried out in compliance with standard IEC 60068-2-6 for the levels required by merchant-marine inspection organisations (Veritas, Lloyd's, etc.): b 2 to 13.2 Hz : amplitude $\pm 1 \mathrm{~mm}$
b 13.2 to 100 Hz : constant acceleration 0.7 g .
Excessive vibration may cause tripping, breaks in connections or damage to mechanical parts.

Degree of protection

Compact NSX circuit breakers have been tested for degree of protection (IP) mechanical impact protection (IK). See page A-5.

Electromagnetic disturbances

Compact NSX devices are protected against:
b overvoltages caused by circuit switching
b overvoltages caused by an atmospheric disturbances or by a distribution-system outage (e.g. failure of a lighting system)
b devices emitting radio waves (radios, walkie-talkies, radar, etc.)
b electrostatic discharges produced directly by users.
Compact NSX devices have successfully passed the electromagnetic-compatibility tests (EMC) defined by the following international standards. See page A-5.
These tests ensure that:
b no nuisance tripping occurs
b tripping times are respected.

Installation in switchboards

Power supply and weights

Power supply from the top or bottom

Compact NSX circuit breakers can be supplied from either the top or the bottom, even when equipped with a Vigi earth-leakage protection module, without any reduction in performance. This capability facilitates connection when installed in a switchboard.
All connection and insulation accessories can be used on circuit breakers supplied either from the top or bottom.

Type of device		Circuit breakers	Base	Chassis	Vigi module	Visu module	Motor mech.
NSX100	3P/2D	1.79	0.8	2.2	0.87	2	1.2
	3P/3D	2.05	0.8	2.2	0.87	2	1.2
	4P/4D	2.4	1.05	2.2	1.13	2.2	1.2
NSX160	3P/2D	1.85	0.8	2.2	0.87	2	1.2
	3P/3D	2.2	0.8	2.2	0.87	2	1.2
	4P/4D	2.58	1.05	2.2	1.13	2.2	1.2
NSX250	3P/2D	1.94	0.8	2.2	0.87	2	1.2
	3P/3D	2.4	0.8	2.2	0.87	2	1.2
	4P/4D	2.78	1.05	2.2	1.13	2.2	1.2
NSX400/630	3P/3D	6.19	2.4	2.2	2.8	4.6	2.8
	4P/4D	8.13	2.8	2.2	3	4.9	2.8

Installation
recommendations

Installation in switchboards

Safety clearances and minimum distances

General rules

When installing a circuit breaker, minimum distances (safety clearances) must be maintained between the device and panels, bars and other protection devices installed nearby. These distances, which depend on the ultimate breaking capacity, are defined by tests carried out in accordance with standard IEC 60947-2.
If installation conformity is not checked by type tests, it is also necessary to:
b use insulated bars for circuit-breaker connections
b segregate the busbars using insulating screens.
For Compact NSX100 to 630 devices, terminal shields and interphase barriers are recommended and may be mandatory depending on the operating voltage of the device and type of installation (fixed, withdrawable, etc.).

Power connections

The table below indicates the rules to be respected for Compact NSX100 to 630 devices to ensure insulation of live parts for the various types of connection. b fixed devices with front connection (FC) or rear connection (RC) b plug-in or withdrawable devices.
Connection accessories such as crimp lugs, bare-cable connectors, terminal extensions (straight, right-angle, double-L and 45°) and spreaders are supplied with interphase barriers.
Long terminal shields provide a degree of protection of IP40 (ingress) and IK07 (mechanical impact).

Compact NSX100 to 630: rules to be respected to ensure insulation of live parts

Type of connection	Fixed, front connection			Fixed, rear connection	Plug-in or withdrawable	
					On backplate	Through panel
Possible, recommended or mandatory accessories: With:	No insulating accessory	Interphase barriers	Long terminal shields	Short terminal shields	Short terminal shields	Short terminal shields
operating voltage type of conductor						
y 500 V Insulated bars	Possible	Possible	Possible	Recommended	Recommended	Mandatory
Extension terminals Cables + crimp lugs	No	Mandatory (supplied)	Possible (instead of ph. barriers)	Recommended	Recommended	Mandatory
Bare cables + connectors	Possible for NSX100 to 250	Possible for NSX100 to 250	Possible for NSX100 to 250			
	No	Mandatory (supplied)	Possible (instead of ph. barriers)	Recommended	Recommended	Mandatory
$>500 \mathrm{~V}$ Insulated bars	No	No	Mandatory	Mandatory	Mandatory	Mandatory
Extension terminals Cables + crimp lugs	No	No	Mandatory	Mandatory	Mandatory	Mandatory
	No	No	Mandatory	Mandatory	Mandatory	Mandatory

Installation example

Remote tripping by MN or MX release
 Power consumption is approximately:

b 30 VA for pick-up of the MN and MX releases
b 300 VA to 500 VA for the motor mechanism.
The table below indicates the maximum permissible cable length for different supply voltages and cable cross-sectional areas.
Recommended maximum cable lengths (in metres)

Power supply voltage (V DC) Cable cross-section (mm^{2})	$\begin{aligned} & 12 \mathrm{~V} \\ & 1.5 \end{aligned}$	2.5	$\begin{aligned} & 24 \mathrm{~V} \\ & 1.5 \end{aligned}$	2.5	$\begin{aligned} & 48 \mathrm{~V} \\ & 1.5 \end{aligned}$	2.5
MN U source 100%	15	-	160	-	640	-
U source 85 \%	7	-	40	-	160	-
MX U source 100 \%	60	-	240	-	960	-
U source 85 \%	30	-	120	-	480	-
Motor mechanism U source 100 \%	-	-	10	16	65	110
U source 85 \%	-	-	2	4	17	28

Note: the indicated length is that of each of the two wires.

External neutral voltage tap (ENVT)

This connection is required for accurate power measurements on 3-pole circuit breakers equipped with Micrologic 5 / 6 E trip units in installations with a distributed neutral. It can be used to measure phase-neutral voltages and calculate power using the 3 wattmeter method.
Compact NSX 3-pole circuit breakers come with a wire installed on the device for the connection to the ENVT.
This wire is equipped with a connector for connection to an external wire with the following characteristics:
b cross-sectional area of $1 \mathrm{~mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$
b maximum length of 10 metres.

External neutral current transformer (ENCT)

This connection is required to protect the neutral on 3-pole circuit breakers equipped with Micrologic 5 / 6 A or E trip units in installations with a distributed neutral. For Micrologic 6 A or E , it is required for type G ground-fault protection.
The ENCT is connected in the same way for fixed, plug-in or withdrawable devices: b fixed devices are connected via terminals T1 and T2 of the internal terminal block. b plug-in and withdrawable devices are not connected via the auxiliary terminals.
The wires must be connected/disconnected inside the device via terminals T1 and T2.
The ENCT must be connected to the Micrologic trip unit by a shielded twisted pair. The shielding should be connected to the switchboard earth only at the CT end, no more than 30 cm from the CT.
b the power connections of the CT to the neutral $(\mathrm{H} 2$ and H 1$)$ must be made in the same way for power supply from the top or the bottom (see figure). Make sure they are not reversed for devices with power supply from the bottom.
b cross-sectional area of $0.4 \mathrm{~mm}^{2}$ to $1.5 \mathrm{~mm}^{2}$
b maximum length of 10 metres.

ULP connection system between Micrologic, FDM 121 switchboard display and Modbus interface

The ULP (Universal Logic Plug) wiring system used by Compact NSX for connections through to the Modbus network requires neither tools nor settings. The prefabricated cords are sued for both data transfer and distribution of 24 V DC power. Connectors on each component are identified by ULP (Universal Logic Plug) symbols, ensuring total compatibility between each component.

Available cords

All connections are made with prefabricated cords:
b NSX cord for connection of the internal terminal block to the Modbus interface or the FDM 121 display via an RJ45 connector. The cord is available in three lengths, $0.35 \mathrm{~m}, 1.3 \mathrm{~m}$ and 3 m
b ULP cords with RJ45 connectors at each end for the other connections between components. The cord is available in six lengths, $0.3 \mathrm{~m}, 0.6 \mathrm{~m}, 1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}$ and 5 m . For greater distances, two cords can be interconnected using the RJ45 female/ female accessory.
Maximum length of 10 m between 2 modules and 30 m in all.
A line terminator must be fitted to all components with an unused RJ45 connector.

Power supply, without the Communication function, via the terminal block with a backup battery.
 for 24 V DC supply
Supply, with the Communication function, via the Modbus interface.

24 V DC power-supply module

Use

An external 24 V DC power supply is required for installations with communication, whatever the type of trip unit.
On installations without communication, it is available as an option for Micrologic 5/6 to:
b modify settings when the circuit breaker is open (OFF position)
b display measurements when the current flowing through the circuit breaker is low
b maintain the display of the cause of tripping.

Characteristics

The external 24 V DC supply may be used for the entire switchboard. The required characteristics are indicated in the table below.

Characteristics	
Output voltage	24 V DC -20% to $+10 \%$
Ripple	$\pm 1 \%$
Overvoltage category (OVC)	OVC IV - as per IEC $60947-1$

Sizing

Sizing must take into account all supplied modules.

Module	Consumption (mA)
Micrologic $5 / 6$	40
BSCM module	10
FDM 121	40
Modbus communication interface	60
NSX cord U >480 V AC	30
SDx / SDTAM module	20

Wiring

Micrologic 5 or $\mathbf{6}$ not using the Communication function

The external 24 V DC supply is connected via the circuit breaker terminal block. Use of a 24 V DC battery provides backup power for approximate 3 hours (100 mA) in the event of an interruption in the external supply.

Micrologic 5 or $\mathbf{6}$ using the Communication function

The external 24 V DC supply is connected via the Modbus interface using a five-pin connector, including two for the power supply. Stacking accessories (see page A-27) can be used to supply a number of interfaces by fast clip-on connection.
The 24 V DC power is distributed downstream by the ULP (Universal Logic Plug) communication cords with RJ45 connectors. This system ensures both data transfer and power distribution to the connected modules.

Recommendations for 24 V DC wiring

b Do not connect the positive terminal to earth.
b Do not connect the negative terminal to earth.
b The maximum length for each conductor (+/-) is ten metres.
b For connection distances greater than ten metres, the plus and minus conductors of the 24 V DC supply must be twisted to improve EMC.
b The 24 V DC conductors must cross the power cables perpendicularly. If this is difficult or impossible, the plus and minus conductors must be twisted.

Modbus

Each Compact NSX circuit breaker equipped with Micrologic 5/6 and an FDM 121 display is connected to the Modbus network via the Modbus interface module. Connection of all the circuit breakers and other Modbus devices in the switchboard to a Modbus bus is made much easier by using a Modbus RJ45 junction block installed in the switchboard.

Recommendations for Modbus wiring

b The shielding may be earthed.
b The conductors must be twisted to improve immunity (EMC).
b The Modbus conductors must cross the power cables perpendicularly.

Installation
recommendations

Temperature derating
Compact NSX100 to 250 equipped with thermal-magnetic trip units

When thermal-magnetic trip units are used at ambient temperatures other than $40^{\circ} \mathrm{C}$, the Ir pick-up is modified.

Temperature derating curve for Compact NSX100.

Example 1. Fault I = 500 A

$\mathbf{I / I r}$	4.5	5	5.5
$\mathbf{\mathbf { T } ^ { \circ } \mathrm { C }}$	$20^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
\mathbf{t} min.	8 s	6 s	5 s
\mathbf{t} max.	80 s	60 s	50 s

[^9]The overload protection is calibrated at $40^{\circ} \mathrm{C}$ in the lab. This means that when the ambient temperature is less or greater than $40^{\circ} \mathrm{C}$, the Ir protection pick-up is slightly modified.
To obtain the tripping time for a given temperature:
b see the tripping curves for $40^{\circ} \mathrm{C}$ (see pages E-2 and E-3)
b determine tripping times corresponding to the Ir value (thermal setting on the device), corrected for the ambient temperature as indicated in the tables below.

Settings of Compact NSX100 to 250 equipped with TM-D and TM-G trip units, as a function of the temperature

The table indicates the real $\operatorname{Ir}(\mathrm{A})$ value for a given rating and temperature.

Rat. Temperature $\left({ }^{\circ} \mathrm{C}\right)$ (A) $\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$	$\mathbf{3 5}$	$\mathbf{4 0}$	$\mathbf{4 5}$	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 0}$	$\mathbf{6 5}$	$\mathbf{7 0}$	
$\mathbf{1 6}$	18.4	18.7	18	18	17	16.6	16	15.6	15.2	14.8	14.5	14	13.8
$\mathbf{2 5}$	28.8	28	27.5	27	26.3	25.6	25	24.5	24	23.5	23	22	$\mathbf{2 1}$
$\mathbf{3 2}$	36.8	36	35.2	34.4	33.6	32.8	32	31.3	30.5	30	29.5	29	28.5
$\mathbf{4 0}$	46	45	44	43	42	41	40	39	38	37	36	35	34
$\mathbf{5 0}$	57.5	56	55	54	52.5	51	50	49	48	47	46	45	44
$\mathbf{6 3}$	72	71	69	68	66	65	63	61.5	60	58	57	55	54
$\mathbf{8 0}$	92	90	88	86	84	82	80	78	76	74	72	70	68
$\mathbf{1 0 0}$	115	113	110	108	105	103	100	97.5	95	92.5	90	87.5	85
$\mathbf{1 2 5}$	144	141	138	134	131	128	125	122	119	116	113	109	106
$\mathbf{1 6 0}$	184	180	176	172	168	164	160	156	152	148	144	140	136
$\mathbf{2 0 0}$	230	225	220	215	210	205	200	195	190	185	180	175	170
$\mathbf{2 5 0}$	288	281	277	269	263	256	250	244	238	231	225	219	213

Example 1. What is the tripping time of a Compact NSX100 equipped with a TM100D trip unit set to 100 A , for an overload $\mathrm{I}=500 \mathrm{~A}$?
The overload I / Ir is calculated as a function of the temperature. Use the above values and the curve on page E-3 (shown on the left) to determine the corresponding time. b At $40^{\circ} \mathrm{C}, \mathrm{Ir}=100 \mathrm{~A}, \mathrm{I} / \mathrm{Ir}=5$ and the tripping time is between 6 and 60 seconds.
b At $20^{\circ} \mathrm{C}, \operatorname{Ir}=110 \mathrm{~A}, \mathrm{I} / \mathrm{Ir}=4.54$ and the tripping time is between 8 and 80 seconds.
b At $60^{\circ} \mathrm{C}, \mathrm{Ir}=90 \mathrm{~A}, \mathrm{l} / \mathrm{Ir}=5.55$ and the tripping time is between 5 and 50 seconds.
Example 2. What is the setting to obtain a real Ir of 210 A , taking into account the temperature, for a Compact NSX250 equipped with a TM250D trip unit?
The necessary dial setting, in amperes, is shown below.
b At $40^{\circ} \mathrm{C}$, Ir $=(210 / 250) \times 250 \mathrm{~A}=210 \mathrm{~A}$
b At $20^{\circ} \mathrm{C}$, $\operatorname{Ir}=(210 / 277) \times 250 \mathrm{~A}=189.5 \mathrm{~A}$
b At $60^{\circ} \mathrm{C}, \mathrm{Ir}=(210 / 225) \times 250 \mathrm{~A}=233 \mathrm{~A}$

Additional derating coefficient for an add-on module

The values indicated in the previous tables are valid for fixed circuit breakers equipped with one of the following modules:
b Vigi module
b insulation monitoring module
b ammeter module
b current-transformer module.
They also apply for plug-in or withdrawable circuit breakers equipped with:
b ammeter module
b current-transformer module.
However, for plug-in or withdrawable circuit breakers equipped with a Vigi module or an insulation monitoring module, the coefficient 0.84 must be applied.
The table below sums up the situation for add-on modules.

Type of device	Circuit breaker	TM-D trip- unit rating	Vigi or insulation monitoring module	Ammeter or current transformer module
Fixed	NSX100 to 250	16 to 100		
	NSX160 to 250	125		
	NSX160 to 250	160	1	
	NSX250	200 to 250		1
Plug-in or withdrawable	NSX100 to 250	16 to 100		
	NSX160 to 250	125		
	NSX160 to 250	160	0.84	
	NSX250	250		

Compact NSX equipped with electronic trip units

Electronic trip units are not affected by variations in temperature. If the trip units are used in hightemperature environments, the Micrologic setting must nevertheless take into account the temperature limits of the circuit breaker.

Changes in temperature do not affect measurements by electronic trip units
b The built-in CT sensors with Rogowski toroids measure the current.
b The control electronics compare the value of the current to the settings defined for $40^{\circ} \mathrm{C}$.
Because temperature has no effect on the toroid measurements, the tripping thresholds do not need to be modified.
However, the temperature rise caused by the flow of current and the ambient temperature increase the temperature of the device. To avoid reaching the thermal withstand level of the equipment, it is necessary to limit the current flowing through the device, i.e. the maximum Ir setting as a function of the temperature.

Compact NSX100/160/250

The table below indicates the maximum long-time (LT) protection setting Ir (A) depending on the ambient temperature.

Type of device	Rating (A) Temperature (${ }^{\circ} \mathrm{C}$)							
		40	45	50	55	60	65	70
NSX100/160								
Fixed, plug-in or withdr.	40	no derating						
	100	no derating						
NSX250								
Fixed, plug-in or withdrawable	100	no derating						
	160	no derating						
Fixed	250	250	250	250	245	237	230	225
Plug-in or withdr.	250	250	245	237	230	225	220	215

Compact NSX400 and 630

The table below indicates the maximum long-time (LT) protection setting Ir (A) depending on the ambient temperature.

| Type of
 device | Rating (A) | Temperature $\left({ }^{\circ} \mathbf{C}\right)$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4 0}$ | $\mathbf{4 5}$ | $\mathbf{5 0}$ | $\mathbf{5 5}$ | $\mathbf{6 0}$ | $\mathbf{6 5}$ | $\mathbf{7 0}$ |
| NSX400 | | | | | | |

Example. A fixed Compact NSX400 equipped with a Micrologic can have a maximum Ir setting of:
b 400 A up to $50^{\circ} \mathrm{C}$
b 380 A up to $60^{\circ} \mathrm{C}$.

Additional derating coefficient for an add-on module

For fixed or plug-in / withdrawable circuit breakers, the addition of a:
b Vigi module
b insulation-monitoring module
b ammeter module
b current-transformer module
can modify the derating values. Apply the coefficients shown below.
Derating of a Compact NSX equipped with a Micrologic trip unit

Type of device	Circuit breaker	TM-D trip-unit rating	Vigi / Insulation monitoring module	Ammeter module I External sensor (CT)
Fixed	NSX100 to 250 NSX160 to 250 NSX250	$\begin{array}{\|l\|} \hline 40 \text { to } 100 \\ 125 \\ 250 \\ \hline \end{array}$	1	(CT)
Plug-in or withdrawable	NSX100 to 250 NSX160 to 250	$\begin{aligned} & 40 \text { to } 100 \\ & 160 \end{aligned}$		
	NSX250	250	0.86	
Fixed	$\begin{aligned} & \text { NSX400 } \\ & \text { NSX630 } \end{aligned}$	$\begin{aligned} & 250 \text { to } 400 \\ & 250 \text { to } 630 \end{aligned}$	$\begin{aligned} & \hline 0.97 \\ & 0.90 \\ & \hline \end{aligned}$	
Plug-in or withdrawable	$\begin{aligned} & \text { NSX400 } \\ & \text { NSX630 } \end{aligned}$	$\begin{aligned} & 250 \text { to } 400 \\ & 250 \text { to } 630 \end{aligned}$	$\begin{aligned} & 0.97 \\ & 0.90 \end{aligned}$	

Note: to provide the Visu function, Compact NSX circuit breakers, with or without a Vigi module, are combined with INV switch-disconnectors. Tripping values for the selected combination are indicated in the Interpact catalogue.

Installation
recommendations

Power loss/ Resistance
 Compact NSX equipped with thermalmagnetic trip units

Compact NSX thermal power loss values are used to calculate total temperature rise in the switchboard in which the circuit breakers are installed.

With a Vigi module, the deviation of the N and L3 bars required to pass through the toroid results in higher power losses compared to those of the L1 and L2 bars.

The values indicated in the tables below are typical values for a device at full rated load and $50 / 60 \mathrm{~Hz}$.

Power loss per pole (P/pole) in Watts (W)

The value indicated is the power loss at $\mathrm{I}_{N}, 50 / 60 \mathrm{~Hz}$, for a three-pole or four-pole circuit breaker. Measurement and calculation of power loss are carried out in compliance with the recommendations of Annex G of standard IEC 60947-2.
Resistance per pole ($\mathrm{R} / \mathrm{pole}$) in milliohms ($\mathrm{m} \Omega$)
The value of the resistance per pole is provided as a general indication for a new device.
The value of the contact resistance must be determined on the basis of the measured voltage drop, in accordance with the manufacturer's test procedure (ABT instruction document no. 1-BEE-02.2-A).
Note: this measurement is not sufficient to determine the quality of the contacts, i.e. the capacity of the circuit breaker to carry its rated current.

Additional power loss

Additional power loss is equal to the sum of the power dissipated by the following: b Vigi module: note that the deviation of the N and L 3 bars required to pass through the toroid results in higher power losses compared to those of the L1 and L2 bars (diagram opposite). When calculating total power loss, use L1, L2, L3 for a 3P device and $\mathrm{N}, \mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3$ for a 4P device
b disconnecting contacts (plug-in and withdrawable devices)
b ammeter module
b transformer module.

Calculation of total power loss

Total power loss at full rated load and $50 / 60 \mathrm{~Hz}$ is equal to the sum of the device and additional power losses per pole multiplied by the number of poles (2,3 or 4). If a Vigi module is installed, it is necessary to differentiate between N and L 3 on one hand and L1 and L2 on the other.

Compact NSX100 to 250 equipped with TM-D and TM-G trip units

Type of device		Fixed device		Additional power / pole				
3/4 poles		R/pole	P/pole	Vigi (N, L3)	Vigi $(\mathrm{L} 1, \mathrm{~L} 2)$	Plug-in / withdr.	Ammeter module	Transfo. module
NSX100	16	11.42	2.92	0	0	0	0	0
	25	6.42	4.01	0	0	0.1	0	0
	32	3.94	4.03	0.06	0.03	0.15	0.1	0.1
	40	3.42	5.47	0.10	0.05	0.2	0.1	0.1
	50	1.64	4.11	0.15	0.08	0.3	0.1	0.1
	63	2.17	8.61	0.3	0.15	0.4	0.1	0.1
	80	1.37	8.77	0.4	0.2	0.6	0.1	0.1
	100	0.88	8.8	0.7	0.35	1	0.2	0.2
NSX160	80	1.26	8.06	0.4	0.2	0.6	0.1	0.1
	100	0.77	7.7	0.7	0.35	1	0.2	0.2
	125	0.69	10.78	1.1	0.55	1.6	0.3	0.3
	160	0.55	13.95	1.8	0.9	2.6	0.5	0.5
NSX250	125	0.61	9.45	1.1	0.55	1.6	0.3	0.3
	160	0.46	11.78	1.8	0.9	2.6	0.5	0.5
	200	0.39	15.4	2.8	1.4	4	0.8	0.8
	250	0.3	18.75	4.4	2.2	6.3	1.3	1.3

Compact NSX100 to 630 equipped with MA/1.3-M trip units

Type of device		Fixed device		Additional power / pole				
3 poles	Rat. (A)	R/pole	P/pole	Vigi (N, L3)	Vigi $(\mathrm{L} 1, \mathrm{~L} 2)$	Plug-in / withdr.	Ammeter module	Transfo module
NSX100	2.5	148.42	0.93	0	0	0	0	0
	6.3	99.02	3.93	0	0	0	0	0
	12.5	4.05	0.63	0	0	0	0	0
	25	1.66	1.04	0	0	0.1	0	0
	50	0.67	1.66	0.2	0.1	0.3	0.1	0.1
	100	0.52	5.2	0.7	0.35	1	0.2	0.2
NSX160	150	0.38	8.55	1.35	0.68	2.6	0.45	0.45
NSX250	220	0.3	14.52	2.9	1.45	4.89	0.97	0.97
NSX400	320	0.12	12.29	3.2	1.6	6.14	1.54	1.54
NSX630	500	0.1	25	13.99	7	15	3.75	3.75

Compact NSX equipped with electronic trip units

The values indicated in the table below are typical values for a device at full rated load and $50 / 60 \mathrm{~Hz}$. The definitions and information are the same as that for circuit breakers equipped with thermal-magnetic trip units.

Compact NSX100 to 630 equipped with Micrologic trip units

Type of device		Fixed device		Additional power / pole			Ammeter module	Transfo module
$3 / 4$ poles	Rat. (A)	R/pole	P/pole	Vigi $(N, L 3)$	Vigi $(\mathrm{L} 1, \mathrm{~L} 2)$	Plug-in / withdr.		
NSX100	40	0.84	1.34	0.1	0.05	0.2	0.1	0.1
	100	0.468	4.68	0.7	0.35	1	0.2	0.2
NSX160	40	0.73	1.17	0.4	0.2	0.6	0.1	0.1
	100	0.36	3.58	0.7	0.35	1	0.2	0.2
	160	0.36	9.16	1.8	0.9	2.6	0.5	0.5
NSX250	100	0.27	2.73	1.1	0.55	1.6	0.2	0.2
	250	0.28	17.56	4.4	2.2	6.3	1.3	1.3
NSX400	400	0.12	19.2	3.2	1.6	9.6	2.4	2.4
NSX630	$630{ }^{(1)}$	0.1	39.69	6.5	3.25	19.49	5.95	5.95

(1) The power loss values for the Vigi modules and withdrawable circuit breakers are given for 570 A.
Easy installation
P077850270
Functions and characteristics A-1
Installation recommendations $B-1$
Dimensions and mounting
Compact NSX100 to 630 fixed version C-2
Vigicompact NSX100 to 630 fixed version C-3
Compact NSX100 to 630 plug-in version C-4
Compact NSX100 to 630 withdrawable version C-6
Vigicompact NSX100 to 630 plug-in and withdrawable versions C-8
Visu function for Compact NSX100 to 250 fixed version C-9
Visu function for Compact NSX400/630 fixed version C-10
Motor mechanism module for Compact NSX100 to 630 C-11
Direct rotary handle for Compact and Vigicompact NSX100 to 630 C-12
MCC and CNOMO type direct rotary handles for Compact NSX100 to 630 fixed version C-13
Extended rotary handle for Compact NSX100 to 630 C-14
Indication and measurement modules
for Compact NSX100 to 630 fixed version C-15
One-piece spreader for Compact NSX100 to 250 fixed version C-16
FDM121 switchboard display C-17
Front-panel accessories
Compact NSX100 to 630 C-18
Front-panel cutouts
Compact NSX100 to 630 fixed version C-20
Vigicompact NSX100 to 630 fixed version C-22
Compact NSX100 to 630 plug-in and withdrawable versions C-24
Vigicompact NSX100 to 630 plug-in and withdrawable versions C-25
Visu function for Compact NSX100 to 630 fixed version C-26
Motor mechanism module for Compact and Vigicompact NSX100 to 630 C-27
Direct rotary handle for Compact and Vigicompact NSX100 to 630 C-28
MCC and CNOMO type direct rotary handles for Compact NSX100 to 630 fixed version C-13
Extended rotary handle for Compact NSX100 to 630 C-14
Indication and measurement modules for Compact NSX100 to 630 C-30
FDM121 switchboard display C-17
Power connections
Compact and Vigicompact NSX100 to 630 fixed version C-32
Compact and Vigicompact NSX100 to 630 plug-in and withdrawable versions C-36
Connection of insulated bars or cables with lugs to Compact and Vigicompact NSX100 to 630 C-40
Connection of bare cables to Compact and Vigicompact NSX100 to 630 C-41
Wiring diagrams D-1
Additional characteristics E-1
Catalogue numbers F-1
Glossary G-1

Interphase barriers.
\square Short terminal shields

(1) The $\varnothing T$ holes are required for rear connection only.

For two-pole circuit breakers, the middle holes are not required.

On DIN rail with adapter plate (NSX100 to 250)

Vigicompact NSX100 to 630 fixed version

(1) The $\varnothing T$ holes are required for rear connection only.

For two-pole circuit breakers, the middle holes are not required.

\square Long terminal shields (also available for NSX400/630 spreaders with 52.5 mm pitch: $B 1=157.5 \mathrm{~mm}, B 2=210 \mathrm{~mm})$.
\square Adapter for base, required to mount long terminal shields or interphase barriers.

Mounting			
Through front panel (N)	2/3P	3P	4P
	NSX100 to 250	NSX400/630	NSX100 to 630

On backplate (M) 2/3P 4P 4P

Front connection (an insulating screen is supplied with the base and must be fitted between the base and the backplate)

Connection by exterior-mounted rear connectors
 two-pole circuit breakers, the middle holes are not required).
Connection by interior-mounted rear connectors

Type	A	A1	A2	A10	A11	B	B1	B2	C3	D1	E9	E10	E11	E12	E13	E14	E15
NSX100/160/250	80.5	161	94	175	210	52.5	105	140	126	75	95	190	87	174	77.5	155	79
NSX400/630	127.5	255	142.5	244	281	70	140	185	168	100	150	300	137	274	125	250	126
Type	E16	E17	E18	E19	E20	F1	F2	F3	F4	F5	F6	F7	F8	F9	ØT1	U	
NSX100/160/250	158	61	122	37.5	75	35	17.5	70	54.5	109	144	70	105	35	24	y 32	
NSX400/630	252	101	202	75	150	45	22.5	90	71.5	143	188	100	145	50	33	y 35	

Dimensions and mounting connection

Compact NSX100 to 630 withdrawable version

On backplate (M) 2/3P 4P 4P

Front connection (an insulating screen is supplied with the base and must be fitted between the base and the backplate)

Connection by exterior-mounted rear connectors

Connection by interior-mounted rear connectors

Type	A10	A11	A12	A13	B3	B4	B5	B6	B7	C3	D1	E9	E10	E11	E12	E13	E14
NSX100/160/250	175	210	106.5	103.5	92.5	185	216	220	251	126	75	95	190	87	174	77.5	155
NSX400/630	244	281	140	140	110	220	250	265	295	168	100	150	300	137	274	125	250
Type	E15	E16	E17	E18	E19	E20	F1	F2	F3	F7	F8	F9	F10	F11	F12	ØT1	U
NSX100/160/250	79	158	61	122	37.5	75	35	17.5	70	70	105	35	74	148	183	24	y 32
NSX400/630	126	252	101	202	75	150	45	22.5	90	100	145	50	91.5	183	228	33	y 35

Dimensions and connection

Dimensions and mounting Vigicompact NSX100 to 630 plug-in and withdrawable versions

Dimensions - withdrawable version

NSX100 to 630
3P
4P

Mounting
Through front panel (N)
See Compact NSX100 to 630 plug-in version, page C-4, or withdrawable version, page C-6
On backplate (M)
See Compact NSX100 to 630 plug-in version, page C-5, or withdrawable version, page C-7
On rails
See Compact NSX100 to 630 plug-in version, page C-5, or withdrawable version, page C-7

Type	A	A2	A5	A6	A7	A10	A11	B	B1	B2	B3	B4	B5	B6	B7	C3	D1
NSX100/160/250	80.5	94	155.5	236	169	175	210	52.5	105	140	92.5	185	216	220	251	126	75
NSX400/630	127.5	142.5	227.5	355	242.5	244	281	70	140	185	110	220	250	265	295	168	100

Visu function for Compact NSX100 to 250 fixed version

Interphase barriers.
Short terminal shields.
Long terminal shields.
Mounting
On rails or backplate

Dimensions and
Dimensions and mounting connection

Visu function for Compact NSX400/630 fixed version

Interphase barriers for base. Short terminal shields. Long terminal shields.

Mounting

On rails or backplate

Uy 35

Motor mechanism module for Compact NSX100 to 630

Dimensions

Fixed circuit breaker

C5: without keylock
C6: with keylock
Plug-in circuit breaker

Withdrawable circuit breaker

Type	A14	A15	A16	A17	B	B1	B2	B8	B9	C4	C5	C6	D1
NSX100/160/250	27.5	73	34.5	62.5	52.5	105	140	45.5	91	143	182	209.5	75
NSX400/630	40	123	52	100	70	140	185	61.5	123	215	256	258	100

Dimensions and
Dimensions and mounting connection

Direct rotary handle for Compact and Vigicompact NSX100 to 630

C8: without keylock
C9: with keylock

Plug-in circuit breaker

Withdrawable circuit breaker

Type	A14	A15	A18	B	B1	B2	B8	B9	B10	C7	C8	C9	D1
NS $\times 100 / 160 / 250$	27.5	73	9	52.5	105	140	45.5	91	9.25	121	155	164	75
NS $\times 400 / 630$	40	123	24.6	70	140	185	61.5	123	5	145	179	188	100

MCC and CNOMO type direct rotary handles for Compact NSX100 to 630 fixed version

Extended rotary handle for Compact NSX100 to 630

Dimensions

Fixed and plug-in circuit breakers

Cutout for shaft (mm)	
Type	R1
NSX100/160/250	min. 171
	max. 600
NSX400/630	$\min .195$ max. 600

Withdrawable circuit breaker

Type	A18	B10	D1
NSX100/160/250	9	9.25	75
NSX400/630	24.6	5	100

Dimensions and mounting

Indication and measurement modules for Compact NSX100 to 630 fixed version

For two-pole circuit breakers, the middle holes are not required.

Type	A	A2	A3	A4	A5	A6	A7	A8	A9	C1	C2	C11	E1	E5	E6	E7	E8
NS X100/160/250	80.5	94	145	178.5	155.5	236	169	220	253.5	81	86	137	62.5	137.5	200	145	215
NSX400/630	127.5	142.5	200	237	227.5	355	242.5	300	337	95.5	110	162	100	200	300	213.5	327
Type	F1	F2	F3	ØT	U												
NSX100/160/250	35	17.5	70	24	y 32												
NSX400/630	45	22.5	90	32	y 35												

One-piece spreader for Compact NSX100 to 250 fixed version

Mounting

FDM121 switchboard display

Dimensions

Mounting
Through panel

Dimensions and connection

Front-panel accessories
Compact NSX100 to 630

IP30 front-panel escutcheons
For toggle, rotary handle or motor mechanism module

For toggle or rotary handle with access to trip unit

For Vigicompact

IP40 front-panel escutcheons

For toggle, rotary handle or motor mechanism module and protection collar

For Vigicompact with protection collar or ammeter module

For Vigicompact

Y

Circuit breaker with toggle or rotary handle.

Circuit breaker with motormechanism module.

IP43 toggle cover

Type	A	A1	A2	A3	A4	A5	B	B1	B2	B3	C
NSX100/160/250	113	138	114	101	73	85	113	157	91	103	40
NSX400/630	163	215	164	151	122.5	138	163	189	122.5	138	60

Dimensions and connection

Front-panel cutouts
Compact NSX100 to 630 fixed version

For toggle with access to trip unit

With IP30 front-panel escutcheon
NSX100 to 250
NSX400/630
For toggle

|

For toggle with access to trip unit

V

| With IP43 toggle cover NSX100 to 250 | NSX400/630 |
| :--- | :--- | :--- |
| For toggle | |

Type	P3	P4
NSX100/160/250	88	89
NSX400/630	112	113

Dimensions and connection

Front-panel cutouts
Vigicompact NSX 100 to 630 fixed version

For toggle with access to trip unit

| With IP30 front-panel escutcheon | NSX100 to 250 | NSX400/630 |
| :--- | :--- | :--- | :--- |
| For toggle | | |

$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\circ}$

With IP30 front-panel escutcheon (cont.) NSX100 to $250 \quad$ NSX400/630
For toggle with access to trip unit

Type	P3	P4
NSX100/160/250	88	89
NSX400/630	112	113

Dimensions and connection

Front-panel cutouts
Compact NSX100 to 630 plug-in and withdrawable versions

Plug-in version

Bare sheet metal

See Compact NSX100 to 630 fixed version, page C-20

With IP30 front-panel escutcheon

See Compact NSX100 to 630 fixed version, page C-20

With IP40 front-panel escutcheon

See Compact NSX100 to 630 fixed version, page C-21

With toggle cover

See Compact NSX100 to 630 fixed version, page C-21

Withdrawable version

With protection collar and IP40 front-panel escutcheon

Vigicompact NSX100 to 630 plug-in and withdrawable versions

Plug-in version

Bare sheet metal

See Compact NSX100 to 630 fixed version, page C-22
With IP30 front-panel escutcheon
See Compact NSX100 to 630 fixed version, page C-22
With IP40 front-panel escutcheon
See Compact NSX100 to 630 fixed version, page C-23

Withdrawable version	NSX100 to 250	NSX400/630
With protection collar and IP40 front-panel escutcheon		

Type	D1	P3	P5
NSX100/160/250	75	88	123
NSX400/630	100	112	147

Dimensions and connection

Front-panel cutouts
Visu function for Compact NSX100 to 630 fixed version

Compact NSX100 to 250 with Interpact INV100 to 250 Visu function
Bare sheet metal

With IP40 front-panel escutcheon

z

Compact NSX400/630 with Interpact INV400 to 630 Visu function

Bare sheet metal

With IP40 front-panel escutcheon

Motor mechanism module for Compact and Vigicompact NSX100 to 630

Fixed, plug-in or withdrawable circuit breaker

With IP40 front-panel escutcheon
NSX100 to 250
NSX400/630
Fixed, plug-in or withdrawable circuit breaker without access to Vigi module

Fixed or plug-in circuit breaker with access to Vigi module

Dimensions and connection

Front-panel cutouts
Direct rotary handle for Compact and Vigicompact NSX100 to 630

Fixed or plug-in circuit breakers
Bare sheet metal

Bare sheet metal with access to the trip unit

With IP30 front-panel escutcheon

With IP40 front-panel escutcheon

Type	D1	P10	P11	P12
NSX100/160/250	75	89	90	123
NSX400/630	100	112	113	147

Dimensions and connection

Front-panel cutouts

Indication and measurement modules for Compact NSX100 to 630

Fixed or plug-in circuit breakers with ammeter module and voltage-presence indicator
Bare sheet metal

With toggle

Rotary handle

With IP40 front-panel escutcheon

With toggle

Rotary handle

Type	D1	J1	J2	J3	K1	K2	P3	P4	P10	P11
NSX100/160/250	75	78.5	67.5	55	46.5	74	88	89	89	90
NSX400/630	100	122	129	122.5	64.5	90	112	113	112	113

Dimensions and connection

Power connections

Compact and Vigicompact NSX100 to 630 fixed version

Connection with accessories
Long and short rear connectors

NSX400/630

Dimensions and connection

Power connections
Compact and Vigicompact NSX100 to 630 fixed version

NSX400/630

Double-L terminal extensions

NSX100 to 250

One-piece spreader (for NSX100 to 250 only)

Dimensions and connection

Power connections
Compact and Vigicompact NSX100 to 630 plug-in and withdrawable versions

Rear connection: mounting through front panel (N) or on rails (V)
NSX100 to 250

NSX400/630

Dimensions and connection

Power connections

Compact and Vigicompact NSX100 to 630 plug-in and withdrawable versions

Connection with accessories (cont.)
45° extensions: mounting through front panel (N) or on rails (V)

NSX100 to 250

NSX400/630

Double-L extensions: mounting on backplate (M) or rails (V)
NSX100 to 250

Double-L extensions: mounting through front panel (N) or on rails (V)

$$
\text { NSX100 to } 250
$$

Long insulated rear connectors: mounting on backplate (M) or rails (V)

Exterior-mounted rear connectors
NSX100 to 250

X
NSX400/630

Interior-mounted rear connectors

NSX400/630

Dimensions and connection

Power connections

Connection of insulated bars or cables with lugs to Compact and Vigicompact NSX100 to 630

Lug.

Accessories for NSX100 to 250
Straight terminal extensions

Spreaders:
separate parts

Tinned copper
For $\mathrm{U}>600 \mathrm{~V}$, the mandatory insulation kit is not compatible with spreaders made up of separate parts. The one-piece spreader must be used.

Accessories for NSX400 and 630
Spreaders made up of separate parts for 52.5 and 70 mm pitch

Tinned copper
For $U>600 \mathrm{~V}$, use of the 52.5 mm pitch spreaders requires a specific insulation kit.
The 70 mm pitch spreaders may not be used.
Accessories for NSX100 to 630

Right-angle terminal extensions
DB112173

Double-L terminal extensions
 one-piece spreader

(1) Tightening torque on the circuit breaker for lugs or bars.
(2) Tightening torque on fixed devices for rear connectors//tightening torque on plug-in or
withdrawable devices for power connectors.
(3) Tightening torque on the plug-in base for terminal extensions.

Connection with accessories to NSX100 to 250 (IEC 228)
Pole pitch

Without spreaders		35 mm	
With spreaders		45 mm	
Dimensions		With spreaders or terminal extensions	
		NSX100	NSX160/250
	Bars $\mathrm{L}(\mathrm{mm})$	y 25	y 25
	1 (mm)	20 y ly 25	20 y ly 25
	$\mathrm{d}(\mathrm{mm})$	y 10	y 10
	e(mm)	y 6	y 6
	\varnothing (mm)	6.5	8.5
	Lugs $\mathrm{L}(\mathrm{mm})$	y 25	y 25
	\varnothing (mm)	6.5	8.5
	Torque (Nm$)^{(1)}$	10	15
	Torque (Nm) ${ }^{(2)}$	5	5

(1) Tightening torque on the circuit breaker for spreaders or terminal extensions.
(2) Tightening torque on the plug-in base for spreaders or terminal extensions.

Spreaders and straight, right-angle, 45°, double-L and edgewise terminal extensions are supplied with flexible interphase barriers.

Connection with accessories to NSX400 and 630 (IEC 228)

Pole pitch				
Without spreaders			45 mm	
With spreaders			52.5 or 70 mm	
Dimensions			With spreaders	With terminal extensions
	Bars	$\mathrm{L}(\mathrm{mm})$	y 40	y 32
		1 (mm)	d + 15	30 y ly 34
		$\mathrm{d}(\mathrm{mm})$	y 20	y 15
		$\mathrm{e}(\mathrm{mm})$	3 yey 10	3 yey 10
		\varnothing (mm)	12.5	10.5
	Lugs	$\mathrm{L}(\mathrm{mm})$	y 40	y 32
		\varnothing (mm)	12.5	10.5
	Torqu	$\mathrm{Nm})^{(1)}$	50	50
	Torqu	$\mathrm{Nm})^{(2)}$	20	20

(1) Tightening torque on the circuit breaker for spreaders or terminal extensions.
(2) Tightening torque on the plug-in base for spreaders or terminal extensions.

Spreaders and right-angle, 45° and edgewise terminal extensions are supplied with flexible interphase barriers.

Mounting detail: 2 cables with lugs.

Connection of bare cables to Compact and Vigicompact NSX100 to 630

(1) For flexible cables from 1.5 to $4 \mathrm{~mm}^{2}$, connection with crimped or self-crimping ferrules.

Conductor materials and electrodynamic stresses
Compact NSX circuit breakers can be connected indifferently with bare-copper, tinned-copper and tinned-aluminium conductors (flexible or rigid bars, cables). In the event of a short-circuit, thermal and electrodynamic stresses will be exerted on the conductors. They must therefore be correctly sized and held in place by supports.
Electrical connection points on switchgear devices (switch-disconnectors, contactors, circuit breakers, etc.) should not be used for mechanical support. Any partition between upstream and downstream connections of the device must be made of non-magnetic material.

Wiring diagrams

Contents
Functions and characteristics A-1
Installation recommendations B-1
Dimensions and connection C-1
Compact NSX100 to 630
Fixed circuit breakers D-2
Plug-in / withdrawable circuit breakers D-4
Motor mechanism D-6
SDx module with Micrologic D-8
SDTAM module with Micrologic M D-9
Additional characteristics E-1
Catalogue numbers F-1
Glossary G-1

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in normal position.

Terminals shown in red O must be connected by the customer.

Indication contacts

OF2 / OF1: device ON/OFF indication contacts
OF4 / OF3: device ON/OFF indication contacts (NSX400/630)
SDE: fault-trip indication contact (short-circuit, overload, ground fault, earth leakage)
SD: trip-indication contact
CAF2/CAF1: early-make contact (rotary handle only)
CAO1: early-break contact (rotary handle only)
SDV: earth leakage fault trip indication contact (add-on Vigi module)

Colour code for auxiliary wiring

RD: red	VT: violet
WH: white	GY: grey
YE: yellow	OR: orange
BK: black	BL: blue
GN: green	

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in normal position.

Micrologic A or E		
A/E	Com H(WH - (BK)	wer supply
A/E	ZSI (Z Z1: Z Z2: Z Z3: Z Z4: Z Z5: Z Note:	ocking) It) 630 only.
A/E	ENC - shie - shie Conn - max - cabl - reco	rent transform sted pair (T1, end only (CT x. etres Iden 8441 or
E	ENV neutr	tage tap for co aker.
Colour code for auxiliary wiring		
RD:	red	VT: violet
WH:	white	GY: grey
YE:	yellow	OR: orange
BK:	black	BL: blue
GN:	green	

[^10]
Remote operation

MN: undervoltage release
or
MX: shunt release

Motor mechanism (MT)

A4: opening order
A2: closing order
B4, A1: motor mechanism power supply
L1: manual position (manu)
B2: \quad SDE interlocking (mandatory for automatic or remote recharging)
BPO: opening pushbutton
BPF: closing pushbutton

Communicating motor mechanism (MTc)

B4, A1: motor mechanism power supply
BSCM: breaker status and control module

Indication contacts

OF2 / OF1: device ON/OFF indication contacts
OF4 / OF3: device ON/OFF indication contacts (NSX400/630)
SDE: fault-trip indication contact
(short-circuit, overload, ground fault, earth leakage)
SD: trip-indication contact
CAF2/CAF1: early-make contact (rotary handle only)
CA01: early-break contact
(rotary handle only)
SDV: earth leakage fault trip indication contact (add-on Vigi module)

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in normal position.

After tripping initiated by the "Push to trip" button or by the undervoltage (MN) release or the shunt (MX) release, device reset can be automatic, remote or manual.

Following tripping due to an electrical fault (with an SDE contact), reset must be carried out manually.

Symbols

Q: circuit breaker
A4: opening order
A2: closing order
B4, A1: motor mechanism power supply
L1: manual position (manu)
B2: SDE interlocking (mandatory for correct operation)
BPO: opening pushbutton
BPF: closing pushbutton
SDE: fault-trip indication contact (short-circuit, overload, ground fault, earth leakage)

Motor mechanism (MT) with automatic reset

Motor mechanism (MT) with remote reset

Motor mechanism (MT) with manual reset

Single-line diagram of communicating motor mechanism Opening, closing and reset orders are transmitted via the communication network. The "Enable automatic reset" and "Enable reset even if SDE" parameters must be set using the RSU software via the screen by clicking the blue text.
"Auto/manu" is a switch on the front of the motor mechanism.

Symbols	
Q:	circuit breaker
B4, A1:	motor mechanism power supply
BSCM:	breaker status and control module

[^11]

Terminals shown in red O must be connected by the customer.

Connection

Operation

I: charge current
PAL Ir: thermal overload pre-alarm
SDG: ground-fault signal
SDT: thermal-fault signal
Q: circuit breaker

SDTAM module with Micrologic M

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in normal position.

Symbols

SD1, SD3: SDTAM-module power supply
SD2: thermal-fault signal output
(80 mA max.)
SD4: contactor-control output (80 mA max.)

	SD2	SD4
Micrologic 2-M	SDT	KA1
Micrologic 6 E-M	SDT	KA1

Terminals shown in red O must be connected by the customer.

Connection

Operation

I: charge current
SDT: thermal-fault signal
KA1: auxiliary relay (e.g. RBN or RTBT relay)
KM1: motor contactor
Q: circuit breaker

Functions and characteristics A-1
Installation recommendations B-1
Dimensions and connection C-1
Wiring diagrams D-1
Tripping curves
Compact NSX100 to 250 protection of distribution systems E-2
Compact NSX100 to 250 motor protection E-6
Compact NSX400 to 630 protection of distribution systems E-8
Compact NSX400 to 630 motor protection E-10
Compact NSX100 to 630 reflex tripping E-12
Current and energy limiting curves E-13
Catalogue numbers F-1
Glossary G-1

Tripping curves
 Compact NSX100 to 250 Protection of distribution systems

\square Reflex tripping.

TM50D / TM63D / TM63G

TM200D / TM250D

\square Reflex tripping.

Tripping curves
 Compact NSX100 to 250 Protection of distribution systems (cont.)

Micrologic 2.2 and 2.2 G electronic trip units

Micrologic 2.2-40... 160 A

\square Reflex tripping.

Micrologic 2.2 G-250 A

Micrologic 2.2-250 A

Micrologic 2.2 G-40... 160 A

Reflex tripping.

Micrologic 5.2 and 6.2 A or E electronic trip units

Micrologic 5.2 and 6.2 A or E-40... 160 A
Micrologic 5.2 and 6.2 A or E-250 A

t(s)

Micrologic 6.2 A or E (ground-fault protection)

Tripping curves
 Compact NSX100 to 250
 Motor protection

MA magnetic trip units

\square Reflex tripping.
Micrologic 2.2 M electronic trip units

Micrologic 2.2 M-25 A

Micrologic 2.2 M-50... 220 A

Micrologic 6.2 E-M electronic trip units

Micrologic 6.2 E-M - 25 A

Micrologic 6.2 E-M - 50... 220 A

\square Reflex tripping.

Micrologic 6.2 E-M (ground-fault protection)

Tripping curves
 Compact NSX40O to 630 Protection of distribution systems

Micrologic 2.3, 5.3 and 6.3 A or E electronic trip units

Micrologic 2.3-250... 400 A

\square Reflex tripping.

Micrologic 2.3-630 A

Micrologic 5.3 and 6.3 A or E-400 A

Micrologic 5.3 and 6.3 A or E-630 A

\square Reflex tripping.

Micrologic 6.3 A or E electronic trip units (cont.)
Micrologic 6.3 A or E (ground-fault protection)

Tripping curves
 Compact NSX400 to 630
 Motor protection

Micrologic 1.3 M and 2.3 M electronic trip units

Micrologic 1.3 M-320 A

\square Reflex tripping.

Micrologic 2.3 M-320 A

Micrologic 1.3 M-500 A

Micrologic 6.3 E-M electronic trip units

Micrologic 6.3 E-M - 320 A

Micrologic 6.3 E-M - 500 A

\square Reflex tripping.

Micrologic 6.3 E-M (ground fault protection)

Compact NSX100 to 630
Reflex tripping

Compact NSX100 to 630 devices incorporate the exclusive reflex-tripping system.
This system breaks very high fault currents. The device is mechanically tripped via a "piston" actuated directly by the pressure produced in the breaking units by the short-circuit.
For high short-circuits, this system provides a faster break, thereby ensuring discrimination.
Reflex-tripping curves are exclusively a function of the circuit-breaker rating.

Current and energy limiting
 curves

The limiting capacity of a circuit breaker is its aptitude to let through a current, during a short-circuit, that is less than the prospective short-circuit current.

The exceptional limiting capacity of the Compact NSX range is due to the rotating double-break technique (very rapid natural repulsion of contacts and the appearance of two arc voltages in-series with a very steep wave front).

Ics = 100 \% Icu

The exceptional limiting capacity of the Compact NSX range greatly reduces the forces created by fault currents in devices.
The result is a major increase in breaking performance.
In particular, the service breaking capacity Ics is equal to 100% of Icu.
The Ics value, defined by IEC standard 60947-2, is guaranteed by tests comprising the following steps:
b break three times consecutively a fault current equal to 100% of Icu
b check that the device continues to function normally, that is:
v it conducts the rated current without abnormal temperature rise
\checkmark protection functions perform within the limits specified by the standard
v suitability for isolation is not impaired.

Longer service life of electrical installations

Current-limiting circuit breakers greatly reduce the negative effects of short-circuits on installations.

Thermal effects

Less temperature rise in conductors, therefore longer service life for cables.

Mechanical effects

Reduced electrodynamic forces, therefore less risk of electrical contacts or busbars being deformed or broken.

Electromagnetic effects

Fewer disturbances for measuring devices located near electrical circuits.

Economy by means of cascading

Cascading is a technique directly derived from current limiting. Circuit breakers with breaking capacities less than the prospective short-circuit current may be installed downstream of a limiting circuit breaker. The breaking capacity is reinforced by the limiting capacity of the upstream device. It follows that substantial savings can be made on downstream equipment and enclosures.

Current and energy limiting curves

The limiting capacity of a circuit breaker is expressed by two curves which are a function of the prospective short-circuit current (the current which would flow if no protection devices were installed):
b the actual peak current (limited current)
b thermal stress ($\left.A^{2} s\right)$, i.e. the energy dissipated by the short-circuit in a conductor with a resistance of 1Ω.

Example

What is the real value of a 150 kA rms prospective short-circuit (i.e. 330 kA peak) limited by an NSX250L upstream?
The answer is 30 kA peak (curve page E-14).

Maximum permissible cable stresses

The table below indicates the maximum permissible thermal stresses for cables depending on their insulation, conductor (Cu or Al) and their cross-sectional area (CSA). CSA values are given in mm^{2} and thermal stresses in $\mathrm{A}^{2} \mathrm{~s}$.

CSA		$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$4 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$	10 mm ${ }^{2}$
PVC	Cu	2.97×10^{4}	8.26×10^{4}	2.12×10^{5}	4.76×10^{5}	1.32×10^{6}
	AI					5.41×10^{5}
PRC	Cu	4.10×10^{4}	1.39×10^{5}	2.92×10^{5}	6.56×10^{5}	1.82×10^{6}
	AI					7.52×10^{5}
CSA		$16 \mathrm{~mm}^{2}$	25 mm ${ }^{2}$	$35 \mathrm{~mm}^{2}$	$50 \mathrm{~mm}{ }^{2}$	
PVC	Cu	3.4×10^{6}	8.26×10^{6}	1.62×10^{7}	3.31×10^{7}	
	AI	1.39×10^{6}	3.38×10^{6}	6.64×10^{6}	1.35×10^{7}	
PRC	Cu	4.69×10^{6}	1.39×10^{7}	2.23×10^{7}	4.56×10^{7}	
	AI	1.93×10^{6}	4.70×10^{6}	9.23×10^{6}	1.88×10^{7}	

Example

Is a Cu/PVC cable with a CSA of $10 \mathrm{~mm}^{2}$ adequately protected by an NSX160F? The table above indicates that the permissible stress is $1.32 \times 10^{6} \mathrm{~A}^{2} \mathrm{~s}$.
All short-circuit currents at the point where an NSX160F (Icu $=35 \mathrm{kA})$ is installed are limited with a thermal stress less than $6 \times 10^{5} \mathrm{~A}^{2} \mathrm{~s}$ (curve page $\mathrm{E}-14$). Cable protection is therefore ensured up to the limit of the breaking capacity of the circuit breaker.

SP103 Heroes Avenue SPS - TSR06 Transportable Switchboard Container - OM Manual Additional characteristics

Current and energy limiting curves

Current-limiting curves

Voltage 400/440 V AC
Limited short-circuit current (kÂ peak)

Voltage 660/690 V AC

Limited short-circuit current (kÂ peak)

Energy-limiting curves

Functions and characteristics A-1
Installation recommendations B-1
Dimensions and connection C-1
Wiring diagramsD-1
Additional characteristics E-1
NSX100 to 250 F-3
NSX400 to 630 F-29
Order form Compact NSX100 to 630 F-52
Glossary G-1
NSX100/160/250B: complete fixed/FC device F-4
Compact NSX100/160/250B (25 kA 380/415 V) F-4
Vigicompact NSX100/160/250B (25 kA 380/415 V) F-5
NSX100/160/250F: complete fixed/FC device F-6
Compact NSX100/160/250F (36 kA 380/415 V) F-6
Vigicompact NSX100/160/250F (36 kA 380/415 V) F-8
NSX100/160/250N: complete fixed/FC device F-9
Compact NSX100/160/250N ($50 \mathrm{kA} 380 / 415 \mathrm{~V}$) F-9
NSX100/160/250H: complete fixed/FC device F-11
Compact NSX100/160/250H (70 kA 380/415 V) F-11
NSX100/160/250NA: complete fixed/FC device F-13
Compact NSX100/160/250NA F-13
NSX100/160/250B/F/N/H/S/L: fixed/FC device based on separate components F-14
Compact and Vigicompact F-14
Trip unit accessories F-16
Compact and Vigicompact NSX100/160/250 F-16
Installation and connection F-17
Compact and Vigicompact NSX100/160/250 F-17
Accessories F-18
Compact and Vigicompact NSX100/160/250 F-18
Monitoring and control, test tools F-27
Compact and Vigicompact NSX100/160/250 F-27

NSX100/160/250B: complete fixed/FC device Compact NSX100/160/250B (25 kA 380/415 V)

Vigicompact NSX100/160/250B

With thermal-magnetic trip unit TM-D

Vigicompact NSX100B (25 kA at $\mathbf{3 8 0} / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d	4P 3d	4P 4d
TM16D	LV429667	LV429707	LV429967
TM25D	LV429666	LV429706	LV429966
TM32D	LV429665	LV429705	LV429965
TM40D	LV429664	LV429704	LV429964
TM50D	LV429663	LV429703	LV429993
TM63D	LV429662	LV429702	LV429962
TM80D	LV429661	LV429701	LV429960

Vigicompact NSX160B (25 kA at $\mathbf{3 8 0} / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d	4P 3d	4P 4d
TM80D	LV430343	LV430353	LV430363
TM100D	LV430342	LV430352	LV430362
TM125D	LV430341	LV430351	LV430361
TM160D	LV430340	LV430350	LV430360

Vigicompact NSX250B (25 kA at $\mathbf{3 8 0 / 4 1 5}$ V) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d	4P 3d	4P 4d
TM125D	LV431903	LV431913	LV431963
TM160D	LV431902	LV431912	LV43196
TM200D	LV431901	LV431911	LV43196
TM250D	LV431900	LV431910	LV43196

With electronic trip unit Micrologic 2.2 (LS ${ }_{0} I$ protection)

Vigicompact NSX100B (25 kA at $380 / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)

Rating	3P
40	LV
100	

3P 3d
LV429975
LV429974

4P 3d, 4d, 3d + N/2
LV429974 LV429985

Vigicompact NSX160B (25 kA at $380 / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d	4P 3d, 4d, 3d + N/2
40	LV430962	LV430997
L00	LV430961	LV430996

40	LV430962	LV430997
100	LV430961	LV430996
160	LV430960	LV430995

$160 \mid$ LV430960 | LV430995

Vigicompact NSX250B (25 kA at $380 / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d	4P 3d, 4d, 3d + N/2
100	LV431977	LV431987
160	LV431976	LV431986
250	LV431975	LV431985

With electronic trip unit Micrologic 5.2 A or 5.2 E (LSI protection, ammeter or energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

Compact NSX100/160/250F
With thermal-magnetic trip unit TM-D

Compact NSX100F (36 kA at $380 / 415 \mathrm{~V}$)

Rating	3P 2d
TM16D	LV429627
TM25D	LV429626
TM32D	LV429625
TM40D	LV429624
TM50D	LV429623
TM63D	LV429622
TM80D	LV429621
TM100D	LV429620
Compact NSX160F (36 kA at 380/415 V)	

3P 3d	4P 3d	4P 4d
LV429637	LV429647	LV429657
LV429636	LV429646	LV429656
LV429635	LV429645	LV429655
LV429634	LV429644	LV429654
LV429633	LV429643	LV429653
LV429632	LV429642	LV429652
LV429631	LV429641	LV429651
LV429630	LV429640	LV429650

Rating	3P 2d
TM80D	LV430623
TM100D	LV430622
TM125D	LV430621
TM160D	LV430620
Compact NSX250F (36 kA at 380/415 V)	

3P 3d
LV430633
LV430632
LV430631
LV430630

4P 3d	4P 4d
LV430643	LV430653
LV430642	LV430652
LV430641	LV430651
LV430640	LV430650

Rating	3P 2d
TM125D	LV431623
TM160D	LV431622
TM200D	LV431621
TM250D	LV431620

3P 3d	LV
LV431633	
LV431632	LV4
LV431631	LV4
LV431630	LV

4P 3d	4P 4d
LV431643	LV431653
LV431642	LV431652
LV431641	LV431651
LV431640	LV431650

With electronic trip unit Micrologic 2.2 (LSol protection)

Compact NSX100F (36 kA at 380/415 V) Rating	3P 3d
40	LV429772
100	LV429770

$|$| 4P 3d, 4d, 3d + N/2 |
| :--- |
| LV429782 |
| LV429780 |

Compact NSX160F (36 kA at $380 / 415 \mathrm{~V}$)

Rating	LV
100	LV
160	

3P 3d	L
LV430771	L

4P 3d, 4d, 3d + N/2
LV430781
160
LV430770
LV430780
Compact NSX250F (36 kA at $380 / 415 \mathrm{~V}$)

Rating
100
160
250

3P 3d
LV431772
LV431771
LV431770

4P 3d, 4d, 3d + N/2
LV431782
LV431781
LV431780

With electronic trip unit Micrologic 5.2 A (LSI protection, ammeter)

Compact NSX100F (36 kA at $380 / 415 \mathrm{~V}$)

Rating
40
100
Compact NSX160F ($\mathbf{3 6} \mathrm{kA}$ at $380 / 415 \mathrm{~V}$)

Compact NSX160F (36 kA at 380/415 V)
$\frac{\text { Rating }}{100}$

160

3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN
LV429882	LV429887
LV429880	LV429885

Compact NSX250F (36 kA at $380 / 415 \mathrm{~V}$)

Rating
100
160
250

| 3P 3d |
| :--- | :--- |
| LV431862 |
| LV431861 |
| LV431860 |

```
4P 3d, 4d, 3d + N/2, 3d + OSN
LV430886
```

LV430885
4P 3d, 4d, 3d + N/2, 3d + OSN
160
3P 3d
LV430881 LV430880

3P 3d LV431861 LV431867 LV431866

With electronic trip unit Micrologic 5.2 E (LSI protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.2 A (LSIG protection, ammeter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.2 E (LSIG protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

NSX100/160/250F:
 complete fixed/FC device (cont.) Compact NSX100/160/250F ($36 \mathrm{kA} 380 / 415 \mathrm{~V}$) (cont.)

Compact NSX100/160/250F

With magnetic trip unit MA
Compact NSX100F (36 kA at 380/415 V)

Rating	3P 3d
MA2.5	LV429745
MA6.3	LV429744
MA12.5	LV429743
MA25	LV429742
MA50	LV429741
MA100	LV429740

Compact NSX160F (36 kA at $\mathbf{3 8 0} / 415$ V)

Rating	3P 3d
MA100	LV430831
MA150	LV430830
Compact NSX250F (36 kA at 380/415 V)	
Rating	3P 3d
MA150	LV431749
MA220	LV431748

With electronic trip unit Micrologic 2.2-M (LSoI motor protection)

With electronic trip unit Micrologic 6.2 E-M (LSIG motor protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

Vigicompact NSX100/160/250F
With thermal-magnetic trip unit TM-D

Vigicompact NSX100F (36 kA at $380 / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)

| Vigicompact NSX100F (36 kA at 380/415 V) equipped with MH Vigi module (200 to 440 V | | | |
| :--- | :--- | :--- | :--- | :--- |
| Rating | 3P 3d | 4P 3d | 4P 4d |
| TM16D | LV429937 | LV429947 | LV429957 |
| TM25D | LV429936 | LV429946 | LV429956 |
| TM32D | LV429935 | LV429945 | LV429955 |
| TM40D | LV429934 | LV429944 | LV429954 |
| TM50D | LV429933 | LV429943 | LV429953 |
| TM63D | LV429932 | LV429942 | LV429952 |
| TM80D | LV429931 | LV429941 | LV429951 |
| TM100D | LV429930 | LV429940 | LV429950 |

Vigicompact NSX160F (36 kA at $380 / 415$ V) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d	4P 3d	4P 4d
TM80D	LV430933	LV430943	LV430953
TM100D	LV430932	LV430942	LV430952
TM125D	LV430931	LV430941	LV430951
TM160D	LV430930	LV430940	LV430950

Vigicompact NSX250F (36 kA at $\mathbf{3 8 0} / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d	4P 3d	4P 4d
TM125D	LV431933	LV431943	LV431953
TM160D	LV431932	LV431942	LV431952
TM200D	LV431931	LV431941	LV431951
TM250D	LV431930	LV431940	LV431950

With electronic trip unit Micrologic 2.2 (LSOI protection)

Vigicompact NSX100F ($\mathbf{3 6}$ kA at $\mathbf{3 8 0} / 415$ V) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d
40	LV429972
100	LV429970

3d, 4d, 3d + N/2

Vigicompact NSX160F (36 kA at $380 / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d	4P 3d, 4d,
40	LV430973	LV430983
100	LV430971	LV430981
160	LV430970	

160	LV430970	LV430980

Vigicompact NSX250F ($\mathbf{3 6} \mathrm{kA}$ at $380 / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d	4P 3d, 4d
100	LV431972	LV431982
160	LV431971	LV431981
250	LV431970	LV431980

With electronic trip unit Micrologic 5.2 A or 5.2 E (LSI protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

NSX100/160/250N: complete fixed/FC device Compact NSX100/160/250N (50 kA 380/415 V)

Compact NSX100/160/250N

Compact NSX100N (50 kA at 380/415 V)		
Rating	3 P 3d	4P 3d

Rating	3P 3d	4P 3d	4P 4d
TM16D	LV429847	LV429857	LV429867
TM25D	LV429846	LV429856	LV429866
TM32D	LV429845	LV429855	LV429865
TM40D	LV429844	LV429854	LV429864
TM50D	LV429843	LV429853	LV429862
TM63D	LV429842	LV429851	LV429861
TM80D	LV429841	LV429850	LV429860
TM100D	LV429840		

LV429860

Rating	3P 3d
TM80D	LV430843
TM100D	LV430842
TM125D	LV430841
TM160D	LV430840
Compact NSX250N (50 kA at $\mathbf{3 8 0} / 415 \mathrm{~V}$)	

4P 3d	4P 4d
LV430853	LV430863
LV430852	LV430862
LV430851	LV430861
LV430850	LV430860

Compact NSX250N (50 kA at $380 / 415 \mathrm{~V}$)

Rating	3P 3d	4P 3d	4P 4d
TM125D	LV431833	LV431843	LV431853
TM160D	LV431832	LV431842	LV431852
TM200D	LV431831	LV431841	LV431851
TM250D	LV431830	LV431840	LV431850

With electronic trip unit Micrologic 2.2 (LSol protection)

\%	Compact NSX100N (50 kA at 380/415 V)				
		Rating	3P 3d	4P 3d, 4d, 3d + N/2	
		40	LV429797	LV429807	
		100	LV429795	LV429805	
		Compact NSX160N (50 kA at $380 / 415 \mathrm{~V}$)			
		Rating	3P 3d	4P 3d, 4d, 3d + N/2	
		100	LV430776	LV430786	
		160	LV430775	LV430785	
		Compact NSX250N (50 kA at $380 / 415 \mathrm{~V}$)			
		Rating	3P 3d	4P 3d, 4d, 3d + N/2	
		100	LV431872	LV431877	
		160	LV431871	LV431876	
		250	LV431870	LV431875	
With electronic trip unit Micrologic 5.2 A (LSI protection, ammeter) Compact NSX100N (50 kA at $380 / 415 \mathrm{~V}$)					
	$\frac{102}{2020}$	Rating	3P 3d	4P 3d, 4d, 3d + N/2, OSN	
		40	LV429892	LV429897	
		100	LV429890	LV429895	
		Compact NSX160N (50 kA at $\mathbf{3 8 0 / 4 1 5} \mathrm{V}$)			
		Rating	3P 3d	4P 3d, 4d, 3d + N/2, OSN	
		100	LV430891	LV430896	
		160	LV430890	LV430895	
		Compact NSX250N (50 kA at $380 / 415 \mathrm{~V}$)			
		Rating	3P 3d	4P 3d, 4d, 3d + N/2, OSN	
		100	LV431882	LV431887	
		160	LV431881	LV431886	
		250	LV431880	LV431885	
	With electronic trip unit Micrologic 5.2 E (LSI protection, energy meter)				
	To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit				
	With electronic trip unit Micrologic 6.2 A (LSIG protection, ammeter)				
	To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit				
	With electronic trip unit Micrologic 6.2 E (LSIG protection, energy meter)				
	To be ordered with	ue numb			

Catalogue numbers

NSX 100/160/250N: complete
fixed/FC device (cont.)
Compact NSX100/160/250N
(50 kA 380/415 V) (cont.)

Compact NSX100/160/250H

With thermal-magnetic trip unit TM-D

Compact NSX100H (70 kA at $380 / 415 \mathrm{~V}$)

Rating	3P 3d	4P 3d	4P 4d
TM16D	LV429677	LV429687	LV429697
TM25D	LV429676	LV429686	LV429696
TM32D	LV429675	LV429685	LV429695
TM40D	LV429674	LV429684	LV429694
TM50D	LV429673	LV429683	LV429693
TM63D	LV429672	LV429682	LV429691
TM80D	LV429671	LV429680	LV429690

Rating	3P 3d
TM80D	LV430673
TM100D	LV430672
TM125D	LV430671
TM160D	LV430670

4P 3d	4P 4d
LV430683	LV430693
LV430682	LV430692
LV430681	LV430691
LV430680	LV430690

Rating	3P 3d	4P 3d	4P 4d
TM125D	LV431673	LV431683	LV431693
TM160D	LV431672	LV431682	LV431692
TM200D	LV431671	LV431681	LV431691
TM250D	LV431670	LV431680	LV431690

With electronic trip unit Micrologic 2.2 (LS ${ }^{\text {I }}$ protection)			
	Compact NSX100H (70 kA at $380 / 415 \mathrm{~V}$)		
	Rating	3P 3d	4P 3d, 4d, 3d + N/2
	40	LV429792	LV429802
	100	LV429790	LV429800
	Compact NSX160H (70 kA at $380 / 415 \mathrm{~V}$)		
	Rating	3P 3d	4P 3d, 4d, 3d + N/2
	100	LV430791	LV430801
	160	LV430790	LV430800
	Compact NSX250H (70 kA at $380 / 415 \mathrm{~V}$)		
	Rating	3P 3d	4P 3d, 4d, 3d + N/2
	100	LV431792	LV431802
	160	LV431791	LV431801
	250	LV431790	LV431800
With electronic	Micro	(LSI prot	
	Compact NSX100H (70 kA at $380 / 415 \mathrm{~V}$)		
	Rating	3P 3d	4P 3d, 4d, 3d + N/2, OSN
	40	LV429794	LV429804
	100	LV429793	LV429803
	Compact NSX160H (70 kA at $380 / 415 \mathrm{~V}$)		
	Rating	3P 3d	4P 3d, 4d, 3d + N/2, OSN
	100	LV430795	LV430805
	160	LV430794	LV430804
	Compact NSX250H (70 kA at $\mathbf{3 8 0 / 4 1 5} \mathrm{V}$)		
	Rating	3P 3d	4P 3d, 4d, 3d + N/2, OSN
	100	LV431797	LV431807
	160	LV431796	LV431806
	250	LV431795	LV431805

With electronic trip unit Micrologic 5.2 E (LSI protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.2 A (LSIG protection, ammeter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.2 E (LSIG protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

SP103 Heroes Avenue SPS - TSR06 Transportable Switchboard Container - OM Manual

Catalogue numbers
 NSX100/160/250H:
 complete fixed/FC device (cont.) Compact NSX100/160/250H (70 kA 380/415 V) (cont.)

Compact NSX100/160/250H
With magnetic trip unit MA

Compact NSX100H (70 kA at 380/415 V)
Rating ${ }^{\text {2P 3d }}$
MA2.5 LV429765 LV429765 LV429763
MA12.5
MA25 LV429762
MA50 LV429761 LV429760
Compact NSX160H (70 kA at 380/415 V)

Rating	3P 3d
MA100	LV430835
MA150	LV430834

Compact NSX250H (70 kA at 380/415 V)

Rating	3P 3d
MA150	LV431757
MA220	LV431756

With electronic trip unit Micrologic 2.2-M (LS 1 I motor protection)

Compact NSX100H (70 kA at 380/415 V)

Rating	3P 3d
25	LV429838
50	LV429837
100	LV429835

Compact NSX160H (70 kA at 380/415 V)

Rating	3P 3d
100	LV430992
150	LV430991

Compact NSX250H (70 kA at $380 / 415$ V)

Rating	3P 3d
150	LV431171
220	LV431170

With electronic trip unit Micrologic 6.2 E-M (LSIG motor protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

Compact NSX100/160/250NA switch-disconnector
With NA switch-disconnector unit

Compact NSX100NA									3P	4P
Rating 2P LV429619	LV429629									

Basic frame					
\%		Compact NSX100			
			3P	4P	
		NSX100B (25 kA 380/415 V)	LV429014	LV429015	
		NSX100F ($36 \mathrm{kA} \mathrm{380/415} \mathrm{V)}$	LV429003	LV429008	
		NSX100N (50 kA 380/415 V)	LV429006	LV429011	
		NSX100H (70 kA 380/415 V)	LV429004	LV429009	
		NSX100S (100 kA 380/415 V)	LV429018	LV429019	
		NSX100L (150 kA 380/415 V)	LV429005	LV429010	
		Compact NSX160			
			3P	4P	
		NSX160B (25 kA 380/415 V)	LV430390	LV430395	
		NSX160F (36 kA 380/415 V)	LV430403	LV430408	
		NSX160N ($50 \mathrm{kA} 380 / 415 \mathrm{~V}$)	LV430406	LV430411	
		NSX160H (70 kA 380/415 V)	LV430404	LV430409	
		NSX160S (100 kA 380/415 V)	LV430391	LV430396	
		NSX160L (150 kA 380/415 V)	LV430405	LV430410	
		Compact NSX250			
			3P	4P	
		NSX250B (25 kA 380/415 V)	LV431390	LV431395	
		NSX250F (36 kA 380/415 V)	LV431403	LV431408	
		NSX250N ($50 \mathrm{kA} 380 / 415 \mathrm{~V}$)	LV431406	LV431411	
		NSX250H (70 kA 380/415 V)	LV431404	LV431409	
		NSX250S (100 kA 380/415 V)	LV431391	LV431396	
		NSX250L (150 kA 380/415 V)	LV431405	LV431410	
+ Trip unit					
Distribution protection					
		Thermal-magnetic TM-D			
		Rating	3P 3d	4P 3d	4P 4d
		TM16D	LV429037	LV429047	LV429057
		TM25D	LV429036	LV429046	LV429056
		TM32D	LV429035	LV429045	LV429055
		TM40D	LV429034	LV429044	LV429054
		TM50D	LV429033	LV429043	LV429053
		TM63D	LV429032	LV429042	LV429052
		TM80D	LV429031	LV429041	LV429051
		TM100D	LV429030	LV429040	LV429050
		TM125D	LV430431	LV430441	LV430451
		TM160D	LV430430	LV430440	LV430450
		TM200D	LV431431	LV431441	LV431451
		TM250D	LV431430	LV431440	LV431450
		Micrologic 2.2 (LS 1 protection)			
		Rating	3P 3d	4P 3d, 4d, 3d + N/2	
		Micrologic 2.2 40A	LV429072	LV429082	
		Micrologic 2.2 100 A	LV429070	LV429080	
		Micrologic 2.2 160 A	LV430470	LV430480	
		Micrologic 2.2 250 A	LV431470	LV431480	
		Micrologic 5.2 A (LSI protection, ammeter)			
		Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN	
		Micrologic 5.2A40 A	LV429091	LV429101	
		Micrologic 5.2A 100 A	LV429090	LV429100	
		Micrologic 5.2A 160 A	LV430490	LV430495	
		Micrologic 5.2A 250 A	LV431490	LV431495	
		Micrologic 5.2 E (LSI protection, energy meter)			
		Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN	
		Micrologic 5.2 E 40 A	LV429096	LV429106	
		Micrologic 5.2 E 100 A	LV429095	LV429105	
		Micrologic 5.2 E 160 A	LV430491	LV430496	
		Micrologic 5.2 E 250 A	LV431491	LV431496	
		Micrologic 6.2 A (LSIG protection, ammeter)			
		Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN	
		Micrologic 6.2 A 40 A	LV429111	LV429136	
		Micrologic 6.2A 100 A	LV429110	LV429135	
		Micrologic 6.2A 160 A	LV430505	LV430515	
		Micrologic 6.2A 250 A	LV431505	LV431515	
		Micrologic 6.2 E (LSIG protection, energy meter)			
		Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN	
		Micrologic 6.2 E 40A	LV429116	LV429141	
		Micrologic 6.2E 100 A	LV429116	LV429140	
		Micrologic 6.2E 160 A	LV430506	LV430516	
		Micrologic 6.2 E 250 A	LV431506	LV431516	

+ Trip unit (cont.)
Motor protection

		Magnetic MA (I protection)		
		Rating	3P 3d	4P 3d
		MA2.5	LV429125	
		MA6.3	LV429124	
		MA12.5	LV429123	
		MA25	LV429122	
		MA50	LV429121	
		MA100	LV429120	LV429130
		MA150	LV430500	LV430510
		MA220	LV431500	LV431510
		Micrologic 2.2-M (LS 1 I protection)		
		Rating	3P 3d	
		Micrologic 2.2-M 25 A	LV429174	
		Micrologic 2.2-M 50 A	LV429172	
		Micrologic 2.2-M 100 A	LV429170	
		Micrologic 2.2-M 150 A	LV430520	
		Micrologic 2.2-M 220 A	LV431520	
		Micrologic 6.2 E-M (LSIG protection, energy meter)		
		Rating	3P 3d	
		Micrologic 6.2 E-M 25A	LV429184	
		Micrologic 6.2 E-M 50 A	LV429182	
		Micrologic 6.2 E-M 80 A	LV429180	
		Micrologic 6.2 E-M 150 A	LV430521	
		Micrologic 6.2 E-M 220 A	LV431521	
Generator protection				
		Thermal-magnetic TM-G		
		Rating	3P 3d	4P 4d
		TM16G	LV429155	LV429165
		TM25G	LV429154	LV429164
		TM40G	LV429153	LV429163
		TM63G	LV429152	LV429162
		Micrologic 2.2 G (LSol protection)		
		Rating	3P 3d	4P 3d, 4d, 3d + N/2
		Micrologic 2.2-G 40 A	LV429076	LV429086
		Micrologic 2.2-G 100 A	LV429075	LV429085
		Micrologic 2.2-G 160 A	LV430475	LV430485
		Micrologic 2.2-G 250 A	LV431475	LV431485
Protection of public distribution systems				
言 Micrologic 2.2 AB (LSol protection)				
		Rating		4P 3d, 4d, 3d + N/2
	家	Micrologic 2.2-AB 100 A		LV434550
		Micrologic 2.2-AB 160 A		LV434551
		Micrologic 2.2-AB 240 A		LV434554
	$16 \mathrm{~Hz} \mathrm{2/3}$ network protection			
Micrologic 5.2 A-Z (LSI protection, amm Rating Micrologic 5.2 A-Z 100A Micrologic 5.2A-Z 250A			eter)	
			3P 3d	
			LV429089	
			LV431489	
+ Vigi module or insulation monitoring module				
Vigi module				
			3P	4P
		ME type for NSX100/160 (200 to 440 V)	LV429212	LV429213
		MH type for NSX100/160 (200 to 440 V)	LV429210	LV429211
		MH type for NSX250 (200 to 440 V)	LV431535	LV431536
		MH type for NSX100/160 (440 to 550 V)	LV429215	LV429216
		MH type for NSX250 (440 to 550 V)	LV431533	LV431534
		Connection for a 4P Vigi on a 3P breaker		LV429214
Insulation monitoring module				
			3P	4P
		200 to 440 V AC	LV429459	LV429460
		Connection for a 4 P insulation monitoring module on a 3P breaker		LV429214

Catalogue numbers
Trip unit accessories
Compact and Vigicompact
NSX100/160/250

Trip unit accessories
External neutral CT for 3 pole breaker with Micrologic 5/6

25-100 A

LV429521
150-250 A
LV430563

24 V DC wiring accessory for Micrologic 5/6

24 V DC power supply connector
| LV434210

ZSI wiring accessory for NS630b NW with NSX

ZSI module

External power supply module (24 V DC - 1 A), class 4

Fixed/RC device = fixed/FC device + rear connection kit					
	Short RC kit				
	Kit 3P			3 x	LV429235
	Kit 4P			4 x	LV429235
	Mixed RC kit				
	Kit 3P	Short RCs		2 x	LV429235
		Long RCs		1 x	LV429236
	Kit 4P	Short RCs		2 x	LV429235
		Long RCs		2 x	LV429236
Plug-in version = fixed/FC device + plug-in kit					
Kit for Compact					
		2P (3P)	3P		4P
	Plug-in kit Comprising:	LV429288	LV429289		LV429290
	Base	= $1 \times$ LV429265	= $1 \times$ LV429266		= $1 \times$ LV429267
	Power connections	+ $2 \times$ LV429268	+3x LV429268		+ $4 \times$ LV429268
	Short terminal shields	+ $2 \times$ LV429515	+ $2 \times$ LV429515		+ $2 \times$ LV429516
	Safety trip interlock	+ $1 \times$ LV429270	+1 x LV429270		+ $1 \times$ LV429270

"Polybloc" distribution block (for bare cable)

$160 \mathrm{~A}\left(40^{\circ} \mathrm{C}\right) 6$ cables S y $10 \mathrm{~mm}^{2}$	1 P	04031
$250 \mathrm{~A}\left(40^{\circ} \mathrm{C}\right) 9$ cables S y $10 \mathrm{~mm}^{2}$	3 P	04033
	4 P	04034

[^12]Accessories (cont.)
Compact and Vigicompact NSX100/160/250 (cont.)

[^13]
Electrical auxiliaries

Auxiliary contacts (changeover)

SDx output module for Micrologic

SDTAM contactor tripping module (early-break thermal fault signal) for Micrologic 2.2-M/6.2 E-M

SDTAM 24/415 V AC/DC overload fault indication

Catalogue numbers
Accessories (cont.)
Compact and Vigicompact
NSX100/160/250 (cont.)

Indication and measurement modules

Rating (A)	100	160	250
$3 P$	LV429455	LV430555	LV431565
4P	LV429456	LV430556	LV431566

I max. ammeter module				
-	Rating (A)	100	160	250
\%	3P	LV434849	LV434850	LV434851

Current transformer module

Rating (A)	125
3P	LV429457

150
LV430557

250
P
LV430558
LV431567
LV431568

Current transformer module and voltage output

Rating (A)	125
$3 P$	LV42946

| 150 |
| :--- | :--- |
| LV430561 |

250
3P (A)
LV430562
31569
LV431570

Voltage presence indicator

Rotary handles

Direct rotary handle

With black handle
LV429337
With red handle on yellow front
LV429339
LV429341
CNOMO conversion accessory
LV429342

Extended rotary handle

Locks

Toggle locking device for 1 to 3 padlocks

> By fixed device
| LV429371

Locking of rotary handle

Locking of motor mechanism module

Interlocking

Mechanical interlocking for circuit breakers
With toggles

LV429344
Interlocking with key (2 keylocks / 1 key) for rotary handles

> Keylock kit (keylock not included) ${ }^{(1)}$ 1 set of 2 keylocks

Ronis 1351B 500
41950
(1 key only, keylock kit not included)
Profalux KS5 B24 D4Z
42878

Installation accessories

Front-panel escutcheons

IP30 escutcheon for all control types
LV429525

IP30

IP40 escutcheon for all control types
LV429317
IP40 escutcheon for Vigi module
LV429316
P40 escutcheon for Vigi or ammeter module
LV429318

IP43 rubber toggle cover

(1) For only 1 device.

SP103 Heroes Avenue SPS - TSR06 Transportable Switchboard Container - OM Manual

Catalogue numbers

Accessories (cont.)
Compact and Vigicompact NSX100/160/250 (cont.)

Visible break disconnect function
See catalogue dealing with "Interpact INV products (visible break)" and the associated accessories.
The visible break disconnection function is compatible with fixed front-connected/rear-connected Compact NSX devices.

Monitoring and control，test tools Compact and Vigicompact NSX100／160／250

Monitoring and control（remote operation）

Circuit breaker accessories

Breaker Status Control Module
$\operatorname{BSCM}^{(1)}$
LV434205

ULP display module ${ }^{(2)}$

Switchboard front display module FDM121
TRV00121
FDM mounting accessory（diameter 22 mm ）
TRV00128

ULP communication module

ULP wiring accessories

（3）

	10 ULP line terminators	TRV00880	
为盘臬	10 RJ45／RJ45 male cord L $=0.3 \mathrm{~m}$	TRV00803	
	10 RJ45／RJ45 male cord L $=0.6 \mathrm{~m}$	TRV00806	
	5 RJ45／RJ45 male cord $\mathrm{L}=1 \mathrm{~m}$	TRV00810	
	5 RJ45／RJ45 male cord L $=2 \mathrm{~m}$	TRV00820	
	5 RJ45／RJ45 male cord $\mathrm{L}=3 \mathrm{~m}$	TRV00830	
	1 RJ45／RJ45 male cord L＝ 5 m	TRV00850	
Power supply modules			
$\stackrel{\text { N }}{ }$	External power supply module 100－240 V AC 110－230 V DC／ 24 V DC－3 A class 2	ABL8RPS24030	（3）

External power supply module 100－240 V AC 110－230 V DC／ 24 V DC－3 A class 2
ABL8RPS24030

（1）SDE adapter mandatory for trip unit TM，MA or Micrologic 2 （LV429451）．
（2）For measurement display with Micrologic A and E or status display with BSCM．
（3）See Telemecanique catalogue．

Monitoring and control, test tools (cont.)
Compact and Vigicompact
NSX100/160/250 (cont.)

Test tool, software, demo

Spare power supply 110-240 V AC
| TRV00915

Spare Micrologic cord for USB maintenance interface
| TRV00917

Configuration and setting software RSU
LV4ST100
est software LTU
LV4ST121
LV4SM100
Monitoring software RCU
LV4SM100 (2)

Demo tool

Demo case for Compact NSX
| LV434207
(1) See Telemecanique catalogue.
(2) Downloadable from http://schneider-electric.com.
NSX400/630F: complete fixed/FC device F-30
Compact NSX400/630F (36 kA 380/415 V) F-30
Vigicompact NSX400/630F ($36 \mathrm{kA} \mathrm{380/415} \mathrm{~V}$) F-31
NSX400/630N: complete fixed/FC device F-32
Compact NSX400/630N (50 kA 380/415 V) F-32
Vigicompact NSX400/630N (50 kA 380/415 V) F-33
NSX400/630H: complete fixed/FC device F-34
Compact NSX400/630H (70 kA 380/415 V) F-34
NSX400/630NA: complete fixed/FC device F-35
Compact NSX400/630NA F-35
NSX400/630F/N/H/S/L: fixed/FC device based on separate components F-36
Compact and Vigicompact F-36
Trip unit accessories F-37
Compact and Vigicompact NSX400/630 F-37
Installation and connection F-38
Compact and Vigicompact NSX400/630 F-38
Accessories F-40
Compact and Vigicompact NSX400/630 F-40
Monitoring and control, test tools F-49
Compact and Vigicompact NSX400/630 F-49
Spare Parts F-51
User manuals F-51

Catalogue numbers
NSX400/630F:
complete fixed/FC device Compact NSX400/630F (36 kA 380/415 V)

Electronic trip unit Micrologic 1.3-M (I motor protection)

| | | 3P 3d |
| :--- | :--- | :--- | :--- |
| Compact NSX400F 1.3-M (36 kA at 380/415V) | 320 A | LV432748 |
| Compact NSX630F 1.3-M (36 kA at 380/415V) | 500 A | LV432948 |

Electronic trip unit Micrologic 2.3-M (LSol motor protection)

		3P 3d
Compact NSX400F 2.3-M (36 kA at 380/415V)	320 A	LV432775
Compact NSX630F 2.3-M (36 kA at 380/415V)	500 A	LV432975

With electronic trip unit Micrologic 5.3 E (LSI protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.3 A (LSIG protection, ammeter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.3 E (LSIG protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.3 E-M (LSIG motor protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

Catalogue numbers
 NSX400/630F:
 complete fixed/FC device Vigicompact NSX400/630F (36 kA 380/415 V)

Vigicompact NSX400/630F

Electronic trip unit Micrologic 2.3 (LSOI protection)

Catalogue numbers

NSX400／630N：
complete fixed／FC device Compact NSX400／630N
（ $50 \mathrm{kA} 380 / 415 \mathrm{~V}$ ）
Compact NSX400／630N
Electronic trip unit Micrologic 2.3 （LS。I protection）

3P 3d
LV432707
LV432693
LV432893

4P 3d，4d，3d＋N／2
LV432708
LV432694
LV432894

Electronic trip unit Micrologic 5．3 A（LSI protection，ammeter）
$\stackrel{\text { 总 }}{\text { 产 }}$

	3P 3d	4P 3d，4d，3d＋N／2，3d＋OSN	
Compact NSX400N（50 kA at 380／415 V）	400 A	LV432699	LV432700
Compact NSX630N $(50$ kA at $380 / 415 \mathrm{~V})$	630 A	LV432899	LV432900

Electronic trip unit Micrologic 1．3－M A（I motor protection）

		3P 3d
Compact NSX400N 1．3－M $(50$ kA at $380 / 415 \mathrm{~V})$	320 A	LV432749
Compact NSX630N 1．3－M（50 kA at 380／415V）	500 A	LV432949

Electronic trip unit Micrologic 2．3－M（LSol motor protection）

Compact NSX400N 2．3－M（50 kA at 380／415V） 320 A
Compact NSX630N 2．3－M（50 kA at 380／415V） 500 A

With electronic trip unit Micrologic 5．3 E（LSI protection，energy meter）
To be ordered with 2 catalogue numbers： 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6．3 A（LSIG protection，ammeter）
To be ordered with 2 catalogue numbers： 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6．3 E（LSIG protection，energy meter）
To be ordered with 2 catalogue numbers： 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6．3 E－M（LSIG motor protection，energy meter）
To be ordered with 2 catalogue numbers： 1 basic frame +1 trip unit

Catalogue numbers

NSX400/630N: complete fixed/FC device Vigicompact NSX400/630N (50 kA 380/415 V)

Vigicompact NSX400/630N
Electronic trip unit Micrologic 2.3 (LSOI protection)

Vigicompact NSX400N (50 kA at 380/415 V) 400 A

3P 3d LV432733
LV432933

4P 3d, 4d, 3d + N/2 LV432734
LV432934

To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

Catalogue numbers

NSX400/630H:
complete fixed/FC device Compact NSX400/630H
(70 kA 380/415 V)
Compact NSX400/630H
Electronic trip unit Micrologic 2.3 (LSOI protection)

		3P 3d	4P 3d, 4d, 3d + N/2
Compact NSX400H (70 kA at 380/415 V)	250A	LV432709	LV432710
	400 A	LV432695	LV432696
Compact NSX630H (70 kA at 380/415 V)	630 A	LV432895	LV432896

Electronic trip unit Micrologic 5.3 A (LSI protection, ammeter)

Compact NSX400H (70 kA at $380 / 415 \mathrm{~V}$)
400 A
630 A

3P 3d LV432701

$4 \mathrm{P} 3 \mathrm{~d}, 4 \mathrm{~d}, 3 \mathrm{~d}+\mathrm{N} / 2,3 \mathrm{~d}+\mathrm{OSN}$
Compact NSX630H (70 kA at $380 / 415$ V) 630 A LV432901 LV432702 LV432902

Micrologic 1.3-M (I motor protection)

Compact NSX400H 1.3-M (70 kA at 380/415V)	320 A	3P 3d
Compact NSX630H $1.3-\mathrm{M}(70 \mathrm{kA}$ at $380 / 415 \mathrm{~V})$	500 A	LV432750

Electronic trip unit Micrologic 2.3-M (LSOI motor protection)

		3P 3d
Compact NSX400H 2.3-M (70 kA at 380/415V)	320 A	LV432777
Compact NSX630H 2.3-M (70 kA at 380/415V)	500 A	LV432977

With electronic trip unit Micrologic 6.3 E (LSIG protection, energy meter)
Only available as separate components.
With electronic trip unit Micrologic 6.3 E-M (LSIG motor protection, energy meter)
Only available as separate components.

Catalogue numbers
NSX400/630NA: complete fixed/FC device Compact NSX400/630NA

Compact NSX400/630 0.3 NA switch-disconnector
With 0.3 NA switch-disconnector unit

SP103 Heroes Avenue SPS - TSR06 Transportable Switchboard Container - OM Manual
Catalogue numbers
NSX400/630F/N/H/S/L: fixed/ FC device based on separate components

Compact and Vigicompact

+ Vigi module or insulation monitoring module

Trip unit accessories
External neutral CT for 3 pole breaker with Micrologic 5/6

400-630 A

24 V DC wiring accessory for Micrologic 5/6

24 V DC power supply connector
| LV434210

ZSI accessory for NS630b-NW with NSX

External power supply module (24 V DC - 1 A), class 4

Fixed/RC device $=$ fixed/FC device + rear connection kit				
Mixed RC kit				
	Kit 3P	Short RCs	2x	LV432475
		Long RCs	1 x	LV432476
	Kit 4P	Short RCs	2x	LV432475
		Long RCs	2 x	LV432476

Fixed/FC device with 52.5 mm or 70 mm pitch = fixed/FC device with 45 mm pitch + spreaders
The pitch of all Compact and Vigicompact NSX400/630 devices is 45 mm . Spreaders are available for fixed front, plug-in or withdrawable connection with pitch of 52.5 mm or 70 mm .

Upstream or downstream spreaders ${ }^{(1)}$

52.5 mm	3 P	LV432490
	4 P	LV432491
70 mm	3 P	LV432492
	4 P	LV432493

Plug-in version = fixed/FC device + plug-in kit
Kit for Compact

3P	4P
LV432538	LV432539
$=1 \times$ LV432516	$=1 \times$ LV432517
$+3 \times$ LV432518	$+4 \times$ LV432518
$+2 \times$ LV432591	$+2 \times$ LV432592
$+1 \times$ LV432520	$+1 \times$ LV432520

(1) Supplied with 2 or 3 interphase barriers.

Withdrawable version = fixed/FC device + withdrawable kit

$$
1 \times \text { LV432539 }
$$

$$
1 \times \text { LV432532 }
$$

$1 \times$ LV432533

Kit for Vigicompact

	3P	4P
Plug-in kit:	Kit for Vigicompact $=$	Kit for Vigicompact =
	$1 \times$ LV432540	$1 \times$ LV432541
	+	+
Chassis side plates	$1 \times$ LV432532	$1 \times$ LV432532
for base	+	+
Chassis side plates for breaker	$1 \times$ LV432533	$1 \times$ LV432533

Accessories (cont.)
Compact and Vigicompact
NSX400/630 (cont.)

Voltage releases				
		Voltage	MX	MN
	AC	$24 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	LV429384	LV429404
		$48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	LV429385	LV429405
		$110-130 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	LV429386	LV429406
		$220-240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ and 208-277 V 60 Hz	LV429387	LV429407
		$380-415 \mathrm{~V} 50 \mathrm{~Hz}$ and $440-480 \mathrm{~V} 60 \mathrm{~Hz}$	LV429388	LV429408
		525 V 50 Hz and 600 V 60 Hz	LV429389	LV429409
	DC	12 V	LV429382	LV429402
		24 V	LV429390	LV429410
		30 V	LV429391	LV429411
		48 V	LV429392	LV429412
		60 V	LV429383	LV429403
		125 V	LV429393	LV429413
		250 V	LV429394	LV429414
	MN $48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ with fixed time delay			
	Composed of:	MN 48 V DC		LV429412
		Delay unit $48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		LV429426
	MN 220-240 V 50/60 Hz with fixed time delay			
	Composed of:	MN 250 V DC		LV429414
		Delay unit $220-240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		LV429427
	MN 48 V DC/AC $50 / 60 \mathrm{~Hz}$ with adjustable time delay			
	Composed of:	MN 48 V DC		LV429412
		Delay unit $48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		33680
	MN110-130 V DC/AC $50 / 60 \mathrm{~Hz}$ with adjustable time delay			
	Composed of:	MN 125 V DC		LV429413
		Delay unit 110-130 V $50 / 60 \mathrm{~Hz}$		33681
	MN 220-250 V 50/60 Hz with adjustable time delay			
	Composed of:	MN 250 V DC		LV429414
		Delay unit $220-250 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		33682

Catalogue numbers
Accessories (cont.)
Compact and Vigicompact
NSX400/630 (cont.)

Motor mechanism
Motor mechanism module

Catalogue numbers
Accessories (cont.)
Compact and Vigicompact
NSX400/630 (cont.)

	LV432649
Ronis 1351B.500	41940
Profalux KS5 B24 D4Z	42888

Installation accessories

Front-panel escutcheons

| IP30 escutcheon for all control types | LV432557 |
| :--- | :--- | :--- |
| IP30 trip unit access escutcheon for toggle | LV432559 |
| IP30 escutcheon for Vigi module | LV429527 |

LP42
Lead-sealing accessories Bag of accessories

[^14]SP103 Heroes Avenue SPS - TSR06 Transportable Switchboard Container - OM Manual
Catalogue numbers
Accessories (cont.)
Compact and Vigicompact
NSX400/630 (cont.)

Plug-in/withdrawable version accessories
Insulation accessories

SP103 Heroes Avenue SPS - TSR06 Transportable Switchboard Container - OM Manual
Catalogue numbers
Accessories (cont.)
Compact and Vigicompact
NSX400/630 (cont.)

Visible break disconnect function

See catalogue dealing with "Interpact INV products (visible break)" and the associated accessories.
The visible break disconnection function is compatible with fixed front-connected/rear-connected Compact NSX devices.

Monitoring and control, test tools Compact and Vigicompact NSX400/630

Monitoring and control (remote operation)

Circuit breaker accessories

Breaker Status Control Module BSCM
| LV434205

ULP display module ${ }^{(1)}$

> Switchboard front display module FDM121
> FDM mounting accessory (diameter 22 mm)

TRV00121
TRV00128

ULP communication module

24 V DC battery module
| 54446
(1) For measurement display with Micrologic A and E or status display with BSCM.
(2) See Telemecanique catalogue.

SP103 Heroes Avenue SPS - TSR06 Transportable Switchboard Container - OM Manual
Catalogue numbers
Monitoring and control, test tools (cont.)
Compact and Vigicompact NSX400/630 (cont.)

Pocket battery for Micrologic NSX100-630
| LV434206

Maintenance case	TRV00910

Comprising:

- USB maintenance interface
- Power supply
- Micrologic cord
- USB cord
- RJ45/RJ45 male cord

Spare USB maintenance interface
| TRV00911

Spare power supply 110-240 V AC
| TRV00915

Spare Micrologic cord for USB maintenance interface
| TRV00917

Configuration and setting software RSU
LV4ST100
Monitoring software RCU
LV4SM100
LV4SM100

Demo tool

Demo case for Compact NSX
| LV434207
(1) See Telemecanique catalogue.
(2) Downloadable from http://schneider-electric.com.

Catalogue numbers COMPACT NSX
Spare Parts

Instructions

User manual			
	Circuit breaker	(French)	LV434100
		(English)	LV434101
	Micrologic 5.6	(French)	LV434103
		(English)	LV434104
	Modbus	(French)	LV434106
		(English)	LV434107
	ULP	(French)	TRV99100
		(English)	TRV99101

To indicate your choices, check the applicable square boxes or note the quantity
and enter the appropriate information in the rectangles

External neutral CT
24 V DC power supply connector
ZSI wiring accessory for NSX630b NW/NT
External power supply module 24 V DC

Functions and characteristics A-1
Installation recommendations B-1
Dimensions and connection C-1
Wiring diagrams D-1
Additional characteristics E-1
Catalogue numbers F-1
Accessories G-2
Circuit-breaker characteristics (IEC 60947-2) G-2
Communication G-4
Components G-5
Controls G-5
Discrimination / Cascading G-6
Environment G-7
Harmonics G-8
Measurements G-8
Protection G-9
Relays and auxiliary contacts G-10
Switchgear G-10
Three-phase asynchronous motors and their protection G-11
Trip units G-12

For each major section (Accessories, Switchgear, etc.) and for each item (Adapter for plug-in base, Connection terminal, etc.), this glossary provides:
b the page number in the concerned catalogue
b the reference standard
b the standardised IEC symbol
b the definition.
Text in quotation marks is drawn from the standards.

Adapter for plug-in base	-A-72	The adapter is a plastic component that can be installed upstream and/or downstream of the plug-in base and enables use of all the connection accessories of the fixed device.
Bare-cable connector	-A-71	Conducting part of the circuit breaker intended for connection to power circuits. On Compact NSX, it is an aluminium part that screws to the connection terminals of the circuit breaker. There are one or more holes (single or multiple cable connector) for the ends of bare cables.
Connection terminals	- A-70	Flat copper surface, linked to the conducting parts of the circuit breaker and to which power connections are made using bars, connectors or lugs.
One-piece spreader	- A-70	The spreader is a plastic component with copper connectors that can be installed upstream and/or downstream of a Compact NSX100 to 250 circuit breaker with a pole pitch of 35 mm . It increases the pitch of the circuit-breaker terminals to the 45 mm pitch of a NSX400/630 device to facilitate connection of large cables.
Spreaders	- A-70	Set of three (3P device) or four (4P) flat, conducting parts made of aluminium. They are screwed to the circuit-breaker terminals to increase the pitch between poles.

Circuit-breaker characteristics (IEC 60947-2)

\qquad

Breaking capacity	-A-6	Value of prospective current that a switching device is capable of breaking at a stated voltage under prescribed conditions of use and behaviour. Reference is generally made to the ultimate breaking capacity (Icu) and the service breaking capacity (Ics).
Degree of protection (IP)		

Frame size	- A-70	"A term designating a group of circuit breakers, the external physical dimensions of which are common to a range of current ratings. Frame size is expressed in amperes corresponding to the highest current rating of the group. Within a frame size, the width may vary according to the number of poles. This definition does not imply dimensional standardization." Compact NSX has two frame sizes covering 100 to 250 A and 400 to 630 A .
Insulation class	-A-5	Defines the type of device insulation in terms of earthing and the corresponding safety for user, in one of three classes. b Class I. The device is earthed. Any electrical faults, internal or external, or caused by the load, are cleared via the earthing circuit, thus ensuring user safety. b Class II. The device is not connected to a protective conductor. User safety is ensured by reinforced insulation around the live parts (an insulating case and no contact with live parts, i.e. plastic buttons, moulded connections, etc.) or double insulation. b Class III. The device may be connected only to SELV (safety extra-low voltage) circuits. The Compact NSX are class II devices (front) and may be installed through the door in class II switchboards (standards IEC 61140 and IEC 60664-1), without reducing insulation, even with a rotary handle or motor mechanism module.
Making capacity		Value of prospective making current that a switching device is capable of making at a stated voltage under prescribed conditions of use and behaviour. Reference is generally made to the short-circuit making capacity Icm .
Maximum break time	-A-17	Maximum time after which breaking is effective, i.e. the contacts separated and the current completely interrupted.
Mechanical durability	-A-6	With respect to its resistance to mechanical wear, equipment is characterised by the number of no-load operating cycles which can be effected before it becomes necessary to service or replace any mechanical parts.
Non-tripping time	-A-17	This is the minimum time during which the protective device does not operate in spite of pick-up overrun, if the duration of the overrun does not exceed the corresponding voluntary time delay.
Pollution degree of environment conditions IEC 60947-1 IEC 60664-1	-A-6	"Conventional number based on the amount of conductive or hygroscopic dust, ionized gas or salt and on the relative humidity and its frequency of occurrence, resulting in hygroscopic absorption or condensation of moisture leading to reduction in dielectric strength and/or surface resistivity". Standard IEC 60947-1 distinguishes four pollution degrees. b Degree 1. No pollution or only dry, non-conductive pollution occurs. b Degree 2. Normally, only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation may be expected. b Degree 3. Conductive pollution occurs, or dry, non-conductive pollution occurs which becomes conductive due to condensation. b Degree 4. The pollution generates persistent conductivity caused, for instance, by conductive dust or by rain or snow. Compact NSX meets degree 3, which corresponds to industrial applications.
Prospective short-circuit current	-E-13	Current that would flow through the poles if they remained fully closed during the short-circuit.
Rated current (In)	-A-6	This is the current that the device can carry continuously with the contacts closed and without abnormal temperature rise.
Rated impulse withstand voltage (Uimp)	-A-6	"The peak value of an impulse voltage of prescribed form and polarity which the equipment is capable of withstanding without failure under specified conditions of test and to which the values of the clearances are referred. The rated impulse withstand voltage of an equipment shall be equal to or higher than the values stated for the transient overvoltages occurring in the circuit in which the equipment is fitted".
Rated insulation voltage (Ui)	-A-6	"The rated insulation voltage of an equipment is the value of voltage to which dielectric tests and creepage distances are referred. In no case shall the maximum value of the rated operational voltage exceed that of the rated insulation voltage".
Rated operational current (le)		"A rated operational current of an equipment is stated by the manufacturer and takes into account the rated operational voltage, the rated frequency, the rated duty, the utilization category and the type of protective enclosure, if appropriate".
Rated operational voltage (Ue)	-A-6	"A value of voltage which, combined with a rated operational current, determines the application of the equipment and to which the relevant tests and the utilisation categories are referred. For multipole equipment, it is generally stated as the voltage between phases". This is the maximum continuous voltage at which the equipment may be used.

Q-Pulse Id: TMS1405 Active: 28/09/2015 Pease ${ }^{\text {a }}$ (143		

Rated short-time withstand current (Icw)		"Value of short-time withstand current, assigned to the equipment by the manufacturer, that the equipment can carry without damage, under the test conditions specified in the relevant product standard". Generally expressed in kA for $0.5,1$ or 3 seconds. This is an essential characteristic for air circuit breakers. It is not significant for moulded-case circuit breakers for which the design targets fast opening and high limiting capacity.
Service breaking capacity (Ics)	-A-6	Expressed as a percentage of Icu, it provides an indication on the robustness of the device under severe conditions. It is confirmed by a test with one opening and one closing/opening at Ics, followed by a check that the device operates correctly at its rated current, i.e. 50 cycles at In , where temperature rise remains within tolerances and the protection system suffers no damage.
Short-circuit making capacity (Icm)	- A-58	Value indicating the capacity of the device to make and carry a high current without repulsion of the contacts. It is expressed in kA peak.
Suitability for isolation (see also Positive contact indication, page G-5)	-A-5	This capability means that the circuit breaker meets the conditions below. b In the open position, it must withstand, without flashover between the upstream and downstream contacts, the impulse voltage specified by the standard as a function of the Uimp indicated on the device. b It must indicate contact position by one or more of the following systems: \checkmark position of the operating handle \checkmark separate mechanical indicator v visible break of the moving contacts b Leakage current between each pole, with the contacts open, at a test voltage of $1.1 \times$ the rated operating voltage, must not exceed: v 0.5 mA per pole for new devices $\checkmark 2 \mathrm{~mA}$ per pole for devices already subjected to normal switching operations $\checkmark 6 \mathrm{~mA}$, the maximum value that must never be exceeded. b It must not be possible to install padlocks unless the contacts are open. Locking in the closed position is permissible for special applications. Compact NSX complies with this requirement by positive contact indication.
Suitable for isolation with positive contact indication (see also Suitability for isolation, page G2)	-A-5	Suitability for isolation is defined here by the mechanical reliability of the position indicator of the operating mechanism, where: b the isolation position corresponds to the O (OFF) position b the operating handle cannot indicate the "OFF" position unless the contacts are effectively open. The other conditions for isolation must all be fulfilled: b locking in the open position is possible only if the contacts are effectively open b leakage currents are below the standardised limits b overvoltage impulse withstand between upstream and downstream connections.
Ultimate breaking capacity (Icu)	-A-6	Expressed in kA , it indicates the maximum breaking capacity of the circuit breaker. It is confirmed by a test with one opening and one closing/opening at Icu, followed by a check that the circuit is properly isolated. This test ensures user safety.
Communication.		
BSCM (Breaker status and control module)	- A-27	The optional BSCM for Compact NSX is used to acquire device status indications and control the communicating remote-control function. It includes a memory used to manage the maintenance indicators. It serves as a converter between the analog outputs of the device indication contacts (O/F, SD, SDE) and the digital communicating functions.
Ethernet TCP/IP (Transmission Control Protocol / Internet Protocol)	- A-28	Ethernet is a very common network protocol and complies with IEEE standard 802.3. Ethernet TCP/IP is the protocol that brings web functions to Ethernet networks. Most PCs have an Ethernet $10 / 100$ card (10 or $100 \mathrm{Mbit} / \mathrm{s}$) for connection to the internet. Data communicated from Compact NSX via Modbus are accessible on a PC via a TCP/IP-Modbus gateway such as MPS100 or EGX100.
Network		Set of communicating devices that are interconnected by communication lines in order to share data and resources.
Open protocol	-3	A protocol for system communication, interconnection or data exchange for which technical specifications are public, i.e. there are no restrictions on access or implementation. An open protocol is the opposite of a proprietary protocol.
Protocol	- A-28	Standardised specification for dialog between digital components that exchange data. It is an operating mode based on the length and structure of binary words and it must be used by all the components exchanging data between themselves. Communication is not possible without using a protocol.

RJ45 connector	- A-26	Universal, 8-wire connector that is widely used in digital communication networks. The RJ45 connector is used to interconnect computer equipment (Ethernet, Modbus, etc.), telephones and audiovisual equipment.
RS485 Modbus	- A-28	Modbus is the most widely used communication protocol in industrial networks. It operates in master-slave mode. An RS485 multipoint link connects the master and slaves via a pair of wires offering throughputs of up to 38400 bits/second over distances up to 1200 m). The master cyclically polls the slaves which send back the requested information. The Modbus protocol uses frames containing the address of the targeted slave, the function (read, write), the datum and the CRC (cyclical redundancy check).
SDTAM	- A-81	Relay module with two static outputs specifically for the motor-protection Micrologic trip units $1 \mathrm{M}, 2 \mathrm{M}$ and $6 \mathrm{E}-\mathrm{M}$. An output, linked to the contactor controller, opens the contactor when an overload or other motor fault occurs, thus avoiding opening of the circuit breaker. The other output stores the opening event in memory.
SDx	A-81	Relay module with two outputs that remotes the trip or alarm conditions of Compact NSX circuit breakers equipped with a Micrologic electronic trip unit.
Static output	- A-81	Output of a relay made up of a thyristor or triac electronic component. The low switching capability means that a power relay is required. This is the case for the SDx and SDTAM outputs.
ULP (Universal Logic Plug)	- A-31	Connection system used by Compact NSX to communicate information to the Modbus interface via a simple RJ45 cable. Compatible modules are indicated by the symbol opposite.
Components \qquad		
ASIC (Application Specific Integrated Circuit)	- A-8	Integrated circuit designed, built and intended for a specific application. It carries out repetitive sequences of instructions engraved in the silicon chip. For that reason, it is extremely reliable because it cannot be modified and is not affected by environment conditions. Micrologic trip units use an ASIC for the protection functions. The ASIC cyclically polls the network status at a high frequency, using the values supplied by captors. Comparison with the settings forms the basis for orders to the electronic trip units.
Microprocessor	A-8	A microprocessor is a more general purpose device than an ASIC. In Micrologic, a microprocessor is used for measurements and it can be programmed. It is not used for the main protection functions that are carried out by the ASIC.
Controls \qquad		
Communicating motor mechanism	A-82	For Compact NSX remote control via the communication system, a communicating motor mechanism is required. Except for the communication function, it is identical to the standard motor mechanism module and connects to and controlled by the BSCM module.
CNOMO machine-tool rotary handle	A-84	Handle used for machine-tool control enclosures and providing IP54 and IK08.
Direct rotary handle	- A-84	This is an optional control handle for the circuit breaker. It has the same three positions I (ON), O (OFF) and TRIPPED as the toggle control. It provides IP40, IK07 and the possibility, due to its extended travel, of using early-make and early-break contacts. It maintains suitability for isolation and offers optional locking using a keylock or a padlock.
Emergency off	-A-83	In a circuit equipped with a circuit breaker, this function is carried out by an opening mechanism using an MN undervoltage release or an MX shunt release in conjunction with an emergency off button.
Extended rotary handle	-A-84	Rotary handle with an extended shaft to control devices installed at the rear of switchboards. It has the same characteristics as direct rotary handles. It offers multiple locking possibilities using a keylock, a padlock or a door interlock.
Failsafe remote tripping	- A-83	Remote tripping is carried out by an opening mechanism using an MN undervoltage release in conjunction with an emergency off button. If power is lost, the protection device opens the circuit breaker.

Manual toggle control	This is the standard control mechanism for the circuit breaker, with a toggle that can be flipped up or down. In a moulded-case circuit breaker (MCCB), there are three positions, I (ON), O (OFF) and TRIPPED. Once in the TRIPPED position, manual reset is required by switching to O (OFF position before reclosing. The TRIPPED position does not offer isolation with positive contact indication. This is guaranteed only by the O (OFF) position.
MCC rotary handle	
Motor mechanism module	
Handle used for motor control centres and providing IP43 and IK07.	

$\boldsymbol{E}_{\text {nvironment }}$

EMC (Electromagnetic compatibility) >A-5

Power loss

$>B-10$
Pole resistance

EMC is the capacity of a device not to disturb its environment during operation (emitted electromagnetic disturbances) and to operate in a disturbed environment (electromagnetic disturbances affecting the device). The standards define various classes for the types of disturbances. Micrologic trip units comply with annexes F and J in standard IEC IE60947-2

The flow of current through the circuit-breaker poles produces Joule-effect losses caused by the resistance of the poles.

Product environmental profile (PEP) $>$ A-4 LCA: Life-cycle assessment ISO 14040

An assessment on the impact of the construction and use of a product on the environment, in compliance with standard ISO 14040, Environmental management, life-cycle assessment (LCA), principles and framework.
For Compact NSX, this assessment is carried out using the standardised EIME (Environmental Impact and Management Explorer) software, which makes possible comparisons between the products of different manufacturers.
It includes all stages, i.e. manufacture, distribution, use and end of life, with set usage assumptions:
b use over 20 years at a percent load of 80% for 14 hours per day and 20% for ten hours
b according to the European electrical-energy model.
It provides the information presented below.
b Materials making up the product: composition and proportions, with a check to make sure no substances forbidden by the RoHS directive are included.
b Manufacture: on Schneider Electric production sites that have set up an environmental management system certified ISO 14001.
b Distribution: packaging in compliance with the 94/62/EC packaging directive (optimised volumes and weights) and optimised distribution flows via local centres. b Use: no aspects requiring special precautions for use. Power lost through Joule effect in Watts (W) must be $<0.02 \%$ of total power flowing through the circuit breaker. Based on the above assumptions, annual consumption from 95 to 200 kWh . b End of life: products dismantled or crushed. For Compact NSX, 81\% of materials can be recycled using standard recycling techniques. Less than 2% of total weight requires special recycling.

Environmental indicators are also frequently used for the PEP (sheet available on request for Compact NSX):
b Depletion of natural resources
b Depletion of energy
b Depletion of water
b Potential for atmospheric warming (greenhouse effect)
b Potential for stratospheric ozone depletion
b Creation of atmospheric ozone (ozone layer)
b Acidification of air (acid rain)
b Production of hazardous waste.

RoHS directive (Restriction of Hazardous substances)	-A-4	European directive 2002/95/EC dated 27 January 2003 aimed at reducing or eliminating the use of hazardous substances. The manufacturer must attest to compliance, without third-party certification. Circuit breakers are not included in the list of concerned products, which are essentially consumer products. That not withstanding, Schneider Electric decided to comply with the RoHS directive. Compact NSX products are designed in compliance with RoHS and do not contain (above the authorised levels) lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls PBB and polybrominated diphenyl ether PBDE).
Safety clearances	-A-4	When installing a circuit breaker, minimum distances (safety clearances) must be maintained between the device and panels, bars and other protection systems installed nearby. These distances, which depend on the ultimate breaking capacity, are defined by tests carried out in accordance with standard IEC 60947-2.
Temperature derating	-B-8	An ambient temperature varying significantly from $40^{\circ} \mathrm{C}$ can modify operation of magnetic or thermal-magnetic protection functions. It does not affect electronic trip units. However, when electronic trip units are used in high-temperature situations, it is necessary to check the settings to ensure that only the permissible current for the given ambient temperature is let through.
Vibration withstand IEC 60068-2-6	-B-2	Circuit breakers are tested in compliance with standard IEC 60068-2-6 for the levels required by merchant-marine inspection organisations (Veritas, Lloyd's, etc.): b 2 to 13.2 Hz : amplitude of $\pm 1 \mathrm{~mm}$ b 13.2 to 100 Hz : constant acceleration of 0.7 g .
WEEE directive (Waste of Electrical and Electronic Equipment)	-A-4	European directive on managing the waste of electrical and electronic equipment. Circuit breakers are not included in the list of concerned products. However, Compact NSX products respect the WEEE directive.

(Restriction of Hazardous substances)

Vibration withstand $\quad \mathrm{B}-2$
IEC 60068-2-6

WEEE directive
Circuit breakers are not included in the list of concerned products. However, Compact NSX products respect the WEEE directive.

Q-Pulse Id: TMS1405 Active: 28/09/2015 Schneider | Page 384 of 1432 |
| :--- |

Current harmonics $>\mathrm{A}-20$	Non-linear loads cause harmonic currents that flow in the 50 Hz (or 60 Hz) distribution system. Total harmonic current is the sum of sinusoidal AC currents for which the rms values can be measured and broken down into: b the fundamental current at the $50 / 60 \mathrm{~Hz}$ frequency of the distribution system, with an rms value of IH_{1} b harmonic currents with whole, odd multiples ($3,5,7$, etc.) of the $50 / 60 \mathrm{~Hz}$ frequency, called the third-order, fifth-order, etc. harmonics. For example, IH_{3}, the third-order harmonic at $150 / 180 \mathrm{~Hz}, \mathrm{IH}_{5}$, the fifth-order harmonic at $250 / 300 \mathrm{~Hz}$, etc. The presence of harmonics in the system must be monitored and limited because it results in temperature rise, currents in the neutral (caused by the third-order harmonics and multiples), malfunctions of sensitive electronic devices, etc. Micrologic E trip units take into account harmonics up to order 15 in the THDI and THDU calculations.
Non-linear load	Systems producing harmonics are present in all industrial, commercial and residential sectors. Harmonics are caused by non-linear loads. A load is said to be non-linear when the current drawn does not have the same waveform as the supply voltage. Typically, loads using power electronics are non-linear. Examples of non-linear loads include computers, rectifiers, variable-speed drives, arc furnaces and fluorescent lighting.
Total harmonic distortion of current $>\mathrm{A}-21$ (THDI)	THDI characterises the distortion of the current wave by harmonics. It indicates the quantity of harmonics in the resulting waveform. It is expressed in percent. The higher the THDI, the more the current is distorted by harmonics. THDI should remain below 10%. Above that level, there is said to be harmonic pollution that is considered severe when it rises above 50%.
Total harmonic distortion of voltage $>\mathrm{A}-21$ (THDU)	THDU characterises the distortion of the voltage wave by harmonics. It indicates the quantity of harmonics in the resulting waveform. It is expressed in percent. The higher the THDU, the more the system voltage is distorted by harmonics. It is advised not to exceed 5\% for low-voltage systems.
Voltage harmonics \quad A-20	For each current harmonic IHk, there is a voltage harmonic UHk of the same order k , where the resulting voltage is the sum of the two waves. The voltage wave is therefore distorted with respect to the standard sinusoidal wave

Measurements

Contact wear \quad A-23	Each time Compact NSX opens, the Micrologic 5 / 6 trip unit measures the interrupted current and increments the contact-wear indicator as a function of the interrupted current, according to test results stored in memory.
Current transformer with iron-core >10 toroid	It is made up of a coil wound around an iron frame through which a power busbar runs. The current flowing in the bar, on passing through the sensor, induces a magnetic field that reverses for each half period. This variation in the field in turn creates an induced current in the coil. This current is proportional to the current flowing in the bar. It is sufficient to supply the measurement electronics. The disadvantage of iron-core measurement current transformers (CT) is that they rapidly saturate for currents > 10 In .
Current transformer with Rogowski >10 toroid or air-core CT	It is made up of a coil without an iron frame, through which a power busbar runs. The output voltage at the coil terminals is proportional to the current flowing through the bar. The result is a current transformer (CT) with a voltage output. The advantage is that it never saturates whatever the primary current and thus enables measurement of high currents. The output is however a very low current that is too low to supply the measurement electronics. For Micrologic, Rogowski CTs measure the current and a second CT, with an iron core, provides the electrical supply.
Demand current, demand power and / A-21 peak values	Average of the instantaneous current or power values over an adjustable fixed or sliding time interval. The highest value observed over the time interval is the peak value. The time interval runs from the last reset.
Instantaneous current \quad A-21	True rms value of the current measured by the current transformers over a sliding time interval. Available on Micrologic $5 / 6 \mathrm{~A}$ or E .

Instantaneous voltage	- A-21	True rms value of the voltage measured by the voltage sensors over a sliding time interval. Available on Micrologic $5 / 6 \mathrm{~A}$ or E .
Maximeters/minimeters	- A-20	Micrologic 5 and 6 A or E can record the minimum and maximum values of electrical parameters over set time periods.
Overvoltage category (OVC - Overvoltage category) IEC 60947-1. Annex H	- A-32	Standard IEC 60664-1 stipulates that it is up to the user to select a measurement device with a sufficient overvoltage category, depending on the network voltage and the transient overvoltages likely to occur. Four overvoltage categories define the field of use for a device. b Cat. I. Devices supplied by a SELV isolating transformer or a battery. b Cat. II. Residential distribution, handheld or laboratory tools and devices connected to standardised 2P + earth electrical outlets (230 V). b Cat. III. Industrial distribution, fixed distribution circuits in buildings (main low voltage switchboards, rising mains, elevators, etc.). b Cat. IV. Utility substations, overhead lines, certain industrial equipment.
Percent load	- A-23	Percentage of current flowing through the circuit breaker with respect to its rated current. Micrologic 6 E-M offers this information and can sum it over the total operating time to provide the load profile for the following ranges, 0 to $49 \%, 50$ to $79 \%, 80$ to 89% and u 90%.
Phase sequence	- A-23	The order in which the phases are connected ($\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3$ or $\mathrm{L} 1, \mathrm{~L} 3, \mathrm{~L} 2$) determines the direction of rotation for three-phase asynchronous motors. Micrologic 6 E-M trip units provide this information.
Power and energy metering (consumption)	- A-21	The digital electronics in Micrologic $5 / 6 \mathrm{E}$ calculate the instantaneous power levels, apparent (S in kVA), active (P in kW) and (Q in kV), and integrate over a time interval to determine the corresponding energies (kVAh, kWh kvarh). Calculations are for each phase and for the total.
Time-stamped histories	-A-23	Micrologic trip units store information on events (e.g. alarms and their cause) that are time-stamped to within a millisecond.
P		
Ground-fault protection G (lg)	- A-19	Protection function specific to electronic circuit breakers, symbolised by G (Ground). This protection can calculate high-threshold residual earth-leakage currents (in the order of tens of Amperes) on the basis of phase-current measurements. Micrologic $5 / 6$ offers this protection function with adjustable pick-up \lg and time delay.
Instantaneous protection I (li)	>A-19	This protection supplements Isd. It provokes instantaneous opening of the device. The pick-up may be adjustable or fixed (built-in). This value is always lower than the contact-repulsion level.
Long-time protection L (Ir)	- A-19	Protection function where the adjustable Ir pick-up determines a protection curve similar to the thermal-protection curve (inverse-time curve $I^{2 t}$). The curve is generally determined on the basis of the Ir setting which corresponds to a theoretically infinite tripping time (asymptote) and of the point at 6 Ir at which the tripping time depends on the rating.
Magnetic protection (Im)	>A-14	Short-circuit protection provided by magnetic trip units (see this term). The pick-up setting may be fixed or adjustable.
Neutral protection (IN)	-A-16	The neutral is protected because all circuit-breaker poles are interrupted. The setting may be that used for the phases or specific to the neutral, i.e. reduced neutral (0.5 times the phase current) or OSN (oversized neutral) at 1.6 times the phase current. For OSN protection, the maximum device setting is limited to 0.63 In .
Residual-current earth-leakage protection (I $\Delta \mathrm{n}$)	- A-34	Protection provided by Vigi modules, in which the residual-current toroids directly detect low-threshold earth-leakage currents (in the order of tens of mA) caused by insulation faults.
Short-delay protection S (Isd)	- A-19	Protection function specific to electronic circuit breakers, symbolised by S (Short delay or short time). This protection supplements thermal protection. The reaction time is very short, but has a slight time delay to enable discrimination with the upstream device. The short-delay pick-up Isd is adjustable from approximately 1.5 to 10 lr .
Short-delay protection with fixed time delay So (Isd)	-A-17	Short-delay protection, but with a fixed time delay. This function is available on Micrologic 2 . It is symbolised by So. It ensures discrimination with downstream devices.

Thermal protection (lr) $\quad>$ A-15 \quad| Overload protection provided by thermal trip units (see this term) using an inverse- |
| :--- |
| time curve $\left(I^{2} t\right)$. |

\boldsymbol{R} elays and auxiliary contacts

Auxiliary contact IEC 60947-1		"Contact included in an auxiliary circuit and mechanically operated by the switching device".
Break contact IEC 60947-1	$>\mathrm{A}-84$	"Control or auxiliary contact which is open when the main contacts of the mechanical switching device are closed and closed when they are open".
Make contact IEC 60947-1	- A-84	"Control or auxiliary contact which is closed when the main contacts of the mechanical switching device are closed and open when they are open".
Relay (electrical) IEC 60947-1	-A-18	"Device designed to produce sudden, predetermined changes in one or more electrical output circuits when certain conditions are fulfilled in the electrical input circuits controlling the device".
Relay module with static output	-A-81	Output of a relay made up of a thyristor or triac electronic component. The low interrupting capacity means that a power relay is required. This is the case for the SDx and SDTAM outputs.

$S_{\text {witchgear }}$

Circuit breaker
IEC 60947-2
Circuit-breaker utilisation category $>$ A-6
IEC 60947-2
Contactor $>$ A-36

IEC 60947-1
_

Contactor utilisation categories

IEC 60947-4-1

Current-limiting circuit breaker \quad A-36
 IEC 60947-2

Disconnector

IEC 60947-3

Switch-disconnector >A-56
IEC 60947-3

"Mechanical switching device, capable of making, carrying and breaking currents under normal circuit conditions and also making, carrying for a specified time and breaking currents under specified abnormal circuit conditions such as those of short circuit". Circuit breakers are the device of choice for protection against overloads and short-circuits. Circuit breakers may, as is the case for Compact NSX, be suitable for isolation.

The standard defines two utilisation categories, A and B , depending on breaker discrimination with upstream breakers under short-circuit conditions. b Category A. Circuit breakers not specifically designed for discrimination applications.
b Category B. Circuit breakers specifically designed for discrimination, which requires a short time-delay (which may be adjustable) and a rated short-time withstand current in compliance with the standard. Compact NSX100 to 630 circuit breakers are category A, however, by design, they provide discrimination with downstream devices (see the Complementary technical information guide).
"Mechanical switching device having only one position of rest, operated otherwise than by hand, capable of making, carrying and breaking currents under normal circuit conditions including operating overload conditions". A contactor is provided for frequent opening and closing of circuits under load or slight overload conditions. It must be combined and coordinated with a protective device against overloads and short-circuits, such as a circuit breaker.

The standard defines four utilisation categories, $\mathrm{AC} 1, \mathrm{AC} 2, \mathrm{AC} 3$ and AC 4 depending on the load and the control functions provided by the contactor. The class depends on the current, voltage and power factor, as well as contactor withstand capacity in terms of frequency of operation and endurance.
"A circuit-breaker with a break-time short enough to prevent the short-circuit current reaching its otherwise attainable peak value".
"Mechanical switching device which, in the open position, complies with the requirements specified for the isolating function". A disconnector serves to isolate upstream and downstream circuits. It is used to open or close circuits under no-load conditions or with a negligible current level. It can carry the rated circuit current and, for a specified time, the short-circuit current.
"Switch which, in the open position, satisfies the isolating requirements specified for a disconnector". A switch-disconnector serves for switching and isolation. The switch function breaks the circuit under load conditions and the disconnection function isolates the circuit. Protection is not provided. It may be capable of making shortcircuit currents if it has the necessary making capacity, but it cannot break shortcircuit currents. Compact NSX100 to 630 NA switch-disconnectors have a making capacity.

Switch-disconnector utilisation \quad A-57	The standard defines six utilisation categories, AC-21A or B, AC-22 A or B, AC23 A or B. They depend on the rated operational current and the mechanical durability (A for
frequent operation or B for infrequent operation). Compact NSX NA switch-	
disconectors comply with utilisation categories AC22A or AC23A.	

Three-phase asynchronous motors and their protection

Locked-rotor protection (ljam)	- A-44	This function steps in when the motor shaft cannot or can no longer drive the load. The result is a high overcurrent.
Long-start protection (llong)	- A-44	An overly long start means the current drawn remains too high or too low for too long, with respect to the starting current. In all cases, the load cannot be driven and the start must be interrupted. The resulting temperature rise must be taken into account before restarting.
Phase-unbalance or phase- loss protection (lunbal)	- A-43	This protection function steps in if the current values and/or the unbalance in the three phases supplying the motor exceeds tolerances. Currents should be equal and displacement should be one third of a period. Phase loss is a special case of phase unbalance.
Starting current	- A-38	Start-up of a three-phase, asynchronous motor is characterised by: b a high inrush current, approximately $14 \ln$ for 10 to 15 ms b a starting current, approximately 7.2 In for 5 to 30 seconds b return to the rated current after the starting time.
Starting time	- A-38	Time after which the motor ceases to draw the starting current and falls back to the operating current $\operatorname{lr}(\mathrm{y}$ In).
Thermal image of the rotor and stator	- A-44	The thermal image models the thermal behaviour of a motor rotor and stator, taking into account temperature rise caused by overloads or successive starts, and the cooling constants. For each motor power rating, the algorithm takes into account a theoretical amount of iron and copper which modifies the cooling constants.
Thermal protection		Protection against overcurrents following an inverse time curve $\mathrm{I}^{2} \mathrm{t}=$ constant, which defines the maximum permissible temperature rise for the motor. Tripping occurs after a time delay that decreases with increasing current.
Trip class IEC 60947-4-1	- A-38	The trip class determines the trip curve of the thermal protection device for a motor feeder. The standard defines trip classes 5, 10, 20 and 30 . These classes are the maximum durations, in seconds, for motor starting with a starting current of 7.2 lr , where Ir is the thermal setting indicated on the motor rating plate.
Under-load protection (lund)	- A-44	This function steps in when the driven load is too low. It detects a set minimum phase current which signals incorrect operation of the driven machine. In the example of a pump, under-load protection detects when the pump is no longer primed.

Tripunits

| Electronic trip unit (Micrologic) | A-16Trip unit that continuously measures the current flowing through each phase and the
 neutral if it exists. For Micrologic, the measurements are provided by built-in current
 sensors linked to an analog-digital converter with a high sampling frequency. The
 measurement values are continuously compared by the ASIC the protection
 settings. If a setting is overrun, a Mitop release trips the circuit-breaker operating
 mechanism.
 This type of trip unit offers much better pick-up and delay setting accuracy than
 thermal-magnetic trip units. It also provides a wider range of protection functions. |
| :--- | :--- | :--- |
| Magnetic release | Release actuated by a coil or a lever. A major increase in the current (e.g. a short-
 circuit) produces in the coil or the lever a change in the magnetic field that moves a
 core. This trips the circuit breaker poperating mechanism. Action is instantaneous.
 The pick-up setting may be adjustable. |
| Reflex tripping | Compact NSX circuit breakers have a patented reflex-tripping system based on the
 energy of the arc and that is independent of the other protection functions. It
 operates extremely fast, before the other protection functions. It is an additional
 safety function that operates before the others in the event of a very high short-
 circuit. |

Release

IEC 60947-1

Shunt release (MX)	- A-83	This type of release operates when supplied with current. The MX release provokes circuit-breaker opening when it receives a pulse-type or maintained command.
Thermal-magnetic trip unit	$>\mathrm{A}-14$	Trip unit combining thermal protection for overloads and magnetic protection.
Thermal release	- A-14	Release in which a bimetal strip is heated by the Joule effect. Above a temperaturerise threshold that is a function of the current and its duration ($I^{2} t$ curve $=$ constant, which is representative of temperature rise in cables), the bimetal strip bends and releases the circuit-breaker opening mechanism. The pick-up setting may be adjustable.
Undervoltage release (MN)	- A-83	This type of release operates when the supply voltage drops below the set minimum.

Device, mechanically connected to a mechanical switching device (e.g. a circuit breaker), which releases the holding means and permits the opening or the closing of the switching device. For circuit breakers, releases are often integrated in a trip unit.

This type of release operates when supplied with current. The MX release provokes circuit-breaker opening when it receives a pulse-type or maintained command

Release in which a bimetal strip is heated by the Joule effect. Above a temperaturerise threshold that is a function of the current and its duration ($I^{2} t$ curve $=$ constant, which is representative of temperature rise in cables), the bimetal strip bends and adjustable.

This type of release operates when the supply voltage drops below the set minimum.

C60N/H miniature circuit breakers Multi 9 Merlin Gerin

The C60N circuit-breaker is a miniature circuit-breaker used for the
 protection of circuits in industry and the tertiary sector. It ensures the following functions: protection against short-circuit and overload currents, isolation, protection of persons against indirect contact.

Operation

- 1 to 4-pole circuit-breakers.
- Control and protection:
- B curve: against circuit overcurrents including protection of persons for longer cables than with C curve types,
- C curve: against the overcurrents of circuits feeding conventional loads,
- D curve: against the current of installations containing loads with high inrush currents (motors, transformers).

Advantages

- Conformity with national and international standards: AS/NZS 4898 (EN 60 898).
- Ratings from 1 to 63 A .
- Breaking capacity of $6000 / 10000 \mathrm{~A}$ under $240 / 415 \mathrm{~V}$ for C60N/H.
- Clip-on electrical auxiliaries and add-on accessories.

The range

IMPLEMENTATION

- Designed for installation in modular enclosures and switchboards.
- Easy mounting on symmetrical rail.
- Easy connection using serrated tunnel terminals with flap.
- Captive screws with mixed +/- indent.
- Simplified clip-on combination of circuit-breaker with auxiliaries.
- Use of comb busbars to simplify circuit-breaker connection.

TECHNICAL DATA

Electrical data

- Power circuit:
- voltage rating: 440 V AC,
- ratings from 0.5 to 63 A set at 30C (40C for D curve),
- breaking capacity:

C60N rating (A)	number of poles	voltage (VAC)	breaking capacity (A)
1 to 63	1P	230 to 240	6000
2P, 3P,	400 to 415	6000	
C60H rating (A)	number of poles	voltage (VAC)	breaking capacity (A)
1 to 63	1P	230 to 240	10000

$$
\text { - limitation class (EN } 60 \text { 898): 3, }
$$

- fast closing: increased withstand to the high inrush currents of certain loads,
- isolation with positive break indication: opening is indicated by a green strip on the device's control toggle.
This indicates that all poles are open.
Tripping curves:
- B curve:
- magnetic releases operate between 3 and 5 ln .
- C curve:
- magnetic releases operate between 5 and 10 ln .
- D curve: magnetic releases operate between 10 and 14 ln .
Mechanical data
- Connection by tunnel terminals for the following cables:
- $16 \mathrm{~mm}^{2}$ flexible or $25 \mathrm{~mm}^{2}$ stranded for up to 25 A ratings,
- $25 \mathrm{~mm}^{2}$ flexible or $35 \mathrm{~mm}^{2}$ stranded for ≥ 32 A ratings.
- Durability: 20000 cycles (O-C).
- Dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{dmm}$): $18 \times \mathrm{N}$ (number of poles) $\times 81$ x 70 .
■ Weight (g): 1P: 120, 240, 2P: 240, 3P: 360, 4P: 480.

ENVIRONMENT

- Tropicalisation: treatment 2 (relative humidity: 95% at 55C).
- Degree of protection:
- of enclosure: IP 40,
- of terminals: IP 20.
- Operating temperature:
- 5 C to +60 C .
- Storage temperature:
- 40 C to +100 C .

Function

- The circuit-breakers combine the following functions:
- protection of circuits against short-circuit currents
\square protection of circuits against overload currents
- control
- isolation
\square protection of persons against indirect contact with TN and IT neutral systems.
C 60 H circuit-breakers are used in the tertiary and industrial sectors.

Tripping curves

B curve

When the short-circuit currents are weak (generators, long cables).
■ Power circuit

- ratings: 6 to 63 A set at $30^{\circ} \mathrm{C}$
\square tripping curve: the magnetic trip units operate between 3 and 5 In .

C curve

Cables feeding conventional loads.
■ Power circuit

- ratings: 0.5 to 63 A set at $30^{\circ} \mathrm{C}$
\square tripping curve: the magnetic trip units operate between 5 and 10 In .
D curve
Loads with high inrush currents (motors, transformers).
■ Power circuit
- ratings: 0.5 to 63 A set at $40^{\circ} \mathrm{C}$
tripping curve: the magnetic trip units operate between 10 and 14 In .
Technical data according to IEC 60898
■ Power circuit:
\square voltage rating (Ue): 440 V AC
\square breaking capacity:
- according to IEC 60898, Icn ultimate breaking capacity (O-CO cycle):

Rating (A)	Type	Voltage (V)	Breaking capacity Icn (A)
$0.5 \ldots 63$	1 P	$230 / 400$	$\mathbf{1 0 0 0 0}$
	$1 \mathrm{P}+\mathrm{N}$	230	10000
$2 \mathrm{P}, 3 \mathrm{P}, 4 \mathrm{P}$	400	$\mathbf{1 0 0 0 0}$	

- limitation class (IEC 60898): 3

Technical data according to IEC 60947-2

- Power circuit:
- voltage rating (Ue): 440 V AC
- impulse voltage (Uimp): 6 kV
\square insulation voltage (Ui): 500 V AC
\square breaking capacity:
- according to IEC 60947-2, Icu ultimate breaking capacity (O-CO cycle):

Rating (A)	Type	Voltage (V)	Breaking capacity Icu (A)
0.5... 63	1P	130	30
		230... 240	15
		$400 . .415$	4 (1)
	1P+N, 2P, 3P, 4P	230... 240	30
		400... 415	15
		440	10

(1) breaking capacity under 1 pole with IT isolated neutral system (case of double fault).

Generals technical data

■ Fast closing: allows the high inrush currents of some loads to be better held.

- Isolation with positive break indication: opening is indicated by a green strip on the device operating handle. This indicator shows opening contacts of all the poles.
■ Number of cycles (O-C): 20000.
- Environment
- tropicalisation: treatment 2 (relative humidity: 95% at $55^{\circ} \mathrm{C}$) according to

IEC 60068-1

- weight (g):

Type	$\mathbf{1 P}$	$\mathbf{2 P}$	$\mathbf{3 P}$	4P
	120	240	360	480

- Connection: tunnel terminals for the following cables:
- $16 \mathrm{~mm}^{2}$ flexible or $25 \mathrm{~mm}^{2}$ rigid up to 25 A ratings
- $25 \mathrm{~mm}^{2}$ flexible or $35 \mathrm{~mm}^{2}$ rigid for 32 to 63 A ratings.

IEC 60898: 10000 A , IEC 60947-2: 15 kA

Catalogue numbers						
Type	Rating (A)	Width in mod. of 9 mm	Quantity per batch	Catalogue number		
				B curve	C curve	D curve
1P	0.5	2	12	-	24900	25171
	0.75	2	12	-	24901	-
	1	2	12	-	24955	25152
	2	2	12	-	24956	25155
	3	2	12	-	24957	25157
	4	2	12	-	24958	25158
	6	2	12	24699	24959	25159
	10	2	12	24700	24960	26160
	13	2	12	24695	24891	-
	16	2	12	24701	24961	25161
	20	2	12	24702	24962	25164
	25	2	12	24703	24963	25165
	32	2	12	24704	24964	25166
	40	2	12	24705	24965	25167
	50	2	12	24706	24966	25168
	63	2	12	24707	24967	25169
1P+N	1	4	6	-	25094	-
	2	4	6	-	25095	-
	3	4	6	-	25096	-
	4	4	6	-	25097	-
	6	4	6	24712	25098	-
	10	4	6	24713	25099	-
	13	4	6	24708	25100	-
	16	4	6	24714	25101	-
	20	4	6	24715	25102	-
	25	4	6	24716	25103	-
	32	4	6	24717	25104	-
	40	4	6	24718	25105	-
	50	4	6	24719	25106	-
	63	4	6	24720	25107	-
2P	0.5	4	6	-	24902	25172
	0.75	4	6	-	24903	-
	1	4	6	-	24981	25183
	2	4	6	-	24982	25184
	3	4	6	-	24983	25185
	4	4	6	-	24984	25186
	6	4	6	24725	24985	25187
	10	4	6	24726	24986	25188
	13	4	6	24721	24919	-
	16	4	6	24727	24987	25189
	20	4	6	24728	24988	25190
	25	4	6	24729	24989	25191
	32	4	6	24730	24990	25192
	40	4	6	24731	24991	25193
	50	4	6	24732	24992	25194
	63	4	6	24733	24993	25195
3P	0.5	6	4	-	24906	25173
	0.75	6	4	-	24907	-
	1	6	4	-	24994	25196
	2	6	4	-	24995	25197
	3	6	4	-	24996	25198
	4	6	4	-	24997	25199
	6	6	4	24738	24998	25200
	10	6	4	24739	24999	25201
	13	6	4	24734	24933	-
	16	6	4	24740	25000	25202
	20	6	4	24741	25001	25203
	25	6	4	24742	25002	25205
	32	6	4	24743	25003	25207
	40	6	4	24744	25004	25208
	50	6	4	24745	25005	25209
	63	6	4	24746	25006	25210

C 60 H circuit-breakers
B, C and D curves
IEC 60898:10000 A, IEC 60947-2: 15 kA

Catalogue numbers

Type	Rating (A)	Width in mod. of 9 mm	Quantity per batch	Catalogue number		
				B curve	C curve	D curve
4P	0.5	8	3	-	24908	25174
	0.75	8	3	-	24909	-
	1	8	3	-	25007	25211
	2	8	3	-	25008	25212
	3	8	3	-	25009	25213
	4	8	3	-	25010	25214
	6	8	3	24751	25011	25215
	10	8	3	24752	25012	25216
	13	8	3	24747	24947	-
	16	8	3	24753	25013	25217
	20	8	3	24754	25014	25218
	25	8	3	24755	25015	25219
	32	8	3	24756	25016	25220
	40	8	3	24757	25017	25221
	50	8	3	24758	25018	25222
	63	8	3	24759	25019	25223

Connection

additional

Product datasheet
 Characteristics

29363
interface - for automatic controller - ACP - 220.. 240 V

Main	
Range of product	Compact NS100...630 asterpact NT NSX100....250 NSX400...630
Product or component type	Control plate
Device short name	ACP
Accessory / separate part category	Interlocking accessory
[Us] rated supply voltage	$220 \ldots 240 \mathrm{~V} \mathrm{AC} \mathrm{50/60} \mathrm{~Hz}$

Complementary

Interlocked device	Compact NS100...630
	Compact NS630b...1600
	Masterpact NT
	Masterpact NW
	NSX100...250
	NSX400...630
Selection modes	Circuit breaker on N
	Circuit breaker on R
Input type	Contacts customer voluntary order to transfer to source R
Output type	Contacts customer : indication of operation in automatic or stop mode
Product compatibility	Compact NSX400...630
	Masterpact NT
	Masterpact NW
	Compact NS630b...1600
Compact NSX100...250	

Contractual warranty	18 months
Period	

Environment

Compact NS100 $\rightarrow 630$ Compact NS630b-1600 Masterpact NT, NW Merlin Gerin

 IVE

Schneider
4 Electric
Active: 28/09/2015

ADanger et avertissement / Danger and warning / Vorsicht Lebensgefahr
Norme di sicurezza e avvertenze / Instrucciones de seguridad Norme di sicurezza e avvertenze / Instrucciones de seguridad

Le montage de ces matériels ne peut être effectué que par des professionnels. Le non respect des indications de la présente notice ne saurait engager la responsabilité du constructeur.

RISQUE D'ELECTROCUTION, DE BRULURES OU D'EXPLOSION
■ l'installation et l'entretien de cet appareil ne doivent être effectués que par des professionnels

- coupez l'alimentation générale et auxiliaire de cet appareil avant toute intervention sur ou dans l'appareil
■ utilisez toujours un dispositif de détection de tension approprié pour confirmer l'absence de tension
- replacez tous les dispositifs, les portes et les couvercles avant de mettre cet appareil sous tension. Le non respect de ces consignes de sécurité exposerait l'intervenant et son entourage à des risques de dommages corporels graves susceptibles d'entraîner la mort.

This equipment should only be mounted by professionals. The manufacturer shall not be held responsible for any failure to comply with the instructions given in this manual

RISK OF

ELECTROCUTION, BURNS OR EXPLOSION

- the device should only be installed and serviced by professionals
\square switch off the general and auxiliary power supply to the device prior to any work on or in the device
- always use an appropriate voltage detection device to confirm the absence of voltage
- replace all interlocks, doors and covers before energising the device.
Failure to take these precautions will expose the technicians carrying out the work and anyone nearby to hazards that may result in severe bodily injury or death.

Diese Bauteile dürfen nur von qualifiziertem Personal montiert werden. Bei Nichteinhaltung der Anweisungen der vorliegenden Anleitung kann der Hersteller auf keinen Fall haftbar gemacht werden.

GEFAHR VON TÖDLICHEM ELEKTROSCHOCK, VERBRENNUNGEN UND EXPLOSION

- Installierung und Wartung dieses Gerätes dürfen nur von qualifiziertem Personal vorgenommen werden
- Vor jeglichem Eingriff auf oder an dem Gerät muß die Stromversorgung des Geräts unterbrochen werden ■ Vor dem Eingriff ist mit einem geeigneten Spannungsmesser sicher zu stellen, daß keinerlei Spannung vorhanden ist
- Bevor das Gerät erneut unter Spannung gesetzt wird, müssen sämtliche Vorrichtungen, Türen und Abdeckungen wieder angebracht sein.
Falls diese
Vorsichtsmaßnahmen nicht eingehalten werden, könnte dies zu schwere Verletzungen bis hin zum Tod führen.

II montaggio di questi materiali deve essere eseguito esclusivamente da personale competente. In caso di mancato rispetto delle indicazioni fornite nel presente manuale, il costruttore non potrà essere ritenuto responsabile

RISCHIO DI

ELETTROCUZIONE, DI USTIONI O DI ESPLOSIONE

- l'installazione e la
manutenzione di questo apparecchio devono essere eseguite esclusivamente da personale competente - prima di qualsiasi intervento sull'apparecchio o al suo interno, interrompere l'alimentazione generale e ausiliare fornita all'impianto - verificare sempre l'assenza di tensione con uno strumento adeguato
- prima di mettere questo apparecchio sotto tensione, riportatelo alle condizioni di sicurezza iniziali rimontando gli eventuali pezzi precedentemente tolti. Il mancato rispetto delle indicazioni sulla sicurezza riportate in questo documento, potrebbe causare gravi incidenti, tali da ferire o portare alla morte l'operatore.

El montaje de estos materiales sólo puede ser realizado por profesionales. El incumplimiento de las indicaciones dadas en estas instrucciones anula la responsabilidad del constructor.

RIESGO DE ELECTROCUCION, DE QUEMADURAS O DE EXPLOSION

- la instalación y el mantenimiento de este aparato sólo deben ser realizados por profesionales - corte la alimentación general y auxiliar del aparato antes de cualquier intervención sobre o en el mismo
- utilice siempre un dispositivo de detección de tensión apropiado para confirmar la falta de tensión - vuelva a colocar todos los dispositivos, las puertas y las tapas antes de poner este aparato bajo tensión. La falta de cumplimiento de estas precauciones puede exponer al usuario y a su entorno a riesgos de daños corporales graves susceptibles de producir la muerte.

Avant toute intervention sur l'appareil / Before working on the device / Vor jedem Eingriff an dem Gerät / Prima di qualsiasi intervento sull'apparecchio / Antes de cualquier intervención sobre el aparato

NS630b-1600
 NT
 NW

débrochable / Drawout / Einschubtechnik /
estraibile / seccionable

1 Outillage nécessaire / Necessary tools /
Benötigtes Werkzeug / Utensili necessari /
Herramientas necesarias 3
2
Déballage / Unpacking / Auspacken /
Apertura dell'imballaggio/ Desembalaje 4
Encombrements / Dimensions / Abmessungen /
Ingombri / Dimensiones 4
3
Schémas de câblage 5
Wiring diagrams 10
Schaltpläne 15 15
Schemi elettrici 20
Esquemas de cableado 25
4
Installation / Installation / Installation / Installazione / 30
Instalación

Outillage nécessaire / Necessary tools / Benötigtes Werkzeuge / Utensili necessari / Herramientas necesarias
tournevis (plat $n^{\circ} 2,5$ et cruciforme 2), clef plate, pince multiprise, pince coupante, pince à dénuder
screwdrivers ($n^{\circ} 2.5 \mathrm{~mm}$ slotted and Philips no. 2), spanner, adjustable pliers, wire cutter and wire stripper

Schraubendreher (Nr. 2. 5), Kreuzschraubendreher (Nr. 2), Flachschlüssel (Nr 8-9),
Wasserpumpenzange, Seitenschneider,
Abisolierzange
cacciavite (piatto $n^{\circ} 2,5$ e a croce n° 2), chiave inglese ($n^{\circ} 8,9$), Pinze
destornillador (plano $n^{\circ} 2,5 y$ estrella 2), llave fija, tenazas, alicates de corte, pelacables

Schémas de câblage

NT, NW

Wiring diagrams
NS100, NS160, NS250, NS400-630

NT, NW

Schaltpläne

Schaltpläne

NS100, NS160, NS250, NS400-630

Schaltpläne

NT, NW

IVE: Interblocco elettrico e morsettiera di collegamento
Schema rappresentato con i circuiti "fuori tensione", tutti gli apparecchi aperti e tutti i relé in posizione "riposo".

(1) I comandi di commutazione delle alimentazioni "Normale" e "Emergenza" devono essere interbloccati elettricamente.
(2) Schema di principio: le informazion SDE sono disponibili sull'interblocco IVE. I contatti SDE sono montati negli apparecchi.

Schemi elettrici

NS100, NS160, NS250, NS400-630

Schemi elettrici

NS630b-1600

Schemi elettrici

NT, NW

Schneider Electric Industries SA

5, rue Nadar
92506 Rueil-Malmaison Cedex France
Tel : +33 (0) 141298200
Fax : +33 (0)1 47518020
http://www.schneiderelectric.com
Designed by: AMEG
Printed by:

MSC Chassis

Suitable for C60, C120, DPN \& Vigi RCBO's Multi 9 Merlin Gerin

MSC Chassis have been designed to provide direct connectivity to Merlin Gerin isolators \& Compact NS circuit breakers.

Features

■ Industrially proven \& robust range.

- Flexible \& easy to install.

■ Standard range of MSC18, MSC27, MSC18/27, MSC36 \& MSC DC.

- Custom chassis built to your specifications.

■ Choice of 250A or 400A current rating.
Technical Data

MSC current rating	250 A	400 A
Peak withstand	52.5 kA	60.0 kA
Short time withstand	25 kA for 0.1 sec	30 kA for 0.1 sec
Busbar thickness	2 mm	2.5 mm
Insulation voltage	690 V	
Standards/Conformity	AS3439-1 \& AS3439-3	

Certificate of Conformity No. 6963

Description	Pole Capacity 18mm	Length (mm) L	Rating	Reference
3 phase	12	110	250A	C325123
	18	164	250A	C325183
	24	218	250A	C325243
	30	272	250A	C325303
	36	326	250A	C325363
	42	380	250A	C325423
	48	434	250A	C325483
	60	542	250A	C325603
	72	650	250A	C325723
	84	758	250A	C325843

Description	Pole Capacity 27 mm	Length (mm) L	Rating	Reference
3 phase	12	164	250A	C125123
	18	245	250A	C125183
	$\underline{24}$	326	250A	C125243
	30	407	250A	C125303
	36	488	250A	C125363
	42	569	250A	C125423
	48	650	250A	C125483
	60	812	250A	C125603
	72	974	250A	C125723

MSC 18/27 - for C60 or C120 MCB

Description	$\begin{array}{c}\text { Pole Capacity } \\ \text { 27mm18mmTotal }\end{array}$					
3 phase	6	6	12	137		
$(\mathrm{~mm}) \mathrm{L}$						

Notes:

- For 400A MSC rating, please add " 4 " to the end of the 250 A chassis reference number.
■ Busbars extend 94.5 mm either end of pan, width is 215 mm .
- For custom built chassis' (to meet with your specific requirements), please contact Schneider Help Centre on 1300 369233.

MSC 18/4A - for C60

Description	Pole Capacity 18 mm	Length (mm) L	Rating	Reference
3 phase \& neutral (N.R.W.B)	8	74	250A	C3250843
	16	146	250A	C3251643
	24	218	250A	C3252443
	32	290	250A	C3253243
	40	362	250A	C3254043
	48	434	250A	C3254843
	56	506	250A	C3255643
	64	578	250A	C3256443
	72	650	250A	C3257243

MSC 18/4B - for C60

Description	Pole Capacity 18 mm	Length $(\mathrm{mm}) \mathrm{L}$	Rating	Reference
3 phase \& neutral	16	146	250 A	C3251641
(N.R.N.W.N.B)	32	218	250 A	C3252441
	40	290	250 A	C3253241
	48	362	250 A	C3254041
	56	434	250 A	C3254841
	64	506	250 A	C3255641
	72	578	250 A	C3256441

MSC 36 - for DPN. Vigi (Ph + N)

Description	Pole Capacity	Qty of DPN's	Length (mm) L	Rating	Reference
3 phase \& neutral (N.R.N.W.N.B)	12	6	110	250A	CD25124N
	20	10	182	250A	CD25204N
	24	12	218	250A	CD25244N
	32	16	290	250A	CD25324N
	36	18	326	250A	CD25364N
	48	24	434	250A	CD25484N
	72	36	650	250A	CD25724N

MSC DC - for C60

Description	Pole Capacity 18 mm	Length (mm) L	Rating	Reference
	12	110	250A	C3DC123
2-pole (Black/Red)	16	146	250A	C3DC163
	20	182	250A	C3DC203
	24	218	250A	C3DC243
	32	290	250A	C3DC323
	36	326	250A	C3DC363
	40	362	250A	C3DC403
	48	434	250A	C3DC483
	60	542	250A	C3DC603
	72	650	250A	C3DC723

Dimensions

SCHNEIDER ELECTRIC HELP CENTRE
Tel: 1300369233
Fax: 1300369288
Email: help@schneider.com.au

(f) TERASAKI

No image currently available
Catalogue Number: CPELK1W
Description: EMERGENCY LIGHT KIT WIRED
List Price: $\$$ Refer to our eCatalogue

Unit Of Measure: EA
Price Schedule: T4

Representative Image Only

All prices are exclusive of GST

Panelboards / Accessories

Brand: Terasaki

Type: Rotary switch

Features

- Emergency lighting kit (Wired) for use with the CONCEPT PLUS
- panelboard range.
- Kit includes rotary control switch, timer, 24A 4P N/C
- contactor, labels and wiring diagram to complete control
- circuit complying to AS2293.1.

Benefits

- Emergency lighting kits can be easily field fitted to CONCEPT
- PLUS panelboards using the horizontal knockout at top of
- board.

EnTTECH

Features

- CRITEC® TD Technology with thermal disconnect protection
- Compact design fits into DIN distribution panel boards and motor control centers
- 35 mm DIN rail mount - DIN 43880 profile matches common circuit breakers
- Indication flag and voltage-free contacts provide remote status monitoring
- Separate plug and base design facilitates replacement of a failed surge module
- 100kA 8/20 maximum surge rating provides protection suitable for sub-distribution panels and a long operational life
- Available in various operating voltages to suit most common power distribution systems

CRITEC ${ }^{\circ}$ TDS 1100 TDS Surge Diverter TDS 1100 Series

Surges and voltage transients are a major cause of expensive electronic equipment failure and business disruption. Damage may result in the loss of capital outlays, such as computers and communications equipment, as well as consequential loss of revenue and profits due to unscheduled system down-time.

The TDS1100 series of surge suppressors provide economical and reliable protection from voltage transients on power distribution systems. They are conveniently packaged for easy installation on 35 mm DIN rail within main distribution panelboards.

CRITEC ${ }^{\circledR}$ TD technology helps ensure reliable and continued operation during sustained and abnormal over-voltage events. Internal thermal disconnect devices help ensure safe or at end-of-life. A visual indicator flag provides user-feedback in the event of such operation. As standard, the TDS1100 provides a set of voltage-free contacts for remote signaling that maintenance is due.

The convenient plug-in module, and separate base design, facilitates replacement of a failed surge module without needing to undo installation wiring.

ERITE[H*

CRITEC ${ }^{*}$ TDS 1100 TDS Surge Diverter TDS1100 Series

Model	TDS11002SR150	TDS11002SR240	TDS11002SR277	TDS11002SR560
Nominal Voltage Un	120-150V~	220-240V~	240-277V~	480-560V~
Max. Cont. Operating Voltage U_{C}	170V~	275V~	320V~	610V~
Stand off Voltage	240V~	440V~	480V~	700V~
Frequency	0-100Hz			
Short Circuit Current Rating Isc	25kAIC			
Required Back-up Fuse	125AgL, if supply > 100A			
Technology Used	TD with thermal disconnect			
Protection				
Maximum Discharge Current Imax	100kA 8/20رs			
Nominal Discharge Current In	50kA 8/20رs	40kA 8/20رs	40kA 8/20رs	40kA 8/20رs
Protection Modes	Single mode (L-G, L-N or N-G)			
Voltage Protection Level Up @ 3kA	< 400V	< 700V	< 800V	< 1.6 kV
Voltage Protection Level Up @ 20kA	< 650	< 1000	$<1.1 \mathrm{kV}$	< 2kV
Alarms and Indicators				
Status Indication	Mechanical flag / remote contacts Change-over, 250V~/0.5A, max $1.5 \mathrm{~mm}^{2}$ (\#14AWG) terminals			
Physical Data				
Dimensions	2 modules wide, $90 \mathrm{~mm} \times 68 \mathrm{~mm} \times 35 \mathrm{~mm}$			
Weight	0.24 kg approx.			
Enclosure	DIN 43 880, UL94V-0 thermoplastic, IP 20 (NEMA-1)			
Connection	$\begin{aligned} & \leq 35 \mathrm{~mm}^{2} \text { (\#2AWG) solid } \\ & \leq 25 \mathrm{~mm}^{2} \text { (\#4AWG) stranded } \end{aligned}$			
Mounting	35 mm top hat DIN rail			
Temperature	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$			
Humidity	0 to 90\%			
Test Standards				
Approvals	CE, IEC ${ }^{\text {TM }}$ 61643-1, UL ${ }^{\oplus} 1449$ Pending			
Surge Rated to Meet	IEC 61643-1 Class I and II ANSI/IEEE C62.41-1991 Cat A, Cat B, Cat C			

Ordering Information

PART NUMBER	DESCRIPTION
TDS1102SR150	TDS Surge Diverter, Uc 170V, In 50kA, Imax 100kA, Remote
TDS1102SR240	TDS Surge Diverter, Uc 275V, In 40kA, Imax 100kA, Remote
TDS1102SR277	TDS Surge Diverter, Uc 320V, In 40kA, Imax 100kA, Remote
TDS1102SR560	TDS Surge Diverter, Uc 610V, In 40kA, Imax 100kA, Remote
TDS150150M	150V Replacement Surge Module
TDS150240M	240 V Replacement Surge Module
TDS150277M	277V Replacement Surge Module
TDS150560M	560 V Replacement Surge Module

Due to a policy of continual product development, specifications are subject to change without notice.

[^15]
www.erico.com

INSTALLATION INSTRUCTIONS

1. PREPARATION

DANGER: Electrical shock or burn hazard. Installation of this device should only be made by qualified personnel. Failure to lockout electrical power during installation or maintenance can result in fatal electrocution or severe burns. Before making any connections be sure that power has been removed from all associated wiring, electrical panels, and other electrical equipment.

CAUTION NOTES:

1. The installation of this device should follow all applicable electrical codes, such as the National Electrical Code.
2. Check to make sure line voltage does not exceed DAR275V voltage ratings.
3. Follow all instructions to ensure correct and safe operation.
4. Do not attempt to open or tamper with the DAR in any way as this may compromise performance and will void warranty. No user serviceable parts are contained.

2. INTRODUCTION

Selected DSD, TDS \& TDF DINLINE Surge Protection Devices include status monitoring circuits which provide visual status display of device capacity. They may also provide a low voltage opto-coupler alarm output circuit that can be connect to the DAR to provide potential free (Form C) change-over contacts. The DAR alarm contacts may be used to provide output to external alarm systems or remote monitoring circuits.

One DAR can be used per DSD/TDS/TDF opto-coupler alarm or up to 16 DSD opto-coupler alarms can be connected in series to the one DAR to provide a common output. It is recommended that the DAR be powered from the same power circuit that feeds the device(s) being monitored, however the DAR can be powered from other circuits. This allows for example, one DAR unit to be connected to separate SPDs that are protecting a three phase circuit.

Note. Depending upon the usage of the DAR output contacts, failure of power to the DAR may be interpreted as a failure of one or more of the SPDs being monitored. Visual inspection of the DAR and SPDs status displays would determine this.

3. MOUNTING

The DAR is designed to clip to 35 mm (top hat) DIN rails (standard EN50022). Unless otherwise mechanically restrained, use horizontal DIN rails with the DAR module spring clips to the bottom and the label text the correct way up.

NOTE: The DAR must be installed in an enclosure or panel that:

- prevents the DAR temperature from exceeding

$$
131^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)
$$

- provides adequate electrical and safety protection
- prevents the ingress of moisture and water
- allows DAR status indicators to be inspected

4. ELECTRICAL CONNECTION

The interconnecting wiring should:

- be of size \#10 to \#14 AWG (2.5mm ${ }^{2}$ to $6 \mathrm{~mm}^{2}$) solid or stranded conductor.
- The wire insulation should be stripped back $5 / 16$ " (8 mm).
- NOTE: Do not use greater than 9inlbs (1Nm) of torque when tightening the terminals.

CONNECTION TO TELECOMMUNICATIONS NETWORKS

The DAR is approved for use in Australia where the alarm contacts may be connected to private lines or building cabling associated with the telecommunications network. NO direct connection to the public switched network should be made.

INSTALLATION INSTRUCTIONS

5. INTERCONNECTION

When connecting the DAR to a single opto-coupler output the + terminal of the SPD should connect to the + terminal on the DAR. The - terminal should connect to the -- terminal.

+/- terminal connections are polarity sensitive. Do not reverse.

When connecting the DAR to multiple opto-couplers the optocouplers should be connected in series with + terminal of one connected to the - terminal of the next. The DAR + terminal should connect to + SPD terminal at one end of the series connection and the - DAR terminal connect to the - SPD terminal at the other end of the series connection.

5. STATUS INDICATION

$\left.$| STATUS | Protection Operational | Protection Alarm | Fault Mode |
| :---: | :--- | :--- | :--- |
| DISPLAY | | Normal operation | DSD in alarm mode or power
 to DSD has been removed | | Power to DAR removed |
| :--- |
| Protection status unknown | \right\rvert\,

6. FUSING AND ISOLATION

Overcurrent protection must be installed in the upstream circuit of the power supply to the DAR to provide protection to the unit itself and the wiring in case of fault conditions.

The fuse rating should be based on the wiring size used to connect to the DAR Ph \& N terminals. Australian regulations AS3000-1991, Table B2 specifies the following upstream protection for single phase circuits, unenclosed in air.

Cable Size	HRC Fuse or	CB Rewirable Fuse
$1.5 \mathrm{~mm}^{2}$	16 A	12 A
$2.5 \mathrm{~mm}^{2}$	20 A	16 A
$4 \mathrm{~mm}^{2}$	25 A	20 A
$6 \mathrm{~mm}^{2}$	32 A	25 A

Where overcurrent protection of the appropriate rating or smaller is already fitted in the upstream circuit, overcurrent protection at the DAR will not be required

6. MAINTENANCE \& TESTING

Before removing a DAR unit from service, ensure that the power has been removed. Maintenance, testing and replacement should only be undertaken by qualified personnel.

Testing of a DAR unit which is connected to a fully functional DSD unit can be accomplished by removing power to the DSD only. The DAR Status indication and output contacts should alter from the Normal to Fault condition.

Testing of the DAR unit alone may be accomplished by disconnecting the $+/$-connections to the unit. When power is applied the DAR "Fault" Status Indicator should be illuminated. By connecting the + / - terminals together, the "Normal" Status Indicator should be illuminated. The output contacts should alter to the appropriate state.

7. USE OF OTHER INTERFACES

Only DAR units are recommended for the interfacing of equipment to the DSD, TDS \& TDF opto-coupler alarm output circuit(s). The direct connection of other equipment to these opto-coupler alarm outputs may not provide sufficient isolation or exceed the opto-coupler specifications. This may damage the SPD and/or the connected equipment. Warranty may be voided under such circumstances.

NOTE: In connecting to the SPD opto-coupler alarm output(s), do not reverse the +/- connections as damage may occur.

Transient Discriminating Filter - TDF10A240V (700004)

- Transient Discriminating (TD) Technology provides increased service life
- In-line series protection
- High-efficiency low-pass sine wave filtering is ideal for the protection of switched mode power supplies
- Three modes of protection: L-N, L-PE and N-PE
- LED status indication and opto-isolated output for remote status monitoring

Part Number	TDF10A240V
Article Number	700004
Max Line Current (IL)	10 A
Nominal System Voltage (Un)	220-240 V
Max Continuous Operating Voltage (UC)	340 VAC
Stand-off Voltage	400 V
Frequency	$0-60 \mathrm{~Hz}$
Max Discharge Current (Imax), L-N	$20 \mathrm{kA} 8 / 20$ ¢
Max Discharge Current (Imax), L-PE	$20 \mathrm{kA} 8 / 20$ н
Max Discharge Current (Imax), N-PE	$10 \mathrm{kA} 8 / 20$ ¢
Voltage Protection Rating (VPR)	$\begin{aligned} & 700 \text { V @ } 500 \mathrm{~A} \\ & 500 \text { V @ } 3 \mathrm{kA} \end{aligned}$
Back-Up Overcurrent Protection	10 A
Filtering	-65 dB @ 100 kHz
Distribution System	1Ph 2W+G
Protection Modes	All modes protected
Connection, Solid	$\begin{aligned} & \# 18-\# 10 \\ & 1-6 m m^{2} \end{aligned}$
Connection, Stranded	$\begin{gathered} \# 18-\# 10 \\ 1-6 \mathrm{~mm}^{2} \end{gathered}$
Mounting	35 mm top hat DIN rail
Status Indication	LED
Enclosure Material	UL® 94V-0 thermoplastic
Enclosure Rating	$\begin{array}{\|l\|} \hline \text { IP } 20 \\ \text { NEMA®-1 } \end{array}$
Temperature	$\begin{array}{\|l} -35 \text { to } 55^{\circ} \mathrm{C} \\ -31 \text { to } 131^{\circ} \mathrm{F} \end{array}$
Module Width	8 M
Depth (D)	$\begin{array}{\|l\|} \hline 2.68 " \\ 68 \mathrm{~mm} \end{array}$
Height (H)	$\begin{array}{\|l\|} \hline 3.54 " \\ 90 \mathrm{~mm} \end{array}$
Width (W)	$\begin{array}{\|l\|l\|} \hline 5.67 " \\ 144 \mathrm{~mm} \end{array}$
Unit Weight	$\begin{aligned} & 3.25 \mathrm{lb} \\ & 1.48 \mathrm{~kg} \end{aligned}$

Part Number	TDF10A240V
Complies With	ANSI\%/EEE® C62.41.2-2002 Cat A, Cat B, Cat C
Listing Details	UL® 1449 Edition 3 Recognized Component Type 2 UL® 1283
Standard Packaging Quantity	1 pc
UPC	78285644038
UNSPSC	39121610
ETIM	EC002564
Approvals	CURus $^{\circ}$

ANSI is a registered trademark of American National Standards Institute. cURus is a registered certification mark of UL LLC. IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc. NEMA is a registered service mark of National Electrical Manufacturers Association. UL is a registered certification mark of UL LLC.

WARNING

ERICO products shall be installed and used only as indicated in ERICO's product instruction sheets and training materials. Instruction sheets are available at www.erico.com and from your ERICO customer service representative. Improper installation, misuse, misapplication or other failure to completely follow ERICO's instructions and warnings may cause product malfunction, property damage, serious bodily injury and death.

Copyright © 2013 ERICO International Corporation. All rights reserved.
CADDY, CADWELD, CRITEC, ERICO, ERIFLEX, ERITECH, and LENTON are registered trademarks of ERICO International Corporation.

Presentation, description

Measurement and control relays -

 Zelio Control
Modular relays

Multifunction 3-phase supply control relays RM17 Tp00

RM17 Tp00

Presentation

RM17 TT, RM17 TA, RM17 TU and RM17 TE multifunction control relays monitor the following on 3-phase supplies:

Sequence of phases L1, L2 and L3.	RM17 TT	RM17 TA	RM17 TU	RM17 TE
Phase failure with regeneration				
Asymmetry				
Undervoltage				
Overvoltage and undervoltage				

Function performed

- Function not performed

These control relays accept different nominal 3-phase voltage values: a 208... 480 V .
They monitor their own supply voltage, measured as a true rms value.
Settings are protected by a sealable cover.
Control status is indicated by a LED.
The relays are designed for clip-on mounting on 5 rail

Applications

b Control for connection of moving equipment (site equipment, agricultural equipment, refrigerated trucks).
b Control for protection of persons and equipment against the consequences of reverse running (lifting, handling, elevators, escalators, etc.).
b Control of sensitive 3-phase supplies.
b Protection against the risk of a driving load (phase failure).
b Normal/emergency power supply switching.

[^16]R Yellow LED: indicates relay output state.

Abstract

Operating principle 3-phase supply control relays monitor: b The correct sequence of phases L1, L2, L3. b Phase failure, including in the case of voltage regeneration b Undervoltage from $-2 \ldots-20 \%$ of the supply voltage Un, b Overvoltage from 2... 20% of the supply voltage Un, b Asymmetry from $5 \ldots 15 \%$ of the supply voltage Un. Fault signalling is by LED. b Voltage selector switch : v Set the switch to the 3-phase supply voltage Un. \checkmark The position of this switch is only taken into account on energisation of the device. v If the switch position is changed while the device is operating, all the LEDs flash, but the product continues to operate normally with the voltage selected at the time of energisation preceding the change of position. The LED's return to their normal state if the switch is returned to the original position selected prior to the last energisation.

Phase control relay with voltage regeneration: RM17 TT00

b The relay monitors its own supply voltage Un:
v The relay monitors:

- correct sequence of the three phases,
- failure of at least one of the three phases (U measured < 0.7 x Un).
v In the event of a sequencing or phase failure fault, the relay opens instantly.
v On energisation of the device with a fault measured, the relay stays open.
Function diagram
b Function:
v Sequence of phases L1, L2, L3.
v Phase failure.
v

Phase and asymmetry control relay: RM17 TA00

b The relay monitors its own supply voltage Un:
v The relay monitors:

- correct sequence of the three phases,
- failure of at least one of the three phases (U measured < $0.7 \times \mathrm{Un}$),
- asymmetry adjustable from 5... 15 \% of Un.
v In the event of a sequencing or phase failure fault, the relay opens instantly. v In the event of an asymmetry fault, the relay opens at the end of the time delay set by the user.
v On energisation of the device with a fault measured, the relay stays open.

Function diagram

b Function:
v Sequence of phases L1, L2, L3.
v Phase failure,
v Asymmetry. Asy.

[^17]
Measurement and control relays Zelio Control

Modular relays

Multifunction 3-phase supply control relays RM17 Tp00

Phase + undervoltage control relays: RM17 TU00

b The relay monitors its own supply voltage Un:
v The relay monitors:

- correct sequence of the three phases,
- failure of at least one of the three phases (U measured < $0.7 \times$ Un),
- undervoltage adjustable from - $2 \ldots-20 \%$ of Un ($-2 \ldots-12 \%$ in the range a $3 \times 208 \mathrm{~V}$ and $-2 \% \ldots-17 \%$ in the range a $3 \times 220 \mathrm{~V}$ due to the minimum voltage a 183 V).
v In the event of a sequencing or phase failure fault, the relay opens instantly,
v In the event of a voltage fault, the relay opens at the end of the time delay set by the user.
v On energisation of the device with a fault measured, the relay stays open.
Function diagrams
b Function:
v Sequence of phases
L1, L2, L3.
v Phase failure.
Phase L1
Phase L2
Phase L3
Relays

\vee Undervoltage control. U<

Tt : time delay after crossing of threshold (adjustable on front panel)

Phase + asymmetry + undervoltage/overvoltage control relay: RM17 TE00

b The relay monitors its own supply voltage Un:
v The relay monitors:
correct sequence of the three phases,

- failure of at least one of the three phases (U measured < $0.7 \times \mathrm{Un}$),
- asymmetry adjustable from $5 \ldots 15 \%$ of Un,
- the overvoltage and undervoltage difference in window mode, adjustable from 2... 20 \% of Un

Un		208 V	220 V	380, 400, 415, 440 V	480 V
Voltage threshold (\%)	<	-12...- 2	-17...- 2	- 20...- 2	- 20...- 2
	>	+ $2 \ldots+20$	+ $2 \ldots+20$	+2... 20	+2... 10

v In the event of a sequencing or phase failure fault, the relay opens instantly.
v In the event of an asymmetry or voltage fault, the relay opens at the end of the time delay set by the user. On energisation of the device with a fault measured, the relay stays open.
Function diagrams
b Function:
v Sequence of phases
L1, L2, L3.
V Phase failure
v Asymmetry. Asy.

Tt : time delay after crossing of threshold (adjustable on front panel)
\checkmark Control of overvoltage and undervoltage in window mode. U> / U<

Tt : time delay after crossing of threshold (adjustable on front panel)

PANEL MOUNTED

CONTENTS

4 Connectors
8 Fused Terminal Blocks
9 Neutral / Active / Meter Links
10 Heavy Duty Links
11 Link Bars
21 Clipsal Neutral-Active-Meter Links
27 Special Bars

DESIGNED FOR EASY INSTALLATION

PANEL MOUNTED

switchboard accessories

Blue Point is a name

synonymous with switchboard accessories in Australia.

Established in 1936, the company specialised in producing bakelite products before expanding into the area of switchboard accessories.

In 1947 Blue Point introduced a product that is today regarded as the generic term for all connectors, the BP1.

Purchased by Gerard Industries in 1973 to complement the Clipsal range of brass bars, connectors, terminal bars and neutral link bars, Blue Point Products is Australia's largest manufacturer of panel mounted accessories for domestic, commercial and industrial applications.

AND TROUBLE FREE PERFORMANCE

Designed for easy installation, the Blue Point product range consists of active, neutral and earth link bars, single connectors, as well as blocks and strips, in a wide range of sizes for commercial and industrial switchboards.

Drilling and tapping are carried out using state-of-theart computerised equipment that ensures the highest quality products.

Blue Point has an excellent reputation for specialising in jobbing work where "one-off" special bars are required.

For further information on the Blue Point range, please contact your Clipsal Representative or the Blue Point Factory.

CONNECTORS

BP1

Insulated Single Screw Connector.
Terminal bore: 5 mm .
Terminal accommodates: $2 \times 4 \mathrm{~mm}^{2}$ or $4 \times 2.5 \mathrm{~mm}^{2}$ cables.
Temperature rating: $160^{\circ} \mathrm{C}$ maximum.

Connector Blocks

BP102

Two Way Double Entry 15A Connector Block with insulation barriers and platform. Two screws per tunnel.
Dimensions: $27 \times 20 \times 13 \mathrm{~mm}$.
Terminal tunnel: 3.5 mm diameter.
Tunnels accommodate up to $4 \mathrm{~mm}^{2}$ cables.
Single screw mounting
Temperature rating: $190^{\circ} \mathrm{C}$ maximum Certificate of Suitability No. CS/584/N.

BP202

Two Way Double Entry 20A Connector Block. Two screws per tunnel.
Dimensions: $20 \times 17 \times 13 \mathrm{~mm}$.
Terminal tunnel: 3.5 mm diameter.
Tunnels accommodate up to $4 \mathrm{~mm}^{2}$ cables.
Single screw mounting.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum. Certificate of Suitability No. CS/584/N.

BP203

Two Way Triple Entry 20A Connector Block. Two screws per tunnel.
Dimensions: $28 \times 17 \times 13 \mathrm{~mm}$.
Terminal tunnel: 3.5 mm diameter.
Tunnels accommodate up to $4 \mathrm{~mm}^{2}$ cables.
Single screw mounting.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum.
Certificate of Suitability No. CS/584/N.

BP302

Two Way Double Entry 20A, 500 volt Connector Block with insulating barriers and platform. Two screws per tunnel.
Dimensions: $30 \times 25 \times 16 \mathrm{~mm}$. Terminal tunnel: 4 mm diameter.
Tunnels accommodate up to $2 \times 2.5 \mathrm{~mm}^{2}$ cables.
Single screw mounting.
Temperature rating: $160^{\circ} \mathrm{C}$ maximum.
Certificate of Suitability No. CS/584/N.

BP303

Two Way Triple Entry 20A, 500 volt Connector Block with insulating barriers and platform. Two screws per tunnel.

Dimensions: $30 \times 33 \times 16 \mathrm{~mm}$. Terminal tunnel: 4 mm diameter. Tunnels accommodate up to $2 \times 2.5 \mathrm{~mm}^{2}$ cables.
Single screw mounting.
Temperature rating: $160^{\circ} \mathrm{C}$ maximum.
Certificate of Suitability No. CS/584/N.

BP404

Two Way Four Entry 40A Connector Block with mounting lugs.
Two screws per tunnel.
Dimensions: $68 \times 29 \times 24 \mathrm{~mm}$.
Mounting centres: 58 mm .
Terminal tunnel: 5 mm diameter.
Tunnels accommodate up to $10 \mathrm{~mm}^{2}$ cables.
Two screw mounting.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum. Certificate of Suitability No. CS/584/N.

BP603

Two Way Triple Entry 40A Connector Block with insulating barriers and platform.

Two screws per tunnel.
Dimensions: $35 \times 36 \times 19 \mathrm{~mm}$.
Terminal tunnel: 5 mm diameter.
Tunnels accommodate up to $10 \mathrm{~mm}^{2}$ cables.
Single screw mounting.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum.
Certificate of Suitability No. CS/584/N.

BP604P

Two Way Four Entry 40A Connector Block with insulating barriers and platform.
Two screws per tunnel. Dimensions: $52 \times 42 \times 23 \mathrm{~mm}$. Mounting centres: 28 mm . Terminal tunnel: 5 mm diameter. All tunnels with pressure plates. All terminal screws are captive.
Tunnels accommodate up to $10 \mathrm{~mm}^{2}$ cables.
Two screw mounting.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum.
Certificate of Suitability No. CS/584/N.

BP606P

Two Way Six Entry 40A Connector Block with insulating barriers and platform.
Two screws per tunnel.
Dimensions: $81 \times 43 \times 23 \mathrm{~mm}$. Mounting centres: 28 mm .
Terminal tunnel: 5 mm diameter. All tunnels with pressure plates.
All terminal screws are captive.
Tunnels accommodate up to $10 \mathrm{~mm}^{2}$ cables.
Three screw mounting.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum. Certificate of Suitability No. CS/584/N.

BP703P

Two Way Triple Entry 40A Connector Block with insulating barriers and platform.
Two screws per tunnel.
Dimensions: $43 \times 42 \times 23 \mathrm{~mm}$.
Mounting centres: 15 mm .
Terminal tunnel: 5 mm diameter.
All tunnels with pressure plates.
All terminal screws are captive.
Tunnels accommodate up to
$10 \mathrm{~mm}^{2}$ cables.
Two screw mounting.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum.
Certificate of Suitability No. CS/584/N.

BP502

Natural Nylon Two Way Double Entry 20A Connector Block with insulating barriers and platform, with snap-in mounting spigot.
Spigot fits 4.65 mm square hole, in 0.5 to 0.9 mm thick metal.

Two screws per tunnel.
Dimensions: $31 \times 17 \times 17 \mathrm{~mm}$.
Terminal tunnel: 4 mm diameter.
Tunnels accommodate up to $6 \mathrm{~mm}^{2}$ cables.
Temperature rating: continuous extreme maximum $120^{\circ} \mathrm{C}$.
Certificate of Suitability No. CS/584/N.

BP503

Natural Nylon Two Way Triple Entry 20A Connector Block, with insulating barriers and platform, with snapping mounting spigot.
Dimensions: $31 \times 25 \times 17 \mathrm{~mm}$. All other details same as BP502. Certificate of Suitability No. CS/584/N.

BP503PP

Natural Nylon Two Way Triple Entry 20A Connector Block with pressure plates.
All other details same as BP503.

Porcelain Connector Blocks

BPC112

Two Way Double Entry 15A Porcelain Connector Block.
Dimensions: $24 \times 21 \times 16 \mathrm{~mm}$. Terminal tunnel: 3.5 mm diameter Tunnels accommodate up to $4 \mathrm{~mm}^{2}$ cables.
Single screw mounting.

BPC113

Two Way Triple Entry 15A Porcelain Connector Block.

Dimensions: $35 \times 21 \times 16 \mathrm{~mm}$. Terminal tunnel: 3.5 mm diameter. Tunnels accommodate up to $4 \mathrm{~mm}^{2}$ cables.
Two screw mounting at 12.5 mm centres.

BPC212

Two Way Double Entry 20A
Porcelain Connector Block.
Dimensions: $25 \times 22 \times 21 \mathrm{~mm}$.
Terminal tunnel: 4.3 mm diameter.
Tunnels accommodate up to $6 \mathrm{~mm}^{2}$ cables.
Single screw mounting.

BPC213

Two Way Triple Entry 20A Porcelain Connector Block.

Dimensions: $38 \times 23 \times 20 \mathrm{~mm}$.
Terminal tunnel: 4.3 mm diameter.
Tunnels accommodate up to $6 \mathrm{~mm}^{2}$ cables.
Two screw mounting at 14 mm centres.

BPC312

Two Way Double Entry 40A Porcelain Connector Block.
Dimensions: $35 \times 30 \times 22 \mathrm{~mm}$. Terminal tunnel: 5.8 mm diameter.
Tunnels accommodate up to $10 \mathrm{~mm}^{2}$ cables.
Single screw mounting.

BPC313

Two Way Triple Entry 40A Porcelain Connector Block.
Dimensions: $51 \times 30 \times 22 \mathrm{~mm}$. Terminal tunnel: 5.8 mm diameter.
Tunnels accommodate up to $10 \mathrm{~mm}^{2}$ cables.
Two screw mounting at 18 mm centres.

Connector Strips

BP2

Twelve Terminal Two Way 20A Connector Strip.
Dimensions: $122 \times 17 \times 16 \mathrm{~mm}$.
Two screws per tunnel.
Terminal tunnel: 3.5 mm diameter.
Tunnels accommodate up to $4 \mathrm{~mm}^{2}$ cables.
Terminals may be cut into single units.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum.

BP3

Twelve Terminal Two Way 20A Connector Strip.
Dimensions: $139 \times 17 \times 16 \mathrm{~mm}$.
Two screws per tunnel.
Terminal tunnel: 3.5 mm diameter.
Tunnels accommodate up to $4 \mathrm{~mm}^{2}$ cables.
Mounting holes provided in each terminal pair.
Mounting hole centres: 23 mm .
Terminals may be cut into paired units.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum.

BP6

Six Terminal Heavy Duty Two Way 110A Connector Strip.
Dimensions: $110 \times 40 \times 25 \mathrm{~mm}$.
Two screws per tunnel.
Terminal tunnel: 7 mm diameter.
Tunnels accommodate up to $25 \mathrm{~mm}^{2}$ cables.
5 mounting holes at 15 mm centres.
Terminals may be cut into single units.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum.

BP7PP

Twelve Terminal Two Way 20A Connector Strip with insulating platform and pressure plates in all tunnels.

BP7

Twelve Terminal Two Way 20A
Connector Strip with insulating platform.
Dimensions: $136 \times 25 \times 17 \mathrm{~mm}$.
Two screws per tunnel.
Terminals accommodate up to $4 \mathrm{~mm}^{2}$ cables.
11 mounting holes at 10.6 mm centres.
Terminals may be cut into single units.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum.

The following Connector Strips are twelve terminal, two screws per tunnel,
two way configuration, suitable to be cut down into single units.

Catalogue Number	Current Rating Amp.	Max. Temp. Rating	Length (mm)	Width (mm)	Height (mm)	Tunnel Diameter (mm)	\qquad	Heat Resisting Material	$\begin{gathered} \hline \begin{array}{c} \text { Certificate } \\ \text { of } \\ \text { Suitability } \end{array} \\ \hline \end{gathered}$
BP526P	5	$120^{\circ} \mathrm{C}$	97	16	13	3	$4 \mathrm{~mm}^{2}$	Nylon	CS/840/N
BP558	6	$100^{\circ} \mathrm{C}$	112	16	14	3	$4 \mathrm{~mm}^{2}$	F/R Polyethylene	CS/840/N
BP558P	6	$120^{\circ} \mathrm{C}$	112	16	14	3	$4 \mathrm{~mm}^{2}$	Nylon	CS/840/N
BP539	10	$100^{\circ} \mathrm{C}$	129	20	16	3	$4 \mathrm{~mm}^{2}$	F/R Polyethylene	CS/840/N
BP539P	30	$120^{\circ} \mathrm{C}$	117	20	16	3	$4 \mathrm{~mm}^{2}$	Nylon	CS/840/N
BP540	10	$190^{\circ} \mathrm{C}$	118	20	16	3	$4 \mathrm{~mm}^{2}$	Phenolic	CS/840/N
BP542	30	$190^{\circ} \mathrm{C}$	178	29	22	6	$16 \mathrm{~mm}^{2}$	Phenolic	CS/840/N
BP543	15	$100^{\circ} \mathrm{C}$	133	23	19	4	$6 \mathrm{~mm}^{2}$	F/R Polyethylene	CS/840/N
BP543P	15	$120^{\circ} \mathrm{C}$	137	23	19	4	$6 \mathrm{~mm}^{2}$	Nylon	CS/840/N
BP535	30	$100^{\circ} \mathrm{C}$	175	28	21	4	$16 \mathrm{~mm}^{2}$	F/R Polyethylene	CS/840/N
BP535P	30	$120^{\circ} \mathrm{C}$	180	28	21	6	$16 \mathrm{~mm}^{2}$	Nylon	CS/840/N
BP5001	60	$100^{\circ} \mathrm{C}$	206	37	29	7	$16 \mathrm{~mm}^{2}$	F/R Polyethylene	CS/840/N

This range of products is designed mainly for use in commercial light fittings.

Each unit carries its own 2, 3, 5 or 10 ampere fuse.

By wiring one to each lighting unit in a large installation, main circuit breakers are not thrown if a fault occurs in one fitting.

Instead only the faulty unit blacks out and may be located quickly for repair.

Spare fuse illustrated (BPF5) not supplied as standard.

Use recommended Blue Point fuse only.

BP504F2

250V Three Terminal Block with 2 amp. cartridge fuse.

BP504F3

As above with 3 amp . cartridge fuse.

BP504F5

As above with 5 amp . cartridge fuse.

BP504F10

As BP504F2 with 10 amp. cartridge fuse. Colour: White.
Dimensions: $43 \times 33 \times 18 \mathrm{~mm}$. Terminal tunnel: 4 mm diameter.
Tunnels accommodate up to $6 \mathrm{~mm}^{2}$ cables.
Single screw mounting. Temperature rating: $120^{\circ} \mathrm{C}$ maximum.

BP504FS2

250V Three Terminal Block with 2 amp. cartridge fuse, and spigot in base to prevent unit from rotating, while fixing in position or wiring.

BP504FS3

As above with 3 amp . cartridge fuse.

BP504FS5

As above with 5 amp . cartridge fuse.

BP504FS10

As BP504FS2 with 10 amp . cartridge fuse.
Dimensions, cable detail, and temperature rating same as No. BP504F Series.

Replacement Fuses

BPF2

2 amp. cartridge fuse. Complies with BS1362, ASTA certified.

BPF3

3 amp . cartridge fuse.

BPF5

5 amp . cartridge fuse.

BPF10

10 amp . cartridge fuse.
Dimensions: 25 mm long $\times 6 \mathrm{~mm}$ diameter.

BPT1

500V 90A 4 Hole Link. Two screws per tunnel. Black base and cover.
Dimensions: $52 \times 40 \times 39 \mathrm{~mm}$.
Terminal tunnels: 5.5 mm diameter.
Tunnels accommodate up to $16 \mathrm{~mm}^{2}$ cables.
Base mounting centres: 22 mm .
Available in red to special order.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum.

BPT1LC

As above less cover.
Overall height: 20 mm .
Standard colour: Black.
Available in red to special order.

BPT2

500V 140A 4 Hole Link, Electro Tin Plate. Two screws per tunnel. Black base and cover.
Dimensions: $58 \times 40 \times 40 \mathrm{~mm}$.
3 terminal tunnels: 7.6 mm accommodate up to $25 \mathrm{~mm}^{2}$ cables. 1 terminal tunnel: 8.3 mm accommodates up to $35 \mathrm{~mm}^{2}$ cables. Base mounting centres: 21 mm . Available in red to special order. Temperature rating $190^{\circ} \mathrm{C}$ maximum.

BPT2LC

As above less cover.
Overall height: 22 mm .
Standard colour: Black. Available in red to special order.

BPT6

500V 140A 6 Hole Link. Two screws per tunnel. Black base and cover.
Dimensions: $58 \times 40 \times 40 \mathrm{~mm}$.
6 terminal tunnels: 7.6 mm accommodate up to $25 \mathrm{~mm}^{2}$ cables. Base mounting centres: 21 mm . Available in red to special order. Temperature rating: $190^{\circ} \mathrm{C}$ maximum.

BPLS20

500V 80A 20 Hole Link. Two screws per tunnel.
Dimensions: $90 \times 75 \times 46 \mathrm{~mm}$. Terminal tunnels: 5.5 mm diameter. Tunnels accommodate up to $16 \mathrm{~mm}^{2}$ cables.
Base mounting centres: 64 mm . Standard colour: Black.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum.

BPL20LC

As above less cover.
Overall height: 29 mm .
Standard colour: Black.

BPL9LC

As above less cover.
Overall height: 16 mm .
Standard colour: Black.

BPL9

250V 62A 9 Hole Round Link. 2 tunnels with two screws per tunnel. 7 tunnels with one screw per tunnel. Black base and cover.
Dimensions: 50 mm diameter. 36 mm high.
Terminal tunnels: 4.8 mm diameter.
Tunnels accommodate up to $10 \mathrm{~mm}^{2}$ cables. Temperature rating: $190^{\circ} \mathrm{C}$ maximum.

HEAVY DUTY LINKS

BP165/7

500V 165A 7 Hole Link.

BP165/7ETP

500V 165A 7 Hole Link with tin-plate link and screws. Two screws per tunnel. Black unbreakable, transparent polycarbonate base and cover.
Dimensions: $100 \times 43 \times 40 \mathrm{~mm}$. Terminal bar: $16 \times 16 \times 76 \mathrm{~mm}$. 2 tunnels: 9.5 mm diameter accommodate $50 \mathrm{~mm}^{2}$ cables. 1 tunnel: 8.0 mm diameter accommodates $35 \mathrm{~mm}^{2}$ cable. 2 tunnels: 7.1 mm diameter accommodate $25 \mathrm{~mm}^{2}$ cables. 2 tunnels: 5.5 mm diameter accommodate $16 \mathrm{~mm}^{2}$ cables. Mounting centres: $71 \times 29 \mathrm{~mm}$. Available in red.

BP165/7BW

500V 165A 7 Hole Back Wiring Link.
2 terminal tunnels: 9.5 mm diameter accommodate $50 \mathrm{~mm}^{2}$ cable, have single screw connection.
5 remaining terminals have 2 screws per tunnel. See BP165/7 above. Temperature rating: $120^{\circ} \mathrm{C}$ maximum.

BP165/13

500V 165A 13 Hole Link. Two screws per tunnel. Black unbreakable, transparent polycarbonate base and cover.
Dimensions: $120 \times 47 \times 52 \mathrm{~mm}$. Terminal Bar: $19 \times 16 \times 95.3 \mathrm{~mm}$. 2 tunnels: 9.5 mm diameter accommodate $50 \mathrm{~mm}^{2}$ cable. 5 tunnels: 6.4 mm diameter accommodate $16 \mathrm{~mm}^{2}$ cable. 6 tunnels: 4.8 mm diameter accommodate $10 \mathrm{~mm}^{2}$ cable. Mounting centres: $90 \times 34 \mathrm{~mm}$. Available in red.
Temperature rating: $125^{\circ} \mathrm{C}$ maximum.

BP165/13ETP

Same as BP165/13 with electro tinplate link and screws.

BP350/7

500V 7 Hole Link. Incoming cables clamped with single grub screw. Supplied with Allen key. Two screws per take off tunnel. Black base and cover.
Dimensions: $120 \times 47 \times 52 \mathrm{~mm}$. Terminal bar: $25.4 \times 19 \times 95.3 \mathrm{~mm}$. 2 tunnels: 15.0 mm diameter accommodate $120 \mathrm{~mm}^{2}$ cables. 2 tunnels: 9.5 mm diameter accommodate $50 \mathrm{~mm}^{2}$ cables. 2 tunnels: 8.0 mm diameter accommodate $35 \mathrm{~mm}^{2}$ cables. 1 tunnel: 5.5 mm diameter accommodates $16 \mathrm{~mm}^{2}$ cables. Mounting centres: $90 \times 34 \mathrm{~mm}$. Available in red.
Temperature rating $125^{\circ} \mathrm{C}$ maximum.

BP350/7ETP

Same as BP350/7 with electro tinplate link and screws.

BP350/13

500V 13 Hole Link. Incoming cables clamped with single grub screw. Supplied with Allen key. Two screws per take off tunnel. Black unbreakable, transparent polycarbonate base and cover.
Dimensions: $120 \times 47 \times 52 \mathrm{~mm}$. Terminal bar: $25.4 \times 19 \times 95.3 \mathrm{~mm}$. 2 tunnels: 15.0 mm diameter accommodate $120 \mathrm{~mm}^{2}$ cables. 1 tunnel: 8.0 mm diameter accommodates $35 \mathrm{~mm}^{2}$ cable. 8 tunnels: 5.5 mm diameter accommodate $16 \mathrm{~mm}^{2}$ cable. 2 tunnels: 4.8 mm diameter accommodate $10 \mathrm{~mm}^{2}$.
Mounting centres: $90 \times 34 \mathrm{~mm}$. Available in red.
Temperature rating: $125^{\circ} \mathrm{C}$ maximum.

BP350/13ETP

Same as BP350/13 with electro tin-plate link and screws.

LINK BARS

BP90A Series 90A Link Bars.

Bar Section: $13 \times 9.5 \mathrm{~mm}$.
Bars have two 5.5 mm diameter tunnels with two screws, for up to $16 \mathrm{~mm}^{2}$ cables.
One 5.2 mm diameter tunnel with two screws for M.E.N.
All other tunnels 5.2 mm diameter with one screw to accommodate up to $16 \mathrm{~mm}^{2}$ cables.
Single screw tunnels are numbered.

BP165A Series 165A Link Bars Bar Section: $19 \times 9.5 \mathrm{~mm}$.
Bars have two $3 / 8$ " hexagon head bolts, for up to 165 amp . cable lugs.
One 5.8 mm diameter tunnel with two screws for M.E.N.
All other tunnels 5.8 mm diameter with one screw to accommodate up to $16 \mathrm{~mm}^{2}$ cables.
Single screw tunnels are numbered.
Available electro tin-plated.

BP165B Series 165A Link Bars

 Bar Section: $19 \times 9.5 \mathrm{~mm}$.Bars have one $3 / 8^{\prime \prime}$ hexagon head bolt for up to 165 amp cable lug. One tunnel 5.8 mm diameter, with two screws for M.E.N.
All other tunnels 5.8 mm diameter with one screw to accommodate up to $16 \mathrm{~mm}^{2}$ cables.
Single screw tunnels are numbered.
 Available electro tin-plated.
Un-numbered bars available on request.

Catalogue Number	Single Screw Tunnels	Overall Length (mm)
BP90A6	6	72
BP90A12	12	110
BP90A18	18	148
BP90A24	24	186
BP90A30	30	224
BP90A36	36	262

Catalogue Number	Single Screw Tunnels	Overall Length (mm)
BP165A12	12	145
BP165A18	18	188
BP165A24	24	230
BP165A30	30	273
BP165A36	36	315
BP165A42	42	358
BP165A48	48	401
BP165A54	54	443
BP165A60	60	486
BP165A72	72	571
BP165A80	80	628
BP165A84	84	656

Catalogue Number	Single Screw Tunnels	Overall Length (mm)
BP165B12	12	123
BP165B18	18	165
BP165B24	24	208
BP165B30	30	250
BP165B36	36	293
BP165B42	42	336
BP165B48	48	378
BP165B54	54	421
BP165B60	60	463
BP165B72	72	549
BP165B80	80	605
BP165B84	84	633

BP165C Series 165A Link Bars Bar Section: $19 \times 9.5 \mathrm{~mm}$.

Bars have one $3 / 8$ " hexagon head bolt for up to 165 amp cable lug. All tunnels 5.8 mm diameter with two screws to accommodate up to $16 \mathrm{~mm}^{2}$ cables.
Tunnels are numbered.
Available electro tin-plated.

BP165D Series 165A Link Bars Bar Section: $19 \times 9.5 \mathrm{~mm}$.
Bars have two $3 / 8$ " hexagon head bolts, for up to 165 amp . cable lugs. All tunnels 5.8 mm diameter with two screws accommodating up to $16 \mathrm{~mm}^{2}$ cables.
Tunnels all numbered.
Electro bars available on request.

Catalogue Number	Double Screw Tunnels	Overall Length (mm)
BP165C6	6	95
BP165C12	12	116
BP165C18	18	158
BP165C24	24	201
BP165C30	30	243
BP165C36	36	286
BP165C42	42	329
BP165C48	48	371
BP165C54	54	414
BP165C60	60	456
BP165C72	72	542
BP165C80	80	598
BP165C84	84	627

Catalogue Number	Double Screw Tunnels	Overall Length (mm)
BP165D6	6	95
BP165D12	12	138
BP165D18	18	180
BP165D24	24	223
BP165D30	30	266
BP165D36	36	308
BP165D42	42	351
BP165D48	48	393
BP165D54	54	436
BP165D60	60	478
BP165D72	72	564
BP165D80	80	621
BP165D84	84	650

Un-numbered bars on request.

BP165D18 Series 165A Link

Bars

Bar Section: $19 \times 9.5 \mathrm{~mm}$.
Bars have two 3/8" hexagon head bolts, for up to 165 amp cable lugs. All tunnels 5.8 mm diameter with two screws, accommodate up to $16 \mathrm{~mm}^{2}$ cables.
Tunnels all numbered.
Available on request.

Stud Connection

8 mm and 9.5 mm Threaded Studs soldered in bars with hexagonal lock nuts.

Line Taps

Blue Point No. BP22, BP24, BP25, BP26 and BP28 Line Taps may also be incorporated if required.

Alternative Connections for Link

Most Link Bars in the BP165A, BP165B, BP165C, BP165D and BPN Series are available with various types of connections if required.

BPM90 Series 90A Link Bars
Bar section: $13 \times 13 \mathrm{~mm}$.
All tunnels 5.6 mm diameter with two screws accommodating up to $16 \mathrm{~mm}^{2}$ cables.
Tunnels not numbered.
Available electro tin-plated.

BPM165 Series 165A Link Bars
Bar section: $16 \times 16 \mathrm{~mm}$.
One 9.5 mm tunnel with two screws for up to $50 \mathrm{~mm}^{2}$ cable.
One 8 mm tunnel with two screws for up to $25 \mathrm{~mm}^{2}$ cable.
All other tunnels 5.5 mm with two screws to accommodate up to $16 \mathrm{~mm}^{2}$ cables.
All tunnels are numbered.

BPNT350 Series Link Bars

Bar section $25 \times 19 \mathrm{~mm}$.
One 15 mm tunnel with one socket grub screw for up to $120 \mathrm{~mm}^{2}$ cable. Supplied with Allen key.
One two screw tunnel to accommodate up to $50 \mathrm{~mm}^{2}$ cable.
One two screw tunnel to accommodate up to $25 \mathrm{~mm}^{2}$ cable. All other tunnels with two screws to accommodate up to $16 \mathrm{~mm}^{2}$ cables.
All tunnels are numbered.

BPN350 Series Link Bars

Bar section: $25 \times 13 \mathrm{~mm}$.
One $1 / 2^{\prime \prime}$ hexagon head stud for 320A cable lug. One 3/8" hexagon head stud for 165A cable lug.
One two screw tunnel to accommodate $25 \mathrm{~mm}^{2}$ cable.
All other tunnels with two screws to accommodate up to $16 \mathrm{~mm}^{2}$ cable. Tunnels are all numbered.

Catalogue Number	Double Screw Tunnels	Overall Length $(\mathbf{m m})$
BPM90/6	6	69
BPM90/12	12	126
BPM90/18	18	183
BPM90/24	24	240
BPM90/30	30	298
BPM90/36	36	354

Catalogue Number	Double Screw Tunnels	Overall Length $(\mathbf{m m})$
BPM165/6	6	94
BPM165/12	12	136
BPM165/18	18	178
BPM165/24	24	220
BPM165/30	30	262
BPM165/36	36	304

Catalogue Number	Double Screw Tunnels	Overall Length (mm)
BPNT350/6	6	105
BPNT350/12	12	147
BPNT350/18	18	189
BPNT350/24	24	231
BPNT350/30	30	273
BPNT350/36	36	315
BPNT350/50	50	413
BPNT350/60	60	483

Catalogue Number	Double Screw Tunnels	Overall Length $(\mathbf{m m})$
BPN350/6	6	126
BPN350/12	12	168
BPN350/18	18	210
BPN350/24	24	252
BPN350/30	30	294
BPN350/36	36	336
BPN350/42	42	381
BPN350/50	50	437

MEN Bare Links (Victoria Type) Light Duty

BPLD Series Bare Link Bars

Bar section $10.5 \times 10.5 \mathrm{~mm}$.
Two 3/16" screws with washers for incoming cables.
All 4 mm diameter tunnels with single screw to accommodate up to $6 \mathrm{~mm}^{2}$ cables.
All tunnels are numbered.
Mounting holes 4 mm diameter and countersunk.

MEN Bare Links (Victoria Type) Medium Duty

BPMD Series Bare Link Bars

Bar section $13 \times 10 \mathrm{~mm}$.
One $1 / 4$ " screw with washer and one No.BP22 Line Tap provided for incoming cables.
All 4 mm diameter tunnels with single screw for up to $6 \mathrm{~mm}^{2}$ cables.
All tunnels are numbered.
Mounting holes 4 mm diameter and countersunk.

Catalogue Number	Single Screw Tunnels	Overall Length (mm)
BPLD2	2	61
BPLD3	3	68
BPLD4	4	75
BPLD5	5	82
BPLD6	6	89
BPLD7	7	96
BPLD8	8	104
BPLD9	9	110
BPLD10	10	118
BPLD11	11	125
BPLD12	12	132
BPLD13	13	139
BPLD14	14	146
BPLD15	15	154
BPLD16	16	161
BPLD18	18	175
BPLD20	20	189
BPLD22	22	203
BPLD24	24	217
BPLD30	30	259
BPLD36	36	303

Catalogue Number	Single Screw Tunnels	Overall Length (mm)
BPMD3	3	80
BPMD4	4	86
BPMD5	5	92
BPMD6	6	98
BPMD7	7	106
BPMD8	8	113
BPMD9	9	120
BPMD10	10	127
BPMD12	12	142
BPMD14	14	156
BPMD15	15	163
BPMD18	18	184
BPMD20	20	208
BPMD24	24	227
BPMD25	25	234
BPMD26	26	241
BPMD30	30	271
BPMD36	36	312

MEN Bare Links (Victoria

 Type) Heavy Duty
BPHD Series Bare Link Bars

Bar section $19 \times 10 \mathrm{~mm}$.
One $5 / 16$ " screw with washer and one No. BP24 Line Tap provided for incoming cables.
All 4.4 mm diameter tunnels with single screw for up to $10 \mathrm{~mm}^{2}$ cables. All tunnels are numbered.
Mounting holes are 5.2 mm diameter and countersunk.

Catalogue Number	Single Screw Tunnels	Overall Length $(\mathbf{m m})$
BPHD5	10	120
BPHD6	12	130
BPHD7	14	140
BPHD8	16	150
BPHD9	18	159
BPHD10	20	168
BPHD12	24	188
BPHD15	30	218
BPHD16	32	228
BPHD18	36	244
BPHD20	40	263
BPHD24	48	300
BPHD25	50	310
BPHD30	60	360
BPHD33	66	390
BPHD36	72	417

Medium Duty Neutral Bars With $2 \times$ BP22 Line Taps Front Wiring

BPMD2/10 Series

Complete with $2 \times$ BP22 Line Taps. $13 \times 9.5 \mathrm{~mm}$ brass.
All bars have 1-1/4 Whitworth screw with flat brass washer and 2 number BPMD2 Line Taps provided for incoming cables ($16 \mathrm{~mm}^{2}$).
All 4 mm diameter tunnels with single screw per tunnel for up to $6 \mathrm{~mm}^{2}$ cable.
All tunnels are numbered.
Two 4 mm diameter countersunk recessed fixing holes.
Back wired neutral bar.

Bare Links with Mounting Blocks

BPQL Series

90A Link Bars with moulded mounting blocks. (BP165FD)
Bar section $13 \times 13 \mathrm{~mm}$.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum. Two $1 / 4$ " hexagon head studs for 90 ampere cable lugs.
All 5.5 diameter tunnels with single screw to accommodate up to $16 \mathrm{~mm}^{2}$ cables.
All tunnels are numbered.

Catalogue Number	Single Screw Tunnels	Overall Length (mm)
BPMD2/3	3	105
BPMD2/4	4	111
BPMD2/5	5	121
BPMD2/7	7	135
BPMD2/9	9	150
BPMD2/10	10	157
BPMD2/12	12	174
BPMD2/15	15	195
BPMD2/18	18	219
BPMD2/20	20	235
BPMD2/24	24	268
BPMD2/25	25	275
BPMD2/30	30	313
BPMD2/36	36	357

Catalogue Number	Single Screw Tunnels	Overall Length $(\mathbf{m m})$
BPQL12	12	143
BPQL18	18	182
BPQL24	24	219
BPQL30	30	257
BPQL36	36	295
BPQL48	48	363
BPQL50	50	383
BPQL60	60	447

Line Taps

Line Taps can be drilled, tapped and fitted with screws on request.

BP22
Line Tap for $16 \mathrm{~mm}^{2}$ cables.
Overall length 30 mm .

BP22ETP

As above but electro tin-plated.

BP24

Line Tap for $35 \mathrm{~mm}^{2}$ cables.
Overall length 35 mm .

BP24ETP

As above but electro tin-plated.

BP25

Line Tap for $50 \mathrm{~mm}^{2}$ cables.
Overall length 44mm.

BP25ETP

As above but electro tin-plated.

BP26

Line Tap for $95 \mathrm{~mm}^{2}$ cables.
Overall length 50 mm .

BP26ETP

As above but electro tin-plated.

BP28

Line Tap for $185 \mathrm{~mm}^{2}$ cables.
Overall length 67 mm .

BP28ETP

As above but electro tin-plated.

Moulded Mounting Blocks for Bare Links

BP165F

Moulded Mounting Block for mounting bare links to switchboard panels.
Space bars 12.7 mm from panels. Sold singularly with two $16 \mathrm{~mm} x$ $5 / 32$ " Whitworth screws to fit the pre-tapped holes in the rear of the Link Bars.
Overall dimensions $45 \times 18 \times 16 \mathrm{~mm}$.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum.

BP165FD

Moulded Mounting Block for mounting bare links to switchboard panels.
Space bars 21 mm from panels.
Sold singularly with two $16 \mathrm{~mm} x$ $5 / 32$ " Whitworth screws to fit the pre-tapped hole in the rear of the Link Bar.
Overall dimensions $45 \times 18 \times 24 \mathrm{~mm}$.

2BPAC Series 165 Ampere Front Wiring with 2 Studs for Cable Lugs

Compact Type

2BPAC Series

$19 \times 9.5 \mathrm{~mm}$ brass.
All bars have two $3 / 8^{\prime \prime}$ Whitworth hexagonal head studs with spring washer for up to 165 ampere cable lugs.
All side tunnels 5.9 mm diameter with one screw per tunnel to accommodate up to $16 \mathrm{~mm}^{2}$ cable.
All tunnels are numbered.
Two 5/32" Whitworth tapped fixing holes suitable for BP165FD Insulating Feet.
Front Wired Neutral Bar.

Catalogue Number	Single Screw Tunnels	Overall Length (mm)
2BPA12C	12	94
2BPA18C	18	115
2BPA24C	24	136
2BPA30C	30	158
2BPA36C	36	179
2BPA42C	42	200
2BPA48C	48	221
2BPA60C	60	265
2BPA72C	72	308
2BPA84C	84	352

Block Hinge Sets

BPBHS

Brass chrome plated. For electrical cabinets.
1 hinge set = 2 hinge pairs.
Tapped holes 1/4" Whitworth at 27 mm centres.

BPAH Series - 220 Ampere, Front Wiring Neutral Bars with 2 Studs for Cable Lugs

BPAH Series

220 Amp. Neutral Bars, front wiring with $2-3 / 8$ " Whitworth hexagon head studs for cable lugs and tunnels with single screw, for up to $10 \mathrm{~mm}^{2}$ cables.
All tunnels are numbered. 2 mounting holes $5 / 32$ " Whitworth Brass section: $19 \times 13 \mathrm{~mm}$.

BPAHE Series - 220 Ampere Front Wiring, Earth Bars with 2 Studs for Cable Lugs

BPAHE Series

220 Amp. Earth Bars, front wiring 3/8" Whitworth hexagon head studs for cable lugs and tunnels with two screws, for up to $10 \mathrm{~mm}^{2}$ cable.
Tunnels are not numbered. 2 mounting holes 4 mm diameter, countersunk.
Brass section: $19 \times 13 \mathrm{~mm}$.

Catalogue Number	Single Screw Tunnels	Overall Length (mm)
BPAH6	6	110
BPAH12	12	145
BPAH18	18	183
BPAH24	24	221
BPAH30	30	259
BPAH36	36	297
BPAH42	42	335
BPAH48	48	374
BPAH60	60	449
BPAH80	80	580

Bars are available with extra studs.

Catalogue Number	Double Screw Tunnels	Overall Length $(\mathbf{m m})$
BPAHE6	6	110
BPAHE12	12	145
BPAHE18	18	183
BPAHE24	24	221
BPAHE30	30	259
BPAHE36	36	297
BPAHE42	42	335
BPAHE48	48	374
BPAHE54	54	412
BPAHE60	60	449
BPAHE80	80	580

Bars are available with extra studs.

BPML Series Mini Link Bars 55 Ampere Front Wiring

BPML Series

$13 \times 9.5 \mathrm{~mm}$ brass. 55 amp .
All 5 mm side tunnel holes.
Two screws per tunnel. 1-4mm clear fixing hole.
Bar able to accommodate up to $10 \mathrm{~mm}^{2}$ cable.
Bar not numbered.
Front Wired Bar.

BPE Series Medium Duty Earth Bars, 90 Ampere

Front Wiring

BPE Series

90 Amp. Earth Bar. $13 \times 13 \mathrm{~mm}$ brass.
Two front tunnels 7 mm diameter to take $16 \mathrm{~mm}^{2}$ cable.
Two screws per tunnel.
Bar not numbered.
Following tunnels 5 mm diameter to take up to $10 \mathrm{~mm}^{2}$ cable, two screws per tunnel, two tapped 3/16" Whitworth fixing holes at side of bar.
Front Wired Earth Bar.

BPMDFW Series Medium Duty Neutral Bars 90 Ampere Front Wiring

BPMDFW6 Series

90 Amp. Neutral Bar. 13×13 brass.
Three front tunnels 7 mm to take up to $25 \mathrm{~mm}^{2}$ cable, two screws per tunnel marked EN1 following tunnels 5 mm diameter to take up to $10 \mathrm{~mm}^{2}$ cable, one screw per tunnel marked with following numbers.
Two M6x1 tapped fixing holes at side of bar.
Front Wired Neutral Bar.

BPFW Series Light Duty Bars. Front Wiring. Two Front Tunnels 6 mm with 2 Screws

BPFW Series

$13 \times 9.5 \mathrm{~mm}$ brass.
Two front tunnels 6 mm diameter to take $16 \mathrm{~mm}^{2}$ cable.
Two screws per tunnel.
Numbered tunnels 4.3 mm diameter to take $10 \mathrm{~mm}^{2}$ cable.
One screw per tunnel. Two $3 / 16^{\prime \prime}$ Whitworth tapped fixing holes.
Fixing hole centres 66 mm apart to all BPFW sizes.

Catalogue Number	Single Screw Tunnels	Overall Length $(\mathbf{m m})$
BPMDFW6	6	80
BPMDFW9	9	100
BPMDFW12	12	127
BPMDFW15	15	142
BPMDFW18	18	163
BPMDFW21	21	185

Catalogue Number	Single Screw Tunnels	Overall Length $(\mathbf{m m})$
BPFW6	6	90
BPFW8	8	90
BPFW9	9	95
BPFW10	10	103
BPFW12	12	116
BPFW15	15	135
BPFW18	18	154
BPFW21	21	173

Catalogue Number	Double Screw Tunnels	Overall Length (mm)
BPML4	4	38
BPML5	5	44
BPML6	6	52

Catalogue Number	Double Screw Tunnels	Overall Length $(\mathbf{m m})$
BPE6	6	80
BPE12	12	118

BPP Series Light Duty

Bars, Front Wiring with 2

Studs for Cable Lugs

BPP Series

$16 \times 9.5 \mathrm{~mm}$ brass.
All bars have two $5 / 6$ " Whitworth hexagon head bolts.
All side tunnels 5 mm diameter with one screw per tunnel to accommodate up to $10 \mathrm{~mm}^{2}$ cables. All tunnels are numbered.
Two 5 mm clear countersunk fixing holes.
Front Wired Bar.

BPN Series Medium Duty

Front Wiring Neutral Bars

BPN Series

$13 \times 13 \mathrm{~mm}$ brass.
Three front tunnels 7 mm diameter to take up to $16 \mathrm{~mm}^{2}$ cable.
Two screws per tunnel, marked ENI following tunnels 5 mm diameter $10 \mathrm{~mm}^{2}$ cable, one screw per tunnel numbered.
Two clear 5 mm fixing holes from top. Front Wired Neutral Bar.

Catalogue Number	Single Screw Tunnels	Overall Length (mm)
BPP12	12	100
BPP18	18	124
BPP24	24	148
BPP30	30	173
BPP36	36	195
BPP42	42	221
BPP48	48	243
BPP60	60	292
BPP72	72	338
BPP84	84	389
Catalogue		
Number	Single Screw	Overall
BPN8	Tunnels	Length (mm)
BPN12	8	93
BPN16	12	121
BPN24	16	149

CLIPSAL

NEUTRAL / ACTIVE / METER
LINKS
Clipsal Links are produced from Impact Resistant materials to prevent cracking in transit or during installation.

The transparent covers enable you to check wiring and locate the sealing screw at a glance. The sealing screw (nylon with brass insert) resists stripping. Voltage and amperage ratings are clearly marked on both the cover and brass bar.

All links are available with black or red covers and bases for neutral, active or meter applications as required by local authorities.

T-Type - 500 Volt 140
 Ampere

L4T35

500V 140A 4 Hole Neutral Link with two screws per tunnel. Black base and cover.

L4T35R

500V 140A 4 Hole Active Link. Red base and cover.
Dimensions: $65 \times 46 \times 43 \mathrm{~mm}$. Mounting centres: 28 mm . 1 tunnel 8.7 mm diameter accommodate $1 \times 25 \mathrm{~mm}^{2}$ cable.
3 tunnels 7.7 mm diameter accommodate $1 \times 25 \mathrm{~mm}^{2}$ cable. Certificate of Suitability No. CS2252N.

Mini Links with Cover

500V 100A

2 screws per tunnel.

L5

500V 100A 5 Hole Neutral Link with two screws per tunnel. Black base and cover.

L5R

500 V 100A 5 Hole Active Link. Red base and cover.
Dimensions: $65 \times 46 \times 43 \mathrm{~mm}$. Mounting centres: 46 mm . 3 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$. 2 tunnels, 5.8 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$.

L5BW

500V 110A 5 Hole Back Wiring Neutral Link with two screws per tunnel. Black base and cover.

L5BWR

500V 110A 5 Hole Back Wiring Active Link. Red base and cover.
Dimensions: $65 \times 46 \times 43 \mathrm{~mm}$. Mounting centres: 46 mm . 5 tunnels, 7 mm diameter accommodate $1 \times 25 \mathrm{~mm}^{2}$. Transparent black cover, with cut outs.

L6

500V 100A 6 Hole Neutral Link with two screws per tunnel. Black base and cover.

L6R

500V 100A 6 Hole Active Link. Red base and cover.
Dimensions: $65 \times 46 \times 43 \mathrm{~mm}$. Mounting centres: 46 mm . 3 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 3 tunnels, 5.8 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable.

L6/25

500V 110A 6 Hole Neutral Link with 2 screws per tunnel. Black base and cover.

L6/25R

$500 V$ 110A 6 Hole Active Link. Red base and cover.
Dimensions: $65 \times 46 \times 43 \mathrm{~mm}$. Mounting centres: 46 mm . 2 tunnels, 7.5 mm diameter accommodate $2 \times 25 \mathrm{~mm}^{2}$ cable. 1 tunnel, 5.5 mm diameter accommodates $1 \times 16 \mathrm{~mm}^{2}$ cable. 3 tunnels, 4.7 mm diameter accommodate $3 \times 10 \mathrm{~mm}^{2}$ cable. Transparent black cover with cut-outs.

L7

500V 100A 7 Hole Neutral Link with two screws per tunnel. Black base and cover.

L7R

500V 100A 7 Hole Active Link. Red base and cover.
Dimensions: $65 \times 46 \times 43 \mathrm{~mm}$.
Mounting centres: 46 mm .
3 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable.
4 tunnels, 5.8 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable.

L7BW

500V 100A 7 Hole Back Wiring Neutral Link with two screws per tunnel. Black base and cover.

L7BWR

500V 100A 7 Hole Active Link. Red base and cover.
Dimensions: $65 \times 46 \times 43 \mathrm{~mm}$.
Mounting centres: 46 mm . 2 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cables. 5 tunnels, 5.8 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cables. Transparent black cover, with cut-outs.

L8

500V 100A 8 Hole Neutral Link with two screws per tunnel.
Black base and cover.
Dimensions: $86 \times 57 \times 40 \mathrm{~mm}$.
Mounting centres: $59 \times 67 \mathrm{~mm}$. 3 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 5 tunnels, 5.8 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable.
Transparent black cover with cut-outs.

L10

500V 100A 10 Hole Neutral Link with two screws per tunnel.
3 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 7 tunnels, 5.8 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. Dimensions: $86 \times 57 \times 40 \mathrm{~mm}$.

L10BW

500V 100A 10 Hole Back Wiring Neutral Link with two screws per tunnel.
Dimensions: $86 \times 57 \times 40 \mathrm{~mm}$.

L12

500V 100A 12 Hole Neutral Link with two screws per tunnel.
2 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable.
4 tunnels, 5.5 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable.
6 tunnels, 4.5 mm diameter accommodate $1 \times 10 \mathrm{~mm}^{2}$ cable.
Dimensions: $86 \times 57 \times 40 \mathrm{~mm}$.

L14

500V 100A 14 Hole Neutral Link with two screws in 8 tunnels and one screw in 6 tunnels.
2 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 6 tunnels, 5.5 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 6 tunnels, 4.5 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. Dimensions: $86 \times 57 \times 40 \mathrm{~mm}$.

L16

500V 100A 16 Hole Neutral Link with two screws in 6 tunnels and one screw in 10 tunnels.
2 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 4 tunnels, 5.5 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 10 tunnels, 4.5 mm diameter accommodate $1 \times 10 \mathrm{~mm}^{2}$ cable. Dimensions: $86 \times 57 \times 40 \mathrm{~mm}$.

L18

500V 100A 18 Hole Neutral Link with two screws in 6 tunnels and one screw in 12 tunnels.
2 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 4 tunnels, 5.5 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 12 tunnels, 4.5 mm diameter accommodate $1 \times 10 \mathrm{~mm}^{2}$ cable. Dimensions: $86 \times 57 \times 40 \mathrm{~mm}$.

Mini Links Less Cover

500V 100A
Mounting centres: 46 mm .

L5A

5 Hole - two screws per tunnel.
Black base.

L6A

6 Hole - two screws per tunnel.
Black base.

L6RA

6 Hole - two screws per tunnel. Red base.

L7A

7 Hole - two screws per tunnel.
Black base.
Overall dimensions: $57 \times 30 \times 26 \mathrm{~mm}$.
Mounting centres: 46 mm .
Tunnel and cable detail same as L5 to L7 Series Covered Links.

Standard Links Less Cover

500V 100A
Mounting centres: 59-67mm.

L8A

8 Hole - two screws per tunnel.

L10A

10 Hole - two screws per tunnel.

L12A

12 Hole - two screws per tunnel.

L14A

14 Hole - two screws per tunnel.

L16A

16 Hole - two screws in 6 tunnels, and one screw in 10 tunnels.

L18A

18 Hole - two screws per tunnel in 6 tunnels, and one screw in 12 tunnels.
Overall dimensions: $80 \times 32 \times 22 \mathrm{~mm}$.
Mounting centres: 59-67mm.
Tunnel and cable detail same as L8 to L18 Series Covered Links.
All link bases are black.

Brass Link Bars

500V 100A

L5P

5 Hole - two screws per tunnel.
Length 41 mm .

L6P

6 Hole - two screws per tunnel.
Length 48 mm .

L7P

7 Hole - two screws per tunnel.
Length 54 mm .

L8P

8 Hole - two screws per tunnel.
Length 61 mm .

L10P

10 Hole - two screws per tunnel.
Length 75 mm .

L12P

12 Hole - two screws per tunnel. Length 80 mm .
Brass bar section: $13 \times 10 \mathrm{~mm}$.
Tunnel and cable detail same as L5 to L12 Series Covered Links.

L14P

14 Hole - two screws in 8 tunnels and one screw in 6 tunnels.

L16P

16 Hole - two screws in 6 tunnels and one screw in 10 tunnels.

L18P

18 Hole - two screws in 6 tunnels and one screw in 12 tunnels.
Brass bar section: $19 \times 10 \mathrm{~mm}$ tunnel. Cable detail same as L14 and L18 Series Covered Links.

Maxi Links with Cover

500V 110A

Maxi Links with cover.
Accommodates $25 \mathrm{~mm}^{2}$ cables. 2 screws per tunnel.

L11/25

500V 110A 11 Hole Front Wiring Neutral Link with two screws per tunnel. Black base and cover.
Dimensions: $108 \times 62 \times 55 \mathrm{~mm}$. Mounting centres: $85 \times 78 \mathrm{~mm}$ and $65 \times 59 \mathrm{~mm}$.
3 tunnels, 8 mm diameter accommodate $25 \mathrm{~mm}^{2}$ cable. 8 tunnels, 6 mm diameter accommodate $16 \mathrm{~mm}^{2}$ cable. Transparent cover with cut-outs.

L11/25R

500V 110A 11 Hole Front Wiring Active Link.
Red base and cover.

L11/25BW

500V 110A 11 Hole Back Wiring Neutral Link with two screws per tunnel.

L11/25BWR

500V 110A 11 Hole Back Wiring Active Link.

L13/25

500V 110A 13 Hole Front Wiring Neutral Link with two screws per tunnel. Black base and cover.

Dimensions: $108 \times 62 \times 55 \mathrm{~mm}$. Elongated mounting centres: $78-85 \mathrm{~mm}$ and $59-65 \mathrm{~mm}^{2}$. 2 tunnels, 8 mm diameter accommodate $25 \mathrm{~mm}^{2}$ cable. 11 tunnels, 5.5 mm diameter accomodate $16 \mathrm{~mm}^{2}$ cable.
Transparent cover with cut-outs.

L13/25R

500V 110A 13 Hole Front Wiring Active Link. Red base and cover.

L13/25BW

500V 110A 13 Hole Back Wiring Neutral Link with two screws per tunnel.

L13/25BWR

500V 110A 13 Hole Back Wiring Active Link. Red base and cover.

Maxi Links Less Cover

500V 110A

Accommodates $25 \mathrm{~mm}^{2}$ cables. Elongated mounting centres: $78-85 \mathrm{~mm}$ and 59-65mm. 2 screws per tunnel.

L11/25A
11 Hole - two screws per tunnel.

L11/25BWA

11 Hole Back Wiring - two screws per tunnel. Black base.

L13/25A

13 Hole - two screws per tunnel. Black base.

L13/25BWA

13 Hole Back Wiring - two screws per tunnel. Black base.
Overall dimensions:
$100 \times 30 \times 24 \mathrm{~mm}$.
Elongated mounting centres: $78-85 \mathrm{~mm}$ and $59-65 \mathrm{~mm}$. Tunnel and cable detail same as L11/25 to L13/25BW Series Covered

Iunnel Diameters			
Catalogue Number	8 mm for $25 \mathrm{~mm}^{2}$ cable	$\mathbf{6 m m}$ for $16 \mathrm{~mm}^{2}$ cable	$\mathbf{5 . 5 m m}$ for $16 \mathrm{~mm}^{2}$ cable
L11/25	3	8	-
L11/25BW	3	8	-
L13/25	2	-	11
L13/25BW	2	-	11

Maxi Brass Link Bars only

500V 110A

L11/25P

11 Hole - two screws per tunnel. Length 98mm.

L11/25BWP

11 Hole Back Wiring - two screws per tunnel. Length 98 mm .

L13/25P

13 Hole Back Wiring - two screws per tunnel. Length 98 mm .

L13/25BWP

13 Hole Back Wiring - two screws per tunnel.
Length 98mm.
Brass Bar Section: 13mm square.
Tunnel and cable detail same as
L11/25 to L13/25BW Series Covered Links.

Maxi Links with Cover

500V 140A

Accommodate $35 \mathrm{~mm}^{2}$ cables. 2 screws per tunnel.

L10/35

500V 140A 10 Hole Front Wiring
Neutral Link - two screws per tunnel.
Black base and cover.
Dimensions: $108 \times 62 \times 55 \mathrm{~mm}$.
Elongated mounting centres:
$78-85 \mathrm{~mm}$ and 59-65mm.
3 tunnels, 9 mm diameter accommodate $35 \mathrm{~mm}^{2}$ cable. 7 tunnels, 6 mm diameter accommodate $16 \mathrm{~mm}^{2}$.
Transparent cover with cut-outs.

L10/35R

500V 140A 10 Hole Front Wiring Active Link. Red base and cover. Maxi Link Less Cover.

500V 140A

Accommodate $35 \mathrm{~mm}^{2}$ cables. 2 screws per tunnel.

Elongated mounting centres: $78-85 \mathrm{~mm}$ and $59-65 \mathrm{~mm}$.

L10/35A

10 hole - two screws per tunnel.
Black base.
Overall dimensions: $100 \times 30 \times 24 \mathrm{~mm}$ tunnel. Cable detail and mounting centres same as L10/35 Series Covered Links.

Maxi Links with Cover

500V 370A

Accommodate $150 \mathrm{~mm}^{2}$ cables.

L7/150

500V 370A 7 Hole Front Wiring Neutral Link. Black base and cover.
Dimensions: $162 \times 53 \times 55 \mathrm{~mm}$.
2 tunnels, 17 mm diameter accommodate $150 \mathrm{~mm}^{2}$ cable.
1 tunnel, 15.5 mm diameter accommodate $120 \mathrm{~mm}^{2}$ cable.
2 tunnels, 10 mm diameter accommodate $50 \mathrm{~mm}^{2}$ cable. 2 tunnels, 5.9 mm diameter accommodate $16 \mathrm{~mm}^{2}$ cable. Supplied with Allen key.

L7/150R

500V 370A 7 Hole Front Wiring Active Link. Red base and cover.

L7/150BW
500V 370A 7 Hole Back Wiring Neutral Link. Black base and cover.

Tunnel Diameters		
Catalogue Number	9 mm for $35 \mathrm{~mm}^{2}$ cable	6 mm for $16 \mathrm{~mm}^{2}$ cable
L10/35	3	7

Maxi Brass Link Bars only

500V 370A

Accommodate $150 \mathrm{~mm}^{2}$ cables.

L7/150P

7 Hole Front Wiring. 3 tunnels with socket grub screws. Supplied with Allen key.
4 tunnels with 2 screws per tunnel.
Length 128.5 mm .

L7/150BWP

7 Hole Back Wiring. Tunnels and cables accommodated details same as L7/150 Series.

Length 94 mm .

L13/150P

13 Hole Front Wiring.
2 tunnels with socket grub screws.
Supplied with Allen key.
11 tunnels with 2 screws per tunnel.
Length 128.5 mm .

L7/150BWR

500V 370A 7 Hole Back Wiring Active Link. Red base and cover.
Dimensions, tunnels, cables accommodated, and mounting centres detail same as L7/150 Series, front wiring links.

L13/150

500V 370A 13 Hole Front Wiring Neutral Link. Black base and cover. 2 tunnels, 17 mm diameter accommodate $150 \mathrm{~mm}^{2}$ cable. 1 tunnel, 9.5 mm diameter accommodate $50 \mathrm{~mm}^{2}$ cable. 4 tunnels, 8 mm diameter accommodate $35 \mathrm{~mm}^{2}$ cable. 6 tunnels, 5.9 mm diameter accommodate $16 \mathrm{~mm}^{2}$ cable.

L13/150R

500V 370A 13 Hole Front Wiring
Active Link. Red base and cover.

L13/150BW
500V 370A 13 Hole Back Wiring Neutral Link. Black base and cover.

L13/150BWR

500V 370A 13 Hole Back Wiring Active Link. Red base and cover.
Dimensions and mounting centres detail same as L7/150 Series.

L13/150BWP

13 Hole Back Wiring.
Tunnels and cables accommodated detail same as L13/150 Series.
Length 128.8 mm . Neutral Link.
500V 55A
2 screws per tunnel.

1003

500V 55A 3 Hole Front Wiring Neutral Link with two screws per tunnel. Black base and cover.
Dimensions: $54 \times 30 \times 36 \mathrm{~mm}$. 3 tunnels, 5.6 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. Back wiring models available to special order.

Tunnel Diameters						
Catalogue Number	17 mm for $150 \mathrm{~mm}^{2}$ cable	15.5 mm for $120 \mathrm{~mm}^{2}$ cable	10 mm for $50 \mathrm{~mm}^{2}$ cable	9.5 mm for $50 \mathrm{~mm}^{2}$ cable	8 mm for $35 \mathrm{~mm}^{2}$ cable	$5.9 \mathrm{~mm}_{\text {for } 16 \mathrm{~mm}^{2}}^{\text {cable }}$
L7/150	2	1	2	-	-	2
L7/150BW	2	1	2	-	-	2
L13/150	2	-	-	1	4	6
L13/150BW	2	-	-	1	4	6

SPECIAL
 BARS

Special Link

Requirements

Special Bars are made to order.
For further details contact your Clipsal office or Blue Point.

Special Links can be made to suit special applications or installations as required.

Please supply

information on:

- Size and number of cables.
- Covered or bare link.
- Quantity of each type of link required. (No limit on quantity.)
- Space or design limitations.
- Any special equipment to be used on the link eg. stalk lug, pyrotech, bimetal, aluminium cable.
- Is it a Front or Back Wiring Bar?
- Do you require any Line Taps?

Please specify size.

- What size stud or bolt do you require?
- Do you require any numbering?

NOTES

Products of Gerard Industries Pty Ltd
ABN 27007873529

Head Office

12 Park Terrace, Bowden
South Australia 5007
Telephone (08) 82690511
Facsimile (08) 83401724
Internet clipsal.com
E-Mail plugin@clipsal.com.au
Blue Point Products Pty Ltd
ABN 27000275632
A subsidiary of Gerard Industries Pty Ltd 122 Canterbury Road, Padstow
New South Wales 2211
Telephone (02) 97081411
Facsimile (02) 97086585
Internet www.bluepointproducts.com.au
E-Mail sales@ bluepointproducts.com.au
Offices in all States

NSW	Sydney Albury	$(02) 97949200$ (02) 60412377 VIC Melbourne
	(03) 92073200	
Country Areas	1800653893	
QLD	Brisbane	$(07) 32447444$
	Townsville	$(07) 47293333$
SA	Adelaide	$(08) 82680400$
WA	Perth	$(08) 94424444$
TAS	Launceston	$(03) 63435900$
NT	Darwin	$(08) 89470278$

Area Representatives

NSW Albury

Central Coast	0418430361
Coffs Harbour	0418653183
Dubbo	0418822564
Newcastle	0407298792
	0418434169
	0418686040
South West Sydney	0419868353
Tamworth	0417714339
Wagga Wagga	0418578903
Wollongong	0418423581

ACT Canberra
Canberra/Goulburn
Canberra/Yass
VIC Bendigo
Geelong
Gippsland Western Victoria

QLD Cairns
Gold Coast
Mackay
Maryborough
Northern Rivers
Rockhampton
Sunshine Coast
Toowoomba
Townsville
WA Bunbury
Kalgoorlie \& 0419238824 0418164070 0419847732

0418570213 0418527233 0418512680 0419380444

0418773254 0418765459 0418752134 0418664338 0418768902 0418794711 0418711786 0418726394 0418180372

Eastern Gold Fields Karratha

0418931684 0417928981

International Enquiries

Head Office Export Department
Telephone + 61882690587
Facsimile + 61883407350
E-Mail export@clipsal.com.au

New Zealand

Clipsal Industries (NZ) Ltd (Auckland)
Telephone (09) 5763403
Facsimile (09) 5761015
E-Mail headoffice@clipsal.co.nz
Customer Service
Free Fax (0508) 250305
Auckland/Mobile Phone (09) 5720014
Free Phone (0508) CLIPSAL
2547725

You can find this brochure and many others online in PDF format at: clipsal.com
Follow the links off the home page or access the following page directly: clipsal.com/wat_lib_pdf.cfm

Gerard Industries Pty Ltd reserves the right to change specifications, modify designs and discontinue items without incurring obligation and whilst every effort is made to ensure that descriptions, specifications and other information in this catalogue are correct, no warranty is given in respect thereof and the company shall not be liable for any error therein.
${ }^{\circ}$ Copyright Gerard Industries Pty Ltd
Printed by Custom Press Pty Ltd (08) 83467999

Operating Instructions VLT ${ }^{\circledR}$ AQUA Drive FC 202

110-1400 kW

Contents
VLT AQUA Drive FC 202 Operation Instructions

Contents

1 How to Read these Operating Instructions 4
2 Safety 6
2.1 Safety Note 6
2.1.1 General Warning 6
2.1.2 Before Commencing Repair Work 7
2.1.3 Special Conditions 7
2.1.4 Avoid Unintended Start 7
2.1.5 Safe Torque Off (STO) 7
2.1.6 IT Mains 8
3 How to Install 9
3.1 How to Get Started 9
3.2 Pre-installation 9
3.2.1 Planning the Installation Site 9
3.2.2 Receiving the Frequency Converter 10
3.2.3 Transportation and Unpacking 10
3.2.4 Lifting 10
3.2.5 Mechanical Dimensions 12
3.2.6 Rated Power 18
3.3 Mechanical Installation 20
3.3.1 Tools Needed 20
3.3.2 General Considerations 20
3.3.3 Terminal Locations - Enclosure Type D 21
3.3.4 Terminal Locations - E Enclosures 24
3.3.5 Terminal Locations - Enclosure type F 29
3.3.6 Cooling and Airflow 33
3.3.7 Installation on the Wall - IP21 (NEMA 1) and IP54 (NEMA 12) Units 35
3.3.8 Gland/Conduit Entry - IP21 (NEMA 1) and IP54 (NEMA12) 35
3.3.9 IP21 Drip Shield Installation (Enclosure Types D1 and D2) 37
3.4 Field Installation of Options 37
3.4.1 Installation of Duct Cooling Kit in Rittal Enclosures 37
3.4.2 Outside Installation/NEMA 3R Kit for Rittal Enclosures 38
3.4.3 Installation on Pedestal 39
3.4.4 Installation of Input Plate Options 40
3.4.5 Installation of Mains Shield for Frequency Converters 41
3.5 Enclsoure Type F Panel Options 41
3.5.1 Enclsoure Type F Options 41
3.6 Electrical Installation 42
3.6.1 Power Connections 42

Contents
VLT AQUA Drive FC 202 Operation Instructions
3.6.2 Grounding 53
3.6.3 Extra Protection (RCD) 53
3.6.4 RFI Switch 53
3.6.5 Torque 53
3.6.6 Shielded Cables 54
3.6.7 Motor Cable 54
3.6.8 Brake Cable for Frequency Converters with Factory Installed Brake Chopper Op- tion 55
3.6.9 Brake Resistor Temperature Switch 55
3.6.10 Load Sharing 55
3.6.11 Shielding against Electrical Noise 55
3.6.12 Mains Connection 56
3.6.13 External Fan Supply 56
3.6.14 Fuses 56
3.6.15 Mains Disconnectors 59
3.6.16 F Enclosure Circuit Breakers 59
3.6.17 F Enclosure Mains Contactors 60
3.6.18 Motor Insulation 60
3.6.19 Motor Bearing Currents 60
3.6.20 Control Cable Routing 60
3.6.21 Access to Control Terminals 62
3.6.22 Electrical Installation, Control Terminals 62
3.6.23 Electrical Installation, Control Cables 63
3.6.24 Switches S201, S202, and S801 65
3.7 Connection Examples 66
3.7.1 Start/Stop 66
3.7.2 Pulse Start/Stop 66
3.8 Final Set-up and Test 67
3.9 Additional Connections 68
3.9.1 Mechanical Brake Control 68
3.9.2 Parallel Connection of Motors 68
3.9.3 Motor Thermal Protection 69
4 How to operate the frequency converter 70
4.1 Ways of Operation 70
4.1.1 How to operate graphical LCP (GLCP) 70
4.1.2 How to Operate Numeric LCP (NLCP) 73
4.1.3 Changing Data 75
4.1.4 Changing a Text Value 75
4.1.5 Changing a Group of Numeric Data Values 75
4.1.6 Changing of Data Value, Step-by-Step 76
4.1.7 Read-out and Programming of Indexed Parameters 76
4.1.8 Tips and Tricks 76
5 How to programme the frequency converter 79
5.1 How to programme 79
5.2 Commonly Used Parameters - Explanations 84
5.3 Parameter Menu Structure 112
6 General Specifications 117
7 Troubleshooting 130
Index 142

1 How to Read these Operating Instructions

VLT AQUA Drive FC 200 Series

Software version: 2.1x

This guide can be used with all FC 202 frequency converters with software version 2.1 x or later. The actual software version number can be read from 15-43 Software Version.

This publication contains information proprietary to Danfoss. By accepting and using this manual the user agrees that the information contained herein is used solely for operating equipment from Danfoss or equipment from other vendors if such equipment is intended for communication with Danfoss equipment over a serial communication link. This publication is protected under the Copyright laws of Denmark and most other countries.

Danfoss does not warrant that a software program produced according to the guidelines provided in this manual functions properly in every physical, hardware or software environment.

Although Danfoss has tested and reviewed the documentation within this manual, Danfoss makes no warranty or representation, neither expressed nor implied, with respect to this documentation, including its quality, performance, or fitness for a particular purpose.

In no event shall Danfoss be liable for direct, indirect, special, incidental, or consequential damages arising out of the use, or the inability to use information contained in this manual, even if advised of the possibility of such damages. In particular, Danfoss is not responsible for any costs, including but not limited to those incurred as a result of lost profits or revenue, loss or damage of equipment, loss of computer programs, loss of data, the costs to substitute these, or any claims by third parties.

Danfoss reserves the right to revise this publication at any time and to make changes to its contents without prior
notice or any obligation to notify former or present users of such revisions or changes.

1.1.1 Available Literature

- $\quad V L T{ }^{\circledR}$ AQUA Drive FC 202 Operating Instructions provide the neccessary information for getting the frequency converter up and running.
- VLT ${ }^{\oplus}$ AQUA Drive FC 202, 110-1400 kW Operating Instructions provide the neccessary information for getting the high power frequency converter up and running.
- \quad VLT ${ }^{\oplus}$ AQUA Drive FC 202 Design Guide entails all technical information about the frequency converter and customer design and applications.
- VLT ${ }^{\circledR}$ AQUA Drive FC 202 Programming Guide provides information on how to programme and includes complete parameter descriptions.
- VLT ${ }^{\circledR}$ AQUA Drive FC 202 Profibus
- VLT ${ }^{\circledR}$ AQUA Drive FC 202 DeviceNet
- Output Filters Design Guide
- $\quad V_{L T}{ }^{\circledR}$ AQUA Drive FC 202 Cascade Controller
- Application Note MN20A: Submersible Pump Application
- Application Note MN20: Master/Follower Operation Application
- Application Note MN2OF: Drive Closed Loop and Sleep Mode
- Installation Instruction for Mounting Brackets Enclosure type A5, B1, B2, C1 and C2 IP21, IP55 or IP66
- Instruction for Analog I/O Option MCB109
- Instruction for Panel through mount kit
- $\quad V L T{ }^{\circledR}$ Active Filter Operating Instruction

Danfoss technical literature is also available online at www.danfoss.com/BusinessAreas/DrivesSolutions/ Documentations/Technical+Documentation.htm.

The frequency converter complies with UL508C thermal memory retention requirements. For more information, refer to the section Motor Thermal Protection in the Design Guide.

NOTICE

Imposed limitations on the output frequency
(due to export control regulations):
From software version 6.72 the output frequency of the frequency converter is limited to 590 Hz . Software versions $6 x$.xx also limit the maximum output frequency to 590 Hz , but these versions cannot be flashed, i.e. neither downgraded nor upgraded.

The following symbols are used in this document:

AWARNING

Indicates a potentially hazardous situation which could result in death or serious injury.

ACAUTION

Indicates a potentially hazardous situation which could result in minor or moderate injury. It may also be used to alert against unsafe practices.

NOTICE

Indicates important information, including situations that may result in damage to equipment or property.

2 Safety

2.1 Safety Note

AWARNING

The voltage of the frequency converter is dangerous whenever connected to mains. Incorrect installation of the motor, frequency converter or fieldbus may cause damage to the equipment, serious personal injury or death. Consequently, the instructions in this manual, as well as national and local rules and safety regulations, must be complied with.

Safety Regulations

1. The frequency converter must be disconnected from mains if repair work is to be carried out. Check that the mains supply has been disconnected and that the necessary time has passed before removing motor and mains plugs.
2. The [STOP/RESET] key on the control panel of the frequency converter does not disconnect the equipment from mains and is thus not to be used as a safety switch.
3. Correct protective earthing of the equipment must be established, the user must be protected against supply voltage, and the motor must be protected against overload in accordance with applicable national and local regulations.
4. The earth leakage currents are higher than 3.5 mA .
5. Protection against motor overload is set by par. 1-90 Motor Thermal Protection. If this function is desired, set par. 1-90 to data value [ETR trip] (default value) or data value [ETR warning]. Note: The function is initialised at $1.16 \times$ rated motor current and rated motor frequency. For the North American market: The ETR functions provide class 20 motor overload protection in accordance with NEC.
6. Do not remove the plugs for the motor and mains supply while the frequency converter is connected to mains. Check that the mains supply has been disconnected and that the necessary time has passed before removing motor and mains plugs.
7. Note that the frequency converter has voltage inputs other than L1, L2 and L3, when load sharing (linking of DC intermediate circuit) and external 24 V DC have been installed. Check that all voltage inputs have been disconnected and that the necessary time has passed before commencing repair work.

NOTICE

Installation at high altitude:
380-480 V: At altitudes above 3,000 m, contact Danfoss regarding PELV.
525-690 V: At altitudes above 2,000 m, contact Danfoss regarding PELV.

Warning against Unintended Start

1. The motor can be stopped with digital commands, bus commands, references or a local stop, while the frequency converter is connected to mains. To avoid personal injury, these stop functions are not sufficient to ensure that no unintended start occurs.
2. While parameters are being changed, the motor may start. Consequently, always press [RESET]; following which data can be modified.
3. A motor that has been stopped may start if faults occur in the electronics of the frequency converter, or if a temporary overload or a fault in the supply mains or the motor connection ceases.

AWARNING

Warning:

Touching the electrical parts may be fatal - even after the equipment has been disconnected from mains.

Also make sure that other voltage inputs have been disconnected, such as external 24 V DC, load sharing (linkage of DC intermediate circuit), as well as the motor connection for kinetic back-up.

2.1.1 General Warning

AWARNING

Warning:

Touching the electrical parts may be fatal - even after the equipment has been disconnected from mains.
Also make sure that other voltage inputs have been disconnected, (linkage of DC intermediate circuit), as well as the motor connection for kinetic back-up.
Before touching any potentially live parts of the frequency converter, wait at least as follows: Be aware that there may be high voltage on the DC link even when the Control Card LEDs are turned off. A red LED is mounted on a circuit board inside the frequency converter to indicate the DC bus voltage. The red LED stays lit until the DC link is 50 V DC or lower.

AWARNING

Leakage Current
The earth leakage current from the frequency converter exceeds 3.5 mA . According to IEC 61800-5-1 a reinforced Protective Earth connection must be ensured by means of: a min. $10 \mathrm{~mm}^{2} \mathrm{Cu}$ or $16 \mathrm{~mm}^{2}$ Al PE-wire or an addtional PE wire - with the same cable cross section as the Mains wiring - must be terminated separately. Residual Current Device
This product can cause a D.C. current in the protective conductor. Where a residual current device (RCD) is used for extra protection, only an RCD of Type B (time delayed) shall be used on the supply side of this product. See also RCD Application Note MN.90.GX.02. Protective earthing of the frequency converter and the use of RCD's must always follow national and local regulations.

2.1.2 Before Commencing Repair Work

1. Disconnect the frequency converter from mains.
2. Disconnect DC bus terminals 88 and 89 .
3. Wait at least the time mentioned in chapter 2.1.1 General Warning.

2.1.3 Special Conditions

Electrical ratings

The rating indicated on the nameplate of the frequency converter is based on a typical 3 -phase mains power supply, within the specified voltage, current and temperature range, which is expected to be used in most applications.

The frequency converters also support other special applications, which affect the electrical ratings of the frequency converter. Special conditions which affect the electrical ratings might be:

- Single phase applications
- High temperature applications which require derating of the electrical ratings
- Marine applications with more severe environmental conditions.

Consult the relevant clauses in these instructions and in the Design Guide for information about the electrical ratings.

Installation requirements

The overall electrical safety of the frequency converter requires special installation considerations regarding:

- Fuses and circuit breakers for over-current and short-circuit protection
- Selection of power cables (mains, motor, brake, loadsharing and relay)
- Grid configuration (IT,TN, grounded leg, etc.)
- Safety of low-voltage ports (PELV conditions)

Consult the relevant clauses in these instructions and in the Design Guide for information about the installation requirements.

AWARNING

The frequency converter's DC link capacitors remain charged after power has been disconnected. To avoid an electrical shock hazard, disconnect the frequency converter from the mains before carrying out maintenance. Before doing service on the frequency converter, wait at least the amount of time indicated below:

Voltage	Power size	Min. Waiting Time
$380-480 \mathrm{~V}$	$110-250 \mathrm{~kW}$	20 minutes
	$315-1000 \mathrm{~kW}$	40 minutes
$525-690 \mathrm{~V}$	$45-400 \mathrm{~kW}$	20 minutes
	$450-1400 \mathrm{~kW}$	30 minutes

Be aware that there may be high voltage on the DC link even when the LEDs are turned off.

Table 2.1 Discharge Time

2.1.4 Avoid Unintended Start

AWARNING

While the frequency converter is connected to mains, the motor can be started/stopped using digital commands, bus commands, references or via the Local Control Panel.

- Disconnect the frequency converter from mains whenever personal safety considerations make it necessary to avoid unintended start.
- To avoid unintended start, always activate the [Off] key before changing parameters.
- Unless terminal 37 is turned off, an electronic fault, temporary overload, a fault in the mains supply, or lost motor connection may cause a stopped motor to start.

2.1.5 Safe Torque Off (STO)

To run Safe Torque Off, additional wiring for the frequency converter is required, refer to Safe Torque Off Operating Instructions for Danfoss VLT ${ }^{\circledR}$ Frequency Converters for further information.

2.1.6 IT Mains

\triangle WARNING

IT mains
Do not connect frequency converters with RFI-filters to mains supplies with a voltage between phase and earth of more than 440 V for 400 V converters and 760 V for 690 V converters.
For 400 V IT mains and delta earth (grounded leg), mains voltage may exceed 440 V between phase and earth. For 690 V IT mains and delta earth (grounded leg), mains voltage may exceed 760 V between phase and earth. Failure to follow recommendations could result in death or serious injury.

14-50 RFI Filter can be used to disconnect the internal RFI capacitors from the RFI filter to ground.

2.1.7 Disposal Instruction

Equipment containing electrical components
must not be disposed of together with
domestic waste.
It must be separately collected with electrical
and electronic waste according to local and
currently valid legislation.

3 How to Install

3.1 How to Get Started

This chapter covers mechanical and electrical installations to and from power terminals and control card terminals. Electrical installation of options is described in the relevant Operating Instructions and Design Guide.

The frequency converter is designed to achieve a quick and EMC-correct installation by following the steps described below.

AWARNING

Read the safety instructions before installing the unit. Failure to follow recommendations could result in death or serious injury.

Mechanical Installation

- Mechanical mounting

Electrical Installation

- Connection to Mains and Protecting Earth
- Motor connection and cables
- Fuses and circuit breakers
- Control terminals - cables

Quick Setup

- Local Control Panel, LCP
- Automatic Motor Adaptation, AMA
- Programming

Frame size is depending on enclosure type, power range and mains voltage

Illustration 3.1 Diagram showing basic installation including mains, motor, start/stop key, and potentiometer for speed adjustment.

3.2 Pre-installation

3.2.1 Planning the Installation Site

ACAUTION

Before performing the installation it is important to plan the installation of the frequency converter. Neglecting this may result in extra work during and after installation.

Select the best possible operation site by considering the following (see details on the following pages, and the respective Design Guides)

- Ambient operating temperature
- Installation method
- How to cool the unit
- Position of the frequency converter
- Cable routing
- Ensure the power source supplies the correct voltage and necessary current
- Ensure that the motor current rating is within the maximum current from the frequency converter
- If the frequency converter is without built-in fuses, ensure that the external fuses are rated correctly.

3.2.2 Receiving the Frequency Converter

When receiving the frequency converter, make sure that the packaging is intact, and be aware of any damage that might have occurred to the unit during transport. In case damage has occurred, contact immediately the shipping company to claim the damage.

3.2.3 Transportation and Unpacking

Before unpacking the frequency converter it is recommended that it is located as close as possible to the final installation site.
Remove the box and handle the frequency converter on the pallet, as long as possible.

3.2.4 Lifting

Always lift the frequency converter in the dedicated lifting eyes. For all D and E2 (IPOO) enclosures, use a bar to avoid bending the lifting holes of the frequency converter.

Illustration 3.2 Recommended Lifting Method, Enclosure Types D and E

AWARNING

The lifting bar must be able to handle the weight of the frequency converter. See Mechanical Dimensions for the weight of the different enclosure type. Maximum diameter for bar is 2.5 cm (1 inch). The angle from the top of the frequency converter to the lifting cable should be 60° or greater.

Illustration 3.3 Recommended Lifting Method, Enclsoure Type F1 (460 V, 600 to 900 HP, 575/690 V, 900 to 1150 HP)

Illustration 3.4 Recommended Lifting Method, Enclosure Type F2 (460 V, 1000 to 1200 HP, 575/690 V, 1250 to 1350 HP)

Illustration 3.5 Recommended Lifting Method, Enclosure Type F3 (460 V, 600 to $900 \mathrm{HP}, 575 / 690 \mathrm{~V}, 900$ to 1150 HP)

Illustration 3.6 Recommended Lifting Method, Enclosure Type F4 (460 V, 1000 to $1200 \mathrm{HP}, 575 / 690$ V, 1250 to 1350 HP)

Illustration 3.7 Recommended lifting method, Enclosure Type F8

Illustration 3.8 Recommended lifting method, Enclosure Type F9/F10

Illustration 3.9 Recommended lifting method, Enclosure Type F11/F12/F13/F14

NOTICE

The plinth is provided in the same packaging as the frequency converter but is not attached to enclosure types F1-F4 during shipment. The plinth is required to allow airflow to the frequency converter to provide proper cooling. The F enclosures should be positioned on top of the plinth in the final installation location. The angle from the top of the frequency converter to the lifting cable should be 60° or greater.
In addition to the drawings above a spreader bar is an acceptable way to lift the F enclosures.

3.2.5 Mechanical Dimensions

Illustration 3.10

* Note airflow directions

Illustration 3.11

* Note airflow directions

Illustration 3.12

* Note airflow directions

E2

IPOO / CHASSIS

Illustration 3.13

* Note airflow directions

Table 3.1

How to Install

VLT AQUA Drive FC 202 Operation Instructions

Enclosure type Size		D1		D2		D3	D4
		$\begin{aligned} & 110-132 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ & (380-480 \mathrm{~V}) \\ & 45-160 \mathrm{~kW} \text { at } 690 \mathrm{~V} \\ & (525-690 \mathrm{~V}) \end{aligned}$		$\begin{aligned} & 160-250 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ & (380-480 \mathrm{~V}) \\ & 200-400 \mathrm{~kW} \text { at } 690 \mathrm{~V} \\ & (525-690 \mathrm{~V}) \end{aligned}$		$\begin{aligned} & 110-132 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ & (380-480 \mathrm{~V}) \\ & 45-160 \mathrm{~kW} \text { at } 690 \mathrm{~V} \\ & (525-690 \mathrm{~V}) \end{aligned}$	$\begin{gathered} 160-250 \mathrm{~kW} \\ \text { at } 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \\ 200-400 \mathrm{~kW} \\ \text { at } 690 \mathrm{~V} \\ (525-690 \mathrm{~V}) \end{gathered}$
IP NEMA		21 Type 1	54 Type 12	$\begin{gathered} \hline 21 \\ \text { Type } 1 \\ \hline \end{gathered}$	Type 12		$\begin{gathered} 00 \\ \text { Chassis } \end{gathered}$
Shipping dimensions [mm]	Height	650	650	650	650	650	650
	Width	1730	1730	1730	1730	1220	1490
	Depth	570	570	570	570	570	570
Frequency converter dimensions [mm]	Height	1209	1209	1589	1589	104	1327
	Width	420	420	420	420	408	408
	Depth	380	380	380	380	375	375
	Max weight [kg]	104	104	151	151	91	138

Table 3.3 Mechanical dimensions, Enclosure type D

How to Install
VLT AQUA Drive FC 202 Operation Instructions

Enclosure Type Size		E1	E2	F1	F2	F3	F4
		$\begin{gathered} 315-450 \mathrm{~kW} \text { at } \\ 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \\ 450-630 \mathrm{~kW} \text { at } \\ 690 \mathrm{~V} \\ (525-690 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 315-450 \mathrm{~kW} \text { at } \\ 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \\ 450-630 \mathrm{~kW} \text { at } \\ 690 \mathrm{~V} \\ (525-690 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 500-710 \mathrm{~kW} \text { at } \\ 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \\ 710-900 \mathrm{~kW} \text { at } \\ 690 \mathrm{~V} \\ (525-690 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \hline 800-1000 \mathrm{~kW} \text { at } \\ 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \\ 1000-1200 \mathrm{~kW} \text { at } \\ 690 \mathrm{~V} \\ (525-690 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{gathered} 500-710 \mathrm{~kW} \text { at } \\ 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \\ 710-900 \mathrm{~kW} \text { at } \\ 690 \mathrm{~V} \\ (525-690 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 800-1000 \mathrm{~kW} \text { at } \\ 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \\ 1000-1400 \mathrm{~kW} \text { at } \\ 690 \mathrm{~V} \\ (525-690 \mathrm{~V}) \end{gathered}$
IP NEMA		$\begin{gathered} \hline 21,54 \\ \text { Type } 1 / \text { Type } 12 \\ \hline \end{gathered}$	$\begin{gathered} 00 \\ \text { Chassis } \end{gathered}$	$\begin{gathered} 21,54 \\ \text { Type } 1 / \text { Type } 12 \\ \hline \end{gathered}$	$\begin{gathered} 21,54 \\ \text { Type } 1 / \text { Type } 12 \\ \hline \end{gathered}$	$\begin{gathered} 21,54 \\ \text { Type } 1 / \text { Type } 12 \\ \hline \end{gathered}$	$\begin{gathered} 21,54 \\ \text { Type } 1 / \text { Type } 12 \\ \hline \end{gathered}$
Shipping dimensions [mm]	Height	840	831	2324	2324	2324	2324
	Width	2197	1705	1569	1962	2159	2559
	Depth	736	736	1130	1130	1130	1130
Frequency converter dimensions [mm]	Height	2000	1547	2204	2204	2204	2204
	Width	600	585	1400	1800	2000	2400
	Depth	494	498	606	606	606	606
	Max weight [kg]	313	277	1004	1246	1299	1541

Table 3.4 Mechanical dimensions, Enclosure Types E and F

3.2.6 Rated Power

Enclosure type		D1	D2	D3	D4
Enclosure protection	IP	21/54	21/54	00	00
	NEMA	Type 1/Type 12	Type 1/Type 12	Chassis	Chassis
Normal overload rated power - 110\% overload torque		$\begin{aligned} & 110-132 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ & (380-480 \mathrm{~V}) \\ & 45-160 \mathrm{~kW} \text { at } 690 \mathrm{~V} \\ & (525-690 \mathrm{~V}) \end{aligned}$	$\begin{gathered} 150-250 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \\ 200-400 \mathrm{~kW} \text { at } 690 \mathrm{~V} \\ (525-690 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 110-132 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \\ 45-160 \mathrm{~kW} \text { at } 690 \mathrm{~V} \\ (525-690 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & 150-250 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ & (380-480 \mathrm{~V}) \\ & 200-400 \mathrm{~kW} \text { at } 690 \mathrm{~V} \\ & (525-690 \mathrm{~V}) \\ & \hline \end{aligned}$

Table 3.5

Enclosure type		E1	E2	F1/F3	F2/F4
Enclosure protection	IP	21/54	00	21/54	21/54
	NEMA	Type 1/Type 12	Chassis	Type 1/Type 12	Type 1/Type 12
Normal overload rated power 110\% overload torque		$\begin{gathered} 315-450 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \\ 450-630 \mathrm{~kW} \text { at } 690 \mathrm{~V} \\ (525-690 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 315-450 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \\ 450-630 \mathrm{~kW} \text { at } 690 \mathrm{~V} \\ (525-690 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & 500-710 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ & (380-480 \mathrm{~V}) \\ & 710-900 \mathrm{~kW} \text { at } 690 \mathrm{~V} \\ & (525-690 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 800-1000 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ & (380-480 \mathrm{~V}) \\ & 1000-1400 \mathrm{~kW} \text { at } 690 \mathrm{~V} \\ & (525-690 \mathrm{~V}) \end{aligned}$

Table 3.6

NOTICE

The F enclosures are available in 4 different sizes, F1, F2, F3 and F4 The F1 and F2 consist of an inverter cabinet on the right and rectifier cabinet on the left. The F3 and F4 have an additional options cabinet left of the rectifier cabinet. The F3 is an F1 with an additional options cabinet. The F4 is an F2 with an additional options cabinet.

3.3 Mechanical Installation

Preparation of the mechanical installation of the frequency converter must be done carefully to ensure a proper result and to avoid additional work during installation. Start taking a close look at the mechanical drawings at the end of this instruction to become familiar with the space demands.

3.3.1 Tools Needed

To perform the mechanical installation the following tools are needed:

- Drill with 10 or 12 mm drill
- Tape measure
- Wrench with relevant metric sockets ($7-17 \mathrm{~mm}$)
- Extensions to wrench
- \quad Sheet metal punch for conduits or cable glands in IP21/Nema 1 and IP54 units
- Lifting bar to lift the unit (rod or tube max. $\varnothing 5$ mm (1 inch), able to lift minimum 400 kg (880 lbs).
- Crane or other lifting aid to place the frequency converter in position
- A Torx T50 tool is needed to install the E1 in IP21 and IP54 enclosure types.

3.3.2 General Considerations

Wire access

Ensure that proper cable access is present including necessary bending allowance. As the IP00 enclosure is open to the bottom cables must be fixed to the back panel of the enclosure where the frequency converter is mounted, i.e. by using cable clamps.

ACAUTION

All cable lugs/shoes must mount within the width of the terminal bus bar.

Space

Ensure proper space above and below the frequency converter to allow airflow and cable access. In addition space in front of the unit must be considered to enable opening of the door of the panel.

Illustration 3.14 Space in Front of IP21/IP54 Rated Enclosure Types D1 and D2

Illustration 3.15 Space in Front of IP21/IP54 Rated Enclosure Type E1

Illustration 3.16 Space in Front of IP21/IP54 Rated Enclosure Type F1

Illustration 3.17 Space in Front of IP21/IP54 Rated Enclosure Type F3

Illustration 3.18 Space in Front of IP21/IP54 Rated Enclosure Type F2

Illustration 3.19 Space in Front of IP21/IP54 Rated Enclosure
Type F4

3.3.3 Terminal Locations - Enclosure Type D

Consider the following terminal positions when designing for cables access.

Illustration 3.20 Position of Power Connections, Enclosure Types D3 and D4

Illustration 3.21 Position of Power Connections with Disconnect Switch, Enclosure Types D1 and D2

Be aware that the power cables are heavy and hard to bend. Consider the optimum position of the frequency converter for ensuring easy installation of the cables.

How to Install
VLT AQUA Drive FC 202 Operation Instructions

NOTICE

All D enclosures are available with standard input terminals or disconnect switch. All terminal dimensions can be found in Table 3.7.

	IP21 (NEMA 1)/IP54 (NEMA 12)		IP00/Chassis	
	D1	D2	D3	D4
A	$277(10.9)$	$379(14.9)$	$119(4.7)$	$122(4.8)$
B	$227(8.9)$	$326(12.8)$	$68(2.7)$	$68(2.7)$
C	$173(6.8)$	$273(10.8)$	$15(0.6)$	$16(0.6)$
D	$179(7.0)$	$279(11.0)$	$20.7(0.8)$	$22(0.8)$
E	$370(14.6)$	$370(14.6)$	$363(14.3)$	$363(14.3)$
F	$300(11.8)$	$300(11.8)$	$293(11.5)$	$293(11.5)$
G	$222(8.7)$	$226(8.9)$	$215(8.4)$	$218(8.6)$
H	$139(5.4)$	$142(5.6)$	$131(5.2)$	$135(5.3)$
I	$55(2.2)$	$59(2.3)$	$48(1.9)$	$51(2.0)$
J	$354(13.9)$	$361(14.2)$	$347(13.6)$	$354(13.9)$
K	$284(11.2)$	$277(10.9)$	$277(10.9)$	$270(10.6)$
L	$334(13.1)$	$334(13.1)$	$326(12.8)$	$326(12.8)$
M	$250(9.8)$	$250(9.8)$	$243(9.6)$	$243(9.6)$
N	$167(6.6)$	$167(6.6)$	$159(6.3)$	$159(6.3)$
O	$261(10.3)$	$260(10.3)$	$261(10.3)$	$261(10.3)$
P	$170(6.7)$	$169(6.7)$	$170(6.7)$	$170(6.7)$
Q	$120(4.7)$	$120(4.7)$	$120(4.7)$	$120(4.7)$
R	$256(10.1)$	$350(13.8)$	$98(3.8)$	$93(3.7)$
S	$308(12.1)$	$332(13.0)$	$301(11.8)$	$324(12.8)$
T	$252(9.9)$	$262(10.3)$	$245(9.6)$	$255(10.0)$
U	$196(7.7)$	$192(7.6)$	$189(7.4)$	$185(7.3)$
V	$260(10.2)$	$273(10.7)$	$260(10.2)$	$273(10.7)$

Table 3.7 Cable Positions Dimensions in mm (inch)

3.3.4 Terminal Locations - E Enclosures

Terminal Locations - E1

Take the following position of the terminals into consideration when designing the cable access.

Illustration 3.22 IP21 (NEMA Type 1) and IP54 (NEMA Type 12) Enclosure Power Connection Positions

How to Install
VLT AQUA Drive FC 202 Operation Instructions

Illustration 3.23 IP21 (NEMA type 1) and IP54 (NEMA type 12) Enclosure Power Connection Positions (Detail B)

Illustration 3.24 IP21 (NEMA type 1) and IP54 (NEMA type 12) Enclosure Power Connection Position of Disconnect Switch

Enclosure types	Unit type	Dimensions [mm]/(inch)					
E1	IP54/IP21 UL AND NEMA1/NEMA12						
	$\begin{gathered} 250 / 315 \mathrm{~kW}(400 \mathrm{~V}) \text { AND 355/450-500/630 } \\ \text { KW (690 V) } \end{gathered}$	396 (15.6)	267 (10.5)	332 (13.1)	397 (15.6)	528 (20.8)	N/A
	315/355-400/450 kW (400 V)	408 (16.1)	246 (9.7)	326 (12.8)	406 (16.0)	419 (16.5)	459 (18.1)

Table 3.8 Dimensions for Disconnect Terminal

Terminal locations - enclosure type E2

Take the following position of the terminals into consideration when designing the cable access.

Illustration 3.26 IP00 Enclosure Power Connection Positions

Illustration 3.27 IP00 Enclosure Power Connections Positions of Disconnect Switch

NOTICE

The power cables are heavy and difficult to bend. Consider the optimum position of the frequency converter for ensuring easy installation of the cables.
Each terminal allows use of up to 4 cables with cable lugs or use of standard box lug. Earth is connected to relevant termination point in the frequency converter.
If lugs are wider than 39 mm , install supplied barriers on the mains input side of the disconnect.

Illustration 3.28 Terminal in Details

How to Install
VLT AQUA Drive FC 202 Operation Instructions

NOTICE

Power connections can be made to positions A or B

Enclosure type	Unit type	Dimensions [mm]/(inch)					
E2	IPOO/CHASSIS	A	B	C	D	E	F
	$\begin{gathered} 250 / 315 \mathrm{~kW}(400 \mathrm{~V}) \text { AND 355/450-500/630 } \\ \text { KW (690 V) } \end{gathered}$	396 (15.6)	268 (10.6)	333 (13.1)	398 (15.7)	221 (8.7)	N/A
	315/355-400/450 kW (400 V)	408 (16.1)	239 (9.4)	319 (12.5)	399 (15.7)	113 (4.4)	153 (6.0)

Table 3.9 Dimensions for Disconnect Terminal

3.3.5 Terminal Locations - Enclosure type F

NOTICE

The F enclosures have 4 different sizes, F1, F2, F3 and F4. The F1 and F2 consist of an inverter cabinet on the right and rectifier cabinet on the left. The F3 and F4 have an additional options cabinet left of the rectifier cabinet. The F3 is an F1 with an additional options cabinet. The F4 is an F2 with an additional options cabinet.

Terminal locations - enclosure types F1 and F3

Illustration 3.29 Terminal Locations - Inverter Cabinet - F1 and F3 (Front, Left and Right Side View). The Gland Plate is 42 mm below .0 Level.

1) Earth ground bar
2) Motor terminals
3) Brake terminals

Illustration 3.30 Terminal Locations - Regen Terminals - F1 and F3

Terminal locations - enclosure types F2 and F4

Illustration 3.31 Terminal Locations - Inverter Cabinet - F2 and F4 (Front, Left and Right Side View). The Gland Plate is 42 mm below 0 Level.

1) Earth Ground Bar

Illustration 3.32 Terminal Locations - Regen Terminals - F2 and F4

Terminal locations - Rectifier (F1, F2, F3 and F4)

Illustration 3.33 Terminal Locations - Rectifier (Left Side, Front and Right Side View). The Gland Plate is 42 mm below .0 Level.

1) Loadshare Terminal (-)
2) Earth Ground Bar
3) Loadshare Terminal (+)

Terminal locations - Options Cabinet (F3 and F4)

Terminal locations - Options Cabinet with circuit breaker/ molded case switch (F3 and F4)

Illustration 3.35 Terminal Locations - Options Cabinet with Circuit Breaker/Molded Case Switch (Left Side, Front and Right Side View). The Gland Plate is 42 mm below .0 Level.

1) Earth Ground Bar

Power size	2	3	$\mathbf{4}$	$\mathbf{5}$
$500 \mathrm{~kW}(480$ $\mathrm{V}), 710-800$ kW $(690 \mathrm{~V})$	34.9	86.9	122.2	174.2
$560-1000 \mathrm{~kW}$ $(480 \mathrm{~V})$, $900-1400 \mathrm{~kW}$ $(690 \mathrm{~V})$	46.3	98.3	119.0	171.0

Table 3.10 Dimensions for Terminal

3.3.6 Cooling and Airflow

Cooling

Cooling can be obtained in different ways, by using the cooling ducts in the bottom and the top of the unit, by taking air in and out the back of the unit or by combining the cooling possibilities.

Duct cooling
A dedicated option has been developed to optimize installation of IP00/chassis frequency converters in Rittal TS8 enclosures utilizing the fan of the frequency converter for forced air cooling of the backchannel. The air out of the top of the enclosure could but ducted outside a facility so the heat loses from the backchannel are not dissipated within the control room reducing air-conditioning requirements of the facility.
See chapter 3.4.1 Installation of Duct Cooling Kit in Rittal Enclosures, for further information.

Back cooling

The backchannel air can also be ventilated in and out the back of a Rittal TS8 enclosure. This offers a solution where the backchannel could take air from outside the facility and return the heat loses outside the facility thus reducing air-conditioning requirements.

ACAUTION

A door fan(s) is required on the enclosure to remove the heat losses not contained in the backchannel of the frequency converter and any additional losses generated from other components installed inside the enclosure. The total required air flow must be calculated so that the appropriate fans can be selected. Some enclosure manufacturers offer software for performing the calculations (i.e. Rittal Therm software). If the frequency converter is the only heat generating component in the enclosure, the minimum airflow required at an ambient temperature of $45^{\circ} \mathrm{C}$ for the D3 and D4 frequency converters is $391 \mathrm{~m}^{3} / \mathrm{h}$ (230 cfm). The minimum airflow required at an ambient temperature of $45^{\circ} \mathrm{C}$ for the E2 frequency converter is $782 \mathrm{~m}^{3} / \mathrm{h}$ (460 cfm).

Airflow

The necessary airflow over the heat sink must be secured. The flow rate is in Table 3.11.

Enclosure protection	Enclosure type	Door fan(s)/ Top fan airflow	Heat sink fan(s)
IP21/NEMA 1IP54/NEMA 12	D1 and D2	$\begin{aligned} & 170 \mathrm{~m}^{3} / \mathrm{h} \\ & (100 \mathrm{cfm}) \end{aligned}$	$\begin{aligned} & 765 \mathrm{~m}^{3} / \mathrm{h} \\ & (450 \mathrm{cfm}) \end{aligned}$
	$\begin{aligned} & \text { E1 P315T5, } \\ & \text { P450T7, } \\ & \text { P500T7 } \end{aligned}$	$\begin{aligned} & 340 \mathrm{~m}^{3} / \mathrm{h} \\ & (200 \mathrm{cfm}) \end{aligned}$	$\begin{aligned} & 1105 \mathrm{~m}^{3} / \mathrm{h} \\ & (650 \mathrm{cfm}) \end{aligned}$
	$\begin{array}{\|l} \hline \text { E1 P355- } \\ \text { P450T5, P560- } \\ \text { P630T7 } \end{array}$	$\begin{aligned} & 340 \mathrm{~m}^{3} / \mathrm{h} \\ & (200 \mathrm{cfm}) \end{aligned}$	$\begin{aligned} & 1445 \mathrm{~m}^{3} / \mathrm{h} \\ & (850 \mathrm{cfm}) \end{aligned}$
IP21/NEMA 1	$\begin{aligned} & \text { F1, F2, F3 and } \\ & \text { F4 } \end{aligned}$	$\begin{aligned} & 700 \mathrm{~m}^{3} / \mathrm{h} \\ & (412 \mathrm{cfm})^{*} \end{aligned}$	$\begin{aligned} & 985 \mathrm{~m}^{3} / \mathrm{h} \\ & (580 \mathrm{cfm})^{*} \end{aligned}$
IP54/NEMA 12	F1, F2, F3 and F4	$\begin{aligned} & 525 \mathrm{~m}^{3} / \mathrm{h} \\ & (309 \mathrm{cfm})^{*} \end{aligned}$	$\begin{aligned} & 985 \mathrm{~m}^{3} / \mathrm{h} \\ & (580 \mathrm{cfm})^{*} \end{aligned}$
IP00/Chassis	D3 and D4	$\begin{aligned} & 255 \mathrm{~m}^{3} / \mathrm{h} \\ & (150 \mathrm{cfm}) \end{aligned}$	$\begin{aligned} & 765 \mathrm{~m}^{3} / \mathrm{h} \\ & (450 \mathrm{cfm}) \end{aligned}$
	$\begin{aligned} & \text { E2 P315T5, } \\ & \text { P450T7, } \\ & \text { P500T7 } \end{aligned}$	$\begin{aligned} & 255 \mathrm{~m}^{3} / \mathrm{h} \\ & (150 \mathrm{cfm}) \end{aligned}$	$\begin{aligned} & 1105 \mathrm{~m}^{3} / \mathrm{h} \\ & (650 \mathrm{cfm}) \end{aligned}$
	$\begin{array}{\|l} \hline \text { E2 P355- } \\ \text { P450T5, P560- } \\ \text { P630T7 } \end{array}$	$\begin{aligned} & 255 \mathrm{~m}^{3} / \mathrm{h} \\ & (150 \mathrm{cfm}) \end{aligned}$	$\begin{aligned} & 1445 \mathrm{~m}^{3} / \mathrm{h} \\ & (850 \mathrm{cfm}) \end{aligned}$
* Airflow per fan. enclosure type F contain multiple fans.			

Table 3.11 Heat Sink Air Flow

NOTICE

The fan runs for the following reasons:

1. AMA
2. DC Hold
3. Pre-Mag
4. DC Brake
5. 60% of nominal current is exceeded
6. Specific heat sink temperature exceeded (power size dependent)
7. Specific Power Card ambient temperature exceeded (power size dependent)
8. Specific Control Card ambient temperature exceeded

Once the fan is started it will run for minimum 10 minutes.

External ducts

If additional duct work is added externally to the Rittal cabinet the pressure drop in the ducting must be calculated. Use the charts below to derate the frequency converter according to the pressure drop.

Illustration 3.36 D Enclosure Derating vs. Pressure Change Frequency converter air flow: $450 \mathrm{cfm}\left(765 \mathrm{~m}^{3} / \mathrm{h}\right.$)

Illustration 3.37 E Enclosure Derating vs. Pressure Change
(Small Fan), P315T5 and P450T7-P500T7
Frequency converter air flow: 650 cfm ($1105 \mathrm{~m}^{3} / \mathrm{h}$)

Illustration 3.38 E Enclosure Derating vs. Pressure Change (Large Fan), P355T5-P450T5 and P560T7-P630T7
Frequency converter air flow: 850 cfm ($1445 \mathrm{~m}^{3} / \mathrm{h}$)

Illustration 3.39 F1, F2, F3, F4 Enclosures Derating vs. Pressure Change
Frequency converter air flow: $580 \mathrm{cfm}\left(985 \mathrm{~m}^{3} / \mathrm{h}\right.$)

3.3.7 Installation on the Wall - IP21 (NEMA 1) and IP54 (NEMA 12) Units

This only applies to enclosure types D1 and D2. It must be considered where to install the unit.

Take the relevant points into consideration before selecting the final installation site:

- Free space for cooling
- Access to open the door
- Cable entry from the bottom

Mark the mounting holes carefully using the mounting template on the wall and drill the holes as indicated. Ensure proper distance to the floor and the ceiling for cooling. A minimum of 225 mm (8.9 inch) below the frequency converter is needed. Mount the bolts at the bottom and lift the frequency converter up on the bolts. Tilt the frequency converter against the wall and mount the upper bolts. Tighten all 4 bolts to secure the frequency converter against the wall.

Illustration 3.40 Lifting Method for Mounting Frequency Converter on Wall

3.3.8 Gland/Conduit Entry - IP21 (NEMA 1) and IP54 (NEMA12)

Cables are connected through the gland plate from the bottom. Remove the plate and plan where to place the entry for the glands or conduits. Prepare holes in the marked area on the drawing.

NOTICE

The gland plate must be fitted to the frequency converter to ensure the specified protection degree, as well as ensuring proper cooling of the unit. If the gland plate is not mounted, the frequency converter may trip on Alarm 69, Pwr. Card Temp

Illustration 3.41 Example of Proper Installation of Gland Plate.

Cable entries viewed from the bottom of the frequency converter - 1) Mains side 2) Motor side

Illustration 3.42 Enclosure Types D1 + D2

Illustration 3.43 Enclosure Type E1

Enclosure types F1-F4: Cable entries viewed from the bottom of the frequency converter - 1) Place conduits in marked areas

Illustration 3.44 Enclosure Type F1

Illustration 3.45 Enclosure Type F2

Illustration 3.46 Enclosure Type F3

Illustration 3.47 Enclosure Type F4

3.3.9 IP21 Drip Shield Installation

 (Enclosure Types D1 and D2)To comply with the IP21 rating, a separate drip shield is to be installed as explained below:

- Remove the 2 front screws
- Insert the drip shield and replace screws
- Tighten the screws to 5.6 Nm (50 in -lbs)

Illustration 3.48 Drip Shield Installation.

3.4 Field Installation of Options

3.4.1 Installation of Duct Cooling Kit in Rittal Enclosures

This section deals with the installation of IPOO/chassis enclosed frequency converters with duct work cooling kits in Rittal enclosures. In addition to the enclosure a 200 mm base/plinth is required.

Illustration 3.49 Installation of IP00 in Rittal TS8 Enclosure.

The minimum enclosure dimension is:

- D3 and D4 enclosures: Depth 500 mm and width 600 mm .
- E2 enclosure: Depth 600 mm and width 800 mm .

The maximum depth and width are as required by the installation. When using multiple frequency converters in one enclosure, it is recommended that each frequency converter is mounted on its own back panel and

How to Install
supported along the mid-section of the panel. These duct work kits do not support the "in frame" mounting of the panel (see Rittal TS8 catalogue for details). The duct work cooling kits listed in Table 3.12 are suitable for use only with IP00/Chassis frequency converters in Rittal TS8 IP 20 and UL and NEMA 1 and IP 54 and UL and NEMA 12 enclosures.

ACAUTION

For the E 2 enclosures it is important to mount the plate at the absolute rear of the Rittal enclosure due to the weight of the frequency converter.

ACAUTION

A doorfan(s) is required on the enclosure to remove the heat losses not contained in the backchannel of the frequency converter and any additional losses generated from other components installed inside the enclosure. The total required airflow must be calculated so that the appropriate fans can be selected. Some enclosure manufacturers offer software for performing the calculations (i.e. Rittal Therm software). If the frequency converter is the only heat generating component in the enclosure, the minimum airflow required at an ambient temperature of $45^{\circ} \mathrm{C}$ for the D3 and D4 frequency converters is $391 \mathrm{~m}^{3} / \mathrm{h}(230 \mathrm{cfm}$). The minimum airflow required at an ambient temperature of $45^{\circ} \mathrm{C}$ for the E2 frequency converter is $782 \mathrm{~m}^{3} / \mathrm{h}(460 \mathrm{cfm})$.

$\left.$	Rittal TS-8 Enclosure	Enclosure type D3 Kit Part No.	Enclosure type
D4 Kit Part No.			
:---			
type E2 Part			
No.	\right\rvert\,	1800 mm	176 F 1824
:---	:---	:---	
2000 mm	176 F 1826	176 F 1825	
2200 mm			

Table 3.12 Ordering Information

NOTICE

See the instruction Duct Work Cooling Kit Instruction for Frames D3, D4 and E2 for further information.

External ducts

If additional duct work is added externally to the Rittal cabinet the pressure drop in the ducting must be calculated. See chapter 3.3.6 Cooling and Airflow for further information.

3.4.2 Outside Installation/NEMA 3R Kit for Rittal Enclosures

Illustration 3.50

This section is for the installation of NEMA $3 R$ kits available for the frequency converter enclosure types D3, D4 and E2. These kits are designed and tested to be used with IP00/ Chassis versions of these enclosure types in Rittal TS8 NEMA $3 R$ or NEMA 4 enclosures. The NEMA-3R enclosure is an outdoor enclosure that provides a degree of protection against rain and ice. The NEMA-4 enclosure is an outdoor enclosure that provides a greater degree of protection against weather and hosed water.
The minimum enclosure depth is 500 mm (600 mm for enclosure type E2) and the kit is designed for a 600 mm $(800 \mathrm{~mm}$ for enclosure type E2) wide enclosure. Other enclosure widths are possible, however additional Rittal hardware is required. The maximum depth and width are as required by the installation.

NOTICE

The current rating of frequency converters in enclosure types D3 and D4 are de-rated by 3\%, when adding the NEMA 3R kit. Frequency converters in enclosure type E2 require no derating.

NOTICE

A doorfan(s) is required on the enclosure to remove the heat losses not contained in the backchannel of the frequency converter and any additional losses generated from other components installed inside the enclosure. The total required airflow must be calculated so that the appropriate fans can be selected. Some enclosure manufacturers offer software for performing the calculations (i.e. Rittal Therm software). If the frequency converter is the only heat generating component in the enclosure, the minimum airflow required at an ambient temperature of $45^{\circ} \mathrm{C}$ for the D3 and D4 frequency converters is $391 \mathrm{~m}^{3} / \mathrm{h}(230 \mathrm{cfm}$). The minimum airflow required at an ambient temperature of $45^{\circ} \mathrm{C}$ for the E2 frequency converter is $782 \mathrm{~m}^{3} / \mathrm{h}(460 \mathrm{cfm})$.

Ordering information

Enclosure type D3: 176F4600
Enclosure type D4: 176F4601
Enclosure type E2: 176F1852

NOTICE

See the instructions Installation of NEMA 3 R Kit for IPOO Frames D3, D4 \& E2 for further information.

3.4.3 Installation on Pedestal

This section describes the installation of a pedestal unit available for the frequency converters enclosure types D1 and D2. This is a 200 mm high pedestal that allows these enclosure types to be floor mounted. The front of the pedestal has openings for input air to the power components.

The frequency converter gland plate must be installed to provide adequate cooling air to the control components of the frequency converter via the door fan and to maintain the IP21/NEMA 1 or IP54/NEMA 12 degrees of enclosure protections.

Illustration 3.51 Frequency Converter on Pedestal

There is one pedestal that fits both enclosure types D1 and D2. Its ordering number is 176F1827. The pedestal is standard for enclosure type E1.

Illustration 3.52 Mounting of Frequency Converter to Pedestal

NOTICE

See the Pedestal Kit Instruction Manual, for further information.

3.4.4 Installation of Input Plate Options

This section is for the field installation of input option kits available for frequency converters in all enclosure types D and E .
Do not attempt to remove RFI filters from input plates.
Damage may occur to RFI filters if they are removed from the input plate.

NOTICE

Where RFI filters are available, there are 2 different type of RFI filters depending on the input plate combination and the RFI filters interchangeable. Field installable kits in certain cases are the same for all voltages.

	$\begin{aligned} & 380-480 \mathrm{~V} \\ & 380-500 \mathrm{~V} \end{aligned}$	Fuses	Disconnect Fuses	RFI	RFI Fuses	RFI Disconnect Fuses
D1	All D1 power sizes	$176 F 8442$	176F8450	176F8444	$176 F 8448$	176F8446
D2	All D2 power sizes	$176 F 8443$	176F8441	176F8445	176F8449	$176 F 8447$
E1	FC 102/ FC 202: 315 kW FC 302: 250 kW	176F0253	176F0255	176F0257	176F0258	$176 F 0260$
	$\begin{aligned} & \text { FC 102/ FC 202: } 355- \\ & 450 \mathrm{~kW} \\ & \text { FC 302: } 315-400 \mathrm{~kW} \end{aligned}$	176F0254	176F0256	176F0257	176F0259	176F0262

Table 3.13 Fuses

	525-690 V	Fuses	Disconnect Fuses	RFI	RFI Fuses	RFI Disconnect Fuses
D1	$\begin{aligned} & \text { FC 102/ FC 202: 45-90 } \\ & \text { kW } \\ & \text { FC 302: } 37-75 \mathrm{~kW} \end{aligned}$	175L8829	175L8828	175L8777	NA	NA
	$\begin{array}{\|l} \hline \text { FC 102/ FC 202: } \\ 110-160 \mathrm{~kW} \\ \text { FC 302: } 90-132 \mathrm{~kW} \end{array}$	175L8442	175L8445	175L8777	NA	NA
D2	All D2power sizes	175L8827	175L8826	175L8825	NA	NA
E1	$\begin{aligned} & \text { FC 102/ FC 202: } \\ & 450-500 \mathrm{~kW} \\ & \text { FC 302: } 355-400 \mathrm{~kW} \end{aligned}$	176F0253	176F0255	NA	NA	NA
	$\begin{aligned} & \text { FC 102/ FC 202: } \\ & 560-630 \mathrm{~kW} \\ & \text { FC 302: } 500-560 \mathrm{~kW} \end{aligned}$	176F0254	176F0258	NA	NA	NA

Table 3.14

NOTICE

For further information, see the Instruction Installation of Field Installable Kits for VLT Drives

3.4.5 Installation of Mains Shield for Frequency Converters

This section is for the installation of a mains shield for the frequency converter series with enclosure types D1, D2 and E1. It is not possible to install in the IP00/Chassis versions as these have included as standard a metal cover. These shields satisfy VBG-4 requirements.

Ordering numbers:

Enclosure types D1 and D2: 176F0799
Enclosure type E1: 176F1851

NOTICE

For further information, see the Instruction Sheet, 175R5923

3.5 Enclsoure Type F Panel Options

3.5.1 Enclsoure Type F Options

Space Heaters and Thermostat

Mounted on the cabinet interior of enclosure type F frequency converters, space heaters controlled via automatic thermostat help control humidity inside the enclosure, extending the lifetime of frequency converter components in damp environments. The thermostat default settings turn on the heaters at $10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$ and turn them off at $15.6^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$.

Cabinet Light with Power Outlet

A light mounted on the cabinet interior of enclosure type F frequency converters increase visibility during servicing and maintenance. The housing the light includes a power outlet for temporarily powering tools or other devices, available in two voltages:

- $\quad 230 \mathrm{~V}, 50 \mathrm{~Hz}, 2.5 \mathrm{~A}, \mathrm{CE} / E N E C$
- $120 \mathrm{~V}, 60 \mathrm{~Hz}, 5 \mathrm{~A}, \mathrm{UL} / \mathrm{cUL}$

Transformer Tap Setup

If the cabinet light \& outlet and/or the space heaters \& thermostat are installed Transformer T1 requires it taps to be set to the proper input voltage. A $380-480 / 500 \mathrm{~V}$ frequency converter is set initially to the 525 V tap and a $525-690 \mathrm{~V}$ frequency converter is set to the 690 V tap to insure no overvoltage of secondary equipment occurs if the tap is not changed before power is applied. See Table 3.15 to set the proper tap at terminal T1 located in the rectifier cabinet. For location in the frequency converter, see Illustration 3.53.

Input Voltage Range [V]	Tap to Select
$380-440$	400 V
$441-490$	460 V
$491-550$	525 V
$551-625$	575 V
$626-660$	660 V
$661-690$	690 V

Table 3.15

NAMUR Terminals

NAMUR is an international association of automation technology users in the process industries, primarily chemical and pharmaceutical industries in Germany. Selection of this option provides terminals organized and labeled to the specifications of the NAMUR standard for frequency converter input and output terminals. This requires MCB 112 PTC Thermistor Card and MCB 113 Extended Relay Card.

RCD (Residual Current Device)

Uses the core balance method to monitor ground fault currents in grounded and high-resistance grounded systems (TN and $T T$ systems in IEC terminology). There is a pre-warning (50% of main alarm set-point) and a main alarm set-point. Associated with each set-point is an SPDT alarm relay for external use. Requires an external "windowtype" current transformer (supplied and installed by customer).

- Integrated into the frequency converter's safestop circuit
- IEC 60755 Type B device monitors AC, pulsed DC, and pure DC ground fault currents
- LED bar graph indicator of the ground fault current level from 10-100\% of the set-point
- Fault memory
- [TEST/RESET]

Insulation Resistance Monitor (IRM)

Monitors the insulation resistance in ungrounded systems (IT systems in IEC terminology) between the system phase conductors and ground. There is an ohmic pre-warning and a main alarm set-point for the insulation level.
Associated with each set-point is an SPDT alarm relay for external use. Note: only one insulation resistance monitor can be connected to each ungrounded (IT) system.

- Integrated into the frequency converter's safestop circuit
- LCD display of the ohmic value of the insulation resistance
- Fault Memory
- [INFO], [TEST], and [RESET]

IEC Emergency Stop with Pilz Safety Relay

Includes a redundant 4-wire emergency-stop push-button mounted on the front of the enclosure and a Pilz relay that monitors it in conjunction with the frequency converter's safe-stop circuit and the mains contactor located in the options cabinet.

Safe Stop + Pilz Relay

Provides a solution for the "Emergency Stop" option without the contactor in F-Enclosure frequency converters.

Manual Motor Starters

Provides 3-phase power for electric blowers often required for larger motors. Power for the starters is provided from the load side of any supplied contactor, circuit breaker, or disconnect switch. Power is fused before each motor starter, and is off when the incoming power to the frequency converter is off. Up to 2 starters are allowed (one if a 30 A , fuse-protected circuit is ordered). Integrated into the frequency converter's safe-stop circuit. Unit features include:

- Operation switch (on/off)
- Short-circuit and overload protection with test function
- Manual reset function

30 A, Fuse-Protected Terminals

- 3-phase power matching incoming mains voltage for powering auxiliary customer equipment
- Not available if 2 manual motor starters are selected
- Terminals are off when the incoming power to the frequency converter is off
- Power for the fused protected terminals will be provided from the load side of any supplied contactor, circuit breaker, or disconnect switch.

24 V DC Power Supply

- $5 \mathrm{~A}, 120 \mathrm{~W}, 24 \mathrm{~V}$ DC
- Protected against output over-current, overload, short circuits, and over-temperature
- For powering customer-supplied accessory devices such as sensors, PLC I/O, contactors, temperature probes, indicator lights, and/or other electronic hardware
- Diagnostics include a dry DC-ok contact, a green DC-ok LED, and a red overload LED

External Temperature Monitoring

Designed for monitoring temperatures of external system components, such as the motor windings and/or bearings. Includes five universal input modules. The modules are integrated into the frequency converter's safe-stop circuit and can be monitored via a fieldbus network (requires the purchase of a separate module/bus coupler).

Universal inputs (5)

Signal types:

- RTD inputs (including PT100), 3-wire or 4-wire
- Thermocouple
- Analog current or analog voltage

Additional features:

- One universal output, configurable for analog voltage or analog current
- Two output relays (N.O.)
- Dual-line LC display and LED diagnostics
- Sensor lead wire break, short-circuit, and incorrect polarity detection
- Interface setup software

3.6 Electrical Installation

3.6.1 Power Connections

Cabling and Fusing

NOT/CE

Cables General
All cabling must comply with national and local regulations on cable cross-sections and ambient temperature. UL applications require $75^{\circ} \mathrm{C}$ copper conductors. 75 and $90^{\circ} \mathrm{C}$ copper conductors are thermally acceptable for the frequency converter to use in non UL applications.

The power cable connections are situated as shown below. Dimensioning of cable cross section must be done in accordance with the current ratings and local legislation. See the Specifications section for details.

For protection of the frequency converter, the recommended fuses must be used or the unit must be with built-in fuses. Recommended fuses can be seen in the tables of the fuse section. Always ensure that proper fusing is made according to local regulation.

The mains connection is fitted to the mains switch if this is included.

Illustration 3.53 Power Cable Connections

NOTICE

The motor cable must be screened／armoured．If an unscreened／unarmoured cable is used，some EMC requirements are not complied with．Use a screened／ armoured motor cable to comply with EMC emission specifications．For more information，see EMC specifi－ cations in the Design Guide．

See section General Specifications for correct dimensioning of motor cable cross－section and length．

Screening of cables

Avoid installation with twisted screen ends（pigtails）．They spoil the screening effect at higher frequencies．If it is necessary to break the screen to install a motor isolator or motor contactor，the screen must be continued at the lowest possible HF impedance．

Connect the motor cable screen to both the de－coupling plate of the frequency converter and to the metal housing of the motor．

Make the screen connections with the largest possible surface area（cable clamp）．This is done by using the supplied installation devices within the frequency converter．

Cable－length and cross－section

The frequency converter has been EMC tested with a given length of cable．Keep the motor cable as short as possible to reduce the noise level and leakage currents．

Switching frequency

When frequency converters are used together with Sine－ wave filters to reduce the acoustic noise from a motor，the switching frequency must be set according to the instruction in 14－01 Switching Frequency．

Term ．no．	96	97	98	99	
	U	V	W	$\mathrm{PE}^{1)}$	Motor voltage 0－100\％of mains voltage．
					3 3 wires out of motor
	U 1	V 1	W 1	$\mathrm{PE}^{1)}$	Delta－connected
	W 2	U 2	V 2		6 wires out of motor
	U 1	V 1	W 1	$\mathrm{PE}^{1)}$	Star－connected U2，V2，W2 $\mathrm{U} 2, \mathrm{~V} 2$ and W2 to be interconnected separately．

Table 3.16
${ }^{1)}$ Protected Earth Connection

NOTICE

In motors without phase insulation paper or other insulation reinforcement suitable for operation with voltage supply（such as a frequency converter），fit a Sine－ wave filter on the output of the frequency converter．

[^18]

Illustration 3.55 Compact IP21 (NEMA 1) and IP54 (NEMA 12), Enclosure Type D1

Illustration 3.56 Compact IP21 (NEMA 1) and IP54 (NEMA 12) with Disconnect, Fuse and RFI Filter, Enclosure Type D2

Table 3.17 Legend to Illustration 3.55 and Illustration 3.56

Illustration 3.57 Compact IP00 (Chassis), Enclosure Type D3

Illustration 3.58 Compact IP00 (Chassis) with Disconnect, Fuse and RFI Filter, Enclosure Type D4

1)	AUX Relay			4)	Load sharing				8)	Fan Fuse (see fuse tables for part number)		
	01	02	03		-DC +DC				9)	Mains ground		
	04	05	06		88	89			10)	Motor		
2)	Temp Switch			5)	Brake					U	V	W
	106	104	105			+R				96	97	98
3)	Mains				81	82				T1	T2	T3
	R	S	T	6)	SMPS Fuse (see fuse tables for part number)							
	91	92	93	7)	AUX Fan							
	L1	L2	L3		100	101	102	103				
						L2	L1	L2				

Table 3.18 Legend to Illustration 3.57 and Illustration 3.58

Illustration 3.59 Position of Earth Terminals IP00, Enclosure Type D

Illustration 3.60 Position of Earth Terminals IP21 (NEMA type 1) and IP54 (NEMA type 12)

NOTICE

D2 and D4 shown as examples. D1 and D3 are equivalent.

Illustration 3.61 Compact IP21 (NEMA 1) and IP54 (NEMA 12) Enclosure Type E1

Illustration 3.62 Compact IP00 (Chassis) with Disconnect, Fuse and RFI Filter, Enclosure Type E2

Table 3.19 Legend to Illustration 3.61 and Illustration 3.62

Illustration 3.63 Position of Earth Terminals IP00, Enclosure Type E

1$)$	24 V DC, 5 A	5)	Loadsharing
	T1 Output Taps		- DC +DC
	Temp Switch		$88 \quad 89$
	$106 \quad 104 \quad 105$	$6)$	Control Transformer Fuses (2 or 4 pieces). See fuse tables for part numbers
2$)$	Manual Motor Starters	7)	SMPS Fuse. See fuse tables for part numbers
3$)$	30 A Fuse Protected Power Terminals	$8)$	Manual Motor Controller fuses (3 or 6 pieces). See fuse tables for part numbers
4$)$	Mains	9)	Line Fuses, enclosure types F1 and F2 (3 pieces). See fuse tables for part numbers
	R S T	10)	30 Amp Fuse Protected Power fuses
	L1 L2 L3		

Illustration 3.64 Rectifier Cabinet, Enclosure Types F1, F2, F3 and F4

1)	External Temperature Monitoring				6)	Motor		
2)	AUX Relay					U	V	W
	01	02	03			96	97	98
	04	05	06			T1	T2	T3
3)	NAMUR				7)	NAM	use.	e fus
4)	AUX Fan				8)	Fan F	Se	use t
	100	101	102		9)	SMPS	s. S	fuse
	L1	L2	L1					
5)	Brake							
	-R	+R						
	81	82						

Illustration 3.65 Inverter Cabinet, Enclosure Types F1 and F3

| 1) | External Temperature Monitoring | 6) | Motor |
| :--- | :--- | :--- | :--- | :--- |
| 2) | AUX Relay | | $\mathrm{U} \quad \mathrm{V} \quad \mathrm{W}$ |
| | $01 \quad 02 \quad 03$ | | $96 \quad 97 \quad 98$ |
| | $04 \quad 05 \quad 06$ | | T1 \quad T2 \quad T3 |
| 3) | NAMUR | 7) | NAMUR Fuse. See fuse tables for part numbers |
| 4$)$ | AUX Fan | 8) | Fan Fuses. See fuse tables for part numbers |
| | $100 \quad 101 \quad 102 \quad 103$ | 9) | SMPS Fuses. See fuse tables for part numbers |
| | L1 L2 L1 L2 | | |
| 5$)$ | Brake | | |
| | $-R \quad+R$ | | |
| | $81 \quad 82$ | | |

1)	Pilz Relay Terminal	4)	Safety Relay Coil Fuse with PILZ Relay
2)	RCD or IRM Terminal		See fuse tables for part numbers
3)	Mains	5)	Line Fuses, F3 and F4 (3 pieces)
	R S T		See fuse tables for part numbers
	$91 \quad 92 \quad 93$	6)	Contactor Relay Coil (230 VAC). N/C and N/O Aux Contacts (customer supplied)
	L1 L2 L3	7)	Circuit Breaker Shunt Trip Control Terminals (230 V AC or 230 V DC)

[^19]
3.6.2 Grounding

The following basic issues need to be considered when installing a frequency converter, so as to obtain electromagnetic compatibility (EMC).

- Safety grounding: The frequency converter has a high leakage current and must be grounded appropriately for safety reasons. Apply local safety regulations.
- High-frequency grounding: Keep the ground wire connections as short as possible.

Connect the different ground systems at the lowest possible conductor impedance. The lowest possible conductor impedance is obtained by keeping the conductor as short as possible and by using the greatest possible surface area.
The metal cabinets of the different devices are mounted on the cabinet rear plate using the lowest possible HF impedance. This avoids having different HF voltages for the individual devices and avoids the risk of radio interference currents running in connection cables that may be used between the devices. The radio interference has been reduced.
To obtain a low HF impedance, use the fastening bolts of the devices as HF connection to the rear plate. It is necessary to remove insulating paint or similar from the fastening points.

3.6.3 Extra Protection (RCD)

ELCB relays, multiple protective earthing or earthing can be used as extra protection, provided that local safety regulations are complied with.

In case of an ground fault, a DC component may develop in the fault current.

If ELCB relays are used, local regulations must be observed. Relays must be suitable for protection of 3-phase equipment with a bridge rectifier and for a brief discharge on power-up.

See also Special Conditions in the Design Guide.

3.6.4 RFI Switch

Mains supply isolated from earth

If the frequency converter is supplied from an isolated mains source (IT mains, floating delta and grounded delta) or TT/TN-S mains with grounded leg, the RFI switch is recommended to be turned off (OFF) via 14-50 RFI Filter on the frequency converter and 14-50 RFI Filter on the filter. For further reference, see IEC 364-3. In case optimum EMC performance is needed, parallel motors are connected or the motor cable length is above 25 m , it is recommended to set $14-50$ RFI Filter to [ON].

In OFF, the internal RFI capacities (filter capacitors) between the chassis and the intermediate circuit are cut off to avoid damage to the intermediate circuit and to reduce the earth capacity currents (according to IEC 61800-3).
Also refer to the application note VLT on IT Mains It is important to use isolation monitors that are capable for use together with power electronics (IEC 61557-8).

3.6.5 Torque

When tightening all electrical connections it is very important to tighten with the correct torque. Too low or too high torque results in a bad electrical connection. Use a torque wrench to ensure correct torque.

Illustration 3.68 Tightening Bolts with a Torque Wrench

Enclosure types	Terminal	Torque [Nm] (in-Ibs)	Bolt size
D	Mains Motor	$19-40$ $(168-354)$	M10
	Load sharing Brake	$8.5-20.5$ $(75-181)$	M8
E	Mains Motor Load sharing	$19-40$ $(168-354)$	M10
	Brake	$8.5-20.5$ $(75-181)$	M8

How to Install
VLT AQUA Drive FC 202 Operation Instructions

Enclosure types	Terminal	Torque [Nm] (in-lbs)	Bolt size
F	Mains	$19-40$	M10
	Motor	$(168-354)$	
	Load sharing	$19-40$	
	Brake	$(168-354)$	
	Regen	$8.5-20.5$	M8
		$(75-181)$	

Table 3.20 Torque for Terminals

3.6.6 Shielded Cables

AWARNING

Danfoss recommends to use shielded cables between the LCL filter and the AFE unit. Unshielded cables can be between transformer and LCL filter input side.

It is important that shielded and armoured cables are connected in a proper way to ensure the high EMC immunity and low emissions.

The connection can be made using either cable glands or clamps

- EMC cable glands: Generally available cable glands can be used to ensure an optimum EMC connection.
- EMC cable clamp: Clamps allowing easy connection are supplied with the frequency converter.

3.6.7 Motor Cable

The motor must be connected to terminals U/T1/96, V/ T2/97, W/T3/98. Earth to terminal 99. All types of 3-phase asynchronous standard motors can be used with a frequency converter unit. The factory setting is for clockwise rotation with the frequency converter output connected as follows:

Terminal No.	Function
$96,97,98,99$	Mains U/T1, V/T2, W/T3 Earth

Table 3.21 Mains Terminals

Table 3.22
The direction of rotation can be changed by switching 2 phases in the motor cable or by changing the setting of 4-10 Motor Speed Direction.

Motor rotation check can be performed using 1-28 Motor Rotation Check and following the steps shown in the display.

F enclosure requirements

F1/F3 requirements: Motor phase cable quantities must be multiples of 2 , resulting in $2,4,6$, or 8 (1 cable is not allowed) to obtain equal amount of wires attached to both inverter module terminals. The cables are required to be equal length within 10\% between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.

F2/F4 requirements: Motor phase cable quantities must be multiples of 3 , resulting in $3,6,9$, or 12 (1 or 2 cables are not allowed) to obtain equal amount of wires attached to each inverter module terminal. The wires are required to be equal length within 10% between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.

Output junction box requirements: The length, minimum 2.5 m , and quantity of cables must be equal from each inverter module to the common terminal in the junction box.

NOTICE

If a retrofit application requires unequal amount of wires per phase, consult the factory for requirements and documentation or use the top/bottom entry side cabinet option.

3.6.8 Brake Cable for Frequency Converters with Factory Installed Brake Chopper Option

(Only standard with letter B in position 18 of typecode).

The connection cable to the brake resistor must be screened and the max. length from frequency converter to the $D C$ bar is limited to 25 m (82 ft).

Terminal No.	Function
81,82	Brake resistor terminals

Table 3.23 Terminals for Brake Resistor
The connection cable to the brake resistor must be screened. Connect the screen with cable clamps to the conductive back plate at the frequency converter and to the metal cabinet of the brake resistor.
Size the brake cable cross-section to match the brake torque. See also the instructions Brake Resistor and Brake Resistors for Horizontal Applications for further information regarding safe installation.

AWARNING

Note that voltages up to 1099 V DC, depending on the supply voltage, may occur on the terminals.

F enclosure requirements

The brake resistor(s) must be connected to the brake terminals in each inverter module.

3.6.9 Brake Resistor Temperature Switch

Torque: $0.5-0.6 \mathrm{Nm}$ (5 in-lbs)
Screw size: M3

This input can be used to monitor the temperature of an externally connected brake resistor. If the input between 104 and 106 is established, the frequency converter trips on warning/alarm 27, Brake IGBT. If the connection is closed between 104 and 105, the frequency converter trips on warning/alarm 27, Brake IGBT.
Install a KLIXON switch that is normally closed. If this function is not used, short circuit 106 and 104 together. Normally closed: 104-106 (factory installed jumper) Normally open: 104-105

Terminal No.	Function
$106,104,105$	Brake resistor temperature switch.

Table 3.24 Terminals for Brake Resister Temperature Switch

NOTICE

If the temperature of the brake resistor gets too high and the thermal switch drops out, the frequency converter stops braking. The motor starts coasting.

3.6.10 Load Sharing

Terminal No.	Function
88,89	Loadsharing

Table 3.25 Terminals for Load Sharing

The connection cable must be screened and the max. length from the frequency converter to the $D C$ bar is limited to 25 m (82 ft).
Load sharing enables linking of the DC intermediate circuits of several frequency converters.

AWARNING

Voltages up to 1099 V DC may occur on the terminals. Load Sharing calls for extra equipment and safety considerations. For further information, see the instuctions Load Sharing.

AWARNING

Mains disconnect may not isolate the frequency converter due to DC-link connection.

3.6.11 Shielding against Electrical Noise

Before mounting the mains power cable, mount the EMC metal cover to ensure best EMC performance.

NOTICE

The EMC metal cover is only included in units with an RFI filter.

Illustration 3.69 Mounting of EMC Shield.

3.6.12 Mains Connection

Mains must be connected to terminals 91, 92 and 93. Earth is connected to the terminal to the right of terminal 93.

Terminal No.	Function
$91,92,93$	Mains R/L1, S/L2, T/L3
94	Earth

Table 3.26 Mains Terminals Connection

ACAUTION

Check the name plate to ensure that the mains voltage of the frequency converter matches the power supply of the plant.

Ensure that the power supply can supply the necessary current to the frequency converter.

If the unit is without built-in fuses, ensure that the appropriate fuses have the correct current rating.

3.6.13 External Fan Supply

In case the frequency converter is supplied by DC or if the fan must run independently of the power supply, an external power supply can be applied. The connection is made on the power card.

Terminal No.	Function
100,101	Auxiliary supply S, T
102,103	Internal supply S, T

Table 3.27 External Fan Supply Terminals

The connector located on the power card provides the connection of line voltage for the cooling fans. The fans are connected from factory to be supplied from a common AC line (jumpers between 100-102 and 101-103). If external supply is needed, the jumpers are removed and the supply is connected to terminals 100 and 101 . Use a 5 A fuse for protection. In UL applications, use a LittelFuse KLK-5 or equivalent.

3.6.14 Fuses

It is recommended to use fuses and/or circuit breakers on the supply side as protection in case of component breakdown inside the frequency converter (first fault).

NOTICE

This is mandatory to ensure compliance with IEC 60364 for CE or NEC 2009 for UL.

\triangle WARNING

Personnel and property must be protected against the consequence of component break-down internally in the frequency converter.

Branch circuit protection

To protect the installation against electrical and fire hazard, all branch circuits in an installation, switch gear, machines etc., must be protected against short-circuit and overcurrent according to national/international regulations.

NOTICE

The recommendations given do not cover branch circuit protection for UL.

Short-circuit protection:

Danfoss recommends using the fuses/circuit breakers mentioned below to protect service personnel and property in case of component break-down in the frequency converter.

Non UL compliance

If UL/cUL is not to be complied with, use the following fuses to ensure compliance with EN50178:

P110 - P250	$380-480 \mathrm{~V}$	type gG
P315-P450	$380-480 \mathrm{~V}$	type gR

Table 3.28

How to Install
VLT AQUA Drive FC 202 Operation Instructions

UL Compliance

380-480 V, Enclosure types D, E and F
The fuses below are suitable for use on a circuit capable of delivering $100,000 \mathrm{~A}_{\text {rms }}$ (symmetrical), 240 V , or 480 V , or 500 V , or 600 V depending on the frequency converter voltage rating. With the proper fusing, the frequency converter Short Circuit Current Rating (SCCR) is $100,000 \mathrm{~A}_{\text {rms }}$.

$\begin{aligned} & \text { Size/ } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \text { Bussmann } \\ \text { E1958 } \\ \text { JFHR2** } \end{gathered}$	$\begin{gathered} \text { Bussmann } \\ \text { E4273 } \\ \text { T/JDDZ** } \end{gathered}$	$\begin{gathered} \text { SIBA } \\ \text { E180276 } \\ \text { JFHR2 } \end{gathered}$	LittelFuse E71611 JFHR2**	Ferraz- Shawmut E60314 JFHR2**	$\begin{gathered} \text { Bussmann } \\ \text { E4274 } \\ \text { H/JDDZ** } \end{gathered}$	Bussmann E125085 JFHR2*	Internal Option Bussmann
P110	$\begin{gathered} \text { FWH- } \\ 300 \end{gathered}$	$\begin{aligned} & \text { JJS- } \\ & 300 \end{aligned}$	2061032.315	L50S-300	A50-P300	$\begin{gathered} \text { NOS- } \\ 300 \end{gathered}$	170 M 3017	170M3018
P132	$\begin{gathered} \text { FWH- } \\ 350 \end{gathered}$	$\begin{aligned} & \hline J S- \\ & 350 \end{aligned}$	2061032.35	L50S-350	A50-P350	$\begin{gathered} \text { NOS- } \\ 350 \end{gathered}$	170M3018	170M3018
P160	$\begin{gathered} \text { FWH- } \\ 400 \end{gathered}$	$\begin{aligned} & \hline J S- \\ & 400 \end{aligned}$	2061032.40	L50S-400	A50-P400	$\begin{gathered} \text { NOS- } \\ 400 \end{gathered}$	170M4012	170M4016
P200	$\begin{gathered} \text { FWH- } \\ 500 \end{gathered}$	$\begin{aligned} & \hline J S- \\ & 500 \end{aligned}$	2061032.50	L50S-500	A50-P500	$\begin{gathered} \text { NOS- } \\ 500 \end{gathered}$	170M4014	170M4016
P250	$\begin{aligned} & \text { FWH- } \\ & 600 \end{aligned}$	$\begin{aligned} & \hline J S- \\ & 600 \end{aligned}$	2062032.63	L50S-600	A50-P600	$\begin{aligned} & \text { NOS- } \\ & 600 \end{aligned}$	170M4016	170M4016

Table 3.29 Enclosure Types D, Line Fuses, 380-480 V

Size/ Type	Bussmann PN*	Rating	Ferraz	Siba
P315	170 M 4017	700 A, 700 V	6.9URD31D08A07 00	2061032.700
P355	170 M 6013	900 A, 700 V	6.9 URD33D08A09 00	2063032.900
P400	170 M 6013	900 A, 700 V	6.9URD33D08A09 00	2063032.900
P450	170 M 6013	900 A, 700 V	6.9URD33D08A09 00	2063032.900

Table 3.30 Enclosure Types E, Line Fuses, 380-480 V

Size/ Type	Bussmann PN*	Rating	Siba	Internal Bussmann Option
P500	170 M 7081	1600 A, 700 V	2069532.1600	170 M 7082
P560	170 M 7081	1600 A, 700 V	2069532.1600	170 M 7082
P630	170 M 7082	2000 A, 700 V	2069532.2000	170 M 7082
P710	170 M 7082	2000 A, 700 V	2069532.2000	170 M 7082
P800	170 M 7083	2500 A, 700 V	2069532.2500	170 M 7083
P1M0	170 M 7083	2500 A, 700 V	2069532.2500	170 M 7083

Size/Type	Bussmann PN* *	Rating	Siba
P500	170 M 8611	1100 A, 1000 V	2078132.1000
P560	170 M 8611	1100 A, 1000 V	2078132.1000
P630	170 M 6467	1400 A, 700 V	2068132.1400
P710	170 M 6467	1400 A, 700 V	2068132.1400
P800	170 M 8611	1100 A, 1000 V	2078132.1000
P1M0	170 M 6467	1400 A, 700 V	2068132.1400

Table 3.32 Enclosure Type F, Inverter Module DC Link Fuses, 380-480 V
*170M fuses from Bussmann shown use the -/80 visual indicator, TN/80 Type T, -/110 or TN/110 Type T indicator fuses of the same size and amperage may be substituted for external use
**Any minimum 500 V UL listed fuse with associated current rating may be used to meet UL requirements.

Table 3.31 Enclosure Types F, Line Fuses, 380-480 V

525-690 V, Enclosure Types D, E and F

$\begin{array}{\|l} \hline \text { Size/ } \\ \text { Type } \end{array}$	Buss- mann E1250 85 JFHR2	[A]	$\begin{gathered} \text { SIBA } \\ \text { E1802 } \\ 76 \\ \text { JFHR2 } \end{gathered}$	Ferraz- Shawmut E76491 JFHR2	Internal Option Bussmann
P45K	$\begin{aligned} & 170 \mathrm{M} \\ & 3013 \end{aligned}$	125	$\begin{aligned} & 20610 \\ & 32.125 \end{aligned}$	6.6URD30D08 A0125	170M3015
P55K	$\begin{aligned} & 170 \mathrm{M} \\ & 3014 \end{aligned}$	160	$\begin{gathered} 20610 \\ 32.16 \end{gathered}$	6.6URD30D08 A0160	170M3015
P75K	$\begin{aligned} & 170 \mathrm{M} \\ & 3015 \end{aligned}$	200	$\begin{gathered} 20610 \\ 32.2 \end{gathered}$	$\begin{gathered} \text { 6.6URD30D08 } \\ \text { A0200 } \end{gathered}$	170M3015
P90K	$\begin{aligned} & 170 \mathrm{M} \\ & 3015 \end{aligned}$	200	$\begin{gathered} 20610 \\ 32.2 \end{gathered}$	$\begin{gathered} \text { 6.6URD30D08 } \\ \text { A0200 } \end{gathered}$	170M3015
P110	$\begin{aligned} & 170 \mathrm{M} \\ & 3016 \end{aligned}$	250	$\begin{gathered} 20610 \\ 32.25 \end{gathered}$	$\begin{gathered} \hline \text { 6.6URD30D08 } \\ \text { A0250 } \end{gathered}$	170M3018
P132	$\begin{aligned} & 170 \mathrm{M} \\ & 3017 \end{aligned}$	315	$\begin{aligned} & 20610 \\ & 32.315 \end{aligned}$	$\begin{gathered} \hline \text { 6.6URD30D08 } \\ \text { A0315 } \end{gathered}$	170M3018
P160	$\begin{aligned} & 170 \mathrm{M} \\ & 3018 \end{aligned}$	350	$\begin{gathered} 20610 \\ 32.35 \end{gathered}$	$\begin{gathered} \text { 6.6URD30D08 } \\ \text { A0350 } \end{gathered}$	170M3018
P200	$\begin{aligned} & 170 \mathrm{M} \\ & 4011 \end{aligned}$	350	$\begin{gathered} 20610 \\ 32.35 \end{gathered}$	$\begin{gathered} \text { 6.6URD30D08 } \\ \text { A0350 } \end{gathered}$	170M5011
P250	$\begin{aligned} & 170 \mathrm{M} \\ & 4012 \end{aligned}$	400	$\begin{gathered} 20610 \\ 32.4 \end{gathered}$	$\begin{gathered} \text { 6.6URD30D08 } \\ \text { A0400 } \end{gathered}$	170M5011
P315	$\begin{aligned} & 170 \mathrm{M} \\ & 4014 \end{aligned}$	500	$\begin{gathered} 20610 \\ 32.5 \end{gathered}$	$\begin{aligned} & \text { 6.6URD30D08 } \\ & \text { A0500 } \end{aligned}$	170M5011
P400	$\begin{aligned} & 170 \mathrm{M} \\ & 5011 \end{aligned}$	550	$\begin{gathered} 20620 \\ 32.55 \end{gathered}$	$\begin{gathered} \text { 6.6URD32D08 } \\ \text { A550 } \end{gathered}$	170M5011

Table 3.33 Enclosure Types D, E and F 525-690 V

Size/ Type	Bussmann PN*	Rating	Ferraz	Siba
P450	170 M 4017	700 A, 700 V	6.9URD31 D08A070 0	2061032.700
P500	170 M 4017	700 A, 700 V	6.9 URD 31 D08A070 0	2061032.700
P560	170 M 6013	900 A, 700 V	6.9URD33 D08A090 0	2063032.900
P630	$170 \mathrm{M6013}$	900 A, 700 V	6.9 URD 33 D08A090 0	2063032.900

Table 3.34 Enclosure Type E, 525-690 V

Size/ Type	Bussmann PN*	Rating	Siba	Internal Bussmann Option
P710	170 M 7081	1600 A, 700 V	2069532.1600	170 M 7082
P800	170 M 7081	1600 A, 700 V	2069532.1600	170 M 7082
P900	170 M 7081	1600 A, 700 V	2069532.1600	170 M 7082
P1M0	170 M 7081	1600 A, 700 V	2069532.1600	170 M 7082
P1M2	170 M 7082	2000 A, 700 V	2069532.2000	170 M 7082
P1M4	170 M 7083	2500 A, 700 V	2069532.2500	170 M 7083

Table 3.35 Enclosure Type Size F, Line Fuses, 525-690 V

Size/Type	Bussmann PN* *	Rating	Siba
P710	170 M 8611	1100 A, 1000 V	2078132.1000
P800	170 M 8611	1100 A, 1000 V	2078132.1000
P900	170 M 8611	1100 A, 1000 V	2078132.1000
P1M0	170 M 8611	1100 A, 1000 V	2078132.1000
P1M2	170 M 8611	1100 A, 1000 V	2078132.1000
P1M4	170 M 8611	1100 A, 1000 V	2078132.1000

Table 3.36 Enclosure Type F, Inverter Module DC Link Fuses, 525-690 V
*170M fuses from Bussmann shown use the -/80 visual indicator, -
TN/80 Type T, -/110 or TN/110 Type T indicator fuses of the same size and amperage may be substituted for external use.

Suitable for use on a circuit capable of delivering not more than 100000 rms symmetrical A, 500/600/690 V maximum when protected by the above fuses.

Supplementary fuses

Enclosure Type	Bussmann PN*	Rating
D, E and F	KTK-4	$4 \mathrm{~A}, 600 \mathrm{~V}$

Table 3.37 SMPS Fuse

Size/Type	Bussmann PN*	LitteIFuse	Rating
P110-P315, $380-480 ~ V$	KTK-4		4 A, 600 V
P45K-P500, $525-690 ~ V ~$	KTK-4		$4 \mathrm{~A}, 600 \mathrm{~V}$
P355-P1M0, $380-480 ~ V ~$		KLK-15	$15 \mathrm{~A}, 600 \mathrm{~V}$
P560-P1M4, $525-690 ~ V ~$		KLK-15	$15 \mathrm{~A}, 600 \mathrm{~V}$

Enclosure Type	Bussmann PN*	Rating	Alternative Fuses
F	LPJ-6 SP or SPI	$6 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual
Element, Time			
Delay, 6 A			

Table 3.41 Control Transformer Fuse

Enclosure Type	Bussmann PN*	Rating
F	GMC-800MA	$800 \mathrm{~mA}, 250 \mathrm{~V}$

Table 3.42 NAMUR Fuse

Enclosure Type	Bussmann PN*	Rating	Alternative Fuses
F	LP-CC-6	$6 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class CC, 6 A

Table 3.43 Safety Relay Coil Fuse with PILS Relay

3.6.15 Mains Disconnectors

\(\left.$$
\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { Enclosure } \\
\text { Type }\end{array} & \text { Power \& Voltage } & \text { Type } \\
\hline \text { D1/D3 } & \begin{array}{c}\text { P110-P132 380-480 V \& } \\
\text { P110-P160 525-690 V }\end{array} & \begin{array}{c}\text { ABB OETL-NF200A or } \\
\text { OT200U12-91 }\end{array} \\
\hline \text { D2/D4 } & \begin{array}{c}\text { P160-P250 380-480 V \& } \\
\text { P200-P400 525-690 V }\end{array} & \begin{array}{c}\text { ABB OETL-NF400A or } \\
\text { OT400U12-91 }\end{array} \\
\hline \text { E1/E2 } & \begin{array}{c}\text { P315 380-480 V \& P450- } \\
\text { P630 525-690 V }\end{array} & \text { ABB OT600U03 } \\
\hline \text { E1/E2 } & \text { P355-P450 380-480 V } & \text { ABB OT800U03 } \\
\hline \text { F3 } & \begin{array}{c}\text { P500 380-480 V \& P710- } \\
\text { P800 525-690 V }\end{array}
$$ \& Merlin Gerin

NPJF36000S12AAYP\end{array}\right]\)| F3 |
 P900 525-690 V | Merlin Gerin
 NRK36000S20AAYP |
| :---: | :---: | :---: |
| F4 |
 P1M0-P1M4 525-690 V | Merlin Gerin
 NRK36000S20AAYP |

Table 3.44
Table 3.39 Manual Motor Controller Fuses

Enclosure Type	Bussmann PN*	Rating	Alternative Fuses
F	LPJ-30 SP or SPI	$30 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual Element, Time Delay, 30 A

[^20]
3.6.16 F Enclosure Circuit Breakers

Enclosur e Type	Power \& Voltage	Type				
F3	P500 380-480 V \& P710- P800 525-690 V	Merlin Gerin				
NPJF36120U31AABSCYP			$	$	Merlin Gerin	
:---:	:---:					
F3	 P900 525-690 V					
F4	P800 380-480 V \& P1M0- P1M4 525-690 V					
F4	P1M0 380-480 V					

Table 3.45

3.6.17 F Enclosure Mains Contactors

Enclosure Type	Power \& Voltage	Type
F3	 P710-P900 525-690 V	Eaton XTCE650N22A
F3	P 630-P710 380-480 V	Eaton XTCEC14P22B
F4	 P1M0-P1M4 525-690 V	Eaton XTCEC14P22B

Table 3.46

3.6.18 Motor Insulation

For motor cable lengths \leq the maximum cable length listed in, the recommended motor insulation ratings are in Table 3.47. The peak voltage can be up to twice the DC link voltage, 2.8 times the mains voltage, due to transmission line effects in the motor cable. If a motor has a lower insulation rating, use a dU/dt or sine wave filter.

Nominal Mains Voltage	Motor Insulation
$\mathrm{U}_{\mathrm{N}} \leq 420 \mathrm{~V}$	Standard $\mathrm{U}_{\mathrm{LL}}=1300 \mathrm{~V}$
$420 \mathrm{~V}<\mathrm{U}_{\mathrm{N}} \leq 500 \mathrm{~V}$	Reinforced $\mathrm{U}_{\mathrm{LL}}=1600 \mathrm{~V}$
$500 \mathrm{~V}<\mathrm{U}_{\mathrm{N}} \leq 600 \mathrm{~V}$	Reinforced $\mathrm{U}_{\mathrm{LL}}=1800 \mathrm{~V}$
$600 \mathrm{~V}<\mathrm{U}_{\mathrm{N}} \leq 690 \mathrm{~V}$	Reinforced $\mathrm{U}_{\mathrm{LL}}=2000 \mathrm{~V}$

Table 3.47 Motor Insulation at Various Nominal Mains Voltages

3.6.19 Motor Bearing Currents

For motors with a rating 110 kW or higher operating via frequency converters use NDE (Non-Drive End) insulated bearings to eliminate circulating bearing currents due to the physical size of the motor. To minimise DE (Drive End) bearing and shaft currents, proper grounding of the frequency converter, motor, driven machine, and motor to the driven machine is required. Although failure due to bearing currents is rare, if it occurs, use the following mitigation strategies.

Standard mitigation strategies

- Use an insulated bearing
- Apply rigorous installation procedures
- Ensure the motor and load motor are aligned
- \quad Strictly follow the EMC Installation guideline
- Reinforce the PE so the high frequency impedance is lower in the PE than the input power leads
- Provide a good high frequency connection between the motor and the
frequency converter by screened cable, which has a 360° connection in the motor and frequency converter
- Ensure that the impedance from frequency converter to building ground is lower than the grounding impedance of the machine. Make a direct earth connection between the motor and load motor
- Apply conductive lubrication
- Try to ensure that the line voltage is balanced to ground. This can be difficult for IT, TT, TN-CS or Grounded leg systems
- Use an insulated bearing as recommended by the motor manufacturer

NOTICE

Motors from reputable manufacturers typically have these fitted as standard in motors of this size.
If none of these strategies works, consult the factory. If necessary after consulting Danfoss:

- Lower the IGBT switching frequency
- Modify the inverter waveform, 60° AVM vs. SFAVM
- Install a shaft grounding system or use an isolating coupling between motor and load
- Use minimum speed settings if possible
- Use a dU/dt or sinus filter

3.6.20 Control Cable Routing

Tie down all control wires to the designated control cable routing as shown in the picture. Remember to connect the shields in a proper way to ensure optimum electrical immunity.

Fieldbus connection

Connections are made to the relevant options on the control card. For details, see the relevant fieldbus instruction. The cable must be placed in the provided path inside the frequency converter and tied down with other control wires (see illustrations).

Illustration 3.70 Control Card Wiring Path for the D3. Control Card Wiring for the D1, D2, D4, E1 and E2 use the same Path

Illustration 3.71 Control Card Wiring Path for the F1/F3.
Control Card Wiring for the F2/F4 use the same Path

In the Chassis (IP00) and NEMA 1 units, it is also possible to connect the fieldbus from the top of the unit as shown in the following pictures. On the NEMA 1 unit a cover plate must be removed.
Kit number for fieldbus top connection: 176F1742

Illustration 3.73

Illustration 3.74

Installation of 24 V external DC Supply

Torque: $0.5-0.6 \mathrm{Nm}$ ($5 \mathrm{in}-\mathrm{lbs}$)
Screw size: M3

No.	Function
$35(-), 36(+)$	24 V external DC supply

Table 3.48 Terminals for 24 V External DC Supply
24 V DC external supply can be used as low-voltage supply to the control card and any option cards installed. This enables full operation of the LCP (including parameter setting) without connection to mains. Note that a warning of low voltage is given when 24 V DC has been connected; however, there is no tripping.

\triangle WARNING

Use 24 V DC supply of type PELV to ensure correct galvanic isolation (type PELV) on the control terminals of the frequency converter.

3.6.21 Access to Control Terminals

All terminals to the control cables are located beneath the LCP. They are accessed by opening the door of the IP21/ IP54 version or removing the covers of the IP00 version.

3.6.22 Electrical Installation, Control Terminals

To connect the cable to the terminal

1. Strip insulation by about $9-10 \mathrm{~mm}$

Illustration 3.75 Stripping of Insulation
2. Insert a screwdriver ${ }^{1)}$ in the square hole.
3. Insert the cable in the adjacent circular hole.

Illustration 3.76
4. Remove the screwdriver. The cable is now mounted in the terminal.

To remove the cable from the terminal

1. Insert a screw driver ${ }^{1)}$ in the square hole.
2. Pull out the cable.

Illustration 3.77
${ }^{1)}$ Max. $0.4 \times 2.5 \mathrm{~mm}$

Illustration 3.78

3.6.23 Electrical Installation, Control Cables

Illustration 3.79

A=Analog, D=Digital

*Terminal 37 (optional) is used for Safe Torque Off. For Safe Torque Off installation instructions, refer to the Safe Torque Off Operating Instructions for Danfoss VLT ${ }^{\circledR}$ Frequency Converters.
**Do not connect cable screen.

How to Install

Very long control cables and analogue signals may in rare cases and depending on installation result in $50 / 60 \mathrm{~Hz}$ earth loops due to noise from mains supply cables.

If this occurs, it may be necessary to break the screen or insert a 100 nF capacitor between screen and chassis.

The digital and analog inputs and outputs must be connected separately to the frequency converter common inputs (terminal $20,55,39$) to avoid earth currents from both groups to affect other groups. For example, switching on the digital input may disturb the analog input signal.

Input polarity of control terminals

Illustration 3.81

Illustration 3.82

NOTICE

Control cables must be screened/armoured.

Remember to connect the shields in a proper way to ensure optimum electrical immunity.

3.6.24 Switches S201, S202, and S801

Switches S201 (A53) and S202 (A54) are used to select a current ($0-20 \mathrm{~mA}$) or a voltage $(-10$ to +10 V) configuration of the analog input terminals 53 and 54.

Switch S801 (BUS TER.) can be used to enable termination on the RS-485 port (terminals 68 and 69).

See Illustration 3.79.

Default setting:

S201 (A53) = OFF (voltage input)
S202 (A54) = OFF (voltage input)
S801 (Bus termination) $=$ OFF

NOTICE

When changing the function of S201, S202 or S801 be careful not to use force for the switch over. It is recommended to remove the LCP fixture (cradle) when operating the switches. The switches must not be operated with power on the frequency converter.

Illustration 3.84

3.7 Connection Examples

3.7.1 Start/Stop

Terminal $18=5$-10 Terminal 18 Digital Input [8] Start
Terminal $27=5-12$ Terminal 27 Digital Input [0] No operation (Default coast inverse)
Terminal 37 = Safe Torque Off

3.7.2 Pulse Start/Stop

Terminal $18=5-10$ Terminal 18 Digital Input [9] Latched start
Terminal 27=5-12 Terminal 27 Digital Input [6] Stop inverse Terminal 37 = Safe Torque Off

Illustration 3.86

3.7.3 Speed Up/Down

Terminals 29/32 = Speed up/down

Terminal $18=5-10$ Terminal 18 Digital Input [9] Start (default)

Terminal $27=5-12$ Terminal 27 Digital Input [19] Freeze reference

Terminal $29=5-13$ Terminal 29 Digital Input [21] Speed up

Terminal $32=5-14$ Terminal 32 Digital Input [22] Speed down

NOTICE

Terminal 29 only in FC x02 ($\mathrm{x}=$ series type).

Illustration 3.87 Speed Up/Down

3.7.4 Potentiometer Reference

Voltage reference via a potentiometer

Reference Source 1 = [1] Analog input 53 (default)
Terminal 53, Low Voltage $=0 \mathrm{~V}$
Terminal 53, High Voltage $=10 \mathrm{~V}$
Terminal 53, Low Ref./Feedback $=0$ RPM
Terminal 53, High Ref./Feedback $=1500$ RPM
Switch S201 = OFF (U)

Illustration 3.88 Potentiometer Reference

3.8 Final Set-up and Test

To test the set-up and ensure that the frequency converter is running, follow these steps.

Step 1. Locate the motor name plate

NOTICE

The motor is either star- (Y) or delta- connected (Δ). This information is located on the motor name plate data.

THREE PHASE INDUCTION MOTOR

MOD MCV 315E	Nr. 1351891204					IL/IN 6.5	
kW 400	PRIMARY					SF 1.15	
HP 536	V 690		A 410.6	CONN Y		COS f $0.85 \quad 40$	
mm 1481	V		A	CONN		AMB 40	${ }^{\circ} \mathrm{C}$
Hz 50	V		A	CONN		ALT 1000	m
DESIGNN	SECONDARY					RISE 80	${ }^{\circ} \mathrm{C}$
DUTY S1	V		A	CONN		ENCLOSURE IP23	
INSULI EFFICIE		95.8\%	100\%	95.8\%	75\%	WEIGHT	1.83 ton

\triangle CAUTION
Illustration 3.89

Step 2. Enter the motor name plate data in this parameter list.
To access this list first press [Quick Menu] then select "Q2 Quick Setup".

1.	$1-20$ Motor Power [kW] $1-21$ Motor Power [HP]
2.	$1-22$ Motor Voltage
3.	$1-23$ Motor Frequency
4.	$1-24$ Motor Current
5.	$1-25$ Motor Nominal Speed

Table 3.49

Step 3. Activate the Automatic Motor Adaptation (AMA)
Performing an AMA ensures optimum performance. The AMA measures the values from the motor model equivalent diagram.

1. Connect terminal 37 to terminal 12 (if terminal 37 is available).
2. Connect terminal 27 to terminal 12 or set 5-12 Terminal 27 Digital Input to [0] No function.
3. Activate the AMA 1-29 Automatic Motor Adaptation (AMA).
4. Select between complete or reduced AMA. If a Sine-wave filter is mounted, run only the reduced AMA, or remove the Sine-wave filter during the AMA procedure.
5. Press [OK]. The display shows Press [Hand On] to start.
6. Press [Hand On]. A progress bar indicates if the AMA is in progress.

Stop the AMA during operation

1. Press [Off] - the frequency converter enters into alarm mode and the display shows that the AMA was terminated by the user.

Successful AMA

1. The display shows Press [OK] to finish AMA.
2. Press $[O K]$ to exit the AMA state.

Unsuccessful AMA

1. The frequency converter enters into alarm mode. A description of the alarm can be found in chapter 7 Troubleshooting.
2. "Report Value" in the [Alarm Log] shows the last measuring sequence carried out by the AMA, before the frequency converter entered alarm mode. This number along with the description of the alarm assists in troubleshooting. If contacting Danfoss for service, make sure to mention number and alarm description.

NOTICE

Unsuccessful AMA is often caused by incorrectly registered motor name plate data or a too big difference between the motor power size and the frequency converter power size.

Step 4. Set speed limit and ramp time

3-02 Minimum Reference
3-03 Maximum Reference
Set up the desired limits for speed and ramp time
4-11 Motor Speed Low Limit [RPM] or 4-12 Motor Speed Low Limit [Hz]
4-13 Motor Speed High Limit [RPM] or 4-14 Motor
Speed High Limit [Hz]
3-41 Ramp 1 Ramp Up Time
3-42 Ramp 1 Ramp Down Time

3.9 Additional Connections

3.9.1 Mechanical Brake Control

In hoisting/lowering applications, it is necessary to be able to control an electro-mechanical brake:

- Control the brake using any relay output or digital output (terminal 27 or 29).
- Keep the output closed (voltage-free) as long as the frequency converter is unable to support the motor, for example due to the load being too heavy.
- \quad Select [32] Mechanical brake control in parameter group 5-4* Relays for applications with an electromechanical brake.
- The brake is released when the motor current exceeds the preset value in 2-20 Release Brake Current.
- The brake is engaged when the output frequency is less than the frequency set in 2-21 Activate Brake Speed [RPM] or 2-22 Activate Brake Speed $[\mathrm{Hz}]$, and only if the frequency converter carries out a stop command.
If the frequency converter is in alarm mode or in an overvoltage situation, the mechanical brake immediately cuts in.

3.9.2 Parallel Connection of Motors

The frequency converter can control several parallelconnected motors. The total current consumption of the motors must not exceed the rated output current $I_{M, N}$ for the frequency converter.

NOTICE

Installations with cables connected in a common joint as in Illustration 3.90, is only recommended for short cable lengths.

NOTICE

When motors are connected in parallel, 1-29 Automatic Motor Adaptation (AMA) cannot be used.

NOTICE

The electronic thermal relay (ETR) of the frequency converter cannot be used as motor protection for the individual motor in systems with parallel-connected motors. Provide further motor protection by e.g. thermistors in each motor or individual thermal relays (circuit breakers are not suitable as protection).

Illustration 3.90

Problems may arise at start and at low RPM values if motor sizes are widely different because small motors' relatively high ohmic resistance in the stator calls for a higher voltage at start and at low RPM values.

3.9.3 Motor Thermal Protection

The electronic thermal relay in the frequency converter has received UL-approval for single motor protection, when 1-90 Motor Thermal Protectionis set for ETR Trip and 1-24 Motor Current is set to the rated motor current (see motor name plate).
For thermal motor protection it is also possible to use the MCB 112 PTC Thermistor Card option. This card provides ATEX certificate to protect motors in explosion hazardous areas, Zone $1 / 21$ and Zone 2/22. When 1-90 Motor Thermal Protection is set to [20] ATEX ETR is combined with the use of MCB 112, it is possible to control an Ex-e motor in explosion hazardous areas. Consult the programming guide for details on how to set up the frequency converter for safe operation of Ex-e motors.

4 How to operate the frequency converter

4.1 Ways of Operation

The frequency converter can be operated in 3 ways:

1. Graphical Local Control Panel (GLCP), see 6.1.2
2. Numeric Local Control Panel (NLCP), see 6.1.3
3. RS-485 serial communication or USB, both for PC connection, see 6.1.4

If the frequency converter is fitted with fieldbus option, refer to relevant documentation.

4.1.1 How to operate graphical LCP (GLCP)

The following instructions are valid for the GLCP (LCP 102).

The GLCP is divided into 4 functional groups:

1. Graphical display with Status lines.
2. Menu keys and indicator lights (LED's) - selecting mode, changing parameters and switching between display functions.
3. Navigation keys and indicator lights (LEDs).
4. Operation keys and indicator lights (LEDs).

Graphical display:

The LCD-display is back-lit with a total of 6 alpha-numeric lines. All data is displayed on the LCP which can show up to five operating variables while in [Status] mode.

Display lines:

a. Status line: Status messages displaying icons and graphics.
b. Line 1-2: Operator data lines displaying data and variables defined or chosen by the user. By pressing the [Status] key, up to one extra line can be added.
c. Status line: Status messages displaying text.

The display is divided into 3 sections:

Top section (a)

shows the status when in status mode or up to 2 variables when not in status mode and in the case of Alarm/
Warning.

Illustration 4.1 Overview of LCP

The number of the Active Set-up (selected as the Active Set-up in 0-10 Active Set-up) is shown. When programming in another Set-up than the Active Set-up, the number of the Set-up being programmed appears to the right in brackets.

Middle section (b)

shows up to 5 variables with related unit, regardless of status. In case of alarm/warning, the warning is shown instead of the variables.

It is possible to toggle between three status read-out displays by pressing the [Status] key.
Operating variables with different formatting are shown in each status screen - see below.

Several values or measurements can be linked to each of the displayed operating variables. The values/ measurements to be displayed can be defined via

0-20 Display Line 1.1 Small, 0-21 Display Line 1.2 Small, 0-22 Display Line 1.3 Small, 0-23 Display Line 2 Large, and 0-24 Display Line 3 Large, which can be accessed via [QUICK MENU], "Q3 Function Setups", "Q3-1 General Settings", "Q3-11 Display Settings".

Each value/measurement readout parameter selected in 0-20 Display Line 1.1 Small to 0-24 Display Line 3 Large has its own scale and number of digits after a possible decimal point. Larger numeric values are displayed with few digits after the decimal point.
Ex.: Current readout
5.25 A; 15.2 A 105 A.

Status display I

This read-out state is standard after start-up or initialization.
Use [INFO] to obtain information about the value/ measurement linked to the displayed operating variables (1.1, 1.2, 1.3, 2, and 3).

See the operating variables shown in the display in this illustration. 1.1, 1.2 and 1.3 are shown in small size. 2 and 3 are shown in medium size.

Illustration 4.2 Status Display I - Example

Status display II

See the operating variables (1.1, 1.2, 1.3, and 2) shown in the display in Illustration 4.3.
In the example, Speed, Motor current, Motor power and Frequency are selected as variables in the first and second lines.
1.1, 1.2 and 1.3 are shown in small size. 2 is shown in large size.

Illustration 4.3 Status Display II - Example

Status display III:

This state displays the event and action of the Smart Logic Control.

Status		1 (1)
778 RPM	0.86 A	4.0 kW
State: 0 off 0 (off)		
When: -		
Do:-		
Auto Remote Running		

Bottom section

always shows the state of the frequency converter in Status mode.

Illustration 4.5 Display Sections

Display contrast adjustment

Press [status] and [$\mathbf{\Delta}$] for darker display
Press [status] and [$\mathbf{\nabla}$] for brighter display
Indicator lights (LEDs):
If certain threshold values are exceeded, the alarm and/or warning LED lights up. A status and alarm text appear on the control panel.
The On LED is activated when the frequency converter receives power from mains voltage, a DC bus terminal, or an external 24 V supply. At the same time, the back light is on.

- Green LED/On: Control section is working.
- Yellow LED/Warn.: Indicates a warning.
- Flashing Red LED/Alarm: Indicates an alarm.

Illustration 4.6 Indicator Lights

How to operate the frequenc... VLT AQUA Drive FC 202 Operation Instructions

GLCP keys

Menu keys

The menu keys are divided into functions. The keys below the display and indicator lamps are used for parameter setup, including choice of display indication during normal operation.

Illustration 4.7 Menu Keys

[Status]

Indicates the status of the frequency converter and/or the motor. 3 different readouts can be chosen by pressing the [Status] key:
5 line readouts, 4 line readouts or Smart Logic Control. Use [Status] for selecting the mode of display or for changing back to Display mode from either the Quick Menu mode, the Main Menu mode or Alarm mode. Also use the [Status] key to toggle single or double read-out mode.

[Quick Menu]

Allows quick set-up of the frequency converter. The most common functions can be programmed here.Quick Menu

The [Quick Menu] consists of:

- Q1: My Personal Menu
- Q2: Quick Setup
- Q3: Function Setups
- Q5: Changes Made
- Q6: Loggings

The Function Set-up provides quick and easy access to all parameters required for the majority of water and wastewater applications including variable torque, constant torque, pumps, dosing pumps, well pumps, booster pumps, mixer pumps, aeration blowers and other pump and fan applications. Amongst other features it also includes parameters for selecting which variables to display on the LCP, digital preset speeds, scaling of analog references, closed loop single zone and multi-zone applications and specific functions related to water and wastewater applications.

The Quick Menu parameters can be accessed immediately unless a password has been created via 0-60 Main Menu Password, 0-61 Access to Main Menu w/o Password, 0-65 Personal Menu Password or 0-66 Access to Personal Menu w/o Password.
It is possible to switch directly between Quick Menu mode and Main Menu mode.

[Main Menu]

is used for programming all parameters.

The Main Menu parameters can be accessed immediately unless a password has been created via 0-60 Main Menu Password, 0-61 Access to Main Menu w/o Password, 0-65 Personal Menu Password or 0-66 Access to Personal Menu w/o Password. For the majority of water and wastewater applications it is not necessary to access the Main Menu parameters but instead the Quick Menu, Quick Setup and Function Setups provides the simplest and quickest access to the typical required parameters. It is possible to switch directly between Main Menu mode and Quick Menu mode.
Parameter shortcut can be carried out by pressing down the [Main Menu] key for 3 seconds. The parameter shortcut allows direct access to any parameter.

[Alarm Log]

displays an Alarm list of the five latest alarms (numbered A1-A5). To obtain additional details about an alarm, use the navigation keys to manoeuvre to the alarm number and press [OK]. Information is displayed about the condition of the frequency converter before it enters the alarm mode.

[Back]

reverts to the previous step or layer in the navigation structure.

Illustration 4.8 Back Key

[Cancel]

last change or command is cancelled as long as the display has not been changed.

Illustration 4.9 Cancel Key

[Info]

displays information about a command, parameter, or function in any display window. [Info] provides detailed information when needed.
Exit Info mode by pressing either [Info], [Back], or [Cancel].

Illustration 4.10 Info Key

Navigation keys

The 4 navigation keys are used to navigate between the different choices available in [Quick Menu], [Main Menu] and [Alarm Log]. Use the keys to move the cursor.

How to operate the frequenc... VLT AQUA Drive FC 202 Operation Instructions

[OK]

is used for selecting a parameter marked by the cursor and for enabling the change of a parameter.

Illustration 4.11 Navigation Keys

Operation keys

for local control are found at the bottom of the control panel.

Illustration 4.12 Operation Keys

[Hand on]

enables control of the frequency converter via the GLCP. [Hand on] also starts the motor, and it is now possible to give the motor speed reference with the navigation keys. The key can be [1] Enabledor [0] Disabled via 0-40 [Hand on] Key on LCP

The following control signals are still active when [Hand on] is activated:

- [Hand on] - [Off] - [Auto on]
- Reset
- Coasting stop inverse (motor coasting to stop)
- Reversing
- Set-up select Isb - Set-up select msb
- Stop command from serial communication
- Quick stop
- DC brake

NOTICE

External stop signals activated by control signals or a serial bus override a "start" command via the LCP.
[Off]
stops the connected motor. The key can be [1] Enabled or [0] Disabled via 0-41 [Off] Key on LCP If no external stop function is selected and the [Off] key is inactive the motor can only be stopped by disconnecting the mains supply.
[Auto on]
enables the frequency converter to be controlled via the control terminals and/or serial communication. When a start signal is applied on the control terminals and/or the bus, the frequency converter starts. The key can be [1] Enabled or [0] Disabled via 0-42 [Auto on] Key on LCP

NOTICE

An active HAND-OFF-AUTO signal via the digital inputs has higher priority than the control keys [Hand on] [Auto on].

[Reset]

is used for resetting the frequency converter after an alarm (trip). The key can be [1] Enabled or [0] Disabled via $0-43$ [Reset] Key on LCP.

The parameter shortcut
can be carried out by holding down the [Main Menu] key for 3 seconds. The parameter shortcut allows direct access to any parameter.

4.1.2 How to Operate Numeric LCP (NLCP)

The following instructions are valid for the NLCP (LCP 101).

The control panel is divided into 4 functional groups, see Illustration 4.13:

1. Numeric display
2. Menu key and indicator lights (LEDs) - changing parameters and switching between display functions
3. Navigation keys and indicator lights (LEDs)
4. Operation keys and indicator lights (LEDs)

NOTICE

Parameter copy is not possible with Numeric Local Control Panel (LCP101).

Select one of the following modes:

Status Mode: Displays the status of the frequency converter or the motor. If an alarm occurs, the NLCP automatically switches to status mode.
A number of alarms can be displayed.
Quick Setup or Main Menu Mode: Display parameters and parameter settings.

How to operate the frequenc... VLT AQUA Drive FC 202 Operation Instructions

Illustration 4.13 Numerical LCP (NLCP)

Illustration 4.14 Status display example

Menu key

Select one of the following modes:

- Status
- Quick Setup
- Main Menu

Main Menu

is used for programming all parameters.
The parameters can be accessed immediately unless a password has been created via 0-60 Main Menu Password, 0-61 Access to Main Menu w/o Password, 0-65 Personal Menu Password or 0-66 Access to Personal Menu w/o Password. Quick Setup is used to set up the frequency converter using only the most essential parameters.
The parameter values can be changed using the up/down arrows when the value is flashing.
Select Main Menu by pressing the [Menu] key a number of times until the Main Menu LED is lit.
Select the parameter group [xx-_] and press [OK]
Select the parameter [_-xx] and press [OK]
If the parameter is an array parameter select the array number and press [OK]
Select the wanted data value and press [OK]

Navigation keys

[Back]
for stepping backwards
[$\mathbf{\Delta}$] [\mathbf{v}]
keys are used for manoeuvring between parameter groups, parameters and within parameters

[OK]

is used for choosing a parameter marked by the cursor and for enabling the change of a parameter.

Illustration 4.16 Display example

Indicator lights (LEDs):

- Green LED/On: Indicates if control section is on.
- Yellow LED/Wrn.: Indicates a warning.
- Flashing red LED/Alarm: Indicates an alarm.

Illustration 4.15 Alarm display example

How to operate the frequenc...
VLT AQUA Drive FC 202 Operation Instructions

Operation keys

Keys for local control are found at the bottom of the control panel.

Illustration 4.17 Operation keys of the numerical LCP (NLCP)

[Hand on]

enables control of the frequency converter via the LCP. [Hand on] also starts the motor and it is now possible to enter the motor speed data by means of the navigation keys. The key can be [1] Enabled or[0] Disabled via 0-40 [Hand on] Key on LCP.

External stop signals activated by means of control signals or a serial bus will override a 'start' command via the LCP.

The following control signals are still active when [Hand on] is activated:

- [Hand on] - [Off] - [Auto on]
- Reset
- Coasting stop inverse
- Reversing
- Set-up select Isb - Set-up select msb
- Stop command from serial communication
- Quick stop
- DC brake
[Off]
stops the connected motor. The key can be [1] Enabled or [0] Disabled via 0-41 [Off] Key on LCP.

If no external stop function is selected and the [Off] key is inactive the motor can be stopped by disconnecting the mains supply.

[Auto on]

enables the frequency converter to be controlled via the control terminals and/or serial communication. When a start signal is applied on the control terminals and/or the bus, the frequency converter starts. The key can be [1] Enabled or [0] Disabled via 0-42 [Auto on] Key on LCP.

NOTICE

An active HAND-OFF-AUTO signal via the digital inputs has higher priority than the control keys [Hand on] [Auto on].

[Reset]

is used for resetting the frequency converter after an alarm (trip). The key can be [1] Enabled or[0] Disabled via 0-43 [Reset] Key on LCP.

4.1.3 Changing Data

1. Press [Quick Menu] or [Main Menu] key.
2. Press $[\mathbf{\Delta}]$ and $[\mathbf{v}]$ to find parameter group to edit.
3. Press $[O K]$ key.
4. Press [$\mathbf{\Delta}]$ and $[\mathbf{v}]$ to find parameter to edit.
5. Press $[\mathrm{OK}]$ key
6. Press $[\mathbf{\Delta}]$ and $[\mathbf{v}]$ to select correct parameter setting. Or, to move to digits within a number, press keys. Cursor indicates digit selected to change. [$\mathbf{\Delta}]$ increases the value, [\mathbf{v}] decreases the value.
7. Press [Cancel] to disregard change, or press [OK] to accept change and enter new setting.

4.1.4 Changing a Text Value

If the selected parameter is a text value, change the text value with the $[\mathbf{\Delta}] /[\mathbf{v}]$ keys.
[$\mathbf{\Delta}$] increases the value, and [\mathbf{v}] decreases the value. Place the cursor on the value to be saved and press [OK].

Illustration 4.18 Display Example

4.1.5 Changing a Group of Numeric Data Values

If the selected parameter represents a numeric data value, change the selected data value with the [\varangle] and $[\boldsymbol{\bullet}]$ keys as well as the up/down [$\mathbf{\Delta}$] [\mathbf{v}] keys. press [$\boldsymbol{\triangleleft}]$ and [$\boldsymbol{\bullet}$] to move the cursor horizontally.

Illustration 4.19 Display Example

How to operate the frequenc... VLT AQUA Drive FC 202 Operation Instructions

Press [$\mathbf{\Delta}]$ and $[\mathbf{v}]$ to change the data value. [$\mathbf{\Delta}]$ increases the data value, and $[\mathbf{v}]$ decreases the data value. Place the cursor on the value to be saved and press [OK].

Illustration 4.20 Display Example

4.1.6 Changing of Data Value, Step-by-Step

Certain parameters can be changed step by step or infinitely variably. This applies to parameter 1-20 Motor Power [kW], parameter 1-22 Motor Voltage and parameter 1-23 Motor Frequency.
The parameters are changed both as a group of numeric data values and as numeric data values infinitely variably.

4.1.7 Read-out and Programming of Indexed Parameters

Parameters are indexed when placed in a rolling stack. 15-30 Alarm Log: Error Code to 15-32 Alarm Log: Time contain a fault log which can be read out. Select a parameter, press [OK], and use [$\mathbf{\Delta}$] and [\mathbf{v}] to scroll through the value log.

Use parameter 3-10 Preset Reference as another example: Select the parameter, press [OK], and use [$\mathbf{\Delta}$] and [\mathbf{v}] to scroll through the indexed values. To change the parameter value, select the indexed value and press [OK]. Change the value by [$\mathbf{\Delta}$] and [\mathbf{v}]. Press [OK] to accept the new setting. Press [Cancel] to abort. Press [Back] to leave the parameter.

4.1.8 Tips and Tricks

- For the majority of water and wastewater applications the Quick Menu, Quick Set-up and Function Set-up provides the simplest and quickest access to all the typical parameters required.
- Whenever possible, performing an AMA, ensures best shaft performance.
- Contrast of the display can be adjusted by pressing [Status] and [$\mathbf{\Delta}$] for darker display or by pressing [Status] and [$\mathbf{\nabla}$] for brighter display.
- Under [Quick Menu] and [Changes Made] all parameters that have been changed from factory settings are displayed.
- \quad Press and hold [Main Menu] key for 3 s for access to any parameter.
- For service purposes it is recommended to copy all parameters to the LCP, see 0-50 LCP Copy for further information.

4.1.9 Quick Transfer of Parameter Settings when Using GLCP

Once the set-up of a frequency converter is complete, it is recommended to store (back up) the parameter settings in the GLCP or on a PC via MCT 10 Set-up Software Tool.

\triangle WARNING

Stop the motor before performing any of these operations.

Data storage in LCP

1. Go to 0-50 LCP Copy.
2. Press [OK].
3. Select [1] All to LCP.
4. Press [OK].

All parameter settings are now stored in the GLCP indicated by the progress bar. When 100% is reached, press [OK].

The GLCP can now be connected to another frequency converter and the parameter settings copied to this frequency converter.

Data transfer from LCP to Frequency converter

1. Go to 0-50 LCP Copy.
2. Press [OK].
3. Select [2] All from LCP.
4. Press [OK]

The parameter settings stored in the GLCP are now transferred to the frequency converter indicated by the progress bar. When 100% is reached, press [OK].

4.1.10 Initialisation to Default Settings

There are 2 ways to initialise the frequency converter to default: Recommended initialisation and manual initialisation.
Be aware that they have different impact according to the below description.

Recommended initialisation (via 14-22 Operation Mode)

1. Select 14-22 Operation Mode.
2. Press [OK].
3. Select [2] Initialisation (for NLCP select " 2 ").
4. Press [OK].
5. Remove power to unit and wait for display to turn off.
6. Reconnect power and the frequency converter is reset. Note that first start-up takes a few more seconds.
7. Press [Reset]

14-22 Operation Mode initialises all except:
14-50 RFI Filter
8-30 Protocol
8-31 Address
8-32 Baud Rate
8-35 Minimum Response Delay
8-36 Max Response Delay
8-37 Maximum Inter-Char Delay
15-00 Operating hours to 15-05 Over Volt's
15-20 Historic Log: Event to 15-22 Historic Log: Time
15-30 Alarm Log: Error Code to 15-32 Alarm Log: Time

NOTICE

Parameters selected in 0-25 My Personal Menu stay present with default factory setting.

Manual initialisation

NOTICE

When carrying out manual initialisation, serial communication, RFI filter settings and fault log settings are reset. Removes parameters selected in 0-25 My Personal Menu.

1. Disconnect from mains and wait until the display turns off.
2. Press

2a [Status] - [Main Menu] - [OK] at the same time while power up for Graphical LCP (GLCP).

2b [Menu] while power up for LCP 101, Numerical Display.
3. Release the keys after 5 s .
4. The frequency converter is now programmed according to default settings.

4.1.11 RS-485 Bus Connection

One or more frequency converters can be connected to a controller (or master) using the RS-485 standard interface. Terminal 68 is connected to the P signal ($T X+, R X+$), while terminal 69 is connected to the N signal (TX-,RX-).

If more than one frequency converter is connected to a master, use parallel connections.

To avoid potential equalizing currents in the screen, ground the cable screen via terminal 61 , which is connected to the frame via an RC-link.

Bus termination

The RS-485 bus must be terminated by a resistor network at both ends. If the frequency converter is the first or the last device in the RS-485 loop, set the switch S801 on the control card for ON.
For more information, see the paragraph Switches S201, S202, and S801.

4.1.12 How to Connect a PC to the Frequency Converter

To control or program the frequency converter from a PC, install the PC-based configuration tool MCT 10 Set-up Software.
The PC is connected via a standard (host/device) USB cable, or via the RS-485 interface as shown in chapter 4.1.11 RS-485 Bus Connection.

NOTICE

The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. The USB connection is connected to protection earth. Use only an isolated laptop as PC connection to the USB connector on the frequency converter.

This parameter initialises all except:
15-00 Operating hours
15-03 Power Up's
15-04 Over Temp's
15-05 Over Volt's

Illustration 4.22 USB Connection to Frequency Converter

4.1.13 PC Software Tools

PC-based MCT 10 Set-up Software

All Frequency converters are equipped with a serial communication port. Danfoss provides a PC tool for communication between PC and frequency converter, PCbased Configuration Tool MCT 10. Check the section on Available Literature for detailed information on this tool.

MCT 10 set-up software

MCT 10 has been designed as an easy to use interactive tool for setting parameters in our frequency converters. . The MCT 10 Set-up Software is useful for:

- Planning a communication network off-line. MCT 10 Set-up Software contains a complete frequency converter database.
- Commissioning frequency converters on line.
- \quad Saving settings for all frequency converters.
- Replacing a frequency converter in a network.
- Simple and accurate documentation of frequency converter settings after commissioning.
- Expanding an existing network.
- Future developed frequency converters are supported.

MCT 10 Set-up Software supports Profibus DP-V1 via a Master class 2 connection. It makes it possible to on line read/write parameters in a frequency converter via the Profibus network. This eliminates the need for an extra communication network.

Save frequency converter settings:

1. Connect a PC to the unit via USB com port. (NOTE: Use a PC, which is isolated from the
mains, in conjunction with the USB port. Failure to do so may damage equipment.).
2. Open MCT 10 Set-up Software.
3. Select Read from drive.
4. Select Save as.

All parameters are now stored in the PC.

Load frequency converter settings:

1. Connect a PC to the frequency converter via USB com port.
2. Open MCT 10 Set-up Software.
3. Select Open - stored files are shown.
4. Open the appropriate file.
5. Select Write to drive.

All parameter settings are now transferred to the frequency converter.

A separate manual for MCT 10 Set-up Software is available from www.Danfoss.com/BusinessAreas/DrivesSolutions/ Softwaredownload/DDPC+Software+Program.htm.

The MCT 10 Set-up software modules
The following modules are included in the software package.

	MCT Set-up 10 Software Setting parameters Copy to and from frequency converters Documentation and print out of parameter settings incl. diagrams
	Ext. user interface Preventive Maintenance Schedule Clock settings Timed Action Programming Smart Logic Controller Set-up

Table 4.1

Ordering number:

Order the CD containing MCT 10 Set-up Software using code number 130B1000.

The software can be downloaded from the Danfoss internet site www.Danfoss.com/BusinessAreas/DrivesSolutions/Softwaredownload/DDPC+Software+Program.htm

How to programme the freque...
VLT AQUA Drive FC 202 Operation Instructions

5 How to programme the frequency converter

5.1 How to programme

The parameters are grouped into various parameter groups for easy selection of the correct parameter for optimized frequency converter operation.

Overview of parameter groups

Group	Title	Function
0-**	Operation/Display	Parameters related to the fundamental functions of the frequency converter, function of the LCP keys and configuration of the LCP display.
1-**	Load/Motor	Parameter group for motor settings.
2-**	Brakes	Parameter group for setting brake features in the frequency converter.
3-**	Reference/Ramps	Parameters for reference handling, definitions of limitations, and configuration of the reaction of the frequency converter to changes.
4-**	Limits/Warnings	Parameter group for configuring limits and warnings.
5-**	Digital In/Out	Parameter group for configuring the digital inputs and outputs.
6-**	Analog In/Out	Parameter group for configuration of the analog inputs and outputs.
8-**	Communication and Options	Parameter group for configuring communications and options.
9-**	Profibus	Parameter group for Profibus-specific parameters (requires profibus option).
10-**	DeviceNet Fieldbus	Parameter group for DeviceNet-specific parameters (requires DeviceNet option).
13-**	Smart Logic	Parameter group for Smart Logic Control
14-**	Special Functions	Parameter group for configuring special frequency converter functions.
15-**	Drive Information	Parameter group containing frequency converter information such as operating data, hardware configuration and software versions.
16-**	Data Readouts	Parameter group for data read-outs, e.g. actual references, voltages, control, alarm, warning and status words.
18-**	Info and Readouts	This parameter group contains the last 10 Preventive Maintenance logs.
20-**	Drive Closed Loop	This parameter group is used for configuring the closed loop PID Controller that controls the output frequency of the unit.
21-**	Extended Closed Loop	Parameters for configuring the three Extended Closed Loop PID Controllers.
22-**	Application Functions	These parameters monitor water applications.
23-**	Time-based Functions	These parameters are for actions needed to be performed on a daily or weekly basis, e.g. different references for working hours/non-working hours.
24-**	Application Functions 2	Parameters for the Drive Bypass.
25-**	Basic Cascade Controller Functions	Parameters for configuring the Basic Cascade Controller for sequence control of multiple pumps.
26-**	Analog I/0 Option MCB 109	Parameters for configuring the Analog I/0 Option MCB 109.
27-**	Extended Cascade Control	Parameters for configuring the Extended Cascade Control (MCO 101/MCO 102).
29-**	Water Application Functions	Parameters for setting water specific functions.
30-**	Special Features	Parameters for configuring the brake resistor value.
31-**	Bypass Option	Parameters for configuring the Bypass Option (MCO 104).
35-**	Sensor Input Option	Parameters for configuring the Sensor Input Option (MCB 114)

Table 5.1 Parameter Groups
Parameter descriptions and selections are displayed on the graphic (GLCP) or numeric (NLCP) in the display area. (See for details.) Access the parameters by pressing the [Quick Menu] or [Main Menu] key on the control panel. The quick menu is used primarily for commissioning the unit at start-up by providing those parameters necessary to start operation. The main menu provides access to all parameters for detailed application programming.

How to programme the freque...
VLT AQUA Drive FC 202 Operation Instructions

All digital input/output and analog input/output terminals are multifunctional. All terminals have factory default functions suitable for the majority of water applications but if other special functions are required, they must be programmed in parameter group 5-** Digital In/out or 6-** Analog In/out.

5.1.1 Quick Menu Mode

The GLCP provides access to all parameters listed under the Quick Menus. To set parameters using the [Quick Menu] key:

Pressing [Quick Menu] the list indicates the different areas contained in the Quick menu.

Efficient parameter set-up for water applications

The parameters can easily be set up for the vast majority of the water and wastewater applications only by using the [Quick Menu].

The optimum way to set parameters through the [Quick Menu] is by following the below steps:

1. Press [Quick Setup] for selecting basic motor settings, ramp times, etc.
2. Press [Function Setups] for setting up the required functionality of the frequency converter - if not already covered by the settings in [Quick Setup].
3. Select between General Settings, Open Loop Settings and Closed Loop Settings.
It is recommended to do the set-up in the order listed.

40.0\%	4.84 A	1(1)
Quick Menus		
Q1 My Personal Menu		
Q2 Quick Setup		
Q3 Function Setups		
Q5 Cha		∇

Illustration 5.1 Quick Menu View

Par.	Designation	$[$ Units $]$
$0-01$	Language	
$1-20$	Motor Power	$[\mathrm{kW}]$
$1-22$	Motor Voltage	$[\mathrm{V}]$
$1-23$	Motor Frequency	$[\mathrm{Hz}]$
$1-24$	Motor Current	$[\mathrm{A}]$
$1-25$	Motor Nominal Speed	$[\mathrm{RPM}]$
$3-41$	Ramp 1 Ramp up Time	$[\mathrm{s}]$
$3-42$	Ramp 1 Ramp down Time	$[\mathrm{s}]$
$4-11$	Motor Speed Low Limit	$[\mathrm{RPM}]$
$4-13$	Motor Speed High Limit	$[\mathrm{RPM}]$
$1-29$	Automatic Motor Adaptation (AMA)	

Table 5.2 Quick Setup parameters.
See Chapter 5.2 Commonly Used Parameters - Explanations
If No Operation is selected in terminal 27 no connection to +24 V on terminal 27 is necessary to enable start.
If Coast Inverse (factory default value) is selected in Terminal 27, a connection to +24 V is necessary to enable start.

NOTICE

For detailed parameter descriptions, see chapter 5.2 Commonly Used Parameters - Explanations.

5.1.2 Q1 My Personal Menu

Parameters defined by the user can be stored in Q1 My Personal Menu.

Select My Personal Menu to display only the parameters, which have been pre-selected and programmed as personal parameters. For example, a pump or equipment OEM may have pre-programmed these to be in My Personal Menu during factory commissioning to make on site commissioning/fine tuning simpler. These parameters are selected in par. 0-25 My Personal Menu. Up to 20 different parameters can be defined in this menu.

Parameter 20-21 Setpoint 1
Parameter 20-93 PID Proportional Gain
Parameter 20-94 PID Integral Time

Table 5.3 Q1 My Personal Menu

5.1.3 Q2 Quick Setup

The parameters in Q2 Quick Setup are the basic parameters which are always needed to set-up the frequency converter to operation.

How to programme the freque...

Parameter number and name	Unit
0-01 Language	
Parameter 1-20 Motor Power [kW]	kW
Parameter 1-22 Motor Voltage	V
Parameter 1-23 Motor Frequency	Hz
Parameter 1-24 Motor Current	A
Parameter 1-25 Motor Nominal Speed	RPM
Parameter 3-41 Ramp 1 Ramp Up Time	s
Parameter 3-42 Ramp 1 Ramp Down Time	s
Parameter 4-11 Motor Speed Low Limit [RPM]	RPM
Parameter 4-13 Motor Speed High Limit [RPM]	RPM
Parameter 1-29 Automatic Motor Adaptation (AMA)	

Table 5.4 Q2 Quick Setup

5.1.4 Q3 Function Set-ups

The Function Set-up provides quick and easy access to all parameters required for the majority of water and wastewater applications including variable torque, constant torque, pumps, dosing pumps, well pumps, booster pumps, mixer pumps, aeration blowers and other pump and fan applications. Amongst other features, it also includes parameters for selecting which variables to display on the LCP, digital preset speeds, scaling of analog references, closed loop single zone and multi-zone applications and specific functions related to water and wastewater applications.

How to access Function Set-up - example:

1. Turn on the frequency converter (On LED lights)

Illustration 5.2
2. Press the [Quick Menus] key (Quick Menus choices appear).

Illustration 5.3

Illustration 5.4

4. Function Set-ups choices appear. Select Q3-1 General Settings. Press [OK].

5. Press $[\mathbf{\Delta}] /[\mathbf{v}]$ keys to scroll down to i.e. Q3-12 Analog Outputs. Press [OK].

Illustration 5.6
6. Select parameter 6-50 Terminal 42 Output. Press [OK].

Illustration 5.7
7. Press $[\mathbf{\Delta}] /[\mathbf{v}]$ keys to select between the different choices. Press [OK].

Illustration 5.8

Illustration 5.5

3. Press $[\mathbf{\Delta}] /[\mathbf{v}]$ navigation keys to scroll down to Function Set-ups. Press [OK].

How to programme the freque...

VLT AQUA Drive FC 202 Operation Instructions

The Function Setup parameters are grouped in the following way:

Q3-10 Clock Settings	Q3-11 Display Settings	Q3-12 Analog Output	Q3-13 Relays
0-70 Date and Time	0-20 Display Line 1.1 Small	Parameter 6-50 Terminal 42 Output	Relay $1 \Rightarrow 5-40$ Function Relay
0-71 Date Format	0-21 Display Line 1.2 Small	Parameter 6-51 Terminal 42 Output Min Scale	Relay 2 $\Rightarrow 5-40$ Function Relay Parameter 0-72 Time Format Parameter 0-74 DST/Summertime
0-22 Display Line 1.3 Small	Parameter 6-52 Terminal 42 Output Max Scale	Option relay 7 \Rightarrow $5-40 ~ F u n c t i o n ~ R e l a y ~$	
Parameter 0-76 DST/Summertime 2 Large Start	$0-24$ Display Line 3 Large		Option relay 8 \Rightarrow $5-40 ~ F u n c t i o n ~ R e l a y ~$
Parameter 0-77 DST/Summertime End	Parameter 0-37 Display Text 1		Option relay 9 \Rightarrow $5-40 ~ F u n c t i o n ~ R e l a y ~$
	parameter 0-38 Display Text 2		
	parameter 0-39 Display Text 3		

Table 5.5 Q3-1 General Settings

Q3-20 Digital Reference	Q3-21 Analog Reference
Parameter 3-02 Minimum Reference	Parameter 3-02 Minimum Reference
3-03 Maximum Reference	3-03 Maximum Reference
Parameter 3-10 Preset Reference	Parameter 3-10 Preset Reference
5-13 Terminal 29 Digital Input	Parameter 6-11 Terminal 53 High Voltage
5-14 Terminal 32 Digital Input	Parameter 6-14 Terminal 53 Low Ref./Feedb. Value
5-15 Terminal 33 Digital Input	Parameter 6-15 Terminal 53 High Ref./Feedb. Value

Q3-30 Feedback Settings	Q3-31 PID Settings
Parameter 1-00 Configuration Mode	Parameter 20-81 PID Normal/ Inverse Control
20-12 Reference/Feedback Unit	Parameter 20-82 PID Start Speed [RPM]
Parameter 3-02 Minimum Reference	Parameter 20-21 Setpoint 1
3-03 Maximum Reference	Parameter 20-93 PID Proportional Gain
Parameter 6-20 Terminal 54 Low Voltage	Parameter 20-94 PID Integral Time
Parameter 6-21 Terminal 54 High Voltage	
Parameter 6-24 Terminal 54 Low Ref./Feedb. Value	
Parameter 6-25 Terminal 54 High Ref./Feedb. Value	
Parameter 6-00 Live Zero Timeout Time	
Parameter 6-01 Live Zero Timeout Function	

How to programme the freque... VLT AQUA Drive FC 202 Operation Instructions

5.1.5 Q5 Changes Made

Q5 Changes Made can be used for fault finding.

Select Changes made to get information about:

- the last 10 changes. Use the up/down navigation keys to scroll between the last 10 changed parameters.
- the changes made since default setting.

Select Loggings to get information about the display line read-outs. The information is shown as graphs.
Only display parameters selected in parameter 0-20 Display Line 1.1 Small and 0-24 Display Line 3 Large can be viewed. It is possible to store up to 120 samples in the memory for later reference.

Note that the parameters listed in Table 5.6 to Table 5.6 for Q5 only serve as examples as they vary depending on the programming of the particular frequency converter.

Parameter 20-94 PID Integral Time
Parameter 20-93 PID Proportional Gain

Parameter 20-93 PID Proportional Gain
 Parameter 20-94 PID Integral Time

```
Analog Input 53
Analog Input 54
```


5.1.6 Q6 Loggings

Q6 Loggings can be used for fault finding.

Notice that the parameters listed in Table 5.6 for Q6 only serve as examples as they vary depending on the programming of the particular frequency converter.

Reference
Analog Input 53
Motor Current
Frequency
Feedback
Energy Log
Trending Cont Bin
Trending Timed Bin
Trending Comparison

5.1.7 Main Menu Mode

Both the GLCP and NLCP provide access to the main menu mode. Select the Main Menu mode by pressing the [Main Menu] key. Illustration 5.9 shows the resulting read-out, which appears on the display of the GLCP.

Lines 2 through 5 on the display show a list of parameter groups which can be selected by toggling the up and down keys.

Illustration 5.9 Display Example

Each parameter has a name and number which remain the same regardless of the programming mode. In the Main Menu mode, the parameters are divided into groups. The first digit of the parameter number (from the left) indicates the parameter group number.

All parameters can be changed in the Main Menu. The configuration of the unit (parameter 1-00 Configuration Mode) determines other parameters available for programming. For example, selecting closed loop enables additional parameters related to closed loop operation. Option cards added to the unit enable additional parameters associated with the option device.

5.1.8 Parameter Selection

In the Main Menu mode, the parameters are divided into groups. Select a parameter group by means of the navigation keys.
The following parameter groups are accessible:

Group no.	Parameter group
0-**	Operation/Display
1-**	Load/Motor
2-**	Brakes
3-**	References/Ramps
4-**	Limits/Warnings
5-**	Digital In/Out
6-**	Analog In/Out
8-**	Comm. and Options
9-**	Profibus
10-**	CAN Fieldbus
11-**	LonWorks
13-**	Smart Logic
14-**	Special Functions
15-**	FC Information
16-**	Data Readouts
18-**	Data Readouts 2
20-**	FC Closed Loop
21-**	Ext. Closed Loop

Group no.	Parameter group
$22^{-* *}$	Application Functions
$23-* *$	Time Actions
$25-{ }^{* *}$	Cascade Controller
$26-{ }^{* *}$	Analog I/O Option MCB 109
$27-* *$	Cascade CTL Option
$29-* *$	Water Application Functions
$31-* *$	Bypass Option

Table 5.6 Parameter Groups

After selecting a parameter group, select a parameter with the navigation keys.
The middle section on the GLCP display shows the parameter number and name as well as the selected parameter value.

Illustration 5.10 Display Example

5.2 Commonly Used Parameters Explanations

5.2.1 Main Menu

The Main Menu includes all available parameters in the frequency converter.
All parameters are grouped in a logic way with a group name indicating the function of the parameter group. All parameters are listed by name and number in chapter 5.3 Parameter Menu Structure.

All parameters included in the Quick Menus (Q1, Q2, Q3, Q5 and Q6) can be found in the following.

Some of the most used parameters for VLT ${ }^{\circledR}$ AQUA Drive applications are also explained in the following section.

For a detailed explanation of all parameters, refer to the VLT ${ }^{\circledR}$ AQUA Drive Programming Guide which is available at www.danfoss.com/BusinessAreas/DrivesSolutions/ Documentations/Technical+Documentation.htm or by ordering at the local Danfoss office.
Parameters related to the fundamental functions of the frequency converter, function of the LCP keys and configuration of the LCP display.

0-01 Language		
Option:		Function:
		Defines the language to be used in the display. The frequency converter can be delivered with 4 different language packages. English and German are included in all packages. English cannot be erased or manipulated.
[0] *	English	Part of Language packages 1-4
[1]	German	Part of Language packages 1-4
[2]	French	Part of Language package 1
[3]	Danish	Part of Language package 1
[4]	Spanish	Part of Language package 1
[5]	Italian	Part of Language package 1
[6]	Swedish	Part of Language package 1
[7]	Dutch	Part of Language package 1
[10]	Chinese	Language package 2
[20]	Finnish	Part of Language package 1
[22]	English US	Part of Language package 4
[27]	Greek	Part of Language package 4
[28]	Portuguese	Part of Language package 4
[36]	Slovenian	Part of Language package 3
[39]	Korean	Part of Language package 2
[40]	Japanese	Part of Language package 2
[41]	Turkish	Part of Language package 4
[42]	Traditional Chinese	Part of Language package 2
[43]	Bulgarian	Part of Language package 3
[44]	Serbian	Part of Language package 3
[45]	Romanian	Part of Language package 3
[46]	Hungarian	Part of Language package 3
[47]	Czech	Part of Language package 3
[48]	Polish	Part of Language package 4
[49]	Russian	Part of Language package 3
[50]	Thai	Part of Language package 2
[51]	Bahasa Indonesian	Part of Language package 2

0-20 Display Line 1.1 Small

Option:		Function:
		Select a variable for display in line 1, left position.
[0]	None	No display value selected
[37]	Display Text 1	Present control word
[38]	Display Text 2	Enables an individual text string to be written, for display in the LCP or to be read via serial communication.
[39]	Display Text 3	Enables an individual text string to be written, for display in the LCP or to be read via serial communication.
[89]	Date and Time Readout	Displays the current date and time.

How to programme the freque...
VLT AQUA Drive FC 202 Operation Instructions

0-20 Display Line 1.1 Small		
Option:		Function:
[953]	Profibus Warning Word	Displays Profibus communication warnings.
[1005]	Readout Transmit Error Counter	View the number of CAN control transmission errors since the last power-up.
[1006]	Readout Receive Error Counter	View the number of CAN control receipt errors since the last power-up.
[1007]	Readout Bus Off Counter	View the number of Bus Off events since the last power-up.
[1013]	Warning Parameter	View a DeviceNet-specific warning word. One separate bit is assigned to every warning.
[1230]	Warning Parameter	
[1500]	Operating hours	View the number of running hours of the frequency converter.
[1501]	Running Hours	View the number of running hours of the motor.
[1502]	kWh Counter	View the mains power consumption in kWh.
[1580]	Fan Running Hours	
[1600]	Control Word	View the Control Word sent from the frequency converter via the serial communication port in hex code.
[1601]	Reference [Unit]	Total reference (sum of digital/analog/ preset/bus/freeze ref./catch up and slow-down) in selected unit.
[1602]	Reference [\%]	Total reference (sum of digital/analog/ preset/bus/freeze ref./catch up and slow-down) in percent.
[1603]	Status Word	Present status word
[1605]	Main Actual Value [\%]	One or more warnings in a Hex code
[1609]	Custom Readout	View the user-defined readouts as defined in 0-30 Custom Readout Unit, 0-31 Custom Readout Min Value and 0-32 Custom Readout Max Value.
[1610]	Power [kW]	Actual power consumed by the motor in kW.
[1611]	Power [hp]	Actual power consumed by the motor in hp.
[1612]	Motor Voltage	Voltage supplied to the motor.
[1613]	Frequency	Motor frequency, i.e. the output frequency from the frequency converter in Hz .
[1614]	Motor current	Phase current of the motor measured as effective value.

0-20	Display Line 1.1	Small
Option:		Function:

frequency from the frequency

converter in percent.\end{array}

\hline [1616] \& Torque [Nm] \& $$
\begin{array}{l}\text { Present motor load as a percentage } \\
\text { of the rated motor torque. }\end{array}
$$

\hline [1617] \& Speed [RPM] \& $$
\begin{array}{l}\text { Speed in RPM (revolutions per } \\
\text { minute) i.e. the motor shaft speed in } \\
\text { closed loop based on the entered }\end{array}
$$

motor nameplate data, the output

frequency and the load on the

frequency converter.\end{array}\right.\right\}\)

How to programme the freque...
VLT AQUA Drive FC 202 Operation Instructions

0-20 Display Line 1.1 Small		
Option:		Function:
[1654]	Feedback 1 [Unit]	View the value of Feedback 1. See also parameter group 20-0* Feedback.
[1655]	Feedback 2 [Unit]	View the value of Feedback 2. See also parameter group 20-0* Feedback.
[1656]	Feedback 3 [Unit]	View the value of Feedback 3. See also parameter group 20-0* Feedback.
[1658]	PID Output [\%]	Returns the Drive Closed Loop PID controller output value in percent.
[1659]	Adjusted Setpoint	Displays the actual operating setpoint after it is modified by flow compensation. See parameter group 22-8* Flow Compensation.
[1660]	Digital Input	Displays the status of the digital inputs. Signal low $=0$; Signal high $=$ 1. Regarding order, see 16-60 Digital Input. Bit 0 is at the extreme right.
[1661]	Terminal 53 Switch Setting	Setting of input terminal 53. Current $=0$; Voltage $=1$.
[1662]	Analog Input 53	Actual value at input 53 either as a reference or protection value.
[1663]	Terminal 54 Switch Setting	Setting of input terminal 54. Current $=0$; Voltage $=1$.
[1664]	Analog Input 54	Actual value at input 54 either as reference or protection value.
[1665]	Analog Output 42 [mA]	Actual value at output 42 in mA. Use parameter 6-50 Terminal 42 Output to select the variable to be represented by output 42 .
[1666]	Digital Output [bin]	Binary value of all digital outputs.
[1667]	Pulse Input \#29 [Hz]	Actual value of the frequency applied at terminal 29 as a pulse input.
[1668]	Pulse Input \#33 [Hz]	Actual value of the frequency applied at terminal 33 as a pulse input.
[1669]	Pulse Output \#27 $[\mathrm{Hz}]$	Actual value of pulses applied to terminal 27 in digital output mode.
[1670]	Pulse Output \#29 [Hz]	Actual value of pulses applied to terminal 29 in digital output mode.
[1671]	Relay Output [bin]	View the setting of all relays.
[1672]	Counter A	View the present value of Counter A .
[1673]	Counter B	View the present value of Counter B.
[1675]	Analog In X30/11	Actual value of the signal on input X30/11 (General Purpose I/O Card. Option)

0-20 Display Line 1.1 Small		
Option:		Function:
[1676]	Analog In X30/12	Actual value of the signal on input X30/12 (General Purpose I/O Card. Optional)
[1677]	Analog Out X30/8 [mA]	Actual value at output X30/8 (General Purpose I/O Card. Optional) Use 6-60 Terminal X30/8 Output to select the variable to be shown.
[1678]	Analog Out X45/1 [mA]	
[1679]	Analog Out X45/3 [mA]	
[1680]	Fieldbus CTW 1	Control word (CTW) received from the Bus Master.
[1682]	Fieldbus REF 1	Main reference value sent with control word via the serial communications network e.g. from the BMS, PLC or other master controller.
[1684]	Comm. Option STW	Extended fieldbus communication option status word.
[1685]	FC Port CTW 1	Control word (CTW) received from the Bus Master.
[1686]	FC Port REF 1	Status word (STW) sent to the Bus Master.
[1690]	Alarm Word	One or more alarms in a Hex code (used for serial communications)
[1691]	Alarm Word 2	One or more alarms in a Hex code (used for serial communications)
[1692]	Warning Word	One or more warnings in a Hex code (used for serial communications)
[1693]	Warning Word 2	One or more warnings in a Hex code (used for serial communications)
[1694]	Ext. Status Word	One or more status conditions in a Hex code (used for serial communications)
[1695]	Ext. Status Word 2	One or more status conditions in a Hex code (used for serial communications)
[1696]	Maintenance Word	The bits reflect the status for the programmed Preventive Maintenance Events in parameter group 23-1* Maintenance.
[1830]	Analog Input $\mathrm{X} 42 / 1$	Shows the value of the signal applied to terminal X42/1 on the Analog I/O card.
[1831]	Analog Input X42/3	Shows the value of the signal applied to terminal X42/3 on the Analog I/O card.

How to programme the freque...
VLT AQUA Drive FC 202 Operation Instructions

0-20 Display Line 1.1 Small		
Option:		Function:
[1832]	Analog Input X42/5	Shows the value of the signal applied to terminal X42/5 on the Analog I/O card.
[1833]	Analog Out X42/7 [V]	Shows the value of the signal applied to terminal X42/7 on the Analog I/O card.
[1834]	Analog Out X42/9 [V]	Shows the value of the signal applied to terminal X42/9 on the Analog I/O card.
[1835]	Analog Out X42/11 [V]	Shows the value of the signal applied to terminal X42/11 on the Analog I/O card.
[1836]	Analog Input $\mathrm{X} 48 / 2[\mathrm{~mA}]$	
[1837]	Temp. Input X48/4	
[1838]	Temp. Input X48/7	
[1839]	Temp. Input X48/10	
[1860]	Digital Input 2	
[2117]	Ext. 1 Reference [Unit]	The value of the reference for extended Closed Loop Controller 1
[2118]	Ext. 1 Feedback [Unit]	The value of the feedback signal for extended Closed Loop Controller 1
[2119]	Ext. 1 Output [\%]	The value of the output from extended Closed Loop Controller 1
[2137]	Ext. 2 Reference [Unit]	The value of the reference for extended Closed Loop Controller 2
[2138]	Ext. 2 Feedback [Unit]	The value of the feedback signal for extended Closed Loop Controller 2
[2139]	Ext. 2 Output [\%]	The value of the output from extended Closed Loop Controller 2
[2157]	Ext. 3 Reference [Unit]	The value of the reference for extended Closed Loop Controller 3
[2158]	Ext. 3 Feedback [Unit]	The value of the feedback signal for extended Closed Loop Controller 3
[2159]	Ext. 3 Output [\%]	The value of the output from extended Closed Loop Controller 3
[2230]	No-Flow Power	The calculated No Flow Power for the actual operating speed
[2316]	Maintenance Text	
[2580]	Cascade Status	Status for the operation of the Cascade Controller
[2581]	Pump Status	Status for the operation of each individual pump controlled by the Cascade Controller

0-20 Display Line 1.1 Small		
Option:		Function:
[2791]	Cascade Reference	Reference output for use with follower drives.
[2792]	\% Of Total Capacity	Readout parameter to show the system operating point as a \% capacity of total system capacity.
[2793]	Cascade Option Status	Readout parameter to show the status of the cascade system.
[2794]	Cascade System Status	
[2795]	Advanced Cascade Relay Output [bin]	
[2796]	Extended Cascade Relay Output [bin]	
[2920]	Derag Power[kW]	
[2921]	Derag Power[HP]	
[3110]	Bypass Status Word	
[3111]	Bypass Running Hours	
[9920]	HS Temp. (PC1)	
[9921]	HS Temp. (PC2)	
[9922]	HS Temp. (PC3)	
[9923]	HS Temp. (PC4)	
[9924]	HS Temp. (PC5)	
[9925]	HS Temp. (PC6)	
[9926]	HS Temp. (PC7)	
[9927]	HS Temp. (PC8)	
[9951]	PC Debug 0	
[9952]	PC Debug 1	
[9953]	PC Debug 2	
[9954]	PC Debug 3	
[9955]	PC Debug 4	
[9956]	Fan 1 Feedback	
[9957]	Fan 2 Feedback	
[9958]	PC Auxiliary Temp	
[9959]	Power Card Temp.	

0-21 Display Line 1.2 Small
Option:

		Select a variable for display in line 1, middle position.
$[1662] *$	Analog input 53	The options are the same as those listed for par. 0-20 Display Line 1.1 Small.

How to programme the freque...
VLT AQUA Drive FC 202 Operation Instructions

0-22 Display Line 1.3 Small

Option:

		Sunction: right position.
$[1614] *$	Motor Current	The options are the same as those listed for 0-20 Display Line 1.1 Small.

0-23 Display Line 2 Large

Option: Function:

		Select a variable for display in line 2.
[1615] *	Frequency	The options are the same as those listed for par. 0-20 Display Line 1.1 Small

0-24 Display Line 3 Large

Option:

Function:

[1652] *	Feedback [Unit]	The options are the same as those listed for 0-20 Display Line 1.1 Small.
		Select a variable for display in line 2.

0-37 Display Text 1		
Range:		Function:
0 *	$\begin{gathered} {[0-} \\ 25] \end{gathered}$	In this parameter it is possible to write an individual text string for display in the LCP or to be read via serial communication. If to be displayed permanently select Display Text 1 in $0-20$ Display Line 1.1 Small, 0-21 Display Line 1.2 Small, 0-22 Display Line 1.3 Small, 0-23 Display Line 2 Large or 0-24 Display Line 3 Large. Press [$\mathbf{~}]$ or [$\mathbf{v}]$ to change a character. Press [$\mathbf{4}$] and [$\boldsymbol{\bullet}$] to move the cursor. When a character is highlighted, it can be changed. Press [$\mathbf{\Delta}]$ or $[\mathbf{v}]$ to change a character. A character can be inserted by placing the cursor between 2 characters and pressing [$\mathbf{\Delta}]$ or $[\mathbf{\nabla}]$.

0-38 Display Text 2		
Range:		Function:
0 *	$\begin{array}{r} {[0-} \\ 25] \end{array}$	In this parameter it is possible to write an individual text string for display in the LCP or to be read via serial communication. If to be displayed permanently select Display Text 2 in 0-20 Display Line 1.1 Small, 0-21 Display Line 1.2 Small, 0-22 Display Line 1.3 Small, 0-23 Display Line 2 Large or 0-24 Display Line 3 Large. Press [$\mathbf{\Delta}$] or [\mathbf{v}] to change a character. Press [$\mathbf{4}$] and [$\boldsymbol{\bullet}$] to move the cursor. When a character is highlighted by the cursor, this character can be changed. A character can be inserted by placing the cursor between two characters and pressing [$\mathbf{\Delta}]$ or $[\mathbf{v}]$.

0-39		Display Text 3
Range:		Function:
0 *	$[0-$	
$25]$		

individual text string for display in the LCP or to be

read via serial communication. If to be displayed

permanently select Display Text 3 in 0 -20 Display\end{array}\right]\)

0-39 Display Text 3		
Range:		Function:
	Line 1.1 Small, 0-21 Display Line 1.2 Small, 0-22 Display Line 1.3 Small, 0-23 Display Line 2 Large or 0-24 Display Line 3 Large. Press [$\mathbf{~}]$ or [$\mathbf{~}]$ to change a character. Press [$\mathbf{~}]$ and [\downarrow] to move the cursor. When a character is highlighted by the cursor, this character can be changed. A character can be inserted by placing the cursor between 2 characters and pressing [$\mathbf{~}]$ or [$\mathbf{~}]$.	

0-70 Date and Time		
Range:		Function:
Size related*	[0-0]	Sets the date and time of the internal clock. The format to be used is set in 0-71 Date Format and parameter 0-72 Time Format.

0-71 Date Format

Option:

Function:

[0]	YYYY-MM-DD	Sets the date format to be used in the LCP.
[1]	DD-MM-YYYY	Sets the date format to be used in the LCP.
[2]	MM/DD/YYYY	Sets the date format to be used in the LCP.

0-72 Time Format		
Option: Function: Sets the time format to be used in the LCP. $[0]$ 24 h $[1]$ 12 h		

0-74 DST/Summertime		
Option:		Function:
		Choose how Daylight Saving Time/Summertime should be handled. For manual DST/Summertime enter the start date and end date in parameter 0-76 DST/Summertime Start and parameter 0-77 DST/Summertime End.
$[0]$	Off	
$[2]$	Manual	

0-76 DST/Summertime Start

| Range: | Function: | |
| :--- | :--- | :--- | :--- |
| Size related* | $\left[\begin{array}{lll}0 & -0\end{array}\right]$ | Sets the date and time when
 summertime/DST starts. The date is
 programmed in the format selected in
 $0-71$ Date Format. |

0-77 DST/Summertime End

| Range: | Function: | |
| :--- | :--- | :--- | :--- |
| Size related* | $\left[\begin{array}{ll}0-0\end{array}\right]$ | Sets the date and time when
 summertime/DST ends. The date is
 programmed in the format selected in
 $0-71$ Date Format. |

How to programme the freque...
VLT AQUA Drive FC 202 Operation Instructions

5.2.2 1-0* General Settings

Define whether the frequency converter operates in open loop or closed loop.

Option:		Function:
		This parameter cannot be adjusted while the motor is running.
[0]	Open Loop	Motor speed is determined by applying a speed reference or by setting desired speed when in Hand Mode. Open Loop is also used if the frequency converter is of a closed loop control system based on an external PID controller providing a speed reference signal as output.
[3]	Closed Loop	Motor Speed will be determined by a reference from the built-in PID controller varying the motor speed as of a closed loop control process (e.g. constant pressure or flow). The PID controller must be configured in parameter group 20-** Feedback or via the Function Set-ups accessed by pressing [Quick Menus].

NOTICE

When set for Closed Loop, the commands Reversing and Start Reversing do not reverse the direction of the motor.

1-20 Motor Power [kW]		
Range:		Function:
Size related**	$[0.09-$ 2000.00 $\mathrm{~kW}]$	Enter the nominal motor power in kW according to the motor nameplate data. The default value corresponds to the nominal rated output of the unit. Depending on the choices made in O-03 Regional Settings, either parameter 1-20 Motor Power [kW] or $1-21 ~ M o t o r ~ P o w e r ~[H P] ~ i s ~ m a d e ~ i n v i s i b l e . ~$

1-22 Motor Voltage		
Range:	Function:	
Size related*	$[10-$ $1000 \mathrm{~V}]$	Enter the nominal motor voltage according to the motor nameplate data. The default value corresponds to the nominal rated output of the unit.

1-23 Motor Frequency		
Range:	Function:	
Size related*	1000 $\mathrm{~Hz}]$	Select the motor frequency value from the motor nameplate data. For 87 Hz operation with 230/400 V motors, set the nameplate

| 1-23 Motor Frequency | |
| :--- | :--- | :--- |
| Range: | Function: |
| | data for 230 V/50 Hz. Adapt
 parameter 4-13 Motor Speed High Limit [RPM]
 and 3-03 Maximum Reference to the 87 Hz
 application. |

1-24 Motor Current		
Range:	Function:	
Size related*	$0.10-$ $10000.00 \mathrm{~A}]$	Enter the nominal motor current value from the motor nameplate data. This data is used for calculating motor torque, motor thermal protection etc.

1-25 Motor Nominal Speed				
Range:				Function:
	related*	$\begin{aligned} & \left\lvert\, \begin{array}{l} {[100-60000} \\ \text { RPM }] \end{array}\right. \end{aligned}$		Enter the nominal motor speed value from the motor nameplate data. This data is used for calculating automatic motor compensations.
1-29 Automatic Motor Adaptation (AMA)				
Option:			Function:	
			NOTICE This parameter cannot be adjusted while the motor is running.	
[0]	Off		No function	
[1]	Enable Complete AMA		Performs AMA of the stator resistance Rs, the rotor resistance R_{r}, the stator leakage reactance X_{1}, the rotor leakage reactance X_{2} and the main reactance X_{h}.	
[2]	Enable Reduced AMA		Performs a reduced AMA of the stator resistance R_{s} in the system only. Select this option if an LC filter is used between the frequency converter and the motor.	

NOTICE

Parameter 1-29 Automatic Motor Adaptation (AMA) have no effect when 1-10 Motor Construction = [1] PM, non salient SPM.

Activate the AMA function by pressing [Hand on] after selecting [1] or [2]. See also the item Automatic Motor Adaptation in the Design Guide. After a normal sequence, the display reads: Press [OK] to finish AMA. After pressing [OK], the frequency converter is ready for operation.

NOTICE

- For the best adaptation of the frequency converter, run AMA on a cold motor
- AMA cannot be performed while the motor is running

NOTICE

Avoid generating external torque during AMA.

NOTICE

If one of the settings in parameter group 1-2* Motor Data is changed, 1-30 Stator Resistance (Rs) to 1-39 Motor Poles return to default settings.

NOTICE

Full AMA should be run without filter only while reduced AMA should be run with filter.

See section: Application Examples > Automatic Motor Adaptation in the Design Guide.

5.2.3 3-0* Reference Limits

| 3-10 Preset Reference |
| :--- | :--- | :--- |
| Array [8] |
| Range: |\quad| Function: |
| :--- |$|$| 0 \%* | $[-100-$ |
| :--- | :--- |
| $100 \%]$ | Enter up to eight different preset references
 $(0-7)$ in this parameter, using array
 programming. The preset reference is stated as
 a percentage of the value Refmax (3-03 Maximum
 Reference, for closed loop see 20-14 Maximum
 Reference/Feedb.). When using preset references,
 select Preset ref. bit 0/1/2 [16], [17] or [18] for
 the corresponding digital inputs in parameter
 group 5-1* Digital Inputs. |

Illustration 5.11

Illustration 5.12

3-41 Ramp 1 Ramp Up Time		
Range:	Function:	
Size related*	3600 s]	Enter the ramp-up time, i.e. the acceleration time from 0 RPM to parameter 1-25 Motor Nominal Speed. Select a ramp-up time such that the output current does not exceed the current limit in 4-18 Current Limit during ramping. See ramp-down time in parameter 3-42 Ramp 1 Ramp Down Time.

par. 3-41 $=\frac{\text { tacc } \times \text { nnom }[\text { par. } 1-25]}{\text { ref }[r p m]}[s]$

3-42 Ramp 1 Ramp Down Time		
Range:	Function:	
Size related*	$0.10-$ $3600 \mathrm{~s}]$	Enter the ramp-down time, i.e. the deceleration time from parameter 1-25 Motor Nominal Speed to 0 RPM. Select a ramp-down time such that no over-voltage arises in the inverter due to regenerative operation of the motor, and such that the generated current does not exceed the current limit set in 4-18 Current Limit. See ramp-up time in parameter 3-41 Ramp 1 Ramp Up Time.

par. $3-42=\frac{\text { tdec } \times \text { nnom }[\text { par. } 1-25]}{\text { ref }[\text { rpm }]}[s]$

3-84 Initial Ramp Time				
Range:		Function:		
0 s*	$\left[\begin{array}{l}\text { Enter the initial ramp up time from zero speed to } \\ \text { Motor Speed Low Limit, parameter 4-11 Motor Speed }\end{array}\right.$			
Low Limit [RPM] or 4-12 Motor Speed Low Limit [Hz].				
Submersible deep well pumps can be damaged by				
running below minimum speed. A fast ramp time				
below minimum pump speed is recommended. This				
parameter may be applied as a fast ramp rate from				
zero speed to Motor Speed Low Limit. See			$\}$	Illustration 5.13.
:---				

Illustration 5.13 Initial and Final Ramp Time

Illustration 5.14 Check Valve Ramp

3-86 Check Valve Ramp End Speed [RPM]		
Range:		Function:
Size related*	$[0-$ par. $4-11 \mathrm{RPM}]$	Set the speed in [RPM] below Motor Speed Low Limit where the Check Valve is expected to be closed and the Check Valve should no longer be active.

Illustration 5.15

Illustration 5.16

3-88 Final Ramp Time

Range: Function:

$0 \mathrm{~s}^{*}$	$[0-$ $60 \mathrm{~s}]$	Enter the Final Ramp Time to be used when ramping down from Motor Speed Low Limit, parameter 4-11 Motor Speed Low Limit [RPM] or $4-12$ Motor Speed Low Limit [Hz], to zero speed. Submersible deep well pumps can be damaged by running below minimum speed. A fast ramp time below minimum pump speed is recommended. This parameter may be applied as a fast ramp rate from Motor Speed Low Limit to zero speed.

Illustration 5.17

5.2.4 4-** Limits and Warnings

4-11 Motor Speed Low Limit [RPM]		
Range:	Function:	
Size related*	[0-par. $4-13$ RPM]	Enter the minimum limit for motor speed. The motor speed low limit can be set to correspond to the manufacturer's recommended minimum motor speed. The motor speed low limit must not exceed the setting in

4-11 Motor Speed Low Limit [RPM]		
Range:		Function:
		parameter 4-13 Motor Speed High Limit [RPM].
4-13 Motor Speed High Limit [RPM]		
Range:		Function:
Size related*	$\begin{gathered} \text { [0- } \\ 60000 \\ \text { RPM] } \end{gathered}$	Enter the maximum limit for motor speed. The motor speed high limit can be set to correspond to the manufacturer's maximum rated motor. The motor speed high limit must exceed the setting in parameter 4-11 Motor Speed Low Limit [RPM]. Only parameter 4-11 Motor Speed Low Limit [RPM] or 4-12 Motor Speed Low Limit [Hz] is displayed depending on other parameters in the Main Menu and depending on default settings dependant on global location.

NOTICE

Max. output frequency cannot exceed 10% of the inverter switching frequency (14-01 Switching Frequency).

NOTICE

Any changes in parameter 4-13 Motor Speed High Limit [RPM] reset the value in 4-53 Warning Speed High to the same value as set in parameter 4-13 Motor Speed High Limit [RPM].

5.2.5 5-** Digital In/Out

Parameter group for configuring the digital input and output.

5-01 Terminal 27 Mode		
Option:		Function:
		NOT/CE This parameter cannot be adjusted while the motor is running.
$[0]$	Input	Defines terminal 27 as a digital input.
$[1]$	Output	Defines terminal 27 as a digital output.

5.2.6 5-1* Digital Inputs

Parameters for configuring the input functions for the input terminals.
The digital inputs are used for selecting various functions in the frequency converter. All digital inputs can be set to the following functions:

How to programme the freque...
VLT AQUA Drive FC 202 Operation Instructions

Options [120] - [138] are related to the Cascade Controller functionality. For more information, see parameter group 25-** Cascade Controller.

Digital input function	Option	Terminal
No operation	[0]	All *term 32, 33, 29, 19
Reset	[1]	All
Coast inverse	[2]	All * term 27
Coast and reset inverse	[3]	All
DC-brake inverse	[5]	All
Stop inverse	[6]	All
External interlock	[7]	All
Start	[8]	All
Latched start	[9]	All
Reversing	[10]	All
Start reversing	[11]	All
Jog	[14]	All
Preset reference on	[15]	All
Preset ref bit 0	[16]	All
Preset ref bit 1	[17]	All
Preset ref bit 2	[18]	All
Freeze reference	[19]	All
Freeze output	[20]	All
Speed up	[21]	All
Speed down	[22]	All
Set-up select bit 0	[23]	All
Set-up select bit 1	[24]	All
Pulse input	[32]	term 29, 33
Ramp bit 0	[34]	All
Mains failure inverse	[36]	All
Ref source bit 0	[42]	All
Hand/Auto Start	[51]	All
Run Permissive	[52]	All
Hand start	[53]	All
Auto start	[54]	All
DigiPot Increase	[55]	All
DigiPot Decrease	[56]	All
DigiPot Clear	[57]	All
Counter A (up)	[60]	29,33
Counter A (down)	[61]	29, 33
Reset Counter A	[62]	All
Counter B (up)	[63]	29,33
Counter B (down)	[64]	29, 33
Reset Counter B	[65]	All
Sleep Mode	[66]	All
Reset Maintenance Word	[78]	All
PTC Card 1	[80]	All
Latched Pump Derag	[85]	All
Lead Pump Start	[120]	All
Lead Pump Alternation	[121]	All
Pump 1 Interlock	[130]	All
Pump 2 Interlock	[131]	All
Pump 3 Interlock	[132]	All

Table 5.7 Functions for Digital Inputs

All $=$ Terminals 18, 19, 27, 29, 32, X30/2, X30/3, X30/4. X30/ are the terminals on MCB 101.

How to programme the freque...
VLT AQUA Drive FC 202 Operation Instructions

Functions dedicated to only one digital input are stated in the associated parameter.

All digital inputs can be programmed to these functions:

[0]	No operation	No reaction to signals transmitted to terminal.
[1]	Reset	Resets frequency converter after a TRIP/ ALARM. Not all alarms can be reset.
[2]	Coast inverse	Leaves motor in free mode. Logic ' 0 ' \Rightarrow coasting stop. (Default Digital input 27): Coasting stop, inverted input (NC).
[3]	Coast and reset inverse	Reset and coasting stop Inverted input (NC). Leaves motor in free mode and resets the frequency converter. Logic ' 0 ' \Rightarrow coasting stop and reset.
[5]	DC-brake inverse	Inverted input for DC braking (NC). Stops motor by energizing it with a DC current for a certain time period. See 2-01 DC Brake Current to 2-03 DC Brake Cut In Speed [RPM]. The function is only active when the value in 2-02 DC Braking Time is different from 0 . Logic ' 0 ' $\Rightarrow D C$ braking. This selection is not possible when 1-10 Motor Construction is set to [1] PM, non salient SPM
[6]	Stop inverse	Stop Inverted function. Generates a stop function when the selected terminal goes from logical level ' 1 ' to ' 0 '. The stop is performed according to the selected ramp time (parameter 3-42 Ramp 1 Ramp Down Time and 3-52 Ramp 2 Ramp Down Time. NOTICE When the frequency converter is at the torque limit and has received a stop command, it may not stop by itself. To ensure that the frequency converter stops, configure a digital output to [27] Torque limit \& stop and connect this digital output to a digital input that is configured as coast.
[7]	External Interlock	Same function as Coasting stop, inverse, but External Interlock generates the alarm message 'external fault' on the display when the terminal which is programmed for Coast Inverse is logic ' 0 '. The alarm message will also be active via digital outputs and relay outputs, if programmed for External Interlock. The alarm can be reset using a digital input or the [Reset] key if the cause for the External Interlock has been removed. A delay can be programmed in 22-00 External Interlock Delay. After applying a signal to the input, the reaction described

		above will be delayed with the time set in 22-00 External Interlock Delay.			
[8]	Start	Select start value for a start/stop command. ' 1 ' = start, ${ }^{\prime} 0$ ' = stop. (Default Digital input 18)			
[9]	Latched start	Motor starts, if a pulse is applied for min. 2 ms. Motor stops when Stop inverse is activated			
[10]	Reversing	Changes direction of motor shaft rotation. Select Logic ' 1 ' to reverse. The reversing signal only changes the direction of rotation. It does not activate the start function. Select both directions in 4-10 Motor Speed Direction. (Default Digital input 19).			
[11]	Start reversing	Used for start/stop and for reversing on the same wire. Signals on start are not allowed at the same time.			
[14]	Jog	Used for activating jog speed. See 3-11 Jog Speed [Hz]. (Default Digital input 29)			
[15]	Preset reference on	Used for shifting between external reference and preset reference. It is assumed that [1] External/preset has been selected in parameter 3-04 Reference Function. Logic '0' = external reference active; logic '1' = one of the eight preset references is active.			
[16]	Preset ref bit 0	Enables a choice between one of the eight preset references according to Table 5.8.			
[17]	Preset ref bit 1	Enables a choice between one of the eight preset references according to Table 5.8.			
[18]	Preset ref bit2	Enables a choice between one of the eight preset references according to Table 5.8.			
		Preset ref. bit	2	1	0
		Preset ref. 0	0	0	0
		Preset ref. 1	0	0	1
		Preset ref. 2	0	1	0
		Preset ref. 3	0	1	1
		Preset ref. 4	1	0	0
		Preset ref. 5	1	0	1
		Preset ref. 6	1	1	0
		Preset ref. 7	1	1	1

Table 5.8 Preset Ref. Bit

Freezes actual reference. The frozen reference is now the point of enable/ condition for Speed up and Speed down to be used. If Speed up/down is used, the speed change always follows ramp 2 (3-51 Ramp 2 Ramp Up Time and 3-52 Ramp 2 Ramp Down Time) in the range 0 -3-03 Maximum Reference Maximum Reference.
[20] Freeze output

Freezes actual motor frequency (Hz). The
frozen motor frequency is now the point of

		enable/condition for Speed up and Speed down to be used. If Speed up/down is used, the speed change always follows ramp 2 (3-51 Ramp 2 Ramp Up Time and 3-52 Ramp 2 Ramp Down Time) in the range 0 parameter 1-23 Motor Frequency. NOTICE When Freeze output is active, the frequency converter cannot be stopped via a low 'start [13]' signal. Stop the frequency converter via a terminal programmed for [2] Coast inverse or [3] Coast and reset, inverse.
[21]	Speed up	For digital control of the up/down speed is desired (motor potentiometer). Activate this function by selecting either Freeze reference or Freeze output. When Speed up is activated for less than 400 msec . the resulting reference will be increased by 0.1%. If Speed up is activated for more than 400 msec . the resulting reference will ramp according to Ramp 1 in parameter 3-41 Ramp 1 Ramp Up Time.
[22]	Speed down	Same as [21] Speed up.
[23]	Set-up select bit 0	Selects one of the four set-ups. Set 0 -10 Active Set-up to Multi Set-up.
[24]	Set-up select bit 1	Same as [23] Set-up select bit 0 . (Default Digital input 32)
[32]	Pulse input	Select Pulse input when using a pulse sequence as either reference or feedback. Scaling is done in parameter group 5-5*.
[34]	Ramp bit 0	Select which ramp to use. Logic " 0 " will select ramp 1 while logic " 1 " will select ramp 2.
[36]	Mains failure inverse	Activates 14-10 Mains Failure. Mains failure inverse is active in the Logic " 0 " situation.
[42]	Ref source bit 0	An active input in bit 0 selects Al54 as the reference source (see parameter group 3-1* References, option [35] Digital input select). An inactive input selects Al53.
[51]	Hand/Auto Start	Selects Hand or Auto Start. High = Auto On only, Low = Hand on only.
[52]	Run Permissive	The input terminal, for which the Run permissive has been programmed must be logic "1" before a start command can be accepted. Run permissive has a logic 'AND' function related to the terminal which is programmed for [8] Start, [14] Jog or [20] Freeze Output, which means that in order to start running the motor, both conditions must be fulfilled. If Run Permissive is programmed on multiple terminals, Run permissive needs only be logic ' 1 ' on one of the terminals for the function to be carried out. The digital output signal for Run Request ([8] Start, [14] Jog or [20] Freeze

How to programme the freque...
VLT AQUA Drive FC 202 Operation Instructions

$[85]$	Latched Pump Derag	Starts deragging.

Options [120] - [138] are related to the Cascade Controller functionality. For more information, see parameter group 25-** Cascade Controller.

[120]	Lead Pump Start	Starts/Stops the Lead Pump (controlled by the frequency converter). A start requires that also a System Start signal has been applied e.g. to one of the digital inputs set for [8] Start!		
[121]	Lead Pump Alternation	Forces alternation of the lead pump in a Cascade Controller. Lead Pump Alternation, 25-50 Lead Pump Alternation must be set to either [2] At Command or [3] At Staging or At Command. 25-51 Alternation Event can be set to any of the four options.		
$\begin{array}{\|l\|} \hline[130 \\ - \\ 138] \end{array}$	Pump1 Interlock Pump9 Interlock	The function depends on the setting in 25-06 Number of Pumps. If set to [0] No, then Pump1 refers to the pump controlled by relay RELAY1 etc. If set to [1] Yes, Pump1 refers to the pump controlled by the frequency converter only (without any of the build in relays involved) and Pump2 to the pump controlled by the relay RELAY1. Variable speed pump (lead) cannot be interlocked in the basic Cascade Controller. See Table 5.9		
		Setting in parameter group 5-1*	Setting in 25-06 Number of Pumps	
			[0] No	[1] Yes
		[130] Pump1 Interlock	Controlled by RELAY1 (only if not lead pump)	Frequency Converter controlled (cannot be interlocked)
		[131] Pump2 Interlock	Controlled by RELAY2	Controlled by RELAY1
		[132] Pump3 Interlock	Controlled by RELAY3	Controlled by RELAY2
		[133] Pump4 Interlock	Controlled by RELAY4	Controlled by RELAY3
		[134] Pump5 Interlock	Controlled by RELAY5	Controlled by RELAY4
		[135] Pump6 Interlock	Controlled by RELAY6	Controlled by RELAY5
		[136] Pump7 Interlock	Controlled by RELAY7	Controlled by RELAY6
		[137] Pump8 Interlock	Controlled by RELAY8	Controlled by RELAY7
		[138] Pump9 Interlock	Controlled by RELAY9	Controlled by RELAY8

Table 5.9

5-13 Terminal 29 Digital Input

Option: Function:

$[0]$ *	No Operation	Same options and functions as parameter group 5-1* Digital Inputs.

5-14 Terminal 32 Digital Input

The parameter contains all options and functions listed in parameter group chapter 5.2.6 5-1* Digital Inputs except for option [32] Pulse input.

5-15 Terminal 33 Digital Input

The parameter contains all options and functions listed in parameter group chapter 5.2.6 5-1* Digital Inputs.

5-30 Terminal 27 Digital Output		
Option:		Function:
[0]	No operation	
[1]	Control Ready	
[2]	Drive ready	
[3]	Drive rdy/rem ctrl	
[4]	Stand-by / no warning	
[5]	Running	
[6]	Running / no warning	
[8]	Run on ref/no warn	
[9]	Alarm	
[10]	Alarm or warning	
[11]	At torque limit	
[12]	Out of current range	
[13]	Below current, low	
[14]	Above current, high	
[15]	Out of speed range	
[16]	Below speed, low	
[17]	Above speed, high	
[18]	Out of feedb. range	
[19]	Below feedback, low	
[20]	Above feedback, high	
[21]	Thermal warning	
[25]	Reverse	
[26]	Bus OK	
[27]	Torque limit \& stop	
[28]	Brake, no brake war	
[29]	Brake ready, no fault	
[30]	Brake fault (IGBT)	
[33]	Safe stop active	
[35]	External Interlock	
[40]	Out of ref range	
[41]	Below reference, low	
[42]	Above ref, high	
[45]	Bus ctrl.	
[46]	Bus ctrl, 1 if timeout	
[47]	Bus ctrl, 0 if timeout	
[55]	Pulse output	
[60]	Comparator 0	
[61]	Comparator 1	
[62]	Comparator 2	

5-30 Terminal 27 Digital Output			5-40 Function Relay		
Option:		Function:	Option:		Function:
[63]	Comparator 3				Select options to define the
[64]	Comparator 4				function of the relays.
[65]	Comparator 5				The selection of each mechanical
[70]	Logic rule 0				relay is realized in an array
[71]	Logic rule 1				pramet
[72]	Logic rule 2		[0]	No operation	
[73]	Logic rule 3		[1]	Control Ready	
[74]	Logic rule 4		[2]	Drive ready	
[75]	Logic rule 5		[3]	Drive rdy/rem ctrl	
[80]	SL digital output A		[4]	Stand-by / no warning	
[81]	SL digital output B		[5]	Running	
[82]	SL digital output C		[6]	Running / no warning	
[83]	SL digital output D		[8]	Run on ref/no warn	
[84]	SL digital output E		[9]	Alarm	
[85]	SL digital output F		[10]	Alarm or warning	
[90]	kWh counter pulse	Creates a pulse on the digital output every time when the frequency converter uses 1 kWh .	[11]	At torque limit	
			[12]	Out of current range	
			[13]	Below current, low	
[155]	Verifying Flow		[14]	Above current, high	
[160]	No alarm		[15]	Out of speed range	
[161]	Running reverse		[16]	Below speed, low	
[164]	Local ref active, not OFF		[17]	Above speed, high	
[165]	Local ref active		[18]	Out of feedb. range	
[166]	Remote ref active		[19]	Below feedback, low	
[167]	Start command activ		[20]	Above feedback, high	
[168]	Hand mode		[21]	Thermal warning	
[169]	Auto mode		[25]	Reverse	
[180]	Clock Fault		[26]	Bus OK	
[181]	Prev. Maintenance		[27]	Torque limit \& stop	
[182]	Deragging		[28]	Brake, no brake war	
[183]	Pre/Post Lube		[29]	Brake ready, no fault	
[188]	AHF Capacitor Connect		[30]	Brake fault (IGBT)	
[189]	External Fan Control		[33]	Safe stop active	
[190]	No-Flow		[35]	External Interlock	
[191]	Dry Pump		[36]	Control word bit 11	
[192]	End Of Curve		[37]	Control word bit 12	
[193]	Sleep Mode		[40]	Out of ref range	
[194]	Broken Belt		[41]	Below reference, low	
[195]	Bypass Valve Control		[42]	Above ref, high	
[198]	Drive Bypass		[45]	Bus ctrl.	
[199]	Pipe Filling		[46]	Bus ctrl, 1 if timeout	
[200]	Full capacity		[47]	Bus ctrl, 0 if timeout	
[201]	Pump 1 running		[60]	Comparator 0	
[202]	Pump 2 running		[61]	Comparator 1	
[203]	Pump 3 running		[62]	Comparator 2	
[204]	Pump 4 running		[63]	Comparator 3	
[205]	Pump 5 running		[64]	Comparator 4	
[206]	Pump 6 running		[65]	Comparator 5	
[207]	Pump 7 running		[70]	Logic rule 0	
[208]	Pump 8 running		[71]	Logic rule 1	
[209]	Pump 9 running		[72]	Logic rule 2	
			[73]	Logic rule 3	

5-40 Function Relay

Option:

Function:

[74]	Logic rule 4		Parameter group output.		
[75]	Logic rule 5				
[80]	SL digital output A		Range:		
[81]	SL digital output B				
[82]	SL digital output C		10 s*	$\begin{array}{\|c} \hline[1- \\ 99 \mathrm{~s}] \end{array}$	
[83]	SL digital output D				
[84]	SL digital output E				
[85]	SL digital output F				
[155]	Verifying Flow				
[160]	No alarm				
[161]	Running reverse				
[164]	Local ref active, not OFF				
[165]	Local ref active				
[166]	Remote ref active				
[167]	Start command activ				
[168]	Hand mode				
[169]	Auto mode				
[180]	Clock Fault				

5.2.7 6-** Analog In/Out

Parameter group for configuration of the analog input and output.

6-00 Live Zero Timeout Time

Range:		Function:
$10 \mathrm{~s}^{*}$	$[1-$ $99 \mathrm{~s}]$	Enter the Live Zero Time-out time period. Live Zero Time-out Time is active for analog inputs, i.e. terminal 53 or terminal 54, used as reference or feedback sources. If the reference signal value associated with the selected current input falls below 50\% of the value set in parameter 6-10 Terminal 53 Low Voltage, 6-12 Terminal 53 Low Current, parameter 6-20 Terminal 54 Low Voltage or 6-22 Terminal 54 Low Current for a time period longer than the time set in parameter 6-00 Live Zero Timeout Time, the function selected in parameter 6-01 Live Zero Timeout Function is activated.

How to programme the freque... VLT AQUA Drive FC 202 Operation Instructions

Illustration 5.18

6-24 Terminal 54 Low Ref./Feedb. Value		
Range:		Function:
0 *	$[-999999.999-$	Enter the analog input scaling value that corresponds to the low voltage/low current value set in parameter 6-20 Terminal 54 Low Voltage and 6-22 Terminal 54 Low Current.

6-25 Terminal 54 High Ref./Feedb. Value		
Range:		Function:
100 *-999999.999 -	Enter the analog input scaling value that corresponds to the high voltage/ high current value set in parameter 6-21 Terminal 54 High Voltage and 6-23 Terminal 54 High Current.	

6-50 Terminal 42 Output		
Option:		Function:
		Select the function of Terminal 42 as an analog current output. A motor current of 20 mA corresponds to $I_{\text {max }}$.
[0]	No operation	
[100]	Output freq. 0-100	0-100 Hz, (0-20 mA)
[101]	Reference Min-Max	Minimum reference - Maximum reference, (0-20 mA)
[102]	Feedback +-200\%	-200% to $+200 \%$ of $20-14$ Maximum Reference/Feedb., (0-20 mA)
[103]	Motor cur. 0-Imax	0 - Inverter Max. Current (16-37 Inv. Max. Current), (0-20 mA)
[104]	Torque 0-Tlim	0 - Torque limit (4-16 Torque Limit Motor Mode), (0-20 mA)
[105]	Torque 0-Tnom	0 - Motor rated torque, (0-20 mA)
[106]	Power 0-Pnom	0 - Motor rated power, (0-20 mA)
[107]	Speed 0-HighLim	0 - Speed High Limit (parameter 4-13 Motor Speed High Limit [RPM] and 4-14 Motor Speed High Limit [Hz]), (0-20 mA)
[108]	Torque +-160\%	
[109]	Out frq 0-Fmax	
[113]	Ext. Closed Loop 1	0-100\%, (0-20 mA)
[114]	Ext. Closed Loop 2	0-100\%, (0-20 mA)
[115]	Ext. Closed Loop 3	0-100\%, (0-20 mA)
[116]	Cascade Reference	
[130]	$\begin{aligned} & \text { Out frq 0-100 } \\ & 4-20 \mathrm{~mA} \end{aligned}$	$0-100 \mathrm{~Hz}$
[131]	Reference 4-20mA	Minimum Reference - Maximum Reference
[132]	Feedback 4-20mA	-200% to $+200 \%$ of 20-14 Maximum Reference/Feedb.

6-50 Terminal 42 Output

Option: Function:

[133]	Motor cur. $4-20 \mathrm{~mA}$	0 - Inverter Max. Current (16-37 Inv. Max. Current)
[134]	Torq.0-lim 4-20 mA	0 - Torque limit (4-16 Torque Limit Motor Mode)
[135]	Torq.0-nom $4-20 \mathrm{~mA}$	0 - Motor rated torque
[136]	Power 4-20mA	0 - Motor rated power
[137]	Speed 4-20mA	0 - Speed High Limit (4-13 and 4-14)
[138]	Torque 4-20mA	
[139]	Bus ctrl.	0-100\%, (0-20 mA)
[140]	Bus ctrl. 4-20 mA	0-100\%
[141]	Bus ctrl t.o.	0-100\%, (0-20 mA)
[142]	Bus ctrl t.o. $4-20 \mathrm{~mA}$	0-100\%
[143]	Ext. CL $14-20 \mathrm{~mA}$	0-100\%
[144]	Ext. CL $24-20 \mathrm{~mA}$	0-100\%
[145]	Ext. CL $34-20 \mathrm{~mA}$	0-100\%
[146]	Cascade Ref. $4-20 \mathrm{~mA}$	
[147]	Main act val $0-20 \mathrm{~mA}$	
[148]	Main act val $4-20 \mathrm{~mA}$	
[150]	Out frq 0-Fmax $4-20 \mathrm{~mA}$	
[254]	DC Link 0-20mA	
[255]	DC Link $4-20 \mathrm{~mA}$	

NOTICE

Values for setting the Minimum Reference is found in open loop parameter 3-02 Minimum Reference and for closed loop 20-13 Minimum Reference/Feedb. - values for maximum reference for open loop is found in 3-03 Maximum Reference and for closed loop 20-14 Maximum Reference/Feedb.

6-51 Terminal 42 Output Min Scale

Range: Function:

0 \%* $\quad[0-200$
Scale for the minimum output (0 or 4 mA) of $\%$] the analog signal at terminal 42 . Set the value to be the percentage of the full range of the variable selected in parameter 6-50 Terminal 42 Output.

6-52 Terminal 42 Output Max Scale		
Range:		Function:
$\begin{aligned} & 100 \\ & \%^{*} \end{aligned}$	$\begin{aligned} & {[0-} \\ & 200 \\ & \%] \end{aligned}$	Scale for the maximum output (20 mA) of the analog signal at terminal 42. Set the value to be the percentage of the full range of the variable selected in parameter 6-50 Terminal 42 Output. Illustration 5.19 It is possible to get a value lower than 20 mA at full scale by programming values $>100 \%$ by using a formula as follows:

20 mA / desired maximum current \times 100\%
i.e. $10 \mathrm{~mA}: \frac{20 \mathrm{~mA}}{10 \mathrm{~mA}} \times 100 \%=200 \%$

Example 1:

Variable value $=$ OUTPUT FREQUENCY, range $=0-100 \mathrm{~Hz}$ Range needed for output $=0-50 \mathrm{~Hz}$
Output signal 0 or 4 mA is needed at 0 Hz (0% of range) set parameter 6-51 Terminal 42 Output Min Scale to 0\% Output signal 20 mA is needed at 50 Hz (50% of range) -
set parameter 6-52 Terminal 42 Output Max Scale to 50\%

Illustration 5.20

Example 2:

Variable= FEEDBACK, range $=-200 \%$ to $+200 \%$
Range needed for output $=0-100 \%$
Output signal 0 or 4 mA is needed at 0% (50% of range) set parameter 6-51 Terminal 42 Output Min Scale to 50\% Output signal 20 mA is needed at 100% (75% of range) set parameter 6-52 Terminal 42 Output Max Scale to 75\%

Illustration 5.21

Example 3:

Variable value= REFERENCE, range= Min ref - Max ref Range needed for output= Min ref (0%) - Max ref (100\%), 0-10 mA
Output signal 0 or 4 mA is needed at Min ref - set parameter 6-51 Terminal 42 Output Min Scale to 0\% Output signal 10 mA is needed at Max ref (100% of range) - set parameter 6-52 Terminal 42 Output Max Scale to 200\% ($20 \mathrm{~mA} / 10 \mathrm{~mA} \times 100 \%=200 \%$).

This parameter group is used for configuring the closed loop PID Controller, that controls the output frequency of the frequency converter.

20-12 Reference/Feedback Unit		
Option: $[0]$ - $[1]$ $\%$ $[5]$ PPM $[10]$ $1 / \mathrm{min}$ $[11]$ RPM $[12]$ Pulse/s $[20]$ $1 / \mathrm{s}$		

How to programme the freque...

VLT AQUA Drive FC 202 Operation Instructions

20-12 Reference/Feedback Unit		
Option:		Function:
[21]	I/min	
[22]	1/h	
[23]	$\mathrm{m}^{3} / \mathrm{s}$	
[24]	$\mathrm{m}^{3} / \mathrm{min}$	
[25]	$\mathrm{m}^{3} / \mathrm{h}$	
[30]	kg/s	
[31]	kg/min	
[32]	kg/h	
[33]	$\mathrm{t} / \mathrm{min}$	
[34]	t/h	
[40]	m / s	
[41]	$\mathrm{m} / \mathrm{min}$	
[45]	m	
[60]	${ }^{\circ} \mathrm{C}$	
[70]	mbar	
[71]	bar	
[72]	Pa	
[73]	kPa	
[74]	m WG	
[75]	mm Hg	
[80]	kW	
[120]	GPM	
[121]	$\mathrm{gal} / \mathrm{s}$	
[122]	$\mathrm{gal} / \mathrm{min}$	
[123]	$\mathrm{gal} / \mathrm{h}$	
[124]	CFM	
[125]	$\mathrm{ft}^{3} / \mathrm{s}$	
[126]	$\mathrm{ft}^{3} / \mathrm{min}$	
[127]	ft / h	
[130]	lb / s	
[131]	$\mathrm{lb} / \mathrm{min}$	
[132]	lb / h	
[140]	ft / s	
[141]	$\mathrm{ft} / \mathrm{min}$	
[145]	ft	
[160]	${ }^{\circ} \mathrm{F}$	
[170]	psi	
[171]	$\mathrm{lb} / \mathrm{in}^{2}$	
[172]	in WG	
[173]	ft WG	
[174]	in Hg	
[180]	HP	This parameter determines the unit that is used for the setpoint reference and feedback that the PID Controller will use for controlling the output frequency of the frequency converter.

20-21 Setpoint 1

Range:

0	$[-999999.999-$ ProcessCtrIUnit* 999999.999 ProcessCtrIUnit]

Function:

Setpoint 1 is used in Closed Loop Mode to enter a setpoint reference that is used by the frequency

20-21 Setpoint 1	Function:	
Range:		converter's PID Controller. See the description of 20-20 Feedback Function. NOT/CE
	The setpoint reference entered here is added to any other references that are enabled (see parameter group 3-1* References).	

20-81 PID Normal/ Inverse Control		
Option:		Function:
[0]	Normal	The frequency converter's output frequency decreases when the feedback is greater than the setpoint reference. This is common for pressure- controlled supply fan and pump applications.
[1]	Inverse	The frequency converter's output frequency increases when the feedback is greater than the setpoint reference.

20-82 PID Start Speed [RPM]		
Range:	Function:	
Size related*	[0- par. 4-13 RPM]	When the frequency converter is first started, it initially ramps up to this output speed in Open Loop Mode, following the active Ramp Up Time. When the output speed programmed is reached, the frequency converter automatically switches to Closed Loop Mode and the PID Controller begins to function. This is useful in applications in which the driven load must first quickly accelerate to a minimum speed when it is started. NOT/CE
NOT/		
This parameter is only visible if		
O-02 Motor Speed Unit is set to [0]		
RPM.		

20-93 PID Proportional Gain		
Range:	Function:	
$2 *$	$[0-10]$	The proportional gain indicates the number of times the error between the set point and the feedback signal is to be applied.

If (Error x Gain) jumps with a value equal to what is set in 20-14 Maximum Reference/Feedb. the PID controller tries to change the output speed equal to what is set in parameter 4-13 Motor Speed High Limit [RPM]/4-14 Motor

How to programme the freque...
VLT AQUA Drive FC 202 Operation Instructions

Speed High Limit [Hz] but in practice of course limited by this setting.
The proportional band (error causing output to change from $0-100 \%$) can be calculated by means of the formula
$\left(\frac{1}{\text { Proportional Gain }}\right) \times($ Max Reference $)$
Always set the desired for 20-14 Maximum Reference/ Feedb. before setting the values for the PID controller in parameter group 20-9* PID Controller.

20-94 PID Integral Time		
Range:	Function:	
$8 \mathrm{~s}^{*}$	$\left[\begin{array}{l}0.01- \\ 10000 \mathrm{~s}]\end{array}\right.$	Over time, the integrator accumulates a contri- bution to the output from the PID controller as long as there is a deviation between the Reference/Setpoint and feedback signals. The contribution is proportional to the size of the deviation. This ensures that the deviation (error) approaches zero. Quick response on any deviation is obtained when the integral time is set to a low value. Setting it too low, however, may cause the control to become unstable. The value set, is the time needed for the integrator to add the same contribution as the proportional for a certain deviation. If the value is set to 10,000, the controller acts as a pure proportional controller with a P-band based on the value set in parameter 20-93 PID Proportional Gain. When no deviation is present, the output from the proportional controller is 0.

5.2.9 22-0* Miscellaneous

This group contains parameters used for monitoring water/ wastewater applications.

22-20 Low Power Auto Set-up

Start of auto set-up of power data for No-Flow Power tuning.

Option:		Function:
[0]	Off	
[1]	Enabled	When set for Enabled, an auto set up sequence is activated, automatically setting speed to approx. 50 and 85\% of rated motor speed (parameter 4-13 Motor Speed High Limit [RPM], 4-14 Motor Speed High Limit [Hz]). At those two speeds, the power consumption is automatically measured and stored. Before enabling Auto Set Up:

22-20 Low Power Auto Set-up

Start of auto set-up of power data for No-Flow Power tuning.
Option: Function:

1. Close valve(s) to create a no flow condition
2. The frequency converter must be set for Open Loop (parameter 1-00 Configuration Mode).
Note that it is important also to set 1-03 Torque Characteristics.

NOTICE

Auto Set-up must be done when the system has reached normal operating temperature!

NOTICE

It is important that the parameter 4-13 Motor Speed High Limit [RPM] or 4-14 Motor Speed High Limit [Hz] is set to the max. operational speed of the motor!
It is important to do the Auto Set-up before configuring the integrated PI Contoller as settings will be reset when changing from Closed to Open Loop in parameter 1-00 Configuration Mode.

NOTICE

Carry out the tuning with the same settings in 1-03 Torque Characteristics, as for operation after the tuning.

22-21 Low Power Detection		
Option:		Function:
$[0]$	Disabled	
$[1]$	Enabled	The Low Power Detection commissioning must be carried out to set the parameters in parameter group 22-3* No-Flow Power Tuning for proper operation.

22-22 Low Speed Detection			
Option:		Function:	
$[0]$	Disabled		
$[1]$	Enabled	Detects when the motor operates with a speed as set in parameter 4-11 Motor Speed Low Limit [RPM] or 4-12 Motor Speed Low Limit [Hz].	

22-23 No-Flow Function						
Common actions for Low Power Detection and Low Speed Detection (Individual selections not possible).						
Option:	Function:	$	$	[0]	Off	
:---	:---	:---				
[1]	Sleep Mode	The frequency converter enters Sleep Mode and stops when a No Flow condition is detected. See parameter group 22-4* Sleep Mode for programming options for Sleep Mode.				
[2]	Warning	The frequency converter continues to run, but activates a No-Flow Warning [W92]. A digital output or a serial communication bus can communicate a warning to other equipment.				
[3]	Alarm	The frequency converter stops running and activates a No-Flow Alarm [A 92]. A frequency converter digital output or a serial communi- cation bus can communicate an alarm to other equipment.				

NOTICE

Do not set 14-20 Reset Mode, to [13] Infinite auto reset, when parameter 22-23 No-Flow Function is set to [3] Alarm. Doing so causes the frequency converter to continuously cycle between running and stopping when a No Flow condition is detected.

NOTICE

If the frequency converter is equipped with a constant speed bypass with an automatic bypass function that starts the bypass if the frequency converter experiences a persistent alarm condition, be sure to disable the bypass's automatic bypass function, if [3] Alarm is selected as the No-Flow Function.

22-24 No-Flow Delay		
Range:		Function:
$10 \mathrm{~s}^{*}$	$[1-600 \mathrm{~s}]$	Set the time Low Power/Low Speed must stay detected to activate signal for actions. If detection disappears before run out of the timer, the timer is reset.

22-26 Dry Pump Function		
Select desired action for dry pump operation.		
Option:	Function:	
[0]	Off	
[1]	Warning	The frequency converter continues to run, but activates a Dry pump warning [W93]. A frequency converter digital output or a serial communication bus can communicate a warning to other equipment.
[2]	Alarm	The frequency converter stops running and activates a Dry pump alarm [A93]. A frequency converter digital output or a serial communi-

22-26 Dry Pump Function

Select desired action for dry pump operation.
Option: Function:

		cation bus can communicate an alarm to other equipment.
[3]	Manual Reset Alarm	The frequency converter stops running and activates a Dry pump alarm [A93]. A frequency converter digital output or a serial communi- cation bus can communicate an alarm to other equipment.

NOTICE

Low Power Detection must be Enabled
(parameter 22-21 Low Power Detection) and commis-
sioned (using either parameter group 22-3* No-flow
Power Tuning No Flow Power Tuning, or parameter 22-20 Low Power Auto Set-up) to use Dry Pump Detection.

NOTICE

Do not set 14-20 Reset Mode, to [13] Infinite auto reset, when parameter 22-26 Dry Pump Function is set to [2] Alarm. Doing so causes the frequency converter to continuously cycle between running and stopping when a Dry Pump condition is detected.

NOTICE

If the frequency converter is equipped with a constant speed bypass with an automatic bypass function that starts the bypass if the frequency converter experiences a persistent alarm condition, be sure to disable the bypass's automatic bypass function, if [2] Alarm or [3] Man. Reset Alarm is selected as the Dry Pump Function.

22-27	Dry Pump Delay	
Range:	Function:	
$10 \mathrm{~s}^{*}$	$[0-600$	Defines for how long the Dry Pump condition must be active before activating Warning or Alarm. The frequency converter waits for the No-Flow Delay time (parameter 22-24 No-Flow Delay) to expire before the timer for the Dry Pump Delay starts.

22-30 No-Flow Power		
Range:		Function:
$0 \mathrm{~kW} *$	$[0-0 \mathrm{~kW}]$	Read out of calculated No Flow power at actual speed. If power drops to the display value, the frequency converter considers the condition as a No Flow situation.

How to programme the freque...
VLT AQUA Drive FC 202 Operation Instructions

22-32 Low Speed [RPM]

Range:		Function:	
Size related*	$0-$ par. $22-36 ~ R P M] ~$	To be used if $0-02$ Motor Speed Unit has been set for RPM (parameter not visible if Hz selected). Set used speed for the 50% level. This function is used for storing values needed to tune No Flow Detection.	

22-33 Low Speed [Hz]

Range:		Function:
Size related*	$[0-$ par. $22-37 \mathrm{~Hz}]$	To be used if $0-02$ Motor Speed Unit has been set for Hz (parameter not visible if RPM selected). Set used speed for the 50% level. The function is used for storing values needed to tune No Flow Detection.

22-34 Low Speed Power [kW]		
Range:	Function:	
Size related*	[0- $5.50 \mathrm{~kW}]$	To be used if $0-03$ Regional Settings has been set for International (parameter not visible if North America selected). Set power consumption at 50\% speed level. This function is used for storing values needed to tune No Flow Detection.

22-35 Low Speed Power [HP]		
Range:	Function:	
Size related*	[0- $7.50 \mathrm{hp]}$	To be used if $0-03$ Regional Settings has been set for North America (parameter not visible if International selected). Set power consumption at 50\% speed level. This function is used for storing values needed to tune No Flow Detection.

22-36 High Speed [RPM]

Range:		Function:	
Size related*	$[0-$ par. $4-13 \mathrm{RPM}]$	To be used if $0-02$ Motor Speed Unit has been set for RPM (parameter not visible if Hz selected). Set used speed for the 85\% level. The function is used for storing values needed to tune No Flow Detection.	

22-37 High Speed [Hz]

Range:		Function:	
$\begin{array}{l}\text { Size } \\ \text { related* }\end{array}$	$\begin{array}{c}{[0-\mathrm{par} .} \\ 4-14 \mathrm{~Hz}]\end{array}$	$\begin{array}{l}\text { To be used if } 0-02 \text { Motor Speed Unit has } \\ \text { been set for Hz (parameter not visible if } \\ \text { RPM selected). }\end{array}$	
Set used speed for the 85\% level.			
The function is used for storing values			
needed to tune No Flow Detection.			

22-38 High Speed Power [kW]

Range:	Function:	
Size related*	$50-$ $5.50 \mathrm{~kW}]$	To be used if $0-03$ Regional Settings has been set for International (parameter not visible if North America selected). Set power consumption at 85\% speed level. This function is used for storing values needed to tune No Flow Detection.

22-39 High Speed Power [HP]

Range:		Function:	
Size related*	$[0-$ $7.50 \mathrm{hp}]$	To be used if $0-03$ Regional Settings has been set for North America (parameter not visible if International selected). Set power consumption at 85\% speed level. This function is used for storing values needed to tune No Flow Detection.	

22-40 Minimum Run Time

Range:		Function:
$60 \mathrm{~s}^{*}$	$[0-600 \mathrm{~s}]$	Set the desired minimum running time for the motor after a start command (digital input or Bus) before entering Sleep Mode.

22-41		
Manimum Sleep Time		
$30 s^{*}$	$[0-600 \mathrm{~s}]$	Sunction: Set the desired Minimum Time for staying in Sleep Mode. This overrides any wake up conditions.

22-42	Wake-up Speed [RPM]	
Range:	Function:	
Size related*	[0- par. $4-13$ RPM]	To be used if $0-02$ Motor Speed Unit has been set for RPM (parameter not visible if Hz selected). Only to be used if parameter 1-00 Configuration Mode is set for open loop and speed reference is applied by an external controller. Set the reference speed at which the Sleep Mode should be cancelled.

22-43 Wake-up Speed [Hz]		
Range:		Function:
Size related*	$\begin{aligned} & \text { [0- } \\ & \text { par. } \\ & 4-14 \\ & \mathrm{~Hz}] \end{aligned}$	To be used if 0-02 Motor Speed Unit, has been set for Hz (parameter not visible if RPM selected). Only to be used if parameter 1-00 Configuration Mode, is set for Open Loop and speed reference is applied by an external controller controlling the pressure. Set the reference speed at which the Sleep Mode should be cancelled.

22-44 Wake-up Ref./FB Difference		
Range:		Function:
10	$[0-$	Only to be used if parameter 1-00 Configuration $\%^{*}$
100%	Mode, is set for Closed Loop and the integrated PI controller is used for controlling the pressure. Set the pressure drop allowed in percentage of set point for the pressure (Pset) before cancelling the Sleep Mode.	
NOT/CE		
If used in application where the		
integrated PI controller is set for inverse		
control in 20-71 PID Performance, the		
value set in 22-44 Wake-up Ref./FB		
Difference will automatically be added.		

Range:		Function:
R $\%^{*}$	$[-100$ -100 $\%]$	Only to be used if parameter 1-00 Configuration Mode, is set for Closed Loop and the integrated PI controller is used. In systems with e.g. constant pressure control, it is advantageous to increase the system pressure before the motor is stopped. This extends the time in which the motor is stopped and help to avoid frequent start/stop. Set the desired over pressure/temperature in percentage of set point for the pressure (Pset)/ temperature before entering the Sleep Mode. If setting for 5\%, the boost pressure is Pset The negative values can be used for e.g. cooling tower control where a negative change is needed.

22-46 Maximum Boost Time		
Range:	Function:	
60	$[0-$	Only to be used if parameter 1-00 Configuration Mode is set for Closed Loop and the integrated PI controller is used for controlling the pressure. Set the maximum time for which boost mode is allowed. If the set time is exceeded, Sleep Mode is entered, not waiting for the set boost pressure to be reached.

22-50 End of Curve Function		
Option:		Function:
[0]	Off	End of Curve monitoring not active.
[1]	Warning	The frequency converter continues to run, but activates an End of Curve warning [W94]. A frequency converter digital output or a serial communication bus can communicate a warning to other equipment.
[2]	Alarm	The frequency converter stops running and activates an End of Curve alarm [A 94]. A frequency converter digital output or a serial communication bus can communicate an alarm to other equipment.
[3]	Manual Reset Alarm	The frequency converter stops running and activates an End of Curve alarm [A 94]. A frequency converter digital output or a serial communication bus can communicate an alarm to other equipment.

NOTICE

Automatic restart resets the alarm and restarts the system.

NOTICE

Do not set 14-20 Reset Mode, to [13] Infinite auto reset, when parameter 22-50 End of Curve Function is set to [2] Alarm. Doing so causes the frequency converter to continuously cycle between running and stopping when a End of Curve condition is detected.

NOTICE

If the frequency converter is equipped with a constant speed bypass with an automatic bypass function that starts the bypass if the frequency converter experiences a persistent alarm condition, be sure to disable the bypass's automatic bypass function, if [2] Alarm or [3] Man. Reset Alarm is selected as the End of Curve Function.

22-51 End of Curve Delay		
Range:		Function:
$10 \mathrm{~s}^{*}$	$[0-$	When an End of Curve condition is detected, a timer is activated. When the time set in this parameter expires, and the End of Curve condition has been steady in the entire period, the function set in parameter 22-50 End of Curve Function is activated. If the condition disappears before the timer expires, the timer is reset.

How to programme the freque...
VLT AQUA Drive FC 202 Operation Instructions

22-80 Flow Compensation

Option: Function:

[0]	Disabled	Set-Point compensation not active.
[1]	Enabled	Set-Point compensation is active. Enabling this parameter allows the Flow Compensated Setpoint operation.

22-81 Square-linear Curve Approximation		
Range:		Function:
$100 \%^{*}$	$[0-100 \%]$	Example 1: Adjustment of this parameter allows the shape of the control curve to be adjusted. $0=$ Linear $100 \%=$ Ideal shape (theoretical).

NOTICE

Not visible when running in cascade.

Illustration 5.23

22-82 Work Point Calculation		
	tion:	Function:
		istics at this point should be identified and the associated speed programmed. Closing the valves and adjusting the speed until $\mathrm{H}_{\text {min }}$ has been achieved allows the speed at the no flow point to be identified. Adjustment of parameter 22-81 Square-linear Curve Approximation then allows the shape of the control curve to be adjusted infinitely. Example 2: Speed at System Design Working Point is not known: Where the Speed at System Design Working Point is unknown, another reference point on the control curve needs to be determined by means of the data sheet. By looking at the curve for the rated speed and plotting the design pressure (Hdesign, Point C) the flow at that pressure Qrated can be determined. Similarly, by plotting the design flow (Qdesign, Point D). The pressure HDESIGN at that flow can be determined. Knowing these two points on the pump curve, along with $\mathrm{H}_{\mathrm{MIN}}$ as described above, allows the frequency converter to calculate the reference point B and thus to plot the control curve which will also include the System design Working Point A. Illustration 5.25
[0]	Disabled	Work Point Calculation not active. To be used if speed at design point is known.
[1]	Enabled	Work Point Calculation is active. Enabling this parameter allows the calculation of the unknown System Design Working Point at $50 / 60 \mathrm{~Hz}$ speed, from the input data set in parameter 22-83 Speed at No-Flow [RPM] parameter 22-84 Speed at No-Flow [Hz], parameter 22-87 Pressure at No-Flow Speed, parameter 22-88 Pressure at Rated Speed, 22-89 Flow at Design Point and parameter 22-90 Flow at Rated Speed.

How to programme the freque...
VLT AQUA Drive FC 202 Operation Instructions

22-83 Speed at No-Flow [RPM]

Range:		Function:
Size related*	[0- par. $22-85$ RPM]	Resolution 1 RPM. The speed of the motor at which flow Is zero and minimum pressure HMIN is achieved should be entered here in RPM. Alterna- tively, the speed in Hz can be entered in parameter 22-84 Speed at No-Flow [Hz]. If it has been decided to use RPM in 0-02 Motor Speed Unit then parameter 22-85 Speed at Design Point [RPM] should also be used. Closing the valves and reducing the speed until minimum pressure HMIN is achieved determines this value.

Range:	Function:	
Size related*	$$	Resolution 0.033 Hz . The speed of the motor at which flow has effectively stopped and minimum pressure $H_{\text {min }}$ is achieved should be entered here in Hz . Alternatively, the speed in RPM can be entered in parameter 22-83 Speed at No-Flow [RPM]. If it has been decided to use Hz in 0-02 Motor Speed Unit then parameter 22-86 Speed at Design Point [Hz] should also be used. Closing the valves and reducing the speed until minimum pressure $\mathrm{H}_{\text {min }}$ is achieved determines this value.

22-85 Speed at Design Point [RPM]

Range:		Function:
Size related*	$[0-$ 60000 RPM]	Resolution 1 RPM. Only visible when parameter 22-82 Work Point Calculation is set to Disable. The speed of the motor at which the System Design Working Point is achieved should be entered here in RPM. Alternatively, the speed in Hz can be entered in parameter 22-86 Speed at Design Point [Hz]. If it has been decided to use RPM in O-02 Motor Speed Unit then parameter 22-83 Speed at No-Flow [RPM] should also be used.

22-86		Speed at Design Point [Hz]
Range:	Function:	
Size related*	[0.0- par. $4-19$ $\mathrm{~Hz}]$	Resolution 0.033 Hz. Only visible when parameter 22-82 Work Point Calculation is set to Disable. The speed of the motor at which the System Design Working Point is achieved should be entered here in Hz. Alternatively, the speed in RPM can be entered in parameter 22-85 Speed at Design Point [RPM].

22-86 Speed at Design Point [Hz]		
Range:		Function:
		If it has been decided to use Hz in 0-02 Motor Speed Unit, then parameter 22-83 Speed at No-Flow [RPM] should also be used.
22-87 Pressure at No-Flow Speed		
Range:		Function:
0 *	[0 - par. 22-88]	Enter the pressure $\mathrm{H}_{\text {min }}$ corresponding to Speed at No Flow in Reference/Feedback Units.

Also see parameter 22-82 Work Point Calculation point D.

22-88 Pressure at Rated Speed

Range:		Function:
999999.999 *	[par. 22-87 - $999999.999]$	Enter the value corresponding to the Pressure at Rated Speed, in Reference/Feedback Units. This value can be defined using the pump datasheet.

Also see parameter 22-82 Work Point Calculation point C.

22-90 Flow at Rated Speed

Range:

Function:

Enter the value corresponding to Flow at Rated Speed. This value can be defined using the pump datasheet.

5.2.10 23-0* Timed Actions

Use Timed Actions for actions needing to be performed on a daily or weekly basis, e.g. different references for working hours/non-working hours. Up to 10 Timed Actions can be programmed in the frequency converter. The Timed Action number is selected from the list when entering parameter group $23-0^{*}$ from the LCP. Parameter $23-00$ ON Time parameter 23-04 Occurrence then refer to the selected Timed Action number. Each Timed Action is divided into an ON time and an OFF time, in which 2 different actions may be performed.

The clock control (parameter group 0-7* Clock Settings) of Timed Actions can be overridden from Timed Actions Auto (Clock Controlled) to Timed Actions Disabled, Constant OFF Actions or Constant ON Actions either in 23-08 Timed Actions Mode or with commands applied to the digital inputs ([68] Timed Actions Disabled, [69] Constant OFF Actions or [70] Constant ON Actions, in parameter group 5-1* Digital Inputs.

Display lines 2 and 3 in the LCP show the status for Timed Actions Mode (0-23 Display Line 2 Large and 0-24 Display Line 3 Large, setting [1643] Timed Actions Status).

NOTICE

A change in mode via the digital inputs can only take place if 23-08 Timed Actions Mode is set for [0] Times Actions Auto.
If commands are applied simultaneously to the digital inputs for Constant OFF and Constant ON, the Timed Actions mode will change to Timed Actions Auto and the two commands will be disregarded.
If 0-70 Date and Time is not set or the frequency converter is set to HAND or OFF mode (e.g. via the LCP), the Timed Actions mode will be change to Timed Actions Disabled.
The Timed Actions have a higher priority than the same actions/commands activated by the digital inputs or the Smart Logic Controller.

The actions programmed in Timed Actions are merged with corresponding actions from digital inputs, control word via bus and Smart Logic Controller, according to merge rules set up in parameter group 8-5* Digital/Bus.

NOTICE

The clock (parameter group 0-7*) must be correctly programmed for Timed Actions to function correctly.

NOTICE

When mounting an Analog I/O MCB 109 option card, a battery back up of the date and time is included.

NOTICE

The PC-based Configuration Tool MCT 10 Set-up Software comprises a special guide for easy programming of Timed Actions.

23-00 ON Time			
Array [10]			
Size	related*	[0-0] ${ }^{\text {c }}$ S	Sets the ON time for the Timed Action. NOTICE The frequency converter has no back up of the clock function and the set date/time will reset to default (2000-01-01 00:00) after a power down unless a Real Time Clock module with back up is installed. In 0-79 Clock Fault it is possible to program for a Warning in case clock has not been set properly, e.g. after a power down.
23-01 ON Action			
Arra [10]Option:			
Select the action during ON Time. See 13-52 SL Controller Action for descriptions of the options.			
${ }^{00}$ D ${ }^{\text {Disabled }}$			
[1]	1] No action		
[2]	Select set-up 1		
[3]	Select set-up 2		
[4]	Select set-up 3		
[5]	Select set-up 4		
[10]	Select preset ref 0		
[11]	Select preset ref 1		
[12]	Select preset ref 2		
[13]	Select preset ref 3		
[14]	Select preset ref 4		
[15]	Select preset ref 5		
[16]	Select preset ref 6		
[17]	Select preset ref 7		
[18]	Select ramp 1		
[19]	Select ramp 2		
[22]	Run		
[23]	Run reverse		
[24]	Stop		
[26]	DC Brake		
[27]	Coast		
[28]	Freeze output		
[29]	Start timer 0		
[30]	Start timer 1		
[31]	Start timer 2		
[32]	Set digital out A low		
[33]	Set digital out B low		
[34]	Set digital out C low		
[35]	Set digital out D low		
[36]	Set digital out E low		

23-01 ON Action

Arra [10]
Option: Function:

$[37]$	Set digital out F low	
$[38]$	Set digital out A high	
$[39]$	Set digital out B high	
$[40]$	Set digital out C high	
$[41]$	Set digital out D high	
$[42]$	Set digital out E high	
$[43]$	Set digital out F high	
$[60]$	Reset Counter A	
$[61]$	Reset Counter B	
$[70]$	Start Timer 3	
$[71]$	Start Timer 4	
$[72]$	Start Timer 5	
$[73]$	Start Timer 6	
$[74]$	Start Timer 7	
$[80]$	Sleep Mode	
$[81]$	Derag	

NOTICE

For choices [32] - [43], see also parameter group 5-3* Digital Outputs and 5-4* Relays.

| 23-02 OFF Time
 Array [10]
 Range: | |
| :--- | :--- | :--- | :--- |
| Size related* | Function: |

23-03 OFF Action

Array [10]

Option:		Function:
$[10]$	Select preset ref 0	
$[11]$	Select preset ref 1	
$[12]$	Select preset ref 2	
$[13]$	Select preset ref 3	
$[14]$	Select preset ref 4	
$[15]$	Select preset ref 5	
$[16]$	Select preset ref 6	
$[17]$	Select preset ref 7	
$[18]$	Select ramp 1	
$[19]$	Select ramp 2	
$[22]$	Run	
$[23]$	Run reverse	
$[24]$	Stop	
$[26]$	DC Brake	
$[27]$	Coast	
$[28]$	Freeze output	
$[29]$	Start timer 0	
$[30]$	Start timer 1	
$[31]$	Start timer 2	
$[32]$	Set digital out A low	
$[33]$	Set digital out B low	
$[34]$	Set digital out C low	
$[35]$	Set digital out D low	
$[36]$	Set digital out E low	
$[37]$	Set digital out F low	
$[38]$	Set digital out A high	
$[39]$	Set digital out B high	
$[40]$	Set digital out C high	
$[41]$	Set digital out D high	
$[42]$	Set digital out E high	
$[43]$	Set digital out F high	
$[60]$	Reset Counter A	
$[61]$	Reset Counter B	
$[70]$	Start Timer 3	
$[71]$	Start Timer 4	
$[72]$	Start Timer 5	
$[73]$	Start Timer 6	
$[74]$	Start Timer 7	
$[80]$	Sleep Mode	
$[81]$	Derag	

How to programme the freque... VLT AQUA Drive FC 202 Operation Instructions

| $\begin{array}{l}\text { Array [10] } \\ \text { Option: }\end{array}$
 $\quad \begin{array}{l}\text { Function: }\end{array}$ | |
| :--- | :--- | :--- |
| Select which day(s) the Timed Action | |
| applies to. Specify working/non-working | |
| days in 0-81 Working Days, 0-82 Additional | |
| Working Days and 0-83 Additional Non- | |
| Working Days. | |$]$

5.2.11 29-** Water Application FunctionsWater Application Functions

The group contains parameters used for monitoring water/ wastewater applications.

29-00 Pipe Fill Enable

Option: Function:

$[0]$	Disabled	Select Enabled to fill pipes at a user specified rate.
$[1]$	Enabled	Select Enabled to fill pipes with a user specified rate.

29-01		Pipe Fill Speed [RPM]
Range:	Function:	
Size related*	[par. $4-11-$ par. 4-13 RPM]	Set the filling speed for filling horizontal pipe systems. The speed can be selected in Hz or RPM depending on the choices made in parameter 4-11 Motor Speed Low Limit [RPM]//parameter 4-13 Motor Speed High Limit [RPM] or in 4-12 Motor Speed Low Limit [Hz]/4-14 Motor Speed High Limit [Hz].

29-02		Pipe Fill Speed [Hz]
Range:		Function:
Size related*	[par. $4-12-$ par. 4-14 Hz]	Set the filling speed for filling horizontal pipe systems. The speed can be selected in Hz or RPM depending on the choices made in parameter 4-11 Motor Speed Low Limit [RPM]/parameter 4-13 Motor Speed High Limit [RPM] or in 4-12 Motor Speed Low Limit [Hz]/4-14 Motor Speed High Limit [Hz].

29-03 Pipe Fill Time		
Range:	Function:	
$0 \mathrm{~s}^{*}$	$[0-3600 \mathrm{~s}]$	Set the specified time for pipe filling of horizontal pipe systems.

29-04 Pipe Fill Rate

Range:

Function:

$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { 0.001 } \\ \text { ProcessCtrIUnit* }\end{array} & \begin{array}{l}\text { [0.001-} \\ 999999.999 \\ \text { ProcessCtrIUnit] }\end{array} & \begin{array}{l}\text { Specifies the filling rate in } \\ \text { units/second using the PI } \\ \text { controller. Filling rate units } \\ \text { are feedback units/second. } \\ \text { This function is used for }\end{array} \\ \text { filling-up vertical pipe } \\ \text { systems but will be active } \\ \text { when the filling-time has } \\ \text { expired, no matter what, } \\ \text { until the pipe fill-set-point } \\ \text { set in 29-05 Filled Setpoint } \\ \text { is reached. }\end{array}\right]$

29-05 Filled Setpoint

Range:

| Range. | [-999999.999 -
 ProcessCtrlUnit** | Specifies the Filled Set-
 999999.999
 ProcessCtrlUnit] |
| :--- | :--- | :--- | | point at which the Pipe |
| :--- |
| Fill Function will be |
| disabled and the PID |
| controller will take control. |
| This function can be used |
| both for horizontal and |
| vertical pipe systems. |

5.3 Parameter Menu Structure

How to programme the freque...
VLT AQUA Drive FC 202 Operation Instructions

22-8*	Flow Compensation
22-80	Flow Compensation
22-81	Square-linear Curve Approximation
22-82	Work Point Calculation
22-83	Speed at No-Flow [RPM]
22-84	Speed at No-Flow [Hz]
22-85	Speed at Design Point [RPM]
22-86	Speed at Design Point [Hz]
22-87	Pressure at No-Flow Speed
22-88	Pressure at Rated Speed
22-89	Flow at Design Point
22-90	Flow at Rated Speed
23-**	Time-based Functions
23-0*	Timed Actions
23-00	ON Time
23-01	ON Action
23-02	OFF Time
23-03	OFF Action
23-04	Occurrence
23-1*	Maintenance
23-10	Maintenance Item
23-11	Maintenance Action
23-12	Maintenance Time Base
23-13	Maintenance Time Interval
23-14	Maintenance Date and Time
23-1*	Maintenance Reset
23-15	Reset Maintenance Word
23-16	Maintenance Text
23-5*	Energy Log
23-50	Energy Log Resolution
23-51	Period Start
23-53	Energy Log
23-54	Reset Energy Log
23-6*	Trending
23-60	Trend Variable
23-61	Continuous Bin Data
23-62	Timed Bin Data
23-63	Timed Period Start
23-64	Timed Period Stop
23-65	Minimum Bin Value
23-66	Reset Continuous Bin Data
23-67	Reset Timed Bin Data
23-8*	Payback Counter
23-80	Power Reference Factor
23-81	Energy Cost
23-82	Investment
23-83	Energy Savings
23-84	Cost Savings
24-**	Appl. Functions 2
24-1*	Drive Bypass
24-10	Drive Bypass Function
24-11	Drive Bypass Delay Time
25-**	Cascade Controller
25-0*	System Settings
25-00	Cascade Controller
25-02	Motor Start
25-04	Pump Cycling
25-05	Fixed Lead Pump
25-06	Number of Pumps

21-51 Ext. 3 Minimum Reference

How to programme the freque...

29-29	High Speed [Hz]
29-30	High Speed Power [kW]
29-31	High Speed Power [HP]
29-32	Derag On Ref Bandwidth
29-33	Power Derag Limit
29-34	Consecutive Derag Interval
30-**	Special Features
30-8*	Compatibility (I)
30-81	Brake Resistor (ohm)
31-**	Bypass Option
31-00	Bypass Mode
31-01	Bypass Start Time Delay
31-02	Bypass Trip Time Delay
31-03	Test Mode Activation
31-10	Bypass Status Word
31-11	Bypass Running Hours
31-19	Remote Bypass Activation
35-**	Sensor Input Option
35-0*	Temp. Input Mode
35-00	Term. X48/4 Temperature Unit
35-01	Term. X48/4 Input Type
35-02	Term. X48/7 Temperature Unit
35-03	Term. X48/7 Input Type
35-04	Term. X48/10 Temperature Unit
35-05	Term. X48/10 Input Type
35-06	Temperature Sensor Alarm Function
35-1*	Temp. Input X48/4
35-14	Term. X48/4 Filter Time Constant
35-15	Term. X48/4 Temp. Monitor
35-16	Term. X48/4 Low Temp. Limit
35-17	Term. X48/4 High Temp. Limit
35-2*	Temp. Input X48/7
35-24	Term. X48/7 Filter Time Constant
35-25	Term. X48/7 Temp. Monitor
35-26	Term. X48/7 Low Temp. Limit
35-27	Term. X48/7 High Temp. Limit
35-3*	Temp. Input X48/10
35-34	Term. X48/10 Filter Time Constant
35-35	Term. X48/10 Temp. Monitor
35-36	Term. X48/10 Low Temp. Limit
35-37	Term. X48/10 High Temp. Limit
35-4*	Analog Input X48/2
35-42	Term. X48/2 Low Current
35-43	Term. X48/2 High Current
35-44	Term. X48/2 Low Ref./Feedb. Value
35-45	Term. X48/2 High Ref./Feedb. Value
35-46	Term. X48/2 Filter Time Constant
35-47	Term. X48/2 Live Zero

Pipe Fill Enable
ipe Fill Speed $[R P M]$
Pipe Fill Speed $[\mathrm{RPM}]$

Filled Setow Disable Timer
Deragging Function

Derag Speed [Hz
Derag Power Tuning

Term. X42/3 Filter Time Constant
Term. X42/3 Live Zero

Analog ind $\mathrm{T} 42 / 5$ Low Voltage
Terminal $\mathrm{X} 42 / 5$ High Voltage Terminal X42/5 High Voltage Term. X42/5 Low Ref./Feedb. Value Term. X42/5 Filter Time
Term. X42/5 Live Zero Analog Out X42/7 Terminal X42/7 Output Terminal X42/7 Min. Scale
Terminal X42/7 Max. Scale Terminal X42/7 Bus Control
Terminal X42/7 Timeout Preset Analog Out X42/9 Terminal X42/9 Output
Terminal X42/9 Min. Scale Terminal X42/9 Max. Scale
Terminal X42/9 Bus Control Terminal X42/9 Bus Control
Terminal X42/9 Timeout Preset Terminal X42/11 Output Terminal X42/11 Min. Scale
Terminal X42/11 Max. Scale Terminal X42/11 Max. Scale 26-64 Terminal X42/11 Timeout Preset
 Control \& Sta
Pump Status
Manual Pump

Manual Pump Control
Current Runtime Hours
Pump Total Lifetime Hours Pump Total Lifetime Hours Cascade Controller Cascade Controller
Number Of Drives
Number Of Pumps Pump Capacity Runtime Balancing
Motor Starters

Spin Time for Unused Pumps
Reset Current Runtime Hours
Bandwidth Settings
Override Limit
Fixed Speed Only Operating Range Staging Delay Override Hold Time Min Speed Destage Delay
Staging Speed Auto Tune Staging Speeds $\sum_{0} \sum_{0} \sum_{0}$ $\stackrel{\sum}{N}{ }^{N}$ \sum_{0}^{∞} N g Settings Staging
D Delay

Bandwidth Settings
Staging Bandwidth
Override Bandwidth
Fixed Speed Bandwidth
SBW Staging Delay SBW Staging Delay
SBW Destaging Delay OBW Time Destage At No-Flow
Stage Function tage Function Destage Function Staging Settings Ramp Down Delay Staging Threshold Destaging Threshold Staging Speed [RPM] Staging Speed $[\mathrm{Hz}]$
Destaging Speed [RPM] Destaging speed [RPM]
Destaging Speed $[\mathrm{Hz}]$ Alternation Settings Alternation Event Alternation Time Interval Alternation Timer Value
Alternation Predefined Time Alternate if Load < 50\%
Stion Rn Next Pump Delay Run on Mains Delay Cascade Status n
0
0
0
0

0 을
$\frac{3}{3}$
0
0
0
0
0 Pump ON Time

Terminal X42/1 Mode
Terminal X42/3 Mode
Terminal X42/5 Mode
Analog Input X42/1
Terminal X42/1 Low Voltage
Terminal X42/1 High Voltage
Term. X42/1 Low Ref./Feedb. Value
Term. X42/1 High Ref./Feedb. Value
Term. X42/1 High Ref./Feedb. Value
Term. X42/1 Filter Time Constant Term. X42/1 Live Zero
Analog Input X42/3 Terminal X42/3 Low Voltage
Terminal $\mathrm{X} 42 / 3$ High Voltage Terminal X42/3 High Voltage
Term. X42/3 Low Ref./Feedb.

*

General Specifications VLT AQUA Drive FC 202 Operation Instructions

6 General Specifications

Mains supply (L1, L2, L3)
Supply voltage
Supply voltage
Mains voltage low/mains drop-out:
During low mains voltage or a mains drop-out, the FC continues until the intermediate circuit voltage drops below the minimum
stop level, which corresponds typically to 15\% below the FC's lowest rated supply voltage. Power-up and full torque cannot be
expected at mains voltage lower than 10\% below the FC's lowest rated supply voltage.
Supply frequency
Max. imbalance temporary between mains phases
True Power Factor (λ)
Displacement Power Factor (cos φ) near unity
Switching on input supply L1, L2, L3 (power-ups)
Environment according to EN60664-1

The unit is suitable for use on a circuit capable of delivering not more than 100.000 RMS symmetrical Amperes, 480/690 V maximum.
Motor output (U, V, W)
Output voltage
Output frequency
Switching on output
Ramp times

* Voltage and power dependent

Torque characteristics
Starting torque (Constant torque) maximum 110% for 1 min.*
Starting torque maximum 135% up to $0.5 \mathrm{~s}^{*}$

Overload torque (Constant torque) \quad maximum 110% for 1 min.*
*Percentage relates to the frequency converter's nominal torque.
Cable lengths and cross sections
Max. motor cable length, screened/armoured 150 m
Max. motor cable length, unscreened/unarmoured 300 m
Max. cross section to motor, mains, load sharing and brake *
Maximum cross section to control terminals, rigid wire
Maximum cross section to control terminals, flexible cable $\quad 1 \mathrm{~mm}^{2} / 18$ AWG
Maximum cross section to control terminals, cable with enclosed core $0.5 \mathrm{~mm}^{2} / 20$ AWG
Minimum cross section to control terminals $0.25 \mathrm{~mm}^{2}$

* See, and for more information!

Digital inputs
Programmable digital inputs
Terminal number
Logic
Voltage level
Voltage level, logic'0' PNP
Voltage level, logic'1' PNP
Voltage level, logic '0' NPN
Voltage level, logic '1' NPN
Maximum voltage on input
Input resistance, R_{i}

All digital inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

General Specifications
VLT AQUA Drive FC 202 Operation Instructions

1) Terminals 27 and 29 can also be programmed as output.

Analog inputs
Number of analog inputs
Terminal number
Modes
Mode select
Voltage mode
Voltage level
Input resistance, R_{i}
Max. voltage
Current mode
Current level
Input resistance, R_{i}
Max. current
Resolution for analog inputs
Accuracy of analog inputs
Bandwidth

The analog inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Illustration 6.1 PELV Isolation of Analog Inputs

Pulse inputs

Programmable pulse inputs
Terminal number pulse
Max. frequency at terminal, 29, 33
Max. frequency at terminal, 29,33
Min. frequency at terminal 29,33
Voltage level
Maximum voltage on input
Input resistance, R_{i}
Pulse input accuracy ($0.1-1 \mathrm{kHz}$)
Analog output
Number of programmable analog outputs
Terminal number
Current range at analog output
Max. resistor load to common at analog output
Accuracy on analog output
Resolution on analog output

The analog output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Control card, RS-485 serial communication
Terminal number
68 (P,TX+, RX+), 69 (N,TX-, RX-)
Terminal number 61
Common for terminals 68 and 69
The RS-485 serial communication circuit is functionally seated from other central circuits and galvanically isolated from the supply voltage (PELV).

Digital output
Programmable digital/pulse outputs
Terminal number
Voltage level at digital/frequency output
Max. output current (sink or source)
Max. load at frequency output
Max. capacitive load at frequency output
Minimum output frequency at frequency output
Maximum output frequency at frequency output
Accuracy of frequency output
Resolution of frequency outputs

1) Terminal 27 and 29 can also be programmed as input.

The digital output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Control card, 24 V DC output
Terminal number 12,13
Max. load 200 mA

The 24 V DC supply is galvanically isolated from the supply voltage (PELV), but has the same potential as the analog and digital
inputs and outputs.

Relay outputs

Programmable relay outputs 2
Relay 01 Terminal number 1-3 (break), 1-2 (make)
Max. terminal load (AC-1) ${ }^{1)}$ on 1-3 (NC), 1-2 (NO) (Resistive load) 240 V AC, 2 A
Max. terminal load (AC-15) ${ }^{1}$ (Inductive load @ $\cos \varphi$ 0.4) 240 V AC, 0.2 A
Max. terminal load (DC-1)1) on 1-2 (NO), 1-3 (NC) (Resistive load) 60 V DC, 1 A
Max. terminal load (DC-13)1) (Inductive load) 24 V DC, 0.1 A
Relay 02 Terminal number 4-6 (break), 4-5 (make)
Max. terminal load (AC (AC-1) ${ }^{1)}$ on 4-5 (NO) (Resistive load) ${ }^{2 / 3)}$ 400 V AC, 2 A
Max. terminal load (AC-15) $)^{1)}$ on 4-5 (NO) (Inductive load @ $\cos \varphi$ 0.4) $240 \mathrm{~V} \mathrm{AC}, 0.2 \mathrm{~A}$
Max. terminal load (DC-1)1) on 4-5 (NO) (Resistive load) 80 V DC, 2 A
Max. terminal load (DC-13) ${ }^{11}$ on 4-5 (NO) (Inductive load) 24 V DC, 0.1 A
Max. terminal load (AC-1) ${ }^{1)}$ on 4-6 (NC) (Resistive load) 240 V AC, 2 A
Max. terminal load ($\mathrm{AC}-15)^{11}$ on 4-6 (NC) (Inductive load @ $\cos \varphi$ 0.4) 240 V AC, 0.2 A
Max. terminal load (DC-1) ${ }^{1}$ on 4-6 (NC) (Resistive load) 50 V DC, 2 A
Max. terminal load (DC-13) ${ }^{1}$ on 4-6 (NC) (Inductive load) 24 V DC, 0.1 A
Min. terminal load on 1-3 (NC), 1-2 (NO), 4-6 (NC), 4-5 (NO) 24 V DC $10 \mathrm{~mA}, 24 \mathrm{~V}$ AC 20 mA
Environment according to EN 60664-1overvoltage category III/pollution degree 2

1) IEC 60947 parts 4 and 5
The relay contacts are galvanically isolated from the rest of the circuit by reinforced isolation (PELV).
2) Overvoltage Category II
3) UL applications 300 V AC 2 A
Control card, 10 V DC output
Output voltage $10.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
25 mA
The 10 V DC supply is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

ACAUTION

Connection to PC is carried out via a standard host/device USB cable.
The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
The USB connection is not galvanically isolated from protection earth. Use only isolated laptop/PC as connection to the USB connector on the frequency converter or an isolated USB cable/converter.

Protection and Features

- Electronic thermal motor protection against overload.
- Temperature monitoring of the heat sink ensures that the frequency converter trips if the temperature reaches a predefined level. An overload temperature cannot be reset until the temperature of the heat sink is below the values stated in the tables on the following pages (Guideline - these temperatures may vary for different power sizes, frame sizes, enclosure ratings etc.).
- The frequency converter is protected against short-circuits on motor terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$.
- If a mains phase is missing, the frequency converter trips or issues a warning (depending on the load).
- Monitoring of the intermediate circuit voltage ensures that the frequency converter trips if the intermediate circuit voltage is too low or too high.
- The frequency converter is protected against earth faults on motor terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$.

General Specifications VLT AQUA Drive FC 202 Operation Instructions

Mains Supply 3x380-480 V AC					
	P110	P132	P160	P200	P250
Typical Shaft output at 400 V [kW]	110	132	160	200	250
Typical Shaft output at 460 V [hp]	150	200	250	300	350
Enclosure IP21	D1	D1	D2	D2	D2
Enclosure IP54	D1	D1	D2	D2	D2
Enclosure IP00	D3	D3	D4	D4	D4
Output current					
Continuous (at 400 V) [A]	212	260	315	395	480
Intermittent (60 s overload) (at 400 V) [A]	233	286	347	435	528
Continuous (at 460/480 V) [A]	190	240	302	361	443
Intermittent (60 s overload) (at 460/480 V) [A]	209	264	332	397	487
Continuous KVA (at 400 V) [KVA]	147	180	218	274	333
Continuous KVA (at 460 V) [KVA]	151	191	241	288	353
Max. input current					
Continuous (at 400 V) [A]	204	251	304	381	463
Continuous (at 460/480 V) [A]	183	231	291	348	427
Max. cable size, mains motor, brake and load share [mm ${ }^{2}\left(A W G^{2}\right)$)	$\begin{gathered} 2 \times 70 \\ (2 \times 2 / 0) \end{gathered}$	$\begin{gathered} 2 \times 70 \\ (2 \times 2 / 0) \end{gathered}$	$\begin{gathered} 2 \times 150 \\ (2 \times 300 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 2 \times 150 \\ (2 \times 300 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 2 \times 150 \\ (2 \times 300 \mathrm{mcm}) \end{gathered}$
Max. external pre-fuses [A] ${ }^{1}$	300	350	400	500	630
Estimated power loss at rated max. load [W] 4), 400 V	3234	3782	4213	5119	5893
Estimated power loss at rated max. load [W] 4), $460 \text { V }$	2947	3665	4063	4652	5634
Weight, enclosure IP21, IP54 [kg]	96	104	125	136	151
Weight, enclosure IP00 [kg]	82	91	112	123	138
Efficiency ${ }^{4}$	0.98				
Output frequency	$0-800 \mathrm{~Hz}$				
Heat sink overtemp. trip	$90^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$
Power card ambient trip	$60^{\circ} \mathrm{C}$				

Table 6.1

General Specifications
VLT AQUA Drive FC 202 Operation Instructions

Mains Supply 3x380-480 V AC				
	P315	P355	P400	P450
Typical Shaft output at 400 V [kW]	315	355	400	450
Typical Shaft output at 460 V [HP]	450	500	600	600
Enclosure IP21	E1	E1	E1	E1
EnclosurelP54	E1	E1	E1	E1
Enclosure IP00	E2	E2	E2	E2
Output current				
Continuous (at 400 V) [A]	600	658	745	800
Intermittent (60 sec overload) (at 400 V) [A]	660	724	820	880
Continuous (at 460/480 V) [A]	540	590	678	730
Intermittent (60 sec overload) (at 460/480 V) [A]	594	649	746	803
Continuous KVA (at 400 V) [KVA]	416	456	516	554
Continuous KVA (at 460 V) [KVA]	430	470	540	582
Max. input current				
Continuous (at 400 V) [A]	590	647	733	787
Continuous (at 460/480 V) [A]	531	580	667	718
Max. cable size, mains, motor and load share [mm ${ }^{2}\left(\mathrm{AWG}^{2}\right)$)]	$\begin{gathered} 4 \times 240 \\ (4 \times 500 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 4 \times 240 \\ (4 \times 500 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 4 \times 240 \\ (4 \times 500 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 4 \times 240 \\ (4 \times 500 \mathrm{mcm}) \end{gathered}$
Max. cable size, brake [mm² (AWG ${ }^{2}$)	$\begin{gathered} 2 \times 185 \\ (2 \times 350 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 2 \times 185 \\ (2 \times 350 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 2 \times 185 \\ (2 \times 350 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 2 \times 185 \\ (2 \times 350 \mathrm{mcm}) \end{gathered}$
Max. external pre-fuses [A] ${ }^{1}$	700	900	900	900
Estimated power loss at rated max. load [W] 4), 400 V	6790	7701	8879	9670
Estimated power loss at rated max. load [W] 4), 460 V	6082	6953	8089	8803
Weight, enclosure IP21, IP 54 [kg]	263	270	272	313
Weight, enclosure IP00 [kg]	221	234	236	277
Efficiency ${ }^{4}$	0.98			
Output frequency	0-600 Hz			
Heat sink overtemp. trip	$110^{\circ} \mathrm{C}$			
Power card ambient trip	$68{ }^{\circ} \mathrm{C}$			

Table 6.2

General Specifications
VLT AQUA Drive FC 202 Operation Instructions

Mains Supply 3x380-480 V AC						
	P500	P560	P630	P710	P800	P1M0
Typical Shaft output at 400 V [kW]	500	560	630	710	800	1000
Typical Shaft output at 460 V [HP]	650	750	900	1000	1200	1350
Enclosure IP21, 54 without/ with options cabinet	F1/F3	F1/F3	F1/F3	F1/F3	F2/F4	F2/F4
Output current						
Continuous $\text { (at } 400 \mathrm{~V} \text {) [A] }$	880	990	1120	1260	1460	1720
Intermittent (60 sec overload) (at 400 V) [A]	968	1089	1232	1386	1606	1892
Continuous (at 460/480 V) [A]	780	890	1050	1160	1380	1530
Intermittent (60 sec overload) (at 460/480 V) [A]	858	979	1155	1276	1518	1683
Continuous KVA (at 400 V) [KVA]	610	686	776	873	1012	1192
Continuous KVA (at 460 V) [KVA]	621	709	837	924	1100	1219

Max. input current

Continuous (at 400 V) [A]	857	964	1090	1227	1422	1675
Continuous (at 460/480 V) [A]	759	867	1022	1129	1344	1490
Max. cable size,motor [mm² $\left(\mathrm{AWG}^{2}\right)$]	$\begin{gathered} 8 \times 150 \\ (8 \times 300 \mathrm{mcm}) \end{gathered}$				$\begin{gathered} 12 \times 150 \\ (12 \times 300 \mathrm{mcm}) \end{gathered}$	
Max. cable size,mains F1/F2 [mm ${ }^{2}$ $\left(\mathrm{AWG}^{2}\right)$]	$\begin{gathered} 8 \times 240 \\ (8 \times 500 \mathrm{mcm}) \end{gathered}$					
Max. cable size,mains F3/F4 [mm ${ }^{2}$ $\left(\mathrm{AWG}^{2}\right)$]	$\begin{gathered} 8 \times 456 \\ (8 \times 900 \mathrm{mcm}) \end{gathered}$					
Max. cable size, loadsharing [mm² $\left(\mathrm{AWG}^{2}\right)$]	$\begin{gathered} 4 \times 120 \\ (4 \times 250 \mathrm{mcm}) \end{gathered}$					
Max. cable size, brake [mm² (AWG ${ }^{2}$)	$\begin{gathered} 4 \times 185 \\ (4 \times 350 \mathrm{mcm}) \end{gathered}$				$\begin{gathered} 6 \times 185 \\ (6 \times 350 \mathrm{mcm}) \\ \hline \end{gathered}$	
Max. external pre-fuses [A] ${ }^{1}$	1600		2000		2500	
Est. power loss at rated max. load [W] ${ }^{4)}$, 400 V, F1 \& F2	10647	12338	13201	15436	18084	20358
Est. power loss at rated max. load [W] ${ }^{4)}, 460 \mathrm{~V}, \mathrm{~F} 1 \& \mathrm{~F} 2$	9414	11006	12353	14041	17137	17752
Max added losses of A1 RFI, Circuit Breaker or Disconnect, \& Contactor, F3 \& F4	963	1054	1093	1230	2280	2541
Max Panel Options Losses	400					
Weight, enclosure IP21, IP 54 [kg]	1004/ 1299	1004/ 1299	1004/ 1299	1004/ 1299	1246/ 1541	1246/ 1541
Weight Rectifier Module [kg]	102	102	102	102	136	136
Weight Inverter Module [kg]	102	102	102	136	102	102
Efficiency ${ }^{4}$	0.98					
Output frequency	0-600 Hz					
Heat sink overtemp. trip	$95^{\circ} \mathrm{C}$					
Power card ambient trip	$68{ }^{\circ} \mathrm{C}$					

Table 6.3

General Specifications
VLT AQUA Drive FC 202 Operation Instructions

Mains Supply 3x525-690 V AC					
	P45K	P55K	P75K	P90K	P110
Typical Shaft output at 550 V [kW]	37	45	55	75	90
Typical Shaft output at 575 V [HP]	50	60	75	100	125
Typical Shaft output at 690 V [kW]	45	55	75	90	110
Enclosure IP21	D1	D1	D1	D1	D1
Enclosure IP54	D1	D1	D1	D1	D1
Enclosure IP00	D2	D2	D2	D2	D2
Output current					
Continuous (at $3 \times 525-550 \mathrm{~V}$) [A]	56	76	90	113	137
$\begin{aligned} & \text { Intermittent (60 sec } \\ & \text { overload) } \\ & \text { (at } 550 \mathrm{~V} \text {) [A] } \\ & \hline \end{aligned}$	62	84	99	124	151
Continuous (at $3 \times 551-690 \mathrm{~V}$) [A]	54	73	86	108	131
Intermittent (60 sec overload) (at 575/ 690 V) [A]	59	80	95	119	144
Continuous KVA (at 550 V) [KVA]	53	72	86	108	131
Continuous KVA (at 575 V) [KVA]	54	73	86	108	130
Continuous KVA (at 690 V) [KVA]	65	87	103	129	157
Max. input current					
Continuous (at 550 V) [A]	60	77	89	110	130
Continuous (at 575 V) [A]	58	74	85	106	124
Continuous (at 690 V) [A]	58	77	87	109	128
Max. cable size, mains, motor, load share and brake [mm² (AWG)]	2×70 (2x2/0)				
Max. external pre-fuses [A] 1)	125	160	200	200	250
Estimated power loss at rated max. load [W] ${ }^{4)}$, 600 V	1398	1645	1827	2157	2533
Estimated power loss at rated max. load [W] ${ }^{4)}$, 690 V	1458	1717	1913	2262	2662
Weight, enclosure IP21, IP 54 [kg]	96				
Weight, enclosure IP00 [kg]	82				
Efficiency ${ }^{4)}$	0.97	0.97	0.98	0.98	0.98
Output frequency	0-600 Hz				
Heat sink overtemp. trip	$85^{\circ} \mathrm{C}$				
Power card ambient trip	$60^{\circ} \mathrm{C}$				

Table 6.4

General Specifications
VLT AQUA Drive FC 202 Operation Instructions

Mains Supply 3x525-690 V AC				
	P132	P160	P200	P250
Typical Shaft output at 550 V [kW]	110	132	160	200
Typical Shaft output at 575 V [HP]	150	200	250	300
Typical Shaft output at 690 V [kW]	132	160	200	250
Enclosure IP21	D1	D1	D2	D2
Enclosure IP54	D1	D1	D2	D2
Enclosure IP00	D3	D3	D4	D4
Output current				
Continuous (at 550 V) [A]	162	201	253	303
Intermittent (60 sec overload) (at 550 V) [A]	178	221	278	333
$\begin{aligned} & \text { Continuous } \\ & \text { (at } 575 / 690 \mathrm{~V} \text {) [A] } \end{aligned}$	155	192	242	290
Intermittent (60 sec overload) (at 575/ 690 V) [A]	171	211	266	319
Continuous KVA (at 550 V) [KVA]	154	191	241	289
Continuous KVA (at 575 V) [KVA]	154	191	241	289
Continuous KVA (at 690 V) [KVA]	185	229	289	347
Max. input current				
Continuous (at 550 V) [A]	158	198	245	299
Continuous (at 575 V) [A]	151	189	234	286
Continuous (at 690 V) [A]	155	197	240	296
Max. cable size, mains motor, load share and brake [mm² (AWG)]	$2 \times 70(2 \times 2 / 0)$	$2 \times 70(2 \times 2 / 0)$	2×150 (2 x 300 mcm)	$2 \times 150(2 \times 300 \mathrm{mcm})$
Max. external pre-fuses [A] ${ }^{1}$	315	350	350	400
Estimated power loss at rated max. load [W] 4), 600 V	2963	3430	4051	4867
Estimated power loss at rated max. load [W] 4), 690 V	3430	3612	4292	5156
Weight, Enclosure IP21, IP 54 [kg]	96	104	125	136
Weight, Enclosure IP00 [kg]	82	91	112	123
Efficiency ${ }^{4}$	0.98			
Output frequency	0-600 Hz			
Heat sink overtemp. trip	$90^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$110{ }^{\circ} \mathrm{C}$	$110{ }^{\circ} \mathrm{C}$
Power card ambient trip	$60^{\circ} \mathrm{C}$			

Table 6.5

General Specifications
VLT AQUA Drive FC 202 Operation Instructions

Mains Supply 3x525-690 V AC			
	P315	P400	P450
Typical Shaft output at 550 V [kW]	250	315	355
Typical Shaft output at 575 V [HP]	350	400	450
Typical Shaft output at 690 V [kW]	315	400	450
Enclosure IP21	D2	D2	E1
Enclosure IP54	D2	D2	E1
Enclosure IP00	D4	D4	E2
Output current			
Continuous (at 550 V) [A]	360	418	470
Intermittent (60 sec overload) (at 550 V) [A]	396	460	517
Continuous (at 575/ 690 V) [A]	344	400	450
Intermittent (60 sec overload) (at 575/ 690 V) [A]	378	440	495
Continuous KVA (at 550 V) [KVA]	343	398	448
Continuous KVA (at 575 V) [KVA]	343	398	448
Continuous KVA (at 690 V) [KVA]	411	478	538
Max. input current			
Continuous (at 550 V) [A]	355	408	453
Continuous (at 575 V) [A]	339	390	434
Continuous (at 690 V) [A]	352	400	434
Max. cable size, mains, motor and load share [mm² (AWG)]	$\begin{gathered} 2 \times 150 \\ (2 \times 300 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 2 \times 150 \\ (2 \times 300 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 4 \times 240 \\ (4 \times 500 \mathrm{mcm}) \end{gathered}$
Max. cable size, brake [mm² (AWG)]	$\begin{gathered} 2 \times 150 \\ (2 \times 300 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 2 \times 150 \\ (2 \times 300 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 2 \times 185 \\ (2 \times 350 \mathrm{mcm}) \end{gathered}$
Max. external pre-fuses [A] ${ }^{1}$	500	550	700
Estimated power loss at rated max. load [W] ${ }^{4)}, 600 \mathrm{~V}$	5493	5852	6132
Estimated power loss at rated max. load [W] ${ }^{4)}, 690 \mathrm{~V}$	5821	6149	6440
Weight, enclosure IP21, IP 54 [kg]	151	165	263
Weight, enclosure IP00 [kg]	138	151	221
Efficiency ${ }^{4}$		0.98	
Output frequency	0-600 Hz	0-500 Hz	0-500 Hz
Heat sink overtemp. trip	$110^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$
Power card ambient trip	$60^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{C}$

Table 6.6

General Specifications
VLT AQUA Drive FC 202 Operation Instructions

Mains Supply 3x525-690 V AC			
	P500	P560	P630
Typical Shaft output at 550 V [kW]	400	450	500
Typical Shaft output at 575 V [HP]	500	600	650
Typical Shaft output at 690 V [kW]	500	560	630
Enclosure IP21	E1	E1	E1
Enclosure IP54	E1	E1	E1
Enclosure IP00	E2	E2	E2
Output current			
Continuous (at 550 V) [A]	523	596	630
Intermittent (60 sec overload) (at 550 V) [A]	575	656	693
$\begin{aligned} & \text { Continuous } \\ & \text { (at 575/ } 690 \mathrm{~V} \text {) [A] } \end{aligned}$	500	570	630
Intermittent (60 sec overload) (at 575/ 690 V) [A]	550	627	693
Continuous KVA (at 550 V) [KVA]	498	568	600
Continuous KVA (at 575 V) [KVA]	498	568	627
Continuous KVA (at 690 V) [KVA]	598	681	753
Max. input current			
Continuous (at 550 V) [A]	504	574	607
Continuous (at 575 V) [A]	482	549	607
$\begin{array}{\|l\|} \hline \text { Continuous } \\ \text { (at } 690 \mathrm{~V} \text {) [A] } \\ \hline \end{array}$	482	549	607
Max. cable size, mains, motor and load share [mm² (AWG)]	4×240 ($4 \times 500 \mathrm{mcm}$)	4×240 ($4 \times 500 \mathrm{mcm}$)	4×240 ($4 \times 500 \mathrm{mcm}$)
Max. cable size, brake [mm² (AWG)]	$\begin{gathered} 2 \times 185 \\ (2 \times 350 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 2 \times 185 \\ (2 \times 350 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 2 \times 185 \\ (2 \times 350 \mathrm{mcm}) \end{gathered}$
Max. external pre-fuses [A] ${ }^{1}$	700	900	900
Estimated power loss at rated max. load [W] ${ }^{4)}, 600 \mathrm{~V}$	6903	8343	9244
Estimated power loss at rated max. load [W] ${ }^{4)}, 690 \mathrm{~V}$	7249	8727	9673
Weight, enclosure IP21, IP 54 [kg]	263	272	313
Weight, enclosure IP00 [kg]	221	236	277
Efficiency ${ }^{4}$	0.98		
Output frequency	0-500 Hz		
Heat sink overtemp. trip	$110^{\circ} \mathrm{C}$		
Power card ambient trip	$68{ }^{\circ} \mathrm{C}$		

Table 6.7

General Specifications
VLT AQUA Drive FC 202 Operation Instructions

Mains Supply 3x525-690 V AC						
	P710	P800	P900	P1M0	P1M2	P1M4
Typical Shaft output at 550 V [kW]	560	670	750	850	1000	1100
Typical Shaft output at 575 V [HP]	750	950	1050	1150	1350	1550
Typical Shaft output at 690 V [kW]	710	800	900	1000	1200	1400
Enclosure IP21, 54 without/with options cabinet	F1/ F3	F1/ F3	F1/ F3	F2/F4	F2/ F4	F2/F4
Output current						
Continuous (at 550 V) [A]	763	889	988	1108	1317	1479
Intermittent (60 s overload, at 550 V) $[\mathrm{A}]$	839	978	1087	1219	1449	1627
Continuous (at 575/ 690 V) [A]	730	850	945	1060	1260	1415
Intermittent (60 s overload, at 575/690 V) [A]	803	935	1040	1166	1386	1557
Continuous KVA (at 550 V) [KVA]	727	847	941	1056	1255	1409
Continuous KVA (at 575 V) [KVA]	727	847	941	1056	1255	1409
Continuous KVA (at 690 V) [KVA]	872	1016	1129	1267	1506	1691
Max. input current						
Continuous (at 550 V) [A]	743	866	962	1079	1282	1440
Continuous (at 575 V) [A]	711	828	920	1032	1227	1378
Continuous (at 690 V) [A]	711	828	920	1032	1227	1378
Max. cable size,motor [mm ${ }^{\left(\mathrm{AWG}^{2}\right)}$)]	$8 \times 150(8 \times 300 \mathrm{mcm})$			12×150 (12x300 mcm)		
Max. cable size,mains F1/F2 [mm ${ }^{2}$ $\left(\mathrm{AWG}^{2}\right)$]	8×240 (8x500 mcm)					
Max. cable size,mains F3/F4 [mm ${ }^{2}$ (AWG²)]	8×456 (8x900 mcm)					
Max. cable size, loadsharing [mm² $\left(\mathrm{AWG}^{2}\right)$]	4x120 (4x250 mcm)					
Max. cable size, brake [mm ${ }^{2}\left(\mathrm{AWG}^{2)}\right)$	4x185 (4×350 mcm)			6x185 (6x350 mcm)		
Max. external pre-fuses [A] ${ }^{1)}$	1600				2000	2500
Est. power loss at rated max. load [W] 4), 600 V, F1 \& F2	10771	12272	13835	15592	18281	20825
Est. power loss at rated max. load [W] ${ }^{4)}, 690$ V, F1 \& F2	11315	12903	14533	16375	19207	21857
Max added losses of Circuit Breaker or Disconnect \& Contactor, F3 \& F4	427	532	615	665	863	1044
Max Panel Options Losses	400					
Weight,enclosure IP21, IP 54 [kg]	1004/1299	1004/1299	1004/1299	1246/1541	1246/1541	1280/1575
Weight, Rectifier Module [kg]	102	102	102	136	136	136
Weight, Inverter Module [kg]	102	102	136	102	102	136
Efficiency ${ }^{4}$	0.98					
Output frequency	0-500 Hz					
Heat sink overtemp. trip	$95^{\circ} \mathrm{C}$					
Power card amb. trip	$68^{\circ} \mathrm{C}$					

Table 6.8

1) For type of fuse see section Fuses.
2) American Wire Gauge.
3) Measured using 5 m screened motor cables at rated load and rated frequency.
4) The typical power loss is at nominal load conditions and expected to be within $+/-15 \%$ (tolerence relates to variety in voltage and cable conditions). Values are based on a typical motor efficiency (eff2/eff3 border line). Motors with lower efficiency will also add to the power loss in the frequency converter and opposite. If the switching frequency is increased comed to the default setting, the power losses may rise significantly. LCP and typical control card power consumptions are included. Further options and customer load may add up to 30 W to the losses. (Though typical only 4 W extra for a fully loaded control card, or options for slot A or slot B, each). Although measurements are made with state of the art equipment, some measurement inaccuracy must be allowed for (+/-5\%).

7 Troubleshooting

7.1 Alarms and warnings

A warning or an alarm is signalled by the relevant LED on the front of the frequency converter and indicated by a code on the display.

A warning remains active until its cause is no longer present. Under certain circumstances operation of the motor may still be continued. Warning messages may be critical, but are not necessarily so.

In the event of an alarm, the frequency converter will have tripped. Alarms must be reset to restart operation once their cause has been rectified.

This may be done in 4 ways:

1. By pressing [RESET] on the LCP.
2. Via a digital input with the "Reset" function.
3. Via serial communication/optional fieldbus.
4. By resetting automatically using the [Auto Reset] function. See $14-20$ Reset Mode inVLT ${ }^{\circledR}$ AQUA Drive FC 202 Programming Guide

NOTICE

After a manual reset pressing [RESET] on the LCP, press [AUTO ON] or [HAND ON] to restart the motor.

If an alarm cannot be reset, the reason may be that its cause has not been rectified, or the alarm is trip-locked (see also table on following page).

Alarms that are trip-locked offer additional protection, means that the mains supply must be switched off before the alarm can be reset. After being switched back on, the frequency converter is no longer blocked and may be reset as described above once the cause has been rectified.

Alarms that are not trip-locked can also be reset using the automatic reset function in 14-20 Reset Mode (Warning: automatic wake-up is possible!)

If a warning and alarm is marked against a code in the table on the following page, this means that either a warning occurs before an alarm, or it can be specified whether it is a warning or an alarm that is to be displayed for a given fault.

This is possible, for instance, in 1-90 Motor Thermal Protection. After an alarm or trip, the motor carries on coasting, and the alarm and warning flash on the frequency converter. Once the problem has been rectified, only the alarm continues flashing.

No.	Description	Warning	Alarm/Trip	Alarm/Trip Lock	Parameter Reference
1	10 Volts low	X			
2	Live zero error	(X)	(X)		6-01
3	No motor	(X)			1-80
4	Mains phase loss	(X)	(X)	(X)	14-12
5	DC link voltage high	X			
6	DC link voltage low	X			
7	DC over voltage	X	X		
8	DC under voltage	X	X		
9	Inverter overloaded	X	X		
10	Motor ETR over temperature	(X)	(X)		1-90
11	Motor thermistor over temperature	(X)	(X)		1-90
12	Torque limit	X	X		
13	Over Current	X	X	X	
14	Earth fault	X	X	X	
15	Hardware mismatch		X	X	
16	Short Circuit		X	X	
17	Control word timeout	(X)	(X)		8-04
23	Internal Fan Fault	X			
24	External Fan Fault	X			14-53
25	Brake resistor short-circuited	X			
26	Brake resistor power limit	(X)	(X)		2-13

Troubleshooting
VLT AQUA Drive FC 202 Operation Instructions

No.	Description	Warning	Alarm/Trip	Alarm/Trip Lock	Parameter Reference
27	Brake chopper short-circuited	X	X		
28	Brake check	(X)	(X)		2-15
29	Drive over temperature	X	X	X	
30	Motor phase U missing	(X)	(X)	(X)	4-58
31	Motor phase V missing	(X)	(X)	(X)	4-58
32	Motor phase W missing	(X)	(X)	(X)	4-58
33	Inrush fault		X	X	
34	Fieldbus communication fault	X	X		
35	Out of frequency range	X	X		
36	Mains failure	X	X		
37	Phase Imbalance	X	X		
39	Heatsink sensor		X	X	
40	Overload of Digital Output Terminal 27	(X)			5-00, 5-01
41	Overload of Digital Output Terminal 29	(X)			5-00, 5-02
42	Overload of Digital Output On X30/6	(X)			5-32
42	Overload of Digital Output On X30/7	(X)			5-33
46	Pwr. card supply		X	X	
47	24 V supply low	X	X	X	
48	1.8 V supply low		X	X	
49	Speed limit	X			
50	AMA calibration failed		X		
51	AMA check $U_{\text {nom }}$ and $I_{\text {nom }}$		X		
52	AMA low Inom		X		
53	AMA motor too big		X		
54	AMA motor too small		X		
55	AMA parameter out of range		X		
56	AMA interrupted by user		X		
57	AMA timeout		X		
58	AMA internal fault	X	X		
59	Current limit	X			
60	External Interlock	X			
62	Output Frequency at Maximum Limit	X			
64	Voltage Limit	X			
65	Control Board Over-temperature	X	X	X	
66	Heat sink Temperature Low	X			
67	Option Configuration has Changed		X		
68	Safe Stop Activated		$\mathrm{X}^{1)}$		
69	Pwr. Card Temp		X	X	
70	Illegal FC configuration			X	
71	PTC 1 Safe Stop	X	$\mathrm{X}^{1)}$		
72	Dangerous Failure			$\mathrm{X}^{1)}$	
73	Safe Stop Auto Restart				
76	Power Unit Setup	X			
79	Illegal PS config		X	X	
80	Drive Initialised to Default Value		X		
91	Analog input 54 wrong settings			X	
92	NoFlow	X	X		22-2*
93	Dry Pump	X	X		22-2*
94	End of Curve	X	X		22-5*
95	Broken Belt	X	X		22-6*
96	Start Delayed	X			22-7*
97	Stop Delayed	X			22-7*

Troubleshooting
VLT AQUA Drive FC 202 Operation Instructions

No.	Description	Warning	Alarm/Trip	Alarm/Trip Lock	Parameter Reference
220	Overload Trip		X		
98	Clock Fault	X			$0-7^{*}$
243	Brake IGBT	X	X		
244	Heatsink temp	X	X		X
245	Heatsink sensor		X	X	
246	Pwr.card supply		X	X	
247	Pwr.card temp		X	X	
248	Illegal PS config		X	X	
250	New spare part		X	X	
251	New Type Code		X		

Table 7.1 Alarm/Warning Code List
(X) Dependent on parameter

1) Cannot be Auto reset via 14-20 Reset Mode

A trip is the action when an alarm has appeared. The trip coasts the motor and can be reset by pressing [Reset] or making a reset by a digital input (Par. 5-1* Digital Inputs [1] Reset). The origin event that caused an alarm cannot damage the frequency converter or cause dangerous conditions. A trip lock is an action when an alarm occurs, which may cause damage to frequency converter or connected parts. A Trip Lock situation can only be reset by a power cycling.

LED indication	
Warning	yellow
Alarm	flashing red
Trip locked	yellow and red

Table 7.2

Troubleshooting

VLT AQUA Drive FC 202 Operation Instructions

Alarm Word and Extended Status Word					
Bit	Hex	Dec	Alarm Word	Warning Word	Extended Status Word
0	00000001	1	Brake Check	Brake Check	Ramping
1	00000002	2	Pwr. Card Temp	Pwr. Card Temp	AMA Running
2	00000004	4	Earth Fault	Earth Fault	Start CW/CCW
3	00000008	8	Ctrl.Card Temp	Ctrl.Card Temp	Slow Down
4	00000010	16	Ctrl. Word TO	Ctrl. Word TO	Catch Up
5	00000020	32	Over Current	Over Current	Feedback High
6	00000040	64	Torque Limit	Torque Limit	Feedback Low
7	00000080	128	Motor Th Over	Motor Th Over	Output Current High
8	00000100	256	Motor ETR Over	Motor ETR Over	Output Current Low
9	00000200	512	Inverter Overld.	Inverter Overld.	Output Freq High
10	00000400	1024	DC under Volt	DC under Volt	Output Freq Low
11	00000800	2048	DC over Volt	DC over Volt	Brake Check OK
12	00001000	4096	Short Circuit	DC Voltage Low	Braking Max
13	00002000	8192	Inrush Fault	DC Voltage High	Braking
14	00004000	16384	Mains ph. Loss	Mains ph. Loss	Out of Speed Range
15	00008000	32768	AMA Not OK	No Motor	OVC Active
16	00010000	65536	Live Zero Error	Live Zero Error	
17	00020000	131072	Internal Fault	10V Low	
18	00040000	262144	Brake Overload	Brake Overload	
19	00080000	524288	U phase Loss	Brake Resistor	
20	00100000	1048576	V phase Loss	Brake IGBT	
21	00200000	2097152	W phase Loss	Speed Limit	
22	00400000	4194304	Fieldbus Fault	Fieldbus Fault	
23	00800000	8388608	24 V Supply Low	24V Supply Low	
24	01000000	16777216	Mains Failure	Mains Failure	
25	02000000	33554432	1.8V Supply Low	Current Limit	
26	04000000	67108864	Brake Resistor	Low Temp	
27	08000000	134217728	Brake IGBT	Voltage Limit	
28	10000000	268435456	Option Change	Unused	
29	20000000	536870912	Drive Initialised	Unused	
30	40000000	1073741824	Safe Stop	Unused	

Table 7.3 Description of Alarm Word, Warning Word and Extended Status Word
The alarm words, warning words and extended status words can be read out via serial bus or optional fieldbus for diagnosis. See also 16-90 Alarm Word, 16-92 Warning Word and 16-94 Ext. Status Word.

The warning/alarm information below defines each warning/alarm condition, provides the probable cause for the condition, and details a remedy or troubleshooting procedure.

WARNING 1, 10 Volts low

The control card voltage is below 10 V from terminal 50. Remove some of the load from terminal 50 , as the 10 V supply is overloaded. Max. 15 mA or minimum 590Ω.
This condition can be caused by a short in a connected potentiometer or improper wiring of the potentiometer.

Troubleshooting

- Remove the wiring from terminal 50
- If the warning clears, the problem is with the customer wiring
- If the warning does not clear, replace the control card

WARNING/ALARM 2, Live zero error

This warning or alarm only appears if programmed by the user in parameter 6-01 Live Zero Timeout Function. The signal on one of the analog inputs is less than 50% of the minimum value programmed for that input. Broken wiring or faulty device sending the signal can cause this condition.

Troubleshooting

- Check connections on all the analog input terminals. Control card terminals 53 and 54 for signals, terminal 55 common. MCB 101 terminals 11 and 12 for signals, terminal 10 common. MCB 109 terminals 1, 3, 5 for signals, terminals 2, 4, 6 common).
- Check that the frequency converter programming and switch settings match the analog signal type
- Perform Input Terminal Signal Test

WARNING 3, No motor

No motor has been connected to the output of the frequency converter.

WARNING/ALARM 4, Mains phase loss

A phase is missing on the supply side, or the mains voltage imbalance is too high. This message also appears for a fault in the input rectifier on the frequency converter. Options are programmed at 14-12 Function at Mains Imbalance.

Troubleshooting

- Check the supply voltage and supply currents to the frequency converter

WARNING 5, DC link voltage high

The intermediate circuit voltage (DC) is higher than the high voltage warning limit. The limit is dependent on the frequency converter voltage rating. The unit is still active.

WARNING 6, DC link voltage low

The intermediate circuit voltage (DC) is lower than the low voltage warning limit. The limit is dependent on the frequency converter voltage rating. The unit is still active.

WARNING/ALARM 7, DC overvoltage

If the intermediate circuit voltage exceeds the limit, the frequency converter trips after a time.

Troubleshooting

- Connect a brake resistor
- Extend the ramp time
- Change the ramp type
- Activate the functions in 2-10 Brake Function
- Increase 14-26 Trip Delay at Inverter Fault

WARNING/ALARM 8, DC under voltage

If the intermediate circuit voltage (DC link) drops below the under voltage limit, the frequency converter checks if a 24 V DC back-up supply is connected. If no 24 V DC backup supply is connected, the frequency converter trips after a fixed time delay. The time delay varies with unit size.

Troubleshooting

- Check that the supply voltage matches the frequency converter voltage.
- Perform input voltage test.
- Perform soft charge circuit test.

WARNING/ALARM 9, Inverter overload

The frequency converter is about to cut out because of an overload (too high current for too long). The counter for electronic, thermal inverter protection gives a warning at 98% and trips at 100%, while giving an alarm. The frequency converter cannot be reset until the counter is below 90%.
The fault is that the frequency converter is overloaded by more than 100% for too long.

Troubleshooting

- Compare the output current shown on the LCP with the frequency converter rated current
- Compare the output current shown on the LCP with measured motor current
- Display the Thermal Drive Load on the LCP and monitor the value. When running above the frequency converter continuous current rating, the counter should increase. When running below the frequency converter continuous current rating, the counter should decrease

WARNING/ALARM 10, Motor overload temperature

According to the electronic thermal protection (ETR), the motor is too hot. Select whether the frequency converter gives a warning or an alarm when the counter reaches 100% in 1-90 Motor Thermal Protection. The fault occurs when the motor is overloaded by more than 100% for too long.

Troubleshooting

- Check for motor overheating
- Check if the motor is mechanically overloaded
- Check that the motor current set in parameter 1-24 Motor Current is correct
- Ensure that Motor data in parameters 1-20 through 1-25 are set correctly
- If an external fan is in use, check in 1-91 Motor External Fan that it is selected
- Running AMA in parameter 1-29 Automatic Motor Adaptation (AMA) tunes the frequency converter to the motor more accurately and reduces thermal loading

WARNING/ALARM 11, Motor thermistor over temp

The thermistor might be disconnected. Select whether the frequency converter gives a warning or an alarm in 1-90 Motor Thermal Protection.

Troubleshooting

- Check for motor overheating
- Check if the motor is mechanically overloaded
- Check that the thermistor is connected correctly between either terminal 53 or 54 (analog voltage input) and terminal 50 (+10 V supply) and that the terminal switch for 53 or 54 is set for voltage. Check 1-93 Thermistor Source selects terminal 53 or 54
- When using digital inputs 18 or 19 , check that the thermistor is connected correctly between either terminal 18 or 19 (digital input PNP only) and terminal 50
- If a KTY sensor is used, check for correct connection between terminals 54 and 55
- If using a thermal switch or thermistor, check that the programming if 1-93 Thermistor Resource matches sensor wiring
- If using a KTY sensor, check the programming of 1-95 KTY Sensor Type, 1-96 KTY Thermistor Resource, and 1-97 KTY Threshold level match sensor wiring

WARNING/ALARM 12, Torque limit

The torque has exceeded the value in 4-16 Torque Limit Motor Mode or the value in 4-17 Torque Limit Generator Mode. 14-25 Trip Delay at Torque Limit can change this from a warning only condition to a warning followed by an alarm.

Troubleshooting

- If the motor torque limit is exceeded during ramp up, extend the ramp up time
- If the generator torque limit is exceeded during ramp down, extend the ramp down time
- If torque limit occurs while running, possibly increase the torque limit. Be sure the system can operate safely at a higher torque
- Check the application for excessive current draw on the motor

WARNING/ALARM 13, Over current

The inverter peak current limit (approximately 200\% of the rated current) is exceeded. The warning lasts about 1.5 s , then the frequency converter trips and issues an alarm. This fault may be caused by shock loading or fast acceleration with high inertia loads. If extended mechanical brake control is selected, trip can be reset externally.

Troubleshooting

- Remove power and check if the motor shaft can be turned
- Check that the motor size matches the frequency converter
- Check parameters 1-20 to 1-25. for correct motor data

ALARM 14, Earth (ground) fault

There is current from the output phases to ground, either in the cable between the frequency converter and the motor or in the motor itself.

Troubleshooting:

- Remove power to the frequency converter and repair the earth fault
- Check for earth faults in the motor by measuring the resistance to ground of the motor leads and the motor with a megohmmeter
- Perform current sensor test

ALARM 15, Hardware mismatch

A fitted option is not operational with the present control board hardware or software.

Record the value of the following parameters and contact the Danfoss supplier:

- 15-40 FC Type
- 15-41 Power Section
- 15-42 Voltage
- 15-43 Software Version
- 15-45 Actual Typecode String
- 15-49 SW ID Control Card
- 15-50 SW ID Power Card
- 15-60 Option Mounted
- 15-61 Option SW Version (for each option slot)

ALARM 16, Short circuit

There is short-circuiting in the motor or motor wiring.

- Remove power to the frequency converter and repair the short circuit

Troubleshooting

WARNING/ALARM 17, Control word timeout

There is no communication to the frequency converter. The warning is only active when 8-04 Control Timeout Function is NOT set to OFF.
If 8 -04 Control Timeout Function is set to Stop and Trip, a warning appears and the frequency converter ramps down until it trips then displays an alarm.

Troubleshooting:

- Check connections on the serial communication cable
- Increase 8-03 Control Timeout Time
- Check the operation of the communication equipment
- Verify a proper installation based on EMC requirements

WARNING 23, Internal fan fault

The fan warning function is an extra protective function that checks if the fan is running/mounted. The fan warning can be disabled in 14-53 Fan Monitor ([0] Disabled).

For D, E and F enclosures, the regulated voltage to the fan is monitored.

Troubleshooting

- Check fan resistance
- Check soft charge fuses

WARNING 24, External fan fault
The fan warning function is an extra protective function that checks if the fan is running/mounted. The fan warning can be disabled in 14-53 Fan Monitor ([0] Disabled).
For D, E and F enclosures, the regulated voltage to the fan is monitored.

Troubleshooting

- Check fan resistance
- Check soft charge fuses

WARNING 25, Brake resistor short circuit
The brake resistor is monitored during operation. If a short circuit occurs, the brake function is disabled and the warning appears. The frequency converter is still operational but without the brake function. Remove power to the frequency converter and replace the brake resistor (see 2-15 Brake Check).

WARNING/ALARM 26, Brake resistor power limit

The power transmitted to the brake resistor is calculated as a mean value over the last 120 s of run time. The calculation is based on the intermediate circuit voltage and the brake resistance value set in 2-16 AC brake Max. Current. The warning is active when the dissipated braking is higher than 90% of the brake resistance power. If [2] Trip is selected in 2-13 Brake Power Monitoring, the frequency converter trips when the dissipated braking power reaches 100%.

AWARNING

There is a risk of substantial power being transmitted to the brake resistor if the brake transistor is shortcircuited.

WARNING/ALARM 27, Brake chopper fault

The brake transistor is monitored during operation and if a short circuit occurs, the brake function is disabled and a warning is issued. The frequency converter is still operational but, since the brake transistor has shortcircuited, substantial power is transmitted to the brake resistor, even if it is inactive.
Remove power to the frequency converter and remove the brake resistor.

This alarm/warning could also occur should the brake resistor overheat. Terminals 104 and 106 are available as brake resistors Klixon inuputs, see Brake Resistor
Temperature Switch in the Design Guide.
WARNING/ALARM 28, Brake check failed
The brake resistor is not connected or not working. Check 2-15 Brake Check.

ALARM 29, Heat sink temp
The maximum temperature of the heat sink has been exceeded. The temperature fault does not reset until the temperature drops below a defined heat sink temperature. The trip and reset points are different based on the frequency converter power size.

Troubleshooting

Check for the following conditions

- Ambient temperature too high
- Motor cable too long
- Incorrect airflow clearance above and below the frequency converter
- Blocked airflow around the frequency converter
- Damaged heat sink fan
- Dirty heat sink

For the D, E and F enclosures, this alarm is based on the temperature measured by the heat sink sensor mounted inside the IGBT modules. For the F enclosures, this alarm can also be caused by the thermal sensor in the rectifier module.

Troubleshooting

- Check fan resistance
- Check soft charge fuses
- IGBT thermal sensor

ALARM 30, Motor phase U missing

Motor phase U between the frequency converter and the motor is missing.

Troubleshooting

- Remove power from the frequency converter and check motor phase U

ALARM 31, Motor phase V missing

Motor phase V between the frequency converter and the motor is missing.

Remove power from the frequency converter and check motor phase V.

ALARM 32, Motor phase W missing

Motor phase W between the frequency converter and the motor is missing.

Remove power from the frequency converter and check motor phase W.

ALARM 33, Inrush fault

Too many power-ups have occurred within a short time period. Let the unit cool to operating temperature.

WARNING/ALARM 34, communication fault
The fieldbus on the communication option card is not working.

WARNING/ALARM 35, Out of frequency range

This warning is active if the output frequency has reached the high limit (set in 4-53 Warning Speed High) or low limit (set in 4-52 Warning Speed Low). In Process Control, Closed Loop (1-00 Configuration Mode) this warning is displayed.

WARNING/ALARM 36, Mains failure

This warning/alarm is only active if the supply voltage to the frequency converter is lost and $14-10$ Mains Failure is NOT set to [0] No Function.

Troubleshooting

- Check the fuses to the frequency converter and mains power supply to the unit

ALARM 38, Internal fault

When an internal fault occurs, a code number defined in the Table 7.4 is displayed.

Troubleshooting

- Cycle power
- Check that the option is properly installed
- Check for loose or missing wiring

Contact the Danfoss supplier or service department if required. Note the code number for further troubleshooting directions.

No.	Text
0	Serial port cannot be initialised. Contact the Danfoss supplier or Danfoss Service Department.
$256-258$	Power EEPROM data is defective or too old.
512	Control board EEPROM data is defective or too old.
513	Communication time out reading EEPROM data.
514	Communication time out reading EEPROM data.
515	Application oriented control cannot recognize the EEPROM data.
516	Cannot write to the EEPROM because a write command is on progress.
517	Write command is under time out.

No.	Text
518	Failure in the EEPROM.
519	Missing or invalid barcode data in EEPROM.
783	Parameter value outside of min/max limits.
1024-1279	A centelegram that has to be sent couldn't be sent.
1281	Digital signal processor flash timeout.
1282	Power micro software version mismatch.
1283	Power EEPROM data version mismatch.
1284	Cannot read digital signal processor software version.
1299	Option SW in slot A is too old.
1300	Option SW in slot B is too old.
1301	Option SW in slot C0 is too old.
1302	Option SW in slot C1 is too old.
1315	Option SW in slot A is not supported (not allowed).
1316	Option SW in slot B is not supported (not allowed).
1317	Option SW in slot C0 is not supported (not allowed).
1318	Option SW in slot C1 is not supported (not allowed).
1379	Option A did not respond when calculating platform version.
1380	Option B did not respond when calculating platform version.
1381	Option CO did not respond when calculating platform version.
1382	Option C1 did not respond when calculating platform version.
1536	An exception in the application oriented control is registered. Debug information written in LCP.
1792	DSP watchdog is active. Debugging of power part data, motor oriented control data not transferred correctly.
2049	Power data restarted.
2064-2072	H081x: option in slot x has restarted.
2080-2088	H082x: option in slot x has issued a powerup-wait.
2096-2104	H983x: option in slot x has issued a legal powerup-wait.
2304	Could not read any data from power EEPROM.
2305	Missing SW version from power unit.
2314	Missing power unit data from power unit.
2315	Missing SW version from power unit.
2316	Missint lo_statepage from power unit.
2324	Power card configuration is determined to be incorrect at power up.
2325	A power card has stopped communicating while main power is applied.
2326	Power card configuration is determined to be incorrect after the delay for power cards to register.
2327	Too many power card locations have been registered as present.

No.	Text
2330	Power size information between the power cards does not match.
2561	No communication from DSP to ATACD.
2562	No communication from ATACD to DSP (state running).
2816	Stack overflow control board module.
2817	Scheduler slow tasks.
2818	Fast tasks.
2819	Parameter thread.
2820	LCP stack overflow.
2821	Serial port overflow.
2822	USB port overflow.
2836	cfListMempool too small.
$3072-5122$	Parameter value is outside its limits.
5123	Option in slot A: Hardware incompatible with control board hardware.
5124	Option in slot B: Hardware incompatible with Control board hardware.
5125	Option in slot C0: Hardware incompatible with control board hardware.
5126	Option in slot C1: Hardware incompatible with control board hardware.
$5376-6231$	Out of memory.

Table 7.4 Code Numbers for Internal Faults

ALARM 39, Heat sink sensor

No feedback from the heat sink temperature sensor.
The signal from the IGBT thermal sensor is not available on the power card. The problem could be on the power card, on the gate drive card, or the ribbon cable between the power card and gate drive card.
WARNING 40, Overload of digital output terminal 27 Check the load connected to terminal 27 or remove shortcircuit connection. Check 5-00 Digital I/O Mode and parameter 5-01 Terminal 27 Mode.
WARNING 41, Overload of digital output terminal 29
Check the load connected to terminal 29 or remove shortcircuit connection. Check 5-00 Digital I/O Mode and 5-02 Terminal 29 Mode.

WARNING 42, Overload of digital output on X30/6 or overload of digital output on X30/7
For X30/6, check the load connected to X30/6 or remove the short-circuit connection. Check 5-32 Term X30/6 Digi Out (MCB 101).

For X30/7, check the load connected to X30/7 or remove the short-circuit connection. Check 5-33 Term X30/7 Digi Out (MCB 101).

ALARM 46, Power card supply

The supply on the power card is out of range.
There are 3 power supplies generated by the switch mode power supply (SMPS) on the power card: $24 \mathrm{~V}, 5 \mathrm{~V}, \pm 18 \mathrm{~V}$. When powered with 24 V DC with the MCB 107 option,
only the 24 V and 5 V supplies are monitored. When powered with 3 phase mains voltage, all 3 supplies are monitored.

WARNING 47, 24 V supply low

The 24 V DC is measured on the control card. The external 24 V DC back-up power supply may be overloaded, otherwise contact the Danfoss supplier.

WARNING 48, 1.8 V supply low

The 1.8 V DC supply used on the control card is outside of allowable limits. The power supply is measured on the control card. Check for a defective control card. If an option card is present, check for an overvoltage condition.

WARNING 49, Speed limit

When the speed is not within the specified range in parameter 4-11 Motor Speed Low Limit [RPM] and parameter 4-13 Motor Speed High Limit [RPM], the frequency converter shows a warning. When the speed is below the specified limit in 1-86 Trip Speed Low [RPM] (except when starting or stopping) the frequency converter trips.

ALARM 50, AMA calibration failed

Contact the Danfoss supplier or Danfoss Service Department.

ALARM 51, AMA check Unom and Inom
The settings for motor voltage, motor current, and motor power are wrong. Check the settings in parameters 1-20 to 1-25.

ALARM 52, AMA low Inom

The motor current is too low. Check the settings.

ALARM 53, AMA motor too big

The motor is too big for the AMA to operate.
ALARM 54, AMA motor too small
The motor is too small for the AMA to operate.

ALARM 55, AMA parameter out of range

The parameter values of the motor are outside of the acceptable range. AMA does not run.

ALARM 56, AMA interrupted by user
The user has interrupted the AMA.
ALARM 57, AMA internal fault
Try to restart AMA again a number of times, until the AMA is carried out. Note that repeated runs may heat the motor to a level where the resistance R_{s} and R_{r} are increased. In most cases, however, this is not critical.

ALARM 58, AMA Internal fault
Contact the Danfoss supplier.
WARNING 59, Current limit
The current is higher than the value in 4-18 Current Limit. Ensure that motor data in parameters 1-20 to 1-25 are set correctly. Possibly increase the current limit. Be sure that the system can operate safely at a higher limit.

WARNING 60, External interlock

External interlock has been activated. To resume normal operation, apply 24 V DC to the terminal programmed for external interlock and reset the frequency converter (via serial communication, digital I/O, or by pressing [Reset]).

WARNING 61, Tracking error

An error has been detected between the calculated motor speed and the speed measurement from the feedback device. The function for Warning/Alarm/ Disable is set in 4-30 Motor Feedback Loss Function, error setting in 4-31 Motor Feedback Speed Error, and the allowed error time in 4-32 Motor Feedback Loss Timeout. During a commissioning procedure the function may be effective.
WARNING 62, Output frequency at maximum limit The output frequency is higher than the value set in 4-19 Max Output Frequency.

ALARM 64, Voltage Limit

The load and speed combination demands a motor voltage higher than the actual DC-link voltage.

WARNING/ALARM 65, Control card over temperature
The control card has reached its trip temperature of $80^{\circ} \mathrm{C}$.

WARNING 66, Heat sink temperature low

The frequency converter is too cold to operate. This warning is based on the temperature sensor in the IGBT module.
Increase the ambient temperature of the unit. Also, a trickle amount of current can be supplied to the frequency converter whenever the motor is stopped by setting 2-00 DC Hold/Preheat Current at 5\% and 1-80 Function at Stop

Troubleshooting

The heatsink temperature measured as $0^{\circ} \mathrm{C}$ could indicate that the temperature sensor is defective, causing the fan speed to increase to the maximum. If the sensor wire between the IGBT and the gate drive card is disconnected, this warning would result. Also, check the IGBT thermal sensor.

ALARM 67, Option module configuration has changed One or more options have either been added or removed since the last power-down. Check that the configuration change is intentional and reset the unit.

ALARM 68, Safe stop activated

Safe stop has been activated. To resume normal operation, apply 24 V DC to terminal 37 , then send a reset signal (via Bus, Digital I/O, or by pressing [Reset]).

ALARM 69, Power card temperaturePower card temperature

The temperature sensor on the power card is either too hot or too cold.

Troubleshooting

- Check the operation of the door fans
- Check that the filters for the door fans are not blocked
- Check that the gland plate is properly installed on IP21/IP54 (NEMA 1/12) frequency converters

ALARM 70, Illegal FC configuration

The control card and power card are incompatible. Contact the supplier with the type code of the unit from the nameplate and the part numbers of the cards to check compatibility.

ALARM 71, PTC 1 safe stop

Safe Stop has been activated from the PTC Thermistor Card (motor too warm). Normal operation can be resumed when the applies 24 V DC to T37 again (when the motor temperature reaches an acceptable level) and when the Digital Input from the is deactivated. When that happens, a reset signal must be is be sent (via Bus, Digital I/O, or by pressing [Reset]).

NOTICE

If automatic restart is enabled, the motor may start when the fault is cleared.

ALARM 72, Dangerous failure

Safe Stop with Trip Lock. Unexpected signal levels on safe stop and digital input from the PTC thermistor card.

WARNING 73, Safe stop auto restart
Safe stopped. With automatic restart enabled, the motor may start when the fault is cleared.

WARNING 76, Power unit setup

The required number of power units does not match the detected number of active power units. When replacing an F-frame module, this occurs if the power specific data in the module power card does not match the rest of the frequency converter.

Troubleshooting

- Confirm the spare part and its power card are the correct part number

WARNING 77, Reduced power mode

This warning indicates that the frequency converter is operating in reduced power mode (i.e. less than the allowed number of inverter sections). This warning is generated on power cycle when the frequency converter is set to run with fewer inverters and remains on.

ALARM 79, Illegal power section configuration

The scaling card is the incorrect part number or not installed. Also MK102 connector on the power card could not be installed.

ALARM 80, Drive initialised to default value

Parameter settings are initialised to default settings after a manual reset. Reset the unit to clear the alarm.

ALARM 91, Analog input 54 wrong settings
Switch S202 has to be set in position OFF (voltage input) when a KTY sensor is connected to analog input terminal 54.

ALARM 92, No flow

A no-flow condition has been detected in the system. parameter 22-23 No-Flow Function is set for alarm. Troubleshoot the system and reset the frequency converter after the fault has been cleared.

ALARM 93, Dry pump

A no-flow condition in the system with the frequency converter operating at high speed may indicate a dry pump. parameter 22-26 Dry Pump Function is set for alarm. Troubleshoot the system and reset the frequency converter after the fault has been cleared.

ALARM 94, End of curve

Feedback is lower than the set point. This may indicate leakage in the system. parameter 22-50 End of Curve Function is set for alarm. Troubleshoot the system and reset the frequency converter after the fault has been cleared.

ALARM 95, Broken belt

Torque is below the torque level set for no load, indicating a broken belt. 22-60 Broken Belt Function is set for alarm. Troubleshoot the system and reset the frequency converter after the fault has been cleared.

ALARM 96, Start delayed

Motor start has been delayed due to short-cycle protection. 22-76 Interval between Starts is enabled.
Troubleshoot the system and reset the frequency converter after the fault has been cleared.

WARNING 97, Stop delayed

Stopping the motor has been delayed due to short cycle protection. 22-76 Interval between Starts is enabled.
Troubleshoot the system and reset the frequency converter after the fault has been cleared.

WARNING 98, Clock fault

Time is not set or the RTC clock has failed. Reset the clock in 0-70 Date and Time.

ALARM 243, Brake IGBT

This alarm is only for F Frame frequency converters. It is equivalent to Alarm 27. The report value in the alarm log indicates which power module generated the alarm:

1 = left most inverter module.
$2=$ middle inverter module in F2 or F4 frequency converter.

2 = right inverter module in F1 or F3 frequency converter.

3 = right inverter module in F2 or F4 frequency converter.
$5=$ rectifier module.

ALARM 244, Heatsink temperature

This alarm is only for F Frame frequency converters. It is equivalent to Alarm 29. The report value in the alarm log indicates which power module generated the alarm:

1 = left most inverter module.
2 = middle inverter module in F2 or F4 frequency converter.
$2=$ right inverter module in F1 or F3 frequency converter.

3 = right inverter module in F2 or F4 frequency converter.

5 = rectifier module.

ALARM 245, Heatsink sensor

This alarm is only for F Frame frequency converters. It is equivalent to Alarm 39. The report value in the alarm log indicates which power module generated the alarm:

1 = left most inverter module.
2 = middle inverter module in F2 or F4 frequency converter.

2 = right inverter module in F1 or F3 frequency converter.

3 = right inverter module in F2 or F4 frequency converter.

5 = rectifier module.

ALARM 246, Power card supply

This alarm is only for F Frame frequency converters. It is equivalent to Alarm 46. The report value in the alarm log indicates which power module generated the alarm:

1 = left most inverter module.
2 = middle inverter module in F2 or F4 frequency converter.

2 = right inverter module in F1 or F3 frequency converter.

3 = right inverter module in F2 or F4 frequency converter.

5 = rectifier module.

ALARM 247, Power card temperature

This alarm is only for F Frame frequency converter. It is equivalent to Alarm 69. The report value in the alarm log indicates which power module generated the alarm:

1 = left most inverter module.
2 = middle inverter module in F2 or F4 frequency converter.

2 = right inverter module in F1 or F3 frequency converter.

3 = right inverter module in F2 or F4 frequency converter.

5 = rectifier module.

ALARM 248, Illegal power section configuration

This alarm is only for F Frame frequency converters. It is equivalent to Alarm 79. The report value in the alarm log indicates which power module generated the alarm:

1 = left most inverter module.
2 = middle inverter module in F2 or F4 frequency
converter.
2 = right inverter module in F1 or F3 frequency converter.

3 = right inverter module in F2 or F4 frequency
converter.
5 = rectifier module.

WARNING 250, New spare part

A component in the frequency converter has been replaced. Reset the frequency converter for normal operation.

WARNING 251, New typecode

The power card or other components have been replaced and the typecode changed. Reset to remove the warning and resume normal operation.

Index
Index

A

Access to Control Terminals 62
Airflow. 34
Alarm log. 140
Alarm/Warning Code List. 132
Alarms and Warnings 130
AMA. $67,76,135,138$
Analog inputs. 118, 134
output 118
signal. 134
Automatic Motor Adaptation (AMA) 67
B
Back cooling 33
Brake
Cable. 55
Resistor Temperature Switch. 55
Braking 136
Branch circuit protection 56
C
Cable
Lengths and Cross Sections. 117
positions 23
Cable-length and cross-section. 43
Cabling 42
Changing
a Group of Numeric Data Values 75
a Text Value 75
Data. 75
of Data Value. 76
Closed Loop 137
Coasting 73
Communication option. 137
Control
cables. 65
Cables 63
card. 134
Card performance. 120
card, 10 V DC output 119
Card, 24 V DC output 119
card, RS-485 serial communication. 118
card, USB serial communication 120
characteristics 120
Terminals. 62
Cooling 33
Copyright, limitation of liability and revision rights. 4
Current rating 134
DDC link.134
Default Settings 76
Digital
input. 135
inputs. 117
Output. 119
Display
Line 1.2 Small, 0-21 87
Line 1.3 Small, 0-22 88
Line 2 large, 0-23. 88
Line 3 Large, 0-24. 88
Disposal Instruction 8
Drip Shield Installation 37
Drive Closed Loop 101
Duct
cooling. 33
work cooling kits 37
E
Efficient parameter set-up for water applications 80
ELCB relays 53
Electrical Installation. 62,63
Electronic waste. 8
Enclsoure Type F Options 41
External
Fan Supply 56
Temperature Monitoring. 42
F
Feedback 138, 140
Fieldbus connection 60
Floor Mounting. 40
Fuse Specifications. 57
Fuses. 137, 56
Fusing 42
G
General Considerations 20
Gland/Conduit Entry - IP21 (NEMA 1) and IP54 (NEMA12) 35
GLCP. 76
Graphical display 70
Grounding. 53
H
How
to Connect a PC to the Frequency Converter 77
to operate graphical LCP (GLCP). 70

Index
Motor
Bearing Currents 60
Cable. 54
current. 138
data. 135, 138
Insulation. 60
name plate 67
output 117
power. 138
protection. 120
Thermal Protection 69
N
NAMUR 41
NLCP 73
Non UL compliance. 56
0
Operation/Display, 0-** 84
Ordering 38
Output current 134
Performance (U, V, W) 117
Outside Installation/NEMA 3R Kit for Rittal 38
Language 84
package 1 84
package 2 84
package 3 84
package 4 84
LCP
LCP 73,76
102 70
Leakage Current 7
LEDs. 70
Lifting. 10
Load Sharing 55
Local reference 91
M
Main
Menu 79
Menu mode 72
Menu Mode 83
reactance. 89
Mains
Connection 56
supply (L1, L2, L3) 117
Supply $3 \times 525-690$ V AC 124
Manual Motor Starters 42
Mechanical
Brake Control 68
dimensions. 17, 18
Dimensions 12
Installation 20

Index
Quick
Menu. $72,79,80$
Menu mode 72
Transfer of Parameter Settings when Using GLCP. 76
R
RCD (Residual Current Device). 41
Receiving the Frequency Converter 10
Reference Limits, 3-0* 90
Relay Outputs 119
Reset 134, 139, 73
Residual Current Device 7
RFI Switch 53
RS-485 Bus Connection 77
S
Safe
Stop + Pilz Relay 42
Torque Off 7
Safety note 6
Screened/armoured. 65
Screening of cables 43
Serial Communication 120
Shielded Cables 54
Short circuit 135
Sine-wave filter 43
Software Version 4
Space
Space 20
Heaters and Thermostat 41
Speed Up/Down 66
Start/Stop. 66
Stator leakage reactance 89
Status
Status. 72
messages. 70
Supply voltage. 137
Surroundings 120
Switches S201, S202, and S801, 65
Switching frequency 43
T
Terminal
54 139
Locations. 1,24
Thermal Protection 5
Thermistor 135
Timed Actions 108
Torque
Torque. 53
Characteristics 117
for Terminals. 54
U
Unpacking. 10
V
Voltage imbalance. 134
level. 118
reference via a potentiometer 67
W
Warning against Unintended Start. 6
Water Application Functions 111
Wire access 20

www.danfoss.com/drives

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

Economical Devices for

 High Performance Switching \& Control Solutions
Series D7 Piloł Devices

22mm Design Saves Panel Space

Heavy Duty
Ratings

Features

TWO OPERATOR TYPES

- Plastic operator with captive front bezel
- Metal operator with die-cast zinc housing and captive shiny metal bezel

LESS INVENTORY, MORE CHOICES

- Wide range of style choices
- Modular design for mix and match flexibility
- Endless configurations from core components

QUICK, EASY INSTALLATION

- Tool-less mounting latch for quick assembly
- Anti-rotation tab for one person installation
- Snap-on back panel components

LONG ELECTRICAL \& MECHANICAL LIFE

- 10 million mechanical operations
- 10 million electrical cycles

ENVIRONMENTAL RATINGS

- UL Type 4/4X/13, IP66 Sealing
- Chemical resistant industrial grade thermoplastic body
- Corrosion and UV resistant

Modular Design Reduces Inventory

Order Assembled
or by Component

Sprecher + Schuh's rugged D7 pilot devices offer maximum flexibility and a wide choice for all applications. This 22 mm line is aesthetically appealing and modularly designed to make assembly and interchangeability easy. The D7 operators are available in two different body styles to meet every industrial application need. Both operators exhibit a new lower profile stylish appearance while maintaining the rugged performance necessary for demanding environments.

Complete Alecessortes

Superlor Deslgin

Q-Pulse Id: TMS1405

Selector Switch Safety

- Positive Detent
- Constant Energy

Push Buttons

Non-Illuminated

Momentary, Extended		Momentary, Flush*		Maintained, Flush	
Plastic	Metal	Plastic	Metal	Plastic	Metal
D7P-E0	D7M-E0	D7P-F0	D7M-F0	D7P-FAO	D7M-FAO
- D7P-E1	D7M-E1	D7P-F1	D7M-F1	D7P-FA1	D7M-FA1
- D7P-E2	D7M-E2	D7P-F2	D7M-F2	D7P-FA2	D7M-FA2
- D7P-E3	D7M-E3	D7P-F3	D7M-F3	D7P-FA3	D7M-FA3
- D7P-E4	D7M-E4	D7P-F4	D7M-F4	D7P-FA4	D7M-FA4
D7P-E5	D7M-E5	D7P-F5	D7M-F5	D7P-FA5	D7M-FA5
- D7P-E6	D7M-E6	D7P-F6	D7M-F6	D7P-FA6	D7M-FA6
๑ D7P-E9	D7M-E9	D7P-F9	D7M-F9	D7P-FA9	D7M-FA9

Illluminated
Twist-to-release, 40mm Mushroom
Plastic
D7P-LMT44
Complete Unit
$\begin{aligned} \text { 1NC: } & \text { D7P-LMT44PX01 } \\ 1 \text { Guardian: } & \text { D7P-LMT44PX01S }\end{aligned}$

Metal

Metal
D7M-LMT4

D7M-LMT44PX01 D7M-LMT44PX01S

Non-Illuminated Twist-to-release, 30 mm Mushroom $\begin{array}{ll}\text { Plastic } & \text { Metal } \\ \\ \text { D7P-MT34 }\end{array}$ Complete Unit
D7P-MT34PX01 Guardian: D7P-MT34PX01S D7M-MT34PX01S

MONOLITHIC

emergency

 STOPSELECTOR switches

MULITIfunction push buttons

COMPONENTS

Push-Pull Operators

2 Position Illuminated Push-Pull, 40mm Mushroo
$\begin{array}{ll}\text { Plastic } & \text { Metal } \\ \text { D7P-LMP43 } & \text { D7M-LMP43 }\end{array}$ - D7P-LMP44 D7M-LMP44 DTP-LMP45
Complete Unit
1NC:
1 Guardian:

, 30 mm Mushroo Plastic Metal $\begin{array}{ll}\text { D7P-LMP33 } & \text { D7M-LIP33 } \\ \text { D7P-LMP34 } & \text { D7M-LMP3 }\end{array}$ D7P-LMP35 D7M-LMP35

Push-Pull, 60 mm Mushroo

 Plastic D7P-IMP6 D7P-LMP63 D7P-LMP65
Metal

D7M-LMP63
D7M-LMP64 D7M-LMP65

2 Position Non-Illuminated
Push-Pull, 40mm Mushroom
Plastic Metal
$\begin{array}{ll}\text { - D7P-MP42 } & \text { D7M-MP42 } \\ \text { D7P-MP44 } & \text { D7M-MP44 }\end{array}$
Complete Unit
D7P-MP44PX01 D7M-MP44PX01
$\begin{array}{ll}\text { D7P-MP4P4P01 } & \text { D7M-MP44PX01 } \\ \text { D7M-MP44PX01S }\end{array}$
3 Position Illuminated
Push-Pull, 40mm Mushroom Momentary Maintained D7M-LMM40-E3 D7M-LMP40-E3 - D7M-LMM43-E3 D7M-LMP43-E3 - D7M-LMM44-E3 D7M-LIP44-E3 - D7M-LMM46-E3 D7M-LIP466-E3

3 Position Non-Illuminated

Push-Pull, 40mm Mushroom

 Momentary Maintained D7M-MM42-E3 D7M-MP42-E3 D7M-MM43-E3 D7M-MP43-E3Pilot Lights
$\begin{array}{ll}\text { Plastic } & \text { Metal } \\ -\quad \text { D7P-P0 } & \text { D7M-P0 }\end{array}$ - D7P-P0 D7M-P0 $\begin{array}{ll}\text { - D7P-P3 } & \text { D7M-P3 } \\ \text { - D7P-P4 } & \text { D7M-P4 }\end{array}$ $\begin{array}{ll}- \text { D7P-P4 } & \text { D7M-P4 } \\ - \text { D7P-P5 } & \text { D7M-P5 }\end{array}$

- DT7P-P5	D7M-P5
- D7P-P	D7M-P6

- DTPPP6	D7M-P6
-0 D7P-P7	D7M-P7

$$
\begin{array}{lll}
\circ & \text { D7P-P7 } & \text { D7M-P7 } \\
\varnothing & \text { D7P-P9 } & \text { D7M-P9 }
\end{array}
$$

$$
\begin{aligned}
& \text { D7M- DTP9 } \\
& \text { Piot light without ens ordifituser }
\end{aligned}
$$

PUSת=POLL operators

Reset Operators

Illuminated and Non-Illuminated Knob Selector Switch Operators (D7x-LS \& D7x-S)

Illuminated and Non-Illuminated
Momentary Mushroom Operators
40 mm and 60 mm (D7x-LMM \& D7x-MM)

Illuminated and Non-Illuminated
Push-Pull Mushroom Operators $30 \mathrm{~mm}, 40 \mathrm{~mm}$, and 60 mm (D7x-MP)

Mushroom Key Release Operator 40mm (D7x-MK)

Non-Illuminated 3-Position Multi-Function Operators (D7x-U3)

Illuminated and Non-Illuminated 2-Position Multi-Function Operators (D7x-LU2 \& D7x-U2)

Toggle Switch Operators (D7M-JM)

Reset Operators (D7x-R)

Selector Jog Operators (D7x-SJ)

Potentiometer with Resistive Element (D7P- POT)

* For Monolithic Devices see the D7D Monolithic Flyer

Sprecher + Schuh US Division Headquarters
15910 International Plaza Dr., Houston, TX 77032
Tel: (281) 442-9000; Fax: (800) 739-7370
www.sprecherschuh.com

Sprecher + Schuh Canadian Division
3610 Nashua Dr., Unit 10, Mississauga, Ontario L4V 1L2 Tel: (905) 677-7514; Fax: (905) 677-7663

Relays \& Sockets

IDEC

For more information on this product family, visit our website.
Additional resources include:

- New and updated product information
- Downloadable software demos \& upgrades
- Part configuration tool \& cross reference
- Online stock check \& ordering
- IDEC field sales \& distributor search
- Online literature request
- Downloadable manuals \& CAD drawings
- Manufacturer's suggested retail price list
- Product training schedule \& locations
- Advertising \& trade show schedules
- Press releases \& FAQs

Selection Guide

Selection Guide con't

Latching Relays		
	RR2KP Series	RY2KS
Appearance		
Page	776	779
Contact Configuration	DPDT	DPDT
Terminal	Pin	Blade
Contact Rating (resistive)	10A, 30V DC $10 \mathrm{~A}, 120 \mathrm{~V}$ AC	3A, 30V DC 3A, 120V AC
Contact Material	Silver	Silver, gold-plated

Solid State Relays

	RSC Series	RSS Series
Appearance	NEW	
Page	783	786
Output Configuration	1 Form A (SPST-NO)	1 Form A (SPST-NO)
Output Rating	$\begin{aligned} & 20 \mathrm{~A}, 30 \mathrm{~A}, 45 \mathrm{~A} \\ & 48 \text { - } 600 \mathrm{~V} \text { AC } \end{aligned}$	10A, 25A, 50A, 75A, 90A 48-660V AC
Output	Dual SCR (zero crossing)	

RH Series Compact Power Relays

SPDT through 4PDT, 10A contacts Compact power type relays

The RH series are miniature power relays with a large capacity. The RH relays feature 10A contact capacity as large as the RR series but in a miniature package. The compact size saves space.

Model

1. *Carries no UL recognition mark.
2. PCB terminal relays are designed to mount directly to a circuit board without any socket.

Ordering Information

When ordering, specify the Part No. and coil voltage code:
(example) RH3B-U AC120V

Sockets (for Blade Terminal Models)

Hold Down Springs \& Clips

AC Coil Ratings

Voltage (V)	Rated Current (mA) $\pm 15 \%$ at $20^{\circ} \mathrm{C}$								Coil Resistance (Ω) $\pm 10 \%$ at $20^{\circ} \mathrm{C}$				Operation Characteristics (against rated values at $20^{\circ} \mathrm{C}$)		
	AC 50Hz				AC 60Hz										
	SPDT	DPDT	3PDT	4PDT	SPDT	DPDT	3PDT	4PDT	SPDT	DPDT	3PDT	4PDT	Max. Continuous Applied Voltage	Pickup Voltage	Dropout Voltage
6	170	240	330	387	150	200	280	330	330	9.4	6.4	5.4			
12	86	121	165	196	75	100	140	165	165	39.3	25.3	21.2			
24	42	60.5	81	98	37	50	70	83	83	153	103	84.5			
110	9.6	-	18.1	21.6	8.4	-	15.5	18.2	18.2	-	2,200	1,800			
110-120	-	$\begin{aligned} & 9.4- \\ & 10.8 \end{aligned}$	-	-	-	8.0-9.2	-	-	-	-	-	-	110\%	$\begin{aligned} & 80 \% \\ & \text { maximum } \end{aligned}$	$\begin{aligned} & 30 \% \\ & \text { minimum } \end{aligned}$
120	8.6	-	16.4	19.5	7.5	-	14.2	16.5	16.5	-	10,800	7,360			
220	4.7	-	8.8	10.7	4.1	-	7.7	9.1	9.1	-	10,800	7,360			
220-240	-	4.7-5.4	-	-	-	4.0-4.6	-		-	18,820	-	-			
240	4.9	-	8.2	9.8	4.3	-	7.1	8.3	8.3	-	12,100	9,120			

DC Coil Ratings

Voltage (V)	Rated Current (mA) $\pm 15 \%$ at $20^{\circ} \mathrm{C}$				Coil Resistance (Ω) $\pm 10 \%$ at $20^{\circ} \mathrm{C}$				Operation Characteristics (against rated values at $\mathbf{2 0}^{\circ} \mathrm{C}$)		
	SPDT	DPDT	3PDT	4PDT	SPDT	DPDT	3PDT	4PDT	Max. Continuous Applied Voltage	Pickup Voltage	Dropout Voltage
6	128	150	240	250	47	40	25	24	110\%	$\begin{gathered} \text { 80\% } \\ \text { maximum } \end{gathered}$	$\begin{aligned} & \text { 10\% } \\ & \text { minimum } \end{aligned}$
12	64	75	120	125	188	160	100	96			
24	32	36.9	60	62	750	650	400	388			
48	18	18.5	30	31	2,660	2,600	1,600	1,550			
100-110	-	8.2-9.0	-	-	-	12,250	-	-			
110	8	-	12.8	15	13,800	-	8,600	7,340			

Specifications				
Contact Material		Silver cadmium oxide		
Contact Resistance ${ }^{1}$		$50 \mathrm{~m} \Omega$ maximum		
Minimum Applicable Load		24 V DC, $30 \mathrm{~mA} ; 5 \mathrm{~V}$ DC, 100 mA (reference value)		
Operate Time ${ }^{2}$	SPDT DPDT	20ms maximum		
	$\begin{aligned} & \text { 3PDT } \\ & \text { 4PDT } \end{aligned}$	25ms maximum		
Release Time ${ }^{2}$	SPDT DPDT	20ms maximum		
	$\begin{aligned} & \text { 3PDT } \\ & \text { 4PDT } \end{aligned}$	25ms maximum		
Power Consumption (approx.)	SPDT	AC: 1.1VA (50Hz), 1VA (60Hz)		DC: 0.8 W
	DPDT	AC: $1.4 \mathrm{VA}(50 \mathrm{~Hz}), 1.2 \mathrm{VA}(60 \mathrm{~Hz})$		DC: 0.9 W
	3PDT	AC: $2 \mathrm{VA}(50 \mathrm{~Hz}), 1.7 \mathrm{VA}(60 \mathrm{~Hz})$		DC: 1.5 W
	4PDT	AC: $2.5 \mathrm{VA}(5 \mathrm{~Hz}), 2 \mathrm{VA} \mathrm{(60Hz)}$		DC: 1.5 W
Insulation Resistance		100M 2 minimum (500 V DC megger)		
Dielectric Strength ${ }^{3}$	SPDT	Between live and dead parts: $2,000 \mathrm{~V} \mathrm{AC,1} 1$ minute Between contact and coil: $2,000 \mathrm{~V} \mathrm{AC}$,1 minute Between contacts of the same pole: $1,000 \mathrm{~V} \mathrm{AC,1} 1$ minute		
	$\begin{aligned} & \text { DPDT } \\ & \text { 3PDT } \\ & \text { 4PDT } \end{aligned}$	Between live and dead parts: $2,000 \mathrm{~V} \mathrm{AC}, 1$ minute Between contact and coil: $2,000 \mathrm{~V} \mathrm{AC,1}$ minute Between contacts of different poles: $2,000 \mathrm{~V} \mathrm{AC,1}$ minute Between contacts of the same pole: $1,000 \mathrm{~V} \mathrm{AC,1} 1$ minute		
Operating Frequency		Electrical: Mechanical:	1,800 operations/hour maximum 18,000 operations/hour maximum	
Vibration Resistance		Damage limits: Operating extremes:	10 to 55 Hz , amplitude 0.5 mm 10 to 55 Hz , amplitude 0.5 mm	
Shock Resistance		Damage limits: $1,000 \mathrm{~m} / \mathrm{s}^{2}(100 \mathrm{G})$ Operating extremes: $200 \mathrm{~m} / \mathrm{s}^{2}(20 \mathrm{G}-\mathrm{SPDT}$, DPDT) $100 \mathrm{~m} / \mathrm{s}^{2}(10 \mathrm{G}-3 P \mathrm{PT}, 4 \mathrm{PDT})$		
Mechanical Life		50,000,000 operations minimum		
Electrical Life	DPDT	500,000 operations minimum (120V AC, 10A)		
	$\begin{aligned} & \text { SPDT } \\ & \text { 3PDT } \\ & \text { 4PDT } \end{aligned}$	200,000 operations minimum (120V AC, 10A)		
Operating Temperature ${ }^{4}$	SPDT	-25 to $+50^{\circ} \mathrm{C}$ (no freezing)		
	$\begin{aligned} & \text { DPDT } \\ & \text { 3PDT } \\ & \text { 4PDT } \end{aligned}$	-25 to $+40^{\circ} \mathrm{C}$ (no freezing)		
Operating Humidity		45 to 85\% RH (no condensation)		
Weight (approx.)		SPDT: 24g, DPDT: 37g, 3PDT: 50g, 4PDT: 74g		

1. Measured using $5 \mathrm{~V} \mathrm{DC}, 1 \mathrm{~A}$ voltage drop method

Characteristics (Reference Data)

Electrical Life Curves

AC Load

(RH3/RH4) 1000

Maximum Switching Capacity

DC Load

(RH3/RH4)

Continuous Load Current vs. Operating Temperature Curve (Basic Type, With Check Button, and Top Bracket Mounting Type)
(RH1)

(RH2)

(RH3/RH4)

Internal Connection (View from Bottom)

Basic Type

SPDT

DPDT

3PDT

4PDT

With Check Button

Contacts can be operated by pressing the check button.

With Indicator (-L type)

	SPDT	3PDT	4PDT	DPDT		
$\begin{aligned} & \text { Below } \\ & \text { 100V } \\ & \text { AC/DC } \end{aligned}$				$\begin{aligned} & \text { Below } \\ & 24 \mathrm{~V} \\ & \text { AC/DC } \end{aligned}$		When the relay is energized, the indicator goes on. - Relay coils less than 100 V DC do not contain a protec
100 V AC/DC and over				24 V AC/DC and over		- Relay coils below 100 V use LED indicator, coils above 100 V use neon lamp indicator.

With Diode (-D type)

SPDT	DPDT	3PDT	4PDT	
				Contains a diode to absorb the back emf generated when the coil is de-energized. The release time is slightly longer. Available for DC coil only. - Diode Characteristics Reverse withstand voltage: 1,000V Forward current: 1A

With Indicator LED \& Diode (-LD type)

Dimensions (mm)

RH1B-U/RH1B-UL/RH1B-UD/RH1B-ULD

RH4B-U/RH4B-UL/RH4B-UD/RH4B-LD

RH3B-UT

Features

- 1-channel signal conditioner
- 230 V AC supply
- Level sensing input
- Adjustable range $5 \mathrm{k} \Omega 2$... $150 \mathrm{k} \Omega$
- Relay contact output
- Minimum/maximum control

Function

This signal conditioner provides the AC measuring voltage for the level-sensing electrodes.
Once the measured medium reaches the electrodes, the unit reacts by energizing a form C changeover relay contact. The module is voltage and temperature stabilized and guarantees defined switching characteristics. An electronic holding circuit is used that allows minimum/maximum control. Since the conductance of the media may vary, the relay response sensitivity is adjustable.
The normal output state can be reversed through the mode of operation switch S 1 .

Assembly

Connection

General specifications

Signal type

Supply

Connection
Rated voltage
Power consumption

Input

Connection
O pen circuit voltage/short-circuit current
Control input

Response sensitivity

Output

Connection
Output
Contact loading
Energized/De-energized delay

Electrical isolation

Input/Output
Input/power supply
Output/power supply

Directive conformity

Electromagnetic compatibility
Directive 2004/108/EC

Low voltage
Directive 2006/95/EC

Conformity

Insulation coordination
Electrical isolation
Electromagnetic compatibility
Protection degree
Ambient conditions
Ambient temperature

Mechanical specifications

Protection degree
Connection
Mass
Dimensions
Mounting

Indication and operation

Controls

General information

Supplementary information

Digital Input
terminals 11 (L1), 12 (N)
207 ... 253 V AC, 45 ... 65 Hz
approx. 0.8 W
terminals 1 (mass), 2 (min), 3 (max)
approx. $10 \mathrm{~V} \mathrm{AC} \mathrm{(approx}$.1 Hz) / approx. 5 mA
min./max. control system: terminals $1,2,3$
on/off control system: terminals 1,3
$5 \ldots 150 \mathrm{k} \Omega$, adjustable via potentiometer (20 turns)
terminals $7,8,9$
1 changeover contact
$253 \mathrm{~V} \mathrm{AC} / 2 \mathrm{~A} / \cos \phi>0.7 ; 40 \mathrm{~V} \mathrm{DC} / 2 \mathrm{~A}$ resistive load
approx. $1 \mathrm{~s} /$ approx. 1 s
basic insulation according to EN 50178, rated insulation voltage $253 \mathrm{~V}_{\text {eff }}$
basic insulation according to EN 50178, rated insulation voltage $253 \mathrm{~V}_{\text {eff }}$
basic insulation according to EN 50178, rated insulation voltage $253 \mathrm{~V}_{\text {eff }}$

EN 61326-1:2006

EN 50178:1997

EN 50178:1997
EN 50178:1997
NE 21:2006
IEC 60529:2001
$-20 \ldots 60^{\circ} \mathrm{C}\left(-4 \ldots 140^{\circ} \mathrm{F}\right)$

IP20
screw connection, max. $2.5 \mathrm{~mm}^{2}$
approx. 110 g
$20 \times 107 \times 115 \mathrm{~mm}(0.8 \times 4.2 \times 4.5 \mathrm{in})$, housing type B1
on 35 mm DIN mounting rail acc. to EN 60715:2001
switch S 1
Position I open circuit current: In the open circuit current principle, the relay becomes active when the limit is reached.
Position II closed circuit current: In closed circuit current principle, the relay is activated when power is applied. The relay is deactivated when the limit is reached.

Statement of C onformity, Declaration of Conformity, Attestation of Conformity and instructions have to be observed where applicable. For information see www.pepperl-fuchs.com.

AC moving iron ammeters

Current Transformer operated ammeters including scale

Cat. No.
RQ96E-ACT 5 A 5X 100 A

0-10/50 A	10A
0-12/60 A	12A
0-15/75 A	15A
0-20/100 A	20A
0-25/125 A	25A
0-30/150 A	30A
0-40/200 A	40A
0-50/250 A	50A
0-60/300 A	60A
0-75/375 A	75A
0-80/400 A	80A
0-100/500 A	100A
0-120/600 A	120A
0-150/750 A	150A
0-200/1000 A	200A
0-250/1250 A	250A
0-300/1500 A	300A
0-400/2000 A	400A
0-500/2500 A	500A

Other ranges available on request, up to $4 \mathrm{kA} / 20 \mathrm{kA}$.

240° Instruments

Other ranges available on request, up to $4 \mathrm{kA} / 20 \mathrm{kA}$.

Notes: ${ }^{1}$) Terminal covers.
$\left.{ }^{2}\right)$ Meter ordering.
${ }^{3}$) Specify 1 A or 5 A CT.

Refer Catalogue ITC

Overall dimensions (mm) and weight $-R Q / 90^{\circ}$ and $A Q / 240^{\circ}$ Instruments

Cat. No.	A	B	C	D	E	Weight (g)
RQ48	48×48	44.5×44.5	40	22	45	100
AQ48	48×48	44.5×44.5	57.5	22	45	200
RQ72	72×72	66.5×66.5	44	12	68	150
AQ72	72×72	66.5×66.5	59	12	68	300
RQ96	96×96	91×91	44	12	92	210
AQ96	96×96	91×91	59	12	92	400
RQ144	144×144	137×137	53.5	12	138	450
AQ144	144×144	137×137	81.5	12	138	550

Dimensions

Terminal cover

C191HM

Powermeter and Harmonic Manager

Installation and Operation Manual

BG0280 Rev. A4
(ace sol of 1432-2

C191HM Powermeter \& H

Installation and Operation Manual

LIMITED WARRANTY

The manufacturer offers the customer an 24-month functional warranty on the instrument for faulty workmanship or parts from date of dispatch from the distributor. In all cases, this warranty is valid for 36 months from the date of production. This warranty is on a return to factory basis.

The manufacturer does not accept liability for any damage caused by instrument malfunction. The manufacturer accepts no responsibility for the suitability of the instrument to the application for which it was purchased.

Failure to install, set up or operate the instrument according to the instructions herein will void the warranty.

Your instrument may be opened only by a duly authorized representative of the manufacturer. The unit should only be opened in a fully anti-static environment. Failure to do so may damage the electronic components and will void the warranty.

NOTE

The greatest care has been taken to manufacture and calibrate your instrument. However, these instructions do not cover all possible contingencies that may arise during installation, operation or maintenance, and all details and variations of this equipment are not covered by these instructions.
For additional information regarding installation, operation or maintenance of this instrument, contact the manufacturer or your local representative or distributor.

IMPORTANT

Please read the instructions this manual before performing installation, and take note of the following precautions:

Ensure that all incoming AC power and other power sources are turned OFF before performing any work on the instrument. Failure to do so may result in serious or even fatal injury and/or equipment damage.

Before connecting the instrument to the power source, check the labels on the side of the instrument to ensure that your instrument is equipped with the appropriate power supply voltage, input voltages, currents and communication protocolf lication.

Under no circumstances should the instrument be connected to a power source if it is damaged.

To prevent potential fire or shock hazard, do not expose the instrument to rain or moisture.

The secondary of an external current transformer must never be allowed to be open circuit when the primary is energized. An open circuit can cause high voltages, possibly resulting in equipment damage, fire and even serious or fatal injury. Ensure that the current transformer wiring is made through shorting switches and is secured using an external strain relief to reduce mechanical strain on the screw terminals, if necessary.

Setup procedures must be performed only by qualified personnel familiar with the instrument and its associated electrical equipment.

DO NOT open the instrument under any circumstances.
Modbus is a trademark of Modicon, Inc.

Read this manual thoroughly before connecting the meter to the current carrying circuits. During operation of the meter, hazardous voltages are present on input terminals. Failure to observe precautions can result in serious or even fatal injury or damage to equipment.

Table of Contents

Quick Start iv
Chapter 1 Introduction 1
1.1 About This Manual 1
1.2 About The C191HM 1
Chapter 2 Installation 7
2.1 Mechanical Installation 7
2.2 Electrical Installation 8
Chapter 3 Using The Menus 18
Chapter 4 Setup Menus 20
4.1 Basic Setup Menu 20
4.2 Communications Port Setup Menu 22
4.3 Digital Input Setup Menu 23
4.4 Analog Output Setup Menu. 24
4.5 Pulsing Output Setup Menu 26
4.6 Alarm/Event Setpoints Setup Menu 27
4.7 Relay Operation Control Menu 32
4.8 Display Setup Menu. 33
4.9 User Selectable Options Menu 35
4.10 Access Control Menu 37
4.11 Reset/Synchronization Menu 38
Chapter 5 Data Display 39
5.1 Navigating in the Display Mode. 39
5.2 Data Display Formats 42
5.3 Self-Test Diagnostics Display. 46
Chapter 6 Viewing Status Informati 7
6.1 The Status Information Menu 47
6.2 Status Display Formats 47
Appendix: Technical S tions 49
Index 54

Quick Start

TYPICAL INSTALLATION

Wiring Mode 4LL3 (see Section 2.2.4 for full instructions)

SETUP (see Chapter 4 for full i)

Setups can be performed directly on the front panel or via PComTest communication software.

Basic and Communications Default Setups

Code	\|'arameter	Options	Description
ConF	Wiring mode	4Ln3	4-wire Wye using 3 PTs (3 element), line to neutral voltage readings
Pt	PT ratio	1.0	The phase potential transformer ratio
Ct	CT primary current	5	The primary rating of the phase current transformer, A
d.P	Power demand period	15	The length of the demand period for power demand calculations, in minutes. $\mathrm{E}=$ external synchronization (1)
n.dp	Number of power demand periods	1	The number of demand periods to be averaged for sliding window demands 1 = block interval demand calculation
A.dP	Ampere/Volt demand period	900	The length of the demand period for volt/ampere demand calculations, in seconds $0=$ measuring peak current
buF	Averaging buffer size	8	The number of measurements for RMS sliding averaging
r rst	Reset enable/disable	diS	Protects all reset functions, both via the front panel or communications.
F	I frequency	50/, 60	The nominal power utility frequency, Hz
LoAd	Maximum demand load current	0	The maximum demand load current used in TDD calculations ($0=$ CT primary current)
Prot	Communications protocol	ASCII	ASCII protocol
Addr	Address	0 (ASCII)	Powermeter address
bAud	Baud rate	9600	9600 bps
dAtA	Data format	$8 n$	8 bits, no parity
CPtb	ASCII compatibility mode		Disables ASCII compatibility mode (For more information, see ASCII Communications Protocol Reference Guide)

Chapter 1 Introduction

1.1 About This Manual

This manual is intended for the user of the C191HM Powermeter. This Powermeter is a microprocessor-based instrument used for the measurement, monitoring, and management of electrical parameters.

This chapter gives an overview of this manual and an introduction to the C191HM.

Chapter 2, Installation, provides instructions for mechanical and electrical installation.

Chapter 3, Using the Menus, presents the structure of menus for setup and status viewing.

Chapter 4, Setup Menus, provides instructions for performing parameter setup via the front panel.

Chapter 5, Data Display, guides you through the display pages.
Chapter 6, Viewing Status Information, tells you how to access additional status information on the instrument. This information may be useful during installation.

Chapter 7 contains Technical S the C191HM.

1.2 About The C191HM

The C191HM is a compact panel mounted three-phase AC Powermeter and Harmonic Manager, specially designed to meet the requirements of users ranging from electrical panel builders to substation operators. The C191HM provides basic voltage, current, frequency, power, power factor and energy measurements, plus total harmonic distortion (THD, TDD and K-Factor) and individual harmonic measurements.

The C191HM is suitable for mounting on $136 \times 136 \mathrm{~mm}$ square cut-outs.

Features

Harmonic Measurements

- Individual voltage and current harmonics with harmonic angles up to order 40.
- Harmonic power direction (through PAS software)
- Synthesized voltage and current waveforms (through PAS software)

Display

The front panel features bright LED displays (three windows, up to 45 pages) with adjustable display update time. Display auto scroll is available on the main
screen with a programmable scroll interval of 2 to 15 seconds. Automatic return to the main screen is available after 30 seconds of uninterrupted use. The front panel also includes

- bar graph showing percentage load with respect to user-definable nominal (100\%) load current
- alarm LED providing a local indication when a predefined alarm condition appears. The alarm LED is shut off manually (by pressing on both up and down keys more than 5 sec)
- RXD/TXD LEDs showing communications receive/transmit status

Setu th optional password protection. 16 programmable setups are provided for alarm and control functions (for programmable parameters, see 'Measured Parameters' below).

Communications are available using an RS-232 or RS-485 standard (factory set), with ASCII/Modbus (and optional DNP3.0) protocols. 120 user assignable registers are available in ASCII/Modbus protocols.

Eight relays are provided for energy pulsing (KYZ) or alarm and remote control. Contacts of six relays may switch loads up to 250 V , 5A AC and are recommended for alarm and remote control; contacts of two relays may switch loads up to $250 \mathrm{~V}, 3 \mathrm{~A}$ AC and may be used for energy pulsing.

One optically isolated analog output is provided for remote monitoring or control. Current loop options are $0-20$ and $4-20 \mathrm{~mA}$. The analog output must be used with an external power supply.

Four counters are provided for counting user-defined events or their duration. These can be used for counting total operation time of generators or overload time of transformers or power lines. The counters are operated and released by user-defined triggers.

One digital i tf toring external contacts or as an external synchronization input for power demand interval synchronization. When no external synchronization pulse is provided, the power demand interval can be synchronized through communications.

Three user-selectable opti
 Iculation mode

Energy rollover value

This option specifies the point at which the energy value rolls over to zero.
Phase energy calculations mode
This option is used to enable or disable phase energy calculations.

Measured Parameters

Note: Real-time values are measured over 1 cycle of fundamental frequency; Average values are of 8,16 or 32 real-time values

Parameter	Display	Com	Output		
			Analog	Pulse	Alarm
Average Amps, Volts, Frequency			$\begin{aligned} & \$=\text { setup via PC } \\ & \# \text { = setup via panel } \end{aligned}$		
Average RMS voltage per phase L-N	\checkmark	\checkmark	\#\$		\#\$
A Itage per phase L-L (1)	\checkmark	\checkmark	(1)		(1)
Average RMS current per phase	\checkmark	\checkmark	\#\$		\#\$
Average frequency	\checkmark	\checkmark	\#\$		\#\$
Average neutral current	\checkmark	\checkmark	\#\$		\#\$
Voltage \& current unbalance	\checkmark	\checkmark			
Amps \& Volt Demand Parameters					
Ampere demand per phase		\checkmark			\#\$
Volt demand per phase		\checkmark			\#\$
Ampere maximum demand per phase	\checkmark	\checkmark			
Voltage maximum demand per phase	\checkmark	\checkmark			
Average Power Values					
Average active power per phase	\checkmark	\checkmark			
Average reactive power per phase	\checkmark	\checkmark			
Average apparent power per phase	\checkmark	\checkmark			
Average total active power	\checkmark	\checkmark	\#\$		\#\$
Average total reactive power	\checkmark	\checkmark	\#\$		\#\$
Average total apparent power	\checkmark	\checkmark	\#\$		\#\$
Average power factor per phase	\checkmark	\checkmark			
Average total power factor	\checkmark	\checkmark	\#\$		\#\$
Power Demand Parameters					
Active power accumulated demand		\checkmark	\#\$		\#\$
Apparent power accumulated demand		\checkmark	\#\$		\#\$
Active power demand		\checkmark			\#\$
Active power sliding demand		\checkmark			\#\$
Apparent power demand		\checkmark			\#\$
Apparent power sliding demand		\checkmark			\#\$
Active power predicted demand		\checkmark			\#\$
Apparent power predicted demand		\checkmark			\#\$
Active power maximum demand	\checkmark	$\sqrt{ }$			
Apparent power maximum demand	\checkmark	\checkmark			
Energy Per Phase					
Active energy import per phase	\checkmark	\checkmark			
Reactive energy import per phase	\checkmark	\checkmark			
Apparent energy per phase	\checkmark	\checkmark			
Total Energy					
Total active energy import	\checkmark	\checkmark		\#\$	

Parameter	Display	Com	Output		
			Analog	Pulse	Alarm
Total active energy export	\checkmark	\checkmark		\#\$	
Total reactive energy import	\checkmark	\checkmark		\#\$	
Total reactive energy export	\checkmark	\checkmark		\#\$	
Total reactive energy net		\checkmark			
Total reactive energy absolute				\#\$	
Total apparent energy	\checkmark	\checkmark		\#\$	
Min/Max Log					
Min/Max volts	\checkmark	\checkmark			
Min/Max amps, neutral current	\checkmark	\checkmark			
Min/Max frequency	\checkmark	\checkmark			
Min/Max kW, kvar, kVA, PF	\checkmark	\checkmark			
Real-time Amps, Volts, Frequency					
RT RMS voltage per phase L-N		\checkmark	\#\$		\#\$
RT RMS voltage per phase L-L (1)		\checkmark	(1)		(1)
RT RMS current per phase		\checkmark	\#\$		\#\$
RT frequency		\checkmark	\#\$		\#\$
RT neutral current		$\sqrt{ }$			
Real-time Power Values					
RT active power per phase		\checkmark			
RT reactive power per phase		\checkmark			
RT apparent power per phase		\checkmark			
RT total active power		\checkmark	\#\$		
RT total reactive power		\checkmark	\#\$		
RT total apparent power		\checkmark	\#\$		
RT power factor per phase		\checkmark			
RT total power factor		\checkmark	\#\$		
Real-time Harmonic Values					
RT voltage THD per phase		\checkmark			\#\$
RT current THD per phase		\checkmark			\#\$
RT current TDD per phase		\checkmark			\#\$
RT K-Factor per phase		\checkmark			\#\$
Average Harmonic Values					
Average Voltage THD per phase	\checkmark	\checkmark			
Average Current THD per phase	\checkmark	\checkmark			
Average Current TDD per phase	\checkmark	\checkmark			
Average K-Factor per phase	\checkmark	\checkmark			
Fundamental Frequency Values (H01)					
Voltage \& current per phase		\checkmark			
kW, PF per phase	\checkmark	\checkmark			
kvar, kVA per phase		\checkmark			
Total kW, PF	\checkmark	\checkmark			
Total kvar, kVA		\checkmark			

Parameter	Dis- play	Com	Output		
			Analog	Pulse	Alarm
Individual Harmonic Distortion					
Voltage harmonics 1-40 per phase		\checkmark			
Current harmonics 1-40 per phase		\checkmark			
Odd voltage harmonics 3-39 per phase	\checkmark				
Odd current harmonics 3-39 per phase	\checkmark				
High odd voltage harmonics 3-39 triggers					\#\$
High odd current harmonics 3-39 triggers					\#\$
Voltage harmonics angles 1-40 per phase		\checkmark			
Current harmonics angles 1-40 per phase		\checkmark			
Phase Rotation	\checkmark				\#\$
Counters	\checkmark	\checkmark			
Status Input	\checkmark	\checkmark			\#\$
Relay Status	\checkmark	\checkmark			
Remote Relay Control		\checkmark			
Alarm Trigger Status		\checkmark			\#\$
Self-Diagnostic Tests	\checkmark	\checkmark			

(1) For 4Ln3 and 3Ln3 wiring configurations line to line and line to neutral voltages are displayed and transmitted via communication simultaneously; analog output and set points use line to neutral voltages. For other configurations only line to line voltages are used.

Instrument Dimensions

Figure 1-1 C191HM Dimensions

Chapter 2 Installation

2.1 Mechanical Installation

Prepare the panel cut-out, $136 \times 136 \mathrm{~mm}$, prior to mounting.
STEP 1: Place the instrument through the cut-out.
STEP 2: Assemble the latches onto the outer wall of the enclosure.
STEP 3: Tighten the screws.

Figure 2-1 Mounting the C191HM

2.2 Electrical Installation

Before installation ensure that all incoming power sources are shut OFF. Failure to observe this practice can result in serious or even fatal injury and damage to equipment.

2.2.1 Power Supply Connection

The power supply can be dedicated-fused, or from a monitored voltage if it is within the instrument's power supply range. Use an external circuit breaker or switch.

AC power supply: line to terminal 12; neutral to terminal 10.
DC power supply: positive to terminal 12; negative to terminal 10.

2.2.2 Current Inputs

Connect the instrument to the current transformer as shown in Figures 2-2 through 2-8.

2.2.3 Ground

Connect the chassis ground C 191 HM terminal to the switchgear earth ground using dedicated wire of greater than $2.5 \mathrm{~mm}^{2} / 13$ AWG.

2.2.4 Voltage Inputs

Input of 690 V (Standard): Use any of the seven wiring configurations shown in Figures 2-2 through 2-8.
Input of 120V (Opti
Ily implies use of a potential transformer (PT). The PT requires use of any of the four wiring configurations shown in Figures 2-4 through 2-7

Wiring Configuration (See parameter setup instructions in Section 4.1)	Wiring	
3-wire direct connection using 2 CTs (2-element)	Setup Mode	Connection
4-wire WYE direct connection using 3 CTs (3-element)	3dir2	Figure 2-2
4-wire WYE connection using 3 PTs, 3 CTs (3-element)	4Ln3 or 4LL3	Figure 2-3
3-wire open delta connection using 2 PTs, 2 CTs (2-element)	3OP2	Figure 2-5
3-wire open delta connection using 2 PTs, 3 CTs (2½-element)	3OP3	Figure 2-4
4-wire WYE connection using 2 PTs, 3 CTs (2½-element)	3Ln3 or3LL3	Figure 2-7
4-wire delta direct connection using 3 CTs (3-element)	4Ln3 or 4LL3	Figure 2-8

Figure 2-2
Three Wire Direct Connection Using 2 CTs (2-element)

Wiring Mode $=\mathbf{3 d i r} 2$

c99-09037

Figure 2-5
Three Wire Open Delta Connection Using 2 PTs, 2 CTs (2-element)

Wiring Mode $=\mathbf{3 0 P 2}$

Figure 2-6
Three Wire Open
Delta Connection
Using 2 PTs, 3 CTs (21⁄-element) Wiring Mode $=30 \mathrm{P} 3$

Wiring Mode = 3Ln3

Figure 2-8 Four Wire Delta Direct Connection Using 3 CTs (3 element) Wiring Mode $=4 \mathrm{LL} 3$ or 4 Ln 3

2.2.5 Relay

Eight relays are provided for energy pulsing, alarms or remote control.

Figure 2-9 Relay Connection

2.2.6 Status Input

One status input is provided for status monitoring or external synchronization input f

Figure 2-10 Status Input Connection

2.2.7 Analog Output

The C191HM provides one optically isolated analog output with current output options of $0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$ (current loop load of up to 500 Ohm). The analog output must be used with a 24 V DC external power supply.

c99-090 43
Figure 2-11 Analog Output Connection

2.2.8 Communications

The C191HM is provided with an RS-232 or RS-485 communication port. Connections can be made as follows:

RS-232: distance of up to 15 meters, one C191HM to one computer/PLC, using a flat or twisted pair cable of $0.33 \mathrm{~mm} 2 / 22$ AWG
RS-485: distance of up to 1200 meters, up to 32 instruments on one multi-drop line

Figure 2-12 Connection for 25-pin Modem Connector

POWERMETER	RS-232		9-PIN DB9 MALE CONNECTOR		
	15	SG	GND	5	
	13	TxD	TxD	3	MODEM
	14	RxD	RxD	2	

Figure 2-13 Connection for 9-pin Modem Connector

Figure 2-14 RS-232 Simple 3-Wire Computer Connection, 25-pin

Figure 2-15 RS-232 Simple 3-Wire Computer Connection, 9-pin

Figure 2-16 RS-485 Multi-drop Computer Connection
NOTE: Where an RS-232/RS-485 converter is used on a computer connection, R1 is not applicable since it is built in to the converter.

Activity on the communications port lines is indicated via the TXD and RXD LEDs, on the front panel and via the Status Information menu (see Chapter 6).
A full description of the communication protocols may be found in the C191HM ASCII, Modbus and DNP3.0 Communications Manuals provided with your
instrument.

Chapter 3 Using The Menus

Press and release SELECT to enter the setup mode. The primary menus will appear:

| StA | $-\quad$ Status Information Menu (see Chapter 6) |
| :--- | :--- | :--- |
| OPS | Setup Options Menu |
| CHG | Setup Change Menu (see Chapter 4) |

Press SELECT again to activate the window of the desired primary menu. Press ENTER.

Select CHG to initialize or modify the instrument setup, or to clear the accumulated values stored in the instrument. Entry to this menu can be protected by a password.

Select StA to view extended status information which may be useful during installation and in certain applications.
SELECT $\rightarrow \quad$ StA $\quad \rightarrow \quad$ ENTER

Select OPS for viewing (not editing) the instrument setup options.
SELECT $\rightarrow \quad \rightarrow \quad \rightarrow \quad$ ENTER

After selecting either OPS or CHG, the list of setup menus is displayed in the upper window. Figure 3-1 presents a complete menu list. Depending on the model of your instrument, some menus may not appear.

Password

The Setu
-defined password comprised of 4 digits. The instrument is shipped with password protection disabled. To enable password protection, go to the Access Control Menu (see Section 4.10).

The Password Menu appears if password protection is enabled.

To enter a password:

\checkmark Set the first digit using the up and down arrow keys.
\checkmark Press SELECT to advance to the next digit.

PASS
0000 苜
苜

\checkmark Set the other password digits in the same manner.
\checkmark Press ENTER to continue setup. If your password is incorrect, you will return to the Primary Selection Menu.

Figure 3-1 Menu Structure

Chapter 4 Setup Menus

NOTE: Instrument setup can be performed directly on the front panel using the setup menus or via communications using PComTest communication software. PComTest is supplied with your instrument and provides full setup capabilities for your instrument. For information on using PComTest, refer to the user documentation supplied with your instrument.

Setup	Display		PComTest
Basic	+	+	
Communication port	++	+	
User Selectable options	++	+	
Analog output	+	+	
Digital inputs	+	+	++ Recommended method
Alarm/Event set points	+	+	
Pulsing output	+	+	
Pulse counter	+	+	
Assignable registers	-	++	
Display	++	-	

4.1 Basic Setup Menu

This menu contains the basic configuration options which define the general operating characteristics of your instrument, such as wiring mode, input scales, the size of the RMS averaging buffer, etc. Table 4-1 lists the basic setup options, their code names and applicable ranges.

Activate the middle window to scroll through the list of available options, and then activate the lower window to set the option value.

bASc

ConF
4L-n

To select and view a setup option:
\checkmark Press SELECT to activate the middle window
\checkmark Use the up/down arrow keys to scroll to the desired option. The current value for this option appears in the lower window.

To change the value of the selected option:

\checkmark Press SELECT to make the lower window active.
\checkmark Press the up/down arrow keys to scroll to the desired value.
\checkmark Press ENTER to store the selected value, or press ESC to quit the setup menu.

Table 4-1 Basic Setup Options (* default setting)

Code	I'arameter	Options	Description
ConF	Wiring mode	3OP2	3-wire open delta using 2 CTs (2 element)
		4Ln3*	4 -wire Wye using 3 PTs (3 element), line to neutral voltage readings
		3dir2	3 -wire direct connection using 2 CTs (2 element)
		4LL3	4-wire Wye using 3 PTs (3 element), line to line voltage readings
		30 P 3	3 -wire open delta using 3 CTs ($21 / 2$ element)
		3Ln3	4 -wire Wye using 2 PTs ($21 / 2$ element), line to neutral voltage readings
		3LL3	4 -wire Wye using 2 PTs ($21 / 2$ element), line to line voltage readings
Pt	PT ratio	10*-6,500.0	The phase potential transformer ratio
Ct	CT primary current	$\begin{aligned} & 1-6,500 \mathrm{~A} \\ & (5 *) \end{aligned}$	The primary rating of the phase current transformer
d.P	Power demand period	$\begin{aligned} & 1,2,5,10 \\ & 15^{*}, 20,30 \\ & 60, \mathrm{E} \\ & \hline \end{aligned}$	The length of the demand period for power demand calculations, in minutes. $\mathrm{E}=$ external synchronization (1)
n.dp	Number of power demand periods	$\begin{aligned} & 1-15 \\ & \left(1^{*}\right) \end{aligned}$	The number of demand periods to be averaged for sliding window demands 1 = block interval demand calculation
A.dP	Ampere/Volt demand period	$\begin{aligned} & 0-1800 \mathrm{~s} \\ & \left(900^{*}\right) \end{aligned}$	The length of the demand period for volt/ampere demand calculations in seconds $0=$ measuring peak current
buF	Averaging buffer size	8*,16,32	The number of measurements for RMS sliding averaging
r St	Reset enable/disable	diS*, En	Protects all reset functions, both via the front panel or communications.
Freq	Nominal frequency	$50,60 \mathrm{~Hz}$ (2)	The nominal power utility frequency
LoAd	Maximum demand load current	$\begin{aligned} & 0-6,500 \mathrm{~A} \\ & (0 *) \end{aligned}$	The maximum demand load current used in TDD calculations ($0=$ CT primary current)

(1) When the power demand period is specified in minutes, synchronization of the demand interval can be made through communications (see the C191HM ASCII/Modbus Reference Guides) or via the front panel (see Section 4.11). If the power demand period is set to External Synchronization, an external synchronization pulse denoting the start of the next demand interval can be provided through a digital input or can be simulated by using the synchronization command sent via communications.
(2) 60 Hz default for North America; elsewhere, default is 50 Hz .

NOTES

1) The maximum value for CT PRIMARY CURRENT \times PT RATIO is $10,000,000$. If this product is greater, power related values will be zeroed.
2) Always specify WIRING MODE, PT RATIO and CT PRIMARY CURRENT prior to setting up alarm setpoints, otherwise the alarm/event setpoints which use these parameters will automatically be disabled.

4.2 Communications Port Setup Menu

SELECT \rightarrow CHG \rightarrow ENTER $\uparrow \downarrow \rightarrow$ Port \rightarrow ENTER

This menu allows you to access the communications port options that the C191HM uses to communicate with a master computer. Table 4-2 lists the communications options, their code names and applicable choices.

Activate the middle window to scroll through the list of available options, and then activate the lower window to set the option value.

Port
Prot
ASCII

To select and view a setup option:

\checkmark Press SELECT to activate the middle window.
\checkmark Use the up/down arrow keys to scroll to the desired option. The option setting will appear in the lower window.

To change the selected option:

\checkmark Press SELECT to activate the lower window.
\checkmark Press the up/down arrow keys to scroll to the desired value.
\checkmark Press ENTER to store the selected value or press ESC to quit the setup menu.

Table 4-2 Communications Options (* default setting)

Code	Parameter	Options	Description
Prot	Communications protocol	$\begin{aligned} & \text { ASCII* } \\ & \text { rtu } \end{aligned}$	ASCII protocol Modbus RTU protocol
Addr	Address	$\begin{aligned} & \text { 0*-99 ASCII } \\ & \text { 1*-247 Modbus } \end{aligned}$	Powermeter address
bAud	Baud rate	110 300 600 1200 2400 4800 9600* 19.20	110 baud 300 baud 600 baud 1200 baud 2400 baud 4800 baud 9600 baud 19,200 baud
dAtA	Data format	$\begin{aligned} & 7 E \\ & 8 n * \\ & 8 E \end{aligned}$	7 bits, even parity 8 bits, no parity 8 bits, even parity
CPtb	ASCII compatibility mode	diS*, En	Disables/enables ASCII compatibility mode. For more information, see ASCII Communications Protocol Reference Guide

4.3 Digital Input Setup Menu

This menu is used to set up a digital input provided by the C191HM.
The digital input can be configured as:

- a status input to monitor external contact status, or
- an external synchronization pulse input to receive an external synchronization pulse indicating the beginning of a new demand interval f ts.

The setup menu is used for allocating an external synchronization pulse input. If you do not allocate the digital input as an external synchronization input, it is automatically configured as a status input

External synchronization
nput

| E.Snc |
| ---: | ---: |
| 2 |
| 2 |

To change the digital input allocati
SELECT to activate the middle window.
\checkmark Use the up/down arrow keys to set the input allocation status.
\checkmark Press ENTER to store your new inputs allocation.
\checkmark Press ESC to leave the allocation unchanged or to quit the menu.
" 1 " indicates that the input is allocated as the external synchronization pulse input; " 0 " indicates that the input is allocated as the status input.

NOTES

1. A digital input configured as the status input can be monitored via the Status Informati (see Chapter 6) and communications.
2. If the digital input has been allocated as the external synchronization pulse input, synchronization of the demand interval through communications is not available.

4.4 Analog Output Setup Menu

[This section is relevant to instruments ordered with this option.]

This menu allows you to set up an output value and its zero and full scales for the internal analog output. Table 4-3 explains the analog output setup options, and Table 4-4 lists all measurement parameters that can be directed to analog output.

Outpu	Zero	Full-scale output
Aout	Aout	Aout
Outp	Lo	Hi
rt U1 ${ }^{\text {ºs }}$	0 园	828

To view the setup options for the analog output:

\checkmark Press SELECT to activate the middle window.
\checkmark Use the up/down arrow keys to scroll to the desired option. The value associated with this option is displayed in the lower window.

To change the setu tions for the selected channel:

\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to scroll to the desired value.
\checkmark Press ENTER to store the selected value, or press ESC to leave the value unchanged.
\checkmark Press ENTER again to store the setup for the channel.
To quit the setu thout changes:
\checkmark From the middle or lower window, press ESC.

To quit the menu:

\checkmark From the upper window, press ESC or ENTER.

NOTES

1. Except for the signed power factor, the output scale is linear within the value range. The scale range will be inverted if the full scale specified is less than the zero scale.
2. The output scale for the signed power factor is symmetrical with regard to ± 1.000 and is linear from -0 to -1.000 , and from 1.000 to +0 (note that $-1.000 \equiv+1.000$). Negative power factor is output as [-1.000 minus measured value], and non-negative power factor is output as $[+1.000$ minus measured value]. To define the entire range for power factor from -0 to +0 , the scales would be specified as $-0.000 / 0.000$.
3. Each time you select the output parameter for the analog channel, its zero and full scales are set by default to the lower and upper parameter limits, respectively.

Table 4-3 Analog Output Setup Options

Code	Option	Description
OutP	Output parameter	The output parameter for the analog output channel
Lo	Zero scale $(0 / 4 \mathrm{~mA})$	The reading of the parameter corresponding to a zero- scale current output
Hi	Full scale $(1 / 20 \mathrm{~mA})$	The reading of the parameter corresponding to a full-scale current output

Table 4-4 Analog Output Parameters

Code	Parametır	Unit	Scale
nonE	Output disabled		0
Real-time Measurements			
r. $\cup 1$	Voltage L1/L12	V/kV	0 to Vmax
r. U 2	Voltage L2/L23	V/kV	0 to Vmax
r. U 3	Voltage L3/L31	V/kV	0 to Vmax
r. C1	Current L1	A	0 to Imax
r. C2	Current L2	A	0 to Imax
r. C3	Current L3	A	0 to Imax
r. P	Total kW	kW/MW	-Pmax to Pmax
r. q	Total kvar	kvar/Mvar	-Pmax to Pmax
r. S	Total k		
r. PF	Total PF		-0.000 to 0.000
r. PF.LG	Total PF lag		0 to 1.000
r. PF.Ld	Total PF lead		0 to 1.000
r. Fr	Frequency (1)	Hz	0 to 100.00
Average Measurements			
A. $\cup 1$	Voltage L1/L12	V/kV	0 to Vmax
A. $\cup 2$	Voltage L2/L23	V/kV	0 to Vmax
A. $\cup 3$	Voltage L3/L31	V/kV	0 to Vmax
A. C1	Current L1	A	0 to Imax
A. C 2	Current L2	A	0 to Imax
A. C3	Current L3	A	0 to Imax
A. P	Total kW	kW/MW	-Pmax to Pmax
A. q	Total kvar	kvar/Mvar	-Pmax to Pmax
A. S	Total k		
A. PF	Total PF		-0.000 to 0.000
A. PF.LG	Total PF lag		0 to 1.000
A. PF.Ld	Total PF lead		0 to 1.000
A. neU.C	Neutral current	A	0 to Imax
A. Fr	Frequency (1)	Hz	0 to 100.00
Present Demands			
Accd.P	Accumulated kW demand	kW/MW	0 to Pmax
Accd.S	Accumulated kVA demand	kVA/MVA	0 to Pmax

Imax $(20 \%$ over-range $)=1.2 \times$ CT primary current [A]
Direct wiring (PT Ratio $=1$):
Vmax (690 V input option) $=828.0 \mathrm{~V}$
Vmax (120 V input option) $=144.0 \mathrm{~V}$
Pmax $=(I \max \times V \max \times 3)[\mathrm{kW} \times 0.001] @$ wiring modes 4Ln3, 3Ln3
Pmax $=(\operatorname{lmax} \times V \max \times 2)[k W \times 0.001] @$ wiring modes 4LL3, 3OP2, 3dir2, 3OP3, 3LL3

NOTE: Pmax is rounded to nearest whole kW units.
If Pmax is more than 9999.000 kW , it is truncated to 9999.000 kW
Wiring via PTs (PT Ratio > 1):
Vmax (690 V input option) $=144 \times$ PT Ratio [V]
Vmax $(120 \mathrm{~V}$ input option $)=144 \times$ PT Ratio [V]
Pmax $=(\operatorname{lmax} \times V \max \times 3) / 1000$ [MW x 0.001] @ wiring modes 4Ln3, 3Ln3
Pmax $=(\operatorname{Imax} \times V \max \times 2) / 1000$ [MW x 0.001] @ wiring modes 4 L 3 , 3OP2, 3dir2, 3OP3, 3LL3
NOTE: Pmax is rounded to nearest whole kW units.
(1) The actual frequency range is $45.00-65.00 \mathrm{~Hz}$

4.5 Pulsing Output Setup Menu

This menu allows you to program any of the eight relays provided by your C191HM instrument to output energy pulses. Relays \#7 and \#8 are especially recommended for use as pulsing relays because of their high endurance. Available pulsing parameters are listed in Table 4-5.

To select a pulse relay:

\checkmark Use the up/down arrow keys to scroll to the desired relay. The pulsing parameter assigned to the relay is displayed in the middle window, and the amount of unit-hours per pulse is displayed in the lower window.

To change the pulse relay setup:

\checkmark Press SELECT to activate the middle window.
\checkmark Use the up/down arrow keys to scroll to the desired output parameter. Selecting nonE disables pulsing through this relay.
\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to set the amount of unit-hours per pulse. The available range is 1-9999.
\checkmark Press ENTER to store the new setup, or press ESC to quit the setup without changes.

To quit the pulsing setup menu:

\checkmark From the upper window, press ESC or ENTER.
Table 4-5 Pulsing Output Parameters

Code	Paramete	Units
non E	Output disabled	
$A c . E$		
$A c . E E$	Active energy export	kWh export (negative)
$r E . E i$	Reactive energy import	kvarh import (inductive)
$r E . E E$	Reactive energy export	kvarh export (capacitive)
$r E . E t$	Reactive energy total	kvarh total (absolute)
$A P . E t$	Apparent energy total	kVAh total

NOTES

1. If your instrument is not equipped with the optional relay, then this setup parameter will not appear on the display.
2. You will not be able to store your setup in the instrument if you assigned a parameter to relay output with a zero number of unit-hours per pulse.
3. If a relay you allocated for pulsing has been manually operated or released, it reverts automatically to normal operation.
4. If a relay you allocated for pulsing has been engaged by an alarm/event setpoint, the setpoint is automatically disabled.

4.6 Alarm/Event Setpoints Setup Menu

Your instrument provides 16 alarm/event setpoints that can monitor a wide variety of events; in turn, these events can be programmed to trigger specific actions. This menu is used to specify the events to be monitored by the setpoints, and actions to be triggered by those events.
To program a setpoint, you might need to define up to six setup parameters which include: the setpoint trigger parameter, operate and release limits, optional operate and release delays, and the setpoint action. Table 4-6 explains the setpoint setup parameters. For the entire list of available triggers and setpoint actions, refer to Tables 4-7 and 4-8.

Example:

Trigger
parameter

Operate limit \}
\} The operate (On) and release (OFF) limits which determine setpoint operation are defined as 1200A and 1100A respectively.
Release limit \}

Operate delay \}
\} The delays before operation ($O n d$ d) and release (OFFd) are set at 5 seconds and 10 seconds respectively.

Setpoint action The action to be triggered is operation of relay \#1.

To select a setpoint:

\checkmark Scroll to the desired setpoint using the up/down arrow keys.
To view the setup options for the setpoint:
\checkmark Press SELECT to activate the middle window.
\checkmark Use the up/down arrow keys to scroll to the desired setup option. The value associated with this option is displayed in the lower window.

To change the selected setup option:

\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to scroll to the desired value.
\checkmark Press ENTER to store the new value.
\checkmark Press ESC to leave the value unchanged.
To store your new setup for the setpoint:
\checkmark From the middle window, press ENTER.
To quit the setpoint setu thout changes:
\checkmark From the middle window, press ESC.

To quit the setpoints setup menu:

\checkmark From the upper window, press ESC or ENTER

NOTES

1. If your instrument is not equipped with the optional relay, then these setup parameters will not appear on the display.
2. When you enter the setpoints setup menu at the protected level, monitoring setpoints is temporarily suspended until you return to the main setup menu.
3. Each time you select a new trigger parameter, the operate and release limits are set by default to zero.
4. You will not be able to store your setpoint setup to the instrument if a setpoint action is directed to a relay allocated for pulsing.
5. The setpoint action directed to a relay output can be overridden using commands sent via communications. A relay can be manually operated or released. When the relay reverts to normal operation, it is automatically returned under setpoint control.

Table 4-6 Setpoint Setup Options (middle window)

Code	Option	Description
triG	Trigger parameter	The measurement parameter or signal to be monitored by the setpoint. On
OFF	Operate limit Release limit	The threshold at which the setpoint becomes operative. The threshold at which the setpoint is released (becomes inoperative). The time delay (0.1 second resolution) before operation when the operate condition is fulfilled.
On d	Operate delay	Release delay
OFF d the time delay (0.1 second resolution) before release		
when the release condition is fulfilled.		
Act	Setpoint action	The action performed when the setpoint is operative.

Table 4-7 Setpoint Triggers (lower window, when middle window is triG)

Code	Parameter	Unit	Range
nonE Setpoint disabled			
Status Input			
St.On Status input ON			
St. OFF	Status input OFF		
Phase Reversal			
POS.ro.	Positive phase rotation reversal (1)		
NEG.ro. Negative phase rotation reversal (1)			
Real-time Values on any Phase			
r. Hi. U	High voltage (3)	V	0 to Vmax
r. Lo. U	Low voltage (3)	V	0 to Vmax
r. Hi. C	High current	A	0 to Imax
r. Lo. C	Low current	A	0 to Imax
r. thd.U	High voltage THD	\%	0 to 999.9
r. thd.C	High current THD	\%	0 to 999.9
r. HFc.C	High K-f tor	\%	1.0 to 999.9
r. tdd.C	High current TDD	\%	0 to 100.0
Real-time Auxiliary Measurements			
r. Hi.Fr	High frequency (2)	Hz	0 to 100.00
r. Lo.Fr	Low frequency (2)	Hz	0 to 100.00
Average Values per Phase			
A. Hi.C1	High current L1	A	0 to Imax
A. Hi.C2	High current L2	A	0 to Imax
A. Hi.C3	High current L3	A	0 to Imax
A. Lo.C1	Low current L1	A	0 to Imax
A. Lo.C2	Low current L2	A	0 to Imax
A. Lo.C3	Low current L3	A	0 to Imax
Average Values on any Phase			
A. Hi. U	High voltage (3)	V	0 to Vmax
A. Lo. U	Low voltage (3)	V	0 to Vmax
A. Hi. C	High current	A	0 to Imax
A. Lo. C	Low current	A	0 to Imax
Average Total Values			
A. Hi.P.i	High total kW import (positive)	kW	0 to Pmax
A. Hi.P.E	High total kW export (negative)	kW	0 to Pmax
A. Hi.q.i	High total kvar import (positive)	kvar	0 to Pmax
A. Hi.q.E	High total kvar export (negative)	kvar	0 to Pmax
A. Hi. S	High total kVA	kVA	0 to Pmax
A. PF.LG	Low total PF Lag		0 to 1.000

Chapter 4 Setu

Code	Parameter	Unit	Range
A. PF.Ld	Low total PF Lead		0 to 1.000
Average Auxiliary Measurements			
ArneU.C	High neutral current	A	0 to Imax
Ar Hi.Fr	High frequency (2)	Hz	0 to 100.00
Ar Lo.Fr	Low frequency (2)	Hz	0 to 100.00
Present Demands			
Hi d.U1	High volt demand L1 (3)	V	0 to Vmax
Hi d.U2	High volt demand L2 (3)	V	0 to Vmax
Hi d.U3	High volt demand L3 (3)	V	0 to Vmax
Hi d.C1	High ampere demand L1	A	0 to Imax
Hi d.C2	High ampere demand L2	A	0 to Imax
Hi d.C3	High ampere demand L3	A	0 to Imax
Hi d.P	High block interval kW demand	kW	0 to Pmax
Hi d.S	High block interval kVA demand	kVA	0 to Pmax
Hi Sd.P	High sliding window kW demand	kW	0 to Pmax
Hi Sd.S	High sliding window kVA demand	kVA	0 to Pmax
Hi Ad.P	High accumulated kW demand	kW	0 to Pmax
Hi Ad.S	High accumulated kVA demand	kVA	0 to Pmax
Hi Pd.P	High predicted sliding window kW demand	kW	0 to Pmax
Hi Pd.S	High predicted sliding window kVA demand	kVA	0 to Pmax
High Voltage Harmonic Distortions on any Phase			
Hd03.U	High voltage harmonic H 03	\%	0 to 100.00
Hd05.U	High voltage harmonic H05	\%	0 to 100.00
Hd39.U	High voltage harmonic H39	\%	0 to 100.00
High Current Harmonic Distortions on any Phase			
Hd03.C	High current harmonic H03	\%	0 to 100.00
Hd05.C	High current harmonic H05	\%	0 to 100.00
H130	High current harmonic H 39		
Hd39.C	High current harmonic H39	\%	0 to 100.00

For parameter limits, see notes to Table 4-4.
(1) The setpoint is operated when the actual phase sequence does not match the indicated normal phase rotation.
(2) The actual frequency range is $45.00-65.00 \mathrm{~Hz}$.
(3) When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

Table 4-8 Setpoint Actions (lower window, when middle window is Act)

Code	Action
NonE	No action (1)
ALAr	Assert local alarm (2)
rEL. 1	Operate relay \#1 (3)
rEL. 2	Operate relay \#2
rEL.3	Operate relay \#3
rEL.4	Operate relay \#4
rEL. 5	Operate relay \#5
rEL. 6	Operate relay \#6
rEL. 7	Operate relay \#7
rEL. 8	Operate relay \#8
In.Cn. 1	Increment counter \#1
In.Cn. 2	Increment counter \#2
In.Cn.3	Increment counter \#3
In.Cn.3	Increment counter \#3
In.Cn. 4	Increment counter \#4
\boldsymbol{t}	
ti.Cn. 1	Count operating time using counter \#2
\boldsymbol{t}	t operating time using counter \#3
ti.Cn. 1	Count operating time using counter \#4

(1) When a setpoint is operated, its status is always stored to the alarm status register even if no action is assigned to the setpoint. The alarm status register can be polled and cleared through communications.
(2) This action causes the alarm LED on the front panel to blink that gives the user a local alarm indication. The alarm LED operates in latched mode, i.e., even if an alarm condition disappears, the alarm LED is still blinking until the user acknowledges the alarm from the front panel (see Section 5.1). An alarm LED can be operated from any number of setpoints using an OR scheme.
(3) Alarm relays operate in unlatched mode. This means that a relay is operated while an alarm condition is present and is automatically released when an alarm condition disappears. Each relay can be operated from any number of setpoints using an OR scheme, i.e., a relay will be in operate state while either of the alarm conditions is stil present.
(4) This action converts a common event counter to the time counter which measures time at 0.1 hour resolution while the setpoint is in the operated state. Each time counter has a non-volatile shadow counter that counts time at 1 -second resolution before the corresponding time counter is incremented. The time counters can be inspected via the Status Information Menu. They are labeled by an hour mark in the middle window.

4.7 Relay Operation Control Menu SELECT \rightarrow CHG \rightarrow ENTER $\uparrow \downarrow \rightarrow$ RELO \rightarrow ENTER

This menu allows you to set the relay operation mode: non-failsafe or failsafe. Failsafe relay operation is the opposite of normal operation where relay contacts are closed when a relay is operated (activated), and are open when a relay is released (de-activated). In failsafe mode, an alarm is activated by a nonenergized relay which will open in all cases when an alarm condition is present or an alarm setpoint is not operational either due to a loss of control power or due to corruption of the setpoint setup configuration. A failsafe relay is closed only if it is under setpoint control and no alarm conditions exist, or if it is manually operated via communications.

To select a relay:
\checkmark Press SELECT to activate the middle window, and then use the up/down arrow keys to scroll to the desired relay.

To change the relay operation mode:

\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to set the desired option.
Select nor for normal (non-f Isafe) relay operation, or
select FSAFE for failsafe relay operation.
\checkmark Press ENTER to store your new setting or press ESC to leave your previous setting unchanged.

To quit the setu

From the middle window, press ESC or ENTER .

NOTES

1. You will not be able to change the relay operation mode if a relay has been allocated for pulsing.
2. When a failsafe relay is allocated for pulsing, it automatically reverts to normal operation.

4.8 Display Setup Menu

SELECT \rightarrow CHG \rightarrow ENTER $\uparrow \downarrow \rightarrow$ diSP \rightarrow ENTER

This menu allows you to view and change display properties. Table 4-9 lists available options with their code names and applicable ranges.
Table 4-9 Display Options (* default setting)

To select a display option:

\checkmark Press SELECT to activate the middle window, and then use the up/down arrow keys to scroll to the desired option.
To change the display option:
\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to set the desired option.
\checkmark Press ENTER to store your new setting or press ESC to leave your previous setting unchanged.
To quit the display setup menu:
\checkmark From the middle window, press ESC or ENTER.

4.9 User Selectable Options Menu

SELECT \rightarrow CHG \rightarrow ENTER $\uparrow \downarrow \rightarrow$ OPtS \rightarrow ENTER

This menu allows you to change options which relate to the instrument features and functionality. Table 4-10 lists all available options with their code names and applicable ranges.

OPtS
P.cAL
rEAc

To select an option:

\checkmark Press SELECT to activate the middle window, and then use the up/down arrow keys to scroll to the desired option.

To change the selected option:

\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to set the desired value.
\checkmark Press ENTER to store your new setting or ESC to leave the previous setting unchanged.

To quit the display setu

le window, press ESC or ENTER.

Table 4-10 User Selectable Options (* default setting)

Code	Parameter	Options	Description
P.cAL	Power calculation mode (1)	$r E A c^{*}$ $n A c t$	Using reactive power Using non-active power
roLL	Energy roll value (2)	$10 . E 4$	$10,000 \mathrm{kWh}$
		$10 . E 5$	$100,000 \mathrm{kWh}$
		$10 . E 6$	$1,000,000 \mathrm{kWh}$
		$10 . E 7$	$10,000,000 \mathrm{kWh}$
		$10 . E 8^{*}$	$100,000,000 \mathrm{kWh}$
Ph.En	Phase energy	diS*, En	Enables/disables measurements of
	measurements		energies per phase

(1) Power calculation mode (P.cAL):

Mode 1: Reactive power calculation (rEAc)
Active power P and reactive power Q are measured directly and apparent power

$$
S=\sqrt{P^{2}+Q^{2}}
$$

Mode 2: Non-active power calculation (nAct)
Active power is measured directly, apparent power $\mathrm{S}=\mathrm{V} \times \mathrm{I}$ (where V, I - rms voltage and currents) and non-active power $N=\sqrt{ } S^{2}-P^{2}$
Mode 1 is recommended for electrical networks with low harmonic distortion (voltage THD $<5 \%$, current THD $<10 \%$); Mode 2 is recommended for all other cases.
(2) Energy roll value example: If roll value $=10 . \mathrm{E} 4$, the energy counter contains 4 digits i.e., energy is displayed up to 9.999 MWh (Mvarh, MVAh) with resolution 0.001 MWh.

Rollover Value	Maximum Energy kWh (kvarh, kVAh)	Maximum Display Reading MWh (Mvarh, MVAh)	Display Resolution MWh (Mvarh, MVAh)
10.E4	9,999	9.999	0.001
10.E5	99,999	99.999	0.001
10.E6	999,999	999.99	0.01
10.E7	$9,999,999$	$9,999.9$	0.1
10.E8	$99,999,999$	99,999	1

The roll value may be changed in accordance with the average load of the power line. For example, if average power is 400 kW and the counter must be reset every 3 months (2160 hours), then energy during this period equals 864000 kWh (6 digits) and the roll value $=10 . \mathrm{E} 6$.

4.10 Access Control Menu

SELECT \rightarrow CHG \rightarrow ENTER $\uparrow \downarrow \rightarrow$ AccS \rightarrow ENTER

This menu can be only accessed via the Setu in order to:

- change the user password
- enable or disable password check

To view an option setting:

\checkmark Press SELECT to activate the middle window.
\checkmark Use the up/down arrow keys to scroll to the desired option (PASS or CtrL).
Password Setting Password Protection Control

AccS
PASS
8780

AccS
CtrL
OFF

To change the password:

\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to modify the password. The password can be up to four digits long.
\checkmark Press ENTER to store your new password, or ESC to leave the password unchanged.

To enable/d

SELECT to activate the middle window, and then use the up/down arrow keys to move to the CtrL entry.
\checkmark Press SELECT to activate the lower window.
\checkmark Use the up/down arrow keys to change the password checking status: select OFF to disable password protection, or select On to enable password protection.
\checkmark Press SELECT to store your new option, or ESC to leave the option unchanged.
To quit the setu
From the middle window, press ESC or ENTER.
Store your password in a safe place. If you do not provide the correct password, you will need to contact your local distributor for the super-user password to override password protection.

4.11 Reset/Synchronization Menu

This menu allows you to reset to zero the accumulators and Min/Max registers in your instrument, and also to synchronize the power demand interval. The menu can be only accessed via the Setup Change Menu (CHG). If the reset is disabled from the Basic Setup Menu (see Section 4.1), you will not be able to enter this menu.

The following designations are used in the menu to specify a data location to be affected:

EnrG	Resets total accumulated energies
dnd	Resets all total maximum demands
P.d	\quad I power maximum demands
A.dnd	Resets volt/ampere maximum demands
Cnt	Resets all event/time counters
Cnt. 1	Resets counter \# 1
Cnt. 2	Resets counter \# 2
Cnt. 3	Resets counter \# 3
Cnt. 4	Resets counter \# 4
Lo.Hi	Resets Min/Max registers (does not affect maximum demands)
d.Snc	Provides synchronization of the power demand interval (see NOTES below)

To reset the desired locations:

\checkmark Press SELECT to activate the middle window, and then use the up/down arrow keys to scroll to the desired data location entry.
\checkmark Press SELECT to activate the lower window.
\checkmark Press and hold ENTER for about 5 seconds until the do label is replaced with done, and then release the key. You will return to the middle window.
\checkmark Press ESC to quit the menu.

NOTES:

1. If the CHG menu is not secured by a password, fast reset of the Min/Max registers, maximum demands and energies can be done from the data display mode (see Section 5.1) and counters from the Status Information Menu (see Section 6.1) without entering the reset menu.
2. If you select the d. Snc entr take into consideration the following:

- Synchronization of the instrument's internal timer requires that the power demand period be specified in minutes (see Section 4.1, Basic Setup Options). If more than 30 seconds pass from the beginning of the current demand interval, the new demand interval starts immediately; otherwise synchronization is delayed until the next demand interval.
- Synchronization occurs exactly 5 seconds from the time you first pressed ENTER while you hold the key.

Chapter 5 Data Display

5.1 Navigating in the Display Mode

The front panel has a simple interface that allows you to display numerous measurement parameters in up to 45 display pages. For easier reading, the parameters are divided into three groups, each accessible by a designated key. These are:

- Common measurements
- no selection key
- Min/Max measurements
- selected by the MAX/MIN key
- Total Harmonic measurements
- selected by the H/ESC key
- Individual Harmonics measurements
- selected by the H/ESC key
- Energy measurements
- selected by the ENERGY key

The up/down arrow keys are used as follows in the Display Mode:
 Scrolls through the pages downward (f) Scrolls through the pages upward (backward) Returns to the first page within current measurement group When pressed for 5 seconds, clears the alarm LED

The front panel display is updated approximately twice per second; you can adjust the display update rate via the Display Setu
Table 5-1 lists all displayed parameters and their LED indicators.

Load Bar Graph

The load bar graph displays the amount, in percent, of the current load with respect to user-defined nominal load current. The highest current measured by the C191HM is divided by the nominal load current as defined in the Display Setup Menu (see Section 4.8) and expressed as a percent by the LEDs (40% to 110%) which are lit. For example, if all LEDs up to and including 90% are lit, this means that the load is 90% of the nominal load current. If the nominal load current is set to 0 , it is taken from the CT primary current setup.

Alarm LED

The blinking Alarm LED gives you an alarm indication. It is controlled by the alarm/event setpoints (see Section 4.6) and operates in latched mode. Even if alarm conditions are no longer present, the alarm LED will continue to blink. To clear the alarm LED, press the up/down arrow keys simultaneously for 5 seconds.

Auto Scroll

If display Auto Scroll option is enabled (see Section 4.8), the common measurements display (main screen) will scroll automatically after 30 seconds of uninterrupted use.
\checkmark To stop auto scrolling at the current page, press either arrow key.

Auto Return to the Main Screen

If display Auto Return option is enabled (see Section 4.8), the display will automatically return to the main screen from any other measurement screen after 30 seconds of uninterrupted use.

Fast Reset of Accumulated Data

When changing data via the front panel is not secured by a password, you can reset the Min/Max registers, maximum demands and energies from the display mode without entering the reset menu.

NOTES

1. The common measurements display does not have a designated indicator LED. If no indicator LED is lit up below the display, this means that the common measurement parameters are being displayed at this time. To return to the common measurements from another group, press the illuminated key until it goes out.
2. When you move to another measurement group, the instrument stores your last location; when you return to the previous group, the instrument restores the last page. At power up, the instrument always returns to the common measurements group and shows you the last page that was displayed prior to loss of power.

Selecting a Display Page

\checkmark Press the down/up arrow keys to scroll through display pages.

Selecti

\checkmark Press the key pointed to by the illuminated round LED below the front panel display. If no LED is lit up, this means that the front panel displays the
common measurements parameters.

Selecting Min/Max Measurements

\checkmark Press the MAX/MIN key. Use the up/down arrow keys to scroll through Min/Max measurements.

Selecting Total Harmonic Measurements

\checkmark Press the H/ESC key until the THD/TDD LED is illuminated. Use the up/down arrow keys to scroll through the different harmonic parameters.

Selecti

tage Harmonics Measurements

\checkmark Press the H/ESC key until the HARMONICS LED is illuminated and volts LEDs at the right are lit. Use the up/down arrow keys to scroll through the diff

Selecting Individual Current Harmonics Measurements

\checkmark Press the H/ESC key until the HARMONICS LED is illuminated and amps LEDs at the right are lit. Use the up/down arrow keys to scroll through the different harmonics readings.

Selecting Energy Measurements

\checkmark Press the ENERGY key. Use the up/down arrow keys to scroll through the different energy readings.

Fast Reset of Accumulated Data

\checkmark Select a display page where the data you want to reset is displayed. To reset:

- Min/Max log registers: select a Min/Max page from the Min/Max measurements display (where a MAX or MIN round LED is illuminated).
- Ampere and volt maximum demands: select the ampere or volt maximum demand page from the Min/Max measurements display (where a MAX DMD LED is illuminated, and volts or amps LEDs at the right are lit).
- Power maximum demands: select the power maximum demand page from the Min/Max measurements display (where a MAX DMD LED is illuminated, and kVA/MVA and kW/MW LEDs at the right are lit).
- Total and phase energies: select the energy measurements display.
\checkmark While holding the SELECT key, press and hold ENTER for about 5 seconds. The displayed data is reset to zero.

5.2 Data Display Formats

Table 5-1 specifies all front panel local displays available in the display mode The display windows are labeled in the table as follows: $1=$ upper window, $2=$ middle window, 3 = lower window.
Table 5-1 Displayed Parameters

Page	Window	Indicator LED	Parameter (1)	Digits	Unit (2)
			Common Measu rements		
1	1	V1/V1-2	Voltage L12 Voltage L23 L. Voltage L31	4	V/kV
1	2	V2/V2-3		4	V/kV
1	3	V3/V3-1		4	V/kV
2	1	V1/V1-2	Voltage L1 (7) Voltage L2 (7) P. Voltage L3 (7)	4	V/kV
2	2	V2/V2-3		4	V/kV
2	3	V3/V3-1		4	V/kV
3	1	A1	Current L1 Current L2 Current L3	4	A
3	2	A2		4	A
3	3	A3		4	A
4	1	kVA	Total \mathbf{k}		
4	2	PF	Total power factor	4	
4	3	kW	Total kW	4	kW/MW
5	1	A NEUT	Neutral current Frequency Total kvar	4	A
5	2	Hz		4	Hz
5	3	kvar		4	kvar/Mvar
6	1		Ph.L1 (4)		Label
6	2	PF	Power factor L1 4		
6	3	kW	kW L1	4	kW/MW
7	1	kVA	kVA L1 Ph.L1 (4) kvar L1	4	kVA/MVA
7	2				Label
7	3	kvar		4	kvar/Mvar
8	1		Ph.L2 (4)		Label
8	2	PF	Power factor L2 4		
8	3	kW	kW L2	4	kW/MW
9	1	kVA	kVA L2 PhL2 ${ }^{4}$	4	kVA/MVA
9	2				Label
9	3	kvar	kvar L2	4	kvar/Mvar
10	1		Ph.L3 ${ }^{4}$		Label
10	2	PF	Power factor L3 4		
10	3	kW	kW L3	4	kW/MW
11	1	kVA	kVA L3	4	kVA/MVA
11	2		Ph.L3 ${ }^{4}$		Label
11	3	kvar	kvar L3	4	kvar/Mvar
12	1		H01 (Fundamental harmonic)		Label
12	2	PF	H01 total power factor	4	
12	3	kW	H01 total kW	4	kW/MW
13	1		H1.L1 (4)		Label
13	2	PF	H01 power factor L1	4	
13	3	kW	H01 kW L1	4	kW/MW

Page	Window	Indicator LED	Parameter (1)	Digits	Unit ${ }^{2}$
14	1	$\begin{aligned} & \text { PF } \\ & \text { kW } \end{aligned}$	H1.L2 (4)		Label
14	2		H01 power factor L2H01 kW L2	4	
14	3			4	kW/MW
15	1	$\begin{aligned} & \text { PF } \\ & \text { kW } \end{aligned}$	H1.L3 (4)		Label
15	2		H01 power factor L3	4	
15	3		H01 kW L3	4	kW/MW
16	1		U.Unb		Label
16	3		Voltage unbalance	4	\%
17	1		C.Unb		Label
17	3		Current unbalance	4	\%
			Min/Max Measu ements		
		MIN			
1	1	V1/V1-2	Min. real-time voltage L1/L12 (6)	4	V/kV
1	2	V2/V2-3	Min. real-time voltage L2/L23 (6)	4	V/kV
1	3	V3/V3-1	Min. real-time voltage L3/L31 (6)	4	V/kV
2	1	A1	Min. real-time current L1	4	A
2	2	A2	Min. real-time current L2	4	A
2	3	A3	Min. real-time current L3	4	A
3	1	kVA	Min. real-time total \mathbf{k}		
3	2	PF	Min. real-time total power factor	4	
3	3	kW	Min. real-time total kW	4	kW/MW
4	1	A NEUT	Min. real-time neutral current	4	A
4	2	Hz	Min. real-time frequency	4	Hz
4	3	kvar	Min. real-time total kvar	4	kvar/Mvar
MAX			Max. real-time voltage L1/L12 (6)		
5	1	V1/V1-2		4	V/kV
5	2	V2/V2-3	Max. real-time voltage L2/L23 ©	4	V/kV
5	3	V3/V3-1	Max. real-time voltage L3/L31 (6)	4	V/kV
6	1	A1	Max. real-time current L1	4	A
6	2	A2	Max. real-time current L2	4	A
6	3	A3	Max. real-time current L3	4	A
7	1	kVA	Max. real-time total kVA	4	kVA/MVA
7	2	PF	Max. real-time total power factor	4	
7	3	kW	Max. real-time total kW	4	kW/MW
8	1	A NEUT Hz kvar	Max. real-time neutral current Max. real-time frequency Max. real-time total kvar	4	A
8	2			4	Hz
8	3			4	kvar/Mvar
MAX DMD					
9	1	V1	Max. volt demand L1/L12 (6)	4	V/kV
9	2	V2	Max. volt demand L2/L23 (6)	4	V/kV
9	3	V3	Max. volt demand L3/L31 (6)	4	V/kV
10	1	A1	Max. ampere demand L1	4	A
10	2	A2	Max. ampere demand L2	4	A
10	3	A3	Max. ampere demand L3	4	A
11	1	kVA	Max. sliding window kVA demand	4	kVA/MVA
11	2	PF	Power factor at max. kVA demand	4	

Page	Window	Indicator LED	Parameter (1)	Digits	Unit (2)
11	3	kW	Max. sliding window kW demand	4	kW/MW
			Total Harmonic Mei isurements		
THD/TDD					
1	1	V1/V1-2	Voltage THD L1/L12	4	\%
1	2	V2/V2-3	Voltage THD L2/L23	4	\%
1	3	V3/V3-1	thd. Voltage THD L3	4	\%
2	1	A1	Current THD L1	4	\%
2	2	A2	Current THD L2	4	\%
2	3	A3	thd. Current THD L3	4	\%
3	1	A1	Current TDD L1	4	\%
3	2	A2	Current TDD L2	4	\%
3	3	A3	tdd. Current TDD L3	4	\%
4	1	A1	Current K-Factor L1	4	
4	2	A2	Current K-Factor L2	4	
4	3	A3	HF. Current K-Factor L3	4	
			Individual Odd Voltage Harmonics H03-Hミ9		
	HARMONICS				
1	1	V1/V1-2	Voltage harmonic H03 L1/L12	4	\%
1	2	V2/V2-3	Voltage harmonic H03 L2/L23	4	\%
1	3	V3/V3-1	03H Voltage harmonic H03 L3	4	\%
			...		
20	1	V1/V1-2	Voltage harmonic H39 L1/L12	4	\%
20	2	V2/V2-3	Voltage harmonic H39 L2/L23	4	\%
20	3	V3/V3-1	39H Voltage harmonic H39 L3	4	\%
			Individual Odd Current Harmonics H03-H:9		
HARMONICS					
1	1	A1	Current harmonic H03 L1	4	\%
1	2	A2	Current harmonic H03 L2	4	\%
1	3	A3	03H Current harmonic H03 L3	4	\%
			...		
20	1	A1	Current harmonic H39 L1	4	\%
20	2	A2	Current harmonic H39 L2	4	\%
20	3	A3	39H Current harmonic H39 L3	4	\%
			Total Eners ies		
1	1	MWh	Ac.En.		Label
1	2				Label
1	3		MWh import	5	MWh
2	1	Mvarh	rE.En.		Label
2	2		IP.		Label
2	3		Mvarh import	5	Mvarh
3	1	MVAh	AP.En.		Label
3	3		MVAh	5	MVAh
4	1	MWh	Ac.En.		Label
4	2		EP.		Label
4	3		MWh export	5	MWh

Page	Window	Indicator LED	Parameter (1)	Digits	Unit (2)
5	1	Mvarh	rE.En. EP. Mvarh export		Label
5	2				Label
5	3			5	Mvarh
			Phase Energ es ${ }^{\text {(5) }}$		
6	1	MWh	Ac.En.		Label
6	2		IP.L1		Label
6	3		MWh import L1	5	MWh
7	1	Mvarh			Label
7	2		rE.En. IP.L1		Label
7	3		Mvarh import L1	5	Mvarh
8	1	MVAh			Label
8	2		$\begin{gathered} \text { AP.En. } \\ \text { L1 } \end{gathered}$		Label
8	3		MVAh L1	5	MVAh
9	1	MWh			Label
9	2		Ac.En. IP.L2		Label
9	3		MWh import L2	5	MWh
10	1	Mvarh			Label
10	2		rE.En. IP.L2		Label
10	3		Mvarh import L2	5	Mvarh
11	1	MVAh			Label
11	2		$\begin{aligned} & \text { AP.En. } \\ & \text { L2 } \end{aligned}$		Label
11	3		MVAh L2	5	MVAh
12	1	MWh			Label
12	2		Ac.En. IP.L3		Label
12	3		MWh import L3	5	MWh
13	1	Mvarh			Label
13	2		$\begin{aligned} & \text { rE.En. } \\ & \text { IP.L3 } \end{aligned}$		Label
13	3		Mvarh import L3	5	Mvarh
14	1	MVAh			Label
14	2		$\begin{gathered} \text { AP.En. } \\ \text { L3 } \end{gathered}$		Label
14	3		MVAh L3	5	MVAh

(1) Display readings for all electrical quantities except Min/Max log and energies are sliding average values.
(2) When using direct wiring (PT Ratio $=1$), voltages are displayed in 0.1 V units, currents in 0.01 A units, and powers in $0.001 \mathrm{~kW} / \mathrm{kvar} / \mathrm{kVA}$ units. For wiring via PTs (PT Ratio > 1), voltages are displayed in 1 V units, currents in 0.01 A units, and powers in 0.001 MW/Mvar/MVA units. When the value width is over the window resolution, the right most digits are truncated
(3) By default, the maximum range for energy readings is $99,999,999 \mathrm{MWh} / \mathrm{Mvarh} / \mathrm{MVAh}$. Beyond this value, the reading will roll over to zero. When the energy reading exceeds the window resolution, the right-most digits are truncated. To avoid truncation, you can change the energy roll value to lower limit via the User Selectable Options menu (see Section 4.9). Negative (exported) energy readings are displayed without a sign.
(4) Per phase power and power factor readings are displayed only in 4LN3/4LL3 and 3LN3/3LL3 wiring modes (see Section 4.1) if the phase powers display is enabled in the Display Setup menu (see Section 4.8).
(5) Phase energy readings are displayed only in 4LN3/4LL3 and 3LN3/3LL3 wiring modes if they are enabled in the User Selectable Options menu (see Section 4.9).
(6) When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.
(7) Displayed only in the 4LN3 or 3LN3 wiring mode.

5.3 Self-Test Diagnostics Display

The C191HM periodically performs self-test diagnostics during operation. If the instrument fails the test, it discards the last measurement results, and an error code is displayed for one second on all LEDs. Error codes are listed in Table 5-2. Code ' 8 ' indicates normal operation.

Frequent f lures may be the result of excessive electrical noise in the region of the instrument. If the instrument continuously resets itself, contact your local distributor.

Table 5-2 Self-Test Diagnostic Codes

Code	Meaning
1	ROM error
2	RAM error
3	Watch dog timer reset
4	Sampling failure
5	Out of control trap
7	Timing failure
8	Normal power up
9	External reset (warm restart)

NOTE

The C191HM provides a self-check alarm register accessible through communications that indicates possible problems with instrument hardware or setup configuration. The hardware problems are indicated by the appropriate bits which are set whenever the instrument f Is self-test diagnostics or in the event of loss of power. The setup configuration problems are indicated by the dedicated bit which is set when either configuration register is corrupted. In this event, your instrument will use the default configuration. For more information on the self-check alarm register, refer to the communications reference guides shipped with your instrument.

Chapter 6 Viewing Status Information

Through the Status Information Menu (StA), it is possible to view the status of various instrument f tures.

6.1 The Status Information Menu

SELECT \rightarrow StA \rightarrow ENTER

To enter the Status Information Menu:

\checkmark From the display mode, press SELECT to enter the Primary Selection Menu.
\checkmark Press SELECT to activate the StA window.
\checkmark Press ENTER.
To select a display page:
\checkmark Press the up/down arrow keys to scroll through the display pages.
To quit the menu and return to the display mode:
\checkmark Press ESC or ENTER.

Front Panel Display

When you are in the Status Information Menu, the front panel display is updated approximately four times per second and shows you a wide variety of status information that you can review by scrolling through display pages.
The status parameters are designated by the abbreviated labels in the upper and/or middle window. The upper window flashes, indicating that you are in the menu display.

Fast Reset of Counters

When changing data via the front panel is not secured by a password, you can reset the counters from the Status Informati lay without entering the reset menu:
\checkmark Select a display page where the counter you want to reset is displayed.
\checkmark While holding the SELECT key, press and hold ENTER for about 5 seconds. The displayed data is reset to zero.

6.2 Status Display Formats

Table 6-1 lists all the displays available from the Status Information Menu. The display windows are labeled in the table as follows: $1=$ upper window, $2=$ middle window, 3 = lower window.

Table 6-1 Status Information Display

Page	Window	Parameter	Digits	Unit	
1	1	PHAS		Label	
1	2	rOt		Label	
1	3	Phase rotation sequence (POS/NEG/ERR)	4		
2	1	rEL		Label	
2	2	Relay \#1 - \#4 status	4		
2	3	Relay \#5 - \#8 status	4	Label	
3	1	St.ln	1		
3	3	Status input		Label	
4	1	Cnt.1	5		
4	3	Counter \#1	5	Label	
5	1	Cnt.2		Label	
5	3	Counter \#2	5		
6	1	Cnt.3		Label	
6	3	Counter \#3	5		
7	1	Cnt.4			
7	3	Counter \#4			

Appendix: Technical Specifications

Input and Output Ratings

$\left.\begin{array}{\|ll}\hline 3 \text { galvanically } \\ i \text { lated volt }\end{array}\right)$	IRECT INPUT (690V line-to-line voltage and 400 V line-to-neutral) Burden: <0.5 VA INPUT USING PT Burden: <0.15 VA
	INPUT USING PT (120V line-to-line voltage) Burden: <0.1 VA
3 galvanically 5 A: i lated current (sta inputs	INPUT VIA CT with 5A secondary output Burden: <0.1 VA Overload withstand: 10A RMS continuous, 250A RMS for 1 second
	INPUT VIA CT with 1A secondary output Burden: <0.02 VA Overload withstand: 2A RMS continuous, 50A RMS for 1 second
Voltage and current input terminals	UL recognized Screws: Brass, M4 Maximum wire section: $2.5 \mathrm{~mm}^{2}$ (12 AWG)
Optically i lated communication port	EIA RS-485 or RS-232 standard (factory set) Maximum wire section: $1.5 \mathrm{~mm}^{2}$ (14 AWG)
Relay outputs	5 relays rated at $5 \mathrm{~A}, 250 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{5A} ,30 \mathrm{~V} \mathrm{DC} \mathrm{/}$ $0.5 \mathrm{~A}, 110 \mathrm{~V}$ DC $\quad 2$ contacts (SPST Form A) 1 relay rated at $5 \mathrm{~A}, 250 \mathrm{VAC} / 5 \mathrm{~A}, 30 \mathrm{VDC} /$ $0.5 \mathrm{~A}, 110 \mathrm{~V}$ DC 3 contacts (SPDT Form C) 2 relays rated at $3 \mathrm{~A}, 250 \mathrm{VAC} / 3 \mathrm{~A}, 30 \mathrm{VDC} /$ $0.5 \mathrm{~A}, 110 \mathrm{~V}$ DC 2 contacts (SPST Form A) Maximum wire section: $1.5 \mathrm{~mm}^{2}$ (16 AWG)
$\begin{array}{\|l} \hline \text { Analog output (optional) } \\ 4-20 \mathrm{~mA} \\ 0-20 \mathrm{~mA} \end{array}$	Accuracy 0.5%, Non-linearity 0.2% Load up to 510 Ohm 24 V DC external power supply required
Status input	Dry contact for external synchronization or monitoring

Display	3 windows high-brightness seven-segment digit LEDs 3 color LED bar graph 40-110\%

Power Supply

Galvanically isolated power supply (factory set)
120\&230V AC / 120\&220 V DC
12 V DC
24 V DC
48 V DC

85-265V AC $50 / 60 \mathrm{~Hz}$ and 88-290V DC 10 W
9.6-19 V DC

19-37 V DC
37-72V DC

```
    Environmental Conditions
\(\mathrm{O} \quad-20^{\circ} \mathrm{C}\) to \(+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.\) to \(\left.+140^{\circ} \mathrm{F}\right)\)
Storage temperature \(\quad-25^{\circ} \mathrm{C}\) to \(+80^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.\) to \(\left.+176^{\circ} \mathrm{F}\right)\)
Humidity
    0 to \(95 \%\) non-condensing
```

Construction	
Instrument body	Case enclosure: flame resistant ABS \& Polycarbonate Blend Dimensions: $144 \times 144 \times 86 \mathrm{~mm}(5.67 \times 5.67 \times 3.39$ ")
	Mounting: $136 \times 136 \mathrm{~mm}$ square cut-out (DIN 43700)
Instrument weight	0.9 kg (2.04 lb.)

Standards Compliance
UL File \# E129258 Pending
CE:
EMC: 89/336/EEC as amended by 92/31/EEC and 93/68/EEC
LVD: 72/23/EEC as amended by 93/68/EEC and 93/465/EEC
Harmonized standards to which conformity is declared:
EN55011:1991; EN50082-1:1992; EN61010-1:1993; A2/1995
Installation Category II, Pollution Degree 2
EN50081-2:1994 EMC Generic Emission Standard - Industrial Environment
EN50082-2:1995 EMC Generic Immunity Standard - Industrial Environment
EN55022: 1994 Class A
EN61000-4-2: 1995 Electrostatic Discharge
EN61000-4-4: 1995 Electrical Fast Transient
EN61000-4-8: 1993 Power Frequency Magnetic Field
ENV50140: 1993 Radio Frequency Electromagnetic Field, Amplitude Modulated
ENV50204: 1995 (200Hz) Radio Frequency Electromagnetic Field, Pulse Modulated
ENV50141: 1993 Radio Frequency Common Mode, Amplitude Modulated
ANSI C37.90.1: 1989 Surge Withstand Capability
ANSI IEEE C62.41-1991 Surge Voltages in Low-Voltage AC Power Circuits
Measurement Specifications

Parameter	Full scale	Accuracy, \%			Range	Display resolution (\%Rdg) (2)@ range
		Rdg	FS	Conditions		
Voltage	$120 \mathrm{~V} \times \mathrm{PT}$ For L-N reading $@ 120 \mathrm{~V}$ or and for $400 \mathrm{~V} \times \mathrm{PT}$ 3OP2 23 OP 3 $@ 690 \mathrm{~V}$ wiring modes		0.25	$\begin{aligned} & \hline 10 \% \text { to } 120 \% \\ & \text { FS } \end{aligned}$	0 to 999,000 V	Direct wiring ($\mathrm{PT}=1$): $0.1 \mathrm{~V} @ 0.1 \mathrm{~V}$ to 999.9 V Wiring via PTs (PT>1):
	$208 \mathrm{~V} \times$ PT For L-L reading $@ 120 \mathrm{~V}$ or except $690 \mathrm{~V} \times$ PT $30 \mathrm{P} 2 / 3 \mathrm{OP} 3$ $@ 690 \mathrm{~V}$ wiring modes					0.001 kV @ 0.001 kV to 9.999 kV $\leq 0.1 \%$ @ 10.00 kV to 999.0 kV Starting voltage 1.5\% FS
Line current	CT PRIMARY CURRENT		0.25	$\begin{aligned} & \text { 2\% to } 120 \% \\ & \text { FS } \end{aligned}$	0 to 9999 A	$0.01 \mathrm{~A} @ 0.01 \mathrm{~A}$ to 99.99 A $\leq 0.1 \%$ @ 100.0 A to 9999 A Starting current 0.5\% FS
Active power	$0.36 \times \mathrm{PT} \times \mathrm{CT}$ @ 120 V input $1.2 \times$ PT×CT @ 690 V input		0.5	$\|\mathrm{PF}\| \geq 0.5$ (1)	$\begin{aligned} & -2,000,000 \mathrm{to} \\ & +2,000,000 \mathrm{~kW} \end{aligned}$	Direct wiring (PT=1): 0.001 kW @ 0.001 kW to 9.999 kW Wiring via PTs (PT>1): 0.001 MW @ 0.001MW to 9.999 MW $\leq 0.1 \%$ @ 10.00 MW to 2000 MW
Reactive power	$0.36 \times \mathrm{PT} \times \mathrm{CT} @ 120 \mathrm{~V}$ input $1.2 \times \mathrm{PT} \times \mathrm{CT}$ @ 690 V input		0.5	$\|\mathrm{PF}\| \leq 0.9$ (1)	$\begin{aligned} & -2,000,000 \text { to } \\ & \text { k+2,000,000 } \\ & \text { kvar } \end{aligned}$	Direct wiring (PT=1): 0.001 kvar @ 0.001kvar to 9.999 kvar Wiring via PTs (PT>1): 0.001 Mvar @ 0.001Mvar to 9.999 Mvar $\leq 0.1 \%$ @ 10.00 Mvar to 2000Mvar
Apparent power	$0.36 \times \mathrm{PT} \times \mathrm{CT}$ @ 120 V input $1.2 \times$ PT \times CT @ 690 V input		0.5	$\|\mathrm{PF}\| \geq 0.5$ (1)	$\begin{array}{\|l\|} \hline 0 \text { to } \\ 2,000,000 \mathrm{kVA} \end{array}$	Direct wiring (PT=1): 0.001 kVA @ 0.001 kVA to 9.999 kVA Wiring via PTs (PT>1): 0.001 MVA @ 0.001MVA to 9.999 MVA $\leq 0.1 \%$ @ 10.00 MVA to 2000 MVA
Power factor	1		1	$\begin{aligned} & \mid \text { PF\| } \geq 0.5, \\ & \mathrm{I} \geq 10 \% \text { FSI } \\ & \hline \end{aligned}$	$\begin{aligned} & -0.999 \text { to } \\ & +1.000 \end{aligned}$	0.001

Parameter	Full scale	Accuracy, \%			Range	Display resolution (\%Rdg) (2) @ range
		Rdg	FS	Conditions		
Frequency		0.1			$\begin{aligned} & 45.00 \text { to } 65.00 \\ & \mathrm{~Hz} \end{aligned}$	0.01 Hz
Neutral (unbalanced) current	CT PRIMARY CURRENT		0.5	$\begin{aligned} & \text { 2\% to } 120 \% \\ & \text { FS } \end{aligned}$	0 to 9999 A	$\begin{array}{\|l\|} \hline 0.01 \mathrm{~A} @ 0.01 \mathrm{~A} \text { to } 99.99 \mathrm{~A} \\ \leq 0.1 \% \text { @ 100.0 A to } 9999 \mathrm{~A} \\ \text { Starting current 0.5\% FS } \\ \hline \end{array}$
Ampere demand				same as for	current	
KW demand (block \& sliding)					e as for kW	
KVA demand (block \& sliding)		same as for kVA				
Total Harmonic Distortion THD U (I), \% $\mathrm{U}_{1}\left(\mathrm{I}_{1}\right)$	999.9	1.5	0.2	$\begin{array}{\|l} \hline \geq 0.1 \% \mathrm{FS}, \\ \mathrm{U}(\mathrm{I}) \geq 10 \% \\ \text { FSU (FSI) } \\ \hline \end{array}$	0 to 999.9	0.1
Total Demand Distortion TDD (I), \%	100		1.5	$\begin{aligned} & \geq 1 \% \text { FS, } \\ & \mathrm{I} \geq 10 \% \text { FSI } \end{aligned}$	0 to 100	0.1
Individual harmonic distortion, \%	100	$0.4+0.3 \times$ harmonic order		(4)	0 to 100	0.01
Voltage harmonic angles	360°	$0.5^{\circ}+0.6^{\circ} \times$ harmonic order		${ }^{4}$	-180° to 180°	N/A
Current harmonic angles	360°	$0.3^{0}+0.3^{0} \times$ harmonic order		${ }^{4}$	-180° to 180°	N/A
Active energy Import \& Export		according to power accuracy (3)			0 to 99,999 MWh	1 kWh @ 1 to 99,999 kWh 10 kWh @ 100 to 999.99 MWh 100 kWh @ 1,000 to 9,999.9 MWh 1MWh @ 10,000 to 99,999 MWh
Reactive energy Import \& Export		according to power accuracy (3)			0 to 99,999 Mvarh	1 kvarh @ 1 to 99,999 kvarh 10 kvarh @ 100 to 999.99 Mvarh 100 kvarh @ 1,000 to 9,999.9 Mvarh 1Mvarh @ 10,000 to 99,999 Mvarh

Parameter	Full scale	Accuracy, \%			Range	Display resolution (\%Rdg) (2) @ range
		Rdg	FS	Conditions		
Apparent energy		according to power accuracy (3)			0 to 99,999 MVAh	1 kVAh @ 1 to 99,999 kVAh 10 kVAh @ 100 to 999.99 MVAh 100 kVAh @ 1,000 to 9,999.9 MVAh 1MVAh @ 10,000 to 99,999 MVAh

$\begin{array}{lll}\text { PT }=\text { external potential transformer ratio } & \text { CT, CT Primary Current }=\text { primary current rating of external current transformer } \\ \text { FSU }=\text { voltage full scale } & \text { FSI }=\text { current full scale } & U_{1}=\text { voltage fundamental }\end{array}$
(1) @ 10% to 120% of voltage FS and 2% to 120% of current FS
(3) Where the current is $>10 \%$ FS, the energy accuracy is better than 1.5% Rdg.
(4) 80% to 120% of voltage FS and 10% to 100% of current FS
Additional Notes

1. Accuracy is expressed as \pm (percentage of reading + percentage of full scale) ± 1 digit. This does not include inaccuracies introduced by the user's potential and current transformers.
2. Specifications assume: voltage and current wave forms with THD $\leq 5 \%$ for kvar, kVA and PF ; reference operating temperature: $20-26^{\circ} \mathrm{C}$.
3. Ordinary measurement error is considerably less than the specified accuracy which indicates maximum error.

Index

A

accuracy, 51
active energy, 3, 51
active power, $3,4,34,50$
alarms, 13
ampere demand, $20,29,42$
analog output, 2, 5, 8, 14, 23, 24
analog outputs, 20
B
basic setup, 19
burden, 48

C

communications, 51
CT, 1, 2, 9, 20, 24, 32, 39, 48, 50, 51
CT PRIMARY CURRENT, 20,50,51
current inputs, 8, 48
current transformers, 51

D

demand, 2, 3, 14, 20, 22, 24, 29, 37, 40, 42, 43, 51
demand period, 14, 20, 37
display, $1,26,27,31,32,33,34,37,38,39$, 40, 41, 44, 46
display mode, $32,37,39,41,46$

E

energy, 1, 2, 3, 13, 25, 34, 35, 40, 44, 45, 51 external synchronization, $2,14,20,22,48$

F

frequency, 1, 2, 3, 4, 20, 28, 29, 42, 50
I
inputs, 22, 48
L
Load bar graph, 39
M
measurement, 51
menu, 17, 19, 21, 22, 23, 25, 26, 27, 31, 32
33, 34, 36, 37, 44, 45, 46
Modbus, ii, 16, 20, 21
mounting, 1, 7
open delta, 9, 20
options, 14
overload withstand, 48

P

panel cut-out, 7
password, 2, 17, 36, 37, 39, 46
PComTest, 19
power, i, 2, 3, 4, 8, 14, 20, 22, 23, 31, 34,
$35,37,39,40,41,42,44,45,48,50,51$
power demand, 2, 3, 14, 20, 22, 37
power factor, 50
power source, i, 8
power supply, 48
PT, 9, 20, 24, 25, 44, 48, 50, 51
PT RATIO, 20
pulsing, 2, 13, 25, 26, 27, 31

R

reactive energy, 3, 51
reactive power, 3, 4, 34, 50
relays, $2,13,25,30,48$
reset, $20,35,37,39,40,45,46$

S

self tests, 45
setpoints, 20, 26, 27, 30, 39
setup menus, 17, 19
setup mode, 17
sliding demand, 3
standards, 48, 49
status, 1, 2, 14, 17, 22, 30, 36, 46, 47

T

technical specifications, 48
erminals, ii, 8, 9, 48

V

voltage inputs, 48

W

wiring configuration, 5, 9
Wye, 20

CA7

 Broad current range Compact ©limensions Maximum flexibility

Series CA7 Contac tors

Controls Motors to 60HP (@460/575V)

As Litte as 45mm Wide

Reduces Panel Space

Mechanically Linked Auxiliaries

Coil terminals are field-reversible! Mount a motor circuit controller on top or an overload relay on bottom

All CA7 contactors are designed, tested and can be selected for Type 1 and Type 2 Coordination

Auxiliary contacts are "mechanically linked" with CA7's main contacts a requirement in safety circuits

Compact dimensions mean less panel space and lower cost

Universal accessories fit all CA7 contactors - leaving you with less inventory and more flexibility!

Dual-terminal technology maximizes wiring options and termination reliability

9-85A range covers more than 90\% of all industrial applications

Protects against manual operation and accidental contact with live parts

Dimensionally compatible with KT7 motor circuit controller and CEP7 electronic overload relay

IEC design provides a more precise fit to your application - save money by buying only what you need

Compact dimensions with maximum performance! 0 ur CA7 contactors control motors up to 60 H P, in frame sizes ranging from $45 \mathrm{~mm}\left(1-3 / 4^{\prime \prime}\right)$ to a maximum of $72 \mathrm{~mm}\left(2-3 / 4^{\prime \prime}\right)$ wide.

Because of its modular design, CA7 is flexible and easy to use. All CA7 contactors use the same accessories, reducing the need to stock additional inventory. They are also mechanically and electrically compatible with Sprecher + Schuh's CEP7 electronic
overload relay and KT 7 motor circuit controller. This provides easy, clean install lation for a variety of motor starter applications.

W hether part of a system or for individual use, the CA7 is the right contactor for the job.

O Series CA7 Contactors

Save space, save money

TheCA7 contactor series includes ten contactors within four frame sizes. The two smallest sizes house capacities up to 25 HP (@460V) and 30 HP (@575V). They measure only $45 \mathrm{~mm}\left(1-3 / 4^{\prime \prime}\right)$ in width! Even the largest of the contactors - the CA7-85, controlling motors to 60 H P - measures only $72 \mathrm{~mm}(2-3 / 4$ ") wide. The space you save with CA7 translates to smaller panels and lower cost.

Maximum flexibility

The CA7 contactor is designed for ultimate flexibility. Coil terminals can be supplied on the top or bottom, and arefield-reversible to suit individual wiring needs. Auxiliary contacts can be mounted on the top and sides, for the most efficient use of panel space. In reversing applications where space may betight, the mechanical interlock has a built-in auxiliary to save room.

Field-reversible coil terminals provide additional flexibility

Dual terminal technology provides additional wiring options, as well as increased reliability and a faster wiring process.

Dual wiring terminals speed installation

State-of-the-art tec hnology

CA7 contactors utilize the latest design technology. C ombined with Sprecher + Schuh's CEP7 solid state electronic overload relay, the CA7 becomes the most accurate and reliable motor starter available. M echanically linked contacts provide safety for all applications. In addition, snap-on electronic timers and a PLC interface are also available.

Modular design

The CA7 contactor series includes universal accessories to fit every frame size. This provides incredible flexibility, and eliminates the need to purchase size-specific components.

Because of their modular design, CA7 contactors are easily joined to form complete starter combinations. TheCA7 is specially designed for electrical and mechanical compatibility with our overload and motor circuit controllers.

CA7 Selected Technical Data

Catalog Number	AC-1 Amp Rating $40^{\circ} \mathrm{C}$	Maximum Horsepower						Max. Aux. Contacts
		Single Phase		Three Phase				
		115V	230 V	200V	230V	460V	575 V	
CA7-9	32	1/3	1	2	2	5	7-1/2	9
CA7-12	32	1/2	2	3	3	7-1/2	10	9
CA7-16	32	1	3	5	5	10	15	9
CA7-23	32	2	3	5	7-1/2	15	15	9
CA7-30	50	2	5	7-1/2	10	20	25	9
CA7-37	50	3	5	10	10	25	30	9
CA7-43	85	3	7-1/2	10	15	30	30	8
CA7-60	100	5	10	15	20	40	50	8
CA7-72	100	5	15	20	25	50	60	8
CA7-85	100	7-1/2	15	25	30	60	60	8

See Sprecher+Schuh's general catalog for complete information and pricing on CA7 contactors.

Sprecher + Schuh US Division Headquarters
15910 International Plaza Dr., Houston, TX 77032 Tel: (281) 442-9000; Fax: (800) 739-7370 www.ssusa.cc

Sprecher + Schuh Canadian Division
3610 Nashua Dr., Unit 10, Mississauga, Ontario L4V 1L2 Tel: (905) 677-7514; Fax: (905) 677-7663 www.sscdn.cc

Attention: To prevent electrical shock, disconnect from power source before installing or servicing. Install in suitable enclosure. Keep free from contaminants.
Achtung: Vor Installations- oder Servicearbeiten Stromversorgung unterbrechen, um Unfälle zu vermeiden. Die Geräte müssen in einem passenden Gehäuse eingebaut und gegen Verschmutzung geschützt werden.
Attention: Avant le montage et la mise en service, couper l'alimentation secteur afin d'éviter tout accident. Prévoir une mise en coffret ou armoire appropriée. Protéger le produit contre les environnements agressifs.
Attenzione: Per prevenire infortuni, togliere tensione prima dell'installazione o manutenzione. Installare in custodia idonea. Tenere Iontano da contaminanti.
Atención: Desconectar la alimentación eléctrica antes de realizar el montaje y la puesta en servico, con el objeto de evitar accidentes. Instalado en una caja o armario apropiado. Proteger el producto de los ambientes agresivos.

sprecher + schuh

CT7N-23...

IEC/EN 60947-1,-4-1,-5-1 UL 508
CSA 22.2 No. 14

CMR7N
CA7-9... 23

2

sprecher + schuh

USA / CND

Suitable For Use On A Circuit Capable Of Delivering Not More Than 5000 rms Symmetrical Amperes, 600 Volts Maximum.

ATTENTION: Do not use automatic reset mode in applications where unexpected automatic restart of the motor can cause injury to persons or damage to equipment.

ACHTUNG: Der automatische Rücksetzmodus darf nicht in Anwendungen verwendet werden, in denen der unerwartete Neustart des Motors zu Personen- oder Sachschäden führen kann.

ATTENTION: N’utilisez pas le mode réarmement automatique dans les applications où un redémarrage automatique inattendu du moteur pourrait provoquer des blessures personnelles ou des dégâts matériels.

ATTENZIONE: non usare la modalità di ripristino automatico in applicazioni dove il riavviamento automatico improvviso del motore può provocare infortuni o danni all apparecchiatura.

ATENCION: No use el modo de reseteo automático en aplicaciones donde el rerranque repentino del motor pueda causar lesiones personales o daño al equipo.

[^21]Ausgabe 3

1 Introduction

The MultiTrode level control relay is a solid-state electronic module in a hi-impact plastic case with a DIN rail attachment on the back, making a snap-on-snap-off installation. Any number of relays can be easily added to the DIN metal rail then wired together to form a complex pumping system that other wise may have to be controlled and operated by a programmed PLC.
The relay is normally matched with the MultiTrode probe which works in conjunction with the relay and uses the conductivity of the liquid to complete an electrical circuit.

2 Electrical Overview

There are 10 screw terminals on the unit. Facing the relay as shown, we look at the bottom terminals (left to right):

- Lo - (Charge mode). This is the point when the probe is dry the relay will turn on.
- Lo - (Discharge mode). This is the point when the probe in the tank is dry the relay will turn off.
- Hi - (Charge mode). This is the point when the probe in the tank is wet a relay will turn off
- Hi - (Discharge mode). This is the point when the probe in the tank is wet a relay will turn on.
- C - is common earth. All earth bonding must be terminated here for correct operation.
- "L" is "live" (240V AC)
- " N " is "neutral" (240V AC)

If the tank is plastic, or if you are conducting tests in a plastic bucket, or the vessel has no earth point inside, you must install an earth rod within the tank, vessel or bucket and make sure that it is bonded back to C on the relay unit.

3 DIP Switches

3.1 DIP Switches

(See Wiring Diagram for full program functions.)

3.1.1 DIP 1 \& 2

DIP 1 and 2 control the Sensitivity, in other words the cleaner the liquid the higher the sensitivity setting must be. Concentrated acids, minerals are by their own chemical composition highly conductive, so a low level of sensitivity is required, purified water is almost an insulator against electrical current flow so a higher sensitivity inside the relay is required.

3.1.2 DIP 3, 4 \& 5

DIP switches 3,4 and 5 , control delay on activation. For example, in discharge mode with DIP switches 3,4 and 5 set to 10 seconds, when the Hi point becomes wet it will activate the motor and it will take 10 seconds of continual coverage of the probe sensor to make the relay close and start the pump. This is invaluable when the probe is in a turbulent part of a well where fluid is splashing around touching the sensors momentarily, and false activation cannot be tolerated.

3.1.3 DIP 6

DIP switch 6 controls the charge/discharge function. Set "ON" for charge, and "OFF" for discharge

3.2 Relay Contacts \& their Applications

3.2.1 Contacts 15, 16 \& 18

Contacts 15,16 , and 18 are used for electronic or visual notification of a change in state at the pump itself. Contacts 15, 16, and 18 are used for more advanced applications because they are a changeover relay, their state may be the same as contacts 25,28 or the opposite. Both sets of contactors are triggered simultaneously. An example is when in discharge mode, (see Figure 1).

You have a gravity flow coming in so the fluid reaches the lower sensor PB1, contacts 15 and 18 are open (15 being common to both contact 16 and 18) contacts 25 and 28 are also normally open but contacts 1516 in this current situation are closed, whether PB1 is wet or dry is of no concern all will stay the same. The level now rises to PB2 and both relays change state, contacts 25 and 28 close to turn on the pump, contacts 15 and 16 are open, with 15 and 18 closed.

In advanced applications this state change may be fed into a logic device to indicate the pump is running or the pump has stopped and perhaps light an LED or incandescent light source for visual confirmation that a change has occurred in the relay.

3.2.2 Contacts 25 \& 28

Contacts 25 and 28 are used to control pump states. Contacts 25 and 28 are mostly used for turning on motors via a starting relay or solenoid, so, these sets of contacts react to the rising or falling levels of the fluid inside the tank, they will operate to turn on a pump in discharge mode when the top sensor is wet and in charge mode turn on the pump when the bottom sensor is dry.

4 Practical Overview

4.1 Discharge Mode - DIP switch 6 set to "OFF"

Figure 1 - Discharge Mode
Figure 1 shows two probes, (PB1 connected to Lo and PB2 connected to Hi). The pit is mostly underground and there is a gravity-fed inlet at the top left-hand side. The pit is empty with PB1 completely dry. Dipswitch 6 is set to "OFF."

The relay operation depends on the electrical conductivity of liquid in the pit, i.e. no liquid $=$ no current flow. The level starts to rise and covers PB1.

This is a discharge operation so we do not want the relay to close and start a pump until the well is full so as the water rises it reaches PB2, the relay closes and the pump starts. The level now drops below PB2 but the pump still continues to run, the level continues to drop below PB1 the relay opens the pump stops.

4.2 Charge Mode - DIP switch 6 set to "On"

Figure 2 - Charge Mode
Note: "C" is connected to common bonded earth. The unit will not operate correctly if not earthed.
Let's look at the same relay but in a tank that is charging (DIP 6 is now on). See Figure 3, where liquid is being pumped into a tank, and discharging through a gravity feed, the tank is on steel stands " x " metres above the ground.

With the tank full, PB1 and PB2 will be wet, the relay is off, and the pump has stopped. Water is slowly fed out from the bottom, and now as PB2 (HI) becomes dry nothing happens; the water now drops to below PB1 (Lo), and the pumps restarts to fill the tank.

The pump will continue to fill the tank until PB2 (HI), becomes wet again.

4.3 MTRA Relay with Alarm (Discharge Applications Only)

Figure 3-MTRA Operation

The MTRA relay works in the same way as the MTR relay except the MTRA has a separate alarm output, and does not have a charge mode. The planned application is to close a contact to illuminate a warning alarm light. . Various other applications have included introducing a third probe to latch another relay.
In Figure 2 we see three probes in a pit that is plastic, note the steel rod in the tank. (In a plastic vessel a steel rod must be used to create an earth return in the liquid so probes can function.) PB1, PB2, and PB3 are dry, and the relay power LED is on. When water enters the pit and wets PB1, nothing happens, water now reaches PB2 causing contacts 13 and 14 to close, the pump LED to light, and the water to drop.

If, for example, the pump has its inlet partially blocked, the level continues to rise and wets PB3. This closes a separate relay that can activate a red flashing light, an audible fog horn or send a 5 volt pulse into another device with the common cause to warn human beings that a spill is due to occur. If the pumps become unclogged and PB3 becomes dry the alarm opens again and breaks the circuit that stops the light from flashing or the foghorn from sounding.

5 Most Common Installation Problems

The relay requires a path between the probes to earth through the liquid. If you are testing in a plastic bucket, have installed the probe in a plastic tank or have no good earthing in the vessel you will need to install a separate earth and make sure all earth bonding comes back to the C terminal. Most problems like these are traced back to a lack of or poor earthing, or open circuits in the probe wiring.
Now is the time to check the relay by using "the bridge testing line technique" remember you must simulate a fluid flow to correctly ascertain a good relay or a bad one. (All DIPswitch settings from 1 to 6 should be off.)

Cut two pieces of insulated flexible copper wire one black one red 250 mm long, strip both ends back 10 mm on both cables, and join one black end and one red end. Insert the joined ends into C on the relay box, observing all safe electrical practises. You should have one black wire and one red wire free.

Set your relay for discharge mode (DIP switch 6 is off) with no sensors connected to the unit, connect the red wire to Lo - nothing should happen (if it does return the relay for replacement or repair*). Now connect the black wire to the Hi terminal the relay activated LED should light instantly (if it does not, the relay should be returned for repair*).

6 Troubleshooting

I have checked all the DIPswitches and settings but in discharge mode as soon as the bottom sensor gets wet the pump turns on then turns off almost straight away.	This is the most common problem encountered with relay set up and commissioning, the probe in the bottom of the tank is wired into the Hi terminal instead of the Lo terminal.
The installation went fine but now and again the pump will not turn on even though I am sure the probe is wet.	- Check the sensitivity level set on the relay, some times the level is set for foul water but due to changes in the flow the water becomes grey or clear, try changing the setting from $20 \mathrm{~K} \Omega$ to $80 \mathrm{~K} \Omega$ and monitor the results carefully.
All wiring is complete and all DIPswitches have been checked but the pump will not turn on at all.	If you have completed the test schedule for the relay and it passed then check the wiring to the sensors - for this is now where the problem lies or in the earthing arrangements. If possible check the resistance between the sensor cable and the steel sensor on the probe to prove a solid connection.

* Please contact your distributor or agent before returning any product for repair or warranty claim.

Fx: +61 733407077
E-mail: sales@multitrode.com.au

Sydney-Australia
Ph: +61 295337735
Fx: +61 295337790
Visit www.multitrode.com.au for the latest information

MultiTrode Inc-USA
Ph: +1 5619948090
Fx: +1561994 6282
E-mail: sales@multitrode.net

SAFESMART FailSafe Level Alarm Relay SAFE-FS

Installation \& Operation Manual

WATER - WASTEMITH • FUMP STATOH • ECHVOLOG

This Manual is the support documentation for the installation, commissioning and operation of the SAFE-FS Level Alarm Relay.

Document Revision 1.0
Last updated 10-Feb-2009

NOTICE

MULTITRODE® and MULTISMART® are registered trademarks of MultiTrode Pty Ltd in Australia, USA, and Europe. PUMPVIEW® is a registered trademark of MultiTrode Pty Ltd in the USA and Australia. Designs registered for the MultiSmart Pump Controller Remote and Base Modules in Australia, USA, Europe and China. Patents pending in Australia, USA, and Europe.
©2009 MultiTrode Pty Ltd. This publication is protected by copyright. No part of this publication may be reproduced by any process, electronic or otherwise, without the express written permission of MultiTrode Pty Ltd.

Contents

1 Warnings \& Cautions 5
1.1 Information to User 5
1.2 Documentation Standards 5
1.3 Installation Notes 5
2 Introduction 5
3 Specifications 6
4 Installation 6
5 Power Supply 6
6 Level Alarms 7
6.1 Level Alarm Activation Delays. 7
6.2 Level Alarm Deactivation Delays 7
7 Failsafe Probe Alarm 7
8 Probe Sensitivity 8
9 LED Function 8
10 DIP Switch Settings 9
11 Example Applications 9
11.1 Example 1 - High Level Alarm with Single Sensor Probe 9
11.2 Example 2 - High Level Alarm with $10 \times$ Sensor Probe. 10
11.3 Example 3 - Low Level Alarm 10
11.4 Example 4 - Wiring Diagram - High Level Alarm 11

Warnings \& Cautions

1.1 Information to User

Read through this manual to obtain a good working knowledge in order to get maximum performance from the product for your application. After reading, place the manual in a safe place for future reference.

1.2 Documentation Standards

DANGER:
This symbol is used where non-compliance could result in injury or death.

WARNING:

This symbol is used where non-compliance could result in incorrect operation, damage to or failure of the equipment.

NOTE:

This symbol is used to highlight an issue or special case within the body of the manual.

1.3 Installation Notes

WARNING:
The SAFE-FS installation and wiring must be performed by qualified personnel.
DANGER:
The SAFE-FS has no user serviceable parts to reduce the risk of electric shock leave all servicing to qualified Multitrode technical staff.

2 Introduction

The Safe-FS is the next generation of ultra-reliable high level alarming for lift stations and pump stations. It is part of the new SafeSmart family from MultiTrode. It adds failsafe probe functionality, for example, for the situation where rats have been eating through cables. The -FS verifies that the high level alarm is always functioning.

- Adds failsafe test to the ultra-reliable probe
- Relay output for loss of probe - N/O or N/C
- Relay output for high level alarm - N/O or N/C
- LED indication for power, level alarm, loss of probe alarm

Over 100,000 pump stations around the world use MultiTrode probes for primary or backup control (or both). Utilities have moved away from ball floats because they are prone to tangle up and need frequent cleaning to avoid false readings from fats, oils and grease.

The MultiTrode single sensor probe eliminates the problems of ball floats, and the new fail-safe single-sensor probe adds an extra electrical connection to the sensor. The level alarm relay checks for continuity - so if a wire has become disconnected, or if rats have eaten the cable - an output is activated. This provides continuous verification to the utility that the probe is in operation.

The MTRA-FS Level Alarm Relay is designed to be easy to install and configure and operates from a 11 - 30 VDC power supply. All connections are clearly labelled on the side of the device and options are configured using a set of DIP switches on the front of the relay. During operation, the LED's on the front panel indicate the current status including Probe Fault and Level Alarm.

3 Specifications

Dimensions	
Width	$\left.22.5 \mathrm{~mm} \mathrm{(7/8}^{\prime \prime}\right)$
Height	$101 \mathrm{~mm} \mathrm{(4")}$
Length (depth)	$120 \mathrm{~mm} \mathrm{(43/4")}$
Environmental	
Ambient Temperature	-10 to $60^{\circ} \mathrm{C}$
Humidity	5% to 90% non-condensing
DC Power Supply	
Voltage Range	$11-30 \mathrm{~V}$ DC
Current	0.15 A max
Relay Outputs	
Type	Form A
Current (Resistive)	5 A
Current (Inductive)	2 A
Voltage Rating DC	30 V DC
Voltage Rating AC	250 V AC

Table 1 - SAFE-FS Specifications

4 Installation

The SafeSmart SAFE-FS is designed to be mounted onto a standard DIN rail. All power supply, input and output connections are located on the top of the relay housing.

The features of the relay are listed below and are described in the following sections.

- Power Supply
- Level Alarms
- Failsafe Probe Alarm
- Probe Sensitivity
- LED Function
- DIP Switch Settings

5 Power Supply

The SAFE-FS is requires a $11-30 \mathrm{~V}$ DC power supply.
A switch or circuit-breaker and an over current protection device must be included in the installation. The protection device must be in close proximity to the equipment, within easy reach of the operator, and be marked as the protection device for the equipment. The input wiring and the switch/circuit-breaker/over current device must be rated to at least the nominal input voltage being used. The recommended current rating is listed in Table 2 below.

Unit Supply Range	Recommended Switch/Circuit-Breaker/Over current Protection Device Rating	Minimum Supply Wiring Rating
$11-30 \mathrm{~V}$ DC	0.15 A	0.15 A

Table 2 - Current Ratings

If the DC supply voltage drops below a threshold, the Power LED flashes and the Failsafe Probe Alarm output is activated. (If the power supply connected is below 24 VDC , the voltage alarm threshold is automatically set to 11.5 V . If the supply is 24 VDC or above, the voltage alarm threshold is automatically set to 23 V).

NOTE: The MultiTrode probe uses an earth/ground return path for the signal. Ensure that the GND (DC-) terminal on the SAFE-FS relay is also grounded.

6 Level Alarms

The SAFE-FS has the following alarm inputs:
A conductive level sensor is connected to the AL Probe input to detect when the liquid level has risen above or fallen below a predetermined level.

- In High Level Alarm mode, the alarm activates when the AL Probe input detects liquid (after the activation delay has expired).
- In Low Level Alarm mode, the alarm activates when the AL Probe input no longer detects liquid (i.e. the level has dropped below the sensor) and the activation delay has expired.
- High Level Alarm - DIP Switch 1 = OFF
- Low Level Alarm - DIP Switch $1=\mathrm{ON}$

When a level alarm is detected, the Level Alarm contacts are activated and the Level Alarm LED flashes. The alarm contacts can be used to operate a warning light or connected to a PLC / RTU or dialler for remote monitoring.
The Level Alarm output can be configured as Normally Open (N/O) or Normally Closed (N/C) via DIP Switch 4:

- N/C Level Alarm - DIP Switch 4 = OFF
- N/O Level Alarm - DIP Switch $4=O N$

6.1 Level Alarm Activation Delays

The activation delay can be extended from 0.5 to 10 s . A 10 s activation delay ignores the alarm condition (high or low level) if the sensor is triggered for less than 10 s. It is configured via DIP Switch 2.

There are 2 delay periods:

- 0.5 sec - DIP Switch 2 = OFF
- 10 sec - DIP Switch 2 = ON

6.2 Level Alarm Deactivation Delays

The deactivation delay can be extended from 0.5 to 10 s. A 10 s deactivation maintains the alarm for 10 s after the alarm condition has passed. It is configured via DIP Switch 3.

There are 2 delay periods:

- 0.5 sec - DIP Switch $3=$ OFF
- 10 sec - DIP Switch 3 = ON

7 Failsafe Probe Alarm

MultiTrode's Failsafe probe includes an extra connection to the top sensor which is used for failsafe detection. The SafeSmart relay utilises this connection to test the integrity of the connection to the sensor. If the cable to the sensor is broken, the relay detects this (after a short delay), the Probe LED starts flashing and the Probe Alarm contacts are activated. (The Failsafe Probe Alarm output can be configured as normally open or normally closed via DIP switch 5).

- N/C Failsafe Probe Alarm - DIP Switch 5 = OFF
- N/O Failsafe Probe Alarm - DIP Switch 5 = ON

SAFE-FS Relay Manual

If a standard or non-failsafe probe is used, a jumper must be connected between the AL Probe and Failsafe inputs to prevent probe fault alarms.

Figure 1 - Non-failsafe Probe Connection Diagram

\triangle

NOTE:

The failsafe probe input must be connected to the highest probe in the system.

8 Probe Sensitivity

The relay is used in conjunction with a conductive level sensing device such as the MultiTrode probe. Conductive probes rely on conductivity through the liquid to earth in order to detect level. Highly conductive liquids such as saltwater, generally require the relay to be set to a lower sensitivity than for low conductivity liquids such as distilled water. For most applications, the default probe setting of 20 k ohms is satisfactory but the relay allows for the operator to adjust its sensitivity as needed for specific conditions. The sensitivity is set using Dip Switches 7 and 8, (see Table 3 below).

Dip Sw 7	Dip Sw $\mathbf{8}$	Sensitivity	Typical Application
OFF	OFF	1k ohm	Concentrates Acids, Minerals, Alkalis
ON	OFF	$4 k$ ohm	Acids, Alkalis, Diluted Brine, Sea Water
OFF	ON	20 k ohm	Sullage, Sewage Effluent, Town Water
ON	ON	80k ohm	Industrial Effluent, Purified Water*

Table 3 - Probe Sensitivity

- Not recommended for use with purified de-ionised water.

9 LED Function

Three LEDs on the front of the relay indicate the power and status of the level and probe alarms.

LED	Status	Indication
Power	Power On	Steady
	Low Voltage	Flashing
Level	Level Alarm Active	Flashing
Probe	Failsafe Alarm Active	Flashing

Table 4 - LED Function

SAFE-FS Relay Manual

10 DIP Switch Settings
The SAFE-FS is configured using the DIP switches located on the front of the relay enclosure.

DIP \#	Setting	Mode Description	Section
1	OFF	High Level Alarm	6
	ON	Low Level Alarm	6
2	OFF	0.5 sec Level Alarm Activation Delay	6.1
	ON	10 sec Level Alarm Activation Delay	6.1
3	OFF	0.5 sec Level Alarm Deactivation Delay	6.1
	ON	10 sec Level Alarm Deactivation Delay	6.1
4	OFF	N/C Level Alarm	6
	ON	N/O Level Alarm	6
5	OFF	N/C Failsafe Probe Alarm	7
	ON	N/O Failsafe Probe Alarm	7
6	OFF	Not Used	-
	ON	Not Used	-
7	8	Probe Sensitivity	8
OFF	OFF	1k ohm	
ON	OFF	4k ohm	
OFF	ON	20k ohm	
ON	ON	80k ohm	

Table 5 - DIP Settings

11 Example Applications

11.1 Example 1 - High Level Alarm with Single Sensor Probe

A high level alarm is configured for a discharge/empty application. A Failsafe single sensor probe is used, (bridge terminal 2 to 1 if a standard probe is used). The Level Alarm contacts activate when the liquid level reaches the sensor.

Figure 2 - High Level Alarm with Single Sensor Probe

11.2 Example 2 - High Level Alarm with $10 \times$ Sensor Probe

A high level alarm is configured for a discharge/empty application. A Failsafe ten (10) sensor probe is used. The Level Alarm contacts activate when the liquid level reaches the highest sensor. The probe sensors can not be connected in parallel to two devices, so the highest sensor only goes to the FS relay.

Figure 3 - High Level Alarm with 10 Sensor Probe

11.3 Example 3 - Low Level Alarm

A low level alarm is configured for a charge/fill application. The Level Alarm contacts activate when the liquid level falls just below the sensor.
A standard probe is used as there is little advantage in using a Failsafe probe as a low level sensor. While a Failsafe probe could be used to detect a connection failure to the sensor, in a charge/fill application the failure of the sensor would generate a low level alarm regardless due the nature of the probe. (Open circuit connection is equivalent to sensor uncovered).

Figure 4 - Low Level Alarm

11.4 Example 4 - Wiring Diagram - High Level Alarm

The following wiring diagram illustrates the SAFE-FS configured for a high level alarm, with connections to a PLC / RTU or dialler (to receive alarms via SMS).

Figure 5 - Wiring Diagram for a High Level Alarm

Appendix A．Relay SAFE－FS Label

	W¢		岂至变			POWER
	8888			Q8ర8		
			D01	DCinfut 21		LEVEL ALARM
SafeSmart Alarm Relay	SW\＃	SEIING MODE DESCRIPTION				
	SW1	OFF	HGH LEVEL ALARM			PROBE ALARM
		ON	LOW LEVELALARM			
	SW2	OFF	0.5 sec	LEVEL ALARM		
SAFE－FS		ON	10 sec	ACTIVAT ION DELAY		
	SW3	OFF	0.5 sec	LEVEL ALAARM	© U Us	$\underset{\rightarrow-}{01 \%}$
		ON	10 sec	DEACTNATION DELAY		
$11-30 \text { VDC }$	SW4	OFF	NC LEVELALARM			
0．15 A MAX		ON N	NO LEVELALARM			
	SW5	OFF	NC FAILSAFEALARM		 This device＂compliès with part － 15 ofthe FCC Rules．	
Serial No．		ON	NO FAlLS	SAFEALARM		
	SW6	OFF	NOT USED		Operation is subjed to the	
		ON	NOT USED		f bllowing two conditions： （1）This device may not cause	
	SW7	SW8	PROBE	E SENSITIVITY	－haindul interimence，and	
multrode	OFF	OFF	$1 \mathrm{~K} \Omega$		（2）this device must accept any interference received， including interference that may＇ cause undesired operation	DIP SWITCHES
	ON	OFF	4 K			
www．multitrode．com	OFF	ON	$20 \mathrm{~K} \Omega$			
	ON	ON	80K Ω			

multitrode

MultiTrode Pty Ltd－Head Office

Brisbane Technology Park 18 Brandl Street

PO Box 4633
Eight Mile Plains Qld 4113
Ph：＋61 733407000
Fx：＋61 733407077
E－mail：AUsales＠multitrode．com

MultiTrode Inc－USA

Unit 3， 990 South Rogers Circle Boca Raton Florida 33487

Tel：＋1 5619948090
Fax：＋1 5619946282
E－mail：USsales＠multitrode．net

Visit www．multitrode．com for the latest information

sprecher+ schuh

Electronic Timer

Elektronisches Zeitrelais
Minuterie électronique Temporizzatore elettronico
Temporizador electronico

Attention:

To prevent electrical shock, disconnect from power source before installing or servicing. Do not open the apparatus.

Achtung:

Um Unfälle zu vermeiden,
Installations- oder Servicearbeiten nur im spannungsfreien Zustand Gehäuse niemals öffnen.

Attention:

Avant le montage et la mise en service, couper I'alimentation secteur afin d'éviter tout accident. Ne pas ouvrir l'appareil.

Attenzione:

Per prevenire infortuni, togliere tensione prima dell'installazione o manutenzione. Non aprire l'apparecchio.

RZ7-FS

Atención:

Desconectar la alimentación eléctrica antes de realizar el montaje y la puesta en servicio, con el objeto de evitar accidentes. No abrir el aparato.

Instructions - Anleitungen - Instructions - Istruzioni - Instrucciones

Pre-settings Voreinstellungen Ajustements Regolazioni Regulación	

(A)

Technische Änderungen vorbehalten 26.511.799-99 / 03. 2002

Edition 1

Solid-State Digital Timer

1/16 DIN, Digital-Set Timer with

0.1 Second to 9,990 Hours Range

- 8 field-selectable operation modes
- Universal AC/DC supply voltage timers available
- Operations include ON-delay, Repeat cycle, Signal Interval/OFF-delay, Signal-OFF delay (I and II), Interval, Cycle and Signal ON-delay/OFF-delay
- Selectable no-voltage start, reset, gate and check inputs expand capabilities

- Time remaining LCD bar graph and LCD output status indicator
- Panel mounting adapters, sockets, and accessories may be ordered separately

Ordering Information

- TIMERS

Add the supply voltage to the part number when you order ON-delay only timers $\mathrm{H} 3 \mathrm{CA}-8$ and $\mathrm{H} 3 \mathrm{CA}-8 \mathrm{H}$. For example, H3CA-8H-AC/100/110/120.

Timing function		8 field-selectable functions		ON-delay only	
Contact type	Time limit	SPDT	SPDT	SPDT	DPDT
	Instantaneous	-	-	SPDT	-
Terminal form		11-pin round socket	Front mounted screw terminals	8-pin round socket	
Part number		H3CA-A	H3CA-FA	H3CA-8H	H3CA-8
Supply voltages	AC	$\begin{aligned} & 24 \text { to } 240 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \text { or } \\ & 12 \text { to } 240 \mathrm{~V} \end{aligned}$		Specify $24 \mathrm{~V}, 100 / 110 / 120 \mathrm{~V}$, or 200/220/240 V; $50 / 60 \mathrm{~Hz}$	
	DC			Specify 12	

■ ACCESSORIES

Description			Part number
Sockets	11-pin	Bottom surface or track mounting, top screw terminals	P2CF-11
		Bottom surface or track mounting, top screw terminals, finger safe terminal conforms to VDE0106/P100	P2CF-11-E
		Back mounting, for use with Y92F-30 mounting adapter, bottom screw terminals	P3GA-11
	8-pin	Bottom surface or track mounting, top screw terminals	P2CF-08
		Bottom surface or track mounting, top screw terminals, finger safe terminal conforms to VDE0106/P100	P2CF-08-E
		Back mounting, for use with Y92F-30 mounting adapter, bottom screw terminals	P3G-08
		Terminal cover for P3G sockets, conforms to VDE0106P100	Y92A-48G
Panel mounting adapter		Fits behind panel, ideal for side by side installation. Use P3G $\square-\square$ sockets.	Y92F-30
		Flush mounting adapter ($88 \mathrm{~mm} \times 58 \mathrm{~mm} \times 63.7 \mathrm{~mm}$)	Y92F-70
		Flush mounting adapter ($58 \mathrm{~mm} \times 50 \mathrm{~mm} \times 63.7 \mathrm{~mm}$)	Y92F-71

Accessories table continued on the next page.

ACCESSORIES, continued

Description		Part number
Protective cover	Hard plastic cover protects against dust, dirt and water; not for use with panel covers	Y92A-48B
	Soft plastic cover protects against dust, dirt and water; not for use with panel covers	Y92A-48D
NEMA 4 cover	Waterproof front cover	Y92A-48N
Colored panel covers	Light gray (Munsell No. 5Y7/1) to match case	Y92P-48GL
	Medium gray (Munsell No. 5Y5/1)	Y92P-48GM
	Black (Munsell No. N1.5)	Y92P-48GB
Mounting track	DIN rail, $50 \mathrm{~cm}(1.64 \mathrm{ft})$ length; 7.3 mm thick	PFP-50N
	DIN rail, $1 \mathrm{~m}(3.28 \mathrm{ft})$ length; 7.3 mm thick	PFP-100N
	DIN rail, $1 \mathrm{~m}(3.28 \mathrm{ft})$ length; 16 mm thick	PFP-100N2
End plate		PFP-M
Spacer		PFP-S

■ RANGE AND OPERATION MODE SELECTION

Note:
*Operation mode selector not included with ON-delay only models.

Specifications

Part number			H3CA-A	H3CA-FA	H3CA-8H	H3CA-8
Supply voltage		AC	24 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$		$24 \mathrm{~V}, 100 / 110 / 120 \mathrm{~V}, 200 / 220 / 240 \mathrm{~V}$; 50/60 Hz	
		DC	12 to 240 V		$12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V}, 110 \mathrm{~V}$, (permissible ripple factor: 20% max. using single-phase, fullwave rectified power sources)	
Operating voltage			90 to 110\% of rated voltage			
Power consumption		AC	4 VA		10 VA	
		DC	2 W		2W	
Timingfunctions			8 field-selectable modes: ON-delay, Repeat cycle, Signal Interval/OFF-delay, Signal ON-/ OFF-delay, Signal OFF-delay (I and II), Interval and Cycle		ON-delay only	
Start, reset, gate inputs			No voltage	No voltage	-	-
Control output		Time limit	SPDT		SPDT	DPDT
		Instantaneous	-		SPDT	-
	Max. load		$3 \mathrm{~A}, 250$ VAC (p.f. $=1$)			
	Min. load		$10 \mathrm{~mA}, 5 \mathrm{VDC}$			
Repeat accuracy			$\pm 0.3 \%, \pm 0.05 \mathrm{sec}$ (includes variation due to voltage and temperature changes)			
Setting error			$\pm 0.5 \%, \pm 0.05 \mathrm{sec}$			
Resetting system			Power-OFF, external and self-reset		Power-OFF	
Resetting time			0.5 sec max.		0.1 sec max.	
Indicators			Time Remaining (LCD bar graph), Output Status (LCD message)			
Materials			Plastic case			
Mounting			Panel, track, surface			
Connections			11-pin round	Terminal screws	8-pin round socket	

S tion table conti the next page.

SPECIFICATIONS, continued

Engineering Data

■ ELECTRICAL SERVICE LIFE

Timing Charts

In the schematic diagrams, each thick line indicates the external wiring necessary for the selected operation.

■ H3CA-A, H3CA-FA

Mode A ON-Delay

Power-ON Start/Power-OFF Reset

The start terminals are connected. Timing starts when power is applied. The output is energized when the accumulated time equals the set time. The output remains energized until power is disconnected or a reset input is applied.

Signal Start

Power is applied continuously. Timing starts at the leading edge of the start input. The output is energized when the accumulated time equals the set time. Subsequent start signals during or after timing will not be accepted. The output relay will remain energized until a reset input is applied or power is interrupted.

Mode B Repeat Cycle

Signal Start

Power is continuously applied. The OFF/ON cycle is initiated at the leading edge of the start input. The output relay will be OFF for the set time and then ON for the set time. This cycle will be repeated until a reset input is applied or power is disconnected.

In the schematic diagrams, each thick line indicates the external wiring necessary for the selected operation.

Power-ON Start/Power-OFF Reset

The start terminals are connected. Timing starts when power is applied. The output relay will be OFF for the set time and then ON for the set time. This cycle will be repeated until a reset input is applied or power is disconnected.

Mode C Signal ON/OFF-Delay

Power is continuously applied. Timing begins on both the leading and trailing edges of the start input. The output relay is energized during timing. Once the timer has timed out from the trailing edge, it resets and is ready for subsequent start inputs.

Mode D Signal OFF-Delay (I)

Power is continuously applied. The output relay is energized at the leading edge of the start input. Timing starts at the trailing edge of the start input. The output relay is de-energized when the accumulated time equals the set time.

In the schematic diagrams, each thick line indicates the external wiring necessary for the selected operation.

Mode E Interval

Signal Start

Power is applied continuously. Timing starts at the leading edge of the start input. The output relay is only energized during timing. The timer is reset when power is disconnected or a reset input is applied.

Power-ON Start/Power-OFF reset

The start terminals are connected. Timing starts when power is applied. The output relay is only energized during timing. The timer is reset when power is disconnected or a reset input is applied.

Mode F Cycle One-Shot

Power-ON Short/Power-OFF Reset

The start terminals are connected. Timing starts when power is applied. The output relay will be OFF for the set time and then ON for the set time. The timer is reset when power is disconnected or a reset input is applied.

In the schematic diagrams, each thick line indicates the external wiring necessary for the selected operation.

Signal Start

Power is applied continuously. The OFF/ON cycle is initiated at the leading edge of the start input. The output relay will be OFF for the set time and then ON for the set time. The timer is reset when power is disconnected or a reset input is applied.

Mode G Signal ON-delay/OFF-delay

Power is continuously applied. Timing begins on both the leading and trailing edges of the start input. The output relay is energized when the accumulated time from the leading edge equals the set time. It is also energized for the set amount of time from the trailing edge of the start input.

Mode H Signal OFF-Delay (II)

Power is continuously applied. Timing starts at the trailing edge of the start input. The output relay is energized during timing.

In the schematic diagrams, each thick line indicates the external wiring necessary for the selected operation.

Dimensions

Unit: mm (inch)

■ TIMERS

H3CA-A

Panel cutout

Note: Recommended panel thickness is 1 to 3.2 mm .

Panel cutout conforms to DIN 43700.

H3CA-FA

Note: When mounting two or more timers next to one another, allow $10 \mathrm{~mm}(0.39 \mathrm{in})$ between timers (dimension L).

H3CA-8, H3CA-8H

Note: Recommended panel thickness is 1 to 3.2 mm .

Panel cutout conforms to DIN 43700.

- ACCESSORIES

P2CF-08-E Finger Safe Terminal Type

Conforming to VDE0106/P100

P2CF-11-E Finger Safe Terminal Type
Conforming to VDE0106/P100

Y92A-48G Finger Safe Terminal for P3G(A)
Conforming to VDE0106/P100

Y92F-30 Panel Mounting Adapter

Adapter installs behind the panel. It is ideal for side by side installation. Use P3GA-11 or P3G-08 sockets.

Y92F-70 Panel Mounting Adapter

Charcoal gray panel adapter installs through panel front. Timer fits bezel, rear of timer clips to adapter.

Y92F-71 Panel Mounting Adapter

Charcoal gray panel adapter installs through panel front. Timer face fits bezel, rear of timer clips to adapter. Use P3GA-11 or P3G-08.

Y92A-48B Hard Plastic Cover

Y92A-48D Soft Plastic Cover

Hard plastic cover Y92A-48B and soft plastic cover Y92A-48D snap onto the front of the timer to protect against dust and water. The Y92A-48B hard plastic cover prevents accidental resetting. Y92A-48D soft plastic cover fits snugly over the front and allows settings to be changed. These covers are intended for use in areas where unusual service conditions do not exist.

PFP-100N/PFP-50N Mounting Track

PFP-M End Plate

PFP-S Spacer

Connections

Part number	Input terminal numbers (no-voltage only)					Power supply terminal numbers		Output terminal numbers			
	Gate	Start	Reset	Check	COM	AC (common), DC-	AC (hot), DC+	Type	COM	NC	NO
H3CA-A	5	6	7	4	3	2	10	Timed contact	11	8	9
H3CA-FA	D1	C1	B1	E1	X	A2	A1	Timed contact	15	16	18
H3CA-8H	-	-	-	-	-	2	7	Instantaneous Timed contact		4 5	3 6
H3CA-8	-	-	-	-	-	2	7	Timed contact Timed contact	1	4 5	3

■ CONTACT SIGNAL INPUTS

Input Signal Requirements

Resistance	$1 \mathrm{~K} \Omega$ max.
Residual voltage	1 V max. when the contact makes
Contact material	Gold-plated contacts recommended

H3CA-A

- Start input contact between terminals 3 and 6 .
- Reset input contact between terminals 3 and 7 .
- Gate input contact between terminals 3 and 5 .
- Check input contact between terminals 3 and 4 .

H3CA-FA

- Start input contact between terminals X and C1 .
- Reset input contact between terminals X and B1.
- Gate input contact between terminals X and D1.
- Check input contact between terminals X and E 1 .

H3CA-A

H3CA-FA

SOLID-STATE SIGNAL INPUTS

Input Signal Requirements

Input type	Open collector transistor
Voltage when collector is OFF	20 V min.
Saturated voltage when transistor is ON	1 V max.
Collector current	50 mA max.
Input current between collector and base	$0.5 \mu \mathrm{~A} \mathrm{max}$.
Resistance when transistor is ON	$1 \mathrm{~K} \Omega$ max.
Residual voltage when transistor is ON	1 V max.
Resistance when transistor is OFF	$200 \mathrm{~K} \Omega$ min.

H3CA-A and H3CA-FA

Solid-state input terminal connections are the same as those for contact signal inputs.

Solid-State Inputs (Not Open Collector Type)

Proximity and photoelectric sensors often have NPN or PNP type solid-state output circuits and rated supply voltages ranging from 6 to 30 VDC. These signals are applied to the timer according to the diagram below.

Solid-state circuit (proximity
sensor, proximity sensor, etc.)

■ CUMULATIVE TIMING

Using the Gate Input with ON-Delay

When the gate signal is closed, timing is temporarily stopped. When the gate signal opens, timing resumes at the point of interruption. The gate input terminal permits the timer to sum up times t_{1} and t_{2} as shown in the timing chart.

■ CHECK INPUT

ON-Delay Operation

When a no-voltage input signal is applied to the timer during the lapse of a set time, the remaining set time will become 0 and the timer will enter the next control state. Also, while the Check Signal is applied, the elapsed time measurement of the set time is not performed. The Check input is especially useful where ON-delay override may be desirable.

$t-a=$ less than set time

Repeat Cycle Operation

The Check input signal in Repeat cycle mode allows the timer to be used like a binary flip-flop or alternating relay. Set an unattainable time, such as 999 hours. Apply the no-voltage Check input to shift output status from ON to OFF, or vice-versa. Jumper terminals 3 and 6 (X and C 1) to short the start function. The Check input then controls the output relay like a flip-flop or alternating relay. This may be used to alternate wear on main and secondary equipment such as pumps.

Installation

■ PROPER INPUT CONNECTIONS (H3CA-A, H3CA-FA)

The neutral or common of the power supply is connected to terminal 2 (A2) of the timer. Terminal 10 (A1) should be connected to the "hot" or positive of the power supply. Do not apply voltage to Check, Gate, Start and Reset inputs. These are no-voltage type inputs.

PROPER OUTPUT CONNECTIONS

Design your control circuit using the output relay contacts to
 switch the load. Never switch a load with the contact that is being used as an input signal. The timer's circuitry may be damaged.

PARALLEL CONNECTIONS

Parallel connection of two or more Omron Timers is possible as shown by the diagram to the right.

This will allow the simultaneous start or restart of multiple timers using a single switch for the Start Input and a single switch for the Reset Input.

It is possible to wire only up to 4 timers in this manner. Wiring more than 4 results in poor performance due to excessive voltage drop.

Operation

SELECTING TIME RANGE

Use the rightmost pushwheel switch to select the time range. Use the three center pushwheel switches to select the time setting between 000 and 999. For ranges with 0.1 time units, the decimal point is assumed to be between middle and right digits.

Time unit	Timing range
0.1 s	0.1 to 99.9 seconds
s	1 to 999 seconds
0.1 m	0.1 to 99.9 minutes
m	1 to 999 minutes
0.1 h	0.1 to 99.9 hours
h	1 to 999 hours
10 h	10 to 9990 hours

Note: *Operation mode selector not included with ON-delay timers

SELECTING OPERATION MODES (H3CA-A, H3CA-FA)

The operation mode is selected by the leftmost pushwheel switch.

Mode	Operation
A	ON-delay
B	Repeat cycle
C	Signal Interval/OFF-delay
D	Signal OFF-delay I
E	Interval
F	Cycle
G	Signal ON-delay/OFF-delay
H	Signal OFF-delay II

CAUTIONS

Do not change the time unit or time range while the timer is in operation. Otherwise, the timer may malfunction or be damaged. Be sure to turn off the power supply to the timer before changing any of the selections.

Mounting

■ PANEL MOUNTING

Using Y92F-30 Adapter

Insert the timer through the panel cutout. Push the Y92F-30 adapter from the rear of the timer as far forward toward the panel as possible. Wire the P3GD-a socket, then push it onto the rear of the timer. Then, tighten the two retaining screws. To release the adapter, lift the tab at the rear of the adapter.

Several timers may be mounted close together using Y92F-30 adapter as shown here. When mounting two or more timers in a vertical line, arrange the adapters so that their molded tabs are positioned on the right and left sides. When mounting two or more timers in a horizontal line, arrange the adapters so that their molded tabs are positioned on the top and bottom sides.

Panel cutout for side-by-side mounting of two timers

Using Y92F-70 and Y92F-71 Adapters

Installation

Install the H3CA timer, face first, into the back side of the Y92F-70 or Y92F-71 adapter so the bezel fits snugly. Be sure the retaining clips at the back of the adapter fit into the slots on either side of the timer. Compress the top and bottom tabs of the adapter then push the adapter through the front side of the panel cutout. Be sure the tabs extend after installation for a secure fit.

To remove the timer from the adapter, unclip the two retaining clips at the back of the adapter. To remove the adapter and timer from the panel as a unit, compress the tabs behind the panel and push the unit out the front of the panel.

Removal

TRACK MOUNTING

H3CA-FA with Built-In Track Adapter

Mounting

First hook part "A" on the rear of the timer onto an edge of the track. Then, press the timer in direction "B" until the latch on the bottom rear of the timer locks securely.

Removal

Pull the latch "C" with a flat-blade screwdriver and remove the timer from the mounting track.

P2CF- Socket

For H3CA-A, H3CA-8 and H3CA-8H

Mounting

The P2CF- \square socket has two hooks that secure the timer to the socket. Be sure to allow at least 20 mm (0.79 in) clearance above and below the socket to gain access and to release the hooks for servicing and maintenance. Insert timer into the socket. Latch hooks. Then clip rear of the socket to the track. Push the bottom onto the track until the latch hooks securely.

Removal

Pull the latch on the socket with a flat-blade screwdriver and remove the timer and socket as one unit.

NOTE: DIMENSIONS ARE SHOWN IN MILLIMETERS. To convert millimeters to inches divide by 25.4 .

OmROn

OMRON ELECTRONICS LLC

One East Commerce Drive
Schaumburg, IL 60173
1-800-55-OMRON
Cat. No. GC TMCN1

OMRON ON-LINE

Global - http://www.omron.com
USA - http://www.omron.com/oei
Canada - http://www.omron.com/oci
Specifications subject to change without notice.

OMRON CANADA, INC.
885 Milner Avenue
Scarborough, Ontario M1B 5V8
416-286-6465
Printed in the U.S.A.

Features

CS 7-22E

CS 7-31E

CS 7-40E

Auxiliary contact 2 pole top mount

- Complies with IEC 947
- High contact reliability
- Basic 4 pole relay can be increased to $x x$ poles by clip-on contacts
- Choice of front mount or side mount additional contacts

O Electronic compatible contacts

Control relay CS 7C complete with DC control ${ }^{2}$)

14	10	5	25	20	$\left.\left.\left.\left.\left.\left.{ }_{k 1}\right\|_{\left.\right\|_{A 2}} ^{A 1}\right\|_{12} ^{12}\right\|_{22} ^{12}\right\|_{32} ^{21}\right\|_{42} ^{13}\right\|_{42} ^{41}$	0	4	CS 7C-04E...V
14	10	5	25	20		1	3	CS 7C-13E...V
14	10	5	25	20	${ }^{11} 1$	2	2	CS 7C-22E...V
14	10	5	25	20		3	1	CS 7C-31E...V
14	10	5	25	20		4	0	CS 7C-40E...V

Top mounting auxiliary contact blocks ${ }^{3}$)

N/O	N/C	Diagram	Position	Suit CS 7	Cat. No.
1	1	$\left.\left.\right\|_{54} ^{53}\right\|_{62} ^{61}$	11	All	CS 7-PV-11
0	2	$+\left._{52}^{51}\right\|_{62} ^{61}$	02	All	CS 7-PV-02
2	0	$\left.\hat{S}_{54}^{53}\right\|_{64} ^{53}$	20	All	CS 7-PV-20
1+1E	$1+1 \mathrm{~L}$	$\left.\left.f_{54}^{53}\right\|_{62} ^{61} a_{72}^{61}\right\|_{84} ^{71}$	L22	All	CS 7-PV-L22
3	1	$\left.\left.\left.t_{54}^{53}\right\|_{62} ^{61}\right\|_{74} ^{63}\right\|_{84} ^{73}$	31	All	CS 7-PV-31
4	0	$)\left.\left.\left._{54}^{53}\right\|_{64} ^{53} \cdot\right\|_{74} ^{63}\right\|_{84} ^{73}$	40	All	CS 7-PV-40

Notes: $\quad{ }^{1}$) Add coil voltage, standard voltages $24,32,110,240,415 \mathrm{~V} 50 \mathrm{~Hz}$.
${ }^{2}$) Add coil voltage, standard voltages 24, 36, 48, 110 and 240V DC.
${ }^{3}$) Other contact blocks type CA 7-P can be used providing terminal numbers are acceptable (refer CA 7 contactor auxiliaries).

Technical information

Ratings to IEC 947

Relay		CS 7	Relay and accessories
AC1 resistive load switching $3 \varnothing$			
Ambient temperature $40^{\circ} \mathrm{C}$			
I_{e}	[A]	25	10
240 V	[kW]	10	-
415 V	[kW]	17	-
690V	[kW]	30	-
Ambient temperature $60^{\circ} \mathrm{C}$			
${ }_{\text {l }}$	[A]	20	6
240 V	[kW]	8	-
415 V	[kW]	14	-
690 V	[kW]	24	-
AC motor switching AC $2, \mathrm{AC} 3, \mathrm{AC} 4$			
240 V	[A]	11.5	-
415 V	[A]	9	-
690 V	[A]	5	-
240 V	[kW]	3	-
415 V	[kW]	4	-
690 V	[kW]	4	-

AC switching of electromagnetic loads
AC 15 at rated voltage

24 V	$[\mathrm{~A}]$	16	6
48 V	$[\mathrm{~A}]$	16	6
110 V	$[\mathrm{~A}]$	14	6
240 V	$[\mathrm{~A}]$	10	3
415 V	$[\mathrm{~A}]$	5	2
500 V	$[\mathrm{~A}]$	2.5	1.5
600 V	$[\mathrm{~A}]$	1.8	1.2
690 V	$[\mathrm{~A}]$	1	0.7
Short circuit protection	Fuse gG		10
Co-ordination type '2'	$[\mathrm{A}]$	10	

Number of switching operations

Mechanical	[Mill]	15	15
AC 15 (240V, 3A)	[Mill]	1.5	1.5
Weight with AC coil	[kg]	0.39	-
Terminals for auxiliary contacts		$\stackrel{\text { 哭 }}{\stackrel{y}{4}}$	$\stackrel{\text { 第 }}{1}$
Terminal size to IEC 947-1		$2 \times \mathrm{A} 4$	$2 \times \mathrm{A} 4$
Flexible wire with sleeve	1 wire [mm^{2}]	1... 4	0.5...2.5
E F-	2 wire [mm^{2}]	1... 4	0.75...2.5
Stranded/solid core	1 wire [mm^{2}]	1.5... 6	0.5...2.5
- $-=$	2 wire [mm^{2}]	1.5... 6	0.75...2.5
Tightening torque	[Nm]	1... 2.5	1...1.5

Technical information

Control circuit		CS 7
Operating limits		
AC 50/60Hz	Pick-up [$\mathrm{xU} \mathrm{U}_{\mathrm{s}}$]	0.85...1.1
	Drop-out [$\mathrm{x} \mathrm{U}_{\text {s }}$]	0.3...0.6
Pick-up and hold		
AC 50/60Hz	Pick-up [VA/W]	70/50
	Hold [VA/W]	8/2.6
Operating times		
AC 50/60Hz	Make [ms]	15... 30
	Break [ms]	10... 60

General data	CS 7
Rated insulation voltage U_{i}	
IEC	690 V
UL, CSA	600 V
Rated impulse voltage withstand $U_{\text {imp }}$	8kV
Test voltage	
1 minute (to IEC 947-4)	2500V
Rated voltage U_{e}	
AC	110, 240, 415, 500, 690V
DC	24, 48, 110, 220, 440V
Rated frequency of coil	$50 / 60 \mathrm{~Hz}$, DC
Ambient temperature	
Storage	$-55 \ldots+80^{\circ} \mathrm{C} \quad\left(-67 \ldots 176^{\circ} \mathrm{F}\right)$
Operation at nominal current	$-25 \ldots+60^{\circ} \mathrm{C}\left(-13 \ldots 140^{\circ} \mathrm{F}\right)$
Maximum with 15% AC 1 current reduction $>60^{\circ} \mathrm{C}$	$-25 \ldots+70^{\circ} \mathrm{C}$ (-13...158 $\left.{ }^{\circ} \mathrm{F}\right)$
Climatic withstand	Cyclicly changing humid atmosphere to
	IEC 68-2-30 and DIN 50 016, 56
Maximum altitude	2000 m NN , to IEC 947-4
Protection class	
IP 2LX (IEC 529 and DIN 40050)	In connected condition
Protection against contact	Finger and back of hand to VDE 0106, Part 100

CS 7 (AC)
Dimensions in (mm)

CS 7 (DC)
Dimensions in (mm)

Relay

Type	a	b	c	c1	c2	ød	d1	d2	
CS 7 (AC)	45	81	80.5	75.5	6	4.5	60	35	$\left.{ }^{1}\right)$

Accessories

Contactor with		[mm]
Front mounting auxiliary contact	2 or 4 pole	$\mathrm{c} / \mathrm{c} 1+39$
Side mounting auxiliary contact	1 or 2 pole	$\mathrm{a}+9$
Pneumatic timing module		$\mathrm{c} / \mathrm{c} 1+58$
Electronic timing module	Coil mounting	$\mathrm{b}+24$
Mechanical interlock	Mounts between contactors	$\mathrm{a}+9$
		$\mathrm{c} / \mathrm{c} 1+61$
Interface	Coil mounting	$\mathrm{b}+9$
Suppressor	Coil mounting	$\mathrm{b}+3$
With inscriptions	Labels	+0
	Label support system V4/V5	+5.5

Note: ${ }^{1}$) DIN rail mounting to 35 mm to EN 50022

Mounting position

KRAUS \& NAIMER

 BLUE LINE SWITCHGEAR
Catalog 100
 CL Switches 10 A-20 A
 C, CA, CAD Switches 10 A-315 A L Switches 350 A-2400 A

Construction Data

The load switches of the C, CA, CAD and CL-series offer a solution for most cam switch applications. Different contact designs, contact materials and terminals allow for their use as control switches, instrumentation switches and motor control switches, as well as in electronic circuitry and in aggressive environments according to IEC 60947-3 and VDE 0660 part 107.
The stage is the basis for all switches and can be supplied with a maximum of 2 contacts. The terminals are accessible from the side. CA and CAD switches are supplied with open terminals to facilitate wiring and are protected against accidental finger contact according to EN 50274, VDE 0660 part 514 and BGV A3. Captive plus-minus terminal screws and integrated screwdriver guides also reduce wiring.

The switches of the new CL-series are supplied with rust-free and acidresisting IDC terminals (Insulation Displacement Connection) instead of screw type terminals. The stripping or preparation of the insulation is no longer required. Eliminate errors due to i.e., stripped end of the conductor too long or too short, incorrect sleeves used, sleeves crimped incorrectly or wrong crimping tool is used, terminal screws not tightened properly etc. The CL switches reduce installation time by $60 \%-70 \%$ compared to the screw type terminals. This translates to significant cost savings. For connecting 2 conductors to a terminal an additional screw terminal with plus-minus screw is available.
If a positive manual operation or a higher DC rating is required, many of these switches can be fitted with a snap action latching mechanism suffix „S" - to the switch type.
The cam-operated switches L350-L2000 are continuous current rated for off-load switching. They may be used to switch resistive or low inductive loads.

Special Contact Systems

CA4/CA4-1

High contact reliability by multiple cross-point contacts, electronic compatible, CA4 with 1μ and CA4-1 with 35μ gold plating.

CAD11/CAD12

H-bridge with „cross-wire" contact system, high contact reliability also at lower voltages. CAD11 with gold-plated contacts, CAD12 with silver contact.

Type	Size	Possible Switching Angles	Max. No. of Stages
CA4, CA4-1	S00	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	9
CL4	S00	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	8
CA10-CA25	S0	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
CA10S-CA25S	S0	30°	on request
CAD11, CAD12	S0	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
CL10	S0	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	10
CA10B-CA25B	S1	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
C26, C32, C42	S1	$20^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
C26S, C32S, C42S	S1	60°	on request
C43, C80, C125	S2	$20^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
C315	S3	$20^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
L350/51, L630/31,	S2	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
L1000/01, L1250/51	S3	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
L400, L600, L800,	S300,		

CA and CAD Switches

C Switches

L Switches

Above illustrates the standard terminal positions.

Nominal Ratings

Switch Function and Configuration

			Type／Handle			
Function	Escutch． Plate	CA4 CA4－1 CL4	CAD． CA10－CA10B－C26－ CA25 CA25B C315 CL10	Code	Stages	Connection Diagram

ON／OFF Switches with 60° Switching

1 pole 2 pole 3 pole 3 pole 3 pole	with red handle with V850 padlock attachment		$\begin{aligned} & \text { b } \\ & \text { 包 } \\ & \text { 包 } \end{aligned}$	$\begin{aligned} & \text { 9 } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$			$\begin{aligned} & \text { A200-600 } \\ & \text { A201-600 } \\ & \text { A202-600 } \\ & \text { A202-626 } \\ & \text { A202-627 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	
4 pole 4 pole 5 pole 6 pole 7 pole 8 pole 8 pole 9 pole 10 pole 11 pole 12 pole	1 pole preclose $6^{\circ 1}$ 2 pole preclose $6^{\circ 1}$						A203－600 A653－600 A341－600 A342－600 A343－600 A344－600 A654－600 A345－600 A346－600 A347－600 A348－600	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 5 \\ & 5 \\ & 6 \\ & 6 \end{aligned}$	
1 pole 2 pole 3 pole 4 pole 4 pole 5 pole 6 pole 7 pole 8 pole 8 pole 9 pole 10 pole 11 pole 12 pole	1 pole preclose $6^{\circ 1}$ 2 pole preclose $6^{\circ 1}$						A200－620 A201－620 A202－620 A203－620 A653－620 A341－620 A342－620 A343－620 A344－620 A654－620 A345－620 A346－620 A347－620 A348－620	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 5 \\ & 5 \\ & 6 \\ & 6 \end{aligned}$	
1 pole 2 pole 3 pole 4 pole 4 pole 5 pole 6 pole	1 pole preclose 6°				$\begin{aligned} & \text { b } \\ & \text { - } \end{aligned}$		A200－621 A201－621 A202－621 A203－621 A653－621 A341－621 A342－621	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	4 pole 1 pole preclose 6°
1 pole 2 pole 3 pole 4 pole 4 pole 5 pole 6 pole	1 pole preclose $6^{\circ 1}$						A200－622 A201－622 A202－622 A203－622 A653－622 A341－622 A342－622	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	8 pole 2 pole preclose 6°
	1 pole preclose $6^{\circ 1}$		0 0 0 0 0 0 0 0				$\begin{aligned} & \text { A200-623 } \\ & \text { A201-623 } \\ & \text { A202-623 } \\ & \text { A203-623 } \\ & \text { A653-623 } \\ & \text { A341-623 } \\ & \text { A342-623 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	
1 pole 2 pole 3 pole 4 pole 4 pole 5 pole 6 pole	1 pole preclose $6^{\circ 1}$		$\begin{aligned} & \square \\ & \square \end{aligned}$				A200－624 A201－624 A202－624 A203－624 A653－624 A341－624 A342－624	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	
	1 pole preclose $6^{\circ 1}$				$\begin{aligned} & \text { g } \\ & \text { 0 } \\ & \text { 0 } \\ & \text { 戶 } \\ & \text { 戶 } \\ & \text { - } \end{aligned}$		A200－625 A201－625 A202－625 A203－625 A653－625 A341－625 A342－625	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	

Switch Function and Configuration

ON/OFF Switches with 90° Switching

ON/OFF Switches with 30° Switching

1 pole 2 pole 3 pole 4 pole	${ }^{\$} \begin{aligned} & 0 \\ & \zeta^{1} \\ & \end{aligned}$		[$\begin{aligned} & \text { A100-600 } \\ & \text { A101-600 } \\ & \text { A102-600 } \\ & \text { A103-600 } \end{aligned}$	1 1 2 2		1-4 pole
1 pole with spring return	${ }^{\Phi}$ Offon	\square	\square	\square	\square	A204-600	1		
2 pole with spring return	6	\square	-	¢	-	A205-600	1		
3 pole with spring return		\square	\square	\square	\square	A206-600	2		
4 pole with spring return		\square	\square^{1}	\square		A207-600	2	${ }^{\circ}$	1-4 pole
1 pole with spring return		\square	\square	\square		A204-620	1		
2 pole with spring return	\bigcirc	\square	-	-		A205-620	1		
3 pole with spring return	-	\square	\square	-		A206-620	2		
4 pole with spring return		\square	\square^{1}	-		A207-620	2		

${ }^{1}$ not available for switch type CA25

Switch Function and Configuration

			Type／Handle			
Function	Escutch． Plate	$\begin{aligned} & \text { CA4 } \\ & \text { CA4-1 } \\ & \text { CL44 } \end{aligned}$	CAD．． CA10－CA10B－C26－ CA25 CA25B C315 CL10	Code	Stages	Connection Diagram

Double－throw Switches without „OFF＂ 60° Switching

1 pole 2 pole 3 pole 4 pole 4 pole 1 pole preclose $6^{\circ 3}$ 5 pole 6 pole 7 pole 8 pole 8 pole 2 pole preclose $6^{\circ 3}$ 9 pole 10 pole 11 pole 12 pole		$\begin{aligned} & \square \\ & \square \end{aligned}$	\square \square 5 百 \square 6 \square \square 5 \square \square 6 0^{4} \square^{4}	\square \square \square \square － G \square － \square \square － \square － －	5 \square 5 G \square \square \square \square \square G 5 5 \square \square	$\begin{aligned} & \text { A220-600 } \\ & \text { A221-600 } \\ & \text { A222-600 } \\ & \text { A223-600 } \\ & \text { A673-600 } \\ & \text { A369-600 } \\ & \text { A370-600 } \\ & \text { A371-600 } \\ & \text { A372-600 } \\ & \text { A972-600 } \\ & \text { A373-600 } \\ & \text { A374-600 } \\ & \text { A375-600 } \\ & \text { A376-600 } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \\ & 8 \\ & 8 \\ & 9 \\ & 10 \\ & 11 \\ & 12 \end{aligned}$	6 and 7 pole 8 and 9 pole 8 pole 2 pole preclose 6° 10 and 11 pole 12 pole

Double－throw Switches without „OFF＂with electrically isolated contacts

1 pole 2 pole 3 pole 4 pole 4 pole $\quad 1$ pole preclose 6°		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0	\square \square \square 0 0	\square 0 0 \square 0	$\begin{array}{\|l} \text { A720-600 } \\ \text { A721-600 } \\ \text { A722-600 } \\ \text { A723-600 } \\ \text { A973-600 } \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \left\{\begin{array}{l} 3 \\ 1 \end{array} b^{3}\right. \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & y_{1} \end{aligned} b^{3}$	1－4 pole 4 pole 1 pole preclose 6°
1 pole with spring return	$b^{2} b^{2}$	\square	\square	\square	\square	A795－600	1		spring return

Double－throw Switches without „OFF＂ 30° Switching

1 pole 2 pole 3 pole 4 pole	${ }^{+} \square^{1} \downarrow^{2}$		$\begin{aligned} & \text { bo } \\ & \text { b } \\ & \text { b } \\ & \text { b } \end{aligned}$			A120－600 A121－600 A122－600 A123－600	1 2 3 4	$\begin{array}{cccccccc} 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\ 1 & 1 & 1 & 1 & 1 & ! & 1 & 1 \\ 1 & & 1 & & 0 & & 1 \\ 2 & & 6 & & 10 & & 14 \end{array}$	1－4 pole
1 pole with spring return 2 pole with spring return 3 pole with spring return	$\left[\begin{array}{cc} \hline & 1 \\ & v^{2} \\ & \end{array}\right.$	$\begin{aligned} & \text { b } \\ & \text { b } \\ & \text { b } \end{aligned}$	$\begin{aligned} & \text { b } \\ & \square^{1} \\ & \square^{1} \end{aligned}$	$\begin{aligned} & \text { 可 } \\ & \text { 可 } \\ & \text { 可 } \end{aligned}$	$\begin{aligned} & \text { b } \\ & \text { bu } \\ & \text { b } \end{aligned}$	$\begin{array}{\|l} \text { A295-600 } \\ \text { A296-600 } \\ \text { A297-600 } \end{array}$	1 2 3	$\begin{array}{llllll} 1 & 3 & 5 & 7 & 9 & 11 \\ i & d & q_{1} & d & & d \end{array}$	1－3 pole
1 pole with spring return 2 pole with spring return 3 pole with spring return		$\begin{aligned} & \square \\ & \square \\ & \square \end{aligned}$	定	\％		$\begin{aligned} & \text { A295-620 } \\ & \text { A296-620 } \\ & \text { A297-620 } \end{aligned}$	1 2 3	2610	

[^22]| | | | Type／Handle | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Function | Escutch．
 Plate | CA4
 CA4－1
 CL4 | $\begin{aligned} & \text { CAD.. } \\ & \text { CA10- CA10B- } \\ & \text { CA25 C43 } \\ & \text { CL10 } \end{aligned}$ | $\begin{aligned} & \mathrm{C} 80- \\ & \mathrm{C} 315 \end{aligned}$ | Code | Stages | Connection Diagram |

Double－throw Switches with Center „OFF＂ 60° Switching

Double－throw Switches with Center „OFF＂ 90° Switching

1 pole 2 pole 3 pole 4 pole 1 pole preclose 60°		$\begin{aligned} & \text { b } \\ & \text { 可 } \\ & \text { b } \\ & \text { b } \end{aligned}$	■ － － －	ㅂ ㅁ ㅂ ■	$\begin{aligned} & \text { G } \\ & \text { G } \\ & \square^{1} \\ & 5^{1} \end{aligned}$	$\begin{aligned} & \text { A218-600 } \\ & \text { A219-600 } \\ & \text { A299-600 } \\ & \text { A294-600 } \end{aligned}$	1 2 3 4		
1 pole 2 pole 3 pole 4 pole 1 pole preclose 60°	$\left[\begin{array}{cc} \Phi & \text { off } \\ 1 & -1 \\ 1 & -2 \end{array}\right.$	\square \square 0 6	\square 5 \square －		$\begin{aligned} & \text { b } \\ & \text { b } \\ & \square^{1} \\ & \square^{1} \end{aligned}$	$\begin{aligned} & \text { A218-620 } \\ & \text { A219-620 } \\ & \text { A299-620 } \\ & \text { A294-620 } \end{aligned}$	1 2 3 4		1－4 pole

Double－throw Switches with Center „OFF＂and electrically isolated contacts

1 pole 2 pole 3 pole 4 pole 4 pole 1 pole preclose $6^{\circ 3}$		$\begin{aligned} & \text { b } \\ & \square \end{aligned}$	$\begin{aligned} & \text { g } \\ & \text { 可 } \\ & \text { 可 } \\ & \text { ㅂ } \end{aligned}$		$\begin{aligned} & \text { b } \\ & \text { b } \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	A710－600 A711－600 A712－600 A713－600 A963－600	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$		1－4 pole 4 pole 1 pole preclose 6°
1 pole with spring return 2 pole to center		$\begin{aligned} & \text { b } \\ & \square \end{aligned}$	$\begin{aligned} & \text { b } \\ & \text { b } \end{aligned}$	$\begin{aligned} & \text { bor } \\ & \text { big } \end{aligned}$	\square^{2}	$\begin{aligned} & \text { A714-600 } \\ & \text { A715-600 } \end{aligned}$	1 2		1 and 2 pole

[^23]
Switch Function and Configuration

			Type/Handle				
Function	Escutch. Plate	$\begin{aligned} & \text { CA4 } \\ & \text { CA4-1 } \\ & \text { CL4 } \end{aligned}$	CAD.. CA10- CA10B- CA25 CA25B CL10	$\begin{aligned} & \text { C26- } \\ & \text { C315 } \end{aligned}$	Code	Stages	Connection Diagram

Double-throw Switches with Spring Return to Center

1 pole with spring return 2 pole to center 3 pole 1 pole 2 pole 3 pole		■ - 6 6 6 6	$\begin{aligned} & \text { g } \\ & \ddot{y}^{1} \\ & 0^{1} \\ & 0 \end{aligned}$	$\begin{aligned} & \square \\ & 5 \\ & 5 \\ & 6 \\ & 0 \end{aligned}$	$\begin{aligned} & \square^{2} \\ & \sigma^{3} \\ & \sigma^{4} \\ & B^{2} \\ & 4 \\ & 4 \end{aligned}$	A214-600 A215-600 A216-600 A214-620 A215-620 A216-620	1 2 3 1 2 3	
1 pole with spring return 2 pole from left to center 3 pole 1 pole 2 pole 3 pole		$\begin{aligned} & \text { b } \\ & \square \\ & \square \end{aligned}$	$\begin{aligned} & \square^{\square} \\ & \square^{1} \\ & \square^{1} \\ & \square^{1} \\ & \square^{1} \end{aligned}$	- - 5 5 G \square		$\begin{aligned} & \text { A320-600 } \\ & \text { A321-600 } \\ & \text { A322-600 } \\ & \text { A320-621 } \\ & \text { A321-621 } \\ & \text { A322-621 } \end{aligned}$	1 2 3 1 2 3	

General Application Switches

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
1 pole \\
2 pole \\
3 pole \\
1 pole \\
2 pole \\
3 pole
\end{tabular} \& 2 Gang Switching sequence:
\[
0, A, A+B
\] \& \& \[
\begin{aligned}
\& \text { b } \\
\& 0 \\
\& \square \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \begin{tabular}{l}
5
5
5 \\
■ \\
\(\square\) \\
\(\square\)
\end{tabular} \& \begin{tabular}{l}
5
5
5 \\
G \\
\(\square\) \\
\(\square\)
\end{tabular} \& \begin{tabular}{l}
F-
-
- \\
G \\
50 \\
\(\square\)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { A310-600 } \\
\& \text { A312-600 } \\
\& \text { A314-600 }
\end{aligned}
\] \\
A310-620 \\
A312-620 \\
A314-620
\end{tabular} \& 1
2
3 \& \\
\hline \begin{tabular}{l}
1 pole \\
2 pole \\
3 pole \\
1 pole \\
2 pole \\
3 pole
\end{tabular} \& 3 Gang Switching sequence:
\[
0, A, A+B, A+B+C
\] \& \& \begin{tabular}{l}
5
5
5 \\
■ \\
- \\
-
\end{tabular} \& \begin{tabular}{l}
5
5
5 \\
\(\square\) \\
\(\square\) \\
\(\square\)
\end{tabular} \& \begin{tabular}{l}
5
5 \\
G \\
5 \\
\(\square\)
\end{tabular} \& \begin{tabular}{l}
\(\square\)
\(\square\)
\(\square\) \\
G \\
- \\
-
\end{tabular} \& \[
\begin{aligned}
\& \text { A311-600 } \\
\& \text { A313-600 } \\
\& \text { A315-600 } \\
\& \text { A311-620 } \\
\& \text { A313-620 } \\
\& \text { A315-620 }
\end{aligned}
\] \& 2
3
5 \& \\
\hline \begin{tabular}{l}
1 pole \\
2 pole \\
3 pole \\
1 pole \\
2 pole \\
3 pole
\end{tabular} \& \begin{tabular}{l}
2 Gang \\
Series switching \\
Switching sequence:
\[
0, A, B, A+B
\]
\end{tabular} \& \& \[
\begin{aligned}
\& \text { b } \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \begin{tabular}{l}
6
6
6 \\
\(\square\) \\
\(\square\) \\
-
\end{tabular} \& \begin{tabular}{l}
6
6
6
6 \\
\(\square\) \\
\(\square\) \\
5
\end{tabular} \& \begin{tabular}{l}
5
5
5 \\
\(\square\) \\
- \\
-
\end{tabular} \& \[
\begin{aligned}
\& \text { A330-600 } \\
\& \text { A331-600 } \\
\& \text { A332-600 } \\
\& \text { A330-620 } \\
\& \text { A331-620 } \\
\& \text { A332-620 }
\end{aligned}
\] \& 1
2
3 \& \\
\hline \[
2 \text { pole }
\] \& \begin{tabular}{l}
2 Gang \\
Series-parallel Switching \\
Switching sequence: \\
\(0, A+B\) series, \(A\), \\
A+B parallel
\end{tabular} \& \begin{tabular}{l}
\[
\left[\begin{array}{c}
\left.\Phi_{1}^{1}{ }^{1}{ }^{2}\right]^{3}
\end{array}\right.
\] \\
\({ }_{O F F}^{1} 2_{0}^{3}\)
\end{tabular} \& ¢ \& G \& \& \& A339-600
A339-620 \& 2

2 \&

\hline \multicolumn{10}{|l|}{$10 \quad{ }^{1}$ not available for switch type CA25 ${ }^{2}$ not available for switch type C315 ${ }^{3}$ available only up to switch type C43 ${ }^{4}$ available only for switch type C43}

\hline
\end{tabular}

Switch Function and Configuration
C, CA, CAD, CL Switches

			Type/Handle				
Function	Escutch. Plate	CA4 CA4-1 CL4	CA10 CAD11 CA10B- CAD12 CA25B CL10	$\begin{aligned} & \mathrm{C} 26- \\ & \mathrm{C} 315 \end{aligned}$	Code	Stages	Connection Diagram

Coding Switches/Binary Code

$\begin{aligned} & 0-7 \\ & 360^{\circ} \text { rotation } \end{aligned}$		\square	\square			A540-600	2	0 0 1 2 3 3 4
0-7 complement 360° rotation		\square	\square	\|		A541-600	2	0 1 2 3 4 5 6
0-7 + complement 360° rotation		\square	\square			A542-600	3	
0-9		■	\square			A550-600	2	
0-9 complement		\square	■			A551-600	2	
0-9+ complement	\square	\square	\square			A552-600	4	
$\begin{aligned} & 0-11 \\ & 360^{\circ} \text { rotation } \end{aligned}$		\square	\square			A543-600	2	
0-11 + complement 360° rotation		\square	曰	\|		A545-600	4	

Switch Function and Configuration

C, CA, CAD, CL Switches

			Type/Handle				
Function	Escutch. Plate	$\begin{aligned} & \text { CA4 } \\ & \text { CA4-1 } \\ & \text { CL4 } \end{aligned}$	$\begin{aligned} & \text { CAD.. } \\ & \text { CA10- CA10B- } \\ & \text { CA25 C43 } \\ & \text { CL10 } \end{aligned}$	$\begin{aligned} & \mathrm{C8O} \\ & \mathrm{C} 315 \end{aligned}$	Code	Stages	Connection Diagram

Multi-step Switches without „OFF"

Switch Function and Configuration
C, CA, CAD, CL Switches

			Type/Handle				
Function	Escutch. Plate	CA4 CA4-1 CL4	$\begin{aligned} & \text { CAD.. } \\ & \text { CA10- CA10B- } \\ & \text { CA25 C43 } \\ & \text { CL10 } \end{aligned}$	$\begin{aligned} & \text { C80- } \\ & \text { C315 } \end{aligned}$	Code	Stages	Connection Diagram

Multi-step Switches without „OFF" with electrically isolated contacts

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
1 pole 3 Step \\
2 pole
\end{tabular} \& \[
\stackrel{1}{2}_{1^{2}-\sigma^{3}}
\] \& \(\square\) \& \& \begin{tabular}{l}
\(\square\) \\
G
\end{tabular} \& \(\square\) \& A730-600
A750-600 \& 2

3 \&

\hline | 1 pole 4 Step |
| :--- |
| 2 pole | \& \[

{ }^{\Phi_{2}^{2}-\sigma^{3}}{ }_{4}

\] \& \square \& \square \& \square \& \square \& | A731-600 |
| :--- |
| A751-600 | \& 2

4 \&

\hline
\end{tabular}

Multi-step Switches with „OFF"

Switch Function and Configuration

			Type/Handle				
Function	Escutch. Plate	CA4 CA4-1 CL4	$\begin{aligned} & \text { CAD.. } \\ & \text { CA10- CA10B- } \\ & \text { CA25 C43 } \\ & \text { CL10 } \end{aligned}$	$\begin{aligned} & \text { C80- } \\ & \text { C315 } \end{aligned}$	Code	Stages	Connection Diagram

Multi-step Switches with „OFF"

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
1 pole \\
2 pole \\
3 pole \\
4 pole \\
1 pole \\
2 pole \\
3 pole \\
4 pole
\end{tabular} \& \& \[
\begin{aligned}
\& 8^{2} 3^{4} \\
\& 0^{4}
\end{aligned}
\] \& \[
\begin{aligned}
\& \square \\
\& \bullet \\
\& 0 \\
\& 0 \\
\& 0 \\
\& \square \\
\& 0 \\
\& 0 \\
\& \square
\end{aligned}
\] \& 0
0
0
0
0
0
0
0 \& 0
0
0
0
0
0
0
0 \& \[
\begin{aligned}
\& \square \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& A242-600
A262-600
A282-600
A482-600
A242-620
A262-620
A282-620
A482-620 \& 2
4
6
8
2
4
6
8 \& \\
\hline \begin{tabular}{l}
1 pole \\
2 pole \\
3 pole \\
1 pole \\
2 pole \\
3 pole
\end{tabular} \& 5 Step \& \& \[
\begin{aligned}
\& \square \\
\& 0 \\
\& 0 \\
\& \square \\
\& 0 \\
\& 0
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \[
\begin{aligned}
\& \square \\
\& 0 \\
\& 0 \\
\& \square \\
\& \square \\
\& 0 \\
\& 0
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \begin{tabular}{l}
A243-600 \\
A263-600 \\
A283-600 \\
A243-620 \\
A263-620 \\
A283-620
\end{tabular} \& 5
8
3
5
8 \& \\
\hline \begin{tabular}{l}
1 pole \\
2 pole \\
3 pole \\
1 pole \\
2 pole \\
3 pole
\end{tabular} \& 6 Step \& \& \[
\begin{aligned}
\& \square^{\square} \\
\& \emptyset^{1} \\
\& \square \\
\& \square^{1} \\
\& \emptyset^{1}
\end{aligned}
\] \& \[
\begin{aligned}
\& \square \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \[
\begin{aligned}
\& \square \\
\& \square
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \begin{tabular}{l}
A244-600 \\
A264-600 \\
A284-600 \\
A244-620 \\
A264-620 \\
A284-620
\end{tabular} \& 6
9

3
6
9 \&

\hline | 1 pole |
| :--- |
| 2 pole |
| 1 pole |
| 2 pole | \& \[

7 Step

\] \& \& \[

$$
\begin{aligned}
& \square \\
& \square \\
& \square \\
& \square
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \square \\
& \square \\
& \square \\
& \square
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \square \\
& \square \\
& \square \\
& \square
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \square \\
& \square \\
& \square \\
& \square
\end{aligned}
$$
\] \& A245-600

A265-600
A245-620
A265-620 \& 4
7

4
7 \&

\hline | 1 pole |
| :--- |
| 1 pole | \& \[

8 Step

\] \& \& b \& \square \& ■ \& \square \& \[

$$
\begin{aligned}
& \text { A246-600 } \\
& \text { A246-620 }
\end{aligned}
$$
\] \& 4

4 \&

\hline | 1 pole |
| :--- |
| 1 pole | \& \[

9 Step
\] \& \& b \& b \& b \& \square \& A247-600

A247-620 \& 5
5 \&

\hline | 1 pole |
| :--- |
| 1 pole | \& \[

10 Step

\] \& \& b \& b \& b \& \square \& \[

$$
\begin{aligned}
& \text { A248-600 } \\
& \text { A248-620 }
\end{aligned}
$$
\] \& 5

5 \&

\hline | 1 pole |
| :--- |
| 1 pole |
| 1 pole |
| 1 pole | \& | 11 Step |
| :--- |
| 360° rotation |
| 360° rotation | \& \& ■

■ \& b \& b \& \square \& $$
\begin{aligned}
& \text { A249-600 } \\
& \text { A649-600 } \\
& \text { A249-620 } \\
& \text { A649-620 }
\end{aligned}
$$ \& 6

6
6
6 \&

\hline
\end{tabular}

Switch Function and Configuration

Function	Escutch. Plate	Type/Handle				Code	Stages	Connection Diagram
		CA4 CA4-1 CL4	$\begin{aligned} & \text { CA10- } \\ & \text { CA25 } \end{aligned}$	$\begin{aligned} & \text { CAD. } \\ & \text { CL10 } \end{aligned}$	CA10BCA25B			

Voltmeter Switches without „OFF"

3 phase 3 wire		\square \square	$\stackrel{\square}{\square}$ \square	- \square	b	$\begin{aligned} & \text { A023-600 } \\ & \text { A023-620 } \end{aligned}$	2 2	$2 \circ \text { (V) }-4$
3 phase 3 wire 3 phase to phase and phase to neutral		\square \square	\square \square	\square \square	b	$\begin{aligned} & \text { A025-600 } \\ & \text { A025-620 } \end{aligned}$	3 3	$1 \circ \text { (V) } \circ 3$

Voltmeter Switches with „OFF"

Switch Function and Configuration
C, CA, CAD, CL Switches

Function	Escutch. Plate	Type/Handle				Code	Stages	Connection Diagram
		CA4 CA4-1 CL4	$\begin{aligned} & \text { CA10- } \\ & \text { CA25 } \end{aligned}$	CAD..	$\begin{aligned} & \text { CA10B- } \\ & \text { CA25B } \end{aligned}$			

Voltmeter Switches with „OFF"

Switch Function and Configuration
C，CA，CAD，CL Switches

Voltmeter Switches with „OFF＂

3 phase and 1 phase to neutral		\square	\square	\square^{1}	A010－600	3		
		\square	砉	㤟 1	A010－620	3		
		\square	䡒	${ }^{\text {曲 }}$	A010－621	3		4०－V－6
		\square	可	\square^{1}	A010－622	3		

Ammeter Switches

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Single pole with one current transformer \& \& \[
\square^{2}
\]
\[
\square^{2}
\]
\[
\square^{2}
\] \& \begin{tabular}{l}
\(\square^{2}\) \\
豊 \({ }^{2}\) \\
豊 \({ }^{2}\)
\end{tabular} \& \begin{tabular}{l}
G \\
婁 \\
䡒
\end{tabular} \& \& \begin{tabular}{l}
A046－600 \\
A046－620 \\
A046－621
\end{tabular} \& 1
1 \& \\
\hline Single pole with 3 current transformers without „OFF＂ \& \begin{tabular}{|c|}
\hline AMMEEER \\
\hline \begin{tabular}{c}
\(\Phi\) \\
\(1-\mathrm{O}-3\)
\end{tabular} \\
\hline
\end{tabular}
\[
\begin{array}{|cc|}
\hline \& { }^{2} \\
1 \& -1^{-}-3 \\
\hline
\end{array}
\] \& \[
\begin{gathered}
\varpi^{2} \\
\text { CL4 } \\
\varpi^{2} \\
\text { CL4 }
\end{gathered}
\] \& \begin{tabular}{l}
豊 \({ }^{2}\) \\
CL10 \\
豊 \({ }^{2}\) \\
CL10
\end{tabular} \& \begin{tabular}{l}
豊 \\
農
\end{tabular} \& \& \begin{tabular}{l}
A017－600 \\
A059－600 \\
A017－620 \\
A059－620
\end{tabular} \& 3

3 \&

\hline Single pole with 3 current transformers with „OFF＂ 360° rotation \& \& \[
$$
\begin{gathered}
\square^{2} \\
C L 4 \\
C L 4 \\
\sigma^{2} \\
C L 4 \\
C \sigma^{2} \\
C 4 \\
C L 4
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\square^{2} \\
\text { CL10 } \\
\text { 䧈 }^{2} \\
\text { CL10 } \\
\square^{2} \\
\text { CA10 } \\
\text { CL10 } \\
\square^{2} \\
\text { CL10 } \\
\text { CL10 }
\end{gathered}
$$

\] \& | \square |
| :--- |
| 豊 |
| G |
| ■ |
| 曾 | \& \& | A048－600 |
| :--- |
| A058－600 |
| A048－620 |
| A058－620 |
| A048－621 |
| A058－621 |
| A048－622 |
| A058－622 |
| A048－623 |
| A058－623 | \& 3

3
3
3
3

3 \& | $3 \circ$（A）－9 |
| :--- |
| for A058： |
| $9 \circ$（A）-11 |

\hline
\end{tabular}

${ }^{1}$ available only up to switch type CA25B ${ }^{2}$ not available for switch types CL4 and CL10

Switch Function and Configuration

C，CA，CAD，CL Switches

			Type／Handle				
Function	Escutch． Plate	CA4 CA4－1 CL4	$\begin{aligned} & \text { CAD.. } \\ & \text { CA10- CA10B- } \\ & \text { CA25 C42 } \\ & \text { CL10 } \end{aligned}$	$\begin{aligned} & \mathrm{C} 43- \\ & \mathrm{C} 125 \end{aligned}$	Code	Stages	Connection Diagram

Ammeter Switches

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Single pole with 2 current transformers（3 readings） \& \& \begin{tabular}{l}
白 \\
\(\square\)
\end{tabular} \& \begin{tabular}{l}
㻃 \\
豊
\end{tabular} \& \begin{tabular}{l}
豊 \\
豊
\end{tabular} \& \& A021-600
A021-620 \& 2

2 \& | for CL switches： |
| :--- |
| $1 \circ$－A－ 3 |
| $5 \circ$－A -3 |

\hline | Single pole with |
| :--- |
| 4 current transformers | \& \& \[

$$
\begin{gathered}
\square^{1} \\
\text { CL4 } \\
\text { CL4 }
\end{gathered}
$$

\] \& | CL10 |
| :--- |
| 㤟 ${ }^{1}$ |
| CL10 | \& | \square |
| :--- |
| 豊 | \& \& | A036－600 |
| :--- |
| A056－600 |
| A036－620 |
| A056－620 | \& 4

4 \& | $1 \circ$（A）-5 |
| :--- |
| $13 \circ$－A－ 15 |

\hline \[
$$
\begin{aligned}
& 2 \text { pole } \\
& 2 \text { current transformers }
\end{aligned}
$$

\] \& \& | \square |
| :--- |
| G | \& | \square |
| :--- |
| 曹 |
| 䡒 | \& | 臬 |
| :--- |
| 睴 |
| 䡒 | \& \& \[

$$
\begin{aligned}
& \text { A037-600 } \\
& \text { A037-620 } \\
& \text { A037-621 }
\end{aligned}
$$
\] \& 3

3
3 \& $1 \circ$（A）-8

\hline | 2 pole |
| :--- |
| 3 current transformers | \& \& | 品 |
| :--- |
| \square | \& | 豊 |
| :--- |
| 豊 | \& | 貫 |
| :--- |
| 䡒 | \& \& | A019－600 |
| :--- |
| A019－620 | \& 5

5 \& $$
\begin{aligned}
& 3 \circ \text { A1- } \circ 6 \\
& 17 \circ \text { A2- } \circ 20 \\
& 8 \circ \text { A3- } \circ 9
\end{aligned}
$$

\hline \& \& $$
\sigma^{1}
$$

$$
\square^{1}
$$

\[
\square^{1}

\] \& | \square^{1} |
| :--- |
| 䡒 ${ }^{1}$ \square^{1} | \& | \square |
| :--- |
| 䡒 |
| 6 | \& | \square |
| :--- |
| － | \& | A038-600 |
| :--- |
| A038－620 |
| A038－621 | \& 5

5

5 \& $$
2 \circ \text { (A) }-9
$$

\hline | 2 pole |
| :--- |
| 4 current transformers | \& \& \[

\square^{1}
\]

\[
\square^{1}

\] \& | \square^{1} |
| :--- |
| 豊 ${ }^{1}$ | \& | G |
| :--- |
| 豊 | \& － \& A039-600

A039-620 \& 6

6 \& $$
2 \circ \text { (A) } \because 9
$$

\hline
\end{tabular}

Switch Function and Configuration

Volt－ammeter Switches

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 3 phase－phase to phase 3 current \& \& \[
\square^{1}
\]
CL4
\[
\sqsubseteq^{1}
\] \& \[
\begin{gathered}
\square^{1} \\
\text { CL10 } \\
\\
\\
\square^{1}
\end{gathered}
\] \& ■ \& \(\square\) \& \begin{tabular}{l}
A027-600 \\
A057－600 \\
A028－600
\end{tabular} \& 6

7 \& | for A027： |
| :--- |
| 20－（A）－ 012 |
| 160－（v）－024 |
| for A057： |
| 90－（A）$\rightarrow 11$ |
| 140－（V）－22 |

\hline 3 phase voltage 3 phase current 4 wire \& \& \square \& 曹 \& 曹 \& 㻃 \& A033－600 \& 5 \& | for CL switches： |
| :--- |
| ＊19 instead of 11 |

\hline 3 phase voltage 3 phase current 3 wire \& \& \square \& 曹 \& 豊 \& 䡒 \& A035－600 \& 5 \& | for CL switches： |
| :--- |
| $9^{*} \circ$（A）$-11 * 17$ instead of 9 |
| 10－（V）$\rightarrow 3$ |

\hline
\end{tabular}

Control Switches

Stop switch		\square	\square	\square	\square	A174－600	1	$\text { stop }{ }^{\prime} \underbrace{1}_{2}$
Start switch		\square	\square	\square	\square	A175－600	1	$\underbrace{\text { StaAt }}_{2}{ }^{0} 0^{1}$
Stop start switch single pole		\square	\square	\square	\square	A176－600	1	
Stop start switch 2 pole		\square	\square	\square	\square	A183－600	2	
Stop start switch with spring return from start to run						A178－600 A178－620	1 1	
Stop start switch with spring return to run for 2 units		\square \square	\square \square	\square －	\square \square	A177－600 A177－620	2	

Switch Function and Configuration

		Type/Handle			Code	Stages	Connection Diagram
Function	Escutch. Plate	CA4 CA4-1 CL4	$\begin{aligned} & \text { CAD. } \\ & \text { CA10- } \\ & \text { CA25 } \\ & \text { CL10 } \end{aligned}$	$\begin{aligned} & \text { CA10B- C26 } \\ & \text { CA25B C32 } \end{aligned}$			

Control Switches

Stop start switch with spring return to run with contactor interlock contactors for 2 units		b	\square	\square	\square \square	A182-600 A182-620	2 2	
Motor voltage control switch		\square	5	0		A150-600	2	

Control Switches with electrically isolated contacts

Stop start switch single pole		\square	\square	\square	\square	A789-600	1	
Stop start switch with spring return to 1		\square	\square	\square	\square	A791-600	1	
Stop start switch with spring return to run for 2 units	shand	\bigcirc	\square	\square	\square	A790-600	2	
Contactor control with spring return to „OFF"		\square	\square \square	\square \square	\square \square	A179-600 A179-620	2 2	
Circuit breaker control		\square	0	0	\bigcirc	A537-600	2	$\left.\stackrel{\text { mip mamalt }}{\varphi_{2}^{1}} \frac{\varphi_{4}^{\circ^{3}}}{\varphi_{6}^{5}}\right\rangle_{8}^{0^{7}}$

Control and Alarm Switches ${ }^{1}$

Switch Function and Configuration

Motor Reversing Switches

Motor Control Switches

Switch Function and Configuration
C, CA, CAD, CL Switches

Motor Control Switches

2 speed single winding		$\stackrel{\square}{\square}$ \square	\square	-	-	$\begin{aligned} & \text { A440-600 } \\ & \text { A440-620 } \end{aligned}$	4 4	
2 speed single winding without „OFF"		[6]	\square	\square	[A466-600	4	
2 speed single winding with center „OFF"		\square	\square \square		-	A441-600 A441-620	4 4	
2 speed single winding reversing		\square \square	\square \square	-	-	A442-600 A442-620	6 6	
2 speed single winding for use with contactors		\square \square	\square \square	-	-	A444-600 A444-620	5 5	
2 speed reversing for 2 way operation with slip clutch for "OFF" load use			5^{2} \square^{2}	-	-	$\begin{aligned} & \text { A468-600 } \\ & \text { A468-620 } \end{aligned}$	$\begin{aligned} & 10^{1} \\ & 10^{1} \end{aligned}$	

Switch Function and Configuration
C, CA, CAD, CL Switches

		Type/Handle						
Function	Escutch. Plate	CA4 CA4CL4	CAD.. CA25 CL10	CA..B C26C43	$\begin{aligned} & \mathrm{C} 80- \\ & \mathrm{C} 315 \end{aligned}$	Code	Stages	Connection Diagram

Star-delta Switches

OFF-star-delta		\square	\square \square	믄 \square	\square \square	A410-600 A410-620	4 4	
Reversing		\square	\square	-	\square	A413-600	5	
With auxiliary contact closed in „OFF" position		\square	\square	\square	\square	A416-600	5	
For use with reversing contactors	$\left[\begin{array}{ll} 0 & Y \\ 0-0-\Delta \end{array}\right]$	\square^{1}	\square^{1}	\square	$5{ }^{\circ}$	A419-600	4	

Start and Run Switches

Split-phase start		\square	-	ㅁ.		A425-600 A425-620	2 2	
Split-phase start reversing		든	\square^{2} \square^{2}	-		A426-600 A426-620	3 3	
Split-phase reversing auto cutout of start field winding		\square	\square	b	\square	A622-600	3	

Mounting

C, CA, CAD, CL, L Switches

Two or Four Hole Panel Mounting	Terminals rotated 90°	Code	$\begin{aligned} & \text { CAD.. } \\ & \text { CA10- } \\ & \text { CA25 } \\ & \text { CL10 } \end{aligned}$	$\begin{aligned} & \text { CA10B- } \\ & \text { C42 } \end{aligned}$	$\begin{aligned} & \hline \text { C43- } \\ & \text { C125 } \\ & \text { L350- } \\ & \text { L1251 } \\ & \text { Size S } \end{aligned}$	$\begin{aligned} & \text { C315 } \\ & \text { L400- } \\ & \text { L2000 } \\ & \text { Size S3 } \end{aligned}$

	Panel mounting	-		$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	\cdot	
	Four hole panel mounting		$\begin{aligned} & \mathrm{E} \\ & \mathrm{E}-\mathrm{V} \end{aligned}$				
	Four hole panel mounting Protection IP 66		$\begin{aligned} & E F \\ & E F-V \end{aligned}$				
	Two hole panel mounting Protection IP 65	\bigcirc	$\begin{aligned} & \text { E22 } \\ & \text { E22-V } \end{aligned}$				
	Panel mounting using larger escutcheon plate and handle and with heavy duty latching						
(1)11	Four hole panel mounting		EG	-	$\begin{aligned} & \mathrm{C} 26- \\ & \mathrm{C} 42 \end{aligned}$	$\begin{aligned} & \mathrm{C} 80- \\ & \mathrm{C} 125 \end{aligned}$	
	Four hole panel mounting Protection IP 66		EGF	-	$\begin{aligned} & \mathrm{C} 26- \\ & \mathrm{C} 42 \end{aligned}$	$\begin{aligned} & \mathrm{C} 80- \\ & \mathrm{C} 125 \end{aligned}$	
	Panel and base mounting						
	Four hole mounting		ER	CAD. CA10CA25	-	-	-
	Four hole mounting Protection IP 66		ERF	CAD.. CA10CA25	-	-	-

Mounting

C, CA, CAD, CL Switches

| Two or Four Hole Panel Mounting | Code | CAD.. CA10B
 CA11B
 CA10-
 CA25
 CA20B
 CA25B
 CL10
 C26 | C32
 C42 | C43 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Mounting

C, CA, CAD, CL Switches

Single Hole Mounting	Terminals rotated 90°	Code	CA4 CA4-1 CL4

Mounting

C, CA, CAD, L Switches

Mounting

C, CA, CAD, L Switches

Base Mounting	Code	CA4 CA4-1	CAD.. CA10- CA25 CL10

Snap-on base mounting for track EN 50022 with escutcheon plate for 45 mm standard knock-out.

Snap-on base mounting for track EN 50022. Both the escutcheon plate for 45 mm standard knock-out and the handle are adjustable in height.

Snap-on base mounting for track EN 50022 with circular escutcheon plate for 46 mm knock-out.

Base mounting - four hole - for circular escutcheon plate with 46 mm knock-out.

C, CA, CAD Switches

| Mounting Plates for Plaster Depth Boxes acc. to DIN 49070 and ÖNORM E6508 | CodeCAD..
 CA10-
 CA25 |
| :--- | :--- | :--- |

Escutcheon Plates

45° switching

Escutcheon Plates

60° S	vitchin																
a 0 d^{1} 				$\begin{array}{lll} \Phi & \text { uir } \\ & \delta^{\mathbb{N}} \\ & & \\ \hline \end{array}$						VARMEter ${ }^{\Phi}{ }^{\text {IN }}{ }^{\text {IN }}$ OUT		$\begin{array}{\|ccc\|} \hline \infty & \text { frẫ } \\ & d \\ & \\ \hline \end{array}$	$\stackrel{\text { IN }}{ }^{\text {IN }^{\text {out }}}$			$\sigma^{\Phi_{\text {AUTO }}} \sigma^{\text {MAN }}$	
F070	F072	F087	F088	F089	F133	F163	F164	F192	F193	F196	F197	F198	F230	F231	F232	F234	F243
${ }^{{ }^{\text {selIS }} \text { KAYNT }}$		${ }^{\text {DadG }} \text { Natt }$					PROV DRIIT б	$\stackrel{\Phi_{\text {Hañ }} \text { Auto }}{\searrow}$	$\underbrace{\infty} \begin{array}{ll} 0 \\ & j \\ & 1 \end{array}$	ws			$\stackrel{\stackrel{\Phi}{\text { Manul }} .}{ }{ }^{\text {Auto }}$	d.			
F244	F247	F257	F262	F263	F264	F268	F282	F288	F470	F291	F310	F311	F313	F323	F328	F352	F367
$\left\lvert\, \begin{array}{\|ccc} \hline \Phi & 0 & \\ & 1 & \operatorname{EIN} \end{array}\right.$	$\begin{array}{ll\|} 0 & \\ j_{0} & \end{array}$	$\begin{gathered} \text { Sommerwinter } \\ \zeta \\ \hline \end{gathered}$	$\begin{aligned} & P_{\text {Trip momal }} \\ & \quad \bigcirc \end{aligned}$	${ }^{\text {OfF }}{ }^{\text {oN }}$	${ }^{\phi_{\text {out }}} \delta^{\text {IN }}$	$\mho^{\text {RiP }}{ }^{\text {RESET }}$	${ }^{1} \dot{1}^{2}$		$\begin{gathered} \text { LOCAL Remote } \\ \wp \end{gathered}$	${ }^{\infty}{ }^{1} \gamma^{0}{ }^{2}$	${ }^{\infty}{ }^{\infty} 1_{0}^{1}$	$\stackrel{\Phi}{9}_{0}^{1} \gamma^{2}$	$\stackrel{Q}{1}_{2^{2}-\delta^{3}}$	${ }^{0}$	${ }^{\infty} \begin{array}{ll} { }^{Q} & 0 \\ \hline \end{array}$	$\alpha^{\text {auto }}$	$\stackrel{0}{6}^{N}$
F379	F380	F382	F705	F721	F722	F750	F754	F757	F758	F071	F073	F075	F076	F080	F081	F085	F086
	$\begin{gathered} \text { StART }^{\prime} \\ d^{\text {HUN }} \end{gathered}$			$\underbrace{\infty}_{\text {OFF }}{\underset{0}{1}}_{1}^{1} 2^{2}$	$\left.\right\|_{\text {off }} ^{1} \begin{aligned} & 1 \\ & V^{2} \end{aligned}{ }^{2}$	$d^{1+\mathrm{FWO}}$	$\left\|\begin{array}{ccc} \Phi & \text { OFF } & \\ \text { RUN } & { }^{\text {dNC }} & \text { INC } \end{array}\right\|$					${ }^{\Phi}$			Φ_{2}	$\begin{aligned} & \text { Off } \\ & \mathrm{N}_{1} \text { Auto } \end{aligned}$	
F090	F091	F092	F093	F094	F098	F104	F194	F220	F223	F235	F237	F239	F240	F241	F249	F260	F269
$\begin{array}{ll} \hline \phi \\ 230 \mathrm{~V} & 0 \\ \mathrm{~S}^{2} \end{array} 40 \mathrm{v}$								${ }^{\Phi} \text { AUTO }^{\circ} \mathrm{j}^{\text {Hano }}$	$1-1$	${ }^{\phi}$	$$				${ }^{\Phi}+\begin{array}{ll} \text { TAG } & 0 \\ \mathrm{O}^{\mathrm{NACHT}} \end{array}$	${ }^{\Phi}{ }^{\Phi}$	
F469	F274	F281	F290	F292	F312	F314	F315	F316	F324	F331	F344	F354	F356	F357	F358	F359	F364
$\begin{array}{\|lll} \hline \phi & 0 \\ \text { BACK } & \text { _ } \\ & \text { FRAM } \end{array}$		$\begin{array}{\|cc\|} \hline \text { MAN } & 0 \\ j & \text { daUTO } \end{array}$	$\begin{aligned} & \Phi_{\text {PUMP BUNNER }} \\ & \text { Off_- } \end{aligned}$	$\begin{array}{\|c} \hline \begin{array}{c} \phi \\ \text { SOMMEAWWITER } \\ O \end{array} \\ \hline \end{array}$			$\begin{array}{\|ll\|} \hline \begin{array}{l} \Phi \\ \text { AUTO } \\ \text { AOF } \end{array} \\ \hline \end{array}$	${ }_{1}^{\phi}$	${\stackrel{Q}{2}-\gamma^{3}}_{1_{4}}$	${ }_{0}^{\Phi}+{ }^{1}-\gamma^{2}$		${ }_{0}^{\infty}{ }_{0}^{1} \gamma^{2}{ }_{3}$	$\begin{aligned} & \Phi_{\text {AUF }} \\ & \text { AuIT } \\ & \text { AUTO }-\sigma-z u \end{aligned}$				
F370	F371	F373	F377	F381	F385	F723	F732	F735	F077	F100	F101	F102	F309	F342	F343	F361	F362
					$\begin{array}{lll} { }^{\Phi} & 0 & \\ r & \mathcal{L}^{2} \\ \Delta & \alpha_{\Delta}^{r} \end{array}$		$\left[\begin{array}{cc} \Phi & 0 \mathrm{off} \\ 1 \\ 2 & -<_{2} \\ 2 \end{array}\right.$						$\mathrm{OFF}_{\mathrm{OFF}-\mathrm{O}_{\mathrm{N}}^{2}}^{2}$				
F363	F365	F366	F074	F078	F082	F096	F097	F191	F195	F256	F325	F326	F720	F724	F079	F083	F084
			 F190	 F199			 F238	F242				F731		F737			
90° switching																	
$\begin{array}{\|cc\|} \hline \alpha & 1 \\ 0 & -1 \end{array}$	$d-1$	$\overbrace{\infty}^{\Phi} \begin{gathered} \text { on } \\ \text { off- } \end{gathered}$	$\begin{aligned} & \hline \text { off } \\ & !-1 \end{aligned}$				Wattmeter Φ 					$\left\lvert\, \begin{array}{cc} \Phi & 2 \\ 1 & -1 \end{array}\right.$	$\left[\begin{array}{ll} \hline \alpha & \mathbb{N} \\ \text { urr } & \text { - } \end{array}\right.$		$\begin{array}{ll} \Phi & 1 \\ & d-2 \end{array}$		$\underbrace{\alpha} \begin{aligned} & \mathrm{I} \\ & 0-1 \end{aligned}$
F056	F058	F063	F065	F068	F069	F134	F177	F178	F182	F201	F208	F251	F252	F253	F254	F340	F346
		$\begin{array}{lll} \infty & \vdots \\ \circ & - \\ \hline \end{array}$	$\left[\begin{array}{\|c\|} \hline \infty \\ \\ \\ j \\ 0 \end{array}\right]$	σ^{\prime}	σ^{2}	$\begin{gathered} 0 \\ 1 \\ -1 \\ 0 \end{gathered}$	$0-0-\Delta$	$1-\frac{1}{-2}-2$	$0-1 \text {-run }$			TRANSFER off Man d-AUTO	∞ Off RUN	$\begin{array}{ll} \hline \infty & \text { off } \\ \text { MAN-D-AUTO } \end{array}$	\square	$\left[\begin{array}{cc} \Phi & S \\ R & -1 \\ \hline \end{array}\right.$	$\begin{array}{ll} \Phi & 1 \\ \text { Off-- } & 1 \end{array}$
F360	F378	F456	F458	F700	F743	F057	F061	F064	F067	F171	F181	F205	F207	F209	F320	F349	F715
$\left[\begin{array}{cc} \Phi & 2 \\ 1 & -1 \\ 1 \end{array}\right.$						AMMEEER 3 OFF 3 1 3 1 2 1										TEMPMEER Φ TEST 3 3	
F719	F059	F060	F062	F066	F170	F172	F173	F174	F175	F176	F179	F180	F186	F188	F202	F204	F206
	F265		F286	F318	F327	F338	F339	AMMETER 9 OFF T -0 S F425	F716								\qquad F437
Miscellaneous																	
 F119	F122	$\underbrace{\substack{\Phi \\ 0^{r} \\ \hline \\ \hline \\ \hline \\ \hline}}_{\text {F125 }}$	F126		F130	$\underbrace{\substack{\Phi \\ 0 \text {, START } \\ 0-0}}_{\text {F225 }}$			F261	F341	F123	 F127	F145	 F146			
	F706	 F707	F120	F121	$\left.\right\|_{\Delta} ^{\Phi}{ }_{Y}^{Y} V^{0} Y^{Y}$ F124	Φ START RUF RUN - STAAT F128	F131	F132	F749							${ }^{+9}$	F991
Crariou ficker	TMupaivin			Masir tern	Merococorrou	Sprecocomral	Stleror	Votmeter	buvenor	Ammetr	Vatuer	watmeri	Pewb faction	Smchrowzme	vamaner	TEMPMEER	transfr
F801	F802	F803	F804	F805	F806	F807	F808	F809	F810	F811	F812	F813	F814	F815	F816	F817	F818
Snccimoscome	Pr.fyalstif	Isoator	Haurschalite	Wamscralurie	manswich	Huvoserriate	Eucmersempat	Sucgitsemia	Mitanfer	turvarrin		ITERAPTEUE	Hap schaita	votimerne	AMPEAMERE	пиassumame	НеАТе
F819	F820	F821	F822	F823	F824	F825	F826	F827	F828	F829	F830	F831	F832	F833	F834	F835	F837

Handles

Type	Color	Code	Size soo s0 S1 S2 S3

Type	Color	Code	Size S00 S0 S1 S2 S3

I-Handle	black red white electro- gray	G251 G252	G253			
S00						

Selection Data

[^24]| Selection Data | CAD11 | CAD12 |
| :--- | :--- | :--- |

[^25]Two or Four Hole Panel Mounting

Two or Four Hole Panel Mounting

			$-\infty$	E22 E22-V							
								CA10 CA11 CAD11 CAD12	$\begin{aligned} & \\ & 1 \\ & 1 \\ & 2 \end{aligned} \quad \text { CL10 }$	CA20	CA25
							A	$\begin{aligned} & \overline{48} \\ & 1.89 \end{aligned}$	$\begin{aligned} & \hline 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & \hline 48 \\ & 1.89 \end{aligned}$
							B	$\begin{aligned} & \hline 43 \\ & 1.69 \end{aligned}$	$\begin{aligned} & \hline 50 \times 56 \\ & 1.97 \times 2.20 \end{aligned}$	$\begin{array}{ll} & 45 \\ 0 & 1.77 \end{array}$	$\begin{aligned} & 46 \\ & 1.81 \\ & \end{aligned}$
							C	$\begin{aligned} & \hline 4 \\ & .16 \end{aligned}$	$\begin{aligned} & 4 \\ & .16 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & .16 \end{aligned}$	$\begin{aligned} & 4 \\ & .16 \end{aligned}$
							D1	$\begin{aligned} & 5 \\ & .20 \end{aligned}$	$\begin{aligned} & 5 \\ & .20 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & .20 \end{aligned}$	$\begin{aligned} & 5 \\ & .20 \end{aligned}$
							E	$\begin{aligned} & 30 \\ & 1.17 \end{aligned}$			
$\begin{aligned} & \text { EG } \\ & \text { EGF } \end{aligned}$						\bar{y}					
			CA10 CA11 CAD11 CAD12	CL10	CA20	CA25	C26	C32	C42	C80	
		A	$\begin{aligned} & \hline 64 \\ & 2.52 \\ & \hline \end{aligned}$	$\begin{aligned} & 64 \\ & 2.52 \end{aligned}$	$\begin{aligned} & \hline 64 \\ & 2.52 \end{aligned}$	$\begin{aligned} & \hline 64 \\ & 2.52 \end{aligned}$	$\begin{aligned} & \hline 88 \\ & 3.46 \end{aligned}$	$\begin{aligned} & \hline 88 \\ & 3.46 \end{aligned}$	$\begin{aligned} & \hline 88 \\ & 3.46 \end{aligned}$	$\begin{aligned} & 130 \\ & 5.12 \end{aligned}$	$\begin{aligned} & \hline 130 \\ & 5.12 \\ & \hline \end{aligned}$
		B	$\begin{aligned} & \overline{43} \\ & 1.69 \end{aligned}$	$\begin{aligned} & \hline 50 \times 56 \\ & 1.97 \times 2.20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 45 \\ & 1.77 \end{aligned}$	$\begin{aligned} & \hline 46 \\ & 1.81 \end{aligned}$	$\begin{aligned} & \hline 58 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 60 \\ & 2.36 \end{aligned}$	$\begin{aligned} & 66 \\ & 2.60 \end{aligned}$	$\begin{aligned} & 84 \\ & 3.30 \end{aligned}$	$\begin{aligned} & \hline 88 \\ & 3.46 \end{aligned}$
		C	$\begin{aligned} & \hline 4 \\ & .16 \end{aligned}$	$\begin{aligned} & 5,5 \\ & .22 \end{aligned}$	$\begin{aligned} & 5,5 \\ & .22 \end{aligned}$	$\begin{array}{ll} \hline 5,5 & 7 \\ .22 & .2 \end{array}$	$\begin{aligned} & 7 \\ & .28 \end{aligned}$	$\begin{aligned} & 7 \\ & .28 \end{aligned}$			
		D1	$\begin{aligned} & \hline 5 \\ & .20 \end{aligned}$	$\begin{aligned} & 5 \\ & .20 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & .20 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & .20 \end{aligned}$	$\begin{aligned} & 6 \\ & .24 \end{aligned}$	$\begin{aligned} & \hline 6 \\ & .24 \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & .24 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & .28 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & .28 \end{aligned}$
	EG	D2	$\begin{aligned} & \hline 10-15 \\ & .39-.59 \\ & \hline \end{aligned}$	$\begin{aligned} & 10-15 \\ & .39-59 \end{aligned}$	$\begin{aligned} & 10-15 \\ & .39-.59 \end{aligned}$	$\begin{aligned} & \hline 10-15 \\ & .39-.59 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 13-17 \\ & .51-.67 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 13-17 \\ & .51-.67 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 13-17 \\ & .51-.67 \end{aligned}$	$\begin{aligned} & 15,5-20 \\ & .61-.79 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 15,5-20 \\ & .61-.79 \\ & \hline \end{aligned}$
	EGF	D2	$\begin{aligned} & 19-22 \\ & .75-.87 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 19-22 } \\ & .75-.87 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 19-22 \\ & .75-.87 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 19-22 \\ & .75-.87 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 26-30 \\ & 1.02-1.18 \end{aligned}$	$\begin{aligned} & 26-30 \\ & 1.02-1.18 \end{aligned}$	$\begin{aligned} & \hline 26-30 \\ & 1.02-1.18 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 22-25 \\ & .87-.98 \\ & \hline \end{aligned}$	$\begin{aligned} & 22-25 \\ & .87-.98 \end{aligned}$
		E	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 48 \\ & 1.89 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & \hline 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & \hline 68 \\ & 2.68 \end{aligned}$	$\begin{aligned} & \hline 68 \\ & 2.68 \end{aligned}$	$\begin{aligned} & 68 \\ & 2.68 \end{aligned}$	$\begin{aligned} & \hline 104 \\ & 4.09 \end{aligned}$	$\begin{aligned} & 104 \\ & 4.09 \end{aligned}$
	EG	M	$\begin{aligned} & 6,7 \\ & .26 \end{aligned}$	$\begin{aligned} & 0,5 \\ & .02 \end{aligned}$	$\begin{aligned} & 0,5 \\ & .02 \end{aligned}$	$\begin{aligned} & 0,5 \\ & .02 \end{aligned}$	$\begin{aligned} & 2 \\ & .08 \end{aligned}$	$\begin{aligned} & 2 \\ & .08 \end{aligned}$			
	EGF	M	$\begin{aligned} & 6,7 \\ & .26 \end{aligned}$	$\begin{aligned} & 6,7 \\ & .26 \end{aligned}$	$\begin{aligned} & 6,7 \\ & .26 \end{aligned}$	$\begin{aligned} & \hline 6,7 \\ & .26 \end{aligned}$	$\begin{aligned} & \hline 0,5 \\ & .02 \end{aligned}$	$\begin{aligned} & 0,5 \\ & .02 \end{aligned}$	$\begin{aligned} & 0,5 \\ & .02 \end{aligned}$	$\begin{aligned} & 2 \\ & .08 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & .08 \end{aligned}$

${ }^{1}$ see page 51

Four Hole Panel Mounting or Mosaic Mounting

E92

E93
E94

KN1
KD1
KN2

KN2	CA10 CA11 CAD11 CAD12	CL10	CA20	CA25	$\begin{aligned} & \mathrm{KN1} \\ & \text { KD1 } \end{aligned}$	CA10 CA11 CAD11 CAD12	CL10	CA20	CA25	CA10B CA11B CA20B	CA25B	C26	C32	C42
A	$\begin{aligned} & \hline 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 48 \\ & { }_{1.89} \end{aligned}$	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	A	$\begin{aligned} & \hline 64 \\ & \hline 2.52 \end{aligned}$	$\begin{aligned} & 64 \\ & 2.52 \end{aligned}$	$\begin{aligned} & 64 \\ & \hline 2.52 \end{aligned}$	$\begin{aligned} & 64 \\ & 2.52 \end{aligned}$	$\begin{aligned} & 64 \\ & \hline 2.52 \end{aligned}$	$\begin{aligned} & \hline 64 \\ & \hline .52 \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} 64 \\ 2.52 \end{array} \end{aligned}$	$\begin{aligned} & \hline 64 \\ & \hline .52 \end{aligned}$	$\begin{aligned} & { }_{2.52}^{64} \end{aligned}$
B	$\begin{aligned} & \hline 43 \\ & 1.69 \\ & 1 . \end{aligned}$	50×56 1.97×2.20	$\begin{aligned} & \hline 45 \\ & 1.77 \end{aligned}$	$\begin{aligned} & \hline 46 \\ & { }_{1.81} \end{aligned}$	B	$\begin{aligned} & 43 \\ & 1.69 \end{aligned}$	$\begin{aligned} & 50 \times 56 \\ & 1.97 \times 2.20 \end{aligned}$	$\begin{aligned} & 45 \\ & 1.77 \end{aligned}$	$\begin{aligned} & 46 \\ & { }_{1.81} \end{aligned}$	$\begin{aligned} & { }_{2.20}^{56} \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 56 \\ & \hline{ }_{2}^{2} 20 \end{aligned}$	$\begin{aligned} & 58 \\ & 2.28 \end{aligned}$	$\begin{aligned} & \hline{ }_{2.36}^{60} \end{aligned}$	$\begin{aligned} & { }_{2}^{66} \\ & 2.60 \end{aligned}$
C	4 .16	${ }_{4}^{4} 16$	$\begin{aligned} & 4 \\ & .16 \end{aligned}$	$\begin{aligned} & 4 \\ & .16 \end{aligned}$	C	$\begin{aligned} & 4 \\ & .16 \end{aligned}$								
D1	$\begin{aligned} & 5 \\ & .20 \end{aligned}$	${ }^{5}$	$\begin{aligned} & \hline 5 \\ & .20 \end{aligned}$	$\begin{aligned} & 5 \\ & \hline 20 \end{aligned}$	D1	$\begin{aligned} & 5 \\ & .20 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & .20 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & .20 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & .20 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & .20 \end{aligned}$	$\begin{aligned} & 5 \\ & .20 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & .20 \end{aligned}$	$\begin{aligned} & 5 \\ & \hline .20 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & .20 \end{aligned}$
D2	$\begin{aligned} & 8-15 \\ & 31-.59 \end{aligned}$	$\begin{aligned} & 8-15 \\ & .31-59 \end{aligned}$	$\begin{aligned} & 8-15 \\ & .31-59 \end{aligned}$	$\begin{aligned} & \hline 8-15 \\ & .31-59 \end{aligned}$	D2	$\begin{aligned} & 10-15 \\ & .39-59 \end{aligned}$	$\begin{aligned} & 10-15 \\ & .39-59 \end{aligned}$	$\begin{aligned} & 10-15 \\ & 39-59 \\ & \hline \end{aligned}$	$\begin{aligned} & 10-15 \\ & .39-59 \end{aligned}$	$\begin{aligned} & 10-15 \\ & .39-.59 \end{aligned}$				
E	$\begin{aligned} & 36 \\ & 1.42 \end{aligned}$	E	$\begin{aligned} & \hline 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 48 \\ & { }_{1.89} \end{aligned}$	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 48 \\ & { }_{1.89} \end{aligned}$	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 48 \\ & { }_{1.89} \end{aligned}$	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$			
M	5,2 .20	5,20	5,2 .20	$\begin{aligned} & 5,2 \\ & \hline 20 \end{aligned}$	M	4.7 19	$\begin{aligned} & 4.7 \\ & 19 \end{aligned}$	4.7 .19	4.7 .19	${ }^{7}$	$\begin{aligned} & 7 \\ & \hline \end{aligned}$	7	$\begin{aligned} & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & .28 \end{aligned}$

Dimensions

Two or Four Hole Panel Mounting

Single Hole Mounting or Base Mounting

Base Mounting

${ }^{1}$ see page $51 \quad{ }^{2}$ not available for switch type CA20

Wall Mounting, Escutcheon Plates and Additional Length

Escutcheon plates for mounting E, EF, ER, ERF, EG, EGF, KN1, KD1, KN2, EC, EC1, ED, ED1, VE, VE1, VF

Additional length for amendment (page 4)

Latching mechanism size S1
Latching mechanism size S2
Snap action

CA10				
CA11				
CAD11	CA20			
CAD12	CA25	C26	C32	C42
5,4	5,4	-	-	-
.21	.21	-	-	-
-	-	9,2	9,2	-
14,3	-	.36	.36	12,2
12,2	12,2			
.56	.56	.48	.48	.48

Quick connects for switches CA4-4

Dimensions
mm
inch

Additional Length

Length L

Stages	$\begin{aligned} & \text { CA4 } \\ & \text { CA4-1 } \end{aligned}$	CL4	CA10 CAD11 CAD12	CL10	CA11	CA20	CA25	CA10B	CA11B	CA20B	CA25B	C26	C32	C42	C43	C80	C125 Lswitches Size S2	C315 L switches Size S3
1	$\begin{aligned} & 30 \\ & 1.18 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 34 \\ & 1.34 \\ & \hline \end{aligned}$	$\begin{aligned} & 33,5 \\ & 1.32 \\ & \hline \end{aligned}$	$\begin{aligned} & 37,2 \\ & 1.46 \\ & \hline \end{aligned}$	$\begin{aligned} & 36,7 \\ & 1.44 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37,7 \\ & 1.48 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 39 \\ & 1.51 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 38,9 \\ & 1.53 \\ & \hline \end{aligned}$	$\begin{aligned} & 42,1 \\ & 1.66 \end{aligned}$	$\begin{aligned} & 43,1 \\ & 1.70 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 44,4 \\ & 1.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 42 \\ & 1.65 \end{aligned}$	$\begin{aligned} & \hline 46,8 \\ & 1.84 \\ & \hline \end{aligned}$	$\begin{aligned} & 50,8 \\ & 2.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 59 \\ & 2.32 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 61,5 \\ & 2.42 \\ & \hline \end{aligned}$	$\begin{aligned} & 67,5 \\ & 2.66 \\ & \hline \end{aligned}$	$\begin{aligned} & 78,6 \\ & 3.09 \\ & \hline \end{aligned}$
2	$\begin{aligned} & 38 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 46 \\ & 1.81 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 43 \\ & 1.69 \end{aligned}$	$\begin{aligned} & 49,9 \\ & 1.96 \end{aligned}$	$\begin{aligned} & \hline 49,4 \\ & 1.94 \end{aligned}$	$\begin{aligned} & 50,4 \\ & 1.98 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 53 \\ & 2.09 \end{aligned}$	$\begin{aligned} & 48,4 \\ & 1.91 \end{aligned}$	$\begin{aligned} & 54,8 \\ & 2.16 \end{aligned}$	$\begin{aligned} & 55,8 \\ & 2.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 58,4 \\ & 2.30 \\ & \hline \end{aligned}$	$\begin{aligned} & 54,7 \\ & 2.15 \end{aligned}$	$\begin{aligned} & \hline 64,3 \\ & 2.51 \end{aligned}$	$\begin{aligned} & 72,3 \\ & 2.85 \end{aligned}$	$\begin{aligned} & 80,5 \\ & 3.17 \end{aligned}$	$\begin{aligned} & \hline 88,0 \\ & 3.46 \end{aligned}$	$\begin{aligned} & 100 \\ & 3.94 \end{aligned}$	$\begin{aligned} & 117,2 \\ & 4.61 \end{aligned}$
3	$\begin{aligned} & \hline 46 \\ & 1.81 \end{aligned}$	$\begin{aligned} & 58 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 52,5 \\ & 2.07 \end{aligned}$	$\begin{aligned} & 62,6 \\ & 2.46 \end{aligned}$	$\begin{aligned} & \hline 62,1 \\ & 2.44 \end{aligned}$	$\begin{aligned} & \hline 63,1 \\ & 2.48 \end{aligned}$	$\begin{aligned} & 67 \\ & 2.64 \end{aligned}$	$\begin{aligned} & 57,9 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 67,5 \\ & 2.66 \end{aligned}$	$\begin{aligned} & 68,5 \\ & 2.70 \end{aligned}$	$\begin{aligned} & 72,4 \\ & 2.85 \end{aligned}$	$\begin{aligned} & 67,4 \\ & 2.65 \end{aligned}$	$\begin{aligned} & 81,8 \\ & 3.22 \\ & \hline \end{aligned}$	$\begin{aligned} & 93,8 \\ & 3.69 \end{aligned}$	$\begin{aligned} & 102 \\ & 4.02 \end{aligned}$	$\begin{aligned} & 114,5 \\ & 4.51 \\ & \hline \end{aligned}$	$\begin{aligned} & 132,5 \\ & 5.22 \end{aligned}$	$\begin{aligned} & 155,8 \\ & 6.13 \end{aligned}$
4	$\begin{aligned} & \hline 54 \\ & 2.13 \end{aligned}$	$\begin{aligned} & \hline 70 \\ & 2.76 \end{aligned}$	$\begin{aligned} & \hline 62 \\ & 2.44 \end{aligned}$	$\begin{aligned} & 75,3 \\ & 2.96 \\ & \hline \end{aligned}$	$\begin{aligned} & 74,8 \\ & 2.94 \\ & \hline \end{aligned}$	$\begin{aligned} & 75,8 \\ & 2.98 \\ & \hline \end{aligned}$	$\begin{aligned} & 81 \\ & 3.19 \end{aligned}$	$\begin{aligned} & 67,4 \\ & 2.65 \\ & \hline \end{aligned}$	$\begin{aligned} & 80,2 \\ & 3.16 \end{aligned}$	$\begin{aligned} & 81,2 \\ & 3.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 86,4 \\ & 3.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 80,1 \\ & 3.15 \end{aligned}$	$\begin{aligned} & 99,3 \\ & 3.91 \end{aligned}$	$\begin{aligned} & 115,3 \\ & 4.54 \end{aligned}$	$\begin{aligned} & 123,5 \\ & 4.86 \\ & \hline \end{aligned}$	$\begin{aligned} & 141 \\ & 5.55 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 165 \\ & 6.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 194,4 \\ & 7.65 \end{aligned}$
5	$\begin{aligned} & \hline 62 \\ & 2.44 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 82 \\ & 3.23 \end{aligned}$	$\begin{aligned} & \hline 71,5 \\ & 2.81 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 88 \\ & 3.46 \\ & \hline \end{aligned}$	$\begin{aligned} & 87,5 \\ & 3.44 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 88,5 \\ & 3.48 \\ & \hline \end{aligned}$	$\begin{aligned} & 95 \\ & 3.74 \end{aligned}$	$\begin{aligned} & 76,9 \\ & 3.03 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 92,9 \\ & 3.66 \\ & \hline \end{aligned}$	$\begin{aligned} & 93,9 \\ & 3.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 100,4 \\ & 3.95 \\ & \hline \end{aligned}$	$\begin{aligned} & 92,8 \\ & 3.65 \\ & \hline \end{aligned}$	$\begin{aligned} & 116,8 \\ & 4.60 \\ & \hline \end{aligned}$	$\begin{aligned} & 136,8 \\ & 5.39 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 145 \\ & 5.71 \end{aligned}$	$\begin{aligned} & \hline 167,5 \\ & 6.59 \\ & \hline \end{aligned}$	$\begin{aligned} & 197,5 \\ & 7.78 \end{aligned}$	$\begin{aligned} & 233 \\ & 9.17 \\ & \hline \end{aligned}$
6	$\begin{aligned} & \hline 70 \\ & 2.76 \end{aligned}$	$\begin{aligned} & 94 \\ & 3.70 \end{aligned}$	$\begin{aligned} & 81 \\ & 3.19 \end{aligned}$	$\begin{aligned} & 100,7 \\ & 3.96 \\ & \hline \end{aligned}$	$\begin{aligned} & 100,2 \\ & 3.94 \end{aligned}$	$\begin{aligned} & 101,2 \\ & 3.98 \end{aligned}$	$\begin{aligned} & 109 \\ & 4.29 \end{aligned}$	$\begin{aligned} & \hline 86,4 \\ & 3.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 105,6 \\ & 4.16 \end{aligned}$	$\begin{aligned} & 106,6 \\ & 4.20 \end{aligned}$	$\begin{aligned} & 114,4 \\ & 4.50 \end{aligned}$	$\begin{aligned} & 105,5 \\ & 4.15 \end{aligned}$	$\begin{aligned} & 134,3 \\ & 5.29 \end{aligned}$	$\begin{aligned} & 158,3 \\ & 6.23 \end{aligned}$	$\begin{aligned} & 166,5 \\ & 6.56 \end{aligned}$	$\begin{aligned} & 194 \\ & 7.64 \end{aligned}$	$\begin{aligned} & 230 \\ & 9.06 \end{aligned}$	$\begin{aligned} & 271,6 \\ & 10.69 \end{aligned}$
7	$\begin{aligned} & 78 \\ & 3.07 \\ & \hline \end{aligned}$	$\begin{aligned} & 106 \\ & 4.17 \end{aligned}$	$\begin{aligned} & 90,5 \\ & 3.56 \\ & \hline \end{aligned}$	$\begin{aligned} & 113,4 \\ & 4.46 \\ & \hline \end{aligned}$	$\begin{aligned} & 112,9 \\ & 4.44 \end{aligned}$	$\begin{aligned} & 113,9 \\ & 4.48 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 123 \\ & 4.84 \\ & \hline \end{aligned}$	$\begin{aligned} & 95,9 \\ & 3.78 \\ & \hline \end{aligned}$	$\begin{aligned} & 118,3 \\ & 4.66 \\ & \hline \end{aligned}$	$\begin{aligned} & 119,3 \\ & 4.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 128,4 \\ & 5.05 \\ & \hline \end{aligned}$	$\begin{aligned} & 118,2 \\ & 4.65 \end{aligned}$	$\begin{aligned} & 151,8 \\ & 5.98 \\ & \hline \end{aligned}$	$\begin{aligned} & 179,8 \\ & 7.08 \\ & \hline \end{aligned}$	$\begin{aligned} & 188 \\ & 7.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 220,5 \\ & 8.68 \\ & \hline \end{aligned}$	$\begin{array}{r} 262,5 \\ 10.33 \\ \hline \end{array}$	$\begin{aligned} & 310,2 \\ & 12.21 \end{aligned}$
8	$\begin{aligned} & 86 \\ & 3.39 \end{aligned}$	$\begin{aligned} & \hline 118 \\ & 4.65 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 3.94 \end{aligned}$	$\begin{aligned} & 126,1 \\ & 4.96 \end{aligned}$	$\begin{aligned} & 125,6 \\ & 4.94 \end{aligned}$	$\begin{aligned} & 126,6 \\ & 4.98 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 137 \\ & 5.39 \end{aligned}$	$\begin{aligned} & 105,4 \\ & 4.15 \end{aligned}$	$\begin{aligned} & \hline 131 \\ & 5.16 \end{aligned}$	$\begin{aligned} & 132 \\ & 5.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 142,4 \\ & 5.60 \end{aligned}$	$\begin{aligned} & 130,9 \\ & 5.15 \end{aligned}$	$\begin{aligned} & 169,3 \\ & 6.67 \end{aligned}$	$\begin{aligned} & 201,3 \\ & 7.93 \end{aligned}$	$\begin{aligned} & \hline 209,5 \\ & 8.25 \end{aligned}$	$\begin{aligned} & \hline 247 \\ & 9.72 \end{aligned}$	$\begin{aligned} & \hline 295 \\ & 11.61 \end{aligned}$	$\begin{aligned} & 348,8 \\ & 13.73 \end{aligned}$
9	$\begin{aligned} & 94 \\ & 3.70 \end{aligned}$	-	$\begin{aligned} & 109,5 \\ & 4.31 \\ & \hline \end{aligned}$	$\begin{aligned} & 138,8 \\ & 5.46 \\ & \hline \end{aligned}$	$\begin{aligned} & 138,3 \\ & 5.44 \end{aligned}$	$\begin{aligned} & 139,3 \\ & 5.48 \\ & \hline \end{aligned}$	$\begin{aligned} & 151 \\ & 5.94 \\ & \hline \end{aligned}$	$\begin{aligned} & 114,9 \\ & 4.52 \end{aligned}$	$\begin{aligned} & 143,7 \\ & 5.66 \\ & \hline \end{aligned}$	$\begin{aligned} & 144,7 \\ & 5.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 156,4 \\ & 6.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 143,6 \\ & 5.65 \end{aligned}$	$\begin{aligned} & 186,8 \\ & 7.36 \\ & \hline \end{aligned}$	$\begin{aligned} & 222,8 \\ & 8.77 \end{aligned}$	$\begin{aligned} & \hline 231 \\ & 9.09 \\ & \hline \end{aligned}$	$\begin{aligned} & 273,5 \\ & 10.77 \\ & \hline \end{aligned}$	$\begin{aligned} & 327,5 \\ & 12.89 \\ & \hline \end{aligned}$	$\begin{aligned} & 387,4 \\ & 15.25 \\ & \hline \end{aligned}$
10	-	-	$\begin{aligned} & \hline 119 \\ & 4.68 \end{aligned}$	$\begin{aligned} & 151,5 \\ & 5.96 \end{aligned}$	$\begin{aligned} & 151 \\ & 5.94 \end{aligned}$	$\begin{aligned} & 152 \\ & 5.98 \end{aligned}$	$\begin{aligned} & 165 \\ & 6.50 \end{aligned}$	$\begin{aligned} & \hline 124,4 \\ & 4.90 \end{aligned}$	$\begin{aligned} & 156,4 \\ & 6.16 \end{aligned}$	$\begin{aligned} & 157,4 \\ & 6.20 \end{aligned}$	$\begin{aligned} & 170,4 \\ & 6.70 \end{aligned}$	$\begin{aligned} & 156,3 \\ & 6.15 \end{aligned}$	$\begin{aligned} & 204,3 \\ & 8.04 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 244,3 \\ & 9.62 \end{aligned}$	$\begin{aligned} & 252,2 \\ & 9.54 \end{aligned}$	$\begin{aligned} & 300 \\ & 11.81 \end{aligned}$	$\begin{aligned} & \hline 360 \\ & 14.17 \end{aligned}$	$\begin{aligned} & \hline 426 \\ & 16.77 \end{aligned}$
11	-	-	$\begin{aligned} & 128,5 \\ & 5.06 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 163,7 \\ & 6.44 \end{aligned}$	$\begin{aligned} & 164,7 \\ & 6.48 \\ & \hline \end{aligned}$	$\begin{aligned} & 179 \\ & 7.05 \\ & \hline \end{aligned}$	$\begin{aligned} & 133,9 \\ & 5.27 \\ & \hline \end{aligned}$	$\begin{aligned} & 169,1 \\ & 6.66 \\ & \hline \end{aligned}$	$\begin{aligned} & 170,1 \\ & 6.70 \end{aligned}$	$\begin{aligned} & 184,4 \\ & 7.25 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 169 \\ & 6.65 \\ & \hline \end{aligned}$	$\begin{aligned} & 221,8 \\ & 8.73 \\ & \hline \end{aligned}$	$\begin{aligned} & 265,8 \\ & 10.46 \\ & \hline \end{aligned}$	$\begin{aligned} & 274 \\ & 10.79 \\ & \hline \end{aligned}$	$\begin{aligned} & 326,5 \\ & 12.85 \\ & \hline \end{aligned}$	$\begin{aligned} & 392,5 \\ & 15.45 \end{aligned}$	$\begin{aligned} & 464,6 \\ & 18.29 \\ & \hline \end{aligned}$
12	-	-	$\begin{aligned} & 138 \\ & 5.43 \end{aligned}$	-	$\begin{aligned} & 176,4 \\ & 6.94 \end{aligned}$	$\begin{aligned} & 177,4 \\ & 6.98 \end{aligned}$	$\begin{aligned} & 193 \\ & 7.60 \end{aligned}$	$\begin{aligned} & 143,4 \\ & 5.65 \end{aligned}$	$\begin{aligned} & 181,8 \\ & 7.16 \end{aligned}$	$\begin{aligned} & 182,8 \\ & 7.20 \end{aligned}$	$\begin{aligned} & 198,4 \\ & 7.80 \end{aligned}$	$\begin{aligned} & 181,7 \\ & 7.15 \end{aligned}$	$\begin{aligned} & 239,3 \\ & 9.42 \end{aligned}$	$\begin{aligned} & 287,3 \\ & 11.31 \end{aligned}$	$\begin{aligned} & 295,5 \\ & 11.63 \end{aligned}$	$\begin{aligned} & 353 \\ & 13.90 \end{aligned}$	$\begin{aligned} & 425 \\ & 16.73 \end{aligned}$	$\begin{aligned} & 503,2 \\ & 19.81 \end{aligned}$

SALES AND SERVICE ORGANIZATION

Australia

australian solenoid Φ co. pty. ltd
379 Liverpool Road, ASHFIELD, N.S.W. 2131
P. O. Box 1093, ASHFIELD, N.S.W. 1800

Tel: +61 2 9797-7333, Fax: 0092
e-mail: sales@austrasol.com.au

Austria

austro solenoid Φ ges.m.b.h.
Schumanngasse 35, Postfach 431
A-1181 WIEN
Tel: +43 1404 06, Fax: 404 06-190
e-mail: aso@krausnaimer.com

Belgium, Luxembourg

solenoid benelux $\Phi b . v$
Stationstraat 34
B-3070 KORTENBERG
Tel: +32 2 757-0141, Fax: 1640
e-mail: sales@bensol.be
Brazil
solenoid do brasil Φ ltda
Avenida Berna 230
04774-020 SAO PAULO
Tel: +55 11 5524-1288, Fax: 5521-4659/9633
e-mail: knbrasil@krausnaimer.com.br

Canada

canadian solenoid Φ inc.
219 Connie Crescent, Unit 13A
CONCORD, Ontario, L4K 1L4
Tel: +1 905 738-1666, Fax: 9327
e-mail: cdnsolenoid@cansol.on.ca
Chile
ASEA BROWN BOVERI S. A
Vicuña Mackenna 1602, Casilla 3555
SANTIAGO DE CHILE
Tel: +56 2 544-7411, Fax: 7418

Cyprus

ELECTROMATIC CONSTRUCTIONS LTD.
2, Evagoras Pallikarides Str., CY-2235 LATSIA-Nicosia P. O. Box 12630, CY-2251 LATSIA-Nicosia

Tel: +357 24841 41, Fax: 485747

Czech Republic

OBZOR, výrobní družstvo Zlín
ouky-Slanica 378
CZ-76413 ZLÍN
el: +420 57 7195-111/-153 (Techn. Supp.)
Fax: +420 57 7195-152/-138
e-mail: ots@ obzor.cz

Denmark

C. THIIM A/S Ingeniørfirma

Transformervej 31
DK-2730 HERLEV
Tel: +45 448580 00, Fax: 8005
e-mail: thiim@thiim.com

Finland

suomen solenoid Φ oy
Karitie 7
FIN-01530 VANTAA
Tel: +358 9 825-4240, Fax: 42410
e-mail: etunimi.sukunimi@finsol.fi

France

solenoid france Φ s. a
33, rue Bobillot
F-75013 PARIS
Tél: +33 1584080 80, Fax: 45809119
e-mail: sales@solfrance.fr

Germany

deutsche solenoid Φ vertriebs-gmbh
Wikingerstraße 20-28, D-76189 KARLSRUHE
Postfach 1001 24, D-76231 KARLSRUHE
Tel: +49 72159 88-0, Fax: 592828
e-mail: desol@krausnaimer.com

Great Britain

u. k. solenoid Φ ltd.

115 London Road
NEWBURY/BERKSHIRE RG14 2AH
Tel: +44 1635 45991, Fax: 37807
e-mail: sales @uksol.co.uk

Greece
KALAMARAKIS-SAPOUNAS S. A. Ionias \& Neromilou Str., P. O. Box 46566 GR-13671 ACHARNES/ATHENS Tel: +30 210 240-6000-6, Fax: 240-6007 e-mail: ksa@ksa.gr

Hungary

GANZ, Schalter- u. Gerätefabrik
X. Kõbányal út 41/c, Postfach 87

H-1475 BUDAPEST
Tel: +36 1 261-5479, Fax: 4685
e-mail: ganzkk@ganzkk.hu

Iceland

BRAEDURNIR ORMSSON EHF
Lágmúli 6-9, P. O. Box 8670
REYKJAVIK
Tel: +354 530-28 00, Fax: 2810
e-mail: skuli@ormsson.is

Iran

RBS components GmbH
Kohlriege 14
D-33758 SCHLOSS HOLTE-STUKENBROCK
Tel: +49 52079111 21, Fax: 911119
e-mail: contact @rbs-gmbh.de

Republic of Ireland

irish solenoid Ф ltd.
Bay 145, Shannon Free Zone
SHANNON, Co. Clare
Tel: +353 61 704700, Fax: 471084
e-mail: salesirs@krausnaimer.ie

Italy

solenoid italia Φ s.r.l.
Via Terracini, 9
I-24047 TREVIGLIO (BG)
Tel: +39 0363-30 11 12, Fax: 302113
e-mail: michelle.ford@italsol.it

Japan

solenoid japan Φ co. ltd.
Yoshiwada Building 2F
1-11-6 Hamamatsucho
Minato-Ku, TOKYO 105-0013
Tel: +81 3 3436-6151, Fax: 6325
e-mail: kazumi.nakazato @ japsol.co.jp

Kuwait

AMMAR \& PARTNERS ELECTRICAL CO
P. O. Box 1871

13019 SAFAT
Tel: +965 483-0122/483-0133
Fax: +965 484-1818

Malaysia

INDUSTRIAL AUTOMATION (M) Sdn Bhd 30-3 \& 30-4 Loke New Road 55200 KUALA LUMPUR
Tel: +60 3-9-2210511, Fax: 2222299
e-mail: inquiry @iasb.com.my

Mexico

ING. JAVIER CABALLERO B.
A. Gaviño 30, Satélite,

53100, Edo. de Mexico, MEXICO
Tel: +52 5555 62-7577, Fax: 0434
e-mail: j_caballero_b@infosel.net.mx

Netherlands

solenoid benelux $\Phi b . v$.
Wegtersweg 38, Postbus 199
NL-7556 BR HENGELO (Ov.)
Tel: +31 74 291-9441, Fax: 8380
e-mail: sales@bensol.n

New Zealand

new zealand solenoid Φ co. ltd. 42 Miramar Avenue, P. O. Box 15-009 WELLINGTON
Tel: +64 4 380-9888, Fax: 9877
e-mail: sales@nzsolenoid.co.nz

Norway

norsk solenoid Φ a/s
Hjalmar Brantings vei 8, P. O. Box 21, Økern
N-0508 OSLO
Tel: +47 226444 20, Fax: 653949
e-mail: nos@norsksol.no

Poland

ASTAT sp. z o.o
ul. Dąbrowskiego 461
PL-60451 POZNAŃ
Tel: +48 61 848-8871/72, Fax: 8276
e-mail: info@astat.com.pl

Portugal

ELECTRICOL-DAMAS, FERREIRA \& DAMASCENO, S. A.
Apartado 1083
P-2671-852 SANTO ANTÓNIO DOS CAVALEIROS
Tel: +351 21 989-8939, Fax: 988-6464

Singapore

solenoid singapore Φ pte. ltd.
115A, Commonwealth Drive
\# 03-17/23
SINGAPORE 149596
Tel: +65 6473-8166, Fax: 8643
e-mail: krausnaimer@ singsol.com.sg

Slovenia

SCHRACK Energietechnik d.o.o.
Glavni $\operatorname{trg} 47$
SI-2380 SLOVENJ GRADEC
Tel: +386 288392 00, Fax: 43471
e-mail: schrack.sg@schrack-energietechnik.si
Republic of South Africa
south african solenoid Φ co. pty. ltd.
7 Village Crescent, Linbro Village
Linbro Business Park, SANDTON 2065
P. O. Box 511, KELVIN 2054

Tel: +27 11 608-6060, Fax: 608-2874
e-mail: sales@sasolenoid.co.za

Spain

HAZEMEYER ESPAÑOLA S. A
Crta. de Tiana s/n, Esq. N-2
BADALONA-BARCELONA
Tel: +34 93 389-4262, Fax: 384-3586
e-mail: heshaze@catworld.net

Sweden

skandinaviska solenoid Φ ab
Dr. Widerströms Gata 11, FRUÄNGEN
Box 42097, S-126 14 STOCKHOLM
Tel: +46 89700 80, Fax: 978733
e-mail: order@skansol.se

Switzerland

AWAG Elektrotechnik AG
Sandbüelstraße 2, Postfach
CH-8604 VOLKETSWIL
Tel: +41 1 908-1919, Fax: 1999
e-mail: info@awag.ch

Taiwan

NUWTEC ENTERPRISE Co Ltd
No. 301, Sec. 1, Nan Kang Road
TAIPEI 115, Taiwan, R. o. C.
Tel: +886 2 265-13279, Fax: 13264
e-mail: nathan.nuwtec@msa.hinet.net

Turkey

ÜNAL KARDEŞ ELEKTRIK GEREÇLERI A. Ş.
Beşyol, Eski Londra Asfaltı-6
TR-34630 SEFAKOY-Istanbu
Tel: +90 212 624-9204, Fax: 592-4810
e-mail: info@unalkardes.com.tr

USA

american solenoid Φ co. inc.
760 New Brunswick Road, P. O. Box 430
SOMERSET, NJ 08873
Tel: +1 732 560-1240, Fax: 8823
e-mail: amsol@krausnaimer-us.com

General-purpose Basic Switch

Best-selling Basic Switch Boasting High Precision and Wide Variety

- A large switching capacity of 15 A with high repeat accuracy.
- A wide range of variations in contact form for your selection: basic, split-contact and maintained-contact.
- A series of standard models for micro loads is available.
- A series of molded terminal-type models incorporating safety terminal protective cover is available.

Model Number Structure

Available types

Basic Models

General-purpose

- A variety of actuators is available for a wide range of application.
- The contact mechanism of models for micro loads is a crossbar type with gold-alloy contacts, which ensures highly reliable operations for micro loads.
- Contact Gap:
$\mathrm{H} 2: \quad 0.20 \mathrm{~mm}$ (extra-high-sensitivity)
$\mathrm{H}: \quad 0.25 \mathrm{~mm}$ (high-sensitivity, micro voltage current load)
G: $\quad 0.5 \mathrm{~mm}$ (standard)
E: $\quad 1.8 \mathrm{~mm}$ (high-capacity)
F: $\quad 1.0 \mathrm{~mm}$ (split-contact models)

Drip-proof

- These Switches use a rubber boot on the actuator and adhesive fill between the case and cover to increase resistance to drips.
- Models with drip-proof terminal protective covers and molded terminals with resin filling are also available.

Split-contact Models

- This type is identical in construction to the general-purpose basic switch except that it has two pairs of simultaneous acting contacts by splitting moving contacts.
- Since the moving contacts are connected to a common terminal, either parallel or series connection is possible.
- Highly reliable micro load switching is ensured if the model is used as a twin-contact switch.

Maintained-contact Models

- The maintained-contact type has a reset button at the bottom of the switch case, in addition to the pushbutton (plunger) located on the opposite side of the reset button. Use these buttons alternately.
- Since the Switch has greater pretravel than overtravel, it is suitable for use in reversible control circuits, manual reset circuits, safety limit circuits, and other circuits which are not preferable for automatic resetting. (For further details, refer to individual datasheets.)

Model Number Legend

Basic Models

1. Ratings

01: 0.1 A (micro load)
15: 15 A
2. Contact Gap

H2: 0.20 mm
(extra-high sensitivity)
H: 0.25 mm
(high-sensitivity, micro load)
G: 0.5 mm
E: 1.8 mm (high-capacity)
3. Actuator

None: Pin plunger	W44:	Long hinge lever S:\quadSlim spring plunger	None: General-purpose D:	Short spring plunger

Split-contact Models

$Z-\frac{10}{1} \frac{F}{2} \underset{3}{\square} \frac{Y}{4}-\frac{B}{5}$

1. Ratings

10: 10 A (split-contact models)
2. Contact Gap

F: 1 mm (high-capacity)

3. Actuator

None: Pin plunger
S: Slim spring plunger
D: Short spring plunger
Q: Panel mount plunger
Q22: Panel mount roller plunger
W: Hinge lever
W22: Short hinge roller lever
W2: Hinge roller lever
M22: Reverse short hinge roller lever
4. Construction

Y: Split-contact type
5. Terminals

None: Solder terminal
B: Screw terminal (with toothed washer)

Maintained-contact models

$Z-\frac{15}{1} \frac{E}{2} \frac{\square}{3} \frac{R}{4}$

1. Ratings

15: 15 A
2. Contact Gap

E: 1.8 mm (high-capacity)

Drip-proof with Molded Terminal Models

3. Actuator

None: Pin plunger
S : Slim spring plunger
W: Hinge lever

4. Construction

R: Maintained-contact models
$\frac{\mathrm{Z}-\square 55}{1}-\mathrm{M} \square \frac{\square}{2} \frac{\square \mathrm{M}}{4}$

1. Drip-proof model
(Insert model number of basic, drip-proof version with solder terminals)
2.
3. Lead Outlets

None: VSF
E: VCT
3. Direction of Lead Outlets

L: Left
R: Right

4. Length of Leads

1: 1 m
3: 3 m

Ordering Information

Basic Models（General－purpose）

Actuator	Classification Contact gap Terminal＊1		Standard	High－sensitivity	Extra－high sensitivity	High－capacity	Micro load
			G（ 0.5 mm ）	H（ 0.25 mm ）	H2（ 0.20 mm ）	E（1．8 mm）	H（ 0.25 mm ）
			Model	Model	Model	Model	Model
Pin plunger	ก－	！	Z－15G	Z－15H	Z－15H2	Z－15E	Z－01H
		笉	Z－15G－B	Z－15H－B	Z－15H2－B	Z－15E－B	Z－01H－B
Slim spring plunger	目	b	Z－15GS	Z－15HS	－－－	－－－	Z－01HS
		鸹	Z－15GS－B	Z－15HS－B			Z－01HS－B
Short spring plunger	ค	！	Z－15GD	Z－15HD	－－－	Z－15ED	Z－01HD
		笉	Z－15GD－B	Z－15HD－B		Z－15ED－B	Z－01HD－B
Panel mount plunger	Low OP	๒	Z－15GQ3	－－－	－－－	－－－	－－－
		笉	Z－15GQ3－B				
	Medium OP	＠	Z－15GQ	Z－15HQ		Z－15EQ	Z－01HQ
		䂞	Z－15GQ－B	Z－15HQ－B		Z－15EQ－B	Z－01HQ－B
	High OP	！	Z－15GQ8	－－－		－－－	－－－
		写	Z－15GQ8－B				
Panel mount roller plunger	®	＠	Z－15GQ22	Z－15HQ22	－－－	Z－15EQ22	－－－
		写	Z－15GQ22－B	Z－15HQ22－B		Z－15EQ22－B	
Panel mount cross roller plunger	号	＠	Z－15GQ21	Z－15HQ21	－－－	Z－15EQ21	－－－
		鸢	Z－15GQ21－B	Z－15HQ21－B		Z－15EQ21－B	
Leaf spring		＠	Z－15GL	－－－	－－－	－－－	－－－
		写	Z－15GL－B				
Roller leaf spring	8	๒	Z－15GL2	－－－	－－－	－－－	－－－
		笉	Z－15GL2－B				
Short hinge lever	nel	¢	Z－15GW21	－－－	－－－	－－－	－－－
		鸢	Z－15GW21－B				
Hinge lever	Low OP	！	Z－15GW	Z－15HW	－－－	－－－	－－－
		亳	Z－15GW－B	Z－15HW－B			
	Medium	！	Z－15GW3	－－－			
	OP	鸢	Z－15GW3－B				
	High OP	！	Z－15GW32				
	High OP	写	Z－15GW32－B				
Low－force hinge lever	n	＠	Z－15GW4	Z－15HW24	－－－	－－－	－－－
		鸢	Z－15GW4－B	Z－15HW24－B			
Low－force wire hinge lever	Low OP	＠	－－－	Z－15HW78	－－－	－－－	－－－
		写		Z－15HW78－B			
	High OP	๒		Z－15HW52			
		写		Z－15HW52－B			
Short hinge roller lever	n_{0}^{Q}	！	Z－15GW22	Z－15HW22	－－－	Z－15EW22	Z－01HW22
		笉	Z－15GW22－B	Z－15HW22－B		Z－15EW22－B	Z－01HW22－B
Short hinge cross roller lever	IIII	＠	Z－15GW49	－－－	－－－	－－－	－－－
		写	Z－15GW49－B				
Hinge roller lever	Standard	๒	Z－15GW2	Z－15HW2	－－－	－－－	－－－
		笉	Z－15GW2－B	Z－15HW2－B			
	Large roller	＠	Z－15GW25	－－－		－－－	－－－
		笉	Z－15GW25－B				

Actuator	Classification Contact gap Terminal＊1		Standard	High－sensitivity	Extra－high sensitivity	High－capacity	Micro load
			G（ 0.5 mm ）	H（ 0.25 mm ）	H2（ 0.20 mm ）	E（ 1.8 mm ）	H（ 0.25 mm ）
			Model	Model	Model	Model	Model
Hinge cross roller lever		！	Z－15GW54	－－－	－－－	－－－	－－－
	－	写	Z－15GW54－B				
Unidirectional shorthinge roller lever	Parallel	」	Z－15GW2277	－－－	－－－	－－－	－－－
		鸢	Z－15GW2277－B				
Reverse hinge lever ＊2	mb	〕	Z－15GM	－－－	－－－	－－－	－－－
		窎	Z－15GM－B				
Reverse short hinge roller lever＊2	$\xrightarrow[0]{P}$	〕	Z－15GM22	－－－	－－－	－－－	－－－
		鸢	Z－15GM22－B				
Reverse hinge roller lever＊2	R	〕	Z－15GM2	－－－	－－－	－－－	－－－
		宮	Z－15GM2－B				

＊1．！：Solder terminal 茑：Screw terminal
＊2．The pin plungers of reverse－type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers．Reverse－type models are highly vibration－and shock－resistive because the pin plungers are normally pressed．

Split－contact Models

| Actuator | Contact gap
 Terminal | | F |
| :--- | :---: | :---: | :---: | F（1．0 mm）

Maintained－contact Models

Actuator		Model
Pin plunger		Z－15ER
Slim spring plunger	Z－15ESR	
Hinge lever	Z－15EWR	

＊1．り ：Solder terminal 写：Screw terminal
＊2．The pin plungers of reverse－type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers．Reverse－type models are highly vibration－and shock－resistive because the pin plungers are normally pressed．

Drip－proof Models

Actuator	Classification Contact gap Drip－proof terminal protective cover Terminal＊1		Standard		High－sensitivity	Micro load
			G（ 0.5 mm ）		H（ 0.25 mm ）	H（ 0.25 mm ）
			Not provided	Provided	Not provided	Not provided
			Model	Model	Model	Model
Pin plunger	－	〕	Z－15G55	－－－		Z－01H55
		鸪	Z－15G55－B	Z－15GA55－B5V		Z－01H55－B
Short spring plunger	صـ	๒	Z－15GD55	－－－		Z－01HD55
		写	Z－15GD55－B			Z－01HD55－B
Spring plunger	$\begin{aligned} & \text { Low } \\ & \text { OP } \end{aligned}$	๒	Z－15GK55	－－－		－－－
		亳	Z－15GK55－B			
	HighOP	๒	Z－15GK355	－－－		－－－
		鹄	Z－15GK355－B	Z－15GK3A55－B5V		
Panel mount plunger		b	Z－15GQ55	－－－		－－－
		鸢	Z－15GQ55－B	Z－15GQA55－B5V		
Panel mount roller plunger	B	๒	Z－15GQ2255	－－－		－－－
		寄	Z－15GQ2255－B	Z－15GQ22A55－B5V		
Panel mount cross roller plunger	$\underline{\square}$	＠	－－－	－－－		－－－
		晹	Z－15GQ2155－B	Z－15GQ21A55－B5V		
Leaf spring	L^{2}	\downarrow	Z－15GL55	－－－		－－－
		鸢	Z－15GL55－B			
Roller leaf spring	8	！	Z－15GL255	－－－		－－－
		笉	Z－15GL255－B			
Short hinge lever	π	＠	Z－15GW2155	－－－		－－－
		䂞	Z－15GW2155－B			
Long hinge lever		๒	Z－15GW4455	－－－		－－－
		笉	Z－15GW4455－B	Z－15GW44A55－B5V		
Hinge lever	E	\downarrow	Z－15GW55	－－－		－－－
		窎	Z－15GW55－B	Z－15GWA55－B5V		
Short hinge roller lever	Q	๒	Z－15GW2255	－－－		Z－01HW2255
		鸹	Z－15GW2255－B	Z－15GW22A55－B5V		Z－01HW2255－B
Hinge roller lever	8	＠	Z－15GW255	－－－		－－－
		鸢	Z－15GW255－B	Z－15GW2A55－B5V		
Unidirectional short hinge roller lever	$\rightarrow g$	b	Z－15GW227755	－－－		－－－
		鸢	Z－15GW227755－B	$\begin{gathered} \text { Z-15GW2277A55- } \\ \text { B5V } \end{gathered}$		
Reverse hinge lever＊2	0	〕	Z－15GM55	－－－		－－－
		笉	Z－15GM55－B			
Reverse short hinge roller lever＊2	0	〕	Z－15GM2255	－－－		－－－
		晹	Z－15GM2255－B			
Reverse hinge roller lever＊2	Q	〕	Z－15GM255	－－－		－－－
		窎	Z－15GM255－B			
Flexible rod（coil spring）＊3		\downarrow	Z－15GNJ55	－－－		－－－
		鸢	Z－15GNJ55－B			
Flexible rod （steel wire）	$\begin{gathered} \underline{\underline{\underline{\underline{2}}}} \\ \\ \end{gathered}$	\downarrow	－－－	－－－	Z－15HNJS55	－－－
		鸢			Z－15HNJS55－B	

＊1．ㅇ）：Solder terminal 写：Screw terminal
＊2．The pin plungers of reverse－type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers．
＊3．The tip is made of resin．

Specifications

Characteristics

*1 The values are for the plunger models. (For the lever models, the values are at the plunger section.)
2 The values are for the Z-15G pin plunger.
*3 The values are for the Z-10FY-B

Ratings (Basic, Split-contact and Maintained contact Models)

Z-15 (Except Micro Load and Flexible Rod Models)

Contact gap		Non-inductive load (A)			Inductive load (A)		
		Resistive load	Lamp load		Inductive load	Motor load	
		NC NO	NC	NO	NC ${ }^{\text {NO }}$	NC	NO
G, H, H2, E	125 VAC	15 (10) *	3	1.5	15 (10) *	5	2.5
	250 VAC	15 (10) *	2.5	1.25	15 (10) *	3	1.5
	500 VAC *	10	1.5	0.75	6	1.5	0.75
	8 VDC	15	3	1.5	15	5	2.5
	14 VDC	15	3	1.5	10	5	2.5
G	30 VDC	6	3	1.5	5	5	2.5
	125 VDC	0.5	0.5	0.5	0.05	0.05	0.05
	250 VDC	0.25	0.25	0.25	0.03	0.03	0.03
H, H2	8 VDC	15	3	1.5	15	5	2.5
	14 VDC	15	3	1.5	10	5	2.5
	30 VDC	2	2	1.4	1	1	1
	125 VDC	0.4	0.4	0.4	0.03	0.03	0.03
	250 VDC	0.2	0.2	0.2	0.02	0.02	0.02
	8 VDC	15	3	1.5	15	5	2.5
	14 VDC	15	3	1.5	15	5	2.5
E	30 VDC	15	3	1.5	10	5	2.5
	125 VDC	0.75	0.75	0.75	0.4	0.4	0.4
	250 VDC	0.3	0.3	0.3	0.2	0.2	0.2

* Figures in parentheses are for the $\mathrm{Z}-15 \mathrm{HW} 52, \mathrm{Z}-15 \mathrm{HW} 78(-\mathrm{B})$ and $\mathrm{Z}-15 \mathrm{H} 2(-\mathrm{B})$ models, the AC ratings of these models are 125 and 250 V only.

Z-15 (Flexible Rod Models)

Z-10F

Contact gap	Item Rated voltage	Non-inductive load (A)				Inductive load (A)			
		Resistive load		Lamp load		Inductive load		Motor load	
		NC	NO	NC	NO	NC	NO	NC	NO
	$\begin{aligned} & 125 \text { VAC } \\ & 250 \text { VAC } \end{aligned}$	$\begin{aligned} & 1 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$		$\begin{gathered} \hline 4 \\ 2.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.5 \end{gathered}$	$\begin{aligned} & \hline 6 \\ & 6 \end{aligned}$		$\begin{aligned} & \hline 5 \\ & 3 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$
Series connection	$\begin{aligned} & \hline 30 \text { VDC } \\ & 125 \text { VDC } \\ & 250 \text { VDC } \end{aligned}$	$\begin{gathered} 10 \\ 1 \\ 0.6 \end{gathered}$		$\begin{gathered} 4 \\ 1 \\ 0.6 \end{gathered}$	$\begin{gathered} \hline 2 \\ 1 \\ 0.6 \end{gathered}$	$\begin{gathered} \hline 6 \\ 0.1 \\ 0.05 \end{gathered}$		$\begin{gathered} 6 \\ 0.1 \\ 0.05 \end{gathered}$	$\begin{gathered} 3 \\ 0.1 \\ 0.05 \end{gathered}$
Parallel connection	$\begin{array}{\|l\|} \hline 125 \text { VAC } \\ 250 \text { VAC } \\ \hline \end{array}$	66		$\begin{gathered} 3 \\ 2.5 \end{gathered}$	$\begin{gathered} 1.5 \\ 1.25 \end{gathered}$		$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$
	$\begin{array}{\|l\|} \hline 30 \text { VDC } \\ 125 \text { VDC } \\ 250 \text { VDC } \end{array}$	$\begin{gathered} \hline 6 \\ 0.6 \\ 0.3 \\ \hline \end{gathered}$		$\begin{gathered} 4 \\ 0.6 \\ 0.3 \end{gathered}$	$\begin{gathered} 2 \\ 0.6 \\ 0.3 \end{gathered}$		$\begin{gathered} \hline 4 \\ 0.1 \\ 0.05 \end{gathered}$	$\begin{gathered} \hline 6 \\ 0.1 \\ 0.05 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 0.1 \\ 0.05 \\ \hline \end{gathered}$

Z-01H

Rated voltage	Resistive load (A)	
	NC	NO
$\mathbf{1 2 5}$ VAC	0.1	
8 VDC	0.1	
14 VDC	0.1	
30 VDC	0.1	

Applicable Load Range

	Z-01H	Z-15 $\square, \mathbf{Z - 1 0 F Y}$
Minimum applicable load	1 mA at 5 VDC	160 mA at 5 VDC

Note: 1. The above current ratings are the values of the steady-state current.
2. Inductive load has a power factor of 0.4 min . AC) and a time constant of 7 ms max. (DC).
3. Lamp load has an inrush current of 10 times the steady-state current.
4. Motor load has an inrush current of 6 times the steady-state current.
5. The normally closed and normally open ratings of reverse hinge lever models are opposite to each other.

■ Contacts Specification

Item	Classification	Z-15	Z-01H	Z-10F
Contacts	Shape	Rivet	Single crossbar	Rivet
	Material	Silver	Gold alloy	Silver
Inrush current	NC	30 A max.	0.1 A max.	40 A max.
	NO	15 A max.	0.1 A max.	20 A max.

■ Safety Standards Ratings
 UL/CSA (General ratings only)

Rated voltage Model	Z-15	Z-10F	Z-01H
125 VAC	15A and 1/8HP	6 A and 1/10HP	0.1 A
250 VAC	15A and 1/4HP	6 A and 1/8HP	---
480 VAC	15 A	6 A	---
30 VDC	---	---	0.1 A
125 VDC	0.5 A	0.6 A	---
250 VDC	0.25 A	0.3 A	---

TÜV (EN61058-1)

Rated voltage Model	Z-15H \square-B	Z-15G \square-B	Z-01H \square-B
250 VAC	15 A	15 A	---
125 VAC	---	---	0.1 A
30 VDC	---	---	0.1 A

6. The AC ratings of molded terminals are 125 and 250 V only.
7. The ratings values apply under the following test conditions:
(1) Ambient temperature: $20 \pm 2^{\circ} \mathrm{C}$
(2) Ambient humidity: $65 \pm 5 \%$ RH
(3) Operating frequency: 20 operations/min

Engineering Data

Mechanical Durability (Z-15G)

Structure

Basic Models

Contact Form (SPDT)

Note: The Z-15GM is a reversible model and the NO and NC positions are reversed.

Drip-proof Construction

Without Terminal Protective Cover

Split-Contact Models

Contact Form

Note: The NO and NC terminal arrangement is reversed for Models with reverse operation (Z-10FM).

Maintained-contact Models

Contact Form

Electrical Durability (Z-15G)

Molded Terminals

() indicates wire color.
Note: The Z-15GM is a reversible model and the NO and NC positions are reversed.

With Terminal Protective Cover
Rubber boot (weather-resistive
chloroprene is used)

Rubber packing (improves
sealing between switch
housing and terminal cover)

Terminal protective covers are sold separately for maintenance purposes, which can be, however, used with the Z- \square-B5V models only.

Connection Example Series Connection

Parallel Connection

Dimensions

General-purpose and Split Contact Models

Note: Unless otherwise specified, all units are in millimeters and a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions

Terminals

Screw Terminals (-B)
Appropriate terminal screw tightening
torque: 0.78 to $1.18 \mathrm{~N} \cdot \mathrm{~m}$.

Mounting

All switches can be side mounted using M4 mounting screws with plane washers or spring washers to securely mount the Switch. Tighten the screws to a torque of 1.18 to $1.47 \mathrm{~N} \cdot \mathrm{~m}$.

Versions with panel mount plungers can be panel mounted via the plunger, provided that the hexagonal nut of the actuator is tightened to a torque of 2.94 to $4.9 \mathrm{~N} \cdot \mathrm{~m}$.

Panel Mount Plunger

Panel Mount Roller Plunger

Note: Mount using either the side mounting holes or the panel mount plunger, not both. If using the side mounting holes, then remove the hexagonal nut(s) from the panel mount plunger.

Note: 1. All drawings show the switches with screw terminals. For versions with solder terminals, remove the "-B" from the end of the part number.
2. Unless otherwise specified, all units are in millimeters and a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Hinge Roller Lever

Z-15GW255-B

OF max.	130 gf
RF min.	21 gf
OT min.	4 mm
MD max.	1.6 mm
FP max.	36.5 mm
OP	$30.2 \pm 0.8 \mathrm{~mm}$

Unidirectional Short Hinge Roller Lever

Z-15GW227755-B

Reverse Hinge Lever *
Z-15GM55-B

OF max.	200 gf
RF min.	28 gf
OT min.	5.6 mm
MD max.	0.89 mm
FP max.	23.8 mm
OP	$19 \pm 0.8 \mathrm{~mm}$

Reverse Short Hinge Roller Lever *

Reverse Hinge Roller Lever *

Z-15GM255-B

[^26]
Safety Precautions

Be sure to read the precautions and information common to all Snap Action and Detection Switches, contained in the Technical User's Guide, "Snap Action Switches, Technical Information" for correct use.

Precautions for Safe Use

Terminal Connection

When soldering lead wires to the Switch, make sure that the capacity of the soldering iron is 60 W maximum. Do not take more than 5 s to solder any part of the Switch. The characteristics of the Switch will deteriorate if a soldering iron with a capacity of more than 60 W is applied to any part of the Switch for 5 s or more.

Operation

- Make sure that the switching frequency or speed is within the specified range.

1. If the switching speed is extremely slow, the contact may not be switched smoothly, which may result in a contact failure or contact welding.
2. If the switching speed is extremely fast, switching shock may damage the Switch soon. If the switching frequency is too high, the contact may not catch up with the speed.
The rated permissible switching speed and frequency indicate the switching reliability of the Switch.
The life of a Switch is determined at the specified switching speed. The life varies with the switching speed and frequency even when they are within the permissible ranges. In order to determine the life of a Switch model to be applied to a particular use, it is best to conduct an appropriate durability test on some samples of the model under actual conditions.

- Make sure that the actuator travel does not exceed the permissible OT position. The operating stroke must be set to 70% to 100% of the rated OT.

Precautions for Correct Use Mounting Location

- Do not use the switch alone in atmospheres such as flammable or explosive gases. Arcing and heat generation associated with switching may cause fires or explosions.
- Switches are generally not constructed with resistance against water. Use a protective cover to prevent direct spraying if the switch is used in locations subject to splashing or spurting oil or water, dust adhering.

- Install the switch in a location that is not directly subject to debris and dust from cutting. The actuator and the switch body must be protected from accumulated cutting debris and dirt.

- Do not use the switch in locations subject to hot water (greater than $60^{\circ} \mathrm{C}$) or in water vapor.
- Do not use the switch outside the specified temperature and atmospheric conditions.
The permissible ambient temperature depends on the model. (Refer to the specifications in this catalog.) Sudden thermal changes may cause thermal shock to distort the switch and result in faults.

- Mount a cover if the switch is to be installed in a location where worker inattention could result in incorrect operation or accidents.

- Subjecting the switch to continuous vibration or shock may result in contact failure or faulty operation due to abrasion powder and in reduced durability. Excessive vibration or shock will cause the contacts to operate malfunction or become damaged. Mount the switch in a location that is not subject to vibration or shock and in a direction that does not subject the switch to resonance.
- If silver contacts are used with relatively low frequency for a long time or are used with microloads, the sulfide coating produced on the contact surface will not be broken down and contact faults will result. Use a microload switch that uses gold contacts.
- Do not use the switch in atmospheres with high humidity or heat or in harmful gases, such as sulfide gas $\left(\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}\right)$, ammonia gas $\left(\mathrm{NH}_{3}\right)$, nitric acid gas $\left(\mathrm{HNO}_{3}\right)$, or chlorine gas $\left(\mathrm{Cl}_{2}\right)$. Doing so may impair functionality, such as with damage due to contacting faults or corrosion.
- The switch includes contacts. If the switch is used in an atmosphere with silicon gas, arc energy may cause silicon oxide $\left(\mathrm{SiO}_{2}\right)$ to accumulate on the contacts and result in contact failure. If there is silicon oil, silicon filling, silicon wiring, or other silicon products in the vicinity of the switch, use a contact protection circuit to limit arcing and remove the source of the silicon gas.

Mounting

Always make sure that the power is turned OFF before mounting, removing, or wiring the Switch, or performing maintenance.
Electric shock or burning may occur.

Selecting Models

We recommend using Drip-proof Models (protection equivalent to IP62) in locations subject to floating dirt and dust. Other models do not have a protective structure.

Wiring

For wiring, use a wire size that is appropriate for the applied voltage and the supplied current. When soldering the Switch, make sure that the capacity of the soldering iron is 60 W maximum. Do not take more than 5 s to solder any part of the Switch. Using the Switch with incomplete soldering may result in errors and heat, which may cause burning. The characteristics of the Switch will deteriorate if a soldering iron with a capacity of more than 60 W is used or if any part of the Switch is soldered for 6 s or longer.

Tightening

The suitable tightening torque for screw terminals is given below.

- Screw terminals except for those on Split-contact Models (Z-10FY-B): 0.78 to $1.18 \mathrm{~N} \cdot \mathrm{~m}$
- Screw terminals on Split-contact Models (Z-10FY-B): 0.49 to $1.18 \mathrm{~N} \cdot \mathrm{~m}$

Operation

- Make sure that the switching speed and frequency are is within the specified ranges.

1. If the switching speed is extremely slow, the contacts may not be switched smoothly, which may result in a contact failure or contact welding.
2. If the switching speed is extremely fast, switching shock may damage the Switch prematurely. If the switching frequency is too high, the contacts may not be able to keep up with the speed.
The rated permissible switching speed and frequency indicate the switching reliability of the Switch.
The life of a Switch is determined at the specified switching speed. The life varies with the switching speed and frequency even when they are within the permissible ranges.
Always conduct appropriate durability tests under actual conditions before using a Switch.

- Make sure that the actuator travel does not exceed the permissible OT position. The operating stroke must be set to 70% to 100% of the rated OT.

Panel Mount Switch (Z-15 $\square \square \square, \mathbf{Z - 0 1} \square \mathbf{Q} \square$)

- When mounting the panel mount plunger model with screws on a side surface, be careful of the dog angle and operation speed. Excessive dog angle or operation speed may damage the Switch.
- When using the panel mount plunger model mounted with screws on a side surface, be careful not to apply a large shock. Applying a shock exceeding $1,000 \mathrm{~m} / \mathrm{s}^{2}$ may damage the Switch.
- When using the panel mount plunger model mounted with screws on a side surface, remove the hexagonal nuts from the actuator.

High-sensitivity Switch (Z-15H)/

Extra-high-sensitivity Switch (Z-15H2)

- When using the Switch in a DC circuit, be sure to provide an arc suppressor as well because the small contact gap of the Switch may result in contact troubles.
- In an application where a high repeat accuracy is required, limit the current that flows through the Switch to within 0.1 A . Also, use a relay to control a high-capacity load if the Switch is connected to such a load. (In this case, the exciting current of the relay coil is the load of the Switch.)
- Do not apply a force of 19.6 N or higher to the pin plunger.
- Exercise care that the environment conditions such as temperature and humidity do not change abruptly.

Micro Load Applicable Range

Using a model for ordinary loads to open or close the contact of a micro load circuit may result in faulty contact. Use models that operate in the following range. However, even when using micro load models within the operating range shown here, if inrush current occurs when the contact is opened or closed, it may increase contact wear and so decrease durability. Therefore, insert a contact protection circuit where necessary.
The minimum applicable load is the N -level reference value. This value indicates the malfunction reference level for the reliability level of $60 \%\left(\lambda_{60}\right)$. The equation, $\lambda_{60}=0.5 \times 10^{-6} /$ operations indicates that the estimated malfunction rate is less than $1 / 2,000,000$ operations with a reliability level of 60%.

	Z-01H	Z-15 \square, Z-10FY
Minimum applicable load	1 mA at 5 VDC	160 mA at 5 VDC

Models with Drip-proof Terminal Cover (Z- \square A55-B5V) Wiring

- To attach the Protective Cover to the case, hold the cover in almost parallel to the case and then push it to the case. If the cover is pushed diagonally, the rubber packing may slip off, degrading the sealability of the Switch.

Rubber packing

- Use round solderless terminals having the following dimensions to connect leads to the terminals. Tighten the screws of terminals to a torque of 0.78 to $1.18 \mathrm{~N} \cdot \mathrm{~m}$. Use the terminal shown below.

- A cable 8.5 to 10.5 mm in diameter can be applicable to the sealing rubber of the lead outlet of the Switch. A two-core or three-core VCT cable having a cross-sectional area of $1.25 \mathrm{~mm}^{2}$ is especially suitable for this.
- M4 small screws with spring toothed washer are used as the terminal screws.

Drip-proof Switch (Z- $\square 55$)

- The Switch is not perfectly oil-tight; so do not dip it in oil or water.
- The rubber boots are made from weather-resistive chloroprene rubber.
- Do not use Basic Switches in places with radical changes in temperature.
- Rubber boots and rubber caps will tend to harden at lower ambient temperatures. If an Actuator is used in a pressed state for an extended period of time at low temperatures, it may return slowly or it may not return at all. OMRON can provide special Actuators for use at low temperature with rubber boots or rubber caps made of silicon rubber, which has superior resistance to cold. Ask your OMRON representative for details.

Split-contact Switch (Z-10F \square Y)
The applicable current varies depending on how the contacts are used. If the Switch is connected in series, the Switch can endure a current 1.5 to 2 times higher than the current that can be applied in parallel connection.

Flexible Rod Switch (Z-15 \square NJ $\square 55$, Drip-proof)

- When the rod is fully swung, the Switch may operate when the lever returns, causing chattering. Use a circuit that compensates for chattering wherever possible.
- Do not switch the rod to the fullest extent when the Switch is to break a power circuit because such a practice may cause metal deposition to occur between the mating contacts of the Switch.

Other Precautions

- Do not apply excessive force with a screwdriver or other tool when attaching or removing the Protective Cover. Doing so may deform the Switch.

- The Drip-proof Terminal Protective Cover (AP-DV) can be used only with Switches with model numbers ending in "-B5V."
- The Drip-proof Terminal Protective Cover is only available for maintenance purposes.

Accessories (Order Separately)

Refer to "Z/A/X/DZ Common Accessories" datasheet for details about Terminal Covers, Separators, and Actuators.

Drip-proof Terminal Cover (Order Separately)

The Drip-proof Terminal Protective Cover is provided for maintenance for Z- \square A55-B5V Switches.

Ordering Information

Name	Model
Drip-proof Terminal Protective Cover	AP-DV

Dimensions (Unit: mm)

SP103 Heroes Avenue SPS - TSR06 Transportable Switchboard Container - OM Manual

Omron Electronic Components, LLC

Terms and Conditions of Sales

. GENERAL

1. Definitions: The words used herein are defined as follows
(a) Terms: \quad These terms and conditions
(b) Seller: Omron Electronic Components LLC and its subsidiaries
(c) Buyer: The buyer of Products, including any end user in section III through VI (d) Products: Products and/or services of Seller
(e) Including: Including without limitation
2. Offer; Acceptance: These Terms are deemed part of all quotations, acknowledgments, invoices, purchase orders and other documents, whether electronic or in writing, relating to the sale of Products by Seller. Seller hereby objects to any Terms proposed in Buyer's purchase order or other documents which are inconsistent with, or in addition to, these Terms.
3. Distributor: Any distributor shall inform its customer of the contents after and including section III of these Terms.

II. SALES

1. Prices; Payment: All prices stated are current, subject to change without notice by Seller. Buyer agrees to pay the price in effect at the time the purchase order is accepted by Seller. Payments for Products received are due net 30 days unless otherwise stated in the invoice. Buyer shall have no right to set off any amounts against the amount owing in respect of this invoice.
2. Discounts: Cash discounts, if any, will apply only on the net amount of invoices sent to Buyer after deducting transportation charges, taxes and duties, and will be allowed only if (a) the invoice is paid according to Seller's payment terms and (b) Buyer has no past due amounts owing to Seller.
3. Interest: Seller, at its option, may charge Buyer 1.5% interest per month or the maximum legal rate, whichever is less, on any balance not paid within the stated terms.
4. Orders: Seller will accept no order less than 200 U.S. dollars net billing.
5. Currencies: If the prices quoted herein are in a currency other than U.S. dollars, Buyer shall make remittance to Seller at the then current exchange rate most favorable to Seller; provided that if remittance is not made when due, Buyer will convert the amount to U.S. dollars at the then current exchange rate most favorable to Seller available during the period between the due date and the date remittance is actually made.
6. Governmental Approvals: Buyer shall be responsible for all costs involved in obtaining any government approvals regarding the importation or sale of the Products.
7. Taxes: All taxes, duties and other governmental charges (other than general real property and income taxes), including any interest or penalties thereon, imposed directly or indirectly on Seller or required to be collected directly or indirectly by Seller for the manufacture, production, sale, delivery, importation, consumption or use of the Products sold hereunder (including customs duties and sales, excise, use, turnover and license taxes) shall be charged to and remitted by Buyer to Seller.
8. Financial: If the financial position of Buyer at any time becomes unsatisfactory to Seller, Seller reserves the right to stop shipments or require satisfactory security or payment in advance. If Buyer fails to make payment or otherwise comply with these Terms or any related agreement, Seller may (without liability and in addition to other remedies) cancel any unshipped portion of Products sold hereunder and stop any Products in transit until Buyer pays all amounts, including amounts payable hereunder, whether or not then due, which are owing to it by Buyer. Buyer shall in any event remain liable for all unpaid accounts.
9. Cancellation; Etc: Orders are not subject to rescheduling or cancellation unless Buyer indemnifies Seller fully against all costs or expenses arising in connection therewith.
10. Force Majeure: Seller shall not be liable for any delay or failure in delivery resulting from causes beyond its control, including earthquakes, fires, floods, strikes or other labor disputes, shortage of labor or materials, accidents to machinery, acts of sabotage, riots, delay in or lack of transportation or the requirements of any government authority.
11. Shipping: Delivery: Unless otherwise expressly agreed in writing by Seller:
(a) All sales and shipments of Products shall be FOB shipping point (unless otherwise stated in writing by Seller), at which point title to and all risk of loss of the Products shall pass from Seller to Buyer, provided that Seller shall retain a security interest in the Products until the full purchase price is paid by Buyer;
(b) Delivery and shipping dates are estimates only; and
(c) Seller will package Products as it deems proper for protection against normal handling and extra charges apply to special conditions.
12. Claims: Any claim by Buyer against Seller for shortage or damage to the Products occurring before delivery to the carrier or any claim related to pricing or other charges must be presented in detail in writing to Seller within 30 days of receipt of shipment.

III. PRECAUTIONS

1. Suitability: IT IS THE BUYER'S SOLE RESPOINSIBILITY TO ENSURE THAT ANY OMRON PRODUCT IS FIT AND SUFFICIENT FOR USE IN A MOTORIZED VEHICLE APPLICATION. BUYER SHALL BE SOLELY RESPONSIBLE FOR DETERMINING APPROPRIATENESS OF THE PARTICULAR PRODUCT WITH RESPECT TO THE BUYER'S APPLICATION INCLUDING (A) ELECTRICAL OR ELECTRONIC COMPONENTS, (B) CIRCUITS, (C) SYSTEM ASSEMBLIES, (D) END PRODUCT, (E) SYSTEM, (F) MATERIALS OR SUBSTANCES OR (G) OPERATING ENVIRONMENT. Buyer acknowledges that it alone has determined that the Products will meet their requirements of the intended use in all cases. Buyer must know and observe all prohibitions of use applicable to the Product/s.
2. Use with Attention: The followings are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible use of any Product, nor to imply that any use listed may be suitable for any Product:
(a) Outdoor use, use involving potential chemical contamination or electrical interference.
(b) Use in consumer Products or any use in significant quantities.
(c) Energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
(d) Systems, machines, and equipment that could present a risk to life or property.
3. Prohibited Use: NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.
4. Motorized Vehicle Application: USE OF ANY PRODUCT/S FOR A MOTORIZED VEHICLE APPLICATION MUST BE EXPRESSLY STATED IN THE SPECIFICATION BY SELLER.
5. Programmable Products: Seller shall not be responsible for the Buyer's programming of a programmable Product.

IV. WARRANTY AND LIMITATION

1. Warranty: Seller's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Seller (or such other period expressed in writing by Seller). SELLER MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT ALL OTHER WARRANTIES, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS.
2. Buyer Remedy: Seller's sole obligation hereunder shall be to replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product or, at Seller's election, to repay or credit Buyer an amount equal to the purchase price of the Product; provided that there shall be no liability for Seller or its affiliates unless Seller's analysis confirms that the Products were correctly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Seller before shipment.
3. Limitation on Liability: SELLER AND ITS AFFILIATES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY. FURTHER, IN NO EVENT SHALL LIABILITY OF SELLER OR ITS AFFILITATES EXCEED THE INDIVIDUAL PRICE OF THE PRODUCT ON WHICH LIABILITY IS ASSERTED.
4. Indemnities: Buyer shall indemnify and hold harmless Seller, its affiliates and its employees from and against all liabilities, losses, claims, costs and expenses (including attorney's fees and expenses) related to any claim, investigation, litigation or proceeding (whether or not Seller is a party) which arises or is alleged to arise from Buyer's acts or omissions under these Terms or in any way with respect to the Products.

V. INFORMATION; ETC.

1. Intellectual Property: The intellectual property embodied in the Products is the exclusive property of Seller and its affiliates and Buyer shall not attempt to duplicate it in any way without the written permission of Seller. Buyer (at its own expense) shall indemnify and hold harmless Seller and defend or settle any action brought against Seller to the extent that it is based on a claim that any Product made to Buyer specifications infringed intellectual property rights of another party.
2. Property; Confidentiality: Notwithstanding any charges to Buyer for engineering or tooling, all engineering and tooling shall remain the exclusive property of Seller. All information and materials supplied by Seller to Buyer relating to the Products are confidential and proprietary, and Buyer shall limit distribution thereof to its trusted employees and strictly prevent disclosure to any third party.
3. Performance Data: Performance data is provided as a guide in determining suitability and does not constitute a warranty. It may represent the result of Seller's test conditions, and the users must correlate it to actual application requirements.
4. Change In Specifications: Product specifications and descriptions may be changed at any time based on improvements or other reasons. It is Seller's practice to change part numbers when published ratings or features are changed, or when significant engineering changes are made. However, some specifications of the Product may be changed without any notice.
5. Errors And Omissions: The information on Seller's website or in other documentation has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.
6. Export Controls: Buyer shall comply with all applicable laws, regulations and licenses regarding (a) export of the Products or information provided by Seller; (b) sale of Products to forbidden or other proscribed persons or organizations; (c) disclosure to noncitizens of regulated technology or information.

VI. MISCELLANEOUS

1. Waiver: No failure or delay by Seller in exercising any right and no course of dealing between Buyer and Seller shall operate as a waiver of rights by Seller.
2. Assignment: Buyer may not assign its rights hereunder without Seller's written consent.
3. Law: These Terms are governed by Illinois law (without regard to conflict of laws). Federal and state courts in Cook County, Illinois have exclusive jurisdiction for any dispute hereunder.
4. Amendment: These Terms constitute the entire agreement between Buyer and Seller relating to the Products, and no provision may be changed or waived unless in writing signed by the parties.
5. Severability: If any provision hereof is rendered ineffective or invalid, such provision shall not invalidate any other provision.

Certain Precautions on Specifications and Use

1. Suitability for Use. Seller shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in Buyer's application or use of the Product. At Buyer's request, Seller will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases but the following is a nonexhaustive list of applications for which particular attention must be given:
(i) Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this document.
(ii) Energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
(iii) Use in consumer products or any use in significant quantities.
(iv) Systems, machines and equipment that could present a risk to life or property. Please know and observe all prohibitions of use applicable to this product.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.
2. Programmable Products. Seller shall not be responsible for the user's programming of a programmable product, or any consequence thereof.
3. Performance Data. Performance data given in this publication is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Seller's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to Seller's Warranty and Limitations of Liability.
4. Change in Specifications. Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Seller representative at any time to confirm actual specifications of purchased Product.
5. Errors and Omissions. The information in this publication has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors, or omissions.
6. RoHS Compliance. Where indicated, our products currently comply, to the best of our knowledge as of the date of this publication, with the requirements of the European Union's Directive on the Restriction of certain Hazardous Substances ("RoHS"), although the requirements of RoHS do not take effect until July 2006. These requirements may be subject to change. Please consult our website for current information.

Complete "Terms and Conditions of Sale" for product purchase and use are on Omron's website at http://www.components.omron.com - under the "About Us" tab, in the Legal Matters section.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

OMROM

OMRON ELECTRONIC COMPONENTS LLC
55 E. Commerce Drive, Suite B
Schaumburg, IL 60173

847-882-2288

LF1B Series

LED Illumination Units LUMMFF|

IDEC CORPORATION

Features

- Brightness: 62.5 Lumens/Watt
- Low heat generation.
- Less energy usage, longer operation life, smaller mounting space, and no electrical noise.
- 71% reduction of power and CO_{2} emission when compared to 20W fluorescent lamps (LF1B-C/D)
- Thin and slim style fits into compact spaces.
- Two cover colors: clear and white (diffused light)
- Cool white, warm white, yellow and red illumination colors available.
- UL Listed \& IP54 protection against dust and water splash (IEC 60529)

Part No. Development

LF1B- C 3 S - 2 THWW4

LED Module Arrangement
A: 3 LEDs $\times 1$ row
B: 6 LEDs $\times 1$ row
C: 12 LEDs $\times 1$ row
D: 24 LEDs $\times 1$ row

LED Optics Specifications

Illumination Color	Cool White	Warm White	Yellow	
Luminous Intensity (typ.) (Single LED module)	5000 mcd	4500 mcd	2300 mcd	
Color Temperature (typ.)/Dominant Wavelength (typ.)	5500 K	2800 K	590 nm	
Reference Illuminance (typ.) at 500 mm (clear cover)	3 LEDs $\times 1$ row	90 lx	60 lx	20 lx
	6 LEDs $\times 1$ row	170 lx	600 mcd	
	12 LEDs $\times 1$ row	330 lx	20 lx	
	24 LEDs $\times 1$ row	560 lx	200 lx	40 lx

Note: Illumination colors and illuminance may vary. Specifications shown in the above table are typical values and may vary depending upon actual environment.

Performance Specifications

Rated Voltage		24V DC (non-polarized)
Input Current (typ.) (at the rated voltage)	LF1B-A	30 mA
	LF1B-B	60mA
	LF1B-C	120 mA
	LF1B-D	240 mA
Power Consumption (typ.) (at the rated voltage)	LF1B-A	0.8 W
	LF1B-B	1.5W
	LF1B-C	2.9W
	LF1B-D	5.8W
Insulation Resistance		$100 \mathrm{M} \Omega$ minimum $(500 \mathrm{~V}$
Dielectric Strength		1000 V AC, 1 minute (be
Vibration Resistance (damage limits)		Frequency: $\quad 5$ to 55 Hz Amplitude: 0.5 mm
Shock Resistance (damage limits)		$1000 \mathrm{~m} / \mathrm{s}^{2}$
Operating Temperature		-30 to $+55^{\circ} \mathrm{C}$ (no freezin
Operating Humidity		45 to 85\% RH (no conde
Storage Temperature		-35 to $+70^{\circ} \mathrm{C}$ (no freezing)
Operating Atmosphere		No corrosive gas
Life		40000 hours (The total il
Degree of Protection		IP54
Material		End cover, conduit: poly Cover: polycarbonate Wire: US20276T AWG2
Weight (approx.)	LF1B-A	95g
	LF1B-B	125 g
	LF1B-C	165 g
	LF1B-D	255 g

- Do not use the LF1B illumination units in environments subject to corrosive gases, otherwise illuminance may deteriorate.

Dimensions

Type No.	A	B	C
LF1B-A	134	64	123
LF1B-B	210	140	199
LF1B-C	330	260	319
LF1B-D	580	510	569

All dimensions in mm.

Internal Circuit

VEGA

Operating Instructions VEGADIS 62

Document ID: 36469

Indication
and adjustment

Contents

1 About this document
1.1 Function. 4
1.2 Target group 4
1.3 Symbolism used 4
2 For your safety
2.1 Authorised personnel 5
2.2 Appropriate use 5
2.3 Warning about misuse 5
2.4 General safety instructions 5
2.5 CE conformity 6
2.6 Fulfillment of NAMUR recommendations 6
2.7 Environmental instructions 6
3 Product description
3.1 Structure 7
3.2 Principle of operation 8
3.3 Packaging, transport and storage 9
4 Mounting
4.1 General instructions 11
4.2 Instructions for installation 11
5 Connecting to power supply
5.1 Preparing the connection 13
5.2 Connection technology and steps 14
5.3 Wiring plan. 17
5.4 Connection HART standard 17
5.5 Connection HART multidrop 18
5.6 Connection signal conditioning instruments 20
5.7 Switch-on phase. 21
6 Set parameters
6.1 Adjustment system 22
6.2 Modes 23
6.3 Parameter description 24
7 Set up sensors
7.1 Adjust the sensor 35
7.2 Scale the indication 35
7.3 Correct sensor adjustment 37
7.4 PACTware/DTM and PLICSCOM 37
8 Diagnosis and service
8.1 Maintenance 39
8.2 Error messages 39
8.3 Remove interferences. 40
8.4 How to proceed in case of repair 40

9 Dismounting

9.1 Dismounting steps . 42
9.2 Disposal . 42

10 Supplement
10.1 Technical data . 43
10.2 HART communication. 45
10.3 Dimensions . 48

Safety instructions for Ex areas

Please note the Ex-specific safety information for installation and operation in Ex areas. These safety instructions are part of the operating instructions manual and come with the Ex-approved instruments

Editing status: 2012-03-19

1 About this document

1.1 Function

This operating instructions manual provides all the information you need for mounting, connection and setup as well as important instructions for maintenance and fault rectification. Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device.

1.2 Target group

This operating instructions manual is directed to trained qualified personnel. The contents of this manual should be made available to these personnel and put into practice by them.

1.3 Symbolism used

Information, tip, note
This symbol indicates helpful additional information.
Caution: If this warning is ignored, faults or malfunctions can result.
Warning: If this warning is ignored, injury to persons and/or serious damage to the instrument can result.
Danger: If this warning is ignored, serious injury to persons and/or destruction of the instrument can result.

Ex applications

This symbol indicates special instructions for Ex applications.

- List

The dot set in front indicates a list with no implied sequence.
\rightarrow Action
This arrow indicates a single action.

1 Sequence
Numbers set in front indicate successive steps in a procedure.

2 For your safety

2.1 Authorised personnel

All operations described in this operating instructions manual must be carried out only by trained specialist personnel authorised by the plant operator.

During work on and with the device the required personal protective equipment must always be worn.

2.2 Appropriate use

The VEGADIS 62 is an indicating and adjustment unit without external energy for looping into $4 \ldots 20 \mathrm{~mA} / \mathrm{HART}$ circuits.

You can find detailed information on the application range in chapter "Product description".

Operational reliability is ensured only if the instrument is properly used according to the specifications in the operating instructions manual as well as possible supplementary instructions.

2.3 Warning about misuse

Inappropriate or incorrect use of the instrument can give rise to application-specific hazards, e.g. vessel overfill or damage to system components through incorrect mounting or adjustment.

2.4 General safety instructions

This is a state-of-the-art instrument complying with all prevailing regulations and guidelines. The instrument must only be operated in a technically flawless and reliable condition. The operator is responsible for the trouble-free operation of the instrument.

During the entire duration of use, the user is obliged to determine the compliance of the necessary occupational safety measures with the current valid rules and regulations and also take note of new regulations.

The safety instructions in this operating instructions manual, the national installation standards as well as the valid safety regulations and accident prevention rules must be observed by the user.

For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden.

The safety approval markings and safety tips on the device must also be observed.

2.5 CE conformity

The device fulfills the legal requirements of the applicable EC guidelines. By affixing the CE marking, we confirm successful testing of the product.

You can find the conformity certificate in the download section under www.vega.com

2.6 Fulfillment of NAMUR recommendations

The device fulfills the requirements of the applicable NAMUR recommendations.

2.7 Environmental instructions

Protection of the environment is one of our most important duties. That is why we have introduced an environment management system with the goal of continuously improving company environmental protection. The environment management system is certified according to DIN EN ISO 14001

Please help us fulfil this obligation by observing the environmental instructions in this manual:

- Chapter "Packaging, transport and storage"
- Chapter "Disposal"

VECA

3 Product description

3.1 Structure

Constituent parts

Type label

Serial number

Scope of the operating instructions manual

The indicating and adjustment unit VEGADIS 62 consists of a housing with a terminal insert as well as an integrated indicating and adjustment module. Dependent on the order specification, a mounting adapter for wall, carrier rail or tube mounting belongs to the housing.

The type label on the housing contains the most important data for identification and use of the instrument:

Fig. 1: Structure of the type label (example)

Instrument type

2 Product code
3 Voltage supply/Signal output
Protection rating
Ambient temperature
Order number
7 Serial number of the instrument
8 Document ID
With the serial number of the instrument on the type label you have access to the following data on our homepage:

- Article number of the instrument (HTML)
- Delivery date (HTML)
- Order-specific instrument features (HTML)
- Operating instructions at the time of shipment (PDF)
- Order-specific sensor data for an electronics exchange (XML)
- Test certificate "Measuring Accuracy" (PDF)

Go to www.vega.com, "Service" "VEGA Tools" and "serial number search".

This operating instructions manual applies to the following instrument versions:

- Software from 2.00
- Software from 2.10 (with the functions Password and Logout)

Operation The VEGADIS 62 is suitable for operation of all continuously measuring VEGA sensors with HART output＞ 5.0 ：

- Radar and ultrasonic sensors
- Sensors with guided microwave
- Capacitive probes
- Pressure transmitter
- Previous instrument versions (replacement for VEGADIS 12)

The operation of respective sensors from other manufacturers is also possible.

The VEGADIS 62 acts like a HART handheld with limited functions. The following adjustment functions are available:

- Min./Max. adjustment
- zero/span adjustment (live adjustment)
- Damping

Modes
Basic mode: when used in a $4 \ldots 20 \mathrm{~mA}$ signal cable, the VEGADIS 62 works as a pure indicating instrument. It measures the current in the current loop and shows it as digital value as well as via a bargraph. All settings of VEGADIS 62 are carried out manually via the buttons in the front.

Adjustment volume: Indication scaling
HART standard: when used with a $4 \ldots 20 \mathrm{~mA} / \mathrm{HART}$ sensor, the VEGADIS 62 operates as automatic indicating and HART adjustment instrument. The VEGADIS 62 powered via the current loop listens continuously to the HART communication of the control system with the sensor. Changes of unit and/or measuring range are adapted automatically.

The parameter adjustment of the sensor is carried out via HART communication. During the parameter adjustment, the VEGADIS 62 operates as a Secondary Master to the sensor

Adjustment volume: Sensor functions, indication scaling
HART multidrop: The VEGADIS 62 can also be used as indicator for a bus participant on a HART multidrop system. For this purpose, it is looped into the bus and the address of the participant is set in the VEGADIS 62. The instrument reads out the measured values with unit via the HART signal and displays them.

Adjustment volume: Sensor function damping, indication scaling

3.3 Packaging, transport and storage

Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test according to DIN EN 24180.

The packaging of standard instruments consists of environmentriendly, recyclable cardboard. For special versions, PE foam or PE foi s also used. Dispose of the packaging material via specialised recycling companies.

Transport Transport must be carried out under consideration of the notes on the transport packaging. Nonobservance of these instructions can cause damage to the device.

Transport inspection The delivery must be checked for completeness and possible transit damage immediately at receipt. Ascertained transit damage or concealed defects must be appropriately dealt with.

Storage | Up to the time of installation, the packages must be left closed and |
| :--- |
| stored according to the orientation and storage markings on the |
| outside. |
| Unless otherwise indicated, the packages must be stored only under |

Unless otherwise indicated, the packages must be stored only under the following conditions:

- Not in the open
- Dry and dust free
- Not exposed to corrosive media
- Protected against solar radiation
- Avoiding mechanical shock and vibration

Storage and transport temperature

- Storage and transport temperature see chapter "Supplement Technical data - Ambient conditions"
- Relative humidity 20 ... 85%

4 Mounting

4.1 General instructions

Use the recommended cables (see chapter "Connecting to power supply") and tighten the cable gland.

You can give your instrument additional protection against moisture penetration by leading the connection cable downward in front of the cable entry. Rain and condensation water can thus drain off. This applies mainly to outdoor mounting as well as installation in areas where high humidity is expected (e.g. through cleaning processes) or on cooled or heated vessels.

4.2 Instructions for installation

VEGADIS 62 for wall mounting is supplied with a mounting socket.

Fig. 3: VE 62 for wall mounting, bottom view of mounting plate.
1 Drilling dimensions

Carrier rail mounting
VEGADIS 62 for mounting on carrier rail is supplied with a mounting adapter.

Fig. 4: VE 62 for carrier rail mounting
1 Carrier rail adapter
2 Carrier rail

VEGADIS 62 for tube mounting is supplied with a meas. instrument holder and four screws M5 x 12 as mounting accessory. The meas. instrument holder is mounted to the socket of VEGADIS 62.

Fig. 5: VEGADIS 62 for tube mounting

[^27]
5 Connecting to power supply

5.1 Preparing the connection

Safety instructions

Voltage supply

Cable gland $1 / 2$ NPT

Cable screening and grounding

Always keep in mind the following safety instructions:

- Connect only in the complete absence of line voltage
- If voltage surges are expected, install overvoltage arresters

Power supply and current signal are carried on the same two-wire cable. The voltage supply range can differ depending on the sensor.

The data for power supply are specified in chapter "Technical data".
Provide a reliable separation between the supply circuit and the mains circuits according to DIN VDE 0106 part 101.

Keep in mind the following additional factors that influence the operating voltage:

- Output voltage of the power supply unit can be lower under nominal load (with a sensor current of 20.5 mA resp. 22 mA in case of fault message)
- Influence of additional instruments in the circuit (see load values in chapter "Technical data")

Operation of VEGADIS 62 in a HART multidrop system with the signal conditioning instruments VEGAMET 625 or VEGASCAN 693 is not supported.

The instrument is connected with standard two-wire cable without screen. If electromagnetic interference is expected which is above the est values of EN 61326-1 for industrial areas, screened cable should be used.

For instruments with housing and cable gland, use cable with round cross-section. A cable outer diameter of $5 \ldots 9 \mathrm{~mm}$ ($0.2 \ldots 0.35 \mathrm{in}$) ensures the seal effect of the cable gland. If you are using cable with a different diameter, exchange the seal or use a suitable cable gland.

We generally recommend the use of screened cable for HART multidrop mode.

With plastic housing, the NPT cable gland or the Conduit steel tube must be screwed without grease into the threaded insert.

Max. torque for all housings see chapter "Technical data"

If screened cable is necessary, connect the cable screen on both ends o ground potential. In the sensor, the screen must be connected directly to the internal ground terminal. The ground terminal on the outside of the housing must be connected to the potential equalisation (low impedance).

If potential equalisation currents are expected, the connection on the processing side must be made via a ceramic capacitor (e. g. 1 nF , 1500 V). The low frequency potential equalisation currents are thus suppressed, but the protective effect against high frequency interference signals remains.

Warning:

Significant potential differences exist inside galvanization plants as well as on vessels with cathodic corrosion protection. Considerable equalisation currents can flow over the cable screen if the screen is grounded on both ends.
To avoid this in such applications, the cable screen must be connected to ground potential only at one end (in the switching cabinet). The cable screen must not be connected to the internal ground terminal in the sensor and the outer ground terminal on the housing must not be connected to the potential equalisation!

Information:

The metal parts of the instrument (antenna, transmitter, concentric tube, etc.) are conductive connected with the inner and outer ground terminal on the housing. This connection exists either directly metallic or with instruments with external electronics via the screen of the special connection cable.

You can find specifications to the potential connections within the instrument in chapter "Technical data".

5.2 Connection technology and steps

Connection technology The connection of the signal cable is carried out via spring-loaded terminals in the housing.

The indicating and adjustment module is connected via a cable with coupling to the housing.

Connection procedure Proceed as follows:

1 Unscrew the housing cover

2 Remove the indicating and adjustment module by turning it slightly to the left

Fig. 6: Dismounting of the indicating and adjustment module

3 Loosen compression nut of the cable glands
4 Remove approx. 10 cm (4 in) of the signal cable mantle, strip approx. 1 cm (0.4 in) insulation from the ends of the individual wires

5 Insert the cable into the sensor through the cable entry

Fig．7：Connection steps 5 and 6

6 Insert the wire ends into the terminals according to the wiring plan

－Note：

Solid cores as well as flexible cores with cable end sleeves are inserted directly into the terminal openings．In case of flexible cores without end sleeves，press the terminal with a small screwdriver；the terminal opening is freed．When the screwdriver is released，the terminal closes again．

7 Check the hold of the wires in the terminals by lightly pulling on them
8 Connect the screen to the internal ground terminal，connect the outer ground terminal to potential equalisation
9 Attach the indicating and adjustment module again and turn it slightly to the right
10 Tighten the compression nut of the cable glands．The seal ring must completely encircle the cable
11 Screw the housing cover back on
The electrical connection is finished．
－Note：
1 The terminal block is pluggable and can be removed from the electronics．To do this，lift the terminal block with a small screwdriver and pull it out．When inserting the terminal block again，you should hear it snap in．

5.3 Wiring plan

Fig. 8: Wiring plan VEG IS 62
1 To the sensor
2 For power supply
3 Coupling for the connection cable to the indicating and adjustment module

5.4 Connection HART standard

The following illustrations show in a simplified way the use of VEGADIS 62 in conjunction with a HART sensor. The HART communication resistance in the signal cable is always required for a low impedance power supply. It is absolutely necessary to install it between voltage supply and the VEGADIS 62.

- Note:
. If the instrument is powered via a VEGAMET signal conditioning instrument, then the communication resistor is already included in the signal conditioning instrument. A communication resistor in the signal cable must not be installed.

Overview

Fig. 9: VEGADIS 62 in conjunction with an individual sensor

Sensor

 VEGADIS 62HART resistance > 150Ω (necessary with low impedance power supply) 4 Voltage supply/Processing

Connection with low impedance power supply

Fig. 10: Connection of VEGADIS 62 with low impedance power supply
1 Sensor
2 VEGADIS 62
3 HART resistor > 150Ω
4 Voltage supply/Processing

5.5 Connection HART multidrop

The following illustrations show in a simplified way the use of VEGADIS 62 in conjunction with a HART sensor. The HART communication resistance in the signal cable is always required for a low impedance power supply. It is absolutely necessary to install it between voltage supply and the VEGADIS 62.

1
Note:
If the instrument is powered via a VEGAMET signal conditioning instrument, then the communication resistor is already included in the signal conditioning instrument. A communication resistor in the signal cable must not be installed.

5 Connecting to power supply

Overview

Fig. 11: Installation example with one VEGADIS 62 per sensor in a Multidrop system

Sensor
VE
HART resistance > 150Ω (necessary with low impedance power supply) Voltage supply/Processing

Fig. 12: Installation example with one VEGADIS 62 for several sensors in a Multidrop system
1 Sensor
36469-EN-120329
3 HART resistance > 150Ω (necessary with low impedance power supply) Voltage supply/Processing

Fig. 13: Connection of VEGADIS 62 with low impedance power supply
1 Sensor
2 VEGADIS 62
3 HART resistor > 150Ω
4 Voltage supply/Processing

5.6 Connection signal conditioning instruments

The following illustrations show the simplified connection of VEGADIS 62 to a signal conditioning instrument VEGAMET or a four-wire sensor with active 4 ... 20 mA output.

Fig. 14: Connection of the VEG 62 as external indication to a signal conditioning instrument or a four-wire sensor
1 Sensor
2 Signal conditioning instrument
3 VEGADIS 62

Hence terminals 1 and 2 on the VEGADIS 62 must be closed with a bridge.

(3)

Fig. 15: Bridge on terminals 1 and 2 on the VEG IS 62
1 Bridge
2 VEGADIS 62
3 Signal conditioning instrument

5.7 Switch-on phase

During the start-up process, the VEGADIS 62 tries automatically to get in contact with the connected sensor via HART and to accept the settings (unit, adjustment and damping) of this sensor. During connection, the status line displays "CONNECT HART".

If a HART sensor is identified, then the HART symbol is displayed. The VEGADIS 62 switches to HART mode and and starts operation with the settings accepted from the sensor.

Note:
This procedure is repeated whenever the voltage supply is connected.
If during the start process an individual key is pressure or if the instrument has not identified within approx. 70 seconds a HART sensor, then the digital indication switches to basic mode and starts operation with the default settings.

If the HART address is modified by the control system during operation, a new connection is established, however, the sensor must answer immediately in order for the connection to be set up.

6 Set parameters

6．1 Adjustment system

Fig．16：Indicating and adjustment elements
1 Status information（HART mode，unit lock，warning or error information） 2 Unit and information line
3 Digital measured value indication
4 Bar graph for quasianalogue measured value indication
5 Adjustment keys

You adjust VEGADIS 62 via the four front keys．The individual menu items are displayed on the LC display．The individual keys have the following functions：
－［ \uparrow key：
－One menu higher in the menu system
－Increase actual value（increment）
－［E ］key：
－interrupt input
－Return to higher－ranking menu
－［OK］key：
－Move to the menu overview
－Confirm selected menu
－Edit parameter
－Save value
－［ \downarrow ］key：
－One menu item downward in the menu system
－Reduce actual value（decrement）
Approx． 10 minutes after the last pressing of a key，an automatic reset to measured value indication is triggered．Any values not confirmed with［OK］will not be saved．

Start parameter adjustment

HART standard

By pushng the [OK] key, the parameter adjustment mode will be started. The parameter adjustment is carried out via an adjustment menu. The same menu window is opened from which the parameter adjustment mode is quit during the last parameter adjustment. Single points in the menu can be selected with the [\uparrow] and [\downarrow] keys. The branching to the next submenu is carried out by pushing the [OK] key again.

In a submenu you change with [OK] to the editing function, this means the displayed settings can be changed. If the indication is in the editing mode, then the edited value flashes. Editing is carried out with the [\uparrow] and $[\downarrow]$ keys.

In the editing mode, you jump to the range end when you hold the [\uparrow] or [\downarrow] key by pushing [ESC]. by pushing [OK] you jump to the range start. When holding the [\uparrow] keyand by pushing the [\downarrow] key (and vice versa), then the value zero is adjusted, When increasing a value at the end of the adjustment range, you jump to the range start and vice versa.

The editing function and be quit with [E] (without accepting the modifications) and with [OK] (accepting the modifications).

6.2 Modes

In the following cases, the VEGADIS 62 goes automatically to basic mode:

- If it does not find a HART sensor within approx. 70 s after switching on
- If a key was pressed in the switching on phase

In basic mode, it works exclusively as an indicating instrument on the $4 \ldots 20 \mathrm{~mA}$ cable, the HART symbol is not displayed.

The VEGADIS 62 goes automatically to the mode HART standard when a functioning HART communication to the sensor was established

The displayed measured value is calculated from the loop current and the adjustment data of the sensor.

During operation, the VEGADIS 62 monitors the current loop constantly for a HART communication between control system and sensor. If the unit changes or adjustments of the connected sensor are carried out by the control system, the unit and the corresponding indicating range are automatically adapted in VEGADIS 62. The prerequisite, however, is that the unit set in the sensor must be stored in VEGADIS 62.

The VEGADIS 62 also allows the measuring range and calibration of the connected HART sensor to be modified. For this, no additional instruments or tools are necessary. Further changes to the configuration of the sensor cannot be carried out.

HART multidrop

Measurement／Unit

Selection of the unit for the measuring range adjustment of the connected transmitter ${ }^{1}$ ）When opening this menu item，first of all the basic unit of the connected sensor is displayed．
－Distance： $\mathrm{m}, \mathrm{cm}, \mathrm{mm}$ ， ft ，in
${ }^{1)}$ Is not available with HART multidrop．

- Pressure: bar, mbar, PSI, hPa, kPa, MPa, mmH2O, mH2O, inHg
- Temperature: ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}, \mathrm{K}$
- Electrical variables: V, mA, Ohm
- User-specific unit: USER

The previously listed units can be initially edited. A storing in the VEGADIS 62 is however only possible if the unit is supported by the sensor.

Note:

A unit adjusted in the sensor, for example, via PACTware/DTM will not be modified by the unit adjusted here.

If a unit is selected which is not supported by the sensor, the message "HART Error 7" is displayed. With "ESC" the setting can be interrupted and the message reset.

Due to the selection of the unit " $U \quad$ " the HART communication to the sensor is switched off. Hence no measuring range settings are possible. The unit "USER" can be individually programmed by the user in the menu "Configuration". After a reset to a unit supported by the sensor, the HART communication is again started.

Measurement/Measuring range begin

Adjustment of the measuring range initial value of the connected sensor (for example 0 bar at a measuring range of $-1 \ldots 5$ bar) ${ }^{2}$ The measuring range beginning point is initially adopted by the sensor when starting with connected sensor. Thereafter the measuring range beginning point of the sensor can be changed.

This is a min. adjustment to which 0% current output is assigned. The value entered here does not change the measuring range endpoint.

If the unit is set to "USER", then this menu item is used for free scaling of the indication.

Adjustment range: -9999 ... 99999

[^28]Measurement／Measu－ ring range end

Adjustment of the measuring range final value of the connected transmitter（for example 4 bar at a measuring range of $-1 \ldots 5$ bar）3）The measuring range endpoint is initially adopted by the sensor when starting with connected sensor．Thereafter，the measuring range endpoint of the sensor can be changed

This is a max．adjustment to which 100 \％current output is assigned． The value entered here does not change the measuring range beginning point．

If the unit is set to＂$U \quad$＂，then this menu item is used for free scaling of the indication．

Adjustment range：－9999 ．．． 99999

Adjustment of the decimal point for the measuring range of the connected transmitter ${ }^{4}$

If the unit is set to＂$U E R$＂，then this menu item is used for free scaling of the indication．

Adjustment range： $0,0.0,0.00,0.000$

In this menu item，the actual measured value is accepted as span setting for the sensor ${ }^{5}$ ）

This is a span adjustment to which 100% of the current output are assigned．The value accepted here，does not change the zero point．

3）Is not available with HART multidrop．
4）Is not available with HART multidrop．
5）Is not available with HART multidrop．

Measurement/Live adjustment zero point

In this menu item, the actual measured value is accepted as min. adjustment for the sensor ${ }^{6}$)

This is a zero adjustment to which 0% of the current output are assigned. The value accepted hier, shifts the measuring range end! The difference between measuring range begin and end however remains.

Measurement/Damping
In this menu item, the integration time for damping the measured value is entered.

Adjustment range: $0.0 \ldots 999$ s

Measurement/Address

Indication/Unit

36469-EN-120329

Adjustment of the HART address of the assigned transmitter in Multidrop mode. With standard current loop operation, this address must always be set to 0

Adjustment range: $0 \ldots 15$

Adjustment of the unit for the digital indication. First of all the unit selected in the menu "Measurement", for example m appears. Furthermore the units from the same unit group such as e.g. mm, cm, m etc. are available. The measured values are automatically converted into the selected unit.

If \% is selected as unit, then the VEGADIS 62 converts the actual loop current into a \% value relating to the max. loop current. If mA is selected as a unit, then the actual loop current is displayed in mA.
6) Is not available with HART multidrop.

The units \％and mA are not available in multidrop operation because in this case the loop current is fixed．

Adjustment range：mbar，bar，PSI，hPa，kPa，MPa，mmH2O，mH2O， $\mathrm{mHg}, \mathrm{mm}, \mathrm{cm}, \mathrm{m}, \mathrm{in}, \mathrm{ft}, \%,{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}, \mathrm{K}, \mathrm{V}, \mathrm{mA}$ ，Ohm，USER

Indication／Unit locking

DurcBy activating the unit locking，the set indication unit is locked against changes by the sensors，the display shows the sign＂GESP／ LoC＂．Hence it is possible to adjust for the VEGADIS 62 another indicating unit than the sensor unit，e．g．\％．It will also not be overwritten in case of a restart of the sensor．Adjustment changes on the sensor however are automatically converted．The unit locking functions onyl if the units of measuring range and indication come from the same unit group．
When connecting a transmitter and its configuration via HART with a unit from another unit group，then the unit locking will be deactivated． For this purpose，the indicating unit is adjusted according to the configured measuring range unit．

Adjustment range：
－nGESP／UnLoC
－GESP／LoC

Indication／Indication de－ cimal point

Adjustment of the decimal point for the indication area of the digital indication

Adjustment range：0，0．0，0．00， 0.000

Indication／Digital filter Activation of the digital filter 1．order．
Adjustment range： $0 \ldots 10$

ndication/Alarm

From this menu item you jump to the alarm configuration by pushing OK.

Switching on or switching off the alarm function. If an adjusted alarm limit is exceeded or decreased, the warning symbol is displayed in the indication and the measured value begins to flash.

Adjustment range: Off/On

Indication/Min. alarm

Setting the value that triggers the alarm function if it is underrun.
Adjustment range: Initial value of the indicating range up to the adjusted value of the max. alarm

Indication/Max. alarm
Setting the value that triggers the alarm function if it is exceeded.
Adjustment range: adjusted value of the min. alarm up to the final value of the indicating range.

Indication／Min．／Max．sto－ rage pushing＂［OK］＂．

Indication／Delete min．／Function to delete the memory．By pushing the OK key twice，the max． memories will be deleted．

Indication／Min．value，

 max．valueActivation of the min．／max．value indication．If the min．／max．value indication is switched on，the indication switches over cyclically between the actual measured value（indication period 5 s ），the min． value and the max．value（indication period each 2 s ）．With the presentation of the max．values the displayed unit is replaced by the min．or max．value．

Adjustment range：On，Off

Language setting
Adjustment range：dEU（German），EnG（English）

VEGA

Configuration/Contrast Adjustment of the display contrast

Adjustment range: $0 \ldots 4$

Configuration/Reset

With a reset, all settings of the digital indication will be reset to the default values. For activating the reset, the "OK" key must be pushed once. After pushing the " $O K^{\prime}$ " key for a second time, the indication will be completely faded out and the reset is carried out. The VEGADIS 62 carries out a restart, starts again the HART communication and passes over to the measured value indication.

The following table shows the default values:

Menu section	Menu item	Default value
Measurement	Unit	(if no HART adjustment was carried out)
	Measuring range begin	4.000
	Measuring range end	20.000
	Measuring range decimal point	0.000
	Damping	2
	Address	0
Indication	Unit	mA
	Unit locking	nGESP

6 Set parameters

Menu section	Menu item	Default value
	Indication range decimal point	0.000
	Filter	0
	Alarm	－
	Alarm On／Off	Off
	Min．alarm	4.000
	Max．alarm	20.000
	Min．／Max．value memory	－
	Delete min．／max．	dEL
	Min．／Max．On／Off	Off
Configuration	Language	EnG
	Contrast	2
	Reset	－
	USER unit	USER
	Min．failure mes－ sage	3.6
	Max．failure mes－ sage	21.0

Configuration／USER unit A 6－digit user unit can be individually programmed by the user．An alphanumerical character set is available．

By pushing the［OK］key，the first position is selected，this position begins to flash．With the arrow keys the requested character can be selected．By pushing the［OK］key again，the character is confirmed and the next position is selected．

Configuration／Min．failu－ re message

Setting the current value that triggers the min．failure message when it is reached or underrun．The min．failure message is shown in the display with 5 underlines（ \qquad ）and the message＂AUSMIN＂（or ＂OUTMIN＂）．

Adjustment range： 3.5 ．．． 3.9

Configuration/Max. failure message

Setting the current value that triggers the max. failure message when it is reached or exceeded. The max. failure message is shown in the display with 5 overlines $\left(^{-\cdots--}\right.$) and the message "AUSMAX" (or "OUTMAX").

Adjustment range: 20.1 ... 21.5

Configuration/Firmware The number of the firmware used is displayed.

Configuration/Password This menu item is available from software 2.10.
The menu area "Measurement" as well as the function "Reset" are protected by a password. For the access, a login by entering the password is required. The login is displayed if you try to use one of the protected functions. All functions are accessible after a successful login.

The logoff is carried out in the menu item "Logoff" or automatically after 3 minutes without user activity.

The default setting is: 123456
The password has max. 6 characters and can be modified in the menu item "Password". For this purpose, the actual password is entered and confirmed with "OK" until the string "******" appears. With "OK" the entered password is edited again and can now be modified.

The master password AWI001 allows access if the password setting is no longer known.

6 Set parameters

Configuration/Logout

This menu item is available from software 2.10. It enables the early logout after entering the password.

7 Set up sensors

7.1 Adjust the sensor

The min./max. adjustment of the connected sensor is carried out via the menu "Measurement", menu items "Unit", "Measuring range begin", "Measuring range end" and if necessary "Measuring range decimal point". The entered values are taken over when storing into the sensor.

Note:
. It is recommended to note the transmitted data for the plant documentation or a possible later correction of the adjustment.

7.2 Scale the indication

After the min./max. adjustment of the sensor, the actual measured value is displayed on the VEGADIS 62. The original sensor value, for example, in "bar" with pressure transmitters or in " m " distance with radar sensors is converted into the unit set in the menu "Measurement", menu item "Unit" and is displayed digitally. First of all the $4 \ldots 20 \mathrm{~mA}$ current is measured and shown quasianalogue on the bargraph. This value takes the min./max. adjustment into consideration.

The VEGADIS 62 allows via the unit "USER" a free, applicationspecific indication scaling. The VEGADIS 62 acts here as a pure indicating instrument without HART communication with the connected sensor.

For the indication scaling proceed as follows:
1 Set in the menu "Configuration", menu item "USER unit" the requested unit with the available characters.

2 Select in the menu "Measurement", menu item "Unit" the unit "USER".

3 Enter in the menu "Measurement", menu item "MB begin" the initial value of the requested scaling.

4 Enter in the menu "Measurement", menu end "MB begin" the final value of the requested scaling.

5 Enter in the menu "Measurement", menu item "MB format" the requested position of the decimal point.

The display shows in the measured value indication the $4 \ldots 20 \mathrm{~mA}$ current in the adjusted scaling as digital value or quasianalogue in the set unit.

Note:

The menu items used for the adjustment are also used for entering the scaling data. We thus recommend writing down the scaling data for plant documentation or for a possible later correction of the adjustment.

7.3 Correct sensor adjustment

For a correction of the sensor adjustment, the HART communication must be again activated. This is carried out in the menu "Measurement", menu item "Unit". Enter here the unit in which the adjustment was carried out.

The HART communication is now started again. The VEGADIS 62 is again Secondary Master for the sensor and loads the adjustment data from the sensor.

Then enter the modified values for the "Measuring range begin" and Measuring range end"

The entered value for the measuring range begin and end are transferred to the sensor when saving.

Proceed as previously described for a new indication scaling.

7.4 PACTware/DTM and PLICSCOM

With an existing HART connection from VEGADIS 62 to the sensor, adjustment changes in the sensor can also be carried out via other adjustment systems such as PACTware/DTM or PLICSCOM. This does not cause conflicts, but the changes are not updated automatically in VEGADIS 62. For updating, a HART connection is required. To do this, the signal circuit must be interrupted and then re-connected.

As an alternative, it is possible to set the unit in the menu
"Measurement" briefly to "USER". If it is then again reset to a unit supported by the sensor such as for example "bar" or "m", the changes carried out in the meantime via other adjustment systems are updated in the VEGADIS 62.

8 Diagnosis and service

8.1 Maintenance

If the device is used correctly, no maintenance is required in normal operation.

8.2 Error messages

HART communication errors are signalled with numerical codes 1-7. An error message is sent if a transaction was not successful after multiple attempts.

An error message is only displayed if an error occurs due to a transmitted command, this means only if the error is caused by an adjustment of the user. Errors in the communication between control system and sensor are detected but not displayed.

The measured value line shows "Error", the status line "HART n" whereby " n " represents the numerical error code. The error message is displayed up to the next key pressing.

The following table shows the error codes and gives information on the ailure reason and removal.

Error code	Description	Cause
1	Transmitter does not answer	Communication error Parity, checksum, package length faulty during recep- tion Transmitter signals receipt error
2	Command not implemented	Command is not supported by the transmitter.
3	Range error	- Value not within the range supported by the sensor Requested measuring unit is not supported
4	Error of the transmitter is not specified in detail	Sensor signals an error in the status byte which was not itemized.
5	Time-out with bus access	Bus permanently occupied
6	Not supported measuring unit	
7		Ner

8．3 Remove interferences

Reaction when malfunc－ tions occur

Check the 4 ．．． 20 mA signal

The operator of the system is responsible for taking suitable measures to rectify faults．

Connect a handmultimeter in the suitable measuring range according to the wiring plan．The following table describes possible errors in the current signal and helps to remove them：

Error	Cause	Rectification
4 ．．． 20 mA signal not stable	－Level fluctua－ tions	－Set damping according to the in－ strument via the indicating and adjustment module or PACTware／ DTM
4 ．．． 20 mA signal missing	Electrical con－ nection faulty	－Check connection according to chapter＂Connection steps＂and if necessary，correct according to chapter＂Wiring plan＂．
	－Voltage supply missing	－Check cables for breaks；repair if necessary
	－Operating vol－ tage too low or load resis－ tance too high	－Check，adapt if necessary
Current signal greater than 22 mA or less than 3.6 mA	－Electronics module in the sensor defecti－ ve	－Exchange the instrument or send it in for repair

Reaction after fault rec－ tification

24 hour service hotline

Depending on the reason for the fault and the measures taken，the steps described in chapter＂Setup＂must be carried out again or must be checked for plausibility and completeness．

Should these measures not be successful，please call in urgent cases the VEGA service hotline under the phone no．＋49 1805858550.

The hotline is also available outside the normal working hours on seven days a week around the clock．

Since we offer this service worldwide，the support is in the English language．The service itself is free of charge，the only costs involved are the normal call charges．

8．4 How to proceed in case of repair

If a repair is necessary，please proceed as follows：

You can download a return form ($23 \mathrm{~KB} \mathrm{)} \mathrm{from} \mathrm{our} \mathrm{homepage} \mathrm{at} \mathrm{www}$. vega.com under: "Downloads - Forms and certificates - Repair form".

By doing this you help us carry out the repair quickly and without having to call back for needed information.

- Print and fill out one form per instrument
- Clean the instrument and pack it damage-proof
- Attach the completed form and, if need be, also a safety data sheet outside on the packaging
- Please ask the agency serving you for the address of your return shipment. You can find the competent agency on our website www.vega.com.

9 Dismounting

9.1 Dismounting steps

Warning:
Before dismounting, be aware of dangerous process conditions such as e.g. pressure in the vessel, high temperatures, corrosive or toxic products etc.

Take note of chapters "Mounting" and "Connecting to power supply" and carry out the listed steps in reverse order.

9.2 Disposal

The instrument consists of materials which can be recycled by specialised recycling companies. We use recyclable materials and have designed the electronics to be easily separable.

WEEE directive 2002/96/EG
This instrument is not subject to the WEEE directive 2002/96/EG and the respective national laws. Pass the instrument directly on to a specialised recycling company and do not use the municipal collecting points. These may be used only for privately used products according to the WEEE directive.

Correct disposal avoids negative effects on humans and the environmont and ensures recycling of useful raw materials.

Materials: see chapter "Technical data"
If you have no way to dispose of the old instrument properly, please contact us concerning return and disposal.

VEGA

10 Supplement

10.1 Technical data

General data

316 L corresponds to 1.4404 or 1.4435 , 316 Ti corresponds to 1.4571
Materials

- Housing plastic PBT, Alu die-casting, 316L
- Inspection window in housing cover for Polycarbonate (UL-746-C listed) indicating and adjustment module
- Ground terminal 316Ti/316L

Weight $\quad 0.35 \mathrm{~kg}$ (0.772 lbs)

Supply circuit

Voltage supply and data transmission via the signal circuit
Voltage loss

- at 4 mA approx. 3 V
- at 20 mA approx. 2 V

Current range $3.5 \ldots 22.5 \mathrm{~mA}^{7}$
Current increase with command/enquiry of $\leq 500 \mu \mathrm{~A}$ for approximately 20 ms , decay after ethe VEGADIS 62 to the sensor function
Overcurrent resistance 100 mA
Interpolation protection available, max. current 100 mA

Current measurement	
Measuring range loop current	$3.5 \ldots 22.5 \mathrm{~mA}^{8)}$
Deviation ${ }^{9}$ ($\pm 0.05 \%$ of the span
Temperature coefficient ${ }^{10)}$	$\pm 0.1 \%$ of the span $/ 10 \mathrm{~K}$
Interval	250 ms

Indicating and adjustment module

Display

- Principle LCD
- Measured value presentation

7 segments, 5 -digit, height of digits 9 mm (0.354 in), indication range -99999 ... 99999

- Bar graph

20 segments

- Info line

14 segments, 6-digit, height of digits 5.5 mm (0.217 in)
${ }^{8)}$ For measured values outside the measuring range, an instructions is displayed instead of the measured value.
9) with reference temperature $20^{\circ} \mathrm{C}$
10) with reference temperature $20^{\circ} \mathrm{C}$

Adjustment elements	4 keys
Protection rating	
- unassembled	IP 20
- mounted into VEGADIS 62 without cover	IP 40
Materials	
- Housing	ABS
- Inspection window	Polyester foil
Ambient conditions	
Ambient temperature	$-20 \ldots+70{ }^{\circ} \mathrm{C}\left(-4 \ldots+158{ }^{\circ} \mathrm{F}\right)$
Storage and transport temperature	$-40 \ldots+80^{\circ} \mathrm{C}\left(-40 \ldots+176{ }^{\circ} \mathrm{F}\right)$
Electromechanical data	
Cable gland	$2 \times$ cable entry M20 x 1.5 (cable: $\varnothing 5 \ldots 9 \mathrm{~mm}$)
Spring-loaded terminals for wire cross-section	
- Massive wire, cord	$0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (AWG $24 \ldots$... 4)
- Stranded wire with end sleeve	$0.2 \ldots 1.5 \mathrm{~mm}^{2}$ (AWG $24 \ldots 16$)
Electrical protective measures	
Protection rating	
- Housing plastic	IP 66/IP 67
- Housing Aluminium, stainless steel	IP 66/IP 68 (0.2 bar)
Overvoltage category	III
Protection class	II

10.2 HART communication

The HART protocol operates with the technology of the frequency shift keying (FSK = frequency shift keying) based on the data communication standard Bell 202. The digital signal is generated out of the frequencies 1200 and 2200 Hz representing each the bit information 1 and 0 . Sinus curves with these frequencies are superimposed to the direct current in the wire pair of the field device. The average value of the superimposed signal is zero. Hence the $4 \ldots 20 \mathrm{~mA}$ signal is not influenced by the digital data transmission.

Commands when transmitting

During transmission, only the long address format is used which is supported by all sensors as of HART revision 5.

Command no.	Command name	Description
0	Read UID	For determination of the UID from the HART address
1	Read primary variable	For reading out the measured value
15	Read output information	To update the scaling of the display after ZERO or SPAN
34	Write damping value	-
35	Write range values	Adjustment of the transmitter scaling
36	Set upper range value	Max. adjustment/SPAN
37	Set lower range value	Min. adjustment/ZERO
44	Write PV units	Adjustment of the transmitter unit

Command during reception

Only messages are received the return address of which correspond with adjusted polling address or the determined UID.

Command no.	Command name	Description
1	Write polling adress	HART address modified by the control room is accepted by the display
6	Read current \& 4 vars	For checking the set measuring unit
15	Read output information	Accept transmitter scaling
34	Write damping value	Setting transmitter damping by control room
35	Write range values	Transmitter scaling by control room
36	Set upper range value	Max. adjustment/SPAN through control system After receipt, the new scaling is read out with command 15
VEGADIS 62		45

10 Supplement

Command no.	Command name	Description
37	Set lower range value	Min. adjustment/ZERO through control system After receipt, the new scaling is read out with command 15
44	Write PV units	Unit through control system After receipt, the new scaling is read out with command 15
156	Service command	Control calibration, parameter adjustment and function test

Hart codes of the supported units

Unit	HART code
mbar	8
bar	7
hPa	174
kPa	12
MPa	237
PSI	6
inHg	2
mH 2 O	171
mmH 2 O	4
mm	49
cm	48
m	45
in	47
ft	44
${ }^{\circ} \mathrm{C}$	32
${ }^{\circ} \mathrm{K}$	33
K	35
mV	36
V	58
Ohm	37
mA	39
$\%$	

10 Supplement

10.3 Dimensions

VEGADIS 62 housing

Fig. 17: VE 62 housing versions
1 Plastic housing
2 Stainless steel housing - precision casting
Stainless steel housing, electropolished
Aluminium housing

$$
48 \quad \text { VEGADIS } 62
$$

Mounting adapter VEGADIS 62

Fig. 18: Mounting adapter VEGADIS 62
1 Mounting plate for wall mounting
2 Clip for carrier rail mounting
3 Strap for tube mounting

10．4 Industrial property rights

VEGA product lines are global protected by industrial property rights． Further information see http：／／www．vega．com．
Only in U．S．A．：Further information see patent label at the sensor housing．

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte．

Nähere Informationen unter http：／／www．vega．com．
Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle．
Pour plus d＇informations，on pourra se référer au site http：／／www．vega． com．

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial．
Para mayor información revise la pagina web http：／／www．vega．com．
Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность．
Дальнейшую информацию смотрите на сайте http：／／www．vega．com．
VEGA系列产品在全球享有知识产权保护。进一步信息请参见网站＜http：／／www．vega．com＞。

10．5 Trademark

All the brands as well as trade and company names used are property of their lawful proprietor／originator．

VEーA

INDEX

A

Adjustment 35
Adjustment correction 37
Alarm configuration 29
Application area 8

C

Cable entry 13
Check signal 40
Connection cable 13
Connection procedure 14
Connection technology 14
Contrast 31

D

Damping 27
Decimal point indication 28
Digital filter display 28
Disposal 42

E

Error messages 39

F

Failure notice 32-33
Firmware 33

G

Grounding 13

H

HART address 27

I
Indication scaling 35
L
Language 30
Live adjustment span 26
Live adjustment zero point 27
Logout 34

36469-EN-120329
M
Measuring range begin 25
Measuring range decimal point 26
Measuring range end 26
Min./max. memory 30

Modes 9

- Basic mode 23
- HART multidrop 24
- HART standard 23

Moisture 11
Mounting types

- Carrier rail mounting 11
- Tube mounting 12
- Wall mounting 11

0

Operation 8

P
Password 33
Potential equalisation 14

R

Recycling 42
Repair 40
Reset 31

S

Service hotline 40
Shielding 13

T

Type label 7
U
Unit 24
Unit digital indication 27
Unit locking 28
USER unit 32

V

Voltage supply 13
W
WEEE directive 42

Printing date:

VEGA Grieshaber KG
Am Hohenstein 113
77761 Schiltach
Germany
Phone +49 7836 50-0
Fax +49 7836 50-201
E-mail: info.de@vega.com
www.vega.com

All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing.
© VEGA Grieshaber KG, Schiltach/Germany 2012

Process pressure

Overview 170
VEGABAR series 10 172
VEGABAR series 50 176
Accessory 186

VEGABAR

Level and pressure measurement

Measuring principle

The pressure measuring cell converting the pressure into an electrical signal is the heart of the pressure transmitter. This pressure-dependent signal is converted by the integrated electronics into a standardised output signal. Different measuring cells are used to detect the pressure. The ceramic cells characterise by an excellent long-term stability and high overload resistance. The metal METEC® measuring cell enables fully welded versions and covers even higher measuring ranges.

VEGABAR series 10

Pressure measurement in gases and liquids

The pressure transmitters are designed for pressure measurements of liquids and gases in all areas of industrial measurement technology. The available measuring ranges are suitable for detection of absolute pressure, gauge pressure and vacuum in the range from -1 $\ldots+1000$ bar. The focus however, are smaller process fittings of $1 / 2^{\prime \prime}$ and $1^{\prime \prime}$.

VEGABAR series 50

For all industries

This instrument series is developed for all applications of the industrial measurement technique. The VEGABAR series 50 can be used universally for the measurement of gases, vapours and liquids.
The pressure transmitter is suitalbe for special as well as standard applications. the setup remains always the same. The VEGABAR series 50 offers maximum reliability and safety. It can be used in all industries.

Overview - VEGABAR series 10

	VEGABAR 14	VEGABAR 17
Measuring cell	CERTEC ${ }^{\text {® }}$	Piezoresistive/thin film strain gauge
Measuring range	$\begin{aligned} & -1 \ldots+60 \mathrm{bar} \\ & (-100 \ldots+6000 \mathrm{kPa}) \end{aligned}$	$\begin{aligned} & -1 \ldots+1000 \mathrm{bar} \\ & (-100 \ldots+100000 \mathrm{kPa}) \end{aligned}$
Deviation in characteristics	0.3 \%	0.5 \%
Process temperature	$-40 \ldots+100^{\circ} \mathrm{C}$	$-40 \ldots+150^{\circ} \mathrm{C}$
Process fitting	Thread from $\mathrm{G}^{1} 2,1 / 2 \mathrm{NPT}$	Thread from $\mathrm{G}^{1} 2,1 / 2 \mathrm{NPT}$

Overview - VEGABAR series 50

VEGABAR 51

Measuring cell	Chemical seal system
Measuring range	$-1 \ldots+400 \mathrm{bar}$
	$(-100 \ldots+40000 \mathrm{kPa})$
Deviation in characteristics	0.2%
Process temperature	$-40 \ldots+400^{\circ} \mathrm{C}$
Process fitting	Flanges from DN $25,1 "$

VEGABAR 54

Measuring cell	MINI-CERTEC ${ }^{\oplus}$
Measuring range	$-1 \ldots+60 \mathrm{bar}$
	$(-100 \ldots+6000 \mathrm{kPa})$
Deviation in characteristics	$0.2 \% ; 0.1 \%$
Process temperature	$-40 \ldots+120^{\circ} \mathrm{C}$
Process fitting	Thread from $\mathrm{G} 1 / 2$, flanges from DN $25,1 "$

VEGABAR 52

CERTEC ${ }^{\circledR}$
$-1 \ldots+60$ bar
$(-100 \ldots+6000 \mathrm{kPa})$
0.2 \%; 0.1 \%; 0.075 \%
$-40 \ldots+150^{\circ} \mathrm{C}$
Flanges from DN 25, 1½", hygienic fittings

VEGABAR 53

Piezoresistive/thin film strain gauge
$-1 \ldots+1000$ bar
$(-100 \ldots+100000 \mathrm{kPa})$
0.2 \%; 0.1 \%: 0.075 \%
$-40 \ldots+150^{\circ} \mathrm{C}$
Flanges from DN 40, hygienic fittings

VEGABAR 52

Pressure transmitter with CERTEC ${ }^{\circledR}$ measuring cell

Application area

The VEGABAR 52 pressure transmitter can be used universally for measurement of gases, vapours and liquids. Also substances such as sand can be easily measured through the abrasion-resistant ceramic measuring cell. The VEGABAR 52 offers maximum reliability and safety and can be used in all industries.

Advantages

- High plant availability by maximum overload and vacuum resistance of the ceramic measuring cell
- Measurement down to the last drop through smallest measuring ranges with high reliability
- Low maintenance costs through wear-free ceramic measuring cell

Technical data

Measuring cell:
Measuring range:
Process fitting:

Process temperature:
Deviation in characteristics:
SIL qualification:

```
CERTEC }\mp@subsup{}{}{(1)
-1 \ldots.+60 bar (-100 \ldots.+6000 kPa)
thread from G1⁄2, 1/2 NPT
flanges from DN 25, 11⁄2"
hygienic fittings
-40 .. +150 %}\textrm{C
0.2 %; 0.1 %; 0.075 %
up to SIL2
```


Cable length
per 100 mm cable of PUR

Application area

The use of a valve allows the simple installation and setup of the pressure transmitter.

Advantages

- Simple mounting and dismounting of the pressure transmitter
- Ensures the simple sensor calibration without process interruption

(3)

Measuring instrument holder for wall/tube mounting

For mounting of pressure transmitters
The measuring instrument holder is used for mounting of pressure transmitters of VEGABAR series 50 as well as suspension pressure transmitters VEGAWELL 52.
The adaptation to different instrument diameters is enabled via an attached reduction piece.
The materials used are 316L and 304.

Welded sleeve VEGABAR 14

Welded sleeve VEGABAR 17

Welded sleeve VEGABAR 52

You will find further welded sleeves and welded sockets in chapter "Accessory".

Welded sleeve VEGABAR 53

You will find further welded sleeves and welded sockets in chapter "Accessory".

Welded sleeve VEGABAR 54

You will find further welded sleeves and welded sockets in chapter "Accessory".

Welded sleeve VEGABAR 55

You will find further welded sleeves and welded sockets in chapter "Accessory".

Operating Instructions VEGABOX 02

Contents

1 About this document

1.1 Function 4
1.2 Target group 4
1.3 Symbolism used 4
2 For your safety
2.1 Authorised personnel 5
2.2 Appropriate use 5
2.3 Warning about misuse 5
2.4 General safety instructions 5
2.5 Safety instructions for Ex areas 5
2.6 Environmental instructions 5
3 Product description
3.1 Configuration 7
3.2 Principle of operation 7
3.3 Storage and transport 8
4 Mounting
4.1 General instructions 9
4.2 Mounting instructions 9
5 Connecting to power supply
5.1 Preparing the connection 10
5.2 Connection procedure 11
5.3 Wiring plan 12
6 Set up
6.1 Setup steps, pressure transmitter 15
6.2 Setup steps, temperature transmitter. 15
7 Maintenance and fault rectification
7.1 Maintenance 16
7.2 Instrument repair 16
8 Dismounting
8.1 Dismounting steps 17
8.2 Disposal 17
9 Supplement
9.1 Technical data. 18
9.2 Dimensions 20
9.3 Industrial property rights 21
9.4 Trademark 21

Supplementary operating instructions manuals

Tip:
For safe use and operation of your VEGABOX 02, the operating instructions manual of the respective pressure transmitter is also required:

- 32465-VEGAWELL 51-4 ... 20 mA
- 32468 - VEGAWELL 51-4... $20 \mathrm{~mA} / \mathrm{HART}$
- 27501-VEGAWELL 72-4... 20 mA
- 27630 - VEGAWELL 72-4... $20 \mathrm{~mA} / \mathrm{HART}$
- 28432-VEGABAR 74-4... $20 \mathrm{~mA} / \mathrm{HART}$
- 28433-VEGABAR 75-4... $20 \mathrm{~mA} / \mathrm{HART}$

1 About this document

1．1 Function

This operating instructions manual has all the information you need for quick setup and safe operation．Please read this manual before you start setup．

1．2 Target group

This operating instructions manual is directed to trained， qualified personnel．The contents of this manual should be made available to these personnel and put into practice by them．

1．3 Symbolism used

Information，tip，note

This symbol indicates helpful additional information．
Caution：If this warning is ignored，faults or malfunctions can result．
Warning：If this warning is ignored，injury to persons and／or serious damage to the instrument can result．
Danger：If this warning is ignored，serious injury to persons and／or destruction of the instrument can result．

Ex applications

Ex This symbol indicates special instructions for Ex applications．
－List
The dot set in front indicates a list with no implied sequence．

\rightarrow Action

This arrow indicates a single action．

1 Sequence

Numbers set in front indicate successive steps in a procedure．

2 For your safety

2.1 Authorised personnel

All operations described in this operating instructions manual must be carried out only by trained specialist personnel authorised by the operator. For safety and warranty reasons, any internal work on the instruments must be carried out only by personnel authorised by the manufacturer.

2.2 Appropriate use

VEGABOX 02 is a breather housing for pressure transmitters.
The optionally integrated temperature transmitter is used for connection to the resistance thermometer PT 100 in pressure transmitter VEGAWELL 51-4... $20 \mathrm{~mA} / \mathrm{HART}$.

2.3 Warning about misuse

Inappropriate or incorrect use of the instrument can give rise to application-specific hazards, e.g. vessel overfill or damage to system components through incorrect mounting or adjustment.

2.4 General safety instructions

VEGABOX 02 are high-tech instruments requiring the strict observance of standard regulations and guidelines. The user must take note of the safety instructions in this operating instructions manual, the country-specific installation standards (e.g. the VDE regulations in Germany) as well as all prevailing safety regulations and accident prevention rules.

2.5 Safety instructions for Ex areas

Please note the Ex-specific safety information for installation and operation in Ex areas. These safety instructions are part of the operating instructions manual and come with the Exapproved instruments.

2.6 Environmental instructions

Protection of the environment is one of our most important duties. That is why we have introduced an environment management system with the goal of continuously improving company environmental protection. The environment management system is certified according to DIN EN ISO 14001.

Please help us fulfil this obligation by observing the environmental instructions in this manual:

- Chapter "Packaging, transport and storage"
- Chapter "Disposal"

3 Product description

3.1 Configuration

The scope of delivery encompasses:

- VEGABOX 02 breather housing
- Protective cover (optional)
- Documentation
- this operating instructions manual

Components

Area of application
VEGABOX 02 consists of the following components:

- Breather housing
- Temperature transmitter for PT 100 (optionally integrated)
- Protective cover (optional)

Fig. 1: VEGABOX 02
1 Housing cover
2 Housing
3 Breather facility

3.2 Principle of operation

VEGABOX 02 is a breather housing for pressure transmitters with connection cable with integrated capillary cable. It is particularly suitable for the following VEGA pressure transmitters:

- VEGAWELL 51-4 ... 20 mA
- VEGAWELL 51-4... $20 \mathrm{~mA} / \mathrm{HART}$
- VEGAWELL 72-4... 20 mA
- VEGAWELL 72-4... $20 \mathrm{~mA} / \mathrm{HART}$
- VEGABAR 74-4... $20 \mathrm{~mA} / \mathrm{HART}$
- VEGABAR 75-4... $20 \mathrm{~mA} / \mathrm{HART}$
Supply
Packaging
Storage and transport tem-
perature perature

The connection cable of the sensor as well as the power supply cable are connected to the VEGABOX 02. Connection is carried out via screw terminals.

3.3 Storage and transport

Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test according to DIN EN 24180.

The packaging of standard instruments consists of environ-ment-friendly, recyclable cardboard. For special versions, PE foam or PE foil is also used. Dispose of the packaging material via specialised recycling companies.

- Storage and transport temperature see "Supplement Technical data - Ambient conditions"
- Relative humidity $20 \ldots 85 \%$

4 Mounting

4.1 General instructions

Installation position

Moisture

Mounting versions

VEGABOX 02 can be mounted in any position. However, vertical mounting is recommended. This avoids pollution of the breather facility and moisture penetration.

Note:

There must be the same atmospheric pressure on the breather facility as well as on the measurement loop. Otherwise the measured value can be adulterated.

Use the recommended cables (see chapter "Connecting to power supply") and tighten the cable gland.

4.2 Mounting instructions

VEGABOX 02 can be mounted as follows:

- on carrier rail 35×7.5 according to EN 50022
- on mounting plate or on the wall

5 Connecting to power supply

5.1 Preparing the connection

Note safety instructions

Take note of safety instructions for Ex applications

Selecting connection cable

Always keep in mind the following safety instructions:

- Connect only in the complete absence of line voltage In hazardous areas you should take note of the appropriate regulations, conformity and type approval certificates of the sensors and power supply units.

VEGABOX 02 is connected with standard two-wire cable without screen.

When the optionally integrated temperature transmitter is also connected, a four-wire cable is required; when an external temperature transmitter is connected, a six-wire cable is required.

Fig. 2: Connection of VEGABOX 02 to the sensor

SP103 Heroes Avenue SPS - TSR06 Transportable Switchboard Container - OM Manual
Connecting to power supply

Select connection cable for Ex applications

Cable screening and grounding

An outer cable diameter of $5 \ldots 9 \mathrm{~mm}$ ensures the seal effect of the cable entry. If electromagnetic interference is expected which is above the test values of EN 61326 for industrial areas, we recommend the use of screened cable.

Take note of the corresponding installation regulations for Ex applications.

If screened cable is necessary, connect the cable screen on both ends to ground potential. In VEGABOX 02, the screen must be connected directly to the internal ground terminal. The ground terminal on the outside of the housing must be connected to the potential equalisation (low impedance).

If potential equalisation currents are expected, the connection on the processing side must be made via a ceramic capacitor (e.g. $1 \mathrm{nF}, 1500 \mathrm{~V}$). The low frequency potential equalisation currents are thus suppressed, but the protective effect against high frequency interference signals remains.

Cable screen and grounding for Ex applications

In Ex applications, one-sided grounding on the sensor is recommended, see EN 60079-14.

5.2 Connection procedure

Proceed as follows:
1 Snap VEGABOX 02 onto the carrier rail or screw it to the mounting plate
2 Loosen the cover screws and remove the cover
3 Insert the sensor cable into VEGABOX 02 through the cable entry
4 Loosen the screws with a screwdriver
5 Insert the wire ends into the open terminals according to the wiring plan
6 Tighten the screws with a screwdriver
7 Check the hold of the wires in the terminals by lightly pulling on them
8 Tighten the compression nut of the cable entry. The seal ring must completely encircle the cable
9 Connect the supply cable according to steps 3 to 8
10 Screw the housing cover back on
The electrical connection is finished.

5.3 Wiring plan

Connection to VEGAWELL 51, 72-4... 20 mA

Connection to VEGAWELL 72, VEGABAR 74, 75-4... $20 \mathrm{~mA} /$ HART

Fig. 3: Terminal assignment VEGABOX 02
1 To power supply or the processing system
2 Screen ${ }^{11}$

Wire number	Wire colour/Polarity	VEGABOX 02 terminal
1	brown $(+)$	1
2	blue $(-)$	2

Fig. 4: Terminal assignment VEGABOX 02
1 To power supply or the processing system
2 Screen ${ }^{2}$

Wire number	Wire colour/Polarity	VEGABOX 02 terminal
1	brown (+)	1
2	blue (-)	2
3	yellow	2
	Screen	Ground

1) Connect screen, to ground terminal. Connect ground terminal outside on the housing as prescribed. The two terminals are galvanically connected.
${ }^{2)}$ Connect screen to ground terminal. Connect ground terminal on the outside of the housing as prescribed. The two terminals are galvanically connected.

Connection to VEGAWELL 72 - 4 ... 20 mA/HART

Fig. 5: Terminal assignment VEGABOX 02
1 To power supply or the processing system (signal pressure transmitter)
2 To power supply or the processing system (connection cables resistance thermometer PT 100)
3 Screen ${ }^{3)}$

Wire number	Wire colour/Polarity	VEGABOX 02 terminal
1	brown (+)	1
2	blue (-)	2
3	white	3
4	yellow	4
5	red	5
6	black	6
	Screen	Ground

Connection to VEGAWELL 51

- 4 ... $20 \mathrm{~mA} / \mathrm{HART}$ (VEGABOX 02 with integrated temperature transmitter for PT 100)

Fig. 6: Terminal assignment VEGABOX 02 with integrated temperature transmitter
1 To power supply or the processing system (signal pressure transmitter)
2 To power supply or the processing system (signal temperature transmitter)
3 Screen ${ }^{4)}$
3) Connect screen to ground terminal. Connect ground terminal on the outside of the housing as prescribed. The two terminals are galvanically connected.
4) Connect screen to ground terminal. Connect ground terminal on the outside of the housing as prescribed. The two terminals are galvanically connected.

Wire number	Wire colour/Polarity	VEGABOX 02 terminal
1	brown $(+)$	1
2	blue $(-)$	2
	Screen	Ground

Wire number	Wire colour/Polarity	Terminal, temperature transmitter for PT 100
3	white	1
4	yellow	2
5	red	3
6	black	4

6 Set up

6.1 Setup steps, pressure transmitter

Setup and adjustment of the respective sensor is carried out according to the operating instructions manual of the respective sensor.

6.2 Setup steps, temperature transmitter

Setup and adjustment of the temperature transmitter are carried out according to the respective operating instructions manual "Temperature transmitter type T32" on www.wika.com.

7 Maintenance and fault rectification

7．1 Maintenance

When used as directed in normal operation，VEGABOX 02 is completely maintenance free．

7．2 Instrument repair

If a repair is necessary，please proceed as follows：
You can download a return form（ 23 KB ）from the Internet on our homepage www．vega．com under：＂Downloads－Forms and certificates－Repair form＂．

By doing this you help us carry out the repair quickly and without having to call for needed information．
－Print and fill out one form per instrument
－Clean the instrument and pack it damage－proof
－Attach the completed form and，if need be，also a safety data sheet outside on the packaging
－Please ask the agency serving you for the address of your return shipment．You can find the respective agency on our website www．vega．com under：＂Company－VEGA world－ wide＂

8 Dismounting

8.1 Dismounting steps

Warning:

Before dismounting, be aware of dangerous process conditions such as e.g. pressure in the vessel, high temperatures, corrosive or toxic products etc.

Take note of chapters "Mounting" and "Connecting to power supply" and carry out the listed steps in reverse order.

8.2 Disposal

The instrument consists of materials which can be recycled by specialised recycling companies. We use recyclable materials and have designed the electronics to be easily separable.

WEEE directive 2002/96/EG

This instrument is not subject to the WEEE directive 2002/96/ $E G$ and the respective national laws (in Germany, e.g. ElektroG). Pass the instrument directly on to a specialised recycling company and do not use the municipal collecting points. These may be used only for privately used products according to the WEEE directive.

Correct disposal avoids negative effects to persons and environment and ensures recycling of useful raw materials.

Materials: see chapter "Technical data"
If you cannot dispose of the instrument properly, please contact us about disposal methods or return.

9 Supplement

9.1 Technical data

General data

316 L corresponds to 1.4404 or 1.4435 , 316 Ti corresponds to 1.4571
Materials

- Housing plastic PBT
- Ground terminal 316Ti/316L

Weight approx. 0.5 kg (1.1 lbs)

Ambient conditions

Ambient temperature	$-40 \ldots+85{ }^{\circ} \mathrm{C}\left(-40 \ldots+185^{\circ} \mathrm{F}\right)$
Storage and transport temperature	$-40 \ldots+85{ }^{\circ} \mathrm{C}\left(-40 \ldots+185^{\circ} \mathrm{F}\right)$

Supply and signal circuit, pressure transmitter

Supply voltage

Signal current
see operating instructions manual of the respective pressure transmitter depending on pressure transmitter $4 \ldots 20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA} / \mathrm{HART}$

Supply and signal circuit temperature transmitter

The data are an excerpt of the WIKA data sheet TE 32.01. You can find the complete data sheet under www.wika.com

Resistance thermometer (integrated in
VEGAWELL 51-4... $20 \mathrm{~mA} / \mathrm{HART}$)
Supply voltage U_{B}
Signal current
Error of measurement according to DIN
EN 60770, $23{ }^{\circ} \mathrm{C} \pm 5 \mathrm{~K}$
Temperature coefficient $\mathrm{T}_{\mathrm{K}}{ }^{5)}$
Load RA

PT 100 according to DIN EN 60751
$12 \ldots 42$ V DC
$4 \ldots 20 \mathrm{~mA} / \mathrm{HART}$
± 0.04 \% of the span
$\pm 0.1 \%$ of the span/10 K_{Ta}
$R_{A} \leq\left(U_{B}-12 \mathrm{~V}\right) / 0.0255 A$ with R_{A} in Ohm and U_{B} in V

Electromechanical data

Cable gland $2 x$ cable entry M20x1.5 (cable-ø $5 \ldots 9 \mathrm{~mm}$)
Screw terminals

SP103 Heroes Avenue SPS - TSR06 Transportable Switchboard Container - OM Manual

Electrical protective measures

Protection IP 65
Overvoltage category III
Protection class III
Approvals VEGABOX 026)
ATEX for connection to pressure transmitters with ATEX certificate
Ship approvals GL, LRS, ABS, CCS, RINA, DNV
Approvals, temperature transmitter ${ }^{7}$)
ATEX iaII 1G EEx ia IIB/IIC T4/T5/T6

SP103 Heroes Avenue SPS - TSR06 Transportable Switchboard Container - OM Manual Supplement

9.2 Dimensions

VEGABOX 02

Fig. 7: VEGABOX 02

VEGABOX 02 with protective cover

Fig. 8: VEGABOX 02 with protective cover

9．3 Industrial property rights

> VEGA product lines are global protected by industrial property rights.
> Further information see http://www.vega.com.
> Only in U.S.A.: Further information see patent label at the sensor housing.
> VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte. Nähere Informationen unter http://www.vega.com.
> Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle.
> Pour plus d'informations, on pourra se référer au site http://www.vega.com.
> VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial.
> Para mayor información revise la pagina web http://www.vega.com.
> Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте http://www.vega.соm.
> VEGA系列产品在全球享有知识产权保护。进一步信息请参见网站[http://шww.vega.соm](http://xn--ww-8mc.vega.xn--m-0tbi)。

9．4 Trademark

All brands used as well as trade and company names are property of their lawful proprietor／originator．

SP103 Heroes Avenue SPS - TSR06 Transportable Switchboard Container - OM Manual

SP103 Heroes Avenue SPS - TSR06 Transportable Switchboard Container - OM Manual

, Veran

VEGA Grieshaber KG
Am Hohenstein 113
77761 Schiltach
Germany
Phone +49 7836 50-0
Fax +49 7836 50-201
E-mail: info@de.vega.com
www.vega.com
(
All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing.
© VEGA Grieshaber KG, Schiltach/Germany 2007

Features

- Ultra-low noise output
- Independent battery charging
- DC OK \& battery charger OK alarms \& LEDs
- Battery disconnected alarm
- Battery Low Voltage Disconnect - LVD
- Battery fuse fail LED
- Over-temperature protection
- Analogue meters on standard model

- Optional : Liquid Crystal Display
- Optional : Network Enabled
- Models available Q1 2010

Specifications
 INPUT

Voltage:	190 to 264 vac, or 190 to 400 VDC
Line regulation:	0.2% typical
Current:	1.4 A maximum
Inrush current:	10 A maximum
Frequency:	45 to 65 Hz

OUTPUT

Voltage	See table
Current	See table
Load regulation	0.5% typical
Current limit type	load cct Constant current
Current limit type	batt. cct Constant current
Short circuit protection	Indefinite, auto-resetting
Over-voltage protection	17.5 to 20V latching (13.8Vdc output)
	31.5 to 39V latching (27.6Vdc output)
Ripple \& noise	100 MHz bandwidth
	$28 \mathrm{mVp}-\mathrm{p}(13.8 \mathrm{Vdc}$ output)
	$55 \mathrm{mVp}-\mathrm{p}(27.6 \mathrm{Vdc}$ output)

ENVIRONMENTAL

Operating temperature	0 to 70 oC ambient with derating, 5...90\% relative humidity (non-condensing)
Over-temperature protection	Automatic \& auto-resetting
Cooling requirement	Natural convection
Efficiency	80% minimum

STANDARDS \& APPROVALS

Safety	Complies with AS/NZS 60950, class 1,
	NSW Office of Fair Trading Approval N20602

Selection Table

MODEL NUMBER	OUTPUT		OUTPUT	OUTPUT		
	VDC	ILOAD	$\\|_{\text {BATt }}$	POWER	MECHANICAL	
PB251A-12CM	13.8V	16A	2A	220W	chassis mount	
PB251A-24CM	27.6 V	11	2A	300W	chassis mount	
PB251A-12CM-H	3.8 V	20A	2A	275W	chassis mount / heatsink	
PB251A-24CM-H	27.6V	12A	2A	330W	chassis mount / heatsink	
PB251A-12RML	13.8 V	20A	4A	275W	rack mount / screw terminals	
PB251A-24RML	27.6 V	12A	2A	330W	rack mount / screw terminals	
PB251A-12B	13.8 V	20A	20A	275W	rack mount / Hirose connector	
PB251A-24B	27.6 V	12A	12A	330W	rack mount / Hirose connector	

NOTE: Non standard battery charging current available on request. ie PB251-12CM-H-10 for

PB251A Series

$220-330$ WAT T S D C U P S

PB251A-**RML \& -12B MECHANICAL OUTLINE

NOTES.

1. $2 R U \times 19 "$ rack enclosure per IEC 297
2. Mounting slots are suitable for M6 hardware.
3. Input connector is a 10 A Class 1 IEC 60320 inlet.
4. 2 meter IEC mains cord with Australian plug is supplied with unit.
5. PB251A-12B alarm terminal is DB25 female.
6. PB251A-12B output and battery connector is Hirose pn. HS 28R-4A.

Mating connector is Hirose pn. HS 28P-4A (not supplied).
7. PB251A-**RML alarm and output terminals are M3.5 screws
suitable for ring or fork lugs up to 8 mm wide.

REAR VIEW (PB251A-**RML)

15-150 WATTS DC/DC SINGLE OUTPUT

Features

- Wide selection of models
- 4 input voltage ranges
- High efficiency
- Low output ripple
- Proven reliability
- Good thermal margins

Specifications
INPUT

Input voltage	12VDC (9.2-16)
	24VDC (19-32)
	48VDC (38-63)
	110VDC (85-140)
Inrush current	20A max. for 110V only
OUTPUT	
Output voltage	See table
Voltage adjustment	$\pm 10 \%, \pm 5 \%$ for PBIH-F
Output current	See table
Ripple \& noise	Output Volts $\times 1 \%+50 \mathrm{mV}$ to -100mV pk-pk
Line regulation	0.8% over input range
Load regulation	0.9\%, 0\%-100\% load
Temperature coefficient	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 0.03 \%$ per ${ }^{\circ} \mathrm{C}$
Overvoltage protection	O.V. clamp, PBIH-F
	Output shutdown, PBIH-G, J, M, R - input must be switched off for at least 30S to reactivate
Overcurrent protection	Fold back - PBIH-F
	Current limiting, PBIH-G, J, M, R (PBIH-R series is adjustable); PBIH110xxR models are not adjustable
Drift	Output $\mathrm{V} \times 0.5 \%+15(\mathrm{mV})$ per 8 hrs after 1 hr warm-up
Rise Time	200mS max. - PBIH-F, M, R
	$100 \mathrm{mS} \mathrm{max}. \mathrm{-} \mathrm{PBIH-G} ,\mathrm{~J} \mathrm{(at} 25^{\circ} \mathrm{C}$)
Holdup time	10 mS (only 110 V input)
Remote sense	PBIH-R Series only

OPERATING

Efficiency	70\%-89\%
Safety isolation (1 minute)	Type - 12, 24, 48V input Input - Output: 1500VAC Input- Case: 1500VAC Output- Case: 500VAC Type- 110V input Input- Output: 2000VAC Input- Case: 2000VAC Output- Case: 500VAC
Insulation resistance	50M (500VDC) Input - Case
Parallel operation	Consult sales office for details
Remote control	PBIH-R Series: Open link: output normal Short link: output off

ENVIRONMENTAL

Operating temperature	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ full load
Cooling	Convection cooled
Storage temperature	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Humidity	85%
Shock	30 G, PBIH-F, G and J
Vibration	$(5 \mathrm{~Hz}-10 \mathrm{~Hz}, 10 \mathrm{~mm})$, $(10 \mathrm{~Hz}-50 \mathrm{~Hz}) 2 \mathrm{G}$, PBIH-F, G and J

STANDARDS AND APPROVALS

Safety	Designed to UL1950
C-tick	AS/NZS CISPR11 Group 1, Class A
MECHANICAL	
Weight	PBIH-F $: 250 \mathrm{~g}$
	PBIH-G: 380g
	PBIH-J:410g
	PBIH-M $: 800 \mathrm{~g}$
	PBIH-R : 1.4 kg

Selection Table

| MODEL
 NUMBER | INPUT | OUTPUT | OUTPUT |
| :--- | :---: | :---: | :---: | :---: |
| POWER | | | |

MODEL NUMBER	INPUT	OUTPUT		OUTPUT POWER
PBIH-11012G	85-140V	12 V	2.1A	25W
PBIH-11015G	$85-140 \mathrm{~V}$	15 V	1.7A	25W
PBIH-11024G	85-140V	24 V	1.1A	25W
PBIH-11048G	85-140V	48 V	0.5A	25W
PBIH-1205J	$9.2-16 \mathrm{~V}$	5 V	8A	50W
PBIH-1212J	$9.2-16 \mathrm{~V}$	12 V	3.3A	50W
PBIH-1215J	$9.2-16 \mathrm{~V}$	15 V	2.7 A	50W
PBIH-1224J	$9.2-16 \mathrm{~V}$	24 V	1.7A	50W
PBIH-1248J	$9.2-16 \mathrm{~V}$	48 V	0.8A	50W
PBIH-2405J	19-32V	5 V	10A	50W
PBIH-2412J	19-32V	12 V	4.3A	50W
PBIH-2415J	$19-32 \mathrm{~V}$	15 V	3.4A	50W
PBIH-2424J	$19-32 \mathrm{~V}$	24 V	2.5A	50W
PBIH-2448J	$19-32 \mathrm{~V}$	48 V	1A	50W
PBIH-4805J	$38-63 \mathrm{~V}$	5 V	10A	50W
PBIH-4812 J	$38-63 \mathrm{~V}$	12 V	4.3A	50W
PBIH-4815J	$38-63 \mathrm{~V}$	15 V	3.4 A	50W
PBIH-4824J	$38-63 \mathrm{~V}$	24 V	2.5 A	50W
PBIH-4848J	$38-63 \mathrm{~V}$	48 V	1A	50W
PBIH-11005J	$85-140 \mathrm{~V}$	5 V	10A	50W
PBIH-11012J	$85-140 \mathrm{~V}$	12 V	4.3 A	50W
PBIH-11015J	85-140V	15 V	3.4A	50W
PBIH-11024J	$85-140 \mathrm{~V}$	24 V	2.5A	50W
PBIH-11048J	$85-140 \mathrm{~V}$	48 V	1A	50W
PBIH-1205M	$9.2-16 \mathrm{~V}$	5 V	18A	100W
PBIH-1212M	$9.2-16 \mathrm{~V}$	12 V	9A	100W
PBIH-1215M	$9.2-16 \mathrm{~V}$	15 V	7 A	100W
PBIH-1224M	$9.2-16 \mathrm{~V}$	24 V	4.5A	100W
PBIH-1248M	$9.2-16 \mathrm{~V}$	48 V	2A	100W
PBIH-2405M	$19-32 \mathrm{~V}$	5 V	20A	100W
PBIH-2412M	$19-32 \mathrm{~V}$	12 V	9A	100W
PBIH-2415M	$19-32 \mathrm{~V}$	15 V	7 A	100W

MODEL NUMBER	INPUT	OUTPUT		OUTPUT POWER
PBIH-2424M	19-32V	24V	5A	100W
PBIH-2448M	19-32V	48 V	2A	100W
PBIH-4805M	$38-63 \mathrm{~V}$	5 V	20A	100W
PBIH-4812M	$38-63 \mathrm{~V}$	12 V	9A	100W
PBIH-4815M	$38-63 \mathrm{~V}$	15 V	7 A	100W
PBIH-4824M	$38-63 \mathrm{~V}$	24 V	5 A	100W
PBIH-4848M	$38-63 \mathrm{~V}$	48 V	2A	100W
PBIH-11005M	85-140V	5 V	20A	100W
PBIH-11012M	$85-140 \mathrm{~V}$	12 V	9A	100W
PBIH-11015M	85-140V	15 V	7 A	100W
PBIH-11024M	85-140V	24 V	5A	100W
PBIH-11048M	85-140V	48 V	2A	100W
PBIH-1205R	$9.2-16 \mathrm{~V}$	5 V	27A	150W
PBIH-1212R	$9.2-16 \mathrm{~V}$	12 V	13A	150W
PBIH-1215R	$9.2-16 \mathrm{~V}$	15 V	10A	150W
PBIH-1224R	$9.2-16 \mathrm{~V}$	24 V	6.5A	150W
PBIH-1248R	$9.2-16 \mathrm{~V}$	48 V	3.3 A	150W
PBIH-2405R	19-32V	5 V	30A	150W
PBIH-2412R	19-32V	12 V	14A	150W
PBIH-2415R	19-32V	15 V	11A	150W
PBIH-2424R	19-32V	24 V	7A	150W
PBIH-2448R	$19-32 \mathrm{~V}$	48 V	3.5 A	150W
PBIH-4805R	$38-63 \mathrm{~V}$	5 V	30A	150W
PBIH-4812R	$38-63 \mathrm{~V}$	12 V	14A	150W
PBIH-4815R	$38-63 \mathrm{~V}$	15 V	11A	150W
PBIH-4824R	$38-63 \mathrm{~V}$	24 V	7A	150W
PBIH-4848R	$38-63 \mathrm{~V}$	48 V	3.5A	150W
PBIH-11005R	$85-140 \mathrm{~V}$	5 V	30A	150W
PBIH-11012R	85-140V	12 V	14A	150W
PBIH-11015R	85-140V	15 V	11A	150W
PBIH-11024R	85-140V	24 V	7A	150W
PBIH-11048R	85-140V	48 V	3.5A	150W

PBIH-F

15-150 WATTS SINGLE OUTPUT

PBIH-G

Terminal	Connection
0	FG
1	$\mathrm{DC}+\mathrm{V}$ in
2	OV in
3	LFG
4	NO
5	NO
6	-V out
7	+V out

PBIH-J

Terminal	Connection
1	FG
2	$\mathrm{DC}+\mathrm{V}$ in
3	OV in
4	LFG
5	-V out
6	+V out
7	NC

PBIH-M

PBIH-R

Terminal	Connection
1,2	+ V out
3	+S
4	-S
5,6	-V out
7	Remote
8	Control
8	$\mathrm{DC}+\mathrm{V}$ in
9	DC OV in
10	FG

Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 16
D-32758 Detmold
Germany
Fon: +49 5231 14-0
Fax: +49 5231 14-292083
www.weidmueller.com

PRO-M = Power-Reliable-Optimized
The perfectly reliable power supply for automation technology.
The ten different versions for the 24V-DC power supply all feature a solid but thin metal housing which enables them to be installed without any side gaps. This results in less space required on the mounting rail. Wide range of $A C / D C$ inputs and a wide temperature range enable them to be used anywhere. Because of its high efficiency, resistance to overloads and high power reserves, the PROM is a trusted power supply for use in any application. The three-phase PRO-M power supply modules continue to function reliably when one phase fails (i.e., in twophase mode).

General ordering data

Type	CP M SNT 120W 24V 5A
Order No.	$\underline{8951340000}$
Version	Power supply, switch-mode power supply unit
GTIN (EAN)	4032248742554
Qty.	$1 \mathrm{pc}(\mathrm{s})$.

Dimensions and weights

Width	40 mm		
Depth	125 mm	Height	130 mm
Net weight	724.3 g	Weight	0.7 kg
Temperatures			
	$-25^{\circ} \mathrm{C} . . .+70^{\circ} \mathrm{C}$		
Operating temperature			

Input

AC current consumption	$\begin{aligned} & 1.1 \mathrm{~A} @ 230 \mathrm{VAC} / 2.0 \mathrm{~A} \\ & @ 115 \mathrm{~V} \text { AC } \end{aligned}$	DC current consumption	0.4 A @ 370 V DC / 1.2 A @ 120 V DC
$\overline{\mathrm{DC}}$ input voltage range	$\begin{aligned} & 80 . . .370 \text { V DC (Derating @ } \\ & 120 \text { V DC) } \end{aligned}$	Frequency range AC	$47 . . .63 \mathrm{~Hz}$
Input fuse	Yes	Input fuse (internal)	Yes
Input voltage range AC	$\begin{aligned} & 85 . . .264 \text { V AC (Derating @ } \\ & 100 \text { V AC) } \end{aligned}$	Inrush current	max. 40 A
Recommended back-up fuse	4 A / DI, safety fuse 6 A, Char. B, circuit breaker 3... 5 A, Char. C, circuit breaker	Wire connection method	Screw connection
rated input voltage	100... 240 V AC (widerange input)		
output			
Output current	5 A	Output power	120 W
Output voltage type	DC	Output voltage, max.	29.5 V
Output voltage, min.	22.5 V	Output voltage, note	(adjustable via potentiometer on front)
Overload protection	Yes	Parallel connection option	yes, max. 5
Powerboost @ 24 V DC, $60^{\circ} \mathrm{C}$	6 A for $1 \mathrm{~min}, \mathrm{ED}=5 \%$	Rated (nominal) output current @ U $\mathrm{U}_{\text {Nom }}$	$5 \mathrm{~A} @ 60^{\circ} \mathrm{C}$
Wire connection method	Screw connection	continous output current @ 24 V DC	6.0 A @ $45^{\circ} \mathrm{C}, 5.3 \mathrm{~A} @ 55$ ${ }^{\circ} \mathrm{C}, 3.8 \mathrm{~A} @ 70^{\circ} \mathrm{C}$
rated output voltage	24 V DC ± 1 \%	residual ripple, breaking spikes	$<50 \mathrm{mV}$ Ss @ $24 \mathrm{VDC}, \mathrm{I}_{\mathrm{N}}$

General data

AC failure bridging time @ $\mathrm{I}_{\text {Nom }}$	$\begin{aligned} & >100 \mathrm{~ms} @ 230 \mathrm{~V} \text { AC / > } \\ & 20 \mathrm{~ms} @ 115 \mathrm{~V} \mathrm{AC} \end{aligned}$	Current limiting	$>120 \% I_{N}$
Degree of efficiency	$90 \text { \% @ } 230 \text { V AC / } 88 \text { \% }$ $\text { @ } 115 \text { V AC }$	Housing version	Metal, corrosion resistant
Indication	Operation, green LED	MTBF	$\begin{aligned} & >500,000 \mathrm{~h} \text { acc. to IEC } \\ & 1709 \text { (SN29500 } \end{aligned}$
Mounting position, installation notice	Horizontal on TS35 mounting rail, with 50 mm of clearance at top and bottom for air circulation. Can be mounted side by side with no space in between.	Operating temperature	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Power factor (approx.)	$\begin{aligned} & >0.5 @ 230 \mathrm{~V} \text { AC / > } 0.6 \\ & @ 115 \mathrm{~V} \text { AC } \end{aligned}$	Protection against over-heating	Yes
Protection against reverse voltages from the load	30... 35 V DC	Short-circuit protection	Yes
Weight	0.7 kg		

EMC / shock / vibration

Limiting of mains voltage harmonic currents	in accordance with EN 61000-3-2	Noise emission acc. to EN55022	Class B			
Interference immunity test acc. to	EN 61000-4-2 (ESD)\| EN 61000-4-3 and EN 61000-4-8 (fields)\|EN 61000-4-4 (burst)	EN 61000-4-5 (surge)	EN 61000-4-6 (conducted)	EN 61000-4-11 (dips)	Shock resistance IEC 60068-2-27	30 g in all directions

Insulation coordination

Class of protection	I, with PE connection	Insulation voltage	3 kV input/ouput; 2 kV input/earth; 0.5 kV output/earth
Pollution severity	2	electrical isolation, input-earth	2 kV
electrical isolation, input-output	3 kV	electrical isolation, output-earth	0.5 kV

Electrical safety (applied standards)

Electrical machine equipment			For use with electronic equipment	Acc. to EN50178 / VDE0160	
Protection against dangerous shock currents	Acc. to EN60204			Protective separation protection against VDEO100-410 / acc. to electrical shock	DiN57100-410

Connection data (input)

Conductor cross-section, AWGcmil, max.	12	Conductor cross-section, AWGcmil , min.	
Conductor cross-section, flexible , min.	$0.5{ }^{\circ} \mathrm{C}$	Conductor cross-section, rigid, max.	$6^{\circ} \mathrm{C}$
Conductor cross-section, rigid, min.	$0.5{ }^{\circ} \mathrm{C}$	Number of terminals [Input]	3 for L/N/PE
Tightening torque, max.	0.6 Nm	Tightening torque, min.	0.5 Nm
Wire connection cross section, flexible (input), max.	$2.5{ }^{\circ} \mathrm{C}$		

Connection data (output)

Conductor cross-section, AWGcmil
max. 12

Conductor cross-section, flexible , max. $2.5^{\circ} \mathrm{C}$
Conductor cross-section, rigid, max. $\quad 6^{\circ} \mathrm{C}$
Number of terminals [Output] 5 (++/-)
Tightening torque, min. 0.5 Nm

Conductor cross-section, AWGcmil , min.
Conductor cross-section, flexible, min. $0.5^{\circ} \mathrm{C}$
Conductor cross-section, rigid, min . $0.5^{\circ} \mathrm{C}$

Tightening torque, max.	0.6 Nm

Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 16
D-32758 Detmold
Germany
Fon: +49 5231 14-0
Fax: +49 5231 14-292083
www.weidmueller.com

Classifications

ETIM 3.0	ECOO1039		
eClass 6.2	$27-04-90-04$	eClass 5.1	$27-04-90-02$

Product information

Descriptive text ordering data	The internal varistor found in a switch-mode power unit does not replace the necessary surge protection in a system.
Descriptive text technical data	*) Recommendation applies only to AC operation; the max. permissible operating voltage is to be observed in all cases!

Approvals

Approvals	
ROHS	Conform
Downloads	
Package insert	Operating instructions
Declaration of Conformity	K469 12 11.pdf
PDF	Warranty information
EPLAN	8951340000.ema
3-D model	

CP M SNT 120W 24V 5A
Weidmüller Interface GmbH \& Co. KG Klingenbergstraße 16
D-32758 Detmold
Germany
Fon: +49 5231 14-0
Drawings
Fax: +49 5231 14-292083
www.weidmueller.com

Electric symbol

win DC comecton, note polerty

UXH SERIES

The latast in YUASA's state-of-the-art technology has brought about a new UXH series capable of yielding even greater capacity than comparable batheries.
YUASA UXH bafferies are designed with unique valve regulafing devices and acid free constructions, ensuring safely and suitability to the contemporary business environment.

Designed Life
 10 years

Features

Up to 15\% more capacity Maintenance-free Higher energy efficiency
Negligible gas emissions
Valve regulated
Systems compalible
Filted with explosion proof filter
(Except UXH100-12N and UXH200-6N)
No equalizing charge required
(Option) Flame relerdant version available No free Acid (Non-spillable Battery)

Applications

UPS
Telecommunications
Alarm systems
Floot charge voltoge: $\mathbf{2 . 2 7 5}$ V par cell
Permissible operating temperature: $-15-45^{\circ} \mathrm{C}$
Container material; ABS
Fire \& security systems
Emergency lighting
Engine starting
Solar powered systems
Utilities
Rail

General Specifications

Batery Mode	Nominal Nalogin		Inimalhitronal2	Appease Dinuralors, mm(inch)								$\begin{aligned} & \text { Eqpotion } \\ & \text { Rhoutry } \end{aligned}$
				Legh	Widh	Heigh		Oweral Height				
Wersa 12	12	38	7.0	235 (9.35		190	(7.5)	217	(2.8)	17	(B)	0
W0H50-12	12	50	80	299 (11.8)	128 \{5.0)	190	(7.5)	217	(B.S)	21	(46)	0
Ux+463-12	12	63	5.9	383 (14.3)	129 [5.0)	190	(7.5)	217	(8.5)	25	(55)	0
L0.05-8	6	78	22	217 (8.5)	129 [50]	190	(75)	217	(1.3)	16	(15)	0
WPHIDO-6	3	100	18	281 \{11.1\}	128 [5.0]	190	(7.5)	217	(1.5)	20	(4)	0
UxH125-6	6	125	1.5	345113.08	12 E 500 m	180	(7,5)	217	38, 9	24	(53]	0
L50H200 12N	12	109	4.0	407 [16.0')	172.546 .85	210	(8.3)	240	(9,4)	39	(3)	\times
$400000-6 \mathrm{~N}$	6	200	1.2	398 [15.6)	176 <6.71	216	(1).5)	280	(9.国)	39	(85)	\times

$\$ 2$ in a fuly charged quats and meowned frough o $1000 \mathrm{tr} A C$ brlege.

Performance Data at $25^{\circ} \mathbf{C}\left(77^{\circ} \mathrm{F}\right)$
(Amperes and Watts per cell)
Amperes to F.V.1.60 Volts Per Cell

		$\begin{gathered} 1 \\ m i n \end{gathered}$	$\begin{gathered} 5 \\ \mathrm{~m} \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & \mathrm{~min} \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & \text { min } \\ & \hline \end{aligned}$	$\begin{array}{r} 20 \\ \text { min } \\ \hline \end{array}$	$\begin{aligned} & 25 \\ & \mathrm{mh} \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & \text { min } \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{~min} \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & \mathrm{~min} \end{aligned}$	$\begin{aligned} & 45 \\ & \min \end{aligned}$	$\begin{aligned} & 1 \\ & h \end{aligned}$
UN0-3s-12	A	141.0	119.0	86.3	63.5	50.9	426	37.6	33.4	90.8	20.0	228
	W	2790	199.0	1810	1180	942	78.4	7.1	63.5	58.5	42.6	437
L40450-12	A	185.0	158.0	114.0	83.5	67.9	54.0	195	44.0	10.4	37.0	30.0
	W	3020	262.0	2030	1530	124.0	105.0	93.5	83.5	77.0	70.	57.3
LDSHE3-12	A	2330	197.0	1430	1050	34.4	70.6	62.4	55.4	51.0	46.6	378
	W	3800	330.0	2550	1980	156.0	1320	118.0	1080	97\% 0	$8{ }^{\text {es }}$	72.5
W0056	A	27.0	2300	170.0	1250	101.0	84.0	743	66.0	60.8	5.5 .5	40
	W	4520	393.0	3040	2300	186.0	157.0	1.400	125.0	116.0	108.0	E5.3
L40-100 4	A	3700	3120	227,0	1670	134,0	112.0	98.8	88.0	61.0	740	60.0
	W	4630	5240	4050	3060	248.0	209.0	187.0	167.0	154.0	141.0	115.0
WWH125 6	A	463.0	390.0	2810	2090	161.0	110.0	1240	1100	101,0	92.5	75.0
	W	7540	655.0	506.0	3830	310.0	261.0	220	209.0	193.0	176.0	14.0
WH100-12N	A	3700	3120	2970	1670	134.0	1120	99.0	88.0	81.0	740	60.0
	W	608.0	524.0	4050	3060	218.0	209.0	1878	167.0	154.0	141.0	115.0
LWH200-4	A	7400	6240	4520	3340	269,0	2240	198.0	178.0	1620	1490	120.0
	W	12040	1048.0	8020	6120	4 P 6.0	4160	3740	334.0	308.0	2820	230.0

Amperes to F.V. 1,70 Volts Per Cell

		$\begin{gathered} 1 \\ \mathrm{~min} \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ \mathrm{~min} \end{gathered}$	$\begin{aligned} & 10 \\ & \min \end{aligned}$	$\begin{aligned} & 10 \\ & \text { min } \end{aligned}$	$\begin{aligned} & 20 \\ & \text { min } \end{aligned}$	$\begin{gathered} 25 \\ m h \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ \mathrm{mh} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 35 \\ & \mathrm{mln} \\ & \hline \end{aligned}$	$\begin{gathered} 40 \\ \mathrm{mln} \\ \hline \end{gathered}$	$\begin{gathered} \text { in } \\ m \end{gathered}$	$\begin{aligned} & 1 \\ & h \end{aligned}$	$\begin{aligned} & 2 \\ & h \end{aligned}$	$\begin{aligned} & 3 \\ & h \end{aligned}$
WH238-12	A	12a0	108.0	737	574	47.9	41.4	365	32,	29.3	27.0	220	13.7	9.9
	W	211.0	18 SO	133.0	1020	88.9	77.9	69.2	61.6	55.9	517	126	28.6	194
L50150-12	A	162.0	1390	77.0	75.5	83.0	54.5	49.0	42.5	38.5	15.	29.0	18.8	13.0
	W	277.0	245.0	176.0	139.0	117.0	108.0	91.0	81.0	73.5	68.0	580	350	25.5
UWH63-12	A	2040	175.0	122.0	95.1	79.4	68.7	60.5	53.6	48.5	447	36.5	227	16.4
	W	3	3020	2210	1750	1470	129.0	113.0	1020	926	857	70.6	4.1	32.1
UWFO5 6	A	243.	2090	146.0	113.0	94.5	81.8	72.0	63.8	578	53.3	43.4	270	19.8
	W	416.0	3670	263.0	209.0	176.0	1540	1370	1220	110.0	1020	4.0	525	38.3
Lexllood	A	32.0	TPB	1940	151.0	12500	109.0	98.0	850	77.0	71.0	590	36.0	260
	W	484.0	489.0	351.0	278.0	24.0	2050	182.0	162.0	1470	1360	1120	700	51.0
W0-H125 6	A	4050	3480	2430	189.0	1880	1340	120.0	1080	96.3	88.8	724	480	32.3
	W	693.0	611.	438.0	348.0	293.0	258.0	2290	203.0	180	1700	140.0	87.5	63.8
USH1DC-12N	A	324.0	2780	1940	151.0	1260	198.0	9%	85.0	77.0	710	58.0	360	230
	W	5340	469.0	351.0	27.0	2340	2050	162.0	162.0	147.0	1360	1120	700	51.0
U00200-6	A		3560	398.0	3020	2520	2180	192.0	1700	154.0	142.0	1160	720	52.0
	W	1106.0	976.0	7000	556.0	488.0	4080	3640	3240	2900	2720	2210	1100	1020

Amperes to F.V.1.80 Volts Per Cell

Mullat Mme		$\begin{gathered} 1 \\ \mathrm{~min} \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ \mathrm{~min} \\ \hline \end{gathered}$	$\begin{array}{r} 10 \\ \mathrm{~min} \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & \mathrm{~min} \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & \text { min } \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & \mathrm{~min} \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & m i n \\ & \hline \end{aligned}$	$\begin{gathered} 35 \\ \mathrm{mh} \end{gathered}$	$\begin{aligned} & \text { 4id } \\ & m h \\ & \hline \end{aligned}$	$\begin{gathered} 45 \\ m / n \\ \hline \end{gathered}$	$\frac{1}{6}$	$\frac{2}{6}$	h^{3}	h	$\frac{8}{4}$	$\begin{gathered} 10 \\ \hline \end{gathered}$	30
UWH38-12	A	W. 2	86.3	63.8	52.8	48	38.8	35,0	31.2	28.1	262	21.3	12.9	98	6.1	42	3.3	. 0
	W	179.0	157.	118.0	99	047	737	66.9	,	54.3	50.5	41.4	25.1	18.6	122	4	6.5	180
L00150-12	A	131.0	114.0	840	69.5	59.0	51.0	46.0	41.0	37.0	34.5	23.0.	17.0	12.5	8.0	5.5	46	2.50
	W	236.0	207.0	156.0	131.0	1120	97.0	89,0	78.5	7.5	86.5	54.5	33.0	24.5	16.0	11.0	9.0	5.00
L0FH63-12	A	164.0	143.0	108.0	178	743	61.3	51.0	517	46.6	49.5	153	21.4	15.8	10.1	49	85	115
	W	297	240	1980	164.0	140.0	1220	111.0	98.9	90.1	83, ${ }^{\text {8 }}$	68	41.4	30.9	20.2	13.9	11,3.	430
LSNT5-6	A	106.0	170.0	136.0	19	8	76.5	69.0	61.5	555	51.	420	25.5	118. ${ }^{\text {\% }}$	120	83	6.9	75
	W	358.0	310.0	233.0	1960	167.0	1460	132.0	1180	169.0	P\%	81.8	49.5	30.8	340	16.5	13.5	5 50
LnH100-8	A	26	227	180.0	139.0	1180	1020	2.0	320	74.0	69.0	360	34.0	25.0	160	11.0	93	500
	W	47	413.0	311.0	261.0	223.0	194.0	176.0	187.0	14.0	1339	109.0	68.0	49.0	320	220	180	100
L00-12s-4	A	326.0	294.0	210.0	1740	148.0	128.0	115.0	103.0	92.5	86.1	70.	425	31.3	20.0	138	11.6	8.25
	W	509.0	516.0	309.0	32x.0	279.0	2430	220.0	18.0	179.0	166.0	130	025	61.3	190	27.5	22.5	2.50
WH100-12N	A	261.0	227.0	168.0	139.9	1180	102.9	92.0	82,0	74.0	60.0	55.0	34.0	25.0	160	11.0	93	5.00
	W	O1.0	413.0	311.0	2610	223.0	1920	176.0	15.0	1430	1330	109.0	64.0	49.0	320	220	180	10.00
U4H200 4	A	520.0	1520	336.0	278.0	25.0	2040	184.0	1620	148.0	1380	1120	68.0	50.0	320	220	18.6	1000
	W	940.0	[24.0	620.0	520.0	44.0	3889	352,0	314.0	286.0	26d.0	218.0	1320	限. 0	60	440	36.0	20.00

General Characteristics

EDISCHARGE CHARACTERISTICS

■CHARGING CHARACTERISTICS

Peripheral Device

 Battery IIfo can be diognoped without dieconnecting a power wuphy os a rosult of meoving battwry intomal lmpedance during flociting therget

- Diognoes bollary life dering Focting dharge.
- A compoct, portoble devia.
- Con be used tor a lange voriey of valve regulased leod ooid boterias.
- Mon be usad tor a large voristy of wit

lFyou hitwod to wo the dewise for UPS, plowe contod ws for conwilation!

Spectications subject to change without prior notlce

Diptributud by:

GS Yuasa international Ltd
18-1, Nishl 5himbeshl, Minato -la
Tolyo 105-0003
Jupan
Tal +81-3-3597-2403
Fax + A1 3 3597 2405

REVISIONS				
REV.	DESCRIPTION	ECN	DATE	APPROVED
G	REFER TO ECN	11902	$8 / 9 / 13$	JLJ

HARDWARE KIT INCLUDES:

QTY	DESCRIPTION
1	SCREW 10-32 X .50 SLOT F PAN 4-10 SS
1	SCREW 10-32x.50 SLOT MS PAN 18-8 SS
1	NUT 10-32 HEX 18-8 SS
2	WASHER 10 EXT TOOTH SS STAINLESS STEEL

SURGE:
50kA IEC 61000-4-5 8/20 $\mu \mathrm{s}$ WAVEFORM (TESTED) 20kA (RATED)
TURN-ON:
$600 \mathrm{Vdc} \pm 20 \%$
TURN-ON TIME.
2.5ns FOR 2kV/ns

FREQUENCY RANGE:
125 MHz TO 1 GHz
VSWR:
s1.1:1 OVER FREQUENCY RANGE
INSERTION LOSS:
$\leq 0.1 \mathrm{~dB}$ OVER FREQUENCY RANGE
MAX POWER:
375W @ 125 MHz TO 220 MHz 125W@ $@ 220 \mathrm{MHz}$ TO 700 MHz 50W @ 700MHz TO 1000MHz
THROUGHPUT ENERGY:
$\leq 220 \mu \mathrm{~J}$ FOR $3 \mathrm{kA}, 8 / 20 \mu \mathrm{~s}$ WAVEFORM
TEMPERATURE
STORAGE: $-55^{\circ} \mathrm{C} T \mathrm{O}+85^{\circ} \mathrm{C}$
OPERATING: $-50^{\circ} \mathrm{C}$ TO $+50^{\circ} \mathrm{C}$
VIBRATION:
1G UP TO 100Hz
CE COMPLIANT
RoHS COMPLIANT
THESE COMMODITIES TECHNOLOGY OR SOFTWARE WERE EXPORTED FROM THE UNITED STATES IN ACCORDANCE
WITH THE EXPORTADMEINTRATION REGULATIONS. DIVRSSION CONTRARYTOU.S. LAW PROAIBITED.

SHEET $1^{\text {OF }} 1$

UNLESS OTHERWISE SPECIFIED Dimensions in I] Are Millimeters	DRAWNJ. CALLISTERENG APPD. JONESJ. JONESPRODUCT MGR	$\begin{array}{\|l\|} \hline \text { DATE } \\ 9 / 21 / 93 \end{array}$	Fon/rinocer				SHEET $1^{\text {OF }} 1$	
$\begin{array}{\|ccc} \text { TOLERANCES: } \\ \text { FRACTIONS }= \pm 1 / 32 & . x X= \pm & .03 \\ \text { ANGLES }= \pm & 1^{\circ} & . x X X= \pm .010 \\ \hline \end{array}$		4/12/95					SCALE 1	$1: 1$
NOTICE: THE INFORMATION AND DESIGN IN THIS DOCUMENT IS THE PROPERTY OF RESERVED. THIRD-ANGLE PROJECTION	RROJECTNO.		TTLE BROADBAND 125-1000MHz R50 T.O. 600Vdc N FEM CUSTOMER SPECIFICATION					
$\oplus-\oplus$	DOCUMENT NAME IS-50NX-C2-C		SIZE	$\begin{aligned} & \text { CAGE } \\ & 61114 \end{aligned}$	$\begin{gathered} \text { PROD CAT } \\ \text { RFP } \end{gathered}$	$\begin{array}{r} \text { PART NUMBER } \\ \text { IS-50NX-C2 } \end{array}$		${ }^{\text {ReV }} \mathrm{G}$

Owner's Manual

ACE3600 RTU

a b

6802979C35-E

MOTOROLA and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. All other product or service names are the property of their respective owners.

COMPUTER SOFTWARE COPYRIGHTS

The Motorola products described in this instruction manual may include copyrighted Motorola computer programs stored in semi conductor memories or other media. Laws in the United States and other countries preserve for Motorola certain exclusive rights for copyrighted computer programs including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Motorola computer programs contained in the Motorola products described in this manual may not be copied or reproduced in any manner without the express written permission of Motorola Inc.. Furthermore, the purchase of Motorola products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Motorola, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.

EUROPEAN UNION DIRECTIVE 2002/95/EC CONFORMANCE STATEMENT
Hereby, Motorola declares that these products comply with RoHS European Directive no. 2002/95/EC (Restriction of the use of Hazardous Substances) and WEEE Directive no. 2002/96/EC (Strategy of Waste management), with the exception of models listed in Appendix B.

Motorola, Inc.
1301 E. Algonquin Road,
Schaumburg, IL 60196 U.S.A.

CONTENTS

GLOSSARY III
DESCRIPTION 1-1
Product Overview 1-1
General Description 1-1
ACE3600 RTU CONSTRUCTION 1-3
RTU COMPONENTS 1-7
Model Options and Accessories 1-9
Product Safety and RF Exposure 1-9
INSTALLATION 2-1
General 2-1
Mounting the ACE3600 Frame on a Wall 2-2
Installing the ACE3600 in a 19" Rack 2-4
Mounting the ACE3600 8 I/O Frame on a Wall 2-7
Mounting the ACE3600 NEMA 4 Housing On a Wall 2-8
Connecting Power and Ground 2-10
Connecting I/O Modules to Ground 2-16
Connecting an RTU to Ground 2-17
Connecting the Radio 2-18
Opening/Closing the Housing Door 2-18
Installing Plastic Box Interfaces 2-19
POWER SUPPLY MODULE AND BACKUP BATTERY 3-1
General Description/Module Overview 3-1
Battery Charger 3-7
Connecting the Power Supply to a Power Source 3-8
Power Supply Detailed Specifications 3-9
Backup Battery 3-12
CPU MODULE 4-1
General Description 4-1
Front Panel 4-2
CPU Firmware and Operation Modes 4-5
CPU Status and Diagnostics 4-7
Connecting Plug-In Ports to the CPU Module 4-7
Connecting SRAM Expansion Memory to the CPU Module 4-9
Pushbutton Functionality 4-10
CPU LEDs BEHAVIOR 4-12
CPU 3610/CPU 3640 Module Specifications 4-15
CPU 3680 MODULE SpECIFICATIONS 4-16
I/O MODULES 5-1
GENERAL DESCRIPTION 5-1
Inserting/Removing an I/O Module from the Rack 5-9
24V DC Floating Plug-In Power Supply 5-9
24V DC Floating Plug-In Power Supply Module Detailed Specifications 5-11
DIGITAL INPUT MODULE 6-1
GENERAL DESCRIPTION 6-1
DI Module Configuration 6-3
Module Status and Diagnostics 6-5
I/O Circuit Diagram 6-6
Module Block Diagram 6-7
Connection Charts 6-9
I/O Connection Diagram 610
DI Module Specifications 6-11
DIGITAL INPUT 120/230V MODULE 7-1
General Description 7-1
DI Module Configuration 7-2
Module Status and Diagnostics 7-3
I/O Circuit Diagram 7-4
Module Block Diagram 7-5
CONNECTION CHARTS 7-6
I/O Connection Diagram 7-7
High Voltage DI Module Specifications 7-8
DIGITAL OUTPUT/DIGITAL INPUT FET MODULE 8-1
General Description 8-1
Module Configuration 8-2
Module Status and Diagnostics 8-4
I/O Circuit Diagram 8-5
Module Block Diagram 8-6
Connection Charts 8-8
I/O Connection Diagram 8-9
DO/DI FET Module Specifications 8-10
DIGITAL OUTPUT RELAY MODULE 9-1
General Description 9-1
Module Configuration 9-3
Module Status and Diagnostics 9-5
I/O Circuit Diagram 9-6
Module Block Diagram 9-8
Connection Charts 9-10
DO Relay Module Specifications 9-11
DIGITAL OUTPUT RELAY 120/230V MODULE 10-1
GENERAL DESCRIPTION 10-1
Module Configuration 10-4
Module Status and Diagnostics 10-6
Module Block Diagram 10-7
I/O Circuit Diagram 10-8
Connection Charts 10-9
DO Relay 120/230V Module Specifications 10-10
8 DIGITAL OUTPUT SBO RELAY MODULE 11-1
General Description 11-1
Module Configuration 11-3
Module Status and Diagnostics 11-5
I/O Circuit Diagram 11-6
Module Block Diagram 11-7
Connection Charts 11-8
8 DO SBO Relay Module Specifications 11-9
ANALOG INPUT MODULE 12-1
General Description 12-1
AI Module Configuration 12-3
Module Status and Diagnostics 12-4
I/O Circuit Diagram 12-7
Module Block Diagram 12-8
Connection Charts 12-10
I/O CONNECTION DIAGRAM 12-11
AI Module Specifications 12-12
ANALOG OUTPUT MODULE 13-1
General Description 13-1
AO Module Configuration 13-3
Module Status and Diagnostics 13-6
I/O Circuit DiAgram 13-7
Module Block Diagram 13-8
Connection Charts 13-9
I/I Connection Diagram 13-10
AO Module Specifications 13-11
MIXED I/O MODULE 14-1
General Description 14-1
Mixed I/O Module Configuration 14-3
Module Status and Diagnostics 14-4
Module Block Diagram 14-5
Connection Charts 14-6
Mixed I/O Module Specifications 14-7
MIXED ANALOG MODULE 15-1
GEnERAL DESCRIPTION 15-1
Mixed Analog Module Configuration 15-2
Module Status and Diagnostics 15-3
Module Block Diagram 15-4
Connection Charts 15-5
Mixed Analog Module Specifications 15-6
I/O EXPANSION 16-1
General Description 16-1
I/O Expansion Frame 16-4
I/O Expansion Power 16-4
Status and Diagnostics 16-5
EXPANSION MODULE 17-1
General Description 17-1
Front Panel 17-2
Module Firmware and Operation Modes 17-3
Module Status and Diagnostics 17-6
Connecting the Expansion Module 17-7
Setting the Frame Number 17-8
Pushbutton Functionality 17-10
LEDs Behavior 17-11
Expansion Module Specifications 17-16
EXPANSION LAN SWITCH 18-1
General Description 18-1
Front Panel 18-2
Inserting/Removing an Expansion LAN Switch from the Frame 18-3
Switch Status and Diagnostics 18-3
Connecting the Expansion LAN Switch to the Main CPU 18-3
Connecting the Expansion LAN Switch to I/O Expansion Frames 18-3
Expansion LAN Switch LEDs Behavior 18-5
Expansion LAN Switch Specifications 18-6
EXPANSION POWER SUPPLY MODULE 19-1
General Description/Module Overview 19-1
Module Status and Diagnostics 19-4
Connecting the Expansion Power Supply to the Main Frame Power Supply 19-4
Connecting the Expansion Power Supply to Ground 19-4
Expansion Power Supply Fuses 19-5
Expansion Power Supply Module Detailed Specifications 19-6
ACE IP GATEWAY MODULE 20-1
General Description 20-1
Front Panel 20-3
Redundant ACE IP Gateway 20-5
ace ip gateway Firmware and Operation Modes. 20-5
ACE IP Gateway Status and Diagnostics 20-7
PuShbutton Functionality 20-8
ACE IP Gateway LEDs Behavior 20-11
aCE IP Gateway Module Specifications 20-14
RADIO TYPES AND INSTALLATION KITS 21-1
ACE3600 Radio Types 21-1
Radio Installation Kits 21-3
Mounting the ACE3600 Radios on a Wall 21-80
RS485 CONNECTION BOX 22-1
GENERAL DESCRIPTION 22-1
Installation. 22-2
AUDIO CONTROL AND TONE (ACT) MODULE 23-1
Introduction 23-1
Front Panel Description 23-1
ACT Module Features 23-1
Audio Handling Capabilities 23-4
Interface to the RTU 23-4
Installation and Wiring 23-6
RTU Port Configuration 23-8
Controlling the Module 23-9
ACT Module Specifications 23-12
CONFIGURATION 24-1
General 24-1
OPTIMIZATION 25-1
General 25-1
OPERATION 26-1
GENERAL 26-1
MAINTENANCE 27-1
General 27-1
TROUBLESHOOTING 28-1
BREAK-FIX PROCEDURES 29-1
General 29-1
Replacing a CPU Module 29-1
Replacing a Power Supply Module 29-2
Replacing an I/O Module or Expansion LAN Switch 29-3
Inserting a New I/O Module into an Empty Slot 29-4
Replacing a Plug-in Port on the CPU Module 29-4
Replacing a Plug-in SRAM Memory Card in the CPU Module 29-4
Replacing the Motherboard 29-5
Replacing the Fuses on the Power Supply Module for AUX1/AUX2 or I/O Expansion 29-6
Replacing the Backup Battery on the RTU 29-6
InTERCONNECTION DIAGRAMS 29-6
APPENDIX A: GENERAL SPECIFICATIONS A-1
Specifications A-1
APPENDIX B: ENVIRONMENTAL PROTECTION B-1
DISposal of COMPONENTS B-1
APPENDIX C: ACCESSORIES, ADAPTORS AND CABLES C-1
General C-1
APPENDIX D: ACE3600 MAXIMUM POWER RATINGS D-1
Power Rating Tables D-1

GLOSSARY

ACE	Advanced Control Equipment
AI	Analog Input
AO	Analog Output
AWG	American Wire Gauge
DCD	Data Carrier Detect
DFM	Direct Frequency Modulation
DI	Digital (Discrete) Input
DNP	Distributed Network Protocol
DO	Digital (Discrete) Output
DPSK	Differential Phase Shift Keying
EMI	Expansion Microcode Interface
EPP	Environmentally Preferred Product
ESD	Electrostatic Discharge
EU	European Union
FCC	Federal Communication Commission
FEP	Front End Processor (MCP-M, MCP-T, or FIU)
FET	Field Effect Transistor
FPGA	Field Programmable Gate Array
FSK	Phase Shift Keying
FIU	Field Interface Unit
GND	Ground
GPRS	General Packet Radio Service
GPS	Global Positioning Satellite
GSM	Global System for Mobile Communications
GW	ACE IP Gateway
HV	High Voltage
HW	Hardware
IEC	International Electrotechnical Commission
IO (I/O)	Inputs Outputs
IP	IPGW

LAN	Local Area Network
LED	Light Emitting Diode
MCC	Master Control Center
MCP-M	Motorola Communication Processor - MODBUS
MDLC	Motorola Data Link Communication
MODBUS	MODICON BUS Protocol
MOSCAD	Motorola SCADA
MOSCAD-L	Motorola SCADA-Light
NEMA	National Electrical Manufacturers Association (issues enclosure standards)
NTP	Network Time Protocol
OPC	Open Connectivity
OVF	Overflow
PC	Personal Computer
PLC	Programmable Logic Controller
PPC	Power PC
PPH	Pulse per Hour
PPM	Parts Per Million
PPP	Point-to-Point Protocol
PPS	Pulse per Second
PSTN	Public Switched Telephone Network
RAM	Random Access Memory
RF	Radio Frequency
ROM	Read Only Memory
RST	Reset
RTS	Request to Send
RTU	Remote Terminal Unit (can be MOSCAD or MOSCAD-L)
RX	Receive
SCADA	Supervisory Control and Data Acquisition
SBO	Select Before Operate
SDRAM	Synchronous Dynamic Random Access Memory
SNMP	Simple Network Management Protocol
SNTP	Simple Network Time Protocol
SPDT	Single Pole Double Trigger
SPST	Single Pole Single Trigger

STS	System Tools Suite
SW	Software
TB	Terminal Block
TCP	Transmission Control Protocol
TDPSK	Trunked Differential Phase Shift Keying
TX	Transmit
UDF	Underflow
UDP	User Datagram Protocol
UHF	Ultra High Frequency
USB	Universal Serial Bus
VHF	Very High Frequency
WAN	Wide Area Network
WB	Wire Break

DESCRIPTION

Product Overview

The ACE3600 is a programmable Remote Terminal Unit (RTU). Almost any automation task can be implemented with a suitable choice of ACE3600 components. Typically the RTU monitors and controls local equipment and communicates with a control center and with other RTUs in the system. The ACE3600 is the newest Motorola SCADA (MOSCAD) RTU, a member of MOSCAD family of RTUs and Control Center Front End Processors.

The ACE3600 System Tools Suite (STS) can be run on a local or remote PC to perform all the setup, programming and monitoring operations such as RTU configuration, system/application, download, monitoring, etc.

Features of the ACE3600

The ACE3600 combines all the advantages of the legacy MOSCAD and MOSCAD-L RTUs with those of modern hardware and software technologies.

Among these are:

- A modern CPU platform with powerful microprocessor
- Real-time operating system based on Wind Rivers VxWorks OS
- Enhanced communication and networking capabilities
- Rugged modular design
- Extended operating temperature range
- Improved power supply/charger
- Modules with a high component density
- System building tools
- Interoperability with legacy MOSCAD family RTUs

General Description

The ACE3600 RTU is a modular unit, comprised of removable modules installed in a multislot frame. These modules include

- Power supply
- CPU
- I/O modules

The basic (default) model includes one power supply and one CPU module. The number of I/O modules is selected as an option of the base model.

Figure 1-1 provides a general view of the ACE3600 RTU with five I/O modules.

Figure 1-1 ACE3600 RTU - General View

I/O Module Options

The following types of I/O modules are available:

- Digital Inputs (DI), including High Voltage
- Digital Outputs (DO), including High Voltage
- Analog Inputs (AI)
- Analog Outputs (AO)
- \quad Mixed I/O
- Mixed Analog

Communication Interfaces

The ACE3600 CPU includes the following serial ports:

- Configurable RS232 or RS485 serial port
- Configurable RS232 with GPS receiver support (for time sync)
- Ethernet $10 / 100 \mathrm{Mb} / \mathrm{s}$ (ACE3600 CPU3640, CPU3680 models)
- Two USB full speed host ports (12 Mbs) for MotoTrbo radios only (ACE3600 CPU3680 and ACE IP Gateway only)
- One USB device port (ACE3600 CPU3680 and ACE IP Gateway only) (future option)

Two additional plug-in ports can be added to the CPU. The following types of communication modules are available for the plug-in ports:

- RS232
- RS485
- General radio interface (Conventional or Trunking, DPSK 1200, FSK 2400, DFM 4800)
- Ethernet $10 \mathrm{Mb} / \mathrm{s}$
- Ethernet $10 / 100 \mathrm{Mb} / \mathrm{s}$ (on plug-in Port 1 only)

ACE3600 RTU Construction

The ACE3600 is available in various structures:

- Frame which can accommodate a varied number and type of modules
- Metal chassis which accommodates the frame, and optional radios, backup battery and communication interfaces
- Protective housing which accommodates the frame, and optional radios, backup battery and communication interfaces (suitable for outdoor installation)

The ACE3600 frame consists of the following elements:

- Plastic slots which accommodate the power supply, CPU and I/O modules, and backplane bus motherboard
- Mounting plate for attaching the plastic slots together and mounting the frame on a wall
- Backplane bus motherboard which connect the modules to each other via the signal buses and connects the modules with operating voltages
- Power junction box for AC or DC power source and ground connections

A frame can be mounted on the wall or installed in a 19" rack or customer enclosure. For more information, see the Installation chapter below

The ACE3600 frame can include wide or narrow plastic slot units:

- Wide slot unit - can hold a power supply and a CPU or up to three I/O modules
- Narrow slot unit - can hold up to two I/O modules

RTU Options

Each RTU can include a number of options, including portable and mobile radios, and plastic boxes with interface card for communication, etc.

Housing/Mounting Type	Capacity/Options
No I/O slot frame Basic (default) model. Can be installed on a wall.	Power supply and CPU chassis or housing options. Can be ordered with 19" frame metal back.
Can be installed on a wall. Cower supply and CPU, up to 2 I/Os Can be ordered with metal chassis or housing. Can be ordered with 19" frame metal back.	
Power supply and CPU, up to 3 I/Os slot frame Can be ordered with metal installed on a wall. chassis or housing. Can be ordered with 19" frame metal back.	
Power supply and CPU, Can be installed on a wall. up to I/Os Can be ordered with large metal chassis or housing. Can be ordered with 19" frame metal back.	
Power supply and CPU, up to 7 I/Os Can be ordered with large metal chassis or housing. Can be installed on a wall.	

Housing/Mounting Type	Capacity/Options		
$8 \mathrm{I} / \mathrm{O}$ slot frame	Power supply and CPU, up to 8 I/Os		
19 " rack/enclosure.			
Can be ordered with metal			
chassis option for accessories:			
6.5 or 10 Ah Lead-Acid			
backup battery			
1 radio; up to 4 plastic boxes.			
For all possible combinations,			
see 19" Metal Chassis			
Installation Combinations in			
the Installation chapter			
below.		,	I/O expansion power supply,
:---			
I/O expansion module, up to			
8 I/Os.			
Can be connected to the main			
RTU frame.			
Can be ordered with large			
metal chassis or housing.			

| Housing/Mounting Type | Capacity/Options |
| :--- | :--- | :--- |

For installation instructions of each housing/mounting type, see the Installation chapter.
For information on I/O expansion, see the I/O Expansion chapter.
For the dimensions and weight of each combination, see Appendix A: General Specifications.
For a detailed list of all ACE3600 options, see the ACE3600 price pages and ordering information.

For a detailed description of the individual modules, see the appropriate chapter below.

RTU Components

The ACE3600 RTU can include the following components.

Component	Function	Notes
Power supply module	Converts the main AC or DC power source to the voltages required by the modules, radio/modems and accessories. Charges the backup battery and switches to the battery voltage when the main power fails (in models with charger.)	See Power Supply Module and Backup Battery chapter.
CPU module	Stores and runs the user application program, stores data collected by the I/O modules and communicates with the control center, RTUs and other devices via the communication ports.	See CPU Module chapter.
CPU plug-in port	Enables adding various communication ports to the CPU modules.	See CPU Module chapter.
CPU plug-in SRAM	Provides static RAM.	See CPU Module chapter.
I/O module	Matches between the ACE3600 and signals of various types/levels. Interfaces between the ACE3600 and the process signals.	See I/O Modules chapter.
I/O expansion module	Connects the signals to the I/O modules.	See I/O Modules chapter.
Terminal blocks (TB)	Connects the I/O modules on an I/O expansion frame to the CPU module on the RTU's main frame (frame 0), directly or via an expansion LAN switch).	See Expansion Module chapter.
24V DC power supply	Enables adding 24 V floating power supplies to I/O modules for contact "wetting" and sensor operation.	See I/O Modules chapter.

Component	Function	Notes
I/O expansion power supply	Connects 12V power and 12V DO from the power supply on the RTU's main frame to an I/O expansion frame, or from one I/O expansion frame to another.	See Expansion Power Supply Module chapter.
I/O expansion LAN switch	One switch enables connection of up to seven expansion frames to the main frame CPU. Two switches allow connection of up to thirteen expansion frames to the main frame CPU.	See Expansion LAN Switch chapter.
ACE IP Gateway module	Serves as a front end unit between ACE3600/MOSCAD RTUs and control center SCADA clients using TCP/IP protocol.	See ACE IP Gateway Module chapter.
TB holder kit	Holds Module TBs.	See I/O Modules chapter.
Cable with TB holder	A cable to connect signals to the I/O modules.	See I/O Modules chapter.
Backup battery	Enables backup RTU operation when main power fails.	See Power Supply Module and Backup Battery chapter.
Radio installation kit	Mechanical support and cables that enable installation of radio.	See Radio Types and Installation Kits chapter.
RS485 Connection Box to PC RS232 cable	Enables connection of up to 6 devices to the RS485 port on the CPU (2W multi-drop).	See the RS485 Connection Box chapter.
Enables connection of the RTU to a PC via the RS232 port.	For use of the ACE3600 Software Tools Suite (STS) to perform operations such as RTU configuration, system/application, download, monitoring, etc. See the ACE3600 STS User Guide.	
	STA	

Component	Function	Notes
RTU to PC Ethernet cable	Enables connection of the RTU to a PC via the Ethernet port.	For use of the ACE3600 Software Tools Suite (STS) to perform operations such as RTU configuration, system/application, download, monitoring, etc. See the ACE3600 STS User Guide.
Ethernet cable	Enables the following connections: 1. CPU to LAN switch 2. LAN switch to expansion frame 3. LAN switch to LAN switch	See Expansion Module chapter.
Ethernet cross cable	Enables the following connections: 1. A single I/O expansion frame directly to the RTU main frame. 2. PC (STS) directly to one of the CPU Ethernet ports.	See Expansion Module chapter.

Model Options and Accessories

F7500 - ACE3600 System Tools Suite Software
F7600 - ACE3600 'C’ Toolkit Software
The full list of ACE3600 options and accessories are listed in the ACE3600 System Planner.

Product Safety and RF Exposure

Before using an ACE3600 RTU model with a radio installed, read the operating instructions and RF exposure booklet for the specific radio contained in the product.

General

The ACE3600 RTU is shipped from the factory with the modules and plug-in ports assembled. The RTU frame is ready for mounting directly on a wall or in a customer's enclosure. The eight I/O frame can be installed on a 19 " rack.

Modules can be added to the slots in a frame before or after mounting the RTU on a wall/enclosure.

WARNING

Installation of the ACE3600 should be done only by authorized and qualified service personnel in accordance with the US National Electrical Code. Only UL Listed parts and components will be used for installation. Use UL Listed devices having an environmental rating equal to or better than the enclosure rating to close all unfilled openings.

If the installation involves high-voltage connections, technicians must be specifically qualified to handle high voltage.

If the I/O connections are powered by a hazardous voltage (>60VDC or >42Vpeak), all inputs should be defined as hazardous and the unit must be installed in a restricted access area for service personnel only.

If the I/O connections are powered by a safety extra low voltage (SELV) (<60VDC or <42Vpeak), all inputs should be defined SELV.

INSTALLATION CODES

This device must be installed according to the latest version of the country's national electrical codes. For North America, equipment must be installed in accordance to the applicable requirements in the US National Electrical Code and the Canadian Electrical Code.

INTERCONNECTION OF UNITS

Cables for connecting RS232 and Ethernet Interfaces to the unit must be UL-certified type DP-1 or DP-2. (Note- when residing in a non LPS circuit.)

OVERCURRENT PROTECTION

A readily accessible Listed branch circuit overcurrent protective device rated 20 A must be incorporated in the building wiring.

CAUTION

External wiring which connects an I/O module to instruments/devices may not exceed 42.67 m (140 feet).
If the ACE3600 is subject to high levels of shock or vibration, you must take suitable measures to reduce the acceleration or amplitude. We recommend that you install the ACE3600 on vibration-damping materials (for example, rubber-metal anti-vibration mountings).

METAL PARTS OF THE POWER SUPPLY MAY BE VERY HOT.
After removing the power supply module, allow the metal parts to cool down before servicing the unit.

NOTE

A TORX screwdriver is required for installation.

Mounting the ACE3600 Frame on a Wall

WARNING

Before drilling holes for mounting the frame, make sure there are no electrical wires installed inside the wall at the holes' location.

Four holes are provided, one in each corner of the RTU frame, for wall mounting the RTU. Figure 2-1, Figure 2-2, and Figure 2-3 show the dimensions of the various frames/metal chassis and the distances between the holes. For convenient installation of the ACE3600 RTU on a wall, allow an additional $6 \mathrm{~cm}\left(2.4^{\prime \prime}\right)$ (in W, H) and $7 \mathrm{~cm}\left(2.75^{\prime \prime}\right)$ (in D) around the plate.

Figure 2-2 No I/O, 2 I/O, and 3 I/O Frame Installation Dimensions and Screw Holes for Installation

5 I/O Frame

7 I/O Large Frame

Figure 2-3 5 I/O and 7 I/O Frame Installation Dimensions and Screw Holes for Installation

The following screw mount installation procedure should be used to install all ACE3600 frames (with or without a metal chassis) on a wall, except the 8 I/O (19") frame. For the 8 I/O frame, see Installing the ACE3600 in a 19" Rack and Mounting the ACE3600 8 I/O Frame on a Wall below.

Procedure 2-1 How to Mount the RTU Frame on a Wall

1) Drill four holes in the wall at the horizontal and vertical distances shown in Figure 2-1, Figure 2-2, and Figure 2-3.
2) Insert M4 screws (not supplied) with head size DIN $7981 \mathrm{C} /$ ST4, $2 \times 38 \mathrm{~mm}$ into the holes.
3) Remove the modules from the frame.
4) Lift the RTU frame and hang over the four screws.
5) Remove the outermost modules in order to access the screws.
6) Tighten all four screws with a screwdriver to secure the frame firmly against the wall.
7) Replace the removed modules in their slots.

Installing the ACE3600 in a 19" Rack

The following screw mount installation procedure should be used to install the ACE3600 8 I/O (19") frame / 19" frame metal back in a 19 " rack unit.

Note: The brackets for 19 " rack installation are not provided with the RTU and should be ordered separately.

Procedure 2-2 How to Mount the RTU in a 19" Rack Unit

1) Using three M4 screws supplied with kit FHN7420A, attach the metal bracket (p / n 07013005001 from kit FHN7420A) to the side of the 19" frame metal back, according to the desired depth of the unit on the rack. Repeat with the second bracket on the other side of the 19" frame metal back. See Figure 2-4.

Figure 2-4 Attaching Brackets to 19" Frame - Exploded View
2) Screw one M5 screw (not supplied) into the upright of the 19" rack unit, to correspond to the top keyhole on the metal bracket. Repeat on the opposite upright. See Figure 2-5.

Figure 2-5 Screws for Hanging 19" Frame in Rack Unit - Exploded View
3) Align the keyholes on the brackets with the two screws on the rack metal uprights, and hang the frame on the rack metal uprights. See Figure 2-6. Tighten the two screws to the uprights.
4) To reinforce the installation, add three more M5 screws (not supplied), through the remaining three holes on the metal bracket, into the upright of the $19^{\prime \prime}$ rack unit. Repeat on the opposite upright. See Figure 2-6.

Figure 2-6 Installation of ACE3600 RTU 19" Frame in Rack Unit - Exploded View

Installing the ACE3600 in a 19" Rack (for RTUs Ordered before October 2010)

The following screw mount installation procedure should be used to install the ACE3600 8 I/O (19") frame in a $19^{\prime \prime}$ rack, for RTUs ordered before October 2010.

Note: The brackets for 19 " rack installation are not provided with the RTU and should be ordered separately.

Procedure 2-3 How to Mount the RTU in a 19" Rack Unit

1) Press the small metal bracket into the slot of the larger bracket. See Figure 2-7.
2) Secure the two brackets together with two M5 screws (supplied), according to the desired depth of the unit on the rack. See Figure 2-7.
3) Repeat steps 1-2 for the other pair of brackets.
4) Using the supplied two screws, attach the combined brackets to the metal upright of a 19" rack unit. See Figure 2-7. Repeat on other side.

Figure 2-7 Installation of Brackets for 19" Rack Units
5) Hang the 19 " metal chassis on the brackets, so that the two teeth on the back of the metal chassis hook onto the groove of the larger bracket. See Figure 2-8.

Figure 2-8 Installation of ACE3600 RTU 19" Rack- Exploded View
6) From the standard rack unit, remove the two modules from the leftmost slots and the two modules from the rightmost slots. For the 19" accessories metal chassis, no accessories need to be removed. (See Figure 2-9.)
7) Using two supplied M5 (X6) screws and a 16 cm (6.3") long screwdriver, from inside the slot secure the 19 " metal chassis to the small bracket. Repeat on the second side. See Figure 2-8.
8) Replace any removed modules to their slots.

Figure 2-9 Installation of ACE3600 RTU 19" Rack Accessories - General View

Mounting the ACE3600 8 I/O Frame on a Wall

Figure 2-10 8 I/O Frame (19") Metal Back Installation Dimensions
The following screw mount installation procedure should be used to install the ACE3600 8 I/O (19") frame on the wall.

Note: The brackets for 19 " wall mount installation are not provided with the RTU and should be ordered separately.

Procedure 2-4 How to Mount the RTU 19" Metal Frame Back on a Wall

1) Remove the CPU, Power Supply and I/O modules from the RTU frame.
2) Drill four holes into the wall at the horizontal and vertical distances shown in Figure 2-10. (If you choose to further secure the 19 " frame, drill four additional four holes, at the distances shown in Figure 2-10.)
3) Using two M5 screws (not supplied), secure the rectangular wall mounting bracket (07013022001 from kit FHN7419A) to the wall, as shown in Figure 2-11. Repeat for the second bracket.

Figure 2-11 19" Frame Metal Back Bracket Installation
4) Fit the metal frame in between the two brackets, lining up the holes on the sides. (See Figure 2-12.)
5) Using three supplied M4 screws, secure the left bracket to the left side of the frame. (See Figure 2-12.) Using three more screws, secure the right bracket to the right side of the frame.
6) If you choose to further secure the 19" frame, screw two additional M5 screws (not supplied) into the two middle holes on the left bracket, as shown in Figure 2-12. Repeat for the right bracket.

Figure 2-12 19" Frame Metal Back Installation

Mounting the ACE3600 8 I/O Frame on a Wall (for RTUs Ordered before October 2010)

Figure 2-13 RTU Metal Chassis Installation Dimensions
Procedure 2-5 How to Mount the RTU 19" Metal Chassis on a Wall
The following installation procedure should be used to install the 8 I/O (19") frame on a wall, using the special wall mount brackets provided with the RTU.

1) Remove the CPU, Power Supply and I/O modules from the RTU frame.
2) Drill four holes into the wall at the horizontal and vertical distances shown in Figure 2-13.
3) Using two supplied screws, secure the rectangular wall mounting bracket to the wall. Repeat for the second bracket.
4) Hang the metal chassis on brackets so that the two teeth of the metal chassis hook onto the groove of the brackets. (See Figure 2-14.)
5) Using two M4 screws (not supplied) with head size DIN 7981C/ST4, $2 \times 38 \mathrm{~mm}$ screws, secure the top and bottom of the frame to the left bracket. Repeat for the right bracket.

Figure 2-14 RTU Metal Chassis Installation

Mounting the ACE3600 NEMA 4 Housing on a Wall

The following screw mount installation procedure should be used to install ACE3600 frames in NEMA 4 housing on a wall.

For convenient installation of the ACE3600 RTU with the NEMA 4 housing, allow an additional $6 \mathrm{~cm}\left(2.4^{\prime \prime}\right)$ (in W, H) and $7 \mathrm{~cm}\left(2.75^{\prime \prime}\right)$ (in D) around the housing.

Four mounting brackets are provided, one in each corner of the RTU, for wall mounting the RTU housing (see Figure 2-15 through Figure 2-17). Figure 2-15 and Figure 2-16 show the distances between the bracket holes.

Figure 2-16 Small NEMA 4 Housing - Installation Dimensions

Procedure 2-6 How to Mount the RTU NEMA 4 Housing

1) Drill four holes in the wall at the horizontal and vertical distances shown in Figure 2-15 (for the large housing) and in Figure 2-16 (for the small housing.)
2) Using the brackets and the screws supplied in the plastic bag, fasten the mounting brackets, either horizontally or vertically, onto the four back corners of the housing. See Figure 217.
3) Mount the RTU onto the wall and secure with M4 screws (not supplied) with head size DIN 7981C/ST4, 2x38mm through the bracket hole. See Figure 2-17.

Figure 2-17 Mounting the NEMA 4 Housing

Connecting Power and Ground

All internal electrical connections except for the main power, ground and battery are performed in the factory and supplied with the RTU. The electrical interconnection diagrams are provided in the Break-Fix Procedures chapter.

The procedures for the main power, ground and battery connections are provided below.

WARNING

The power and ground connections should be performed only by qualified and authorized service personnel. All power and ground connections must be in accordance with local standards and laws.

Per UL 60950 / EN 60950, install an external circuit breaker rated at 6 A between the power source and the ACE3600 Power supply.

Per UL 60950 / EN 60950, for all I/O modules connections, the maximum voltage should not exceed 60V DC or 30 V AC unless it is specifically written otherwise.

To maintain Overvoltage (Installation) Category II, install a suitable surge suppressor device in the branch circuit to limit expected transients to Overvoltage Category II values. The limits are based on IEC60664 and are also located in Table 2H of UL60950 (for mains $=150 \mathrm{~V}$, the transient rating is 1500 V ; for $150 \mathrm{~V}<$ mains $=300 \mathrm{~V}$, the transient rating is 2500 V ; and for 300 V < mains $=600 \mathrm{~V}$, the transient rating is 4000 V).

nOTE

Make sure that the ground wire on the user cable is long enough to reach the grounding strip.

Connecting AC/DC Main Power

The power connection to all the ACE3600 power supply types is via the power junction box located on the frame beneath the power supply slot.

IMPORTANT

Safety standards require that the power cable be attached to the unit at two anchor points:

- Anchor point 1 for all units is inside the power junction box. (See Figure 2-18 below.)
- Anchor point 2 for the basic model (No I/O Slots Frame) is located on the right of the power junction box. (See Figure 2-18 below.)
Anchor point 2 for all units with housing (other than No I/O Slots) is in the housing power cable gland. (See Figure 2-22 below.)
Anchor point 2 for all other units without housing (other than No I/O Slots) is near the unit's ground strip. (See Figure 2-19 below.)

Figure 2-18 RTU on No I/O Frame - Cable Anchor Points 1 and 2

Figure 2-19 RTU on Metal Chassis - Cable Anchor Point 2

Procedure 2-7 How to Connect the RTU to Main Power Source (Units with Frames and Metal Chassis)

1) Using a screwdriver, open the power junction box cover (save the screws) and unscrew the power terminals screws inside the power junction box.
2) Thread the user's main power cable through the two supplied clamps.
3) Attach the wires of the user cable, according to the labels ($\sim / 0$ for AC and $+/$ - for DC.) For the No I/O Frame, connect the ground cable to the lower wire terminals (third pair). See Figure 2-20 and Figure 2-21.

Figure 2-20 RTU Power and Ground Connections - No I/O Frame Installation

Figure 2-21 RTU Power and Ground Connections - All Other Installations
4) Pass the power cable to the right of the wire terminals inside the junction box, over the horizontal ridge.
5) Close the first clamp around the user cable and screw it onto the junction box, into the hole next to wire terminals (anchor point \#1).
6) Close the second clamp and screw it onto the anchor point near the grounding strip (or on the bottom of the plastic to the right of the junction box in case of the No I/O Slots frame.)
7) Replace the junction box cover over the junction box.
8) Secure the junction box cover with two saved screws.
9) For all installations except the No I/O frame, loosen the two screws on the grounding strip at the bottom of the metal chassis/housing and connect the ground cable to the protective ground. Tighten the screws firmly.
10) Open the door of the power supply module and press in the cable holder downwards.

11) Plug the connector of the power supply cable (FKN8381A/3089004V64 for DC, FKN8382A/3089004V65 for AC) into the cable inlet on the power supply module (on the bottom of the front panel.) and rotate the cable holder upwards to secure.

Procedure 2-8 How to Connect the RTU to Main Power Source (Units with Housing)

1) Using a screwdriver, open the power junction box cover (save the screws) and unscrew the power terminals screws inside the power junction box.
2) Insert the rubber grommet (supplied) into the threaded plastic cable gland, and place it into the hole on the bottom of the housing (from the outside.) (See Figure 2-22.)
3) Place the nut into the same hole from inside the housing and screw the nut onto the cable gland. (See Figure 2-22.)
4) Thread the user's main power cable ($110 / 220 \mathrm{VAC}$ or $24-48 \mathrm{VDC}$) through the cable gland cover from below, through the cable gland, and into the housing. (See Figure 2-22.)

Figure 2-22 RTU in NEMA 4 Housing - Cable Gland Anchor Point 2
5) Attach the wires of the user cable, according to labels ($\sim / 0$ for AC and $+/-$ for DC.) See Figure 2-20 and Figure 2-21. For the No I/O frame, connect the ground cable to the lower wire terminals (third pair).
6) Tighten the screws of the wire terminals and screw the wire terminals onto the junction box.
7) Pass the power cable into the right side of the junction box, over the horizontal ridge.
8) Place the user cable into the clamp, close the clamp and screw it onto the junction box, into the hole next to wire terminals (anchor point \#1).
9) Replace the junction box cover over the junction box.
10) Secure the junction box cover with the two saved screws.
11) For all installations except the No I/O frame, loosen two screws on the grounding strip at the bottom of the metal chassis/housing and connect the ground cable to the protective ground. Tighten the screws firmly.
12) Screw the top of the cable gland tightly to the cable gland to secure the cable (anchor point \#2).
13) Open the door of the power supply module and release the cable holder (press downward).
14) Plug the connector of the power supply cable (FKN8381A/3089004V64 for DC, FKN8382A/3089004V65 for AC) into the cable inlet on the power supply module (on the bottom of the front panel.) and close the cable holder.

Connecting the Expansion Power Supply to the Main Frame Power Supply

When an I/O Expansion frame with an I/O Expansion power supply is added to the RTU, connect the power as follows:

Procedure 2-9 How to Connect the Expansion Power Supply to the Main Frame Power Supply

1) Using a DC power cable (FKN8559A/\#3002360C26), connect the Rack Exp connector from the power supply on the main frame to the Power In connector on the Expansion power supply.
2) If the RTU includes more than one Expansion frame, use a DC power cable (FKN8559A/\#3002360C26), to connect the Expansion Power Out connector on the preceding Expansion power supply to the Power In connector on the next Expansion power supply.

IMPORTANT

Before connecting I/O Expansion frames to the main frame, make sure that the power supplies in question meet the power requirements of the RTU. For information, see the ACE3600 System Planner.

Connecting the Backup Battery

The backup battery of ACE3600 is shipped from factory disconnected. Use this procedure to connect the battery cable to the power supply charger.

Before using the Lead Acid backup battery, it is strongly recommended to read the information on the battery provided in the Power Supply Module and Backup Battery chapter.

Lead acid batteries will self-discharge if they are stored without charging. Selfdischarge below the manufacturer's recommended voltage will result in internal permanent damage to the battery rendering it inoperable. When this occurs, if connected to a power supply/charger, the battery may produce excessive internal heat and therefore deform and/or leak.

WARNING

A battery contains diluted sulfuric acid, a toxic and corrosive substance. Avoid any bodily contact with the leaking liquid when handling leaking batteries and affected parts. If the battery leaks and the liquid inside touch the skin or clothing, immediately wash it off with plenty of clean water. If the liquid splashes into eyes, immediately flush the eyes with plenty of clean water and consult a doctor. Sulfuric acid in the eyes may cause loss of eyesight and acid on the skin will cause burns.

Procedure 2-10 How to Connect the Backup Battery

1) Check the battery visually. If the battery looks deformed and / or you notice corrosion on the battery terminals and / or the battery leaks, DO NOT use the battery and replace it with a new battery.
2) Check the battery terminal voltage level before connecting it. If the battery voltage is less than 12.5 V DC, DO NOT use the battery and replace it with a charged battery that measures at least 12.5 V DC.
3) If the battery passes a visual inspection and the terminal voltage is correct, plug the battery cable (FKN8376A/\#3089927V10) into the Battery In/Out connector on the power supply module.
4) Fully charge the battery prior to initial use (~ 10 hours).

Connecting I/O Modules to Ground

Before operating the I/Os in the ACE3600, the I/O modules must be connected to ground.
Procedure 2-11 How to Connect an I/O Module to Ground

1) Identify the PGND pin(s) on the I/O module using the Module Block Diagram or

Connection Charts in the relevant chapter for the I/O module type. See the symbol next to the Protective Ground in the Module Block Diagrams.
2) If user-supplied cables are used, connect the ground wire(s) to the PGND pin(s) on the I/O module and to the grounding strip at the bottom of the RTU. (See grounding strip in Figure 2-19 above.)
3) If the wired cable braid is used, identify the ground wire(s) based on the pin number printed on the wire label.
Connect the ground wire(s) from the cable braid to the PGND pin(s) on the I/O module and to the grounding strip at the bottom of the RTU. (See grounding strip in Figure 2-19 above.)
4) Repeat steps 1-3 for the PGND wires on all I/O modules.

Connecting an RTU to Ground

When an RTU is installed, individual ground wires (from the power cable and from the PGND pin on the I/O module cables) are connected to the grounding strip on the chassis. The grounding strip must then be connected to the grounding point of the cabinet or 19 " rack.

In an RTU with I/O expansion, the grounding strip of each frame must be connected to the grounding point of the cabinet or 19 " rack. Figure 2-23 below depicts the ground connections of an RTU with a single expansion frame and Figure 2-24 depicts the ground connections of an RTU with multiple expansion frames.

Figure 2-23 Ground Connections of an RTU with a Single Expansion Frame

Figure 2-24 Ground Connections of an RTU with Multiple Expansion Frames

Connecting the Radio

A radio which is shipped in the ACE3600 is fully connected. To add a radio to the ACE3600, use the appropriate radio installation kit. For information on radio types, radio installation kits and connections, see the Radio Types and Installation Kits chapter.

Opening/Closing the Housing Door

The door to the small ACE3600 NEMA 4 housing is equipped with a latch or with an optional padlock accessory. See Figure 2-25. The door to the large ACE3600 NEMA 4 housing is equipped with two door latches or with an optional padlock accessory plus a latch. See Figure 2-26.

Procedure 2-12 How to Open and Close the Housing Door

1) To open a small RTU housing equipped with a door latch, turn the latch clockwise. The door will open.
To open a small RTU housing equipped with the padlock accessory, remove the usersupplied padlock (if one exists) and turn the padlock accessory clockwise. The door will open.
To open a large RTU housing equipped with two door latches, turn both latches clockwise.
The door will open.
To open a large RTU housing equipped with the padlock accessory and a latch, remove the user-supplied padlock (if one exists) and turn the padlock accessory and latch clockwise. The door will open.
2) To close a small RTU housing equipped with a door latch, turn the latch counterclockwise and push the door closed until the latch clicks.
To close a small RTU housing equipped with the padlock accessory, turn the padlock accessory counterclockwise and push the door closed until the latch clicks. Add the usersupplied padlock (if one exists) to lock the door.
To close a large RTU housing equipped with two door latches, turn both latches counterclockwise and push the door closed until the latch clicks.
To close a large RTU housing equipped with the padlock accessory and a latch, turn the padlock accessory and latch counterclockwise and push the door closed until the latch clicks. Add the user-supplied padlock (if one exists) to the padlock accessory to lock the door.

Figure 2-25 Small ACE3600 NEMA 4 Housing/Housing with Padlock

Figure 2-26 Large ACE3600 NEMA 4 Housing/Housing with Padlock

Installing Plastic Box Interfaces

Cards such as RS485 interface card can be attached to the ACE3600 RTU using a plastic box. The plastic box can be attached to the 19 " accessories metal chassis, small/large metal chassis, or small/large NEMA housing.

Procedure 2-13 How to Install the Plastic Box Interface on the Metal Chassis

1) To connect the plastic box interface to the metal chassis, place the box on the metal plate and click the two pegs on the back of the plastic box into the desired holes on the metal chassis. See Figure 2-27.
Note: This figure is for illustration purposes only. It is not relevant to install all the accessories below on the same metal chassis.

Portable Radio

Figure 2-27 Accessories Installed on a Metal Chassis
2) To remove the plastic box interface from the metal chassis, insert a screwdriver into the notch located in the snap securing the unit to the chassis. Slightly bend the snap outwards to release it from the slot, and carefully pull out the unit.

19" Metal Chassis Installation Combinations

The 19 " metal chassis can be ordered with a variety of frames, modules, and accessories (e.g. battery, radio, plastic box.) In certain cases, choosing a certain accessory reduces the other options. For example, the portable radio is installed on the 19 " metal chassis with the No I/O Frame in place of one plastic box. Likewise a battery is installed on the $19^{\prime \prime}$ metal chassis with the No I/O Frame in place of one plastic box.

For diagrams of the various combinations, see Figure 2-28 below.

Figure 2-28 19" Metal Chassis Installation Combinations

POWER SUPPLY MODULE AND BACKUP BATTERY

General Description/Module Overview

The ACE3600 power supply module provides the other modules in the RTU with their operating voltages via the motherboard bus.

The following power supply options are available:

- DC power supply low-tier (10.8-16V)
- DC power supply (10.8-16V) - provided by default with the ACE3600 RTU
- DC power supply (18-72V)
- DC power supply (18-72V) with battery charger
- AC power supply- $100-240 \mathrm{~V}$
- AC power supply- $100-240 \mathrm{~V}$ with battery charger

Common characteristics of all power supply modules (not including the DC power supply lowtier):

- On/Off switch on the front panel
- Controlled auxiliary voltage outputs
- Heat convection cooling (no need for fans)
- Short protection outputs
- Over heating protection
- Status LEDs in the front panel
- PS located on the leftmost slot of the frame
- Input current protection fuse
- Controlled power line enables centralized disabling of Electrically Energized relay outputs in selectable DO modules.

Note: The DC power supply low-tier does not support radios that require input power other than $10.8-16 \mathrm{~V}$. Do not use portable radios which require 7.5 V input with this option.

Note: The low limit of the DC power supply $(10.8-16 \mathrm{~V})$ can be configured to 10.5 V . The default is 10.8 .

Common characteristics of power supply modules with battery charger:

- Automatic switchover to battery on power fail
- Automatic switchover to main power on power return
- Temperature compensated charging
- Over-charging protection
- Over-discharge protection
- Battery test and diagnostics, including battery controlled discharge

Characteristics of the DC power supply low-tier:

- Two auxiliary voltage outputs
- Short circuit protection outputs
- PS located on the leftmost slot of the frame
- Overvoltage protection for CPU and I/Os
- Reverse voltage protection

Figure 3-1 below depicts a general view of the power supply.

Power Supply

DC Power Supply Low-Tier

Figure 3-1 ACE3600 Power Supply - General View

Note: An additional power supply module for use with I/O expansion frames is described in the Expansion Power Supply Module chapter below.

CAUTION

METAL PARTS OF THE POWER SUPPLY MAY BE VERY HOT. After removing the power supply module, allow the metal parts to cool down before servicing the unit.

Figure 3-2 below depicts a detailed view of the power supply front panel.

ON/OFF Switch

The front panel of the power supply module includes an ON/OFF switch for the module. In the OFF (down) position, all the power outputs except Battery In/Out are disabled. A mechanism is provided to prevent accidentally changing the switch position.

NOTE

In power supply modules equipped with a battery charger, if the ON/OFF switch is in the OFF position, and the RTU main power is connected, the Battery In/Out is not disabled to ensure battery charging.

Input/Output Connectors

The front panel of the power supply module (not including DC power supply low-tier) includes the following connectors.

Connector Name	Description	Notes
Auxiliary Output 1A	13.8 V DC $(\pm 5 \%) @ 20^{\circ} \mathrm{C}$ User controlled power output. Short protected.	This output is used for powering radios, modems, etc. The output can be switched ON/OFF either by the user application program or using the STS hardware test. (Default = ON) For more information, see the Performing Hardware Tests section or Application Programmer section of ACE3600 STS User Guide.
Auxiliary Output 1B	Same as Auxiliary Output 1 A	Same as Auxiliary Output 1A
Caution: Auxiliary Output 1A and 1B are ON by default with 13.8V DC. Do NOT plug in a radio which requires less voltage or the radio may be damaged.		
Auxiliary Output 2A	DC Power Output Selectable/programmable 3.3 to 9V DC or 13.8V DC ($\pm 5 \%$) @ 20 ${ }^{\circ} \mathrm{C}$. User controlled power output. Short protected.	This output is used for powering radios, modems, etc. The output voltage can be set by the user using the STS site configuration. The output can be switched ON/OFF either using the STS hardware test or by the user application program. (Default $=$ OFF) If both 2A and 2B are ON, they must have the same output level. The voltage levels of AUX2A and AUX2B are the same.
Auxiliary Output 2B	Same as Auxiliary Output 2A	Note: Auxiliary Output 2B can be ON independently of 2A. The voltage levels of AUX2A and AUX2B are the same.

$\left.\begin{array}{|l|l|l|}\hline \text { Connector Name } & \text { Description } & \text { Notes } \\ \hline \begin{array}{l}\text { Caution: If both 2A and 2B are ON, they must have the same output level. If cables are } \\ \text { connected to Auxiliary Output 2A and 2B, they must use the same voltage. }\end{array} \\ \hline \text { 12V DO Control } & \begin{array}{l}\text { Control input that enables } \\ \text { centralized disabling of } \\ \text { Electrically Energized (EE) } \\ \text { relay outputs in selectable } \\ \text { DO modules. }\end{array} & \begin{array}{l}\text { This input controls a dedicated 12V } \\ \text { power line that is available to all the } \\ \text { slots in the frame. In each relay DO } \\ \text { module, the user can mechanically } \\ \text { select to power the relay coils from this } \\ \text { dedicated 12V power line. }\end{array} \\ & \begin{array}{l}\text { Input open = Relays are } \\ \text { disabled. (ML relays do not } \\ \text { change state) } \\ \text { Input shorted = Relays are } \\ \text { enabled. }\end{array} & \begin{array}{l}\text { For details on setting this control, see } \\ \text { the Module Configuration section of the } \\ \text { DO Relay Module chapter. }\end{array} \\ & \begin{array}{l}\text { The power supplies on I/O expansion } \\ \text { frames can be attached via DC cable to } \\ \text { the power supply on the previous I/O }\end{array} \\ \text { expansion frame in a daisy-chain } \\ \text { manner, or directly to the main power } \\ \text { supply. In this case, the 12V DO } \\ \text { control on the main power supply can } \\ \text { control all DO EE relays in the entire } \\ \text { RTU that were configured by dip switch } \\ \text { for 12V DO. This enables the user to }\end{array}\right\}$

Connector Name	Description	Notes
12V Out	In systems with I/O expansion, provides 12V output to expansion power supplies on expansion frames.	Pin 1- PGND Pin 2- 12V DO Pin 3- GND Pin 4- MAIN (12V)

The front panel of the DC power supply low-tier includes the following connectors.

Connector Name	Description	Notes
Auxiliary Output 1A	Vin=Vout Shorted to Power IN.	This output is used for powering radios, modems, etc.

Connector Name	Description	Notes
Auxiliary Output 1B	Vin=Vout Shorted to Power IN.	This output is used for powering radios, modems, etc.
10.8-16V DC Main Power Input	Cable inlet for main power cable (DC)	The cable is part of the RTU frame (connected to the power junction box. Note: When the cable male connected is place in this input, it locks the power supply module in its slot. To remove the power supply module, first unplug the power input cable.

LEDs

The front panel of the power supply module (not including the DC power supply low-tier) includes five indication LEDs.

LED Name	Description	Status
PWR	Power LED	Indicates the existence of AC or DC main power in the Main Power input. When the ON/OFF switch is in ON position - the LED is lit in Green. When the ON/OFF switch is in OFF position, but there is AC or DC input or battery- the LED is lit in Red. When the ON/OFF switch is in ON position and the unit is powered from the battery - the LED is lit in Orange. When there is no AC or DC input or battery connected - the LED is OFF.
AUX1	Auxiliary Output 1 LED	AUX1A is ON - Green AUX1B is ON - Red AUX1A and AUX1B are ON - Orange
AUX2	Auxiliary Output 2 LED	AUX2A is ON - Green AUX2B is ON - Red AUX2A and AUX2B are ON - Orange
DO	Digital Output Control LED	Relays enabled - LED ON - Green Relays disabled - LED OFF

LED Name	Description	Status
BATT	Battery LED	No battery/thermistor - LED OFF Battery is fully charged (charging current $<20 \mathrm{~mA}$) - LED ON - Green Battery is being charged (charging current $>20 \mathrm{~mA}$ and <600mA)- LED ON - Green/Yellow Blinking Battery is being charged (charging current $>600 \mathrm{~mA}$)- LED ON - Yellow Battery is discharging (battery voltage is higher than voltage of power supply) - LED ON - Red.
		Battery charging current is stabilizing - LED ON - Yellow Blinking. When battery capacity test is being performed - the LED is lit in Green Blinking.
		Battery tests are performed using the STS Hardware Test function or the user application program.

Battery Charger

Power supply modules with a battery option support a 6.5 or 10 Ah Lead-Acid battery. The power supply automatically switches to the backup battery as a 12 V DC power source for the RTU and communications when the main AC or DC power source fails.

Power supply modules with a 12 VDC smart battery charger option charge the backup battery when not in use, and protect the battery from over-discharge. The charger performs battery tests/diagnostics, including controlled battery discharge, when requested by the user. If the battery is failed, the charger will not charge it and will send a failed status signal to the CPU. If the battery is remotely located, long battery cables can be used.

The DC power supply low-tier does not include a battery option.

Charging the Battery

The charging voltage of the Lead-Acid battery is controlled by the charger as a function of the battery temperature. The charging profile is set to comply with the temperature-compensated float-voltage of the ACE3600 battery.

Diagnostics

A battery test can be performed on the Lead-Acid battery, either from the ACE3600 STS Hardware Test utility or from the user application program. The battery test includes disabling the battery charger, discharging the battery and measuring the capacitance. For more information, see the Hardware Test section or the Creating a User Application section of the ACE3600 STS User Guide.

NOTE

It is recommended to run a battery capacity test once per month (for more exact results perform at $+10^{\circ}$ to $+30^{\circ} \mathrm{C}$), and a charge level test once per day. The capacity test lowers the main DC to a safety net level $(\sim 12 \mathrm{~V})$ so that the battery will be activated. The battery is heavily loaded for ~ 45 seconds, the power supply LED blinks green, and the battery capacity is measured. If the capacity is below the manufacturer recommended level, the battery should be replaced with a new one. (See Replacing the Backup Battery below.) Note that the capacity test is only available for the battery types supplied by Motorola.

The results of the battery capacity test can be:

- Battery OK
- Battery needs to be replaced
- Test blocked - bad environment

The battery capacity test will be blocked under the following conditions:

1. If the battery is discharging (battery is main power source of RTU),
2. If the battery or thermistor is disconnected,
3. If the battery temperature is outside the specified range,
4. If the battery type is not properly configured,
5. If the battery is not fully loaded.

For test accuracy, all heavy current consumers should be turned off. In the Hardware Test, the user should freeze the power supply before performing the battery capacity test.

Connecting the Power Supply to a Power Source

The power supply can be connected to an AC or DC power source. The DC power supply lowtier can be connected to a DC power source only.

The expansion power supply module is connected to another ACE36000 power supply using a DC power cable (FKN8559A/\#3002360C26).

For instructions on connecting the power supply to a power source, see the Power and Ground Connections section of the Installation chapter above.

IMPORTANT

All power and ground connections must be in accordance with local standards and laws.

Power Supply Module Specifications

The following charts detail the specifications of the various power supply modules. For specifications of the power supply module used with I/O expansion frames, see the Expansion Power Supply Module chapter below.

12V DC Power Su	Module (Default)
Input Voltage	DC $10.8-16 \mathrm{~V}$ The low limit of the DC power supply $(10.8-16 \mathrm{~V})$ can be configured to 10.5 V . The default is 10.8 .
Outputs	Motherboard connector (to CPU and I/O modules): equal to input voltage, max. 4 A AUX1A/AUX1B: equal to input voltage, max. 8 A , on/off controlled by user program AUX2A/AUX2B (configurable): equal to input voltage (default), max. 8A, or 3.3 (default), $5,7.5,9 \mathrm{~V} \mathrm{DC} \pm 10 \%$, max. 2.5 A , on/off (default) controlled by user program Note: max. 8 A total current consumption from all outputs
No Load Power Consumption	Max. 50 mA
Diagnostic LEDs	Status LED for: input voltage, AUX1 and AUX2 outputs, 12 V control for DO modules
Input Protection	Internal line fuse, replaceable
Output Protection	AUX2A/B short circuit, automatic recovery on 3.3, 5, 7.5, 9 V
Dimensions	$56 \mathrm{~mm} \mathrm{~W} \mathrm{x} 225 \mathrm{~mm} \mathrm{H} \mathrm{x} 180 \mathrm{~mm} \mathrm{D}\left(2.2 \mathrm{C}\right.$ W x 8.7" H x $7.11^{\prime \prime} \mathrm{D}$)
Weight	Approx. $0.43 \mathrm{Kg}(0.95 \mathrm{Lb})$
12V DC Low-Tier Power Supply Module	
Input voltage	10.8-16 V DC
Outputs	Motherboard connector (to CPU and I/O modules): The same as input voltage / max. 4 A AUX1A/AUX1B: equal to input voltage max. 8 A Note: max. 8 A total current consumption from all outputs
Input Protection	Internal line fuse, replaceable
Dimensions	56 mm W x 225 mm H x 180 mm D (2.2" W x 8.7" H x 7.1" D)
Weight	Approx. $0.43 \mathrm{Kg}(0.95 \mathrm{Lb})$

Specifications subject to change without notice.

18-72V DC Power Supply Modules	
Input Voltage	18-72 V DC
Total Power	18-72 V DC Max. 60 W continuous; max. 105 W peak @ 25% duty cycle
Outputs	Motherboard connector (to CPU and I/O modules): $13.2 \mathrm{~V} \mathrm{DC} \pm 20 \%$, max. 4 A AUX1A/AUX1B: 13.2 V DC $\pm 20 \%$, max. 8 A , on/off controlled by user program AUX2A/AUX2B (configurable): equal to AUX1A/AUX1B voltage, max. 8 A, or 3.3 (default), $5,7.5,9 \mathrm{~V}$ DC $\pm 10 \%$, max. 2.5 A , on/off (default) controlled by user program Note: max. 8 A total current consumption from all outputs
Battery Charger	12 V Lead Acid battery charger (in PS model with charger) Automatic charging of 6.5 or 10 Ah backup battery, battery temperature sensing, overcharging protection, battery capacity test and diagnostics, automatic battery switch-over
Diagnostic LEDs	Status LED for: input voltage, AUX1 and AUX2 outputs, 12 V Control DO for DO modules, and battery
No Load Power Consumption	Max. 250 mA
Efficiency	80\% typical, 76% with full load
Inrush Current	10 A maximum, for 2 mSec . Max, cold start at $25^{\circ} \mathrm{C}$
Protection	Internal line input fuse (replaceable), short circuit automatic recover
Output Protection	AUX2A/B short circuit, automatic recovery on 3.3, 5, 7.5, 9 V
Insulation	Input to case: 500 V DC, input to output 500 V DC
Dimensions	$56 \mathrm{~mm} \mathrm{~W} \mathrm{x} 225 \mathrm{~mm} \mathrm{H} \mathrm{x} 180 \mathrm{~mm} \mathrm{D} \mathrm{(2.2"} \mathrm{~W} \mathrm{x} \mathrm{8.7"} \mathrm{H} \mathrm{x} 7.1^{\prime \prime} \mathrm{D}$)
Weight	Approx. 1 Kg (2.2 Lb)

Specifications subject to change without notice.

AC Power Supply Module	
Input voltage	100-240 V AC, $50 / 60 \mathrm{~Hz}$
	100-240 V AC, $50 / 60 \mathrm{~Hz}$ with 12 V smart battery charger
Total Power	Maximum 60 W continuous; maximum 105 W peak @ 25% duty cycle
Outputs	Motherboard connector (to CPU and I/O modules): $13.2 \mathrm{~V} \mathrm{DC} \pm 20 \%$, max. 4 A AUX1A/AUX1B: $13.2 \mathrm{~V} \mathrm{DC} \pm 20 \%$, max. 8 A , on/off controlled by user program AUX2A/AUX2B (configurable): equal to AUX1A/AUX1B voltage, max. 8 A, or 3.3 (default), $5,7.5,9 \mathrm{~V} \mathrm{DC} \pm 10 \%$, max. 2.5 A , on/off (default) controlled by user program Note: max. 8 A total current consumption from all outputs
Battery Charger	12 V Lead Acid battery charger (in PS with charger)
	Automatic charging of 6.5 or 10 Ah backup battery, battery temperature sensing, overcharging protection, battery capacity test and diagnostics, automatic battery switch-over
Diagnostic LEDs	Status LED for: input voltage, AUX1 and AUX2 outputs, 12 V Control for DO modules, and battery
No Load Power Consumption	130 mA @ 220 V AC
Efficiency	80\% typical @ 230 V AC, 76\% typical @ 115 V AC (full load)
Inrush Current	25 A maximum, for 2 mSec . Max, cold start at $25^{\circ} \mathrm{C}$
Power Factor	0.98 typical at $230 \mathrm{~V} \mathrm{AC}, 0.99$ typical at 115 V AC
Protection	Internal line fuse, replaceable
Output Protection	AUX2A/B short circuit, automatic recovery on 3.3, 5, 7.5, 9 V
Insulation	Input to case: 1500 V AC , input to output: 3000 V AC
Dimensions	56 mm W x 225 mm H x 180 mm D (2.2" W x 8.7" H x 7.1' D)
Weight	Approx. 1kg (2.2 lb)

Specifications subject to change without notice.

Backup Battery

Overview

The ACE3600 backup 12V Lead-Acid battery provides backup for the main input power. The battery is available in two capacities: 6.5 Ah and 10 Ah . Switching from main input power to the battery and charging of the battery is performed by the ACE3600 power supply module.

Sealed Lead Acid technology batteries can be recharged and discharged at a temperature range of -30° to $+60^{\circ} \mathrm{C}$. Storage and operating temperatures affect the battery capacity and lifespan. ACE3600 power supply modules include a special charging power supply designed to fit the specific temperature-compensated float-voltage-charging curve of the battery.

CAUTION

Lead Acid batteries will self-discharge if they are stored without charging. Selfdischarge below the manufacturer's recommended voltage will result in internal permanent damage to the battery rendering it inoperable. When this occurs, if connected to a power supply/charger, the battery may produce excessive internal heat and therefore deform and / or leak.

The batteries are shipped disconnected from the power supply/charger. To ensure that there are no battery problems on your ACE3600 project, each Lead Acid battery MUST be fully charged and checked before connecting it to the ACE3600 power supply/charger. To verify that the battery is fit for use, measure the BATTERY OPEN CIRCUIT voltage (when the battery is not connected to the power supply/charger) with a digital voltmeter. If the battery voltage is less than 12.5 V DC, DO NOT use the battery and replace it with a new ACE3600 battery that measures more than 12.5 V DC.

Before transporting the battery, read and follow all safety information located on the battery case.

IMPORTANT

ACE3600 batteries are shipped from the factory tested, fully charged and with a label stating the next time it should be recharged when stored at temperatures of $30^{\circ} \mathrm{C}$ or less.

Motorola battery warranty is valid only when the battery is charged with the original Motorola ACE3600 charging power supplies. Use of any other power supply/charger will void the battery warranty.

Under various state or local laws, the batteries must be recycled or disposed of properly and cannot be disposed of in landfills or incinerators. Environmental protection regulations classify used Lead Acid batteries as hazardous waste, unless certain exemptions apply. Consideration should be given to the methods of collecting, labeling, handling and shipping used Lead Acid batteries. Please consult the environmental protection authority for specific legal requirements and for recycling options in your country/area.

Backup Battery Storage, Lifespan, Inspection and Replacement

The manufacturer's recommendations for handling during each of the battery's life stages are:

- Transportation:

Batteries must be handled with care to prevent falls, impact, short circuit or exposure to high temperatures and fire.

- Battery Storage:

Storage of batteries in a warehouse requires a periodic recharge. The time between these recharge cycles depends upon the storage temperature. The minimum open circuit voltage allowed on the battery before recharging is 12.42 V , which represents remaining capacity of approximately 30%. Therefore it is recommended to perform a full charging cycle every few months depending upon the storage temperature of the battery. Please refer to Table 3-1 to determine the suggested maximal period between recharge cycles that suits the actual storage conditions. Improper storage may cause deep discharge of the battery, which might cause degradation of the battery operating life and lower the actual delivered capacity. Motorola performs a periodic full charge cycle procedure on stored batteries and a final full charge operation prior to shipment.

- Lifespan:

The average temperature of the battery environment affects the lifespan of batteries installed in the field. Please refer to the battery vendor information at the following website:

- (Sonnenschein A512/6.5S and A512/10S): http://www.sonnenschein.org/A500.htm
- Inspection and Replacement:

It is important to inspect the batteries periodically (recommended every 6-12 month) and replace any battery that has corrosion on the leads or it is deformed or leaks. Such a battery should be disposed according to the local environmental laws. To assure the battery availability and proper operation, the battery should be replaced at the end of its lifespan (approximately 30% capacity) even if it is still functional. Measure the battery open circuit voltage using a digital voltmeter as described above. Please note that using a battery beyond its lifespan period may cause a battery heating, leakage and/or deformation.

Table 3-1: Recommended Time between Periodic Battery Recharge vs. Storage Temperature

Average Storage Temp (${ }^{\circ}$ C)	Recharge Interval (Months)
25	12
45	4
60	1

Replacing the Backup Battery

WARNING

A battery contains diluted sulfuric acid, a toxic and corrosive substance. Avoid any bodily contact with the leaking liquid when handling leaking batteries and affected parts. If the battery leaks and the liquid inside touch the skin or clothing, immediately wash it off with plenty of clean water. If the liquid splashes into eyes, immediately flush the eyes with plenty of clean water and consult a doctor. Sulfuric acid in the eyes may cause loss of eyesight and acid on the skin will cause burns.

Procedure 3-1 How to Replace the Lead Acid Backup Battery

To replace the Lead-Acid backup battery, follow the procedure below.

1) Disconnect the battery cable from the Battery connector of the power supply (see Figure 3-2) and from the battery.
2) Unscrew the battery holders (two screws in the small battery and four screws in the large battery) with the attached battery temperature sensor. (See Figure 3-3 below.)

Figure 3-3 Backup Batteries - Exploded View
3) Remove the old battery from the RTU.
4) Check the replacement battery visually. If the battery looks deformed, if you notice corrosion on the battery terminals, or the battery leaks, DO NOT use the replacement battery; get another replacement battery.
5) Check the replacement battery terminal voltage level before connecting it. If the battery voltage is less than 12.42 V DC, DO NOT use the battery and replace it.
6) If the replacement battery passed the visual inspection and the terminal voltage is satisfactory, put the battery into place on the RTU and screw in the battery holders.
7) Connect the battery cable to the battery terminals in the correct polarity.
8) Connect the battery cable to the Battery In/Out connector on the front panel of the power supply module.
9) Recharge the replacement battery for 10 hours to be fully charged.

CPU MODULE

General Description

The main element of the ACE3600 is the CPU module. It controls the I/O modules, processes the gathered data and communicates with the outside world.

The core of the module is Freescale's MPC8270 32-bit microprocessor which has extended communication capabilities, high speed core, DMA and floating point calculation support. The module includes on-board memory, communication ports, I/O bus interface and other circuits. The firmware is based on Wind River's VxWorks operating system.

Module Location: The CPU is a removable module located in a dedicated slot in the RTU rack. The CPU module must be plugged into the wide slot to the right of the Power Supply module. (Inserting the module in the wrong slot will not cause any damage to the CPU.)

Figure 4-1 provides a general view of the ACE3600 CPU (Models 3610, 3640, and 3680).

The CPU panel includes status LEDs, user LEDs, communication port LEDs, two pushbuttons, and communication ports. The panel is covered by the module door.

Figure 4-2 provides a detailed view of the CPU front panel.

Figure 4-2 ACE3600 CPU (Models 3610/3640/3680) - Front Panel

Front Panel

Communication Ports

The CPU module includes several communication ports:
On Board ports:

- USB Host $1 / 2$ (HU1/HU2) - USB Type A host full speed ports for MDLC over IP communication via the MotoTrbo digital mode radio system (up to two radios attached to two USB host ports at one time) No USB devices or USB Hubs other than MotoTrbo radios are supported.
- Serial 1 (SI1) - RS232/RS485 serial port (configurable)
- Serial 2 (SI2) - RS232 serial port
- Ethernet (Eth1) - 10/100BaseT Ethernet port (CPU 3640 or 3680 only)
- DU1 - USB device port, Type B connector (future option)

Plug-in port bays, where different types of ports can be installed:

- Plug-in 1 (PI1) - fits RS232, RS485, 10 MB Ethernet, 10/100 MB Ethernet, or Radio Modem Plug-in option
- Plug-in 2 (PI2) - fits RS232, RS485, 10 MB Ethernet, or Radio Modem Plug-in port option.

For the detailed specifications of each port, see CPU 3610/CPU 3640 Module Specifications and CPU 3680 Module Specifications below. For information on the cables and connectors, see Appendix C.

The ACE3600 Ethernet port performs an Auto-Negotiation procedure whenever a peer device connection is detected at a $10 / 100 \mathrm{Mbps}$ Ethernet port.. The Auto-Negotiation procedure guarantees that the speeds of ACE3600 and peer Ethernet ports will match, whether or not the peer supports Auto-Negotiation. If the peer supports AutoNegotiation, the duplex of ACE3600 and the peer Ethernet ports also match.

It is recommended to configure the Ethernet port of the device connected to the ACE3600 Ethernet port (e.g. switch, etc.) to Auto-Negotiation mode. This will guarantee a full match of speed and duplex between the ACE3600 and the peer device Ethernet ports. If the peer device Ethernet port does not support Auto-Negotiation, set the duplex of the peer to half duplex to avoid the duplex mismatch problem.

	Peer Ethernet Port Mode				
	Auto	100 Mbs Full Duplex	100 Mbs Half Duplex	10 Mbs Full Duplex	10 Mbs Half Duplex
Speed Match with ACE3600	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Duplex Match with ACE3600	\checkmark	\times	\checkmark	\times	\checkmark

Buzzer

The CPU module includes a buzzer (audio indication), which is used to indicate task completion (such as end of download/upload, restart etc.) and can also be controlled from the user application program.

Pushbuttons

The CPU includes two pushbuttons on the front panel, PB1 and PB2.
These pushbuttons are used for activating and testing the modules LED, restarting the unit, erasing the user Flash memory and activating memory test. Table 4-2 describes the pushbuttons functionality.

The pushbuttons can also be monitored by the user application program (when it is running) for the application purposes.

LEDs

The CPU includes CPU status LEDs, port status LEDs, and user LEDs. Some of the LEDs are single color (green) and some are bicolor LEDs (red, green or orange).

Status LEDS indicate the CPU status in startup (boot), run-time or when there is a failure. The communication LEDs are used to indicate the communication port status. The user LEDs can be used by the user application program. Note that during startup or failure, the communication and user LEDs are used to indicate various situations. Table 4-4 details the LEDs functionality.

CPU Memory

The ACE3600 CPU includes Flash, SDRAM, and optional SRAM Plug-in memory.
The Flash stores the firmware, the user application program, and the user data.
The SDRAM memory stores the temporary data.
The optional SRAM memory expansion is used for logging user data. The SRAM data is retained using an on-board rechargeable lithium battery. See Backup Battery for SRAM and RTC for more information.

The size of the CPU memory is determined by the model as shown in the table below.
Table 4-1 ACE3600 CPU Memory

	Model 3610	Model 3640	Model 3680
Flash memory	16 MB	16 MB	32 MB
SDRAM memory:	32 MB	32 MB	128 MB
User Flash:	3 MB	3 MB	19 MB
User SDRAM:	10 MB	10 MB	118 MB
SRAM Plug-In	4 MB	4 MB	4 MB

Real Time Clock (RTC)

The CPU includes a low drift RTC. The date and time are retained using an on-board rechargeable lithium battery.

The CPU date and time can be set using the ACE3600 STS. The CPU can also be synchronized with other RTUs in the system, using the system clock. For more information, see the Setting/Getting a Site's Date and Time section or the Creating a User Application section of the ACE3600 STS User Guide.

Backup Battery for SRAM and RTC

The CPU module includes a rechargeable lithium battery that provides backup power and data retention for the SRAM and RTC.

The lithium battery is located on the CPU board and cannot be replaced.
Typically, the battery will retain the SRAM data and RTC for 60 continuous days without power and no Lead-Acid backup battery. When the SRAM option is not used, the Lithium battery will keep the Real Time Clock running for a longer period of time.

CPU Firmware and Operation Modes

The CPU firmware is a real-time multitasking operating system, based on the Wind River VxWorks OS. The CPU shipped from the factory with the most recent firmware version, and it can be updated/replaced using a remote or local connection. Downloading firmware updates is performed using the STS. (See Downloading to a Site in the ACE3600 STS manual.) If the new firmware download stops or fails, the CPU will restart with the existing firmware.

Power-up and Restart

The CPU requires DC voltage provided by the power supply module via the motherboard (when the PS switch is ON). The CPU will power-up and restart in the range of 10.8 V to 16 V DC. During power-up, the processor performs fast memory tests, initiates the RTU and starts the user program (if one was downloaded). The end of the power-up sequence is indicated by the buzzer. The length of time from the beginning of CPU power-up until the user program starts running is approximately $10-15$ seconds.

It is possible to perform a comprehensive memory test during power-up by pressing pushbutton PB1 for few seconds while switching the power supply from OFF to ON. In this case the power-up period is about 30-35 seconds long.

If the startup fails, the RTU will freeze (boot sequence stops), the PWR LED will blink and the four indicator LEDs (see LEDs Location in Table 4-3) will blink seven times. The four LEDs will then display the failure error in binary code, as described in Table 4-3.

Restart after Firmware Download

The RTU will restart after downloading system firmware. If the firmware is faulty or the firmware download failed, the RTU, if protected by the Safe Firmware Download feature, will restart and roll back to the previous firmware version. A failure message will appear in the STS Downloader screen. For information on using the Safe Firmware Download feature, see the Safe Firmware Download section of the ACE3600 STS Advanced Features manual.

Restart after Configuration Download

The RTU will restart after downloading a site configuration. For information on downloading to the RTU, see the Operation chapter of the ACE3600 STS User Guide.

If the RTU fails to restart after the user-defined site configuration was downloaded, a unique LED display (in the range of the PI1-TX and SI2-RX LEDs) and a series of buzzer tones will follow. The RST LED will turn RED and the RTU will restart itself with the previous "good" configuration. The following message will appear in the RTU Error Logger "Configuration file was deleted due to failure in startup. Rolling back to the last configuration file". Errors can be retrieved from the RTU using the ACE3600 STS Error Logger utility.

If the startup succeeds after configuration download but has errors, these errors are reported in the RTU Error Logger. It is, therefore, recommended to check for errors after downloading a configuration file to the RTU. Errors can be retrieved from the RTU using the ACE3600 STS Error Logger utility.

For information on retrieving errors from the RTU Error Logger, see the Operation chapter of the ACE3600 STS User Guide.

Restart after Erase Flash

After the User Flash is erased, the RTU will restart successfully with the default site configuration.

Power-down

When the voltage provided to the CPU module drops below the minimum level, the CPU will shut down in an orderly fashion. This level is configurable for all power supply modules other
than the 12 V DC power supply low-tier. See the 'Minimum DC operation voltage' parameter in Appendix A: Site Configuration Parameters of the ACE3600 STS User Guide.

CPU Status and Diagnostics

The CPU status is indicated on the front panel LED. Detailed CPU status and diagnostics information can be retrieved from the module using the CPU Hardware Test utility. For more details, see the Hardware Test section of the ACE3600 STS User Guide.

CPU Warnings and Errors

CPU warnings and errors are logged in the CPU memory to indicate issues or errors during power-up, restart, user application program execution and other modes of CPU operation. The existence of CPU warnings and errors are indicated in the ERR LED on the front panel of the module. Green indicates a message, orange indicates a warning and red indicates an error.

The CPU error logger information can be retrieved using the STS Error Logger utility. For more details, see the Error Logger section of the ACE3600 STS User Guide.

CPU Serial Number

Each CPU has a unique serial number. This number is printed on a label on the side of the CPU module front panel. The serial number can be read using the STS Hardware. For more information, see the Hardware Test section of the ACE3600 STS User Guide.

Connecting Plug-In Ports to the CPU Module

In general, the plug-in ports are ordered as options with the RTU and are installed in the factory. However, it is also possible to add plug-in ports to the CPU after it is shipped from the factory. Several plug-in ports are available. See Communication Ports above.

Note: A TORX screwdriver is required for installation of the plug-in ports.

Figure 4-3 depicts a plug-in port board attached to the ACE3600 CPU module.

Figure 4-3 Plug-In Port in CPU Module
Procedure 4-1 describes how to connect a plug-in port to the CPU.
Procedure 4-1 How to Connect a Plug-in Port to the CPU

1) Remove the CPU module from the RTU.
2) Remove the cover from the desired opening on the front panel.
3) Connect two supporting pins with screws to the plug-in port.
4) Place the plug-in board with the RJ-45 connector facing the panel. Carefully insert the plug-in board connector into the appropriate connector on the CPU board.
For Ethernet $10 / 100 \mathrm{MB}$, use the J 14 connector on the CPU (Plug-in 1 only.) For all other plug-in ports, use the J 5 (Plug-in 1) or J6 (plug-in 2) connector.
5) Connect the two supporting pins with screws to the other side of the CPU board.
6) Replace the CPU module in the slot.

Connecting SRAM Expansion Memory to the CPU Module

In general the plug-in SRAM is ordered as an option with the RTU and is installed in the factory. However, it is also possible to add plug-in SRAM to the CPU after it is shipped from the factory.

Note: A TORX screwdriver is required for installation of the SRAM.
Figure 4-4 depicts the user SRAM Plug-in memory in the ACE3600 CPU module.

Figure 4-4 SRAM Expansion in CPU Module

Procedure 4-3 describes how to connect a plug-in SRAM memory card to the CPU.
Procedure 4-2 How to Connect a Plug-in SRAM Memory Card to the CPU

1) Remove the CPU module from the RTU.
2) Remove the cover from the connector marked P12 on the CPU board.
3) Place the plug-in SRAM memory card with the connector facing the panel. Carefully insert the plug-in board connector into the connector on the CPU board.
4) Secure the memory card to the CPU board with the supplied screw.
5) Replace the CPU module in the slot.

Pushbutton Functionality

The table below describes the use of the two pushbuttons in various scenarios, during power-up and run-time. To press a pushbutton during startup, first press the pushbutton(s), then turn on the RTU using the On/Off switch on the front panel. Keep the pushbutton(s) depressed for the required number of seconds, as specified in the scenarios below.

Table 4-2 ACE3600 Pushbutton Functionality

Scenario	Trigger	Action
LEDs Test	During run-time, press PB1 for five or more consecutive seconds (but less than 30).	All the LEDS on the CPU and I/O modules will be lit until let go of PB1 and then returned to their previous states.
RTU Restart	During run-time, press PB1 for 30 consecutive seconds.	All the LEDs will be lit. Then all the LEDs will blink once. The buzzer will buzz several short beeps. (If PB1 is released during this time the restart will not be performed.) At the long beep, release PB1 and the RTU will restart (and the buzzer will buzz.)
Turn LEDs ON	During run-time, press PB1 for one second.	Those LEDs which are currently active will be turned on for a period of time (configured in the RTU configuration using the STS.)
RAM Test	During startup, press PB1.	A detailed memory test of SDRAM and SRAM plug-in is performed.
(At the beginning of the RAM test, the		
four indicator LEDs (see LEDs Location in		
Table 4-3) will blink three times. During		
the RAM test, the LEDs may blink or be		
lit.		
If the RAM test succeeds, the four LEDs		
will blink three times and turn off and the		
restart sequence will continue.		
If the RAM test fails, the RTU will freeze		
(restart sequence stops), the PWR LED		
will blink and the four LEDs will blink		
seven times. The failure error code will		
then be displayed on the LEDs, in binary		
code, as described in Table 4-3.		
-		

Scenario	Trigger	Action
Erase User Flash	During startup, press both PB1 and PB2 simultaneously until the buzzer buzzes five times quickly, then continuously for three seconds.	All the user Flash memory content excluding logging files (files tagged as data logging files) is erased, including the site configuration, user application programs, user tables, etc.
Bootstrap	During startup, press PB2 continuously for five seconds. Note: Before initiating bootstrap, the CPU must be connected directly to the STS PC in standalone mode. No other components can be on the network which might create a conflict with the default IP address.	The RTU will start up in diagnostic mode. Communication with the RTU is for diagnostic purposes only (Error Logger/ SW Diagnostics.) You cannot download to the RTU and no application will run. If the bootstrap fails, the four indicator will display the failure error in binary code, as described in Table 4-3.

Table 4-3 ACE3600 Failure - Error Code Display on LEDs

CPU LEDs Behavior

The table below describes the behavior of the LEDs on the CPU module.
Table 4-4 ACE3600 CPU LEDs Behavior

LED Name	Description	Status
PWR	Power LED	
Bicolor LED (Red, Green)	Flashing Red - Power exists; CPU FPGA not loaded. Green - Power exists; CPU is running from a recognized power supply (one of the six power supply options.) Red - Failure on power-up. CPU is running from an unrecognized power supply.	
ERR	Error Logger Status LED Bicolor LED (Red, Green)	OFF - No new errors or warnings. Green - New message logged. Orange - New warning logged. Red - New error logged. Note: In systems with I/O expansion, the ERR LED can indicate an error in either the main or expansion frame.
RST	Reset LED Bicolor LED (Red, Green)	Green - On startup OFF - Successful power-up or restart. Red - Power-up or restart failed.
APPL	Application LED Bicolor LED (Red, Green)	OFF - No user application program in the Flash memory. Green - User application program is running. Orange - User application program was paused by user (during Hardware Test.)
CONF	Configuration LED Bicolor LED (Red, Green)	OFF - Configuration was not loaded. Green - Configuration was loaded. Red - Configuration error.
USB Host1 LNK (link)	ON - A USB device is connected. OFF - No link exists between the CPU and the MotoTrbo radio.	

[^29]$\left.\begin{array}{|l|l|l|}\hline \text { LED Name } & \text { Description } & \text { Status } \\ \hline \text { H1 LNK2 } & \begin{array}{l}\text { USB Host2 LNK (link) } \\ \text { Green LED }\end{array} & \begin{array}{l}\text { ON - A USB device is connected. } \\ \text { OFF - No link exists between the CPU and } \\ \text { the MotoTrbo radio. }\end{array} \\ \hline \text { PI1 TX } & \begin{array}{l}\text { Plug-in Port 1 - TX } \\ \text { (transmit) } \\ \text { Green LED }\end{array} & \begin{array}{l}\text { ON- Transmitting Data }\end{array} \\ \hline \text { PI1 RX } & \begin{array}{l}\text { Plug-in Port 1- RX (receive) } \\ \text { Green LED }\end{array} & \begin{array}{l}\text { ON - Receiving Data }\end{array} \\ \hline \text { PI1 CM } & \begin{array}{l}\text { Plug-in Port 1 - CM (channel } \\ \text { monitor) } \\ \text { Green LED }\end{array} & \begin{array}{l}\text { ON - Channel Busy (if port is in use by radio, } \\ \text { RS485, or RS232) }\end{array} \\ \hline \text { S1 Network Connected (if an IP plug-in is } \\ \text { used) }\end{array}\right\}$

[^30]| LED Name | Description | Status |
| :--- | :--- | :--- |
| PI2 TX | Plug-in Port 2 - TX
 (transmit)
 Green LED | ON - Transmitting Data |
| PI2 RX | Plug-in Port 2 - RX (receive)
 Green LED | ON - Receiving Data |
| PI2 CM | Plug-in Port 2 - CM (channel
 monitor)
 Green LED | ON - Channel Busy (if port is in use by radio,
 RS485, or RS232)
 - Network Connected (if an IP plug-in is
 used) |
| D1 RX | For future use | For future use |
| USR1-
 USR4 | User application program
 LEDs
 Green LED | Controlled by the user application program.
 Light consecutively and repeatedly one after
 the other when entering boot mode. |

** The LED names E1 LNK and RX appear only in CPU 3640 and CPU 3680.

CPU 3610/CPU 3640 Module Specifications

Microprocessor	Freescale - Power PC II MPC8270, 32-bit, extended communication capability, DMA and floating point calculation support
Microprocessor Clock	200 MHz
Memory	Flash: $16 \mathrm{MB} / 3 \mathrm{MB}$ free for user DRAM: $32 \mathrm{MB} / 10 \mathrm{MB}$ free for user SRAM plug-in (Optional): 4 MB total, all free for user
Real-Time Clock	Full calendar with leap year support (year, month, day, hours, minutes, seconds). Time drift: max. 2.5 Seconds per day (when power is on)
SRAM and RTC Retention	3 V Rechargeable lithium backup battery
Serial Port 1	Configurable RS232 or RS485 port: - RS232: Asynch, Full Flow Control, up to $230.4 \mathrm{~kb} / \mathrm{s}$, GPS receiver interface - RS485, multi-drop 2-Wire up to $230.4 \mathrm{~kb} / \mathrm{s}$
Serial Port 2	RS232, Asynch, Full Flow Control, up to $230.4 \mathrm{~kb} / \mathrm{s}$, GPS receiver interface
Ethernet Port 1	$10 / 100 \mathrm{Mb} / \mathrm{s}$ (on CPU 3640 only)
Plug-In Port 1	Supports the following plug-in ports: - Radio Modem, DPSK $1.2 \mathrm{~kb} / \mathrm{s}$, FSK $1.2 / 1.8 / 2.4 \mathrm{~kb} / \mathrm{s}$, DFM 2.4/3.6/4.8 kb/s - RS232, Sync/Asynch, Full Flow Control, up to $230.4 \mathrm{~kb} / \mathrm{s}$, GPS receiver interface - RS485, multi-drop 2-Wire up to $230.4 \mathrm{~kb} / \mathrm{s}$ - Ethernet $10 / 100 \mathrm{Mb} / \mathrm{s}$
Plug-In Port 2	Supports the following plug-in ports: - Radio Modem, DPSK $1.2 \mathrm{~kb} / \mathrm{s}$, FSK $1.2 / 1.8 / 2.4 \mathrm{~kb} / \mathrm{s}$, DFM 2.4/3.6/4.8 kb/s - RS232, Sync/Asynch, Full Flow Control, up to $230.4 \mathrm{~kb} / \mathrm{s}$, GPS receiver interface - RS485, multi-drop 2-Wire up to $230.4 \mathrm{~kb} / \mathrm{s}$ - Ethernet $10 \mathrm{Mb} / \mathrm{s}$
LEDs Display	4 CPU diagnostic LEDs, Port status LEDs and user application LEDs
Power Consumption	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Operating Voltage	10.8-16 V DC (from the motherboard connector)
Dimensions	56 mm W x 225 mm H x 180 mm D (2.2" W x 8.7" H x 7.1" D)
Weight	Approx. $0.38 \mathrm{Kg}(0.84 \mathrm{Lb})$

Specifications subject to change without notice.

CPU 3680 Module Specifications

Microprocessor	Freescale - Power PC II MPC8270, 32-bit, extended communication capability, DMA and floating point calculation support
Microprocessor Clock	200 MHz
Memory	Flash: 32 MB/19 MB free for user SDRAM: 128 MB/118 MB free for user SRAM plug-in (Optional): 4 MB total, all free for user
Real-Time Clock	Full calendar with leap year support (year, month, day, hours, minutes, seconds). Time drift: max. 2.5 Seconds per day (when power is on)
SRAM, RTC, and Security Chip Retention	3 V Rechargeable lithium backup battery
USB Host Port 1, 2	Type A host full speed 12 Mbs ports (HU1 on left and HU2 on right) for MDLC over IP communication via the MotoTrbo digital mode radio system (on CPU 3680 only). For MotoTrbo radio only; No other USB devices or USB Hubs are supported.
Serial Port 1	Configurable RS232 or RS485 port: - RS232: Asynch, Full Flow Control, up to 230.4 kb/s, GPS receiver interface - RS485, multi-drop 2-Wire up to 230.4 kb/s
Serial Port 2	RS232, Asynch, Full Flow Control, up to 230.4 kb/s, GPS receiver interface
Ethernet Port 1	Ethernet 10/100 Mb/s
USB Device Port 1	USB device port, Type B connector (for future use)
Plug-In Port 1	Supports the following plug-in ports: - Radio Modem, DPSK 1.2 kb/s, FSK 1.2/1.8/2.4 kb/s, DFM 2.4/3.6/4.8 kb/s
- RS232, Sync/Asynch, Full Flow Control, up to 230.4 kb/s,	
GPS receiver interface	
- RS485, multi-drop 2-Wire up to 230.4 kb/s	
- Ethernet 10/100 Mb/s	

Specifications subject to change without notice.

General Description

The ACE3600 RTU can include up to eight I/O modules, depending on the frame size. A variety of I/O modules are available. Additional I/O modules can be added using the I/O Expansion frame. For information, see the I/O Expansion chapter below.

The I/O modules can be positioned in the slots to the right of the CPU. As with all ACE3600 modules, the I/O modules can be replaced while the power is on (hot-swap.)

Figure 5-1 provides a general view of an ACE3600 I/O module.

I/O Module with Two TBs I/O Module with Three TBs Figure 5-1 ACE3600 I/O Module - General View

Each I/O module includes an ERR status LED, individual I/O status LEDs, an array of I/O connectors, and a coding mechanism for the terminal cable connector or TB holder option.

Figure 5-2 provides a detailed view of the I/O front panel.

Figure 5-2 ACE3600 I/O Module - Front Panel (without TB Holder)

I/O Module LEDs

The ERR LED indicates an I/O module fault and errors. It will remain lit until all the errors have been eliminated. Diagnostic and error messages can be retrieved from the module using the ACE3600 STS Error Logger or SW Diagnostics. For more information, see the ACE3600 STS User Guide.

The I/O status LEDs in Digital Input (DI) and Digital Output (DO) modules indicate ON and OFF (LED lit when the I/O is ON.) In Analog Input (AI) modules, each input has two LEDs, indicating Overflow (OF) and Underflow (UF). In Analog Output (AO) modules, each output has three LEDs, indicating voltage output (Vout), current output (Iout), and calibration (Cal). In the 8 DO Select Before Operate (SBO) module, the Controlled DO LED indicates whether 12 V is controlled or not.

I/O Module Test

The I/O modules can be tested using the STS Hardware Test utility. For more information, see the ACE3600 STS User Guide.

The I/O module LEDs can be tested using the STS Hardware Test utility- all the LEDS are lit for a number of seconds, and then turned back to their previous state.

Panel Terminal Block (TB) Connectors

Each I/O module is equipped with a set of two, three or four TB connectors. Each TB connector has a fixed female side on the module and a male plug for the sensor/device wire connection. The TB male side in all modules is screw type for up to 1 mm (18 AWG) wire in modules with two/four TBs (3.5 mm pitch) or 1.6 mm ($14 \mathrm{AWG)} \mathrm{wire} \mathrm{in} \mathrm{modules} \mathrm{with} \mathrm{three}$

TBs (5 mm pitch). A TB holder can also be ordered for all I/O module types. (See TB Holder and Cables below.) Two TB extractor tools (FHN7063A) are provided for easy removal of TBs, one for modules with two/four TBs and one for modules with three TBs.

Figure 5-3 TB Connector-Male/Female

Procedure 5-1 Extracting the TB Connector from the I/O Module

1) Open the door of the I/O module to expose the TB connectors (2-4).
2) Position the TB extractor over the desired TB connector, with the small notch facing to the right. (See Figure 5-4.)
3) Press the center of the TB extractor from both sides to open the two sides of the clamp end.
4) Clamp the open TB extractor over the desired TB connector and pull on the back handle to extract the TB connector from the I/O module.

Figure 5-4 TB Extractor

TB Holder and Cables

The TB holder secures the male TBs neatly in place and forms a single connector plug per module. The wires connected to the TBs are concealed in the holder. The module and the TB holder provide a coding mechanism to prevent cabling errors. Ejector handles enable easy release of the TB holder connector from the module. An optional three-meter cable braid, completely wired with holder and cable, is available.

A TB holder kit is available to enable self-assembly of cables. User assembled cables should
 up to 0.8 mm (20 AWG) in modules with three $\mathrm{TBs}(5 \mathrm{~mm}$ pitch). The TB holder kit does not include a cable.

Note that a Philips screwdriver is required for assembling the TB holder and a flat screwdriver is required for setting the code key pin.

Figure 5-5 Terminal Block (TB) Holder-Front and Back View

Assembling the TB Holder Parts

Procedure 5-1 Assembling the TB Holder Parts
If the TB holder kit is ordered, follow the procedure below. (See Figure 5-6.)

1) Prepare the cable by cutting the wires to fit the TBs. Connect the wires of the userassembled cables to the TBs, following the pin descriptions on the module panel label (where pin 1 is at the top of first TB and so on downwards.)
2) Place the TBs onto the left part of the TB holder plastic.
3) Add the top ejector handle, the code key and the positioner.
4) Close the right side of the plastic TB holder over the left side.
5) Screw together the assembly using the three screws provided in the kit. Note the lower screw holds the positioner into place.)
6) Insert the lower ejector handle at the bottom of the TB holder.
7) Slide the metal axis into lower ejector handle from the side.

Once the TB holder is assembled, it can be connected to the I/O module.

Figure 5-6 provides an exploded view of the TB holder assembly for four TBs.

Figure 5-6 Terminal Block (TB) Holder Assembly - Exploded View with Coding

Attaching the TB Holder Clip to the I/O Module

An optional TB holder clip can be added to the I/O module to secure the cable.
Procedure 5-2 Attaching the TB Holder Clip to the I/O Module

1) Remove the I/O module from the ACE3600 RTU.
2) Using the supplied screw, attach the TB holder clip to the bottom of the I/O module. (See Figure 5-7.)
3) Replace the I/O module in the RTU slot.

Figure 5-7 I/O Module with Terminal Block (TB) Holder Clip

Connecting the TB Holder to the I/O Module

Procedure 5-3 Connecting the TB Holder to the I/O Module

1) Open the door of the I / O module.
2) On the TB holder, loosen the screw and turn the positioner so that the arrow points to either A or B .
3) Tighten the screw.
4) With a flat screwdriver, set the code key pin to a number from 1 to 6 .
5) On the I / O module, using a flat screwdriver, set the pin to the same number (from 1 to 6 .) This ensures that the TB holder will not be accidentally connected to the wrong I/O module.
6) Slide the plastic lip on the bottom of the I/O module to either A (up) or B (down) (as in Step 2).
7) Align the plastic lip with the flat edge of positioner on the TB holder and snap the TB holder into the I/O module, (see Figure 5-8), fitting the code key pin into the code key.
8) If the ejector handles are extended, push them inwards, against the TB holder (see Figure 5-8.)
9) If a TB holder clip was attached to the I/O module, slide the cable between the two edges of the clip, and press the clip closed to secure the TB holder to the module. See Figure 5-7.
10) Label the TBs wires with any desired user notes. The wires are numbered 1-20 or 1-40 depending on the model. The wire numbers correspond to the module pins.
11) To extract the TB holder from the I/O module front panel, extend the ejector handles outward away from the module and pull on the handles.

Figure 5-8 provides a general view of the TB holder and an I/O module.

Figure 5-8 Terminal Block (TB) Holder on I/O Module - General View with Coding

Wired Cable Braid

The optional three-meter cable braid is completely wired with a TB holder and either 20-wire or 40 wire cable. Each wire in the cable is labeled with the corresponding pin number. This information is useful when connecting the PGND to the grounding strip. See the Connecting I/O Modules to Ground section of the Installation chapter.

User Label

Each I/O module is provided with a blank label on the module door for user notes.

Inserting/Removing an I/O Module from the Frame

I/O modules support hot-swap and can be inserted and extracted while the system is powered up. For instructions on removing/inserting an I/O module from/into a frame, see the Replacing an I/O Module section of the Break-Fix Procedures chapter below.

Note: The hot-swap of an I/O module in the expansion frame of an RTU which is running without a configuration from the STS (i.e. running the default configuration as from the factory) will not be successful in the following situation: If the expansion module restarts while the main CPU is running and during this restart, a I/O module is removed. In such a case, when the expansion module powers up, it will not recognize the removed I/O module and will not report the hot-swap to the main CPU when the I/O module is replaced in the slot.

Automatic Module ID

Each I/O module has a unique module type ID number. When the RTU is powered up or when an I/O module is inserted into a slot (hot-swap), the CPU automatically identifies the module type.

The module ID can be viewed from the STS Hardware Test utility. For more information, see the Hardware Test section of the ACE STS User Guide.

24V DC Floating Plug-In Power Supply

Up to two 24V DC floating plug-in power supplies can be added to certain I/O modules, as detailed in the table below. Up to four 24V DC floating plug-in power supplies can be added per power supply module. (For guidelines on remaining within the maximum system power consumption, see Appendix D: ACE3600 Maximum Power Ratings below.)

Table 5-1 Number of Plug-In Power Supplies in ACE3600 I/O Modules

Module Type	Number of Power Supplies
32 DI	2
16 DI	1
16 AI	1
8 AI	1
Mixed I/O	1
Mixed Analog	1

The plug-in power supply is ordered separately.
Before installing the 24 V DC floating plug-in power supply card on the I/O module, please verify that the FPGA version of the I/O module is as follows:

I/O Module Type

AI module (all types)
DI module (all types)
Mixed I/O module (all types)

FPGA Version

Version 1.5.002 or higher.
Version 2.1.004 or higher.
Version 1.5.004 or higher.

Use the ACE36000 STS Hardware Test utility to retrieve the FPGA version from the unit. If the FPGA version listed in the Module Diagnostics is lower than the version in the chart above, you must upgrade the I/O version by downloading a higher version FPGA file using the STS. Contact your local support team for the updated FPGA file.

Procedure 5-4 Attaching the Power Supply to the I/O Module
Attach the power supply to the I/O module using the following procedure. Note that a TORX screwdriver is required.

1) Remove the cap from the 40 -pin connector on the power supply plug-in.
2) Place the plug-in onto the board with the connector attached and the spacers over the holes on the board.
3) Screw the four supplied metals screws into the spacers to secure the plug-in. The RTU will automatically recognize the 24 V power supply.

Each plug-in power supply output is controlled by the CPU module. By default, the plug-in power supply is ON and can supply up to 150 mA . The power supply plug-in can be turned ON/OFF via the user application program or Hardware Test utility.

Figure 5-9 provides a general view of an I/O module with one plug-in.

Figure 5-9 ACE3600 I/O Module with a 24V Floating Power Supply Plug-In

24V DC Floating Plug-In Power Supply Module Detailed Specifications

Input Voltage	10.8-16 V (from I/O module)
Outputs	24V floating, max. 150 mA
Power Consumption	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Efficiency	75% typical
Protection	Automatic output shut down on overvoltage and overcurrent
Insulation	Input to output: 1500 V AC
Dimensions	$78 \mathrm{~mm} \mathrm{~W} \times 15 \mathrm{~mm} \mathrm{H} \mathrm{x} 68 \mathrm{~mm} \mathrm{D}\left(3.1^{\prime \prime} \mathrm{W} \mathrm{x} 0.6^{\prime \prime} \mathrm{H} \mathrm{x} \mathrm{2.7"} \mathrm{D}\right)$
Weight	Approx. $0.04 \mathrm{Kg}(0.09 \mathrm{Lb})$

Specifications subject to change without notice.

DIGITAL INPUT MODULE

General Description

The ACE3600 Digital Input (DI) module can have 16 or 32 inputs.
The following DI modules are available.

- 16 DI Fast 24 V
- 32 DI Fast 24 V
- 16 DI Fast 24V IEC TYPE 2
- 32 DI Fast 24V IEC TYPE 2
- 32 DI Fast 48 V

Two types of voltage ("wet") inputs are supported, IEC 61131-2 Type II compliant inputs and 24 V "MOSCAD compatible" inputs. In the 32 DI module, the first 20 inputs can function as fast counters. In the 16 DI module, all inputs can function as fast counters. A counter's maximum rate is dependent on the module type (see the specifications below.)

All the inputs are optically isolated. All DI modules except the 32 DI 48 V module support optional 24V DC floating plug-in power supplies (for contact "wetting" or other purposes).

Each DI can be an event trigger (interrupt-driven) to a high priority fast process. The high priority fast process enables very fast activation of an output in response to an input trigger and logical conditions. This high priority fast process is not dependent on the I/O scan (refer to the STS Application Programmer manual.)

For a description of I/O module construction, location, LEDs, TBs, and other common I/O module features, see the I/O Modules chapter above.

Figure 6-1 provides a general view of the ACE3600 DI module.

Figure 6-2 provides a detailed view of the ACE3600 DI module front panel.

16 DI Module

32 DI Module
32 DI Module

DI Module Configuration

The 16 DI Fast 24 V and 32 DI Fast 24 V modules can handle AC and DC input signals. The user can select DC or AC operation per module. When AC configuration is selected, the Fast Capture, Counter Function and Input Filters (see below) are disabled. The 32 DI 48V modules can handle DC input signals only.

Fast Capture (DC Configuration)

When the DI module is in DC mode, each DI can be configured as a Fast Capture DI. Fast capture causes the SCAN ladder output operation to get the first change that occurred since the previous scan. When fast capture is disabled, the scan gets the current value of the DI (in this case, any DI changes between scans are missed.)

Input Filters (DC Configuration)

When the DI module is in DC mode, each input has a HW input filter to make sure that the input reading is stable. The range of the HW DI filter is 0 to 50.8 millisecond (in 0.2 mS steps). The Fast Counter DI filter range is 0 to 12.75 millisecond (in 0.05 mS steps).

Event Time Tagging

Each DI can be set in the user application program's I/O link table to trigger recording of time tagged events upon any input change of state. The time tagged events are recorded in the CPU memory and can be retrieved for various purposes.

Keep Last Value (KLV) and Predefined Value (PDV)

Each input can be configured to KLV or to a $\operatorname{PDV}(0,1)$. This value is shown to the user application program in the event of DI module failure. The PDV can also be used during normal operation to force a value that masks the actual input value. In this case the user program will get the PDV instead of the actual input value.

DI Module Configuration Options

The DI module features which can be configured are listed in the table below. Some parameters are per module and some are per input.

Table 6-1 ACE3600 DI Module Configurable Features

Feature	Parameter Settings	Default Setting	Per Module / Input	Parameter Setup Location
DC or AC operation	AC / DC	DC	Module	STS site configuration
Fast Capture	Disabled /Enabled	Disabled	Input	STS site configuration
DI Filter (DC)	$0-254(x ~ 0.2$ $\mathrm{mS})$	$50 * 0.2 \mathrm{mS}$ $(=10 \mathrm{mS})$	Module	STS site configuration; 'C' User Program
Counter Filter (DC)	$0-255(\mathrm{x} 0.05$ $\mathrm{mS})$	$20 * 0.2 \mathrm{mS}$ $(=1 \mathrm{~ms})$	Module	STS site configuration 'C' User Program
Event Time Tagging	Disabled/ Enabled	Disabled	Input	User Program I/O link table
Keep Last Value and Predefined Value	KLV/PDV PDV=0/1	KLV	Input	User Program I/O link table
Mask	No /Yes	No	Input	User Program I/O link table

[^31]
Sleep Mode

Each DI module can be switched by the user application program to Sleep Mode. In Sleep Mode, the module does not function and the power consumption is minimized. During Sleep mode, the user application program will get the predefined values (PDV) for each I/O.

Module Status and Diagnostics

In the event of DI Module failure, the I/O module ERR LED will be lit. This event is registered by the CPU in the Error Logger. DI Module failure status is also visible to the user application program.

The DI module can be diagnosed and monitored using the STS Hardware Test utility. This test verifies that the module is operational, presents the module configuration and shows the actual value of each input. It is also possible to change the input filter setup temporarily for the duration of the Hardware Test.

In the Hardware Test utility, it is possible to set the DI module to Freeze Mode. In this mode the user application program will get the predefined value of each input in the module, instead of the actual input value. Freeze mode enables testing the inputs while the user application program is running.

For details on configuring the DI modules, see the Site Configuration section, and the Application Programming section of the STS User Guide.

I/O Circuit Diagram

DI - Typical Input Circuit

	Fast 24 V	Fast 48V
R	255Ω	$3.32 \mathrm{~K} \Omega$
Vz	33 V	68 V
Current Limiter	3.5 mA	3 mA

Module Block Diagram

16 DI

Connection Charts

16 DI			
Pin	Function	Pin	Function
1	DI1	11	DI11
2	DI2	12	DI12
3	DI3	13	DI13
4	DI4	14	DI14
5	DI5	15	DI15
6	DI6	16	DI16
7	DI7	17	$+24 V$
8	DI8	18	COM1
9	DI9	19	PGND1
10	DI10	20	PGND1

32 DI			
Pin	Function	Pin	Function
1	DI1	21	DI17
2	DI2	22	DI18
3	DI3	23	DI19
4	DI4	24	DI20
5	DI5	25	DI21
6	DI6	26	DI22
7	DI7	27	DI23
8	DI8	28	DI24
9	DI9	29	DI25
10	DI10	30	DI26
11	DI11	31	DI27
12	DI12	32	DI28
13	DI13	33	DI29
14	DI14	34	DI30
15	DI15	35	DI31
16	DI16	36	DI32
17	$+24 V^{*}$	37	$+24 V^{*}$
18	COM1	38	COM2
19	PGND1	39	PGND2
20	PGND1	40	PGND2

[^32]
I/O Connection Diagram

Connection of a dry contact sensor to the DI module requires "wetting" the contact with a voltage. This can be done using the 24 V DC floating plug-in power supplies that can be added to the module (in $16 / 32$ DI Fast $24 \mathrm{~V} /$ Fast 24 V IEC TYPE 2 modules only). The 24 V can be also used to power "wet" sensors.

DI Module Specifications	
16/32 DI FAST 24V Modules	
Total Number of Inputs	16 DI ; 32 DI
Input Arrangement	Isolated groups of 16 inputs with shared common
Fast Counter Inputs	Inputs that can be used as fast counters: - All inputs in 16 DI module; - First 20 inputs in 32 DI module
AC Input Frequency	$45-65 \mathrm{~Hz}$
AC Input Delay	Maximum 0.2 mS
Fast Counter Input Frequency	$0-12.5 \mathrm{KHz}$, minimum pulse width $40 \mu \mathrm{~S}$
Max. DC Input Voltage	Max. $\pm 40 \mathrm{~V}$ DC (relative to input common)
"ON" DC Voltage Range	+9 to +30 V DC, -30 to -9 V DC
"OFF" DC Voltage Range	-3 to +3 V DC
"ON" AC Voltage Range	10 to $27 \mathrm{~V} \mathrm{AC} \mathrm{(RMS)}$
"OFF" AC Voltage Range	0 to 5 V AC (RMS)
Input Current	Max. 3.5 mA
Fast Capture Resolution	1 mS (Interrupt upon change of state)
Event Time Tagging Resolution	1 mS (Interrupt upon change of state)
Input Filtering	0 to 50.8 mS (DC, programmable in 0.2 mSec steps)
Counter Input Filtering	0 to 12.75 mS (programmable in 0.05 mSec steps for inputs configured as high speed counters)
24 V DC Output	Supports optional isolated 24 V plug-in "Wetting" Power Supply (one in 16 DI , two in 32 DI)
Diagnostic LEDs	Status LED per each input, module error LED, 24 V plug-in status LED
User Connection	2 or 4 Terminal Blocks (3.5 mm pitch), Maximum 18 AWG
Cable and TB Holder	20 or 40 Wire Cable with TB Holder connector, 26 AWG wires
Module Replacement	Hot swap replacement - module extraction/insertion under voltage
Input Isolation	2.5 kV RMS between input and module logic per IEC60255-5
Input Insulation	Insulation resistance $100 \mathrm{M} \Omega$ @ 500 V DC per IEC60255-5
Operating Voltage	$10.8-16 \mathrm{~V} \mathrm{DC}$ and 3.3 V DC (from the motherboard connector)
Power Consumption	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Dimensions	$37 \mathrm{~mm} \mathrm{~W} \mathrm{x} 225 \mathrm{~mm} \mathrm{H} \times 180 \mathrm{~mm} \mathrm{D}$, (1.5" W x 8.7" H x 7.1" D)
Weight	16 DI : approx. $0.28 \mathrm{Kg}(0.62 \mathrm{Lb}) ; 32 \mathrm{DI}$: approx. $0.29 \mathrm{Kg}(0.63 \mathrm{Lb})$

16/32 DI FAST 24V IEC 61131-2 TYPE II Modules	
Total Number of Inputs	16 DI
	32 DI
Input Arrangement	Isolated groups of 16 inputs with shared common
Fast Counter Inputs	Inputs that can be used as fast counter: - All inputs in 16 DI module - First 20 inputs in 32 DI module
Fast Counter Input Frequency	0-10 KHz, minimum pulse width $50 \mu \mathrm{~S}$
Max. DC Input Voltage	Max. $\pm 40 \mathrm{~V}$ DC (relative to input common)
"ON" DC Voltage Range	+11 to +30 V DC, -30 to -11 V DC
"OFF" DC Voltage Range	-5 to +5 V DC
Input Current	6-10 mA
Fast Capture Resolution	1 mS (Interrupt upon change of state)
Event Time Tagging Resolution	1 mS (Interrupt upon change of state)
Input Filtering	0 to 50.8 mS (DC, programmable in 0.2 mSec steps)
Counter Input Filtering	0 to 12.75 mS (programmable in 0.05 mSec steps for inputs configured as high speed counter)
24V DC Output	Supports optional isolated 24 V plug-in "Wetting" Power Supply (one in 16 DI , two in 32 DI)
Diagnostic LEDs	Status LED per each input, module error LED, 24V Plug-in status LED
User Connection	2 or 4 Terminal Blocks (3.5 mm pitch), Maximum 18 AWG
Cable and TB Holder	20 or 40 Wire Cable with Terminal Block Holder connector, 26 AWG wires
Module Replacement	Hot swap replacement - module extraction/insertion under voltage
Input Isolation	2.5 kV RMS between input and module logic per IEC60255-5
Input Insulation	Insulation resistance $100 \mathrm{M} \Omega$ @ 500 V DC per IEC60255-5
Operating Voltage	10.8-16 V DC and 3.3 V DC (from the motherboard connector)
Power Consumption (measured at power supply in)	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Dimensions	37 mm W x 225 mm H x 180 mm D, (1.5" W x 8.7 " H x 7.1" D)
Weight	16 DI : approx. $0.28 \mathrm{Kg}(0.62 \mathrm{lb})$ 32 DI : approx. $0.29 \mathrm{Kg}(0.63 \mathrm{lb})$

32 DI FAST 48V Modules	
Total Number of Inputs	32 DI
Input Arrangement	Isolated groups of 16 inputs with shared common
Fast Counter Inputs	Inputs that can be used as fast counters: First 20 inputs
Fast Counter Input Frequency	2.0 KHz (minimum pulse width $250 \mu \mathrm{~S}$)
Max. DC Input Voltage	Max. $\pm 72 \mathrm{~V}$ DC (relative to input common)
"ON" DC Voltage Range	+36 to +60 V DC
"OFF" DC Voltage Range	0 to +6 V DC
Input Current	Max. 3 mA
Fast Capture Resolution	1 mS (Interrupt upon change of state)
Event Time Tagging Resolution	1 mS (Interrupt upon change of state)
Input Filtering	0 to 50.8 mS (DC, programmable in 0.2 mSec steps)
Counter Input Filtering	0 to 12.75 mS (programmable in 0.05 mSec steps for inputs configured as high speed counters)
Diagnostic LEDs	Status LED per each input, module error LED
User Connection	4 Terminal Blocks (3.5 mm pitch), Maximum 18 AWG
Cable and TB Holder	40 Wire Cable with TB Holder connector, 26 AWG wires
Module Replacement	Hot swap replacement - module extraction/insertion under voltage
Input Isolation	2.5 kV RMS between input and module logic per IEC60255-5
Input Insulation	Insulation resistance $100 \mathrm{M} \Omega$ @ 500 V DC per IEC60255-5
Operating Voltage	$10.8-16 \mathrm{~V} \mathrm{DC}$ and 3.3 V DC (from the motherboard connector)
Power Consumption	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Dimensions	$37 \mathrm{~mm} \mathrm{~W} \mathrm{x} 225 \mathrm{~mm} \mathrm{H} \times 180 \mathrm{~mm} \mathrm{D}$, (1.5" W x 8.7" H x 7.1" D)
Weight	16 DI : approx. 0.28 Kg (0.62 Lb); 32 DI : approx. $0.29 \mathrm{Kg}(0.63 \mathrm{Lb})$

Specifications subject to change without notice.

DIGITAL INPUT 120/230V MODULE

General Description

The ACE3600 Digital Input 120/230V (High Voltage DI) module has 16 inputs.
Each input can be connected to 120 V or 230 V (AC or DC). All the inputs are optically isolated.

Each DI can be an event trigger (interrupt-driven) to a high priority fast process. The high priority fast process enables very fast activation of an output in response to an input trigger and logical conditions. This high priority fast process is not dependent on the I/O scan (refer to the STS Application Programmer manual.)

For a description of I/O module construction, location, LEDs, TBs, and other common I/O module features, see the I/O Modules chapter above.

Figure 7-1 provides a general view of the ACE3600 High Voltage DI module.

Figure 7-1 ACE3600 High Voltage DI Module - General View

Figure 7-2 provides a detailed view of the ACE3600 High Voltage DI Module front panel.

Figure 7-2 ACE3600 High Voltage DI Module - Front Panel

DI Module Configuration

The High Voltage DI module can handle AC and DC input signals. The user can select DC or AC (default) operation per module. When AC configuration is selected, the Input Filters (see below) are disabled.

Note: The default configuration for the DI 120/230V module is different than that of a regular DI module.

Input Filters (DC Configuration)

When the High Voltage DI module is in DC mode, each input has a HW input filter to make sure that the input reading is stable. The range of the HW DI filter is 0 to 50.8 milliseconds (in 0.2 msec steps).

Note: In this module, the minimum effective filter value is 7.0 msec .

Keep Last Value (KLV) and Predefined Value (PDV)

Each input can be configured to KLV or to a $\operatorname{PDV}(0,1)$. This value is shown to the user application program in the event of High Voltage DI module failure. The PDV can also be used during normal operation to force a value that masks the actual input value. In this case the user program will get the PDV instead of the actual input value.

DI Module Configuration Options

The High Voltage DI module features which can be configured are listed in the table below. Some parameters are per module and some are per input.

Table 7-1 ACE3600 High Voltage DI Module Configurable Features

Feature	Parameter Settings	Default Setting	Per Module / Input	Parameter Setup Location
DC or AC operation	AC / DC	DC	Module	STS site configuration
DI Filter (DC)	$0-254(x 0.2$ $\mathrm{msec})$	$50 * 0.2 \mathrm{msec}$ $(=10 \mathrm{msec})$	Module	STS site configuration; 'C' User Program
Keep Last Value and Predefined Value	KLV/PDV PDV=0/1	KLV	Input	User Program I/O link table
Mask	No /Yes	No	Input	User Program I/O link table

Sleep Mode

Each High Voltage DI module can be switched by the user application program to Sleep Mode. In Sleep Mode, the module does not function and the power consumption is minimized. During Sleep mode, the user application program will get the predefined values (PDV) for each I/O.

Module Status and Diagnostics

In the event of High Voltage DI Module failure, the I/O module ERR LED will be lit. This event is registered by the CPU in the Error Logger. DI Module failure status is also visible to the user application program.

The High Voltage DI module can be diagnosed and monitored using the STS Hardware Test utility. This test verifies that the module is operational, presents the module configuration and shows the actual value of each input. It is also possible to change the input filter setup temporarily for the duration of the Hardware Test.

In the Hardware Test utility, it is possible to set the High Voltage DI module to Freeze Mode. In this mode the user application program will get the predefined value of each input in the module, instead of the actual input value. Freeze mode enables testing the inputs while the user application program is running.

For details on configuring the High Voltage DI modules, see the Site Configuration section, and the Application Programming section of the STS User Guide.

I/O Circuit Diagram

Module Block Diagram

16 DI High Voltage

Connection Charts

Pin	Function
1	DI1
2	DI2
3	DI3
4	DI4
5	
6	
7	DI5
8	DI6
9	
10	COM1-6
11	DI7
12	DI8
13	DI9
14	DI10
15	
16	
17	DI11
18	DI12
19	
20	COM7-12

Pin	Function
21	DI13
22	DI14
23	DI15
24	DI16
25	
26	
27	
28	
29	
30	COM13-16

I/O Connection Diagram

Digital Input 120/230V Module Specifications

High Voltage 16DI Module	
Total Number of Inputs	16 DI
Input Characteristics	IEC 61131-2 Type 1
Input Arrangement	Two isolated groups of 6 inputs and one isolated group of 4 inputs.
AC Input Frequency	$47-63 \mathrm{~Hz}$
AC Input Change Delay	Maximum 25.0 msec
Max. DC Input Voltage	Max. $\pm 264 \mathrm{~V}$ DC (relative to input common)
DC Input Pulse Width	Minimum 7.0 msec @ 230 V DC
"ON" DC Voltage Range	+79.0 V DC to +264.0 V DC, -79.0 V DC to -264.0 V DC
"OFF" DC Voltage Range	-40 to +40 V DC
"ON" AC Voltage Range	79 to $264 \mathrm{~V} \mathrm{AC} \mathrm{(RMS)}$
"OFF" AC Voltage Range	0 to 40 V AC (RMS)
Input Current	At 110 V DC 1.0 to 3.0 mA At 230 V DC 0.4 to 2.0 mA At 110 V AC $>2.0 \mathrm{~mA} \mathrm{RMS}$ At 230 V AC $>3.0 \mathrm{mARMS}$
Permitted Voltage Difference Between Groups	2.5 kV RMS
Input Filtering	0 to 50.8 msec (DC, programmable in 0.2 msec steps) Note: Minimum effective filter value is 7.0 msec .
Diagnostic LEDs	Status LED per each input, module error LED
User Connection	3 Terminal Blocks (5.00 mm pitch), Maximum 14 AWG
Cable and TB Holder	30 Wire Cable with TB Holder connector, 20 AWG wires
Module Replacement	Hot swap replacement - module extraction/insertion under voltage
Input Isolation	2.5 kV RMS between input and module logic per IEC60255-5
Input Insulation	Insulation resistance $100 \mathrm{M} \Omega$ @ 500 V DC
Operating Voltage	$10.8-16 \mathrm{~V}$ DC and $3.3 \mathrm{~V} \mathrm{DC} \pm 10 \%$ (from the motherboard connector)
Power Consumption	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Dimensions	37 mm W x 225 mm H x 180 mm D , (1.5" W x 8.7" H x 7.1" D)
Weight	approx. $0.367 \mathrm{~kg}(0.80 \mathrm{lbs})$
	Specifications subject to change without notice.

DIGITAL OUTPUT/DIGITAL INPUT FET MODULE

General Description

The Digital Output/Digital Input (DO/DI) FET module has 16 or 32 configurable user connections, organized in four groups. Each group can be configured as an 8 DO group or as an 8 DI group.

The following Digital Output/Digital Input (DO/DI) FET modules are available.

- $16(\mathrm{DO} / \mathrm{DI}) \mathrm{FET}$
- 32 (DO/DI) FET

The outputs are optically isolated current sink FET type with back indication. The inputs are optically isolated Dry Contact type with internal "wetting" voltage.

For a description of I/O module construction, location, LEDs, TBs, and other common I/O module features, see the I/O Modules chapter above.

Figure 8-1 provides a general view of the ACE3600 DO/DI FET module.

16 DO/DI FET Module
Figure 8-1 ACE3600 DO/DI FET Module - General View

Figure 8-2 provides a detailed view of the ACE3600 DO/DI FET module front panel.

16 DO/DI FET Module

32 DO/DI FET Module

Figure 8-2 ACE3600 DO/DI FET Module - Front Panel

Module Configuration

Input/Output

The following combinations can be configured in the STS site configuration (16 DO/DI).

I/O combination	DI location	DO location
16 DO	-	$1-16$
$8 \mathrm{DI}+8 \mathrm{DO}$	$1-8$	$9-16$
16 DI	$1-16$	-

The following combinations can be configured in the STS site configuration (32 DO/DI).

I/O combination	DI location	DO location
32 DO	-	$1-32$
$8 \mathrm{DI}+24 \mathrm{DO}$	$1-8$	$9-32$
$16 \mathrm{DI}+16 \mathrm{DO}$	$1-16$	$17-32$
$24 \mathrm{DI}+8 \mathrm{DO}$	$1-24$	$25-32$
32 DI	$1-32$	-

The appropriate combination is selected as the I/O module type, when configuring the I/Os in the ACE3600 STS site configuration.

DI Fast Capture

Each DI can be configured as Fast Capture DI in the STS advanced I/O configuration. Fast capture causes the SCAN ladder output operation to get the first change that occurred since the previous scan. When fast capture is disabled (default), the scan gets the current value of the DI (in this case DI changes between scans are missed).

DI Input Filters

Each inputs has a hardware input filter to make sure that the input reading is stable. The hardware DI filter range is 0 to 50.8 mS (in 0.2 mS steps). Counter DI filter range is 0 to 12.75 mS (in 0.05 mS steps). The DI filter can be set in the STS advanced I/O configuration.

Note: In this module, the minimum effective filter value is 1 mS .

DI Event Time Tagging

Each DI can be set in the Application Programmer I/O link table to trigger recording of time tagged events upon any input change of state. The time tagged events are recorded in the CPU memory and can be retrieved for various purposes.

DI Keep Last Value (KLV) and Predefined Value (PDV)

Each input can be configured to KLV or to a $\operatorname{PDV}(0,1)$ in the Application Programmer I/O link table. This value is shown to the user application program in the event of DI module failure. Also, the predefined value can be used during normal operation to force a value that masks the actual input value. In this case the user application program will get the PDV instead of the actual input value.

DO Keep Last Value (KLV) and Predefined Value (PDV)

Each output can be configured to KLV or to a $\operatorname{PDV}(0,1)$. This value is executed when the user application program stops or when the module has no communication with the CPU module. Also, the predefined value can be used during normal operation to force a value on the output by ignoring the user application program value.

DO/DI FET Module Configuration Options

The DO/DI FET module features which can be configured are listed in the table below. Some parameters are per module and some are per input.

Table 8-1 ACE3600 DO/DI FET Module Configurable Features

Parameter	Selection	Default Setup	Per Module/ Input	Parameter Setup Location
DI Fast Capture	Disabled /Enabled	Disabled	Input	RTU configuration
DI Filter	$0-254(x 0.2 \mathrm{mS})$	$50 * 0.2 \mathrm{mS}$ $(=10 \mathrm{mS})$	Module	RTU configuration; 'C' Program
DI Counter Filter	$0-255(\mathrm{x} 0.05 \mathrm{mS})$	$20 * 0.2 \mathrm{mS}$ $(=1 \mathrm{~ms})$	Module	RTU configuration;
'C' Program				

Sleep Mode

Each DO/DI module can be switched by the user application program to Sleep Mode. In Sleep Mode, the module does not function and the power consumption is minimized. During Sleep mode, the user application program will get the KLV or PDV per each DI.

Module Status and Diagnostics

In the event of a DO/DI module failure, the ERR LED on the module will be lit. This event is registered by the CPU in the Error Logger. DO/DI module failure status is also visible to the user application program.

The DO/DI module can be diagnosed and monitored using the STS Hardware Test utility. The Hardware Test verifies that the module is operational, presents the module configuration and
shows the actual value of each input and output. It is also possible to change the input filter setup for the duration of the Hardware test and change the value of the DOs.

In the Hardware Test utility, it is possible to set the module to Freeze Mode. In this mode the user application program will get the KLV/PDV of each input in the module instead of the actual input value. The DO values will keep the last value they had when the module was switched to Freeze Mode. Freeze mode enables testing the inputs and outputs while the user application program is running.

I/O Circuit Diagram

DO/DI - Typical I/O Circuit

Module Block Diagram

16 DO/DI FET

Digital Output/Digital Input FET Module

32 DO/DI FET

Connection Charts

16 DO/DI FET			
Pin	Function	Pin	Function
1	DO/DI1	11	DO/DI9
2	DO/DI2	12	DO/DI10
3	DO/DI3	13	DO/DI11
4	DO/DI4	14	DO/DI12
5	DO/DI5	15	DO/DI13
6	DO/DI6	16	DO/DI14
7	DO/DI7	17	DO/DI15
8	DO/DI8	18	DO/DI16
9	COM1	19	COM2
10	PGND1	20	PGND2

32 DO/DI FET			
Pin	Function	Pin	Function
1	DO/DI1	21	DO/DI17
2	DO/DI2	22	DO/DI18
3	DO/DI3	23	DO/DI19
4	DO/DI4	24	DO/DI20
5	DO/DI5	25	DO/DI21
6	DO/DI6	26	DO/DI22
7	DO/DI7	27	DO/DI23
8	DO/DI8	28	DO/DI24
9	COM1	29	COM3
10	PGND1	30	PGND3
11	DO/DI9	31	DO/DI25
12	DO/DI10	32	DO/DI26
13	DO/DI11	33	DO/DI27
14	DO/DI12	34	DO/DI28
15	DO/DI13	35	DO/DI29
16	DO/DI14	36	DO/DI30
17	DO/DI15	37	DO/DI31
18	DO/DI16	38	DO/DI32
19	COM2	39	COM4
20	PGND2	40	PGND4

I/O Connection Diagram

DO wiring

DO/DI FET Module Specifications

Total Number of I/Os	16; 32
I/O Arrangement	Two or four group of 8 I/Os with shared common Each group can be configured as FET DO or dry contact DI. Selectable combinations ($32 \mathrm{DO} / \mathrm{DI}$): $32 \mathrm{DO} / 8 \mathrm{DI}+24 \mathrm{DO} /$ 16 DI+16 DO/24 DI+8 DO/32 DI Selectable combinations (16 DO/DI): 16 DO/8 DI+8 DO/16 DI
Counter Inputs	32 DI: 20 first inputs can be used as counter inputs. 16 DI: All 16 inputs can be used as counter inputs.
Counter Input Frequency	$0-1 \mathrm{KHz}$, minimum pulse width $500 \mu \mathrm{~S}$. Note: Although filters are defined in steps of 0.2 mSec and 0.05 mSec , it is relevant only from 1 mSec and above.
Max. DC Input Voltage	Max. 30 V DC (relative to input common)
Input "ON" Resistance	0-4 k Ω
Input "OFF" Resistance	$\geq 50 \mathrm{k} \Omega$
Fast Capture Resolution	1 mS (Interrupt upon change of state)
Event Time Tagging Resolution	1 mS (Interrupt upon change of state)
Input Current	Max. 0.3 mA (when the input is shorted)
Input Filtering	0 to 50.8 mS (programmable in 0.2 mSec steps), minimum effective filter value -1 mSec
Counter Input Filtering	0 to 12.75 mS (programmable in 0.05 mSec steps), minimum effective filter value -1 mSec
Output Type	MOSFET
Output Voltage Range	5-30 V DC (user supplied voltage)
DO Frequency	Max. 1 KHz (resistive load)
DO Output Current	Max. 500 mA sink current (resistive load)
Output Fail State	Configurable output state on CPU fail: On, Off or 'last value'
Diagnostic LEDs	LED per each input / output status, module error LED
User Connection	4 Terminal Blocks (3.5 mm pitch), Maximum 18 AWG
Cable and TB Holder	20 or 40 Wire Cable with Terminal Block Holder connector, 26 AWG
Module Replacement	Hot swap replacement- module extraction / insertion under voltage
Input / Output Isolation	1.5 kV between input/output and module logic
Input Insulation	Insulation resistance $100 \mathrm{M} \Omega$ @ 500 V DC per IEC60255-5
Operating Voltage	$10.8-16 \mathrm{~V}$ DC and 3.3 V DC (from the motherboard connector)
Power Consumption	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Dimensions	$37 \mathrm{~mm} \mathrm{~W} \mathrm{x} 225 \mathrm{~mm} \mathrm{H} \times 180 \mathrm{~mm} \mathrm{D}\left(1.5{ }^{\prime \prime} \mathrm{W} \times 8.7^{\prime \prime} \mathrm{H} \times 7.1^{\prime \prime} \mathrm{D}\right.$)
Weight	Approx. $0.25 \mathrm{Kg}(0.55 \mathrm{Lb})$
Specifications subject to change without notice.	

DIGITAL OUTPUT RELAY MODULE

General Description

The DO Relay modules have 8 or 16 outputs.
There are two types of DO relays:

- Electrically Energized (EE) - the outputs return to the non-energized state in case of power off or module failure.
- Magnetically Latched (ML) - Relay outputs are magnetically latched, the outputs maintain their state in case of power off or module failure.

The following DO relays modules are available:

- 8 DO EE Relay 2A
- 16 DO EE Relay 2A
- 8 DO ML Relay 2A
- 16 DO ML Relay 2A

For a description of I/O module construction, location, LEDs, TBs, and other common I/O module features, see the I/O Modules chapter above.

Figure 9-1 provides a general view of the ACE3600 DO Relay Module.

Figure 9-1 ACE3600 DO Relay Module - General View

Figure 9-2 provides a detailed view of the ACE3600 DO Relay Module front panel.

8DO Relay

16DO Relay

Figure 9-2 ACE3600 I/O Module - Front Panel

In the 8 DO modules, the relays of outputs 1 through 5 are Single Pole Single Throw (SPST) normally open (NO) and are referred to as the "Form A" relays. The relays of outputs 6 through 8 are Single Pole Double Throw (SPDT) and are referred to as the "Form C" relays.

In the 16 DO modules, the relays of outputs 1 through 5 and 9 through 13 are Single Pole Single Throw (SPST) normally open (NO) "Form A" relays. The relays of outputs 6 through 8 and 14 through 16 are Single Pole Double Throw (SPDT) "Form C" relays.

The physical position of each relay is monitored by the module logic, using a back indication signal which is connected to the relay's second contact set. Any contradiction between the required position and the back indication signal is reported to the CPU and is available to the user program.

In some applications it is necessary to inhibit relay output operation when attending the site for safety reasons. In all DO relay modules, it is possible to inhibit all relays per DO module. When a module is configured to enable relay inhibiting, the power to the relays is provided from the power supply via a dedicated power line (12 V DO), controlled from the " 12 V DO" input (TB located on the power supply module panel). When the input's terminals are shorted, the relays are operational. When the input's terminals are open, the relays are inhibited (EE relays in 0 position and ML relays do not change state.)

Note: In systems with I/O expansion, the power supplies on I/O expansion frames can be attached via DC cable to the power supply on the previous I/O expansion frame in a daisychain manner, or directly to the main power supply. In this case, the 12 V DO control on the main power supply can control all DO EE relays in the entire RTU that were configured by dip switch for 12 V DO. This enables the user to inhibit all DO EE relays in the entire RTU simply by removing the plug from the 12 V DO control in the main power supply. For more information, see the I/O Expansion and Expansion Power Supply Module chapters below.

The user program can monitor the relay inhibiting status and act accordingly. Also, when the module's relays are inhibited, any mismatch between the relay position and the output logical state is ignored.

Module Configuration

Relay Inhibiting

NOTE

When the dip switch is set to 12 V DO, the position of the 2-pin 12V DO Control connector on the front panel of the power supply module (see Power Supply Module chapter above) acts as a safety mechanism. When the 2-pin TB is unplugged from the 12 V DO Control (e.g. for maintenance), power is not supplied via the motherboard to the relays and the relays are disabled. The 12 V DO affects all relays in the system that are programmed to work from the 12V DO and not the (default) 12V Main.

EE relays that are programmed for 12 V DO operation will disconnect when

12 V DO power is shut down and cannot be changed in this state. ML relays that are programmed for 12 V DO operation will freeze in their current state when 12 V DO power is shut down and cannot be changed. Therefore, setting the dip switch for ML will not necessarily inhibit them.
A dual selector dip switch (S3) on the DO Relay module has 4 selectable positions as described in the following table:

Table 9-1 DO Relay Module- Dip Switch Settings

S3 SW 1	S3 SW 2	Configuration mode
OFF	OFF	12V_DO - Relay inhibiting enabled
ON	OFF	Software selectable - inhibiting is set in site configuration
OFF	ON	12 V DO - Relay inhibiting enabled
ON	ON	$12 \mathrm{~V}-$ (factory default) Relay inhibiting disabled

Figure 9-3 12V DO Dip Switch

When S3 is set to Software Selectable mode, the inhibiting configuration is set using the module configuration in the STS Site Configuration (see Table 9-2 below).

Procedure 9-1 describes how to set the 12V DO dip switch to enable relay inhibiting.
Procedure 9-1 How to Set the 12V DO Dip Switch to Enable Relay Inhibiting.

1) If the 2 -pin TB is plugged into the 12 V DO Control on the front panel of the power supply module, unplug it.
2) Remove the DO module from the slot in the rack.
3) Carefully remove the plastic wrap covering from the S3 dip switch (see Figure 9-3) on the DO module board. Note: Ignore text on the board that OFF/OFF is the factory default.
4) Set the S 3 dip switch to the desired position, according to the legend in Table 9-1.
5) Replace the DO module in the rack.
6) If the new dip switch position causes DO relay power to be drawn from the 12 VDO , plug the 2 -pin TB back into the 12 V DO Control on the front panel of the power supply module.

DO Keep Last Value (KLV) and Predefined Value (PDV)

Each output can be configured to KLV or to a $\operatorname{PDV}(0,1)$. This value is executed when the user program stops or when the module has no communication with the CPU module. Also, the

PDV can be used during normal operation to force a value on the output by ignoring the user program value (mask).

Reset DO at Startup

It is possible to configure the module to reset all the ML relays positions on startup. This is set in the STS site configuration.

Table 9-2 ACE3600 DO Relay Module Software Configurable Features

Parameter	Selection	Default Setup	Per Module/ Input	Parameter Setup Location
DO Keep Last Value \& Pre Defined Value	KLV/PDV PDV $=0 / 1$	KLV	Output	Application Programmer I/O link table
DO Mask	No /Yes	No	Output	Application Programmer I/O link table
Reset DO at Startup	No/Yes	Yes	Module	Site configuration
Relay Inhibiting (SW selectable)	12V DO (Enabled)/ 12V (Disabled)	12V DO (Enabled)	Module	Site configuration

Sleep Mode

Each DO module can be switched by the user program to Sleep Mode. In Sleep Mode, the module is not functioning and the power consumption is minimized.

Module Status and Diagnostics

In the event of module failure, the module's ERR LED will be lit. This event is registered by the CPU in the Error Logger. Module failure status is also visible to the user program.

The DO module can be diagnosed and monitored using the STS Hardware Test utility. This test verifies that the module is operational, presents the module configuration and shows the actual value of each output. It is also possible to change the DO's value.

In the Hardware Test utility, it is possible to set the module to Freeze Mode. In this mode, the DOs will keep the last value they had at the time they were frozen. Freeze mode enables testing the inputs and outputs while the user program is running.

For details on configuring the DO modules, see the Configuring a Site section and the Application Programmer section of the ACE3600 STS User Guide.

I/O Circuit Diagram

DO EE Relay (SPST) - Typical Output Circuit

DO ML Relay (SPST) - Typical Output Circuit

Digital Output Relay Module

DO EE Relay (SPDT) - Typical Output Circuit

DO ML Relay (SPDT) - Typical Output Circuit

Digital Output Relay Module

Module Block Diagram

8 DO

Connection Charts

8 DO			
Pin	Function	Pin	Function
1	NO1	11	NO6
2	COM1	12	COM6
3	NO2	13	NC6
4	COM2	14	NO7
5	NO3	15	COM7
6	COM3	16	NC7
7	NO4	17	NO8
8	COM4	18	COM8
9	NO5	19	NC8
10	COM5	20	PGND1

16 DO			
Pin	Function	Pin	Function
1	NO1	21	NO9
2	COM1	22	COM9
3	NO2	23	NO10
4	COM2	24	COM10
5	NO3	25	NO11
6	COM3	26	COM11
7	NO4	27	NO12
8	COM4	28	COM12
9	NO5	29	NO13
10	COM5	30	COM13
11	NO6	31	NO14
12	COM6	32	COM14
13	NC6	33	NC14
14	NO7	34	NO15
15	COM7	35	COM15
16	NC7	36	NC15
17	NO8	37	NO16
18	COM8	38	COM16
19	NC8	39	NC16
20	PGND1	40	PGND2

DO Relay Module Specifications

Total Number of Outputs	8 EE relay outputs
	16 EE relay outputs
	8 ML relay outputs
	16 ML relay outputs
Output Arrangement	8 DO : 3 X Form C (SPDT) and 5 X Form A (SPST)
	16 DO: 6 X Form C (SPDT) and 10 X Form A (SPST)
Contact Voltage Ratings	Max. 60 V DC or 30 V AC RMS (42.4 V peak).
Contact Power Ratings	2A@30 V DC, 0.6A@ 60V DC or 0.6A@ 30V AC (resistive load)
Relay Back Indication	Contact position - hardware back indication
DO Frequency	Max. 10 Hz
Diagnostic LEDs	LED per each output status, module error LED
User Connection	2 or 4 Terminal Blocks (3.5mm pitch), Maximum 18 AWG
Cable and TB Holder	20 or 40 Wire Cable with Terminal Block Holder connector, 26 AWG
Fail State	Configurable relay state on CPU fail: On, Off or 'last value'
All Relays Disable/Enable	Selectable per module, controlled from the power supply
Module Replacement	Hot swap replacement - module extraction/insertion under voltage
Output Isolation	Between open contacts: 1 kV , Between contact and coil: 1.5 kV , Between contact sets: 1.5 kV
Insulation	Insulation resistance $100 \mathrm{M} \Omega$ @ 500 V DC per IEC60255-5, Insulation impulse 1.5 kV per IEC60255-5
Operating Voltage	10.8-16 V DC and 3.3 V DC (from the motherboard connector)
Power Consumption	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Dimensions	$\begin{aligned} & 37 \mathrm{~mm} \text { W } \times 225 \mathrm{~mm} \text { H x } 180 \mathrm{~mm} \text { D } \\ & \left(1.5^{\prime \prime} \mathrm{W} \times 8.7^{\prime \prime} \mathrm{H} \times 7.1^{\prime \prime} \mathrm{D}\right) \end{aligned}$
Weight	$\begin{aligned} & 8 \mathrm{DO}: \text { approx. } 0.29 \mathrm{Kg}(0.64 \mathrm{Lb}) \\ & 16 \mathrm{DO}: \text { approx. } 0.32 \mathrm{Kg}(0.7 \mathrm{Lb}) \end{aligned}$

Specifications subject to change without notice.

8 DIGITAL OUTPUT SBO RELAY MODULE

General Description

The 8 DO Select Before Operate (SBO) Relay modules have Electrically Energized (EE) 2 Form A relay outputs. The modules are supported by ACE3600 firmware v14.00 and above. The 8 DO SBO module is used to ensure that the correct DO has been selected before actually activating the relay.

Each DO in the module has two relays. When the module is in Idle state, the operate signal is disabled and no relay is activated. On "DO Select" command, both DO relays are selected. The select command is physically monitored by a back indication signal ("Check Select".) After validation that only the requested relays were selected, the "Operate" command is set and enables the relay activation. The physical back indications from both relay contacts can be monitored by the application program to verify successful operation.

Note that only a single SBO DO can be selected at a time.
Each output has two types of back indications:
a. Back indication of the relay select command.
b. Back indication from the relay auxiliary contact (each relay has 2 contacts- one connected to user and the other as back indication.)

By default, the operation of the relays uses the 12 V controlled source (controlled by the jumper on the main power supply.) If the 12 V control in the main power supply is switched to OFF, there will be no activating voltage to the relays, regardless the status of the Operate signal.

For a description of the SBO feature, see Select Before Operate DOs in the ACE3600 I/Os chapter of the ACE3600 STS Advanced Features manual.

For a description of I/O module construction, location, LEDs, TBs, and other common I/O module features, see the I/O Modules chapter above.

Figure 11-1 provides a general view of the ACE3600 DO SBO Relay Module.

Figure 11-1 ACE3600 8DO SBO Relay Module - General View

Figure 11-2 provides a detailed view of the ACE3600 8DO SBO Relay Module front panel.

Figure 11-2 ACE3600 8DO SBO Relay Module - Front Panel

In the 8 DO SBO modules, the relays of the 8 outputs are Single Pole Single Throw (SPST) normally open (NO) and are referred to as the "Form A" relays.

In some applications, it is necessary to inhibit relay output operation when attending the site for safety reasons. In all DO relay modules, it is possible to inhibit all relays per DO module. When a module is configured to enable relay inhibiting (the default in the SBO module), the power to the relays is provided from the power supply via a dedicated power line (12 V DO), controlled from the " 12 V DO" input (TB located on the power supply module panel). When the input's terminals are shorted, the relays are operational. When the input's terminals are open, the relays are inhibited (EE relays in the 0 position.)

Note: In systems with I/O expansion, the power supplies on I/O expansion frames can be attached via DC cable to the power supply on the previous I/O expansion frame in a daisychain manner, or directly to the main power supply. In this case, the 12 V DO control on the main power supply can control all DO EE relays in the entire RTU that were configured by dip switch for 12 V DO. This enables the user to inhibit all DO EE relays in the entire RTU simply by removing the plug from the 12 V DO control in the main power supply. For more information, see the I/O Expansion and Expansion Power Supply Module chapters below.

The user program can monitor the relay inhibiting status and act accordingly. Also, when the module's relays are inhibited, any mismatch between the relay position and the output logical state is ignored.

Module Configuration

Relay Inhibiting

When the dip switch is set to 12 V DO, the position of the 2 -pin 12V DO Control connector on the front panel of the power supply module (see Power Supply Module chapter above) acts as a safety mechanism. When the 2-pin TB is unplugged from the 12 V DO Control (e.g. for maintenance), power is not supplied via the motherboard to the relays and the relays are disabled. The 12 V DO affects all relays in the system that are programmed to work from the 12 V DO (the default in the SBO module) and not the 12 V Main.

EE relays that are programmed for 12 V DO operation will disconnect when 12 V DO power is shut down and cannot be changed in this state.

The state of the Controlled DO LED (CDO) on the bottom of the front panel reflects the 12 V control as follows:
a. $\mathrm{OFF}-12 \mathrm{~V}$ is not controlled.
b. $\mathrm{ON}-12 \mathrm{~V}$ is controlled and exists.
c. Blinking -12 V is controlled and does not exist.

A dual selector dip switch (S3) on the DO Relay module has 4 selectable positions as described in the following table:

Table 11-1 DO Relay Module- Dip Switch Settings

S3 SW 1	S3 SW 2	Configuration mode
OFF	OFF	12V - Relay inhibiting disabled
ON	OFF	Software selectable - inhibiting is set in site configuration
OFF	ON	12V - Relay inhibiting disabled
ON	ON	12V_DO - Relay inhibiting enabled (factory default)

Figure 11-3 12V DO Dip Switch

When S3 is set to Software Selectable mode, the inhibiting configuration is set using the module configuration in the STS Site Configuration (see Table 11-2 below).

For instructions on setting the 12 V DO dipswitch to enable relay inhibiting, see Procedure $9-1$ in the Digital Output Relay Module chapter above.

DO Keep Last Value (KLV) and Predefined Value (PDV)

Each output can be configured to KLV or to a $\operatorname{PDV}(0,1)$. This value is executed when the user program stops or when the module has no communication with the CPU module. Also, the PDV can be used during normal operation to force a value on the output by ignoring the user program value (mask).

Reset DO at Startup

Table 11-2 ACE3600 DO Relay Module Software Configurable Features

Parameter	Selection	Default Setup	Per Module/ Input	Parameter Setup Location

Parameter	Selection	Default Setup	Per Module/ Input	Parameter Setup Location
DO Keep Last Value \& Pre Defined Value	KLV/PDV PDV = 0/1	PDV =0	Output	Application Programmer I/O link table
DO Mask	No /Yes	No	Output	Application Programmer I/O link table
Relay Inhibiting (SW selectable)	12V DO (Enabled)/ 12V (Disabled)	12V DO (Enabled)	Module	Site configuration

Sleep Mode

Each DO module can be switched by the user program to Sleep Mode. In Sleep Mode, the module is not functioning and the power consumption is minimized.

Module Status and Diagnostics

In the event of module failure, the module's ERR LED will be lit. This event is registered by the CPU in the Error Logger. Module failure status is also visible to the user program.

The DO module can be diagnosed and monitored using the STS Hardware Test utility. This test verifies that the module is operational, presents the module configuration and shows the actual value of each output. It is also possible to change the DO's value.

In the Hardware Test utility, it is possible to set the module to Freeze Mode. In this mode, the DOs will keep the last value they had at the time they were frozen. Freeze mode enables testing the inputs and outputs while the user program is running.

For details on configuring the DO modules, see the Configuring a Site section and the Application Programmer section of the ACE3600 STS User Guide.

I/O Circuit Diagram

DO SBO EE Relay (SPST) - Typical Output Circuit

Module Block Diagram

Connection Charts

	8 DO SBO		
Pin	Function	Pin	Function
1	NO1A	21	NO5A
2	COM1A	22	COM5A
3	NO1B	23	NO5B
4	COM1B	24	COM5B
5	NO2A	25	NO6A
6	COM2A	26	COM6A
7	NO2B	27	NO6B
8	COM2B	28	COM6B
9		29	
10	PGND	30	PGND
11	NO3A	31	NO7A
12	COM3A	32	COM7A
13	NO3B	33	NO7B
14	COM3B	34	COM7B
15	NO4A	35	NO8A
16	COM4A	36	COM8A
17	NO4B	37	NO8B
18	COM4B	38	COM8B
19		39	
20	PGND	40	PGND

8 DO SBO Relay Module Specifications

Total Number of Outputs	8 EE relay outputs
Output Arrangement	8 DO : 2 X Form A (SPST) - (two Normally Open contacts per DO)
Contact Voltage Ratings	Max. 60 V DC or 30 V AC RMS (42.4 V peak).
Contact Power Ratings	2A@ 30 V DC, 0.6A@ 60V DC or 0.6A @ 30V AC (resistive load)
Relay Back Indication	Contact Back Indication: Indicating Contact position
Relay Select Back Indication	Indicating relay selection before relay activation
DO Frequency	Max. 10 Hz
Diagnostic LEDs	LED per each output status, module error LED, Controlled DO LED Controlled DO LED states: a. OFF - 12 V is not controlled. b. ON -12 V is controlled and exists. c. Blinking - 12 V is controlled and does not exist.
User Connection	4 Terminal Blocks (3.5 mm pitch), Maximum 18 AWG
Cable and TB Holder	40 Wire Cable with Terminal Block Holder connector, 26 AWG
Fail State	Configurable relay state on CPU fail: On, Off or 'last value'
All Relays Disable/Enable	Selectable per module, controlled from the power supply
Module Replacement	Hot swap replacement - module extraction/insertion under voltage
Output Isolation	Between open contacts: 1 kV , Between contact and coil: 1.5 kV , Between contact sets: 1.5 kV
Insulation	Insulation resistance $100 \mathrm{M} \Omega$ @ 500 V DC per IEC60255-5, Insulation impulse 1.5 kV per IEC60255-5
Operating Voltage	$10.8-16 \mathrm{~V}$ DC and 3.3 V DC (from the motherboard connector)
Power Consumption	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Dimensions	$\begin{aligned} & 37 \mathrm{~mm} \text { W x } 225 \mathrm{~mm} \mathrm{H} \times 180 \mathrm{~mm} \text { D } \\ & \left(1.5^{\prime \prime} \mathrm{W} \times 8.7^{\prime \prime} \mathrm{H} \times 7.1^{\prime \prime} \mathrm{D}\right) \end{aligned}$
Weight	8 DO : approx. $0.29 \mathrm{Kg}(0.64 \mathrm{Lb})$

Specifications subject to change without notice.

DIGITAL OUTPUT RELAY 120/230V MODULE

General Description

The ACE3600 DO Relay 120/230V (High Voltage DO) modules have 12 outputs. Each output is switched by a relay.

There are two types of DO relays:

- Electrically Energized (EE) - the outputs return to the non-energized state in case of power off or module failure.
- Magnetically Latched (ML) - Relay outputs are magnetically latched, the outputs maintain their state in case of power off or module failure.

The following DO relays modules are available:

- 12 DO EE Relay 120/230V 3A
- 12 DO ML Relay $120 / 230$ V 3A

For a description of I/O module construction, location, LEDs, TBs, and other common I/O module features, see the I/O Modules chapter above.

Figure 10-1 provides a general view of the ACE3600 High Voltage DO Relay Module.

Figure 10-1 ACE3600 High Voltage 12 DO Relay Module - General View

Figure 10-2 provides a detailed view of the ACE3600 High Voltage DO Relay Module front panel.

Figure 10-2 ACE3600 High Voltage 12 DO Module - Front Panel

In the High Voltage 12 DO modules, the relays of all outputs (1 through 12) are normally open (NO) "Form A".

The physical position of each relay is monitored by the module logic, using a back indication signal which is connected to the relay's second contact set. Any contradiction between the required position and the back indication signal is reported to the CPU and is available to the user program.

In some applications it is necessary to inhibit relay output operation when attending the site for safety reasons. In all EE DO relay modules, it is possible to inhibit all relays per DO module. When a module is configured to enable relay inhibiting, the power to the relays is provided from the power supply via a dedicated power line (12 V DO), controlled from the " 12 V DO" input. (The 12 V DO TB is located on the front panel of the power supply modules, except for the low-tier and expansion models.) When the input's terminals are shorted, the relays are operational. When the input's terminals are open, the relays are inhibited (EE relays in 0 position.)

ML relays cannot be inhibited.
Note: In systems with I/O expansion, the power supplies on I/O expansion frames can be attached via DC cable to the power supply on the previous I/O expansion frame in a daisychain manner, or directly to the main power supply. In this case, the 12 V DO control on the main power supply can control all DO EE relays in the entire RTU that were configured by dip switch for 12 V DO. This enables the user to inhibit all DO EE relays in the entire RTU simply by removing the plug from the 12 V DO control in the main power supply. For more information, see the I/O Expansion and Expansion Power Supply Module chapters below.

The user program can monitor the relay inhibiting status and act accordingly. Also, when the module's relays are inhibited, any mismatch between the relay position and the output logical state is ignored.

Module Configuration

Relay Inhibiting for EE Relays

When the dip switch on EE relays is set to 12 V DO, the position of the 2-pin 12V DO Control connector on the front panel of the power supply module (see Power Supply Module chapter above) acts as a safety mechanism. When the 2-pin TB is unplugged from the 12V DO Control (e.g. for maintenance), power is not supplied via the motherboard to the relays and the relays are disabled. The 12 V DO affects all relays in the system that are programmed to work from the 12V DO and not the (default) 12V Main.

EE relays that are programmed for 12 V DO operation will disconnect when 12 V DO power is shut down and cannot be changed in this state.

ML relays cannot be inhibited.

A dual selector dip switch (S3) on the EE DO Relay module has four selectable positions as described in the following table:

Table 10-1 DO Relay Module- Dip Switch Settings

S3 SW 1	S3 SW 2	Configuration mode
OFF	OFF	12V_DO - Relay inhibiting enabled
ON	OFF	Software selectable - inhibiting is set in site configuration
OFF	ON	12V_DO - Relay inhibiting enabled
ON	ON	$12 \mathrm{~V}-$ (factory default) Relay inhibiting disabled

Figure 10-3 12V DO Dip Switch

When S3 is set to Software Selectable mode, the inhibiting configuration is set using the module configuration in the STS Site Configuration (see Table 10-2 below).

Procedure 10-1 describes how to set the 12 V DO dip switch in order to enable relay inhibiting of EE relays.

Procedure 10-1 How to Set the 12V DO Dip Switch to Enable Relay Inhibiting.

1) If the 2-pin TB is plugged into the 12 V DO Control on the front panel of the power supply module, unplug it.
2) Remove the DO module from the slot in the rack.
3) Carefully remove the plastic wrap covering from the S3 dip switch (see Figure 10-3) on the DO module board.
4) Set the S3 dip switch to the desired position, SW1 $=$ OFF, SW2 $=$ OFF, according to the legend in Table 10-1.
5) Replace the DO module in the rack.
6) Replace the 2 -pin TB back into the 12 V DO Control on the front panel of the power supply module.

DO Keep Last Value (KLV) and Predefined Value (PDV)

Each output can be configured to KLV or to a $\operatorname{PDV}(0,1)$. This value is executed when the user program stops or when the module has no communication with the CPU module. Also, the PDV can be used during normal operation to force a value on the output by ignoring the user program value (mask).

Reset DO at Startup

It is possible to configure the module to reset all the ML relays positions on startup. This is set in the STS site configuration.

Table 10-2 ACE3600 High Voltage DO Relay Module Configurable Features

Parameter	Selection	Default Setup	Per Module/ Input	Parameter Setup Location
DO Keep Last Value \& Pre	KLV/PDV PDV $=0 / 1$	KLV	Output	Application Programmer I/O

Defined Value				link table
DO Mask	No /Yes	No	Output	Application Programmer I/O link table
Reset DO at Startup	Disable/Enable	Disable	Module	Site configuration
Relay Inhibiting (SW selectable)	Disable/Enable	Disable	Module	Site configuration

Sleep Mode

Each High Voltage DO module can be switched by the user program to Sleep Mode. In Sleep Mode, the module is not functioning and the power consumption is minimized.

Module Status and Diagnostics

In the event of module failure, the module's ERR LED will be lit. This event is registered by the CPU in the Error Logger. Module failure status is also visible to the user program.

The High Voltage DO module can be diagnosed and monitored using the STS Hardware Test utility. This test verifies that the module is operational, presents the module configuration and shows the actual value of each output. It is also possible to change the High Voltage DO's value.

In the Hardware Test utility, it is possible to set the module to Freeze Mode. In this mode, the High Voltage DOs will keep the last value they had at the time they were frozen. Freeze mode enables testing the inputs and outputs while the user program is running.

For details on configuring the High Voltage DO modules, see the Configuring a Site section and the Application Programmer section of the ACE3600 STS User Guide.

I/O Circuit Diagram

Module Block Diagram

Connection Charts

Pin	Function	Pin	Function
1	NO1	21	NO9
2		22	
3	NO2	23	NO10
4		24	
5	Not used	25	Not used
6	Not used	26	Not used
7	NO3	27	NO11
8		28	
9	NO4	29	NO12
10		30	
11	NO5		
12			
13	NO6		
14			
15	Not used		
16	Not used		
17	NO7		
18			
19	NO8		
20			
20			

DO Relay 120/230V Module Specifications

Total Number of Outputs	12 EE relay outputs
	12 ML relay outputs
Output Arrangement	12×1 Form A
Contact Power Ratings	3A@ $250 \mathrm{~V} \mathrm{AC}, 3 \mathrm{~A}$ @ 30 V DC, or 0.20A@ 125 V DC (resistive load)
Minimum Contact Load Current	10.0 mA @+5.00 V DC
Maximum Switching Current	3.00 A
Relay Back Indication	Contact position - hardware back indication
DO Frequency	Max. 10 Hz (resistive load)
Diagnostic LEDs	LED per each output status, module error LED
User Connection	3 Terminal Blocks (5.00 mm pitch), Maximum 14 AWG
Cable and TB Holder	30 Wire Cable with Terminal Block Holder connector, 20 AWG
Fail State	Configurable relay state on CPU fail: On, Off or 'last value'
All Relays Disable/Enable	Selectable per module, controlled from the power supply
Module Replacement	Hot swap replacement - module extraction/insertion under voltage
Output Isolation	Between output and module logic 2.5 kV per IEC60255-5
Insulation	Insulation resistance $100 \mathrm{M} \Omega$ @ 500 V DC per IEC60255-5, Insulation impulse 5 kV per IEC60255-5
Operating Voltage	$10.8-16 \mathrm{~V} \mathrm{DC}$ and $3.3 \mathrm{~V} \mathrm{DC} \pm 10 \%$ (from the motherboard connector)
Power Consumption	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Dimensions	$37 \mathrm{~mm} \mathrm{~W} \times 225 \mathrm{~mm} \mathrm{H} \mathrm{x} 180 \mathrm{~mm} \mathrm{D}\left(1.5^{\prime \prime} \mathrm{W} \times 8.7^{\prime \prime} \mathrm{H} \times 7.1^{\prime \prime} \mathrm{D}\right)$
Weight	approx. $0.423 \mathrm{~kg}(0.90 \mathrm{lbs})$

Specifications subject to change without notice.

ANALOG INPUT MODULE

General Description

The Analog Input (AI) modules have 8 or 16 inputs. The modules sample and convert analog data into digital format and transfer the digital data to the CPU module.

The following modules are available:

- $8 \mathrm{AI} \pm 20 \mathrm{~mA}$ (supports $4-20 \mathrm{~mA}$)
- $16 \mathrm{AI} \pm 20 \mathrm{~mA}$ (supports 4-20 mA)
- $8 \mathrm{AI} \pm 5 \mathrm{~V}$ (supports $0-5 \mathrm{~V}$ and $1-5 \mathrm{~V}$)
- $16 \mathrm{AI} \pm 5 \mathrm{~V}$ (supports $0-5 \mathrm{~V}$ and $1-5 \mathrm{~V}$)

The module's analog-to-digital conversion resolution is 16 bit (including sign). Each input is fully isolated from the other inputs on the module and also optically isolated from the module internal circuits. The modules are fully calibrated and can be tested and recalibrated in the field.

The measured values are digitally filtered to reduce the 50 or 60 Hz noise. The user can select the filtering frequency per module.

The measured values can be smoothed by digital filtering. Smoothing is accomplished by calculating the running average values of a defined number of converted analog values (samples). The user can select the level of smoothing per module. The higher the smoothing level chosen, the more stable is the smoothed analog value and the longer it takes until the smoothed analog signal is applied after a step response.

The user can select how the analog values are represented to the user application program as unit-less numeric values or as scaled values that represent certain Engineering Units (EGU).

Each AI module can include an optional plug-in floating 24 V DC power supply to power external devices.

Each analog input has two status LEDs:

- UF - indicates Underflow when lit
- OF - indicates Overflow when lit

For a description of I/O module construction, location, LEDs, TB holder, and other common I/O module features, see the I/O Modules chapter above.

For details on specific AI parameters and configuration, see AI Module Configuration below.
Figure 12-1 provides a general view of the ACE3600 AI module.

Figure 12-2 provides a detailed view of the AI module front panel.

8 AI Module

16 Al Module

Figure 12-2 ACE3600 AI Module - Front Panel

AI Module Configuration

50/60 Hz Filtering

This parameter enables the user to configure the module to use 50 or 60 Hz filter on all inputs.

AI Filter (Smoothing)

This parameter enables the user to configure the level smoothing (averaging) on all inputs. It can be set to $1,2,4,8,16,32,64,128$ samples.

Change Of State (COS) Delta

This parameter sets a delta value to each input. This enables the user application program to get an indication when the input value change is more than \pm delta value.

Input Range

This parameter sets the overflow and underflow limits (refer to AI Module value representation below.)

In the current input modules, the ranges that can be selected are: $\pm 20 \mathrm{~mA}$ (default) and 4-20 mA .

In voltage input modules, the ranges that can be selected are $\pm 5 \mathrm{~V}$ (default), $0-5 \mathrm{~V}$ and $1-5 \mathrm{~V}$.

Keep Last Value (KLV) and Predefined Value (PDV)

Each input can be configured to KLV or to a PDV. This value is shown to the user application program in the event of AI module failure. The predefined value can also be used during normal operation to force a value that masks the actual input value. In this case the user application program will get the PDV instead of the actual input value.

I/O Legacy Resolution Parameter

In systems with both ACE3600 RTUs and legacy (MOSCAD/MOSCAD-L) RTUs, some MOSCAD/MOSCAD-L applications can be upgraded to ACE3600 without modifying the references to analog values in the applications ('C' or ladder). The I/O Legacy Resolution STS advanced parameter sets the Analog I/O bit resolution to either Actual (ACE3600) or Legacy (MOSCAD/MOSCAD-L).

For values and restrictions, see Appendix A: Site Configuration Parameters in the ACE3600 STS User Guide.

AI Module Configuration Options

The AI module features which can be configured are listed in the table below. Some parameters are per module and some are per input.

Table 12-1 ACE3600 AI Module Configurable Parameters

Parameter	Selection	Default setup	Per Module / Input	Parameter Setup location
$50 / 60 \mathrm{~Hz}$ Filtering	$50 / 60$	50 Hz	Module	STS Site configuration
AI Filter (Smoothing)	$1 / 2 / 4 / 8 / 16 / 32 / 64 / 128$ $(x 10 \mathrm{mS})$	32	Module	STS Site configuration
Input Range	Current: $\pm 20 \mathrm{~mA} /$ $4-20 \mathrm{~mA}$ Voltage: $\pm 5 \mathrm{~V} / 0-5 \mathrm{~V} /$ $1-5 \mathrm{~V}$	Current: $\pm 20 \mathrm{~mA}$ Voltage: $\pm 5 \mathrm{~V}$	Module	STS Site configuration
COS Delta	value	0 (disabled)	Input	Application Programmer I/O link table
KLV \& PDV	KLV/PDV PDV=value	KLV	Input	Application Programmer I/O link table
Mask	No /Yes	No	Input	Application Programmer I/O link table

Sleep Mode

Each AI module can be switched by the user application program to Sleep Mode. In Sleep Mode, the module does not function and the power consumption is minimized. During Sleep mode the user application program will get the predefined values for each I/O.

Module Status and Diagnostics

In the event of AI Module failure, the I/O module ERR LED will be lit. The event is registered by the CPU in the Error Logger. AI Module failure status is also visible to the user application program.

In addition to the ERR LED, the module includes an Underflow (UDF) and Overflow (OVF) LED for each input.

- When the UDF LED is lit, it indicates that the signal level in the corresponding input is below the nominal range.
- When the OVF LED is lit, this indicates that the signal level in the corresponding AI is above the nominal range.
- If both the UDF and OVF LEDs of the same channel are lit, the channel is uncalibrated.

The AI module can be diagnosed and monitored using the STS Hardware Test utility. The Hardware Test verifies that the module is operational, presents the module configuration and shows the actual value of each input, including overflow and underflow. It is also possible to change the input filter setup for the duration of the Hardware test.

In the HW Test utility, it is possible to set the AI module to Freeze Mode. In this mode the program user will get the KLV or PDV of each input in the module instead of the actual input value. Freeze mode enables testing the inputs while the user application program is running.

AI Module Value Representation

In $\mathbf{\pm 2 0} \mathbf{~ m A}$ current inputs	Decimal Value	Input Current	Indication
	<-32256	$<-20.16 \mathrm{~mA}$	Underflow LED ON
	-32000	-20 mA	
	0	0 mA	
active)			

In 1 - 5 V current inputs	Decimal Value	Input Voltage	Indication
	<6144	$<0.96 \mathrm{~V}$	Underflow LED ON
	6400	1 V	Rated range (no LED active)
	32000	+5 V	Overflow LED ON

I/O Circuit Diagram

AI $\pm 20 \mathrm{~mA}$ - Typical Input Circuit

Module Block Diagram

8 AI

16 AI

Connection Charts

8 AI			
Pin	Function	Pin	Function
1	AI1+	11	AI5+
2	AI1-	12	AI5-
3	AI2+	13	AI6+
4	AI2-	14	AI6-
5	AI3+	15	AI7+
6	AI3-	16	AI7-
7	AI4+	17	AI8+
8	AI4-	18	AI8-
9	PGND	19	+24 V
10	PGND	20	-24 V

16 Al			
Pin	Function	Pin	Function
1	AI1+	21	AI9+
2	AI1-	22	AI9-
3	AI2+	23	AI10+
4	AI2-	24	AI10-
5	AI3+	25	AI11+
6	AI3-	26	AI11-
7	AI4+	27	AI12+
8	AI4-	28	AI12-
9	PGND	29	GND
10	PGND	30	PGND
11	AI5+	31	AI13+
12	AI5-	32	AI13-
13	AI6+	33	AI14+
14	AI6-	34	AI14-
15	AI7+	35	AI15+
16	AI7-	36	AI15-
17	AI8+	37	AI16+
18	AI8-	38	AI16-
19	$+24 V$	39	
20	$-24 V$	40	

I/O Connection Diagram

The diagram below describes the connection of two-wire and four-wire current sensors/transmitters to the Analog Input module.

The diagram below describes the connection of two-wire and four-wire current sensors using the 24 V PS plug-in on the Analog Input module.

AI Module Specifications

Total Number of Inputs	$\begin{aligned} & 8 \mathrm{AI} \pm 20 \mathrm{~mA}(4-20 \mathrm{~mA}) \\ & 16 \mathrm{AI} \pm 20 \mathrm{~mA}(4-20 \mathrm{~mA}) \\ & 8 \mathrm{AI} \pm 5 \mathrm{~V}(0-5 \mathrm{~V}, 1-5 \mathrm{~V}) \\ & 16 \mathrm{AI} \pm 5 \mathrm{~V}(0-5 \mathrm{~V}, 1-5 \mathrm{~V}) \end{aligned}$
Input Configuration	Isolated (floating) analog inputs
A to D Resolution	16 bit (including sign)
Input Accuracy	$\pm 0.1 \%$ of full scale @ $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Input Sampling Time	$10 \mathrm{mSec} @ 50 \mathrm{~Hz}$ filtering; $8.33 \mathrm{mSec} @ 60 \mathrm{~Hz}$ filtering
Smoothing	Selectable input averaging:1,2,4,8,16,32,64,128 samples (x10 mS)
Permitted Potential Between Inputs	75 V DC, 60 V AC (RMS)
Input Impedance	$\begin{aligned} & \pm 20 \mathrm{~mA} \text { input: } \operatorname{Rin}<250 \Omega \\ & \pm 5 \mathrm{~V} \text { input: } \mathrm{Rin}>1 \mathrm{M} \Omega \end{aligned}$
Crosstalk Rejection	Better than 80 dB between any pair of inputs
Temperature Stability	$25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Interference Suppression	Selectable 50 or 60 Hz filtering, Common mode rejection $>100 \mathrm{~dB}$, Differential mode rejection $>50 \mathrm{~dB}$
24 V DC Output	Supports optional isolated 24V Plug-in Power Supply (one in 8 DI, two in 16 DI)
Diagnostic LEDs	Overflow and Underflow LED per each input status, Module error LED, 24V Plug-in status LED The module Overflow and Underflow levels can be configured to: Current inputs: $\pm 20 \mathrm{~mA} / 4-20 \mathrm{~mA}$ Voltage inputs: $\pm 5 \mathrm{~V} / 0-5 \mathrm{~V} / 1-5 \mathrm{~V}$
User Connection	2 or 4 Terminal Blocks (3.5mm pitch), Maximum 18 AWG
Cable and TB Holder	20 or 40 Wire Cable with TB Holder connector, 26 AWG
Module Replacement	Hot swap replacement- module extraction/insertion under voltage
Input Isolation	1.5 kV RMS between input and module logic, per IEC60255-5
Input Insulation	Insulation resistance $100 \mathrm{M} \Omega$ @ 500 V DC, per IEC60255-5
Operating Voltage	10.8-16 V DC and 3.3 V DC (from the motherboard connector)
Power Consumption	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Dimensions	$37 \mathrm{~mm} \mathrm{~W} \mathrm{x} 225 \mathrm{~mm} \mathrm{H} \times 180 \mathrm{~mm}$ D, (1.5" W x 8.7" H x 7.1" D)
Weight	8 AI : approx. 032 Kg (0.71 Lb) 16 AI : approx. $0.34 \mathrm{Kg}(0.75 \mathrm{Lb})$

Specifications subject to change without notice.

ANALOG OUTPUT MODULE

General Description

The Analog Output (AO) modules have four optically-isolated analog output channels for controlling user devices (see Figure 13-1). Each channel has two possible outputs: 0-20 mA Interface industry standard current output and 0-10 V Interface industry standard voltage output. Only one of the outputs can be enabled in a particular channel - either current or voltage.

The module's digital to analog converter resolution is 14 bit. The Analog Output channels are optically isolated from the module internal logic circuits. The modules are fully calibrated and can be tested and recalibrated in the field.

Each analog output has three status LEDs, Vout, Iout, and CAL which represent the calibration status of each output for voltage/current. See Module Status and Diagnostics below for the LEDs behavior.

For a description of I/O module construction, location, LEDs, TBs, and other common I/O module features, see the I/O Modules chapter above.

For details on specific AO parameters and configuration, see AO Module Configuration below.

Figure 13-1 provides a general view of the ACE3600 AO module.

Figure 13-1 ACE3600 AO Module - General View

Figure 13-2 provides a detailed view of the AO module front panel.

Figure 13-2 ACE3600 AO Module - Front Panel

AO Module Configuration

AO Type

The analog outputs can be set to voltage, current, or raw data. See Module Status and Diagnostics for details.

AO Value

The analog outputs can be set to a numeric value (in the range of 0 to 16000) or either in voltage or current according to the output type. The values for voltage are 0 to 10 V and the values for current are 0 to 20 mA . See Module Status and Diagnostics for details.

The AO module value representation is as follows:

In 0-20 mA current outputs	Decimal Value	Output Current
	0	0
	4000	5 mA
	8000	10 mA
In 0-10 V voltage outputs	16000	20 mA
	0	Output Voltage
	4000	0 V
	8000	2.5 V
	16000	5 V

AO Calibration

The upper and lower limits of analog outputs can be calibrated - either as current (20 mA upper limit and 4 mA lower limit) or voltage (10V upper limit and 2V lower limit). Default upper and lower calibration limits are provided from the factory. See Module Status and Diagnostics for details.

Keep Last Value (KLV) and Predefined Value (PDV)

Each output can be configured to KLV or to a PDV. This value is maintained in the event of AO module failure or communication failure with the CPU .

The predefined value can also be used during normal operation to force a value that masks the actual output value.

I/O Legacy Resolution Parameter

In systems with both ACE3600 RTUs and legacy (MOSCAD/MOSCAD-L) RTUs, some MOSCAD/MOSCAD-L applications can be upgraded to ACE3600 without modifying the references to analog values in the applications ('C' or ladder). The I/O Legacy Resolution STS advanced parameter sets the Analog I/O bit resolution to either Actual (ACE3600) or Legacy (MOSCAD/MOSCAD-L).

For values and restrictions, see Appendix A: Site Configuration Parameters in the ACE3600 STS User Guide.

AO Module Configuration Options

The AO module features which can be configured are listed in the table below. Some parameters are per module and some are per output.

Table 13-1 ACE3600 AO Module Configurable Parameters

Parameter	Selection	Default setup	Per Module / Output	Parameter Setup location
AO Type	Voltage/Current	User Defined	Output	STS HW Test/User application program
AO Value	Voltage -0 to 10 V Current -0 to 20 mA	User Defined	Output	STS HW Test/User application program
AO Calibration	Voltage -2 to 10 V Current -4 to 20 mA	Voltage -2 to 10 V Current - 4 to 20 mA	Output	STS HW Test
 PDV	KLV/PDV PDV=value	KLV	Output	Application Programmer I/O link table
Mask	No /Yes	No	Output	Application Programmer I/O link table

Sleep Mode

Each AO module can be switched by the user application program to Sleep Mode. In Sleep Mode, the module does not function and the power consumption is minimized. During Sleep mode the user application program will get the predefined values for each output.

Module Status and Diagnostics

In the event of AO Module failure, the I/O module ERR LED will be lit. The event is registered by the CPU in the Error Logger. AO Module failure status is also visible to the user application program.

In addition to the ERR LED, the module includes a voltage output (Vout), current output (Iout), and calibration (CAL) LED for each output.

CAL	Vout	lout	Indication
On	On	On	Neither output is calibrated.
On	Off	On	Iout is uncalibrated.
On	On	Off	Vout is uncalibrated.
Off	On	On	Row value for testing purpose is defined by the user, either using HW test or user application program to send raw data.
Off	On	Off	Vout is defined by the user, either using HW test or user application program.
Off	Off	On	Iout is defined by the user, either using HW test or user application program.

The AO module can be diagnosed and monitored using the STS Hardware Test utility. The Hardware Test verifies that the module is operational, shows the type and actual value of each output, enables calibration, and presents the ROM data calibration factors. The AO type can be set either in the user application program or in the Hardware Test. To set the output value in the Hardware test, the user application program must be stopped or the AO module frozen. To calibrate the output in the Hardware test, the user application program must be stopped or the AO module frozen.

In the Hardware Test utility, it is possible to set the AO module to Freeze Mode. In this mode, the AOs will keep the last value they had at the time they were frozen. Freeze mode enables testing the inputs and outputs while the user program is running.

I/O Circuit Diagram

AO - Typical Output Circuit

Module Block Diagram

4 AO

Connection Charts

4 AO

Pin	Function	Pin	Function
1	Vout1	11	Vout3
2	Ret1	12	Ret3
3	Iout1	13	Iout3
4	PGND1	14	PGND1
5	PGND1	15	PGND1
6	Vout2	16	Vout4
7	Ret2	17	Ret4
8	Iout2	18	Iout4
9	PGND1	19	PGND1
10	PGND1	20	PGND1

I/O Connection Diagram

AO Module Specifications

Total Number of Outputs	4 AO current ($0-20 \mathrm{~mA}$) or voltage ($0-10 \mathrm{~V}$)
Output Arrangement	Isolated floating channels, each channel can be connected as $0-20 \mathrm{~mA}$ or $0-10 \mathrm{~V}$ DC voltage
D to A Resolution	14 bit
Output Accuracy	$\pm 0.1 \%$ full scale @ $25^{\circ} \mathrm{C}$
Temperature Stability	$25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Internal Settling Time	Max. 1.0 msec
Output Load	Voltage: > $1.0 \mathrm{k} \Omega,<1.0 \mu \mathrm{f}$ Current: < 750Ω (internal power source)
Crosstalk Rejection	Better than 50 dB between any pair of outputs
Interference Suppression	Common mode rejection $>60 \mathrm{~dB}$
Output Protection	Voltage output: short circuit current, max. 30 mA Current output: No-load voltage max. 22 V DC
Diagnostic LEDs	Module error LED, Voltage mode LED, Current mode LED, Calibration LED per channel
User Connection	2 Terminal Blocks (3.5 mm pitch), Maximum 18 AWG
Cable and TB Holder	20 Wire Cable with TB Holder connector, 26 AWG
Module Replacement	Hot swap replacement- module extraction/insertion under voltage
Isolation	1.5 kV between output and module logic
Insulation	Insulation resistance $100 \mathrm{M} \Omega$ @ 500 V DC, per IEC60255-5
Operating Voltage	10.8-16 V DC and 3.3 V DC (from the motherboard connector)
Power Consumption	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Dimensions	37 mm W x 225 mm H x 180 mm D, (1.5" W x $8.7{ }^{\prime \prime} \mathrm{H} \times 7.1^{\prime \prime} \mathrm{D}$)
Weight	Approx. 0.29 Kg (0.64 Lb)

MIXED I/O MODULE

General Description

The ACE3600 Mixed I/O modules include a mixture of Digital Inputs, Relay Outputs and Analog Inputs on the same module.

The available Mixed I/O modules are:

- 16 Digital Inputs +4 EE DO Relay Outputs +4 Analog Inputs $(\pm 20 \mathrm{~mA})$
- 16 Digital Inputs +4 ML DO Relay Outputs +4 Analog Inputs ($\pm 20 \mathrm{~mA}$)

Figure 14-1 provides a general view of the ACE3600 Mixed I/O module.

Figure 14-1 ACE3600 Mixed I/O Module - General View

Another type of mixed I/O is found on the Digital Output/Digital Input (DO/DI) FET module. See the Digital Output/Digital Input (DO/DI) FET module chapter above for more information.

Figure 14-2 provides a detailed view of the Mixed I/O module front panel.

Figure 14-2 ACE3600 Mixed I/O Module - Front Panel

The Digital Input (DIs) on the Mixed I/O modules are voltage ("wet") inputs IEC 61131-2 Type II compliant. The first 12 DIs can function as fast counters. All DIs are optically isolated.

Each DI can be an event trigger (by interrupt) to a high priority fast process. A high priority fast process enables very fast activation of an output in response to an input trigger and logical conditions. This high priority fast process is independent of the I/O scan (refer to the STS Application Programmer manual).

All four relay outputs are Single Pole Double Throw (SPDT) and are referred to as the "Form C" relays. The physical position of each relay is monitored by the module logic, by using a back indication signal which is connected to the relay's second contact set. Any contradiction between the required position and the back indication signal, is reported to the CPU and is available to the user application program.

In some applications, it is necessary to inhibit relay output operation when attending the site for safety reasons. In all DO relay modules; it is possible to inhibit all relays per DO module. When a module is configured to enable relay inhibiting, the power to the relays is provided from the power supply via a dedicated power line (12 V DO), controlled from the " 12 V DO" input (TB located on the power supply module panel). When the input's terminals are shorted, the relays are operational. When the input's terminals are open, the relays are inhibited (EE relays in the OFF (0) position and ML relays do not change state.)

The user application program can monitor the relay inhibiting status and act accordingly. Also, when the module's relays are inhibited, any mismatch between the relay position and the output logical state is ignored.

The Mixed I/O modules Analog-to-Digital conversion resolution is 16 Bit (including sign). Each input is fully isolated from the other inputs on the module and also optically isolated from the module internal circuits. The modules are fully calibrated. It is possible to test and recalibrate the module in the field.

The measured values are digitally filtered to reduce the 50 or 60 Hz noise. The user can select the filtering frequency per module.

The measured values can be smoothed by digital filtering. Smoothing is accomplished by calculating the running average values of a defined number of converted analog values (samples). The user can select the level of smoothing per module. The higher the smoothing level chosen, the more stable is the smoothed analog value and the longer it takes until the smoothed analog signal is applied after a step response.

The user can select how the analog values are represented to the user application program, as unitless numeric values or as scaled values that represent certain Engineering Units (EGU).

Each AI module can include an optional plug-in floating 24 V DC power supply to power external devices.

Each analog input has two Status LEDs:

- UF - indicates Underflow when lit
- OF - indicates Overflow when lit

The Mixed I/O modules support an optional 24 V DC floating plug-in power supply (for contact "wetting" or other purposes).

For a description of I/O module construction, location, LEDs, TB holder, and other common I/O module features, see the I/O Modules chapter above. For details on Mixed I/O Module specific parameters and configuration, see the Mixed I/O Module Configuration section below.

Mixed I/O Module Configuration

For configuration of the DIs, refer to the DI Module chapter.
For configuration of the DOs, refer to the DO/DI FET Module or DO Relay Module chapter.
For configuration of the AIs, refer to the AI Module chapter.

Sleep Mode

Each Mixed I/O module can be switched by the user application program to Sleep Mode. In Sleep Mode, the module does not function and the power consumption is minimized. During Sleep mode the user application program will get the predefined values per each I/O.

Module Status and Diagnostics

In the event of Mixed I/O Module failure, the ERR LED will be lit. This event is registered by the CPU in the Error Logger. DI Module failure status is also visible to the user application program.

The Mixed I/O module can be diagnosed and monitored using the STS Hardware Test utility.
For Hardware Test of the DIs, refer to the DI Module chapter.
For Hardware Test of the DOs, refer to the DO/DI FET Module or DO Relay Module chapter.
For Hardware Test of the AIs, refer to the AI Module chapter.

Module Block Diagram

Mixed I/O

Connection Charts

Mixed I/O			
Pin	Function	Pin	Function
1	DI1	21	COM1
2	DI2	22	NC1
3	DI3	23	NO2
4	DI4	24	COM2
5	DI5	25	NC2
6	DI6	26	NO3
7	DI7	27	COM3
8	DI8	28	NC3
9	DI9	29	NO4
10	DI10	30	COM4
11	DI11	31	NC4
12	DI12	32	AI1+
13	DI13	33	AI1-
14	DI14	34	AI2+
15	DI15	35	AI2-
16	DI16	36	AI3+
17	$24 \mathrm{~V}+$	37	AI3-
18	COM1	38	AI4+
19	PGND1	39	AI4-
20	NO1	40	PGND

Mixed I/O Module Specifications

Total Number of Inputs / Outputs	16 Digital Inputs + 4 EE Relay Outputs + 4 Analog Inputs $(\pm 20 \mathrm{~mA})$ 16 Digital Inputs + 4 ML Relay Outputs + 4 Analog Inputs $(\pm 20 \mathrm{~mA})$
I/O Arrangement	1 group of 16 DIs with shared common 4 4 relay outputs - Form C
4isolated analog inputs	

AI Temperature Stability	$25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
AI Interference Suppression	Selectable 50 or 60 Hz filtering, common mode rejection $>100 \mathrm{~dB}$, differential mode rejection $>50 \mathrm{~dB}$
Diagnostic LEDs	Module error LED, Status LED per each DO and DI. Overflow and Underflow LED per each AI, 24V Plug-in status LED (AI)
	AI Overflow and Underflow levels can be configured to: Current inputs: $\pm 20 \mathrm{~mA} / 4-20 \mathrm{~mA}$ Voltage inputs: $\pm 5 \mathrm{~V} / 0-5 \mathrm{~V} / 1-5 \mathrm{~V}$
24 V DC Output	Supports one isolated 24 V A plug-in "wetting" power supply
User Connection	4 Terminal Blocks (3.5mm pitch), Maximum 18 AWG
Cable and TB Holder	40 wire cable with Terminal Block Holder connector, 26 AWG
Module Replacement	Hot swap replacement- module extraction/insertion under voltage
Input / Output Isolation	DI: 2.5 kV RMS between input and module logic per IEC60255-5 DO: Between open contacts: 1 kV, between output and module logic: 1.5 kV per IEC60255-5
AI: 1.5 kV between input and module logic per IEC60255-5	

Specifications subject to change without notice.

MIXED ANALOG MODULE

General Description

The ACE3600 Mixed Analog modules include a mixture of Analog Inputs and Analog Outputs on the same module.

The available Mixed Analog modules are:

- 4 Analog Outputs +8 Analog Inputs ($\pm 20 \mathrm{~mA}$) (supports 4-20 mA)
- 4 Analog Outputs +8 Analog Inputs $(\pm 5 \mathrm{~V})$ (supports $0-5 \mathrm{~V}$ and $1-5 \mathrm{~V}$)

Figure 15-1 provides a general view of the ACE3600 Mixed Analog module.

Figure 15-1 ACE3600 Mixed Analog Module - General View

Figure 15-2 provides a detailed view of the Mixed Analog module front panel.

Figure 15-2 ACE3600 Mixed Analog Module - Front Panel

For a description of the AIs in the Mixed Analog modules, see the Analog Input Module chapter. For a description of the AOs in the Mixed Analog modules, see the Analog Output Module chapter.

The Mixed Analog modules support an optional 24V DC floating plug-in power supply to power external devices.

For a description of I/O module construction, location, LEDs, TB holder, and other common I/O module features, see the I/O Modules chapter above. For details on Mixed Analog Module specific parameters and configuration, see the Mixed Analog Module Configuration section below.

Mixed Analog Module Configuration

For configuration of the AIs, refer to the AI Module chapter.
For configuration of the AOs, refer to the AO Module chapter.

Sleep Mode

Each Mixed Analog module can be switched by the user application program to Sleep Mode. In Sleep Mode, the module does not function and the power consumption is minimized. During Sleep mode the user application program will get/set the predefined values per each I/O.

Module Status and Diagnostics

In the event of Mixed Analog Module failure, the ERR LED will be lit. This event is registered by the CPU in the Error Logger. AI Module failure status is also visible to the user application program.

The Mixed Analog module can be diagnosed and monitored using the STS Hardware Test utility.

For Hardware Test of the AIs, refer to the AI Module chapter.
For Hardware Test of the AOs, refer to the AO Module chapter.

Module Block Diagram

Mixed Analog

Connection Charts

4AO/8AI

Pin	Function	Pin	Function
1	Vout1	21	AI1+
2	Ret1	22	AI1-
3	Iout1+	23	AI2+
4	PGND1	24	AI2-
5	PGND1	25	AI3+
6	Vout2	26	AI3-
7	Ret2	27	AI4+
8	Iout2	28	AI4-
9	PGND1	29	PGND2
10	PGND1	30	PGND2
11	Vout3	31	AI5+
12	Ret3	32	AI5-
13	Iout3	33	AI6+
14	PGND1	34	AI6-
15	PGND1	35	AI7+
16	Vout4	36	AI7-
17	Ret4	37	AI8+
18	Iout4	38	AI8-
19	PGND1	39	$+24 V$
20	PGND1	40	$-24 V$

Mixed Analog Module Specifications

Total Number of I/Os	4 Analog Outputs +8 Analog Inputs $(\pm 20 \mathrm{~mA})$ or 4 Analog Outputs +8 Analog Inputs ($\pm 5 \mathrm{~V}$ DC)
I/O Arrangement	AO - each channel can be connected as $0-20 \mathrm{~mA}$ or $0-10 \mathrm{~V}$, AI - Isolated (floating) analog inputs
AO D to A Resolution	14 bit
AO Accuracy	$\pm 0.1 \%$ full scale @ $25^{\circ} \mathrm{C}$
AO Temperature Stability	$25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
AO Internal Settling Time	Max. 1.0 msec
AO Load	$\begin{aligned} & \text { Voltage: }>1.0 \mathrm{k} \Omega,<1.0 \mu \mathrm{f} \\ & \text { Current: }<750 \Omega \text { (with internal power supply) } \end{aligned}$
AO Crosstalk Rejection	Better than 50 dB between any pair of outputs
AO Interference Suppression	Common mode rejection $>60 \mathrm{~dB}$
AO Voltage Output Protection	Short circuit protection, max. 30 mA (all other operating channels remain fully functional)
AO Current Output No-load Voltage	Max. 22.0 V DC
AO Isolation	1.5 kV between output and module logic
AO Insulation	Insulation resistance $100 \mathrm{M} \Omega$ @ 500 V DC per IEC60255-5
AI A to D Resolution	16 Bit (including sign)
AI Accuracy	$\pm 0.1 \%$ full scale
AI Sampling Time	$10 \mathrm{mSec} @ 50 \mathrm{~Hz}$ filtering 8.33 mSec @ 60 Hz filtering
AI Smoothing	Selectable input averaging: $1,2,4,8,16,32,64$ or 128 samples (x10 mS)
Permitted. Potential between Inputs	$75 \mathrm{~V} \mathrm{DC} ,60 \mathrm{~V} \mathrm{AC} \mathrm{(RMS)}$
AI Input Impedance	$\begin{aligned} & \pm 20 \mathrm{~mA} \text { input: } \operatorname{Rin}<250 \Omega \\ & \pm 5 \mathrm{~V} \text { input: } \operatorname{Rin}>1 \mathrm{M} \Omega \end{aligned}$
AI Crosstalk Rejection	Better than 80 dB between any pair of inputs
AI Temperature Stability	$25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
AI Interference Suppression	Selectable 50 or 60 Hz filtering, common mode rejection > 100 dB , differential mode rejection $>50 \mathrm{~dB}$
24 V DC Output	Supports one isolated 24V Plug-in "wetting" power supply

Diagnostic LEDs	AO - Voltage mode LED, Current mode LED, Calibration LED per channel
	AI - Overflow and Underflow LED per each input, 24V Plug-in
status LED	
	The module Overflow and Underflow levels can be configured to: Current inputs: $\pm 20 \mathrm{~mA} / 4-20 \mathrm{~mA}$ Voltage inputs: $\pm 5 \mathrm{~V} / 0-5 \mathrm{~V} / 1-5 \mathrm{~V}$ General - Module error LED
AI Input Isolation	1.5 kV between input and module logic
AI Input Insulation	Insulation resistance $100 \mathrm{M} \Omega$ @ 500 V DC per IEC60255-5
User Connection	4 Terminal Blocks (3.5mm pitch), Maximum 18 AWG
Cable and TB Holder	40 wire cable with Terminal Block Holder connector, 26 AWG
Module Replacement	Hot swap replacement- module extraction/insertion under voltage
Operating Voltage	$10.8-16 \mathrm{~V}$ DC and 3.3 V DC (from the motherboard connector)
Power Consumption	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Dimensions	$37 \mathrm{~mm} \mathrm{~W} \mathrm{x} 225 \mathrm{~mm} \mathrm{H} \mathrm{x} 180 \mathrm{~mm} \mathrm{D} \mathrm{(1.5"} \mathrm{~W} \mathrm{x} \mathrm{8.7"} \mathrm{H} \mathrm{x} \mathrm{7.1"} \mathrm{D)}$
Weight	Approx. $0.34 \mathrm{Kg}(0.75 \mathrm{Lb})$

Specifications subject to change without notice.

I/O EXPANSION

General Description

The ACE3600 RTU includes the option of expanding the number of I/O modules controlled by a single CPU module on the main frame. The I/O expansion frames can be co-located with RTU on the main frame (installed in the same 19" rack or cabinet) or distributed in the same site (up to 50 meters from the main frame.)

I/O expansion is based on a 100 Base-T full duplex Ethernet connection between the CPU module and the expansion modules. This type of connection enables the user program application to control and monitor the I/O modules on the expansion frames transparently in the same way it controls and monitors the I/O modules on the main frame.

The user can diagnose all the modules on the expansion frames using the STS via the CPU on the main frame. The STS can also be connected locally through the expansion module's STS1 RS232 port.

I/O expansion is based on three modules:

- Expansion LAN Switch: This module is part of the expansion frame. It is installed in the main frame in an I/O module slot. Up to seven expansion frames can be connected through a single expansion LAN switch. (For one expansion frame, the switch is not required.) Eight to thirteen expansion frames can be connected using a combination of two expansion LAN switches. For information, see the Expansion LAN Switch chapter below.
- Expansion Power Supply: This module is installed in the I/O expansion frame. It extends power (and 12V DO control) from the power supply on the RTU's main frame to the I/O expansion frame, or from one I/O expansion frame to another. For more information, see the Expansion Power Supply Module chapter below. This module can be replaced by another ACE3600 power supply option per power requirements or when the expansion frame is not co-located with the main frame. For a list of power supply options, see the Power Supply Module and Backup Battery chapter above.
- Expansion Module: This module is part of the expansion frame. It is installed in the I/O expansion frame next to the power supply. It is connected via LAN to the RTU's main frame, either to the CPU module or to the expansion LAN switch, depending on the configuration. For more information, see the Expansion Module Chapter below.

Note: Only a dedicated LAN should be used by the main CPU and expansion modules to communicate with each other. Connecting other elements to the LAN may disrupt system operation.

Note: The main CPU must include an Eth1 Ethernet port. Therefore, only the CPU 3640 can be used for I/O expansion.

Figure 16-1 provides a general view of an ACE3600 CPU with a single I/O expansion frame. The expansion module on the I/O expansion frame is connected using a crossed LAN cable to the CPU3640 on the main frame (Port Eth1.) The expansion power supply on the I/O expansion frame is attached via DC cable to the power supply on the main frame. Accessories such as a mobile radio, battery, and plastic box are attached to a separate optional 19 " chassis.

Figure 16-1 ACE3600 I/O Expansion - Single Frame Example

Figure 16-2 provides a general view of an ACE3600 CPU with multiple I/O expansion frames (two to seven.) The CPU on the main frame (Port Eth1) is connected using a LAN cable to the LAN switch on the main frame (Port Eth 1-M). The expansion modules on each of the seven I/O expansion frames are connected using a LAN cable to the expansion LAN switch (Eth2Eth8) on the main frame. The expansion power supply on the first I/O expansion frame is attached via DC cable to the power supply on the main frame. The power supplies on the other I/O expansion frames are each attached via DC cable to the power supply on the previous I/O expansion frame, in a daisy-chain manner. Accessories such as a mobile radio, battery, and plastic box are attached to a separate 19 " chassis.

Note that the number of chained frames is limited by the total power and voltage drop.

Figure 16-2 ACE3600 I/O Expansion - Multi-Frame Example

Note: The number of expansion power supplies that can be cascaded to the power supply on the main frame is limited. When required, DC or AC power supplies should be installed on the expansion frames to meet the accumulated power consumption requirements.

In the maximal configuration, up to $110 \mathrm{I} / \mathrm{Os}$ can be connected to the ACE3600, by using two expansion LAN switches on the main frame and thirteen I/O expansion frames. See Figure 163.

Figure 16-3 ACE3600 I/O Expansion - Maximal I/O Configuration

I/O Expansion Frame

An I/O expansion frame must always include an expansion module to enable the CPU in the main frame to communicate with and control the expansion frame and its I/O modules. The expansion module is provided with each expansion frame model.

Like the ACE3600 main frame, the I/O expansion frame can contain 3, 5, 7 or 8 I/O slots. The expansion frame is compatible with the existing chassis and housing options.

I/O Expansion Power

The choice of power supplies for a system with I/O expansion is determined by the specific configuration and the power requirements of the system.

In a co-located system where the power supply on the main frame feeds the I/O expansion frame, a low-tier power supply cannot serve as the main power supply.

In a distributed system where the power supply on the I/O expansion frame is not connected to the main frame, any power supply modules can be used which suit the power requirements of the system. When applicable, it is recommended to have an external single power on/off
switch to control all power supplies simultaneously. Similarly, it is recommended to have a single on/off for all 12 V DO controls. If a DC power supply low tier is used on the expansion frame, it does not include the 12 V DO control, and it cannot provide power (in a daisy-chain manner) to other expansion power supplies.

For guidelines on selecting the power supplies for a particular ACE3600 RTU with I/O expansion, see the ACE3600 System Planner.

Power-up/Restart/Power-down

In a system where the power supply on the main frame feeds the I/O expansion frame, powering up/restarting the main power supply will power-up/restart the expansion frames as well. Powering down the main power supply will power-down the expansion I/Os as well.

In a system where the power supply on the I/O expansion frame is not connected to the main frame, powering down or restarting the main power supply will not power-down the I/Os on the expansion frame. However, these expansion I/Os may be reset after a period of time as a result of this action. If the expansion frame loses communication with the main frame for more than a certain number of seconds (configurable), it will restart. For more information, see the Expansion Module chapter below. For information on configurable timeouts which may cause the expansion module to restart, see the ACE3600 STS User Guide - Appendix A: Site Configuration Parameters.

Status and Diagnostics

Status and diagnostics information can be retrieved from the expansion module, LAN switch, and power supply using the STS Hardware Test utility and SW Diagnostics and Loggers, via the CPU on the main frame. In a system where the expansion is not co-located with the main frame, status and diagnostics information on the expansion components can be retrieved by connecting directly to the expansion module. For more details, see the relevant chapter in this manual and the Hardware Test section of the ACE3600 STS User Guide.

EXPANSION MODULE

General Description

The expansion module provides an interface from the CPU module (either directly or via the expansion LAN switch) on the ACE3600 main frame to the I/O modules on the expansion frame. This enables the CPU on the main frame to control the I/O modules on the expansion frame and process the gathered data.

This module is installed in the I/O expansion frame in the second slot from the left and is connected via dedicated LAN to the RTU's main frame.

Figure 17-1 provides a general view of the ACE3600 expansion module.

Figure 17-1 ACE3600 Expansion Module - General View

The front panel includes status LEDs, expansion address LEDs, communication port LEDs, two pushbuttons, communication ports and rotary switch. The panel is covered by the module door.

Figure 17-2 provides a detailed view of the expansion module front panel.

Figure 17-2 ACE3600 Expansion Module - Front Panel

Front Panel

Pushbuttons

The expansion module includes two pushbuttons on the front panel, PB1 and PB2.
These pushbuttons are used for activating and testing the modules LED, restarting the unit, and activating memory test. See the Pushbutton Functionality section below for information on pushbutton functionality.

Note: The pushbuttons cannot be monitored by the user application program (when it is running) for the application purposes. The pushbutton status can be checked using the Hardware Test utility.

Frame Number Selector Switch

The expansion module includes a (rotary) selector switch which enables the user to determine the frame number in the expanded RTU. The frame number is used during communication with the main CPU, with the STS, etc. For instructions on setting the frame number, see Setting the Frame Number below.

Communication Ports

The expansion module includes two on board communication ports:

- Exp Eth1 (E1) - 10/100BaseT Ethernet port, used to connect to the expansion LAN switch or to the main CPU
- STS 1 (STS1) - RS232 port 115200 bps , used to connect a PC running the ACE3600 STS to perform diagnostics and other STS operations (for distributed I/O), as if it is connected directly to the main CPU (i.e. it provides access to the whole system.)

For the detailed specifications of each port, see the Expansion Module Specifications below. For information on the cables and connectors, see Connecting the Expansion Module below and Appendix C.

Note: When connecting an Ethernet cable to the main CPU, add one Fair-Rite ferrite core (\#7683477X01 from the supplied ferrite kit FHN7007A) on each end of the cable, near the connectors. Each core has two turns. When connecting an Ethernet cable to the expansion module, add one Fair-Rite ferrite core (\#7683477X01 from the supplied ferrite kit FHN7007A) on each end of the cable, near the connectors. Each core has two turns. (The number of turns when using ferrite cores is determined by the times the cable/wire crosses the internal aperture of the core.)

LEDs

The expansion modules include module status LEDs, port status LEDs, and expansion address LEDs. Some of the LEDs are single color (green) and some are bicolor LEDs (red, green or orange).

Status LEDS indicate the expansion module status in startup (boot), run-time or when there is a failure. The communication LEDs are used to indicate the communication port status. The expansion address LEDs indicate the address selected with the rotary frame number selector switch, as detected during startup. Note that during startup or failure, the communication and expansion address (EXP ADDR) LEDs are used to indicate various situations. Table 17-1 details the LEDs functionality.

Module Firmware and Operation Modes

The expansion module firmware extends the main CPU control to the I/O modules located in the expansion frame. The expansion module (expansion CPU) is shipped from the factory with dedicated firmware called Expansion Loader. After connecting to the main CPU (MCPU), the expansion module loads the Expansion Firmware Image from the main CPU to ensure that all modules use the same firmware version. The diagram below depicts the initiation process of an expansion module after power-up/restart and during run-time:

Power-up and Restart

The MCOM LED (see LED description in Table 17-1) on the expansion module indicates the connection status between the expansion module and the main CPU and expansion frame initialization progress.

The main CPU expects the expansion frames to complete the initialization within a configurable period of time (60 seconds default). After this period of time elapses, the main CPU will operate normally with the connected frames and their I/O modules. Any expansion frame that has not completed initialization within that time (e.g. because it was connected later to the RTU) will be ignored until the next main CPU restart.

Note that after the main CPU starts up, it waits for the expansion modules to complete the initialization process. The wait time is derived from the number of expansion frames configured in the RTU. After all the expansion frames have completed the initialization, the main CPU will continue its system startup. The main CPU will wait 60 seconds (default) for all expansion frames to connect.

Restart after Firmware Download

After a new version of the firmware is downloaded to the main CPU, the CPU and all expansion modules will restart (as with configuration download or main CPU power reset.) Note that the restart includes the time to identify all expansion frames, as described above. After a new version of the Expansion Loader firmware is downloaded to the expansion module (using the STS Hardware Test feature), the expansion module will restart itself. For information on upgrading the Expansion Loader firmware, see the ACE3600 STS User Guide.

Restart after Configuration Download

After a site configuration is downloaded to the main CPU , the CPU will restart and will instruct the expansion modules to restart as well. Note that the restart includes the time to identify all expansion frames, as described above. For information on downloading to the RTU, see the Operation chapter of the ACE3600 STS User Guide.

If the RTU fails to restart after the user-defined site configuration was downloaded, a unique LED display (in the range of the PI1-TX and SI2-RX LEDs) will follow. The RST LED will turn RED and the RTU will restart itself with the previous "good" configuration. The expansion module will be restarted. The following message will appear in the RTU Error Logger "Configuration file was deleted due to failure in startup. Rolling back to the last configuration file." Errors can be retrieved from the RTU using the ACE3600 STS Error Logger utility.

If the newly-downloaded configuration has a problem which prevents the expansion module from connecting to the main CPU, the expansion module is restarted, and will operate in Expansion Loader mode. It will restart every two minutes, and be unable to perform discovery/load image from main CPU. If the site's I/O configuration includes one or more frames, a warning is displayed in the main CPU. If no frames were configured for the site, the main CPU will ignore all Expansion Loader discovery requests.

If the startup succeeds after configuration download but has errors, these errors are reported in the RTU Error Logger. It is, therefore, recommended to check for errors after downloading a configuration file to the RTU. Errors can be retrieved from the RTU using the ACE3600 STS Error Logger utility.

For information on retrieving errors from the RTU Error Logger, see the Operation chapter of the ACE3600 STS User Guide.

Restart after Erase Flash

After the User Flash is erased in the main CPU, the RTU will restart with the default site configuration and all expansion modules will restart. Note that the restart includes the time to identify all expansion frames, as described above.

Expansion Module during Run-Time

The expansion module constantly exchanges I/O data and status data with the main CPU, using the Ethernet Microcode Interface (EMI). The EMI enables the main CPU to be updated by all the expansion modules at very short intervals via the expansion Ethernet LAN. The main CPU constantly synchronizes the expansion module date and time, and periodically polls the errors, pushbuttons and time tagged data from all the connected expansion modules.

If the connection between the expansion module and the main CPU is lost (e.g. due to main CPU restart, cable disconnection, etc.) for a configurable period of time (1 minute default), the expansion module will restart and the initialization process will begin again.

After the expansion frames have initialized, it is possible to download to the RTU a user program or other user defined files. After successful download, the main CPU automatically updates each expansion module. Note that if the main CPU tries to download a user program or other files to an expansion module during initialization, the expansion module is restarted.

Power-down

When the voltage provided to the expansion module (from the power supply on the expansion frame) drops below the minimum level, the module will shut down in an orderly fashion. When the expansion frame is powered using an expansion power supply (or 12 V low-tier power supply), it may shut down when the voltage drops below 10.8 V . When the expansion frame is powered using other types of ACE3600 power supplies, this level is configurable. See the 'Minimum DC operation voltage' parameter in Appendix A: Site Configuration Parameters of the ACE3600 STS User Guide.

File Download without Restart

When certain files (e.g. I/O FPGA, encryption keys, compiled ladder) are downloaded from the STS to the main CPU, the main CPU will "forward" the files to the expansion modules, without forcing a restart. The main CPU will restart the expansion modules if the "forward" operation fails for some reason (e.g. temporary loss of communication.)

Module Status and Diagnostics

The module status is indicated on the front panel LED. Detailed module status and diagnostics information can be retrieved via the main CPU using the STS Hardware Test utility. For more details, see the Hardware Test section of the ACE3600 STS User Guide.

Module Warnings and Errors

Expansion module warnings and errors are logged in the main frame CPU memory to indicate issues or errors during power-up, restart, run-time, and other modes of CPU operation. If a warning or error occurs in any one of the RTU frames, the ERR LED will light up on the front panel of the main CPU and the MERR LEDs will light up on the front panel of all expansion modules. Green indicates a message, orange indicates a warning, and red indicates an error.

The RTU error logger information can be retrieved using the STS Error Logger utility. For more details, see the Error Logger section of the ACE3600 STS User Guide.

Connecting the Expansion Module

Install the expansion module in the second slot from the left in the expansion frame.
Direct connection: In a system with a single expansion frame, connect the Exp. Eth1 port on the expansion module directly to the Eth1 port on the main CPU, using the crossed Ethernet cable described below.

Switch connection:

- In an RTU with more than one expansion frame (and up to seven), connect the Exp. Eth1 port on the expansion module to one of the Ethernet ports Eth2-Eth8 on the expansion LAN switch (situated on the main frame). Note: The Eth. 1 (M) port on the expansion LAN switch is reserved for connection to the main CPU.
- If two switches are used (more than seven expansion frames), connect the Exp. Eth1 port on the expansion module to one of the Ethernet ports (Eth3-Eth8) on the first expansion LAN switch or to one of the Ethernet ports (Eth2-Eth8) on the second switch. (Connect the Eth2 port on the first switch to the Eth1 (M) port on the second switch Ethernet LAN, as described in the Expansion LAN Switch chapter below.)

Expansion frames are provided without cables. For connection, use one of the cables listed below or use any other standard Category 5E shielded (FTP) LAN cable (up to 50m, per cable length limit.)

Four different Ethernet cables are available for this purpose. Choose the cable length based on the distance from the main frame to the expansion frame.

- 0.6 meter (Motorola p/n FKN8561A) - This cable is for local connection of the main CPU to the expansion switch.
- 2 meter (Motorola p/n FKN8562A)
- 3 meter (Motorola p/n FKN8563A)
- 3 meter (Motorola p / n FKN8525A) crossed cable - This cable is for direct connection of the expansion module to the main CPU.

For more on switch connection, see the Expansion LAN Switch chapter below.

Setting the Frame Number

The expansion module shipped from the factory is set by default to 1 . If more than one I/O expansion frame is added, this frame number (also known as frame ID) must be changed. Procedure 17-1 describes how to set the expansion frame number using the rotary selector switch on the front panel of the expansion module. The frame number should be changed before powering up the module.

Procedure 17-1 How to Set the I/O Expansion Frame Number

1) Make sure that the expansion module is not connected to a power source.
2) Insert a small flat screwdriver into the groove on the rotary frame number selector. See Figure 17-3.
3) Using the screwdriver, turn the dial until the arrow points to the desired frame number. Note: The selected frame number must not already be assigned to another expansion module and must be in the range of 1-13 (1-9, A, B, C, D hexadecimal.)
4) Connect the expansion module to a power source.
5) When the expansion module is powered up, verify the selected frame number via the four binary Expansion Address (EXP ADDR) LEDs on the front panel. This is the frame number that will be used when communicating with the main CPU.

Figure 17-3 Expansion Module Rotary Frame Number Selector Switch and Expansion Address LEDs

NOTE

The rotary frame number selector switch should not be changed while the expansion module is running. If the switch is changed while the expansion module is running,
the frame number will not be changed. A message will be logged in the Error Logger notifying the user of the switch change (specifying the actual frame number.)

If the frame number was set to a number other than 1-9/A-D before power-up, the expansion module will restart itself continually until the frame number is changed. The MERR LED will be red, but no error is logged. The invalid number (1-15) will be reflected in the Expansion Address LEDs.

If the frame number is changed after the Expansion Loader has begun discovery, but before the Expansion Image is started, the expansion module will restart itself and use the new frame number (assuming it is 1-9/A-D.)

It is recommended to set the frame numbers in sequential order (i.e. frame number 1 connected to the expansion LAN switch port Eth2, frame number 2 connected to expansion LAN switch port Eth3, etc.)

0 is an illegal frame number and is not represented by the EXP ADDR LEDs.

Pushbutton Functionality

In general, the two pushbuttons on the front panel of the expansion module behave like the pushbuttons on the front panel of the CPU module, with the exception of the Erase User Flash functionality and user application access which are not available.

Note: PB2 is not relevant during run time in the expansion module.

Scenario	Trigger	Action
LEDs Test	During run-time, press PB1 for five or more consecutive seconds (but less than 30).	All the LEDS on the expansion module and I/O modules on that expansion frame will be lit until let go of PB1 and then returned to their previous states.
Turn LEDs ON	During run-time, press PB1 for one second.	Those LEDs which are currently active will be turned on for a period of time (configured in the RTU configuration using the STS.)
Bootstrap	During startup, press PB2 continuously for five seconds. Note: Before initiating bootstrap, the expansion module must be connected directly to the STS PC in standalone mode. No other components can be on the network which might create a conflict with the default IP address.	The expansion will start up in diagnostic mode. Communication with the RTU is for diagnostic purposes only (Error Logger/ SW Diagnostics) or for downloading new primary image firmware to the module. (See Module Firmware and Operation Modes below.) If the bootstrap fails, the four indicator LEDs (see LEDs Location in Table 17-2) will display the failure error in binary code.

Scenario	Trigger	Action
RAM Test	During startup, press PB1.	A detailed memory test of SDRAM and SRAM plug-in is performed. - At the beginning of the RAM test, the four indicator LEDs (see LEDs Location in Table 17-2) will blink three times. During the RAM test, the LEDs may blink or be lit. If the RAM test succeeds, the four LEDs will blink three times and turn off and the restart sequence will continue. If the RAM test fails, the RTU will freeze (restart sequence stops), the PWR LED will blink and the four LEDs will blink seven times. The failure error code will then be displayed on the LEDs, in binary code, as described in Table 17-3. -
		To exit/abort the RAM test in the middle, restart the RTU using the On/Off switch on the front panel.

LEDs Behavior

The table below describes the behavior of the LEDs on the expansion module.
Table 17-1 Expansion Module LEDs Behavior

LED Name	Description	Status
PWR	Power LED	Flashing Red - Power exists; Module FPGA not loaded.
	Bicolor LED (Red, Green)	Green - Power exists; Module is running from a recognized power supply. Red - Failure on power-up. Module is running from an unrecognized power supply.

$\left.\begin{array}{|l|l|l|}\hline \text { LED Name } & \text { Description } & \text { Status } \\ \hline \text { MERR } & \begin{array}{l}\text { Main CPU } \\ \text { Error Logger Status LED } \\ \text { Bicolor LED (Red, Green) }\end{array} & \begin{array}{l}\text { OFF - No new errors or warnings logged in } \\ \text { main CPU. } \\ \text { Green - New message logged. } \\ \text { Orange - New warning logged. } \\ \text { Red - New error logged. } \\ \text { Note: In systems with I/O expansion, all error } \\ \text { messages from I/O expansion frames are } \\ \text { periodically collected by the main CPU and } \\ \text { saved with the main frame error messages. } \\ \text { When an error message is logged in either the } \\ \text { main frame or I/O expansion frames, the ERR }\end{array} \\ & & \begin{array}{ll}\text { LED is lit on the main CPU front panel and } \\ \text { the MERR LEDs are lit on all expansion } \\ \text { modules. When the messages are cleared, the } \\ \text { ERR/MERR LED(s) are turned off. }\end{array} \\ \hline \text { RST } & \text { Reset LED } \\ \text { Bicolor LED (Red, Green) } & \begin{array}{l}\text { Green - On startup } \\ \text { OFF - Successful power-up or restart. } \\ \text { Red - Power-up or restart failed. }\end{array} \\ \hline \text { MCOM } & \begin{array}{ll}\text { Main CPU } \\ \text { Communication LED } \\ \text { Bicolor LED (Red, Green) }\end{array} & \begin{array}{l}\text { Red - Slow blink - Expansion Loader looking } \\ \text { for main CPU (discovery). } \\ \text { Red - Fast blink - Expansion Loader loading } \\ \text { image. } \\ \text { Red - Expansion module firmware initializing }\end{array} \\ \text { image. } \\ \text { Green - Slow blink - Expansion module } \\ \text { registered with main CPU. } \\ \text { Green - Fast blink - Expansion module ready. } \\ \text { (If this occurs after connection was } \\ \text { established - solid green, it is a sign that the } \\ \text { Expansion module is disconnected from the } \\ \text { main CPU.) } \\ \text { Green - Solid - Expansion module connected. }\end{array}\right\}$

LED Name	Description	Status
MCNF	Main CPU Configuration LED Bicolor LED (Red, Green)	This LED reflects the state of the CONF LED in the main CPU: OFF - Configuration was not loaded in the main CPU. Green - Configuration was loaded in the main CPU. Red - Configuration error in the main CPU. This LED is only relevant after the main CPU has completed its startup.
SI1 TX	STS Port 1 - TX (transmit) Green LED	ON - Transmitting Data
SI1 RX	STS Port 1 - RX (receive) Green LED	ON - Receiving Data
SI1 CM	STS Port 1 - CM (channel monitor) Green LED	ON - Channel Monitor is ON.
E1 LNK	Ethernet Port 1 (link) Green LED	ON - Network Connected In case of RAM test, see Table 17-3.
E1 RX	Ethernet Port 1 (receive) Green LED	ON - Receiving Data In case of RAM test, see Table 17-3.
EXP ADDR x1, x2, x4, x8	Expansion address LEDs Green LED	Reflects the expansion address set in the rotary frame number selector switch. The four LEDs together form the binary representation of the addresses 1-D. See Figure 17-3. During module startup, the LEDs reflect communication errors. See Table 17-2.

Table 17-2 Expansion Module - Error Code Display on LEDs

LEDs Location	LED Error Code	Description
	ERR Code 1	Invalid ID in expansion module, or incompatible board type.
	ERR Code 2	Timeout getting discovery response.
	ERR Code 3	Failed sending discovery request or getting invalid response.
	ERR Code 4	Failed to configure expansion port.
	ERR Code 5	Timeout getting image.
	ERR Code 6	Failed to initialize image.
	ERR Code 7	Timeout initializing expansion module (while getting ready.)
	ERR Code 8	Received illegal file.
	ERR Code 9	Failed to burn file.
	ERR Code 10	Failed to read local I/O, or to send it to main CPU.
	ERR Code 11	Failed to send READY or START signal.
	ERR Code 12	Timeout getting EMI 'Connect' after EMI was started.
	ERR Code 13	Failed a few times to send/connect keepalive signal.
	ERR Code 14	Failed to start EMI or disconnected due to 'fail timeout'.
	ERR Code 15	Other system startup failure.

Table 17-3 Expansion Module - RAM Test Error Code Display on LEDs

Expansion Module Specifications

Microprocessor	Freescale - Power PC II, MPC8270, 32-bit
Microprocessor Clock	200 MHz
Serial Port	RS232C Asynch, Full Flow Control port, up to $230.4 \mathrm{~kb} / \mathrm{s}$; used for STS only
Ethernet Port	$10 / 100 \mathrm{Mb} / \mathrm{s}$ - connection to the main frame
LAN Cable	Category 5E shielded (FTP), up to 50 meter
LEDs Display	4 CPU diagnostic LEDs, Port status LEDs and Expansion Address LEDs
Power Consumption	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Operating Voltage	$10.8-16 \mathrm{~V} \mathrm{DC} \mathrm{(from} \mathrm{the} \mathrm{motherboard} \mathrm{connector)}$
Dimensions	$56 \mathrm{~mm} \mathrm{~W} \mathrm{x} 225 \mathrm{~mm} \mathrm{H} \mathrm{x} \mathrm{180} \mathrm{mm} \mathrm{D}\left(2.2^{\prime \prime} \mathrm{W} \times 8.7^{\prime \prime} \mathrm{H} \mathrm{x} \mathrm{7.1"} \mathrm{D)}\right.$
Weight	Approx. $0.38 \mathrm{Kg}(0.84 \mathrm{Lb})$

Specifications subject to change without notice.

EXPANSION LAN SWITCH

General Description

The expansion LAN switch provides an interface from the ACE3600 CPU (on the master RTU frame) to up to seven expansion modules (on I/O expansion frames), or up to 13 expansion modules when two switches are used. This enables the use of up to 110 I/O modules. The expansion modules can be co-located with the switch (installed in the same 19 " frame or cabinet) or distributed in other locations.

The expansion LAN switch is installed in the main frame only, in either of the first two I/O module slots.

Figure 18-1 Expansion LAN Switch - General View

The front panel includes an Error LED, communication port LEDs, and communication ports. The panel is covered by the module door.

Figure 18-2 provides a detailed view of the expansion LAN switch front panel.

Figure 18-2 Expansion LAN Switch - Front Panel

The ACE3600 expansion LAN switch is configured to prioritize different Ethernet data frame types. A special EMI protocol, used for communication between the expansion LAN switch and the main CPU, quickly collects I/O information from the expansion frames to the main CPU and adds the highest priority and special tags to these Ethernet frames. The switch recognizes these frames and gives them the highest priority in the buffer queue, higher than the frames of the standard protocols (MDLC, TCP/IP) used for communication in the ACE3600 system. For this reason, only the ACE3600 expansion LAN switch can be used in an I/O expansion system.

IMPORTANT

When an expansion LAN switch is used on an I/O expansion LAN, only the main CPU and the expansion frames (expansion modules) can be connected to the expansion switch(es). Any attempt to connect other devices to the expansion switch(es) may result in unpredictable communication delays between the main CPU and the expansion frames and malfunction of the expanded RTU.

Front Panel

Communication Ports

The expansion LAN switch includes eight 100BaseT Ethernet communication ports.

LEDs

The expansion LAN switch includes an error LED and communication port status. All of the LEDs are single color.

Table 18-1 details the LEDs functionality.

Inserting/Removing an Expansion LAN Switch from the Frame

The expansion LAN switch supports hot-swap and can be inserted and extracted while the system is powered up. For instructions on removing/inserting a switch from/into a frame, see the Replacing an I/O Module or Expansion LAN Switch section of the Break-Fix Procedures chapter below.

Note that removing the LAN switch disconnects all I/O modules in the expansion frames connected by LAN. If the expansion frame is disconnected from the main frame for a (configurable) period of time, the expansion module will restart and try to find the main CPU again.

Switch Status and Diagnostics

LAN switch status and diagnostics information can be retrieved via the main CPU using the STS Hardware Test utility. For more details, see the Hardware Test section of the ACE3600 STS User Guide.

Switch Warnings and Errors

LAN switch warnings and errors are logged in the main frame CPU memory. The RTU error logger information can be retrieved using the STS Error Logger utility. For more details, see the Error Logger section of the ACE3600 STS User Guide.

Connecting the Expansion LAN Switch to the Main CPU

Install the expansion in either of the first two I/O module slots in the main frame.
The expansion LAN switch option includes a 0.6 meter Ethernet cable (Motorola p/n FKN8561A). Use this cable to connect from the Eth1 port on the main CPU to the Eth1 (M) port on the expansion switch. For the second switch in a system (if such exists), use this cable to connect from the Eth2 port on first switch to the Eth1 (M) port on the second switch.

Connecting the Expansion LAN Switch to I/O Expansion Frames

Use one of the following Ethernet cables to connect an Ethernet port on the expansion LAN switch to an expansion module in an expansion frame. If the system includes one switch (for up to seven frames), ports Eth2-Eth8 are available. If the system includes two switches (for up to thirteen frames), ports Eth3-Eth8 are available on the first switch and ports Eth2-Eth8 are
available on the second switch. Note: The Eth. 1 (M) port on the expansion LAN switch is reserved for connection to the main CPU.

Choose the cable length based on the distance from the main frame to the expansion frame.

- 0.6 meter (Motorola p/n FKN8561A) - This cable is used for local connection of the main CPU to the expansion switch, or connection of the first LAN switch to the second, if such exists.
- 2 meter (Motorola p/n FKN8562A)
- 3 meter (Motorola p / n FKN8563A)

IMPORTANT

The main CPU must be connected to the Eth1 (M) port only. If an additional switch is used, the Eth2 port on first switch should be connected to the Eth1 (M) port on the second switch.

No devices or equipment other than the main CPU or expansion modules may be connected to the expansion LAN switch ports.

In systems with several expansion frames, the ACE3600 STS can be used to provide automatic switch connection configuration. The following physical connections are assumed:

- A system with one expansion frame is connected directly to the main CPU.
- A system with 1-7 frames (frame IDs 1-7) is connected via one switch (to expansion LAN switch ports Eth2-Eth8 respectively.)
- A system with 1-13 frames is connected via two switches (frame IDs 1-6 connected to expansion LAN switch 1 ports Eth3-Eth8 respectively and frame IDs 7-13 connected to expansion LAN switch 2 ports Eth2-Eth8 respectively.)

If the expansion frames are not physically connected as described above, the switch connection must be manually configured in the STS Switch Connections dialog. For more information, see the ACE3600 STS User Guide.

Expansion LAN Switch LEDs Behavior

The table below describes the behavior of the LEDs on the expansion LAN switch.
Table 18-1 ACE3600 Expansion LAN Switch LEDs Behavior
$\left.\begin{array}{|l|l|l|}\hline \text { LED Name } & \text { Description } & \text { Status } \\ \hline \text { ERR } & \begin{array}{l}\text { Error Logger Status LED } \\ \text { Red LED }\end{array} & \begin{array}{l}\text { OFF - No new errors or warnings. } \\ \text { Red - New error logged - Either the switch } \\ \text { could not configure itself on startup or it has } \\ \text { lost communication with the main CPU } \\ \text { module. } \\ \text { Flashing - FPGA is being loaded into the } \\ \text { switch. }\end{array} \\ \hline \begin{array}{l}\text { E[1-8] } \\ \text { L/RX }\end{array} & \begin{array}{l}\text { Ethernet Port [1-8] - Link/RX } \\ \text { (receive) } \\ \text { Green LED }\end{array} & \begin{array}{l}\text { Flashing - Link is up and Receiving Data. } \\ \text { ON - Link is up. }\end{array} \\ \hline \text { E[1-8] TX } & \begin{array}{l}\text { Ethernet Port [1-8] - TX } \\ \text { (transmit) } \\ \text { Green LED }\end{array} & \text { Flashing or ON - Transmitting Data } \\ \hline \text { E[1-8] SPD } & \begin{array}{l}\text { Ethernet Port [1-8] - Speed } \\ \text { Green LED }\end{array} & \begin{array}{l}\text { ON - 100MBase-T Ethernet link is up (when } \\ \text { L/RX is active). } \\ \text { OFF - 10MBase-T Ethernet link is up (when } \\ \text { L/RX is active) or no link (when L/RX is not }\end{array} \\ \text { lit). } \\ \text { Note: If the speed is not 100M, the system } \\ \text { will not perform properly- frames may be lost } \\ \text { and the RTU components may not be } \\ \text { synchronized. }\end{array}\right]$

Expansion LAN Switch Specifications

Ethernet Port 1-8	8 on board $10 / 100 \mathrm{Mb} / \mathrm{s}$ Ethernet ports (Auto crossover)
LEDs Display	Error LED, Port status LEDs
Power Consumption	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Module Replacement	Hot swap replacement - module extraction/insertion under voltage
Operating Voltage (from the motherboard connector)	$\begin{aligned} & \text { 10.8-16 V DC, } \\ & \text { 3.30 VDC +/-10\% } \end{aligned}$
User Connection (Ethernet Ports)	8 shielded RJ45 connectors
LAN Cable	Category 5E shielded (FTP), up to 50 meter
Dimensions	$37 \mathrm{~mm} \mathrm{~W} \mathrm{x} 225 \mathrm{~mm} \mathrm{H} \mathrm{x} 180 \mathrm{~mm} \mathrm{D} \mathrm{(1.5"} \mathrm{~W} \mathrm{x} \mathrm{8.7"} \mathrm{H} \mathrm{x} \mathrm{7.1"} \mathrm{D)}$
Weight	Approx. $0.32 \mathrm{Kg}(0.7 \mathrm{Lb})$

Specifications subject to change without notice.

EXPANSION POWER SUPPLY MODULE

General Description/Module Overview

The expansion power supply module ($10.8-16 \mathrm{~V}$ DC) extends power from the power supply on the RTU's main frame to the I/O expansion frame, or from one I/O expansion frame to another. This module is installed in each I/O expansion frame.

Characteristics of the expansion power supply module:

- Located on the leftmost slot of the frame
- Overvoltage protection for the I/O expansion frame

Figure 19-1 below depicts a general view of the power supply.

Figure 19-1 ACE3600 Expansion Power Supply - General View

Figure 19-2 below depicts a detailed view of the power supply front panel.

Figure 19-2 ACE3600 Expansion Power Supply - Front Panel

Input/Output Connectors

The front panel of the expansion power supply includes the following connectors.

Connector Name	Description	Notes
Expansion Power Output	DC Power Output	Vin=Vout Shorted to Power IN. powering other I/O expansion frames.
$10.8-16 \mathrm{~V}$ DC	It also controls a dedicated 12V DO power line that is available to all the slots in the frame to power the relay coils. See the Notes below.	

Connector Name	Description	Notes
Power In 10.8-16V DC	Cable inlet for main power cable (DC)	Connect this input to the "RACK EXP" output of a regular power supply or to the "Expansion power out" of an expansion power supply, using a dedicated cable - FKN8559A (3002360C26.) Important: When adding expansion power supplies, make sure that you do not exceed the total power limit of the main power supply, as all connected expansion power supplies drain energy from it. Also make sure that the power provided to each power supply (when connected in a daisy-chain manner) does not fall below the minimum operating voltage.

Module Status and Diagnostics

Detailed module status and diagnostics information can be retrieved via the main CPU using the STS Hardware Test utility. For more details, see the Hardware Test section of the ACE3600 STS User Guide.

Module Warnings and Errors

Power supply module warnings and errors are logged in the main frame CPU memory. The RTU error logger information can be retrieved using the STS Error Logger utility. For more details, see the Error Logger section of the ACE3600 STS User Guide.

Connecting the Expansion Power Supply to the Main Frame Power Supply

The expansion power supply can only be connected to the power supply on the ACE3600 RTU main frame and to other expansion power supply modules.

For instructions on connecting the expansion power supply, see the Connecting the Expansion Power Supply to the Main Frame Power Supply section of the Installation chapter above.

If all the power supplies on I/O expansion frames are attached via DC cable to the power supply on the previous I/O expansion frame in a daisy-chain manner, the main power supply controls the entire RTU. This enables the user to turn off the entire RTU simply by turning off the main power supply.

If the main power supply does not control all other power supplies in the RTU (e.g. when the total power consumption required does not allow all frames to be daisy chained), it is recommended that the main power provided to the power supplies be connected to a single external on/off power switch.

IMPORTANT

All power and ground connections must be in accordance with local standards and laws.

Connecting the Expansion Power Supply to Ground

The power supply on each expansion frame must be connected to the grounding strip of its frame. For important warnings on ground connections, see Connecting Power and Ground in the Installation chapter above.

Connect the terminal ring on the (green/yellow) ground wire of the DC cable (FKN8559A/3002360C26) to the grounding strip located on the frame beneath the power supply slot. Make sure to tighten the screw firmly. See Figure 19-3 below.

Figure 19-3 ACE3600 Expansion Power Supply - Ground Connection

For instructions on connecting the entire site to ground, see Connecting an RTU to Ground in the Installation chapter above.

Expansion Power Supply Fuses

The expansion power supply includes two slow blow fuses, one 4A fuse for overcurrent protection for the I/O expansion frame and one 8 A fuse for maximum current via the Power in/out circuit. See Figure 19-4. For instructions on replacing these fuses, see the Break-Fix Procedures chapter later in this manual.

Figure 19-4 ACE3600 Expansion Power Supply - Fuses

Expansion Power Supply Module Specifications

Input Voltage	DC $10.8-16 \mathrm{~V}$
Outputs	To Motherboard connector -+10.80 to +16.00 VDC, max. 4A
	To cascaded expansion power supply -+10.80 to +16.00 VDC, max. 8 A
Over Current Protection	4.0 A (Slow blow fuse), protecting the expansion frame
Maximum Current via Power IN/OUT circuit	8.0 A (Slow blow fuse), protecting the cascaded expansion power supply
Over Voltage Protection	$+17.00 \pm 1 \mathrm{VDC}$ (protecting the expansion frame)
Absolute Maximum Voltage	+18.00 VDC
Dimensions	$56 \mathrm{~mm} \mathrm{~W} \times 225 \mathrm{~mm} \mathrm{H} \mathrm{x} 180 \mathrm{~mm} \mathrm{D}\left(2.2^{\prime \prime} \mathrm{W} \times 8.7^{\prime \prime} \mathrm{H} \mathrm{x} \mathrm{7.1"} \mathrm{D)}\right.$
Weight	Approx. $0.43 \mathrm{Kg}(0.94 \mathrm{Lb})$

Specifications subject to change without notice.

ACE IP GATEWAY MODULE

General Description

The ACE IP Gateway module (CPU4600) is a Front End Processor (FEP) which enables SCADA control centers to communicate and interface with ACE3600 RTUs and legacy (MOSCAD-M, MOSCAD, and MOSCAD-L) RTUs in a control system. It acts as an interface between the MDLC world and the TCP/IP world.

The ACE IP Gateway (IPGW) supports MDLC connection to multiple RTUs (ACE3600 and legacy MOSCAD RTUs) via terminal server ports from multiple SCADA clients.

Data exchange between the SCADA (client) and the ACE IPGW (server) is carried out using "peer -to-peer" communication over a LAN. SCADA clients can be located on the same TCP/IP segment (location), connected directly to the ACE IPGW, or on different TCP/IP segments (locations), connected to the ACE IPGW via a WAN or a bridge device.

The ACE IP Gateway, like all ACE3600 RTUs supports NTP time synchronization, both as client and as server, encryption, and dynamic IP conversion table update at run time. The Gateway supports all ACE3600 RTU data types.

The ACE IP Gateway does not run a user application and does not support I/O modules.
Like the legacy MOSCAD IP Gateway, the ACE IP Gateway supports redundancy. The primary and secondary ACE IPGWs share the same site ID. The primary ACE IPGW enables bi-directional transfer of both SCADA application messages and Gateway management messages. The secondary ACE3600 IPGW enables transferring of Gateway management messages only. (It does not send or receive any MDLC messages and is logically disconnected from the link.)

For general information on using the ACE IPGW module, see the ACE IP Gateway section of the ACE3600 STS Advanced Features manual. For instructions on configuring the ACE IPGW module, see the ACE3600 STS User Guide. For information on the ACE IPGW Application Programming Interface (API) used by SCADA driver developers to build the TCP/IP and Ethernet-based ACE IPGW Interface, see the ACE IP Gateway API User Manual.

The ACE IPGW module can be installed on any of the existing ACE3600 chassis options including 19" rack configuration.

Figure 20-1 provides a general view of the ACE IP Gateway Module.

Figure 20-1 ACE IP Gateway Module- General View

The ACE IP Gateway front panel includes status LEDs, communication port LEDs, two pushbuttons, and communication ports. The panel is covered by the module door.

Figure 20-2 provides a detailed view of the ACE IP Gateway front panel.

*Optional

Figure 20-2 ACE IP Gateway Module - Front Panel

Front Panel

Communication Ports

The ACE IP Gateway module includes several communication ports:

On Board ports:

- USB Host $1 / 2$ (HU1/HU2) - USB Type A host full speed ports for MDLC over IP communication via the MotoTrbo digital mode radio system (up to two radios attached to two USB host ports at one time) No USB devices or USB Hubs other than MotoTrbo radios are permitted.
- Serial 1 (SI1) - RS232/RS485 serial port (configurable)
- Serial 2 (SI2) - RS232 serial port
- Ethernet (Eth1)-10/100BaseT Ethernet port
- DU1 - USB device port, Type B connector (future option)

Plug-in port bays, where different types of ports can be installed:

- Plug-in 1 (PI1) - fits RS232, RS485, 10 MB Ethernet, 10/100 MB Ethernet, or Radio Modem Plug-in option
- Plug-in 2 (PI2) - fits RS232, RS485, 10 MB Ethernet, or Radio Modem Plug-in port option.

For the detailed specifications of each port, see ACE IP Gateway Module Specifications below. For information on the cables and connectors, see Appendix C.

The ACE3600 Ethernet port performs an Auto-Negotiation procedure whenever a peer device connection is detected at a $10 / 100 \mathrm{Mbps}$ Ethernet port. The Auto-Negotiation procedure guarantees that the speeds of ACE3600 and peer Ethernet ports will match, whether or not the peer supports Auto-Negotiation. If the peer supports AutoNegotiation, the duplex of ACE3600 and the peer Ethernet ports also match.

It is recommended to configure the Ethernet port of the device connected to the ACE3600 Ethernet port (e.g. switch, etc.) to Auto-Negotiation mode. This will guarantee a full match of speed and duplex between the ACE3600 and the peer device Ethernet ports. If the peer device Ethernet port does not support Auto-Negotiation, set the duplex of the peer to half duplex to avoid the duplex mismatch problem.

	Peer Ethernet Port Mode						
	Auto	100 Mbs Full Duplex	100 Mbs Half Duplex	Full Duplex		\quad	10 Mbs
:---:							
Half Duplex							

Buzzer

The ACE IP Gateway module includes a buzzer (audio indication), which is used to indicate task completion (such as end of download/upload, restart etc.)

Pushbuttons

The Gateway includes two pushbuttons on the front panel, PB1 and PB2.
These pushbuttons are used for activating and testing the modules LED, restarting the unit, erasing the user Flash memory and activating memory test. Table 20-2 describes the pushbuttons functionality.

LEDs

The Gateway includes Gateway CPU status LEDs, and port status LEDs. Some of the LEDs are single color (green) and some are bicolor LEDs (red, green or orange).

Status LEDS indicate the Gateway CPU status in startup (boot), run-time or when there is a failure. The communication LEDs are used to indicate the communication port status. Note that during startup or failure, the communication LEDs are used to indicate various situations. Table 20-4 details the LEDs functionality.

Gateway CPU Memory

The Gateway CPU includes Flash, and SDRAM.
The Flash stores the firmware and configuration files.
The SDRAM memory stores the temporary data.
The size of the ACE IP Gateway CPU memory is determined by the model as shown in the table below.

Table 20-1 ACE IP Gateway CPU Memory

	ACE IP Gateway
Flash memory	32 MB
SDRAM memory:	128 MB
User Flash:	19 MB

Real Time Clock (RTC)

The CPU includes a low drift RTC. The date and time are retained using an on-board rechargeable lithium battery.

The CPU date and time can be set using the ACE3600 STS. The CPU can also be synchronized with other RTUs in the system, using the system clock. For more information, see the Setting/Getting a Site's Date and Time section of the ACE3600 STS User Guide.

Backup Battery for RTC

The CPU module includes a rechargeable lithium battery that provides backup power and data retention for the RTC.

The lithium battery is located on the CPU board and cannot be replaced.
Typically, the battery will retain the RTC for 60 continuous days without power and no LeadAcid backup battery.

ACE IP Gateway Firmware and Operation Modes

The ACE IP Gateway firmware is a real-time multitasking operating system, based on the Wind River VxWorks OS. The GW shipped from the factory with the most recent firmware version, and it can be updated/replaced using a remote or local connection. Downloading firmware updates is performed using the STS. (See Downloading to a Site in the ACE3600 STS manual.) If the new firmware download stops or fails, the GW will restart with the existing firmware.

Power-up and Restart

The CPU requires DC voltage provided by the power supply module via the motherboard (when the PS switch is ON). The CPU will power-up and restart in the range of 10.8 V to 16 V DC. During power-up, the processor performs fast memory tests, and initiates the GW. The end of the power-up sequence is indicated by the buzzer. The length of time from the beginning of CPU power-up until the GW starts running is approximately $10-15$ seconds.

It is possible to perform a comprehensive memory test during power-up by pressing pushbutton PB1 for few seconds while switching the power supply from OFF to ON. In this case the power-up period is about $30-35$ seconds long.

If the startup fails, the RTU will freeze (boot sequence stops), the PWR LED will blink and the four indicator LEDs (see LEDs Location in Table 20-3) will blink seven times. The four LEDs will then display the failure error in binary code, as described in Table 20-3.

When the unit is shipped from the factory, it will start up initially (before site configuration download), as a Primary Gateway in Standalone mode, even in systems with redundant Gateways.

Restart after Firmware Download

The RTU will restart after downloading system firmware. If the firmware is faulty or the firmware download failed, the RTU, if protected by the Safe Firmware Download feature, will restart and roll back to the previous firmware version. A failure message will appear in the STS Downloader screen. For information on using the Safe Firmware Download feature, see the Safe Firmware Download section of the ACE3600 STS Advanced Features manual.

Restart after Configuration Download

The RTU will restart after downloading a site configuration. For information on downloading to the RTU, see the Operation chapter of the ACE3600 STS User Guide.

If the RTU fails to restart after the user-defined site configuration was downloaded, a unique LED display (in the range of the PI1-TX and SI2-RX LEDs) and a series of buzzer tones will follow. The RST LED will turn RED and the RTU will restart itself with the previous "good" configuration. The following message will appear in the RTU Error Logger "Configuration file was deleted due to failure in startup. Rolling back to the last configuration file". Errors can be retrieved from the RTU using the ACE3600 STS Error Logger utility.

If the startup succeeds after configuration download but has errors, these errors are reported in the RTU Error Logger. It is, therefore, recommended to check for errors after downloading a configuration file to the RTU. Errors can be retrieved from the RTU using the ACE3600 STS Error Logger utility.

For information on retrieving errors from the RTU Error Logger, see the Operation chapter of the ACE3600 STS User Guide.

In a system with redundant Gateways, one unit is set to startup mode Redundant GW1 (in the site configuration) and the other unit which is set to Redundant GW2. After startup, both will act as Secondary Gateways until the SCADA designates one as Primary and the other as Secondary. For information on the setting the startup mode, see the Operation chapter of the ACE3600 STS User Guide. For information on ACE IPGW redundancy, see the ACE IP Gateway section of the ACE3600 STS Advanced Features manual.

Restart after Erase Flash

After the User Flash is erased, the RTU will restart successfully with the default site configuration.

Power-down

When the voltage provided to the CPU module drops below the minimum level, the CPU will shut down in an orderly fashion. This level is configurable for all power supply modules other than the 12 V DC power supply low-tier. See the 'Minimum DC operation voltage' parameter in Appendix A: Site Configuration Parameters of the ACE3600 STS User Guide.

ACE IP Gateway Status and Diagnostics

The ACE IP Gateway status is indicated on the front panel LED. Detailed CPU status and diagnostics information can be retrieved from the module using the CPU Hardware Test utility. For more details, see the Hardware Test section of the ACE3600 STS User Guide.

ACE IP Gateway Warnings and Errors

ACE IP Gateway warnings and errors are logged in the CPU memory to indicate issues or errors during power-up, restart, and other modes of CPU operation. The existence of CPU warnings and errors are indicated in the ERR LED on the front panel of the module. Green indicates a message, orange indicates a warning and red indicates an error.

The CPU error logger information can be retrieved using the STS Error Logger utility. For more details, see the Error Logger section of the ACE3600 STS User Guide.

ACE IP Gateway Serial Number

Each IPGW has a unique serial number. This number is printed on a label on the side of the GW module front panel. The serial number can be read using the STS Hardware. For more information, see the Hardware Test section of the ACE3600 STS User Guide.

Pushbutton Functionality

The table below describes the use of the two pushbuttons in various scenarios, during power-up and run-time. To press a pushbutton during startup, first press the pushbutton(s), then turn on the RTU using the On/Off switch on the front panel. Keep the pushbutton(s) depressed for the required number of seconds, as specified in the scenarios below.

Table 20-2 ACE IP GW Pushbutton Functionality

Scenario	Trigger	Action
LEDs Test	During run-time, press PB1 for five or more consecutive seconds (but less than 30).	All the LEDS on the GW will be lit until let go of PB1 and then returned to their previous states.
RTU Restart	During run-time, press PB1 for 30 consecutive seconds.	All the LEDs will be lit. Then all the LEDs will blink once. The buzzer will buzz several short beeps. (If PB1 is released during this time the restart will not be performed.) At the long beep, release PB1 and the RTU will restart (and the buzzer will buzz.)
Turn LEDs ON	During run-time, press PB1 for one second.	Those LEDs which are currently active will be turned on for a period of time (configured in the RTU configuration using the STS.)
RAM Test	During startup, press PB1.	A detailed memory test of SDRAM is performed. - At the beginning of the RAM test, the four indicator LEDs (see LEDs Location in Table 20-3) will blink three times. During the RAM test, the LEDs may blink or be lit. If the RAM test succeeds, the four LEDs will blink three times and turn off and the restart sequence will continue. If the RAM test fails, the RTU will freeze (restart sequence stops), the PWR LED will blink and the four LEDs will blink seven times. The failure error code will then be displayed on the LEDs, in binary code, as described in Table 20-3.
-	- To exit/abort the RAM test in the middle, restart the RTU using the On/Off switch on the front panel.	

Scenario	Trigger	Action
Erase User Flash	During startup, press both PB1 and PB2 simultaneously until the buzzer buzzes five times quickly, then continuously for three seconds.	All the user Flash memory content excluding logging files (files tagged as data logging files) is erased, including the site configuration, etc.
Bootstrap	During startup, press PB2 continuously for five seconds.	The RTU will start up in diagnostic mode. Communication with the RTU is for diagnostic purposes only (Error Logger/ Sote: Before initiating bootstrap, the CPU must be connected directly to the STS PC in standalone mode. No other components can be the RTU.
If the bootstrap fails, the four indicator create a conflict with the default IP address.	LEDs (see LEDs Location in Table 20-3) will display the failure error in binary code, as described in Table 20-3.	

Table 20-3 ACE IP GW Failure - Error Code Display on LEDs

LEDs Location	LED Error Code	Description

ACE IP Gateway LEDs Behavior

The table below describes the behavior of the LEDs on the ACE IP Gateway module.
Table 20-4 ACE IP Gateway LEDs Behavior

LED Name	Description	Status		
PWR	Power LED Bicolor LED (Red, Green)	Flashing Red - Power exists; CPU FPGA not loaded. Green - Power exists; CPU is running from a recognized power supply (one of the six power supply options.) Red - Failure on power-up. CPU is running from an unrecognized power supply.		
ERR	Error Logger Status LED Bicolor LED (Red, Green)	OFF - No new errors or warnings. Green - New message logged. Orange - New warning logged. Red - New error logged.		
RST	Reset LED Bicolor LED (Red, Green)	Green - On startup OFF - Successful power-up or restart. Red - Power-up or restart failed.		
CONF	Configuration LED Bicolor LED (Red, Green)	OFF - Configuration was not loaded. Green - Configuration was loaded. Red - Configuration error.		
H1 LNK1	USB Host1 LNK (link) Green LED	ON - A USB device is connected. OFF - No link exists between the CPU and the device.		
PI1 RX	Plug-in Port 1- RX (receive) Green LED	ON - Receiving Data Green LED		
PI1 TX	Plug-in Port 1 - TX (transmit) Green LED	OFF - No link exists between the GW and		
the device.			,	ON- Transmitting Data
:---				

LED Name	Description	Status
PI1 CM	Plug-in Port 1 - CM (channel monitor) Green LED	ON - Channel Busy (if port is in use by radio, RS485, or RS232) - Network Connected (if an IP plug-in is used)
SI1 TX	Serial Port 1 - TX (transmit) Green LED	ON - Transmitting Data
SI1 RX	Serial Port 1 - RX (receive) Green LED	ON - Receiving Data
SI1 CM	Serial Port 1 - CM (channel monitor) Green LED	ON - Channel Monitor is ON.
S2 TX	Serial Port 2 - TX (transmit) Green LED	ON - Transmitting Data
S2 RX	Serial Port 2 - RX (receive) Green LED	ON - Receiving Data
S2 CM	Serial Port 2 - CM (channel monitor) Green LED	ON - Channel Monitor is ON
E1 LNK	Ethernet Port 1 (link) Green LED	ON - Network Connected In case of RAM test and startup failure, see Table 20-2 and Table 20-3.
E1 RX	Ethernet Port 1 (receive) Green LED	ON - Receiving Data In case of RAM test and startup failure, see Table 20-2 and Table 20-3.
PI2 TX	Plug-in Port 2 - TX (transmit) Green LED	ON - Transmitting Data
PI2 RX	Plug-in Port 2 - RX (receive) Green LED	ON - Receiving Data
PI2 CM	Plug-in Port 2 - CM (channel monitor) Green LED	ON - Channel Busy (if port is in use by radio, RS485, or RS232) - Network Connected (if an IP plug-in is used)
D1 RX	For future use	For future use

ACE IP Gateway Module Specifications

Microprocessor	Freescale - Power PC II MPC8270, 32-bit, extended communication capability, DMA and floating point calculation support
Microprocessor Clock	200 MHz
Memory	Flash: 32 MB SDRAM: 128 MB
Real-Time Clock	Full calendar with leap year support (year, month, day, hours, minutes, seconds). Time drift: max. 2.5 Seconds per day (when power is on)
RTC Retention	3 V Rechargeable lithium backup battery
Serial Port 1	Configurable RS232 or RS485 port: - RS232: Asynch, Full Flow Control, up to 230.4 kb/s, GPS receiver interface
- RS485, multi-drop 2-Wire up to 230.4 kb/s	

Specifications subject to change without notice.

RADIO TYPES AND INSTALLATION KITS

ACE3600 Radio Types

CAUTION

In order to prevent overheating of the radio and degradation of radio performance, the radio should not exceed operating duty factors of $\mathbf{3 0 \%}$ transmission and 70\% receive mode.

Note that the operating temperature range of ACE3600 RTU models that include a radio is from $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$. (The operating temperature range of the ACE3600 RTU models without a radio is from -40 ${ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+158{ }^{\circ} \mathrm{F}\right)$).

The ACE3600 RTU supports conventional, analog trunked radios and digital trunked radios. It also supports data radios and various wireless modems. Conventional and analog trunked radios are connected to a plug-in radio modem port. Digital trunked radios and wireless modems are connected to an RS232 port. For information on configuring CPU ports for various radios/modems, see the ACE3600 STS User Guide. For information on IP communications over such modems, see the ACE3600 STS Advanced Features manual.

The following conventional/trunked mobile analog and digital radios and conventional portable analog and digital radios can be used with the ACE3600 RTU:

	Analog Motorola Radios	Digital Motorola Radios	Third Party Radios
Trunked	XTL5000*/XTL2500	XTL5000/XTL2500	
		XTS2500	
Conventional	CM200/CM140/EM200/		MTM800
	GM3188		MDS 9810/MDS 4710/
	GP320/GP328/HT750/		TransNET 900 ${ }^{\text {TM }}$ **
	PRO5150		OEM
	CDM750		
MotoTrbo		XPR4350/XPR4380/	
		DM3400/ XiR	
		M8220/DGM4100	

[^33]For complete radio specifications such as modulations, standards, Tx power output, Rx sensitivity, supply voltage, and power consumption, see the specific radio owner's manual. Please note that third party radios are not provided with the RTUs.

The following table lists all the ACE3600 models that include radios.

Conventional VHF Radio	ACE3600 Model
ACE3600 for CM200/CM140/EM200/GM3188 VHF	F7573A
ACE3600 with CDM750 136-174 MHz	F7563A
ACE3600 for HT750/GP320/GP328 /PRO5150 VHF	F7553A
Conventional UHF Radio	
ACE3600 for CM200/CM140/EM200/GM3188 UHF	F7574A
ACE3600 with CDM750 403-512 MHz	F7564A
ACE3600 for HT750/GP320/GP328 /PRO5150 UHF	
Trunked VHF Radio	F7533AA
ACE3600 with XTL2500 136-174 MHz Analog	F7593A
ACE3600 with XTL2500 136-174 MHz Digital	F7543A
ACE3600 with XTS2500 136-174 MHz Digital	F7534A
Trunked UHF Radio	F7544A
ACE3600 with XTL2500 380-520 MHz Analog	
ACE3600 with XTL2500 380-520 MHz Digital	F7538A
ACE3600 with XTS2500 380-520 MHz Digital	F7598A
Trunked 800MHz Radio	F7548A
ACE3600 with XTL2500 800MHz Analog	
ACE3600 with XTL2500 800MHz Digital	F7583A
ACE3600 with XTS2500 800 MHz Digital	F7584A
MotoTrbo Digital Mobile Radio	F7588A
ACE3600 for XPR4350/DM3400/XiR M8220/DGM4100 VHF	
ACE3600 for XPR4350/DM3400/XiR M8220/DGM4100 UHF	
ACE3600 for XPR4380 800/900 MHZ	

For a list of the radio models and regional options for the CM/EM/GM radios, see CM/EM/GM Radio Models and Regional Options for ACE3600 below. For a list of the radio models and regional options for the GP/HT/PRO radios, see GP/HT/PRO Radio Models and Regional

[^34]Options for ACE3600 below. For a list of the regional options for the MotoTrb radios, see XPR4350/XPR4380/DM3400/XiR M8220/DGM4100 Options for ACE3600 below.

IMPORTANT: Only model F7509A and all its options, including radio installation kits, may be shipped to European Union (EU) countries. The installer must confirm that there are no emissions or harmful interference to the spectrum due integrating the radio into this model.

The radios in the models listed in the table above are installed on the RTU using the installation radio kits described below.

Radio Installation Kits

The following radio installation kits enable the user to install a radio in the ACE3600 RTU.

					Option/Kit
Analog			M750		V143AH/
Mobile Radios	NA	EMEA	APAC	LA	
	CM200	CM140	GM3188	EM200	$\begin{aligned} & \text { V148AC/ } \\ & \text { FLN3635A } \end{aligned}$
Digital Conventional	MD	9810, MD	S 4710, MD	710	$\begin{aligned} & \text { V152AK/ } \\ & \text { FLN3853A } \end{aligned}$
		TransNE	T 900 OEM		$\begin{aligned} & \text { VA00225AA/ } \\ & \text { FLN3852A } \end{aligned}$
			T 900		$\begin{aligned} & \text { V680AH/ } \\ & \text { FLN3854A } \end{aligned}$
Conventional	NA	EMEA	APAC	LA	
	HT750	GP320	GP328	PRO5150	$\begin{aligned} & \text { V154AE/ } \\ & \text { FLN3637A } \end{aligned}$
Analog Trunking Mobile Radios		XTL500	/XTL2500		$\begin{aligned} & \text { V157AB/ } \\ & \text { FLN3640A } \end{aligned}$
Digital Trunking Mobile Radios		XTL500	0/XTL2500		$\begin{aligned} & \text { V681AT/ } \\ & \text { FLN3649A } \end{aligned}$
			S2500		$\begin{aligned} & \text { V156AG/ } \\ & \text { FLN3814A } \end{aligned}$
			M800		FLN4109A
MotoTrbo	NA	EMEA	APAC	LA	
Mobile Radios	XPR4350/ XPR4380	DM3400	$\begin{aligned} & \text { XiR } \\ & \text { M8220 } \end{aligned}$	DGM4100	$\begin{aligned} & \text { V682AF/ } \\ & \text { FLN4102A } \end{aligned}$

For instructions on mounting the radio on the ACE3600 frame, see the desired installation instructions below.

For general instructions on mounting a radio on the wall, see Mounting the ACE3600 Radios on a Wall below.

Note: A TORX screwdriver is required for the installation kits.

XTL5000/XTL2500 Radio Installation Kit

The XTL5000/XTL2500 radio installation kit (ACE3600 option V681AT or V157AB) enables the user to install the XTL5000/XTL2500 radio in ACE3600 Remote Terminal Units (RTU). The ACE3600 can use the XTL5000/XTL2500 in two operation modes, depending on the system used.

- Digital mode (ACE3600 option V681AT) - suitable for Astro 6.x/7.x system trunked ASTRO IV\&D only
- Analog mode (ACE3600 option V157AB) - suitable for SmartNet 3.x system or Astro 4.x system (on the analog part only)

The following hardware and firmware are required:

- Radio firmware version 6.3E and above for digital trunked ASTRO IV\&D. (For 6.3E, HOST R04.51.01 DSP R04.50.00; for 6.5 HOST R05.00.00 and DSP R05.00.00)
- Radio firmware version 6.5E and above for analog trunked system (DSP version R06.00.00 for radio firmware R06.01.00)
- ASTRO Infrastructure version SR6.3 and above for trunked ASTRO IV\&D
- Smartnet version 3.x or Astro version 4.x for analog trunked system
- ACE3600 firmware 10.00 and above
- ACE3600 System Tools Suite (STS) version 10.50 and above

The FLN3649A/FLN3640A installation kits include a bracket, cables, and screws.
IMPORTANT: The XTL5000/XTL2500 radio control head must be radio option O5 for revolving power button control head.

Installation

The XTL5000/XTL2500 radio can be mounted on the ACE3600 RTU using the metal bracket and cables as follows:

Procedure 21-1 How to Install the XTL5000/XTL2500 Radio on the Metal Chassis

1. Attach the radio plug-in port from the installation kit (FLN3696A) to the desired opening on the ACE3600 CPU module. For instructions on attaching plug-in ports, see Connecting Plug-In Ports to the CPU Module in the CPU Module chapter above.
2. Attach the XTL5000/XTL2500 radio to the metal bracket (\#0789422V41 from FHN6895A) using the four supplied radio screws (\#0310906A67), two on each side. (See Figure 21-1.) The wider side of the bracket should be on the right side of the radio (closer to the knobs.)
3. Connect the 26-pin connector of the signal cable (FKN8432A for digital mode or FKN8438A for analog mode) to the Accessory connector on the radio. In analog mode only, place one Fair-Rite soft ferrite (\#7683477X01 from the supplied ferrite kit

FHN7007A) on the signal cable (FKN8438A) near the bottom of the CPU door, loop the cable one turn around it, and clamp the ferrite on the cable.
Connect the other end of the communication cable to the ACE3600 CPU module port configured for the radio. (See Figure 21-2 and Figure 21-4.) For digital mode use any of the serial on-board or plug-in ports. For analog mode only the plug-in ports may be used. See RTU Port Configuration for the Astro IV\&D Digital Radio and RTU Port Configuration for the Astro IV\&D Analog Trunked Radio below.
4. Connect the DC power cable (FKN8436A) to the Power connector on the radio and the free red wire to the ignition pin on the FKN8432A/FKN8438A cable. Connect the opposite end of the power cable to the AUX2A or AUX2B connector on the ACE3600 power supply unit. (See Figure 21-2 and Figure 21-4.)

Figure 21-1 XTL5000/XTL2500 Radio and Metal Bracket

Figure 21-2 XTL5000/XTL2500 Radio Cable Connections- Rear View
5. Mount the bracket on the RTU chassis above the CPU and I/O modules, using the four built-in screws. (See Figure 21-4.) The wider side of the bracket is attached to the chassis.
6. Connect the antenna cable (FKN8437A) to the Antenna connector on the radio. Run the cable through the small white clips along the edge of the chassis and attach the connector to the opening on the bottom of the ACE3600 RTU housing. (See Figure 21-2 and Figure 21-4.)

Figure 21-3 XTL5000/XTL2500 Radio Bracket with Four Bracket Mounting Screws

Figure 21-4 XTL5000/XTL2500 Radio Installed on ACE3600 Chassis

RTU Port Configuration for the Astro IV\&D Digital Radio

To enable MDLC communication using Astro XTL5000/XTL2500 radios, use the ACE3600 STS site configuration utility to configure the ACE3600 RTU port connected to the radio. For more information, refer to the IP Communications chapter of the ACE3600 STS Advanced Features manual.

The following figures show the port configuration and advanced parameter configuration.
Although these show Port SI1, the same values can be applied to other ports, where relevant.

Port Type (for Astro IV\&D Digital Radio)

Procedure 21-2 How to Configure the ACE3600 Port for the Astro IV\&D Digital Radio

1. In the ACE3600 STS click on the desired site, and open the site view.
2. In the Port Tab, click on the on-board or plug-in port through which the RTU will communicate with the XTL5000/XTL2500 radio.
3. Confirm that the port parameters and data speed are as shown in the screen below.
4. Define desired links.
5. If you plan to synchronize the RTU time from the Front End Processor (FEP) in the Customer Enterprise Network (CEN), specify the IP address of the FEP in the NTP field. This IP address information is provided by your ASTRO IV\&D system operator.
6. Save the changes.

511	Media Operation Mode	RS-232	\checkmark	Links...	LINE 1		
		Async	-	Data Speed:	[9600 Bps]:	9600 Bps	\cdots
	Connection Type	PPP	\checkmark	DNS server IP addresses (up to 3)			
	Connected to	ASTRO IV\&D	\checkmark	NTP			

Figure 21-5 RTU Site Configuration for MDLC over ASTRO IV\&D - Port Type Parameters

Advanced Parameter Configuration (for Astro IV\&D Digital Radio)

Figure 21-6 RTU Site Configuration for MDLC over ASTRO IV\&D - Advanced Parameters

Generally no other changes are required to Advanced Physical or Link Layer parameters. For information on these parameters, see the MDLC over IP chapter of the ACE3600 STS Advanced Features manual.

Procedure 21-3 How to Configure the Advanced Parameters of the ACE3600 Port for the Astro IV\&D Digital Radio

1. (ASTRO System 6.3-6.5 only) Make sure that the Advanced Link parameter Registration life time to 28800 seconds (default) in order to restart the radio periodically.
2. If any changes are required, click on the appropriate screen in the Port Tab.
3. Change the settings as necessary.

Note: The Default Group ID Address should be left 000.000 .000 . The actual values will be read by the RTU from the radio upon connection.
4. Save any changes.
5. Save the project.
6. Download the site configuration to the ACE3600 RTU.

IP Conversion Table (for Astro IV\&D Digital Radio)

Prepare an IP conversion table if the RTU must communicate with another RTU or an IP Gateway. In the IP conversion table, specify the IP address of each RTU port (site ID + link ID). This IP address is assigned by the infrastructure operator.

Note that an IP address is obtained from the radio once it is connected to the RTU port over PPP. The IP address obtained from the radio is not the real IP address set by the infrastructure, but rather a dummy address. This dummy is configured in the radio via the CPS Mobile Computer IP address parameter (by default 192.168.128.2).

When device LINxL level 0 is retrieved using the ACE3600 STS Software Diagnostics tool, the IP Address displayed is this dummy address and not the actual IP address assigned by the infrastructure operator.

It is recommended to create two IP conversion tables:

1. The first is downloaded to the FIU or IP Gateway on the LAN and includes the site and IP information for each RTU.
2. The second is downloaded to all RTUs which are connected to the infrastructure with ASTRO IV\&D radios, and includes the site and IP information for the FIU and IP Gateway.

For detailed instructions on preparing the IP conversion table, refer to the IP Communications chapter of the ACE3600 STS Advanced Features manual.

Radio Programming using CPS for the Astro IV \&D Digital

The XTL5000/XTL2500 radio is programmed for ACE3600 in the factory and is ready for ASTRO IV\&D communication. For user programming of site-specific parameters, the radio should be brought to the Motorola Service Center.

Radio Connections

To program the XTL5000/XTL2500 radio with Customer Programming Software (CPS), the radio must be connected to a PC.

Procedure 21-4 How to Connect the XTL5000/XTL2500 Radio to the CPS

1. Connect one end of the programming cable (HKN6155) to the microphone connector on the front of the radio. This cable is not supplied and must be ordered separately.
2. Connect the other end to the serial port of a PC on which the ASTRO CPS software (RVN4185) is installed.

Radio Disassembly

If the XTL5000/XTL2500 radio is to be programmed outside of the ACE3600 housing, disassemble the radio as follows:

Procedure 21-5 How to Disassemble the XTL5000/XTL2500 Radio from the ACE3600 Metal Chassis

1. Disconnect the antenna cable (FKN8437A) from the Antenna connector on the radio.
2. Remove the radio/bracket unit from the RTU chassis by unscrewing the four built-in screws.
3. Disconnect the DC power cable (FKN8436A) from the Power connector on the radio.
4. Disconnect the 26-pin connector of the signal cable (FKN8432A/FKN8438A) from the Accessory connector on the radio.
5. Detach the metal bracket (\#0789422V41 from FHN6895A) by unscrewing the four radio screws (\#0310906A67), two on each side. (See Figure 21-1.)
6. Take the radio to a laboratory for programming, as described in CPS Programming Settings below.

CPS Programming Settings

Before programming the radio, read the codeplug file from the radio and save it to your PC using the File $>$ Read Device command in the CPS (R04.01.01 for radio firmware 6.3E; R05.00.00 for firmware 6.5). Open the codeplug file in the CPS and set the parameters as follows.

Procedure 21-6 How to Program the XTL5000/XTL2500 Digital Radio

1. In the CPS, click on the codeplug in the tree view to view and select the items below or select them from the Feature menu.
2. Under Radio Configuration, double-click on Radio Wide.
a. In the Transmit Power Levels tab, reduce the radio power level to low: Change TX Power Level Low for Freq. Range A from 16.5 to 10. (Range A 700Mhz UHF and VHF).
1) Change TX Power Level Low for Freq. Range B from 19.0 to 10. (Range B 800 Mhz and UHFR2 ($470-520 \mathrm{Mhz}$).
2) Change TX Power Level High for Freq. Range A from 33.0 to 15.
3) Change TX Power Level High for Freq. Range B from 38.5 to 15.
b. In the General tab, set the Out of Range Indicator and Imbalanced Coverage Indicator to Alert \& Display.
c. (Recommended) In the Data tab, enable SNMP Traps. (You can disable it, but the RTU will only detect a loss of context activation the next time it polls the radio (every 10 seconds by default).
d. (Optional) Specify the Mobile Computer IP address. This is the dummy IP address assigned to the RTU by the radio (by default it is 192.168.128.2). For each radio, it is recommended to change the last digit in the Mobile Computer IP address (e.g. to the Unit ID in Trunking systems.)
e. (CPS R05.00.00 only) In the Advanced tab, make sure that "MOSCAD Data Enable" is not enabled (not checked.) (For IV\&D only. For communication over analog ASTRO Trunking, leave it enabled.) Set Extended DEK to Enable and Ignition Switch to Soft Power Off.
3. Double-click on NAT List -> NAT List Entry 1.
a. Add an entry to the NAT List:
1) WAN port $=$ MDLC over IP port number (e.g. 2002)
2) LAN port $=$ MDLC over IP port number (e.g. 2002)
3) Static NAT IP Address $=$ Mobile Computer IP Address (e.g. 192.168.128.2).
4) The Mobile Computer address should match the Mobile Computer IP Address assigned on the Radio Configuration $>$ Radio Wide $>$ Data tab in Step 2 above.
4. Double-click on Trunking -> Trunking System -> Trunking System 1.
a. In the General tab, set the Type to ASTRO 25. If the proper system key was loaded, the System Key field should already be enabled.
b. Set the ASTRO 25 Home System ID, Home WACN ID and Unit ID to values obtained from the radio system administrator.
c. Under Coverage Type, set the type to SmartZone.
d. In the Astro 25 Channel ID tab, enable the first channel.
e. In the $700 / 800$ Astro 25 Control Channels tab (700_800 or OBT depending on the band), enter the control channels with which the data subscriber should be able to affiliate. Consult your radio system administrator for the list of control channels.
f. In the Data tab, enable Packet Data Capable System (PDS), and Terminal Data and disable (uncheck) Rx Voice Interrupts Data.
5. Double-click on Trunking -> Trunking Personality -> Trunking Personality 1.
a. In the General tab, set the Protocol Type to ASTRO 25 and set the System \& ID to 1 .
b. In the 700/800 Failsoft tab, data only subscribers should set Failsoft Type to disabled. (There is no data service unless the subscriber is affiliated to a widearea trunking site.)
c. In the Talkgroup tab, set the radio talkgroup value in hexadecimal. Consult your radio system administrator for the talkgroup information.
d. (Recommended) In the Preferred Sites tab, set the status of the first record to None. (This means that data only subscribers are not locked into preferred sites.)
6. Double-click on Zone Channel Assignment ->Zone Channel Assignment.
a. In the Zone tab, set the Zone to the desired zone name (e.g. ZONE1).
b. In the Channels tab, set the Channel to the name which will be displayed on the radio screen (if the radio is Model II or III).
c. Select the Personality type of that channel.
d. Specify the Personality \# of that channel.
e. Specify the Talkgroup \# of that channel.
7. From the Tools menu, select the Change Control Head command. Make sure the Control Head Type is set to O5(M5) for new models and to W4 for old models, and click OK.
8. From the File Menu, select Save to save changes to the radio.
9. From the File Menu, select Write Device to download the configuration to the radio.

Infrastructure Configuration for the Astro IV\&D Digital Radio

In order for the ACE3600 RTU to communicate over the ASTRO IV\&D infrastructure (6.4 or later) using the XTL5000/XTL2500 digital radio, the infrastructure must be properly configured using the UCM (User Configuration Manager) tool.

Note: If configuring a border router or any firewall within the CEN (Customer Enterprise network), make sure that the ACE3600's MDLC over IP UDP port number 2002 is enabled for inbound and outbound messages.

Note: In the UCM Radio User Data Settings tab, be sure to set the IP address as Static, to enable Generate ICMP and Source Address Checking, and the Ready timer set to 10 seconds.

RTU Port Configuration for the Astro IV \&D Analog Trunked Radio

To enable MDLC communication using Astro XTL5000/XTL2500 radios, use the ACE3600 STS site configuration utility to configure the ACE3600 RTU port (either on-board serial or plug-in port) connected to the radio. For more information, refer to the IP Communications chapter of the ACE3600 STS Advanced Features manual.

Port Type (for Analog Trunked Radio)

Procedure 21-7 How to Configure the ACE3600 Port for the Astro IV\&D Analog Radio

1. In the ACE3600 STS click on the desired site, and open the site view.
2. In the Port Tab, click on the plug-in port through which the RTU will communicate with the XTL5000/XTL2500 radio.
3. Set the port parameters as shown in the screen below. The Trunk system parameter should reflect the type of trunking system (e.g. SmartNet, SmartZone.)
4. Save the changes.

Pl1	Media	Radio	\checkmark	Link name:		RADIO 1	-
	Radio System	Trunking	\checkmark	Data Speed:	[1200 Bps :	1200 Bps	\checkmark
	Radio Type	XTL5000 Trunked Analog	\checkmark	Default routing:	[None]:	None	\checkmark
	Trunk system	SmartNet	\checkmark				
	Modem	DPSK	\checkmark				

Figure 21-7 RTU Site Configuration for MDLC over Analog Trunked System - Port Type Parameters

Programming the XTL5000/XTL2500 Analog Trunked Radio using CPS

The XTL5000/XTL2500 radio is programmed for ACE3600 in the factory and is ready for analog trunked communication. For user programming of site-specific parameters, the radio should be brought to the Motorola Service Center.

Radio Connections

Follow the Radio Connections instructions described under Radio Programming using CPS for the Astro IV\&D Digital above.

Radio Disassembly

Follow the Radio Disassembly instructions described under Radio Programming using CPS for the Astro IV\&D Digital above.

CPS Programming Settings

Before programming the radio, read the codeplug file from the radio and save it to your PC using the File $>$ Read Device command in the CPS (DSP version R06.00.00 for radio firmware R06.01.00.) Open the codeplug file in the CPS and set the parameters as follows.

Procedure 21-8 How to Program the XTL5000/XTL2500 Analog Radio

1. In the CPS, click on the codeplug in the tree view to view and select the items below or select them from the Feature menu.
2. Under Radio Configuration, double-click on Radio Wide.
a. In the Transmit Power Levels tab, reduce the radio power level to low: Change TX Power Level Low for Freq. Range A from 28.0 to 10.
1) Change TX Power Level High for Freq. Range A from 53.5 to 15 .
b. In the Advanced tab, make sure that "MOSCAD Data Enable" is enabled. Set Extended DEK to Enable and Ignition Switch to Soft Power Off.
c. In the Time Out Timer tab, make sure the Time \# is set to 3 (for 60 sec).
3. Double-click on Controls.
a. Click on Control Head.
b. Make sure the Control Head is O5(M5) for new models and W4 for old models.
c. Click on Radio VIP.
1) Set VIP In for VIP 1, VIP 2, and VIP 3 to Blank.
2) Set VIP Out for VIP 1 to MOSCAD CG.
3) Set VIP Out for VIP 2 to MOSCAD TXE/CM.
4) Set VIP Out for VIP 3 to NULL.
4. Double-click on Conventional $->$ Conventional Personality $->$ Conventional Personality 1.
a. In the Rx Options tab, set Unmute/Mute Type to UnMute, Or Mute.
b. Set Rx Voice/Signal Type to Non-Astro.
c. Enable (check) Rx Emphasis and Busy LED.
d. In the Tx Options tab, make sure that the Time Out Timer is set to 3 (for 60 sec).
e. Set Tx Voice/Signal Type to Non-Astro.
f. Set Transmit Power Level to High.
5. Double-click on Trunking -> Trunking System -> Trunking System 1.
a. In the General tab, if the proper system key was loaded, the System Key field should already be enabled.
b. Set the Type to II.
c. Set the Type II System ID, and Connect Tone to values obtained from the radio system administrator for the site.
d. Under Coverage Type, set the type to Disabled.
e. In the Type II tab, set the Individual ID to the value obtained from the radio system administrator for the site.
f. Set the Affiliation type to Automatic.
g. In the Channel Assignment tab, enter the Rx and Tx channel ranges. Consult your radio system administrator for the list of values.
h. In the OBT Control Channels tab, set the RX Frequency and TX Frequency of each control channel with which the data subscriber should be able to affiliate. Consult your radio system administrator for the list of control channels.
6. Double-click on Trunking ->Trunking Personality ->Trunking Personality 1.
a. In the General tab, set the Protocol Type to II and set the System ID to the value obtained from the radio system administrator for the site. Make sure that the Time Out Timer is set to 3 (for 60 sec). Check that the Type II Individual ID is set to the value obtained from the radio system administrator for the site.
b. In the Talkgroup tab, set the radio talkgroup value in hexadecimal. Consult your radio system administrator for the talkgroup information. (Note: Talkgroup for voice in analog trunking is the same for voice and data on analog trunk.
7. From the File Menu, select Save to save changes to the radio.
8. From the File Menu, select Write Device to download the configuration to the radio.

XTL5000/XTL2500 Radio Models and Options for ACE3600

The XTL5000/XTL2500 radio installation kit is used with one of the following XTL5000/ XTL2500 radios:

Description	Nomenclature	Band
XTL5000 Mobile 10-35 W, 764-870MH	M20URS9PW1 N	$764-870 \mathrm{MHz}$
XTL5000 UHF R1 Mobile 10-40 W 380-470	M20QSS9PW1 N	$380-470 \mathrm{Mhz}$
XTL5000 UHF R2 450-520 MHZ 10-45 W	M20SSS9PW1 N	$450-520 \mathrm{Mhz}$
XTL5000 VHF Mobile 10-50 W 136-174 MHZ	M20KSS9PW1 N	$136-174 \mathrm{Mhz}$
XTL2500 Mobile 10-35 W, 764-870MHz	M21URM9PW1N	$764-870 \mathrm{MHz}$
XTL2500 Mobile 10-40 W, 380-470MHz	M21QSM9PW1 N	$380-470 \mathrm{MHz}$
XTL2500 Mobile 10-45 W, 450-520MHz	M21SSM9PW1 N	$450-520 \mathrm{MHz}$
XTL2500 Mobile 10-50 W, 136-174MHz	M21KSM9PW1 N	$136-174 \mathrm{MHz}$

All of the following options may be ordered with the XTL2500 radio:

Option Name	Option Number
ADD: O5 CONTROL HEAD	G442
ADD: NO MICROPHONE NEEDED	G90
ENH: SOFTWARE ASTRO DIGITAL CAI OPERATION	G806
ENH: ASTRO PROJECT 25 TRUNKING SOFTWARE	G361
ADD: CONTROL HEAD SOFTWARE, O5	G444
ENH: SMARTZONE OPERATION	G51
ENH: RS232 PACKET DATA INTERFACE	W947

Radio Types and Installation Kits

Option Name	Option Number
ADD: DASH MOUNT	G66
ADD: NO SPEAKER	G142
ADD: NO ANTENNA	G89

XTS2500 Radio Installation Kit

The XTS2500 radio installation kit (ACE3600 option V156AG or kit FLN3814A) enables the user to install the XTS2500 radio in ACE3600 Remote Terminal Units (RTU). The RTU can use the XTS2500 in digital mode to communicate over the ASTRO 6.x/7.x system. The following hardware and firmware are required:

- Radio firmware version 6.4 and above for trunked IV\&D
- ASTRO Infrastructure version SR6.5 and above for trunked IV\&D
- ACE3600 firmware 10.00 and above
- ACE3600 System Tools Suite (STS) version 10.50 and above

The installation kit includes brackets, cables, screws and installation instructions.
After the XTS2500 radio is installed in the RTU, the RTU port is configured, the IP address information is downloaded, the radio is context activated and finally, communication from the RTU over the air is verified. For more information on MDLC over ASTRO IV\&D (Integrated Voice \& Data), refer to the MDLC over IP chapter of the ACE3600 STS Advanced Features Manual.

Installation

CAUTION

Before installing the XTS2500 radio on the RTU, configure the power supply AUX2A/B connector to 7.5 V DC in the ACE3600 STS site configuration (using the Power Supply <n> Auxiliary 2 voltage parameter.) Download the updated site configuration to the RTU. Failure to do so might damage the radio.

The installation kit includes a radio bracket, metal bracket with built-in screws, power cables, communication cable, antenna cable and plastic strips. The XTS2500 can be mounted on the ACE3600 RTU using the kit as follows:

Procedure 21-9 How to Install the XTS2500 Radio on the Metal Chassis

1. Attach the XTS 2500 radio to the radio bracket (from FHN6674A). (See Figure 21-8.)
2. Connect the programming cable (RKN4106A) provided with the radio to the Accessory connector on the radio. (See Figure 21-10.) Connect the other end of the programming cable to the 9-pin D-type (Radio) connector on the communication cable (FKN8516A) and tighten the screws attached to the programming cable. Do not use the 25 -pin connector; it is for programming only.
3. Connect the other end of the communication cable (RJ45 connector) to the plug-in port of the ACE3600 CPU.
4. Connect the 7.5 V DC power cable (FKN8515A) to the AUX2A or AUX2B auxiliary power output connector on the RTU power supply. Connect the other end of the power cable to the DC adapter on the radio bracket (FHN6674A). (See Figure 21-9 and Figure 21-10.)

Figure 21-8 XTS2500 Radio and Metal Bracket
5. Add the BNC adapter (\#5871143Y04) to the XTS2500 radio antenna connector. (See Figure 21-9.)
6. Attach the BNC connector of the antenna cable (FKN8434A) to the radio's BNC adapter. Route the antenna cable through the small wire clamps along the left side edge of the RTU chassis, according to the placement of the radio on the chassis. Attach the N-type connector at the other end to the opening on the bottom of the RTU housing using the supplied locking washer and nut. (See Figure 21-9.)
7. Mount the radio/bracket unit on the metal bracket (\#0789422V40 from FHN6674A) using the four supplied screws.
8. Mount the metal bracket on the RTU chassis above the I/O modules, using the three builtin screws, with the bottom of the radio towards the chassis. (See Figure 21-9.)
9. Attach all cables to the chassis using the supplied wire clamps.

Radio Types and Installation Kits

Figure 21-9 XTS2500 Radio Installed on ACE3600 Chassis

Figure 21-10 XTS2500 Radio Installed on ACE3600 Chassis - Cable Connections

RTU Port Configuration

To enable MDLC communication over ASTRO IV\&D, use the ACE3600 STS $(\geq$ V10.50 $)$ to configure the RTU port connected to the XTS25000 radio. For more information, refer to the MDLC over IP chapter of the ACE3600 STS Advanced Features manual.

The following figures show the port configuration and advanced parameter configuration. Although these show Port SIl, the same values can be applied to other ports, where relevant.

Port Type

Procedure 21-10 How to Configure the ACE3600 Port for the Astro XTS2500 Digital Radio

1. In the ACE3600 STS click on the desired site, and open the site view.
2. In the Port Tab, click on the on-board or plug-in port through which the RTU will communicate with the XTS2500 radio.
3. Confirm that the port parameters and data speed are as shown in the screen below.
4. Define desired links.
5. If you plan to synchronize the RTU time from the Front End Processor (FEP) in the Customer Enterprise Network (CEN), specify the IP address of the FEP in the NTP field. This IP address information is provided by your ASTRO IV\&D system operator.
6. Save the changes.

SII	Media	RS-232	-	Links...		LINE 1
	Operation Mode	Asyne	\checkmark	Data Speed:	[9600 Bps]:	9600 Bps
	Connection Type	PPP	\checkmark	DNS server IP addresses (up to 3)		
	Connected to	ASTRIT VED	\cdots	NTP		

Figure 21-11 RTU Site Configuration for MDLC over ASTRO IV\&D - Port Type Parameters

Advanced Parameter Configuration

Figure 21-12 RTU Site Configuration for MDLC over ASTRO IV\&D - Advanced Parameters

Generally no other changes are required to Advanced Physical or Link Layer parameters. For information on these parameters, see the MDLC over IP chapter of the ACE3600 STS Advanced Features manual.

Procedure 21-11 How to Configure the Advanced Parameters of the ACE3600 Port for the Astro XTS2500 IV\&D Digital Radio

1. (ASTRO System 6.3-6.5 only) Make sure that the Advanced Link parameter Registration life time to 28800 seconds (default) in order to restart the radio periodically.
2. If any changes are required, click on the appropriate screen in the Port Tab.
3. Change the settings as necessary.

Note: The Default Group ID Address should be left 000.000.000. The actual values will be read by the RTU from the radio upon connection.
4. Save any changes.
5. Save the project.
6. Download the site configuration to the ACE3600 RTU.

IP Conversion Table (for Astro XTS2500 IV\&D Digital Radio)

Prepare an IP conversion table if the RTU must communicate with another RTU or an IP Gateway. In the IP conversion table, specify the IP address of each RTU port (site ID + link ID). This IP address is assigned by the infrastructure operator.

Note that an IP address is obtained from the radio once it is connected to the RTU port over PPP. The IP address obtained from the radio is not the real IP address set by the infrastructure, but rather a dummy address. This dummy is configured in the radio via the CPS Mobile Computer IP address parameter (by default 192.168.128.2).

When device LINxL level 0 is retrieved using the ACE3600 STS Software Diagnostics tool, the IP Address displayed is this dummy address and not the actual IP address assigned by the infrastructure operator.

It is recommended to create two IP conversion tables:

1. The first is downloaded to the FIU or IP Gateway on the LAN and includes the site and IP information for each RTU.
2. The second is downloaded to all RTUs which are connected to the infrastructure with ASTRO IV\&D radios, and includes the site and IP information for the FIU and IP Gateway.

For detailed instructions on preparing the IP conversion table, refer to the IP Communications chapter of the ACE3600 STS Advanced Features manual.

Radio Programming using CPS for the Astro XTS2500 IV\&D Digital

The XTS2500 radio is programmed for ACE3600 in the factory and is ready for ASTRO IV\&D communication. For user programming of site-specific parameters, the radio should be brought to the Motorola Service Center.

Radio Connections

To program the XTS2500 radio with Customer Programming Software (CPS), the radio must be connected to a PC.

Procedure 21-12 How to Connect the XTS2500 Radio to the CPS

1. Power on the radio.
2. Disconnect the programming cable (RKN4106A) from the 9-pin D-type (Radio) connector on the data cable (FKN8516A).
3. Connect the D-type connector of the programming cable (RKN4106A) to the serial port of a PC on which the ASTRO CPS software is installed.
4. Program the radio using the CPS, as described in CPS Programming Settings below.
5. After radio programming, reconnect the communication and programming cables as described in the Installation section above.

Radio Disassembly

If the XTS2500 radio is to be programmed outside of the ACE3600 housing, disassemble the radio as follows:

Procedure 21-13 How to Disassemble the XTS2500 Radio from the ACE3600 Metal Chassis

1. Disconnect the antenna cable (FKN8434A) from the Antenna connector on the radio.
2. Remove the radio/bracket unit from the RTU chassis by unscrewing the three built-in screws.
3. Disconnect the DC power cable (FKN8515A) from the Power connector on the radio.
4. Disconnect the 13-pin connector of the programming cable (RKN4106A) from the Accessory connector on the radio.
5. Detach the metal bracket (\#0789422V40 from FHN6674A) by unscrewing the four radio screws (\#0310906A67), two on each side. (See Figure 21-9.)
6. Take the radio to a laboratory for programming, as described in CPS Programming Settings below.

CPS Programming Settings

Before programming the radio, read the codeplug file from the radio and save it to your PC using the File->Read command in the CPS (R05.00.00 or above). Open the codeplug file in the CPS and set the parameters as follows.

Procedure 21-14 How to Program the XTS2500 Digital Radio

1. In the CPS, click on the codeplug in the tree view to open the items below.
2. Under Radio Configuration, double-click on Radio Wide.
a. In the General tab, set the Out of Range Indicator and Imbalanced Coverage Indicator to Alert \& Display.
b. (Recommended) In the Data tab, enable SNMP Traps. (You can disable it, but the RTU will only detect a loss of context activation the next time it polls the radio (every 10 seconds by default).
c. (Optional) Specify the Mobile Computer IP address. This is the dummy IP address assigned to the RTU by the radio (by default it is 192.168.128.2). For each radio, it is recommended to change the last digit in the Mobile Computer IP address (e.g. to the Unit ID in Trunking systems.)
3. Double-click on NAT List -> NAT List Entry 1.
a. Add an entry to the NAT List:
1) WAN port = MDLC over IP port number (e.g. 2002)
2) LAN port = MDLC over IP port number (e.g. 2002)
3) Static NAT IP Address = Mobile Computer IP Address (e.g. 192.168.128.2).

The Mobile Computer address should match the Mobile Computer IP Address assigned on the Radio Configuration $>$ Radio Wide $>$ Data tab in Step 2 above.
4. Double-click on Trunking ->Trunking System ->Trunking System 1.
a. In the General tab, set the Type to ASTRO 25. If the proper system key was loaded, the System Key field should already be enabled.
b. Set the ASTRO 25 Home System ID, Home WACN ID and Unit ID to values obtained from the radio system administrator.
c. Under Coverage Type, set the type to SmartZone.
d. In the Astro 25 Channel ID tab, enable the first channel.
e. In the $700 / 800$ Astro 25 Control Channels tab (700_800 or OBT depending on the band), enter the control channels with which the data subscriber should be able to affiliate. Consult your radio system administrator for the list of control channels.
f. In the Data tab, enable Packet Data Capable System (PDS), and Terminal Data and disable (uncheck) Rx Voice Interrupts Data.
5. Double-click on Trunking ->Trunking Personality ->Trunking Personality 1.
a. In the General tab, set the Protocol Type to ASTRO 25 and set the System \& ID to 1 .
b. In the $700 / 800$ Failsoft tab, data only subscribers should set Failsoft Type to disabled. (There is no data service unless the subscriber is affiliated to a widearea trunking site.)
c. In the Talkgroup tab, set the radio talkgroup value in hexadecimal. Consult your radio system administrator for the talkgroup information.
d. (Recommended) In the Preferred Sites tab, set the status of the first record to None. (This means that data only subscribers are not locked into preferred sites.)
6. Double-click on Zone Channel Assignment ->Zone Channel Assignment.
a. In the Zone tab, set the Zone to the desired zone name (e.g. ZONE1).
b. In the Channels tab, set the Channel to the name which will be displayed on the radio screen (if the radio is Model II or III).
c. Select the Personality type of that channel.
d. Specify the Personality \# of that channel.
e. Specify the Talkgroup \# of that channel.
7. From the File Menu, select Save to save changes to the radio.
8. From the File Menu, select Write Device to download the configuration to the radio.

Infrastructure Configuration for the Astro IV\&D XTS2500 Digital Radio

In order for the ACE3600 RTU to communicate over the ASTRO IV\&D infrastructure (6.4 or later) using the XTS2500 digital radio, the infrastructure must be properly configured using the UCM (User Configuration Manager) tool.

Note: If configuring a border router or any firewall within the CEN (Customer Enterprise network), make sure that the ACE3600's MDLC over IP UDP port number 2002 is enabled for inbound and outbound messages.

Note: In the UCM Radio User Data Settings tab, be sure to set the IP address as Static, to enable Generate ICMP and Source Address Checking, and the Ready timer set to 10 seconds.

XTS2500 Radio Models and Options for ACE3600

The XTS2500 radio installation kit is used with one of the following XTS2500 radio:

Description	Nomenclature	Band
XTS2500 PORTABLE 1-3 WATTS, 764-870MH	H46UCC9PW5 N	$764-870 \mathrm{MHz}$
XTS2500 VHF PORTABLE 1-5 WATTS 136-174	H46KDC9PW5 N	$136-174 \mathrm{MHz}$
XTS2500 UHF R1 PORTABLE 1-5 WATTS 380-470	H46QDC9PW5 N	$380-470 \mathrm{MHz}$
XTS2500 UHF R1 PORTABLE 1-5 WATTS 450-520	H46SDC9PW5 N	$450-520 \mathrm{MHz}$

All of the following options may be ordered with the XTS2500 radio:

Option Name	Option Number
ENH: SOFTWARE TRUNKING 9600 BAUD Includes: 9600 Baud, Wide Area SmartZone, OmniLink, ASTRO Digital CAI, \& PTT-ID Display	Q574
ENH: RADIO PACKET DATA	Q947
DEL: ANTENNA	H112
DEL: BATTERY ALL TOGETHER	H207
DEL: BELT CLIP	H301
ADD: DATA CABLE	Q157

CDM750 Radio Installation Kit

The CDM750 radio installation kit (ACE3600 option V143AH/kit FLN3638A) enables the user to install the CDM750 radio series in ACE3600 Remote Terminal Units (RTU). The FLN3638A installation kit includes a bracket, adapter, and cables.

Installation

The CDM750 radio can be mounted on the ACE3600 RTU as follows:
Procedure 21-15 How to Install the CDM750 Radio on the Metal Chassis

1. Attach the radio plug-in port from the installation kit (FLN3696A) to the desired opening on the ACE3600 CPU module. For instructions on attaching plug-in ports, see Connecting Plug-In Ports to the CPU Module in the CPU Module chapter above.
2. Connect the radio adapter (FLN3639A) 16-pin connector to the radio Accessory connector (See Figure 21-13.)
3. Connect the power cable (FKN8436A) to the radio power connector, and the opposite end of the cable to the AUX1A or AUX1B connector on the ACE3600 power supply module. Connect the free red wire to the ignition pin on the radio adapter.
4. Connect the communication cable (FKN8427A) to the rear connector (8-pin RJ45 connector) of FLN3639A. Place one Fair-Rite soft ferrite (\#7683477X01 from the supplied ferrite kit FHN7007A) on the cable near the bottom of the CPU door, loop the cable one turn around it, and clamp the ferrite on the cable.
Connect the other end of the communication cable to the plug-in port of the ACE3600 CPU module.

Figure 21-13 CDM750 Antenna, Power and Communication Cable Connections
4. Connect the antenna cable (FKN8437A) to the Antenna connector on the radio and to the opening on the bottom of the ACE3600 RTU housing, using the four supplied screws. See Figure 21-13 and Figure 21-15.)
5. Attach the radio to the bracket (0789422V45 from FHN6898A) by using screws and washers from kit FHN6898A. See Figure 21-14 below.

Figure 21-14 CDM750 Radio and Metal Bracket
6. Attach the complex (radio + bracket) using the four supplied screws to the ACE3600 chassis. See Figure 21-15 below.

Figure 21-15 CDM750 Radio Installed on ACE3600 Chassis

RTU Port Configuration for the CDM750 Radio

To enable MDLC communication using CDM750 radios, use the ACE3600 STS site configuration utility to configure the ACE3600 RTU plug-in port connected to the radio.

The following figures show the port configuration and advanced parameter configuration. Although these show Port PI1, the same values can be applied to port PI2 as well, where relevant.

Port Type

Procedure 21-16 How to Configure the ACE3600 Port for the CDM750 Radio

1. In the ACE3600 STS, click on the desired site, and open the site view.
2. In the Port Tab, click on the plug-in port through which the RTU will communicate with the radio.
3. Confirm that the port parameters and data speed are as shown in the screen below.
4. Define desired radio links and zones if necessary.
5. Save the changes. Generally no other changes are required to Advanced Physical or Link Layer parameters.

Pl1	Media	Radio	-	Link name:		RAADIO 1	\rightarrow
	Radio System	Conventional	\checkmark	Zones...			
	Radio Type	CDM750	\checkmark	Data Speed:	[1200 Bps .	1200 Bps	\checkmark
	Max no. of repeaters	No repeater	\checkmark	Default routing:	[None]:	None	\checkmark
	Modem	DPSK	\checkmark				

Figure 21-16 RTU Site Configuration for MDLC over CDM750 Radio - Port Type Parameters

Programming the CDM750 Radio using CPS

The CDM750 radio is programmed for ACE3600 in the factory and is ready for communication. For user programming of site-specific parameters, follow the instructions below.

Radio Connections

To program the CDM750 radio with Customer Programming Software (CPS), the radio is connected to a PC using the standard Radio Interface Box (RIB).

Procedure 21-17 How to Connect the CDM750 Radio to the CPS

1. Connect one end of the programming cable (PMKN4004) to the radio Accessory connector and the other end to the 25 -pin connector on the RIB (RLN4008). The RIB and cable are not supplied and must be ordered separately.
2. Using the 9-pin interface cable (3080369B72), connect the RIB to the serial port of a PC on which the CDM750 CPS software (HVN9025) is installed.
3. Connect the RIB to a power RIB power supply or 9 V battery.

Radio Disassembly

If the CDM750 radio is to be programmed outside of the ACE3600 housing, disassemble the radio as follows:

Procedure 21-18 How to Disassemble the CDM750 Radio from the ACE3600 Metal Chassis

1. Disconnect the antenna cable (FKN8437A) from the radio Antenna connector.
2. Remove the radio/bracket unit from the RTU chassis by unscrewing the four built-in screws.
3. Disconnect the DC power cable (FKN8436A) from the radio Power connector.
4. Disconnect the radio adapter (FLN3639A) 16-pin connector from the radio Accessory connector.
5. Detach the metal bracket (FHN6898A) by unscrewing the two radio screws (\#0387839V89), one on each side. (See Figure 21-14.)

CPS Programming Settings

The following programming instructions must be performed before connecting a CDM750 radio to the ACE3600 family Remote Terminal Units (RTU). These instructions define miscellaneous settings and the function of each pin in the radio's general purpose I/O connector.

Procedure 21-19 How to Program the CDM750 Radio

1. Before programming the radio, read the codeplug file from the radio and save it to your PC using the File $>$ Read Device command in the CPS.
2. Open the codeplug file in the CPS. Click on the codeplug in the tree view to view and select the items below or select them from the Feature menu.
3. Under Radio Configuration, change the settings on the Basic, Tx Power, Accessory Configuration, and Accessory Pins tabs, as shown in the screens below.
4. Under Controls and Menus->Conventional Buttons, change the settings to the Mobile Key Buttons and Programmable Buttons tabs, as shown in the screens below.
5. Under Conventional Personality 1, change the settings to the Basic, Options and Advanced tabs, as shown in the screens below.
6. Under Personality Assignment to Zone 1, make sure that the desired channel(s) appear on the list on the Channels tab. If not all the assigned channels are required, remove them from the assignment list.
7. From the File Menu, select Save to save changes to the radio.
8. From the File Menu, select Write Device to download the configuration to the radio.

Figure 21-17 Radio Configuration- Basic Settings

Figure 21-18 Radio Configuration- Tx Power

Figure 21-19 Radio Configuration - Accessory Connector Configuration

Figure 21-20 Radio Configuration - Accessory Pins Definition

Figure 21-21 Conventional Buttons Configuration - Mobile Key Buttons

Figure 21-22 Conventional Buttons Configuration - Programmable Buttons

Figure 21-23 Conventional Personality Configuration - Basic Settings

Figure 21-24 Conventional Personality Configuration - Options

Figure 21-25 Conventional Personality Configuration - Advanced Settings

Figure 21-26 Radio Channel Assignment - Personality Assignment to Zone

GP/HT/PRO Radio Installation Kit

The GP/HT/PRO Radio Installation Kit for ACE3600 (V154AE, FLN3637A) enables the user to install the GP320/GP328/HT750/PRO5150 portable radios in ACE3600 Remote Terminal Units (RTU). Each kit includes a bracket, radio interface, adapters, and cables.

Volume Knob Retainer

The volume knob retainer sets a fixed position for the volume knob on the GP/HT/PRO radios, for optimal operation in an ACE3600 RTU installation. To implement this option, follow the procedure below.

Procedure 21-20 How to Attach the Volume Knob Retainer for the GP/HT/PRO Radio

1. Remove the original plastic volume knob cover from the radio by pulling it out with pliers, as shown in Figure 21-27.

Figure 21-27 Removing the Volume Knob
2. Place the hole of the volume knob retainer (shown in Figure 21-28) over the exposed metal volume rod on the radio (shown in Figure 21-29.)

Figure 21-28 Volume Knob Retainer
3. Fasten the bottom of the volume knob retainer to the radio body. (See Figure 21-29.)

Figure 21-29 Attach Retainer to Radio

Installation

CAUTION

Before installing the GP/HT/PRO radio on the RTU, configure the power supply AUX2A/B connector to 7.5 V DC in the ACE3600 STS site configuration (using the Power Supply <n> Auxiliary 2 voltage parameter.) Download the updated site configuration to the RTU. Failure to do this might damage the radio.

The GP/HT/PRO radio can be mounted on the ACE3600 RTU as follows:

1. Attach the radio plug-in port from the installation kit (FLN3696A) to the desired opening on the ACE3600 CPU module. For instructions on attaching plug-in ports, see Connecting Plug-In Ports to the CPU Module in the CPU Module chapter above.
2. Connect the audio accessory adapter (HLN9716) (Item 1) to the radio. See Figure 21-30.
3. Insert the communication cable (FKN8431A) (Item 2) into the audio accessory adapter.
4. Insert the BNC antenna adapter (FTN6045B) into the radio antenna connector (Item 3).
5. Snap the radio into the DC adapter (FCN5516B) (Item 4).
6. Insert the 7.5 V DC power cable (FKN8515A) into the DC connector of the DC adapter (Item 5).

Figure 21-30 GP/HT/PRO Radio Installation
7. Using the two screws, attach the radio assembly to the radio bracket (FHN6899A).
8. Using the three screws on the bracket, attach the bracket with the radio to the chassis of the ACE3600. (See Figure 21-31.)
9. Connect the audio communication cable (FKN8431A) to the audio adapter (attached to the radio). Place one Fair-Rite soft ferrite (\#7683477X01 from the supplied ferrite kit FHN7007A) on the cable near the bottom of the CPU door, loop the cable one turn around it, and clamp the ferrite on the cable. Connect the other end of the communication cable to the plug-in port on the front panel of the CPU module.
10. Connect the DC power cable (FKN8515A) from the DC adapter (attached to the radio) to the AUX2A or AUX2B connector of the power supply module.
11. Route the antenna cable (FKN8434A) from the bottom of the RTU box to the BNC adapter on the radio.
12. Use the clamps provided in the kit to route and secure the audio communication and DC power cables. (See Figure 21-31.)

Figure 21-31 GP/HT/PRO Radio Installed on ACE3600 Chassis

RTU Port Configuration for the GP320/GP328/HT750/PRO5150 Radio

To enable MDLC communication using GP320/GP328/HT750/PRO5150 radios, use the ACE3600 STS site configuration utility to configure the ACE3600 RTU plug-in port connected to the radio.

The following figures show the port configuration and advanced parameter configuration. Although these show Port PI1, the same values can be applied to port PI2 as well, where relevant.

Port Type

Procedure 21-21 How to Configure the ACE3600 Port for the GP/HT/PRO Radio

1. In the ACE3600 STS click on the desired site, and open the site view.
2. In the Port Tab, click on the plug-in port through which the RTU will communicate with the radio.
3. Confirm that the port parameters and data speed are as shown in the screen below.
4. Define desired radio links and zones if necessary.
5. Save the changes. Generally no other changes are required to Advanced Physical or Link Layer parameters.

Pl1	Media	Radio	-	Link name:		RADIO 1	-
	Radio System	Conventional	\checkmark	Zones...		RADDI01	
	Radio Type	HT750/GP320/PRO5150	\checkmark	Data Speed:	[1200 Bps]:	1200 Bps	\checkmark
	Max no. of repeaters	No repeater	\checkmark	Default routing:	[None]:	None	\checkmark
	Modem	DPSK	-				

Figure 21-32 RTU Site Configuration for MDLC over GP320/GP328/HT750/PRO5150 Radio Port Type Parameters

GP/HT/PRO Radio Models and Regional Options for ACE3600

The GP/HT/PRO models of the ACE3600 RTU, F7553A (VHF) and F7554A (UHF) include the following regional options:

Option	Region	Radio
V951	North America (NA)	HT750
V952	EMEA	GP320
V953	Asia	GP328
V954	Latin America (LA)	PRO5150
V154AE	GP/HT/PRO INSTALL KIT	
FLN3637A GP/HT/PRO INSTALL KIT		

Note:

1. When ordering ACE3600 model with a GP/HT/PRO radio, a V95x option must be added.
2. For models/options availability, see the latest sales price list.
3. Orders to EMEA should be placed as model without radio and radio as a kit

CM/EM/GM Radio Installation Kit

The CM/EM/GM Installation Kit for ACE3600 (V148AC/FLN3635A) enables the user to install the CM/EM/GM mobile radio (CM200, CM140, EM200, GM3188) in ACE3600 Remote Terminal Units (RTU). Each kit includes a bracket, adapter, and cables.

Installation

The CM/EM/GM can be mounted on the ACE3600 RTU as follows:
Procedure 21-22 How to Install the CM/EM/GM Radio on the Metal Chassis

1. Attach the radio plug-in port from the installation kit (FLN3696A) to the desired opening on the ACE3600 CPU module. For instructions on attaching plug-in ports, see Connecting Plug-In Ports to the CPU Module in the CPU Module chapter above.
2. Connect the 16-pin connector radio adapter (FLN3636A) to the accessory connector on the radio. (See Figure 21-33.)

Figure 21-33 CM/EM/GM Radio, Adapter and Power Cable
3. Connect the power cable (FKN8428A) to the radio's power connector. (See Figure 21-33 and Figure 21-34.) Connect the other end of the power cable to the AUX1A or AUX1B connector on the ACE3600 RTU Power Supply unit. (See Figure 21-35.)

Figure 21-34 CM/EM/GM Radio Cable Connections
4. Connect the communication cable (FKN8427A) to the back of the radio adapter (FLN3636A) connector (10-pin RJ45 connector). (See Figure 21-34.) Place one Fair-Rite soft ferrite (\#7683477X01 from the supplied ferrite kit FHN7007A) on the cable near the bottom of the CPU door, loop the cable one turn around it, and clamp the ferrite on the cable. Connect the other end of the communication cable to the plug-in port of the ACE3600 CPU.
5. Mount the CM/EM/GM radio onto the metal bracket (\#0789422V45) using the two supplied radio mounting screws from kit FHN6894A, \# 0387839 V 89 on the top and bottom of the radio. (See Figure 21-33, Figure 21-34 and Figure 21-35.)
6. Connect the antenna cable (FKN8429A*) to the antenna connector on the radio and to the opening on the bottom of the ACE3600 housing using the four supplied screws. (See Figure 21-34 and Figure 21-35.) Mount the complex (bracket and radio) on the RTU chassis above the CPU and I/O modules, using the four built-in screws. (See Figure 21-35.)

[^35]

Figure 21-35 CM/EM/GM Radio Installed on ACE3600 Chassis

RTU Port Configuration for the CM/EM/GM Radio

To enable MDLC communication using CM/EM/GM radios, use the ACE3600 STS site configuration utility to configure the ACE3600 RTU plug-in port connected to the radio.

Follow the instructions for RTU Port Configuration for the CDM750 Radio above.

Programming the CM/EM/GM Radio using CPS

The following programming instructions must be performed before connecting a CM/EM/GM radio to an ACE3600 RTU. These steps define miscellaneous settings and the function of each pin in the radio's general purpose I/O connector.

Radio Types and Installation Kits

Radio Information

The picture below shows the radio model information screen in the CPS.

Figure 21-36 CM/EM/GM CPS Radio Information Screen

Radio Power Settings

The picture below shows the TX power setting (1-25 W) in CPS.

Figure 21-37 CM/EM/GM CPS General Settings Screen

Radio Types and Installation Kits

Radio Accessory Connector Pins Definition

The picture below shows the setting of the radio's accessories pins required for interfacing with the ACE3600.

Figure 21-38 CM/EM/GM CPS Radio Accessories Screen

Frequency and Bandwidth Settings

The picture below shows the setting of the radio's frequency, bandwidth and power level.

Figure 21-39 CM/EM/GM CPS Radio Personality Tx/Rx Screen

Note: The Power Level should be set according to the power output.

CM/EM/GM Radio Models and Regional Options for ACE3600

The CM/EM/GM models of the ACE3600 RTU, F7573A (VHF) and F7574A (UHF) include the following regional options:

Option	Region	Radio
V851	North America (NA)	CM200, 1-25W
V852	EMEA	CM140, 1-25W
V853	Asia	GM3188, 1-25W
V854	Latin America (LA)	EM200, 1-25W
V148AC	CM/EM/GM INSTALL KIT	
FLN3635A CM/EM/GM INSTALL KIT		

Note:

1. When ordering an ACE 3600 model with a CM/EM/GM radio, a V95x option must be added.
2. For models/options availability, see the latest sales price list.
3. The kit FLN3635A includes an adapter for use with antenna cable FKN8429A in EMEA and Asia.

MotoTrbo - XPR4350, XPR4380, DM3400, XiR M8220, DGM4100 Radio Installation Kit

The MotoTrbo - XPR4350, XPR4380, DM3400, XiR M8220, DGM4100 Installation Kit for ACE3600 (FLN4102A/V682AF) enables the user to install the XPR4350/XPR4380/
DM3400/XiR M8220/DGM4100 mobile radios in ACE3600 Remote Terminal Units (RTU). Each kit includes a radio bracket (FHN6894A), power cable (FKN8436A), USB data cable (FKN8644A) and antenna cable (FKN8437A).

Installation

The MotoTrbo can be mounted on the ACE3600 RTU (CPU 3680 only) as follows:

1. Attach the MotoTrbo radio to the metal bracket ($\mathrm{p} / \mathrm{n} 0789422 \mathrm{~V} 45$ from kit FHN6894A) using the two supplied radio mounting screws. (See Figure 21-40.)

Figure 21-40 MotoTrbo Radio and Metal Bracket
2. Connect the USB connector of the USB data cable (FKN8644A) to one of the USB host ports on the ACE3600 CPU module. Connect the other side of the cable (26-pin connector) to the Accessory connector on the radio. (See Figure 21-41.)

Figure 21-41 MotoTrbo Radio Cable Connections
3. Connect the DC power cable (FKN8436A) to the Power connector on the radio. Connect the male pin on the data cable (FKN8644A) to the female pin on the DC power cable (FKN8436A) to ensure ignition sense operation. Connect the opposite end of the power cable to the AUX1A or AUX1B connector on the ACE3600 power supply unit. Important: Only one MotoTrbo radio can be attached to a given power supply.
4. Mount the radio/bracket unit onto the RTU chassis above the CPU and I/O modules, using the four built-in screws. (See Figure 21-46.)
5. Connect the antenna cable (FKN8437A) to the Antenna connector on the radio. If the radio type is DM4300 (EMEA) or XIR M8220 (Asia), use the RF adapter 5871143 Y 01.
6. Run the cable through the small white clips along the edge of the chassis and attach the connector to the opening on the bottom of the ACE3600 RTU housing.

Figure 21-42 MotoTrbo Radio Installed on ACE3600 Chassis

RTU Port Configuration for the MotoTrbo Radio

The RTU port is configured using the ACE3600 STS as follows:

Port Type

Procedure 21-23 How to Configure the ACE3600 Port for the MotoTrbo Radio

1. In the ACE3600 STS, click on the desired site, and open the site view.
2. In the Port Tab, click on the USB port (HU1/HU2) through which the RTU will communicate with the radio. (HU1 is the left USB port and HU2 is the right USB port.)
3. Confirm that the port parameters are as shown in the screen below.
4. Define the desired Line links.
5. Save the changes. Generally no other changes are required to Advanced Physical or Link Layer parameters.

HU1	Media	USB Host	\checkmark	Links...	LINE 1
	Operation Mode	Async	\cdots	DNS Servers	
	Connection type	Remote NDIS Host	\checkmark	NTP Servers	
	Connected to	MotoTibo	\square		

Figure 21-43 RTU Site Configuration for MDLC over MOTOTRBO Radio - Port Type Parameters

Advanced Parameter Configuration

The STS provides default settings for advanced port parameters for use with the MotoTrbo radio. These settings should be used.

Programming the MotoTrbo Radio using CPS

The MotoTrbo radio is programmed for ACE3600 in the factory and is ready for communication. For user programming of site-specific parameters, bring the radio to the Motorola Service Center or use the CPS which can be ordered with the radio and follow the instructions below.

Radio Connections

To program the MotoTrbo radio with Customer Programming Software (CPS), the radio is connected to a PC USB port using the standard ACE3600 MotoTrbo communication cable FKN8644A.

Procedure 21-24 How to Connect the MotoTrbo Radio to the CPS

1. Connect the 26 -pin connector to the radio Accessory connector, and the USB connector to the PC on which the MotoTrbo CPS software is installed.
2. Connect the power cable to the radio.

Radio Disassembly

If the MotoTrbo radio is to be programmed outside of the ACE3600 housing, disassemble the radio as follows:

Procedure 21-25 How to Disassemble the MotoTrbo Radio from the ACE3600 Metal Chassis

1. Disconnect the antenna cable (FKN8437A) from the radio Antenna connector.
2. Remove the radio/bracket unit from the RTU chassis by unscrewing the four built-in screws.
3. Disconnect the DC power cable (FKN8436A) from the radio Power connector.
4. Disconnect the data cable (FKN8644A) from the radio.
5. Detach the metal bracket (FHN6894A) by unscrewing the two radio screws (\#0387839V89), one on each side. (See Figure 21-14.)

CPS Programming Settings

The following programming instructions must be performed before connecting a MotoTrbo radio to the ACE3600 family Remote Terminal Units (RTU). These instructions define miscellaneous settings and the function of each pin in the radio's general purpose I/O connector.

Procedure 21-26 How to Program the MotoTrbo Radio

1. Before programming the radio, read the codeplug file from the radio and save it to your PC using the File $>$ Read Device command in the CPS.
2. Open the codeplug file in the CPS. Verify that you are using the right radio.
3. Under the radio's General Settings, change the Radio ID number as required and the TX High Power value to VHF 25W/UHF 20W. (View->Expert displays the full layout of General Settings.)
4. Under Accessories, verify that Ignition Sense is set to On/Off Or Ignition.
5. Under Network, verify that the CAI Network number (default 12) is identical for all radios in the system.
Verify that CAI group number (default 225) is identical for all radios in the system. Verify that the Forward to PC window is marked enabled (required for time sync and broadcast).
6. Under Channels->Zone<n>->Channel1, set the TX and RX frequencies as required. Verify that the color code and the repeater slot are equal in all radios in the group.
7. From the File Menu, select Save to save changes to the radio.
8. From the File Menu, select Write Device to download the configuration to the radio.

Note: The radio configuration must match the repeater topology (direct mode, single repeater, IP site connect.)

For more information on configuring the MotoTrbo radio and the ACE3600 RTUs for MDLC over MotoTrbo, see the MDLC over MotoTrbo section of the ACE3600 STS Advanced Features manual. For information on adding IP addresses to the IP conversion table and downloading to the relevant attached RTUs, see the Operation chapter of the ACE3600 STS User Guide.

XPR4350/XPR4380/DM3400/XiR M8220/DGM4100 Options for ACE3600

One of the following MotoTrbo options must be ordered with the F7583A/F7584A models:

Option Name	Option Number
ADD: XPR4350 Radio 403-470 MHz for NAG	V751AA
ADD: XPR4350 Radio 450-512 MHz for NAG	V751AB
ADD: XPR4350 Radio $136-174 \mathrm{MHz}$ for NAG	V751AC
ADD: XPR4380 Radio 800/900 MHZ FOR NAG	V751AD
ADD: DM3400 Radio 403-470 MHz for EMEA \& Australia	V752AA

ADD: DM3400 Radio 450-527 MHz for EMEA \& Australia	V752AB
ADD: DM3400 Radio 136-174 MHz for EMEA \& Australia	V752AC
ADD: XiR M8220 Radio 403-470 MHz for Asia	V753AA
ADD: XiR M8220 Radio 450-512 MHz for Asia	V753AB
ADD: XiR M8220 Radio 136-174 MHz for Asia	V753AC
ADD: DGM4100 Radio 403-470 MHz for LA	V754AA
ADD: DGM4100 Radio 450-527 MHz for LA	V754AB
ADD: DGM4100 Radio 136-174 MHz for LA	V754AC

TransNET 900 OEM Radio Installation Kit

The TransNET 900 OEM radio installation kit (VA00225AA/FLN3852A) enables the user to install MDS TransNET 900 OEM (board version) radio modems in ACE3600 Remote Terminal Units (RTU). Each kit includes a bracket, adapter, and cables.

Installation

The TransNET 900 radio modem is housed in a plastic housing, as shown below:

Figure 21-44 TransNET 900 Radio Modem and Connectors

The TransNET 900 can be mounted on the ACE3600 RTU as follows:
Procedure 21-27 How to Install the TransNET 900 Radio on the Metal Chassis

1. Attach the TransNET 900 radio modem to the metal bracket (\#0789971V39 from FHN7067A) using the four supplied screws, inserting the screws from above. (See Figure 21-45 below.)

Figure 21-45 TransNET 900 Radio Modem Mounted on Metal Bracket - Front and Rear View
2. Mount the bracket on the RTU chassis above the I/O modules, using the four built-in screws. (See Figure 21-46 and Figure 21-47 below.)
3. Connect one end of the power cable (FKN8508A) to the TransNET's PWR (9-30VDC) connector and tighten the attached screws. Connect the other end of the cable to the AUX1A connector on the RTU's power supply module.
4. Connect one end of the data cable (FKN8514A) to the TransNET's DATA connector using the attached screws. Connect the other end of the communication cable to the ACE3600 CPU module port configured for the radio.
5. Connect the small end of the antenna cable (FKN8511A) to the TransNET's ANT (Antenna) connector.
Unscrew the nut and locking washer from the other end of the antenna cable. If the RTU is inside an enclosure, thread the end of the cable through the opening on the bottom of the enclosure and screw on the nut and locking washer from outside the enclosure.
6. Connect the antenna cable to an external antenna.

Figure 21-46 TransNET 900 Radio Modem Installed on ACE3600 Chassis

Figure 21-47 TransNET 900 Radio Modem Installed on ACE3600 Chassis - Cable Connections

Setting Radio Parameters

The TransNET 900 radio has certain parameters which are set in the MDS factory.

- The radio address $\mathrm{ADDR}=\mathrm{xx}$, where xx is the same number for all radios in the system The address appears on the radio itself.
- Mode - either MASTER or REMOTE (Slave). The mode setting appears on the radio itself.
- Baud rate (factory default $=9600$ 8N1)

These radio settings are determined in the MDS factory and are not generally changed by the user. If it is necessary to change these settings, refer to the TransNET 900 radio documentation.

RTU Configuration

The RTU port is configured using the ACE3600 STS as follows:
Procedure 21-28 How to Configure the ACE3600 Port for the TransNET 900 Radio

1. In the ACE3600 STS click on the desired site, and open the site view.
2. In the Port Tab, click on the on-board or plug-in port through which the RTU will communicate with the TransNET radio.
3. Confirm that the port parameters and data speed are as shown in the screen below. Note: If the baud rate of the radio is not the default value (9600), the baud rate of the port should be configured accordingly.
4. Define desired links.
5. Save the changes.

511	Media	RS-232	\checkmark	Link name:		LINE 1	\checkmark
	Operation Mode	Async	\checkmark	Data Speed:	[9600 Bps]	9600 Bps	\checkmark
	Connection Type	External modem	\checkmark	Default routing:	[None]:	None	\checkmark
	Connection Mode	Multi-drop hall-duplex without CD	\checkmark				

Figure 21-48 RTU Site Configuration for TransNET Radio- Port Type Parameters

iNET 900 Radio Installation Kit

The iNET ${ }^{\text {TM }} 900$ installation kit (V680AH/FLN3854A) enables the user to install MDS iNET 900 (board version) radio modems in ACE3600 Remote Terminal Units (RTU). Each kit includes a bracket, adapter, and cables.

Installation

The iNET 900 radio modem is housed in a plastic housing, as shown below:

Figure 21-49 iNET 900 Radio Modem

The iNET 900 can be mounted on the ACE3600 RTU as follows:
Procedure 21-29 How to Install the iNET 900 Radio on the Metal Chassis

1. Attach the iNET 900 radio modem to the metal bracket (\#0789971V39 from FHN7067A) using the four supplied screws, inserting the screws from below. (See Figure 21-50 below.) Note: The radio must be placed in the bracket with the connectors to the left side, so that the bracket can be mounted on the RTU chassis and the cables can reach the CPU.

Figure 21-50 iNET 900 Radio Modem Mounted on Metal Bracket - Front and Rear View
2. Mount the bracket on the RTU chassis above the I/O modules, using the four built-in screws. (See Figure 21-51 below.)
3. Connect one end of the power cable (FKN8508A) to the iNET's PWR connector and tighten the attached screws. Connect the other end of the cable to the AUX1A connector on the RTU's power supply module. See Figure 21-51 and Figure 21-52 below.)
4. Connect one end of the data cable (FKN8512A) to the iNET's COM2 connector using the attached screws. Connect the other end of the communication cable to the ACE3600 CPU module port configured for the radio.
5. Connect the small end of the antenna cable (FKN8511A) to the iNET's ANT (Antenna) connector.
Unscrew the nut and locking washer from the other end of the antenna cable. If the RTU is inside an enclosure, thread the end of the cable through the opening on the bottom of the enclosure and screw on the nut and locking washer from outside the enclosure.
6. Connect the antenna cable to an external antenna.

Radio

Figure 21-51 iNET 900 Radio Modem Installed on ACE3600 Chassis

Figure 21-52 iNET 900 Radio Modem Installed on ACE3600 Chassis - Cable Connections

Configuring the iNET 900 to Work with ACE3600

The iNET 900 radio modem can be configured to work with ACE3600 RTUs in several ways as described below. Configurations 1-3 below represent External Modem configurations. Configurations 4-7 represent MDLC over IP configurations.

With iNET radios (firmware version \geq V4.4.0) any remote can communicate with any other remote. An MDLC network (with zones) is no longer needed. The iNET should be set in Multipoint to Multipoint topology, in order to enable communication between RTUs with no zones.

Notes:

- It is recommended to enable flow control on the RS232 serial port.
- An RTU configured for MDLC over IP cannot communicate with an RTU configured for External Modem over the iNET network. If both exist, they should be allocated different Link IDs.

External Modem Port Configurations

Configuration 1

Configuration 2

Configuration 3

MDLC over IP Port Configurations

Configuration 4

Configuration 5

Configuration 6

Configuration 7

Radio Configuration
 External Modem Port

iNET radios can be configured to work with the External Modem port on ACE3600 RTUs (see Configurations 1, 2 and 3 above.)

Use the iNET radio programming software to program the AP (Access Point) and then the remote with the following settings.

Note:

- Radio firmware should be 4.4 .0 or above.
- IP Address refers to the Ethernet port IP and not the "over the air" IP.

The initial screen is as follows:

MDS iNET 900	
Starting Information Screen	
Device Mode:	Access Point
Device Name:	AP Demo Set I
Network Name:	Demo Set 1
IP Address:	169.254 .0 .12
Device Status:	Operational
Uptime:	01 hrs, 51 min
Firmware Version:	4.4 .0
Hardware Version:	1.0 .3
Serial Number:	1069975
Press 'G' to go to Main Menu	

1. Press ' G ' and the Main Menu will be displayed.
2. Press 'D' and the Serial Gateway Configuration Menu will be displayed.
3. Press 'D' to enable COM2 (if it is not enabled). Use the SPACE bar to cycle between Enabled and Disabled. COM2 should be Enabled and COM1 Disabled. Press ENTER once Enabled is shown.
4. Press 'E' and the Serial Configuration Wizard will be displayed. This wizard will assist you in the configuration of your available Serial Data Ports.
5. Press 'A' and the IP Protocol selection menu will appear.
6. Select the IP Protocol you would like to use. The following modes are supported:

- TCP - Cannot be used for ACE3600.
- UDP - to be used as ACE3600external modem.
- PPP - to be used for MDLC over IP (Not relevant for External Modem.)

Press 'B' to select the UDP port.
7. If you selected UDP above, you will be prompted to select the Topology. You have the following choices:

- Point to Point is used if you have a single AP and a single remote unit.
- Point to MultiPoint is used if you transmit to a single radio. This radio is the point, and all radios are the multipoint. For example: An FNE is a point, and all other RTUs are multipoint. No RTU to RTU is provided.
- MultiPoint to MultiPoint works like a real radio where any radio (RTU) can communicate with another.

Press 'C' (Multipoint to MultiPoint) to enable routing between any RTU to any RTU.
8. Next, set the values for the Multicast IP Address and Multicast Port. These are the addresses used when transmitting and receiving. They should be the same on all radios. Press 'A' and enter "224.254.1.1" for the Multicast IP Address.
9. Press 'B' and enter " 30011 " for the Multicast Port.
10. Press ' C ' to continue the wizard until the final screen, or abort it by pressing ' Q '.
11. When the final wizard screen appears prompting you to "Change values (if necessary) for UDP Data Connection Settings", do not change any values. Press 'Q' to quit wizard.
12. The COM2 Serial Data Port values will be displayed. Press ' G ' and set the appropriate Baud Rate (from 1200 bps to 115200 bps.)
13. The Hardware Configuration values will be displayed. Press 'G' to select the $8 N 1$ hardware configuration for the port.
14. It is recommended to have Hardware Flow Control on the serial port enabled. When prompted, press 'A' to enable Hardware Flow Control.
15. When prompted to select the Serial Packet Mode, press 'A' to use the default value (Seamless Mode.) Press Q to exit wizard.

The settings for the COM2 Serial Data Port should appear as follows:

```
AP Demo Set I
Serial Configuration Wizard
```


COM2 Serial Data Port

A) Status enabled
B) IP Protocol UDP Multipoint to Multipoint
C) Multicast IP Address 224.254.1.1
D) Multicast Port 30011
E) Time to Live 1
F) Packet Redundancy Mode Single Packet Mode
G) Data Baud Rate 9600
H) Configuration 8 N 1
I) Flow Control enabled
J) Serial Mode Seamless
K) Seamless Inter-Frame Delay 4
X) Commit Changes and Exit Wizard

These changes will take effect immediately...
Are you sure (y / n)?
Select a letter to choose an item, $<\mathrm{ESC}>$ for the prev menu, 'Q' to quit wizard
16. Press ' X ' to save the changes and exit the wizard. When prompted with "These changes will take effect immediately... Are you sure (y / n)?", press ' y ' and ENTER. There is no need to power up the iNET radio. Note that these settings are saved and you do not need to reset them when powering up the radio unit again.
17. Press ESC to return to the Main Menu.
18. From the Main Menu, press ' B ' to select Network Configuration. This is needed if you want to set an IP connection to the radio unit (recommended). Ethernet port is needed if you are using an IP Interface on RTUs and Ethernet port on IP Gateway (MDLC over IP). In any case, it is recommended that you set it.
19. Next press ' G ' for IP Address configuration.
20. In the IP Address Configuration Menu, press 'B' to set the Static IP Address to 169.254.0.12.
21. Next press ' C ' to set the Static IP subnet mask to 255.255.0.0. It is recommended that all units having the same AP (Access Point) be on the same subnet mask.
22. Press ESC to return to the Network Configuration Menu.
23. Finally press ' D ' and enter the maximum number of remotes. By default this value is 50 . If the AP has more than that, you must change the value.
24. Your configuration of the AP is complete. Return to the Starting Information screen (Step 1 above) and repeat all steps with the remote unit. All of the settings/values are the same.

MDLC over IP Port

iNET radios can be configured to work with the MDLC over IP port on ACE3600 RTUs (see Configurations 4-7 above.)

MDLC over IP supports:

- IP Gateway 4.xx configured with MDLC over IP over Ethernet port.
- ACE3600 RTU Ethernet port
- ACE3600 RTU RS232 port configured as MDLC over IP over PPP connected to Standard modem.

When using an RTU with EP Ethernet port, connect the RTU Ethernet port to the iNET Ethernet port. The IP Port should be on the same subnet as the iNET. Its Subnet mask and IP Gateway should be the same. The rest of the configuration should be the same as an MDLC over IP port (i.e. configuring the port and setting the appropriate baud rate and Link ID, and downloading the IP Conversion Table.) The P Conversion Table is needed to communicate with other RTUs connected over PPP or Ethernet.

The rest of the configuration should be the same as an MDLC over IP port (as above). All IP settings are obtained dynamically from the modem when connecting to it. The RTU PPP port should be connected to COM2 on the iNET radio using a computer adapter. The following describes how to configure iNET COM2 modem for PPP.

After configuring the IP Gateway, EPIB for Ethernet, and RTU (for PPP) with MDLC over IP port, they can all communicate on the iNET network as if they all reside on a LAN. All routing between them is done via the iNET network, and if a LAN is involved, using other routers as well. Any RTU can communicate with any other RTU or IP Gateway. A single Link ID should be set for all RTUs/ IP Gateways on these ports.

Note however, that if the MDS radio was connected via External Modem port (serial), or via a Terminal Server (e.g. Equinox) over serial port, it is a completely different MDLC link/protocol. A different Link ID should be set in the RTU/IP Gateway when using this configuration. If both coexist on the same iNET network, each should have its own Link ID with MDLC network configuration downloaded to all units.

Use the iNET radio programming software to program the AP (Access Point) and then the remote with the following settings.

Note:

- Radio firmware should be 4.4 .0 or above.
- IP Address refers to the Ethernet port IP and not the "over the air" IP.

The following shows Access point configuration for MDLC over IP but it is exactly the same for Remote.

The initial screen is as follows:

```
MDS iNET 900
Starting Information Screen
```

Device Mode:	Access Point
Device Name:	AP Demo Set I
Network Name:	Demo Set 1
IP Address:	169.254 .0 .12
Device Status:	Operational
Uptime:	01 hrs, 51 min
Firmware Version:	4.4 .0
Hardware Version:	1.0 .3
Serial Number:	1069975
Press 'G' to go to Main Menu	

1. Press ' G ' and the Main Menu will be displayed.
2. Press 'B' and the Network Configuration Menu will be displayed.
3. Press 'G' for IP Address configuration.
4. In the IP Address Configuration Menu, press 'B' to set the Static IP Address to 169.254.0.12.
5. Next press 'C' to set the Static IP subnet mask to 255.255.0.0. It is recommended that all units having the same AP (Access Point) be on the same subnet mask.

Note that the Static (sub)Net Mask and Static IP Gateway addresses should be the same as those of the IP Gateway and EPIB. Their IP Address should be on the same subnet. For example 169.254.0.100 for an IP Gateway address of 169.254.0.012 is suitable.

Also note that when using PPP it is recommended to have the IP Address of PPP on the same subnet, for example 169.254.0.13. See Configuring for PPP below.
6. Press 'E' to commit changes. Press ESC to return to the Network Configuration Menu.
7. Finally press 'D' and enter the maximum number of remotes. By default this value is 50 . If the AP has more than that, you must change the value.
8. Your configuration of the AP is complete. Return to the Starting Information screen (Step 1 above) and repeat all steps with the remote unit. All of the settings/values are the same.

Configuring for PPP

9. From the Main Menu, press 'D' and the Serial Gateway Configuration Menu will be displayed.
10. Press 'D' to enable COM2 (if not enabled). SPACE to cycle between Enabled and Disabled. COM2 should be Enabled and COM1 Disabled. Press ENTER once Enabled is shown.
11. Press 'E' and the Serial Configuration Wizard will be displayed. This wizard will assist you in the configuration of your available Serial Data Ports.
12. Press 'A' to begin the Wizard and the IP Protocol selection menu will appear.
13. Select the IP Protocol you would like to use. The following modes are supported:

- TCP - to be used as a Terminal Server. (IP Gateway does not support this option.)
- UDP - to be used as External Modem.
- PPP - to be used as PPP port (same as Ethernet).

Press 'C' to select PPP.
14. The wizard will prompt you to change the value of the IP Address. Press 'A' and enter the Remote IP Address. This is the address that is uniquely assigned to the RTU. It should be different from the other addresses used in the iNET network and in the LAN (if connected to LAN).

A good scheme is to add 1 to the Static IP Address set in the Network Configuration screen above. For example, if the address 169.254.0.12 was assigned to the iNET Ethernet port, the PPP would be assigned 169.254.0.13. Both addresses reside in the same subnet 255.255.0.0 as was set in the Network Configuration. When using a PPP port, two IP addresses are set for iNET, one for the Ethernet port, and another (on the same subnet) for PPP. It is recommended to make those addresses consecutive where possible.
15. Press ' B ' and the Data Baud Rate screen is displayed.
16. Select the baud rate according to the RTU, e.g. 'D' for 9600 .
17. Next press ' G ' to select the 8 N 1 hardware configuration.
18. It is recommended to have Hardware Flow Control on the serial port enabled. When prompted, press 'A' to enable Hardware Flow Control.
19. When prompted to select the Serial Packet Mode, press 'A' to use the default value (Seamless Mode.)

The settings for the COM2 Serial Data Port should appear as follows:

Serial Configuration Wizard

COM2 Serial Data Port

A) Status	enabled
B) IP Protocol	Point to Point Protocol (PPP)
C) Device IP Address	169.254 .0 .13
D) Data Baud Rate	9600
E) Configuration	8 N 1
F) Flow Control	enabled
G) Serial Mode Custom H) Custom Inter-Frame Delay 4 I) Custom Data Buffer Size 64	

Select a letter to choose item, $<\mathrm{ESC}>$ for the prev menu, 'Q' to quit wizard
20. Press ' X ' to save the changes and exit the wizard. There is no need to power up the iNET radio. Note that these settings are saved and you do not need to reset them when powering up the radio unit again.
21. From the Serial Gateway Configuration, press ESC to return to the Main Menu.

Your configuration of the PPP is complete.

RTU Configuration

The RTU port is configured using the ACE3600 STS.

Site Configuration

Procedure 21-30 How to Configure the ACE3600 Port for the iNET 900 Radio
In the ACE3600 STS click on the desired site, and open the site view.
2. In the Port Tab, click on the on-board or plug-in port through which the RTU will communicate with the iNET radio.
3. Confirm that the port parameters and data speed are as shown in the screen below. Note: If the baud rate of the radio is not the default value (9600), the baud rate of the port should be configured accordingly.
4. Define desired links.
5. Save the changes.

SII	Media	RS-232	-	Link name:		LINE 1	-
	Operation Mode	Asyne	\checkmark	Data Speed:	[9600 Bps]:	9600 Bps	\checkmark
	Connection Type	External modem	\checkmark	Default routing:	[None]:	None	\checkmark
S	Connection Mode	Multi-drop half-duplex without CD	\checkmark				

Figure 21-53 RTU Site Configuration for iNET Radio- External Modem Port Port Type Parameters

SII	Media	RS-232	-	Links...		LINE 1
	Operation Mode	Async	\checkmark	Data Speed:	[9600 Bps .	9600 Bps -
	Connection Type	PPP	\checkmark	DNS Servers		
	Connected to	Null modem	*	NTP Servers		

Figure 21-54 RTU Site Configuration for iNET Radio- MDLC over IP Port Port Type Parameters

Figure 21-55 RTU Site Configuration for iNET Radio- MDLC over IP Port Advanced Link Layer Parameters

IP Conversion Table

Prepare an IP Conversion Table and download it to the RTU. The IP Address of the RTU is the one assigned by the iNET 900 to the RTU, referred to as Remote IP Address in Configuring for PPP above. This IP address can be retrieved using the ACE3600 STS SW Diagnostics \& Loggers utility in Device LIN1L, level 0.

Verify that the connection succeeded using the SW Diagnostics \& Loggers utility. In Device LIN1L, level 101, make sure that the "State of configuration task" field is set to "connected and registered". This may take between $30-60$ seconds.

MDS Radio Installation Kit

The MDS installation kit (V152AK/FLN3853A) enables the user to install the 9810 Spread Spectrum, $9710 \mathrm{~A}-900 \mathrm{MHz}$ and 4710 UHF Transceiver radio modems in ACE3600 Remote Terminal Units (RTU). The kit includes a bracket and cables.

Installation

The MDS radio can be mounted on the ACE3600 RTU as follows:
Procedure 21-31 How to Install the MDS 900 Radio on the Metal Chassis

1. Connect the radio to the bracket provided in the Hardware Kit (\#0789971V39 from FHN7066A) using the four screws, supplied with the bracket. (See Figure 21-56 below.)

Figure 21-56 MDS Radio Mounted on Metal Bracket - Front and Rear View
2. Connect the communication cable (FKN8513A) to the 25 -pin connector on the side of the radio and tighten the screws.
3. Insert the DC power cable (FKN8510A) connector into the DC power connector on the radio.
4. If the RTU is to be installed inside an enclosure, screw the antenna cable (FKN8509A) into the antenna connector on the radio. Otherwise, an external antenna can be connected directly to the antenna connector on the radio.
5. Mount the bracket (\#0789971V39 from FHN7066A) on the RTU chassis above the I/O modules, using the four built-in screws. (See Figure 21-57 below.)
6. Route the antenna cable (FKN8509A) cable through the small wire clamps along the left side edge of the RTU chassis, according to the placement of the radio on the chassis, as in Figure 21-57 and Figure 21-58.
7. Unscrew the nut and locking washer from the N-type connector at the other end of the antenna cable. Thread the end of the cable through the opening on the bottom of the enclosure and screw on the nut and locking washer from outside the enclosure.
8. Connect the other end of the DC power cable (FKN8510A) to the AUX1A/B connector on the RTU's power supply module.
9. Connect the other end of the communication cable (FKN8513A) to the ACE3600 CPU module port configured for the radio. See RTU Configuration below.
10. Connect the antenna cable to an external antenna.

Radio Types and Installation Kits

Figure 21-57 MDS Radio Modem Installed on ACE3600 Chassis

Figure 21-58 MDS Radio Modem Installed on ACE3600 Chassis - Cable Connections

RTU Configuration

The RTU port is configured using the ACE3600 STS as follows:
Procedure 21-32 How to Configure the ACE3600 Port for the MDS Radio

1. In the ACE3600 STS click on the desired site, and open the site view.
2. In the Port Tab, click on the on-board or plug-in port through which the RTU will communicate with the MDS radio.
3. Confirm that the port parameters and data speed are as shown in the relevant screen below. Note: If the baud rate of the radio is not the default value (9600), the baud rate of the port should be configured accordingly.
4. Define desired links.
5. Save the changes.

SII	Media	RS-232	-	Link name:		LINE 1	\checkmark
	Operation Mode	Async	\checkmark	Data Speed:	[9600 Bps]:	9600 Bps	\checkmark
	Connection Type	External modem	\checkmark	Default routing:	[None]:	None	\checkmark
	Connection Mode	Multi-drop hall-duplex without CD	-				

Figure 21-59 RTU Site Configuration for MDS 9810 Spread Spectrum/4710 UHF Transceiver Radio- Port Type Parameters

SII	Media	RS-232	-	Link name:		RADIO 1	-
	Operation Mode	Async	\checkmark	Zones...			
	Connection Type	External modem	\checkmark	Data Speed:	[9600 Bps]:	9600 Bps	\checkmark
	Connection Mode	MAS (Radios)	\checkmark	Default routing:	[None]:	None	\checkmark
	Type	Multi-drop half duplex	\checkmark				

Figure 21-60 RTU Site Configuration for MDS 9710A-900 MHz Radio- Port Type Parameters

MTM800 Radio Installation Kit

The MTM800 Installation Kit for ACE3600 (FLN4109A) enables the user to install the MTM800 mobile radio in ACE3600 Remote Terminal Units (RTU). Each kit includes a bracket, adapter, and cables.

Installation

The MTM800 can be mounted on the ACE3600 RTU as follows:
Procedure 21-33 How to Install the MTM800 Radio on the Metal Chassis

1. If you choose to attach the MTM800 radio to a plug-in port, attach the radio plug-in port from the installation kit (FLN4109A) to the desired opening on the ACE3600 CPU module. For instructions on attaching plug-in ports, see Connecting Plug-In Ports to the CPU Module in the CPU Module chapter above.
2. Connect the 20-pin connector radio signal and power cable (FKN8517A) to the accessory connector on the radio. (See Figure 21-61 and Figure 21-62.)

Radio Accessory

 ConnectorPower Connector

Radio
Bracket
(FHN6894A)

Figure 21-61 MTM800 Radio and Metal Bracket
3. Connect the end of the power cable (FKN8517A) to the radio's power connector. (See Figure 21-61 and Figure 21-62.) Connect the other end of the power cable to the AUX1A or AUX1B connector on the ACE3600 RTU Power Supply unit. (See Figure 21-63.)

Figure 21-62 MTM800 Radio Cable Connections
4. Connect the communication cable (FKN8516A) to the end of the power and signal cable using the attached screws (FKN8517A). (See Figure 21-62.) Place one Fair-Rite soft ferrite (\#7683477X01 from the supplied ferrite kit FHN7007A) on the cable near the bottom of the CPU door, loop the cable one turn around it, and clamp the ferrite on the cable. Connect the other end of the communication cable to the plug-in port of the ACE3600 CPU.
5. Mount the MTM800 radio onto the metal bracket (\#0789422V45) using the two supplied radio mounting screws from kit FHN6894A, \# 0387839V89 on the top and bottom of the radio. (See Figure 21-61, Figure 21-62 and Figure 21-63.)
6. Connect the antenna cable (FKN8430A/FKN8437A*) to the antenna adapter connector on the radio and to the opening on the bottom of the ACE3600 housing using the appropriate bushing. (See Figure 21-63.) Mount the complex (bracket and radio) on the RTU chassis above the CPU and I/O modules, using the four built-in screws. (See Figure 21-63.)

[^36]

Figure 21-63 MTM800 Radio Installed on ACE3600 Chassis

RTU Port Configuration for the MTM800 Radio

To enable MDLC communication using MTM800 radios (for packet data only), use the ACE3600 STS site configuration utility to configure the ACE3600 RTU plug-in port connected to the radio.

The figure below shows the port configuration and advanced parameter configuration. Although this shows Port PI1, the same values can be applied to other serial or plug-in ports, where relevant.

Port Type

Procedure 21-34 How to Configure the ACE3600 Port for the MTM800 Radio

1. In the ACE3600 STS, click on the desired site, and open the site view.
2. In the Port Tab, click on the on-board or plug-in port through which the RTU will communicate with the MTM800 radio.
3. Confirm that the port parameters and data speed are as shown in the screen below.

PI1	Media	RS-232	-	Links...		LINE 2
	Operation Mode	Async	\checkmark	Data speed:	[9600 Bps	9600 Bps -
	Connection Type	PPP	\checkmark	DNS Servers		
	Connected to	TETRAA	\checkmark	NTP Servers		
				Protocols...		

4. Define desired links.
5. If you plan to synchronize the RTU time using an NTP server, use a DNS server, or use third party protocols, specify these with the relevant information for your system.
6. Save the changes.

Advanced Parameter Configuration

The STS provides default settings for advanced port parameters for use with the MTM800. These settings should be used.

Programming the MTM800 Radio using CPS

Before connecting a MTM800 radio to an ACE3600 RTU, the radio should be programmed as necessary for packet data. For this purpose, use the CPS which can be ordered with the radio or bring the radio to the Motorola Service Center.

Mounting the ACE3600 Radios on a Wall

ACE3600 radios can be mounted on a wall near the ACE3600 frame/housing, using a special metal bracket. This bracket is part of the specific radio installation kit and must be ordered.

CM/EM/GM/CDM750 Bracket

XTL5000/XTL2500 Bracket

GP/HT/PRO Bracket
Figure 21-64 Radio Wall Mount Brackets
Procedure 21-35 How to Mount a Radio on a Wall
The following installation procedure should be followed to install radios on a wall near the ACE36000 frame. A special wall mount bracket is provided with the radio installation kit, which can be ordered separately from the frame. Allow extra space around the bracket for the radio and wires.

1. Drill four holes in the wall at the horizontal and vertical distances (in mm) shown in Figure 21-64 for the desired radio wall mount bracket, at the desired angle/orientation.
2. Place the bracket on the wall, lining up the bracket holes with the drilled holes.
3. Insert four M3 Phillips 10 mm screws (not supplied) into the holes and tighten with a screwdriver to secure the bracket firmly against the wall.
4. Attach the radio to the bracket using the supplied screws.

RS485 CONNECTION BOX

General Description

The RS485 Connection Box (V186AD/FLN3641A) provides an interface to up to seven RS485 connections. (See Figure 22-1.)

Figure 22-1 RS485 Connection Box - Front Panel

Installation

The RS485 Connection Box can be easily installed on the RTU chassis.

Mounting the RS485 Connection Box on the RTU Chassis

1) To connect the plastic box interface to the metal chassis, place the box on the metal plate and click the two pegs on the back of the plastic box into the desired holes on the metal chassis.

Wire Connections

1) To interface to an RTU, connect the communication cable (FKN8427A) between the connection box input port and the ACE3600 RS485 port. *
2) To interface to an external device, connect the communication cable (FKN8427A) between the connection box port and an external RS485 modem with an RJ45 connector.

Figure 220-2 RS485 Connection Box - Wire Connections

[^37]
AUDIO CONTROL AND TONE (ACT) MODULE

Introduction

The Audio Control and Tone (ACT) module (V155AE/FLN3851A) serves as a player of recorded voice and alarm sounds in ACE3600 based alert systems. The ACT module also routes low-level sound signals to high-level amplifiers. The high-level sound can be directed to specified alert speakers in a set of six speakers, mounted in different locations.

The ACT module contains an internal audio memory that allows custom tones or audio sounds to be recorded and stored in the ACT module. Recording of audio may be done directly from a low-level output source (tape recorder, laptop or radio output).

Front Panel Description

The ACT module is enclosed in a compact plastic box. See the ACT module below.

Figure 23-1 ACT Module - Front Panel

ACT Module Features

The ACT module features are described below:

- Controlled by the RTU via an RS232 serial port using a simple instruction set.
- Digitally records audio signals (alarm tones, voice announcements, etc).
- Plays stored audio signal.
- Interface to an external low-level audio signal source (microphone, radio audio out, etc.).
- Interface to input of one audio amplifier and up to two outputs of audio amplifiers.
- Connects to up to six speakers.
- Selective output to any combination of six speakers.
- Routes the audio signals from the amplifier(s) output to selected speakers.
- Routes data coming from the RTU to a serial printer to allow printing of information by alternative use of the RTU serial port.

The ACT module block diagram is shown below:

Figure 23-2 ACT Module - Simplified Block Diagram

Audio Handling Capabilities

The ACT module has built-in hardware which records and stores audio signals by digitizing the signal from an audio source connected directly to the module's low-level audio input. The module can play these pre-recorded audio signals once or repeatedly.

To facilitate the recording process, audio signals may be formed or saved in "WAV" file format on a PC (or on any other audio format provided it can be played by a PC) and then downloaded to the module through the PC audio out.

The module's total recording capacity is 240 seconds. As default, the recording space is divided into eight "cells" (each of which holds up to 30 seconds). The number of cells is configurable and can be set to $1,2,4,8,16,30$ and 60 .

NOTE: Recording will automatically terminate 2 seconds after the module detects silence. Recording will also be stopped when the "cell" has run out of recording capacity.

The module's low-level audio input also enables the connection of an external low-level audio source (such as a radio audio output) for direct routing to an audio amplifier. Thus the audio routed to this output can be either a pre-recorded audio signal or an external source, connected to the low-level audio input.

Two high-level audio inputs are used to route amplified audio signals into the module. The ACT module has six high-level audio outputs that can be routed to selected speakers.

Interface to the RTU

The ACT module interfaces to the RTU via an RS232 port, marked as COM IN. The communication with the RTU is based on an 8-bit code protocol.

The ACT module also enables the RTU to have more than one use for its RS232 port. The application on board the RTU may select its serial port connected to COM IN to control the ACT module or to send data to COM OUT. This is very useful for connecting a dot matrix printer to the RTU without requiring an additional serial port which could necessitate the another CPU.

The destination of the serial data sent to the COM IN port is selected via the following mechanism:

- Set DTR signal "Off" - Data is routed to COM OUT.
- Set DTR signal "On" - Data protocol controlling the ACT.

The ACT module operates on 9 to 16 VDC, usually supplied by the RTU's auxiliary power supply.

An RTU application program controls the ACT module via a user port using an 8-bit instruction set.

The ACT module returns simple 8 -bit codes as a response to instructions.

The instruction set is comprised of the following set of operations:

- Play
- Repeat Play \# times
- Stop - Play
- Enable low-level Audio Output
- Disable low-level Audio Output
- Configure the number of recorded signals (cells)
- Record
- Report Status
- Connect/Disconnect Speakers

For the ACT module instruction set, see ACT Instruction Set below.

Installation and Wiring

The ACT can be installed in various locations on the RTU chassis (mounted on holes prepared for installation).

Note: Connect the ACT to the High Power Audio Amplifier only via the Isolation Board FCN6294A (connected to the SIG IN/SIG OUT connector).

Procedure 23-1 How to Install the ACT Module

1) Place the ACT module on the metal plate and click the two pegs on the back of the plastic box into the desired holes on the metal chassis.
2) Connect one end of the power cable (FKN8433A) to the PWR connector on the ACT module. Connect the other end of the cable to the one of the AUX connectors (configured to 12 V) on the ACE3600 power supply module.
3) Connect one end of the communication cable (FKN8427A) to the COM IN port on the ACT module. Connect the other end of the cable to the RS232 port on the ACE3600 CPU.
4) To use high-level audio speakers, connect up to six speakers to the High-Level Audio Out (1-6) relays on the top of the ACT module front panel. See Figure 23-3 below.
5) To enable playing prerecorded tones, connect the input of the first high power audio amplifier to the SIG OUT/GND connectors, using the Isolation Board (FCN6294A). Connect the output of the amplifier to the Normally Open connector on the top left corner of the ACT module front panel. See Figure 23-3 below.
6) To enable radio voice channel audio (low level signal), connect the external speaker of the voice radio to the SIG IN/GND connectors, using a simple wire cable (can be shielded). See Figure 23-3 below.
7) To add a second high power audio amplifier for local microphone, connect the output of the second amplifier Normally Closed (C) connector on the top of the ACT module front panel. Also connect the output of the second amplifier to the output of the first amplifier. See the warning in Figure 23-3 below.
8) To use a local microphone (low-level audio signal), connect the microphone to the second amplifier.
9) To attach a dot matrix printer or other serial device, connect the device to the COM OUT connector on the ACT module using a data cable (with connector adaptors as necessary.) See Figure 23-3 below.

Figure 23-3 ACT Module - Wiring Diagram

Table 23-1 ACT Module Communication Ports Connection Chart

COM IN		COM OUT
RxD - In	1	TxD
TxD - Out	2	RxD
DTR - Out	3	CTS
GND	4	GND
RTS - Out	5	CD

CD - In	6	RTS
Not Used	7	Not Used
CTS - In	8	DTR

RTU Port Configuration

Before using the ACT module with the RTU, configure the communication port to which the ACT module is connected.

Procedure 23-2 How to Configure the ACE3600 Port for the ACT Module

1) In the ACE3600 STS click on the desired site, and open the site view.
2) In the Port Tab, click on the on-board or plug-in port through which the RTU will communicate with the ACT Module.
3) Set Media to RS-232, Operation Mode to Async, Connection Type to User Port (Ladder Controlled).
4) Save the changes.

Generally no other changes are required to Advanced Physical or Link Layer parameters. For information on the RTU port parameters, see Appendix A: Site Configuration Parameters of the ACE3600 STS User Guide.

Controlling the Module

The RTU (or PC) is interfaced to the ACT via the RS232 port. The communication parameters of the RTU (or PC) port must be set to: 9600 BPS, 1 stop bit, no parity.

The ACT is operated using a simple instruction set. Each instruction must be sent twice. If the second instruction sent does not correspond to the first, that instruction is rejected. When the ACT recognizes a valid instruction, it echoes an acknowledgement. While the module is playing a stored audio signal, the instructions should be sent only once.

ACT Instruction Set

Instruction	Code	Description
Play Signal \#	$\begin{aligned} & " 01 X X X X X X "^{(X X X X X=1-60)} \\ & \text { (XX } \end{aligned}$	Plays recorded audio signal number \#. The recorded audio is played into the low-level Output. The low-level Output is disabled. Example: Play signal 6 = "01000110"
Record Signal \#	$\begin{aligned} & 10 \mathrm{XXXXXX} \\ & (\mathrm{XXXXXX}=1-60) \end{aligned}$	Records audio signal number \#. Example: Record signal $6=$ "10000110"
Connect/Disconnect Speakers	$\begin{aligned} & 11 \mathrm{X}_{5} \mathrm{X}_{4} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0} \\ & \mathrm{X}_{\mathrm{n}}=\text { Speaker } \mathrm{n}(\mathrm{n}=0-5) \\ & 0=\text { disconnect } \\ & 1=\text { connect } \end{aligned}$	Connects or disconnects speakers.
Repeat the Played Signal \# times	001XXXXX $X X X X X=1-31$	Repeats playing the audio signal \# times. Note: This command can be instructed and performed only while the unit plays a signal. Example: Repeat playing the played signal 4 times $=$ "00100100"
Stop Play	"00011111"	Stops the played signal.
Enable Low-level Audio Output	"00100000"	Low-level Audio Input is routed to Low- Audio Output
Disable Low-level Audio Output	"00000000"	Low-level Audio Output is disabled (no audio is routed to the output). Played signal is stopped.
Configure the number of recorded signals	$\begin{aligned} & \text { "000XXXXX" } \\ & \text { XXXXX=1,2,4, } 8,15,30 \\ & \mathrm{~N}=2 *(\mathrm{XXXXX}) \end{aligned}$	Configures the number of different signals that can be recorded to $\mathrm{n}=2,4,8,16,30,60$ Example: Set to 16 signals $=" 00001000 "$
One signal	"00000011"	Configures the number of recorded signals to only one.
Report Status	"01000000"	Use this command to interrogate the ACT. The ACT then returns the following 4 byte sequence with the

Response to Instructions

The ACT acknowledgements are the 8 -bit codes described below:

Response	Code	Description
Record completed	$" 01111110 "$	Recording has been completed.
Play started	$" 10000000 "$	Signal is currently being played.
Play completed	$" 01111101 "$	Signal play has been completed.
Instruction inconsistency	$" 01111111 "$	Instruction was not the same as the first one (when not playing); the instruction is not performed.
Instruction time out	$" 01000000 "$	Instruction received only once, (when not playing); the instruction is not performed.

Recording Audio Signals

Manual recording enables the recording of up to eight audio signals using the pushbutton (PB) and LEDs on the ACT unit front panel. Follow the steps below to record audio from PC/Laptop/Recorder:

Procedure 23-3 How to Manually Record Audio Signals

1) Connect the "Speaker Out" of the PC/Laptop/Recorder to the "Audio In" port (Use Mono adapter if needed).
2) Pause the audio and tune the volume to approximately $3 / 4$ of full scale.
3) Press the PB for more than two seconds; all four LEDs will light up.
4) Press the PB to select the audio cell (from a selection of eight) to which you want to record. (The audio signal number is displayed as a binary number represented by four LEDs).
5) Start playing the audio. The unit will identify the input as audio and start recording. The LEDs will start to blink and will stop when audio input ceases (or when the maximum recording time has elapsed).
6) Repeat steps 4 and 5 to record additional audio signals (up to eight).
7) When recording is completed, all the LEDs will turn off.

ACT Module* Specifications

General	
Operation Voltage	9 to 16VDC
Power Consumption	Refer to Appendix D: ACE3600 Maximum Power Ratings.
Dimensions (Hx W x L)	$25 \mathrm{~mm} \times 95 \mathrm{~mm} \times 115 \mathrm{~mm}$ (1" x 3.6 " x 4.5 ")
Operating Temperature	-30° to $+60^{\circ} \mathrm{C}\left(-22^{\circ}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
Relative Humidity	0-95\% @ 50 ${ }^{\circ} \mathrm{C}$ without condensation
User Connection	
Power connector	Molex 2 pin with polarity
COM IN RS232	Phone 8-pin
COM OUT RS232	Phone 8-pin
Low-level Audio In/Out	4 screw TB connector
High-level In/Out	8 screw TB
Audio	
Low-level Audio Input	0.8 to $1.5 \mathrm{Vp}-\mathrm{p}, 300-3300 \mathrm{~Hz}$, Minimum $50 \mathrm{~kW} \pm 10 \%$ input impedance -4.6 KV isolated.
Low-level Audio Output	$1 \mathrm{Vp}-\mathrm{p} \pm 60 \%-4.6 \mathrm{KV}$ isolated, via Isolation Board.
High-level Audio Input	Maximum 30 VAC RMS, 0.5 A RMS Maximum 0.05 W-output Impedance Minimum signal: $100 \mathrm{mV}, 100 \mu \mathrm{~A}$.
High-level Audio Output	30 V RMS, 0.5 A RMS maximum per one output
EMC	
Electrostatic Discharge	IEC 1000-4-2, level 3
Radiated Electromagnetic Field	IEC 1000-4-3, level 3
Electrical Fast Transient / Burst	IEC 1000-4-4, level 3
Radiated Emission	EN55022

Specifications subject to change without notice.

[^38]
CONFIGURATION

General

For information on setting the 12 V DO dip switch in the DO relay module board, see the Digital Output Relay Module chapter above. For information on setting the 12V DO dip switch in the DO relay 120/230V module board (for EE relays only), see the Digital Output Relay 120/230V Module chapter above.

OPTIMIZATION

General

No optimization is required for the ACE3600 units.

OPERATION

General

The operational functions of the ACE3600 unit are performed using the ACE3600 System Tools Suite (STS). These are administrative and diagnostic tasks, generally performed by technicians and administrators. The functions available depend on the specific software applications installed in the unit.

Opening/Closing the Housing Door

For instructions on opening and closing the housing door and locking the door with the optional padlock accessory, see the Opening/Closing the Housing Door section in the Installation chapter.

MAINTENANCE

General

The following maintenance procedures are recommended for the ACE3600 RTU.

Lead Acid Battery Maintenance

It is recommended to perform the following maintenance procedures for the lead acid battery using the ACE STS Hardware Test utility or the user application program:

- Once per month - run a full battery test (battery capacity) of the lead acid battery.
- Once per day - read the charge level of the lead acid battery.

If the capacity is below the manufacturer recommended level, replace the battery. See the Power Supply Module and Backup Battery chapter above.

TROUBLESHOOTING

Symptom	Action
The PWR LED on the CPU/expansion module front panel is not lit.	Check power connections to the unit. If all connections are correct, check cables.
The PWR LED on the CPU/expansion module front panel is solid red.	The CPU/expansion module has received an error from the power supply (AC fail, Bat Error, etc.) or fails to recognize the power supply. Check the AC power supply, backup battery, etc.
The PWR LED on the CPU/expansion module front panel is flashing red.	The boot did not complete and the FPGA is not loaded. Download a new system to the unit.
The ERR LED on the CPU module front panel is red (or the MERR LED on the expansion module is red.)	The unit has a problem. Check the Error Logger to read error message. Note: If there are many errors logged about lost frames, check the expansion Ethernet SPD LED to make sure that the LAN is working at 100Mb.
The ERR LED on the CPU module front panel is orange (or the MERR LED on the expansion module is orange.)	The unit has a warning. Check the Error Logger to read warning.
The ERR LED on the CPU module front panel is green (or the MERR LED on the expansion module is green.)	The unit has a message. Check the Error Logger to read message.
The APPL LED on the CPU module front panel is red.	The user application is not running. Check the Error Logger to read error.
The APPL LED on the CPU module front panel is blinking	The user application is running for more than 1.2 seconds continuously. Check the application.
The CONF LED on the CPU module front panel is red (or the MCNF LED on the expansion module is red.)	There is a configuration error (such as an incompatible plug-in or mismatch between a physical I/O module and the I/O configuration for the frame.) Check the Error Logger to read error.
RTU startup fails and some/all of the four user LEDs are lit.	Check the four LEDs for the binary error code, as described in Table 4-3, and act accordingly.
Startup of expansion module fails and some/all of the four EXP ADDR LEDs are lit.	Check the four Exp Addr LEDs for the binary error acco, as described in Table 16-2, and act
accordingly.	

$\left.\left.\begin{array}{|l|l|}\hline \text { Symptom } & \text { Action } \\ \hline \begin{array}{l}\text { The MCOM LED on the expansion } \\ \text { module is red or blinking green. }\end{array} & \begin{array}{l}\text { The expansion module is in the process of loading, } \\ \text { initializing, or registering. Wait a few seconds until } \\ \text { the LED is solid green for the module to be } \\ \text { connected to the main CPU. }\end{array} \\ \text { If the LED continues to blink red slowly, the } \\ \text { expansion module has failed in the discovery process } \\ \text { with the main CPU. This could be related to one of } \\ \text { the following causes: } \\ \text { - The main CPU is not fully powered up; }\end{array}\right\} \begin{array}{l}\text { A cable between the main and expansion frame } \\ \text { (perhaps via the expansion LAN switch) is not } \\ \text { connected properly; }\end{array}\right\}$ - The rotary switch on the expansion module is not $\left.\begin{array}{l}\text { set correctly; } \\ \text { - The expansion frame is not defined in the site } \\ \text { configuration. }\end{array}\right\}$

Symptom	Action
The DO EE relays are connected to the main power supply and the 2- pin TB is not plugged into the 12VDO connector on the main power supply, but the DO EE relays are enabled.	Check the position of the dip switch on the DO EE relays. For more information, see the Digital Output Relay Module chapter above.

BREAK-FIX PROCEDURES

General

IMPORTANT

This chapter refers only to replacement of removable modules, plug-ins, motherboard, power supply fuses, and backup battery. If any other components in the unit require replacement, contact your local service center.

Before replacing modules or plug-ins, see safety issues/warnings in the Installation chapter above.

Note: A TORX screwdriver is required for component replacement. A Philips screwdriver is required for assembling the TB holder and a flat screwdriver is required for setting the code key pin.

For information on installation of the frame/housing on the wall, see the Installation chapter above.

The ACE3600 has a hot swap capability, which means that the modules can be removed from their slots and inserted without powering down the unit. The only exception to this rule is the main power supply module, which cannot be removed during normal operation. See Replacing a Power Supply Module below for details.

If a module is inserted once the system is running, the system will recognize the module, but will not operate it using the application until the unit has been rebooted.

Replacing a CPU/Gateway Module

Procedure 29-1 How to Replace a CPU/Gateway Module

1. To replace a CPU module, open the door of the CPU module and press the cable holder downward.
2. Disconnect all cables from the connectors.
3. Simultaneously press on the tabs on the top and bottom of the plastic front of the old module, and pull the module from its slot. See Figure 29-1.

Figure 29-1 ACE3600 Module Release Tabs
4. Remove any SRAM plug-in memory from the old CPU module and plug in to the new CPU module.
5. Slide the new module all the way into the slot until the tabs click into place.
6. Reconnect the cables and press the cable holder back up into place.

Replacing a Power Supply Module

CAUTION

[^39]Procedure 29-2 How to Replace a Redundant/Expansion Power Supply Module

1. To replace the second power supply module in a site which has redundant power supplies, or an expansion power supply in an I/O expansion frame, open the door of the power supply module and press the cable holder downward.
2. Disconnect the cables from the connectors.
3. Simultaneously press on the tabs on the top and bottom of the plastic front of the old module, and pull the module from its slot.
4. Slide the new module all the way into the slot until the tabs click into place.
5. Reconnect the cables and press the cable holder back up into place.

The main power supply cannot be removed under power and a safeguard is added in order to prevent unplanned removal. (Note: The dual power supply feature is not currently available.)

Procedure 29-3 How to Replace the Main Power Supply Module

1. To replace the main power supply module, open the door of the power supply module.
2. Press down on the top of the main power cable connector to disconnect the user's main power cable from the cable inlet on the bottom of the power supply module front panel.
3. Follow steps 1-5 in Procedure 29-2 to replace the power supply.

Replacing an I/O Module or Expansion LAN Switch

To replace an I/O module or Expansion LAN Switch, follow the procedure below.
Procedure 29-4 How to Replace an I/O Module or LAN Switch

1. If the I/O module includes a TB holder, remove TB holder by pulling on the extractor handles.
If the I/O module does not include a TB holder, remove the TBs by hand or using one of the TB extractor tools (FHN7063A) provided with the RTU.
2. Simultaneously press on the tabs on the top and bottom of the plastic front of the old module, and pull the module from its slot.
3. Remove any plug-in 24 V power supplies from the old I/O module and plug-in to the new I/O module.
4. For DO relay modules, reset the 12 VDO dip switch, if necessary. See the Configuration chapter.
5. Slide the new module all the way into the slot until the tabs click into place.
6. If the I/O module includes a TB holder, reconnect the TB holder as described in the I/O Module section.
If the I/O module does not include a TB holder, replace the TBs on the connectors on the front of the I/O module by hand.

Inserting a New I/O Module into an Empty Slot

When the RTU is shipped, a protective rubber cover is inserted into any empty module slots, on the mother board connectors. The procedure below describes how to remove this cover from the slot and insert a new I/O module onto the RTU frame.

Procedure 29-5 How to Replace an I/O Module

1. Grip the protective rubber cover ($\mathrm{p} / \mathrm{n} 1571435 \mathrm{Y} 04$) firmly with your thumb and index finger. Gradually ease the cover out of the desired module slot.
2. Insert the desired I/O module into the empty slot.

Replacing a Plug-in Port on the CPU Module

Procedure 29-6 How to Replace a Plug-in Port on the CPU Module

1. To replace a plug-in port on the CPU module, remove the CPU module from the RTU.
2. Unscrew the two supporting pins on the other side of the CPU board. Save the screws.
3. Unscrew the two supporting pins on the plug-in port. Save the screws.
4. Connect the two supporting pins with screws to the new plug-in port.
5. Replace the plug-in board with the RJ-45 connector facing the panel. Carefully insert the plug-in board connector into the appropriate connector on the CPU board.
For Ethernet 10/100 MB, use the J14 connector on the CPU (Plug-in 1 only.)
For all other plug-in ports, use the J5 (Plug-in 1) or J6 (plug-in 2) connector.
6. Connect the two supporting pins with screws to the other side of the CPU board.
7. Replace the CPU module in the slot.

Replacing a Plug-in SRAM Memory Card in the CPU Module

Procedure 29-7 How to Replace a Plug-in SRAM Memory Card in the CPU Module

1. To replace an SRAM memory card on the CPU module, remove the CPU module from the RTU.
2. Remove the old plug-in SRAM memory card from the board.
3. Place the new plug-in SRAM memory card with the connector facing the panel. Carefully insert the plug-in board connector into the connector marked P12 on the CPU board.
4. Secure the memory card to the CPU board with the supplied screw.
5. Replace the CPU module in the slot.

For more information, see Connecting SRAM Expansion Memory to the CPU Module in the CPU Module chapter.

Replacing the Motherboard

To replace the motherboard of the ACE3600 RTU, follow the procedure below.

Procedure 29-8 How to Replace the Motherboard

1. If the unit is installed in a NEMA 4 housing, unscrew the four large screws and remove the metal chassis from the housing.
2. Remove all modules from the outermost slots, generally the power supply module from the leftmost slot and I/O module from the rightmost slot.
3. Unscrew the M5 screws on each side which secure the motherboard to the metal chassis. Save the screws. See Figure 29-2.

Figure 29-2 ACE3600 Motherboard on Metal Chassis
4. From inside the cage, push out the small cover on the side of the RTU cage. Save the cover.
5. Slide the damaged motherboard out of the cage, through the opening on the side of the RTU cage.
6. Slide the new motherboard into the frame, through the opening on the side of the RTU cage.
7. Secure the motherboard to the cage and metal chassis using the M5 screws saved in step 3 .
8. Replace the cover on the cage.
9. If the unit was installed in a NEMA 4 housing, replace the metal chassis in the housing and screw the four large screws from the metal chassis into the housing.
10. Replace the modules in their respective slots.
11. Make sure that the ground is reconnected.

Replacing the Fuses on the Power Supply Module for AUX1/AUX2 or I/O Expansion

To replace a fuse for AUX1 1A/1B or AUX2 2A/2B on the power supply module, or one of the fuses on the expansion power supply, follow the procedure below.

Procedure 29-9 How to Replace the Fuse for AUX1 1A/1B or AUX2 2A/2B or I/O Expansion

1. Disconnect the cables from the connectors. If the faulty fuses are attached to the main power supply, press down on the top of the main power cable connector to disconnect the user's main power cable from the cable inlet on the bottom of the power supply module front panel.
2. Simultaneously press on the tabs on the top and bottom of the plastic front of the old module, and pull the module from its slot.
3. Using narrow pliers, remove the faulty fuse from its groove on the board. For a diagram of the fuses in the expansion power supply, see Expansion Power Supply Fuses in the Expansion Power Supply Module chapter above.
4. Press the new fuse into the groove on the board.
5. Slide the power supply module all the way into the slot until the tabs click into place.
6. Reconnect the cables as in installation.

Replacing the Backup Battery on the RTU

For instructions on replacing the backup battery on the RTU, see Replacing the Backup Battery in the Power Supply and Backup Battery chapter above.

Interconnection Diagrams

All internal electrical connections except for the main power, ground and battery are performed in the factory and supplied with the RTU. The electrical interconnection diagrams are provided below.

Figure 29-3 Electrical Interconnection (RTUs with I/O slots)

Figure 29-4 Electrical Interconnection (RTUs with no I/O slots)

APPENDIX A: GENERAL SPECIFICATIONS

Specifications

The specifications below are for the RTU as a whole. For the individual technical and performance specifications of each module in the RTU, see the specific module chapter.

Table A-1 ACE3600 Specifications

General

Frames No I/O slots - PS and CPU modules only, wall mount, Dimensions (WxHxD): $117 \times 209 \times 198^{*} \mathrm{~mm}\left(4.61 \mathrm{x}\right.$ x 5.30 x x $7.80^{\prime *}$), Weight: $0.95 \mathrm{Kg}(2.1 \mathrm{lb})$

2 I/O slots - PS, CPU and 2 I/O modules, wall mount, Dimensions (WxHxD): $194 \times 244 \times 198 *$ mm (7.64 x 9.61 x $7.80 " *$), Weight: approx. $1.6 \mathrm{Kg}(3.56 \mathrm{lb})$

3 I/O slots - PS, CPU and 3 I/O modules, wall mount, Dimensions (WxHxD): $234 \times 244 \times 198^{*} \mathrm{~mm}$ (9.21 x x 9.61" x $7.80^{\prime *}$), Weight: approx. 1.9 Kg (4.19 lb)

5 I/O slots - PS, CPU and 5 I/O modules, wall mount, Dimensions (WxHxD): $314 \times 244 \times 198^{*}$ mm (12.36" x 9.61" x 7.80"*), Weight: approx. 2.4 Kg (5.3 lb)

7 I/O slots - PS, CPU and 7 I/O modules; wall mount, Dimensions (WxHxD): 391×244 x 198* mm (15.39" x 9.61" x 7.80"*), Weight: $3.0 \mathrm{Kg}(6.6 \mathrm{lb})$

8 I/O slots - PS, CPU and 8 I/O modules, wall mount OR 19" rack Dimensions (WxHxD): $435 \times 244 \times 198^{*} \mathrm{~mm}$ (17" x 9.61" x $7.80^{\prime *}$), Weight: approx. $3.3 \mathrm{Kg}(7.3 \mathrm{lb})$

* Depth including Module panel

Expansion Frame	Number of I/O slots -	$3,5,7$, or 8
	Default power supply -	Expansion power supply
	Compatible power supplies -	All except: $10.8-16 \mathrm{~V}$ DC low-tier power

General	
Metal Chassis	$19^{\prime \prime}$ frame metal back - for PS, ACE IP Gateway, radio and 6.5 or 10 Ah backup battery, 2 plastics boxes; wall/rack mount, OR PS, CPU, radio and 6.5 or 10 Ah backup battery, $0,3,5,8$ I/O slot frame, up to 2 plastic boxes, wall/rack mount, Dimensions (WxHxD): $434.5 \times 310.4 \times 200^{*} \mathrm{~mm}$ (17.11"x 12.22" x 7.88"*). Large - for PS, CPU and up to 7 I/O slot frame, two radios and 6.5 or 10 Ah backup battery, wall mount, Dimensions (WxHxD): $448 \times 468 \times 200^{*} \mathrm{~mm}$ (17.64 " x $18.43^{\prime \prime} \times 7.88^{\prime *}$) Medium - for PS, CPU and up to 3 I/O slot frame, one radio and 6.5 Ah backup battery, wall mount, Dimensions (WxHxD): $335 \times 355 \times 198^{*} \mathrm{~mm}$ (13.19" x 13.98" x 7.8"*) Small - for PS, CPU, 2 I/O slot frame, 1 radio (or 1 plastic box), and 6.5Ah backup battery, wall mount, Dimensions (WxHxD): $264 \times 365 \times 200^{*} \mathrm{~mm}$ (11.02"x 14.17" x 7.88"*). * Depth including Frame and Module
Housing	Large Nema 4/IP66 painted metal - up to 7 I/O slot frame, two radios and 6.5 or 10 Ah , backup battery, Dimensions (WxHxD): $500 \times 500 \times 210 \mathrm{~mm}$ (19.7" x19.7" x $8.26^{\prime \prime}$) Small Nema 4/IP66 painted metal - up to 3 I/O slot frame one radio and 6.5 Ah backup battery, Dimensions (WxHxD): $380 \times 380 \times 210 \mathrm{~mm}$ ($15 \mathrm{\prime} \mathrm{\prime} \mathrm{x} 15^{\prime \prime} \times 8.26^{\prime \prime}$)
Power Supply	10.8-16 V DC low-tier 10.8-16 V DC (default) 18-72 V DC 18-72 V DC with 12 V smart battery charger $100-240 \mathrm{~V} \mathrm{AC}, 50-60 \mathrm{~Hz}$ $100-240 \mathrm{~V} \mathrm{AC}, 50-60 \mathrm{~Hz}$, with 12 V smart battery charger 10.8-16 V DC Expansion
Backup Battery	6.5 Ah - Sealed Lead-Acid 10 Ah - Sealed Lead-Acid
Operating Temperature	$-40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F} \text { to } 158^{\circ} \mathrm{F}\right)$ Notes: 1) When using a metal housing option, the maximum operating temperature outside the housing is $+60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$. 2) ACT module and Motorola radios operating temperature range is: $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$.
Storage Temperature	$-55{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ to $\left.185{ }^{\circ} \mathrm{F}\right)$
Operating Humidity	5% to 95% RH @ $50^{\circ} \mathrm{C}$ without condensation

General	
Mechanical Vibrations	Per EIA / TIA 603 Base-station, Sinusoidal 0.07 mm @ 10 to $30 \mathrm{~Hz}, 0.0035$ mm @ 30-60 Hz
Operating Altitude	-400 m to +4000 meter $(-1312 \mathrm{ft}$ to $+13120 \mathrm{ft})$ above sea level Note: When using $18-72 \mathrm{~V}$ DC or $100-240$ VAC Power supply the operating altitude is -400 to +3000 m
Regulatory Standards	
Safety	UL 60950-1 (UL listed), CSA 22.2-950-1, EN60950-1, IEC 60950-1, AS/NZS 60950
	FM/cFM certified as Nonincendive Class I, Division 2 - standard FM 3611 (Note: FM approval refers to model F7509 only and most of the ACE3600 options.)
Emission	Emission standards for industrial environments
	CFR 47 FCC part 15, subpart B (class A); CE EMC: EN50081-2/EN61000-6-4
	(CISPER 11 / EN55011 class A)
Immunity	Immunity standards for industrial environments
	Per EN50082-2 /IEC 61000-6-2
Communications	
Communication Ports	Up to 4 ports per CPU (CPU 3610), up to 5 ports per CPU (CPU 3640), up to 7 ports per CPU (CPU 3680/4600)
	Serial - up to $4 \times$ RS232 ports
	Multi-drop - up to $3 \times$ RS485 port
	Ethernet - up to $2 \times 10 / 100 \mathrm{MB}$ ports and $1 \times 10 \mathrm{MB}$
	Two-way radio / analog trunked radio - up $2 \times$ modem ports
	MotoTrbo- two Remote NDIS USB ports
Motorola Radio Support	$\frac{\text { Mobile conventional two-way radios }}{200, \text { CDM750 }}-\text { CM } 200, \text { CM 340, GM 3188, EM }$
	Portable conventional two-way radios - HT750, GP320, GP328, PRO5150
	Analog trunked radios - XTL5000, XTL2500
	$\frac{\text { Digital trunked radios }}{\text { (TETRA) }} \text { - XTL5000, XTL2500, XTS2500, MTM800 }$
	MotoTrbo radios -XPR4350/4380, DM3400, XiR M8220, DGM4100
Third Party Radio Support	Two-way radios, Data radios, TETRA radios (PD)
Modem Support	Dial-up modems, Cellular modems (dial mode and PD)
Protocols	MDLC, TCP, UDP, IP, PPP, NTP, DHCP

Third Party Protocol	MODBUS RTU: master on RS232/RS485/Ethernet,
Support	slave on RS232/RS485/Ethernet
	DF1 (Allen Bradley): master on RS232
	DNP 3.0: master/slave on RS232/RS485/Ethernet
	IEC 60870-5-101: slave on RS232

Specifications subject to change without notice.

A-4

APPENDIX B: ENVIRONMENTAL PROTECTION

Disposal of Components

All components of the ACE3600 should be properly disposed of, in accordance with local regulatory standards and laws.

All ACE3600 models comply with RoHS European Directive no. 2002/95/EC (Restriction of the use of Hazardous Substances) and WEEE Directive no. 2002/96/EC (Strategy of Waste management), with the exception of parts:

- XTL5000 radio (included in models F7523A/F7513A/F7524A/F7514A/F7585A/F7586A)
- XTL2500 radio (F7533A/F7593A/F7534A/F7594A/F7538A/F7598A)
- XTS2500 radio (F7543A/F7544A/F7548A)
- CDM750 radio (F7563A/F7564A)
- ACT Module (option V155AE and kit FLM)

Note: The ACE3600 RTU is categorized as Monitoring and Control Equipment. Currently (2010) Monitoring and Control Equipment are exempt from RoHS compliance. This exemption may be cancelled in the future.

APPENDIX C: ACCESSORIES, ADAPTORS, AND CABLES

General

Note: On all of the Motorola RJ45 connector heads (except for Ethernet cables), the numbering of the pins is different than the standard, as shown in the figure below. Pin $1-8$ are left to right rather than right to left, as shown below. Therefore, only original Motorola cables should be used.

This appendix provides the information required for connecting an RTU RS232 port to various units, as detailed below:

- Connection to a computer/terminal (MDLC protocol or User port)
- Connection to a modem (MDLC protocol or User port)
- Connection to the GPS receiver (Motorola Binary protocol)
- Connecting a User port to a printer
- Connecting a User port to an external unit
- Connection to a radio (MDLC and PPP protocols)
- RTU-to-RTU connection using MDLC protocol through RS232 ports (RS-Link)
- ACE3600 RTU-to-ACE3600 RTU connection using MDLC protocol through RS485 ports (RS-Link)
- ACE3600 RTU-to-MOSCAD RTU connection using MDLC protocol through RS485 ports (RS-Link)
- ACE3600 RTU-to-PC Ethernet port connection without a hub

Connection to a Computer or Terminal

To connect one of the RTU RS232 ports to a computer/terminal, use the FLN6457B adaptor, which ends with the female 25 -pin or 9 -pin, D-type connector. The port may be defined either as a MDLC protocol port or as a User port.

The signals that appear on the female 25-pin or 9-pin D-type connector are according to the RS232 standard - see the following table. In this case, the RTU serves as DCE (Data Communication Equipment).

Appendix C: Accessories, Adaptors and Cables

RS232 Function	8-pin Connector (on RTU)	25-pin Female	9-pin Female	Direction
TX-DATA	$2 \leftarrow$	2	3	from DTE
RX-DATA	$1 \rightarrow$	3	2	to DTE
RTS	$5 \leftarrow$	4	7	from DTE
CTS	$8 \rightarrow$	5	8	to DTE
DSR	$7 \rightarrow$	6	6	to DTE
GND	4	7	5	-
DTR	$3 \leftarrow$	20	4	from DTE
DCD (Rec line)	$6 \rightarrow$	8	1	to DTE

To extend the cable, you may use any extension cable with male and female D-type connectors (connected pin-to-pin, not crossed).
Note: When a User port is defined as Computer/Terminal with DTR support:
The RTU will not transmit unless it receives DTR=ON from the computer/terminal.
The RTU will not receive unless it receives RTS=ON from the computer/terminal.

Connection to a Modem

To connect one of the RTU RS232 ports to an RS232 modem, use one of the adaptors provided in kit FLN6458B (option V213AE):

- 9-pin adaptor for Async (\#0189968V32)
- RS232-E adaptor (\#0189968V33) as in Connection to IDEN Radio below.
- RS232-E+ adaptor (\#0189968V34) as in Connection to TETRA Radio below.

The asynchronous adaptor (\#0189968V32) ends with the male 9-pin D-type connector. The port may be defined either as a MDLC protocol port or as a User port.
The signals that appear on the male 9-pin D-type (or $25-\mathrm{pin}$) connector are according to the RS232 standard - see the following table. In this case, the RTU serves as DTE (Data Terminal Equipment).

RS232 Function	8-pin Connector(on RTU)	25-pin Male	9-pin Male	Direction
TX-DATA	$1 \rightarrow$	2	3	from RTU
RX-DATA	$2 \leftarrow$	3	2	to RTU
RTS	$6 \rightarrow$	4	7	from RTU
CTS	$3 \leftarrow$	5	8	to RTU
GND	4	7	5	-

Appendix C: Accessories, Adaptors and Cables

RS232 Function	8-pin Connector(on RTU)	25-pin Male	9-pin Male	Direction
DTR	$8 \rightarrow$	20	4	from RTU
DCD (Rec line)	$5 \leftarrow$	8	1	to RTU

To extend the cable, you may use any extension cable with male and female D-type connectors (connected pin-to-pin, not crossed).
Before transmitting, the RTU sends RTS=ON to the modem, and waits for $\mathrm{CTS}=\mathrm{ON}$ from the modem as a condition for transmitting.
The RTU will receive data from the modem only when $\mathrm{DCD}=\mathrm{ON}$.
When using a modem in auto-answer mode (connected to a Computer port) for remote service, the RTU does not support RTS/CTS protocol since the port is designated to operate with a local computer as well as with a modem.
For modems which support RS232-E, use either the RS232-E adaptor (\#0189968V33) as in Connection to IDEN Radio below, or the RS232-E+ adaptor (\#0189968V34), as in Connection to TETRA Radio below.

Connection to GPS Receiver

When an off-the-shelf GPS timing receiver is purchased (e.g. Synergy SynPaQ/E PPS Sensor with $\mathrm{M} 12+$), the data and power cable for that receiver should be purchased as well.
Connect the data wire of the cable to the CPU port using the ACE3600 asynchronous RS232-E adaptor cable. The port should be defined as a GPS receiver port (RS232, Async).
Connect the power wire of the cable to a cable with the following connectors:
RTU side: The connector should fit the auxiliary power connector on the ACE3600 power supply module.

GPS Receiver side: The connector should fit the power connector on the GPS receiver cable.

Connecting a User Port to a Printer

To connect one of the RTU RS232 ports defined as a User port to a printer, you may use one of the two cables described in the previous paragraphs. Since the connection to the printer is not defined by the RS232 standard, every printer manufacturer has defined the connectors for his own convenience. Therefore, select the adaptor according to the functions of the various pins.
If the FLN6458B adaptor (with the male 9-pin D-type connector) is used, refer to the following table.

RS232 Function	9-pin Male	Used as	Direction
TX-DATA	3	Serial Data	to Printer
CTS	8	Printer Ready	from Printer
GND	5	GND	-

If the FLN6457B adaptor (with the female 9-pin, D-type connector) is used, refer to the following table.

RS232 Function	9-pin Female	Used as	Direction
RX-DATA	2	Printer Rx-Data	to Printer
DTR	4	Printer Ready	from Printer
GND	5	GND	-

Connecting a User Port to an External Unit

To connect one of the RTU RS232 ports defined as a User port to an external unit (which supports RS232), you may use one of the two adaptors (FLN6457B or FLN6458B) according to the port definition in the site configuration.

If the FLN6457B adaptor is used, refer to the pin assignment given in Connection to a Computer or Terminal in this chapter.

If the FLN6458B adaptor is used, refer to the pin assignment given in Connection to a Modem in this chapter.

Connection to a Radio

For detailed instructions on connecting a radio to the ACE3600 RTU, see the Radio Types and Installation Kits chapter above.

Connection to IDEN Radio

To connect the RTU (via onboard serial or plug-in port) to an IDEN radio, use an adaptor which ends with the male 9-pin, D-type connector. The port should be defined as RS-232, Async, PPP, iDEN, MDLC over IP.

RS232 Function	8-pin Connector(on RTU)	9-pin Male	Direction
TX-DATA	$1 \rightarrow$	3	from RTU
RX-DATA	$2 \leftarrow$	2	to RTU
CTS	$3 \leftarrow$	8	to RTU
GND	4	5	-
CD (Rec line)	$5 \leftarrow$	1	to RTU
RTS	$6 \rightarrow$	Not used	
	$7 \rightarrow$	4	from RTU
DTR	$8 \rightarrow$	7	from RTU

Connection to TETRA Radio

To connect the RTU (via onboard serial or plug-in port) to a TETRA radio, use an RS232-E + type adaptor which ends with the male 9-pin, D-type connector. The port should be defined as RS232, Async, PPP, Tetra, MDLC over IP.

RS232 Function	8-pin Connector(on RTU)	9-pin Male	Direction
TX-DATA	$1 \rightarrow$	3	from RTU
RX-DATA	$2 \leftarrow$	2	to RTU
CTS	$3 \leftarrow$	8	to RTU
GND	4	5	-
CD (Rec line)	$5 \leftarrow$	1	to RTU
RTS	$6 \rightarrow$	4	from RTU
	7	Not used	
DTR	$8 \rightarrow$	7	from RTU

Connection to MotoTrbo Radio

To connect the RTU (via Host USB port) to a MotoTrbo radio, use a cable FKN8644A. The port should be defined as USB Host, Async, Remote NDIS Host, MotoTrbo.

Function	USB Type A (on RTU)	26-pin Female (on Radio)	Direction
+5 VDC/ VBUS +	$1 \rightarrow$	3	from RTU
Data -	$2 \leftrightarrow$	2	to/from RTU
Data +	$3 \leftrightarrow$	1	to/from RTU
GND	4	4	-
Ignition		25	from radio power cable

RTU-to-RTU Connection Using MDLC Protocol through RS232

To establish a link between two RTUs using MDLC protocol, the ports of both RTUs should be defined as RS232 RTU-to-RTU (RS-Link). The ports of the two RTUs should be connected by the FLN6457B and FLN6458B adaptors, when the adaptors are connected.

IMPORTANT

Do not connect between RTUs without the adaptor cables. A direct connection will cause a short circuit between the pins that have the same function.

RTU-to-RTU Synchronous Communication Using Plug-in Port

The pin assignment of the cable to be used for RTU-to-RTU synchronous communication (using a plug-in port) is given below.

RS232 Function	8-pin Connector (on sending RTU)	8-pin Connector (on receiving RTU)	Direction
TX-DATA	$1 \rightarrow$	$2 \leftarrow$	from RTU
RX-DATA	$2 \leftarrow$	$1 \rightarrow$	to RTU
CTS	$3+6 \rightarrow^{*}$	$5 \leftarrow$	from RTU
Signal GND	4	4	-
CD (Rec line)	$5 \leftarrow$	$3+6 \rightarrow^{*}$	to RTU
RTS	$6+3 \rightarrow^{*}$	$5 \leftarrow$	from RTU
TX_CLK	$7 \rightarrow$	$8 \leftarrow$	from RTU
RX_CLK	$8 \leftarrow$	$7 \rightarrow$	to RTU

*Pins 3 and 6 are shorted.

ACE3600 RTU-to-ACE3600 RTU Connection Using MDLC Protocol through RS485

To establish a link between more than two ACE3600 RTUs using MDLC protocol, the ports of all RTUs should be defined as RS485 RTU multidrop. The ports of the RTUs should be connected using the RS485 connection box V186AD (FLN3641A). Cable FKN8427A should be connected between ACE3600 RS485 port and one of the seven inlets of the connection box.

RS485 Function	8-pin Connector* (on ACE3600)
B (RX/TX-)	1
A (RX/TX+)	8

*Note: All seven connectors are shorted.

ACE3600 RTU-to-MOSCAD RTU Connection Using MDLC Protocol through RS485

To establish a link between an ACE3600 unit and a MOSCAD RTU using MDLC protocol, the ports of both RTUs should be defined as RS485 RTU multidrop. The ports of the two RTUs should be connected using the FKN8527A cable.

Appendix C: Accessories, Adaptors and Cables

IMPORTANT

Do not connect between RTUs without the adaptor cables. A direct connection will cause a short circuit between the pins that have the same function.

RS485 Function	8-pin Connector (on ACE3600)	4-pin Connector (on MOSCAD)
B (RX/TX-)	1	2
A (RX/TX+ $)$	8	3

ACE3600 RTU-to-PC Ethernet Port Direct Connection without Hub

NOTE

Note: The RJ45 connector head for this connection is standard. The numbering of the pins is according to the standard, as shown in the figure below. Pin 1-8 are right to left, as shown below. Therefore, any standard Ethernet crossover cable may be used.

To establish a link between an ACE3600 unit and the Ethernet port of a PC, without using a hub, the RTU port should be defined as an IP port (10/100 BT, Static, Ethernet LAN) with an IP address. The ports should be connected using an Ethernet crossover cable.

IP Function	8-pin Connector (Plug 1)	8-pin Connector (Plug 2)
TX-DATA +	$1 \rightarrow$	$3 \leftarrow$
TX-DATA -	$2 \rightarrow$	$6 \leftarrow$
RX-DATA +	$3 \leftarrow$	$1 \rightarrow$
N/A	4	7
N/A	5	8
RX-DATA -	$6 \leftarrow$	$2 \rightarrow$
N/A	7	4
N/A	8	5

ACE3600 RTU Main CPU to Expansion Module Direct Connection

To establish a direct link between an ACE3600 main frame CPU and an expansion module, the CPU's ETH1 port must be configured either as Static LAN or as I/O Expansion Comm. Connect the CPU's ETH1 port and the expansion module's Exp. Eth1 port using an Ethernet crossover cable, with wiring as in ACE3600 RTU-to-PC Ethernet Port Direct Connection without Hub above.

ACE3600 RTU Main CPU to Expansion Module Connection via LAN Switch

NOTE

Note: The RJ45 connector head for this connection is standard. The numbering of the pins is according to the standard, as shown in the figure below. Pin 1-8 are right to left, as shown below. Therefore, any standard Ethernet cable may be used.

The ACE3600 RTU main CPU can be connected to an expansion module via one or two expansion LAN switches. The CPU's ETH1 port must be configured either as Static LAN or as I/O Expansion Comm.

For the connections below, use a standard standard Category 5E shielded (FTP) LAN cable (up to 50 m .)

- ACE3600 RTU main CPU to expansion LAN switch connection or connection of the first LAN switch to the second, if such exists (for systems with I/O expansion only)
- ACE3600 RTU expansion LAN switch to expansion module connection (for systems with I/O expansion only)

IP Function	8-pin Connector (Plug 1)	8-pin Connector (Plug 2)
TX-DATA +	$1 \rightarrow$	$1 \leftarrow$
TX-DATA -	$2 \rightarrow$	$2 \leftarrow$
RX-DATA +	$3 \leftarrow$	$3 \rightarrow$
N/A	$4 \rightarrow$	$4 \leftarrow$
N/A	$5 \rightarrow$	$5 \leftarrow$
RX-DATA -	$6 \leftarrow$	$6 \rightarrow$
N/A	$7 \rightarrow$	$7 \leftarrow$
N/A	$8 \rightarrow$	$8 \leftarrow$

APPENDIX D: ACE3600 MAXIMUM POWER RATINGS

Power Rating Tables

The tables below list the typical maximum power consumption (at room temperature) for each of the ACE3600 RTU building blocks (CPU, Power Supply, I/O modules, radios, etc.) and the maximum peak power allowed for a fully loaded RTU, based on the housing type.
The values in the tables below are derived by using the power supply (AC: 100 to 240 VAC or DC: 18 to 72 VDC and 13.8 VDC) and have the power supply efficiency factor included in them.
Before deploying your RTU, add up the power consumption of all components of your system to verify that it is within the maximum peak power for your housing type. In systems with I/O expansion, consider all modules which consume power from their respective $\mathrm{AC} / \mathrm{DC}$ main power sources when calculating the required power requirements.

Table D-1 Maximum Peak Power Allowed for Fully Loaded RTU

Housing Type Description	Maximum Input Power into Power Supply Module (Watts)
19" Rack (w/out metal enclosure)	100
Large NEMA metal housing $(50 \times 50 \mathrm{~cm})$	120^{*}
Small NEMA metal housing $(40 \times 40 \mathrm{~cm})$	105^{*}

* NOTE: When powered at Vin $=100 \mathrm{VAC}$, the maximum input power of the power supply module is limited to 80 Watts ONLY.

D-1

Table D-2 Power Consumption per RTU Module

Module Name	Self Power Consumption (no active I/O) (Watts)	Maximum Power Consumption per Active I/O (Watts)	Self Power Consumption (no active I/O) Watts	Maximum Power Consumption per Active I/O Watts	Maximum Power Consumption all I/Os, LEDs Active Watts
	AC: 100 to 240 VAC DC: 18 to 72 VDC		Vin $=+13.8$ VDC		
Power Supply (maximum)	12.60	N/A	$\begin{aligned} & 2.20(156 \mathrm{~mA}) \\ & (12 \mathrm{VDC} \\ & \text { Power Supply } \\ & \text { Module } \\ & \text { ONLY) } \\ & \hline \end{aligned}$	N/A	N/A
Power Supply (Expansion)	0.0	N/A	0.0	N/A	N/A
$\begin{array}{\|l\|} \hline \text { CPU } \\ (3640 / 3610) \\ \hline \end{array}$	5.20	N/A	4.20 (304 mA)	N/A	4.00 (290 mA)
Expansion Module	5.20	N/A	4.20 (304 mA)	N/A	4.00 (290 mA)
Expansion LAN Switch	1.50	0.220	1.20 (87 mA)	$\begin{aligned} & 0.176 \\ & (12.75 \mathrm{~mA}) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.10(225 \mathrm{~mA}) \\ & (\mathrm{x} 8 \text { ports } \mathrm{ON}) \\ & \hline \end{aligned}$
Digital Input Fast 24V (x16/x32)	0.100	0.100 (powered by internal 24 V PS)	$\begin{aligned} & 0.080 \\ & (5.8 \mathrm{~mA}) \end{aligned}$	0.100 (7 mA) (powered by internal 24 V PS)	$\begin{array}{\|l\|} \hline 3.50(254 \mathrm{~mA}) \\ \text { (x32 inputs ON } \\ \text { powered by x1 } \\ \text { internal } 24 \mathrm{~V} \\ \text { PS) } \\ \hline \end{array}$
Digital Input Fast 24V IEC Type 2 (x16/x32)	0.100	0.230 (powered by internal 24V PS)	$\begin{aligned} & 0.080 \\ & (5.8 \mathrm{~mA}) \end{aligned}$	$0.230(17 \mathrm{~mA})$ (powered by internal 24 V PS)	$\begin{array}{\|l\|} \hline 8.20(594 \mathrm{~mA}) \\ \text { (x32 inputs ON } \\ \text { powered by x2 } \\ \text { internal } 24 \mathrm{~V} \\ \text { PS) } \end{array}$
Digital Input Fast 48V (x32)	0.100	0.100 (powered by internal 24 V PS)	$\begin{aligned} & 0.080 \\ & (5.8 \mathrm{~mA}) \end{aligned}$	0.100 $(7 \mathrm{~mA})$ (powered by internal 24 V PS)	$\begin{aligned} & 3.50(254 \mathrm{~mA}) \\ & \text { (x32 inputs ON } \\ & \text { powered by x1 } \\ & \text { internal } 24 \mathrm{~V} \\ & \text { PS) } \end{aligned}$
Digital Input $120 / 230 \mathrm{~V}$	0.100	0.015	0.080 (5.8 mA)	$0.012(1 \mathrm{~mA})$	$0.524(38 \mathrm{~mA})$ (x16 inputs ON)
Digital Output ML Relay (x8/x16)	0.120	0.010	$\begin{aligned} & 0.100 \\ & (7.2 \mathrm{~mA}) \end{aligned}$	$\begin{aligned} & 0.008 \\ & (0.5 \mathrm{~mA}) \end{aligned}$	$\begin{aligned} & 0.483(35 \mathrm{~mA}) \\ & (\mathrm{x} 16 \text { relays } \\ & \mathrm{ON}) \end{aligned}$

D-2

Appendix D: ACE3600 Maximum Power Ratings

Module Name	Self Power Consumption (no active I/O) (Watts)	Maximum Power Consumption per Active I/O (Watts)	Self Power Consumption (no active I/O) Watts	Maximum Power Consumption per Active I/O Watts	Maximum Power Consumption all I/Os, LEDs Active Watts
	AC: 100 to 240 VAC DC: 18 to 72 VDC		Vin $=+13.8$ VDC		
Digital Output EE Relay (x8/x16)	0.170	0.200	$0.136(10 \mathrm{~mA})$	$\begin{aligned} & 0.160 \\ & (11.6 \mathrm{~mA}) \end{aligned}$	$\begin{aligned} & 3.26(236 \mathrm{~mA}) \\ & \text { (x16 relays } \\ & \text { ON) } \\ & \hline \end{aligned}$
Digital Output SBO EE Relay $(\mathrm{x} 8)$	0.170	0.400	$0.136(10 \mathrm{~mA})$	$\begin{aligned} & 0.320 \\ & (23.2 \mathrm{~mA}) \end{aligned}$	3.26 (236 mA)
Digital Output ML Relay 120/230V	0.200	0.006	$\begin{aligned} & 0.160 \\ & (11.6 \mathrm{~mA}) \end{aligned}$	0.005 (0.4 mA)	$\begin{aligned} & \hline 0.248 \\ & (18.0 \mathrm{~mA}) \\ & \\ & (\mathrm{x} 12 \text { relays } \\ & \mathrm{ON}) \\ & \hline \end{aligned}$
Digital Output EE Relay 120/230V	0.290	0.260	$0.232(17 \mathrm{~mA})$	$\begin{aligned} & 0.210 \\ & (0.15 \mathrm{~mA}) \end{aligned}$	$\begin{aligned} & 3.12(226 \mathrm{~mA}) \\ & \text { (x12 relays } \\ & \text { ON) } \\ & \hline \end{aligned}$
FET Digital Output/Digital Input	0.120	$\text { DI }=0.014$ (per input channel) DO $=0.014$ (per output channel)	$\begin{aligned} & 0.100 \\ & (7.2 \mathrm{~mA}) \end{aligned}$	DI $=0.011$ (per input channel) $\mathrm{DO}=0.011$ (per output channel)	$\begin{aligned} & 0.552(40 \mathrm{~mA}) \\ & (\times 32 \text { LEDs/ } \\ & \text { inputs ON) } \end{aligned}$
Mixed I/O (DO ML +DI IEC Type 2)	0.480	DI $=0.250$ (powered by internal 24 V PS) $\mathrm{DO}=0.010$	$0.384(28 \mathrm{~mA})$	DI $=0.250$ (powered by internal 24 V PS) $\mathrm{DO}=0.008$	$\begin{aligned} & \hline 4.70(341 \mathrm{~mA}) \\ & \\ & \text { (x4 relays ON } \\ & \text { x16 inputs ON } \\ & \text { x4 AI ON } \\ & \text { powered by } \\ & \text { internal } 24 \mathrm{~V} \\ & \text { PS) } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { Mixed I/O } \\ & \text { (DO EE + DI } \\ & \text { IEC Type 2) } \end{aligned}$	0.480	$\mathrm{DI}=0.250$ (powered by internal 24 V PS) $\mathrm{DO}=0.200$	0.384 (28 mA)	$\mathrm{DI}=0.250$ (powered by internal 24 V PS) $\mathrm{DO}=0.160$	$\begin{aligned} & 5.50(400 \mathrm{~mA}) \\ & (\mathrm{x} 4 \text { relays ON } \\ & \text { x16 inputs ON } \\ & \text { x4 AI ON } \\ & \text { powered by } \\ & \text { internal } 24 \mathrm{~V} \\ & \text { PS) } \\ & \hline \end{aligned}$

D-3

Appendix D: ACE3600 Maximum Power Ratings

Module Name	Self Power Consumption (no active I/O) (Watts)	Maximum Power Consumption per Active I/O (Watts)	Self Power Consumption (no active I/O) Watts	Maximum Power Consumption per Active I/O Watts	Maximum Power Consumption all I/Os, LEDs Active Watts
	AC: 100 to 240 VAC DC: 18 to 72 VDC		Vin $=+13.8$ VDC		
Analog Output	1.10	0.600 (per output channel @ 20.0 mA)	0.880 (64 mA)	$\begin{array}{\|l\|} \hline 0.480(35 \mathrm{~mA}) \\ \\ \text { (per output } \\ \text { channel @20.0 } \\ \mathrm{mA} \text {) } \\ \hline \end{array}$	$\begin{array}{\|l} \hline 3.33(241 \mathrm{~mA}) \\ (x 4 \text { outputs } \\ \text { sourcing } 20.0 \\ \mathrm{~mA}) \\ \hline \end{array}$
Mixed Analog Current/Voltage	1.40	0.600 (per output channel @ 20.0 mA)	1.12 (81 mA)	$\begin{aligned} & 0.480(35 \mathrm{~mA}) \\ & \text { (per output } \\ & \text { channel @20.0 } \\ & \mathrm{mA} \text {) } \end{aligned}$	$\begin{aligned} & \hline 3.61(261 \mathrm{~mA}) \\ & \\ & (x 4 \text { outputs } \\ & \text { sourcing } 20.0 \\ & \mathrm{~mA}) \\ & \hline \end{aligned}$
Analog Input Current/Voltage (x8/x16)	0.530	N/A	$\begin{aligned} & 0.440 \\ & (32.0 \mathrm{~mA}) \end{aligned}$	N/A	$\begin{aligned} & 0.870 \\ & (63.0 \mathrm{~mA}) \end{aligned}$
24V Floating Plug-In Power Supply (No load)	0.410	N/A	0.328 (24 mA)	N/A	N/A
24V Floating Plug-In Power Supply (externally loaded 150 mA)	4.80	N/A	3.84 (278 mA)	N/A	N/A

Appendix D: ACE3600 Maximum Power Ratings

Plastic Box Interface	Typical Power (Watts)	Power when all I/Os are on (Watts)	Typical Power (Watts)	Power when all I/Os are on (Watts)
	AC: 100 to 240 VAC DC: 18 to 72 VDC		Vin $=+13.8$ VDC	
	0.60	2.20	$0.480(35 \mathrm{~mA})$	$1.76(127.50 \mathrm{~mA})$
Module				

Radios	Power in RX Mode (Watts)	Power in TX Mode (Watts)	Power in RX Mode (Watts)	Power in TX Mode (Watts)
	AC: 100 to 240 VAC DC: 18 to 72 VDC		Vin $=+13.8$ VDC	
XTL5000 (15 Watt)	8.80	66.90	7.10 (515 mA)	53.50 (4.0 A)
XTL2500 (15 Watt)	8.80	66.90	7.10 (515 mA)	53.50 (4.0 A)
XTS2500 (3 Watt)	1.20	9.90	1.00 (72.5 mA)	8.00 (580 mA)
HT750/GP320/P RO5150/GP328 (UHF 4 Watt/ VHF 5 Watt)	0.70	13.10	0.560 (40.6 mA)	10.50 (761 mA)
CM200/CM140 EM200/GM318 8 (UHF 20 Watt/ VHF 25 Watt)	3.70	75.10	3.00 (217 mA)	60.00 (4.40 A)
$\begin{aligned} & \text { GM328/338/339 } \\ & \text { /340 } \\ & \text { (UHF } 20 \text { Watt/ } \\ & \text { VHF } 25 \text { Watt) } \\ & \hline \end{aligned}$	3.60	73.20	2.90 (210 mA)	59.00 (4.3 A)
CDM750 (UHF 20 Watt/VHF 25 Watt)	3.90	74.50	3.20 (232 mA)	60.00 (4.40 A)
XPR4350/4380 DM3400/ XiR M8220/ DGM4100 UHF 20 Watt/ VHF 25 Watt)	10.50	51.5	8.4 (600 mA)	41.5 (3 A)

D-5

Fastrack Xtend User Guide

AirLink FXT Series

SIERRA

Important Notice

Due to the nature of wireless communications, transmission and reception of data can never be guaranteed. Data may be delayed, corrupted (i.e., have errors) or be totally lost. Although significant delays or losses of data are rare when wireless devices such as the Sierra Wireless modem are used in a normal manner with a well-constructed network, the Sierra Wireless modem should not be used in situations where failure to transmit or receive data could result in damage of any kind to the user or any other party, including but not limited to personal injury, death, or loss of property. Sierra Wireless accepts no responsibility for damages of any kind resulting from delays or errors in data transmitted or received using the Sierra Wireless modem, or for failure of the Sierra Wireless modem to transmit or receive such data.

Safety and Hazards

Do not operate the Sierra Wireless modem in areas where blasting is in progress, where explosive atmospheres may be present, near medical equipment, near life support equipment, or any equipment which may be susceptible to any form of radio interference. In such areas, the Sierra Wireless modem MUST BE POWERED OFF. The Sierra Wireless modem can transmit signals that could interfere with this equipment. Do not operate the Sierra Wireless modem in any aircraft, whether the aircraft is on the ground or in flight. In aircraft, the Sierra Wireless modem MUST BE POWERED OFF. When operating, the Sierra Wireless modem can transmit signals that could interfere with various onboard systems.

Note:	Some airlines may permit the use of cellular phones while the aircraft is on the ground and the door is open. Sierra Wireless modems may be used at this time.

The driver or operator of any vehicle should not operate the Sierra Wireless modem while in control of a vehicle. Doing so will detract from the driver or operator's control and operation of that vehicle. In some states and provinces, operating such communications devices while in control of a vehicle is an offence.

Limitations of Liability

This manual is provided "as is". Sierra Wireless makes no warranties of any kind, either expressed or implied, including any implied warranties of merchantability, fitness for a particular purpose, or noninfringement. The recipient of the manual shall endorse all risks arising from its use.

The information in this manual is subject to change without notice and does not represent a commitment on the part of Sierra Wireless. SIERRA WIRELESS AND ITS AFFILIATES SPECIFICALLY DISCLAIM LIABILITY FOR ANY AND ALL DIRECT, INDIRECT, SPECIAL, GENERAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS OF PROFITS OR REVENUE OR ANTICIPATED PROFITS OR REVENUE ARISING OUT OF THE USE OR INABILITY TO USE ANY SIERRA WIRELESS PRODUCT, EVEN IF SIERRA WIRELESS AND/OR ITS AFFILIATES HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR THEY ARE FORESEEABLE OR FOR CLAIMS BY ANY THIRD PARTY.

Notwithstanding the foregoing, in no event shall Sierra Wireless and/or its affiliates aggregate liability arising under or in connection with the Sierra Wireless product, regardless of the number of events, occurrences, or claims giving rise to liability, be in excess of the price paid by the purchaser for the Sierra Wireless product.

Patents

This product may contain technology developed by or for Sierra Wireless Inc. This product includes technology licensed from QUALCOMM ${ }^{\circledR} 3 \mathrm{G}$.

This product is manufactured or sold by Sierra Wireless Inc. or its affiliates under one or more patents licensed from InterDigital Group.

Copyright

© 2011 Sierra Wireless. All rights reserved.

Trademarks

AirCard ${ }^{\circledR}$ and Watcher ${ }^{\circledR}$ are registered trademarks of Sierra Wireless. Sierra Wireless ${ }^{\mathrm{TM}}$, AirPrime ${ }^{\mathrm{TM}}$, AirLink ${ }^{T M}$, AirVantage ${ }^{T M}$ and the Sierra Wireless logo are trademarks of Sierra Wireless.
M®M®COMN ${ }^{\circledR}$, ${ }^{\circledR}$, inSIM ${ }^{\circledR}$, WAVECOM ${ }^{\circledR}$, WISMO $^{\circledR}$, Wireless Microprocessor ${ }^{\circledR}$, Wireless CPU ${ }^{\circledR}$, Open AT $^{\circledR}$ are filed or registered trademarks of Sierra Wireless S.A. in France and/or in other countries.
Windows ${ }^{\circledR}$ and Windows Vista ${ }^{\circledR}$ are registered trademarks of Microsoft Corporation.
Macintosh and Mac OS are registered trademarks of Apple Inc., registered in the U.S. and other countries.
QUALCOMM ${ }^{\circledR}$ is a registered trademark of QUALCOMM Incorporated. Used under license.
Other trademarks are the property of the respective owners.

Contact Information

Sales Desk:	Phone:	$1-604-232-1488$
	Hours:	E-mail:
	8ierra Wireless 13811 Wireless Way Richmond, BC 5:00 PM Pacific Time Canada	
Fax:	1-604-231-1109 \quad V6V 3A4	
Web:	www.sierrawireless.com	

Consult our website for up-to-date product descriptions, documentation, application notes, firmware upgrades, troubleshooting tips, and press releases: www.sierrawireless.com

Document History

Version	Date	Updates
001	November 23, 2009	Creation
002	April 26, 2010	Updated Charging Specification to specify which charging method takes precedence when both options are available.
		Added section 16 Reliability Compliance and Recommended Standards
		Removed Appendix C and moved its former contents to section 17 Certification Compliance and Recommended Standards.
		Updated Figure 4 Fastrack Xtend Mechanical Drawing.
		Updated terminologies from: - IESM to Expansion Card - inSIM to Embedded SIM - Wireless CPU to Intelligent Embedded Module/embedded module - Open AT ${ }^{\circledR}$ Software Suite to Sierra Wireless Software Suite
		Updated Table 76 Power Consumption of FXT003 in Connected Mode (Typical) and Table 78 Power Consumption of FXT003 in Non-Connected Mode (Typical)
		Updated the Power Consumption values in Table 72 Initial Power Consumption (Typical)*.
		Added section 7.3 Expansion Card Design Suggestion
		Updated Appendix A: Packaging and Appendix B: Product Labeling
003	October 12, 2010	Updated product pictures throughout the document
		Added a note after Figure 22 Fastrack Xtend Back Interface to indicate which interfaces are available in which Fastrack Xtend variant.
		Removed irrelevant AirPrime reference documents from section 19.5 Other Related Documentation
		Added information for FXT009 and FXT010 throughout the document; Removed information for FXT006, FXT007 and FXT008 throughout the document.
		Added warning information about the use of the battery accessory in section 15 Recommendations when Using the Battery Accessory.
		Updated the Fastrack Supreme 20 column in Table 1 Fastrack Xtend versus Fastrack Supreme.
		Updated 5.1.1.1 General Purpose Input/Output.
		Added a note for entering Sleep Mode in section 12 Power Consumption.
		Updated the Vocoder features for FXT004 in Table 5 Fastrack Xtend Basic Features by Variant.
		Changed instances of 6-wire power supply cable to 6-wire cable accessory.
004	March 08, 2011	Updated product images throughout the document (from blue to red plate).
		Added a footnote after Table 3 Fastrack Xtend Variants stating that FXT001 and FXT002 are being replaced by FXT009.
		Added information and notes specific to FXT004 throughout the document which includes but are not limited to: - Added Table 100 Standards Conformity for FXT004 - Updated Table 2 Fastrack Xtend Physical Dimensions, Table 8 Power Supply Connector Pin Description - Added section 5.2.3.3 RF Performances (For FXT004) - Added section 5.2.3.4 Antenna Specifications for FXT004
		Updated Figure 4 Fastrack Xtend Mechanical Drawing.

Version	Date	Updates
		Added information about the EC0020 expansion card in section 7.4.3 RS485 + Isolated Digital Inputs and throughout the document.
		Power Consumption tables: - Updated Table 75 Power Consumption of FXT009 in Connected Mode (Typical) and Table 77 Power Consumption of FXT009 in NonConnected Mode (Typical) from FXT002 power consumption to FXT009 power consumption - Added Table 79 Power Consumption of FXT004 (Typical).
		Updated Table 83 List of Recommended Accessories.
		Updated Figure 52 Fastrack Xtend Product Labeling.
		Changed small MS to normal MS in Table 4 Fastrack Xtend Basic Features.

Contents

1. OVERVIEW 16
1.1. Comparison with the Fastrack Supreme 17
1.2. Overall Dimensions 19
1.3. Fastrack Xtend Variants 19
1.4. Connections 20
1.5. Interfaces 20
1.5.1. Fastrack Xtend 20
1.5.2. Internal Expansion Card 20
1.6. Environmental Compliance 21
1.6.1. RoHS Directive Compliant 21
1.6.2. Disposing of the Product 21
2. FEATURES AND SERVICES 22
2.1. Features and Services 22
2.2. Supported Bands 26
2.3. Expansion Card Interface 26
2.4. Protection 27
2.4.1. Power Supply 27
2.4.2. Electrostatic Discharge 27
2.4.3. Main Serial Link 27
3. FUNCTIONAL SPECIFICATIONS 28
3.1. Functional Architecture 28
3.2. RF Functionalities 29
3.3. Operating System 29
4. TECHNICAL SPECIFICATIONS 30
4.1. Power Supply 30
4.2. Mechanical Specifications 31
5. INTERFACES 32
5.1. Front Interface 32
5.1.1. Power Supply Connector 32
5.1.1.1. General Purpose Input/Output 33
5.1.1.2. ON/OFF Pin 38
5.1.2. Serial Interface 39
5.1.2.1. RS232 Serial Link Connection 40
5.1.2.2. Autobauding Mode 43
5.1.2.3. Serial Port Auto Shut Down Feature 43
5.1.2.4. Audio Lines Connection 43
5.1.3. USB Interface 46
5.2. Back Interface 47
5.2.1. SIM Interface 47
5.2.1.1. SIM Socket Pin Description 48
5.2.2. Main RF Interface 48
5.2.2.1. RF Performances (For FXT001, FXT002, FXT009 and FXT010) 49
5.2.2.2. Antenna Specifications 49
5.2.3. Secondary RF Interface 50
5.2.3.1. RF Performances (FXT003) 50
5.2.3.2. Antenna Specifications 51
5.2.3.3. RF Performances (For FXT004) 51
5.2.3.4. Antenna Specifications for FXT004 51
5.2.3.5. GPS Antenna Specifications for FXT004 52
6. SIGNALS AND INDICATORS 53
6.1. Alarm Mode 53
6.2. BOOT Signal Connection 53
6.3. RESET Signal Connection 53
6.3.1. Reset Sequence 55
6.4. LED Status Indicator 55
6.5. Real Time Clock (RTC) 56
7. EXPANSION CARD 57
7.1. Expansion Card Compartment 57
7.1.1. Back Plate Screws 57
7.1.2. 50-pin Expansion Card Connector 57
7.2. Expansion Card Physical Description 59
7.3. Expansion Card Design Suggestion 59
7.4. Supported Expansion Cards 61
7.4.1. Ethernet 61
7.4.1.1. Ethernet Expansion Card Installation 61
7.4.1.2. Board Architecture 62
7.4.1.3. Mechanical Characteristics 63
7.4.1.4. Power Supply 63
7.4.1.5. Extra Current Consumption from the DC-IN Source 64
7.4.2. IO+GPS 64
7.4.2.1. IO+GPS Expansion Card Installation 65
7.4.2.2. Mechanical Characteristics 66
7.4.2.3. General Purpose Input/Output 66
7.4.2.4. Power Supply 67
7.4.2.5. Extra Current Consumption from the DC-IN Source 67
7.4.2.6. GPS Receiver Frequency 67
7.4.2.7. External Antenna 67
7.4.2.8. GPS RF Performance 68
7.4.3. RS485 + Isolated Digital Inputs 68
7.4.3.1. RS485 Expansion Card Installation 69
7.4.3.2. Board Architecture 69
7.4.3.3. Mechanical Characteristics 71
7.4.3.4. Power Supply 71
7.4.3.5. Current Consumption from the DC-IN Source 71
7.5. Expansion Card Removal 72
8. USING THE FASTRACK XTEND 73
8.1. Mounting the Fastrack Xtend 73
8.2. Getting Started 74
8.2.1. Inserting the SIM Card 76
8.2.2. Extracting the SIM Card 77
8.3. Using the Fastrack Xtend with an Expansion Card 78
8.4. Operational Status 78
9. COMMUNICATING WITH THE FASTRACK XTEND 79
9.1. Communications Testing 79
9.2. Verifying the Received Signal Strength 80
9.3. Verifying the Network Registration 80
9.4. Checking the Band Selection 81
9.5. Switching Bands 81
9.6. Checking the PIN Code Status 82
9.7. Main AT Commands for the Fastrack Xtend 82
9.8. Echo Function 83
9.9. DC-IN Detection 83
10. OTHER MAINTENANCE OPTIONS 84
10.1. Enabling/Disabling the Flash LED 84
10.2. Firmware Upgrade Procedure 84
11.TROUBLESHOOTING THE FASTRACK XTEND 85
11.1. No Communications with the Fastrack Xtend through the Serial Link 85
11.2. Receiving "ERROR" 86
11.3. Receiving "NO CARRIER" 86
11. POWER CONSUMPTION 88
12.1. Various Operating Modes 88
12.2. Working Mode Features 89
12.3. Power Consumption in Connected Mode (FXT009) 90
12.4. Power Consumption in Connected Mode (FXT003) 92
12.5. Power Consumption in Non-Connected Mode (FXT009) 95
12.6. Power Consumption in Non-Connected Mode (FXTO03) 96
12.7. Power Consumption with FXT004 98
12.8. Consumption Measurement Procedure 98
12.8.1. Hardware Configuration 99
12.8.1.1. Equipment 99
12.8.1.2. SIM Cards Used 100
12.8.2. Software Configuration 100
12.8.2.1. Fastrack Xtend Configuration 100
12.8.2.2. Equipment Configuration 100
12. RECOMMENDATIONS WHEN USING THE FASTRACK XTEND ON TRUCKS 103
13.1. Recommended Power Supply Connection on Trucks 103
13.2. Technical Constraints on Trucks 104
14.FASTRACK XTEND ACCESSORIES 105
14.1. Standard Accessories 105
14.2. Additional Optional Accessories 105
14.3. Optional Battery 105
14.4. Component Recommendations 106
13. RECOMMENDATIONS WHEN USING THE BATTERY ACCESSORY 107
15.1. Using the Battery Accessory 108
15.2. LED Indicator 109
15.3. Charging Time 109
15.3.1. Charging Specification 109
15.4. Ni-MH Battery Level Reading 110
15.5. DC-IN Detection 110
15.6. Battery Accessory Recommendations and Other Information 111
14. RELIABILITY COMPLIANCE AND RECOMMENDED STANDARDS 112
16.1. Reliability Compliance 112
16.2. Applicable Standards Listing 112
16.3. Environmental Specifications 113
16.3.1. Function Status Classification 114
16.3.2. Reliability Prediction Model 114
16.3.2.1. Life Stress Test 114
16.3.2.2. Environmental Resistance Stress Test 115
16.3.2.3. Corrosive Resistance Stress Test. 115
16.3.2.4. Thermal Resistance Cycle Stress Test. 116
16.3.2.5. Mechanical Resistance Stress Tests 116
16.3.2.6. Handling Resistance Stress Tests 118
15. CERTIFICATION COMPLIANCE AND RECOMMENDED STANDARDS 119
17.1. Certification Compliance 119
17.2. Applicable Standards Listing 119
16. SAFETY RECOMMENDATIONS 121
18.1. General Safety 121
18.2. Battery Safety 122
18.3. Vehicle Safety 122
18.4. Care and Maintenance. 122
18.5. Your Responsibility 123
17. REFERENCE DOCUMENTS 124
19.1. Sierra Wireless Software Documentation 124
19.2. Firmware Documentation 124
19.3. Expansion Card Documentation. 125
19.4. Firmware Upgrade Documentation 125
19.5. Other Related Documentation 125
20.LIST OF ABBREVIATIONS 126
21.APPENDIX A: PACKAGING 128
21.1. Contents 128
21.2. Accessories Description 130
21.2.1. GSM Antenna 130
21.2.2. GPS Antenna. 131
21.2.3. Serial Data Cable 132
21.2.4. 16 -wire IO Cable used with the GPS Expansion Card 133
21.2.5. USB Cable 134
21.2.6. 6 -wire Cable Accessory used with the Fastrack Xtend 134
21.2.7. Package 135
21.2.8. Two Holding Bridles 135
21.2.9. Power Supply used with the Fastrack Xtend 137
22.APPENDIX B: PRODUCT LABELING 138
23.APPENDIX C: SAFETY RECOMMENDATIONS (FOR INFORMATION ONLY) 139
23.1. RF Safety 139
23.1.1. General 139
23.1.2. Exposure to RF Energy 139
23.1.3. Efficient Terminal Operation 139
23.1.4. Antenna Care and Replacement 139
23.2. General Safety 140
23.2.1. Driving 140
23.2.2. Electronic Devices 140
23.2.3. Vehicle Electronic Equipment 140
23.2.4. Medical Electronic Equipment 140
23.2.5. Aircraft 140
23.2.6. Children 141
23.2.7. Blasting Areas 141
23.2.8. Potentially Explosive Atmospheres 141

List of Figures

Figure 1. Fastrack Xtend 19
Figure 2. Functional Architecture 28
Figure 3. Fastrack Xtend RF Architecture 29
Figure 4. Fastrack Xtend Mechanical Drawing 31
Figure 5. Fastrack Xtend Front Interface 32
Figure 6. Power Supply Connector 33
Figure 7. Equivalent Circuit of V_{IL}, Vref $=2.8 \mathrm{~V}$ 34
Figure 8. \quad Equivalent Circuit of $\mathrm{V}_{\mathrm{IH}}, \mathrm{Vref}=2.8 \mathrm{~V}$ 35
Figure 9. Equivalent Circuit of V_{OL}, Vref $=2.8 \mathrm{~V}$ 35
Figure 10. Equivalent Circuit of V_{OH}, Vref $=2.8 \mathrm{~V}$ 35
Figure 11. Equivalent Circuit of V_{IL}, Vref $>2.8 \mathrm{~V}$ 36
Figure 12. Equivalent circuit of V_{IH}, Vref $>2.8 \mathrm{~V}$ 36
Figure 13. Equivalent circuit of V_{OL}, Vref $>2.8 \mathrm{~V}$ 36
Figure 14. Equivalent circuit of V_{OH}, Vref $>2.8 \mathrm{~V}$ 37
Figure 15. 15-Pin Serial Connector 39
Figure 16. RS232 Serial Link Signals 40
Figure 17. V24 Serial Link Implementation for a 5-wire UART 41
Figure 18. V24 Serial Link Implementation for a 4-wire UART 42
Figure 19. V24 Serial Link Implementation for a 2-wire UART 42
Figure 20. Equivalent Circuit of CSPK2 Speaker Outputs 45
Figure 21. Mini-USB Connector 46
Figure 22. Fastrack Xtend Back Interface 47
Figure 23. Main RF Connector for the FXT001, FXT002, FXT009 and FXT010 48
Figure 24. Secondary (Diversity) RF connector in FXT003 and FXT004 50
Figure 25. Reset Sequence Diagram 55
Figure 26. Fastrack Xtend Expansion Card Compartment 57
Figure 27. 50-pin Expansion Card Connector 57
Figure 28. Expansion Card Size 59
Figure 29. Suggested Expansion Card Dimension 60
Figure 30. Installation of Ethernet Expansion Card on the Fastrack Xtend 61
Figure 31. Ethernet Expansion Card Architecture 62
Figure 32. Ethernet Expansion Card with RJ-45 Interface Cable 62
Figure 33. 10-Pin Interface Socket. 63
Figure 34. IO+GPS Expansion Card Architecture. 64
Figure 35. IO+GPS Expansion Card 65
Figure 36. Installation of IO+GPS Expansion Card on the Fastrack Xtend 65
Figure 37. 16-Way IO Expander Socket. 66
Figure 38. Installation of RS485 Expansion Card on the Fastrack Xtend 69
Figure 39. RS485 Expansion Card Architecture 69
Figure 40. An RS485 Expansion Card and a Cable Harness 70
Figure 41. 18-Pin Interface Socket 70
Figure 42. Expansion Card Removal Procedure 72
Figure 43. Fastrack Xtend Holding Bridles 73
Figure 44. Mounting the Fastrack Xtend 73
Figure 45. Typical Hardware Configuration for Power Consumption Measurement 99
Figure 46. Recommended Power Supply Connection on Trucks 103
Figure 47. Example of an Electrical Connection That May Damage the Fastrack Xtend 104
Figure 48. Fastrack Xtend Optional Battery Accessory 107
Figure 49. Battery with Charger Block Diagram 107
Figure 50. Fastrack Xtend with Battery Accessory Attached. 108
Figure 51. Holding Bridle Description 136
Figure 52. Fastrack Xtend Product Labeling 138

List of Tables

Table 1. Fastrack Xtend versus Fastrack Supreme 17
Table 2. Fastrack Xtend Physical Dimensions 19
Table 3. Fastrack Xtend Variants 19
Table 4. Fastrack Xtend Basic Features 22
Table 5. Fastrack Xtend Basic Features by Variant 24
Table 6. Fastrack Xtend Variants with Corresponding Supported Bands 29
Table 7. Power Supply Electrical Characteristics 30
Table 8. Power Supply Connector Pin Description 33
Table 9. GPIO Pin Description 34
Table 10. GPIO Pin Operating Conditions when Vref is at 2.8 V 34
Table 11. GPIO Pin Operating Conditions when Vref $>2.8 \mathrm{~V}$ 35
Table 12. ON/OFF Pin Operation 38
Table 13. ON/OFF Pin Description 38
Table 14. Serial Connector Pin Description 39
Table 15. Microphone Pin Description 43
Table 16. Equivalent Circuits of CMIC2 44
Table 17. Electrical Characteristics of CMIC2 44
Table 18. Recommended Microphone Characteristics 44
Table 19. Speaker Outputs Pin Description 45
Table 20. Electrical Characteristics of CSPK2 45
Table 21. Recommended Speaker Characteristics 46
Table 22. Mini-USB Pin Description 46
Table 23. USB Electrical Characteristics 47
Table 24. SIM Socket Pin Description. 48
Table 25. Tx and Rx Frequency Range 48
Table 26. Main Receiver Parameters for FXT001, FXT002, FXT009 and FXT010 49
Table 27. Main Transmitter Parameters for FXT001, FXT002, FXT009 and FXT010 49
Table 28. Antenna Specifications for FXT001, FXT002, FXT009 and FXT010 49
Table 29. Main Receiver Parameters for FXT003 50
Table 30. Main Transmitter Parameters for FXT003 50
Table 31. Antenna Specifications for FXT003 51
Table 32. Main Receiver Parameters for FXT004 51
Table 33. Main Transmitter Parameters for FXT004 51
Table 34. Antenna Specifications for FXT004 52
Table 35. GPS Antenna Specifications for FXT004 52
Table 36. Alarm Mode (Low Power Mode) 53
Table 37. Fastrack Xtend Reset Status. 54
Table 38. Reset Electrical Characteristics 54
Table 39. Reset Operating Conditions 54
Table 40. Fastrack Xtend LED Status 55
Table 41. Real Time Clock Specifications 56
Table 42. 50-pin Expansion Card Connector Description 57
Table 43. Expansion Card Types for the Fastrack Xtend 61
Table 44. Basic Features of the Ethernet Expansion Card 61
Table 45. 10-Pin Interface Socket Description 63
Table 46. Mechanical Characteristics 63
Table 47. Electrical Characteristics 63
Table 48. Extra Current Consumption from DC-IN Source (Typical) 64
Table 49. Mechanical Characteristics 66
Table 50. 16-Way IO Expander Description 66
Table 51. GPIOs Pin Description 66
Table 52. Electrical Characteristics 67
Table 53. Extra Current Consumption from DC-IN Source (Typical) 67
Table 54. GPS Receiver Frequency 67
Table 55. External Antenna Characteristics 67
Table 56. Receiver Performances 68
Table 57. Basic Features of the RS485 Expansion Card 68
Table 58. 18-Pin Interface Socket Description 70
Table 59. Mechanical Characteristics 71
Table 60. Electrical Characteristics 71
Table 61. Non-Connected Current Consumption in FXT009 at DC-IN =13.2V 71
Table 62. Basic AT Commands to Use with the Fastrack Xtend 79
Table 63. <rssi> Value Description 80
Table 64. AT+CREG Main Reponses 80
Table 65. AT+WMBS Main Reponses 81
Table 66. AT+WMBS Band Selection 81
Table 67. AT+CPIN Main Responses 82
Table 68. Main AT Commands used for the Fastrack Xtend 82
Table 69. No Communications with the Fastrack Xtend Through the Serial Link 85
Table 70. Receiving a "No Carrier" Message 86
Table 71. Extended Error Codes 87
Table 72. Initial Power Consumption (Typical)* 88
Table 73. Fastrack Xtend Operating Modes 88
Table 74. Fastrack Xtend Operating Modes Feature Availability 89
Table 75. Power Consumption of FXT009 in Connected Mode (Typical) 90
Table 76. Power Consumption of FXT003 in Connected Mode (Typical) 92
Table 77. Power Consumption of FXT009 in Non-Connected Mode (Typical) 95
Table 78. Power Consumption of FXT003 in Non-Connected Mode (Typical) 96
Table 79. Power Consumption of FXT004 (Typical) 98
Table 80. List of Recommended Equipments 99
Table 81. Operating Mode Information 101
Table 82. 6-Wire Cable Accessory Color Coding 105
Table 83. List of Recommended Accessories 106
Table 84. Battery Specifications 108
Table 85. LED Indicator Status 109
Table 86. Battery Accessory Charging Time 109
Table 87. Charging Specifications (Typical) 109
Table 88. AT+WIOR in GPIO1 Responses 110
Table 89. Standards Conformity for the Fastrack Xtend Series 112
Table 90. Applicable Standards and Requirements for the Fastrack Xtend 112
Table 91. Operating Class Temperature Range 113
Table 92. ISO Failure Mode Severity Classification 114
Table 93. Life Stress Test 114
Table 94. Environmental Resistance Stress Test 115
Table 95. Corrosive Resistance Stress Test 115
Table 96. Thermal Resistance Cycle Stress Test 116
Table 97. Mechanical Resistance Stress Tests 116
Table 98. Handling Resistance Stress Tests 118
Table 99. Standards Conformity for FXT001, FXT002, FXT003, FXT009 and FXT010 119
Table 100. Standards Conformity for FXT004 119
Table 101. Applicable Standards and Requirements for the Fastrack Xtend Series. 119
Table 102. Configuration Availability for the Fastrack Xtend Series 129
Table 103. GSM Antenna Description 130
Table 104. GPS Antenna Description 131
Table 105. Serial Data Cable Description 132
Table 106. 16-wire IO Cable Description 133
Table 107. 6-wire Cable Accessory Description 134
Table 108. Packaging Description 135
Table 109. Power Supply Description 137

1. Overview

The Fastrack Xtend series is a range of self-contained programmable gateways supporting EGSM/GPRS/EGDE 850/900/1800/1900 quad band, HSPA 850/1900/2100 and CDMA2000 1XRTT (IS-2000) that is especially designed for M2M systems. For the 3G versions of the Fastrack Xtend, UMTS and HSxPA connectivity are also available for users.
The Fastrack Xtend also offers an Expansion Card interface accessible for customer use. Expanding application features is easy by simply plugging in an Expansion Card.

Fully certified, the Fastrack Xtend offers quad band 850/900/1800/1900 MHz GPRS and EGPRS Class 10 (12*) capabilities, Tri Band HSPA/FDD (850/1900/2100) (Band I, II, V) UMTS / HSxPA; and it also supports the Sierra Wireless Software Suite. The Sierra Wireless Software Suite is the world's most comprehensive cellular development environment, which allows embedded standard ANSI C applications to be natively executed directly on the Intelligent Embedded Module. For more information about Sierra Wireless Software Suite, refer to the documents listed in section 19 Reference Documents.

Note: \quad * EGPRS Class 12 capabilities are only available for 3G versions of the Fastrack Xtend.
Only the 3G version of the Fastrack Xtend supports HSPA. The CDMA version only supports CDMA2000 1xRTT.

This document does not cover the programmable capabilities available through the Sierra Wireless Software Suite.

1．1．Comparison with the Fastrack Supreme

The following table lists the main feature differences between the various Fastrack Xtend variants and the Fastrack Su
Table 1．Fastrack Xtend versus Fastrack Supreme

Feature	FXT001	FXT002	FXT003	FXT004	FXT009	FXT010
GSM	$\boxtimes 900$ $\boxtimes 1800$ $\boxtimes 850$ $\boxtimes 1900$	『900 区1800 【850 『1900	『900 囚1800 】850 『1900	$\square 900$ $\square 1800$ $\square 850$ $\square 1900$	『900 区1800 】850 】1900	『900 『1800 『850 『1900
HSPA	$\square 850$ $\square 1900$ $\square 2100$	$\square 850$ $\square 1900$ $\square 2100$	区850『1900『2100	$\square 850$ $\square 1900$ $\square 2100$	$\square 850$ $\square 1900$ $\square 2100$	$\square 850$ $\square 1900$ $\square 2100$
$\begin{aligned} & \text { CDMA } 2000 \\ & \text { 1xRTT } \end{aligned}$	$\square 800$ $\square 1900$	$\square 800$ $\square 1900$	$\square 800$ $\square 1900$	$\begin{aligned} & \boxtimes 800 \\ & \boxtimes 1900 \end{aligned}$	$\square 800$ $\square 1900$	$\begin{aligned} & \square 800 \\ & \square 1900 \end{aligned}$
GPRS	『Class10 \square Class12 $\square \mathrm{N}$ No	区Class10 \square Class12 \square No	$\begin{aligned} & \hline \square \text { Class10 } \\ & \text { 区Class12 } \\ & \square \text { No } \\ & \hline \end{aligned}$	\square Class10 \square Class12 \boxtimes No	区Class10 Class12 No	$\begin{aligned} & \text { இClass10 } \\ & \square \text { Class12 } \\ & \square \text { No } \end{aligned}$
EDGE	\square Yes 区No	\boxtimes Yes \square No	区Yes \square No	\square Yes 囚No	『Yes \square No	凹Yes \square No
Expansion Card Flexibility	区Yes \square No	இYes \square No	QYes \square No	\square Yes \boxtimes No	『Yes \square No	区Yes \square No
Micro－Fit Connector	$\begin{aligned} & \square 4 \text {-pin } \\ & \boxtimes 10 \text {-pin } \end{aligned}$	\square 4－pin 区10－pin	$\begin{aligned} & \square 4 \text {-pin } \\ & \boxtimes 10 \text {-pin } \end{aligned}$	$\begin{aligned} & \square 4 \text {-pin } \\ & \boxtimes 10 \text {-pin } \end{aligned}$	$\begin{aligned} & \square 4 \text {-pin } \\ & \boxtimes 10 \text {-pin } \end{aligned}$	$\begin{aligned} & \square 4 \text {-pin } \\ & \boxtimes 10 \text {-pin } \end{aligned}$
Secondary RF Interface	\square Yes 区No	\square Yes \boxtimes No	区Yes \square No	■Yes \square No	$\begin{aligned} & \square \mathrm{Yes} \\ & \boxtimes \mathrm{No} \end{aligned}$	\square Yes \boxtimes No
USB Interface	囚Yes \square No	凹Yes \square No	$\begin{aligned} & \boxed{Y Y e s} \\ & \square \mathrm{No} \end{aligned}$	இYes \square No	$\begin{aligned} & \boxed{\mathrm{Yes}} \\ & \square \mathrm{No} \end{aligned}$	凹Yes \square No

Feature	FXT001	FXT002	FXT003	FXT004	FXT009	FXT010
Serial Port Auto Shut Down	\triangle Yes \square No	$\boxtimes Y e s$ \square No	®Yes \square No	\square Yes 区No	$\boxtimes Y e s$ \square No	QYes \square No
RTC Back Up Battery	『Yes \square No	®Yes \square No	®Yes \square No	QYes \square No	囚Yes \square No	『Yes \square No
Battery Accessory	『Yes \square No	இYes \square No	『Yes \square No	マYes \square No	®Yes \square No	『Yes \square No

For more information on the features available on the various Fastrack Xtend variants，refer to Table 4 Fastrack Xtend Xtend Basic Features by Variant．

1.2. Overall Dimensions

Figure 1. Fastrack Xtend
Table 2. Fastrack Xtend Physical Dimensions

Length	89 mm
Width	60 mm
Thickness	30 mm
Weight	100 g for FXT001, FXT004, and FXT009; 120 g for FXT003

1.3. Fastrack Xtend Variants

Table 3. Fastrack Xtend Variants

Part Number	Fastrack Xtend Variant Description
FXT001*	EGSM Quad Band + CL10 GPRS
FXT002*	EGSM Quad Band + CL 10 GPRS + EDGE
FXT003	EGSM Quad Band + CL 12 GPRS + EDGE + HSxPA + Tri Band HSPA
FXT004	CDMA2000 1XRTT Dual Band with GPS L1 supported
FXT009	EGSM Quad Band + CL 10 GPRS + EDGE
FXT010	EGSM Quad Band + CL 10 GPRS + EDGE + Embedded SIM
FXT001 and FXT002 will be replaced with FXT009.	
Note: $\begin{array}{ll}\text { A } \\ & F \\ & \\ & \end{array}$	wireless interfaces will vary depending on the Fastrack Xtend variant. Refer to Table 5 Xtend Basic Features for more details on the basic features available on each Fastrack riant.

1.4. Connections

- One 10-pin Micro-Fit Power Supply Connector
- USB 2.0
- One 15-pin Sub-D Serial Interface
- SIM Interface (not available in FXT004)
- Antenna Interface
- SMA Main
- SMA Diversity (3G-HSxPA version) for FXT003; or SMA GPS-One (1xRTT version)

1.5. Interfaces

1.5.1. Fastrack Xtend

- Power Supply
- 3V/1V8 SIM Interface
- USB Slave Interface
- Serial Link (UART1)
- ON/OFF
- Boot
- Reset
- Audio Interface
- 2 GPIOs
- LED Status Indicator
- Battery Accessory Interface (Optional)

1.5.2. Internal Expansion Card

- 1 - Secondary Serial Link (UART2)
- 6-GPIOs
- 2 -SPIBus
- 1-ADC
- 1 -DAC
- 1 - РСМ
- 1 - Interrupt
- Reset access to the embedded module
- Boot access to the embedded module
- 2.8 V supply from the Fastrack Xtend
- 4 V supply from the Fastrack Xtend
- 2.8 V Digital supply from the embedded module
- 1.8 V Digital supply from the embedded module
- Access to 4.75 to 32 V DC-IN

1.6. Environmental Compliance

1.6.1. RoHS Directive Compliant

The Fastrack Xtend is compliant with RoHS Directive 2002/95/EC which sets limits for the use of certain restricted hazardous substances. This directive states that "from 1st July 2006, new electrical and electronic equipment put on the market does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE)".

1.6.2. Disposing of the Product

This electronic product is subject to the EU Directive 2002/96/EC for Waste Electrical and Electronic Equipment (WEEE). As such, this product must not be disposed off at a municipal waste collection point. Please refer to local regulations for directions on how to dispose of this product in an environmental friendly manner.

2. Features and Services

This section enumerates the features and services available on the Fastrack Xtend series.

2.1. Features and Services

Refer to the table below for the list of basic features available on the Fastrack Xtend.

Table 4. Fastrack Xtend Basic Features

Features	Description
Sierra Wireless Software Suite (does not apply to FXT004)	- Sierra Wireless Software Suite programmable: - Native execution of embedded standard ANSI C applications - Custom AT command creation - Custom application library creation - Standalone operation - Interface for embedded applications (does not apply to FXT004) - Plug-In compatible (does not apply to FXT004)
Standard (does not apply to FXT004)	- $850 \mathrm{MHz} / 900 \mathrm{MHz}$ - E-GSM compliant - Output power: class 4 (2W) - Fully compliant with ETSI GSM phase $2+$ normal MS - $1800 \mathrm{MHz} / 1900 \mathrm{MHz}$ - Output power: class 1 (1W) - Fully compliant with ETSI GSM phase $2+$ normal MS
GPRS (does not apply to FXT004)	- Class 10 (FXT001, FXT002, FXT003, FXT009 and FXT010) - Up to Class 12 (FXT003 only) - PBCCH support - Coding schemes: CS1 to CS4 - Compliant with SMG31bis - Embedded TCP/IP stack
EGPRS (for FXT002, FXT003, FXT009 and FXT010 only)	- Class 10 (FXT002, FXT003, FXT009 and FXT010) - Up to Class 12 (FXT003 only) - PBCCH support - Coding schemes: MCS1 to MCS9 - Compliant with SMG31bis - Embedded TCP/IP stack
Interface	- RS232 (V.24/V.28) Serial interface supporting: - Baud rate (bits/s): $300,600,1200,2400,4800,9600,19200,38400,57600$, 115200, 230400, 460800 and 921600 - Autobauding (bits/s): from 1200 to 921600. - 2 General Purpose Input/Output gates (GPIOs) available. - $1.8 \mathrm{~V} / 3 \mathrm{~V}$ SIM interface. (Does not apply to FXT004) - AT command set based on V.25ter and GSM 07.05 \& 07.07
SMS	- Text \& PDU - POINT TO POINT (MT/MO) - Cell broadcast

Features	Description
Data (for FXT001, FXT002, FXT009 and FXT010)	- Data circuit asynchronous - Transparent and Non Transparent modes - Up to 14.400 bits/s - MNP Class 2 error correction - V42.bis data compression
CDMA2000 (for FXT004)	- Band Class 0 and Class 1 - Data rates up to 153 kbps forward and reverse
UMTS Data Transfer (for FXT003)	BAND I, II, IV (850/1900,2100)up to 384kbits/s
HSXPA (for FXT003)	- BAND I, II, IV (850/1900,2100) - HSDPA Cat 8 up to $7.2 \mathrm{Mbits} / \mathrm{s}$ - HSUPA Cat 5 up to $2 \mathrm{Mbits} / \mathrm{s}$
FAX (for FXT001, FXT002, FXT009, and FXT010)	Automatic fax group 3 (class 1 and class 2)
Audio	- Echo cancellation - Noise reduction - Full Rate, Enhanced Full Rate, Half Rate operation and Adaptive Multi-Rate (FR/EFR/HR/AMR); \#EVRC/QCELP/4GV for FXT004 - Dual Tone Multi Frequency function (DTMF)

Refer to the following table for the comparison list between the different Fastrack Xtend variants．
Table 5．Fastrack Xtend Basic Features by Variant

Feature	FXT001	FXT002	FXT003	FXT004	FXT
GSM	区 900 $\boxtimes 1800$ $\boxtimes 850$ $\boxtimes 1900$	$\boxtimes 900$ $\boxtimes 1800$ $\boxtimes 850$ $\boxtimes 1900$	凹 900 $\boxtimes 1800$ $\boxtimes 850$ $\boxtimes 1900$	$\square 900$ $\square 1800$ $\square 850$ $\square 1900$	$\begin{aligned} & \boxtimes 9 \\ & \boxtimes 1 \\ & \boxtimes 8 \\ & \boxtimes \end{aligned}$
HSPA	$\square 850$ $\square 1900$ $\square 2100$	$\begin{aligned} & \square 850 \\ & \square 1900 \\ & \square 2100 \end{aligned}$	【 850 $\boxtimes 1900$ $\boxtimes 2100$	$\square 1800$ $\square 850$ $\square 1900$ $\square 2100$	\square
CDMA 2000 1xRTT	$\square 800$ $\square 1900$	$\square 800$ $\square 1900$	$\square 800$ $\square 1900$	$\begin{aligned} & \boxtimes 800 \\ & \boxtimes 1900 \end{aligned}$	$\begin{aligned} & \square 8 \\ & \square 1 \end{aligned}$
GPRS	$\begin{aligned} & \boxtimes \text { Class10 } \\ & \square \text { Class12 } \\ & \square \text { No } \end{aligned}$	Class10 Class12 No	\square Class10 \boxtimes Class12 \square No	$\begin{aligned} & \square \text { Class10 } \\ & \square \text { Class12 } \\ & \boxtimes \text { No } \end{aligned}$	
EDGE	$\begin{aligned} & \square \mathrm{Yes} \\ & \boxtimes \mathrm{No} \end{aligned}$	$\begin{aligned} & \boxed{X} \mathrm{Yes} \\ & \square \mathrm{No} \end{aligned}$	\boxtimes Yes \square No	$\begin{aligned} & \square \text { Yes } \\ & \boxtimes \text { No } \end{aligned}$	$\begin{aligned} & \boxtimes Y \\ & \square \mathrm{~N} \end{aligned}$
Voice	$\begin{aligned} & \boxtimes \mathrm{Yes} \\ & \square \mathrm{No} \end{aligned}$	\boxtimes Yes \square No	\boxtimes Yes \square No	$\begin{aligned} & \boxtimes \mathrm{Yes} \\ & \square \mathrm{No} \end{aligned}$	$\begin{aligned} & \boxtimes Y \\ & \square N \end{aligned}$
Data	$\begin{aligned} & \boxed{Y} \text { Yes } \\ & \square \text { No } \end{aligned}$	$\begin{aligned} & \boxed{\mathrm{Yes}} \\ & \square \mathrm{No} \end{aligned}$	\boxtimes Yes \square No	$\begin{aligned} & \boxtimes \mathrm{Yes} \\ & \square \mathrm{No} \end{aligned}$	$\begin{aligned} & \boxtimes Y \\ & \square N \end{aligned}$
Fax	$\begin{aligned} & \boxed{X Y e s} \\ & \square \mathrm{No} \end{aligned}$	\triangle Yes \square No	\boxtimes Yes \square No	\boxtimes Yes \square No	$\begin{aligned} & \boxtimes Y \\ & \square Y \end{aligned}$
SIM Interface	3 V 5 V $3 / 5 \mathrm{~V}$ 1．8／3V	3 V 5 V $3 / 5 \mathrm{~V}$ 1．8／3V	3 V 5 V $3 / 5 \mathrm{~V}$ 1．8／3V	3 V 5 V $3 / 5 \mathrm{~V}$ $1.8 / 3 \mathrm{~V}$	
Embedded SIM	$\begin{aligned} & \square \mathrm{Yes} \\ & \boxtimes \mathrm{No} \end{aligned}$	$\begin{aligned} & \square \mathrm{Yes} \\ & \boxtimes \mathrm{No} \end{aligned}$	$\square \mathrm{Yes}$ $\boxtimes \mathrm{No}$	$\begin{aligned} & \square \mathrm{Yes} \\ & \boxtimes \mathrm{No} \end{aligned}$	$\begin{aligned} & \square Y \\ & \boxtimes Y \end{aligned}$
RUIM	$\begin{aligned} & \square \mathrm{Yes} \\ & \boxtimes \mathrm{No} \end{aligned}$	$\begin{aligned} & \square \mathrm{Yes} \\ & \boxtimes \mathrm{No} \end{aligned}$	$\begin{aligned} & \square \mathrm{Yes} \\ & \boxtimes \mathrm{No} \end{aligned}$	$\begin{aligned} & \square \text { Yes } \\ & \boxtimes \text { No } \end{aligned}$	$\begin{aligned} & \square Y \\ & \boxtimes N \end{aligned}$

Feature	FXT001	FXT002	FXT003	FXT004	FXT
Vocoder	® HR $\boxtimes F R$ ® EFR \boxtimes AMR	『 HR $\boxtimes F R$ 区EFR 【 AMR	『 HR 『 FR $\boxtimes E F R$ Q AMR	－QCELP © EVRC Q EVRC－B	$\boxtimes \vdash$ ® \boxtimes $\boxtimes A$
GPS One	$\begin{aligned} & \square \mathrm{Yes} \\ & \boxtimes \mathrm{No} \end{aligned}$	\square Yes \boxtimes No	\square Yes \boxtimes No	\boxtimes Yes \square No	\square ®
SMA Main Antenna	\boxtimes Yes \square No	\boxtimes Yes No	\boxtimes Yes \square No	区 Yes \square No	$\boxtimes Y$
SMA Diversity	$\begin{aligned} & \square \mathrm{Yes} \\ & \boxtimes \mathrm{No} \end{aligned}$	\square Yes \boxtimes No	\boxtimes Yes \square No	Yes（for GPS） No	$\begin{aligned} & \square Y \\ & \square N \end{aligned}$
Sierra Wireless Software Suite Compliant	\boxtimes Yes No	\boxtimes Yes No	\boxtimes Yes No	\square Yes \boxtimes No	\boxtimes
Expansion Card Compatible	\boxtimes Yes No	\boxtimes Yes No	\boxtimes Yes No	$\begin{aligned} & \square \mathrm{Yes} \\ & \boxtimes \mathrm{No} \end{aligned}$	$\boxtimes Y$ $\square 1$

2.2. Supported Bands

The Fastrack Xtend comes in several variants, supporting various bearers and bands. The FXT001, FXT002, FXT009 and FXT010 are quad band programmable gateways that support either EU bands (EGSM900/DCS1800) or US bands (GSM850/PCS1900). Users may switch from one supported band to another by using AT commands.

The FXT003 is also a quad band EGSM900/DCS1800/GSM850/PCS1900 that also supports Tri Band HSPA/FDD (850/1900/2100) (Band I, II, V) UMTS/HSxPA. Band selection is done automatically without having to switch manually using AT commands. FXT004 is the CDMA version, which supports dual band ($800 / 1900 \mathrm{MHz}$) mode.

Refer to sections 9.4 Checking the Band Selection and 9.5 Switching Bands for more information regarding switching bands.

2.3. Expansion Card Interface

The Fastrack Xtend offers a 50-pin Expansion Card Interface accessible to customers. It is an additional interface for customers to expand their application features by simply plugging in an Expansion Card through the mating connector of the Expansion Card interface.

The Fastrack Xtend with an Ethernet Expansion Card, an IO+GPS Expansion Card, or an RS485 Expansion Card plugged-in is run by the Plug-Ins of the Sierra Wireless Software Suite, which is based on the firmware inside the Fastrack Xtend.

The Fastrack Xtend supports the following types of Expansion Cards:

- IO+GPS (FXTE01)
- Ethernet (FXTE02)
- RS485+Isolated Digital Inputs (EC0020)

Refer to section 7.3 Expansion Card Design Suggestion for more information about the Expansion Cards supported by the Fastrack Xtend.

Note: \quad The Internal Expansion Card is not available in FXT004.

2.4. Protection

2.4.1. Power Supply

The Fastrack Xtend is protected from continuous over-voltage by a $2 \mathrm{~A} / 250 \mathrm{~V}$ slow break fuse directly bonded on the 6-wire cable accessory; and it is also protected against transient voltage peaks over +32 V . When the input voltage exceeds 32 V , the supply voltage is automatically disconnected in order to protect the internal electronic components from overvoltage.

2.4.2. Electrostatic Discharge

The Fastrack Xtend withstands ESD according to IEC 1000-4-2 requirements for all accessible parts, except for the RF connector which withstands ESD as follows:

- $+/-8 \mathrm{kV}$ of air discharge
- $+/-4 \mathrm{kV}$ of contact discharge

2.4.3. Main Serial Link

The Fastrack Xtend's RS232 serial link connection is internally protected against electrostatic surges on its lines by ESD protection and it also has the following filtering guarantees:

- EMI/RFI protection on both input and output
- Signal smoothing

3. Functional Specifications

This section discusses the functional specifications of the Fastrack Xtend series.

3.1. Functional Architecture

The global architecture of the Fastrack Xtend series is shown in the figure below.

Figure 2. Functional Architecture

3.2. RF Functionalities

Figure 3. Fastrack Xtend RF Architecture
Refer to the table below for the list of Fastrack Xtend variants and their corresponding supported bands.

Table 6. Fastrack Xtend Variants with Corresponding Supported Bands

Fastrack Xtend Variant	Supported Bands
FXT001, FXT002, FXT009, FXT010	Quad band $(850 / 900 / 1800 / 1900 \mathrm{MHz})$
FXT003	Quad band $(850 / 900 / 1800 / 1900 \mathrm{MHz})$ Tri band UMTS/HSXPA $(850 / 1900 / 2100 \mathrm{MHz})$
FXT004	Dual band CDMA2000 $(800 / 1900 \mathrm{MHz})$

Refer to section 1.3 Fastrack Xtend Variants for a more detailed description of the Fastrack Xtend Variants.

3.3. Operating System

The Fastrack Xtend is Sierra Wireless Software Suite compliant. With the Sierra Wireless Software Suite, customers can embed their own applications with the Fastrack Xtend and turn the Fastrack Xtend into a solution for their specific market need. The operating system of the Fastrack Xtend is also responsible for the following functions:

- AT Command processing
- Real Time Clock (RTC) with calendar

4. Technical Specifications

4.1. Power Supply

The Fastrack Xtend is supplied by an external DC voltage, DC-IN, with a voltage range of $+4.75 \mathrm{~V} \sim$ +32 V .

The main regulation is made with an internal DC/DC converter in order to supply all the internal functions with a DC voltage. The correct operation of the Fastrack Xtend in Communication mode is not guaranteed if the input voltage falls below 4.75 V .

Refer to the following table for the Fastrack Xtend's operating voltage range and maximum current.
Table 7. Power Supply Electrical Characteristics

Operating Voltage Range	4.75 V to 32 V DC, nominal at 13.2 V
Maximum Current (Typical)	600 mA, average at $4.75 \mathrm{~V} ; 3 \mathrm{~A}$ Peak at 4.75 V on FXT002, FXT009 and FXT010 950 mA , average at $4.75 \mathrm{~V} ; 3.7 \mathrm{~A}$ Peak at 4.75 on FXT003

The Fastrack Xtend is permanently powered once the power supply is connected. In the case of Alarm mode (Low Power mode), the user can set the Fastrack Xtend "Turn-on" time. Refer to section 6.1 Alarm Mode for more information.

Caution: The minimum input voltage specified here is the Fastrack Xtend input. Be mindful of the input voltage decrease caused by the power cable. When using the 6-wire cable accessory that comes with the Fastrack Xtend package, this input drop is at around 800 mV at 4.75 V and 220 mV at 32 V (EDGE 4TX).

The Fastrack Xtend is designed for use with the original power cable, and the fuse that came with the original cable is a 2A/250V Slow Break fuse 5.2mm*20mm.

4.2. Mechanical Specifications

Figure 4. Fastrack Xtend Mechanical Drawing

5. Interfaces

This section describes the different interfaces that connect with the Fastrack Xtend. The Fastrack Xtend comes with the following interfaces:

- 10-pin Micro-Fit Connector
- USB Interface
- 15-pin Sub-D Serial Interface
- Main RF Interface
- Secondary RF Interface (for FXT003 and FXT004 only)
- SIM Interface (not available for FXT004)
- LED Status Indicator

5.1. Front Interface

Figure 5. Fastrack Xtend Front Interface

5.1.1. Power Supply Connector

The power supply connector is a 10-pin Micro-Fit connector that is used for:

- External DC Power Supply connection with voltage from $+4.75 \mathrm{~V}^{*}$ to +32 V at 3 A
- GPIOs connection and GPIO voltage reference
- External Optional battery interface
- ON/OFF pin to power OFF the Fastrack Xtend

Figure 6. Power Supply Connector
Refer to the following table for the pin description of the power supply connector.
Table 8. Power Supply Connector Pin Description

Pin \#	Signal in FXT001/ FXT002/ FXT003/ FXT009/ FXT010	Signal in FXT004	Description
1	GPIO25	GPIO44	General purpose input/output
2	GPIO21	GPIO42	General purpose input/output
3	Vref	Vref	Voltage reference for the GPIOs
4	Reserved	Reserved	Reserved for battery accessory
5	Reserved	Reserved	Reserved for battery accessory
6	GND	GND	Ground
7	DC-IN	Input Supply for the Fastrack Xtend $(4.75 \mathrm{~V}$ to 32V)	
8	ON/OFF	Control pin to power OFF the Fastrack Xtend	
9	Reserved	Reserved	Reserved for battery accessory
10	Reserved	Reserved	Reserved for battery accessory

The input voltage range (DC-IN) is from 4.75 V to 32 V , with a typical operating voltage of 13.2 V .
The power cable is provided as part of the Fastrack Xtend package.
Caution: Pins 1, 2, 3, 4, 5, 8, 9 and 10 are low voltage interfaces. It is strictly prohibited to connect these pins to any power supply as there is a risk of damaging the Fastrack Xtend.

5.1.1.1. General Purpose Input/Output

The Fastrack Xtend has two external GPIO ports, GPIO21 and GPIO25; as well as a voltage reference line, Vref.

Note:
For FXT004, GPIO42 and GPIO44 refers to the two external GPIO ports available on the Power supply connector. Refer to Table 8 Power Supply Connector Pin Description for more information.

Vref sets the reference voltage of the input or output of the two GPIOs. Leaving it unconnected sets the GPIO level at $2.3 \mathrm{~V}-2.6 \mathrm{~V}$ by default. It is strongly recommended to connect to the required GPIOs' output voltage ($2.8 \mathrm{~V} \sim 15 \mathrm{~V}$).
Refer to the following table for the pin description of the GPIOs.
Table 9. GPIO Pin Description

Pin \#	Signal	I/O	I/O Voltage	Description
1	GPIO21	I/O	Vref	General purpose input/output
2	GPIO25	I/O	Vref	General purpose input/output
3	Vref	I	$2.8 \mathrm{~V} \sim 15 \mathrm{~V}$	Voltage reference for the GPIOs

Note: It is recommended to use a 6-wire cable accessory for easy access to these three lines. Please refer to section 14.1 Standard Accessories for more information about the 6-wire cable accessory.

When the voltage reference, Vref, is not connected, if one of the GPIO output is in High state while the other is in Low state, the GPIO in high level voltage will be at 2.3 V . To avoid this voltage drop, it is recommended to use Vref to the desired output voltage.
With Vref connected to 2.8 V , both GPIO21 and GPIO25 may be interfaced with a component that complies with the following levels.

Table 10. GPIO Pin Operating Conditions when Vref is at 2.8 V

Parameter	Mininum	Typical	Maximum	Condition
$\mathrm{V}_{\text {IL }}$			0.84 V	Please refer to Figure 7.
$\mathrm{V}_{\text {IH }}$	1.96 V			Please refer to Figure 8.
$\mathrm{V}_{\text {OL }}$			0.4^{*}	Please refer to Figure 9.
$\mathrm{V}_{\text {OH }}$	2.8^{*}			FXT Zout $=100 \mathrm{~K}$ Pull-up to Vref, please refer to Figure 10.

Value without external load.

Figure 7. Equivalent Circuit of V_{L}, Vref $=2.8 \mathrm{~V}$

Figure 8. Equivalent Circuit of $V_{I H}, V r e f=2.8 \mathrm{~V}$

Figure 9. Equivalent Circuit of $V_{o L}$, Vref $=2.8 \mathrm{~V}$

Figure 10. Equivalent Circuit of $\mathrm{V}_{\mathrm{OH}}, \mathrm{Vref}=2.8 \mathrm{~V}$
With Vref $>2.8 \mathrm{~V}$, both GPIO21 and GPIO25 may be interfaced with a component that complies with the following levels.

Table 11. GPIO Pin Operating Conditions when Vref $>\mathbf{2} \mathbf{2 . 8} \mathrm{V}$

Parameter	Min	Typ	Max	Condition
V_{IL}			0.84 V	Please refer to Figure 11.
V_{IH}	1.96 V			Please refer to Figure 12.

Parameter	Min	Typ	Max	Condition
VoL			$\frac{\text { Vref }}{110}+0.058^{*}$	Please refer to Figure 13.
VOH	Vref* *			FXT Zout $=100 \mathrm{~K}$ Pull-up to Vref, please refer to Figure 14.

Value without external load.

Figure 11. Equivalent Circuit of $V_{I L}$, Vref $>2.8 \mathrm{~V}$

Figure 12. Equivalent circuit of $V_{I H}$, Vref $>2.8 \mathrm{~V}$

Figure 13. Equivalent circuit of $V_{O L}$, Vref $>2.8 \mathrm{~V}$

Figure 14. Equivalent circuit of $V_{O H}$, Vref $>2.8 \mathrm{~V}$

The GPIO pin is mainly used to:

- Act as a switch for a transistor when the GPIO is configured as output.
- Act as a status reading when the GPIO is configured as input.

The GPIOs may be controlled with the following AT commands:

- AT+WIOW for write access to the GPIO value, when the GPIO is used as an output
- AT+WIOR for read access to the GPIO value, when the GPIO is used as an input

By default, and when the Fastrack Xtend has been reset, both GPIOs are configured as inputs. The AT command AT+WIOM must be used to change this configuration. Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information regarding this AT command.

5.1.1.1.1. Setting the GPIO as an Output

Refer to the following example for how to configure the GPIO as an output.

- Enter the following commands:
- AT+WIOM=1,"GPIO21",1,0 $\quad \rightarrow \quad$ this command activates GPIO21 as an output and sets it at a low level.
- AT+WIOW="GPIO21",1 $\quad \rightarrow \quad$ this command sets the output level of GPIO21 to HIGH.

5.1.1.1.2. Setting the GPIO as an Input

Refer to the following example for how to configure the GPIO as an input.

- Enter the following commands:
- AT+WIOM=1,"GPIO21",0 $\quad \rightarrow$ this command activates GPIO21 as an input.
- AT+WIOR="GPIO21" $\quad \rightarrow \quad$ this command reads the GPIO21 level and returns the value " 1 " which represents a HIGH level.
- Pull the GPIO21 pin to GND, and read again. The return value should now be "0" which represents a LOW level.

Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information regarding AT commands.

Note:	The AT+WIOM command is not required for FXTO04. The AT+WIOW and AT+WIOR commands will automatically set the GPIO to the desired mode. For example, AT+WIOW=42,1 will set GPIO42 to output mode and in High state.
Caution:	Some AT commands and features in this section are not available in FXTO04. Refer to section 2 Features and Services and document [10] AirPrime Q26 Elite Software User Guide and AT Commands Interface Specification for more information on which AT commands and features are available in FXT004.

5.1.1.2. ON/OFF Pin

The Fastrack Xtend has an external ON/OFF pin which is used to turn the device ON or OFF. The following table describes the operation of this pin.

Table 12. ON/OFF Pin Operation

Condition	State	Power Supply	Operation
1	Open	When 4.75V to 32V supply is applied.	The Fastrack Xtend is turned ON.
2	Pulled to GND	When 4.75V to 32V supply is applied.	The Fastrack Xtend remains OFF.
3	Left open when turning ON the Fastrack Xtend, then pulled to GND	4.75 V to 32V supply is initially applied.	The Fastrack Xtend remains ON and will remain ON until AT+CPOF is sent to turn the device OFF.

To enable the low power mode, the user may simply pull the ON/OFF pin to GND and send AT+CPOF to the Fastrack Xtend using a communication software such as a HyperTerminal.
Note: \quad The AT+CPOF command is not supported in FXT004. The AT+CFUN=0 command is used instead.
Table 13. ON/OFF Pin Description

Pin \#	Signal	I/O	I/O Voltage	Description
8	ON/OFF	I	4 V	Pin to turn the Fastrack Xtend ON/OFF.

Refer to the power consumption tables in section 12 Power Consumption for the power consumption values when the Fastrack Xtend is in Alarm mode (Low Power mode).

5.1.2. Serial Interface

A SUB-D 15-pin connector is available as a serial interface to directly communicate with the Fastrack Xtend. This serial interface is used for:

- RS232 serial link connection
- Audio lines connection (microphone and speaker)
- BOOT signal connection
- RESET signal connection

Figure 15. 15-Pin Serial Connector
Refer to the following table for the pin description of the 15-pin serial connector.
Table 14. Serial Connector Pin Description

Pin \#	Signal	I/O	I/O Type	Reset State	Description
1	CT109/DCD	O	$+/-5.5 \mathrm{~V}$	Undefined	Data Carrier Detect
2	CT103/TXD	I	$+/-5.5 \mathrm{~V}$	Z	Transmit Serial Data
3	BOOT	I	1 V 8		BOOT. This signal must not be connected. Its use is strictly reserved for Sierra Wireless or competent retailers.
4	CMIC2P	I	Analog		Microphone positive input
5	CMIC2N	I	Analog		Microphone negative input
6	CT104/RXD	O	$+/-5.5 \mathrm{~V}$	1	Receive Serial Data
7	CT107/DSR	O	$+/-5.5 \mathrm{~V}$	Z	Data Set Ready
8	CT108-2/DTR	I	$+/-5.5 \mathrm{~V}$	Z	Data Terminal Ready
9	GND		GND		Ground
10	CSPK2P	O	Analog		Speaker positive input
11	CT106/CTS	O	$+/-5.5 \mathrm{~V}$	Z	Clear To Send
12	CT105/RTS	I	$+/-5.5 \mathrm{~V}$	Z	Request To Send
13	CT125/RI	O	$+/-5.5 \mathrm{~V}$	Undefined	Ring Indicator
14	RESET	I/O	1 V 8		Fastrack Xtend Reset
15	CSPK2N	O	Analog		Speaker negative input

5.1.2.1. RS232 Serial Link Connection

Also known as the main serial link, the RS232 interface performs the voltage level adaptation (V24/CMOS $\Leftrightarrow \mathrm{V} 24 / \mathrm{V} 28$) between the internal Fastrack Xtend (DCE) and external applications (DTE).
The signals available on the RS232 serial link are as follows:

- TX data (CT103/TXD)
- RX data (CT104/RXD)
- Request To Send (CT105/RTS)
- Clear To Send (CT106/CTS)
- Data Terminal Ready (CT108-2/DTR)
- Data Set Ready (CT107/DSR)
- Data Carrier Detect (CT109/DCD)
- Ring Indicator (CT125/RI)

Figure 16. RS232 Serial Link Signals
The RS232 interface has been designed to allow flexibility in the use of the serial interface signals. However, the use of TXD, RXD, CTS and RTS signals are mandatory; while the use of DTR, DSR, DCD and RI signals are optional.

Tip: \quad The Fastrack Xtend is designed to operate using all serial interface signals and it is recommended to use CT105/RTS and CT106/CTS for hardware flow control in order to avoid data corruption during transmission.

The Fastrack Xtend also implements the Serial Port Auto Shut Down feature with the DTR signal. It is recommended to use the CT108-2/DTR signal to benefit from the current consumption improvement performed by this feature.

5.1.2.1.1. RS232 Implementation

The following subsections describe how the RS232 serial link can be implemented to suit different designs.

5.1.2.1.1.1. 5-wire Serial Interface RS232 Implementation

The signals used in this interface are as follows:

- CT103/TXD
- CT104/RXD
- CT105/RTS
- CT106/CTS
- CT108-2/DTR

Figure 17. V24 Serial Link Implementation for a 5-wire UART

5.1.2.1.1.2. 4-wire Serial Interface RS232 Implementation

The signals used in this interface are as follows:

- CT103/TXD
- CT104/RXD
- CT105/RTS
- CT106/CTS

Figure 18. V24 Serial Link Implementation for a 4-wire UART

5.1.2.1.1.3. 2-wire Serial Interface RS232 Implementation

The signals used in this interface are as follows:

- CT103/TXD
- CT104/RXD

Figure 19. V24 Serial Link Implementation for a 2-wire UART
The CT105/RTS and the CT106/CTS signals are not used in this configuration. Configure the AT command $\mathbf{A T + I F C = 0 , 0}$ to disable the flow control function. Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information regarding AT Commands.

For more information on how to use the RS232 serial link to communicate with the Fastrack Xtend, refer to section 5.1.2.1 RS232 Serial Link Connection.

5.1.2.2. Autobauding Mode

The autobauding mode allows the Fastrack Xtend to detect the baud rate used by the DTE connected to the RS232 serial link. The autobauding mode is controlled by AT commands. Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information.
Note: \quad This feature is not supported in FXTOO4.

5.1.2.3. Serial Port Auto Shut Down Feature

The RS232 serial link can be shut down when there is no activity between the DTE and the Fastrack Xtend. This can help improve the power consumption performance.
The Serial Port Auto Shut Down feature is controlled by the AT command AT+WASR. Enter:

- AT+WASR=1 to enter the serial port auto shut down mode
- AT+WASR=0 to exit the serial port auto shut down mode

Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information on AT commands.

Note:	This feature is not supported in FXT004.
Caution:	GPIO24 is reserved for serial port auto shut down feature. It is prohibited for customer use. Improper access to GPIO24 by customers may lead to unexpected behavior on serial port performance.
	It is prohibited to use the serial port auto shut down feature when the CT108-2/DTR is not used in the application. Otherwise, there will be data lost from the DTE side to the Fastrack Xtend.

5.1.2.4. Audio Lines Connection

The Fastrack Xtend supports one microphone input and one speaker output.

5.1.2.4.1. Microphone

The microphone inputs are connected in differential mode to reject common mode noise and TDMA noise. The microphone inputs have already included biasing for an electrets microphone 0.5 mA and 2 V) and are ESD protected. This electrets microphone may be directly connected to these inputs allowing an easy connection to a headset.
The microphone gain can be adjusted by AT+VGT and the transmit digital gain can be adjusted by AT+WDGT. Refer to [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information about these AT commands.

Table 15. Microphone Pin Description

(Sub D 15-pin) Pin \#	Signal	I/O	I/O Type	Description
4	CMIC2P	I	Analog	Microphone positive input
5	CMIC2N	I	Analog	Microphone negative input

Table 16. Equivalent Circuits of CMIC2

DC Equivalent Circuit	AC Equivalent Circuit
$\mathrm{MIC2P} \square$	
$M I C 2 N \square$	

Table 17. Electrical Characteristics of CMIC2

Parameters		Min	Typ	Max	Unit
Internal biasing DC Characteristics	MIC2+	2	2.1	2.2	V
	Output current		0.5	1.5	mA
	R2	1650	1900	2150	Ω
AC Characteristics $200 \mathrm{~Hz}<\mathrm{F}<4 \mathrm{kHz}$	$\begin{aligned} & \text { Z2 CMIC2P } \\ & \text { (CMIC2N=Open) } \end{aligned}$	1.1	1.3	1.6	k ת
	$\begin{aligned} & \text { Z2 CMIC2N } \\ & \text { (CMIC2P=Open) } \end{aligned}$				
	$\begin{aligned} & \text { Z2 CMIC2P } \\ & \text { (CMIC2N=GND) } \end{aligned}$	0.9	1.1	1.4	
	$\begin{aligned} & \text { Z2 CMIC2N } \\ & \text { (CMIC2P=GND) } \end{aligned}$				
	Impedance between MIC2P and MIC2N	1.3	1.6	2	
Working voltage (MIC2P-MIC2N)	AT+VGT* $=3500 \mathrm{~dB}$		13.8		mV rms
	AT+VGT* $=2000 \mathrm{~dB}$		77.5		
	AT+VGT* $=700 \mathrm{~dB}$		346		
Maximum rating voltage (MIC2P or MIC2N)	Positive			+7.35**	V
	Negative	-0.9			

* The input voltage depends of the input micro gain set by AT command. Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30).
** Because MIC2P is internally biased, it is necessary to use a coupling capacitor to connect an audio signal provided by an active generator. Only a passive microphone can be directly connected to the MIC2P and MIC2N inputs.

Refer to the following table for the list of recommended microphone characteristics.
Table 18. Recommended Microphone Characteristics

Feature	Values
Type	Electret $2 \mathrm{~V} / 0.5 \mathrm{~mA}$
Impedance	$\mathrm{Z}=2 \mathrm{k} \Omega$
Sensitivity	-40 dB to -50 dB
SNR	$>50 \mathrm{~dB}$
Frequency response	Compatible with GSM specifications

5.1.2.4.2. Speaker

The speaker outputs are connected in differential mode to reject common mode noise and TDMA noise.

Speaker outputs are connected to internal push-pull amplifiers and may be loaded down with components between $32 \sim 150 \Omega$ and up to 1 nF . These outputs may be directly connected to a speaker.

The output power may be adjusted by 2 dB steps. The gain of the speaker outputs is internally adjusted and may be tuned using the AT+VGR command. Furthermore, the digital gain can be adjusted using AT+WDGR. Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information about these AT commands.

The following table shows the pin assignments of the speaker outputs.
Table 19. Speaker Outputs Pin Description

(Sub D 15-pin) Pin \#	Signal	I/O	I/O Type	Description
10	CSPK2P	O	Analog	Speaker positive output
15	CSPK2N	O	Analog	Speaker negative output

Figure 20. Equivalent Circuit of CSPK2 Speaker Outputs

Table 20. Electrical Characteristics of CSPK2

Parameters	Min	Typ	Max	Unit	
	CSPK2P and CSPK2N		1.30		V
Output swing voltage					
	RL=8 Ω : AT+VGR=-1000*; differential	-	-	4	Vpp
	RL=32 Ω : AT+VGR=-1000*; differential	-	-	5	Vpp
RL	Load resistance	6	8	-	Ω
IOUT	Output current; peak value; RL=8 Ω	-	-	180	mA
POUT	RL=8 ; AT+VGR=-1000*;	-	-	250	mW
RPD	Output pull-down resistance at power-down	28	40	52	$\mathrm{k} \Omega$
VPD	Output DC voltage at power-down	-	-	100	mV

* The output voltage depends of the output speaker gain set by AT command. Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30). This value is given in dB, but it's possible to toggle this to index value.

Refer to the following table for the list of recommended speaker characteristics.
Table 21. Recommended Speaker Characteristics

Feature	Values
Type	10 mW, electro-magnetic
Impedance	$\mathrm{Z}=30$ to 50Ω
Sensitivity	110 dB SPL min. $(0 \mathrm{~dB}=20 \mu \mathrm{~Pa})$
Frequency response	Compatible with GSM specifications

5.1.3. USB Interface

Aside from the serial interface, the mini-USB interface (USB Slave) may also be used to directly communicate with the Fastrack Xtend.

This USB slave feature is also used for USB charging feature if the optional battery accessory is available. When plugged-in through the mini-USB interface, it will start the charging circuit.
When using with the optional battery accessory, ensure that the current limit of the USB slave is greater than 100 mA .

Figure 21. Mini-USB Connector
Refer to the following table for the pin description of the mini-USB connector.
Table 22. Mini-USB Pin Description

Pin \#	Signal	Description
1	VBUS	+ 5V Power supply
2	D-	Differential data interface positive
3	D+	Differential data interface negative
4	ID	Not connected
5	GND	Ground

The USB slave interface complies with USB 2.0 protocol signaling and electrical interface.
The USB interface features:

- $12 \mathrm{Mbit} / \mathrm{s}$ full speed transfer rate
- 3.3 V type compatible
- USB Soft-connect feature
- Download feature is not supported by USB
- CDC 1.1 - ACM compliant

Table 23. USB Electrical Characteristics

Parameter	I/O	Min	Typ	Max	Unit
VBUS	I	4.75	5		V
D-, D+	I/O	3	3.3	3.6	V
VBUS Input current consumption*				100	mA

* Fastrack Xtend without battery accessory

The USB feature can be activated by using the AT+WMFM=0,1,3 AT command. Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information regarding this AT command.

5.2. Back Interface

Figure 22. Fastrack Xtend Back Interface
Note: * The secondary RF interface is only available for FXT003 and FXT004.
** The SIM interface is not available in FXT004.

5.2.1. SIM Interface

A SIM card can be directly connected to the Fastrack Xtend through the embedded SIM socket. This interface controls $3 \mathrm{~V} / 1 \mathrm{~V} 8$ SIM cards and it is fully compliant with GSM 11.11 recommendations concerning SIM functions.

The SIM interface of the Fastrack Xtend is ESD protected. Transient overvoltage protections in ESD are internally added on the signals connected to the SIM interface in order to prevent any damage from electrostatic discharge.

The SIM interface uses 5 SIM signals, namely:

- SIM-VCC: SIM Power supply
- ~SIM-RST: Reset
- SIM-CLK: Clock
- SIM-IO: I/O Port
- SIMPRES: SIM card detection

5.2.1.1. SIM Socket Pin Description

Refer to the following table for the pin description of the SIM socket.
Table 24. SIM Socket Pin Description

Pin \#	Signal	I/O	I/O Type	Reset State	Description
1	SIMVCC	O	$2 \mathrm{~V} 9 / 1 \mathrm{~V} 8$		SIM Power Supply
2	SIMRST	O	$2 \mathrm{~V} 9 / 1 \mathrm{~V} 8$	O	SIM RESET
3	SIMCLK	O	$2 \mathrm{~V} 9 / 1 \mathrm{~V} 8$	O	SIM Clock
7	SIMDATA	I/O	$2 \mathrm{~V} 9 / 1 \mathrm{~V} 8$	Pull up*	SIM DATA
8	SIMPRES	I	1 V 8	Pull low**	SIM Card Detect

* SIM-IO pull up is about $10 \mathrm{~K} \Omega$.
** SIMPRES pull low is about $100 \mathrm{~K} \Omega$.

5.2.2. Main RF Interface

The Fastrack Xtend's main antenna connector allows the transmission of radio frequency (RF) signals from the device to an external customer supplied antenna. This interface is an SMA type connector and its nominal impedance is 50Ω.

Figure 23. Main RF Connector for the FXT001, FXT002, FXT009 and FXT010
Refer to the following table for the transmission and reception frequency range based on band.
Table 25. Tx and Rx Frequency Range

	GSM 850	E-GSM 900	DCS 1800	PCS 1900
Transmission Frequency Range	824 to 849 MHz	880 to 915 MHz	1710 to 1785 MHz	1850 to 1910 MHz
Reception Frequency Range	869 to 894 MHz	925 to 960 MHz	1805 to 1880 MHz	1930 to 1990 MHz

Refer to section 14.4 Component Recommendations for the list of recommended antenna connectors.

5.2.2.1. RF Performances (For FXT001, FXT002, FXT009 and FXT010)

RF performances are compliant with ETSI recommendation GSM 05.05. Refer to the tables below for the main parameters used for both the Receiver and the Transmitter.

Table 26. Main Receiver Parameters for FXT001, FXT002, FXT009 and FXT010

Parameters	Values
GSM850 Reference Sensitivity	$>-106 \mathrm{dBm}$ typical (Static \& TUHigh)
E-GSM900 Reference Sensitivity	$>-106 \mathrm{dBm}$ typical (Static \& TUHigh)
DCS1800 Reference Sensitivity	$>-106 \mathrm{dBm}$ typical (Static \& TUHigh)
PCS1900 Reference Sensitivity	$>-106 \mathrm{dBm}$ typical (Static \& TUHigh)
Selectivity @ 200 kHz	$>+9 \mathrm{dBc}$
Selectivity @ 400 kHz	$>+41 \mathrm{dBc}$
Linear dynamic range	63 dB
Co-channel rejection	$>=9 \mathrm{dBc}$

Table 27. Main Transmitter Parameters for FXT001, FXT002, FXT009 and FXT010

Parameters	Values
Maximum output power (EGSM \& GSM850)	$33 \mathrm{dBm}+/-2 \mathrm{~dB}$ at ambient temperature
Maximum output power (GSM1800 \& PCS1900)	$30 \mathrm{dBm}+/-2 \mathrm{~dB}$ at ambient temperature
Minimum output power (EGSM \& GSM850)	$5 \mathrm{dBm}+/-5 \mathrm{~dB}$ at ambient temperature
Minimum output power (GSM1800 \& PCS1900)	$0 \mathrm{dBm}+/-5 \mathrm{~dB}$ at ambient temperature

5.2.2.2. Antenna Specifications

The antenna must meet the requirements specified in the table below.
The optimum operating frequency depends on the application. A dual-band or quad-band antenna should operate in these frequency bands and have the following characteristics.

Table 28. Antenna Specifications for FXT001, FXT002, FXT009 and FXT010

Characteristic	E-GSM $\mathbf{9 0 0}$	DCS $\mathbf{1 8 0 0}$	GSM $\mathbf{8 5 0}$	PCS $\mathbf{1 9 0 0}$
TX Frequency	880 to 915 MHz	1710 to 1785 MHz	824 to 849 MHz	1850 to 1910 MHz
RX Frequency	925 to 960 MHz	1805 to 1880 MHz	869 to 894 MHz	1930 to 1990 MHz
Impedance	50Ω			
VSWR	Rx max	$1.5: 1$		
	Tx max	$1.5: 1$		
Typical radiated gain	0dBi in one direction at least			

5.2.3. Secondary RF Interface

The Secondary RF interface is used in the FXT003 for 3G diversity antenna connection and in the FXT004 for GPS-L1 antenna connection. It is an SMA type connector and its nominal impedance is 50Ω.

Figure 24. Secondary (Diversity) RF connector in FXT003 and FXT004

5.2.3.1. RF Performances (FXT003)

RF performances are compliant with ETSI recommendation GSM 05.05. Refer to the tables below for the main parameters used for both the Receiver and the Transmitter.

Table 29. Main Receiver Parameters for FXT003

Parameters	Values
GSM850 Reference Sensitivity	$>-106 \mathrm{dBm}$ typical (Static \& TUHigh)
E-GSM900 Reference Sensitivity	$>-106 \mathrm{dBm}$ typical (Static \& TUHigh)
DCS1800 Reference Sensitivity	$>-106 \mathrm{dBm}$ typical (Static \& TUHigh)
PCS1900 Reference Sensitivity	$>-106 \mathrm{dBm}$ typical (Static \& TUHigh)
3G Band I 2100 Reference Sensitivity	-106.7 dBm typical (Static \& TUHigh)
3G Band II 1900 Reference Sensitivity	-106.7 dBm typical (Static \& TUHigh)
3G Band V 850 Reference Sensitivity	-106.7 dBm typical (Static \& TUHigh)
Selectivity @ 200 kHz	$>+9 \mathrm{dBc}$
Selectivity @ 400 kHz	$>+41 \mathrm{dBc}$
Linear dynamic range	63 dB
Co-channel rejection	$>=9 \mathrm{dBc}$

Table 30. Main Transmitter Parameters for FXT003

Parameters	Values
Maximum output power (EGSM \& GSM850)	$33 \mathrm{dBm}+/-2 \mathrm{~dB}$ at ambient temperature
Maximum output power (GSM1800 \& PCS1900)	$30 \mathrm{dBm}+/-2 \mathrm{~dB}$ at ambient temperature
Minimum output power (EGSM \& GSM850)	$5 \mathrm{dBm}+/-5 \mathrm{~dB}$ at ambient temperature
Minimum output power (GSM1800 \& PCS1900)	$0 \mathrm{dBm}+/-5 \mathrm{~dB}$ at ambient temperature
Maximum output power (3G all band)	$24 \mathrm{dBm}+1 /-3 \mathrm{~dB}$ at ambient temperature

5.2.3.2. Antenna Specifications

The antenna must meet the requirements specified in the table below.
The optimum operating frequency depends on the application. The antenna should operate in these frequency bands and should have the following characteristics.

Table 31. Antenna Specifications for FXT003

Characteristic	E-GSM 900	DCS $\mathbf{1 8 0 0}$	GSM 850 and HSPA band V	PCS 1900 and HSPA band II	HSPA band I
TX Frequency	880 to 915 MHz	1710 to 1785 MHz	824 to 849 MHz	1850 to 1910 MHz	1920 to 1980 MHz
RX Frequency	925 to 960 MHz	1805 to 1880 MHz	869 to 894 MHz	1930 to 1990 MHz	2110 to 2170 MHz
Impedance	50Ω				
VSWR	Rx max	$1.5: 1$			
	Tx max	$1.5: 1$			
Typical radiated gain	0dBi in one direction at least				

5.2.3.3. RF Performances (For FXT004)

Refer to the tables below for the main parameters used for both the Receiver and the Transmitter.
Table 32. Main Receiver Parameters for FXT004

Parameters	Values
Band Class 0 Receive Sensitivity	-106.6 dBm minimum at all temperatures
Band Class 1 Receive Sensitivity	-106.1 dBm minimum at all temperatures

Table 33. Main Transmitter Parameters for FXT004

Parameters	Values
Maximum output power (Band Class 0)	$24 \mathrm{dBm}+2 \mathrm{~dB} /-1 \mathrm{~dB}$ at all operating temperature
Maximum output power (Band Class 1)	$24 \mathrm{dBm}+2 \mathrm{~dB} /-1 \mathrm{~dB}$ at all operating temperature

5.2.3.4. Antenna Specifications for FXT004

The antenna must meet the requirements specified in the table below.
The optimum operating frequency depends on the application. A dual-band antenna should operate in these frequency bands and have the following characteristics.

Table 34. Antenna Specifications for FXT004

Characteristic	US Cellular (BC0)	US PCS (BC1)	
TX Frequency	824 to 849 MHz	1850 to 1910 MHz	
RX Frequency	869 to 894 MHz	1930 to 1990 MHz	
Impedance	RF	50Ω	
	DC	$10 \mathrm{~K} \Omega$	
VsWR	Rx max	$1.5: 1$	
	Tx max	$1.5: 1$	
Polarization	Linear, vertical		
Typical radiated gain	OdBi in one direction at least		

5.2.3.5. GPS Antenna Specifications for FXT004

The GPS antenna must meet the requirements specified in the table below.
Table 35. GPS Antenna Specifications for FXT004

Characteristic	GPS L1
RX Frequency	1575.42 MHz
Impedance	RF
VSWR max \quad Rx	$1.5: 1$
LNA Bias Voltage	5 V
LNA Current Consumption	40 mA MAX
Polarization	Linear, vertical
Typical radiated gain	0dBi in one direction at least

6. Signals and Indicators

6.1. Alarm Mode

Note: \quad This feature is not supported in FXTOO4.

The Fastrack Xtend can be turned on using the Alarm mode when power supply is applied. The Fastrack Xtend will remain in Low Power mode until the alarm is triggered to start the Fastrack Xtend up.
$\begin{array}{ll}\text { Note: } & \text { Refer to section 5.1.1.2 ON/OFF Pin for more information on how to turn the Fastrack Xtend ON or } \\ \text { OFF using the ON/OFF pin. }\end{array}$
Table 36. Alarm Mode (Low Power Mode)

Steps	State	Power Supply	Operation
1	AT+CALA="YY/MM/DD,H H:MM"	4.75 V to 32V supply is applied.	The alarm is set. The Fastrack Xtend remains ON.
2	Pulled ON/OFF PIN to GND	4.75 V to 32V supply is applied.	The Fastrack Xtend remains ON.
3	AT+CPOF	4.75 V to 32V supply is applied. (The ON/OFF signal remains at GND.)	The Fastrack Xtend turns OFF and will remain OFF until the Alarm mode is activated to turn the device ON.

Note: \quad The Fastrack Xtend's clock must be set before Alarm mode is activated. To set the clock, refer to the AT+CCLK command of document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30).

6.2. BOOT Signal Connection

A specific control pin, BOOT, is available to download to the Fastrack Xtend. Specific PC software, provided by Sierra Wireless, is needed to perform this download, specifically for the first download of the Flash memory.

Caution: This signal must not be connected. Its use is strictly reserved for Sierra Wireless or competent

 retailers.
6.3. RESET Signal Connection

This signal is used to force a reset procedure by providing the Fastrack Xtend with a LOW level that lasts at least $200 \mu \mathrm{~s}$ (when the power supply is already stabilized). It is activated by either an external Reset signal or by an internal signal (from the Reset generator); and is automatically driven by an internal hardware during the power ON sequence.

Note: \quad The Fastrack Xtend remains in Reset mode for as long as the Reset signal is held LOW.
A software reset is always preferred to a hardware reset. Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information regarding software resets.

This signal may also be used to provide a reset to an external device when the pin is configured as an output. If no external reset is necessary, this input may be left open.

When used (as an emergency reset), it has to be driven by either an open collector or an open drain output.

Caution: This signal is for emergency resets only.
Table 37. Fastrack Xtend Reset Status

(Serial Port) Pin \#	Signal	I/O	I/O Type	Voltage	Description
14	Reset	I/O	Open drain	1 V8	Fastrack Xtend Reset

Table 38. Reset Electrical Characteristics

Parameter	Minimum	Typical	Maximum	Unit
Input Impedance (R)*		100.3		$\mathrm{k} \Omega$
Input Impedance (C)		40	nF	

Internal pull-up
Table 39. Reset Operating Conditions

Parameter	Minimum	Typical	Maximum	Unit
\sim Reset time $(\mathrm{Rt})^{1}$	200			$\mu \mathrm{~s}$
\sim Reset time $(\mathrm{Rt})^{2}($ at power up only)	20	40	100	ms
Cancellation time (Ct)		34		ms
$\mathrm{~V}_{\mathrm{H}}{ }^{*}$	0.57			V
$\mathrm{~V}_{\mathrm{IL}}$	0		0.57	V
$\mathrm{~V}_{\mathrm{IH}}$	1.33			V

$\mathrm{V}_{\mathrm{H}}=$ Hysterisis Voltage
1: \quad This reset time is the minimum to be carried out on the \sim Reset signal when the power supply is stabilized.
2: \quad This reset time is internally carried out by the embedded module power supply supervisor only when the embedded module power supplies are powered ON.

6.3.1. Reset Sequence

To activate the Reset sequence, the Reset signal has to be set to LOW for a minimum of $200 \mu \mathrm{~s}$. As soon as the reset is done, the application can send the command AT -1 and the AT interface will send an "OK" back to the application. If the application manages hardware flow control, the AT command may be sent during the initialization phase.

Figure 25. Reset Sequence Diagram
Another solution is to use the AT+WIND command to get an unsolicited status from the Fastrack Xtend. Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information regarding AT commands.

6.4. LED Status Indicator

The Fastrack Xtend has a red LED that indicates the current operational status of the device.

Table 40. Fastrack Xtend LED Status

Fastrack Xtend State	LED Status	Fastrack Xtend Status
ON	Permanently lighted	The Fastrack Xtend is switched ON, but not registered in the network.
	Flashing slowly	The Fastrack Xtend is switched ON and is registered in a network (Idle mode).
	LED is ON for 200ms, OFF for 2s	
	Flashing rapidly LED is ON for 200ms, OFF for 600ms	The Fastrack Xtend is switched ON and is registered in a network (Non-Connected mode).
	Very quick flash LED is ON for $100 \mathrm{~ms}, ~ O F F ~ f o r ~$ 200ns	The Fastrack Xtend is switched on, and the software downloaded is either corrupted or non-compatible ("BAD SOFTWARE").
OFF	OFF	The Fastrack Xtend is either switched OFF, or the Flash LED has been disabled by the user*.

*

The Flash LED can be disabled by the user when in Sleep mode in order to save power consumption. Refer to section 10.1 Enabling/Disabling the Flash LED and document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information on how to disable the Flash LED using an AT command.

6.5. \quad Real Time Clock (RTC)

The Fastrack Xtend has implemented Real Time Clock for saving date and time when the Fastrack Xtend is unplugged from the DC power supply through the DC power cable.

Table 41. Real Time Clock Specifications

Item	Minimum	Typical	Maximum	
Charging Time start from fully discharged to fully charged		15 Hours		
RTC Time Period*	Guaranteed		30 Hours	
	Not guaranteed		60 Hours	

* This RTC time period is measured when the RTC battery is fully charged before the Fastrack Xtend is unplugged from the DC power source.
* This RTC time period is for temperature from $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$. Once the operating/storage temperature is beyond this range, this time period is not guaranteed..

Caution: When the Fastrack Xtend is shipped out, the charging voltage of the RTC battery is not guaranteed. Once the Fastrack Xtend is on power, the RTC battery will start charging and the RTC feature can then be resumed.

7. Expansion Card

7.1. Expansion Card Compartment

The Expansion Card compartment allows users to easily expand the Fastrack Xtend's features (IO+GPS, Ethernet expander) for their own applications.

7.1.1. Back Plate Screws

Unscrew the two back plate screws to remove the back plate and open the Expansion Card compartment.

Figure 26. Fastrack Xtend Expansion Card Compartment

7.1.2. $\quad 50$-pin Expansion Card Connector

The high density 50-pin Expansion Card connector is used for interfacing the Expansion Card with the Fastrack Xtend motherboard.

Figure 27. 50-pin Expansion Card Connector

Table 42. 50-pin Expansion Card Connector Description

Pin \#	Pin Description	Pin \#	Pin Description
1	GND	26	RTS2

Pin\#	Pin Description	Pin \#	Pin Description
2	GND	27	Reserved
3	Reserved	28	GPIO26
4	Reserved	29	GPIO19
5	Reserved	30	GPIO27
6	Reserved	31	GPIO20
7	NC	32	INT0/GPIO3
8	NC	33	GPIO23
9	NC	34	GPIO22
10	$1.8 V$ Digital supply from the embedded module	35	DTR1-CT108/2
11	$2.8 V$ Digital supply from the embedded module	36	PCM-SYNC
12	BOOT	37	PCM-IN
13	RESET	38	PCM-CLK
14	AUX-ADC	39	PCM-OUT
15	SPI1-CS	40	AUX-DAC
16	SPI1-CLK	41	$2.8 V$ supply from the Fastrack Xtend
17	SPI1-I	42	GND
18	SPI1-IO	43	DC-IN
19	SPI2-CLK	44	DC-IN
20	SPI2-IO	45	GND
21	SPI2-CS	46	$4 V$ supply from the Fastrack Xtend
22	SPI2-I	47	$4 V$ supply from the Fastrack Xtend
23	RXD2	48	GND
24	TXD2	49	GND
25	CTS2	50	GND

7.2. Expansion Card Physical Description

Refer to the figure below for the physical dimensions of the Expansion Card.

Figure 28. Expansion Card Size

7.3. Expansion Card Design Suggestion

Refer to the following diagram for suggested dimensions when using a customized expansion card.

Figure 29. Suggested Expansion Card Dimension

7.4. Supported Expansion Cards

The Fastrack Xtend supports two types of Expansion Cards.

Table 43. Expansion Card Types for the Fastrack Xtend

Part Number	Function	Supplier
FXTE01	IO+GPS Expansion Card	Sierra Wireless
FXTE02	ETHERNET Expansion Card	Sierra Wireless
EC0020	RS485 + Isolated Digital Inputs	Sierra Wireless

7.4.1. Ethernet

The basic features of the Ethernet Expansion Card are summarized in the table below.
Table 44. Basic Features of the Ethernet Expansion Card

Features	Description
Sierra Wireless Software Suite	Sierra Wireless Software Suite programmable: - Native execution of embedded standard ANSI C applications - Custom AT command creation - Custom application library creation - Standalone operation
LAN	- IEEE 802.3 Compatible - Integrated MAC and 10 BASE-T PHY - Receiver and collision squelch circuit - Supports one 10BASE-T port - Supports Full and Half-Duplex modes - Shielded RJ-45
Interfaces	- AT command set based on V. 25 or later and GSM $07.05 \& 07.07$ - Interface for embedded application

7.4.1.1. Ethernet Expansion Card Installation

Figure 30. Installation of Ethernet Expansion Card on the Fastrack Xtend

7.4.1.2. Board Architecture

Figure 31. Ethernet Expansion Card Architecture

Figure 32. Ethernet Expansion Card with RJ-45 Interface Cable

The 10-Pin Interface Socket is an external interface for the RJ-45 cable.

Figure 33. 10-Pin Interface Socket

Table 45. 10-Pin Interface Socket Description

Pin \#	Description Name
1	DGND
2	TX_D1-
3	TX_D1+
4	RX_D2-
5	RX_D2+
6	BI_D3+
7	BI_D3-
8	BI_D4+
9	BI_D4-
10	DGND

7.4.1.3. Mechanical Characteristics

Table 46. Mechanical Characteristics

PCB Dimensions	$58 \mathrm{~mm} \times 35.7 \mathrm{~mm} \times 1 \mathrm{~mm}$
Overall Dimension	$59.5 \times 35.7 \times 10.01 \mathrm{~mm}$ (including connectors)
Weight	<10 grams

7.4.1.4. Power Supply

Table 47. Electrical Characteristics

Operating Voltage	4 V DC

$$
\text { Note: } \quad \text { The Ethernet Expansion Card is powered once the enable pins are activated by the Sierra Wireless }
$$ Software Suite.

7.4.1.5. Extra Current Consumption from the DC-IN Source

Depending on various DC-IN voltages of the Fastrack Xtend, the extra current consumption drawn by the Ethernet Expansion Card will also vary.

Table 48. Extra Current Consumption from DC-IN Source (Typical)

Condition		Extra Current Consumption for Additional Feature (mA)		
Fastrack Xtend Mode	Ethernet Feature	@4.75VDC	@13.2VDC	@32VDC
	Enabled Idle	163 mA	53.7 mA	20.8 mA
Non-Connected	Enabled Idle	171.7 mA	49.6 mA	24.0 mA
	On Communication	185 mA	52.9 mA	24.2 mA

7.4.2. IO+GPS

The IO+GPS Expansion Card is interfaced with the Fastrack Xtend motherboard through the 50-pin connector. All DC supplies are applied through this connector so no external supply is necessary.
With the Sierra Wireless Software Suite running, the Fastrack Xtend motherboard communicates with the IO+GPS Expansion Card on UART2. The GPS module communicates on UART2 using the following configuration:

- Baud rate: 57600 bps
- Character framing: 8 Data bits
- Parity: 1 Stop bit and Odd Parity
- Flow Control: No Flow Control

Figure 34. IO+GPS Expansion Card Architecture

The Sierra Wireless Software Suite controls the following:

- Enables/disables the internal LDOs of the Expansion Card to power-up the GPS
- Enables/disables the RF block of the GPS
- Enables a trigger to reset the GPS module
- GPS status indicator output which is connected to an LED driver
- Enables/disable the GPS antenna bias voltage at 3.3 V

Figure 35. IO+GPS Expansion Card

7.4.2.1. IO+GPS Expansion Card Installation

Figure 36. Installation of IO+GPS Expansion Card on the Fastrack Xtend

7.4.2.2. Mechanical Characteristics

Table 49. Mechanical Characteristics

PCB Dimensions	$58 \mathrm{~mm} \times 35.7 \mathrm{~mm} \times 1 \mathrm{~mm}$
Overall Dimension	$59.5 \times 35.7 \times 10.01 \mathrm{~mm}$ (including connectors)
Weight	<10 grams

Figure 37. 16-Way IO Expander Socket
Table 50. 16-Way IO Expander Description

Pin \#	Pin Description	Pin \#	Pin Description
1	Not Connected	9	GPIO26
2	Not Connected	10	AUX-DAC
3	Not Connected	11	AUX-ADC
4	Not Connected	12	SPI1-IO
5	Not Connected	13	SPI1-I
6	GPS Status Indicator	14	SPI1-CLK
7	GPIO27	15	SPI1-CS
8	Not Connected	16	GND

7.4.2.3. General Purpose Input/Output

The IO+GPS Expansion Card provide a total of 6 General Purpose I/Os and is only available if the multiplexed counterpart is not used. These GPIOs can be used to control any external device such as GPS, Bluetooth, LCD or other external customer applications.

Table 51. GPIOs Pin Description

Pin \#	Signal	I/O	I/O Type	Reset State	Multiplexed With
7	GPIO27	I/O	Open Drain	Z	SDA
9	GPIO26	I/O	Open Drain	Z	SCL
12	GPIO29	I/O	2 V8	Z	SPI1-IO
13	GPIO30	I/O	2 V8	Z	SP1-I
14	GPIO28	I/O	2 V8	Z	SPI1-CLK
15	GPIO31	I/O	2 V8	Z	\sim SPI1-CS

7.4.2.4. Power Supply

Table 52. Electrical Characteristics

Note: \quad The IO+GPS Expansion Card is powered once the enable pins are activated by the Sierra Wireless Software Suite.

7.4.2.5. Extra Current Consumption from the DC-IN Source

Depending on various DC-IN voltage of Fastrack Xtend, the extra current consumption drawn by the GPS feature and the GPS active antenna will be different.

Table 53. Extra Current Consumption from DC-IN Source (Typical)

Condition	Extra Current Consumption for Additional Feature (mA)			
	GPS Feature	@ 4.75VDC	@ 13.2VDC	@ 32VDC
Connected	GPS Enable with GPS antenna bias ON	137	42	22
Non-Connected	GPS Enable with GPS antenna bias ON	134	46.3	22.6
	GPS Enable with GPS antenna bias OFF	111	37.8	18.7
	GPS antenna bias ON	27	8.5	3.8

7.4.2.6. GPS Receiver Frequency

Table 54. GPS Receiver Frequency

Characteristic	GPS
Frequency RX	1575.42 MHz

7.4.2.7. External Antenna

The external antenna is connected to the Expansion Card's GPS via the MMCX connector.
The external antenna must fulfill the characteristics listed in the table below.

Table 55. External Antenna Characteristics

Antenna Frequency Range	$1.57542 \mathrm{GHz} \pm 1.023 \mathrm{MHz}$ (L1-Band)
Impedance	50Ω nominal
Voltage Supply	$3.3 \mathrm{~V} \pm 0.5 \mathrm{VDC}$
Gain (antenna + cable)	2 dBi

7.4.2.8. GPS RF Performance

The GPS RF performance for receiver is given in the table below.
Table 56. Receiver Performances

SDK 4.11	Conditions	Notes	Value	Remarks
Accuracy	-130 dBm (outdoor) In dynamic mode	50\% percentile	3.7 m CEP	
	-130 dBm (outdoor) In dynamic mode	95\% percentile	6.8 m CEP	
	-140 dBm In dynamic mode	50\% percentile	6.1 m CEP	
	-145 dBm In dynamic mode	50\% percentile	13.9 m CEP	
Velocity Accuracy	Static mode	First fix only	$0.1 \mathrm{~m} / \mathrm{s}$	Typ
	Static mode	Continuous fixes	$0 \mathrm{~m} / \mathrm{s}$	Typ
TTFF Hot Start	-	Mean	3.5 s	Typ
TTFF Warm Start	-	Mean	30 s	Typ
TTFF Cold Start	Clear Sky conditions	Mean	38 s	Typ
	Clear Sky conditions	95\% percentile	45 s	Typ
Update Rate	-130 dBm	Continuous fixes	1 Hz	Typ

7.4.3. RS485 + Isolated Digital Inputs

The basic features of the RS485 Expansion Card are summarized in the table below.
Table 57. Basic Features of the RS485 Expansion Card

Features	Description
	Sierra Wireless Software Suite programmable: Sierra Wireless Software Suite
	• \quad Native execution of embedded standard ANSI C applications
	- Custom application library creation
	- Standalone operation

7.4.3.1. RS485 Expansion Card Installation

Figure 38. Installation of RS485 Expansion Card on the Fastrack Xtend

7.4.3.2. Board Architecture

Figure 39. RS485 Expansion Card Architecture

Figure 40. An RS485 Expansion Card and a Cable Harness
The 18-Pin Interface Socket is an external interface for the RS485 cable harness.

Figure 41. 18-Pin Interface Socket
Table 58. 18-Pin Interface Socket Description

Pin \#	Description Name
1	GRND
2	GRND
3	CUST_IN 4
4	CUST_IN 3
5	CUST_IN 2
6	CUST_IN 1
7	TX/RX+
8	TX/RX-
9	SHIELD
10	SHIELD
11	NC
12	NC
13	NC
14	NC
15	NC

Pin \#	Description Name
16	NC
17	NC
18	NC

7.4.3.3. Mechanical Characteristics

Table 59. Mechanical Characteristics

PCB Board Dimension	$58 \mathrm{~mm} \times 35.7 \mathrm{~mm} \times 1 \mathrm{~mm}$ (typical)
PCBA Dimension (including components)	$59.5 \mathrm{~mm} \times 35.7 \mathrm{~mm} \times 10.8 \mathrm{~mm}$ (typical)
Weight	10 grams (typical)

7.4.3.4. Power Supply

Table 60. Electrical Characteristics

Note: \quad The RS485 Expansion Card is powered once the enable pins are activated by the Sierra Wireless Software Suite.

7.4.3.5. Current Consumption from the DC-IN Source

A normal running RS485 Expansion Card will have the following current consumption values given a temperature of $25^{\circ} \mathrm{C}$ and DC-IN = 13.2V from the Fastrack Xtend.

Table 61. Non-Connected Current Consumption in FXT009 at DC-IN $=13.2 \mathrm{~V}$

Average Current Consumption (Typical Values)	SIM Lock Open	Serial Cable Connected	Open AT Application ON	Open AT Application OFF
$\sim 35 \mathrm{~mA}$	Yes	Yes	-	Yes
$\sim 50 \mathrm{~mA}$	Yes	Yes	-	

7.5. Expansion Card Removal

To remove the Expansion Card from the Fastrack Xtend, insert the extraction tool hook into the Expansion Card extraction hole located under the PCB. Once in place, pull the extraction tool to extract the Expansion Card from the Fastrack Xtend.

Figure 42. Expansion Card Removal Procedure

8. Using the Fastrack Xtend

8.1. Mounting the Fastrack Xtend

The holding bridles help hold and secure the Fastrack Xtend on a support.

Figure 43. Fastrack Xtend Holding Bridles
To mount the Fastrack Xtend on its support, bind it using the holding bridles as shown in the figure below.

Note:

- To be attached to a plain surface
- Screw head max. height: 2 mm

Figure 44. Mounting the Fastrack Xtend
For more information on the drill template, refer to section 4.2 Mechanical Specifications.

8.2. Getting Started

To set up the Fastrack Xtend, follow the procedures below.

1. Insert the SIM card into the SIM card socket.
(Refer to Inserting the SIM Card and Extracting the SIM Card for more details on how to insert and extract the SIM card from the Fastrack Xtend.)

2. Slide the SIM lock switch to lock the SIM card in the Fastrack Xtend.

3. Connect the antenna to the main RF connector.

4. Connect the serial cable and screw both sides.

5. Plug the 6-wire cable accessory into the Fastrack Xtend and switch on the external power supply source.

Refer to section 9.7 Main AT Commands for the Fastrack Xtend for the list of main AT Commands used to configure the Fastrack Xtend.

[^40]
8.2.1. Inserting the SIM Card

In order to insert the SIM card into the Fastrack Xtend, follow the procedures below:

1. Prepare the SIM card in the correct position as shown in the figure.
2. Slide the SIM card into the SIM holder.

3. Use a tool to help push the SIM card into the SIM holder. Push the SIM card all the way in until you hear a clicking sound.

4. Slide the SIM lock switch to lock the SIM card in the Fastrack Xtend.

8.2.2. Extracting the SIM Card

In order to extract the SIM card from the Fastrack Xtend, follow the procedures below:

1. Open the SIM lock switch by sliding it to the left.

2. Use a tool to further push the SIM card into the SIM holder. Push until you hear a clicking sound.

3. The SIM card should spring out a little bit after the clicking sound.

4. Extract the SIM card from the Fastrack Xtend.

8.3. Using the Fastrack Xtend with an Expansion Card

Refer to section 7 Expansion Card for more information about using the Fastrack Xtend with an Expansion Card.
Refer to section 19.3 Expansion Card Documentation for the list of documents containing additional information on how to use different Expansion Cards with the Fastrack Xtend.

8.4. Operational Status

The Fastrack Xtend's operational status is defined by a red LED, which is located between the back plate and the secondary RF interface. Refer to section 6.4 LED Status Indicator for more information about the LED status indicator.

9. Communicating with the Fastrack Xtend

After setting up the Fastrack Xtend, communications can be established by directly sending AT commands to the device using terminal software such as HyperTerminal for MS Windows. The following subsections describe how this is done.

> | Caution: | Some AT commands and features in this section are not available in FXT004. Refer to section 2 |
| :--- | :--- |
| Features and Services and document [10] AirPrime Q26 Elite Software User Guide and AT | |
| Commands Interface Specification for more information on which AT commands and features are | |
| available in FXT004. | |

9.1. Communications Testing

To perform a communications test after the Fastrack Xtend has been setup using the RS232 serial link connection, do the following:

- Connect the RS232 link between the external application COM port (DTE) and the Fastrack Xtend (DCE).
- Configure the RS232 port of the DTE as follows:
- COM port:
- Bits per second:
- Data bits:
- Parity:
- Stop bits:
- Flow control:

1 (commonly used port for PC serial)
115200 bps
8
None
1
Hardware

- Using a communication software such as HyperTerminal, enter:

AT」

- When communications have been established, the Fastrack Xtend will respond with an "OK", which is displayed in the HyperTerminal window.

If communications cannot be established with the Fastrack Xtend, do the following:

- Check the RS232 connection between the application (DTE) and the Fastrack Xtend (DCE).
- Check the configuration of the COM port used on the DTE.

Refer to the table below for other AT commands that can be used after getting the Fastrack Xtend started.

Table 62. Basic AT Commands to Use with the Fastrack Xtend

AT Command	Description
AT+CGMI*	To check if the serial link is OK. The Fastrack Xtend will respond with "WAVECOM WIRELESS CPU" when it is OK.
AT+CPIN=xxxx	To enter a PIN code, xxxx (if activated).
AT+CSQ	To verify the received signal strength.
AT+CREG?	To verify the registration of the Fastrack Xtend on the network.
ATD<phone number>	To initiate a voice call.

AT Command	Description
ATH	To hang up (end of call).

* When using Firmware version R7.44 or later, this command will respond with "SIERRA WIRELESS EMBEDDED MODULE" when the serial link is OK.

For more information about these AT Commands and their associated parameters, refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30).

9.2. Verifying the Received Signal Strength

The Fastrack Xtend only establishes a call if the received signal strength is strong enough. Using a communication software such as HyperTerminal, enter AT+CSQ to check the received signal strength. The response returned will follow the format +CSQ: <rssi>, <ber>
where: <rssi> = received signal strength indication, and <ber> = channel bit error rate.
Refer to the table below for the description of the <rssi> values returned.
Table 63. <rssi> Value Description

<rssi> Value	Description
$0-10$	Received signal strength is insufficient.
$11-31$	Received signal strength is sufficient.
$32-98$	Not defined.
99	No measure available.

9.3. Verifying the Network Registration

Using a communication software such as HyperTerminal, enter AT+CREG? to verify the network registration of the Fastrack Xtend. Refer to the table below for the list of main responses returned.

Table 64. AT+CREG Main Reponses

AT+CREG Response	Description
+CREG: 0,0	Not registered.
+ CREG: 0,1	Registered on the home network.
+ CREG: 0,5	Registered on a roaming network.

If the Fastrack Xtend is not registered on the network, do the following:

- Check the connection between the Fastrack Xtend and the antenna.
- Verify the signal strength to determine the received signal strength (Refer to section 9.2 Verifying the Received Signal Strength).

Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information regarding the AT+CREG AT Command, and other AT commands relating to network registration in GPRS mode.

9.4. Checking the Band Selection

Using a communication software such as HyperTerminal, enter AT+WMBS? to check the band selection of the Fastrack Xtend. Refer to the table below for the list of main responses returned.

Table 65. AT+WMBS Main Reponses

AT+WMBS Response	Description
+WMBS: $0, x$	Mono band mode 850 MHz is selected.
+WMBS: $1, x$	Mono band mode extended 900 MHz is selected.
+WMBS: $2, x$	Mono band mode 1800 MHz is selected.
+WMBS: $3, x$	Mono band mode 1900 MHz is selected.
+WMBS: $4, x$	Dual band mode $850 \mathrm{MHz} / 1900 \mathrm{MHz}$ is selected.
+WMBS: $5, \mathrm{x}$	Dual band mode extended $900 \mathrm{MHz} / 1800 \mathrm{MHz}$ is selected.
+WMBS: $6, x$	Dual band mode extended $900 \mathrm{MHz} / 1900 \mathrm{MHz}$ is selected.
+WMBS: $7, \mathrm{x}$	Quad-band mode $850 / 900 \mathrm{E}($ extended $) / 1800 / 1900 \mathrm{MHz}$

Where:
When $x=0$, the band has not been modified since the last boot of the Fastrack Xtend;
When $x=1$, the band has been modified since the last boot of the Fastrack Xtend, and will have to be reset in order to take the previous modification(s) into account.
Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information regarding the AT+WMBS AT Command.

9.5. Switching Bands

Use the AT+WMBS AT Command to change the band setting of the Fastrack Xtend and switch between EU and US bands and vice versa. Refer to the following table for the list of AT+WMBS parameters that can be used and their corresponding description.

Table 66. AT+WMBS Band Selection

AT+WMBS Command	Description
AT+WMBS $=0, x$	Switch to mono band mode 850 MHz.
AT+WMBS $=1, x$	Switch to mono band mode extended 900 MHz.
AT+WMBS $=2, x$	Switch to mono band mode 1800 MHz.
AT+WMBS $=3, x$	Switch to mono band mode 1900 MHz.
AT+WMBS $=4, x$	Switch to dual band mode $850 / 1900 \mathrm{MHz}$.
AT+WMBS $=5, x$	Switch to dual band mode extended $900 \mathrm{MHz} / 1800 \mathrm{MHz}$.
AT+WMBS $=6, x$	Switch to dual band mode extended $900 \mathrm{MHz} / 1900 \mathrm{MHz}$.

Where:
When $x=0$, the Fastrack Xtend will have to be reset to start on the specified band(s);
When $x=1$, the band switch is effective immediately. However, this mode is forbidden while in Communication mode and during the Fastrack Xtend's initialization.

Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information regarding the AT+WMBS AT Command.

Note:
FXT003 has an automated quad-band mode; band selection is not relevant.
FXT004 operates in Dual-Band (Band Class 0 \& 1) mode only; band selection is not relevant.

9.6. Checking the PIN Code Status

Using a communication software such as HyperTerminal, enter AT+CPIN? to check the PIN code status. Refer to the table below for the list of main responses returned.

Table 67. AT+CPIN Main Responses

AT+CPIN Response	Description
+CPIN: READY	The PIN code has been entered.
+CPIN: SIM PIN	The PIN code has not been entered.

Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information regarding the AT+CPIN AT Command.

9.7. Main AT Commands for the Fastrack Xtend

The table below lists the main AT Commands required for starting the Fastrack Xtend. For other available AT Commands, refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30).

Table 68. Main AT Commands used for the Fastrack Xtend

Feature/Function	AT Command	Response	Description
Check network registration	AT+CREG?	+CREG: 0,1	The Fastrack Xtend is registered on the network.
		+CREG: 0,2	The Fastrack Xtend is not registered on the network; registration attempt is ongoing.
		+CREG: 0,0	The Fastrack Xtend is not registered on the network; no registration attempt has been made.
Enter PIN code	$\begin{aligned} & \text { AT+CPIN=xxxx } \\ & (x x x x=\text { PIN code }) \end{aligned}$	OK	PIN code accepted.
		+CME ERROR: 16	Incorrect PIN code (with +CMEE = 1 mode*).
		+CME ERROR: 3	PIN code already entered (with + CMEE = 1 mode*).
Check the selected band	AT+WMBS?	+WMBS: <Band>,<ResetFlag> OK	The currently selected band mode is returned.
Switch bands	AT+WMBS=<Band>	OK	Band switch is accepted; the Fastrack Xtend has to be reset for the change to be effective.

Feature/Function	AT Command	Response	Description
	AT+WMBS=<Band>,0	OK	Band switch is accepted; the Fastrack Xtend has to be reset for the change to be effective.
	AT+WMBS=<Band>, 1	OK	Band switch is accepted and the GSMS stack has been restarted.
	AT+WMBS=<Band>	+CME ERROR: 3	Band selected is not allowed.
Receive a call	ATA	OK	Answer the call.
Initiate a call	ATD<phone number>; (Do not forget the «; » at the end for « voice» call)	OK	Communication established.
		+CME ERROR: 11	PIN code not entered (with + CMEE $=$ 1 mode).
		+CME ERROR: 3	AOC credit exceeded or communications is already established.
Initiate an emergency call	ATD112; (Do not forget the «; » at the end for « voice » call)	OK	Communications established.
Hang up	ATH	OK	
Communication has been loss		NO CARRIER	
Store the parameters in EEPROM	AT\&W	OK	The configuration settings are stored in EEPROM (non-volatile memory).

* The command AT+CMEE=1 switches to a mode that enables a more complete error diagnostic.

9.8. Echo Function

If no echo is displayed when entering an AT Command, it could mean either of the following:

- The "local echo" parameter of your communication software (HyperTerminal) is disabled.
- The Fastrack Xtend echo function is disabled.

To enable the Fastrack Xtend's echo function, enter the AT Command ATE1.
When sending AT Commands to the Fastrack Xtend using a communication software such as HyperTerminal, it is recommended to:

- Disable the "local echo" parameter of your communication software.
- Enable the Fastrack Xtend's echo function (use the ATE1 command).

In a machine-to-machine communication with the Fastrack Xtend, it is recommended to disable the Fastrack Xtend's echo function (using the ATEO AT command) in order to avoid useless embedded module processing.

Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information about the ATE0 and ATE1 AT Commands.

9.9. DC-IN Detection

Refer to section 15.5 DC-IN Detection for more information on how DC-IN detection is done using AT commands.

10. Other Maintenance Options

10.1. Enabling/Disabling the Flash LED

The Fastrack Xtend has a red LED indicator that shows the status of the GSM network. It is possible to disable this LED during Sleep mode in order to reduce power consumption. Using a communication software such as HyperTerminal, enter:

- AT+WHCNF=1,0
to deactivate Flash LED
- AT+WHCNF=1,1
to activate Flash LED

Note: \quad You will need to restart the Fastrack Xtend for the new setting to take effect. Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information about enabling/disabling Flash LED.

10.2. Firmware Upgrade Procedure

The firmware upgrade procedure is used to update the firmware embedded in the Fastrack Xtend. This procedure consists of downloading the firmware into internal memories through the RS232 serial link available on the 15-pin SUB-D serial connector.
Refer to document [15] Firmware Upgrade Procedure document for more information regarding this procedure.

11. Troubleshooting the Fastrack Xtend

This section of the document describes possible problems that might be encountered when using the Fastrack Xtend and their corresponding solutions.

To read about other troubleshooting information, refer to the Knowledge Base page at http://www.sierrawireless.com/en/Support/knowledgebase.aspx.

11.1. No Communications with the Fastrack Xtend through the Serial Link

If the Fastrack Xtend does not answer to AT commands through the serial link, refer to the table below for possible causes and their corresponding solutions.

Table 69. No Communications with the Fastrack Xtend Through the Serial Link

If the Fastrack Xtend returns	Then ask	Action
Nothing	Is the Fastrack Xtend powered correctly?	Make sure that the external power supply is connected to the Fastrack Xtend and provides a voltage within the range of 4.75 V to 32 V .
	Is the serial cable connected at both sides?	Check the serial cable connection.
	Does the serial cable correctly follow the pin assignments? Refer to section 5.1.2 Serial Interface for more information about the serial cable pin assignments.	Connect the cable by following the pin assignments as given in Table 14 Serial Connector Pin Description.
Nothing or non-significant characters	Is the communication program properly configured on the PC?	Ensure that the settings of the communication program are compatible with the settings of the Fastrack Xtend. The Fastrack Xtend factory settings are: - Data bits $=8$ - Parity = none - Stop bits = 1 - \quad Baud $=115200 \mathrm{bps}$ - Flow control = hardware
	Is there another program interfering with the communication program (i.e. conflict on communication port access)?	Close the interfering program.

11.2. Receiving "ERROR"

The Fastrack Xtend returns an "ERROR" message (in reply to an AT command) in the following cases:

- The AT command syntax is incorrect. In this case, check the command syntax (refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information).
- The AT command syntax is correct, but was transmitted using the wrong parameters

Enable the verbose error report method to see the error codes associated with the command syntax.

- Enter the AT+CMEE=1 command in order to change the error report method to the verbose method, which includes the error codes.
- Re-enter the AT command which previously caused the reception of an "ERROR" message in order to get the Mobile Equipment error code.

When the verbose error report method is enabled, the response of the Fastrack Xtend in case of error is either:

- +CME ERROR: <error result code>
or
- +CMS ERROR: <error result code>

Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information on the error result code description and further details on the AT+CMEE command.
Caution: It is strongly recommended to always enable the verbose error report method to get the Mobile
Equipment error code (enter the $\boldsymbol{A T}+C M E E=1$ command).

11.3. Receiving "NO CARRIER"

If the Fastrack Xtend returns a "NO CARRIER" message upon an attempted call (voice or data), refer to the following table for possible causes and their corresponding solutions.

Table 70. Receiving a "No Carrier" Message

If the Fastrack Xtend returns	Then ask	Action
"NO CARRIER"	Is the received signal strong enough?	Refer to Verifying the Received Signal Strength to verify the strength of the received signal.
	Is the Fastrack Xtend registered on the network?	Refer to Verifying the Network Registration to verify the network registration.
	Is the antenna properly connected?	Refer to section 5.2.2.2 Antenna Specifications for more information about the Fastrack Xtend's antenna requirements.
	Is the band selection correct?	Refer to Switching Bands for more information about switching between bands.

If the Fastrack Xtend returns	Then ask	Action
"NO CARRIER" (when trying to issue a voice communication)	Is the semicolon (;) entered immediately after the phone number in the AT command?	Ensure that the semicolon (;) is entered immediately after the phone number in the AT command. e.g. ATD\#\#\#\#\#\#;
"NO CARRIER" (when trying to issue a data communication)	Is the SIM card configured for data/fax calls?	Configure the SIM card for data/fax calls. (Ask your network provider if necessary).
	Is the selected bearer type supported by the called party?	Ensure that the selected bearer type is supported by the called party.
	Is the selected bearer type supported by the network?	Ensure that the selected bearer type is supported by the network. If still unsuccessful, try selecting the bearer type using the AT command:
	AT+CBST=0,0,3	

If the Fastrack Xtend returns a "NO CARRIER" message, you may retrieve the extended error code by using the AT Command AT+CEER. Refer to the following table for the interpretation of extended error codes.

Table 71. Extended Error Codes

Error Code	Diagnosis	Hint
1	Unallocated phone number	
16	Normal call clearing	
17	User busy	
18	No user responding	
19	User alerting, no answer	
21	Call rejected	Number changed
22	Normal, unspecified	Check your subscription. (Is data subscription available?)
31	Requested facility not subscribed	
50	ACM equal or greater than ACMmax	The credit of your pre-paid SIM card has expired.
68	Call barring on outgoing calls	
252	Call barring on incoming calls	Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for further details or call your network provider.
253	Network causes	
$3,6,8,29,34,38,41,42$,		
$43,44,47,49,57,58,63$,	65, 69, 70, 79, 254	

For all other codes and/or details, refer to the documents listed in section 19.2 Firmware Documentation.

12. Power Consumption

The following sub-sections details out the power consumption values of the Fastrack Xtend for various modes and RF bands. These consumption values were obtained by performing measurements on Fastrack Xtend samples at a temperature of $25^{\circ} \mathrm{C}$ using a 3 V SIM card.

Note: \quad For FXTOO2 power consumption, the software version used is R74.
For FXT003 power consumption, the software version used is R74a.
For FXT004 power consumption, the software version used is R5A.
Refer to document [15] Firmware Upgrade Procedure for details on how to upgrade Fastrack Xtend firmware.

Table 72. Initial Power Consumption (Typical)*

Configuration	Power Consumption
With DC-IN	$10 \mathrm{~mA} @ 13.2 \mathrm{~V}$
With Battery Accessory	$35 \mathrm{~mA} @ 3.6 \mathrm{~V}$

* Measurement based on FXT002

The table above lists the power consumption of the Fastrack Xtend when power supply (DC-IN or battery accessory) is initially applied to it with no serial port, LED ON nor SIM card.

12.1. Various Operating Modes

The power consumption levels of the Fastrack Xtend vary depending on the operating mode used. Refer to the table below for the different kinds of operating modes available. Refer to Appendix 3.1 of document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for the working mode description.

Table 73. Fastrack Xtend Operating Modes

Operating Mode	Description
GSM Connected Mode	The Fastrack Xtend is connected to a live GSM network, during circuit switch voice or data call.
Transfer Mode	The Fastrack Xtend has GPRS data transfer connection with a live network, during packet data transmission.
Active mode with GSM stack in Idle	When the RF function is active and the Fastrack Xtend is synchronized with the network, but there is currently no communication.
Sleep mode with GSM stack in Idle	When the RF function is disabled but is regularly activated to remain synchronized with the network. This mode only works when the DTE sends an AT command to shut the serial link down (DTE turns DTR to inactive state).
Active Mode	When the RF function is disabled and there is no synchronization with the network but the UART is available.
Sleep Mode	When the RF function is disabled, and there is no synchronization with the network and the UART is not available.

Operating Mode	Description
Alarm Mode	Low power consumption mode, the only feature which is available in this mode is the alarm wake up.
When the alarm clock is set for the Fastrack Xtend with ALL of the following conditions: - before the alarm time is up e with the ON/OFF signal pulled to GND	
Serial Port Auto Shut Downwith AT+CPOF entered from a computer that is connected to the Feature	The serial link can be shut down when there is no activity between the DTE and the Fastrack Xtend. This auto shut down feature can be enabled by AT command. Refer to section 5.1 .2 .3 Serial Port Auto Shut Down Feature for more information on this feature.
FLASH LED Activated/Deactivated	The Fastrack Xtend Flash LED can be enabled or disabled by AT command. Refer to section 10.1 Enabling/Disabling the Flash LED for more information on this feature.

Note: \quad For FXT004 operating modes, please refer to Table 79 Power Consumption of FXT004 (Typical).

12.2. Working Mode Features

The table below sums up the feature availability in each mode.
Note:
For FXT004 operating modes, please refer to Table 79 Power Consumption of FXT004 (Typical).

Table 74. Fastrack Xtend Operating Modes Feature Availability

Features	Alarm Mode	ACTIVE Mode with GSM Stack in Idle	SLEEP Mode with GSM Stack in Idle	ACTIVE Mode	SLEEP Mode	Connected Mode	Transfer Mode
Alarm	\checkmark						
Wake-up Sierra Wireless Software Suite on timer events	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
GSM/GPRS paging (alert from the network for incoming call, incoming SMS or incoming GPRS data)	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark
SIM	-	\checkmark	-	-	-	\checkmark	\checkmark
UARTs	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark
USB	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark
SPIs	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark
$1^{2} \mathrm{C}$	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark
GPIO	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark
ADCs	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark

Features	Alarm Mode	ACTIVE Mode with GSM Stack in Idle	SLEEP Mode with GSM Stack in Idle	ACTIVE Mode	SLEEP Mode	Connected Mode	Transfer Mode
Buzzer	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark
Keypad	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
External IT	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Flash LED	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

12.3. Power Consumption in Connected Mode (FXT009)

Table 75. Power Consumption of FXT009 in Connected Mode (Typical)

12.4. Power Consumption in Connected Mode (FXT003)

Table 76. Power Consumption of FXT003 in Connected Mode (Typical)

Power Consumption for FXT003 (Serial Port ON, Flash LED activated)				GSM 850	E-GSM 900	DCS 1800	PCS 1900
$\sum_{i N}^{\Sigma}$	peak	GSM850 / E-GSM900: During TX bursts @ PCL5 / PCL19 DCS1800 / PCS1900 : During TX bursts @ PCLO / PCL15	@ 4.75V	3600 / 690	3700 / 686	2177 / 673	2652 / 642
			@ 13.2V	787 / 217	811 / 216	571 / 205	675 / 204
	lavg	GSM850 / E-GSM900: Average @ PCL5 / PCL19 DCS1800 / PCS1900 : Average @ PCL0 / PCL15	@ 4.75V	$515 / 290$	526 / 291	433 / 288	474 / 289
			@ 13.2V	163 / 102	166/102	144 / 101	153 / 101
			@ 32V	$70 / 43$	$71 / 43$	62 / 43	66 / 44
$\begin{aligned} & \infty \\ & n \\ & \infty \\ & \cdots \\ & \vdots \\ & 0 \\ & \\ & 0 \\ & 0 \end{aligned}$	I peak	GSM850 / E-GSM900: During 1TX bursts @ PCL5(Gamma 3) DCS1800 / PCS1900 : During 1TX bursts @ PCLO(Gamma 3)	@ 4.75V	3500	3600	2159	2760
			@ 13.2V	785	804	621	694
	1 avg	GSM850 / E-GSM900 : Average 1TX/4RX @PCL5(Gamma 3) DCS1800 / PCS1900: Average 1TX/4RX @PCLO(Gamma 3)	@ 4.75V	494	502	416	454
			@ 13.2V	158	157	139	148
			@ 32V	68	69	60	64
$\begin{aligned} & 0 \\ & 0 \\ & \text { n } \\ & \frac{\pi}{0} \\ & 0 \\ & \frac{\pi}{0} \\ & 0 \\ & \hline \end{aligned}$	1 peak	GSM850 / E-GSM900: During 2TX bursts @ PCL5(Gamma 3) DCS1800 / PCS1900: During 2TX bursts @ PCLO(Gamma 3)	@ 4.75V	2215	2264	1632	1951
			@ 13.2V	622	624	564	618
	lavg	GSM850 / E-GSM900 : Average 2TX/3RX @ PCL5 (Gamma 3) DCS1800 / PCS1900: Average 2TX/3RX @ PCLO (Gamma 3)	@ 4.75V	599	611	506	550
			@ 13.2V	195	199	171	184
			@ 32V	84	86	74	79
$\begin{aligned} & \text { N } \\ & \infty \\ & 0 \\ & \frac{\pi}{U} \\ & \infty \\ & \frac{\pi}{0} \\ & 0 \\ & \hline \end{aligned}$	peak	GSM850 / E-GSM900: During 4TX bursts @ PCL5(Gamma 3) DCS1800 / PCS1900: During 4TX bursts @ PCLO(Gamma 3)	@ 4.75V	1581	1658	1256	1466
			@ 13.2V	566	584	441	514

Power Consumption for FXT003 (Serial Port ON, Flash LED activated)				GSM 850	E-GSM 900	DCS 1800	PCS 1900
	1 avg	GSM850 / E-GSM900 : Average 4TX/1RX @ PCL5 (Gamma 3) DCS1800 / PCS1900: Average 4TX/1RX @ PCLO (Gamma 3)	@ 4.75V	741	755	621	681
			@ 13.2V	246	251	212	230
			@ 32V	107	109	91	99
$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \cdots \\ & \cdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	peak	GSM850 / E-GSM900: During 1TX bursts @ PCL8 (Gamma 6) DCS1800 / PCS1900: During 1TX bursts @ PCL2 (Gamma 5)	@ 4.75V	2128	2148	1812	2107
			@ 13.2V	606	614	588	609
	1 avg	GSM850 / E-GSM900 : Average 1TX/4RX @ PCL8 (Gamma 6) DCS1800 / PCS1900: Average 1TX/4RX @ PCL2 (Gamma 5)	@ 4.75V	402	406	382	402
			@ 13.2V	134	135	130	135
			@ 32V	58	58	55	58
$\begin{aligned} & \text { 응 } \\ & \text { n } \\ & \frac{\pi}{0} \\ & 0 \\ & \frac{\alpha}{0} \\ & 0 \\ & \hline \end{aligned}$	I peak	GSM850 / E-GSM900: During 2TX bursts @ PCL8 (Gamma 6) DCS1800 / PCS1900: During 2TX bursts @ PCL2 (Gamma 5)	@ 4.75V	1732	1756	1520	1682
			@ 13.2V	567	591	536	569
	avg	GSM 850 / E-GSM900 : Average 2TX/3RX @ PCL8 (Gamma 6) DCS1800 / PCS1900: Average 2TX/3RX @ PCL2 (Gamma 5)	@ 4.75V	519	525	487	511
			@ 13.2V	173	176	165	171
			@ 32V	74	75	71	74
	1 peak	GSM850 / E-GSM900: During 4TX bursts @ PCL8 (Gamma 6) DCS1800 / PCS1900: During 4TX bursts @ PCL2 (Gamma 5)	@ 4.75V	1488	1456	1316	1394
			@ 13.2V	499	516	447	483
	1 avg	GSM 850 / E-GSM900 : Average 4TX/1RX @ PCL8 (Gamma 6) DCS1800 / PCS1900: Average 4TX/1RX @ PCL2 (Gamma 5)	@ 4.75V	710	713	654	678
			@ 13.2V	237	238	221	228
			@ 32V	102	103	95	98

Pow Port	Con $\mathrm{ON}, \mathrm{~F}$	sumption (lash LED ac	Serial tivated)	UMTS 850 (BAND I)	UMTS 1900 (BAND II)	UMTS 2100 (BAND V)
	peak	@ +22dBm	@4.75	878	924	825
			@13.2	313	327	295
		@ +10dBm	@4.75	737	722	674
			@13.2	246	248	215
	1 avg	@ +22dBm	@4.75	734	787	687
			@13.2	253	273	238
			@32V	108	116	103
		@ +10dBm	@4.75	541	556	452
			@13.2	189	195	159
			@32V	83	85	68
	peak	@ +22dBm	@4.75	898	943	831
			@13.2	315	330	296
		@ +10dBm	@4.75	727	712	710
			@13.2	246	249	216
	1 avg	@ +22dBm	@4.75	741	793	696
			@13.2	255	272	240
			@32V	109	117	103
		@ +10dBm	@4.75	546	562	460
			@13.2	191	197	161
			@32V	84	86	69
HSDPA Data Transfer2 Cat.8 7.2Mbit/s	peak	@ +22dBm	@4.75	996	1040	926
			@13.2	348	363	326
		@ +10dBm	@4.75	764	789	736
			@13.2	275	282	249
	1 avg	@ +22dBm	@4.75	866	911	796
			@13.2	295	310	273
			@32V	125	132	117
			@4.75	644	666	586

Power Consumption (Serial Port ON, Flash LED activated)				UMTS 850 (BAND I)	UMTS 1900 (BAND II)	UMTS 2100 (BAND V)
		@ +10dBm	@13.2	224	231	205
			@32V	98	101	89
HSUPA Data Transfer2 Cat. 5 2Mbit/s	1 peak	@ +22dBm	@4.75	955	1003	903
			@13.2	330	352	318
		@ +10dBm	@4.75	810	874	773
			@13.2	278	293	264
	1 avg	@ +22dBm	@4.75	790	852	753
			@13.2	271	291	259
			@32V	117	126	112
		@ +10dBm	@4.75	614	631	555
			@13.2	214	220	194
			@32V	93	96	85

12.5. Power Consumption in Non-Connected Mode (FXT009)

Table 77. Power Consumption of FXT009 in Non-Connected Mode (Typical)

Non-connected mode	Serial Port Status	Voltage	Current (mA)
I avg in Active mode (4*)	In this mode, serial port remains active	@ 4.75V	80.3
		@ 13.2V	28.4
		@ 32V	12.5
$\begin{aligned} & 1 \text { avg in SLEEP mode } \\ & \text { (with FLASH LED activated) } \\ & \left(4^{*}\right) \end{aligned}$	ON	@ 4.75V	34.6
		@ 13.2V	12.2
		@ 32V	5.6
	OFF	@ 4.75V	5.3
		@ 13.2V	2.1
		@ 32V	1.2
I avg in SLEEP mode (with FLASH LED deactivated) (4*)	ON	@ 4.75V	29.8
		@ 13.2V	10.8
		@ 32V	5
	OFF	@ 4.75V	1.3

		@ 13.2V	0.6
	0.5		

Non-connected mode	Serial Port Status	Voltage	Current (mA)
$I_{\text {avg }}$ in ACTIVE Idle mode Page 9$\left(2^{*}\right)$	ON	@ 4.75V	53.6
		@ 13.2V	18.7
		@ 32V	8.5
	OFF	@ 4.75V	23.5
		@ 13.2V	8.5
		@ 32V	4.1
$I_{\text {avg }}$ in SLEEP Idle mode Page 9$\left(3^{*}\right)$	ON	@ 4.75V	28.6
		@ 13.2V	10.4
		@ 32V	5
	OFF	@ 4.75V	4.7
		@ 13.2V	1.9
		@ 32V	1.2
1 avg in Alarm mode	OFF	@ 4.75V	0.4
		@ 13.2V	0.4
		@ 32V	0.4

Note: The USB port must be deactivated to enter Sleep Mode.

12.6. Power Consumption in Non-Connected Mode (FXT003)

Table 78. Power Consumption of FXT003 in Non-Connected Mode (Typical)

Non-Connected Mode	Serial Port Status	Voltage	Current (mA)
$I_{\text {avg }}$ in ACTIVE Idle mode HSPA Page 9	ON	@ 4.75V	56.1
		@ 13.2V	26.1
		@ 32V	8.8
	OFF	@ 4.75V	31.5
		@ 13.2V	16.7
		@ 32V	5.3
I avg in SLEEP Idle mode HSPA Page 9	ON	@ 4.75V	27.9
		@ 13.2V	11.5
		@ 32V	4.9

Non-Connected Mode	Serial Port Status	Voltage	Current (mA)
	OFF	@ 4.75V	5.5
		@ 13.2V	3.1
		@ 32V	1.2
1 avg in Alarm mode	OFF	@ 4.75V	0.4
		@ 13.2V	0.4
		@ 32V	0.5

Non-Connected Mode	Serial Port Status	Voltage	Current (mA)
$I_{\text {avg }}$ in ACTIVE Idle mode 2G Page 9	ON	@ 4.75V	54.8
		@ 13.2V	19.2
		@ 32V	8.7
	OFF	@ 4.75V	30.7
		@ 13.2V	11.3
		@ 32V	5.2
${ }_{9} \mathrm{I}$ avg in SLEEP Idle mode 2G Page	ON	@ 4.75V	26.9
		@ 13.2V	9.8
		@ 32V	4.5
	OFF	@ 4.75V	4.7
		@ 13.2V	1.8
		@ 32V	1.03

Non-Connected Mode	Serial Port Status	Voltage	Current (mA)
I avg in ACTIVE Idle mode 2G Page 2	ON	@ 4.75V	57.8
		@ 13.2V	20.1
		@ 32V	9.1
	OFF	@ 4.75V	33.4
		@ 13.2V	13.9
		@ 32V	5.5
$I_{\text {avg }}$ in SLEEP Idle mode 2G Page 2	ON	@ 4.75V	29.7
		@ 13.2V	10.8
		@ 32V	4.9
	OFF	@ 4.75V	7.6
		@ 13.2V	2.8
		@ 32V	1.5

Note: The USB port must be deactivated to enter Sleep Mode.

12.7. Power Consumption with FXT004

Table 79. Power Consumption of FXT004 (Typical)

Parameter		Voltage	Current (mA)	Peak (mA)
On Call	Maximum TX Output	@ 4.75V	579	1220
		@ 13.2V	202	-
		@ 32V	87	-
	+0dBm TX Output	@ 4.75V	218	264
		@ 13.2V	76	-
		@ 32V	33	-
Idle	Registered	@ 4.75V	95	-
		@ 13.2V	33	-
		@ 32V	15	
	Searching	@ 4.75V	138	-
		@ 13.2V	48	
		@ 32V	21	-
Sleep Mode	Average current, $\mathrm{SCl}=2$	@ 4.75V	70	-
		@ 13.2V	24	-
		@ 32V	11	-
OFF Mode		@ 4.75V	0.34	
		@ 13.2V	0.28	
		@ 32V	0.37	

12.8. Consumption Measurement Procedure

This chapter describes the procedure for consumption measurement which is used to obtain the Fastrack Xtend consumption specifications.

The Fastrack Xtend consumption specification values are measured for all operating modes available. For more information about switching between the operating modes, refer to the appendix of document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30).

Consumption results are highly dependent on the hardware configuration used during measurement and the following chapter describes the hardware configuration settings that should be used to obtain optimum consumption measurements.

12.8.1. Hardware Configuration

The following hardware configuration includes both the measurement equipment and the Fastrack Xtend.

12.8.1.1. Equipment

Three devices are used to perform consumption measurement:

- A communication tester
- A current measuring power supply
- A computer, to control the Fastrack Xtend and to save measurement data

Figure 45. Typical Hardware Configuration for Power Consumption Measurement
The communication tester is a CMU 200 from Rhode \& Schwartz. This tester offers all required GSM/GPRS/EGPRS/CDMA/WCDMA network configurations and allows a wide range of network configurations to be set.

The 66321D power supply is used to supply the Fastrack Xtend, and it could also be used to measure the total current drain by the device. The current measurement data is read through the GPIB connection. Rhode \& Schwartz NGSM 32/10 is used when measuring with 32V input voltage.

Note that a SIM card must be inserted during all consumption measurements.
The following table lists the recommended equipments to use for the consumption measurement.

Table 80. List of Recommended Equipments

Device	Manufacturer	Part Number	Notes/Description
Communication Tester	Rhode \& Schwartz	CMU 200	Quad Band GSM/DCS/GPRS/EGPRS, CDMA, WCDMA
Current measuring power supply	Agilent	66321 D	Used for DC-IN

12.8.1.2. SIM Cards Used

Consumption measurement may be performed with either 3-Volt or 1.8-Volt SIM cards. However, all specified consumption values are for a 3-Volt SIM card.

Caution: The SIM card's voltage is supplied by the Fastrack Xtend power supply. Consumption measurement results may vary depending on the SIM card.

12.8.2. Software Configuration

This section defines the software configuration for the equipment(s) used and the Fastrack Xtend settings.

12.8.2.1. Fastrack Xtend Configuration

The Fastrack Xtend software configuration is performed by selecting the operating mode to use in performing the measurement.

A description of the operating modes and the procedures used to change operating modes are given in the appendix of document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30).
Refer to the following list for the available operating modes of the Fastrack Xtend:

- Active Idle Mode
- Sleep Idle Mode
- Active Mode
- Sleep Mode**
- Connected Mode
- Transfer Mode class 8 (4Rx/1Tx) (in GPRS mode)
- Transfer Mode class 10 (3Rx/2Tx) (in GPRS mode)
- Transfer Mode class 12 (1Rx/4Tx) (in GPRS mode)*
- Transfer Mode class 8 (4Rx/1Tx) (in EDGE mode)
- Transfer Mode class 10 (3Rx/2Tx) (in EDGE mode)
- Transfer Mode class 12 (1Rx/4Tx) (in EDGE mode)*
- Connected Mode (in UMTS mode)*
- Data Transfer (in UMTS mode and HSxPA mode)*
Note: * For FXTOO3 only.
** \quad The USB port must be deactivated to enter Sleep Mode.
For FXT004 operating modes, please refer to Table 79 Power Consumption of FXT004 (Typical).

12.8.2.2. Equipment Configuration

The communication tester is set according to the Fastrack Xtend operating mode. Paging during idle modes, Tx burst power, RF band and GSM/DCS/GPRS may be selected on the communication tester.

Refer to the following table for the network analyzer configuration according to operating mode.

Table 81. Operating Mode Information

Operating Mode		Communication Tester Configuration		
Alarm Mode		N/A		
Active Mode with GSM stack in Idle		Paging 9 (Rx burst occurrence ~2s)		
		Paging 2 (Rx burst occurrence $\sim 0,5 \mathrm{~s}$)		
Sleep Mode with GSM stack in Idle		Paging 9 (Rx burst occurrence $\sim 2 \mathrm{~s}$)		
		Paging 2 (Rx burst occurrence $\sim 0,5 \mathrm{~s}$)		
Active Mode		N/A		
Sleep Mode		N/A		
Connected Mode		850/900 MHz	PCL5 (TX power 33dBm)	
		PCL19 (TX power 5dBm)		
		1800/1900 MHz	PCL0 (TX power 30dBm)	
		PCL15 (TX power 0dBm)		
GPRS	Transfer Mode class 8 ($4 \mathrm{Rx} / 1 \mathrm{Tx}$)		850/900 MHz	Gam. 3 (TX power 33dBm)
		Gam. 17 (TX power 5dBm)		
		1800/1900 MHz	Gam. 3 (TX power 30dBm)	
			Gam. 18 (TX power 0dBm)	
	Transfer Mode class 10 (3Rx/2Tx)	850/900 MHz	Gam. 3 (TX power 33dBm)	
			Gam. 17 (TX power 5dBm)	
		1800/1900 MHz	Gam. 3 (TX power 30dBm)	
			Gam. 18 (TX power 0dBm)	
	Transfer Mode class 12 (1Rx/4Tx)	850/900 MHz	Gam. 3 (TX power 33dBm)	
			Gam. 17 (TX power 5dBm)	
		1800/1900 MHz	Gam. 3 (TX power 30dBm)	
			Gam. 18 (TX power 0dBm)	
EGPRS	Transfer Mode class 2 ($1 \mathrm{Rx} / 1 \mathrm{Tx}$)	850/900 MHz	Gam. 6 (TX power 27dBm)	
			Gam. 17 (TX power 5dBm)	
		1800/1900 MHz	Gam. 5 (TX power 26dBm)	
			Gam. 18 (TX power 0dBm)	
	Transfer Mode class 10 (3Rx/2Tx)	850/900 MHz	Gam. 6 (TX power 27dBm)	
			Gam. 17 (TX power 5dBm)	
		1800/1900 MHz	Gam. 5 (TX power 26dBm)	
			Gam. 18 (TX power 0dBm)	
	Transfer Mode class 12 (1Rx/4Tx)	850/900 MHz	Gam. 6 (TX power 27dBm)	
			Gam. 17 (TX power 5dBm)	
		1800/1900 MHz	Gam. 5 (TX power 26dBm)	
			Gam. 18 (TX power 0dBm)	
UMTS Connected Mode (VOICE)	UMTS 850 (BAND I)		+22dBm	
			+10dBm	
	UMTS 1900 (BAND II)		+22dBm	
			+10dBm	
	UMTS 2100 (BAND V)		+22dBm	
			+10dBm	
UMTS (Data	UMTS 850 (BAND		+22dBm	

Operating Mode		Communication Tester Configuration
Transfer) 384kbit/s		+10dBm
	UMTS 1900 (BAND II)	+22dBm
		+10dBm
	UMTS 2100 (BAND V)	+22dBm
		+10dBm
HSDPA Data Transfer Cat. 8 7.2Mbit/s	UMTS 850 (BAND I)	+22dBm
		+10dBm
	UMTS 1000 (BAND II)	+22dBm
	UMTS 1900 (BAND II)	+10dBm
	UMTS 2100 (BAND V)	+22dBm
		+10dBm
HSUPA Data Transfer CAT. 5 2Mbit/s	UMTS 850 (BAND I)	+22dBm
		+10dBm
		+22dBm
	UMTS 1900 (BAND II)	+10dBm
		+22dBm
	UMTS 2100 (BAND V)	+10dBm

13. Recommendations when Using the Fastrack Xtend on Trucks

Caution: The power supply connection of the Fastrack Xtend must never be directly connected to the truck battery.

13.1. Recommended Power Supply Connection on Trucks

All trucks have a circuit breaker on the exterior of the cabin. The circuit breaker is used for safety reasons: if a fire blazes in the trucks, (for example, on the wiring trunk) the driver may cut the current source to avoid any damage (explosion). The circuit breaker is connected to the truck ground, most often associated with the fuse box.

Most truck circuit breakers do not cut the Positive Supply line of the battery, but cut the ground line of the latter.

Figure 46. Recommended Power Supply Connection on Trucks
The figure above shows the recommended power supply connection where the ground connection of the Fastrack Xtend is not directly connected to the battery but is connected after the Circuit Breaker (on the truck ground or the fuse box).

13.2. Technical Constraints on Trucks

It is highly recommended to directly connect the power supply on the circuit breaker rather than on the battery. The Fastrack Xtend may be damaged when starting the truck if the circuit breaker is switched OFF (in this case, the truck ground and the battery ground will be connected through the Fastrack Xtend as shown in the following figure).

Figure 47. Example of an Electrical Connection That May Damage the Fastrack Xtend
The figure above gives an example of an electrical connection which may dramatically damage the Fastrack Xtend when its ground connection is directly connected to the battery ground.

In this example, when the circuit breaker is switched OFF, the current flows through the Fastrack Xtend and powers the electrical circuit of the truck (for example, the dashboard). Furthermore, when the Starter Engine command is used, it will destroy the cables or the Fastrack Xtend.
Since the internal tracks of the Fastrack Xtend are not designed to support high currents (up to 60A when starting the truck), they will be destroyed.

14. Fastrack Xtend Accessories

14.1. Standard Accessories

The Fastrack Xtend has the following standard accessories:

- 6-wire cable accessory with IO (DC IN, GND, Vref, GPIO25, GPIO21, ON/OFF)
(Refer to the following table for the color-coding of the 6-wire cable accessory.)
- Mounting bridle
- USB Cable wire

Table 82. 6-Wire Cable Accessory Color Coding

10	Cable Accessory Color
DC-IN	RED
GND	BLACK
VREF	GREEN
GPIO21	ORANGE
ON/OFF	YELLOW
GPIO25	BROWN

Note:
For FXT004, GPIO42 and GPIO44 are the two external GPIO ports available on the Power supply connector. Refer to Table 8 Power Supply Connector Pin Description for more information.

14.2. Additional Optional Accessories

- 2-wire Power supply cable (DC-IN and GND)
- RS232 serial link cable
- RS232 serial link and audio cable
- AC/DC Power supply
- Battery Accessory - NiMH with built-in slow charger
- GSM and GPS antennas
- Expansion Cards: Ethernet or IO+GPS (Refer to section 7 Expansion Card for more information about these expansion cards.)

Note: \quad The above items are ONLY considered as accessories of the Fastrack Xtend. They are NOT considered as part of the Fastrack Xtend.

14.3. Optional Battery

Refer to section 15 Recommendations when Using the Battery Accessory for more information regarding the optional battery accessory of the Fastrack Xtend.

14.4. Component Recommendations

The following tables list the recommended components/parts to use with the Fastrack Xtend.
Table 83. List of Recommended Accessories

Component	Part/Reference Number	Supplier
Quad-band antenna	W1900	PULSE
Power adaptor	GS-2034 (RE) 25W (MAX) Out: 12V -2A In: 100 to 240V - 47/63 Hz - 550mA Mounted with micro-fit connector	GlobTeK
6-wire cable accessory + Fuse	Cable: K96975060049A FUSE: T2AL250V VDE Slow Break	Grand-TEK Technology
IO+GPS Expansion Card	FXTE01	Sierra Wireless
GPS antenna	GC-GAACZ-A55	GIGA-Concept
IO cable for Expansion Card	58-9257-000-000-012S	AVX
Ethernet Expansion Card + Ethernet cable included	FXTE02 (Cable: K95DM2080002A-01)	Sierra Wireless (Grand-TEK Technology)
Battery accessory with built-in slow charger	FXBAT	Sierra Wireless
Data cable (RS-232)	HDM15/DB9F/DD/1.5M	GIGA-Concept
USB cable	$88732-8700$	MOLEX France
RS485 Expansion Card + cable harness included	EC0020 (Cable: KG9962080007M-01)	Sierra Wireless (Grand-TEK Technology)

15. Recommendations when Using the Battery Accessory

Warning: The use of this accessory is strictly limited to Fastrack Xtend products. It is prohibited to use this accessory with devices other than the AirLink FXT Series programmable gateways.

The figure below displays the battery accessory with its interface connector plug. The battery accessory consists of an internal battery with a built-in slow charger; while the interface connector is used to connect the battery accessory with the Fastrack Xtend series.

Figure 48. Fastrack Xtend Optional Battery Accessory

The following figure displays the block diagram of the optional battery with charger.

Figure 49. Battery with Charger Block Diagram

Refer to the battery specification table below for the battery temperature range.

Table 84. Battery Specifications

Specification	Value
Battery Cell Type	Nickel Metal hydride (Ni-MH)
Capacity	500 mAH
Storage (Less than 30 days)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Discharge Temperature	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Charging Temperature	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Input Voltage	$7.5 \mathrm{~V} \sim 32 \mathrm{~V}$
Output Voltage	3.6 V
Life Expectancy (typical)	At least 1 year
Usage Time	In maximum power condition, typical usage time can be up to 0.5 hours*.

* More information about usage time will be available in future revisions.

15.1. Using the Battery Accessory

Assemble the battery accessory with the Fastrack Xtend as shown in the figure below.

Figure 50. Fastrack Xtend with Battery Accessory Attached
Note: \quad The item above is ONLY considered as an accessory of the Fastrack Xtend; and NOT considered a part of the Fastrack Xtend.

For more information about the battery accessory and how to use it with the Fastrack Xtend, refer to document [16] AirLink Fastrack Xtend Battery Accessory Product Technical Specification.

15.2. LED Indicator

The charger operation status is defined by the bi-color LED indicator. Refer to the following table for the operational details of the LED indicator.

Table 85. LED Indicator Status

LED Light Activity	Charger Status
Red LED ON	Battery level is below 3.6V
Green LED ON	Battery level is above 3.7V
LED OFF	DC-IN or USB is NOT connected

15.3. Charging Time

Refer to the table below for the charging times of the battery accessory.

Table 86. Battery Accessory Charging Time

Battery Type	Battery Capacity	Power Source	Charging Time
Ni-MH	500 mAH	DC-IN	$\sim 14 \mathrm{Hrs}$
	USB	$\sim 16 \mathrm{Hrs}$	

15.3.1. Charging Specification

Charging can be done using either DC-IN or USB.
When using DC-IN charging, simply plug in the cable accessory with DC-IN (7.5 V to 32 V) to the battery cable while attached to the battery accessory (see Figure 49 Battery with Charger Block Diagram).
For USB charging, connect a USB cable to the Fastrack Xtend while connecting the battery accessory via the battery cable.

If both the DC-IN and USB power source are connected, charging through DC-IN takes precedence if the input USB voltage is 5 V or below. Otherwise, charging via USB takes precedence.

Refer to the following table for charging specifications.
Table 87. Charging Specifications (Typical)

Power Source	Input Voltage	Maximum Charging Voltage	Charging Current	
			Maximum	Continuous
	DC $7.5-32 \mathrm{~V}$	4.9 V	128 mA	20 mA
USB	DC 5V	4.8 V	118 mA	14 mA

15.4. Ni-MH Battery Level Reading

ADC1 is an internal signal of the Fastrack Xtend and is dedicated for measuring the battery accessory voltage. From the ADC1value, a specific conversion is necessary to get the battery voltage.
The formula of the battery level to ADC1 reading (expressed in mV) is:

Battery voltage $(V b a t)=3.212 \times$ ADC1 reading

For example, if ADC1 reading by AT command is 1218, then Vbat level $=3.212 \times 1218=3912 \mathrm{mV}$.
To read the battery level, use a communication software such as HyperTerminal and do the following:

- Enter AT+ADC?
- Press Enter

The Fastrack Xtend will respond with the following:

> +ADC: XXXX,ADC1,XXX,XXX
> OK

Refer to document [16] AirLink Fastrack Xtend Battery Accessory Product Technical Specification for more information about reading the battery level status.

Note: \quad This feature is not available in FXT004.

15.5. DC-IN Detection

GPIO1 is an internal signal of the Fastrack Xtend and is dedicated for DC-IN status monitoring. To monitor the GPIO1 level, use a communication software such as HyperTerminal, and enter:

- AT+WIOM=1,"GPIO1",0 to initially set GPIO1 as input
- AT+WIOR="GPIO1" to read the status of GPIO1

Table 88. AT+WIOR in GPIO1 Responses

AT+WIOR Response	Description
+WIOR: 0	DC-IN is applied
+WIOR: 1	No DC-IN detected (using battery as power supply)

Refer to document [7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30) for more information regarding the AT+WIOR AT Command.

Refer to document [16] AirLink Fastrack Xtend Battery Accessory Product Technical Specification for more information regarding the battery accessory.

[^41]
15.6. Battery Accessory Recommendations and Other Information

- When used for the first time, or after a long time (more than a month) of storage, 2 to 3 times of charging and discharging cycles are required to optimize the battery performance (capacity).
- When the battery has not been used for a long period of time, recharge it before use.
- Do not use the battery accessory when it is fully discharged.
- It is recommended to disconnect the battery accessory from the Fastrack Xtend if the battery accessory is not used for a long time.
- Disconnect the DC-IN or the USB cable from the Fastrack Xtend if the device is not to be used for a long time.
- It is normal for the battery accessory to increase in temperature by up to $10^{\circ} \mathrm{C}$ during charging.
- The charging temperature of the battery accessory is from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
- Do not open or modify the battery accessory, this may cause a short circuit. The battery accessory is designed using NiMH and modifying the product by using other types of battery cells (e.g. NiCd, Alkaline etc.) with different capacities may lead to a burst, causing personal injury.
- Battery storage temperature is from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
- Do not wet, incinerate or disassemble the battery accessory.
- Do not short circuit the battery accessory.
- For indoor and dry location use only. Do not expose the battery accessory to rain, snow or extreme conditions.

Refer to section 18.2 Battery Safety for more information on battery safety.

16. Reliability Compliance and Recommended Standards

16.1. Reliability Compliance

The Fastrack Xtend is compliant with the following requirements.
Table 89. Standards Conformity for the Fastrack Xtend Series

Abbreviation	Definition
IEC	International Electro technical Commission
ISO	International Organization for Standardization

16.2. Applicable Standards Listing

The table hereafter gives the basic list of standards applicable to the Fastrack Xtend.
Note: \quad References to any features can be found from these standards.
Table 90. Applicable Standards and Requirements for the Fastrack Xtend

Document	Current Version	Title
IEC6006826	7.0	Environmental testing - Part 2.6: Test FC: Sinusoidal Vibration.
IEC60068234	73	Basic environmental testing procedures part 2: Test FD: random vibration wide band - general requirements. Cancelled and replaced by IEC60068-2-64. For reference only.
IEC60068264	2.0	Environmental testing - part 2-64: Test FH: vibration, broadband random and guidance.
IEC60068232	2.0	Basic environmental testing procedures - part 2: Test ED: (procedure 1) Withdrawn \& replaced by IEC60068-2-31. For reference only.
IEC60068231	2.0	Environmental testing part 2-31: Test EC: rough handling shocks, primarily for equipment-type specimens.
IEC60068229	2.0	Basic environmental testing procedures - part 2: Test EB and guidance: bump. Withdrawn and replaced by IEC60068-2-27. For reference only.
IEC60068227	4.0	Environmental testing - part 2-27: Test EA and guidance: shock.
IEC60068214	6.0	Environmental testing - part 2-14: Test N: change of temperature.
IEC6006822	5.0	Environmental testing - part 2-2: Test B: dry heat.
IEC6006821	6.0	Environmental testing - part 2-1: Test A: cold.
IEC60068230	3.0	Environmental testing - part 2-30: Test DB: damp heat, cyclic (12 h + 12 h cycle).
IEC6006823	69 w/A1	Basic environmental testing procedures part 2: Test CA: damp heat, steady State. Withdrawn and replaced by IEC60068-2-78. For reference only.
IEC60068278	1.0	Environmental testing part 2-78: Test CAB: damp heat, steady state.

Reliability Compliance and
Fastrack Xtend User Guide

Document	Current Version	Title
IEC60068238	2.0	Environmental testing - part 2-38: Test Z/AD: composite temperature/humidity cyclic test.
IEC60068240	1.0 w/A1	Basic environmental testing procedures - part 2: Test Z/AM combined cold/low air pressure tests.
ISO167501	2ND	Road vehicles - environmental conditions and testing for electrical and electronic equipment - part 1: general.
ISO167502	2ND	Road vehicles - environmental conditions and testing for electrical and electronic equipment - part 2: electrical loads.
ISO167503	2 ND	Road vehicles - environmental conditions and testing for electrical and electronic equipment - part 3: mechanical loads.
ISO167504	2 ND	Road vehicles - environmental conditions and testing for electrical and electronic equipment - part 4: climatic loads.
IEC60529	2.1 w/COR2	Degrees of protection provided by enclosures (IP code).
IEC60068217	4.0	Basic environmental testing procedures - part 2: Test Q: sealing.
IEC60068218	2.0	Environmental testing - part 2-18: Tests - R and guidance: water.
IEC60068270	1.0	Environmental testing - part 2: tests - test XB: abrasion of markings and letterings caused by rubbing of fingers and hands.
IEC60068268	1.0	Environmental testing - part 2: tests - test I: dust and sand.
IEC60068211	3.0	Basic environmental testing procedures, part 2: test KA: salt mist.
IEC60068260	2.0	Environmental testing - part 2: Test KE: flowing mixed gas corrosion test.
IEC60068252	2.0 w/COR	Environmental testing - part 2: Test KB: salt mist, cyclic (sodium chloride solution).

16.3. Environmental Specifications

The Fastrack Xtend series is compliant with the operating classes listed below. The ideal temperature range of the environment for each operating class is also specified.

Table 91. Operating Class Temperature Range

Conditions	Temperature Range
Operating / Class A	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Operating / Class B*	$-30^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Operating / Class C^{*}	$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage ${ }^{*}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Refer to the Footnotes of Table 41 Real Time Clock Specifications for RTC battery related issues.

16.3.1. Function Status Classification

The classes reported below comply with the Annex "ISO Failure Mode Severity Classification", ISO Standard 7637, and Section 1.
Note: The word "function" used here only concerns the function performed by the Fastrack Xtend.

Table 92. ISO Failure Mode Severity Classification

Class	Definition
CLASS A	All equipment/system functions are fulfilled normally (100\% functional) during and after the constraint. The Fastrack Xtend shall exhibit normal function during and after environmental exposure. The Fastrack Xtend performance shall meet the minimum requirements of 3GPP or appropriate wireless standards.
CLASS B	All equipment/system functions are fulfilled normally during application of the constraint; however, one or several of them may be out of the specified tolerances. After application of the constraint, all functions automatically return within standard limits. The memories shall remain in compliance with Class A.
The Fastrack Xtend shall exhibit the possibility at all times to establish a voice, SMS or DATA call. Unless otherwise stated, full performance should return to normal after the external influence has been removed.	
CLASS C	No functional requirement will be fulfilled during the application of the constraint; however, full functionality will automatically be returned after the constraint has been removed.

16.3.2. Reliability Prediction Model

The following tables enumerate the different tests performed on the Fastrack Xtend and their corresponding conditions and results.

16.3.2.1. Life Stress Test

The following tests the Fastrack Xtend's product performance.
Table 93. Life Stress Test

Designation	Condition
Performance Test $\mathrm{PT} 3 \mathrm{~T}^{\circ}$ \& PT	Standard: N/A
	Special conditions: - Temperature: - Class A: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ - Class B: $-30^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ - Rate of temperature change: $\pm 3^{\circ} \mathrm{C} / \mathrm{min}$ - Recovery time: 3 hours
	Operating conditions: Powered
	Duration: 10 days

16.3.2.2. Environmental Resistance Stress Test

The following tests the Fastrack Xtend's resistance to extreme temperature.
Table 94. Environmental Resistance Stress Test

Designation	Condition
	Standard: IEC 680068-2-1, Test Ab
	Special conditions: - Temperature: $-40^{\circ} \mathrm{C}$ - Rate of temperature change: $\mathrm{dT} / \mathrm{dt}>= \pm 3^{\circ} \mathrm{C} / \mathrm{min}$ - Recovery time: 3 hours
	Operating conditions: Un-powered
	Duration: 72 hours

16.3.2.3. Corrosive Resistance Stress Test

The following tests the Fastrack Xtend's resistance to corrosive atmosphere.
Table 95. Corrosive Resistance Stress Test

Designation	Condition
Moist Heat Cyclic Test MHCT	Standard: IEC 60068-2-30, Test Db
	Special conditions: - Upper temperature: $+55 \pm 2^{\circ} \mathrm{C}$ - Lower temperature: $+25 \pm 2^{\circ} \mathrm{C}$ - RH: - Upper temperature: 93% - Lower temperature: 95% - Number of cycles: 21 (1 cycle/24 hours) - Rate of temperature change: $\mathrm{dT} / \mathrm{dt}>= \pm 3^{\circ} \mathrm{C} / \mathrm{min}$ - Recovery time: 3 hours
	Operating conditions: Un-powered
	Duration: 21 days

16.3.2.4. Thermal Resistance Cycle Stress Test

The following tests the Fastrack Xtend's resistance to extreme temperature cycling.

Table 96. Thermal Resistance Cycle Stress Test

Designation	Condition
Thermal Shock Test TSKT	Standard: IEC 60068-2-14
	Special conditions: - Upper temperature: $+90^{\circ} \mathrm{C}$ - Lower temperature: $-40^{\circ} \mathrm{C}$ - Rate of temperature change: 30 s - Number of cycles: 200 - Duration of exposure: 30 minutes - Recovery time: 3 hours
	Operating conditions: Un-powered
	Duration: 72 hours

16.3.2.5. Mechanical Resistance Stress Tests

The following tests the Fastrack Xtend's resistance to vibrations and mechanical shocks.

Table 97. Mechanical Resistance Stress Tests

Designation	Condition
Sinusoidal Vibration Test SVT1	Standard: IEC 60068-2-6, Test Fc
	Special conditions: - Frequency range: 10 Hz to 1000 Hz - Displacement: $\pm 5 \mathrm{~mm}$ (peak) - Frequency range: 16 Hz to 62 Hz - Acceleration: 5G - Frequency range: 62 Hz to 200 Hz - Acceleration: 3G - Frequency range: 200 Hz to 1000 Hz - Acceleration: 1 G - Sweep rate: 1 oct/min. - Test duration: 20 cycles - Sweep directions: X, Y and Z
	Operating conditions: Un-powered
	Duration: 72 hours
Random Vibration Test	Standard: IEC 60068-2-64

16.3.2.6. Handling Resistance Stress Tests

The following tests the Fastrack Xtend's resistance to handling malfunctions and damage.

Table 98. Handling Resistance Stress Tests

Designation	Condition
ESD Test	Standard: IEC 1000-4-2
	Special conditions: \quadContact discharges: 10 positive and 10 negative applied Voltage: $\pm 2 \mathrm{kV}, \pm 4 \mathrm{kV}, \pm 6 \mathrm{kV}$

17. Certification Compliance and Recommended Standards

17.1. Certification Compliance

Refer to the following tables for the requirements compliance of the Fastrack Xtend.
Table 99. Standards Conformity for FXT001, FXT002, FXT003, FXT009 and FXT010

Domain	Applicable Standard
Safety standard	EN 60950-1 (ed.2006)
Health standard (EMF Exposure Evaluation)	EN 62311 (ed. 2008)
Efficient use of the radio frequency spectrum	EN 301 511 (V 9.0.2)
EMC	EN 301 489-1 (v1.8.1) EN 301 489-7 (v1.3.1) EN 301 489-24 (v1.4.1)
FCC	FCC Part 15 FCC Part 22, 24
IC	RSS-132 Issue 2 RSS-133 Issue 5
International Standard for Battery	IEC 61951-2

Table 100. Standards Conformity for FXT004

Domain	Applicable Standard
FCC	FCC Part 15 FCC Part 22, 24
IC	RSS-132 Issue 2 RSS-133 Issue 5 5

17.2. Applicable Standards Listing

The table hereafter gives the basic list of standards applicable for 2G and 3G (HSPA).
Note: \quad References to any features can be found from these standards.

Table 101. Applicable Standards and Requirements for the Fastrack Xtend Series

Document	Current Version	Title
GCF	3.7 .1	GSM Certification Forum - Certification Criteria
NAPRD.03	2.6 .0	Overview of PCS Type certification review board (PTCRB) Mobile Equipment Type Certification and IMEI control

Document	Current Version	Title
TS 51.010-1	8.3 .0	3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Digital cellular telecommunications system (Phase 2+); Mobile Station (MS) conformance specification; Part 1: Conformance specification
TS 51.010-2	8.3 .0	3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Mobile Station (MS) conformance specification; Part 2: Protocol Implementation Conformance Statement (PICS) proforma specification
TS 51.010-4	4.14.1	3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Digital cellular telecommunications system (Phase 2+); Mobile Station (MS) conformance specification; Part 4: SIM Application Toolkit Conformance specification
EN 301 511	S.0.2	Global System for Mobile Communications (GSM); Harmonised standard for mobile stations in the GSM 900 and DCS 1800 bands covering essential requirements under article 3.2 of the R\&TTE directive (1999/5/EC)
TS 34.121-1	8.5 .0	3rd Generation Partnership Project; Technical Specification Group Radio Access Network; User Equipment (UE) conformance specification; Radio transmission and reception (FDD); Part 1: Conformance specification
TS 34.121-2	8.5 .0	3rd Generation Partnership Project; Technical Specification Group Radio Access Network User Equipment (UE) conformance specification; Radio transmission and reception (FDD); Part 2: Implementation Conformance Statement (ICS)
TS 34.123-1	8.5 .0	3rd Generation Partnership Project; Technical Specification Group Terminals; User Equipment (UE) conformance specification; Part 1: Protocol conformance specification

18. Safety Recommendations

18.1. General Safety

It is important to follow any special regulations regarding the use of radio equipment due in particular to the possibility of radio frequency (RF) interference. Please follow the safety advice given carefully.
Switch OFF your Intelligent Embedded Module:

- When in an aircraft. The use of cellular telephones in an aircraft may endanger the operation of the aircraft, disrupt the cellular network and is illegal. Failure to observe this instruction may lead to suspension or denial of cellular telephone services to the offender, or legal action or both,
- When at a refueling point,
- When in any area with a potentially explosive atmosphere which could cause an explosion or fire,
- In hospitals and any other place where medical equipment may be in use.

Respect restrictions on the use of radio equipment in:

- Fuel depots,
- Chemical plants,
- Places where blasting operations are in progress,
- Any other area where signalization reminds that the use of cellular telephone is forbidden or dangerous.
- Any other area where you would normally be advised to turn off your vehicle engine.

There may be a hazard associated with the operation of your Fastrack Xtend close to inadequately protected personal medical devices such as hearing aids and pacemakers. Consult the manufacturers of the medical device to determine if it is adequately protected.

Operation of your Fastrack Xtend close to other electronic equipment may also cause interference if the equipment is inadequately protected. Observe any warning signs and manufacturers' recommendations.

The Fastrack Xtend is designed for and intended to be used in "fixed" and "mobile" applications:
"Fixed" means that the device is physically secured at one location and is not able to be easily moved to another location.
"Mobile" means that the device is designed to be used in other than fixed locations and generally in such a way that a separation distance of at least 20 cm (8 inches) is normally maintained between the transmitter's antenna and the body of the user or nearby persons.

The Fastrack Xtend is not designed for and intended to be used in portable applications (within 20 cm or 8 inches of the body of the user) and such uses are strictly prohibited.

18.2. Battery Safety

Storage Temperature (<30 days):	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Charging Temperature:	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Discharging Temperature:	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Do not use batteries not specified for this product.
Do not recharge non-rechargeable batteries. Charge only NiMH $3 \times 1.2 \mathrm{~V}$ rechargeable batteries. Charging other types of batteries (e.g. NiCd, Alkaline etc.) may lead to a burst, causing personal injury.

Do not throw batteries into fire, expose them to excessive heat, or short-circuit them. BATTERIES MAY LEAK, GENERATE HEAT, IGNITE, OR EXPLODE.

Do not place the batteries with the terminals facing the wrong direction.
Keep batteries out of the reach of children. CHILDREN MAY SWALLOW BATTERIES. If a child swallows a battery, contact a doctor immediately.

Do not wet, incinerate or disassemble the charger and the batteries.
For indoor and dry location use only. Do not expose the charger to rain, snow or extreme conditions

18.3. Vehicle Safety

Do not use your Fastrack Xtend while driving, unless equipped with a correctly installed vehicle kit allowing 'Hands-Free' Operation.

Respect national regulations on the use of cellular telephones in vehicles. Road safety always comes first.

If incorrectly installed in a vehicle, the operation of the Fastrack Xtend series could interfere with the correct functioning of vehicle electronics. To avoid such problems, make sure that the installation has been performed by qualified personnel. Verification of the protection of vehicle electronics should form part of the installation.
The use of an alert device to operate a vehicle's lights or horn on public roads is not permitted.

18.4. Care and Maintenance

Your Fastrack Xtend is the product of advanced engineering, design and craftsmanship and should be treated with care. The suggestion below will help you to enjoy this product for many years.

Do not expose the Fastrack Xtend to any extreme environment where the temperature or humidity is high.
Do not use or store the Fastrack Xtend in dusty or dirty areas. Its moving parts can be damaged.
Do not attempt to disassemble the embedded module. There are no user serviceable parts inside.
Do not expose the Fastrack Xtend to water, rain or spilt beverages. It is not waterproof.
Do not abuse your Fastrack Xtend by dropping, knocking, or violently shaking it. Rough handling can damage it.

Do not place the Fastrack Xtend alongside computer discs, credit or travel cards or other magnetic media. The information contained on discs or cards may be affected by the embedded module.

The use of third party equipment or accessories, not made or authorized by Sierra Wireless may invalidate the warranty of the embedded module.

Do contact an authorized Service Center in the unlikely event of a fault in the embedded module.

18.5. Your Responsibility

This Fastrack Xtend is under your responsibility. Please treat it with care, respecting all local regulations. It is not a toy. Therefore, keep it in a safe place at all times and out of the reach of children.

Try to remember your Unlock and PIN codes. Become familiar with and use the security features to block unauthorized use and theft.

19. Reference Documents

For more details, several reference documents can be consulted. The Sierra Wireless documents referenced herein are provided in the Sierra Wireless documentation package; however, the general reference documents which are not Sierra Wireless owned are not provided in the documentation package.

19.1. Sierra Wireless Software Documentation

[1] Getting started with SDK 4.22b
Reference: WM_DEV_OAT_UGD_048
[2] Tutorial for IDE 1.08 (if using IDE; obsolete if using Developer Studio)
Reference: WM_DEV_OAT_UGD_044
[3] Tools Manual for IDE 1.08 (if using IDE; obsolete if using Developer Studio)
Reference: WM_DEV_OAT_UGD_045
[4] Basic Development Guide for SDK 4.22 (if using IDE; obsolete if using Developer Studio)
Reference: WM_DEV_OAT_UGD_050
[5] ADL User Guide for SDK 4.22 (if using IDE; obsolete if using Developer Studio) Reference: WM_DEV_OAT_UGD_051
[6] SDK 4.22 Official Release Note
Reference: WM_DEV_OAT_DVD_338

19.2. Firmware Documentation

[7] Firmware 7.4a AT Commands Manual (Sierra Wireless Software Suite 2.31)/Firmware 7.4 AT Commands Manual (Sierra Wireless Software Suite 2.30)
Reference: WM_DEV_OAT_UGD_079 (Version 12 and 11)
[8] Firmware 7.4 Customer Release Note
Reference: TBC
[9] AT Commands Interface Guide
Reference: WM_ASW_OAT_UGD_00004
[10] AirPrime Q26 Elite Software User Guide and AT Commands Interface Specification Reference: WI_DEV_Q26EL_UGD_001

19.3. Expansion Card Documentation

[11] Expansion Card Product Technical Specification
Reference: WA_DEV_FEX20_PTS_004
[12] FXTE01 and FXTE02 User Guide
Reference: WA_DEV_FEX20_UGD_008
[13] FXTE01, FXTE02 and EC0020 Installation Guide
Reference: WA_DEV_FEX20_UGD_009
[14] Ethernet Expansion Card Plug-in User Guide
Reference: TBC

19.4. Firmware Upgrade Documentation

[15] Firmware Upgrade Procedure
Reference: WM_SW_GEN_UGD_001

19.5. Other Related Documentation

[16] AirLink Fastrack Xtend Battery Accessory Product Technical Specification Reference: WA_DEV_FEX20_PTS_003

20. List of Abbreviations

Abbreviation	Definition
AC	Alternating Current
ACM	Accumulated Call Meter
AMR	Adaptive Multi-Rate
AT	ATtention (prefix for Wireless CPU ${ }^{\circledR}$ commands)
CLK	CLock
CMOS	Complementary Metal Oxide Semiconductor
CS	Coding Scheme
CTS	Clear To Send
dB	Decibel
dBc	Decibel relative to the Carrier power
dBi	Decibel relative to an Isotropic radiator
dBm	Decibel relative to one milliwatt
DC	Direct Current
DCD	Data Carrier Detect
DCE	Data Communication Equipment
DCS	Digital Cellular System
DSR	Data Set Ready
DTE	Data Terminal Equipment
DTMF	Dual Tone Multi-Frequency
DTR	Data Terminal Ready
EEPROM	Electrically Erasable Programmable Read-Only Memory
EFR	Enhanced Full Rate
E-GSM	Extended GSM
EMC	ElectroMagnetic Compatibility
EMI	ElectroMagnetic Interference
ESD	ElectroStatic Discharges
ETSI	European Telecommunications Standards Institute
FIT	Series of connectors (micro-FIT)
FR	Full Rate
FTA	Full Type Approval
GCF	Global Certification Forum
GND	GrouND
GPIO	General Purpose Input Output
GPRS	General Packet Radio Service
GSM	Global System for Mobile communications
HR	Half Rate
1	Input
IEC	International Electrotechnical Commission
IES	Internal Expansion Socket
IESM	Internal Expansion Socket Module

Abbreviation	Definition
IMEI	International Mobile Equipment Identification
I/O	Input / Output
LED	Light Emitting Diode
MAX	MAXimum
ME	Mobile Equipment
MIC	MICrophone
Micro-Fit	Family of connectors from Molex
MIN	MINimum
MNP	Microcom Networking Protocol
MO	Mobile Originated
MS	Mobile Station
MT	Mobile Terminated
NOM	NOMinal
O	Output
Pa	Pascal (for speaker sound pressure measurements)
PBCCH	Packet Broadcast Control CHannel
PC	Personal Computer
PCL	Power Control Level
PDP	Packet Data Protocol
PIN	Personal Identity Number
PLMN	Public Land Mobile Network
PUK	Personal Unblocking Key
RF	Radio Frequency
RFI	Radio Frequency Interference
RI	Ring Indicator
RMS	Root Mean Square
RTS	Request To Send
RX	Receive
SIM	Subscriber Identification Module
SMA	SubMiniature version A RF connector
SMS	Short Message Service
SNR	Signal-to-Noise Ratio
SPL	Sound Pressure Level
SPK	SpeaKer
SRAM	Static RAM
TCP/IP	Transmission Control Protocol / Internet Protocol
TDMA	Time Division Multiple Access
TU	Typical Urban fading profile
TUHigh	Typical Urban, High speed fading profile
TX	Transmit
TYP	TYPical
VSWR	Voltage Stationary Wave Ratio

21. Appendix A: Packaging

21.1. Contents

The different Fastrack Xtend variants are available in nine different package configurations.
The table below summarizes the list of accessories delivered in each package and shows the designation used in the select the proper configuration set.

Table 102. Configuration Availability for the Fastrack Xtend Series

21.2. Accessories Description

This section describes the accessories used with the Fastrack Xtend Series.

21.2.1. GSM Antenna

Table 103. GSM Antenna Description

- Antenna Size $W \times L \times H(18.4 \times 8.0 \times 49.5 \mathrm{~mm})$
- Frequency Range supported: 850 / 900 / 1800 / 1900 / 2100 MH
- Connector SMA (Male)

Refer to Table 83 List of Recommended Accessories for more information regarding the recommended accessories.

21.2.2. GPS Antenna

Table 104. GPS Antenna Description

Mechanical	Weight	< 110 grams
	Size	$49 \times 39 \times 14 \mathrm{~mm}$
	Cable	RG174/U 3meters
	Connector	MMCx m. right angle
	Mounting	Magnetic base
	Housing	Black
Dielectric Antenna	Centre Frequency	$1575.42 \mathrm{MHz} \pm 3 \mathrm{MHz}$
	V.S.W.R	1.5:1
	Band Width	$\pm 5 \mathrm{MHz}$
	Impedance	50Ω
	Peak Gain	> 3dBic Based on $7 \times 7 \mathrm{~cm}$ ground plane
	Gain Coverage	$>-4 \mathrm{dBic}$ at $-90^{\circ}<0<+90^{\circ}$ (over $75 \% \mathrm{Vo}$
	Polarization	RHCP
LNA / Filter	LNA Gain (without cable)	28 dB (typical)
	Noise Figure	1.5 dB
	Filter Out Band Attenuation (f0=1575.42 MHZ)	7dB Min $f 0+/-20 \mathrm{MHZ}$ 20dB Min $f 0+/-50 \mathrm{MHZ}$ 30dB Min $f 0+/-100 \mathrm{MHZ}$
	V.S.W.R	< 2.0
	DC Voltage	3.0 V to 5.0V
	DC Current	10mA Max

21.2.3. Serial Data Cable

Table 105. Serial Data Cable Description

Please refer to section 5.1.2 Serial Interface for more information regarding the pin description.

21.2.4. 16-wire IO Cable used with the GPS Expansion Card

Table 106. 16 -wire IO Cable Description

Please refer to Table 50 16-Way IO Expander Description for more information regarding the pin description.

21.2.5. USB Cable

- Connector to connector

USB Type A to Mini-B

- Length

21.2.6. 6-wire Cable Accessory used with the Fastrack Xtend

Table 107. 6-wire Cable Accessory Description

Please refer to Table 82 6-Wire Cable Accessory Color Coding for more information regarding the pin description.

21.2.7. Package

Two packaging boxes are available depending on the Fastrack Xtend configuration.
Table 108. Packaging Description

Packaging Box 1	Packaging Box $\mathbf{2}$
Dimensions: $155 \times 116 \times 77 \mathrm{~mm}$	Dimensions: $221 \times 155 \times 79 \mathrm{~mm}$

21.2.8. Two Holding Bridles

Please refer to section 8.1 Mounting the Fastrack Xtend for more information regarding the holding bridles.

Figure 51. Holding Bridle Description

21.2.9. Power Supply used with the Fastrack Xtend

Table 109. Power Supply Description

22. Appendix B: Product Labeling

A product label located at the back of the Fastrack Xtend gives the following information:

- Product Reference (Fastrack Xtend FXTXXX for example)
- Part number
- CE marking
- 15-digit Serial Number
- Open $A T^{\circledR}$ Logo
- FCC ID
- IC ID
- 15-digit IMEI code

Figure 52. Fastrack Xtend Product Labeling

23. Appendix C: Safety Recommendations (For Information Only)

For the efficient and safe operation of your GSM device, please read the following information carefully.

23.1. RF Safety

23.1.1. General

Your GSM terminal is based on the GSM standard for cellular technology. The GSM standard is spread all over the world. It covers Europe, Asia and some parts of America and Africa. This is the most used telecommunication standard.

Your GSM terminal is actually a low power radio transmitter and receiver. It sends out and receives radio frequency energy. When you use your GSM application, the cellular system which handles your calls controls both the radio frequency and the power level of your cellular modem.

23.1.2. Exposure to RF Energy

There has been some public concern about possible health effects of using GSM terminals. Although research on health effects from RF energy has focused on the current RF technology for many years, scientists have begun research regarding newer radio technologies, such as GSM. After existing research had been reviewed, and after compliance to all applicable safety standards had been tested, it has been concluded that the product was fitted for use.

If you are concerned about exposure to RF energy there are things you can do to minimize exposure. Obviously, limiting the duration of your calls will reduce your exposure to RF energy. In addition, you can reduce RF exposure by operating your cellular terminal efficiently by following the below guidelines.

23.1.3. Efficient Terminal Operation

For your GSM terminal to operate at the lowest power level, consistent with satisfactory call quality:
If your terminal has an extendible antenna, extend it fully. Some models allow you to place a call with the antenna retracted. However your GSM terminal operates more efficiently with the antenna fully extended.

Do not hold the antenna when the terminal is «IN USE ». Holding the antenna affects call quality and may cause the modem to operate at a higher power level than needed.

23.1.4. Antenna Care and Replacement

Do not use the GSM terminal with a damaged antenna. If a damaged antenna comes into contact with the skin, a minor burn may result. Replace a damaged antenna immediately. Consult your manual to see if you may change the antenna yourself. If so, use only a manufacturer-approved antenna. Otherwise, have your antenna repaired by a qualified technician.

Use only the supplied or approved antenna. Unauthorized antennas, modifications or attachments could damage the terminal and may contravene local RF emission regulations or invalidate type approval.

When installing the coaxial cable to the Fastrack Xtend, it is necessary to ensure that the metal shield is reliably connected to the protective earthing system of the building. The coaxial cable shield shall be connected to the grounded system of the building, as close to the point of cable entry as practical.

23.2. General Safety

23.2.1. Driving

Check the laws and the regulations regarding the use of cellular devices in the area where you have to drive as you always have to comply with them. When using your GSM terminal while driving, please:

- give full attention to driving,
- pull off the road and park before making or answering a call if driving conditions so require.

23.2.2. Electronic Devices

Most electronic equipment, for example in hospitals and motor vehicles is shielded from RF energy. However RF energy may affect some improperly shielded electronic equipment.

23.2.3. Vehicle Electronic Equipment

Check your vehicle manufacturer representative to determine if any on-board electronic equipment is adequately shielded from RF energy.

23.2.4. Medical Electronic Equipment

Consult the manufacturer of any personal medical devices (such as pacemakers, hearing aids, etc...) to determine if they are adequately shielded from external RF energy.

Turn your terminal OFF in health care facilities when any regulations posted in the area instruct you to do so. Hospitals or health care facilities may be using RF monitoring equipment.

23.2.5. Aircraft

Turn your terminal OFF before boarding any aircraft.

- Use it on the ground only with crew permission
- Do not use it in the air

To prevent possible interference with aircraft systems, Federal Aviation Administration (FAA) regulations require you to have permission from a crew member to use your terminal while the aircraft is on the ground. To prevent interference with cellular systems, local RF regulations prohibit using your modem while airborne.

23.2.6. Children

Do not allow children to play with your GSM terminal. It is not a toy. Children could hurt themselves or others (by poking themselves or others in the eye with the antenna, for example). Children could damage the modem, or make calls that increase your modem bills.

23.2.7. Blasting Areas

To avoid interfering with blasting operations, turn your unit OFF when in a « blasting area » or in areas posted : «turn off two-way radio ». Construction crews often use remote control RF devices to set off explosives.

23.2.8. Potentially Explosive Atmospheres

Turn your terminal OFF when in any area with a potentially explosive atmosphere. It is rare, but your modem or its accessories could generate sparks. Sparks in such areas could cause an explosion or fire resulting in bodily injuries or even death.
Areas with a potentially explosive atmosphere are often, but not always, clearly marked. They include fuelling areas such as petrol stations; below decks on boats; fuel or chemical transfer or storage facilities; and areas where the air contains chemicals or particles, such as grain, dust, or metal powders.

Do not transport or store flammable gas, liquid, or explosives, in the compartment of your vehicle which contains your terminal or accessories.

Before using your terminal in a vehicle powered by liquefied petroleum gas (such as propane or butane) ensure that the vehicle complies with the relevant fire and safety regulations of the country in which the vehicle is to be used.

SIERRA WIRELESS

The TLA2000 is an ideal antenna solution for GSM data applications in both fixed and mobile situations. Designed to offer true dual band performance the TLA2000 is ready for use with the latest GSM (GPRS) modems. With a high impact resistant vacuum formed $A B S$ radome and neoprene mounting gasket, the TLA2000 can be used for indoor or outdoor applications.

- Applications include public vending machines, ATM kiosks and industrial automotive use
- Designed for use on conductive or nonconductive surfaces
- TLA3000 model incorporates integrated GPS antenna

Electrical

Model No.	TLA2000/3000
Gain dBi	2
Frequency MHz	$890-960 / 1710-1880$
Power W	10
Tuned Bandwidth	Entire specified band @<2.5:1 VSWR
Tuning	Pre-tuned

Mechanical

Model No.	TLA2000	
Construction	White Geloy ASA radome	
Diameter mm	135	
Height mm	61 (including gasket)	
Mounting	M4 hardware (not included)	
Cable and Connector	5000	
		Cellular: 5m low loss 9014 RG58 type - FME connector

GPS Specifications

Fo	1575.42 MHz
Operation Temperature	-40 to $+85^{\circ} \mathrm{C}$
Storage Temperature	-40 to $+100^{\circ} \mathrm{C}$
System Gain at Fo	28dBi including cable and filter losses
Impedance	50 Ohm
Polarization	RHCP
VSWR at Fo	$1.5: 1$
Noise Figure at Fo	$<1.8 \mathrm{~dB}$ max.
Power Input	+2.5 Vdc to +12 Vdc input, Auto Switching
Power Consumption	11 mA to 13 mA (max)
Power Input	Reverse Polarity Short Circuit Shutdown
Over-Current	Thermal over-current shutdown $>+150^{\circ} \mathrm{C}$

EDS-205/208 Series

5 and 8-port entry-level unmanaged Ethernet switches

> 10/100BaseT(X) (RJ45 connector), 100BaseFX (multi-mode, SC/ST connectors)
$>$ IEEE802.3/802.3u/802.3x support
$>$ Broadcast storm protection
> DIN-Rail mounting ability
>-10 to $60^{\circ} \mathrm{C}$ operating temperature range

: Introduction

The EDS-205/208 series of industrial Ethernet switches are entrylevel industrial 5 and 8 -port Ethernet switches that support IEEE 802.3/802.3u/802.3x with 10/100M, full/half-duplex, MDI/MDIX autosensing RJ45 ports. The EDS-205/208 switches are rated to operate at temperatures ranging from -10 to $60^{\circ} \mathrm{C}$, and are rugged enough for
any harsh industrial environment. The switches can be easily installed on a DIN-Rail as well as in distribution boxes. The DIN-Rail mounting capability, wide operating temperature, and the the IP30 housing with LED indicators make the plug-and-play EDS-205/208 switches easy to use and reliable.

: Specifications

Technology

Standards:
IEEE 802.3 for 10BaseT
IEEE 802.3u for 100BaseT(X) and 100BaseFX
IEEE 802.3x for Flow Control
Processing Type: Store and Forward
FIow Control: IEEE 802.3x flow control, back pressure flow control

Switch Properties

MAC Table Size: 1 K
Packet Buffer Size: 512 Kbit

Interface

Fiber Ports: 100BaseFX ports (SC/ST connector, multi-mode) RJ45 Ports: 10/100BaseT(X) auto negotiation speed, Full/Half duplex mode, and auto MDI/MDI-X connection
LED Indicators: Power, 10/100M (TP port), 100M (fiber port)

Optical Fiber

	100BaseFX	
	Multi-mode	Single-mode
Wavelength	1300 nm	1310 nm
Max. TX	-10 dBm	0 dBm
Min. TX	-20 dBm	-5 dBm
RX Sensitivity	-32 dBm	-34 dBm
Link Budget	12 dB	29 dB
Typical Distance	5 km 4 km b -6 dBm	40 km c
Saturation		-3 dBm

a. $50 / 125 \mu \mathrm{~m}, 800 \mathrm{MHz}^{*} \mathrm{~km}$ fiber optic cable
b. $62.5 / 125 \mu \mathrm{~m}, 500 \mathrm{MHz}^{*} \mathrm{~km}$ fiber optic cable
c. $9 / 125 \mu \mathrm{~m}$ single-mode fiber optic cable

Power Requirements

Input Voltage:
EDS-205: 12 to 48 VDC, 18 to 30 VAC (47 to 63 Hz)
EDS-208 series: 12 to 45 VDC, 18 to 30 VAC (47 to 63 Hz)
Input Current:
EDS-205: 0.12 A @ 24 V
EDS-208: 0.14 A @ 24 V
EDS-208-M: 0.23 A @ 24 V
Overload Current Protection: 1.1 A
Connection: 1 removable 3-contact terminal block
Reverse Polarity Protection: Present
Physical Characteristics
Housing: Plastic, IP30 protection
Dimensions:
EDS-205: $24.9 \times 100 \times 86.5 \mathrm{~mm}(0.98 \times 3.94 \times 3.41 \mathrm{in})$
EDS-208: $40 \times 100 \times 86.5 \mathrm{~mm}(1.57 \times 3.94 \times 3.41 \mathrm{in})$
Weight:
EDS-205: 135 g
EDS-208: 170 g
Installation: DIN-Rail mounting
Environmental Limits
Operating Temperature: -10 to $60^{\circ} \mathrm{C}\left(14\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Storage Temperature: -40 to $85^{\circ} \mathrm{C}\left(-40\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
Ambient Relative Humidity: 5 to 95\% (non-condensing)

Standards and Certifications

Safety:
EDS-205: UL 508, EN 60950-1
EDS-208: UL 508, UL 60950-1, EN 60950-1
EMI: FCC Part 15 Subpart B Class A, EN 55022 Class A
EMS:
EN 61000-4-2 (ESD) Level 2, EN 61000-4-3 (RS) Level 3,
EN 61000-4-4 (EFT) Level 3, EN 61000-4-5 (Surge) Level 3,
EN 61000-4-6 (CS) (EDS-205: Level 3; EDS-208: Level 2),
EN 61000-4-8, EN 61000-4-11
Shock: IEC 60068-2-27
Freefall: IEC 60068-2-32
Vibration: IEC 60068-2-6
Note: Please check Moxa's website for the most up-to-date certification status.

MTBF (mean time between failures)
Time:
EDS-205: 768,000 hrs
EDS-208: 368,000 hrs

Database:

EDS-205: Telcordia (Bellcore), GB
EDS-208: MIL-HDBK-217F, GB $25^{\circ} \mathrm{C}$
Warranty
Warranty Period: 5 years
Details: See www.moxa.com/warranty

: Ordering Information

Available Models	Port Interface			Housing Material	Power Range
Standard Temperature$\left(-10 \text { to } 60^{\circ} \mathrm{C}\right)$	10/100BaseT(X)	100BaseFX			
		Multi-mode, SC Connector	Multi-mode, ST Connector		
EDS-205	5	-	-	Plastic	12 to 48 VDC
EDS-208	8	-	-	Plastic	12 to 45 VDC
EDS-208-M-SC	7	1	-	Plastic	12 to 45 VDC
EDS-208-M-ST	7	-	1	Plastic	12 to 45 VDC

Optional Accessories (can be purchased separately) DR-4524/75-24/120-24: 45/75/120 W DIN-Rail 24 VDC power supplies MDR-40-24/60-24: 40/60 W DIN-Rail 24 VDC power supplies, -20 to $70^{\circ} \mathrm{C}$ operating temperature RK-4U: 4U-high 19" rack mounting kit

Package Checklist

- EDS-205 or EDS-208 switch
- Hardware installation guide (printed)
- Warranty card
www.redlion.net
MODEL G306-GRAPHIC COLOR LCD OPERATOR INTERFACE TERMINAL WITH QVGA DISPLAY AND TOUCHSCREEN

- CONFIGURED USING CRIMSON SOFTWARE (VERSION 2.0 OR LATER)
- UP TO 5 RS-232/422/485 COMMUNICATIONS PORTS (2 RS-232 AND 1 RS-422/485 ON BOARD, 1 RS-232 AND 1 RS422/485 ON OPTIONAL COMMUNICATIONS CARD)
- 10 BASE T/100 BASE-TX ETHERNET PORT TO NETWORK UNITS AND HOST WEB PAGES
- USB PORT TO DOWNLOAD THE UNIT'S CONFIGURATION FROM A PC OR FOR DATA TRANSFERS TO A PC
- UNIT'S CONFIGURATION IS STORED IN NON-VOLATILE MEMORY (4 MBYTE FLASH)
- COMPACTFLASH SOCKET TO INCREASE MEMORY CAPACITY
- 5.7-INCH STN PASSIVE MATRIX 256 COLOR QVGA 320×240 PIXEL LCD
- 5-BUTTON KEYPAD FOR ON-SCREEN MENUS
- THREE FRONT PANEL LED INDICATORS
- POWER UNIT FROM 24 VDC $\pm 20 \%$ SUPPLY
- RESISTIVE ANALOG TOUCHSCREEN

GENERAL DESCRIPTION

The G306 Operator Interface Terminal combines unique capabilities normally expected from high-end units with a very affordable price. It is built around a high performance core with integrated functionality. This core allows the G306 to perform many of the normal features of the Paradigm range of Operator Interfaces while improving and adding new features.

The G306 is able to communicate with many different types of hardware using high-speed RS232/422/485 communications ports and Ethernet 10 Base T/100 Base-TX communications. In addition, the G306 features USB for fast downloads of configuration files and access to trending and data logging. A CompactFlash socket is provided so that Flash cards can be used to collect your trending and data logging information as well as to store larger configuration files.

In addition to accessing and controlling of external resources, the G306 allows a user to easily view and enter information. Users can enter data through the touchscreen and or front panel 5-button keypad.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the manual or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipinent connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use the controller to directly command motors valves, or other actuators not equipped with safeguards. To do so can be potentially harmfal to persons or equipment in the event of a fault to the controller.

The protective conductor terminal is bonded to conductive parts of the equipment for safety purposes and must be connected to an external protective earthing system.
WARNING - EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION 2/CLASS II, DIVISION 2/CLASS III, DIVISION 2

CAUTION: Risk Of Danger. Read complete instructions price to installation and operation of the unit

CONTENTS OF PACKAGE

- G306 Operator Interface
- Panel gasket.
- Template for panel cutout.
- Hardware packet for mounting unit into panel
- Terminal block for connecting power.

ORDERING INFORMATION

MODEL NO.	DESCRIPTION	PART NUMBER
G306	Operator Interface for indoor applications, textured finish with embossed keys	G306C000
G3CF	64 MB CompactFlash Card ${ }^{5}$	G3CF064M
	256 MB CompactFlash Card ${ }^{5}$	G3CF250M
	512 MB CompactFlash Card ${ }^{5}$	G3CF512M
G3RS	RS232/485 Optional Communications Cards	G3RS0000
G3CN	CANopen Optional Communications Cards	G3CN0000
PSDR7	DIN Rail Power Supply	PSDR7000
SFCRM2	Crimson $2.0{ }^{2}$	SFCRM200
CBL	RS-232 Programming Cable	CBLPROGO
	USB Cable	Cblusb00
	Communications Cables '	CBLxoox
DR	DIN Rail Mountable Adapter Products *	DRococox
	Replacement Battery ${ }^{4}$	BAL3R004
G3FILM	Protective Films	G3FILM06

1 Contact your Red Lion distributor or visil our website for complete selection.
${ }^{2}$ Use this parn number to purchase Crimson on CD with a printed manual, USB cable, and RS-232 cable. Otherwise, download for free from www.redlion.net.
${ }^{3}$ Red Lion offers RJ modular jack adapters. Refer to the DR literature for complete details.
${ }^{4}$ Battery type is lithium coin type CR2025
*Industrial grade two million write cycles.

[^42]
SPECIFICATIONS

1. POWER REQUIREMENTS

Must use Class 2 or SELV rated power supply.
Power connection via removable three position terminal block
Supply Volage: $\quad+24 \mathrm{VDC}+20 \mathrm{H}_{0}$
Typical Power! \& W
Maximum Power ${ }^{2} \quad 14$ W
Notes:

1. Typicol ponver with +24 VDC, RS232485 conmmunications, Ehkermel communications, Compaci Flash cand installed anddisplay at fidl hrighthess.
2. Maximum power indicates the most power that can be drann from the G306. Refer to "Power Supply Requirvments" under "histalling and Powering the G306-"
3. The G306\$ circuit common is not connected to the enclosume of the tuni. See "Comnecting to Earth Groumd" in the section "lnstalling and Powering the G306,"
4. Reod "Power Supply Requirements" in the section "Installing and Powering the G306" for additional power supply information.
5. BATTERY: Lithium coin cell. Typical lifetime of 10 years.
6. LCD DISPLAY

SLZE	5.7 -inch
TYPE	STN
COLORS	256
PIXELS	320×240
BRIGHTNESS	$165 \mathrm{~cd} / \mathrm{m}^{2}$
BACKLIGHT*	$20,000 \mathrm{HR}$ TYP.

"Lifetime at room temperature. Refer to "Display" in "Software'Unit Operation"
4. 5-KEY KEYPAD: for on-screen menus.
5. TOUCHSCREEN: Resistive analog
6. MEMORY:

On Board User Memory: 4 Mbyte of non-volatile Flash memory.
Memory Card: CompactFlash Type II slot for Type I and Type II CompactFlash cards.
7. COMMUNICATIONS

USB Port: Adheres to USB specification 1.1. Device only using Type B connection.

WARNING - DO NOT CONNECT OR DISCONNECT CABLES WHILE POWER IS APPLIED UNLESS AREA IS KNOWN TO BE NON-HAZARDOUS, USB PORT IS FOR SYSTEM SET-UP AND DIAGNOSTICS AND IS NOT INTENDED FOR PERMANENT CONNECTION

Serial Ports: Format and Baud Rates for each port are individually software programmable up to 115,200 baud.
PGM Port: RS232 port vaa RJ12.
COMMS Ports: RS422/485 port via RJ45, and RS232 port via RJ12
DH485 TXEN: Transmit enable, open collector, $\mathrm{V}_{\text {On }}=15 \mathrm{VDC}$, $\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ (tid 25 mA max
Note: For additional information on the communications or signal common and comnections to earth ground please see the "Connecting to Earth Ground" in the section "Installing and Powering the G306."
Ethernet Port: 10 BASE-T / 100 BASE-TX
RJ45 jack is wired as a NIC (Network Interface Card).
Isolation from Ethemet network to G3 operator interface: 1500 V rms
8. ENVIRONMENTAL CONDITIONS

Operating Temperature Range: 0 to $50^{\circ} \mathrm{C}$
Storage Temperature Range. -20 to $70^{\circ} \mathrm{C}$
Operating and Storage Humidity: 80% maxamum relative humidity (noncondensing) from 0 to $50^{\circ} \mathrm{C}$
Vibration Operational 5 to $8 \mathrm{~Hz} .0 .8^{\prime \prime}(\mathrm{p}-\mathrm{p})$. 8 to 500 Hz , in X. Y, Z direction, duration. I hour, 3 g
Shock: Operational 40 g .9 msec in 3 directions.
Altitude: Up to 2000 meters.
9. CERTIFICATIONS AND CONPLLANCES

SAFETY
UL Recognized Componemt, File 施179259, UL.61010-1, CSA 222 No.61010-1 Recognized to U.S. and Canadian requirements under the Component Recognition Program of Underwriters Laboratories, Inc.
UL. Listed, File \#E211967, UL.61010-1, UL.1604, CSA 22.2 No. 61010.1 , CSA 22.2 No. 213-M1987
LISTED by Und Lab. Inc. to U.S and Conadian safety standards
Type 4X Enclosure rating (Face only), UL. 50
IECEE CB Scheme Test Certificate \#US/9737/UL.
CB Scheme Test Report \#E179259-V01-S04
Issued by Underwriters Laboratories Inc.
IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use, Part I
IP66 Enclosure rating (Face only), IEC 529
ELECTROMAGNETIC COMPATIBILITY
Emissions and Immunity to EN 61326; Electrical Equipment for Measurement, Control and Laboratory use.

Immunity to Industrial Locations:

Electrostatic discharge

Electromagnetic RF fields
Fast transients (burst)

Surge

RF conducted interference
Emissions:
Emissions

EN 61000-4-2	Criterion A
	4 kV contact discharge
	8 kV air discharge
EN 61000-4.3	Criterion A
	$10 \mathrm{~V} / \mathrm{m}$
EN 61000-4-4	Criterion A
	2 kV power
	1 kV signal
EN 61000-4-5	Criterion A
	$1 \mathrm{kV} \mathrm{L-L}$.
	$2 \mathrm{kVI}. \mathrm{\& N}$-E power
EN 61000-4-6	Criterion A
	$3 \mathrm{~V} / \mathrm{ms}$
EN 5501]	Class A

Note:

1. Criterion A: Normal operation within specified himits.
2. CONSTRUCTION: Steel rear metal enclosure with NEMA 4 XIP66 aluminum fromt plate for indoor use only when correctly fitted with the gasket provided. Installation Category II, Pollution Degree 2
3. MOUNTING REQUIREMENTS: Maximum panel thickness is 0.25° (6.3 $\mathrm{mm})$. For NEMA 4XAP66 sealine a steel pancl with a minimum thickness of $0.125^{\prime \prime}(3.17 \mathrm{~mm})$ is recommended.
Maximum Mounting Stud Torque: 17 inch-pounds ($1.92 \mathrm{~N}-\mathrm{m}$)
4. WEIGHT: $3.0 \mathrm{lbs}(1.36 \mathrm{Kg}$)

DIMENSIONS In inches (mm)

Installing and Powering the G306

MOUNTING INSTRUCTIONS

This operator interface is designed for through-panel mounting. A panel cutout diagram and a template are provided. Care should be taken to remove any loose material from the mounting cut-out to prevent that material from falling into the operator interface during installation. A gasket is provided to enable sealing to NEMA 4XIP66 specification. Install the ten kep nuts provided and tighten evenly for uniform gasket compression

Note: Tightening the Rep nuts bejond a maximum of 17 inch-pounds 1.92 N . mi) mon-couse damage to the front panel.

ALL NONINCENDIVE CIRCUITS MUST BE WRED USING DIVISION 2 WIRING METHODS AS SPECIFIED IN ARTICLE 501 4 (b), 502-4 (b), AND 503-3 (b) OF THE NATIONAL ELECTRICAL CODE, NFPA 70 FOR INSTALLATION WTHIN THE UNITED STATES, OR AS SPECIFIED IN SECTION 19-152 OF CANADIAN ELECTRICAL CODE FOR INSTALLATION IN CANADA.
CONNECTING TO EARTH GROUND

The protective conductor terminal is bonded to conductive parts of the equipment for safety purposes and must be connected to an external protective carthing system.

Each G306 has a chassis ground terminal on the back of the unit. Your unit should be connected to earth ground (protective earth).

The chassis ground is not connected to signal common of the unit. Maintaining isolation between earth ground and signal common is not required to operate your unit But, other equipment connected to this unit may require isolation between signal common and earth ground. To maintain isolation between signal common and earth ground care mast be taken when comections are made to the unit. For example, a power supply with isolation between its signat common and earth ground must be used. Also, plugging in a USB cable may connect signal common and carth ground

1. USB's shield may be connected to earth ground at the host. USB's shield in turn may also be connected to signal common.

POWER SUPPLY REQUIREMENTS

The G306 requires a 24 VDC power supply. Your umit may draw considerably less than the maximum rated power depending upon the options being used. As additional features are used your unit will draw increasing amounts of power. ttems that could cause increases in current are additional communications, optional communications card, CompactFlash card, and other features programmed through Crimson.

In any case, it is very important that the power supply is mounted correctly if the unit is to operate reliably. Please take care to observe the following points:

- The power supply musi be mounted close to the unit, with usually not more than 6 feet (1.8 m) of cable between the supply and the operator interface. Ideally, the shortest length possible should be used.
- The wire used to connect the operator interface's power supply should be at least 22-gage wire. If a longer cable run is used, a heavier gage wire should be used. The routing of the cable should be kept away from large contactors, inverters, and other devices which may generate significant electrical noise.
- A power supply with a Class 2 or SEL.V rating is to be used. A Class 2 or SELV power supply provides isolation to accessible circuits from hazardous voltage levels generated by a mains power supply due to single faults. SEL.V is an acronym for "safety extra-low voltage." Safety extra-low volage circuits shall exhibit voltages safe to touch both under normal operating conditions and after a single fault, such as a breakdown of a layer of basic insulation or after the failure of a single component has occurred.

Communicating With the G306

CONFIGURING A G306

The G306 is configured using Crimson software. Crimson is available as a free download from Red Lion's website, or it can be purchased on CD. Updates to Crimson for new features and drivers are posted on the website as they become available. By configuring the G306 using the latest version of Crimson, you are assured that your unit has the most up to date feature set. Crimson software can configure the G306 through the RS232 PGM port, USB port, or CompactFlash.

The USB port is connected using a standard USB cable with a Type B connector. The driver needed to use the USB port will be installed with Crimson.

The RS232 PGM port uses a programming cable made by Red Lion to connect to the DB9 COM port of your computer. If you choose to make your own cable. use the "G306 Port Pin Out Diagram" for wiring information

The CompactFlash can be used to program a G3 by placing a configuration file and firmware on the CompactFlash card. The card is then inserted into the target G3 and powered. Refer to the Crimson literature for more information on the proper names and locations of the files.

USB, DATA TRANSFERS FROM THE COMPACTFLASH CARD

WARNING - DO NOT CONNECT OR DISCONNECT CABLES WHILE POWER IS APPLIED UNLESS AREA IS KNOWN TO BE NON-HAZARDOUS. USB PORT IS FOR SYSTEM SET-UP AND DIAGNOSTICS AND IS NOT INTENDED FOR PERMANENT CONNECTION.
In order to transfer data from the Compactilash card via the USB port, a driver must be installed on your computer. This driver is installed with Crimson and is located in the folder C:Program Files Red Lion Controts Crimson 20 Devicel affer Crimson is installed. This may have already been accomplished if your G.306 was configured using the USB port

Once the driver is installed, connet the G306 to your PC with a USB cable, and follow "Mounting the Compact Flash" instructions in the Crimson 2 user manual.

CABLES AND DRIVERS

Red Lion has a wide range of cables and drivers for use with many different communication types. A list of these drivers and cables along with pin outs is available from Red Lion's website. New cables and drivers are added on a regular basis. If making your own cable, refer to the "G306 Port Pin Outs" for wiring information.

ETHERNET COMMUNICATIONS

Ethernet communications can be established at either 10 BASE-T or 100 BASE-TX. The G306 unit's RJ45 jack is wired as a NIC (Network Interface Card). For example, when wiring to a hub or switch use a straight-through cable, but when connecting to another NIC use a crossover cable

The Ethernet connector contains two LEDs. A yellow LED in the upper right, and a bi-color green/amber LED in the upper lef. The LEDs represent the following statuses:

LED COLOR	DESCRIPTION
YELLOW solid	Link established.
YELL.OW flashing	Data being transferred.
GREEN	10 BASE-T Communications
AMBER	100 BASE-TX Communications

On the rear of each unit is a unique 12 -digit MAC address and a block for marking the unit with an IP address. Refer to the Crimson manual and Red L.fon's website for additional information on Ethernet communications.

RS232 PORTS

The G306 has two RS232 ports. There is the PGM port and the COMMS port Although only one of these ports can be used for programming, both ports can be used for communications with a PLC.

The RS232 ports can be used for either master or slave protocols with amy G306 configuration

Examples of RS232 communications could involve another Red Lion product or a PC. By using a cable with RJ12 ends on it, and a twist in the cable, RS232 communications with another G3 product or the Modular Controller can be established. Red Lion part numbers for eables with a twist in them are CBLPROG0 ' CBL^{2} RLCO1 ${ }^{2}$, or CBILRCO2 ${ }^{3}$

G3 RS232 to a PC

Connections			
G3: RJ12	Name	PC: DB9	Name
4	COMM	1	DCD
5	Tx	2	Rx
2	Rx	3	Tx
	N/C	4	DTR
3	COM	5	GND
	N/C	6	DSR
1	CTS	7	RTS
6	RTS	8	CTS
	N/C	9	RI

CONNECTING A G3OG OPERATOR
INTERFACE TO AN ICM5

${ }^{1}$ CBL.PROG0 can also be used to communicate with either a PC or an ICM5
${ }^{2}$ DB9 adapter not included, I foot long
${ }^{3}$ DB9 adapter not included, 10 feet long.

RS422/485 COMMS PORT

The G306 has one RS422485 port. This port can be configured to act as either RS422 or RS485.

Note: All Red Lion devices connect A to A and B to B, except for Paradigm devices. Refer to wnernedion met for additional information.

DH485 COMMUNICATIONS

The G306's RS422/485 COMMS port can also be used for Allen Bradley DH485 communications.

WARNING: DO NOT use a standard DH4 45 cable to connect this port to Allen Bradley equipment. A cable and wiring diagram are available from Red Lion.

G3 to AB SLC 500 (CBLAB003)

Connections			
RJ45: RLC	Name	RJ45: A-B	Name
1	TxB	1	A
2	TxA	2	B
3,8	R×A	-	24 V
4,7	R×B	-	COMM
5	TxEN	5	TxEN
6	COMM	4	SHIELD
4,7	TxB	-	COMM
3,8	TxA	-	$24 V$

Examples of RS485 2-Wire Connections

G3 to Red Lion RJ11 (CBLRLC00) DLC, IAMS, ITMS, PAXCDC4C

Connections				
G3: R.J45	Name	RLC: RJ11	Name	
5	TxEN	2	TxEN	
6	COM	3	COM	
1	TxB	5	B.	
2	TxA	4	A+	

G3 to Modular Controller (CBLRLC05)

Connections			
G3	Name	Modular Controller	Name
1.4	TxB	1.4	T×B
4.1	Rx日	4.1	$\mathrm{R} \times \mathrm{B}$
2,3	TxA	2,3	T×A
3,2	R×A	3,2	R×A
5	TxEN	5	TxEN
6	COM	6	COM
7	TxB	7	TxB
8	T×A	8	T×A

Software/Unit Operation

CRIMSON SOFTWARE

Crimson software is available as a free download from Red Lion's website or it can be purchased on a CD, see "Ordering Information" for part number. The latest version of the software is always available from the website, and updating your copy is free.

DISPLAY

This operator interface uses a liquid erystal display (L.CD) for displaying text and graphics. The display utilizes a cold cathode fluorescent tube (CCFL) for lighting the display. The CCFL tubes can be dimmed for low light conditions.

These CCFL tubes have a limited lifetime. Backlight lifetime is based upon the amount of time the display is tumed on at full intensity. Tuming the backlight off when the display is not in use can extend the lifetime of your backlight. This can be accomplished through the Crimson software when configuring your unit

FRONT PANEL LEDS

There are three front pancl LEDs. Shown below is the default status of the L.EDs.

LED	nNDICATION
RED (TOP, LABELED "PWR")	
FLASHING	Unit is in the boot loader, no valid configuration is loaded.'
STEADY	Unit is powered and running an application.
YELLOW (MIDDLE)	
OFF	No CompactFlash card is present.
STEADY	Valid CompactFlash card present.
FLASHING RAPIDLY	CompactFlash card being checked.
FLICKERING	Unit is witing to the CompactFlash, either because it is storing data, or because the PC connected via the USB port has locked the drive.
FLASHING SLOWLY	Incorrectly formatted CompactFlash card present.
GREEN (BOTTOM)	
FLASHING	A tag is in an alarm state.
STEADY	Valid configuration is loaded and there are no alarms present.

1. The operator interface is shipped without a configuration. After downloading a configuration, if the light remains in the flashing state continuously, try cycling power. If the LED still continues to flash, try downloading a configuration again.
2. Do not turn off power to the unit while this light is flickering. The unit writes data in two minute intervals. Later Microsof operating systems will not lock the drive unless they need to write data, Windows 98 may lock the drive any time it is mounted, thereby interfering with logging. Refer to "Mounting the CompactFlash" in the Crimson 2 User Manual.

TOUCHSCREEN

This operator interface utilizes a resistive analog touchscreen for user input The unit will only produce an audible tone (beep) when a touch on an active touchscreen cell is sensed. The touchscreen is fully functional as soon as the operator interface is initialized, and can be operated with gloved hands

KEYPAD

The G306 keypad consists of five keys that can be used for on-screen menus

TROUBLESHOOTING YOUR G306

If for any reason you have trouble operating, connecting, or simply have questions concerning your new G306, contact Red Lion's technical support. For contact information, refer to the back page of this bulletin for phone and fax numbers

EMAIL: ischsupportiued

BATTERY \& TIME KEEPING

WARNING - EXPLOSION HAZARD - THE AREA MUST BE KNOWN TO BE NON-HAZARDOUS BEFORE SERVICING/ REPLACING THE UNIT AND BEFORE INSTALLING OR REMOVING IO WIRING AND BATTERY.

WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN DISCONNECTED AND THE AREA IS KNOWN TO BE NON-HAZARDOUS

A thattery is used to keep time when the unit is without power Typical accuracy of the G306 time keeping is less than one minute per month drift. The batlery of a G306 unit does nof affect the unit's memory, all conligurations and data is stored in non-volutile memory.

CAUTION: RISK OF ELECTRIC SHOCK

The inverter board, attached to the mounting plate, supplics the high voltage to operate the backlight. Touching the inverter board may result in injury to personnel.

CAUTION: The circuit board contains static sensitive components. Before handling the operator interface without the rear cover attached, discharge static charges from your body by touching a grounded bare metal object Ideally. handle the operator interface at a static controlled elean workstation. Also, do not touch the surface areas of the circuit board. Dirt, oil, or other contaminants may adversely affect circuit operation
To change the battery of a G306, remove power, cabling, and then the rear cover of the unit. To remove the cover, remove the four screws designated by the arrows on the rear of the unit. Then, by lifing the top side, hinge the cover. thus providing elearance for the connectors on the bottom side of the PCB as shown in the illustration below. Install in the reverse manner

Optional Features and Accessories

OPTIONAL COMMUNICATION CARD

Red Lion offers optional communication cards for fieldbus communications. These communication cards will allow your G306 to communicate with many of the popular fieldbus protocols.
Red Lion is also offering a communications card for additional RS232 and RS422485 communications. Visit Red Lion's website for information and availability of these cards

CUSTOM LOGO

Each G3 operator interface has an embossed area containing the Red Lion logo Red Lion can provide custom logos to apply to this area. Contact your distributor for additional information and pricing

COMPACTFLASH SOCKET

CompactFlash socket is a Type II socket that can accept either Type I or II cards. Use cards with a minimum of 4Mbytes with the G306's CompactFlash socket. Cards are available at most computer and office supply retailers.

CompactFlash can be used for configuration transfers, targer configurations. data logging, and trending.
 the CompactFlash cand while power is applied. Refer to
"From Panel LEDs,"
Information stored on a Compactillash card by a G306 can be read by a card reader attached to a PC. This information is stored in IBM (Windows*) PC compatible FATI6 file format.

NOTE

For reliable operation in all of our products, Red Lion recommends the use of SanDisk" and SimpleTech brands of CompactFlash cards.

Industrial grade versions that provide up to two million write/crase cycles minimum are available from Red Lion.

LIMITED WARRANTY

The Company warmants the products it manufactures ayainst defects in materials and worhaumship for a period linuited to two years from the date of shipment, provided the products have been stored, handled, installed, and used under proper conditions The Company's liability under this lmited warranty shall extend only to the repair or replacenent of a defective product. at The Compary's option. The Company disclaims all liahility for any affimation, promise or representation with respect to the products. The custoner ayrees to hold Red Lion Contiols haunless from, defend, and indennify RL.C against damages claims and expenses arising out of subsequent sales of RLC prodocts or prodects containing components manafictured by RL.C and based upon personal injuries, deaths. property damage. los profits, and other maters which Buyer, its employees. or sub-coatractors are or nasy be to any ectent liable, including without limitation penalties imposed by the Consumer Prodict Safety Act (PL. 92-573) mad liability imposed upon any person pursamat to the Magnuson-Moss. Warranty Act (PL 93-637) as now in effect or as amended hereafter.
No warranties expressed or implied are ceated with respect to The Company's prodacts exeept those expressly contained herein The Customer acknowledjes the disclaimers and limitations contained herein and relies on no other warranties or affirmations.

Red Lion Controts

20 Willow Springs Circle York PA 17402 Tel +1 (717) 767-6511 Fax +1 (717) 764-0839

Red Lion Controls BV

 Basicweg 11bNL - 3821 BR Amersfoort Tel + 31 (0) 334723225 Fax +31 (0) 334893793

Universal Transient Barrier, Single Pair - UTB30SP (702863)

- Compact design universal transient barrier provides protection of low-voltage circuits and transducers
- Separate plug and base design allows hot swappable module replacement
- Multi-stage protection and fine over-voltage protection helps ensure lowest residual surge voltages reach sensitive equipment
- Common-mode and differential-mode protection protects against both possible surge conditions
- Surge rating to $20 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$ is ideal for exposed wiring
- Allows for protection of 25 analog signals or 50 digital signals per linear foot ($0,3 \mathrm{~m}$) of DIN rail space

Part Number	UTB30SP
Article Number	702863
Nominal System Voltage (Un)	$\begin{aligned} & \text { 10-21 VAC } \\ & 15-30 \text { VDC } \end{aligned}$
Max Continuous Operating Voltage (Uc)	$\begin{array}{\|l\|} 23 \text { VAC } \\ 33 \mathrm{VDC} \end{array}$
Max Line Current (IL)	2 A
Frequency	2 MHz
Loop Resistance	1Ω
Max Discharge Current (Imax), L+L-PE	$20 \mathrm{kA} \mathrm{8/20} \mathrm{\mu s}$
Protection Modes	Common Differential
Technology	Gas Discharge Tube (GDT) Metal Oxide Varistor (MOV) Silicon Avalanche Diode (SAD)
Voltage Protection Level (Up), L-L	44 V @ 3 kA
Connection, Stranded	$\begin{aligned} & \# 18-\# 12 \\ & 1-4 m m^{2} \end{aligned}$
Mounting	35 mm top hat DIN rail
Temperature	$\begin{aligned} & -20 \text { to } 65^{\circ} \mathrm{C} \\ & -4 \text { to } 1499^{\circ} \mathrm{F} \end{aligned}$
Enclosure Material	UL® 94 V -0 thermoplastic
Enclosure Rating	IP 20 NEMA®-1
Depth (D)	$\begin{aligned} & 2.83 " \\ & 72 \mathrm{~mm} \end{aligned}$
Height (H)	$\begin{aligned} & 3.54 " \\ & 90 \mathrm{~mm} \end{aligned}$
Width (W)	$\begin{array}{\|l\|} \hline 0.47{ }^{\prime \prime} \\ 12 \mathrm{~mm} \end{array}$
Unit Weight	$\begin{aligned} & 0.15 \mathrm{lb} \\ & 0.07 \mathrm{~kg} \end{aligned}$
Listing Details	UL® 497B
Complies With	ANSI®/EEE ${ }^{\oplus}$ C62.41.2-2002 Cat A, Cat B, Cat C
Replacement Module	UTB30SPM
Standard Packaging Quantity	1 pc

Part Number	UTB30SP
UPC	78285662198
UNSPSC	39121610
ETIM	EC000943
Approvals	UR

ANSI is a registered trademark of American National Standards Institute. IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc. NEMA is a registered service mark of National Electrical Manufacturers Association. UL is a registered certification mark of UL LLC. UR is a registered certification mark of UL LLC.

WARNING

ERICO products shall be installed and used only as indicated in ERICO's product instruction sheets and training materials. Instruction sheets are available at www.erico.com and from your ERICO customer service representative. Improper installation, misuse, misapplication or other failure to completely follow ERICO's instructions and warnings may cause product malfunction, property damage, serious bodily injury and death.

Copyright © 2013 ERICO International Corporation. All rights reserved
CADDY, CADWELD, CRITEC, ERICO, ERIFLEX, ERITECH, and LENTON are registered trademarks of ERICO International Corporation.

DATA SHEET

Coax Cable Connector
N-203HS
N-201

Description

Straight Cable Plug Crimp
Suits Cables: LMR400 CNT400 BELDEN 9913

Technical Data

Electrical

Impedance	50 Ohm
Max Frequency	11 GHz

Mechanical \& Environmental Data

Centre contact	Crimp		
Outer Contact	Crimp		
Mating	5/8"-24 threaded coupling		
Durability	500 matings		
Coupling nut retention	1001bs Max		
Cable Retention	40 lbs min		
Tempreture Range	-65° to $165^{\circ} \mathrm{C}$		
Vibration	MIL-STD-202 Test Cond B		
Salt Spray	MIL-STD-101 Test Cond B		
Thermal Shock	MIL-STD-107 Test Cond B		
Material Data			
Parts	Material	Plating	
		N-203HS	N-201
Connector Body	Brass	Silver	White Bronze
Centre contact	Brass	Gold	Gold
Insulation	Teflon	-	-
Gasket	Silicone Rubber	-	-
Crimp Ferrule	Anneald Copper	Silver	White Bronze

묘우NNN

Extract from the online catalog

TCP 0,25A

Order No.: 0712123
The illustration shows version TCP 2A
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=0712123

Thermal miniature circuit breaker, pluggable in screw-type fuse terminal block UK 6-FSI/C and spring-cage fuse terminal block ST 4FSI/C

Commercial data	$\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|$
EAN	$4 \\| 17918$
sales group	J 711
Pack	20 Pcs.
Customs tariff	85362010
Gross weight in pieces	0.0111 KG
Net weight per piece	0.0111 KG
Catalog page information	Page 265 (C-6-2013)

http://

www.download.phoenixcontact.com Please note that the data given here has been taken from the online catalog. For comprehensive information and data, please refer to the user documentation. The General Terms and Conditions of Use apply to Internet downloads.

Technical data

General

Installation instructions	When mounted in rows, the nominal device current can be limited to just 80% or must be overdimensioned accordingly.
Mounting type	On base element
Color	black
Number of positions	1

TCP 0,25A Order No.: 0712123
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=0712123

Surge voltage category	II
Insulating material	PPS
Inflammability class according to UL 94	V0

Electrical data

Fuse	Slow-blow
Fuse type	Automatic device
Rated surge voltage	2.5 kV
Rated voltage	250 V AC
	65 V DC
	250 V (AC according to UL 1077)
	72 V (DC according to UL 1077)
Rated current I_{n}	0.25 A
Insulation resistance $\mathrm{R}_{\text {iso }}$	$>100 \mathrm{M} \Omega$ (500 V DC)
Rated short-circuit switching capacity I_{cn}	$1.5 \mathrm{~A} \mathrm{(250} \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{65} \mathrm{V} \mathrm{DC)}$
	$6.25 \mathrm{~A} \mathrm{(30} \mathrm{~V} \mathrm{DC)}$
Short-circuit switching capacity I_{k}	$2000 \mathrm{~A} \mathrm{250} \mathrm{V} \mathrm{AC} \mathrm{/} \mathrm{UL} \mathrm{1077}$
	$2000 \mathrm{~A} \mathrm{72} \mathrm{V} \mathrm{DC} \mathrm{/} \mathrm{UL} \mathrm{1077}$
Dielectric strength	$3000 \mathrm{~V} \mathrm{AC} \mathrm{(Actuation} \mathrm{area)}$
	$1500 \mathrm{~V} \mathrm{AC} \mathrm{(Installation} \mathrm{area)}$
Cycles, max.	6000 (At $1 \times \mathrm{I}_{\mathrm{n}}$, low-induction)
	3000 (At $1 \times \mathrm{I}_{n}$, inductive)
Pollution degree	500 (At $2 \times \mathrm{I}_{\mathrm{n}}$, inductive)
Surge voltage category	2
Insulating material group	II
	Illb

Dimensions

Height	24.4 mm
Width	8.2 mm
Depth	44.5 mm
Height NS 35/7,5	55 mm
Complete module height	64 mm
Complete module width	8.2 mm
Complete module depth	88.5 mm

TCP 0,25A Order No.: 0712123
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=0712123

Ambient conditions

Degree of protection	IP40 (Actuation area)
Ambient temperature (operation)	$-20^{\circ} \mathrm{C} \ldots 60^{\circ} \mathrm{C}$
Standards and Regulations	
Standards/specifications	EN 60934
Certificates / Approvals	

(F) M 食 M P

Certification
CSA, cULus Recognized, GOST, VDE Zeichengenehmigung

Certifications applied for:
Certification Ex:

Accessories		
Item	Designation	Description
Marking		
0807180	ZBFM 5/OG:UNBEDRUCKT	Flat zack marker sheet, Sheet, orange, Unlabeled, can be labeled with: Plotter, Mounting type: Snap into flat marker groove, for terminal block width: 5.2 mm , Lettering field: $5 \times 4.5 \mathrm{~mm}$
0803595	ZBFM 5/WH:UNBEDRUCKT	Flat zack marker sheet, Sheet, white, Unlabeled, can be labeled with: Plotter, Mounting type: Snap into flat marker groove, for terminal block width: 5.2 mm, Lettering field: $5 \times 4.5 \mathrm{~mm}$
0803647	ZBFM 5:SO/CMS	Flat zack marker sheet, white, for terminal block width: 5.2 mm

Additional products

Item Designation Description

General

3036372	ST 4-FSI/C	Fuse modular terminal block, Connection method: Spring-cage connection, Cross section: $0.08 \mathrm{~mm}^{2}-6 \mathrm{~mm}^{2}$, AWG: $28-10$, Nominal current: 30 A, Nominal voltage: 400 V, Width: 8.2 mm, Fuse type: C, Fuse type: Flat, Mounting type: NS $35 / 7,5, \mathrm{NS}$ $35 / 15$, Color: black
3036505	ST 4-FSI/C-LED 24	Fuse terminal block with LED for mounting on NS 35, for miniature circuit breakers, terminal width: 8.2 mm, color: Black

TCP 0,25A Order No.: 0712123
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=0712123

3118203	UK 6-FSI/C	Flat-type fuse terminal block, cross section: $0.2-6 \mathrm{~mm}^{2}$, AWG: 26 -8, width: 8.2 mm , color: black
3118203	UK 6-FSI/C	Flat-type fuse terminal block, cross section: $0.2-6 \mathrm{~mm}^{2}$, AWG: 26 -8 , width: 8.2 mm , color: black
3001925	UK 6-FSI/C-LED12	Flat-type fuse terminal block, cross section: $0.2-6 \mathrm{~mm}^{2}$, AWG: 26 -8, width: 8.2 mm , color: black, with light indicator, voltage light indicator: $12 \mathrm{~V} \mathrm{DC} ,\mathrm{current} \mathrm{light} \mathrm{indicator:} 2 \mathrm{~mA}$
3001938	UK 6-FSI/C-LED24	Flat-type fuse terminal block, cross section: $0.2-6 \mathrm{~mm}^{2}$, AWG: 26 -8, width: 8.2 mm, color: black, with light indicator, voltage light indicator: $24 \mathrm{~V} \mathrm{DC} ,\mathrm{current} \mathrm{light} \mathrm{indicator:} 2 \mathrm{~mA}$

Drawings

Application drawing

Fuse terminal block in single arrangement, block consisting of one fuse terminal block and 4 feed-through terminal blocks

Fuse terminal blocks in interconnected arrangement,
block consisting of 5 fuse terminal blocks

TCP 0,25A Order No.: 0712123
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=0712123

Diagram

Dimensioned drawing

[aptacin

Extract from the online catalog

PT 2,5

Order No.: 3209510
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3209510

Feed-through terminal block, Connection method: Push-in connection,
Cross section: $0.14 \mathrm{~mm}^{2}-4 \mathrm{~mm}^{2}$, AWG: 26-12, Width: 5.2 mm ,
Height: 35.3 mm, Color: gray, Mounting type: NS 35/7,5, NS 35/15

Commercial data	
EAN	
sales group	A600
Pack	50 Pcs.
Customs tariff	85369010
Gross weight in pieces	0.006526 KG
Net weight per piece	0.006526 KG
Catalog page information	Page 105 (C-3-2013)

http://

www.download.phoenixcontact.com Please note that the data given here has been taken from the online catalog. For comprehensive information and data, please refer to the user documentation. The General Terms and Conditions of Use apply to Internet downloads.

Technical data

General

Number of levels	1
Number of connections	2
Color	gray
Insulating material	PA
Inflammability class according to UL 94	V0

PT 2,5 Order No.: 3209510
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3209510

Area of application	Railway industry
	Mechanical engineering
	Plant engineering
	Process industry
General	
Maximum load current	30 A (with $4 \mathrm{~mm}^{2}$ conductor cross section)
	24 A (with $2.5 \mathrm{~mm}^{2}$ conductor cross section)
Rated surge voltage	6 kV
Pollution degree	3
Surge voltage category	III
Insulating material group	1
Connection in acc. with standard	IEC 60947-7-1
Nominal current I_{N}	24 A (For $2.5 \mathrm{~mm}^{2}$)
Nominal voltage U_{N}	800 V
Open side panel	ja
Shock protection test specification	DIN EN 50274 (VDE 0660-514):2002-11
Back of the hand protection	guaranteed
Finger protection	guaranteed
Surge voltage test setpoint	9.8 kV
Result of surge voltage test	Test passed
Power frequency withstand voltage setpoint	2 kV
Result of power-frequency withstand voltage test	Test passed
Checking the mechanical stability of terminal points ($5 \times$ conductor connection)	Test passed
Bending test rotation speed	10 rpm
Bending test turns	135
Bending test conductor cross section/weight	$0.14 \mathrm{~mm}^{2} / 0.2 \mathrm{~kg}$
	$2.5 \mathrm{~mm}^{2} / 0.7 \mathrm{~kg}$
	$4 \mathrm{~mm}^{2} / 0.9 \mathrm{~kg}$
Result of bending test	Test passed
Conductor cross section tensile test	$0.14 \mathrm{~mm}^{2}$
Tractive force setpoint	10 N
Conductor cross section tensile test	$2.5 \mathrm{~mm}^{2}$
Tractive force setpoint	50 N
Conductor cross section tensile test	$4 \mathrm{~mm}^{2}$

PT 2,5 Order No.: 3209510
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3209510

Tractive force setpoint	60 N
Tensile test result	Test passed
Tight fit on carrier	NS 35
Setpoint	1 N
Result of tight fit test	Test passed
Requirements, voltage drop	$\leq 3.2 \mathrm{mV}$
Result of voltage drop test	Test passed
Temperature-rise test	Test passed
Conductor cross section short circuit testing	2.5 mm ${ }^{2}$
Short-time current	0.3 kA
Conductor cross section short circuit testing	$4 \mathrm{~mm}^{2}$
Short-time current	0.48 kA
Short circuit stability result	Test passed
Ageing test for screwless modular terminal block temperature cycles	192
Result of aging test	Test passed
Proof of thermal characteristics (needle flame) effective duration	30 s
Result of thermal test	Test passed
Test specification, oscillation, broadband noise	DIN EN 50155 (VDE 0115-200):2008-03
Test spectrum	Service life test category 2, bogie mounted
Test frequency	$\mathrm{f}_{1}=5 \mathrm{~Hz}$ to $\mathrm{f}_{2}=250 \mathrm{~Hz}$
ASD level	$6.12\left(\mathrm{~m} / \mathrm{s}^{2}\right)^{2} / \mathrm{Hz}$
Acceleration	3.12 g
Test duration per axis	5 h
Test directions	X-, Y- and Z-axis
Oscillation, broadband noise test result	Test passed
Test specification, shock test	DIN EN 50155 (VDE 0115-200):2008-03
Shock form	Half-sine
Acceleration	30 g
Shock duration	18 ms
Number of shocks per direction	3
Test directions	X-, Y- and Z -axis (pos. and neg.)
Shock test result	Test passed
Temperature index, insulating material (DIN EN 60216-1 (VDE 0304-21))	$125{ }^{\circ} \mathrm{C}$
Static insulating material application in cold	$-60^{\circ} \mathrm{C}$

PT 2,5 Order No.: 3209510
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3209510

Dimensions	
Width	5.2 mm
Length	48.5 mm
Height	35.3 mm
Height NS 35/7,5	36.5 mm
Height NS 35/15	44 mm

Connection data

Connection in acc. with standard	IEC 60947-7-1
Connection method	Push-in connection
Conductor cross section solid min.	$0.14 \mathrm{~mm}^{2}$
Conductor cross section solid max.	$4 \mathrm{~mm}^{2}$
Conductor cross section AWG/kcmil min.	26
Conductor cross section AWG/kcmil max	12
Conductor cross section stranded min.	$0.14 \mathrm{~mm}^{2}$
Conductor cross section stranded max.	$2.5 \mathrm{~mm}^{2}$
Min. AWG conductor cross section, stranded	26
Max. AWG conductor cross section, stranded	14
Conductor cross section stranded, with ferrule without plastic sleeve min.	$0.14 \mathrm{~mm}^{2}$
Conductor cross section stranded, with ferrule without plastic sleeve max.	$2.5 \mathrm{~mm}^{2}$
Conductor cross section stranded, with ferrule with plastic sleeve min.	$0.14 \mathrm{~mm}^{2}$
Conductor cross section stranded, with ferrule with plastic sleeve max.	$2.5 \mathrm{~mm}^{2}$
2 conductors with same cross section, stranded, TWIN ferrules with plastic sleeve, max.	$0.5 \mathrm{~mm}^{2}$
Minimum stripping length	8 mm
Maximum stripping length	$10 \mathrm{~mm}^{\text {Internal cylindrical gage }}$

Certificates / Approvals

Certification

CSA, cULus Recognized, GOST, VDE Zeichengenehmigung, ABS, BV, GL, LR, NK, RS, IECEE CB Scheme

PT 2,5 Order No.: 3209510
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3209510

Software		
5146040	CLIP-PROJECT ADVANCED	Multilingual software for easy planning of Phoenix Contact on DIN rails together with the integrated TRABTECH-select software module for planning comprehensive surge protection concepts.
5146053	CLIP-PROJECT PROFESSIONAL	Multi-lingual software for terminal strip project planning. A marking module allows professional labeling of markers and labels for marking terminal blocks, conductors, cables and devices. The additionally integrated software module TRABTECH-select for planning comprehensive surge protection concepts.
Tools		
1204517	SZF 1-0,6X3,5	Actuation tool, for ST terminal blocks, also suitable for use as a bladed screwdriver, size: $0.6 \times 3.5 \times 100 \mathrm{~mm}, 2$-component grip, with non-slip grip
Drawings		
Circuit diagram		

क) PHONIX

Extract from the online catalog

PT 2,5-MT

Order No.: 3210156
The figure shows a version of the article

http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3210156

Knife disconnect terminal block, Connection type: Push-in connection, Cross section: $0.14 \mathrm{~mm}^{2}-4 \mathrm{~mm}^{2}$, AWG: 26-12, Nominal current: 20
A, Nominal voltage: 400 V , Length: 62 mm , Width: 5.2 mm ,
Color: gray, Assembly: NS 35/7,5, NS 35/15

Commercial data	$\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|$
EAN	$4 \\| 33597$
sales group	A640
Pack	50 Pcs.
Customs tariff	85369010
Gross weight in pieces	0.009246 KG
Net weight per piece	0.009172 KG
Catalog page information	Page $150(\mathrm{C}-3-2013)$

http://

www.download.phoenixcontact.com Please note that the data given here has been taken from the online catalog. For comprehensive information and data, please refer to the user documentation. The General Terms and Conditions of Use apply to Internet downloads.

Technical data

General

Number of levels	1
Number of connections	2
Color	gray
Insulating material	PA

PT 2,5-MT Order No.: 3210156
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3210156

Inflammability class according to UL 94	V0

General	
Rated surge voltage	6 kV
Pollution degree	3
Surge voltage category	III
Insulating material group	I
Connection in acc. with standard	IEC 60947-7-1
Nominal current I_{N}	20 A
Nominal voltage U_{N}	400 V
Open side panel	ja
Shock protection test specification	DIN EN 50274 (VDE 0660-514):2002-11
Back of the hand protection	guaranteed
Finger protection	guaranteed
Surge voltage test setpoint	7.3 kV
Result of surge voltage test	Test passed
Power frequency withstand voltage setpoint	1.89 kV
Result of power-frequency withstand voltage test	Test passed
Checking the mechanical stability of terminal points ($5 \times$ conductor connection)	Test passed
Bending test rotation speed	10 rpm
Bending test turns	135
Bending test conductor cross section/weight	$0.14 \mathrm{~mm}^{2} / 0.2 \mathrm{~kg}$
	$2.5 \mathrm{~mm}^{2} / 0.7 \mathrm{~kg}$
	$4 \mathrm{~mm}^{2} / 0.9 \mathrm{~kg}$
Result of bending test	Test passed
Conductor cross section tensile test	$0.14 \mathrm{~mm}^{2}$
Tractive force setpoint	10 N
Conductor cross section tensile test	$2.5 \mathrm{~mm}^{2}$
Tractive force setpoint	50 N
Conductor cross section tensile test	$4 \mathrm{~mm}^{2}$
Tractive force setpoint	60 N
Tensile test result	Test passed
Tight fit on carrier	NS 35
Setpoint	1 N
Result of tight fit test	Test passed

PT 2,5-MT Order No.: 3210156
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3210156

Requirements, voltage drop	$\leq 6,4 \mathrm{mV}$
Result of voltage drop test	Test passed
Temperature-rise test	Test passed
Conductor cross section short circuit testing	$2.5 \mathrm{~mm}^{2}$
Short-time current	0.3 kA
Conductor cross section short circuit testing	$4 \mathrm{~mm}^{2}$
Short-time current	0.48 kA
Short circuit stability result	Test passed
Ageing test for screwless modular terminal block temperature cycles	192
Result of aging test	Test passed
Proof of thermal characteristics (needle flame) effective duration	30 s
Result of thermal test	Test passed
Test specification, oscillation, broadband noise	DIN EN 50155 (VDE 0115-200):2008-03
Test spectrum	Service life test category 1 , class B, body mounted
Test frequency	$\mathrm{f}_{1}=5 \mathrm{~Hz}$ to $\mathrm{f}_{2}=150 \mathrm{~Hz}$
ASD level	$1.857\left(\mathrm{~m} / \mathrm{s}^{2}\right)^{2} / \mathrm{Hz}$
Acceleration	0.8 g
Test duration per axis	5 h
Test directions	X-, Y- and Z-axis
Oscillation, broadband noise test result	Test passed
Test specification, shock test	DIN EN 50155 (VDE 0115-200):2008-03
Shock form	Half-sine
Acceleration	5 g
Shock duration	30 ms
Number of shocks per direction	3
Test directions	X-, Y- and Z -axis (pos. and neg.)
Shock test result	Test passed
Temperature index, insulating material (DIN EN 60216-1 (VDE 0304-21))	$125^{\circ} \mathrm{C}$
Static insulating material application in cold	$-60{ }^{\circ} \mathrm{C}$
Dimensions	
Width	5.2 mm
Length	62 mm
Height	35.30 mm

PT 2,5-MT Order No.: 3210156
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3210156

Height NS 35/7,5	36.5 mm
Height NS 35/15	44 mm
Connection data	
Connection in acc. with standard	IEC 60947-7-1
Connection method	Push-in connection
Conductor cross section solid min.	$0.14 \mathrm{~mm}^{2}$
Conductor cross section solid max.	$4 \mathrm{~mm}^{2}$
Conductor cross section AWG/kcmil min.	26
Conductor cross section AWG/kcmil max	12
Conductor cross section stranded min.	$0.14 \mathrm{~mm}^{2}$
Conductor cross section stranded max.	$2.5 \mathrm{~mm}^{2}$
Min. AWG conductor cross section, stranded	26
Max. AWG conductor cross section, stranded	14
Conductor cross section stranded, with ferrule without plastic sleeve min.	$0.14 \mathrm{~mm}^{2}$
Conductor cross section stranded, with ferrule without plastic sleeve max.	$2.5 \mathrm{~mm}^{2}$
Conductor cross section stranded, with ferrule with plastic sleeve min.	$0.14 \mathrm{~mm}^{2}$
Conductor cross section stranded, with ferrule with plastic sleeve max.	$2.5 \mathrm{~mm}^{2}$
2 conductors with same cross section, stranded, TWIN ferrules with plastic sleeve, max.	$0.5 \mathrm{~mm}^{2}$
Minimum stripping length	8 mm
Maximum stripping length	10 mm
Internal cylindrical gage	A3

Certificates / Approvals

(1) Al MI PC NoE CBBer

Certification

CSA, cULus Recognized, GOST, VDE Gutachten mit Fertigungsüberwachung, ABS, BV, GL, LR, NK, RS, IECEE CB Scheme

Certifications applied for:
Certification Ex:

5146053	CLIP-PROJECT PROFESSIONAL	Multi-lingual software for terminal strip project planning. A marking module allows professional labeling of markers and labels for marking terminal blocks, conductors, cables and devices. The additionally integrated software module TRABTECH-select for planning comprehensive surge protection concepts.
Tools		Actuation tool, for ST terminal blocks, also suitable for use as a bladed screwdriver, size: $0.6 \times 3.5 \times 100 \mathrm{~mm}, 2$-component grip, with non-slip grip
1204517	SZF 1-0,6X3,5	
Drawings		
Circuit diagram		

क) PHONIX

Extract from the online catalog

PT 4

Order No.: 3211757
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3211757

Feed-through terminal block, Connection method: Push-in connection,
Cross section: $0.2 \mathrm{~mm}^{2}-6 \mathrm{~mm}^{2}$, AWG: 24 -10, Width: 6.2 mm , Height: 35.3 mm, Color: gray, Mounting type: NS 35/7,5, NS 35/15

Commercial data																			
EAN	$4\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|$																		
sales group	A600																		
Pack	50 Pcs.																		
Customs tariff	85369010																		
Gross weight in pieces	0.00964 KG																		
Net weight per piece	0.009348 KG																		
Catalog page information	Page 105 (C-3-2013)																		

http://

www.download.phoenixcontact.com Please note that the data given here has been taken from the online catalog. For comprehensive information and data, please refer to the user documentation. The General Terms and Conditions of Use apply to Internet downloads.

Technical data

General

Number of levels	1
Number of connections	2
Color	gray
Insulating material	PA
Inflammability class according to UL 94	V0

PT 4 Order No.: 3211757
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3211757

Area of application	Railway industry
	Mechanical engineering
	Plant engineering
	Process industry
General	
Rated surge voltage	8 kV
Pollution degree	3
Surge voltage category	III
Insulating material group	I
Connection in acc. with standard	IEC 60947-7-1
Nominal current I_{N}	32 A
Nominal voltage U_{N}	800 V
Open side panel	ja
Shock protection test specification	DIN EN 50274 (VDE 0660-514):2002-11
Back of the hand protection	guaranteed
Finger protection	guaranteed
Surge voltage test setpoint	9.8 kV
Result of surge voltage test	Test passed
Power frequency withstand voltage setpoint	2 kV
Result of power-frequency withstand voltage test	Test passed
Checking the mechanical stability of terminal points (5 x conductor connection)	Test passed
Bending test rotation speed	10 rpm
Bending test turns	135
Bending test conductor cross section/weight	$0.2 \mathrm{~mm}^{2} / 0.2 \mathrm{~kg}$
	$4 \mathrm{~mm}^{2} / 0.9 \mathrm{~kg}$
	$6 \mathrm{~mm}^{2} / 1.4 \mathrm{~kg}$
Result of bending test	Test passed
Conductor cross section tensile test	0.2 mm ${ }^{2}$
Tractive force setpoint	10 N
Conductor cross section tensile test	$4 \mathrm{~mm}^{2}$
Tractive force setpoint	60 N
Conductor cross section tensile test	$6 \mathrm{~mm}^{2}$
Tractive force setpoint	80 N
Tensile test result	Test passed

PT 4 Order No.: 3211757
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3211757

Tight fit on carrier	NS 35
Setpoint	1 N
Result of tight fit test	Test passed
Requirements, voltage drop	$\leq 3.2 \mathrm{mV}$
Result of voltage drop test	Test passed
Temperature-rise test	Test passed
Conductor cross section short circuit testing	$4 \mathrm{~mm}^{2}$
Short-time current	0.48 kA
Conductor cross section short circuit testing	$6 \mathrm{~mm}^{2}$
Short-time current	0.72 kA
Short circuit stability result	Test passed
Ageing test for screwless modular terminal block temperature cycles	192
Result of aging test	Test passed
Proof of thermal characteristics (needle flame) effective duration	30 s
Result of thermal test	Test passed
Test specification, oscillation, broadband noise	DIN EN 50155 (VDE 0115-200):2008-03
Test spectrum	Service life test category 1 , class B, body mounted
Test frequency	$\mathrm{f}_{1}=5 \mathrm{~Hz}$ to $\mathrm{f}_{2}=150 \mathrm{~Hz}$
ASD level	$1.857\left(\mathrm{~m} / \mathrm{s}^{2}\right)^{2} / \mathrm{Hz}$
Acceleration	0.8 g
Test duration per axis	5 h
Test directions	X-, Y- and Z-axis
Oscillation, broadband noise test result	Test passed
Test specification, shock test	DIN EN 50155 (VDE 0115-200):2008-03
Shock form	Half-sine
Acceleration	5 g
Shock duration	30 ms
Number of shocks per direction	3
Test directions	X-, Y- and Z -axis (pos. and neg.)
Shock test result	Test passed
Temperature index, insulating material (DIN EN 60216-1 (VDE 0304-21))	$130{ }^{\circ} \mathrm{C}$
Static insulating material application in cold	$-60{ }^{\circ} \mathrm{C}$

PT 4 Order No.: 3211757
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3211757

Dimensions	
Width	6.2 mm
Length	56 mm
Height	35.3 mm
Height NS 35/7,5	36.5 mm
Height NS 35/15	44 mm

Connection data

Connection in acc. with standard	IEC 60947-7-1
Connection method	Push-in connection
Conductor cross section solid min.	$0.2 \mathrm{~mm}^{2}$
Conductor cross section solid max.	$6 \mathrm{~mm}^{2}$
Conductor cross section AWG/kcmil min.	24
Conductor cross section AWG/kcmil max	10
Conductor cross section stranded min.	$0.2 \mathrm{~mm}^{2}$
Conductor cross section stranded max.	$4 \mathrm{~mm}^{2}$
Min. AWG conductor cross section, stranded	24
Max. AWG conductor cross section, stranded	12
Conductor cross section stranded, with ferrule without plastic sleeve min.	$0.25 \mathrm{~mm}^{2}$
Conductor cross section stranded, with ferrule without plastic sleeve max.	$4 \mathrm{~mm}^{2}$
Conductor cross section stranded, with ferrule with plastic sleeve min.	$0.25 \mathrm{~mm}^{2}$
Conductor cross section stranded, with ferrule with plastic sleeve max.	$4 \mathrm{~mm}^{2}$
2 conductors with same cross section, stranded,	$0.5 \mathrm{~mm}^{2}$
TWIN ferrules with plastic sleeve, min.	$1 \mathrm{~mm}^{2}$
2 conductors with same cross section, stranded, TWIN ferrules with plastic sleeve, max.	$10 \mathrm{~mm}^{\text {Minimum stripping length }}$
Maximum stripping length	$12 \mathrm{~mm}^{\text {Ma }}$Internal cylindrical gage

Certificates / Approvals

PT 4 Order No.: 3211757
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3211757

Tools

1204517	SZF 1-0,6X3,5	Actuation tool, for ST terminal blocks, also suitable for use as a bladed screwdriver, size: $0.6 \times 3.5 \times 100 \mathrm{~mm}, 2$-component grip, with non-slip grip

Drawings

Circuit diagram

[aptisivix

Extract from the online catalog

PTTB 2,5

Order No.: 3210567
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3210567

Double-level terminal block, Cross section: $0.14 \mathrm{~mm}^{2}-4 \mathrm{~mm}^{2}$, AWG: 26-12, Connection type: Push-in connection, Width: 5.2 mm , Color: gray, Mounting type: NS 35/7,5, NS 35/15

Commercial data	$\\|$
EAN	$4\left\\|\left\\|_{046356}\right\\|\right.$
sales group	A632
Pack	50 Pcs.
Customs tariff	85369010
Gross weight in pieces	0.012897 KG
Net weight per piece	0.012786 KG
Catalog page information	Page 129 (C-3-2013)

http://

www.download.phoenixcontact.com Please note that the data given here has been taken from the online catalog. For comprehensive information and data, please refer to the user documentation. The General Terms and Conditions of Use apply to Internet downloads.

Technical data

General

Number of levels	2
Number of connections	4
Color	gray
Insulating material	PA
Inflammability class according to UL 94	V0

PTTB 2,5 Order No.: 3210567
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3210567

Area of application	Railway industry
	Mechanical engineering
	Plant engineering
	Process industry
General	
Rated surge voltage	6 kV
Pollution degree	3
Surge voltage category	III
Insulating material group	I
Connection in acc. with standard	IEC 60947-7-1
Nominal current I_{N}	22 A (the maximum load current must not be exceeded by the total current of all connected conductors)
Nominal voltage U_{N}	500 V
Open side panel	ja
Shock protection test specification	DIN EN 50274 (VDE 0660-514):2002-11
Back of the hand protection	guaranteed
Finger protection	guaranteed
Surge voltage test setpoint	7.3 kV
Result of surge voltage test	Test passed
Power frequency withstand voltage setpoint	1.89 kV
Result of power-frequency withstand voltage test	Test passed
Checking the mechanical stability of terminal points (5 x conductor connection)	Test passed
Bending test rotation speed	10 rpm
Bending test turns	135
Bending test conductor cross section/weight	$0.14 \mathrm{~mm}^{2} / 0.2 \mathrm{~kg}$
	$2.5 \mathrm{~mm}^{2} / 0.7 \mathrm{~kg}$
	$4 \mathrm{~mm}^{2} / 0.9 \mathrm{~kg}$
Result of bending test	Test passed
Conductor cross section tensile test	$0.14 \mathrm{~mm}^{2}$
Tractive force setpoint	10 N
Conductor cross section tensile test	$2.5 \mathrm{~mm}^{2}$
Tractive force setpoint	50 N
Conductor cross section tensile test	$4 \mathrm{~mm}^{2}$
Tractive force setpoint	60 N
Tensile test result	Test passed

PTTB 2,5 Order No.: 3210567
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3210567

Tight fit on carrier	NS 35
Setpoint	1 N
Result of tight fit test	Test passed
Requirements, voltage drop	$\leq 3.2 \mathrm{mV}$
Result of voltage drop test	Test passed
Temperature-rise test	Test passed
Conductor cross section short circuit testing	2.5 mm ${ }^{2}$
Short-time current	0.3 kA
Conductor cross section short circuit testing	$4 \mathrm{~mm}^{2}$
Short-time current	0.48 kA
Short circuit stability result	Test passed
Ageing test for screwless modular terminal block temperature cycles	192
Result of aging test	Test passed
Proof of thermal characteristics (needle flame) effective duration	30 s
Result of thermal test	Test passed
Test specification, oscillation, broadband noise	DIN EN 50155 (VDE 0115-200):2008-03
Test spectrum	Service life test category 1 , class B, body mounted
Test frequency	$\mathrm{f}_{1}=5 \mathrm{~Hz}$ to $\mathrm{f}_{2}=150 \mathrm{~Hz}$
ASD level	$1.857\left(\mathrm{~m} / \mathrm{s}^{2}\right)^{2} / \mathrm{Hz}$
Acceleration	0.8 g
Test duration per axis	5 h
Test directions	X-, Y- and Z-axis
Oscillation, broadband noise test result	Test passed
Test specification, shock test	DIN EN 50155 (VDE 0115-200):2008-03
Shock form	Half-sine
Acceleration	5 g
Shock duration	30 ms
Number of shocks per direction	3
Test directions	X-, Y- and Z-axis (pos. and neg.)
Shock test result	Test passed
Temperature index, insulating material (DIN EN 60216-1 (VDE 0304-21))	$125{ }^{\circ} \mathrm{C}$
Static insulating material application in cold	$-60^{\circ} \mathrm{C}$

PTTB 2,5 Order No.: 3210567
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3210567

Dimensions	
Width	5.2 mm
Length	68 mm
Height NS 35/7,5	47.5 mm
Height NS 35/15	55 mm
Connection data	Push-in connection
Connection method	$0.14 \mathrm{~mm}^{2}$
Conductor cross section solid min.	$4 \mathrm{~mm}^{2}$
Conductor cross section solid max.	$0.14 \mathrm{~mm}^{2}$
Conductor cross section stranded min.	$2.5 \mathrm{~mm}^{2}$
Conductor cross section stranded max.	26
Conductor cross section AWG/kcmil min.	12
Conductor cross section AWG/kcmil max	$0.14 \mathrm{~mm}^{2}$
Conductor cross section stranded, with ferrule without plastic sleeve min.	$2.5 \mathrm{~mm}^{2}$
Conductor cross section stranded, with ferrule without plastic sleeve max.	$0.14 \mathrm{~mm}^{2}$
Conductor cross section stranded, with ferrule with plastic sleeve min.	$2.5 \mathrm{~mm}^{2}$
Conductor cross section stranded, with ferrule with plastic sleeve max.	$0.5 \mathrm{~mm}^{2}$
2 conductors with same cross section, stranded,	
TWIN ferrules with plastic sleeve, max.	$10 \mathrm{~mm}^{\text {Stripping length }}$ Internal cylindrical gage

Certificates / Approvals

Certification

Certification Ex:

Certifications applied for:

CSA, cULus Recognized, GOST, VDE Zeichengenehmigung, ABS, BV, GL, LR, NK, RS, IECEE CB Scheme

ATEX, IECEx

PTTB 2,5 Order No.: 3210567
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3210567

| Software | | CLIP-PROJECT ADVANCED |
| :--- | :--- | :--- | \(\left.\begin{array}{l}Multilingual software for easy planning of Phoenix Contact on

DIN rails together with the integrated TRABTECH-select software

module for planning comprehensive surge protection concepts.\end{array}\right]\)| 5146040 | Multi-lingual software for terminal strip project planning. A marking
 module allows professional labeling of markers and labels for
 marking terminal blocks, conductors, cables and devices. The
 additionally integrated software module TRABTECH-select for
 planning comprehensive surge protection concepts. |
| :--- | :--- |
| 5146053 | CLIP-PROJECT
 PROFESSIONAL |

Drawings

Circuit diagram

$\mathrm{O}-\mathrm{O}$

[aparisix

Extract from the online catalog

UBE

Order No.: 0800310
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=0800310

Terminal strip marker carriers for marking terminal groups, for end bracket E/UK or end clamp E/U, lettering field size: $40 \times 17 \mathrm{~mm}$

		Product notes																				
Commercial data		WEEE/RoHS-compliant since: 01/01/2003																				
EAN	$4\\|$																					
sales group	B108																					
Pack	10 Pcs.																					
Customs tariff	39269097	http:// www.download.phoenixcontact.com Please note that the data given here has been taken from the online catalog. For comprehensive information and data, please refer to the user documentation. The General Terms and Conditions of Use apply to Internet downloads.																				
Gross weight in pieces	0.006815 KG																					
Net weight per piece	0.004685 KG																					
Catalog page information	Page 501 (C-5-2013)																					
Technical data																						
Dimensions																						
Length (b)	41.4 mm																					
Width (a)	20 mm																					
Ambient conditions																						
Ambient temperature (operation)	$-40^{\circ} \mathrm{C} . . .100^{\circ} \mathrm{C}$																					

General

Color	gray
Components	free from silicone and halogen
Inflammability class according to UL 94	V2
Material	PA
Marking mounting type	Plug in
Certificates / Approvals	

Certification

Certifications applied for:
Certification Ex:

Accessories		
Item	Designation	Description
Marking		Insert strip, Sheet, white, Unlabeled, can be labeled with: Office printing systems, Plotter, Perforated, Mounting type: Insert, Lettering field: $40 \times 17 \mathrm{~mm}$
0808095	ESL 40X17	

[aparisix

Extract from the online catalog

FBS 10-5

Order No.: 3030213
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3030213

Plug-in bridge, Number of positions: 10, Color: red

		Product notes
Commercial data		WEEE/RoHS-compliant since:$01 / 01 / 2003$
EAN		
sales group	A690	
Pack	10 Pcs.	
Customs tariff	85389099	http:// www.download.phoenixcontact.com Please note that the data given here has been taken from the online catalog. For comprehensive information and data, please refer to the user documentation. The General Terms and Conditions of Use apply to Internet downloads.
Gross weight in pieces	0.00871 KG	
Net weight per piece	0.00867 KG	
Catalog page information	Page 472 (C-3-2013)	
Technical data		
Technical data		
Color	red	
Number of positions	10	
Pitch	5.20 mm	
Maximum load current	24 A (The current values for the jumpers can deviate when used in different modular terminal blocks. The precise values can be found in the accessories data for the respective modular terminal blocks.)	

Certificates / Approvals

Certification

Certifications applied for:
Certification Ex:

DPHoNix

Extract from the online catalog

PS-5

Order No.: 3030983
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=3030983

Test plugs, Color: red

Commercial data	$\\|$																					
EAN	4																					
sales group	A691																					
Pack	10 Pcs.																					
Customs tariff	85369010																					
Gross weight in pieces	0.0033 KG																					
Net weight per piece	0.0031 KG																					
Catalog page information	Page 478 (C-3-2013)																					

Technical data

General

Color	red

Certificates / Approvals

Certification
Certifications applied for:
Certification Ex:

Drawings

Dimensioned drawing

(9) CONTAX

Extract from the online catalog

AP 2-TU

Order No.: 5022630
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=5022630

Cover profile carrier for mounting on NS 32 or NS 35/7.5 DIN rail for attaching the cover profile AP 2.2 mm thick

		Product notes
Commercial data		WEEE/RoHS-compliant since: 01/01/2003
EAN		
sales group	A097	
Pack	50 Pcs.	
Customs tariff	85389099	http://
Gross weight in pieces	0.005803 KG	Please note that the data given
Net weight per piece	0.005803 KG	here has been taken from the online catalog. For comprehensive
Catalog page information	Page 505 (C-5-2013)	information and data, please refer
Technical data		
Dimensions		
Length (b)	55.6 mm	
Height	68.5 mm	
Width (a)	2.1 mm	
General		
Color	gray	

[^43]Page 1 / 3

AP 2-TU Order No.: 5022630
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=5022630

Inflammability class according to UL 94	V2
Material	PA

Certificates / Approvals

Certification

Certifications applied for:
Certification Ex:

Drawings

Dimensioned drawing

9) CONTAX

Extract from the online catalog

AP 2 CM

Order No.: 5022889

http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=5022889

Cover profile for covering terminal strips, snaps onto cover profile carrier AP 2-TU, can be labeled with insert strip AP-ES. A cover profile carrier is to be positioned at the ends and at intervals of approx. 40 cm. Maximum supply length: As per customer order

Commercial data	
Note	Made-to-order
sales group	B232
Pack	1 Pcs.
Customs tariff	39162000
Catalog page information	Page 505 (C-5-2013)

http://

www.download.phoenixcontact.com Please note that the data given here has been taken from the online catalog. For comprehensive information and data, please refer to the user documentation. The General Terms and Conditions of Use apply to Internet downloads.

Technical data

Dimensions

Length (b)	1 m
Height	33 mm
Width (a)	60 mm

AP 2 CM Order No.: 5022889
http://catalog.phoenixcontact.net/phoenix/treeViewClick.do?UID=5022889

Ambient conditions

Ambient temperature (operation)	$-15^{\circ} \mathrm{C} \ldots 65^{\circ} \mathrm{C}$	
General		
Color	transparent	
Inflammability class according to UL 94	V 2	
Material	PVC	

Certificates / Approvals

Certification

Certifications applied for:
Certification Ex:

Drawings

Dimensioned drawing

IICIPSAL every room, every home

STANDARD GERIES

No other range is up to Standard.

STANDARD SIZE TWIN SWITCHED SOCKET OUTLETS - HORIZONTALLY MOUNTED

STANDARD INDUSTRIAL RANGE

Improved Chemical Resistance

The majority of Clipsal products are manufactured from polycarbonate, which provides excellent performance across a broad spectrum of specific applications. However, the high standards of hygiene required in hospitals and food related industries sometimes involve the use of harsh chemicals which can degrade polycarbonate.
To address these problems, Clipsal have worked closely with their material suppliers to develop an alloy resistant to these chemicals and with only a minimal reduction in impact strength.

The Standard Industrial Range is limited at this time to 16 products and 2 colours. Resistant White (RW)
has been colour matched to standard White Electric. Resistant Soft Grey (RS) has been matched to standard Soft Grey.
Standard Industrial Range products are identifiable by a small symbol on the front of the plate. The 'CR' is for Chemical Resistant and the numeral ' 1 ' identifies the material. If other materials come into use at a later time for different applications, different numerals will be used.

To order Standard Industrial Range products use standard product codes and specify Resistant White (RW) or Resistant Soft Grey (RS). All ratings and specifications are the same as the corresponding product in the Standard Range.

SCHEMATIC WIRING DIAGRAMS (Continued)

Twin Switched Sockets with Extra Switch

25XA

Double Pole Twin Switched Sockets

Cat No	Description	Length	Width	Depth	Mounting Centres	PAGE
10	10A, single pole.	115 mm	73 mm	16 mm	84mm apart	33
10D	10A, double pole.	115mm	73 mm	16 mm	84 mm aparf	33
10DS	10A, double pole with safety shutters.	115 mm	73 mm	16 mm	84mm apart	33
10DN	10A, double pole with safery shutters \& neon.	115 mm	73 mm	16 mm	84 mm aparf	33
10DLS	10A, round earth, double pole with safety shutter.	115 mm	73 mm	16 mm	84 mm apart	33
10D15S	15A, double pole with safety shutter.	115mm	73 mm	16 mm	84mm apart	33
10DWP	10A, double pole flush weather proof.	93 mm	82 mm	12 mm	$70 \times 54 \mathrm{~mm}$	33
10DWP15	15A, double pole flush weather proof.	93 mm	82 mm	12 mm	$70 \times 54 \mathrm{~mm}$	33
415VF	10A, double pole with flap, IP34 rating.	101 mm	80 mm	37 mm	$76 \times 65 \mathrm{~mm}$	33
415VF15	15A, double pole with flap, IP34 rating.	101 mm	80 mm	37 mm	$76 \times 65 \mathrm{~mm}$	33
10PL	10A, single pole with security flap.	115mm	73 mm	22 mm	84 mm aparf	33
STANDARD SIZE TWIN AUTOMATICALIY SWITCHED SOCKET OUTLETS - 10A, HORIZONTALIY MOUNTED						
20	Single pole.	115 mm	73 mm	16 mm	84 mm apart	34
20D	Double pole.	115 mm	73 mm	16 mm	84 mm apart	34
20DS	Double pole with sofety shutters.	115 mm	73 mm	16 mm	84 mm apart	34
20DN	Double pole with sofety shutters \& neons.	115 mm	73 mm	16 mm	84mm apart	34
20DLS	Round earth, double pole \& sffety shutters.	115 mm	73 mm	16 mm	84 mm apart	34
SKIRTING MOUNTIED SINCLE AUTOMAIICALIY SWIICHED SOCKET OUTLET						
11	Single Auto Swithed Socket Outte, ,kiting mounted, 10A, single pole, $99 \times 45 \mathrm{~mm}$ ot centre.	95mm	45 mm	17 mm	78 mm apart	34
SKIRTING MOUNTED TWIN AUTOMATICALIY SWITCHED SOCKET OUTLETS - 10A						
11/2	Single pole.	125 mm	50 mm	17 mm	104 mm apart	34
11/2MF	Single pole to suit ducting.	125mm	50 mm	17 mm	104 mm apart	34
11/2MFN	Single pole, sofety shutters, neons, suits ducting.	125 mm	50 mm	17 mm	104 mm apart	34
AUTOMATICALIY SWIICHED SOCKET OUTLLETS - SINCLE						
10M	10A, single pole.	97 mm	43 mm	29 mm	84mm apart	35
10MD	10A, double pole.	97 mm	43 mm	29 mm	84 mm apart	35
10MDS	10A, double pole with sfefety shutter.	97 mm	43 mm	29 mm	84 mm apart	35
10MDLS	10A, round earth, double pole with sfefery shuter.	97 mm	43mm	29 mm	84mm apart	35
10MD15S	15A, double pole with shutter.	97 mm	43 mm	29 mm	84 mm apart	35
10MD20	20A, double pole.	97 mm	43 mm	29 mm	84mm apart	35
SPECIAL PURPOSE AUTOMATICALIY SWITCHED SOCKET OUTLETS						
10MP	Single Auto Switched Socket Outlet Mechanism, 10A, single pole. Fascia - 42mm Ø.	42 mm	43mm	$\begin{array}{c\|} 33 \mathrm{~mm} \\ \text { (Room protrusion }-3.5 \mathrm{~mm}) \\ \hline \end{array}$	$\begin{gathered} \text { See mounting detail } \\ \text { Pg. } 38 \end{gathered}$	35
10MDP	Single Auto Switched Socket Outlet Mechanism, 10A, double pole. Fascia - 42mm Ø.	42 mm	43 mm	$\begin{array}{c\|} \hline 33 \mathrm{~mm} \\ \hline \text { (Room protrusion }-3.5 \mathrm{~mm}) \\ \hline \end{array}$	$\begin{gathered} \text { See mounting detail } \\ \text { Pg. } 38 \\ \hline \end{gathered}$	35
10MDPL	Single Auto Switched Socket Outlet Mechanism, 10A, round earth, double pole. Fascia - 42 mm Ø.	42mm	43mm	$\begin{array}{c\|} \hline 33 \mathrm{~mm} \\ \text { (Room protrusion }-3.5 \mathrm{~mm}) \end{array}$	$\begin{aligned} & \text { See mounting detail } \\ & \text { Pg. } 38 \end{aligned}$	35
10MDP15	Single Auto Switched Socket Outlet Mechanism, 15A, double pole. Fascia - 42mm Ø.	42mm	43 mm	$\begin{array}{c\|} 33 \mathrm{~mm} \\ \hline \text { (Room protrusion }-3.5 \mathrm{~mm}) \\ \hline \end{array}$	$\begin{gathered} \text { See mounting detail } \\ \text { Pg. } 38 \\ \hline \end{gathered}$	35
10MDLB	Single Auto Switched Socket Outlet Mechanism, 10A, double pole.	60 mm	42 mm	33 mm	50 mm apart	36
10MDSLB	Single Auto Swithed Socket Outlet Mechanism, 10A, double pole with sofety shutter.	60 mm	42 mm	33 mm	50 mm apart	36
10MDLSLB	Single Auto Switched Socket Outtet Mechanism, round earth, double pole, sofety shutter.	60 mm	42 mm	33 mm	50 mm apart	36
10MD15SLB	Single Auto Switched Socket Outlet Mechanism, 15A, double pole with sofety shutter.	60 mm	42 mm	33 mm	50 mm apart	36
10MD20LB	Single Auto Swithed Socket Outlet Mechanism, 20A, double pole.	60 mm	42 mm	33 mm	50 mm apart	36
G10MDS	GEC Miniplug Mechanism, 10A, double pole with safety shutter.	46 mm	46 mm	34 mm	N/A	36
G10FMDS	GEC AF Series Mechanism, 10A, double pole with safety shutter.			31 mm	64mm apart	36
G10FMD15S	GEC AF Series Mechanism, 15A, double pole with safety shutter.			31 mm	64 mm apart	36
G10FMDLS	GEC AF Series Mechanism, 10A, round earth with safety shutter.			31 mm	64 mm apart	36
SKIRTING MOUNTED SIDE CONNECTING SOCKET OUTLETS - 250V/10A, SINGLE POLE						
12M	Single Auto Swithed Socket Outlet.	63 mm	43 mm	29 mm	N/A	37
17M	Single Auto Swithed Socket Outlet.	90 mm	43 mm	29 mm	N/A	37
STANDARD SIZE SINGLE TOGCLE SWITCHED SOCKET OUTLETS - 250V/20A, HORIZONTALIY MOUNTED						
42/20	Single Swithed Socket Outle, toggle switch, single pole.	115mm	70 mm	15mm	84mm apart	37
42/20N	Single Swithed Socket Outet, toggle swith, single pole with sfefers sutter \& neon.	115mm	70 mm	15 mm	84mm apart	37
SINCLE TOCGLE NARROW ARCHITRAVE SIZE SWIICHED SOCKET OUTLLETS - 250V/10A, VERTICALIY MOUNIED						
40	Single pole.	115mm	48 mm	15 mm	98 mm apart	37
40D	Double pole.	115mm	48 mm	15 mm	98 mm aparf	37

UNSWITCHED SOCKET OUTLETS- SINGLE						
Cat ${ }^{\text {No }}$	Description	Length	Width	Depth	Mounting Centres	PAGE
405	250V/10A, 2 pin parallel.	96 mm	42mm	$\begin{gathered} \text { (froom portusion }-3.5 \mathrm{~mm}) \\ \hline \end{gathered}$	84 mm apart	38
405/32	32V/15A, 2 pin polarised, extral low voltage.	96 mm	42 mm	${ }_{\text {(Room protursion }} \mathbf{3} .3 .5 \mathrm{~mm}$)	84mm apart	38
415	250V/10A, 3 pin.	96 mm	42mm	$\left.\begin{array}{\|c} 33 \mathrm{~mm} \\ \hline \end{array} \text { (Room norusision }-3.5 \mathrm{~mm}\right)$	84mm apart	38
415L	250V/10A, 3pin, round earth pin.	96 mm	42 mm	${ }_{\text {(Room protursion }} \mathbf{3} .3 .5 \mathrm{~mm}$)	84mm apart	38
415/110	110V/10A, 3 pin, 2 round live pins.	96 mm	42 mm	$\begin{gathered} 33 \mathrm{~mm} \\ \text { (Room protrusion }-3.5 \mathrm{~mm} \text {) } \\ \hline \end{gathered}$	84 mm apart	38
415/15	250V/15A, 3 pin.	96 mm	42 mm	$\begin{array}{r} 33 \mathrm{~mm} \\ \text { (Room protusion }-3.5 \mathrm{~mm} \text {) } \end{array}$	84mm apart	38
415MP	250V/10A, 3 pin, panel mount.	43 mm	42 mm	$\begin{gathered} 33 \mathrm{~mm} \\ \hline \text { (Room norusion }-3.5 \mathrm{~mm}) \\ \hline \end{gathered}$	See mounting detail Po. 38	38
415MP15	250V/15A, 3 pin, panel mount.	43 mm	42 mm	$\begin{aligned} & 33 \mathrm{~mm} .3 .5 \mathrm{~mm}) \\ & (\text { Rooom portusion }-3.5 m) \end{aligned}$	See mounting detaiil	38
415MPL	S250V/10A, 3 pin, round earth, panel mount.	43 mm	42 mm	$\begin{aligned} & 33 \mathrm{~mm} \\ & \text { (froom potruion }-3.5 \mathrm{~mm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { See mounting detail } \\ & \text { Pa. } 38 \\ & \hline \end{aligned}$	38
426	250V/10A, 3 pin, suits round J-Box.			24 mm	50 mm apart	38
426 L	$250 \mathrm{~V} / 10 \mathrm{~A}, 3$ pin, round earth pin, suits round JBox.			24 mm	50 mm apart	38
426/15	250V/15A, 3 pin, suits round J-Box.			24 mm	50 mm apart	38
WILCO SOCKET OUTLETS (GREY ONIY) - SINGLE						
FOS106	250V/10A, 3 flat pins.	96 mm	42 mm	28 mm	84mm apart	39
FOS106R	250V/10A, 3 pins, round earth pin.	96 mm	42 mm	28 mm	84mm apart	39
FOS106/2R	110V/10A, 3pins, 2 round live pins.	96 mm	42 mm	28 mm	84mm apart	39
FOS106/15	250V/15A, 3 flat pins.	96 mm	42 mm	28 mm	84mm apart	39
FOS105T	2 flat polarised, extra low voltage.	96 mm	42 mm	28 mm	84mm apart	39
ELECTRIC CLOCK CONNECTION ACCESSORIES - 250V						
408/3	Clock Point Recessed Socket, 15A, 50Hz, 3 pin.	106 mm	59 mm	25 mm	84mm apart	39
408/3A	Clock Point Recessed Socket, 3 pin, suitable for other than 50Hz.	106 mm	59 mm	25 mm	84mm apart	39
408/4	Clock Point Recessed Socket, 5A, 4 pin.	106 mm	59 mm	25 mm	84mm apart	39
409/3	Clock Point Plug, 5A, 50Hz, 3 pin.	48 mm	35 mm	11 mm	N/A	39
409/3A	Clock Point Plug, 3 pin, suitable for other than 50 Hz .	48 mm	35 mm	11 mm	N/A	39
409/4	Clock Point Plug, 5A, 50Hz, 4 pin.	48 mm	35 mm	11 mm	N/A	39
STANDARD SIZE SINGLE SWIICHED SOCKET OUTLEIS - 250V, HORIZONTALIY MOUNIED						
15	10A.	115mm	73 mm	14mm	84mm apart	41
155	10 A with safety shutter.	115 mm	73 mm	14 mm	84mm apart	41
15N	10 A with sofety shulter and neon.	115 mm	73 mm	14 mm	84 mm apart	41
15D	10A, double pole.	115 mm	73 mm	14 mm	84 mm apart	41
15D15	15, double pole.	115 mm	73 mm	14 mm	84mm apart	41
15DN	S10A, double pole, with sofety shutter \& neon.	115 mm	73 mm	14 mm	84mm apart	41
15DD	10A, double pole, deep plate.	115 mm	73 mm	33 mm	84mm apart	41
15DX	10A, double pole with extra switch.	115 mm	73 mm	14mm	84mm apart	41
15/15	15A.	115 mm	73 mm	14 mm	84 mm apart	41
15/15S	15A with safety shutter.	115 mm	73 mm	14 mm	84mm apart	41
15/15N	15 A with sofety shutter and neon.	115 mm	73 mm	14 mm	84mm apart	41
15L	10A, round earth pin.	115 mm	73 mm	14 mm	84mm apart	41
15LN	10A, round earth pin with scfety shutter and neon.	115 mm	73 mm	14 mm	84mm apart	41
15X	S10A with extra switch.	115 mm	73 mm	14 mm	84mm apart	41
15XS	10 A with extra switch and safety shutter.	115 mm	73 mm	14 mm	84 mm aparf	41
15XN	10 A with extra switch, safety shutter and neon.	115 mm	73 mm	14 mm	84mm apart	41
15XX	10 A with two extra switches.	115 mm	73 mm	14 mm	84mm apart	41
STANDARD SIZE TWIN SWITCHED SOCKET OUTLETS - 250V, HORIZONTALLY MOUNTED						
25	10A.	115 mm	73 mm	16 mm	84mm aparf	42
25S	10 A with safety shutters.	115 mm	73mm	16 mm	84mm apart	42
25N	10 A with safety shutters and neons.	115 mm	73 mm	16 mm	84 mm apart	42
25D	10A, double pole.	115 mm	73 mm	16 mm	84mm apart	42
25D15	15A, double pole.	115 mm	73 mm	16 mm	84 mm apart	42
25/15	15A.	115 mm	73 mm	16 mm	84mm apart	42
25/155	15 A with sofety shutters.	115 mm	73 mm	16 mm	84 mm aparf	42
25/15N	15 A with safety shutters and neons.	115 mm	73 mm	16 mm	84 mm aparf	42

STANDARD SIZE TWIN SWITCHED SOCK:I OUTLETS - 250V, HORIZONTALIY MOUNTIED (continued)

Cat ${ }^{\text {No}}$	Description	Length	Width	Depth	Mounting Centres	PAGE
25/1510	15 \& 10A.	115 mm	73 mm	16 mm	84 mm apart	42
25L	10A, round earth pin.	115 mm	73 mm	16 mm	84mm apart	42
25X	10A, with extra one way switch.	115 mm	73 mm	16 mm	84mm apart	42
25XS	10A, extra one way switch and shutters.	115 mm	73 mm	16 mm	84mm apart	42
MF25X	10A, marked with "FAN" on extra switch.	115 mm	73 mm	16 mm	84 mm apart	42
ML25X	10A, marked with "LIGHT" on extra switch.	115 mm	73 mm	16 mm	84mm apart	42
25XA	10A with removable extra switch.	115 mm	73 mm	16 mm	84mm apart	42
25XAN	10A, removable extra switch, safety shutters \& neons.	115 mm	73 mm	16 mm	84mm apart	42
25XD	10A, double pole \& removable extra switch.	115 mm	73 mm	16 mm	84 mm apart	42
STANDARD SIZE SINCLE SWIICHED SOCKET OUTLETS - 250V, VERTICALIY MOUNIED						
15V	10A.	115 mm	73 mm	14mm	84mm apart	43
15VS	10A with safety shutter.	115 mm	73 mm	14 mm	84mm apart	43
15VN	10A with safety shutter and neon.	115 mm	73 mm	14 mm	84mm apart	43
15V15	15A.	115 mm	73 mm	14 mm	84mm apart	43
15V15N	15A with safety shutter and neon.	115 mm	73 mm	14 mm	84mm apart	43
15VX	10A with removable extra switch.	115 mm	73 mm	14 mm	84mm apart	43
15VXS	10A with safety shutters and removable extra switch.	115 mm	73 mm	14 mm	84mm apart	43
15VXN	10A with safety shutters, neon and removable extra switch.	115 mm	73 mm	14 mm	84 mm apart	43
15VXX	10A with two removable extra switches.	115 mm	73 mm	14 mm	84mm apart	43

STANDARD SIZE TWIN SWITCHED SOCKET OUTLETS - 250V/10A, VERTICALIY MOUNTED

15/2V	Two piece base.	115 mm	73 mm	14 mm	84mm apart	43
15/2VS	With safety shutters, two piece base.	115 mm	73 mm	14 mm	84mm apart	43
15/2VN	With neons and safety shutters, two piece base.	115 mm	73 mm	14 mm	84 mm apart	43
15D2V	Double pole, two piece base.	115 mm	73 mm	14 mm	84mm apart	43
15DD2V	Double pole with deep plate, two piece base.	133 mm	83 mm	37 mm	97 mm apart	43
25V	Twin Switched Socket Outlet, 250V/10A.	115 mm	73 mm	16 mm	84mm apart	43
25VXA	With removable extra switch.	115 mm	73 mm	16 mm	84mm apart	43
SKIRTING MOUNILD SINGLE SWIICHED SOCKET OUTLEIS - 250V						
16	10A with safety shutter.	98 mm	45 mm	14mm	78 mm apart	44
16N	10 A with safety shutter and neon.	98 mm	45 mm	14 mm	78 mm apart	44
16F	10A, in line terminals.	98 mm	45 mm	14 mm	78 mm apart	44
16/15	15A.	98 mm	45 mm	14 mm	78 mm apart	44
16X	10A with extra switch.	125 mm	45 mm	14 mm	104mm apart	44
16D	10A, double pole.	98 mm	45 mm	14mm	78 mm apart	44

SKIRTING MOUNTED TWIN SWITCHED SOCKET OUTLETS - 250V

16/2	10A.	168 mm	45 mm	13mm	145mm apart	44
16/2S	10 A with safety shutters.	168 mm	45 mm	13mm	145mm apart	44
16/2N	10 A with neons \& safety shutters.	168 mm	45 mm	13 mm	145mm apart	44
16/2F	10A with straight sides.	168 mm	45 mm	13 mm	145 mm apart	44
16/2MF	10A, suits ducting.	156 mm	44 mm	18 mm	136 mm apart	44
16/2MF1510	T15A \&10A, suits ducting.	156mm	44 mm	18 mm	136 mm apart	44
16/2MFD	10A, double pole.	156 mm	44 mm	18 mm	136mm apart	44
INTERMEDIATE SINCLE SWIICHED SOCKET OUTLETS - HORIZONTALIY MOUNTED						
14	Single Switched Socket Outlet, intermediate size, 250V/10A, horizontal.	115 mm	61 mm	13mm	84mm apart	44
LARCE FORMAT SIZE SINCLE SWITCHED SOCKET OUTLETS - 250V/10A, HORIZONTALLY MOUNTED						
15/2	Single pole.	115 mm	115 mm	14mm	$84 \times 46 \mathrm{~mm}$	45
15/2S	Single pole with safety shutter.	115 mm	115 mm	14 mm	$84 \times 46 \mathrm{~mm}$	45
15/2N	Single pole with safety shutter \& neon.	115 mm	115 mm	14 mm	$84 \times 46 \mathrm{~mm}$	45

LARCE FORMAT SIZE TWIN SWIICHED SOCKET OUILETS - 250V/10A, ($115 \mathrm{~mm} \times 115 \mathrm{~mm}$), VERTICALIY MOUNIED

25/2V	Twin Switched Socket Outlet.	115 mm	115 mm	11 mm	$84 \times 46 \mathrm{~mm}$	45
25/2VS	With safety shutters.	115 mm	115 mm	11 mm	$84 \times 46 \mathrm{~mm}$	45
25-2VN	With neons and safety shutters .	115 mm	115 mm	11 mm	$84 \times 46 m m$	45
LARCE FORMAT SIZE TWIN SWITCHED SOCKET OUTLETS - HORIZONTALLY MOUNTED						
23	Twin Switched Socket Outlet, large format, 250V/10A.	145mm	86mm	15mm	120mm apart	45

SR250K
 AC/DC FLOAT CHARGER FOR LEAD ACID BATTERIES IN MOTOR HOMES

General

The SR250K has been specifically designed as a float battery charger in motor homes and the 12 V model has no cooling fan for reduced noise levels during operation. It must be installed with adequate ventilation with an ambient of less than $35^{\circ} \mathrm{C}$.
The 24 V model may be used up to $50^{\circ} \mathrm{C}$ ambient.

Connection polarity

It is critical to check the polarity carefully when connecting DC devices. The SR250K has an internal fuse which needs to be replaced if the battery is connected in reverse. Usually, however, a reverse polarity connection results in instant destruction of the device, especially if there is a battery involved.

Safety

The user is responsible for ensuring that input and output wiring segregation complies with local standards and that in the use of the equipment, access is confined to operators and service personnel. A low resistance earth connection is essential to ensure safety and additionally, satisfactory EMI suppression (see below).

HAZARDOUS VOLTAGES EXIST WITHIN A POWER SUPPLY ENCLOSURE AND ANY REPAIRS MUST BE CARRIED OUT BY A QUALIFIED SERVICEPERSON.

Electrical Strength Tests

Components within the power supply responsible for providing the safety barrier between input and output are constructed to provide electrical isolation as required by the relevant standard. However EMI filtering components could be damaged as result of excessively long high voltage tests between input, output and ground. Please contact our technicians for advice regarding electric strength tests.

Earth Leakage

The EMI suppression circuits causes earth leakage currents which may be to the maximum allowable of 3.5 mA .

Ventilation

High operating temperature is a major cause of power supply failures, for example it has been well documented that a $10^{\circ} \mathrm{C}$ rise in the operating temperature of a component will halve its expected life. Therefore always ensure that there is adequate ventilation for the equipment. Batteries and cooling fans also suffer shortened lifetimes if subjected to high ambient temperatures - both should be included in a routine maintenance schedule to check for signs of reduced efficiency.

Water / Dust

Every effort must be made in the installation to minimise the risk of ingress of water or dust. Water will almost always cause instant failure; the effects of dust are slower in causing failure of electronic equipment. All electrical equipment should be cleaned free of any dust accumulation at regular intervals.

Electromagnetic Interference (EMI)

Switching power supplies and converters inherently generate electrical noise. Power supply wiring should be as short as practicable and segregated from all equipment wiring which is sensitive to EMI. Residual noise can be reduced by looping DC wiring through ferrite cable sleeves. These are most effective as close to the power supply as possible and as many turns of the wire taken through the core (+ and - in the same direction) as the core will accommodate.

Fuses

The charger is fitted with AC and DC fuses but external fuses may be used by the installer for added protection.

- Industrial quality AC/DC float charger

- Convection cooled
- Conservative design for long life
- Standalone - bench top or fixed mounting
- Fuse for reverse polarity protection
- Design features aimed at increasing reliability:
\diamond Double sided PCB construction
\diamond Extra ventilated case
\diamond High temperature rated components
\diamond Efficient heat sinking of power components
- Precise voltage and current control
- Efficient switch mode design
- ISO9001 design management system
- 24 Month Warranty

SPECIFICATIONS All specifications are typical at nominal input, full load and at $20^{\circ} \mathrm{C}$ unless otherwise stated.

ELECTRICAL			PHYSICAL	
Input Voltages - standard $180-264 \mathrm{~V}, 45-65 \mathrm{H}$			AC Input connector IEC320 socket DC Connections 'Phoenix combicon' plug-in / screw termina block	
Fusing Overcurrent Protection	Internal input fuse,	ut fuse	Enclosure	Steel, powder coat/ zinc plate
	Constant current short circuit condit	der overload and	Dimensions Weight	$150 \mathrm{~W} \times 61 \mathrm{H} \times 242 \mathrm{D}$ (excl. terminals) $1.7 \mathrm{Kg}$
Reverse battery con- Blows output fuse nection protection			Indication LED	Green : Power On
Isolation	1 KV DC input - out	earth		
Efficiency	$\geq 85 \%$			
Inrush current	Soft start circuit			
Output Power	250W		ENVIRONMENTAL	
Line Regulation	<0.2\% over AC inp		Operating temperature	12V: 0 to $+35^{\circ} \mathrm{C}$ ambient 24V: 0 to $+50^{\circ} \mathrm{C}$ ambient
Load Regulation	<0.4\% open circuit	0\% load	Storage temperature	-10 to $85^{\circ} \mathrm{C}$ ambient
Thermal Protection			Humidity	0-95\% relative humidity non-condensing
OVP	130\% of nominal output voltage		Cooling	Convection cooled
			ACCESSORIES SUPPLIED	
			Mounting feet together with screws AC power cord 1.5 m with IEC320 socket and NZ/Aust plug DC screw terminal plug-in connector	
STANDARD MODEL TABLE			STANDARDS	
MODEL CODE	Output Voltage	Output Current	EMI	To CISPR 22 / EN55022 class A
SR250K12X	13.8 V	18A		
SR250K24X	27.6 V	9 A		

Global Solutions Personal Focus
DIMENSIONS FOR SR250K

TERMS OF WARRANTY

Innovative Energies Ltd warrants its power supplies for 24 months (two years) from date of shipment against material and workmanship defects.

Innovative Energies' liability under this warranty is limited to the replacement or repair of the defective product as long as the product has not been damaged through misapplication, negligence, or unauthorized modification or repair.

Innovative Energies Limited

23/12/11

Product data sheet
Characteristics

LV429632
circuit breaker Compact NSX100F - TMD - 63 A - 3 poles 3d

Main

Range of product	NSX100... 250
Product or component type	Circuit breaker
Circuit breaker name	Compact NSX100F
Device short name	Compact NSX100F
Circuit breaker application	Distribution
Poles description	3P
Protected poles description	3t
Network type	AC
Network frequency	$50 / 60 \mathrm{~Hz}$
[In] rated current	$100 \mathrm{~A}\left(40^{\circ} \mathrm{C}\right)$
[Ui] rated insulation voltage	800 V AC 50/60 Hz
[Uimp] rated impulse withstand voltage	8 kV

[Ue] rated operational voltage	690 V AC 50/60 Hz
Breaking capacity code	F
Breaking capacity	Icu 85 kA at 220/240 V AC 50/60 Hz conforming to IEC 60947-2 Icu 8 kA at $660 / 690 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$ conforming to IEC 60947-2 Icu 36 kA at $380 / 415 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$ conforming to IEC 60947-2 Icu 35 kA at 440 V AC $50 / 60 \mathrm{~Hz}$ conforming to IEC 60947-2 Icu 25 kA at 500 V AC $50 / 60 \mathrm{~Hz}$ conforming to IEC 60947-2 Icu 22 kA at 525 V AC $50 / 60 \mathrm{~Hz}$ conforming to IEC 60947-2 85 kA at 240 V AC 50/60 Hz conforming to UL 508 85 kA at 240 V AC $50 / 60 \mathrm{~Hz}$ conforming to NEMA

8 kA at 600 V AC $50 / 60 \mathrm{~Hz}$ conforming to NEMA
AB1
35 kA at 480 V AC $50 / 60 \mathrm{~Hz}$ conforming to NEMA AB1
25 kA at 480 V AC $50 / 60 \mathrm{~Hz}$ conforming to UL 508 10 kA at 600 V AC $50 / 60 \mathrm{~Hz}$ conforming to UL 508

[Ics] rated service breaking capacity	Ics 12.5 kA 500 V AC $50 / 60 \mathrm{~Hz}$ conforming to IEC 60947-2 Ics $85 \mathrm{kA} 220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$ conforming to IEC 60947-2 Ics 4 kA 660/690 V AC $50 / 60 \mathrm{~Hz}$ conforming to IEC 60947-2 Ics 36 kA 380/415 V AC $50 / 60 \mathrm{~Hz}$ conforming to IEC 60947-2 Ics 35 kA 440 V AC $50 / 60 \mathrm{~Hz}$ conforming to IEC 60947-2 Ics 11 kA 525 V AC $50 / 60 \mathrm{~Hz}$ conforming to IEC 60947-2
Suitability for isolation	Yes conforming to IEC 60947-2 Yes conforming to EN 60947-2
Utilisation category	Category A
Trip unit name	TM-D
Trip unit technology	Thermal-magnetic
Trip unit protection functions	LI
Trip unit rating	$63 \mathrm{~A}\left(40^{\circ} \mathrm{C}\right)$
Protection type	Overload protection (thermal) Short-circuit protection (magnetic)
Pollution degree	3 conforming to IEC 60664-1

Complementary	
Control type	Toggle
Mounting mode	Fixed
Mounting support	Backplate
Upside connection	Front
Downside connection	Front
Mechanical durability	50000 cycles
Electrical durability	50000 cycles $440 \mathrm{~V} \operatorname{In} / 2$ conforming to IEC 60947-2 30000 cycles 440 V In conforming to IEC 60947-2 20000 cycles $690 \mathrm{~V} \operatorname{In} / 2$ conforming to IEC 60947-2 10000 cycles 690 V In conforming to IEC 60947-2
Connection pitch	35 mm
Local signalling	Positive contact indication
Long time pick-up adjstment type Ir	Adjustable
Long time pick-up adjustment range	0.7... $1 \times \mathrm{ln}$
Long time delay adjustment type	Fixed
[Tr] long-time delay adjustment	$\begin{aligned} & 15 \mathrm{~s} 6 \mathrm{x} \text { Ir } \\ & 120 \ldots . . .400 \mathrm{~s} 1.5 \times \mathrm{ln} \end{aligned}$
Short-time pick-up adjustment type Isd	Fixed
[lsd] short-time pick-up adjustment range	500 A
Short-time delay adjustment type	Fixed
Height	161 mm
Width	105 mm
Depth	86 mm
Product weight	2.05 kg

Environment

Electrical shock protection class	Class II
Standards	EN 60947-2
	IEC 60947-2
	NEMA AB1
	UL 508
Product certifications	CSA
	UL
IP degree of protection	IP40 conforming to IEC 60529
IK degree of protection	IK07 conforming to IEC 62262
Ambient air temperature for operation	$-35 \ldots 70^{\circ} \mathrm{C}$
Ambient air temperature for storage	$-55 \ldots 85^{\circ} \mathrm{C}$

Offer Sustainability

Sustainable offer status	Green Premium product
RoHS	Compliant - since 0819 - ${ }^{\text {s }}$ Schneider Electric declaration of conformity
REACh	Reference not containing SVHC above the threshold
Product environmental profile	Available
Product end of life instructions	Need no specific recycling operations

Contractual warranty
Period 18 months

VPCIM EMITTING SYSTEMS \& ELECTRONIC PRODUGTS

VpCl ${ }^{\circledR}-110$ Emitter, Patented

PRODUCT DESCRIPTION

Cortec ${ }^{\circledR} \mathrm{VpCl}-110$ emitters are designed to provide corrosion protection for metal components and parts enclosed in non-ventilated control boxes, cabinets, or tool boxes up to 10 cubic feet (283 liters) in volume. The Vapor phase Corrosion Inhibitor (VpCl) emits vapors which form a molecular layer on internal metal surfaces to protect critical, complex, and expensive electronic equipment and other metal components during operation, shipping, or storage. VpCl-110 is a small foam emitter through which corrosion inhibitors are slowly released, and moisture and air pollutants can enter to be absorbed. It provides long-term protection against corrosion even in the presence of adverse conditions including salt, moisture, airborne contaminants, $\mathrm{H}_{2} \mathrm{~S}$, $\mathrm{SO}_{2}, \mathrm{NH}_{3}$, and others.

TYPICAL APPLICATIONS

$\mathrm{VpCl}-110$ can be effectively used for:

- O perations, packaging, and storage electrical equipment
- Marine navigation and communication electronic equipment
- Aerospace electrical controls
- Electric motors
- Switching equipment
- Fuse boxes and power boxes
- Medical equipment
- Electrical wireways and terminal boxes
- Scientific and measuring instruments
- Telecommunications equipment
- Remote electronics devices
- Tool-boxes, parts-storage, and other containers holding metals

FEATURES

- Economical to use
- Provides continuous protection for up to 24 months during operation and/or shutdown
- Effective in polluted and humid environments
- Does not interfere with electrical, optical, or mechanical performance
- Multimetal protection
- Quick and easy installation
- Non-toxic and safe to handle
- Compact and space-saving
- Free of nitrites, halogens, and phosphates
- No spraying, wiping, or dipping required
- Low VO C values
- Meets Southern California Clean Air Act and other N ational and local regulations
- Self-stick back
- Self-stick date label
- Accepted by FDA for corrosion protection of electrical and electronic equipment within food processing plants
- Canadian Food Inspection Agency acceptance for indirect food contact
- NSN 6850-01-456-2971
- Conforms to MIL I-22110C
- Federal Standard 101, Ardec Technical Report 9905, Picatinny Arsenal, N ew Jersey, USA

CORTEC
CORPORATION

METHOD OF APPLICATION

$\mathrm{VpCl}-110$ is extremely simple and convenient to install. The device should be installed at the earliest possible time. Simply select a space within enclosure where corrosion protection would be useful. Verify the surface is clean and free of debris. Peel off the protective peel strip from the bottom of the device and attach it to the clean surface.

VpCl-110 emitters can be installed in any position. For volumes greater than 10 cubic feet (283 liters), use more than one device. If the enclosure is not totally airtight, or if the access doors are opened frequently, replace the $\mathrm{VpCl}-110$ device more often than every 2 years. After periods of heavy maintenance replace the device. For additional protection spray the enclosure very lightly with ElectriC orr${ }^{\circledR} \mathrm{VpCI}-238$ or $\mathrm{VpCI}-239$.

SPECIFICATIONS

Packaging
Protection
Standard Size

12 individually wrapped emitters per carton up to $10 \mathrm{ft}^{3}$ (283 liters) per device
Foam device with adhesive backing $2.5^{\prime \prime} \mathrm{D} \times 2^{\prime \prime} \mathrm{H}$ (6.4 cm D $\times 5 \mathrm{~cm} \mathrm{H}$)

FOR INDUSTRIAL USE ONLY

KEEP OUT OF REACH OF CHILDREN

KEEP CONTAINER TIGHTLY SEALED

NOT FOR INTERNAL CONSUMPTION

CONSULT MATERIAL SAFETY DATA SHEET FOR MORE INFORMATION

LIMITED WARRANTY

All statements, technical information and recommendations contained herein are based on tests C ortec C orporation believes to be reliable, but the accuracy or completeness thereof is not guaranteed.
Cortec Corporation warrants Cortec ${ }^{\circledR}$ products will be free from defects when shipped to customer. Cortec Corporation's obligation under this warranty shall be limited to replacement of product that proves to be defective. To obtain replacement product under this warranty, the customer must notify Cortec Corporation of the claimed defect within six months after shipment of product to customer. All freight charges for replacement products shal be paid by customer
Cortec Corporation shall have no liability for any injury, loss or damage arising out of the use of or the inability to use the products.

BEFO RE USING, USER SHALL DETERMINE THE SUITABILITY OF THE PRO DUCT FOR ITS INTENDED USE, AND USER ASSUMES ALL RISK AND LIABILITY WHATSO EVER IN CONNECTIO N THEREWITH. No representation or recommendation not contained herein shall have any force or effect unless in a written document signed by an officer of Cortec Corporation
THE FO REGOING WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTO RY, IN CLUDING WITHO UT LIMITATIO N ANY IMPLIED WARRAN TY O F MERCHAN TABILITY O RO F FITN ESS FO R A PARTICULAR PURPO SE. IN NO CASE SHALL CORTEC CORPO RATIO N BE LIABLE FOR INCIDENTAL OR CONSEQ UENTIAL DAMAGES.

CORPORATION
Envionmartally Safo VPCPMCP Technologies
4119 White Bear Parkway, St. Paul, MN 55110 USA
Phone (651) 429-1100, Fax (651) 429-1122
Toll Free (800) 4-CO RTEC, E-mail info@ cortecvci.com Internet http://www.CortecVCI.com

VpCl ${ }^{\circledR}-111$ Emitter, Patented

PRODUCT DESCRIPTION

$\mathrm{VpCl}-111$ emitters are unique devices designed to provide corrosion protection for metal components and parts enclosed in non-ventilated control boxes, cabinets or tool boxes up to 11 cubic feet (312 liters). The Vapor phase Corrosion Inhibitor (VpCl) emit vapors, which form a molecular layer on internal metal surfaces to protect critical, complex, and expensive electronic equipment during operation, shipping, or storage. $\mathrm{VpCl}-111$ is a small patented plastic emitter with a breathable Tyvek ${ }^{\circledR}$ membrane through which corrosion inhibitors are slowly released. VpCl-111 provides long term protection against corrosion even in the presence of adverse conditions including salt, moisture, airborne contaminants, $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$, NH_{3}, and others.

TYPICAL APPLICATIONS

- Operating, packaged, and stored electrical equipment
- Marine navigation and communication equipment
- Aerospace electrical controls
- Electric motors
- Switching equipment
- Fuse boxes and power boxes
- Medical equipment
- Electrical wireways and terminal boxes
- Scientific and measuring instruments
- Telecommunications equipment and remote electronics devices

FEATURES

- Economical to use
- Provides continuous protection for up to 24 months during operation and/or shutdown
- Effective in polluted and humid environments
- Does not interfere with electrical, optical, or mechanical performance
- Contains desiccant properties
- Multimetal protection
- Quick and easy installation
- Very convenient to install
- Non-toxic and safe to handle
- Compact and space-saving
- Free of nitrites, halogens, and phosphates
- No spraying, wiping, or dipping required
- VOC values meet Southern California Clean Air Act and other National and local regulations
- Self-stick back
- Self-stick date label
- NSN\# 6850-01-408-9025
- Accepted by FDA for corrosion protection of electrical and electronic equipment within food processing plants

CORTEC
CORPORATION

- Canadian Food Inspection Agency acceptance for indirect food contact
- Approved for U.S. military and NATO
- Conforms to MIL I-22110C
- IBM approval \# 44V5421

METHOD OF APPLICATION

$\mathrm{VpCl}-111$ is extremely simple and convenient to install. $\mathrm{VpCl}-111$ emitters should be installed as early as possible, preferably during manufacturing or assembly. Simply select a space within enclosed device where corrosion protection would be useful. Verify that the surface on which the device will be installed is clean and free of debris. Peel off the protective peel strip from the bottom of the device and attach it to the clean surface. The peel strip can be separated to reveal a self-adhesive sticker on which the installation and replacement dates can be noted. $\mathrm{VpCl}-111$ emitters can be installed in any position. For volumes greater than $11 \mathrm{ff}^{3}$ (312 L), install more than one $\mathrm{VpCl}-111$. If the enclosure is not totally air-tight or if the access doors are opened frequently, replace the $\mathrm{VpCl}^{\circledR}-111$ emitter more often than every two years. After periods of heavy maintenance, replace the emitter. For additional protection spray the enclosure very lightly with ElectriCorr ${ }^{\circledR} \mathrm{VpCl}-238$. wrapped emitters per carton.

PROPERTIES

Appearance	Green cup with Tyvek ${ }^{\circledR}$ lid
Protection	$11 \mathrm{ff}^{3}(312$ Liters) emitter
Standard size	Plastic device cup with breathable membrane 2.25 in. diameter $\times 1.27$ in H $(5.7 \mathrm{~cm} \times 3.2 \mathrm{~cm})$

PACKAGING AND STORAGE

Products should not be exposed to temperatures of over $185^{\circ} \mathrm{F}\left(85^{\circ} \mathrm{C}\right) . \mathrm{VpCl}-111$ is available in 10 individually wrapped emitters per carton.

FOR INDUSTRIAL USE ONLY

KEEP OUT OF REACH OF CHILDREN

KEEP CONTAINER TIGHTLY SEALED

NOT FOR INTERNAL CONSUMPTION

CONSULT SAFETY DATA SHEET FOR MORE

INFORMATION

LIMITED WARRANTY

All statements, technical information and recommendations contained herein are based on tests Cortec Corporation believes to be reliable, but the accuracy or completeness thereof is not guaranteed.
Cortec Corporation warrants Cortec ${ }^{\oplus}$ products will be free from defects when shipped to customer. Cortec Corporation's obligation under this warranty shall be limited to replacement of product that proves to be defective To obtain replacement product under this warranty, the customer must notify Cortec Corporation of the claimed defect within six months after shipment of product to customer. All freight charges for replacement products shall be paid by customer
Cortec Corporation shall have no liability for any injury, loss or damage arising out of the use of or the inability to use the products.

BEFORE USING, USER SHALL DETERMINE THE SUITABILITY OF THE PRODUCT FOR ITS INTENDED USE, AND USER ASSUMES ALL RISK AND LIABILITY WHATSOEVER IN CONNECTION THEREWITH. No representation or recommendation not contained herein shall have any force or effect unless in a written document signed by an officer of Cortec Corporation.

THE FOREGOING WARRANTY IS EXCLUSIVE AND INLIEU OF ALLOTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTY OF MERCHANTABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES.

Distributed by:

4119 White Bear Parkway, St. Paul, MN 55110 USA
Phone (651) 429-1100, Fax (651) 429-1 122
Toll Free (800) 4-CORTEC, E-mail info@cortecvci.com
Internet http://www.cortecvci.com

[^0]:

[^1]:
 soonaras lelorounuoo \％spoofod rolew

[^2]: * RoHS = Restriction of Hazardous Substances
 ** WEEE = Waste Electrical and Electronic Equipment

[^3]: (1) The BSCM module (page A-27) is required for these functions.

[^4]: Separate toroids.

[^5]: (1) Motor standards require operation at $65^{\circ} \mathrm{C}$. Circuit-breaker ratings are derated to take this requirement into account.

[^6]: 1 Short terminal shields
 2 Terminals
 3 Interphase barriers
 4 Long terminal shields

[^7]: Adapter for 400/630 A - 4P base. Connection with spreaders and interphase barriers.

[^8]: IP30 escutcheon with access to the trip unit.

[^9]: \square Thermal-protection curve with minimum and maximum values.

[^10]: Terminals shown in red V/O must be connected by the customer.

[^11]: Terminals shown in red O must be connected by the customer.

[^12]: (1) Supplied with 2 or 3 interphase barriers.

[^13]: (1) Supplied with 2 or 3 interphase barriers.

[^14]: (1) For only 1 device.

[^15]: WARNING
 ERICO products shall be installed and used only as indicated in ERICO's product instruction sheets and training materials. Instruction sheets are available at www.erico.com and from your ERICO customer service representative. Improper installation, misuse, misapplication or other failure to completely follow ERICO's instructions and warnings may cause product malfunction, property customer service representative. Improper
 damage, serious bodily injury and death.

 IEC is a registered service mark of Independent Electrical Contractors, Inc
 UL is a registered trademark of The Underwriters Laboratories, Inc.
 Copyright ©2006 ERICO International Corporation. All rights reserved.
 CADDY, CADWELD, CRITEC, ERICO, ERITECH, ERIFLEX, and LENTON are registered trademarks of ERICO International Corporation

[^16]: Un Green LED: indicates that supply to the relay is on.

[^17]: Tt : time delay after crossing of threshold (adjustable on front panel).

[^18]: Illustration 3．54 Star／Delta Connections

[^19]: Illustration 3.67 Options Cabinet, Enclosure Types F3 and F4

[^20]: Table 3.40 30 A Fuse Protected Terminal Fuse

[^21]: Technische Änderungen vorbehalten 22.503.903-01 / 08. 2008

[^22]: ${ }^{1}$ not available for switch type CA25
 ${ }^{4}$ not available for switch type CL10

[^23]: ${ }^{1}$ switch type C315 with handle ${ }^{2}$ not available for switch type C315 ${ }^{3}$ for use in a three phase four－wire system with switched neutral ${ }^{4}$ switch type C80 with handle

[^24]: ${ }^{1}$ Valid for lines with grounded common neutral termination, overvoltage category III, pollution degree 3. Values for other supply systems on request. ${ }^{2}$ Valid for CA4 only. ${ }^{3}$ DC switching capacity applies to ON/OFF switches. Switching capacity for other configurations on request. ${ }^{4}$ International Standards and Approvals, refer to page 39. ${ }^{5}$ For electromagnetic optional extras see additional data in Catalog 101. ${ }^{6}$ Values for switches with spring return on request. ${ }^{7}$ Storage temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (in case of temperature below $-5{ }^{\circ} \mathrm{C}$ no shock load permissible).

[^25]: ${ }^{1}$ Valid for lines with grounded common neutral termination, overvoltage category III, pollution degree 3 . Values for other supply systems on request.
 ${ }^{2}$ International Standards and Approvals, refer to page $39 .{ }^{3} \mathrm{Max} .300 \mathrm{~V}$. ${ }^{4}$ For electromagnetic optional extras see additional data in Catalog 101.
 ${ }^{5}$ Values for switches with spring return on request. ${ }^{6}$ Storage temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (in case of temperature below $-5^{\circ} \mathrm{C}$ no shock load permissible).

[^26]: * The pin plungers of reverse-type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers.

[^27]: 14 screws M5 x 12
 2 Measuring instrument holder
 3 Tube

[^28]: 2) Is not available with HART multidrop.
[^29]: The LED names I1 ACTV, I1 L/RX, H1 LNK1/LNK2, and D1 RX appear only in CPU 3680.

[^30]: * The LED names I1 ACTV, I1 L/RX, H1 LNK1/LNK2, and D1 RX appear only in CPU 3680.
 ** The LED names E1 LNK and RX appear only in CPU 3640 and CPU 3680.

[^31]: * in Fast 24V IEC TYPE II modules -only DC

[^32]: * In 32 DI 24 V modules only.

[^33]: * XTL5000 Radio with O5 Control Head is not available.
 ** TransNET 900 and iNET 900 are trademarks of GE MDS.

[^34]: *Note that the MotoTurbo radios can work as conventional analog radios or as digital radios. ACE3600 supports the digital mode only.

[^35]: In EMEA and Asia, add the adapter provided in kit FLN3635A to the radio before attaching the antenna cable.

[^36]: Antenna Cable provided may be either FKN8437A (with UHF connector plus antenna adapter 5871143Y01) or FKN8430A.

[^37]: * For connection to MOSCAD port, use FKN8527A. See Appendix C.

[^38]: * The ACT module is not compliant with RoHS European Directive no. 2002/95/EC.

[^39]: METAL PARTS OF THE POWER SUPPLY MAY BE VERY HOT.
 After removing the power supply module, allow the metal parts to cool down before servicing the unit.

[^40]: Note:
 For automotive applications, it is recommended to connect the DC-IN line of the Fastrack Xtend directly to the positive terminal of the battery.

[^41]: Note: \quad This feature is not available in FXT004.

[^42]: CompactFlash is a registered trademark of CompactFlash Association.

[^43]: PHOENIX CONTACT Deutschland GmbH
 http://www.phoenixcontact.com

