QUEENSLAND URBAN UTILITIES

SP033 Adam Street Wynnum North

Contract: C1011-045 Order No: C1314-146
Job Number : 43402225

ELECTRICAL INSTALLATION

OPERATIONS and MAINTENANCE MANUAL

INSTALLATION BY:

SJ Electric Group(Qld) Pty Ltd
19 Elliot Street
Albion Qld 4010
Telephone: 0732561522 Fax: 0732561533

1. General

1.1 General Workplace Health and Safety

- The Workplace Health and Safety Act (2011) sets out the laws about Workplace Health and Safety for all workplaces, workplace activities and specified high risk plant. The Electrical Safety Act (2002) sets out the laws covering electrical safety. Nothing in this document is designed, in any way, to undermine the authority of the Acts.
- All reasonable care must always be taken to ensure the plant is without risk to the health and safety of personnel operating and maintaining plant and equipment.
- Employers have an obligation to ensure the workplace health and safety of all personnel at work.
- It is employer responsibility to ensure that all persons entering or working on the premises use appropriate personal protective equipment.
- Personal protective equipment includes gloves, safety glasses, hard hats, ear protection, safe foot ware and, where necessary, specialist protective clothing for hazardous areas.
- Any item of equipment should always be isolated before maintenance or repairs commence to ensure that inadvertent operation of the item does not result in risk to the health and safety of any person.
- Where the item is isolated, any total or partial shutdown should not allow a hazardous situation to be created.
- Where the item cannot be isolated, another person should be stationed at the controls of the item and an effective means of direct communication should exist between the persons carrying out the maintenance and the person at the controls.

Page 2

General Operating Principles

- All persons working the premises must be qualified Electrical Engineers or electrical trades persons capable of performing the required tasks competently. All personnel must also be familiar with plant and equipment.
- Adequate information, instruction, training and supervision must be provided to enable personnel to perform work without risk to health and safety.
- Work in an orderly way.
- Plan work in advance to avoid hazardous situations.
- Warn others of any hazards.
- Make inquiries before starting work, particularly on any unfamiliar installation or equipment.
- Before any work begins ensure that any instructions received or given are fully understood.
- Concentrate on the task on hand.
- Do not distract others or allow yourself to be distracted by foolish actions.
- Work from a safe and convenient position that provides a maximum working space that you do not have to over reach, you cannot slip, trip or stumble and so endanger yourself and others.
- Keep the working area tidy and free of unwanted materials and equipment.
- Use insulated tools where possible.
- Inspect tools and equipment regularly and ensure that any necessary maintenance is carried out.
- Keep yourself in good health.
- Do not work if ill or over tired, to the extent that your concentration, movement or alertness is affected. Illness or fatigue can endanger yourself and others.

1.2 Project Overview

Contract C1011-045 Order No: C1314-146 was for the manufacture and testing of six (6) new sewage pump station switchboards at various locations and the relocation of an existing switchboard at Rosebeery Parade, Woodend.

Equipment provided by SJ Electric ensures safe and efficient operation of the pump station. Equipment supplied and installed by SJ Electric includes: -

- Switchboards
- Field Wiring

The switchboard incorporates the latest technology in motor control, power monitoring, and instrumentation. It is important engineers, technicians and operators are familiar with the equipment installed before attempting any adjustments, modifications or maintenance.

The following Sections of this manual contain a comprehensive description of all equipment supplied, by SJ Electric. It is recommended that this manual be referred to before carrying out any work on any equipment.

Page 4

1.3 Plant Maintenance

To ensure proper operation of the plant the following should be observed: -

- The plant should be kept clean and tidy at all times. Not only is this of aesthetic value, it extends equipment life.
- Check that all plant and equipment is operating correctly. Correctly operating equipment promotes overall plant efficiency.
- All items and areas of equipment should be cleaned regularly.

WARNING

- Avoid directly hosing any drive motor or electrical item.
- All maintenance, service, modifications and significant deviations from Normal operating conditions should be recorded in the Plant Service Log
- After a month of operation, check the tension of all bolts associated with the plant and thereafter periodically. Bolted connections on painted surfaces can loosen due to thinning of the paint underneath the bolt head-bearing surface. Motor mounting bolts and other bolted connections subjected to vibration should be periodically checked for loosening.

WARNING

- Before starting work on any item ensure that the power supply is isolated, tagged off, and the item cannot be started.
- The importance of preventative maintenance cannot be over-emphasized. Regular maintenance and suitable care of the equipment will ensure a long and reliable service life of the equipment.
- Many stoppages can be avoided by following the recommended maintenance procedures. Do not wait until you hear the grinding of equipment that has broken down. If you see any item wearing down, replace it, before it causes damage to other associated items.

Preventive Maintenance

Maintenance procedures recommended to extend switchboard life are outlined as follows: -

- Switchboard exterior should be regularly wiped down with a solvent base cleaner such as "Spray \& Wipe". This will ensure longevity of the powdercoated surface.
- Accessible areas like distribution boards and motor starter panels should be cleaned with a vacuum cleaner to remove dust and foreign matter.
- PLC panels should be maintained as dust free as possible. Dusting with a dry rag is recommended - taking care not allows dust inside the I/O modules or processor.
- When removing or installing PLC modules care should be taken to ensure that power is turned off to the rack before modules are removed or installed.
- Connections and efficient operation of circuit breakers, contactors and isolators should be checked every 12 months - especially where connected to busbars.
- Busbar connections should be checked every 12 months.
- Globes for indicator lights should be checked on a weekly basis with any faulty lamps replaced.
- Cubicle Fans Filter should be inspected and cleaned frequently.

1.4 Electrical Control System

General Description

The switchboards are manufactured from 3 mm aluminium and are suitable for location outdoors; the switchboards have been designed by QUU and contain several separate sections including:

- Incoming Section.
- Motor Starter Section.
- Distribution Section.
- RTU Section.

1.5 Control and Monitoring System.

The control and monitoring of the system is performed by the Queensland Urban Utilities telemetry system and was not included in this contract.

2. Manufacturers Technic al Data

TECHNICAL DATA SHEET

Equipment Type:

Location:

Model Numbers:various
Manufacturer:
Supplier:
NHP Pty Ltd
16 Riverview Place
Murarrie(07) 39094999

CIRCUIT BREAKER PRODUCTS PRICE LIST 2013

NF-

CPB

MINIATURE CIRCUIT BREAKERS (MCBs)

01

CHASSIS ASSEMBLIES (MCCBs)

04

TEMBREAK 1 ,
TO $400 \mathrm{~A} / 1000 \mathrm{~V}$
(MCCBs)
06

EARTH LEAKAGE RELAYS

08
TECHNICAL REFERENCE

09

Sales 1300 NHP NHP
PROUDLY SUPPORTING
DISFWILIAN MADE AND OWNED

33 Adam Street Wynnum North SPS - Electrical Installation OM Ma lerasaki and NHP

The Terasaki Electric Company, Japan, was founded in 1923 in the industrial city of Osaka. In its early beginnings it started with the manufacture of air circuit breakers. Terasaki later expanded its operations in the late 40 s when they entered the marine industry manufacturing a complete line of moulded case circuit breakers.
Terasaki is world famous for its installations of marine switchgear, including air and moulded case circuit breakers in a majority of the world's ocean-going marine vessels.
Terasaki has developed systems beyond basic switchgear requirements for guidance and monitoring of ships on the high seas.
Terasaki is very proud of its achievements in this area, proving that quality and reliability of Terasaki products is recognised where service conditions are sometimes arduous and severe.
In the 1960s Terasaki expanded their production facilities to enable them to enter the industrial market as well as continuing to expand within the well established marine business. Terasaki have a total of four factories throughout Japan, mainly in the Osaka area, as well as affiliated companies in the UK, Malaysia, Spain, Italy, Finland, Sweden, Brazil and China.
Terasaki were the pioneers and the first circuit breaker company to introduce current limiting circuit breakers to the world in 1963 utilising the contact repulsion principle, which was first introduced in the TL range of moulded case circuit breakers.
NHP was appointed sole agent for Terasaki products in Australia in 1979 and in New Zealand in 1999. From that time until now, NHP has established Terasaki products as a standard in the market.

Prices shown in published catalogues or price lists are recommended selling prices only and there is no obligation on the part of any reseller to maintain the same prices. Prices are subject to change without notice and all orders are accepted by the Company on the condition that they will be invoiced at the prices ruling at the date of despatch.
Prices are nett unless otherwise stated, are shown in Australian Dollars, are valid only for sales within Australia and are subject to GST.
Products offered for sale in this pocket book are subject to our standard Conditions of Sale, applicable at the date the order is placed. NHP standard Conditions of Sale can be viewed on our website at http://ecat.nhp.com.au or by requesting a copy from any NHP office. NHP has a policy of continuous product improvement and we reserve the right to alter any product at any time without notice. All detail is subject to change without notice and should be confirmed at the time of purchase. All price lists and quotations are issued on an Errors \& Omissions Excepted basis (E\&OE).

Miniature circuit breakers (MCBs) and acc. Safe-T MCBs, Din-T MCBs Din-T6, 10, 10H and 15, Din-Safe RCDs and safety switches, Din-T MCB accessories. Surge diverters, contactors and time switches.

Panelboards, loadcentres and accessories
Insulated and metal loadcentres, general purpose, multi-purpose and premier panelboards, busbar chassis and fuses.

Tembreak 1 and 2
Moulded Case Circuit Breakers (MCCBs)
Thermal magnetic and electronic type MCCBs, earth leakage switches, DC and plug-in MCCBs.

Chassis assemblies for theTemBreak range Temway XA / XB, PXB, XB SS and XC series, chassis to suit 125-250 AF MCCBs, terminal covers and HC high current chassis.

MCCB transfer switches and controllers

Manual, basic and automatic transfer switches, logic panels, transfer switch options and accessories.

TemBreak 630 A - 1600 A and 1000 V mining MCCBs
Thermal-magnetic and electronic MCCBs, 1000 V mining MCCBs and MCCB isolating switches.

Air Circuit Breakers and Arc detection relays
Standard air circuit breakers, main power circuit terminals, overcurrent relays and serial communication options. Arc detection relays.

Earth leakage relays

Surface mounting type TZS, DIN rail mounting type RD3A and RD1B, panel mounting type RD1DF, RD1EP, RD3E2 and RD1G2 and mining earth leakage relays.

Technical reference

MCB, MCCB general technical information, motor starting tables, DC applications, discrimination (selectivity) cascading, Type ' 1 ' and '2' co-ordination data. Electronic MCCB setting details.

This price list catalogue is segregated into sections. A guide to the contents of each section is situated at the front of the price list catalogue, and the first page of each section has its own index for easier product selection.
A product listing index is situated at the front of this price list.
Each page has a bold section number for prompt page location and is identified by both its section number and its page number eg. 1-16 signifies this is section 1 page 16. All catalogue numbers are bold and shaded.

All prices are in \$AUS (exclusive of GST)

Prices for equipment fitted with coils, apply to standard voltages only. Non-standard voltages shown are available on request at additional cost.
An alphanumeric index by catalogue number is located at the rear of the price list catalogue. Items prefixed \mathbf{I} in the alphanumeric index are available on indent only. These items are not stocked and will be brought in only on a customer request, the item can not be returned for credit. For more infomation on indent items please contact NHP customer service. Items prefixed \mathbf{A} in the alphanumeric index are assembled to customer order/ requirements.
Current NHP standard conditions of sale apply to this price list catalogue.
The prices in this price list catalogue are recommended prices only (exclusive of GST) and there is no obligation on resellers to comply with the recommendation.

SUB PRODUCT
Din mount housing, panelboard switch \& kilowatt meters
Din-Safe MCBs (RCBO)
Din-Safe safety switches
Din-Safe single pole
Din-Safe-M add on earth leakage modules Din-T 1
Din-T 10 Series 10 kA miniature circuit breakers Din-T 1
Din-T 10 H Series 10 kA miniature circuit breakers Din-T 1
Din-T 15 Series 15 kA miniature circuit breakers Din-T 1
Din-T 6 easy-fit…ㅈ․․․․․․․․․․․…... Din-T 1
Din-T 6 Series 6 kA miniature circuit breakers Din-T 1
Din-T auxiliary contacts \&
Din-T motor operator DTMD
Din-T contactors and hour run counter Din-T 1
Din-T impulse switches
Din-TMCB: B, C and D curve definitions Terasaki 9 7

Din-TMCB: Temperature compensation curves Terasaki 9 8
Din-TMCB: Time current curves
Din-T series 6 kA 2-in-1 ... $\quad \rightarrow \quad$. $\quad 16$
Din-T Series 6 kA for DC applications․․․․․….. Din-T 1

LockDIN $^{\text {ma }}$....

MCB Fuse-fault current limiting Terasaki 9
Meter Isolator
Miniature Circuit Breaker selection guide $\ldots . . . \begin{array}{lll} \\ \text {........... Din-T } & 1 & \end{array}$

Safe-T Series 6 kA miniature circuit breakers Terasaki 1 6
Safe-T Series 6 kA miniature circuit breakers with
shunt tripㅈ․․․․․․․․․․․․․․․․․․․․․․․․․․․․
Terasaki $1 \quad 8$
Safe-T Single pole width RCCBs SRCB (RCBO) Terasaki 1
Safe-T Switchboard hardware and accessories Terasaki 1 9
Selectivity/Cascade: MCB \& MCCB Terasaki 9 11

0.7 A - 12 A (XM30PB) ...

1000 A …
1000 A/ 1250 A/1600 A
125 A ...
125 A
1250 A 121
160 A - 250 A …
$160 \mathrm{~A} / 250 \mathrm{~A}$...
QPulse ICAdAMS:1HOFOTZGe5F6"णf 1633

SUB PRODUCT 2000 A ... B. $_{3}$.
2000 A / 2500 A / 3200 A
2013 stocking guide for
125 A - 400 A TemBreak 1 MCCBs
2500 A \qquad Terasaki 3
\qquad
400 A
 Terasaki3

630 A

630 A / 800 A \qquad Terasaki 3

630 A / 800 A \qquad Terasaki3

DCMCCBs Terasaki 3
Earth Leakage MCCBs \qquad Terasaki 3
Internal accessory installation TemBreak 1 and 2 Terasaki 3
Introduction to TemBreak 2 \qquad Terasaki 3
MCCB 380/415 V clearance requirements
Terasaki
9
MCCB Cross reference Terasaki 9
MCCB types and setting ranges Terasaki 3
Motor circuit: application tables
Motor starting: Motor rated currents Terasaki 9
Plug-in MCCBs
Terasaki 3
Selection and location guide for MCCBS Terasaki 6
Selectivity/Cascade: MCB \& MCCB
Short circuit co-ordination Terasaki 9
Short circuit current calculator....
Switch disconnectors MCCBS
T2SW Add on CT block for MCCBs Terasaki 3
Technical reference tables-
TemBreak 2 and TemBreak 1 Cross Reference Terasaki 3
TemBreak 2 Electronic OCR \& MCCBs Terasaki 9
TL100EM 1000 V MCCB_n
TL1250NE ..․․

TL800NE-n
VS125NJ 1000 V MCCB
VS250NJ 1000 V MCCB Terasaki 6
Watts loss - MCCBs
XS/XH630/800
XS1250SE … \square_{\square} (
XS1600SEn
XV1250NE 1000 V MCCB
XV400NE 1000 V MCCB
XV630/800 1000 V MCCB

PRODUCT	SUB PRODUCT	BRAND SECTION		PAGE
S				
Surge protection	Surge diverters	Cirprotec	1	57
Switch - transfer	Accessories to suit 125-630 AF MCCB	Terasaki	5	36
	Logic panel selection	Terasaki	5	28
	Transfer switch component ordering	Terasaki	5	12
	Transfer switch options	Terasaki	5	34
	Transfer switch selection	Terasaki	5	7
	Transfer switch types ...	Terasaki	5	2
Switches - time	Time switches	Grasslin	1	68
T				
Technical	Electrical mathematical formulae	Terasaki	9	50
reference	IP Ratings chart	Terasaki	9	70
	NHP Technical News publications	Terasaki	9	71

33 Adam Street Wynnum North SPS - Electrical Installation OM Ma

 National Manufacturing and Distribution CentreNHP prides itself on being able to provide customers with tailored solutions that suit their individual needs. Whilst we have significant stockholdings and expertise at all our locations throughout Australia and New Zealand, the purpose of our National Manufacturing and Distribution Centre in Laverton, Melbourne is to develop these solutions through manufacturing, assembly, servicing and design and engineering.

SIZE

Warehouse 7,000 m2 Manufacturing 5,000 m2

STAFF

270+ Employees

OPERATING HOURS

6.00am - 11.30pm, Monday-Friday

STOCKHOLDING

- 45,000+ line items (20,000 stocked)
- Approximately \$70 M

ITEM THROUGHPUT

- Approximately 5,500 per day (6,000 lines throughout Australasia)

FACTS

- Orders released for picking before 3.00 pm are despatched the same day.
- The Supply Chain team strives to achieve 95% customer service based on an 'on time in full, first time' measurement.

Scan the QR code to view the Laverton Tour brochure.

NHP NATIONAL MANUFACTURING AND DISTRIBUTION CENTRE

Adopting emerging technologies to support sustainable practices

A major push towards more sustainable practices by many in the industrial electrical industry is today clear for all and a major focus at NHP is to provide sustainable solutions for our customers as well as throughout our own operations.

In 2010 we designed and constructed our very own Sustainability Centre - located at our existing National Manufacturing and Distribution Centre in Laverton, Melbourne.

Housing cutting-edge technology and equipment enabling research \& development and testing, the Centre aids investigation into ways to effectively introduce and manage sustainable practices. Sustainable technologies within the centre include:

- A horizontal axis wind generator
- Solar photo-voltaic systems
- Grid interactive systems
- Off-grid hybrid systems
- Dual axis solar tracker, and

ONE OF NHP'S ELECTRIC CARS ON DISPLAY AT THE SUSTAINABILITY CENTRE IN LAVERTON, MELBOURNE

- Energy Management \& control systems

NHP are also proud participants in the Victorian Government's electric vehicle trial which will provide valuable insights to assist in future business planning, as well as help the wider community understand the process, timelines and barriers for transitioning to electric vehicle technologies in the future.

These initiviatives highlight our commitment to sustainable practices across all facets of the workplace. Our aim is to remain at the forefront of the industry, as leaders in providing alternative energy solutions for commercial and industrial applications.

Working closely with Melbourne University, RMIT University and Victoria University, NHP is also proud
 to educate young electrical engineers

To assist customers in finding what they want, we have classified our extensive product range into the following categories.

1. Market Categories

AUTOMATION SYSTEMS

The automation system relies on information from the field to control the process. NHP's switching and sensing suite of products cover all field sensing requirements including standard and hazardous area applications.

AB Allen-Bradley

Rockwell Software
Prosoft ${ }^{\text {ºn }}$

SPECTRUM CONTROLS
 WAGO
 ESA
 MITSUBISHI
 CARLO GAVAZZI
 POWER DISTRIBUTION \& PROTECTION

Most processes, even if automated, still require some manual control and NHP provides a complete range of control products and systems for this purpose.

(f) TERASAKI		safety monitoring relays all the way up to fully integrated safety
	Nar MOD6	
	NHP MOD6	PLC systems and SIL3 rated Safety
${ }_{N+1}$ DIN-T	NL/AE	Critical Shutdown systems.
Fisocomec		
\bigcirc	NHE MODbreak	
CPI cirprotec		
NHE CONCEPT NHE MODpower		
- KatKo	ALLEN-BRADLEY	ELECTRONICON
	ERICO	BELUK
Grizz-bar	wohner	
Q-PulfectadtMe:130/DTR2ge522 of 1633		

ENCLOSURES \&

CLIMATE CONTROL

NHP has a complete range of mild steel, stainless and plastic enclosure options in a variety of IP ratings and configurations including modular switchboard systems.

To complement NHP's enclosure systems, a wide range of climate control solutions are also available.

CUBIC

COSMOTEC STEGO
Z 2 2nM Miro IBOCO

SIGNALLING DEVICES

With an extensive range of audible and visual signalling devices, NHP provides solutions for hundreds of applications, be it general safety warning, process control, fire or evacuation.

TERMINATION \&
 WIRING SYSTEMS

NHP has a wide range of screw and screw-less terminals, terminal accessories (such a DIN rail and jumper pins), cable ducting and pre-wired cable looms for Allen Bradley automation systems which significantly reduces labour intensive wire termination.
sprecher+ schuh

Allen-Bradley
BOCCHIOTTI
ERICO

TIMERS \& CONTROL RELAYS

NHP offers a range of control relays and timers that can be used in conjunction with a conventional automation system to switch higher loads or in stand alone applications where the only basic single function control is required.

klaxon

MOFLASH
$\stackrel{A B}{A}$ Allen-Bradley
REM/LIVE

$\stackrel{A B}{A}$ Allen-Bradley

The automation system relies on information from the field to control the process. NHP's switching and sensing suite of products cover all field sensing requirements including standard and hazardous area applications.

AB Allen-Bradley

CARLO GAVAZZI
STEUTE

OPERATOR
 CONTROL DEVICES

Most processes, even if automated, still require some manual control and NHP provides a complete range of control products and systems for this purpose.

sprecher+
 schuh

AB Allen-Bradley

ELEKTRA

SPOHN + BURKHARDT
TER

PLUGS \& SOCKETS

Divided into two distinct product ranges, NHP's plugs and sockets provide solutions for a wide range of applications and are available in a wide range of amperages and pin configurations.

NH: ISN $^{\text {" }}$

PROCONECT

SAFETY PRODUCTS

NHP offer a large variety of quality safety products that meet international standards, with products ranging from emergency stop switches, light curtains, and safety monitoring relays all the way up to fully integrated safety PLC systems and SIL3 rated Safety Critical Shutdown systems.

$A B$ Allen-Bradley
 Guard İmasteí

HAZARDOUS AREA
 EQUIPMENT

NHP provided a world class range of hazardous area equipment for explosive environments including light fittings, enclosures and terminal boxes, control stations and intrinsically safe automation products.

CORTEM
 GROUP

WAGO
STEUTE
ALLEN-BRADLEY

RENEWABLE ENERGY
 PRODUCTS

NHP offers a large selection of products and solutions tailored towards renewable energy applications including Solar and Wind.

SANTERNO

AB Allen-Bradley
_socomec
Innovative Power solutions

METERING

Energy Metering is the essential component to understanding your energy consumption and power quality. NHP has a complete range of energy meters and power quality analysers to meet the most demanding of applications.

IME 畨

AB Allen-Bradley

SERVICES \& TRAINING

NHP has a wide range of services including technical support, field service and maintenance contracts, repair services and training.

AB Allen-Bradley

2. Application Classes

HAZARDOUS AREA
 EQUIPMENT

When servicing important industries such as the oil and gas, petrochemical and grain handling there is no room for complacency. At NHP our aim is to provide a world class range of hazardous area equipment for the hazardous market which includes light fittings, terminal boxes, control stations and an extensive suite of automation products. NHP has been in this field for many years and has acquired a comprehensive knowledge on explosion protection products, so wherever explosive atmospheres are prevalent, NHP can provide the safest solution.

WAGO

STEUTE
ALLEN-BRADLEY

PROCESS CONTROL

Like the principles which drive the process industry, NHP is committed to delivering products of continuous quality to assist our customers in achieving process optimisation. Encompassing a wide range of industries including oil refining, petrochemicals, water and sewage treatment, food processing, and pharmaceuticals, the NHP process control product portfolio offers complete system integration.

SAFETY

For any industrial application, the safety of employees and the general population is of major importance. NHP has a long history in the safety industry and can be a trusted destination for all your safety application needs. NHP offer a large variety of quality products that meet all relevant international standards, with products ranging from simple emergency stop switches, to light curtains, safety monitoring relays all the way up to fully integrated safety PLC systems. Our product range extends further into SIL3 rated Safety Critical Shutdown systems.

AB Allen-Bradley

 Guardilmartei AustrolNHE
STEUTE
KATKO

Rockwell Software
3. Application Solutions

ENERGY MANAGEMENT

NHP can provide Energy Management Metering and Software solutions that monitor and record energy information so operators can identify consumption trends and take corrective actions. Real-time measurements of these electrical parameters, such as voltage variations or distortions, may have alarm thresholds set to warn managers if preset limits are reached. These real-time measurements also allow site managers to anticipate overload conditions that could, for example, trip a circuit breaker. NHP can provide a wide range of products to complement any Energy Management Solution.

SUSTAINABILITY

With an increasing focus on the state of global warming and the requirement to decrease our carbon footprint, the use of sustainability is becoming a popular phenomenon. Our partnerships with many of the industries best suppliers from around the world means that NHP offer a large selection of products and solutions tailored towards renewable energy applications including Solar and Wind. From high DC rated protection and switching devices, solar panel control and monitoring products through to a range of inverters and power factor correction, NHP has an extensive offering.

SANTERNO

AB Allen-Bradley
zsocomec

With NHP's Price Lists available for download online, you can now access product information anytime, anywhere!

QR CODE

33 Adam Street Wynnum North SPS - Electrical Installation OM Ma

33 Adam Street Wynnum North SPS - Electrical Installation OM Ma Information at your fingertips

The latest NHP and industry news is never far away through NHP's communications technology platforms

With technology constantly evolving, so too are the ways in which we communicate and at NHP we recognise that what works today, will not necessarily work tomorrow. In line with this approach, NHP ensures it remains at the cutting edge of new communication platforms to ultimately provide timely, relevant and most of all valuable information to our customers.

By utilising the latest platforms such as smart phone and tablet technology (complete with a range of iTunes and Android compatible Apps), the social networking revolution, Quick Response (QR) codes, and much more, NHP are able to share the right messages in the right ways - the ways that our customers want to receive them.

to view our corporate website.

Q-Pulse IdAdtive. 13 MDSZage530 of 1633

Events

Setting the industry standard for events

While NHP is renowned for providing quality products and service to our customers, we also know how to put on a great event.

Be it a customer function, new product launch, a road show or training and seminars, NHP looks to provide an event that will not only get people interested in coming along, but also to keep them entertained and informed from when they arrive.

With a dedicated Events team that prides itself on customer satisfaction, whether it be hands-on and interactive displays, informative speakers, quality training, giveaways, competitions and much more, NHP's events will always leave you wanting more.

33 Adam Street Wynnum North SPS - Electrical Installation OM Ma

NHP Electrical Engineering Products

NHP NATIONAL MANUFACTURING AND DISTRIBUTION CENTRE

NHP Electrical Engineering Products (NHP) specialises in motor control, power distribution and automation systems.

NHP offers the Australasian market the complete industrial electrical and automation solutions package.As authorised distributors for Rockwell Automation and their Allen-Bradley ${ }^{\text {© }}$ products in our designated areas of Australia and throughout all of New Zealand, NHP is partnered with the leading global provider of industrial automation solutions and switchgear components.

An Australian owned company, NHP is committed to serving the Australasian industry with quality products and customer support. This is achieved through a 1000+ strong team which is distributed across 25 branches and 24 regional locations throughout Australia and New Zealand.

While NHP stock an impressive 45,000+ line items, we are much more than a component supplier. NHP source the highest quality products from leading global suppliers, and customise these into solutions for the local Australian and New Zealand markets, providing a complete fit to purpose systems and solutions service.

At NHP we have a strong customer focus and we look to provide the right product and product solutions for our customers' requirements and applications, all at a competitive price. We value and care for our customers and support them by offering personalised service and assistance to meet their every need and demand. Our customers can have 100% confidence in our ability to support them when, where and how it is needed.

Put simply, NHP is 'easy to do business with'.

[^0]

THINK MAJOR PROJECTS. THINK NHP.

When it comes to Major Projects, our staff involvement is always driven by long term results, actively seeking to support you with the right product and technical solutions before, during and after project completion.

Major Projects Team

No matter what the project, from the initial stages of concept design, through to post-commissioning and future upgrades, NHP's Major Projects Team is there to see the project through together with you - our customer.

Our quality people have a diverse reach across Australia and New Zealand and their vast industry experience is sure to be there for you when you need it.

Think Major Projects. Think NHP.

Miniature circuit breakers (MCBs) and accessories

Miniature Circuit Breaker selection guide .. 1 - 2
Safe-T Series 6 kA miniature circuit breakers .. $-\cdots$
Safe-T Series 6 kA miniature circuit breakers with shunt trip 1-8
Safe-T Switchboard hardware and accessories ... 1 - 9
Safe-T Single pole width RCCBs SRCB (RCBO) .. 10
Safe-T Earth leakage relay (ELR) .. 11
Din-T Series general features ... 12
Din-T 6 Series 6 kA miniature circuit breakers .. 14
Din-T series 6 kA 2-in-1 ... 16
Din-T Series 6 kA for DC applications .. 1-17
Din-T 10 Series 10 kA miniature circuit breakers .. 1- 19
Din-T 10H Series 10 kA miniature circuit breakers ... $1-22$
Din-T 15 Series 15 kA miniature circuit breakers .. $1-23$
Din-T 6 easy-fit ... 14

Din-Safe single pole ... 28
Din-Safe MCBs (RCBO) .. 30
Din-Safe-M add on earth leakage modules ... 32

Main switch 63 - 100 A ... 38
Din-T shunt and undervoltage trip .. 39
Din-T auxiliary contacts \& Din-T motor operator DTMD 1-40
Din mount housing, panelboard switch \& kilowatt meters 1-42

Changeover switch, pushbuttons ... 44
LockDIN ${ }^{\text {m }}$.. 16
Meter Isolator ... 48
Accessories for Din-T series MCBs .. 50
Din-T contactors and hour run counter ... $1-2$
Din-T impulse switches ..
CA 8 contactors and emergency lighting test unit 1 - 56

Dimensions - Safe-T \& Din-T ... 61
Time switches ...

2

Panelboards, loadcentres and accessories busbar Chassis assemblies

Pole Covers to suit Safe-T and Din-T series .. - 2
Loadcentres
Insulated - ILC series .. 3
Insulated - Din-T surface mount .. $-A_{1}$
Insulated - Din-T flush mount .. 5
Insulated - Din-Modula 150 series ... 6
Q-Pulse IdAdtME:13CODTAge534 of 1633

```
3 3 \text { Adam Street Wynnum North SPS - Electrical Installation OM Ma}
Insulated - MCE weatherproof series ..... 2-7
Insulated - Din-Modula weatherproof series ..... 2-8
Metal - NLC for Din-T MCBs ..... 2-9
Metal - TLC for Safe-T MCBs ..... 2-10
CONCEPT
Panelboards - introduction ..... 2-11
Panelboards - quick reference table ..... 2-12
CONCEPT economical panelboards ..... 2-14
CONCEPT.PLUS multi-purpose panelboards ..... 2-17
CONCEPT•PLUS Grizz-Bar isolation ..... 2-24
CONCEPT•PLUS energy metering ..... 2-26
CONCEPT•PLUS Safe-T ..... 2-27
CONCEPT.PLUS accessory modules ..... 2-29
CONCEPT•PLUS options and accessories ..... 2-30
CONCEPT.PREMIER premium panelboards ..... 2-32
CONCEPT•PREMIER Grizz-Bar isolation ..... 2-37
CONCEPT•PREMIER 2 ..... 2-40
CONCEPT•PREMIER Safe-T ..... 2-45
CONCEPT.PREMIER MCCB ..... 2-47
CONCEPT•PREMIER accessory modules ..... 2-48
CONCEPT.PREMIER options and accessories ..... 2-50
CONCEPT•TOUGH heavy-duty panelboards ..... 2-52
Panelboard hardware to suit the CONCEPT range ..... 2-56
NC chassis ..... 2-58
GB chassis ..... 2-62
CD chassis ..... 2-65
CT chassis ..... 2-67
KATKO
Panelboard DIN switch-fuse \& fuse links ..... 2-69
Modular panelboard features ..... 2-70
3
TemBreak 1 and 2 MCCBs
Introduction to TemBreak 2 ..... 3-2
Internal accessory installation TemBreak 1 and 2 ..... 3-8
Technical reference tables ..... 3-12
MCCB types and setting ranges ..... 3-16
MCCBs by amp rating
T2SW Add on CT block for MCCBs ..... 3-20
0.7 A - 12 A (XM30PB) ..... 3-21
125 A ..... 3-24
160 A / 250 A ..... 3-42
400 A ..... 3-69
630 A ..... 3-85
630 A / 800 A ..... 3-103
1000 A ..... 3-113
1250 A ..... 3-121
1600 A Q-Pulse HAAdAME:13OMOT2ge535 of \(1633^{3}\) ..... \(-122\)
2000 A ..... 3-128
2500 A ..... 3-129
3200 A ..... 3-130
Accessories for MCCBs
0.7 A - 12 A (XM30PB) ..... 3-22
125 A ..... 3-32
160 A - 250 A ..... 3-59
400 A / 630 A ..... 3-92
630 A / 800 A ..... 3-115
1000 A / 1250 A / 1600 A ..... 3-123
2000 A / 2500 A / 3200 A ..... 3-131
Earth Leakage MCCBs ..... 3-133
Switch disconnectors MCCBs ..... 3-142
DC MCCBs ..... 3-143
Plug-in MCCBs ..... 3-146
TemBreak 2 and TemBreak 1 Cross Reference ..... 3-148
TO / TG / TT, TemBreak 2, TemBreak 1 Cross Reference ..... Section 9
4
Chassis assemblies for the TemBreak range
Chassis assemblies overview ..... 4-2
XA / XB, PXB series ..... 4-3
XB SS series ..... 4-7
XC series ..... 4-9
Chassis to suit 125-250 AF MCCBs ..... 4-11
Terminal covers ..... 4-12
HC High-current chassis
to suit TemBreak 2125 - 630 AF MCCBs ..... 4-15
to suit TemBreak 1630 - 1250 AF MCCBs ..... 4-1s
5
MCCB transfer switches and controllers
Terasaki
Transfer switch types ..... 5-2
Transfer switch selection ..... 5-7
Transfer switch component ordering ..... 5-12
Logic panel selection ..... 5-28
Transfer switch options ..... 5-34
Accessories to suit 125 - 630 AF MCCB ..... 5-36
6
TemBreak 1, 630 A-1600 A and 1000 V mining MCCBs
Selection and location guide for MCCBs ..... 6-2
2013 stocking guide for 125 A - 400 A TemBreak 1 MCCBs ..... 6-3
MCCBs and accessories
VS125NJ 1000 V MCCB ..... 6-5
VS250NJ \({ }^{100}\) Q ..... 6-6
TL100EM 1000 V MCCB ..... 6-7
XV400NE 1000 V MCCB ..... 6-9
XS/XH630/800 ..... 6-13
XV630/800 1000 V MCCB ..... 6-24
XS1250SE ..... 6-28
XV1250NE 1000 V MCCB ..... 6-30
XS1600SE ..... 6-31
TL630NE ..... 6-32
TL800NE ..... 6-33
TL1250NE ..... 6-34
7
TemPower2 air circuit breakers (ACBs)
Introduction, standards ..... 7-2
Stocked AR ACBs ..... 7-4
Standard accessories ..... 7-6
ACB ordering information ..... 7-9
Specifications ..... 7-10
Main power circuit terminal specifications ..... 7-11
Performance specification of AR and AR-H ACB ..... 7-12
Overcurrent Release (OCR) Specification ..... 7-16
Tripping options ..... 7-26
Serial communication options ..... 7-30
TemRelay external alarm module ..... 7-32
TemVision remote monitoring and control ..... 7-32
TemPower Rack remote racking ..... 7-33
NHP Servicing ..... 7-34
Retrofitting and installation kits ..... 7-35
Dimensions ..... 7-37
Providing solutions ..... 7-38
Arc detecting relay system ..... 7-39
Arc D-Tect ordering infomation ..... 7-44
8
Earth leakage relays
Surface mounting type TZS series ..... 8-2
DIN Rail mounting type RD3A series ..... 8-4
DIN Rail mounting type RD1B series ..... 8-5
Panel mounting type RD1DF series ..... 8-6
Panel mounting type RD1EP series ..... 8-7
Panel mounting type RD3E2 series ..... 8-8
Panel mounting type RD1G2 series ..... 8-10
Mining earth leakage relay
Panel mount mining relays, DSRM72 and DSR48T Series ..... 8-12
Remote current transformer (toroid) TD and DSR Series ..... 8-14
Accessories ..... 8-15

\section*{9}
Technical reference data
Din-T MCB: Ratings table ..... 9-2
Din-T MCB: Effects of frequency ..... 9-3
Din-T MCB: Time current curves ..... 9-4
Din-T MCB: \(B, C\) and \(D\) curve definitions ..... 9-7
Din-T MCB: Temperature compensation curves ..... 9-8
DC current circuit breaker selection table ..... 9-9
MCB Fuse-fault current limiting ..... 9-10
Selectivity/Cascade: MCB \& MCCB ..... 9-11
Watts loss - MCCBs ..... 9-21
Short circuit current calculator ..... 9-22
Short circuit co-ordination ..... 9-24
Motor circuit: application tables ..... 9-38
Motor starting: Motor rated currents ..... 9-45
MCCB 380/415 V clearance requirements ..... 9-47
Electrical mathematical formulae ..... 9-50
TemBreak 2 Electronic OCR \& MCCBs ..... 9-51
MCCB Cross reference ..... 9-67
RCD/Earth Leakage applications and AS/NZS Standards ..... 9-68
IP Ratings chart ..... 9-70
NHP Technical News publications ..... 9-71
\begin{tabular}{lr} 
Miniature circuit breakers and accessories (MCBs) & \\
& Page \\
Miniature Circuit Breaker selection guide & \(1-2\) \\
\hline Safe-T Series 6 kA miniature circuit breakers & \(1-6\) \\
\hline Safe-T Series 6 kA miniature circuit breakers with shunt trip & \(1-8\) \\
\hline Safe-T Switchboard hardware and accessories & \(1-9\) \\
\hline Safe-T Single pole width RCCBs SRCB (RCBO) & \(1-10\) \\
\hline Safe-T Earth leakage relay (ELR) & \(1-11\) \\
\hline Din-T Series general features & \(1-12\) \\
\hline Din-T 6 Series 6 kA miniature circuit breakers & \(1-14\) \\
\hline Din-T series 6 kA 2-in-1 & \(1-16\) \\
\hline Din-T Series 6 kA for DC applications & \(1-17\) \\
\hline Din-T 10 Series 10 kA miniature circuit breakers & \(1-19\) \\
\hline Din-T 10H Series 10 kA miniature circuit breakers & \(1-22\) \\
\hline Din-T 15 Series 15 kA miniature circuit breakers & \(1-23\) \\
\hline Din-T 6 easy-fit & \(1-24\) \\
\hline Din-Safe safety switches & \(1-25\) \\
\hline Din-Safe single pole & \(1-28\) \\
\hline Din-Safe MCBs (RCBO) & \(1-30\) \\
\hline Din-Safe-M add on earth leakage modules & \(1-32\) \\
\hline Accessories - mounting & \(1-61\) \\
\hline Main switch 63 - 100 A & \(1-35\) \\
\hline Din-T shunt and undervoltage trip & \(1-38\) \\
\hline Din-T auxiliary contacts \& Din-T motor operator DTMD & \(1-39\) \\
\hline Din mount housing, panelboard switch \& kilowatt meters & \(1-40\) \\
\hline Din busbar comb & \(1-42\) \\
\hline Changeover switch, pushbuttons & \(1-43\) \\
\hline LockDIN \({ }^{\text {TM }}\) & \(1-48\) \\
\hline Meter Isolator & \(1-50\) \\
\hline Accessories for Din-T series MCBs & \(1-52\) \\
\hline Din-T contactors and hour run counter & \(1-T\) impulse switches \\
\hline
\end{tabular}

\section*{Miniature circuit breakers Safe-T \& Din-T}

\begin{tabular}{l|l|l|l} 
Miniature Circuit Breakers & \multicolumn{1}{l}{ Safe-T } & DIN-T6 & Din-T10 \\
\hline Standard (AS/NZS) 1 ) & \(\left.3111 / 2184^{2}\right)\) & 60898 & 60898 \\
\hline
\end{tabular}

No. poles \& module width
\begin{tabular}{|c|c|c|c|}
\hline 1P & 25 mm & 18 mm & 18 mm \\
\hline 2P & 50 mm & 36 mm & 36 mm \\
\hline 3 P & 75 mm & 54 mm & 54 mm \\
\hline 4P & 100 mm & - & 72 mm \\
\hline Mounting & Clip tray & DIN rail & DIN rail \\
\hline Current ratings & \(6 \mathrm{~A}-100 \mathrm{~A}\) & 2A-63A & 0.5A-63 A \\
\hline Short circuit rating (kA) & 6 kA & 6 kA & 10 kA \\
\hline Curve types & General & C \& D & B, C \& D \\
\hline Rated AC voltage 1P/2,3,4P & 240/415 V & 240/415 V & 240/415 V \\
\hline Rated DC voltage & 250 V -2P 5 kA & \[
\begin{aligned}
& 48 \mathrm{~V} 1 \mathrm{P} \\
& 110 \mathrm{~V} 2 \mathrm{P}
\end{aligned}
\] & \[
\begin{aligned}
& 48 \mathrm{~V} 1 \mathrm{P} \\
& 110 \mathrm{~V} 2 \mathrm{P}
\end{aligned}
\] \\
\hline Sealable in ON-Off position & No & Yes & Yes \\
\hline Trip-free mechanism & Yes & Yes & Yes \\
\hline Centre trip position & Yes & No & No \\
\hline Padlock facility- non captive & Yes & Yes & Yes \\
\hline Padlock facility- captive & Yes & Yes & Yes \\
\hline Busbar connection- On-top & Fork & Pin & Pin \\
\hline Busbar connection- OFF-bottom & Fork & Fork/Pin & Fork/Pin \\
\hline Terminal size- On-top & - & \(35 \mathrm{~mm}^{2}\) & \(35 \mathrm{~mm}^{2}\) \\
\hline Terminal size- OFF-bottom & - & \(35 \mathrm{~mm}^{2}\) & \(35 \mathrm{~mm}^{2}\) \\
\hline
\end{tabular}

Notes: ') UL listed MCB refer to NHP.
\({ }^{2}\) ) AS only.

\begin{tabular}{|c|c|c|c|c|}
\hline Din-T15 & Din-T10H & Din-T 2-in-1 & Din-T DC & Din-T Easy-Fit \\
\hline 60947-2 & 60947-2 & 60898 & 60898 & 60898 \\
\hline 18 mm & 27 mm & 18 mm & 18 mm & 18 mm \\
\hline 36 mm & 54 mm & 18 mm & 36 mm & - \\
\hline 54 mm & 81 mm & 36 mm & - & 54 mm \\
\hline 72 mm & 108 mm & 36 mm & 81 mm & - \\
\hline DIN rail & DIN rail & DIN rail & DIN rail & DIN rail \\
\hline 0.5 A - 63 A & 80 A-125 A & \(2 \mathrm{~A}-40 \mathrm{~A}\) & 0.5 A-63 A & 6 A-63 A \\
\hline \(15 \mathrm{kA}-50 \mathrm{kA}\) & 10 kA & 6 kA & \(6 \mathrm{kA} \mathrm{T15}\) & 6 kA \\
\hline C & C \& D & C & B \& C & C \\
\hline 240/415 V & 240/415 V & 240/415 V & 240/415 V & 240/415 V \\
\hline \[
\begin{aligned}
& 48 \mathrm{~V} 1 \mathrm{P} \\
& 110 \mathrm{~V} 2 \mathrm{P}
\end{aligned}
\] & \[
\begin{aligned}
& 125 \mathrm{~V} 2 \mathrm{P} \\
& 250 \mathrm{~V} 4 \mathrm{P}
\end{aligned}
\] & - & \[
\begin{array}{|l|}
\hline 250 \mathrm{~V} 1 \mathrm{P} \\
500 \mathrm{~V} 2 \mathrm{P} \\
880 \mathrm{~V} 4 \mathrm{P}
\end{array}
\] & - \\
\hline Yes & Yes & Yes & Yes & Yes \\
\hline Yes & Yes & Yes & Yes & Yes \\
\hline No & No & No & No & No \\
\hline Yes & Yes & Yes & Yes & Yes \\
\hline Yes & Yes & No & Yes & No \\
\hline Pin & Pin & Pin & Fork/Pin & - \\
\hline Fork/Pin & Pin & Pin & Fork/Pin & Pin \\
\hline \(35 \mathrm{~mm}^{2}\) & \(70 \mathrm{~mm}^{2}\) & \(16 \mathrm{~mm}^{2}\) & \(35 \mathrm{~mm}^{2}\) & \[
\begin{aligned}
& 4 \mathrm{~mm}^{2} \\
& 6 \mathrm{~A}-20 \mathrm{~A} \\
& 35 \mathrm{~mm}^{2} \\
& 25 \mathrm{~A}-63 \mathrm{~A}
\end{aligned}
\] \\
\hline \(35 \mathrm{~mm}^{2}\) & 70 mm \({ }^{2}\) & 16 mm \({ }^{2}\) & \(35 \mathrm{~mm}^{2}\) & \(35 \mathrm{~mm}^{2}\) \\
\hline
\end{tabular}

\section*{Miniature circuit breakers Safe-T \& Din-T}
\begin{tabular}{|c|c|c|c|}
\hline Residual Current Devices &  & Din-Safe DSRCD & Din-Safe DSRCBS \\
\hline Standard (AS/NZS) \({ }^{1}\) ) & \(\left.3111 / 3190{ }^{2}\right)\) & 61008 & 61009 \\
\hline No. poles \& module width & \(1 \mathrm{P}+\mathrm{N}-25 \mathrm{~mm}\) & \[
\begin{aligned}
& \text { 2P-36mm, } \\
& 4 \mathrm{P}-72 \mathrm{~mm}
\end{aligned}
\] & \(1 \mathrm{P}+\mathrm{N}-18 \mathrm{~mm}\) \\
\hline Mounting & Clip tray & DIN rail & DIN rail \\
\hline Current ratings & \[
\begin{aligned}
& 10 \mathrm{~A}, \\
& 16 \mathrm{~A}, \\
& 20 \mathrm{~A} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 40 \mathrm{~A}, 63 \mathrm{~A}, \\
& 80 \mathrm{~A}, 100 \mathrm{~A} \& \\
& 125 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& 6 \mathrm{~A}, 10 \mathrm{~A}, \\
& 16 \mathrm{~A}, 20 \mathrm{~A}, \\
& 25 \mathrm{~A} \& 32 \mathrm{~A}
\end{aligned}
\] \\
\hline Trip senstivity & \[
10 \mathrm{~mA} \&
\]
\[
30 \mathrm{~mA}
\] & 30 mA , 100 mA , 300 mA , 500 mA & 30 mA \\
\hline Sensitivity type & AC & AC, A, AI, S \& B & AC \& A \\
\hline Short circuit rating (kA) & 6 kA & Inc - 10 kA MCB or fuse backup & 6 kA \\
\hline Curve types & General & - & B \& C \\
\hline Rated AC voltage & 240 V & \(240 \mathrm{~V} / 415 \mathrm{~V}\) & 240 V \\
\hline Sealable in ON-Off position & No & Yes & Yes \\
\hline Trip-free mechanism & Yes & Yes & Yes \\
\hline Centre trip position & Yes & No & No \\
\hline Padlock- non captive & No & Yes & Yes \\
\hline Padlock-captive & Yes & No & No \\
\hline Busbar connection- On-top & Fork & Pin & - \\
\hline Busbar connection- OFF-bottom & Fork & Fork/Pin & Pin \\
\hline Terminal size- On-top & - & \(50 \mathrm{~mm}^{2}\) & \(16 \mathrm{~mm}^{2}\) \\
\hline Terminal size- OFF-bottom & - & \(50 \mathrm{~mm}^{2}\) & \(35 \mathrm{~mm}^{2}\) \\
\hline
\end{tabular}

Notes: ') UL listed MCB refer to NHP.
\({ }^{2}\) ) AS only.
\begin{tabular}{ll} 
& \\
&
\end{tabular}

\section*{Safe-T series}

6-100 A

6 kA
Standard AS 3111 AS \(2184{ }^{1}\) )
- Approval No. V99347
- UL 489 fluorescent switching duty \({ }^{1}\) )

Lloyd's register
- Current range 6-100 A 1, 2, 3 and 4 pole
- Clip-tray mounting. Suits CT type busbar chassis
- General purpose light and power distribution

\section*{Technical data}

Interrupting capacity: 6 kA at \(250 \mathrm{~V} \mathrm{AC} \mathrm{(sym)} 1\) pole 6 kA at \(400 \mathrm{~V} \mathrm{AC} \mathrm{(sym)} 2 \& 3\) pole 5 kA at 125 V DC 2 pole
Thermal setting: Fixed \(\left(40^{\circ} \mathrm{C}\right)\)
Magnetic setting: Fixed
Tropic proofed: Standard

Shunt Trip - Coil rating
\begin{tabular}{ll} 
Voltage (V) & \begin{tabular}{l} 
Current peak \\
(A)
\end{tabular} \\
\hline \(120-440\) V AC & \(4.88(440 \mathrm{~V})\) \\
\hline \(48-250 \mathrm{~V} \mathrm{DC}\) & \(2.32(250 \mathrm{~V})\) \\
\hline
\end{tabular}

\section*{Warnings}

Short time rated coil.
Coil burnout will result if coil remains energised.


Shunt trip wiring diagram


Notes: 1) Fluorescent light switching duty - UL 489 All Safe-T MCBs are by design suitable for fluorescent light switching duty as per the requirements of UL 489 issued by Underwriters Laboratories (USA). Performance standards to regularly switch banks of fluorescent lights ON and OFF require the MCB to withstand the higher inrush current (up to 30 times normal rating). If the MCB cannot withstand this inrush current, contact erosion and excess temperature rise will be experienced. Safe-T MCBs have been designed to withstand this type of duty. (Refer NHP)
Backup fuse data, refer to page 9-10. Accessories, refer to page 1-9.

Safe-T series
6-100 A
\begin{tabular}{|c|c|c|c|c|}
\hline Amp rating & Cat. No. & 1 pole Price \$ & Cat. No. & \begin{tabular}{l}
2 pole \\
Price
\end{tabular} \\
\hline 6 & SAFET6106 & 61.50 & SAFET6206 & 190.00 \\
\hline 10 & SAFET6110 & 61.50 & SAFET6210 & 190.00 \\
\hline 16 & SAFET6116 & 61.50 & SAFET6216 & 190.00 \\
\hline 20 & SAFET6120 & 61.50 & SAFET6220 & 190.00 \\
\hline 25 & SAFET6125 & 61.50 & SAFET6225 & 190.00 \\
\hline 32 & SAFET6132 & 61.50 & SAFET6232 & 190.00 \\
\hline 40 & SAFET6140 & 61.50 & SAFET6240 & 190.00 \\
\hline 50 & SAFET6150 & 61.50 & SAFET6250 & 190.00 \\
\hline 63 & SAFET6163 & 61.50 & SAFET6263 & 190.00 \\
\hline 80 & SAFET6180 & 138.00 & SAFET6280 & 355.00 \\
\hline 100 & SAFET61100 & 138.00 & SAFET62100 & 355.00 \\
\hline 63 & SAFET6163NA \({ }^{2}\) ) & 65.50 & SAFET6263NA \({ }^{2}\) ) & 164.00 \\
\hline 100 & SAFET61100NA \({ }^{2}\) ) & 103.00 & SAFET62100NA \({ }^{2}\) ) & 220.00 \\
\hline
\end{tabular}
\begin{tabular}{llllr}
\begin{tabular}{l} 
Amp \\
rating
\end{tabular} & Cat. No. & \begin{tabular}{c}
\(\mathbf{3}\) pole \\
Price \(\$\)
\end{tabular} & Cat. No. & \begin{tabular}{r}
\(\mathbf{3 P + N}\) + \\
Price \(\$\)
\end{tabular} \\
\hline 6 & SAFET6306 & \(\mathbf{2 2 5 . 0 0}\) & SAFET6406 & \(\mathbf{3 1 5 . 0 0}\)
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) Neutral pole is switched but does not provide overcurrent or short circuit protection.
\({ }^{2}\) ) NA - Non-Auto MCB without overcurrent or short circuit protection, suitable for main switch.
Refer page 9-10 for back-up fuse data. Accessories refer page 1-9.
}

\section*{Safe-T series \\ 6-100 A fitted with shunt trip}
\begin{tabular}{|c|c|c|c|c|}
\hline Amp rating & Cat. No. & 1 pole Price \$ & Cat. No. & 2 pole Price \$ \\
\hline 6 & SAFET6106SHT & 190.00 & SAFET6206SHT & 325.00 \\
\hline 10 & SAFET6110SHT & 190.00 & SAFET6210SHT & 325.00 \\
\hline 16 & SAFET6116SHT & 190.00 & SAFET6216SHT & 325.00 \\
\hline 20 & SAFET6120SHT & 190.00 & SAFET6220SHT & 325.00 \\
\hline 25 & SAFET6125SHT & 190.00 & SAFET6225SHT & 325.00 \\
\hline 32 & SAFET6132SHT & 190.00 & SAFET6232SHT & 325.00 \\
\hline 40 & SAFET6140SHT & 190.00 & SAFET6240SHT & 325.00 \\
\hline 50 & SAFET6150SHT & 190.00 & SAFET6250SHT & 325.00 \\
\hline 63 & SAFET6163SHT & 190.00 & SAFET6263SHT & 325.00 \\
\hline 80 & SAFET6180SHT & 270.00 & SAFET6280SHT & 475.00 \\
\hline 100 & SAFET61100SHT & 270.00 & SAFET62100SHT & 475.00 \\
\hline 63 & SAFET6163NASHT \({ }^{2}\) ) & 184.00 & SAFET6263NASHT \({ }^{2}\) ) & 285.00 \\
\hline 100 & SAFET61100NASHT \({ }^{2}\) ) & 225.00 & SAFET62100NASHT \({ }^{2}\) ) & 350.00 \\
\hline Amp rating & Cat. No. & 3 pole Price \$ & Cat. No. & \[
\begin{array}{r}
\left.3 P+N^{1}\right) \\
\text { Price } \$ 2
\end{array}
\] \\
\hline 6 & SAFET6306SHT & 350.00 & SAFET6406SHT & 440.00 \\
\hline 10 & SAFET6310SHT & 350.00 & SAFET6410SHT & 440.00 \\
\hline 16 & SAFET6316SHT & 350.00 & SAFET6416SHT & 440.00 \\
\hline 20 & SAFET6320SHT & 350.00 & SAFET6420SHT & 440.00 \\
\hline 25 & SAFET6325SHT & 350.00 & SAFET6425SHT & 440.00 \\
\hline 32 & SAFET6332SHT & 350.00 & SAFET6432SHT & 440.00 \\
\hline 40 & SAFET6340SHT & 350.00 & SAFET6440SHT & 440.00 \\
\hline 50 & SAFET6350SHT & 350.00 & SAFET6450SHT & 440.00 \\
\hline 63 & SAFET6363SHT & 350.00 & SAFET6463SHT & 440.00 \\
\hline 80 & SAFET6380SHT & 540.00 & SAFET6480SHT & 630.00 \\
\hline 100 & SAFET63100SHT & 540.00 & SAFET64100SHT & 630.00 \\
\hline 63 & SAFET6363NASHT \({ }^{2}\) ) & 335.00 & SAFET6463NASHT \({ }^{2}\) ) & 425.00 \\
\hline 100 & SAFET63100NASHT \({ }^{2}\) ) & 425.00 & SAFET64100NASHT \({ }^{2}\) ) & 560.00 \\
\hline
\end{tabular}

\section*{Operation}

For remote tripping of Safe-T MCB (1 to 4 poles), manual resetting of MCB required. Inline shunt trip requires no extra pole spaces; refer to page 1-10 for connection diagram.

Application
Emergency stop and isolation of industrial socket outlets.

Notes: ') Neutral pole is switched but does not provide overcurrent or short circuit protection.
\({ }^{2}\) ) NA - Non-Auto MCB without overcurrent or short circuit protection, suitable for main switch.
Backup fuse data, refer to page 9-10.
Accessories to suit Safe-T MCBs, refer to page 1-9.

\section*{Safe-T series}

Options, hardware and accessories
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Description} & Cat. No. & Price \$ \\
\hline Handle lock & Yellow & TAA5LY \({ }^{1}\) ) & 3.30 \\
\hline \multirow[t]{2}{*}{Padlock attachment} & 1 pole & TKB50SGL \({ }^{1}\) ) & 21.20 \\
\hline & 3 pole & TKC50SG \({ }^{1}\) ) & 21.20 \\
\hline \multirow[t]{2}{*}{Padlock attachment kits (captive)} & 12 pack and resin & SAFETLCK \(12{ }^{1}\) ) & 159.00 \\
\hline & 24 pack and resin & SAFETLCK \(24{ }^{1}\) ) & 210.00 \\
\hline \multirow[b]{2}{*}{Tunnel terminal} & \(35 \mathrm{~mm}^{2}\) Safe-T (6-63 A) & 7T1ST \({ }^{1}\) ) & 13.00 \\
\hline & \[
\begin{aligned}
& 70 \mathrm{~mm}^{2} \text { Safe-T } \\
& (80-100 \mathrm{~A})
\end{aligned}
\] & 7T2ST \({ }^{1}\) ) & 15.60 \\
\hline \multicolumn{2}{|l|}{T-off plastic caps} & TH250TOPC & 0.60 \\
\hline \multicolumn{2}{|l|}{Pole fillers} & SAFETPF & 1.80 \\
\hline \multicolumn{2}{|l|}{Clip-tray (per 12 pole pieces)} & TDB50SG12 & 20.20 \\
\hline Link bar (1 phase) & 18 pole & LB18 & 27.00 \\
\hline Link bar (3 phase) & 12 pole & LB3PH12 & 153.00 \\
\hline 120 A & 18 pole & LB3PH18 & 215.00 \\
\hline
\end{tabular}


3 phase wiring harness


3 phase link bars
 1 phase link bar


TAA5LY


TKC50SG
Locking attachments

Notes: \({ }^{1}\) ) Doesn't suit SRCB.

\title{
Safe-T series (RCBO) \\ Single pole width residual current circuit breakers
}

Standard AS 3111 AS 3190
Approval No. N15251
- Current rating: 10, 16 and 20 A
- Voltage 240 V AC \(50 / 60 \mathrm{~Hz}\) (not suitable for \(415 / 440 \mathrm{~V}\) )
- Short circuit protection 6000 A

Earth leakage protection 30 mA and 10 mA

\section*{Operation}


Safe-T single pole width residual current circuit breakers offer overload, short circuit and earth leakage protection in a single module width unit.
Mounting arrangements are identical to those throughout the Safe-T MCB range utilising the NHP clip-tray mounting system in panelboards and loadcentres.
\begin{tabular}{lllllll}
\begin{tabular}{l} 
Amp \\
rating
\end{tabular} & \begin{tabular}{l} 
No. of \\
poles
\end{tabular} & Modules & \begin{tabular}{l} 
Trip sensi- \\
tivity \((\mathbf{m A})\)
\end{tabular} & Cat. No. \(\left.{ }^{1}\right)\) & Price \$
\end{tabular}
* For other current ratings or for 3 phase, refer to ELR relay page 1-11.

Accessories
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Description} & Cat. No. & Price \$ \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Padlock attachment kit (captive)}} & 12 pack and resin & SRCBLCK 12 & 275.00 \\
\hline & & 24 pack and resin & SRCBLCK 24 & 450.00 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Adaptor \\
kit
\end{tabular}} & \multicolumn{2}{|l|}{Eaton, Cutler-Hammer (Quicklag)} & SRCBWA & 26.40 \\
\hline & \multicolumn{2}{|l|}{Heinemann} & SRCBHA & 26.40 \\
\hline
\end{tabular}


Notes: \({ }^{1}\) ) Neutral not switched.
Nuisance tripping may be experienced in VFD and motor starting applications, refer NHP.

\title{
Safe-T series (ELR)
}

\section*{Earth leakage relay}

Standard AS 3190Approval No. N15380
NHP clip-tray mounting (CT chassis)

\section*{Application}

The ELR is identical in width to the single pole Safe-T MCB. The ELR is clip-tray mountable alongside the Safe-T MCB
 when fitted to the CT chassis, as found in the CST/CPS series panelboards.
When the ELR is combined with a Safe-T MCB fitted with a shunt trip, the resulting combination offers overload, short circuit and earth leakage protection and can be retrofitted into an existing installation or installed in a new installation.

\section*{Suitable for commercial and industrial applications.}

Test function
A test button is provided on the unit to functionally test the detection and tripping circuits.
It is recommended a functional test be performed monthly.
\begin{tabular}{llllll}
\begin{tabular}{l} 
No. of \\
Poles
\end{tabular} & \begin{tabular}{l} 
Sensitivity \\
\(\left.(\mathbf{m A})^{\prime}\right)\)
\end{tabular} & \begin{tabular}{l} 
Voltage \\
\((\mathbf{A C )}\)
\end{tabular} & & Cat. No. & Price \$ \\
\hline 1 & 10 & 240 & \(50 / 60 \mathrm{~Hz}\) & ELR24010 & \(\mathbf{5 9 0 . 0 0}\) \\
\hline 1 & 30 & 240 & \(50 / 60 \mathrm{~Hz}\) & ELR24030 & \(\mathbf{5 9 0 . 0 0}\) \\
\hline 1 & 100 & 240 & \(50 / 60 \mathrm{~Hz}\) & ELR240100 & \(\mathbf{5 9 0 . 0 0}\) \\
\hline 1 & 300 & 240 & \(50 / 60 \mathrm{~Hz}\) & ELR240300 & \(\mathbf{5 9 0 . 0 0}\) \\
\hline 1 & 30 & \(415-440\) & \(50 / 60 \mathrm{~Hz}\) & ELR44030 & \(\mathbf{5 9 0 . 0 0}\) \\
\hline
\end{tabular}

\section*{Technical data}
- Operation:

Instantaneous
- Frequency:
\(40-60 \mathrm{~Hz}\)
- Output ratings:

I peak 8 A , I average 0.5 A
- Toroid window
\(4 \times 35 \mathrm{~mm}^{2}\)
(aperture diameter 35 mm )
■ Dimensions:
\(\mathrm{H}=152 \mathrm{~mm}\)
\(\mathrm{W}=25 \mathrm{~mm}\)
\(D=60 \mathrm{~mm}\)
- Weight: \(\quad 0.16 \mathrm{~kg}\)


\section*{Notes: Nuisance tripping may be experienced in VFD and motor starting applications, refer NHP.}

\section*{Din-T series \\ General features}

\section*{Advantages of the Din-T series miniature circuit breakers}
- Short circuit breaking capacity of 6,10 and 15 kA at 415 V AC
- Increased rating up to 63 kA when backed up with HRC fuses
(Refer page 9-10)
- Rated current range from 0.5 A to 125 A
- Silver graphite contacts
- Input connection by lifting cage terminal with capacity of up to \(35 \mathrm{~mm}^{2}\) giving fast and practical connection
- Output terminals offer finger and hand protection with a capacity of up to \(35 \mathrm{~mm}^{2}\)
- Snap fixing with two stop locations, for normal DIN rail mounting
- Approval number N17481

■ Conforms to AS/NZS 60898 and AS 60947-2 as applicable

\section*{Brief description}

The Din-T series miniature circuit breakers have inverse time delayed thermal and instantaneous magnetic trips and are suitable for mounting in distribution boards or in switchgear panels and consumer units.

\section*{Operation}

Protection against overheating of electrical conductors, excess currents due to overload, short circuit or earth fault.

\section*{Application}

In switching, control, distribution and measurement systems for domestic, commercial and industrial installations.

\section*{Tripping characteristics}

\section*{Thermal release}

In case of overload, the release is initiated by a bi-metal strip. Standards AS/ NZS 60898 and AS 60947 define the range of release for specific overload values. Reference ambient temperatures are \(30^{\circ} \mathrm{C}\) and \(40^{\circ} \mathrm{C}\) for the respective standards.

\section*{Magnetic release}

In case of short circuit, an electromagnet with plunger ensures instantaneous tripping. AS/NZS 60898 describes the characteristics for the following curve types:
\begin{tabular}{lll} 
Curve Type & Test current & Application \\
\hline B & \(3-5 \times I_{n}\) & Resistive loads \\
\hline C & \(5-10 \times I_{n}\) & \begin{tabular}{l} 
Protection of general distribution loads \\
-lighting \\
- ocket outlets \\
- motors etc.
\end{tabular} \\
\hline D & \begin{tabular}{l} 
Protection of circuits having high inrush \\
transient currents \\
- high inertia motor starting \\
- transformers \\
- welders
\end{tabular} \\
\hline
\end{tabular}

\section*{Din-T series}

General features

\section*{Handle}

Sealable and padlockable with quick-make and quick-break type mechanism. The handle is sealable in ON and OFF position. Due to the free-tripping mechanism, the MCB contacts open through overload or short circuit even when the handle is sealed in the ON position on all types.

\section*{Input terminal ('OFF' side)}

Box terminal with lifting screw for copper and aluminium conductors: maximum capacity \(1 \times 35 \mathrm{~mm}^{2}\) or \(2 \times 16 \mathrm{~mm}^{2}\).
When unscrewing the screw, the head lifts; however, on pushing the screw head, the box terminal opens. This system enables the MCBs to be linked with a cable and fork or pin type bus comb. The MCB is delivered with a half open box terminal and a lifted screw head.

\section*{Output terminal ('ON' side)}

Box terminal with captive terminal screw for copper and aluminium conductors: max. \(1 \times 35 \mathrm{~mm}^{2}\) or \(2 \times 16 \mathrm{~mm}^{2}\).

The box terminals are always delivered in the open position. Output terminal screw has IP 20 protection against direct finger contact by standard design.

Arc chamber
Contains arc extinction plates, (de-ionising type) designed to break up and dissipate the arc which is generated during interruption of all types of faults.

\section*{Electromagnet}

Operating the plunger which opens the contacts instantaneously.

\section*{Arc magnetic blowout system}

Short circuit currents do not flow through the bi-metal but are directed by the blowout magnet in such a way that the arc is transferred to a special arc runner, therefore taking the bi-metal out of the circuit, which ensures the thermal trip characteristics remain unchanged after an MCB has been exposed to a fault current.
- This combination of the electromagnet (with a plunger rapidly opening the contacts), the blowout magnet and the arc chamber, results in an extremely high short circuit breaking capacity, and very low let through energy.
Catalogue Number construction for Din-T MCBs (6, 10, 10H and 15)


\section*{Din-T6}

\section*{Series 2-63 A}

6 kA 'C' curve
- Standard AS/NZS 60898
- Approval No. N17481
- Current range 2-63 amps 1, 2 and 3 pole
- Sealable and lockable handle
- DIN rail mounting
- Padlockable in OFF position
- Suits CD, NC or GB chassis
- General purpose light, power and motor starting


Curve type: C (5-10 In)
Single pole
\begin{tabular}{llllll}
\(\ln (\mathbf{A})\) & Cat. \(\mathbf{N o .}\) & Price \(\mathbf{\$} \ln (\mathbf{A})\) & Cat. No. & Price \(\mathbf{\$}\) \\
\hline 2 & DTCB6102C & \(\mathbf{3 7 . 0 0}\) & 20 & DTCB6120C & \(\mathbf{3 7 . 0 0}\) \\
\hline 4 & DTCB6104C & \(\mathbf{3 7 . 0 0}\) & 25 & DTCB6125C & \(\mathbf{3 7 . 0 0}\) \\
\hline 6 & DTCB6106C & \(\mathbf{3 7 . 0 0}\) & 32 & DTCB6132C & \(\mathbf{3 7 . 0 0}\) \\
\hline 10 & DTCB6110C & \(\mathbf{3 7 . 0 0}\) & 40 & DTCB6140C & \(\mathbf{3 7 . 0 0}\) \\
\hline 13 & DTCB6113C & \(\mathbf{3 7 . 0 0}\) & 50 & DTCB6150C & \(\mathbf{3 7 . 0 0}\) \\
\hline 16 & DTCB6116C & \(\mathbf{3 7 . 0 0}\) & 63 & DTCB6163C & \(\mathbf{3 7 . 0 0}\) \\
\hline
\end{tabular}

Double pole
\begin{tabular}{llllll}
\(\ln (\mathbf{A})\) & Cat. \(\mathbf{N o}\) & \multicolumn{2}{c}{ Price \(\boldsymbol{\$} \ln (\mathbf{A})\)} & Cat. No. & Price \$ \\
\hline 2 & DTCB6202C & \(\mathbf{1 3 1 . 0 0} 20\) & DTCB6220C & \(\mathbf{1 3 1 . 0 0}\) \\
\hline 4 & DTCB6204C & 131.00 & 25 & DTCB6225C & \(\mathbf{1 3 1 . 0 0}\) \\
\hline 6 & DTCB6206C & \(\mathbf{1 3 1 . 0 0}\) & 32 & DTCB6232C & \(\mathbf{1 3 1 . 0 0}\) \\
\hline 10 & DTCB6210C & \(\mathbf{1 3 1 . 0 0}\) & 40 & DTCB6240C & \(\mathbf{1 3 1 . 0 0}\) \\
\hline 13 & DTCB6213C & \(\mathbf{1 3 1 . 0 0}\) & 50 & DTCB6250C & \(\mathbf{1 3 1 . 0 0}\) \\
\hline 16 & DTCB6216C & \(\mathbf{1 3 1 . 0 0}\) & 63 & DTCB6263C & \(\mathbf{1 3 1 . 0 0}\) \\
\hline
\end{tabular}

Triple pole
\begin{tabular}{|c|c|c|c|c|c|}
\hline In (A) & Cat. No. & Price \$ & \(\ln (\mathrm{A})\) & Cat. No. & Price \$ \\
\hline 2 & DTCB6302C & 166.00 & 20 & DTCB6320C & 166.00 \\
\hline 4 & DTCB6304C & 166.00 & 25 & DTCB6325C & 166.00 \\
\hline 6 & DTCB6306C & 166.00 & 32 & DTCB6332C & 166.00 \\
\hline 10 & DTCB6310C & 166.00 & 40 & DTCB6340C & 166.00 \\
\hline 13 & DTCB6313C & 166.00 & 50 & DTCB6350C & 166.00 \\
\hline 16 & DTCB6316C & 166.00 & 63 & DTCB6363C & 166.00 \\
\hline
\end{tabular}

Notes: The LINE-side is the OFF or bottom of the MCB, and connects to CD, NC or GB chassis tee-offs.
Suitable for the following side mounted accessories:
- AUX/ALM switches - refer page 1-40
- Shunt trip and UVT Trip - refer page 1-39
- Clip-on RCD module and Din-Safe-M module- refer page 1-32
- Din-T terminals and accessories - refer page 1-50

\section*{Din-T6}

Series 2-63 A

\section*{6 kA 'D' curve}
- Standard AS/NZS 60898
- Approval No. N17481
- Current range 2-63 amps 1, 2 and 3 pole
- Sealable and lockable handle
- DIN rail mounting
- Padlockable in OFF position
- Suits CD, NC or GB chassis
- Motor starting and transformer applications


Curve type: D (10-20 In)
Single pole
\begin{tabular}{llllll}
\(\boldsymbol{\operatorname { l n } ( A )}\) & Cat. \(\mathbf{N o}\) & Price \(\mathbf{\$} \boldsymbol{\operatorname { l n } ( \mathbf { A } )}\) & Cat. No. & Price \(\mathbf{\$}\) \\
\hline 2 & DTCB6102D & \(\mathbf{5 1 . 0 0}\) & 20 & DTCB6120D & \(\mathbf{5 1 . 0 0}\) \\
\hline 4 & DTCB6104D & \(\mathbf{5 1 . 0 0}\) & 25 & DTCB6125D & \(\mathbf{5 1 . 0 0}\) \\
\hline 6 & DTCB6106D & \(\mathbf{5 1 . 0 0}\) & 32 & DTCB6132D & \(\mathbf{5 1 . 0 0}\) \\
\hline 10 & DTCB6110D & \(\mathbf{5 1 . 0 0}\) & 40 & DTCB6140D & \(\mathbf{5 4 . 5 0}\) \\
\hline 13 & DTCB6113D & \(\mathbf{5 1 . 0 0}\) & 50 & DTCB6150D & \(\mathbf{5 4 . 5 0}\) \\
\hline 16 & DTCB6116D & \(\mathbf{5 1 . 0 0}\) & 63 & DTCB6163D & \(\mathbf{5 4 . 5 0}\) \\
\hline
\end{tabular}

Double pole
\begin{tabular}{lllllr} 
ln \((\mathbf{A})\) & Cat. No. & Price \(\boldsymbol{\$}\) ln \((\mathbf{A})\) & Cat. No. & Price \(\boldsymbol{\$}\) \\
\hline 2 & DTCB6202D & \(\mathbf{1 5 3 . 0 0}\) & 20 & DTCB6220D & \(\mathbf{1 5 3 . 0 0}\) \\
\hline 4 & DTCB6204D & \(\mathbf{1 5 3 . 0 0}\) & 25 & DTCB6225D & \(\mathbf{1 5 3 . 0 0}\) \\
\hline 6 & DTCB6206D & \(\mathbf{1 5 3 . 0 0}\) & 32 & DTCB6232D & \(\mathbf{1 5 3 . 0 0}\) \\
\hline 10 & DTCB6210D & \(\mathbf{1 5 3 . 0 0}\) & 40 & DTCB6240D & \(\mathbf{1 6 4 . 0 0}\) \\
\hline 13 & DTCB6213D & \(\mathbf{1 5 3 . 0 0}\) & 50 & DTCB6250D & \(\mathbf{1 6 4 . 0 0}\) \\
\hline 16 & DTCB6216D & \(\mathbf{1 5 3 . 0 0}\) & 63 & DTCB6263D & \(\mathbf{1 6 4 . 0 0}\) \\
\hline
\end{tabular}

Triple pole
\begin{tabular}{llllll}
\(\boldsymbol{\operatorname { l n } ( \mathbf { A } )}\) & Cat. No. & Price \(\boldsymbol{\$} \ln (\mathbf{A})\) & Cat. No. & Price \$ \\
\hline 2 & DTCB6302D & \(\mathbf{2 1 5 . 0 0}\) & 20 & DTCB6320D & \(\mathbf{2 1 5 . 0 0}\) \\
\hline 4 & DTCB6304D & \(\mathbf{2 1 5 . 0 0}\) & 25 & DTCB6325D & \(\mathbf{2 1 5 . 0 0}\) \\
\hline 6 & DTCB6306D & \(\mathbf{2 1 5 . 0 0}\) & 32 & DTCB6332D & \(\mathbf{2 1 5 . 0 0}\) \\
\hline 10 & DTCB6310D & \(\mathbf{2 1 5 . 0 0}\) & 40 & DTCB6340D & \(\mathbf{2 2 5 . 0 0}\) \\
\hline 13 & DTCB6313D & \(\mathbf{2 1 5 . 0 0}\) & 50 & DTCB6350D & \(\mathbf{2 2 5 . 0 0}\) \\
\hline 16 & DTCB6316D & \(\mathbf{2 1 5 . 0 0}\) & 63 & DTCB6363D & \(\mathbf{2 2 5 . 0 0}\) \\
\hline
\end{tabular}

Notes: The LINE-side is the OFF or bottom of the MCB, and connects to CD, NC or GB chassis tee-offs.
Suitable for the following side mounted accessories:
- AUX/ALM switches - refer page 1-40
- Shunt trip and UVT Trip - refer page 1-39
- Clip-on RCD module and Din-Safe-M module- refer page 1-32
- Din-T terminals and accessories - refer page 1-50

\section*{Din-T6}

2-in-1 Double the capacity of your load centre

6 kA 'C' curve
- Standard AS/NZS 60898
- Approval No. NSW24783
- Current range 2-40 A
- C curve tripping characteristics
- Saves up to \(50 \%\) space
- DIN rail mounting
- General purpose light and power

Curve type: C (5-10In)


1 pole +1 pole
Single module width ( 18 mm )
\begin{tabular}{|c|c|c|c|c|c|}
\hline In (A) & Cat. No. & Price \$ & In (A) & Cat. No. & Price \$ \\
\hline 2 & DTCBD61102C & 182.00 & 2 & DTCBD6202C & 171.00 \\
\hline 4 & DTCBD61104C & 182.00 & 4 & DTCBD6204C & 171.00 \\
\hline 6 & DTCBD61106C & 182.00 & 6 & DTCBD6206C & 171.00 \\
\hline 10 & DTCBD61110C & 182.00 & 10 & DTCBD6210C & 171.00 \\
\hline 16 & DTCBD61116C & 182.00 & 16 & DTCBD6216C & 171.00 \\
\hline 20 & DTCBD61120C & 182.00 & 20 & DTCBD6220C & 171.00 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Must be same phase.}} & & 25 & DTCBD6225C & 171.00 \\
\hline & & & 32 & DTCBD6232C & 171.00 \\
\hline & & & 40 & DTCBD6240C & 171.00 \\
\hline
\end{tabular}
\begin{tabular}{ll}
3 pole & 4 pole \\
Double module width \((36 \mathrm{~mm})\) & Double module width ( 36 mm )
\end{tabular}
\begin{tabular}{llllll} 
In \((\mathrm{A})\) & Cat. No. & Price \(\$ \ln (\mathrm{~A})\) & Cat. No. & Price \$ \\
\hline 2 & DTCBD6302C & \(\mathbf{2 7 5 . 0 0}\) & 2 & DTCBD6402C & \(\mathbf{3 9 0 . 0 0}\) \\
\hline 4 & DTCBD6304C & \(\mathbf{2 7 5 . 0 0}\) & 4 & DTCBD6404C & \(\mathbf{3 9 0 . 0 0}\) \\
\hline 6 & DTCBD6306C & \(\mathbf{2 7 5 . 0 0}\) & 6 & DTCBD6406C & \(\mathbf{3 9 0 . 0 0}\) \\
\hline 10 & DTCBD6310C & \(\mathbf{2 7 5 . 0 0}\) & 10 & DTCBD6410C & \(\mathbf{3 9 0 . 0 0}\) \\
\hline 16 & DTCBD6316C & \(\mathbf{2 7 5 . 0 0}\) & 16 & DTCBD6416C & \(\mathbf{3 9 0 . 0 0}\) \\
\hline 20 & DTCBD6320C & \(\mathbf{2 7 5 . 0 0}\) & 20 & DTCBD6420C & \(\mathbf{3 9 0 . 0 0}\) \\
\hline 25 & DTCBD6325C & \(\mathbf{2 7 5 . 0 0}\) & 25 & DTCBD6425C & \(\mathbf{3 9 0 . 0 0}\) \\
\hline 32 & DTCBD6332C & \(\mathbf{2 7 5 . 0 0}\) & 32 & DTCBD6432C & \(\mathbf{3 9 0 . 0 0}\) \\
\hline 40 & DTCBD6340C & \(\mathbf{2 7 5 . 0 0}\) & 40 & DTCBD6440C & \(\mathbf{3 9 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: 16 mm tunnel terminals.
Not suitable for chassis mounting.
Compatible with NHP Terasaki auxiliaries and accessories.

\section*{Din-T DC}

\section*{Series 0.5-63 A}

6 kA 'C' curve
- Standard AS/NZS 60898
- Approval No. NSW 24265
- Current range 0.5-63 A 1P and 2P
- C curve tripping characteristic

DC Voltage \(250 \mathrm{~V} 1 \mathrm{P}, 500 \mathrm{~V} 2 \mathrm{P}\)
- AC Voltage 230 V 1P, 400 V 2 P
- Sealable and lockable handle

DIN rail mounting


1 Pole


2 Pole
- Suit CD, NC and GB chassis
- Industrial applications

\section*{Operation}

Din-T DC MCBs are equipped with a permanent magnet which aids arc extinguishing under fault conditions, making this range of MCBs suitable for voltages up to 250 V DC ( 1 pole), 500 V DC ( 2 pole) and 880 V DC ( 4 pole). Din-T DC 1P and 2P MCBs are also suitable for AC voltages. Polarity labeling must be respected due to the permanent magnet in the MCB.

Curve type: C (5-10 In)
Single pole
Double pole
\begin{tabular}{llllll}
\(\boldsymbol{\operatorname { l n } ( \mathbf { A } )}\) & Cat. No. & Price \(\mathbf{\$} \boldsymbol{\operatorname { l n } ( \mathbf { A } )}\) & Cat. No. & Price \(\mathbf{\$}\) \\
\hline 0.5 & DTCBDC105C & \(\mathbf{1 2 6 . 0 0}\) & & \\
\hline 1 & DTCBDC101C & \(\mathbf{1 2 6 . 0 0}\) & 1 & DTCBDC201C & \(\mathbf{2 6 5 . 0 0}\) \\
\hline 2 & DTCBDC102C & \(\mathbf{1 2 6 . 0 0}\) & 2 & DTCBDC202C & \(\mathbf{2 6 5 . 0 0}\) \\
\hline 4 & DTCBDC104C & \(\mathbf{1 2 6 . 0 0}\) & 4 & DTCBDC204C & \(\mathbf{2 6 5 . 0 0}\) \\
\hline 6 & DTCBDC106C & \(\mathbf{1 2 6 . 0 0}\) & 6 & DTCBDC206C & \(\mathbf{2 6 5 . 0 0}\) \\
\hline 10 & DTCBDC110C & \(\mathbf{1 2 6 . 0 0}\) & 10 & DTCBDC210C & \(\mathbf{2 6 5 . 0 0}\) \\
\hline 16 & DTCBDC116C & \(\mathbf{1 2 6 . 0 0}\) & 16 & DTCBDC216C & \(\mathbf{2 6 5 . 0 0}\) \\
\hline 20 & DTCBDC120C & \(\mathbf{1 2 6 . 0 0}\) & 20 & DTCBDC220C & \(\mathbf{2 6 5 . 0 0}\) \\
\hline 25 & DTCBDC125C & \(\mathbf{1 2 6 . 0 0}\) & 25 & DTCBDC225C & \(\mathbf{2 6 5 . 0 0}\) \\
\hline 32 & DTCBDC132C & \(\mathbf{1 2 6 . 0 0}\) & 32 & DTCBDC232C & \(\mathbf{2 6 5 . 0 0}\) \\
\hline 40 & DTCBDC140C & \(\mathbf{1 2 6 . 0 0}\) & 40 & DTCBDC240C & \(\mathbf{2 6 5 . 0 0}\) \\
\hline 50 & DTCBDC150C & \(\mathbf{1 2 6 . 0 0}\) & 50 & DTCBDC250C & \(\mathbf{2 6 5 . 0 0}\) \\
\hline 63 & DTCBDC163C & \(\mathbf{1 2 6 . 0 0}\) & 63 & DTCBDC263C & \(\mathbf{2 6 5 . 0 0}\) \\
\hline
\end{tabular}


\section*{Din-T DC}

\section*{Series 0.5-63 A}

6 kA 'B' curve
- Standard AS/NZS60898
- Approval No. NSW 24265
- Current range 10-63 A 4P
- B curve tripping characteristic

DC Voltage 880 V 4P (1000 V PV systems)
- Sealable and lockable handle
- DIN rail mounting

- Industrial applications

\section*{Operation}

Din-T DC MCBs are equipped with a permanent magnet which aids arc extinguishing under fault conditions, making this range of MCBs suitable for voltages up to 250 V DC ( 1 pole), 500 V DC ( 2 pole) and 880 V DC ( 4 pole). Din-T DC 1P and 2P MCBs are also suitable for AC voltages. Polarity labeling must be respected due to the permanent magnet in the MCB.

Curve type: B ( \(3-5 I_{n}\) )
Four pole
\begin{tabular}{llc} 
In \((A)\) & Cat. No. & Price \(\boldsymbol{\$}\) \\
\hline 10 & DTCBDC410B & \(\mathbf{5 8 0 . 0 0}\) \\
\hline 16 & DTCBDC416B & \(\mathbf{5 8 0 . 0 0}\) \\
\hline 20 & DTCBDC420B & \(\mathbf{5 8 0 . 0 0}\) \\
\hline
\end{tabular}

Connection diagram


Notes: Suitable for the following side mounted accessories:
- AUX/ALM switch - refer page 1-40
- Shunt trip - refer page 1-39
- UVT trip - refer page 1-39
- Clip-on RCD module - refer page 1-32
- Din-T terminals and accessories - refer page 1-50

\section*{Din-T10}

Series 6-63 A

\section*{10 kA 'B' curve}
- Standard AS/NZS 60898
- Approval No. N17481
- Current range 6-63 A 1, 2, and 3 pole
- Sealable and lockable handleDIN rail mounting
- Padlockable in OFF position
- Suits NC, CD or GB type chassis

Resistive load applications


\section*{Curve type: B (3-5In)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Single pole} & \multicolumn{4}{|c|}{Double pole} \\
\hline In (A) & Cat. No. & Price \$ & \(\ln (\mathrm{A})\) & Cat. No. & Price \$ \\
\hline 6 & DTCB10 1 06B & 66.50 & 6 & DTCB10 2 06B & 188.00 \\
\hline 10 & DTCB10 1 10B & 66.50 & 10 & DTCB10 2 10B & 188.00 \\
\hline 16 & DTCB10 1 16B & 66.50 & 16 & DTCB10 2 16B & 188.00 \\
\hline 20 & DTCB10 1 20B & 66.50 & 20 & DTCB10 2 20B & 188.00 \\
\hline 25 & DTCB10 1 25B & 66.50 & 25 & DTCB10 2 25B & 188.00 \\
\hline 32 & DTCB10 1 32B & 66.50 & 32 & DTCB10 2 32B & 188.00 \\
\hline 40 & DTCB10 1 40B & 78.50 & 40 & DTCB10 2 40B & 194.00 \\
\hline 50 & DTCB10 1 50B & 91.00 & 50 & DTCB10 2 50B & 220.00 \\
\hline 63 & DTCB10 1 63B & 109.00 & 63 & DTCB10 2 63B & 230.00 \\
\hline
\end{tabular}

Triple pole
\begin{tabular}{lll}
\(\ln (\mathbf{A})\) & Cat. No. & Price \(\boldsymbol{\$}\) \\
\hline 6 & DTCB10 3 06B & \(\mathbf{2 2 0 . 0 0}\) \\
\hline 10 & DTCB10 3 10B & \(\mathbf{2 2 0 . 0 0}\) \\
\hline 16 & DTCB10 3 16B & \(\mathbf{2 2 0 . 0 0}\) \\
\hline 20 & DTCB10 3 20B & \(\mathbf{2 2 0 . 0 0}\) \\
\hline 25 & DTCB10 3 25B & \(\mathbf{2 2 0 . 0 0}\) \\
\hline 32 & DTCB10 3 32B & \(\mathbf{2 2 0 . 0 0}\) \\
\hline 40 & DTCB10 3 40B & \(\mathbf{2 3 0 . 0 0}\) \\
\hline 50 & DTCB10 3 50B & \(\mathbf{3 0 5 . 0 0}\) \\
\hline 63 & DTCB10 3 63B & \(\mathbf{3 6 5 . 0 0}\) \\
\hline
\end{tabular}

Notes: The LINE-side is the OFF or bottom of the MCB, and connects to NC, GB or CD chassis tee-offs.
A range of UL standard MCBs is available on indent (Ref DTCBUL10...C) Suitable for the following side mounted accessories:
- AUX/ALM switch - refer page 1-40
- Shunt trip and UVT trip - refer page 1-39
- Clip-on RCD module - refer page 1-32
- Din-T terminals and accessories - refer page 1-50

\section*{Din-T10}

Series 0.5-63 A

10 kA 'C' curve
- Standard AS/NZS 60898
- Approval No. N17481
- Current range 0.5-63 A 1, 2, 3 and 4 pole
- Sealable and lockable handle
- DIN rail mounting
- Padlockable in OFF position
- Suits NC, CD or GB chassis
- General purpose light, power and motor starting


Curve type: C (5-10 \(\left.I_{n}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Single pole} & \multicolumn{4}{|c|}{Double pole} \\
\hline In ( A\()\) & Cat. No. & Price \$ & \(\ln (\mathrm{A})\) & Cat. No. & Price \$ \\
\hline 0.5 & DTCB10 1 05C & 58.50 & 0.5 & DTCB10 2 05C & 179.00 \\
\hline 1 & DTCB10 101 C & 58.50 & 1 & DTCB10201C & 179.00 \\
\hline 2 & DTCB10 1 02C & 58.50 & 2 & DTCB10202C & 179.00 \\
\hline 4 & DTCB10 1 04C & 58.50 & 4 & DTCB10 \(204 C\) & 179.00 \\
\hline 6 & DTCB10 1 06C & 58.50 & 6 & DTCB10206C & 179.00 \\
\hline 10 & DTCB10 1 10C & 58.50 & 10 & DTCB102 10C & 179.00 \\
\hline 13 & DTCB10 1 13C & 58.50 & 13 & DTCB102 13C & 179.00 \\
\hline 16 & DTCB10 1 16C & 58.50 & 16 & DTCB102 16C & 179.00 \\
\hline 20 & DTCB10 1 20C & 58.50 & 20 & DTCB10 2 20C & 179.00 \\
\hline 25 & DTCB10 1 25C & 58.50 & 25 & DTCB10 2 25C & 179.00 \\
\hline 32 & DTCB10 1 32C & 58.50 & 32 & DTCB10 2 32C & 179.00 \\
\hline 40 & DTCB10 1 40C & 58.50 & 40 & DTCB10 2 40C & 179.00 \\
\hline 50 & DTCB10 1 50C & 58.50 & 50 & DTCB102 50C & 179.00 \\
\hline 63 & DTCB10 1 63C & 58.50 & 63 & DTCB102 63C & 179.00 \\
\hline
\end{tabular}

Triple pole
Four pole
\begin{tabular}{|c|c|c|c|c|}
\hline \(\ln (\mathrm{A})\) & Cat. No. & Price \$ \(\ln (\mathrm{A})\) & Cat. No. & Price \$ \\
\hline 0.5 & DTCB10 305 C & 215.00 & & \\
\hline 1 & DTCB10 301C & 215.001 & DTCB10 401 C & 255.00 \\
\hline 2 & DTCB10302C & 215.002 & DTCB10402C & 255.00 \\
\hline 4 & DTCB10 3 04C & 215.004 & DTCB10404C & 255.00 \\
\hline 6 & DTCB10 3 06C & 215.006 & DTCB10406C & 255.00 \\
\hline 10 & DTCB10 3 10C & 215.0010 & DTCB10 4 10C & 255.00 \\
\hline 13 & DTCB10 3 13C & 215.0013 & DTCB104 13C & 255.00 \\
\hline 16 & DTCB10 3 16C & 215.0016 & DTCB10 4 16C & 255.00 \\
\hline 20 & DTCB10 3 20C & 215.0020 & DTCB10 4 20C & 255.00 \\
\hline 25 & DTCB10 3 25C & 215.0025 & DTCB10 4 25C & 255.00 \\
\hline 32 & DTCB10 3 32C & 215.0032 & DTCB10 4 32C & 255.00 \\
\hline 40 & DTCB10 3 40C & 215.0040 & DTCB10 4 40C & 265.00 \\
\hline 50 & DTCB10 3 50C & 215.0050 & DTCB10 4 50C & 280.00 \\
\hline 63 & DTCB10 3 63C & 215.0063 & DTCB10 4 63C & 290.00 \\
\hline
\end{tabular}

\section*{Din-T10}

Series 0.5-63 A

\section*{10 kA ' \(D^{\prime}\) curve}
- Standard AS/NZS 60898
- Approval No. N17481
- Current range 0.5-63 A 1, 2, 3 and 4 pole
- Sealable and lockable handle
- DIN rail mounting
- Padlockable in OFF position
- Suits NC, CD or GB type chassis
- Motor starting and transformer applications


Curve type: D ( \(10-20 I_{\mathrm{n}}\) )
Single pole
\begin{tabular}{|c|c|c|c|c|}
\hline In ( \(A\) ) & Cat. No. & Price \(\$ \ln (\mathrm{~A})\) & Cat. No. & Price \$ \\
\hline 0.5 & DTCB10 1 05D & 66.500 .5 & DTCB10 2 05D & 188.00 \\
\hline 1 & DTCB10 1 01D & 66.501 & DTCB10 2 01D & 188.00 \\
\hline 2 & DTCB10 1 02D & 66.502 & DTCB10 2 02D & 188.00 \\
\hline 4 & DTCB10 1 04D & 66.504 & DTCB10 2 04D & 188.00 \\
\hline 6 & DTCB10 1 06D & 66.506 & DTCB10206D & 188.00 \\
\hline 10 & DTCB10 1 10D & 66.5010 & DTCB10 2 10D & 188.00 \\
\hline 13 & DTCB10 1 13D & 66.5013 & DTCB10 2 13D & 188.00 \\
\hline 16 & DTCB10 1 16D & 66.5016 & DTCB10 2 16D & 188.00 \\
\hline 20 & DTCB10 1 20D & 66.5020 & DTCB10 2 20D & 188.00 \\
\hline 25 & DTCB10 1 25D & 66.5025 & DTCB10 2 25D & 188.00 \\
\hline 32 & DTCB10 1 32D & 66.5032 & DTCB10 2 32D & 188.00 \\
\hline 40 & DTCB10 1 40D & 84.5040 & DTCB10 2 40D & 205.00 \\
\hline 50 & DTCB10 1 50D & 109.0050 & DTCB10 2 50D & 230.00 \\
\hline 63 & DTCB10 1 63D & 133.0063 & DTCB10 2 63D & 255.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Triple pole} & \multicolumn{3}{|c|}{Four pole} & \multirow[b]{2}{*}{Price \$} \\
\hline \(\underline{I n}(\mathrm{~A})\) & Cat. No. & Price \$ 1 & In (A) & Cat. No. & \\
\hline 0.5 & DTCB10 3 05D & 220.00 & 0.5 & - & \\
\hline 1 & DTCB10 3 01D & 220.001 & 1 & - & \\
\hline 2 & DTCB10 3 02D & 220.002 & 2 & - & \\
\hline 4 & DTCB10 3 04D & 220.004 & 4 & DTCB10 4 04D & 265.00 \\
\hline 6 & DTCB10 3 06D & 220.006 & 6 & DTCB10 4 06D & 265.00 \\
\hline 10 & DTCB10 3 10D & 220.00 & 10 & DTCB10 4 10D & 265.00 \\
\hline 13 & DTCB10 3 13D & 220.00 & 13 & DTCB10 4 13D & 265.00 \\
\hline 16 & DTCB10 3 16D & 220.00 & 16 & DTCB10 4 16D & 265.00 \\
\hline 20 & DTCB10 3 20D & 220.00 & 20 & DTCB10 4 20D & 265.00 \\
\hline 25 & DTCB10 3 25D & 220.00 & 25 & DTCB10 4 25D & 265.00 \\
\hline 32 & DTCB10 3 32D & 220.00 & 32 & DTCB10 4 32D & 265.00 \\
\hline 40 & DTCB10 3 40D & 230.00 & 40 & DTCB10 4 40D & 280.00 \\
\hline 50 & DTCB10 3 50D & 305.005 & 50 & DTCB10 4 50D & 365.00 \\
\hline 63 & DTCB10 3 63D & 365.00 & 63 & DTCB10 4 63D & 550.00 \\
\hline
\end{tabular}

\section*{Din-T10H}

Series 80-125 A

10 kA 'C' Curve
7.5 kA 'D' Curve
- Standard AS/NZS 60947-2
- Current range 80-125 A 1, 2, 3 and 4 pole

Module width \(=27 \mathrm{~mm}\)
- DIN rail mounting

- Suits NCH or CDH hybrid type chassis
- Industrial applications

Curve type: C (5-10 \(\left.I_{n}\right)\)
Single pole

\section*{Double pole}
\begin{tabular}{llcllr} 
In \((\mathbf{A})\) & Cat. No. & Price \(\mathbf{\$} \mathbf{\operatorname { l n } ( A )}\) & Cat. No. & Price \(\mathbf{\$}\) \\
\hline 80 & DINT10H180C & \(\mathbf{1 2 8 . 0 0}\) & 80 & DINT10H280C & \(\mathbf{3 3 0 . 0 0}\) \\
\hline 100 & DINT10H1100C & \(\mathbf{1 5 1 . 0 0}\) & 100 & DINT10H2100C & \(\mathbf{3 5 0 . 0 0}\) \\
\hline 125 & DINT10H1125C & \(\mathbf{1 8 9 . 0 0}\) & 125 & DINT10H2125C & \(\mathbf{4 7 0 . 0 0}\) \\
\hline
\end{tabular}

Triple pole Four pole
\begin{tabular}{llrlrr}
\(\ln (\mathbf{A})\) & Cat. No. & Price \(\mathbf{\$} \ln (\mathbf{A})\) & Cat. No. & Price \(\mathbf{\$}\) \\
\hline 80 & DINT10H380C & \(\mathbf{4 0 0 . 0 0} 80\) & DINT10H480C & \(\mathbf{7 0 0 . 0 0}\) \\
\hline 100 & DINT10H3100C & \(\mathbf{4 0 0 . 0 0}\) & 100 & DINT10H4100C & \(\mathbf{7 0 0 . 0 0}\) \\
\hline 125 & DINT10H3125C & \(\mathbf{5 9 0 . 0 0}\) & 125 & DINT10H4125C & \(\mathbf{1 0 4 0 . 0 0}\) \\
\hline
\end{tabular}

Curve type: D ( \(10-20 I_{n}\) )
Single pole Double pole
\begin{tabular}{llcllc}
\(\ln (\mathbf{A})\) & Cat. No. & Price \(\boldsymbol{\$} \boldsymbol{\operatorname { l n } ( \mathbf { A } )}\) & Cat. No. & Price \(\boldsymbol{\$}\) \\
\hline 80 & DINT10H180D & \(\mathbf{1 8 2 . 0 0}\) & 80 & DINT10H280D & \(\mathbf{3 5 5 . 0 0}\) \\
\hline 100 & DINT10H1100D & \(\mathbf{1 8 2 . 0 0}\) & 100 & DINT10H2100D & \(\mathbf{4 0 0 . 0 0}\) \\
\hline 125 & DINT10H1125D & \(\mathbf{2 1 0 . 0 0}\) & 125 & DINT10H2125D & \(\mathbf{5 3 0 . 0 0}\) \\
\hline
\end{tabular}

Triple pole
Four pole
\begin{tabular}{llrllr}
\(\ln (\mathbf{A})\) & Cat. No. & Price \(\mathbf{\$} \ln (\mathbf{A})\) & Cat. No. & Price \$ \\
\hline 80 & DINT10H380D & \(\mathbf{4 5 5 . 0 0} 80\) & DINT10H480D & \(\mathbf{7 8 0 . 0 0}\) \\
\hline 100 & DINT10H3100D & \(\mathbf{4 5 5 . 0 0}\) & 100 & DINT10H4100D & \(\mathbf{7 8 0 . 0 0}\) \\
\hline 125 & DINT10H3125D & \(\mathbf{6 5 0 . 0 0}\) & 125 & DINT10H4125D & \(\mathbf{1 1 4 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: The LINE-side is the OFF or bottom of the MCB, and connects to NCH or CDH chassis tee-offs.
Din-T10H MCBs do not fit NC or CD chassis with 18 mm pole pitch.
All poles include overcurrent and short circuit protection.
Suitable for the following side mounted accessories:
- AUX/ALM switch - refer page 1-40
- Shunt trip - refer page 1-39
- Din-T terminals and accessories - refer page 1-50

\section*{Din-T15}

Series 6-63A

15 kA, 20 kA, 25 kA, 50 kA 'C' curve
- Standard AS/NZS 60947-2
- Current rating 6-63 A 1, 2, 3 and 4 pole
- Sealable and lockable handle
- DIN rail mounting
- Suits NC or CD type chassis
- Industrial applications

Curve type: C (5-10 In)
Single pole Double pole
\begin{tabular}{llllr} 
In (A) & Cat. No. & Price \(\boldsymbol{\$}\) In (A) & Cat. No. & Price \$ \\
\hline 6 & DTCB15 1 06C & \(\mathbf{1 5 0 . 0 0} 6\) & DTCB15 2 06C & \(\mathbf{2 7 0 . 0 0}\) \\
\hline 10 & DTCB15 1 10C & \(\mathbf{1 5 0 . 0 0} 10\) & DTCB15 2 10C & \(\mathbf{2 7 0 . 0 0}\) \\
\hline 13 & DTCB15 1 13C & \(\mathbf{1 5 0 . 0 0} 13\) & DTCB15 2 13C & \(\mathbf{2 7 0 . 0 0}\) \\
\hline 16 & DTCB15 1 16C & \(\mathbf{1 5 0 . 0 0} 16\) & DTCB15 2 16C & \(\mathbf{2 7 0 . 0 0}\) \\
\hline 20 & DTCB15 1 20C & \(\mathbf{1 5 0 . 0 0} 20\) & DTCB15 2 20C & \(\mathbf{2 7 0 . 0 0}\) \\
\hline 25 & DTCB15 1 25C & \(\mathbf{1 5 0 . 0 0} 25\) & DTCB15 2 25C & \(\mathbf{2 7 0 . 0 0}\) \\
\hline 32 & DTCB15 1 32C & \(\mathbf{1 5 0 . 0 0} 32\) & DTCB15 2 32C & \(\mathbf{2 7 0 . 0 0}\) \\
\hline 40 & DTCB15 1 40C & \(\mathbf{1 5 0 . 0 0} 40\) & DTCB15 2 40C & \(\mathbf{2 7 0 . 0 0}\) \\
\hline 50 & DTCB15 1 50C & \(\mathbf{1 5 0 . 0 0} 50\) & DTCB15 2 50C & \(\mathbf{2 7 0 . 0 0}\) \\
\hline 63 & DTCB15 1 63C & \(\mathbf{1 5 0 . 0 0} 63\) & DTCB15 2 63C & \(\mathbf{2 7 0 . 0 0}\) \\
\hline
\end{tabular}

Triple pole
Four pole
\begin{tabular}{llllr} 
In (A) & Cat. No. & Price \$ In (A) & Cat. No. & Price \$ \\
\hline 6 & DTCB15 3 06C & \(\mathbf{4 2 0 . 0 0} 6\) & DTCB15 4 06C & \(\mathbf{4 9 0 . 0 0}\) \\
\hline 10 & DTCB15 3 10C & \(\mathbf{4 2 0 . 0 0} 10\) & DTCB15 4 10C & \(\mathbf{4 9 0 . 0 0}\) \\
\hline 13 & DTCB15 3 13C & \(\mathbf{4 2 0 . 0 0} 13\) & DTCB15 4 13C & \(\mathbf{4 9 0 . 0 0}\) \\
\hline 16 & DTCB15 3 16C & \(\mathbf{4 2 0 . 0 0} 16\) & DTCB15 4 16C & \(\mathbf{4 9 0 . 0 0}\) \\
\hline 20 & DTCB15 3 20C & \(\mathbf{4 2 0 . 0 0} 20\) & DTCB15 4 20C & \(\mathbf{4 9 0 . 0 0}\) \\
\hline 25 & DTCB15 3 25C & \(\mathbf{4 2 0 . 0 0} 25\) & DTCB15 4 25C & \(\mathbf{4 9 0 . 0 0}\) \\
\hline 32 & DTCB15 3 32C & \(\mathbf{4 2 0 . 0 0} 32\) & DTCB15 4 32C & \(\mathbf{4 9 0 . 0 0}\) \\
\hline 40 & DTCB15 3 40C & \(\mathbf{4 2 0 . 0 0} 40\) & DTCB15 40C & \(\mathbf{4 9 0 . 0 0}\) \\
\hline 50 & DTCB15 3 50C & \(\mathbf{4 2 0 . 0 0} 50\) & DTCB15 450C & \(\mathbf{4 9 0 . 0 0}\) \\
\hline 63 & DTCB15 3 63C & \(\mathbf{4 2 0 . 0 0} 63\) & DTCB15 463C & \(\mathbf{4 9 0 . 0 0}\) \\
\hline
\end{tabular}

Short circuit capacity
\begin{tabular}{llll} 
In \((\mathbf{A})\) & No. poles & Voltage (V) & Icu \((\mathbf{k A})\) \\
\hline \(6-25\) & \(\frac{1}{2-4}\) & 240 & 25 \\
\hline \(32-40\) & \(\frac{1}{2-4}\) & \(240 / 415\) & \(50 / 25\) \\
\hline \(50-63\) & \(\frac{1}{2-4}\) & 240 & 20 \\
\hline
\end{tabular}

Notes: The LINE-side is the OFF or bottom of the MCB, and connects to chassis. \(\mathrm{lcs}=50 \% \mathrm{lcu}\).

\section*{Din-T6 \\ Easy-Fit MCB and RCCBs - Tool-free connection}

6 kA 'C' curve
- Standard AS/NZS 60898
- Approval No. NSW 24783
- Current range 2-63 A
- C curve tripping characteristic
- Cable clamping technology
- Line side- Plug in or screw in busbar comb
- Load side- Screw-less cable connection up to 20 A
- DIN rail mounting

- General purpose light and power

Curve type: C (5-10 In)
Single pole
Triple pole
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\ln (\mathrm{A})\) & Cat. No. & Price \$ & \(\ln (\mathrm{A})\) & Cat. No. & Price \$ \\
\hline 6 & DTCBE6106C \({ }^{1}\) ) & 40.50 & 6 & DTCBE6306C \({ }^{1}\) ) & 166.00 \\
\hline 10 & DTCBE6110 \({ }^{1}\) ) & 40.50 & 10 & DTCBE6310 \({ }^{1}\) ) & 166.00 \\
\hline 16 & DTCBE6116C \({ }^{1}\) ) & 40.50 & 16 & DTCBE6316C \({ }^{1}\) ) & 166.00 \\
\hline 20 & DTCBE6120 \({ }^{1}\) ) & 40.50 & 20 & DTCBE6320 \({ }^{1}\) ) & 166.00 \\
\hline 25 & DTCBE6125C \({ }^{\text {2 }}\) ) & 40.50 & 25 & DTCBE6325C \({ }^{\text {2 }}\) ) & 166.00 \\
\hline 32 & DTCBE6132C \({ }^{\text {2 }}\) ) & 40.50 & 32 & DTCBE6332C \({ }^{\text {2 }}\) ) & 166.00 \\
\hline 40 & DTCBE6140C \({ }^{2}\) ) & 40.50 & 40 & DTCBE6340 \({ }^{2}\) ) & 166.00 \\
\hline 50 & DTCBE6150 \({ }^{2}\) ) & 40.50 & 50 & DTCBE6350 \({ }^{2}\) ) & 166.00 \\
\hline 63 & DTCBE6163C \({ }^{2}\) ) & 40.50 & 63 & DTCBE6363C \({ }^{\text {2 }}\) ) & 166.00 \\
\hline
\end{tabular}

\section*{Din-Safe RCD}
- Standard AS/NZS 61008
- Approval No NSW 17482
- Current range 40-63 A
- 2 pole and 4 pole configurations
- 30 mA sensititvity
- Cable clamping technology
- Line side- Screw terminal
- Load side- Screw terminal or plug in busbar comb
- DIN rail mounting

\begin{tabular}{llllll} 
No. poles & Trip sens. & \begin{tabular}{l} 
Amp \\
rating
\end{tabular} & Voltage & Cat. No. & Price \(\mathbf{\$}\) \\
\hline \(2 \mathrm{P}(1 \mathrm{P}+\mathrm{N})\) & 30 mA & 40 A & 240 V & DSRCDE24030 & \(\mathbf{2 5 0 . 0 0}\) \\
\hline & & 63 A & 240 V & DSRCDE26330 & \(\mathbf{2 8 5 . 0 0}\) \\
\hline \(4 \mathrm{P}(3 \mathrm{P}+\mathrm{N})\) & 30 mA & 40 A & \(240 / 415 \mathrm{~V}\) & DSRCDE44030 & \(\mathbf{3 3 5 . 0 0}\) \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) Screw-less cable clamping 'load-side' connection.
\({ }^{2}\) ) Screw 'load-side' connection.
Double pole and 'D' Curve available on request.
}

\section*{Din-Safe}

Safety switches (RCCB)

\begin{tabular}{|c|c|c|c|c|c|}
\hline No. poles & Trip sens. & \multicolumn{2}{|l|}{Amp rating Voltage} & Cat. No. & Price \$ \\
\hline \multirow{7}{*}{\(2 \mathrm{P}(1 \mathrm{P}+\mathrm{N})\)} & \multirow{3}{*}{30 mA} & 40 A & 240 V & DSRCD24030 & 240.00 \\
\hline & & 63 A & 240 V & DSRCD26330 & 265.00 \\
\hline & & 80 A & 240 V & DSRCD28030 & 295.00 \\
\hline & \multirow[b]{2}{*}{100 mA} & 40 A & 240 V & DSRCD240100 & 290.00 \\
\hline & & 80 A & 240 V & DSRCD280100 & 355.00 \\
\hline & \multirow[b]{2}{*}{300 mA} & 40 A & 240 V & DSRCD240300 & 330.00 \\
\hline & & 80 A & 240 V & DSRCD280300 & 370.00 \\
\hline \multirow{11}{*}{\(4 \mathrm{P}(3 \mathrm{P}+\mathrm{N})\)} & \multirow{4}{*}{30 mA} & 40 A & 415 V & DSRCD44030 & 315.00 \\
\hline & & 63 A & 415 V & DSRCD46330 & 335.00 \\
\hline & & 80 A & 415 V & DSRCD48030 & 375.00 \\
\hline & & 100 A & 415 V & DSRCD410030 & 560.00 \\
\hline & \multirow{4}{*}{100 mA} & 40 A & 415 V & DSRCD440100 & 340.00 \\
\hline & & 63 A & 415 V & DSRCD463100 & 425.00 \\
\hline & & 80 A & 415 V & DSRCD480100 & 475.00 \\
\hline & & 100 A & 415 V & DSRCD4100100 & 560.00 \\
\hline & \multirow[b]{2}{*}{300 mA} & 40 A & 415 V & DSRCD440300 & 370.00 \\
\hline & & 100 A & 415 V & DSRCD4100300 & 560.00 \\
\hline & 500 mA & 100 A & 415 V & DSRCD4100500 & 570.00 \\
\hline
\end{tabular}

High immunity type
\begin{tabular}{llllll}
\hline \multirow{2}{*}{\(2 \mathrm{P}(1 \mathrm{P}+\mathrm{N})\)} & \multirow{2}{*}{30 mA} & 40 A & 240 V & DSRCD24030AI & \(\mathbf{2 9 0 . 0 0}\) \\
& & 63 A & 240 V & DSRCD26330AI & \(\mathbf{3 3 5 . 0 0}\) \\
\hline \multirow{2}{*}{\(4 \mathrm{P}(3 \mathrm{P}+\mathrm{N})\)} & \multirow{2}{*}{30 mA} & 40 A & 415 V & DSRCD44030AI & \(\mathbf{3 5 0 . 0 0}\) \\
\cline { 3 - 6 } & \multirow{2}{*}{63 A} & 415 V & DSRCD46330AI & \(\mathbf{4 3 5 . 0 0}\) \\
\hline
\end{tabular}

Selective type ( 40 ms delay)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(2 \mathrm{P}(1 \mathrm{P}+\mathrm{N})\)} & 100 mA & 63 A & 240 V & DSRCD263100S & 365.00 \\
\hline & 300 mA & 63 A & 240 V & DSRCD263300S & 400.00 \\
\hline \multirow{4}{*}{\(4 \mathrm{P}(3 \mathrm{P}+\mathrm{N})\)} & \multirow[b]{2}{*}{100 mA} & 63 A & 415 V & DSRCD463100S & 445.00 \\
\hline & & 100 A & 415 V & DSRCD4100100S & 610.00 \\
\hline & \multirow[b]{2}{*}{300 mA} & 63 A & 415 V & DSRCD463300S & 510.00 \\
\hline & & 100 A & 415 V & DSRCD4100300S & 620.00 \\
\hline
\end{tabular}

Notes: 30 mA tripping characteristics: \(0.5 \times \Delta \mathrm{n}=\) no tripping, \(1 \times \Delta \mathrm{n}=\mathrm{T} \leq 300 \mathrm{mS}\), \(2 \times \Delta \mathrm{n}=\mathrm{T} \leq 150 \mathrm{mS}, 5 \times \Delta \mathrm{n}=\mathrm{T} \leq 40 \mathrm{mS}\)


\section*{Din-Safe \\ Safety switches (RCCB)}

Standard AS/NZS 61008
- Approval No. N17482
- Current ratings \(40,63,80\) and 100 A
- 2 and 4 pole configuration
- Accepts Din-T side mounting accessories
- Handle sealable and padlockable


\section*{Type A RCD}
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. poles & Trip sens & \multicolumn{2}{|l|}{Amp rating Voltage} & Cat. No. & Price \$ \\
\hline \multirow{5}{*}{\(2 \mathrm{P}(1 \mathrm{P}+\mathrm{N})\)} & \multirow{3}{*}{30 mA} & 40 A & 240 V & DSRCD24030A & 265.00 \\
\hline & & 63 A & 240 V & DSRCD26330A & 340.00 \\
\hline & & 80 A & 240 V & DSRCD28030A & 400.00 \\
\hline & \multirow[b]{2}{*}{100 mA} & 40 A & 240 V & DSRCD240100A & 365.00 \\
\hline & & 80 A & 240 V & DSRCD280100A & 365.00 \\
\hline \multirow{5}{*}{\(4 \mathrm{P}(3 \mathrm{P}+\mathrm{N})\)} & \multirow{3}{*}{30 mA} & 40 A & 415 V & DSRCD44030A & 375.00 \\
\hline & & 63 A & 415 V & DSRCD46330A & 395.00 \\
\hline & & 100 A & 415 V & DSRCD410030A & 630.00 \\
\hline & \multirow[b]{2}{*}{100 mA} & 63 A & 415 V & DSRCD463100A & 445.00 \\
\hline & & 80 A & 415 V & DSRCD480100A & 560.00 \\
\hline
\end{tabular}

Type B
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{4}{*}{4P (3P+N)} & 30 mA & 63 A & 240 V & DSRCD46330B & 2780.00 \\
\hline & 100 mA & 63 A & 240 V & DSRCD463100B & 2780.00 \\
\hline & 500 mA & 125 A & 415 V & DSRCD4125500B & 2780.00 \\
\hline & 300 mA & 63 A & 415 V & DSRCD463300BS \({ }^{1}\) ) & 2780.00 \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) Selective type.
30 mA tripping characteristics: \(0.5 \times \Delta \mathrm{n}=\) no tripping, \(1 \times \Delta \mathrm{n}=\mathrm{T} \leq 300 \mathrm{mS}\), \(2 \times \Delta \mathrm{n}=\mathrm{T} \leq 150 \mathrm{mS}, 5 \times \Delta \mathrm{n}=\mathrm{T} \leq 40 \mathrm{mS}\)

\author{
Din-Safe \\ Safety switches (RCCB)
}

Connection details


Circuit diagrams


Dimensions (mm)


\title{
Din-Safe \\ Compact single pole width residual current circuit breaker (RCBO) Same dimensions as a standard MCB
}

6 kA
- Standard AS/NZS 61009
- Approval No. NSW24576
- Current range 6-32 A
- C curve tripping characteristic
- Short circuit, overcurrent and earth leakage protection
- Sensitivity 30 mA
- DIN rail mounting
- Dual DIN clip
- Suits NC, CD and GB chassis

- Suitable for loadcenters and panelboards
- General purpose light and power

Curve type: C (5-10 In)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Trip sens. & No. of poles & Voltage & Short circuit cap. & In (A) & Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline \multirow{6}{*}{30 mA} & \multirow{6}{*}{1 pole} & \multirow{6}{*}{\[
\begin{aligned}
& 240 \mathrm{~V} \\
& \mathrm{AC}
\end{aligned}
\]} & \multirow[t]{6}{*}{6 kA} & 6 & DSRCBS0630C & 320.00 \\
\hline & & & & 10 & DSRCBS1030C & 320.00 \\
\hline & & & & 16 & DSRCBS1630C & 320.00 \\
\hline & & & & 20 & DSRCBS2030C & 320.00 \\
\hline & & & & 25 & DSRCBS2530C & 320.00 \\
\hline & & & & 32 & DSRCBS3230C & 320.00 \\
\hline
\end{tabular}

Curve type: B (3-5 In)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Trip sens. & No. of poles & Voltage & Short circuit cap. & \(\ln (\mathrm{A})\) & Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline \multirow{6}{*}{30 mA} & \multirow{6}{*}{1 pole} & \multirow{6}{*}{\[
\begin{aligned}
& 240 \mathrm{~V} \\
& \mathrm{AC}
\end{aligned}
\]} & \multirow{6}{*}{6 kA} & 6 & DSRCBS0630B & 320.00 \\
\hline & & & & 10 & DSRCBS1030B & 320.00 \\
\hline & & & & 16 & DSRCBS1630B & 320.00 \\
\hline & & & & 20 & DSRCBS2030B & 320.00 \\
\hline & & & & 25 & DSRCBS2530B & 320.00 \\
\hline & & & & 32 & DSRCBS3230B & 320.00 \\
\hline
\end{tabular}

Dimensions (mm)


Connection diagram


Notes: ') Insert 'A' at end of part number for Type A RCD e.g. DSRCBS-20-30-CA. Nuisance tripping may be experienced in VFD and motor starting applications, refer NHP.

\section*{Din-Safe}

Single pole width residual current circuit breaker (RCBO)

\section*{10 kA}
- Standard AS/NZS 61009
- Approval No. N17482
- One module wide ( 18 mm )
- Short circuit, overcurrent and earth leakage protection
- Short circuit capacity 10 kA
- Sensitivity 10 and 30 mA
- Suits NC, CD or GB chassis
- Type 'A' RCD


Curve type: C (5-10In)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Trip sens. & No. of poles & Voltage & Short circuit cap. & In (A) & Cat. No. \(\left.{ }^{1}\right)^{2}\) ) & Price \$ \\
\hline \multirow{7}{*}{30 mA} & \multirow{7}{*}{1 Pole} & \multirow{7}{*}{240 V AC} & \multirow{7}{*}{10 kA} & 6 & DSRCBH0630A & 310.00 \\
\hline & & & & 10 & DSRCBH1030A & 310.00 \\
\hline & & & & 16 & DSRCBH1630A & 310.00 \\
\hline & & & & 20 & DSRCBH2030A & 310.00 \\
\hline & & & & 25 & DSRCBH2530A & 310.00 \\
\hline & & & & 32 & DSRCBH3230A & 310.00 \\
\hline & & & & 40 & DSRCBH4030A & 310.00 \\
\hline \multirow{7}{*}{10 mA} & \multirow{7}{*}{1 Pole} & \multirow{7}{*}{240 V AC} & \multirow{7}{*}{10 kA} & 6 & DSRCBH0610A & 400.00 \\
\hline & & & & 10 & DSRCBH1010A & 400.00 \\
\hline & & & & 16 & DSRCBH1610A & 400.00 \\
\hline & & & & 20 & DSRCBH2010A & 400.00 \\
\hline & & & & 25 & DSRCBH2510A & 400.00 \\
\hline & & & & 32 & DSRCBH3210A & 400.00 \\
\hline & & & & 40 & DSRCBH4010A & 400.00 \\
\hline
\end{tabular}

\section*{Dimensions (mm)}


Connection diagram


Notes: The LINE-side is the OFF or bottom of the MCB, and connects to chassis tee-offs.
\({ }^{1}\) ) Neutral not switched.
\({ }^{2}\) ) Will not accept Din-T side mounting accessories.
30 mA tripping characteristics: \(0.5 \times \mathrm{I} \Delta \mathrm{n}=\) no tripping, \(1 \times 1 \Delta \mathrm{n}=\mathrm{T} \leq 300 \mathrm{mS}\)
\[
2 \times I \Delta \mathrm{n}=\mathrm{T} \leq 150 \mathrm{mS}, 5 \times \mathrm{l} \Delta \mathrm{n}=\mathrm{T} \leq 40 \mathrm{mS}
\]

Nuisance tripping may be experienced in VFD and motor starting applications refer NHP.

\section*{Din-Safe MCB (RCBO)}

10 kA MCB without Pigtail (RCBO)
- Standard AS/NZS 61009
- Approval No. N17482
- Switched neutral
- Suits 3 P+N NC or GB chassis or special CD chassis
- Suits loadcenters


Din-Safe MCB is a combined MCB/RCD providing overload, short circuit and earth leakage protection in the one integral unit.

Curve type: C (5-10 In)
Type AC RCD
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Trip sens. & No. of poles & Voltage (AC) & Phase & In (A) & Cat. No. & Price \$ \\
\hline \multirow{7}{*}{30 mA} & \multirow[t]{7}{*}{2 Pole} & \multirow[t]{7}{*}{110/240} & \multirow{7}{*}{\(1 \mathrm{P}+\mathrm{N}\)} & 6 & DSRCB0630 & 275.00 \\
\hline & & & & 10 & DSRCB1030 & 275.00 \\
\hline & & & & 16 & DSRCB1630 & 275.00 \\
\hline & & & & 20 & DSRCB2030 & 275.00 \\
\hline & & & & 25 & DSRCB2530 & 275.00 \\
\hline & & & & 32 & DSRCB3230 & 275.00 \\
\hline & & & & 40 & DSRCB4030 & 275.00 \\
\hline
\end{tabular}

Type A RCD
\begin{tabular}{lllllll}
\begin{tabular}{l} 
Trip \\
sens.
\end{tabular} & \begin{tabular}{l} 
No. of \\
poles
\end{tabular} & \begin{tabular}{l} 
Voltage \\
(AC)
\end{tabular} & Phase & In (A) & Cat. No. & \\
\hline
\end{tabular}

Notes: 30 mA tripping characteristics: \(0.5 \times 1 \Delta \mathrm{n}=\) no tripping, \(1 \times \mathrm{I} \Delta \mathrm{n}=\mathrm{T} \leq 300 \mathrm{mS}\)
\[
2 \times 1 \Delta \mathrm{n}=\mathrm{T} \leq 150 \mathrm{mS}, 5 \times \mathrm{l} \Delta \mathrm{n}=\mathrm{T} \leq 40 \mathrm{mS}
\]

\section*{Din-Safe \\ MCB (RCBO)}

\section*{10 kA MCB with Pigtail (RCBO)}
- Standard AS/NZS 61009
- Approval No. N17482
- Un-switched neutral
- Suits NC, CD or GB chassis

Complete with revised terminal configuration and neutral pigtail, will fit standard Din-T 3 ph chassis.


Curve type: C (5-10 In)
Type AC RCD
\begin{tabular}{|c|c|c|c|c|c|}
\hline Trip No. of sens. poles & Voltage (AC) & Phase & In (A) & Cat. No. & Price \$ \\
\hline \multirow{7}{*}{30 mA 2 Pole} & \multirow{7}{*}{110/240} & \multirow{7}{*}{\(1 \mathrm{P}+\mathrm{N}\)} & 6 & DSRCB0630P & 280.00 \\
\hline & & & 10 & DSRCB1030P & 280.00 \\
\hline & & & 16 & DSRCB1630P & 280.00 \\
\hline & & & 20 & DSRCB2030P & 280.00 \\
\hline & & & 25 & DSRCB2530P & 280.00 \\
\hline & & & 32 & DSRCB3230P & 280.00 \\
\hline & & & 40 & DSRCB4030P & 280.00 \\
\hline
\end{tabular}

Notes: 30 mA tripping characteristics: \(0.5 \times \mathrm{l} \Delta \mathrm{n}=\) no tripping, \(1 \times 1 \Delta \mathrm{n}=\mathrm{T} \leq 300 \mathrm{mS}\) \(2 \times \mathrm{I} \mathrm{n}=\mathrm{T} \leq 150 \mathrm{mS}, 5 \times \mathrm{I} \mathrm{n}=\mathrm{T} \leq 40 \mathrm{mS}\)

\section*{Din-Safe-M \\ Add-on earth leakage modules}

Standard AS/NZS 3190
Approval No N11974
- Current ratings 32 and 63 amps
- Sensitivity I n 30, 100 and 300 mA
- Suits Din-T6, 10 and 15
- Can identify trip is either earth leakage or overload/short circuit

Tripping characteristics
\begin{tabular}{ll}
\(0.5 \times I \Delta n\) & no tripping \\
\(1 \times I \Delta n\) & \(\mathrm{t} \leq 300 \mathrm{~ms}\) \\
\(5 \times \mathrm{I} \mathrm{n}\) & \(\mathrm{t} \leq 40 \mathrm{~ms}\)
\end{tabular}


Din-Safe-M modules to suit Din-T6, 10 and 15
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. of poles \({ }^{1}\) ) & Sensitivity & MCB rating \({ }^{3}\) ) & Width mods. \({ }^{2}\) ) & Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline \multirow{6}{*}{\(\left.1 \mathrm{P}+\mathrm{N}^{4}\right)\)} & \multirow[b]{2}{*}{30 mA} & 32 A & 2 & DSRCM32301PN & 435.00 \\
\hline & & 63 A & 2 & DSRCM63301PN & 550.00 \\
\hline & \multirow[b]{2}{*}{100 mA} & 32 A & 2 & DSRCM321001PN & 455.00 \\
\hline & & 63 A & 2 & DSRCM631001PN & 570.00 \\
\hline & \multirow[t]{2}{*}{300 mA} & 32 A & 2 & DSRCM323001PN & 510.00 \\
\hline & & 63 A & 2 & DSRCM633001PN & 620.00 \\
\hline \multirow[b]{2}{*}{\(3 P\)} & 30 mA & 63 A & 3 & DSRCM63303P & 590.00 \\
\hline & 100 mA & 63 A & 3 & DSRCM631003P & 640.00 \\
\hline \multirow{6}{*}{\(3 P+N\)} & 30 mA & 32 A & 2 & DSRCM32303PN & 495.00 \\
\hline & & 63 A & 3 & DSRCM63303PN & 580.00 \\
\hline & \multirow[b]{2}{*}{100 mA} & 32 A & 2 & DSRCM321003PN & 580.00 \\
\hline & & 63 A & 3 & DSRCM631003PN & 640.00 \\
\hline & \multirow[b]{2}{*}{300 mA} & 32 A & 2 & DSRCM323003PN & 580.00 \\
\hline & & 63 A & 3 & DSRCM633003PN & 640.00 \\
\hline
\end{tabular}

Din-Safe-M space requirements
Without MCB fitted MCB fitted MCB fitted Type neutral not switched neutral not switched neutral switched
\begin{tabular}{llll}
\(1 \mathrm{P}+\mathrm{N} 32 / 63\) A 2 modules \((36 \mathrm{~mm})\) & 3 modules \((54 \mathrm{~mm})\) & 4 modules \((72 \mathrm{~mm})\) \\
\hline \(3 \mathrm{P}+\mathrm{N} 32 \mathrm{~A}\) & 2 modules \((36 \mathrm{~mm})\) & 5 modules \((90 \mathrm{~mm})\) & 6 modules \((108 \mathrm{~mm})\) \\
\hline \(3 \mathrm{P}+\mathrm{N} 63 \mathrm{~A}\) & 3 modules \((54 \mathrm{~mm})\) & 6 modules \((108 \mathrm{~mm})\) & 7 modules \((126 \mathrm{~mm})\) \\
\hline 3 P 63 A & 3 modules \((54 \mathrm{~mm})\) & 6 modules \((108 \mathrm{~mm})\) & N/A \\
\hline
\end{tabular}

Notes: \({ }^{1)} 1 \mathrm{P}+\mathrm{N}\) and \(3 \mathrm{P}+\mathrm{N}\) type supply neutral connected by 'pigtail' cable.
\({ }^{\text {2 }}\) ) Dimensions of Din-Safe-M unit only; add MCB width for total installed width.
\({ }^{3}\) ) 'MCB rating' refers to the max. MCB rating the module can be fitted to.
\(\left.{ }^{4}\right) 1 \mathrm{P}+\mathrm{N}\) suitable for 415 V 2 P applications. Not suitable for Din-T10H MCBs.

\section*{Din-Safe-M}

Modules to be combined with Din-T MCBs

\section*{Operation}

The combined Din-T MCB/Din-Safe-M earth leakage module has two operating toggles which indicate the reason for the trip action taking place.

When an overload or short circuit occurs the Din-T MCB will operate. In this case the Din-Safe-M toggle will remain in the ON position.
- If an earth leakage fault occurs both toggles will move to the OFF position. In order to reset the MCB the Din-Safe-M unit must be reset first.
- In both instances - if the cause of the trip operation has not been rectified, a trip operation will occur as soon as the MCB is turned to the ON position. The trip free mechanism of the MCB ensures that a successful trip operation takes place even when the toggle is held in the ON position.

\section*{Assembly}
- Place the MCB and Din-Safe-M unit on a flat surface. Be sure that both the MCB and the Din-Safe-M toggles are in the ON position.
- Slide the two units towards each other inserting the connecting bars or links into the MCB tunnel terminal, ensuring no undue pressure is applied to the metal tripping pin of the Din-Safe-M unit.
- Push in the connecting clips, locking the unit together.
- Check that the MCB trips when the toggle on the Din-Safe-M is moved to the OFF position.
- Tighten the busbar connections between the MCB and the Din-Safe-M and fit the insulating cover supplied.
- If the pigtail and N connections are reversed, the breaker will trip as soon as load is energised. Reset Din-Safe-M module before switching MCB 'ON'.
- In the case of a three phase 3 wire system (no neutral) use 3 phase models. \(3 \mathrm{P}+\mathrm{N}\) models will operate satisfactorily but test button will only function if neutral pigtail is connected.

- Din-Safe-M modules are an earth leakage module only. To complete the functional unit a Din-T6, Din-T10 or Din-T15 MCB must be added as shown.

\title{
Din-Safe-M Modules to be combined with Din-T MCBs
}

\section*{Testing}

The MCB/Din-Safe-M combination must be connected with the line conductors to the LINE side (OFF/Bottom side) of the MCB and the load conductors connected to the Din-Safe-M terminals. The MCB/Din-Safe-M combination must be tested with the supply connected before connecting the load. First switch the Din-Safe-M unit 'ON' then the MCB. When the test button is pressed, both handles should trip. It is recommended that the test button is operated periodically to test the detection and tripping functions of the combined unit.

Both \(1 \mathrm{P}+\mathrm{N}\) and \(3 \mathrm{P}+\mathrm{N}\) models have a neutral pigtail connection. 3 P modules have no neutral connection at all.

\section*{Din-Safe-M 1P+N with 1 pole MCB (neutral not switched)}


Din-Safe-M 3P + N with 3 pole MCB (neutral not switched)


Din-Safe-M 1P+N with 2 pole MCB witching active and neutral


Din-Safe-M 3P+N with 4 pole
MCB switching active and neutral


Connection diagram


\section*{Accessories}

Mounting of add-on devices onto MCBs, RCCBs and RCBOs
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Type/Description & \[
\begin{gathered}
\text { Din-T, } \\
\text { DC, } \\
6,10,15
\end{gathered}
\] & \[
\begin{gathered}
\text { Din-T } \\
10 \mathrm{H}
\end{gathered}
\] & \[
\begin{aligned}
& \text { DSRCB, } \\
& \text { DSRCD }
\end{aligned}
\] & DSRCM & DINTMS & Change -over switch \\
\hline \begin{tabular}{l}
DTAUXAL \\
Signal or AUX contact
\end{tabular} & L-R & - & R & R & L-R & L-R \\
\hline \begin{tabular}{l}
DTAUXALG \\
Signal or AUX contact, gold
\end{tabular} & L-R & - & R & R & L-R & L-R \\
\hline \begin{tabular}{l}
DINT10HHS \\
Signal or AUX + AUX contact
\end{tabular} & - & R & - & - & - & - \\
\hline \begin{tabular}{l}
DTPBS \\
Panelboard switch
\end{tabular} & L-R & - & R & - & - & - \\
\hline \begin{tabular}{l}
DINTSHT \\
Shunt trip
\end{tabular} & - & L & - & - & - & - \\
\hline \begin{tabular}{l}
DTSHT \\
Shunt trip
\end{tabular} & L-R & - & R & R & - & - \\
\hline \begin{tabular}{l}
DTUVT \\
Undervoltage trip
\end{tabular} & L-R & - & R & R & - & - \\
\hline \begin{tabular}{l}
DTMD \\
Motor operator
\end{tabular} & L-R & - & R & R & - & - \\
\hline
\end{tabular}
\(\mathbf{L}=\) Left mounting \(\quad \mathbf{R}=\) Right mounting

\section*{Accessories}

Mounting on the left-hand side

\(2 \times\) DTAUXAL/G Motor


Notes: The above accessories will not fit to Din-T10H MCBs.
Shunts and auxilaries, refer to pages 1-39 and 1-40.

\section*{Accessories}

Mounting on the right-hand side


Notes: DSRCBH and DSRCBS - Single pole RCD/MCB will not accept side mounted accessories. DINTMS - Main switches will accept side mounting auxiliary contacts only.

\section*{Din-TMS 63-100 A}

\section*{Main switch DIN rail mount}

Standard IEC 60947-3
- Double-break contacts
- Padlockable handle
- Handle sealable in ON and OFF position
- DIN rail mount
- Suits NC, CD or GB type chassis

Din-T main switches have the same profile as Din-T MCBs and
 are suitable for use as a main switch (isolator) in loadcentres and distribution boards
\begin{tabular}{|c|c|c|c|}
\hline No. of poles & Rated current (A) & Cat. No. & Price \$ \\
\hline & 63 & DINTMS631 & 42.00 \\
\hline \multirow[t]{3}{*}{1} & 80 & DINTMS801 & 45.00 \\
\hline & 100 & DINTMS1001 & 48.00 \\
\hline & 63 & DINTMS632 & 56.00 \\
\hline \multirow[t]{3}{*}{2} & 80 & DINTMS802 & 67.00 \\
\hline & 100 & DINTMS1002 & 75.00 \\
\hline & 63 & DINTMS633 & 86.50 \\
\hline \multirow[t]{2}{*}{3} & 80 & DINTMS803 & 102.00 \\
\hline & 100 & DINTMS1003 & 115.00 \\
\hline
\end{tabular}


Dimensions (mm)


Notes: AUX/ALM switch, refer to page 1-40.
The LINE-side is the OFF or bottom of the isolator, and connects to NC or CD chassis tee-offs.

\section*{Din-T}

Shunt and undervoltage trip

\section*{Din-T shunt trip}
- Couples to left or right side of MCB
- Modular width - 18 mm
- Busbar cavity both ends
- Field assembly
- Continuously rated
- Terminals for remote indication

\section*{Operation}

The shunt trip makes it possible to remotely switch the MCB by energising C1 \& C2 terminals of the shunt trip.


Shunt trip - Din-T6, 10 \& 15
\begin{tabular}{lllll}
\begin{tabular}{l} 
Rated \\
voltage
\end{tabular} & \begin{tabular}{l} 
Current \\
rating
\end{tabular} & \begin{tabular}{l} 
Operating \\
time (ms)
\end{tabular} & Cat. No. & Price \$ \\
\hline 110 to 415 V AC & \(110 \mathrm{~V}-0.3 \mathrm{~A}\) & 10 & & \\
110 to 125 V DC & \(240 \mathrm{~V}-0.6 \mathrm{~A}\) & 4 & DTSHT110415V & \(\mathbf{1 5 8 . 0 0}\) \\
\hline 24 to 60 V AC & \(24 \mathrm{~V}-1.0 \mathrm{~A}\) & 2 & 10 & \\
\hline 24 to 48 V DC & \(48 \mathrm{~V}-2.0 \mathrm{~A}\) & 4 & DTSHT2460V & \(\mathbf{1 5 8 . 0 0}\) \\
\hline
\end{tabular}

Shunt trip - Din-T 10H


Din-T undervoltage trip \({ }^{2}\) )
- Couples to left or right side of MCB
- Modular width - 18 mm
- Busbar cavity both ends
- Field assembly

The Din-T UVT trips the MCB when the operating voltage threshold is lower than \(0.5 \times \mathrm{Un}\). Adjustable time delay up to 300 ms eliminates nuisance tripping.


DTUVT240VAC
\begin{tabular}{llr} 
Rated voltage & Cat. No. & Price \(\mathbf{\$}\) \\
\hline 230 V AC & DTUVT240VAC & \(\mathbf{1 7 1 . 0 0}\) \\
\hline \(12 \mathrm{~V} \mathrm{AC/DC}\) & DTUVT12VDC & \(\mathbf{1 7 1 . 0 0}\) \\
\hline \(24 \mathrm{~V} \mathrm{AC/DC}\) & DTUVT24VDC & \(\mathbf{1 7 1 . 0 0}\) \\
\hline
\end{tabular}

\footnotetext{
Power loss 3 VA
}

Notes: \({ }^{1)}\) Shunt fits to left side of Din-T10H MCBs only.
\({ }^{2}\) ) UVT does not suit Din-T10H MCBs.

\section*{Din-T \\ Auxiliary contacts for MCBs}

Suitable for Din-T 6, 10 \& 15
Suitable for 2P RCBO and 2P \& 4P RCCB \(\left.{ }^{1}\right)^{3}\) )
- Stack up to 4 units left or right side \({ }^{2}\) )
- Field fittable, includes all fitting accessories
- Includes busbar cavity for chassis mounting
- Changeover contact
- Current rating 5 A

Din-T auxiliary contact - Din-T 6, 10, 15, DSRCBH, DSRCB


DTAUXAL
\begin{tabular}{llllr}
\begin{tabular}{l} 
Contact \\
function
\end{tabular} & \begin{tabular}{l} 
Contact \\
material
\end{tabular} & Module width & Cat. No. & Price \(\boldsymbol{\$}\) \\
\hline H or S & Silver & 0.5 & DTAUXAL & \(\mathbf{1 0 2 . 0 0}\) \\
\hline H or S & Gold & 0.5 & DTAUXALG & \(\mathbf{1 2 3 . 0 0}\) \\
\hline
\end{tabular}
'H' = auxiliary switch 'S' = alarm switch
Din-T auxiliary contact - Din-T10H
\begin{tabular}{llllr}
\begin{tabular}{l} 
Contact \\
function
\end{tabular} & \begin{tabular}{l} 
Contact \\
material
\end{tabular} & Module width & Cat. No. & Price \$ \\
\hline \(\mathrm{H}+\mathrm{H} / \mathrm{S}\) & Silver & 0.5 & DINT10H - HS \(^{2}\) ) & \(\mathbf{1 1 4 . 0 0}\) \\
\hline
\end{tabular}

Din-T auxiliary contact - DSRCBS
\begin{tabular}{llllr}
\begin{tabular}{l} 
Contact \\
function
\end{tabular} & \begin{tabular}{l} 
Contact \\
material
\end{tabular} & Module width & Cat. No. \({ }^{\mathbf{3}}\) ) & Price \(\boldsymbol{\$}\) \\
\hline H & Silver & 0.5 & DSRCBSAX & \(\mathbf{1 0 2 . 0 0}\) \\
\hline H or S & Silver & 0.5 & DSRCBSAXAL & \(\mathbf{1 1 4 . 0 0}\) \\
\hline H or S & Gold & 0.5 & DSRCBSAXALG & \(\mathbf{1 2 5 . 0 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) DTAUXAL type contact fits right side only on 2P RCBO and 2/4P RCCB.
\({ }^{2}\) ) Auxiliary contacts for Din-T10H MCBs are not stackable and fit to right side only.
\(\left.{ }^{3}\right)\) Fit right hand side only.

\section*{Din-T \\ Motor operator for MCBs}

\section*{Din-T motor operator DTMD}
- Suitable for Din-T 6, 10 \& 15Suitable for \(2 P\) RCBO and \(2 P \& 4 P R C C B\)
- Field fittable, includes all fitting accessories
- Fits left or right side of device
- Padlockable in the OFF position
- Manual operation is possible


DTMD240VAC

Rated
\begin{tabular}{ll|c} 
Roltage & Module width & Cat. No. \\
\hline 240 V AC & 3 & DTMD240VAC
\end{tabular}
\begin{tabular}{ll} 
Technical \\
\hline Rated voltage Un & 240 V AC \\
\hline Impulse to switch ON/OFF & \(>50 \mathrm{~ms}\) \\
\hline Closing time & 500 ms \\
\hline Opening time & 200 ms \\
\hline Electrical endurance & \(10,000 \mathrm{ops}\) \\
\hline Terminal capacity & \(2.5 \mathrm{~mm}^{2}\) \\
\hline Weight & 380 g \\
\hline
\end{tabular}

\section*{DIN mount housing}
to suit \(\mathbf{2 2 . 5} \mathbf{~ m m}\) devices
- DIN rail mount
- Mounts 22.5 mm panelmount devices
- Suitable for loadcentres and panelboards


Holder is DIN rail mounted, and is designed to allow mounting of 22.5 mm panelmount devices in loadcentres and Concept family of panelboards. Ideal for mounting pilot lights, pushbuttons and key selector switches.
\begin{tabular}{l|cc} 
Description & Cat. No. & Price \$ \\
\hline Holder DIN profile suit 22.5 mm devices & M22IVS & \(\mathbf{2 3 . 4 0}\) \\
\hline
\end{tabular}

\section*{Panelboard switch (DTPBS)}

The panelboard switch coupled to a main device is intended to switch off any 2-63 A MCB in case the front cover of the enclosure is removed. It is a mechanical safety device, which reduces the risk of electric shock in case of manipulation of the panelboard.

The panelboard switch can easily be coupled either to the right or left-hand side of the main device, according to the instructions below.
\begin{tabular}{llc} 
No. modules wide \({ }^{1}\) ) & Cat. No. & Price \$ \\
\hline 0.5 & DTPBS & 59.00 \\
\hline
\end{tabular}

Kilowatt hour meters
- 8 Digit LCD
- Displays - Total active energy
- Total reactive energy
- Partial active energy
- Partial reactive energy
- Power demand
- Maxium demand (power)
- Active energy: Class 1
- Input current 1 A or 5 A CT


CE4DTO4A2
\begin{tabular}{llr} 
No. modules wide \({ }^{1}\) ) & Cat. No. \(^{2}\) ) & Price \(\mathbf{\$}\) \\
\hline KWH meter DIN 4 module & CE4DT 14A2 & \(\mathbf{5 6 0 . 0 0}\) \\
\hline KWH meter DIN 4 module (CUMMS) & CE4DT 14A6 & \(\mathbf{6 4 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: ') 'DTSP' - 0.5 module width spacer available if required when DTPBS used.
\({ }^{2}\) ) CE4DT Price Schedule ' Y 8 '.

\section*{Busbar comb}

Din-T MCBs

Current rating 100 A

\section*{Pin type busbars}
\begin{tabular}{llllr} 
No. of poles & \begin{tabular}{l} 
1 Phase \({ }^{1}\) ) \\
Cat. No.
\end{tabular} & Price \$ & \begin{tabular}{l} 
3 Phase \\
Cat. No.
\end{tabular} & Price \$ \\
\hline 8 Way & IBC108P & \(\mathbf{1 0 . 6 0}\) & - & \\
\hline 12 Way & IBC112P & \(\mathbf{1 7 . 8 0}\) & ICL123 & \(\mathbf{4 9 . 0 0}\) \\
\hline 15 Way & IBC115P & \(\mathbf{2 1 . 2 0}\) & ICL153 & \(\mathbf{6 1 . 0 0}\) \\
\hline 18 Way & IBC118P & 29.60 & ICL183 & \(\mathbf{7 2 . 5 0}\) \\
\hline 21 Way & IBC121P & \(\mathbf{3 6 . 0 0}\) & ICL213 & \(\mathbf{9 4 . 5 0}\) \\
\hline 55 Way & IBC155P & \(\mathbf{7 7 . 5 0}\) & - & \\
\hline 57 Way & - & & ICL573 & \(\mathbf{2 2 5 . 0 0}\) \\
\hline
\end{tabular}

Pin type busbar
Cat. No.
Price \(\$\)
\begin{tabular}{l|lr}
\hline 1P+N 56 Way pin type busbar comb & ICL562 & \(\mathbf{1 2 8 . 0 0}\) \\
\hline 1P+N 6 Way pin type busbar comb & ICL62 & \(\mathbf{1 8 . 2 0}\) \\
\hline IP+N 10 Way pin type busbar comb & ICL102 & \(\mathbf{2 6 . 0 0}\) \\
\hline 3P+Aux 56 Way pin type busbar comb & ICL563A \({ }^{2}\) ) & \(\mathbf{2 0 0 . 0 0}\) \\
\hline 3P+N 56 Way pin type busbar comb & ICL564 & \(\mathbf{2 5 5 . 0 0}\) \\
\hline
\end{tabular}
\begin{tabular}{llr} 
Fork type busbar & Cat. No. & Price \$ \\
\hline 56 Way 1 phase fork type busbar comb & ICL561F & \(\mathbf{7 8 . 0 0}\) \\
\hline 57 Way 3 phase fork type busbar comb & ICL573F & \(\mathbf{2 3 0 . 0 0}\) \\
\hline & & \\
End caps & Cat. No. & Price \$ \\
\hline 1P end cap to suit IBC style buscomb & IBCEC1 & \(\mathbf{2 . 0 0}\) \\
\hline 2P and 3P end cap to suit ICL style buscomb & ICLEC23 \({ }^{\text {3 }}\) ) & \(\mathbf{4 . 0 0}\) \\
\hline 3P+N end cap to suit ICL style buscomb & ICLEC4 \({ }^{\text {3 }}\) ) & \(\mathbf{4 . 0 0}\) \\
\hline
\end{tabular}


ICL123
ICLTOC
T-off cap (strip of 5)

Notes: \({ }^{1}\) ) IBC busbar combs come complete with endcaps.
\({ }^{2}\) ) \(16 \times 3\) MCB connections and \(16 \times 9 \mathrm{~mm}\) spaces (AUXs).
\({ }^{3}\) ) ICL end caps do not suit IBC busbar combs.

\title{
Din-T \\ Modular changeover switch
}

Standard IEC 60669-1
Handle sealable and lockable in ON or OFF position
- Terminal protection IP 20
- Captive terminal screws with cross head

Without OFF I- II


No. of Price \$
\begin{tabular}{llllll} 
In (A) & No. of Poles & Modules Connection & Cat. No. & Price \$ \\
\hline 32 & 1 & 1 & & DTCS3212 & \(\mathbf{4 7 . 5 0}\) \\
\hline 32 & 2 & 1 & & DTCS3222 & \(\mathbf{7 1 . 5 0}\) \\
\hline
\end{tabular}

With OFFI-O-II
\begin{tabular}{lllllc} 
In \((\mathbf{A})\) & No. of Poles & \begin{tabular}{l} 
No. of \\
Modules
\end{tabular} & Connection & Cat. No. & Price \$ \\
\hline 32 & 1 & 1 & & DTCS3213 & \(\mathbf{5 9 . 0 0}\) \\
\hline 32 & 2 & 1 & & DTCS3223 & \(\mathbf{8 3 . 0 0}\) \\
\hline
\end{tabular}

\section*{Din-T}

Pushbuttons and pilot lights
- Modular size

DIN rail mounting
- Terminal protection IP 20
- Contacts, 16 A @ 250 V AC

\begin{tabular}{|c|c|c|c|c|c|}
\hline Description & No. of Poles & No. of Modules & Contacts & Cat. No. & Price \$ \\
\hline Pushbutton & 2 & 1 & \(\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}\) & DTPB11 & 35.50 \\
\hline Pushbutton illuminated & 1 & 1 & N/O & DTPB10L \({ }^{1}\) ) & 54.00 \\
\hline Pilot light base & 1 & 1 & & DTPLB \({ }^{2}\) ) & 25.40 \\
\hline \[
\begin{aligned}
& \text { Lamp } 240 \mathrm{~V} \\
& \text { neon }
\end{aligned}
\] & - & - & & DTPLL240 & 3.60 \\
\hline Lamp 24 V (filament) & - & - & & DTPLL24 & 3.60 \\
\hline Lens red & - & - & & DTPLLRD & 3.30 \\
\hline Lens green & - & - & & DTPLLGR & 3.30 \\
\hline Lens orange & - & - & & DTPLLOR & 3.30 \\
\hline Lens clear & - & - & & DTPLLCL & 3.30 \\
\hline
\end{tabular}

Notes: \({ }^{\text {1) }}\) ) Order lens separately. 240 V lamp built-in and cannot be changed.
\({ }^{2}\) ) Order lens and lamp separately.

\section*{MCB LOCKING SOLUTIONS - LockDIN \({ }^{\text {TM }}\)}

The miniature circuit breaker locking solution for NHP DIN-T circuit breakers.


The first comprehensive system for safe and secure locking of DIN miniature circuit breakers (MCBs)
- Designed specifically for the mining industry
- Easy to install and retrofit to existing Concept•Premier and Concept•TOUGH panelboards
- Can be used with DINsafe RCBOs
- Accepts 2.5-6.5 mm padlocks, hasps and


IOCXED


00 Hof hewne scissor arrangements
- Can only be used with the NHP DIN-T range
- Can be used with 1, 2 and 3 pole DIN-T MCBs

\section*{LOCK DIN \({ }^{\text {TM }}\)}

Din-T lockdogs provide a captive locking attachment for Din-T MCBs and RCDs.

The system is designed to be used in conjunction with Concept Premier and Concept Tough Panelboards. If a switchboard is being specifically designed to accommodate the new LOCK DIN™, then extra depth is required between escutcheon and door to accommodate the padlocks being used on site.
The LOCK DIN \({ }^{\text {TM }}\) is designed to be clipped onto the line side of the MCB. This requires the line terminal screw to be tightened before installation. The escutcheon cut out needs to be increased by 16 mm over the line terminal to allow for the extended profile of the MCB with the LOCK DIN \({ }^{\text {™ }}\) fitted.

\begin{tabular}{|c|c|c|}
\hline Description & Cat. No. & Price \$ \\
\hline \multicolumn{3}{|l|}{Locking devices} \\
\hline LH locking assembly for MCBs and single pole RCBOs & DTLLA & 51.00 \\
\hline RH locking assembly for MCBs and single pole RCBOs & DTLLARH & 51.00 \\
\hline LH locking assembly for 2 pole RCBOs & DTLLAB & 51.00 \\
\hline RH locking assembly for 2 pole RCBOs & DTLLABRH & 51.00 \\
\hline Locking assembly for DINT-10H MCB & DTLLA10H & 61.00 \\
\hline 12 pack LH locking assembly for MCBs and single pole RCBOs & DTLLABULK & 570.00 \\
\hline 12 pack RH locking assembly for MCBs and single pole RCBOs & DTLLARHBULK & 570.00 \\
\hline \multicolumn{3}{|l|}{Pole fillers and blanking devices} \\
\hline 12 pack locking blank for MCBs and single pole RCBOs & DTLLB & 12.00 \\
\hline Locking blank for DSRCM (add on RCCB), 3 pole MCBs & DTLCM & 4.70 \\
\hline Dummy MCB (for total touch protection) & DTLDM & 12.00 \\
\hline 12 pack pole filler (extended length to suit 63 mm cutout) & DTLPF & 12.00 \\
\hline \multicolumn{3}{|l|}{Escutcheons and labels} \\
\hline Concept premier escutcheon size 124 way to suit LockDIN & CPPES100DTL & 210.00 \\
\hline Concept premier escutcheon size 248 way to suit LockDIN & CPPES200DTL & 250.00 \\
\hline Concept premier escutcheon size 360 way to suit LockDIN & CPPES300DTL & 290.00 \\
\hline Concept premier escutcheon size 484 way to suit LockDIN & CPPES400DTL & 330.00 \\
\hline Concept premier escutcheon size 596 way to suit LockDIN & CPPES500DTL & 375.00 \\
\hline Concept tough escutcheon size 248 way to suit LockDIN & CTES248RDCOLD & 570.00 \\
\hline Concept tough escutcheon size 396 way to suit LockDIN & CTES396RDCOLD & 670.00 \\
\hline Centre escutcheon label 1-48 & LABLE148DT & 22.80 \\
\hline Centre escutcheon label 49-96 & LABLE4996DT & 22.80 \\
\hline
\end{tabular}


\section*{Meter Isolator LOCK DIN \({ }^{\text {TM }}\)}

The Lockable Meter Isolator from NHP utilises the captive locking system known as LOCK DIN \({ }^{\text {TM }}\). LOCK DIN \({ }^{T M}\) has been designed for safe and secure captive locking of Terasaki DIN-T MCBs. When you combine LOCK DIN \({ }^{\text {m }}\) with a sealable enclosure and Terasaki MCB you have a complete system suitable for meter isolation and supply capacity/ service protection. ')

DTPC Complete kits include: enclosure, MCB and LOCK DIN \({ }^{\text {m }}\)
No. of
\begin{tabular}{lcclll} 
poles & Amps & kA & Curve & Cat. No. & Price \$ \\
\hline Enclosure type - DTPC (2 pole) & & & \\
\hline \multirow{2}{*}{1 pole } & 63 kA & \multirow{2}{*}{6 A} & C & DTPC2LDCB & \(\mathbf{1 0 9 . 0 0}\) \\
\hline
\end{tabular}

Enclosure type - DTPC (4 pole)
\begin{tabular}{llllll}
\hline \multirow{2}{*}{3 pole } & \multirow{2}{*}{63 kA} & 6 kA & C & DTPC4LDCB & \(\mathbf{2 5 0 . 0 0}\) \\
\cline { 3 - 6 } & \multirow{2}{*}{10 kA} & D & DTPC4LDCBV & \(\mathbf{5 4 0 . 0 0}\) \\
\hline
\end{tabular}

ILC Complete kits include: enclosure, MCB and LOCK DIN \({ }^{\text {m }}\)
\begin{tabular}{lllll}
\begin{tabular}{l} 
No. of \\
poles
\end{tabular} Amps \(\quad\) kA & Curve No.
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Enclosure type - ILC (4 pole)} \\
\hline \multirow{4}{*}{1 pole} & \multirow[b]{2}{*}{63 kA} & \multirow[b]{2}{*}{6 A} & C & ILC4SLDCB1P & 156.00 \\
\hline & & & D & ILC4SLDCB1PD & 161.00 \\
\hline & \multirow[b]{2}{*}{80-125 A} & \multirow[b]{2}{*}{10 kA} & C & ILC4SLDCB_1P \({ }^{\text {2 }}\) ) & 365.00 \\
\hline & & & D & ILC4SLDCB_1PD \({ }^{\text {2 }}\) ) & 440.00 \\
\hline \multirow{4}{*}{3 pole} & \multirow[t]{2}{*}{63 A} & 6 kA & C & ILC4SLDCB3P & 290.00 \\
\hline & & 10 kA & D & ILC4SLDCB3PD & 300.00 \\
\hline & \multirow[t]{2}{*}{80-125 A} & \multirow[t]{2}{*}{10 kA} & C & ILC4SLDCB_3P \({ }^{\text {2 }}\) ) & 950.00 \\
\hline & & & D & ILC4SLDCB_3PD \({ }^{2}\) ) & 1020.00 \\
\hline
\end{tabular}


Notes: \({ }^{1}\) ) As the service and installations rules vary from region to region please consult these to check suitability.
\({ }^{2}\) ) Insert 80, 100 or 125 for required amp rating.

\section*{Meter Isolator}

Enclosures only, to suit meter isolator
\begin{tabular}{llll} 
To suit & Enclosure type & Cat. No. & Price \$ \\
\hline 1 P MCB \(<63 \mathrm{~A}\) & DTPC (2 pole) & DTPC2LD & \(\mathbf{1 9 . 2 0}\) \\
\hline \(1-3\) P MCB \(<63 \mathrm{~A}\) & DTPC (4 pole) & DTPC4LD & \(\mathbf{2 3 . 4 0}\) \\
\hline \(1-3\) P MCB \(<63 \mathrm{~A}\) & ILC (4 pole) & ILC4SLD & \(\mathbf{7 1 . 5 0}\) \\
\hline 1-3 P MCB 80-125 A & ILC (4 pole) & ILC4SLD10H & \(\mathbf{7 7 . 0 0}\) \\
\hline 2 P RCBO 6-40 A & DTPC ( 2 pole) & DTPC2LDRCBO & \(\mathbf{1 9 . 8 0}\) \\
\hline
\end{tabular}

DTPC enclosure


Dimensions (mm)
\begin{tabular}{llll} 
No. of poles & Height & Width & Depth \\
\hline 2 pole & 139 & 51 & 61 \\
\hline 4 pole & 139 & 88 & 61 \\
\hline
\end{tabular}

ILC enclosure


Dimensions (mm)
\begin{tabular}{llll} 
No. of poles & Height & Width & Depth \\
\hline 4 pole & 175 & 90 & 100 \\
\hline
\end{tabular}

Din-T series MCBs
Accessories
\begin{tabular}{|c|c|c|}
\hline Description & Cat. No. & Price \$ \\
\hline Lateral pin terminal \(35 \mathrm{~mm}^{2}\) (short type) & DTTLT35PN & 10.80 \\
\hline Lateral pin terminal \(35 \mathrm{~mm}^{2}\) (long type) & DTTLT35LPN & 10.80 \\
\hline Din-T lock dog (Non-captive) & DTLD & 23.00 \\
\hline Din-T lock dog captive (LOCK DIN) Refer page
\[
1-46
\] & - & \\
\hline Din-T lock dog captive ( \(1-4\) pole) \({ }^{1}\) ) & DCLD6 & 57.00 \\
\hline Din-T lock dog to suit DINT10H & DTLDH & 30.50 \\
\hline Lateral spade terminal \(35 \mathrm{~mm}^{2}\) (short type) & DTTLT35SP & 10.80 \\
\hline Axial spade terminal \(25 \mathrm{~mm}^{2}\) (insulated) & DTTAX25SP & 10.80 \\
\hline Axial pin terminal \(25 \mathrm{~mm}^{2}\) (insulated) & DTTAX25PN & 10.80 \\
\hline Axial pin terminal \(50 \mathrm{~mm}^{2}\) (insulated) & DTTAX50PN & 18.20 \\
\hline 3 way neutral link suit RCCB & DTTAX16PN3 & 19.40 \\
\hline \(35 \mathrm{~mm}^{2}\) main terminal & DTCF35 & 17.60 \\
\hline \(185 \mathrm{~mm}^{2}\) main terminal & NEB185 & 88.00 \\
\hline Pole filler ( 1 strip of 4 poles, \(8 \times 9 \mathrm{~mm}\) segments) & DTPF & 4.30 \\
\hline Busbar comb Refer page 1-43 & - & \\
\hline End cap (strip offs) (T-off cap) & ICLTOC & 4.60 \\
\hline 1/2 module spacer (9 mm wide) & DTSP & 4.40 \\
\hline Din-T terminal cover 5 mm & DTTC5 & 4.70 \\
\hline Din-T terminal cover 35 mm & DTTC35 & 16.60 \\
\hline Din-T 10H terminal cover & DINT10HTC & 5.40 \\
\hline Din-T 1P RCBO terminal cover & DSRCBHTC & 7.50 \\
\hline
\end{tabular}


Notes: \({ }^{1}\) ) Suitable for padlock hasp size 4.5 to 6.5 mm .

Din-T series MCBs
Accessories


Din-T
Series contactors

Standard AS/NZS 60947.4.1
Voltage 240/415 V AC
-
Silent operated magnetic drive
\(-1\)
Integrated surge suppression
Switch position indicator
DIN rail mount


\section*{Application}

Din-T contactors are electromagnetically controlled switches used to control single or multiphase high power loads while the control itself can be low power. Applications include switching and control of lighting equipment, heating, ventilation, pumps, heat pumps and other equipment.

\section*{Features}

Except for the 20 A version, all Din-T contactors have DC coils, resulting in noise-free silent operation. As all DC coil contactors have an internal diode rectifier bridge they can be operated by both DC and AC power supplies. The built-in varistor protects the coil against an overvoltage of up to 5 kV . The switch position of contacts is visible via a flag indicator on the front of the contactor.
\begin{tabular}{lllllr}
\begin{tabular}{l} 
Current \\
Ith
\end{tabular} & \begin{tabular}{l} 
Contact \\
config.
\end{tabular} & Coil volts & \begin{tabular}{l} 
No. of \\
Mods.
\end{tabular} & Cat. No. & Price \$ \\
\hline 20 A & \(1 \mathrm{NO} / 1 \mathrm{NC}\) & 240 V AC & 1 & DTC2011240 & \(\mathbf{1 5 1 . 0 0}\) \\
\hline 20 A & \(2 \mathrm{~N} / \mathrm{O}\) & 24 V AC & 1 & DTC202024 & \(\mathbf{1 5 1 . 0 0}\) \\
\hline 20 A & \(2 \mathrm{~N} / \mathrm{O}\) & 240 V AC & 1 & DTC2020240 & \(\mathbf{1 5 1 . 0 0}\) \\
\hline 20 A & \(2 \mathrm{~N} / \mathrm{C}\) & 240 V AC & 1 & DTC2002240 & \(\mathbf{1 5 1 . 0 0}\) \\
\hline 24 A & \(4 \mathrm{~N} / \mathrm{O}\) & \(12 \mathrm{~V} \mathrm{AC/DC}\) & 2 & DTC244012 & \(\mathbf{1 7 5 . 0 0}\) \\
\hline 24 A & \(4 \mathrm{~N} / \mathrm{O}\) & \(240 \mathrm{~V} \mathrm{AC/DC}\) & 2 & DTC2440240 & \(\mathbf{1 7 5 . 0 0}\) \\
\hline 24 A & \(4 \mathrm{~N} / \mathrm{C}\) & \(240 \mathrm{~V} \mathrm{AC/DC}\) & 2 & DTC2404240 & \(\mathbf{1 7 5 . 0 0}\) \\
\hline 24 A & \(4 \mathrm{~N} / \mathrm{O}\) & \(24 \mathrm{~V} \mathrm{AC/DC}\) & 2 & DTC244024 & \(\mathbf{1 7 5 . 0 0}\) \\
\hline 40 A & \(4 \mathrm{~N} / \mathrm{O}\) & \(24 \mathrm{~V} \mathrm{AC/DC}\) & 3 & DTC404024 & \(\mathbf{3 1 0 . 0 0}\) \\
\hline 40 A & \(4 \mathrm{~N} / \mathrm{O}\) & \(240 \mathrm{~V} \mathrm{AC/DC}\) & 3 & DTC4040240 & \(\mathbf{3 1 0 . 0 0}\) \\
\hline 63 A & \(4 \mathrm{~N} / \mathrm{O}\) & \(24 \mathrm{~V} \mathrm{AC/DC}\) & 3 & DTC634024 & \(\mathbf{4 3 0 . 0 0}\) \\
\hline 63 A & \(4 \mathrm{~N} / \mathrm{O}\) & \(240 \mathrm{~V} \mathrm{AC/DC}\) & 3 & DTC6340240 & \(\mathbf{4 3 0 . 0 0}\) \\
\hline
\end{tabular}

Din-T hour run counter
- DIN rail mounting
- Synchronous motor drive
- 99,999.99 hours
- Permanent visual display non-resettable
- Protection IP 20

\begin{tabular}{l|l|l} 
No. Modules & Voltage & Cat. No. \({ }^{1}\) ) \\
\hline 2 & 230 V AC & DTHR \\
\hline
\end{tabular}

Notes: \({ }^{1)}\) Cannot be reset.

\section*{Din-T}

Series contactors

Technical data
\begin{tabular}{|c|c|c|c|c|}
\hline Type & DTC20 & DTC24 & DTC40 & DTC63 \\
\hline Rated continuous current \(I_{\text {th }}\) & 20 A & 24 A & 40 A & 63 A \\
\hline \multicolumn{5}{|l|}{AC 1/AC 7a switching of heaters} \\
\hline Rated operational current \(\mathrm{l}_{\mathrm{e}}{ }^{1}\) ) & 20 A & 24 A & 40 A & 63 A \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Rated output AC } 1240 \mathrm{~V} 1 \varnothing \\
415 \mathrm{~V} 3 \varnothing \\
\hline
\end{array}
\]} & 4 kW & 5.3 kW & 8.7 kW & 13.3 kW \\
\hline & - & 16.0 kW & 26.0 kW & - \\
\hline \multicolumn{5}{|l|}{AC 3/AC 7b switching of motors} \\
\hline Rated operational current \(\mathrm{l}_{\mathrm{e}}{ }^{1}\) ) & 9 A & 9 A & 22 A & 30 A \\
\hline Rated output AC \(3240 \mathrm{~V} 1 \varnothing\) & 1.3 kW & 1.3 kW & 3.7 kW & 5.0 kW \\
\hline 415 V \(3 \varnothing\) & - & 4.0 kW & 11.0 kW & 15.0 kW \\
\hline
\end{tabular}

AC 5a switching of electric discharge lamp controls \({ }_{2}\) ) (uncompensated)
\begin{tabular}{|c|c|c|c|c|}
\hline Rated operational current \(\mathrm{I}_{\mathrm{e}}{ }^{1}\) ) & 8 A & 10 A & 30 A & 44 A \\
\hline \multicolumn{5}{|l|}{AC 5b switching of incandescent lamps \({ }^{2}\) )} \\
\hline Rated operational current \(\mathrm{I}_{\mathrm{e}}{ }^{1}\) ) & 6 A & 7 A & 15 A & 22 A \\
\hline \multicolumn{5}{|l|}{Switching on capacity} \\
\hline cos_ \(=0.95\) at 220-230 V 1 phase & 100 A & - & - & - \\
\hline cos_= 0.65 at 380-400 V 3 phase & - & 90 A & 220 A & 300 A \\
\hline
\end{tabular}

\section*{Switching off capacity}
\begin{tabular}{l|l|l|l|l}
\hline cos_ \(=0.95\) at \(220-230 \mathrm{~V}\) 1phase & 80 A & - & - & - \\
\hline cos_ \(=0.65\) at \(380-400 \mathrm{~V}\) 3phase & - & 72 A & 176 A & 240 A \\
\hline Ohmic loss per contact In & 1.0 W & 1.5 W & 3.0 W & 6.0 W \\
\hline
\end{tabular}

\section*{Endurance and mechanical switching}
\begin{tabular}{l|l|l|l|l}
\hline \begin{tabular}{l} 
Max. switching frequency at AC \\
1/AC 7a
\end{tabular} & 300 h & 300 h & 300 h & 300 h \\
\hline \begin{tabular}{l} 
Max. switching frequency at AC \\
\(3 / \mathrm{AC} 7 \mathrm{~b}\)
\end{tabular} & 600 h & 600 h & 600 h & 600 h \\
\hline Mechanical service life & 106 & 106 & 106 & 106 \\
\hline Electrical service life at AC 1/AC 7a & 150,000 & 150,000 & 150,000 & 150,000 \\
\hline Electrical service life at AC 3/AC 7b & 150,000 & 500,000 & 170,000 & 240,000 \\
\hline Terminal capacity max. & \(1 \times 10 \mathrm{~mm}^{2}\) & \(2 \times 4 \mathrm{~mm}^{2}\) & \(1 \times 25 \mathrm{~mm}^{2}\) & \(2 \times 10 \mathrm{~mm}^{2}\) \\
\hline
\end{tabular}

\section*{Magnetic control system}

Control voltage range
\[
85 \ldots . .110 \% \text { x Un }
\]
\begin{tabular}{lll|ll}
\hline Rated operating frequency & \(50 / 60 \mathrm{~Hz}\) & \(\mathrm{DC}, 40 \ldots 450 \mathrm{~Hz}\) \\
\hline Operating temperature range & & \(-22^{\circ} \mathrm{C}\) to \(+55^{\circ} \mathrm{C}\) 3 \()\) & \\
\hline Max. pull-in coil power loss & \(8 \mathrm{VA} / 5 \mathrm{~W}\) & \(4 \mathrm{VA} / 4 \mathrm{~W}\) & \(5 \mathrm{VA} / 5 \mathrm{~W}\) & \(65 \mathrm{VA} / 65 \mathrm{~W}\) \\
\hline Max. holding coil power loss & \(3.2 \mathrm{VA} / 1.2 \mathrm{~W}\) & \(4 \mathrm{VA} / 4 \mathrm{~W}\) & \(5 \mathrm{VA} / 5 \mathrm{~W}\) & \(4.2 \mathrm{VA} / 4.2 \mathrm{~W}\) \\
\hline Switching on delay & \(9 \ldots 12 \mathrm{~ms}\) & \(<40 \mathrm{~ms}\) & \(<40 \mathrm{~ms}\) & \(<40 \mathrm{~ms}\) \\
\hline Switching off delay & \(10 \ldots . .12 \mathrm{~ms}\) & \(<40 \mathrm{~ms}\) & \(<40 \mathrm{~ms}\) & \(<40 \mathrm{~ms}\) \\
\hline Terminal capacity max. & \(1 \times 4 \mathrm{~mm}^{2}\) or \(2 \times 2.5 \mathrm{~mm}^{2}\) & \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) When parallel switching 2 current paths the rated current le will be multiplied by 1.6 .
\({ }^{2}\) ) For additional lamp switching data refer to NHP.
\({ }^{3}\) ) If several contactors are mounted side by side in a row fit a half-module spacer (Cat. No. DTSP) between every second contactor.

Din
Series contactors

Standard AS/NZS 60947.4.1
Voltage 240/415 V AC
Switch position indicator
DIN rail mount

\section*{Application}


Din contactors are electromagnetically controlled switches used to control single or multiphase high power loads while the control itself can be low power. Applications include switching and control of lighting equipment, heating, ventilation, pumps, heat pumps and other equipment.
\begin{tabular}{lllllr}
\begin{tabular}{l} 
Current \\
Ith
\end{tabular} & \begin{tabular}{l} 
Contact \\
config.
\end{tabular} & Coil volts & \begin{tabular}{l} 
No. of \\
Mods.
\end{tabular} & Cat. No. & Price \(\mathbf{\$}\) \\
\hline 20 A & \(2 \mathrm{~N} / \mathrm{O}\) & 24 V AC & 1 & DTC202024L & \(\mathbf{7 8 . 0 0}\) \\
\hline 20 A & \(2 \mathrm{~N} / \mathrm{O}\) & 240 V AC & 1 & DTC2020240L & \(\mathbf{7 8 . 0 0}\) \\
\hline 25 A & \(4 \mathrm{~N} / \mathrm{O}\) & \(12 \mathrm{~V} \mathrm{AC/DC}\) & 2 & DTC254012L & \(\mathbf{9 8 . 5 0}\) \\
\hline 25 A & \(4 \mathrm{~N} / \mathrm{O}\) & \(240 \mathrm{VAC} / \mathrm{DC}\) & 2 & DTC2540240L & \(\mathbf{9 8 . 5 0}\) \\
\hline 25 A & \(4 \mathrm{~N} / \mathrm{C}\) & \(240 \mathrm{~V} \mathrm{AC/DC}\) & 2 & DTC2504240L & \(\mathbf{9 8 . 5 0}\) \\
\hline 40 A & \(4 \mathrm{~N} / \mathrm{O}\) & \(240 \mathrm{VAC} / \mathrm{DC}\) & 3 & DTC4040240L & \(\mathbf{2 3 5 . 0 0}\) \\
\hline 63 A & \(4 \mathrm{~N} / \mathrm{O}\) & \(240 \mathrm{~V} \mathrm{AC/DC}\) & 3 & DTC6340240L & \(\mathbf{2 6 0 . 0 0}\) \\
\hline
\end{tabular}

Technical data
\begin{tabular}{l|l|l|l|l} 
Type & DTC20...L & DTC25...L & DTC40...L & DTC63...L \\
\hline Rated continuous current \(\mathrm{I}_{\text {th }}\) & 20 A & 25 A & 40 A & 63 A \\
\hline AC 1/AC 7a switching of heaters & \multicolumn{5}{l}{} \\
\hline Rated operational current \(\mathrm{I}_{\mathrm{e}}\) & 20 A & 25 A & 40 A & 63 A \\
\hline Rated output kW & 4 & 5.4 & 8.4 & 13 \\
\hline AC 7b & 7 A & 8.5 A & 15 A & 25 A \\
\hline Rated operational current \(\mathrm{I}_{\mathrm{e}}\) & 1.2 & 1.5 & 2.4 & 3.8 \\
\hline Rated output kW &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Switching on capacity (A)} \\
\hline AC 1/7a \(\cos \varnothing 0.8\) Ue 1.05 & 30 & 37.5 & 60 & 94.5 \\
\hline AC 7b \(\cos \varnothing 0.45\) Ue 1.05 & 160 & 200 & 320 & 504 \\
\hline \multicolumn{5}{|l|}{Performance} \\
\hline AC 1/7a \(\cos \varnothing 0.8\) Ue 1.05 & 20 & 25 & 40 & 63 \\
\hline AC 7b \(\cos \varnothing 0.45 \mathrm{Ue} 0.17\) & 4 & 5.4 & 8.4 & 13 \\
\hline \multicolumn{5}{|l|}{General} \\
\hline Terminal capacity \(\mathrm{mm}^{2}\) & 6 & 10 & 25 & 25 \\
\hline
\end{tabular}

Control voltage range 85-110\% x Un
Frequency 50 Hz
Rated insulation voltage 500 V
Pick up time 50 mS
Mechanical life \(>3 \times 10^{4}\)
Electrical life \(>1 \times 10^{5}\)

\title{
Din-T \\ Impulse switch
}

\section*{Din-T impulse switch}
- Standard IEC 60669-2-2
- Visual indication of contact position
- Manual or electrical operation
- Terminal protection IP 20
- 16 A 240 V AC contact rating

\section*{Function}


Impulse switches are electromechanical switches used to control medium power loads while the control itself remains low power. The device switches between 2 stable positions each time a brief pulse is required to switch positions. The device can also be switched manually.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Diagram & Coil Voltage & No. of poles & No. of mods. & In & Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline \multirow{6}{*}{\[
\frac{9}{b}-\sum_{i}^{0}-
\]} & 12 VAC & 1 & 1 & 16 A & DTIS1012VAC & 66.00 \\
\hline & 24 V AC & 1 & 1 & 16 A & DTIS1024VAC & 66.00 \\
\hline & 48 V AC & 1 & 1 & 16 A & DTIS1048VAC & 66.00 \\
\hline & 240 V AC & 1 & 1 & 16 A & DTIS10240VAC & 66.00 \\
\hline & 12 VDC & 1 & 1 & 16 A & DTIS1012VDC & 66.00 \\
\hline & 24 VDC & 1 & 1 & 16 A & DTIS1024VDC & 66.00 \\
\hline \multirow{7}{*}{\[
\frac{90}{6}-\int_{i}^{b}-a
\]} & 12 VAC & 2 & 1 & 16 A & DTIS2012VAC & 96.00 \\
\hline & 24 VAC & 2 & 1 & 16 A & DTIS2024VAC & 96.00 \\
\hline & 48 V AC & 2 & 1 & 16 A & DTIS2048VAC & 96.00 \\
\hline & 240 V AC & 2 & 1 & 16 A & DTIS20240VAC & 96.00 \\
\hline & 12 VDC & 2 & 1 & 16 A & DTIS2012VDC & 96.00 \\
\hline & 24 VDC & 2 & 1 & 16 A & DTIS2024VDC & 96.00 \\
\hline & 12 VDC & 2 & 1 & 32 A & DTIS123212VDC & 187.00 \\
\hline \multirow{7}{*}{\[
\frac{9}{b}-b_{0}^{b}
\]} & 12 VAC & 2 & 1 & 16 A & DTIS1112VAC & 96.00 \\
\hline & 24 VAC & 2 & 1 & 16 A & DTIS1124VAC & 96.00 \\
\hline & 48 VAC & 2 & 1 & 16 A & DTIS1148VAC & 96.00 \\
\hline & 240 V AC & 2 & 1 & 16 A & DTIS11240VAC & 96.00 \\
\hline & 12 VDC & 2 & 1 & 16 A & DTIS1112VDC & 96.00 \\
\hline & 24 VDC & 2 & 1 & 16 A & DTIS1124VDC & 96.00 \\
\hline & 12 V DC & 2 & 1 & 32 A & DTIS113212VDC & 187.00 \\
\hline
\end{tabular}

\section*{Add on power contact \({ }^{2}\) )}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Diagram & Coil Voltage & No. of poles & No. of mods. & In & Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline \[
\hat{i}_{6}^{b}
\] & & 2 & 1 & 16 A & DTIS2NO & 83.00 \\
\hline \& 6 & & 2 & 1 & 16 A & DTIS2CO & 83.00 \\
\hline ¢ \(\hat{}\) & & 2 & 1 & 32 A & DTIS132PWR & 187.00 \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) When stacking in rows ensure adequate ventilation, insert spacer (DTSP) every second device.
\({ }^{2}\) ) Only suitable for 32 A DTIS.
32 A unit available - refer NHP.

\section*{Sprecher + Schuh CA 8 contactors}

\section*{Features}
- Ideally suited for heating, lighting, hot water and storage heating applications
- Small size (2.5 pole width), panel or DIN rail mounting
- Contactors can be mechanically interlocked

Large range of snap-on accessories ')
- Conforms to AS/NZS 60947 with world-wide approvals


Maximum current ratings (amps) at 415 volts
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cat. No. \({ }^{1}\) ) & \multicolumn{3}{|l|}{CA 8-5-10_AC \({ }^{2}\) )} & \multicolumn{3}{|l|}{(A 8-9-10_AC \({ }^{2}\) ) [CA 8-12-10_AC \({ }^{2}\) )]} & \multicolumn{2}{|l|}{\begin{tabular}{l}
4-POLE \\
CA 8-9-M40_AC
\end{tabular}} \\
\hline Price \({ }^{\mathbf{3}}\) ) & \multicolumn{3}{|l|}{99.50} & \multicolumn{3}{|l|}{113.00 [137.00]} & \multicolumn{2}{|l|}{143.00} \\
\hline Heating loads AC 1 & &  & \[
\begin{aligned}
& \frac{0}{0} \overline{\underline{\omega}} \\
& \text { m } \\
& \text { m }
\end{aligned}
\] & & \[
\begin{aligned}
& \frac{0}{0} \frac{\bar{\omega}}{\bar{N}} \\
& \sim \\
& \sim \bar{\circ}
\end{aligned}
\] &  & &  \\
\hline Amps per phase \(40^{\circ} \mathrm{C}\) (A) & 20 & 34 & 50 & 20 & 34 & 50 & 20 & 64 \\
\hline Amps per phase \(60^{\circ} \mathrm{C}\) (A) & 16 & 27 & 40 & 16 & 27 & 40 & 16 & 51 \\
\hline
\end{tabular}

Lighting loads
\begin{tabular}{lccc|ccc|cc}
\hline Tungsten per phase (A) & 4 & - & - & 7 & - & - & 7 & - \\
\hline Fluorescent \(40^{\circ} \mathrm{C}\) (A) & 18 & 30 & 45 & 18 & 30 & 45 & 18 & 57 \\
\hline Fluorescent \(60^{\circ} \mathrm{C}\) (A) & 14.5 & 24 & 35 & 14.5 & 24 & 35 & 14.5 & 45 \\
\hline
\end{tabular}

Motor loads
\begin{tabular}{ll|l|l}
\hline Amps 415 volt AC 3 & 5.3 & \(9.0[12]\) & 9.0 \\
\hline \(\mathrm{~kW} @ 60^{\circ} \mathrm{C}\) & 2.6 & \(4.5[6.1]\) & 4.5 \\
\hline
\end{tabular}

Emergency lighting test unit
\begin{tabular}{lllc} 
& Cat. No. & Price \$ \\
\hline \begin{tabular}{l} 
Standard switch operated \\
emergency lighting test unit
\end{tabular} & reset - test & ELTS \({ }^{4}\) ) & \(\mathbf{2 3 5 . 0 0}\) \\
\hline \begin{tabular}{l} 
Key operated emergency \\
lighting test unit
\end{tabular} & reset - test & ELTK \({ }^{4}\) ) & \(\mathbf{2 5 0 . 0 0}\) \\
\hline
\end{tabular}


Notes: \({ }^{1}\) ) For further information refer to Part A Section 1 Price List Catalogue.
\({ }^{2}\) ) Supplied with \(1 \mathrm{~N} / \mathrm{O}\) auxiliary contact. For \(1 \mathrm{~N} / \mathrm{C}\) auxiliary contact specify 01 instead of 10 when ordering.
\({ }^{3}\) ) Price is for standard AC coil voltage. Specify voltage when ordering
\({ }^{4}\) ) Cat. No. ELTS and ELTK use Price Schedule 'A4'

\title{
DIN rail mounted surge diverters Electrical network
}

\section*{Features:}
- Compact size
- Status indication (via flag)
- DIN rail mounting
- Thermal disconnection

Remote indication (via volt free contact)


\section*{PSC Series}

The PSC pluggable range consists of Class \(1+2\) (according to IEC 61643-11) surge protective devices (lightning arrestor) \((10 / 350 \mu \mathrm{~s})\) and surge protector \((8 / 20 \mu \mathrm{~s})\) with low Up (protection of downstream equipments) for singlephase and three-phase electrical power networks.
These units are ideal for protection of service entrances and distribution panels in areas exposed to lightning activity or externally generated heavy transients.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. o phase & slimp & \(I_{\text {max }}\) & Connection & & \(\mathrm{U}_{\mathbf{c}}\) & \(\mathrm{U}_{\mathrm{p}}\) & Cat. No. \\
\hline 1P & 12.5 kA & 65 kA & L-N & 20 kA & 275 V & \(\leq 1.3 \mathrm{kV}\) & CPTPSC1-12/2301R \\
\hline 1P & 25 kA & 65 kA & N-PE & 25 kA & 255 V & \(\leq 1.5 \mathrm{kV}\) & CPTPSC1-25N \\
\hline 1P & 25 kA & 100 kA & L-N & 25 kA & 275 V & \(\leq 1.3 \mathrm{kV}\) & CPTPSC1-25/2301R \\
\hline 1 P & 50 kA & 65 kA & N-PE & 50 kA & 255 V & \(\leq 1.5 \mathrm{kV}\) & CPTPSC1-50N \\
\hline 1P & 100 kA & 100 kA & N-PE & 50 kA & 255 V & \(\leq 1.5 \mathrm{kV}\) & CPTPSC1-100N \\
\hline 1P+N & 12.5 kA & 65 kA & L+N-PE & 20 kA & 275 V & \(\leq 1.3 \mathrm{kV}\) & CPTPSC2-12/23018 \(\left.\left.{ }^{1}\right)^{2}\right)^{3}\) ) \\
\hline 1P+N & 25 kA & 100 kA & L+N-PE & 25 kA & 275 V & \(\leq 1.3 \mathrm{kV}\) & CPTPSC2-25/23018 \(\left.\left.{ }^{1}\right)^{2}\right)^{4}\) ) \\
\hline \(3 \mathrm{P}+\mathrm{N}\) & 12.5 kA & 65 kA & L+L+L+N-PE & 20 kA & 440 V & \(\leq 1.3 \mathrm{kV}\) & CPTPS (4-12/40018 \(\left.\left.{ }^{1}\right)^{2}\right)^{3}\) ) \\
\hline \(3 \mathrm{P}+\mathrm{N}\) & 25 kA & 100 kA & L+L+L+N-PE & 25 kA & 440 V & \(\leq 1.3 \mathrm{kV}\) & CPTPS \(\left.\left.4-25 / 4001 \mathrm{R}^{1}\right)^{2}\right)^{3}\) ) \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Accessories & For use with & Cat. No. \\
\hline Replacement module - & CPTPSC1-12/230IR, CPTPSC2- & CPTPSC-12-230MOD \\
limp 12.5 kA & 12/230IR \& CPTPSC4-12/400IR & \\
\hline Replacement module - & CPTPSC1-25/230IR, CPTPSC2- & \\
limp 25 kA & 25/230IR \& CPTPSC4-25/400IR & CPTPSC-25-230MOD \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) \(U_{p}\) listed above is between L-N. The \(U_{p}\) between N-PE is \(\leq 1.5 \mathrm{kV}\). \({ }^{2}\) ) \(U_{c}\) listed above is between L-N. The \(U_{c}\) between N-PE is 255 V .
\({ }^{3}\) ) \(\mathrm{I}_{\text {imp }}\) listed above is between L-N. The \(\mathrm{I}_{\text {imp }}\) between N-PE is 25 kA
\({ }_{5}^{4}\) ) I I imp listed above is between L-N. The \(\mathrm{I}_{\text {imp }}\) between N-PE is 50 kA .
\({ }^{5}\) ) \(I_{\text {imp }}\) listed above is between L-N. The \(I_{\text {imp }}\) between N-PE is 100 kA .

DIN rail mounted surge diverters Electrical network

Dimensions (mm)


Notes: CPTPSC425400IR dimensions are \(\mathrm{H} \times \mathrm{W} \times \mathrm{D}(\mathrm{mm}): 90 \times 155 \times 76\).

\title{
DIN rail mounted surge diverters Electrical network
}

\section*{PSM Series}

The PSM pluggable range consists of Class 2 (according to IEC) surge protective devices designed for protection against transient overvoltages in singlephase and three-phase electrical power networks.
These units are ideal for protection of distribution and branch panels, electronic equipment etc.

No. of
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline phase & \(I_{\text {max }}\) & \multicolumn{2}{|l|}{Connection \(\mathrm{I}_{\mathrm{N}}\)} & \(\mathrm{U}_{\text {c }}\) & \(\mathrm{U}_{\mathrm{p}}\) & Cat. No. \\
\hline 1 P & 20 kA & L-N & 10 kA & 275 V & <1.4 kV & CPTPSM1-20/230 IR \\
\hline 1 P & 20 kA & N-PE & 10 kA & 255 V & \(<1.5 \mathrm{kV}\) & CPTPSM1-20N \\
\hline 1 P & 40 kA & L-N & 20 kA & 275 V & <1.3kV & CPTPSM1-40/230 IR \\
\hline 1 P & 40 kA & N-PE & 20 kA & 275 V & <1.5kV & CPTPSM1-40N \\
\hline \(1 \mathrm{P}+\mathrm{N}\) & 20 kA & L+N-PE & 10 kA & 275 V & <1.4 kV & CPTPSM2-20/230 (R \(\left.{ }^{1}\right)^{2}\) ) \\
\hline \(1 \mathrm{P}+\mathrm{N}\) & 40 kA & L+N-PE & 20 kA & 275 V & <1.3 kV & CPTPSM2-40/230 (R \(\left.^{1}\right)^{3}\) ) \\
\hline \(3 \mathrm{P}+\mathrm{N}\) & 20 kA & \[
\begin{aligned}
& \hline \mathrm{L}+\mathrm{L}+\mathrm{L}+ \\
& \mathrm{N}-\mathrm{PE} \\
& \hline
\end{aligned}
\] & 10 kA & 440 V & \(<1.4 \mathrm{kV}\) & CPTPSM4-20/400 IR \(\left.^{1}\right)^{2}\) ) \\
\hline \(3 \mathrm{P}+\mathrm{N}\) & 40 kA & \[
\begin{aligned}
& \hline \mathrm{L}+\mathrm{L}+\mathrm{L}+ \\
& \mathrm{N}-\mathrm{PE} \\
& \hline
\end{aligned}
\] & 20 kA & 440 V & \(<1.3 \mathrm{kV}\) & CPTPSM4-40/400 (R \(\left.{ }^{1}\right)^{3}\) ) \\
\hline
\end{tabular}

Accessories
\begin{tabular}{ll}
\hline \begin{tabular}{ll} 
Replacement module - & CPTPSM1-20/230IR, CPTPSM2- \\
Imax 20 kA & 20/230IR \& CPTPSM4-20/400IR \\
\hline Replacement module - & CPTPSM1-40/230IR, CPTPSM2- \\
Imax 40 kA & \(40 / 230 I R \&\) CPTPSM4-40/400IR \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Cat. No.
CPTPSM-20-230MOD

CPTPSM-40-230MOD

Notes: \({ }^{1}\) ) \(U_{p}\) listed above is between L-N. The \(U_{p}\) between N-PE is \(\leq 1.5 \mathrm{kV}\).
\({ }^{2}\) ) \(U_{c}\) listed above is between L-N. The \(U_{c}\) between N-PE is 255 V .
\({ }^{3}\) ) \(\mathrm{U}_{c}\) listed above is between \(\mathrm{L}-\mathrm{N}\). The \(\mathrm{U}_{c}\) between \(\mathrm{N}-\mathrm{PE}\) is 265 V .

DIN rail mounted surge diverters Electrical network

Dimensions (mm)

\(3 P+N\) PSM models

Safe-T (6-63 A) MCBs


Safe-T (80-100 A) MCBs


Safe-T (6-63 A)


Safe-T (80-100 A)


Safe-T (SRCB) RCBO


Safe-T (ELR) earth leakage relay


SIDE VEW


Din-T 6, 10, 15 / Din-T DC - MCBs


Din-T 10H-MCBs


Din-Safe-2 P RCBO


DSRCBS



\section*{Din-T shunt trip}

To suit:
Din-T 6, 10, 15, Din-T DC

To suit:
Din-T 10H


\section*{Din-T undervoltage trip}

To suit:
Din-T 6, 10, 15, Din-T DC (not Din-T10H)


\section*{Auxiliary contacts for MCBs}

Din-T 6, 10, 15, Din-T DC


Din-T - motor operator

Din-T 10H


Din-T - panelboard switch


Din-T - changeover switch


Din-T-pushbutton


Din-T-impulse switch
Din-T - contactor


Din-T-Pilot light


\section*{Time switches}

Talento range

Digital \& Analogue
\(24 \mathrm{hr}, 7\) day and yearly programming
17.5 mm wide and standard DIN housing

1,2 and 4 channel flexibility
Economical synchronous operation and quartz precision with reserve
- Manual overide
- Pulse switching capability (TAL 471,472 PLUS)

Energy saving ASTRO function (TAL 791 PLUS)

TAL111MINI
TAL371


MINI PLUS


TAL371 PRO

Analogue \(\mathbf{2 4}\) hr \& 7 day - 16 A rating (resistive load)
\begin{tabular}{llllll}
\begin{tabular}{l} 
Pro- \\
gramme
\end{tabular} & Reserve & \begin{tabular}{l} 
Min. \\
switch \\
time
\end{tabular} & Contact & Cat. No. & Price \$ \\
\hline 24 hr & - & 30 min & \(1 \mathrm{~N} / \mathrm{O}\) & TAL111MINI & \(\mathbf{1 0 2 . 0 0}\) \\
\hline 24 hr & - & 30 min & \(1 \mathrm{C} / \mathrm{O}\) & TAL111 & \(\mathbf{1 0 5 . 0 0}\) \\
\hline 24 hr & 50 hr & 30 min & \(1 \mathrm{~N} / \mathrm{O}\) & TAL211MINI & \(\mathbf{1 5 1 . 0 0}\) \\
\hline 24 hr & 150 hr & 30 min & \(1 \mathrm{C} / \mathrm{O}\) & TAL211 & \(\mathbf{2 0 0 . 0 0}\) \\
\hline 7 day & - & 3 hr & \(1 \mathrm{C} / \mathrm{O}\) & TAL171 & \(\mathbf{1 4 8 . 0 0}\) \\
\hline 7 day & 150 hr & 3 hr & \(1 \mathrm{C} / \mathrm{O}\) & TAL271 & \(\mathbf{2 1 5 . 0 0}\) \\
\hline
\end{tabular}

Digital 24 hr, 7 day \& yearly - 16 A rating (resistive load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Programme Reserve & Min. switch time & No. of memory locations & Contact & Cat. No. & Price \$ \\
\hline 24hr/7 days 3 yrs & 1 min & 50 & \(1 \mathrm{C} / \mathrm{O}\) & TAL371MP240VAC & 145.00 \\
\hline \(24 \mathrm{hr} / 7\) days 3 yrs & 1 min & 70 & \(1 \mathrm{C} / \mathrm{O}\) & TAL371PRO & 210.00 \\
\hline \(24 \mathrm{hr} / 7\) days 3 yrs & 1 min & 70 & \(2 \mathrm{C} / \mathrm{O}\) & TAL372PRO & 330.00 \\
\hline \(24 \mathrm{hr} / 7\) days 3 yrs & 1 min & 100 & \(1 \mathrm{C} / \mathrm{O}\) & TAL471PRO & 270.00 \\
\hline \(24 \mathrm{hr} / 7\) days 3 yrs & 1 min & 100 & \(2 \mathrm{C} / \mathrm{O}\) & TAL472PRO & 390.00 \\
\hline Astro 3 yrs & \multicolumn{2}{|l|}{Daylight Switch} & \(1 \mathrm{C} / \mathrm{O}\) & TAL791PRO & 430.00 \\
\hline Yearly 3 yrs & 1 sec & 800 & \(2 \mathrm{C} / \mathrm{O}\) & TAL892PLUSTOP & 760.00 \\
\hline & & & & TAL892PLUSTOP & 760.00 \\
\hline Yearly 3 yrs & 1 sec & 800 & \(4 \mathrm{C} / \mathrm{O}\) & AND & \\
\hline & & & & TALCEPLUSTOP & 365.00 \\
\hline
\end{tabular}

\section*{33 AdentstneatiNynnumkXrthbSPSFFElectical InstallationOM Ma}

Panelboards, Loadcentres and accessories
Busbar chassis assemblies
\begin{tabular}{lc} 
Pole Covers to suit Safe-T and Din-T series & \(2-2\) \\
Loadcentres &
\end{tabular}
\begin{tabular}{lc}
\hline Insulated - ILC series & \(2-3\) \\
\hline Insulated - Din-T surface mount & \(2-4\) \\
\hline
\end{tabular}
Insulated - Din-T flush mount \(\quad\) 2-5

Insulated - Din-Modula 150 series 2-6
Insulated - MCE weatherproof series 2-7
Insulated - Din-Modula weatherproof series 2-8
Metal - NLC for Din-T MCBs \(\quad 2-9\)
Metal - TLC for Safe-T MCBs \(\quad 2-10\)
CONCEPT
Panelboards - introduction 2-11
Panelboards - quick reference table 2-12
CONCEPT economical panelboards 2-14
CONCEPT•PLUS multi-purpose panelboards 2-17
CONCEPT•PLUS Grizz-Bar isolation \(2-24\)
CONCEPT•PLUS energy metering \(2-26\)
CONCEPT•PLUS Safe-T 2-27
CONCEPT•PLUS accessory modules 2-29
CONCEPT•PLUS options and accessories 2-30
CONCEPT•PREMIER premium panelboards 2-32
CONCEPT•PREMIER Grizz-Bar isolation 2-37
CONCEPT•PREMIER \(2 \quad 2-40\)
CONCEPT•PREMIER Safe-T \(\quad 2-45\)
CONCEPT•PREMIER MCCB \(2-47\)

CONCEPT•PREMIER accessory modules 2-48
CONCEPT•PREMIER options and accessories \(2-50\)
CONCEPT•TOUGH heavy-duty panelboards \(2-52\)
Panelboard hardware to suit the CONCEPT range 2-56
NC chassis 2-58
GB chassis \(\quad 2-62\)
CD chassis \(\quad 2-65\)
CT chassis 2-67

KATKO
Panelboard DIN switch-fuse \& fuse links 2-69
Modular panelboard features 2-70
Q-Pulse IdAdtME:13TVDe:agelbo7 of 1633

\section*{Pole covers}

Safe-T and Din-T

Safe-T pole covers
■ Standard AS/NZS 3132
- Degree of protection IP 30
- Surface mounting
- Colour - Black
- Supplied complete with clip tray
\begin{tabular}{l|lr} 
Pole capacity & Cat. No. & Price \(\mathbf{\$}\) \\
\hline 1 & SAFE-TPC1 & \(\mathbf{1 8 . 2 0}\) \\
\hline 3 & SAFE-TPC23 & \(\mathbf{3 2 . 5 0}\) \\
\hline
\end{tabular}

Dimensions (mm)
\begin{tabular}{llll} 
Pole capacity & H & W & D \\
\hline 1 & 160 & 30 & 64 \\
\hline 3 & 160 & 80 & 64 \\
\hline & & & Price schedule 'T1'
\end{tabular}

Din-T pole covers for Din-T series MCBs
- Standard AS/NZS 3132
- Suits Din-T6, 10, 10H, 15 MCBs and associated DIN equipment
- Made from high impact resistant material
- Degree of protection IP 30
- Surface mounting
- Colour-Grey
- 2 and 4 way lead sealable

\begin{tabular}{l|lr} 
Capacity & Cat. No. ' \()\) & Price \(\mathbf{\$}\) \\
\hline 1 Pole & CSPC1 & \(\mathbf{7 . 3 0}\) \\
\hline 2 Pole & DTPC2 & \(\mathbf{1 3 . 0 0}\) \\
\hline 4Pole & DTPC4 & \(\mathbf{1 6 . 8 0}\) \\
\hline 6 Pole & DTPC6 & \(\mathbf{3 1 . 5 0}\) \\
\hline 8 Pole & DTPC8 & \(\mathbf{4 1 . 0 0}\) \\
\hline 1 Pole (Suits 1P MCB with LockDIN) & DTPC2LD & \(\mathbf{1 9 . 2 0}\) \\
\hline 3 Pole (Suits 3P MCB with LockDIN) & DTPC4LD & \(\mathbf{2 3 . 4 0}\) \\
\hline
\end{tabular}

Dimensions (mm)
\begin{tabular}{llll} 
Pole capacity & \(\mathbf{H}\) & W & D \\
\hline 1 & 130 & 32 & 62 \\
\hline 2 & 139 & 51 & 61 \\
\hline 4 & 139 & 88 & 61 \\
\hline 6 & 165 & 140 & 72 \\
\hline 8 & 198 & 200 & 72 \\
\hline
\end{tabular}


Notes: \({ }^{1}\) ) Will not accept DSRCBH single pole RCDs.

\section*{Insulated loadcentres}

\section*{ILC series}
- Standard AS/NZS 3132
- Suits Din-T6, 10, 10H, 15 MCBs and associated DIN equipment
- Made from high impact resistance material
- Comprehensive cable entry facilities at top, bottom, sides and rear
- Modern consumer unit designed with an attractive styling for new buildings, replacing
 old units, or adding extensions

\section*{Ordering details}
\begin{tabular}{llc} 
Pole capacity & Cat. No. & Price \$ \\
\hline 4 & ILC 4S & \(\mathbf{6 5 . 5 0}\) \\
\hline 8 & ILC 8S & \(\mathbf{7 9 . 0 0}\) \\
\hline \(1-3\) (Suits \(\leq 63\) A Din-T MCB with Lockdin) & ILC4SLD & \(\mathbf{7 1 . 5 0}\) \\
\hline \(1-3\) (Suits 80-125 A Din-T MCB with Lockdin) & ILC4SLD10H & \(\mathbf{7 7 . 0 0}\) \\
\hline
\end{tabular}

Optional accessories
\begin{tabular}{lllr} 
Description & Cat. No. & Price \$ \\
\hline \begin{tabular}{l} 
Comb type \\
busbars
\end{tabular} & REFER PAGE & \(\mathbf{1 - 4 3}\) \\
\hline Main switches & REFER PAGE & \(\mathbf{1 - 3 8}\) \\
\hline Earth and neutral bar kit & \(\frac{4 \times 10 \mathrm{~mm}^{2}}{2 \times 16 \mathrm{~mm}^{2}+8 \mathrm{x}}\) & ILC 4EN & \(\mathbf{2 7 . 0 0}\) \\
\hline Lead sealing bracket & ILC 8EN & \(\mathbf{3 1 . 0 0}\) \\
\hline
\end{tabular}

Technical data
- Maximum load 120 amp
- Maximum operating voltage 415 V AC
- Degree of protection IP 43
- Material: self-extinguishing halogen-free polystyrene
- Colour: Base: Grey RAL 7035

Door: Clear
Dimensions (mm)
\begin{tabular}{llll} 
Cat. No. & H & W & D \\
\hline ILC \(4 S\) & 175 & 90 & 100 \\
\hline ILC \(8 S\) & 175 & 170 & 120 \\
\hline
\end{tabular}

Notes: Earth and neutral kit ordered separately.
Bus comb ordered separately.
Will not accept DSRCBH single pole RCDs.

\section*{Insulated loadcentres}

\section*{DIN-T - surface mount}
\(\square\)
Standard AS/NZS 3439-3
- Suits NHP Din-T MCBs and


Ordering details
\begin{tabular}{llllllr}
\begin{tabular}{l} 
Pole \\
cap.
\end{tabular} & \begin{tabular}{l} 
No. of \\
rows
\end{tabular} & \begin{tabular}{l} 
Neutral \\
bar
\end{tabular} & \begin{tabular}{l} 
Earth \\
bar
\end{tabular} & \begin{tabular}{l} 
Trans. door \\
Cat. No.
\end{tabular} & \begin{tabular}{l} 
White door \\
Cat. No.
\end{tabular} & Price \$ \\
\hline 8 & 1 & \(4 / 4\) & 8 & CSB08ST & CSB08SW & \(\mathbf{6 7 . 5 0}\) \\
\hline 12 & 1 & \(5 / 3 / 3\) & 12 & CSB12ST & CSB12SW & \(\mathbf{7 8 . 0 0}\) \\
\hline 18 & 1 & \(9 / 3 / 3 / 3\) & 18 & CSB18ST & CSB18SW & \(\mathbf{1 1 9 . 0 0}\) \\
\hline 24 & 2 & \(10 / 3 / 3 / 3 / 3\) & 24 & CSB24ST & CSB24SW & \(\mathbf{1 5 6 . 0 0}\) \\
\hline 36 & 3 & \(12 / 12 / 12\) & 36 & CSB36ST & CSB36SW & \(\mathbf{1 9 7 . 0 0}\) \\
\hline
\end{tabular}

Dimensions
\begin{tabular}{llll} 
Pole capacity & Width (mm) & Height (mm) & Depth (mm) \\
\hline 8 & 185 & 200 & 94 \\
\hline 12 & 256 & 200 & 97 \\
\hline 18 & 363 & 220 & 97 \\
\hline 24 & 269 & 326 & 97 \\
\hline 36 & 306 & 473 & 102 \\
\hline
\end{tabular}

\section*{Insulated loadcentres}

\section*{DIN-T - flush mount}
- Standard AS/NZS 3439-3
- Suits NHP Din-T MCBs and associated DIN equipment
- Flush mount

- Split earth neutral bars
- Removable earth and neutral bar support
- Transparent or white door
- Door hinged at the top
- Supplied complete with Buscomb

Ordering details
\begin{tabular}{llllllr}
\begin{tabular}{l} 
Pole \\
cap.
\end{tabular} & \begin{tabular}{l} 
No. of \\
rows
\end{tabular} & \begin{tabular}{l} 
Neutral \\
bar
\end{tabular} & \begin{tabular}{l} 
Earth \\
bar
\end{tabular} & \begin{tabular}{l} 
Trans. door \\
Cat. No.
\end{tabular} & \begin{tabular}{l} 
White door \\
Cat. No.
\end{tabular} & Price \$ \\
\hline 12 & 1 & \(5 / 3 / 3\) & 12 & CSB12FT & CSB12FW & \(\mathbf{7 8 . 0 0}\) \\
\hline 18 & 1 & \(9 / 3 / 3 / 3\) & 18 & CSB18FT & CSB18FW & \(\mathbf{1 1 9 . 0 0}\) \\
\hline 24 & 2 & \(10 / 3 / 3 / 3 / 3\) & 24 & CSB24FT & CSB24FW & \(\mathbf{1 5 6 . 0 0}\) \\
\hline 36 & 3 & \(12 / 12 / 12\) & 36 & CSB36FT & CSB36FW & \(\mathbf{1 9 7 . 0 0}\) \\
\hline
\end{tabular}

Metal backing plate long
\begin{tabular}{llc} 
Pole capacity & Cat. No. & Price \$ \\
\hline 12 & CSB12FMPL & \(\mathbf{3 7 . 0 0}\) \\
\hline 18 & CSB18FMPL & \(\mathbf{3 7 . 0 0}\) \\
\hline 24 & CSB24FMPL & \(\mathbf{4 2 . 0 0}\) \\
\hline 36 & CSB36FMPL & \(\mathbf{4 2 . 0 0}\) \\
\hline
\end{tabular}

Dimensions
\begin{tabular}{lllll} 
Pole capacity & Description & Width \((\mathbf{m m})\) & Height \((\mathbf{m m})\) & Depth \((\mathbf{m m})\) \\
\hline \(\mathbf{1 2}\) & Base & 270 & 211 & 66 \\
\hline \(\mathbf{1 2}\) & Cover & 304 & 246 & 29 \\
\hline 18 & Base & 380 & 232 & 76 \\
\hline 18 & Cover & 412 & 267 & 29 \\
\hline 24 & Base & 270 & 304 & 76 \\
\hline 24 & Cover & 305 & 358 & 29 \\
\hline 36 & Base & 308 & 470 & 76 \\
\hline 36 & Cover & 342 & 503 & 29 \\
\hline
\end{tabular}

Flush enclosure - cut out dimensions (mm)
\begin{tabular}{lll} 
Enclosure type & Width & Height \\
\hline 12 way & 259 & 199 \\
\hline 18 way & 365 & 213 \\
\hline 24 way & 259 & 311 \\
\hline 36 way & 296 & 458 \\
\hline
\end{tabular}

\section*{Insulated loadcentres}

\section*{Din-Modula 150 series}

Standard AS/NZS 3439.3
Suits Din-T6, 10, 10H \& 15 MCBs and associated DIN equipment
IP 40 protection rating
- Totally insulated Maximum 100 amp load 150 mm centre distance between DIN rails with 30 mm behind the mounting frame
- The range consists of 36,54 and 72 pole enclosures

- Neutral and earth bars rated at 100 amps

These enclosures have generous 150 mm wiring space between and 30 mm behind equipment rails. The removable mounting frame serves to ease cabling and wiring greatly. Din-Modula 150 is designed for indoor use and to accept the Din-T 6, 10, 10H and 15 MCB range, time switches, contactors and main switches.

\section*{Technical data}
- Material: Base: Grey impact resistant polystyrene Door: Clear polycarbonate
- Halogen free

Ordering details
\begin{tabular}{llllll}
\begin{tabular}{l} 
No. \\
of rows
\end{tabular} & \begin{tabular}{l} 
Pole \\
cap.
\end{tabular} & \begin{tabular}{l} 
Neutral \\
bar
\end{tabular} & \begin{tabular}{l} 
Earth \\
bar
\end{tabular} & \begin{tabular}{l} 
Surface \\
Cat. No.
\end{tabular} &
\end{tabular} Price \$

Optional accessories
\begin{tabular}{llc} 
Description & Cat. No. & Price \$ \\
\hline Neutral19-36 & DM150NAA & \(\mathbf{3 9 . 5 0}\) \\
\hline Neutral 37-54 & DM150NAB & \(\mathbf{7 2 . 5 0}\) \\
\hline Neutral 55-72 & DM150NAC & \(\mathbf{7 2 . 5 0}\) \\
\hline Locking device & DM150LD & \(\mathbf{4 6 . 0 0}\) \\
\hline Coupling kit & DM150JK & \(\mathbf{2 3 . 4 0}\) \\
\hline
\end{tabular}

Dimensions (mm)
\begin{tabular}{llll} 
Cat. No. & H & W & D \\
\hline DM15036 & 450 & 355 & 142 \\
\hline DM15054 & 600 & 355 & 142 \\
\hline DM15072 & 750 & 355 & 142 \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) Will not accept DSRCBH single pole RCDs. Neutral bar extension kits must be ordered separately. When flush mount required order separately by description.

\section*{Insulated loadcentres}

MCE weatherproof series
- Suits Din-T6, 10, 10H, 15 and DC MCBs
- Suits DSRCBS 1P and DSRCB 2P RCBOs
- IP \(65-\) IK 08
- Maximum 120 A load
- Totally insulated
- Base polycarbonate, RAL 7035
- Cover polycarbonate, transparent
- UV resistant UL508
- 5 and 9 pole
- Pre-punched knockouts


The MCE weatherproof enclosure was designed to meet the tough demands of Australia's enviroment. The MCE is ideal for roof mounted applications such as used in solar (photovoltaic) applications.

Ordering details
\begin{tabular}{lllr}
\begin{tabular}{l} 
No. \\
of rows
\end{tabular} & \begin{tabular}{l} 
Pole \\
capacity
\end{tabular} & Cat. No. & Price \$ \\
\hline 1 & 5 & MCEPCN5MFM & \(\mathbf{8 8 . 0 0}\) \\
\hline 1 & 9 & MCEPCN9MFM & \(\mathbf{1 4 0 . 0 0}\) \\
\hline
\end{tabular}

No earth or neutral bars

Dimensions (mm)
\begin{tabular}{llll} 
Pole capacity & H & W & D \\
\hline 5 & 200 & 116 & 105 \\
\hline 9 & 200 & 190 & 105 \\
\hline
\end{tabular}

\section*{Insulated loadcentres}

\section*{Din-Modula weatherproof series}

Standard AS/NZS 3439.3 Suits Din-T6, 10, 10H \& 15 MCBs
- IP 55-IK07 protection
- Maximum 120 amp load
- Padlocking possible
- Door changeable left or right side

E Totally insulated

- Halogen free

The Din-Modula weatherproof was designed with maximum flexibility in mind.
Using the connection set, two or more enclosures can be joined together maintaining the IP protection rating. A further feature of flexibility is that of the adjustable height DIN rail. Grey impact resistant polystyrene base and clear polycarbonate door.
Din-Modula weatherproof was designed for use with the Din-T 6, 10, 10H and 15 MCB range in wet area applications, out of direct sunlight. Split neutral and earth bars are provided. For accessories, refer to page 1-43 \& 1-50.

\section*{Accessories}
- Circuit identification labels
- Split neutral and earth bars
- Weatherproof sealing caps for mounting screws
- Pole fillers
- Locking bracket to suit a padlock
- Connection set-for joining enclosures together at extra cost
- 125 mm DIN rail centres

Ordering details
\begin{tabular}{lllllr}
\begin{tabular}{l} 
No. \\
of rows
\end{tabular} & \begin{tabular}{l} 
Pole \\
cap.
\end{tabular} & \begin{tabular}{l} 
Neutral \\
bar
\end{tabular} & \begin{tabular}{l} 
Earth \\
bar
\end{tabular} & Cat. No. & Price \$ \\
\hline 1 & 12 & \(8 / 4\) & 8 & DMWP12 & \(\mathbf{2 2 0 . 0 0}\) \\
\hline 2 & 24 & \(18 / 6\) & 18 & DMWP24 & \(\mathbf{2 8 0 . 0 0}\) \\
\hline 3 & 36 & \(24 / 12\) & 18 & DMWP36 & \(\mathbf{3 7 0 . 0 0}\) \\
\hline
\end{tabular}

Optional accessories
\begin{tabular}{llc} 
Description & Cat. No. & Price \(\$\) \\
\hline Locking device & DMWPLD & \(\mathbf{2 8 . 0 0}\) \\
\hline connection set & DMWPCS & \(\mathbf{1 3 . 0 0}\) \\
\hline
\end{tabular}

Dimensions (mm)
\begin{tabular}{llll} 
Pole capacity & H & W & D \\
\hline 12 & 250 & 285 & 138 \\
\hline 24 & 375 & 285 & 138 \\
\hline 36 & 500 & 285 & 138 \\
\hline
\end{tabular}

\section*{Metal loadcentres}

\section*{NLC loadcentres for 'Din-T’ MCBs}
- Suits Din-T6, 10, 10H \& 15 MCBs and associated DIN equipment
- 1 mm zinc annealed steel
- Polyester powder coated N42 grey
- Earth and neutral bars provided
- Circuit schedule labels provided
- DIN rail fitted
- IP 30 (IP 40 with door)

- Commercial and light industrial applications

Ordering details
\begin{tabular}{llllllr} 
\\
\hline
\end{tabular} \begin{tabular}{l} 
Surface \\
mount \\
enclosure
\end{tabular} 4)

Load center supplied standard as base and escutcheon. Door and flush escutcheon supplied as optional extras.
Earth and neutral bars \(-2 \times 25 \mathrm{~mm}^{2}\), remaining \(16 \mathrm{~mm}^{2}\)
Options and accessories
\begin{tabular}{llr} 
Description & Cat. No. & Price \(\mathbf{\$}\) \\
\hline Locking kit includes bracket and fasteners & DSLK & \(\mathbf{3 0 . 5 0}\) \\
\hline (CLO01) & ADD EACH & \(\mathbf{1 . 9 0}\) \\
\hline Fitting of Din-T MCB single pole & ADD EACH & \(\mathbf{1 . 9 0}\) \\
\hline Fitting of Din-T MCBs two and three pole & ADD & \(\mathbf{3 8 0 . 0 0}\) \\
\hline NSW Public Works Department E1 type lock &
\end{tabular}

\section*{Dimensions (mm)}
\begin{tabular}{llll} 
Pole cap. & A \(\left.^{3}\right)\) & B & \(\left.\mathbf{C}^{3}\right)\) \\
\hline 8 & 268 & 192 & 245 \\
\hline 12 & 343 & 267 & 245 \\
\hline 15 & 418 & 342 & 245 \\
\hline 18 & 493 & 417 & 245 \\
\hline 21 & 568 & 492 & 245 \\
\hline 24 & 693 & 549 & 245 \\
\hline
\end{tabular}


Notes: 1) Doors and flush escutcheons supplied loose.
\({ }^{2}\) ) Door has provision for lock. Lock kit ordered separately.
\({ }^{3}\) ) Dimensions ' \(A\) ' and ' \(C\) ' increased by 50 mm when flush mounted. With door depth \(=98 \mathrm{~mm}\).
\({ }^{4}\) ) Accepts DSRCBH single pole RCDs.

\section*{Metal loadcentres}

\section*{TLC loadcentres for 'Safe-T' MCBs}
            Suitable for Safe-T MCBs and Safe-T RCDs
            1 mm zinc annealed steel
Polyester powder coated N42 grey
Earth and neutral bars provided
- Circuit schedule labels provided
- MCB clip tray fitted
- IP 30 (IP 40 with door)
- Australian made
- Commercial and light industrial applications


Ordering details
\begin{tabular}{lllll} 
& \begin{tabular}{l} 
Surface \\
mount \\
enclosure \({ }^{2}\) )
\end{tabular} & Price \$ & \begin{tabular}{l} 
Door \({ }^{1}\) ) \\
Cat. No.
\end{tabular} & Price \$ \\
\hline Pole & \begin{tabular}{l} 
Cat. No.
\end{tabular} & Pap. & TLC6S & \(\mathbf{1 2 6 . 0 0}\) \\
\hline 6 & TLC12S & \(\mathbf{1 6 4 . 0 0}\) & LD6/8 & \(\mathbf{6 7 . 5 0}\) \\
\hline 12 & TLC18S & \(\mathbf{2 0 5 . 0 0}\) & LD18/21 & \(\mathbf{7 8 . 0 0}\) \\
\hline 18 & & & & \\
\hline
\end{tabular}

Options and accessories
\begin{tabular}{llr} 
Description & Cat. No. & Price \$ \\
\hline Safe-T pole fillers & SAFETPF & \(\mathbf{1 . 8 0}\) \\
\hline Locking kit includes bracket and fasteners (CL001) & DSLK & \(\mathbf{3 0 . 5 0}\) \\
\hline Fitting of Safe-T MCB 1, 2 and 3 pole & ADD & \(\mathbf{1 . 9 0}\) \\
\hline DIN mount adaptor for time clock and contactors & TLCDMA & \(\mathbf{3 3 . 0 0}\) \\
\hline NSW Public Works Department E1 type lock & ADD & \(\mathbf{3 8 0 . 0 0}\) \\
\hline
\end{tabular}

Dimensions (mm)
\begin{tabular}{llll} 
Pole cap. & A & B & C \\
\hline 6 & 268 & 192 & 245 \\
\hline 12 & 418 & 342 & 245 \\
\hline 18 & 568 & 492 & 245 \\
\hline
\end{tabular}


Notes: \({ }^{1}\) ) Doors supplied loose.
\({ }^{2}\) ) Accepts DSRCBH single pole RCDs.

\section*{NHP - The panelboard innovators}

\section*{CONCEPT}

The NHP CONCEPT family range of panelboards keeps a common and attractive appearance throughout the range.

\section*{CONCEPT}


\section*{The economical panelboard:}

The 'CONCEPT' panelboard is designed for those wanting a visually attractive, economical panelboard, but also offering a robust enclosure with an excellent range of standard features. This type of panelboard is designed to be stocked nationally as an 'off the shelf' panelboard.

\section*{CONCEPT.PLUS}

\section*{The multipurpose panelboard:}

For those wanting an 'off the shelf' panelboard which offers a large range of features and options. The CONCEPT.PLUS is a multipurpose panelboard that offers among its many features: indoor rated panelboard with dust seal option, six modular sizes, and accessory boxes that can be added to extend the height or width of the panelboard. CONCEPT•PLUS panelboards are available for either DIN or NEMA (Safe-T) MCBs.

\section*{CONCEPT•PREMIER}

\section*{The premium panelboard:}

The CONCEPT.PREMIER panelboard range has all the features of CONCEPT•PLUS, but also includes important additional features, such as a greater box depth, weatherproof rating, the option of stainless steel enclosures, a floor mounting plinth, plus others.
CONCEPT•PREMIER panelboards are available for Safe-T, Din-T, 125 A and 250 A MCCBs or combinations thereof.

\section*{CONCEPT•TOUGH}

The heavy-duty panelboard:
The CONCEPT•TOUGH panelboard range has all the features of CONCEPT•PREMIER plus more, the CONCEPT•TOUGH has an increase in depth, width and material thickness for extra strength. The increase in depth allows the use of a wider range of padlock/locking facilities on isolators and circuit breakers between the door and escutcheon. This extra depth also allows larger accessory items to be mounted below the escutcheon such as contactors and change-over switches. The CONCEPT•TOUGH has a vast amount of wiring space and very generously sized glandplate entry and exit points due to the extra width. This package is all put together in a rigid 2 mm fully welded construction for those extra tough applications.

\section*{Quick reference table}
\begin{tabular}{|c|c|c|}
\hline Features and options & CONCEPT & CONCEPT.PLUS \\
\hline Circuit Breaker Types & Din-T & Din-T/ Safe-T \\
\hline \multicolumn{3}{|l|}{Enclosure Details \& Accessory Spacing} \\
\hline Width & 485 mm & 585 mm \\
\hline Depth & 151 mm & 185 mm \\
\hline IP Rating & IP 40 & IP \(42{ }^{1}\) ) \\
\hline Material & 1 mm & 1.6 mm \\
\hline Pole capacity & 24-60 & 18-96 \\
\hline Colours available (doors) & Grey \& Orange & Grey \& Orange \\
\hline Spare DIN rail - rail mounting space & 12 Poles & 18 Poles \\
\hline Largest contactor under PB escutcheon & CA 7-43 & CA 7-85 \\
\hline Largest contactor in accessory module & - & CA 6-180 \\
\hline \multicolumn{3}{|l|}{Main Switches, Busbars, Earth \& Neutral Bars} \\
\hline STD Main switch rating & 160 A or 250 A & 160 or 250 A standard \\
\hline Maximum main switch sizes available & 250 A & 400 A \\
\hline Dual Earth \& Neutral bars & - & - \\
\hline Lock type on door (keylock) & Flush & Flush \\
\hline Chassis type & Din chassis & NC-GB-CT \\
\hline \multicolumn{3}{|l|}{Common Features} \\
\hline Horizontal DIN rail & \(\checkmark\) & \(\checkmark\) \\
\hline Knockouts for MCBs \& accessories & \(\checkmark\) & \(\checkmark\) \\
\hline Door reversible RHS to LHS & \(\checkmark\) & \(\checkmark\) \\
\hline Door hinged independent of escutcheon & \(\checkmark\) & \(\checkmark\) \\
\hline \multicolumn{3}{|l|}{Optional Accessories \& Features} \\
\hline Emergency lighting kits - option & \(\checkmark\) & \(\checkmark\) \\
\hline Split chassis - option & \(\checkmark\) & \(\checkmark\) \\
\hline Special colours - option & \(\checkmark\) & \(\checkmark\) \\
\hline Rain \& dust hood & - & - \\
\hline Custom 'modular' assemblies - option & - & \(\checkmark\) \\
\hline Accessory / header boxes - option & - & \(\checkmark\) \\
\hline Brass or aluminium gland plates - option & - & \(\checkmark\) \\
\hline Removable gland plates - standard & - & \(\checkmark\) \\
\hline Can fit MCCBs - option & - & \(\checkmark\) \\
\hline Fault current limiter DIN fuses - option & - & \(\checkmark\) \\
\hline Flush surround kits - option & \(\checkmark\) & \(\checkmark\) \\
\hline Hinged escutcheon & - & optional \\
\hline Dust seal & - & optional \\
\hline Floor mounting plinth - option & - & \(\checkmark\) \\
\hline Wall mounting brackets - option & - & - \\
\hline '3 point locking' door - on Lge encl. \({ }^{2}\) ) & - & - \\
\hline Stainless steel enclosure - option & - & - \\
\hline
\end{tabular}

\footnotetext{
Notes: For a more complete listing of accessory details refer to accessory pages relating to individual panelboards.
\({ }^{1}\) ) Dust seal option - IP52B.
\({ }^{2}\) ) On large enclosures \(\geq 1000 \mathrm{~mm}\).
}

\section*{Quick reference table}
\begin{tabular}{lll} 
Features and options & CONCEPT•PREMIER & CONCEPT•TOUGH \\
\hline Circuit Breaker Types & \begin{tabular}{l} 
Din-T/ Safe-T/ \\
125 \& 250 A MCCBs
\end{tabular} & \begin{tabular}{l} 
Din-T / Safe-T/ \\
125 \& 250 A MCCBs
\end{tabular} \\
\hline Enclosure Details \& Accessory Spacing & \\
\hline Width & 640 mm & 800 mm \\
\hline Depth & 240 mm & 300 mm \\
\hline IP Rating & IP 66 & IP 66 \\
\hline Material & 1.6 mm & 2.0 mm \\
\hline Pole capacity & \(18-96\) & \(18-96\) \\
\hline Colours available (doors) & Grey \& Orange & Grey \& Orange \\
\hline Spare DIN rail rail mounting space & 18 Poles & 18 Poles \\
\hline Largest contactor under PB escutcheon & CA 6-180 & CA 6-180 \\
\hline Largest contactor in accessory module & CA 6-420 & CA 6-420 \\
\hline Main Switches, Busbars, Earth \& Neutral Bars & \\
\hline STD Main switch rating & 160 or 250 A standard & - \\
\hline Maximum main switch sizes available & \(<800\) A & \(<800\) A \\
\hline Dual Earth \& Neutral bars & \multicolumn{4}{l}{} \\
\hline Lock type on door (keylock) & \begin{tabular}{l} 
T-handle, flush \\
(series 2)
\end{tabular} & \begin{tabular}{l} 
Chrome plated \\
LHandle
\end{tabular} \\
\hline Chassis type & CD-NC-GB-XA-XB & CD-NC-GB-XA-XB \\
\hline
\end{tabular}

\section*{Common Features}
\begin{tabular}{lcc}
\hline Horizontal DIN rail & \(\checkmark\) & \(\checkmark\) \\
\hline Knockouts for MCBs \& accessories & \(\checkmark\) & \(\checkmark\) \\
\hline Door reversible RHS to LHS & \(\checkmark\) & - \\
\hline Door hinged independent of escutcheon & \(\checkmark\) & \(\checkmark\) \\
\hline Optional Accessories \& Features & & \\
\hline Emergency lighting kits - option & \(\checkmark\) & \(\checkmark\) \\
\hline Split chassis - option & \(\checkmark\) & \(\checkmark\) \\
\hline Special colours - option & \(\checkmark\) & \(\checkmark\) \\
\hline Rain \& dust hood & \(\checkmark\) & \(\checkmark\) \\
\hline Custom 'modular' assemblies - option & \(\checkmark\) & \(\checkmark\) \\
\hline Accessory / header boxes - option & \(\checkmark\) & accessory only \\
\hline Brass or aluminium gland plates - option & \(\checkmark\) & \(\checkmark\) \\
\hline Removable gland plates - standard & \(\checkmark\) & \(\checkmark\) \\
\hline Can fit MCCBs - option & \(\checkmark\) & \(\checkmark\) \\
\hline Fault current limiter DIN fuses - option & \(\checkmark\) & \(\checkmark\) \\
\hline Flush surround kits - option & \(\checkmark\) & - \\
\hline Hinged escutcheon & standard & standard \\
\hline Dust seal & standard & standard \\
\hline Floor mounting plinth - option & \(\checkmark\) & \(\checkmark\) \\
\hline Wall mounting brackets - option & \(\checkmark\) & standard \\
\hline 3 point locking' door - on Lge encl. ') & \(\checkmark\) & \(\checkmark\) \\
\hline Stainless steel enclosure - option & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

Notes: For a more complete listing of accessory details refer to accessory pages relating to individual panelboards.
\({ }^{1}\) ) On large enclosures \(\geq 1000 \mathrm{~mm}\).

\section*{CONCEPT}

\section*{The economical panelboard for Din-T MCBs}

Standard AS/NZS 3439-3
Type tested busbar system
- Compact 160 A or 250 A main switch

Door fitted independent of escutcheon
- Left or right hand door hinging
- Lockable door
- Australian made
- Commercial and industrial applications


\section*{Application}

The Concept range is an economical panelboard designed for the commercial and light industrial sectors. It will accept Din-T circuit breakers and associated accessory devices.

\section*{Features}
- Two-tone colour scheme, make a colour change by simply changing the door colour.
- The door is field changeable from right to left hinged and is totally independent of the escutcheon.
- Gloss white escutcheon has been dished to allow a wide range of accessories to fit under the door.
- Knockouts provided in the escutcheon for up to 12 modules of extra standard DIN rail equipment.
- Compact main switch with a 160 A or 250 A rating.

E Earth and neutral bars, circuit identification and schedule cards supplied.
Technical data
\(\begin{array}{ll}\text { Material type: } & 1 \mathrm{~mm} \text { steel } \\ \text { Finish: } & \text { Polyester powder coated }\end{array}\)
Colour (AS 2700-1995): Base - charcoal gloss
Door - N42 storm grey or X15 orange
Escutcheon - bright white gloss
Protection degree: IP 30 without door
IP 40 with door, IP42 with rain hood
Busbar ratings: \(\quad 250 \mathrm{~A}\)
20 kA for 0.2 seconds
Main Switch: \(\quad 160\) A 3 pole 415 V AC top mount
250 A 3 pole 415 V AC top mount

\section*{CONCEPT}

The economical panelboard for Din-T MCBs


CONCEPT
Surface mount panelboard with grey door
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main switch & Pole cap. & Box size & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow{4}{*}{160 A} & 24 & 1 & 700 & CON 24 M160 G & 1190.00 \\
\hline & 36 & 2 & 800 & CON 36 M160 G & 1300.00 \\
\hline & 48 & 3 & 900 & CON 48 M160 G & 1400.00 \\
\hline & 60 & 4 & 1000 & CON 60 M160 G & 1540.00 \\
\hline \multirow{4}{*}{250 A} & 24 & 1 & 700 & CON 24 M250 G & 1400.00 \\
\hline & 36 & 2 & 800 & CON 36 M250 G & 1500.00 \\
\hline & 48 & 3 & 900 & CON 48 M250 G & 1620.00 \\
\hline & 60 & 4 & 1000 & CON 60 M250 G & 1740.00 \\
\hline
\end{tabular}

Width \(=485 \mathrm{~mm}\), Depth \(=151 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

\section*{CONCEPT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Surface mount panelboard with orange door Suits Din-T MCBs (DIN) refer to section one} \\
\hline Main switch & Pole cap. & \[
\begin{aligned}
& \text { Box } \\
& \text { size }
\end{aligned}
\] & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow{4}{*}{160 A} & 24 & 1 & 700 & CON 24 M160 O & 1190.00 \\
\hline & 36 & 2 & 800 & CON 36 M160 O & 1300.00 \\
\hline & 48 & 3 & 900 & CON 48 M160 O & 1400.00 \\
\hline & 60 & 4 & 1000 & CON 60 M160 O & 1540.00 \\
\hline \multirow{4}{*}{250 A} & \(\underline{24}\) & 1 & 700 & CON 24 M250 0 & 1400.00 \\
\hline & 36 & 2 & 800 & CON 36 M250 O & 1500.00 \\
\hline & 48 & 3 & 900 & CON 48 M250 O & 1620.00 \\
\hline & 60 & 4 & 1000 & CON 60 M250 O & 1740.00 \\
\hline
\end{tabular}

Width \(=485 \mathrm{~mm}\), Depth \(=151 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

\section*{CONCEPT}

The economical panelboard for Din-T MCBs


Notes: \({ }^{1}\) ) Emergency lighting kits can be field fitted to Concept panelboards utilising horizontal DIN knockouts at top of board. Kits include control switch, timer, 24 A 4 Pole N/C contactor, labels and wiring diagram to complete control circuit which complies with AS 2293.1.

\section*{CONCEPT•PLUS}

\section*{Multi-purpose panelboards}

\section*{for Din-T or Safe-T MCBs}

Standard AS/NZS 3439-3
IP 42
6 modular sizes up to 96 poles
Accessory module
Type tested busbar chassis system
- Compact 250 A main switch

Generous wiring room
-
Removable gland plates
Door fitted independent of escutcheon
\(\square\) Flush door handle
- Left or right hand door hinging
- Commercial and industrial applications


\section*{Application}

The Concept Plus range of panelboards provide a unique enclosure system for the NHP range of Din-T and Safe-T MCBs and associated accessory devices.

\section*{Features}
- Two-tone colour scheme, make a colour change simply by changing the door colour
The door is field changeable from right to left hinged and is totally independent of the escutcheon
- Gloss white escutcheon has been dished to allow a wide range of accessories to fit under the door
Knockouts provided in the escutcheon for up to 18 modules of standard DIN rail equipment
- Removable gland plates aid on-site installation of cables
- New compact main switch with a fully enclosed rating of 160 A and 250 A

E Earth and neutral bars, circuit identification and schedule cards supplied standard

\section*{Technical data}

Material type: \(\quad 1.6 \mathrm{~mm}\) steel, polyester powder coated
Colour (AS 2700-1995): Base - Charcoal gloss
Door - N42 Storm grey or X15 orange Escutcheon - bright white
Protection degree: IP 42 - with door (Dust seal option)
Busbar ratings: SafeT-250 A CT (355 A option)
Din-T-250 A NC (400 A option)
Din-T-250 A Grizz-Bar
Main switch (options): Safe-T 100 A Non-auto (chassis mount CST)
Din-T M/S 100 A (chassis mount CDT)
160 A 3 pole 415 V AC (top mount)
250 A 3 pole 415 V AC (top mount)
200 A MCCB (top mount)
Neutral and earth bars: \(2 \times 8 \mathrm{~mm}\) studs; tunnel terminals with 2 screws 10 kA 1 second.

\section*{CONCEPT•PLUS 2}

Multi-purpose panelboards
for Din-T MCBs


CONCEPT•PLUS 2
Din-T - Surface mount with grey door
Suits Din-T MCBs (DIN) refer to section one
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main switch & Pole capacity & Box
size & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow{8}{*}{-} & 18 & 1 & 700 & CDT 18G2 & 1090.00 \\
\hline & \(\underline{24}\) & 1 & 700 & CDT 24G2 & 1190.00 \\
\hline & 36 & 2 & 900 & CDT 36G2 & 1300.00 \\
\hline & 48 & 2 & 900 & CDT 48G2 & 1460.00 \\
\hline & 60 & 3 & 1100 & CDT 60G2 & 1630.00 \\
\hline & 72 & 4 & 1300 & CDT 72G2 & 1780.00 \\
\hline & 84 & 4 & 1300 & CDT 84G2 & 2060.00 \\
\hline & 96 & 5 & 1500 & CDT 96G2 & 2390.00 \\
\hline \multirow{5}{*}{160 A} & 18 & 1 & 700 & CDT 18M160G2 & 1340.00 \\
\hline & 24 & 1 & 700 & CDT 24M160G2 & 1440.00 \\
\hline & 36 & 2 & 900 & CDT 36M160G2 & 1550.00 \\
\hline & 48 & 2 & 900 & CDT 48M160G2 & 1710.00 \\
\hline & 60 & 3 & 1100 & CDT 60M160G2 & 1880.00 \\
\hline \multirow{8}{*}{250 A} & 18 & 1 & 700 & CDT 18M250G2 \({ }^{1}\) ) & 1460.00 \\
\hline & 24 & 1 & 700 & CDT 24M250G2 \({ }^{1}\) ) & 1570.00 \\
\hline & 36 & 2 & 900 & CDT 36M250G2 & 1670.00 \\
\hline & 48 & 2 & 900 & CDT 48M250G2 & 1840.00 \\
\hline & 60 & 3 & 1100 & CDT 60M250G2 & 2000.00 \\
\hline & 72 & 4 & 1300 & CDT 72M250G2 & 2160.00 \\
\hline & 84 & 4 & 1300 & CDT 84M250G2 & 2440.00 \\
\hline & 96 & 5 & 1500 & CDT 96M250G2 & 2760.00 \\
\hline
\end{tabular}

Width \(=585 \mathrm{~mm}\), Depth \(=185 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: \({ }^{1}\) ) Main switch supplied loose i.e. CDT18-M250-G2 = CDT18G2 + EVA3250H.

\section*{CONCEPT•PLUS 2}

Multi-purpose panelboards for Din-T MCBs


CONCEPT•PLUS 2
Din-T - Surface mount with orange door
Suits Din-T MCBs (DIN) refer to section one
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main switch & Pole cap. & \[
\begin{aligned}
& \text { Box } \\
& \text { size }
\end{aligned}
\] & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow{8}{*}{-} & 18 & 1 & 700 & CDT 1802 & 1090.00 \\
\hline & 24 & 1 & 700 & CDT \(2402{ }^{2}\) ) & 1190.00 \\
\hline & 36 & 2 & 900 & CDT \(3602{ }^{2}\) ) & 1300.00 \\
\hline & 48 & 2 & 900 & CDT 4802 \({ }^{2}\) ) & 1460.00 \\
\hline & 60 & 3 & 1100 & CDT \(6002{ }^{2}\) ) & 1630.00 \\
\hline & 72 & 4 & 1300 & CDT 7202 & 1780.00 \\
\hline & 84 & 4 & 1300 & CDT 8402 & 2060.00 \\
\hline & 96 & 5 & 1500 & CDT 9602 & 2390.00 \\
\hline \multirow{5}{*}{160 A} & 18 & 1 & 700 & CDT 18M16002 & 1340.00 \\
\hline & 24 & 1 & 700 & CDT 24M16002 \({ }^{2}\) ) & 1440.00 \\
\hline & 36 & 2 & 900 & CDT 36M16002 \({ }^{2}\) ) & 1550.00 \\
\hline & 48 & 2 & 900 & CDT 48M16002 & 1710.00 \\
\hline & 60 & 3 & 1100 & CDT 60M16002 \({ }^{1}\) ) & 1880.00 \\
\hline \multirow{8}{*}{250 A} & 18 & 1 & 700 & CDT 18M25002 \({ }^{1}\) ) & 1460.00 \\
\hline & 24 & 1 & 700 & CDT 24M25002 \({ }^{1)^{2} \text { ) }}\) & 1570.00 \\
\hline & 36 & 2 & 900 & CDT 36M25002 \({ }^{2}\) ) & 1670.00 \\
\hline & 48 & 2 & 900 & CDT 48M25002 \({ }^{2}\) ) & 1840.00 \\
\hline & 60 & 3 & 1100 & CDT 60M25002 \({ }^{2}\) ) & 2000.00 \\
\hline & 72 & 4 & 1300 & CDT 72M25002 \({ }^{2}\) ) & 2160.00 \\
\hline & 84 & 4 & 1300 & CDT 84M25002 \({ }^{2}\) ) & 2440.00 \\
\hline & 96 & 5 & 1500 & CDT 96M25002 \(\left.{ }^{1}\right)^{2}\) ) & 2760.00 \\
\hline
\end{tabular}

Width \(=585 \mathrm{~mm}\), Depth \(=185 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: \({ }^{1}\) ) Main switch supplied loose i.e. CDT18-M250-O2 = CDT18O2 + EVA3250H.
\({ }^{2}\) ) Enclosure with orange base replace "O" with "OO" e.g. CDT36002.

\section*{CONCEPT•PLUS 2}

\section*{Multi-purpose panelboards}
for Din-T MCBs


CONCEPT•PLUS 2


Din-T - Surface mount with grey door
Suits Din-T MCBs (DIN) refer to section one
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main switch & Pole capacity & \[
\begin{aligned}
& \text { Box } \\
& \text { size }
\end{aligned}
\] & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow{5}{*}{-} & 18 & 1 & 700 & CDTE18G2 & 1190.00 \\
\hline & 36 & 2 & 900 & CDTE36G2 & 1400.00 \\
\hline & 48 & 3 & 1100 & CDTE48G2 & 1660.00 \\
\hline & 72 & 4 & 1300 & CDTE72G2 & 1890.00 \\
\hline & 96 & 5 & 1500 & CDTE96G2 & 2490.00 \\
\hline \multirow{5}{*}{160 A} & 18 & 1 & 700 & CDTE18M160G2 & 1440.00 \\
\hline & 36 & 2 & 900 & CDTE36M160G2 & 1650.00 \\
\hline & 48 & 3 & 1100 & CDTE48M160G2 & 1910.00 \\
\hline & 72 & 4 & 1300 & CDTE72M160G2 & 2140.00 \\
\hline & 96 & 5 & 1500 & CDTE96M160G2 & 2740.00 \\
\hline \multirow{5}{*}{250 A} & 18 & 1 & 700 & CDTE18M250G2 & 1560.00 \\
\hline & 36 & 2 & 900 & CDTE36M250G2 & 1770.00 \\
\hline & 48 & 3 & 1100 & CDTE48M250G2 & 2040.00 \\
\hline & 72 & 4 & 1300 & CDTE72M250G2 & 2260.00 \\
\hline & 96 & 5 & 1500 & CDTE96M250G2 & 2860.00 \\
\hline
\end{tabular}

Width \(=585 \mathrm{~mm}\), Depth \(=185 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: NC 250 topfeed chassis
24P horizontal DIN rail cut-out below chassis Made to order

\section*{CONCEPT•PLUS 2}

\section*{Multi-purpose panelboards}


CONCEPT•PLUS 2

\section*{for Din-T MCBs}


Extra row
horizontal
DIN Rail
24 Poles


Din-T - Surface mount with orange door
Suits Din-T MCBs (DIN) refer to section one
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main switch & Pole capacity & \[
\begin{aligned}
& \text { Box } \\
& \text { size }
\end{aligned}
\] & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow{5}{*}{-} & 18 & 1 & 700 & CDTE1802 & 1190.00 \\
\hline & 36 & 2 & 900 & CDTE3602 & 1400.00 \\
\hline & 48 & 3 & 1100 & CDTE4802 & 1660.00 \\
\hline & 72 & 4 & 1300 & CDTE7202 & 1890.00 \\
\hline & 96 & 5 & 1500 & CDTE9602 & 2490.00 \\
\hline \multirow{5}{*}{160 A} & 18 & 1 & 700 & CDTE18M16002 & 1440.00 \\
\hline & 36 & 2 & 900 & CDTE36M16002 & 1650.00 \\
\hline & 48 & 3 & 1100 & CDTE48M16002 & 1910.00 \\
\hline & 72 & 4 & 1300 & CDTE72M16002 & 2140.00 \\
\hline & 96 & 5 & 1500 & CDTE96M16002 & 2740.00 \\
\hline \multirow{5}{*}{250 A} & 18 & 1 & 700 & CDTE18M25002 & 1560.00 \\
\hline & 36 & 2 & 900 & CDTE36M25002 & 1770.00 \\
\hline & 48 & 3 & 1100 & CDTE48M25002 & 2040.00 \\
\hline & 72 & 4 & 1300 & CDTE72M25002 & 2260.00 \\
\hline & 96 & 5 & 1500 & CDTE96M25002 & 2860.00 \\
\hline
\end{tabular}

Width \(=585 \mathrm{~mm}\), Depth \(=185 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: NC 250 topfeed chassis
24P horizontal DIN rail cut-out below chassis Made to order

\section*{CONCEPT•PLUS 2}

\section*{Multi-purpose panelboards \\ for Din-T MCBs}

CONCEPT•PLUS 2
Din-T - Surface mount with grey door
Suits DIN-T-MCBs (DIN) refer to section one
100-160 A main switch = S160NJ3160 MCCB

\begin{tabular}{|c|c|c|c|c|c|}
\hline Main switch & Pole cap. & \begin{tabular}{l}
Box \\
size
\end{tabular} & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow{5}{*}{100-160 A \({ }^{\text {1 }}\)} & 24 & 1 & 700 & CDT24MCCB160G2 & 1800.00 \\
\hline & 42 & 2 & 900 & CDT42MCCB160G2 & 1990.00 \\
\hline & 60 & 3 & 1100 & CDT60MCCB160G2 & 2200.00 \\
\hline & 78 & 4 & 1300 & CDT78MCCB160G2 & 2600.00 \\
\hline & 96 & 5 & 1500 & CDT96MCCB160G2 & 2990.00 \\
\hline
\end{tabular}

160-200 A main switch \(=\) E250NJ3250 MCCB
\begin{tabular}{lllllr} 
Main switch & \begin{tabular}{l} 
Pole \\
cap.
\end{tabular} & \begin{tabular}{l} 
Box \\
size
\end{tabular} & \begin{tabular}{l} 
Height \\
\((\mathbf{m m})\)
\end{tabular} & Cat. No. & Price \$ \\
\hline & 24 & 1 & 700 & CDT24MCCB200G2 & \(\mathbf{1 9 5 0 . 0 0}\) \\
\cline { 2 - 6 } \(\left.160-200 A^{2}\right)\) & 42 & 2 & 900 & CDT42MCCB200G2 & \(\mathbf{2 1 5 0 . 0 0}\) \\
\cline { 2 - 6 } & 60 & 3 & 1100 & CDT60MCCB200G2 & \(\mathbf{2 3 5 0 . 0 0}\) \\
\cline { 2 - 6 } & 78 & 4 & 1300 & CDT78MCCB200G2 & \(\mathbf{2 7 5 0 . 0 0}\) \\
\hline & 96 & 5 & 1500 & CDT96MCCB200G2 & \(\mathbf{3 1 5 0 . 0 0}\) \\
\hline
\end{tabular}

Width \(=585 \mathrm{~mm}\), Depth \(=185 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

\footnotetext{
Notes: ') Factory set 160 A. Adjustable down to 100 A.
\({ }^{2}\) ) Factory set 200 A . Adjustable down to 160 A .
For 250 A refer NHP.
For orange door change " G " to " O " e.g. CDT24MCCB16002 made to order.
}

Enclosed busbar distribution system for Din-T, MCBs and RCBOs.


The Concept range of busbar chassis assemblies have been specifically designed for incorporating into the Concept family of panelboards
- Models from 6 to 108 poles
- Standard AS/NZS 3439.1
- 250 A and new 400 A rating
- Improved withstand ratings
- Retrofitable with CD chassis
- Improved form rating

\section*{CONCEPT•PLUS 2}

Multi-purpose panelboards for Din-T MCBs C/W isolation chassis


CONCEPT•PLUS 2


Din-T - Surface mount with grey door
Suits Din-T MCBs (DIN) refer to section one
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main switch & Pole capacity & \begin{tabular}{l}
Box \\
size
\end{tabular} & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow[t]{7}{*}{-} & 24 & 1 & 700 & CDG 24G2 & 1550.00 \\
\hline & 36 & 2 & 900 & CDG 36G2 & 1750.00 \\
\hline & 48 & 2 & 900 & CDG 48G2 & 2010.00 \\
\hline & 60 & 3 & 1100 & CDG 60G2 & 2320.00 \\
\hline & 72 & 4 & 1300 & CDG 72G2 & 2550.00 \\
\hline & 84 & 4 & 1300 & CDG 84G2 & 2990.00 \\
\hline & 96 & 5 & 1500 & CDG 96G2 & 3400.00 \\
\hline \multirow{4}{*}{160 A} & 24 & 1 & 700 & CDG 24M160G2 \({ }^{1}\) ) & 1750.00 \\
\hline & 36 & 2 & 900 & CDG 36M160G2 \({ }^{1}\) ) & 1950.00 \\
\hline & 48 & 2 & 900 & CDG 48M160G2 \({ }^{1}\) ) & 2150.00 \\
\hline & 60 & 3 & 1100 & CDG 60M160G2 \({ }^{1}\) ) & 2480.00 \\
\hline \multirow{7}{*}{250 A} & 24 & 1 & 700 & CDG 24M250G2 \({ }^{1}\) ) & 1910.00 \\
\hline & 36 & 2 & 900 & CDG 36M250G2 \({ }^{1}\) ) & 2110.00 \\
\hline & 48 & 2 & 900 & CDG 48M250G2 \({ }^{1}\) ) & 2370.00 \\
\hline & 60 & 3 & 1100 & CDG 60M250G2 \({ }^{1}\) ) & 2680.00 \\
\hline & 72 & 4 & 1300 & CDG 72M250G2 \({ }^{1}\) ) & 2850.00 \\
\hline & 84 & 4 & 1300 & CDG 84M250G2 \({ }^{1}\) ) & 3350.00 \\
\hline & 96 & 5 & 1500 & CDG 96M250G2 \({ }^{1}\) ) & 3750.00 \\
\hline
\end{tabular}

Width \(=585 \mathrm{~mm}\), Depth \(=185 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: \({ }^{1}\) ) Main switch supplied loose i.e. CDG18-M250-G2 = CDG18G2+EVA3250H

\section*{CONCEPT•PLUS 2}

Multi-purpose panelboards
for Din-T MCBs C/W isolation chassis


CONCEPT•PLUS 2

\(\left.\begin{array}{lllllr}\begin{array}{l}\text { Main } \\ \text { switch }\end{array} & \begin{array}{l}\text { Pole } \\ \text { capacity }\end{array} & \begin{array}{l}\text { Box } \\ \text { size }\end{array} & \begin{array}{l}\text { Height } \\ (\mathbf{m m})\end{array} & \text { Cat. No. }{ }^{2} \text { ) }\end{array}\right]\) Price \$

Width \(=585 \mathrm{~mm}\), Depth \(=185 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: \({ }^{1}\) ) Main switch supplied loose i.e. CDG18-M250-O2 = CDG18O2+EVA3250H
\({ }^{2}\) ) Enclosure with orange base replace "O" with "OO" e.g. CDG36OO2.

\section*{CONCEPT•PLUS 2}

\section*{Energy metering panelboards \\ for Din-T MCBs}


\section*{Application}

The Concept•Plus energy metering range of panelboards have been designed to meet the energy metering requirements of today's market.

\section*{CONCEPT.PLUS}

160 A Energy metering panelboards with grey door
CT connect meters rated 75 A for light circuits and 120 A for power circuits
\begin{tabular}{llllllr}
\begin{tabular}{l} 
Pole \\
capacity size
\end{tabular} & \begin{tabular}{c} 
Light \\
poles
\end{tabular} & \begin{tabular}{l} 
Power \\
poles
\end{tabular} & \begin{tabular}{l} 
Main \\
switch
\end{tabular} & Cat. No. & Price \(\mathbf{\$}\) \\
\hline 36 & 1100 mm 12 & 24 & 160 A & CDM36M160G & \(\mathbf{3 3 7 0 . 0 0}\) \\
\hline 48 & 1300 mm 18 & 30 & 160 A & CDM48M160G & \(\mathbf{3 5 3 0 . 0 0}\) \\
\hline 60 & 1300 mm 18 & 42 & 160 A & CDM60M160G & \(\mathbf{3 7 9 0 . 0 0}\) \\
\hline
\end{tabular}

\section*{CONCEPT.PLUS}

250 A Energy metering panelboards with grey door
CT connect meters rated 120 A for light circuits and 200 A for power circuits
\begin{tabular}{lcclllr}
\begin{tabular}{l} 
Pole \\
capacity
\end{tabular} \begin{tabular}{c} 
Box \\
size
\end{tabular} & \begin{tabular}{l} 
Light \\
poles
\end{tabular} & \begin{tabular}{l} 
Power \\
poles
\end{tabular} & \begin{tabular}{l} 
Main \\
switch
\end{tabular} & Cat. No. & Price \$ \\
\hline 60 & 1300 mm 18 & 42 & 250 A & CDM60M250G & \(\mathbf{3 8 9 0 . 0 0}\) \\
\hline 72 & 1500 mm 24 & 48 & 250 A & CDM72M250G & \(\mathbf{4 1 0 0 . 0 0}\) \\
\hline 84 & 1500 mm 30 & 54 & 250 A & CDM84M250G & \(\mathbf{4 4 1 0 . 0 0}\) \\
\hline 96 & 1700 mm 36 & 60 & 250 A & CDM96M250G & \(\mathbf{4 5 1 0 . 0 0}\) \\
\hline
\end{tabular}

\section*{CONCEPT.PLUS}

Retro fit energy metering kits with grey door
\begin{tabular}{lllllr}
\begin{tabular}{l} 
Main \\
switch
\end{tabular} & Box size & Light & \begin{tabular}{l} 
Power \\
poles
\end{tabular} & Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline- & 400 mm & - & 250 A & CDMRFG & \(\mathbf{1 6 1 0 . 0 0}\) \\
\hline 250 A & 600 mm & - & 250 A & CDMRFSM250AG6 & \(\mathbf{2 0 2 0 . 0 0}\) \\
\hline 250 A & 600 mm & 125 A & 250 A & CDMRFDM250AG6 & \(\mathbf{2 7 5 0 . 0 0}\) \\
\hline
\end{tabular}

Width \(=585 \mathrm{~mm}\), depth \(=185 \mathrm{~mm}\), includes (door \(=20 \mathrm{~mm}\) )
Notes: \({ }^{1}\) ) Delete M160 and M250 if no main switch is required. Replace G with O for Orange door.
For other combinations or options refer to NHP.
Metering boards are not suitable for utility metering.

\section*{CONCEPT•PLUS}

Multi-purpose panelboards for Safe-T MCBs


CONCEPT•PLUS
Safe-T - Surface mount with grey door Suits Safe-T-MCBs (NEMA) refer section one
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main switch & Pole cap. & \[
\begin{aligned}
& \text { Box } \\
& \text { size }
\end{aligned}
\] & Height (mm) & Cat. No. & \[
\begin{array}{r}
\text { No } \\
\mathrm{M} / \mathrm{S} \\
\text { Price \$ }
\end{array}
\] \\
\hline \multirow[t]{6}{*}{-} & 24 & 1 & 700 & CST 24G & 1300.00 \\
\hline & 36 & 2 & 900 & CST 36G & 1410.00 \\
\hline & 48 & 3 & 1100 & CST 48G & 1550.00 \\
\hline & 60 & 4 & 1300 & CST 60G & 1710.00 \\
\hline & 72 & 5 & 1500 & CST 72G & 1860.00 \\
\hline & 96 & 6 & 1700 & CST 96G & 2490.00 \\
\hline \multirow{4}{*}{160 A} & 24 & 1 & 700 & CST 24M160G \({ }^{1}\) ) & 1550.00 \\
\hline & 36 & 2 & 900 & CST 36M160G \({ }^{1}\) ) & 1660.00 \\
\hline & 48 & 3 & 1100 & CST 48M160G \({ }^{1}\) ) & 1790.00 \\
\hline & 60 & 4 & 1300 & CST 60M160G \({ }^{1}\) ) & 1960.00 \\
\hline \multirow{6}{*}{250 A} & 24 & 1 & 700 & CST 24M250G \({ }^{1}\) ) & 1670.00 \\
\hline & 36 & 2 & 900 & CST 36M250G \({ }^{1}\) ) & 1780.00 \\
\hline & 48 & 3 & 1100 & CST 48M250G \({ }^{1}\) ) & 1920.00 \\
\hline & 60 & 4 & 1300 & CST 60M250G \({ }^{1}\) ) & 2090.00 \\
\hline & 72 & 5 & 1500 & CST 72M250G \({ }^{1}\) ) & 2230.00 \\
\hline & 96 & 6 & 1700 & CST 96M250G \({ }^{1}\) ) & 2860.00 \\
\hline
\end{tabular}

Width \(=585 \mathrm{~mm}\), Depth \(=185 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: \({ }^{1}\) ) Main switch supplied loose i.e. CST24M250G \(=\) CST24G + CST250MS.

\section*{CONCEPT•PLUS}

\section*{Multi-purpose panelboards for Safe-T MCBs}


CONCEPT•PLUS
Safe-T - Surface mount with orange door
Suits Safe-T-MCBs (NEMA) refer section one
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main switch & Pole cap. & \[
\begin{aligned}
& \text { Box } \\
& \text { size }
\end{aligned}
\] & Height (mm) & Cat. No. & \[
\begin{array}{r}
\text { No } \\
\mathrm{M} / \mathrm{S} \\
\text { Price \$ } \\
\hline
\end{array}
\] \\
\hline \multirow{5}{*}{-} & 24 & 1 & 700 & CST 240 & 1300.00 \\
\hline & 36 & 2 & 900 & CST 360 & 1410.00 \\
\hline & 60 & 4 & 1300 & CST 600 & 1710.00 \\
\hline & 72 & 5 & 1500 & CST 720 & 1860.00 \\
\hline & 96 & 6 & 1700 & CST 960 & 2490.00 \\
\hline \multirow{3}{*}{160 A} & 24 & 1 & 700 & CST 24M1600 \({ }^{1}\) ) & 1550.00 \\
\hline & 36 & 2 & 900 & CST 36M1600 \({ }^{1}\) ) & 1660.00 \\
\hline & 60 & 4 & 1300 & CST 60M1600 \({ }^{1}\) ) & 1960.00 \\
\hline \multirow{5}{*}{250 A} & 24 & 1 & 700 & CST 24M2500 \({ }^{1}\) ) & 1670.00 \\
\hline & 36 & 2 & 900 & CST 36M2500 \({ }^{1}\) ) & 1780.00 \\
\hline & 60 & 4 & 1300 & CST 60M2500 \({ }^{1}\) ) & 2090.00 \\
\hline & 72 & 5 & 1500 & CST 72M2500 \({ }^{1}\) ) & 2230.00 \\
\hline & 96 & 6 & 1700 & CST 96M2500 \({ }^{1}\) ) & 2860.00 \\
\hline
\end{tabular}

Width \(=585 \mathrm{~mm}\), Depth \(=185 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: \({ }^{1}\) ) Main switch supplied loose i.e. CST24M250O = CST24O + CST250MS.

\section*{CONCEPT•PLUS 2}

Multi-purpose panelboards accessory modules

CONCEPT•PLUS 2 (Series 2)
Accessory modules with grey door \({ }^{1}\) )
\(\left.\begin{array}{llllr}\begin{array}{l}\text { Box } \\ \text { size }\end{array} & \begin{array}{l}\text { Height } \\ \text { (mm) }\end{array} & \begin{array}{l}\text { Cat. No. with } \\ \text { escutcheon }\end{array} & \text { Price \$ }\end{array}\right\}\)

Box Height
size ( mm )
\begin{tabular}{lc}
\begin{tabular}{l} 
Cat. No. without \\
escutcheon
\end{tabular} & Price \(\mathbf{\$}\) \\
\hline CPACCSOG2 & \(\mathbf{7 4 0 . 0 0}\) \\
\hline CPACCSHG2 & \(\mathbf{8 7 0 . 0 0}\) \\
\hline
\end{tabular}
\begin{tabular}{lllr}
\begin{tabular}{l} 
Box \\
size
\end{tabular} & Height \((\mathrm{mm})\) & \begin{tabular}{l} 
Cat. No. \\
with blank \\
escutcheon
\end{tabular} & Price \$ \\
\hline 0 & 400 & CPACCSOGE2 & \(\mathbf{7 4 0 . 0 0}\) \\
\hline H & 600 & CPACCSHGE2 & \(\mathbf{8 7 0 . 0 0}\) \\
\hline 1 & 700 & CPACCS1GE2 & \(\mathbf{9 0 0 . 0 0}\) \\
\hline 2 & 900 & CPACCS2GE2 & \(\mathbf{1 0 2 0 . 0 0}\) \\
\hline 3 & 1100 & CPACCS3GE2 & \(\mathbf{1 1 3 0 . 0 0}\) \\
\hline 4 & 1300 & CPACCS4GE2 & \(\mathbf{1 3 2 0 . 0 0}\) \\
\hline 5 & 1500 & CPACCS5GE2 & \(\mathbf{1 4 3 0 . 0 0}\) \\
\hline 6 & 1700 & CPACCS6GE2 & \(\mathbf{1 6 1 0 . 0 0}\) \\
\hline
\end{tabular}

Width \(=585 \mathrm{~mm}\), Depth \(=185 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)
\begin{tabular}{l|rr} 
Height (mm) & Cat. No. & Price \$ \\
\hline 94 mm & CPBGTS1 & \(\mathbf{4 6 . 5 0}\) \\
\hline 194 mm & CPBGTS2 & \(\mathbf{6 7 . 5 0}\) \\
\hline 294 mm & CPBGTS3 & \(\mathbf{8 8 . 0 0}\) \\
\hline 494 mm & CPBGTSH & \(\mathbf{1 1 4 . 0 0}\) \\
\hline 594 mm & CPBGTS4 & \(\mathbf{1 4 5 . 0 0}\) \\
\hline 994 mm & CPBGTS6 & \(\mathbf{2 3 0 . 0 0}\) \\
\hline
\end{tabular}

Gear trays for Concept Plus must be 100 mm shorter than enclosure size.
Earth and neutral bar kit to suit accessory module
\begin{tabular}{llr} 
No. of ways & Cat. No. & Price \$ \\
\hline 24 & CEN24 & \(\mathbf{8 8 . 0 0}\) \\
\hline 36 & CEN36 & \(\mathbf{9 5 . 0 0}\) \\
\hline 48 & CEN48 & \(\mathbf{1 1 8 . 0 0}\) \\
\hline 60 & CEN60 & \(\mathbf{1 4 4 . 0 0}\) \\
\hline 72 & CEN72 & \(\mathbf{1 5 8 . 0 0}\) \\
\hline 84 & CEN84 & \(\mathbf{1 9 3 . 0 0}\) \\
\hline 96 & CEN96 & \(\mathbf{2 1 5 . 0 0}\) \\
\hline
\end{tabular}

Includes 2 bars mounting supports and fasteners.

Notes: \({ }^{1}\) ) For orange enclosure replace G with O e.g. CPACC24G2 with CPACC24O2

\section*{CONCEPT•PLUS}

\section*{Multi-purpose panelboards options and accessories}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Description & & & & Cat. No. & Price \$ \\
\hline \multirow{5}{*}{2} & \multirow[t]{4}{*}{Top mount main switch kits (supplied loose)} & \multirow[b]{2}{*}{160 A} & \multirow[b]{2}{*}{3 pole} & CDT, CDG & EVA3160H & 305.00 \\
\hline & & & & CST & CST160MS & 305.00 \\
\hline & & \multirow{2}{*}{250 A} & \multirow[b]{2}{*}{3 pole} & CDT, CDG & EVA3250H & 435.00 \\
\hline & & & & CST & CST250MS & 435.00 \\
\hline & \multicolumn{4}{|l|}{IP 52B sealing kit (Charcoal Base)} & CPIP52G & 210.00 \\
\hline \multicolumn{2}{|r|}{\multirow{3}{*}{Chassis mount}} & 80 A & 3 pole & CDT & DINTMS803 & 102.00 \\
\hline & & 100 A & 3 pole & CDT & DINTMS1003 & 115.00 \\
\hline & & 100 A & 3 pole & CST & SAFET63100NA & 285.00 \\
\hline \multicolumn{3}{|c|}{\multirow{6}{*}{Flush surround kit (supplied loose) ( 45 mm width)}} & & Size 1 & CPBFK1 & 300.00 \\
\hline & & & & Size 2 & CPBFK2 & 300.00 \\
\hline & & & & Size 3 & CPBFK3 & 300.00 \\
\hline & & & & Size 4 & CPBFK4 & 300.00 \\
\hline & & & & Size 5 & CPBFK5 & 300.00 \\
\hline & & & & Size 6 & CPBFK6 & 300.00 \\
\hline & \multicolumn{4}{|l|}{Dust door seal fits all box sizes} & CPDRUBBER & 197.00 \\
\hline & \multicolumn{4}{|l|}{Blue cover to suit 160 A and 250 A isolator} & 1LS2VS & 12.00 \\
\hline & \multicolumn{4}{|l|}{Floor mount plinth ( 100 mm height) \({ }^{3}\) )} & CPPLINTH & 365.00 \\
\hline & \multicolumn{6}{|l|}{Gland plate options} \\
\hline & \multicolumn{4}{|l|}{Open end-cap (cut-out for cable entry)} & CPECS & 104.00 \\
\hline \multicolumn{5}{|c|}{Steel gland plate (suits open end-cap)} & CPGPS & 54.00 \\
\hline & \multicolumn{4}{|l|}{Brass gland plate (suits open end-cap) (3 mm)} & CPGPB & 220.00 \\
\hline & \multicolumn{4}{|l|}{Aluminium gland plate (suits open end-cap) ( 3 mm )} & CPGPA & 67.50 \\
\hline & \multicolumn{6}{|l|}{Emergency lighting kit (supplied loose)} \\
\hline \multicolumn{5}{|c|}{Rotary control switch (unwired)} & CPELK1 \({ }^{1}\) ) & 430.00 \\
\hline & \multicolumn{4}{|l|}{Rotary control switch (complete wired loom)} & CPELK1W \({ }^{1}\) ) & 445.00 \\
\hline \multicolumn{5}{|c|}{Key operated control switch (unwired)} & CPELK2 \({ }^{1}\) ) & 495.00 \\
\hline & \multicolumn{2}{|l|}{\multirow{5}{*}{Door locks (suit Series 2)}} & CL001 & & CPDHANDLECL001 & 36.50 \\
\hline & & & 92268 & & CPDHANDLE92268 & 36.50 \\
\hline & & & NSW PV & E LOCK & CPDHANDLEELOCK & 290.00 \\
\hline & & & Pad loc & & CPDHANDLEPADLCK & 78.00 \\
\hline & & & Non loc & & CPDHANDLENOLOCK & 36.50 \\
\hline \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Spare key (set of 2)}} & CL001 \(\times\) & & KEYCL001 & 7.80 \\
\hline & & & \(92268 \times\) & & KEY92268 & 7.80 \\
\hline \multicolumn{5}{|c|}{Escutcheon Hinge Kit \({ }^{2}\) )} & CPESC & 50.00 \\
\hline & \multicolumn{4}{|l|}{White liner \({ }^{5}\) )} & CPWIL_ \({ }^{4}\) ) & 83.00 \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) Emergency lighting kits can be field fitted utilising horizontal DIN knockouts at top of board. Kits include control switch, timer, 24 A 4 P N/C contactor, labels and wiring diagram to AS 2293.1.
\({ }^{2}\) ) Qty 1 required for size 1-4 enclosure, Qty 2 required for size 5-6 enclosure.
\({ }^{3}\) ) Plinth is designed for bottom cable entry; if panelboard is freestanding additional support is required.
\({ }^{4}\) ) Insert enclosure size, e.g. size 5 CPWIL5.
\({ }^{5}\) ) White insert to transform interior of DB white without having to respray, 2 required per DB.

\section*{CONCEPT•PLUS}

Multi-purpose panelboards options and accessories
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Accessories} \\
\hline \multicolumn{3}{|l|}{Description} & Cat. No. & Price \$ \\
\hline \multirow[t]{3}{*}{External lighting kits (Time clock, contactor, bypass switch)} & 1 channe contactor & mer, 2 N/O 20 A & CPEXTLKC & 300.00 \\
\hline & 1 channe & 20 A contactor & CPEXTLK1 & 395.00 \\
\hline & 2 channe & 20 A contactor & CPEXTLK2 & 710.00 \\
\hline \multirow[t]{2}{*}{Split chassis kit (supplied loose)} & CT250 A & CST & STK250ND/TH & 119.00 \\
\hline & CT355 A & CST & STK300TH & 119.00 \\
\hline \multirow[t]{2}{*}{Pole fillers} & Din-T & CDT & DTPF & 4.30 \\
\hline & Safe-T & CST & SAFE-TPF & 1.80 \\
\hline
\end{tabular}

\section*{Factory fitted options}
\begin{tabular}{|c|c|c|}
\hline Description & Cat. No. & Price \$ \\
\hline Connection kits 250 A MCCB to CD chassis & CD250CKT2 & 280.00 \\
\hline 200 A MCCB to NC chassis (Direct) & NCCK200CP \({ }^{1}\) ) & 182.00 \\
\hline 250 A MCCB to NC chassis (TAG) & NCCK250CP \({ }^{1}\) ) & 490.00 \\
\hline Support bracket to mount 250 MCCB & CPBS250 & 83.00 \\
\hline \multicolumn{3}{|l|}{Optional main switches} \\
\hline - 160 A DIN switch fuse & ISO3160SFH & 500.00 \\
\hline - 250 A MCCB non-auto & S250NN3 & 500.00 \\
\hline - 250 A MCCB & S250NJ & 1480.00 \\
\hline - 315 A S+S load-break & LE 73151753 & 1090.00 \\
\hline - 400 A MCCB non-auto & S400NN3 & 1650.00 \\
\hline \multicolumn{3}{|l|}{Feeder MCCB} \\
\hline - 125 A 3 pole & DINT10H3125C & 590.00 \\
\hline - 160 A 3 pole & S160NJ3160 & 1080.00 \\
\hline \multicolumn{3}{|l|}{Fault current limiters} \\
\hline - 160 A DIN size 00 & Refer NHP & - \\
\hline - 200 A DIN size 1 & Refer NHP & \\
\hline Load shedding / emergency power contactor & Refer NHP & - \\
\hline kWh metering IME energy meters & Refer Page & 1-42 \\
\hline \multicolumn{3}{|l|}{Cable duct (fitted)} \\
\hline - CDT ... max. \(100 \times 100 \mathrm{~mm}\) & Refer NHP & - \\
\hline - CST ... max. \(60 \times 100 \mathrm{~mm}\) & Refer NHP & - \\
\hline \multicolumn{3}{|l|}{Special colours (doors)} \\
\hline - Standard powder coat (per Interpon chart) & Refer NHP & - \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) Connection kit includes, connection tags, terminal covers and bracket.

\section*{CONCEPT•PREMIER}

\section*{Suits Din-T and Safe-T MCBs, E125, S125 and S160, S250 MCCBs}
- Standard AS/NZS 3439-3

IP 66 rated enclosure
- 1.6 mm fully welded construction 316 Stainless steel option
■ 7 modular sizes 600 mm to 2000 mm
- Very generous amount of wiring room
- Accesssory module
- Type tested busbar/chassis system
- Removable gland plates (with gaskets)
- 3 point door locking on sizes 1000 mm and above
- Thandle door lock
- Flush handle door lock (series 2)
- Australian made
- Commercial, industrial and heavy industrial applications

\section*{Application}

The CONCEPT•PREMIER range of Panelboards provides a unique enclosure system for NHP Din-T and Safe-T MCBs and E125, S125 and S160, S250 MCCBs.

\section*{Features}
- Two-tone colour scheme, make a colour change by simply changing the door colour
- The door is field changeable from right to left hinged and is totally independent of the escutcheon
- Gloss white hinged escutcheon has been dished to allow a wide range of accessories to fit under the door
- D handles fitted to the lift-off escutcheon to allow easy fitting and removal
- Knockouts provided in the escutcheon for up to 18 modules of standard DIN rail equipment (Din-T \& Safe-T Panelboards only)
- Removable gland plates aid on-site installation of cable and trunking systems
- Compact main switch with a fully enclosed rating of 160 A and 250 A (Din-T and Safe-T Panelboards only)
- Mount up to a CA 6-170 contactor behind the escutcheon or a CA 6-420 in an accessory module wihout an escutcheon
- Dual earth and neutral bars, circuit identification and schedule cards supplied standard
■ \(30 \%\) Larger gland plate opening in series 2


\section*{CONCEPT•PREMIER}

\section*{Suits Din-T and Safe-T MCBs, E125, S125 and S160, S250 MCCBs}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Technical data} \\
\hline Material type: & 1.6 mm steel, polyester powder coated \\
\hline & 1.6 mm 316 Stainless steel option \\
\hline Colour & Base - Charcoal gloss \\
\hline (AS 2700-1995): & \begin{tabular}{l}
Door - N42 Storm Grey or X15 Orange (other colours refer NHP) \\
Escutcheon - Bright white gloss
\end{tabular} \\
\hline Protection degree: & IP 30 - without door IP 66 - with door \\
\hline \multirow[t]{5}{*}{Busbar ratings:} & SafeT-250 A CT (355 A option) \\
\hline & Din-T-250 A CD (355 A option) \\
\hline & Din-T-250 A NC (400 A option) \\
\hline & Din-T-250 A GB \\
\hline & S125 MCCB - 630 A XA (800 A option) \\
\hline Main Switch (options): & Safe-T 100 A non-auto (chassis mount Safe-T) Din-T M/S 80/100 A (chassis mount Din-T) \\
\hline \multirow[t]{2}{*}{Neutral and earth bars:} & 160 A, 250 A, 400 A, 630 A, \& 800 A 3 pole 415 V AC (top mount) \\
\hline & \begin{tabular}{l}
Din-T \& Safe-T Panelboards - (dual bars) \(2 \times 8 \mathrm{~mm}\) studs \& 2 screw tunnel terminals ( 16 mm ) \\
MCCBs Panelboards \(-2 \times 10 \mathrm{~mm}\) studs, \(8 \times 8 \mathrm{~mm}\) studs \& 1 screw tunnel terminals ( 35 mm )
\end{tabular} \\
\hline
\end{tabular}

\section*{CONCEPT•PREMIER}

The premium panelboard suits Din-T MCBs


Din-T - Surface mount with grey door
\begin{tabular}{|c|c|c|c|c|c|}
\hline  & \begin{tabular}{l}
MCBs (D \\
Pole \\
capacity
\end{tabular} & refer to
Box size & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow[t]{8}{*}{} & 18 & 1 & 800 & CPD 18G & 1870.00 \\
\hline & 24 & 1 & 800 & CPD 24G & 1970.00 \\
\hline & 36 & 2 & 1000 & CPD 36G & 2180.00 \\
\hline & 48 & 2 & 1000 & CPD 48G & 2310.00 \\
\hline & 60 & 3 & 1200 & CPD 60G & 2540.00 \\
\hline & 72 & 4 & 1400 & CPD 72G & 3100.00 \\
\hline & 84 & 4 & 1400 & CPD 84G & 3620.00 \\
\hline & 96 & 5 & 1600 & CPD 96G & 4250.00 \\
\hline \multirow{5}{*}{160 A} & 18 & 1 & 800 & CPD 18M160G \({ }^{1}\) ) & 2120.00 \\
\hline & 24 & 1 & 800 & CPD 24M160G & 2220.00 \\
\hline & 36 & 2 & 1000 & CPD 36M160G \({ }^{1}\) ) & 2430.00 \\
\hline & 48 & 2 & 1000 & CPD 48M160G \({ }^{1}\) ) & 2560.00 \\
\hline & 60 & 3 & 1200 & CPD 60M160G \({ }^{1}\) ) & 2790.00 \\
\hline \multirow{8}{*}{250 A} & 18 & 1 & 800 & CPD 18M250G \({ }{ }^{\text {) }}\) & 2240.00 \\
\hline & 24 & 1 & 800 & CPD 24M250G \({ }^{1}\) ) & 2340.00 \\
\hline & 36 & 2 & 1000 & CPD 36M250G \({ }^{1}\) ) & 2550.00 \\
\hline & 48 & 2 & 1000 & CPD 48M250G & 2690.00 \\
\hline & 60 & 3 & 1200 & CPD 60M250G \({ }^{1}\) ) & 2920.00 \\
\hline & 72 & 4 & 1400 & CPD 72M250G \({ }^{1}\) ) & 3480.00 \\
\hline & 84 & 4 & 1400 & CPD 84M250G \({ }^{1}\) ) & 3990.00 \\
\hline & 96 & 5 & 1600 & CPD 96M250G \({ }^{1}\) ) & 4630.00 \\
\hline
\end{tabular}

Width \(=640 \mathrm{~mm}\), Depth \(=240 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: ') Main switches are supplied loose. i.e. CPD 24 M250 G = CPD 24G + CDT250MS.
- Larger main switches and other options and accessories available.
- Refer NHP for delivery confirmation regarding types with main switches.

\section*{CONCEPT•PREMIER}

The premium panelboard suits Din-T MCBs


CONCEPT•PREMIER
Din-T - Surface mount with orange door
\begin{tabular}{|c|c|c|c|c|c|}
\hline  & \begin{tabular}{l}
MCBs (D \\
Pole \\
capacity
\end{tabular} & Box size & Height (mm) & Cat. No. \({ }^{2}\) ) & Price \$ \\
\hline \multirow[t]{8}{*}{} & 18 & 1 & 800 & CPD 180 & 1870.00 \\
\hline & 24 & 1 & 800 & CPD 240 & 1970.00 \\
\hline & 36 & 2 & 1000 & CPD 360 & 2180.00 \\
\hline & 48 & 2 & 1000 & CPD 480 & 2310.00 \\
\hline & 60 & 3 & 1200 & CPD 600 & 2540.00 \\
\hline & 72 & 4 & 1400 & CPD 720 & 3100.00 \\
\hline & 84 & 4 & 1400 & CPD 840 & 3620.00 \\
\hline & 96 & 5 & 1600 & CPD 960 & 4250.00 \\
\hline \multirow{5}{*}{160 A} & 18 & 1 & 800 & CPD 18M1600 \({ }^{\text {¹ }}\) & 2120.00 \\
\hline & 24 & 1 & 800 & CPD 24M1600 \({ }^{\text {¹ }}\) & 2220.00 \\
\hline & 36 & 2 & 1000 & CPD 36M1600 \({ }^{\text {¹ }}\) & 2430.00 \\
\hline & 48 & 2 & 1000 & CPD 48M1600 \({ }^{1}\) ) & 2560.00 \\
\hline & 60 & 3 & 1200 & CPD 60M1600 \({ }^{1}\) ) & 2790.00 \\
\hline \multirow{8}{*}{250 A} & 18 & 1 & 800 & CPD 18M2500 \({ }^{\text { }}\) ) & 2240.00 \\
\hline & 24 & 1 & 800 & CPD 24M2500 \({ }^{1}\) ) & 2340.00 \\
\hline & 36 & 2 & 1000 & CPD 36M2500 \({ }^{1}\) ) & 2550.00 \\
\hline & 48 & 2 & 1000 & CPD 48M2500 \({ }^{1}\) ) & 2690.00 \\
\hline & 60 & 3 & 1200 & CPD 60M2500 \({ }^{\text {² }}\) & 2920.00 \\
\hline & 72 & 4 & 1400 & CPD 72M2500 \({ }^{1}\) ) & 3480.00 \\
\hline & 84 & 4 & 1400 & CPD 84M2500 \({ }^{\text {² }}\) ) & 3990.00 \\
\hline & 96 & 5 & 1600 & CPD 96M2500 \({ }^{\text {¹) }}\) & 4630.00 \\
\hline
\end{tabular}

Width \(=640 \mathrm{~mm}\), Depth \(=240 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: \({ }^{1}\) ) Main switches are supplied loose. i.e. CPD 24 M250 O = CPD 240 + CDT250MS.
\({ }^{2}\) ) Enclosures with orange base replace "O" with "OO" e.g. CPD36OO.
- Larger main switches and other options and accessories available.
- Refer NHP for delivery confirmation regarding types with main switches.

\section*{CONCEPT•PREMIER SS}

The premium panelboard suits Din-T MCBs


CONCEPT•PREMIER
Din-T - Surface mount with stainless steel door
Suits Din-T MCBs (DIN) refer to section one
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main Switch & Pole capacity & Box size & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow[t]{8}{*}{-} & 18 & 1 & 800 & CPD 18SS & 6850.00 \\
\hline & 24 & 1 & 800 & CPD 24SS & 6950.00 \\
\hline & 36 & 2 & 1000 & CPD 36SS & 7890.00 \\
\hline & 48 & 2 & 1000 & CPD 48SS & 7980.00 \\
\hline & 60 & 3 & 1200 & CPD 60SS \({ }^{2}\) ) & 9050.00 \\
\hline & 72 & 4 & 1400 & CPD 72SS \({ }^{2}\) ) & 10150.00 \\
\hline & 84 & 4 & 1400 & CPD 84SS \({ }^{2}\) ) & 10320.00 \\
\hline & 96 & 5 & 1600 & CPD 96SS \({ }^{2}\) ) & 11100.00 \\
\hline \multirow{5}{*}{160 A} & 18 & 1 & 800 & CPD 18M160SS \({ }^{1}\) ) & 7160.00 \\
\hline & 24 & 1 & 800 & CPD 24M160SS \({ }^{1}\) ) & 7240.00 \\
\hline & 36 & 2 & 1000 & CPD 36M160SS \({ }^{1}\) ) & 8140.00 \\
\hline & 48 & 2 & 1000 & CPD 48M160SS \({ }^{1}\) ) & 8290.00 \\
\hline & 60 & 3 & 1200 & CPD 60M160SS \({ }^{1}\) ) & 9330.00 \\
\hline \multirow{8}{*}{250 A} & 18 & 1 & 800 & CPD 18M250SS \({ }^{1}\) ) & 7310.00 \\
\hline & 24 & 1 & 800 & CPD 24M250SS \({ }^{1}\) ) & 7420.00 \\
\hline & 36 & 2 & 1000 & CPD 36M250SS \({ }^{1}\) ) & 8290.00 \\
\hline & 48 & 2 & 1000 & CPD 48M250SS \({ }^{1}\) ) & 8460.00 \\
\hline & 60 & 3 & 1200 & CPD 60M250SS \({ }^{1}\) ) & 9490.00 \\
\hline & 72 & 4 & 1400 & CPD 72M250SS \({ }^{1}\) ) & 10480.00 \\
\hline & 84 & 4 & 1400 & CPD 84M250SS \({ }^{1}\) ) & 10690.00 \\
\hline & 96 & 5 & 1600 & CPD 96M250SS \({ }^{1}\) ) & 11400.00 \\
\hline
\end{tabular}

Width \(=640 \mathrm{~mm}\), Depth \(=240 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: \({ }^{1}\) ) Main switches are supplied loose. i.e. CPD 24 M250 SS = CPD 24 SS + CDT250MS.
\(\left.{ }^{2}\right)\) Made to order.
- Stainless steel panelboards are fully assembled from stocked components.
- Larger main switches and other options and accessories available.
- Refer NHP for delivery confirmation regarding types with main switches.

\section*{CONCEPT•PREMIER}

The premium panelboard suits Din-T MCBs
C/W isolation chassis


CONCEPT•PREMIER


Din-T - Surface mount with grey door
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main Switch & Pole capacity & Box size & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow{7}{*}{-} & 24 & 1 & 800 & CPG 24G \({ }^{2}\) ) & 2300.00 \\
\hline & 36 & 2 & 1000 & CPG 36G \({ }^{2}\) ) & 2600.00 \\
\hline & 48 & 2 & 1000 & CPG 48G \({ }^{2}\) ) & 2850.00 \\
\hline & 60 & 3 & 1200 & CPG 60G \({ }^{2}\) ) & 3200.00 \\
\hline & 72 & 4 & 1400 & CPG 72G \({ }^{2}\) ) & 3850.00 \\
\hline & 84 & 4 & 1400 & CPG 84G \({ }^{2}\) ) & 4550.00 \\
\hline & 96 & 5 & 1600 & CPG 96G \({ }^{2}\) ) & 5250.00 \\
\hline \multirow{4}{*}{160 A} & 24 & 1 & 800 & CPG 24M160G \({ }^{1}\) ) & 2550.00 \\
\hline & 36 & 2 & 1000 & CPG 36M160G \({ }^{1}\) ) & 2850.00 \\
\hline & 48 & 2 & 1000 & CPG 48M160G \({ }^{1}\) ) & 3050.00 \\
\hline & 60 & 3 & 1200 & CPG 60M160G \({ }^{1}\) ) & 3450.00 \\
\hline \multirow{7}{*}{250 A} & 24 & 1 & 800 & CPG 24M250G \({ }^{1}\) ) & 2650.00 \\
\hline & 36 & 2 & 1000 & CPG 36M250G \({ }^{1}\) ) & 2950.00 \\
\hline & 48 & 2 & 1000 & CPG 48M250G \({ }^{1}\) ) & 3200.00 \\
\hline & 60 & 3 & 1200 & CPG 60M250G \({ }^{1}\) ) & 3550.00 \\
\hline & 72 & 4 & 1400 & CPG 72M250G \({ }^{1}\) ) & 4200.00 \\
\hline & 84 & 4 & 1400 & CPG 84M250G \({ }^{1}\) ) & 4900.00 \\
\hline & 96 & 5 & 1600 & CPG 96M250G \({ }^{1}\) ) & 5600.00 \\
\hline
\end{tabular}

Width \(=640 \mathrm{~mm}\), Depth \(=240 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: ') Main switches are supplied loose. i.e. CPG 24 M250 G = CPG 24G + EVA3250H.
\({ }^{2}\) ) Made to order.
- Larger main switches and other options and accessories available.
- Refer NHP for delivery confirmation regarding types with main switches.

\section*{}

\section*{CONCEPT•PREMIER}

The premium panelboard suits Din-T MCBs
C/W isolation chassis


CONCEPT•PREMIER
Din-T - Surface mount with orange door


Suits Din-T MCBs (DIN) refer to section one
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main Switch & Pole capacity & Box size & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow{7}{*}{-} & 24 & 1 & 800 & CPG \(240{ }^{2}\) ) & 2300.00 \\
\hline & 36 & 2 & 1000 & (PG \(360{ }^{2}\) ) & 2600.00 \\
\hline & 48 & 2 & 1000 & CPG \(480{ }^{2}\) ) & 2850.00 \\
\hline & 60 & 3 & 1200 & CPG \(600{ }^{2}\) ) & 3200.00 \\
\hline & 72 & 4 & 1400 & CPG 720 \({ }^{\text {2 }}\) ) & 3850.00 \\
\hline & 84 & 4 & 1400 & CPG \(840{ }^{2}\) ) & 4550.00 \\
\hline & 96 & 5 & 1600 & (PPG 960 \({ }^{2}\) ) & 5250.00 \\
\hline \multirow{4}{*}{160 A} & 24 & 1 & 800 & CPG 24M1600 \({ }^{1}\) ) & 2550.00 \\
\hline & 36 & 2 & 1000 & CPG 36M1600 \({ }^{\text {1 }}\) ) & 2850.00 \\
\hline & 48 & 2 & 1000 & CPG 48M1600 \({ }^{1}\) ) & 3050.00 \\
\hline & 60 & 3 & 1200 & CPG 60M1600 \({ }^{1}\) ) & 3450.00 \\
\hline \multirow{7}{*}{250 A} & 24 & 1 & 800 & CPG 24M2500 \({ }^{1}\) ) & 2650.00 \\
\hline & 36 & 2 & 1000 & CPG 36M2500 \({ }^{1}\) ) & 2950.00 \\
\hline & 48 & 2 & 1000 & CPG 48M2500 \({ }^{1}\) ) & 3200.00 \\
\hline & 60 & 3 & 1200 & CPG 60M2500 \({ }^{\text {1 }}\) ) & 3550.00 \\
\hline & 72 & 4 & 1400 & CPG 72M2500 \({ }^{\text {1 }}\) ) & 4200.00 \\
\hline & 84 & 4 & 1400 & CPG 84M2500 \({ }^{\text {1 }}\) ) & 4900.00 \\
\hline & 96 & 5 & 1600 & CPG 96M2500 \({ }^{\text {1 }}\) ) & 5600.00 \\
\hline
\end{tabular}

Width \(=640 \mathrm{~mm}\), Depth \(=240 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: ') Main switches are supplied loose. i.e. CPG 24 M250 O = CPG \(240+\) EVA3250H.
\(\left.{ }^{2}\right)\) Made to order.
- Larger main switches and other options and accessories available.
- Refer NHP for delivery confirmation regarding types with main switches.

\section*{CONCEPT•PREMIER}

The premium panelboard suits Din-T MCBs


CONCEPT•PREMIER
Din-T - Surface mount with grey door


Notes: 400 NC chassis universal feed.

\section*{CONCEPT•PREMIER 2}

The premium panelboard suits Din-T MCBs


Suits Din-T MCBs (DIN) refer to section one
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main Switch & Pole capacity & Box size & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow[t]{8}{*}{-

-
-} & 18 & 1 & 800 & CPD 18G2 & 1870.00 \\
\hline & 24 & 1 & 800 & CPD 24G2 & 1970.00 \\
\hline & 36 & 2 & 1000 & CPD 36G2 & 2180.00 \\
\hline & 48 & 2 & 1000 & CPD 48G2 & 2310.00 \\
\hline & 60 & 3 & 1200 & CPD 60G2 & 2540.00 \\
\hline & 72 & 4 & 1400 & CPD 72G2 & 3100.00 \\
\hline & 84 & 4 & 1400 & CPD 84G2 & 3620.00 \\
\hline & 96 & 5 & 1600 & CPD 96G2 & 4250.00 \\
\hline \multirow{5}{*}{160 A} & 18 & 1 & 800 & CPD 18M160G2 \({ }^{1}\) ) & 2120.00 \\
\hline & 24 & 1 & 800 & CPD 24M160G2 \({ }^{1}\) ) & 2220.00 \\
\hline & 36 & 2 & 1000 & CPD 36M160G2 \({ }^{1}\) ) & 2430.00 \\
\hline & 48 & 2 & 1000 & CPD 48M160G2 \({ }^{1}\) ) & 2560.00 \\
\hline & 60 & 3 & 1200 & CPD 60M160G2 \({ }^{1}\) ) & 2790.00 \\
\hline \multirow{8}{*}{250 A} & 18 & 1 & 800 & CPD 18M250G2 \({ }^{1}\) ) & 2240.00 \\
\hline & 24 & 1 & 800 & CPD 24M250G2 \({ }^{1}\) ) & 2340.00 \\
\hline & 36 & 2 & 1000 & CPD 36M250G2 \({ }^{1}\) ) & 2550.00 \\
\hline & 48 & 2 & 1000 & CPD 48M250G2 \({ }^{1}\) ) & 2690.00 \\
\hline & 60 & 3 & 1200 & CPD 60M250G2 \({ }^{1}\) ) & 2920.00 \\
\hline & 72 & 4 & 1400 & CPD 72M250G2 \({ }^{1}\) ) & 3480.00 \\
\hline & 84 & 4 & 1400 & CPD 84M250G2 \({ }^{1}\) ) & 3990.00 \\
\hline & 96 & 5 & 1600 & (PD 96M250G2 \({ }^{1}\) ) & 4630.00 \\
\hline
\end{tabular}

Width \(=640 \mathrm{~mm}\), Depth \(=240 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: ') Main switches are supplied loose. i.e. CPD 24 M250 G = CPD 24G + EVA3250H.
- Larger main switches and other options and accessories available.
- Refer NHP for delivery confirmation regarding types with main switches.

\section*{CONCEPT•PREMIER 2}

The premium panelboard suits Din-T MCBs


CONCEPT•PREMIER
Din-T - Surface mount with orange door
Suits Din-T MCBs (DIN) refer to section one
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Main \\
Switch
\end{tabular} & Pole capacity & Box size & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow[t]{8}{*}{-} & 18 & 1 & 800 & CPD 1802 & 1870.00 \\
\hline & 24 & 1 & 800 & CPD 2402 & 1970.00 \\
\hline & 36 & 2 & 1000 & CPD 3602 & 2180.00 \\
\hline & 48 & 2 & 1000 & CPD 4802 & 2310.00 \\
\hline & 60 & 3 & 1200 & CPD 6002 & 2540.00 \\
\hline & 72 & 4 & 1400 & CPD 7202 & 3100.00 \\
\hline & 84 & 4 & 1400 & CPD 8402 & 3620.00 \\
\hline & 96 & 5 & 1600 & CPD 9602 & 4250.00 \\
\hline \multirow{5}{*}{160 A} & 18 & 1 & 800 & CPD 18M16002 \({ }^{1}\) ) & 2120.00 \\
\hline & 24 & 1 & 800 & CPD 24M16002 \({ }^{1}\) ) & 2220.00 \\
\hline & 36 & 2 & 1000 & CPD 36M16002 \({ }^{1}\) ) & 2430.00 \\
\hline & 48 & 2 & 1000 & CPD 48M16002 \({ }^{1}\) ) & 2560.00 \\
\hline & 60 & 3 & 1200 & CPD 60M16002 \({ }^{1}\) ) & 2790.00 \\
\hline \multirow{8}{*}{250 A} & 18 & 1 & 800 & CPD 18M25002 \({ }^{1}\) ) & 2240.00 \\
\hline & 24 & 1 & 800 & CPD 24M25002 \({ }^{1}\) ) & 2340.00 \\
\hline & 36 & 2 & 1000 & CPD 36M25002 \({ }^{1}\) ) & 2550.00 \\
\hline & 48 & 2 & 1000 & CPD 48M25002 \({ }^{1}\) ) & 2690.00 \\
\hline & 60 & 3 & 1200 & CPD 60M25002 \({ }^{1}\) ) & 2920.00 \\
\hline & 72 & 4 & 1400 & (PD 72M25002 \({ }^{1}\) ) & 3480.00 \\
\hline & 84 & 4 & 1400 & (PD 84M25002 \({ }^{1}\) ) & 3990.00 \\
\hline & 96 & 5 & 1600 & (PD 96M25002 \({ }^{1}\) ) & 4630.00 \\
\hline
\end{tabular}

Width \(=640 \mathrm{~mm}\), Depth \(=240 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: \({ }^{1}\) ) Main switches are supplied loose. i.e. CPD 24 M250 O = CPD \(240+\) EVA3250H.
- Enclosures with orange base replace "O" with "OO" e.g. CPD3600.
- Larger main switches and other options and accessories available.
- Refer NHP for delivery confirmation regarding types with main switches.

\section*{CONCEPT.PREMIER 2 SS}

The premium panelboard suits Din-T MCBs


CONCEPT•PREMIER
Din-T - Surface mount with stainless steel door
Suits Din-T MCBs (DIN) refer to section one
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Main \\
Switch
\end{tabular} & Pole capacity & Box size & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow[t]{8}{*}{-} & 18 & 1 & 800 & CPD 18SS2 & 6850.00 \\
\hline & 24 & 1 & 800 & CPD 24SS2 & 6950.00 \\
\hline & 36 & 2 & 1000 & CPD 36SS2 & 7890.00 \\
\hline & 48 & 2 & 1000 & CPD 48SS2 & 7980.00 \\
\hline & 60 & 3 & 1200 & CPD 60SS2 \({ }^{2}\) ) & 9050.00 \\
\hline & 72 & 4 & 1400 & (PD 72SS2 \({ }^{2}\) ) & 10150.00 \\
\hline & 84 & 4 & 1400 & CPD 84SS2 \({ }^{2}\) ) & 10320.00 \\
\hline & 96 & 5 & 1600 & (PD 96SS2 \({ }^{2}\) ) & 11100.00 \\
\hline \multirow{5}{*}{160 A} & 18 & 1 & 800 & CPD 18M160SS2 \({ }^{1}\) ) & 7160.00 \\
\hline & 24 & 1 & 800 & CPD 24M160SS2 \({ }^{1}\) ) & 7240.00 \\
\hline & 36 & 2 & 1000 & CPD 36M160SS2 \({ }^{1}\) ) & 8140.00 \\
\hline & 48 & 2 & 1000 & CPD 48M160SS2 \({ }^{1}\) ) & 8290.00 \\
\hline & 60 & 3 & 1200 & CPD 60M160SS2 \({ }^{1}\) ) & 9330.00 \\
\hline \multirow{8}{*}{250 A} & 18 & 1 & 800 & CPD 18M250SS2 \({ }^{1}\) ) & 7310.00 \\
\hline & 24 & 1 & 800 & CPD 24M250SS2 \({ }^{1}\) ) & 7420.00 \\
\hline & 36 & 2 & 1000 & CPD 36M250SS2 \({ }^{1}\) ) & 8290.00 \\
\hline & 48 & 2 & 1000 & CPD 48M250SS2 \({ }^{1}\) ) & 8460.00 \\
\hline & 60 & 3 & 1200 & CPD 60M250SS2 \({ }^{1}\) ) & 9490.00 \\
\hline & 72 & 4 & 1400 & CPD 72M250SS2 \({ }^{1}\) ) & 10480.00 \\
\hline & 84 & 4 & 1400 & CPD 84M250SS2 \({ }^{1}\) ) & 10690.00 \\
\hline & 96 & 5 & 1600 & CPD 96M250SS2 \({ }^{1}\) ) & 11400.00 \\
\hline
\end{tabular}

Width \(=640 \mathrm{~mm}\), Depth \(=240 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: \({ }^{1}\) ) Main switches are supplied loose. i.e. CPD 24 M250 SS2 = CPD 24SS2 + EVA3250H.
\({ }^{2}\) ) Made to order.
- Larger main switches and other options and accessories available.
- Refer NHP for delivery confirmation regarding types with main switches.

\section*{CONCEPT•PREMIER 2}

The premium panelboard suits Din-T MCBs
C/W isolation chassis


CONCEPT•PREMIER
Din-T - Surface mount with grey door

\section*{Suits Din-T MCBs (DIN) refer to section one}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main Switch & Pole capacity & Box size & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow[t]{7}{*}{-
-
-} & 24 & 1 & 800 & (PPG 24G2 \({ }^{2}\) ) & 2300.00 \\
\hline & 36 & 2 & 1000 & (PPG 36G2 \({ }^{2}\) ) & 2600.00 \\
\hline & 48 & 2 & 1000 & (PPG 48G2 \({ }^{2}\) ) & 2850.00 \\
\hline & 60 & 3 & 1200 & (PPG 60G2 \({ }^{2}\) ) & 3200.00 \\
\hline & 72 & 4 & 1400 & (PPG 72G2 \({ }^{2}\) ) & 3850.00 \\
\hline & 84 & 4 & 1400 & CPG 84G2 \({ }^{2}\) ) & 4550.00 \\
\hline & 96 & 5 & 1600 & (PPG 96G2 \({ }^{2}\) ) & 5250.00 \\
\hline \multirow{4}{*}{160 A} & 24 & 1 & 800 & CPG 24M160G2 \({ }^{1}\) ) & 2550.00 \\
\hline & 36 & 2 & 1000 & (PGG 36M160G2 \({ }^{1}\) ) & 2850.00 \\
\hline & 48 & 2 & 1000 & (PG 48M160G2 \({ }^{1}\) ) & 3050.00 \\
\hline & 60 & 3 & 1200 & CPG 60M160G2 \({ }^{1}\) ) & 3450.00 \\
\hline \multirow{7}{*}{250 A} & 24 & 1 & 800 & CPG 24M250G2 \({ }^{1}\) ) & 2650.00 \\
\hline & 36 & 2 & 1000 & CPG 36M250G2 \({ }^{1}\) ) & 2950.00 \\
\hline & 48 & 2 & 1000 & (PG 48M250G2 \({ }^{1}\) ) & 3200.00 \\
\hline & 60 & 3 & 1200 & CPG 60M250G2 \({ }^{1}\) ) & 3550.00 \\
\hline & 72 & 4 & 1400 & CPG 72M250G2 \({ }^{1}\) ) & 4200.00 \\
\hline & 84 & 4 & 1400 & CPG 84M250G2 \({ }^{1}\) ) & 4900.00 \\
\hline & 96 & 5 & 1600 & CPG 96M250G2 \({ }^{1}\) ) & 5600.00 \\
\hline
\end{tabular}

Width \(=640 \mathrm{~mm}\), Depth \(=240 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: \({ }^{1}\) ) Main switches are supplied loose. i.e. CPG 24 M250 G2 \(=\) CPG \(24 \mathrm{G} 2+\) EVA3250H.
\({ }^{2}\) ) Made to order.
- Larger main switches and other options and accessories available.
- Refer NHP for delivery confirmation regarding types with main switches.

\section*{CONCEPT.PREMIER 2}

The premium panelboard suits Din-T MCBs
C/W isolation chassis


Din-T - Surface mount with orange door


Width \(=640 \mathrm{~mm}\), Depth \(=240 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: \({ }^{1}\) ) Main switches are supplied loose. i.e. CPG 24 M250 O2 \(=\) CPG \(2402+\) EVA3250H.
\(\left.{ }^{2}\right)\) Made to order.
- Larger main switches and other options and accessories available.
- Refer NHP for delivery confirmation regarding types with main switches.

\section*{CONCEPT•PREMIER}

The premium panelboard suits Safe-T MCBs


Width \(=640 \mathrm{~mm}\), Depth \(=240 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: \({ }^{1}\) ) Main switches are supplied loose. i.e. CPS 24 M250 G = CPS 24G + EVA3250H.
\(\left.{ }^{2}\right)\) Made to order.
- Larger main switches and other options and accessories available.
- Refer NHP for delivery confirmation regarding types with main switches.

\section*{CONCEPT•PREMIER}

The premium panelboard suits Safe-T MCBs


Safe-T - Surface mount with orange door
Suits Safe-T MCBs (NEMA) refer to section one
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main Switch & Pole capacity & Box size & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow{6}{*}{-} & 24 & 1 & 800 & CPS \(240{ }^{2}\) ) & 2060.00 \\
\hline & 36 & 2 & 1000 & CPS 360 \({ }^{2}\) ) & 2260.00 \\
\hline & 48 & 3 & 1200 & CPS \(480{ }^{2}\) ) & 2410.00 \\
\hline & 60 & 4 & 1400 & CPS \(600^{2}\) ) & 2580.00 \\
\hline & 72 & 5 & 1600 & CPS \(720^{2}\) ) & 3220.00 \\
\hline & 96 & 6 & 1800 & CPS \(960{ }^{2}\) ) & 4360.00 \\
\hline \multirow{4}{*}{160 A} & 24 & 1 & 800 & CPS 24M1600 \({ }^{1}\) ) & 2310.00 \\
\hline & 36 & 2 & 1000 & CPS 36M1600 \({ }^{1}\) ) & 2510.00 \\
\hline & 48 & 3 & 1200 & CPS 48M1600 \({ }^{1}\) ) & 2660.00 \\
\hline & 60 & 4 & 1400 & CPS 60M1600 \({ }^{1}\) ) & 2830.00 \\
\hline \multirow{6}{*}{250 A} & 24 & 1 & 800 & CPS 24M2500 \({ }^{1}\) ) & 2440.00 \\
\hline & 36 & 2 & 1000 & CPS 36M2500 \({ }^{1}\) ) & 2640.00 \\
\hline & 48 & 3 & 1200 & CPS 48M2500 \({ }^{1}\) ) & 2780.00 \\
\hline & 60 & 4 & 1400 & CPS 60M2500 \({ }^{1}\) ) & 2960.00 \\
\hline & 72 & 5 & 1600 & CPS 72M2500 \({ }^{1}\) ) & 3590.00 \\
\hline & 96 & 6 & 1800 & CPS 96M2500 \({ }^{1}\) ) & 4730.00 \\
\hline
\end{tabular}

Width \(=640 \mathrm{~mm}\), Depth \(=240 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: \({ }^{1}\) ) Main switches are supplied loose. i.e. CPS 24 M250 O = CPS \(240+\) EVA3250H.
\({ }^{2}\) ) Made to order.
- Larger main switches and other options and accessories available.
- Refer NHP for delivery confirmation regarding types with main switches.

\section*{CONCEPT.PREMIER CPX}

The premium panelboard
Suits E125, S125 MCCBs


CONCEPT•PREMIER CPX
MCCB - Surface mount with grey door
\begin{tabular}{llllr} 
Pole cap. & Box size & Height (mm) & Cat. No. & Price \(\mathbf{\$}\) \\
\hline 18 & 2 & 1000 & CPX18G \({ }^{\mathbf{}}\) ) & \(\mathbf{3 6 8 0 . 0 0}\) \\
\hline 24 & 2 & 1000 & CPX24G \(^{\mathbf{1}}\) ) & \(\mathbf{4 1 0 0 . 0 0}\) \\
\hline 36 & 3 & 1200 & CPX36G \({ }^{\text {1 }}\) ) & \(\mathbf{4 4 6 0 . 0 0}\) \\
\hline 42 & 4 & 1400 & CPX42G & \(\mathbf{4 8 8 0 . 0 0}\) \\
\hline 48 & 4 & 1400 & CPX48G & \(\mathbf{4 9 3 0 . 0 0}\) \\
\hline 60 & 5 & 1600 & CPX60G & \(\mathbf{5 2 9 0 . 0 0}\) \\
\hline 72 & 6 & 1800 & CPX72G & \(\mathbf{5 7 1 0 . 0 0}\) \\
\hline
\end{tabular}

\section*{CONCEPT•PREMIER CPX}

MCCB - Surface mount with orange door
\begin{tabular}{|c|c|c|c|c|}
\hline Pole cap. & Box size & Height (mm) & Cat. No. & Price \$ \\
\hline 18 & 2 & 1000 & CPX180 \({ }^{1}\) ) & 3680.00 \\
\hline 24 & 2 & 1000 & CPX240 \({ }^{1}\) ) & 4100.00 \\
\hline 36 & 3 & 1200 & CPX360 & 4460.00 \\
\hline 42 & 4 & 1400 & CPX420 & 4880.00 \\
\hline 48 & 4 & 1400 & CPX480 & 4930.00 \\
\hline 60 & 5 & 1600 & CPX600 & 5290.00 \\
\hline 72 & 6 & 1800 & CPX720 & 5710.00 \\
\hline
\end{tabular}

\section*{CONCEPT•PREMIER CPX}

MCCB - Surface mount stainless steel
\begin{tabular}{llllr} 
Pole cap. & Box size & Height (mm) & Cat. No. & Price \$ \\
\hline 18 & 2 & 1000 & CPX18SS & \(\mathbf{8 5 6 0 . 0 0}\) \\
\hline 24 & 2 & 1000 & CPX24SS & \(\mathbf{8 7 7 0 . 0 0}\) \\
\hline 36 & 3 & 1200 & CPX36SS & \(\mathbf{1 0 2 2 0 . 0 0}\) \\
\hline 42 & 4 & 1400 & CPX42SS & \(\mathbf{1 1 4 6 0 . 0 0}\) \\
\hline 48 & 4 & 1400 & CPX48SS & \(\mathbf{1 1 6 7 0 . 0 0}\) \\
\hline 60 & 5 & 1600 & CPX60SS & \(\mathbf{1 3 1 2 0 . 0 0}\) \\
\hline 72 & 6 & 1800 & CPX72SS & \(\mathbf{1 4 2 7 0 . 0 0}\) \\
\hline
\end{tabular}

Width \(=640 \mathrm{~mm}\), Depth \(=240 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: CPX panelboards are fully assembled from stocked components. Cat. No. refers to panelboard suitable for E125, S125 MCCBs. Refer to NHP for panelboard suitable for S160, S250 MCCBs. \({ }^{1}\) ) Units stocked.

\section*{CONCEPT•PREMIER}

The premium panelboard options and accessories
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Box } \\
& \text { size }
\end{aligned}
\] & Height (mm) & Pole cap. & With escutcheon Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline H & 600 & 24 & CPPACC24G & 1030.00 \\
\hline H & 600 & 48 & CPPACC48G & 1060.00 \\
\hline \[
\begin{aligned}
& \text { Box } \\
& \text { size }
\end{aligned}
\] & Height (mm) & & Without escutcheon Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline H & 600 & & CPPACCG & 950.00 \\
\hline \[
\begin{aligned}
& \text { Box } \\
& \text { size }
\end{aligned}
\] & Height (mm) & & With blank escutcheon Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline H & 600 & & CPPACCGE & 1020.00 \\
\hline 1 & 800 & & CPPACCS1GE & 1250.00 \\
\hline 2 & 1000 & & CPPACCS2GE & 1450.00 \\
\hline 3 & 1200 & & CPPACCS3GE & 1660.00 \\
\hline 4 & 1400 & & CPPACCS4GE & 1970.00 \\
\hline 5 & 1600 & & CPPACCS5GE & 2280.00 \\
\hline 6 & 1800 & & CPPACCS6GE & 2590.00 \\
\hline 7 & 2000 & & CPPACCS7GE & 2910.00 \\
\hline
\end{tabular}

Width \(=640 \mathrm{~mm}\) Depth \(=240 \mathrm{~mm}\) includes door (Door \(=20 \mathrm{~mm}\) )
Gear trays to suit Accessory Module
\begin{tabular}{l|rr}
\begin{tabular}{l} 
White mounting plate \\
Height \((\mathbf{m m})\)
\end{tabular} & Cat. No. & Price \$ \\
\hline 94 & CPBGTS1 & \(\mathbf{4 6 . 5 0}\) \\
\hline 194 & CPBGTS2 & \(\mathbf{6 7 . 5 0}\) \\
\hline 294 & CPBGTS3 & \(\mathbf{8 8 . 0 0}\) \\
\hline 494 & CPBGTSH & \(\mathbf{1 1 4 . 0 0}\) \\
\hline 594 & CPBGTS4 & \(\mathbf{1 4 5 . 0 0}\) \\
\hline 994 & CPBGTS6 & \(\mathbf{2 3 0 . 0 0}\) \\
\hline
\end{tabular}

Gear trays for Concept Premier must be 200 mm shorter than enclosure size.
Earth and neutral bar kit to suit Accessory Module
\begin{tabular}{l|rr} 
No Ways & Cat. No. & Price \$ \\
\hline 24 & CEN24 & \(\mathbf{8 8 . 0 0}\) \\
\hline 36 & CEN36 & \(\mathbf{9 5 . 0 0}\) \\
\hline 48 & CEN48 & \(\mathbf{1 1 8 . 0 0}\) \\
\hline 60 & CEN60 & \(\mathbf{1 4 4 . 0 0}\) \\
\hline 72 & CEN72 & \(\mathbf{1 5 8 . 0 0}\) \\
\hline 84 & CEN84 & \(\mathbf{1 9 3 . 0 0}\) \\
\hline 96 & CEN96 & \(\mathbf{2 1 5 . 0 0}\) \\
\hline
\end{tabular}

Includes 2 bars, mounting supports and fasteners.
Notes: \({ }^{1}\) ) \(\begin{aligned} & \text { Replace " } G \text { " with " } \mathrm{O} \text { " for orange door, replace " } \mathrm{G} \text { with " } \mathrm{SS} \text { " for stainless } \\ & \text { steel. }\end{aligned}\)

\section*{CONCEPT•PREMIER 2}

The premium panelboard options and accessories


Accessory modules
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Box } \\
& \text { size }
\end{aligned}
\] & Height (mm) & Pole cap. & With escutcheon Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline H & 600 & 24 & CPPACC24G2 & 1030.00 \\
\hline H & 600 & 48 & CPPACC48G2 & 1060.00 \\
\hline \[
\begin{aligned}
& \text { Box } \\
& \text { size }
\end{aligned}
\] & Height (mm) & & Without escutcheon Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline H & 600 & & CPPACCG2 & 1030.00 \\
\hline \[
\begin{aligned}
& \begin{array}{l}
\text { Box } \\
\text { size }
\end{array} \\
& \hline
\end{aligned}
\] & Height (mm) & & With blank escutcheon Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline H & 600 & & CPPACCGE2 & 1060.00 \\
\hline 1 & 800 & & CPPACCS1GE2 & 1250.00 \\
\hline 2 & 1000 & & CPPACCS2GE2 & 1450.00 \\
\hline 3 & 1200 & & CPPACCS3GE2 & 1660.00 \\
\hline 4 & 1400 & & CPPACCS4GE2 & 1970.00 \\
\hline 5 & 1600 & & CPPACCS5GE2 & 2280.00 \\
\hline 6 & 1800 & & CPPACCS6GE2 & 2590.00 \\
\hline 7 & 2000 & & CPPACCS7GE2 & 2910.00 \\
\hline
\end{tabular}

Width \(=640 \mathrm{~mm}\) Depth \(=240 \mathrm{~mm}\) includes door \((\) Door \(=20 \mathrm{~mm})\)

\section*{Notes: ') Replace "G" with "O" for orange door, replace "G with "SS" for stainless steel.}

\section*{CONCEPT•PREMIER}

The premium panelboard options and accessories

Options and accessories
Description
Cat. No.
Price \(\$\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Options and accessories Description} & Cat. No. & Price \$ \\
\hline & \multirow{3}{*}{Emergency lighting kits} & \multicolumn{2}{|l|}{rotary control switch (unwired)} & CPELK1 & 430.00 \\
\hline & & \multicolumn{2}{|l|}{rotary control switch (wired loom)} & CPELK1W & 445.00 \\
\hline & & \multicolumn{2}{|l|}{Key switch (unwired)} & CPELK2 & 495.00 \\
\hline & \multirow{8}{*}{Flush kits (supplied loose) 45 mm width} & \multicolumn{2}{|l|}{Size H} & CPPFKH & 300.00 \\
\hline & & \multicolumn{2}{|l|}{Size 1} & CPPFK1 & 300.00 \\
\hline & & \multicolumn{2}{|l|}{Size 2} & CPPFK2 & 300.00 \\
\hline & & \multicolumn{2}{|l|}{Size 3} & CPPFK3 & 300.00 \\
\hline & & \multicolumn{2}{|l|}{Size 4} & CPPFK4 & 300.00 \\
\hline \multirow[t]{7}{*}{Flush kit CPPFK} & & \multicolumn{2}{|l|}{Size 5} & CPPFK5 & 300.00 \\
\hline & & \multicolumn{2}{|l|}{Size 6} & CPPFK6 & 300.00 \\
\hline & & \multicolumn{2}{|l|}{Size 7} & CPPFK7 & 300.00 \\
\hline & \multirow{4}{*}{Weatherproof cover} & \multirow[t]{2}{*}{Mild steel} & Single width & CPPWC & 255.00 \\
\hline & & & Double width & CPPWCD & 415.00 \\
\hline & & \multirow[t]{2}{*}{Stainless steel} & Single width & CPPWCSS & 650.00 \\
\hline & & & Double width & CPPWCDSS & 2390.00 \\
\hline \multirow[t]{4}{*}{Weatherproof rainhood} & \multirow[t]{4}{*}{Floor mounting plinth \({ }^{2}\) ) ( 100 mm )} & \multirow[t]{2}{*}{Mild steel} & Single width & CPPPLINTHS & 360.00 \\
\hline & & & Double width & CPPPLINTHD & 930.00 \\
\hline & & \multirow[t]{2}{*}{Stainless steel} & Single width & CPPPLINTHSSS & 1220.00 \\
\hline & & & Double width & CPPPLINTHDSS & 2650.00 \\
\hline \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{Wall mounting brackets} & \multicolumn{2}{|l|}{Mild steel} & CPPWBMS & 290.00 \\
\hline & & Stainless & & CPPWB & 325.00 \\
\hline \multirow[t]{14}{*}{Weatherproof rainhood} & \multirow{4}{*}{Gland plates} & \multicolumn{2}{|l|}{Brass 3 mm} & CPPGPB & 200.00 \\
\hline & & \multicolumn{2}{|l|}{Brass 5 mm} & CPPGPB5 & 375.00 \\
\hline & & \multicolumn{2}{|l|}{Aluminium 3 mm} & CPPGPA & 67.50 \\
\hline & & \multicolumn{2}{|l|}{Aluminium 6 mm} & CPPGPA6 & 72.50 \\
\hline & \multirow{8}{*}{White liners \({ }^{1}\) ) 2 required per board} & \multicolumn{2}{|l|}{Size H} & CPPWILH & 150.00 \\
\hline & & \multicolumn{2}{|l|}{Size 1} & CPPWIL1 & 150.00 \\
\hline & & \multicolumn{2}{|l|}{Size 2} & CPPWIL2 & 150.00 \\
\hline & & \multicolumn{2}{|l|}{Size 3} & CPPWIL3 & 150.00 \\
\hline & & \multicolumn{2}{|l|}{Size 4} & CPPWIL4 & 150.00 \\
\hline & & \multicolumn{2}{|l|}{Size 5} & CPPWIL5 & 150.00 \\
\hline & & \multicolumn{2}{|l|}{Size 6} & CPPWIL6 & 150.00 \\
\hline & & \multicolumn{2}{|l|}{Size 7} & CPPWIL7 & 150.00 \\
\hline & \multirow[t]{2}{*}{Gland plate gasket} & \multicolumn{2}{|l|}{Series 1} & 305.00001 & 6.20 \\
\hline & & Series 2 & & TBA & POA \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) Transforms interior of board white without respray.
\({ }^{2}\) ) Plinth is designed for bottom cable entry, if panelboard is freestanding additional support is required.
}

\section*{CONCEPT•PREMIER}

The premium panelboard Options and accessories
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Accessories} \\
\hline \multirow{4}{*}{Top mount main switch kit (supplied loose)} & \multirow[b]{2}{*}{160 A 3 pole} & CPD & CDT160MS & 305.00 \\
\hline & & CPG, CPS & EVA3160H & 305.00 \\
\hline & \multirow[t]{2}{*}{250 A 3 pole} & CPD & CDT250MS & 435.00 \\
\hline & & CPG, CPS & EVA3250H & 435.00 \\
\hline \multicolumn{3}{|l|}{Blue cover to suit 160 A and 250 A isolator} & 1LS2VS & 12.00 \\
\hline \multirow{3}{*}{Split chassis kits} & CPD & CD chassis & STKCD & 119.00 \\
\hline & CPS & \[
\begin{aligned}
& \text { CT chassis } \\
& 250 \mathrm{~A} \\
& \hline
\end{aligned}
\] & STK250NDTH & 119.00 \\
\hline & CPS & \[
\begin{aligned}
& \text { CT chassis } \\
& 355 \mathrm{~A} \\
& \hline
\end{aligned}
\] & STK300TH & 119.00 \\
\hline \multirow{5}{*}{Connection kits} & \multicolumn{2}{|l|}{250 A MCCB to CD chassis} & CD250CKT2 & 280.00 \\
\hline & \multicolumn{2}{|l|}{200 A MCCB to NC chassis (Direct)} & NCCK200CPP & 187.00 \\
\hline & \multicolumn{2}{|l|}{250 A MCCB to NC chassis (TAG)} & NCCK250CPP & 500.00 \\
\hline & \multicolumn{2}{|l|}{400 A MCCB to NC chassis (TAG)} & NCCK400CPP & 590.00 \\
\hline & \multicolumn{2}{|l|}{400 A SLB to NC chassis (TAG)} & NCCK4002CPP & 820.00 \\
\hline \multicolumn{3}{|l|}{Support bracket to mount S250} & CPPBS250 & 83.00 \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Pole Fillers}} & Din-T & DTPF & 4.30 \\
\hline & & Safe-T & SAFETPF & 1.80 \\
\hline & & S 125 & XAB2 & 3.80 \\
\hline & & S 250 & XAB3 & 3.80 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Door handles (T handle)}} & CL001 & CPPDCL001 & 67.50 \\
\hline & & 92268 & CPPD92268 & 78.00 \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Tee-off plastic caps}} & CD-Din-T & CD250TOPC & 0.60 \\
\hline & & NC-Din-T & NC250TOPC & 0.80 \\
\hline & & GB-Din-T & GBTOC & \\
\hline & & Safe-T & TH250TOPC & 0.60 \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Spare Key (set of 2)}} & CL001 & KEYCL001 & 7.80 \\
\hline & & 92268 & KEY92268 & 7.80 \\
\hline \multicolumn{3}{|l|}{NSW PWD E lock (series 1)} & CPPPWDNSW & 295.00 \\
\hline \multicolumn{3}{|l|}{Traffolite labelling available} & REFER NHP & - \\
\hline \multicolumn{3}{|l|}{Special paint colour} & REFER NHP & - \\
\hline \multicolumn{3}{|l|}{PVC wiring duct} & REFER NHP & - \\
\hline \multicolumn{3}{|l|}{kWh meter} & REFER PAGE
1-42 & - \\
\hline
\end{tabular}

\section*{CONCEPT•TOUGH}

The heavy-duty panelboard
Suits Din-T MCBs, E125, S125 and S160, S250 MCCBs
Standard AS/NZS 3439.3

IP 66 rated enclosure
- 2.0 mm fully welded construction

316 Stainless steel option
- 6 mm Aluminium gland plates
- 4 modular sizes 500 mm to 2000 mm

E Very generous amounts of wiring room
- Type tested busbar/chassis system
- Removable gland plates (with gaskets)
- Lift-off hinged escutcheon
- Chrome hinges and door handle
- 3 point door locking
- Australian made
- Padlockable door handle
- Commercial, industrial and heavy industrial applications

\section*{Application}

The CONCEPT•TOUGH range of Panelboards provides a unique enclosure system for NHP Din-T MCBs, E125, S125 and S160, S250 MCCBs.

\section*{Features}
- The lift-off hinged door is totally independent of the escutcheon.
- Generous space between door and escutcheon to allow a wide range of accessories/locking facilities to fit behind the door.
- D handles fitted to the lift-off escutcheon to allow easy fitting and removal.
- Knockouts provided in the escutcheon for up to 18 modules of standard DIN rail equipment (Din-T Panelboards only)
- Removable gland plates aid on-site installation of cable and trunking systems.
- Compact main switch with a fully enclosed rating of 160 A and 250 A (Din-T Panelboards only).
- Large gland plates to allow for incoming/outgoing cables.
- Dual earth and neutral bars, circuit identification and two schedule cards supplied standard.
- 6 mm aluminum gland plate

\section*{CONCEPT•TOUGH}

\section*{The heavy-duty panelboard}

Suits Din-T MCBs, E125, S125 and S160, S250 MCCBs

\section*{Technical data}
\begin{tabular}{ll} 
Material type: & 2.0 mm steel, polyester powder coated \\
& 6 mm Aluminium gland plates \\
& 2.0 mm 316 Stainless steel option \\
Colour & Base - Orange gloss / Charcoal gloss
\end{tabular}
(AS 2700-1995): Door - X15 Orange or N42 Storm Grey (other colours refer NHP)
Escutcheon - Bright white gloss
Protection degree: IP 40 - without door
IP 66 - with door
Busbar ratings: Din-T Panelboards - 250 A CD chassis (355 A option)
- 250 A NC chassis (400 A option)

S 125 MCCBs Panelboard - 630 A (std), 36 kA for 1 second
- 800 A (optional)
\begin{tabular}{ll} 
Main switch & Din-T M/S 80/100 A (chassis mount Din-T) \\
(options): & \(160 \mathrm{~A}, 250 \mathrm{~A}, 400 \mathrm{~A}, 630 \mathrm{~A} \& 800\) A 3 pole 415 V AC \\
(top mount)
\end{tabular}

S 125 MCCBs Panrlboard \(2 \times 10 \mathrm{~mm}\) studs, \(8 \times 8 \mathrm{~mm}\) studs \& 1 screw tunnel terminals \((35 \mathrm{~mm}) 400 \mathrm{~A}\)

\section*{CONCEPT•TOUGH}

\section*{The heavy-duty panelboard Suits Din-T MCBs}

CONCEPT•TOUGH


Din-T - Surface mount orange
\begin{tabular}{llllr} 
Pole capacity & Box size & Height \((\mathbf{m m})\) & Cat. No. \(\left.{ }^{\text {1 }}\right)\) & Price \(\mathbf{\$}\) \\
\hline 18 & 2 & 1000 & CTD180 & \(\mathbf{5 9 1 0 . 0 0}\) \\
\hline 24 & 2 & 1000 & CTD240 & \(\mathbf{6 2 3 0 . 0 0}\) \\
\hline 36 & 2 & 1000 & CTD360 & \(\mathbf{6 5 4 0 . 0 0}\) \\
\hline 48 & 2 & 1000 & CTD480 & \(\mathbf{6 7 4 0 . 0 0}\) \\
\hline 60 & 3 & 1500 & CTD600 & \(\mathbf{8 0 9 0 . 0 0}\) \\
\hline 72 & 3 & 1500 & CTD720 & \(\mathbf{8 5 1 0 . 0 0}\) \\
\hline 84 & 3 & 1500 & CTD840 & \(\mathbf{8 9 2 0 . 0 0}\) \\
\hline 96 & 3 & 1500 & CTD960 & \(\mathbf{9 2 3 0 . 0 0}\) \\
\hline
\end{tabular}

CONCEPT•TOUGH
Din-T - Surface mount stainless steel-orange
\begin{tabular}{llllr} 
Pole capacity & Box size & Height (mm) & Cat. No. \({ }^{\text {1 }}\) ) & Price \$ \\
\hline 18 & 2 & 1000 & CTD18SSO & \(\mathbf{2 0 0 2 0 . 0 0}\) \\
\hline 24 & 2 & 1000 & CTD24SSO & \(\mathbf{2 0 2 3 0 . 0 0}\) \\
\hline 36 & 2 & 1000 & CTD36SSO & \(\mathbf{2 0 2 7 0 . 0 0}\) \\
\hline 48 & 2 & 1000 & CTD48SSO & \(\mathbf{2 0 5 8 0 . 0 0}\) \\
\hline 60 & 3 & 1500 & CTD60SSO & \(\mathbf{2 4 0 1 0 . 0 0}\) \\
\hline 72 & 3 & 1500 & CTD72SSO & \(\mathbf{2 4 3 2 0 . 0 0}\) \\
\hline 84 & 3 & 1500 & CTD84SSO & \(\mathbf{2 4 5 3 0 . 0 0}\) \\
\hline 96 & 3 & 1500 & CTD96SSO & \(\mathbf{2 4 7 3 0 . 0 0}\) \\
\hline
\end{tabular}

Delete "O" for raw stainless enclosure e.g. CTD18SS.
CONCEPT•TOUGH
Accessory modules with orange doors
\begin{tabular}{llllr} 
Pole capacity & Box size & Height \((\mathbf{m m})\) & Cat. No. \(\left.{ }^{1}\right)\) & Price \(\boldsymbol{\$}\) \\
\hline 0 & 1 & 500 & CTACCO & \(\mathbf{3 9 9 0 . 0 0}\) \\
\hline 24 & 1 & 500 & CTACC24HO \({ }^{\text {2 }}\) ) & \(\mathbf{4 2 5 0 . 0 0}\) \\
\hline 24 & 1 & 500 & CTACC24O & \(\mathbf{4 2 5 0 . 0 0}\) \\
\hline
\end{tabular}

Width \(=800 \mathrm{~mm}\), Depth \(=300 \mathrm{~mm}\) includes door. \((\) Door \(=20 \mathrm{~mm})\)

Notes: ') CTD panelboard are fully assembled from stocked components.
Correct box size when fitting 160 A or 250 A isolator. Made to order.
\(\left.{ }^{2}\right) 24\) pole horizontal on DIN Rail (18P suit lock DIN, 3P suit STD DIN).

\section*{CONCEPT•TOUGH}

\section*{The heavy-duty panelboard}

Suits E125, S125 MCCBs


CONCEPT•TOUGH
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main switch & Pole capacity & \[
\begin{aligned}
& \text { Box } \\
& \text { size }
\end{aligned}
\] & Height (mm) & Cat. No. & Price \$ \\
\hline \multirow[t]{6}{*}{-

_} & 18 & 2 & 1000 & CTX180 & 7420.00 \\
\hline & 24 & 2 & 1000 & CTX240 & 7680.00 \\
\hline & 36 & 3 & 1500 & CTX360 & 8140.00 \\
\hline & 48 & 3 & 1500 & CTX480 & 8660.00 \\
\hline & 60 & 3 & 1500 & CTX600 & 11050.00 \\
\hline & 72 & 4 & 2000 & CTX720 & 11620.00 \\
\hline \multirow{6}{*}{\[
\begin{aligned}
& 400 \mathrm{~A} \\
& \mathrm{~S} 400 \mathrm{CJ}
\end{aligned}
\]} & 18 & 3 & 1500 & CTX18M4000 & POA \\
\hline & 24 & 3 & 1500 & CTX24M4000 & POA \\
\hline & 36 & 3 & 1500 & CTX36M4000 & POA \\
\hline & 48 & 4 & 2000 & CTX48M4000 & POA \\
\hline & 60 & 4 & 2000 & CTX60M4000 & POA \\
\hline & 72 & 4 & 2000 & CTX72M4000 & POA \\
\hline
\end{tabular}

CONCEPT•TOUGH
MCCB - Surface mount stainless steel-orange
\begin{tabular}{lllllr}
\begin{tabular}{l} 
Main \\
switch
\end{tabular} & \begin{tabular}{l} 
Pole \\
capacity
\end{tabular} & \begin{tabular}{l} 
Box \\
size
\end{tabular} & \begin{tabular}{l} 
Height \\
\((\mathbf{m m})\)
\end{tabular} & Cat. No. & Price \$ \\
\hline & 18 & 2 & 1000 & CTX18SSO & \(\mathbf{2 3 2 9 0 . 0 0}\) \\
\hline & 24 & 2 & 1000 & CTX24SSO & \(\mathbf{2 3 6 0 0 . 0 0}\) \\
\hline & 36 & 3 & 1500 & CTX36SSO & \(\mathbf{2 4 1 2 0 . 0 0}\) \\
\hline & 48 & 3 & 1500 & CTX48SSO & \(\mathbf{2 4 5 9 0 . 0 0}\) \\
\hline & 60 & 3 & 1500 & CTX60SSO & \(\mathbf{2 9 6 2 0 . 0 0}\) \\
\hline & 72 & 4 & 2000 & CTX72SSO & \(\mathbf{3 0 1 9 0 . 0 0}\) \\
\hline
\end{tabular}

Width \(=800 \mathrm{~mm}\), Depth \(=300 \mathrm{~mm}\) includes door. (Door \(=20 \mathrm{~mm}\) )
Delete " O " for raw stainless steel enclosure e.g. CTX18SS.

Notes: Made to order.
CTX panelboards are fully assembled from stocked components.
Cat. No. refers to Panelboard suitable for E125, S125 MCCB.
Refer to NHP for Panelboard suitable for S160, S250 MCCB.

\section*{Panelboard hardware}
to suit the CONCEPT family of panelboards
with Din-T or Safe-T MCBs
Earth and neutral bars - 165 A
\begin{tabular}{lllrlr}
\begin{tabular}{l} 
No. \\
tunnels
\end{tabular} & Numbering & \begin{tabular}{l} 
Single screw \\
Cat. No.
\end{tabular} & Price \$ & \begin{tabular}{l} 
Double screw \\
Cat. No.
\end{tabular} & Price \$ \\
\hline 18 & \(1-18\) & TGPEN181S & \(\mathbf{5 5 . 0 0}\) & TGPEN182S & \(\mathbf{5 7 . 0 0}\) \\
\hline 24 & \(1-24\) & TGPEN241S & \(\mathbf{6 5 . 5 0}\) & TGPEN242S & \(\mathbf{6 7 . 5 0}\) \\
\hline 30 & \(1-30\) & - & - & TGPEN302S & \(\mathbf{8 3 . 0 0}\) \\
\hline 36 & \(1-36\) & - & - & TGPEN362S & \(\mathbf{9 3 . 5 0}\) \\
\hline 42 & \(1-42\) & - & - & TGPEN422S & \(\mathbf{9 3 . 5 0}\) \\
\hline 48 & \(1-48\) & - & - & TGPEN482S & \(\mathbf{9 8 . 5 0}\) \\
\hline 60 & \(1-60\) & - & - & TGPEN602S & \(\mathbf{1 3 5 . 0 0}\) \\
\hline 72 & \(1-72\) & - & - & TGPEN722S & \(\mathbf{1 6 1 . 0 0}\) \\
\hline 84 & \(1-84\) & - & - & TGPEN842S & \(\mathbf{1 9 7 . 0 0}\) \\
\hline 96 & \(1-96\) & - & - & TGPEN962S & \(\mathbf{2 3 5 . 0 0}\) \\
\hline
\end{tabular}
\begin{tabular}{lrlrlr} 
& \begin{tabular}{l} 
Numbering \\
Pole cap.(odd/even)
\end{tabular} & \begin{tabular}{l} 
Double screw \\
odd numbers \\
Cat. No.
\end{tabular} & Price \(\mathbf{\$}\) & \begin{tabular}{l} 
Double screw \\
even numbers \\
Cat. No.
\end{tabular} & Price \$ \\
\hline 9 & \(1-17 \& 2-18\) & TGPEN92SODD & \(\mathbf{4 1 . 5 0}\) & TGPEN92SEVE & \(\mathbf{4 1 . 5 0}\) \\
\hline 18 & \(1-35 \& 2-36\) & TGPEN182SODD & \(\mathbf{6 2 . 5 0}\) & TGPEN182SEVE & \(\mathbf{6 2 . 5 0}\) \\
\hline 24 & \(1-47 \& 2-48\) & TGPEN242SODD & \(\mathbf{7 2 . 5 0}\) & TGPEN242SEVE & \(\mathbf{7 2 . 5 0}\) \\
\hline 30 & \(1-59 \& 2-60\) & TGPEN302SODD & \(\mathbf{8 8 . 0 0}\) & TGPEN302SEVE & \(\mathbf{8 8 . 0 0}\) \\
\hline 36 & \(1-71 \& 2-72\) & TGPEN362SODD \(\mathbf{1 0 4 . 0 0}\) & TGPEN362SEVE \(\mathbf{1 0 4 . 0 0}\) \\
\hline 42 & \(1-83 \& 2-84\) & TGPEN422SODD & \(\mathbf{1 1 4 . 0 0}\) & TGPEN422SEVE \(\mathbf{1 1 4 . 0 0}\) \\
\hline 48 & \(1-95 \& 2-96\) & TGPEN482SODD & \(\mathbf{1 2 5 . 0 0}\) & TGPEN482SEVE \(\mathbf{1 2 5 . 0 0}\) \\
\hline
\end{tabular}

165 A bars \(-2 \times \mathrm{M} 8\) studs \& \(2 \times 25 \mathrm{~mm}\) tunnel terminals, remainder 2 screw 16 mm terminals

Earth and neutral bars - 300 A
\begin{tabular}{lllr}
\begin{tabular}{l} 
No. \\
tunnels
\end{tabular} & \begin{tabular}{l} 
Sumbering \\
Cat. No.
\end{tabular} & Price \$
\end{tabular}


\section*{Panelboard hardware to suit the CONCEPT family of panelboards with Din-T or Safe-T MCBs}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pole capacity & Numbering (odd/even) & Double screw odd numbers Cat. No. & Price \$ & Double screw even numbers Cat. No. & Price \$ \\
\hline 9 & 1-17 \& 2-18 & CPEN90DD & 78.00 & CPEN9EVE & 78.00 \\
\hline 18 & 1-35 \& 2-36 & CPEN180DD & 98.50 & CPEN18EVE & 98.50 \\
\hline 24 & 1-47 \& 2-48 & CPEN240DD & 111.00 & CPEN24EVE & 111.00 \\
\hline 30 & 1-59 \& 2-60 & CPEN300DD & 130.00 & CPEN30EVE & 130.00 \\
\hline 36 & 1-71 \& 2-72 & CPEN360DD & 140.00 & CPEN36EVE & 140.00 \\
\hline 48 & 1-95 \& 2-96 & CPEN48ODD & 150.00 & CPEN48EVE & 150.00 \\
\hline
\end{tabular}

300 A bars- \(2 \times\) M10 \& \(2 \times\) M8 studs and \(6 \times 25\) mm tunnel terminals, remainder 2 screw 16 mm terminals.
(Studs suitable for \(2 \times 185 \mathrm{~mm}\) lugs and 50 mm and 70 mm lugs)

Earth and neutral bars - 400 A rated
\begin{tabular}{|c|c|c|c|c|}
\hline Ways & (Hex head screws) & Tunnel terminals & Double screw even numbers Cat. No. & Price \$ \\
\hline 8 way & \[
2 \times \mathrm{M} 10 \& 8 \times \mathrm{M} 8
\] studs & - & CPXEN8 & 109.00 \\
\hline 12 way & \[
\begin{aligned}
& 2 \times \mathrm{M} 10 \& 8 \times \mathrm{M} 8 \\
& \text { studs }
\end{aligned}
\] & \(4 \times 35 \mathrm{~mm}^{2}\) tunnel term. & CPXEN12 & 140.00 \\
\hline 18 way & \[
\begin{aligned}
& 2 \times \mathrm{M} 10 \& 8 \times \mathrm{M} 8 \\
& \text { studs }
\end{aligned}
\] & \(10 \times 35 \mathrm{~mm}^{2}\) tunnel term. & CPXEN18 & 250.00 \\
\hline 36 way & \[
3 \times \mathrm{M} 10 \& 8 \times \mathrm{M} 8
\] studs & \(28 \times 35 \mathrm{~mm}^{2}\) tunnel term. & CPXEN36 & 320.00 \\
\hline
\end{tabular}

\section*{Extras}
\begin{tabular}{llr} 
Description & Cat. No. & Price \(\mathbf{\$}\) \\
\hline Neutral bar extension-suits 165 A E/N bars & NEB185 & \(\mathbf{8 8 . 0 0}\) \\
\hline -connection \(2 \times 185\) mm lugs & \(\mathbf{8 8 . 0 0}\) \\
\hline Neutral bar extension - 300 A - suits 165 A E/N & NEB33S & \(\mathbf{8 . 9 0}\) \\
\hline Neutral bar mounting insulators (pair) & TGPINS & \(\mathbf{4 . 2 0}\) \\
\hline Neutral bar insulated support (each) & CPBMN & \(\mathbf{3 . 0 0}\) \\
\hline A4 Schedule card & CPSCHEDULECARD & \(\mathbf{1 3 . 0 0}\) \\
\hline Schedule card holder (plastic) & CPSCHEDULEHOLD & \(\mathbf{4 6 . 5 0}\) \\
\hline Touch-up paint charcoal & spray can 150 g & \(\mathbf{3 9 2 . 0 0 0 0 1}\) \\
\hline Touch-up paint grey & spray can 150 g & \(\mathbf{3 9 2 . 3 5 5 5 4}\) \\
\hline Touch-up paint orange \(\quad\) spray can 150 g & \(\mathbf{3 9 2 . 3 5 5 5 5}\) & \(\mathbf{4 6 . 5 0}\) \\
\hline Touch-up paint bright white spray can 150 g & \(\mathbf{3 9 2 . 0 0 0 0 2}\) & \(\mathbf{4 6 . 5 0}\) \\
\hline
\end{tabular}

\title{
NC Chassis \\ Concept Panelboard busbar chassis assemblies
} for Din-T MCBs

Standard AS/NZS 3439-1
-
Current rating 250 A and 400 A
Encapsulated busbar (no insulation coating required)
Withstand rating \(250 \mathrm{~A} / 25 \mathrm{kA} 0.1 \mathrm{~s}\) ( 20 kA 0.3 s )
- Withstand rating \(400 \mathrm{~A} / 30 \mathrm{kA} 0.1 \mathrm{~s}\) ( 25 kA 0.3 s )


Busbar direct connect to 160 A \& 250 A switch
- Top and bottom feed standard (top feed only pictured)
- Tee-offs \(50 \%\) capped
- IP 20 (maintained when fitted with 160 A \& 250 A switch)
- IP 20 Connection kits to 250 A MCCB
- Interchangeable with CD chassis


\section*{Application}

The Concept range of busbar chassis assemblies have been specifically designed for incorporation into the Concept family of panelboards, providing a secure mounting platform and connection system for the NHP Din-T range of MCBs. The busbars are fully enclosed therefore not requiring an insulated coating for electrical isolation. The new NC chassis are type tested and are mounted on a box section steel pan, powdercoated white.

CONCEPT Din-T-250 chassis
Suits Din-T MCBs ( 18 mm pole pitch)
\begin{tabular}{llllr}
\begin{tabular}{l} 
Pole \\
capacity
\end{tabular} & \begin{tabular}{l} 
Cut-out \\
length \((\mathrm{mm})\)
\end{tabular} & \begin{tabular}{l} 
Pan height \\
\(\left.(\mathrm{mm})^{2}\right)\)
\end{tabular} & Cat. No. \(\left.{ }^{1}\right)\) & \begin{tabular}{r} 
250 A \\
Price \$
\end{tabular} \\
\hline 12 & 111 & 134 & NC212/183U & \(\mathbf{2 0 0 . 0 0}\) \\
\hline 18 & 165 & 188 & NC218/183U & \(\mathbf{2 2 5 . 0 0}\) \\
\hline 24 & 219 & 242 & NC224/183U & \(\mathbf{2 8 0 . 0 0}\) \\
\hline 30 & 273 & 296 & NC230/183U & \(\mathbf{3 1 0 . 0 0}\) \\
\hline 36 & 327 & 350 & NC236/183U & \(\mathbf{3 5 0 . 0 0}\) \\
\hline 42 & 381 & 404 & NC242/183U & \(\mathbf{3 8 0 . 0 0}\) \\
\hline 48 & 435 & 458 & NC248/183U & \(\mathbf{4 2 5 . 0 0}\) \\
\hline 54 & 489 & 512 & NC254/183U & \(\mathbf{4 7 5 . 0 0}\) \\
\hline 60 & 543 & 566 & NC260/183U & \(\mathbf{4 9 5 . 0 0}\) \\
\hline 72 & 651 & 674 & NC272/183U & \(\mathbf{6 6 0 . 0 0}\) \\
\hline 78 & 705 & 728 & NC278/183U & \(\mathbf{7 8 0 . 0 0}\) \\
\hline 84 & 759 & 782 & NC284/183U & \(\mathbf{8 5 0 . 0 0}\) \\
\hline 96 & 867 & 890 & NC296/183U & \(\mathbf{9 9 0 . 0 0}\) \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1)}\) For top fed chassis delete "U" and replace with "TF" e.g. NCTF212183TF
\({ }^{2}\) ) Add 40 mm for flared busbar at top and 56 mm for bottom of chassis.
For split chassis, order special chassis or order two top fed chassis and mount bottom chassis upside down and fit new label. See accessories for Cat. No.
OFF (line) side of MCB connects to chassis tee-off.
Combinations other than those listed above can be special ordered refer to NHP.
}

\section*{NC Chassis}

Concept Panelboard busbar chassis assemblies for Din-T MCBs

CONCEPT Din-T - 400 A chassis
Suits Din-T MCBs ( 18 mm pole pitch)
\begin{tabular}{llllr}
\begin{tabular}{l} 
Pole \\
capacity
\end{tabular} & \begin{tabular}{l} 
Cut-out \\
length \((\mathrm{mm})\)
\end{tabular} & \begin{tabular}{l} 
Pan height \\
\(\left.(\mathrm{mm})^{2}\right)\)
\end{tabular} & Cat. No. \(\left.{ }^{1}\right)\) & \begin{tabular}{r} 
400 A \\
Price \(\$\)
\end{tabular} \\
\hline 12 & 111 & 134 & NC412/183U & \(\mathbf{3 7 5 . 0 0}\)
\end{tabular}

CONCEPT Din-T-250 A chassis 4P
Suits Din-T 2P RCBOs ( 18 mm pole pitch)
\begin{tabular}{llllr} 
Pole capacity & \begin{tabular}{l} 
Cut-out 'C' \\
length \((\mathbf{m m})\)
\end{tabular} & \begin{tabular}{l} 
Pan height \\
\(\left.(\mathbf{m m})^{2}\right)\)
\end{tabular} & Cat. No. ') & \begin{tabular}{r}
\(\mathbf{2 5 0} \mathbf{A}\) \\
Price \(\mathbf{\$}\)
\end{tabular} \\
\hline 24 & 219 & 242 & NC224/184U & \(\mathbf{4 3 0 . 0 0}\) \\
\hline 36 & 327 & 350 & NC236/184U & \(\mathbf{5 2 0 . 0 0}\) \\
\hline 48 & 435 & 458 & NC248/184U & \(\mathbf{6 3 0 . 0 0}\) \\
\hline 60 & 543 & 566 & NC260/184U & \(\mathbf{7 5 0 . 0 0}\) \\
\hline 72 & 651 & 674 & NC272/184U & \(\mathbf{9 8 0 . 0 0}\) \\
\hline
\end{tabular}

Chassis colours - Red, Black, White, Black, Blue, Black
CONCEPT Din-T-250 A chassis 3P+N
Suits Din-T 4P MCBs ( 18 mm pole pitch)
\begin{tabular}{llllr}
\begin{tabular}{l} 
Pole \\
capacity
\end{tabular} & \begin{tabular}{l} 
Cut-out 'C' \\
length \((\mathbf{m m})\)
\end{tabular} & \begin{tabular}{l} 
Pan height \\
\(\left.(\mathbf{m m})^{2}\right)\)
\end{tabular} & Cat. No. \({ }^{\text {1 }}\) ) & \begin{tabular}{r}
\(\mathbf{2 5 0} \mathbf{A}\) \\
Price \$
\end{tabular} \\
\hline 24 & 219 & 242 & NC224183PNU & \(\mathbf{4 3 0 . 0 0}\) \\
\hline 48 & 435 & 458 & NC248183PNU & \(\mathbf{6 3 0 . 0 0}\) \\
\hline 72 & 651 & 674 & NC272183PNU & \(\mathbf{9 8 0 . 0 0}\) \\
\hline 96 & 887 & 890 & NC296183PNU & \(\mathbf{1 3 3 0 . 0 0}\) \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1)}\) ) For top fed chassis delete "U" and replace with "TF" e.g. NCTF212183TF
\({ }^{2}\) ) Add 40 mm for flared busbar at top and 56 mm for bottom of chassis.
For split chassis, order special chassis or order two top fed chassis and mount bottom chassis upside down and fit new label. See accessories for Cat. No.
OFF (line) side of MCB connects to chassis tee-off.
Combinations other than those listed above can be special ordered refer to NHP.
}

\section*{NC Chassis \\ Concept Panelboard busbar chassis assemblies for Din-T MCBs}

CONCEPT Din-T - 400 A chassis
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Suits Din-T10 \\
Pole capacity
\end{tabular} & \begin{tabular}{l}
H MCBs ( 27 m \\
Cut-out 'C' length (mm)
\end{tabular} & \begin{tabular}{l}
m pole pitch \\
Pan height \(\left.(\mathrm{mm})^{2}\right)\)
\end{tabular} & Cat. No. \({ }^{1}\) ) & \[
\begin{array}{r}
400 \mathrm{~A} \\
\text { Price } \$ \\
\hline
\end{array}
\] \\
\hline 6 & 84 & 107 & NCH46/273U & 385.00 \\
\hline 12 & 165 & 188 & NCH412/273U & 560.00 \\
\hline 18 & 244 & 267 & NCH418/273U & 760.00 \\
\hline 24 & 327 & 350 & NCH424/273U & 920.00 \\
\hline
\end{tabular}

CONCEPT Din-T - 400 A chassis
Suits Din-T MCBs and Din-T10H MCBs ( \(27 / 18 \mathrm{~mm}\) pole pitch)
\begin{tabular}{llllll}
\begin{tabular}{l} 
Pole \\
capacity
\end{tabular} & \begin{tabular}{l} 
Pole \\
capacity \\
\(\mathbf{1 8} \mathbf{~ m m}\)
\end{tabular} & \begin{tabular}{l} 
Cut-out ' \(\mathbf{C '}^{\prime}\) \\
length \\
\((\mathbf{m m})\)
\end{tabular} & \begin{tabular}{l} 
Pan height \\
\(\left.(\mathbf{m m})^{2}\right)\)
\end{tabular} & Cat. No. \(\left.{ }^{1}\right)\) & \begin{tabular}{l}
\(\mathbf{4 0 0}\) A \\
Price \(\mathbf{\$}\)
\end{tabular} \\
\hline 6 & 12 & 192 & 215 & NCH46/1227/183U & \(\mathbf{5 0 0 . 0 0}\) \\
\hline 6 & 24 & 300 & 323 & NCH46/2427/183U & \(\mathbf{5 6 0 . 0 0}\) \\
\hline 6 & 36 & 408 & 431 & NCH46/3627/183U & \(\mathbf{5 9 0 . 0 0}\) \\
\hline 6 & 48 & 516 & 539 & NCH46/4827/183U & \(\mathbf{6 3 0 . 0 0}\) \\
\hline 12 & 30 & 435 & 458 & NCH412/3027/183U & \(\mathbf{6 6 0 . 0 0}\) \\
\hline 12 & 42 & 543 & 566 & NCH412/4227/183U & \(\mathbf{7 9 0 . 0 0}\) \\
\hline 12 & 60 & 705 & 728 & NCH412/6027/183U & \(\mathbf{9 8 0 . 0 0}\) \\
\hline
\end{tabular}

CONCEPT Din-T 250 A chassis \(1 \mathrm{P}+\mathrm{N}\) (DC)
Suits 2P Din-T DC MCBs ( 18 mm pitch)
\begin{tabular}{llllr}
\begin{tabular}{l} 
Pole \\
capacity
\end{tabular} & \begin{tabular}{l} 
Cut-out 'C' \\
length \((\mathbf{m m})\)
\end{tabular} & \begin{tabular}{l} 
Pan height \\
\((\mathbf{m m})\)
\end{tabular} & Cat. No. & Price \(\mathbf{\$}\) \\
\hline 24 & 219 & 242 & NC224182U & \(\mathbf{2 8 0 . 0 0}\) \\
\hline 36 & 327 & 350 & NC236182U & \(\mathbf{3 5 0 . 0 0}\) \\
\hline 48 & 435 & 458 & NC248182U & \(\mathbf{4 2 5 . 0 0}\) \\
\hline 60 & 543 & 566 & NC260182U & \(\mathbf{4 9 5 . 0 0}\) \\
\hline
\end{tabular}

Chassis colours - Red and black.

\section*{Escutcheon critical cut-out dimensions}


\footnotetext{
Notes: \({ }^{1}\) ) For top fed chassis delete "U" and replace with "TF" e.g. NC224184TF.
\({ }^{2}\) ) Add 55 mm for flared busbar at top and bottom of chassis.
4 pole and other special configurations available to special order refer NHP.
OFF (line) side of MCB connects to chassis tee-off.
Combinations other than those listed above can be special ordered refer to NHP.
}

\section*{NC Chassis}

\section*{Concept Panelboard busbar chassis assemblies for Din-T MCBs}

Accessories for NC chassis
\begin{tabular}{llr} 
Accessories for NC chassis & & \(\mathbf{2 5 0} \mathbf{A}\) \\
& Cat. No. & Price \(\mathbf{\$}\) \\
\hline Description & NC250TOPC & \(\mathbf{0 . 8 0}\) \\
\hline Tee-off cap (18 mm tee-off) & NC250HTOPC & \(\mathbf{0 . 7 5}\) \\
\hline Tee-off cap (27 mm tee-off) & NCBBC & \(\mathbf{5 . 7 0}\) \\
\hline Busbar cap (each) & NCBC & \(\mathbf{1 0 . 8 0}\) \\
\hline 3P back cover & NCBC4 & \(\mathbf{1 6 . 0 0}\) \\
\hline 4P back cover & NCL243 & \(\mathbf{1 6 . 6 0}\) \\
\hline Label 24 pole (Red, White, Blue) & NCL24C & \(\mathbf{1 6 . 6 0}\) \\
\hline Label 24 pole (Custom-field modifiable) & NCH123 & \(\mathbf{1 5 . 0 0}\) \\
\hline Label 18 pole (Red, White, Blue) 27 mm pitch & & \\
\hline
\end{tabular}

\section*{Connection kits}
\begin{tabular}{llr}
\hline \begin{tabular}{l} 
S160, E/S 250 MCCB direct connect to NC \\
Chassis
\end{tabular} & NCCK200 & \(\mathbf{1 3 5 . 0 0}\) \\
\hline S160, E/S 250 MCCB TAG connect to NC chassis & NCCK250 & \(\mathbf{3 5 5 . 0 0}\) \\
\hline E/S 400 MCCB TAG connect to NC chassis & NCCK400 & \(\mathbf{5 1 0 . 0 0}\) \\
\hline SLB 400 TAG connect to NC chassis & NCCK4002 & \(\mathbf{7 2 0 . 0 0}\) \\
\hline Support bracket to mount S250 & NCS250GT & \(\mathbf{7 8 . 0 0}\) \\
\hline Support bracket 400 A chassis NCCK400 & CPPBNC400GT & \(\mathbf{4 1 . 5 0}\) \\
\hline
\end{tabular}

\title{
GB Isolation Chassis \\ Concept Panelboard busbar chassis assemblies for Din-T MCBs
}

Standard AS/NZS 3439.1 Current rating 250 A 3 P \& 4 P
Tee-Off isolator (AC20)
Integrated and switchable \(4^{\text {th }}\) pole
Padlocking option
Enclosed busbar
- 1

1, 2, 3 \& 4 pole toggle conversion kit
- Withstand rating 250 A Icw 25 kA 0.1 S and 10 kA 1.0 S
- Withstand rating 250 A Icc 63 kA - S250PE

■ Busbar direct connect 160 A \& 250 A switch
- IP 20 direct connect switch and MCCB connection kits

- Interchangeable with NC or CD chassis

The Concept range of busbar chassis assemblies have been specifically designed for incorporation into the Concept family of panelboards, providing a secure mounting platform and connection system for the NHP Din-T range of MCBs. The busbars are fully enclosed therefore not requiring an insulated coating for electrical isolation. The new GB chassis has an isolation switch for each individual TEE-OFF, are type tested and are mounted on a box section steel pan, powdercoated white.

CONCEPT Din-T - 250 A chassis
Suits Din-T MCBs ( 18 mm pole pitch)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Connection & Pole capacity & Cut-out length (mm) & Bar Height (mm) \({ }^{2}\) ) & Cat. No. & Price \$ \\
\hline \multirow{8}{*}{\begin{tabular}{l}
Top \\
Feed ')
\end{tabular}} & 12 & 110 & 140 & GB212183TF & 450.00 \\
\hline & 24 & 218 & 248 & GB224183TF & 610.00 \\
\hline & 36 & 326 & 356 & GB236183TF & 790.00 \\
\hline & 48 & 434 & 464 & GB248183TF & 960.00 \\
\hline & 60 & 542 & 572 & GB260183TF & 1150.00 \\
\hline & 72 & 650 & 680 & GB272183TF & 1350.00 \\
\hline & 84 & 758 & 788 & GB284183TF & 1610.00 \\
\hline & 96 & 866 & 896 & GB296183TF & 1810.00 \\
\hline \multirow{8}{*}{Universal Feed} & 18 & 110 & 140 & GB212183U & 560.00 \\
\hline & 24 & 218 & 248 & GB224183U & 720.00 \\
\hline & 36 & 326 & 356 & GB236183U & 910.00 \\
\hline & 48 & 434 & 464 & GB248183U & 1080.00 \\
\hline & 60 & 542 & 572 & GB260183U & 1270.00 \\
\hline & 72 & 650 & 680 & GB272183U & 1470.00 \\
\hline & 84 & 758 & 788 & GB284183U & 1730.00 \\
\hline & 96 & 866 & 896 & GB296183U & 1930.00 \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) For bottom feed replace TF with BF.
\({ }^{2}\) ) Add 41 mm for busbar tags at top or bottom as applicable.
Chassis cannot be split, use a top feed and bottom feed in lieu.

\title{
GB Isolation Chassis \\ Concept Panelboard busbar chassis assemblies for Din-T MCBs
}

CONCEPT Din-T - 250 A chassis 4 pole Suits Din-T 2P RCBOs ( 18 mm pole pitch)
\begin{tabular}{lllllr} 
& \begin{tabular}{l} 
Pole \\
Capacity
\end{tabular} & \begin{tabular}{l} 
Cut-out 'C' \\
length \\
\((\mathbf{m m})\)
\end{tabular} & \begin{tabular}{l} 
Pan \\
Height \\
\(\left.(\mathbf{m m})^{2}\right)\)
\end{tabular} & Cat. No. 1) & Price \$
\end{tabular}

Chassis colours - Red, Black, White, Black, Blue, Black
CONCEPT Din-T - 250 A chassis 3PN
Suits Din-T 4P MCBs ( 18 mm pole pitch)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Connection & Pole capacity & Cut-out ' \(C^{\prime}\) length (mm) & Pan Height (mm) \({ }^{2}\) ) & Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline \multirow{4}{*}{Top Feed \({ }^{1}\) )} & 24 & 218 & 248 & GB224183PNTF & 790.00 \\
\hline & 48 & 434 & 464 & GB248183PNTF & 1220.00 \\
\hline & 72 & 650 & 680 & GB272183PNTF & 1700.00 \\
\hline & 96 & 866 & 896 & GB296183PNTF & 2250.00 \\
\hline \multirow{4}{*}{Universal Feed} & 24 & 218 & 248 & GB224183PNU & 980.00 \\
\hline & 48 & 434 & 464 & GB248183PNU & 1440.00 \\
\hline & 72 & 650 & 680 & GB272183PNU & 1900.00 \\
\hline & 96 & 866 & 896 & GB296183PNU & 2450.00 \\
\hline
\end{tabular}

Chassis colours - Red, White, Blue, Black
CONCEPT Din-T - 250 A chassis 1P + N (DC)
Suits 2P Din-T DC MCBs ( 18 mm pole pitch)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Connection & Pole capacity & Cut-out ' \(C^{\prime}\) length mm & Pan Height \((\mathrm{mm})^{2}\) ) & Cat. No. & Price \$ \\
\hline \multirow{4}{*}{Top Feed ')} & 24 & 218 & 248 & GB224182TF & 610.00 \\
\hline & 48 & 434 & 464 & GB248182TF & 960.00 \\
\hline & 72 & 650 & 680 & GB272182TF & 1350.00 \\
\hline & 96 & 866 & 896 & GB296182TF & 1810.00 \\
\hline
\end{tabular}

Chassis colours - Red and Black

\footnotetext{
Notes: \({ }^{1}\) ) For bottom feed replace TF with BF.
\({ }^{2}\) ) Add 41 mm for busbar tags at top or bottom as applicable.
Chassis cannot be split, use a top feed and bottom feed in lieu.
}

\title{
GB Isolation Chassis \\ Concept Panelboard busbar chassis assemblies for Din-T MCBs
}

CONCEPT Din-T - 250 A chassis
Suits 1P Din-T MCBs ( 18 mm pole pitch)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Connection & Pole capacity & Cut-out 'C' length mm & Pan Height (mm) \({ }^{2}\) ) & Cat. No. & Price \$ \\
\hline \multirow{4}{*}{Top Feed \({ }^{1}\) )} & 24 & 218 & 248 & GB224181TF & 610.00 \\
\hline & 48 & 434 & 464 & GB248181TF & 960.00 \\
\hline & 72 & 650 & 680 & GB272181TF & 1350.00 \\
\hline & 96 & 866 & 896 & GB296181TF & 1810.00 \\
\hline
\end{tabular}

Chassis colours - Red
Accessories for GB chassis
\begin{tabular}{llr} 
& Cat. No. & Price \$ \\
\hline Description & GBTOC & \(\mathbf{1 . 5 0}\) \\
\hline Tee-off cap & GBBBC & \(\mathbf{4 . 0 0}\) \\
\hline Busbar cap & GBLM & \(\mathbf{5 0 . 0 0}\) \\
\hline Padlock mechanism (factory fit) & GBTB1 & \(\mathbf{2 . 0 0}\) \\
\hline Togglebar 1P & GBTB2 & \(\mathbf{2 . 0 0}\) \\
\hline Togglebar 2P & GBTB3 & \(\mathbf{2 . 0 0}\) \\
\hline Togglebar 3P & GBTB4 & \(\mathbf{2 . 0 0}\) \\
\hline Togglebar 4P & GBSPP3P & \(\mathbf{5 . 0 0}\) \\
\hline Back cover 3P - Katko switch & GBSPP4P & \(\mathbf{6 . 0 0}\) \\
\hline Back cover 4P - Katko switch & GBIB & \(\mathbf{5 . 0 0}\) \\
\hline Interpole barrier & DINTT100 & \(\mathbf{1 0 . 0 0}\) \\
\hline Through terminal 100 A & GBL148L & \(\mathbf{1 0 . 0 0}\) \\
\hline Label escutcheon 1-47 LH & GBL148R & \(\mathbf{1 0 . 0 0}\) \\
\hline Label escutcheon 2-48 RH & GBL4996L & \(\mathbf{1 0 . 0 0}\) \\
\hline Label escutcheon 49-95 LH & GBL4996R & \(\mathbf{1 0 . 0 0}\) \\
\hline Label escutcheon 50-96 RH & GBPL3P & \(\mathbf{2 . 0 0}\) \\
\hline Label - R,W,B main bars 3P & GBPL4P & \(\mathbf{2 . 0 0}\) \\
\hline Label - R, W, B, N main bar 4P & GBUSL & \(\mathbf{2 . 0 0}\) \\
\hline Label - blank pole label &
\end{tabular}

\footnotetext{
Notes: \({ }^{1)}\) For bottom feed replace TF with BF.
\({ }^{2}\) ) Add 41 mm for busbar tags at top or bottom as applicable.
Chassis cannot be split, use a top feed and bottom feed in lieu.
}

\section*{CD Chassis}

\section*{Concept•Plus and Concept•Premier busbar chassis assemblies for Din-T MCBs}

■ Standard AS/NZS 3439.1
- Current rating 250 A and 355 A
- Withstand rating \(250 \mathrm{~A} / 20 \mathrm{kA}\) for \(0.2 \mathrm{sec}(9 \mathrm{kA}\) for 1 sec\()\)
- Withstand rating \(355 \mathrm{~A} / 25 \mathrm{kA}\) for \(0.3 \mathrm{sec}(20 \mathrm{kA}\) for 1 sec\()\)
- Splayed busbar to suit 160 A \& 250 A switch
- Top and bottom feed
- Tee-offs stripped and \(50 \%\) capped
- Top power feed stripped and capped
- Full 35 mm DIN rail, improved MCB mounting security
- Improved insulation coating

\section*{Application}

The Concept range of busbar chassis assemblies have been specifically designed for incorporation into the Concept•Plus and Concept•Premier range of multipurpose panelboards, providing a secure mounting platform and connection system for the NHP Din-T range of MCBs. The busbars are fully dipped and type tested and are mounted on a box section steel pan, powder coated white.

CONCEPT Din-T-250 A chassis
Suits Din-T MCBs ( 18 mm pole pitch)
\begin{tabular}{|c|c|c|c|c|}
\hline Pole capacity & Cut-out ' \({ }^{\prime}\) ' length (mm) & \[
\begin{aligned}
& \text { Pan height } \\
& \left.(\mathrm{mm})^{1}\right)
\end{aligned}
\] & Cat. No. & \[
\begin{array}{r}
250 \mathrm{~A} \\
\text { Price \$ }
\end{array}
\] \\
\hline 12 & 110 & 152 & CD212/183U & 200.00 \\
\hline 18 & 164 & 206 & CD218/183U & 225.00 \\
\hline 24 & 218 & 260 & CD224/183U & 265.00 \\
\hline 30 & 272 & 314 & CD230/183U & 310.00 \\
\hline 36 & 326 & 368 & CD236/183U & 350.00 \\
\hline 42 & 380 & 422 & CD242/183U & 380.00 \\
\hline 48 & 434 & 476 & CD248/183U & 425.00 \\
\hline 54 & 488 & 530 & CD254/183U & 475.00 \\
\hline 60 & 542 & 584 & CD260/183U & 495.00 \\
\hline 72 & 650 & 692 & CD272/183U & 660.00 \\
\hline 78 & 704 & 746 & CD278/183U & 780.00 \\
\hline 84 & 758 & 800 & CD284/183U & 850.00 \\
\hline 96 & 866 & 908 & CD296/183U & 990.00 \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) Add 32.5 mm for flared busbar at top and bottom of chassis. 4 pole and other special configurations available to special order refer NHP.
'OFF' (line) side of MCB connects to chassis tee-off.
Use insulated tool provided to disengage DIN clip when removing MCB from chassis. DIN clip can be removed and discarded when mounting MCB on CD chassis.
}

\section*{CD Chassis}

Concept•Plus and Concept•Premier busbar chassis assemblies for Din-T MCBs

CONCEPT Din-T - 400 A chassis
Suits Din-T MCBs ( 18 mm pole pitch)
\begin{tabular}{|c|c|c|c|c|}
\hline Pole capacity & Cut-out ' \({ }^{\prime}\) ' length (mm) & Pan height (mm) \({ }^{1)}\) & Cat. No. & 355 A Price \$ \\
\hline 12 & 110 & 152 & CD312/183U & 340.00 \\
\hline 18 & 164 & 206 & CD318/183U & 385.00 \\
\hline 24 & 218 & 260 & CD324/183U & 440.00 \\
\hline 30 & 272 & 314 & CD330/183U & 495.00 \\
\hline 36 & 326 & 368 & CD336/183U & 530.00 \\
\hline 42 & 380 & 422 & CD342/183U & 570.00 \\
\hline 48 & 434 & 476 & CD348/183U & 650.00 \\
\hline 54 & 488 & 530 & CD354/183U & 680.00 \\
\hline 60 & 542 & 584 & CD360/183U & 720.00 \\
\hline 72 & 650 & 692 & CD372/183U & 850.00 \\
\hline 78 & 704 & 746 & CD378/183U & 910.00 \\
\hline 84 & 758 & 800 & CD384/183U & 1000.00 \\
\hline 96 & 866 & 908 & CD396/183U & 1130.00 \\
\hline
\end{tabular}

CONCEPT Din-T 355 A chassis
Suits Din-T and Din-T10H MCBs ( \(27 / 18 \mathrm{~mm}\) pole pitch)
\begin{tabular}{llllll}
\begin{tabular}{l} 
Pole \\
cap. \\
\(\mathbf{2 7} \mathbf{m m}\)
\end{tabular} & \begin{tabular}{l} 
Pole \\
cap. \\
\(\mathbf{1 8} \mathbf{m m}\)
\end{tabular} & \begin{tabular}{l} 
Cut-out \\
length \\
'C' \((\mathbf{m m})\)
\end{tabular} & \begin{tabular}{l} 
Pan \\
Height \\
\((\mathbf{m m})\)
\end{tabular} & Cat. No. \(\left.{ }^{1}\right)\) & \\
\hline 6 & 12 & 191 & 228 & CDH36/1227/183U & \(\mathbf{4 9 0 . 0 0}\) \\
\hline 6 & 24 & 299 & 380 & CDH36/2427/183U & \(\mathbf{5 5 0 . 0 0}\) \\
\hline 6 & 36 & 407 & 488 & CDH36/3627/183U & \(\mathbf{5 8 0 . 0 0}\) \\
\hline 12 & 30 & 434 & 471 & CDH312/3027/183U & \(\mathbf{6 4 0 . 0 0}\) \\
\hline 12 & 42 & 542 & 579 & CDH312/4227/183U & \(\mathbf{7 7 0 . 0 0}\) \\
\hline 12 & 60 & 704 & 741 & CDH312/6027/183U & \(\mathbf{9 5 0 . 0 0}\) \\
\hline
\end{tabular}

Accessories CD chassis
\begin{tabular}{llr} 
Description & Cat. No. & Price \$ \\
\hline Split tariff kit 250/355 A (supplied loose) & STKCD & \(\mathbf{1 1 9 . 0 0}\) \\
\hline Split tariff kit (supplied \& fitted) & REFER NHP & - \\
\hline Plastic tee-off cap 250/355 A & CD250TOPC & \(\mathbf{0 . 6 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) Add 32.5 mm for flared busbar at top and bottom of chassis. 4 pole and other special configurations available to special order refer NHP.
'OFF' (line) side of MCB connects to chassis tee-off.
Use insulated tool provided to disengage DIN clip when removing MCB from chassis. DIN clip can be removed and discarded when mounting MCB on CD chassis.

\section*{CT Chassis \\ Concept•Plus and Concept•Premier busbar chassis assemblies for Safe-T MCBs}

■ Standard AS/NZS 3439.1
- Current rating 250 A and 355 A
- Withstand rating \(250 \mathrm{~A} / 20 \mathrm{kA}\) for 0.2 sec
- Withstand rating \(355 \mathrm{~A} / 20 \mathrm{kA}\) for 1 sec
- Splayed busbar to suit 160 A \& 250 A switch
- Top and bottom feed
- Tee-offs stripped and \(50 \%\) capped
- Top power feed stripped and capped
- 25 mm pole pitch, Safe-T MCBs
- Improved insulation coating


CONCEPT Safe-T-250 \& 355 A chassis
Suits Safe-T MCBs
\begin{tabular}{|c|c|c|c|c|}
\hline Pole capacity & Cut-out'C length (mm) & Pan height \(\left.(\mathrm{mm})^{1}\right)^{2}\) ) & Cat. No. & \[
\begin{array}{r}
250 \mathrm{~A} \\
\text { Price \$ } \\
\hline
\end{array}
\] \\
\hline 12 & 147 & 221 & CT 212/253 & 225.00 \\
\hline 18 & 222 & 296 & CT 218/253 & 255.00 \\
\hline 24 & 297 & 371 & CT 224/253 & 280.00 \\
\hline 30 & 372 & 446 & CT 230/253 & 295.00 \\
\hline 36 & 447 & 521 & CT 236/253 & 370.00 \\
\hline 42 & 522 & 596 & CT 242/253 & 395.00 \\
\hline 48 & 597 & 671 & CT 248/253 & 440.00 \\
\hline 60 & 747 & 821 & CT 260/253 & 540.00 \\
\hline 72 & 897 & 971 & CT 272/253 & 740.00 \\
\hline 84 & 1047 & 1121 & CT 284/253 & 830.00 \\
\hline 96 & 1197 & 1271 & CT 296/253 & 1020.00 \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) Add 25 mm for flared busbar at top of chassis.
\({ }^{2}\) ) Add 22 mm for straight busbar at bottom of chassis.
4 pole and other special configurations available to special order refer NHP.
}

\section*{CT Chassis \\ Concept•Plus and Concept•Premier busbar chassis assemblies for Safe-T MCBs}


Accessories CT chassis
\begin{tabular}{llr} 
Description & Cat. No. & Price \$ \\
\hline Split tariff kit 250 A (supplied loose) & STK250ND/TH & \(\mathbf{1 1 9 . 0 0}\) \\
\hline Split tariff kit (supplied and fitted) & REFER NHP & - \\
\hline Plastic tee-off cap 250/355 A & TH250TOPC & \(\mathbf{0 . 6 0}\) \\
\hline
\end{tabular}

Escutcheon critical cut-out dimensions - CT type


Notes: \({ }^{1}\) ) Add 25 mm for flared busbar at top of chassis.
\({ }^{2}\) ) Add 22 mm for straight busbar at bottom of chassis.
4 pole and other special configurations available to special order refer NHP.

\section*{Panelboard DIN switch-fuse}

\section*{Features}
- Compact size suited for panelboard use
- Fuse covers are supplied standard
- Non-captive escutcheon mounting handle supplied standard


Ordering details
\begin{tabular}{llr} 
Description & Cat. No. & Price \$ \\
\hline 160 A fuse switch 3 P & ISO 3160SFH & \(\mathbf{5 0 0 . 0 0}\) \\
\hline 200 mm extension shaft \(^{1}\) ) & L2000KT & \(\mathbf{2 9 . 6 0}\) \\
\hline
\end{tabular}

Technical data
Fuse switch ratings
ISO 3160 SFH
Rated insulation voltage, Ui (V) 1000
\(\begin{array}{ll}\text { Rated impulse withstand voltage, Uimp (kV) } & 12\end{array}\)
\(\begin{array}{ll}\text { Rated thermal current, Ith (A) } & 160\end{array}\)
Rated operational voltage, Ue (V) 690
Rated operational current, le (A)
AC 21/22 \(415 \mathrm{~V} \quad 160\)
\begin{tabular}{ll} 
AC 23 & 415 V \\
125
\end{tabular}

Rated fused short circuit current
Back-up fuse (A)160
RMS value (kA) ..... 50
Peak value (kA) ..... 11
Rated short circuit making capacity (kA) ..... 11
Rated breaking capacity (A) ..... 1000
Mechanical data
Electrical endurance (no. of ops) ..... 2000
Mechanical endurance (no. of ops) ..... 20000
Terminals/bolt size \(\mathrm{Cu}\left(\mathrm{mm}^{2}\right)\) ..... 6-70
Maximum terminal torque ( Nm ) ..... 4.5
Fuse type ..... DIN size 00
Weight, less fuses (kg) ..... 1.5

Notes: \({ }^{1}\) ) Extension shaft required for CONCEPT•PREMIER panelboards.

\section*{Modular panelboards}

Concept•Plus and Concept•Premier form a highly featured innovative range of panelboards for commercial and industrial applications. The widely accepted Concept•Plus can be used for a variety of indoor applications, while the Concept•Premier is suited to indoor or outdoor use. Application versatility is also increased because panelboards can be combined with accessory modules or simply bolted together to form custom modular constructions combining power distribution and control equipment.


Maximum contactor size in panelboard CONCEPT•PLUS: CA 7-85 (85 A AC 3)
CONCEPT•PREMIER: CA 6-180 (170 A AC 3)
*The above modular panelboard represents one possible combination of enclosures and equipment.

\section*{TemBreak 1 and 2 MCCBs}
\begin{tabular}{|c|c|}
\hline & Page \\
\hline Introduction to TemBreak 2 & 3-2 \\
\hline Internal accessory installation TemBreak 1 and 2 & 3-8 \\
\hline Technical reference tables & 3-12 \\
\hline MCCB types and setting ranges & 3-16 \\
\hline \multicolumn{2}{|l|}{MCCBs by amp rating} \\
\hline T2SW Add on CT block for MCCBs & 3-20 \\
\hline 0.7 A - 12 A (XM30PB) & 3-21 \\
\hline 125 A & 3-24 \\
\hline 160 A / 250 A & 3-42 \\
\hline 400 A & 3-69 \\
\hline 630 A & 3-85 \\
\hline \(630 \mathrm{~A} / 800 \mathrm{~A}\) & 3-103 \\
\hline 1000 A & 3-113 \\
\hline 1250 A & 3-121 \\
\hline 1600 A & 3-122 \\
\hline 2000 A & 3-128 \\
\hline 2500 A & 3-129 \\
\hline 3200 A & 3-130 \\
\hline \multicolumn{2}{|l|}{Accessories for MCCBs} \\
\hline 0.7 A - 12 A (XM30PB) & 3-22 \\
\hline 125 A & 3-32 \\
\hline 160 A - 250 A & 3-59 \\
\hline \(400 \mathrm{~A} / 630 \mathrm{~A}\) & 3-92 \\
\hline 630 A / 800 A & 3-115 \\
\hline 1000 A / 1250 A / 1600 A & 3-123 \\
\hline 2000 A / 2500 A / 3200 A & 3-131 \\
\hline Earth Leakage MCCBs & 3-133 \\
\hline Switch disconnectors MCCBs & 3-142 \\
\hline DC MCCBs & 3-143 \\
\hline Plug-in MCCBs & 3-146 \\
\hline TemBreak 2 and TemBreak 1 Cross Reference & 3-148 \\
\hline TO / TG / TT, TemBreak 2, TemBreak 1 Cross Reference & Section 9 \\
\hline
\end{tabular}

\section*{The TemBreak 1 \& 2 product lines}

\section*{TemBreak 2}

Moulded Case Circuit Breakers
Rated current \(\left(\mathrm{I}_{\mathrm{n}}\right)\) from 12 A to 1600 A .
Breaking Capacity ( \(\mathrm{I}_{\mathrm{cu}}\) ) from 25 kA to 200 kA at \(400 / 415 \mathrm{~V} \mathrm{AC}\).


TemBreak 1
Moulded Case Circuit Breakers
Rated current \(\left(I_{n}\right)\) from 630 A to 3200 A.
Breaking Capacity ( \(\mathrm{I}_{\mathrm{cu}}\) ) from 50 kA to 125 kA at \(400 / 415 \mathrm{~V} \mathrm{AC}\).


800 A


3200 A

\section*{TemBreak 2}

\section*{Easy selection guide - TemBreak 2 MCCBs} The TemBreak 2 range of products includes:
- Moulded Case Circuit Breakers (MCCBs)
- Earth Leakage MCCBs
- Switch-Disconnectors in the same compact moulded case frame sizes as MCCBs
- A comprehensive range of accessories which are common to MCCBs and Switch-Disconnectors. All internal accessories are common to all frame sizes.

\section*{Catalogue Number construction}


\title{
33 Adam Street Wynnum North SPS - Electrical Installation OM Ma \\ TERASAKI
}

\section*{About TemBreak 2}
1. Field installable accessories

3

- Accessories can be fitted by the switchboard builder or added by the end-user. All internal accessories are common for TemBreak 2 MCCBs.
- Handles and motor operators can be rapidly fitted using the locking pegs. It takes less than 10 seconds to secure a handle or motor to the MCCB.
- All accessories are endurance tested to the same level as the host MCCB.
2. Higher kA ratings in Small Frame sizes

125 A Frame models now feature versions to 65 kA, while 250 A Frame models go to 200 kA .

3. Modular and Common sizes

All current ratings up to 1600 A can be supplied in 9 frame sizes.
- 400 A and 630 A MCCB are a common size. (400 AF)
- The compact 125 A size offers the same features and performance but with reduced dimensions.
- 800/ 1000 are a common size1250/ 1600 A common height and width
- 160/250 A common size

\section*{About TemBreak 2}

5. Increased Thermal-Magnetic flexibility


Overload protection is adjustable between \(63 \%\) and \(100 \%\) of the rating.
Short-circuit protection is adjustable on all thermal magnetic models.
Short-circuit protection settings are suitable for motor starting on all models, including the compact 125 A and 250 A frames.
6. Electronic protection in a 250 A Frame


The adjustability of an electronic MCCB in a 250 A Frame MCCB. OCR Ratings range from 16 A to 250 A .

\section*{About TemBreak 2}
7.250 A Frame MCCBs:

12 A-250 A on a common chassis

3

8. Compact Transfer Switches


250 AF MCCBs are available ranging from:
- \(12 \mathrm{~A}-250 \mathrm{~A} @ 25,30 \mathrm{kA}\) (E/S 160-250)
- \(32 \mathrm{~A}-250 \mathrm{~A} @ 36,65 \mathrm{kA}(\mathrm{S} 160-250)\)
- 16 A - \(250 \mathrm{~A} @ 70 \mathrm{kA}\) (S250PE)

A mechanical interlock is used with two MCCBs, and is compatible with motor operators and handles. An automatic changeover system can be assembled by a switchboard builder or end-user, from components. Alternatively, pre-assembled transfer switches are available.

Changeover pair with link interlock and motor operators


Viewed from side (250 A frame)

\section*{9. Transfer Switch Controller options}


■ Timer / Relay controller TLP2 - offers a simple system of logic control from easy to obtain NHP components
- Temlogic 2 electronic controller for transfer switches. (TL101)
- Suitable for Tembreak 1 and 2 MCCBs.

\section*{About TemBreak 2}

\section*{10. Visual safety}


Coloured indicators display the ON or OFF status. The indicators are fully covered if the breaker trips, so that black is the only visible colour.
11. Direct opening


Under the heading "Measures to minimise the risk in the event of failure", IEC 60204-1 Safety of Machinery-Electrical Equipment of Machinery includes the following recommendation:
■ "-the use of switching devices having positive (or direct) opening operation."
- MCCBs, motors, auxiliaries, alarms (heavy duty) are all direct opening

\section*{12. ZS Integral Earth Leakage MCCB}

The Terasaki earth leakage MCCB is contained
 within a standard 125/160/250/400/630/800 A frame size.

\section*{13. Metering MCCBs}
- TemBreak 2 metering \& Modbus comms MCCBs 100 A to 1000 A
- 250 AF ( 16 A to 250 A) MCCB with Modbus energy metering output
- External meter display option for all metering MCCBs
- Choice of Ammeter only or multifunction energy metering display
All new TemBreak 2 MCCB range extension to 800 A to 1600 A

\section*{Accessories to suit TemBreak 2, 125-1600 AF}

Accessory fitting combinations

General purpose types

Heavy duty types

3


Standard TemBreak 2 MCCBs 125 A - 1600 A
Permissible combinations and locations

\section*{Accessories to suit TemBreak 2, 125-1600 AF Accessory fitting combinations}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Frame size (A) & 125 & \[
\begin{aligned}
& 160 \text { and } \\
& 250
\end{aligned}
\] & \[
\begin{aligned}
& \hline 400 \text { and } \\
& 630
\end{aligned}
\] & \[
\begin{aligned}
& 800 \text { and } \\
& 1000
\end{aligned}
\] & \[
\begin{aligned}
& 1250 \text { and } \\
& 1600
\end{aligned}
\] \\
\hline E & E125 & E250 & \[
\begin{aligned}
& \text { E400 } \\
& \text { E630 }
\end{aligned}
\] & & \\
\hline S & \[
\begin{aligned}
& \text { S125 } \\
& \text { ZS125 1) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { S160 } \\
& \text { S250 } \\
& \text { ZS250 1) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { S400 } \\
& \text { S630 } \\
& \text { ZS630 1) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { S800 } \\
& \text { S1000 } \\
& \text { ZS800 1) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { S1250 } \\
& \text { S1600 }
\end{aligned}
\] \\
\hline H & & \[
\begin{aligned}
& \mathrm{H} 125 \\
& \mathrm{H} 160 \\
& \mathrm{H} 250
\end{aligned}
\] & H400 & H800 & \\
\hline L & & \[
\begin{aligned}
& \text { L125 } \\
& \text { L160 } \\
& \text { L250 }
\end{aligned}
\] & L400 & L800 & \\
\hline \begin{tabular}{l}
AUX \\
ALA \\
SHT
\end{tabular} &  &  &  &  &  \\
\hline \begin{tabular}{l}
AUX \\
ALA \\
UVT
\end{tabular} &  &  &  &  &  \\
\hline \begin{tabular}{l}
AUX \\
ALA \\
SHT
\end{tabular} &  &  &  &  &  \\
\hline \begin{tabular}{l}
AUX \\
ALA \\
UVT
\end{tabular} &  &  &  &  &  \\
\hline
\end{tabular}

\(\square\)
\(\square\)Auxilliary Switch \(=\) ALA

Alarm Switch = ALA
Shunt Trip = SHT
Undervoltage Trip = UVT

Notes: \({ }^{1}\) ) Shunts and UVTs cannot be installed in ZS ELCBs.
General purpose and heavy duty status indication switches cannot be mixed in the same MCCB.
It is not possible to install a shunt trip and an undervoltage trip in an MCCB as they occupy the same location. Undervoltage trips can provide remote tripping if necessary by wiring a normally closed contact or pushbutton in series with the protected supply.
Undervoltage trips with time delays require an external time delay controller which clips to the side of the MCCB.

\section*{Special ‘EA' TemBreak 2 MCCBs 125 A-250 A}

\section*{Permissible combinations EA (extra auxiliary)} version and locations
- Auxiliary contact blocks: Depending on the auxiliary type and MCCB size, up to 4 auxiliary switches can be fitted in the LEFT and RIGHT pockets.
- Alarm contact blocks: a maximum of 2 can be installed in an MCCB. One LEFT, one RIGHT.
One Shunt Trip or one Under-Voltage Trip can be installed in the RIGHT side. Both cannot be mounted in an MCCB together as they occupy the same position. When auxiliaries or alarms are fitted in the RIGHT side, shunts and UVT's cannot be fitted.


For more specific information on internal accessory combinations and maximum allowable, refer to the table below.

Permissible combinations of EA MCCBs \({ }^{1}\) )


ZS Intergral Earth leakage MCCB - internal accessory fitting.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{MCCB type 3-4 pole} & \multicolumn{5}{|c|}{MCCB left side} & MCCB right side \\
\hline & \multicolumn{2}{|l|}{General purpose type} & \multirow{4}{*}{or} & \multicolumn{2}{|l|}{Heavy duty type} & \multirow{4}{*}{Right side pocket area occupied by earth leakage circuitry. Shunts and UVT's cannot be installed.} \\
\hline & Auxiliary & Alarm & & Auxiliary & Alarm & \\
\hline 125 A & 2 & \multirow[b]{2}{*}{1} & & 1 & \multirow[b]{2}{*}{1} & \\
\hline \[
\begin{array}{r}
160 / \\
250 \mathrm{~A} \\
\hline
\end{array}
\] & 2 & & & 2 & & \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) Certain MCCB models will be stocked with the extra auxiliary option. They are S125GJ, S160NJ (20 / 32 A) S160GJ, S250GJ. Other MCCB "EA" types are available on indent.
ZS integral Earth leakage MCCBs only accept auxiliaries and alarms.
See table above for auxilary and alarm options.

\section*{TemBreak 1 standard combinations of internally mounted accessories}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline AUX & & \multicolumn{2}{|l|}{Auxiliary switch} & － & \(\longrightarrow\) & \\
\hline ALT & & \multicolumn{2}{|l|}{Alarm switch} & & \(\rightarrow\) & \\
\hline SHT & & \multicolumn{2}{|l|}{Shunt trip} & & \(\rightarrow\) & \\
\hline UVT & & \multicolumn{2}{|l|}{Undervoltage trip} & & \(\rightarrow\) & \\
\hline  & handle & \begin{tabular}{l}
Left pole \\
Right pol
\end{tabular} &  & & & \\
\hline \multicolumn{7}{|l|}{UVT rating} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
A．Inst type \\
AC \(100 \sim 120 \mathrm{~V}\) \\
AC \(200 \sim 240 \mathrm{~V}\) \\
AC \(380 \sim 450 \mathrm{~V}\) \\
DC 24 V \\
DC 48 V \\
DC 60 V \\
DC 100 ～ 115 V \\
DC 200 ～ 230 V
\end{tabular}} & \multirow[t]{2}{*}{XM30PB} & \begin{tabular}{l}
XS 125PJ \\
XS－125C \\
XS－125N \\
XH－125N
\end{tabular} & \begin{tabular}{l}
XS 160PJ \\
XS－250NJ \\
XH－250NJ
\end{tabular} & XS400
XH／XS400
XS630
XH／XS630
XS800
XH／XS800
XS1250
XS1600 & \[
\begin{aligned}
& \text { XS2000 } \\
& \text { XS2500 } \\
& \text { XS3200 }
\end{aligned}
\] \\
\hline \multirow[t]{13}{*}{\begin{tabular}{l}
B．Time delay type \\
AC \(100 \sim 120 \mathrm{~V}\) \\
AC \(200 \sim 240 \mathrm{~V}\) \\
AC \(380 \sim 450 \mathrm{~V}\) \\
SHT rating \\
AC \(100 \sim 115 \mathrm{~V}\) \\
AC \(200 \sim 480 \mathrm{~V}\) \\
AC 24 V \\
AC 48 V \\
DC 12 V \\
DC 24 V \\
DC 30 V \\
DC 48 V \\
DC 60 V \\
DC 100 ～ 115 V \\
DC 125 \\
DC 200 ～ 230 V
\end{tabular}} & & & & & & \\
\hline & AUX & 凹H『］ & －Н－ & 凹H『 & H10 & － \\
\hline & \(\square\) ALT & HI & HI & 凹HI & HI & H1 \\
\hline & \(\square\) SHT & 回 & － & － & － & － \\
\hline & UVT & & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
\hline & AUX & H1 & －1 & H10 & H盢 & －－ \\
\hline & AUX & （－1） & ■－¢ & －Н吅 & 口Н罒 & 口－皿 \\
\hline & A AUX & & \(\square-\square\) & \(\square \square\) & 口－罒 & \(\square\)－ \\
\hline & ALT & OHI & －11 & － 1 & － & \(\square{ }^{\square}\) \\
\hline & CALT & \(\square{ }^{\square 1}\) & \(\square\) & \(\square\) & \(\square \square^{\square}\) & \(\square \square 1\) \\
\hline & AUX & & & & & \\
\hline & \＃\({ }^{\text {ALT }}\) & － & ■－口 & －\(\dagger\)－ & 可䀦 & 万－四 \\
\hline & \begin{tabular}{|l|}
\hline \hline AUX \\
\hline ALT \\
\hline \hline UVT \\
\hline
\end{tabular} & & \(\square \square \mathbf{\square}\) & \(\square\)－ & \(\square\)－回 & \(\square \square\) 皿 \\
\hline
\end{tabular}

Notes： 2 pole type is the same as the 3 pole type with the centre pole omitted． If provided with UVT for AC，use the UVT controller．

\section*{TemBreak 2 MCCB kA ratings 20 A - 630 A}


\section*{Colour Key}

MCCB labels are similarly colour coded via a coloured rectangle around the catalogue number on the breaker.
\begin{tabular}{|c|c|}
\hline Motor Circuit Range - XM & High kA range - H \\
\hline Economy Range - E & Limitor Range-L \\
\hline Standard range - S & Isolators/ Non-auto - N \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Thermal Magnetic OCR & Electronic OCR & Catalogue Number \\
\hline Yes & - & E125NJ \\
\hline Yes & - & S125NF \\
\hline Yes & - & S100GF \\
\hline Yes & - & S125NJ \\
\hline Yes & - & S125GJ/Z5125GJ \\
\hline Yes & - & H125NJ \\
\hline Yes & - & L125NJ \\
\hline Yes & - & S160NF \\
\hline Yes & - & S160NJ \\
\hline Yes & - & S160GJ/ZS250GJ \\
\hline Yes & - & H160NJ \\
\hline Yes & - & L160NJ \\
\hline Yes & - & E250NJ \\
\hline Yes & - & S250NJ \\
\hline Yes & - & S250GJ/Z5250GJ \\
\hline - & Yes & S250PE \\
\hline Yes & - & H250NJ \\
\hline - & Yes & H250NE \\
\hline Yes & - & L250NJ \\
\hline Yes & - & E400NJ \\
\hline Yes & - & S400CJ \\
\hline Yes & - & S400NJ \\
\hline - & Yes & S400NE \\
\hline Yes & - & S400GJ/ ZS400GF \\
\hline - & Yes & S400GE \\
\hline - & Yes & S400PE \\
\hline - & Yes & H400NE \\
\hline - & Yes & L400NE \\
\hline - & Yes & E630NE \\
\hline - & Yes & S630CE \\
\hline - & Yes & S630GE \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) 20-32 A trip unit versions rated 30 kA .
A TemBreak 1 to TemBreak 2 cross reference can be found at the rear of this section.
See page 3-12 for colour key.

\section*{TemBreak 1 XM Motor Circuit MCCBs to 12 A, \& 630 A - 3000 A MCCBs}

TemBreak 2 MCCB 400A to 1600A kA Ratings / XM30PB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Ampere Range} & \multicolumn{9}{|l|}{\(400 / 415 \mathrm{~V} \mathrm{I}_{\mathrm{cu}} \mathrm{kA}\) rating} \\
\hline & 25 & 30 & 36 & 50 & 65 & 70 & 85 & 125 & 200 \\
\hline 0.7-12 & & & & & & & 85 & & \\
\hline 500-630 & & & & 50 & & & & & \\
\hline 396-800 & & & 36 & & & & & & \\
\hline 700-800 & & & & 50 & & & & & \\
\hline 396-800 & & & & 50 & & & & & \\
\hline 396-800 & 65 & & & & & 70 & & & \\
\hline 252-800 & & & & & & 70 & & & \\
\hline 250-800 & & & & & & & & 125 & \\
\hline 250-800 & & & & & & & & & 200 \\
\hline 400-1000 & & & & & & 70 & & & \\
\hline 500-1250 & & & & & & & 85 & & \\
\hline 640-1600 & & & & & & & 85 & & \\
\hline
\end{tabular}

Isolator switches
Short time rating for 0.3
seconds \(\mathrm{I}_{\mathrm{cw}}(\mathrm{kA})\)
\begin{tabular}{lll|lll}
\hline 800 & 10 & & & \\
1000 & 10 & & \\
1250 & & 15 & \\
\hline 1600 & & & 20 & \\
\hline
\end{tabular}

TemBreak 1 MCCBs 2000A to 3200A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Ampere Range} & \multicolumn{9}{|c|}{400/415 V Icu kA rating} \\
\hline & 25 & 30 & 36 & 50 & 65 & 70 & 85 & 125 & 200 \\
\hline 1000-2000 & & & & & & & 85 & & \\
\hline 1250-2500 & & & & & & & 85 & & \\
\hline 1600-3200 & & & & & & & 85 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l}
\hline Motor Circuit Range - XM & High kA range - H \\
\hline Economy Range -E & Limitor Range - L \\
\hline Standard range - S & Isolators/ Non-auto - N \\
\hline
\end{tabular}

\footnotetext{
3-14
}
\begin{tabular}{lll}
\hline Thermal Magnetic & Electronic OCR & Catalogue Number \\
\hline Hydraulic-mag & - & XM30PB \\
\hline Yes & - & ZS630NF \\
\hline Yes & - & S800CJ \\
\hline Yes & - & ZS800NF \\
\hline Yes & - & S800NJ \\
\hline Yes & - & S800RJ \\
\hline- & Yes & S800RE \\
\hline- & Yes & H800NE \\
\hline- & Yes & L800NE \\
\hline- & Yes & S1000NE \\
\hline & Yes & S1250GE \\
\hline & Yes & S1600NE \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & S800NN \\
S1000NN \\
\hline S1250NN \\
\hline S1600NN \\
\hline
\end{tabular}

Thermal Magnetic
Electronic OCR
Yes
Yes
Yes


630/800 AF MCCB

Catalogue Number
XS2000NE
XS2500NE
XS3200NE


1250/1600 AF MCCB

\section*{33 Adam Street Wynnum North SPS - Electrical Installation OM Ma (f) TERASAKI}

\section*{MCCB types and setting ranges}

MCCBs with a common colour have the same physical dimensions
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{415 V kA} & \multicolumn{2}{|l|}{Thermal Magnetic Trip Unit Adjustment} \\
\hline Ampere Range & \(I_{\text {cu }}\) & \(I_{\text {cs }}\) & Thermal \(\mathrm{I}_{\mathrm{R}}\) & Magnetic \(I_{\text {m }}\) \\
\hline 12.5-125 & 25 & 19 & 0.63-100\% & 6-10 or 12M \\
\hline 16-125 & 25 & 13 & Fixed & Fixed \\
\hline 15-100 & 65 & 33 & Fixed & Fixed \\
\hline 12.5-125 & 36 & 36 & 0.63-100\% & 6-10 or 12M \\
\hline 12.5-125 & 65 & 36 & 0.63-100\% & 6-10 or 12M \\
\hline 12.5-125 & 125 & 85 & 0.63-100\% & 6-10 or 12M \\
\hline 12.5-125 & 200 & 150 & 0.63-100\% & 6-10 or 12M \\
\hline 16-160 & 25 & 19 & Fixed & Fixed \\
\hline 12.5-160 \({ }^{3}\) ) & 36 & 36 & 0.63-100\% & 6-12M \\
\hline \(32-160\) & 65 & 36 & 0.63-100\% & 6-12M \\
\hline 100-160 & 125 & 85 & 0.63-100\% & 6-12M \\
\hline 100-160 & 200 & 150 & 0.63-100\% & 6-12M \\
\hline 12.5-250 & 25 & 19 & 0.63-100\% & 6-10 or 12M \\
\hline 160-250 & 36 & 36 & 0.63-100\% & 6-10M \\
\hline 160-250 & 65 & 36 & 0.63-100\% & 6-10M \\
\hline 16-250 & 70 & 70 & - & - \\
\hline 160-250 & 125 & 85 & 0.63-100\% & 6-10M \\
\hline 16-250 & 125 & 85 & - & - \\
\hline 160-250 & 200 & 150 & 0.63-100\% & 6-10M \\
\hline 252-400 & 25 & 25 & 0.63-100\% & 6-12M \\
\hline 160-400 & 36 & 36 & 0.63-100\% & 6-12M \\
\hline 160-400 & 50 & 50 & 0.63-100\% & 6-12M \\
\hline 100-400 & 50 & 50 & - & 6-12M \\
\hline 160-400 & 70 & 50 & 0.63-100\% & 6-12M \\
\hline 100-400 & 70 & 50 & - & - \\
\hline 160-400 & 85 & 85 & - & - \\
\hline 100-400 & 125 & 85 & - & - \\
\hline 100-400 & 200 & 150 & - & - \\
\hline 252-630 & 36 & 36 & - & - \\
\hline 252-630 & 50 & 50 & - & - \\
\hline 252-630 & 70 & 50 & - & - \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) The STD settings are not adjustable, however by selecting different curve types, the STD setting will vary between \(2.5-10 \mathrm{x} \mathrm{I}_{\mathrm{R}}\) : for 250/400 A MCCBs and \(2.5-8 \times I_{R}\) : for 630 A MCCBs.
\({ }^{3}\) ) 20-32 A trip unit versions rated 30 kA .

\section*{33 Adam Street Wynnum North SPS - Electrical Installation OM Ma (f) TERASAKI}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Electronic OCR Adjustment} & \multicolumn{4}{|r|}{Dimensions (mm)} \\
\hline Range \(I_{R}\) & \[
\begin{aligned}
& \text { STD } x I_{\mathrm{R}} / \text { INST } \mathrm{x} \\
& \text { (R }{ }^{\left.1)^{2}\right)}
\end{aligned}
\] & Catalogue & & W & D \\
\hline - & - & E125NJ & 155 & 90 & 68 \\
\hline - & - & S125NF & 155 & 30 & 68 \\
\hline - & - & S100GF & 155 & 60 & 68 \\
\hline - & - & S125NJ & 155 & 90 & 68 \\
\hline - & - & S125GJ & 155 & 90 & 68 \\
\hline - & - & H125NJ & 165 & 105 & 103 \\
\hline - & - & L125NJ & 165 & 105 & 103 \\
\hline - & - & S160NF & 165 & 35 & 68 \\
\hline - & - & S160NJ & 165 & 105 & 68 \\
\hline - & - & S160GJ & 165 & 105 & 68 \\
\hline - & - & H160NJ & 165 & 105 & 103 \\
\hline - & - & L160NJ & 165 & 105 & 103 \\
\hline - & - & E250NJ & 165 & 105 & 68 \\
\hline - & - & S250NJ & 165 & 105 & 68 \\
\hline - & - & S250GJ & 165 & 105 & 68 \\
\hline 40-100\% & 2.5, 5, 10 / 13 or 14 & S250PE & 165 & 105 & 103 \\
\hline - & - & H250NJ & 165 & 105 & 103 \\
\hline 40-100\% & 2.5, 5, 10 / 13 or 14 & H250NE & 165 & 105 & 103 \\
\hline - & - & L250NJ & 165 & 105 & 103 \\
\hline - & - & E400NJ & 260 & 140 & 103 \\
\hline - & - & S400CJ & 260 & 140 & 103 \\
\hline - & - & S400NJ & 260 & 140 & 103 \\
\hline 40-100\% & 2.5, 5, 10 / 13 or 14 & S400NE & 260 & 140 & 103 \\
\hline - & - & S400GJ & 260 & 140 & 103 \\
\hline 40-100\% & 2.5, 5, 10 / 13 or 14 & S400GE & 260 & 140 & 103 \\
\hline 40-100\% & 2.5, 5, 10 / 13 or 14 & S400PE & 260 & 140 & 103 \\
\hline 40-100\% & 2.5, 5, \(10 / 13\) or 14 & H400NE & 260 & 140 & 140 \\
\hline 40-100\% & 2.5, 5, 10 / 13 or 14 & L400NE & 260 & 140 & 140 \\
\hline 40-100\% & 2.5, 5, \(8 / 10\) or 14 & E630NE & 260 & 140 & 103 \\
\hline 40-100\% & 2.5, 5, \(8 / 10\) or 14 & S630CE & 260 & 140 & 103 \\
\hline 40-100\% & 2.5, 5, 8 / 10 or 14 & & 260 & 140 & 103 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline S125NN & \(\mathbf{1 5 5}\) & \(\mathbf{9 0}\) \\
\hline \(\mathbf{6 8}\) \\
\hline S160NN & 165 & 105 \\
\(\mathbf{6 8}\) \\
\hline S250NN & 165 & 105 \\
\hline 68 \\
\hline S400NN & 260 & 140 \\
\hline S630NN & 260 & 140 \\
\hline
\end{tabular}

Notes: \({ }^{2}\) ) The Instantaneous settings are not adjustable, however by selecting different curve types, the INST instantaneous setting will vary from 13 or \(14 \times I_{R}\) : for 400 A MCCBs and 10 or \(14 \times I_{R}\) for 630 A MCCBs. Refer curve examples \& setting data in Section 9.

\section*{ZS ELCB / XM30PB / 800 A to 3200 A MCCB types and setting ranges}

MCCBs with a common colour have the same physical dimensions
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Ampere Range} & \multicolumn{2}{|l|}{415 V kA} & \multicolumn{2}{|l|}{Thermal Magnetic Trip Unit Adjustment} & Electronic OCR Adjustment \\
\hline & \(\mathrm{I}_{\mathrm{Cu}}\) & \(\mathrm{I}_{\text {cs }}\) & Thermal IR & Magnetic \(\mathrm{I}_{\mathrm{M}}\) & Range \(\mathrm{I}_{\mathrm{R}}\) \\
\hline 0.7-12 & 85 & 85 & - & - & - \\
\hline 12.5-125 & 65 & 36 & 0.63-100\% & - & - \\
\hline 100-250 & 65 & 36 & 0.63-100\% & - & - \\
\hline 250-400 & 70 & - & - & 6-12M & - \\
\hline 500-630 & 50 & - & - & 6-10M & - \\
\hline 396-800 & 36 & 36 & 0.63-100\% & 5-10M & - \\
\hline 396-800 & 50 & 50 & 0.63-100\% & 5-10M & - \\
\hline 700-800 & 50 & - & - & 6-10M & - \\
\hline 396-800 & 70 & 50 & 0.63-100\% & 5-10M & - \\
\hline 252-800 & 70 & 50 & - & - & 40-100\% \\
\hline 250-800 & 125 & 94 & - & - & 40-100\% \\
\hline 250-800 & 200 & 150 & - & - & 40-100\% \\
\hline 400-1000 & 70 & 50 & - & - & 40-100\% \\
\hline 500-1250 & 85 & 65 & - & - & 40-100\% \\
\hline 640-1600 & 85 & 65 & - & - & 40-100\% \\
\hline 1000-2000 & 85 & 64 & - & - & 50-100\% \\
\hline 1250-2500 & 85 & 64 & - & - & 50-100\% \\
\hline 1600-3200 & 85 & 64 & - & - & 50-100\% \\
\hline
\end{tabular}

Isolator switches

Short time rating for
0.3 seconds ICW (kA)

Rated short-circuit Making capacity ICM (kA)
\begin{tabular}{|l|l|l|l|l|}
\hline 800 & 10 & 17 & 17 & \\
\hline 1000 & 10 & 32 & \\
\hline 1250 & 15 & 45 & \\
\hline 1600 & 20 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \operatorname{STD} \times I_{R} / \operatorname{INST} x \\
& I_{R}(1)
\end{aligned}
\]} & \multirow[t]{2}{*}{Catalogue Number} & \multicolumn{3}{|r|}{Dimensions 3P (mm)} \\
\hline & & H & W & D \\
\hline - & XM30PB & 148 & 78 & 97 \\
\hline - & ZS125GJ & 155 & 90 & 68 \\
\hline - & ZS250GJ & 165 & 105 & 68 \\
\hline - & ZS400GF & 260 & 140 & 103 \\
\hline - & ZS630NF & 273 & 210 & 103 \\
\hline - & S800CJ & 273 & 210 & 103 \\
\hline - & S800NJ & 273 & 210 & 103 \\
\hline - & ZS800NF & 273 & 210 & 103 \\
\hline - & S800RJ & 273 & 210 & 103 \\
\hline \(2.5,5,10 / 12\) or 14 & S800RE & 273 & 210 & 103 \\
\hline \(2.5,5,10 / 12\) or 14 & H800NE & 273 & 210 & 140 \\
\hline \(2.5,5,10 / 12\) or 14 & L800NE & 273 & 210 & 140 \\
\hline \(2.5,5,10 / 10\) or 14 & S1000NE & 273 & 210 & 103 \\
\hline \(2.5,5,10 / 12\) or 14 & S1250GE & 370 & 210 & 120 \\
\hline \(2.5,5,10 / 12\) or 14 & S1600NE & 370 & 210 & 140 \\
\hline LSI Adjustable & XS2000NE & 450 & 320 & 185 \\
\hline LSI Adjustable & XS2500NE & 450 & 320 & 185 \\
\hline LSI Adjustable & XS3200NE & 450 & 320 & 185 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline & S800NN & 273 & 210 & 103 \\
\hline & S1000NN & 273 & 210 & 103 \\
\hline & S1250NN & 370 & 210 & 120 \\
\hline & S1600NN & 370 & 210 & 140 \\
\hline
\end{tabular}

\title{
TemBreak T2SW Add-on current and voltage metering blocks
}

Block dimensions (mm) excluding MCCB
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& 125 \mathrm{AF} \\
& \text { 3P } \\
& \hline
\end{aligned}
\] & 4P & \[
\begin{aligned}
& 250 \mathrm{AF} \\
& 3 \mathrm{P} \\
& \hline
\end{aligned}
\] & 4P & \[
\begin{aligned}
& 400 / \\
& 630 \mathrm{AF} \\
& 3 \mathrm{P} \\
& \hline
\end{aligned}
\] & 4P \\
\hline Height \({ }^{2}\) ) & 85 & 85 & 85 & 85 & 86 & 86 \\
\hline Width & 90 & 120 & 105 & 140 & 140 & 185 \\
\hline Depth \({ }^{3}\) ) & 66 & 66 & 66 & 66 & 88 & 88 \\
\hline
\end{tabular}

3
Ordering details
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Suit \\
MCCB type
\end{tabular} & Pole & \begin{tabular}{l}
Pri- \\
mary
\end{tabular} & T2SW block Cat. No. & Price \$ & \begin{tabular}{l}
Optional \\
load side \\
terminal cover \\
Cat. No.
\end{tabular} & Price \$ \\
\hline E125, S125 & 3 & 125 A & T2SW3P1251255K & 900.00 & T2SW3P125TC & 55.00 \\
\hline E125, S125 & 4 & 125 A & T2SW4P1251255K & 1190.00 & T2SW4P125TC & 66.50 \\
\hline \[
\begin{aligned}
& \hline \text { H125, E/S/ } \\
& \text { H16/25 } \\
& \hline
\end{aligned}
\] & 3 & 150 A & T2SW3P2501505K & 940.00 & T2SW3P250TC & 110.00 \\
\hline \[
\begin{aligned}
& \hline \text { H125, E/S/ } \\
& \text { H16/25 } \\
& \hline
\end{aligned}
\] & 3 & 250 A & T2SW3P2502505K & 940.00 & T2SW3P250TC & 110.00 \\
\hline \[
\begin{aligned}
& \text { H125, E/S/ } \\
& \text { H16/25 } \\
& \hline
\end{aligned}
\] & 4 & 150 A & T2SW4P2501505K & 1230.00 & T2SW4P250TC & 148.00 \\
\hline \[
\begin{aligned}
& \hline \text { H125, E/S/ } \\
& \text { H16/25 } \\
& \hline
\end{aligned}
\] & 4 & 250 A & T2SW4P2502505K & 1230.00 & T2SW4P250TC & 148.00 \\
\hline \[
\begin{aligned}
& \text { E/S/H400, } \\
& \text { E/S630 }
\end{aligned}
\] & 3 & 400 A & T2SW3P6304005K & 1230.00 & T2SW3P630TC & 110.00 \\
\hline \[
\begin{aligned}
& \text { E/S/H400, } \\
& \text { E/S630 }
\end{aligned}
\] & 3 & 600 A & T2SW3P6306005K & 1230.00 & T2SW3P630TC & 110.00 \\
\hline \[
\begin{aligned}
& \text { E/S/H400, } \\
& \text { E/S630 }
\end{aligned}
\] & 4 & 400 A & T2SW4P6304005K & 1630.00 & T2SW4P630TC & 160.00 \\
\hline \[
\begin{aligned}
& \text { E/S/H400, } \\
& \text { E/S630 }
\end{aligned}
\] & 4 & 600 A & T2SW4P6306005K & 1630.00 & T2SW4P630TC & 160.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Suit MCCB type & Frame size & & Voltage terminals & Total Amp \& voltage terminal quantity & T2SW block Cat. No. \\
\hline E125, S125 & 125 3 & 3 & \(0{ }^{1}\) ) & 6 & T2SW3P1251255K \\
\hline E125, S125 & 1254 & 4 & 4 (3+N) & 10 & T2SW4P1251255K \\
\hline H125, E/S/H/L 16/25 & 160,2503 & & 3 & 9 & T2SW3P2501505K \\
\hline H125, E/S/H/L 16/25 & 160,2503 & & 3 & 9 & T2SW3P2502505K \\
\hline H125, E/S/H/L 16/25 & 160,2504 & & 4 (3+N) & 10 & T2SW4P2501505K \\
\hline H125, E/S/H/L 16/25 & 160,2504 & & \(4(3+N)\) & 10 & T2SW4P2502505K \\
\hline E/S/H400, E/S630 & 400,6303 & & 3 & 9 & T2SW3P6304005K \\
\hline E/S/H400, E/S630 & 400,6303 & & 3 & 9 & T2SW3P6306005K \\
\hline E/S/H400, E/S630 & 400,6304 & & 4 (3+N) & 10 & T2SW4P6304005K \\
\hline E/S/H400, E/S630 & 400,6304 & & \(4(3+N)\) & 10 & T2SW4P6306005K \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) Voltage lugs supplied for mounting on external bars for 125 A 3 pole block.
\({ }^{2}\) ) Height excludes connection bars
\({ }^{3}\) ) Refer NHP for additional dimension data

\section*{TemBreak co-ordination motor protection}

Circuit breakers - XM30PB

\section*{85 kA}

Current rating: 0.7-12 A
Approvals and tests: Standards: AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)
Trip unit: Fixed hydraulic-magnetic

\begin{tabular}{llll} 
& Voltage & Icu kA & Ics kA \\
\hline AC use & \(400 / 415\) & 85 & 85 \\
\hline
\end{tabular}

Dimensions (mm)
\begin{tabular}{ll} 
Poles & \(\mathbf{3}\) \\
\hline\(H\) & 148 \\
\hline\(W\) & 78 \\
\hline D (less toggle) & 97 \\
\hline Weight \((\mathrm{kg})\) & 1.3 \\
\hline
\end{tabular}
\begin{tabular}{llr} 
Amp rating NRC & Cat. No. & Price \$ \\
\hline 0.7 & XM30PB0.7 3P & \(\mathbf{5 0 0 . 0 0}\) \\
\hline 1.4 & XM30PB1.4 3P & \(\mathbf{5 0 0 . 0 0}\) \\
\hline 2.0 & XM30PB2.0 3P & \(\mathbf{5 0 0 . 0 0}\) \\
\hline 2.6 & XM30PB2.6 3P & \(\mathbf{5 0 0 . 0 0}\) \\
\hline 4 & XM30PB4 3P & \(\mathbf{5 0 0 . 0 0}\) \\
\hline 5 & XM30PB5 3P & \(\mathbf{5 0 0 . 0 0}\) \\
\hline 8 & XM30PB8 3P & \(\mathbf{5 0 0 . 0 0}\) \\
\hline 10 & XM30PB10 3P & \(\mathbf{5 0 0 . 0 0}\) \\
\hline 12 & XM30PB12 3P & \(\mathbf{5 0 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: NRC: Nominal rated current.

\section*{Accessories to suit XM30PB}

Internal accessories - factory fit
\begin{tabular}{|c|c|c|c|}
\hline & & Cat. No. & Price \$ \\
\hline \multirow{10}{*}{Shunt trip} & 110 V AC SHT ( \(100-115 \mathrm{~V}\) ) & 2H1931BAA & 131.00 \\
\hline & 240 V AC SHT (200-480 V) & 2H1931BBA & 131.00 \\
\hline & 24 V DC SHT & 2H1931BCA & 131.00 \\
\hline & 48 V DC SHT & 2H1931BDA & 131.00 \\
\hline & 110 V DC SHT ( \(100-115 \mathrm{~V}\) ) & 2H1931BEA & 131.00 \\
\hline & 24 V AC SHT & 2H1932BAD & 131.00 \\
\hline & 48 V AC SHT & 2H1932BBA & 131.00 \\
\hline & 12 V DC SHT & 2H1932BDA & 131.00 \\
\hline & 125 V DC SHT & 2H1932BGA & 131.00 \\
\hline & 200 V DC SHT (200-230 V) & 2H1932BHA & 131.00 \\
\hline \multirow[t]{2}{*}{Auxiliary switches} & AUX SW right/left hand 1C & UXXB0001D & 86.50 \\
\hline & AUX SW right/left hand 2C & UXXB0003C & 127.00 \\
\hline Alarm switches & Alarm SW right/left hand & UXLB0006C & 84.00 \\
\hline Alarm \& auxiliary switches & Alarm/AUX SW right/left hand 1 C & UXLB0008C & 120.00 \\
\hline
\end{tabular}

External accessories - user fit
\begin{tabular}{|c|c|c|c|}
\hline & & Cat. No. & Price \$ \\
\hline Solderless terminals & 3 P solderless terminals (6) & TXBD0009A & 36.50 \\
\hline \multirow{6}{*}{Handle operators} & IP55 Grey variable depth handle + 357 mm shaft & T1HS03R5GM & 240.00 \\
\hline & T1HS escutcheon plate option: \(100 \mathrm{~mm}^{2}\) & T2HSESC100 & 18.20 \\
\hline & 90 mm T pin shaft for T2HS no flexi coupling & T2HS250SHAFT & 47.00 \\
\hline & IP65 Grey variable depth handle + 420 mm shaft & T1HP03R6BNA4 & 141.00 \\
\hline & Padlock attachment for T2HP/HS mechanism & T1HP30PALK & 44.50 \\
\hline & IP55 direct mount fixed depth handle & TFJ21PB & 235.00 \\
\hline \multirow{3}{*}{Trapped Key interlock} & Prosafe shot bolt lock HS handles xx code & TKNHPXX & 520.00 \\
\hline & Prosafe standard key xx code for above & TKNNHPKEYXX & 130.00 \\
\hline & Cam for T2HS handle shafts Key codes A to Z are available. Specify by changing the key code above. & 14997702 & 235.00 \\
\hline TemPlug & 3 P Templug & UPX330PB \({ }^{1}\) ) & 270.00 \\
\hline Terminal Cover & Line side terminal screw cover & XM30TSC & 21.80 \\
\hline
\end{tabular}

Notes: ') Price schedule 'T3' applies for this item.


\section*{CAPTIVE LOCK ATTACHMENTS}

\section*{Securely locks off Terasaki Tembreak2} circuit breakers.

- Consists of a fully moulded front cover with built-in padlockable flap
- Off position padlockable as standard
- Knockout provided for ON position padlocking
- Internal accessory fitting not affected
- Locking not padlock size dependant
- Suits one lock up to 8 mm
- Accepts multiple padlock hasps
- XKA captive locks for MCCBs to 800 A also available
- Can be field fitted
- Suits MCCBs up to 630 A
- Suits ZS earth leakage MCCBs
- Accepts a compression seal

\title{
TemBreak 2 Thermal magnetic type E125NJ
}

\section*{25 kA}

Current rating: \(12.5-125 \mathrm{~A}\)
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:

3 \begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 25 & 19 \\
\hline DC use & 250 & 25 & 19 \\
\hline
\end{tabular}

Trip unit: Adjustable thermal ( 0.63 Ir to \(100 \% \mathrm{Ir}\) ) and adjustable magnetic
Dimensions (mm)
\begin{tabular}{ll} 
Poles & \(\mathbf{3}\) \\
\hline H & 155 \\
\hline W & 90 \\
\hline D (less toggle) & 68 \\
\hline Toggle cut-out & 104 \\
\hline
\end{tabular}
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{c} 
3 pole \\
Price \$
\end{tabular} \\
\hline 20 & \(12.5-20\) & \(120-240\) & E125 NJ 3 20 & \(\mathbf{4 4 0 . 0 0}\) \\
\hline 32 & \(20-32\) & \(192-384\) & E125 NJ 3 32 & \(\mathbf{4 4 0 . 0 0}\) \\
\hline 50 & \(32-50\) & \(300-600\) & E125 N J 3 50 & \(\mathbf{4 4 0 . 0 0}\) \\
\hline 63 & \(40-63\) & \(378-756\) & E125 NJ 3 63 & \(\mathbf{4 4 0 . 0 0}\) \\
\hline 100 & \(63-100\) & \(600-1200\) & E125 NJ 3 100 & \(\mathbf{6 3 0 . 0 0}\) \\
\hline 125 & \(80-125\) & \(750-1250\) & E125 NJ 3 125 & \(\mathbf{7 8 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1)}\) Adj. Ir: Adjustable thermal setting
Adj. Im: Adjustable magnetic setting NRC: Nominal rated current Magnetic only MCCBs are available on request. For 4 pole MCCBs refer S125GJ type.

\title{
TemBreak 2 Thermal magnetic type S125NF
}

\section*{25 kA}

Current rating: 16-125 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{l}{ Voltage } & Icu \\
\hline AC use & 230 & 25 & 13 \\
\hline
\end{tabular}

Trip unit: Fixed thermal magnetic
Dimensions (mm)
\begin{tabular}{ll} 
Poles & \(\mathbf{1}\) \\
\hline\(H\) & 155 \\
\hline\(W\) & 30 \\
\hline\(D\) (less toggle) & 68 \\
\hline Toggle cut-out & 104 \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & Ir & Im & Cat. No. & \begin{tabular}{c} 
1 pole \\
Price \$
\end{tabular} \\
\hline 16 & 16 & 208 & S125 NF 1 16 & \(\mathbf{1 6 5 . 0 0}\) \\
\hline 20 & 20 & 260 & S125 NF 1 20 & \(\mathbf{1 6 5 . 0 0}\) \\
\hline 25 & 25 & 325 & S125 NF 1 25 & \(\mathbf{1 6 5 . 0 0}\) \\
\hline 32 & 32 & 420 & S125 NF 1 32 & \(\mathbf{1 6 5 . 0 0}\) \\
\hline 40 & 40 & 520 & S125 NF 1 40 & \(\mathbf{1 6 5 . 0 0}\) \\
\hline 50 & 50 & 650 & S125 NF 1 50 & \(\mathbf{1 6 5 . 0 0}\) \\
\hline 63 & 63 & 820 & S125 NF 1 63 & \(\mathbf{1 6 5 . 0 0}\) \\
\hline 80 & 80 & 1040 & S125 NF 1 80 & \(\mathbf{2 3 5 . 0 0}\) \\
\hline 100 & 100 & 1300 & S125 NF 1 100 & \(\mathbf{3 1 0 . 0 0}\) \\
\hline 125 & 125 & 1550 & S125 NF 1 125 & \(\mathbf{3 1 0 . 0 0}\) \\
\hline
\end{tabular}


\footnotetext{
Notes: For Interpole Barriers, Terminal Covers and Padlock attachments refer to accessories pages.
Ir: thermal rating
Im: magnetic rating
NRC: Nominal rated current
S125NF will not accept rear connection studs. (S160NF types do)
}

\title{
TemBreak 2 Thermal magnetic type S100GF
}

\section*{65 kA}

Current rating: 15-100 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{l}{ Voltage } & Icu \\
\hline \multirow{2}{*}{ AC use } & 230 & 85 & 85 \\
\cline { 2 - 4 } & \(380 / 415\) & 65 & 33 \\
\hline DC use & & 40 & 40 \\
\hline
\end{tabular}


Black TemBreak 2 MCCB

Trip unit: Fixed thermal magnetic
Dimensions (mm)
\begin{tabular}{ll} 
Poles & \(\mathbf{2}\) \\
\hline H & 155 \\
\hline W & 60 \\
\hline D (less toggle) & 68 \\
\hline Toggle cut-out required \(52^{1}\) ) or 104
\end{tabular}

\section*{Accessories}

Has mounting provision for any 1 (one) of the following:TemBreak 2 accessories UVT or Shunt or a combination of up to 2 Auxiliaries plus 1 Alarm.
Will accept standard TemBreak 2 external accessories such as: interpole barriers, terminal connection options, toggle locks, and 2 pole terminal covers.
Refer accessories pages. Will not accept motors or handles due to the 60 mm width of the MCCB.
\begin{tabular}{llllr}
\begin{tabular}{llll}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & Ir & Im & Cat. No.
\end{tabular} & \begin{tabular}{c} 
2 pole \\
Price \$
\end{tabular} \\
\hline 15 & 15 & 180 & S100 GF 2 15 & \(\mathbf{3 1 5 . 0 0}\) \\
\hline 20 & 20 & 240 & S100 GF 2 20 & \(\mathbf{3 1 5 . 0 0}\) \\
\hline 30 & 30 & 360 & S100 GF 2 30 & \(\mathbf{3 1 5 . 0 0}\) \\
\hline 40 & 40 & 480 & S100 GF 2 40 & \(\mathbf{3 1 5 . 0 0}\) \\
\hline 50 & 50 & 600 & S100 GF 2 50 & \(\mathbf{3 1 5 . 0 0}\) \\
\hline 60 & 60 & 720 & S100 GF 2 60 & \(\mathbf{3 1 5 . 0 0}\) \\
\hline 75 & 75 & 900 & S100 GF 2 75 & \(\mathbf{3 5 5 . 0 0}\) \\
\hline 100 & 100 & 1200 & S100 GF 2 100 & \(\mathbf{4 3 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1)}\) S100GF 2 Pole MCCBs require a 52 mm cut-out as the toggle area is 50 mm high.
Ir: thermal rating
Im: magnetic rating
NRC: Nominal rated current
Magnetic only MCCBs are available on request.

\title{
TemBreak 2 Thermal magnetic type S125NJ
}

\section*{36 kA}

Current rating: \(12.5-125 \mathrm{~A}\)
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 400\) & 36 & 36 \\
\hline DC use & 250 & 25 & 19 \\
\hline
\end{tabular}


Trip unit: Adjustable thermal ( 0.63 Ir to \(100 \% \mathrm{Ir}\) ) and adjustable magnetic
Dimensions (mm)
\begin{tabular}{ll} 
Poles & \(\mathbf{3}\) \\
\hline H & 155 \\
\hline W & 90 \\
\hline D (less toggle) & 68 \\
\hline Toggle cut-out & 104 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l}
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l}
Adj. Im \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. & 3 pole Price \$ \\
\hline 20 & 12.5-20 & 120-240 & S125 NJ 320 & 480.00 \\
\hline 32 & 20-32 & 192-384 & S125 NJ 332 & 480.00 \\
\hline 50 & 32-50 & 300-600 & S125 NJ 350 & 480.00 \\
\hline 63 & 40-63 & 378-756 & S125 NJ 363 & 480.00 \\
\hline 100 & 63-100 & 600-1200 & S125 NJ 3100 & 680.00 \\
\hline 125 & 80-125 & 750-1250 & S125 NJ 3125 & 810.00 \\
\hline
\end{tabular}

Notes: \({ }^{1)}\) Adj. Ir: Adjustable thermal setting Adj. Im: Adjustable magnetic setting
NRC: Nominal rated current
Magnetic only MCCBs are available on request.
For 4 pole MCCBs refer S125GT types.

\title{
TemBreak 2 Thermal magnetic type S125GJ
}

\section*{65 kA}

Current rating: 12.5-125 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 400\) & 65 & 36 \\
\hline DC use & 250 & 40 & 40 \\
\hline
\end{tabular}


Trip unit: Adjustable thermal ( 0.63 Ir to \(100 \% \mathrm{Ir}\) ) and adjustable magnetic
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 155 & 155 \\
\hline W & 90 & 120 \\
\hline D (less toggle) & 68 & 68 \\
\hline Toggle cut-out & 104 & 104 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{|c|c|c|c|c|}
\hline Ampere Rating NRC & \begin{tabular}{l}
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l}
Adj. Im \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. & 3 pole Price \(\$\) \\
\hline 20 & 12.5-20 & 120-240 & S125 GJ \(320{ }^{\text {² }}\) ) & 750.00 \\
\hline 32 & 20-32 & 192-384 & S125 GJ \(332^{2}\) ) & 750.00 \\
\hline 50 & 32-50 & 300-600 & S125 GJ \(350^{2}\) ) & 750.00 \\
\hline 63 & 40-63 & 378-756 & S125GJ \(363{ }^{\text {2 }}\) ) & 750.00 \\
\hline 100 & 63-100 & 600-1200 & S125 GJ \(3100{ }^{2}\) ) & 900.00 \\
\hline 125 & 80-125 & 750-1250 & S125 GJ \(3125{ }^{\text {2 }}\) ) & 1000.00 \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l}
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l}
Adj. Im \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. & 4 pole Price \$ \\
\hline 20 & 12.5-20 & 120-240 & S125 GJ \(420{ }^{\text {2 }}\) ) & 990.00 \\
\hline 32 & 20-32 & 192-384 & S125 GJ \(432{ }^{\text {2 }}\) ) & 990.00 \\
\hline 50 & 32-50 & 300-600 & S125 GJ \(450^{2}\) ) & 990.00 \\
\hline 63 & 40-63 & 378-756 & S125 GJ \(463^{2}\) ) & 990.00 \\
\hline 100 & 63-100 & 600-1200 & S125 GJ \(4100{ }^{2}\) ) & 1210.00 \\
\hline 125 & 80-125 & 750-1250 & S125 GJ \(4125{ }^{\text {2 }}\) ) & 1330.00 \\
\hline
\end{tabular}

Notes: \({ }^{1)}\) Adj. Ir: Adjustable thermal setting Adj. Im: Adjustable magnetic setting
\({ }^{2}\) ) To obtain MCCBs that accept additional internal auxiliary circuits add "EA" to the above Cat. No.'s. E.g.: S125GJ3125EA. Otherwise leave blank. Refer NHP for availability. Refer page 3-9 for details.
NRC: Nominal rated current
Magnetic only MCCBs are available on request.

\section*{TemBreak 2 690V AC High Fault Interruption MCCB \\ L125PJ}

\section*{70 kA}

Current rating: 12.5-125 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{l}{ Voltage } & Icu \\
\hline AC use & 690 V & 70 & 33 \\
\hline
\end{tabular}


Trip unit: Adjustable thermal ( 0.63 Ir to \(100 \%\) Ir) and adjustable magnetic Adjustable magnetic 6 Im to 12 Im , trip unit: 20 A to 100 A 6 lm to 10 Im , trip unit: 125 A
\begin{tabular}{ll} 
Poles & \(\mathbf{3}\) \\
\hline\(H\) & 165 \\
\hline W & 105 \\
\hline (less toggle) & 103 \\
\hline Toggle cut-out & 48 \\
\hline & 105 on chassis ' \({ }^{\prime}\) ) \\
\hline
\end{tabular}
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \\
Min. - Max.
\end{tabular} & Cat. No. & Price \$
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) Not suitable for reverse connection either individually or on chassis. Suitable for general motor starting and power distribution applications. Refer to NHP for availability of 4 pole version.
Adj. Ir: Adjustable thermal setting
Adj. Im: Adjustable magnetic setting NRC: Nominal rated current
}

\section*{TemBreak 2 Thermal magnetic type H125NJ}

\section*{125 kA}

Current rating: 12.5-125 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
3
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 125 & 85 \\
\hline DC use & 250 & 40 & 40 \\
\hline
\end{tabular}


Trip unit: Adjustable thermal ( 0.63 Ir to \(100 \% \mathrm{Ir}\) ) and adjustable magnetic
Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 165 & 155 \\
\hline W & 105 & 140 \\
\hline D (less toggle) & 105 & 103 \\
\hline Toggle cut-out & 104 & 104 \\
\hline
\end{tabular}
*H125NJ is a 250 AF MCCB
3 Pole
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l}
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l}
Adj. Im \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. & 3 pole Price \$ \\
\hline 20 & 12.5-20 & 120-240 & H125 NJ 320 & 960.00 \\
\hline 32 & 20-32 & 192-384 & H125 NJ 332 & 960.00 \\
\hline 50 & 32-50 & 300-600 & H125 NJ 350 & 960.00 \\
\hline 63 & 40-63 & 378-756 & H125 NJ 363 & 960.00 \\
\hline 100 & 63-100 & 600-1200 & H125 NJ 3100 & 1110.00 \\
\hline 125 & 80-125 & 750-1250 & H125 NJ 3125 & 1110.00 \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l}
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l}
Adj. Im \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. & 4 pole Price \$ \\
\hline 20 & 12.5-20 & 120-240 & H125 NJ 420 & 1290.00 \\
\hline 32 & 20-32 & 192-384 & H125 NJ 432 & 1290.00 \\
\hline 50 & 32-50 & 300-600 & H125 NJ 450 & 1290.00 \\
\hline 63 & 40-63 & 378-756 & H125 NJ 463 & 1290.00 \\
\hline 100 & 63-100 & 600-1200 & H125 NJ 4100 & 1470.00 \\
\hline 125 & 80-125 & 750-1250 & H125 NJ 4125 & 1470.00 \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) Adj. Ir: Adjustable thermal setting Adj. Im: Adjustable magnetic setting NRC: Nominal rated current
}

\section*{TemBreak 2 Thermal magnetic type L125NJ}

\section*{200 kA}

Current rating: 12.5-125 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 200 & 150 \\
\hline DC use & 250 & 40 & 40 \\
\hline
\end{tabular}


Trip unit: Adjustable thermal ( 0.63 Ir to \(100 \% \mathrm{Ir}\) ) and adjustable magnetic
Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 165 & 165 \\
\hline W & 105 & 140 \\
\hline D (less toggle) & 103 & 103 \\
\hline Toggle cut-out & 104 & 104 \\
\hline
\end{tabular}
*L125NJ is a 250 AF MCCB
3 Pole
\begin{tabular}{llllr}
\begin{tabular}{lll} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \(\$\)
\end{tabular} \\
\hline 20 & \(12.5-20\) & \(120-240\) & L125 NJ 3 20 & \(\mathbf{1 0 9 0 . 0 0}\)
\end{tabular}

4 Pole
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l}
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l}
Adj. Im \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{l}
4 pole \\
Price \$
\end{tabular} \\
\hline 20 & 12.5-20 & 120-240 & L125 NJ 420 & 1440.00 \\
\hline 32 & 20-32 & 192-384 & L125 NJ 432 & 1440.00 \\
\hline 50 & 32-50 & 300-600 & L125 NJ 450 & 1440.00 \\
\hline 63 & 40-63 & 378-756 & L125 NJ 463 & 1440.00 \\
\hline 100 & 63-100 & 600-1200 & L125 NJ 4100 & 1570.00 \\
\hline 125 & 80-125 & 750-1250 & L125 NJ 4125 & 1570.00 \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) Adj. Ir: Adjustable thermal setting Adj. Im: Adjustable magnetic setting NRC: Nominal rated current
}

\section*{Accessories to suit 125 A TemBreak 2}


Internal accessories
Cat. No.
Price \(\$\)

\(\square\)

\begin{tabular}{|c|c|c|c|}
\hline & Time delayed operation (500 & fer NHP & \\
\hline Auxiiary & \multicolumn{3}{|l|}{General type (2 A @ 240 V Inductive)} \\
\hline \& Alarm & \(1 \mathrm{C} / \mathrm{O}\) Auxiliary & T2AX00M3STA & 134.00 \\
\hline switches & \(1 \mathrm{C} / \mathrm{O}\) Auxiliary - with 0.7 m wire leads & T2AX00M3SWA & 146.00 \\
\hline & \(1 \mathrm{C} / \mathrm{O}\) Alarm & T2AL00M3STA & 134.00 \\
\hline & \(1 \mathrm{C} / \mathrm{O}\) Alarm - with 0.7 m wire leads & T2ALOOM3SWA & 146.00 \\
\hline
\end{tabular}

\section*{Heavy-duty type (4 A @ 240 V Inductive)}
\begin{tabular}{|c|c|c|c|}
\hline AX & 1 N/O Auxiliary & T2AX00B1STA & 146.00 \\
\hline \multirow{6}{*}{AL} & 1 N/C Auxiliary & T2AX00B2STA & 146.00 \\
\hline & 1 N/O Alarm & T2AL00B1STA & 146.00 \\
\hline & 1 N/C Alarm & T2ALO0B2STA & 146.00 \\
\hline & \multicolumn{3}{|l|}{Micro switching type (very low voltages)} \\
\hline & 1 C/O Auxiliary & T2AX00M3RTA & 187.00 \\
\hline & \(1 \mathrm{C} / \mathrm{O}\) Alarm & T2ALOOM3RTA & 187.00 \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) Wire lead types available.

\section*{Accessories to suit 125 A TemBreak 2}


\section*{Accessories to suit 125 A TemBreak 2}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{External accessories} & Cat. No. & Price \$ \\
\hline \multirow[t]{4}{*}{Operating handles Direct mounting, fixed depth, IP 54} & \multicolumn{3}{|l|}{Suits MCCB types
E125,S125} \\
\hline & Grey/black & T2HB12UR5BN & 175.00 \\
\hline & Red/yellow & T2HB12UR5RN & 199.00 \\
\hline & H125, L125 & & \\
\hline \multirow{3}{*}{HB} & Grey/black & T2HB25UR5BN & 189.00 \\
\hline & Red/yellow & T2HB25UR5RN & 210.00 \\
\hline & Optional MCCB identification labels & T12CAPLAB & 3.50 \\
\hline \multirow[t]{5}{*}{Door interlocking variable depth handle} & \multicolumn{3}{|l|}{E125, S125} \\
\hline & Grey IP 55 handle + 357 mm shaft & T2HS12R5GM & 280.00 \\
\hline & Red/ yellow IP 55 handle 357 mm shaft & T2HS12R5RM & 290.00 \\
\hline & Escutcheon plate option: \(100 \mathrm{~mm}^{2}\) & T2HSESC100 & 18.20 \\
\hline & 90 mm T pin shaft for T2HS - no flexi coupling & T2HS250SHAFT & 47.00 \\
\hline \multirow[t]{2}{*}{HS} & Grey/ black IP65 handle + 420 mm shaft & T2HP12R6BN & 290.00 \\
\hline & Red/ yellow IP65 handle + 420 mm shaft & T2HP12R6RN & 300.00 \\
\hline \multirow[t]{11}{*}{HP} & Padlock attachment for T2HP/HS mechanism & T2HP25PALK & 49.50 \\
\hline & Optional MCCB identification labels & T12CAPLAB & 3.50 \\
\hline & \multicolumn{3}{|l|}{H125, L125} \\
\hline & IP 55 handle + 357 mm shaft & T2HS25R5GM & 280.00 \\
\hline & Red/ yellow IP 55 handle + 357 mm shaft & T2HS25R5RM & 290.00 \\
\hline & Large escutcheon plate option: \(100 \mathrm{~mm}^{2}\) & T2HSESC100 & 18.20 \\
\hline & 90 mm T pin shaft for T2HS no flexi coupling & T2HS250SHAFT & 47.00 \\
\hline & Grey/ black IP 65 handle + 420 mm shaft & T2HP25R6BN & 290.00 \\
\hline & Red/ yellow IP 65 handle + 420 mm shaft & T2HP25R6RN & 300.00 \\
\hline & Padlock attachment for T2HP/ HS mechanism & T2HP25PALK & 49.50 \\
\hline & Optional MCCB identification labels & T12CAPLAB & 3.50 \\
\hline
\end{tabular}


T2HS handle mechanism with T2HP25PALK mechanism lock


T2HS handle with T2HSESC100 escutcheon plate

\section*{Accessories to suit 125 A TemBreak 2}

External accessories
Cat. No.
Price \$
\begin{tabular}{|c|c|c|c|}
\hline Mechanical Interlocks & \multicolumn{3}{|l|}{Link Interlock - suitable for manual or motorised operation. Will accept handles. Suitable for front or rear connect type MCCBs.} \\
\hline \multirow[t]{4}{*}{Link type} & Suits MCCB types E125, S125 & & \\
\hline & Common 3 or 4 pole right side section & T2ML12RA & 113.00 \\
\hline & 3 pole left side section & T2ML12L3A & 127.00 \\
\hline & 4 pole left side section & T2ML12L4A & 127.00 \\
\hline \multirow[t]{6}{*}{ML} & MCCB identification labels & T12CAPLAB & 3.50 \\
\hline & H125, L125 & & \\
\hline & Common 3 or 4 pole right side section & T2ML25RA & 113.00 \\
\hline & 3 pole left side section & T2ML25L3A & 127.00 \\
\hline & 4 pole left side section & T2ML25L4A & 127.00 \\
\hline & MCCB identification labels & T12CAPLAB & 3.50 \\
\hline
\end{tabular}


Link interlock on MCCBs, T2ML


Link interlock on MCCBs with motors and electrical interlocking cable T2MM

Notes: Handles supplied with shaft
Refer to Section 5 if MCCB labels are required or refer to NHP.

\section*{Accessories to suit 125 A TemBreak 2}
xternal accessories
Cat. No.
Price \$
Slide type Manual operation, padlockable. Does not allow motors, handles or interlock other front mounted accessories to be fitted.

\section*{Suitable for front or rear connection} E125, S125 MCCB types
\begin{tabular}{|c|c|c|c|}
\hline \multirow{5}{*}{MS} & 3 pole & T2MS123SFA & 120.00 \\
\hline & 4 pole & T2MS124SFA & 134.00 \\
\hline & \multicolumn{3}{|l|}{H125, L125} \\
\hline & 3 pole & T2MS253LFA & 120.00 \\
\hline & 4 pole & T2MS254LFA & 134.00 \\
\hline \multirow[t]{5}{*}{Cable interlock} & \multicolumn{3}{|l|}{Allows an MCCB to be mounted horizontally, vertically or diagonally. Accepts Motors and handles.} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
Suitable for 3 or 4 pole MCCBs \\
E125, S125 MCCB types
\end{tabular}} \\
\hline & Interlock kit less wire & T2MW12CA \({ }^{1}\) ) & 265.00 \\
\hline & MCCB identification labels & T12CAPLAB & 3.50 \\
\hline & \multicolumn{3}{|l|}{H125, L125} \\
\hline \multirow[t]{4}{*}{MW} & Interlock kit less wire & T2MW25CA & 275.00 \\
\hline & MCCB identification labels & T12CAPLAB & 3.50 \\
\hline & Wire for above interlocks Wire 1.0 M & T2MW00SA \({ }^{2}\) ) & 63.00 \\
\hline & Wire 1.5 M & T2MW00LA \({ }^{2}\) ) & 73.00 \\
\hline
\end{tabular}


Slide interlock on MCCBs, T2MS


Cable interlock on MCCBs, T2MW

Notes: \({ }^{1}\) ) Order one interlock kit for each MCCB.
\({ }^{2}\) ) One wire length will cover two MCCBs.

\section*{Accessories to suit 125 A TemBreak 2}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{External accessories} & Cat. No. & \multirow[t]{2}{*}{Price \$} \\
\hline Terminal & Front connected MCCBs & & \\
\hline \multirow[t]{2}{*}{Covers Flush IP 20} & \[
\begin{aligned}
& \text { Suits MCCB types } \\
& \text { E125, S125 }
\end{aligned}
\] & & \\
\hline & 1 pole cover set of 2 & T2CS121SG & 10.60 \\
\hline \multirow[t]{5}{*}{CS} & 3 pole cover set of 2 & T2CS123SG & 44.00 \\
\hline & 4 pole cover set of 2 & T2CS124SG & 55.00 \\
\hline & H125, L125 & & \\
\hline & 3 pole cover set of 2 & T2CS253SG & 54.00 \\
\hline & 4 pole cover set of 2 & T2CS254SG & 60.50 \\
\hline \multirow[t]{3}{*}{Short terminal covers} & E125, S125 & & \\
\hline & 3 pole cover set of 2, 22 mm long & T2CF123SSNBA & 60.50 \\
\hline & 4 pole cover set of 2, 22 mm long & T2CF124SSNBA & 71.00 \\
\hline \multirow[t]{3}{*}{Standard terminal covers} & E125, S125 & & \\
\hline & 1 pole cover set of \(2,40 \mathrm{~mm}\) long & T2CF121SLNG & 35.00 \\
\hline & 2 pole cover set of 2,40 mm long & T2CF122SLNG & 49.50 \\
\hline \multirow[t]{5}{*}{CF} & 3 pole cover set of 2,40 mm long & T2CF123SLNG & 64.50 \\
\hline & 4 pole cover set of 2,40 mm long & T2CF124SLNG & 73.00 \\
\hline & H125, L125 & & \\
\hline & 3 pole cover set of 2,40 mm long & T2CF253LLNG & 71.00 \\
\hline & 4 pole cover set of \(2,40 \mathrm{~mm}\) long & T2CF254LLNG & 77.50 \\
\hline
\end{tabular}


\section*{Accessories to suit 125 A TemBreak 2}

External accessories
Cat. No.
Price \(\$\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Terminal covers rear connect} & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { Suits MCCB types } \\
& \text { E125, S125 }
\end{aligned}
\]} \\
\hline & 3 pole cover set of 2 & T2CR123SG & 44.00 \\
\hline \multirow{4}{*}{CR} & 4 pole cover set of 2 & T2CR124SG & 55.00 \\
\hline & \multicolumn{3}{|l|}{H125, L125} \\
\hline & 3 pole cover set of 2 & T2CR253SG & 54.00 \\
\hline & 4 pole cover set of 2 & T2CR254SG & 60.50 \\
\hline Terminal and cover & \multicolumn{3}{|l|}{A clip that provides additional terminal cover position locking also allows a sealing device to be fitted.} \\
\hline locking clip & All sizes 125, 250, 400, 630 AF & T2CF00L & 9.10 \\
\hline Interpole Barriers \(\left.{ }^{1}\right)^{2}\) ) & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { Suits MCCB types } \\
& \text { E125, S125 }
\end{aligned}
\]} \\
\hline \multirow{3}{*}{BA} & Interpole barrier (Qty 2) & T2BA123SHA & 17.40 \\
\hline & \multicolumn{3}{|l|}{H125, L125} \\
\hline & Interpole barrier (Qty 2) & T2BA253LHA & 20.00 \\
\hline \multirow[t]{5}{*}{Toggle locks} & \multicolumn{3}{|l|}{Non Captive: Fits up to 3 padlocks or a multiple lock device} \\
\hline & 2,3 and 4 pole E/S125 lock & T2HL25B & 31.50 \\
\hline & 1 pole S125NF lock & UXKB0013A & 61.00 \\
\hline & \multicolumn{3}{|l|}{Captive: Allows a single padlock or multiple padlock device} \\
\hline & \multicolumn{3}{|l|}{E125, S125} \\
\hline \multirow[t]{4}{*}{HL} & For \(3 / 4\) pole MCCBs \(1 \times 8 \mathrm{~mm}\) hole & T2HL12CAP & 33.50 \\
\hline & For 1 pole MCCBs, \(1 \times 8 \mathrm{~mm}\) hole & T2HLS125NFCAP & 92.00 \\
\hline & \multicolumn{3}{|l|}{H125, L125} \\
\hline & Lock with one 8 mm hole & T2HL25CAP & 33.50 \\
\hline
\end{tabular}


T2CF locking clip


Inter pole barriers


Non captive lock attachment


Captive lock attachment

Notes: \({ }^{1}\) ) Line side interpole barriers or terminal covers must be installed with MCCBs.
\({ }^{2}\) ) Interpole Barriers are supplied with MCCBs as standard; 2 barriers with 3 pole MCCBs, and 3 barriers with 4 pole MCCBs.

\section*{Accessories to suit 125 A TemBreak 2}

External accessories
Cat. No.
Price \$
ProSafe Allen-Bradley ProSafe locks can be used with T2HS variable depth
lock option') handles. Refer NHP for direct mounting handle options.

\section*{Suits MCCB types \\ E/S/H/L 125}



T2FW Tunnel clamp terminals and optional T2CS terminal cover


T2FB Attached busbar

ProSafe key Interlock and cam

Notes: ') Contact NHP for lock options.

\section*{Accessories to suit 125 A TemBreak 2}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{External accessories} & \multirow[t]{2}{*}{Cat. No.} & \multirow[t]{2}{*}{Price \$} \\
\hline Rear connect & Suits MCCB types E125, S125 \({ }^{1}\) ) & & \\
\hline terminal & 3 pole kit, set of 6 studs & T2RP123SA & 200.00 \\
\hline studs & 4 pole kit, set of 8 studs & T2RP124SA & 270.00 \\
\hline \multirow{3}{*}{RP} & \multicolumn{3}{|l|}{H125, L125} \\
\hline & 3 pole kit, set of 6 studs & T2RP253LA & 390.00 \\
\hline & 4 pole kit, set of 8 studs & T2RP254LA & 540.00 \\
\hline TemPlug & \multicolumn{3}{|l|}{Suits MCCB types TemPlug MCCB line-side plug-in attachment E125, S125} \\
\hline \multirow[t]{4}{*}{UP} & 3 pole TemPlug & T2UPX3125 & 305.00 \\
\hline & H125, L125 & & \\
\hline & 3 pole TemPlug (65 kA limit) & T2UPXE3250 & 350.00 \\
\hline & \multicolumn{3}{|l|}{Templugs suit 6.3 mm busbar as standard, 10 mm types indent} \\
\hline OCR sealing co SF & 125/250 A thermal magnetic & T2SF25NTA & 26.80 \\
\hline
\end{tabular}

PM Plug-in MCCBs (refer rear of section 3)

DR Draw-out MCCBs (refer NHP)


T2CR Rear connect term
cover
Notes: \({ }^{1}\) ) 125 A rear connect studs will not fit to S125NF single pole MCCBs. S160NF single pole MCCBs will accept rear studs.

\section*{Accessories to suit 125 A TemBreak 2}

External accessories
Cat. No.
Price \$
\begin{tabular}{|c|c|c|c|}
\hline Pole fillers & Suits MCCB types E/S/H/L125 & & \\
\hline \multirow[t]{2}{*}{PF} & Pole filler 1 strip for a 46 mm high cut-out \({ }^{1}\) ) & DTPF & 4.30 \\
\hline & Pole filler, 30 mm wide for a 104 mm cut-out & XAB2 & 3.80 \\
\hline DIN Rail Adaptor & \multicolumn{3}{|l|}{Allows a 125 AF MCCB to be mounted on standard 35 mm DIN rail E125, S125} \\
\hline DA & Metal DIN rail adaptor & T2DA12A & 63.00 \\
\hline Door flange & \multicolumn{3}{|l|}{Provides an attractive panel cut-out surround for MCCBs or motors Suits MCCB types E/S/H/L125} \\
\hline DF & MCCB IP 30 gland and gasket & T2DF25A & 127.00 \\
\hline & MOTOR IP 30 gland and gasket & T2DM25A & 215.00 \\
\hline \multirow[t]{3}{*}{Door mounting flush plate FP} & \multicolumn{3}{|l|}{A kit that allows an MCCB to be mounted directly onto a door} \\
\hline & 3 pole kit E125, S125 & T2FP12S3B & 82.50 \\
\hline & 4 pole kit E125, S125 & T2FP12S4A & POA \\
\hline Wire lead terminal block & 125/250 AF left side & T2TF25LGA & 189.00 \\
\hline TF & 125/250 AF right side & T2TF25RGA & 189.00 \\
\hline
\end{tabular}


Door flange Provides an attractive panel cut-out surround for MCCBs or motors Suits MCCB types

Notes: \(\left.{ }^{1}\right) 1\) strip is 8 off, 9 mm segments. Order 2 strips for each 125 A MCCB.

\section*{TemBreak 2 Thermal magnetic type S160NF}

\section*{25 kA}

Current rating: 16-160 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
3
\begin{tabular}{|c|c|c|c|}
\hline & Volt & Icu & Ics \\
\hline \multirow[b]{2}{*}{AC use} & 230 & 25 & 19 \\
\hline & 125 & 15 & 8 \\
\hline DC use & 125 & 15 & - \\
\hline
\end{tabular}


Trip unit: Fixed thermal and magnetic
Dimensions (mm)
\begin{tabular}{ll} 
Poles & \(\mathbf{1}\) \\
\hline\(H\) & 165 \\
\hline\(W\) & 35 \\
\hline\(D\) (less toggle) & 68 \\
\hline Toggle cut-out & 104 \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\begin{tabular}{llll}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & Ir & Im & Cat. No.
\end{tabular} & \begin{tabular}{c} 
1 pole \\
Price \$
\end{tabular} \\
\hline 16 & 16 & 160 & S160 NF 1 16 & \(\mathbf{1 6 5 . 0 0}\) \\
\hline 20 & 20 & 200 & S160 NF 1 20 & \(\mathbf{1 6 5 . 0 0}\) \\
\hline 25 & 25 & 250 & S160 NF 1 25 & \(\mathbf{1 6 5 . 0 0}\) \\
\hline 32 & 32 & 320 & S160 NF 1 32 & \(\mathbf{1 6 5 . 0 0}\) \\
\hline 40 & 40 & 400 & S160 NF 1 40 & \(\mathbf{1 6 5 . 0 0}\) \\
\hline 50 & 50 & 500 & S160 NF 1 50 & \(\mathbf{1 6 5 . 0 0}\) \\
\hline 63 & 63 & 630 & S160 NF 1 63 & \(\mathbf{1 6 5 . 0 0}\) \\
\hline 80 & 80 & 800 & S160 NF 1 80 & \(\mathbf{2 2 0 . 0 0}\) \\
\hline 100 & 100 & 1000 & S160 NF 1 100 & \(\mathbf{3 1 0 . 0 0}\) \\
\hline 125 & 125 & 1250 & S160 NF 1 125 & \(\mathbf{3 1 0 . 0 0}\) \\
\hline 160 & 160 & 1600 & S160 NF 1 160 & \(\mathbf{3 4 0 . 0 0}\) \\
\hline
\end{tabular}


Optional captive lock attachment

Notes: For Shunt Trips, Interpole Barriers and Terminal Covers refer to accessories pages.
Ir: thermal rating
Im: magnetic rating
NRC: Nominal rated current S160NF will accept rear terminal studs.

\title{
TemBreak 2 Thermal magnetic type S160NJ
}

\section*{30 / 36 kA}

Current rating: \(12.5-160 \mathrm{~A}\)
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:


20-32A:
\begin{tabular}{llll} 
& \multicolumn{2}{l}{ Voltage } & Icu \\
Ics \\
\hline AC use & \(380 / 415\) & 30 & 25 \\
\hline DC use & 250 & 40 & 40 \\
\hline
\end{tabular}

50-250 A:
\begin{tabular}{llll} 
& \multicolumn{2}{c}{ Voltage } & Icu \\
Ics \\
\hline AC use & \(380 / 415\) & 36 & 36 \\
\hline DC use & 250 & 40 & 40 \\
\hline
\end{tabular}

Trip unit: Adj thermal ( \(0.63 \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\) ) and adj magnetic
Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 165 & 165 \\
\hline W & 105 & 140 \\
\hline D (less toggle) & 68 & 68 \\
\hline Toggle cut-out & 104 & 104 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Ampere \\
Rating NRC
\end{tabular} & \[
\begin{aligned}
& \left.I_{\mathrm{r}}{ }^{1}\right) \\
& \text { Min. - Max. }
\end{aligned}
\] & \[
\begin{aligned}
& \left.I_{m}{ }^{1}\right) \\
& \text { Min. - Max. }
\end{aligned}
\] & Cat. No. & 3 pole Price \$ \\
\hline 20 & 12.5-20 & 120-240 & S160 NJ \(320{ }^{\text {2 }}\) ) & 480.00 \\
\hline 32 & 20-32 & 192-384 & S160 NJ \(332{ }^{\text {2 }}\) ) & 480.00 \\
\hline 50 & 32-50 & 300-600 & S160 NJ 350 & 480.00 \\
\hline 63 & 40-63 & 378-756 & S160 NJ 363 & 480.00 \\
\hline 100 & 63-100 & 600-1200 & S160 NJ 3100 & 680.00 \\
\hline 125 & 80-125 & 750-1500 & S160 NJ 3125 & 810.00 \\
\hline 160 & 100-160 & 960-2080 & S160 NJ 3160 & 1080.00 \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l}
\(\boldsymbol{I}_{\mathbf{r}}{ }^{\mathbf{r}}\) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l}
\(\boldsymbol{I}_{\mathbf{m}}{ }^{\mathbf{1})}\) \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
4 pole \\
Price \$
\end{tabular} \\
\hline 20 & \(12.5-20\) & \(120-240\) & S160 NJ 4 20 & \(\mathbf{6 3 0 . 0 0}\) \\
\hline 32 & \(20-32\) & \(192-384\) & S160 NJ 4 32 & \(\mathbf{6 3 0 . 0 0}\) \\
\hline 50 & \(32-50\) & \(300-600\) & S160 NJ 4 50 & \(\mathbf{6 3 0 . 0 0}\) \\
\hline 63 & \(40-63\) & \(378-756\) & S160 NJ 4 63 & \(\mathbf{6 3 0 . 0 0}\) \\
\hline 100 & \(63-100\) & \(600-1200\) & S160 NJ 4 100 & \(\mathbf{9 0 0 . 0 0}\) \\
\hline 125 & \(80-125\) & \(750-1500\) & S160 NJ 4 125 & \(\mathbf{1 0 9 0 . 0 0}\) \\
\hline 160 & \(100-160\) & \(960-2080\) & S160 NJ 4 160 & \(\mathbf{1 4 2 5 . 0 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1)}\) Adj. Ir: Adjustable thermal setting - Adj. Im: Adjustable magnetic setting
\({ }^{2}\) ) To obtain MCCBs that accept additional internal auxiliary circuits add "EA" to the above Cat. No.'s. E.g.: S125GJ3125EA.
Some types are stocked. Refer to NHP for availability. Refer page 3-9 for details.
NRC: Nominal rated current
Magnetic only MCCBs are available on request.

\title{
TemBreak 2 Thermal magnetic type S160GJ
}

65 kA
Current rating: 32-160 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
3
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 65 & 36 \\
\hline DC use & 250 & 40 & 40 \\
\hline
\end{tabular}


Trip unit: Adjustable thermal ( \(0.63 \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\) ) and adjustable magnetic

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 165 & 165 \\
\hline W & 105 & 140 \\
\hline D (less toggle) & 68 & 68 \\
\hline Toggle cut-out & 104 & 104 \\
\hline
\end{tabular}
\begin{tabular}{llllr}
\begin{tabular}{l} 
3 Pole \\
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. \({ }^{2}\) ) & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} \\
\hline 50 & \(32-50\) & \(300-600\) & S160 GJ 3 50 & \(\mathbf{7 5 0 . 0 0}\) \\
\hline 63 & \(40-63\) & \(378-756\) & S160 GJ 3 63 & \(\mathbf{7 5 0 . 0 0}\) \\
\hline 100 & \(63-100\) & \(600-1200\) & S160 GJ 3 100 & \(\mathbf{9 0 0 . 0 0}\) \\
\hline 125 & \(80-125\) & \(750-1500\) & S160 GJ 3 125 & \(\mathbf{1 0 0 0 . 0 0}\) \\
\hline 160 & \(100-160\) & \(960-2080\) & S160 GJ 3 160 \({ }^{\text {2 }}\) ) & \(\mathbf{1 2 1 0 . 0 0}\) \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \({ }^{\text {T }}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. \({ }^{2}\) ) & \begin{tabular}{r} 
4 pole \\
Price \$
\end{tabular} \\
\hline 50 & \(32-50\) & \(300-600\) & S160 G 4 50 & \(\mathbf{9 9 0 . 0 0}\) \\
\hline 63 & \(40-63\) & \(378-756\) & S160 GJ 4 63 & \(\mathbf{9 9 0 . 0 0}\) \\
\hline 100 & \(63-100\) & \(600-1200\) & S160 GJ 4 100 & \(\mathbf{1 2 1 0 . 0 0}\) \\
\hline 125 & \(80-125\) & \(750-1500\) & S160 GJ 4 125 & \(\mathbf{1 3 3 0 . 0 0}\) \\
\hline 160 & \(100-160\) & \(960-2080\) & S160 GJ 4 160 \({ }^{\text {2 }}\) ) & \(\mathbf{1 6 2 0 . 0 0}\) \\
\hline
\end{tabular}

\section*{Notes: \({ }^{1}\) ) Adj. Ir: Adjustable thermal setting} Adj. Im: Adjustable magnetic setting
\({ }^{2}\) ) To obtain MCCBs that accept additional internal auxiliary circuits add "EA" to the above Cat. No.'s. E.g.: S160GJ3160EA. Otherwise leave blank.
NRC: Nominal rated current
Magnetic only MCCBs are available on request.

\section*{TemBreak 2 Thermal magnetic type H160NJ}

\section*{125 kA}

Current rating: 100-160 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 125 & 85 \\
\hline DC use & 250 & 40 & 40 \\
\hline
\end{tabular}


Trip unit: Adjustable thermal ( \(0.63 \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\) ) and adjustable magnetic ( \(6 \mathrm{I}_{\mathrm{m}}\) to 13 I m )

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 165 & 165 \\
\hline W & 105 & 140 \\
\hline D (less toggle) & 103 & 103 \\
\hline Toggle cut-out & 104 & 104 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l}
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l}
Adj. Im \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{l}
3 pole \\
Price \$
\end{tabular} \\
\hline 160 & 100-160 & 960-2080 & H160 NJ 3160 & \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \({ }^{\text { }}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
4 pole \\
Price
\end{tabular} \\
\hline 160 & \(100-160\) & \(960-2080\) & H160 NJ 4 160 & \(\mathbf{2 2 1 0 . 0 0}\) \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) Adj. Ir: Adjustable thermal setting Adj. Im: Adjustable magnetic setting NRC: Nominal rated current
}

\section*{TemBreak 2 Thermal magnetic type L160NJ}

\section*{200 kA}

Current rating: 100-160 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
3
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 200 & 150 \\
\hline DC use & 250 & 40 & 40 \\
\hline
\end{tabular}


Trip unit: Adjustable thermal ( \(0.63 \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\) ) and adjustable magnetic ( \(6 \mathrm{I}_{\mathrm{m}}\) to \(13 \mathrm{I}_{\mathrm{m}}\) )

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 165 & 165 \\
\hline W & 105 & 140 \\
\hline D (less toggle) & 103 & 103 \\
\hline Toggle cut-out & 104 & 104 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{llllr}
\begin{tabular}{ll} 
Ampere
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{1}\) ) \\
Rating NRC \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \({ }^{\text {1 }}\) Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price
\end{tabular} \\
\hline 160 & \(100-160\) & \(960-2080\) & L160 NJ 3 160 & \(\mathbf{2 0 3 0 . 0 0}\) \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{llllr}
\begin{tabular}{ll} 
Ampere
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{1}\) ) \\
Mating NRC \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \({ }^{1}\) Min. - Max. \\
Rat.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
4 pole \\
Price
\end{tabular} \\
\hline 160 & \(100-160\) & \(960-2080\) & L160 NJ 4 160 & \(\mathbf{2 7 1 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: ') Adj. Ir: Adjustable thermal setting Adj. Im: Adjustable magnetic setting NRC: Nominal rated current

\section*{TemBreak 2 Thermal magnetic type E250NJ}

\section*{25 kA}

Current rating: \(12.5-250 \mathrm{~A}\)
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{l}{ Voltage } & Icu \\
Ics \\
\hline AC use & 230 & 25 & 19 \\
\hline DC use & 250 & 25 & - \\
\hline
\end{tabular}


Trip unit: Adjustable thermal ( \(0.63 \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\) ) and adjustable magnetic
Dimensions (mm)
\begin{tabular}{ll} 
Poles & \(\mathbf{3}\) \\
\hline H & 165 \\
\hline W & 105 \\
\hline D (less toggle) & 68 \\
\hline Toggle cut-out & 104 \\
\hline
\end{tabular}
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \({ }^{\text {1 }}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} \\
\hline 20 & \(12.5-20\) & \(120-240\) & E250 NJ 3 20 & \(\mathbf{4 4 0 . 0 0}\) \\
\hline 32 & \(20-32\) & \(192-384\) & E250 NJ 3 32 & \(\mathbf{4 4 0 . 0 0}\) \\
\hline 50 & \(32-50\) & \(300-600\) & E250 NJ 3 50 & \(\mathbf{4 4 0 . 0 0}\) \\
\hline 63 & \(40-63\) & \(378-756\) & E250 NJ 3 63 & \(\mathbf{4 4 0 . 0 0}\) \\
\hline 100 & \(63-100\) & \(600-1200\) & E250 N J 3 100 & \(\mathbf{6 3 0 . 0 0}\) \\
\hline 125 & \(80-125\) & \(750-1500\) & E250 NJ 3 125 & \(\mathbf{7 8 0 . 0 0}\) \\
\hline 160 & \(100-160\) & \(960-2080\) & E250 NJ 3 160 & \(\mathbf{1 0 3 0 . 0 0}\) \\
\hline 250 & \(160-250\) & \(1500-2500\) & E250 NJ 3 250 & \(\mathbf{1 4 0 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) Adj. Ir: Adjustable thermal setting
Adj. Im: Adjustable magnetic setting
NRC: Nominal rated current
Magnetic only MCCBs are available on request.

\title{
TemBreak 2 Thermal magnetic type S250NJ
}

\section*{36 kA}

Current rating: 160-250 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:

\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 36 & 36 \\
\hline DC use & 250 & 40 & 40 \\
\hline
\end{tabular}

Trip unit: Adjustable thermal ( \(0.63 \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\) ) and adjustable magnetic ( \(6 \mathrm{I}_{\mathrm{m}}\) to \(10 \mathrm{I}_{\mathrm{m}}\) )

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 165 & 165 \\
\hline W & 105 & 140 \\
\hline D (less toggle) & 68 & 68 \\
\hline Toggle cut-out & 104 & 104 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{llllr}
\begin{tabular}{lll} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price S
\end{tabular} \\
\hline 250 & \(160-250\) & \(1500-2500\) & S250 NJ 3 250 & \(\mathbf{1 4 8 0 . 0 0}\) \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{llllr} 
Ampere & Adj. Ir \(^{1}\) ) & Adj. Im \(^{1}{ }^{1}\) ) & & \begin{tabular}{r} 
4 pole
\end{tabular} \\
Rating NRC & Min. - Max. & Min. - Max. & Cat. No. & Price \$
\end{tabular}

Notes: \({ }^{1)}\) Adj. Ir: Adjustable thermal setting Adj. Im: Adjustable magnetic setting
NRC: Nominal rated current
Magnetic only MCCBs are available on request.
For smaller amp trip units in the same 36 kA frame size, refer S160NJ MCCBs.

\title{
TemBreak 2 Thermal magnetic type S250GJ
}

\section*{65 kA}

Current rating: 160-250 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 65 & 36 \\
\hline DC use & 250 & 40 & 40 \\
\hline
\end{tabular}


Trip unit: Adjustable thermal ( \(0.63 \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\) ) and adjustable magnetic ( \(6 I_{m}\) to \(10 I_{m}\) )

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 165 & 165 \\
\hline W & 105 & 140 \\
\hline D (less toggle) & 68 & 68 \\
\hline Toggle cut-out & 104 & 104 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{llllr} 
Ampere & Adj. Ir \({ }^{1}\) ) & Adj. Im \({ }^{\text {1 }}\) )
\end{tabular} ( \begin{tabular}{l} 
Cat. No. \({ }^{2}\) )
\end{tabular}

4 Pole
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l}
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l}
Adj. Im \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. \({ }^{2}\) ) & 4 pole Price \$ \\
\hline 250 & 160-250 & 1500-2500 & S250 GJ 4250 & 2240.00 \\
\hline
\end{tabular}

Fixed low magnetic and standard magnetic only types
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Fixed \\
magnetic
\end{tabular} & Cat. No. \({ }^{2}\) ) & \begin{tabular}{r} 
3 pole \\
Price \(\mathbf{\$}\)
\end{tabular} \\
\hline 250 & \(160-250\) & 750 A & S250 GJ 3 SO23160 & \(\mathbf{1 7 8 0 . 0 0}\) \\
\hline 250 & \(160-250\) & 1000 A & S250 GJ3250M1000 & \(\mathbf{1 8 7 0 . 0 0}\) \\
\hline 250 & \begin{tabular}{l} 
Magnetic \\
trip only
\end{tabular} & 2500 A & S250 GJ3 250MAG & \(\mathbf{1 9 1 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) Adj. Ir: Adjustable thermal setting Adj. Im: Adjustable magnetic setting
\({ }^{2}\) ) To obtain MCCBs that accept additional internal auxiliary circuits add ' \(E A^{\prime}\) to the above Cat. Nos. E.g.: S250GJ3250EA. Otherwise leave blank.
NRC: Nominal rated current
For smaller amp trip units in the same 65 kA frame size, refer S160GJ MCCBs.

\section*{MCCBs with Electronic Overcurrent Relays}

TemBreak 2 Moulded Case Circuit Breakers to 1600 A are available with electronic overcurrent relays 250 A to 1600 A . Current ratings range from 16 A to 1600 A . The overcurrent relays are easy to adjust - simply select the current rating via a dial adjustment, and depending on the application, a dial selectable pre-set characteristic curve can also be selected.

\section*{STANDARD Overcurrent Relay}

\section*{Features:}

Electronic overcurrent protection, for general and selectivity applications 250 A and 1600 A: 7 characteristic curves, (630 A: 6 characteristic curves)
- Long Time, Short Time \& Instantaneous trip times vary depending on the characteristic curve selected
- Base current \(I r\) is adjustable from \(40 \%-100 \%\) of the nominal rated current In.
(dial settings are via incremental steps)

\section*{OCR Options:}
- Ground fault trip on 400-1600 A models
- Neutral pole protection for 4 pole MCCBs
- Pre-trip alarm
- Special curve characteristics are available

Right:
Typical OCR adjustment and setting detail shown on electronic MCCBs
(400/630 A shown)


Notes: Additional ELECTRONIC MCCB setting information can be found in Section 9.

\section*{TemBreak 2 Electronic type S250PE}

\section*{70 kA}

Current rating: 16-250 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 70 & 70 \\
\hline
\end{tabular}


\section*{Overcurrent relay:}
- Electronic, for general and selectivity applications
- 7 dial selectable characteristic curves suited for a variety of applications
- Base current \(I r\) is adjustable from \(40 \%-100 \%\) of the nominal rated current In.
OCR Options:
- Neutral pole protection for 4 pole MCCBs only
- Pre-trip alarm

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 165 & 165 \\
\hline W & 105 & 140 \\
\hline D (less toggle) & 103 & 103 \\
\hline Toggle cut-out & 104 & 104 \\
\hline
\end{tabular}

\section*{TemBreak 2 Electronic type S250PE}
\begin{tabular}{lllr}
\begin{tabular}{l} 
3 Pole \\
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline 40 & \(16-40\) & S250 PE 3 40 & \(\mathbf{1 6 1 0 . 0 0}\) \\
\hline 125 & \(50-125\) & S250 PE 3 125 & \(\mathbf{1 7 3 0 . 0 0}\) \\
\hline 250 & \(100-250\) & S250 PE 3 250 & \(\mathbf{2 1 0 0 . 0 0}\) \\
\hline
\end{tabular}
\begin{tabular}{lllr}
\begin{tabular}{l} 
4 Pole \\
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline 40 & \(16-40\) & S250 PE 4 40 & \(\mathbf{1 9 3 2 . 0 0}\) \\
\hline 125 & \(50-125\) & S250 PE 4 125 & \(\mathbf{2 4 3 0 . 0 0}\) \\
\hline 250 & \(100-250\) & S250 PE 4250 & \(\mathbf{2 7 9 0 . 0 0}\) \\
\hline
\end{tabular}

Price Adder - For OCR options.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l}
Adj. Ir \(^{1}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. \({ }^{1}\) ) & Price \$ \\
\hline 3 P OCR options: & PTA \({ }^{2}\) ) & S250 PE 3 AP 3 & 187.00 \\
\hline \multirow{3}{*}{4 P OCR options:} & PTA \({ }^{2}\) ) & S250 PE 4 AP 4 & 187.00 \\
\hline & NP \({ }^{2}\) ) & S250 PE 4 AN 4 & 187.00 \\
\hline & PTA + NP \({ }^{2}\) ) & S250 PE 4 APN 4 & 365.00 \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) The STD and Instantaneous pickup current (Isd \& li ) settings are not individually adjustable, however by selecting different curve types and different Ir settings the values will vary. Curve \(1 \& 2 \mathrm{lsd}=2.5 \mathrm{x} \mathrm{I}_{\mathrm{R}}\), curve 3 lsd \(=5 \times \mathrm{I}_{R}\) curve \(4-7 \mathrm{Isd}=10 \times \mathrm{I}_{R} . \mathrm{I}_{R}\) dial setting \(0.4-0.9 \mathrm{li}=14 \times \mathrm{I}_{R}\) and \(\mathrm{I}_{R}\) dial setting \(0.95-1.0 \mathrm{li}=10 \times \mathrm{I}_{\mathrm{R}}\). Refer curve examples and setting data in Section 9 . NRC = Nominal rated current, \(\mathrm{I}_{\mathrm{R}}=\) Current adjustment dial setting, STD = Short Time Delay, INST = instantaneous
\({ }^{2}\) ) To order a MCCB with the above options insert the required option after the pole to make up the Cat. No. E.g.: S250PE 4 APN 250 is a S250PE 4 Pole 250 A MCCB c/w Pre-trip Alarm and Neutral Protection.

\section*{TemBreak 2 Thermal magnetic type H250NJ}

\section*{125 kA}

Current rating: 100-250 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 125 & 85 \\
\hline DC use & 250 & 40 & 40 \\
\hline
\end{tabular}


Trip unit: Adjustable thermal ( \(0.63 \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\) ) and adjustable magnetic ( \(6 \mathrm{I}_{\mathrm{m}}\) to \(10 \mathrm{I}_{\mathrm{m}}\) )

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 165 & 165 \\
\hline W & 105 & 140 \\
\hline D (less toggle) & 103 & 103 \\
\hline Toggle cut-out & 104 & 104 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
3 Pole \\
Ampere \\
Rating NRC
\end{tabular} & Adj. Ir
Min. - Max. & Adj. Im Min. - Max. & Cat. No. & 3 pole Price \$ \\
\hline 250 & 160-250 & 1500-2500 & H250 NJ 3250 & 2020.00 \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
4 pole \\
Price
\end{tabular} \\
\hline 250 & \(160-250\) & \(1500-2500\) & H250 NJ 4 250 & \(\mathbf{2 7 0 0 . 0 0}\) \\
\hline
\end{tabular}

\title{
TemBreak 2 Electronic MCCB with Energy Metering Output S250PE _AC
}

\section*{70 kA}

Current rating: 16-250 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{c}{ Voltage } & Icu \\
\hline AC use & 415 & 70 & 70 \\
\hline
\end{tabular}

\section*{MCCB Standard features:}

- Electronic, for metering, selectivity, motor starting or general use
- 7 dial selectable characteristic suited to different applications
- Base current Ir adjustable from 40\%-100\% of current In.
- STD setting 2.5-10 \(\left.\left(x I_{R}\right)^{2}\right)\)
- INST setting \(14\left(\operatorname{Max} 13 \times I_{n}\right)^{2}\) )
- Energy (multifunction) metering output, A, V, P, kW, kWh, E, Pf, F
- Trip event log, Alarm event log
- Modbus RTU 485 communications output
- External door mounting meter option (T2ED not incl. in below pricing)
- Neutral Pole protection option for 4 pole MCCBs only (AN)
- Pre-Trip Alarm (AP) option

\section*{Dimensions (mm)}
\begin{tabular}{ll} 
Poles & \(\mathbf{3}\) \\
\hline H & 165 \\
\hline W & 105 \\
\hline D (less toggle) & 103 \\
\hline Toggle cut-out & 48 \\
\hline & 105 on chassis \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Ampere Rating NRC & \begin{tabular}{l}
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. \({ }^{1}\) ) & 3 pole Price \$ & 4 pole Price \$ \\
\hline \multirow[t]{2}{*}{40} & \multirow[b]{2}{*}{16-40} & S250 PE 340 AC & 3260.00 & \\
\hline & & S250 PE 440 AC & & 4100.00 \\
\hline \multirow[b]{2}{*}{125} & \multirow[b]{2}{*}{50-125} & S250 PE 3125 AC & 3760.00 & \\
\hline & & S250 PE 4125 AC & & 4500.00 \\
\hline \multirow[b]{2}{*}{250} & \multirow[b]{2}{*}{100-250} & S250 PE 3250 AC & 3970.00 & \\
\hline & & S250 PE 4250 AC & & 4760.00 \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) The STD and Instantaneous pickup currents \(\left(I_{s d} \& I_{\mathrm{i}}\right)\) settings are not individually adjustable, however by selecting different curve types and different \(I_{R}\) settings the values will vary. Curve \(1 \& 2 \mathrm{I}_{\mathrm{sd}}=2.5 \times \mathrm{I}_{\mathrm{R}}\), curve \(3 I_{\text {sd }}=5 \times I_{R}\), curve \(4-7 I_{s d}=10 \times I_{R}\). \(I_{R}\) dial setting \(0.4-0.9 I_{i}=14 \times I_{R}\) and \(I_{R}\) dial setting \(0.95-1.0 \mathrm{I}_{\mathrm{i}}=13 \times \mathrm{I}_{\mathrm{R}}\). Refer curve examples \& setting data in section 9 .
\({ }^{2}\) ) To order a MCCB with the above options add the required amp rating to the end of the catalogue number to complete it. Eg: S250PE 4 AN 250 is a S250PE 4 Pole 250 A MCCB c/w Neutral Protection.
NRC = Nominal rated current, \(\quad I R=\) Current adjustment dial setting, STD = Short Time Delay, INST = instantaneous
For additional information on installation, options and applications refer Section 9, Part C
}

\section*{TemBreak 2 Electronic type H250NE}

\section*{125 kA}

Current rating: 16-250 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2
Interrupting capacity:
\begin{tabular}{lclc} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 125 & 85 \\
\hline
\end{tabular}


Overcurrent relay:
- Electronic, for general and selectivity applications
- 7 dial selectable characteristic curves suited for a variety of applications
- Base current \(\mathrm{I}_{\mathrm{r}}\) is adjustable from \(40 \%-100 \%\) of the nominal rated current \(\mathrm{I}_{\mathrm{n}}\).
OCR Options:
- Neutral pole protection for 4 pole MCCBs only
- Pre-trip alarm

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 165 & 165 \\
\hline W & 105 & 140 \\
\hline D (less toggle) & 103 & 103 \\
\hline Toggle cut-out & 104 & 104 \\
\hline
\end{tabular}

\section*{TemBreak 2 Electronic type H250NE}
\begin{tabular}{lllr}
\begin{tabular}{l} 
3 Pole \\
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. \({ }^{1}\) ) & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} \\
\hline 40 & \(16-40\) & H250 NE 3 40 & \(\mathbf{1 6 7 0 . 0 0}\) \\
\hline 125 & \(50-125\) & H250 NE 3 125 & \(\mathbf{2 0 5 0 . 0 0}\) \\
\hline 250 & \(100-250\) & H250 NE 3 250 & \(\mathbf{2 5 6 0 . 0 0}\) \\
\hline
\end{tabular}
\begin{tabular}{lllr}
\begin{tabular}{l} 
4 Pole \\
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. \({ }^{\text {1 }}\) ) & \begin{tabular}{r} 
4 pole \\
Price \$
\end{tabular} \\
\hline 40 & \(16-40\) & H250 NE 4 40 & \(\mathbf{3 5 8 0 . 0 0}\) \\
\hline 125 & \(50-125\) & H250 NE 4 125 & \(\mathbf{3 2 2 0 . 0 0}\) \\
\hline 250 & \(100-250\) & H250 NE 4 250 & \(\mathbf{3 4 1 0 . 0 0}\) \\
\hline
\end{tabular}

Price Adder - For OCR options.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l}
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. \({ }^{1}\) ) & 3 pole Price \$ & 4 pole Price \(\$\) \\
\hline 3 P OCR options: & PTA \({ }^{2}\) ) & H250 NE 3 AP 3 & 187.00 & \\
\hline \multirow[t]{3}{*}{4P OCR options:} & PTA \({ }^{2}\) ) & H250 NE 4 AP 3 & & 187.00 \\
\hline & NP \({ }^{2}\) ) & H250 NE 4 AN 3 & & 187.00 \\
\hline & PTA + NP \({ }^{2}\) ) & H250 NE 4 APN 3 & & 365.00 \\
\hline
\end{tabular}

\section*{Notes: (for pages 3-56 and 3-57)}
1) The STD and Instantaneous pickup currents (Isd \& li) settings are not individually adjustable, however by selecting different curve types and different \(\mathbb{R}\) settings the values will vary. Curve \(1 \& 21_{\mathrm{sd}}=2.5 \times \mathrm{I}_{\mathrm{R}}\), curve \(3 \mathrm{I}_{\mathrm{sd}}=\) \(5 \times I_{R}\), curve \(4-7 I_{S_{d}}=10 \times I_{R}\). \(I_{R}\) dial setting \(0.4-0.9 I_{i}=14 \times I_{R}\) and \(I_{R}\) dial setting \(0.95-1.0 \mathrm{I}_{\mathrm{i}}=13 \mathrm{x} \mathrm{I}_{\mathrm{R}}\). Refer curve examples \& setting data in section 9 .
\({ }^{2}\) ) To order a MCCB with the above options add the required amp rating to the end of the catalogue number to complete it. Eg: H250NE 4 AN 250 is a H250NE 4 Pole 250 A MCCB c/w Neutral Protection.
NRC = Nominal rated current, IR = Current adjustment dial setting,
STD = Short Time Delay, INST = instantaneous
For additional information on installation, options and applications refer Section 9, Part C catalogue or NHP.

\title{
TemBreak 2 Electronic MCCB with Energy Metering Output H250NE _AC
}

\section*{125 kA}

Current rating: 16-250 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & 415 & 125 & 85 \\
\hline
\end{tabular}

\section*{MCCB Standard features:}


Electronic, for metering, selectivity, motor starting or general use
- 7 dial selectable characteristic suited to different applications

Base current Ir adjustable from 40\%-100\% of current In
- STD setting 2.5-10(xIR) \({ }^{2}\) )
- INST setting \(14(\operatorname{Max} 13 \times \ln )^{2}\) )

Energy (multifunction) metering output, A, V, P, kW, kWh, E, Pf, F
- Trip event log, Alarm event log
- Modbus RTU 485 communications output
- External door mounting meter option (T2ED not incl. in below pricing)
- Neutral Pole protection options for 4 pole MCCBs only (AN)
- Pre-Trip Alarm (AP) option

Dimensions (mm)
\begin{tabular}{ll} 
Poles & \(\mathbf{3}\) \\
\hline H & 165 \\
\hline W & 105 \\
\hline D (less toggle) & 103 \\
\hline Toggle cut-out & 48 \\
\hline & 105 on chassis \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Ampere Rating NRC & Adj. Ir Min. - Max. & Cat. No. \({ }^{1}\) ) & 3 pole Price \$ & 4 pole Price \$ \\
\hline \multirow[t]{2}{*}{40} & \multirow[t]{2}{*}{16-40} & H250 NE 340 AC & 3550.00 & \\
\hline & & H250 NE 440 AC & & 4400.00 \\
\hline \multirow[t]{2}{*}{125} & \multirow[t]{2}{*}{50-125} & H250 NE 3125 AC & 4150.00 & \\
\hline & & H250 NE 4125 AC & & 4800.00 \\
\hline \multirow[t]{2}{*}{250} & \multirow[t]{2}{*}{100-250} & H250 NE 3250 AC & 4350.00 & \\
\hline & & H250 NE 4250 AC & & 4990.00 \\
\hline
\end{tabular}

Notes: See page 3-56 for notes.

\section*{TemBreak 2 Thermal magnetic type L250NJ}

\section*{200 kA}

Current rating: 100-250 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2
Interrupting capacity:
3
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 200 & 150 \\
\hline DC use & 250 & 40 & 40 \\
\hline
\end{tabular}


Trip unit: Adjustable thermal ( \(0.63 \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\) ) and adjustable magnetic ( \(6 \mathrm{I}_{\mathrm{m}}\) to \(10 \mathrm{I}_{\mathrm{m}}\) )

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 165 & 165 \\
\hline W & 105 & 140 \\
\hline D (less toggle) & 103 & 103 \\
\hline Toggle cut-out & 104 & 104 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. \(I_{\mathbf{r}}{ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. \(I_{\mathrm{m}}{ }^{1}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price
\end{tabular} \\
\hline 250 & \(160-250\) & \(1500-2500\) & L250 NJ 3 250 & \(\mathbf{2 3 4 0 . 0 0}\) \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. \(I_{\mathrm{r}}{ }^{1}\) ) \\
Min. - Max..
\end{tabular} & \begin{tabular}{l} 
Adj. \(I_{\mathrm{m}}{ }^{1}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
4 pole \\
Price \(\$\)
\end{tabular} \\
\hline 250 & \(160-250\) & \(1500-2500\) & L250 NJ 4250 & \(\mathbf{3 1 2 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1)}\) Adj. Ir: Adjustable thermal setting Adj. Im: Adjustable magnetic setting
NRC: Nominal rated current

\section*{Accessories to suit 160-250 AF TemBreak 2}


Cat. No.
Price \(\$\)
\begin{tabular}{ll} 
Shunt trips & \begin{tabular}{l} 
Internal accessories are common for MCCBs 125 A to 630 A . All have \\
screw terminals except those indicated below with wire leads as \\
standard
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{3}{|l|}{For 2, 3 and 4 pole MCCBs} \\
\hline & 110 V AC & T2SH00A10TA \({ }^{1}\) ) & 255.00 \\
\hline \multirow{12}{*}{SH} & 230-240 V AC & T2SH00A20TA \({ }^{1}\) ) & 255.00 \\
\hline & 400-415 V AC & T2SH00A40TA \({ }^{1}\) ) & 255.00 \\
\hline & 24 V DC (Suits 24 V AC ) & T2SH00D02TA \({ }^{1}\) ) & 255.00 \\
\hline & 48 VDC & T2SH00D04TA \({ }^{1}\) ) & 255.00 \\
\hline & 110 V DC & T2SH00D10TA \({ }^{1}\) ) & 255.00 \\
\hline & 230 V DC & T2SH00D20TA \({ }^{1}\) ) & 255.00 \\
\hline & \multicolumn{3}{|l|}{For 1 pole S160NF MCCBs} \\
\hline & 110 V AC & T2SH16A10WA & 255.00 \\
\hline & 230-240V AC & T2SH16A20WA & 255.00 \\
\hline & 24 V DC & T2SH16D02WA & 255.00 \\
\hline & 110 VDC & T2SH16D10WA & 250.00 \\
\hline & 230 V DC & T2SH16D20WA & 250.00 \\
\hline \multirow[t]{3}{*}{Undervoltage trips} & Instantaneous operatio & & \\
\hline & 110 V AC & T2UV00A10NTA & 270.00 \\
\hline & 200-240 V AC & T2UV00A20NTA & 270.00 \\
\hline \multirow[t]{4}{*}{UV} & 380-450 V AC & T2UV00A40NTA & 270.00 \\
\hline & 24 V DC & T2UV00D02NTA & 270.00 \\
\hline & 110 VDC & T2UV00D10NTA & 270.00 \\
\hline & 230 V DC & T2UV00D20NTA & 270.00 \\
\hline
\end{tabular}

External accessories screw terminals except those indicated below with wire leads as standard


Notes: \({ }^{1}\) ) Wire lead types available.

\section*{Accessories to suit 160-250 AF TemBreak 2}

External accessories
Cat. No.
Price \$
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Motor operators} & \multicolumn{3}{|l|}{Suits MCCB types S/H/L160, E/S/H/L250} \\
\hline & 110 V AC & T2MC25A10NB & 1620.00 \\
\hline \multirow{4}{*}{MC} & 230-240 V AC & T2MC25A24NB & 1630.00 \\
\hline & 24 V DC & T2MC25D02NB & 1630.00 \\
\hline & 48 V DC & T2MC25D04NB & 1620.00 \\
\hline & 110 V DC & T2MC25D10NB & 1620.00 \\
\hline \multicolumn{4}{|c|}{Motor connection cable loom for electrical interlocking} \\
\hline Motor & T2MC 25 cable 500 mm , 250AF only & T2MM25L05A & 60.50 \\
\hline \multirow[t]{3}{*}{Accessories} & T2MC 25 cable \(1500 \mathrm{~mm}, 250 \mathrm{AF}\) only & T2MM25L15A & 73.00 \\
\hline & \multicolumn{3}{|l|}{Motor options: Contact NHP for key locking and auto-reset.} \\
\hline & MCCB identification labels & T25CAPLAB & 3.50 \\
\hline
\end{tabular}

T2SH
Shunt trip

T2AX
T2AL
Auxiliary \&
Alarm switches

T2UV
Undervoltage
trip


Motor operators 250 A motor fitted to MCCB

\section*{Accessories to suit 160-250 AF TemBreak 2}

External accessories
Cat. No.
Price \$
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{Operating handles Direct mounting, fixed depth, IP 54} & \multicolumn{3}{|l|}{Suits MCCB types S/H/L160, E/S/H/L250} \\
\hline & Grey/black & T2HB25UR5BN & 189.00 \\
\hline & Red/yellow & T2HB25UR5RN & 210.00 \\
\hline & MCCB identification labels & T25CAPLAB & 3.50 \\
\hline \multicolumn{4}{|l|}{HB} \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Door interlocking \\
variable depth handle
\end{tabular}} & \multicolumn{3}{|l|}{S/H/L160, E/S/H/L250} \\
\hline & Grey IP 55 handle + 357 mm shaft & T2HS25R5GM & 280.00 \\
\hline & Red/ yellow IP 55 handle + 357 mm shaft & T2HS25R5RM & 290.00 \\
\hline & Large escutcheon plate option: \(100 \mathrm{~mm}^{2}\) & T2HSESC100 & 18.20 \\
\hline \multirow{5}{*}{\[
\begin{aligned}
& \text { HS } \\
& \text { HP }
\end{aligned}
\]} & 90 mm T pin shaft for T2HS no flexi coupling & T2HS250SHAFT & 47.00 \\
\hline & Grey/ black IP 65 handle + 420 mm shaft & T2HP25R6BN & 290.00 \\
\hline & Red/ yellow IP 65 handle + 420 mm shaft & T2HP25R6RN & 300.00 \\
\hline & Padlock attachment for T2HP/HS mechanism & T2HP25PALK & 49.50 \\
\hline & MCCB identification labels & T25CAPLAB & 3.50 \\
\hline
\end{tabular}



T2HP Variable depth handle IP 65


Mechanism Padlock attachment

\section*{Accessories to suit 160-250 AF TemBreak 2}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Mechanical Interlocks Link type} & \multicolumn{3}{|l|}{Link Interlock - suitable for manual or motorised operation. Will accept handles. Suitable for front or rear connect type MCCBs} \\
\hline & \multicolumn{3}{|l|}{S/H/L160, E/S/H/L250} \\
\hline \multirow{4}{*}{ML} & Common 3 or 4 pole right side section & T2ML25RA & 113.00 \\
\hline & 3 pole left side section & T2ML25L3A & 127.00 \\
\hline & 4 pole left side section & T2ML25L4A & 127.00 \\
\hline & MCCB identification labels & T25CAPLAB & 3.50 \\
\hline
\end{tabular}

Left section 3 or 4 pole (T2ML25L4A shown)

Common right section
(T2ML25RA shown)


Link interlocked 250 A MCCBs


T2HS handle with optional T2HSESC100 escutcheon plate

\section*{Accessories to suit 160-250 AF TemBreak 2}

External accessories
Cat. No.
Price \$
\begin{tabular}{rllr}
\begin{tabular}{l} 
Slide type \\
interlock
\end{tabular} & \multicolumn{3}{l}{\begin{tabular}{l} 
Manual operation, padlockable. Does not allow motors, handles or \\
other front mounted accessories to be fitted.
\end{tabular}} \\
& \multicolumn{3}{l}{\begin{tabular}{l} 
Suitable for front or rear connection
\end{tabular}} \\
\cline { 2 - 4 } S160, E250, S250
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{Cable interlock} & \multicolumn{3}{|l|}{Allows an MCCB to be mounted horizontally, vertically or diagonally. Accepts Motors and handles.} \\
\hline & \multicolumn{3}{|l|}{Suitable for 3 or 4 pole MCCBs S/H/L160, E/S/H/L250} \\
\hline & Interlock kit less wire & T2MW25CA \({ }^{1}\) ) & 275.00 \\
\hline \multirow[t]{3}{*}{MW} & Wire for above interlocks Wire 1.0 M & T2MW00SA \({ }^{2}\) ) & 63.00 \\
\hline & Wire 1.5 M & T2MW00LA \({ }^{2}\) ) & 73.00 \\
\hline & MCCB identification labels & T25CAPLAB & 3.50 \\
\hline
\end{tabular}


T2MS
Slide type


Notes: \({ }^{1}\) ) Order one interlock kit for each MCCB.
\({ }^{2}\) ) Order one wire length for each pair of interlocked MCCBs.

\section*{Accessories to suit 160-250 AF TemBreak 2}

External accessories
Cat. No.
Price \$
\begin{tabular}{|c|c|c|c|}
\hline Terminal Covers & \multicolumn{3}{|l|}{\begin{tabular}{l}
Suits MCCB types \\
S/H/L160, E/S/H/L250
\end{tabular}} \\
\hline Flush & 1 pole cover set of 2 & T2CS251SG & 10.00 \\
\hline & 3 pole cover set of 2 & T2CS253SG & 54.00 \\
\hline CS & 4 pole cover set of 2 & T2CS254SG & 60.50 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Short & S160, E250, S250 - except S250 & & \\
\hline terminal & 3 pole cover set of 2,30 mm long & T2CF253SSNBA & 67.00 \\
\hline FC & 4 pole cover set of 2,30 mm long & T2CF254SSNBA & 77.50 \\
\hline
\end{tabular}

CF
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{Standard terminal covers FC} & \multicolumn{3}{|l|}{S160, E250, S250 - except S250-PE} \\
\hline & 1 pole cover set of \(2,55 \mathrm{~mm}\) long & T2CF161SLNG & 40.00 \\
\hline & 3 pole cover set of 2,55 mm long & T2CF253SLNG & 67.00 \\
\hline \multirow[t]{4}{*}{CF} & 4 pole cover set of 2 & T2CF254SLNG & 77.50 \\
\hline & \multicolumn{3}{|l|}{H/L160, S250-PE, H/L250} \\
\hline & 3 pole cover set of 2, 55 mm long & T2CF253LLNG & 71.00 \\
\hline & 4 pole cover set of 2,55 mm long & T2CF254LLNG & 77.50 \\
\hline
\end{tabular}


T2CF Standard term covers

Single pole terminal T2CF Short terminal covers cover


T2CS Flush IP 20 Cover

T2RC Rear connect term cover

\section*{Accessories to suit 160-250 AF TemBreak 2}

External accessories
Cat. No.
Price \$
\begin{tabular}{|c|c|c|c|}
\hline Terminal covers & \multicolumn{3}{|l|}{\begin{tabular}{l}
Rear Connect MCCBs \\
S/H/L160, E/S/H/L250
\end{tabular}} \\
\hline \multirow[t]{2}{*}{CR} & 3 pole cover set of 2 & T2CR253SG & 54.00 \\
\hline & 4 pole cover set of 2 & T2CR254SG & 60.50 \\
\hline \multirow[t]{2}{*}{Terminal locking clip} & \multicolumn{3}{|l|}{\begin{tabular}{l}
A clip that provides additional terminal cover position locking, and \\
cover also allows a lead seal to be fitted
\end{tabular}} \\
\hline & All sizes 125, 250, 400, 630 AF & T2CF00L & 9.10 \\
\hline Interpole Barriers \(\left.{ }^{1}\right)^{2}\) ) & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { Suits MCCB types } \\
& \text { S160, E250, S250 - except S250-PE } \\
& \hline
\end{aligned}
\]} \\
\hline \multirow{3}{*}{BA} & Interpole barrier (Qty 2) & T2BA253SHA & 20.00 \\
\hline & \multicolumn{3}{|l|}{H/L160, S250-PE, H/L250} \\
\hline & Interpole barrier (Qty 2) & T2BA253LHA & 20.00 \\
\hline \multirow[t]{3}{*}{Toggle locks} & \multicolumn{3}{|l|}{Non Captive: Fits up to 3 padlocks or a multiple lock device} \\
\hline & \multicolumn{3}{|l|}{All 250 AF MCCBs (1-4 pole)} \\
\hline & Lock with \(5 \mathrm{~mm} \times 16.5 \mathrm{~mm}\) slot & T2HL25B & 31.50 \\
\hline \multirow[t]{4}{*}{HL} & \multicolumn{3}{|l|}{Captive: Allows a single padlock or multiple padlock device} \\
\hline & \multicolumn{3}{|l|}{Suits 3/4 pole 250 AF MCCBs} \\
\hline & Lock with one 8 mm holes & T2HL25CAP & 33.50 \\
\hline & For 1 pole MCCBs, \(1 \times 8 \mathrm{~mm}\) hole & T2HLS160NFCAP & 92.00 \\
\hline
\end{tabular}


T2CF locking clip


Inter pole barriers T2BA


Non captive lock attachment T2HL25B


T2HL25CAP Captive lock attachment

Notes: \({ }^{1}\) ) Line side interpole barriers or terminal covers must be installed with MCCBs.
\({ }^{2}\) ) Interpole Barriers are supplied with MCCBs as standard; 2 barriers with 3 pole MCCBs, and 3 barriers with 4 pole MCCBs.

\section*{Accessories to suit 160-250 AF TemBreak 2}

External accessories
Cat. No.
Price \$
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{ProSafe handle lock option \({ }^{1}\) )} & \multicolumn{3}{|l|}{Allen-Bradley ProSafe locks can be used with T2HS variable depth handles. Refer NHP for direct mounting handle options.} \\
\hline & \multicolumn{3}{|l|}{Suits MCCB types E/S/H/L 160-250} \\
\hline & Prosafe shot bolt lock HS handles xx code & TKNHP & 520.00 \\
\hline \multirow[t]{2}{*}{TKN} & Prosafe standard key xx code for above & TKNNHPKEY & 130.00 \\
\hline & Cam for T2HS handle shafts Key codes A to Z are available. Specify by changing the key code above. & 14997702 & 235.00 \\
\hline \multirow[t]{2}{*}{Attached Busbar} & \multicolumn{3}{|l|}{S/H/L160, E/S/H/L250} \\
\hline & 2 straight terminal bars & T2FB251BA & 26.80 \\
\hline \multirow{3}{*}{FB} & 3 Pole, set of 6, flanged bar set & T2FB253BA & 77.50 \\
\hline & 3 Pole, set of 6, flanged bar set \({ }^{2}\) ) & TXJD0050B & 75.50 \\
\hline & 4 Pole, set of 8, straight bar set & T2FB254BA & 103.00 \\
\hline \multicolumn{4}{|l|}{Tunnel clamp S/H/L160, E/S/H/L250} \\
\hline terminals & \[
\begin{aligned}
& \text { 3 Pole, set of } 6 \text { clamps } \\
& 35-120 \mathrm{~mm}^{2} \text { ) }
\end{aligned}
\] & T2FW25L3B & 173.00 \\
\hline FW & 4 Pole, set of 8 clamps \(35-120 \mathrm{~mm}^{2}\) ) & T2FW25L4B & 240.00 \\
\hline
\end{tabular}


Notes: \({ }^{1}\) ) Contact NHP for lock options.
\({ }^{\text {2 }}\) ) TemBreak 1 version will fit TemBreak 2.

\section*{Accessories to suit 160-250 AF TemBreak 2}

External accessories
Cat. No.
Price \$
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{Rear connect terminal studs} & Suits MCCB types S160, & 1) Not S25 & \\
\hline & 3 pole kit, set of 6 studs & T2RP253SB & 375.00 \\
\hline & 4 pole kit, set of 8 studs & T2RP254SB & 480.00 \\
\hline \multirow{3}{*}{RP} & \multicolumn{3}{|l|}{H160, L160, H250, L250, S250PE} \\
\hline & 3 pole kit, set of 6 studs & T2RP253LA & 390.00 \\
\hline & 4 pole kit, set of 8 studs & T2RP254LA & 540.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{TemPlug} & \multicolumn{3}{|l|}{Suits MCCB types TemPlug MCCB line-side plug-in attachment} \\
\hline & \multicolumn{3}{|l|}{S160, E/S/250} \\
\hline & 3 pole TemPlug & T2UPX3250 & 330.00 \\
\hline \multirow[t]{2}{*}{UP} & S250PE & & \\
\hline & pole TemPlug & T2UPXE3250 & 350.00 \\
\hline
\end{tabular}

3 pole TemPlug
Templugs suit 6.3 mm busbar ( 10 mm bar option)
\begin{tabular}{lllr}
\hline \begin{tabular}{lll} 
OCR sealing \\
cover \\
SF
\end{tabular} & 250 A thermal magnetic & T2SF25NTA & \(\mathbf{2 6 . 8 0}\) \\
\cline { 2 - 4 } & 250 A electronic & T2SF25NEA & \(\mathbf{2 6 . 8 0}\) \\
\hline \begin{tabular}{l} 
Electronic \\
OCR checker
\end{tabular} & 230 V AC & TNS2 & \(\mathbf{6 5 9 0 . 0 0}\) \\
\hline
\end{tabular}


Notes: \({ }^{1}\) ) S160NF single pole MCCBs will accept T2RP25 rear connect studs.

\section*{Accessories to suit 160-250 AF TemBreak 2}

External accessories
Cat. No.
Price \$
\begin{tabular}{cllll} 
Pole fillers & \multicolumn{4}{l}{ Suits MCCB types S/H/L160, E/S/H/L250 } \\
& \begin{tabular}{l} 
Pole filler 1 strip for a 46 mm high
\end{tabular} & DTPF & \(\mathbf{4 . 3 0}\) \\
PF & \begin{tabular}{l} 
Cut-out \({ }^{1}\) )
\end{tabular} & XAB3 & \(\mathbf{3 . 8 0}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Door flange \\
DF
\end{tabular}} & \multicolumn{3}{|l|}{Provides an attractive panel cut-out surround for MCCBs or motors} \\
\hline & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { Suits MCCB sizes } \\
& \text { S/H/L160, E/S/H/L250 }
\end{aligned}
\]} \\
\hline & MCCB IP 30 gland and gasket & T2DF25A & 127.00 \\
\hline & MOTOR IP 30 gland and gasket & T2DM25A & 215.00 \\
\hline \multirow[t]{2}{*}{Door mounting flush plate} & \multicolumn{3}{|l|}{A kit that allows an MCCB to be mounted directly onto a door} \\
\hline & \multicolumn{3}{|l|}{S160, E250, S250 - except for S250PE} \\
\hline \multirow[b]{2}{*}{FP} & 3 pole kit & T2FP25S3B & 82.50 \\
\hline & 4 pole kit & T2FP25S4A & POA \\
\hline \multirow[t]{2}{*}{Wire lead terminal block} & 250 AF left side & T2TF25LGA & 189.00 \\
\hline & 250 AF right sideblock & T2TF25RGA & 189.00 \\
\hline TF & & & \\
\hline
\end{tabular}


Notes: \({ }^{1}\) ) Order 2 strips per MCCB.

\section*{TemBreak 2 Thermal magnetic type E400NJ}

\section*{25 kA}

Current rating: 252-400 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 25 & 25 \\
\hline DC use & 250 & 25 & 19 \\
\hline
\end{tabular}


Trip unit: Adjustable thermal ( \(0.63 \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\) ) and adjustable magnetic ( \(6 \mathrm{I}_{\mathrm{m}}\) to \(13 \mathrm{I}_{\mathrm{m}}\) )

Dimensions (mm)
\begin{tabular}{ll} 
Poles & \(\mathbf{3}\) \\
\hline\(H\) & 260 \\
\hline\(W\) & 140 \\
\hline\(D\) (less toggle) & 103 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \({ }^{1}{ }^{1}\) Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price
\end{tabular} \\
\hline 400 & \(250-400\) & \(2400-4800\) & E400 NJ 3 400 & 1930.00 \\
\hline
\end{tabular}

\footnotetext{
Notes: ') Adj. Ir: Adjustable thermal setting Adj. Im: Adjustable magnetic setting
NRC: Nominal rated current
Magnetic only MCCBs are available on request.
}

\section*{TemBreak 2 Thermal magnetic type S400CJ}

\section*{36 kA}

Current rating: 160-400 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
3
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 36 & 36 \\
\hline DC use & 250 & 40 & 40 \\
\hline
\end{tabular}


Trip unit: Adjustable thermal ( \(0.63 \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\) ) and adjustable magnetic
\[
\left(6 I_{m} \text { to } 12 I_{m}\right)
\]

Dimensions (mm)
\begin{tabular}{ll} 
Poles & \(\mathbf{3}\) \\
\hline\(H\) & 260 \\
\hline\(W\) & 140 \\
\hline\(D\) (less toggle) & 103 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \({ }^{\text {1 }}\) Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} \\
\hline 250 & \(160-250\) & \(1500-3000\) & S400 CJ 3 250 & \(\mathbf{1 9 3 0 . 0 0}\) \\
\hline 400 & \(250-400\) & \(2400-4800\) & S400 CJ 3 400 & \(\mathbf{1 9 7 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) Adj. Ir: Adjustable thermal setting Adj. Im: Adjustable magnetic setting
NRC: Nominal rated current
Magnetic only MCCBs are available on request.

\section*{TemBreak 2 Thermal magnetic type S400NJ}

\section*{50 kA}

Current rating: 160-400 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{1}{l}{ Voltage Icu } & Ics \\
\hline AC use & \(380 / 415\) & 50 & 50 \\
\hline DC use & 250 & 40 & 40 \\
\hline
\end{tabular}


Trip unit: Adjustable thermal ( \(0.63 \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\) ) and adjustable magnetic ( \(6 \mathrm{I}_{\mathrm{m}}\) to \(12 \mathrm{I}_{\mathrm{m}}\) )

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline\(H\) & 260 & 260 \\
\hline\(W\) & 140 & 185 \\
\hline D (less toggle) & 103 & 103 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \({ }^{1}{ }^{1}\) Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price
\end{tabular} \\
\hline 250 & \(160-250\) & \(1500-3000\) & S400 NJ 3 250 & \(\mathbf{2 0 2 0 . 0 0}\) \\
\hline 400 & \(250-400\) & \(2400-4800\) & S400 NJ 3 400 & \(\mathbf{2 0 2 0 . 0 0}\) \\
\hline
\end{tabular}

\section*{4 Pole}
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{\text {1 }}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \({ }^{\text {¹ }}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
4 pole \\
Price \$
\end{tabular} \\
\hline 250 & \(160-250\) & \(1500-3000\) & S400 NJ 4 250 & \(\mathbf{2 7 0 0 . 0 0}\) \\
\hline 400 & \(250-400\) & \(2400-4800\) & S400 NJ 4 400 & \(\mathbf{2 7 0 0 . 0 0}\) \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) Adj. Ir: Adjustable thermal setting
Adj. Im: Adjustable magnetic setting
NRC: Nominal rated current
Magnetic only MCCBs are available on request.
}

\section*{TemBreak 2 Electronic type S400NE}

\section*{50 kA}

Current rating: 100-400 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
3
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 50 & 50 \\
\hline
\end{tabular}


Overcurrent relay:
- Electronic, for general and selectivity applications
- 7 dial selectable characteristic curves suited for a variety of applications
- Base current \(I r\) is adjustable from \(40 \%-100 \%\) of the nominal rated current In.
- STD setting 2.5-10 (x Ir) ')
- INST setting 13-14 (x Ir) \({ }^{1}\) )

OCR Options:
- Refer S400GE

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 260 & 260 \\
\hline\(W\) & 140 & 185 \\
\hline D (less toggle) & 103 & 103 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{lllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} \\
\hline 250 & \(100-250\) & S400 NE 3 250 & \(\mathbf{2 1 8 0 . 0 0}\) \\
\hline 400 & \(160-400\) & S400 NE 3 400 & \(\mathbf{2 1 8 0 . 0 0}\) \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{lllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
4 pole \\
Price \$
\end{tabular} \\
\hline 250 & \(100-250\) & S400 NE 4 250 & \(\mathbf{2 1 8 0 . 0 0}\) \\
\hline 400 & \(160-400\) & S400 NE 4 400 & \(\mathbf{2 8 9 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: 1) For additional information on OCR setting and options refer section 9 or Part C catalogue.

\title{
TemBreak 2 Thermal magnetic type S400GJ
}

\section*{70 kA}

Current rating: 250-400 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:

\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 70 & 50 \\
\hline DC use & 250 & TBA & \\
\hline
\end{tabular}

Trip unit: Adjustable thermal ( \(0.63 \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\) ) and adjustable magnetic
\[
\text { ( } 6 I_{\mathrm{m}} \text { to } 12 \mathrm{I}_{\mathrm{m}} \text { ) }
\]

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 260 & 260 \\
\hline\(W\) & 140 & 185 \\
\hline D (less toggle) & 103 & 103 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{llllr}
\begin{tabular}{lll} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \({ }^{\text { }}\) ) \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price
\end{tabular} \\
\hline 250 & \(160-250\) & \(1500-3000\) & S400 GJ 3 250 & \(\mathbf{2 3 1 0 . 0 0}\) \\
\hline 400 & \(250-400\) & \(2400-4800\) & S400 GJ 3 400 & \(\mathbf{2 3 1 0 . 0 0}\) \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l}
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l}
Adj. Im \({ }^{1}\) \\
Min. - Max.
\end{tabular} & Cat. No. & 4 pole Price \$ \\
\hline 250 & 160-250 & 1500-3000 & S400 GJ 4250 & 3080.00 \\
\hline 400 & 250-400 & 2400-4800 & S400 GJ 4400 & 3080.00 \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) Adj. Ir: Adjustable thermal setting
Adj. Im: Adjustable magnetic setting
NRC: Nominal rated current
Magnetic only MCCBs are available on request.
}

\section*{TemBreak 2 Electronic type S400GE}

\section*{70 kA}

Current rating: 100-400 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 70 & 50 \\
\hline
\end{tabular}


\section*{Overcurrent relay:}
- Electronic, for general and selectivity applications
- 7 dial selectable characteristic curves suited for a variety of applications
- Base current \(I r\) is adjustable from \(40 \%-100 \%\) of the nominal rated current In.
- STD setting 2.5-10 (x Ir \()^{1}\) )
- INST setting 13-14 (x Ir ) )

\section*{OCR Options:}
- Ground fault trip (400 A OCR only)
- Neutral pole protection for 4 pole MCCBs ONLY
- Pre-trip alarm

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline\(H\) & 260 & 260 \\
\hline\(W\) & 140 & 185 \\
\hline\(D\) (less toggle) & 103 & 103 \\
\hline
\end{tabular}

Notes: ') Add overcurrent relay sensor AMP rating where" " + " is shown.

\section*{TemBreak 2 Electronic type S400GE}

3 Pole
\begin{tabular}{lllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} \\
\hline 250 & \(100-250\) & S400 GE 3 250 & \(\mathbf{2 5 5 0 . 0 0}\) \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{lllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
4 pole \\
Price \$
\end{tabular} \\
\hline \multirow{2}{*}{250} & \multirow{2}{*}{\(100-250\)} & S400 GE 4 250 & \(\mathbf{3 3 8 0 . 0 0}\) \\
\cline { 3 - 4 } & & S400 GE 4 400 & \(\mathbf{3 4 0 0 . 0 0}\)
\end{tabular}

\section*{S400GE with additional protection options}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Description} & Cat. No. & Price \$ \\
\hline \multirow{3}{*}{3 P OCR options:} & PTA \({ }^{1}\) ) & S400 GE 3 AP 400 & 2750.00 \\
\hline & \(\left.\mathrm{GF}^{1}\right)^{2}\) ) & S400 GE 3 AG 400 & 2720.00 \\
\hline & PTA + GF \(\left.{ }^{1}\right)^{2}\) ) & S400 GE 3 APG 400 & 2925.00 \\
\hline \multirow{4}{*}{4 P OCR options:} & PTA \({ }^{1}\) ) & S400 GE 4 AP 400 & 3590.00 \\
\hline & NP \({ }^{1}\) ) & S400 GE 4 AN 400 & 3590.00 \\
\hline & PTA + NP \({ }^{1}\) ) & S400 GE 4 APN 400 & 3780.00 \\
\hline & \(\left.G F+N P^{1}\right)\) & S400 GE 4 AGN 400 & 3780.00 \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) For additional information on OCR setting and options refer section 9 or Part C catalogue.
\({ }^{2}\) ) Where a neutral is present, a 4th Neutral pole CT is required for 3 pole GF MCCBs, and must be ordered separately using Cat. No.: T2GB40N04A. Refer page 3-100.

\section*{TemBreak 2 Electronic XOW Metering MCCBs S400GE _X1L / X1S}

\section*{70 kA}

Current rating: 100-400 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & 415 & 70 & 50 \\
\hline
\end{tabular}


XOW Over Current Relay:
- Ammeter or Energy Metering types
- Adjustable LSI setting for grading applications
- Base current adjustable from \(40 \%-100 \%\) of \(I_{n}\)

MCCB Standard features:

\section*{S400GE _X1L}

Ammeter, Adjustable LSI
Trip event log, Alarm event log, Test function
S400GE_X1S
- Energy (multifunction) meter: A, V, P, kW, kWh, E, Pf, F, H
- Adjustable LSI
- Backlit LCD display
- Ground fault, Pre trip alarm, Phase rotation \& Neutral pole protection
- Trip and Alarm event log, Test function, Trip indication contact output
- Modbus RTU 485 communications

External door mounting meter option (T2ED not incl. in below pricing)

\section*{Dimensions (mm)}
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H (less attached busbar) & 260 & 260 \\
\hline W & 140 & 185 \\
\hline D (less toggle) & 103 & 103 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
Amp \\
Ratin
\end{tabular} & & dj. Max. & Cat. No. \({ }^{1}\) ) & \begin{tabular}{l}
3 pole \\
Price \$
\end{tabular} & \begin{tabular}{l}
4 pole \\
Price \$
\end{tabular} \\
\hline \multirow{4}{*}{MCCB with ammeter} & \multirow[t]{2}{*}{250} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{250} & S400 GE 3250 X1L & 4650.00 & \\
\hline & & & & S400 GE 4250 X1L & & 5690.00 \\
\hline & \multirow[t]{2}{*}{400} & \multirow[t]{2}{*}{160} & \multirow[t]{2}{*}{400} & S400 GE 3400 X1L & 4900.00 & \\
\hline & & & & S400 GE 4400 X1L & & 5880.00 \\
\hline \multirow[t]{4}{*}{MCCB with energy meter} & \multirow[t]{2}{*}{250} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{250} & S400 GE 3250 X1S & 6550.00 & \\
\hline & & & & S400 GE 4250 X1S & & 7750.00 \\
\hline & \multirow[t]{2}{*}{400} & \multirow[t]{2}{*}{160} & \multirow[t]{2}{*}{400} & S400 GE 3400 X1S & 6800.00 & \\
\hline & & & & S400 GE 4400 X1S & & 8160.00 \\
\hline
\end{tabular}

Notes: NRC: Nominal rated current, Ir: Current adjustment dial setting,
STD = Short Time Delay, INST = instantaneous
For additional information on installation, options and applications refer Section 9, Part C catalogue or NHP.

\section*{TemBreak 2690 V AC High Fault Interruption MCCB L400PE}

\section*{70 kA}

Current rating: 100-400 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2
Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{c}{ Voltage } & Icu \\
ACs \\
\hline AC use & 690 & 70 & 50 \\
\hline
\end{tabular}


\section*{Over Current Relay:}
- Electronic, for general \& selectivity applications
- 7 dial selectable characteristic curves suited for a variety of applications
- Base current Ir is adjustable from \(40 \%-100 \%\) of the nominal rated current In
- STD setting \(\left.\quad 2.5-10\left(\mathrm{XI}_{\mathrm{R}}\right)^{1}\right)\)
- INST setting \(\left.\quad 14\left(\operatorname{Max} 13 \times I_{n}\right)^{1}\right)\)

Dimensions (mm)
\begin{tabular}{ll} 
Poles & \(\mathbf{3}\) \\
\hline H (less attached busbar) & 260 \\
\hline W & 140 \\
\hline D (less toggle) & 140 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{lllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} \\
\hline 250 & \(100-250\) & L400 PE 3 250 & \(\mathbf{3 2 4 0 . 0 0}\) \\
\hline 400 & \(252-400\) & L400 PE 3 400 & \(\mathbf{3 2 4 0 . 0 0}\) \\
\hline
\end{tabular}

\footnotetext{
Notes: NRC = Nominal rated current, IR = Current adjustment dial setting, STD = Short Time Delay, INST = instantaneous
\({ }^{1}\) ) The STD and Instantaneous pickup currents ( \(I_{\text {sd }} \& I_{\mathrm{i}}\) ) settings are not individually adjustable, however by selecting different curve types and different \(I_{R}\) settings the values will vary. Curves \(1 \& 2 \mathrm{I}_{\mathrm{sd}}=2.5 \times \mathrm{I}_{\mathrm{R}}\), curve 3 Isd \(=5 \times I_{R}\), curves 4-7 \(I_{\text {sd }}=10 \mathrm{x} I_{R}\).
IR dial setting \(0.4-0.9 I_{i}=14 \times I_{R}\) and \(I_{R}\) dial setting \(0.95-1.0 I_{i}=13 \times I_{R}\). Not suitable for reverse connection either individually or on a chassis. Suitable for general motor starting and power distribution applications. Refer NHP for 4 pole version availability.
Refer NHP for additional information.
}

\section*{TemBreak 2 Electronic type S400PE}

\section*{85 kA}

Current rating: 100-400 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
3
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 85 & 85 \\
\hline
\end{tabular}


Overcurrent relay:
- Electronic, for general and selectivity applications
- 7 dial selectable characteristic curves suited for a variety of applications
- Base current \(I r\) is adjustable from \(40 \%-100 \%\) of the nominal rated current In.
- STD setting 2.5-10 (x/r) )
- INST setting 13-14 (x /r) )

\section*{OCR Options:}
- Ground fault trip (400 A OCR only)
- Neutral pole protection for 4 pole MCCBs ONLY
- Pre-trip alarm

Notes: \({ }^{1}\) ) Add overcurrent relay sensor AMP rating where " + " is shown.

\section*{TemBreak 2 Electronic type S400PE}

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 260 & 260 \\
\hline W & 140 & 185 \\
\hline D (less toggle) & 103 & 103 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{lllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price S
\end{tabular} \\
\hline 250 & \(100-250\) & S400 PE 3 250 & \(\mathbf{2 7 8 0 . 0 0}\) \\
\hline 400 & \(160-400\) & S400 PE 3400 & \(\mathbf{2 7 8 0 . 0 0}\) \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{lllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
4 pole \\
Price \$
\end{tabular} \\
\hline 250 & \(100-250\) & S400 PE 4250 & \(\mathbf{3 4 8 0 . 0 0}\) \\
\hline 400 & \(160-400\) & S400 PE 4400 & \(\mathbf{3 4 8 0 . 0 0}\) \\
\hline
\end{tabular}

Price Adder - For OCR options
\begin{tabular}{|c|c|c|c|}
\hline Description & & Cat. No. & Price \$ \\
\hline \multirow{3}{*}{3 P OCR options:} & PTA \({ }^{1}\) ) & S400 PE 3 AP + & 187.00 \\
\hline & \(\left.\left.\mathrm{GF}^{1}\right)^{2}\right)\) & S400 PE 3 AG 400 & 187.00 \\
\hline & PTA + GF \(\left.{ }^{1}\right)^{2}\) ) & S400 PE 3 APG 400 & 375.00 \\
\hline \multirow{4}{*}{4 P OCR options:} & PTA \({ }^{1}\) ) & S400 PE 4 AP + & 187.00 \\
\hline & NP \({ }^{1}\) ) & S400 PE 4 AN + & 187.00 \\
\hline & PTA + NP \({ }^{1}\) ) & S400 PE 4 APN + & 375.00 \\
\hline & \(\overline{\left.\mathrm{GF}+\mathrm{NP}^{1}\right)}\) & S400 PE 4 AGN 400 & 375.00 \\
\hline
\end{tabular}

Notes: \({ }^{1)}\) For additional information on OCR setting and options refer section 9 or Part C catalogue.
\({ }^{2}\) ) Where a neutral is present, a 4th Neutral pole CT is required for 3 pole GF MCCBs, and must be ordered separately using Cat. No.: T2GB40N04A. Refer to page 3-100.

\section*{TemBreak 2 Electronic type H400NE}

\section*{125 kA}

Current rating: 100-400 A
Approvals and Tests: Standards AS/NZS 3947-2 and
IEC 60947-2
Interrupting capacity:
3
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 125 & 85 \\
\hline
\end{tabular}


Overcurrent relay:
- Electronic, for general and selectivity applications
- 7 dial selectable characteristic curves suited for a variety of applications
- Base current \(I r\) is adjustable from \(40 \%-100 \%\) of the nominal rated current In.
- STD setting 2.5-10 (x If \()^{1}\) )
- INST setting 13-14 (x /r \()^{\prime}\) )

\section*{OCR Options:}
- Ground fault trip (400 A OCR only)
- Neutral pole protection for 4 pole MCCBs
- Pre-trip alarm

Notes: ') Add overcurrent relay sensor AMP rating where" + " is shown.

\section*{TemBreak 2 Electronic type H400NE}

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline\(H\) & 260 & 260 \\
\hline\(W\) & 140 & 185 \\
\hline\(D\) (less toggle) & 140 & 140 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{lllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \(\$\)
\end{tabular} \\
\hline 250 & \(100-250\) & H400 NE 3 250 & \(\mathbf{3 2 4 0 . 0 0}\) \\
\hline 400 & \(160-400\) & H400 NE 3 400 & \(\mathbf{3 2 4 0 . 0 0}\) \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{lllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
4 pole \\
Price \$
\end{tabular} \\
\hline 250 & \(100-250\) & H400 NE 4 250 & \(\mathbf{4 3 2 0 . 0 0}\) \\
\hline 400 & \(160-400\) & H400 NE 4400 & \(\mathbf{4 3 2 0 . 0 0}\) \\
\hline
\end{tabular}

Price Adder - For OCR options
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Description} & \multicolumn{2}{|r|}{Cat. No.} & Price \$ \\
\hline & PTA \({ }^{1}\) ) & H400 NE 3 AP + & 187.00 \\
\hline \multirow[t]{2}{*}{3 P OCR options:} & GF \({ }^{1}{ }^{2}\) ) & H400 NE 3 AG 400 & 187.00 \\
\hline & PTA + GF \(\left.{ }^{1}\right)^{2}\) ) & H400 NE 3 APG 400 & 375.00 \\
\hline \multirow{4}{*}{4 P OCR options:} & PTA \({ }^{1}\) ) & H400 NE 4 AP + & 187.00 \\
\hline & NP \({ }^{1}\) ) & H400 NE 4 AN + & 187.00 \\
\hline & PTA + NP \({ }^{1}\) ) & H400 NE 4 APN + & 375.00 \\
\hline & GF + NP \({ }^{1}\) ) & H400 NE 4 AGN 400 & 375.00 \\
\hline
\end{tabular}

Notes: \({ }^{1)}\) For additional information on OCR setting and options refer section 9 or Part C catalogue.
\({ }^{2}\) ) Where a neutral is present, a 4th Neutral pole CT is required for 3 pole GF MCCBs, and must be ordered separately using Cat. No.: T2GB40N04A. Refer to page 3-100.

\section*{TemBreak 2 Electronic XOW Metering MCCBs H400NE _X1L / X1S}

\section*{125 kA}

Current rating: 100-400 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & 415 & 125 & 85 \\
\hline
\end{tabular}


XOW Over Current Relay:
- Ammeter or Energy Metering types
- Adjustable LSI setting for grading applications
- Base current adjustable from \(40 \%-100 \%\) of \(\mathrm{I}_{n}\)

MCCB Standard features:
H400NE _ X1L

- Trip event log, Alarm event log, Test function
```

H400NE X1S

```

Energy (multifunction) meter: A, V, P, kW, kWh, E, Pf, F, H
- Adjustable LSI
- Backlit LCD display
- Ground fault, Pre trip alarm, Phase rotation \& Neutral pole protection
- Trip and Alarm event log, Test function, Trip indication contact output
- Modbus RTU 485 communications
- External door mounting meter option (T2ED not incl. in below pricing)

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H (less attached busbar) & 260 & 260 \\
\hline W & 140 & 185 \\
\hline D (less toggle) & 103 & 103 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
Amp \\
Ratin
\end{tabular} & & d. Max. & Cat. No. & 3 pole Price \$ & \begin{tabular}{l}
4 pole \\
Price \(\$\)
\end{tabular} \\
\hline \multirow{4}{*}{\begin{tabular}{l}
MCCB \\
with \\
ammeter
\end{tabular}} & \multirow[t]{2}{*}{250} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{250} & H400 NE 3250 X1L & 5350.00 & \\
\hline & & & & H400 NE 4250 X1L & & 6540.00 \\
\hline & \multirow[t]{2}{*}{400} & \multirow[t]{2}{*}{160} & \multirow[t]{2}{*}{400} & H400 NE 3400 X1L & 5350.00 & \\
\hline & & & & H400 NE 4400 X1L & & 6540.00 \\
\hline \multirow[t]{4}{*}{MCCB with energy meter} & \multirow[t]{2}{*}{250} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{250} & H400 NE 3250 X1S & 7150.00 & \\
\hline & & & & H400 NE 4250 X1S & & 8250.00 \\
\hline & \multirow[t]{2}{*}{400} & \multirow[t]{2}{*}{160} & \multirow[t]{2}{*}{400} & H400 NE 3400 X1S & 7150.00 & \\
\hline & & & & H400 NE 4400 X1S & & 8250.00 \\
\hline
\end{tabular}

Notes: NRC: Nominal rated current, Ir: Current adjustment dial setting,
STD = Short Time Delay, INST = instantaneous
For additional information on installation, options and applications refer Section 9, Part C catalogue or NHP.

\section*{TemBreak 2 Electronic type L400NE}

\section*{200 kA}

Current rating: 100-400 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 200 & 150 \\
\hline
\end{tabular}


Overcurrent relay:
- Electronic, for general and selectivity applications
- 7 dial selectable characteristic curves suited for a variety of applications
- Base current \(I r\) is adjustable from \(40 \%-100 \%\) of the nominal rated current In.
- STD setting 2.5-10(x/r) \({ }^{1}\) )
- INST setting 13-14 (x /r \()^{1}\) )

OCR Options:
- Ground fault trip (400 A OCR only)
- Neutral pole protection for 4 pole MCCBs
- Pre-trip alarm

Notes: \({ }^{1}\) ) Add Over Current Relay sensor AMP rating where " + " is shown.

\section*{TemBreak 2 Electronic type L400NE}

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 260 & 260 \\
\hline\(W\) & 140 & 185 \\
\hline D (less toggle) & 140 & 140 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{lllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. \({ }^{1}\) ) & \begin{tabular}{r} 
3 pole \\
Price \(\mathbf{\$}\)
\end{tabular} \\
\hline 250 & \(100-250\) & L400 NE 3250 & \(\mathbf{3 3 7 0 . 0 0}\) \\
\hline 400 & \(160-400\) & L400 NE 3 400 & \(\mathbf{3 3 7 0 . 0 0}\) \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{lllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. \({ }^{\text {1 }}\) ) & \begin{tabular}{c} 
4 pole \\
Price \$
\end{tabular} \\
\hline 250 & \(100-250\) & L400 NE 4250 & \(\mathbf{4 3 8 0 . 0 0}\) \\
\hline 400 & \(160-400\) & L400 NE 4400 & \(\mathbf{4 3 8 0 . 0 0}\) \\
\hline
\end{tabular}

Price Adder - For OCR options.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Description} & Cat. No. & 3 pole Price \\
\hline \multirow{3}{*}{3 P OCR options:} & PTA \({ }^{2}\) ) & L400 NE 3 AP + & 187.00 \\
\hline & \(\left.\left.\mathrm{GF}^{2}\right)^{3}\right)\) & L400 NE 3 AG 400 & 187.00 \\
\hline & PTA + GF \(\left.{ }^{2}\right)^{3}\) ) & L400 NE 3 APG 400 & 375.00 \\
\hline \multirow{4}{*}{4 P OCR options:} & PTA \({ }^{2}\) ) & L400 NE 4 AP + & 187.00 \\
\hline & NP \({ }^{2}\) ) & L400 NE 4 AN + & 187.00 \\
\hline & PTA + NP \({ }^{2}\) ) & L400 NE 4 APN + & 375.00 \\
\hline & \(\mathrm{GF}+\mathrm{NP}^{2}\) ) & L400 NE 4 AGN 400 & 375.00 \\
\hline
\end{tabular}

Notes: \({ }^{1)}\) Add Over Current Relay sensor AMP rating where " + " is shown.
\({ }^{\text {2 }}\) ) For additional information on OCR setting and options refer section 9 or Part C catalogue.
\({ }^{3}\) ) Where a neutral is present, a 4th Neutral pole CT is required for 3 pole GF MCCBs, and must be ordered separately using Cat. No.: T2GB40N04A. Refer to page 3-100.


\section*{THINK PRODUCTS AND SOLUTIONS. THINK NHP.}

NHP's Products Team is backed by years of experience from dedicated engineers and specialists, focused on providing Australasia's most comprehensive product range and project solutions.

\section*{Products Team}

As well as extensive application, technical and product knowledge, our high quality Products Teams are determined to provide customised motor starters and controllers to specification, by listening to you and your needs.
Together with NHP's Service Team, NHP is able to offer assistance with commissioning and site maintenance work.

Think Products and Solutions. Think NHP.

\section*{TemBreak 2 Electronic type E630NE}

\section*{36 kA}

Current rating: 252-630 A
Approvals and Tests: Standards AS/NZS 3947-2 and
IEC 60947-2
Interrupting capacity:
\begin{tabular}{lclc} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 36 & 36 \\
\hline
\end{tabular}


\section*{Overcurrent relay:}

Electronic, for general and selectivity applications
- 6 dial selectable characteristic curves suited for a variety of applications
- Base current \(I r\) is adjustable from \(40 \%-100 \%\) of the nominal rated current In.
- STD setting 2.5-8 (x Ir \()^{\text {' }}\) )

INST setting 10-14 (x /r) )
OCR Options:
- Ground fault trip

Dimensions (mm)
\begin{tabular}{ll} 
Poles & \(\mathbf{3}\) \\
\hline\(H\) & 260 \\
\hline\(W\) & 140 \\
\hline\(D\) (less toggle) & 103 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{lllr} 
Ampere & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} \\
\hline 630 & \(252-630\) & E630 NE 3 630 & \(\mathbf{2 7 0 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1)}\) The STD and instantaneous pickup current (Isd \& li ) settings are not individually adjustable, however by selecting different curve types and different Ir settings the values will vary. Curve \(1 \& 2 \mathrm{Isd}=2.5 \times \mathrm{I}_{\mathrm{R}}\), curve 3 Isd \(=5 \times \mathrm{I}_{R}\), curve \(4-6 \mathrm{Isd}=8 \times \mathrm{I}_{R} . \mathrm{I}_{R}\) dial setting \(0.4-0.63 \mathrm{li}=14 \times \mathrm{I}_{\mathrm{R}}\) and \(\mathrm{I}_{\mathrm{R}}\) dial setting \(0.8-1.0 \mathrm{li}=10 \times \mathrm{IR}\). Refer curve examples and setting data in Section 9.
NRC = Nominal rated current, \(\mathrm{I}_{\mathrm{R}}=\) Current adjustment dial setting, STD = Short Time Delay, INST = instantaneous

\section*{TemBreak 2 Electronic type S630CE}

\section*{50 kA}

Current rating: 252-630 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & \(380 / 415\) & 50 & 50 \\
\hline
\end{tabular}


\section*{Overcurrent relay:}
- Electronic, for general and selectivity applications
- 6 dial selectable characteristic curves suited for a variety of applications

Base current \(I r\) is adjustable from \(40 \%-100 \%\) of the nominal rated current In.
- STD setting 2.5-8 (x Ir \()^{1}\) )

INST setting 10-14 (x Ir) ')
OCR Options:
- Refer S630GE

Dimensions (mm)
Refer page 3-86
3 Pole
\begin{tabular}{lllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} \\
\hline 630 & \(252-630\) & S630 CE 3 630 & \(\mathbf{2 9 2 0 . 0 0}\) \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{lllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
4 pole \\
Price \$
\end{tabular} \\
\hline 630 & \(252-630\) & S630 CE 4 630 & \(\mathbf{3 8 8 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) The STD and instantaneous pickup currents (Isd \& li) settings are not individually adjustable, however by selecting different curve types and different \(\mathrm{I}_{\mathrm{R}}\) settings the values will vary. Curve \(1 \& 2 \mathrm{Isd}=2.5 \times \mathrm{I}_{\mathrm{R}}\), curve 3 Isd \(=5 \times \mathrm{I}_{\mathrm{R}}\), curve \(4-6 \mathrm{Isd}=8 \times \mathrm{I}_{\mathrm{R}}\). \(\mathrm{I}_{\mathrm{R}}\) dial setting \(0.4-0.63 \mathrm{li}=14 \times \mathrm{I}_{\mathrm{R}}\) and \(\mathrm{I}_{\mathrm{R}}\) dial setting \(0.8-1.0 \mathrm{li}=10 \times \mathrm{I}_{\mathrm{R}}\). Refer curve examples and setting data in Section 9.
NRC = Nominal rated current, \(I_{R}=\) Current adjustment dial setting, STD = Short Time Delay, INST = instantaneous

\section*{T1HS /T2HS HANDLES}

For Terasaki moulded case circuit breakers up to 1600 A .

\section*{NHer}

- IP55 rated plastic handle
- Long variable depth shaft supplied standard
- Heavy duty metal locking lever standard
- Internal door interlocking components are all metal
- All handles mount in a 31-37 mm hole
- Short lever handles on MCCBs to 250 A, longer types 400-1600 A
- 105 mm 2 or 130 mm 2 escutcheon plates are optional
- Handles are padlockable in the OFF position as standard
- ON padlocking optional via on site handle modification
- Accepts up to three 4-8 mm locks or multi lock devices
- Door opens when handle is switched to OFF position
- Door will not open when handle is padlocked OFF
- Door defeat function standard
- Padlock option for handle mechanism mounted on MCCB
- Door defeat non functional when padlocked OFF
- All handle mechanisms allow MCCB dial setting viewing and access
- For IP 65 applications T1HP/T2HP handles are available
- ON indication flag on handle mechanism
- Prosafe trapped key interlock options

\section*{TemBreak 2 Electronic type S630GE}

\section*{70 kA}

Current rating: 252-630 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{lll} 
& Voltage Icu & Ics \\
\hline AC use & \(380 / 415 \quad 70\) & 50 \\
\hline
\end{tabular}


\section*{Overcurrent relay:}
- Electronic, for general and selectivity applications
- 7 dial selectable characteristic curves suited for a variety of applications
- Base current \(I r\) is adjustable from \(40 \%-100 \%\) of the nominal rated current In.
- STD setting 2.5-8 (x \(/ r^{\text {I }}\) )
- INST setting 10-14 (x/r) )

OCR Options:
- Ground fault trip
- Neutral pole protection for 4 pole MCCBs ONLY
- Pre-trip alarm

Notes: \({ }^{1)}\) The STD and instantaneous pickup currents (Isd \& li) settings are not individually adjustable, however by selecting different curve types and different \(\mathrm{I}_{\mathrm{R}}\) settings the values will vary. Curve \(1 \& 2 \mathrm{Isd}=2.5 \times \mathrm{I}_{\mathrm{R}}\) curve 3 Isd \(=5 \times I_{R}\), curve \(4-6 \mathrm{Isd}=8 \times \mathrm{I}_{R} . \mathrm{I}_{R}\) dial setting \(0.4-0.63 \mathrm{li}=14 \times \mathrm{I}_{R}\) and \(I_{R}\) dial setting
\(0.8-1.0 \mathrm{li}=10 \times \mathrm{I}_{\mathrm{R}}\). Refer curve examples and setting data in Section 9.
NRC = Nominal rated current, \(\mathrm{I}_{\mathrm{R}}=\) Current adjustment dial setting,
STD = Short Time Delay, INST = instantaneous

\section*{TemBreak 2 Electronic type S630GE}

Dimensions (mm)
Refer page 3-86
3 Pole
\begin{tabular}{lllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \(\$\)
\end{tabular} \\
\hline 630 & \(252-630\) & S630 GE 3630 & \(\mathbf{3 1 3 0 . 0 0}\) \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{lllr}
\begin{tabular}{lll} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
4 pole \\
Price \(\$\)
\end{tabular} \\
\hline 630 & \(252-630\) & S630 GE 4630 & \(\mathbf{4 1 8 0 . 0 0}\) \\
\hline
\end{tabular}

MCCB price with OCR option fitted.
\begin{tabular}{|c|c|c|c|}
\hline Description & & Cat. No. & Price \$ \\
\hline & PTA \({ }^{1}\) ) & S630 GE 3 AP 630 & 3330.00 \\
\hline \multirow[t]{2}{*}{3 P OCR options:} & \(\left.\mathrm{GF}^{1}\right)^{2}\) ) & S630 GE 3 AG 630 & 3330.00 \\
\hline & PTA + GF \(\left.{ }^{1}\right)^{2}\) ) & S630 GE 3 APG 630 & 3530.00 \\
\hline \multirow{4}{*}{4 P OCR options:} & PTA \({ }^{1}\) ) & S630 GE 4 AP 630 & 4370.00 \\
\hline & NP \({ }^{1}\) ) & S630 GE 4 AN 630 & 4370.00 \\
\hline & PTA + NP \({ }^{1}\) ) & S630 GE 4 APN 630 & 4570.00 \\
\hline & \(\mathrm{GF}+\mathrm{NP}^{1}\) ) & S630 GE 4 AGN 630 & 4570.00 \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) To order a MCCB with the above options insert the required option after the pole to make up the Cat. No. E.g.: S630GE 3 AG 630 is a S630GE 3 Pole 630 A MCCB c/w Ground Fault protection.
\({ }^{2}\) ) Where a neutral is present, a 4th Neutral pole CT is required for 3 pole GF MCCBs and must be ordered separately using Cat. No.: T2GB40N06A. Refer to page 3-100.

\section*{TemBreak Electronic XOW Metering MCCBs S630GE _X1L / X1S}

\section*{70 kA}

Current rating: 252-630 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{c}{ Voltage } & Icu \\
AC use & 415 & 70 & 50 \\
\hline
\end{tabular}


\section*{XOW Over Current Relay:}
- Ammeter or Energy Metering types
- Adjustable LSI setting for grading applications
- Base current adjustable from \(40 \%-100 \%\) of \(\mathrm{I}_{n}\) MCCB Standard features:

\section*{S630PE_X1L}

■ Ammeter, Adjustable LSI
- Trip event log, Alarm event log, Test function

\section*{S630PE _ X1S}
- Energy (multifunction) meter: A, V, P, kW, kWh, E, Pf, F, H
- Adjustable LSI
- Backlit LCD display
- Ground fault, Pre trip alarm, Phase rotation \& Neutral pole protection
- Trip and Alarm event log, Test function, Trip indication contact output
- Modbus RTU 485 communications

External door mounting meter option (T2ED not incl. in below pricing)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Dimensions (mm) \\
Poles
\end{tabular}} & 3 & & 4 & & \\
\hline \multicolumn{2}{|l|}{H (less attached busbar)} & r) 2 & 260 & 260 & & \\
\hline \multicolumn{2}{|l|}{W} & & 140 & 185 & & \\
\hline \multicolumn{2}{|l|}{D (less toggle)} & & 103 & 103 & & \\
\hline & Ampere Rating NRC & & dj. . Max. & Cat. No. & 3 pole Price \(\$\) & \begin{tabular}{l}
4 pole \\
Price \(\$\)
\end{tabular} \\
\hline \multirow[t]{2}{*}{MCCB with ammeter} & \multirow[t]{2}{*}{630} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{252630}} & S630 GE 3630 X1L & 5500.00 & \\
\hline & & & & S630 GE 4630 X1L & & 6600.00 \\
\hline \multirow[t]{2}{*}{MCCB with energy meter} & \multirow[t]{2}{*}{630} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{252630}} & S630 GE 3630 X1S & 7340.00 & \\
\hline & & & & S630 GE 4630 X1S & & 8800.00 \\
\hline
\end{tabular}

Notes: NRC: Nominal rated current, \(\mathrm{I}_{\text {r: }}\) Current adjustment dial setting,
STD = Short Time Delay, INST = instantaneous
For additional information on installation, options and applications refer Section 9, Part C catalogue or NHP.

\section*{Accessories to suit 400 / 630 AF TemBreak 2}


External accessories
Cat. No.
Price \$
Shunt trips Internal accessories are common for MCCBs 125 A to 630 A . All have screw terminals except those indicated below with wire leads as standard
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline & For 3 and 4 pole MCCB & & \\
\hline & 110 V AC & T2SH00A10TA \({ }^{1}\) ) & 255.00 \\
\hline & 230-240 V AC & T2SH00A20TA \({ }^{1}\) ) & 255.00 \\
\hline SH & 400-415 V AC & T2SH00A40TA \({ }^{1}\) ) & 255.00 \\
\hline & 24 V DC (Suits \(24 \mathrm{~V} \mathrm{AC)}\) & T2SH00D02TA \({ }^{1}\) ) & 255.00 \\
\hline & 48 V DC & T2SH00D04TA \({ }^{1}\) ) & 255.00 \\
\hline & 110 V DC & T2SH00D10TA \({ }^{1}\) ) & 255.00 \\
\hline & 230 V DC & T2SH00D20TA \({ }^{1}\) ) & 255.00 \\
\hline Undervolt & Instantaneous operati & & \\
\hline trips & 110 V AC & T2UV00A10NTA & 270.00 \\
\hline & 200-240 V AC & T2UV00A20NTA & 270.00 \\
\hline & 380-450 V AC & T2UV00A40NTA & 270.00 \\
\hline UV & 24 V DC & T2UV00D02NTA & 270.00 \\
\hline & 110 V DC & T2UV00D10NTA & 270.00 \\
\hline & 230 V DC & T2UV00D20NTA & 270.00 \\
\hline
\end{tabular}
\begin{tabular}{llll}
\multicolumn{4}{l}{ Time delayed operation (500 ms) - refer NHP } \\
\hline \begin{tabular}{l} 
Auxiliary \& \\
\begin{tabular}{l} 
Alarm \\
switches
\end{tabular}
\end{tabular} & \multicolumn{4}{l}{ General type (2 A @ 240 V Inductive) } & \\
\hline
\end{tabular}

AX Heavy-duty type (4 A @ 240 V Inductive)

AL
\begin{tabular}{lll}
\hline 1 N/O Auxiliary & T2AX00B1STA & \(\mathbf{1 4 6 . 0 0}\) \\
\hline 1 N/C Auxiliary & T2AX00B2STA & 146.00 \\
\hline 1 N/O Alarm & T2AL00B1STA & 146.00 \\
\hline 1 N/C Alarm & T2AL00B2STA & \(\mathbf{1 4 6 . 0 0}\)
\end{tabular}

Micro switching type (very low voltages)
\begin{tabular}{lll}
\hline 1C/O Auxiliary & T2AX00M3RTA & 187.00 \\
\hline 1 C/O Alarm & T2ALOOM3RTA & 187.00 \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) Wire lead types available.

\section*{Accessories to suit 400 / 630 AF TemBreak 2}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{External accessories} & Cat. No. & Price \$ \\
\hline \multirow[t]{4}{*}{Motor operators} & \begin{tabular}{l}
Suits MCCB types \\
E400, S400, H400, L400, E63
\end{tabular} & & \\
\hline & 110-240 V AC & T2MC40A10NB & 2420.00 \\
\hline & 24-48V DC & T2MC40D02NB & 2420.00 \\
\hline & 110 VDC & T2MC40D10NB & 2420.00 \\
\hline \multirow{5}{*}{MC} & \multicolumn{3}{|l|}{Motor connection cable loom for Electrical interlocking} \\
\hline & T2MC40 cable 600 mm . 400AF only & T2MM40L06A & 60.50 \\
\hline & T2MC40 cable 2100 mm .400 AF only & T2MM40L21A & 80.00 \\
\hline & Motor options: Contact NHP for & locking and auto- & \\
\hline & MCCB identification labels & T40CAPLAB & 3.50 \\
\hline
\end{tabular}


Accessories to suit 400 / 630 AF TemBreak 2

External accessories
Cat. No.
Price \(\$\)
\left.\begin{tabular}{lllrr} 
Operating- & \multicolumn{1}{l}{ Suits MCCB types } \\
handles
\end{tabular}\(\right)\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{Door interlocking variable depth handles} & \multicolumn{3}{|l|}{E400, S400, H400, L400, E630, S630} \\
\hline & Grey IP55 handle +320 mm shaft & T2HS40R5GM & 370.00 \\
\hline & Red/yellow IP55 handle + 320 mm shaft & T2HS40R5RM & 315.00 \\
\hline & Large escutcheon plate option: \(100 \mathrm{~mm}^{2}\) & T2HSESC100 & 18.20 \\
\hline \multirow[t]{2}{*}{HS} & 390 mm T pin shaft for T2HS no flexi coupling & T2HS400SHAFT & 47.00 \\
\hline & Grey/black IP65 handle + 445 mm shaft & T2HP40R6BN & 315.00 \\
\hline \multirow[t]{3}{*}{HP} & Red/yellow IP65 handle + 445 mm shaft & T2HP40R6RN & 330.00 \\
\hline & Padlock attachment forT2HP/HS mechanism & T2HP40PALK & 49.50 \\
\hline & MCCB identification labels & T40CAPLAB & 3.50 \\
\hline
\end{tabular}


T2HP40 Variable depth handle


T2HP40PALK Mechanism padlock attachment


T2HS handle with optional escutcheon plate, type T2HSESC100


T2HB fixed depth "direct mount" handle

Notes: Handles supplied with key locks available on request for T2HP handles.

\section*{Accessories to suit 400 / 630 AF TemBreak 2}

External accessories
Cat. No.
Price \(\$\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{Mechanical Interlocks Link type} & \multicolumn{3}{|l|}{Link Interlock - suitable for motorised operation. Suitable for front or rear contact MCCBs} \\
\hline & \multicolumn{3}{|l|}{E400, S400, H400, L400, E630, S630 \({ }^{1}\) )} \\
\hline & Common 3 or 4 pole right side section & T2ML40RB & 350.00 \\
\hline \multirow[t]{3}{*}{ML} & 3 pole left side section & T2ML40L3B & 133.00 \\
\hline & 4 pole left side section & T2ML40L4B & 133.00 \\
\hline & MCCB identification labels & T40CAPLAB & 3.50 \\
\hline \multirow{6}{*}{MH} & \multicolumn{3}{|l|}{Link Interlock - suitable for manual handle operation only. Suitable for front or rear contact MCCBs} \\
\hline & \multicolumn{3}{|l|}{E400, S400, H400, L400, E630, S630} \\
\hline & Common 3 or 4 pole right side section & T2MLH40RB & 350.00 \\
\hline & 3 pole left side section & T2MLH40L3B & 133.00 \\
\hline & 4 pole left side section & T2MLH40L4B & 133.00 \\
\hline & MCCB identification & T40CAPLAB & 3.50 \\
\hline
\end{tabular}


T2ML Interlock for motorised operation

Notes: Refer to Section 5 if MCCB labels are required or refer to NHP.
\({ }^{1}\) ) A handle or motor must be fitted in addition to the interlock.

\section*{Accessories to suit 400 / 630 AF TemBreak 2}

External accessories
Cat. No.
Price \$
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Slide type interlock} & \multicolumn{3}{|l|}{Manual operation, padlockable. Does not allow motors, handles or other front mounted accessories to be fitted.} \\
\hline & \multicolumn{3}{|l|}{Suitable for front or rear connection E400, S400, E630, S630} \\
\hline \multirow[t]{2}{*}{MS} & 3 pole & T2MS403SFA & 220.00 \\
\hline & 4 pole & T2MS404SFA & 210.00 \\
\hline \multirow[t]{4}{*}{Cable interlock} & \multicolumn{3}{|l|}{Allows an MCCB to be mounted horizontally, vertically or diagonally.} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
Suitable for 3 or 4 pole MCCBs \\
E400, S400, H400, L400, E630, S630 \({ }^{1}\) )
\end{tabular}} \\
\hline & Interlock kit less wire for motorised operation & T2MW40CB & 330.00 \\
\hline & Interlock kit less wire for manual handle operation & T2MWH40CB & 330.00 \\
\hline \multirow[t]{3}{*}{MW} & Wire for above interlocks Wire 1.0 M & T2MW00SA \({ }^{2}\) ) & 63.00 \\
\hline & Wire 1.5 M & T2MW00LA \({ }^{2}\) ) & 73.00 \\
\hline & MCCB identification labels & T40CAPLAB & 3.50 \\
\hline
\end{tabular}

T2MW50CB Interlock and motor


T2MWH4CB
Interlock and handle

T2MW40 wire interlocked MCCBs, showing either a motor or handle installed

Notes: 1) A handle or motor must be fitted in addition to the interlock.
\({ }^{2}\) ) Use one wire length for each MCCB pair.

\section*{Accessories to suit 400 / 630 AF TemBreak 2}

External accessories
Cat. No.
Price \$
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Standard terminal covers FC} & \multicolumn{3}{|l|}{E400, S400, H400, L400, E630, S630 \({ }^{\text {2 }}\) )} \\
\hline & 3 pole cover set of 2 , 180 mm wide & T2CF403SWNG \({ }^{1}\) ) & 190.00 \\
\hline \multirow{3}{*}{CF} & 3 pole cover set of 2 , 140 mm wide & T2CF403SLNG \({ }^{1}\) ) & 190.00 \\
\hline & 4 pole cover set of 2 , 185 mm wide & T2CF404SLNG & 205.00 \\
\hline & 4 pole cover set of 2 , 238 mm wide & T2CF404SWNG & 205.00 \\
\hline
\end{tabular}


Notes: ') For 400/630 A MCCBs, 'Flush' and 'rear' covers are the same item.
\({ }^{2}\) ) Locking clip T2FOOL tool supplied standard.

\section*{Accessories to suit 400 / 630 AF TemBreak 2}

External accessories
Cat. No.
\begin{tabular}{|c|c|c|c|}
\hline Terminal covers \({ }^{3}\) ) & \multicolumn{3}{|l|}{Rear Connect/ or flush front connect cover. E400, S400, H400, L400, E630, S630} \\
\hline & 3 pole cover set of 2 & T2CR403SG & 93.50 \\
\hline CS/C & 4 pole cover set of 2 & T2CR404SG & 111.00 \\
\hline
\end{tabular}

Terminal A clip that provides additional terminal cover position locking, and cover locking also allows a lead seal to be fitted
\begin{tabular}{llll} 
clip & All sizes \(125,250,400,630 \mathrm{AF}\) & T2CF00L & \(\mathbf{9 . 1 0}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Interpole \\
Barriers \(\left.{ }^{1}\right)^{2}\) )
\end{tabular}} & \multicolumn{3}{|l|}{E400, S400, E630, S630} \\
\hline & Interpole barrier (Qty 2) & T2BA403SHA & 21.60 \\
\hline & \multicolumn{3}{|l|}{H400, L400} \\
\hline BA & Interpole barrier (Qty 2) & T2BA403LHA & POA \\
\hline
\end{tabular}


T2CR / T2CS
Flush cover with 'knock-outs' for optional rear connect use.


T2CF00L
Locking clip


T2BA
Interpole barriers

Notes: \({ }^{1}\) ) Line side interpole barriers or terminal covers must be installed with MCCBs.
\({ }^{2}\) ) Interpole Barriers are supplied with MCCBs as standard; 2 barriers with 3 pole MCCBs, and 3 barriers with 4 pole MCCBs.
\(\left.{ }^{3}\right)\) For 400/630 A MCCBs, "flush" and "rear" covers are the same item.

\section*{Accessories to suit 400 / 630 AF TemBreak 2}

External accessories
Cat. No.
Price \(\$\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{ProSafe lock option} & \multicolumn{3}{|l|}{ProSafe locks can be mounted with T2HS variable depth handle operation. Refer NHP for direct mounting handle options.} \\
\hline & \multicolumn{3}{|l|}{Suits MCCB types E/S/H/L 400-630} \\
\hline & Prosafe shot bolt lock HS handles xx code & TKNHP & 520.00 \\
\hline \multirow[t]{2}{*}{TKN} & Prosafe standard key xx code for above & TKNNHPKEY & 130.00 \\
\hline & Cam for T2HS handle shafts Key codes A to Z are available. Specify by changing the key code above. & 14997702 & 235.00 \\
\hline \multirow[t]{2}{*}{Toggle locks} & \multicolumn{3}{|l|}{Non Captive: Fits up to 3 padlocks or a multiple lock device} \\
\hline & \multicolumn{3}{|l|}{E400, S400, H400, L400, E630, S630} \\
\hline \multirow[t]{4}{*}{HL} & Lock with three 8 mm holes & T2HL40A & 73.00 \\
\hline & \multicolumn{3}{|l|}{Captive: Allows a single padlock or multiple padlock device} \\
\hline & \multicolumn{3}{|l|}{E400, S400, H400, L400, E630, S630} \\
\hline & Lock with two 8 mm holes & T2HL40CAP & 73.00 \\
\hline \multirow[t]{2}{*}{Attached Busbar} & \multicolumn{3}{|l|}{E400, S400, H400, L400, E630, S630} \\
\hline & 3 Pole, set of 6, wide bar, 400 A & 2H1384DAA & 225.00 \\
\hline \multirow[t]{2}{*}{FB} & 3 Pole, set of 6, wide bar set, 630 A & T2FB463BA & 240.00 \\
\hline & 4 Pole, set of 8 , wide bar set, 630 A & T2FB464BA & 305.00 \\
\hline
\end{tabular}

Tunnel clamp E400, S400, H400, L400, E630, S630
terminals
\begin{tabular}{llll} 
FW & \(\begin{array}{l}\text { 3 Pole, set of } 6 \text { clamps } 240 \mathrm{~mm}^{2} \\
\end{array}\) & T2FW40L3A & \(\mathbf{4 1 5 . 0 0}\) \\
\hline
\end{tabular}


T2FB Attached flat bar


T2HL Toggle lock (captive)


T2FW Tunnel clamp terminals


T2HL Toggle lock (non-captive)

\section*{Accessories to suit 400 / 630 AF TemBreak 2}

External accessories
Cat. No.
Price \$
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Rear connect terminal studs} & \multicolumn{3}{|l|}{Suits MCCB types
E400, S400} \\
\hline & 3 pole kit, set of 6 studs & T2RP403SA & 650.00 \\
\hline \multirow{7}{*}{RP} & 4 pole kit, set of 8 studs & T2RP404SA & 870.00 \\
\hline & \multicolumn{3}{|l|}{H400, L400} \\
\hline & 3 pole kit, set of 6 studs & T2RP403LA & 670.00 \\
\hline & 4 pole kit, set of 8 studs & T2RP404LA & 940.00 \\
\hline & \multicolumn{3}{|l|}{E630, S630} \\
\hline & 3 pole kit, set of 6 studs & T2RP463SA & 740.00 \\
\hline & 4 pole kit, set of 8 studs & T2RP464SA & 980.00 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline TemPlug & \begin{tabular}{l} 
Suits MCCB types \\
\\
\\
\\
\\
TemPlug MCCB line-side \\
plug-in attachment
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{5}{*}{UP} & \multicolumn{3}{|l|}{E400, S400} \\
\hline & 3 pole TemPlug & T2UPX3400 & 405.00 \\
\hline & \multicolumn{3}{|l|}{E630, S630} \\
\hline & 3 pole TemPlug & T2UPX3630 & 770.00 \\
\hline & \multicolumn{3}{|l|}{Templugs suit 6.3 mm busbar (10 mm optional)} \\
\hline External & 400 A CT & T2GB40N04A & 290.00 \\
\hline neutral CT & 630 A CT & T2GB40N06A & 440.00 \\
\hline \multicolumn{4}{|l|}{GB 440.00} \\
\hline Electronic & 110 V AC & TNS2110V & POA \\
\hline OCR checker & 230 V AC & TNS2240V & POA \\
\hline
\end{tabular}


\section*{Accessories to suit 400 / 630 AF TemBreak 2}

External accessories
Cat. No.
Price \(\$\)
Door flange Provides an attractive panel cut-out surround for MCCBs or motors Suits MCCB sizes E400, S400, H400, L400, E630, S630
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{DF} & MCCB IP 30 gland and gasket & T2DF40A & 132.00 \\
\hline & MOTOR IP 30 gland and gasket & T2DM40A & 260.00 \\
\hline & \multicolumn{3}{|l|}{A kit that allows an MCCB to be mounted directly onto a door} \\
\hline mounting flush plate & \multicolumn{3}{|l|}{E400, S400, E630, S630} \\
\hline & 3 pole kit & T2FP40S3A & 280.00 \\
\hline & 4 pole kit & T2FP40S4A & POA \\
\hline Wire & left side & T2TF40LGA & 189.00 \\
\hline terminal block & right side & T2TF40RGA & 189.00 \\
\hline
\end{tabular}
block
TF

\section*{TNS}

Electronic OCR checker


T2TF
Wire lead terminal block

T2DF/DM
Door flange


T2FP
Door mounting flush plate


\section*{MOULDED CASE CIRCUIT BREAKERS}

- 12 t switch to assist in obtaining selectivity
- Powerful interrupting capacities
- Icw for 0.5 sec of 38 kA
- Limitation of system damage
- Electronic trip unit with long, short and instantaneous adjustments
- Adjustment range 50-100 \% of nominal current rating
- Standards AS/NZS 3947-2

\section*{TemBreak 2 Thermal magnetic type S800CJ}

\section*{36 kA}

Current rating: 630-800 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{l}{ Voltage } & Icu \\
\hline AC use & 415 & 36 & 36 \\
\hline DC use & 250 & 50 & 50 \\
\hline
\end{tabular}


\section*{Trip unit:}

Adjustable thermal: \(63 \% \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\)
- Adjustable magnetic: 5 to \(10 \times \mathrm{I}_{\mathrm{m}}\)

Dimensions (mm)
\begin{tabular}{|c|c|c|}
\hline Poles & 3 & \\
\hline H & 273 & Early \\
\hline W & 210 & Rele \\
\hline D (less toggle) & 103 & \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} \\
\hline 630 & \(396-630\) & \(3150-6300\) & S800 CJ 3 630 & \(\mathbf{2 5 0 0 . 0 0}\) \\
\hline 800 & \(504-800\) & \(4000-8000\) & S800 CJ 3 800 & \(\mathbf{2 5 5 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: Magnetic only available on application.
For additional information on applications refer section 9
or Part C catalogue.
NRC: Nominal rated current
Adj. Ir: Adjustable thermal setting
Adj. Im: Adjustable magnetic setting
Replaces: XS630CJ and XS800NJ for applications up to 36 kA . Note: check
exact ratings or dimensions to suit your application requirement.

\section*{TemBreak 2 Thermal magnetic type S800NJ}

\section*{50 kA}

Current rating: 630-800 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
3
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & 415 & 50 & 50 \\
\hline DC use & 250 & 50 & 50 \\
\hline
\end{tabular}


Trip unit:
Adjustable thermal: \(63 \% \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\)
Adjustable magnetic: 5 to \(10 \times \mathrm{I}_{\mathrm{m}}\)
Dimensions (mm)
\begin{tabular}{lll} 
Poles & 3 & \\
\hline\(H\) & 273 & \\
\hline\(W\) & 210 & \\
& & \\
\hline\(D\) (less toggle) & 103 & \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{llllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Adj. Im \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} \\
\hline 630 & \(396-630\) & \(3150-6300\) & S800 NJ 3 630 & \(\mathbf{2 9 0 0 . 0 0}\) \\
\hline 800 & \(504-800\) & \(4000-8000\) & S800 NJ 3 800 & \(\mathbf{3 1 5 0 . 0 0}\) \\
\hline
\end{tabular}

\footnotetext{
Notes: Magnetic only available on application.
For additional information on applications refer section 9 or Part C catalogue.
NRC: Nominal rated current
Adj. Ir: Adjustable thermal setting
Adj. Im: Adjustable magnetic setting
Replaces: XS630NJ and XS800NJ. Note: check exact ratings or dimensions to suit your application requirement.
}

\section*{TemBreak 2 Thermal magnetic type S800RJ}

\section*{70 kA}

Current rating: 630-800 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{l}{ Voltage } & Icu \\
Ics \\
\hline AC use & 415 & 70 & 50 \\
\hline DC use & 250 & 50 & 50 \\
\hline
\end{tabular}


Trip unit:
Adjustable thermal: \(63 \% \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\)
Adjustable magnetic: 5 to \(10 \times \mathrm{I}_{\mathrm{m}}\)
Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 273 & 273 \\
\hline\(W\) & 210 & 280 \\
\hline D (less toggle) & 103 & 103 \\
\hline
\end{tabular}


Ampere
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Rating \\
NRC
\end{tabular} & \begin{tabular}{l}
Adj. Ir \\
Min. - Max
\end{tabular} & \begin{tabular}{l}
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. \({ }^{1}\) ) & 3 pole Price \$ & \begin{tabular}{l}
4 pole \\
Price \$
\end{tabular} \\
\hline \multirow[b]{2}{*}{630} & \multirow[b]{2}{*}{396-630} & \multirow[b]{2}{*}{3150-6300} & S800 RJ 3630 & 3910.00 & \\
\hline & & & S800 RJ 4630 & & 4350.00 \\
\hline \multirow[b]{2}{*}{800} & \multirow[b]{2}{*}{504-800} & \multirow[b]{2}{*}{4000-8000} & S800 RJ 3800 & 4500.00 & \\
\hline & & & S800 RJ 4800 & & 4950.00 \\
\hline
\end{tabular}

Notes: Magnetic only available on application.
For additional information on applications refer section 9
or Part C catalogue.
NRC: Nominal rated current
Adj. Ir: Adjustable thermal setting
Adj. Im: Adjustable magnetic setting
Replaces: XH630SE and XH800SE. Note: check exact ratings or dimensions
to suit your application requirement .

\section*{TemBreak 2 Electronic type S800NE}

\section*{50 kA}

Current rating: 252-800 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
3
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & 415 & 50 & 50 \\
\hline
\end{tabular}


Over Current Relay:
E Electronic, for general \& selectivity applications
- 7 dial selectable characteristic curves suited for a variety of applications
- Base current Ir is adjustable from \(40 \%-100 \%\) of the nominal rated current In
- STD setting 2.5-10 \(\left.\left(x I_{R}\right)^{1}\right)\)
- INST setting \(14\left(\operatorname{Max} 12 \times I_{n}\right)^{1}\) )

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline\(H\) & 273 & 273 \\
\hline\(W\) & 210 & 280 \\
\hline\(D\) (less toggle) & 103 & 103 \\
\hline
\end{tabular}

\begin{tabular}{lllrr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} & \begin{tabular}{r} 
4 pole \\
Price \$
\end{tabular} \\
\hline \multirow{2}{*}{630} & \(252-630\) & S800 NE 3 630 & \(\mathbf{3 2 5 0 . 0 0}\) & \\
\hline \multirow{2}{*}{800} & \multirow{2}{*}{\(320-800\)} & S800 NE 4 630 & & \(\mathbf{3 7 4 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) The STD and Instantaneous pickup currents \(\left(I_{\text {sd }} \& I_{\mathrm{i}}\right)\) settings are not individually adjustable, however by selecting different curve types and different \(\mathrm{I}_{\mathrm{R}}\) settings the values will vary. Curves \(1 \& 2 \mathrm{I}_{\mathrm{sd}}=2.5 \times \mathrm{I}_{\mathrm{R}}\), curve \(3 \mathrm{I}_{\mathrm{sd}}\) \(=5 \times I_{R}\), curves \(4-7 I_{\text {sd }}=10 \times I_{R} . I_{R}\) dial setting \(0.4-0.8 I_{i}=14 \times I_{R}\) and \(I_{R}\) dial setting \(0.9-1.0 \mathrm{I}_{\mathrm{i}}=12 \times \mathrm{I}_{\mathrm{R}}\).
NRC: Nominal rated current
Adj. Ir: Adjustable thermal setting
Adj. Im: Adjustable magnetic setting
Replaces: XS630SE and XS800SE. Note: check exact ratings or dimensions to suit your application requirement.

\title{
33 Adam Street Wynnum North SPS - Electrical Installation OM Ma \\ TERASAKI
}

\section*{TemBreak 2 Electronic type S800RE}

\section*{70 kA}

Current rating: 252-800 A
Approvals and Tests: Standards AS/NZS 3947-2 and
IEC 60947-2
Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{1}{c}{ Voltage } & Icu & Ics \\
\hline AC use & 415 & 70 & 50 \\
\hline
\end{tabular}

Over Current Relay:

- Electronic, for general \& selectivity applications
- 7 dial selectable characteristic curves suited for a variety of applications
- Base current Ir is adjustable from 40\%-100\% of the nominal rated current In
- STD setting 2.5-10 \(\left.\left(x I_{R}\right)^{2}\right)\)
- INST setting \(\left.14\left(\operatorname{Max~} 12 \times I_{n}\right)^{2}\right)\)

OCR options:
- Ground Fault TripNeutral Pole protection
Pre-Trip Alarm
\begin{tabular}{|c|c|c|c|c|}
\hline Ampere Rating NRC & Adj. Ir Min. - Max. & Cat. No. \({ }^{1}\) ) & 3 pole Price \$ & 4 pole Price \$ \\
\hline \multirow[b]{2}{*}{630} & \multirow[b]{2}{*}{252-630} & S800 RE 3630 & 3150.00 & \\
\hline & & S800 RE 4630 & & 3810.00 \\
\hline \multirow[t]{2}{*}{800} & \multirow[b]{2}{*}{320-800} & S800 RE 3800 & 4200.00 & \\
\hline & & S800 RE 4800 & & 4850.00 \\
\hline \multicolumn{2}{|l|}{Price Adder for OCR options. Add to above MCCB price} & MCCB Cat. No. with option & 3 pole Price \$ & 4 pole Price \$ \\
\hline \multirow[t]{3}{*}{3 P OCR options:} & : \(\quad\) PTA \({ }^{3}\) ) & S800 RE 3 AP \# & 180.00 & \\
\hline & GF \({ }^{3}\) ) & S800 RE 3 AG \# & 180.00 & \\
\hline & PTA + GF \({ }^{3}\) ) & S800 RE 3 APG \# & 360.00 & \\
\hline \multirow[t]{4}{*}{4 P OCR options:} & : \(\quad\) PTA \(\left.{ }^{3}\right)\) & S800 RE 4 AP \# & & 180.00 \\
\hline & \(\mathrm{AP}^{3}\) ) & S800 RE 4 AN \# & & 180.00 \\
\hline & PTA + NP \({ }^{3}\) ) & S800 RE 4 APN \# & & 360.00 \\
\hline & \(\mathrm{GF}+\mathrm{NP}^{3}\) ) & S800 RE 4 AGN \# & & 360.00 \\
\hline
\end{tabular}

Notes: \({ }^{1)}\) "\#" add OCR trip unit rating where shown with OCR options.
\({ }^{2}\) ) The STD and Instantaneous pickup currents \(\left(I_{\text {sd }} \& I_{i}\right)\) settings are not individually adjustable, however by selecting different curve types and different \(\mathrm{I}_{\mathrm{R}}\) settings the values will vary. Curve \(1 \& 2 \mathrm{I}_{\mathrm{sd}}=2.5 \times \mathrm{I}_{\mathrm{R}}\), curve \(3 I_{\text {sd }}=5 \times I_{R}\), curve 4-7 \(I_{\text {sd }}=10 \times I_{R}\).
\(I_{R}\) dial setting \(0.4-0.8 I_{i}=14 \times I_{R}\) and \(I_{R}\) dial setting \(0.9-1.0 I_{i}=12 \times I_{R}\).
\({ }^{3}\) ) To order a MCCB with the above options insert the required amp rating after the option to make up the Cat. No. Eg: S800RE 4 AGN 800 is an S800RE 4 Pole 800 A MCCB c/w Neutral Protection and Ground Fault protection.
For additional information on OCR settings, options and applications refer section 9 or part C catalogue.
Replaces: XH630SE and XH800SE. Note: check exact ratings or dimensions to suit your application requirement.

\section*{TemBreak 2 Electronic XOW Metering MCCBs S800RE_X1L/X1S}

\section*{70 kA}

Current rating: 320-800 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{c}{ Voltage } & Icu \\
\hline AC use & 415 & 70 & 50 \\
\hline
\end{tabular}

\section*{XOW Over Current Relay:}


Ammeter or Energy Metering types
- Adjustable LSI setting for grading applications
- Base current adjustable from \(40 \%-100 \%\) of \(\mathrm{I}_{n}\)

MCCB Standard features:

\section*{S800RE _ X1L}
- Ammeter, Adjustable LSI


Trip event log, Alarm event log, Test function S800RE _X1S
E Energy (multifunction) meter: A, V, P, kW, kWh, E, Pf, F, H
- Adjustable LSI
- Backlit LCD display
- Ground fault, Pre trip alarm, Phase rotation \& Neutral pole protection
- Trip and Alarm event log, Test function, Trip indication contact output
- Modbus RTU 485 communications
- External door mounting meter option (T2ED not incl. in below pricing)

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 273 & 273 \\
\hline W & 210 & 280 \\
\hline D (less toggle) & 103 & 103 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & Ampere Rating NRC & Ir Adj. Min.-Max. & Cat. No. \({ }^{1}\) ) & 3 pole Price \$ & 4 pole Price \$ \\
\hline \multirow[t]{2}{*}{MCCB with ammeter} & \multirow[b]{2}{*}{800} & \multirow[b]{2}{*}{320-800} & S800 RE 3800 X1L & 6450.00 & \\
\hline & & & S800 RE 4800 X1L & & 7740.00 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MCCB with } \\
& \text { energy meter } 800
\end{aligned}
\]}} & \multirow[t]{2}{*}{320-800} & S800 RE 3800 X1S & 7900.00 & \\
\hline & & & S800 RE 4800 X1S & & 9480.00 \\
\hline
\end{tabular}

Notes: NRC: Nominal rated current
Adj. Ir: Adjustable thermal setting
Adj. Im: Adjustable magnetic setting
For additional information on OCR settings, options and applications refer section 9 or part \(C\) catalogue.

\section*{TemBreak 2 Electronic type H800NE}

\section*{125 kA}

Current rating: 252-800 A
Approvals and Tests: Standards AS/NZS 3947-2 and
IEC 60947-2
Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{c}{ Voltage } & Icu \\
\hline AC use & 415 & 125 & 94 \\
\hline
\end{tabular}


\section*{Over Current Relay:}


Electronic, for general \& selectivity applications
- 7 dial selectable characteristic curves suited for a variety of applications
- Base current Ir is adjustable from \(40 \%-100 \%\) of the nominal rated current In
- STD setting 2.5-10 \(\left(x I_{R}\right)^{2}\) )
- INST setting \(14\left(\operatorname{Max} 12 \times I_{n}\right)^{2}\) )
- OCR Options:
- Ground Fault Trip
- Neutral Pole protection

Pre-Trip Alarm
\begin{tabular}{lllrr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. \({ }^{1}\) )
\end{tabular}

Notes: \({ }^{1}{ }^{1}\) "\#" add OCR trip unit rating where shown with OCR options.
\({ }^{2}\) ) The STD and Instantaneous pickup currents \(\left(I_{\text {sd }} \& I_{\mathrm{i}}\right)\) settings are not individually adjustable, however by selecting different curve types and different \(\mathrm{I}_{\mathrm{R}}\) settings the values will vary. Curve \(1 \& 2 \mathrm{I}_{\mathrm{sd}}=2.5 \times \mathrm{I}_{\mathrm{R}}\), curve \(3 I_{\text {sd }}=5 \times I_{R}\), curve 4-7 \(I_{\text {sd }}=10 \times I_{R}\).
\(I_{R}\) dial setting \(0.4-0.8 I_{i}=14 \times I_{R}\) and \(I_{R}\) dial setting \(0.9-1.0 I_{i}=12 \times I_{R}\).
\({ }^{3}\) ) To order a MCCB with the above options insert the required amp rating after the option to make up the Cat. No. Eg: H800NE 4 AGN 800 is an H800NE 4 Pole 800 A MCCB c/w Neutral Protection and Ground Fault protection.
For additional information on OCR settings, options and applications refer section 9 or part C catalogue.
Replaces: TL630NE and TL800NE. Note: check exact ratings or dimensions to suit your application requirement.

\section*{TemBreak 2 Electronic XOW Metering MCCBs H800NE_X1L/X1S}

\section*{125 kA}

Current rating: 320-800 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & 415 & 125 & 94 \\
\hline
\end{tabular}

\section*{XOW Over Current Relay:}
- Ammeter or Energy Metering types
- Adjustable LSI setting for grading applications
- Base current adjustable from \(40 \%-100 \%\) of \(\mathrm{I}_{n}\)

MCCB Standard features:

\section*{H800NE X X1L}

- Ammeter, Adjustable LSI

- Trip event log, Alarm event log, Test function

\section*{H800NE X1S}

E Energy (multifunction) meter: A, V, P, kW, kWh, E, Pf, F, H
- Adjustable LSI
- Backlit LCD display
- Ground fault, Pre trip alarm, Phase rotation \& Neutral pole protection
- Trip and Alarm event log, Test function, Trip indication contact output
- Modbus RTU 485 communications
- External door mounting meter option ((T2ED not incl. in below pricing)

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 273 & 273 \\
\hline W & 210 & 280 \\
\hline D (less toggle) & 140 & 140 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & Ampere Rating NRC & Ir Adj. Min.-Max. & Cat. No. & 3 pole Price \$ & 4 pole Price \$ \\
\hline MCCB with & 800 & 320-800 & H800 NE 3800 X1L & 7150.00 & \\
\hline ammeter & & 320-800 & H800 NE 4800 X1L & & 8500.00 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MCCB with } \\
& \text { energy meter } 800
\end{aligned}
\]}} & \multirow[b]{2}{*}{320-800} & H800 NE 3800 X1S & 8650.00 & \\
\hline & & & H800 NE 4800 X1S & & 10300.00 \\
\hline
\end{tabular}

Notes: NRC: Nominal rated current
Adj. Ir: Adjustable thermal setting
Adj. Im: Adjustable magnetic setting
For additional information on OCR settings, options and applications refer section 9 or part C catalogue.

\title{
33 Adam Street Wynnum North SPS - Electrical Installation OM Ma \\ TERASAKI
}

\title{
TemBreak 2 Electronic type L800NE
}

\section*{200 kA}

Current rating: 252-800 A
Approvals and Tests: Standards AS/NZS 3947-2 and
IEC 60947-2
Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{l}{ Voltage } & Icu \\
\hline AC use & 415 & 200 & 150 \\
\hline
\end{tabular}

\section*{Over Current Relay:}

- Electronic, for general \& selectivity applications
- 7 dial selectable characteristic curves suited for a variety of applications
- Base current Ir is adjustable from \(40 \%-100 \%\) of the nominal rated current In
- STD setting 2.5-10 \(\left(x I_{R}\right)^{2}\) )
- INST setting \(\left.14\left(\operatorname{Max~} 12 \times I_{n}\right)^{2}\right)\)

OCR options:
- Ground Fault TripNeutral Pole protection
Pre-Trip Alarm
Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 273 & 273 \\
\hline W & 210 & 280 \\
\hline D (less toggle) & 140 & 140 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l}
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. \({ }^{1}\) ) & 3 pole Price \$ & 4 pole Price \$ \\
\hline \multirow[b]{2}{*}{630} & \multirow[b]{2}{*}{252-630} & L800 NE 3630 & 4520.00 & \\
\hline & & L800 NE 4630 & & 5350.00 \\
\hline \multirow[b]{2}{*}{800} & \multirow[b]{2}{*}{320-800} & L800 NE 3800 & 4960.00 & \\
\hline & & L800 NE 4800 & & 5960.00 \\
\hline \multicolumn{2}{|l|}{Price Adder for OCR options. Add to above MCCB price} & MCCB Cat. No. with option & 3 pole Price \$ & 4 pole Price \(\$\) \\
\hline \multirow[t]{3}{*}{3 P OCR options:} & s: PTA \({ }^{3}\) ) & L800 NE 3 AP \# & 180.00 & \\
\hline & GF \({ }^{3}\) ) & L800 NE 3 AG \# & 180.00 & \\
\hline & PTA + GF \({ }^{3}\) ) & L800 NE 3 APG \# & 180.00 & \\
\hline \multirow[t]{4}{*}{4P OCR options:} & s: PTA \({ }^{3}\) ) & L800 NE 4 AP \# & & 180.00 \\
\hline & \(\mathrm{AP}^{3}\) ) & L800 NE 4 AN \# & & 180.00 \\
\hline & PTA + NP \({ }^{3}\) ) & L800 NE 4 APN \# & & 360.00 \\
\hline & \(\left.\mathrm{GF}+\mathrm{NP}^{3}\right)\) & L800 NE 4 AGN \# & & 360.00 \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) " \({ }^{2}\) " add OCR trip unit rating where shown with OCR options.
\({ }^{2}\) ) The STD and Instantaneous pickup currents \(\left(I_{\text {sd }} \& I_{i}\right)\) settings are not individually adjustable, however by selecting different curve types and different \(\mathrm{I}_{\mathrm{R}}\) settings the values will vary. Curve \(1 \& 2 \mathrm{I}_{\mathrm{sd}}=2.5 \times \mathrm{I}_{\mathrm{R}}\), curve \(3 I_{\text {sd }}=5 \times I_{R}\), curve 4-7 \(I_{\text {sd }}=10 \times I_{R}\).
\(\mathrm{I}_{\mathrm{R}}\) dial setting \(0.4-0.8 \mathrm{I}_{\mathrm{i}}=14 \times \mathrm{I}_{\mathrm{R}}\) and \(\mathrm{I}_{\mathrm{R}}\) dial setting \(0.9-1.0 \mathrm{I}_{\mathrm{i}}=12 \times \mathrm{I}_{\mathrm{R}}\). \({ }^{3}\) ) To order a MCCB with the above options insert the required amp rating after the option to make up the Cat. No. Eg: L800NE 4 AGN 800 is an L800NE 4 Pole 800 A MCCB c/w Neutral Protection and Ground Fault protection.
For additional information on OCR settings, options and applications refer section 9 or part \(C\) catalogue.

\section*{TemBreak 2 690V AC High Fault Interruption MCCB L800PE}

\section*{70 kA}

Current rating: 252-800 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

\section*{Interrupting capacity:}
\begin{tabular}{llll} 
& Voltage & Icu & Ics \\
\hline AC use & 690 & 70 & 50 \\
\hline
\end{tabular}


\section*{Over Current Relay:}

Electronic, for general \& selectivity applications
- dial selectable characteristic curves suited for a variety of applications

Base current Ir is adjustable from \(40 \%-100 \%\) of the nominal rated current In
- STD setting 2.5-10 \(\left(x I_{R}\right)^{1}\) )
- INST setting \(\left.14\left(\operatorname{Max} 12 \times I_{n}\right)^{1}\right)\)

Dimensions (mm)
\begin{tabular}{ll} 
Poles & \(\mathbf{3}\) \\
\hline H & 273 \\
\hline\(W\) & 210 \\
\hline D (less toggle) & 140 \\
\hline
\end{tabular}

\section*{3 Pole}
\begin{tabular}{lllr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} \\
\hline 630 & \(252-630\) & L800 PE 3 630 & \(\mathbf{5 3 4 0 . 0 0}\) \\
\hline 800 & \(320-800\) & L800 PE 3800 & \(\mathbf{5 4 6 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) The STD and Instantaneous pickup currents \(\left(I_{\text {sd }} \& I_{\mathrm{i}}\right)\) settings are not individually adjustable, however by selecting different curve types and different \(I_{R}\) settings the values will vary. Curves \(1 \& 2 I_{s d}=2.5 \times I_{R}\), curve \(3 I_{\mathrm{sd}}=5 \times \mathrm{I}_{\mathrm{R}}\), curves \(4-7 \mathrm{I}_{\mathrm{sd}}=10 \mathrm{x} \mathrm{I}_{\mathrm{R}}\). \(\mathrm{I}_{R}\) dial setting \(0.4-0.9 \mathrm{I}_{\mathrm{i}}=14 \times \mathrm{I}_{R}\) and \(\mathrm{I}_{R}\) dial setting \(0.95-1.0 \mathrm{Ii}=13 \times \mathrm{I}_{R}\). Not suitable for reverse connection either individually or on a chassis. Suitable for general motor starting and power distribution applications Refer NHP for 4 pole version availability.
Refer NHP for additional information.
NRC: Nominal rated current
Adj. Ir: Adjustable thermal setting
Adj. Im: Adjustable magnetic setting

\title{
33 Adam Street Wynnum North SPS - Electrical Installation OM Ma \\ TERASAKI
}

\section*{TemBreak 2 Electronic type S1000NE}

\section*{70 kA}

Current rating: 400-1000 A
Approvals and Tests: Standards AS/NZS 3947-2
and IEC 60947-2
Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{l}{ Voltage } & Icu \\
\hline AC use & 415 & 70 & 50 \\
\hline
\end{tabular}

Over Current Relay:

- Electronic, for general \& selectivity applications
- 7 dial selectable characteristic curves suited for a variety of applications
- Base current Ir is adjustable from \(40 \%-100 \%\) of the nominal rated current In
- STD setting 2.5-10 \(\left.\left(x I_{R}\right)^{1}\right)\)
- INST setting \(14\left(\operatorname{Max} 12 \times I_{n}\right)^{1}\) )

OCR Options:
- Ground Fault Trip
- Neutral Pole protection
- Pre-Trip Alarm

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 273 & 273 \\
\hline W & 210 & 280 \\
\hline D (less toggle) & 103 & 103 \\
\hline
\end{tabular}
\begin{tabular}{lllrr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \(\$\)
\end{tabular} & \begin{tabular}{c} 
4 pole \\
Price \(\$\)
\end{tabular} \\
\hline \multirow{2}{*}{1000} & \(400-1000\) & S1000 NE 3 1000 & \(\mathbf{3 8 5 0 . 0 0}\) & \\
\cline { 3 - 5 } & S1000 NE 4 1000 & & \(\mathbf{4 8 1 2 . 0 0}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Price Adder for OCR options. Add to above MCCB price} & MCCB Cat. No. with option & 3 pole Price \(\$\) & \begin{tabular}{l}
4 pole \\
Price \$
\end{tabular} \\
\hline \multirow[t]{3}{*}{3 P OCR options:} & PTA \({ }^{2}\) ) & S1000 NE 3 AP \# & 180.00 & \\
\hline & GF \({ }^{2}\) ) & S1000 NE 3 AG \# & 180.00 & \\
\hline & PTA + GF \({ }^{2}\) ) & S1000 NE 3 APG \# & 360.00 & \\
\hline \multirow[t]{4}{*}{4 P OCR options:} & PTA \({ }^{2}\) ) & S1000 NE 4 AP \# & & 180.00 \\
\hline & \(\mathrm{AP}^{2}\) ) & S1000 NE 4 AN \# & & 180.00 \\
\hline & PTA + NP \({ }^{2}\) ) & S1000 NE 4 APN \# & & 360.00 \\
\hline & \(\left.\mathrm{GF}+\mathrm{NP}^{2}\right)\) & S1000 NE 4 AGN \# & & 360.00 \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) 1. The STD and Instantaneous pickup currents \(\left(I_{s d} \& I_{\mathrm{i}}\right)\) settings are not individually adjustable, however by selecting different curve types and different \(I_{R}\) settings the values will vary. Curve \(1 \& 2 I_{s d}=2.5 \times I_{R}\), curve \(3 I_{\text {sd }}=5 \times I_{R}\), curve \(4-6 I_{\text {sd }}=8 \times I_{R}\). \(I_{R}\) dial setting \(0.4-0.63 I_{i}=14 \mathrm{x}\) \(\mathrm{I}_{R}\) and \(\mathrm{I}_{R}\) dial setting \(0.8-1.0 \mathrm{li}=10 \times \mathrm{I}_{\mathrm{R}}\).
\({ }^{2}\) ) To order a MCCB with the above options insert the required amp rating after the option to make up the Cat. No. Eg: S1000NE 4 AGN 800 is an S1000NE 4 Pole 800 A MCCB c/w Neutral Protection and Ground Fault protection.
For additional information on OCR settings, options and applications refer section 9 or part C catalogue.
Replaces: XH800SE and XS1250SE 1000A. Note: check exact ratings or dimensions to suit your application requirement.
}

\section*{TemBreak 2 Electronic XOW Metering MCCBs S1000NE_X1L/X1S}

\section*{70 kA}

Current rating: 400-1000 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{c}{ Voltage } & Icu \\
\hline AC use & 415 & 70 & 50 \\
\hline
\end{tabular}

\section*{XOW Over Current Relay:}

Ammeter or Energy Metering types
- Adjustable LSI setting for grading applications
- Base current adjustable from \(40 \%-100 \%\) of \(\mathrm{I}_{n}\)

MCCB Standard features:

\section*{S1000NE _X1L}

- Trip event log, Alarm event log, Test function

\section*{S1000NE_X1S}

Energy (multifunction) meter: A, V, P, kW, kWh, E, Pf, F, H
- Adjustable LSI
- Backlit LCD display
- Ground fault, Pre trip alarm, Phase rotation \& Neutral pole protection
- Trip and Alarm event log, Test function, Trip indication contact output
- Modbus RTU 485 communications
- External door mounting meter option (T2ED not incl. in below pricing)

\section*{Dimensions (mm)}
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 273 & 273 \\
\hline\(W\) & 210 & 280 \\
\hline D (less toggle) & 103 & 103 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Ampere Rating NRC & Ir Adj. Min.-Max. & Cat. No. & 3 pole Price \$ & 4 pole Price \(\$\) \\
\hline \multirow[t]{2}{*}{MCCB with ammeter} & \multirow[t]{2}{*}{1000} & \multirow[b]{2}{*}{400-1000} & S1000 NE 31000 X1L & 7750.00 & \\
\hline & & & S1000 NE 41000 X1L & & 9300.00 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MCCB with } \\
& \text { energy meter } 1000
\end{aligned}
\]}} & \multirow[b]{2}{*}{400-1000} & S1000 NE 31000 X1S & 9450.00 & \\
\hline & & & S1000 NE 41000 X1S & & 11340.00 \\
\hline
\end{tabular}

Notes: NRC: Nominal rated current
Adj. Ir: Adjustable thermal setting
Adj. Im: Adjustable magnetic setting
For additional information on OCR settings, options and applications refer section 9 or part \(C\) catalogue.

\section*{Accessories for 800-1000 A MCCBs}


Internal accessories
Cat. No.
Price \$
\begin{tabular}{llll}
\hline Shunt trips & \multicolumn{1}{l}{\begin{tabular}{l} 
Internal accessories are common for MCCBs 800 A to 1600 A. \\
All have screw terminals except those indicated below with \\
wire leads as indicated.
\end{tabular}} \\
\cline { 2 - 4 } & For \(\mathbf{3}\) and 4 pole MCCBs
\end{tabular}

Undervoltage Instantaneous operation
\begin{tabular}{|c|c|c|c|}
\hline & 110 V AC & T2UV80A10NTA & 270.00 \\
\hline & 200-240 V AC & T2UV80A20NTA & 270.00 \\
\hline UV & 380-450 V AC & T2UV80A40NTA & 270.00 \\
\hline & 24VDC & T2UV80D02NTA & 270.00 \\
\hline & 110 V DC & T2UV80D10NTA & 270.00 \\
\hline & 230 VDC & T2UV80D20NTA & 270.00 \\
\hline
\end{tabular}

Time delay types are available - refer NHP for details.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Auxiliary \& Alarm switches} & \multicolumn{3}{|l|}{General type (2 A @ 240 V Inductive)} \\
\hline & \(1 \mathrm{C} / \mathrm{O}\) Auxiliary with terminals & T2AX00M3STA & 134.00 \\
\hline & \(1 \mathrm{C} / \mathrm{O} 1^{\text {st }}\) Auxiliary with 700 mm leads & T2AX00M3SWA & 146.00 \\
\hline & \(1 \mathrm{C} / \mathrm{O} 2^{\text {nd }}\) Auxiliary with 700 mm leads & T2AX00M4SWA & 146.00 \\
\hline & \(1 \mathrm{C} / \mathrm{O} 3^{\text {rd }}\) Auxiliary with 700 mm leads & T2AX00M5SWA & 146.00 \\
\hline
\end{tabular}
\(1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}\) aux have different numbered wire leads, otherwise identical.
\begin{tabular}{lll}
\hline 1 C/O Alarm & T2ALOOM4STA & 129.00 \\
\hline 1 C/O Alarm with 700 mm wire leads & T2AL00M5SWA & 141.00 \\
\hline
\end{tabular}

AL
Heavy-duty type (4 A @ 240 V Inductive)
\begin{tabular}{lll}
\hline 1 N/O Auxiliary & T2AX00B1STA & 146.00 \\
\hline 1 N/C Auxiliary & T2AX00B2STA & 146.00 \\
\hline 1 N/O Alarm & T2ALOOB1STA & 146.00 \\
\hline 1 N/C Alarm & T2ALOOB2STA & 146.00
\end{tabular}

Micro switching type (very low voltages and currents)
\begin{tabular}{lll}
\hline 1 C/O Auxiliary & T2AX00M3RTA & 187.00 \\
\hline 1 C/O Alarm & T2ALOOM3RTA & \(\mathbf{1 8 7 . 0 0}\) \\
\hline
\end{tabular}

\section*{Accessories for 800-1000 A MCCBs}

External accessories
Cat. No.
Price \(\$\)
\begin{tabular}{|c|c|c|c|}
\hline Operating handles & \multicolumn{3}{|l|}{Suits MCCB types 800-1000AF} \\
\hline Direct & Grey/black IP 54 & T2HB80UR5BN & 495.00 \\
\hline mounting, & Red/yellow IP 54 & T2HB80UR5RN & 495.00 \\
\hline
\end{tabular} IP 54
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{Door interlocking variable depth handles} & \multicolumn{3}{|l|}{800 A to 1000 A} \\
\hline & \multicolumn{3}{|l|}{T2HS compact handle} \\
\hline & Grey IP55 handle + 320 mm shaft & T2HS80R6GM & 470.00 \\
\hline & Red/yellow IP55 handle + 320 mm shaft & T2HS80R6RM & 470.00 \\
\hline \multirow{4}{*}{HS} & \multicolumn{3}{|l|}{METAL compact handle} \\
\hline & Silver IP 65 handle + 320 mm shaft & T2HP80R6ME & 470.00 \\
\hline & T2HP square handle & & \\
\hline & Grey, IP 55 handle +320 mm shaft & T2HP80R6BN & 690.00 \\
\hline HP & Red/yellow, IP 55 handle + 320 mm shaft & T2HP80R6RN & 470.00 \\
\hline
\end{tabular}

\section*{Handle options}
\begin{tabular}{|c|c|c|c|}
\hline & Large escutcheon plate option: \(100 \mathrm{~mm}^{2}\) & T2HSESC100 & 18.20 \\
\hline & 390 mm T pin shaft for T2HS no flexi coupling & T2HS400SHAFT & 47.00 \\
\hline & Handle shaft CAM for trapped key interlock & 14997702 & 235.00 \\
\hline & MCCB/handle mech padlock attachment & T2HP80PALK & 47.50 \\
\hline & MCCB identification labels & T80CAPLAB & 3.50 \\
\hline External & S1250, S1600 & & \\
\hline Neutral CT & Optional neutral CT, Ground Fault MCCBs & T2GBX6N12A & 410.00 \\
\hline GB & Optional neutral CT, Ground Fault MCCBs & T2GBX6N16A & 410.00 \\
\hline
\end{tabular}


T2HB fixed depth
"direct mount" handle


T2HS handle


T2HP handle

\section*{Accessories for 800-1000 A MCCBs}

External accessories
Cat. No.
Price \$
Mechanical Link Interlock - suitable for manual or motorised operation. Will Interlock accept handles. Suitable for front or rear connect type MCCBs.

\section*{Suits MCCB types}

800 A to 1000 A
ML
\begin{tabular}{lll}
\hline 3 or 4 pole right side section & T2ML80RA & \(\mathbf{3 6 5 . 0 0}\) \\
\hline 3 pole left side section & T2ML80L3A & \(\mathbf{1 4 0 . 0 0}\) \\
\hline 4 pole left side section & T2ML80L4A & \(\mathbf{1 4 0 . 0 0}\) \\
\hline
\end{tabular}

Slide type - manual operation, padlockable. Does not allow motors, handles or other front mounted accessories to be fitted.
Suitable for front or rear connection.
S800, S1000

\section*{MS}
\begin{tabular}{lll}
\hline 3 pole & T2MS803SFA & \(\mathbf{2 4 0 . 0 0}\) \\
\hline 4 pole & T2MS804SFA & \(\mathbf{2 6 0 . 0 0}\) \\
\hline H800 & & \\
\hline 3 pole & T2MS803LFA & \(\mathbf{2 6 0 . 0 0}\) \\
\hline 4 pole & T2MS804LFA & \(\mathbf{2 8 0 . 0 0}\) \\
\hline
\end{tabular}

Cable interlock - allows an MCCB can be mounted horizontally, vertically or diagonally. Accepts Motors and handles.
Suitable for 3 or 4 pole MCCBs
800 A to 1000 A
\begin{tabular}{lll} 
Interlock kit less wire & T2MW80CA & \(\mathbf{3 3 5 . 0 0}\) \\
\hline
\end{tabular}

ML
\begin{tabular}{lll}
\hline Wire for above interlocks & & \\
\hline Wire 1.0 m & T2MW00SA & \(\mathbf{6 3 . 0 0}\) \\
\hline Wire 1.5 m & T2MW0OLA & \(\mathbf{7 3 . 0 0}\)
\end{tabular}


Link interlock


Cable interlock

\section*{Accessories for 800-1000A MCCBs}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{External accessories} & Cat. No. & Price \$ \\
\hline \multicolumn{4}{|l|}{\[
\begin{aligned}
& \text { Terminal Suits MCCB types } \\
& \text { covers - front } \mathbf{~ S 8 0 0 , \mathbf { S 1 0 0 0 }}
\end{aligned}
\]} \\
\hline \multirow[t]{3}{*}{connected MCCBs Rear connect terminal covers RC} & 3 pole cover set of 2 & T2CR803SHGA & 170.00 \\
\hline & 4 pole cover set of 2 & T2CR804SHGA & 210.00 \\
\hline & H800 & & \\
\hline  & 3 pole cover set of 2 & T2CR803LHGA & 210.00 \\
\hline & 4 pole cover set of 2 & T2CR804LHGA & 240.00 \\
\hline \multirow[t]{3}{*}{Terminal covers for plug in base} & S800, S1000, H800 & & \\
\hline & 3 pole cover set & T2CB803GHNA & 170.00 \\
\hline & 4 pole cover set & T2CB804GHNA & 210.00 \\
\hline \multirow[t]{2}{*}{Extended terminal covers FC} & \multicolumn{3}{|l|}{Terminal covers are the same width as the MCCB} \\
\hline & S800, S1000, H800 & & \\
\hline \multirow[b]{2}{*}{CF} & 3 pole cover set & T2CF803SLHGA & 205.00 \\
\hline & 4 pole cover set & T2CF804SLHGA & 260.00 \\
\hline \multirow[t]{2}{*}{Terminal cover locking clip} & \multicolumn{3}{|l|}{800 A to 1000 A} \\
\hline & A clip that provides additional terminal cover locking, and also allows a lead seal to be fitted & T2CF00LA & 8.80 \\
\hline \multirow[t]{4}{*}{Interpole Barriers \(\left.{ }^{1}\right)^{2}\) )} & S800, S1000 & & \\
\hline & Interpole barrier (Qty 2) & T2BA803SHA & 10.00 \\
\hline & H800 & & \\
\hline & Interpole barrier (Qty 2) & T2BA803LHA & 10.00 \\
\hline
\end{tabular}


Notes: \({ }^{1}\) ) Line side interpole barriers or terminal covers must be installed with MCCBs.
\({ }^{2}\) ) Interpole Barriers are supplied with MCCBs as standard; 2 barriers with 3 pole MCCBs, and 3 barriers with 4 pole MCCBs.

\section*{Accessories for 800-1000 A MCCBs}

External accessories
Cat. No.
Price \(\$\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{Toggle locks} & \multicolumn{3}{|l|}{Non Captive: Fits up to 3 padlocks or a multiple lock device} \\
\hline & Suits MCCB types 800 A, 1000 A & & \\
\hline & Lock with \(5 \mathrm{~mm} \times 16.5 \mathrm{~mm}\) slot & T2HL40A & 73.00 \\
\hline \multirow[t]{3}{*}{HL} & \multicolumn{3}{|l|}{Captive: Allows a single padlock or multiple padlock device} \\
\hline & \multicolumn{3}{|l|}{800 A, 1000 A} \\
\hline & Lock with single 8 mm hole & T2HL80CAP & 125.00 \\
\hline \multirow[t]{3}{*}{Motor operators} & \multicolumn{3}{|l|}{800-1000 A} \\
\hline & 110-240 V AC & T2MC80A10NA & 2570.00 \\
\hline & 24-48V DC & T2MC80D10NA & 2570.00 \\
\hline
\end{tabular}

E400, S400, H400, L400, E630, S63
MC
\begin{tabular}{lll}
\hline 0.6 m connector 400 A to 1000 A & T2MM40L06A & \(\mathbf{6 0 . 5 0}\) \\
\hline \(\mathbf{2 . 1 \mathrm { m } \text { connector } 4 0 0 \mathrm { A } \text { to } 1 0 0 0 \mathrm { A }}\) & T2MM40L21A & \(\mathbf{8 0 . 0 0}\) \\
\hline 0.6 m connector 125 A to 1000 A & T2MM40S06A & \(\mathbf{5 8 . 5 0}\) \\
\hline 2.1 m connector 125 A to 1000 A & T2MM40S21A & \(\mathbf{7 0 . 5 0}\) \\
\hline
\end{tabular}
1. Motor options: Contact NHP for key locking and auto reset.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Rear connect \(\mathbf{S 8 0 0}\) for line and load terminals} \\
\hline & 53 pole kit, set of 6 studs & T2RP803HA & 1150.00 \\
\hline & 4 pole kit, set of 8 studs & T2RP804HA & 1440.00 \\
\hline \multirow{9}{*}{RP} & \multicolumn{3}{|l|}{H800 for line terminals} \\
\hline & 3 pole kit, set of 3 studs & T2RP803MA & 780.00 \\
\hline & 4 pole kit, set of 4 studs & T2RP804MA & 840.00 \\
\hline & \multicolumn{3}{|l|}{H800 for load terminals} \\
\hline & 3 pole kit, set of 3 studs & T2RP803NA & 780.00 \\
\hline & 4 pole kit, set of 4 studs & T2RP804NA & 840.00 \\
\hline & \multicolumn{3}{|l|}{S1000 for line and load terminals} \\
\hline & 3 pole kit, set of 6 studs & T2RPX03HA & 1420.00 \\
\hline & 4 pole kit, set of 8 studs & T2RPX04HA & 1830.00 \\
\hline
\end{tabular}

Door Flange Provides an attractive panel cut-out surround for MCCBs or MOTORS
800 to 1000 A
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{FW} & MCCB IP 30 gland and gasket & T2FW40L3A & 415.00 \\
\hline & MOTOR IP 30 gland and gasket & T2FW40L4A & 560.00 \\
\hline Wire Lead Terminal & \multicolumn{3}{|l|}{MCCB mounted terminal block connected to internal accessories. This accessory is a FACTORY FIT ITEM.} \\
\hline Block & Terminal block and wiring loom RIGHT side & T2TF40RGA & 189.00 \\
\hline TF & Terminal block and wiring loom LEFT side & T2TF40LGA & 189.00 \\
\hline
\end{tabular}

\section*{Accessories for 800-1000 A MCCBs}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{External accessories \(\left.{ }^{1}\right)^{2}\) )} & Cat. No. & \multirow[t]{2}{*}{Price \$} \\
\hline & TemPlug & \multicolumn{2}{|l|}{TemPlug MCCB line-side plug in attachment} & \\
\hline & \multirow{4}{*}{UP} & \multicolumn{3}{|l|}{Suits MCCB types
S800} \\
\hline & & 3 pole TemPlug & T2UPX3800 & 690.00 \\
\hline & & \multicolumn{3}{|l|}{\(\mathbf{S 1 0 0 0}\)} \\
\hline & & 3 pole TemPlug & T2UPX31000 & 950.00 \\
\hline 3 & Plug in MCCBs & \multicolumn{3}{|l|}{\begin{tabular}{l}
Plug in MCCB base kit. Includes MCCB plugs and other parts for converting an MCCB to a plug in MCCB. Mounting bases are ordered seperately. \\
MCCB conversion kits:
\end{tabular}} \\
\hline & & \multicolumn{3}{|l|}{S800, S1000} \\
\hline & & 3 pole kit & 2H...TBA & POA \\
\hline & & 4 pole kit & 2H...TBA & POA \\
\hline
\end{tabular}

Plug in bases, IP20, includes rear insulation screen. The base includes terminal studs which are suitable for front or rear connection. Interpole barriers can be used with these bases, but not terminal covers.
Plug in mounting bases:

\section*{S800, S1000}
\begin{tabular}{lll}
\hline 3 pole kit & T2PM80A3A & \(\mathbf{4 8 5 . 0 0}\) \\
\hline 4 pole kit & T2PM80A4A & \(\mathbf{6 4 0 . 0 0}\) \\
\hline
\end{tabular}

Control wiring plugs and sockets for plug in MCCBs
\begin{tabular}{lll}
\begin{tabular}{l} 
3 pin plug for aux/alarms - MCCB \\
side
\end{tabular} & 2H6959CAA1 & \(\mathbf{3 7 . 0 0}\) \\
\hline \begin{tabular}{l} 
3 pin plug for shunt/UVT - MCCB \\
side
\end{tabular} & 2H6959CBA1 & \(\mathbf{3 7 . 0 0}\) \\
\hline \begin{tabular}{l} 
3pin socket for panel mount \\
base
\end{tabular} & T2TP003A & \(\mathbf{3 7 . 0 0}\) \\
\hline
\end{tabular}

Extension bars
\begin{tabular}{lll}
\hline 3 pole kit & T2PF803HA & \(\mathbf{2 3 5 . 0 0}\) \\
\hline 4 pole kit & T2PF804HA & \(\mathbf{2 9 0 . 0 0}\) \\
\hline
\end{tabular}


TemPlug


Plug in MCCBs


Plug in MCCBs


Plug in MCCBs

Notes: \({ }^{1}\) ) Up to 4 control wiring plug kits can be used in a base.
\({ }^{2}\) ) Internal accessories are used with the above plugs and sockets

\title{
33 Adam Street Wynnum North SPS - Electrical Installation OM Ma \\ TERASAKI
}

\title{
TemBreak 2 Electronic type S1250GE
}

\section*{85 kA}

Current rating: 500-1250 A
Approvals and Tests: Standards AS/NZS 3947-2 and
IEC 60947-2
Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{l}{ Voltage } & Icu \\
AC use & 415 & 85 & 65 \\
\hline & 400 & 100 & 76 \\
\hline
\end{tabular}


\section*{Over Current Relay:}
- Electronic, for general \& selectivity applications

■ dial selectable characteristic curves suited for a variety of applications
Base current Ir is adjustable from \(40 \%-100 \%\) of the nominal rated current In
- STD setting 2.5-10 \(\left.\left(x I_{R}\right)^{1}\right)\)
- INST setting \(14\left(\operatorname{Max} 12 \times I_{n}\right)^{1}\) )

OCR Options:
- Ground Fault Trip
- Neutral Pole protection
- Pre-Trip Alarm

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline\(H\) & 370 & 370 \\
\hline\(W\) & 210 & 280 \\
\hline\(D\) (less toggle) & 120 & 120 \\
\hline
\end{tabular}
\begin{tabular}{lllrr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} & \begin{tabular}{r} 
4 pole \\
Price \$
\end{tabular} \\
\hline \multirow{2}{*}{1000} & \(400-1250\) & S1250 GE 3 1250 & 8650.00 & \\
\cline { 3 - 5 } & & S1250 GE 4 1250 & & \(\mathbf{1 0 2 5 0 . 0 0}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Price Adder for OCR options. \\
Add to above MCCB price
\end{tabular}} & MCCB Cat. No. with option & 3 pole Price \$ & 4 pole Price \$ \\
\hline \multirow[t]{3}{*}{3 P OCR options:} & PTA \({ }^{2}\) ) & S1250 GE 3 AP \# & 180.00 & \\
\hline & GF \({ }^{\text {) }}\) & S1250 GE 3 AG \# & 180.00 & \\
\hline & PTA + GF \({ }^{2}\) ) & S1250 GE 3 APG \# & 180.00 & \\
\hline \multirow[t]{4}{*}{4 P OCR options:} & PTA \({ }^{2}\) ) & S1250 GE 4 AP \# & & 180.00 \\
\hline & \(\mathrm{AP}^{2}\) ) & S1250 GE 4 AN \# & & 180.00 \\
\hline & PTA + NP \({ }^{2}\) ) & S1250 GE 4 APN \# & & 360.00 \\
\hline & \(\left.\mathrm{GF}+\mathrm{NP}^{2}\right)\) & S1250 GE 4 AGN \# & & 360.00 \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) The STD and Instantaneous pickup currents \(\left(l_{\text {sd }} \& I_{\mathrm{i}}\right)\) settings are not individually adjustable, however by selecting different curve types and different \(\mathrm{I}_{\mathrm{R}}\) settings the values will vary. Curve \(1 \& 2 \mathrm{I}_{\mathrm{sd}}=2.5 \times \mathrm{I}_{\mathrm{R}}\), curve \(3 I_{\text {sd }}=5 \times I_{R}\), curve \(4-6 I_{s d}=8 x I_{R}\). \(I_{R}\) dial setting \(0.4-0.63 I_{i}=14 x\) \(I_{R}\) and \(I_{R}\) dial setting \(0.8-1.0 \mathrm{li}=10 \times I_{R}\).
\({ }^{2}\) ) To order a MCCB with the above options insert the required amp rating after the option to make up the Cat. No. Eg: S1250GE 4 AGN 800 is an S1250GE 4 Pole 800 A MCCB c/w Neutral Protection and Ground Fault protection.
For additional information on OCR settings, options and applications refer section 9 or part C catalogue.
Replaces: XS1250SE. Note: check exact ratings or dimensions to suit your application requirement.
}

\title{
33 Adam Street Wynnum North SPS - Electrical Installation OM Ma \\ TERASAKI
}

\title{
TemBreak 2 Electronic type S1600NE
}

\section*{85 kA}

Current rating: 640-1600 A
Approvals and Tests: Standards AS/NZS 3947-2 and
IEC 60947-2
Interrupting capacity:
\begin{tabular}{llll} 
& \multicolumn{2}{l}{ Voltage } & Icu \\
\hline AC use & 415 & 85 & 65 \\
\hline & 400 & 100 & 76 \\
\hline
\end{tabular}


Over Current Relay:
Electronic, for general \& selectivity applications
- 7 dial selectable characteristic curves suited for a variety of applications

Base current Ir is adjustable from \(40 \%-100 \%\) of the nominal rated current In
- STD setting 2.5-10 \(\left(x I_{R}\right)^{1}\) )
- INST setting \(14\left(\operatorname{Max} 12 \times I_{n}\right)^{1}\) )
- OCR Options:
- Ground Fault Trip
- Neutral Pole protection

Pre-Trip Alarm
\begin{tabular}{lllrr}
\begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \\
Min. - Max.
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} & \begin{tabular}{r} 
4 pole \\
Price \$
\end{tabular} \\
\hline \multirow{2}{*}{1000} & \(400-1250\) & S1600 NE 3 1250 & \(\mathbf{9 8 2 0 . 0 0}\) & \\
\cline { 3 - 6 } & & S1600 NE 4 1250 & & \(\mathbf{1 1 5 0 0 . 0 0}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Price Adder for OCR options. Add to above MCCB price} & MCCB Cat. No. with option & 3 pole Price \$ & \begin{tabular}{l}
4 pole \\
Price \$
\end{tabular} \\
\hline \multirow[t]{3}{*}{3 P OCR options:} & PTA \({ }^{2}\) ) & S1600 NE 3 AP \# & 180.00 & \\
\hline & GF \({ }^{\text {2 }}\) ) & S1600 NE 3 AG \# & 180.00 & \\
\hline & PTA + GF \({ }^{2}\) ) & S1600 NE 3 APG \# & 180.00 & \\
\hline \multirow[t]{4}{*}{4 P OCR options:} & PTA \({ }^{2}\) ) & S1600 NE 4 AP \# & & 180.00 \\
\hline & \(\left.\mathrm{AP}^{2}\right)\) & S1600 NE 4 AN \# & & 180.00 \\
\hline & PTA + NP \({ }^{2}\) ) & S1600 NE 4 APN \# & & 360.00 \\
\hline & \(\left.\mathrm{GF}+\mathrm{NP}^{2}\right)\) & S1600 NE 4 AGN \# & & 360.00 \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) The STD and Instantaneous pickup currents ( \(l_{\text {sd }} \& l_{\mathrm{i}}\) ) settings are not individually adjustable, however by selecting different curve types and different \(\mathrm{I}_{\mathrm{R}}\) settings the values will vary. Curve \(1 \& 2 \mathrm{I}_{\mathrm{sd}}=2.5 \times \mathrm{I}_{\mathrm{R}}\), curve \(3 I_{\text {sd }}=5 \times I_{R}\), curve \(4-6 I_{\text {sd }}=8 \times I_{R}\). \(I_{R}\) dial setting \(0.4-0.63 I_{i}=14 x\) \(\mathrm{I}_{R}\) and \(\mathrm{I}_{R}\) dial setting \(0.8-1.0 \mathrm{li}=10 \times \mathrm{I}_{\mathrm{R}}\).
\({ }^{2}\) ) To order a MCCB with the above options insert the required amp rating after the option to make up the Cat. No. Eg: S1600NE 4 AGN 800 is an S1600NE 4 Pole 800 A MCCB c/w Neutral Protection and Ground Fault protection.
For additional information on OCR settings, options and applications refer section 9 or part C catalogue.
Replaces: XS1600SE. Note: check exact ratings or dimensions to suit your application requirement.

\section*{Accessories for 1250-1600 A MCCBs}


Internal accessories
Cat. No.
Price \$
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{Shunt trips} & \multicolumn{3}{|l|}{Internal accessories are common for MCCBs 800 A to 1600 A. All have screw terminals except those indicated below with wire leads as indicated.} \\
\hline & \multicolumn{3}{|l|}{For 3 and 4 pole MCCBs} \\
\hline & 110 V AC & T2SH00A10TA & 255.00 \\
\hline & 230-240 V AC & T2SH00A20TA & 255.00 \\
\hline SH & 400-415 V AC & T2SH00A40TA & 255.00 \\
\hline & 12 V DC & T2SH00D01TA & 255.00 \\
\hline & 24 V DC (suits 24 V AC ) & T2SH00D02TA & 255.00 \\
\hline & 48 V DC & T2SH00D04TA & 255.00 \\
\hline & 110 V DC & T2SH00D10TA & 255.00 \\
\hline & 230 V DC & T2SH00D20TA & 255.00 \\
\hline \multicolumn{4}{|l|}{Undervoltage Instantaneous operation} \\
\hline \multirow{7}{*}{UV} & 110 V AC & T2UV80A10NTA & 270.00 \\
\hline & 200-240 V AC & T2UV80A20NTA & 270.00 \\
\hline & 380-450 V AC & T2UV80A40NTA & 270.00 \\
\hline & 24 V DC & T2UV80D02NTA & 270.00 \\
\hline & 110 V DC & T2UV80D10NTA & 270.00 \\
\hline & 230 V DC & T2UV80D20NTA & 270.00 \\
\hline & \multicolumn{3}{|l|}{Time delay types are available - refer NHP for details.} \\
\hline \multirow[t]{5}{*}{Auxiliary \& Alarm switches} & \multicolumn{3}{|l|}{General type (2 A @ 240 V Inductive)} \\
\hline & \(1 \mathrm{C} / \mathrm{O}\) Auxiliary with terminals & T2AX00M3STA & 134.00 \\
\hline & \(1 \mathrm{C} / \mathrm{O} 1^{\text {st }}\) Auxiliary with 700 mm leads & T2AX00M3SWA & 146.00 \\
\hline & \(1 \mathrm{C} / \mathrm{O} 2^{\text {nd }}\) Auxiliary with 700 mm leads & T2AX00M4SWA & 146.00 \\
\hline & \(1 \mathrm{C} / \mathrm{O} 3^{\text {rd }}\) Auxiliary with 700 mm leads & T2AX00M5SWA & 146.00 \\
\hline
\end{tabular}
\(1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}\) aux have different numbered wire leads, otherwise identical.
\begin{tabular}{lll}
\hline 1 C/O Alarm & T2ALOOM4STA & 129.00 \\
\hline 1 C/O Alarm with 700 mm wire leads & T2ALOOM5SWA & 141.00 \\
\hline
\end{tabular}

AL
Heavy-duty type (4 A @ 240 V Inductive)
\begin{tabular}{lll}
\hline 1 N/O Auxiliary & T2AX00B1STA & 146.00 \\
\hline 1 N/C Auxiliary & T2AX00B2STA & 146.00 \\
\hline 1 N/O Alarm & T2ALOOB1STA & 146.00 \\
\hline 1 N/C Alarm & T2ALOOB2STA & 146.00 \\
\hline
\end{tabular}

Micro switching type (very low voltages and currents)
\begin{tabular}{lll}
\hline 1 C/O Auxiliary & T2AX00M3RTA & 187.00 \\
\hline 1 C/O Alarm & T2ALOOM3RTA & 187.00 \\
\hline
\end{tabular}

\section*{Accessories for 1250-1600 A MCCBs}

\section*{External accessories}

Cat. No.
Price \(\$\)
\begin{tabular}{|c|c|c|c|}
\hline Operatinghandles & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { Suits MCCB types } \\
& 1250-1600 \text { A }
\end{aligned}
\]} \\
\hline Direct & Grey/black IP 54 & T2HBX6UR5BN & 560.00 \\
\hline mounting, fixed depth & Red/yellow IP 54 & T2HBX6UR5RN & 560.00 \\
\hline
\end{tabular} IP 54
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{Door interlocking variable depth handles} & \multicolumn{3}{|l|}{1250-1600 A} \\
\hline & \multicolumn{3}{|l|}{T2HS compact handle} \\
\hline & Grey IP55 handle + 320 mm shaft & T2HSX6R6GM & 550.00 \\
\hline & Red/yellow IP55 handle + 320 mm shaft & T2HSX6R6RM & 550.00 \\
\hline \multirow{4}{*}{HS} & \multicolumn{3}{|l|}{METAL compact handle} \\
\hline & Silver IP 65 handle + 320 mm shaft & T2HPX6R6ME & 830.00 \\
\hline & \multicolumn{3}{|l|}{T2HP square handle} \\
\hline & Grey, IP 55 handle +320 mm shaft & T2HPX6R6BN & 550.00 \\
\hline \multirow[t]{7}{*}{HP} & Red/yellow, IP 55 handle + 320 mm shaft & T2HPX6R6RN & 550.00 \\
\hline & \multicolumn{3}{|l|}{Handle options} \\
\hline & Large escutcheon plate option: \(100 \mathrm{~mm}^{2}\) & T2HSESC100 & 18.20 \\
\hline & 390 mm T pin shaft for T2HS no flexi coupling & T2HS400SHAFT & 47.00 \\
\hline & Handle shaft CAM for trapped key interlock & 14997702 & 235.00 \\
\hline & MCCB/handle mech padlock attachment & T2HPX6PALK & 85.00 \\
\hline & MCCB identification labels & TX6CAPLAB & 3.50 \\
\hline
\end{tabular}


T2HB fixed depth "direct mount" handle


T2HS handle


T2HP handle

\section*{Accessories for 1250-1600 A MCCBs}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{External accessories} & Cat. No. & Price \$ \\
\hline \multirow[t]{2}{*}{Mechanical Interlock} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Rear cable interlock - allows an MCCB can be mounted horizontally, vertically or diagonally. Accepts motors and handles. \\
Suitable for 3 or 4 pole MCCBs
\end{tabular}} \\
\hline & \[
\begin{aligned}
& \text { Suits MCCB types } \\
& 1250-1600 \mathrm{~A} \\
& \hline
\end{aligned}
\] & & \\
\hline \multirow[t]{4}{*}{MW} & Interlock kit less wire - Factory fit item & T2MWX6CA & 445.00 \\
\hline & \multicolumn{3}{|l|}{Wire for above interlocks} \\
\hline & Wire 1.0 m & T2MW00S & 60.50 \\
\hline & Wire 1.5 m & T2MW00L & 70.50 \\
\hline \multirow{4}{*}{MS} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Slide type - manual operation, padlockable. Does not allow motors, handles or other front mounted accessories to be fitted. \\
Suitable for front or rear connection.
\end{tabular}} \\
\hline & \multicolumn{3}{|l|}{S1250, S1600} \\
\hline & 3 pole & T2MSX63SFA & 360.00 \\
\hline & 4 pole & T2MSX64SFA & 450.00 \\
\hline \multirow{6}{*}{MB} & \multicolumn{3}{|l|}{Rear walking beam interlock - allows 2 MCCBs to be interlocked side by side. Combinations of 3 and 4 pole types are possible.} \\
\hline & \multicolumn{3}{|l|}{1250-1600 A} \\
\hline & For 3 pole S1250 & T2MBX33P & 850.00 \\
\hline & For 4 pole S1250 Factory fit only & T2MBX34P & 1130.00 \\
\hline & For 3 pole S1600 & T2MBX63P & 850.00 \\
\hline & For 4 pole S1600 Factory fit only & T2MBX64P & 1130.00 \\
\hline
\end{tabular}

\section*{Accessories for 1250-1600A MCCBs}

External accessories
Cat. No.
Price \$
\begin{tabular}{|c|c|c|c|}
\hline Terminal & \multicolumn{3}{|l|}{Terminal covers are the same width as the MCCB} \\
\hline covers - front & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Suits MCCB types
S1250}} \\
\hline MCCBs & & & \\
\hline Extended & 3 pole cover & T2CFX33SLHGA & 225.00 \\
\hline terminal & 4 pole cover & T2CFX34SLHGA & 280.00 \\
\hline covers FC & Terminal covers are & S1600 MCCBs & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Terminal cover locking clip CF} & \multicolumn{3}{|l|}{800 A to 1600 A} \\
\hline & A clip that provides additional terminal cover locking, and also allows a lead seal to be fitted & T2CF00LA & 8.80 \\
\hline \multirow[t]{2}{*}{Interpole Barriers \(\left.{ }^{1}\right)^{2}\) )} & \multicolumn{3}{|l|}{S1250, S1600} \\
\hline & Interpole barrier (Qty 2) & T2BAX63LHA & 10.00 \\
\hline \multicolumn{4}{|l|}{BA} \\
\hline External & S1250, S1600 & & \\
\hline Neutral CT & Optional neutral CT, Ground Fault MCCBs & T2GBX6N12A & 430.00 \\
\hline GB & Optional neutral CT, Ground Fault MCCBs & T2GBX6N16A & 430.00 \\
\hline
\end{tabular}


Notes: ') Line side interpole barriers or terminal covers must be installed with MCCBs.
\({ }^{2}\) ) Interpole Barriers are supplied with MCCBs as standard; 2 barriers with 3 pole MCCBs, and 3 barriers with 4 pole MCCBs.

\section*{Accessories for 1250-1600A MCCBs}

External accessories
Cat. No.
Price \(\$\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{Toggle locks} & \multicolumn{3}{|l|}{Non Captive: Fits up to 3 padlocks or a multiple lock dev} \\
\hline & \[
\begin{aligned}
& \text { Suits MCCB types } \\
& 1250 \mathrm{~A}, 1600 \mathrm{~A}
\end{aligned}
\] & & \\
\hline & Lock with three 8 mm holes & T2HLX6A & 77.00 \\
\hline \multirow[t]{3}{*}{HL} & \multicolumn{3}{|l|}{Captive: Allows a single padlock or multiple padlock device} \\
\hline & \multicolumn{3}{|l|}{1250 A, 1600 A} \\
\hline & Lock with two 8 mm holes & T2HLX6CAP & 165.00 \\
\hline \multirow[t]{2}{*}{Motor operators} & \multicolumn{3}{|l|}{1250 A, 1600 A} \\
\hline & 110 V AC & T2MCX6A10NA & 3150.00 \\
\hline \multirow[t]{2}{*}{MC} & 240 V AC & T2MCX6A24NA & 3150.00 \\
\hline & 24 VDC & T2MCX6D02NA & 3150.00 \\
\hline \multicolumn{4}{|l|}{Rear connect \(1250 \mathrm{~A}, 1600 \mathrm{~A}\) (factory fit only)} \\
\hline term & 3 pole kit, set of 6 studs (1250 A) & T2RPX335B & 1350.00 \\
\hline \multirow{3}{*}{RP} & 4 pole kit, set of 8 studs (1250 A) & T2RPX345B & 1940.00 \\
\hline & 3 pole kit, set of 6 studs ( 1600 A ) & T2RPX635B & 1730.00 \\
\hline & 4 pole kit, set of 8 studs ( 1600 A ) & T2RPX645B & 2250.00 \\
\hline
\end{tabular}


T2RP rear connect studs


Rear connect terminal studs fitted


T2HLX6A


Motor operator fitted to MCCB

\section*{TemBreak 1 series Electronic XS2000NE}

\section*{85 kA}

Current rating: 1000-2000 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)
3
\begin{tabular}{llll} 
& Voltage & Icu kA & Ics kA \\
\hline AC use & \(400 / 415^{1}\) ) & 85 & 64 \\
\hline
\end{tabular}


Trip unit:
Adjustable long, short and instantaneous trip
LTD adjustment: \(\quad I_{1}: 0.8-1 \quad\) t: \(5-30 \mathrm{~s}\)
STD adjustment: \(\quad I_{2}: 2-10 \quad \mathrm{t}: 0.1-0.3 \mathrm{~s}\)
Instantaneous Adj: I I : 3-12 NRC

OCR options: Pre-trip alarm, fault indication and contacts, ground fault trip
Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline \(\left.\mathrm{H}^{2}\right)\) & 450 & 450 \\
\hline W & 320 & 429 \\
\hline D (less toggle) & 185 & 185 \\
\hline Weight \((\mathrm{kg})\) & 55.0 & 67 \\
\hline
\end{tabular}
\begin{tabular}{llllr}
\begin{tabular}{lllll} 
Amp rating \\
NRC
\end{tabular} & Min. & Max. & Cat. No. & Price \$ \\
\hline 3 Pole & & & & \\
\hline 2000 & 1000 & 2000 & XS2000NE 20003 RC & \(\mathbf{1 7 4 0 0 . 0 0}\) \\
\hline 4 Pole & & & & \\
\hline 2000 & 1000 & 2000 & XS2000NE 20004 RC & \(\mathbf{2 3 3 1 0 . 0 0}\) \\
\hline Ground Fault Trip MCCBs \({ }^{3}\) ) & & & \\
\hline 3 Pole & & & & \\
\hline 2000 & 1000 & 2000 & XS2000NE 20003L & \(\mathbf{1 8 2 5 0 . 0 0}\) \\
\hline 4 Pole & & & & \\
\hline 2000 & 1000 & 2000 & XS2000NE 20004L & \(\mathbf{2 4 1 6 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1)} 415 \mathrm{~V}\) Icu rating to IEC 60947-2.
\({ }^{2}\) ) H excludes attached busbar.
\({ }^{3}\) ) GF MCCBs require a 4th Neutral CT to be ordered for 3 and 4 pole MCCB applications. (If a neutral is present) Refer accessories.
NRC: Nominal rated current

\section*{TemBreak 1 series Electronic XS2500NE}

\section*{85 kA}

Current rating: 1250-2500 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)
\begin{tabular}{llll} 
& Voltage & Icu kA & Ics kA \\
\hline AC use & \(400 / 415^{1}\) ) & 85 & 64 \\
\hline
\end{tabular}

Trip unit: Adjustable long, short and instantaneous settings
\begin{tabular}{lll} 
LTD adjustment: & \begin{tabular}{ll}
1 & \(1: 0.8-1\) \\
& t: \(5-30 \mathrm{~s}\) \\
STD adjustment: & \(1: 2-10\) \\
Instantaneous Adj: & \(I_{3}: 3-12\)
\end{tabular} & t: \(0.1-0.3 \mathrm{~s}\)
\end{tabular}

OCR options: Pre-trip alarm, fault indication and contacts, ground fault trip

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline \(\left.\mathrm{H}^{2}\right)\) & 450 & 450 \\
\hline W & 320 & 429 \\
\hline D (less toggle) & 185 & 185 \\
\hline Weight \((\mathrm{kg})\) & 66.0 & 78 \\
\hline
\end{tabular}

Amp rating
\begin{tabular}{lcclr} 
NRC & Min. & Max. & Cat. No. & Price \$ \\
\hline 3 Pole & & & & \\
\hline 2500 & 1250 & 2500 & XS2500NE 2500 RC3 & \(\mathbf{1 9 4 1 0 . 0 0}\) \\
\hline 4 Pole & & & & \\
\hline 2500 & 1250 & 2500 & XS2500NE 2500 RC4 & \(\mathbf{2 5 8 8 0 . 0 0}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Ground Fault Trip MCCBs \(\left.{ }^{2}\right)^{3}\) )} \\
\hline \multicolumn{5}{|l|}{3 Pole} \\
\hline 2500 & 1250 & 2500 & XS2500SE 25003L & 20280.00 \\
\hline \multicolumn{5}{|l|}{4 Pole} \\
\hline 2500 & 1250 & 2500 & XS2500SE 25004L & 26750.00 \\
\hline
\end{tabular}

\footnotetext{
Notes: \(\left.{ }^{1}\right) 415\) V Icu rating to IEC 60947-2.
\({ }^{2}\) ) H excludes attached busbar.
\({ }^{3}\) ) GF MCCBs require a 4 th Neutral CT to be ordered for 3 and 4 pole MCCB applications. (If a neutral is present) Refer accessories.
NRC: Nominal rated current.
}

\section*{TemBreak 1 series \\ Electronic XS3200NE}

\section*{85 kA}

Current rating: 1600-3200 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)
Voltage IcukA Ics kA


Trip unit: Adjustable long, short and instantaneous settings
LTD adjustment: \(\quad 1: 0.8-1 \quad\) t: \(5-30 \mathrm{~s}\)
STD adjustment: \(12: 2-10 \quad\) t: \(0.1-0.3 \mathrm{~s}\)
Instantaneous Adj: I 3 : 3-12 NRC

OCR options: Pre-trip alarm, fault indication with relay contact
Dimensions (mm)
\begin{tabular}{ll} 
Poles & \(\mathbf{3}\) \\
\hline \(\left.\mathrm{H}^{1}\right)\) & 450 \\
\hline\(W\) & 320 \\
\hline D (less toggle) & 185 \\
\hline Weight (kg) & 66.0 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{lllll}
\begin{tabular}{lllll} 
Amp \\
rating
\end{tabular} & Min. & Max. & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price
\end{tabular} \\
\hline NRC & Min & XS3200NE32003 RC & 23810.00 \\
\hline 3200 & 1600 & 3200 & & \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1)} \mathrm{H}\) excludes attached busbar.
} NRC: Nominal rated current.

Accessories to suit 2000-3200 AF
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Internal accessories - factory fit} & Cat. No. & Price \$ \\
\hline \multirow{9}{*}{Shunt trips} & 110 V AC/DC (110-115 V) & 2H1526BAA & 560.00 \\
\hline & \(240 \mathrm{~V} \mathrm{AC} \mathrm{(200-480} \mathrm{V)}\) & 2H1527BAA & 560.00 \\
\hline & 12 VDC & 2H1528BAA & 560.00 \\
\hline & 24 VDC & 2H1529BAA & 560.00 \\
\hline & 48 V DC & 2H1530BAA & 560.00 \\
\hline & 200 V DC (200-230 V) & 2H1531BAA & 560.00 \\
\hline & 415 V AC & 2H1541BAB & 560.00 \\
\hline & 24 V AC & 2H1532BAA & 560.00 \\
\hline & 48 V AC & 2H1533BAA & 560.00 \\
\hline \multirow{12}{*}{Undervoltage trips} & AC coil \({ }^{1}\) ) & 2H1509BAA & 455.00 \\
\hline & 100-230 V DC coil \({ }^{2}\) ) & 2H1510BAA & 465.00 \\
\hline & 24 VDC coil \(^{2}\) ) & 2H1511BAA & 465.00 \\
\hline & 48 VDC coil \(^{2}\) ) & 2H1512BAA & 465.00 \\
\hline & 60 VDC coil \(^{2}\) ) & 2H1513BAA & 465.00 \\
\hline & 110 V AC instantaneous controller & UXUB0013B & 113.00 \\
\hline & 240 V AC instantaneous controller & UXUB0014B & 113.00 \\
\hline & 440 V AC instantaneous controller & UXUB0015B & 113.00 \\
\hline & 110 V AC time delay controller & UXUB0016B & 220.00 \\
\hline & 240 V AC time delay controller & UXUB0017B & 220.00 \\
\hline & 440 V AC time delay controller & UXUB0018B & 215.00 \\
\hline & 200-230 V DC controller & UXUB0038B & 113.00 \\
\hline \multirow{6}{*}{Auxiliary switches} & AUX SW right hand 1C & UXXB0013C & 350.00 \\
\hline & AUX SW right hand 2C & UXXB0014C & 400.00 \\
\hline & AUX SW right hand 3C & UXXB0015C & 465.00 \\
\hline & AUX SW right hand 4C & UXXB0016C & 540.00 \\
\hline & AUX SW right hand 5C & UXXB0017C & 590.00 \\
\hline & AUX SW right hand 6C & UXXB0018C & 640.00 \\
\hline Alarm switch & ALT SW right hand & UXLB0012C & 445.00 \\
\hline \multirow{4}{*}{Alarm \& auxiliary switch} & ALT/AUX right hand 1C & UXLB0019D & 510.00 \\
\hline & ATL/AUX right hand \(2 C\) & UXLB0020C & 580.00 \\
\hline & ATL/AUX right hand 3 C & UXLB0021C & 670.00 \\
\hline & ATL/AUX right hand 5C & UXLB0023C & 790.00 \\
\hline
\end{tabular}

Notes: \({ }^{1)}\) An AC UVT controller is required for \(100-440 \mathrm{~V} \mathrm{AC}\).
\({ }^{2}\) ) A DC UVT controller is needed for 200-230 V DC operation. None required for 24-110 V DC.

\section*{Accessories to suit 2000-3200 AF}
\begin{tabular}{|c|c|c|c|}
\hline Internal ac & ories - factory fit & Cat. No. & Price \$ \\
\hline Ground fault trip (GFT) & \begin{tabular}{l}
An option for all 2000-2500 A types \\
Add
\end{tabular} & LSIG & 870.00 \\
\hline Optional ext. & 2000 A 4th CT & UXOY0006A & 720.00 \\
\hline 4th CTs & 2500 A 4th CT & UXOY0007A & 880.00 \\
\hline Fault indication with contacts & \begin{tabular}{l}
An option for all 2000-3200 A types \\
Add FI then voltage
\end{tabular} & FI & 730.00 \\
\hline Fault indication & LED's mounted at top of OCR & FILED & 2050.00 \\
\hline Pre-trip alarm & An option for all 2000-3200 A types & LSIP & 700.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{External accessories - most user fit} & Cat. No. & Price \$ \\
\hline Front connect & \[
\begin{aligned}
& 3 \text { P attached busbars XS2000 } \\
& t^{\left.(6 \text { in kit) })^{1}\right)}
\end{aligned}
\] & TXRD0003A & 2030.00 \\
\hline \multirow[t]{2}{*}{busbar (factory fit)} & \[
\begin{aligned}
& 4 \text { P attached busbars XS2000 } \\
& \left(8 \text { in kit) }{ }^{1}\right)
\end{aligned}
\] & TXRD0004A & 2810.00 \\
\hline & Mounting bolts \({ }^{1}\) ) & TXRD0005A & 210.00 \\
\hline \multirow{3}{*}{Motor operators} & 110 V AC motor & UXMB0006B & 3820.00 \\
\hline & 240 V AC motor & UXMB0008B & 3820.00 \\
\hline & 110 V DC motor & UXMB0009B & 3820.00 \\
\hline \multirow{4}{*}{Mechanical interlocks (factory fit)} & 3 P rear mechanical interlock & UXKC0012A & 2090.00 \\
\hline & 4 P rear mechanical interlock & UXKC0013A & 3120.00 \\
\hline & Interlock wire (cable style interlock) & UXKC0020A & 83.00 \\
\hline & Interlock mechanism - cable type \({ }^{2}\) ) & UXKC0025B & 650.00 \\
\hline \multirow[t]{2}{*}{Handle operator} & Direct mount handle mechanism \({ }^{3}\) ) & XFE10 & 1690.00 \\
\hline & Handle extension & UXHB0001B & 195.00 \\
\hline Toggle locks factory fit & Blocks toggle activation (non captive) & UXKB0001A & 79.00 \\
\hline \multirow[t]{2}{*}{Accessory lead terminal} & Accessory lead block (factory fit) & UXYD0001A & 26.80 \\
\hline & Terminal bolt (6 in kit) & UXYD0002A & 2.20 \\
\hline OCR sealing kit & Tamperproof cover for OCR adjustment dials & XS20000CRSK & 60.50 \\
\hline
\end{tabular}

Notes: ') When an XS2000NE MCCB is configured for "front connection", the Front Connect busbar kits TXRD0003A \& 4A already include mounting screws for the FC terminals.
The TXRD0005A mounting bolts, which also include spacers, are required to mount the MCCB itself. TXRD0005A is always required for FC 2000A MCCBs, but not RC.
\({ }^{2}\) ) Order one interlock mechanism per breaker.
\({ }^{3}\) ) Extension shaft handle not available.

\title{
33 Adam Street Wynnum North SPS - Electrical Installation OM Ma \\ TERASAKI
}

\section*{Integral Earth Leakage}

\section*{Moulded Case Circuit Breakers}

\section*{ZS Earth Leakage Circuit Breakers 125 A and 250 A}

The ZS earth leakage MCCB from Terasaki offers machine or personnel protection within a standard 125 A, 160 / 250 A MCCB frame size. The ZS earth leakage MCCB also maintains the full functionality of a standard thermal-magnetic overload / short circuit protection device.

\section*{Features}
- Thermal/ magnetic MCCBStandard 125 A or 250 A frameThermal magnetic trip unit ratings:
12 A - 125 A (125 AF), 100-250 A (250 AF)
- Fixed magnetic characteristic
- 65 kA fault interruption rating @ \(400 / 415 \mathrm{~V}\) as standard


\section*{Earth Leakage features}
- Switching utilisation voltage up to 550 V AC ( \(160 \mathrm{~V} \mathrm{AC} \mathrm{minimum)}\)
- Suitable for use at \(40 / 50 / 60 \mathrm{~Hz}\) (except for the 3 A setting @ 40 Hz )
- 3 or 4 pole types
- Yellow earth leakage TRIP indication flag
- Grey TEST button
- Green 'Power ON' LEDAdjustable thermal characteristic dial setting from 63-100 \% of \(I_{R}\)
Adjustable earth leakage ranges: \(30 \mathrm{~mA}, 100 \mathrm{~mA}, 300 \mathrm{~mA}, 500 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}\)
- Trip time selection: \(0,60,200,400,700 \mathrm{mS}\) or NT (No Trip)
- 30 mA trip time defaults to a less than 300 mS trip time as per AS/NZS standard requirements
Built-in dielectric test disconnection test plug
- Remove trip function (standard)
- Harmonics inhibition (standard)
- Pre trip alarm unit (TCU) with cause of trip output

\section*{Options and accessory fitting}
- Accepts auxiliaries and alarm switchesWill not accept shunts and under voltage tripsAccepts all external accessories, except mechanical interlocks
- ZS 125/250 A MCCBs can be installed on standard XA, XB, XC chassis
- ZS 250 can be fitted to HC Chassis
- Seal label available for sealing the residual current dial setting area for use at 30 mA (Catalogue number of label sheet T12CAPLAB)
- Captive padlock attachment that includes a dial sealing feature
- ZS ELCBs with unswitched or switched neutral poles are available

\footnotetext{
Notes: Fault interruption and other performance data for ZS125-250GJ ELCBs, is the same as the standard S125-250GJ MCCBs, except:
- Rated to an operational voltage of 550 V AC maximum
- Magnetic characteristic is fixed
}

\section*{Earth Leakage Circuit Breaker ZS125GJ/ ZS250GJ}

\section*{65 kA}

Current rating: 20-250 A
Approvals and Tests: AS/NZS 3947-2, IEC 60947-2, Annex B, EN/IEC 60755

Operating voltage: 200-580 V 50/60 Hz
Interrupting capacity:
Voltage IcukA Ics kA
\begin{tabular}{llll} 
AC use & \(380 / 415\) & 65 & 36 \\
\hline DC use & 250 V & 40 & 40
\end{tabular}


Trip unit: Adjustable thermal ( \(0.63 \mathrm{I}_{\mathrm{r}}\) to \(100 \% \mathrm{I}_{\mathrm{r}}\) ) and fixed magnetic
Earth leakage characteristic: Type ' A ' - suitable for AC and residual pulsating DC currents.
Earth leakage adjustments: - \(30 \mathrm{~mA}, 100 \mathrm{~mA}, 300 \mathrm{~mA}, 500 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}\).
- NT 1 ), 0, 60, 200, 400, 700 mS
- 30 mA time setting non adjustable for instant trip

\section*{Neutral pole option:}

ZS ELCBs are available with switched or unswitched (or 'solid neutral') neutral poles. Many general distribution applications can use switched neutral types, whereas for UPS and some other uses, an unswitched neutral pole is preferred.

Earth Leakage Circuit Breaker ZS125GJ

\section*{Dimensions (mm)}
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 155 & 155 \\
\hline W & 90 & 120 \\
\hline D (less toggle) & 68 & 68 \\
\hline Toggle cut-out & 104 & 104 \\
\hline
\end{tabular}

\section*{3 Pole}
\begin{tabular}{llllr}
\begin{tabular}{l} 
Amp \\
rating \\
NRC
\end{tabular} & \begin{tabular}{l} 
Adj. \(I_{r}{ }^{1}\) ) \\
Min. M Max.
\end{tabular} & \begin{tabular}{l} 
Fixed \(I_{m}{ }^{1}\) ) \\
\((\) Amps \()\)
\end{tabular} & Cat. No. \({ }^{2}\) ) & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} \\
\hline 20 & \(12-20\) & 240 & ZS125 GJ 3 20 & \(\mathbf{2 0 0 0 . 0 0}\) \\
\hline 32 & \(20-32\) & 384 & ZS125 GJ 3 32 & \(\mathbf{2 0 0 0 . 0 0}\) \\
\hline 50 & \(32-50\) & 600 & ZS125 GJ 3 50 & \(\mathbf{2 0 0 0 . 0 0}\) \\
\hline 63 & \(40-63\) & 756 & ZS125 GJ 3 63 & \(\mathbf{2 0 0 0 . 0 0}\) \\
\hline 100 & \(63-100\) & 1200 & ZS125 GJ 3 100 & \(\mathbf{2 2 3 0 . 0 0}\) \\
\hline 125 & \(80-125\) & 1250 & ZS125 GJ 3 125 & \(\mathbf{2 3 8 0 . 0 0}\) \\
\hline
\end{tabular}

4 Pole - fixed neutral type
\begin{tabular}{|c|c|c|c|c|}
\hline Amp rating NRC & \begin{tabular}{l}
Adj. \(I_{r}{ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l}
Fixed \(\mathrm{I}_{\mathrm{m}}{ }^{1}\) ) \\
(Amps)
\end{tabular} & Cat. No. \({ }^{2}\) ) & \begin{tabular}{l}
4 pole \\
Price \$
\end{tabular} \\
\hline 20 & 12-20 & 240 & ZS125 GJ \(420^{\text {² }}\) ) & 2200.00 \\
\hline 32 & 20-32 & 384 & ZS125 GJ \(432^{2}\) ) & 2200.00 \\
\hline 50 & 32-50 & 600 & ZS125 GJ \(450{ }^{2}\) ) & 2200.00 \\
\hline 63 & 40-63 & 756 & ZS125 GJ \(463^{2}\) ) & 2200.00 \\
\hline 100 & 63-100 & 1200 & ZS125 GJ \(4100^{2}\) ) & 2560.00 \\
\hline 125 & 80-125 & 1250 & ZS125 GJ \(4125^{2}\) ) & 2750.00 \\
\hline
\end{tabular}

4 Pole - solid neutral type
\begin{tabular}{|c|c|c|c|c|}
\hline Amp rating NRC & \[
\begin{aligned}
& \text { Adj. } I_{r}{ }^{1} \text { ) } \\
& \text { Min. - Max. }
\end{aligned}
\] & \begin{tabular}{l}
Fixed \(\mathrm{I}_{\mathrm{m}}{ }^{1}\) ) \\
(Amps)
\end{tabular} & Cat. No. \({ }^{2}\) ) & 4 pole Price \$ \\
\hline 20 & 12-20 & 240 & ZS125GJ 420 SN & 2200.00 \\
\hline 32 & 20-32 & 384 & ZS125GJ 432 SN & 2200.00 \\
\hline 50 & 32-50 & 600 & ZS125GJ 450 SN & 2200.00 \\
\hline 63 & 40-63 & 756 & ZS125GJ 463 SN & 2200.00 \\
\hline 100 & 63-100 & 1200 & ZS125GJ 4100 SN & 2560.00 \\
\hline 125 & 80-125 & 1250 & ZS125GJ 4125 SN & 2750.00 \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) NRC: Nominal rated current. Adj. \(\mathrm{I}_{\mathrm{r}}\) : Adjustable thermal setting Fixed \(I_{m}\) : Fixed magnetic setting NT: No Trip
\({ }^{2}\) ) Use list prices above for unswitched versions.
}

\section*{Earth Leakage Circuit Breaker} ZS250GJ

Dimensions (mm)
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline H & 165 & 165 \\
\hline W & 105 & 140 \\
\hline D (less toggle) & 68 & 68 \\
\hline Toggle cut-out & 104 & 104 \\
\hline
\end{tabular}

3 Pole
\begin{tabular}{llllr}
\begin{tabular}{l} 
Amp rating \\
NRC
\end{tabular} & \begin{tabular}{l} 
Adj. Ir \({ }^{1}\) ) \\
Min. - Max.
\end{tabular} & \begin{tabular}{l} 
Fixed Im \(^{1}\) ) \\
\((\) Amps)
\end{tabular} & Cat. No. \({ }^{2}\) ) & Price \$ \\
\hline 160 & \(100-160\) & 1760 & ZS250 JJ 3 160 & \(\mathbf{2 4 9 0 . 0 0}\) \\
\hline 250 & \(160-250\) & 2750 & ZS250 GJ 3 250 & \(\mathbf{2 7 8 0 . 0 0}\) \\
\hline 4 Pole & & & & \\
\hline 160 & \(100-160\) & 1760 & ZS250 GJ 4 160 \({ }^{\text {2 }}\) ) & \(\mathbf{2 8 9 0 . 0 0}\) \\
\hline & & & ZS250 GJ4 160 SN \({ }^{2}\) ) & \(\mathbf{2 8 9 0 . 0 0}\) \\
\hline 250 & \(160-250\) & 2750 & ZS250 GJ 4 250 \({ }^{\text {2 }}\) ) & \(\mathbf{3 1 1 0 . 0 0}\) \\
\hline & & & ZS250 GJ 4 250 SN \({ }^{2}\) ) & \(\mathbf{3 1 1 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) Unswitched (solid neutral) type.
\({ }^{2}\) ) Use list prices above for unswitched versions.

\section*{33 Adam Street Wynnum North SPS - Electrical Installation OM Ma TERASAKI}

\section*{Integral Earth Leakage Circuit Breaker ZS 400 A-800 A}

The ZS 400 - 800A Earth Leakage Circuit Breaker from Terasaki offers machine protection within a standard 400 A, 630 / 800 A MCCB frame size.
The full functionality of a standard thermal-magnetic overload / short circuit protection MCCB is maintained.

\section*{Standard Features}
- AS/NZS 60947.6, JIS Standards compliance
- Thermal/magnetic MCCB
- 3 or 4 pole \(400 \mathrm{~A}, 630 / 800 \mathrm{~A} 3\) pole only
- Switching utilisation up to 110 to 440 V AC
- Suitable for use at \(40 / 50 / 60 \mathrm{~Hz}\)
- Trip unit ratings: 250 A - 400 A ( 400 AF ), 500 A - 800 A (800AF)
■ Fixed thermal setting, adjustable magnetic setting
■ 70 kA / 50kA fault interruption rating 400 AF / 800 AF
- Harmonics inhibition
- Megger / Dielectric test voltage: 500 V DC Maximum

\section*{Earth Leakage features}

- Yellow ground fault TRIP indication flag

- Grey TEST button
- Green 'Power ON'LED
- Adjustable thermal characteristic dial setting from 63-100 \% of IR
- Adjustable earth leakage ranges: \(100 \mathrm{~mA}, 200 \mathrm{~mA}, 500 \mathrm{~mA}\),
- Trip time selection: Fixed
- Type "AC" earth leakage device suitable for AC currents

Options, Internal and external accessories
- Accessories are a customer fit.
- Auxiliaries \& Alarms can be used. The quantities refer to standard MCCB quantity configurations
- Cannot fit Shunt \& UVTs
- Standard MCCB external accessories can be installed, except for T2ML link and T2MW wire interlocks.T2MS slide interlocks can be installed
- Will fit to XC and HC chassis

\section*{Integral Earth Leakage Circuit Breaker ZS 400 A-800 A}

Settings \& Features:


Rated breaking capacities (Ics kA):
ZS ELCB model \& kA Rating (Ics)
\begin{tabular}{llll} 
Voltage range & ZS400GF & ZS630NF & ZS800NF \\
\hline AC440 V & 70 & 50 & 50 \\
\hline AC100/240 V & 100 & 85 & 85 \\
\hline
\end{tabular}

Overcurrent relay ratings and adjustment:
\begin{tabular}{|c|c|c|c|}
\hline Trip mechanism type & \multicolumn{3}{|l|}{Thermal magnetic all types} \\
\hline ZS400NF/GF & \multirow[t]{3}{*}{trip unit ampere ratings:} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 250,300, \\
& 350,400 \mathrm{~A} \\
& 500 \mathrm{~A}, 600 \mathrm{~A}, \\
& 630 \mathrm{~A}, 700, \\
& 800 \mathrm{~A}
\end{aligned}
\]} & fixed thermal / Adj mag 6-12 \(\mathrm{l}_{\mathrm{i}}\) \\
\hline ZS630NF & & & fixed thermal / Adj mag 5-10 \(\mathrm{II}_{\mathrm{i}}\) \\
\hline ZS800NF & & & fixed thermal / Adj mag 5-10 \(\mathrm{xI}_{\mathrm{i}}\) \\
\hline
\end{tabular}

\section*{Integral Earth Leakage Circuit Breaker ZS 400 A-800 A}


Dimensions
\begin{tabular}{llll}
\begin{tabular}{l} 
Outline \\
Dimensions (mm)
\end{tabular} & ZS400GF & ZS630NF & ZS800NF \\
\hline H & 260 & 273 & 273 \\
\hline W & \(1403 P / 1854 \mathrm{P}\) & \(2103 P\) & \(2103 P\) \\
\hline D & 103 & 103 & 103 \\
\hline
\end{tabular}

\section*{Integral Earth Leakage Circuit Breaker ZS 400GF}

\section*{70 kA}

Current rating: 250-400 A
Approvals and Tests: AS/NZS 3947-2, IEC 60947-2, AS/NZS 2081: 2011, JIS C 8201

Operating voltage: \(110-440 \mathrm{~V} 50 / 60 \mathrm{~Hz}\)
Interrupting capacity:


Trip unit: Fixed thermal, adjustble magnetic \(6 \times 12\) li
Earth leakage characteristic: Type " \(A C\) " - suitable for \(A C\) currents.
Earth leakage adjustments: \(100 \mathrm{~mA}, 200 \mathrm{~mA}, 500 \mathrm{~mA}\)
Fixed operating time: 0.1 second maximum
Options:
TemBreak 2, 400 A internal and external accessories can be installed, except for shunts, UVTs, Trip Control Units, T2ML / MW Interlocks.

\section*{Neutral Pole}

ZS ELCBs are available with switched neutral poles.
Dimensions
\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & 4 \\
\hline H (less attached busbars) & 260 & 260 \\
\hline W & 140 & 185 \\
\hline D (less toggle) & 103 & 103 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Ampere Rating NRC & Fixed Ir \({ }^{1}\) ) Amps & Adj. Ii \({ }^{1}\) Amps & Cat. No. & 3 Pole Price \(\$\) & 4 Pole Price \(\$\) \\
\hline \multirow{2}{*}{250} & \multirow{2}{*}{250} & \multirow{2}{*}{1500-3000} & ZS400 GF 3250 & 3900.00 & \\
\hline & & & ZS400 GF 4250 & & 4600.00 \\
\hline \multirow{2}{*}{300} & \multirow{2}{*}{300} & \multirow{2}{*}{1800-3600} & ZS400 GF 3300 & 3900.00 & \\
\hline & & & ZS400 GF 4300 & & 4600.00 \\
\hline \multirow{2}{*}{350} & \multirow{2}{*}{350} & \multirow{2}{*}{2100-4200} & ZS400 GF 3350 & 4150.00 & \\
\hline & & & ZS400 GF 4350 & & 4800.00 \\
\hline \multirow[t]{2}{*}{400} & \multirow[t]{2}{*}{400} & \multirow[t]{2}{*}{2400-4800} & ZS400 GF 3400 & 4300.00 & \\
\hline & & & ZS400 GF 4400 & & 4950.00 \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) NRC: Nominal rated current, Fixed Ir : Fixed thermal setting,
Adj. Fixed li: Adjustable magnetic setting,
}

\section*{Integral Earth Leakage Circuit Breaker ZS630NF and ZS800NF}

\section*{50 kA}

Current rating: 500-800 A
Approvals and Tests: AS/NZS 3947-2, IEC 60947-2, AS/NZS 2081: 2011, JIS C8201

Operating voltage: \(110-440 \mathrm{~V} 50 / 60 \mathrm{~Hz}\)
Interrupting capacity:
AC use \begin{tabular}{ll} 
Voltage Icu & Icu \\
\hline \(380 / 415\) & 50
\end{tabular}


Trip unit: Fixed thermal, adjustble magnetic \(6 \times 10\) li Earth leakage characteristic: Type " \(A C\) " - suitable for \(A C\) currents.
Earth leakage adjustments: \(100 \mathrm{~mA}, 200 \mathrm{~mA}, 500 \mathrm{~mA}\)
Fixed operating time: 0.1 second maximum
Options:
TemBreak 2, 630-800 A internal and external accessories can be installed, except for shunts, UVTs, Trip Control Units, T2ML / MW Interlocks

\section*{Neutral Pole}

ZS ELCBs are available with switched neutral poles.

Dimensions

\begin{tabular}{lll} 
Poles & \(\mathbf{3}\) & 4 \\
\hline H (less attached busbars) & 273 & 273 \\
\hline W & 210 & 280 \\
\hline D (less toggle) & 103 & 103 \\
\hline
\end{tabular}
\begin{tabular}{llllr}
\hline \begin{tabular}{l} 
Ampere \\
Rating NRC
\end{tabular} & \begin{tabular}{l} 
Fixed I \({ }^{1}\) ) \\
Amps
\end{tabular} & \begin{tabular}{l} 
Adj. I \({ }^{1}\) ) \\
Amps
\end{tabular} & Cat. No. & \\
\hline 500 & 500 & \(2500-5000\) & ZS630 NF 3 500 & \(\mathbf{4 9 2 0 . 0 0}\) \\
\hline 600 & 600 & \(3000-6000\) & ZS630 NF 3 600 & \(\mathbf{5 2 0 0 . 0 0}\) \\
\hline 630 & 630 & \(3150-6300\) & ZS630 NF 3 630 & \(\mathbf{5 2 0 0 . 0 0}\) \\
\hline 700 & 700 & \(3500-7000\) & ZS800 NF 3 700 & \(\mathbf{5 9 0 0 . 0 0}\) \\
\hline 800 & 800 & \(4000-8000\) & ZS800 NF 3 800 & \(\mathbf{6 2 0 0 . 0 0}\) \\
\hline
\end{tabular}

\footnotetext{
Notes: \({ }^{1}\) ) NRC: Nominal rated current, Fixed Ir : Fixed thermal setting,
Adj. Fixed li: Adjustable magnetic setting,
}

\section*{TemBreak 2 MCCB Switch Disconnectors}

\section*{(non-auto MCCBs)}

Current rating: 125-2500 A
Approvals: Standards AS/NZS 3947-2 and IEC 60947-2
- Accepts MCCB internal and external accessories
- No overcurrent protection (isolator only)
- Suitable for use as a panelboard or switchboard isolator switch
AC 23 and DC 22 rated to IEC 60947-3
Rated impulse withstand voltage Uimp \(=8 \mathrm{kV}\)


3 Pole
\begin{tabular}{llllr}
\begin{tabular}{l} 
Amp \\
rating \\
NRC
\end{tabular} & \begin{tabular}{l} 
Short time \\
rating kA for \\
0.3 sec (lcw)
\end{tabular} & \begin{tabular}{l} 
Rated short- \\
circuit making \\
capacity \\
\((\mathbf{l c m})(\) kA \()\)
\end{tabular} & Cat. No. & \begin{tabular}{r} 
3 pole \\
Price \$
\end{tabular} \\
\hline 125 & 2 & 3.6 & S125NN3 & \(\mathbf{4 3 0 . 0 0}\) \\
\hline 160 & 3 & 6 & S160NN3 & \(\mathbf{5 0 0 . 0 0}\) \\
\hline 250 & 3 & 6 & S250NN3 & \(\mathbf{5 0 0 . 0 0}\) \\
\hline 400 & 5 & 9 & S400NN3 & \(\mathbf{1 6 5 0 . 0 0}\) \\
\hline 630 & 5 & 9 & S630NN3 & \(\mathbf{2 4 9 0 . 0 0}\) \\
\hline 800 & 10 & 15 & S800NN3 & \(\mathbf{3 1 5 0 . 0 0}\) \\
\hline 1250 & 15 & 32 & S1250NN3 & \(\mathbf{7 6 0 0 . 0 0}\) \\
\hline 1600 & 20 & 45 & S1600NN3 & \(\mathbf{8 7 0 0 . 0 0}\) \\
\hline 2000 & 35 & 90 & XS2000NN3RC & \(\mathbf{1 5 6 1 0 . 0 0}\) \\
\hline 2500 & 35 & 90 & XS2500NN3RC & \(\mathbf{1 5 9 9 0 . 0 0}\) \\
\hline
\end{tabular}

4 Pole
\begin{tabular}{llllr}
\begin{tabular}{l} 
Amp \\
rating \\
NRC
\end{tabular} & \begin{tabular}{l} 
Short time \\
rating kA for \\
\(\mathbf{0 . 3} \mathbf{~ s e c ~ ( l c w ) ~}\)
\end{tabular} & \begin{tabular}{l} 
Rated short- \\
circuit making \\
capacity \\
\((\mathbf{l c m})(\) kA \()\)
\end{tabular} & Cat. No. & \begin{tabular}{r} 
4 pole \\
Price \$
\end{tabular} \\
\hline 125 & 2 & 3.6 & S125NN4 & \(\mathbf{5 7 0 . 0 0}\) \\
\hline 160 & 3 & 6 & S160NN4 & \(\mathbf{6 7 0 . 0 0}\) \\
\hline 250 & 3 & 6 & S250NN4 & \(\mathbf{6 7 0 . 0 0}\) \\
\hline 400 & 5 & 9 & S400NN4 & \(\mathbf{2 2 0 0 . 0 0}\) \\
\hline 630 & 5 & 9 & S630NN4 & \(\mathbf{3 3 2 0 . 0 0}\) \\
\hline 800 & 10 & 15 & S800NN4 & \(\mathbf{3 9 9 0 . 0 0}\) \\
\hline 1250 & 15 & 32 & S1250NN4 & \(\mathbf{8 9 5 0 . 0 0}\) \\
\hline 1600 & 20 & 45 & S1600NN4 & \(\mathbf{9 9 0 0 . 0 0}\) \\
\hline \(\left.2000^{1}\right)\) & 35 & 90 & XS2000NN4RC & \(\mathbf{2 0 8 2 0 . 0 0}\) \\
\hline \(\left.2500^{1}\right)\) & 35 & 90 & XS2500NN4FC & \(\mathbf{2 3 6 6 0 . 0 0}\) \\
\hline
\end{tabular}

Notes: \({ }^{1}\) ) TemBreak 1 MCCBs
Refer Part C catalogue for additional technical details and dimensions. UVTs and shunts are operated by the MCCBs trip lever which remains fitted in MCCB Switch disconnectors (Non Auto MCCBs)

Moulded Case Circuit Breakers

\section*{TemBreak DC rated MCCBs}
- Special "ND" models for 350 V to 600 V DC use \({ }^{1}\) )
- Thermal magnetic and Magnetic only types
- 3 and 4 pole types
- 125 A-2500 A
- Will accept standard accessories on sizes to 630 A

Will accept standard external accessories for sizes 800-2500 A

- Refer NHP for internal accessory fitting for types XS800 - XS2500

\section*{DC MCCBs to 800 A}
\begin{tabular}{llllll}
\(\begin{array}{llll}\text { Ampere } \\
\text { frame }\end{array}\) & \(\begin{array}{l}\text { Trip unit / OCR } \\
\text { Sensor ratings (Amps) }\end{array}\) & \multicolumn{2}{c}{\(\begin{array}{l}\text { Poles } \\
\text { 2 }\end{array}\)} & \(\begin{array}{l}\text { OCR type }\end{array}\) & Cat. No.
\end{tabular}\(]\) Price \$


Notes: \({ }^{1)}\) All standard thermal magnetic MCCBs are rated to switch DC currents up to 250 V DC.
\({ }^{2}\) ) Connect poles in series for 350 V DC and above.
The time constant (L/R) of the circuit should be less than 2 ms at or below rated current, less than 7 ms for short circuit equal and below 10 kA , less than 15 ms for short circuits over 10 kA , the connections should be as shown in the diagrams on following page.

\section*{Moulded Case Circuit Breakers}

Ratings
\begin{tabular}{lllll}
\multicolumn{3}{c}{ DC Breaking capacity (kA) } & Poles & \multicolumn{2}{c}{ Current } \\
\(\mathbf{3 5 0} \mathbf{V}\) & \(\mathbf{5 0 0} \mathbf{V}\) & \(\mathbf{6 0 0} \mathrm{V}\) & \(\left.\mathbf{r}^{\mathbf{1}}\right)\) & OCR type adjust.
\end{tabular} Cat. No.
\begin{tabular}{llll}
\begin{tabular}{l} 
Ampere \\
rating
\end{tabular} & Device type & Part Prefix & \begin{tabular}{l} 
DC Utilisation \\
voltage
\end{tabular} \\
\hline \(20-2500\) & MCCB & S125-2500 ND & 600 V \\
\hline \(250-800\) & MCCB & PVS 400-800 NDL & 750 V \\
\hline \(250-800\) & MCCB & PVS 400-800 NDH & 1000 V \\
\hline \(160-800\) & Isolator & PVS 160-800 NNL & 800 V \\
\hline \(160-800\) & Isolator & PVS 400-800 NNH & 1000 V \\
\hline
\end{tabular}

3 and 4 pole series connection
The following wiring connection diagrams should be followed to obtain the \(k A\) switching rating levels indicated in the table above.

3 pole in series


\section*{4 pole in series}


Notes: \({ }^{1}\) ) Connect poles in series for 350 V DC and above.
The time constant (L/R) of the circuit should be less than 2 ms at or below rated current, less than 7 ms for short circuit equal and below 10 kA , less than 15 ms for short circuits over 10 kA , the connections should be as shown in the diagrams on following page.

\section*{33 Adam Street Wynnum North SPS - Electrical Installation OM Ma TERASAKI}

\section*{DC magnetic types 630 A - 2500 A}
```

\square Ampere range 630-2500 A

```
```3 pole
```

```Special shunt and UVT available for sizes 1250 A to 1600 A
- Magnetic adjustment range \(4-8 \times \mathrm{I}_{\mathrm{m}}\)
```



3 pole

Amp rating NRC	Trip Unit Type	3 Pole   (at. No. $\left.^{2}\right)^{3}$ )	3 pole   Price
100 \$ $^{4}$ )	Thermal Magnetic	XS1000ND10003FC	$\mathbf{9 6 3 0 . 0 0}$
1250	Magnetic only	XS1250ND12503FC $\left.{ }^{2}\right)^{3}$ )	$\mathbf{1 0 1 6 0 . 0 0}$
1600	Magnetic only	XS1600ND16003FC $\left.{ }^{1}\right)^{3}$ )	$\mathbf{1 6 7 5 0 . 0 0}$
2000	Magnetic only	XS2000ND20003RC	$\mathbf{1 8 4 6 0 . 0 0}$
2500	Magnetic only	XS2500ND25003RC	$\mathbf{2 0 7 1 0 . 0 0}$

Notes: ${ }^{1)} 3$ pole sizes stocked.
${ }^{2}$ ) Mounting details for DC Applications series are identical to those for the same frame size Standard series (i.e. for XS1000ND refer to XS800NJ, XS1250ND and XS1600ND refer to XS1600NE, XS2000ND and XS2500ND refer to XS2500NE).
${ }^{3}$ ) For 1250 A and 1600 A DC MCCBs some internal accessories may differ from standard AC types. Information is as follows. Internal accessories are a FACTORY fit.
a) Auxiliaries and alarms - Same as standard AC MCCB type
b) Shunt trips are type: 2H2438BAA - 110 V DC or 2H2439BDA - 220 V DC
c) Under voltage trips are type: $2 \mathrm{H} 3776 \mathrm{CBB}-110$ V DC or 2 H 3776 CCB -

220 V DC + barrier 2H3748EBA
${ }^{4}$ ) Thermal/magnetic adjustment down to 630 amps .
NRC: Nominal rated current.
All TemBreak thermal magnetic MCCBs can be used for DC applications

## Plug in MCCBs: 125-630 AF TemBreak 2

## External accessories

Plug-in MCCBs ${ }^{4}$ )
A range of MCCBs are stocked with a rear mounted pre-fitted plug-in section that plugs into the panel mounted base section. The panel mounted base section is ordered separately. The TemBreak 2 plug-in bases include a safety interlock system where the MCCB must be switched OFF to allow MCCB removal. The plug-in base allows for the fitting of up to 4 terminal blocks when auxiliaries, alarms, shunts or UVTs are used. Rear connect terminal covers can be used on the front of the MCCB for IP 20 ingress protection. Standard MCCB conversion to plug-in - NHP can convert standard MCCB to plug-in use.

MCCBs complete with base plug ( 3 pole types below are stocked) ${ }^{1}$ )

	MCCB Ampere 400/415 V ${ }^{6}$ ) Rating NRC kA rating	3 pole Cat. No.	Price \$
PM	20.30 kA	S125NJ320PM	850.00
	32 30 kA	S125NJ332PM	850.00
	50 65 kA	S125GJ350PM	850.00
	63 65 kA	S125GJ363PM	850.00
	10065 kA	S125GJ3100PM	1050.00
	125 65 kA	S125GJ3125PM	1210.00
	16065 kA	S160GJ3160PM	1440.00
	25065 kA	S250GJ3250PM	1780.00
	40070 kA	S400GE3400PM	3010.00
	$\left.630(530 \mathrm{~A})^{2}\right) \quad 70 \mathrm{kA}$	S630GE3630PM	3600.00
	MCCB panel mounting bases		
	3 pole kit for $125 \mathrm{AF}^{3}$ )	T2PM12A3A	159.00
	4 pole kit for $125 \mathrm{AF}^{3}$ )	T2PM12A4A	200.00
	3 pole kit for 160/250 $\mathrm{AF}^{3}$ )	T2PM25A3A	178.00
	4 pole kit for 160/250 $\mathrm{AF}^{3}$ )	T2PM25A4A	235.00
	3 pole kit for 400/630 $\mathrm{AF}^{3}$ )	T2PM40A3A	380.00
	4 pole kit for 400/630 AF ${ }^{3}$ )	T2PM40A4A	510.00
	Control wiring terminals for plug-in MCCBs $\left.\left.{ }^{3}\right)^{4}\right)^{5}$ )		
	3 pin plug for aux/alarm MCCB side	2H6959CAA1	37.00
	3 pin plug for shunt/UVT MCCB side	2H6959CBA1	37.00
	3 pin socket for panel mount section	T2TP003A	37.00

Notes: ${ }^{1}$ ) Other MCCBs not listed can be supplied on request or converted to plug-in, refer next page.
2) S 630 MCCBs when used with a plug-in base must be derated to 530 A .
${ }^{3}$ ) Up to 4 control wiring plug and socket sets can be used in a base.
${ }^{4}$ ) Control wiring kits include pin lugs for internal accessories.
${ }^{5}$ ) Internal accessories must be ordered seperately.
${ }^{6}$ ) TemBreak 2 MCCBs types E/S/H/L can be converted for plug-in use.

## Accessories to suit 125-630 AF TemBreak 2

FC connection bars $\llcorner$ 'L' shaped terminal
Cat. No.
Price $\$$
S125

3 pole kit of 3 bars	T2PF123BA	$\mathbf{3 4 . 0 0}$
4 pole kit of 4 bars	T2PF124BA	$\mathbf{4 6 . 0 0}$
S160, S250		
3 pole kit of 3 bars	T2PF253BA	$\mathbf{7 1 . 0 0}$
4 pole kit of 4 bars	T2PF254BA	$\mathbf{9 4 . 0 0}$
S400, S630		
3 pole kit of 3 bars	T2PF403BA	$\mathbf{2 1 5 . 0 0}$
4 pole kit of 4 bars	T2PF404BA	$\mathbf{2 8 0 . 0 0}$

Plug in MCCB kits Suits MCCB types
Cat. No.
Price $\$$
Kit parts to convert
a standard MCCB to


E125, S125

3pole kit (base not   included)	2H6843CAB	105.00
4pole kit (base not   included)	2H6844CAB	127.00

S160, E/S 250

3 pole kit (base not   included	2H6845CAA	132.00
4pole kit (base not   included)	2H6846CAA	167.00

H/L 125-160-250 (not S250PE/H250NE)

3 pole kit (base not   included	2H6940CAB	220.00
4 pole kit (base not   included)	2H6941CAB	$\mathbf{2 7 5 . 0 0}$

## S250PE, H250NE

3 pole kit (base not   included)	2H6940CBA	$\mathbf{2 5 0 . 0 0}$
4pole kit (base not   included)	2H6941CBA	$\mathbf{3 0 5 . 0 0}$

E400, S400 (not for H/L400)

3 pole kit (base not   included)	2H6847CAAK	$\mathbf{3 0 5 . 0 0}$
4pole kit (base not   included)	2H6848CAAK	$\mathbf{3 9 5 . 0 0}$

MCCB
S630

3 pole kit (base not   included)	2H7234CAAK	$\mathbf{5 0 0 . 0 0}$
4pole kit (base not   included)	2H7235CAAK	$\mathbf{6 4 0 . 0 0}$



T2PM base


Plug in MCCBs

## TemBreak 2 \& TemBreak 1 MCCB cross reference

TemBreak 2 MCCB



Notes: The above equivalents are approximate only. Physical sizes may vary slightly as well as kA ratings.

## TemBreak 2 \& TemBreak 1 MCCB cross reference



To obtain stocked TemBreak 1 MCCBs 125-400 A Refer Section 6 or refer NHP

TemBreak 1 - approximate equivalent Primary equivalent 1 , secondary 2 , third 3, / \& 415 V kA rating 1   2 3					
XS125CJ	18 kA	XS125NJ	25 kA	X=225NC	18 kA
XS125CS	14 kA	XS125NS	25 kA	-	
XH125NJ	50 kA	-		-	
XS125NJ	25 kA	XS125CJ	18 kA	X $=225 \mathrm{NC}$	18 kA
XH125NJ	50 kA	TL100NJ	85 kA	XH125PJ	50 kA
TL30F	120 kA	TL100F	120 kA	TL100NJ	85 kA
TL225B	180 kA	-		-	
-		-		-	
XS250NJ	25 kA	XH160PJ	50 kA	XE225NC	18 kA
XH250NJ	50 kA	XH250PJ	85 kA	XH160PJ	50 kA
TL250NJ	85 kA	TL225F	120 kA	TL100F	120 kA
TL225B	180 kA	TL100C	180 kA	-	
XS250NJ	25 kA	X $=225 \mathrm{NC}$	18 kA	-	
XS250NJ	25 kA	-		-	
XH250NJ	50 kA	TL250NJ	85 kA	-	
XH400SE	65 kA	XS400SE	50 kA	-	
TL250NJ	85 kA	XH250PJ	65 kA	-	
TL400N:	85 kA	TL225F	120 kA	-	
TL225B	180 kA	-		-	
XS400CJ	35 kA	-		-	
XS400CJ	35 kA	-		-	
XS400NJ	50 kA	-		-	
XS400SE	50 kA	XH400SE	65 kA	XH400PE	65 kA
XH400PJ	65 kA	-		-	
XH400SE	65 kA	XH400PE	65 kA	TL400NE	85 kA
TL400NE	85 kA	-		-	
TL400NE	85 kA	TL630NE	125 kA	-	
-		-		-	
XS630CJ	42 kA	XS630NJ	50 kA	-	
XS630SE	50 kA	XS630NJ	50 kA	-	
XH630SE	65 kA	XH630PE	65 kA	XS630PJ	85 kA

Notes: MCCBs with the same colours have the same outline dimensions, though in the case of $400 \mathrm{AF} \& 630 \mathrm{AF}$, main terminal heights vary.

## TemBreak 2 \& TemBreak 1 MCCB cross reference

TemBreak 2 MCCB


Isolators - Short time rating for 0.3 seconds Icw (kA)

Ampere Range	Icu	$\begin{aligned} & 2415 \text { V kA } \\ & \text { lcs } \end{aligned}$	ThermalMag Adjustable	Electronic Adjustment	TemBreak 2 Catalogue Number
125	2	-	-	-	S125NN
160	3	-	-	-	S160NN
250	3	-	-	-	S250NN
400	5	-	-	-	S400NN
630	5	-	-	-	S630NN

TemBreak 1 MCCB


TemBreak 1 - approximate equivalent
Primary equivalent 1 , secondary 2 , third $3, /$ \& 415 V kA rating

$\mathbf{1}$	$\mathbf{2}$				$\mathbf{3}$
XS125NN	1.8 kA	-	-		
XS250NN	4 kA	XE250NNC	3 kA		
XS250NN	4 kA	-	-		
XS400NN	5 kA	-	-		
XS630NN	10 kA		XS800NN		

Notes: The above equivalents are approximate only. Physical sizes may vary slightly as well as
kA ratings.

Chassis assemblies for the TemBreak range

	Page
Chassis assemblies overview	$4-2$
XA / XB, PXB series	$4-3$
XB SS series	$4-7$
XC series	$4-9$
Chassis to suit 125-250 AF MCCBs	$4-11$
Terminal covers	$4-12$
HC High-current chassis   - to suit TemBreak 2 125 - 630 AF MCCBs   - to suit TemBreak 1 630 - 1250 AF MCCBs	$4-15$



# Moulded Case Circuit Breaker 

## Chassis Systems

General features of TemWay XA, XB, PXB, XC chassis

- 36 and 40 kA ratings on standard TemWay XA, XB, PXB chassis
- 50 and 65 kA ratings on TemWay XC chassis
- XC 1000 A chassis are now stocked with 400 A and 250 A tee off combinations
- A range of TemWay 4 pole XA and XB chassis, suitable for earth leakage MCCBs
- A simplified range of single sided chassis for 250 AF MCCBs, $20-250$ A
- Suitable for 690 V AC applications

General features of heavy current "HC" chassis

- For MCCBs, 20-1250 A
- Compact single sided version
- Common configurations of HC chassis now stocked - fully assembled for quick delivery
- 11 box sizes - more economical sizing to suit applications and save cost
- Suitable for 690 V AC applications

Testing
Both TemWay and HC Chassis have been unconditionally type tested (no MCCBs fitted) in Australia, at the short time withstand ratings shown in the table below.

Chassis ratings

Chassis Type	Description	Main bar rating (A)	Fault current level Icw rating	MCCB frame size	MCCB type
XA	Double sided	630,800 A ${ }^{1}$ )	36 kA 1 sec. / 40 kA 0.5 sec .	125 AF	$\begin{aligned} & \text { E/S/ZS125 } \\ & \text { 12A-125A } \end{aligned}$
XB	Double sided	$800 \mathrm{~A}^{1}$ )	36 kA $1 \mathrm{sec} . /$ 40 kA 0.5 sec .	250 AF	$\begin{aligned} & \text { E/S/ZS250 NJ/GJ } \\ & 12 \mathrm{~A}-250 \mathrm{~A} \\ & \hline \end{aligned}$
XBSS	Single sided Left or right sided	$800 \mathrm{~A}^{1}$ )	36 kA 1 sec. / 40 kA 0.5 sec .	250 AF	$\begin{aligned} & \text { E/S/ZS250 NJ/GJ } \\ & 12 \mathrm{~A}-250 \mathrm{~A} \end{aligned}$
PXB	Double sided	800 A	36 kA $1 \mathrm{sec} . /$ 40 kA 0.5 sec	250 AF	S250PE, or a mix of 250 AF sizes
XC	Double sided	1000 A ${ }^{1}$ )	50 kA $1 \mathrm{sec} . /$ 65 kA 0.5 sec .	$\begin{aligned} & 250 \mathrm{AF}, \\ & 400 \mathrm{AF} \end{aligned}$	$\begin{aligned} & \text { E/S/ZS160-250 } \\ & \text { up to E/S400 } \\ & \hline \end{aligned}$
HC	Double sided or single sided left or right	$\begin{aligned} & 1250 \mathrm{~A}, \\ & 1600 \mathrm{~A}, \\ & 2200 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 65 \mathrm{kA} \\ & 1 \mathrm{Sec} . \end{aligned}$	$\begin{aligned} & 250 \mathrm{AF} \\ & \text { to } \\ & 1250 \mathrm{AF} \\ & \hline \end{aligned}$	E/S160   up to XS1250SE

Notes: ${ }^{1)}$ XB and PXB Chassis main bars are rated at 800 A. Optional for XA chassis. To comply to the new Australian New Zealand AS/NSZ 3000-2007 standard regarding separation, $\mathrm{XA}, \mathrm{XB}, \mathrm{PXB}$ and XC chassis should be only used in switchboards having operational currents less than 800 A. For chassis that include integral separation and for currents equal to, and exceeding 800 A , a HC high current chassis must be used.

## XA / XB Chassis for 125-250 AF MCCBs

3 pole, double sided

Features

- Complies with AS/NZS 3439, AS/NZS 3000-2007
- Suits TemBreak MCCBs 125-250 A
- Top and bottom fed
- Busbars fully insulated

Side mounting rail now standard for quicker mounting on all chassis

- XA and XB chassis now rated up to : 36 kA for 1 second

40 kA for 0.5 seconds

## XA 630 and XA 800

## Suits E125, S125, ZS125 MCCBs



## XB 800

Suits S160, S250NJ, S250GJ, ZS250 MCCBs (not S250PE)

No.   Poles	Cutout $\left.{ }^{\prime}\right)$   Height $(\mathbf{m m})$	Pan   Height $(\mathrm{mm})$	Cat. No.	$\mathbf{8 0 0} \mathbf{A}$   Price $\left.\boldsymbol{\$})^{2}\right)$
6	107	105	XB8006U	$\mathbf{4 5 5 . 0 0}$
12	212	210	XB80012U	$\mathbf{4 0 0 . 0 0}$
18	317	315	XB80018U	$\mathbf{7 4 0 . 0 0}$
24	422	420	XB80024U	$\mathbf{6 7 0 . 0 0}$
30	527	525	XB80030U	$\mathbf{1 1 2 0 . 0 0}$
36	632	630	XB80036U	$\mathbf{1 3 3 0 . 0 0}$
42	737	735	XB80042U	$\mathbf{1 5 4 0 . 0 0}$
48	842	840	XB80048U	$\mathbf{1 7 6 0 . 0 0}$
60	1052	1050	XB80060U	$\mathbf{2 1 3 0 . 0 0}$
72	1262	1260	XB80072U	$\mathbf{2 7 1 0 . 0 0}$

Notes: ${ }^{1)}$ The length of the escutcheon cut-out
${ }^{2}$ ) XB Chassis main bars are rated at 800 A , while for XA chassis it is an option. To comply to the new Australian New Zealand AS/NSZ 3000-2007 standard regarding separation, XA, XB chassis should be used in switchboards having operational currents less than 800 A . For chassis that include integral separation and for currents equal to, and exceeding 800 A , a HC high current chassis must be used.
For XB chassis with Form 3bih separation, refer NHP.

# PXB Chassis for 250AF electronic / thermal magnetic MCCBs <br> 3 pole, double sided 

## Features

Complies with AS/NZS 3439, AS/NZS 3000-2007
Suitable for MCCBs 12 A - 250 A

- Suits either all electronic or a mix of electronic and thermal magnetic MCCBs
- Top and bottom fed
- Busbars fully insulated
- PXB chassis rated: 36 kA for 1 second

40 kA for 0.5 seconds
PXB 800


Suits S250PE electronic, S160, E250, S250, ZS250 thermal mag. MCCBs


PXB Chassis showing add-on brackets for mounting thermal magnetic MCCBs
PXB chassis details

## Fitting S250PE Electronic MCCBs

The PXB chassis has extra long tee offs to accommodate 103 mm deep S250PE electronic MCCBs. An S250PE MCCB will not mount onto a standard XB chassis.

Fitting S250PE electronic, S160, E250 and S250 thermal magnetic MCCBs
The PXB chassis caters for a mix of 103 mm deep S250PE and 68mm deep thermal magnetic S160, E250, S250 MCCBs. The chassis comes as standard with add-on metal brackets \& screws, to allow shallower 68 mm deep MCCBs to be installed in any position on the chassis. The total quantity of 3 pole brackets supplied equals the number of 3 pole tee off sets.
Notes: ${ }^{1}$ ) The length of the escutcheon cut-out.
${ }^{2}$ ) Busbars extend 50 mm beyond the pan length at the top and bottom on $\mathrm{XA}, \mathrm{XB}, \mathrm{XC}$ chassis.
PXB Chassis main bars are rated at 800 A . In order for adhere to the new Australian New Zealand AS/NZS 3000-2007 standard regarding separation, XB chassis should be used in switchboards having operational currents less than 800 A . For chassis that includes integral separation and for utilisation currents equal to, and exceeding 800 A , a HC high current chassis must be used.

## XA / XB Chassis for 125-250AF MCCBs

4 pole, double sided

## Features

- Complies with AS/NZS 3439, AS/NZS 3000-2007

Suits TemBreak MCCB

- Busbars fully insulated
- Side mounting rail now standard for quicker mounting on all chassis
- XA and XB chassis now rated up to : 36 kA for 1 second 40 kA for 0.5 seconds


## XA 630 and XA 800

Suits E125, S125, ZS125 MCCBs

No. Poles	Cutout ${ }^{1}$   Height (mm)	Pan   Height (mm)	Cat. No.	$630 \mathrm{~A}$   Price \$
8	122	150	XA6308U4POLE	760.00
16	242	270	XA63016U4POLE	910.00
24	362	390	XA63024U4POLE	1320.00
32	482	510	XA63032U4POLE	1680.00
40	602	630	XA63040U4POLE	2010.00
48	722	750	XA63048U4POLE	2360.00
56	842	850	XA63056U4POLE	2920.00
64	962	990	XA63064U4POLE	3110.00
No. Poles	Cutout ${ }^{1)}$   Height (mm)	Pan   Height (mm)	Cat. No. ${ }^{2}$ )	800 A   Price $\$$
8	122	150	XA8008U4POLE	840.00
16	242	270	XA80016U4POLE	940.00
24	362	390	XA80024U4POLE	1380.00
32	482	510	XA80032U4POLE	1780.00
40	602	630	XA80040U4POLE	2170.00
48	722	750	XA80048U4POLE	2600.00
56	842	850	XA80056U4POLE	3020.00
64	962	990	XA80064U4POLE	3370.00

Notes: ${ }^{1}$ ) The length of the escutcheon cut-out.
${ }^{2}$ ) XB Chassis main bars are rated at 800 A , while for XA chassis it is an option.
To comply to the new Australian New Zealand AS/NSZ 3000-2007 standard regarding separation, XA, XB chassis should be only used in switchboards having operational currents less than 800 A . For chassis that include integral separation and for currents equal to, and exceeding $800 \mathrm{~A}, \mathrm{a} \mathrm{HC}$ high current chassis must be used.
${ }^{3}$ ) XA and XB 4 pole chassis have a common pan width. 630A chassis use 4 main bars while 800 A have 5 main bars ( 2 neutral bars).

# XA / XB Chassis for 125-250AF MCCBs <br> 4 pole, double sided 

XB 800
Suits S160, S250NJ, S250GJ, ZS250 MCCBs (not S250PE)

No.   Poles	Cutout $\left.{ }^{1}\right)$   Height $(\mathrm{mm})$	Pan   Height $(\mathrm{mm})$	Cat. No. ${ }^{2}$ )	$\mathbf{8 0 0} \mathbf{A}$   Price \$
8	142	175	XB8008U4POLE	$\mathbf{9 3 0 . 0 0}$
16	282	315	XB80016U4POLE	$\mathbf{1 1 7 0 . 0 0}$
24	422	455	XB80024U4POLE	$\mathbf{1 6 3 0 . 0 0}$
32	562	595	XB80032U4POLE	$\mathbf{2 1 0 0 . 0 0}$
40	702	735	XB80040U4POLE	$\mathbf{2 5 4 0 . 0 0}$
48	842	875	XB80048U4POLE	$\mathbf{3 0 6 0 . 0 0}$

Notes: ${ }^{1}$ ) The length of the escutcheon cut-out.
${ }^{2}$ ) XB Chassis main bars are rated at 800 A , while for XA chassis it is an option.
To comply to the new Australian New Zealand AS/NSZ 3000-2007 standard regarding separation, XA, XB chassis should be only used in switchboards having operational currents less than 800 A . For chassis that include integral separation and for currents equal to, and exceeding $800 \mathrm{~A}, \mathrm{a} \mathrm{HC}$ high current chassis must be used.

## XB SS Chassis for 125-250 AF MCCBs

3 pole, single sided

## Features

- Single sided MCCB mounting
- Different chassis for left or right side MCCB mounting
- Complies with AS/NZS 3439, AS/NZS 3000-2007
- Suits TemBreak, 160 / 250 A Frame MCCBs

Current ratings of MCCBs range 12 A to 250 A

- Top and bottom fed
- Busbars fully insulated
- Side mounting rail now standard for quicker mounting on
 all chassis
- XA and XB chassis now rated up to : 36 kA for 1 second 40 kA for 0.5 seconds


## Single Sided Chassis <br> Suits S160NJ, E250NJ, S250NJ, S160GJ, S250GJ, ZS250 MCCBs (not S250PE)

XB SSL 800
LEFT hand single sided 3 pole (MCCB loadside connections at LEFT)

No.   Poles	Cutout ${ }^{1}$ )   Height $(\mathrm{mm})$	Pan   Height   $(\mathrm{mm})$	Cat. No. $\left.{ }^{2}\right)$	$\mathbf{8 0 0}$ A   Price \$
3	107	105	XBSSL 800 3U	$\mathbf{3 7 0 . 0 0}$
6	212	210	XBSSL 800 6U	$\mathbf{4 4 0 . 0 0}$
9	317	315	XBSSL 800 9U	$\mathbf{5 9 0 . 0 0}$
12	422	420	XBSSL 800 12U	$\mathbf{7 5 0 . 0 0}$
15	527	525	XBSSL 800 15U	$\mathbf{8 9 0 . 0 0}$
18	632	630	XBSSL 800 18U	$\mathbf{1 0 8 0 . 0 0}$
21	737	735	XBSSL 800 21U	$\mathbf{1 2 2 0 . 0 0}$
24	842	840	XBSSL 800 24U	$\mathbf{1 7 6 0 . 0 0}$
30	1052	1050	XBSSL 800 30U	$\mathbf{2 1 3 0 . 0 0}$
36	1262	1260	XBSSL 800 36U	$\mathbf{2 7 1 0 . 0 0}$

Notes: ${ }^{1}$ The length of the escutcheon cut-out.
${ }^{2}$ ) Busbars extend 50 mm beyond the pan length at the top and bottom on $\mathrm{XA}, \mathrm{XB}, \mathrm{XC}$ chassis.
PXB Chassis main bars are rated at 800 A . In order for adhere to the new Australian New Zealand AS/NZS 3000-2007 standard regarding separation, XB chassis should be used in switchboards having operational currents less than 800 A. For chassis that includes integral separation and for utilisation currents equal to, and exceeding 800 A , a HC high current chassis must be used.

## XB SS Chassis for 125-250 AF MCCBs

3 pole, single sided

XB SSR 800
RIGHT hand single sided $\mathbf{3}$ pole (MCCB loadside connections at RIGHT)

No.   Poles	Cutout $\left.{ }^{1}\right)$   Height $(\mathrm{mm})$	Pan   Height   $(\mathrm{mm})$	Cat. No. $\left.{ }^{2}\right)$	$\mathbf{8 0 0} \mathbf{A}$   Price \$
3	107	105	XBSSR 800 3U	$\mathbf{3 7 0 . 0 0}$
6	212	210	XBSSR 800 6U	$\mathbf{4 4 0 . 0 0}$
9	317	315	XBSSR 800 9U	$\mathbf{5 9 0 . 0 0}$
12	422	420	XBSSR 800 12U	$\mathbf{7 5 0 . 0 0}$
15	527	525	XBSSR 800 15U	$\mathbf{8 9 0 . 0 0}$
18	632	630	XBSSR 800 18U	$\mathbf{1 0 8 0 . 0 0}$
21	737	735	XBSSR 800 21U	$\mathbf{1 2 2 0 . 0 0}$
24	842	840	XBSSR 800 24U	$\mathbf{1 7 6 0 . 0 0}$
30	1052	1050	XBSSR 800 30U	$\mathbf{2 1 3 0 . 0 0}$
36	1262	1260	XBSSR 800 36U	$\mathbf{2 7 1 0 . 0 0}$

Notes: 1) The length of the escutcheon cut-out.
${ }^{2}$ ) Busbars extend 50 mm beyond the pan length at the top and bottom on $X A, X B, X C$ chassis.
PXB Chassis main bars are rated at 800 A . In order for adhere to the new Australian New Zealand AS/NZS 3000-2007 standard regarding separation, XB chassis should be used in switchboards having operational currents less than 800 A . For chassis that includes integral separation and for utilisation currents equal to, and exceeding 800 A , a HC high current chassis must be used.

## XC Chassis for 160 / 250 A - 400 A MCCBs

3 pole, double sided

## Features

- Complies with AS/NZS 3439, AS/NZS 3000-2007Suits TemBreak MCCB amp ratings 20 A - 400 A
- Top and bottom fed
- Busbars fully insulated
- Side mounting rail now standard for quicker mounting on all chassis
■ XC chassis now rated up to : 50 kA for 1 second
65 kA for 0.5 second


■ Now stocked with combinations of 250 A and 400 A tee offs 40 kA for 0.5 seconds

## XC 1000

Suits S160, E250, S250NJ, S250GJ, ZS250 MCCBs ${ }^{3}$ ) (not S250PE)

No.   Poles	Cutout $\left.{ }^{1}\right)$   Height $(\mathrm{mm})$	Pan   Height $(\mathrm{mm})$	Cat. No. $\left.{ }^{2}\right)$	$\mathbf{1 0 0 0}$ A   Price $\mathbf{\$}$
6	107	170	XC10006U	$\mathbf{7 1 0 . 0 0}$
12	212	275	XC100012U	$\mathbf{8 0 0 . 0 0}$
18	317	380	XC100018U	$\mathbf{1 1 1 0 . 0 0}$
24	422	485	XC100024U	$\mathbf{1 4 3 0 . 0 0}$
30	527	590	XC100030U	$\mathbf{1 6 6 0 . 0 0}$
36	632	695	XC100036U	$\mathbf{1 9 8 0 . 0 0}$
42	737	800	XC100042U	$\mathbf{2 3 4 0 . 0 0}$
48	842	905	XC100048U	$\mathbf{2 5 8 0 . 0 0}$

Notes: ${ }^{1)}$ The length of the escutcheon cut-out
${ }^{2}$ ) XC Chassis main bars are rated at 1000 A . To comply to the new Australian New Zealand AS/NSZ 3000-2007 standard regarding separation, XC chassis should be only used in switchboards having operational currents less than 800 A . For chassis that include integral separation and for currents equal to, and exceeding $800 \mathrm{~A}, \mathrm{HC}$ high current chassis must be used.
${ }^{3}$ ) XC chassis can be custom built for alternate combinations of 250 A MCCBs, and up to $2 \times 400$ AF MCCBs, and ZS125 (125 AF) ELCBs. 630 A MCCB mounting is not possible.

## XC Chassis for 160 / 250 A - 400 A MCCBs

3 pole, double sided

## XC 1000 Chassis

## Suits $\mathbf{2 5 0}$ A and 400 A MCCBs ${ }^{2}$ ) (not S250PE)

As an alternative to a larger high current chassis, where only up to $2 \times 400 \mathrm{~A}$ and up to $12 \times 68 \mathrm{~mm}$ deep 250 A MCCBs need to be installed, the configurations of stocked XC chassis below can be used.

Pan   Height $(\mathrm{mm})$	Chassis configured   for MCCBs below $\left.\left.{ }^{2}\right)^{\mathbf{3}}\right)$	Cat. No. ${ }^{1}$ )	1000 A   Price $\mathbf{\$}$
415	$1 \times 400 \mathrm{~A}$ and $4 \times 250 \mathrm{~A}$	XC10001X4R12U	$\mathbf{1 4 9 0 . 0 0}$
625	$1 \times 400 \mathrm{~A}$ and $8 \times 250 \mathrm{~A}$	XC10001X4R24U	$\mathbf{2 1 0 0 . 0 0}$
835	$1 \times 400 \mathrm{~A}$ and $12 \times 250 \mathrm{~A}$	XC10001X4R36U	$\mathbf{2 8 0 0 . 0 0}$
555	$2 \times 400 \mathrm{~A}$ and $4 \times 250 \mathrm{~A}$	XC10002X4R12U	$\mathbf{2 3 2 0 . 0 0}$
765	$2 \times 400 \mathrm{~A}$ and $8 \times 250 \mathrm{~A}$	XC10002X4R24U	$\mathbf{2 9 3 0 . 0 0}$
975	$2 \times 400 \mathrm{~A}$ and $12 \times 250 \mathrm{~A}$	XC10002X4R36U	$\mathbf{3 6 3 0 . 0 0}$



Notes: ${ }^{1}$ ) XC Chassis main bars are rated at 1000 A. To comply to the new Australian New Zealand AS/NSZ 3000-2007 standard regarding separation, XC chassis should be only used in switchboards having operational currents less than 800 A .
For chassis that include integral separation and for currents equal to, and exceeding $800 \mathrm{~A}, \mathrm{aHC}$ high current chassis must be used.
$\left.{ }^{2}\right)$ XC chassis can be custom built for alternate combinations of 250 A MCCBs, and up to $2 \times 400$ AF MCCBs, and ZS125 (125 AF) ELCBs. 630 A MCCB mounting is not possible.
${ }^{3}$ ) 400 A MCCB right side mounted as standard. LH mounting optional to special order.

## Chassis

## to suit 125-250 AF MCCBs

TemWay chassis ratings and cut-out detail

| Chassis <br> Type | (lcw) kA <br> short time with- <br> stand |  |  |
| :--- | :--- | :--- | :--- | | Standard |
| :--- |
| Chassis suits MCCBs ${ }^{1}$ ) |

## Testing

TemWay chassis have been unconditionally type tested (without MCCBs fitted) at the above short time kA ratings (Icw).

MCCB dimensions (mm)			
	H	W	D
E125, S125NJ/GJ, ZS125			
1 pole	155	30	68
3 pole	155	90	68
S160, S250NJ/GJ, ZS250			
1 pole	165	40	68
3 pole	165	105	68


MCCB dimensions (mm)			
$\mathbf{H}$			W

## Escutcheon cut-out dimensions (mm)

Applicable to:
TemBreak 2 MCCBs: E/S 125/160/250 AF/400 AF
TemBreak 1 MCCBs: XS/XH 125/250 AF


Notes: ${ }^{1}$ ) TemBreak 1, XS/XH MCCBs can be fitted to the above chassis.
${ }^{2}$ ) Refer XC chassis ordering page in this section for special XC chassis that accept 400 A MCCBs.
${ }^{3}$ ) For height dimensions for MCCB cut-out refer to " H " in the charts above.

Terminal cover options for TemWay XA, XB, XBSS and XC Chassis

Installation considerations

- MCCBs on the chassis are to be reverse connected, that is, connect the 'bottom' of breaker to the chassis tee offs
- Terminal or interpole barriers or "other adequate insulation material" must be fitted at MCCB load side, (top of MCCB) which is the gas venting end of the MCCB


## Load Side

Terminal or interpole barriers below:


# Terminal cover selection 

20 A - 1250 A MCCBs

	Suit MCCB types	Cover length	Cat. No.	Price \$
Flush IP 20 covers (FC)	E125, S125			
	1 pole cover - set of 2	-	T2CS121SG	10.60
	2 pole cover - set of 2	-	T2CS122SG	12.00
	3 pole cover - set of 2	-	T2CS123SG	44.00
	4 pole cover - set of 2	-	T2CS124SG	55.00
	H125, S160, H160, E250, S250, H250			
	1 pole cover - set of 2	-	T2CS251SG	10.00
	3 pole cover - set of 2	-	T2CS253SG	54.00
	4 pole cover - set of 2	-	T2CS254SG	60.50
	E400, S400, H400, E630, S630			
	3 pole cover set   - RC cov c/w cut-outs		T2CR403SG	93.50
	4 pole cover set   - RC cov c/w cut-outs		T2CR404SG	111.00
Start E125, S125				
covers (FC)	3 pole cover set of 2	22 mm	T2CF123SSNBA	60.50
	4 pole cover set of 2	22 mm	T2CF124SSNBA	71.00
	S160, E250, S250 - except S250PE			
	3 pole cover set of 2	30 mm	T2CF253SSNBA	67.00
	4 pole cover set of 2	30 mm	T2CF254SSNBA	77.50
ExtendedE125, S125terminal				
covers(FC)	1 pole cover - set of 2	40 mm	T2CF121SLNG	35.00
	3 pole cover - set of 2	40 mm	T2CF123SLNG	64.50
	4 pole cover - set of 2	40 mm	T2CF124SLNG	73.00
S160, E250NJ, S250NJ, S250GJ (not S250PE)	S160, E250NJ, S250NJ, S250GJ (not S250PE)			
(4)	1 pole cover - set of 2	55 mm	T2CF161SLNG	40.00
	3 pole cover - set of 2	55 mm	T2CF253SLNG	67.00
	4 pole cover - set of 2	55 mm	T2CF254SLNG	77.50
	H125, H160, S250PE, H250			
	3 pole cover - set of 2	55 mm	T2CF253LLNG	71.00
틍	4 pole cover - set of 2	55 mm	T2CF254LLNG	77.50
trat	E400, S400, H400, E630, S630			
	3 pole cover - narrow set of 2	80 mm	T2CF403SLNG	190.00
	3 pole cover - wide set of 2	110 mm	T2CF403SWNG	190.00
	XS630, XH630, XS800, XH800			
	3 pole cover - set of 2	130 mm	2H1417DAB	215.00
400/630     A narrow   and wide terminal insert - order 1 per 2A1787DBA $\mathbf{6 . 2 0}$   terminal				
cover	3 pole cover - set of 2	130 mm	2H1419DAB	235.00
options shown	IP20 pole insert - order 1 terminal		2A1787DBA	6.20

## Terminal cover selection

	Suit MCCB types	Cat. No.	Price \$
Rear Connect terminal covers (RC)	E125, S125		
	3 pole cover - set of 2	T2CR123SG	44.00
	4 pole cover - set of 2	T2CR124SG	55.00
	H125, S160, H160, E250, S250, H250		
	3 pole cover - set of 2	T2CR253SG	54.00
	4 pole cover - set of 2	T2CR254SG	60.50
	E400, S400, H400, E630, S630		
	3 pole cover - set of 2	T2CR403SG	93.50
	XS630, XH630, XS800, XH800		
	3 pole cover - set of 2	UXPD0013C	220.00
	XS630, XH630, XS800, XH800		
Terminal cover locking clip	A clip that provides terminal cover locking, and allows a seal device to be fitted.	T2CF00L	9.10
Interpole Barriers	E125, S125		
	Interpole barrier - set of 2	T2BA123SHA	17.40
	S160, E250NJ, S250NJ, S250GJ (not S250PE)		
	Interpole barrier - set of 2	T2BA253SHA	20.00
	H125, H160, S250PE, H250		
	Interpole barrier - set of 2	T2BA253LHA	20.00
	E400, S400, E630, S630		
	Interpole barrier - set of 2	T2BA403SHA	21.60
	XS630, XH630, XS800, XH800, XS1250		
	Interpole barrier - 1 only	UXQH0004B	10.40

# HC High Current chassis for 

## 250 AF to 1250 AF MCCBs

## Features

- Double sided 3 pole MCCB chassis
- Compact single sided chassis 3 or 4 pole
- $1250 \mathrm{~A}, 1600 \mathrm{~A}$ or 2200 A rated main bars
- 11 enclosure sizes for economical chassis sizing
- Front connect tags supplied as standard
- Complies with AS/NZS 3439, AS/NZS 3000-2007
- Form of separation 4bih. AS/NZS 3439.1: 2000 (Annex ZF)
- Circuit breakers are reverse fed as standard
- 4th pole neutral bars $100 \%$ rated

- Accepts MCCBs rated 12 A to 1250 A
- Ordering: choose from pre-assembled types, or custom assembly

Stocked assembled chassis selection - Suit MCCB amp frames shown below:

Main bar rating (A)	Chassi   Size	800 A 6 units	630 A   5 units	400 A   4 units	$\begin{aligned} & 250 \mathrm{~A} \\ & 3 \text { units } \end{aligned}$	Cat. No.	Price \$
1600 A	DS	-	$2 \times 630$	$2 \times 400$	$4 \times 250$	HCSTD1DS16153	3990.00
1600 A	DS	-	$4 \times 630$	-	$8 \times 250$	HCSTD2DS16243	5680.00
1600 A	SS left	-	$1 \times 630$	$1 \times 400$	$2 \times 250$	HCSTD3SSL16153	3990.00
1600 A	SS righ	t-	$1 \times 630$	$1 \times 400$	$2 \times 250$	HCSTD4SSR16153	3990.00
1600 A	SS left	-	$1 \times 630$	$1 \times 400$	$4 \times 250$	HCSTD5SSL16213	5460.00
1600 A	SS right		$1 \times 630$	$1 \times 400$	$4 \times 250$	HCSTD6SSR16213	5460.00
2200 A	SS left	$1 \times 800$	$1 \times 630$	$1 \times 400$	$3 \times 250$	HCSTD7SSL22243	7000.00
2200 A	SS right	t $1 \times 800$	$1 \times 630$	$1 \times 400$	$3 \times 250$	HCSTD8SSR22243	7000.00



## HC High Current chassis

for 250 AF to 1250 AF MCCBs

Chassis Size	Main bar rating (A)	Icw kA rating (1 sec)	MCCB unitspac	Overall height $\left.(\mathrm{mm})^{1}\right)$	Cat. No.	Price \$
1	$\begin{aligned} & 1250 \mathrm{~A} \\ &-(2 \times 10 \\ & \times 20 \\ & \mathrm{~mm} \\ &- \text { bars }) \end{aligned}$	65	15 U	610	HC12153	1140.00
2			18 U	718	HC12183	1510.00
3			21 U	826	HC12213	1840.00
4			24 U	934	HC12243	1930.00
5			27 U	1042	HC12273	2090.00
6			30 U	1150	HC12303	2300.00
7			33 U	1258	HC12333	2430.00
8			36 U	1366	HC12363	2620.00
9			39 U	1474	HC12393	2710.00
10			42 U	1582	HC12423	3000.00
11			45 U	1690	HC12453	3240.00
1	$\begin{aligned} & 1600 \mathrm{~A} \\ & -(2 \times 10 \\ & \times \times 30 \\ & \mathrm{~mm} \\ & - \text { bars }) \end{aligned}$	65	15 U	610	HC16153	1710.00
2			18 U	718	HC16183	2050.00
3			21 U	826	HC16213	2360.00
4			24 U	934	HC16243	2570.00
5			27 U	1042	HC16273	2850.00
6			30 U	1150	HC16303	3240.00
7			33 U	1258	HC16333	3360.00
8			36 U	1366	HC16363	3620.00
9			39 U	1474	HC16393	3800.00
10			42 U	1582	HC16423	3930.00
11			45 U	1690	HC16453	4200.00
1	$\begin{aligned} & 2200 \mathrm{~A} \\ &-(2 \times 10 \\ & \times 50 \\ & \times 50 \\ & \mathrm{~mm} \\ &- \text { bars }) \end{aligned}$	65	15 U	610	HC22153	2640.00
2			18 U	718	HC22183	2840.00
3			21 U	826	HC22213	3140.00
4			24 U	934	HC22243	3430.00
5			27 U	1042	HC22273	3710.00
6			30 U	1150	HC22303	3980.00
7			33 U	1258	HC22333	4210.00
8			36 U	1366	HC22363	4350.00
9			39 U	1474	HC22393	4490.00
10			42 U	1582	HC22423	4680.00
11			45 U	1690	HC22453	4910.00

Notes: 1) Height excludes extended and attached busbar

- Overall chassis depth when MCCBs are fitted is 269 mm
- Refer next page for chassis Tee Off details
- For detailed dimensions, refer to the chassis technical catalogue
- For an ordering form, refer to the chassis technical catalogue
- HC chassis' are not compatible with TemBreak 1, 125 A - 400 A MCCBs


## HC High current MCCB chassis MCCB

HC Chassis TEE OFFs ${ }^{1}$ )						
Frame	MCCB Amp Frame (A)	MCCB width	Single sided Cat. No. Right load	Single sided Cat. No. Left load	Double   sided   Cat. No	Price \$
S160 / 250	250	3 U	HCR250	HCL250	HCD250	355.00
H125 / S250PE	250	3 U	HCR250P	HCL250P	HCD250P	355.00
$\begin{aligned} & \text { E/S400-630 } \\ & \text { Narrow } \\ & \hline \end{aligned}$	400-630	4 U	HCRN630	HCLN630	HCDN630	510.00
$\begin{aligned} & \text { E/S400-630 } \\ & \text { Wide } \end{aligned}$	400-630	5 U	HCRW630	HCLW630	HCDW630	510.00
XS/XH630-800	630-800	6 U	HCR800	HCL800	HCD800	740.00
XS1250 Right hand load	1250	6 U	HCR1250	-	HCR1250	770.00
XS1250 Left hand load	1250	6 U	-	HCL1250	HCL1250	770.00

Ordering notes

1) Add tee offs as required to the chassis enclosure to complete the chassis components list.
${ }^{2}$ ) Note: If MCCB below 32 A and a kA rating above 30 kA are required, use H125NJ320 and H125NJ332 with 250 A Tee Off Catalogue Number above.
${ }^{3}$ ) 400 A MCCBs fitted with a same width narrow cover are 4 units in width.
${ }^{4}$ ) 630 A MCCBs fitted with a 'wide' width cover are 5 units in width.
${ }^{5}$ ) For ordering, use order from chassis catalogue or contact NHP.
${ }^{6}$ ) All MCCBs to be reverse fitted on chassis.


## Testing

The HC chassis has been unconditionally type tested (no MCCBs fitted) in Australia, at a short time rating of 65 kA for 1 second.

[^1]
## Chassis to suit:

TemBreak 2125 A-630 AF, TemBreak 1 630 A -1250 A

## 400 / 630 A terminal covers

Terminal covers for 400 A and 630 AF MCCBs can be supplied as wide or narrow types, depending on the size of conductors to be connected to the MCCB. Generally for 400 A rated MCCBs, a narrow cover can be used for its smaller conductors, while a wide cover is used for the 630 A size.

A 630 A MCCB using a T2CF403SWNG wide cover is
5 units of width
(Narrow cover optional)

A 400 A MCCB using a T2CF403SLNG narrow (same width as MCCB) cover is 4 units wide (Wide cover optional)


5 Units wide: MCCB + wide cover

4 Units wide: MCCB + narrow cover

HC Chassis MCCB mounting brackets
Metal extension brackets are attached to the side of HC chassis to cover rear of fitted MCCBs and terminal covers


HC Chassis configuration types - $\mathbf{2}$ examples


HC Chassis with 250 A Frame MCCBs Double sided, 3 pole, 1250 A main bars


HC Chassis with 250 A - 800 A MCCBs Double sided, 3 pole, 2200 A main bars

## MCCB transfer switches and controllers

Page

Terasaki	
Transfer switch types	$5-2$
Transfer switch selection	$5-7$
Transfer switch component ordering	$5-12$
Logic panel selection	$5-28$
Transfer switch options	$5-34$
Accessories to suit 125-630 AF MCCB	$5-36$



## TemBreak <br> Transfer Switches

TemBreak 2 transfer switches are available from 20 A to 630 A, and consist of mechanically interlocked circuit breakers, with or without a motor fitted. The transfer switches can be either 'link' interlocked, or cable interlocked. Link types are pictured below.
Transfer switches can be ordered as pre-assembled and wired units, or in broken down component form, for user assembly. A common loadside busbar kit is an option.

## Basic types

MTS



## TemBreak

## The standard arrangement of MCCBs



Changeover logic panel / Controller

$+$


MTS $=$ Manual transfer switch: no motors and no logic panel
BTS = Basic transfer switch: MCCBs have motors, but no logic panel
ATS $=$ BTS and logic panel

## TemBreak

## TemBreak 1 transfer switches

TemBreak 1 transfer switches are factory assembled, and range from 400 A to 2500 A. The switches are interlocked via rear mounted walking beam interlock, or are available with a rod or cable interlock in sizes 400 A to 2500 A . Common loadside busbars (CLSBB) are an option.
A basic transfer switch fitted with motors, can be coupled with a TemLogic control panel TL101 electronic controller or TLP1 relay controller that will automatically changeover to a standby power supply in the event of power failure. The transfer switches are fitted with a mechanical interlock so as to prevent both breakers from being switched to the ON position at the same time.

Basic types



## TemBreak <br> The standard arrangement of MCCBs:

ATS


Electronic controller plus interface panel (TL101CIP)


## OR



Relay/timer logic panel type controller Cat. No. TLP1

MTS $=$ Manual transfer switch: no motors and no logic panel
BTS = Basic transfer switch: MCCBs have motors mounted on them, no logic panel
ATS $=$ BTS and logic panel

# TemBreak 1 and 2 transfer 

switch ordering

Type definition
MTS $=$ Manual Transfer Switch
BTS $=$ Basic Transfer Switch
ATS = Automatic Transfer Switch (consists of a BTS and controller)
TemBreak 2, MCCB transfer switches can be ordered in a number of ways:

## 1. Pre-Assembled

Pre-assembled BTS transfer switches using a link interlock, up to 630 A.

## 2. Components

Components for complete user assembly. This is applicable to TemBreak 2 transfer switches to 630 A, using either link or cable interlocks, in manual or basic transfer switch configuration.

## 3. Manual Transfer Switches to 630 A

TemBreak 2, manual transfer switches to 630 A are not assembled by NHP. The user orders the components.

## 4. 630 A - 2500 A Transfer Switches

Larger TemBreak 1, 630 A - 2500 A transfer switches, both automatic and manual types are pre-assembled to customer order by NHP.

## 5. Change-Over Controllers

Transfer switch change-over controllers, either electronic or relay logic, are ordered separately by the user for all above types, except where a completely enclosed transfer switch is being assembled by NHP.

## Standards conformity

## Product: TemBreak MCCB based automatic Transfer Switches

Terasaki confirm that the TemBreak MCCB based automatic Transfer Switches have been designed and comply with the international standard IEC 60947.6.1, and the Australian New Zealand standards AS/NZS 3947.6.1 and AS/NZS 3000-2007, for a utilisation class of AC31B for the following MCCB types:

E125, S125, H125, L125, S160, H160, L160, E250, S250, H250, L250, E400, S400, H400, L400, E630, S630, XS630, XH630, XS800, XH800, XS1250, XS1600, XS2000, XS2500

Class CB means: ATSE (Automatic Transfer Switching Equipment) provided with over-current releases and the main contacts of which are capable of making and are intended for breaking short-circuit currents.

# TemBreak <br> Basic Transfer Switches (BTS) <br> 3 or 4 pole 

Features / options:

- Motor driven MCCBs
- 3 or 4 pole types
- Front mounting link interlock used
- Pre-assembled and wired on a mounting plate
- Automatic changeover controller option
- A choice of Relay-Logic, or electronic controllers
- Common load side busbar option
- Conforms to AS/NZS 60947.6.1


BTS selection chart and catalogue numbers

MCCBs used	Amp range	400   v   kA   Icu	3 or 4 Pole outline dimensions (mm)		3 pole   BTS Cat. No.	4 pole BTS Cat. No.
			W	D		
S125NJ	40-63	$36^{1}$ )			BTSS1NJ6333	BTSS1GJ6344
S125NJ	63-100	$36^{1}$ )			BTSS1NJ10033	BTSS1GJ10044
S125NJ	80-125	$\left.36^{1}\right)$			BTSS1NJ12533	BTSS1GJ12544
S125GJ	40-63	65			BTSS1GJ6333	BTSS1GJ6344
S125GJ	63-100	65			BTSS1GJ10033	BTSS1GJ10044
S125GJ	80-125	65			BTSS1GJ12533	BTSS1GJ12544
S160NJ	40-63	$36^{1}$ )			BTSS16NJ6333	BTSS16GJ6344
S160NJ	63-100	$\left.36^{1}\right)$			BTSS16NJ10033	BTSS16GJ10044
S160NJ	100-160	$36^{1}$ )			BTSS16NJ16033	BTSS16GJ16044
S250NJ	160-250				BTSS2NJ25033	BTSS2GJ25044
S160GJ	100-160				BTSS16GJ16033	BTSS16GJ16044
S250GJ	160-250				BTSS2GJ25033	BTSS2GJ25044
S250PE	50-125	70		215	BTSS2PE12533	BTSS2PE12544
S250PE	100-250	70			BTSS2PE25033	BTSS2PE25044
S400NJ	160-250				BTSS4NJ25033	BTSS4NJ25044
S400NJ	250-400				BTSS4NJ40033	BTSS4NJ40044
S400GJ	160-250				BTSS4GJ25033	BTSS4GJ25044
S400GJ	250-400				BTSS4GJ40033	BTSS4GJ40044
S400NE	100-250				BTSS4NE25033	BTSS4NE25044
S400NE	160-400				BTSS4NE40033	BTSS4NE40044
S400GE	100-250				BTSS4GE25033	BTSS4GE25044
S400GE	160-400				BTSS4GE40033	BTSS4GE40044
S630CE	315-630				BTSS6CE63033	BTSS6CE63044
S630GE	315-630				BTSS6GE63033	BTSS6GE63044

Notes: Transfer switches are stocked off the shelf in sizes 125 A to 630 A in some sizes, while others are made to order. Contact NHP for availability. Refer following pages for information on TLP2 logic and TL101 electronic changeover controllers.
Wire interlocks must be used for transfer switches combining MCCBs of different frame size (different heights).
${ }^{\text {1) }} 4$ Pole types are 65 kA rated.

# TemBreak <br> Basic Transfer Switches (BTS) <br> 3 or 4 pole combination types 

## Features / options:

- Motor driven MCCBs
- 3 or 4 pole MCCB combinations
- Front mounting link interlock usedPre-assembled and wired on a mounting plate
- Automatic changeover controller option
- A choice of Relay-Logic, or electronic controllers
- Common load side busbar option
- Conforms to AS/NZS 60947.6.1

BTS selection chart and catalogue numbers

MCCBs used	Amp range	400VkAIcu	3 or 4 Pole outline dimensions (mm)			3:4 pole BTS Cat. No.	4 :3 pole BTS Cat. No.
			H	W	D		
S125GJ	40-63	65	260305180			BTSS1GJ6334	BTSS1GJ6343
S125GJ	63-100	65				BTSS1GJ10034	BTSS1GJ10043
S125GJ	80-125	65				BTSS1GJ12534	BTSS1GJ12543
S160GJ	40-63	65	279340180			BTSS16GJ6334	BTSS16GJ6343
S160GJ	63-100	65				BTSS16GJ10034	BTSS16GJ10043
S160GJ	100-160					BTSS16GJ16034	BTSS16GJ16043
S250GJ	160-250					BTSS2GJ25034	BTSS2GJ25043
S250PE	50-125	70	279340215			BTSS2PE12534	BTSS2PE12543
S250PE	100-250					BTSS2PE25034	BTSS2PE25043
S400NJ	160-250		360415244			BTSS4NJ25034	BTSS4NJ25043
S400NJ	250-400					BTSS4NJ40034	BTSS4NJ40043
S400GJ	160-250					BTSS4GJ25034	BTSS4GJ25043
S400GJ	250-400					BTSS4GJ40034	BTSS4GJ40043
S400NE	100-250					BTSS4NE25034	BTSS4NE25043
S400NE	160-400					BTSS4NE40034	BTSS4NE40043
S400GE	100-250					BTSS4GE25034	BTSS4GE25043
S400GE	160-400					BTSS4GE40034	BTSS4GE40043
S630CE	315-630					BTSS6CE63034	BTSS6CE63043
S630GE	315-630					BTSS6GE63034	BTSS6GE63043

Notes: Transfer switches are stocked off the shelf in sizes 125 A to 630 A in some sizes, while others are made to order. Contact NHP for availability.
Refer following pages for information on TLP2 logic and TL101 electronic changeover controllers.
Transfer switch 'kits' are also available for quick on-site assembly of the above transfer switches. Refer following pages.
Wire interlocks must be used for transfer switches combining MCCBs of different frame size (different heights).

# TemBreak <br> Manual transfer switches 

3 and 4 pole
Features / options:

- 3 or 4 pole types

Rear walking beam interlock used

- Pre-assembled and wired on a mounting plate

Will accept handles

- Common load side busbar option
- Conforms to AS/NZS 60947.6.1

MTS selection chart and catalogue numbers

MCCBs used	Ampere range	Inter-   rupting   capac-Overall   $\left.(3 \text { dimension })^{2}\right)$   ity   $(\mathrm{mm})$$(400 \mathrm{~V})$					3 pole MTS Cat. No. ${ }^{3}$ )	4 pole MTS Cat. No. ${ }^{3}$ )
XS630NJ	250-400	50	25		433	182	MS6N433	MS6N444
XS630NJ	400-630	50	25		433	182	MS6N633	MS6N644
XS630SE	315-630	50	25		433	182	MS6S633	MS6S644
XH630SE	315-630	65	33	550	433	182	MH6S633	MH6S644
XS800NJ	500-800	50	25	550	433	182	MS8N833	MS8N844
XS800SE	400-800	50	25		433	182	MS8S833	MS8S844
XH800PE	400-800	65	50		433	182	MH8P833	MH8P844
XS1250SE	500-1000	85	65	553	570	198	MS12S1033	MS12S1044
XS1250SE	625-1250	85	65	553	550	198	MS12S1233	MS12S1244
XS1600SE	800-1600	100	75	553	570	198	MS16S1633	MS16S1644
XS2000SE	1000-2000	85	64	774	450	361	MS20E2033	MS20E2044
XS2500SE	1250-2500	85	64	774	450	361	MS25E2533	MS25E2544

Optional features include: auxiliary contacts, trip alarm contact and twin handle operation available on request. Specify when ordering.

Notes: ${ }^{1}$ ) Height includes attached busbar on MCCBs 630 A and above.
${ }^{2}$ ) Detailed dimensions including 4 pole types refer catalogue Part $C$.
${ }^{3}$ ) Ordering sheet refer catalogue Part C.
All units are POA.
Transfer switches using 125-400 A MCCB are TemBreak 2 types, and are sold in component form. Refer component selection pages in this section.

# TemBreak <br> Basic transfer switches (BTS) with motor <br> 3 and 4 pole 

Features / options:

- Motor driven MCCBs
- 3 or 4 pole types
- Rear walking beam interlock used
- Pre-assembled and wired on a mounting plate
- Automatic changeover controller option
- A choice of Relay-Logic, or electronic controllers
- Common load side busbar option
- Conforms to AS/NZS 60947.6.1



## Application notes:

- When a TL101CIP electronic controller plus interface panel is used with a TemBreak 1 transfer switch, an interconnection wire loom consisting of 2 cables is also required. This wire loom connects between the interface panel and the standard terminals on the transfer switch. The Cat. No. of the interconnection cable is "TLP2L1CABLE". The cables are 0.5 m long. Longer cable lengths are an option up to 2 metres. Refer page 5-32.
- When TLP1 relay controllers are used, an interconnection cable is not required.
- TLP2 relay controllers for TemBreak 2 transfer switches cannot be used with Tembreak 1 transfer switches.

BTS selection chart and catalogue numbers

MCCBs used	Ampere range	Interrupting capacity (400 V) Icu lcs	$\qquad$	3 pole   BTS   Cat. No. ${ }^{4}$ )	4 pole BTS   Cat. No. ${ }^{4}$ )
XS630NJ	250-400	$50 \quad 25$	550433341	BS6N433	BS6N444
XS630NJ	400-630	$50 \quad 25$	550433341	BS6N633	BS6N644
XS630SE	315-630	$50 \quad 25$	550433341	BS6S633	BS6S644
XH630SE	315-630	6533	550433341	BH6S633	BH6S644
XS800NJ	500-800	$50 \quad 25$	550433341	BS8N833	BS8N844
XH800SE	400-800	6533	550433341	BH8S833	BH8S844
XS800SE	400-800	$50 \quad 25$	550433341	BS8S833	BS8S844
XS1250SE	500-1000	8565	553530300	BS12S1033	BS12S1044
XS1250SE	625-1250	8565	553530300	BS12S1233	BS12S1244
XS1600SE	800-1600	10075	553570320	BS16S1633	BS16S1644
XS2000SE	1000-2000	$85 \quad 64$	$774490361^{2}$ )	BS20E2033	BS20E2044
XS2500SE	1250-2500	8564	$774490361^{2}$ )	BS25E2533	BS25E2544

Notes: ${ }^{1)}$ Height includes attached busbar on sizes 630 A and above.
${ }^{2}$ ) Depth does not include rear connect busbars.
${ }^{3}$ ) Detailed dimensions $3 / 4$ pole refer catalogue Part C.
${ }^{4}$ ) Ordering sheet refer catalogue Part C.
All units are POA.

## TL101 AUTOMATIC TRANSFER SWITCH SYSTEM

High level functionality and ease of use.


Terasaki TemLogic 2 TL101 automatic transfer switch controller

- Genuine $144 \times 144 \mathrm{~mm}$ controller solution
- User friendly display and menu selection
- Large selection of functions and options as standard

Terasaki TemLogic 2 to TemBreak interface panel

- The optional TemBreak interface panel provides a safe link between the Terasaki TemLogic 2TL101 controller and a temBreak 1 or 2 MCCB transfer switch.
- The TemBreak interface panel comes complete with'plug'n' play style connectors, eliminating the need for separate control and power wiring.

Terasaki TemBreak 1 or 2 transfer switch

- Large range of amp-frame sizes available
- Enclosed types and options
- Selection of mechanical interlocks
- Suitable for TemBreak 1 or 2 $125-2500 \mathrm{~A}$


# TemBreak <br> Basic transfer switches - 

Component ordering

125 A (E125, S125) MCCBs fitted with a LINK interlock $\left.\left.{ }^{1}\right)^{2}\right)^{3}$ )

Item	Description	Comment
1	Left and right side MCCBs	MCCB depth $68 \mathrm{~mm}{ }^{1}$ )
2	Link mechanical Interlock	For 3 or 4 pole MCCB right side For 3 pole MCCB left side For 4 pole MCCB left side
3	Left \& right side $1 \mathrm{C} / \mathrm{O}$ alarm switc	Wire type alarm
4	Left \& right side $2 \mathrm{C} / \mathrm{O}$ auxiliary switches	Wire type auxiliary
5	240 V AC Motor operator	Other voltages available
6	Interlock connection wire	For motor electrical interlocking ${ }_{4}$ )
7	WAGO male connector Left	For TLP2 / TL101 controllers only
8	WAGO male connector Right	For TLP2 / TL101 controllers only
9	Optional 3P:3P mounting plate	With pre threaded mounting holes
10	Optional 4P:4P / 4P:3P mounting plate	With pre threaded mounting holes
$\left.125 \mathrm{~A}\left(\mathrm{H} 125, \text { L125) MCCBs fitted with a LINK interlock }{ }^{1}\right)^{2}\right)^{3}$ )		
1	Left and right side MCCBs	MCCB depth $103 \mathrm{~mm}{ }^{1}$ )
2	Link mechanical interlock	For 3 or 4 pole MCCB right side For 3 pole MCCB left side For 4 pole MCCB left side
3	Left \& right side $1 \mathrm{C} / \mathrm{O}$ alarm switc	Wire type alarm
4	Left \& right side $2 \mathrm{C} / \mathrm{O}$ auxiliary switches	Wire type auxiliary
5	240 V AC Motor operator	Other voltages available
6	Interlock connection wire	For motor electrical interlocking ${ }^{4}$ )
7	WAGO male connector - Left	For TLP2 / TL101 controllers only
8	WAGO male connector - Right	For TLP2 / TL101 controllers only
9	Optional 3 \& 4P mounting plate	With pre threaded mounting holes

Notes: ${ }^{1}$ ) The left and right side MCCBs have to be the same depth for correct interlocking function.
${ }^{2}$ ) Where $\mathrm{E} / \mathrm{S}$ and $\mathrm{H} / \mathrm{L}$ MCCBs of a different height need to be interlocked, a Cable Interlock must be used. Refer following pages.
${ }^{3}$ ) MCCB marker and capacity size labels can be ordered for mounting on motors etc. Use ratings label sheet Cat. No. T25CAPLAB.
${ }^{4}$ ) One electrical interlock wiring loom is required between motors on motorised transfer switches.

## TemBreak Manual and basic transfer switches Component ordering

Component quantity

BTS $\quad$ Cat. No. |  |  |
| :--- | :--- |
| 2 | E125, S125NJ/GJ |
| 1 | T2ML12RA |
| 1 | T2ML12L3A |
| 1 | T2ML12L4A |
| 2 | T2AL00M3SWA |
| 4 | T2AX00M3SWA |
| 2 | T2MC12A24NB |
| 1 | T2MM25L05A |
| 1 | 231-612-019-000 |
| 1 | 231-642-019-000 |
| 1 | T2SB123334 |
| 1 | T2SB124344 |

2	H125NJ, L125NJ
1	T2ML125RA
1	T2ML125L3A
1	T2ML125L4A
2	T2AL00M3SWA
4	T2AX00M3SWA
2	T2MC25A24NB
1	T2MM25L05A
1	231-612-019-000
1	231-642-019-000
1	T2SB2533344344



## TemBreak Basic transfer switches -

## Component ordering

160 A and 250 A MCCBs fitted with a LINK interlock $\left.\left.{ }^{1}\right)^{2}\right)^{3}$ )

(tem Description
$1 \quad$ Left or right side MCCBs

MCCB depth $103 \mathrm{~mm}{ }^{1}$ )

2	Link mechanical interlock	For 3 or 4 pole MCCB right side   For 3 3 pole MCCB left side   For 4 4 pole MCCB left side
3	Left \& right side 1 C/O alarm switches Wire type alarm	
4	Left \& right side 2 C/O auxiliary   switches	Wire type auxiliary
5	240 V AC Motor operator	Other voltages available
6	Interlock connection wire	For motor electrical interlocking ${ }^{4}$ )
7	WAGO male connector - Left	For TLP2 / TL101 controllers only
8	WAGO male connector - Right	For TLP2 /TL101 controllers only
9	Optional 3 \& 4P mounting plate	With pre threaded mounting holes

Notes: ${ }^{1}$ ) The left and right side MCCBs have to be the same depth for correct interlocking function.
${ }^{2}$ ) Where E / S and H/L MCCBs of a different height need to be interlocked, a Cable Interlock must be used. Refer following pages.
${ }^{3}$ ) MCCB marker and capacity size labels can be ordered for mounting on motors etc. Use ratings label sheet Cat. No. T25CAPLAB.
${ }^{4}$ ) One electrical interlock wiring loom is required between motors on motorised transfer switches.

## TemBreak Manual and basic transfer switches -

 Component orderingComponent quantity

BTS $\quad$\begin{tabular}{l}
Cat. No. <br>
\hline 2

 

S160NJ/GJ <br>
ES250NJ/GJ
\end{tabular}



# TemBreak Basic transfer switches - 

## Component ordering

## 400 A MCCBs fitted with a LINK interlock

Item Description
1 Left and right side MCCBs

Comment $\left.{ }^{2}\right)^{2}$ )
MCCB depth $103 \mathrm{~mm}^{1}$ )

MCCB depth $140 \mathrm{~mm}{ }^{1}$ )

2	Link mechanical interlock   (For motorised MCCBs)	For 3 or 4 pole MCCB right side   For 3 pole MCCB left side   For 4 pole MCCB left side
3	Link mechanical interlock   (for MCCBs with handles)	For 3 or 4 pole MCCB right side   For 3 pole MCCB left side   For 4 pole MCCB right side
4	Left \& right side 1 C/O alarm switches Wire type alarm	
5	Left \& right side 2 C/O auxiliary   switches	Wire type auxiliary
6	240 V AC Motor operator	Other voltages available
7	Interlock connection wire	For motor electrical interlocking
8	WAGO male connector - Left	For TLP2 / TL101 controllers only
9	WAGO male connector - Right	For TLP2 / TL101 controllers only
10	Optional 3P: 3P mounting plate	With pre threaded mounting holes
11	Optional 4P: 4P / 4P: 3P mounting   plate	With pre threaded mounting holes



Notes: ${ }^{1}$ ) Where E/S and H / L MCCBs of a different height need to be interlocked, a Cable Interlock must be used. Refer following pages.
${ }^{2}$ ) MCCB marker and capacity size labels can be ordered for mounting on motors etc. Refer to page 5-36.

## TemBreak Manual and basic transfer switches Component ordering

Component quantity

BTS $\quad$| Cat. No. |
| :--- |
| 2 |
|  |
|  |
|  |
|  |

# TemBreak <br> Basic transfer switches - 

## Component ordering

## 630 A MCCBs fitted with a LINK interlock $\left.{ }^{2}\right)^{3}$ )

Item	Description	Comment
1	Left and right side MCCBs	MCCB depth 103 mm ${ }^{1}$ )
2	Link mechanical interlock   (For motorised MCCBs)${ }^{6}$ )	For 3 or 4 pole MCCB right side   For 3 pole MCCB left side   For 4 pole MCCB left side
3	Link mechanical interlock   (For MCCBs with handles)	For 3 or 4 pole MCCB right side   For 3 pole MCCB left side   For 4 pole MCCB right side
3	Left \& right side 1 C/O auxiliary   switches	Wire type alarm
4	Left \& right side 2 C/O auxiliary   switches	Wire type auxiliary
5	240 V AC Motor operator	Other voltages available
6	Interlock connection wire	For motor electrical interlocking ${ }^{4}$ )
7	WAGO male connector - Left	For TLP2 / TL101 controllers only
8	WAGO male connector - Right	For TLP2 / TL101 controllers only
9	Optional 3P: 3P mounting plate	With pre threaded mounting holes
10	Optional 4P: 4P / 4P: 3P mounting   plate	With pre threaded mounting holes

Notes: ${ }^{1}$ ) The Left and Right side MCCBs have to be the same depth for correct interlocking function.
${ }^{2}$ ) Where E / S and H / L MCCBs of a different height need to be interlocked, a Cable Interlock must be used. Refer following pages.
${ }^{3}$ ) MCCB marker and capacity size labels can be ordered for mounting on motors etc. Use ratings label sheet Cat. No. T40CAPLAB.
${ }^{4}$ ) One electrical interlock wiring loom is required between motors on motorised transfer switches.
${ }^{\text {s }}$ ) $400 \mathrm{~A} / 630 \mathrm{~A}$ link interlocks must use handles for manual transfer switches.
${ }^{6}$ ) An alternative interlock type is the manual 'slide interlock', which does not require a handle to be fitted. Refer S630 Accessories in Section 3.

## TemBreak Manual and basic transfer switches -

 Component orderingComponent quantity
BTS Cat. No.


# TemBreak Manual and basic transfer switches - 

Component ordering
125 A (E125, S125) MCCBs fitted with a CABLE interlock $\left.{ }^{2}\right)^{3}$ )

Item	Description	Comment
1	Left and right side MCCBs	MCCB depth $68 \mathrm{~mm}{ }_{1}$ )
2	Cable mechanical interlock	For 3 or 4 pole MCCBs 1.0 m length of cable - option 1 1.5 m length of cable - option 2
3	Left \& right side $1 \mathrm{C} / 0$ alarm switch	Wire type alarm
4	Left \& right side $2 \mathrm{C} / \mathrm{O}$ auxiliary switches	Wire type auxiliary
5	240 V AC Motor operator	Other voltages available
6	Interlock connection wire	For motor electrical interlocking ${ }^{4}$ )
7	WAGO male connector - Left	For TLP2 / TL101 controllers only
8	WAGO male connector - Right	For TLP2 / TL101 controllers only
9	Optional 3P:3P mounting plate	With pre threaded mounting holes
10	Optional 4P:4P / 4P:3P mounting plate	With pre threaded mounting holes

125 A (E125, S125) MCCBs fitted with a CABLE interlock $\left.{ }^{2}\right)^{3}$ )

Item	Description	Comment
1	Left and right side MCCBs	MCCB depth 103 mm 1)
2	Cable mechanical interlock	For 3 or 4 pole MCCBs 1.0 m length of cable - option 1 1.5 m length of cable - option 2
3	Left \& right side $1 \mathrm{C} / \mathrm{O}$ alarm switches	Wire type alarm
4	Left \& right side $2 \mathrm{C} / \mathrm{O}$ auxiliary switches	Wire type auxiliary
5	240 V AC Motor operator	Other voltages available
6	Interlock connection wire	For motor electrical interlocking ${ }^{4}$ )
7	WAGO male connector - Left	For TLP2 / TL101 controllers only
8	WAGO male connector - Right	For TLP2 / TL101 controllers only
9	Optional 3P:3P mounting plate	With pre threaded mounting holes
10	Optional 4P:4P / 4P:3P mounting plate	With pre threaded mounting holes

Notes: ${ }^{1}$ ) Where E / S and H / L MCCBs of a different height need to be interlocked, a Cable Interlock must be used.
${ }^{2}$ ) MCCB marker and capacity size labels can be ordered for mounting on motors etc. Use ratings label sheet Cat. No. T25CAPLAB.
${ }^{3}$ ) Using TemBreak 2 MCCBs and by using a cable interlock, any combination of frame size or poles can be interlocked.
${ }^{4}$ ) One electrical interlocking connection wire is required between motors on motorised transfer switches. Cat. No. T2MM.
Refer alternate lengths, 160/250 A motor accessories in Section 3.

## TemBreak Manual and basic transfer switches -

 Component ordering| Component quantity |  |  |
| :--- | :--- | :--- |
| MTS | BTS | Cat. No. |
| 2 | 2 | E125NJ, S125NJ/GJ |
|  |  |  |
| 1 | 1 | T2MW12CA |
| 1 | 1 | T2MW00SA |
| 1 | 1 | T2MW00LA |
| - | 2 | T2AL00M3SWA |
| - | 4 | T2AX00M3SWA |
| - | 2 | T2MC12A24NB |
| - | 1 | T2MM25L15A |
| - | 1 | 231-612-019-000 |
| - | 1 | 231-642-019-000 |
| 1 | 1 | T2SB123334 |
| 1 |  | T2SB124344 |


Component quantity		BTS
MTS	2	Cat. No.
2	1	H125NJ, L125NJ
1	1	T2MW25CA
1	1	T2MW00SA
1	2	T2MW00LA
-	4	T2AL00M3SWA
-	2	T2AX00M3SWA
-	1	T2MM25L15A
-	1	231-612-019-000
-	1	231-642-019-000
-	1	T2SB253334
1		T2SB254344
1		



# TemBreak <br> Manual and basic transfer switches - 

 Component ordering160 A and 250 A MCCBs fitted with a CABLE interlock $\left.{ }^{2}\right)^{3}$ )

| Item | Description |
| :--- | :--- | Comment | 1 | Left or right side MCCBs |
| :--- | :--- | MCCB depth $68 \mathrm{~mm}^{1}$ )

MCCB depth $103 \mathrm{~mm}{ }^{1}$ )

2	Cable mechanical interlock	For 3 or 4 pole MCCBs   1.0 m length of cable - option 1   1.5 m length of cable - option 2
		Wire type alarm
3	Left \& right side 1 C/O alarm switch	Wire type auxiliary
4	Left \& right side 2 C/O auxiliary   switches	Woto operator
5	240 V AC Motor	Other voltages available
6	Interlock connection wire	For motor electrical interlocking ${ }^{4}$ )
7	WAGO male connector - Left	For TLP2 / TL101 controllers only
8	WAGO male connector - Right	For TLP2 / TL101 controllers only
9	Optional 3P:3P mounting plate	With pre threaded mounting holes
10	Optional 4P:4P / 4P:3P mounting   plate	With pre threaded mounting holes



Notes: ${ }^{1)}$ Where E/S and H / L MCCBs of a different height need to be interlocked, a Cable Interlock must be used.
${ }^{2}$ ) MCCB marker and capacity size labels can be ordered for mounting on motors etc. Use ratings label sheet Cat. No. T25CAPLAB.
${ }^{3}$ ) Using TemBreak 2 MCCBs and by using a cable interlock, any combination of frame size or poles can be interlocked.
${ }^{4}$ ) One electrical interlocking connection wire is required between motors on motorised transfer switches. Cat. No. T2MM.

## TemBreak Manual and basic transfer switches -

 Component ordering| Component quantity |  |  |
| :---: | :---: | :---: |
| MTS | BTS | Cat. No. |
| 2 | 2 | $\begin{aligned} & \text { S160NJ / GJ } \\ & \text { ES250NJ / GJ } \end{aligned}$ |
| 2 | 2 | $\begin{aligned} & \text { H160, S250PE } \\ & \text { H250NJ / NE } \end{aligned}$ |
| $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | T2MW25CA T2MW00SA <br> T2MW00LA |
| - | 2 | T2AL00M3SWA |
| - | 4 | T2AX00M3SWA |
| - | 2 | T2MC25A24NB |
| - | 1 | T2MM25L15A |
| - | 1 | 231-612-019-000 |
| - | 1 | 231-642-019-000 |
| 1 | 1 | T2SB253334 |
| 1 | 1 | T2SB254344 |

# TemBreak Manual and basic transfer switches - 

 Component ordering
## 400 A MCCBs fitted with a CABLE interlock $\left.{ }^{2}\right)^{3}$ )

## Item Description

Comment
1 Left and right side MCCBs
MCCB depth $103 \mathrm{~mm}^{1}$ )

* 400/ 630 A interlocks must
use a motor or handle
operator

MCCB depth $140 \mathrm{~mm}{ }^{1}$ )

2 (able mechanical interlock $\left.{ }^{5}\right)^{6}$ )	For 3 or 4 pole MCCBs with motors For 3 or 4 pole MCCBs with handles 1.0 m length of cable - option 1 1.5 m length of cable - option 2


3	Left \& right side 1 C/O alarm switch	Wire type alarm
4	Left \& right side 2 C/O auxiliary   switches	Wire type auxiliary
5	240 V AC Motor operator	Other voltages available
6	Interlock connection wire	For motor electrical interlocking ${ }^{4}$ )
7	WAGO male connector - Left	For TLP2 / TL101 controllers only
8	WAGO male connector - Right	For TLP2 / TL101 controllers only
9	Optional 3P:3P mounting plate	With pre threaded mounting holes
10	Optional 4P:4P / 4P:3P mounting   plate	With pre threaded mounting holes

Notes: ${ }^{1}$ ) Where E / S and H / L MCCBs of a different height need to be interlocked, a Cable Interlock must be used. .
${ }^{2}$ ) MCCB marker and capacity size labels can be ordered for mounting on motors etc. Use ratings label sheet Cat. No. T40CAPLAB..
$\left.{ }^{3}\right)$ Using TemBreak 2 MCCBs and by using a cable interlock, any combination of frame size or poles can be interlocked.
${ }^{4}$ ) One electrical interlocking connection wire is required between motors on motorised transfer switches. Cat. No. T2MM.
Refer alternate lengths for 400/630 A motor accessories in Section 3.
${ }^{\text {s }}$ ) 400 A and 630 A interlocks must use handles for manual transfer switches.
${ }^{6}$ ) An alternative interlock type is a manual "slide interlock", which does not require a handle to be fitted. Slide interlocks will not allow handles or motors to be fitted. Refer 400/630 A accessories in Section 3 for further information.

## TemBreak Manual and basic transfer switches -

 Component ordering|  | Component quantity <br> BTS | Cat. No. |
| :--- | :--- | :--- |
| MTS | 2 | E400NJ <br> S400CJ <br> S400NJ <br> S400NE <br> S400GJ <br> S400GE |
|  |  |  |
|  |  | H400NJ/NE |
|  |  | L400NJ/NE |
| 2 | 2 | T2MW40CB |
|  |  | T2MWH40CB |
| - | 1 | T2MW00SA |
| 1 | 1 | T2MW00LA |
| 1 | 2 | T2AL00M3SWA |
| - | 4 | T2AX00M3SWA |
| - | 1 | T2MC40A10NB |
| - | 1 | T2MM40L21A |
| - | 1 | 231-612-019-000 |
| - | 1 | 231-642-019-000 |
| - |  | T2TSB403334MP |
| 1 |  |  |
| 1 |  |  |



## TemBreak Manual and basic transfer switches -

 Component ordering
## 630 A MCCBs fitted with a CABLE interlock $\left.{ }^{2}\right)^{3}$ )

Item Description Comment
1 Left and right side MCCBs MCCB depth $103 \mathrm{~mm}^{1}$ )

2	Cable mechanical interlock $\left.{ }^{5}\right)^{6}$ )	For 3 or 4 pole MCCBs with motors For 3 or 4 pole MCCBs with handles 1.0 m length of cable - option 1   1.5 m length of cable - option 2
3	Left \& right side $1 \mathrm{C} / \mathrm{O}$ alarm switches Wire type alarm	
4	Left \& right side 2 C/O auxiliary switches	Wire type auxiliary
5	240 V AC Motor operator	Other voltages available
6	Interlock connection wire	For motor electrical interlocking ${ }^{4}$ )
7	WAGO male connector - Left	For TLP2 / TL101 controllers only
8	WAGO male connector - Right	For TLP2 / TL101 controllers only
9	Optional 3P:3P mounting plate	With pre threaded mounting holes
10	Optional 4P:4P / 4P:3P mounting plate	With pre threaded mounting holes

Notes: ${ }^{1}$ ) Where E/S and H / L MCCBs of a different height need to be interlocked, a Cable Interlock must be used. .
${ }^{2}$ ) MCCB marker and capacity size labels can be ordered for mounting on motors etc. Use ratings label sheet Cat. No. T40CAPLAB..
$\left.{ }^{3}\right)$ Using TemBreak 2 MCCBs and by using a cable interlock, any combination of frame size or poles can be interlocked.
${ }^{4}$ ) One electrical interlocking connection wire is required between motors on motorised transfer switches. Cat. No. T2MM.
Refer alternate lengths for 400/630 A motor accessories in Section 3.
${ }^{\text {5 }}$ ) 400 A and 630 A interlocks must use handles for manual transfer switches.
${ }^{6}$ ) An alternative interlock type is a manual "slide interlock", which does not require a handle to be fitted. Slide interlocks will not allow handles or motors to be fitted. Refer 400/630 A accessories in Section 3 for further information.

## TemBreak <br> Manual and basic transfer switches -

 Component ordering| MTS | Component quantity <br> BTS | Cat. No. <br> 2 |
| :--- | :---: | :--- |
| 2 | E630NE <br> S630CE / GE |  |
| 1 | 1 | T2MW00CB <br> T2MWH40CB <br> T2MW00SA <br> T2MW00LA |
| 1 | 1 | T2AL00M3SWA |
| 1 | 1 | T2AX00M3SWA |
| - | 2 | T2MC40A10NB |
| - | 4 | T2MM40L21A |
| - | 2 | 231-612-019-000 |
| - | 1 | 231-642-019-000 |
| - | 1 | T2TSB403334MP |
| - | 1 | T2TSB404344MP |
| 1 | 1 |  |
| 1 |  |  |



# TemBreak Automatic transfer switches (ATS) 

Logic controller for Tembreak 2

## Timer / Relay logic controller

NHP offers a choice of electromagnetic (relay) logic panels with various options, or a PLC controller type. The basic timer/ relay logic controller includes the following standard features:

- Voltage and phase sequence sensing relay
- Time delay normal to emergency and back
- Common power supply relays
- Normal supply phase sequence relay
- Control wiring terminals
- A 4 position mode selector switch is provided loose (Manual / Automatic / Test / Off) - SSW5
- Optional PLC logic panel (TLPC2)

TLP logic controller and options
TLP2
Relay/timer Controller panel

Description		Cat. No. ${ }^{1}$ )	Price \$
Logic Panel for Tembreak 2 ATS		TLP2	2250.00
Option ${ }^{12}$ )	Description	Cat. No. ${ }^{1}$	Price \$
2	Emergency supply phase sequence and voltage sensing relays	EPSR / EVSR	310.00
3	Emergency supply frequency relay	EFR	560.00
4	Engine run-on time delay	ERTD	335.00
5	Engine start time delay	ESTD	305.00
6	Inhibit return control (Prevents auto-return to normal from emergency)	IRC	119.00
7	Cranking limiter time delay	CLTD	310.00
8	Additional mode selection 'Normal supply'	SSW2	390.00
9	Additional contacts for remote indication of mode switch position (includes option 8)	SSW3	405.00
10	Alarm lock-out relay. (Prevents breaker closure after overload or short circuit trip)	ALR	465.00
13	Mains stability timer	MST	210.00
14	Surge protection - single phase	SPD1	210.00
15	Surge protection -3 phase	SPD3	280.00

Notes: ${ }^{1}$ ) NHP has limited the number of gear tray plates to three (3) standard sizes, which cover all optional features.
$\left.{ }^{2}\right)$ NHP stock basic TLP2 logic panels. All others are built to order. Standard and custom logic panel ordering sheet, refer Catalogue Part C. Due to component and wiring differences, TemBreak 1 logic panels are not configured to work with TemBreak 2 Transfer Switches and vice versa.

## Do not use TLP1 with TemBreak 2 Motor operators otherwise motor burnout will occur. Use TLP2 for TemBreak 2.

# TemBreak Automatic transfer switches (ATS) 

## Logic controller for Tembreak 1

## Timer / Relay logic controller

NHP offers a choice of electromagnetic (relay) logic panels with various options, or a PLC controller type. The basic timer/ relay logic controller includes the following standard features:

- Voltage and phase sequence sensing relay
- Time delay normal to emergency and back
- Common power supply relays
- Normal supply phase sequence relay
- Control wiring terminals

- A 4 position mode selector switch is provided loose
(Manual / Automatic / Test / Off) - SSW1
- Optional PLC logic panel (TLPC1)

TLP logic controller and options

Description		Cat. No. ${ }^{1}$ )	Price \$
	el for Tembreak 1 ATS	TLP1	2250.00
Option $\left.\left.{ }^{1}\right)^{2}\right)$ Description		Cat. No. ${ }^{1}$ )	Price \$
2	Emergency supply phase sequence and voltage sensing relays	EPSR / EVSR	310.00
3	Emergency supply frequency relay	EFR	560.00
4	Engine run-on time delay	ERTD	335.00
5	Engine start time delay	ESTD	305.00
6	Inhibit return control (Prevents autoreturn to normal from emergency)	IRC	119.00
7	Cranking limiter time delay	CLTD	310.00
	Additional mode 'Normal supply'	SSW2	390.00
9	Additional contacts for remote indication of mode switch position (includes option 8)	SSW3	405.00
10	Alarm lock-out relay (Prevents breaker closure after MCCB trip.)	ALR	465.00
11	Changeover time delay (required for ACB C/O switch)	COTD	365.00
13	Mains stability timer	MST	210.00
14	Surge protection - single phase	SPD1	210.00
15	Surge protection-3 phase	SPD3	280.00

Notes: ${ }^{1}$ ) NHP has limited the number of gear tray plates to three (3) standard sizes, which cover all optional features.
${ }^{2}$ ) NHP stock basic TLP1 logic panels. All others are built to order. Standard and custom logic panel ordering sheet, refer catalogue Part C.
Do not use TLP1 with TemBreak 2 Motor operators otherwise motor burnout will occur. Use TLP2 for TemBreak 2.

## TemLogic <br> TL101 Transfer switch controller

The Temlogic2 TL101 automatic transfer switch controller will control and supervise the primary and secondary power of an installation and initiate transferring of the mains to a back-up source in the event of main source interruption. The changeover from one power source to the other can be fully automatic or manually operated. The
 logic controller includes all necessary features to monitor energy distribution systems or generating sets, and transfer equipment, such as motorised circuit breakers.
The TL101 is simply programmed from the front panel with visual LED indication or can be pre-programmed by NHP. The circuit breakers can be manually controlled using the function keys on the front face of the controller.

## TL101 Provides:

Control of minimum voltage, maximum voltage, phase loss, asymmetry, minimum frequency, maximum frequency, with independent enable and delay.

Front panel operation and display
Refer Part C Section 8 or TL101 manual.


Technical features

- Flush mount $144 \mathrm{~mm}^{2}$ housing
- Plug-in removable connections
- Phase to phase voltage measure inputs: 80-800 V AC
- Voltage transformer programming
- True RMS voltage measure
- Frequency measurement $45-65 \mathrm{~Hz}$
- Control functions: phase sequence, phase loss, maximum/minimum voltage, asymmetry, maximum/minimum frequency
- Two displays for voltage/frequency viewing
- 8 digital programming inputs/ 7 relay programmable outputs
- RS 232 interface (refer NHP for RS 485)
- Modbus communication ${ }^{1}$ )

Notes: ${ }^{1}$ ) Modbus communications: A 24 V DC power supply is needed.

## TemLogic <br> TL101 Transfer switch controller

## Interface panel

The interface panel provides short circuit protection via fuses between the transfer switch and TL101 controller. The interface panel comes complete with pre-terminated cable looms, enabling fast 'plug 'n' play' electrical connection between system components.

Ordering details - controller and interface panel

Heading	Cat. No.	Price \$
TemLogic2 TL101 controller only	TL101240V	$\mathbf{1 9 0 0 . 0 0}$
TemLogic2 TL101 controller plus interface   panel ${ }^{2}$ )	TL101CIP	$\mathbf{2 9 9 0 . 0 0}$
TemBreak 1 Transfer switch inter-connection   cable   (0.5 m standard length or refer next page)	TLP2L1LCABLE ${ }^{1}$ )	$\mathbf{1 1 4 . 0 0}$

[^2]
## TemBreak Basic Transfer Switch (BTS)

Inter-connection cable for Tembreak 1 transfer switches using TLP1 controllers

## TLP2L1LCABLE

For use with a TL101 CIP (electronic controller and interface panel) when used with a TemBreak 1 transfer switch.

The connector cable connects to the standard BTS control wiring terminals.


Red and blue cable lengths	Cat. No.	Price \$
0.5 m (standard)	TLP2L1LCABLE	$\mathbf{1 1 4 . 0 0}$
1.0 m	TLP2L1CABLE10	$\mathbf{1 2 5 . 0 0}$
1.5 m	TLP2L1CABLE15	$\mathbf{1 4 0 . 0 0}$
2.0 m	TLP2L1CABLE20	$\mathbf{1 5 6 . 0 0}$
2.5 m	TLP2L1CABLE25	$\mathbf{1 7 6 . 0 0}$
3.0 m	TLP2L1CABLE30	$\mathbf{1 9 7 . 0 0}$

[^3]
# TemLogic Temlogic controller types 

## For Tembreak 1 and 2 transfer switches

This page is a cross reference of features and options. For more specific information on each controller type, refer to the previous pages.

CONTROLLER TYPES
Features and options cross reference ${ }^{1}$ )

Standard and optional features	Cat. No.	TemBreak 1 MCCBs	TemBreak 2 MCCBs	TemBreak 1 or 2 MCCBs
		TLP1	TLP2	TL101
Normal voltage sensing phase failure relay	(NVSR)	$\checkmark$	$\checkmark$	$\checkmark$
Time delay emergency to normal	(TDEN)	$\checkmark$	$\checkmark$	$\checkmark$
Time delay normal to emergency	(TDNE)	$\checkmark$	$\checkmark$	$\checkmark$
Common power supply relay	(CPSR)	$\checkmark$	$\checkmark$	$\checkmark$
2 Emergency supply phase sequence relay	(EPSR)	0	0	$\checkmark$
Emergency supply voltage sensing relay	(EVSR)	0	0	$\checkmark$
3 Emergency supply frequency relay		0	0	$\checkmark$
4 Engine run-on time delay	(ERTD)	0	0	$\checkmark$
5 Engine start time delay	(ESTD)	0	0	$\checkmark$
6 Inhibit return control	(IRC)	0	0	$\checkmark$
7 Cranking limiter time delay	(CLTD)	0	0	-
8 Additional mode selection 'Normal supply'	(SSW2)	0	0	$\checkmark$
9 Additional contacts for remote indication of mode switch position	(SSW3)	0	0	$\checkmark$
10 Alarm lock-out relay	(ALR)	0	0	$\checkmark$
11 Changeover time delay	(COTD)	0	0	$\checkmark$
13 Mains stability timer	(MST)	0	0	$\checkmark$
Interface with building man system	gement	- ${ }^{1}$ )	- ${ }^{1}$	$\checkmark$
Load shedding control		-	-	$\checkmark$
14 Surge protection single phas	(SPD1)	0	0	0
15 Surge protection 3 phase	(SPD3)	0	0	0
16 Modbus communications		-	-	TL102 required (RS485)

O = Optional

- = Not available

Notes: ${ }^{1}$ ) PLC logic panels: TLPC2 and TLPC1 are available as options. Refer NHP. NHP PLC logic panels are ideally suited to BMS applications due to the multiple I/O of the PLC providing status to the BMS.

# TemLogic <br> Basic Transfer Switches (BTS) and Manual Transfer Switches (MTS) 

Options and accessories
Common loadside busbars - for connection to BOTTOM of MCCBs ${ }^{2}$ )
Tembreak 2: 250-630 A, Tembreak 1: 630-1250 A
3 pole CLSBB

Busbar Amp   Rating	H	W	D	3 pole set   Cat. No.
$250 A^{\prime}$ )	349	340	176	T2CLSBB25033
$\left.400 A^{\prime}\right)$	505	415	244	T2CLSBB40033
$\left.630 A^{\prime}\right)$	505	415	244	T2CLSBB63033
$630 / 800 \mathrm{~A}$	633	550	341	CLSBB63033
$1000 / 1250$	950	553	301	CLSBB125033

Dimensions (mm)

Busbar Amp   Rating	H	W	D	4 pole set   Cat. $\mathbf{N o .}$
$250 \mathrm{~A}^{\prime}$ )	349	340	176	T2CLSBB25044
$\left.400 \mathrm{~A}^{1}\right)$	505	415	244	T2CLSBB40044
$630 \mathrm{~A}^{1}$ )	505	415	244	T2CLSBB63044
$630 / 800 \mathrm{~A}$	633	690	341	CLSBB63044
$1000 / 1250$	950	693	301	CLSBB125044

3 \& 4 pole combination CLSBB
Dimensions (mm)

Busbar Amp   Rating	H	W	D	4 P and 3 P set   Cat. No.
$250 \mathrm{~A}^{1}$ )	349	340	176	T2CLSBB25043
$\left.400 \mathrm{~A}^{1}\right)$	505	415	244	T2CLSBB40043
$630 \mathrm{~A}^{\prime}$ )	505	415	244	T2CLSBB63043
$630 / 800 \mathrm{~A}$	633	$550 / 690$	341	-
$1000 / 1250$	950	$553 / 693$	301	-



250 A Transfer switch
Common loadside bars (for MCCB loadside only)


400-630 A Transfer switch Common loadside bars (for MCCB loadside only)

Notes: ${ }^{1}$ ) Do not fit TemBreak 1 transfer switches.
${ }^{2}$ ) Bars not designed for MCCB top mounting. Refer NHP for options.

# Automatic transfer switches 

## Interlocked and enclosed types

Cable mechanical interlocked MCCBs
TemBreak 1 types
The cable wire is supplied. Please specify length.
TemBreak 2 types


Any combination of 125-630 A can be interlocked by a cable interlock.


125 A and 250 A MCCBs shown. (S125NJ / H250NJ)


Interlocked 3 pole types MCCB to MCCB: 2000 A and 400 A

Enclosed automatic transfer switches, free-standing or wall mounted
Enclosed automatic transfer switches are assembled to order from stock components on a fast-track delivery system. The basic transfer switch section and associated logic panel are housed inside a pre-specified enclosure. A mode selector is supplied as standard and optional indicator lights may be mounted externally on the cabinet door.

## Standard features include:

- IP 65 rated enclosure
- Common loadside busbars
- Standard 240 V control (other voltage on application)
- Neutral and earth bars

Optional features:

- Busbar flags for large cable termination

- Pushbuttons or other front controls


## TemBreak <br> Accessories

to suit 125-630 AF MCCBs External accessories

## MCCB rating labels

Can be used to identify the MCCBs ratings and type when a motor or interlock is fitted to an MCCB.

Accessory label sheets - stocked


A4 sheets with multiple small catalogue number and rating labels for
TemBreak2 MCCBs

125 AF		T12CAPLAB	3.50
160/250 AF		T25CAPLAB	3.50
400/630 AF		T40CAPLAB	3.50
MCCB types	Left side Marker label Cat. No.	Rights side Marker label Cat. No.	Per label Price $\$$
E125NJ	2H4322SAB	2H4324SAA	7.20
S125NJ	2H4223SAB	2H4218SAA	7.20
S125GJ	2H4223SAB	2H4219SAA	7.20
H125NJ	2H4299SAA	2H4307SAA	7.20
L125NJ	2H4300SAA	2H4308SAA	7.20
S160NJ	2H4227SAB	2H4221SAB	7.20
S160GJ	2H4227SAB	2H4222SAB	7.20
H160NJ	2H4299SAA	2H4307SAA	7.20
L160NJ	2H4300SAA	2H4308SAA	7.20
E250NJ	2H4224SAB	2H4220SAA	7.20
S250NJ	2H4227SAB	2H4221SAB	7.20
S250GJ	2H4227SAB	2H4222SAB	7.20
S250PE	2H4277SAB	2H6972SAA	7.20
H250NJ	2H4299SAA	2H4307SAA	7.20
H250NE	2H4299SAA	2H6973SAA	7.20
L250NJ	2H4300SAA	2H4308SAA	7.20
E400NJ	2H5161SAB	2H5162SAA	7.20
E400CJ	2H5153SAB	2H5331SAA	7.20
S400NJ	2H5153SAB	2H5154SAA	7.20
S400GJ	2H5153SAB	2H5155SAA	7.20
S400GE	2H5153SAB	2H6198SAA	7.20
E630NE	2H5161SAB	2H6871SAA	7.20
S630CE	2H5153SAB	2H6872SAA	7.20
S630GE	2H5153SAB	2H6873SAA	7.20
Isolator switches			
S125NN	2H4645SAB	2H4648SAB	7.20
S160NN	2H4650SAC	2H4653SAB	7.20
S250NN	2H4650SAC	2H4653SAB	7.20
S400NN	2H5364SAC	2H5365SAB	7.20
S630NN	2H5364SAC	2H5365SAB	7.20

TemBreak 1, 630 A - 1600 A and 1000 V mining MCCBs

	Page
Selection and location guide for MCCBs	$\mathbf{6 - 2}$
2013 stocking guide for 125 A - 400 A TemBreak 1 MCCBs	$\mathbf{6 - 3}$
MCCBs and accessories	$\mathbf{6 - 5}$
VS125NJ 1000 V MCCB	$\mathbf{6 - 6}$
VS250NJ 1000 V MCCB	$\mathbf{6 - 7}$
TL100EM 1000 V MCCB	$\mathbf{6 - 9}$
XV400NE 1000 V MCCB	$\mathbf{6 - 1 3}$
XS/XH630/800	$\mathbf{6 - 2 4}$
XV630/800 1000 V MCCB	$\mathbf{6 - 2 8}$
XS1250SE	$\mathbf{6 - 3 0}$
XV1250NE 1000 V MCCB	$\mathbf{6 - 3 1}$
XS1600SE	$\mathbf{6 - 3 2}$
TL630NE	$\mathbf{6 - 3 3}$
TL800NE	$\mathbf{6 - 3 4}$
TL1250NE	

TemBreak 1 - selection and location guide

Amps	kA	OCR Type	Base current adj.	$\begin{aligned} & \text { TemBreak Cat. } \\ & \text { No. } \end{aligned}$	CPB Sect.
0.7-12	85	Hydraulic/magnetic	Fixed	XM30РB	3
16-125	14	Thermal magnetic	Fixed	XS125CS	-
16-125	25	Thermal magnetic	Fixed	XS125NS	-
12.5-125	18	Thermal magnetic	63-100 \%	XS125CJ	-
12.5-125	25	Thermal magnetic	63-100 \%	XS125NJ	-
12.5-125	50	Thermal magnetic	63-100 \%	XH125NJ	-
12.5-125	50	Thermal magnetic	63-100 \%	XH125PJ	-
100-250	25	Thermal magnetic	63-100 \%	XS250NJ	-
100-250	50	Thermal magnetic	63-100 \%	XH250NJ	-
160-250	65	Thermal magnetic	63-100 \%	XH250PJ	-
160-400	35	Thermal magnetic	63-100 \%	XS400CJ	-
160-400	50	Thermal magnetic	63-100 \%	XS400NJ	-
250-400	65	Thermal magnetic	63-100 \%	XH400PJ	-
80-400	50	Electronic	50-100 \%	XS400SE	-
80-400	65	Electronic	50-100 \%	XH400SE	-
125-400	65	Electronic	50-100 \%	XH400PE	-
250-630	42	Thermal magnetic	63-100 \%	XS630CJ	-
250-630	50	Thermal magnetic	63-100 \%	XS630NJ	6
250-630	85	Thermal magnetic	63-100 \%	XH630PJ	6
315-630	50	Electronic	50-100 \%	XS630SE	6
315-630	65	Electronic	50-100 \%	XH630SE	6
315-630	65	Electronic	50-100\%	XH630PE	6
500-800	50	Thermal magnetic	63-100 \%	XS800NJ	6
500-800	85	Thermal magnetic	63-100 \%	XH800PJ	6
400-800	50	Electronic	50-100\%	XS800SE	6
400-800	65	Electronic	50-100 \%	XH800SE	6
400-800	65	Electronic	50-100 \%	XH800PE	6
500-1250	85	Electronic	50-100 \%	XS1250SE	6
800-1600	100	Electronic	50-100\%	XS1600SE	6
1000-2000	85	Electronic	50-100 \%	XS2000NE	3
1250-2500	85	Electronic	50-100\%	XS2500NE	3
12.5-100	85	Thermal magnetic	63-100 \%	TL100NJ	-
100-250	85	Thermal magnetic	63-100 \%	TL250NJ	-
200-400	85	Electronic	50-100 \%	TL400NE	-
315-630	125	Electronic	50-100 \%	TL630NE	6
400-800	125	Electronic	50-100\%	TL800NE	6
500-1250	125	Electronic	50-100\%	TL1250NE	6
630-2500	20-40	Magnetic	63-100 \%	XS-ND	3
15-100	10	Thermal magnetic	Fixed	TL100EM	6
80-400	12.5	Electronic	50-100 \%	XV400NE	6
200-630	18	Electronic	50-100 \%	XV630PE	6
400-800	18	Electronic	50-100\%	XV800PE	6
200-1250	20	Electronic	50-100\%	XV1250NE	6

Notes: TemBreak 1 and 2 cross reference chart, refer section 3.

# 2013 stocking guide: <br> <br> 125 A - 400 A TemBreak 1 MCCBs 

 <br> <br> 125 A - 400 A TemBreak 1 MCCBs}

This table can be used as a guide for situations where an older TemBreak 1 MCCB must be used. TemBreak 1 consists of the 'TemBreak' and 'TemBreak PLUS' series of MCCBs.

The breakers marked 'stocked' can be used to replace those others which are not stocked. The stocked types will typically have a higher kA rating. ${ }^{2}$ )

MCCBs contained in CPB section 6:
Standard MCCBs

Amps	kA rating	OCR type	Base current adjustment	TB1 type stocked in 2012	MCCB type Cat. No.
12.5	85	Therm Mag	Fixed	stocked	XM30PB
16-125	14	Therm Mag	Fixed	use XS125NS	XS125CS
16-125	25	Therm Mag	Fixed	stocked	XS125NS
12.5-125	18	Therm Mag	63-100 \%	use XH125NJ	XS125CJ
12.5-125	25	Therm Mag	63-100 \%	use XH125NJ	XS125NJ
12.5-125	50	Therm Mag	63-100 \%	stocked	XH125NJ
12.5-125	50	Therm Mag	63-100 \%	use XH125NJ ${ }^{2}$ )	XH125PJ
125-225	18	Therm Mag	Fixed	use E250NJ ${ }^{2}$ )	XE225NC
100-160	50	Therm Mag	63-100 \%	use XH250NJ/160 ${ }^{2}$ )	XH160PJ
100-250	25	Therm Mag	63-100 \%	stocked	XS250NJ
100-250	50	Therm Mag	63-100 \%	stocked	XH250NJ
100-250	65	Therm Mag	63-100 \%	use S400GJ/250 ${ }^{1}$ )	XH250PJ
160-400	35	Therm Mag	63-100 \%	use XS400NJ	XS400CJ
160-400	50	Therm Mag	63-100 \%	stocked	XS400NJ
160-400	65	Therm Mag	63-100 \%	use XH400SE ${ }^{2}$ )	XH400PJ
125-400	50	Electronic	50-100 \%	use XH400SE	XS400SE
125-400	65	Electronic	50-100 \%	stocked	XH400SE
125-400	65	Electronic	50-100 \%	use XH400SE ${ }^{\text {2 }}$ )	XH400PE
250-630	42	Therm Mag	63-100 \%	use XS630NJ	XS630CJ
250-630	50	Therm Mag	63-100 \%	stocked	XS630NJ
250-630	85	Therm Mag	63-100 \%	stocked	XH630PJ
315-630	50	Electronic	50-100 \%	stocked	XS630SE
315-630	65	Electronic	50-100 \%	stocked	XH630SE
315-630	65	Electronic	50-100 \%	stocked	XH630PE
12.5-100	85	Therm Mag	50-100\%	use H125NJ	TL100NJ
160-250	85	Therm Mag	50-100 \%	use H250NJ ${ }^{1}$ )	TL250NJ
200-400	85	Electronic	50-100 \%	use S400PE	TL400NE

Notes: ${ }^{1}$ ) TemBreak 2 MCCB. This is an electrical equivalent, though check the application as the physical size of the TemBreak 2 equivalent will be different.
${ }^{2}$ ) Ics ratings are lower on SE / NJ types compared to PE / PJ types.
TemBreak 1 and 2 cross reference chart refer section 3.

## 2012 stocking guide:

## 125 A - 400 A TemBreak 1 MCCBs

Mining MCCBs

Amps	kA rating	OCR type	Base current   adjustment	TB1 type stocked   in 2012	MCCB type   Cat. No.
$\mathbf{1 5 - 1 0 0}$	10	Therm MagFixed	stocked	TL100EM	
$80-400$	12.5	Therm MagFixed	stocked	XV400NE	
$200-630$	18	Electronic	$50-100 \%$	stocked	XV630PE
$400-800$	18	Electronic	$50-100 \%$	stocked	XV800PE
$200-1250$	20	Electronic	$50-100 \%$	stocked	XV1250NE

Non auto / switch disconnectors

| Amps | kA rating | OCR type | Base current <br> adjustment | TB1 type stocked <br> in 2012 | MCCB type <br> Cat. No. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 125 | - | Non Auto | Fixed | use S125NN ${ }^{\mathbf{1}}$ ) | XS125NN |
| 250 | - | Non Auto | Fixed | stocked | XS250NN |
| 400 | - | Non Auto | Fixed | use S400NN ${ }^{\mathbf{1}}$ ) | XS400NN |
| 630 | - | Non Auto | Fixed | use S630NN ${ }^{\mathbf{1}}$ ) | XS630NN |

[^4]
# 1000V AC Mining MCCBs 

VS125NJ

6 kA
Current rating: 12.5-125 A
Approvals and tests: Standards AS/NZS 3947-2, and IEC60947-2

Interrupting capacity:

Voltage				Icu $\mathbf{k A}$ Ics $\mathbf{k A}$
Types				
AC	1100	4	4	$20 \mathrm{~A}, 32 \mathrm{~A}$
use	1100	6	4	$50 \mathrm{~A}, 63 \mathrm{~A}, 100 \mathrm{~A}, 125 \mathrm{~A}$



Trip unit:
Adjustable thermal: $63 \%$ Ir to $100 \%$ Ir
Adjustable magnetic: $6 x \operatorname{lm}$ to $12 x \operatorname{lm}$ for $20-100$ A trip unit types $6 x \operatorname{lm}$ to $10 x \operatorname{lm}$ for 125 A trip unit types

Dimensions (mm)

Poles	$\mathbf{3}$
H	155
W	90
D (less toggle)	68


Amp rating	Adj. Ir		Adj. $\mathbf{I}_{m}$			
NRC	Min.	Max.	Min.	Max	Cat. No.	Price $\boldsymbol{\$}$
20	12.5	20	120	240	VS125NJ320	$\mathbf{1 2 5 0 . 0 0}$
32	20	32	192	384	VS125NJ332	$\mathbf{1 2 5 0 . 0 0}$
50	32	50	300	600	VS125NJ350	$\mathbf{1 2 5 0 . 0 0}$
63	40	63	378	756	VS125NJ363	$\mathbf{1 2 5 0 . 0 0}$
100	63	100	600	1200	VS125NJ3100	$\mathbf{1 2 5 0 . 0 0}$
125	80	125	750	1250	VS125NJ3125	$\mathbf{1 4 5 0 . 0 0}$

Notes: The rear insulation barrier, terminal covers, and terminal screw caps supplied with the MCCB, must be used for MCCB installation.
For internal and external accessory selection refer TemBreak 2 standard 125/250 AF accessories, section 3.
NRC: Nominal rated current
Adj. Ir: Adjustable thermal setting
Adj. Im: Adjustable magnetic setting
Replaces: TL100EM. Check exact ratings and dimensions to suit your application requirement.

# 1000V AC Mining MCCBs <br> VS250NJ 

6 kA
Current rating: 100-250A
Approvals and tests: Standards AS/NZS 3947-2, and IEC60947-2

Interrupting capacity:

	Voltage	Icu kA	Ics kA
AC use	1100	6	4



## Trip unit:

Adjustable thermal: $63 \% \mathrm{Ir}$ to $100 \% \mathrm{Ir}$
Adjustable magnetic: $6 \mathrm{x} \mathrm{I}_{\mathrm{m}}$ to $13 \mathrm{x} \mathrm{I}_{\mathrm{m}}$ for 160 A trip unit types $6 x \operatorname{lm}$ to $10 x \operatorname{lm}$ for 250 A trip unit types

Dimensions (mm)

Poles	$\mathbf{3}$
H	165
W	105
D (less toggle)	68


Amp rating	Adj. Ir		Adj. Im			
NRC	Min.	Max.	Min.	Max	Cat. No.	Price $\boldsymbol{\$}$
160	100	160	960	2080	VS250NJ3160	$\mathbf{1 7 5 0 . 0 0}$
250	160	250	1500	2500	VS250NJ3250	$\mathbf{1 8 5 0 . 0 0}$

Notes: The rear insulation barrier, terminal covers, and terminal screw caps supplied with the MCCB, must be used for MCCB installation.
For internal and external accessory selection refer TemBreak 2 standard 125/250 AF Accessories, section 3.
NRC: Nominal rated current
Adj. Ir: Adjustable thermal setting
Adj. Im: Adjustable magnetic setting

## TemBreak 1000 V mining circuit breakers TL100EM

50 kA
Current rating: 15-100 A
Approvals and tests: Complies with AS 2184 /
AS/NZS 3947-2
Complies with IEC 60947-2
Interrupting capacity: 10 kA at $900 \mathrm{~V} \mathrm{AC} \mathrm{(sym)}$

$$
6.5 \mathrm{kA} \text { at } 1100 \mathrm{~V} \text { AC (sym) }{ }^{\text {') }}
$$

Trip unit: Fixed
Thermal setting: Fixed $40^{\circ} \mathrm{C}$ industrial $45^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ marine

Magnetic setting: Fixed


Dimensions (mm)

Poles	$\mathbf{3}$
H	165
W	105
D (less toggle)	125
Weight (kg)	3.2


Ampere rating	Cat. No.	Price $\mathbf{\$}$
15	TL100EM 15 3K	$\mathbf{2 3 3 0 . 0 0}$
20	TL100EM 20 3K	$\mathbf{2 3 3 0 . 0 0}$
30	TL100EM 30 3K	$\mathbf{2 3 3 0 . 0 0}$
40	TL100EM 40 3K	$\mathbf{2 3 3 0 . 0 0}$
50	TL100EM 50 3K	$\mathbf{2 3 3 0 . 0 0}$
60	TL100EM 60 3K	$\mathbf{2 3 3 0 . 0 0}$
75	TL100EM 75 3K	$\mathbf{2 3 3 0 . 0 0}$
100	TL100EM 100 3K	$\mathbf{2 3 3 0 . 0 0}$



Notes: ${ }^{1}$ ) Ratings based upon IEC 60947-2.
TL100EM must use line-side terminal cover supplied with MCCB.

## Accessories

## to suit TL100EM / F

Internal accessories Description		Cat. No.	Price \$
Shunt trips	110 V AC sht ( $100-115 \mathrm{~V}$ )	7VF 2M1	280.00
	240 V AC sht (200-480 V)	7VF 2M2-B	280.00
	48 V DC sht	7VF 2M6	280.00
	24 V DC sht	7VF 2M7	280.00
Undervoltage trips	440 V AC	7UF 2D5B	360.00
	110 V AC	7UF 2D6B	360.00
	240 V AC	7UF 2D7B	360.00
	110 V DC	7UF 2FD1	360.00
	24 V DC	7UF 2FD2	360.00
Auxiliary switches	AUX SW right hand 1C	7XA 2D31B	245.00
	AUX SW left hand 1C	7XA 2D41B	245.00
Alarm switches	ALT SW right hand	7AB 2D11B	245.00

External accessories

Description		Cat. No.	Price \$
Screw tunnel lugs	3 P solderless term. (6)	7T 2M1	110.00
Rear connect studs	3 P RC studs (6)	7RC 2LE	210.00
Motor operators	110 V AC motor	7MB 3BA1	1910.00
Handle operators	Door interlocking handle kit	TFH 22D	335.00
	IP 55 handle kit (plastic)	TL100EMR5GM	390.00
	IP 65 handle kit (plastic)	TL100EMR6BN ${ }^{1}$ )	280.00
	IP 65 handle kit (metal)	YASD22D	445.00
	IP 55 direct mounting handle kit	TFJ 22LU	355.00
Toggle locks	Toggle lock	7KB 3BA	60.00
	Lock plate	UXKE0030A	2.20
Accessory lead terminal	Accessory lead terminal, black	7YD3	55.00

Notes: ') 'HS' handle option Cat. No. TL100EMR5GM (IP 55).

# TemBreak 1000 V mining circuit breakers Electronic XV400NE 

## 12.5 kA

Current rating: 80-400 A
Approvals and tests: Standards AS/NZS 3947-2
Complies with IEC 60947-2
Interrupting capacity: 12.5 kA at $1000 / 1100 \mathrm{~V} \mathrm{AC}$, (IEC 60947-2)

Trip unit:

Trip unit:	Fixed	
LTD adjustment:	$I_{1:}: 0.8-1$	t: $5-30 \mathrm{~s}$
STD adjustment:	$I_{2}: 2-10$	t: $0.1-0.3 \mathrm{~s}$
INST adjustment:	$I_{3}: 3-12$	
Instantaneous Adj:	$I_{p}: 0.7-1$	t: fixed at 40 s (sep control   power req.)

Dimensions (mm)


Poles	$\mathbf{3}$
$H$	260
W	140
D (Less toggle)	103
Weight (kg)	5.0

## Amp

rating

$\mathbf{N R C}$	ASR Min.	ASR Max.	Cat. No.	Price $\mathbf{\$}$
$\mathbf{1 6 0}$	80	160	XV400NE $\mathbf{1 6 0} \mathbf{3 K}^{\mathbf{2}}$ )	$\mathbf{3 8 6 0 . 0 0}$
250	125	250	XV400NE 250 3K	

> XV400 MINING BREAKERS MUST USE LINE-SIDE TERMINAL COVERS, TERMINAL BOLT COVERS and REAR INSULATION PLATES. All items supplied with breaker $\left.{ }^{1}\right)^{3}$ )

Notes: ') Applicable for front connect MCCBs. Contact NHP for rear connect details.
${ }^{2}$ ) For FAULT INDICATION option add 'FI' and nominate control voltage.
${ }^{3}$ ) Installation and incoming connection information is supplied with each MCCB or can be requested from NHP.
NRC: Nominal rated current
ASR: Adjustable setting range
Overcurrent trip combinations: (specify combinations req.)
LSI - standard,
LS - optional,
LSIP - optional (pre-trip alarm).
Special current ratings available on indent, refer NHP.

## Accessories

to suit 400 AF

Internal accessories			
Shunt trips	110 V AC/DC ( $100-115 \mathrm{~V}$ )	2H1305BAA	405.00
	240 V AC ( $200-480 \mathrm{~V}$ )	2H1306BAA	405.00
	12 VDC	2H1307BAA	405.00
	$\underline{24 V D C}$	2H1308BAA	405.00
	48 V DC	2H1309BAA	405.00
	24 VAC	2H1311BAA	405.00
Undervoltage trips	AC coil ${ }^{1}$ )	2H1492BAA	315.00
	100-230 V DC coil ${ }^{2}$ )	2H1493BAA	315.00
	$\underline{24 ~ V ~ D C ~ c o i l ~}{ }^{2}$ )	2H1494BAA	315.00
	48 VDC coil $^{2}$ )	2H1495BAA	315.00
	60 VDC coil $^{2}$ )	2H1496BAA	315.00
	110 V AC instantaneous controller	UXUB0013B	113.00
	240 V AC instantaneous controller	UXUB0014B	113.00
	440 V AC instantaneous controller	UXUB0015B	113.00
	110 V AC time delay controller	UXUB0016B	220.00
	240 V AC time delay controller	UXUB0017B	220.00
	440 V AC time delay controller	UXUB0018B	215.00
	200-230 V DC controller	UXUB0038B	113.00
Auxiliary switches	AUX SW right hand 1C	UXXB0004D	169.00
	AUX SW right hand 2C	UXXB0005D	220.00
	AUX SW right hand 3C	UXXB0006D	255.00
Alarm switch	ALT SW right hand	UXLB0009D	178.00
	ALT/AUX SW right hand 1C	UXLB0013D	189.00
Alarm \& auxiliary switch	ALT/AUX SW right hand ${ }^{2}$ C Add then voltage	UXLB0014D	220.00
Pre-trip alarm	For electronic OCR MCCBs only	Pre-trip alarm	770.00
Fault indication \& contacts	Side of breaker mounted module. Electronic MCCBs only	FI	900.00
Fault indication	LEDs mounted at top of OCR (electronic breakers only)	FILED	2050.00

Notes: Footnotes, refer to page 6-12.

## Accessories

to suit 400 AF

External accessories

Description		Cat. No.	Price \$
Attached busbars	3 P attached busbars (6 in kit)	2H1384DAA	225.00
	4 P attached busbars (8 in kit)	2H1385DAA	305.00
Screw tunnel terminals	3 P solderless terminals (6 in kit)	2H2012DAB	430.00
	4 P solderless terminals (8 in kit)	2H2012DBB	540.00
Rear connect studs	3 P RC studs (6 in kit)	UXRC0006C	810.00
	4 P RC studs (8 in kit)	UXRC0007C	1090.00
Motor operators (XMC4)	$110 \mathrm{~V} \mathrm{AC} \mathrm{motor}{ }^{11}$ )	UXMC0001B	2780.00
	110 V DC motor ${ }^{11}$ )	UXMC0003B	2780.00
	24 V DC motor ${ }^{11}$ )	UXMC0004B	2780.00
	240 V AC motor ${ }^{11}$ )	UXMC0005B	2780.00
	Motor base support ${ }^{11}$ )	UXMD0001B	47.00
Mechanical interlocks	3 P mechanical interlock ${ }^{3}$ )	UXKC0001B	560.00
	3/4 P mechanical interlock ${ }^{4}$ )	UXKC0002B	560.00
	4 P mechanical interlock ${ }^{5}$ )	UXKC0003B	840.00
Cable mechanical interlocks	Interlock cable (wire)	UXKC0020A	83.00
	Cable interlock mechanism ${ }^{6}$ )	UXKC0021B	220.00
Handle operators	IP 55 grey vari-depth handle + 320 mm shaft	T1HS40R5GM	415.00
	T1HS escutcheon plate option: $100 \mathrm{~mm}^{2}$	T2HSESC100	18.20
	390 mm T pin shaft for T1HS no flexi coupling	T2HS400SHAFT	47.00
	IP 65 grey vari-depth handle + shaft	T1HP40R6BNA4	355.00
	IP 65 vari-depth metal handle + shaft	YASD34	700.00
	Padlock attachment for T2HP/ HS mechanism	T1HP40PALK	44.50
	IP 55 direct mount fixed depth handle ${ }^{7}$ )	TFJ34XU	415.00
	T1HS handle shaft cam for Prosafe and Fortress locks	14997702	235.00
Toggle locks	Toggle lock - non captive (Padlockable)	2H1956BAA	47.00
	Toggle -lock - captive (Padlockable)	XKA4	47.00
	Resin for XKA4	LOCTITE 480	83.00

Notes: Footnotes, refer to page 6-12.

Accessories
to suit 400 AF

External accessories

Description		Cat. No.	Price \$
Terminal covers	3 P front connecting terminal cover - busbar connect type	2H1413DAB	190.00
	4 P front connecting terminal cover - busbar connect type	2H1414DAB	245.00
	$3 P$ front connecting terminal cover-cable connect type	2H1415DAB	190.00
	4 P front connecting terminal cover - cable connect type	2H1416DAB	245.00
	IP 20 protective cover - busbar connect type ${ }^{8}$ )	2A1787DBA	6.20
	IP 20 protective cover - cable connect type ${ }^{8}$ )	2A1788DAA	6.20
	3 P rear connecting terminal cover	UXPD0011B	190.00
	4 P rear connecting terminal cover	UXPD0012A	245.00
Accessory lead terminal	Accessory lead terminal	UXYD0001A	26.80
	Terminal and bolt ${ }^{9}$ )	UXYD0002A	2.20
TemPlugs ${ }^{13}$ )	3 P TemPlug $400 \mathrm{~A}^{12}$ )	UPX3440	355.00
Interpole barrier	Interpole barrier ${ }^{10}$ )	UXQH0004B	10.40
OCR sealing kit	Tamperproof cover for OCR adjustment dials	XS4000CRSK	54.00

Notes: ${ }^{1}$ ) An AC UVT controller is required for $100-440 \mathrm{~V} \mathrm{AC}$.
${ }^{2}$ ) A DC UVT controller is needed for 200-230 V DC operation. None required for 24-110 V DC.
${ }^{3}$ ) For 3 P circuit breakers without motors.
${ }^{4}$ ) For 4 P circuit breakers without motors or 3 P circuit breakers with motors.
${ }^{5}$ ) For 4 P circuit breakers with motors.
${ }^{6}$ ) Order one interlock mechanism for each circuit breaker.
${ }^{7}$ ) Flush plate included.
${ }^{8}$ ) 6 pieces required for $3 \mathrm{P} / 8$ pieces required for 4 P .
${ }^{9}$ ) Specify quantity required (up to 6 pieces).
${ }^{10}$ ) Order individually.
$\left.{ }^{11}\right)$ Order a motor base support for each motor : UXMD0001B.
$\left.{ }^{12}\right)$ Price Schedule T3 applies to TemPlug.
${ }^{13}$ ) Not to be used with 1000 V mining MCCB type XV400.

## MCCB isolating switch

Non-auto MCCB, XS800NN

- Accepts MCCB accessories
- Standards AS/NZS 3947-2 and IEC 60947-2
- Motor or motorised circuit isolation - no overcurrent protection
- Will accept auxiliaries, UVTs \& shunt trips ${ }^{2}$ )

Ordering details

Ampere   rating	Short time   rating (kA)	3 pole   Cat. No. $\left.{ }^{1}\right)$	Price $\mathbf{\$}$
$630 / 800$	10 kA for 0.3 sec	XS800NN3	$\mathbf{3 4 5 0 . 0 0}$

Dimensions (mm)

Ampere	Height	Width		Depth	Weight (kg)   rating	
$\mathbf{3}$ )	3 P	$\mathbf{4 ~ P}$				
$630 / 800$	273	210	280	103	9.00	12.2



Notes: ${ }^{1}$ ) Additional technical details, refer to Part C.
${ }^{2}$ ) UVTs \& shunts are operated by the MCCB trip lever which is fitted in non-auto MCCBs.
${ }^{3}$ ) Height excludes attached busbar.

# TemBreak 1 series <br> Current limiting thermal magnetic type XS630NJ 

## 50 kA

Current rating: $250-630 \mathrm{~A}$
Approvals and Tests: Standards: AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)

	Voltage	Icu kA	Ics $\mathbf{k A}$
AC use	$400 / 415$	50	25
DC use	250	40	-



Trip unit: Adjustable thermal adjustable magnetic
OCR options: Special calibrated or disabled thermal trip
Dimensions (mm)

Poles	3
$\left.\mathrm{H}^{1}\right)$	273
$W$	210
D (less toggle)	103
Weight $(\mathrm{kg})$	9.6
4 pole	

3 Pole
Amp

rating   NRC	ASR Min.	ASR Max.	Cat. No.	3 pole   Price \$
400	250	400	XS630NJ 400 3	$\mathbf{2 9 9 0 . 0 0}$
630	400	630	XS630NJ 630 3	$\mathbf{2 9 9 0 . 0 0}$

Notes: ${ }^{1)} \mathrm{H}$ excludes attached busbar. Magnetic only available on application. NRC: Nominal rated current. ASR: Adjustable setting range. Specify for DC rating.

## TemBreak PLUS PowerBreaker Ics = 50 kA

Thermal magnetic type
XH630PJ

## 85 kA

Current rating: 250-630 A
Approvals and Tests: Standards: AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)

	Voltage		Icu $\mathbf{k A}$
Ics $\mathbf{k A}$			
AC use	400	100	50
	415	85	50
DC use	250	40	-



Trip unit: Adjustable thermal adjustable magnetic OCR options: Special calibrated or disabled thermal trip

Dimensions (mm)

Poles	$\mathbf{3}$
$\left.\mathrm{H}^{1}\right)$	273
W	210
D (less toggle)	103
Weight $(\mathrm{kg})$	9.6
4 pole on indent	

3 Pole
Amp

rating   NRC	ASR Min.	ASR Max.	Cat. No.	3 pole   Price $\mathbf{\$}$
400	250	400	XH630PJ 400 3	$\mathbf{4 3 5 0 . 0 0}$
630	400	630	XH630PJ 630 3	$\mathbf{4 8 1 0 . 0 0}$

Notes: ${ }^{1}$ ) H excludes attached busbar Magnetic only available on application. NRC: Nominal rated current. ASR: Adjustable setting range.

## TemBreak PLUS selectivity series

## Electronic type XS630SE

## 50 kA

Current rating: 315-630 A
Approvals and Tests: Standards: AS/NZS 3947-2 and
IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)

	Voltage	Icu kA	Ics kA
AC use	$400 / 415$	50	25



Trip unit:
Electronic trip unit: Adjustable long, short and instantaneous trip.

Trip unit:	Fixed.	
LTD adjustment:	$1: 0.8-1$	t: $5-30 \mathrm{~s}$
STD adjustment:	$1: 2-10$	t: $0.1-0.3 \mathrm{~s}$
Instantaneous Adj:	$I_{3}^{2}: 3-12$	NRC

OCR options: Pre-trip alarm, fault indication and contacts, ground fault trip
Dimensions (mm)

Poles	$\mathbf{3}$	$\mathbf{4}$
$\left.\mathrm{H}^{1}\right)$	273	273
$W$	210	280
D (less toggle)	103	103
Weight $(\mathrm{kg})$	9.6	12.2


3 Pole   Amp rating NRC	ASR Min.	ASR Max.	Cat. No.	3 pole Price \$
630	315	630	XS630SE 6303	3100.00
4 Pole Amp rating NRC	ASR Min.	ASR Max.	Cat. No.	4 pole Price \$
630	315	630	XS630SE 6304	4130.00

## Ground Fault Trip MCCB ${ }^{2}$ )

3 Pole

Amp rating NRC	ASR Min.	ASR Max.	Cat. No.	3 pole Price \$
630	315	630	XS630SE 6303LSIG	3960.00
4 Pole				
Amp rating NRC	ASR Min.	ASR Max.	Cat. No.	4 pole Price \$
630	315	630	XS630SE 6304LSIG	6280.00

Notes: ${ }^{1)} \mathrm{H}$ excludes attached busbar.
${ }^{2}$ ) GF MCCBs require a 4th Neutral CT to be ordered for 3 and 4 pole MCCB applications. (If a neutral is present) Refer accessories. NRC: Nominal rated current. ASR: Adjustable setting range.

## TemBreak PLUS selectivity series

## Electronic type XH630SE

## 65 kA

Current rating: 315-630 A
Approvals and Tests: Standards: AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)

	Voltage	Icu kA	Ics $\mathbf{k A}$
AC use	$400 / 415$	65	33



Trip unit:
Electronic trip unit: Adjustable long, short and instantaneous trip.

Trip unit:	Fixed.	
LTD adjustment:	$11: 0.8-1$	t: $5-30 \mathrm{~s}$
STD adjustment:	$1: 2-10$	t: $0.1-0.3 \mathrm{~s}$
Instantaneous Adj:	I. $2: 3-12$	NRC

OCR options: Pre-trip alarm, fault indication and contacts, ground fault trip
Dimensions (mm)

Poles	$\mathbf{3}$	$\mathbf{4}$
$\left.\mathrm{H}^{1}\right)$	273	273
W	210	280
D (less toggle)	103	103
Weight $(\mathrm{kg})$	9.6	12.2


3 Pole   Amp rating   NRC				
630	ASR Min.	ASR Max.	Cat. No.	3 pole   Price \$
4 Pole	315	630	XH630SE 630 3	$\mathbf{3 2 6 0 . 0 0}$
Amp rating				
NRC	ASR Min.	ASR Max.	Cat. No.	4 pole   Price $\mathbf{\$}$
630	315	630	XH630SE 630 4	$\mathbf{4 3 5 0 . 0 0}$

Ground Fault Trip MCCB ${ }^{2}$ )
3 Pole

Amp rating				3 pole   Price $\mathbf{\$}$	
NRC	ASR Min.	ASR Max.	Cat. No.	CH630SE6303LSIG	$\mathbf{4 1 1 0 . 0 0}$
630	315	630	X		


4 Pole				
Amp rating				
NRC				
630	ASR Min.	ASR Max.	Cat. No.	4 pole   Price $\$$

[^5]
## THERMAL/MAGNETIC CIRCUIT BREAKERS

Terasaki thermal/magnetic circuit breakers offer superior protection when harmonics exist in a network.


Terasaki thermal/magnetic circuit breakers:

- Respond directly to the heat produced by the true RMS value of the load current
- Ensure protection irrespective of the harmonic distortion any future loads may cause
- Protect up to the infinite harmonic
- Are suitable for DC applications


# TemBreak 1 series <br> Current limiting thermal magnetic type <br> XS800NJ 

## 50 kA

Current rating: 500-800 A
Approvals and Tests: Standards: AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)

	Voltage	Icu kA	Ics $\mathbf{k A}$
AC use	$\left.400 / 415^{1}\right)$	50	25
DC use	250	40	



Trip unit: Adjustable thermal adjustable magnetic OCR options: Special calibrated or disabled thermal trip

Dimensions (mm)

Poles	$\mathbf{3}$	$\mathbf{4}$
$\left.\mathrm{H}^{1}\right)$	273	273
$W$	210	280
D (less toggle)	103	103
Weight $(\mathrm{kg})$	9.7	12.2


3 Pole   Amp   rating				
NRC	ASR Min.	ASR Max.	Cat. No.	3 pole   Price \$
800	500	800	XS800NJ 800 3	$\mathbf{3 8 5 0 . 0 0}$
4 Pole				
Amp				
rating				4 pole
NRC	ASR Min.	ASR Max.	Cat. No.	Price \$
800	500	800	XS800NJ 800 4	$\mathbf{5 1 3 0 . 0 0}$

[^6]
## TemBreak PLUS PowerBreaker Ics = 50 kA

Thermal magnetic type XH800PJ

## 85 kA

Current rating: 500-800 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)

	Voltage	Icu kA	Ics kA
AC use	400	100	50
	415	85	50
DC use	250	40	-

Trip unit: Adjustable thermal adjustable magnetic OCR options: Special calibrated or disabled thermal trip

Dimensions (mm)

Poles	$\mathbf{3}$	$\mathbf{4}$
$\left.\mathrm{H}^{1}\right)$	273	273
W	210	280
D (less toggle)	103	103
Weight $(\mathrm{kg})$	9.7	12.2


3 Pole				
Amp   rating				3 pole   NRC
800	ASR Min.	ASR Max.	Cat. No.	Price

Notes: ') H excludes attached busbar. Magnetic only available on application. NRC: Nominal rated current. ASR: Adjustable setting range.

## TemBreak PLUS selectivity series

## Electronic type XS800SE

## 50 kA

Current rating: $400-800 \mathrm{~A}$
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)


	Voltage	Icu kA	Ics kA
AC use	$400 / 415$	50	25

## Trip unit:

Electronic trip unit: Adjustable long, short and instantaneous trip.
Trip unit: Fixed.

LTD adjustment:	1$1: 0.8-1$ t: $5-30 \mathrm{~s}$   STD adjustment: $1: 2-10$   Instantaneous Adj: $I_{2}^{2}: 3-12$	t: $0.1-0.3 \mathrm{~s}$
IRC		

OCR options: Pre-trip alarm, fault indication and contacts, ground fault trip
Dimensions (mm)

Poles	$\mathbf{3}$	$\mathbf{4}$
$\left.\mathrm{H}^{1}\right)$	273	273
W	210	280
D (less toggle)	103	103
Weight $(\mathrm{kg})$	9.7	12.2

3 Pole
Amp rating

NRC ASR Min. $\quad$ ASR Max. $\quad$ Cat. No. | 3 pole |
| ---: |
| Price \$ |

Ground Fault Trip MCCB ${ }^{2}$ )
3 Pole
Amp rating

NRC ASR Min. $\quad$ ASR Max. $\quad$ Cat. No. | 3 pole |
| ---: |
| Price $\$$ |

Notes: ${ }^{1)}$ H excludes attached busbar.
${ }^{2}$ ) GF MCCBs require a 4th Neutral CT to be ordered for 3 and 4 pole MCCBs. (If a neutral is present) Refer accessories.
NRC: Nominal rated current.
ASR: Adjustable setting range.

## TemBreak PLUS selectivity series

## Electronic type XH800SE

65 kA
Current rating: $400-800 \mathrm{~A}$
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)

	Voltage	Icu kA	Ics kA
AC use	$400 / 415$	65	33



## Trip unit:

Electronic trip unit: Adjustable long, short and instantaneous trip.

Trip unit:	Fixed.	
LTD adjustment:	$1: 0.8-1$	t: $5-30 \mathrm{~s}$
STD adjustment:	$1: 2-10$	t: $0.1-0.3 \mathrm{~s}$
Instantaneous Adj:	$I_{3}: 3-12$	NRC

OCR options: Pre-trip alarm, fault indication and contacts, ground fault trip
Dimensions (mm)

Poles	$\mathbf{3}$	$\mathbf{4}$
$\left.\mathrm{H}^{1}\right)$	273	273
W	210	280
D (less toggle)	103	103
Weight $(\mathrm{kg})$	9.7	12.2

3 Pole

Amp rating   NRC	ASR Min.	ASR Max.	Cat. No.	3 pole   Price \$
800	400	800	XH800SE 800 3	4360.00
4 Pole				
Amp rating				4 pole
NRC	ASR Min.	ASR Max.	Cat. No.	Price \$
800	400	800	XH800SE 800 4	$\mathbf{6 7 5 0 . 0 0}$

Ground Fault Trip MCCB ${ }^{2}$ )
3 Pole

Amp rating   NRC	ASR Min.	ASR Max.	Cat. No.	3 pole   Price $\mathbf{\$}$
800	400	800	XH800SE8003LSIG	$\mathbf{5 0 8 0 . 0 0}$
4 Pole				
Amp rating				4 pole
NRC	ASR Min.	ASR Max.	Cat. No.	Price $\mathbf{\$}$
800	400	800	XH800SE8004LSIG	$\mathbf{7 4 8 0 . 0 0}$

Notes: ${ }^{1)}$ H excludes attached busbar.
${ }^{2}$ ) GF MCCBs require a 4th Neutral CT to be ordered for 3 and 4 pole MCCB applications. (If a neutral is present) Refer accessories.
NRC: Nominal rated current.
ASR: Adjustable setting range.

## TemBreak PLUS PowerBreaker Ics = 50 kA

## Electronic type XH800PE

## 65 kA

Current rating: 400-800 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)

cien

	Voltage	Icu $\mathbf{k A}$	Ics $\mathbf{k A}$
AC use	$400 / 415$	65	50
DC use	250 V	40	-

Trip unit:
Electronic trip unit: Adjustable long, short and instantaneous trip.

Trip unit:	Fixed.	
LTD adjustment:	$1: 0.8-1$	t: $5-30 \mathrm{~s}$
STD adjustment:	$1: 2-10$	t: $0.1-0.3 \mathrm{~s}$
Instantaneous Adj:	$I_{3}: 3-12$	NRC

OCR options: Pre-trip alarm, fault indication and contacts, ground fault trip
Dimensions (mm)

Poles	$\mathbf{3}$	$\mathbf{4}$
$\left.\mathrm{H}^{1}\right)$	273	273
W	210	280
D (less toggle)	103	103
kg	9.7	12.2


3 Pole   Amp rating   NRC				
800	ASR Min.	ASR Max.	Cat. No.	Price \$
4 Pole		800	XH800PE 800 3	$\mathbf{4 7 0 0 . 0 0}$
Amp rating   NRC				
800	ASR Min.	ASR Max.	Cat. No.	Price \$
	400	800	XH800PE 800 4	$\mathbf{8 5 0 0 . 0 0}$

[^7]
## TemBreak 1000 V mining circuit breakers Electronic XV630PE, XV800PE

18 kA
Current rating: 200-800 A
Approvals and tests: Standards AS 2184, AS/NZS 3947-2
Complies with IEC 60947-2
Interrupting capacity: 18 kA at $1000 \mathrm{~V} \mathrm{AC}^{1}$ ) (IEC 60947-2) 12.5 kA at $1100 \mathrm{~V} \mathrm{AC}^{2}$ )

Trip unit:
Trip unit:
Fixed

LTD adjustment:	$\mathrm{I}_{1}: 0.8-1$	$\mathrm{t}: 5-30 \mathrm{~s}$
STD adjustment:	$\mathrm{I}_{2}: 2-10$	$\mathrm{t}: 0.1-0.3$
INST adjustment:	$\mathrm{I}_{3}: 3-12$	
PTA adjustment:	$\mathrm{I}_{p}: 0.7-1$	t: fixed at 40 s (sep. control   power req.)
or GFT adjustment:	$\mathrm{I}_{6}: 0.1-0.4$	$\mathrm{t}: 0.1,02,0.3,0.4$ or 0.8 s

Dimensions (mm)

Poles	3
$\left.\mathrm{H}^{3}\right)$	273
W	210
D (Less toggle)	103
Weight (kg)	11.00


| Amp <br> rating <br> NRC | ASR Min. | ASR Max. |  | Cat. No. |
| :--- | :--- | :--- | :--- | ---: | Price \$

XV630/800 MINING BREAKERS MUST USE either line-side terminal covers OR
interpole barriers, and a rear insulation plate (All supplied with breaker) ${ }^{s}$ )
Notes: ${ }^{1)}$ Actual test voltage 1105 V .
${ }^{2}$ ) Actual test voltage 1165 V .
${ }^{3}$ ) H excludes attached busbar.
${ }^{4}$ ) For FAULT INDICATION option add ' Fl ' and nominate control voltage.
${ }^{5}$ ) Installation and incoming connection information can be found with each new MCCB, or by contacting NHP.
NRC: Nominal rated current.
ASR: Adjustable setting range.
Overcurrent trip combinations: (specify combinations req.)
LSI - standard,
LS - optional,
LSIP - optional (pre-trip alarm).

## Accessories

## to suit 630-800 AF

Internal accessories

Description		Cat. No.	Price \$
Shunt trips	$110 \mathrm{~V} \mathrm{AC/DC}$	2H1515BAA	430.00
	240 V AC	2H1516BAA	430.00
	12 V DC	2H1517BAA	430.00
	24 VDC	2H1518BAA	430.00
	48 V DC	2H1519BAA	430.00
	200 V DC	2H1520BAA	430.00
	24 V AC	2H1521BAA	430.00
	48 V AC	2H1522BAA	430.00
Undervoltage trips	AC coil ${ }^{1}$ )	2H1503BAA	395.00
	100-230 V DC coil ${ }^{2}$ )	2H1504BAA	395.00
	$\underline{24 V D C}$ coil $^{2}$ )	2H1505BAA	395.00
	48 VDC coil $^{2}$ )	2H1506BAA	395.00
	60 VDC coil $^{2}$ )	2H1507BAA	395.00
	110 V AC instantaneous controller	UXUB0013B	113.00
	240 V AC instantaneous controller	UXUB0014B	113.00
	440 V AC instantaneous controller	UXUB0015B	113.00
	110 V AC time delay controller	UXUB0016B	220.00
	240 V AC time delay controller	UXUB0017B	220.00
	440 V AC time delay controller	UXUB0018B	215.00
	200-230 V DC controller	UXUB0038B	113.00
Undervoltage trips	AUX SW right hand 1C	UXXB0007D	169.00
	AUX SW right hand 2C	UXXB0008D	200.00
	AUX SW right hand 3C	UXXB0009D	240.00
Alarm switch	ALT SW right hand	UXLB0010D	181.00
Alarm \& auxiliary switches	ALT/AUX SW right hand 1C	UXLB0015D	195.00
	ALT/AUX SW right hand $2 C$	UXLB0016D	225.00
Pre-trip alarm	For electronic OCR Add MCCBs only	LSIP	700.00
Fault indication \& contacts	Side of breaker mounted Add module. Electronic MCCBs only voltage	FI	900.00
Earth fault, with optional 4th external CTs	Earth fault, electronic Add breakers only (4th CTI optional, add price below)	LSIG	730.00
	630 A 4th CT	UXOY0001A	425.00
	800 A 4th CT	UXOY0002A	425.00

Notes: Footnotes, refer to page 6-26.

## Accessories to suit 630-800 AF

External accessories - user fit		Cat. No.	Price \$
Screw tunnel terminals	3 P solderless terminals for 630 AF (6 in kit)	TXLD0005A	385.00
	$\begin{aligned} & \text { 4P solderless terminals for } 630 \\ & \mathrm{AF} \text { (8 in kit) } \end{aligned}$	TXLD0006A	495.00
Rear connect studs	$\begin{aligned} & 3 \text { P rear connect studs, 630/800 } \\ & \text { AF ( } 6 \text { in kit) } \end{aligned}$	UXRC0008B	1460.00
	$\begin{aligned} & 4 \mathrm{P} \text { rear connect studs, } 630 / 800 \\ & \text { AF ( } 8 \text { in kit) } \end{aligned}$	UXRC0009B	2040.00
Motor operators $\left.(X M D 6)^{2}\right)$	110 V AC motor	2H1299CAC	2750.00
	110 V DC motor	2H1301CAC	2750.00
	$\underline{24 ~ V ~ D C ~ m o t o r ~}$	2H1302CAC	2750.00
	240 V AC motor	2H1303CAC	2750.00
Motor operators $\left.(X M C 6)^{2}\right)$	110 V AC motor	UXMC0006B	3550.00
	110 V DC motor	UXMC0008B	3550.00
	24 V DC motor	UXMC0009B	3550.00
	240 V AC motor	UXMC0010B	3550.00
	Motor base support	UXMD0002B	47.00
Mechanical interlocks (Factory fit)	3 P mechanical interlock rear mounting	UXKC0004A	360.00
	4P mechanical interlock rear mounting	UXKC0005A	520.00
	Interlock cable (wire)	UXKC0020A	83.00
	Cable interlock mechanism ${ }^{1}$ )	UXKC0022B	310.00
Handle operators	IP 55 Grey variable depth handle +357 mm shaft	T1HS80R5GM	490.00
	T1HS escutcheon plate option: $100 \mathrm{~mm}^{2}$	T2HSESC100	18.20
	390 mm T pin shaft for T2HS - no flexi coupling	T2HS400SHAFT	47.00
	IP 65 Grey variable depth handle +420 mm shaft	T1HP80R6BNA4	480.00
	Padlock attachment for T1HP/HS mechanism	T1HP80PALK	49.50
	IP 55 direct mount fixed depth handle	TFJ36XU	510.00
Handle extension	Extends length of toggle	UXKB0002A	60.50
Toggle \& handle locks	Toggle lock - non captive (Padlockable)	UXKB0002A	60.50
	Toggle lock - captive (Padlockable)	XKA6	60.50
	Resin for XKA6	LOCTITE 480	83.00

Notes: ${ }^{1)}$ Order one interlock mechanism for each circuit breaker.
${ }^{2}$ ) XMC6 motors are used on all transfer switches as standard, and require a motor base support along with the motor when ordered. XMD6 motors offer superior ON/OFF/TRIPPED status indication and can be fitted to transfer switches on request. XMD6 motors do not require a motor base support.
Yellow and red handles available.

## Accessories to suit 630-800 AF

External accessories - user fit		Cat. No.	Price \$
Terminal covers	$3 P$ front connecting terminal cover	2H1417DAB	215.00
	4 P front connecting terminal cover	2H1418DAB	270.00
	IP 20 protective cover ${ }^{1}$ )	2A1787DBA	6.20
	3 Prear connecting terminal cover	UXPD0013C	220.00
	4 P rear connecting terminal cover	UXPD0014B	270.00
Accessory lead terminal	Accessory terminal block	UXYD0001A	26.80
	Terminal and bolt	UXYD0002A	2.20
Plug-in breaker parts 3 pole	Aux. connection block (MCCB) side	UXYC0005A	54.00
	Aux. connection block (panel) side	UXYB0004A	54.00
	Mounting bolts	TXLD0016A	26.80
	Tulip block (6) $630{ }^{2}$ )	TXLD0012A	340.00
	Tulip block (6) $800{ }^{2}$ )	2A3308DAA	360.00
	Mounting base	XDM6-3	880.00
Plug-in breaker parts 4 pole	Aux. connection block (MCCB) side	UXYC0005A	54.00
	Aux. connection block (panel) side	UXYB0004A	54.00
	Mounting bolts	TXLD0016A	26.80
	Tulip block (8) $630{ }^{2}$ )	TXLD0013A	425.00
	Tulip block (8) $800{ }^{2}$ )	2A3308DBA	445.00
	Mounting bolts	XDM6-4	980.00
TemPlug	TemPlug 800 A rated ${ }^{3}$ )	UPX3800	660.00
Interpole barrier	Interpole barrier	UXQH0004B	10.40
OCR sealing kit	Tamperproof cover for OCR adjustment dials	XS6300CRSK	54.00
ProSafe shot bolt interlock	Prosafe shot bolt lock HS handles xx code	TKNHPXX	520.00
	Prosafe standard key xx code for above	TKNNHPKEYX_	130.00
	Cam for T2HS handle shafts Key codes A to Z are available. Specify by changing the key code above.	14997702	235.00

Notes: ${ }^{1)} 6$ pieces required for $3 \mathrm{P} / 8$ pieces required for 4 P .
${ }^{2}$ ) Specify quantity required (up to 6 pieces).
${ }^{3}$ ) Price Schedule T3 applies to TemPlug.

## TemBreak PLUS selectivity series

## Electronic type <br> XS1250SE

## 85 kA

Current rating: 500-1250 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)

	Voltage	Icu kA	Ics $\mathbf{k A}$
AC use	400 V	85	65
	415 V	65	49



Trip unit:
Electronic trip unit: Adjustable long, short and instantaneous trip.

Trip unit:	Fixed.	
LTD adjustment:	$11: 0.8-1$	t: $5-30 \mathrm{~s}$
STD adjustment:	$1: 2-10$	t: $0.1-0.3 \mathrm{~s}$
Instantaneous Adj:	In: $2-12$	NRC

OCR options: Pre-trip alarm, fault indication and contacts, ground fault trip
Dimensions (mm)

Poles	$\mathbf{3}$	$\mathbf{4}$
$\left.\mathrm{H}^{1}\right)$	370	370
W	210	280
D (less toggle)	120	120
Weight (kg)	22	28

Notes: ${ }^{1}$ ) H excludes attached busbar.

3 Pole

Amp rating   NRC	ASR Min.	ASR Max.	Cat. No.	3 pole   Price $\$$
1000	500	1000	XS1250SE 1000 FC3	$\mathbf{7 0 1 0 . 0 0}$
1250	625	1250	XS1250SE 1250 FC3	$\mathbf{8 7 7 0 . 0 0}$

## 4 Pole

Amp rating				4 pole   Price \$		
NRC	ASR Min.	ASR Max.	Cat. No.	CS1250SE 1000 FC4	$\mathbf{9 2 2 0 . 0 0}$	1000
:---						

## Ground Fault Trip MCCBs ${ }^{1}$ )

3 Pole

Amp rating	ASR Min.	ASR Max.	Cat. No.	3 pole   Price $\boldsymbol{\$}$
NRC	ASR	1000	XS1250SE 10003LG	$\mathbf{7 8 7 0 . 0 0}$
1000	500	1250	XS1250SE 12503LG	$\mathbf{9 4 9 0 . 0 0}$
1250	625			

4 Pole

Amp rating   NRC	ASR Min.	ASR Max.	Cat. No.	4 pole   Price
1000	500	1000	XS1250SE 10004LG	$\mathbf{8 9 4 0 . 0 0}$
1250	625	1250	XS1250SE 12504LG	$\mathbf{1 2 2 3 0 . 0 0}$

Notes: ${ }^{1}$ ) GF MCCBs require a 4th Neutral CT to be ordered for 3 and 4 pole MCCB applications. (If a neutrel is present) Refer accessories.
NRC: Nominal rated current.
ASR: Adjustable setting range.

## TemBreak 1000 V mining circuit breakers

Electronic XV1250NE

20 kA
Current rating: 200-1250 A
Approvals and tests: Standards AS/NZS 3947-2, IEC 60947-2

Interrupting capacity: 20 kA at 1000/1100 V AC (IEC 60947-2)

Trip unit:

Trip unit:	Fixed	
LTD adjustment:	$I_{1}: 0.8-1$	t: $5-30 \mathrm{~s}$
STD adjustment:	$I_{2}: 2-10$	t: $0.1-0.3 \mathrm{~s}$
INST adjustment:	$I_{3}: 3-12$	
PTA adjustment:	$I_{p}: 0.7-1$	t: fixed at 40 s (sep control power   req.)
or GFT adjustment:	$I_{G}: 0.1-0.4$	t: $0.1,0.2,0.3,0.4$ or 0.8 s

Dimensions (mm)

Poles	$\mathbf{3}$
$\left.\mathrm{H}^{1}\right)$	370
W	210
D (Less toggle)	120
Weight $(\mathrm{kg})$	22.0
4 pole	POA


Amp rating NRC	ASR Min.	ASR Max.	Cat. No.	Price \$
400	200	400	XV1250NE 400 3 K ${ }^{\mathbf{2}}$ )	$\mathbf{1 0 0 3 0 . 0 0}$
800	400	800	XV1250NE 800 3 K ${ }^{\mathbf{2}}$ )	$\mathbf{1 0 0 3 0 . 0 0}$
1000	500	1000	XV1250NE1000 3 K ${ }^{\mathbf{2}}$ )	$\mathbf{1 0 6 2 0 . 0 0}$
1250	630	1250	XV1250NE1250 3 K ${ }^{\mathbf{2}}$ )	$\mathbf{1 3 6 3 0 . 0 0}$

## XV1 250 MINING BREAKERS MUST USE either line-side terminal covers <br> OR <br> interpole barriers, and a rear insulation plate (All supplied with breaker) ${ }^{3}$ )

Notes: ${ }^{1}$ ) H excludes attached busbar.
${ }^{2}$ ) For FAULT INDICATION option add "FI" and nominate control voltage.
${ }^{3}$ ) Installation information is supplied with MCCBs or refer NHP prior to purchase.
NRC: Nominal rated current.
ASR: Adjustable setting range.
Overcurrent trip combinations: (specify combinations req.)
LSI - standard,
LS - optional,
LSIP - pre-trip alarm,
LSIG - trip indicators - optional.

## TemBreak PLUS selectivity series

## Electronic type XS1600SE

## 100 kA

Current rating: 800-1600 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)

	Voltage	Icu kA	Ics kA
AC use	400 V	100	75
	415 V	85	64



## Trip unit:

Electronic trip unit: Adjustable long, short and instantaneous trip

Trip unit:	Fixed.	
LTD adjustment:	$11: 0.8-1$	t: $5-30 \mathrm{~s}$
STD adjustment:	$1: 2-10$	t: $0.1-0.3 \mathrm{~s}$
Instantaneous Adj:	$I_{3}^{2}: 3-12$	NRC

OCR options: Pre-trip alarm, fault indication and contacts, ground fault trip
Dimensions (mm)

Poles	$\mathbf{3}$	$\mathbf{4}$
$\left.\mathrm{H}^{1}\right)$	370	370
W	210	280
D (less toggle)	140	140
Weight (kg)	27	35

3 Pole
Amp rating

NRC	ASR Min.	ASR Max.	Cat. No.	Price \$
1600	800	1600	XS1600SE 1600 FC3	$\mathbf{1 0 0 5 0 . 0 0}$

3 pole

4 Pole

Amp rating				4 pole   Price \$
NRC	ASR Min.	ASR Max.	Cat. No.	CS1600SE 1600 FC4 13390.00
1600	800	1600	XS	

## Ground Fault Trip MCCBs ${ }^{2}$ )

3 Pole

Amp rating NRC	ASR Min.	ASR Max.	Cat. No.	3 pole Price \$
1600	800	1600	XS1600SE 16003LG	10780.00
4 Pole   Amp rating   NRC	ASR Min.	ASR Max.	Cat. No.	4 pole Price \$
1600	800	1600	XS1600SE 16004LG	14120.00

Notes: ${ }^{1)}$ H excludes attached busbar.
${ }^{2}$ ) GF MCCBs require a 4th Neutral CT to be ordered for 3 and 4 pole MCCB applications. (If a neutrel is present) Refer accessories.
NRC: Nominal rated current. ASR: Adjustable setting range.

## TemBreak PLUS LimitorBreaker Ics = 70 kA

## Electronic type <br> TL630NE

## 125 kA

Current rating: 315-630 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)

	Voltage	Icu kA	Ics kA
AC use	400 V	125	70



## Trip unit:

Electronic trip unit: Adjustable long, short and instantaneous trip

Trip unit:	Fixed.	
LTD adjustment:	1:0.8-1	t: $5-30 \mathrm{~s}$
STD adjustment:	$12:-10$	t: $0.1-0.3 \mathrm{~s}$
Instantaneous Adj:	$I_{3}^{2}: 3-12$	NRC

OCR options: Pre-trip alarm, fault indication and contacts, ground fault trip
Dimensions (mm)

Poles	3
$\left.\mathrm{H}^{1}\right)$	370
$W$	210
D (less toggle)	140
Weight $(\mathrm{kg})$	25.8
4 pole	

3 Pole
Amp

rating   NRC	ASR Min.	ASR Max.	Cat. No.	3 pole   Price \$
630	315	630	TL630NE 630 3	$\mathbf{4 2 8 0 . 0 0}$


Ground Fault Trip MCCBs ${ }^{2}$ )				
Amp rating NRC	ASR Min.	ASR Max.	Cat. No.	3 pole Price \$
630	315	630	TL630NE3LSIG	5010.00

[^8]
## TemBreak PLUS LimitorBreaker Ics = 70 kA

## Electronic type TL800NE

## 125 kA

Current rating: 400-800 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)

	Voltage	Icu kA	Ics kA
AC use	$400 / 415$	125	70

Trip unit:
Electronic trip unit: Adjustable long, short and instantaneous trip

Trip unit:	Fixed.	
LTD adjustment:	$110.8-1$	t: $5-30 \mathrm{~s}$
STD adjustment:	$1: 2-10$	t: $0.1-0.3 \mathrm{~s}$
Instantaneous Adj:	$I_{3}^{2}: 3-12$	NRC

OCR options: Pre-trip alarm, fault indication and contacts, ground fault trip
Dimensions (mm)

Poles	$\mathbf{3}$
$\left.\mathrm{H}^{1}\right)$	370
W	210
D (less toggle)	140
Weight (kg)	25.8
4 pole	

3 Pole

## Amp

rating   NRC	ASR Min.	ASR Max. ${ }^{2}$ )	Cat. No.	3 pole   Price \$
800	400	800	TL800NE 800 3	$\mathbf{8 8 5 0 . 0 0}$

Ground Fault Trip MCCBs ${ }^{2}$ )

3 Pole   Amp				
rating				

[^9]
## TemBreak PLUS LimitorBreaker Ics = 65 kA

## Electronic type TL1250NE

## 125 kA

Current rating: 500-1250 A
Approvals and Tests: Standards AS/NZS 3947-2 and IEC 60947-2

Interrupting capacity: Symmetrical amps (kA RMS)

	Voltage	Icu kA	Ics kA
AC use	$400 / 415$	125	65



Trip unit:
Electronic trip unit: Adjustable long, short and instantaneous trip

Trip unit:	Fixed.	
LTD adjustment:	$1: 0.8-1$	t: $5-30 \mathrm{~s}$
STD adjustment:	$1: 2-10$	t: $0.1-0.3 \mathrm{~s}$
Instantaneous Adj:	In: $2-12$	NRC

OCR options: Pre-trip alarm, fault indication and contacts, ground fault trip
Dimensions (mm)

Poles	3			
$\mathrm{H}^{1}$ )	370			
W	210			
D (less toggle)	140			
Weight (kg)	26			
4 pole				
3 Pole				
Amp rating				3 pole
NRC	ASR Min.	ASR Max.	Cat. No.	Price \$
1000	500	1000	TL1250NE 10003 FC	11690.00
1250	625	1250	TL1250NE 12503 FC	13080.00

Ground Fault Trip MCCBs ${ }^{2}$ )

3 Pole   Amp   rating				
NRC	ASR Min.	ASR Max.	Cat. No.	3 pole   Price
1000	500	1000	TL1250NE 1000 3 LG	$\mathbf{1 2 4 2 0 . 0 0}$
1250	625	1250	TL1250NE 12503 LG	$\mathbf{1 3 8 1 0 . 0 0}$

Notes: ${ }^{1)}$ H excludes attached busbar.
2) GF MCCBs require a 4th Neutral CT to be ordered for 3 and 4 pole MCCB applications. (If a neutrel is present) Refer accessories.
NRC: Nominal rated current.
ASR: Adjustable setting range.
Accessories, refer to page 6-35.

## Accessories to suit 1250-1600 AF

Internal accessories - factory fit		Cat. No.	Price \$
Shunt trips	110 V AC/DC (110-115 V)	2H1197BAA	520.00
	$240 \mathrm{~V} \mathrm{AC} \mathrm{(200-480} \mathrm{V)}$	2H1198BAA	520.00
	12 VDC	2H1199BAA	520.00
	24 VDC	2H1200BAA	520.00
	48 VDC	2H1201BAA	520.00
	200 V DC ( $200-230 \mathrm{~V}$ )	2H1202BAA	520.00
	24 V AC	2H1203BAB	520.00
	48 VAC	2H1204BAA	520.00
Undervoltage trips	AC coil ${ }^{1}$ )	2H1208BAA	425.00
	100-230 V DC coil ${ }^{2}$ )	2H1209BAA	425.00
	$\underline{24 V D C}$ coil $^{2}$ )	2H1210BAA	425.00
	$48 \mathrm{VDC}{ }^{2}$ )	2H1211BAA	425.00
	$60 \mathrm{VDC}^{2}$ )	2H1212BAA	425.00
	110 V AC instantaneous controller	UXUB0013B	113.00
	240 V AC instantaneous controller	UXUB0014B	113.00
	440 V AC instantaneous controller	UXUB0015B	113.00
	110 V AC time delay controller	UXUB0016B	220.00
	240 V AC time delay controller	UXUB0017B	220.00
	440 V AC time delay controller	UXUB0018B	215.00
	200-230 V DC controller	UXUB0038B	113.00
Auxiliary switches	AUX SW right hand 1C / 3 P	UXXB0010D	335.00
	AUX SW right hand 2C/3P	UXXB0011D	415.00
	AUX SW right hand $3 \mathrm{C} / 3 \mathrm{P}$	UXXB0012D	490.00
	AUX SW right hand 1C/4P	UXXB0023D	335.00
	AUX SW right hand 2C/4P	UXXB0024D	415.00
	AUX SW right hand 3C / 4 P	UXXB0025D	490.00
Alarm switches	ALT SW right hand / 3 P	UXLB0011D	315.00
	ALT SW right hand / 4 P	UXLB0024D	315.00
Alarm \& auxiliary switches	ALT/AUX right hand 1C / 3 P	UXLB0017D	385.00
	ALT/AUX right hand 2C / 3 P	UXLB0018D	460.00
	ALT/AUX right hand 2C / 4 P	UXLB0025D	385.00
	ALT/AUX right hand 1C / 4 P	UXLB0026D	460.00

[^10]
## Accessories to suit 1250-1600 AF

Internal	sories - factory fit	Cat. No.	Price \$
Fault indication \& contacts	An option for all Add 1250-1600 A types then voltage	FI	900.00
Fault indication	LED's mounted at top of OCR	FILED	2050.00
Pre-Trip alarm	An option for all 1250-1600 A types	LSIP	700.00
Ground fault	An option for all 1250-1600 A types	LSIG	730.00
trip (GFT)	1000 A 4th CT	UXOY0003A	445.00
Optional ext.   4th CT's	1250 A 4 th CT	UXOY0004A	445.00
	1600 A 4th CT	UXOY0005A	445.00


External accessories - factory fit		Cat. No.	Price \$
Rear connect tags	$\begin{aligned} & \text { 3 P rear connect studs (6 in kit) } \\ & 1250 \mathrm{~A} \end{aligned}$	2H1959DAB	1750.00
	$\begin{aligned} & \text { 4Prear connect studs (8 in kit) } \\ & 1250 \mathrm{~A} \\ & \hline \end{aligned}$	2H1959DBB	2330.00
	$\begin{aligned} & 3 \text { Prear connect studs (6 in kit) } \\ & 1600 \mathrm{~A} \\ & \hline \end{aligned}$	2H1960DAA	2310.00
	$\begin{aligned} & \text { 4P rear connect studs (8 in kit) } \\ & 1600 \mathrm{~A} \end{aligned}$	2H1960DBA	3080.00
Motor operators (XMD9)	110 V AC motor - user fit	2H1191CAB	3670.00
	110 V DC motor - user fit	2H1193CAB	3670.00
	24 V DC motor - user fit	2H1194CAB	3670.00
	240 V AC motor - user fit	2H1195CAB	3670.00
Mechanical interlocks	3 P mech I/lock / 1250 A rear connect	UXKC0006D	880.00
	4 P mech I/lock / 1250 A rear connect	UXKC0007D	1170.00
	3 P mech I/lock / 1600 A rear connect	UXKC0026C	880.00
	4 P mech I/lock / 1600 A rear connect	UXKC0027C	1170.00
	Interlock cable (wire)	UXKC0020A	83.00
	Interlock mechanism 1250 A Cable type ${ }^{1}$ )	UXKC0023B	460.00
	Interlock mechanism 1600 A Cable type ${ }^{1}$ )	UXKC0024B	460.00

Notes: ${ }^{1}$ ) Order one interlock mechanism for each breaker.

## Accessories to suit 1250-1600 AF

External accessories - user fit		Cat. No.	Price \$
Handle operators	$\begin{aligned} & \text { IP } 55 \text { Grey ext. handle + } 320 \mathrm{~mm} \\ & \text { shaft }{ }^{1} \text { ) } \end{aligned}$	T1HSX6R5GM	570.00
	T1HS escutcheon plate option: $100 \mathrm{~mm}^{2}$	T2HSESC100	18.20
	390 mm T pin shaft for T2HS - no flexi coupling	T2HS400SHAFT	47.00
	IP 65 Grey variable depth handle + shaft	T1HPX6R6BNA4	570.00
	Padlock attachment for T1HP/HS mechanism	T1HPX6PALK	49.50
	IP 55 direct mount fixed depth handle	TFJ38XU	610.00
	Prosafe shot bolt lock HS handles xx code	TKNHP	520.00
	Prosafe standard key xx code for above	TKNHPKEY	130.00
	Cam for T2HS handle shafts Key codes A to Z are available. Specify by changing the key code above.	14997702	235.00
Handle extension	Handle extension	2A2272BAB	123.00
Toggle \& handle locks	Toggle lock - non captive (Padlockable)	UXKB0003A	80.00
Terminal covers	3 P FC terminal cover / $1250{ }^{5}$ )	2H1419DAB	235.00
	4PFC terminal cover / $1250{ }^{5}$ )	2H1420DAB	290.00
	IP 20 protective cover ${ }^{2}$ )	2A1787DBA	6.20
Accessory lead terminal	Accessory terminal block	UXYD0001A	26.80
	Terminal and bolt ${ }^{3}$ )	UXYD0002A	2.20
Interpole barrier	Interpole barrier ${ }^{4}$ )	UXQH0004B	10.40
OCR sealing kit	Tamperproof cover for OCR adjustment dials	XS12500CRSK	40.00

[^11] AND INSTRUCTION GUIDES


For Terasaki TemBreak 2 MCCBs and accessories

## Installation sheets

Accessories listed below can be found in NHP Price List Catalogue Part C.

## Internal accessories

- Auxiliary switches
- Alarm switches


## External accessories

- Operating handles
- Motor operators
- Mechanical interlocks
- Interpole barriers
- Terminal covers
- Flush plates
- Shunt trips
- Undervoltage trips
- TemPlug
- Plug-in MCCB bases
- Toggle locks and locking devices
- Rear connection terminal studs
- Tunnel clamp terminals
- Attached flat bar
TemPower 2 Air Circuit Breakers and
Arc Detection RelaysPage
Introduction, standards ..... 7-2
Stocked AR ACBs ..... 7-4
Standard accessories ..... 7-6
ACB ordering information ..... 7-9
Specifications ..... 7-10
Main power circuit terminal specifications ..... 7-11
Performance specification of AR and AR-H ACB ..... 7-12
Overcurrent Release (OCR) Specification ..... 7-16
Tripping options ..... 7-26
Serial communication options ..... 7-30
TemRelay external alarm module ..... 7-32
TemVision remote monitoring and control ..... 7-32
TemPower Rack remote racking ..... 7-33
NHP Servicing ..... 7-34
Retrofitting and installation kits ..... 7-35
Dimensions ..... 7-37
Providing solutions ..... 7-38
Arc detecting relay system ..... 7-39
Arc D-Tect ordering infomation ..... 7-44



## TemPower Introduction

Meeting the requirements of contemporary switchboard manufacturers, consultants and end users, the TemPower 2 ACB boasts an attractive range of features including fast fault clearing times, advanced digital Overcurrent Relay (OCR) options and a small, compact design that maintains high Ampere Interrupting Capacities (AIC).


Maximum power from minimum volume


Standard series	800-2000 A 2500-3200 A		4000 A	5000-6300 A
High fault series	$\begin{aligned} & 1600- \\ & 2000 \mathrm{~A} \\ & \hline \end{aligned}$	1600-3200 A		
	Size AR2	Size AR3	Size AR4	Size AR6

Notes: Measurements on 3 pole model show in mm .

## TemPower Standards and certifications

Based Standards

AS 3947-2	Australian Standard
IEC 60947-2	International Electrotechnical Commission
EN60947-2	European Standard
JIS C8372	Japanese Industrial Standard
NEMA PUB NO.SG3	National Electrical Manufacturers Association
ANSI C37.13	American National Standard Institute
Certification and Authorisation	
ASTA, UK	ASTA Certification Services
NK, Japan	Nippon Kaiji Kyokai
LR, UK	Lloyd's Register of Shipping
ABS, USA	American Bureau of Shipping
GL, Germany	Germanischer Lloyd
BV, France	Bureau Veritas



## TemPower <br> Stocked ACBs

Stocked ACBs are kept on the shelf in a standard pre-built configuration providing fast customer delivery. ACB bodies (withdrawable part) and carriages (fixed part) are ordered separately according to the required carriage terminal configuration.

## Stocked ACB specification

- Approvals and test: IEC 60947, A.S.T.A. certified
- AR-S type ACB body, 3 pole
- TemPro PLUS overcurrent release (type AGR21BL-PG) (240 V AC control voltage)
- Adjustable 'LSI'+GF protection standard (GF comes set enabled as default) ${ }^{2}$ )
- Single trip indicator contact for 'LSI+GF' standard
- MODBUS communications facility (data monitoring as standard)
- Ground fault ready (external 4th CT required, see below) ${ }^{1}$ )
- 240 V AC continuous rated shunt trip
- 7 C/O auxiliary switch
- IP 41 door flange
- ON/OFF push button covers are padlockable as standard
- Position padlock facility (locks ACB inside carriage in 'connected' or 'test' position)

Description	Current   rating (A)	400/415 V interrupting capacity (kA)	ACB body Cat. No.	Price \$
AR-S ACB body	1250	65	ARB2123STD	11180.00
	1600	65	ARB2163STD	11290.00
	2000	65	ARB2203STD	13380.00
	2500	85	ARB3253STD	14090.00
	3200	85	ARB3323STD	15920.00
	4000	100	ARB4403STD	22650.00



Notes: The above specification is fixed. If different accessories are required (e.g. UVT, OCR, different shunt voltage) please contact NHP sales to place a fully manufactured order.
'LSI+GF': long time delayed trip, short time delayed trip, instantaneous trip, ground fault trip

1) This function provides ground fault protection to TN-C or TN-S power distribution systems on the load side.
${ }^{2}$ ) The ground fault protection setting is set to enabled as default. If GF is not required GF must be set to OFF by the user before ACB energisation.

## TemPower <br> Stocked ACBs

## Stocked ACB carriage specification ${ }^{1}$ )

- 3 pole carriage to suit standard ACB body

Description	Suits ACB   Body   Cat. No.	Terminal a Top	rrangement   Bottom	ACB carriage Cat. No.	Price \$
AR-S ACB Carriage	ARB2123STD	Horizontal	Horizontal	ARC2123HHSTD	4480.00
		Vertical	Vertical	ARC2123VVSTD	4480.00
		Horizontal	Vertical	ARC2123HVSTD	4480.00
		Vertical	Horizontal	ARC2123VHSTD	4480.00
	$\begin{aligned} & \text { ARB2163STD } \\ & \text { ARB2203STD } \end{aligned}$	Horizontal	Horizontal	ARC2203HHSTD	4950.00
		Vertical	Vertical	ARC2203VVSTD	4950.00
		Horizontal	Vertical	ARC2203HVSTD	4950.00
		Vertical	Horizontal	ARC2203VHSTD	4950.00
	$\begin{aligned} & \text { ARB3253STD } \\ & \text { ARB3323STD } \end{aligned}$	Horizontal	Horizontal	ARC3323HHSTD	7470.00
		Vertical	Vertical	ARC3323VVSTD	7470.00
		Horizontal	Vertical	ARC3323HVSTD	7470.00
		Vertical	Horizontal	ARC3323VHSTD	7470.00
	ARB4403STD	Vertical	Vertical	ARC4403VVSTD	11120.00

Notes: ${ }^{1}$ ) The stock carriages are suitable for use with the NHP 'stock body' shown on the previous page. If you require a different ACB specification to that listed on the previous page please contact NHP sales to place a fully manufactured order.

## TemPower Standard accessories

## Ground fault 4th CT

The external ground fault 4th CT is required to be fitted to the switchboard neutral bar when the ground fault protection function used.


Rated Pri.

Description	current	Suits ACB type	4th CT Cat. No.	Price \$
Ground fault 4th CT	1250 A	ARB2123STD	XCW0840LS13	330.00
	1600 A	ARB2163STD	XCW0840LS16	330.00
	2000 A	ARB2203STD	XEC1640LS20	330.00
	2500 A	ARB3253STD	XEC1640LS25	650.00
	3200 A	ARB3323STD	XEC1640LS32	650.00
	4000 A	ARB4403STD	XEC1640LS40	1240.00

Stocked ACB instruction manual

- Customer to specify required quanity at time of order (not suppied as standard)

Description	Cat. No.	Price \$
TemPro Plus (AGR21B) Installation manual	ARAGR21BMANUAL	$\mathbf{1 0 . 4 0}$
TemPro Premier (AGR31B) Installation manual	ARAGR31BMANUAL	$\mathbf{1 0 . 4 0}$

## TemPower Standard accessories

These items are factory fit / NHP service:

Item	Description	Price \$
Motor operator	A motor is used to remotely charge / close the ACB (specify voltage)	POA
Shunt trip (continuously rated)	Allows remote opening of the ACB (specify voltage)	POA
Under voltage trip (UVT)	Trips the ACB during an undervoltage (specify voltage) (single phase)	POA
Trapped key I/lock	Rockwell or Fortress type Prosafe	POA
Mech. Interlock 2 way	Cable interlock. /per ACB	POA
Mech. Interlock - 3	Cable interlock. /per ACB	POA
Door interlock	Prevents enclosure door being opened unless ACB is isolated	POA
Fixing bolts for ACB	Holds the breaker firmly inside the carriage.	POA
Off position padlock facility	Allows the ACB to be padlocked in the OFF position	POA
Cycle counter	A 5 digit counter of the ACBs ON-OFF cycles	POA
Auxiliary contacts	10C changeover contacts.	POA
Position switch	A contact set that switches to indicate the ACB status in a carriage	POA
Storage draw-out handle	Draw-out handle that is stored inside the ACB body	POA

[^12] required specification.

## TemPower Standard accessories

These items can be fitted by the customer:

Item	Description	Cat. No.	Price \$
Interpole barrier	Suits 3P 800 A - 2000 A   AR ACB	1H1894BAA	$\mathbf{2 5 0 . 0 0}$
Interpole barrier	Suits 3P 2500 A, 3200 A   AR ACB	1H1895BAA	$\mathbf{2 5 0 . 0 0}$
Interpole barrier	Suits 3P 4000 A AR ACB	1H1896BAA	$\mathbf{2 5 0 . 0 0}$
Standard door   flange	IP41 front surround for ACB	1H2243BAA	$\mathbf{1 5 6 . 0 0}$
IP 55 door cover	A clear plastic hinged door   Cover	1H2300CAB	$\mathbf{1 2 2 0 . 0 0}$
Padlock main   safety shutters	Suits 3/4P 800 A-3200 A   AR ACB	1H1627CAA	$\mathbf{3 4 0 . 0 0}$
Padlock main   safety shutters	Suits 3/4P 4000 A AR ACB	1H2022CAA	$\mathbf{1 1 4 . 0 0}$
Lifting lugs	Attachable lifting brackets   for ACB bodies only	1A3430BAB	$\mathbf{4 1 . 5 0}$
Lifting truck	Available for lifting an ACB	ARACBTRUCK	$\mathbf{1 7 6 1 0 . 0 0}$
OCR checker	Hand held secondary   injection test unit	ANU1AC200	$\mathbf{5 5 1 0 . 0 0}$
Test jumper	5 m lead for maintenance   purpose	1H1615BAA	$\mathbf{9 9 0 . 0 0}$





Notes: TEMPro PREMIER pricing is POA. Please contact NHP estimating with required specification.

## TemPower ACB ordering information

ACBs can be manufactured to suit specific customer requirements. About TEMPOWER 2 AR ACB Ordering: TemPower 2 AR ACBs are locally assembled by NHP along with many variations and options available to suit specific end user applications. The listing below represents typical specifications to be considered at the time of ordering:

1. ACB type and current rating (AR, 1250 A )
2. Number of poles (3 P or $4 P$ )
3. Main circuit and control circuit voltage and frequency ( 415 or 690 V AC )
4. Operating temperatures ( 40 degree $C$ ambient)
5. Type of mounting. (Draw out type ACB is available, fixed type is not available)
6. Terminal arrangements. For example rear connect vertical or horizontal main terminals. Front connect terminals are also an option.
7. Type of charging. Manual lever (standard) or motor operated. If a motor is chosen then the operating voltage has to be specified.
8. The OCR (overcurrent relay or 'release').

The OCR type needs to be chosen depending on the
 requirements of the installation. NHP / Terasaki have as standard "LSI" OCRs fitted with LCDs, MODBUS communications facilities in all ACBs. The control voltage must be specified at the time of order.
9. Electrical tripping devices: Other options such as Shunt trips, Under voltage releases, or capacitor trips need to be considered.
10. Other accessories, some of which are:

ON-OFF cycle counter
Auxiliary switch type (7 C is standard)
Key lock devices - standard or Trap key interlock etc.
Mechanical interlocks
IP 55 Cover
OFF padlock
Door flange
11. Contact your NHP sales office for any other special requirements such as service or repair, retrofitting, spare parts, test reports etc.
12. Prices: Contact your NHP sales office for a pricing of non standard equipment.

An AR ordering sheet is available covering the above ordering process.
Refer NHP.

## TemPower <br> Specifications

Rated from 200 A to 6300 A NHP can provide a withdrawable Terasaki Air Circuit Breaker (ACB) designed to meet the stringent demands of the industrial and marine market.

The AR series is available in four frame sizes:

- frame size 1 which ranges from 200 to 2000 A (AR2)
- frame size 2 which ranges from 2500 to 3200 A (AR3)
- frame size 3 which is rated at 4000 A (AR4)
- frame size 4 which is rated at 5000 to 6300 A (AR6)



## TemPower <br> Main power circuit terminals specifications

Main circuit configuration is available in either horizontal or vertical form, a combination of both, or front connected. Refer to the table below, which indicates which terminal types are available for different ACB types. Specification of the desired terminal configuration should be made at the time of ordering the ACB or carriage. A cross ' $x$ ' below, indicates a configuration that is unavailable.

AR-S standard series

Ampere   rating (A)	ACB type	ACB   mounting   method	Horizontal   terminals	Vertical   terminals	Front   connect   terminals
800 A	AR208S	Draw-out	$\checkmark$	$\checkmark$	$\checkmark$
1250 A	AR212S	Draw-out	$\checkmark$	$\checkmark$	$\checkmark$
1600 A	AR216S	Draw-out	$\checkmark$	$\checkmark$	$\checkmark$
2000 A	AR220S	Draw-out	$\checkmark$	$\checkmark$	$\checkmark$
2500 A	AR325S	Draw-out	$\checkmark$	$\checkmark$	$\checkmark$
3200 A	AR332S	Draw-out	$\checkmark$	$\checkmark$	$\checkmark$
4000 A	AR440S	Draw-out	$x$	$\checkmark$	$x$

## AR-H high kA series

Ampere   rating $($ A $)$	ACB type	ACB   mounting   method	Horizontal   terminals	Vertical   terminals	Front   connect   terminals
1600 A	AR216H	Draw-out	$\checkmark$	$\checkmark$	$X$
2000 A	AR220H	Draw-out	$\checkmark$	$\checkmark$	$X$
1600 A	AR316H	Draw-out	$\checkmark$	$\checkmark$	$X$
2000 A	AR320H	Draw-out	$\checkmark$	$\checkmark$	$X$
2500 A	AR325H	Draw-out	$\checkmark$	$\checkmark$	$X$
3200 A	AR332H	Draw-out	$\checkmark$	$\checkmark$	$X$

AR650 / AR663

Ampere   rating (A)	ACB type   mounting   method	Horizontal   terminals	Vertical   terminals	Front   connect   terminals	
5000 A	AR650	Draw-out	$X$	$\checkmark$	$X$
6300 A	AR663	Draw-out	$X$	$\checkmark$	$X$

# TemPower <br> Performance specification of the AR ACB 

AR-S TemPower 2 -STANDA		AR208S	AR212S	AR216S
Rated current ( In$\left.)^{1}\right)^{2}$ )	(A)	800	1250	1600
Number of poles $\left.{ }^{3}\right)^{4}$ )		3 \& 4	3 \& 4	3 \& 4
Current transformer ratings (lct)	(A)	$\begin{aligned} & 200 \\ & 400 \\ & 800 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \\ & 800 \\ & 1250 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \\ & 800 \\ & 1250 \\ & 1600 \end{aligned}$
$\begin{aligned} & \text { Insulation voltage (Ui) } \\ & \text { (V } 50 / 60 \mathrm{~Hz} \text { ) } \end{aligned}$	(V AC)	1000	1000	1000
$\begin{aligned} & \text { Operational voltage (Ue) } \\ & \text { (V } 50 / 60 \mathrm{~Hz} \text { ) } \end{aligned}$	(V AC)	690	690	690
Impulse voltage (Uimp)	(kV)	12	12	12
Breaking capacity kA IEC, $\left.\mathrm{AS}^{5}\right)^{7}$	690 V	50	50	50
$(\mathrm{lcs}=\mathrm{lcu})[\mathrm{kA} \text { sym rms] }$	440 V	$65{ }^{6}$ )	$65{ }^{6}$ )	$65{ }^{6}$ )
Making capacity (kA peak)	690 V	105	105	105
IEC, AS	440 V	143	143	143
Rated short time	1 Sec	65	65	65
withstand (lcw)	3 Sec	50	50	50
Total breaking time	Sec	0.03	0.03	0.03
Motor charging time (max)	Sec	10	10	10
Closing time (max)	Sec	0.08	0.08	0.08
Latching current	(kA)	65	65	65

Notes: ${ }^{1}$ ) Values in open air at $40^{\circ} \mathrm{C}\left(45^{\circ} \mathrm{C}\right.$ for marine applications).
${ }^{2}$ ) Values of AR208S, AR212S, AR216S for draw-out type with horizontal terminals, values of the other ACBs for draw-out type with vertical terminals.
${ }^{3}$ ) For 2 pole $A C B s$ use outside poles of 3 pole ACB.
$\left.{ }^{4}\right) 4$ Pole ACBs without Neutral phases protection can not apply IT earthing system.
${ }^{5}$ ) Contact NHP for the details.
6) For 500 VAC .
${ }^{7}$ ) Please contact NHP for DC applications.
When the INST trip function is set to NON, the MCR function should be enabled, otherwise, the rated breaking capacity is reduced to the rated latching current.

## TemPower

AR220S	AR325S	AR332S	AR440S	AR650S	AR663S
2000	2500	3200	4000	5000	6300
3 \& 4	3 \& 4	3 \& 4	3 \& 4	3 \& 4	3 \& 4
200	200	200	4000	5000	6300
400	400	400			
800	800	800			
1250	1250	1250			
1600	1600	1600			
2000	2000	2000			
	2500	3200			
1000	1000	1000	1000	1000	1000
690	690	690	690	690	690
12	12	12	12	12	12
50	65	65	75	85	85
$65{ }^{6}$ )	$85{ }^{6}$ )	$85{ }^{6}$ )	100	120	120
105	143	143	165	187	187
143	187	187	220	264	264
65	85	85	100	120	120
50	65	65	85	85	85
0.03	0.03	0.03	0.03	0.05	0.05
10	10	10	10	10	10
0.08	0.08	0.08	0.08	0.08	0.08
65	85	85	100	120	120

# TemPower Performance specification of the AR-H ACB 

A 'High Fault' series of AR ACB is available (the AR-H) on INDENT. For applications that require a larger breaking capacity than the standard series.

AR-H TemPower 2-HIGH FAULT		AR216H	AR220H
Rated current (In)	(A)	1600	2000
Number of poles		3 \& 4	3 \& 4
Current transformer ratings (Ict)	(A)	$\begin{aligned} & 200 \\ & 400 \\ & 800 \\ & 1250 \\ & 1600 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \\ & 800 \\ & 1250 \\ & 1600 \\ & 2000 \end{aligned}$
AC Insulation voltage (Ui)	(V AC)	1000	1000
Operational voltage	(VAC)	690	690
Impulse voltage (Uimp)	(kV)	12	12
Breaking capacity ${ }^{1}{ }^{2}$ ) kA IEC, AS	690 V	55	55
	440 V	80	80
Making capacity	690 V	121	121
(kA peak)   IEC, AS	440 V	176	176
Rated short time	1 Sec	80	80
withstand (ICW)	3 Sec	55	55
Total breaking time	Sec	0.03	0.03
Motor charging time	Sec	10	10
Closing time (max)	Sec	0.08	0.08
Latching current	(kA)	65	65

Notes: ${ }^{1}$ ) Contact NHP for the details.
${ }^{2}$ ) Please contact NHP for DC applications.

TemPower

AR316H	AR320H	AR325H	AR332H
1600	2000	2500	3200
3 \& 4	3 \& 4	3 \& 4	3 \& 4
200	200	200	200
400	400	400	400
800	800	800	800
1250	1250	1250	1250
1600	1600	1600	1600
	2000	2000	2000
		2500	2500
			3200
1000	1000	1000	1000
690	690	690	690
12	12	12	12
85	85	85	85
100	100	100	100
187	187	187	187
220	220	220	220
100	100	100	100
75	75	75	75
0.03	0.03	0.03	0.03
10	10	10	10
0.08	0.08	0.08	0.08
85	85	85	85

## TemPower <br> Overcurrent Release (OCR) specification

Boasting an impressive range of standard features and specialised options, the Terasaki overcurrent release range is suitable for commercial, industrial and marine applications. The Terasaki OCR is divided into two performance ranges; the TEMPro PLUS and TEMPro PREMIER.

## TEMPro PLUS (Type AGR-21B)

Featuring a backlit liquid crystal display (LCD) for easy visual identification and a soft rubber key activated scrolling menu system the TEMPro PLUS can display ${ }^{1}$ ):

- Phase currents $I_{1}, I_{2}, I_{3}$ (accuracy $+2.5 \%$ )Fault current value
- Tripping delay time
- The maximum phase current
- Cause of fault (LTD, STD, INST, GF ${ }^{2}$ ))

Providing adjustable LSI and GF ${ }^{3}$ ) protection featuring
 MODBUS communications plus a built-in current meter as standard, the TEMPro PLUS is perfect for basic and mid range applications.

Notes: ${ }^{1}$ ) Trip variables can be viewed after an event via the LCD providing control power is constantly available.
${ }^{2}$ ) LTD-Long time delay trip, STD-Short time delay trip, INST-Instantaneous trip, GF-Unrestricted ground fault (not available for ' S ' curve model OCR).
${ }^{3}$ ) This function provides ground fault protection to TN-C or TN-S power distribution systems on the load side.

## TemPower <br> Overcurrent Release (OCR) specification

## TEMPro PREMIER (Type AGR-31B)

The TEMPro PREMIER is an advanced OCR that offers the same LCD appearance and protective functions as the TEMPro PLUS. In addition to the current meter measurements listed above the TEMPro PREMIER has an inbuilt energy analyser which indicates:

- Phase currents $I_{1}, I_{2}, I_{3}$ (accuracy $+1.5 \%$ )
- Line voltages (V) $\mathrm{V}_{12}, \mathrm{~V}_{23}, \mathrm{~V}_{31}{ }^{1}$ )
- Phase voltage (V) $\mathrm{V}_{1 \mathrm{~N}}, \mathrm{~V}_{2 \mathrm{~N}}, \mathrm{~V}_{3 \mathrm{~N}}$ (accuracy + $1.0 \%$ )
- Active power (kW) (accuracy + $2.5 \%$ )
- Demanded active power (kW)
- Electric energy (kWh) (accuracy + 3.0 \%)
- Power factor ( $\cos \varnothing$ ) (accuracy + 2.5 \%)
- Frequency (Hz) (accuracy +0.5 Hz )
- Fault current value
- Tripping delay time

- The maximum phase current
- Cause of fault (LTD, STD, INST, GF ${ }^{2}$ ))

Furthermore the TEMPro PREMIER is available with a range of optional features that make it ideal for use in specialised applications.

## Field test facility

Type AGR-21B/31B OCRs are equipped with a field test function to verify the long time delay, short time delay, instantaneous and ground fault trip features without the need for tripping of the ACB.

[^13]
# TemPower TEMPro PLUS and PREMIER appearance 



Notes: Indicative picture only

## TemPower TEMPro application protection curves

The TEMPro PLUS and TEMPro PREMIER OCR range is available in three model variations:

- Standard protection curve, or 'L' type - designed for general feeder applications and will achieve most selectivity and protection requirements.
- High selectivity curve or 'R' type - offers 3 curve characteristics to IEC60255 and is used when selectivity can not be achieved with other system protective devices (i.e. fuses or other relays).
- Generator protection curve or 'S' type. - Specifically designed for generator and marine applications.
It is recommended that all general feeder circuits be protected by the 'L' type unless the results of a selectivity study indicate that an ' $R$ ' type is required to discriminate with another system protective device. The application curve type must be specified at the time of order.


L type is designed for General Feeder installations.


R type is used for high selectivity applications and offers 3 curve characteristics to IEC 60255.


Stype is best utilised for generator and marine power protection.

# TemPower TEMPo PLUS and TEMPro PREMIER 

## Standard protection features

TEMPro PLUS and TEMPro PREMIER have adjustable LSI - long time delay, short time delay, INSTANTANEOUS and GF as standard. This provides an adjustable time delay on overload and also the $\mathrm{I}^{2} \mathrm{t}$ ramp characteristic which is essential to provide selectivity when grading with other protective devices such as downstream fuses and upstream relays. The standard 'LSI' curve provides more than five million combinations of unique time current characteristics.

Standard feature	Description	Application curve		
		L	R	S
LTD trip	Adjustable overload protection area trip	$\checkmark$	$\checkmark$	$\checkmark$
STD trip	Adjustable short circuit protection area trip (with intentional delay)	$\checkmark$	$\checkmark$	$\checkmark$
INST trip	Adjustable short circuit protection area trip   (with NO intentional delay)	$\checkmark$	$\checkmark$	$\checkmark$
GF trip ${ }^{1}$ )	Adjustable unrestricted earth fault protection (GF) (requires external 4th CT for 3 pole model)	$\checkmark$	$\checkmark$	$x$
Single Alarm contact indicato	As standard the single contact alarm indicator is available that indicates when the LTD trip, STD trip, INST/MCR trip or the GF trip function is activated.	$\checkmark$	$\checkmark$	$\checkmark$
MODBUS I/F	MODBUS communication interface allows monitoring of available data variables. ACB control is non standard, refer to communications page.	$\checkmark$	$\checkmark$	$\checkmark$
Backlit LCD with current meter TEMPro PLUS	Displays phase currents $I_{1}, I_{2}, I_{3}$ and $I_{G F}$, fault current values, tripping time delay, the maximum phase current and the cause of fault   (LTD, STD, INST, GF) TEMPro PLUS ONLY	$\checkmark$	$\checkmark$	$\checkmark$
Backlit LCD with energy analyser TEMPro	Displays phase currents $I_{1}, I_{2}, I_{3}$ and $I_{G F}$, Line voltages (V) $\mathrm{V}_{12}, \mathrm{~V}_{23}, \mathrm{~V}_{31}$, Phase voltage (V) $\mathrm{V}_{1 N}, \mathrm{~V}_{2 \mathrm{~N}}, \mathrm{~V}_{3 \mathrm{~N}}$, Active power (kW), Demanded active power (kW), Electric energy (kWh), Power factor (cos $\varnothing$ ), Frequency (Hz)   TEMPro PREMIER ONLY	$\checkmark$	$\checkmark$	$\checkmark$

Notes: ${ }^{1}$ ) This function provides ground fault protection to TN-C or TN-S power distribution systems on the load side.
$\checkmark=\operatorname{standard} x=$ not available

## TemPower TEMPro PLUS and TEMPro PREMIER

## Specialised optional features

TEMPro OCRs can be 'optioned up' with specialised application functions to suit customer requirements.

Please indicate what special application functions are required at the time of order as all are factory installed.

Standard feature	Desc	Application curve
System Alarm	Activates if an internal fault exists within the OCR. System alarm can be monitored remotely via the MODBUS communications interface.	$\checkmark \checkmark$
Pre trip alarm	Activates if the monitored load current reaches the user set indication threshold. Useful for load shedding applications. This alarm is available via the MODBUS interface only.	$\checkmark \checkmark$
N-Phase protection 4 pole ACB ONLY	In 3-phase, 4-wire systems that contain harmonic distortion, the 3rd harmonic may cause large currents to flow through the neutral conductor. The N -phase protection function (NP) is available on 4 pole ACBs and prevents the neutral conductor from sustaining damage or burnout due to these large currents.   The NP trip pickup current can be set between $40 \%$ and $100 \%$ of the OCR rated primary current for $L$ and R -characteristics. This protection function is not available for special 'generator protection' 'S' type OCRs, and is available on an INDENT basis.	
Zone   interlocking   (TemPro   Premier   ONLY)	The zone-selective interlock (ZSI) capability permits tripping of the ACB upstream of and nearest to a fault point in the shortest operating time, irrespective of the short time delay trip time setting, and minimizes thermal and mechanical damage to the power distribution line. ZSI cannot be fitted with a UVT.	$\checkmark \checkmark$
Phase rotation protection	This function detects the negative-phase current occurring due to reverse phase or phase loss and prevents burnout of a motor or damage to equipment.	$5 v$
Contact over heat protection (TemPro Premier only)	This function monitors the temperature of the ACBs main contacts. An alarm indicates when the temperature exceeds $155^{\circ} \mathrm{C}$. Continuous monitoring of the contact temperature provides valuable input for preventative and predictive maintenance programs.	$\checkmark \checkmark$

Notes: All special application functions are available on an indent basis. For further information on special application functions please contact NHP. $\checkmark=\operatorname{standard} X=$ not available

# TemPower TEMPro PLUS and TEMPro PREMIER 

 Specialised optional features| Standard |  | Application curve |
| :---: | :---: | :---: |
|  | Description | L R S |
| Undervoltage alarm function (TemPro Premier only) | This function monitors the main circuit voltage, and gives an alarm on the LCD and an output signal via an alarm |  |
|  | contact when the voltage drops below the setting voltage. |  |
|  | The alarm is activated when the main circuit voltage |  |
|  | drops below the setting voltage (selectable from $40 \%$, |  |
|  | $60 \%$ or $80 \%$ of the rated main circuit voltage [Vn]), and is deactivated when the main circuit voltage rises to the |  |
|  | recovery setting voltage (selectable from $80 \%, 85 \%, 90 \%$ | $\checkmark$ |
|  | or $95 \%$ of the rated main circuit voltage [Vn]). |  |
|  | Note 1: The undervoltage alarm function is disabled unless the main circuit voltage has once risen to the recovery |  |
|  | setting voltage or higher. |  |
|  | Note 2: If the undervoltage alarm function is used in |  |
|  | conjunction with the undervoltage trip device, an alarm may occur after the ACB trips open |  |
|  | depending on the alarm setting voltage. |  |
| Reverse power trip function RPT | (TemPro Premier AGR-31BS only.) |  |
|  | The RPT function protects 3-phase generators running |  |
|  | in parallel against reverse power. The RPT pickup current | $\checkmark \checkmark \checkmark$ |
|  | can be set in seven levels: $4 \%$ thru $10 \%$ of the generator rated power. |  |

Notes: All special application functions are available on an indent basis.
For further information on special application functions please contact NHP.
$\boldsymbol{J}=\operatorname{standard} \boldsymbol{X}=$ not available

## THINK MAJOR PROJECTS. THINK NHP.

When it comes to Major Projects, our staff involvement is always driven by long term results, actively seeking to support you with the right product and technical solutions before, during and after project completion.

## Major Projects Team

No matter what the project, from the initial stages of concept design, through to post-commissioning and future upgrades, NHP's Major Projects Team is there to see the project through together with you - our customer.
Our quality people have a diverse reach across Australia and New Zealand and their vast industry experience is sure to be there for you when you need it.

Think Major Projects. Think NHP.

# TemPower <br> TEMPro PLUS and TEMPro PREMIER Specifications 

Standard features

OCR type	Cat. No.	Application protection curve ${ }^{1}$ )	LCD monitoring	$\begin{gathered} \text { Basic } \\ \text { protection }{ }^{2} \text { ) } \\ \text { LTD STD INST } \\ \hline \end{gathered}$	GF ${ }^{5}$ )
TEMPro PLUS	AGR-21B-L-PG	'L'	Current meter   (A)	$\checkmark$	$\checkmark$
	AGR-21B-R-PG	'R'	Current meter   (A)	$\checkmark$	$\checkmark$
	AGR-21B-S-PS	'S'	Current meter   (A)	$\checkmark$	$x$
TEMPro PREMIER	AGR-31B-L-PG	'L'	Energy analyser	$\checkmark$	$\checkmark$
	AGR-31B-R-PG	'R'	Energy analyser	$\checkmark$	$\checkmark$
	AGR-31B-S-PS	'S'	Energy analyser	$\checkmark$	$x$

## OCR control power

If the control power is not supplied or is lost, each function operates as follows:
Function when no power
LT, ST, INST, RPT
GF

MCR
PTA
1-channel PTA
Alarm contact output from OCR
LCD/ COMMUNICATIONS
Field test facility \& MODBUS

Notes: ${ }^{1}$ ) L/R/S refers to the application protection curve, please specify at time of ordering.
${ }^{2}$ ) LTD-Long time delay trip, STD-Short time delay trip, INST-Instantaneous trip, GF-Unrestricted ground fault, (load side GF).
${ }^{3}$ ) Trip variables can be viewed after an event via the LCD providing control power is constantly available.
The OCR does not require control power to operate as a protective device, however it is recommended.
Refer to the table above to see how absence or loss of control power affects the operation of the OCR.
${ }^{4}$ ) RPT- Reverse power trip. AGR-31BS-PS becomes AGR-31BS-PR with RPT.
${ }^{5}$ ) This function provides ground fault protection to TN-C or TN-S power distribution systems on the load side.
$\boldsymbol{\checkmark}=$ Standard, $\boldsymbol{x}=$ Not available, OPT = Optional

## TemPower

Single contact   indicator (LTD)   STD/INST, GF	Modbus Facility   (data monitoring   only)	RPT $^{4}$ )	Control power ${ }^{3}$ )
$\checkmark$	$\checkmark$	$x$	Required
$\checkmark$	$\checkmark$	$x$	Required
$\checkmark$	$\checkmark$	$x$	Required
$\checkmark$	$\checkmark$	$x$	Required
$\checkmark$	$\checkmark$	$X$	Required
$\checkmark$	$\checkmark$	$X$	Required

## Operation

Operates normally.
Operates normally.
When the CT rated primary current (ICT) is less than 800 A and the GF pick-up current is set to $10 \%$, the GF becomes inoperative.
Operates as INST.
Is inoperative. (Has a 40 ms operation)
Is inoperative.
No display when no other power source is available. Communications is disabled.
Is inoperative.

## TemPower <br> Tripping options - Shunt trip coil

The TEMPOWER 2 AR ACB has two methods of remote tripping of the main contacts:

- Shunt trip coil
- Undervoltage Trip (UVT) Device


## Shunt trip coil

The shunt trip coil is available in three varieties;
■ single shunt - short time rated (STR) and should be wired in series with a N/C auxiliary contact.

- single shunt - which is continuously rated (CR)

double shunt - which is short time rated and should be wired in series with a N/C auxiliary contact.
Shunt coils are available in different voltages and are factory fit accessories / NHP service site visit. Below is a basic list of shunt coils, for voltages not shown on this list please contact your NHP representative.

Single shunt coil

Rated Voltage	(CR)	Double shunt coil	Single shunt (STR)
AC 110 V	$\checkmark$	$x$	1
AC 220 V	-	$x$	i
AC 240 V	$\checkmark$	-	-
DC 24 V	$\checkmark$	-	i
DC 48 V	$\checkmark$	$x$	i
DC 100 V	$\checkmark$	$x$	i
DC 110 V	i	$x$	i

Continuously rated shunt trip and undervoltage trip can not be fitted to the same ACB. However, the STR shunt trip can be used together with an undervoltage trip.

Notes: Double shunts require a special wiring loom to be fitted during manufacture.
UVT cannot be fitted with a double shunt.
$\checkmark$ - Stocked X-Not available
i) Available on indent only.

## TemPower <br> Tripping options

Continuously-rated shunt trip device (CR)

Type	Rated voltage (V)	Operational voltage (V)	Max. excitation current (A)	Opening time (max.) (ms)
AVR-1C	AC 100	AC 70-110	0.48	40
	AC 110	AC 77-121	0.39	
	AC 120	AC 84-132	0.37	
	AC 200	AC 140-220	0.24	
	AC 220	AC 154-242	0.19	
	AC 240	AC 168-264	0.18	
	DC 24	DC 16.8-26.4	1.65	
	DC 30	DC 21-33	1.33	
	DC 48	DC 33.6-52.8	0.86	
	DC 100	DC 70-110	0.39	
	DC 110	DC 77-121	0.37	
	DC 125	DC 87.5-137.5	0.31	
	DC 200	DC 140-220	0.19	
	DC 220	DC 154-242	0.18	

## Tripping options - Undervoltage Trip (UVT) Device

## Can be used to shunt trip the ACB

The Undervoltage Trip Device (UVT) monitors a single phase and trips the ACB when the control voltage drops below the opening voltage. When the control voltage is restored to the pick-up voltage, the ACB can be closed. The pick-up voltage is fixed to $85 \%$ of the rated voltage. The UVT device is available in an instantaneous or a 500 ms time delay version. Please refer to NHP for available monitoring voltages.
When a shunt facility is required to remotely open the ACB, a N/O push button or relay contact can be wired between control terminals 24 and 30 to remotely open the ACB main contacts. This is the recommended method of remotely opening the ACB because it uses the UVTs fail safe coil to 'trip' the main contacts. Alternatively a single shunt (STR) can be fitted together with the UVT coil. The UVT is a separate controller and coil that is not the same as the UV alarm.

## Single Phase Monitoring

Undervoltage trip control circuit (for AC)


[^14]
## TemPower Tripping options

Type of UVT Control Device	Rated   voltage   $50 / 60 \mathrm{~Hz}$   (V)	Operation al voltage (V)	Pick-up Voltage (V)	Coil   Excitation Current (A)	Power Consumption (VA)	
					Normal	Reset
AUR-1CS	AC 100	35-70	85			
AUR-1CD	AC 110	38.5-77	93.5			
	AC 120	42-84	102			
	AC 200	70-140	170			
	AC 220	77-154	187			
	AC 240	84-168	204	0.1	8	
	AC 380	133-266	323	0.1	8	
	AC 415	133-266	352			
	AC 440	154-308	374			
	DC $24{ }^{1}$ )	8.4-16.8	20.4			
	DC $48{ }^{1}$ )	16.8-33.6	40.8			
	DC $100{ }^{1}$ )	35-70	85			

Notes: ${ }^{1}$ ) Special specification. If a separate shunt trip facility is required (i.e. not using UVT trip terminals 24 and 30 as described above), a short time rated (STR) device can be provided.

# TemPower Communications facility 

As standard the TEMPro PLUS and TEMPro PREMIER are equipped with a MODBUS communications facility conforming to the following network interface I/O specifications:

## TEMPro OCR

Protocol	MODBUS
Transmission standard	RS-485
Transmission method	Two wire (half duplex)
Topology	Multi drop bus
Transmission rate	19.2 kbps maximum
Transmission distance	1.2 km max. (at 19.2 kbps)
Data format	Modbus-RTU
Maximum number of data nodes	32

The standard MODBUS communications facility enables variable monitoring only. ACB control (OPEN / CLOSE) over the MODBUS link requires an additional communications interface.

## Communications options

NHP offers additional external communications interfaces for other protocols such as Profibus ${ }^{\ominus}$, DeviceNet ${ }^{\text {TM }}$ and Ethernet. Furthermore ACBs fitted with the TEMPro range of OCRs can be remotely monitored and controlled via the TemVision Pro touch screen ${ }^{1}$ ).

Description (required per ACB) ${ }^{1}$ )	Cat. No.	Price \$
Profibus ${ }^{\star}$ monitor \& control Interface	ARCOMMSMODPRO	4210.00
DeviceNet ${ }^{\text {TM }}$ monitor \& control Interface	ARCOMMSMODDEV	4210.00
Ethernet monitor \& control Interface	ARCOMMSMOD2ETH	4210.00



Notes: ${ }^{1}$ ) ACBs must be fitted with a remote tripping device and charging motor. For TemVision Pro information, refer to NHP.

## TemPower <br> Monitored and communicated variables

Data variable	Description	TEMPro PLUS	TEMPro PREMIER
max./min. reset	Recorded max./min. variable	$\checkmark$	$\checkmark$
open/close status	Indicates the state of the main contacts	$\checkmark$	$\checkmark$
diagnosis - system alarm statu	Is the system alarm active?	$\checkmark$	$\checkmark$
OL pickup status	Is the overload status true?	$\checkmark$	$\checkmark$
STD pickup status	Is the short time delay status true?	$\checkmark$	$\checkmark$
INST pickup status	Is the Instant status true?	$\checkmark$	$\checkmark$
GFT pickup status	Is the UREF status true?	$\checkmark$	$\checkmark$
Line side earth fault status ${ }^{1}$ )	Is the status true?	$x$	$\checkmark$
current - la	Phase current A (A)	$\checkmark$	$\checkmark$
current - lb	Phase current B (A)	$\checkmark$	$\checkmark$
current- Ic	Phase current C (A)	$\checkmark$	$\checkmark$
current-IN	(A) (4P ACB as a special spec.)	$\checkmark$	$\checkmark$
current - Ig	Phase current GF (A)	$\checkmark$	$\checkmark$
line voltage - Vab	-	$x$	$\checkmark$
line voltage - Vbc	-	$x$	$\checkmark$
line voltage - Vca	-	$x$	$\checkmark$
power factor - Pf	-	$x$	$\checkmark$
frequency-F	Supply frequency	$x$	$\checkmark$
fault trip time	Speed of trip	$\checkmark$	$\checkmark$
diagnosis - MHT disconnect status	Is tripping coil connected?	$\checkmark$	$\checkmark$
active power - P	(kW)	$x$	$\checkmark$
total real energy - EP (HighHigh)	(kWh)	$X$	$\checkmark$
maximum current-I	Maximum phase current recorded	$\checkmark$	$\checkmark$
maximum current - linst	Maximum inst. current recorded	$\checkmark$	$\checkmark$
maximum active power - Pmax	(kW)	$x$	$\checkmark$
fault current value	(A)	$\checkmark$	$\checkmark$
maximum voltage	Maximum voltage recorded	$X$	$\checkmark$

All communications cabling should conform to the MODBUS standard. At a minimum the cabling should be shielded, of twisted pair construction and be AWG 24.

Typical MODBUS communication network


Notes: ${ }^{1}$ ) Restricted earth fault model only, not standard.

## TemPower <br> TemRelay external alarm module

The TemRelay external alarm module provides individual trip/alarm indication from the OCR as well as monitoring basic variables. The TemRelay connects to ACBs via the RS485 interface.


## TemVision remote monitoring and control

The TemVision Pro series of touch screens is for remote monitoring and control of Terasaki ACBs on a 2-wire half-duplex RS485 network via the MODBUS protocol.

## Features

- Monitoring of variables from the OCR such as:
- On/off and trip status
- Phase currents
- Line voltages ${ }^{1}$ )
- Active power (kW) ')
- Reactive power (kVar) ')
- Power factor ${ }^{1}$ )
- Power consumption (kWh ${ }^{1}$ )
- On/off control of ACBs
- Trip indication and history of trip events
- Maintenance mode
- View and change protection settings
- Password protection


TemVision Pro 6" screen Maximum 6 ACBs


TemVision Max 10" screen Maximum 15 ACBs

Description	Cat. No.	Price $\$$
TemRelay	TEMRELAY	POA
TemVision Pro	TEMVISIONPRO	POA
TemVision Max	TEMVISIONMAX	POA

Notes: ${ }^{1)}$ TEMPro Premier only.

## TemPower TemPower Rack remote racking device for AR ACBs

NHP have developed a remote racking device for Terasaki AR ACBs to help improve operator safety in switchrooms.

## Features

- Racks ACBs between connected, test and isolated positions
- Remote operation of ACB on/off controls
- Controlled by a pendant attached to a 10 metre lead
- Integrated lifting trolley for ACB bodies
- Rechargeable battery power supply
- Requires no modification to ACBs - can be used on existing installations


Scan the QR code
to view the
TemPower
Rack video.

Description
Cat. No.
Price \$
TemPower Rack unit
ARTEMPOWERRACK
POA

## TemPower <br> TemPower 2 AR ACB service life and maintenance



## NHP ACB servicing

NHP offers a wide range of ACB preventative maintenance and servicing programs to keep your ACB fully operational. Offered services include:

- Trip unit calibration and secondary injection testing.
- ACB scheduled maintenance and servicing including contact restoration / replacement, parts lubrication, arc chute restoration, mechanical and electrical functional testing.
- On site commissioning and application support (field service).
$\square$ Full service reports are provided.
For further information on the available services and pricing please contact the NHP service department.


Notes: ${ }^{1}$ ) Expected service life based on endurance test. The service life of ACB depends on the working and environmental conditions. Refer to NHP for the AR ACB "Maintenance, Inspection and Parts Replacement" guide for further information.

# TemPower Retrofitting kits and installation kits 

When replacing an obsolete air circuit breaker it is almost always necessary to modify the existing busbar alignment, mounting position and door cut-out. Retrofit kits and installation kits provide a cost effective third party solution that allows you to install a completely new Terasaki AR Air Circuit Breaker into many of the popular older brands cubicle with minor re-work and down time.
Retrofit kit: this is the remaking of connections etc. within the existing carriage to suit the new ACB. Typically the existing carriage remains in an altered form.
Installation kit: duplicates the connection and fixing points of the original ACB. The existing carriage is fully removed. Switchboard isolation is required.
Retrofit and installation kits can be purchased from NHP subject to our limitations of liability statement. For further details please contact NHP.
The table below shows the existing / obsolete ACB details (column 1), the Terasaki AR ACB body and carriage replacement (column 2), and either retrofit or installation kit type (column 3). Before selecting a retrofit or installation kit it is important to fully understand the specification of the existing/obsolete ACB .

Existing / Obsolete air circuit breaker	Terasaki AR ACB equivalent frame size ${ }^{1}$ )	Kit type	Cat. No.	Price \$
$\begin{aligned} & \hline \text { Terasaki } \\ & \text { AT12,3P, V/V } \end{aligned}$	AR212S, 3P	Installation	CONTACT NHP	POA
$\begin{aligned} & \text { Terasaki } \\ & \text { AT12,3P, H/H } \end{aligned}$	$\begin{aligned} & \text { AR212S, 3P } \\ & \text { (HH T\&B) } \end{aligned}$	Installation	CONTACT NHP	POA
$\begin{aligned} & \hline \text { Terasaki } \\ & \text { AT16, 3P, V/V } \\ & \hline \end{aligned}$	AR216S, 3P (VV T\&B)	Installation	CONTACT NHP	POA
$\begin{aligned} & \text { Terasaki } \\ & \text { AT16, 3P, H/H } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AR216S, 3P } \\ & \text { (HH T\&B) } \end{aligned}$	Installation	CONTACT NHP	POA
$\begin{aligned} & \text { Terasaki } \\ & \text { AT } 20,3 \mathrm{P}, \mathrm{~V} / \mathrm{V} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AR220S, 3P } \\ & \text { (VV T\&B) } \end{aligned}$	Installation	CONTACT NHP	POA
$\begin{aligned} & \text { Terasaki } \\ & \text { AT } 25,3 \mathrm{P}, \mathrm{~V} / \mathrm{V} \end{aligned}$	$\begin{aligned} & \text { AR325S, 3P } \\ & \text { (VV T\&B) } \end{aligned}$	Installation	CONTACT NHP	POA
$\begin{aligned} & \text { Terasaki } \\ & \text { AT32, 3P, V/V } \end{aligned}$	$\begin{aligned} & \text { AR332S, 3P } \\ & \text { (VV T\&B) } \end{aligned}$	Installation	CONTACT NHP	POA
Nilsen NAB1 D8 3P	$\begin{aligned} & \text { AR208S, 3P } \\ & \text { (HVT\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
Nilsen NAB1 D12 3P	$\begin{aligned} & \text { AR212S, 3P } \\ & \text { (HH T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
Nilsen NAB1 D16 3P	$\begin{aligned} & \text { AR216S, 3P } \\ & \text { (HH T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
Nilsen   NAB1 D20 3P	$\begin{aligned} & \text { AR220S, 3P } \\ & \text { (HH T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA

Notes: ${ }^{1}$ ) $\mathrm{VV}=$ vertical; $\mathrm{HH}=$ horizontal, $\mathrm{T} \& \mathrm{~B}=$ top terminal and bottom terminal.

## TemPower <br> Retrofitting kits and installation kits

Existing / Obsolete Air circuit breaker	Terasaki AR ACB equivalent frame size ${ }^{1}$ )	Kit type	Cat. No.	Price \$
Nilsen NAB1 D25 3P	$\begin{aligned} & \text { AR325S, 3P } \\ & \text { (HH T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
Nilsen NAB1 D31 3P	$\begin{aligned} & \text { AR332S, 3P } \\ & \text { (HH T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
Nilsen NAB1 D40 3P	$\begin{aligned} & \text { AR440S, 3P } \\ & \text { (HH T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
Nilsen   NAB2 CBM 3P	AR212S, 3P (VV T\&B)	Retrofit	CONTACT NHP	POA
NAB2 3P Jig Set	Required for use for Nilsen NAB2 Kit	Retrofit	CONTACT NHP	POA
$\begin{aligned} & \text { Nilsen } \\ & \text { AB5/AB7 3P } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AR208S, 3P } \\ & \text { (HH T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
$\begin{aligned} & \text { Nilsen } \\ & \text { AB5/AB7 3P } \end{aligned}$	$\begin{aligned} & \text { AR216S, 3P } \\ & \text { (HH T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
$\begin{aligned} & \text { Nilsen } \\ & \text { AB5/AB7 3P } \end{aligned}$	$\begin{aligned} & \text { AR332S, 3P } \\ & \text { (HH T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
Unelec C9/8W 3 P	$\begin{aligned} & \text { AR208S, 3P } \\ & \text { (VV T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
Unelec C9/12W 3P	AR212S, 3P (VVT\&B)	Retrofit	CONTACT NHP	POA
Unelec C9/16W 3P	$\begin{aligned} & \text { AR216S, 3P } \\ & \text { (VV T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
Unelec C9/20W 3P	$\begin{aligned} & \text { AR220S, 3P } \\ & \text { (VV T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
Unelec C9/31W 3P	$\begin{aligned} & \text { AR332S, 3P } \\ & \text { (HH T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
$\begin{aligned} & \text { AEG } \\ & 1600 \mathrm{~A} 3 \mathrm{P} \end{aligned}$	$\begin{aligned} & \text { AR216S, 3P } \\ & \text { (HH T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
Hundtwebr LH16 3P	$\begin{aligned} & \text { AR216S, 3P } \\ & \text { (VV T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
Hundtwebr LH2O 3P	$\begin{aligned} & \text { AR220S, 3P } \\ & \text { (VV T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
Hawker CNP/16W 3P	$\begin{aligned} & \text { AR216S, 3P } \\ & \text { (HH T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA
Hawker CNP/20W 3P	$\begin{aligned} & \text { AR220S, 3P } \\ & \text { (HH T\&B) } \end{aligned}$	Retrofit	CONTACT NHP	POA

Notes: ${ }^{1}$ ) $\mathrm{VV}=$ vertical; $\mathrm{HH}=$ horizontal, $\mathrm{T} \& \mathrm{~B}=$ top terminal and bottom terminal. As highlighted in the table above not all kit types are available ex-stock. All INDENT kits have a 4-6 week lead time from the receipt of a customer purchase order.

## TemPower Outline dimensions



Front view


TemPower 2 draw-out type - 3 and 4 pole outline dimensions (mm)

Cat. No.	AR212S	AR216S	$\begin{aligned} & \text { AR220S/ } \\ & \hline \text { AR220H/ } \end{aligned}$	/ AR325	AR332S/ AR320H/ AR316H	AR440S	AR650	AR663
No. of Poles	3 P 4 P	3 P 4 P	3 P 4 P	3 P 4 P	3 P 4 P	3 P 4 P	3 P 4 P	3 P 4 P
Drawout type	354439	354439	354439	460580	460580	631801	7991035	7991034
	460	460	460	460	460	460	460460	460460
	345	345	345	345	345	375	380380	380380
	40	40	40	40	40	53	6060	6060
Approx. Body \& Weightscarriage (kg)	7386	7690	$79 \quad 94$	105125	105125	139176	200260	220285
Front Body \& rear only connect	$45 \quad 51$	4652	4652	5668	5668	7192	125160	140180
$\begin{array}{ll} \begin{array}{l} \text { with- } \\ \text { draw- } \\ \text { able }{ }^{1} \text { ) } \end{array} & \begin{array}{l} \text { Carriage } \\ \text { only } \end{array} \\ \hline \end{array}$	2835	$30 \quad 38$	3342	4957	4957	6884	$75 \quad 100$	80105

Notes: ${ }^{1}$ ) Weights are based on normal specifications with the OCR and standard accessories.

## TemPower Our customers' needs

## Providing solutions



## Switchboard builder

$\square$ Compact size for high packing density

- Zero arc space required for clearance
- Low temperature dissipation

Built in trip supervision circuit

- Fully rated neutral as standard
- Vertical, horizontal and front terminal connections are available
- Uniform panel cut out size

E Easy access to control, auxilary and position switch terminals

- Detailed product training available by NHP application engineers
- Manufactured in Australia, allowing for fast delivery and local technical support



## Consultant

Approvals and test: IEC 60947, AS3947-2 and A.S.T.A. certified

- Time Current Characteristics to IEC 60255-3 (SI, VI, El curves)

Restricted and Unrestricted ground fault protection in one relay

- LSI characteristic curves as standard
- True r.m.s. protection up to 19th harmonic
- Sophisticated undervoltage/phase failure protection
- Integral reverse power protection and load shedding relay
- Only Terasaki can offer $\mathrm{I}_{\mathrm{cw}}=100 \mathrm{kA} / 1$ second in a small 3200 A frame size
- TemPower 2 ACB suffers no loss in performance when tripped through an external protection relay
- Super fast clearance times under fault



## End user

- System alarms that indicate tripping coil health
- Built in relay tester - can check on line without tripping ACB
- Contact temperature monitoring options

Fault diagnosis - type of fault, magnitude, tripping time \& trip history

- High making capacity for operator safety

Communication to B.M.S. or S.C.A.D.A. system

- Main contacts can be changed within 15 minutes per pole
$\square$ Full technical support and ACB commissioning available via NHP
- Product servicing available from Australia's only Terasaki trained and certified ACB technicians


# Arc D-Tect <br> D1000 Arc Fault Protection system 




#### Abstract

Efficient protection of high, medium and low voltage switchgear A continuous supply of power is important in modern energy infrastructure and most production facilities. Wherever electrical energy is generated and distributed, arc flash faults and accidents are likely to occur. An arc protection system is an efficient way to maximise the safety and minimise the damages.


SELCO's D1000 arc protection system is designed to dramatically reduce the effects of arc flash faults in high, medium and low voltage switchgear.

## Fast protection is essential

An arc-fault in a switchboard or control gear develops within milliseconds and leads to the discharge of enormous amounts of energy. An arc fault is the result of a rapid release of energy due to an arcing fault between phase bus bars. If the arc flash is allowed to develop the result is that the massive energy discharge burns the bus bars, vaporising the copper and thus causing an explosion. Finally this may cause extensive material damage and jeopardise the safety of operational personnel.
An arc protection system operates much faster than conventional protection relays and thus damages caused by an arc flash fault can be kept at a minimum level. As a general guideline, an arc will not cause any damage if it is eliminated within 35 ms . If the arc is allowed to continue and last 100 ms some damage will occur. An arc fault lasting 500 ms may cause severe damage to the installation and will require extensive repair.
A short arc time is critical in order to avoid damage to personnel and material. It is therefore of vital importance that the source leading to the arc flash time is minimised and the power is disconnected as fast as possible SELCO's D1000 arc protection system is the solution to this problem.

# Arc D-Tect <br> Arc detecting relay system 

## D1000 Functionality

The D1000 arc protection system is an advanced and fast arc protection system, offering the following features and functionality:

- Compact unit - arc fault and overcurrent protection
- High speed arc fault detection less than 1 ms
- Over-current protection with detection within 1 ms
- Combines optical fibre and point sensors
- Real-time event logging
- Self-supervision of sensors and protection unit
- Easy installation and configuration via USB


## D1000 Arc flash protection unit

The D1000 is a stand-alone and high speed arc protection unit for electrical power distribution systems. D1000 supports both point and fibre sensor technologies for arc flash detection and supports up to six sensors. The sensors can be combined in any combination, depending on the application and requirements.

## Easy configuration

The D1000 is easy to install and set-up and in case any changes are needed this is easily done via the USB interface accessible from the front. The built-in user-friendly menu system is embedded in the D1000 unit and activates automatically when the unit is connected to a PC.
The built-in light sensor on the front makes it easy to adjust and verify that all sensors are correctly installed and equally sensitive. With the TRIP LEVEL adjustment on the front plate the sensitivity to light can be adjusted. The light range is 10-25,000 lux enabling use of sensors under different light conditions, indoor light, sunlight etc.


In small installations, the calibration TEST sensor can be used as a single arc detecting sensor, providing additional protection without added cost. Setup of the overcurrent detection, is easily done through the USB interface.

# Arc D-Tect <br> Arc detecting relay system 

## Easy installation

The D1000 system is easy to install and made to implement in new switchgear installations as well as retrofit projects. Both the D1000 unit and sensors are quick and easy to install. A general guideline is to mount 1-2 sensors per cubicle or chamber. It is important to cover all horizontal/vertical busbars (1) as well as breaker compartments (2) and drawers. Example is shown below: D1000 relays can be linked (up to 4 relays) to provide expanded installation and sensing requirements.


## Flexible and efficient sensors

## A1000 point sensor

The point sensor is a light-sensitive element based on phototransistor technology. It detects visible light radiation which is captured at the cylindrical top. The A1000 point sensor has a detection area of up to 2 m with a characteristic of $180^{\circ} \times 360^{\circ}$. The A1000 supports self supervision, and a clear blinking built-in LED indicates that the sensor is active. If the sensor reaches the trigger level the LED will light up constantly. The A1000 sensor is supplied with a 10 m shielded cable. 6 sensors maximum.


## A2000 fibre sensor

The A2000 fibre sensor is a light sensitive element based on optical fibre technology. The A2000 fibre sensor is a fully flexible fibre with a detection angle of $360^{\circ}$ throughout the length of the fibre. The detection radius is up 2 meters. The fibre sensor is ideal to install in electrical cabinets with drawer sections. Allows the same coverage as approximately $6 \times$ A1000 point sensors. The fibre optic cable is available in 5 m or 8 m lengths. There is also another 10 m of wire cable attached to each end. The wire cable can be extended up to 50 m at each end.


## Arc D-Tect <br> Arc detecting relay system

## D1000 - wiring and installation

24 V battery   Back up	Internal or external   Supply
trip voltage	



## Arc D-Tect <br> Arc detecting relay system

D1000 Arc Protection Unit	D1000.0010
	$85-240 \mathrm{~V} \mathrm{AC}$   Voltage Supply         $20-250 \mathrm{~V}$ Battery - Lead acid gel cell
Trip coil output	IGBT switch, 200   (configurable) on-time, 2s pulsed
Trip coil voltage range	$24-600 \mathrm{~V} \mathrm{DC}$
24-440 V DC	


A2000 Sensor	A2000.0010
Type	Fibre optical sensor
Detection area	$360^{\circ}$
Length	8 m flexible fibre optic cable (plus 10 m of wiring   cable)
Circuit check	Built-in - LED for visual feedback
Dimensions (WxHxD)	$32 \times 52 \times 21 \mathrm{~mm}$

## Approvals/standards

EMC standards	EN60255-26
Enclosure	IP 20

## Arc D-Tect

D1000 Arc-fault protection system

Catalogue Numbers and ordering
Cat. No.
Price \$

D1000 Arc protection unit	D1000 0010	$\mathbf{5 6 1 0 . 0 0}$
A1000 Arc point sensor 10 m	A1000 0010	$\mathbf{5 5 0 . 0 0}$
A2000 Arc fibre cable sensor 5 m	A2000 0020	$\mathbf{2 0 0 0 . 0 0}$
A2000 Arc fibre cable sensor 8 m	A2000 0010	$\mathbf{3 0 3 0 . 0 0}$
D1000 DIN rail mounting clips	D1000DINCLIPS	$\mathbf{1 1 . 4 0}$



Built-in overcurrent protection


Extended coverage with links input


Efficent self-supervision

Notes: Old sensor types ADR/ A0200/ A0300 can be used with the new D1000 relay. Refer NHP for connection details.

## Earth Leakage Relays

	Page
Earth leakage relays	$8-2$
Surface mounting type TZS series	$8-4$
DIN Rail mounting type RD3A series	$8-5$
DIN Rail mounting type RD1B series	$8-6$
Panel mounting type RD1DF series	$8-7$
Panel mounting type RD1EP series	$8-8$
Panel mounting type RD3E2 series	$8-10$
Panel mounting type RD1G2 series	$8-12$
Mining earth leakage relay	$8-14$
Panel mount mining relays, DSRM72 and DSR48T Series	$8-15$
Remote current transformer (toroid) TD and DSR Series	
Accessories	



## TZS series

## Features

- Adjustable time range 0.3-2 s
- Sensitivity (adj.) $30 \mathrm{~mA}-1$ amp.
- Immune to false tripping via harmonics
- High vibration withstand
- Output C/O contact
- Indication - LED
- Reset function - electrical


TZS relay

Mounting	Voltage	Adj.   sensitivity range	Adj. time   rat. No.	Price \$	
Surface	$120 / 240$   V AC	30 mA a-1   amp	$0.3-2 \mathrm{~s}$	TZS AD120240V	$\mathbf{6 8 0 . 0 0}$
Surface	$400 / 440$   V AC	$30 \mathrm{~mA} A-1$   amp	$0.3-2 \mathrm{~s}$	TZS AD415440V	$\mathbf{6 8 0 . 0 0}$
Surface	24 VAC	$30 \mathrm{~mA} A-1$   amp	$0.3-2 \mathrm{~s}$	TZS AD24VAC	$\mathbf{6 8 0 . 0 0}$
Flush   (collar only)	-	-	-	TPD OSZ	$\mathbf{1 0 2 . 0 0}$

Tripping times

Rated operating time   (sec)	Operating time range   $(\mathbf{s e c})$	Non-operating time range   (sec)
0.3	$0.2-0.36$	0.15
0.5	$0.4-0.6$	0.38
1	$0.8-1.2$	$0.7-1.25$
2	$1.3-2.0$	$0.7-1.25$

Standard features

Earth leakage detection	current operated type
Internally mounted contact	$1 \mathrm{C} / \mathrm{O}$
Earth leakage indication	LED
Reset function (electrical)	Yes
Test button	Yes
Remote reset (power source)	1 VA
Dimensions (mm) W/H/D	$60 / 104 / 78$
Weight (kg) (relay only)	0.22


Toroidal CT - ZCT only (remote, add to relay)   Max. cable   $\mathbf{2 ~ w i r e ~}$	Max. cable   4 wire	Internal   diameter	Cat. No.	
$8 \mathrm{~mm}^{2}$	$5.5 \mathrm{~mm}^{2}$	15 mm	TZS-15	Price \$
$30 \mathrm{~mm}^{2}$	$22 \mathrm{~mm}^{2}$	24 mm	TZS-24	$\mathbf{1 1 3 . 0 0}$
$100 \mathrm{~mm}^{2}$	$80 \mathrm{~mm}^{2}$	40 mm	TZS-40	$\mathbf{3 4 0 . 0 0}$
$\mathbf{3 2 5 \mathrm { mm } ^ { 2 }}$	$250 \mathrm{~mm}^{2}$	68 mm	TZS-68	$\mathbf{6 3 0 . 0 0}$
$850 \mathrm{~mm}^{2}$	$600 \mathrm{~mm}^{2}$	100 mm	TZS-100	$\mathbf{1 6 5 0 . 0 0}$

Notes: Refer page 9-68 for AS/NZS requirements when using earth leakage relays.

## TZS series

Outline dimensions (mm)


Rating of output contact

	Resistance load   $\boldsymbol{c o s} \boldsymbol{\varnothing}=\mathbf{1}$	Inductive load cos   $\boldsymbol{\varnothing = \mathbf { 0 . 4 } ( \mathrm { L } / \mathbf { R } = \mathbf { 7 } \mathbf { ~ m s } )}$	Min. load
$120 / 230 \mathrm{~V} \mathrm{AC}$	6 A	3.5 A	10 mA at 5 V DC
30 V DC	6 A	3 A	10 mA at 5 V DC

Connection diagram - Residual current relay


Notes: For 415 V AC or 440 V AC contact NHP for availability.
The output contacts remain until the RESET button is operated.
Should the control power supply fail the contacts automatically reset.

## DIN rail mount RD series RD3A

Standard AS 60947-2 (Annex M)
Core balance earth leakage relay
Adjustable $I \Delta \mathrm{n}$ up to 30 amps
Adjustable trip time up to 5 s
Harmonic filter
2 wire toroid connection
Field selectable negative/positive security
Instantaneous display as percentage $I \Delta \mathrm{n}$
DIN rail mounting (2 module)

RD relays in conjunction with a ring current transformer (toroid) provide earth leakage protection of electrical distribution systems and electrical equipment.

## Features

- Adjustable: $0,0.15,0.25,0.5,1,2.5,5 \mathrm{sec}$
- Adjustable trip current: . $03, .05, .075,0.1,0.15,0.2,0.3 \mathrm{~A}$ in 3 ranges $\mathrm{x} 1, \mathrm{x}$ $10, \times 100$
- Automatic reset option
- Trip: one changeover contact (5 A - $250 \mathrm{~V} \mathrm{AC} \cos 1.0,5 \mathrm{~A}-30 \mathrm{~V}$ DC)
- Local reset/test and remote reset/test ')

LED indication: green (healthy), red (tripped), yellow (\%| n n $20 \%, 40 \%, 60 \%$ )IP 50 Front cover, IP 20 terminals

- Test buttons checks relay function and toroid connections

Auxiliary Voltage	Cat. No.	Price \$
24 V AC	RD3AF1N (24 V AC)	$\mathbf{9 1 0 . 0 0}$
110 V AC	RD3AF12 (110 V AC)	$\mathbf{9 1 0 . 0 0}$
240 V AC	RD3AF14 (240 V AC)	$\mathbf{9 1 0 . 0 0}$
415 V AC	RD3AF15 (415 V AC)	$\mathbf{9 1 0 . 0 0}$
$24-150$ V DC	RD3AF1H (24-150 V DC)	$\mathbf{9 1 0 . 0 0}$

Wiring diagram - RD3A


[^15]
## DIN rail mount RD series RD1B

- Standard AS 60947-2 (Annex M)
- Core balance earth leakage relay
- Adjustable $1 \Delta \mathrm{n}$ up to 30 amps
- Adjustable trip time up to 5 s
- Harmonic filter
- 2 wire toroid connection
- Field selectable negative/positive security
- Instantaneous display as percentage $I \Delta n$
- DIN rail mounting (4 module)


RD1B

RD relays in conjunction with a ring current transformer (toroid) provide earth leakage protection of electrical distribution systems and electrical equipment.

## Features

- Adjustable: $0,0.15,0.25,0.5,1,2.5,5 \mathrm{sec}$

Adjustable trip current: . $03, .05, .075,0.1,0.15,0.2,0.3 \mathrm{~A}$ in 3 ranges $x 1, x$ $10, \times 100$

- Automatic reset option
- Trip: one changeover contact (5 A - 250 V AC $\cos 1.0,5 \mathrm{~A}-30 \mathrm{~V}$ DC)
- Local reset/test and remote reset/test ${ }^{1}$ )
- Changeover contact - selectable between alarm preset $50 \% \mathrm{I} \Delta \mathrm{n}$ and second trip contact
- Field selectable - high or low harmonic filter circuit

LED indication: green (healthy), red (tripped), yellow
(\%| $\mathrm{n} 20 \%, 30 \%, 40 \%, 50 \%$ )

- IP 40 Front cover, IP 20 terminals
- Test buttons checks relay function and toroid connections

Auxiliary Voltage	Cat. No.	Price $\mathbf{\$}$
110 V AC	RD1B212	$\mathbf{1 0 8 0 . 0 0}$
240 V AC	RD1B214	$\mathbf{1 0 8 0 . 0 0}$
415 V AC	RD1B215	$\mathbf{1 0 8 0 . 0 0}$
$24-150$ V DC	RD1B21H	$\mathbf{1 0 8 0 . 0 0}$

## Wiring diagram - RD1B



Notes: ${ }^{1}$ ) Remote test on AC versions only.
Refer page 9-68 for AS/NZS requirements when using earth leakage relays.

## Panel mount RD series

RD1DF

Standard AS 60947-2 (Annex M)
Core balance earth leakage relay

- Adjustable $I \Delta \mathrm{n}$ up to 30 amps
- Adjustable trip time up to 5 sec
- Harmonic filter
- 2 wire toroid connection

Field selectable negative/positive security


## Features

- Panel mounting 48 mm
- Adjustable: $0,0.15,0.25,0.5,1.0,2.5,5 \mathrm{sec}$
- Adjustable trip current: . $03, .05, .075,0.1,0.15,0.2,0.3 \mathrm{~A}$, in 3 ranges $\mathrm{x} 1, \mathrm{x}$ $10, \times 100$
- Automatic reset option

Trip - one changeover contact (5 A - 250 V AC $\cos 1.0,5 \mathrm{~A}-30 \mathrm{~V}$ DC)

- Local and remote reset/test
- LED indication: green (healthy), red (tripped)
- IP 40 Front cover, IP 20 terminals
- Test buttons checks relay function and toroid connections

Auxiliary Voltage	Cat. No.	Price $\mathbf{\$}$
110 V AC	RD1DF12	$\mathbf{5 2 0 . 0 0}$
240 V AC	RD1DF14	$\mathbf{5 2 0 . 0 0}$
415 V AC	RD1DF15	$\mathbf{5 2 0 . 0 0}$

## Wiring diagram




## Panel mount RD series

RD1EP

Standard AS 60947-2 (Annex M)

- Core balance earth leakage relay
- Adjustable $1 \Delta \mathrm{n}$ up to 30 amps
- Adjustable trip time up to 5 sec
- Harmonic filter
- 2 wire toroid connection
- Field selectable negative/positive security



## Features

- Panel mounting 72 mm
$\square$ Adjustable: $0,0.15,0.25,0.5,1.0,2.5,5 \mathrm{sec}$
- Adjustable trip current: . $03, .05, .075,0.1,0.15,0.2,0.3 \mathrm{~A}$ in 3 ranges $\times 1$, x 10, x 100
- Changeover contact-selectable between alarm pre-set $50 \% \mathrm{I} \mathrm{n}$ and extra trip contact (5 A - 250 V AC $\cos 1.0,5 \mathrm{~A}-30 \mathrm{~V}$ DC)
- Trip - one changeover contact (5 A - $250 \mathrm{~V} \mathrm{AC}, \cos 1.0,5 \mathrm{~A}-30 \mathrm{~V}$ DC)
- Local and remote reset/test ${ }^{1}$ )

LED indication: green (healthy), red (tripped), yellow (\%I $\Delta \mathrm{n} 20 \%, 30 \%, 40 \%, 50 \%$ )

- IP 40 Front cover, IP 20 terminals
- Test buttons checks relay function and toroid connections

Auxiliary Voltage	Cat. No.	Price $\mathbf{\$}$
110 V AC	RD1EP212	$\mathbf{9 1 0 . 0 0}$
240 V AC	RD1EP214	$\mathbf{9 1 0 . 0 0}$
415 V AC	RD1EP215	$\mathbf{9 1 0 . 0 0}$
$24-150$ V DC	RD1EP21H	$\mathbf{9 1 0 . 0 0}$

## Wiring diagram



## Notes: ${ }^{1}$ ) Remote test on AC versions only.

Refer page 9-68 for AS/NZS requirements when using earth leakage relays.

# Panel mount RD series 

RD3E2
Standard AS 60947-2 (Annex M)
Core balance earth leakage relay
Adjustable I $\Delta$ n up to 30 amps
Adjustable trip time up to 5 sec
Field selectable negative/positive security
Instantaneous digital display
2 wire toroid connection
Monitor function ${ }^{\text {') }}$


RD3E2

Technical data

Aux. voltage	$110,240 \& 415 \mathrm{~V} \mathrm{AC} \quad 50 / 60 \mathrm{HZ}$ or $24-150 \mathrm{~V} \mathrm{DC}$
Contact rating	$5 \mathrm{~A}-250 \mathrm{~V} \mathrm{AC} \cos 1.0 ; 3 \mathrm{~A}-250 \mathrm{~V} \mathrm{AC} \cos 0.4 ; 5 \mathrm{~A}-30 \mathrm{VDC}$
Pre trip alarm	$50 \% \mathrm{I} \mathrm{n}$
Indication	Digital display -3 digits
Test	Tests relay function and toroid connections
IP rating	IP 40 front frame; IP 20 terminals
Operating temperature $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	

## Features

- Panel mounting 72 mm
- Adjustable time: $0,0.15,0.25,0.5,1.0,2.5,5$, sec
- Adjustable trip current-. $03, .05, .075,0.1,0.15,0.2,0.3 \mathrm{~A}$, in 3 ranges x 1 , x $10 \times 100$
- Digital indication of residual current-3 digits
- N/O contact-selectable between alarm pre-set $50 \% I \Delta n$ and extra trip contact
- Trip - one changeover contact
- Local and remote reset/test ${ }^{2}$ )

Auxiliary Voltage	Cat. No.	Price \$
110 V	RD3E212B	$\mathbf{1 5 1 0 . 0 0}$
240 V	RD3E217B	$\mathbf{1 5 1 0 . 0 0}$
415 V	RD3E218B	$\mathbf{1 5 1 0 . 0 0}$
$24-150 \mathrm{VDC}$	RD3E21HB	$\mathbf{1 5 1 0 . 0 0}$

Notes: ${ }^{1)}$ Relay can operate as an earth leakage relay or as a digital meter with trip contacts and current setting disabled. This monitor function is ideal when first selecting the current settings and monitoring the installation.
${ }^{2}$ ) Remote test on AC version only.
Refer page 9-68 for AS/NZS requirements when using earth leakage relays.

## Panel mount RD series

RD3E2

Wiring diagram - RD3E2
S 291/107


Dimensions (mm)


Rear view RD3E21

## Panel mount RD series

RD1G2
Standard AS 60947-2 (Annex M)
Core balance earth leakage relay
Adjustable sensitivity 30 mA to 30 A
Adjustable trip time up to 5 sec
Field selectable negative/positive security
Reduced depth housing
2 wire toroid connection
Continuous permanent test toroid connections
Harmonic filter
Pre trip alarm


## Technical data

Aux. voltage	$110 \mathrm{~V} \mathrm{AC}, 240 \mathrm{~V} \mathrm{AC} \mathrm{or} 415 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$
Contact rating	$5 \mathrm{~A}-250 \mathrm{~V}$ AC cos 1.0; $3 \mathrm{~A}-250 \mathrm{~V} \mathrm{AC} \mathrm{cos} \mathrm{0.4;} 5 \mathrm{~A}-30 \mathrm{~V}$ DC
Indication	Supply healthy - green LED
	Relay tripped - red LED
	\% 14 n - LEDS 20, 30, 40 and $50 \%$
	Test button: Tests integrity of relay internal trip circuit
Test	Permanent test: Continuously monitors toroid connections and trip circuit
IP rating	IP 40 front frame; IP 20 terminals

Operating temperature $-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

## Features

- Panel mounting 96 mm
- Adjustable time delay - $0,0.15,0.25,0.5,1.0,2.5,5 \mathrm{sec}$
- Adjustable trip current - $0.03,0.05,0.75,0.1,0.15,0.2,0.3 \mathrm{~A}$ in range $\mathrm{x} 1, \mathrm{x}$ $10, \times 100$
Field selectable negative/positive security
- Trip - 1 changeover contact
- Local and remote reset/test
- Changeover contact selectable between alarm preset $50 \% \mathrm{I} \mathrm{n}$ and extra trip contact

Auxiliary Voltage	Cat. No.	Price \$
110 V AC	RD1G212	$\mathbf{1 0 0 0 . 0 0}$
240 V AC	RD1G214	$\mathbf{1 0 0 0 . 0 0}$
415 V AC	RD1G215	$\mathbf{1 0 0 0 . 0 0}$

Notes: Refer page 9-68 for AS/NZS requirements when using earth leakage relays.

## Panel mount RD series

RD1G2

Dimensions (mm) RD1G2


Wiring diagram - RD1G2


## Panel mount mining relay series

DSRM72 and DSR48T

Standard AS/NZS 2081:2011

- Core balance earth leakage relay
- Adjustable sensitivity $0.03 \mathrm{~A}-0.5 \mathrm{~A}$
- Adjustable trip time $0.05 \mathrm{sec}-0.5 \mathrm{sec}$

Separate test unit for circuit integrity testing

- Four wire toroid connection
- Field selectable negative/positive security

Field selectable function of outputs


Technical data (DSRM72)

Aux. voltage	240 V or $110 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}, 24 \mathrm{~V}$ DC
Contact rating	$5 \mathrm{~A}-250 \mathrm{~V} \mathrm{AC} \cos 1$; $3 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC} \cos 0.4$; 5 A 30 V DC
Indication	Supply healthy - green LED
	Power fail - Changeover contact
	Relay tripped - red LED
	Toroid fault - flashing red LED
	\% I 4 n - LEDs 20, 30, 40 and $50 \%$
Test	Internal relay test button on unit.
	Circuit integrity test using external DSR48T.
IP rating	IP 40 front frame; IP 20 terminals
Operating temperature	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

## Features

- Units supplied complete with separate test device DSR48T
- Panel mounting 72 mm
- Adjustable trip current -7 steps: $0.03,0.06,0.1,0.2,0.3,0.4 \& 0.5$
- Adjustable trip time -7 steps: $0.05,0.1,0.15,0.2,0.3,0.4$ \& 0.5

Choice of output contacts $2 \times \mathrm{AL}$ or $1 \times \mathrm{AL}+1 \times$ Power Fail

- Negative/Positive security
- Complies with standard AS/NZS 2081:2011
- Latching contact

Auxiliary Voltage		Cat. No.	Price \$
110 V AC	Kit ${ }^{1}$ )	DSRM110V ${ }^{1}$ )	1200.00
240 V AC	Kit ${ }^{1}$ )	DSRM240V ${ }^{1}$ )	1200.00
24 V DC	Relay only	DSRM7224 ${ }^{2}$ )	980.00
110 V AC	Relay only	DSRM72110	980.00
240 V AC	Relay only	DSRM72240	980.00
110 V AC	Test unit	DSR48TD110	390.00
240 V AC	Test unit	DSR48TD240	390.00

Notes: ${ }^{1)}$ Part number is made up of 1 x relay \& 1 x test unit.
${ }^{2}$ ) Can be used with AC test unit.

## Panel mount mining relay series <br> DSRM72 and DSR48T

## Al. 2

A1.2


A1.aux

## Al.aux



For correct working according to AS/NZS 2081:2011 the device shall be set as positive security Ne.

## DSR48TD - Test device



DSRM72-Relay


## Remote toroids

## Type TD Series

## TD series

Only TD type toroids are to be used in conjunction with the NHP range of RD residual current relays. Care should be taken to select a toroid size closest to the diameter of the cables being protected. Also ensure the minimum possible distance between the toroid and relay to ensure maximum
 accuracy.

Closed core toroids (2 wire)

Min.   $1 \Delta \mathrm{n}$   (A) ${ }^{1}$ )	Nom.   In (A)	Max.   In   $\left.(A)^{2}\right)$	Internal diameter (mm)	Overall dimensions (mm)				
				A	B	C	Cat. No.	Price \$
0.03	65	390	28	59	59	47	TDGA2	225.00
0.03	70	420	35	113	92	56	TDGB2	300.00
0.03	90	540	60	112	105	56	TDGH2	325.00
0.03	170	1020	80	160	125	56	TDGC2	375.00
0.1	250	1500	110	198	165	56	TDGD2	570.00
0.3	250	1500	140	234	200	56	TDGE2	790.00
0.3	400	2400	210	323	290	64	TDGF2	950.00

Open (split) core toroids (2 wire)

Min. $1 \Delta n$   (A) ${ }^{1}$ )	Nom.$\ln (A)$	Max. In   $\left.(A)^{2}\right)$	Internal diameter (mm)	Overall dimensions (mm)				Price \$
				H	W	D	Cat. No.	
0.5	250	1500	110	214	235	79	TDAA2	1000.00
0.5	250	1500	150	259	275	79	TDAB2	1310.00
1.0	630	3780	310	386	400	30	TDAC2	2130.00



Notes: ${ }^{1)}$ Lowest value of $I \Delta n$ to be set on relay with this toroid connected.
${ }^{2}$ ) Values shown are valid only for conductors passing exactly in the middle of the toroid.

## Remote toroids

## Type DSR Series

## DSR series

Only the DSR type toroids are to be used in conjunction with the NHP range of DSRM mining relays. The four wire toroid is vital for compliance to AS/ NZS 2081:2011.

Closed core toroids (4 wire)

Min.   $\mid \Delta n$   (A) ${ }^{1}$ )	Nom.$\ln (A)$	Max.   In   $\left.(A)^{2}\right)$	Internal diameter (mm)	Overall dimensions (mm)				
				A	B	C	Cat. No.	Price \$
0.03	70	420	35	113	92	56	DSR35DEL	305.00
0.03	170	1020	80	160	125	56	DSR80DEL	375.00
0.1	250	1500	110	198	165	56	DSR110DEL	580.00
0.3	250	1500	140	234	200	56	DSR140DEL	800.00
0.3	400	2400	210	323	290	64	DSR210DEL	960.00

## Accessories

	Cat. No.	Price $\$$
IP 65 - Front cover to suit $48 \times 48$ panel mount relay	RD4848C	$\mathbf{2 0 0 . 0 0}$
IP65 - Front cover to suit $72 \times 72$ panel mount relay	RD7272C	$\mathbf{2 0 0 . 0 0}$
IP 65 - Front cover to suit $96 \times 96$ panel mount relay	RD9696C	$\mathbf{2 5 5 . 0 0}$
$72 \times 72$ mm to $96 \times 96$ mm adapter plate	RD7296A	$\mathbf{8 8 . 0 0}$



Notes: ${ }^{1}$ ) Lowest value of $I \Delta n$ to be set on relay with this toroid connected.
${ }^{2}$ ) Values shown are valid only for conductors passing exactly in the middle of the toroid.

## TL101 TRANSFER SWITCH CONTROLLER

The soft touch TL101 controller automatically or manually switches a load from a main line to an emergency supply in the event of a power failure.


- Genuine $144 \times 144$ mm controller solution
- User friendly display and menu selection
- Large selection of functions and options as standard


## TemLogic (f) TERASAKI

Technical reference data

	Page
Din-T MCB: Ratings table	$9-2$
Din-T MCB: Effects of frequency	$9-3$
Din-T MCB: Time current curves	$9-4$
Din-T MCB: B, C and D curve definitions	$9-7$
Din-T MCB: Temperature compensation curves	$9-8$
DC current circuit breaker selection table	$9-9$
MCB Fuse-fault current limiting	$9-10$
Selectivity/Cascade: MCB \& MCCB	$9-11$
Watts loss - MCCBs	$9-21$
Short circuit current calculator	$9-22$
Short circuit co-ordination	$9-24$
Motor circuit: application tables	$9-38$
Motor starting: Motor rated currents	$9-45$
MCCB 380/415 V clearance requirements	$9-47$
Electrical mathematical formulae	$9-50$
TemBreak 2 Electronic OCR \& MCCBs	$9-51$
MCCB Cross reference	$9-67$
RCD/Earth Leakage applications and AS/NZS Standards	$9-68$
IP Ratings chart	$9-70$
NHP Technical News publications	$9-71$



## Din-T MCB

Features

Decription	$\begin{aligned} & \text { Din-T } 6 \\ & 2 \text { to } 63 \text { A } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { Din-T } 10 \\ & 0.5 \text { to } 63 \text { A } \end{aligned}$				$\begin{aligned} & \text { Din-T } 15 \\ & 6 \text { to } 63 \text { A } \end{aligned}$				$\begin{aligned} & \text { Din-T } 10 \mathrm{H} \\ & 80 \text { to } 125 \mathrm{~A} \end{aligned}$			
No. of poles	1	2	3	1	2	3	4	1	2	3	4	1	2	3	4
Protected poles	1	2	3	1	2	3	4	1	2	3	4	1	2	3	4
Width (mm)	18	36	54	18	36	54	72	18	36	54	72	27	54	81	108
Depth (mm) ${ }^{\text {4 }}$ )	68			68				68				70			
Rated voltage	240/415 V AC			240/415 V AC				240/415 V AC				240/415 V AC			
Max. current In	63 A			63 A				63 A				125 A			
Calibration temp. ${ }^{\circ} \mathrm{C}$	30			30				40				40			
No. of operations															
$\begin{aligned} & 220 \mathrm{~V} \ln \\ & C O S=0.9 \end{aligned}$	10000			10000				4000				4000			
$\begin{aligned} & 415 \mathrm{~V} \ln \\ & C O S=0.9 \end{aligned}$	10000			10000				4000				4000			
Insulation resistance	>10 Mohm			>10 Mohm				>10 Mohm				>10 Mohm			
Dielectric rigidity	$>2.5 \mathrm{kV}$			$>2.5 \mathrm{kV}$				$>2.5 \mathrm{kV}$				$>2.5 \mathrm{kV}$			
Terminal capacity															
line mm ${ }^{2}$	35			35				35				70			
load mm ${ }^{2}$	35			35				35				70			

DC application ${ }^{3}$ )

Decription	$\begin{aligned} & \text { Din-T } 6 \\ & 2 \text { to } 63 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Din-T } 10 \\ & 0.5 \text { to } 63 \mathrm{~A} \\ & \hline \end{aligned}$	Din-T 15   6 to 63 A	$\begin{aligned} & \text { Din-T 10H } \\ & 80 \text { to } 125 \mathrm{~A} \\ & \hline \end{aligned}$
Max. voltage	$48110^{\text {1 }}$ )--	$48110^{1}$ )--	$48110^{1}$ )--	$125^{1}$ ) $250^{2}$ ) --
No. operations at $\mathrm{T} \leq 15 \mathrm{~ms}$	10000	10000	10000	40000
Short circuit kA at $\mathrm{T} \leq 15 \mathrm{~ms}$	2025 -	2530 -	2530 -	10-10-

Notes: DC magnetic trip current is approximately $40 \%$ higher than $50 / 60 \mathrm{~Hz}$.
${ }^{1}$ ) Series connection 2 pole MCB.
${ }^{2}$ ) Series connection 4 pole MCB.
${ }^{3}$ ) For DC switching at 250 V and 500 V DC refer latest edition of Part C catalogue for ratings information.
${ }^{4}$ ) Depth measurement, excluding toggle.

## Effects of frequency on the tripping characteristic

Din-T 6, 10, 10H, 15

All the MCBs are designed to work at frequencies of $50-60 \mathrm{~Hz}$, therefore to work at different values, consideration must be given to the variation of tripping characteristics. The thermal tripping does not change with variation of the frequency but the magnetic tripping values can be up to $50 \%$ higher than the ones at $50-60 \mathrm{~Hz}$.

Tripping characteristics according to IEC 60898

$\mathbf{6 0 ~ H z}$	$\mathbf{1 0 0 ~ H z}$	$\mathbf{2 0 0 ~ H z}$	$\mathbf{3 0 0 ~ H z}$	$\mathbf{4 0 0 ~ H z}$
1	1.1	1.2	1.4	1.5

Power losses Din-T 6, 10, 10H, 15
The power losses are calculated by measuring the voltage drop between the incoming and the outgoing terminals of the device at rated current.

Power loss per pole

In $(\mathbf{A})$	Voltage drop (V)	Energy Loss (W)	Resistance (Mohm)
0.5	2.230	1.115	4458.00
1	1.270	1.272	1272.00
2	0.620	1.240	310.00
3	0.520	1.557	173.00
4	0.370	1.488	93.00
6	0.260	1.570	43.60
8	0.160	1.242	19.40
10	0.160	1.560	15.60
13	0.155	2.011	11.90
16	0.162	2.586	10.10
20	0.138	2.760	6.90
25	0.128	3.188	5.10
32	0.096	3.072	3.00
40	0.100	4.000	2.50
50	0.090	4.500	1.80
63	0.082	5.160	1.30
80	0.075	6.000	0.90
100	0.075	7.500	0.75
125	0.076	9.500	0.60

Din-T time current curves Din-T 6 and 10

Tripping characteristics according to IEC 60898
Din-T 10 B Curve devices
Curve B (3-5xIn)


Din-T time current curves Din-T 6 and 10

Tripping characteristics according to IEC 60898
Din-T 6, 10, 10H, 15, DC
Curve C (5-10 x In)


Din-T time current curves Din-T 6 and 10

Tripping characteristics according to IEC 60898
Din-T 6, 10, 10H, 15
Curve D ( 10 - $\mathbf{2 0} \mathbf{x} \ln$ )


## Characteristics according to EN 60898

Miniature circuit breakers are intended for the protection of wiring installations against both overloads and short-circuits in domestic or commercial wiring installations, where operation is possible by uninstructed people.

## Magnetic release

An electromagnet with plunger ensures instantaneous tripping in the event of short-circuit. The NHP Din-T range has 3 different types, following the current for instantaneous release: types B, C and D curve.

$\operatorname{lcn}(\mathrm{A})$	Test current	Tripping time	Applications
B	$\begin{aligned} & 3 \times \ln \\ & 5 \times \ln \end{aligned}$	$\begin{aligned} & 0.1<\mathrm{t}<45 \mathrm{~s}(\ln \leq 32 \mathrm{~A}) \\ & 0.1<\mathrm{t}<90 \mathrm{~s}(\ln >32 \mathrm{~A}) \\ & \mathrm{t}<0.1 \mathrm{~s} \end{aligned}$	Only for resistive loads such as:   - electrical heating   - water heater   - stoves
$\bar{C}$	$\begin{aligned} & 5 \times \ln \\ & 10 \times \ln \end{aligned}$	$\begin{aligned} & 0.1<\mathrm{t}<15 \mathrm{~s}(\ln \leq 32 \mathrm{~A}) \\ & 0.1<\mathrm{t}<30 \mathrm{~s}(\ln >32 \mathrm{~A}) \\ & \mathrm{t}<0.1 \mathrm{~s} \end{aligned}$	Usual loads such as: - lighting   - socket outlets - small motors
D	$\begin{aligned} & 10 \times \ln \\ & 20 \times \ln \end{aligned}$	$\begin{aligned} & 0.1<\mathrm{t}<4 \mathrm{~s}(\ln \leq 32 \mathrm{~A}) \\ & 0.1<\mathrm{t}<8 \mathrm{~s}(\ln >32 \mathrm{~A}) \\ & \mathrm{t}<0.1 \mathrm{~s} \end{aligned}$	Control and protection of circuits having important transient inrush currents (large motors)

## Thermal release

The release is initiated by a bimetal strip in the event of overload. The standard defines the range of releases for specific overload values. Reference ambient temperature is $30^{\circ} \mathrm{C}$.

Test current	Tripping time
$1.13 \times \ln$	$\mathrm{t} \geq 1 \mathrm{~h}(\ln \leq 63 \mathrm{~A})$
	$\mathrm{t} \geq 2 \mathrm{~h}(\ln >63 \mathrm{~A})$
$1.45 \times \ln$	$\mathrm{t}<1 \mathrm{~h}(\ln \leq 63 \mathrm{~A})$
	$\mathrm{t}<2 \mathrm{~h}(\ln >63 \mathrm{~A})$
$2.55 \times \ln$	$1 \mathrm{~s}<\mathrm{t}<60 \mathrm{~s}(\ln \leq 32 \mathrm{~A})$
	$1 \mathrm{~s}<\mathrm{t}<120 \mathrm{~s}(\ln >32 \mathrm{~A})$

## Temperature compensation curves

Din-T 6, 10, 10H and 15

## Influence of ambient temperature

The thermal calibration of the MCBs was carried out at an ambient temperature of $30^{\circ} \mathrm{C}$. Ambient temperatures different from the calibrated temperature influence the bimetal and this results in earlier or later thermal tripping (see curves).
0.5-6 A

10 A

16-40 A

50-63 A


## DC current circuit breaker

selection table

Circuit Breaker Type	Rated Current (A)	48 V 1 pole Icu (kA)	110 V   2 poles   in series   Icu (kA)	250 V   1 pole   Icu (kA)	$\begin{aligned} & 500 \mathrm{~V} \\ & 2 \text { poles } \\ & \text { in series } \\ & \text { lcu (kA) } \\ & \hline \end{aligned}$
Din-T 6	0.5..... 63 A	20	25	-	-
Din-T 10	0.5..... 63 A	25	30	-	-
Din-T DC	0.5..... 63 A	-	-	6	6
Din-T 15	6........ 25 A	25	30	-	-
Din-T 10H	80.... 125 A	10	10	-	-
Safe-T	6...... 100 A	-	5	-	-


MCCB	$\begin{aligned} & 24 / 48 / \\ & 60 \mathrm{~V} \\ & \hline \end{aligned}$			kA Rating below		
type $\left.{ }^{2}\right)^{3}$ )		125 V	250 V	350 V	500 V	600 V
S160NF 1 pole	15	15	-			
ES125/NJ	25	25	25			
SHL125NJ/GJ	50	40	40		Refer to se	
E250NJ	25	25	25		for ' ND	
SHL160/250 ${ }^{2}$ )	50	40	40		to 600 V	
E400NJ	25	25	25		20 A-800	
SHL400NJ/GJ ${ }^{3}$ )	50	40	40			
XS630NJ	50	40	40	30	20	20
S/XS800NJ/RJ	50	40	40	30	20	20
XS1000ND ${ }^{1}$ )	-	40	40	30	20	20
XS1250ND	-	40	40	30	20	20
XS1600ND	-	40	40	30	20	20
XS2000ND ${ }^{1}$ )	-	40	40	30	20	20
XS2500ND ${ }^{1}$ )	-	40	40	30	20	20

THE FOLLOWING CONNECTION
DIAGRAM SHOULD BE APPLIED.


## Notes for MCCB only:

For voltage levels up to and including 250 V DC standard MCCBs may be used, with two poles connected in series. For voltage levels greater than 250 V DC, three poles are to be connected in series as shown.

The time constant (L/R) of the circuit should be:
less than 2 ms at rated current
less than 2.5 ms for overload ( 2.5 x In )
less than 7 ms for short circuit $\leq 10 \mathrm{kA}$
less than 15 ms for short circuit $>10 \mathrm{kA}$
Notes: ${ }^{1}$ ) Magnetic trip only, without overload protection. Available on indent only.
${ }^{2}$ ) Thermal Magnetic types only can be used on DC.
${ }^{3}$ ) MCCBs not suitable for 12 V DC.

## Miniature circuit breakers and fuse-fault current limiters co-ordination chart

Circuit breaker Type	kA	Minimum   Rating fuse amps amps ${ }^{1}$ )		$\begin{aligned} & \quad \text { Maximum fuse - Amps } \\ & 50 \mathrm{kA} \end{aligned}$			
				BS 88	DIN	BS 88	DIN
Safe-T	6	6-10	50	$160^{2}$ )	160	$125^{2}$ )	125
	6	16-25	63	$200^{2}$ )	200	$160^{2}$ )	160
	6	32	80	$200{ }^{2}$ )	200	$160^{2}$ )	160
	6	40-50	100	$200{ }^{2}$ )	200	$160^{2}$ )	160
	6	63-100	160	$200{ }^{2}$ )	200	$160^{2}$ )	160
SRCB	6	10	50	160	160	125	125
	6	16-20	63	200	200	160	160
Din-T	6	2-25	20-63	200	200	160	160
DTCB6	6	32-63	100	200	200	160	160
DTCB10 \& DTCB15 ${ }^{3}$ )	10,15	0.5-6	20	250	250	200	200
	10,25	10	25	250	250	200	200
	10,25	16	35	250	250	200	200
	10, 20-25	20-32	63	250	250	200	200
	10, 20-15	40-63	100	250	250	200	200
DSRCB \& DSRCBH (RCBO)	10	10	25	250	250	200	200
	10	16	35	250	250	200	200
	10	20-32	63	250	250	200	200
Din-T10H	10	80	160	200	200	160	160
	10	100	200	200	200	160	160
	10	125	250	250	250	-	-
E125, S125	18/30	16-125	250	400	400	355	355

Notes: ${ }^{1}$ ) Minimum fuse size is based on grading under overload of one MCB with oneset of fuses. Where a single set of fuses protects more than one MCB, the minimum fuse size shall be increased to allow for load biasing effects.
${ }^{2}$ ) Maximum fuse size based on testing to AS 3439.1 clause 8.2.3.
${ }^{3}$ ) For specific kA ratings applicable to MCBs , refer page 1-23 ratings chart. Tables based on the following maximum pre-arcing I2t for both BS 88 and DIN fuses:
$125 \mathrm{~A}-0.4 \times 105,160 \mathrm{~A}-0.62 \times 105,200 \mathrm{~A}-1.2 \times 105,250 \mathrm{~A}-2.1 \times 105$. Suitable fuses include NHP, GEC, Siemens and Bovara-Crady.
Fuses with higher current ratings may be used provided $12 t$ values are equal to, or less than the levels above. Semi-conductor fuses have very low 12 t values and may suit some applications.
Attention is also drawn to AS 3000 clause 7.10.4.4 regarding the use of fault current limiters in installations containing fire and smoke control equipment, evacuation equipment and lifts.

## Selectivity (discrimination) and cascade

## Selectivity

The principle of Selectivity (Discrimination) is based upon an analysis of several circuit breaker characteristics. These include time-current (tripping) curves, peak-let-through current (lpeak) and energy let-through (I2t).
The figures stated give the maximum selectivity level with the two nominated breakers in series under short-circuit conditions. For an indication on selectivity under overloads refer to the circuit breaker tripping/characteristic curves, or use the NHP TemCurve selectivity analysis software package.
Selectivity can be enhanced beyond the breaking capacity of the downstream breaker provided it is backed up by an appropriately selected upstream breaker, which should not trip (unlatch) under the stated short circuit current.

## Cascade

Cascading is achieved by using an upstream device to assist (back-up) a downstream device in clearing a fault current. This principal is necessary should the downstream device be required to clear a prospective short circuit current greater than the devices' breaking capacity.
In most cascading applications it is generally necessary for the upstream breaker to trip (unlatch), as well as the downstream breaker to give adequate back-up protection. As such, cascade is commonly used in feeding and protecting non-essential loads, such as basic lighting.
For more information on selectivity and cascading please refer to the latest NHP Part C catalogue.

Cascade / back-up applications
Upstream: MCB
Downstream: MCB
Voltage 400/415 V, Icc max. in kA

Downstream: MCBs		Upstream: MCBs		
Series	$\ln (\mathrm{A})$	$\begin{aligned} & \text { Din-T } 10 \\ & 0.5 \ldots 63 \text { A } \end{aligned}$	$\begin{aligned} & \text { Din-T } 15 \\ & <40 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Din-T } 15 \\ & 50 \ldots 63 \mathrm{~A} \\ & \hline \end{aligned}$
Din-T 6	0.5 ... 63	10	20	15
Din-T 10	0.5 ... 63	-	20	15

Voltage 220/440 V, Icc max. in kA
Downstream: MCBs Upstream: MCBs

Series	$\ln (\mathrm{A})$	$\begin{aligned} & \text { Din-T } 10 \\ & 0.5 \ldots 63 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Din-T } 15 \\ & 0.5 \ldots 63 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Din-T } 15 \\ & 80 \ldots 125 \mathrm{~A} \\ & \hline \end{aligned}$
Din-T 6	0.5 ... 63	30	30	-
Din-T 10	0.5 ... 63	-	30	-
Din-T 10	0.5 ... 63	-	35	-

# Selectivity MCB to MCB: <br> Thermal Magnetic 

MCBs	MCBs	Ups   C cu   10 A	ream rve 16 A	$20 \mathrm{~A}$	Din-T 6	6,10, 32 A	40 A	50 A	63 A	$$		
Downstream B curve Din-T 10	$\ln (\mathrm{A})$	(kA below)								C Curve		
	6	0.07	0.10	0.15	0.18	0.23	0.27	0.35	0.45	1.5	1.6	1.7
	10	-	-	0.15	0.18	0.23	0.27	0.35	0.45	1	1.1	1.2
	16	-	-	-	-	0.23	0.27	0.35	0.45	1	1.1	1.2
	20	-	-	-	-	0.23	0.27	0.35	0.45	1	1.1	1.2
	25	-	-	-	-	-	0.27	0.35	0.45	0.9	1.1	1.1
	32	-	-	-	-	-	0.27	0.35	0.45	0.9	1	1
	40	-	-	-	-	-	-	-	-	-	0.9	0.9
	50	-	-	-	-	-	-	-	-	-	-	-
	63	-	-	-	-	-	-	-	-	-	-	-


MCBs	MCBs	Ups C cu   10 A	tream rve   16 A	$20 \mathrm{~A}$	Din-T 6 $25 A$	6,10, 32 A	15	50 A	63 A	80 A	$\begin{aligned} & \text { in-T } \\ & 100 \\ & \text { A } \\ & \hline \end{aligned}$	OH   125   A
Downstream C curve Din-T 6 Din-T 10 Din-T 15	$\ln (\mathrm{A})$	(kA below)								C Curve		
	6	0.07	0.10	0.15	0.18	0.23	0.27	0.35	0.45	1	1.1	1.2
	10	-	-	0.15	0.18	0.23	0.27	0.35	0.45	1	1.1	1.2
	16	-	-	-	-	-	0.27	0.35	0.45	1	1.1	1.2
	20	-	-	-	-	-	0.27	0.35	0.45	1	1.1	1.1
	25	-	-	-	-	-	0.27	0.35	0.45	0.9	1	1.1
	32	-	-	-	-	-	-	0.35	0.45	0.9	0.9	1
	40	-	-	-	-	-	-	-	0.45	-	-	0.9
	50	-	-	-	-	-	-	-	-	-	-	-
	63	-	-	-	-	-	-	-	-	-	-	-

Notes: $\mathrm{T}=$ Total selectivity

# Cascade / back-up applications - 

Upstream: MCB
Downstream: MCB
Voltage 400/415 V, Icc max. in kA

Downstream: MCBs		Upstream: MCBs		
Series	In (A)	$\begin{aligned} & \text { Din-T } 10 \\ & 0.5 \ldots 63 \text { A } \end{aligned}$	$\begin{aligned} & \text { Din-T } 15 \\ & <40 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Din-T } 15 \\ & 50 \ldots 63 \text { A } \end{aligned}$
Din-T 6	0.5... 63	10	20	15
Din-T 10	0.5... 63	-	20	15

Voltage 400/415 V, Icc max. in kA

Downstream: MCBs		Upstream: MCBs		
Series	In (A)	$\begin{aligned} & \text { Din-T } 10 \\ & 0.5 \ldots 63 \text { A } \end{aligned}$	$\begin{aligned} & \text { Din-T } 15 \\ & 0.5 \ldots 63 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Din-T } 15 \\ & 80 \ldots 125 \text { A } \end{aligned}$
Din-T 6	0.5... 63	20	22	16
Din-T 10	$\leq 32$	-	50	-
Din-T 15	$\geq 40$	-	35	-

Back-up protection with MCBs (DSRCD)

		Din-T 6	Din-T 10	Din-T 15	Din-T 10H
	$(\mathbf{A})$	$(\mathbf{k A})$	$(\mathbf{k A})$	$(\mathbf{k A})$	$(\mathbf{k A})$
	$\mathbf{1 6}$	20	20	20	10
RCCB	$\mathbf{2 5}$	20	20	20	10
2 Poles	$\mathbf{4 0}$	20	20	20	10
240 V	$\mathbf{6 3}$	20	20	20	10
(DSRCD)	$\mathbf{8 0}$	-	-	-	10
	$\mathbf{1 0 0}$	-	-	-	10
	$\mathbf{2 5}$	10	10	10	10
RCCB 4 Poles	$\mathbf{4 0}$	10	10	10	10
415 V	$\mathbf{6 3}$	10	10	10	10
(DSRCD)	$\mathbf{8 0}$	-	-	-	10

Back-up protection with fuses gG (DSRCD)

		16 A	25 A	32 A	40 A	50 A	63 A	80 A	100 A
	(A)	(kA)							
RCCB 2 Poles 240 V (DSRCD)	16	100	100	80	50	40	25	16	10
	$\underline{25}$	100	100	80	50	40	25	16	10
	40	100	100	80	50	40	25	16	10
	63	100	100	80	50	40	25	16	10
	80	100	100	80	50	40	25	16	10
	100	100	100	80	50	40	25	16	10
	25	100	100	80	50	40	25	16	10
	40	100	100	80	50	40	25	16	10
	63	100	100	80	50	40	25	16	10
	80	100	100	80	50	40	25	16	10
	100	100	100	80	50	40	25	16	10

Selectivity and Cascade tables @ 400/415 V MCCBs and MCBs


Downstream MCB	Upstream MCCBs												
```Cur- rent RangekA (A) (RMS)```	$\begin{array}{r} 25 \mathrm{kA} \\ \text { E250NJ } \\ \hline \end{array}$						$\begin{gathered} 36 \mathrm{kA} \\ \text { S250NJ } \end{gathered}$			$\begin{aligned} & 65 \mathrm{kA} \\ & \text { S250GJ- } \\ & \text { ZS250GJ } \end{aligned}$			
	63	80	100	160	200	250	160	200	250	160	200	250	63
DTCB6	25/25	25/25	25/25	25/25	$25 / 25$	$25 / 25$	36/36	36/36	36/36	36/36	36/36	36/36	36/36
	25/25	25/25	25/25	25/25	25/25	25/25	$30 / 30$	$30 / 30$	$30 / 30$	30/30	$30 / 30$	$30 / 30$	- 130
	- 125	$20 / 25$	25/25	25/25	25/25	$25 / 25$	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$	30/30
$\begin{gathered} 50 \& \\ 63 \\ \hline \end{gathered}$	- 125	- 125	25 2/5	25/25	25/25	25/25	30/30	30/30	$30 / 30$	30/30	$30 / 30$	30/30	- 130
≤ 32 DINT1OH, DSRCBH $\frac{40}{10}$ 10 \&DSRCB $50 \&$ 63	25/25	$25 / 2$	25/25	25/25	25/2	$25 / 25$	36/36	36/36	$36 / 36$	$40 / 6$	40/65	40/65	40/65
	- 125	$20 / 25$	25/25	25/25	25/25	$25 / 25$	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$	- 130
	- 125	- 125	25/25	2525	20/25	25/25	30/30	$30 / 30$	$30 / 30$	30/30	$30 / 30$	30/30	- 130
80			15/25	15/25	15/25	15/25	15/25	15/25	$15 / 25$	15/25	15/25	15/25	
DIN-T10H				15/25	15/25	15/25	15/25	15/25	15/25	15/25	15/25	15/25	
125				- 125	15/25	15/25	- 125	15/25	15/25	- 125	15/25	15/25	
≤ 32	25/25	25/25	25/25	25/25	$25 / 25$	$25 / 25$	36/36	$36 / 36$	36/36	$40 / 65$	40/65	40/65	40/65
DIN-T15 $\quad 40 \quad 15$	- 125	$25 / 25$	$25 / 25$	25/25	$25 / 25$	$25 / 25$	$30 / 30$	$30 / 30$	$30 / 30$	30/30	$30 / 30$	$30 / 30$	- 130
$50 \&$ 63	- 125	- 125	25/25	25/25	25/25	25/25	30/30	$30 / 30$	$30 / 30$	30/30	$30 / 30$	30/30	- 130

Notes: XX Selectivity YY Cascade

\&	$\begin{array}{r} 125 \mathrm{kA} \\ \mathrm{H} 125 \mathrm{NJ} \\ \hline \end{array}$		$\begin{gathered} 36 \mathrm{kA} \\ \text { S160NJ } \end{gathered}$					$\begin{gathered} 65 \mathrm{kA} \\ \mathrm{~S} 160 \mathrm{GJ} \end{gathered}$		\&	$\begin{aligned} & 125 \mathrm{kA} \\ & \mathrm{H} 160 \mathrm{NJ} \\ & \hline \end{aligned}$	
80	100	125	63	80	100	125	160	63	80	100	125	160
$35 / 35$	$35 / 35$	$35 / 35$	$36 / 36$	$36 / 36$	$36 / 36$	$36 / 36$	$36 / 36$	$36 / 36$	$36 / 36$	$36 / 36$	$36 / 36$	$36 / 36$
$20 / 25$	$20 / 25$	$20 / 25$	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$
$20 / 25$	$20 / 25$	$20 / 25$	- 130	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$	- 130	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$
- 125	$20 / 25$	$20 / 25$	- 130	- /30	$30 / 30$	$30 / 30$	$30 / 30$	- 130	- /30	$30 / 30$	$30 / 30$	$30 / 30$
$30 / 50$	$30 / 50$	$30 / 50$	$36 / 36$	$36 / 36$	$36 / 36$	$36 / 36$	$36 / 36$	$40 / 65$	$40 / 65$	$40 / 65$	$40 / 65$	$40 / 65$
$25 / 25$	$25 / 25$	$25 / 25$	- 130	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$	- 130	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$
- 125	$25 / 25$	$25 / 25$	- 130	- 130	$30 / 30$	$30 / 30$	$30 / 30$	- 130	- 130	$30 / 30$	$30 / 30$	$30 / 30$
	$4 / 25$	$4 / 25$			$15 / 15$	$15 / 15$	$15 / 15$			$15 / 15$	$15 / 15$	$15 / 15$
		$4 / 25$				$15 / 15$	$15 / 15$				$15 / 15$	$15 / 15$
							$15 / 15$					15/15
$30 / 50$	$30 / 50$	$30 / 50$	$36 / 36$	$30 / 36$	$30 / 36$	$30 / 36$	$30 / 36$	$40 / 65$	$40 / 65$	$40 / 65$	$40 / 65$	$40 / 65$
$20 / 25$	$25 / 25$	$25 / 25$	- 130	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$	- 130	$30 / 30$	$30 / 30$	$30 / 30$	$30 / 30$
- 125	$25 / 25$	$25 / 25$	- 130	- 130	$30 / 30$	$30 / 30$	$30 / 30$	- 130	- 130	$30 / 30$	$30 / 30$	$30 / 30$
$3 / 10$	$3 / 10$	$3 / 10$										

40/65 $40 / 65$ 40/65 $40 / 6540 / 6540 / 65$ 36/36 $36 / 3636 / 3636 / 3640 / 5040 / 5040 / 5040 / 50 \mid 40 / 6540 / 6540 / 6540 / 65$ $30 / 3030 / 3030 / 3030 / 3030 / 3030 / 30$ 30/30 $30 / 3030 / 30$ 30/30 $30 / 3030 / 3030 / 30 / 30 / 3030 / 3030 / 3030 / 3030 / 30$ - /30 $30 / 3030 / 3030 / 3030 / 3030 / 3030 / 3030 / 3030 / 3030 / 30$ 30/30 $30 / 3030 / 3030 / 30$ 30/30 $30 / 3030 / 3030 / 30$

 - /10 $10 / 10$ 10/10 $10 / 10$ - $/ 10$ 10/10 $10 / 10$ 10/10 - - /10 $10 / 10$ 10/10 $10 / 10$ $40 / 6540 / 6540 / 6540 / 6540 / 6540 / 65$ 36/36 $36 / 36$ 36/36 $36 / 36$ | $40 / 50$ 40/50 $40 / 50$ 40/50 $40 / 6540 / 65$ 40/65 $40 / 65$ $-/ 3030 / 3030 / 3030 / 3030 / 3030 / 3030 / 3030 / 3030 / 3030 / 30$ 30/30 $30 / 3030 / 3030 / 30 / 30 / 30 / 30 / 3030 / 3030 / 30$ - /30 30/30 $30 / 3030 / 3030 / 3030 / 3030 / 3030 / 3030 / 30$ 30/30 $30 / 3030 / 3030 / 30$ 30/30 $30 / 30$ 30/30 $30 / 30$ 30/30

Selectivity \& Cascade Tables

@ 400 / 415 V

Upstream MCCBs ${ }^{1}$)

Notes: XX Selectivity YY Cascade

Selectivity \＆Cascade Tables

＠ 400 ／ 415 V

	$\begin{aligned} & \text { 山⿱山⿱一⿱㇒⿵冂⿰丨丨⿱二小又 } \\ & \text { ㅗㅜㅊ } \end{aligned}$	山					$\begin{aligned} & \text { u } \\ & \text { N } \\ & \hat{\tilde{n}} \\ & \end{aligned}$		$\begin{aligned} & \text { 山⿱宀⿱一兀口} \\ & \stackrel{0}{\tilde{n}} \\ & \end{aligned}$	
50	65	70	125	50	65	125	85	125	100	85
$25 / 36$	$25 / 50$	$25 / 50$	25 ／ 25	25／36	25／36	25／36	25／25	25／25	25／25	25／25
$36 / 50$	$36 / 65$	$36 / 65$	36 ／ 36	$36 / 50$	$36 / 36$	$36 / 36$	$36 / 36$	36／36	$36 / 36$	$36 / 36$
$50 / 50$	65 ／ 65	65 ／ 70	65 ／ 65	$50 / 50$	65／ 65	65／ 65	65／65	65／65	65 ／ 65	65／65
$50 / 50$	50 ／ 65	70 ／ 70	70 ／125	$50 / 50$	65／ 65	65／125	85／85	85／125	100／100	85 ／85
$36 / 50$	$36 / 50$	$36 / 50$	36 ／ 36	$36 / 50$	$36 / 65$	$36 / 36$	$36 / 36$	36／36	$36 / 36$	$36 / 36$
$50 / 50$	50 ／ 65	$65 / 70$	65 ／ 65	$50 / 50$	50 ／ 65	$50 / 65$	65／65	65／65	65 ／ 65	65／65
$50 / 50$	$50 / 65$	$70 / 70$	$70 / 125$	$50 / 50$	50／65	50／125	85／85	85／125	100／100	$85 / 85$
$25 / 36$	$25 / 50$	$25 / 50$	25 ／ 25	25／36	$25 / 50$	$25 / 50$	25／25	25／25	$25 / 25$	25／25
$36 / 50$	$36 / 65$	$36 / 65$	36 ／ 36	$36 / 50$	$36 / 65$	$36 / 65$	$36 / 36$	$36 / 36$	$36 / 36$	$36 / 36$
$50 / 50$	$50 / 65$	65 ／ 70	65 ／ 65	$50 / 50$	$50 / 65$	$50 / 65$	65／65	65／65	65 ／ 65	$65 / 65$
$50 / 50$	50 ／ 65	70 ／ 70	70 ／ 70	50／50	65／65	$50 / 70$	70／70	70／70	70 ／ 70	70／70
$50 / 50$	$50 / 65$	70 ／ 70	$70 / 125$	$50 / 50$	50／65	$50 / 125$	85／85	85／125	100／100	$85 / 85$
$50 / 50$	$50 / 65$	70 ／ 70	$70 / 125$	$50 / 50$	65／65	$50 / 125$	85／85	85／125	100／100	$85 / 85$
10 ／ 36	10／50	$10 / 50$	10 ／ 36	25／36	25／50	25／36	25／36	25／36	$25 / 36$	$25 / 25$
$10 / 50$	10 ／ 65	10 ／ 65	10 ／ 50	25／50	$25 / 65$	25／50	$36 / 50$	$36 / 50$	$36 / 50$	$36 / 36$
$10 / 50$	10 ／ 50	$10 / 50$	10 ／ 50	25／50	$25 / 50$	$25 / 50$	$50 / 50$	50／50	$50 / 50$	50／50
$10 / 50$	10 ／ 65	10 ／ 70	10 ／ 65	25／50	$25 / 65$	25／65	50／65	$50 / 65$	$50 / 65$	$50 / 50$
$10 / 50$	10 ／ 65	10 ／ 70	10 ／ 70	$25 / 50$	$25 / 65$	25／70	$70 / 70$	70／70	$70 / 85$	$70 / 70$
$10 / 50$	10 ／ 65	10 ／70	10 ／ 85	25／50	$25 / 65$	25／85	70／85	85／85	$85 / 85$	85／85
10 ／ 50	10 ／ 65	10 ／ 70	$10 / 125$	$25 / 50$	$25 / 65$	25／125	$85 / 85$	$85 / 125$	$85 / 100$	$85 / 85$
				25／36	25／36	$25 / 36$	$36 / 36$	$36 / 36$	$36 / 36$	36／36
				$25 / 50$	$25 / 50$	$25 / 50$	$50 / 50$	50／50	$50 / 50$	$50 / 50$
							70／70	70／70	$70 / 70$	$70 / 70$
							$30 / 42$	$30 / 42$	$30 / 42$	$35 / 42$
							$30 / 65$	$30 / 65$	$30 / 65$	$35 / 65$
							$30 / 85$	$30 / 85$	$30 / 85$	$35 / 85$
							$30 / 65$	$30 / 65$	$30 / 85$	$30 / 85$
							$30 / 65$	$30 / 65$	$30 / 85$	$30 / 85$
							$30 / 65$	30／65	$30 / 85$	$30 / 85$
							15／65	15／65	$20 / 65$	$35 / 65$
							15／50	15／50	$20 / 50$	$35 / 50$
							15／85	15／85	$20 / 85$	$35 / 85$
							15／65	15／65	$20 / 65$	$35 / 65$
							15／65	15／65	$20 / 65$	$35 / 65$
									$20 / 65$	$35 / 65$
										$35 / 85$

Notes：＇）Refer NHP for TemBreak 2 MCCB combinations not included above．

Cascade table
Upstream-Downstream MCCBs (Thermal magnetic upstream)

Cascade @ 380-415 V AC ${ }^{1}$)
 MCCBs.

$\begin{aligned} & \underset{Z}{Z} \\ & \text { in } \\ & \text { Nu } \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \text { N } \\ & \text { N } \end{aligned}$		Z 응 N N	7 잉 N	$\begin{aligned} & \text { U} \\ & \text { O} \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \text { O} \\ & 0 \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { তे } \\ & \text { O } \\ & \text { U } \end{aligned}$		$\begin{aligned} & \mathrm{Z} \\ & 0 \\ & \hline \end{aligned}$	ஸi
25	36	65	125	200	36	50	70	125	200	65
25	36	50	65	85	36	36	50	65	85	36
25	36	65	85	125	36	50	65	85	125	50
25	36	65	125	150	36	50	70	125	150	65
25	36	65	125	200	36	50	70	125	200	65
25	36	65	85	125	36	50	65	85	125	65
25	36	65	125	150	36	50	70	125	150	65
25	36	65	125	200	36	50	70	125	200	65
25	25	50	65	85	36	36	50	65	85	36
25	36	65	85	125	36	50	65	85	125	65
-	-	65	125	150	36	50	70	125	150	65
-	-	65	125	150	36	50	70	125	150	65
-	-	65	125	200	36	50	70	125	200	65
-	-	25	65	25	36	36	50	65	85	50
-	-	36	70	36	36	50	65	70	100	65
-	-	50	85	50	36	50	70	85	125	50
-	-	50	125	70	36	50	70	125	150	65
-	-	-	-	-	-	-	-	-	200	65

Application data Load-break / MCCB

Socomec load-break switch and TemBreak MCCB co-ordination chart

TemBreak MCCB

Socomec Loadbreak switch	MCCB	$\begin{aligned} & \text { (kA) } \\ & \text { rms } \end{aligned}$	MCCB	(kA) rms	MCCB	(kA) rms	MCCB	(kA) rms
SLB63	E125NJ	6.5	S125NJ	6.5	S125GJ ${ }^{1}$)	6.5	H125NJ	7.5
SLB125	E125NJ	22	S125NJ	22	S125GJ ${ }^{1}$)	22	H125NJ	30
	-	-	S160NJ	15	S160GJ	15	H160NJ	27
	E250NJ	15	S250NJ	15	S250GJ ${ }^{1}$)	15	H250NJ	26
SLB200	E125NJ	25	S125NJ	36	S125GJ ${ }^{1}$)	65	H125NJ	80
	-	-	S160NJ	30	S160GJ	30	H160NJ	80
	E250NJ	25	S250NJ	30	S250GJ ${ }^{1}$)	30	H250NJ	80
SLB250	E250NJ	25	S250NJ	30	S250GJ ${ }^{1}$)	30	H250NJ	50
	E400NJ	25	S400NJ	25	S400GJ	25	H400NJ	35
SLB315	E250NJ	25	S250NJ	36	S250GJ ${ }^{1}$)	65	H250NJ	100
	E400NJ	25	S400NJ	50	S400GJ	65	H400NJ	100
SLB400	E400NJ	25	S400NJ	50	S400GJ	65	H400NJ	100

TemBreak MCCB

Socomec Load- break switch	MCCB	(kA) rms	MCCB	(kA) rms	MCCB	(kA) rms
SLB630	E630NE	35	S630CE	35	TL630NE	24
SLB800	XS800NJ	40	XH800PJ	40	TL800NE	28
SLB1000	XS1250SE	45	XS1600SE	45	TL1250NE45	
SLB1250	XS1250SE	65	XS1600SE	75	TL1250NE70	
SLB1600	XS1600SE	75	XS2000NE	60	-	-
SLB2000	XS2000NE	60	XS2500NE	60	-	-
SLB2500	XS2500NE	60	-	-	-	-

Notes: ') Ratings also apply for ZS125GJ and ZS250GJ.
Figures based on / valid for $-400 / 415$ V AC
Application example:
All Socomec load-break switches can be used in higher prospective fault current level applications, due to the upstream Terasaki TemBreak MCCB reducing the peak let-through current.
Example: SLB250 can be used in a 30 kA application if there is an upstream S250NJ MCCB.
For other combinations please refer to NHP.

Watts loss for Terasaki MCCBs ${ }^{\mathbf{1}}$)

C/B rating MCCBs	Amps	AC Watts	DC Watts
TemBreak 2 MCCBs			
E/S125 NJ - GJ, VS125NJ	125	38	34
S160 NJ - GJ, VS250NJ (160 A)	160	40	36
E/S250 NJ - GJ, VS250NJ	250	55	49
S250PE	250	82	73
E/S400 CJ - NJ - GJ	400	75	67
E/S400 NE - GE	400	70	62
E/S630 NE - CE - GE-PE	630	133	119

TemBreak 1 MCCBs			
XS/XH400SE, XV400NE	400	69	62
XS/XH630SE, XV630PE	630	109	97
XS800NJ	800	150	134
XS/XH800SE, XV800PE	800	151	134
XS1250SE, XV1250NE	1250	194	173
XS1600SE	1600	189	169
XS2000NE	2000	228	204
XS2500NE	2500	357	319
XS3200NE	3200	585	522

Notes: ${ }^{1}$) Values are valid for the maximum ampere trip units per breaker type. (E.g. S125GJ : 125 A) The above watts losses are for 3 poles combined.

Downstream short-circuit current calculator

Calculation of a downstream short-circuit current is a function of the uptream short-circuit current (Isco), cross-section and length of the conductor. The following table provides information to calculate approximately the short-circuit current at a relevant point of the installation.
Line protection - copper conductor
$\mathbf{m m}^{2}$ Length of the line in metres
1.5
2.5

4												0.8
6												1.2
10										0.8	1.1	2.1
16								0.8	1.0	1.3	1.7	3.3
25							1.1	1.3	1.6	2.1	2.6	5.1
35							1.5	1.8	2.2	3.0	3.7	7.2
50						1.0	2.2	2.6	3.1	4.2	5.3	10
70						1.4	3.0	3.6	4.4	5.9	7.4	14
95			0.8	0.9	1.0	2.0	4.1	4.9	6.0	8.0	10	20
120		0.9	1.0	1.2	1.3	2.5	5.2	6.2	7.5	10	13	25
150	0.8	1.0	1.1	1.3	1.4	2.7	5.6	6.8	8.2	11	14	27
185	1.0	1.2	1.3	1.5	1.7	3.2	6.7	8.0	9.7	13	16	32
240	1.2	1.5	1.7	1.9	2.1	3.9	8.3	10	12	16	20	39
300	1.4	1.7	2.0	2.2	2.5	4.7	10	12	14	19	24	47
400	1.6	1.9	2.2	2.4	2.7	5.1	11	13	16	21	26	51
500	1.7	2.1	2.4	2.7	3.0	5.7	12	14	17	23	29	57
625	1.8	2.1	2.5	2.8	3.1	5.8	12	15	18	24	30	58
2x95	1.2	1.4	1.6	1.8	2.1	3.9	8.2	9.9	12	16	20	39
2×120	1.5	1.8	2.1	2.3	2.6	4.9	10	12	15	20	25	49
2×150	1.6	2.0	2.3	2.5	2.8	5.4	11	14	16	22	28	54
2×185	1.9	2.3	2.7	3.0	3.3	6.3	13	16	19	26	33	63
2x240	2.4	2.9	3.3	3.7	4.2	7.9	17	20	24	32	41	79
3×95	1.8	2.2	2.5	2.8	3.1	5.9	12	15	18	24	30	59
3×120	2.3	2.7	3.1	3.5	3.9	7.4	16	19	23	30	38	74
3×150	2.5	3.0	3.4	3.8	4.2	8.0	17	20	25	33	41	80
3×185	2.9	3.5	4.0	4.5	5.0	9.5	20	24	29	39	49	95
3×240	3.6	4.4	5.0	5.6	6.2	12	25	30	36	49	61	118

Isc $_{0}$ kA
 Short-circuit current at the end of the cable

100	94	93	92	91	90	83	70	66	62	55	49	33
90	85	84	84	83	82	76	65	62	58	52	47	32
80	76	76	75	74	74	69	60	57	54	48	44	31
- 70	67	67	66	66	65	61	54	52	49	44	41	29
\% 60	58	57	57	57	56	54	48	46	44	40	37	27
5 50	49	48	48	48	47	45	41	40	38	35	33	25
$\stackrel{40}{ }$	39	39	39	39	38	37	34	33	32	30	28	22
± 35	34	34	34	34	34	33	30	30	29	27	26	21
O 30	29	29	29	29	29	28	27	26	25	24	23	19
- 25	25	25	24	24	24	24	23	22	22	21	20	17
- 20	20	20	20	20	20	19	18	18	18	17	17	14
- 15	15	15	15	15	15	15	14	14	14	13	13	12
± 10	9.9	9.9	9.9	9.9	9.9	9.8	9.6	9.5	9.4	9.2	9.1	8.3
烍 7	7.0	7.0	7.0	7.0	6.9	6.9	6.8	6.8	6.7	6.6	6.5	6.1
$\checkmark 5$	5.0	5.0	5.0	5.0	5.0	5.0	4.9	4.9	4.9	4.8	4.8	4.5
-4	4.0	4.0	4.0	4.0	4.0	4.0	3.9	3.9	3.9	3.9	3.8	3.7
3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.9	2.9	2.9	2.8
2	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.9
1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Example

Cable with cross-section $95 \mathrm{~mm}^{2} \mathrm{Cu}, 45 \mathrm{~m}$ length, and short-circuit current at the
transformer terminals of 30 kA . Estimated short-circuit current of $\mathbf{1 2} \mathbf{~ k A}$ at the end of the cable.

		0.9	1.3	1.6	3.1	6.2	7.8	9.4	13	16	31
1.0	1.3	1.6	2.1	2.6	5.1	10	13	16	21	26	51
1.6	2.1	2.5	3.4	4.2	8.2	16	21	25	34	42	82
2.5	3.1	3.8	5.1	6.4	12	25	31	38	51	64	123
4.1	5.2	6.3	8.4	11	21	41	52	63	84	106	205
6.6	8.3	10	13	17	33	66	83	100	135	170	329
10	13	16	21	26	51	103	130	157	211	265	514
14	18	22	30	37	72	144	182	219	295	371	719
21	26	31	42	53	103	205	259	314	422	530	
29	36	44	59	74	144	288	363	439	590	742	
39	49	60	80	101	195	390	493	596	801		
49	62	75	101	127	246	493	623	752			
54	68	82	110	138	268	536	677	818			
63	80	97	130	163	317	633	800	967			
79	100	120	162	203	394	789	996				
95	120	145	195	244	474	948					
103	130	157	211	265	514						
114	144	174	234	294	571						
117	147	178	240	301	584						
78	99	119	160	201	390	781	986				
99	125	150	202	254	493	986					
107	135	164	220	276	536						
127	160	193	260	327	633						
158	199	241	324	407	789						
117	148	179	240	302	585						
148	187	226	304	381	739						
161	203	245	330	415	804						
190	240	290	390	490	950						
237	299	361	486	610							

20	16	14	11	8.8	4.7	2.4	1.9	1.6	1.2	1.0	0.5
19	16	14	11	8.7	4.7	2.4	1.9	1.6	1.2	1.0	0.5
19	16	14	11	8.6	4.7	2.4	1.9	1.6	1.2	1.0	0.5
18	15	13	10	8.5	4.6	2.4	1.9	1.6	1.2	1.0	0.5
18	15	13	10	8.3	4.6	2.4	1.9	1.6	1.2	0.9	0.5
17	14	12	9.8	8.1	4.5	2.4	1.9	1.6	1.2	0.9	0.5
15	13	12	9.3	7.8	4.4	2.3	1.9	1.6	1.2	0.9	0.5
15	13	11	9.0	7.6	4.4	2.3	1.9	1.6	1.2	0.9	0.5
14	12	11	8.6	7.3	4.3	2.3	1.8	1.5	1.2	0.9	0.5
12	11	9.9	8.2	7.0	4.2	2.3	1.8	1.5	1.2	0.9	0.5
11	10	9.0	7.5	6.5	4.0	2.2	1.8	1.5	1.1	0.9	0.5
9.4	9.0	7.8	6.7	5.9	3.7	2.1	1.7	1.5	1.1	0.9	0.5
.1	7.0	6.2	5.5	4.9	3.3	2.0	1.6	1.4	1.1	0.9	0.5
5.5	5.0	4.9	4.4	4.1	2.9	1.8	1.5	1.3	1.0	0.8	0.5
4.2	4.0	3.8	3.5	3.3	2.5	1.7	1.4	1.2	1.0	0.8	0.5
3.4	3.0	3.2	3.0	2.8	2.2	1.5	1.3	1.2	0.9	0.8	0.4
2.7	3.0	2.5	2.4	2.3	1.9	1.4	1.2	1.1	0.9	0.7	0.4
1.9	2.0	1.8	1.7	1.7	1.4	1.1	1.0	0.9	0.8	0.7	0.4
1.0	1.0	0.9	0.9	0.9	0.8	0.7	0.7	0.6	0.5	0.5	0.3

Correction coefficient	
Voltage	\mathbf{K}
230 V	0.58
660 V	1.65

- Values shorter than 0.8 m or longer than 1 km are not considered.
- All values are for voltage 400 V .

Short circuit co-ordination

What is co-ordination?

The motor starter consists of a combination of contactor, overload relay and short circuit protective device (SCPD) being either fuses or circuit breakers.
During motor starting and at normal loading, the overload relay protects both the motor and cables by tripping the contactor in a time inversely proportional to the current. However, under short circuit conditions, the response time would be too long and the fuses or circuit breaker must take over to interrupt the fault current therefore limiting energy passed through the starter components. When this is successfully achieved, the combination is said to be co-ordinated.

The primary function of co-ordination is to ensure that the selected components result in safe interruption of fault currents while minimising damage to the starter components themselves.

Why is co-ordination important?
Contactors are designed to switch loads frequently. They can carry the high starting currents of motors, but at short circuit levels, the extremely high current can force the contacts open due to electro- dynamic effects (it is this effect that is needed at normal operating currents to extinguish the arc quickly). Large short circuit currents can therefore lift the contacts possibly resulting in contact welding or further damage to the starter components.

The importance of selecting the correct SCPD is to minimise the effects of short circuits, provide safe interruption and a level of performance to meet the criteria for Type ' 2 '
co-ordination.

Precise contactor control

While the correct selection of SCPD is of prime importance to ensure reliable operation under short circuit conditions, there are other malfunctions which can occur in a control circuit that can create contact welding due to uncontrolled and repetitive switching of the coil circuit (this is referred to as 'contact chatter'). This is particularly important with high current contactors where the switching currents of the respective motors are particularly high.
The electronically controlled mechanism 'ECM' of the CA 6 contactors prevent uncontrolled switching under all voltage conditions by providing precise control over the magnet system, thus preventing contact chatter and minimising contact bounce. Contactors of the
CA 5 series are provided with a delayed release mechanism to prevent contact chatter under low voltage conditions.

High performance contactors

Under normal operating conditions all Sprecher + Schuh contactors offer high mechanical life (up to 10 million operations) with a contact life (electrical) up to 1.3 million under AC 3 conditions. Optimal performance is assured even under adverse conditions due to the design and selection of contactor components. This performance is evident in the design of the CA 6 contactor range which has enabled them to reach their full kilowatt potential under Type ' 2 ' conditions with both fuses and circuit breakers (refer co-ordination charts).

Terasaki 'TemBreak' tested with Sprecher + Schuh contactors to IEC 60947

The KTA 7 with CA 7 contactors.

Excellent design enables the CA 6 series contactors to reach their full potential under Type ' 2 ' conditions with both fuses and circuit breakers.

- 250A - 1600A MCCBs
- New 1000 A MCCB in a smaller 800 A Frame
- Ground Fault, Neutral pole, Phase Rotation, Pre Trip Alarm Protection
- Premium OCR - L S I Adjustable
- Back-lit LCD display
- Metering: I, U, P, W, Cos φ, F
- Modbus communications
- Intelligent fault analysis
- Basic 2 dial OCR types
- Thermal magnetic to 800 A
- Common internal accessories for 125 A to 1600 A MCCBs
- Metering block for 125 A - 630 A MCCBs

TemBreak

Type 2 Short Circuit Coordination

Terasaki/Sprecher + Schuh
TYPE 2 50/65 KA
For DOL motor starting, 50/60 kA @ 400/415 V to AS/NZS 60947.4.1 415 V TemBreak MCCB circuit breakers
Sprecher + Schuh Thermal magnetic and Electronic overload relays.
Component Selection Table C64.0

	Motor	Circuit Breaker	Contactor	Overload Relay	
Motor Kw	Motor Amp Ratings @ 400/415 V	Moulded Case Circuit Breaker	Contactor Type	Overload Relay Thermal Type	Ampere Setting Range
0.18	0.6	XM30PB / 0.7A	CA7-9	CT7N 23 A80	0.55-0.8
0.25	0.8	XM30РB / 1.4A	CA7-9	CT7N 23 B10	0.75-1.0
0.37	1.1	XM30РB / 1.4A	CA7-9	CT7N 23 B13	0.9-1.3
0.55	1.5	XM30РB / 2.0 A	CA7-9	CT7N 23 B20	1.4-2.0
0.75	1.8	XM30PB / 2.6A	CA7-9	CT7N 23 B25	1.8-2.5
1.1	2.6	XM30РB / 4A	CA7-16	CT7N 23 B32	2.3-3.2
1.5	3.4	XM30РB / 5A	CA7-16	CT7N 23 B40	2.9-4.0
2.2	4.8	XM30PB / 8A	CA7-16	CT7N 23 B63	4.5-6.3
3	6.5	XM30PB / 10A	CA7-23	CT7N 23 B75	5.5-7.5
4	8.2	XM30PB / 12A	CA7-23	CT7N 23 C 10	7.2-10
5.5	11	S125GJ/20A	CA7-30	CEP7 EEED	5.4-27
7.5	14	S125GJ/20A	CA7-30	CT7N 37 C20	15-20
10	17	S125GJ/20A	CA7-30	CT7N 37 C20	15-20
11	21	S125GJ/32A	CA7-30	CT7N 37 C25	21-25
15	28	S125GJ/50A	CA7-30	CT7N 37 C30	24.5-30
18.5	34	S125GJ/50A	CA7-37	CT7N 37 C38	33-38
22	40	S125GJ/63A	CA7-43	CT7N 43 C47	35-47
30	55	S125GJ/100A	CA7-72	CT7N 85 C 60	45-60
37	66	S125GJ/100A	CA7-72	CT7N 85 C75	58-75
45	80	S125GJ/125A	CA7-85	CT7N 85 C 90	72-90
55	100	S125GJ/125A	CA6-115	CEP 7 EEHF	30-150
75	130	S160GJ/160A	CA6-140-EI	CEP 7 EEHF	30-150
90	155	S250GJ/250A	CA6-140-EI	CEP 7 EEJF	40-200
110	200	S250GJ/250A	CA6-180-EI	CEP 7 EEKG	60-300
132	225	S400GJ/400A	CA6-420-EI	CEP 7 EEKG	60-300
150	250	S400GJ/400A	CA6-420-EI	CEP 7 EEKG	60-300
160	270	S400GJ/400A	CA6-420-EI	CEP 7 EEKG	60-300
185	325	S400GJ/400A	CA6-420-EI	CEP 7 EELG	100-500
200	361	S400GJ/400A	CA6-420-EI	CEP 7 EELG	100-500
220	383	S400GJ/400A	CA6-630-EI	CEP 7 EEMH	120-600
250	425	S630GE / 630A	CA6-860-EI	CEP 7 EEMH	120-600
320	538	S630GE / 630A	CA6-860-EI	CEP 7 EEMH	120-600
400	700	XH800SE / 800A	CA6-860-EI	CEP 7 EENH	160-800

Notes: - Thermal or electronic overload relays may be used.

- XM30PB can be replaced with S125GJ/20 and CA7-23/ CA7-30
- Combinations based on the overload tripping before the circuit breaker at overload currents up to the motor locked rotor current.
- Thermal magnetic MCCBs may be charged to electronic types if required.
- Same 'look' handles can be used on XM30PB and S125-630 A MCCBs
- S125GJ and S250GJ MCCBs can be changed to ZS125GJ and ZS250GJ earth leakage relay MCCBs if required.
- Refer to NHP for other device combinations
- The above combinations are designed for motors with an inrush of 7 x FLC for 5 seconds. The instant trip point of MCCBs must be considered when used with high inrush, high efficiency motors.

Type 2 Short Circuit Coordination

Terasaki/Sprecher + Schuh

For DOL motor starting, 50/60 kA @ 400/415 V to AS/NZS 60947.4.1
TemBreak MCCB circuit breakers
Sprecher + Schuh Electronic overload relays.
Component Selection Table C64.2

Motor		Circuit Breaker Moulded Case Circuit Breaker	Contactor Contactor Type	Overload Relay	
Motor Kw	Motor Amp Ratings @ 400/415 V			Overload Relay (Electronic)	Ampere Setting Range
0.18	0.6	XM30PB / 0.7A	CA7-9	CEP 7 EEBB	0.2-1.0
0.25	0.8	XM30РB / 1.4A	CA7-9	CEP 7 EEBB	0.2-1.0
0.37	1.1	XM30PB / 1.4A	CA7-9	CEP 7 EECB	1.0-5.0
0.55	1.5	XM30PB / 2.0 A	CA7-9	CEP 7 EECB	$1.0-5.0$
0.75	1.8	XM30РB / 2.6A	CA7-9	CEP 7 EECB	1.0-5.0
1.1	2.6	XM30PB / 4A	CA7-16	CEP 7 EECB	1.0-5.0
1.5	3.4	XM30PB / 5A	CA7-16	CEP 7 EECB	1.0-5.0
2.2	4.8	XM30РB / 8A	CA7-16	CEP 7 EEEB	5.4-27
3	6.5	XM30РB / 10A	CA7-23	CEP 7 EEEB	5.4-27
4	8.2	XM30PB / 12A	CA7-23	CEP 7 EEEB	5.4-27
5.5	11	S125GJ/20A	CA7-30	CEP 7 EEED	5.4-27
7.5	14	S125GJ/20A	CA7-30	CEP 7 EEED	5.4-27
10	17	S125GJ/20A	CA7-30	CEP 7 EEED	5.4-27
11	21	S125GJ/32A	CA7-30	CEP 7 EEED	5.4-27
15	28	S125GJ/50A	CA7-30	CEP 7 EEFD	9.0-45
18.5	34	S125GJ/50A	CA7-37	CEP 7 EEFD	9.0-45
22	40	S125GJ/63A	CA7-43	CEP 7 EEFD	9.0-45
30	55	S125GJ/100A	CA7-72	CEP 7 EEGE	18-90
37	66	S125GJ/100A	CA7-72	CEP 7 EEGE	18-90
45	80	S125GJ/125A	CA7-85	CEP 7 EEGE	18-90
55	100	S125GJ/125A	CA6-115	CEP 7 EEHF	30-150
75	130	S160GJ/160A	CA6-140-EI	CEP 7 EEHF	30-150
90	155	S250GJ/250A	CA6-140-EI	CEP 7 EEJF	40-200
110	200	S250GJ/250A	CA6-180-EI	CEP 7 EEKG	60-300
132	225	S400GJ/400A	CA6-420-EI	CEP 7 EEKG	60-300
150	250	S400GJ/400A	CA6-420-EI	CEP 7 EEKG	60-300
160	270	S400GJ / 400A	CA6-420-EI	CEP 7 EEKG	60-300
185	325	S400GJ/400A	CA6-420-EI	CEP 7 EELG	100-500
200	361	S400GJ/400A	CA6-420-EI	CEP 7 EELG	100-500
220	383	S400GJ/400A	CA6-630-EI	CEP 7 EEMH	120-600
250	425	S630GE / 630A	CA6-860-EI	CEP 7 EEMH	120-600
320	538	S630GE / 630A	CA6-860-EI	CEP 7 EEMH	120-600
400	700	XH800SE / 800A	CA6-860-EI	CEP 7 EENH	160-800

Notes: - Thermal or electronic overload relays may be used.

- XM30PB can be replaced with S125GJ/20 and CA7-23/ CA7-30
- Combinations based on the overload tripping before the circuit breaker at overload currents up to the motor locked rotor current.
- Electronic MCCBs may be changed to thermal magnetic types if required.
- Same 'look' handles can be used on XM30PB and S125-630 A MCCBs.
- S125GJ and S250GJ MCCBs can be changed to ZS125GJ and ZS250GJ earth leakage relay MCCBs if required.
- Refer to NHP for other device combinations.
- The above combinations are designed for motors with an inrush of 7 x FLC for 5 seconds. The instant trip point of MCCBs must be considered when used with high inrush, high efficiency motors.

Type 2 Short Circuit Coordination

Terasaki/Sprecher + Schuh
TYPE 2 50/65 KA
For DOL motor starting, 50/60 kA @ 400/415 V to AS/NZS 60947.4.1 TemBreak MCCB circuit breakers
Sprecher + Schuh Electronic overload relays with communications and earth leakage.

Component Selection Table C64.11

Motor		Circuit Breaker Contactor		Overload Relay	
Motor Kw	Motor Amp Ratings @ 400/415 V	Moulded Case Circuit Breaker	Contactor Type	Overload Relay (Electronic)	Ampere Setting Range
0.18	0.6	S125GJ / 20A	CA7-23	CEP7 C3-23-2	0.4-2.0
0.25	0.8	S125GJ/20A	CA7-23	CEP7 ${ }^{\text {C3-23-2 }}$	0.4-2.0
0.37	1.1	S125GJ/20A	CA7-23	CEP7 C3-23-2	0.4-2.0
0.55	1.5	S125GJ/20A	CA7-23	CEP7 C3-23-5	1.0-5.0
0.75	1.8	S125GJ/20A	CA7-23	CEP7 $73-23-5$	1.0-5.0
1.1	2.6	S125GJ/20A	CA7-23	CEP7 $73-23-5$	1.0-5.0
1.5	3.4	S125GJ/20A	CA7-23	CEP7 ${ }^{\text {C3-23-5 }}$	1.0-5.0
2.2	4.8	S125GJ/20A	CA7-23	CEP7 C3-23-5	1.0-5.0
3	6.5	S125GJ/20A	CA7-23	CEP7 C3 23-25	5.0-25
4	8.2	S125GJ/20A	CA7-23	CEP7 ${ }^{\text {C3 23-25 }}$	5.0-25
5.5	11	S125GJ/20A	CA7-30	CEP7 C3 43-25 $^{\text {a }}$	5.0-25
7.5	14	S125GJ/20A	CA7-30	CEP7 C3 43-25	5.0-25
10	17	S125GJ/20A	CA7-30	CEP7 73 43-25	5.0-25
11	21	S125GJ/32A	CA7-30	CEP7 C3 43-25	5.0-25
15	28	S125GJ/50A	CA7-30	CEP7 ${ }^{\text {C3 43-45 }}$	9.0-45
18.5	34	S125GJ/50A	CA7-37	CEP7 C3 43-45	9.0-45
22	40	S125GJ/63A	CA7-43	CEP7 C3 43-45	9.0-45
30	55	S125GJ/100A	CA7-72	CEP7 C3 85-90	18-90
37	66	S125GJ/100A	CA7-72	CEP7 C3 85-90	18-90
45	80	S125GJ/125A	CA7-85	CEP7 C3 85-90	18-90
55	100	S125GJ/125A	CA6-115	CEP7 C3 180140	28-140
75	130	S160GJ/160A	CA6-140-EI	CEP7 C3 180140	28-140
90	155	S250GJ/250A	CA6-140-EI	CEP7 C3 180210	42-210
110	200	S250GJ/250A	CA6-180-EI	CEP7 C3 420302	60-302
132	225	S400GJ/400A	CA6-420-EI	CEP7 C3 420302	60-302
150	250	S400GJ/400A	CA6-420-EI	CEP7 C3 420302	60-302
160	270	S400GJ/400A	CA6-420-EI	CEP7 C3 420302	60-302
185	325	S400GJ/ 400A	CA6-420-EI	CEP7 C3 420420	84-420
200	361	S400GJ / 400A	CA6-420-EI	CEP7 C3 420420	84-420
220	383	S400GJ/400A	CA6-630-EI	CEP7 C3 860630	125-630
250	425	S630GE / 630A	CA6-860-EI	CEP7 C3 860630	125-630
320	538	S630GE / 630A	CA6-860-EI	CEP7 C3 860630	125-630
400	700	XH800SE / 800A	CA6-860-EI	CEP7 C3 860860	172-860

Notes: - Thermal or electronic overload relays may be used.

- S125GJ combinations can be replaced with XM30PB and smaller contactors if required.
- Combinations based on the thermal overload realy tripping before the circuit breaker at overload currents up the motor locked rotor current.
- Thermal magnetic MCCBs may be changed to electronic types if required.
- Same look handles can be used on XM30PB and S125-630 A MCCBs.
- Refer to NHP for other device combinations.
- The aove combinations are designed for motors with an inrush of $7 \times$ FLC for 5 seconds.
The instant trip point of MCCBs must be considered when used with high inrush, high efficiency motors.

33 AdempirnseatiNy

Type 2 Short Circuit Coordination

Terasaki/Sprecher + Schuh	TYPE 2
For DOL motor starting, $50 / 60 \mathrm{kA} @ 400 / 415 \mathrm{~V}$ to AS/NZS 60947.4.1	415 V

Sprecher + Schuh Thermal magnetic and electronic overload relays.
Component Selection Table C84.0

Motor		Circuit Breaker Moulded Case Circuit Breaker	Contactor Contactor Type	Overload Relay	
Motor Kw	Motor Amp Ratings @ 400/415 V			Overload Relay	Ampere Setting Range
0.18	0.6	XM30PB / 0.7A	CA7-9	CT7N 23 A80	0.55-0.8
0.25	0.8	XM30PB / 1.4A	CA7-9	CT7N 23 B10	0.75-1.0
0.37	1.1	XM30PB / 1.4A	CA7-9	CT7N 23 B13	0.9-1.3
0.55	1.5	XM30PB / 2.0 A	CA7-9	CT7N 23 B20	1.4-2.0
0.75	1.8	XM30PB / 2.6A	CA7-9	CT7N 23 B25	1.8-2.5
1.1	2.6	XM30PB / 4A	CA7-16	CT7N 23 B32	2.3-3.2
1.5	3.4	XM30РB / 5A	CA7-16	CT7N 23 B40	2.9-4.0
2.2	4.8	XM30РB / 8A	CA7-16	CT7N 23 B63	4.5-6.3
3	6.5	XM30PB / 10A	CA7-23	CT7N 23 B75	5.5-7.5
4	8.2	XM30PB / 12A	CA7-23	CT7N 23 C10	7.2-10
5.5	11	H125NJ/20A	CA7-30	CEP7 EEED	5.4-27
7.5	14	H125NJ/20A	CA7-30	CT7N 37 C20	15-20
10	17	H125NJ/20A	CA7-30	CT7N 37 C20	15-20
11	21	H125NJ/32A	CA7-30	CT7N 37 C25	21-25
15	28	H125NJ/50A	CA7-30	CT7N 37 C30	24.5-30
18.5	34	H125NJ / 50A	CA7-37	CT7N 37 C38	33-38
22	40	H125NJ/63A	CA7-43	CT7N 43 C47	35-47
30	55	H125NJ/ 100A	CA7-72	CT7N 85 C 60	45-60
37	66	H125NJ/100A	CA7-72	CT7N 85 C75	58-75
45	80	H125NJ/125A	CA7-85	CT7N 85 C 90	72-90
55	100	H125NJ/125A	CA6-115	CEP 7 EEHF	30-150
75	130	H160NJ/160A	CA6-140-EI	CEP 7 EEHF	30-150
90	155	H250NJ/250A	CA6-140-EI	CEP 7 EEJF	40-200
110	200	H250NJ/ 250 A	CA6-180-EI	CEP 7 EEKG	60-300
132	225	H400NE / 400A	CA6-420-EI	CEP 7 EEKG	60-300
150	250	H400NE / 400A	CA6-420-EI	CEP 7 EEKG	60-300
160	270	H400NE / 400A	CA6-420-EI	CEP 7 EEKG	60-300
185	325	H400NE / 400A	CA6-420-EI	CEP 7 EELG	100-500
200	361	H400NE / 400A	CA6-420-EI	CEP 7 EELG	100-500
220	383	H400NE / 400A	CA6-630-EI	CEP 7 EEMH	120-600
250	425	XH630PJ/630A	CA6-860-EI	CEP 7 EEMH	120-600
320	538	XH630PJ/630A	CA6-860-EI	CEP 7 EEMH	120-600
400	700	XH800PJ/800A	CA6-860-EI	CEP 7 EENH	160-800

Notes: - Thermal or electronic overload relays may be used.

- XM30PB can be replaced with H125GJ and CA7-30 if required.
- Combinations based on the thermal overloads relay tripping before the circuit breaker at overload currents up to the motor locked rotor current.
- Thermal magnetic MCCBs may be changed to electronic types if required.
- Same look handles can be used on XM30PB and S125-630 A MCCBs
- Refer to NHP for other device combinations.
- The above combinations are designed for motors with an inrush of 7 x FLC for 5 seconds. The instant trip point of MCCBs must be considered when used with high inrush, high efficiency motors.

Type 2 Short Circuit Coordination

erasaki/Sprecher + Schuh
For DOL motor starting, 50/60 kA @ 400/415 V to AS/NZS 60947.4.1

> TYPE 2
> 100 KA
> 415 V

TemBreak MCCB circuit breakers
Sprecher + Schuh Electronic overload relays.
Component Selection Table C14.3

Motor		Circuit Breaker Moulded Case Circuit Breaker	Contactor Contactor Type	Overload Relay	
Motor Kw	Motor Amp Ratings @ 400/415 V			Overload Relay	Ampere Setting Range
0.18	0.6	H125NJ/20A	CA7-23	CEP 7 EEBB	0.2-1.0
0.25	0.8	H125NJ / 20A	CA7-23	CEP 7 EEBB	0.2-1.0
0.37	1.1	H125NJ/20A	CA7-23	CEP 7 EECB	1.0-5.0
0.55	1.5	H125NJ/20A	CA7-23	CEP 7 EECB	1.0-5.0
0.75	1.8	H125NJ/20A	CA7-23	CEP 7 EECB	1.0-5.0
1.1	2.6	H125NJ/20A	CA7-23	CEP 7 EECB	1.0-5.0
1.5	3.4	H125NJ/20A	CA7-23	CEP 7 EECB	1.0-5.0
2.2	4.8	H125NJ/20A	CA7-23	CEP 7 EEDB	3.2-16
3	6.5	H125NJ/20A	CA7-23	CEP 7 EEDB	3.2-16
4	8.2	H125NJ/20A	CA7-23	CEP 7 EEDB	3.2-16
5.5	11	H125NJ/20A	CA7-30	CEP 7 EEED	5.4-27
7.5	14	H125NJ/20A	CA7-30	CEP 7 EEED	5.4-27
10	17	H125NJ/20A	CA7-30	CEP 7 EEED	5.4-27
11	21	H125NJ/32A	CA7-30	CEP 7 EEED	5.4-27
15	28	H125NJ/50A	CA7-30	CEP 7 EEFD	9.0-45
18.5	34	H125NJ/50A	CA7-37	CEP 7 EEFD	9.0-45
22	40	H125NJ/63A	CA7-43	CEP 7 EEFD	9.0-45
30	55	H125NJ/ 100A	CA7-72	CEP 7 EEGE	18-90
37	66	H125NJ/ 100A	CA7-72	CEP 7 EEGE	18-90
45	80	H125NJ/ 100A	CA7-85	CEP 7 EEGE	18-90
55	100	H125NJ/125A	CA6-115	CEP 7 EEHF	30-150
75	130	H125NJ/125A	CA6-140-EI	CEP 7 EEHF	30-150
90	155	H250NJ/250A	CA6-140-EI	CEP 7 EEJF	40-200
110	200	H250NJ/250A	CA6-180-EI	CEP 7 EEKG	60-300
132	225	H400NE / 400A	CA6-420-EI	CEP 7 EEKG	60-300
150	250	H400NE / 400A	CA6-420-EI	CEP 7 EEKG	60-300
160	270	H400NE / 400A	CA6-420-EI	CEP 7 EEKG	60-300
185	325	H400NE / 400A	CA6-420-EI	CEP 7 EELG	100-500
200	361	H400NE / 400A	CA6-420-EI	CEP 7 EELG	100-500
220	383	H400NE / 400A	CA6-630-EI	CEP 7 EEMH	120-600
250	425	TL630NE / 630A	CA6-860-EI	CEP 7 EEMH	120-600
320	538	TL630NE / 630A	CA6-860-EI	CEP 7 EEMH	120-600
400	700	TL800NE / 800A	CA6-860-EI	CEP 7 EENH	160-800

Notes: - Thermal or electronic overload relays may be used.

- Combinations based on the overloads relay tripping before the circuit breaker at overload currents up to the motor locked rotor current.
- Thermal magnetic MCCBs may be changed to electronic types if required.
- Same 'look' handles can be used on all MCCBs.
- Refer to NHP for other device combinations.
- The above combinations are designed for motors with an inrush of 7 x FLC for 5 seconds. The instant trip point of MCCBs must be considered when used with high inrush, high efficiency motors.

Terasaki ZS ELCB/Sprecher + Schuh
TYPE 2 50/65 KA
For DOL motor starting, 50/60 kA @ 400/415 V to AS/NZS 60947.4.1
415 V TemBreak MCCB circuit breakers
Sprecher + Schuh Electronic overload relays.
Component Selection Table EC64.3

		Circuit Breaker		Contactor	Overload Relay	
Motor Kw	Ratings @ 400/ 415 V	Moulded Case	Earth Fault Sensing		Overload	Ampere Setting Range
0.18	0.6	ZS125GJ/20A	30mA-3A	CA7-23	CEP 7 EEBB	0.2-1.0
0.25	0.8	ZS125GJ/20A	30mA-3A	CA7-23	CEP 7 EEBB	0.2-1.0
0.37	1.1	ZS125GJ/20A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-23	CEP 7 EECB	1.0-5.0
0.55	1.5	ZS125GJ/20A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-23	CEP 7 EECB	1.0-5.0
0.75	1.8	ZS125GJ/20A	30 mA - 3 A	CA7-23	CEP 7 EECB	1.0-5.0
1.1	2.6	ZS125GJ/20A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-23	CEP 7 EECB	1.0-5.0
1.5	3.4	ZS125GJ/20A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-23	CEP 7 EECB	1.0-5.0
2.2	4.8	ZS125GJ/20A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-23	CEP 7 EEDB	3.4-16
3	6.5	ZS125GJ/20A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-23	CEP 7 EEDB	3.4-16
4	8.2	ZS125GJ/20A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-23	CEP 7 EEDB	3.4-16
5.5	11	ZS125GJ/20A	30mA - 3 A	CA7-30	CEP 7 EEED	5.4-27
7.5	14	ZS125GJ/20A	30mA-3A	CA7-30	CEP 7 EEED	5.4-27
10	17	ZS125GJ/20A	30 mA - 3 A	CA7-30	CEP 7 EEED	5.4-27
11	21	ZS125GJ/32A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-30	CEP 7 EEED	5.4-27
15	28	ZS125GJ/50A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-30	CEP 7 EEFD	9.0-45
18.5	34	ZS125GJ/50A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-37	CEP 7 EEFD	9.0-45
22	40	ZS125GJ/63A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-43	CEP 7 EEFD	9.0-45
30	55	ZS125GJ/ 100A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-72	CEP 7 EEGE	18-90
37	66	ZS125GJ/100A	30mA-3A	CA7-72	CEP 7 EEGE	18-90
45	80	ZS125GJ/125A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-85	CEP 7 EEGE	18-90
55	100	ZS125GJ/125A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA6-115	CEP 7 EEHF	30-150
75	130	ZS250GJ / 160A	30mA-3A	CA6-140-EI	CEP 7 EEHF	30-150
90	155	ZS250GJ/250A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA6-140-EI	CEP 7 EEJF	40-200
110	200	ZS250GJ/250A	30mA-3A	CA6-180-EI	CEP 7 EEKG	60-300
132	225	S400GE_AG/400A	$\mathrm{lg}=0.2 \times \ln \mathrm{min}$.	CA6-420	CEP 7 EEKG	60-300
150	250	S400GE AG/400A	$\mathrm{lg}=0.2 \times \ln \mathrm{min}$.	CA6-420-EI	CEP 7 EEKG	60-300
160	270	S400GE_AG/400A	$\mathrm{lg}=0.2 \times \ln \mathrm{min}$.	CA6-420-EI	CEP 7 EEKG	60-300
185	325	S400GE_AG/ 400A	$\mathrm{lg}=0.2 \times \mathrm{ln} \mathrm{min}$.	CA6-420-EI	CEP 7 EELG	100-500
200	361	S400GE_AG/400A	$\lg =0.2 \times \ln \mathrm{min}$.	CA6-420-EI	CEP 7 EELG	100-500
220	383	S400GE_AG/400A	$\mathrm{lg}=0.2 \times \ln \mathrm{min}$.	CA6-630-EI	CEP 7 EEMH	120-600
250	425	S630GE_AG/630A	$\mathrm{l}=0.2 \times \mathrm{ln} \mathrm{min}$.	CA6-860	CEP 7 EEMH	120-600
320	538	S630GE AG/630A	$\mathrm{lg}=0.2 \times \mathrm{ln} \mathrm{min}$.	CA6-860	CEP 7 EEMH	120-600
400	700	XH800SE 800_LSIG	$\lg =0.2 \times \ln \mathrm{min}$.	CA6-860	CEP 7 EENH	160-800

Notes: - Thermal or electronic overload relays may be used.

- Combinations based on the thermal overloads relay tripping before the circuit breaker at overload currents up to the motor locked rotor current.
- MCCBs 400-800 A have a Ground Fault option fitted. This will not sense small earth leakage (residual currents)
- Refer to NHP for other device combinations.
- The above combinations are designed for motors with an inrush of 7 x FLC for 5 seconds. The instant trip point of MCCBs must be considered when used with high inrush, high efficiency motors.

Type 2 Short Circuit Coordination

Terasaki ZS ELCB/Sprecher + Schuh
TYPE 2 50/65 KA
For DOL motor starting, 50/60 kA @ 400/415 V to AS/NZS 60947.4.1
 TemBreak MCCB circuit breakers
Sprecher + Schuh Electronic overload relays with communications and earth leakage.

ComponentMotor		Selection Table EC64.11 Circuit Breaker		Contactor	Overload Relay	
	Motor Amp					
M	Rating					
Kw	415 V	Circuit Breaker	Range	Type	Relay	
0.18	0.6	ZS125GJ/20A	30mA - 3 A	CA7-23	CEP7 $73-23-2$	0.4-2.0
0.25	0.8	ZS125GJ/20A	30mA - 3 A	CA7-23	CEP7 $73-23-2$	0.4-2.0
0.37	1.1	ZS125GJ/20A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-23	CEP7 ${ }^{\text {C3-23-2 }}$	0.4-2.0
0.55	1.5	ZS125GJ/20A	30mA - 3 A	CA7-23	CEP7 $73-23-5$	1.0-5.0
0.75	1.8	ZS125GJ/20A	30mA - 3 A	CA7-23	CEP7 C3-23-5	1.0-5.0
1.1	2.6	ZS125GJ / 20A	30 mA - 3 A	CA7-23	CEP7 C3-23-5	1.0-5.0
1.5	3.4	ZS125GJ / 20A	30 mA - 3 A	CA7-23	CEP7 C3-23-5	1.0-5.0
	4.8	ZS125GJ/20A	30mA - 3 A	CA7-23	CEP7 C3-23-5	1.0-5.0
3	6.5	ZS125GJ/20A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-23	CEP7 ${ }^{\text {C3 }} 23$-25	5.0-25
4	8.2	ZS125GJ/20A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-23	CEP7 C3 23-25	5.0-25
5.5	11	ZS125GJ/20A	30mA - 3 A	CA7-30	CEP7 C3 43-25	5.0-25
7.5	14	ZS125GJ/20A	30mA - 3A	CA7-30	CEP7 C3 43-25	5.0-25
10	17	ZS125GJ/20A	30mA - 3 A	CA7-30	CEP7 C3 43-2	25
11	21	ZS125GJ/32A	30mA - 3 A	CA7-30	CEP7 C3 43-2	. 0
15	28	ZS125GJ/50A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-30	CEP7 C3 43-45	9.0-45
18.5	34	ZS125GJ/50A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-37	CEP7 C3 43-45	9.0-45
22	40	ZS125GJ/63A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-43	CEP7 C3 43-45	9.0-45
30	55	ZS125GJ/100A	30mA-3A	CA7-72	CEP7 C3 85-90	18-90
37	66	ZS125GJ/100A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA7-72	CEP7 C3 85-90	18-90
45	80	ZS125GJ/125A	30mA-3A	CA7-85	CEP7 C3 85-9	18-90
55	100	ZS125GJ/125A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA6-115	CEP7 C3 180140	28-140
75	130	ZS250GJ / 160A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA6-140-EI	CEP7 C3 180140	42-140
90	155*	ZS250GJ / 250A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA6-140-EI	CEP7 C3 180210	42-210
110	200	ZS250GJ/250A	$30 \mathrm{~mA}-3 \mathrm{~A}$	CA6-180-EI	CEP7 C3 420302	60-302
132	225	S400GE_AG/400	$\lg =0.2 \times \ln \mathrm{m}$	CA6-420	CEP7 C3 420302	60-302
150	250	S400GE_AG/400	$\mathrm{g}=0.2 \times \ln$	CA6-420	CEP7 C3 4203	60-302
160	270	S400GE AG/400	$\mathrm{g}=0.2 \times \ln \mathrm{m}$	CA6-420-	CEP7 C3 4203	60-302
185	325	S400GE_AG/400	$\lg =0.2 \times \ln \mathrm{m}$	CA6-420-	CEP7 C34204	84-420
200	361	S400GE AG/400A	$\mathrm{lq}=0.2 \times \mathrm{ln} \mathrm{mi}$	CA6-420-EI	CEP7 C3420420	84-420
220	383	S400GE_AG/400A	$\mathrm{lg}=0.2 \times \mathrm{ln} \mathrm{mi}$	CA6-630-EI	CEP7 C3 860630	125-630
250	425	S630GE_AG/630A	$\lg =0.2 \times \ln \mathrm{mi}$	CA6-860-EI	CEP7 C3 860630	125-630
320	538	S630GE_AG/630A	$\mathrm{lg}=0.2 \times \mathrm{ln} \mathrm{mi}$	CA6-860-EI	CEP7 C3860630	125-630
400	700	XH800SE800_LSI	$=0.2 \times \ln \mathrm{m}$	CA6-860-E	CEP7 C3 8608	172-860

Notes: - CEP7 C3 overloads include DeviceNet comms, earth fault relay, and thermistor relay.

- The CEP7 C3 inbuilt earth fault relay senses currents from 20 mA to 5 A . An external CT is required.
- MCCBs 400-800 A have a Ground Fault option fitted. This will not sense small earth leakage (residual currents)
- Combinations based on the thermal overloads relay tripping before the circuit breaker at overload currents up to the motor locked rotor current.
- The above combinations are designed for motors with an inrush of 7 x FLC for 5 seconds. The instant trip point of MCCBs must be considered when used with high inrush, high efficiency motors.

Type 2 Short Circuit Coordination

Sprecher + Schuh

For DOL motor starting, 50/60 kA @ 690 V to AS/NZS 60947.4.1
Sprecher + Schuh KTA7 motor circuit breakers/ CEP 7 electronic overload relays
Component Selection Table C56.0

Motor		Circuit Breaker Contactor		Overload Relay	
	Motor				
	Amp			KT7 overload or	Ampere
Motor	Ratings @	MPCB/ MCCB		separate Overload	Setting
Kw	690 V AC	Circuit Break	Type	Relay	Range
0.37	0.63	KTA 7-25S-1A	CA7-9	KT7 has adjustable O/L	0.63-1.0
0.55	0.86	KTA 7-25S-1A	CA7-9	KT7 has adjustable O/L	0.63-1.0
0.75	1.1	KTA 7-25S-1.6A	CA7-9	KT7 has adjustable O/L	1.0-1.6
1.1	1.5	KTA 7-25S-1.6A	CA7-9	KT7 has adjustable O/L	1.0-1.6
1.5	2.1	KTA 7-25H-2.5A	CA7-9	KT7 has adjustable O/L	1.6-2.5
2.2	2.9	KTA 7-25H-4A	CA7-9	KT7 has adjustable O/L	2.5-4
3	3.8	KTA 7-25H-4A	CA7-12	KT7 has adjustable O/L	2.5-4
4	4.9	KTA 7-25H-6.3A	CA7-12	KT7 has adjustable O/L	4.0-6.3
5.5	6.6	KTA 7-25H-10A	CA7-16	KT7 has adjustable O/L	6.3-10
7.5	8.9	KTA 7-25H-10A	CA7-23	KT7 has adjustable O/L	6.3-10
10	12	KTA 7-25H-16A	CA7-23	KT7 has adjustable O/L	10-16
11	13	KTA 7-25H-16A	CA7-30	KT7 has adjustable O/L	10-16
15	17	KTA 7-45H-20A	CA7-30	KT7 has adjustable O/L	14.5-20
18.5	21	KTA 7-45H-25A	CA7-43	KT7 has adjustable O/L	18-25
$\underline{22}$	24	KTA 7-45H-32A	CA7-60	KT7 has adjustable O/L	23-32

Notes: - The above combinations are designed for motors with an inrush of 7 x FLC for 5 seconds.

Type 2 Short Circuit Coordination

> TYPE 2 $50 / 65 \mathrm{KA}$ 690 V

Socomec switch fuses/Sprecher + Schuh
For DOL motor starting, 50/60 kA @ 690 V to AS/NZS 60947.4.1
DIN Fuse links, SOCOMEC Switch Fuses
Sprecher + Schuh KTA7 Electronic overload relays

Component Selection Table F66D. 1

Motor		Circuit Breaker		Contactor	Overload Relay	
	Motor					
Motor Kw	Amp Ratings @ 690 V AC	DIN gG Fuse Amps/Size	SwitchFuse		Overload Relay (Elec- tronic)	Ampere Setting Range
0.18	0.35	2/00C	SSFDN 63	CA7-9	CEP 7 EEBB	0.2-1.0
0.25	0.46	2/00C	SSFDN 63	CA7-9	CEP 7 EEBB	0.2-1.0
0.37	0.63	4/00C	SSFDN 63	CA7-9	CEP 7 EEBB	0.2-1.0
0.55	0.86	4/00C	SSFDN 63	CA7-9	CEP 7 EEBB	0.2-1.0
0.75	1.1	4/00C	SSFDN 63	CA7-9	CEP 7 EECB	1.0-5.0
1.1	1.5	6/00C	SSFDN 63	CA7-9	CEP 7 EECB	1.0-5.0
1.5	2.1	6/00C	SSFDN 63	CA7-9	CEP 7 EECB	1.0-5.0
2.2	2.9	10/00C	SSFDN 63	CA7-9	CEP 7 EECB	1.0-5.0
3	3.8	10/00C	SSFDN 63	CA7-9	CEP 7 EECB	1.0-5.0
4	4.9	16/00C	SSFDN 63	CA7-9	CEP 7 EECB	1.0-5.0
5.5	6.6	20/00C	SSFDN 63	CA7-12	CEP 7 EEEB	5.4-27
7.5	8.9	25/00C	SSFDN 63	CA7-16	CEP 7 EEEB	5.4-27
10	12	32/00C	SSFDN 63	CA7-23	CEP 7 EEEB	5.4-27
11	13	35/00C	SSFDN 63	CA7-30	CEP 7 EEED	5.4-27
15	17	50/00C	SSFDN 63	CA7-30	CEP 7 EEED	5.4-27
18.5	21	50/00C	SSFDN 63	CA7-37	CEP 7 EEED	5.4-27
22	24	63/00C	SSFDN 63	CA7-43	CEP 7 EEED	5.4-27
30	32	80/00	SSFDN 125	CA7-60	CEP 7 EEGE	18-90
37	39	100/00	SSFDN 125	CA7-72	CEP 7 EEGE	18-90
45	47	125/00	SSFDN 125	CA7-85	CEP 7 EEGE	18-90
55	57	125/00	SSFDN 125	CA6-95	CEP 7 EEHF	30-150
75	78	160/00	SSFDN 160	CA6-115	CEP 7 EEHF	30-150
90	94	200/1	SSFDN 250	CA6-110-EI	CEP 7 EEHF	30-150
110	114	224/1	SSFDN 250	CA6-140-EI	CEP 7 EEHF	30-150
132	135	250/1	SSFDN 250	CA6-140-EI	CEP 7 EEHF	30-150
160	163	$300 / 2$	SSFDN 400	CA6-180-EI	CEP 7 EEJF	40-200
200	203	400/2	SSFDN 400	CA6-210-EI	CEP 7 EEKG	60-300
220	220	400/2	SSFDN 400	CA6-300-EI	CEP 7 EEKG	60-300
250	252	425/3	SSFDN 630	CA6-300-EI	CEP 7 EEKG	60-300
315	312	500/3	SSFDN 630	CA6-420-EI	CEP 7 EELG	100-500
355	354	630/3	SSFDN 630	CA6-420-EI	CEP 7 EELG	100-500
400	397	630/3	SSFDN 630	CA6-420-EI	CEP 7 EELG	100-500

Notes: - Thermal or electronic overload relays may be used.

- Refer to NHP for other device combinations.
- The above combinations are designed for motors with an inrush of $7 x$ FLC for 5 seconds.
- The fuse maximum inrush current must be considered when used with high inrush, high efficiency motors.

Type 2 Short Circuit Coordination

Terasaki/Sprecher + Schuh
For DOL motor starting, $6.5-20 \mathrm{kA} @ 1000 \mathrm{~V}$ to AS/NZS 60947.4.1
TemBreak 1 Moulded Case Circuit Breakers
Sprecher + Schuh Electronic overload relays
Component Selection Table C21.0

Motor		Circuit Breaker Contactor		Overload Relay	
Motor Kw	Motor Amp Ratings @ 690 V AC	MPCB/ MCCB Circuit Breaker	Type	KT7 overload or separate Overload Relay	Ampere Setting Range
25	20	TL100EM403K	CA6 115 El	CEF1-11	20-180
30	25	TL100EM503K	CA6 115 El	CEF1-11	20-180
45	33	TL100EM603K	CA6 115 El	CEP7 EE HF	30-150
55	40	TL100EM753K	CA6 105 El	CEP7 EE HF	30-150
75	55	TL100EM1003K	CA6 140 El	CEP7 EE HF	30-150
90	65	TL100EM1003K	CA6 170 El	CEP7 EE HF	30-150
111	80	XV400NE2503K	CA6 210 El	CEP7 EE HF	30-150
133	95	XV400NE2503K	CA6 250 El	CEP7 EE HF	30-150
163	115	XV400NE2503K	CA6 300 El	CEP7 EE HF	30-150
206	145	XV400NE2503K	CA6 420 El	CEP7 EE JF	40-200
280	200	XV400NE4003K	CA5 450	CEP7 EE KG	60-300
355	250	XV400NE4003K	CA5 550	CEP7 EE KG	60-300
500	340	XV400NE4003K	CA5 700	CEP7 EE LG	100-500
550	380	XV630PE6303K	CA5 860	CEP7 EE LG	100-500

Notes: - CEP7 overload add-on modules are available for Profibus, DeviceNet, Ethernet, Ground Fault, remote reset, jam protection, and a thermister protection relay. A CEP7 overload will accept one only add-on module.

- CEF 1 CT overloads can replace CEP7 overloads if required.
- For CEP7 C3 overload use, 1000 V rated CTs must be used.
- Combinations based on the overload relay tripping before the circuit breaker at overload currents up to the motor locked rotor current.
- Same 'look' handles can be used on MCCBs. Refer NHP for other device combinations.
- The above combinations are designed for motors with an inrush of $7 \times$ FLC for 5 seconds.
The instant trip point of MCCBs must be considered when used with high inrush, high efficiency motors.

TEMCURVE 6-CIRCUIT BREAKER SELECTIVITY APPLICATION SOFTWARE

The latest version of TemCurve 6 includes advanced new features making it a versatile application tool for use with Terasaki MCBs, MCCBs, ACBs, NHP fuses as well as generic IEC protection relay curves.

- TemCurve file sharing
- Distribution schematic
- Supply fault calculations
- Supply voltage options
- Catalogue data prints
- Time current curves
- Internet update capability
- Energy let through curves
- Supply device type options
- Device photos
- User defined curves
- Motor start applications
- Exports to AutoCad
- Circuit breaker setting detail
- Calculator

Motor circuit application table for DOL starting
Breaker type and current rating (A)

Motor Rating (kW)	Approx. FLC (Amps)	Din-T C \& D curve	Safe-T	$\begin{aligned} & \text { ZS125 } \\ & \text { E125 } \\ & \text { S125 } \\ & \text { H125 } \\ & \text { L125 } \\ & \hline \end{aligned}$
0.37	1.1	4	6	
0.55	1.5	4	6	20
0.75	1.8	6	6	20
1.1	2.6	10	6	20
1.5	3.4	10	10	20
2.2	4.8	16	16	20
3.0	6.5	20	16	20
4	8.2	25	20	20
4.5	9	32	25	20
5.5	11	32	32	32
7.5	14	40	40	32
10	19	50	50	50
11	21	50	50	50
15	28	63	63	63
18.5	34	$100{ }^{\text {² }}$)	80	100
22	40	$125{ }^{\text { }}$)	100	100
$\underline{25}$	46	$125{ }^{\text {² }}$)	100	100
30	55			125
37	66			125
45	80			125
55	100			
75	135			
90	160			
110	200			
132	230			
160	270			
185	320			
200	361			
220	380			
250	430			
280	480			
300	510			
375	650			
450	750			

Notes: ${ }^{1)} 80,100$ and 125 amp refers to Din-T10H type.
${ }^{2}$) Electronic TemBreak MCCB only.

Motor circuit application table for DOL starting

Breaker type and current rating (A)

$\left.\begin{array}{lllll} & & & \begin{array}{l}\text { ZS800 } \\ \text { S800CJ }\end{array} & \\ \text { ZS250 } & & & \begin{array}{l}\text { S800NJ }\end{array} & \\ \text { S160 } & & \text { S800 (630 A) } & \text { S800RJ } & \text { S800NE }\end{array}\right]$

160		
160		
160	250	
160	250	
250	250	400
	400	400
	400	400
	400	630
	$\left.400^{2}\right)$	630
	$\left.400^{2}\right)$	630
		$\left.630^{2}\right)$
		$\left.630^{2}\right)$
		$\left.800^{2}\right)$
		800
		800

1000
Notes: • The DOL table is based on holding 125% FLC continuously and 600 \% FLC for 10 seconds. For non-standard drives consult NHP.

- Lower circuit breaker ratings are possible in most applications. Refer to Type '2'co-ordination tables for specific circuit breaker/overload combinations.
- Adjustable magnetic trips set to high. Thermal magnetic TemBreak adjustable $63 \%-100 \%$ of NRC (nominal rated current).
- Din-T MCBs are calibrated to IEC 60898 Curve 'C' \& 'D'. Selected sizes of ' D ' Curve are available from stock, refer NHP.

General motor circuit application table

for reduced voltage starting

Breaker type and current rating, star-delta, auto-transformer resistor or reactance starting

Motor rating (kW)	Approx. FLC (Amps)	Din-T C \& D curve	Safe-T	$\begin{aligned} & \text { ZS125 } \\ & \text { E125 } \\ & \text { S125 } \\ & \text { H125 } \\ & \text { L125 } \\ & \hline \end{aligned}$
0.37	1.1	4	6	
0.55	1.5	4	6	20
0.75	1.8	4	6	20
1.1	2.6	6	6	20
1.5	3.4	10	6	20
2.2	4.8	10	10	20
3.0	6.5	16	16	20
4	8.2	20	16	20
4.5	9	20	16	20
5.5	11	25	20	20
7.5	14	32	25	20
10	19	40	40	32
11	21	50	40	32
15	28	50	50	50
18.5	34	63	63	50
22	40	80^{1})	63	63
25	46	$100{ }^{1}$)	80	100
30	55	125^{1})	100	100
37	66	125^{1})		100
45	80			125
55	100			
75	135			
90	160			
110	200			
132	230			
160	270			
185	320			
200	361			
220	380			
250	430			
280	480			
300	510			
375	650			
450	750			

Notes: ${ }^{1}$) 80, 100 and 125 amp refers to Din-T10H type.
${ }^{2}$) Electronic TemBreak MCCB only.
If co-ordination to IEC 60947-4-1 is required refer to co-ordination tables.
Reduced voltage table is based on holding 120 \% FLC continuously and 350 \% FLC for 20 seconds.
Din-T MCBs are calibrated to IEC 898 Curve 'C' \& 'D'. Selected sizes of 'D' Curve are available from stock refer NHP.

General motor circuit application table

for reduced voltage starting

			ZS800 S800CJ
ZS250			S800NJ
S160		S800 (630 A)	S800RJ
H160		S800NE	
L160	ZS400	ZS630	S800RE

160			
160	250		
160	250		
160	250		
250	250	400	
250	250	400	$\left.800^{2}\right)$
	400	400	$\left.800^{2}\right)$
	400	630	800
	400	630	800
		630	800
		630	800
			$\left.800^{2}\right)$
			1000

Motor circuit application table

 for DOL fire pump starting dutyBreaker type and current rating (A)
$\left.\begin{array}{lllll} & & & & \begin{array}{l}\text { ZS125 } \\ \text { E125 } \\ \text { S125 } \\ \text { Motor rating } \\ \text { (kW) }\end{array} \\ \hline 0.37 & \begin{array}{l}\text { Approx. FLC } \\ \text { (Amps) }\end{array} & \begin{array}{l}\text { Din-T } \\ \text { C\&D curve }\end{array} & \text { Safe-T }\end{array} \begin{array}{llll}\text { XM30PB } \\ \text { L125 }\end{array}\right)$

Notes: ${ }^{1}$) 80, 100 and 125 amp refers to Din-T10H type.
${ }^{2}$) Electronic TemBreak MCCB only.
DOL table is based on holding 125 \% FLC continuously and 600% FLC for at least 20 seconds.
Din-T MCBs are calibrated to IEC 60898 Curve 'C' \& 'D'. Selected sizes of 'D' Curve are available from stock refer NHP.

Motor circuit application table for DOL fire pump starting duty

		S800CJ S800NJ		
ZS250			S800RJ	
S160		S800NE		
H160		S800RE		
L160	ZS400	ZS630	H800NE	
S250	E400	E630	ZS800	S1000NE
E250	S400	S630	XS800NJ	S1250NE/1250
H250	H400	XH630	XH800SE	XS1250SE
L250	L400	XS630	XS800SE	$/ 1000$

Motor starting table for DOL starting at 1000 V AC 50 Hz

	Full Load Current Amperes (A)	MCCB	Voltage (V)
Motor Size (kW)	$0.4-7.5$	VS125NJ 20	1000
$0.37-10$	9.0	VS125NJ 20	1000
11.0	$12-14.5$	VS125NJ 32	1000
$15-18.5$	$17-23$	VS125NJ 50	1000
$22-33$	$28-38$	VS125NJ 50	1000
$37-50$	$40-57$	VS125NJ 63	1000
$55-80$	$65-78$	VS125NJ 100	1000
$90-110$	102	VS125NJ 160	1000
150	$138-160$	VS125NJ 250	1000
$185-220$	$160-350$	XV400NE/400K	1000
$220-500$			

Notes: This table should be used as a selection guide for standard applications only. 1000 V Type 2 co-ordination chart available. Refer NHP.

Rated outputs and standard values

for rated operational currents of standard squirrel-cage motors

3 phase 4 pole $50 / 60 \mathrm{~Hz}$ motors $\left.{ }^{1}\right)^{2}$)

kW ${ }^{1}$)	hp	$230 \text { V }$	$\begin{aligned} & 400-415 \mathrm{~V} \\ & \text { A } \end{aligned}$	$690 \text { V }$	$\begin{aligned} & 1000 \mathrm{~V} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$1100 \text { V }$
0.18	0.3	1.2	0.6	0.4	0.3	0.24
0.37	0.5	1.95	1.1	0.6	0.4	0.4
0.55	0.75	2.7	1.5	0.9	0.6	0.56
0.75	1	3.2	1.8	1.2	1.0	0.7
1.1	1.5	4.6	2.6	1.6	1.1	0.92
1.5	2	6.3	3.4	2.1	1.5	1.3
2.2	3	9	4.8	2.9	2	1.85
3	4	12	6.5	4	2.7	2.5
4	5.5	15.5	8.2	5	3.4	3.2
4.5	6	17	9	5.7	4.4	3.5
5.5	7.5	20	11	6.6	6	4.3
7.5	10	27	14	9	7	5.6
10	13.5	36	19	12	7.6	7.5
11	15	39	21	13	9	8
15	20	52	28	17	12.1	10.5
18.5	25	63	34	22	15	13
22	30	75	40	25	18	15.5
25	35	83	46	28	22	18
30	40	100	55	35	23	21
37	50	122	65	40	27	25
45	60	147	80	49	34	30
55	75	180	100	59	42	37
75	100	240	130	79	54	50
90	125	290	155	95	66	60
110	150	350	200	114	80	73
132	180	410	225	135	90	85
160	220	500	270	160	117	105
185	250	570	325	185	135	120
200	270	625	361	200	150	130
220	300	675	380	220	160	142
250	340	775	430	250	200	160
280	380	830	480	280	225	180
300	410	920	505	300	235	195
315	430	980	535	315	240	200
375	500	1150	650	375	270	240
400	545	1225	665	400	290	255
475	645	1450	780	465	335	300
500	680	-	820	495	360	320
560	750	-	920	570	390	350
600	800	-	1000	610	420	390
670	900	-	1100	680	470	430
750	1000	-	1250	770	530	490
900	1200	-	1470	930	650	600

Notes: Refer to 9-46 for footnotes

Rated outputs and standard values

 for rated operational currents of standard squirrel-cage motorsSingle phase motors
\(\left.\begin{array}{lll} \& \& \mathbf{2 3 0} \mathbf{~ V}

\mathbf{k W}^{1}) \& hp \& A\end{array}\right]\)| 0.37 | 0.5 | 5 |
| :--- | :--- | :--- |
| 0.55 | 0.75 | 6.3 |
| 0.75 | 1 | 9 |
| 1.1 | 1.5 | 12 |
| 1.5 | 2 | 15 |
| 1.8 | 2.5 | 18 |
| 2.2 | 3 | 23 |
| 3 | 4 | 28 |
| 4 | 5 | 41 |
| 5.5 | 7.5 | 42 |
| 6 | 8 | 52 |
| 7.5 | 10 | |

Notes: ${ }^{1}$) Standard values for standard squirrel-cage motors: Rated operational currents
for motors with $\mathrm{n}=1500$ RPM (4 pole), possible deviation +_ 10% depending on type and manufacturer, +_ 50% for small motors. Deviation of rated operational currents for motors with other speeds (greater deviations for smaller motors):
With $\mathrm{n}=3000 \mathrm{rpm}$
(2 pole): $-2 \% \ldots-10 \%$
With $\mathrm{n}=1000 \mathrm{rpm}$
(6 pole): $+2 \% \ldots+10 \%$
With $\mathrm{n}=750 \mathrm{rpm}$
(8 pole): $+5 \% \ldots+20 \%$
$\left.{ }^{2}\right)$ The power factor is usually around 0.8 , but this varies with the size and speed of the motor.
Efficiency ranges from 85 \% in small motors to 90% and over for large motors.

TemBreak MCCB clearance requirements at 380/415 V

Clearance requirements for MCCBs (phase to phase and earth).
When MCCBs are called upon to interrupt large short-circuits, ionised gas and arcing material is expelled from the vents, usually at the top of the MCCB.

This ionised gas is highly conductive and is also at an elevated temperature when it exits the MCCB via the arc vents. Care must be taken to avoid an arcing fault occurring due to the presence of the ionised gas.

Therefore, incoming conductors must be insulated right up to the terminal opening of the MCCB. This also applies to the attached busbars supplied as a proprietory part with the MCCB.
Proprietary type interpole barriers may be used to achieve creepage and clearance requirements.
Conductors must not impede the flow of ionised gas.

Insulating distance from Line-End for 380/415 V

When earth metal is installed within proximity of the breakers the correct insulating distance must be maintained. This distance is necessary to allow the exhausted arc gases to disperse.

WARNING:

EXPOSED CONDUCTORS INCLUDING TERMINALS AT ATTACHED BUSBARS MUST BE INSULATED TO AVOID POSSIBLE SHORT-CIRCUITING OR EARTHING DUE TO FOREIGN MATTER COMING INTO CONTACT WITH THE CONDUCTORS.

Notes: When using the terminal bar (optional), the specified insulating distance must be maintained.
All dimensions in mm .
When earthed metal is installed within proximity of the breakers the correct insulating distance must be maintained (refer to Table 1 over the page).
This distance is necessary to allow the exhausted arc gases to disperse.

TemBreak MCCB clearance requirements at 380/415 V

Insulation distance in mm (at 440 V AC Maximum) ${ }^{1}$)

TemBreak 2 MCCBs
Table 1 below illustrates the minimum clearance that must be maintained
A Distance from lower breaker to open charging part of terminal on upper breaker (front connection) or the distance from lower breaker to upper breaker end (rear connection and plug-in type)
B1Distance from breaker end to ceiling (earthed metal)
B2Distance from breaker end to insulator
C Clearance between breakers
D Distance from breaker side to side plate (earthed metal)

Cat. No.	Type	A	B1	B2	C	D
E125	NJ	50	10	10	0	25
S125	NF	50	10	10	0	25
S125	NJ	50	10	10	0	25
S125	GJ	75	45	25	0	25
ZS125	GJ	75	45	25	0	25
H125	NJ	100	80	60	0	50
$\underline{L 125}$	NJ	100	80	60	0	50
S160	NF	50	40	30	0	25
S160	NJ	50	40	30	0	25
S160	GJ	100	80	60	0	25
H160	NJ	100	80	60	0	50
L160	NJ	100	80	60	0	50
E250	NJ	50	40	30	0	25
S250	NJ	50	40	30	0	25
S250	GJ	100	80	30	0	25
ZS250	GJ	100	80	30	0	25
S250	PE	100	80	60	0	50
H250	NJ	100	80	60	0	50
H250	NE	100	80	60	0	50
L250	NJ	100	80	60	0	50
E400	NJ	100	80	40	0	30
S400	CJ	100	80	40	0	30
S400	NJ	100	80	40	0	30
S400	GJ	100	80	40	0	30
S400	GE/ PE	100	80	40	0	30
H400	NJ	120	120	80	0	80
H400	NE	120	120	80	0	80
$\underline{L 400}$	NJ	120	120	80	0	80
L400	NE	120	120	80	0	80
E630	NE	120	100	80	0	80
S630	CE	120	100	80	0	80
S630	GE	120	100	80	0	80

Notes: ${ }^{1}$) Insulate the exposed conductor until it overlaps the moulded case at the terminal, or the terminal cover. All dimensions in mm .
Insulation distance in mm (at 440 V AC Maximum) ${ }^{1}$)
This table is valid for $380 / 415 \mathrm{~V}$ - TemBreak 1 MCCBs
Table below illustrates the minimum clearance that must be maintained
A Distance from lower breaker to open charging part of terminal on upper
breaker (front connection) or the distance from lower breaker to upper
breaker end (rear connection and plug-in type)
B1Distance from breaker end to ceiling (earthed metal)
B2Distance from breaker end to insulator
C Clearance between breakers
D Distance from breaker side to side plate (earthed metal)

MCCB type	A	B1	B2	C	D
XM30PB	30	10	10	0	25
XH125NJ	75	45	25	0	25
XS250NJ	80	60	30	0	25
XH250NJ	100	60	30	0	25

XS400NJ	100	70	40	0	30
XH400SE					

| XS630NJ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| XS630SE
 XS800NJ 120 70 40
 XS800SE 0 | | | | |

XS800SE

XH630SE XH880SE XH800PE	150	80	50	0	40
XS1250SE	150	70	40	0	30
XH630PJ XH800PJ XS1600SE	150	150	100	0	100
XS2000NE XS2500NE					

Notes: ${ }^{1}$) Insulate the exposed conductor until it overlaps the moulded case at the terminal, or the terminal cover. All dimensions in mm .

Electrical formulae

- For obtaining kW, kVA, HP, and Amperes

Wanted	Single-phase	Alternating Current Two-phase Four-wire	Three-phase	Direct current
Kilowatts	IxExPF	1×E×2 \times PF	$1 \times \mathrm{E} \times 1.73 \times \mathrm{PF}$	IxE
	1000	1000	1000	1000
kVA	$\underline{\text { I E E }}$	$\underline{1 \times E \times 2}$	$\underline{1 \times E \times 1.73}$	IxE
	1000	1000	1000	1000
Horsepower	IxEx\% Eff.	$1 \times \mathrm{E} \times 2 \times \%$ ff \times PF	$\underline{1 \times E \times 1.73 \times \% \mathrm{Eff}}$.	$1 \times \mathrm{E}$ \% Fff
	$\frac{x P F}{746}$	$\frac{746}{}$	$\frac{x P F}{746}$	746
Amperes from kVA	kVA $\times 1000$	kVA $\times 1000$	kVA $\times 1000$	kVA $\times 1000$
	E	$2 \times \mathrm{E}$	$1.73 \times \mathrm{E}$	E

TemBreak
 Electronic OCR adjustment setting

Configuring the STANDARD Over current relay

The standard TemBreak 2 OCR can be configured allowing the user to adjust the rated current $\left(I_{\text {Rated }}\right)$ of the MCCB and select a predetermined tripping curve. This allows the user to tailor the MCCBs tripping characteristics to suit the requirements of the electrical load.

Setting the rated current

The TemBreak 2 MCCB OCR rated current is adjustable from $40 \%-100 \%$ of the nominal rated current $\left(I_{n}\right)$. The dial is adjustable in increments. It is not infinitely adjustable between setting indicators. This is a desirable feature where the demand of the protected electrical load increases over time. As the load demand increases, the rating of the breaker can be adjusted accordingly to meet the system requirements. For example, an S250PE TemBreak 2 MCCB can be configured to operate with an expected load of 125 A. The OCR can be set by rotating the rated current $I_{R}(A)$ selector switch to ' 0.5 '. This has the effect of setting the rated current of the S250PE to $I_{\text {Rated }}=I_{n}(250 \mathrm{~A}) \times I_{R}(0.5)=125 \mathrm{~A}$.

Notes: Additional setting and options information can be found in the 2010-2011 Part C catalogue.

TemBreak
 Electronic OCR adjustment setting

Curve selection

The predetermined curve characteristic dial on TemBreak 2 MCCBs simplifies the OCR tripping settings by reducing the number of often misunderstood variables that need to be specified. This enables users of various technical abilities to set the OCR to match the required electrical load and service application. For example if an electrical contractor was required to configure a S400 A TemBreak 2 MCCB for use in a three phase Squirrel-cage motor application, curve 5 would be the correct setting as for most applications it provides class 10 general purpose motor protection.

Curve types provided as standard on TemBreak 2 electronic MCCBs: 250 A and 400 A MCCBs: 7 selectable curves 16 A - 400 A
630 A: $\quad 6$ selectable curves $252 \mathrm{~A}-630 \mathrm{~A}$ (Curve type 7 not available)
800-1600 A $\quad 7$ selectable curves 630 A-1600 A.
Although each of the curves can be said to be targeted towards particular applications, the use of the curves can be extended to any other use where that curve suits. For example, curve 1 is ideal for many generator applications, though curve 1 can also be used for any other application that suits the curve.
General applications by curve type:
Short circuit

	Primary Application	(SC)/ motor start type	Application 2	Application 3
Curve 1	Generator protection	Low level SC	Heating, resistive loads	Long cable runs
Curve 2	Generator protection	Low level SC	General, heating, resistive	Long cable runs

Curve 3	General distribution	Med. level SC Long cable runs	Lighting	
Curve 4	General distribution	Std. level SC Various motor starting Lighting		
Curve 5	Motor start - standard run up time	Class 10	Transformers	Lighting
Curve 6	Motor start - longer run up time	Class 20	Capacitor switching	Lighting
Curve 7	Motor start - extra run up time	Class 30	Capacitor switching	-

Notes: Curve 4 is the MCCB factory default setting for new MCCBs out of the box.

TemBreak
 Electronic OCR adjustment setting

Curve comparison

The predetermined curve characteristic dial on TemBreak 2 MCCBs enables easy OCR configuration to match the electrical characteristics of the load.

Tabular representation
Curve selection dial ONLY

Characteristic curve selection dial position	LTD (sec)		STD Characteristics		
	200 \% overload	600 \% overload	In < 630 A	$\mathrm{In} \geq 630 \mathrm{~A}$	Delay (sec)
1	11	-	$2.5 \times I_{\text {R }}$	$2.5 \times I_{R}$	0.1
2	21	-	$2.5 \times I_{R}$	$2.5 \times I_{R}$	0.1
3	21	-	5×1 R	5×1 R	0.1
4	53	5	10×1 R	8×1 R	0.1
5	108	10	$10 \times 1{ }^{1}$	8×1 R	0.2
6	200	19	10×1 /	8×1 B	0.2
7	308	29 (Not applicable for 630 A)	$10 \times 1{ }_{\text {R }}$	$8 \times I_{R}$	0.2

I_{R} Selection dial position	I_{B} Selection dial ONLYINST (A)		Optional features		
	$I_{\text {n }}<630 \mathrm{~A}$	$I_{n}>630 \mathrm{~A}$			
0.40	$14 \times I_{\text {R }}$	$14 \times 1{ }^{1}$	PTA Pre Trip Alarm	$I_{\mathrm{n}} \times I_{\text {R }}$	0.8
0.50	$14 \times I_{\text {R }}$	$14 \times 1{ }_{\text {R }}$		$t_{p}(\mathrm{sec})$	40
0.63	$14 \times I_{\text {R }}$	$14 \times 1{ }_{\text {R }}$	GFT Ground Fault Trip	$I_{\mathrm{g}} \times I_{\mathrm{n}}$	0.2
0.80	$14 \times I_{\text {R }}$	$10 \times I_{\text {R }}$		$t_{\mathrm{g}}(\mathrm{sec})$	0.2
0.85	$14 \times I_{\text {R }}$	$10 \times I_{\text {R }}$	NP Neutral rotection	$I_{N} \times I_{n}$	1
0.90	$14 \times I_{\text {R }}$	$10 \times 1{ }_{\text {R }}$		$t_{\text {N }}(\mathrm{sec})$	$\left.\left.t_{\mathrm{N}}=t_{\mathrm{R}}\right)_{2}\right)$
0.95	13×1 R	$10 \times 1{ }_{\text {R }}$			
1.00	13×1 R	$10 \times 1{ }^{1}$			

Notes: ${ }^{1}$) The standard setting of I_{n} is 100% of I_{n}. For any other setting, specify when ordering.
${ }^{2}$) When neutral pole protection is installed the breaker must be set at 100 $\%$ of its I_{n} rating for the neutral protection to function. For other settings contact NHP.

TemBreak Optional Functions

TemBreak Optional functions

Pre-Trip Alarm (PTA)

An LED and volt-free output contact are activated after a time delay, t_{p}, if the load current exceeds the preset threshold, I_{p}. The default time delay, t_{p} is set to 40 seconds and the load current threshold, I_{p}, is 80% of the rated current.
For example a S250PE TemBreak 2 MCCB with a $I_{\text {Rated }}$ setting of 125 A would have a pre-trip alarm threshold of $I_{\mathrm{p}}(0.8) \times I_{\text {Rated }}(125)=100 \mathrm{~A}$.

Ground Fault Trip (GF)

This function trips the MCCB after a time delay, t_{g}, if the ground fault current exceeds the preset threshold, I_{g}. Ground fault protection can be enabled and disabled by operating a DIP switch on the OCR. The default time delay, t_{g} is set to 0.2 seconds and the load current threshold, I_{g}, is 20% of the nominal current.

For example, an S400GE TemBreak 2 MCCB with a nominal current $\left(I_{n}\right) 400 \mathrm{~A}$ would have a ground fault trip threshold of $I_{g}(0.2) \times I_{n}(400 \mathrm{~A})=80 \mathrm{~A}$.
When 3 pole GF MCCBs are used, a 4th neutral pole CT will be required. Refer MCCB accessories. 4 pole GF MCCBs do not require a 4th CT as the neutral pole protection CT is used. As a general note, 4 wire systems are used in Australia and New Zealand, and this is why a 4th CT is required for 3 and 4 pole applications.
The MCCB OCR facia showing GFT option below. A DIP switch allows the GFT to be switched OFF or ON, while a'pick up' LED indicates that the 20% of rated current activation point for GFT has been reached.

Neutral Protection (NP)

Neutral protection trips the MCCB after a time delay, t_{N}, if the current in the neutral conductor exceeds the nominal current rating, I_{n}, of the MCCB. The time delay characteristic is identical to that of the overload time delay characteristic, therefore $t_{\mathrm{N}}=t_{\mathrm{R}}$. The load current threshold, I_{N}, is 100% of the nominal current.
For example a S250PE A TemBreak 2 MCCB with a nominal current, I_{n}, of 250 A would have neutral protection threshold of $I_{N}(1.0) \times I_{\mathrm{n}}(250)=250 \mathrm{~A}$.

TemBreak Optional functions

Option ordering

Optional functions must be specified at the time of order. Options can be selected by identifying the appropriate 'code' from the table below and appending this code after the MCCB type designation. For example, to select a 4 pole, 400 AF MCCB, front connect, with a nominal current (In) of 250 A, featuring a Pre-Trip Alarm (P) option the correct description would be: Cat. No. example: S400GE3 AP 4003 Pole: with the pre-trip alarm option

Optional Functions

$I_{\text {n }}$	Poles	Code	Ground Fault (GF)	Neutral Protection (NP)	Pre-Trip Alarm (PTA)
250 A	3	AP	-	-	Yes
	4	AP	-	-	Yes
	4	AN	-	Yes	-
	4	APN	-	Yes	Yes
400 A	3	AP	-	-	Yes
	3	AG	Yes	-	-
	3	APG	Yes	-	Yes
	4	AP	-	-	Yes
	4	AN	-	Yes	-
	4	APN	-	Yes	Yes
	4	AGN	Yes	Yes	-
630-1600 A	3	AP	-	-	Yes
	3	AG	Yes	-	-
	3	APG	Yes	-	Yes
	4	AP	-	-	Yes
	4	AN	-	Yes	-
	4	APN	-	Yes	Yes
	4	AGN	Yes	Yes	-

TemBreak
 Example 1: Generator Protection, Curve 1

Compared to a transformer, a generator has a limited short circuit capacity (say 4 times the full load rating). Therefore to avoid possible damage to the generator it is desirable to select a tripping characteristic curve that accommodates a generator's limitations.
When configured for use in a generator application the characteristic curve features faster tripping times during overload situations and low level short circuit faults.
From the curve below, an S250 TemBreak 2 MCCB with a rated current of $I_{\mathrm{n}}(250 \mathrm{~A}) \times I_{\mathrm{R}}(0.8)=200$ A features:

- Approximate trip time of 11 seconds during a 200% of rated current (400 A) overload
■ Approximate trip time of 0.1 seconds during a 250% of rated current (500 A) low level short circuit
■ Instantaneous (no intentional delay) threshold of 1400% of rated current (2800 A).

Generator Protection

Notes: The above curves are worked examples for an electronic MCCB with a 250 A rated overcurrent relay (OCR). The same curve and setting data will also apply to TemBreak 2 MCCBs with other ampere ratings.

TemBreak
 Example 2: General Feeder LOW SCP, Curve 2

Sharing the same short circuit tripping time characteristics as the generator protection curve, the General Feeder LOW SCP curve 2 has greater tolerance to allow for overloads caused by small inrush currents.
From the curve below, an S250 TemBreak 2 MCCB with a rated current of $I_{\mathrm{N}}(250 \mathrm{~A}) \times I_{\mathrm{R}}(0.8)=200$ A features:

- Approximate trip time of 21 seconds during a 200% of rated current (400 A) overload
- Approximate trip time of 0.1 seconds during a 250% of rated current (500 A) low level short circuit
- Instantaneous (no intentional delay) threshold of 1400% of rated current (2800 A).

General Feeder LOW SCP (SCP = Short circuit protection)

Notes: The above curves are worked examples for an electronic MCCB with a 250 A rated overcurrent relay (OCR). The same curve and setting data will also apply to TemBreak 2 MCCBs with other ampere ratings.

TemBreak
 Example 3: General Feeder MEDIUM SCP, Curve 3

Featuring a shallower overload time trip curve and higher short circuit current protection characteristics than curve 2, curve 3 allows greater tolerance during overload and short circuit conditions.
From the curve below, an S250 TemBreak 2 MCCB with a rated current of $I_{\mathrm{n}}(250 \mathrm{~A}) \times I_{\mathrm{R}}(0.8)=200$ A features:

- Approximate trip time of 21 seconds during a 200% of rated current (400 A) overload
- Approximate trip time of 0.1 seconds during a 500% of rated current (1000 A) low level short circuit
- Instantaneous (no intentional delay) threshold of 1400% of rated current (2800 A).

Notes: The above curves are worked examples for an electronic MCCB with a 250 A rated overcurrent relay (OCR). The same curve and setting data will also apply to TemBreak 2 MCCBs with other ampere ratings.

TemBreak
 Example 4: General Feeder HIGH SCP, Curve 4

This curve contains a shallower overload time trip curve and a higher short circuit current protection characteristic compared to the previous curve 3.

From the curve below an S250 TemBreak 2 MCCB with a rated current of $I_{\mathrm{n}}(250 \mathrm{~A}) \times I_{\mathrm{R}}(0.8)=200$ A features:

- Approximate trip time of 58 seconds during a 200% of rated current (400 A) overload
- Approximate trip time of 5 seconds during a 600% of rated current (1200 A) overload
- Approximate trip time of 0.1 seconds during a 1000% of rated current (2000 A) low level short ciruit
- Instantaneous (no intentional delay) threshold of 1400% of rated current (2800 A).

General Feeder HIGH SCP

Notes: The above curves are worked examples for an electronic MCCB with a 250 A rated overcurrent relay (OCR). The same curve and setting data will also apply to TemBreak 2 MCCBs with other ampere ratings.

TemBreak
 Example 5: Motor Protection Class 10, Curve 5

Class 10 protection requires the overload detection element to trip the breaker in 10 seconds or less when a current of 600% of its rated current is experienced. Class 10 protection is commonly used for general purpose motor applications, hermetic motors and submersible pumps.
From the curve below an S250 TemBreak 2 MCCB with a rated current of $I_{\mathrm{n}}(250 \mathrm{~A}) \times I I_{\mathrm{R}}(0.8)=200 \mathrm{~A}$ features:

- Approximate trip time of 116 seconds during a 200% of rated current (400 A) overload
- Approximate trip time of 10 seconds during a 600% of rated current (1200 A) overload
- Approximate trip time of 6.8 seconds during a 720% of rated current (1440 A) overload
- Approximate trip time of 0.2 seconds during a 1000% of rated current (2000 A) low level short circuit
■ Instantaneous (no intentional delay) threshold of 1400% of rated current (2800 A).

Motor Protection Class 10

Notes: The above curves are worked examples for an electronic MCCB with a 250 A rated overcurrent relay (OCR). The same curve and setting data will also apply to TemBreak 2 MCCBs with other ampere ratings.

TemBreak
 Example 6: Motor Protection Class 20, Curve 6

Class 20 protection requires the overload detection element to trip the breaker in 20 seconds or less when a current of 600% of its rated current is experienced. Class 20 protection is typically reserved for motors with difficult starting conditions.
From the curve below an S250 TemBreak 2 MCCB with a rated current of $I_{\mathrm{n}}(250 \mathrm{~A}) \times I_{\mathrm{R}}(0.8)=200$ A features:

- Approximate trip time of 221 seconds during a 200% of rated current (400 A) overload
- Approximate trip time of 19 seconds during a 600% of rated current (1200 A) overload
- Approximate trip time of 13 seconds during a 720% of rated current (1440 A) overload
- Approximate trip time of 0.2 seconds during a 1000% of rated current (2000 A) low level short circuit
■ Instantaneous (no intentional delay) threshold of 1400% of rated current (2800 A).

Notes: The above curves are worked examples for an electronic MCCB with a 250 A rated overcurrent relay (OCR). The same curve and setting data will also apply to TemBreak 2 MCCBs with other ampere ratings.

TemBreak
 Example 7: Motor Protection Class 30, Curve 7

Class 30 protection requires the overload detection element to trip the breaker in 30 seconds or less when a current of 600% of its rated current is experienced. Class 30 protection is typically reserved for motors with difficult starting conditions that are driving high inertia loads.
From the curve below an S250 TemBreak 2 MCCB with a rated current of $I_{\mathrm{n}}(250 \mathrm{~A}) \times I_{\mathrm{R}}(0.8)=200$ A features:

- Approximate trip time of 338 seconds during a 200% of rated current (400 A) overload
- Approximate trip time of 29 seconds during a 600% of rated current (1200 A) overload
- Approximate trip time of 19.9 seconds during a 720% of rated current (1440 A) overload
- Approximate trip time of 0.2 seconds during a 1000% of rated current (2000 A) low level short circuit
■ Instantaneous (no intentional delay) threshold of 1400% of rated current (2800 A).

Notes: The above curves are worked examples for an electronic MCCB with a 250 A rated overcurrent relay (OCR). The same curve and setting data will also apply to TemBreak 2 MCCBs with other ampere ratings.

TemBreak
 Example 8: Setting the Rated Current IR (A) Adjustment

The rated current value of the breaker can be adjusted from 40% to 100% of its nominal value. In this example an S250 TemBreak 2 MCCB OCR is initially set with a rated current of $I_{n}(250 \mathrm{~A}) \times I_{\mathrm{R}}(0.8)=200 \mathrm{~A}$.

Notes: See also example next page.
The above curves are worked examples for an electronic MCCB with a 250 A rated overcurrent relay (OCR). The same curve and setting data will also apply to TemBreak 2 MCCBs with other ampere ratings.

TemBreak
 Example 9: Setting the Rated Current IR (A) Adjustment

The next example shows the OCR being set at ' 0.5^{\prime} of $I_{R}(A)$. This has the effect of changing the rated current of the breaker to $I_{n}(250 \mathrm{~A}) \times I_{\mathrm{R}}(0.5)=125 \mathrm{~A}$. This change can be clearly seen in the curve movement.

Rated Current

Notes: The above curves are worked examples for an electronic MCCB with a 250 A rated overcurrent relay (OCR). The same curve and setting data will also apply to TemBreak 2 MCCBs with other ampere ratings.

33 Adam Street Wynnum North SPS - Electrical Installation OM Ma

INTEGRAL EARTH LEAKAGE MCCBs

The ZS earth leakage MCCB offers the following features and options:

- Thermal magnetic MCCB
- 125 A or 250 A frame
- 65 kA as standard
- 3 or 4 pole types
- Adjustable thermal-curve dial
- Trip unit ratings: $12 \mathrm{~A}-250 \mathrm{~A}$
- 30, 100, 300, $500 \mathrm{~mA}, 1$ A, 3 A settings
- 30 mA setting is non-adjustable, for near instant trip
- 0 sec to 700 ms selectable ($100 \mathrm{~mA}-3 \mathrm{~A}$)
- Will fit existing $X A, X B, X C$ Chassis
- Complies with AS2081:20
- Yellow TEST button
- Green'Power ON'LED
- 'No Trip' dial setting
- Remote trip function standard
- Harmonic inhibition standard

REFER TO NHP FOR NEW 400 A-800 AZS SIZES

Terasaki MCCB Old Vs New cross reference

Amps	kA	TO/TG/TT MCCB	OCR type	Base current adj.	$\begin{aligned} & \text { TemBreak } \\ & \text { Cat.No. } \\ & \hline \end{aligned}$	TemBreak Plus Cat.No.	2009/10 Tem- Break 2 \& Tem- Break 1 com- bined range	400 V AC rat- ings kA
12.5-125	18	TO100BA	Adj. therm. fixed mag.	63-100\%	XS125CJ	-	E125NJ	25
12.5-125	30	TO100BH	Adj. therm. fixed mag.	63-100\%	XS125NJ	-	S125NJ	36
12.5-125	50	TG100B	Adj. therm fixed mag.	63-100 \%	XH125NJ ${ }^{1}$)	-	S125GJ	65
125-225	18	TO225CB	Fixed therm. fixed mag.	Fixed	XE225NS	-	E250NJ	25
$\begin{aligned} & \hline 100-160 \\ & 160-250 \end{aligned}$	35	TO225BA	Adj. therm. fixed mag.	63-100\%	XS250NJ ${ }^{1}$)	-	$\begin{aligned} & \text { S160NJ } \\ & \text { S250NJ } \end{aligned}$	36
$\begin{aligned} & \hline 100-160 \\ & 160-250 \end{aligned}$	50	TG225B	Adj. therm. fixed mag.	63-100\%	XH250NJ ${ }^{1}$)	-	$\begin{aligned} & \text { S160GJ } \\ & \text { S250GJ } \end{aligned}$	65
$\begin{aligned} & \hline 160-250 \\ & 250-400 \\ & \hline \end{aligned}$	35	TO400BA	Adj. therm. fixed mag.	63-100\%	XS400CJ	-	S400CJ	36
$\begin{aligned} & 160-250 \\ & 250-400 \\ & \hline \end{aligned}$	50	TG400B	Adj. therm. adj. mag.	63-100\%	XS400NJ ${ }^{1}$)	-	S400NJ	50
$\begin{aligned} & \hline 125-250 \\ & 200-400 \\ & \hline \end{aligned}$	50	TTE400	Electronic LSI	50-100\%	XS400NE	XS400SE	S400SE	50
$\begin{aligned} & 125-250 \\ & 200-400 \\ & \hline \end{aligned}$	65	TTE400	Electronic LSI	50-100 \%	XH400NE	$\begin{aligned} & \text { XH400SE } \\ & { }^{1} \text {) } \end{aligned}$	S400GE	70
$\begin{aligned} & 250-400 \\ & 400-630 \\ & \hline \end{aligned}$	45	TO600BA	Adj. therm. adj. mag.	63-100 \%	XS630CJ	-	XS630NJ	50
$\begin{aligned} & 250-400 \\ & 400-630 \\ & \hline \end{aligned}$	65	TG600B	Adj. therm. adj. mag.	63-100 \%	XS630NJ ${ }^{1}$)	-	XS630NJ	50
315-630	50	TTE630	Electronic	50-100\%	XS630NE	XS630SE ${ }^{1}$)	S630CE	50
315-630	65	TTE630	Electronic	50-100 \%	XH630NE	$\begin{aligned} & \text { XH630SE } \\ & \text { i) } \end{aligned}$	S630GE	70
500-800	65	TO800BA	Adj. therm. adj. mag.	63-100 \%	XS800NJ ${ }^{1}$)	-	XS800NJ	50
500-800	85	TG800B	Adj. therm. adj. mag.	63-100 \%	XS1250NE	XS1250SE ${ }^{1} \text {) }$	XS1250SE	85
400-800	50	TTE800	Electronic	50-100\%	XS800NE	XS800SE ${ }^{1}$)	XS800SE	50
400-800	65	TTE800	Electronic	50-100 \%	XH800NE	XH800SE ')	XH800SE	65
$\begin{aligned} & 630- \\ & 1250 \\ & \hline \end{aligned}$	85	$\begin{array}{\|l\|} \hline \text { TO1000B } \\ \text { TO1200B } \\ \hline \end{array}$	Electronic	50-100 \%	XS1250NE	$\begin{array}{\|l\|} \hline \text { XS1250SE } \\ \text { 1) } \end{array}$	XS1250SE	85
$\begin{aligned} & 800- \\ & 1600 \\ & \hline \end{aligned}$	100	TO1600B	Electronic	50-100 \%	XS1600NE	$\begin{aligned} & \text { XS1600SE } \\ & { }^{1} \text {) } \end{aligned}$	XS1600SE	100
$\begin{aligned} & 1000- \\ & 2000 \end{aligned}$	100	$\begin{array}{\|l\|} \hline \text { TTE2000 } \\ \text { TO2000 } \end{array}$	Electronic	$\begin{aligned} & 50-100 \\ & \% \end{aligned}$	XS2000NE	- ${ }^{1}$	XS2000NE	85
$\begin{aligned} & 1250- \\ & 2500 \end{aligned}$	100	TO2500	Electronic	$\begin{aligned} & 50-100 \\ & \% \end{aligned}$	XS2500NE	- ${ }^{1}$)	XS2500NE	85
$\begin{aligned} & 1600- \\ & 3200 \\ & \hline \end{aligned}$	100	TO3200	Electronic	$\begin{aligned} & 50-100 \\ & \% \end{aligned}$	-	2009	XS3200NE	85
Introduct date:		1982	-	-	1990	2000	2006/07	

Notes: ') Stocked

Earth Leakage Relay and Circuit Breaker based RCD device applications

Amongst the users of various earth leakage devices, there is sometimes confusion between the correct application of the more sophisticated adjustable earth leakage relays and circuit breaker RCCB or RCBO devices. It is necessary therefore to define the correct use of earth leakage devices covering the areas of general industrial equipment protection, personnel protection and their use in applications, such as in mining.

Din-Safe Relays, TZS Relays, and the new RD Series Relay

RD3A relay

1. Equipment Protection

Terasaki Earth Leakage relays are suitable for earth fault protection of equipment and limitation of touch voltages where automatic disconnection of supply is required.
Typically this is achieved by shunt tripping another protective device such as an upstream circuit breaker.
Earth leakage relays are used in particular where ground (earth) fault detection is required
or the Fault Loop Impedance is of such a level that the over-current device (circuit breaker) does not achieve automatic disconnection within the times prescribed in the Wiring Rules.

2. Personnel Protection

Earth leakage relays are NOT suitable for personnel protection against direct contact as specified in the Wiring Rules, e.g. for socket outlets and lighting circuits. For these applications an RCD (10 mA or 30 mA) must comply with the relevant standards (AS 3190, AS/NZS 61008 or AS/NZS 61009) and be approved by the relevant authorities. Terasaki earth leakage relays are not designed to meet the requirements of this approval.
For personnel protection Safe-T and Din-T devices such as the ELR relay, SRCB, SAFETRCB6, DSRCD, DSRCB, DSRCM \& DSRCBH are all suitable. These are approved devices and meet the relevant standards.

Circuit breaker based RCD devices

Earth Leakage Relay and Circuit Breaker based RCD device applications

3. Mining Protection

Terasaki Earth Leakage Relays are suitable for mining applications, with the exception of coal and shale mine applications as governed by AS 2081:2011 - Electrical Equipment for coal and shale mines: "Earth Leakage protection for use on earth-fault current limited systems (IT systems)".
This is because Terasaki Earth Leakage Relays are not designed to comply with certain technical requirements of the above mining standard.

Terasaki Earth Leakage Relays that DO comply with AS 2081.3 and the DSRM72 relay.

Circuit breaker based 10 mA and 30 mA RCD devices do not need to comply with AS 2081.3, as this standard accepts devices that meet the personnel protection standards: AS 3190, AS/NZS 61008 or AS/NZS 61009. As such the following Safe-T and Din-T devices are suitable: ELR relay, SRCB, SAFETRCB6, DSRCD, DSRCB, DSRCM \& DSRCBH.

ZS earth leakage MCCBs also comply with the standard AS 2081:2011.

Protection grades against contact and foreign bodies - Ingress Protection (IP)

First Number
 Protection against solid objects

IPTests	No protection. \mathbf{O} solid objects up to 50 mm. (e.g. accidental touch by hands).

2

Protected against solid objects up to 12 mm (e.g. fingers).

Protected against solid objects over 2.5 mm
(tools + small wires).
Protected against solid objects over
4 1 mm
(tools + small wires).
Protected against dust - limited ingress permitted (no harmful deposit).

Totally protected against dust.

First Number
Protection against solid objects

IPTests		
0	\square	No protection.
	5is5isisisint 89858541815	
1		vertical falling
		drops of water.

Protected against direct sprays of water up to 15° from the vertical.

3		Protected against spray of water up to 60° from the vertical.
4		Protected against water sprayed from all directions limited ingress permissable.
5	$\frac{1}{3}=$	Protected against low pressure jets of water from all directions limited ingress permissable.
6		Protected against strong jets of water e.g. for use on shipdecks limited ingress permissable.
7		Protected against the effects of immersion between 15 cm and 1 m .
8		Protected against long periods of immersion under pressure.

A quarterly NHP publication, the NHP technical news features a wide range of application and design criteria for the motor control, power distribution and numerous other product fields. Copies can be issued on request. NHP Technical news ranges from 4 to 8 pages.		
1.	Contactor control circuits, latches etc.	
2.	Contactors: Parallel/series connection, non standard frequencies	
3.	Contactors: Failure to open or close, flashover, coil burnout	
4.	Soft starters: Motor starting, loads, electronic soft starters	
5.	MCCB overcurrent relay types and applications	
6.	Contactors: AC and DC control	
7.	Fault Levels: At the point of supply and reducing factors - bars, cables etc	
8.	IP ratings: Definition and applications	
9.	AC-1 to AC-23 (AC types only)	
10.	VSDs: Loads, Dynamic resistor and DC injection braking	
11.	Thermal and electronic overloads	
12	Contactors: Operating curves and contact inspection	
13.	Slip ring motors, liquid resistance types and applications	
14.	DC contactor arc design, arcing and connection options	
15.	Selecting the right kind of motor starter for an application	
16	AC, DC lamps, types and applications	
17.	Surge causes and diverters	
18.	PLCs: Control, mathematics, inputs and outputs	
19.	Conventional types and contactors with electronic coils	
20.	Enclosures and temperature rise	
21.	Electro-magnetic interference (EMI)	
22.	The need for safety, sensors, E stops and other devices	
23.	Torque and motor starters	
24.	Power Factor: Electricity supply degradation and solutions	
25.	Safety, RCD operating speed, and applications	
26.	Terminations: Control circuit Temp. rise, vibration, corrosion, developmen	nts
27.	Switchboards: Design, venting, earthing, fault containment, control equip	ment
28.	Electrical Equip: Ambient temp, current, voltage, impulse, ins ratings	
29.	Electro-magnetic compatibility, cabling and EMC sources	
30.	Current limiting circuit breakers: Electric arcs, applications and device typ	
31.	MCBs, characteristic curves, fault calculation, RCD's	
32.	Cable ratings, overloads, faults, circuit breakers, AS standards	
33.	RCDs, how they work, wiring, nuisance tripping, testing.	

33. RCDs, how they work, wiring, nuisance tripping, testing.

Issue Technical subject

34. Derating: TemPerformance CD, enclosures, heat loss, enclosure design
35. Star-delta starters and wiring, different versions, SC protection
36. CT selection, types and applications
37. Flexible copper busbar - application
38. New standard Australian voltages: $230 / 400 \mathrm{~V}$
39. Motor protection and the wiring rules
40. Confused about which RCD you should be choosing?
41. Circuit breaker - selectivity \& cascade applications
42. Keeping in contact.

43(b). Is your switchboard in good form?
44. Automation in a technological world.
45. Thermal simulation of switchgear
46. Cable considerations.
47. Output chokes for use with Variable Speed Drives.
48. VSD installation techniques
49. The modern SCADA system
50. NHP still delivering its promise
51. Electrical design considerations for commercial buildings
52. Terminal temperatures - how hot are they?
53. Taking care of business - prevention is better than cure
54. Control voltages for contactors
55. Electrical switchgear - Will it turn you off?
56. Electrical Arcs, Beauty and the Beast
57. The Power of Copper.
58. Industrial networking with Ethernet/IP.
59. Drives: benefits, operation, pitfalls and harmonic solutions.
60. Exposing the confusion of key surge parameters.
61. Ensuring low voltage air circuit breakers are fit for service.
62. Renewable Energy: Part 1 What does it all mean?
63. Renewable Energy: Part 2 Solar, Wind and the Future for Renewable
64. Harmonics: Part 1 Where they come from, the problems they cause and how to 64. reduce their effects.

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
1				
	14997702	3-22	NB20071	235.00
	14997702	3-39	NB20071	235.00
	14997702	3-66	NB20071	235.00
	14997702	3-99	NB20071	235.00
	14997702	3-116	NB20071	235.00
	14997702	3-124	NB20071	235.00
	14997702	6-11	NB20071	235.00
	14997702	6-27	NB20071	235.00
	14997702	6-37	NB20071	235.00
1	1 A 3430 BAB	7-8	NZ00150	41.50
1	1H1615BAA	7-8	NZ00150	990.00
	1H1894BAA	7-8	NZ00150	250.00
	1H1895BAA	7-8	NZ00150	250.00
	1H1896BAA	7-8	NZ00150	250.00
	1H1627CAA	7-8	NZ00150	340.00
	1H2022CAA	7-8	NZ00150	114.00
	1H2243BAA	7-8	NZ00150	156.00
	1H2300CAB	7-8	NZ00150	1220.00
	1LS2VS	2-30	NB20064	12.00
	1LS2VS	2-51	NB20064	12.00
2				
1	2A1787DBA	4-13	NT20138	6.20
1	2A1787DBA	4-13	NT20138	6.20
I	2A1787DBA	6-12	NT20138	6.20
1	2A1787DBA	6-27	NT20138	6.20
I	2A1787DBA	6-37	NT20138	6.20
1	2A1788DAA	6-12	NT20138	6.20
	2A2272BAB	6-37	NT20138	123.00
1	2A3308DAA	6-27	NT20138	360.00
1	2A3308DBA	6-27	NT20138	445.00
	2H...TBA	3-120	NT20138	POA
	2H... TBA	3-120	NT20138	POA
	2H1191CAB	6-36	NT20138	3670.00
1	2H1193CAB	6-36	NT20138	3670.00
	2H1194CAB	6-36	NT30141	3670.00
	2H1195CAB	6-36	NT30141	3670.00
	2H1197BAA	6-35	NT30141	520.00
	2H1198BAA	6-35	NT30141	520.00
1	2H1199BAA	6-35	NT30141	520.00
	2H1200BAA	6-35	NT30141	520.00
1	2H1201BAA	6-35	NT30141	520.00
1	2H1202BAA	6-35	NT30141	520.00
1	2H1203BAB	6-35	NT30141	520.00
I	2H1204BAA	6-35	NT30141	520.00
	2H1208BAA	6-35	NT30141	425.00
	2H1209BAA	6-35	NT30141	425.00
	2H1210BAA	6-35	NT30141	425.00
1	2H1211BAA	6-35	NT30141	425.00

I Available on indent only.
A Assembled to order.

CAT. NO.
I 2H1528BAA
2H1529BAA
$\begin{array}{ll}\text { l } & \text { 2H1530BAA } \\ \mathbf{l} & 2 H 1531 B A A\end{array}$
I 2H1532BAA
I 2H1533BAA
I 2H1541BAB
2
\square
l 2H1931BDA 3
$\mathrm{I} \quad 2$

I 2H1960DBA
I
2
2
2

2 H 4222 SAB
2H4222SAB
2 H 4223 SAB
5
2H4223SAB
$2 H 4224 S A B$
2H4227SAB
2H4227SAB
2H4227SAB
2
2
2
2H4299SAA
$-$

2H4299SAA	$5-36$	NT20138	7.20
2H4300SAA	$5-36$	NT20138	7.20
2H4300SAA	$5-36$	NT20138	7.20
2H4300SAA	$5-36$	NT20138	7.20
2H4307SAA	$5-36$	NT20138	7.20
2H4307SAA	$5-36$	NT20138	7.20
2H4307SAA	$5-36$	NT20138	7.20

I Available on indent only.
A Assembled to order.

CAT. No.		PAGE	P.S.	PRICE \$
3				
	305.00001	2-50	NT40143	6.20
	392.00001	2-57	NT40143	46.50
	392.00002	2-57	NT40143	46.50
	392.35554	2-57	NT40143	46.50
	392.35555	2-57	NT40143	46.50
7				
I	7AB 2D11B	6-8	NT20138	245.00
1	7 KB 3 BA	6-8	NT20138	60.00
I	$7 \mathrm{MB} \mathrm{3BA1}$	6-8	NT20138	1910.00
	7RC 2LE	6-8	NT20138	210.00
	7T1ST	1-9	NT10136	13.00
I	7T 2M1	6-8	NT20138	110.00
	7T2ST	1-9	NT10136	15.60
I	7UF 2D5B	6-8	NT20138	360.00
	7UF 2D6B	6-8	NT20138	360.00
1	7UF 2D7B	6-8	NT20138	360.00
I	7UF 2FD1	6-8	NT20138	360.00
I	7UF 2FD2	6-8	NT20138	360.00
	7VF 2M1	6-8	NT20138	280.00
	7VF 2M2-B	6-8	NT20138	280.00
1	7VF 2M6	6-8	NT20138	280.00
I	7VF 2M7	6-8	NT20138	280.00
	7XA 2D31B	6-8	NT20138	245.00
	7XA 2D41B	6-8	NT20138	245.00
1	7YD3	6-8	NT20138	55.00
A				
	A1000 0010	7-44	NB20067	550.00
	A2000 0010	7-44	NB20067	3030.00
I	A2000 0020	7-44	NB20067	2000.00
	ALR	5-28	NT30141	465.00
	ALR	5-29	NT30141	465.00
	ANU1AC200	7-8	NZ00150	5510.00
	ARACBTRUCK	7-8	NZ00150	17610.00
	ARAGR21BMANUAL	7-6	NZ00150	10.40
	ARAGR31BMANUAL	7-6	NZ00150	10.40
A	ARB2123STD	7-4	NT40143	11180.00
A	ARB2163STD	7-4	NT40143	11290.00
A	ARB2203STD	7-4	NT40143	13380.00
A	ARB3253STD	7-4	NT40143	14090.00
A	ARB3323STD	7-4	NT40143	15920.00
A	ARB4403STD	7-4	NT40143	22650.00
A	ARC2123HHSTD	7-5	NT40143	4480.00
A	ARC2123HVSTD	7-5	NT40143	4480.00
A	ARC2123VHSTD	7-5	NT40143	4480.00
A	ARC2123VVSTD	7-5	NT40143	4480.00
A	ARC2203HHSTD	7-5	NT40143	4950.00
A	ARC2203HVSTD	7-5	NT40143	4950.00
A	ARC2203VHSTD	7-5	NT40143	4950.00

		CAT. NO.	PAGE	P.S.	PRICE \$
	A	ARC2203VVSTD	7-5	NT40143	4950.00
	A	ARC3323HHSTD	7-5	NT40143	7470.00
	A	ARC3323HVSTD	7-5	NT40143	7470.00
	A	ARC3323VHSTD	7-5	NT40143	7470.00
	A	ARC3323VVSTD	7-5	NT40143	7470.00
	A	ARC4403VVSTD	7-5	NT40143	11120.00
1	A	ARCOMMSMOD2ETH	7-30	NZ00150	4210.00
1	A	ARCOMMSMODDEV	7-30	NZ00150	4210.00
1	A	ARCOMMSMODPRO	7-30	NZ00150	4210.00
1	A	ARTEMPOWERRACK	7-33	NZ00150	POA
B					
I	A	BH6S633	5-10	NZ00150	13930.00
1	A	BH6S644	5-10	NZ00150	16270.00
1	A	BH8S833	5-10	NZ00150	15760.00
1	A	BH8S844	5-10	NZ00150	17410.00
1	A	BS12S1033	5-10	NZ00150	21580.00
1	A	BS12S1044	5-10	NZ00150	26460.00
1	A	BS12S1233	5-10	NZ00150	23850.00
1	A	BS12S1244	5-10	NZ00150	29440.00
1	A	BS16S1633	5-10	NZ00150	34800.00
1	A	BS16S1644	5-10	NZ00150	43930.00
1	A	BS20E2033	5-10	NZ00150	40870.00
1	A	BS20E2044	5-10	NZ00150	50940.00
1	A	BS25E2533	5-10	NZ00150	43260.00
1	A	BS25E2544	5-10	NZ00150	54130.00
1	A	BS6N433	5-10	NZ00150	12770.00
1	A	BS6N444	5-10	NZ00150	14890.00
1	A	BS6N633	5-10	NZ00150	12770.00
1	A	BS6N644	5-10	NZ00150	14890.00
1	A	BS6S633	5-10	NZ00150	13340.00
	A	BS8N833	5-10	NZ00150	14280.00
1	A	BS8N844	5-10	NZ00150	15220.00
1	A	BS8S833	5-10	NZ00150	15270.00
1	A	BS8S844	5-10	NZ00150	17920.00
	A	BTSS16GJ16033	5-7	NT20138	5900.00
1	A	BTSS16GJ16034	5-8	NT20138	7080.00
1	A	BTSS16GJ16044	5-7	NT20138	7870.00
1	A	BTSS16GJ16044	5-7	NT20138	7870.00
1	A	BTSS16NJ10033	5-7	NT20138	4580.00
	A	BTSS16NJ16033	5-7	NT20138	5110.00
1	A	BTSS16NJ6333	5-7	NT20138	3910.00
1	A	BTSS1GJ10033	5-7	NT20138	5100.00
1	A	BTSS1GJ10034	5-8	NT20138	6230.00
1	A	BTSS1GJ10044	5-7	NT20138	6810.00
1	A	BTSS1GJ10044	5-7	NT20138	6810.00
	A	BTSS1GJ12533	5-7	NT20138	5350.00
1	A	BTSS1GJ12534	5-8	NT20138	6530.00
I	A	BTSS1GJ12544	5-7	NT20138	7140.00
1	A	BTSS1GJ12544	5-7	NT20138	7140.00

I Available on indent only.
A Assembled to order.

CAT. NO.
I A BTSS1GJ6333
I A BTSS1GJ6344
I A BTSS1GJ6344
I A BTSS1NJ10033
A BTSS1NJ12533
I A BTSS1NJ6333
A BTSS2GJ25033
I A BTSS2GJ25034
I A BTSS2GJ25043
I A BTSS2GJ25044
I A BTSS2GJ25044
A BTSS2NJ25033
I A BTSS2PE12533
A BTSS2PE25033
I A BTSS2PE25044
I A BTSS4GE25033
I A BTSS4GE40033
I A BTSS4GE40044
I A BTSS4GJ25033
I A BTSS4GJ25044
A BTSS4GJ40033
I A BTSS4GJ40034
I A BTSS4GJ40043
I A BTSS4GJ40044
I A BTSS4NE25033 BTSS4NE25044
I A BTSS4NE40033
I A BTSS4NE40044
I A BTSS4NJ25033
I A BTSS4NJ25044
A BTSS4NJ40033
I A BTSS4NJ40034
I A BTSS4NJ40044
A BTSS6CE63033
I A BTSS6CE63034
I A BTSS6CE63044
A BTSS6GE63033
I A BTSS6GE63044

CA81210110VAC	$1-56$	NA10007	137.00
CA81210240VAC	$1-56$	NA10007	137.00
CA8121024VAC	$1-56$	NA10007	137.00
CA81210415VAC	$1-56$	NA10007	137.00
CA8510110VAC	$1-56$	NA10007	99.50
CA8510240VAC	$1-56$	NA10007	99.50
CA851024VAC	$1-56$	NA10007	99.50
CA8510415VAC	$1-56$	NA10007	99.50
CA8910110VAC	$1-56$	NA10007	113.00
CA8910240VAC	$1-56$	NA10007	113.00

	CAT. No.	PAGE	P.s.	PRICE
	CA891024VAC	$1-56$	NA10007	113.00
	CA8910415VAC	$1-56$	NA10007	113.00
	CA891048VAC	$1-56$	NA10007	113.00
	CD212/183U	$2-65$	NT40143	200.00
	CD218/183U	$2-65$	NT40143	225.00
	CD224/183U	$2-65$	NT40143	265.00
	CD230/183U	$2-65$	NT40143	310.00
	CD236/183U	$2-65$	NT40143	350.00
	CD242/183U	$2-65$	NT40143	380.00
	CD248/183U	$2-65$	NT40143	425.00
	\mathbf{A}	CD250CKT2	$2-31$	NT40143

I Available on indent only.
A Assembled to order.

		CAT. No.	PAGE	P.S.	PRICE \$
1	A	CDG 48M25002	2-25	NT40143	2370.00
1	A	CDG 4802	2-25	NT40143	2010.00
1	A	CDG 60G2	2-24	NT40143	2320.00
1	A	CDG 60M160G2	2-24	NT40143	2480.00
		CDG 60M16002	2-25	NT40143	2480.00
1	A	CDG 60M250G2	2-24	NT40143	2680.00
I	A	CDG 60M25002	2-25	NT40143	2680.00
I	A	CDG 6002	2-25	NT40143	2320.00
1	A	CDG 72G2	2-24	NT40143	2550.00
1	A	CDG 72M250G2	2-24	NT40143	2850.00
1	A	CDG 72M25002	2-25	NT40143	2850.00
1	A	CDG 7202	2-25	NT40143	2550.00
1	A	CDG 84G2	2-24	NT40143	2990.00
1	A	CDG 84M250G2	2-24	NT40143	3350.00
1	A	CDG 84M 25002	2-25	NT40143	3350.00
1	A	CDG 8402	2-25	NT40143	2990.00
1	A	CDG 96G2	2-24	NT40143	3400.00
1	A	CDG 96M250G2	2-24	NT40143	3750.00
		CDG 96M25002	2-25	NT40143	3750.00
1	A	CDG 9602	2-25	NT40143	3400.00
		CDH312/3027/183U	2-66	NT40143	640.00
		CDH312/4227/183U	2-66	NT40143	770.00
		CDH312/6027/183U	2-66	NT40143	950.00
		CDH36/1227/183U	2-66	NT40143	490.00
		CDH36/2427/183U	2-66	NT40143	550.00
		CDH36/3627/183U	2-66	NT40143	580.00
1	A	CDM36M160G	2-26	NT40143	3370.00
I	A	CDM48M160G	2-26	NT40143	3530.00
1	A	CDM60M160G	2-26	NT40143	3790.00
1	A	CDM60M250G	2-26	NT40143	3890.00
1	A	CDM72M250G	2-26	NT40143	4100.00
1	A	CDM84M250G	2-26	NT40143	4410.00
I	A	CDM96M250G	2-26	NT40143	4510.00
I	A	CDMRFDM250AG6	2-26	NT40143	2750.00
,	A	CDMRFG	2-26	NT40143	1610.00
1	A	CDMRFSM250AG6	2-26	NT40143	2020.00
	A	CDT160MS	2-51	NT40143	305.00
		CDT 18G2	2-18	NT40143	1090.00
		CDT 18M160G2	2-18	NT40143	1340.00
	A	CDT 18M16002	2-19	NT40143	1340.00
		CDT 18M250G2	2-18	NT40143	1460.00
		CDT 18M25002	2-19	NT40143	1460.00
	A	CDT 1802	2-19	NT40143	1090.00
		CDT 24G2	2-18	NT40143	1190.00
		CDT 24M160G2	2-18	NT40143	1440.00
	A	CDT 24M16002	2-19	NT40143	1440.00
		CDT 24M250G2	2-18	NT40143	1570.00
		CDT 24M25002	2-19	NT40143	1570.00
	A	CDT 24MCCB160G2	2-22	NT40143	1800.00

| | CAT. NO. | PAGE | P.S. |
| :--- | :--- | :--- | ---: | PRICE \$

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
A	CDTE36M160O2	2-21	NT40143	1650.00
A	CDTE36M250G2	2-20	NT40143	1770.00
A	CDTE36M25002	2-21	NT40143	1770.00
A	CDTE36O2	2-21	NT40143	1400.00
A	CDTE48G2	2-20	NT40143	1660.00
A	CDTE48M160G2	2-20	NT40143	1910.00
A	CDTE48M160O2	2-21	NT40143	1910.00
A	CDTE48M250G2	2-20	NT40143	2040.00
A	CDTE48M25002	2-21	NT40143	2040.00
A	CDTE48O2	2-21	NT40143	1660.00
A	CDTE72G2	2-20	NT40143	1890.00
A	CDTE72M160G2	2-20	NT40143	2140.00
A	CDTE72M160O2	2-21	NT40143	2140.00
A	CDTE72M250G2	2-20	NT40143	2260.00
A	CDTE72M25002	2-21	NT40143	2260.00
A	CDTE72O2	2-21	NT40143	1890.00
A	CDTE96G2	2-20	NT40143	2490.00
A	CDTE96M160G2	2-20	NT40143	2740.00
A	CDTE96M16002	2-21	NT40143	2740.00
A	CDTE96M250G2	2-20	NT40143	2860.00
A	CDTE96M25002	2-21	NT40143	2860.00
A	CDTE96O2	2-21	NT40143	2490.00
	CE4DT 14A2	1-42	NY80146	560.00
	CE4DT 14A6	1-42	NY80146	640.00
	CEN24	2-29	NT40143	88.00
	CEN24	2-48	NT40143	88.00
	CEN36	2-29	NT40143	95.00
	CEN36	2-48	NT40143	95.00
	CEN48	2-29	NT40143	118.00
	CEN48	2-48	NT40143	118.00
	CEN60	2-29	NT40143	144.00
	CEN60	2-48	NT40143	144.00
	CEN72	2-29	NT40143	158.00
	CEN72	2-48	NT40143	158.00
	CEN84	2-29	NT40143	193.00
	CEN84	2-48	NT40143	193.00
	CEN96	2-29	NT40143	215.00
	CEN96	2-48	NT40143	215.00
	CLSBB125033	5-34	NT30141	1840.00
1	CLSBB125044	5-34	NT30141	3150.00
	CLSBB63033	5-34	NT30141	1200.00
	CLSBB63044	5-34	NT30141	1690.00
	CLTD	5-28	NT30141	310.00
	CLTD	5-29	NT30141	310.00
A	CON 24 M160 G	2-15	NT40143	1190.00
A	CON 24 M 160 O	2-15	NT40143	1190.00
A	CON 24 M 250 G	2-15	NT40143	1400.00
A	CON 24 M 250 O	2-15	NT40143	1400.00
A	CON 36 M160 G	2-15	NT40143	1300.00

CAT. NO.
A

I A CON 36 M 2500
A CON 48 M160 G
A CON 48 M160 O
A CON 48 M 250 G
I A CON 48 M 250 O
A CON 60 M 160 G
A CON 60 M160 O
A CON 60 M 250 G
I A CON 60 M 250 O
CONFK1
I CONFK2
I CONFK4
COTD
A
CPACC48G2
CPACC72G2
A CPACCS1GE2
A CPACCS1GE2
A CPACCS2GE2

A CPACCS4GE2
A CPACCS5GE2
A CPACCS6GE2
A CPACCSHG2
CPACCSHGE2
CPACCSOG2
CPACCSOGE2
CPBFK1
CPBFK2
CPBFK3
CPBFK4
CPBFK5
I CPBFK6 CPBGTS1
CPBGTS 1
CPBGTS2
CPBGTS2
CPBGTS3 $2-29$
CPBGTS3
CPBGTS4
CPBGTS4
CPBGTS6
CPBGTS6
CPBGTSH
CPBGTSH

CPBS250

PAGE
2-15
2-15
2-15
2-15
2-15
$\begin{array}{ccc}2-15 & \text { NT40143 } & 1620.00\end{array}$
2-15 NT40143 1620.00
$\begin{array}{ccc}2-15 & \text { NT40143 } & 1540.00\end{array}$
2-1
2-1
2-1
2-1
2-16
2-1
5-29
2-2
2-2
2-2
2-2
2-2
2-2
2-2
2-29
2-29
2-2
2-2
2-
2-
2-30
2-3
2-3
2-30
2-30
2-30

2-48
2-4
2-29
2-48
2-29
2-48
2-29
2-48
2-57
2-31
2-29 NT40143 46.50

2-48 NT40143 46.50
2-29 NT40143 67.50
P.S.

NT40143
NT40143
NT40143
NT40143 $\begin{array}{ll}\text { NT40143 } & 1540.00 \\ \text { NT40143 } & 1740.00\end{array}$ $\begin{array}{ll}\text { NT40143 } & 1540.00 \\ \text { NT40143 } & 1740.00\end{array}$ $\begin{array}{ll}\text { NT40143 } & 1740.00\end{array}$ 285.00 285.00 285.00 285.00 365.00 790.00 810.00 880.00 900.00 1020.00 1130.00 1320.00 1430.00 1610.00 870.00 870.00 740.00 740.00 300.00 300.00 300.00 300.00 300.00 300.00 46.50 67.50 88.00 88.00 145.00 145.00 230.00 230.00 114.00 114.00 4.20
83.00

PRICE \$ 1300.00 1500.00 1500.00 1400.00 1400.00

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
A	CPD 18G	2-34	NT40143	1870.00
	CPD 18G2	2-40	NT40143	1870.00
	CPD 18M160G	2-34	NT40143	2120.00
	CPD 18M160G2	2-40	NT40143	2120.00
	CPD 18M1600	2-35	NT40143	2120.00
	CPD 18M16002	2-41	NT40143	2120.00
	CPD 18M160SS	2-36	NT40143	7160.00
	CPD 18M160SS2	2-42	NT40143	7160.00
	CPD 18M250G	2-34	NT40143	2240.00
	CPD 18M250G2	2-40	NT40143	2240.00
	CPD 18M2500	2-35	NT40143	2240.00
	CPD 18M25002	2-41	NT40143	2240.00
	CPD 18M250SS	2-36	NT40143	7310.00
	CPD 18M250SS2	2-42	NT40143	7310.00
A	CPD 180	2-35	NT40143	1870.00
	CPD 1802	2-41	NT40143	1870.00
A	CPD 18SS	2-36	NT40143	6850.00
	CPD 18SS2	2-42	NT40143	6850.00
A	CPD 24G	2-34	NT40143	1970.00
	CPD 24G2	2-40	NT40143	1970.00
A	CPD 24M160G	2-34	NT40143	2220.00
	CPD 24M160G2	2-40	NT40143	2220.00
	CPD 24M1600	2-35	NT40143	2220.00
	CPD 24M16002	2-41	NT40143	2220.00
	CPD 24M160SS	2-36	NT40143	7240.00
	CPD 24M160SS2	2-42	NT40143	7240.00
	CPD 24M250G	2-34	NT40143	2340.00
	CPD 24M250G2	2-40	NT40143	2340.00
	CPD 24M2500	2-35	NT40143	2340.00
	CPD 24M25002	2-41	NT40143	2340.00
	CPD 24M250SS	2-36	NT40143	7420.00
	CPD 24M250SS2	2-42	NT40143	7420.00
A	CPD 240	2-35	NT40143	1970.00
	CPD 2402	2-41	NT40143	1970.00
A	CPD 24SS	2-36	NT40143	6950.00
	CPD 24SS2	2-42	NT40143	6950.00
A	CPD 36G	2-34	NT40143	2180.00
	CPD 36G2	2-40	NT40143	2180.00
	CPD 36M160G	2-34	NT40143	2430.00
	CPD 36M160G2	2-40	NT40143	2430.00
	CPD 36M1600	2-35	NT40143	2430.00
	CPD 36M16002	2-41	NT40143	2430.00
	CPD 36M160SS	2-36	NT40143	8140.00
	CPD 36M160SS2	2-42	NT40143	8140.00
	CPD 36M250G	2-34	NT40143	2550.00
	CPD 36M250G2	2-40	NT40143	2550.00
	CPD 36M2500	2-35	NT40143	2550.00
	CPD 36M25002	2-41	NT40143	2550.00
	CPD 36M250SS	2-36	NT40143	8290.00

NH-

	CAT. NO.	PAGE	P.S.	PRICE
	CPD 36M250SS2	$2-42$	NT40143	8290.00
	A	CPD 36O	$2-35$	NT40143

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.s.	PRICE
	CPD 72M250G	$2-34$		NT40143

	CAT. NO.	PAGE	P.S.	PRICE \$
I	CPDHANDLENOLOCK	2-16	NT40143	36.50
I	CPDHANDLENOLOCK	2-30	NT40143	36.50
I	CPDHANDLEPADLCK	2-16	NT40143	78.00
I	CPDHANDLEPADLCK	2-30	NT40143	78.00
	CPDRUBBER	2-30	NT40143	197.00
	CPECS	2-30	NT40143	104.00
A	CPELK1	2-16	NT40143	430.00
A	CPELK1	2-30	NT40143	430.00
A	CPELK1	2-50	NT40143	430.00
A	CPELK1W	2-16	NT40143	445.00
A	CPELKIW	2-30	NT40143	445.00
A	CPELK1W	2-50	NT40143	445.00
A	CPELK2	2-16	NT40143	495.00
A	CPELK2	2-30	NT40143	495.00
A	CPELK2	2-50	NT40143	495.00
	CPEN18	2-56	NT40143	88.00
	CPEN18EVE	2-57	NT40143	98.50
	CPEN18ODD	2-57	NT40143	98.50
	CPEN24	2-56	NT40143	101.00
	CPEN24EVE	2-57	NT40143	111.00
	CPEN24ODD	2-57	NT40143	111.00
	CPEN30EVE	2-57	NT40143	130.00
	CPEN30ODD	2-57	NT40143	130.00
	CPEN36	2-56	NT40143	130.00
	CPEN36EVE	2-57	NT40143	140.00
	CPEN36ODD	2-57	NT40143	140.00
	CPEN48	2-56	NT40143	140.00
	CPEN48EVE	2-57	NT40143	150.00
	CPEN48ODD	2-57	NT40143	150.00
	CPEN60	2-56	NT40143	171.00
	CPEN72	2-56	NT40143	192.00
	CPEN84	2-56	NT40143	225.00
	CPEN96	2-56	NT40143	265.00
	CPEN9EVE	2-57	NT40143	78.00
	CPEN9ODD	2-57	NT40143	78.00
A	CPESC	2-30	NT40143	50.00
	CPEXTLK1	2-31	NT40143	395.00
	CPEXTLK2	2-31	NT40143	710.00
	CPEXTLKC	2-31	NT40143	300.00
1 A	CPG 24G	2-37	NT40143	2300.00
A	CPG 24G2	2-43	NT40143	2300.00
1 A	CPG 24M160G	2-37	NT40143	2550.00
A	CPG 24M160G2	2-43	NT40143	2550.00
	CPG 24M1600	2-38	NT40143	2550.00
A	CPG 24M16002	2-44	NT40143	2550.00
	CPG 24M250G	2-37	NT40143	2650.00
A	CPG 24M250G2	2-43	NT40143	2650.00
	CPG 24M2500	2-38	NT40143	2650.00
A	CPG 24M25002	2-44	NT40143	2650.00

I Available on indent only.
A Assembled to order.

CAT. NO.
$\begin{array}{lll}\text { I } & \text { A CPG } 240 \\ & \mathbf{A} & \text { CPG } 2402\end{array}$
I A CPG 36G
A CPG 36G2
CPG 36M160G
A CPG 36M160G2 CPG 36M1600
A CPG 36M16002 CPG 36M250G
A CPG 36M250G2 CPG 36M2500
A CPG 36M250O2
I A CPG 360
A CPG 3602
I A CPG 48G
A CPG 48G2 CPG 48M160G
A CPG 48M160G2
CPG 48M1600
A CPG 48M16002
I A CPG 48M250G
A CPG 48M250G2
CPG 48M2500
A CPG 48M25002
I A CPG 480
A CPG 4802
I A CPG60G 2-37
A CPG60G2 2
CPG 60M160G
A CPG 60M160G2 CPG 60M1600
A CPG 60M16002 CPG 60M250G
A CPG 60M250G2 CPG 60M2500
A CPG 60M25002
I A CPG 600 2-38 NT40143 3200.00

	A	CPG 6002	2-44	NT40143	3200.00
1	A	CPG 72G	2-37	NT40143	3850.00
	A	CPG 72G2	2-43	NT40143	3850.00
		CPG 72M250G	2-37	NT40143	4200.00
	A	CPG 72M250G2	2-43	NT40143	4200.00
		CPG 72M2500	2-38	NT40143	4200.00
	A	CPG 72M25002	2-44	NT40143	4200.00
1	A	CPG 720	2-38	NT40143	3850.00
	A	CPG 7202	2-44	NT40143	3850.00
1	A	CPG 84G	2-37	NT40143	4550.00
	A	CPG 84G2	2-43	NT40143	4550.00
		CPG 84M250G	2-37	NT40143	4900.00

| | | CAT. NO. | PAGE | P.S. |
| :--- | :--- | :--- | :--- | ---: | PRICE $\$$

I Available on indent only.
A Assembled to order.
$\left.\begin{array}{llllr} & \text { CAT. No. } & \text { PAGE } & \text { P.s. } & \text { PRICE } \\ & \text { CPPFK2 } & 2-50 & & \text { NT40143 }\end{array}\right] 300.00$

CAT.NO.
$\begin{aligned} \text { A } & \text { CPS 60G } \\ & \text { CPS 60M160G } \\ & \text { CPS 60M1600 } \\ & \text { CPS 60M250G } \\ & \text { CPS 60M } 2500\end{aligned}$
A CPS 600
A
CPS 72M250G
CPS 72M2500
A
A
A CPS 720
A CPS 84G CPS 84M250G
A CPS 96G
CPS 96M250G
CPS 960
CPSCHEDULECARD
CPSCHEDULEHOLD
CPTPSC1-100N
CPTPSC1-12/230IR
CPTPSC-12-230MOD
CPTPSC1-25/230IR
CPTPSC1-25N
CPTPSC1-50N
CPTPSC2-12/230IR
CPTPSC2-25/230IR
CPTPSC-25-230MOD
CPTPSC4-12/400IR
CPTPSC4-25/400IR
CPTPSM1-20/230 IR
CPTPSM1-20N
CPTPSM1-40/230 IR
CPTPSM1-40N
CPTPSM-20-230MOD
CPTPSM2- 20/230 IR
CPTPSM2-40/230 IR
CPTPSM-40-230MOD
CPTPSM4-20/400 IR
CPTPSM4-40/400 IR
CPWIL02
CPWIL1
CPWIL12
CPWIL2

CPWIL3
CPWIL32
CPWIL4

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
	CPWIL5	2-30	NT40143	145.00
	CPWIL52	2-30	NT40143	145.00
	CPWIL6	2-30	NT40143	156.00
	CPWIL62	2-30	NT40143	156.00
	CPWILH	2-30	NT40143	83.00
	CPWILH2	2-30	NT40143	83.00
A	CPX18G	2-47	NT40143	3680.00
1 A	CPX180	2-47	NT40143	3680.00
1 A	CPX185S	2-47	NT40143	8560.00
A	CPX24G	2-47	NT40143	4100.00
1 A	CPX240	2-47	NT40143	4100.00
1 A	CPX24SS	2-47	NT40143	8770.00
A	CPX36G	2-47	NT40143	4460.00
1 A	CPX360	2-47	NT40143	4460.00
1 A	CPX36SS	2-47	NT40143	10220.00
A	CPX42G	2-47	NT40143	4880.00
1 A	CPX420	2-47	NT40143	4880.00
1 A	CPX42SS	2-47	NT40143	11460.00
1 A	CPX48G	2-47	NT40143	4930.00
1 A	CPX480	2-47	NT40143	4930.00
1 A	CPX48SS	2-47	NT40143	11670.00
1 A	CPX60G	2-47	NT40143	5290.00
1 A	CPX600	2-47	NT40143	5290.00
1 A	CPX60SS	2-47	NT40143	13120.00
1 A	CPX72G	2-47	NT40143	5710.00
1 A	CPX720	2-47	NT40143	5710.00
1 A	CPX72SS	2-47	NT40143	14270.00
	CPXEN12	2-57	NT40143	140.00
	CPXEN18	2-57	NT40143	250.00
	CPXEN36	2-57	NT40143	320.00
	CPXEN8	2-57	NT40143	109.00
1	CSB08ST	2-4	NT30141	67.50
I	CSB08SW	2-4	NT30141	67.50
	CSB12FMPL	2-5	NT10135	37.00
	CSB12FT	2-5	NT10135	78.00
	CSB12FW	2-5	NT10135	78.00
	CSB12ST	2-4	NT10135	78.00
	CSB12SW	2-4	NT10135	78.00
	CSB18FMPL	2-5	NT10135	37.00
	CSB18FT	2-5	NT10135	119.00
	CSB18FW	2-5	NT10135	119.00
	CSB18ST	2-4	NT10135	119.00
	CSB18SW	2-4	NT10135	119.00
	CSB24FMPL	2-5	NT10135	42.00
	CSB24FT	2-5	NT10135	156.00
	CSB24FW	2-5	NT10135	156.00
	CSB24ST	2-4	NT10135	156.00
	CSB24SW	2-4	NT10135	156.00
	CSB36FMPL	2-5	NT10135	42.00

	CAT. NO.	PAGE	P.S.	PRICE \$
	CSB36FT	2-5	NT10135	197.00
	CSB36FW	2-5	NT10135	197.00
	CSB36ST	2-4	NT10135	197.00
	CSB36SW	2-4	NT10135	197.00
	CSPC1	2-2	NT30141	7.30
A	CST160MS	2-30	NT40143	305.00
A	CST 24 G	2-27	NT40143	1300.00
A	CST 24M160G	2-27	NT40143	1550.00
	CST 24M1600	2-28	NT40143	1550.00
	CST 24M250G	2-27	NT40143	1670.00
	CST 24M2500	2-28	NT40143	1670.00
A	CST 240	2-28	NT40143	1300.00
A	CST250MS	2-30	NT40143	435.00
A	CST 36G	2-27	NT40143	1410.00
A	CST 36M160G	2-27	NT40143	1660.00
A	CST 36M1600	2-28	NT40143	1660.00
	CST 36M250G	2-27	NT40143	1780.00
	CST 36M2500	2-28	NT40143	1780.00
A	CST 360	2-28	NT40143	1410.00
A	CST 48G	2-27	NT40143	1550.00
A	CST 48M160G	2-27	NT40143	1790.00
	CST 48M250G	2-27	NT40143	1920.00
A	CST 60G	2-27	NT40143	1710.00
A	CST 60M160G	2-27	NT40143	1960.00
	CST 60M1600	2-28	NT40143	1960.00
	CST 60M250G	2-27	NT40143	2090.00
A	CST 60M2500	2-28	NT40143	2090.00
A	CST 600	2-28	NT40143	1710.00
A	CST 72G	2-27	NT40143	1860.00
	CST 72M250G	2-27	NT40143	2230.00
	CST 72M2500	2-28	NT40143	2230.00
A	CST 720	2-28	NT40143	1860.00
1 A	CST 96G	2-27	NT40143	2490.00
	CST 96M250G	2-27	NT40143	2860.00
	CST 96M2500	2-28	NT40143	2860.00
1 A	CST 960	2-28	NT40143	2490.00
	CT 212/253	2-67	NT40143	225.00
	CT 218/253	2-67	NT40143	255.00
	CT 224/253	2-67	NT40143	280.00
	CT 230/253	2-67	NT40143	295.00
	CT 236/253	2-67	NT40143	370.00
	CT 242/253	2-67	NT40143	395.00
	CT 248/253	2-67	NT40143	440.00
	CT 260/253	2-67	NT40143	540.00
	CT 272/253	2-67	NT40143	740.00
	CT 284/253	2-67	NT40143	830.00
	CT 296/253	2-67	NT40143	1020.00
1	CT 312/253	2-68	NT40143	370.00
I	CT 318/253	2-68	NT40143	425.00

I Available on indent only.
A Assembled to order.

	CAT. no.		PAGE	P.S.	PRICE \$
		CT 324/253	2-68	NT40143	495.00
1		CT 330/253	2-68	NT40143	540.00
		CT 336/253	2-68	NT40143	590.00
1		CT 342/253	2-68	NT40143	680.00
		CT 348/253	2-68	NT40143	750.00
		CT 360/253	2-68	NT40143	860.00
		CT 372/253	2-68	NT40143	1030.00
		CT 384/253	2-68	NT40143	1120.00
		CT 396/253	2-68	NT40143	1220.00
1	A	CTACC24HO	2-54	NT40143	4250.00
1	A	CTACC24O	2-54	NT40143	4250.00
1	A	CTACCO	2-54	NT40143	3990.00
1	A	CTD180	2-54	NT40143	5910.00
1	A	CTD18SSO	2-54	NT40143	20020.00
1	A	CTD24O	2-54	NT40143	6230.00
1	A	CTD24SSO	2-54	NT40143	20230.00
1	A	CTD360	2-54	NT40143	6540.00
1	A	CTD36SSO	2-54	NT40143	20270.00
1	A	CTD480	2-54	NT40143	6740.00
1	A	CTD48SSO	2-54	NT40143	20580.00
1	A	CTD600	2-54	NT40143	8090.00
1	A	CTD605SO	2-54	NT40143	24010.00
1	A	CTD720	2-54	NT40143	8510.00
1	A	CTD72SSO	2-54	NT40143	24320.00
1	A	CTD840	2-54	NT40143	8920.00
1	A	CTD84SSO	2-54	NT40143	24530.00
1	A	CTD960	2-54	NT40143	9230.00
1	A	CTD96SSO	2-54	NT40143	24730.00
		CTES248RDCOLD	1-47	NT40143	570.00
		CTES396RDCOLD	1-47	NT40143	670.00
	A	CTX18M4000	2-55	NT40143	POA
1	A	CTX180	2-55	NT40143	7420.00
I	A	CTX18SSO	2-55	NT40143	23290.00
	A	CTX24M4000	2-55	NT40143	POA
1	A	CTX240	2-55	NT40143	7680.00
1	A	CTX24SSO	2-55	NT40143	23600.00
	A	CTX36M4000	2-55	NT40143	POA
1	A	CTX360	2-55	NT40143	8140.00
1	A	CTX36SSO	2-55	NT40143	24120.00
	A	CTX48M4000	2-55	NT40143	POA
1	A	CTX480	2-55	NT40143	8660.00
1	A	CTX485SO	2-55	NT40143	24590.00
	A	CTX60M4000	2-55	NT40143	POA
1	A	CTX600	2-55	NT40143	11050.00
1	A	CTX605SO	2-55	NT40143	29620.00
	A	CTX72M4000	2-55	NT40143	POA
	A	CTX720	2-55	NT40143	11620.00
	A	CTX72SSO	2-55	NT40143	30190.00

CAT. NO.		PAGE	P.S.	PRICE \$
D				
	D1000 0010	7-44	NB20067	5610.00
	D1000DINCLIPS	7-44	NB20067	11.40
	DCLD6	1-50	NT30141	57.00
	DINT10H1100C	1-22	NT10136	151.00
I	DINT10H1100D	1-22	NT10136	182.00
	DINT10H1125C	1-22	NT10136	189.00
	DINT10H1125D	1-22	NT10136	210.00
	DINT10H180C	1-22	NT10136	128.00
	DINT10H180D	1-22	NT10136	182.00
	DINT10H2100C	1-22	NT10136	350.00
I	DINT10H2100D	1-22	NT10136	400.00
	DINT10H2125C	1-22	NT10136	470.00
I	DINT10H2125D	1-22	NT10136	530.00
	DINT10H280C	1-22	NT10136	330.00
	DINT10H280D	1-22	NT10136	355.00
	DINT10H3100C	1-22	NT10136	400.00
	DINT10H3100D	1-22	NT10136	455.00
	DINT10H3125C	1-22	NT10136	590.00
	DINT10H3125C	2-31	NT10136	590.00
	DINT10H3125D	1-22	NT10136	650.00
	DINT10H380C	1-22	NT10136	400.00
	DINT10H380D	1-22	NT10136	455.00
	DINT10H4100C	1-22	NT10136	700.00
I	DINT10H4100D	1-22	NT10136	780.00
1	DINT10H4125C	1-22	NT10136	1040.00
I	DINT10H4125D	1-22	NT10136	1140.00
1	DINT10H480C	1-22	NT10136	700.00
1	DINT10H480D	1-22	NT10136	780.00
	DINT10H HS	1-40	NT10136	114.00
	DINT10HTC	1-50	NT30141	5.40
	DINTMS1001	1-38	NT10136	48.00
	DINTMS1002	1-38	NT10136	75.00
	DINTMS1003	1-38	NT10136	115.00
	DINTMS1003	2-30	NT10136	115.00
	DINTMS631	1-38	NT10136	42.00
	DINTMS632	1-38	NT10136	56.00
	DINTMS633	1-38	NT10136	86.50
	DINTMS801	1-38	NT10136	45.00
	DINTMS802	1-38	NT10136	67.00
	DINTMS803	1-38	NT10136	102.00
	DINTMS803	2-30	NT10136	102.00
	DINTSHT110415U	1-39	NT30141	164.00
	DINTSHT2460U	1-39	NT30141	164.00
I	DINTT100	2-64	NT40143	10.00
	DINTT100	2-64	NT40143	10.00
A	DM15036	2-6	NT40143	305.00
A	DM15054	2-6	NT40143	440.00
A	DM15072	2-6	NT40143	580.00

I Available on indent only.
A Assembled to order.

CAT. NO.
l DM150JK
A DM150NAA
I A DM150NAB
A DM150NAC
A DMWP12
A DMWP24
A DMWP36 $2-8$
DMWPCS 2-8
DMWPLD 2-8
A DSLK 2

A DSLK	2
DSR110DEL	8
DSR140DEL	8

DSR210DEL	8
DSR35DEL	8
DSR48TD110	8
DSR48TD240	8
DSR80DEL	8

\square DSRCB0610A
DSRCB0630
DSRCB0630P
DSRCB10100A

DSRCB1010A	$1-30$	NT30141	285.00
DSRCB1030	$1-30$	NT30141	275.00
DSRCB1030A	$1-30$	NT30141	285.00

\mathbf{I}	DSRCB16100A	$1-30$	NT30141	305.00
	DSRCB1610A	$1-30$	NT30141	285.00

	DSRCB1630	1-30	NT30141	275.00
	DSRCB1630A	1-30	NT30141	285.00
	DSRCB1630P	1-31	NT30141	280.00
1	DSRCB20100A	1-30	NT30141	305.00
	DSRCB2010A	1-30	NT30141	285.00
	DSRCB2030	1-30	NT30141	275.00
	DSRCB2030A	1-30	NT30141	285.00
	DSRCB2030P	1-31	NT30141	280.00
	DSRCB2530	1-30	NT30141	275.00
	DSRCB2530A	1-30	NT30141	285.00
	DSRCB2530P	1-31	NT30141	280.00
	DSRCB3230	1-30	NT30141	275.00
	DSRCB3230A	1-30	NT30141	285.00
	DSRCB3230P	1-31	NT30141	280.00
	DSRCB4030	1-30	NT30141	275.00
	DSRCB4030A	1-30	NT30141	285.00
	DSRCB4030P	1-31	NT30141	280.00
1	DSRCBH0610A	1-29	NT30141	400.00
	DSRCBH0630A	1-29	NT30141	310.00
	DSRCBH1010A	1-29	NT30141	400.00

	CAt. no.	PAGE	P.S.	PRICE \$	\geq
	DSRCBH1030A	1-29	NT30141	310.00	
	DSRCBH1610A	1-29	NT30141	400.00	$\underline{0}$
	DSRCBH1630A	1-29	NT30141	310.00)
	DSRCBH2010A	1-29	NT30141	400.00)
	DSRCBH2030A	1-29	NT30141	310.00	\subseteq
1	DSRCBH2510A	1-29	NT30141	400.00	3
	DSRCBH2530A	1-29	NT30141	310.00	D
1	DSRCBH3210A	1-29	NT30141	400.00	$\stackrel{\sim}{n}$.
	DSRCBH3230A	1-29	NT30141	310.00	
1	DSRCBH4010A	1-29	NT30141	400.00	\bigcirc
	DSRCBH4030A	1-29	NT30141	310.00	$\frac{0}{0}$
	DSRCBHTC	1-50	NT30141	7.50	
1	DSRCBS0630B	1-28	NT30141	320.00	
	DSRCBS0630C	1-28	NT30141	320.00	
1	DSRCBS1030B	1-28	NT30141	320.00	
	DSRCBS1030C	1-28	NT30141	320.00	
1	DSRCBS1630B	1-28	NT30141	320.00	
	DSRCBS1630C	1-28	NT30141	320.00	
1	DSRCBS2030B	1-28	NT30141	320.00	
	DSRCBS2030C	1-28	NT30141	320.00	
1	DSRCBS2530B	1-28	NT30141	320.00	
	DSRCBS2530C	1-28	NT30141	320.00	
1	DSRCBS3230B	1-28	NT30141	320.00	
	DSRCBS3230C	1-28	NT30141	320.00	
	DSRCBSAX	1-40	NT10136	102.00	
	DSRCBSAXAL	1-40	NT10136	114.00	
1	DSRCBSAXALG	1-40	NT10136	125.00	
	DSRCD240100	1-25	NT30141	290.00	
1	DSRCD240100A	1-26	NT30141	365.00	
	DSRCD24030	1-25	NT30141	240.00	
	DSRCD240300	1-25	NT30141	330.00	
	DSRCD24030A	1-26	NT30141	265.00	
	DSRCD24030AI	1-25	NT30141	290.00	
	DSRCD263100S	1-25	NT30141	365.00	
	DSRCD26330	1-25	NT30141	265.00	
	DSRCD263300S	1-25	NT30141	400.00	
1	DSRCD26330A	1-26	NT30141	340.00	
	DSRCD26330AI	1-25	NT30141	335.00	
	DSRCD280100	1-25	NT30141	355.00	
1	DSRCD280100A	1-26	NT30141	365.00	
	DSRCD28030	1-25	NT30141	295.00	
1	DSRCD280300	1-25	NT30141	370.00	
1	DSRCD28030A	1-26	NT30141	400.00	
	DSRCD4100100	1-25	NT30141	560.00	
	DSRCD4100100S	1-25	NT30141	610.00	
	DSRCD410030	1-25	NT30141	560.00	
	DSRCD4100300	1-25	NT30141	560.00	
	DSRCD4100300S	1-25	NT30141	620.00	
1	DSRCD410030A	1-26	NT30141	630.00	

I Available on indent only.
A Assembled to order.

CAT. NO.
1 I
DSRCD4100500
DSRCD4125500B
DSRCD440100
DSRCD44030
DSRCD440300
DSRCD44030A
DSRCD44030AI
DSRCD463100
DSRCD463100A
DSRCD463100B
DSRCD463100S
DSRCD46330
I DSRCD463300BS
DSRCD463300S
DSRCD46330A
DSRCD46330AI
I DSRCD46330B
DSRCD480100
DSRCD480100A
DSRCD48030
DSRCDE24030
I DS
I DS
1 D
\square DSR

DSRCDE44030	$1-24$	NT10136	335.00
DSRCDE46330	$1-24$	NT10136	360.00
DSRCM321001PN	$1-32$	NT30141	455.00
DSRCM321003PN	$1-32$	NT30141	580.00
DSRCM323001PN	$1-32$	NT30141	510.00

DSRCM323003PN	$1-32$	NT30141	580.00
DSRCM32301PN	$1-32$	NT30141	435.00
DSRCM32303PN	$1-32$	NT30141	495.00
DSRCM631001PN	$1-32$	NT30141	570.00
DSRCM631003P	$1-32$	NT30141	640.00
DSRCM631003PN	$1-32$	NT30141	640.00
DSRCM633001PN	$1-32$	NT30141	620.00
DSRCM633003PN	$1-32$	NT30141	640.00
DSRCM63301PN	$1-32$	NT30141	550.00
DSRCM63303P	$1-32$	NT30141	590.00
DSRCM63303PN	$1-32$	NT30141	580.00
DSRM110V	$8-12$	NT30141	1200.00
DSRM240V	$8-12$	NT30141	1200.00
DSRM72110	$8-12$	NT30141	980.00
DSRM7224	$8-12$	NT30141	980.00
DSRM72240	$8-12$	NT30141	980.00
DTAUXAL	$1-40$	NT10136	102.00
DTAUXALG	$1-40$	NT10136	123.00
DTC2002240	$1-52$	NT30141	151.00
DTC2011240	$1-52$	NT30141	151.00
DTC202024	$1-52$	NT30141	151.00
DTC2020240	$1-52$	NT30141	151.00

	CAT. NO.	PAGE	P.S.	PRICE \$	
	DTC2020240L	1-54	NT30141	78.00	\geq
	DTC202024L	1-54	NT30141	78.00	O
	DTC2404240	1-52	NT30141	175.00	$\stackrel{\square}{0}$
	DTC244012	1-52	NT30141	175.00	\bigcirc
	DTC244024	1-52	NT30141	175.00	\subseteq
	DTC2440240	1-52	NT30141	175.00	3
	DTC2504240L	1-54	NT30141	98.50	D
	DTC254012L	1-54	NT30141	98.50	$\bar{\cap}$.
	DTC2540240L	1-54	NT30141	98.50	
I	DTC404024	1-52	NT30141	310.00	\bigcirc
	DTC4040240	1-52	NT30141	310.00	\bigcirc
	DTC4040240L	1-54	NT30141	235.00	\times
I	DTC634024	1-52	NT30141	430.00	
	DTC6340240	1-52	NT30141	430.00	
	DTC6340240L	1-54	NT30141	260.00	
	DTCB10 101 C	1-20	NT10136	58.50	
1	DTCB10 1 01D	1-21	NT10136	66.50	
	DTCB10 1 02C	1-20	NT10136	58.50	
	DTCB10 1 02D	1-21	NT10136	66.50	
	DTCB10 1 04C	1-20	NT10136	58.50	
	DTCB10 1 04D	1-21	NT10136	66.50	
	DTCB10 1 05C	1-20	NT10136	58.50	
I	DTCB10 1 05D	1-21	NT10136	66.50	
	DTCB10 1 06B	1-19	NT10136	66.50	
	DTCB10 1 06C	1-20	NT10136	58.50	
	DTCB10 1 06D	1-21	NT10136	66.50	
	DTCB10 1 10B	1-19	NT10136	66.50	
	DTCB10 1 10C	1-20	NT10136	58.50	
	DTCB10 1 10D	1-21	NT10136	66.50	
I	DTCB10 1 13C	1-20	NT10136	58.50	
I	DTCB10 1 13D	1-21	NT10136	66.50	
	DTCB10 1 16B	1-19	NT10136	66.50	
	DTCB10 1 16C	1-20	NT10136	58.50	
	DTCB10 1 16D	1-21	NT10136	66.50	
	DTCB10 1 20B	1-19	NT10136	66.50	
	DTCB10 1 20C	1-20	NT10136	58.50	
	DTCB10 1 20D	1-21	NT10136	66.50	
	DTCB10 1 25B	1-19	NT10136	66.50	
	DTCB10 1 25C	1-20	NT10136	58.50	
	DTCB10 1 25D	1-21	NT10136	66.50	
	DTCB10 1 32B	1-19	NT10136	66.50	
	DTCB10 1 32C	1-20	NT10136	58.50	
	DTCB10 1 32D	1-21	NT10136	66.50	
	DTCB10 1 40B	1-19	NT10136	78.50	
	DTCB10 140 C	1-20	NT10136	58.50	
	DTCB10 1 40D	1-21	NT10136	84.50	
I	DTCB10 1 50B	1-19	NT10136	91.00	
	DTCB10 1 50C	1-20	NT10136	58.50	
	DTCB10 1 50D	1-21	NT10136	109.00	

33 Adam Street Wynnum North SPS - Electrical Installation OM Ma

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
I	DTCB10 1 63B	1-19	NT10136	109.00
	DTCB10 1 63C	1-20	NT10136	58.50
	DTCB10 1 63D	1-21	NT10136	133.00
	DTCB10 201 C	1-20	NT10136	179.00
	DTCB10 2 01D	1-21	NT10136	188.00
	DTCB10 202C	1-20	NT10136	179.00
	DTCB10 2 02D	1-21	NT10136	188.00
	DTCB10 $204 C$	1-20	NT10136	179.00
	DTCB10 2 04D	1-21	NT10136	188.00
	DTCB10 205 C	1-20	NT10136	179.00
I	DTCB10 2 05D	1-21	NT10136	188.00
	DTCB10 206 B	1-19	NT10136	188.00
	DTCB10 $206 C$	1-20	NT10136	179.00
	DTCB10 2 06D	1-21	NT10136	188.00
	DTCB10 2 10B	1-19	NT10136	188.00
	DTCB10 2 10C	1-20	NT10136	179.00
	DTCB10 2 10D	1-21	NT10136	188.00
I	DTCB10 2 13C	1-20	NT10136	179.00
I	DTCB10 2 13D	1-21	NT10136	188.00
I	DTCB10 2 16B	1-19	NT10136	188.00
	DTCB10 2 16C	1-20	NT10136	179.00
	DTCB10 2 16D	1-21	NT10136	188.00
I	DTCB10 2 20B	1-19	NT10136	188.00
	DTCB10 2 20C	1-20	NT10136	179.00
	DTCB10 2 20D	1-21	NT10136	188.00
I	DTCB10 2 25B	1-19	NT10136	188.00
	DTCB10 2 25C	1-20	NT10136	179.00
	DTCB10 2 25D	1-21	NT10136	188.00
I	DTCB10 2 32B	1-19	NT10136	188.00
	DTCB10 232 C	1-20	NT10136	179.00
	DTCB10 2 32D	1-21	NT10136	188.00
I	DTCB10 2 40B	1-19	NT10136	194.00
	DTCB10 2 40C	1-20	NT10136	179.00
	DTCB10 2 40D	1-21	NT10136	205.00
I	DTCB10 2 50B	1-19	NT10136	220.00
	DTCB10 2 50C	1-20	NT10136	179.00
	DTCB10 2 50D	1-21	NT10136	230.00
I	DTCB10 2 63B	1-19	NT10136	230.00
	DTCB10 263 C	1-20	NT10136	179.00
	DTCB10 263 D	1-21	NT10136	255.00
	DTCB10 3 01C	1-20	NT10136	215.00
I	DTCB10 3 01D	1-21	NT10136	220.00
	DTCB103 02C	1-20	NT10136	215.00
I	DTCB10302D	1-21	NT10136	220.00
	DTCB10 3 04C	1-20	NT10136	215.00
	DTCB10 3 04D	1-21	NT10136	220.00
	DTCB10305C	1-20	NT10136	215.00
I	DTCB10305D	1-21	NT10136	220.00
I	DTCB10 3 06B	1-19	NT10136	220.00

	CAT. NO.	PAGE	P.S.	PRICE \$
	DTCB10 $306 C$	1-20	NT10136	215.00
	DTCB10 3 06D	1-21	NT10136	220.00
	DTCB10 3 10B	1-19	NT10136	220.00
	DTCB10 3 10C	1-20	NT10136	215.00
	DTCB10 3 10D	1-21	NT10136	220.00
I	DTCB10 3 13C	1-20	NT10136	215.00
1	DTCB10 3 13D	1-21	NT10136	220.00
	DTCB10 3 16B	1-19	NT10136	220.00
	DTCB10 3 16C	1-20	NT10136	215.00
	DTCB10 3 16D	1-21	NT10136	220.00
	DTCB10 3 20B	1-19	NT10136	220.00
	DTCB10 3 20C	1-20	NT10136	215.00
	DTCB10 3 20D	1-21	NT10136	220.00
	DTCB10 3 25B	1-19	NT10136	220.00
	DTCB103 25C	1-20	NT10136	215.00
	DTCB10 3 25D	1-21	NT10136	220.00
	DTCB10 3 32B	1-19	NT10136	220.00
	DTCB10 3 32C	1-20	NT10136	215.00
	DTCB10 3 32D	1-21	NT10136	220.00
	DTCB10 3 40B	1-19	NT10136	230.00
	DTCB10 3 40C	1-20	NT10136	215.00
	DTCB10 3 40D	1-21	NT10136	230.00
I	DTCB10 3 50B	1-19	NT10136	305.00
	DTCB10350C	1-20	NT10136	215.00
	DTCB10 3 50D	1-21	NT10136	305.00
	DTCB10 3 63B	1-19	NT10136	365.00
	DTCB10 3 63C	1-20	NT10136	215.00
	DTCB10 3 63D	1-21	NT10136	365.00
I	DTCB10 401 C	1-20	NT10136	255.00
	DTCB10 402 C	1-20	NT10136	255.00
I	DTCB10 404 C	1-20	NT10136	255.00
I	DTCB10 404 D	1-21	NT10136	265.00
	DTCB10 406 C	1-20	NT10136	255.00
I	DTCB10 4 06D	1-21	NT10136	265.00
	DTCB10 4 10C	1-20	NT10136	255.00
I	DTCB10 4 10D	1-21	NT10136	265.00
I	DTCB10 4 13C	1-20	NT10136	255.00
I	DTCB10 4 13D	1-21	NT10136	265.00
	DTCB10 4 16C	1-20	NT10136	255.00
I	DTCB10 4 16D	1-21	NT10136	265.00
	DTCB10 4 20C	1-20	NT10136	255.00
I	DTCB10 4 20D	1-21	NT10136	265.00
	DTCB10 425 C	1-20	NT10136	255.00
	DTCB10 4 25D	1-21	NT10136	265.00
	DTCB10 432 C	1-20	NT10136	255.00
	DTCB10 4 32D	1-21	NT10136	265.00
	DTCB10 4 40C	1-20	NT10136	265.00
I	DTCB10 4 40D	1-21	NT10136	280.00
	DTCB10 4 50C	1-20	NT10136	280.00

33 Adam Street Wynnum North SPS - Electrical Installation OM Ma

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
1	DTCB10 4 50D	1-21	NT10136	365.00
	DTCB10 4 63C	1-20	NT10136	290.00
	DTCB10 4 63D	1-21	NT10136	550.00
	DTCB15 1 06C	1-23	NT10136	150.00
	DTCB15 1 10C	1-23	NT10136	150.00
1	DTCB15 1 13C	1-23	NT10136	150.00
	DTCB15 1 16C	1-23	NT10136	150.00
	DTCB15 1 20C	1-23	NT10136	150.00
	DTCB15 1 25C	1-23	NT10136	150.00
	DTCB15 1 32C	1-23	NT10136	150.00
	DTCB15 1 40C	1-23	NT10136	150.00
	DTCB15 1 50C	1-23	NT10136	150.00
	DTCB15 1 63C	1-23	NT10136	150.00
1	DTCB15 $206 C$	1-23	NT10136	270.00
	DTCB15 2 10C	1-23	NT10136	270.00
1	DTCB15 $213 C$	1-23	NT10136	270.00
	DTCB15 2 16C	1-23	NT10136	270.00
1	DTCB15 2 20C	1-23	NT10136	270.00
1	DTCB15 225 C	1-23	NT10136	270.00
1	DTCB15 232 C	1-23	NT10136	270.00
1	DTCB15 2 40C	1-23	NT10136	270.00
	DTCB15 2 50C	1-23	NT10136	270.00
1	DTCB15 2 63C	1-23	NT10136	270.00
	DTCB15 3 06C	1-23	NT10136	420.00
	DTCB15 3 10C	1-23	NT10136	420.00
1	DTCB15 3 13C	1-23	NT10136	420.00
	DTCB15 3 16C	1-23	NT10136	420.00
	DTCB15 3 20C	1-23	NT10136	420.00
	DTCB15 3 25C	1-23	NT10136	420.00
	DTCB15 3 32C	1-23	NT10136	420.00
	DTCB15 3 40C	1-23	NT10136	420.00
	DTCB15 3 50C	1-23	NT10136	420.00
	DTCB15 3 63C	1-23	NT10136	420.00
1	DTCB15 406 C	1-23	NT10136	490.00
1	DTCB15 4 10C	1-23	NT10136	490.00
1	DTCB15 4 13C	1-23	NT10136	490.00
I	DTCB15 4 16C	1-23	NT10136	490.00
1	DTCB15 4 20C	1-23	NT10136	490.00
1	DTCB15 4 25C	1-23	NT10136	490.00
1	DTCB15 4 32C	1-23	NT10136	490.00
1	DTCB15 4 40C	1-23	NT10136	490.00
1	DTCB15 4 50C	1-23	NT10136	490.00
1	DTCB15 4 63C	1-23	NT10136	490.00
	DTCB6102C	1-14	NT10136	37.00
	DTCB6102D	1-15	NT10136	51.00
	DTCB6104C	1-14	NT10136	37.00
	DTCB6104D	1-15	NT10136	51.00
	DTCB6106C	1-14	NT10136	37.00
	DTCB6106D	1-15	NT10136	51.00

33 Adam Street Wynnum North SPS - Electrical Installation OM Ma

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
	DTCB6310D	1-15	NT10136	215.00
I	DTCB6313C	1-14	NT10136	166.00
I	DTCB6313D	1-15	NT10136	215.00
	DTCB6316C	1-14	NT10136	166.00
	DTCB6316D	1-15	NT10136	215.00
	DTCB6320C	1-14	NT10136	166.00
	DTCB6320D	1-15	NT10136	215.00
	DTCB6325C	1-14	NT10136	166.00
	DTCB6325D	1-15	NT10136	215.00
	DTCB6332C	1-14	NT10136	166.00
	DTCB6332D	1-15	NT10136	215.00
	DTCB6340C	1-14	NT10136	166.00
	DTCB6340D	1-15	NT10136	225.00
	DTCB6350C	1-14	NT10136	166.00
	DTCB6350D	1-15	NT10136	225.00
	DTCB6363C	1-14	NT10136	166.00
	DTCB6363D	1-15	NT10136	225.00
I	DTCBD61102C	1-16	NT10136	182.00
I	DTCBD61104C	1-16	NT10136	182.00
	DTCBD61106C	1-16	NT10136	182.00
	DTCBD61110C	1-16	NT10136	182.00
	DTCBD61116C	1-16	NT10136	182.00
	DTCBD61120C	1-16	NT10136	182.00
	DTCBD6202C	1-16	NT10136	171.00
I	DTCBD6204C	1-16	NT10136	171.00
	DTCBD6206C	1-16	NT10136	171.00
	DTCBD6210C	1-16	NT10136	171.00
	DTCBD6216C	1-16	NT10136	171.00
	DTCBD6220C	1-16	NT10136	171.00
I	DTCBD6225C	1-16	NT10136	171.00
1	DTCBD6232C	1-16	NT10136	171.00
1	DTCBD6240C	1-16	NT10136	171.00
I	DTCBD6302C	1-16	NT10136	275.00
I	DTCBD6304C	1-16	NT10136	275.00
	DTCBD6306C	1-16	NT10136	275.00
	DTCBD6310C	1-16	NT10136	275.00
	DTCBD6316C	1-16	NT10136	275.00
	DTCBD6320C	1-16	NT10136	275.00
1	DTCBD6325C	1-16	NT10136	275.00
I	DTCBD6332C	1-16	NT10136	275.00
1	DTCBD6340C	1-16	NT10136	275.00
1	DTCBD6402C	1-16	NT10136	390.00
I	DTCBD6404C	1-16	NT10136	390.00
	DTCBD6406C	1-16	NT10136	390.00
	DTCBD6410C	1-16	NT10136	390.00
	DTCBD6416C	1-16	NT10136	390.00
	DTCBD6420C	1-16	NT10136	390.00
I	DTCBD6425C	1-16	NT10136	390.00
I	DTCBD6432C	1-16	NT10136	390.00

	CAT. NO.	PAGE	P.S.	PRICE \$
I	DTCBD6440C	1-16	NT10136	390.00
	DTCBDC101C	1-17	NT10136	126.00
	DTCBDC102C	1-17	NT10136	126.00
	DTCBDC104C	1-17	NT10136	126.00
1	DTCBDC105C	1-17	NT10136	126.00
	DTCBDC106C	1-17	NT10136	126.00
	DTCBDC110C	1-17	NT10136	126.00
	DTCBDC116C	1-17	NT10136	126.00
	DTCBDC120C	1-17	NT10136	126.00
	DTCBDC125C	1-17	NT10136	126.00
	DTCBDC132C	1-17	NT10136	126.00
	DTCBDC140C	1-17	NT10136	126.00
	DTCBDC150C	1-17	NT10136	126.00
	DTCBDC163C	1-17	NT10136	126.00
	DTCBDC201C	1-17	NT10136	265.00
	DTCBDC202C	1-17	NT10136	265.00
	DTCBDC204C	1-17	NT10136	265.00
	DTCBDC206C	1-17	NT10136	265.00
	DTCBDC210C	1-17	NT10136	265.00
	DTCBDC216C	1-17	NT10136	265.00
	DTCBDC220C	1-17	NT10136	265.00
	DTCBDC225C	1-17	NT10136	265.00
	DTCBDC232C	1-17	NT10136	265.00
	DTCBDC240C	1-17	NT10136	265.00
	DTCBDC250C	1-17	NT10136	265.00
	DTCBDC263C	1-17	NT10136	265.00
	DTCBDC410B	1-18	NT10136	580.00
	DTCBDC416B	1-18	NT10136	580.00
I	DTCBDC420B	1-18	NT10136	580.00
I	DTCBE6106C	1-24	NT10136	40.50
	DTCBE6110C	1-24	NT10136	40.50
	DTCBE6116C	1-24	NT10136	40.50
	DTCBE6120C	1-24	NT10136	40.50
	DTCBE6125C	1-24	NT10136	40.50
	DTCBE6132C	1-24	NT10136	40.50
I	DTCBE6140C	1-24	NT10136	40.50
1	DTCBE6150C	1-24	NT10136	40.50
	DTCBE6163C	1-24	NT10136	40.50
I	DTCBE6306C	1-24	NT10136	166.00
1	DTCBE6310C	1-24	NT10136	166.00
1	DTCBE6316C	1-24	NT10136	166.00
1	DTCBE6320C	1-24	NT10136	166.00
1	DTCBE6325C	1-24	NT10136	166.00
1	DTCBE6332C	1-24	NT10136	166.00
1	DTCBE6340C	1-24	NT10136	166.00
I	DTCBE6350C	1-24	NT10136	166.00
I	DTCBE6363C	1-24	NT10136	166.00
	DTCF35	1-50	NT30141	17.60
	DTCS3212	1-44	NT30141	47.50

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
	DTCS3213	1-44	NT30141	59.00
	DTCS3222	1-44	NT30141	71.50
	DTCS3223	1-44	NT30141	83.00
	DTHR	1-52	NT30141	131.00
I	DTIS1012VAC	1-55	NT30141	66.00
1	DTIS1012VDC	1-55	NT30141	66.00
I	DTIS10240VAC	1-55	NT30141	66.00
I	DTIS1024VAC	1-55	NT30141	66.00
I	DTIS1024VDC	1-55	NT30141	66.00
1	DTIS1048VAC	1-55	NT30141	66.00
I	DTIS1112VAC	1-55	NT30141	96.00
1	DTIS1112VDC	1-55	NT30141	96.00
	DTIS11240VAC	1-55	NT30141	96.00
I	DTIS1124VAC	1-55	NT30141	96.00
I	DTIS1124VDC	1-55	NT30141	96.00
1	DTIS113212VDC	1-55	NT30141	187.00
I	DTIS1148VAC	1-55	NT30141	96.00
I	DTIS123212VDC	1-55	NT30141	187.00
	DTIS132PWR	1-55	NT30141	187.00
I	DTIS2012VAC	1-55	NT30141	96.00
	DTIS2012VDC	1-55	NT30141	96.00
	DTIS20240VAC	1-55	NT30141	96.00
I	DTIS2024VAC	1-55	NT30141	96.00
1	DTIS2024VDC	1-55	NT30141	96.00
I	DTIS2048VAC	1-55	NT30141	96.00
	DTIS2CO	1-55	NT30141	83.00
	DTIS2NO	1-55	NT30141	83.00
	DTLCM	1-47	NT30141	4.70
	DTLD	1-50	NT30141	23.00
	DTLDH	1-50	NT40143	30.50
	DTLDM	1-47	NT30141	12.00
	DTLLA	1-47	NT30141	51.00
	DTLLA10H	1-47	NT20138	61.00
	DTLLAB	1-47	NT30141	51.00
	DTLLABRH	1-47	NT30141	51.00
	DTLLABULK	1-47	NT30141	570.00
	DTLLARH	1-47	NT30141	51.00
	DTLLARHBULK	1-47	NT30141	570.00
	DTLLB	1-47	NT30141	12.00
	DTLPF	1-47	NT30141	12.00
	DTMD240VAC	1-41	NT40143	660.00
	DTPB10L	1-44	NT30141	54.00
	DTPB11	1-44	NT30141	35.50
	DTPBS	1-42	NT30141	59.00
	DTPC2	2-2	NT30141	13.00
A	DTPC2LD	1-49	NT40143	19.20
A	DTPC2LD	2-2	NT40143	19.20
A	DTPC2LDCB	1-48	NT30141	109.00
	DTPC2LDCBV	1-48	NT30141	109.00

$\left.\begin{array}{llllr} & & & \\ & \text { CAT. No. } & \text { PAGE } & \text { P.S. } & \text { PRICE } \\ \hline & \text { A } & \text { DTPC2LDRCBO } & 1-49 & \text { NT40143 }\end{array}\right) 19.80$

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
	E250 NJ 350	3-47	NT20138	440.00
	E250 NJ 363	3-47	NT20138	440.00
	E400 NJ 3400	3-69	NT20138	1930.00
	E630 NE 3630	3-86	NT20138	2700.00
	EFR	5-28	NT30141	560.00
	EFR	5-29	NT30141	560.00
	ELR24010	1-11	NT10136	590.00
	ELR240100	1-11	NT10136	590.00
	ELR24030	1-11	NT10136	590.00
	ELR240300	1-11	NT10136	590.00
	ELR44030	1-11	NT10136	590.00
A	ELTK	1-56	NA40037	250.00
A	ELTS	1-56	NA40037	235.00
	EPSR / EVSR	5-28	NT30141	310.00
	EPSR / EVSR	5-29	NT30141	310.00
	ERTD	5-28	NT30141	335.00
	ERTD	5-29	NT30141	335.00
	ESTD	5-28	NT30141	305.00
	ESTD	5-29	NT30141	305.00
	EVA3160H	2-30	NT40143	305.00
	EVA3160H	2-51	NT40143	305.00
	EVA3250H	2-30	NT40143	435.00
	EVA3250H	2-51	NT40143	435.00
F				
	FI	3-132	NT30141	900.00
	FI	6-10	NT20138	900.00
	Fl	6-25	NT20138	900.00
	FI	6-36	NT30141	900.00
	FILED	3-132	NT30141	2050.00
	FILED	6-10	NT20138	2050.00
	FILED	6-36	NT30141	2050.00
G 2050.00				
	GB224184U	2-63	NT40143	980.00
I	GB212183TF	2-62	NT40143	450.00
	GB212183U	2-62	NT40143	560.00
1	GB224181TF	2-64	NT40143	610.00
I	GB224182TF	2-63	NT40143	610.00
	GB224182TF	2-63	NT40143	610.00
I	GB224183PNTF	2-63	NT40143	790.00
	GB224183PNU	2-63	NT40143	980.00
I	GB224183TF	2-62	NT40143	610.00
	GB224183U	2-62	NT40143	720.00
I	GB236183TF	2-62	NT40143	790.00
	GB236183U	2-62	NT40143	910.00
I	GB248181TF	2-64	NT40143	960.00
1	GB248182TF	2-63	NT40143	960.00
	GB248182TF	2-63	NT40143	960.00
I	GB248183PNTF	2-63	NT40143	1220.00
	GB248183PNU	2-63	NT40143	1440.00

	CAT．no．	PAGE	P．S．	PRICE \＄	
	GB248183TF	2－62	NT40143	960.00	\geq
1	GB248183U	2－62	NT40143	1080.00	O
	GB248184U	2－63	NT40143	1440.00	2）
I	GB260183TF	2－62	NT40143	1150.00	$⿳ 亠 丷 厂$
	GB260183U	2－62	NT40143	1270.00	\bigcirc
1	GB272181TF	2－64	NT40143	1350.00	3
1	GB272182TF	2－63	NT40143	1350.00	D
	GB272182TF	2－63	NT40143	1350.00	$\stackrel{\square}{\text { ¢ }}$
1	GB272183PNTF	2－63	NT40143	1700.00	
	GB272183PNU	2－63	NT40143	1900.00	\bigcirc
1	GB272183TF	2－62	NT40143	1350.00	$\frac{\square}{\text { D }}$
	GB272183U	2－62	NT40143	1470.00	\times
	GB272184U	2－63	NT40143	1900.00	
I	GB284183TF	2－62	NT40143	1610.00	
	GB284183U	2－62	NT40143	1730.00	
1	GB296181TF	2－64	NT40143	1810.00	
1	GB296182TF	2－63	NT40143	1810.00	
	GB296182TF	2－63	NT40143	1810.00	
1	GB296183PNTF	2－63	NT40143	2250.00	
	GB296183PNU	2－63	NT40143	2450.00	
1	GB296183TF	2－62	NT40143	1810.00	
	GB296183U	2－62	NT40143	1930.00	
	GB296184U	2－63	NT40143	2450.00	
	GBBBC	2－64	NT40143	4.00	
	GBIC	2－64	NT40143	5.00	
	GBIB	2－64	NT40143	5.00	
	GBL148L	2－64	NT40143	10.00	
	GBL148R	2－64	NT40143	10.00	
	GBL4996L	2－64	NT40143	10.00	
	GBL4996R	2－64	NT40143	10.00	
	GBLM	2－64	NT40143	50.00	
	GBPL3P	2－64	NT40143	2.00	
	GBPL4P	2－64	NT40143	2.00	
	GBSPP3P	2－64	NT40143	5.00	
	GBSPP4P	2－64	NT40143	6.00	
	GBTOC	2－51	NT40143	1.50	
	GBTB1	2－64	NT40143	2.00	
	GBTB2	2－64	NT40143	2.00	
	GBTB3	2－64	NT40143	2.00	
	GBTB4	2－64	NT40143	2.00	
	GBTOC	2－64	NT40143	1.50	
	GBUSL	2－64	NT40143	2.00	
＋					
	H125 NJ 3100	3－30	NT20138	1110.00	
	H125 NJ 3125	3－30	NT20138	1110.00	
	H125 NJ 320	3－30	NT20138	960.00	
	H125 NJ 332	3－30	NT20138	960.00	
	H125 NJ 350	3－30	NT20138	960.00	
	H125 NJ 363	3－30	NT20138	960.00	

I Available on indent only.
A Assembled to order.

CAT. NO.
1
1
1
1
1
1
H125 NJ 4100
H125 NJ 4125
H125 NJ 420
H125 NJ 432
H125 NJ 450
H125 NJ 463
H160 NJ 3160
I H160 NJ 4160

H250 NE 3250 AC
H250 NE 340

H250 NE 340 AC
H250 NE 3 AP 3
H250 NE 4125
H250 NE 4125 AC
H250 NE 4250
I H250 NE 4250 H250 NE 4250 AC
I H250 NE 440 HO 3
ll H250NE4AN 3

H250 NE 4 APN 3
H250 NJ 3250
$1 \quad \mathrm{H}$
I
3
H250 NJ 4250
H400 NE 3250
H400 NE $3250 \times 1 L$
H400 NE $3250 \times 1 S$
I H
H400 NE 3400

I H400 NE 3 AG 400
H400 NE 3 AP +
H400 NE 3 APG 400
H400 NE 4250
H400 NE 4250 X1L
I H400 NE $4250 \times 1 \mathrm{~S}$ H400 NE 4400 3-8
I H400 NE 4400 X1L

I	H400 NE 4400 X1S
I	H400 NE 4 AGN 400
I	H400 NE 4 AN +

1

I	H400 NE 4 APN +	$3-81$	NT20138	375.00
H800 NE 3 630	$3-109$	NT20138	4230.00	
H800 NE 3 800	$3-109$	NT20138	4590.00	
	H800 NE 3 800 X1L	$3-110$	NT20138	7150.00
	H800 NE 3 800 X1S	$3-110$	NT20138	8650.00

CAT. NO.

H800 NE 3 AG \# H800 NE 3 AP \#
H800 NE 3 APG H800 NE 4630 H800 NE 4800 H800 NE 4800 X1L H800 NE 4800×15 H800 NE 4 AGN \# H800 NE 4 AN \# H800 NE 4 AP \# H800 NE 4 APN \# HC12153 HC12183 PAGE
3-109
3-109
3-109
3-109
3-109
3-110
3-110
3-109
3-109
3-109
4-16
4-16
4-1
HC12243
HC12273
HC12303
HC12333
HC12363
HC12393
HC12423
HC12453
HC16153
\square

4-16 NT	NT
$4-16$	

4-16 NT40143 2090.00
4-16 NT40143 2300.00
4-16 NT40143 2430.00
4-16 NT40143 2620.00 2710.00 3000.00 3240.00 1710.00 2050.00 2360.00 2570.00 2850.00 3240.00 3360.00 3620.00 3800.00 3930.00 4200.00 2640.00 2840.00 3140.00 3430.00 3710.00 3980.00 4210.00 4350.00 4490.00 4680.00 4910.00

HC22243	4-16	NT40143	3430.00
HC22273	4-16	NT40143	3710.00
HC22303	4-16	NT40143	3980.00
HC22333	4-16	NT40143	4210.00
HC22363	4-16	NT40143	4350.00
HC22393	4-16	NT40143	4490.00
HC22423	4-16	NT40143	4680.00
HC22453	4-16	NT40143	4910.00
HCD250	4-17	NT40143	355.00
HCD250P	4-17	NT40143	355.00
HCD800	4-17	NT40143	740.00
HCDN630	4-17	NT40143	510.00
HCDW630	4-17	NT40143	510.00

HC22243	4-16	NT40143	3430.00
HC22273	4-16	NT40143	3710.00
HC22303	4-16	NT40143	3980.00
HC22333	4-16	NT40143	4210.00
HC22363	4-16	NT40143	4350.00
HC22393	4-16	NT40143	4490.00
HC22423	4-16	NT40143	4680.00
HC22453	4-16	NT40143	4910.00
HCD250	4-17	NT40143	355.00
HCD250P	4-17	NT40143	355.00
HCD800	4-17	NT40143	740.00
HCDN630	4-17	NT40143	510.00
HCDW630	4-17	NT40143	510.00

HC22243	4-16	NT40143	3430.00
HC22273	4-16	NT40143	3710.00
HC22303	4-16	NT40143	3980.00
HC22333	4-16	NT40143	4210.00
HC22363	4-16	NT40143	4350.00
HC22393	4-16	NT40143	4490.00
HC22423	4-16	NT40143	4680.00
HC22453	4-16	NT40143	4910.00
HCD250	4-17	NT40143	355.00
HCD250P	4-17	NT40143	355.00
HCD800	4-17	NT40143	740.00
HCDN630	4-17	NT40143	510.00
HCDW630	4-17	NT40143	510.00

HC22243	4-16	NT40143	3430.00
HC22273	4-16	NT40143	3710.00
HC22303	4-16	NT40143	3980.00
HC22333	4-16	NT40143	4210.00
HC22363	4-16	NT40143	4350.00
HC22393	4-16	NT40143	4490.00
HC22423	4-16	NT40143	4680.00
HC22453	4-16	NT40143	4910.00
HCD250	4-17	NT40143	355.00
HCD250P	4-17	NT40143	355.00
HCD800	4-17	NT40143	740.00
HCDN630	4-17	NT40143	510.00
HCDW630	4-17	NT40143	510.00

4-17 NT40143
510.00

HC16183	$4-16$	NT40143	2050.00
HC16213	$4-16$	NT40143	2360.00

HC16243	$4-16$	NT40143	2570.00
$H C 16273$	$4-16$	NT40143	2850.00

HC16303	$4-16$	NT40143	3240.00

HC16333	$4-16$	NT40143	3360.00
HC16363	$4-16$	NT40143	3620.00

HC16393	$4-16$	NT40143	3800.00
HC16423	$4-16$	NT40143	3930.00

HC16453	$4-16$	NT40143	4200.00
$H C 22153$	$4-16$	NT40143	2640.00

$H C 22183$	$4-16$	NT40143	2840.00
$H C 22213$	$4-16$	NT40143	3140.00

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
	HCL1250	4-17	NT40143	770.00
	HCL1250	4-17	NT40143	770.00
	HCL250	4-17	NT40143	355.00
	HCL250P	4-17	NT40143	355.00
	HCL800	4-17	NT40143	740.00
	HCLN630	4-17	NT40143	510.00
	HCLW630	4-17	NT40143	510.00
	HCR1250	4-17	NT40143	770.00
	HCR1250	4-17	NT40143	770.00
	HCR250	4-17	NT40143	355.00
	HCR250P	4-17	NT40143	355.00
	HCR800	4-17	NT40143	740.00
	HCRN630	4-17	NT40143	510.00
	HCRW630	4-17	NT40143	510.00
A	HCSTD1DS16153	4-15	NT40143	3990.00
A	HCSTD2DS16243	4-15	NT40143	5680.00
A	HCSTD3SSL16153	4-15	NT40143	3990.00
A	HCSTD4SSR16153	4-15	NT40143	3990.00
A	HCSTD5SSL16213	4-15	NT40143	5460.00
A	HCSTD6SSR16213	4-15	NT40143	5460.00
A	HCSTD7SSL22243	4-15	NT40143	7000.00
A	HCSTD8SSR22243	4-15	NT40143	7000.00
I A				
	IBC108P	1-43	NT40143	10.60
	IBC112P	1-43	NT40143	17.80
	IBC115P	1-43	NT40143	21.20
	IBC118P	1-43	NT40143	29.60
	IBC121P	1-43	NT40143	36.00
	IBC155P	1-43	NT40143	77.50
	IBCEC1	1-43	NT40143	2.00
	ICL102	1-43	NT40143	26.00
	ICL123	1-43	NT40143	49.00
	ICL153	1-43	NT40143	61.00
	ICL183	1-43	NT40143	72.50
	ICL213	1-43	NT40143	94.50
	ICL561F	1-43	NT40143	78.00
	ICL562	1-43	NT40143	128.00
	ICL563A	1-43	NT40143	200.00
	ICL564	1-43	NT40143	255.00
	ICL573	1-43	NT40143	225.00
	ICL573F	1-43	NT40143	230.00
	ICL62	1-43	NT40143	18.20
	ICLEC23	1-43	NT40143	4.00
	ICLEC4	1-43	NT40143	4.00
	ICLTOC	1-50	NT40143	4.60
	ILC 4EN	2-3	NT40143	27.00
	ILC 4S	2-3	NT40143	65.50
A	ILC4SLD	1-49	NT40143	71.50
A	ILC4SLD	2-3	NT40143	71.50

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
	L160 NJ 3160	3-46	NT20138	2030.00
1	L160 NJ 4160	3-46	NT20138	2710.00
1	L2000KT	2-69	NB20064	29.60
I	L250 NJ 3250	3-58	NT20138	2340.00
1	L250 NJ 4250	3-58	NT20138	3120.00
1	L400 NE 3250	3-84	NT20138	3370.00
1	L400 NE 3400	3-84	NT20138	3370.00
1	L400 NE 3 AG 400	3-84	NT20138	187.00
I	L400 NE 3 AP +	3-84	NT20138	187.00
1	L400 NE 3 APG 400	3-84	NT20138	375.00
1	L400 NE 4250	3-84	NT20138	4380.00
1	L400 NE 4400	3-84	NT20138	4380.00
1	L400 NE 4 AGN 400	3-84	NT20138	375.00
1	L400 NE 4 AN +	3-84	NT20138	187.00
1	L400 NE 4 AP +	3-84	NT20138	187.00
1	L400 NE 4 APN +	3-84	NT20138	375.00
	L400 PE 3250	3-77	NT20138	3240.00
	L400 PE 3400	3-77	NT20138	3240.00
	L800 NE 3630	3-111	NT20138	4520.00
	L800 NE 3800	3-111	NT20138	4960.00
I	L800 NE 3 AG \#	3-111	NT20138	180.00
1	L800 NE 3 AP \#	3-111	NT20138	180.00
I	L800 NE 3 APG \#	3-111	NT20138	180.00
	L800 NE 4630	3-111	NT20138	5350.00
	L800 NE 4800	3-111	NT20138	5960.00
I	L800 NE 4 AGN \#	3-111	NT20138	360.00
I	L800 NE 4 AN \#	3-111	NT20138	180.00
1	L800 NE 4 AP \#	3-111	NT20138	180.00
I	L800 NE 4 APN \#	3-111	NT20138	360.00
	L800 PE 3630	3-112	NT20138	5340.00
	L800 PE 3800	3-112	NT20138	5460.00
	LABLE148DT	1-47	NT40143	22.80
	LABLE4996DT	1-47	NT40143	22.80
	LB18	1-9	NT10136	27.00
	LB3PH12	1-9	NZ00150	153.00
	LB3PH18	1-9	NZ00150	215.00
	LD12/15	2-9	NT40143	78.00
	LD12/15	2-10	NT40143	78.00
	LD15/18	2-9	NT40143	78.00
	LD18/21	2-9	NT40143	83.00
	LD18/21	2-10	NT40143	83.00
	LD24	2-9	NT40143	109.00
	LD6/8	2-9	NT40143	67.50
	LD6/8	2-10	NT40143	67.50
	LD9/12	2-9	NT40143	67.50
	LE 73151753	2-31	NA30018	1090.00
	LOCTITE 480	6-11	NT10136	83.00
	LOCTITE 480	6-26	NT10136	83.00
	LSIG	3-132	NT30141	870.00

	CAT. NO.	PAGE	P.S.	PRICE \$	\geq
	LSIG	6-25	NT20138	870.00	
	LSIG	6-36	NT30141	870.00	\bigcirc
	LSIP	3-132	NT30141	700.00	\bigcirc
	LSIP	6-25	NT20138	700.00	\bigcirc
	LSIP	6-36	NT30141	700.00	\bigcirc
M					3
A	M22IVS	1-42	NT40143	23.40	(1)
	MCEPCN5MFM	2-7	NB20054	88.00	$\stackrel{\rightharpoonup}{\wedge}$
	MCEPCN9MFM	2-7	NB20054	140.00	
1 A	MH6S633	5-9	NZ00150	8460.00	$\begin{aligned} & \frac{\bar{\circ}}{\stackrel{Q}{D}} \end{aligned}$
1 A	MH6S644	5-9	NZ00150	10920.00	
1 A	MS12S1033	5-9	NZ00150	15880.00	
1 A	MS12S1044	5-9	NZ00150	20740.00	
1 A	MS12S1233	5-9	NZ00150	18140.00	
1 A	MS12S1244	5-9	NZ00150	23730.00	
1 A	MS16S1633	5-9	NZ00150	29040.00	
1 A	MS16S1644	5-9	NZ00150	38180.00	
1 A	MS20E2033	5-9	NZ00150	32570.00	
1 A	MS20E2044	5-9	NZ00150	42640.00	
1 A	MS25E2533	5-9	NZ00150	34950.00	
1 A	MS25E2544	5-9	NZ00150	45820.00	
1 A	MS6N433	5-9	NZ00150	7300.00	
1 A	MS6N444	5-9	NZ00150	7730.00	
1 A	MS6N633	5-9	NZ00150	7300.00	
1 A	MS6N644	5-9	NZ00150	8860.00	
1 A	MS6S633	5-9	NZ00150	7850.00	
1 A	MS6S644	5-9	NZ00150	10140.00	
1 A	MS8N833	5-9	NZ00150	8900.00	
1 A	MS8N844	5-9	NZ00150	11520.00	
1 A	MS8S833	5-9	NZ00150	9670.00	
1 A	MS8S844	5-9	NZ00150	12510.00	
	MST	5-28	NT30141	210.00	
	MST	5-29	NT30141	210.00	
N					
	NC212/183U	2-58	NT40143	200.00	
	NC218/183U	2-58	NT40143	225.00	
	NC224182U	2-60	NT40143	280.00	
	NC224183PNU	2-59	NT40143	430.00	
	NC224/183U	2-58	NT40143	280.00	
	NC224/184U	2-59	NT40143	430.00	
	NC230/183U	2-58	NT40143	310.00	
	NC236182U	2-60	NT40143	350.00	
	NC236/183U	2-58	NT40143	350.00	
	NC236/184U	2-59	NT40143	520.00	
	NC242/183U	2-58	NT40143	380.00	
	NC248182U	2-60	NT40143	425.00	
	NC248183PNU	2-59	NT40143	630.00	
	NC248/183U	2-58	NT40143	425.00	
	NC248/184U	2-59	NT40143	630.00	

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
	NC250HTOPC	2-61	NT40143	0.75
	NC250TOPC	2-51	NT40143	0.80
	NC250TOPC	2-61	NT40143	0.80
	NC254/183U	2-58	NT40143	475.00
	NC260182U	2-60	NT40143	495.00
	NC260/183U	2-58	NT40143	495.00
	NC260/184U	2-59	NT40143	750.00
1	NC272183PNU	2-59	NT40143	980.00
	NC272/183U	2-58	NT40143	660.00
	NC272/184U	2-59	NT40143	980.00
	NC278/183U	2-58	NT40143	780.00
	NC284/183U	2-58	NT40143	850.00
1	NC296183PNU	2-59	NT40143	1330.00
	NC296/183U	2-58	NT40143	990.00
	NC4108/183TF	2-59	NT40143	1380.00
	NC412/183U	2-59	NT40143	375.00
	NC418/183U	2-59	NT40143	425.00
	NC424/183U	2-59	NT40143	480.00
	NC430/183U	2-59	NT40143	540.00
	NC436/183U	2-59	NT40143	580.00
	NC442/183U	2-59	NT40143	620.00
	NC448/183U	2-59	NT40143	710.00
	NC454/183U	2-59	NT40143	750.00
	NC460/183U	2-59	NT40143	790.00
	NC472/183U	2-59	NT40143	930.00
	NC478/183U	2-59	NT40143	1000.00
	NC484/183U	2-59	NT40143	1090.00
	NC496/183U	2-59	NT40143	1250.00
	NCBBC	2-61	NT40143	5.70
	NCBC	2-61	NT40143	10.80
	NCBC4	2-61	NT40143	16.00
A	NCCK200	2-61	NT40143	135.00
	NCCK200CP	2-31	NT40143	182.00
	NCCK200CPP	2-51	NT40143	187.00
A	NCCK250	2-61	NT40143	355.00
	NCCK250CP	2-31	NT40143	490.00
	NCCK250CPP	2-51	NT40143	500.00
A	NCCK400	2-61	NT40143	510.00
A	NCCK4002	2-61	NT40143	720.00
	NCCK4002CPP	2-51	NT40143	820.00
	NCCK400CPP	2-51	NT40143	590.00
	NCH123	2-61	NT40143	15.00
	NCH412/273U	2-60	NT40143	560.00
	NCH412/3027/183U	2-60	NT40143	660.00
	NCH412/4227/183U	2-60	NT40143	790.00
	NCH412/6027/183U	2-60	NT40143	980.00
	NCH418/273U	2-60	NT40143	760.00
	NCH424/273U	2-60	NT40143	920.00
	NCH46/1227/183U	2-60	NT40143	500.00

	CAT. NO.	PAGE	P.S.	PRICE \$	
	NCH46/2427/183U	2-60	NT40143	560.00	\geq
	NCH46/273U	2-60	NT40143	385.00	$\bar{\square}$
	NCH46/3627/183U	2-60	NT40143	590.00	$\stackrel{\square}{0}$
	NCH46/4827/183U	2-60	NT40143	630.00	〕
	NCL243	2-61	NT40143	16.60	\subseteq
	NCL24C	2-61	NT40143	16.60	3
	NCS250GT	2-61	NT40143	78.00	(
	NEB185	1-50	NT40143	88.00	$\stackrel{\sim}{\wedge}$.
	NEB185	2-57	NT40143	88.00	
	NEB33S	2-57	NT40143	88.00	\bigcirc
	NLC12FE	2-9	NT40143	35.50	D
	NLC12S	2-9	NT40143	164.00	\times
	NLC15FE	2-9	NT40143	35.50	
	NLC15S	2-9	NT40143	187.00	
	NLC18FE	2-9	NT40143	41.50	
	NLC18S	2-9	NT40143	205.00	
	NLC21FE	2-9	NT40143	45.50	
	NLC21S	2-9	NT40143	215.00	
	NLC24S	2-9	NT40143	275.00	
	NLC8FE	2-9	NT40143	27.40	
	NLC8S	2-9	NT40143	141.00	
P					
	PRE-TRIP ALARM	6-10	NT20138	770.00	
1	PXB80012U	4-4	NT40143	590.00	
1	PXB80018U	4-4	NT40143	810.00	
1	PXB80024U	4-4	NT40143	1040.00	
1	PXB80030U	4-4	NT40143	1230.00	
1	PXB80036U	4-4	NT40143	1600.00	
1	PXB80042U	4-4	NT40143	1850.00	
1	PXB80048U	4-4	NT40143	2120.00	
1	PXB80060U	4-4	NT40143	2540.00	
1	PXB8006U	4-4	NT40143	510.00	
1	PXB80072U	4-4	NT40143	3250.00	
R					
	RD1B212	8-5	NT30141	1080.00	
	RD1B214	8-5	NT30141	1080.00	
	RD1B215	8-5	NT30141	1080.00	
1	RD1B21H	8-5	NT30141	1080.00	
I	RD1DF12	8-6	NT30141	520.00	
	RD1DF14	8-6	NT30141	520.00	
1	RD1DF15	8-6	NT30141	520.00	
	RD1EP212	8-7	NT30141	910.00	
	RD1EP214	8-7	NT30141	910.00	
	RD1EP215	8-7	NT30141	910.00	
	RD1EP21H	8-7	NT30141	910.00	
	RD1G212	8-10	NT30141	1000.00	
1	RD1G214	8-10	NT30141	1000.00	
1	RD1G215	8-10	NT30141	1000.00	
	RD3AF12 (110VAC)	8-4	NT30141	910.00	

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
	RD3AF14 (240 V AC)	8-4	NT30141	910.00
	RD3AF15 (415 V AC)	8-4	NT30141	910.00
	RD3AF1H (24-150 V DC)	8-4	NT30141	910.00
	RD3AF1N (24VAC)	8-4	NT30141	910.00
	RD3E212B	8-8	NT30141	1510.00
	RD3E217B	8-8	NT30141	1510.00
	RD3E218B	8-8	NT30141	1510.00
	RD3E21HB	8-8	NT30141	1510.00
1	RD4848C	8-15	NT30141	200.00
1	RD7272C	8-15	NT30141	200.00
	RD7296A	8-15	NT30141	88.00
1	RD9696C	8-15	NT30141	255.00
S				
	S1000 NE 31000	3-113	NT20138	6850.00
	S1000 NE 31000 X1L	3-114	NT20138	7750.00
	S1000 NE 31000×15	3-114	NT20138	9450.00
1	S1000 NE 3 AG \#	3-113	NT20138	180.00
1	S1000 NE 3 AP \#	3-113	NT20138	180.00
1	S1000 NE 3 APG \#	3-113	NT20138	360.00
	S1000 NE 41000	3-113	NT20138	4812.00
	S1000 NE 41000 X1L	3-114	NT20138	9300.00
	S1000 NE 41000×15	3-114	NT20138	11340.00
1	S1000 NE 4 AGN \#	3-113	NT20138	360.00
1	S1000 NE 4 AN \#	3-113	NT20138	180.00
1	S1000 NE 4 AP \#	3-113	NT20138	180.00
1	S1000 NE 4 APN \#	3-113	NT20138	360.00
1	S100 GF 2100	3-26	NT20138	430.00
1	S100 GF 215	3-26	NT20138	315.00
	S100 GF 220	3-26	NT20138	315.00
	S100 GF 230	3-26	NT20138	315.00
	S100 GF 240	3-26	NT20138	315.00
	S100 GF 250	3-26	NT20138	315.00
	S100 GF 260	3-26	NT20138	315.00
	S100 GF 275	3-26	NT20138	355.00
	S1250 GE 31250	3-121	NT20138	8650.00
1	S1250 GE 3 AG \#	3-121	NT20138	180.00
1	S1250 GE 3 AP \#	3-121	NT20138	180.00
1	S1250 GE 3 APG \#	3-121	NT20138	180.00
	S1250 GE 41250	3-121	NT20138	10250.00
1	S1250 GE 4 AGN \#	3-121	NT20138	360.00
I	S1250 GE 4 AN \#	3-121	NT20138	180.00
1	S1250 GE 4 AP \#	3-121	NT20138	180.00
1	S1250 GE 4 APN \#	3-121	NT20138	360.00
	S1250NN3	3-142	NT20138	7600.00
	S1250NN4	3-142	NT20138	8950.00
	S125 GJ 3100	3-28	NT20138	900.00
	S125 GJ 3 100PM	3-146	NT20138	1050.00
	S125 GJ 3125	3-28	NT20138	1000.00
	S125 GJ 3 125PM	3-146	NT20138	1210.00

	CAT. NO.	PAGE	P.S.	PRICE \$
	S125 GJ 320	3-28	NT20138	750.00
	S125 GJ 332	3-28	NT20138	750.00
	S125 GJ 350	3-28	NT20138	750.00
1	S125 GJ 3 50PM	3-146	NT20138	850.00
	S125 GJ 363	3-28	NT20138	750.00
	S125 GJ 3 63PM	3-146	NT20138	850.00
	S125 GJ 4100	3-28	NT20138	1210.00
	S125 GJ 4125	3-28	NT20138	1330.00
	S125 GJ 420	3-28	NT20138	990.00
	S125 GJ 432	3-28	NT20138	990.00
	S125 GJ 450	3-28	NT20138	990.00
	S125 GJ 463	3-28	NT20138	990.00
1	S125ND3	3-143	NT20138	POA
1	S125ND4	3-143	NT20138	POA
	S125 NF 1100	3-25	NT20138	310.00
	S125 NF 1125	3-25	NT20138	310.00
	S125 NF 116	3-25	NT20138	165.00
	S125 NF 120	3-25	NT20138	165.00
	S125 NF 125	3-25	NT20138	165.00
	S125 NF 132	3-25	NT20138	165.00
	S125 NF 140	3-25	NT20138	165.00
	S125 NF 150	3-25	NT20138	165.00
	S125 NF 163	3-25	NT20138	165.00
	S125 NF 180	3-25	NT20138	235.00
	S125 NJ 3100	3-27	NT20138	680.00
	S125 NJ 3125	3-27	NT20138	810.00
	S125 NJ 320	3-27	NT20138	480.00
	S125 NJ 3 20PM	3-146	NT20138	850.00
	S125 NJ 332	3-27	NT20138	480.00
	S125 NJ 3 32PM	3-146	NT20138	850.00
	S125 NJ 350	3-27	NT20138	480.00
	S125 NJ 363	3-27	NT20138	480.00
	S125NN3	3-142	NT20138	430.00
1	S125NN4	3-142	NT20138	570.00
	S1600 NE 31250	3-122	NT20138	9820.00
1	S1600 NE 3 AG \#	3-122	NT20138	180.00
1	S1600 NE 3 AP \#	3-122	NT20138	180.00
1	S1600 NE 3 APG \#	3-122	NT20138	180.00
	S1600 NE 41250	3-122	NT20138	11500.00
1	S1600 NE 4 AGN \#	3-122	NT20138	360.00
1	S1600 NE 4 AN \#	3-122	NT20138	180.00
I	S1600 NE 4 AP \#	3-122	NT20138	180.00
1	S1600 NE 4 APN \#	3-122	NT20138	360.00
	S1600NN3	3-142	NT20138	8700.00
	S1600NN4	3-142	NT20138	9900.00
	S160 GJ 3100	3-44	NT20138	900.00
	S160 GJ 3125	3-44	NT20138	1000.00
	S160 GJ 3160	3-44	NT20138	1210.00
	S160 GJ 3 160PM	3-146	NT20138	1440.00

I Available on indent only.
A Assembled to order.

	CAT. NO.		PAGE	P.S.	PRICE \$
		S160 GJ 350	3-44	NT20138	750.00
		S160 GJ 363	3-44	NT20138	750.00
I		S160 GJ 4100	3-44	NT20138	1210.00
		S160 GJ 4125	3-44	NT20138	1330.00
		S160 GJ 4160	3-44	NT20138	1620.00
1		S160 GJ 450	3-44	NT20138	950.00
1		S160 GJ 463	3-44	NT20138	990.00
1		S160ND3	3-143	NT20138	POA
1		S160ND4	3-143	NT20138	POA
		S160 NF 1100	3-42	NT20138	310.00
		S160 NF 1125	3-42	NT20138	310.00
		S160 NF 116	3-42	NT20138	165.00
		S160 NF 1160	3-42	NT20138	340.00
		S160 NF 120	3-42	NT20138	165.00
		S160 NF 125	3-42	NT20138	165.00
		S160 NF 132	3-42	NT20138	165.00
		S160 NF 140	3-42	NT20138	165.00
		S160 NF 150	3-42	NT20138	165.00
		S160 NF 163	3-42	NT20138	165.00
		S160 NF 180	3-42	NT20138	220.00
		S160 NJ 3100	3-43	NT20138	680.00
		S160 NJ 3125	3-43	NT20138	810.00
		S160 NJ 3160	2-31	NT20138	1080.00
		S160 NJ 3160	3-43	NT20138	1080.00
		S160 NJ 320	3-43	NT20138	480.00
		S160 NJ 332	3-43	NT20138	480.00
		S160 NJ 350	3-43	NT20138	480.00
		S160 NJ 363	3-43	NT20138	480.00
		S160 NJ 4100	3-43	NT20138	900.00
		S160 NJ 4125	3-43	NT20138	1090.00
		S160 NJ 4160	3-43	NT20138	1425.00
		S160 NJ 420	3-43	NT20138	630.00
I		S160 NJ 432	3-43	NT20138	630.00
		S160 NJ 450	3-43	NT20138	630.00
		S160 NJ 463	3-43	NT20138	630.00
		S160NN3	3-142	NT20138	500.00
		S160NN4	3-142	NT20138	670.00
		S250 GJ 3250	3-49	NT20138	1680.00
I		S250 GJ 3 250M1000	3-49	NT20138	1870.00
1	A	S250 GJ 3 250MAG	3-49	NT20138	1910.00
		S250 GJ 3 250PM	3-146	NT20138	1780.00
		S250 GJ 3 SO23160	3-49	NT20138	1780.00
		S250 GJ 4250	3-49	NT20138	2240.00
I		S250ND3	3-143	NT20138	POA
I		S250ND4	3-143	NT20138	POA
		S250NJ	2-31	NT20138	1480.00
		S250 NJ 3250	3-48	NT20138	1480.00
		S250 NJ 4250	3-48	NT20138	1860.00
		S250NN3	2-31	NT20138	500.00

	CAT. No.	PAGE	P.S.	PRICE \$
	S250NN3	3-142	NT20138	500.00
	S250NN4	3-142	NT20138	670.00
	S250 PE 3125	3-52	NT20138	1730.00
	S250 PE 3125 AC	3-54	NT20138	3760.00
	S250 PE 3250	3-52	NT20138	2100.00
	S250 PE 3250 AC	3-54	NT20138	3970.00
	S250 PE 340 AC	3-54	NT20138	3560.00
I	S250 PE 3 AP 3	3-52	NT20138	187.00
I	S250 PE 4125	3-52	NT20138	2430.00
I	S250 PE 4125 AC	3-54	NT20138	4500.00
	S250 PE 4250	3-52	NT20138	2790.00
I	S250 PE 4250 AC	3-54	NT20138	4760.00
1	S250 PE 440 AC	3-54	NT20138	4270.00
1	S250 PE 4 AN 4	3-52	NT20138	187.00
1	S250 PE 4 AP 4	3-52	NT20138	187.00
I	S250 PE 4 APN 4	3-52	NT20138	365.00
	S400 CJ 3250	3-70	NT20138	1930.00
	S400 CJ 3400	3-70	NT20138	1970.00
	S400 GE 3250	3-75	NT20138	2550.00
	S400 GE 3250 X1L	3-76	NT20138	4650.00
	S 400 GE 3250×15	3-76	NT20138	6550.00
	S400 GE 3400	3-75	NT20138	2550.00
	S400 GE 3 400PM	3-146	NT20138	3010.00
	S400 GE 3400 X1L	3-76	NT20138	4900.00
	S 400 GE 3400 X1S	3-76	NT20138	6800.00
	S400 GE 3 AG 400	3-75	NT20138	2720.00
I	S400 GE 3 AP 400	3-75	NT20138	2750.00
I	S400 GE 3 APG 400	3-75	NT20138	2930.00
I	S400 GE 4250	3-75	NT20138	3380.00
	S400 GE 4250 X1L	3-76	NT20138	5690.00
	S400 GE 4250 X1S	3-76	NT20138	7750.00
	S400 GE 4400	3-75	NT20138	3400.00
1	S400 GE 4400 X1L	3-76	NT20138	5880.00
1	S400 GE 4400 X1S	3-76	NT20138	8160.00
	S 400 GE 4 AGN 400	3-75	NT20138	3780.00
I	S400 GE 4 AN 400	3-75	NT20138	3590.00
1	S400 GE 4 AP 400	3-75	NT20138	3590.00
I	S400 GE 4 APN 400	3-75	NT20138	3780.00
	S400 GJ 3250	3-73	NT20138	2310.00
	S400 GJ 3400	3-73	NT20138	2310.00
1	S400 GJ 4250	3-73	NT20138	3080.00
	S400 GJ 4400	3-73	NT20138	3080.00
1	S400ND3	3-143	NT20138	POA
	S400 NE 3250	3-72	NT20138	2180.00
	S400 NE 3400	3-72	NT20138	2180.00
	S400 NE 4250	3-72	NT20138	2180.00
	S400 NE 4400	3-72	NT20138	2890.00
	S400 NJ 3250	3-71	NT20138	2020.00
	S400 NJ 3400	3-71	NT20138	2020.00

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
	S400 NJ 4250	3-71	NT20138	2700.00
	S400 NJ 4400	3-71	NT20138	2700.00
	S400NN3	2-31	NT20138	1650.00
	S400NN3	3-142	NT20138	1650.00
	S400NN4	3-142	NT20138	2200.00
I	S400 PE 3250	3-79	NT20138	2780.00
	S400 PE 3400	3-79	NT20138	2780.00
I	S400 PE 3 AG 400	3-79	NT20138	187.00
1	S400 PE 3 AP +	3-79	NT20138	187.00
I	S400 PE 3 APG 400	3-79	NT20138	375.00
I	S400 PE 4250	3-79	NT20138	3480.00
I	S400 PE 4400	3-79	NT20138	3480.00
I	S400 PE 4 AGN 400	3-79	NT20138	375.00
1	S400 PE 4 AN +	3-79	NT20138	187.00
I	S400 PE 4 AP +	3-79	NT20138	187.00
I	S400 PE 4 APN +	3-79	NT20138	375.00
	S630 CE 3630	3-87	NT20138	2920.00
	S630 CE 4630	3-87	NT20138	3880.00
	S630 GE 3630	3-90	NT20138	3130.00
	S630 GE 3 630PM	3-146	NT20138	3600.00
	S630 GE 3630 X1L	3-91	NT20138	5500.00
	S630 GE 3630×15	3-91	NT20138	7340.00
	S630 GE 3 AG 630	3-90	NT20138	3330.00
I	S630 GE 3 AP 630	3-90	NT20138	3330.00
I	S630 GE 3 APG 630	3-90	NT20138	3530.00
	S630 GE 4630	3-90	NT20138	4180.00
I	S630 GE 4630 X1L	3-91	NT20138	6600.00
I	S630 GE 4630×15	3-91	NT20138	8800.00
	S630 GE 4 AGN 630	3-90	NT20138	4570.00
I	S630 GE 4 AN 630	3-90	NT20138	4370.00
I	S630 GE 4 AP 630	3-90	NT20138	4370.00
I	S630 GE 4 APN 630	3-90	NT20138	4570.00
	S630NN3	3-142	NT20138	2490.00
	S630NN4	3-142	NT20138	3320.00
	S800 CJ 3630	3-103	NT20138	2500.00
	S800 CJ 3800	3-103	NT20138	2550.00
I	S800ND4	3-143	NT20138	POA
	S800 NE 3630	3-106	NT20138	3250.00
	S800 NE 3800	3-106	NT20138	3990.00
	S800 NE 4630	3-106	NT20138	3740.00
	S800 NE 4800	3-106	NT20138	4560.00
	S800 NJ 3630	3-104	NT20138	2900.00
	S800 NJ 3800	3-104	NT20138	3150.00
	S800NN3	3-142	NT20138	3150.00
	S800NN4	3-142	NT20138	3990.00
	S800 RE 3630	3-107	NT20138	3150.00
	S800 RE 3800	3-107	NT20138	4200.00
	S800 RE 3800 X1L	3-108	NT20138	6450.00
	S800 RE 3800 X1S	3-108	NT20138	7900.00

	CAT. NO.	PAGE	P.S.	PRICE \$
I	S800 RE 3 AG \#	3-107	NT20138	180.00
1	S800 RE 3 AP \#	3-107	NT20138	180.00
1	S800 RE 3 APG \#	3-107	NT20138	360.00
	S800 RE 4630	3-107	NT20138	3810.00
	S800 RE 4800	3-107	NT20138	4850.00
1	S800 RE 4800 X1L	3-108	NT20138	7740.00
I	S800 RE 4800 X1S	3-108	NT20138	9480.00
1	S800 RE 4 AGN \#	3-107	NT20138	360.00
I	S800 RE 4 AN \#	3-107	NT20138	180.00
1	S800 RE 4 AP \#	3-107	NT20138	180.00
I	S800 RE 4 APN \#	3-107	NT20138	360.00
	S800 RJ 3630	3-105	NT20138	3910.00
	S800 RJ 3800	3-105	NT20138	4500.00
	S800 RJ 4630	3-105	NT20138	4350.00
	S800 RJ 4800	3-105	NT20138	4950.00
	SAFET6106	1-7	NT10136	61.50
1	SAFET6106SHT	1-8	NT10136	190.00
	SAFET6110	1-7	NT10136	61.50
	SAFET61100	1-7	NT10136	138.00
	SAFET61100NA	1-7	NT10136	103.00
1	SAFET61100NASHT	1-8	NT10136	225.00
1	SAFET61100SHT	1-8	NT10136	270.00
I	SAFET6110SHT	1-8	NT10136	190.00
	SAFET6116	1-7	NT10136	61.50
	SAFET6116SHT	1-8	NT10136	190.00
	SAFET6120	1-7	NT10136	61.50
	SAFET6120SHT	1-8	NT10136	190.00
	SAFET6125	1-7	NT10136	61.50
	SAFET6125SHT	1-8	NT10136	190.00
	SAFET6132	1-7	NT10136	61.50
	SAFET6132SHT	1-8	NT10136	190.00
	SAFET6140	1-7	NT10136	61.50
1	SAFET6140SHT	1-8	NT10136	190.00
	SAFET6150	1-7	NT10136	61.50
I	SAFET6150SHT	1-8	NT10136	190.00
	SAFET6163	1-7	NT10136	61.50
	SAFET6163NA	1-7	NT10136	65.50
I	SAFET6163NASHT	1-8	NT10136	184.00
I	SAFET6163SHT	1-8	NT10136	190.00
	SAFET6180	1-7	NT10136	138.00
I	SAFET6180SHT	1-8	NT10136	270.00
	SAFET6206	1-7	NT10136	190.00
1	SAFET6206SHT	1-8	NT10136	325.00
	SAFET6210	1-7	NT10136	190.00
1	SAFET62100	1-7	NT10136	355.00
1	SAFET62100NA	1-7	NT10136	220.00
I	SAFET62100NASHT	1-8	NT10136	350.00
1	SAFET62100SHT	1-8	NT10136	475.00
I	SAFET6210SHT	1-8	NT10136	325.00

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
	SAFET6216	1-7	NT10136	190.00
I	SAFET6216SHT	1-8	NT10136	325.00
	SAFET6220	1-7	NT10136	190.00
I	SAFET6220SHT	1-8	NT10136	325.00
1	SAFET6225	1-7	NT10136	190.00
1	SAFET6225SHT	1-8	NT10136	325.00
	SAFET6232	1-7	NT10136	190.00
I	SAFET6232SHT	1-8	NT10136	325.00
	SAFET6240	1-7	NT10136	190.00
I	SAFET6240SHT	1-8	NT10136	325.00
	SAFET6250	1-7	NT10136	190.00
I	SAFET6250SHT	1-8	NT10136	325.00
	SAFET6263	1-7	NT10136	190.00
I	SAFET6263NA	1-7	NT10136	164.00
I	SAFET6263NASHT	1-8	NT10136	285.00
1	SAFET6263SHT	1-8	NT10136	325.00
	SAFET6280	1-7	NT10136	355.00
I	SAFET6280SHT	1-8	NT10136	475.00
	SAFET6306	1-7	NT10136	225.00
I	SAFET6306SHT	1-8	NT10136	350.00
	SAFET6310	1-7	NT10136	225.00
	SAFET63100	1-7	NT10136	405.00
	SAFET63100NA	1-7	NT10136	285.00
	SAFET63100NA	2-30	NT10136	285.00
	SAFET63100NASHT	1-8	NT10136	425.00
	SAFET63100SHT	1-8	NT10136	540.00
	SAFET6310SHT	1-8	NT10136	350.00
	SAFET6316	1-7	NT10136	225.00
	SAFET6316SHT	1-8	NT10136	350.00
	SAFET6320	1-7	NT10136	225.00
	SAFET6320SHT	1-8	NT10136	350.00
	SAFET6325	1-7	NT10136	225.00
	SAFET6325SHT	1-8	NT10136	350.00
	SAFET6332	1-7	NT10136	225.00
	SAFET6332SHT	1-8	NT10136	350.00
	SAFET6340	1-7	NT10136	225.00
	SAFET6340SHT	1-8	NT10136	350.00
	SAFET6350	1-7	NT10136	225.00
	SAFET6350SHT	1-8	NT10136	350.00
	SAFET6363	1-7	NT10136	225.00
	SAFET6363NA	1-7	NT10136	200.00
	SAFET6363NASHT	1-8	NT10136	335.00
	SAFET6363SHT	1-8	NT10136	350.00
	SAFET6380	1-7	NT10136	405.00
	SAFET6380SHT	1-8	NT10136	540.00
I	SAFET6406	1-7	NT10136	315.00
I	SAFET6406SHT	1-8	NT10136	440.00
I	SAFET6410	1-7	NT10136	315.00
I	SAFET64100	1-7	NT10136	495.00

	CAT. NO.	PAGE	P.S.	PRICE \$	\geq
1	SAFET64100NA	1-7	NT10136	440.00	
1	SAFET64100NASHT	1-8	NT10136	560.00	\bigcirc
1	SAFET64100SHT	1-8	NT10136	630.00	$\stackrel{\rightharpoonup}{0}$
1	SAFET6410SHT	1-8	NT10136	440.00	\bigcirc
1	SAFET6416	1-7	NT10136	315.00	$\stackrel{\square}{\square}$
1	SAFET6416SHT	1-8	NT10136	440.00	3
	SAFET6420	1-7	NT10136	315.00	D
1	SAFET6420SHT	1-8	NT10136	440.00	$\stackrel{\sim}{\sim}$
1	SAFET6425	1-7	NT10136	315.00	
1	SAFET6425SHT	1-8	NT10136	440.00	\bigcirc
	SAFET6432	1-7	NT10136	315.00	\bigcirc
1	SAFET6432SHT	1-8	NT10136	440.00	\times
1	SAFET6440	1-7	NT10136	315.00	
1	SAFET6440SHT	1-8	NT10136	440.00	
	SAFET6450	1-7	NT10136	315.00	
	SAFET6450SHT	1-8	NT10136	440.00	
	SAFET6463	1-7	NT10136	315.00	
1	SAFET6463NA	1-7	NT10136	285.00	
1	SAFET6463NASHT	1-8	NT10136	425.00	
1	SAFET6463SHT	1-8	NT10136	440.00	
	SAFET6480	1-7	NT10136	495.00	
1	SAFET6480SHT	1-8	NT10136	630.00	
	SAFETLCK 12	1-9	NT10136	159.00	
	SAFETLCK 24	1-9	NT10136	210.00	
	SAFE-TPC1	2-2	NT10136	18.20	
	SAFE-TPC23	2-2	NT10136	32.50	
	SAFETPF	1-9	NT10136	1.80	
	SAFETPF	2-10	NT10136	1.80	
	SAFETPF	2-31	NT10136	1.80	
	SAFETPF	2-51	NT10136	1.80	
	SPD1	5-28	NT30141	210.00	
	SPD1	5-29	NT30141	210.00	
	SPD3	5-28	NT30141	280.00	
	SPD3	5-29	NT30141	280.00	
1	SRCB 1010	1-10	NT10136	360.00	
	SRCB 1030	1-10	NT10136	325.00	
	SRCB 1610	1-10	NT10136	360.00	
	SRCB 1630	1-10	NT10136	325.00	
	SRCB 2010	1-10	NT10136	360.00	
	SRCB 2030	1-10	NT10136	325.00	
	SRCBHA	1-10	NT10136	26.40	
	SRCBLCK 12	1-10	NT10136	275.00	
	SRCBLCK 24	1-10	NT10136	450.00	
	SRCBWA	1-10	NT10136	26.40	
	SSW2	5-28	NB20052	390.00	
	SSW2	5-29	NB20052	390.00	
	SSW3	5-28	NB20052	405.00	
	SSW3	5-29	NB20052	405.00	
	STK250ND/TH	2-31	NT40143	119.00	

I Available on indent only.
A Assembled to order.

CAT. NO.	PAGE	P.S.	PRICE \$
STK250NDTH	$2-51$	NT40143	119.00
STK250ND/TH	$2-68$	NT40143	119.00
STKK00TH	$2-31$	NT40143	119.00
STKK00TH	$2-51$	NT40143	119.00
STKCD	$2-16$	NT40143	119.00
STKCD	$2-51$	NT40143	119.00
STKCD	$2-66$	NT40143	119.00
T			

T12CAPLAB	$3-33$	NZO0150	3.50
T12CAPLAB	$3-34$	NZO0150	3.50
T12CAPLAB	$3-34$	NZ00150	3.50
T12CAPLAB	$3-34$	NZ00150	3.50

	T12CAPLAB	3-35	NZ00150	3.50
	T12CAPLAB	3-35	NZ00150	3.50
	T12CAPLAB	3-36	NZ00150	3.50
	T12CAPLAB	3-36	NZ00150	3.50
	T12CAPLAB	5-36	NZ00150	3.50
	T1HP03R6BNA4	3-22	NT20138	141.00
A	T1HP30PALK	3-22	NT10136	44.50
A	T1HP40PALK	6-11	NT10136	44.50
	T1HP40R6BNA4	6-11	NT20138	355.00
A	T1HP80PALK	6-26	NT10136	49.50
	T1HP80R6BNA4	6-26	NT20138	480.00
A	T1HPX6PALK	6-37	NT10136	49.50
	T1HPX6R6BNA4	6-37	NT20138	570.00
	T1HS03R5GM	3-22	NT20138	240.00
	T1HS40R5GM	6-11	NT20138	415.00
A	T1HS80R5GM	6-26	NT20138	490.00
A	T1HSX6R5GM	6-37	NT20138	570.00
	T25CAPLAB	3-60	NZ00150	3.50
	T25CAPLAB	3-61	NZ00150	3.50
	T25CAPLAB	3-61	NZ00150	3.50

T25CAPLAB	$3-62$	NZ00150	3.50
T25CAPLAB	$3-63$	NZ00150	3.50

T25CAPLAB	$5-36$	NZ00150	3.50
T2ALOOB1STA	$3-32$	NT20138	146.00
T2ALOOB1STA	$3-59$	NT20138	146.00
T2ALOOB1STA	$3-92$	NT20138	146.00
T2ALOOB1STA	$3-115$	NT20138	146.00
T2ALOOB1STA	$3-123$	NT20138	146.00
T2ALOOB2STA	$3-32$	NT20138	146.00
T2ALOOB2STA	$3-59$	NT20138	146.00
T2ALOOB2STA	$3-92$	NT20138	146.00
T2ALOOB2STA	$3-115$	NT20138	146.00
T2ALOOB2STA	$3-123$	NT20138	146.00
T2ALOOM3RTA	$3-32$	NT20138	187.00
T2ALOOM3RTA	$3-59$	NT20138	187.00
T2ALOOM3RTA	$3-92$	NT20138	187.00
T2ALOOM3RTA	$3-115$	NT20138	187.00

	CAT. NO.	PAGE	P.S.	PRICE \$
	T2ALO0M3RTA	3-123	NT20138	187.00
	T2AL00M3STA	3-32	NT20138	134.00
	T2AL00M3STA	3-59	NT20138	134.00
	T2AL00M3STA	3-92	NT20138	134.00
	T2AL00M3SWA	3-32	NT20138	146.00
	T2AL00M3SWA	3-59	NT20138	146.00
	T2AL00M3SWA	3-92	NT20138	146.00
	T2AL00M4STA	3-115	NT20138	129.00
	T2AL00M4STA	3-123	NT20138	129.00
	T2AL00M5SWA	3-115	NT20138	141.00
	T2AL00M5SWA	3-123	NT20138	141.00
	T2AX00B1STA	3-32	NT20138	146.00
	T2AX00B1STA	3-59	NT20138	146.00
	T2AX00B1STA	3-92	NT20138	146.00
	T2AX00B1STA	3-115	NT20138	146.00
	T2AX00B1STA	3-123	NT20138	146.00
	T2AX00B2STA	3-32	NT20138	146.00
	T2AX00B2STA	3-59	NT20138	146.00
	T2AX00B2STA	3-92	NT20138	146.00
	T2AX00B2STA	3-115	NT20138	146.00
	T2AX00B2STA	3-123	NT20138	146.00
	T2AX00M3RTA	3-32	NT20138	187.00
	T2AX00M3RTA	3-59	NT20138	187.00
	T2AX00M3RTA	3-92	NT20138	187.00
	T2AX00M3RTA	3-115	NT20138	187.00
	T2AX00M3RTA	3-123	NT20138	187.00
	T2AX00M3STA	3-32	NT20138	134.00
	T2AX00M3STA	3-59	NT20138	134.00
	T2AX00M3STA	3-92	NT20138	134.00
	T2AX00M3STA	3-115	NT20138	134.00
	T2AX00M3STA	3-123	NT20138	134.00
	T2AX00M3SWA	3-32	NT20138	146.00
	T2AX00M3SWA	3-59	NT20138	146.00
	T2AX00M3SWA	3-92	NT20138	146.00
	T2AX00M3SWA	3-115	NT20138	146.00
	T2AX00M3SWA	3-123	NT20138	146.00
	T2AX00M4SWA	3-115	NT20138	146.00
	T2AX00M4SWA	3-123	NT20138	146.00
1	T2AX00M5SWA	3-115	NT20138	146.00
1	T2AX00M5SWA	3-123	NT20138	146.00
	T2BA123SHA	3-38	NT20138	17.40
	T2BA123SHA	4-14	NT20138	17.40
	T2BA253LHA	3-38	NT20138	20.00
	T2BA253LHA	3-65	NT20138	20.00
	T2BA253LHA	4-14	NT20138	20.00
	T2BA253SHA	3-65	NT20138	20.00
	T2BA253SHA	4-14	NT20138	20.00
1	T2BA403LHA	3-98	NT20138	POA
	T2BA403SHA	3-98	NT20138	21.60

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
	T2BA403SHA	4-14	NT20138	21.60
	T2BA803LHA	3-118	NT20138	10.00
	T2BA803SHA	3-118	NT20138	10.00
	T2BAX63LHA	3-126	NT20138	10.00
	T2CB803GHNA	3-118	NT20138	170.00
	T2CB804GHNA	3-118	NT20138	210.00
	T2CF00L	3-38	NT20138	9.10
	T2CF00L	3-65	NT20138	9.10
	T2CF00L	3-98	NT20138	9.10
	T2CF00L	4-14	NT20138	9.10
	T2CF00LA	3-118	NT20138	8.80
	T2CF00LA	3-126	NT20138	8.80
	T2CF121SLNG	3-37	NT20138	35.00
	T2CF121SLNG	4-13	NT20138	35.00
	T2CF122SLNG	3-37	NT20138	49.50
	T2CF123SLNG	3-37	NT20138	64.50
	T2CF123SLNG	4-13	NT20138	64.50
I	T2CF123SSNBA	3-37	NT20138	60.50
I	T2CF123SSNBA	4-13	NT20138	60.50
	T2CF124SLNG	3-37	NT30141	73.00
	T2CF124SLNG	4-13	NT30141	73.00
I	T2CF124SSNBA	3-37	NT20138	71.00
I	T2CF124SSNBA	4-13	NT20138	71.00
	T2CF161SLNG	3-64	NT20138	40.00
	T2CF161SLNG	4-13	NT20138	40.00
	T2CF253LLNG	3-37	NT20138	71.00
	T2CF253LLNG	3-64	NT20138	71.00
	T2CF253LLNG	4-13	NT20138	71.00
	T2CF253SLNG	3-64	NT20138	67.00
	T2CF253SLNG	4-13	NT20138	67.00
	T2CF253SSNBA	3-64	NT20138	67.00
	T2CF253SSNBA	4-13	NT20138	67.00
	T2CF254LLNG	3-37	NT20138	77.50
	T2CF254LLNG	3-64	NT20138	77.50
	T2CF254LLNG	4-13	NT20138	77.50
	T2CF254SLNG	3-64	NT20138	77.50
	T2CF254SLNG	4-13	NT20138	77.50
	T2CF254SSNBA	3-64	NT20138	77.50
	T2CF254SSNBA	4-13	NT20138	77.50
	T2CF403SLNG	3-97	NT20138	190.00
	T2CF403SLNG	4-13	NT20138	190.00
	T2CF403SWNG	3-97	NT30141	190.00
	T2CF403SWNG	4-13	NT30141	190.00
	T2CF404SLNG	3-97	NT20138	205.00
	T2CF404SWNG	3-97	NT20138	205.00
	T2CF803SLHGA	3-118	NT20138	205.00
	T2CF804SLHGA	3-118	NT20138	260.00
	T2CFX33SLHGA	3-126	NT20138	225.00
	T2CFX34SLHGA	3-126	NT20138	280.00

	CAT. NO.	PAGE	P.S.	PRICE \$
	T2CLSBB25033	5-34	NT30141	550.00
I	T2CLSBB25043	5-34	NT30141	760.00
	T2CLSBB25044	5-34	NT30141	760.00
	T2CLSBB40033	5-34	NT30141	650.00
I	T2CLSBB40043	5-34	NT30141	740.00
	T2CLSBB40044	5-34	NT30141	880.00
	T2CLSBB63033	5-34	NT30141	1180.00
	T2CLSBB63043	5-34	NT30141	1400.00
	T2CLSBB63044	5-34	NT30141	1540.00
	T2CR123SG	3-38	NT20138	44.00
	T2CR123SG	4-14	NT20138	44.00
	T2CR124SG	3-38	NT20138	55.00
	T2CR124SG	4-14	NT20138	55.00
	T2CR253SG	3-38	NT20138	54.00
	T2CR253SG	3-65	NT20138	54.00
	T2CR253SG	4-14	NT20138	54.00
	T2CR254SG	3-38	NT20138	60.50
	T2CR254SG	3-65	NT20138	60.50
	T2CR254SG	4-14	NT20138	60.50
	T2CR403SG	3-98	NT20138	93.50
	T2CR403SG	4-13	NT20138	93.50
	T2CR403SG	4-14	NT20138	93.50
	T2CR404SG	3-98	NT20138	111.00
	T2CR404SG	4-13	NT20138	111.00
	T2CR803LHGA	3-118	NT20138	210.00
	T2CR803SHGA	3-118	NT20138	170.00
	T2CR804LHGA	3-118	NT20138	240.00
	T2CR804SHGA	3-118	NT20138	210.00
	T2CS121SG	3-37	NT20138	10.60
	T2CS121SG	4-13	NT20138	10.60
	T2CS122SG	4-13	NT40143	12.00
	T2CS123SG	3-37	NT20138	44.00
	T2CS123SG	4-13	NT20138	44.00
	T2CS124SG	3-37	NT20138	55.00
	T2CS124SG	4-13	NT20138	55.00
	T2CS251SG	3-64	NT20138	10.00
	T2CS251SG	4-13	NT40143	10.00
	T2CS253SG	3-37	NT20138	54.00
	T2CS253SG	3-64	NT20138	54.00
	T2CS253SG	4-13	NT20138	54.00
	T2CS254SG	3-37	NT20138	60.50
	T2CS254SG	3-64	NT20138	60.50
	T2CS254SG	4-13	NT20138	60.50
	T2DA12A	3-41	NT20138	63.00
I	T2DF25A	3-41	NT20138	127.00
1	T2DF25A	3-68	NT20138	127.00
I	T2DF40A	3-101	NT20138	132.00
1	T2DM25A	3-41	NT20138	215.00
I	T2DM25A	3-68	NT20138	215.00

I Available on indent only.
A Assembled to order.

CAT. NO.
I T2DM40A T2FB123BA
$\begin{array}{ll}\text { I T2FB124BA } \\ \mathbf{l} & \text { T2FB251BA }\end{array}$
I T2FB251BA
I T2FB251BA
T2FB253BA
T2FB253BA
T2FB254BA
T2FB254BA
T2FB463BA
T2FB464BA
I T2FP12S3B
I T2FP12S4A
I T2FP25S4A
I T2FP40S3A
I T2FP40S4A
T T2FW12S3A
I T2FW12S4A
T2FW25L3B
T2FW25L3B
I T2FW25L4B
I T2FW25L4B
T2FW40L3A
T2FW40L3A
I T2FW40L4A
I T2FW40L4A
T2GB40N04A
T2GB40N06A
T2GBX6N12A
T2GBX6N12A
T2GBX6N16A
T2GBX6N16A
T2HB12UR5BN
T2HB12UR5RN
T2HB25UR5BN
T2HB25UR5BN
T2HB25UR5RN
T2HB25UR5RN
T2HB40UR5BN
T2HB40UR5RN
T2HB80UR5BN
T2HB80UR5RN
T2HBX6UR5BN
T2HBX6UR5RN
A T2HL12CAP
T2HL25B
T2HL25B

PAGE
3-10
3-39
3-39
3-39
NT20138
$\begin{array}{ll}\text { NT20138 } & 26.80 \\ & 26.80\end{array}$
3-66 NT20138 26.80
3-39 NT20138 77.50

3-66 NT20138 77.50
3-39 NT20138 103.00
$\begin{array}{lll}3-66 & \text { NT20138 } & 103.00 \\ 3-99 & \text { NT20138 }\end{array}$
$\begin{array}{lll}3-99 & \text { NT20138 } & 240.00 \\ 3-99 & \text { NT20138 } & 305.00\end{array}$
3-41 NT20138 82.50
3-68 NT20138 82.50
3-68 NT20138 POA
3-101 NT20138 280.00

$3-101$	NT20138	POA
$3-39$	NT20138	107.00

3-39	NT20138	141.00

$3-39$	NT20138	173.00
$3-66$	NT20138	

$3-66$	NT20138	173.00
$3-39$	NT20138	240.00

3-66 NT20138 240.00
3-99 NT20138 415.00
3-119 NT20138 415.00
3-99 NT20138 560.00
3-119 NT20138 560.00

$3-100$	NT20138	290.00
$3-100$	NT20138	440.00

3-116 NT20138 430.00
3-126 NT20138 430.00
3-116 NT20138 430.00
3-126 NT20138 430.00
3-34 NT20138 175.00
3-34 NT20138 199.00

$3-34$	NT20138	189.00

3-61 NT20138 189.00
3-34 NT20138 210.00

$3-61$	NT20138	210.00
$3-94$	240.00	

3-94 NT20138 265.00
3-116 NT20138 495.00
3-116 NT20138 495.00
3-124 NT20138 560.00
3-124 NT20138 560.00

	CAT. NO.	PAGE	P.S.	PRICE \$	\searrow
A	T2HL25CAP	3-38	NT20138	33.50	
A	T2HL25CAP	3-65	NT20138	33.50	\bigcirc
	T2HL40A	3-99	NT20138	73.00	0
	T2HL40A	3-119	NT20138	73.00	\bigcirc
A	T2HL40CAP	3-99	NT20138	73.00	\cong
	T2HL80CAP	3-119	NT20138	125.00	3
A	T2HLS125NFCAP	3-38	NT30141	92.00	(1)
A	T2HLS160NFCAP	3-65	NT30141	92.00	$\stackrel{\sim}{\square}$
	T2HLX6A	3-127	NT20138	77.00	
	T2HLX6CAP	3-127	NT20138	165.00	\bigcirc
	T2HP12R6BN	3-34	NT20138	290.00	-
	T2HP12R6RN	3-34	NT20138	300.00	\times
A	T2HP25PALK	3-34	NT30141	49.50	
A	T2HP25PALK	3-34	NT30141	49.50	
A	T2HP25PALK	3-61	NT30141	49.50	
	T2HP25R6BN	3-34	NT20138	290.00	
	T2HP25R6BN	3-61	NT20138	290.00	
	T2HP25R6RN	3-34	NT20138	300.00	
	T2HP25R6RN	3-61	NT20138	300.00	
A	T2HP40PALK	3-94	NT30141	49.50	
	T2HP40R6BN	3-94	NT20138	315.00	
	T2HP40R6RN	3-94	NT20138	330.00	
	T2HP80PALK	3-116	NT20138	47.50	
	T2HP80R6BN	3-116	NT20138	470.00	
	T2HP80R6ME	3-116	NT20138	690.00	
	T2HP80R6RN	3-116	NT20138	470.00	
	T2HPX6PALK	3-124	NT20138	85.00	
	T2HPX6R6BN	3-124	NT20138	550.00	
	T2HPX6R6ME	3-124	NT20138	830.00	
	T2HPX6R6RN	3-124	NT20138	550.00	
A	T2HS12R5GM	3-34	NT20138	280.00	
	T2HS12R5RM	3-34	NT20138	290.00	
	T2HS250SHAFT	3-22	NT20138	47.00	
	T2HS250SHAFT	3-34	NT20138	47.00	
	T2HS250SHAFT	3-34	NT20138	47.00	
	T2HS250SHAFT	3-61	NT20138	47.00	
A	T2HS25R5GM	3-34	NT20138	280.00	
A	T2HS25R5GM	3-61	NT20138	280.00	
A	T2HS25R5RM	3-34	NT20138	290.00	
A	T2HS25R5RM	3-61	NT20138	290.00	
	T2HS400SHAFT	3-94	NT20138	47.00	
	T2HS400SHAFT	3-116	NT20138	47.00	
	T2HS400SHAFT	3-124	NT20138	47.00	
	T2HS400SHAFT	6-11	NT20138	47.00	
	T2HS400SHAFT	6-26	NT20138	47.00	
	T2HS400SHAFT	6-37	NT20138	47.00	
A	T2HS40R5GM	3-94	NT20138	370.00	
A	T2HS40R5RM	3-94	NT20138	315.00	
	T2HS80R6GM	3-116	NT20138	470.00	

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
	T2HS80R6RM	3-116	NT20138	470.00
	T2HSESC100	3-22	NZ00150	18.20
	T2HSESC100	3-34	NZ00150	18.20
	T2HSESC100	3-34	NZ00150	18.20
	T2HSESC100	3-61	NZ00150	18.20
	T2HSESC100	3-94	NZ00150	18.20
	T2HSESC100	3-116	NZ00150	18.20
	T2HSESC100	3-124	NZ00150	18.20
	T2HSESC100	6-11	NZ00150	18.20
	T2HSESC100	6-26	NZ00150	18.20
	T2HSESC100	6-37	NZ00150	18.20
	T2HSX6R6GM	3-124	NT20138	550.00
	T2HSX6R6RM	3-124	NT20138	550.00
	T2MBX33P	3-125	NT20138	850.00
	T2MBX34P	3-125	NT20138	1130.00
	T2MBX63P	3-125	NT20138	850.00
	T2MBX64P	3-125	NT20138	1130.00
	T2MC12A10NB	3-33	NT20138	1200.00
	T2MC12A24NB	3-33	NT20138	1200.00
	T2MC12D02NB	3-33	NT20138	1200.00
I	T2MC12D04NB	3-33	NT20138	1150.00
	T2MC12D10NB	3-33	NT20138	1200.00
1	T2MC25A10NB	3-33	NT20138	1620.00
1	T2MC25A10NB	3-60	NT20138	1620.00
	T2MC25A24NB	3-33	NT20138	1630.00
	T2MC25A24NB	3-60	NT20138	1630.00
	T2MC25D02NB	3-33	NT20138	1630.00
	T2MC25D02NB	3-60	NT20138	1630.00
1	T2MC25D04NB	3-33	NT20138	1620.00
1	T2MC25D04NB	3-60	NT20138	1620.00
1	T2MC25D10NB	3-33	NT20138	1620.00
1	T2MC25D10NB	3-60	NT20138	1620.00
	T2MC40A10NB	3-93	NT20138	2420.00
	T2MC40D02NB	3-93	NT20138	2420.00
I	T2MC40D10NB	3-93	NT20138	2420.00
	T2MC80A10NA	3-119	NT20138	2570.00
	T2MC80D10NA	3-119	NT20138	2570.00
	T2MCX6A10NA	3-127	NT20138	3150.00
	T2MCX6A24NA	3-127	NT20138	3150.00
	T2MCX6D02NA	3-127	NT20138	3150.00
	T2ML12L3A	3-35	NT20138	127.00
	T2ML12L4A	3-35	NT20138	127.00
	T2ML12RA	3-35	NT20138	113.00
	T2ML25L3A	3-35	NT20138	127.00
	T2ML25L3A	3-62	NT20138	127.00
	T2ML25L4A	3-35	NT20138	127.00
	T2ML25L4A	3-62	NT20138	127.00
	T2ML25RA	3-35	NT20138	113.00
	T2ML25RA	3-62	NT20138	113.00

	CAT. NO.	PAGE	P.S.	PRICE \$
	T2ML40L3B	$3-95$	NT20138	133.00
	$3-95$	NT20138	133.00	
	T2ML40L4B	$3-95$	NT20138	350.00
	T2ML40RB	$3-117$	NT20138	140.00

I Available on indent only.
A Assembled to order.

| | | CAT. No. | PAGE | P.s. |
| :--- | :--- | :--- | :--- | ---: | PRICE \$

	CAT. No.	PAGE	P.S.	PRICE \$
	T2SH00A10TA	3-59	NT20138	255.00
	T2SH00A10TA	3-92	NT20138	255.00
	T2SH00A10TA	3-115	NT20138	255.00
	T2SH00A10TA	3-123	NT20138	255.00
	T2SH00A2OTA	3-32	NT20138	255.00
	T2SH00A20TA	3-59	NT20138	255.00
	T2SH00A2OTA	3-92	NT20138	255.00
	T2SH00A20TA	3-115	NT20138	255.00
	T2SH00A20TA	3-123	NT20138	255.00
	T2SH00A40TA	3-32	NT20138	255.00
	T2SH00A40TA	3-59	NT20138	255.00
	T2SH00A40TA	3-92	NT20138	255.00
	T2SH00A40TA	3-115	NT20138	255.00
	T2SH00A40TA	3-123	NT20138	255.00
1	T2SH00D01TA	3-115	NT20138	255.00
I	T2SH00D01TA	3-123	NT20138	255.00
	T2SH00D02TA	3-32	NT20138	255.00
	T2SH00D02TA	3-59	NT20138	255.00
	T2SH00D02TA	3-92	NT20138	255.00
	T2SH00D02TA	3-115	NT20138	255.00
	T2SH00D02TA	3-123	NT20138	255.00
	T2SH00D04TA	3-32	NT20138	255.00
	T2SH00D04TA	3-59	NT20138	255.00
	T2SH00D04TA	3-92	NT20138	255.00
	T2SH00D04TA	3-115	NT20138	255.00
	T2SH00D04TA	3-123	NT20138	255.00
	T2SH00D10TA	3-32	NT20138	255.00
	T2SH00D10TA	3-59	NT20138	255.00
	T2SH00D10TA	3-92	NT20138	255.00
	T2SH00D10TA	3-115	NT20138	255.00
	T2SH00D10TA	3-123	NT20138	255.00
	T2SH00D20TA	3-32	NT20138	255.00
	T2SH00D20TA	3-59	NT20138	255.00
	T2SH00D20TA	3-92	NT20138	255.00
	T2SH00D20TA	3-115	NT20138	255.00
	T2SH00D20TA	3-123	NT20138	255.00
	T2SH16A10WA	3-59	NT20138	255.00
	T2SH16A20WA	3-59	NT20138	255.00
	T2SH16D02WA	3-59	NT20138	255.00
	T2SH16D10WA	3-59	NT20138	250.00
	T2SH16D20WA	3-59	NT20138	250.00
A	T2SW3P1251255K	3-20	NT20138	900.00
A	T2SW3P125TC	3-20	NT20138	55.00
A	T2SW3P2501505K	3-20	NT20138	940.00
A	T2SW3P2502505K	3-20	NT20138	940.00
A	T2SW3P250TC	3-20	NT20138	110.00
A	T2SW3P250TC	3-20	NT20138	110.00
A	T2SW3P6304005K	3-20	NT20138	1230.00
A	T2SW3P6306005K	3-20	NT20138	1230.00

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
A	T2SW3P630TC	3-20	NT20138	110.00
A	T2SW3P630TC	3-20	NT20138	110.00
1 A	T2SW4P1251255K	3-20	NT20138	1190.00
1 A	T2SW4P125TC	3-20	NT20138	66.50
1 A	T2SW4P2501505K	3-20	NT20138	1230.00
1 A	T2SW4P2502505K	3-20	NT20138	1230.00
1 A	T2SW4P250TC	3-20	NT20138	148.00
1 A	T2SW4P250TC	3-20	NT20138	148.00
1 A	T2SW4P6304005K	3-20	NT20138	1630.00
1 A	T2SW4P6306005K	3-20	NT20138	1630.00
1 A	T2SW4P630TC	3-20	NT20138	160.00
1 A	T2SW4P630TC	3-20	NT20138	160.00
I	T2TF25LGA	3-41	NT20138	189.00
I	T2TF25LGA	3-68	NT20138	189.00
I	T2TF25RGA	3-41	NT20138	189.00
I	T2TF25RGA	3-68	NT20138	189.00
I	T2TF40LGA	3-101	NT20138	189.00
I	T2TF40LGA	3-119	NT20138	189.00
I	T2TF40RGA	3-101	NT20138	189.00
I	T2TF40RGA	3-119	NT20138	189.00
	T2TP003A	3-120	NT20138	37.00
	T2TP003A	3-146	NT20138	37.00
	T2UPX31000	3-120	NT20138	950.00
	T2UPX3125	3-40	NT20138	305.00
	T2UPX3250	3-67	NT20138	330.00
	T2UPX3400	3-100	NT20138	405.00
	T2UPX3630	3-100	NT20138	770.00
	T2UPX3800	3-120	NT20138	690.00
	T2UPXE3250	3-40	NT20138	350.00
	T2UPXE3250	3-67	NT20138	350.00
	T2UV00A10NTA	3-32	NT20138	270.00
	T2UV00A10NTA	3-59	NT20138	270.00
	T2UV00A10NTA	3-92	NT20138	270.00
	T2UV80A10NTA	3-115	NT20138	270.00
	T2UV80A10NTA	3-123	NT20138	270.00
	T2UV00A20NTA	3-32	NT20138	270.00
	T2UV00A20NTA	3-59	NT20138	270.00
	T2UV00A20NTA	3-92	NT20138	270.00
	T2UV80A20NTA	3-115	NT20138	270.00
	T2UV80A20NTA	3-123	NT20138	270.00
	T2UV00A40NTA	3-32	NT20138	270.00
	T2UV00A40NTA	3-59	NT20138	270.00
	T2UV00A40NTA	3-92	NT20138	270.00
	T2UV80A40NTA	3-115	NT20138	270.00
	T2UV80A40NTA	3-123	NT20138	270.00
	T2UV00D02NTA	3-32	NT20138	270.00
	T2UV00D02NTA	3-59	NT20138	270.00
	T2UV00D02NTA	3-92	NT20138	270.00
	T2UV80D02NTA	3-115	NT20138	270.00

I Available on indent only.
A Assembled to order.

CAT. NO.	PAGE	P.S.	PRICE \$
TFH 22D	6-8	NT20138	335.00
TFJ21PB	3-22	NT20138	235.00
TFJ22LU	6-8	NT20138	355.00
TFJ34XU	6-11	NT20138	415.00
TFJ36XU	6-26	NT20138	510.00
TFJ38XU	6-37	NT20138	610.00
TGPEN181S	2-56	NT40143	55.00
TGPEN182S	2-56	NT40143	57.00
TGPEN182SEVE	2-56	NT40143	62.50
TGPEN182SODD	2-56	NT40143	62.50
TGPEN241S	2-56	NT40143	65.50
TGPEN242S	2-56	NT40143	67.50
TGPEN242SEVE	2-56	NT40143	72.50
TGPEN242SODD	2-56	NT40143	72.50
TGPEN302S	2-56	NT40143	83.00
TGPEN302SEVE	2-56	NT40143	88.00
TGPEN302SODD	2-56	NT40143	88.00
TGPEN362S	2-56	NT40143	93.50
TGPEN362SEVE	2-56	NT40143	104.00
TGPEN362SODD	2-56	NT40143	104.00
TGPEN422S	2-56	NT40143	93.50
TGPEN422SEVE	2-56	NT40143	114.00
TGPEN422SODD	2-56	NT40143	114.00
TGPEN482S	2-56	NT40143	98.50
TGPEN482SEVE	2-56	NT40143	125.00
TGPEN482SODD	2-56	NT40143	125.00
TGPEN602S	2-56	NT40143	135.00
TGPEN722S	2-56	NT40143	161.00
TGPEN842S	2-56	NT40143	197.00
TGPEN92SEVE	2-56	NT40143	41.50
TGPEN92SODD	2-56	NT40143	41.50
TGPEN962S	2-56	NT40143	235.00
TGPINS	2-57	NT40143	8.90
TH250TOPC	1-9	NT10136	0.60
TH250TOPC	2-51	NT10136	0.60
TH250TOPC	2-68	NT10136	0.60
TKB50SGL	1-9	NT10136	21.20
TKC50SG	1-9	NT10136	21.20
TKNHPOA	2-22	NB20071	520.00
TKNHPOA	3-39	NB20071	520.00
TKNHPOA	3-66	NB20071	520.00
TKNHPOA	3-99	NB20071	520.00
TKNHPOA	6-27	NB20071	520.00
TKNHPOA	6-37	NB20071	520.00
TKNHPOB	2-22	NB20071	520.00
TKNHPOB	3-39	NB20071	520.00
TKNHPOB	3-66	NB20071	520.00
TKNHPOB	3-99	NB20071	520.00
TKNHPOB	6-27	NB20071	520.00

CAT. NO.	PAGE	P.S.	PRICE \$	
TKNHPOB	6-37	NB20071	520.00	\geq
TKNHPOC	2-22	NB20071	520.00	\bar{O}
TKNHPOC	3-39	NB20071	520.00	$\stackrel{\square}{0}$
TKNHPOC	3-66	NB20071	520.00	$\stackrel{\text { ® }}{ }$
TKNHPOC	3-99	NB20071	520.00	$\stackrel{\square}{5}$
TKNHPOC	6-27	NB20071	520.00	3
TKNHPOC	6-37	NB20071	520.00	D
TKNHPOD	2-22	NB20071	520.00	$\stackrel{\text { ®}}{ }$.
TKNHPOD	3-39	NB20071	520.00	
TKNHPOD	3-66	NB20071	520.00	\bigcirc
TKNHPOD	3-99	NB20071	520.00	$\frac{\square}{D}$
TKNHPOD	6-27	NB20071	520.00	\times
TKNHPOD	6-37	NB20071	520.00	
TKNHPOE	2-22	NB20071	520.00	
TKNHPOE	3-39	NB20071	520.00	
TKNHPOE	3-66	NB20071	520.00	
TKNHPOE	3-99	NB20071	520.00	
TKNHPOE	6-27	NB20071	520.00	
TKNHPOE	6-37	NB20071	520.00	
TKNHPOF	2-22	NB20071	520.00	
TKNHPOF	3-39	NB20071	520.00	
TKNHPOF	3-66	NB20071	520.00	
TKNHPOF	3-99	NB20071	520.00	
TKNHPOF	6-27	NB20071	520.00	
TKNHPOF	6-37	NB20071	520.00	
TKNHPOG	2-22	NB20071	520.00	
TKNHPOG	3-39	NB20071	520.00	
TKNHPOG	3-66	NB20071	520.00	
TKNHPOG	3-99	NB20071	520.00	
TKNHPOG	6-27	NB20071	520.00	
TKNHPOG	6-37	NB20071	520.00	
TKNHPOH	2-22	NB20071	520.00	
TKNHPOH	3-39	NB20071	520.00	
TKNHPOH	3-66	NB20071	520.00	
TKNHPOH	3-99	NB20071	520.00	
TKNHPOH	6-27	NB20071	520.00	
TKNHPOH	6-37	NB20071	520.00	
TKNHPOI	2-22	NB20071	520.00	
TKNHPOI	3-39	NB20071	520.00	
TKNHPOI	3-66	NB20071	520.00	
TKNHPOI	3-99	NB20071	520.00	
TKNHPOI	6-27	NB20071	520.00	
TKNHPOI	6-37	NB20071	520.00	
TKNHPOJ	2-22	NB20071	520.00	
TKNHPOJ	3-39	NB20071	520.00	
TKNHPOJ	3-66	NB20071	520.00	
TKNHPOJ	3-99	NB20071	520.00	
TKNHPOJ	6-27	NB20071	520.00	
TKNHPOJ	6-37	NB20071	520.00	

I Available on indent only.
A Assembled to order.

CAT. No.	PAGE	P.S.	PRICE \$
TKNHPOK	2-22	NB20071	520.00
TKNHPOK	3-39	NB20071	520.00
TKNHPOK	3-66	NB20071	520.00
TKNHPOK	3-99	NB20071	520.00
TKNHPOK	6-27	NB20071	520.00
TKNHPOK	6-37	NB20071	520.00
TKNHPOL	2-22	NB20071	520.00
TKNHPOL	3-39	NB20071	520.00
TKNHPOL	3-66	NB20071	520.00
TKNHPOL	3-99	NB20071	520.00
TKNHPOL	6-27	NB20071	520.00
TKNHPOL	6-37	NB20071	520.00
TKNHPOM	2-22	NB20071	520.00
TKNHPOM	3-39	NB20071	520.00
TKNHPOM	3-66	NB20071	520.00
TKNHPOM	3-99	NB20071	520.00
TKNHPOM	6-27	NB20071	520.00
TKNHPOM	6-37	NB20071	520.00
TKNHPON	2-22	NB20071	520.00
TKNHPON	3-39	NB20071	520.00
TKNHPON	3-66	NB20071	520.00
TKNHPON	3-99	NB20071	520.00
TKNHPON	6-27	NB20071	520.00
TKNHPON	6-37	NB20071	520.00
TKNHPOO	2-22	NB20071	520.00
TKNHPOO	3-39	NB20071	520.00
TKNHPOO	3-66	NB20071	520.00
TKNHPOO	3-99	NB20071	520.00
TKNHPOO	6-27	NB20071	520.00
TKNHPOO	6-37	NB20071	520.00
TKNHPOP	2-22	NB20071	520.00
TKNHPOP	3-39	NB20071	520.00
TKNHPOP	3-66	NB20071	520.00
TKNHPOP	3-99	NB20071	520.00
TKNHPOP	6-27	NB20071	520.00
TKNHPOP	6-37	NB20071	520.00
TKNHPOR	2-22	NB20071	520.00
TKNHPOR	3-39	NB20071	520.00
TKNHPOR	3-66	NB20071	520.00
TKNHPOR	3-99	NB20071	520.00
TKNHPOR	6-27	NB20071	520.00
TKNHPOR	6-37	NB20071	520.00
TKNHPOS	2-22	NB20071	520.00
TKNHPOS	3-39	NB20071	520.00
TKNHPOS	3-66	NB20071	520.00
TKNHPOS	3-99	NB20071	520.00
TKNHPOS	6-27	NB20071	520.00
TKNHPOS	6-37	NB20071	520.00
TKNHPOT	2-22	NB20071	520.00

CAT. NO.	PAGE	P.S.	PRICE \$
TKNHPOT	3-39	NB20071	520.00
TKNHPOT	3-66	NB20071	520.00
TKNHPOT	3-99	NB20071	520.00
TKNHPOT	6-27	NB20071	520.00
TKNHPOT	6-37	NB20071	520.00
TKNHPOU	2-22	NB20071	520.00
TKNHPOU	3-39	NB20071	520.00
TKNHPOU	3-66	NB20071	520.00
TKNHPOU	3-99	NB20071	520.00
TKNHPOU	6-27	NB20071	520.00
TKNHPOU	6-37	NB20071	520.00
TKNHPKEYOA	2-22	NB20071	130.00
TKNHPKEYOA	3-39	NB20071	130.00
TKNHPKEYOA	3-66	NB20071	130.00
TKNHPKEYOA	3-99	NB20071	130.00
TKNHPKEYOA	6-27	NB20071	130.00
TKNHPKEYOA	6-37	NB20071	130.00
TKNHPKEYOB	2-22	NB20071	130.00
TKNHPKEYOB	3-39	NB20071	130.00
TKNHPKEYOB	3-66	NB20071	130.00
TKNHPKEYOB	3-99	NB20071	130.00
TKNHPKEYOB	6-27	NB20071	130.00
TKNHPKEYOB	6-37	NB20071	130.00
TKNHPKEYOC	2-22	NB20071	130.00
TKNHPKEYOC	3-39	NB20071	130.00
TKNHPKEYOC	3-66	NB20071	130.00
TKNHPKEYOC	3-99	NB20071	130.00
TKNHPKEYOC	6-27	NB20071	130.00
TKNHPKEYOC	6-37	NB20071	130.00
TKNHPKEYOD	2-22	NB20071	130.00
TKNHPKEYOD	3-39	NB20071	130.00
TKNHPKEYOD	3-66	NB20071	130.00
TKNHPKEYOD	3-99	NB20071	130.00
TKNHPKEYOD	6-27	NB20071	130.00
TKNHPKEYOD	6-37	NB20071	130.00
TKNHPKEYOE	2-22	NB20071	130.00
TKNHPKEYOE	3-39	NB20071	130.00
TKNHPKEYOE	3-66	NB20071	130.00
TKNHPKEYOE	3-99	NB20071	130.00
TKNHPKEYOE	6-27	NB20071	130.00
TKNHPKEYOE	6-37	NB20071	130.00
TKNHPKEYOF	2-22	NB20071	130.00
TKNHPKEYOF	3-39	NB20071	130.00
TKNHPKEYOF	3-66	NB20071	130.00
TKNHPKEYOF	3-99	NB20071	130.00
TKNHPKEYOF	6-27	NB20071	130.00
TKNHPKEYOF	6-37	NB20071	130.00
TKNHPKEYOG	2-22	NB20071	130.00
TKNHPKEYOG	3-39	NB20071	130.00

I Available on indent only.
A Assembled to order.

CAT. NO.	PAGE	P.S.	PRICE \$
TKNHPKEYOG	3-66	NB20071	130.00
TKNHPKEYOG	3-99	NB20071	130.00
TKNHPKEYOG	6-27	NB20071	130.00
TKNHPKEYOG	6-37	NB20071	130.00
TKNHPKEYOH	2-22	NB20071	130.00
TKNHPKEYOH	3-39	NB20071	130.00
TKNHPKEYOH	3-66	NB20071	130.00
TKNHPKEYOH	3-99	NB20071	130.00
TKNHPKEYOH	6-27	NB20071	130.00
TKNHPKEYOH	6-37	NB20071	130.00
TKNHPKEYOI	2-22	NB20071	130.00
TKNHPKEYOI	3-39	NB20071	130.00
TKNHPKEYOI	3-66	NB20071	130.00
TKNHPKEYOI	3-99	NB20071	130.00
TKNHPKEYOI	6-27	NB20071	130.00
TKNHPKEYOI	6-37	NB20071	130.00
TKNHPKEYOJ	2-22	NB20071	130.00
TKNHPKEYOJ	3-39	NB20071	130.00
TKNHPKEYOJ	3-66	NB20071	130.00
TKNHPKEYOJ	3-99	NB20071	130.00
TKNHPKEYOJ	6-27	NB20071	130.00
TKNHPKEYOJ	6-37	NB20071	130.00
TKNHPKEYOK	2-22	NB20071	130.00
TKNHPKEYOK	3-39	NB20071	130.00
TKNHPKEYOK	3-66	NB20071	130.00
TKNHPKEYOK	3-99	NB20071	130.00
TKNHPKEYOK	6-27	NB20071	130.00
TKNHPKEYOK	6-37	NB20071	130.00
TKNHPKEYOL	2-22	NB20071	130.00
TKNHPKEYOL	3-39	NB20071	130.00
TKNHPKEYOL	3-66	NB20071	130.00
TKNHPKEYOL	3-99	NB20071	130.00
TKNHPKEYOL	6-27	NB20071	130.00
TKNHPKEYOL	6-37	NB20071	130.00
TKNHPKEYOM	2-22	NB20071	130.00
TKNHPKEYOM	3-39	NB20071	130.00
TKNHPKEYOM	3-66	NB20071	130.00
TKNHPKEYOM	3-99	NB20071	130.00
TKNHPKEYOM	6-27	NB20071	130.00
TKNHPKEYOM	6-37	NB20071	130.00
TKNHPKEYON	2-22	NB20071	130.00
TKNHPKEYON	3-39	NB20071	130.00
TKNHPKEYON	3-66	NB20071	130.00
TKNHPKEYON	3-99	NB20071	130.00
TKNHPKEYON	6-27	NB20071	130.00
TKNHPKEYON	6-37	NB20071	130.00
TKNHPKEYOO	2-22	NB20071	130.00
TKNHPKEYOO	3-39	NB20071	130.00
TKNHPKEYOO	3-66	NB20071	130.00

	CAT. NO.	PAGE	P.S.	PRICE \$
	TKNHPKEYOO	3-99	NB20071	130.00
	TKNHPKEYOO	6-27	NB20071	130.00
	TKNHPKEYOO	6-37	NB20071	130.00
	TKNHPKEYOP	2-22	NB20071	130.00
	TKNHPKEYOP	3-39	NB20071	130.00
	TKNHPKEYOP	3-66	NB20071	130.00
	TKNHPKEYOP	3-99	NB20071	130.00
	TKNHPKEYOP	6-27	NB20071	130.00
	TKNHPKEYOP	6-37	NB20071	130.00
	TKNHPKEYOQ	2-22	NB20071	130.00
	TKNHPKEYOQ	3-39	NB20071	130.00
	TKNHPKEYOQ	3-66	NB20071	130.00
	TKNHPKEYOQ	3-99	NB20071	130.00
	TKNHPKEYOQ	6-27	NB20071	130.00
	TKNHPKEYOQ	6-37	NB20071	130.00
	TKNHPKEYOR	2-22	NB20071	130.00
	TKNHPKEYOR	3-39	NB20071	130.00
	TKNHPKEYOR	3-66	NB20071	130.00
	TKNHPKEYOR	3-99	NB20071	130.00
	TKNHPKEYOR	6-27	NB20071	130.00
	TKNHPKEYOR	6-37	NB20071	130.00
	TKNHPKEYOS	2-22	NB20071	130.00
	TKNHPKEYOS	3-39	NB20071	130.00
	TKNHPKEYOS	3-66	NB20071	130.00
	TKNHPKEYOS	3-99	NB20071	130.00
	TKNHPKEYOS	6-27	NB20071	130.00
	TKNHPKEYOS	6-37	NB20071	130.00
	TKNHPKEYOT	2-22	NB20071	130.00
	TKNHPKEYOT	3-39	NB20071	130.00
	TKNHPKEYOT	3-66	NB20071	130.00
	TKNHPKEYOT	3-99	NB20071	130.00
	TKNHPKEYOT	6-27	NB20071	130.00
	TKNHPKEYOT	6-37	NB20071	130.00
A	TL100EM 100 3K	6-7	NT20138	2330.00
A	TL100EM 15 3K	6-7	NT20138	2330.00
A	TL100EM 203 K	6-7	NT20138	2330.00
A	TL100EM 303 K	6-7	NT20138	2330.00
A	TL100EM 40 3K	6-7	NT20138	2330.00
A	TL100EM 503 K	6-7	NT20138	2330.00
A	TL100EM 60 3K	6-7	NT20138	2330.00
A	TL100EM 75 3K	6-7	NT20138	2330.00
	TL100EMR5GM	6-8	NT20138	390.00
A	TL100EMR6BN	6-8	NT20138	280.00
	TL101240V	5-31	NT30141	1900.00
A	TL101CIP	5-31	NT30141	2990.00
1	TL1250NE 10003 FC	6-34	NT20138	11690.00
1	TL1250NE 10003 LG	6-34	NT30141	12420.00
I	TL1250NE 12503 FC	6-34	NT20138	13080.00
1	TL1250NE 12503 LG	6-34	NT30141	13810.00

I Available on indent only.
A Assembled to order.

	CAT. NO.		PAGE	P.S.	PRICE \$
		TL630NE3LSIG	6-32	NT20138	5010.00
1		TL630NE 6303	6-32	NT20138	4280.00
		TL800NE3LSIG	6-33	NT20138	9580.00
I		TL800NE 8003	6-33	NT20138	8850.00
		TLC12S	2-10	NT40143	164.00
		TLC18S	2-10	NT40143	205.00
		TLC6S	2-10	NT40143	126.00
		TLCDMA	2-10	NT40143	33.00
	A	TLP1	5-29	NT30141	2250.00
	A	TLP2	5-28	NT30141	2250.00
1	A	TLP2L1CABLE10	5-32	NT30141	125.00
1	A	TLP2L1CABLE15	5-32	NT30141	140.00
1	A	TLP2L1CABLE20	5-32	NT30141	156.00
1	A	TLP2L1CABLE25	5-32	NT30141	176.00
1	A	TLP2L1CABLE30	5-32	NT30141	197.00
	A	TLP2L1LCABLE	5-31	NT30141	114.00
	A	TLP2L1LCABLE	5-32	NT30141	114.00
1		TNS2	3-67	NT20138	6590.00
I		TNS2110V	3-100	NT20138	POA
1		TNS2240V	3-100	NT20138	POA
		TPD OSZ	8-2	NT20138	102.00
		TX6CAPLAB	3-124	NT20138	3.50
1		TXBD0009A	3-22	NT20138	36.50
		TXJD0050B	3-66	NT20138	75.50
1		TXLD0005A	6-26	NT20138	385.00
1		TXLD0006A	6-26	NT20138	495.00
		TXLD0012A	6-27	NT20138	340.00
I		TXLD0013A	6-27	NT20138	425.00
I		TXLD0016A	6-27	NT20138	26.80
1		TXLD0016A	6-27	NT20138	26.80
		TXRD0003A	3-132	NT30141	2030.00
		TXRD0004A	3-132	NT30141	2810.00
		TXRD0005A	3-132	NT20138	210.00
		TZS-100	8-2	NT30141	1610.00
		TZS-15	8-2	NT30141	113.00
		TZS-24	8-2	NT30141	340.00
		TZS-40	8-2	NT30141	630.00
		TZS-68	8-2	NT30141	1050.00
		TZS AD120240V	8-2	NT30141	680.00
		TZS AD24VAC	8-2	NT30141	680.00
		TZS AD415440V	8-2	NT30141	680.00
U					
		UPX330PB	3-22	NT30141	270.00
		UPX3440	6-12	NT30141	355.00
		UPX3800	6-27	NT30141	660.00
		UXHB0001B	3-132	NT30141	195.00
		UXKB0001A	3-132	NT30141	79.00
		UXKB0002A	6-26	NT20138	60.50
		UXKB0002A	6-26	NT20138	60.50

	CAT. NO.	PAGE	P.S.	PRICE \$
	UXKB0003A	6-37	NT30141	80.00
	UXKB0013A	3-38	NT20138	61.00
I	UXKC0001B	6-11	NT20138	560.00
	UXKC0002B	6-11	NT20138	560.00
I	UXKC0003B	6-11	NT20138	840.00
	UXKC0004A	6-26	NT20138	360.00
	UXKC0005A	6-26	NT20138	520.00
	UXKC0006D	6-36	NT30141	880.00
	UXKC0007D	6-36	NT30141	1170.00
	UXKC0012A	3-132	NT30141	2090.00
I	UXKC0013A	3-132	NT30141	3120.00
	UXKC0020A	3-132	NT20138	83.00
	UXKC0020A	6-11	NT20138	83.00
	UXKC0020A	6-26	NT20138	83.00
	UXKC0020A	6-36	NT20138	83.00
	UXKC0021B	6-11	NT20138	220.00
	UXKC0022B	6-26	NT20138	310.00
	UXKC0023B	6-36	NT30141	460.00
	UXKC0024B	6-36	NT30141	460.00
	UXKC0025B	3-132	NT30141	650.00
	UXKC0026C	6-36	NT30141	880.00
I	UXKC0027C	6-36	NT30141	1170.00
	UXKE0030A	6-8	NT20138	2.20
I	UXLB0006C	3-22	NT20138	84.00
I	UXLB0008C	3-22	NT20138	120.00
	UXLB0009D	6-10	NT20138	178.00
	UXLB0010D	6-25	NT20138	181.00
	UXLB0011D	6-35	NT30141	315.00
I	UXLB0012C	3-131	NT30141	445.00
	UXLB0013D	6-10	NT20138	189.00
	UXLB0014D	6-10	NT20138	220.00
	UXLB0015D	6-25	NT20138	195.00
	UXLB0016D	6-25	NT20138	225.00
	UXLB0017D	6-35	NT30141	385.00
	UXLB0018D	6-35	NT30141	460.00
I	UXLB0019D	3-131	NT30141	510.00
	UXLB0020C	3-131	NT30141	580.00
1	UXLB0021C	3-131	NT30141	670.00
I	UXLB0023C	3-131	NT20138	790.00
I	UXLB0024D	6-35	NT20138	315.00
	UXLB0025D	6-35	NT20138	385.00
	UXLB0026D	6-35	NT20138	460.00
I	UXMB0006B	3-132	NT30141	3820.00
	UXMB0008B	3-132	NT30141	3820.00
	UXMB0009B	3-132	NT30141	3820.00
I	UXMC0001B	6-11	NT20138	2780.00
I	UXMC0003B	6-11	NT20138	2780.00
I	UXMC0004B	6-11	NT20138	2780.00
	UXMC0005B	6-11	NT20138	2780.00

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
	UXMC0006B	6-26	NT20138	3550.00
1	UXMC0008B	6-26	NT20138	3550.00
1	UXMC0009B	6-26	NT20138	3550.00
	UXMC0010B	6-26	NT20138	3550.00
	UXMD0001B	6-11	NT20138	47.00
	UXMD0002B	6-26	NT20138	47.00
	UXOY0001A	6-25	NT20138	425.00
	UXOY0002A	6-25	NT20138	425.00
	UXOY0003A	6-36	NT30141	445.00
	UXOY0004A	6-36	NT30141	445.00
	UXOY0005A	6-36	NT30141	445.00
	UXOY0006A	3-132	NT30141	720.00
I	UXOY0007A	3-132	NT30141	880.00
	UXPD0011B	6-12	NT20138	190.00
	UXPD0012A	6-12	NT20138	245.00
	UXPD0013C	4-14	NT20138	220.00
	UXPD0013C	6-27	NT20138	220.00
1	UXPD0014B	6-27	NT20138	270.00
	UXQH0004B	4-14	NT20138	10.40
	UXQH0004B	6-12	NT20138	10.40
	UXQH0004B	6-27	NT20138	10.40
	UXQH0004B	6-37	NT20138	10.40
	UXRC0006C	6-11	NT20138	810.00
1	UXRC0007C	6-11	NT20138	1090.00
	UXRC0008B	6-26	NT20138	1460.00
1	UXRC0009B	6-26	NT20138	2040.00
	UXUB0013B	3-131	NT20138	113.00
	UXUB0013B	6-10	NT20138	113.00
	UXUB0013B	6-25	NT20138	113.00
	UXUB0013B	6-35	NT20138	113.00
	UXUB0014B	3-131	NT20138	113.00
	UXUB0014B	6-10	NT20138	113.00
	UXUB0014B	6-25	NT20138	113.00
	UXUB0014B	6-35	NT20138	113.00
	UXUB0015B	3-131	NT20138	113.00
	UXUB0015B	6-10	NT20138	113.00
	UXUB0015B	6-25	NT20138	113.00
	UXUB0015B	6-35	NT20138	113.00
I	UXUB0016B	3-131	NT20138	220.00
1	UXUB0016B	6-10	NT20138	220.00
1	UXUB0016B	6-25	NT20138	220.00
1	UXUB0016B	6-35	NT20138	220.00
	UXUB0017B	3-131	NT20138	220.00
	UXUB0017B	6-10	NT20138	220.00
	UXUB0017B	6-25	NT20138	220.00
	UXUB0017B	6-35	NT20138	220.00
I	UXUB0018B	3-131	NT20138	215.00
1	UXUB0018B	6-10	NT20138	215.00
I	UXUB0018B	6-25	NT20138	215.00

	CAT. NO.	PAGE	P.S.	PRICE \$	
1	UXUB0018B	6-35	NT20138	215.00	\geq
1	UXUB0038B	3-131	NT20138	113.00	$\underline{\square}$
1	UXUB0038B	6-10	NT20138	113.00	$\stackrel{\sim}{0}$
1	UXUB0038B	6-25	NT20138	113.00	¢
1	UXUB0038B	6-35	NT20138	113.00	$\stackrel{\square}{¢}$
	UXXB0001D	3-22	NT20138	86.50	3
	UXXB0003C	3-22	NT20138	127.00	D
	UXXB0004D	6-10	NT20138	169.00	$\stackrel{\sim}{\sim}$.
	UXXB0005D	6-10	NT20138	220.00	
	UXXB0006D	6-10	NT20138	255.00	\bigcirc
	UXXB0007D	6-25	NT20138	169.00	D
	UXXB0008D	6-25	NT20138	200.00	\times
	UXXB0009D	6-25	NT20138	240.00	
	UXXB0010D	6-35	NT30141	335.00	
	UXXB0011D	6-35	NT30141	415.00	
	UXXB0012D	6-35	NT30141	490.00	
	UXXB0013C	3-131	NT30141	350.00	
	UXXB0014C	3-131	NT30141	400.00	
1	UXXB0015C	3-131	NT30141	465.00	
1	UXXB0016C	3-131	NT30141	540.00	
1	UXXB0017C	3-131	NT30141	590.00	
1	UXXB0018C	3-131	NT30141	640.00	
1	UXXB0023D	6-35	NT20138	335.00	
	UXXB0024D	6-35	NT20138	415.00	
1	UXXB0025D	6-35	NT20138	490.00	
1	UXYB0004A	6-27	NT20138	54.00	
1	UXYB0004A	6-27	NT20138	54.00	
1	UXYC0005A	6-27	NT20138	54.00	
1	UXYC0005A	6-27	NT20138	54.00	
	UXYD0001A	3-132	NT20138	26.80	
	UXYD0001A	6-12	NT20138	26.80	
	UXYD0001A	6-27	NT20138	26.80	
	UXYD0001A	6-37	NT20138	26.80	
	UXYD0002A	3-132	NT20138	2.20	
	UXYD0002A	6-12	NT20138	2.20	
	UXYD0002A	6-27	NT20138	2.20	
	UXYD0002A	6-37	NT20138	2.20	
V					
	VS125NJ3100	6-5	NT20138	1250.00	
	VS125NJ3125	6-5	NT20138	1450.00	
	VS125NJ320	6-5	NT20138	1250.00	
	VS125NJ332	6-5	NT20138	1250.00	
	VS125NJ350	6-5	NT20138	1250.00	
	VS125NJ363	6-5	NT20138	1250.00	
	VS250NJ3160	6-6	NT20138	1750.00	
	VS250NJ3250	6-6	NT20138	1850.00	
X					
	XA63012U	4-3	NT40143	390.00	
1	XA63016U4POLE	4-5	NT40143	910.00	

I Available on indent only.
A Assembled to order.

	CAT. NO.	PAGE	P.S.	PRICE \$
	XA63018U	4-3	NT40143	500.00
	XA63024U	4-3	NT40143	670.00
I	XA63024U4POLE	4-5	NT40143	1320.00
	XA63030U	4-3	NT40143	750.00
I	XA63032U4POLE	4-5	NT40143	1680.00
	XA63036U	4-3	NT40143	900.00
I	XA63040U4POLE	4-5	NT40143	2010.00
	XA63042U	4-3	NT40143	1020.00
	XA63048U	4-3	NT40143	1130.00
1	XA63048U4POLE	4-5	NT40143	2360.00
1	XA63056U4POLE	4-5	NT40143	2920.00
	XA63060U	4-3	NT40143	1380.00
I	XA63064U4POLE	4-5	NT40143	3110.00
	XA6306U	4-3	NT40143	275.00
	XA63072U	4-3	NT40143	1650.00
1	XA6308U4POLE	4-5	NT40143	760.00
	XA80012U	4-3	NT40143	400.00
I	XA80016U4POLE	4-5	NT40143	940.00
	XA80018U	4-3	NT40143	540.00
	XA80024U	4-3	NT40143	670.00
I	XA80024U4POLE	4-5	NT40143	1380.00
	XA80030U	4-3	NT40143	800.00
I	XA80032U4POLE	4-5	NT40143	1780.00
	XA80036U	4-3	NT40143	960.00
	XA80040U4POLE	4-5	NT40143	2170.00
	XA80042U	4-3	NT40143	1090.00
	XA80048U	4-3	NT40143	1180.00
	XA80048U4POLE	4-5	NT40143	2600.00
	XA80056U4POLE	4-5	NT40143	3020.00
	XA80060U	4-3	NT40143	1450.00
	XA80064U4POLE	4-5	NT40143	3370.00
	XA8006U	4-3	NT40143	285.00
	XA80072U	4-3	NT40143	1730.00
	XA8008U4POLE	4-5	NT40143	840.00
	XAB2	2-51	NT20138	3.80
	XAB2	3-41	NT20138	3.80
	XAB3	2-51	NT20138	3.80
	XAB3	3-68	NT20138	3.80
	XB80012U	4-3	NT40143	540.00
1	XB80016U4POLE	4-6	NT40143	1170.00
	XB80018U	4-3	NT40143	740.00
	XB80024U	4-3	NT40143	930.00
I	XB80024U4POLE	4-6	NT40143	1630.00
	XB80030U	4-3	NT40143	1120.00
I	XB80032U4POLE	4-6	NT40143	2100.00
	XB80036U	4-3	NT40143	1330.00
I	XB80040U4POLE	4-6	NT40143	2540.00
	XB80042U	4-3	NT40143	1540.00
	XB80048U	4-3	NT40143	1760.00

	CAT. NO.	PAGE	P.S.	PRICE \$
I	XB80048U4POLE	4-6	NT40143	3060.00
	XB80060U	4-3	NT40143	2130.00
	XB8006U	4-3	NT40143	455.00
	XB80072U	4-3	NT40143	2710.00
1	XB8008U4POLE	4-6	NT40143	930.00
	XBSSL 80012 U	4-7	NT40143	750.00
	XBSSL 80015 U	4-7	NT40143	890.00
	XBSSL 80018 U	4-7	NT40143	1080.00
	XBSSL 80021 U	4-7	NT40143	1220.00
	XBSSL 80024 U	4-7	NT40143	1760.00
	XBSSL 80030 U	4-7	NT40143	2130.00
	XBSSL 800 36U	4-7	NT40143	2710.00
1	XBSSL 8003 U	4-7	NT40143	370.00
	XBSSL 8006 U	4-7	NT40143	440.00
	XBSSL 8009 U	4-7	NT40143	590.00
	XBSSR 80012 U	4-8	NT40143	750.00
	XBSSR 80015 U	4-8	NT40143	890.00
	XBSSR 80018 U	4-8	NT40143	1080.00
	XBSSR 800 21U	4-8	NT40143	1220.00
	XBSSR 80024 U	4-8	NT40143	1760.00
	XBSSR 80030 U	4-8	NT40143	2130.00
	XBSSR 80036 U	4-8	NT40143	2710.00
1	XBSSR 800 3U	4-8	NT40143	370.00
	XBSSR 8006 U	4-8	NT40143	440.00
	XBSSR 8009 U	4-8	NT40143	590.00
	XC100012U	4-9	NT40143	800.00
	XC100018U	4-9	NT40143	1110.00
	XC10001X4R12U	4-10	NT40143	1490.00
	XC10001X4R24U	4-10	NT40143	2100.00
	XC10001X4R36U	4-10	NT40143	2800.00
	XC100024U	4-9	NT40143	1430.00
	XC10002X4R12U	4-10	NT40143	2320.00
	XC10002X4R24U	4-10	NT40143	2930.00
	XC10002X4R36U	4-10	NT40143	3630.00
	XC100030U	4-9	NT40143	1660.00
	XC100036U	4-9	NT40143	1980.00
	XC100042U	4-9	NT40143	2340.00
1	XC100048U	4-9	NT40143	2580.00
	XC10006U	4-9	NT40143	710.00
	XCW0840LS13	7-6	NZ00150	330.00
	XCW0840LS16	7-6	NZ00150	330.00
I	XDM6-3	6-27	NT20138	880.00
1	XDM6-4	6-27	NT20138	980.00
	XEC1640LS20	7-6	NZ00150	330.00
	XEC1640LS25	7-6	NZ00150	650.00
	XEC1640LS32	7-6	NZ00150	650.00
	XEC1640LS40	7-6	NZ00150	1240.00
	XFE10	3-132	NT20138	1690.00
I	XH630PJ 4003	6-15	NT20138	4350.00

I Available on indent only.
A Assembled to order.

NH:

	CAT. No.	PAGE	P.S.	PRICE \$	
1	XS2500ND25003RC	3-145	NT30141	20710.00	$\frac{\searrow}{\square}$
	XS2500NE 2500 RC3	3-129	NT20138	19410.00	
1	XS2500NE 2500 RC4	3-129	NT20138	25880.00	?
1	XS2500NN3RC	3-142	NT30141	15990.00	?
	XS2500NN4FC	3-142	NT20138	23660.00	\subseteq
	XS2500SE 25003L	3-129	NT20138	20280.00	3
1	XS2500SE 25004L	3-129	NT20138	26750.00	D
	XS3200NE32003 RC	3-130	NT30141	23810.00	$\stackrel{\rightharpoonup}{\text { ® }}$
A	XS4000CRSK	6-12	NT20138	54.00	
	XS630NJ 4003	6-14	NT20138	2990.00	$\bar{\square}$
	XS630NJ 6303	6-14	NT20138	2990.00	D
A	XS6300CRSK	6-27	NT20138	54.00	\times
	XS630SE 6303	6-16	NT20138	3100.00	
A	XS630SE 6303LSIG	6-16	NT20138	3960.00	
	XS630SE 6304	6-16	NT20138	4130.00	
A	XS630SE 6304LSIG	6-16	NT20138	6280.00	
	XS800NJ 8003	6-19	NT20138	3850.00	
	XS800NJ 8004	6-19	NT20138	5130.00	
	XS800NN3	6-13	NT20138	3450.00	
	XS800SE 8003	6-21	NT20138	4140.00	
A	XS800SE 800 3LSIG	6-21	NT20138	4990.00	
	XS800SE 8004	6-21	NT20138	5520.00	
A	XS800SE 800 4LSIG	6-21	NT20138	6370.00	
A	XV1250NE1000 3 K	6-30	NT20138	10620.00	
A	XV1250NE1250 3 K	6-30	NT20138	13630.00	
A	XV1250NE 4003 K	6-30	NT20138	10030.00	
A	XV1250NE 8003 K	6-30	NT20138	10030.00	
A	XV400NE 1603 K	6-9	NT20138	3860.00	
A	XV400NE 2503 K	6-9	NT20138	3860.00	
A	XV400NE 400 3K	6-9	NT20138	4080.00	
A	XV630PE 4003 K	6-24	NT20138	4270.00	
A	XV630PE 630 3K	6-24	NT20138	5440.00	
A	XV800PE 8003 K	6-24	NT20138	8240.00	
Y					
A	YASD22D	6-8	NT20138	445.00	
A	YASD34	6-11	NT20138	700.00	
Z					
	ZS125 GJ 3100	3-135	NT20138	2230.00	
	ZS125 GJ 3125	3-135	NT20138	2380.00	
	ZS125 GJ 20	3-135	NT20138	2000.00	
	ZS125 GJ 33	3-135	NT20138	2000.00	
	ZS125 GJ 30	3-135	NT20138	2000.00	
	ZS125 GJ 363	3-135	NT20138	2000.00	
	ZS125 GJ 4100	3-135	NT20138	2560.00	
	ZS125 GJ 4100 SN	3-135	NT20138	2560.00	
	ZS125 GJ 4125	3-135	NT20138	2750.00	
	ZS125 GJ 4125 SN	3-135	NT20138	2750.00	
	ZS125 GJ 420	3-135	NT20138	2200.00	
	ZS125 GJ 420 SN	3-135	NT20138	2200.00	

I Available on indent only.
A Assembled to order.

CAT. NO.	PAGE	P.S.	PRICE \$
ZS125 GJ 432	$3-135$	NT20138	2200.00
ZS125 GJ 432 SN	$3-135$	NT20138	2200.00
ZS125 GJ 450	$3-135$	NT20138	2200.00
ZS125 GJ 450 SN	$3-135$	NT20138	2200.00
ZS125 GJ 463	$3-135$	NT20138	2200.00
ZS125 GJ 463 SN	$3-135$	NT20138	2200.00
ZS250 GJ 3160	$3-136$	NT20138	2490.00
ZS250 GJ 3250	$3-136$	NT20138	2780.00
ZS250 GJ 4160	$3-136$	NT20138	2890.00
ZS250 GJ 4160 SN	$3-136$	NT20138	2890.00
ZS250 GJ 4250	$3-136$	NT20138	3110.00
ZS250 GJ 4250 SN	$3-136$	NT20138	3110.00
ZS400 GF 3250	$3-140$	NT20138	3900.00
ZS400 GF 3 300	$3-140$	NT20138	3900.00
ZS400 GF 3 350	$3-140$	NT20138	4150.00
ZS400 GF 3 400	$3-140$	NT20138	4300.00
ZS400 GF 4250	$3-140$	NT20138	4600.00
ZS400 GF 4300	$3-140$	NT20138	4600.00
ZS400 GF 4350	$3-140$	NT20138	4800.00
ZS400 GF 4400	$3-140$	NT20138	4950.00
ZS630 GF 3 250	$3-141$	NT20138	1640.00
ZS630 GF 3 300	$3-141$	NT20138	1640.00
ZS630 GF 3 350	$3-141$	NT20138	1640.00
ZS800 GF 3 350	$3-141$	NT20138	1640.00
ZS800 GF 3 400	$3-141$	NT20138	1640.00

Field support services

NHP Service provides a comprehensive range of value add services that support and enhance the reliability and performance of NHP products. Our team of proficiently qualified technicians are available for a variety of lifecycle services, including:

- Product repairs and service
- On-site emergency breakdown service
- Preventative maintenance, and
- Commissioning

Product repairs and service

Our National Service Headquarters is based in Melbourne. For over 40 years, we have supported all NHP products, from motor starters to circuit breakers. Traditionally, products are returned to our National service centre for maintenance and repair. When this is not possible, we deploy our field service technicians to complete the tasks at customer sites.
Products covered by NHP Service:

1. NHP variable speed drives
2. NHP soft starters
3. NHP auto transformer starters
4. NHP liquid resistance starters
5. Terasaki ACBs, MCCBs
6. NHP power factor correction panels and power quality products

Emergency breakdown assistance

Modern faility managers demand consistency and efficiency of performance. In industrial applications, production is paramount.
In the case of commercial installations, continuity of service is equally important. In either case, disruption can result in costly losses and consequential damages. You want action, and you want it fast! NHP service offers $24 / 7$ protection to ensure that your plant and equipment continues to work for you. Our service technicians are on call and are equipped to minimise downtime.

Charge out fees*

Onsite: Standard houly rate $=\$ 125 / \mathrm{hr}$
Normal business hours:
8.00am - 5.00 pm , Monday to Friday

All site work is subject to minimum four hours (includes travel and organisation time).

- Minimum charge normal business hours
$=4$ hours ($\$ 5000$, thereafter $=\$ 125 / \mathrm{hr}$
- Minimum charge after hours

$$
=4 \text { hours }(\$ 750) \text {, thereatter }=\$ 187.50 / \mathrm{hr}
$$

- Minimum charge public holidays
$=4$ hours $(\$ 1000)$, thereafter $=\$ 250 / \mathrm{hr}$
Return to base: Standard hourly rate $=\$ 95 / \mathrm{hr}$
All return to base work incurs a minimum evaluation charge starting from $\$ 150$, and thereafter a quote is issued for the repair/service work to be completed on the item. This quote will cover both labour and parts.

Overtime on request:

- Hourly rate after hours = \$125/hr
- Hourly rate for public holidays $=\$ 250 / \mathrm{hr}$

Special service quotes:

The service sales team can also create special service quotes for scheduled work or maintenance contracts.

Payment:

Customers that do not have an account with NHP can use NHP's secure VISA and MasterCard credit card facilities.
Products and/or service offered for sale in this pocket book are subject to our standard Conditions of Sale, applicable at the date the order is placed. NHP standard Conditions of Sale can be viewed on our website at:
http://ecat.nhp.com.au or by requesting a copy for any of our offices.

Contacts

Normal business hours: contact your local NHP branch. After hours: phone 1300 NHP NHP, where your after hours service request will be answered by technically trained NHP customer service staff, who will assess the level of service support required and arrange for the work to be completed.

- Australian Branches

Victoria	Western Australia	$\mathbf{1}$	Ballarat	$\mathbf{1 3}$	Mackay
Richmond	Perth	$\mathbf{2}$	Bendigo	$\mathbf{1 4}$	Gladstone
Laverton	Northern Territory	$\mathbf{3}$	Geelong	$\mathbf{1 5}$	Sunshine
Dandenong	Darwin	$\mathbf{4}$	Shepparton	Coast	
Albury / Wodonga	Queensland	$\mathbf{5}$	Gippsland	$\mathbf{1 6}$	Gold Coast
Tasmania	$\mathbf{6}$	Mildura	$\mathbf{1 7}$	Griffith	
Hobart	Brisbane	$\mathbf{7}$	Whyalla	$\mathbf{1 8}$	Wagga Wagga
Launceston	Townsville	$\mathbf{8}$	Mt Gambier	$\mathbf{1 9}$	Dubbo
New South Wales	Toowoomba	$\mathbf{9}$	Kalgoorlie	$\mathbf{2 0}$	Gosford
Sydney	Cairns	10 Bunbury	$\mathbf{2 1}$	Coffs Harbour	
Newcastle	South Australia	$\mathbf{1 2}$	Karratha	$\mathbf{2 2}$	Tamworth
Canberra	Adelaide			$\mathbf{2 3}$	Lithgow
Wollongong					

- New Zealand Branches

New Zealand Regional Representation

North Island

Auckland
Hamilton
Napier
Wellington
New Plymouth

South Island
 24 Bay of Plenty

Christchurch
Dunedin

NHE

AUSTRALIA

nhp.com.au
1300 NHP NHP
VICTORIA
Melbourne
43-67 River Street
Richmond VIC 3121
Tel +61 394292999

Laverton

104-106
William Angliss Drive
Laverton North VIC 3026
Tel +61 393682901
Albury / Wodonga 847 Ramsden Drive Albury NSW 2640
Tel +61 260490600
Dandenong
40-42 Cyber Loop
Dandenong South
VIC 3175
Tel +61 387736400

TASMANIA

Hobart

2/65 Albert Street
Moonah TAS 7009
Tel +61 362289575

Launceston

3/13-17 Merino Street
Kings Meadows TAS 7249
Tel +61 363452600

SOUTH AUSTRALIA
Adelaide
36-38 Croydon Road Keswick SA 5035 Tel +61882979055

NEW SOUTH WALES

Sydney
30-34 Day Street
North
Silverwater NSW 2128
Tel +61 297483444

Newcastle

575 Maitland Road Mayfield West NSW 2304
Tel +61 249602220

Wollongong

34 Industrial Road Unanderra NSW 2526
Tel +61 1300 NHP NHP

QUEENSLAND

Brisbane

16 Riverview Place
Murarrie QLD 4172
Tel +61 739094999

Townsville

5 Leyland Street
Garbutt QLD 4814
Tel +61 747790700

Rockhampton

14 Robison Street
QLD 4701
Tel +61 749272277

Toowoomba

Cnr Carroll Street and
Struan Court
QLD 4350
Tel +61 746344799

Cairns

2/1 Bramp Close
Portsmith QLD 4870
Tel +61 740356888

ACT

Canberra
1/187 Gladstone
Street
Fyshwick ACT 2609
Tel +61 262809888

WESTERN

AUSTRALIA

Perth

38 Belmont Ave
Rivervale WA 6103
Tel +61 892771777

NORTHERN

TERRITORY

Darwin

3 Steele Street
Winnellie NT 0820
Tel +61 889472666
NEW
ZEALAND
nhp-nz.com
0800 NHP NHP
PO Box 62-009
Mount Wellington
Auckland 1641
New Zealand

Auckland

118a Carbine Road Mt Wellington 1060 Tel +64 92761967

Hamilton

78 Rostrevor Street Hamilton 3204
Tel 0800 NHP NHP

Napier

126 Taradale Rd
Onekawa 4110
Tel +64 68436928
New Plymouth
2 Dean Place
Waiwhakaiho 4312
Tel 0800 NHP NHP

Wellington

52 Victoria Street
Lower Hutt 5010
Tel +64 45700634
Christchurch
85 Gasson Street
Sydenham 8023
Tel +64 33774407

Dunedin

30 Fox Street
South Dunedin 9012
Tel 0800 NHP NHP

Please scan

the QR code to
download this
document.

NHP Electrical Engineering Products Pty Ltd
A.B.N. 84004304812

TECHNICAL DATA SHEET

Equipment Type:Phase Failure Relay
Location:Power Distribution
Model Numbers: DPB 01CM48W4
Manufacturer: Carlo Gavazzi
Supplier:
NHP Pty Ltd
16 Riverview Place
Murarrie(07) 39094999

Product Description

3 -phase or 3-phase+neutral line voltage monitoring relay for phase sequence, phase loss, over and under voltage (separately adjustable set
points) with built-in time delay function.
Supply ranges from 208 to 480 VAC covered by two multivoltage relays.

- TRMS 3-phase over and under voltage, phase sequence and phase loss monitoring relays
- Detect when all 3 phases are present and have the correct phase sequence (except for N versions)
- Available versions (W4) supplied between phase and neutral
- Detect if all the 3-phase-phase or phase-neutral voltages are within the set limits
- Upper and lower limits separately adjustable
- Measure on own power supply
- Selection of measuring range by DIP-switches
- Adjustable voltage on relative scale
- Adjustable delay function (0.1 to 30 s)
- Output: 8 A SPDT relay N.E.
- For mounting on DIN-rail in accordance with DIN/EN 50022 (DPB01) or plug-in module (PPB01)
- 22.5 mm Euronorm housing (DPB01) or 36 mm plug-in module (PPB01)
- LED indication for relay, alarm and power supply ON

Ordering Key

DPB 01 C M23
Housing
Function
Type
Item number
Output
Power supply

Type Selection

$\left.\begin{array}{llllllll}\hline \text { Mounting } & \begin{array}{l}\text { Phase sequence } \\ \text { detection }\end{array} & \text { Output } & & \begin{array}{l}\text { Supply: } \\ \text { 208 to } 240 \text { VAC }\end{array} & & \begin{array}{l}\text { Supply: } \\ \text { 380 to 415 VAC }\end{array} & \end{array} \begin{array}{l}\text { Supply: } \\ \text { 380 to 480 VAC }\end{array}\right]$

Input Specifications

$\left.\begin{array}{ll}\begin{array}{l}\text { Input } \\ \text { L1, L2, L3, } N\end{array} & \begin{array}{l}\text { DPB01: Terminals L1, L2, L3, N }\end{array} \\ & \text { PPB01: Terminals 5, 6, 7, 11 } \\ \text { Measure on own supply }\end{array}\right]$

Ranges
Upper level
Lower level

Note: The input voltage must not exceed the maximum rated voltage or drop below the minumum rated voltage reported above.

Hysteresis

Set points from 2 to $5 \% \quad 1 \%$

Set points from 5 to 22%
set points from 5 to 22%

$$
\begin{aligned}
& +2 \text { to }+22 \% \\
& \text { of the nominal voltage } \\
& -22 \text { to }-2 \% \\
& \text { of the nominal voltage }
\end{aligned}
$$

Output Specifications

Output Rated insulation voltage	SPDT relay 250 VAC
Contact ratings (AgSnO_{2})	μ
Resistive loads AC 1	8 A @ 250 VAC
DC 12	5 A @ 24 VDC
Small inductive loads AC 15	2.5 A @ 250 VAC
DC 13	2.5 A @ 24 VDC
Mechanical life	$\geq 30 \times 10^{6}$ operations
Electrical life	$\geq 10^{5}$ operations (at $8 \mathrm{~A}, 250 \mathrm{~V}, \cos \varphi=1$)
Operating frequency	≤ 7200 operations/h
Dielectric strength	
Dielectric voltage	2 kVAC (rms)
Rated impulse withstand volt.	$4 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$

Supply Specifications

Power supply
Rated operational voltage through terminals:
L1, L2, L3, N
(DPB01)

5, 6, 7, 11
(PPB01)
D/P PB01CM23,
D/P PB01CM23N
D/P PB01CM48W4,
D/P PB01CM48NW4,
PPB01CM 48, PPB01CM 48N
DPB01CM48, DPB01CM48N

Rated operational power
DPB01CM 23x, PPB01CM 23x
DPB01CM 48x, PPB01CM 48x
DPB01CM 48xW4
DPB01CM 48xW4

Overvoltage cat. III
(IEC 60664, IEC 60038)

208 to $240 \mathrm{~V}_{\text {L-L }} \mathrm{AC} \pm 15 \%$ 45 to 65 Hz

380 to $415 \mathrm{~V}_{\mathrm{L}-\mathrm{L}} \mathrm{AC} \pm 15 \%$ (220 to $240 \mathrm{~V}_{\mathrm{L}-\mathrm{N}} \mathrm{AC} \pm 15 \%$) 45 to 65 Hz

380 to $480 \mathrm{~V}_{\text {L-L }} \mathrm{AC} \pm 15 \%$ (220 to $277 \mathrm{~V}_{\mathrm{L}-\mathrm{N}} \mathrm{AC} \pm 15 \%$) 45 to 65 Hz

13 VA @ $230 \Delta V A C, 50 \mathrm{~Hz}$ 13 VA @ $400 \Delta V A C, 50 \mathrm{~Hz}$ Supplied by L1 and L2

13 VA @ $400 \Delta V A C, 50 \mathrm{~Hz}$ Supplied by L1 and N

General Specifications

Power ON delay	$1 \mathrm{~s} \pm 0.5 \mathrm{~s}$ or $6 \mathrm{~s} \pm 0.5 \mathrm{~s}$
Reaction time	
Incorrect phase sequence or	
total phase loss Voltage level	<200 ms
Voltage level	(input signal variatio
	$+20 \%$ to -20% of set value)
Alarm ON delay	$<200 \mathrm{~ms}$ (delay <0.1 s)
Alarm OFF delay	$<200 \mathrm{~ms}$ (delay <0.1 s)
Accuracy	(15 min warm-up time)
Temperature drift	$\pm 1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Delay ON alarm	$\pm 10 \%$ on set value $\pm 50 \mathrm{~ms}$
Repeatability	$\pm 0.5 \%$ on full-scale
Indication for	
Power supply ON	LED, green
Alarm ON	LED, red (flashing 2 Hz
put relay ON	during delay time) LED, yellow
Environment	
Degree of protection	IP 20
Pollution degree	3 (DPB01), 2 (PPB01)
Operating temperature	
@ Max. voltage, 50 Hz	-20 to $60^{\circ} \mathrm{C}$, R.H. $<95 \%$
@ Max. voltage, 60 Hz	-20 to $50^{\circ} \mathrm{C}$, R.H. $<95 \%$
Storage temperature	-30 to $80^{\circ} \mathrm{C}$, R.H. $<95 \%$
Housing	
$\begin{array}{ll}\text { Dimensions } & \text { DPB01 } \\ & \text { PPB01 }\end{array}$	$\begin{aligned} & 22.5 \times 80 \times 99.5 \mathrm{~mm} \\ & 36 \times 80 \times 94 \mathrm{~mm} \end{aligned}$
Weight	Approx. 120 g
Screw terminals	
Tightening torque	Max. 0.5 Nm according to IEC 60947
Approvals	$\begin{aligned} & \text { UL, CSA } \\ & \text { (except for W4 versions) } \end{aligned}$
CE Marking	Yes
EMC	Eectromagnetic Compatibility
Immunity	According to EN 61000-6-2
Emissions	According to EN 61000-6-3

Mode of Operation

Connected to the 3 phases (and neutral) DPBO1 and PPBO1 operate when all 3 phases are present at the same time, the phase sequence is correct (not N versions) and the phasephase (or phase-neutral) voltage levels are within set limits.

If one or more phase-phase or phase-neutral voltages exceeds the upper set level or drops below the lower set level, the red LED starts
flashing 2 Hz and the output relay releases after the set time period. In any case if phase-neutral measurement is selected both phasephase and phase-neutral voltages are monitored. If the phase sequence is wrong or one phase is lost, the output relay releases immediately.
Only 200 ms delay occurs. The failure is indicated by the red LED flashing 5 Hz during the alarm condition.

Example 2

(load monitoring)
The relay releases in case of interruption of one or more phases, when one or more voltages drop below the lower set level or exceed the upper set level.

Example 1

(mains network monitoring)
The relay monitors over and under voltage, phase loss and correct phase sequence.
In case of N versions, the relay monitors over and under voltage.

CARLO GAVAZZI

Function/ Range/ Level and Time Delay Setting

Adjust the input range setting the DIP switches 3 and 4 as shown below.

Select the desired function setting the DIP switches 1 and 2 as shown below.

To access the DIP swiches open the grey plastic cover as shown below

Selection of level and time delay:

Upper knob:

Setting of lower level on relative scale.

Centre knob:

Setting of upper level on relative scale.

Lower knob:

Setting of delay on alarm time on absolute scale (0.1 to 30 s).

Operation Diagrams

Operation Diagrams (cont.)

${ }^{(*)} \mathrm{N}$ versions don't detect incorrect phase sequence.

Wiring Diagrams

Example 1

Example 2

DPB01

Example 1

Example 2

PPB01

Note

When DPB01 or PPB01 is used with phase indicator lamps (see examples in the following diagrams), the lamp H1 or H2 might be dimly lit when there is a phase loss in L1 or L2. This might happen if the lamps used are the typical low power indicator lamps, and there are no other loads present.
This fact can be avoided by using W4 models. Note that the neutral must be always connected to the device.

Dimensions

Plug-in

TECHNICAL DATA SHEET

Equipment Type:
Standard load break switches
Location:
Power Distribution
Model Numbers:
various
Manufacturer:
Socomec
\section*{Supplier:}
NHP Pty Ltd
16 Riverview Place
Murarrie
(07) 39094999

SLB Standard load-break switches

COMO M 20 to 100 A

The COMO M range of load-break switches offer compact IP 20 finger safe solutions for switching up to and including 100 A . They are ideal for the arduous switching of motors.
Standard mounting is by DIN rail or base mount with screws.
The COMO M comes complete with direct mount handle, or pistol handles and shaft. Fourth pole and auxiliary switching can also be achieved with easy clip-on modules - refer accessories.

Front operated surface mount (Supplied with direct or external handle)

SLB 63... 100

SLB Standard load-break switches
 SIRCO 125 to 4000 A

SLB 125... 630

The SIRCO range of load-break switches offer compact solutions for switching from 125 A to 4000 A . Base mounting is standard.
The SIRCO range are a proven, reliable design that more than suit harsh Australian conditions.
The switches come complete with extended shaft and door mountable pistol grip handle.
Available in three and four pole versions with a large range of accessories to choose from.
Front operated surface mount
(Supplied with external handle and shaft)

125 A	AC 21400 V (A)	AC 23400 V (A)	$\begin{aligned} & \text { AC } 23400 \mathrm{~V} \\ & \text { (kW) } \end{aligned}$	No. of poles ${ }^{1}$)	Cat. No.
	125	125	63	3	SLB 125 3P
				4	SLB 125 4P
160 A	160	160	80	3	SLB 160 3P
				4	SLB 160 4P
200 A	200	200	100	3	SLB 200 3P
				4	SLB 200 4P
250 A	250	250	132	3	SLB 250 3P
				4	SLB 250 4P
315 A	315	315	160	3	SLB 315 3P
				4	SLB 315 4P
400 A	400	400	220	3	SLB 400 3P
				4	SLB 400 4P
500 A	500	400	280	3	SLB 500 3P
				4	SLB 500 4P
630 A	630	500	280	3	SLB 630 3P
				4	- SLB 630 4P
800 A	800	800	450	3	SLB 800 3P
				4	- ${ }^{\text {SLB }} 800$ 4P

Notes: ${ }^{1}$) 6 and 8 pole switches available on indent. Refer NHP.
i Available on indent only.

SLB 800... 3150

NHP

SLB Standard load-break switches

SIRCO 125 to 4000 A (cont'd)

The SIRCO range of load-break switches offer compact solutions for switching from 125 A to 4000 A .

SLB 800... 3150 Base mounting is standard.
The SIRCO switches come complete with extended shaft and door mountable pistol grip handle. Available in three and four pole versions with a large range of accessories to choose from.

Front operated surface mount

(Supplied with external handle and shaft)

1000 A	AC 21400 V (A)	AC 23400 V (A)	$\begin{aligned} & \text { AC } 23400 \mathrm{~V} \\ & \text { (kW) } \end{aligned}$	No. of poles ${ }^{1}$)	Cat. No.
	1000	1000	560	3	SLB 1000 3P
				4	
1250 A	1250	1000	560	3	SLB 1250 3P
				4	${ }^{\text {i }}$ SLB 12504 P
1600 A	1600	1000	560	3	SLB 1600 3P
				4	- ${ }^{\text {SLB }} 1600$ 4P
1800 A	1800	1000	560	3	SLB 1800 3P
				4	- ${ }^{\text {SLB }} 1800$ 4P
2000 A	2000	1250	710	3	SLB 2000 3P
				4	- ${ }^{\text {SLB }} 2000$ 4P
2500 A	2500	1250	710	3	SLB 2500 3P
				4	- i LB 25004 P
3150 A	3150	1250	710	3	SLB 3150 3P
				4	- SLB 3150 4P
4000 A	4000	1250	710	3	SLB $40003^{(2}{ }^{2}$)
				4	- ${ }^{\text {SLS }} 4000$ 4 P^{2})

Notes: ${ }^{1}$) 6 and 8 pole switches available on indent. Refer NHP.
${ }^{2}$) Supplied with $2 \mathrm{~N} / 0$ and $2 \mathrm{~N} / \mathrm{C}$ auxiliaries as standard.
i Available on indent only.

SLB 4000

Technical data and dimensions (mm)
COMO M SLB 20 to 100 A

COMO M 20 to 40 A

COMO M 63 to 100 A

COMO M Selector handle door drilling

COMO M Pistol handle door drilling

Technical data and dimensions (mm)
 SIRCO SLB 125 to 2500 A

SIRCO 125 to 2500 A

Rating	Overall dimensions		Terminal shrouds		Switch body									Switch mounting				Connection terminals												
A	C	D	AC	AD	$\begin{array}{\|l} \hline F \\ 3 p \\ \hline \end{array}$	$\begin{aligned} & F \\ & 4 p \end{aligned}$	G	H	$\begin{aligned} & \mathrm{J1} \\ & 3 \mathrm{p} \end{aligned}$	$\begin{aligned} & \mathrm{J1} \\ & 4 \mathrm{p} \end{aligned}$	J2	K	BC		$\begin{aligned} & M \\ & 4 p \end{aligned}$		R	T	U	U1	V	W	$\begin{aligned} & \mathrm{X1} \\ & \text { 3p } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{X} 1 \\ & 4 \mathrm{p} \end{aligned}$	X2	Y	Z	AA	BA	CA
125	120	124... 354	235	50	140	170	93	65	45	75	75	31.5	80	120	150	65	5.5	36	20	20.5	25	9	28	22	20	3.5	20.5	135	115	10
160	120	124... 354	235	50	140	170	93	65	45	75	75	31.5	80	120	150	65	5.5	36	20	20.5	25	9	28	22	20	3.5	20.5	135	115	10
200	130	135... 365	290	60	180	230	108	75	55	105	105	34	115	160	210	80	5.5	50	25	25.5	30	11	33	33	27	3.5	22.5	160	130	15
250	130	135... 365	290	60	180	230	108	75	55	105	105	34	115	160	210	80	5.5	50	25	25.5	30	11	33	33	27	3.5	22.5	160	130	15
315	165	167... 397	401	89	230	290	170	110	75	135	135	55	115	210	270	140	7	65	32	45.5	37.5	11	42.5	37.5	37.5	5	36	235	205	15
400	165	167... 397	401	89	230	290	170	110	75	135	135	55	115	210	270	140	7	65	32	45.5	37.5	11	42.5	37.5	37.5	5	36	235	205	15
500	165	167... 397	401	89	230	290	170	110	75	135	135	55	115	210	270	140	7	65	32	45.5	37.5	13	42.5	37.5	37.5	5	36	235	205	15
630	165	167... 397	400	89	230	290	170	110	75	135	135	55	115	210	270	140	7	65	45	45.5	50	13	42.5	37.5	37.5	5	36	260	220	20

Castell Drilling

Rating	Switch body		Switch mounting				Connection terminals				
A	F 3p	F 4p	M 3p	M 4p	T	U	V	Y	X1	X2	Z
800	280	360	255	335	80	50	60.5	7	47.5	47.5	46.5
1000	280	360	255	335	80	50	60.5	7	47.5	47.5	46.5
1250	372	492	347	467	120	90	44	8	53.5	53.5	47.5
1600	372	492	347	467	120	90	44	8	53.5	53.5	47.5
1800	372	492	347	467	120	90	44	8	288		

Rating

Rating A	A 3p	Overall dimensions	A 4p	M 3p

Technical data and dimensions (mm)
SIRCO SLB 3150 to 4000 A

SIRCO 3150 A

Castell Drilling

Switch mounting

Rating A	A 3p	Overall dimensions	A 4p	M 3p	Switch mounting
3150	372	492	347	467	

SIRCO 4000 A

SIRCO Connection terminals -800 to 4000 A

800-1000 A

1250-1800 A

2000-2500 A

3150-4000 A

Technical data and ratings chart
 COMO M SLB 20 to 100 A

Ratings to AS 3947-3 and IEC 60947-3

			20 A	25 A	32 A	40 A	63 A	80 A	100 A							
Rated insulation voltage and rated operation voltage AC 20/DC 20		V	800	800	800	800	800	800	800							
Rated impulse withstand voltage		kV	8	8	8	8	8	8	8							
Rated operational current																
AC 21A	400 V	A	20	25	32	40	63	80	100							
	500 V	A	20	25	32	40	63	80	100							
	690 V	A	20	25	32	40	63	80	100							
AC 22A	400 V	A	20	25	32	40	63	80	100							
	500 V	A	20	25	32	40	63	80	100							
	690 V	A	20	25	32	40	63	80	100							
AC23A	400 V	A	20	25	32	40	63	80	80							
	500 V	A	16	20	25	32	50	63	63							
	690 V	A	16	20	20	20	50	50	50							
Rated operational current																
	400 V	A														
	500 V	A														
DC 22A	400 V	A	Refer NHP													
	500 V	A														
DC 23A	400 V	A														
	500 V	A														
Operational power																
	400 V	kW	9	11	15	18.5	30	40	40							
	500 V	kW	9	11	15	18.5	33	40	40							
	690 V	kW	11	15	15	15	45	45	45							
Overload capacity Short time withstand current Icw (RMS 1s) 690 V kA 1.26 1.26 1.26 1.26 1.5 1.5																
Breaking capacity AC 23A	400 V	A	160	200	256	320	504	640	640							
Fuse protected short circuit withstand. (kA RMS prospective)	400 V AC	kA	50	50	50	50	25	25	25							
	Fuse	A	20	25	32	40	63	80	100							
Mechanical endurance		Ops	100000	100000	100000	100000	30000	30000	30000							
Weight (3 pole)		Kg	0.13	0.13	0.13	0.13	0.25	0.25	0.25							
Min. tightening torque		Nm	2	2	2	2	4	4	4							
Connection cable size		mm^{2}	2.5/16	2.5/16	4/16	6/16	16/50	16/50	25/50							

Note: $240 / 415 \mathrm{~V}$ ratings suitable for use on $230 / 400 \mathrm{~V}$ in accordance with AS 60038:2000.

Technical data and ratings chart

SIRCO SLB 125 to 630 A

Ratings to AS 3947-3 and IEC 60947-3

			125 A	160 A	200 A	250 A	315 A	400 A	500 A	630 A
Rated insulation voltage and rated operation voltage AC 20/DC 20		V	800	800	800	800	1000	1000	1000	1000
Rated impulse withstand voltage		kV	8	8	8	8	12	12	12	12
Rated operational current AC 21A										
	400 V	A	125	160	200	250	315	400	500	630
	500 V	A	125	160	200	250	315	400	500	630
	690 V	A	125	160	200	250	315	400	500	500
AC 22A	400 V	A	125	160	200	250	315	400	500	630
	500 V	A	125	125	200	250	315	400	500	500
	690 V	A	-	-	-	125	250	250	250	315
AC23A	400 V	A	125	160	200	250	315	400	500	500
	500 V	A	100	100	160	200	315	315	315	315
	690 V	A	-	-	-	100	160	160	160	160
Rated operational current DC 21A										
	400 V	A	125	160	160	250	315	400	400	630
	500 V	A	125	125	160	200	315	400	400	500
DC 22A	400 V	A	125	160	160	200	315	400	400	500
	500 V	A	125	125	160	200	315	315	315	500
DC 23A	400 V	A	125	125	160	200	315	400	400	500
	500 V	A	125	125	160	200	315	400	400	500
Operational power AC 23A										
	400 V	kW	63	80	100	132	160	220	280	280
	500 V	kW	63	63	110	140	220	220	220	220
	690 V	kW	55	55	75	90	150	150	150	150
Overload capacity Short time withstand current Icw $\text { (RMS 1s) } 690 \text { V }$										
		kA	7	7	9	9	13	13	13	13
Breaking capacity AC 23A	400 V	A	1000	1280	1600	2000	2520	3200	4000	4000
Fuse protected short circuit withstand. (kA RMS prospective)	400 V AC	kA	100	100	80	50	100	100	100	70
	Fuse	A	125	160	200	250	315	400	500	630
Rated capacitor power		kVAr	55	75	90	115	145	185	230	290
Mechanical endurance		Ops	10000	10000	10000	10000	5000	5000	5000	5000
Weight (3 pole)		Kg	1	1.5	2	2	3.5	3.5	3.5	3.5
Min. tightening torque		Nm	6.5	6.5	10	10	15.4	14.5	14.5	14.5
Connection cable size		mm^{2}	35/50	50/95	70/95	95/150	150/240	185/240	240/240	2 (150/300)

Note: $240 / 415 \mathrm{~V}$ ratings suitable for use on $230 / 400 \mathrm{~V}$ in accordance with AS $60038: 2000$.

Technical data and ratings chart

SIRCO SLB 800 to 4000 A

Ratings to AS 3947-3 and IEC 60947-3

			800 A	1000 A	1250 A	1600 A	1800 A	2000 A	2500 A	3150 A	4000 A
Rated insulation voltage and rated operation voltage AC 20/DC 20		V	1000	1000	1000	1000	1000	1000	1000	1000	1000
Rated impulse withstand voltage		kV	12	12	12	12	12	12	12	12	12
Rated operational current AC 21A											
	400 V	A	800	1000	1250	1600	1600	2000	2500	3150	3150
	500 V	A	800	1000	1250	1600	1600	2000	2500	3150	3150
	690 V	A	800	1000	1000	1600	1600	2000	2000	2000	2000
AC 22A	400 V	A	800	1000	1250	1250	1250	2000	2000	2500	2500
	500 V	A	800	1000	1000	1250	1250	1600	1600	2000	2000
	690 V	A	800	630	630	800	800	1000	1000	1000	1000
AC 23A	400 V	A	800	1000	1000	1000	1000	1250	1250	1250	1250
	500 V	A	630	800	800	1000	1000	1000	1000	1000	1000
	690 V	A	200	400	400	500	500	800	800	800	800
Rated operational current DC 21A											
	400 V	A	800	1000	1250	1600	1600	2000	2000	2000	2000
	500 V	A	630	1000	1250	1250	1250	1250	1250	1250	1250
DC 22A	400 V	A	800	1000	1250	1250	1250	1250	1250	1250	1250
	500 V	A	800	1000	1250	1250	1250	1250	1250	1250	1250
DC 23A	400 V	A	800	1000	1000	1000	1000	1000	1000	1000	1000
	500 V	A	800	1000	1000	1000	1000	1000	1000	1000	1000
Operational power AC 23A											
	400 V	kW	450	560	560	560	560	710	710	710	710
	500 V	kW	450	560	560	710	710	710	710	710	710
	690 V	kW	185	400	400	475	475	750	750	750	750
Overload capacity											
Short time withstand current $\text { Icw (RMS 1s) } 690 \mathrm{~V}$		kA	26	$\left.35{ }^{1}\right)$	50	50	50	50	50	55	70
Breaking capacity AC 23A	400 V	A	6400	8000	8000	8000	8000	10000	10000	10000	10000
Fuse protected short circuit withstand. (kA RMS prospective)	$400 \text { V AC }$	kA	50	100	100	100	100	100	100	-	-
	Fuse	A	800	1000	1250	2×800	2x800	2x1000	2×1000	-	-
Rated capacitor power		kVAr	365	460	575	-	-	-	-	-	-
Mechanical endurance		Ops	4000	4000	4000	3000	3000	3000	2500	2500	2500
Weight (3 pole)		Kg	8	10.5	10.5	16	17	31	32	42	90
Min. tightening torque		Nm	37	37	37	50	50	60	60	60	110
Connection cable size		mm^{2}	$2(185 / 300)$	$2240 / 4185$	4185 max	6240 max	-	-	-	-	-

Notes: $\left.{ }^{1}\right) 50$ kA switch available in larger frame size. Refer NHP.
$240 / 415 \mathrm{~V}$ ratings suitable for use on 230/400 V in accordance with AS 60038:2000.

TECHNICAL DATA SHEET

Equipment Type:Power Supply
Location:Power Distribution
Model Numbers:CP M SNT 120W 24V 5A
Manufacturer: Weidmuller
Supplier:Ramelec2/5 Breene PlaceMorningsideQld 4170
Ph: 0738991322

CP M SNT 120W 24V 5A

Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 16
D-32758 Detmold
Germany
Fon: +49 5231 14-0
Fax: +49 5231 14-292083
www.weidmueller.com

PRO-M = Power-Reliable-Optimized
The perfectly reliable power supply for automation technology.
The ten different versions for the 24V-DC power supply all feature a solid but thin metal housing which enables them to be installed without any side gaps. This results in less space required on the mounting rail. Wide range of $A C / D C$ inputs and a wide temperature range enable them to be used anywhere. Because of its high efficiency, resistance to overloads and high power reserves, the PROM is a trusted power supply for use in any application. The three-phase PRO-M power supply modules continue to function reliably when one phase fails (i.e., in twophase mode).

General ordering data

Type	CP M SNT 120W 24V 5A
Order No.	8951340000
Version	Power supply, switch-mode power supply unit
GTIN (EAN)	4032248742554
Oty.	1 pc(s).

Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 16
D-32758 Detmold
Germany
Fon: +49 5231 14-0
Fax: +49 5231 14-292083
www.weidmueller.com

Dimensions and weights

Width	40 mm	Height	130 mm
Depth	125 mm	Weight	0.7 kg
Net weight	724.3 g		

Temperatures

Operating temperature	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$	Storage temperature	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$

Input

AC current consumption	1.1 A @ 230 V AC / 2.0 A (1) 115 V AC	DC current consumption	$\begin{aligned} & 0.4 \text { A @ } 370 \text { V DC / 1.2 A } \\ & \text { @ } 120 \text { V DC } \end{aligned}$
$\overline{\text { DC input voltage range }}$	$\begin{aligned} & \text { 80... } 370 \text { V DC (Derating @ } \\ & 120 \text { V DC) } \end{aligned}$	Frequency range AC	47... 63 Hz
Input fuse	Yes	Input fuse (internal)	Yes
Input voltage range AC	$\begin{aligned} & 85 \ldots 264 \text { V AC (Derating @ } \\ & 100 \text { V AC) } \end{aligned}$	Inrush current	max. 40 A
Recommended back-up fuse	4 A / DI, safety fuse 6 A, Char. B, circuit breaker 3... 5 A, Char. C, circuit breaker	Wire connection method	Screw connection
rated input voltage	100... 240 V AC (widerange input)		
output			
Output current	5 A	Output power	120 W
Output voltage type	DC	Output voltage, max.	29.5 V
Output voltage, min.	22.5 V	Output voltage, note	(adjustable via potentiometer on front)
Overload protection	Yes	Parallel connection option	yes, max. 5
Powerboost @ 24 V DC, $60{ }^{\circ} \mathrm{C}$	6 A for $1 \mathrm{~min}, \mathrm{ED}=5$ \%	Rated (nominal) output current @ U ${ }_{\text {Nom }}$	$5 \mathrm{~A} @ 60^{\circ} \mathrm{C}$
Wire connection method	Screw connection	continous output current @ 24 V DC	$\begin{aligned} & 6.0 \mathrm{~A} @ 45^{\circ} \mathrm{C}, 5.3 \mathrm{~A} @ 55 \\ & { }^{\circ} \mathrm{C}, 3.8 \mathrm{~A} @ 70^{\circ} \mathrm{C} \end{aligned}$
rated output voltage	24 V DC $\pm 1 \%$	residual ripple, breaking spikes	$<50 \mathrm{mV}_{\text {SS }} @ 24 \mathrm{VDC}, \mathrm{I}_{\mathrm{N}}$
General data			
AC failure bridging time @ $\mathrm{I}_{\text {Nom }}$	$\begin{aligned} & >100 \mathrm{~ms} @ 230 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{>} \\ & 20 \mathrm{~ms} @ 115 \mathrm{~V} \mathrm{AC} \end{aligned}$	Current limiting	> $120 \% \mathrm{I}_{\mathrm{N}}$
Degree of efficiency	90 \% @ 230 V AC / 88 \% @ 115 V AC	Housing version	Metal, corrosion resistant
Indication	Operation, green LED	MTBF	$\begin{aligned} & >500,000 \mathrm{~h} \text { acc. to IEC } \\ & 1709 \text { (SN29500 } \end{aligned}$
Mounting position, installation notice	Horizontal on TS35 mounting rail, with 50 mm of clearance at top and bottom for air circulation. Can be mounted side by side with no space in between.	Operating temperature	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Power factor (approx.)	$\text { > } 0.5 \text { @ } 230 \text { V AC / > } 0.6$ @ 115 V AC	Protection against over-heating	Yes
Protection against reverse voltages from the load	30... 35 V DC	Short-circuit protection	Yes
Weight	0.7 kg		

Creation date August 5, 2013 3:10:33 AM CEST

EMC / shock / vibration

Limiting of mains voltage harmonic currents	$\begin{aligned} & \text { in accordance with EN } \\ & 61000-3-2 \end{aligned}$	Noise emission acc. to EN55022	Class B			
Interference immunity test acc. to	EN 61000-4-2 (ESD)\| EN 61000-4-3 and EN 61000-4-8 (fields)	EN 61000-4-4 (burst)	EN 61000-4-5 (surge)	EN 61000-4-6 (conducted)। EN 61000-4-11 (dips)	Shock resistance IEC 60068-2-27	30 g in all directions
Insulation coordination						
Class of protection	I, with PE connection	Insulation voltage	3 kV input/ouput; 2 kV input/earth; 0.5 kV output/earth			
Pollution severity	2	electrical isolation, input-earth	2 kV			
electrical isolation, input-output	3 kV	electrical isolation, output-earth	0.5 kV			
Electrical safety (applied standards)						
Electrical machine equipment	Acc. to EN60204	For use with electronic equipment	Acc. to EN50178 / VDE0160			
Protection against dangerous shock currents	Acc. to VDEO106-101	Protective separation protection against electrical shock	VDEO100-410 / acc. to DIN57100-410			
Safety extra-low voltage	SELV acc. to EN60950, PELV acc. to EN60204	Safety transformers for switch-mode power supplies	Acc. to EN 61558-2-17			
Connection data (input)						
Conductor cross-section, AWGcmil, max.	12	Conductor cross-section, AWGcmil , min	26			
Conductor cross-section, flexible , min.	$0.5 \mathrm{~mm}^{2}$	Conductor cross-section, rigid , max.	$6 \mathrm{~mm}^{2}$			
Conductor cross-section, rigid , min.	$0.5 \mathrm{~mm}^{2}$	Number of terminals [Input]	3 for L/N/PE			
Tightening torque, max.	0.6 Nm	Tightening torque, min.	0.5 Nm			
Wire connection cross section, flexible (input), max.	$2.5 \mathrm{~mm}^{2}$					

Connection data (output)

Conductor cross-section, AWGcmil,
max. 12

Conductor cross-section, flexible , max. $2.5 \mathrm{~mm}^{2}$
Conductor cross-section, rigid, max. $6 \mathrm{~mm}^{2}$
Number of terminals [Output] $5(++/-)$
Tightening torque, min. 0.5 Nm

Conductor cross-section, AWGcmil, min.
Conductor cross-section, flexible , min . $0.5 \mathrm{~mm}^{2}$
Conductor cross-section, rigid, min. $0.5 \mathrm{~mm}^{2}$
Tightening torque, max.

CP M SNT 120W 24V 5A

Technical data

Klingenbergstraße 16
D-32758 Detmold
Germany
Fon: +49 5231 14-0
Fax: +495231 14-292083
www.weidmueller.com

Approvals			
Institute (GERMLLOYD)		Certificate No. (GERMLLOYD)	94767-10
Institute (cULus)	LISTED	Certificate no. (cULus)	E258476VOL1SEC22
Institute (cURus)		Certificate No. (cURus)	E255651VOLX3A13

Classifications

ETIM 3.0	EC001039		
eClass 6.2	$27-04-90-04$	eClass 5.1	$27-04-90-02$
eClass 7.1	$27-04-90-04$		

[^16]CP M SNT 120W 24V 5A

Drawings
Weidmüller Interface GmbH \& Co. KG Klingenbergstraße 16
D-32758 Detmold
Germany
Fon: +49 5231 14-0
Fax: +49 5231 14-292083
www.weidmueller.com

Electric symbol

Win DC comecton, note polity

TECHNICAL DATA SHEET

Equipment Type:
Location:
Model Numbers:
DAR-275V
Manufacturer:
Supplier:Energy Correction OptionsPO Box 431Kelvin Grove, QLD 4059
Ph: 0733560577Fax: 0733561432Web: www.ecoptions.com.au

INSTALLATION INSTRUCTIONS

1. PREPARATION

DANGER: Electrical shock or burn hazard. Installation of this device should only be made by qualified personnel. Failure to lockout electrical power during installation or maintenance can result in fatal electrocution or severe burns. Before making any connections be sure that power has been removed from all associated wiring, electrical panels, and other electrical equipment.

CAUTION NOTES:

1. The installation of this device should follow all applicable electrical codes, such as the National Electrical Code.
2. Check to make sure line voltage does not exceed DAR275V voltage ratings.
3. Follow all instructions to ensure correct and safe operation.
4. Do not attempt to open or tamper with the DAR in any way as this may compromise performance and will void warranty. No user serviceable parts are contained.

2. INTRODUCTION

Selected DSD, TDS \& TDF DINLINE Surge Protection Devices include status monitoring circuits which provide visual status display of device capacity. They may also provide a low voltage opto-coupler alarm output circuit that can be connect to the DAR to provide potential free (Form C) change-over contacts. The DAR alarm contacts may be used to provide output to external alarm systems or remote monitoring circuits.

One DAR can be used per DSD/TDS/TDF opto-coupler alarm or up to 16 DSD opto-coupler alarms can be connected in series to the one DAR to provide a common output. It is recommended that the DAR be powered from the same power circuit that feeds the device(s) being monitored, however the DAR can be powered from other circuits. This allows for example, one DAR unit to be connected to separate SPDs that are protecting a three phase circuit.

Note. Depending upon the usage of the DAR output contacts, failure of power to the DAR may be interpreted as a failure of one or more of the SPDs being monitored. Visual inspection of the DAR and SPDs status displays would determine this.

3. MOUNTING

The DAR is designed to clip to 35 mm (top hat) DIN rails (standard EN50022). Unless otherwise mechanically restrained, use horizontal DIN rails with the DAR module spring clips to the bottom and the label text the correct way up.

NOTE: The DAR must be installed in an enclosure or panel that:

- prevents the DAR temperature from exceeding

```
131'F (55 % C)
```

- provides adequate electrical and safety protection
- prevents the ingress of moisture and water
- allows DAR status indicators to be inspected

4. ELECTRICAL CONNECTION

The interconnecting wiring should:

- be of size \#10 to \#14 AWG (2.5mm ${ }^{2}$ to $6 \mathrm{~mm}^{2}$) solid or stranded conductor.
- \quad The wire insulation should be stripped back $5 / 16$ " (8 mm).
- NOTE: Do not use greater than 9inlbs (1Nm) of torque when tightening the terminals.

CONNECTION TO TELECOMMUNICATIONS NETWORKS

The DAR is approved for use in Australia where the alarm contacts may be connected to private lines or building cabling associated with the telecommunications network. NO direct connection to the public switched network should be made.

INSTALLATION INSTRUCTIONS

5. INTERCONNECTION

When connecting the DAR to a single opto-coupler output the + terminal of the SPD should connect to the + terminal on the DAR. The - terminal should connect to the -- terminal.

+/- terminal connections are polarity sensitive. Do not reverse.

When connecting the DAR to multiple opto-couplers the optocouplers should be connected in series with + terminal of one connected to the - terminal of the next. The DAR + terminal should connect to + SPD terminal at one end of the series connection and the - DAR terminal connect to the - SPD terminal at the other end of the series connection.

5. STATUS INDICATION

$\left.$| STATUS | Protection Operational | Protection Alarm | Fault Mode |
| :---: | :--- | :--- | :--- |
| DISPLAY | | Normal operation | DSD in alarm mode or power
 to DSD has been removed | | Power to DAR removed |
| :--- |
| Protection status unknown | \right\rvert\,

6. FUSING AND ISOLATION

Overcurrent protection must be installed in the upstream circuit of the power supply to the DAR to provide protection to the unit itself and the wiring in case of fault conditions.

The fuse rating should be based on the wiring size used to connect to the DAR Ph \& N terminals. Australian regulations AS3000-1991, Table B2 specifies the following upstream protection for single phase circuits, unenclosed in air.

Cable Size	HRC Fuse or	CB Rewirable Fuse
$1.5 \mathrm{~mm}^{2}$	16 A	12 A
$2.5 \mathrm{~mm}^{2}$	20 A	16 A
$4 \mathrm{~mm}^{2}$	25 A	20 A
$6 \mathrm{~mm}^{2}$	32 A	25 A

Where overcurrent protection of the appropriate rating or smaller is already fitted in the upstream circuit, overcurrent protection at the DAR will not be required

6. MAINTENANCE \& TESTING

Before removing a DAR unit from service, ensure that the power has been removed. Maintenance, testing and replacement should only be undertaken by qualified personnel.

Testing of a DAR unit which is connected to a fully functional DSD unit can be accomplished by removing power to the DSD only. The DAR Status indication and output contacts should alter from the Normal to Fault condition.

Testing of the DAR unit alone may be accomplished by disconnecting the + / -connections to the unit. When power is applied the DAR "Fault" Status Indicator should be illuminated. By connecting the $+/$ - terminals together, the "Normal" Status Indicator should be illuminated. The output contacts should alter to the appropriate state.

7. USE OF OTHER INTERFACES

Only DAR units are recommended for the interfacing of equipment to the DSD, TDS \& TDF opto-coupler alarm output circuit(s). The direct connection of other equipment to these opto-coupler alarm outputs may not provide sufficient isolation or exceed the opto-coupler specifications. This may damage the SPD and/or the connected equipment. Warranty may be voided under such circumstances.

NOTE: In connecting to the SPD opto-coupler alarm output(s), do not reverse the +/- connections as damage may occur.

TECHNICAL DATA SHEET

Equipment Type:Surge Filter Alarm Relay
Location:Power Distribution
Model Numbers: TDF-10A-240V
Manufacturer:
Critec
Supplier:Energy Correction OptionsPO Box 431Kelvin Grove, QLD 4059
Ph: 0733560577Fax: 0733561432Web: www.ecoptions.com.au

Features

- CRITEC® Transient Discriminating (TD) Technology provides increased service life
- In-line series protection
- High efficiency low pass sine wave filtering - ideal for the protection of switched mode power supplies
- Three modes of protection: L-N, L-PE \& N-PE
- 35 mm DIN rail mount - simple installation
- LED status indication and opto-isolated output - for remote status monitoring
- CE, UL® 1449

Ed. 3 Listed

CRITEC ${ }^{\circledR}$ Transient Discriminating Filter

The TDF series has been specifically designed for process control applications to protect the switched mode power supply units on devices such as PLC controllers, SCADA systems and motor controllers. Units are UL ${ }^{\circledR}$ Recognized and available for 3A, 10A and 20A loads and suitable for $110-120 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$ and $220-240 \mathrm{Vac}$ circuits.
The TDF is a series connected, single phase surge filter providing an aggregate surge capacity of 50kA ($8 / 20 \mu \mathrm{~s}$) across L-N, L-PE,
 and $N-P E$. The low pass filter provides up to 65 dB of attenuation to voltage transients. Not only does this reduce the residual let-through voltage, but it also helps further reduce the steep voltage rate-of-rise providing superior protection for sensitive electronic equipment.

Model	TDF3A120V	TDF3A240V	TDF10A120V	TDF10A240V	TDF20A120V	TDF20A240V
Item Number for Europe	700001	700002	700003	700004	700005	700006
Nominal Voltage, U_{n}	$110-120 \mathrm{~V}$	220-240 V	110-120 V	220-240 V	110-120 V	220-240 V
Distribution System	TN-C-S, TN-S					
Max Cont. Operating Voltage, Uc	170VAC	340VAC	170VAC	340VAC	170VAC	340VAC
Stand-off Voltage	240 V	400 V	240 V	400V	240V	400V
Frequency	$0-60 \mathrm{~Hz}$	50/60Hz	$0-60 \mathrm{~Hz}$			50/60Hz
Max Line Current, L_{L}	3 A		10 A		20 A	
Operating Current @ Un	135 mA	250 mA	240 mA	480 mA	240 mA	480 mA
Max Discharge Current, $I_{\text {max }}$	10kA $8 / 20 \mu \mathrm{~S}$ N-PE 20kA $8 / 20 \mu \mathrm{~s}$ L-N 20kA 8/20us L-PE					
Protection Modes	All modes protected					
Technology	In-line series low pass sine wave filter TD Technology					
Voltage Protection Level, U_{p}	$\begin{aligned} & 500 \mathrm{~V} @ \text { 500A } \\ & 250 \mathrm{~V} \text { @ 3kA } \end{aligned}$	$\begin{aligned} & 700 \mathrm{~V} @ \text { 500A } \\ & 600 \mathrm{~V} \text { @ 3kA } \end{aligned}$	$\begin{aligned} & 500 \mathrm{~V} @ 500 \mathrm{~A} \\ & 250 \mathrm{~V} @ 3 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 700 \mathrm{~V} @ \text { 500A } \\ & \text { 600V @ 3kA } \end{aligned}$	$\begin{aligned} & \text { 500V @ 500A } \\ & \text { 250V @ 3kA } \end{aligned}$	$\begin{aligned} & \text { 700V @ 500A } \\ & 600 \mathrm{~V} @ 3 \mathrm{kA} \end{aligned}$
Filtering	-62dB @ 100kH		-65dB @ 100k		-53dB @ 100kHz	
Status	Green LED. On=Ok. Isolated opto-coupler output					
$\begin{aligned} & \text { Dimensions H x D x W: } \\ & \mathrm{mm} \text { (in) } \end{aligned}$	$90 \times 68 \times 72$ $90 \times 68 \times 144$ $(3.54 \times 2.68 \times 2.83)$ $(3.54 \times 2.68 \times 5.67)$					
Module Width	4 M		8 M			
Weight: kg (lbs)	0.7 (1.54)		1.48 (3.25)		1.57 (3.46)	
Enclosure	DIN 43880, UL94V-0 thermoplastic, IP 20 (NEMA $^{\oplus}-1$)					
Connection	$1 \mathrm{~mm}^{2}$ to $6 \mathrm{~mm}^{2}$ (\#18AWG to \#10)					
Mounting	35 mm top hat DIN rail					
Back-up Overcurrent	3A		10A		20A	
Protection	$-35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-31^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$					
Humidity	0\% to 90\%					
Approvals	C-Tick, CE (NOM 3A, 120V), CSA 22.2, UL® 1283, UL® 1449 Ed 3 Recognized Component Type 2					
Surge Rated to Meet	ANSI®/IEEE ${ }^{\oplus}$ C62.41.2 ${ }^{\text {Cat A, Cat B, Cat C }}$					

(1) Opto-coupler output can be connected to DINLINE Alarm Relay (DAR275V) to provide Form C dry contacts.

[^17]
Features

- In-line series protection
- EMI/RFI noise filtering - protects against industrial electrical noise
- Compact design - fits into motor control and equipment panels
- Three modes of protection: L-N, L-PE \& N-PE
- 35 mm DIN rail mount - simple installation
- LED power indicator

CRITEC ${ }^{\circledR}$ Dinline Surge Filter

The "two port" DSF series has been specifically designed for process control applications to protect the switched mode power supply units on devices such as PLC controllers, SCADA systems and motor controllers. The 30 V unit is suitable for 12 V and $24 \mathrm{Vac} / \mathrm{dc}$ signaling and control systems.
The 6A DSF series incorporates a space efficient, low pass, series filter which provides attenuation to high frequency interference. The larger 20A model provides status indication and a higher surge rating, making this ideal for the protection of higher risk equipment.

Model	[DSF6A30V	DSF6A150V	DSF6A275V	DSF20A275V
Item Number for Europe	702090	701000	701030	701020
Nominal Voltage, U_{n}	24	$110-120 \mathrm{~V}$	220-240 V	
Distribution System	1Ph 2W+G			
System Compatibility	TN-S, TN-C-S			
Max Cont. Operating Voltage, Uc	30VAC, 38VDC	150 VAC	275VAC	
Frequency	0-60Hz	50/60Hz		
Max Line Current, l_{L}	6A			20 A
Operating Current @ Un	7 mA			
Max Discharge Current, $\mathrm{I}_{\max }$	4kA 8/20رs	16kA 8/20 ${ }^{\text {s }}$		15kA 8/20 s L-N 15kA $8 / 20 \mu \mathrm{~L}$ L-PE 25kA 8/20 Ls N-PE
Protection Modes	All modes protected			
Technology	In-line series filter MOV			
Voltage Protection Level, U_{p}	110 V @ 3kA	1400V @ 3kA	750V @ 3kA	710 V @ 3kA
Filtering	-3dB @ 300kHz			-3dB @ 62kHz
Status	LED power indicator			Status indicator
Dimensions H x D x W: mm (in)	$\begin{aligned} & 90 \times 68 \times 36 \\ & (3.54 \times 2.68 \times 1.42) \end{aligned}$			$\begin{aligned} & 90 \times 68 \times 72 \\ & (3.54 \times 2.68 \times 2.83) \end{aligned}$
Module Width	2 M			4 M
Weight: kg (lb)	0.2 (0.441)			0.7 (1.543)
Enclosure	DIN 43 880, UL94V-0 thermoplastic, IP 20 (NEMA-1)			
Connection	$1 \mathrm{~mm}^{2}$ to $6 \mathrm{~mm}^{2}$ (\#18AWG to \#10AWG)			
Mounting	35 mm top hat DIN rail			
Back-up Overcurrent Protection	6A			20A
Temperature	$-35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-31^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$			
Humidity	0\% to 90\%			
Approvals	C-Tick, CE, NOM, UL® 1449 Ed 3 Recognized Component Type 2\quad C-Tick, CE			
Surge Rated to Meet	ANSI®/EEE ${ }^{\text {C }}$ C62.41.2 ${ }^{\text {Cat }}$ A, Cat B			

ANSI is a registered trademark of the American National Standards Institute. IEEE is a registered trademark the Institute of Electrical and Electronics Engineers, Incorporated. NEMA is a registered trademark the National Electrical Manufacturers Association. UL is a registered trademark Underwriters Laboratories, Inc.

WARNING

ERICO products shall be installed and used only as indicated in ERICO's product instruction sheets and training materials. Instruction sheets are available at www.erico.com and from your ERICO customer service representative. Improper installation, misuse, misapplication or other failure to completely follow ERICO's instructions and warnings may cause product malfunction, property damage, serious bodily injury and death.

Copyright ©2008 ERICO International Corporation. All rights reserved.
CADDY, CADWELD, CRITEC, ERICO, ERIFLEX, ERITECH, and LENTON are registered trademarks of ERICO International Corporation.

www.erico.com

TECHNICAL DATA SHEET

Equipment Type:
Location:
Model Numbers:
Manufacturer:
Supplier:TDS1100-2SR-277

Surge Diverter

Power Distribution

TDS1100-2SR-277

Critec

Energy Correction Options PO Box 431
Kelvin Grove, QLD 4059
Ph: 0733560577
Fax: 0733561432
Web: www.ecoptions.com.au

Surge Protection And Surge Ratings

The stress, which an SPD will experience under surge conditions, is a function of many complex and interrelated parameters. These include:

- Location of the SPD(s) within the structure - are they located at the main distribution board or within the facility at secondary board, or even in front of the end-user equipment?
- Method of coupling the lightning strike to the facility for example, is this via a direct strike to the structures LPS, or via induction onto building wiring due to a nearby strike?
- Distribution of lightning currents within the structure for example, what portion of the lightning current enters the earthing system and what remaining portion seeks a path to remote grounds via the power distribution system and equipotential bonding SPDs?
- Type of power distribution system - the distribution of lightning current on a power distribution system is strongly influenced by the grounding practice for the neutral conductor. For example, in the TN-C system with its multiple earthed neutral, a more direct and lower impedance path to ground is provided for lightning currents than in a TT system.
- Additional conductive services connected to the facility - these will carry a portion of the direct lightning current and therefore reduce the portion which flows through the power distribution system via the lightning equipotential bonding SPD.
- Type of waveshape - it is not possible to simply consider the peak current which the SPD will have to conduct, one also has to consider the waveshape of this surge. It is also not possible to simply equate the areas under the current-time curves (also referred to as the action integral) for SPDs under different waveshapes.

Many attempts have been made to quantify the electrical environment and "threat level" which an SPD will experience at different locations within a facility. The new IEC ${ }^{\text {SM }}$ standard on lightning protection, IEC 62305-4 "Protection against lightning - Part 4: Electrical and electronic systems within structures" has sought to address this issue by considering the highest surge magnitude which may be presented to an SPD based on the lightning protection level (LPL) being considered. For example, this standard postulates that under a LPL I the magnitude of a direct strike to the structure's LPS may be as high as 200kA $10 / 350$. While this level is possible, its statistical probability of occurrence is approximately 1%. In other words, 99% of discharges will be less than this postulated 200 kA peak current level.

An assumption is made that 50% of this current is conducted via the building's earthing system, and 50\% returns via the equipotential bonding SPDs connected to
a three wire plus neutral power distribution system. It is also assumed that no additional conductive service exists. This implies that the portion of the initial 200 kA discharge experienced by each SPD is 25 kA .

Simplified assumptions of current dispersion are useful in considering the possible threat level, which the SPD(s) may experience, but it is important to keep in context the assumptions being made. In the example above, a lightning discharge of 200kA has been considered. It follows that the threat level to the equipotential bonding SPDs will be less than 25kA for 99\% of the time. In addition, it has been assumed that the waveshape of this current component through the SPD(s) will be of the same waveshape as the initial discharge, namely 10/350, while in reality the waveshape have been altered by the impedance of building wiring, etc.

Many standards have sought to base their considerations on field experience collected overtime. For example, the IEEE ${ }^{\circledR}$ guide to the environment C62.41.1 and the recommended practice C62.41.2 present two scenarios of lightning discharge and different exposure levels under each of these depending on the location where the SPD is installed. In this standard, Scenario II depicts a direct strike to the structure, while Scenario I depicts a nearby strike and the subsequent conducted current into a structure via power and data lines. The highest surge exposure considered feasible to an SPD installed at the service entrance to a facility under Scenario I is $10 \mathrm{kA} 8 / 20$, while under Scenario II it is considered to be 10kA 10/350 (exposure Level 3).

From the above, it is apparent that the selection of the appropriate surge rating for an SPD depends on many complex and interconnected parameters. When addressing such complexities, one needs to keep in mind that one of the more important parameters in selecting an SPD is its limiting voltage performance during the expected surge event, and not the energy withstand which it can handle.

Protection zones defined by specific product application.

Advanced Technologies - The ERICO ${ }^{\circledR}$ Advantage

Transient Discriminating Technology

To meet the fundamental requirements of performance, longer service life and greater safety under real world conditions, ERICO has developed Transient Discriminating (TD) Technology.

This quantum leap in technology adds a level of "intelligence" to the Surge Protection Device enabling it to discriminate between sustained abnormal over-voltage conditions and true transient or surge events. Not only does this help ensure safe operation under practical application, but it also prolongs the life of the protector since permanent disconnects are not required as a means of achieving internal over-voltage protection.

Traditional Technologies

Conventional SPD technologies utilize metal oxide varistors and/ or silicon avalanche diodes to clamp or limit transient events. However, these devices are susceptible to sustained $50 / 60 \mathrm{~Hz}$ mains over-voltage conditions which often occur during faults to the utility system. Such occurrences present a significant safety hazard when the suppression device attempts to clamp the peak of each half cycle on the mains over-voltage. This condition can cause the device to rapidly accumulate heat and in turn fail with the possibility of inducing a fire hazard.

The Core of TD Technology

The secret to ERICO's Transient Discriminating Technology is its active frequency discrimination circuit. This patented device can discriminate between a temporary over-voltage (TOV) condition

and a very fast transient, which is associated with lightning or switching-induced surges. When the transient frequencies are detected, the patented Quick-Switch within TD activates to allow the robust protection to limit the incoming transient. The frequency discriminating circuit that controls the Quick-Switch helps ensure that the SPD device is immune to the effects of a sustained 50 or 60 Hz TOV. This allows the device to keep operating, in order to help provide safe and reliable transient protection, even after an abnormal over-voltage condition has occurred.

Meeting \& Exceeding UL ${ }^{\circledR}$ Standards

The CRITEC ${ }^{\circledR}$ range of surge protection devices from ERICO® employing TD Technology has been specifically designed to meet and exceed the new safety requirements of UL 1449 Edition 3. To meet the abnormal over-voltage testing of UL 1449 Edition 3, many manufacturers of SPD devices have incorporated fuse or thermal disconnect devices which permanently disconnect all protection from the circuit during an over-voltage event. Transient Discriminating Technology on the other hand will allow the SPD device to experience an abnormal overvoltage up to twice its nominal operating voltage and still remain operational even after this event! This allows the device to help provide safe, reliable and continuous protection to your sensitive electronic equipment. TD Technology is especially recommended for any site where sustained over-voltages are known to occur, and where failure of traditional SPD technologies cannot be tolerated.

The UL 1449 testing standard addresses the safety of an SPD device under temporary and abnormal overvoltage conditions, but does not specifically mandate a design that will give a reliable, long length of service in the real world. Specifically, UL 1449 tests that the SPD remains operational at 10\% above nominal supply voltage, allowing SPD manufacturers to design products that permanently disconnect just above that. Most reputable manufacturer's designs allow for up to a 25% overvoltage, while ERICO's TD Technology gives even greater overhead.

Features

- CRITEC TD Technology with thermal disconnect protection
- Compact package, modular DIN rail mounting for limited space requirements
- Three modes of protection: L-N, L-PE \& N-PE
- Indication flags and voltage-free contacts provide remote status monitoring
- Separate plug and base design facilitates replacement of a failed surge module
- 15kA $8 / 20 \mu s$ surge rating per mode
- CE, UL ${ }^{\circledR} 1449$

Edition 3 Listed

CRITEC ${ }^{\circledR}$ TDS Surge Diverter - TDS 130 Series

Surges and voltage transients are a major cause of expensive electronic equipment failure and business disruption. Damage may result in the loss of capital outlays, such as computers and communications equipment, as well as consequential loss of revenue and profits due to unscheduled system down-time.
The TDS130 series of surge suppressors provide economical and reliable protection from voltage transients on power distribution systems. The TDS130 is specifically designed for the protection of single phase power supplies within instrumentation and control applications. They are conveniently packaged for easy installation on 35 mm DIN rail within control
 panels.
CRITEC ${ }^{\circledR}$ TD technology helps ensure reliable and continued operation during sustained and abnormal over-voltage events. Internal thermal disconnect devices help ensure safe behavior at end-of life. A visual indicator flag provides user-feedback in the event of such operation. The TDS130 provides a set of optional voltagefree contacts for remote signaling that maintenance is required.

The convenient plug-in module
18 mm ($0.71^{\prime \prime}$) and separate base design facilitates replacement of a failed surge module without needing to undo installation wiring.

Model	TDS1301TR150	TDS1301TR240
Item Number for Europe	702421	702422
Nominal Voltage, U_{n}	120-150 VAC	220-240 VAC
Max Cont. Operating Voltage, U_{c}	170VAC	275VAC
Stand-off Voltage	230VAC	440VAC
Frequency	$0-100 \mathrm{~Hz}$	
Nominal Discharge Current, In_{n}	$8 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$ per mod	
Max Discharge Current, $\mathrm{I}_{\text {max }}$	$\begin{aligned} & \text { 15kA } 8 / 20 \mu \mathrm{~s} \text { L-N } \\ & \text { 15kA } 8 / 20 \mu \mathrm{~s} \text { L-PE } \end{aligned}$	
Protection Modes	L-G, L-N, N-G	
Technology	TD Technology with	
Short Circuit Current Rating, $\mathrm{Isc}_{\text {c }}$	200kAIC	
Back-up Overcurrent Protection	63 AgL , if supply $>63 \mathrm{~A}$	
Voltage Protection Level, U_{p}	500V @ 3kA (L+N-G) 800V @ 3kA (L-N)	$\begin{aligned} & 800 \mathrm{~V} @ 3 \mathrm{KA}(\mathrm{~L}+1 \\ & 1500 \mathrm{~V} @ 3 \mathrm{l} \end{aligned}$
Status	N/O, N/C Change-ov Mechanical flag / rem	$\max 1.5 \mathrm{~mm}^{2}$ (\# only)
Module Width	1 M	
Dimensions H x D X W: mm (in)	$90 \times 68 \times 18(3.54 \times 2$	
Weight: kg (lbs)	0.12 (0.26)	
Enclosure	DIN 43 880, UL94V-0	EMA-1)
Connection	$1 \mathrm{~mm}^{2}$ to $6 \mathrm{~mm}^{2}$ (\#18 Line and Neutral Ter $\leq 25 \mathrm{~mm}^{2}$ (\#4AWG) st $\leq 35 \mathrm{~mm}^{2}$ (\#2AWG) so PE Terminal	
Mounting	35 mm top hat DIN	
Temperature	$-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$	
Humidity	0\% to 90\%	
Approvals	CE, IEC® 61643-1, UL	Component Typ
Surge Rated to Meet	ANSIのIEEE C62.41.2 IEC 61643-1 Class II UL® 1449 Ed3 In 3kA	
Replacement Module	TDS130M150	TDS130M240
Replacement Module (Europe)	702432	702424

Features

- CRITEC ${ }^{\circledR}$ TD Technology with thermal disconnect protection
- Compact design fits into DIN distribution panel boards and motor control centers
- 35 mm DIN rail mount - DIN 43880 profile matches common circuit breakers
- Indication flags and voltage-free contacts provide remote status monitoring
- Separate plug and base design facilitates replacement of a failed surge module
- 50kA $8 / 20 \mu \mathrm{~s}$ maximum surge rating provides protection suitable for sub-distribution panels and a long operational life
- Available in various operating voltages to suit most common power distribution systems
- CE, UL® 1449

Edition 3 Listed

CRITEC ${ }^{\circledR}$ TDS Surge Diverter - TDS 150 Series

Surges and voltage transients are a major cause of expensive electronic equipment failure and business disruption. Damage may result in the loss of capital outlays, such as computers and communications equipment, as well as consequential loss of revenue and profits due to unscheduled system down-time.
The TDS150 series of surge suppressors provide economical and reliable protection from voltage transients on power distribution systems. They are conveniently packaged for easy installation on 35 mm DIN rail within main distribution panelboards.
CRITEC ${ }^{\circledR}$ TD technology helps ensure reliable and continued operation during sustained and abnormal
 over-voltage events. Internal thermal disconnect devices help ensure safe behavior at end-of-life. A visual indicator flag provides userfeedback in the event of such operation. As standard, the TDS150 provides a set of voltage-free contacts for remote signaling that maintenance is required.
The convenient plug-in module and separate base design facilitates replacement of a failed surge module without needing to undo installation wiring.

Model	TDS1501SR150	TDS1501SR240	TDS1501SR277	TDS1501SR560
Item Number for Europe	702404	702406	702407	702408
Nominal Voltage, U_{n}	120-150 VAC	220-240 VAC	240-277 VAC	480-560 VAC
Max Cont. Operating Voltage, $\mathrm{U}_{\text {c }}$	170VAC	275VAC	320VAC	610VAC
Stand-off Voltage	240VAC	440VAC	480VAC	700VAC
Frequency	0-100Hz			
Short Circuit Current Rating, $\mathrm{Isc}_{\text {sc }}$	200kAIC			
Back-up Overcurrent Protection	125AgL, if supply > 100A			
Technology	TD with thermal disconnect			
Max Discharge Current, $I_{\text {max }}$	50kA 8/20 ${ }^{\text {s }}$			
Nominal Discharge Current, $I_{\text {n }}$	$25 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$ 20kA 8/20			
Protection Modes	Single mode (L-G, L-N or N-G)			
Voltage Protection Level U_{p}	$\begin{aligned} & 400 \mathrm{~V} @ 3 \mathrm{kA} \\ & 1.0 \mathrm{kV} @ \ln \end{aligned}$	$\begin{aligned} & 700 \mathrm{~V} @ 3 \mathrm{kA} \\ & 1.2 \mathrm{kV} @ \ln \end{aligned}$	$\begin{aligned} & 800 \mathrm{~V} @ 3 \mathrm{kA} \\ & 1.6 \mathrm{kV} @ \text { In } \end{aligned}$	$\begin{aligned} & 1.8 \mathrm{kV} @ 3 \mathrm{kA} \\ & 2.4 \mathrm{kV} @ \ln \\ & \hline \end{aligned}$
Status	N/O, N/C Change-over contact, 250V~/0.5A, max $1.5 \mathrm{~mm}^{2}$ (\#14AWG) terminals Mechanical flag / remote contacts (R model only)			
Dimensions H x D x W: mm (in)	$90 \times 68 \times 18(3.54 \times 2.68 \times 0.69)$			
Module Width	1 M			
Weight: kg (lbs)	0.12 (0.26)			
Enclosure	DIN 43 880, UL94V-0 thermoplastic, IP 20 (NEMA-1)			
Connection	$\leq 25 \mathrm{~mm}^{2}$ (\#4AWG) stranded $\leq 35 \mathrm{~mm}^{2}$ (\#2AWG) solid			
Mounting	35 mm top hat DIN rail			
Temperature	$-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.176^{\circ} \mathrm{F}\right)$			
Humidity	0\% to 90\%			
Approvals	CE, IEC® ${ }^{\text {6 }}$ 1643-1, UL® 1449 Ed 3 Recognized Component Type 2			
Surge Rated to Meet	ANSI®/IEEE® C62.41.2 Cat A, Cat B, Cat C ANSI® $/$ IEEE ${ }^{\oplus}$ C62.41.2 Scenario II, Exposure 2, 50kA 8/20 IEC 61643-1 Class II UL® 1449 Ed3 In 20kA mode			
Replacement Module	TDS150M150	TDS150M240	TDS150M277	TDS150M560

CRITEC ${ }^{\circledR}$ TDS Surge Diverter - TDS 1100 Series

Features

- CRITEC ${ }^{\circledR}$ TD

Technology with thermal disconnect protection

- Compact design fits into DIN distribution panel boards and motor control centers
- 35 mm DIN rail mount - DIN 43880 profile matches common circuit breakers
- Indication flags and voltage-free contacts provide remote status monitoring
- Separate plug and base design facilitates replacement of a failed surge module
- 100kA 8/20 us maximum surge rating provides protection suitable for sub-distribution panels and a long operational life
- Available in various operating voltages to suit most common power distribution systems
- CE, UL ${ }^{\circledR} 1449$ Edition 3 Listed

Surges and voltage transients are a major cause of expensive electronic equipment failure and business disruption. Damage may result in the loss of capital outlays, such as computers and communications equipment, as well as consequential loss of revenue and profits due to unscheduled system down-time.

The TDS1100 series of surge suppressors provide economical and reliable protection from voltage transients on power distribution systems. They are conveniently packaged for easy installation on 35 mm DIN rail within main distribution panelboards.
CRITEC ${ }^{\circledR}$ TD technology helps ensure reliable and continued operation during sustained and abnormal over-voltage events. Internal thermal disconnect devices help ensure safe behavior
 at end-of-life. A visual indicator flag provides user-feedback in the event of such operation. As standard, the TDS1100 provides a set of voltage-free contacts for remote signaling that maintenance is due.
The convenient plug-in module and separate base design facilitates replacement of a failed surge module without needing to undo installation wiring.

Model	TDS11002SR150	TDS11002SR240	TDS11002SR277	TDS11002SR560
Item Number for Europe	702409	702411	702412	702413
Nominal Voltage, U_{n}	120-150 VAC	220-240 VAC	240-277 VAC	480-560 VAC
Max Cont. Operating Voltage, $\mathrm{U}_{\text {c }}$	170VAC	275VAC	320VAC	610VAC
Stand-off Voltage	240VAC	440VAC	480VAC	700VAC
Frequency	$0-100 \mathrm{~Hz}$			
Short Circuit Current Rating, $\mathrm{I}_{\text {sc }}$	200kAIC			
Back-up Overcurrent Protection	125 AgL , if supply > 100A			
Technology	TD with thermal disconnect			
Max Discharge Current, $I_{\text {max }}$	100kA 8/20 ${ }^{\text {s }}$			
Impulse Current, ${ }_{\text {limp }}$	12.5kA 10/350 ${ }^{\text {s }}$			
Nominal Discharge Current, I_{n}	$50 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$, 40kA 8/20 s^{2}			
Protection Modes	Single mode (L-G, L-N or N-G)			
Voltage Protection Level, U_{p}	$\begin{aligned} & 400 \mathrm{~V} @ 3 \mathrm{kA} \\ & 1.0 \mathrm{kV} @ 20 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 700 \mathrm{~V} @ 3 \mathrm{kA} \\ & 1.2 \mathrm{kV} @ 20 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 800 \mathrm{~V} @ 3 \mathrm{kA} \\ & 1.6 \mathrm{kV} @ 20 \mathrm{kA} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \mathrm{kV} \text { @ 3kA } \\ & \text { 2.4kV @ 20kA } \end{aligned}$
Status	N/O, N/C Change-over contact, 250V~/0.5A, max $1.5 \mathrm{~mm}^{2}$ (\#14AWG) terminals Mechanical flag / remote contacts (R model only)			
Dimensions H x D X W: mm (in)	$90 \times 68 \times 35(3.54 \times 2.68 \times 1.38)$			
Module Width	2 M			
Weight: kg (lbs)	0.24 (0.53)			
Enclosure	DIN 43 880, UL94V-0 thermoplastic, IP 20 (NEMA-1)			
Connection	$\leq 25 \mathrm{~mm}^{2}$ (\#4AWG) stranded $\leq 35 \mathrm{~mm}^{2}$ (\#2AWG) solid			
Mounting	35 mm top hat DIN rail			
Temperature	$-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.176^{\circ} \mathrm{F}\right)$			
Humidity	0\% to 90\%			
Approvals	CE, IEC® 61643-1, UL® 1449 Ed 3 Recognized Component Type 2			
Surge Rated to Meet	ANSI® $/$ IEEE ${ }^{\oplus}$ C62.41.2 Cat A, Cat B, Cat C ANSI®/IEEE ${ }^{\oplus}$ C62.41.2 Scenario II, Exposure 3, 100kA 8/20 5 s, 10kA 10/350 H IEC 61643-1 Class I and Class II UL® 1449 Ed3 In 20kA mode			
Replacement MOV Module	TDS150M150	TDS150M240	TDS150M277	TDS150M560

CRITEC ${ }^{\circledR}$ TDS Surge Diverter - TDS350 Series

Features

- CRITEC ${ }^{\oplus}$ TD

Technology with thermal disconnect protection

- Compact design fits into DIN distribution panel boards and motor control centers
- 35 mm DIN rail mount - DIN 43880 profile matches common circuit breakers
- Indication flags and voltage-free contacts provide remote status monitoring
- Separate plug and base design facilitates replacement of a failed surge module
- 50kA $8 / 20 \mu \mathrm{~s}$ maximum surge rating provides protection suitable for sub-distribution panels and a long operational life
- Available in various operating voltages to suit most common power distribution systems
- CE, UL® 1449 Edition 3 Listed

Surges and voltage transients are a major cause of expensive electronic equipment failure and business disruption. Damage may result in the loss of capital outlays, such as computers and communications equipment, as well as consequential loss of revenue and profits due to unscheduled system down-time.
CRITEC ${ }^{\circledR}$ TD technology helps ensure reliable and continued operation during sustained and abnormal over-voltage events. Internal thermal disconnect devices help ensure safe behavior at end-of-life. A visual indicator flag provides user-feedback in the event of such operation. As standard, the TDS provides a set of voltage-free contacts for remote signaling that maintenance is due.
The convenient plug-in module and separate base design facilitates replacement of a failed surge module without needing to undo installation wiring.

68 mm

68 mm

53 mm (2.07")

Model	TDS350TNC150	TDS50120240	TDS350TNC277	TDS350TT150	TDS350TT277
Item Number for Europe	702414	702419	702417	702416	702418
Nominal Voltage, U_{n}	120-150 VAC		240-277 VAC	120-150 VAC	240-277 VAC
Max Cont. Operating Voltage, $\mathrm{U}_{\text {c }}$	170/295VAC	240/480VAC	320/536VAC	170/295VAC	320/536VAC
Stand-off Voltage	240/415VAC	240/480VAC	480/813VAC	240/415VAC	480/813VAC
Frequency	$0-100 \mathrm{~Hz}$				
Short Circuit Current Rating, $\mathrm{Isc}_{\text {sc }}$	200kAIC				
Back-up Overcurrent Protection	125AgL, if supply > 100A				
Technology	TD with thermal disconnect				
Max Discharge Current, $\mathrm{I}_{\text {max }}$	50kA 8/20 $/ \mathrm{s}$			$\begin{aligned} & \text { 12.5kA } 10 / 350 \mu \mathrm{~s} \text { N-PE } \\ & \text { 50kA } 8 / 20 \mu \mathrm{~s} \end{aligned}$	
Nominal Discharge Current, I_{n}	25kA 8/20رs		20kA 8/20	25kA 8/20 ${ }^{\text {us }}$	20kA 8/20
Protection Modes	L-N	L-N, N-PE	L-N	L-N, N-PE	
Voltage Protection Level, U_{p}	$\begin{aligned} & \text { 400V @ 3kA } \\ & 1.0 \mathrm{kV} @ \ln \end{aligned}$		$\begin{aligned} & \text { 800V @ 3kA } \\ & 1.6 \mathrm{kV} \text { @ In } \end{aligned}$	$\begin{aligned} & \text { 400V @ 3kA } \\ & 1.0 \mathrm{kV} @ \text { In } \end{aligned}$	$\begin{aligned} & \text { 800V @ 3kA } \\ & 1.6 \mathrm{kV} @ \text { In } \end{aligned}$
Status	N/O, N/C Change-over contact, 250V~/0.5A, max $1.5 \mathrm{~mm}^{2}$ (\#14AWG) terminals Mechanical flag / remote contacts				
Dimensions H x D x W: mm (in)	$90 \times 68 \times 53$ ($3.54 \times 2.68 \times 2.07$)			$90 \times 68 \times 70$ (3.54 $\times 2.68 \times 2.76)$	
Module Width	3 M			4 M	
Weight: kg (lbs)	0.36 (0.79)			0.5 (1.10)	
Enclosure	DIN 43 880, UL94V-0 thermoplastic, IP 20 (NEMA-1)				
Connection	$\leq 25 \mathrm{~mm}^{2}$ (\#4AWG) stranded $\leq 35 \mathrm{~mm}^{2}$ (\#2AWG) solid				
Mounting	35 mm top hat DIN rail				
Temperature	$-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.176^{\circ} \mathrm{F}\right)$				
Humidity	0\% to 90\%				
Approvals	CE, IEC® 61643-1, UL® 1449 Ed 3 Recognized Component Type 2				
Surge Rated to Meet	ANSI®/IEEE® C62.41.2 Cat A, Cat B, Cat C ANSI® $/$ IEEE® ${ }^{\oplus}$ C62.41.2 Scenario II, Exposure 2, 50kA 8/20 $\mu \mathrm{s}$ IEC 61643-1 Class II UL ${ }^{\circ} 1449$ Ed3 In 20kA mode				
Replacement MOV Module	TDS150M150		TDS150M277	TDS150M150	TDS150M277
Replacement GDT Module	-			SGD112M	
Replacement GDT Module (Europe)	-			702403	

www.erico.com

AUSTRALIA
Phone +61-2-9751-8500
Fax +61-2-9475-5334

BELGIUM
Phone +0800-757-48
Fax +0800-757-60

BRAZIL
Phone +55-11-3623-4333 Fax +55-11-3621-4066

CANADA
Phone +1-800-677-9089
Fax +1-800-677-8131

CHILE
Phone +56-2-370-2908 Fax +56-2-370-2914

CHINA
Phone +86-21-3430-4878 Fax +86-21-5831-8177

DENMARK
Phone +808-89-373
Fax +808-89-372

FRANCE
Phone +33-4-77-365-656 Fax +33-4-77-553-789

GERMANY
Phone $+0-800-189-0272$
Fax +0-800-189-0274

HONG KONG
Phone +852-2764-8808
Fax +852-2764-4486

HUNGARY
Phone +068-00-165-38
Fax +31-13-583-5499

INDONESIA
Phone +62-21-575-0941
Fax +62-21-575-0942

ITALY
Phone +39-02-8474-2250 Fax +39-02-8474-2251

MEXICO
Phone +52-55-5260-5991 Fax +52-55-5260-3310

NETHERLANDS
Phone +31-13-583-5400 Fax $+31-13-583-5499$

NORWAY
Phone +800-100-73
Fax $+800-100-66$

POLAND
Phone +48-71-374-4022 Fax +48-71-374-4043

SINGAPORE
Phone +65-6-268-3433 Fax +65-6-268-1389

SPAIN
Phone $+34-93-467-7726$
Fax +34-93-467-7725

SWEDEN

Phone +0207-909-08 Fax +0207-989-64

SWITZERLAND
Phone +0800-558-697
Fax +0800-559-615

THAILAND
Phone +66-2-267-5776
Fax +66-2-636-6988

UNITED ARAB
EMIRATES
Phone +971-4-881-7250
Fax +971-4-881-7270

UNITED KINGDOM
Phone +0808-2344-670
Fax +0808-2344-676

UNITED STATES
Phone +1-440-248-0100 Fax +1-440-248-0723

ANSI is a registered trademark of the American National Standards Institute. IEC is a registered trademark of the International Electrotechnical Commission. IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Incorporated. NEMA is a registered trademark of the National Electrical Manufacturers Association. UL is a registered trademark of Underwriters Laboratories, Inc.

WARNING
ERICO products shall be installed and used only as indicated in ERICO's product instruction sheets and training materials. Instruction sheets are available at www.erico.com and from your ERICO customer service representative. Improper installation, misuse, misapplication or other failure to completely follow ERICO's instructions and warnings may cause product malfunction, property damage, serious bodily injury and death.

TECHNICAL DATA SHEET

Equipment Type: Radio
Location:RTU Section
Model Numbers: DR900
Manufacturer: Trio
Supplier:Schneider
80 Schneider Rd Taylor PlEagle Farm1300369233

D Series Data Radio Modem

DR900 - Digital Radios

Trio DataCom's \boldsymbol{D} Series are high performance cost effective data radio modems designed as an alternative to hard wired data transport. Transmit your data over radio with a fully integrated data radio modem designed for fixed point-to-point and point-to-multipoint applications.
The D Series is available as either a half duplex or a full duplex* $853-929 \mathrm{MHz}+/-5 \mathrm{MHz}$ radio, including a fully integrated $4800 / 9600 \mathrm{bps}$ data modem. These units operate equally well in either a stand-alone configuration, or as part of a large communication system.

This complete package forms an attractively priced product for the transmission of data over radio in fixed applications thus providing a viable alternative to costly networks of buried media.

Features:

* Fully integrated half and full duplex* radio and modem
* Transparent and non-intrusive remote diagnostic facilities (Optional)
* Inbuilt data routing and multiplexing capabilties, multi-port operation
* Simultaneous delivery of multiple protocols using Trio DataCom's unique MultiStream ${ }^{\text {™ }}$ technology
* Digital Signal Processing (DSP) modem
* Selectable 300-19,200 bps asynchronous RS232 user interface
* Built-in antenna diplexer*
* Integrated supervisory data channel
* Unique collision avoidance facility, for unsolicited report-byexception
* Software selectable configuration parameters
* Internal repeater operation
* Housed in an attractive yet robust metal enclosure
* Range of ancillary equipment - full duplex base / repeater stations and hot-standby base station

Radio

The D Series radio has been designed to meet worldwide regulatory guidelines, including FCC, and has adjustable power output up to 5 Watts. This fully synthesised radio is programmable in $6.25 / 7.5 \mathrm{kHz}$ increments to accommodate various worldwide channel spacings. The receiver section has a wide tuning range with an excellent signal-to-noise ratio. Exceptional frequency stability is achieved by intelligent microprocessor controlled temperature compensation. An extended operating temperature range of -30 to $60^{\circ} \mathrm{C}$ makes the unit ideal for commercial and industrial applications.

Modem

The in-built modem includes a custom DSP developed for data communications over narrow band radio systems.

This system offers minimum occupied bandwidth and optimal data integrity (using the standard HDLC protocol with CCITT CRC error detection) inhibiting the transfer of any rogue unwanted data caused by interference or squelch headers / tails.
The Trio DataCom DSP provides:

- the interface between the asynchronous RS232 user communication and the synchronous radio link layer. - an inbuilt multipexer / router which allows for simultaneous transportation of multiple protocols over the one radio network.

Applications

The \mathbf{D} Series is ideal for use in a variety of sophisticated and critical SCADA and Distributed Information Systems, where complex routing of multiple data protocols and remote diagnostics and wireless network management are important factors.

Remote units and a number of full duplex base station / repeater models, suitable for a variety of requirements, make up the
D Series. At the top of the range, the DH model is a genuine, duplicated hot standby base for systems where nothing short of ultra reliability is acceptable.
Telemetry Systems - Utilities (Gas, Water, Electricity), Railways, Mining, Telecommunications, Industry. Where network status, system control, data collection and fault conditions are required.
Transaction Processing - Point of Sale Credit Terminals, Stock Control, Direct Order, Banks, Building Societies, Stock Brokers, Gambling Organizations, etc, where Point of Sale, inventory, credit, or transaction data requires collection and distribution.

Common Carrier Data Services - The high speed, low cost and spectrum efficiency of this device make it well suited to all forms of common carrier data networking.

Alarm Monitoring - Fire, Power, Intrusion \& Essential Services Alarm Reporting.

D Series - Data Radio Modem

DR900 - Digital Radios

Configuration

Configuration using Trio's D Series programming software

 (DRProg) is completely Windows ${ }^{\circledR}$ based for all parameters, such as; frequency, transmitter power, digital mute level, PTT timer, system configurations, port settings.
Network Management \& Diagnostic (Optional)

A large distributed network, or even a simple point-to-point link, requires comprehensive fault reporting and diagnostics to ensure a high level of availability. Trio D Series data radio modem products offer sophisticated in-built diagnostics using the optional TView ${ }^{\top \mathrm{M}}$ software. This capability allows the customer to remotely monitor and maintain their system, minimising the likelihood of failures, by pointing out component degradation and decreasing the time to diagnose and repair. There is no necessity to visit the master station or interfere with the host data integrity, other than additional data transfer. For further details, consult the TView data sheet.

Specifications:

RADIO	
Frequency Range**	853-929 MHz +/- 5 MHz
Channel Selection	Fully programmable
Frequency Splits	$76 \mathrm{MHz} \mathrm{Tx} / \mathrm{Rx}$ frequency split available including simplex
Frequency Stability	$\pm 1 \mathrm{ppm}\left(-10\right.$ to $60^{\circ} \mathrm{C}$ ambient, opt. -30 to $70^{\circ} \mathrm{C}$) Higher frequency stability options are available due to intelligent processor controlled temperature compensation
Aging	<= 1ppm/annum
Half / Full Duplex	half duplex or full duplex*
Data Rate (rf)	4800 / 9600 bps
Configuration	All configuration via Windows software
TRANSMITTER	
Tx Power	$5 \mathrm{~W}(+37 \mathrm{dBm})$ or $1 \mathrm{~W}^{*}(+30 \mathrm{dBm})$ (software programmable)
Modulation	Narrow band digital filtering binary GMSK
Occupied Bandwidth	Meets various international regulatory guidelines for point-to-point and point-to-multipoint
Tx Attach Time	< 1 mSecond
Timeout Timer	Programmable 1-255 seconds
Tx Spurious	< $=-65 \mathrm{dBm}$

RECEIVER

Sensitivity	-115 dBm for 12 dB SINAB
Blocking	$>75 \mathrm{~dB}($ EIA $)$
Intermodulation	$<=70 \mathrm{~dB}($ EIA $)$
Spurious Response	$<=70 \mathrm{~dB}$ (EIA)
Select. and Desense	70 dB (EIA)
AFC Tracking	$\pm 3 \mathrm{kHz}$ tracking @ $-90 \mathrm{dBm} /$ attack time $<10 \mathrm{mS}$
Mute	Programmable digital mute

Collision Avoidance

A unique fully integrated, yet independent, low speed supervisory data channel embedded within the primary bit-stream provides collision avoidance facilities which are transparent to the user. The use of this feature makes this product ideally suited for reliable, error free data transmissions between stations in high density point-to-multipoint data networks.
The benefits include:

- Multiple asynchronous applications operating on the one radio channel.
- Enhanced performance of report-by-exception networks.

Related Products

* Base Stations (DB900)
* Hot Standby Base Station (DH900)
* 9 Port Stream Router Multiplexer (MSR)
* Network Management and Diagnostic Software (TView ${ }^{\text {TM }}$)
* D Series Programming Software (DRProgM)

CONNECTIONS	
User Data Port	$2 \times$ DB9 RS232 female ports
Antenna	SMA female bulkhead (optional N)
Power	2 pin locking. Mating connector supplied
MODEM	
Data Serial Port \#1	Full duplex, DB9 RS232, DCE (modem), 30019,200 bps asynchronous, hardware/software handshaking
Data Serial Port \#2	Full duplex, DB9 RS232, 300-9600 bps asynchronous, software handshaking
Data Storage	On-board RAM
Channel Data Rate	4800 / 9600 bps , full duplex
Bit Error Rate	$\begin{aligned} & <1 \times 10^{-6} @-108 \mathrm{dBm}(4800 \mathrm{bps}) \\ & <1 \times 10^{-6} @-105 \mathrm{dBm}(9600 \mathrm{bps}) \end{aligned}$
Collision Avoidance	Trio DataCom's unique supervisory channel C/DSMA collision avoidance system
MultiStream ${ }^{\text {TM }}$	Trio DataCom's unique simultaneous delivery of multiple data streams (protocols)
GENERAL	
Power Supply	13.8 Vdc nominal ($11-16 \mathrm{Vdc}$)
Transmit Current	600 mA max. @ 1 W 1700 mA max. @ 5 W
Receive Current	175 mA
Dimensions	$260 \times 161 \times 65 \mathrm{~mm}$ (robust metal enclosure)
Weight	1.3 kg

TECHNICAL DATA SHEET

Equipment Type: 3 Phase inlet
Location: External
Model Numbers: 3658 and 40787
Manufacturer: Mennekes
Supplier: DKSH
039554666

\boxed{Z} MENNEKES ${ }^{\circledR}$

Plugs for the world

Industrial plugs and receptacles

Global focus

MENNEKES plugs and receptacles are well known all over the world - and comply with the relevant national and international standards.

More than half of our products are destined for international markets. This is why MENNEKES also has a global presence, with subsidiaries and agencies in more than 90 countries. When plugs and receptacles are being tested by independent testing authorities, such as the VDE Testing and Certification Institute, the test reports are compiled according to CCA or CB-II procedures. They then serve as the basis for approvals in other countries, such as those whose national test marks are shown below.

For plugs and receptacles for USA and Canada please contact us.

MENNEKES ${ }^{\circledR}$

Plugs for the world

Family business

MENNEKES is a family-run business - like most of our customers' companies.

Perhaps this is also the reason behind our legendary customer focus. At MENNEKES, an 800-strong global workforce produces plugs and receptacles for international markets. From its headquarters in Kirchhundem, Germany and its Neudorf plant in the Erzgebirge. In addition, a production plant in Nanjing supplies the Chinese market exclusively.

The North American market is serviced by MENNEKES Electrical Products headquartered in Fairfield, NJ.

Neudorf plant

Kirchhundem headquarters

When a MENNEKES product leaves our factory, it has already survived the harshest testing. In our test lab it is exposed to cold, heat, dust and water over and over again. Only the products that withstand these tests are worthy of the name MENNEKES. Our products are of course certified to national and international standards by renowned institutions.

Only the combination of first-class raw materials and advanced manufacturing processes guarantees a premium product. This is why we use only first-grade granules which are processed by a highly skilled workforce in state-of-the-art production facilities to create certified MENNEKAZger6z8/ofs1633

CEE receptacles 16A up to 125A

63A: SoftCONTACT, 125A: TorsionSpringCONTACT
Other voltages and frequencies available on request.

Panel mounted receptacles

Panel mounted receptacles

Panel mounted receptacles with standard flange dimensions
angled 20°,
flange:
$85 \times 85 \mathrm{~mm}$,
fixing hole spacing
$70 \times 70 \mathrm{~mm}$

Panel mounted receptacles

straight	A	P	110V	230 V	400V
	16	3	217	218	219
	16	4	220	221	222
	16	5	226	227	228
	32	3	229	230	231
	32	4	232	233	234
\d IP 67	32	5	238	239	240
Panel mounted receptacles					
- angled 20°	A	P	110V	230 V	400V
	16	3	1474	1475	1476
	16	4	1477	1478	1479
	16	5	1483	1484	1485
	32	3	1501	1502	1503
	32	4	1504	1505	1506
d ${ }^{\text {IP }} 67$	32	5	1489	1490	1551

Panel mounted receptacles

Panel mounted receptacles with standard flange dimensions

	angled 20°,	A	P	110V	230V	400V
,	flange:	16	3	903	905	-
	$85 \times 85 \mathrm{~mm}$,	16	4	-	-	1081
	fixing hole spacing:	16	5	-	-	1103
- 5	$70 \times 70 \mathrm{~mm}$	32	3	3197	3200	-
		32	4	-	-	3254
/2015	- ${ }^{\text {IP }} 67$	32	5	ge	of 1633	3524

Wall mounted receptacles with TwinCONTACT

screwless spring

\mathbf{A}	\mathbf{P}
16	3
16	4
16	5
32	3
32	4
32	5

110 V	230 V	400 V
1340	1341	-
-	1342	$\mathbf{1 3 4 3}$
-	-	31
1345	1346	-
-	1347	$\mathbf{1 3 4 8}$
-	-	32

Wall mounted receptacles with TwinCONTACT

Panel mounted receptacles with TwinCONTACT

	screwless spring	\mathbf{A}	\mathbf{P}	$\mathbf{1 1 0 V}$	$\mathbf{2 3 0 V}$	$\mathbf{4 0 0 V}$
	terminals,	16	3	1667	$\mathbf{1 6 6 8}$	1669
	straight	16	4	1672	1673	$\mathbf{1 6 7 4}$
		16	5	1678	1679	$\mathbf{3 3 8 5}$
		32	3	1786	$\mathbf{1 7 8 7}$	1788
		32	4	1789	1790	$\mathbf{1 7 9 1}$

Panel mounted receptacles with TwinCONTACT

screwless spring	\mathbf{A}	\mathbf{P}	$\mathbf{1 1 0 V}$	$\mathbf{2 3 0 V}$	$\mathbf{4 0 0 V}$
terminals,	16	3	1631	$\mathbf{1 6 3 2}$	1633
angled 20°	16	4	1636	1637	$\mathbf{1 6 3 8}$
		16	5	1642	1643

Panel mounted receptacles RAPIDO with TwinCONTACT

screwless spring

A	\mathbf{P}	$\mathbf{1 1 0 V}$	$\mathbf{2 3 0 V}$	$\mathbf{4 0 0 V}$
16	3	1132	997	-
16	4	-	-	-
16	5	-	-	-
32	3	-	-	-
32	4	-	-	-
32	5	-	-	-

TwinCONTACT

Screw less connection technique
without screws, double terminal with split spring for throughwiring.

Wall mounted receptacles with TwinCONTACT

Panel mounted receptacles with TwinCONTACT

	screwless spring	\mathbf{A}	\mathbf{P}	$\mathbf{1 1 0 V}$	$\mathbf{2 3 0 V}$	400V
	16	3	1707	$\mathbf{1 7 0 8}$	1709	
	terminals,	16	4	1710	1711	$\mathbf{1 7 1 2}$
	straight	16	5	1716	1717	$\mathbf{1 1 3 1}$
	32	3	1809	$\mathbf{1 8 1 0}$	1811	
		32	4	1812	1813	$\mathbf{1 8 1 4}$
		32	5	1818	1819	$\mathbf{1 8 2 0}$

Panel mounted receptacles with TwinCONTACT

[s +	screwless spring terminals, angled 20°	A	P	110V	230V	400V
		16	3	1700	1701	1702
		16	4	-	1703	1704
		16	5	-	-	3485
		32	3	1801	1802	1803
		32	4	-	1804	1805
	d ${ }_{\text {IP }} 67$	32	5	-	-	1808

Panel mounted receptacles RAPIDO with TwinCONTACT

RAPIDO

RAPIDO receptacles are available with screw terminals or with screwless TwinCONTACT.
16A, 3p:
for mounting holes 61 mm diam. and wall thickness from 2 up to 5 mm .
$16 A, 4 p+5 p$ and $32 A$:
for mounting holes 70 mm diam. and wall thickness from 2 up to 9 mm .

CEE plugs and inlets 16A up to 125A

Other voltages and frequencies available on request.

single part	A	\mathbf{P}	$\mathbf{1 1 0 V}$	$\mathbf{2 3 0 V}$	$\mathbf{4 0 0 V}$
	16	3	509	$\mathbf{5 1 0}$	511
body, screw	16	4	512	513	$\mathbf{5 1 4}$
terminals	16	5	518	519	$\mathbf{5}$
	32	3	521	$\mathbf{5 2 2}$	523
	32	4	524	525	$\mathbf{5 2 6}$
	32	5	530	531	$\mathbf{6}$

Connectors StarTOP with SafeCONTACT

Screwless with	\mathbf{A}	\mathbf{P}	$\mathbf{1 1 0 V}$	$\mathbf{2 3 0 V}$	$\mathbf{4 0 0 V}$
insulation	16	3	979	$\mathbf{9 8 0}$	-
displacement	16	4	-	993	$\mathbf{9 9 4}$
technique	16	5	-	-	$\mathbf{3 5}$
	32	3	725	$\mathbf{7 3 1}$	-
	32	4	-	761	$\mathbf{7 6 3}$
	32	5	-	-	$\mathbf{3 6}$

Connectors AM-TOP

single partbody, screwterminals	A	P	110 V	230V	400V
	16	3	539	540	541
	16	4	542	543	544
	16	5	548	549	550
	32	3	551	552	553
	32	4	554	555	556
\d IP 67	32	5	560	561	562
Connectors PowerTOP Xtra					
with rubberized	A	P	110V	230V	400V
grip area,	63	3	14201	14202	14203
for toughest	63	4	14204	14205	14206
conditions	63	5	14210	14211	14212
	125	3	14215	14216	-
	125	4	14217	14218	14219
ds IP 67	125	5	14223	14224	14225

Connectors ProTOP					
- split body,	A	P	110V	230V	400V
1 screw	16	3	179	180	181
- terminals	16	4	-	193	194
	16	5	-	-	15
	32	3	121	122	-
	32	4	-	125	126
$\triangle 1 P 44$	32	5	-	-	16
Connectors PowerTOP Xtra					
2 with rubberized	A	P	110V	230V	400V
1 grip area,	63	3	14101	14102	-
for toughest	63	4	-	14105	14106
conditions	63	5	-	14111	14112
	125	3	-	-	-
	125	4	-	-	-
$\triangle 1 P 44$	125	5	-	-	-
Connectors PowerTOP					
\triangle with external	A	P	110V	230V	400V
7 strain relief	16	3	3859	3860	3862
	16	4	3869	3873	3871
	16	5	3879	3883	3881
	32	3	3887	3888	3891
(9)	32	4	3896	3899	3897
く 1 IP 67	32	5	3905	3909	3907
Angled connector					
	A	P	110 V	230V	400V
(-)	16	3	-	1438	-
	16	4	-	-	-
\square	16	5	-	-	-
	32	3	-	-	-
	32	4	-	-	-
$\triangle 1 P 44$	32	5	-	-	-

PowerTOP Xtra

PowerTOP Xtra is rubberized for the best grip. Improved impact resistance even under humid conditions. Highly heat-resistant contact carrier, frame terminals, cable gland and sealing, strain relief and protection against kinking. Enclosure with thread lock, two safety slides and plugs with nickelplated contacts. Connectors 63A with SoftCONTACT and 125A with TorsionSpringCONTACT.

StarTOP

with SafeCONTACT, screwless with insulation displacement technique, cable gland with sealing, strain retiqdand pootentionqustainst kinking, 2-part enclosure withathreachorrobl2oking slider.

SoftCONTACT

TorsionSpringCONTACT

SP033 Adam Street Wynnum North SPS - Electrical Installation OM Manual CEE receptacles switched, interlocked, 16 up to 125 A
63A: SoftCONTACT, 125A: TorsionSpringCONTACT. CEE receptacles with DUO-interlock can be padlocked.
Other voltages and frequencies available on request.
Wall mounted receptacles with mechanical DUO-interlock

\triangle IP 44

\mathbf{A}	\mathbf{P}
16	3
16	4
16	5
32	3
32	4
32	5

$\mathbf{1 1 0 V}$	$\mathbf{2 3 0 V}$	$\mathbf{4 0 0 V}$
7010	$\mathbf{7 0 0 2}$	-
5457	5099	$\mathbf{5 1 0 0}$
5459	5102	$\mathbf{5 1 0 3}$
5743	$\mathbf{5 6 9 6}$	-
5460	5104	$\mathbf{5 1 0 5}$
5462	5107	$\mathbf{5 1 0 8}$

Wall mounted receptacles with mechanical DUO-interlock

E+ W		A	P	110V	230V	400 V
-		63	3	6569	6571	-
\because		63	4	-	5955	5956
		63	5	-	-	5959
		125	3	-	-	-
\leqslant		125	4	-	-	-
	$\triangle 1 P 44$	125	5	-	-	-

Wall mounted receptacles with mechanical DUO-interlock

\triangle IP 44

A	\mathbf{P}	$\mathbf{1 1 0 V}$	$\mathbf{2 3 0 V}$	$\mathbf{4 0 0 V}$
16	3	7602	$\mathbf{7 6 0 3}$	-
16	4	-	7604	$\mathbf{7 6 0 5}$
16	5	-	-	$\mathbf{7 6 0 7}$
32	3	7611	$\mathbf{7 6 1 2}$	-
32	4	-	7613	$\mathbf{7 6 1 4}$
32	5	-	-	$\mathbf{7 6 1 6}$

Panel mounted receptacles with mechanical DUO-interlock

	A	P	110V	230V	400V
	16	3	7502	7503	-
	16	4	-	7504	7505
	16	5	-	-	7507
	32	3	7511	7512	-
	32	4	-	7513	7514
$\triangle 1 P 44$	32	5	-	-	7516

Wall mounted receptacles with mechanical DUO-interlock

fused,	A	\mathbf{P}	$\mathbf{1 1 0 V}$	$\mathbf{2 3 0 V}$	$\mathbf{4 0 0 V}$
DIN-rail	16	3	-	7213	-
	16	4	-	-	$\mathbf{5 6 1 0}$
	16	5	-	-	5613
	32	4	-	-	5615
	32	5	-	-	5618
	63	4	-	-	6059
	63	5	-	-	6062

Wall mounted receptacles with mechanical DUO-interlock

	fused,	A	\mathbf{P}	$\mathbf{1 1 0 V}$	$\mathbf{2 3 0 V}$
	16	3	-	$\mathbf{7 2 1 6}$	-
	MCB	16	4	-	-

M echanical DUO-interlock

After insertion and switching on, the plug is interlocked in the ON-position.
After switching off and withdrawing, the switch is locked in the OFF-position.

Wall mounted phase inverter inlets

\triangle IP 44

A	\mathbf{P}	$\mathbf{1 1 0 V}$	$\mathbf{2 3 0 V}$	$\mathbf{4 0 0 V}$
16	3	-	-	-
16	4	-	-	-
16	5	-	-	$\mathbf{3 5 1 7}$
32	3	-	-	-
32	4	-	-	-
32	5	-	-	$\mathbf{3 5 2 3}$

Panel mounted phase inverter inlets

\triangle IP 44

A	\mathbf{P}	$\mathbf{1 1 0 V}$	$\mathbf{2 3 0 V}$	$\mathbf{4 0 0 V}$
16	3	-	-	-
16	4	-	3348	$\mathbf{3 3 5 0}$
16	5	-	-	$\mathbf{2 0 9 7 0}$
32	3	-	-	-
32	4	-	3355	$\mathbf{3 3 5 6}$
32	5	-	3717	$\mathbf{2 1 2 4 1}$

Panel mounted phase inverter inlet

Wall mounted receptacles for low voltage

Panel mounted receptacles for low voltage

A	P	$\mathbf{2 0 - 2 5 V}$ $\mathbf{5 0} \mathbf{a} . \mathbf{6 0 H z}$
16	2	$\mathbf{6 0 3}$
16	3	$\mathbf{6 1 0}$
32	2	$\mathbf{6 1 6}$
32	3	$\mathbf{6 2 3}$

$40-50 \mathrm{~V}$
50 a .60 Hz
604
611
617
624

$20-25 \mathrm{~V} /$
$40-50 \mathrm{~V}$
$100-200 \mathrm{~Hz}$
-
612
-
625

Plugs for low voltage

	A	P	$\begin{gathered} 20-25 \mathrm{~V} \\ 50 \mathrm{a} .60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 40-50 \mathrm{~V} \\ 50 \mathrm{a} .60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 20-25 \mathrm{~V} / \\ 40-50 \mathrm{~V} \\ 100-200 \mathrm{~Hz} \end{gathered}$
	16	2	629	630	-
	16	3	636	637	638
	32	2	642	643	-
\triangle IP 44	32	3	649	650	651

Connectors for low voltage

A	\mathbf{P}	$20-25 \mathrm{~V}$ 50 a .60 Hz
16	2	$\mathbf{5 8 1}$
16	3	688
32	2	694
32	3	$\mathbf{7 0 1}$

$40-50 \mathrm{~V}$
50 a .60 Hz
682
689
695
702

A	\mathbf{P}	$\mathbf{2 0 - 2 5 V}$ 50 a .60 Hz
16	2	$\mathbf{1 9 5 5}$
16	3	1962
32	2	1968
32	3	1975

20-25V/ 40-50V $100-200 \mathrm{~Hz}$

1965

Wall mounted phase inverter inlets

\triangle IP 44

A	\mathbf{P}	$\mathbf{1 1 0 V}$	$\mathbf{2 3 0 V}$	$\mathbf{4 0 0 V}$
16	3	-	-	-
16	4	-	3342	$\mathbf{3 3 4 3}$
16	5	-	-	$\mathbf{2 5 1 1}$
32	3	-	-	-
32	4	-	3345	$\mathbf{3 3 4 6}$
32	5	-	3347	$\mathbf{2 4 7 8}$

Wall mounted receptacles for low voltage

Panel mounted receptacles for low voltage

Wall mounted appliance inlets for low voltage

Plugs and receptacles 7 pole

Other voltages and frequencies available on request.

Panel mounted receptacles

angled 20°

$\triangle \mathrm{IP} 44$
single part body, screw terminals
$\triangle 1 P 44$
Wall mounted inlets

Connectors AM-TOP
 single part
body, screw
terminals
\triangle IP 44
Wall mounted receptacles with mechanical DUO-interlock

3 pole switch,
can be
padlocked
$\triangle \operatorname{IP} 44$

A	\mathbf{P}	$\mathbf{2 3 0 V}$	$\mathbf{4 0 0 V}$	$\mathbf{5 0 0 V}$
16	7	745	$\mathbf{7 4 6}$	1065
32	7	747	$\mathbf{7 4 8}$	1070

A	\mathbf{P}	$\mathbf{2 3 0 V}$	$\mathbf{4 0 0 V}$	$\mathbf{5 0 0 V}$
16	7	-	5536	-
32	7	-	$\mathbf{7 0 6 1}$	-

Wall mounted receptacles

Panel mounted receptacles

	angled 20	A	P	$\mathbf{2 3 0 V}$	$\mathbf{4 0 0 V}$	$\mathbf{5 0 0 V}$
		16	7	2883	$\mathbf{2 4 5 9}$	2296
		32	7	-	2317	2212

Plugs AM-TOP

Panel mounted inlets

		A	P	230V	400V	500V
		16	7	749	750	1075
		32	7	751	752	1080
	$\triangle 1 P 44$					

Connectors AM-TOP

Wall mounted receptacles with mechanical DUO-interlock

A	P	$\mathbf{2 3 0 V}$	$\mathbf{4 0 0 V}$	$\mathbf{5 0 0 V}$
16	7	-	$\mathbf{5 7 8 5}$	-
32	7	-	6106	-

Plugs and receptacles 7 pole for multi functional applications

These plugs and receptacles provide solutions where there are multi functional requirements in industry, farming and commerce.

This number of poles provides solutions in the following fields:

- Star-delta start-up
- Closed loop control
- Open loop control
- Monitoring
- Detection and alarms
- Clearing alarms
- Electrical interlocking

Perfect in every detail - one fits another

Anything goes.

Covers, current rating and colors may be optionally combined: neutral cover, with labeling field, with labeling field and lock, 3 pole, 5 pole and SCHUKO.

Plugs and receptacles 200A up to 400A

Plugs and receptacles are available in seawater resistant design on request.
Other voltages and frequencies available on request.

Receptacles								
with cable	A	P	230 V	400V	500V	690V	1000V	weight
gland	200	4	75220	75221	75222	75223	75224	5580
	200	5	75225	75226	75227	75228	75229	5780
	250	4	75020	75021	75022	75023	75024	10510
5	250	5	75110	75111	75112	75113	75114	11020
	400	4	75025	75026	75027	75028	75029	10510
ds IP 67	400	5	75115	75116	75117	75118	75119	11020
Panel mounted receptacles								
	A	P	230V	400V	500V	690V	1000V	weight
	200	4	75240	75241	75242	75243	75244	3200
	200	5	75245	75246	75247	75248	75249	3450
	250	4	75040	75041	75042	75043	75044	6800
	250	5	75130	75131	75132	75133	75134	7300
	400	4	75045	75046	75047	75048	75049	6800
ds IP 67	400	5	75135	75136	75137	75138	75139	7300
Receptacles, switched and interlocked								
-	A	P	230V	400V	500V	690V	1000V	weight
	200	4	75230	75231	75232	75233	75234	25100
	200	5	75235	75236	75237	75238	75279	25300
	250	4	75030	75031	75032	75033	75034	45000
A	250	5	75120	75121	75122	75123	75124	46500
11	400	4	75035	75036	75037	75038	75039	43900
1H IP 55	400	5	75125	75126	75127	75128	75129	45400
Plugs								
with cable	A	P	230V	400V	500V	690V	1000V	weight
mgland	200	4	75200	75201	75202	75203	75204	3000
=	200	5	75205	75206	75207	75208	75274	3200
	250	4	75000	75001	75002	75003	75004	8290
	250	5	75090	75091	75092	75093	75094	8610
-	400	4	75005	75006	75007	75008	75009	8290
\1 IP 67	400	5	75095	75096	75097	75098	75099	8610
Connectors								
with cable	A	P	230 V	400V	500V	690V	1000V	weight
gland	200	4	75210	75211	75212	75213	75214	3730
	200	5	75215	75216	75217	75218	75219	3980
1)	250	4	75010	75011	75012	75013	75014	9160
8	250	5	75100	75101	75102	75103	75104	9670
	400	4	75015	75016	75017	75018	75019	9160
\d IP 67	400	5	75105	75106	75107	75108	75109	9670

Heavy duty versions for industry

Mechanical interlocking. For mobile consumers of rated current > 125A we have included a heavy duty range with 200A, 250A and 400A in our program. This can be supplied for rated voltages of 230 V to 1000 V and in seawater resistant version.

The heavy duty range is suitable for use in very harsh conditions, e.g. building sites:

- drilling rigs
- tunnel constructions
- gravel pits
- strip mining
- container terminals and crane connections in harbours
- for versatile power supply at large-scale indoor and outdoor events
- power supply to market places
- airports
- quarries

SCHUKO and grounding-type receptacles

SCHUKO and French/Belgian standard 16A, 230V, $2 p+$ E. British standard 13A, 230V, $2 p+E$. Other variations on request.

Plugs for the world

SCHUKO panel mounted receptacles

with plug-in
terminals or screw-terminals,
without shutter
$\triangle I P 54$
Grounding-type panel mounted receptacles French/Belgian standard

with plug-in terminals, without shutter
\triangle IP 44

SCHUKO wall mounted receptacles				
	with plug-in terminals,	Color	plug-in terminals	screw terminals
	without shutter	grey	10081	-
		blue	10082	-
		black	10083	-
	$\triangle 1 P 44$	red	-	-

Base for wall mounted receptacles

	with cable entry and screws		
	Part no.	grey	10714
	Part no.	blue	10715
	Plack	10716	

SCHUKO panel mounted receptacles

	with plug-in terminals or screw-terminals, without shutter	Color	plug-in terminals	screw terminals
		grey	-	-
		blue	11511	11531
		black	11512	11532
	IP 20	red	-	-

Grounding-type panel mounted receptacle British standard

SCHUKO panel mounted receptacles

with plug-in
terminals or screw-terminals,
with shutter
\triangle IP 54

Color	plug-in terminals	screw terminals
grey	$\mathbf{1 1 0 6 0}$	-
blue	11061	$\mathbf{1 1 0 8 1}$
black	-	-
red	-	-

Grounding-type panel mounted receptacles French/Belgian standard

with plug-in
terminals or
screw-terminals,
with shutter

Color	plug-in terminals	screw terminals
grey	11160	11180
blue	11161	11181
black	11162	11182
red	11163	11183

Grounding-type wall mounted receptacle French/Belgian standard

with plug-in terminals, with

Color	plug-in terminals	screw terminals
grey	-	-
blue	$\mathbf{1 0 0 9 2}$	-
black	-	-
red	-	-

Modular system for wall mounted receptacle
The combination of the base with one of the panel mounted receptacles shown above, gives a wall mounted receptacle.

Grounding-type panel mounted receptacles French/Belgian standard
 with plug-in

Color	plug-in terminals	screw terminals
grey	-	-
blue	$\mathbf{1 1 6 1 1}$	$\mathbf{1 1 6 3 1}$
black	-	-
red	-	-

Grounding-type panel mounted receptacle British standard
 with screwterminals, with shutter and seal
© IP 44

Color	plug-in terminals	screw terminals
grey	-	-
blue	-	$\mathbf{1 0 7 1 8}$
black	-	-
red	-	-

SCHUKO connectors with grommet

AMAXX ${ }^{\circledR}$ receptacle combinations

Success in series

Extensively configurable receptacle combinations in six different sizes - the AMAXX ${ }^{\circledR}$ range by MENNEKES. With an appealing and unique design in many variations for almost all applications. With our extended program, you now have three good extra reasons to opt for AMAXX ${ }^{\circledR}$ receptacle combinations.

- Protection types: IP 44 and IP 67.
- Enclosure materials: AMAPLAST and especially chemical-resistant AMELAN.
- Colors: bottom part black, top part grey, silver (IP 44), yellow or red.
- Equipped with: CEE receptacles from 16A, 3-poles up to 63A, 5-poles, grounding-type receptacles in accordance with many national standards, DUO receptacles switched and interlocked from 16A, 3p to 32A, $5 p$ as well as fuse elements.

International

Features and benefits

1 Liftable DIN Rails

Liftable DIN rails and a large, smooth wiring space significantly ease the insertion as well as connection of large cables.

2 One-man installation
Shorter installation times with the new, user-friendly external fixing.

3 Hinged cover

The hinged cover which opens to one side, eases connection work.

Ready for application

All combinations are pre-wired for installation and tested for electric safety and quality.

Generally angled insertion direction.

Both hands free because inspection windows fold downwards. WindonQ \in Rnlbe lolckad Sithz padlock, enclosure can be seale

Especially fast opening and closing of the enclosure due to captive double-threaded cover screws.

Standard pre-punched cable entries at the top and at the bottom 0f09/タ016 up to M 40.

Receptacle combinations for versatile use

EverGUM receptacle combinations with solid rubber enclosures

With the EverGUM range MENNEKES provides a solid rubber alternative to enclosures in AMAPLAST, AMELAN and sheet steel. This is an alternative which is suitable for the most diverse environments, especially when there is likely to be exposure to rough handling or aggressive cleaning agents. These products can also be supplied to conform to the standards of other European countries.

AirKRAFT and 3KRAFT

AirKRAFT
for energy, data, compressed air. Also available with feeder cable.

Enclosure
$400 \times 229 \times 220 \mathrm{~mm}$ (size without receptacles)

3KRAFT
for energy, data, compressed air.

Enclosure
diam. 240-264 x H 152 mm
(depending what receptacles are used)

For ceilings, walls and floors.
Three colors: Signal yellow, red or silver.
AirKRAFT. Up to four receptacles, or data, or light, plus compressed air, plus fusing. Ready for connection or with supply cable and plug.
3KRAFT. Equipped to suit your requirements: Up to three receptacles, or data, plus compressed air. Ready for QrPqustion:OTmish40pply cable and plug.

Plugs for the world

Stainless steel surface and flush mounted

receptacle combinations

Safe.

- Protection type IP 43 or IP 44 with closed door, even when plugs are inserted.
- The cable guard aperture is sufficiently dimensioned for leading through cables.

Practical.

- Safety lock protects against unauthorized access.

Power posts

Rugged. Vandalism-proof.
Steel power posts provide a safe means of energy supply, protection against car-crossing. Hot-dip galvanized and powder coated. Available in various sizes.

CombiTOWER

Power. Compressed air. Water. Outdoors and indoors.
The solution: CombiTOWER. Short routes to your energy source for industry, workshops, assembly shops, loading platforms, etc.

SP033 Adam Street Wynnum North SPS - Electrical Installation OM Manual Index of part numbers

Partno. page Partno. page Partno. page Partno. page Partno. page Partno. page Partno. page Partno. page Partno. page Partno. page Partno. page 1

References

Plugs for the world

BM W motorcycle plant, Berlin - Germany

Formula 1 circuit, M anama - Bahrain

AIDAbella, Jos. L. M eyer Werft, Papenburg - Germany

Constitution, Heerema M arine Contractors - Netherland

MENNEKES ${ }^{\circledR}$
 Plugs for the world

Refer to our brochures and catalogs to keep up to date. Download the latest versions from our website in practical PDF format or request print copies by phone or E-Mail.

AMAXX ${ }^{\oplus}$.
The right combination for every application.

North American Catalog. U.S. and Canadian Standard Products.

LockOUT-LET MSR Series.
Non-M etallic Interlocked Receptacles.

Plugs for the World.
Full Line Catalog.

Headquarter:
 M ENNEKES

Elektrotechnik GmbH \& Co. KG
Industrial plugs and receptacles
Aloys-M ennekes-Str. 1
D-57399 Kirchhundem
Tel. + 49 (0) 2723 / 41-1
Fax + 49 (0) 2723 / 41-2 14
E-M ail info@M ENNEKES.de
Internet www.M ENNEKES.de

Plant Neudorf:
Technoplast GmbH
M ENNEKES Straße 1
D-09465 Neudorf / Erzgebirge
Tel. + 49 (0) 37342 / 8 62-0
Fax + 49 (0) 37342 / 8 62-38
E-M ail info@tp-neudorf.de

(973) 882-8333

Request brochures by E-Mail to:
info@MENNEKES.com

Service by MENNEKES®. Always well informed.

TECHNICAL DATA SHEET

Equipment Type:Impulse Suppressor
Location:RTU Section
Model Numbers: IS-50NX-C2
Manufacturer: Polyphaser
Supplier:
RFI Industries
30 Raubers RoadBanyo, QLD 4010Ph: 0736219400Fax: 0736215505
Web: www.rfi.com.au

MAXIMUM CHARACTERISTICS
SURGE:
50kA IEC $1000-4-5 \quad 8 / 20 \mu \mathrm{~s}$ WAVEFORM 500 JOULES
TURN ON:
600Vdc $\pm 20 \%$
TURN ON TIME:
2.5 ns FOR $2 \mathrm{kV} / \mathrm{ns}$
FREQUENCY RANGE:
125MHz TO 1 GHz
VSWR: OVER FREQUENCY RANGE
S1.1:1 OVE
INSERTION LOSS:
0.1 dB OVER FREQUENCY RANGE
TEMPERATURE:
$-45^{\circ} \mathrm{C}$ TO + $85^{\circ} \mathrm{C}$ STORAGE/OPERATING $+50^{\circ} \mathrm{C}$

CUSTOMER APPROVAL: \qquad DATE:
all dimensions shown above are for reference only.

DRafter J. CALLISTER	$\begin{array}{\|c\|} \hline \text { DATE } \\ 09 / 21 / 93 \\ \hline \end{array}$	PolyPhoser P.O. BOX 9000, MINDEN, NV 89423-9000 (775) 782-2511			FAX (775) 782-4476					
MECH ENGINEER	DATE									
- - -	- - -	OWG NO/PART NO/DESCRIPTION								
ELEC ENGINEER	DATE	IS-50NX-C2								
J. JONES	$04 / 12 / 95$									
MARKETING	DATE	CUSTOMER PRINT								
QUALTY DEPT	DATE	CAGE CODE	FILE NAME		SHEET					
R. MATHEUS	04/12/95	61114	-C1	1/1						

Q-Pulse Id: IMS1407

TECHNICAL DATA SHEET

Equipment Type:

Location:
Model Numbers:PB251
Manufacturer:
Powerbox
Supplier:
Powerbox Australia Pty Ltd433 Logan RoadStones Corner, QLD 4120

Ph: 0733948372
Fax: 0733948373
Web: www.powerbox.com.au

PB251 Series

220-330 WATTS DC UPS

Features

- Ultra-low noise output
- Independent battery charging output
- DC output OK \& battery OK alarms \& LEDs
- Battery-LVD and alarm
- Over-temperature protection
- Battery fuse fail LED

Specifications

INPUT

Voltage:	190 to 264 vac, or 190 to 400VDC
Line regulation:	0.2% typical
Current:	1.4 A maximum
Inrush current:	10 A maximum
Frequency:	45 to 65 Hz

OUTPUT

Voltage	See table
Current	See table
Load regulation	0.5% typical
Current limit type - load cct	Constant current
Current limit type - batt. cct	Constant current
Short circuit protection	Indefi nite, auto-resetting
Over-voltage protection	17.5 to 20V latching (13.8Vdc output)
	31.5 to 39 V latching (27.6Vdc output)
Ripple \& noise	$28 \mathrm{mVp}-\mathrm{p}$ (13.8Vdc output)
100 MHz bandwidth	$55 \mathrm{mVp}-\mathrm{p}$ (27.6Vdc output)

ENVIRONMENTAL

Operating temperature	0 to $70^{\circ} \mathrm{C}$ ambient with derating, $5 \ldots . .90 \%$ relative humidity (non-condensing)
Over-temperature protection	Automatic \& auto-resetting
Cooling requirement	Natural convection
Efficiency	80% minimum

Selection Table

STANDARDS \& APPROVALS

Safety	Complies with AS/NZS 60950, class 1,
	NSW Office of Fair Trading Approval N20602
EMC	Emissions comply with AS/NZS CISPR11,
	Group 1, Class B. Complies with ACA EMC
	Scheme, Safety \& EMC Regulatory Compliance
	Marked
Isolation i/p-o/p	4242VDC for 1 minute
i/p-ground	2121VDC for 1 minute
o/p-ground	707VDC for 1 minute

ALARMS \& BATTERY FUNCTIONS

Converter ON/OK alarm	Indicated by voltage-free changeover relay
green LED	ON=PSU OK
Battery low (\& fuse) alarm	10.2 to 12.6 V for 12V battery, adjustable 20.4 to 25.2 V for 24V battery, adjustable Indicated green LED: ON=BATT OK
Low voltage disconnect	9.6 to 12V for 12V battery, adjustable 19.2 to 24V2 for 4V battery, adjustable
Charger over-load protection	Auto-resetting electronic circuit breaker
Reverse polarity protection	Internal battery fuse
Battery to load voltage drop	0.2 to. 0.25 V typical
MECHANICAL	
Case size	$264 \mathrm{~L} \times 172 \mathrm{~W} \times 67 \mathrm{H} \mathrm{mm}$
Case size with heatsink	$264 \mathrm{~L} \mathrm{x} \mathrm{186} \mathrm{W} \mathrm{x} \mathrm{67H} \mathrm{~mm}$
Rack size	$232 \mathrm{D} \mathrm{x} \mathrm{19"} \mathrm{~W} \mathrm{x} \mathrm{2RU} \mathrm{H}$
Weight	1.9 kg
Weight with heatsink	2.1 kg
Weight (rack mounted version)	5.5 kg

MODEL	OUTPUT			OUTPUT	Note: Non standard battery charging current available on request. ie PB251-12CM-H-10 for 10A.
NUMBER	VDC	ILoad	$\mathrm{I}_{\text {BATt }}$	POWER	
PB251-12CM	13.8 V	16A	2A	220W	
PB251-12CM-H	13.8 V	20A	2A	275W	
PB251-24CM	27.6 V	11A	2A	300W	
PB251-24CM-H	27.6 V	12A	2A	330W	
PB251-12RML	13.8 V	20A	4A	275W	
PB251-12B	13.8 V	20A	4A	275W	
PB251-24RML	27.6V	12A	2A	330W	

Technical Illustrations

TECHNICAL DATA SHEET

Equipment Type:

Location:

Model Numbers:

Manufacturer:

Supplier:

020130FSP
Level Probe

Common Control

Multitrode

Brisbane Technology Park
Unit 1, 18 Brandl Street
P.O. Box 4633

Eight Mile Plains
Queensland 4113
Australia
733407000

The MultiTrode Probe

Abstract

MultiTrode probes are unsurpassed for rugged reliability, cost effectiveness and simplicity. Designed for the tough, turbulent conditions found in water, sewage and industrial tanks and sumps, the probes can be found in the simplest and the most complex water and wastewater management systems around the world.

- Low maintenance
- Simple installation
- Excellent in turbulence
- Short \& long term cost savings
- Environmentally friendly
- Safe, low sensing voltage
- Unaffected by fat, grease, debris and foam
- Positive pump cut-out
- Safe - MTISB Barrier

Reliable in all conditions

Operation is unaffected by build up of fat, grease debris and foam, which causes other systems such as floats, bubblers, pressure and ultrasonic transducers to fail. Turbulence does not affect the probe operation. The rugged, streamlined design eliminates tangling and is ideal for confined spaces.

Positive pump cut-out

Operational consistency is important to longevity, low maintenance and cost control. The positive pump cut-out ensures pumps are turned off at the same level every time. This avoids damage due to pump over run and the cost of additional control equipment.

Safe for people and environment

The extra low sensing voltage ensures operators and maintenance staff are protected. All MultiTrode products are environmentally safe, containing no mercury or other harmful contaminants.

Cost savings

The low cost of equipment, installation and maintenance makes MultiTrode one of the most efficient level control systems available. Plus robust construction and longevity ensures continued cost savings when compared to other systems on the market.

Standard and custom probes

MultiTrode manufactures a wide range of standard probes, from a single sensor $(200 \mathrm{~mm})$ to a ten-sensor probe (1000 mm increasing to a maximum of nine metres). Custom probes can be manufactured to suit your requirements.

Installation

Installation is straightforward. Probes are easy to install without entering the wet area. The probe is simply lowered in from the top and suspended by its own cable, using the mounting kit supplied.

MTAK-1 Mounting Kit (Supplied)

The mounting bracket is a standard accessory supplied with all multi-sensor probes (not standard with 0.2/1-xx single sensor probe).
The MTAK-1 mounting bracket has an integral cleaning device. All metal components are stainless steel.

MTAK-2 Mounting Kit (Optional extra)

This extended bracket provides up to 300 mm extra wall clearance. This bracket is not included as standard with probes.

Ordering Examples and Information

Model Code	Probe Length $(\mathbf{m} / \mathbf{i n})$	Sensor Separation $(\mathbf{m m} / \mathbf{i n})$	Cable Length* $(\mathbf{m} / \mathbf{f t})$	Number of Sensors
$0.2 / 1-10$	$0.2 / 8$	$\mathrm{~N} / \mathrm{A}$	$10 / 33$	1
$0.5 / 3-10$	$0.5 / 16$	$150 / 6$	$10 / 33$	3
$1.0 / 10-10$	$1 / 40$	$100 / 4$	$10 / 33$	10
$1.5 / 10-30$	$1.5 / 60$	$150 / 6$	$30 / 100$	10
$2.0 / 10-30$	$2 / 80$	$200 / 8$	$30 / 100$	10
$2.5 / 10-30$	$2.5 / 96$	$250 / 10$	$30 / 100$	10
$3.0 / 10-30$	$3 / 115$	$300 / 12$	$30 / 100$	10
$6.0 / 10-30$	$6 / 224$	$600 / 24$	$30 / 100$	10
$9.0 / 10-30$	$9 / 368$	$900 / 40$	$30 / 100$	10

*Cable Length $10 \mathrm{~m} / 33 \mathrm{ft}$ or $30 \mathrm{~m} / 100 \mathrm{ft}$

Probe Length (meters)	Sensor Points	Cable Length (meters)
2.5	10	10

MultiTrode Pty Ltd • Australia Brisbane Technology Park 18 Brandl Street PO Box 4633 Eight Mile Plains QId 4113 Tel: +61 733407000 Fax: +61733407077

TECHNICAL DATA SHEET

Equipment Type:Pressure Measurementinstrument
Location:
Model Numbers:
VEGABAR 52
Vega
Supplier:
Vega398 The Boulevard
Kerrawee, NSW 2232
Ph: 0295426662
Fax: 0295426665Web: www.vega.com/au

VEGABAR 52

Profibus PA

Pressure transmitter with CERTEC $^{\circledR}$ measuring cell

Area of application

The VEGABAR 52 pressure transmitter can be used universally for measurement of gases, vapours and liquids. Also substances such as sand are not problem for the abrasion-resistant ceramic measuring cell. The VEGABAR 52 is an economical solution for a multitude of applications in all areas of industry.

Advantages

- High plant availability through maximum overload and vacuum resistance of the ceramic measuring cell
- Measurement down to the last drop through extremely small measuring ranges with high accuracy.
- Low costs for maintenance thanks to wear-free ceramic measuring cell

Function

The heart of the pressure transmitter is the pressure measuring cell that transforms pressure into an electrical signal. This pressure-dependent signal is converted into a standard output signal by the integrated electronics.
The sensor element is the CERTEC ${ }^{\circledR}$ measuring cell with excellent longterm stability and high overload resistance. The CERTEC ${ }^{\circledR}$ measuring cell is also equipped with a temperature sensor. The temperature value can be displayed via the indicating and adjustment module or processed via the signal output.

Technical data	
Measuring ranges	$\begin{aligned} & -1 \ldots+72 \mathrm{bar} /-100 \mathrm{kPa} \ldots+7200 \mathrm{kPa} \\ & (-14.5 \ldots+1044 \mathrm{psig}) \end{aligned}$
Smallest measuring range	+0.1 bar/+10 kPa (+1.45 psig)
Deviation	< 0.075 \%, optionally up to < 0.05%
Process fitting	Thread G1⁄22 (EN 837), thread from G11/2 (DIN 3852-A), flanges from DN 25 or ANSI 1 ", fittings for the food processing and paper industry
Process temperature	$-40 \ldots+150^{\circ} \mathrm{C}\left(-40 \ldots+302^{\circ} \mathrm{F}\right)$
Ambient, storage and transport temperature	$-40 \ldots+80^{\circ} \mathrm{C}\left(-40 \ldots+176{ }^{\circ} \mathrm{F}\right)$
Betriebsspannung	$9 \ldots 32 \mathrm{~V}$ DC

Materials

The wetted parts of the instrument are made of 316L, PVDF, Hastelloy, C4-plated or Sapphire-ceramic ${ }^{\circledR}$. The process seal is available in FKM, FFKM as well as EPDM.
You will find a complete overview of the available materials and seals in the "configurator" on our homepage under www.vega.com/configurator.

Housing versions

The housings are available as single chamber or double chamber version in plastic, stainless steel or aluminium.
They are available in protection ratings up to IP 68 (25 bar) with external electronics.

Electronics versions

The instruments are available in different electronics versions. Apart from the two-wire electronics with $4 \ldots 20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA} / \mathrm{HART}$, two purely digital versions with Profibus PA and Foundation Fieldbus are available.

Approvals

The instruments are suitable for use in hazardous areas and are approved e.g. according to ATEX and IEC. The instruments have also different ship approvals such as e.g. GL, LRS or ABS.
You can find detailed information on the existing approvals in the "configurator" on our homepage under www.vega.com/configurator.

Bedienung

Die Bedienung des Gerätes erfolgt über das optional einsetzbare Anzeige- und Bedienmodul PLICSCOM oder über einen PC mit der Bediensoftware PACTware und entsprechendem DTM. Eine alternative Bedienmöglichkeit ist das herstellerspezifische Bedienprogramm PDM.

Elektrischer Anschluss

Elektronik- und Anschlussraum Einkammergehäuse
1 Steckverbinder für VEGACONNECT ($I^{2} C$-Schnittstelle)
2 Federkraftklemmen zum Anschluss der externen Anzeige VEGADIS 61
3 Erdungsklemme zum Anschluss des Kabelschirms
4 Federkraftklemmen für Spannungsversorgung und Signalausgang
Details zum elektrischen Anschluss finden Sie in der Betriebsanleitung des Gerätes auf unserer Homepage unter www.vega.com/downloads.

Dimensions

(1)

Dimensions VEGABAR 52
1 Threaded version G1⁄2 A (manometer connection EN 837)

2 Threaded version G1½ A
3 Flange version DN 50

Information

You can find further information about the VEGA product line on our homepage www.vega.com.
In the download section under www.vega.com/downloads you'll find free operating instructions, product information, brochures, approval documents, instrument drawings and much, much more.
There, you will also find GSD and EDD files for Profibus PA systems as well as DD and CFF files for Foundation Fieldbus systems.

Instrument selection

With the "finder" you can select the most suitable measuring principle for your application: www.vega.com/finder.
You can find detailed information on the instrument versions in the "configurator" on our homepage under www.vega.com/configurator.

Contact

You can find the VEGA agency serving your area on our homepage www.vega.com.

TECHNICAL DATA SHEET

Equipment Type:Valve Measurement instrument
Location:
Model Numbers:
VEGADIS 62
Manufacturer: Vega
Supplier:
Vega398 The BoulevardKerrawee, NSW 2232
Ph: 0295426662
Fax: 0295426665Web: www.vega.com/au

VEGADIS 62

External indicating and adjustment unit without external energy

Application area

VEGADIS 62 is suitable for measured value indication and adjustment of sensors with HART protocol. The instrument is looped directly into the signal line at any location.
VEGADIS 62 can be also used as indicator for bus participants in a HART multidrop system.
VEGADIS 62 operates also as a pure indicating instrument in a $4 \ldots 20 \mathrm{~mA}$ current loop.

Advantages

- Digital and quasianalogue indication of the measured value
- Digital LC display with 4-key adjustment
- Detachable indicating and adjustment module
- Protection rating IP 65

Function

VEGADIS 62 measures the current in the current loop and indicates the measured value in digital and quasianalogue format.
The instrument operates in two modes: in HART mode the instrument listens continuously to the HART communication of the processing system with the sensor. Modifications of units and/or measuring range are adapted automatically. In the basic mode, all settings of VEGADIS 62 are carried out with the keys on the front.

Technical data

General data

Materials

- Housing
- Inspection window in hous-
plastic PBT, Alu die-casting, 316L
Polycarbonate (UL-746-C listed) ing cover for indicating and adjustment module
- Ground terminal 316Ti/316L Weight approx.
0.35 kg (0.772 lbs)

Supply circuit

Voltage supply and data trans- via the signal circuit mission
Current range
$3.5 \ldots 22.5 \mathrm{~mA}$

Indicating and adjustment module

Display

- Principle LCD
- Measured value presenta- 7 segments, 5 -digit, height of digits 9 mm tion (0.354 in), indication range -99999 ... 99999
- Bar graph 20 segments
- Info line

14 segments, 6-digit, height of digits 5.5 mm (0.217 in)

4 keys
Adjustment elements
Materials

- Housing
- Inspection window

Ambient conditions

Ambient temperature $\quad-20 \ldots+70^{\circ} \mathrm{C}\left(-4 \ldots+158^{\circ} \mathrm{F}\right)$
Storage and transport temper- $-40 \ldots+80^{\circ} \mathrm{C}\left(-40 \ldots+176{ }^{\circ} \mathrm{F}\right)$
ature
Electromechanical data
Cable gland $2 \times$ cable entry M20 x 1.5 (cable:
$\quad \varnothing 5 \ldots 9 \mathrm{~mm}$)
Spring-loaded terminals for wire cross-section

| - Massive wire, cord | $0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (AWG $24 \ldots 14$) |
| :--- | :--- | :--- |
| - Cord with cable end sleeve | $0.2 \ldots 1.5 \mathrm{~mm}^{2}$ (AWG $24 \ldots 16$) |

Electrical protective measures

Protection rating
$\begin{array}{ll}\text { - Housing plastic } & \text { IP 66/IP } 67 \\ \text { - } \begin{array}{l}\text { Housing Aluminium, stain- }\end{array} & \text { IP 66/IP } 68 \text { (0.2 bar) } \\ & \text { less steel }\end{array}$

Approvals

You can find detailed information on the existing approvals in the "configurator" on our homepage under www.vega.com/configurator.

Operation

The adjustment of VEGADIS 62 is menu-controlled via four keys on the front and one LC display.

Indicating and adjustment elements

1 Status information (HART mode, unit lock, warning or error information)
2 Unit and information line
3 Digital measured value indication
3 Bar graph for quasianalogue measured value indication
3 Adjustment keys

Electrical connection

Wiring plan VEGADIS 62

1 To the sensor
2 For power supply
3 For connection cable to indicating and adjustment module

Installation example VEGADIS 62 in conjunction with an individual sensor
1 Sensor
2 VEGADIS 62
3 HART resistance 250Ω (required depending on the processing)
4 Voltage supply/Processing
You can find details on the electrical connection in the operating instructions of the instruments on our homepage under www.vega.com/downloads.

Dimensions

TECHNICAL DATA SHEET

Equipment Type: Hydrostatic
Location:
Model Numbers: VEGADIS 62
Manufacturer: Vega
Supplier:
Vega398 The BoulevardKerrawee, NSW 2232
Ph: 0295426662Fax: 0295426665
Web: www.vega.com/au

VEGAWELL 52

Product Information

Contents

1 Description of the measuring principle 3
2 Type overview 4
3 Mounting instructions. 5
4 Electrical connection
4.1 General requirements 7
4.2 Power supply 7
4.3 Connection cable. 7
4.4 Cable screening and grounding 7
4.5 Wiring plan VEGAWELL 52-4 ... 20 mA 7
4.6 Wiring plan VEGAWELL 52-4 ... 20 mA/HART - Pt 100 8
5 Operation
5.1 Overview. 9
5.2 Adjustment with PACTware 9
6 Technical data 10
7 Dimensions. 14
8 Product code 15

Take note of safety instructions for Ex applications

Please note the Ex specific safety information which you can find on our homepage www.vega.comlservicesldownloads and which comes with every instrument. In hazardous areas you should take note of the appropriate regulations, conformity and type approval certificates of the sensors and power supply units. The sensors must only be operated on intrinsically safe circuits. The permissible electrical values are stated in the certificate.

1 Description of the measuring principle

Measuring principle

VEGAWELL 52 pressure transmitters work according to the hydrostatic measuring principle, which functions independently of the dielectric properties of the product and is not influenced by foam generation.
The sensor element of VEGAWELL 52 is the dry ceramic-capacitive CERTEC ${ }^{\circledR}$ measuring cell in two sizes. Base element and diaphragm consist of high purity sapphire-ceramic ${ }^{\circledR}$.

The hydrostatic pressure of the product causes via the diaphragm a capacitance change in the measuring cell. This capacitance change is converted into an appropriate output signal.

Fig. 1: Configuration of the CERTEC ${ }^{\circledR}$ measuring cell with VEGAWELL 52
1 Diaphragm
2 Soldered glass bond
3 Base element
The advantages of the CERTEC ${ }^{\circledR}$ measuring cell are:

- Very high overload resistance
- No hysteresis
- Excellent long-term stability
- Completely front flush installation
- Good corrosion resistance
- Very high abrasion resistance

Wide application range

VEGAWELL 52 is suitable for level measurement in deep wells and ballast tanks as well as for gauge measurement in open flumes. Typical media are drinking water and waste water as well as water containing abrasive substances. All signal outputs are available in $4 \ldots 20 \mathrm{~mA}$ and $4 \ldots 20 \mathrm{~mA} / \mathrm{HART}$ - Pt 100.

In the $4 \ldots 20 \mathrm{~mA} / \mathrm{HART}$ - Pt 100 version, a temperature sensor Pt 100 in four-wire technology is integrated in the transducer. Power supply or processing are carried out via an external temperature transducer.

2 Type overview

VEGAWELL 52

Measuring cell:
Media:
Process fitting:
Material process fitting:
316L
Material, suspension cable:
Material transmitter:
316L, 1.4462 (Duplex), each also with PE coating, PVDF, Titanium
Diameter transmitter:
depending on material and version at least 22 mm
Measuring range:
Process temperature:
Deviation:
Signal output:
Operation:
$0 \ldots 0.1$ bar up to $0 \ldots 25$ bar
$-20 \ldots+80^{\circ} \mathrm{C}\left(-4 \ldots+176{ }^{\circ} \mathrm{F}\right)$
$<0.2 \%,<0.1 \%$
4 ... $20 \mathrm{~mA}, 4$... $20 \mathrm{~mA} /$ HART
depending on the version via PACTware/PC

3 Mounting instructions

Mounting position

The following illustration shows a mounting example for VEGAWELL 52. The VEGA price list contains suitable mounting brackets under the section Accessories. With these parts, standard mounting arrangements can be realised quickly and reliably.

Fig. 3: VEGAWELL 52 in a pump shaft with VEGABOX 02
VEGAWELL 52 must be mounted in a calm area or in a suitable protective tube. This avoids lateral movements of the transmitter and the resulting corruption of measurement data.

Note:

As an alternative to fixing the transmitter, the use of a measuring instrument holder from VEGA's line of mounting accessories is recommended.

Beside the connection and suspension cables, the suspension cable also contains a capillary for atmospheric pressure compensation. All versions can be shortened on site.

With VEGAWELL 52, the electronics is completely integrated in the transmitter. The cable end can be lead directly to a dry connection compartment. Pressure compensation is then carried out via the filter element of the capillaries.

1

Note:

The pressure compensation housing VEGABOX 02 is recommended for connecting VEGAWELL 52.

It contains a high-quality ventilation filter and terminals. A protective cover is optionally available for use outdoors.

Mounting versions

The following illustrations show the different mounting versions depending on the instrument type.

Mounting with straining clamp

Fig. 6: Screw connection
1 Suspension cable
2 Seal screw
3 Cone bushing
4 Seal cone
5 Screw connection
6 Seal

Fig. 5: Straining clamp
1 Suspension cable
2 Suspension opening
3 Clamping jaws

Mounting with screw connection

Mounting with housing and thread

Fig. 7: Housing with thread G112 A
1 Housing
2 Seal
3 Thread

4 Electrical connection

4.1 General requirements

The supply voltage range can differ depending on the instrument version. You can find exact specifications in chapter "Technical data".

The national installation standards as well as the valid safety regulations and accident prevention rules must be observed.

In hazardous areas you should take note of the appropriate regulations, conformity and type approval certificates of the sensors and power supply units.

4.2 Power supply

Supply voltage and current signal are carried on the same twowire cable. The requirements on the power supply are specified in chapter "Technical data".

The VEGA power supply units VEGATRENN 149AEx, VEGASTAB 690, VEGADIS 371 as well as VEGAMET signal conditioning instruments are suitable for power supply. When one of these instruments is used, a reliable separation of the supply circuits from the mains circuits according to DIN VDE 0106 part 101 is ensured.

4.3 Connection cable

In general

An outer diameter of $5 \ldots 9 \mathrm{~mm}$ ensures the seal effect of the cable entry. If electromagnetic interference is expected, screened cable should be used for the signal lines.

The sensors are connected with standard two-wire cable without screen.

In Ex applications, the corresponding installation regulations must be noted for the connection cable.

4.4 Cable screening and grounding

If screened cable is necessary, the cable screen must be connected on both ends to ground potential. If potential equalisation currents are expected, the connection on the evaluation side must be made via a ceramic capacitor (e.g. $1 \mathrm{nF}, 1500 \mathrm{~V}$).

4.5 Wiring plan VEGAWELL 52-4 ... 20 mA

Direct connection

Fig. 8: Wire assignment, suspension cable
1 blue (-): to power supply or to the processing system
2 brown (+): to power supply or to the processing system
3 Shielding
4 Breather capillaries with filter element

Connection via VEGABOX 02

Fig. 9: Terminal assignment VEGABOX 02
1 To power supply or the processing system
2 Shielding

Connection via housing

Fig. 10: Terminal assignment of the housing
1 To power supply or the processing system
2 Shielding ${ }^{2)}$

[^18]
4.6 Wiring plan VEGAWELL 52-4... 20 mA/ HART - Pt 100

Direct connection

Fig. 11: Wire assignment, connection cable
1 blue (-): to power supply or to the processing system
2 Brown (+): to power supply or to the processing system
3 White: for processing of the integrated Pt 100 (power supply)
4 Yellow: for processing of the integrated Pt 100 (measurement)
5 Red: for processing of the integrated Pt 100 (measurement)
6 Black: for processing of the integrated Pt 100 (power supply)
7 Shielding
8 Breather capillaries with filter element

Connection via VEGABOX 02

Fig. 12: Terminal assignment VEGABOX 02
1 To power supply or the processing system (signal pressure transmitter)
2 To power supply or the processing system (connection cables resistance thermometer Pt 100)
3 Shielding ${ }^{3}$

Connection via VEGABOX 02 with integrated temperature sensor

Fig. 13: Terminal assignment VEGABOX 02
1 To power supply or the processing system (signal pressure transmitter)
2 For voltage supply or to processing system (resistance thermometer Pt 100)
3 Shielding ${ }^{4}$

Connection via housing

Fig. 14: Terminal assignment of the housing
1 To power supply or the processing system (signal pressure transmitter)
2 For voltage supply or to processing system (resistance thermometer Pt 100)
3 Shielding ${ }^{5}$
${ }^{3)}$ Connect screen to ground terminal. Connect ground terminal on the outside of the housing as prescribed. The two terminals are galvanically connected.
4) Connect screen to ground terminal. Connect ground terminal on the outside of the housing as prescribed. The two terminals are galvanically connected.
5) Connect screen to ground terminal. Connect ground terminal on the outside of the housing as prescribed. The two terminals are galvanically connected.

5 Operation

5.1 Overview

VEGAWELL $524 \ldots 20 \mathrm{~mA}$
VEGAWELL 52-4... 20 mA has no adjustment options.
VEGAWELL 524 ... 20 mA/HART - Pt 100

- Adjustment software according to FDT/DTM standard, e.g. PACTware and PC
- HART handheld

5.2 Adjustment with PACTware

Connecting the PC to the signal cable

Fig. 15: Connection of the PC to VEGABOX 02 or communication resistor
1 PC with PACTware
2 RS232 interface (with VEGACONNECT 3), USB interface (with VEGACONNECT 4)
3 VEGACONNECT 3 or 4
4 Communication resistor 250Ω
5 Power supply unit

Necessary components:

- VEGAWELL 52
- PC with PACTware and suitable VEGA DTM
- VEGACONNECT with HART adapter cable
- HART resistor approx. 250Ω
- Power supply unit Note:
With power supply units with integrated HART resistance (internal resistance approx. 250Ω), an additional external resistance is not necessary (e.g. VEGATRENN 149A, VEGAMET 381/624/625, VEGASCAN 693). In such cases, VEGACONNECT can be connected parallel to the $4 \ldots 20 \mathrm{~mA}$ cable.

6 Technical data

Materials and weights

Materials, wetted parts

- Transmitter

316L, 316L with PE coating, 1.4462 (Duplex), 1.4462 with PE coating,

- Diaphragm
- Measuring cell seal
- Suspension cable
- Cable gland on the transmitter PVDF, Titanium
sapphire ceramic ${ }^{\circledR}$ (99.9 \% oxide ceramic)
FKM (VP2/A) - FDA and KTW approved, FFKM (Perlast G75S), EPDM (A+P 75.5/KW75F)
PE (FDA and KTW-approved), FEP, PUR
- Process fitting

316L

- Straining clamp

316L

- Unassembled screw connection
1.4301
- Threaded connection on the housing

316L, PVDF
Materials, non-wetted parts

- Housing

Weight approx.

- Basic weight

316L

- Suspension cable
- Straining clamp
- Screw connection
- Plastic housing
plastic PBT (Polyester), 316L
- Stainless steel housing
$0.8 \mathrm{~kg}(1.764 \mathrm{lbs})$
$0.1 \mathrm{~kg} / \mathrm{m}(0.07 \mathrm{lbs} / \mathrm{ft})$
0.2 kg (0.441 lbs)
0.4 kg (0.882 lbs)
$0.8 \mathrm{~kg}(1.764 \mathrm{lbs})$
1.6 kg (3.528 lbs)

Input variable

Measured value	Level
Measuring range	see product code
Recommended max. turn down	$10: 1$

Output variable

4 ... 20 mA
Output signal
Signal resolution
Failure signal
4 ... 20 mA

Max. output current
Run-up time
Step response time
Fulfilled NAMUR recommendations
see product code
Recommended max. turn down 10 : 1

4 ... 20 mA/HART - Pt 100
Output signal
Signal resolution
Failure signal
Max. output current
Run-up time
Step response time
Fulfilled NAMUR recommendations
$2 \mu \mathrm{~A}$
$<3.6 \mathrm{~mA}$
22 mA
2 s
100 ms (ti: $0 \mathrm{~s}, 0 \ldots 63 \%$)
NE 43
$4 \ldots 20 \mathrm{~mA} /$ HART
$2 \mu \mathrm{~A}$
< $3.6 \mathrm{~mA} ; 20.5 \mathrm{~mA}$; 22 mA ; unchanged (adjustable via PACTware)
22 mA
15 s
200 ms (ti: $0 \mathrm{~s}, 0 \ldots 63 \%$)
NE 43

Additional output parameter - temperature

integrated resistance thermometer	Pt 100 according to DIN EN 60751
Range	$-50 \ldots+100^{\circ} \mathrm{C}\left(-58 \ldots+212^{\circ} \mathrm{F}\right)$
Resolution	$1^{\circ} \mathrm{K}$

Deviation for 4 ... 20 mA version ${ }^{6}$

Specifications refer to the set span. Turn down (TD) = nominal measuring range/set span.
Deviation with version < 0.2 \%

- Turn down 1: 1 up to $5: 1$
< 0.2 \%
- Turn down > 10 : 1
$<0.04 \%$ x TD
${ }^{6)}$ Determined according to the limit point method according to IEC 60770, incl. non-linearity, hysteresis and non-repeatability.

Deviation with version <0.1 \%

- Turn down 1:1 up to 5:1

$$
\begin{aligned}
& <0.1 \% \\
& <0.02 \% \text { x TD }
\end{aligned}
$$

Deviation for version $4 \ldots 20 \mathrm{~mA} / \mathrm{HART}$ - Pt 100 ${ }^{\text {7 }}$

Applies to digital HART interface as well as to analogue current output $4 \ldots 20 \mathrm{~mA}$. Specifications refer to the set span. Turn down (TD) is the relation nominal measuring range/set span.

Deviation with version < 0.2 \%

- Turn down 1: 1 up to $5: 1$

$$
\begin{aligned}
& <0.2 \% \\
& <0.04 \% \text { x TD } \\
& \\
& <0.1 \%
\end{aligned}
$$

- Turn down > 10: 1

Deviation with version <0.1 \%

- Turn down 1:1 up to 5:1
- Turn down > 10: 1

Influence of the product or ambient temperature

Applies to digital HART interface as well as to analogue current output $4 \ldots 20 \mathrm{~mA}$. Specifications refer to the set span. Turn down (TD) is the relation nominal measuring range/set span.

Average temperature coefficient of the zero signal

In the compensated temperature range of $0 \ldots+80^{\circ} \mathrm{C}\left(+32 \ldots+176{ }^{\circ} \mathrm{F}\right)$, reference temperature $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.
Average temperature coefficient of the zero signal

- Turn down 1: 1
- Turn down 1: 1 up to 5 : 1 < 0.05 \%/10 K
< 0.1 \%/10 K
- Turn down > 10:1

Outside the compensated temperature range
Average temperature coefficient of the zero signal

- Turn down 1: 1

$$
\text { typ. < } 0.05 \% / 10 \mathrm{~K}
$$

Long-term stability (similar to DIN 16086, DINV 19259-1 and IEC 60770-1)

Applies to digital HART interface as well as to analogue current output $4 \ldots 20 \mathrm{~mA}$. Specifications refer to the set span. Turn down (TD) is the relation nominal measuring range/set span.
Long-term drift of the zero signal

```
< (0.1 % x TD)/year
```


Ambient conditions

Ambient temperature

- Connection cable PE

```
-40 \ldots.+60 }\textrm{C}(-40\ldots+140 % F  \(-40 \ldots+85^{\circ} \mathrm{C}\left(-40 \ldots+185^{\circ} \mathrm{F}\right)\)
\[
-20 \ldots+80^{\circ} \mathrm{C}\left(-4 \ldots+176^{\circ} \mathrm{F}\right)
\]
```

- Connection cable PUR, FEP

Storage and transport temperature

Process conditions

Process pressure

Max. process pressure, transmitter ${ }^{8)}$

- Measuring range 0.1 bar (1.45 psig) 15 bar (218 psig)
- Measuring range 0.2 bar (2.9 psig)

20 bar (290 psig)

- Measuring range ≤ 0.4 bar (5.8 psig)

25 bar (363 psig)
Pressure stage, process fitting

- Unassembled screw connection

316L: PN 3, PVDF: unpressurized

- Thread on the housing PN 3

Product temperature, depending on the version

[^19] Limited by the overpressure resistance of the measuring cell.

Suspension cable	Transmitter	Product temperature
PE	All	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right)$
PUR	All	$-20 \ldots+80^{\circ} \mathrm{C}\left(-4 \ldots+176{ }^{\circ} \mathrm{F}\right)$
PUR	PE coating	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right)$
FEP	All	$-20 \ldots+80^{\circ} \mathrm{C}\left(-4 \ldots+176{ }^{\circ} \mathrm{F}\right)$
FEP	PE coating	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right)$

Vibration resistance mechanical vibrations with 4 g and $5 \ldots 100 \mathrm{~Hz}^{9)}$

Electromechanical data

Suspension cable

- Configuration
six wires, one suspension cable, one breather capillary, screen braiding,
- Tensile strength
foil, mantle
- Max. length
$\geq 1200 \mathrm{~N}$ (270 pound force)
- Min. bending radius

1000 m (3280 ft)

- Diameter approx.

25 mm (with $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$)

- colour (non-Ex/Ex) - PE

8 mm (0.315 in)
black/blue

- colour (non-Ex/Ex) - PUR, FEP
blue/blue
Cable entry housing or VEGABOX 02
1 x cable gland $\mathrm{M} 20 \times 1.5$ (cable: $\varnothing 5 \ldots 9 \mathrm{~mm}$), $1 \times$ blind stopper M20 $\times 1.5$
Screw terminals

Supply voltage - $4 \ldots 20 \mathrm{~mA}$

Operating voltage
Permissible residual ripple
$-<100 \mathrm{~Hz}$

- $100 \mathrm{~Hz} \ldots 10 \mathrm{kHz}$
Load
$8 \ldots 36$ V DC
$\mathrm{U}_{\mathrm{ss}}<1 \mathrm{~V}$
$\mathrm{U}_{\mathrm{ss}}<10 \mathrm{mV}$
see diagram

Fig. 16: Voltage diagram
1 Voltage limit
2 Operating voltage

Supply voltage - $4 \ldots 20 \mathrm{~mA} / \mathrm{HART}$ - Pt 100

Operating voltage
Permissible residual ripple

$-<100 \mathrm{~Hz}$	$\mathrm{U}_{\mathrm{ss}}<1 \mathrm{~V}$
$-100 \mathrm{~Hz} \ldots 10 \mathrm{kHz}$	$\mathrm{U}_{\mathrm{ss}}<10 \mathrm{mV}$
Load	see diagram

Load
\qquad
$9.6 \ldots 36$ V DC
$\mathrm{U}_{\mathrm{ss}}<1 \mathrm{~V}$
$\mathrm{U}_{\mathrm{ss}}<10 \mathrm{mV}$
see diagram
9) Tested according to the regulations of German Lloyd, GL directive 2.

Fig. 17: Voltage diagram
HART load
Voltage limit
Operating voltage

Electrical protective measures

Protection

- Transmitter	IP 68 (30 bar)
- Housing	IP $66 /$ IP 67
- VEGABOX 02	IP 65
Overvoltage category	III
Protection class	III

Existing approvals or approvals applied for

Gas explosion protection	e.g. according to ATEX and IEC
Fire-damp protection	e.g. according to ATEX
Overfill protection	e.g. according to WHG
Ship approval	e.g. according to GL, LRS, ABS, RINA

The available approvals can be selected via the configurator on www.vega.com.

Depending on the version, instruments with approvals can have different technical data. For these instruments, please note the corresponding approval documents. They can be downloaded in the download section on www.vega.com.

CE conformity

EMC (2004/108/EG)	EN 61326-1: 2006
LVD $(2006 / 95 / E G)$	EN 61010-1: 2001

Environmental instructions

VEGA environment management system
certified according to DIN EN ISO 14001
You can find detailed information under www.vega.com.

7 Dimensions

VEGAWELL 52 - suspension cable 1

Fig. 18: VEGAWELL 52 - suspension cable
1 Transmitter Duplex, with straining clamp
2 Transmitter Duplex for deep wells, with unassembled screw connection G1½ A (11/2 NPT) and closing cap
3 Transmitter Duplex, with PE coating
4 Transmitter with screwed connection of PVDF
5 Transmitter Titanium/Titanium with glass leadthrough, with thread G1 A (1 NPT) and plastic housing

VEGAWELL 52 - suspension cable 2

Fig. 20: VEGAWELL 52 - suspension cable
1 Transmitter 316L, with straining clamp
2 Transmitter Titanium, with unassembled screw connection G1 A (1 NPT)

VEGAWELL 52 - threaded fitting

Fig. 22: VEGAWELL 52 - thread
1 Threaded fitting G½ inner G1⁄4
2 Threaded fitting G1

8 Product code

VEGAWELL 52

$\triangle C \in \triangle$

VEGA Grieshaber KG Am Hohenstein 113 77761 Schiltach Germany
Phone +49 7836 50-0
Fax +49 7836 50-201
E-Mail: info@de.vega.com
www.vega.com

You can find at www.vega.com
downloads of the following

- operating instructions manuals
- menu schematics
- software
- certificates
- approvals
and much, much more

TECHNICAL DATA SHEET

Equipment Type:Control Relays
Location:
RTU Section
Model Numbers: Various
Manufacturer:
Specher \& Schuh
Supplier:
NHP Pty Ltd
16 Riverview Place
Murarrie
(07) 39094999

Control \& Timing Relays

CS7 Industrial Control Relays G2
Technical Information. G14
CS8 Industrial Control Relays G18
Technical Information. G21
RZ7-FS Electronic Timing Relays G24
Technical Information G34
RZ7-FE Electronic Timing Relays G36
Technical Information. G42
Relpol Ice Cube Relays
R2/R4 Plug-in Power Relays G46
Technical Information. G51
R15 Plug-in Power Relays G56
Technical Information. G60
RUC Plug-in Power Relays. G64
Technical Information. G67
RY2 Plug-in Power Relays G70
Technical Information. G72
PI84/PI85 Interface Relays G75
Technical Information. G77
PIR6W Interface Terminal Block Relays G82
Technical Information. G84

CS7

Industrial

Reliable, general purpose relays for heavy duty applications

The base four pole CS7 relay can be expanded up to twelve poles with the addition of front and side mount auxiliaries

CS7 Industrial Control Relays share the same design as our modern CA7 contactor range. They are compact and designed for heavy duty industrial control applications where reliability and versatility are essential.

Introducing Three CS7 Models for any Control Application

The standard CS7 relay utilizes x stamped contact technology that reliably switches typical control circuits up to 10A (AC-15). For master relay circuits requiring higher amp capacity, the CS7-M Master Relay is designed for control circuits up to 15A (AC15).

For applications requiring low energy switching such as PLC's or other electronic circuits, the CS7-B relay with bifurcated contacts is designed for 20 million operations down to a signal level of 5 V @ 3 mA .

The bifurcated H-bridge design divides each movable gold contact into two sections at the tip of the spanner which provides a higher degree of reliability for low signal applications.

Auxiliary components provide a range of options

CS7 auxiliary components convert the basic four pole relay into a:

- $5,6,7,8,9,10,11$ or 12 pole relay
- 4, 5, 6, 7 or 8 pole latched relay
- 4, 5, 6, 7 or 8 pole relay with two pneumatic time delay contacts
- Mechanically latched 4, 5, 6, 7 or 8 pole relay
- Also available are top mounted bifurcated auxiliary contacts which operate down to $5 \mathrm{~V} @ 3 \mathrm{~mA}$.

Since the CS7 uses the same auxiliary components as our CA7 contactors, inventory is reduced.

Mechanically linked contacts for safety

CS7 control relays are perfect for fail-safe control circuits. An interlock contact design, which maintains minimum 0.3 mm clearance, prevents the NC contact from reclosing if the NO contact is welded when in operation. This feature not only includes the base contact poles, but extends to the front and/or side mounted auxiliary contacts. This is a requirement in safety circuits and is backed by SUVA-PRO certification.

Maximum convenience and safety

CS7 relays are designed for fast and trouble free installation and maintenance. All components are modular and snap-on without the use of tools. The relays are DIN-rail mountable so they can be installed, moved or replaced quickly. All terminals are "captive" and are shipped in the open position, saving you an operation. The entire line is UL Listed, CSA Certified and CE marked and offers finger and back of hand protection to the strictest international standards.

Effortless installation

CS7 relays are DIN-rail mountable for instant installation and modification. Fittings are also included for base mounting. All terminals are clearly marked and ready for installation with either manual or power screwdrivers. A complete identification system is also available using self-adhesive labels, paper tags or plastic clip-on tags.

Series CS7 Standard Control Relays - 4 Pole 14

CS7 Relay	Contact Arrangement and Numbering	Contacts 1		AC Operation		Electronic DC ©	
		NO	NC	Catalog Number	Price	Catalog Number	Price
		2	2	CS7-22E-*	92	CS7E-22E-*	127
	$\left.\left.\left.\left.\left.\right\|_{\text {A2 }} ^{\mathrm{A} 1}\right\|_{14} ^{13}\right\|_{22} ^{21}\right\|_{34} ^{23}\right\|_{44} ^{33}$	3	1	CS7-31E-*		CS7E-31E-*	
	$\left.\left.\left.\left.\left.\left.\right\|_{\text {A2 }} ^{\text {A1 }}\right\|_{14} ^{13}\right\|_{24} ^{13}\right\|_{34} ^{23}\right\|_{44} ^{33}\right\|_{43} ^{43}$	4	0	CS7-40E-*		CS7E-40E-*	
		0	4	CS7-04E-*		CS7E-04E-*	

Contact Ratings (Per UL508/NEMA A600 \& P600)

Standard	Circuit Voltage	Make (Amps/VA)	Break (Amps/VA)	Continuous Amps
	120 AC	$60 \mathrm{~A} / 7200 \mathrm{VA}$	$6 \mathrm{~A} / 720 \mathrm{VA}$	
A600	240 AC	$30 \mathrm{~A} / 7200 \mathrm{VA}$	$3 \mathrm{~A} / 720 \mathrm{VA}$	10
	480AC	$15 \mathrm{~A} / 7200 \mathrm{VA}$	$1.5 \mathrm{~A} / 720 \mathrm{VA}$	
	600 AC	$12 \mathrm{~A} / 7200 \mathrm{VA}$	$1.2 \mathrm{~A} / 720 \mathrm{VA}$	
P600	125 DC (3	$1.1 \mathrm{~A} / 138 \mathrm{VA}$	$1.1 \mathrm{~A} / 138 \mathrm{VA}$	
	250 DC (2	$0.55 \mathrm{~A} / 138 \mathrm{VA}$	$0.55 \mathrm{~A} / 138 \mathrm{VA}$	5
	$301-600 \mathrm{DC}$ ($)$	$0.2 \mathrm{~A} / 138 \mathrm{VA}$	$0.2 \mathrm{~A} / 138 \mathrm{VA}$	

Other UL Ratings
Maximum Voltage $\quad 600$ volts AC or DC General Purpose Amps CS7
Auxiliaries (@40 ${ }^{\circ}$)
Auxiliaries (@ $60^{\circ} \mathrm{C}$)

25 amps
10 amps
6 amps

AC Coil Codes 3

AC Coil Code	Voltage Range	
	50 Hz	60 Hz
24 Z	24 V	24 V
$\mathbf{1 2 0}$	$\mathbf{1 1 0 \mathrm { V }}$	$\mathbf{1 2 0 \mathrm { V }}$
208	\sim	208 V
220 W	$\mathbf{2 0 0 V}-220 \mathrm{~V}$	$\mathbf{2 0 8 V}-240 \mathrm{~V}$
240	220 V	240 V
277	240 V	277 V
380	$380 \mathrm{~V}-400 \mathrm{~V}$	440 V
480	440 V	480 V
$\mathbf{6 0 0}$	550 V	600 V

Ordering Instructions

Specify Catalog Number	
Replace $(\boldsymbol{*})$ with Coil Code	See Coil Codes on this page

on this page

DC Coil Codes 5

DC Coil Codes	Voltage
12 E	12 V
24 E	24 V
$48 \mathrm{E} \cdot 6$	$48-72 \mathrm{~V}$
$110 \mathrm{E} \cdot 6$	$110-125 \mathrm{~V}$
$220 \mathrm{E} \cdot$	$220-250 \mathrm{~V}$

(1) Side mounted and/or top auxiliaries may be field installed to increase the number of available poles, limitations apply. Refer to page G12 for ordering and restriction details. Please note that side mount auxiliary terminal markings may conflict with base relay and/or top mount auxiliary terminal markings.
DC rating for CS7 base control relay.
(3) Other voltages available, see page G13. Non-standard coil voltages not listed here must be ordered and installed separately as renewal parts.
(4) Positively-Guided/Mechanically-Linked Contacts per IEC 947-5-1 Annex L on 4 main poles.
(5) CS7E electronic coils are not interchangeable with non-electronic DC or AC coils.
© Not applicable with Electronic Timer accessories (CRZ_7).

Series CS7-B Control Relays - 4 Pole, Bifurcated Contacts for Lower Level Signals 14

CS7-B Relay	Contact Arrangement and Numbering	Contacts 1		AC Operation		Electronic DC 5	
		NO	NC	Catalog Number	Price	Catalog Number	Price
		2	2	CS7-B22E-*	117	CS7E-B22E-*	190
		3	1	CS7-B31E-*		CS7E-B31E-*	
		4	0	CS7-B40E-*		CS7E-B40E-*	
		0	4	CS7-B04E-*		CS7E-B04E-*	

Contact Ratings (Per UL508/NEMA A600 \& Q600)

Standard	Circuit Voltage	Make (Amps/VA)	Break (Amps/VA)	Continuous Amps
A600	120AC	60A/7200VA	6A/720VA	10
	240AC	30A/7200VA	3A/720VA	
	480AC	15A/7200VA	1.5A/720VA	
	600AC	12A/7200VA	1.2A/720VA	
0600	125DC ${ }^{(2)}$	0.55A/69VA	0.55A/69VA	2.5
	250DC ©	0.27A/69VA	0.27A/69VA	
	301-600DC (2)	0.1A/69VA	0.1A/69VA	

CS7-B Bifurcated Control Relay

- Gold plated bifurcated contacts for low level switching application, min 5V, 3mA
- Maximum voltage 600V AC or DC
- General purpose amps - 10 amps
- Positively guided/mechanically-linked main contacts

Principle moving contact designs:

AC Coil Codes 3

AC Coil Code	Voltage Range	
	50 Hz	60 Hz
$\mathbf{1 2 0}$	110 V	120 V

DC Coil Codes 5

DC Coil Codes	Voltage
12 E	12 V
24 E	24 V
48 E 6	$48-72 \mathrm{~V}$
110 E 6	$110-125 \mathrm{~V}$
220 E 6	$220-250 \mathrm{~V}$

Ordering Instructions

Specify Catalog Number	
Replace $(*)$ with Coil Code	See Coil Codes on this page

(1) Side mounted and/or top auxiliaries may be field installed to increase the number of available poles, limitations apply. Refer to page G12 for ordering and restriction details. Please note that side mount auxiliary terminal markings may conflict with base relay and/or top mount auxiliary terminal markings.
(2) DC rating for CS7-B base control relay.
(3) Other AC voltages available, see page G13. Non-standard coil voltages not listed here must be ordered and installed separately as renewal parts.
(4) Positively-Guided/Mechanically-Linked Contacts per IEC 947-5-1 Annex L on 4 main poles.
(5) CS7E electronic coils are not interchangeable with non-electronic DC or AC coils.
© Not applicable with Electronic Timer accessories (CRZ_7).

Series CS7 Master Control Relays - 4 Pole 14

CS7-M Relay	Contact Arrangement and Numbering	Contacts 1		AC Operation		Electronic DC 6	
		NO	NC	Catalog Number	Price	Catalog Number	Price
		2	2	CS7-M22E-*	168	CS7E-M22E-*	239
		3	1	CS7-M31E-*		CS7E-M31E-*	
		4	0	CS7-M40E-*		CS7E-M40E-*	
		0	4	CS7-M04E-*		CS7E-M04E-*	

Contact Ratings (Per UL508/NEMA A600 \& P600)

Standard	Circuit Voltage	Make (Amps/VA)	Break (Amps/VA)	Continuous Amps
A600	120 AC	$60 \mathrm{~A} / 7200 \mathrm{VA}$	$6 \mathrm{~A} / 720 \mathrm{VA}$	
	240 AC	$30 \mathrm{~A} / 7200 \mathrm{VA}$	$3 \mathrm{~A} / 720 \mathrm{VA}$	20
	480AC	$15 \mathrm{~A} / 7200 \mathrm{VA}$	$1.5 \mathrm{~A} / 720 \mathrm{VA}$	20
	600AC	$12 \mathrm{~A} / 7200 \mathrm{VA}$	$1.2 \mathrm{~A} / 720 \mathrm{VA}$	
	125DC ©	$1.1 \mathrm{~A} / 138 \mathrm{VA}$	$1.1 \mathrm{~A} / 138 \mathrm{VA}$	
	250 DC ($0.55 \mathrm{~A} / 138 \mathrm{VA}$	$0.55 \mathrm{~A} / 138 \mathrm{VA}$	5

CS7-M Master Control Relays

- Excellent replacement for heavy duty NEMA master relay users.
- Maximum voltage 600V AC or DC
- General purpose rating 30 amps (2X A600 for CS7-M Base Relay)

Principle moving contact designs:

AC Coil Codes 3

AC	Voltage Range	
	50 Hz	60 Hz
$\mathbf{1 2 0}$	110 V	120 V

DC Coil Codes 5

DC Coil Codes	Voltage
$\mathbf{1 2 E}$	12 V
$\mathbf{2 4 E}$	24 V
$\mathbf{4 8 E} \boldsymbol{\theta}$	$48-72 \mathrm{~V}$
$\mathbf{1 1 0 E} \boldsymbol{\theta}$	$110-125 \mathrm{~V}$
$220 \mathrm{E} \boldsymbol{\theta}$	$220-250 \mathrm{~V}$

Ordering Instructions

Specify Catalog Number	
Replace (*) with Coil Code	See Coil Codes on this page

(1) Side mounted and/or top auxiliaries may be field installed to increase the number of available poles, limitations apply. Refer to page G12 for ordering and restriction details. Please note that side mount auxiliary terminal markings may conflict with base relay and/or top mount auxiliary terminal markings.
(2) DC rating for CS7-M base control relay.
(3) Other AC voltages available, see page G13. Non-standard coil voltages not listed here must be ordered and installed separately as renewal parts.
(4) Positively-Guided/Mechanically-Linked Contacts per IEC 947-5-1 Annex L on 4 main poles.
(5) CS7E electronic coils are not interchangeable with non-electronic DC or AC coils.
(7) Not applicable with Electronic Timer accessories (CRZ_7).

CS7 Complete Assemblies - 6 Pole, AC Control 1 (5

CS7 Relay	Contact Arrangement and Numbering	Contacts 1		AC Operation	
		N0	NC	Catalog Number	Price
		3	3	CS7-33Y-*	
		4	2	CS7-42E-*	
		4	2	CS7-42Y-*	122
		5	1	CS7-51E-*	
		6	0	CS7-60E-*	

AC Coil Codes 4

AC Coil Code	Voltage Range	
	50 Hz	60 Hz
24 Z	24 V	24 V
$\mathbf{1 2 0}$	$\mathbf{1 1 0 V}$	$\mathbf{1 2 0 V}$
208	\sim	208 V
220 W	$\mathbf{2 0 0 V}-220 \mathrm{~V}$	$\mathbf{2 0 8 V}-240 \mathrm{~V}$
$\mathbf{2 4 0}$	220 V	240 V
$\mathbf{2 7 7}$	240 V	277 V
$\mathbf{3 8 0}$	$380 \mathrm{~V}-400 \mathrm{~V}$	440 V
$\mathbf{4 8 0}$	440 V	480 V
$\mathbf{6 0 0}$	550 V	600 V

Contact Ratings (Per UL508/NEMA A600, P600 \& Q600)

Standard	Circuit Voltage	Make (Amps/VA)	Break (Amps/VA)	Continuous Amps
A600	$\begin{aligned} & \hline 120 \mathrm{AC} \\ & 240 \mathrm{AC} \\ & 480 \mathrm{AC} \\ & 600 \mathrm{AC} \end{aligned}$	$\begin{aligned} & \hline 60 \mathrm{~A} / 7200 \mathrm{VA} \\ & \text { 30A/7200VA } \\ & \text { 15A/7200VA } \\ & \text { 12A/7200VA } \end{aligned}$	$\begin{gathered} \hline \text { 6A/720VA } \\ \text { 3A/720VA } \\ \text { 1.5A/720VA } \\ \text { 1.2A/720VA } \end{gathered}$	10
P600	$\begin{gathered} \text { 125DC (2 } \\ 250 D C \text { 2 } \\ 301-600 \mathrm{DC} \text { (2 } \end{gathered}$	$\begin{gathered} 1.1 \mathrm{~A} / 138 \mathrm{VA} \\ 0.55 \mathrm{~A} / 138 \mathrm{VA} \\ 0.2 \mathrm{~A} / 138 \mathrm{VA} \end{gathered}$	$\begin{gathered} \text { 1.1A/138VA } \\ 0.55 \mathrm{~A} / 138 \mathrm{VA} \\ 0.2 \mathrm{~A} / 138 \mathrm{VA} \end{gathered}$	5
Q600	$\begin{gathered} 125 D C \times 3 \\ 250 D C \text { 3 } \\ 301-600 \mathrm{DC} 3 \end{gathered}$	$\begin{gathered} 0.55 \mathrm{~A} / 69 \mathrm{VA} \\ 0.27 \mathrm{~A} / 69 \mathrm{VA} \\ 0.1 \mathrm{~A} / 69 \mathrm{VA} \end{gathered}$	$\begin{gathered} 0.55 \mathrm{~A} / 69 \mathrm{VA} \\ 0.27 \mathrm{~A} / 69 \mathrm{VA} \\ 0.1 \mathrm{~A} / 69 \mathrm{VA} \end{gathered}$	2.5

Other UL Ratings
Maximum Voltage 600 volts AC or DC

General Purpose Amps
CS7
25 A
Aux. (@40으) 10 A
Aux. (@60 ${ }^{\circ} \mathrm{C}$) A

Ordering Instructions

Specify Catalog Number Replace (*) with Coil Code

See Coil Codes on this page
(1) Side mounted and/or top auxiliaries may be field installed to increase the number of available poles, limitations apply. Refer to page G12 for ordering and restriction details. Please note that side mount auxiliary terminal markings may conflict with base relay and/or top mount auxiliary terminal markings.
(2) DC rating for CS7 base control relay.
(3 DC rating for CS7 auxiliary blocks.
(4) Other voltages available, see page G13. Non-standard coil voltages not listed here must be ordered and installed separately as renewal parts.
© Positively-Guided/Mechanically-Linked Contacts per IEC 947-5-1 Annex L on 4 main poles and auxiliaries.

CS7 Complete Assemblies - 8 Pole, AC Control 116

CS7 Relay	Contact Arrangement and Numbering	Contacts 1		AC Operation	
		NO	NC	Catalog Number	Price
		4	4	CS7-44E-*	150
		4	4	CS7-44Y-*	
	$\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\right\|_{\text {A2 }} ^{A 1}\right\|_{14} ^{14}\right\|_{24} ^{13}\right\|_{34} ^{23}\right\|_{44} ^{33}\right\|_{54} ^{43}\right\|_{62} ^{53}\right\|_{72} ^{61}\right\|_{82} ^{71}\right\|_{4} ^{81}$	5	3	CS7-53E-*	
	$\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\right\|_{\text {A2 }} ^{A 1}\right\|_{14} ^{A}\right\|_{22} ^{13}\right\|_{34} ^{21}\right\|_{44} ^{33}\right\|_{54} ^{43}\right\|_{62}\right\|_{72} ^{53}\right\|_{84} ^{61}\right\|_{4} ^{71}\right\|_{4} ^{83}$	5	3	CS7-53Y-*	
		6	2	CS7-62E-*	
		7	1	CS7-71E-*	
		8	0	CS7-80E-*	

AC Coil Codes 4

AC Coil Code	Voltage Range	
	50 Hz	60 Hz
24 Z	24 V	24 V
120	110 V	120 V
208	\sim	208 V
220 W	$200 \mathrm{~V}-220 \mathrm{~V}$	$208 \mathrm{~V}-240 \mathrm{~V}$
240	220 V	240 V
277	240 V	277 V
380	$380 \mathrm{~V}-400 \mathrm{~V}$	440 V
480	440 V	480 V
600	550 V	600 V

Contact Ratings (Per UL508/NEMA A600, P600 \& Q600)

Standard	Circuit Voltage	Make (Amps/VA)	Break (Amps/VA)	Continuous Amps
A600	120AC	60A/7200VA	6A/720VA	10
	240AC	30A/7200VA	3A/720VA	
	480AC	15A/7200VA	1.5A/720VA	
	600AC	12A/7200VA	1.2A/720VA	
P600	125DC 2	1.1A/138VA	1.1A/138VA	5
	250DC 2	0.55A/138VA	0.55A/138VA	
	301-600DC ${ }^{2}$	0.2A/138VA	0.2A/138VA	
Q600	125DC 3	0.55A/69VA	0.55A/69VA	2.5
	250DC 3	0.27A/69VA	0.27A/69VA	
	301-600DC 3	0.1A/69VA	0.1A/69VA	

Other UL Ratings
Maximum Voltage 600 volts AC or DC

General Purpose Amps
CS7 25 A
Aux. (@40 $\left.{ }^{\circ} \mathrm{C}\right) \quad 10 \mathrm{~A}$
Aux. (@60 ${ }^{\circ}$) 6 A

Ordering Instructions

Specify Catalog Number	
Replace $(\boldsymbol{*})$ with Coil Code	See Coil Codes on this page

(1) Side mounted and/or top auxiliaries may be field installed to increase the number of available poles, limitations apply. Refer to page G12 for ordering and restriction details. Please note that side mount auxiliary terminal markings may conflict with base relay and/or top mount auxiliary terminal markings.
(2) DC rating for CS7 base control relay.
(3) DC rating for CS7 auxiliary blocks.
(4) Other voltages available, see page G13. Non-standard coil voltages not listed here must be ordered and installed separately as renewal parts.
(5 Positively-Guided/Mechanically-Linked Contacts per IEC 947-5-1 Annex L on 4 main poles and auxiliaries.

Industrial Control Relays
Series CS7

Side Mount Auxiliary Contact Blocks (1 \& 2 Pole) (12

Contact Block	Description	NO	NC	Contact Arrangement	For use with...	Standard Contacts Catalog Number	Price
	Auxiliary Contact Blocks for Side Mounting 23 - 1 and 2-pole - Two way numbering for right or left mounting on the contactor - Snap-on design - mounts without tools - Electronic compatible contacts 17V, 10 mA - Late break / early make (L) available - Mirror contact performance to control relay poles	0	1	$4^{\frac{21}{2 \varepsilon}}$	CS7 all	CA7-PA-01	17
		1	0	$\left.\right\|_{\left\lvert\, \frac{13}{b t}\right.} ^{\frac{14}{\varepsilon t}}$	CS7 all	CA7-PA-10	17
		0	2	$\left.\left.\right\|_{\mid} ^{\frac{11}{2 \dagger}}\right\|_{\frac{21}{l \dagger}} ^{\frac{21}{\frac{2}{1}}}$	CS7 all	CA7-PA-02	27
		1	1	$\left.\right\|_{\left\lvert\, \frac{13}{t \hbar}\right.} ^{\frac{14}{\varepsilon t}} \left\lvert\, \begin{aligned} & \frac{21}{z \varepsilon} \\ & \frac{22}{1 \varepsilon} \end{aligned}\right.$	CS7 all	CA7-PA-11	27
		2	0	$\left.\right\|_{\frac{13}{b t}} ^{\frac{14}{\varepsilon t}} \left\lvert\, \begin{aligned} & \left\lvert\, \frac{23}{b \varepsilon}\right. \\ & \frac{24}{\varepsilon \varepsilon} \end{aligned}\right.$	CS7 all	CA7-PA-20	27
		1L	1L	$\left\{\begin{array}{l\|l} \frac{17}{8 D} & 4^{\frac{25}{9 \varepsilon}} \\ \frac{18}{L t} & \frac{26}{9 \varepsilon} \end{array}\right.$	CS7 all	CA7-PA-L11	37

Top Mount Auxiliary Contact Blocks (2 \& 4 Pole) (2)

Contact Block	Description	NO	NC	Contact Arrangement	For use with...	Standard Contacts Catalog Number	Price	Bifurcated Contacts Catalog Number	Price
	Auxiliary Contact Blocks for Top Mounting (2) - 2 and 4 pole - Snap-on design - mounts without tools - Electronic compatible standard contacts down to $17 \mathrm{~V}, 5 \mathrm{~mA}$, bifurcated version $5 \mathrm{~V}, 3 \mathrm{~mA}$ - Mechanically linked between N.O. and N.C. poles and to the control relay poles (excluding L types). - Several terminal numbering choices even for models with equal function - Late break / early make (L) available	0	2		CS7 all	CS7-PV-02	27	CS7-PVB-02	42
		1	1	$\left.\left.\right\|_{54} ^{\mid 53}\right\|_{62} ^{61}$	CS7 all	CS7-PV-11	27	CS7-PVB-11	42
		2	0	$\left.\left.\right\|_{54} ^{\mid 53}\right\|_{64} ^{63}$	CS7 all	CS7-PV-20	27	CS7-PVB-20	42
		2	2	$\left.\left.\left.\left.\right\|_{54} ^{53}\right\|_{62} ^{51}\right\|_{72} ^{71}\right\|_{84} ^{83}$	CS7 all	CS7-PV-22	53	CS7-PVB-22	80
		3	1	$\left.\left.\left.\left.\right\|_{54}{ }_{54}^{53}\right\|_{62} ^{61}\right\|_{74} ^{73}\right\|_{84} ^{73}$	CS7 all	CS7-PV-31	53	CS7-PVB-31	80
		1	3	$)\left.\left.\left._{54}^{53}\right\|_{62} ^{61}\right\|_{72} ^{71}\right\|_{82} ^{81}$	CS7 all	CS7-PV-13	53	CS7-PVB-13	80
		4	0	$\left.\left.\left.\left.\right\|_{54} ^{53}\right\|_{64} ^{63}\right\|_{74} ^{63}\right\|_{84} ^{83}$	CS7 all	CS7-PV-40	53	CS7-PVB-40	80
		0	4	$\left.t_{52}^{51} \dot{b}_{62}^{61} \underbrace{71}_{72}\right\|_{82} ^{81}$	CS7 all	CS7-PV-04	53	CS7-PVB-04	80
		1+1L	1+1L	$\left.\left.\left.\left.\left.\right\|^{53}\right\|_{54} ^{61}\right\|_{62} ^{61}\right\|_{76} ^{75}\right\|_{88} ^{87}$	CS7 all	CS7-PV-L22	74	Not Available	\sim

(1) Side mounted auxiliaries may be field installed to increase the number of available poles. Please note that terminal markings may conflict with base relay and/or top mount auxiliary terminal markings.
(2) Max. number or auxiliary contacts that may be mounted:

AC and Electronic DC Coil relays -max. 4 N.O. contacts on the front of the relay, 2-N.O. contacts on the side, 4-N.C. front or side: 6 total

Control Modules

Module	Description	For use with...	Connection Diagrams	Catalog Number	Price
	Mechanical Latch Following relay latching, the relay coil is immediately de-energized by the NC auxiliary contact (65-66). - Electrical or manual release - 1 NO + 1 NC auxiliary switch - Suitable for all CS7 relays	CS7 all		CV7-11-* Replace * with coil code below (See Application Note)	94

CV7 Mechanical Latch Coil Codes 1223

Coil Code	Application Range			Latch \& Contactor Coil Rating
	50 Hz	60 Hz	VDC	
$24 Z$	24 VAC	24 VAC	12 VDC	$24 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
482	48 VAC	48 VAC	24 VDC	$48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
110	100 VAC	110 VAC	48 or 60VDC	110V50/110V60
120	110 VAC	120 VAC	~	110V50/120V60
220W	~	208... 240 VAC	~	208...240V60
$230 Z$	230 VAC	230 VAC	110 VDC	$230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
$240 Z$	240 VAC	240 VAC	125 VDC	$240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
277	240 VAC	277 VAC	~	240V50/277V60
380	380... 400 VAC	440 VAC	~	380...400V50/440V60
4002	400 VAC	400 VAC	220 VDC	$400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
415	400...415 VAC	~	~	$400 . . .415 \mathrm{~V} 50 \mathrm{~Hz}$
480	440 VAC	480 VAC	~	440V50/480V60
600	550 VAC	600 VAC	\sim	550V50/600V60

APPLICATION NOTE:

The CV7 Mechanical Latch for CS7 Control Relay may be used for both AC and DC applications; however when using DC control circuit the user must apply the following rules for coil selection of the control relay and latch combination:

- When DC control circuits are required use CS7 control relay with AC coil and latch with AC coil. From column "VDC" in the table on the left, identify the required application DC control voltage and then select its specific Coil Code. Enter this Coil Code to complete the catalog numbers for both the control relay and latch (i.e.: 125 V DC control circuit should use a $240 Z$ coil code in both the CS7 and CV7). This works because both coils are only momentary energized and coil clearing contacts breaks the circuit after closing or opening.
- The CS7E control relay uses an electronic DC coil and the CV7 latch coil code should be chosen from the table on the left. (i.e.: 24 V DC control circuit select CS7E with code 24E and CV7 latch uses a $48 Z$ AC coil code).

Control Modules

Module	Description	For use with...	Connection Diagrams	Function	Catalog Number	Price
	Pneumatic Timing Module - The contacts in the Pneumatic Timing Element switch after the delay time. The contacts on the relay continue to operate without delay. - Continuous adjustment range	CS7 all	$\left.\underbrace{67}_{68}\right\|_{56} ^{55}$	$\begin{aligned} & \text { ON-Delay } \\ & .3 \ldots 30 \mathrm{~s} \\ & 1.8 \ldots 180 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { CZE7-30 } \\ & \text { CZE7-180 } \end{aligned}$	160
				OFF-Delay $\begin{array}{\|l} 0.3 \ldots 30 \mathrm{~s} \\ 1.8 \ldots 180 \mathrm{~s} \end{array}$	$\begin{aligned} & \text { CZA7-30 } \\ & \text { CZA7-180 } \end{aligned}$	160
	Electronic Timing Module - ON-Delay © The relay is energized at the end of the delay time.	CS7 all		$\begin{aligned} & 110 \ldots 240 \mathrm{~V} 50 / 60 \mathrm{~Hz} \\ & 110 \ldots 250 \mathrm{VDCO} . \\ & 0.1 \ldots 3 \mathrm{~s} \\ & 1 \ldots 3 \mathrm{~s} \\ & 10 \ldots 180 \mathrm{~s} \end{aligned}$	CRZE7-3-110/240 CRZE7-30-110/240 CRZE7-180-110/240	98
				$\begin{aligned} & 24 \ldots 48 \mathrm{VDC} \\ & 0.1 \ldots 3 \mathrm{~s} \\ & 1 \ldots .30 \mathrm{~s} \\ & 10 \ldots 180 \mathrm{~s} \end{aligned}$	CRZE7-3-24/48VDC CRZE7-30-24/48VDC CRZE7-180-24/48VDC	104
	Electronic Timing Module - OFF-Delay © After interruption of the control signal, the relay is de-energized at the end of the delay time.	CS7 all		$\begin{aligned} & 110 \ldots 240 \mathrm{~V} 50 / 60 \mathrm{~Hz} \\ & 0.3 \ldots 3 \mathrm{~s} \\ & 1 \ldots 30 \mathrm{~s} \\ & 10 \ldots 180 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { CRZA7-3-110/240 } \\ & \text { CRZA7-30-110/240 } \\ & \text { CRZA7-180-110/240 } \end{aligned}$	112
				$\begin{aligned} & 24 \mathrm{~V} \text { AC } 50 / 60 \mathrm{~Hz} \\ & 0.3 \ldots 3 \mathrm{~s} \\ & 1 \ldots . .30 \mathrm{~s} \\ & 10 \ldots 180 \mathrm{~s} \end{aligned}$	CRZA7-3-24VAC CRZA7-30-24VAC CRZA7-180-24VAC	112

Industrial Control Relays

Control Modules (continued)

Module	Description	For use with...	Connection Diagrams	Function		Catalog Number		Price
	Electronic Interface - Interface between the DC control signal from a PLC and the AC operating mechanism of the relay. - Requires no additional surge suppression for the coils - Switching capacity 200VA - Suitable for all CS7 relays	CS7 all (with AC control)		Input	Output	CRI7E-24 CRI7E-12 CRI7E-48 Indicates special order		$\begin{aligned} & 72 \\ & 72 \\ & 72 \end{aligned}$
				24 V DC 18...30V DC 48 V DC	$\begin{aligned} & 110 \ldots \\ & 240 \mathrm{VAC} \end{aligned}$			
	Surge Suppressors Limits coil switching transients. - Plug-in, coil mounted - Suitable for all CS7 contactors	CS7 all		RC Module AC Control (50/60Hz) 24... 48 V 110...280V 380...480V		$\begin{aligned} & \text { CRC7-48 } \\ & \text { CRC7-280 } \\ & \text { CRC7-480 } \end{aligned}$		34
				Diode Module DC Control 12-250VDC		CRD7-250	(2)	34
				Varistor Module AC/DC Control 12...55VAC/ 12...77VDC 56...136VAC/ 78...180VDC 137...277VAC/ 181...350VDC 278...575VAC		 CRV7-55 (2 CRV7-136 (2 CRV7-277 (3 CRV7-575 (3		34

Assembly Components

Component	Description	For Use With...	Pkg. Qty.	Catalog Number	Price Each
	Protective Covers - Protects against unintended manual operation.	CS7 all	1	CA7-SCC	See pageA54
	Protective Covers - For front mounted auxiliary contacts, pneumatic timers and latches.	CS7-PV, CA7-PV, CZE7, CZA7, CV7	1	CA7-SCF	
	Spade Connectors - Dual stab for coil terminals (0.250 inch)	All CS7	20	CA7-SC2	1.75

(1) Minimum order quantity is one package of 10. Price each x $10=$ total price.
(2) Electronic DC Control Relays (CS7E) include internal surge protection and do not require additional external surge protection.

Marking Systems

Component	Description	Pkg. Oty.	Catalog Number	Price Each
132	Label Sheet - 1 sheet with 105 self-adhesive paper labels each, $6 \times 17 \mathrm{~mm}$	1	CA7-FMS	$\begin{aligned} & \text { See } \\ & \text { page } \\ & \text { A54 } \end{aligned}$
	Marking Tag Sheet - 1 sheet with 160 perforated paper labels each, $6 \times 17 \mathrm{~mm}$. To be used with transparent cover.	1	CA7-FMP	
	Transparent Cover To be used with Marking Tag Sheets.	$\begin{gathered} 100 \\ \mathbf{1} \end{gathered}$	CA7-FMC	
- - -	Tag Carrier - For marking with Series V7 Terminal Clip-on Tags.	$\begin{gathered} 100 \\ 0 \end{gathered}$	CA7-FMA2	

Mounting Accessories

Accessory	Description	Catalog Number	Price
	DIN-rail -2 meter lengths ($6^{\prime} 6^{\prime \prime}$)		
	Top Hat, low profile (price per rail)		See page Top Hat, high profile (price per rail)

Renewal Coils - AC 1 (2)

AC Control Voltages			AC Coil \Downarrow Codes \Downarrow (2)	Catalog No.
50 Hz	60 Hz	$50 / 60 \mathrm{~Hz}$		
	12V		12B	TA006
12V			12A	TA404
	24V		24B	TA013
24V			24A	TA407
		24V	$24 Z$	TA855
32V	36V		36	TA481
36V			36A	TA410
42 V	48V		48	TA482
48 V			48A	TA414
		48 V	482	TA860
100 V	100...110V		110	TA861
110V	120 V		120	TA473
		110V	1102	TA856
120 V			120A	TA425
127 V			127A	TA428
200V	200...220V	200 V	220	TA862
	208V		208	TA049
	208V...240V		220W	TA296
220 V	240 V		240	TA474
220V...230V	260 V		230A	TA441
		200...230V	230 W	TA864
		230 V	2302	TA851
230V...240V			240A	TA440
240 V	277V		277	TA480
		240V	2402	TA858
	347V		347	TA065
	380 V		380B	TA067
380V...400V	440 V		380	TA071
		400V	4002	TA863
400V...415V			415	TA457
440 V	480V		480	TA475
		440 V	4402	TA859
500 V			500A	TA479
550 V	600 V		600	TA476
Price				59

CS7 AC coil (typical)

Renewal Coils - DC 1026

	$\begin{gathered} \text { DC Coil } \\ \Downarrow \text { Codes } \Downarrow \\ \mathbf{2} \end{gathered}$	Electronic DC Coils 6	True DC Coils	Two Winding DC Coils 5
		Cat. No.	Cat. No.	Cat. No.
9 V 3	9D	~	TA766	TA766Y
12 V	12E	TC708E	\sim	~
12 V	12D	\sim	TA708	TA708Y
24V	24E	TC714E	\sim	~
24 V 4	24D	\sim	TA714	TA714Y
24 V Diode 4	24DD	\sim	TA714M	TA714Y
36V	36D	\sim	TA719	TA719Y
48-72V	48 E	TC724E	\sim	\sim
48 V	48D	\sim	TA724	TA724Y
60V	60D	\sim	TA774	TA774Y
64 V	64D	\sim	TA727	TA727Y
72 V	72D	\sim	TA728	TA728Y
80V	80D	\sim	TA729	TA729Y
110-150V	110E	TC733E	\sim	\sim
110 V	110D	\sim	TA733	TA733Y
115 V	115D	\sim	TA734	TA734Y
125 V	125D	\sim	TA737	TA737Y
220-250V	220E	TC747E	~	~
220 V	220D	\sim	TA747	TA747Y
230 V	230D	\sim	TA749	TA749Y
250V	250D	\sim	TA751	TA751Y
Price (no diode)		\sim	138	\sim
Price (with diode)		202	202	134

12V \& 24V Electronic DC coil 6

48V, 110V \& 220V Electronic DC coil with Back Pack $\boldsymbol{0}$

Two Winding DC coil (typical) ©

Other coil voltages available. Contact your Sprecher + Schuh representative for information.
(2) Coil Codes in bold letters indicate coils that are standard stocked items.
(3) Voltage operating range: $0.65 \ldots 1.3 \times U_{s}$.
(4) Voltage operating range: $0.7 \ldots 1.25 \times U_{s}$.
© CS7-...YY(EY) two winding coils are sold for renewal parts only and are not interchangeable with standard CS7-Y(E) AC coil relays or CS7C...Y(E) true DC coil relays. CS7-...YY(EY) relays should be tested following a coil swap to insure functionality of the timed auxiliary.
© Electronic DC Coils are not interchangeable with non-electronic DC or AC coils.

Technical Information

	Mounted Standard Auxiliary	Standard Control Relay CS7	Front Mounted Standard Auxiliary Contacts	Bifurcated Control Relay CS7-B	Front Mounted Bifurcated Auxiliary Contacts	Master Relay CS7-M	Side Mounted Contacts
Electrical Contact Ratings - NEMA		A600, P600	A600, Q600			$\begin{gathered} \hline \text { 2x A600, } \\ \text { P600 } \\ \hline \end{gathered}$	A600, Q600
Min. Contact Rating		17V, 10 mA	17V, 5 mA	$5 \mathrm{~V}, 3 \mathrm{~mA}$			$17 \mathrm{~V}, 10 \mathrm{~mA}$
Contact Ratings - IEC AC-15 (solenoids, contactors) rated voltage IEC 60947-5-1	24 V	10 A	6 A	3 A	3 A	15A	6 A
	48 V	10 A	6 A	3 A	3 A	15 A	6 A
	120 V	10 A	6 A	3 A	3 A	15 A	6 A
	240 V	10 A	5 A	3 A	3 A	15 A	5 A
	400V	6 A	3 A	2 A	2 A	7.5 A	3 A
	480V/500V	2.5 A	1.6 A	1.2 A	1.2 A	5 A	1.6 A
	600 V	1 A	1 A	0.7 A	0.7 A	2 A	1 A
	690 V	1 A	1 A	0.7 A	0.7 A	2 A	1 A
$40^{\circ} \mathrm{C}$	an	20 A	10 A	10 A	10 A	20 A	10 A
	230 V	8 kW					
	400 V	14 kW					
AC-12 (Control of resistive	690 V	24 kW					
loads) IEC 60947-5-1 $\mathbf{6 0}^{\circ} \mathrm{C}$	1 th	20 A	6 A	6 A	6 A	20 A	6 A
	230 V	8 kW					
	400 V	14 kW					
	690 V	24 kW					
	24 V	15 A	10 A	6 A	6 A	20 A	6 A
DC-12 Switching DC Loads	48 V	10 A	9 A	3.2 A	3.2 A	20 A	3.2 A
$L_{\text {R }}<1 \mathrm{~ms}$, Resistive Loads	110 V	6 A	3.5 A	1.0 A	1.0 A	8 A	1.0 A
IEC 60947-5-1	220 V	1.0 A	0.7 A	0.5 A	0.5 A	1.5 A	0.5 A
	440 V	0.4 A	0.2 A	0.2 A	0.2 A	0.4 A	0.2 A
	24 V	5 A	5 A	2.5 A	2.5 A	5 A	5 A
	48 V	3 A	3 A	1.5 A	1.5 A	3 A	2.5 A
DC-13 IEC 60947-5-1, Solenoids and contactors	110 V	1.2 A	1.2 A	0.6 A	0.6 A	1.2 A	0.68 A
	220 V	0.6 A	0.6 A	0.3 A	0.3 A	0.6 A	0.32 A
	440 V	0.3 A	0.15 A	0.15 A	0.15 A	0.3 A	0.15 A

Mechanically Linked Contacts (2)

Location of welded NO contacts	State of NC contacts if NO contact welds			
	Main	Front mount auxiliary	Left side auxiliary	Right side auxiliary
Main	Open	Open ${ }^{\text {¢ }}$	Open 3	Open 3
Front auxiliary	Open	Open $\boldsymbol{\square}$	Open 3	Open 3
Left side aux.	Open	Open ©	Open 3	Open 3
Right side aux.	Open	Open $\boldsymbol{1}$	Open 3	Open 3

DC Switching Ratings for CS7 Main Poles in Series (Resistive Load at $60^{\circ} \mathrm{C}$)			
	1 pole	2 poles	3 poles
24/48 V	25/20 A	25 A	25 A
125 V	6 A	25 A	25 A
220 V	1.5 A	8 A	25 A
440 V	0.4 A	1 A	3 A

Standards Compliance

UL 508
CSA C22.2 N0. 14
EN/EC 60947-1, -5-1
Meets the material restrictions for European Directive 2002/95/EC - EU-RoHS.

		$\begin{gathered} \text { CS7 } \\ \text { Relays } \end{gathered}$	Front Mount Auxiliaries \& Pneumatic Timer Contacts
Mechanical			
Mechanical Life	[Mil]	15	5
Electrical Life			
AC-15 (240V, 3A) AC Operations [Mil]	1.5	1.5	1.5
Weight	[g]	390	-

Terminal Cross-Sections Terminal Type

Terminal Size per IEC 947-1
\& =

Flexible with Wire 1 Cond. $\quad\left[\mathrm{mm}^{2}\right]$
$\stackrel{\text { 号 }}{\stackrel{4}{4}}$
榌
$2 \times \mathrm{A} 4$
$0.5 \ldots 2.5$
$0.75 \ldots 2.5$
$0.5 \ldots 2.5$
$0.75 \ldots 2.5$
Max. Wire Size

per UL/CSA	$[$ AWG $]$	$16 \ldots 10$	$18 \ldots 14$
Tightening Torque	$[\mathrm{Nm}]$	$1.5 \ldots 2.5$	$1 \ldots .1 .5$
	$[\mathrm{lb}-\mathrm{in}]$	$13 \ldots 22$	$8.9 \ldots 13$

Certifications

cULus Listed (File No. E33916, Guide NKCR/NKCR7)
CE Marked
(1) If the accessory is a Pneumatic Timer or latch, there is no positive guidance; the accessory contacts are independent.
(2) Defined in IEC 947-5-1 annex L. Mechanically linked is a relationship between contacts of opposite types (i.e., NO and NC).
(3) Side mounted auxiliary contacts provide "mirror contact" performance with main poles only.

Technical Information

Technical Information

			CS7 Relays
Control Circuit Operating Voltage			
AC 50/60 Hz	Pickup	[XU_{s}]	0.85...1.1
	Dropout	[XU_{s}]	0.3...0.6
Electronic DC	Pickup	[XU_{s}]	0.7...1.25
	Dropout	[$\mathrm{XUS}_{\mathrm{s}}$]	0.1...0.6
Coil Consumption			
AC 50/60 Hz	Inrush	[VA/W]	70 / 50
	Seal	[VA/W]	8 / 2.6
Electronic DC	Inrush	[W]	10 / 17
	Seal	[W]	1.7
Operating Times			
AC- $50 / 60 \mathrm{~Hz}$	Pickup Time	[ms]	15... 30
	Dropout Time	[ms]	10... 60
Electronic DC	Pickup Time	[ms]	25... 50
	Dropout Time	[ms]	25... 50
Latch Attachment Release, CV7-11			
Coil Consumption	AC	[VA/W]	$45 / 40$
	DC	[W]	25
Contact Signal Duration		[min/max]	0.03...15s
Timing Attachment, CRZE7, CRZA7 Reset Time			
at min. time setting		[ms]	10
at max. time setting		[ms]	70
Repeat Accuracy			$\pm 10 \%$

	CS7 Relays
General	
Rated Insulation Voltage $\boldsymbol{U}_{\mathbf{i}}$	
IEC	690 V
UL; CSA	600 V
Rated Impulse Strength Uimp	6 kV
High Test Voltage	
1 minute (per IEC 947-4)	2500 V
Rated Voltage $\boldsymbol{U}_{\text {e }}$	
AC	115, 230, 400, 500, 690 V
DC	24, 48, 110, 220, 440V
Rated Frequency	$50 / 60 \mathrm{~Hz}$, DC
Ambient Temperature	
Storage	$-55 \ldots+80^{\circ} \mathrm{C}\left(-67 \ldots 176^{\circ} \mathrm{F}\right)$
Operation at nominal current	$-25 \ldots+60^{\circ} \mathrm{C}\left(-13 \ldots 140^{\circ} \mathrm{F}\right)$
Conditioned 15\% current reduction after AC-1 at $>60^{\circ} \mathrm{C}$	$-25 \ldots+70^{\circ} \mathrm{C}\left(-13 \ldots 158^{\circ} \mathrm{F}\right)$
Corrosion Resistance	humid-alternating climate, cyclic, per IEC 68-2-30 and DIN 50 016, 56 cycles
Altitude	2000m above main sea level, per IEC 947-4
Type of Protection IP 2X (IEC 60529 and DIN 40050)	in connected state
Finger Protection	safe from touch by fingers and back of hand per VDE 0106, Part 100
Shock Protection	
IEC 68-2: Half Sinusoidal shock 11ms	30G (in 3 directions)
Vibration Resistance	
IEC 68-2: static >2G in normal position	no malfunction $<5 \mathrm{G}$

Utilization Category Table from EN 947-5-1

Verification of Making and Breaking Capacities of Switching Elements Under Normal Conditions Corresponding to the Utilization Categories $\mathbf{0}$									
	Normal Condition of Use								
	Make (3)			Break (3)			Number \& Rate of Making \& Breaking Operations		
Utilization Category	$1 /{ }_{\text {e }}$	$\mathrm{U} / \mathrm{U}_{\text {e }}$	$\operatorname{COS} \Psi$	$1 /{ }_{\text {e }}$	$\mathrm{U} / \mathrm{U}_{\text {e }}$	$\operatorname{COS} \Psi$	No. of operating cycles ©	Operating cycles per minute	ON time(s) $\boldsymbol{\ominus}$
AC-12 ©	1	1	0.9	1	1	0.9	6050	6	0.05
AC-13 ©	2	1	0.65	1	1	0.65	6050	6	0.05
AC-14 ${ }^{\text {c }}$	6	1	0.3	1	1	0.3	6050	6	0.05
AC-15 ©	10	1	0.3	1	1	0.3	6050	6	0.05
DC			$T_{0.95}$			$T_{0.95}$			
DC-12	1	1	1 ms	1	1	1 ms	6050	6	0.05 ©
DC-13	1	1	$6 \times P$ (4	1	1	$6 \times P$ (4)	6050	6	0.05 ©
DC-14 ©	10	1	15 ms	1	1	15 ms	6050	6	0.05 ©

$\mathrm{I}_{\mathrm{e}} \quad$ Rated operational current $\mathrm{P}=U_{e} I_{e}$ steady-state power consumption (W)
$U_{e} \quad$ Rated operational voltage. Current to be made or broken.
$T_{0.95}$ Time to reach 95% of the steady-state current (ms) UVoltage before make
(1) See sub-clause 8.3.3.5.2
(2) For tolerances on test quantities, see sub-clause 8.3.2.2
(3) The first 50 operating cycles shall be run at $U / U_{e}=1.1$ with the loads set at U_{e}
(4) The value " $6 \times P$ " results from an empirical relationship which is found to represent most DC magnetic loads to an upper limit of $P=50 \mathrm{~W}$, i.e. $6 \times P=300 \mathrm{~ms}$.
© The ON time shall be at least equal to $T_{0.95}$
© Where the break current differs from the make current value, the ON time refers to the make current value after which the current is reduced to break current value for a suitable period e.g., 0.05 s .

NEMA Ratings and Test Values for AC (50 and 60Hz) and DC Control Circuits Contacts

$\begin{aligned} & \text { Designation } \\ & \text { © } \end{aligned}$	Utilization Category	Therm. Continuous Test Current (A)	Maximum Current								VA	
			120V		240V		480V		600V			
			Make	Break								
A150	AC-15	10	60	6.00	~	~	~	\sim	~	~	7200	720
A300	AC-15	10	60	6.00	30	3.00	~	~	~	~	7200	720
A600	AC-15	10	60	6.00	30	3.00	15	1.50	12	1.20	7200	720
B150	AC-15	5	30	3.00	\sim	\sim	\sim	\sim	~	~	3600	360
B300	AC-15	5	30	3.00	15	1.50	~	~	~	~	3600	360
B600	AC-15	5	30	3.00	15	$1 . .50$	7.5	0.75	6	0.60	3600	360
C150	AC-15	2.5	15	1.50	~	~	\sim	~	\sim	~	1800	180
C300	AC-15	2.5	15	1.50	7.5	0.75	\sim	\sim	~	~	1800	180
C600	AC-15	2.5	15	1.50	7.5	0.75	3.75	0.375	3	0.30	1800	180
D150	AC-14	1.0	3.60	0.60	\sim	\sim	~	~	~	~	432	72
D300	AC-14	1.0	3.60	0.60	1.8	0.30	~	\sim	~	~	432	72
E150	AC-14	0.5	1.80	0.30	\sim	\sim	\sim	~	\sim	\sim	216	36
$2 \times$ A300	AC-15	20	120	12	60	6.00	\sim	\sim	~	\sim	14400	1440
$2 \times$ A600	AC-15	20	120	12	60	6.00	30	3.00	24	2.40	14400	1440
DC			5...28V		125 V		250 V		301...600V		Make or Break at 300V or less [VA]	
N150	DC-13	10	10		2.2		\sim		\sim		275	
N300	DC-13	10	10		2.2		1.1		\sim		275	
N600	DC-13	10	10		2.2		1.1		0.40		275	
P150	DC-13	5.0	5.0		1.1		\sim		\sim		138	
P300	DC-13	5.0	5.0		1.1		0.55		\sim		138	
P600	DC-13	5.0	5.0		1.1		0.55		0.20		138	
Q300	DC-13	2.5	2.5		0.55		0.27		0.11		69	
Q600	DC-13	2.5	2.5		0.55		0.27		0.11		69	
$2 \times$ P600	DC-13	10	102.2		2.2		1.1		0.40		275	

Series CS7 Industrial Control Relays (AC and Electronic DC)

Dimensions are in millimeters (inches). Dimensions not intended for manufacturing purposes.

Catalog Number	Coil Code	a	b	b1	C	c1	c2	\varnothing d	d1	d2
CS7 (AC)		$\begin{gathered} \hline 45 \\ (1-25 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 81 \\ (3-3 / 16) \\ \hline \end{gathered}$		$\begin{gathered} 80.5 \\ (3-11 / 64) \end{gathered}$	$\begin{gathered} 75.5 \\ (3-3 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ (1 / 4) \\ \hline \end{gathered}$	$\begin{gathered} 2-4.5 \\ (2-3 / 16) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (2-23 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ (1-25 / 64) \\ \hline \end{gathered}$
CA7-9E...CA7-23E, CAN7-12E...CAN7-16E	12E	$\begin{gathered} 45 \\ (1-25 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 81 \\ (3-3 / 16) \\ \hline \end{gathered}$	$\underset{\sim}{\sim}$	$\begin{gathered} 80.5 \\ (3-11 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 75.5 \\ (2-31 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ (15 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 2-4.5 \\ (2-3 / 16) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (2-23 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ (1-3 / 8) \\ \hline \end{gathered}$
	24E	$\begin{gathered} 45 \\ (1-25 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 81 \\ (3-3 / 16) \end{gathered}$	$\underset{\sim}{\sim}$	$\begin{gathered} 80.5 \\ (3-11 / 64) \end{gathered}$	$\begin{gathered} 75.5 \\ (2-31 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ (15 / 64) \end{gathered}$	$\begin{gathered} 2-4.5 \\ (2-3 / 16) \end{gathered}$	$\begin{gathered} 60 \\ (2-23 / 64) \end{gathered}$	$\begin{gathered} 35 \\ (1-3 / 8) \end{gathered}$
	48E	$\begin{gathered} 45 \\ (1-25 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 81 \\ (3-3 / 16) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ (15 / 16) \\ \hline \end{gathered}$	$\begin{gathered} 80.5 \\ (3-11 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 75.5 \\ (2-31 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ (15 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 2-4.5 \\ (2-3 / 16) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (2-23 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ (1-3 / 8) \\ \hline \end{gathered}$
	110E	$\begin{gathered} 45 \\ (1-25 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 81 \\ (3-3 / 16) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ (15 / 16) \\ \hline \end{gathered}$	$\begin{gathered} 80.5 \\ (3-11 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 75.5 \\ (2-31 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ (15 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 2-4.5 \\ (2-3 / 16) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (2-23 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ (1-3 / 8) \\ \hline \end{gathered}$
	220E	$\begin{gathered} 45 \\ (1-25 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 81 \\ (3-3 / 16) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ (15 / 16) \\ \hline \end{gathered}$	$\begin{gathered} 80.5 \\ (3-11 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 75.5 \\ (2-31 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ (15 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 2-4.5 \\ (2-3 / 16) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (2-23 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ (1-3 / 8) \\ \hline \end{gathered}$

Relays \& Accessories (+...)

Relays with...		Dim. $[\mathrm{mm}]$	Dim. [inches]
auxiliary contact block for front mounting	2-, or 4-pole	$\mathrm{c} / \mathrm{c} 1+39$	$\mathrm{c} / \mathrm{c} 1+1-37 / 64$
auxiliary contact block for side mounting	1-, or 2-pole	$\mathrm{a}+9$	$\mathrm{a}+23 / 64$
pneumatic timing module		$\mathrm{c} / \mathrm{c} 1+58$	$\mathrm{c} / \mathrm{c} 1+2-23 / 64$
electronic timing module	on coil terminal side	$\mathrm{b}+24$	$\mathrm{~b}+15 / 16$
mechanical latch		$\mathrm{c} / \mathrm{c} 1+61$	$\mathrm{c} / \mathrm{c} 1+2-31 / 64$
interface module	on coil terminal side	$\mathrm{b}+9$	$\mathrm{~b}+23 / 64$
surge suppressor	on coil terminal side	$\mathrm{b}+3$	$\mathrm{~b}+1 / 8$
$\boldsymbol{\text { © Labeling with... }}$	label sheet	+0	+0
	marking tag sheet with clear cover	+0	+0
	marking tag adapter for V7 Terminals	+5.5	$+7 / 32$

Mounting Position

AC \& Electronic DC control relays

TECHNICAL DATA SHEET

Equipment Type:Push Buttons
Location:
RTU Section
Model Numbers: Various
Manufacturer: Specher \& Schuh
Supplier: NHP Pty Ltd
16 Riverview Place
Murarrie(07) 39094999

D

 Isprecher+INDUSTRIAL SWITCHGEAR \& AUTOMATION SPECIALISTS

Experience a Touch of Quality

New D7...
Experience a Touch of Quality

Introducing the all new D7 range from Sprecher + Schuh. The D7 range is the latest in a long line of quality 22.5 mm control and signalling equipment from a company with a long built reputation for combining high quality manufacturing skills and attention to detail to produce only the finest quality products.

Available in both thermoplastic and metal variations, the D7 range incorporates all the features that you have come to expect from Sprecher + Schuh and raises the bar one step further with a functional low profile design and all new stylish appearance.

Once you get past the new appearance you will find the D7 range has some unique features incorporated, such as improved operational feel on the pushbuttons for a positive "tactile" response and a new positive detent on selector switches. In addition optional time saving cage style termination on contact blocks, improved LED illumination on pilot lights and hard wearing laser engraving have also been included.

Utilising state of the art modelling technologies and finite element analysis, you can be sure every component used in the D7 range has been optimised for durability and reliability with the aim of providing the ultimate in control and indication.

Designed and manufactured to meet the most exacting performance, the new D7 range is the pushbutton to use in today's demanding environments.

D7 at a glance...

"Auto Break" Safety contacts

Separation of the contact block assembly from the front operator or mounting latch can prevent an Emergency Stop from shutting down the controlled process in an emergency. Correct contact block installation is critical to ensure that the normally closed contacts will open when the emergency stop operator is active. The exclusive Sprecher + Schuh "Auto Break" contact block monitors itself to ensure it is always correctly installed.
A normally open "Auto Break" contact is physically moulded and wired in series with a standard set of normally closed contacts. When correctly installed the operator creates a maintained pressure on the normally open "Auto Break" contact and automatically closes the contact. In this state the normally closed contact operates as normal.
If the contact block assembly should separate from the front operator, the pressure releases and the "Auto Break" contact will automatically open. Because the "Auto Break" contact is wired in series with the normally closed, the opening of either set of contacts will open the circuit controlled by the emergency stop operator.

Goupling plates and contact blocks

- Choice of metal or plastic coupling plates
- Rotating collar with "snap secure" system ensures fast one-hand removal
- Contact blocks snap-fit and are hinged at one end for easy installation
- Colour coded contact block plungers for easy identification
- H-bridge contact design and the option of gold contacts provides cleaner current flow for maximum reliability at lower voltages
- Bifurcated contacts provide excellent wiping and optimal switching reliability
- Option of Cage style wire termination or Screw clamp
- Live components are shrouded and touch safe to IP 20

Inscription caps and diffusers

- Durable abrasion-proof press plates
- 6 colour choices
- Ergonomically contoured design
- Diffusers constructed in two colour moulded assembly

- Durable wear resistant laser printing available

- Metal and plastic enclosures
- In choices to accommodate up to $6 \times 22.5 \mathrm{~mm}$ operators
- Yellow thermoplastic pendant style enclosure available for up to 2 operators
- 20 mm metric cable entry
- Suitable for base or panel mount contact blocks

Illumination

- Modern and compact integrated LED lamp modules
- Superior illumination qualities
- 5 colour choices
- 11 year lamp life (100,000 hrs)
- Maintenance free
- Vibration and shock resistant
- 24 V AC/DC, 110 V AC and 240 V AC
- Accepts two piece snap-in legend

Complete Standard Units

| Pushbuttons |
| :--- | :--- |

Illuminated pushbuttons 8
Pilot Lights 8 8
Emergency Stop Stations 9
Enclosed Emergency Stop Stations 9
Multi Function Operators 10
Rotary Switches 10
Rotary Key Switches $\quad 10$

Potentiometer Dial	10

Panel mounted subassemblies
Front elements and back of panel sub assemblies to your requirements
Illuminated and Non Illuminated Pushbuttons $\quad 11-13$
Illuminated and Non Illuminated Mushroom Pushbuttons 14

Multifunction Operators	15

Emergency Stop Operators 16
Reset Operators 17
Pilot Lights 18
Selector Jog Switches and Joystick operators $\quad 19-20$
Illuminated and Non Illuminated Rotary Switches 21-26
Enclosures 27

Individual components for custom requirements
Coupling plates 28
Panel and base mount contact elements 28
Panel and base mount lamp elements 29
Coloured inserts, lens caps, lens diffusers 30
Spare incandescent, neon and LED lamps 31

Mounting tools, guards and sealing boots	32

Hole plug, potentiometer legends, resistive elements 33
Padlocking attachments 34
General Accessories 35

Legend Plates and labeling
Operator text/symbols configurator form 36
Standard pushbutton inserts and diffusers with text 37
Blank Diffusers for illuminated pushbuttons and pilot lights $\quad 37$
Press plates with text for multifunction operator 38
$\begin{array}{ll}\text { Legend carriers, legend plates } & \text { 39-42 }\end{array}$

Technical Specifications 43-45

Dimensions
46-53

Design

- Functional low profile appearance
- Ergonomic easy to operate handles
- Reduced depth contact blocks
- Improved positive "tactile" operation on pushbuttons
- Improved "positive detent" on rotary selector switches
- Durable two colour plastic caps and laser engraving

Improved safety

- Unique "Auto break" self-monitoring emergency contact system
- IP 20 touch protection
- Tamperproof rear fixing nut

Time saving

- New design snap-lock, twist-to-reset rotating collar on coupling plates for easier mounting and assembly
- Snap-on components
- Redesigned anti-rotation tab

Flexibility

- Thermoplastic or metal operators
- Latching or impulse operators
- Five different colour choices
- Maximum of six contact blocks
- Full voltage and transformer lamp blocks

Improved reliability

- IP 65/66 sealing across the range for reliability in dusty and wet conditions
- Improved vibration resistance
- Continuous wiping contact for improved reliability
- Tested to IEC 947
- Positive detent on rotary switches which ensures operation will not "hang up" between positions

Contact blocks

- Improved mounting from "Snapsecure" snap fit mounting system
- Colour coded plungers for easy identification
- Optional Quadfurcated Gold contacts for improved low voltage switching
- Optional spring clamp termination on contact blocks for reduced wiring time

D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

Non-Illuminated Momentary Pushbuttons

Dimensions in (mm)

- Metal or plastic options
- Improved momentary action for fast response
- Low mounting depth from panel

Description	Contact	Plastic Body Cat. No.	Metal Body Cat. No.
Flush Pushbutton with Green insert with Red insert with Blue insert		$\begin{aligned} & \text { D7P-F3-PX10 }{ }^{1} \text {) } \\ & \text { D7P-F4-PX01 }{ }^{1} \text {) } \\ & \text { D7P-F6-PX10 }{ }^{1} \text {) } \end{aligned}$	D7M-F3-MX10 ${ }^{\text {² }}$) D7M-F4-MX01 ${ }^{1}$) D7M-F6-MX10 ${ }^{1}$)
 Dimensions in (mm)		D7P-E4-PX01	D7M-E4-MX0
Description	Contact	Plastic Body Cat. No.	Metal Body Cat. No.
Extended Pushbutton with Red insert	\square	D7P-E4-PX01 ${ }^{1}$)	D7M-E4-MX01 ${ }^{\text { }}$)

Non-Illuminated Momentary Pushbuttons with labelled Press Plates

Description	Contact	Plastic Body Cat. No.	Metal Body Cat. No.
Flush Pushbutton with Green insert labelled "Start" with Red insert labelled "Stop" with Blue insert labelled "Reset" with extended Red press plate labelled "Stop"		$\begin{aligned} & \text { D7P-F301-PX10 ¹) } \\ & \text { D7P-F402-PX01 }{ }^{1} \text {) } \\ & \text { D7P-F607-PX10 }{ }^{\prime} \text {) } \\ & \text { D7P-E402-PX01 }{ }^{\text {² }} \end{aligned}$	D7M-F301-MX10 ${ }^{1}$) D7M-F402-MX01 ${ }^{1}$) D7M-F607-MX10 ${ }^{1}$) D7M-E402-MX01 ${ }^{1}$)

Illuminated Momentary Flush Pushbuttons with integrated LED Lamp Block

Dimensions in (mm)

- Long life integrated LED illumination
- 24 V and 240 V versions
- Supplied complete with contact blocks

Description	Contact		Plastic Body Cat. No.	Metal Body Cat. No.
24 V AC/DC				
Green pushbutton with Green LED	[$/$	-4	D7P-LF3-PN3G-X10 ${ }^{\text {² }}$)	D7M-LF3-MN3G-X10 ${ }^{1}$)
Red pushbutton with Red LED		\wedge_{1}^{11}	D7P-LF4-PN3R-X01 ${ }^{1}$)	D7M-LF4-MN3R-X01 ${ }^{1}$)
Blue pushbutton with Blue LED		$-\pi$	D7P-LF6-PN3B-X10 ${ }^{\text {² }}$)	D7M-LF6-MN3B-X10 ${ }^{1}$)
Yellow pushbutton with Yellow LED	/	$-\frac{\pi}{4}$	D7P-LF5-PN3Y-X10 ${ }^{\text {² }}$)	D7M-LF5-MN3Y-X10 ${ }^{1}$)
240 V AC				
Green pushbutton with Green LED	[$-\frac{1}{4}$	D7P-LF3-PN7G-X10 ${ }^{\text {² }}$)	D7M-LF3-MN7G-X10 ${ }^{\text {² }}$)
Red pushbutton with Red LED	\square	-11	D7P-LF4-PN7R-X01 ${ }^{1}$)	D7M-LF4-MN7R-X01 ${ }^{1}$)
Blue pushbutton with Blue LED	\square	-4	D7P-LF6-PN7B-X10 ${ }^{\text {² }}$)	D7M-LF6-MN7B-X10 ${ }^{1}$)
Yellow pushbutton with Yellow LED	\square	-4	D7P-LF5-PN7Y-X10 ${ }^{\text {² }}$)	D7M-LF5-MN7Y-X10 ${ }^{1}$)

Pilot Light with integrated LED Lamp Block

Dimensions in (mm)

- Superior LED illumination qualities
- Scratch resistant lenses
- Modern low profile bodies

Description	Contact	Plastic Body Cat. No.	Metal Body Cat. No.
24 V AC/DC			
Green pilot light with Green LED	$-{ }^{17}$	D7P-P3-PN3G ${ }^{1}$)	D7M-P3-MN3G ${ }^{1}$)
Red pilot light with Red LED	- $4^{1 /}$	D7P-P4-PN3R ${ }^{1}$)	D7M-P4-MN3R ${ }^{1}$)
Blue pilot light with Blue LED	- \times^{11}	D7P-P6-PN3B ${ }^{1}$)	D7M-P6-MN3B ${ }^{1}$)
Yellow pilot light with Yellow LED	- ${ }^{11}$	D7P-P5-PN3Y ${ }^{1}$)	D7M-P5-MN3Y ${ }^{1}$)
Translucent pilot light with White LED	- ${ }^{11}$	D7P-P7-PN3W ${ }^{\text {² }}$)	D7M-P7-MN3W ${ }^{1}$)
240 V AC			
Green pilot light with Green LED	- ${ }^{17}$	D7P-P3-PN7G ${ }^{1}$)	D7M-P3-MN7G ${ }^{1}$)
Red pilot light with Red LED	- $\sim_{1}^{1 /}$	D7P-P4-PN7R ${ }^{1}$)	D7M-P4-MN7R ${ }^{\text {1 }}$)
Blue pilot light with Blue LED	- ${ }^{1 /}$	D7P-P6-PN7B ${ }^{1}$)	D7M-P6-MN7B ${ }^{1}$)
Yellow pilot light with Yellow LED	$\xrightarrow{11}$	D7P-P5-PN7Y ${ }^{1}$)	D7M-P5-MN7Y ${ }^{\text {² }}$)
Translucent pilot light with White LED	\cdots	D7P-P7-PN7W ${ }^{1}$)	D7M-P7-MN7W ${ }^{\text {² }}$

Emergency Stop Operators

- Choice of "Auto Break" or Standard normally closed contacts
- 30, 40 or 60 mm Mushroom head
- Extra security key release
Dimensions in (mm)

D7M-MK44-MX01S

Description Contact	Plastic Body Cat. No.	Metal Body Cat. No.
Twist To Reset with Standard Contact Blocks		
30 mm Operator	D7P-MT34-PX01 ${ }^{1}$)	D7M-MT34-MX01 ${ }^{1}$)
40 mm Operator	D7P-MT44-PX01 ${ }^{1}$)	D7M-MT44-MX01 ${ }^{1}$)
60 mm Operator	D7P-MT64-PX01 ${ }^{1}$)	D7M-MT64-MX01 ${ }^{1}$)
Key To Reset with Standard Contact Blocks		
40 mm Operator	D7P-MK44-PX01 ${ }^{\text {² }}$)	D7M-MK44-MX01 ${ }^{1}$)
Twist To Reset with "Auto Break" Safety Contact Blocks		
30 mm Operator	D7P-MT34-PX01S ${ }^{1}$)	D7M-MT34-MX01S ${ }^{1}$)
40 mm Operator	D7P-MT44-PX01S ${ }^{1}$)	D7M-MT44-MX01S ${ }^{1}$)
60 mm Operator \quad -	D7P-MT64-PX01S ${ }^{1}$)	D7M-MT64-MX01S ${ }^{1}$)
Key To Reset with "Auto Break" Safety Contact Blocks		
40 mm Operator	D7P-MK44-PX01S ${ }^{\text {² }}$)	D7M-MK44-MX01S ${ }^{1}$)

Enclosed Emergency Stop Operators

- Modern low profile enclosures
- Supplied complete
- 20 mm metric cable entry
- Plastic or Metal enclosures

Dimensions in (mm)

Description

Contact
Cat. No.

Plastic Enclosures with Emergency Stop "Twist To Reset" Operator

Yellow enclosure 40 mm plastic operator
$-\sqrt{-}$
D71YM1
Plastic Enclosures with Emergency Stop "Twist Key To Reset" Operator
Yellow enclosure 40 mm plastic operator
\longrightarrow
D71Y4

Metal Enclosures with Emergency Stop "Twist To Reset" Operator

Grey enclosure 40 mm metal operator
\square
D71MM1

Metal Enclosures with Emergency Stop "Twist Key To Reset" Operator

Grey enclosure 40 mm metal operator
\square
D71MM4

Multi Function Operators

Time saving

Central nut fixing

- Snap fitting of components

Space efficient

- 2 or 3 functions in a minimum of space
- Single 22.5 mm hole mounting

Economical

- Negates the need for 3 separate devices
- Less mounting time

Flexible

- Uses standard D7 rear elements
- 2 contact levels possible
- Choice of plastic or metal body
- IP 66 protection

Dimensions in (mm)

D7M-U2E4F3-MX11

Description	Contact	Plastic Body	Metal Body
		Cat. No.	Cat. No.

Maintained Operation
Blank press plates (Red / Green) O-I (Red "Stop" / Green "Start")
\qquad D7P-U2E4F3-PX11 ${ }^{1}$) D7M-U2E4F3-MX11 ${ }^{1}$)
D7P-U2EFFE-PX11

Short lever Rotary Switches and Key Operated Rotary Switches

- Improved sealing
- Raised detent for improved switching capabilities
- Ergonomic handles
- Key release at off position

D7P-SM22-PX10

Plastic Body	Metal Body
Cat. No.	Cat. No.

Maintained Operation
2 pos Rotary SW 90°
3 pos Rotary SW $2 \times 60^{\circ}$

2 pos Key SW 90° 3 pos Key SW $2 \times 60^{\circ}$

D7P-SM22-PX10 ${ }^{1}$) D7P-SM32-PX20 ${ }^{1}$) D7P-KM21-PX10 ${ }^{1}$) D7P-KM31-PX20 ${ }^{1}$)

D7M-KM31-MX20 Cat. No.

D7M-SM22-MX10 ${ }^{1}$)
D7M-SM32-MX20 ${ }^{1}$)
D7M-KM21-MX10 ${ }^{1}$)
D7M-KM31-MX20 ${ }^{1}$)

Dimensions in (mm)

D7P-POT
Plastic Body
Cat. No.
D7P-POT
D7P-POT3
D7P-POT5
D7P-POT6

D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

D7PF Flush frame, non-illuminated plastic pushbutton operators
D7PLF Flush frame, illuminated plastic pushbutton operators
D7MF Flush frame, non-illuminated metal pushbutton operators
D7MLF Flush frame, illuminated metal pushbutton operators

- Protection class IP 66
- Individually packaged
- 2 part ordering 2

1

Dimensions in (mm)
Non Illuminated Plasti

Ca

D7P-F9

D7P-F1	D7M-F1	D7PL-F1	D7M
D7P-F2	D7M-F2	-	-

| Operator with Black insert |
| :--- | :--- |
| Operator with Green insert |

Operator with Red insert

| Operator with Yellow insert |
| :--- | :--- |
| Operator with Blue insert |

Operator with Green "Start" insert
Operator with Green "I" insert

Operator with Red "STOP" insert D7

Operator with Red "O" insert	D7P-F405	D7M-F405	-	-
Operator with Black " \rightarrow " insert	D7P-F208	D7M-F208	-	-

D7PX / D7PQ Pre-assembled clip-on rear elements with plastic coupling plate D7MX / D7MQ Pre-assembled clip-on rear elements with metal coupling plate

Description	Screw Cat. No.	Spring Clamp Cat. No.	Metal Screw Cat. No.	Metal Spring Clamp Cat. No.
1 N/O contact block	D7PX10	D7PQ10	D7MX10	D7MQ10
$1 \mathrm{~N} / \mathrm{C}$ contact block	D7PX01	D7PQ01	D7MX01	D7MQ01
$1 \mathrm{~N} / \mathrm{O}$ and $1 \mathrm{~N} / \mathrm{C}$ contact block	D7PX11	D7PQ11	D7MX11	D7MQ11
$1 \mathrm{~N} / \mathrm{O}$ and $1 \mathrm{~N} / \mathrm{C}$ contact block and incandescent lamp block	D7PD ${ }^{1}$ CX11	D7PD ${ }^{1}$ CQ11	D7MD ${ }^{1}$ CX11	D7MD ${ }^{1}$)CQ11
1 N/O and $1 \mathrm{~N} / \mathrm{C}$ contact block and integrated LED lamp block	D7PN $\left.{ }^{1}{ }^{2}\right) \mathrm{X} 11$	D7PQ ${ }^{1}{ }^{2}{ }^{\text {)Q11 }}$	D7MN $\left.{ }^{1}\right)^{2}$) X 11	D7MQ') ${ }^{2}$) X 11

[^20]- Protection class IP 66

D7PE Extended frame, non-illuminated plastic pushbutton operators
D7PLE
D7ME
D7MLE

Extended frame, illuminated plastic pushbutton operators
Extended frame, non-illuminated metal pushbutton operators
Extended frame, illuminated metal pushbutton operators

1 Dimensions in (mm)	D7P-E1	D7M-E402	D7PL-E4	D7ML-E4
Description	Non Illuminated Plastic Cat. No.	Non Illuminated Metal Cat. No.	Illuminated Plastic Cat. No. ${ }^{3}$)	Illuminated Metal Cat. No. ${ }^{3}$)
Operator only - no insert	D7P-E9	D7M-E9	D7PL-E9	D7ML-E9
Operator with White / Clear insert	D7P-E1	D7M-E1	D7PL-E1	D7ML-E1
Operator with Black insert	D7P-E2	D7M-E2	-	-
Operator with Green insert	D7P-E3	D7M-E3	D7PL-E3	D7ML-E3
Operator with Red insert	D7P-E4	D7M-E4	D7PL-E4	D7ML-E4
Operator with Yellow insert	D7P-E5	D7M-E5	D7PL-E5	D7ML-E5
Operator with Blue insert	D7P-E6	D7M-E6	D7PL-E6	D7ML-E6
Operator with Green "Start" insert	D7P-E301	D7M-E301	-	-
Operator with Green "l" insert	D7P-E306	D7M-E306	-	-
Operator with Red "STOP" insert	D7P-E402	D7M-E402	-	-
Operator with Red "O" insert	D7P-E405	D7M-E405	-	-
Operator with Black " \rightarrow " insert	D7P-E208	D7M-E208	-	-

D7PX / D7PQ Pre-assembled clip-on rear elements with plastic coupling plate D7MX / D7MQ Pre-assembled clip-on rear elements with metal coupling plate

	Screw		Metal	Metal Spring Clamp
Description	Cat. No.			

[^21]D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

D7PG Guarded frame, non-illuminated plastic pushbutton operators
D7PLG Guarded frame, illuminated plastic pushbutton operators
D7MG Guarded frame, non-illuminated metal pushbutton operators
D7MLG Guarded frame, illuminated metal pushbutton operators

- Protection class IP 66
- Individually packaged
- 2 part ordering

1
Dimensions in (mm)
Descriptio
Operator only - no insert

Operator with White / Clear insert
Operator with Black insert

Operator with Green insert

Operator with Green insert	D7P-G3	D7M-G3	D7PL-G3	D7ML-G3
Operator with Red insert	D7P-G4	D7M-G4	D7PL-G4	D7ML-G4
Operator with Yellow insert	D7P-G5	D7M-G5	D7PL-G5	D7ML-G5
Operator with Blue insert	D7P-G6	D7M-G6	D7PL-G6	D7ML-G6
Operator with Green "Start" insert	D7P-G301	D7M-G301		
Operator with Green "l" insert	D7P-G306	D7M-G306		
Operator with Red "STOP" insert	D7P-G402	D7M-G402		
Operator with Red "O" insert	D7P-G405	D7M-G405		
Operator with Black " \rightarrow " insert	D7P-G208	D7M-G208		

D7PX / D7PQ Pre-assembled clip-on rear elements with plastic coupling plate D7MX / D7MQ Pre-assembled clip-on rear elements with metal coupling plate

Description	Screw Cat. No.	Spring Clamp Cat. No.	Metal Screw Cat. No.	Metal Spring Clamp Cat. No.
1 N/O contact block	D7PX10	D7PQ10	D7MX10	D7MQ10
1 N/C contact block	D7PX01	D7PQ01	D7MX01	D7MQ01
1 N/O and 1 N/C contact block	D7PX11	D7PQ11	D7MX11	D7MQ11
1 N/O and $1 \mathrm{~N} / \mathrm{C}$ contact block and incandescent lamp block	D7PD') ${ }^{\text {² }}$ 11	D7PD') ${ }^{\prime}$ CQ11	D7MD')CX11	D7MD')CQ11
1 N/O and 1 N/C contact block and integrated LED lamp block	D7PN ${ }^{11}{ }^{2}$) ${ }^{111}$	D7PQ $\left.\left.{ }^{1}\right)^{2}\right)$ Q11	D7MN $\left.\left.{ }^{1}\right)^{2}\right)^{\text {X11 }}$	D7MN $\left.\left.{ }^{1}\right)^{2}\right)$ Q11

[^22]- Protection class IP 66

D7PMM 40 mm and 60 mm , non-illuminated momentary plastic mushroom operators D7PLMM 40 mm and 60 mm , illuminated momentary plastic mushroom operators D7MMM 40 mm and 60 mm , non-illuminated momentary metal mushroom operators D7MLMM 40 mm and 60 mm , illuminated momentary metal mushroom operators

D7P-MM62

Non Illuminated Plastic
 Cat. No.

D7M-MM44

D7P-LMM43

D7M-LMM46

Illuminated	Illuminated
Plastic	Metal
Cat. No.	Cat. No.

D7M-LMM42
40 mm operator with Clear insert
40 mm operator with Green insert
40 mm operator with Red insert
40 mm operator with Yellow insert

40 mm operator with Blue insert
40 mm operator with Blue insert

60 mm operator with Clear insert	-	-	D7P-LMM62	D7M-LMM62
60 mm operator with Black insert	D7P-MM62	D7M-MM62	-	-
60 mm operator with Green insert	D7P-MM63	D7M-MM63	D7P-LMM63	D7M-LMM63
60 mm operator with Red insert	D7P-MM64	D7M-MM64	D7P-LMM64	D7M-LMM64
60 mm operator with Yellow insert	D7P-MM65	D7M-MM65	D7P-LMM65	D7M-LMM65
60 mm operator with Blue insert	D7P-MM66	D7M-MM66	D7P-LMM66	D7M-LMM66

D7PX / D7PQ Pre-assembled clip-on rear elements with plastic coupling plate D7MX / D7MQ Pre-assembled clip-on rear elements with metal coupling plate

	Screw	Metal	Metal	
Description	Cat. No.	Spring Clamp	Screw Cat. No.	Cat. No.

[^23]D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

D7PU2 / D7PLU2	2 Position plastic illuminated and non-illuminated multifunction operators
D7MU2 / D7MLU2	2 Position metal illuminated and non-illuminated multifunction operators
D7PU3	3 Position plastic non-illuminated multifunction operators
D7MU3	3 Position metal non-illuminated multifunction operators

- Protection class IP 66
- Individually packaged

1

Non-illuminated operator without
insert insert

Two Position Plastic Operator Cat. No.
D7P-U2X

D7P-LU2X

Flush	Extended
Cat. No.	Cat. No.

Three Position Plastic Operator Cat. No.
D7P-U3X

D7P-LU3X

Two Position ${ }^{3}$) Multi-Function

Three Position ${ }^{3}$) Multi-Function

Three Position Metal Operator Cat. No.
D7M-U3X

D7M-LU3X

White Blank
Black Blank
Green Blank
Red Blank
Yellow Blank
Blue Blank
Engraved inserts
To suit 2 or 3 position operators

D7-AFU1	D7-AEU1
D7-AFU2	D7-AEU2
D7-AFU3	D7-AEU3
D7-AFU4	D7-AEU4
D7-AFU5	D7-AEU5
D7-AFU6	D7-AEU6

D7-AFU6

Engraved inserts To suit 2 or 3 position operators	Flush plate for top cap	Flush plate for bottom cap	Extended plate for bottom cap
Green I	D7-AFCU3CU909	D7-AFAU3CU909	-
Green II	D7-AFCU3CU230	D7-AFAU3CU230	-
Green O	-	D7-AFAU3CU910	-
Green Start	D7-AFCU3CU208	-	-
Red Stop	-	-	D7-AEAU4CU910
Red O	-	-	D7-AEAU4CU212

2 Blank inserts for top or bottom cap To suit 2 or 3 position operators

D7PX / D7PQ Pre-assembled clip-on rear elements with plastic coupling plates D7MX / D7MQ Pre-assembled clip-on rear elements with metal coupling plates

Description	Screw Cat. No.	Spring Clamp Cat. No.	Metal Screw Cat. No.	Metal Spring Clamp Cat. No.
$1 \mathrm{~N} / \mathrm{O}$ contact block	D7PX10	D7PQ10	D7MX10	D7MQ10
$1 \mathrm{~N} / \mathrm{C}$ contact block	D7PX01	D7PQ01	D7MX01	D7MQ01
$1 \mathrm{~N} / \mathrm{O}$ and $1 \mathrm{~N} / \mathrm{C}$ contact block	D7PX11	D7PQ11	D7MX11	D7MQ11
$1 \mathrm{~N} / \mathrm{O}$ and $1 \mathrm{~N} / \mathrm{C}$ contact block and integrated LED lamp block	D7PN ${ }^{1}$) ${ }^{2}$) ${ }^{\text {(11 }}$	D7PQ') ${ }^{2}$) ${ }^{\text {Q11 }}$	D7MN') ${ }^{2}$) ${ }^{\text {(11 }}$	D7MQ') ${ }^{2}$)Q11

[^24]- Protection class IP 66
- Individually packaged
- 2 part ordering

D7PMT Plastic twist to release emergency stop operators
D7MMT Metal twist to release emergency stop operators
D7PLMT Plastic twist to release illuminated emergency stop operators
D7MLMT Metal twist to release illuminated emergency stop operators

Dimensions in (mm)

Non Illuminated	Non Illuminated	Illuminated	Illuminated
Plastic	Metal	Plastic	Metal
Cat. No.	Cat. No.	Cat. No.	Cat. No.
D7P-MT34	D7M-MT34	N/A	N/A
D7P-MT44	D7M-MT44	D7P-LMT44	D7M-LMT44
D7P-MT64	D7M-MT64	D7P-LMT64	D7M-LMT64

D7PMK Plastic key-release emergency stop operators
D7MMK Metal key-release emergency stop operators
Dimensions in (mm)
D7P-MK44
D7P-MK44

D7PX / D7PQ Pre-assembled clip-on rear elements with plastic coupling plate D7MX / D7MQ Pre-assembled clip-on rear elements with metal coupling plate

Description	Screw Cat. No.	Spring Clamp Cat. No.	Metal Screw Cat. No.	Metal Spring Clamp Cat. No.
1 N/O contact block	D7PX10	D7PQ10	D7MX10	D7MQ10
$1 \mathrm{~N} / \mathrm{C}$ contact block	D7PX01	D7PQ01	D7MX01	D7MQ01
1 N/O and 1 N/C contact block	D7PX11	D7PQ11	D7MX11	D7MQ11
$1 \mathrm{~N} / \mathrm{O}$ and $1 \mathrm{~N} / \mathrm{C}$ contact block and incandescent lamp block	D7PD')CX11	D7PD')CQ11	D7MD')CX11	D7MD') ${ }^{\text {² }}$ (11
$1 \mathrm{~N} / \mathrm{O}$ and $1 \mathrm{~N} / \mathrm{C}$ contact block and integrated LED lamp block	D7PN ${ }^{1)}{ }^{2}$) ${ }^{\text {1 }}$	D7PQ') ${ }^{2}$)Q11	D7MN $\left.\left.{ }^{1}\right)^{2}\right) \mathrm{X} 11$	D7MN $\left.\left.{ }^{1}\right)^{2}\right)$ Q11

[^25]D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

D7P-R /D7M-R Flush frame reset rod operators - Mechanical and/or electrical reset, momentary operation

1
Dimensions in (mm)

D7P-R611

D7MM-R607
Metal ${ }^{1}$)
Cat. No.
D7M-R611
D7M-R607
D7M-R6

D7-ATR Adjustable threaded reset rod

D7-ATR06

Rod Length ${ }^{2}$)	Rod length adjustability	Cat. No.
40 mm	$34 \ldots . .52 \mathrm{~mm}$	D7-ATR01
55 mm	$50 \ldots 67 \mathrm{~mm}$	D7-ATR02
85 mm	$80 \ldots . .98 \mathrm{~mm}$	D7-ATR04
115 mm	$110 \ldots 128 \mathrm{~mm}$	D7-ATR06
145 mm	$141 \ldots . .195 \mathrm{~mm}$	D7-ATR08
315 mm	$157 \ldots 326 \mathrm{~mm}$	D7-ATR19 $\left.{ }^{3}\right)$

Notes: ${ }^{1}$) For electrical operation, operator will accept coupling plate and up to four circuit contact blocks or two dual level contact blocks. (Refer to page 28 for contact blocks). ${ }^{2}$) If contact blocks are used, they must have a minimum rod length of 55 mm for one level of contact blocks and 85 mm for two levels of contact blocks.
${ }^{3}$) Rod is threaded along its entire length. Fully threaded rod can be provided after cutting.

D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

D7PP / D7MM Superior illumination qualities
Scratch resistant lens
Modern low profile bodies

- Protection class IP 66
- Individually packaged
- 2 part ordering

1

D7P-P3

D7M-M4

	Plastic	Metal
Description	Cat. No.	Cat. No.
Pilot light with Clear lens	D7P-P7	D7M-P7
Pilot light with Green lens	D7P-P3	D7M-P3
Pilot light with Red lens	D7P-P4	D7M-P4
Pilot light with Yellow lens	D7P-P5	D7M-P5
Pilot light with Blue lens	D7P-P6	D7M-P6

D7PX / D7PQ Pre-assembled clip-on rear elements with plastic coupling plate D7MX / D7MQ Pre-assembled clip-on rear elements with metal coupling plate

Description	Plastic Screw Cat. No.	Plastic Spring Clamp Cat. No.	Metal Screw Cat. No.	Metal Spring Clamp Cat. No.
Integrated LED lamp block White	D7PN ${ }^{1}$) ${ }^{\text {d }}$	D7PQ ${ }^{1}$ W	D7MN ${ }^{1}$) ${ }^{\text {W }}$	D7MQ ${ }^{1}$ W
Integrated LED lamp block Green	D7PN ${ }^{1}$)G	D7PQ ${ }^{\prime}$)G	D7MN ${ }^{1}$)G	D7MQ ${ }^{1}$)
Integrated LED lamp block Red	D7PN ${ }^{1}$)	D7PQ ${ }^{1}$ R	D7MN ${ }^{1}$)	D7MQ ${ }^{1}$ R
Integrated LED lamp block Yellow	D7PN ${ }^{1}$) ${ }^{\text {(}}$	D7PQ ${ }^{1}$) ${ }^{\text {d }}$	D7MN ${ }^{1}$) Y	D7MQ ${ }^{1}$)
Integrated LED lamp block Blue	D7PN ${ }^{1}$) ${ }^{\text {(}}$	D7PQ ${ }^{1}$) ${ }^{\text {d }}$	D7MN ${ }^{1}$)B	D7MQ ${ }^{1}$)
Ba9s incandescent lamp block - lamp supplied separately ${ }^{2}$)	D7PDOC	-	D7MDOC	-

Notes: ${ }^{1}$) Enter voltage $24 \mathrm{~V} \mathrm{AC/DC=3,110} \mathrm{~V} \mathrm{AC/DC} \mathrm{=} \mathrm{5} ,240 \mathrm{~V} \mathrm{AC/DC} \mathrm{=} 7$
${ }^{2}$) Refer page 31 for full lamp selections.

sprechert
 stituh

D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

D7PSJ Plastic, selector jog operators 2 or 3 position
D7MSJ Metal, selector jog operators 2 or 3 position

1
Dimensions in (mm)

D7M-SJ23

	Plastic operator	Metal operator
Description	Cat. No.	Cat. No.
Black 2 position	D7P-SJ22	D7M-SJ22
Green 2 position	D7P-SJ23	D7M-SJ23
Black 3 position	D7P-SJ32	D7M-SJ32
Green 3 position	D7P-SJ33	D7M-SJ33

Target Table and Operator Position (2-Position) ${ }^{1}$)					
Contact Type	Position On Mounting Latch	Selector Left Free	Selector Left Depressed	Selector Right Free	Selector Right Depressed
N/O	Left	O	X	O	O
N/O	Right	O	O	O	X
N/O	Centre	O	X	O	X
N/C	Left	X	O	X	X
N/C	Right	X	X	X	O
N/C	Centre	X	O	X	O

Target Table and Operator Position (3-Position) ${ }^{1}$)							
		0		(4)		\bigcirc	
Contact Type	Position On Mounting Latch	Selector Left Free	Selector Left Depressed	Selector Right Free	Selector Right Depressed	Selector Right Free	Selector Right Depressed
N/O	Left	0	X	0	X	0	0
N/O	Right	0	0	0	X	0	X
N/O	Centre	0	X	0	X	0	X
N/C	Left	X	0	X	0	X	X
N/C	Right	X	X	X	0	X	0
N/C	Centre	X	0	X	0	X	0

Note: ${ }^{1}$) $\mathrm{X}=$ Closed $0=$ Open

- Protection class IP 66
- Individually packaged
- 2 part ordering

D7MJM / JR2 Metal, 2 position joystick operator
D7MJM / JR4 Metal, 4 position joystick operator

Description
Metal 2 position Maintained
Metal 2 position Spring Retu

Cat. No.		Cat. No.
D7M-JM2	Metal 4 position Maintained	D7M-JM4
D7M-JR2	Metal 4 position Spring Return	D7M-JR4

Target Table and Operator Position (2-Position) ${ }^{1}$)				
Contact Type	Position on Mounting Latch	Toggle Left	Centre	Toggle Right
N/O	Left	O	O	X
N/O	Right	X	O	O
N/O	Centre	X	O	X
N/O	Left	X	X	O
N/O	Right	O	X	X
N/O	Centre	O	X	O

Note: ${ }^{1}$) $\mathrm{X}=$ Closed $0=$ Open

D7PX / D7PQ Pre-assembled clip-on rear elements with plastic coupling plate D7MX / D7MQ Pre-assembled clip-on rear elements with metal coupling plate

			Metal	Metal Sprew
	Scamp			
Description	Cat. No.	Spring Clamp	Screw	Cat. No.

D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

D7PS / D7MS Non illuminated short handle 2 position selector switch operators
D7PLS / D7MLS Illuminated short handle 2 position selector switch operators

- Protection class IP 66
- Individually packaged
- 2 part ordering 2

1 Dimensions in (mm)	D7P-SM22	D7M-SL22	D7P-LSM26	D7M-LSM25
Description	Non Illuminated Plastic Cat. No.	Non Illuminated Metal Cat. No.	Illuminated Plastic Cat. No.	Illuminated Metal Cat. No.
Stayput 60°	D7P-SM22	D7M-SM22	D7P-LSM2 ${ }^{1}$)	D7M-LSM2 ${ }^{\text {1 }}$)
Stayput 90 ${ }^{\circ}$	D7P-SN22	D7M-SN22	N/A	N/A
Spring return from Left 60°	D7P-SL22	D7M-SL22	D7P-LSL2 ${ }^{1}$)	D7M-LSL2 ${ }^{1}$)
Spring return from Right 60°	D7P-SR22	D7M-SR22	D7P-LSR2 ${ }^{1}$)	D7M-LSR2 ${ }^{\text {² }}$)

Note: ${ }^{1}$) Illuminated operators available in a choice of six different knob colours.
Green = 3, Red =4, Yellow =5, Blue. =6, Clear = 7
Example D7P-LSM24 = Red Knob

2

D7PX / D7PQ Pre-assembled clip-on rear elements with plastic coupling plate D7MX / D7MQ Pre-assembled clip-on rear elements with metal coupling plate
$\left.\begin{array}{lllll} & \text { Screw } \\ \text { Cat. No. }\end{array} \quad \begin{array}{l}\text { Spring Clamp } \\ \text { Cat. No. }\end{array} \quad \begin{array}{l}\text { Metal } \\ \text { Screw } \\ \text { Cat. No. }\end{array} \quad \begin{array}{l}\text { Metal } \\ \text { Spring Clamp } \\ \text { Cat. No. }\end{array}\right]$

[^26]- Protection class IP 66
- Individually packaged

\left.| | D7P-HM22 | D7M-HM22 |
| :--- | :--- | :--- |
| | Non Illuminated | Non Illuminated |
| Plastic | Metal | |$\right]$| Cat. No. | Cat. No. |
| :--- | :--- |
| Description | D7P-HM22 |

D7PX / D7PQ Pre-assembled clip-on rear elements with plastic coupling plate D7MX / D7MQ Pre-assembled clip-on rear elements with metal coupling plate

			Metal	Metal
Description	Screw	Spring Clamp	Screw	Spring Clamp
1 N/O contact block	Cat. No.	Cat. No.	Cat. No.	Cat. No.
1 N/C contact block	D7PX10	D7PQ10	D7MX10	D7MQ10
1 N/O and 1 N/C contact block	D7PX01	D7PQ01	D7MX01	D7MQ01

D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

D7PS / D7MS Non-illuminated short lever 3 position selector switch operators
D7PLS / D7MLS Illuminated short lever 3 position selector switch operators

- Protection class IP 66
- Individually packaged
- 2 part ordering

Dimensions in (mm)		
D7P-SM32		

Note: ${ }^{1}$) Illuminated operators available in a choice of six different knob colours.
Green = 3, Red = 4, Yellow = 5, Blue. = 6, Clear = 7
Example D7P-LSM34 = Red Knob

D7PX / D7PQ Pre-assembled clip-on rear elements with plastic coupling plate D7MX / D7MQ Pre-assembled clip-on rear elements with metal coupling plate
$\left.\begin{array}{lllll} & \text { Screw } \\ \text { Cat. No. }\end{array} \quad \begin{array}{l}\text { Spring Clamp } \\ \text { Cat. No. }\end{array} \quad \begin{array}{l}\text { Metal } \\ \text { Screw } \\ \text { Cat. No. }\end{array} \quad \begin{array}{l}\text { Metal } \\ \text { Spring Clamp } \\ \text { Cat. No. }\end{array}\right]$

[^27]- Protection class IP 66
- Individually packaged

D7PH / D7MH Non illuminated long lever 3 position selector switch operators

1 Dimensions in (mm)	D7P-HM32	D7M-HM32
Description	Non Illuminated Plastic Cat. No.	Non Illuminated Metal Cat. No.
Stayput 60 ${ }^{\circ}$	D7P-HM32	D7M-HM32
Spring return from Left 60°	D7P-HL32	D7M-HL32
Spring return from Right 60°	D7P-HR32	D7M-HR32
Spring return from Left and Right 60°	D7P-HB32	D7M-HB32

2

D7PX / D7PQ Pre-assembled clip-on rear elements with plastic coupling plate D7MX / D7MQ Pre-assembled clip-on rear elements with metal coupling plate

			Metal	Metal
	Screw	Spring Clamp	Screw	Spring Clamp
Description	Cat. No.	Cat. No.	Cat. No.	Cat. No.

- Protection class IP 66
- Individually packaged

Dimensions in (mm)

D7P-KM21

Illuminated Plastic Cat. No.	Illuminated Metal Cat. No.
D7P-KM21	D7M-KM21
D7P-KM22	D7M-KM22
D7P-KM23	D7M-KM23
D7P-KL22	D7M-KL22
D7P-KR21	D7M-KR21

D7PX / D7PQ Pre-assembled clip-on rear elements with plastic coupling plate D7MX / D7MQ Pre-assembled clip-on rear elements with metal coupling plate

			Metal	Metal
	Screw	Spring Clamp	Screw	Spring Clamp
Description	Cat. No.	Cat. No.	Cat. No.	Cat. No.
1 N/O contact block	D7PX10	D7PQ10	D7MX10	D7MQ10
1 N/C contact block	D7PX01	D7PQ01	D7MX01	D7MQ01
1 N/O and 1 N/C contact block	D7PX11	D7PQ11	D7MX11	D7MQ11

- Protection class IP 66
- Individually packaged

1
Dimensions in (mm)

		Illuminated Plastic Cat. No.	Illuminated Metal Cat. No.
Description	Key Removable	D7P-KM31	D7M-KM31
Stayput 60°	Key removable Left	D7P-KM33	D7M-KM33
	Key removable Both	D7P-KM34	D7M-KM34
	Key removable Centre	D7P-KM35	D7M-KM35
Spring return from Left 60°	Key removable Left and Centre	D7P-KL34	D7M-KL22
Spring return from Right 60°	Key removable Centre	D7P-KR31	D7M-KR31
	Key removable Left	D7P-KR34	D7M-KR34
Spring return from Left and right 60°	Key removable Left and Centre	D7P-KR35	D7M-KR35

D7PX / D7PQ Pre-assembled clip-on rear elements with plastic coupling plate D7MX / D7MQ Pre-assembled clip-on rear elements with metal coupling plate

			Metal	Metal
	Screw	Spring Clamp	Screw	Spring Clamp
Description	Cat. No.	Cat. No.	Cat. No.	Cat. No.
1 N/O contact block	D7PX10	D7PQ10	D7MX10	D7MQ10
1 N/C contact block	D7PX01	D7PQ01	D7MX01	D7MQ01
1 N/O and 1 N/C contact block	D7PX11	D7PQ11	D7MX11	D7MQ11

D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

Enclosures
Enclosures with 22.5 mm cut-outs

- Individually packaged

Dimensions in (mm)

No. of Units (Holes)	A	B
1	85	89
2	124	79
3	155	79
$4 / 5$	186	79
6	248	87

D7-3PM

Enclosures	No. of Cut-Outs	Plastic Cat. No.	Metal Cat. No.
Grey plastic enclosures ${ }^{1}$)	1	D7-1PM	D7-1MM
Degree of protection IP 65 to IEC 529	2	D7-2PM	D7-2MM
Water jet protected to SEV 3047	3	D7-3PM	D7-3MM
Empty, with $22.5 \mathrm{~mm} \varnothing$ holes and 2 cable entries	4	D7-4PM	-
21.5 mm \varnothing, top with knock-out, bottom with cable sleeve	5	-	D7-5MM
	6	D7-6MP	-
Yellow plastic (as above)	1	D7-1YM	$-{ }^{3}$)
		D7-P25	
Pendant Enclosures - Yellow Plastic ${ }^{2}$)	No. of Cut-Outs	Cat. No.	
1 Hole in Face	1	D7-P15	
2 Holes in Face	2	D7-P25	

No. of Cut-Outs

Dimensions in (mm)

D7-N2

| Blanking Plugs | Colour | Cat. No. |
| :--- | :--- | :--- | :--- |
| Round blanking plug (PG 16 mm$)$ with grey fixing nut, | Black | D7-N2 |
| used to fill $22.5 \mathrm{~mm} \varnothing$ mounting holes and cable entry holes | Grey | D7-N8 |

Note:
${ }^{1}$) Legend plates refer page 41-42.
${ }^{2}$) Buttons supplied separately, enclosures supplied without buttons.
${ }^{3}$) Yellow metal enclosure due late 2006 .

D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

D7-ALP / D7-ALM Contact block coupling plates

- Time saving snap-on twist to release operation
- Suitable for 3 contacts in one level
- Available in metal or plastic

Description	Cat. No.
Plastic coupling plate	D7-ALP
Metal coupling plate	D7-ALM

D7-X / D7-Q Panel mount contact blocks
D7-BX / D7-BQ Base mount contact blocks

- Option of screw or spring clamp termination
- Self-cleaning operation for long life
- Colour coded operators for easy identification
- Small dimensions
- Panel mount can be mounted to metal or plastic coupling plate

Dimensions in (mm)

D7-X01S

D7-BX01V

Description	Operator Colour	Panel Mount Cat. No.	Base Mount Cat. No.
Normally open contact block	Green	D7-X10	D7-B10
Normally closed contact block	Red	D7-X01	D7-B01
Normally open contact block with spring clamp terminals	Green	D7-Q10	
Normally closed contact block with spring clamp terminals	Red	D7-Q01	D7-BQ10
Normally open early make	Green	D7-X10E	D7-BQ01
Normally closed late brake	Red	D7-X01L	D7-BX10E
Normally open low voltage Quadfurcated gold contacts	Blue	D7-X10V	D7-BX01L
Normally closed low voltage Quadfurcated gold contacts	Blue	D7-X01V	D7-BX01V
Dual circuit 2 normally open	Green	D7-X20D	N/A
Dual circuit 2 normally closed	Red	D7-X02D	N/A
Autobreak safety contact block for emergency stop operators	Yellow	D7-X01S	N/A

D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

D7-DOC / BDOC Incandescent lamp module for panel and base mount applications
D7-N / D7-BN
Integrated LED lamp module for panel and base mount
applications

- Supplied less coupling plate
- Option of screw or spring clamp termination ${ }^{3}$)
- Self cleaning operation for long life
- Small dimensions
- High illumination qualities

Description	Colour	Panel Mount Cat. No.	Base Mount Cat. No.
Incandescent lamp module (without Ba9s lamp)		D7-DOC ${ }^{1}$)	-
Integrated LED module 24 V AC/DC ${ }^{2}$)	Yellow	D7-N3Y	D7-BN3Y
	Green	D7-N3G	D7-BN3G
	Red	D7-N3R	D7-BN3R
	Blue	D7-N3B	D7-BN3B
	White	D7-N3W	D7-BN3W
Integrated LED module 120 V AC/DC ${ }^{2}$)	Yellow	D7-N5Y	D7-BN5Y
	Green	D7-N5G	D7-BN5G
	Red	D7-N5R	D7-BN5R
	Blue	D7-N5B	D7-BN5B
	White	D7-N5W	D7-BN5W
Integrated LED module $240 \mathrm{~V} \mathrm{AC/DC}{ }^{2}$)	Yellow	D7-N7Y	D7-BN7Y
	Green	D7-N7G	D7-BN7G
	Red	D7-N7R	D7-BN7R
	Blue	D7-N7B	D7-BN7B
	White	D7-N7W	D7-BN7W

Spring - clamp termination is available for the integrated LED lamp block upon request.
Substitute \mathbf{N} for \mathbf{Q} in the catalogue number.
Example D7-Q3R

Notes: $\left.\quad{ }^{1}\right)$ Ba9s lamps supplied separately. Refer page 31.
${ }^{2}$) For best results LED should match lens colour.
${ }^{3}$) Spring clamp terminations only available on integrated LED lamp block.

D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

Replacement Len's and colour caps

Coloured inserts

	To suit	To suit Flush and
Description	Extended operator Guarded operator	
Cat. No.	Cat. No.	

Non-illuminated inserts

White	D7-AE1	D7-AF1
Black	D7-AE2	D7-AF2
Green	D7-AE3	D7-AF3
Red	D7-AE4	D7-AF4
Yellow	D7-AE5	D7-AF5
Blue	D7-AE6	D7-AF6

Lens caps		D7-ALE2	D7-AP5
Description	To suit Flush operator Cat. No.	To suit Extended Guarded operator Cat. No.	To suit Pilot Light operator Cat. No.
Illuminated lens cap and pilot light lenses			
Green	D7-ALF3	D7-ALE1	D7-AP3
Red	D7-ALF4	D7-ALE2	D7-AP4
Yellow	D7-ALF5	D7-ALE3	D7-AP5
Blue	D7-ALF6	D7-ALE4	D7-AP6
Clear	D7-ALF7	D7-ALE5	D7-AP7

Diffuser for illuminated pushbuttons and pilot lights

D7-AD4

	To suit Flush operator Cat. No.	To suit Extended Guarded operator Cat. No.	To suit Pilot Light operator Cat. No.
Description	D7-AD4	D7-AD3	
Spare lens diffuser	D7-AD2	D7-AD	

Spare lamps

Incandescent lamps for pilot lights
Ba9s style for full voltage lamp block D7-DOC

- Incandescent, multi-cluster LED and neon lamps
- Each component supplied separately

Voltage	Typical Current	1.2 Watt Cat. No.	2 Watt Cat. No.
6 V	150 mA	BA9S-I3-6V-1.2W	BA9S-I3-6V-2W
12 V	80 mA	BA9S-I3-12V-1.2W	BA9S-I3-12V-2W
24 V	70 mA	BA9S-I3-24V-1.2W	BA9S-I3-24V-2W
36 V	60 mA	BA9S-I3-36V-1.2W	BA9S-I3-36V-2W
48 V	50 mA	BA9S-I3-48V-1.2W	BA9S-I3-48V-2W
60 V	22 mA	BA9S-I3-60V-1.2W	BA9S-I3-60V-2W

Neon lamps

Ba9s style for full voltage lamp block D7-DOC

Voltage	Typical Current	Cat. No.
110 V...127 V Clear	22 mA	BA9S-CN3-110V
220 V...240 V Clear	22 mA	BA9S-CN3-240V

Multi-Cluster LED lamp Ba9s style

Ultra bright extended life (typical 50,000 + hours) multi-cluster Ba9s style.
Available in White (WL), Red (RL), Green (GL), Yellow (YL), Blue (BL)
eg: Ba9s-WL-8VACDCM

			Ultra Bright Style Coltage
$8 \mathrm{~V} \mathrm{AC/DC}$	72 mA	Cat. No. ${ }^{1}$)	${ }^{1}$)

General accessories

V7-SM5X9

Sealing caps

For flush pushbuttons	IP 66	D7-AB7
For multi-function operators	Flush IP 66	D7-AB3
	Pos. A extended IP 66	D7-AB2
	Pos. B extended IP 66	D7-AB1

General accessories

| Description | | Cat. No. |
| :--- | :--- | :--- | :--- |
| Replacement Boot for Joystick operator | Silicone | D7-ABJS |

Hole Plug used to plug 22.5 mm holes \quad Black plastic \quad D7-N2

D7-30WN

D7-30WG

D7-AC3

Potentiometer Legend Plate scale 1-10
D7-30WN
Note: Sold in multiples of 10.
Order (quantity of) 10 to receive one packet of 10 pieces

Potentiometer Legend Plate
D7-30WG
Graphical scale
Note: Sold in multiples of 10.
Order (quantity of) 10 to receive one packet
of 10 pieces

	Resistance	Cat. No.
Replacement Resistive Elements	150Ω	D7-AC1
for the 800FP Potentiometer operator	500Ω	D7-AC2
	1000Ω	D7-AC3
	2500Ω	D7-AC4
	5000Ω	D7-AC5

D7-AMRG

40 mm protective ring
D7-AMRG
For use on 2 position push-pull operators only

Selector switch padlocking attachment

Left lock position	D7-ASL2L
Centre lock position	D7-ASL3C

Note: ${ }^{1}$) When the operator is activated -N/C contacts are held open

- N/O contacts may or may not be held open.

N/C.L.B. contacts may or may not be held closed.
N/O.E.M. contacts are held closed.

General accessories

	Description	Cat. No.
D7-ALP	Plastic Coupling Plate Note: Sold only in multiples of 10 . Order (quantity of) 10 to receive one package of 10 pieces.	D7-ALP
	Metal Coupling Plate These are zinc-plate, metal die cast coupling plates. Note: Sold only in multiples of 10 . Order (quantity of) 10 to receive one package of 10 pieces.	D7-ALM
D7-AGS1	Ground Screws These are self-tapping \#6-32 (M3.5) ground screws for metal coupling plates. Note: Sold only in multiples of 10 . Order (quantity of) 10 to receive one package of 10 pieces.	D7-AGS1 D7-ATK2
D7-ATK2	Stab Terminals Note: Sold only in multiples of 10 . Order (quantity of) 10 to receive one package of 10 pieces.	D7-AGS2
D7-AGS2	Ground Screws This accessory is used for grounding on D7 plastic enclosures only.	D7-ATW1
	Replacement Trim Washer This accessory comes standard with all enclosures. It must be utilised if using base-mounted contact blocks/power modules without legend plates.	D7-A3BA

Replacement Base Mount Adaptor

This accessory comes standard with all metal enclosures. It is
required when using metal enclosures with base-mounted contact blocks or base-mounted power modules.

Description	Ronis Key	Cat. No.
Replacement Ronis Key	3825	D7-AKR3825
Standard replacement key is	455	D7-AKR455
Cat. No. D7-AKR3825	3801	D7-AKR3801
	3802	D7-AKR3802
NOTE: These are spare keys	3803	D7-AKR3803
supplied in set of two to suit key	3804	D7-AKR3804
operated devices with same	3805	D7-AKR3805
lock number	3806	D7-AKR3806
	4001	D7-AKR4001
	4002	D7-AKR4002
	4003	D7-AKR4003
	4004	D7-AKR4004
	4005	D7-AKR4005
	4006	D7-AKR4006
	4007	D7-AKR4007

Laser-Engraved Caps and Diffusers

Standard Text / Symbols Configurator 1, 2, 3

D7-A	F		3		E 166
	Type Colour				Suffix No.
	Code E F FAU EAU FCU ECU	Pushbutton extended cap Pushbutton flush cap Multi-function flush cap (for bottom cap) Multi-function extended cap (for bottom cap) Multi-function flush cap (for top cap) Multi-function extended cap (for top cap)	Code 1 2 3 4 5 6	White Black Green Red Yellow Blue	See pages 37 for laser engraved text / symbol options. Insert suffix code Exx / Uxx as shown.
	D	Pilot light diffuser	3	Default code for pilot light diffusers	
	D	Illuminated pushbutton diffuser, flush	2	Default code for flush diffusers	
	D	Illuminated pushbutton diffuser, extended	4	Default code for extended diffusers	

Ordering Information for Standard Text / Symbols

1. Select the Cat. No. for the appropriate product type and colour from the Configurator Table on this page.
2. Complete the Cat. No. by adding the appropriate suffix no. selected from pages per letter.
3. List price for non-standard text / symbols, laser engraved caps and diffusers, per letter.

Example: Cat. No. D7-AF3CE166 identifies a pushbutton flush cap, green cap with laser engraved text "ON".

Multi-Function Cap Positions

Customer laser-Engraved Caps and Diffusers Form 2 / 3

Notes: 1. Package quantity of one for all standard laser-engraved caps and diffusers.
2. Standard font is Arial Narrow.
3. Font size is automatically determined by the number of characters. Seven characters maximum allowable.

D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

Standard Engraved
Pushbutton inserts and diffusers with text

Description	Cat. No. Flush Non Illuminated	Cat. No. Extended Non Illuminated	Cat. No. Diffuser for Flush Illum. Pushbutton	Cat. No. Diffuser for Extended Illum. Pushbutton	Cat. No. Diffuser for Pilot Light
START	D7-AF_CE208	D7-AF_CE208	D7-AD2CE208	D7-AD4CE208	D7-AD3CE208
STOP	D7-AF_CE212	D7-AF_CE212	D7-AD2CE212	D7-AD4CE212	D7-AD3CE212
ON	D7-AF_CE166	D7-AF_CE166	D7-AD2CE166	D7-AD4CE166	D7-AD3CE166
OFF	D7-AF_CE163	D7-AF_CE163	D7-AD2CE163	D7-AD4CE163	D7-AD3CE163
1	D7-AF_CU229	D7-AF_CU229	D7-AD2CE229	D7-AD4CE229	D7-AD3CE229
\bigcirc	D7-AF_CU228	D7-AF_CU228	D7-AD2CE228	D7-AD4CE228	D7-AD3CE228
RESET	D7-AF_CE186	D7-AF_CE186	D7-AD2CE186	D7-AD4CE186	D7-AD3CE186
R	D7-AF_CU924	D7-AF_CU924	D7-AD2CE924	D7-AD4CE924	D7-AD3CE924
UP	D7-AF_CE223	D7-AF_CE223	D7-AD2CE223	D7-AD4CE223	D7-AD3CE223
DOWN	D7-AF_CE110	D7-AF_CE110	D7-AD2CE110	D7-AD4CE110	D7-AD3CE110
OPEN	D7-AF_CE110	D7-AF_CE110	D7-AD2CE170	D7-AD4CE170	D7-AD3CE170
CLOSE	D7-AF_CE107	D7-AF_CE107	D7-AD2CE107	D7-AD4CE107	D7-AD3CE107
RAISE	D7-AF_CE182	D7-AF_CE182	D7-AD2CE182	D7-AD4CE182	D7-AD3CE182
LOWER	D7-AF_CE152	D7-AF_CE152	D7-AD2CE152	D7-AD4CE152	D7-AD3CE152
RIGHT	D7-AF_CE191	D7-AF_CE191	D7-AD2CE191	D7-AD4CE191	D7-AD3CE191
LEFT	D7-AF_CE145	D7-AF_CE145	D7-AD2CE145	D7-AD4CE145	D7-AD3CE145
FORWARD	D7-AF_CE120	D7-AF_CE120	D7-AD2CE120	D7-AD4CE120	D7-AD3CE120
REVERSE	D7-AF_CE188	D7-AF_CE188	D7-AD2CE188	D7-AD4CE188	D7-AD3CE188
FAST	D7-AF_CE114	D7-AF_CE114	D7-AD2CE114	D7-AD4CE114	D7-AD3CE114
SLOW	D7-AF_CE210	D7-AF_CE210	D7-AD2CE201	D7-AD4CE201	D7-AD3CE201
RUN	D7-AF_CE193	D7-AF_CE193	D7-AD2CE193	D7-AD4CE193	D7-AD3CE193
TEST	D7-AF_CE219	D7-AF_CE219	D7-AD2CE219	D7-AD4CE219	D7-AD3CE219
AUTO	D7-AF_CE219	D7-AF_CE219	D7-AD2CE101	D7-AD4CE101	D7-AD3CE101

Spare Blank diffusers for pilot lights and illuminated pushbuttons

		Diffuser for	
	Diffuser for Flush	Extended	Diffuser for
Description	Illum. Pushbutton	Illum. Pushbutton Cat. No.	Pilot Light
Cat. No.	Cat. No.		
Blank	D7-AD2	D7-AD4	D7-AD3

[^28]Engraving / Legend plates and colour caps

For standard multi-function operators ${ }^{1}$)

Description	Pos. C Green symbol white text Cat. No.	Pos. A Green symbol white text Cat. No.	Pos. A Red symbol white text Cat. No.	Pos. A Red symbol white text Cat. No.
\rightarrow	D7-AFAU3CU700			
\leftarrow		D7-AFAU3CU700		
+	D7-AFAU3CU730	D7-AFAU3CU730		
-	D7-AFAU3CU731	D7-AFAU3CU731		
I	D7-AFAU3CU909	D7-AFAU3CU909		
II	D7-AFAU3CU602	D7-AFAU3CU602		
\uparrow	D7-AFAU3CU712			
\downarrow		D7-AFAU3CU713		
0			D7-AEAU4CU910	D7-AEAU4CU910
UP	D7-AFAU3CU223			
DOWN		D7-AFAU3CU110		
RIGHT	D7-AFAU3CU191			
LEFT		D7-AFAU3CU145		
FORWARD	D7-AFAU3CU120			
REVERSE		D7-AFAU3CU188		
START	D7-AFAU3CU208			
STOP			D7-AEAU4CU212	D7-AEAU4CU212

Legend plates with symbol

Description				Plastic black, inscription white, for legend plate carrier D7-110 $30 \times 40 \mathrm{~mm}^{2}$) Cat. No.	Plastic black, inscription white, for legend plate carrier $\begin{aligned} & \text { D7-RO } \\ & 30 \times 50 \mathrm{~mm}^{3} \text {) } \\ & \text { Cat. No. } \end{aligned}$	Aluminium, inscription black, for legend plate carrier D7-120 \& D7-200 $30 \times 50 \mathrm{~mm}^{4}$) Cat. No.
0	.	I	D7-17BU231		D7-18BU231	D7-18AU231
I		II	D7-17BU229		D7-18BU229	D7-18AU229
I	0	II		D7-17BU234	D7-18BU234	D7-18AU234
0		I		D7-17BU255	D7-18BU255	D7-18AU255
\leftarrow	0	I		D7-17BU252	D7-18BU252	D7-18AU252
\leftarrow	0	\rightarrow		D7-17BU253	D7-18BU253	D7-18AU253
	0	\rightarrow		D7-17BU256	D7-18BU256	D7-18AU256

Lescription

[^29]Custom legend plates

D7 Custom Legend Plate ordering Form (for text/symbols not found on other pages)

Description		Plastic black, inscription white, for legend plate carrier D7-110 $30 \times 40 \mathrm{~mm}{ }^{1}$)	Plastic black, inscription white, for legend plate carrier D7-120 $30 \times 50 \mathrm{~mm}{ }^{2}$)	Aluminium, inscription black, for legend plate carrier D7-150 \& D7-200 $30 \times 50 \mathrm{~mm}^{3}$)
AUTO		D7-17BE101	D7-18BE101	-
CLOSE		D7-17BE107	D7-18BE107	-
DOWN		D7-17BE110	D7-18BE110	-
EMERGENCY STOP		D7-17BE112	D7-18BE112	-
FAULT		D7-17BE113	D7-18BE113	-
FAST		D7-17BE114	D7-18BE114	-
FORWARD		D7-17BE120	D7-18BE120	-
HAND		D7-17BE126	D7-18BE126	-
HIGH		D7-17BE129	D7-18BE129	-
IN		D7-17BE132	D7-18BE132	-
INCH		D7-17BE134	D7-18BE134	-
JOG		D7-17BE138	D7-18BE138	-
LEFT		D7-17BE145	D7-18BE145	-
LOW		D7-17BE148	D7-18BE148	-
LOWER		D7-17BE152	D7-18BE152	-
OFF		D7-17BE163	D7-18BE163	-
ON		D7-17BE166	D7-18BE166	-
OPEN		D7-17BE170	D7-18BE170	-
OUT		D7-17BE173	D7-18BE173	-
RAISE		D7-17BE182	D7-18BE182	-
REVERSE		D7-17BE188	D7-18BE188	-
RIGHT		D7-17BE191	D7-18BE191	-
SLOW		D7-17BE201	D7-18BE201	-
START		D7-17BE208	D7-18BE208	-
STOP		D7-17BE212	D7-18BE212	-
UP		D7-17BE223	D7-18BE223	-
0	AUTO	D7-17BU250	D7-18BU250	D7-30AU250
HAND O	AUTO	D7-17BU251	D7-18BU251	D7-30AU251
MAN O	AUTO	D7-17BE238	D7-18BE238	D7-30AE238
ON OFF	AUTO	D7-17BE300	D7-18BE300	D7-30AE300
MAN	AUTO	D7-17BE301	D7-18BE301	D7-30AE301
HAND	AUTO	D7-17BE127	D7-18BE127	D7-30AE127
FROW. OFF	REV.	D7-17BE261	D7-18BE261	D7-30AE261
SET-UP	RUN	D7-17BE302	D7-18BE302	D7-30AE302
FROW.	REV.	D7-17BE303	D7-18BE303	D7-30AE303
UP	DOWN	D7-17BE224	D7-18BE224	D7-30AE224
OFF	ON	D7-17BE165	D7-18BE165	D7-30AE165
STOP	START	D7-17BE305	D7-18BE305	D7-30AE305
BLANK LEGEND PLATE		D7-17BE100	D7-18BE100	D7-30AE100

Notes: $\left.\quad{ }^{1}\right)$ Legend plate size $27 \times 6 \mathrm{~mm}$.

D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

Engraving / legend plates with text

Description			Plastic black, inscription white, for legend plate carrier D7-110 $30 \times 40 \mathrm{~mm}{ }^{1}$)	Plastic black, inscription white, for legend plate carrier D7-120 $30 \times 50 \mathrm{~mm}^{2}$)
HIGH		LOW	D7-17BE130	D718BE130
INCH		REVERSE	D7-17BE135	D7-18BE135
JOG		FORWARD	D7-17BE255	D7-18BE255
JOG		REVERSE	D7-17BE256	D7-18BE256
JOG		RUN	D7-17BE142	D7-18BE142
LEFT		RIGHT	D7-17BE146	D7-18BE146
OFF		ON	D7-17BE165	D7-18BE165
OPEN		CLOSE	D7-17BE171	D7-18BE171
RAISE		LOWER	D7-17BE183	D7-18BE183
SLOW		FAST	D7-17BE204	D7-18BE204
UP		DOWN	D7-17BE224	D7-18BE224
FORWARD	STOP	REVERSE	D7-17BE254	D7-18BE254
HAND	OFF	AUTO	D7-17BE128	D7-18BE128
JOB	STOP	RUN	D7-17BE144	D7-18BE144
FORWARD	OFF	REVERSE	D7-17BE261	D7-18BE261
LOW	OFF	HIGH	D7-17BE150	D7-18BE150
RAISE	OFF	LOWER	D7-17BE184	D7-18BE184
SLOW	OFF	FAST	D7-17BE205	D7-18BE205
SLOW	OFF	START	D7-17BE207	D7-18BE207

Notes: $\quad{ }^{1}$) Legend plate size $27 \times 6 \mathrm{~mm}$.
${ }^{2}$) Legend plate size $27 \times 16 \mathrm{~mm}$.

Front-of-Panel (Operators) (1)

Back-of-Panel Components ${ }^{1}$)

Notes: ${ }^{1}$) Performance data given in this publication is provided only as a guide for the user in determining suitability and do not constitute a performance warranty of any kind. Such data may represent the results of accelerated testing at elevated stress levels, and the user is responsible for correlating the data to actual application requirements. ALL WARRANTIES AS TO ACTUAL PERFORMANCE, WHETHER EXPRESS OR IMPLIED, ARE EXPRESSLY DISCLAIMED.
${ }^{2}$) Momentary mushroom operators are IP 65, multi-function operators have no Type 13 rating. Plastic operators with keys have no Type 4X rating.
${ }^{3}$) Operating temperatures below $0{ }^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ are based on the absence of freezing moisture and liquids.
${ }^{4}$) Low voltage contacts are recommended for applications below $17 \mathrm{~V}, 5 \mathrm{~mA}$.

Back-of-Panel Components ${ }^{1}$), continued

Illumination			Plastic (D7P)
LED dominant wavelength	Green	(nm)	525 nm
	Red		629 nm
	Yellow		590 nm
	Blue		470 nm
	White		
LED luminous intensity	Green	(mcd)	890 mcd
	Red		890 mcd
	Yellow		690 mcd
	Blue		193 mcd
	White		412 mcd
Incandescent maximum wattage		(W)	1 W
Environmental			
Temperature range (operating) ${ }^{2}$)		$\left({ }^{\circ} \mathrm{C}\right)$	$-25 \ldots+70^{\circ} \mathrm{C}\left(-13 \ldots+158{ }^{\circ} \mathrm{F}\right)$
Temperature range (short-term storage)		$\left({ }^{\circ} \mathrm{C}\right)$	$-25 \ldots+85^{\circ} \mathrm{C}\left(-13 \ldots+185^{\circ} \mathrm{F}\right)$
Humidity		(\%)	tested at $50 \ldots 95 \%$ relative humidity from $25 \ldots 60^{\circ} \mathrm{C}\left(77 \ldots 140^{\circ} \mathrm{F}\right)$ per: procedure IV of MIL-STD-810C, Method 507.1 cycling test
Materials			
Springs			Stainless steel and zinc coated music wire
Electrical contacts	Standard		Silver-nickel
	Low voltage		Gold-plated over silver
Terminals	Screw		Brass
	Screwless		Silver-plated copper

Environmental Approval Note: Front elements UL Recognised; Complete assemblies UL Approved.
See Table A2 (below) for your application.
This table is extracted from Sprecher + Schuh's UL 508A file and can be used to determine which D7 Pilot Device is approved for a particular enclosure type.

	TABLE A2 - Openings in Enclosure
Enclosure Type	Openings May Be Closed By Equipment Marked...
2	$2,3,3 \mathrm{R}, 3 \mathrm{~S}, 4,4 \mathrm{X}, 6,6 \mathrm{P}, 11,12,12 \mathrm{~K}, 13$
3	$3,3 \mathrm{R}, 3 \mathrm{~S}, 4,4 \mathrm{X}, 6,6 \mathrm{P}$
3 R	$3,3 \mathrm{R}, 3 \mathrm{~S}, 4,4 \mathrm{X}, 6,6 \mathrm{P}$
3 S	$3,3 \mathrm{R}, 3 \mathrm{~S}, 4,4 \mathrm{X}, 6,6 \mathrm{P}$
4	$4,4 \mathrm{X}, 6,6 \mathrm{P}$
4 X	4 X
6	$6,6 \mathrm{P}$
6 P	6 P
11	11
$12,12 \mathrm{~K}$	$12,12 \mathrm{~K}, 13$
13	13

Product Certification

Certifications	UL. UR, CSA, CCC, CE
Standards	NEME ICS-5; UL 508, EN 418, EN 60947-1, EN 60947-5-1, EN 60947-5-5
Terminal Identification	IEC 60947-1
Shipping Approvals	RINA, LR, ABS

Notes: ${ }^{1}$) Performance data given in this publication is provided only as a guide for the user in determining suitability and do not constitute a performance warranty of any kind. Such data may represent the results of accelerated testing at elevated stress levels, and the user is responsible for correlating the data to actual application requirements. ALL WARRANTIES AS TO ACTUAL PERFORMANCE, WHETHER EXPRESS OR IMPLIED, ARE EXPRESSLY DISCLAIMED.
${ }^{2}$) Operating temperatures below $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ are based on the absence of freezing moisture and liquids.

D7 22.5 mm CONTROL \& SIGNALLING PRODUCTS

Material Listing

Component	For Use With	Material Used
Panel gasket	All operators	Nitrile
Diaphragm seal	Illuminated pushbutton, non-illuminated pushbutton	Automotive acceptable silicone
K-seal	Selector switch, key selector switch, push/twist-to-release E-stop, key E-stop, push/pull mushroom	Niltrile
Diaphragm retainer, return spring I	Illuminated pushbutton, non-illuminated pushbutton, momentary mushroom, push/twist-to-release E-stop, key E-stop, push/pull mushroom	Stainless steel
Return spring II	Reset, selector switch, key selector switch	Zinc coated music wire
Button cap/mushroom head	Non-illuminated pushbutton, momentary mushroom, reset, push/twist-to-release E-stop, key E-stop, push/pull mushroom, multi-function	PBT/polycarbonate blend
2-colour moulded button insert	Non-illuminated pushbutton	PBT/polycarbonate blend
Lens	Multi-function	Acetal
Lens, knob	Illuminated pushbutton, illuminated momentary mushroom, illuminated selector switch	Polyamide
Plastic bezel/bushing I	Non-illuminated pushbutton, illuminated pushbutton, momentary mushroom, selector switch, key selector switch, push/twist-to-release E-stop, key E-stop, push/pull mushroom, multi-function	Glass-filled polyamide
Plastic bezel/bushing II, jam nut, knob	Reset, non-illuminated selector switch, pilot light	Glass-filled polyamide
Metal bezel/bushing	All metal operators	Zinc
Diffuser	Illuminated pushbutton, pilot light	Polycarbonate
Legend frames	-	Glass-filled nylon
Plastic mounting ring	All plastic operators	Glass-filled polyamide
Metal mounting ring	All metal operators	Chromated zinc
Plastic coupling plate	-	Glass-filled nylon
Metal coupling plate	-	Chromated zinc + stainless steel
Plastic enclosures	-	PBT/polycarbonate blend
Metal enclosure	-	Aluminium
Terminal screws	LED module, incandescent module, contact blocks	Zinc-plated steel with chromate
Terminals	LED module, incandescent module, contact blocks	Brass with silver-nickel contacts
Screwless	LED module, incandescent module, contact blocks	Stainless steel
Lamp socket	Incandescent module	Brass
Housing	Incandescent module, LED module	Glass-filled nylon
Low voltage terminals	Contact blocks	Gold-plated brass with silver-nickel contacts
Low voltage spanner	Contact blocks	Gold-plated brass with silver-nickel contacts
Spanner	Contact blocks	Brass with silver-nickel contacts

Dimensions (mm) and panel hole spacing

Non-Illuminated and Illuminated Momentary Flush pushbutton Operators

Illuminated and Non-Illuminated Momentary Extended pushbutton Operators

Illuminated Momentary Guarded pushbutton Operators

Non-Illuminated Guarded, Illuminated and Non-Illuminated Alternate Action pushbutton Operators

Dimensions (mm)

Reset Operators with Reset Rod

Illuminated and Non-Illuminated 2-Position Multi-Function Operators

Non-Illuminated
3-Position Multi-Function Operators

Pilot Light Operators

Illuminated and Non-Illuminated Knob Selector Switch and Potentiometer Operators

Illuminated and Non-Illuminated Push-Pull Mushroom Operators $30 \mathrm{~mm}, 40 \mathrm{~mm}$ and 60 mm

Operator	A
30 mm	30.0
40 mm	40.0
60 mm	60.0

Active: 30/09/2015

Illuminated and Non-Illuminated Momentary Mushroom Operators 40 mm and 60 mm

Non-Illuminated Knob Lever Selector Switch Operators

Illuminated and Non-Illuminated Twist-to-Release Operators $30 \mathrm{~mm}, 40 \mathrm{~mm}$ and 60 mm

Operator	A
30 mm	30.0
40 mm	40.0
60 mm	60.0

Dimensions (mm)

Mushroom Key Release Operator 40 mm

Joystick Operators

73

Back-of-Panel Components Incandescent Module with coupling plate

Key Selector Switch and Key Ejected SensEject Operators

Back-of-Panel Components LED Module with coupling plate

Dimensions (mm)

Back-of-Panel Components Contact Cartridges with coupling plate

Potentiometer with Resistive Element

Protective Ring

Back-of-Panel Components -
Dual Circuit Contact Block or SMBC Contact Block (Max. of 1 Deep)

$30 \times 40 \mathrm{~mm}$ Snap-In Legend Plate

$30 \times 50 \mathrm{~mm}$ Snap-In Legend Plate

Dimensions (mm)

Plastic Guard

60 mm Round Legend

Potentiometer Legend Plate

$30 \times 60 \mathrm{~mm}$ Snap-In Legend Plate

90 mm Round legend

Special Multi-Function Snap-In Legend Plate

Dimensions (mm)

$30 \times 40 \mathrm{~mm}$ One-Piece Legend Plate

30 to 22.5 mm Hole Adaptor

Hole Plug

Maintained Mushroom Locking Attachment

Extended Non-Illuminated locking Attachment

Momentary Mushroom Locking Attachment

Locking Cover

Dimensions (mm)

Selector Switch Locking Cover (Same for all Lock Positions)

Pendant Stations

Plastic Enclosures

Cat. No.	No. of Units (Holes)	A	B	\mathbf{C}
D7F-1PM	1	85	89	58
D7F-2PM	2	124	79	58
D7F-3PM	3	155	79	58
D7F-4PM	4	186	79	58
D7F-6PM	6	248	87	64

Metal Enclosures

Cat. No.	No. of Units (Holes)	A	B
D7F-1MM	1	85	89
D7F-2MM	2	124	79
D7F-3MM	3	155	79
D7F-5MM	5	186	79

Product selection made easy

Until now, NHP has been easily recognisable by its logo $\mathbb{N} \boldsymbol{\sim}$. However, we realise that, as a customer you need to locate the products and information most relevant to you quickly and easily. That's why we're phasing in our new product icons, to help you differentiate the product information you need amongst the clutter that is business today.

You may have already come across these icons, prominent on the front of our literature as new catalogues and flyers become available. These brightly coloured icons in an obvious location mean no longer will you have to worry about searching for product information amongst the mounds of promotional literature. No more flicking through pages of catalogues, wondering where the things you need might be. We've done the searching for you. Just look for the icon that suits your product needs.......your guide to save yourself time \qquad so that you can get back to your business.

When it comes to motor control, our product package is by far the most technically advanced and comprehensive.
This includes the leading Sprecher+Schuh motor starting and protection products, well known for their reliability in service.

NHP offers an extensive range of power quality products to maintain and protect your power distribution network. All our products, from Terasaki circuit protection devices through to our load-break and switch-fuses, offer high levels of security and reliability.

Automation and communication systems are central to your productivity and efficiency. Our range consists of the world's best and proven products, from Hitachi drives to the technically advanced Adroit SCADA system.

Our control and switching range keeps the risk of human error to a minimum with pushbuttons, cam switches, pendant controllers, foot switches, relays and timers.

We are specialists in safety products and our vast range reflects that. From Schmersal safety switches through to Sunx light curtains, our safety and protection products enable you to provide and maintain 'Safety in the Workplace'. Our range also includes sirens, sounders and bells.

Our power quality range helps you to condition your power supply through power factor correction, surge protection and filtering, reducing your power consumption costs and saving you money while also protecting valuable equipment.

The NHP Ex Hazardous area equipment range helps you protect people and property in areas such as petro-chemical and grain handling. Products include Exde control equipment and Ex Lighting products.

If it's there, our sensing and detection products will see it, touch it, or find it. From beam sensors and magnetic reed switches to limit switches, we offer numerous variations of each sensor type.

When you need to know how high or low a level is, how much you have used or how long there is to go, NHP offers a vast series of measuring and display instruments, for panel, base or DIN rail mounting.

Our enclosures and termination products answer all your housing and cabling needs. The range includes insulated, weatherproof and stainless steel enclosures, slotted and solid cable duct and DIN rail mounting terminals.

These products are sold exclusively through electrical wholesaling outlets, and include such items as the BelMate conduit bell tool and the TestPro range of voltage and continuity testers.

AUSTRALIA

 www.nhp.com.au
VICTORIA

MELBOURNE HEADQUARTERS
43-67 River Street
Richmond Victoria 3121
Telephone +61 394292999
Fax +61 394291075
Email mel-sales@nhp.com.au
NATIONAL DISTRIBUTION AND MANUFACTURING CENTRE
104-106 William Angliss Drive Laverton North Victoria 3026
Telephone +61 394292999
Fax +61 393682997
Email mel-sales@nhp.com.au

NEW SOUTH WALES

SYDNEY
30-34 Day Street North Silverwater New South Wales 2128
Telephone +61 297483444
Fax +61 296484353
Email syd-branch@nhp.com.au
NEWCASTLE
575 Maitland Road
Mayfield West New South Wales 2304
Telephone +61 249602220
Fax +61 249602203
Email ncl-branch@nhp.com.au

QUEENSLAND

BRISBANE
16 Riverview Place
Murarrie Queensland 4172
Telephone +61739094999
Fax +61 733999712
Email bris-branch@nhp.com.au
TOWNSVILLE
62 Leyland Street
Garbutt Queensland 4814 Telephone +61 747790700
Fax +61 747751457
Email tsv-branch@nhp.com.au
ROCKHAMPTON
14 Robison Street
Rockhampton Queensland 4701
Telephone +61 749272277
Fax +61 749222947
Email rkh-branch@nhp.com.au
TOOWOOMBA
Cnr Carroll St \& Struan Crt Toowoomba Queensland 4350 Telephone +61746344799
Fax +61 746331796
Email too-branch@nhp.com.au

CAIRNS

2/1 Bramp Close
Portsmith Queensland 4870
Telephone +61 740356888
Fax +61 740356999
Email cns-branch@nhp.com.au

SOUTH AUSTRALIA

ADELAIDE
36-38 Croydon Road
Keswick South Australia 5035
Telephone +61 882979055
Fax +61 883710962
Email adl-branch@nhp.com.au

WESTERN AUSTRALIA

PERTH
38 Belmont Ave
Rivervale Western Australia 6103
Telephone +61 892771777
Fax +61 892771700
Email per-branch@nhp.com.au

NORTHERN TERRITORY

DARWIN
3 Steele Street
Winnellie Northern Territory 0820
Telephone +6188947 2666
Fax +61 889472049
Email dar-branch@nhp.com.au

TASMANIA

hOBART
2/65 Albert Road
Moonah Tasmania 7009
Telephone +61 362289575
Fax +61 362289757
Email tas-sales@nhp.com.au

NEW ZEALAND www.nhp-nz.com

AUCKLAND
7 Lockhart Place
Mt Wellington Auckland
Telephone +64 92761967
Fax +64 92761992
Email sales@nhp-nz.com
CHRISTCHURCH
85 Gasson Street
Sydenham Christchurch
Telephone +64 33774407
Fax +64 33774405
Email sales@nhp-nz.com

TECHNICAL DATA SHEET

Equipment Type:Switches
Location:RTU Section
Model Numbers:Various
Manufacturer: Kraus \& Naimer
Supplier:
Kraus \& Naimer
22 Brookes St Bowen Hills QLD 4006(07) 32528344

Kraus \& Naimer ${ }_{\text {pty Ltad }}$
BLUE LINE switchgear
2013
Short Form Catalogue

FOR COMPLETE PRODUCT RANGE VISIT www.krausnaimer.com.au

Kraus \& Naimer

BLUE LINE switchgear

The development of the Blue Line rotary switch, load break switch disconnector, contactor and motor starter product ranges is based on
One Hundred years experience by Kraus \& Naimer. In the Design and manufacture of electrical switchgear,
Kraus and Naimer have pioneered the introduction of the cam operated rotary switch, and continues to be recognised as the world leader in that product field.

BLUE LINE

Blue Line products are protected by numerous patents throughout the industrial world. They are built to national and international standards and designed to withstand adverse temperatures and climates.

Blue Line products are accepted and universally recognised for their quality and workmanship. They are supported by the world-wide sales and service organisation.

The Kraus \& Naimer Registered Trademark

WORLDWIDE SYMBOL FOR QUALITY SWITCHGEAR

Rotary Cam Switches 10A-2400A
4-12

- Control, Instrument, Motor Switches
- Infinite number of switch programmes
- \quad CA / CG / CH Switches with fingerproof terminals
- CA / CG / CH Switches with captive plus-minus terminal screws
- CAD Switches having self-cleaning "H" Bridge with 'cross wire' contacts
- CHR Switches with captive terminal screws for use with ring terminals
- \quad Special Switches designed to any contact programme

UPS Maintenance Bypass Switches
Smart Switches (Available from wholesalers) 14-15

Enclosed KG Main Switches 20A-315A

- Padlockable maintenance and safety switches
- Enclosed IP 65 protection in Plastic or Stainless Steel
- $\quad 3,4,6$ and 8 pole models available
- Enclosure cable entries top, bottom, sides and rear, or blank

KG Main Switches 20A - 315A 16-18

- Padlockable main and emergency switches
- Modular frame sizes
- $\quad 3,4,6$ and 8 pole models available
- Forced positive contact movement
- Cam operated auxilliary contacts

Application Guide AS/NZS 947-3 3F Lockout Isolators 19
Mains off Generator Switches Base Mount and Enclosed 20-21
Optional Extras and Mounting Options 22-23
Specialist Australian Lock Devices 22
Disconnectors For Photovoltaic (PV) Power Systems 26
Fortress - Trapped Key Interlocking Systems 32
$\begin{array}{ll}\text { Operating - Handles } & 33\end{array}$
Push Buttons, Pilot Lights 30-31

- Control and indicating devices
- $\quad 22 \mathrm{~mm}$ IP65 / IP69K
- Fingerproof connections
- Pot drive unit
New Products 27-29
Dimensions 33-35
Switch Ordering Chart \& Design Sheet 36
Useful Formulae \& Index 37-38

Technical Data

${ }^{\text {u }}$ Rated Operational Current								
Multi cross point contacts		1V	6 V	12 V	24 V	48 V	110 V	240 V
$\begin{gathered} \text { CA4/CG4 } \\ \text { DC21 B } \end{gathered}$	$\mathrm{AC} 21 \mathrm{~A}$			10	$\begin{aligned} & 10 \\ & 6 \end{aligned}$	$\begin{aligned} & 10 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 10 \\ & 0.2 \end{aligned}$	10
H-Bridge cross wire contacts								
$\begin{array}{\|c} \hline \text { CGD4-1 } \\ \text { DC21B } \end{array}$	AC21A	1.2	0.7	0.4	0.7 0.25	0.45 0.13	0.25 0.08	0.15
$\begin{gathered} \text { CAD11 } \\ \text { DC21B } \end{gathered}$	AC21A	2.5	3 1.5	0.8	0.3	0.8 0.2	0.4 0.1	0.2
CAD12	$\begin{aligned} & \mathrm{AC} 21 \mathrm{~A} \\ & \mathrm{DC} 21 \mathrm{~B} \end{aligned}$				$\begin{aligned} & 5 \\ & 2.2 \end{aligned}$		3 0.6	2 0.3
Special Contact Systems								
CA4/CG4 (@1 μ gold plating) A high contact reliability is achieved by the use of multiple crosspoint contacts, having a fourpoint contact face to minimise contact resistance. Terminals on the CA series are accessible from both sides, and the terminals on the CG series are accessible from the rear. Both switches have finger proof terminals.These are the smallest cam switch 30 mm sq.								
CAD11/CAD12 / CGD4-1 H -bridge cross wire contact system. The moving contact is made of spring type material to absorb possible contact bounce. These corrosive resistant contacts are capable of operating on systems voltages as low as 1 volt. CAD11 = Gold contacts. CAD12 $=$ Silver contacts. Both switches have screw driver guides, finger proof terminals and captive plus-minus terminal screws capable of accepting two variant cable sizes.								
CICA Switches C/CA have finger proof terminals and captive plus-minus terminal screws. Each stage contains two rigid, double-break silver alloy contacts. The terminals are accessible from both sides. Ranging from $20 \sim 315$ amperes these switches will accept a wide range of "optional extras".								
KG/KH Switches: This durable switch line possesses high short circuit withstand capabilities, with positive movement during both making and breaking functions. The KG/KH range of isolators and changeover switches exhibit excellent $\mathrm{AC}-3$ and $\mathrm{AC}-23$ making and breaking capabilities.								
This ‘Short Form’ catalogue illustrates only a small selection of the KRAUS \& NAIMER switches. Other switches available are:- A11, A14, A30, AD11, AD12, CH10 ~ CHR16B, D10 ~ D14R, DH, DHR, DK, DKR, L350 ~ L1251, X63 ~ X630. Additional information available on request.								
G20 (S) DC SWITCHING WITH KNIFE CONTACTS Refer Page 33								

Rotary Cam Switches - Panel Mounting

Rotary Cam Switches - Panel Mounting

		Selection Data	60947-3, EN 609	7, VDE 06		CG 4	$\begin{aligned} & \text { CG } 8 \\ & \text { CH } 10 \end{aligned}$	CA20	C26		C32
						CA 4	CA 10	CA20B	CA25	CA 40	CA 50
		Rated Thermal Current		$I_{U}=I_{\text {th }}$	A	10	20	25	32	40	50
		Rated Category	$3 \times 380 \mathrm{~V} / 440 \mathrm{~V}$	AC-23A	kW	3	7.5	11	15	18.5	22
						$\text { C } 42$ $\text { CA } 63$	C 80	C125	C200-4	C315	L400
		Rated Thermal Current		$I_{U}=I_{\text {th }}$	A		115	150	200	315	500
CG4 A210 FS2	CA10 A211 E	Rated Category	$3 \times 380 \mathrm{~V} / 440 \mathrm{~V}$	AC-23A	kW	30	45	75	75	132	132

Gang Switches - Sequence Switching

Special Application Switches:-

Ship To Shore Switches, UPS Bypass Switches*, Series Parallel Switches, Special Meters Switches, For further information, contact your nearest KRAUS \& NAIMER stockist.
*(see p13)
(1) If Preclosing 4th Pole Required Change A213 To A663

Rotary Cam Switches - Panel Mounting

(1) If Preclosing 4th Pole Required Change A223 To A673

Rotary Cam Switches - Panel Mounting

Rotary Cam Switches - Panel Mounting

Function	Front Plate	Code No.	No. of Stages	Code No.	No. of Stages
6 Step Switches cont. 3 Pole		3 Pole CA10 WAA273-600 E CH10 WAA273-600 E CA20 WAA273-600 E	$\begin{aligned} & 9 \\ & 9 \\ & 9 \end{aligned}$	Refer to catalogue or enquire for details on additional 'standard' switches	
$\begin{aligned} & 2 \text { Step Switches } \\ & \text { with "OFF" } \\ & 60^{\circ} \text { Switching } \\ & 1-40^{3} \end{aligned}$	$w_{1}^{1} \gamma^{2}$	1 Pole CG 4 A240-620 E CA10 A240-620 E CH10 A240-620 E CA20 A240-620 E 3 Pole CG 4 A280-620 E CA10 A280-620 E CH10 A280-620 E CA20 A280-620 E	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	2 Pole 4 Pole CG 4 WAA480-620E CA10 WAA480-620E CH10 WAA480-620E CA20 WAA480-620E	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \\ & \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$
3 Step Switches with "OFF" 45° Switching $10500_{0}^{5} \quad 0_{0}^{11}$ $\overbrace{}^{2} \quad \nabla_{8}$ 1- and 2 pole 1-3 Pole 4 Pole Drawing on Request		1 Pole 3 Pole	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	2 Pole 4 Pole CG 4 WAA481-620E CA10 WAA481-620E CH10 WAA481-620E CA20 WAA481-620E	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$
4 Step Switches with "OFF" 30° Switching		1 Pole CG 4 A242-620 E CA10 A242-620 E CH10 A242-620 E CA20 A242-620 E 3 Pole CG 4 WAA282-620E CA10 WAA 282-620 E CH10 WAA 282-620E CA20 WAA 282-620E	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	2 Pole CG 4 WAA262-620E CA10 WAA 262-620E CH10 WAA $262-620 \mathrm{E}$ CA20 WAA 262-620E 4 Pole drawing on request 4 Pole CG 4 WAA482-620E CA10 WAA482-620E CH10 WAA482-620E CA20 WAA 482-620E	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$ 8 8 8 8
		This catalogue lists some of the many common 'Standard Switches' available. For additional selection refer to catalogue 100 or enquire.			

Rotary Cam Switches - Panel Mounting

Rotary Cam Switches - Panel Mounting

	Selection Data	IEC 60947-3, EN 60947, VDE 0660			CG 4	$\begin{aligned} & \text { CG } 8 \\ & \text { CH } \end{aligned}$	CA20	C26		C32
					CA 4	CA 10	CA20B	CA25	CA 40	CA 50
-	Rated Thermal Current		$\mathrm{I}_{\mathrm{u}}=\mathrm{I}_{\text {th }}$	A	10	20	25	32	40	50
	Rated Category	$3 \times 380 \mathrm{~V} / 440 \mathrm{~V}$	AC-23A	kW	3	7.5	11	15	18.5	22
4					$\begin{aligned} & \text { C } 42 \\ & \text { CA } 63 \end{aligned}$	C 80	C125	C200-4	C315	L400
	Rated Thermal Current		$I_{U}=I_{\text {th }}$	A		115	150	200	315	500
CA10 AU9Y96-600FT2	Rated Category	$3 \times 380 \mathrm{~V} / 440 \mathrm{~V}$	AC-23A	kW	30	45	75	75	132	132

UPS - Maintenance Bypass Switches

Maintenance Bypass Switches

Kraus \& Naimer Maintenance Bypass Switches are an accepted industrial standard wherever emergency power equipment is installed and maintained.
The Maintenance Bypass Switch can be utilized as a simple method of isolating a UPS without interrupting the power source. This allows servicing of the UPS with complete safety to maintenance personnel. A wide range of models has been established, while a broad selection of designer specified options is available on request.

Options Include
Maintenance Bypass Switches are available as - Switch only, Enclosed or Enclosed wired to terminals.

1. Key interlock (V760) with auxiliaries for signal confirmation on locking/unlocking or to shut down the inverter of a UPS prior to switching to the bypass position.
2. Push button interlock with auxiliaries (V400). Switching only possible if push button is depressed, simultaneously closing or opening auxiliaries for signal confirmation to the UPS.
3. A solenoid interlock device (V140) that prevents the operation of the switch except under predetermined electrical conditions.
4. Automatic changeover switches also available.

Current rating to AC22A - 240v	amps	max. cable size	KVA ratings to AC22A - 240v	KVA
CA10B	16	2.5 mm	CA10B	3.68
C26	32	6 mm	C26	7.3
C42	63	16 mm	C42	14
Current rating to AC22A - 415V	amps	max. cable size	KVA ratings to AC22A-415v	KVA
CA10B	16	2.5 mm	CA10B	11.5
C26	32	6 mm	C26	23
C42	63	16 mm	C42	45
C80	100	35 mm	C80	72
C125	150	70 mm	C125	107
C200-4	200	M8 95 mm	C200-4	143
C315	315	M12 185mm	C315	225

Enclosed \& Wired to Terminals

Be smart look for them NoW, at your nearest Wholesaler.

Get smart with Smart Switch

The complete switch solutionFirst time everytime.
${ }_{\text {IP }}^{\text {IP }} 6522.5 \mathrm{~mm}$ control switches

SMART SWITCH STOCK LIST

Product	Description	Barcode
KN11	Smart Body - On Off 1 Pole	9004257083664
KN12	Smart Body - On Off 2 Pole	9004257083671
KN13	Smart Body - On Off 3 Pole	9004257083688
KN14	Smart Key - For KN11, KN12,KN13	9004257083572
KN15	Smart Padlock Yellow - For KN11, KN12.KN13	9004257083596
KN25	Smart Padlock Black - For KN11. KN12,KN13	9004257091942
KN27	Smart Main Switch - 32A 3 Pole	9004257092680
KN16	Smart Body - Auto Off Man 1 Pole	9004257083626
KN17	Smart Body - Auto Off Man 3 Pole	9004257083633
KN18	Smart Key - For KN16, KN17	9004257083589
KN19	Smart Body - C/O wlout Off 1 Pole	9004257083640
KN20	Smart Body - C/O w/out Off 3 Pole	9004257083657
KN21	Smart Key - For KN19, KN20	9004257083701
KN26	Smart Reverser - 1 \& 3 Phase	9004257091959
KN31	Smart Contactor - 20A AC1, 4kW AC3	9004257092703
KN22	Smart Handle - Bezel Only	9004257083602
KN23	Smart Handle - With Frame \& Plate	9004257083619
KN24	Smart Box - IP65 Enclosure	9004257091966
KN28	Smart Header Plate - For KN22	9004257092710
KN29	Smart Header Plate - For KN23	9004257092727
KN30	Smart DIN Mount	9004257092697

Trade Price	
-	-
REFERTO YUR NEAR WHOLESALER	

Simply select a contact body and match
it to the operator of your choice.

Make perfect contact...

Smart Switch
Match the label colours (blue to blue, yellow to yellow) to ensure the switch body and handle, key or padlock device are compatible.

IEC 60947-3

SWITCHES - DISCONNECTORS - SWITCH DISCONNECTORS

IEC 60947 is a safety and performance standard for low voltage switchgear (up to 1000V) which has universally replaced IEC 408 and combined specific requirements of many individual national standards. IEC 60947 is a uniform standard for most countries around the world and establishes a truly global marketplace. IEC 60947-3 is a section of the standard specific to switches. Importantly, it recognises that devices for the switching function and isolating function require very different performance criteria. Switching requires high performance of current carrying parts to make and break loads under normal and overload conditions, ie., motor reversing applications. Isolation requires high insulation, sufficient spacing of current carrying parts and mechanical integrity that the handle corresponds to actual contact position for the safety of maintenance personnel.

Practicality of real life applications calls for three definitions within IEC 60947-3; Switches, Disconnectors and Switch Disconnectors. A switch does not have to satisfy the isolation and mechanical strength tests, and a disconnector likewise the load tests. A Switch Disconnector must satisfy all tests and is suitable for safety switch applications. A switch disconnector must have a direct drive late make early break auxillary contact in series with a load breaking device to be suitable as a safety switch.

Kraus \& Naimer have developed complete products which satisfy all IEC 60947 criteria, some of which are listed overleaf. For further information, please contact our offices.

KG Main Switches - Padlockable Panel Mount, Enclosed Plastic or Stainless Steel

(1) 4 Pole changeover enclosed. Refer page 20.

For Panel and Base mount 4 Pole changeover Refer to page 20.
(2) Suitable for no load switching (AC-20A) above 690v.

KG Main Switches - Base Mounted Padlockable with Extension Shafts

(1) Suitable for no load switching (AC-20A) above 690v.

Application Guide AS/NZS 947-3 3F Lockout Isolators

Get a Handle on Safety with your Eyes Closed

Product Features

M700 Door Interlock

- Padlockable in 'OFF' only - safety requirement according to AS/NZS 947-3
- In 'ON' the door interlock is engaged - the cabinet cannot be opened
- In ‘ON' the door interlock can be defeated by using a tool - authorised entry only
- The door interlock re-engages when the door is closed after authorised defeat in ' ON '
- In 'OFF' and padlocked, the door interlock defeat is disabled - no access
- When the door is opened the handle position is locked - assured alignment
- Mechanical Position Indicator on the switch module - visible when the door is open
- Internal Padlock Device on switch module
- Robust, keyed, floating head on switch shaft

KG Switch Disconnectors

- $13 / 14 \mathrm{~mm}$ contact gap. 690 v - 1000 v insulation
- High AC3 and AC23 ratings
- Large, finger proof IP20 box type terminals
- Double break forced opening safety rated auxiliary contacts. Silver or Gold 1 to 6 N/O - N/C
- Positive drive make and break main contacts. 3 to 8 poles OFF ON, 3 or 4 pole C/O
- IEC 947-3 3F disconnector handle. Isolation is assured 'OFF' is 'OFF'

General Features

- Custom colours and engraving for escutcheon plates and header labels
- Scratch-proof reverse engraving
- IP65 dust and water protection
- Robust, double insulated handle
- Asymmetric shaft and interlock profiles ensure the handle position matches the switch position
- Fixed length shaft ensures shaft must engage with the handle

Telephone now for a demonstration

IEC 947-1

Equipment Suitable For Isolation - The Following Clauses Apply

Clause 7.1.6 Additional constructional requirements for equipment suitable for isolation
Clause 7.1.6.1 Additional constructional requirements
Equipment suitable for isolation shall provide, in the open position (see 2.4.21) an isolation distance in accordance with the requirements necessary to satisfy the isolation function (see 7.2.3.1 and 7.2.2) (dielectric test) Indication of the position of the mains contacts shall be provided by one or more of the following means:
(1) The position of the actuator
(2) A separate mechanical indicator
(3) Visibility of the moving contacts

The effectiveness of each of the means of indication provided on the equipment and its mechanical strength shall be verified in accordance with clause 8.2.5
Clause 8.2.5 Verification of the effectiveness of indication of the main contact position of equipment suitable for isolation To verify the effectiveness of the indication of the main contact position, all means of indication of contact position shall continue to function correctly after the operational performance type tests, and special durability type tests (if performed).

Switch Classifications

All low voltage switches installed in Australia and New Zealand shall meet AS/NZS 60947 and carry the appropriate easily identifiable symbol depending on the switch classification.

Switch

\qquad
A mechanical switching device capable of making and breaking currents under normal conditions, which may include specified overload conditions according to the duty, and abnormal circuit conditions such as short-circuit. (motor reversing switches, control switches, start delta switches, etc)
Disconnector \qquad
A mechanical switching device which in the open position, complies with the requirements specified for the isolating function (Off load isolator)
Switch Disconnector \qquad
A 'Switch' which in the open position, complies with the requirements specified for the isolating function (On load isolator)

Changeover Switches Base Mount \& Enclosed

For Further Information Regarding The Range of Enclosed Isolators
Refer to the Kraus \& Naimer "Enclosed Switch Catalogue" on www.krausnaimer.com.au

Changeover Switches Base Mount \& Enclosed

For Further Information Regarding The Range of Enclosed Isolators
Refer to the Kraus \& Naimer "Enclosed Switch Catalogue" on www.krausnaimer.com.au

Optional Extras

Optional Extras

Special Drive Options \& Enclosures

Special Drives	Description	Optional Code No.	$\begin{array}{r} \text { CG } 4 \\ \text { - CA } 4 \end{array}$	$\begin{array}{r} \text { CA10 } \\ - \text { CA25 } \end{array}$	$\begin{gathered} \text { CA10B } \\ -\mathrm{C} 42 \end{gathered}$	$\begin{array}{r} \text { C } 43 \\ - \text { C125 } \end{array}$	$\begin{array}{r} \text { C315 } \\ -\mathrm{L} 2000 \end{array}$
	Heavy Duty Drive Create your own handle/drive unit and weld it onto the removable plate. Long rods, T-bars, etc. E Panel Mount, PK Plastic Encl. GK Aluminum Enclosure	G800/A	PRICES AVAILABLE ON REQUEST				
	Limit Switch Heavy duty roller \& actuator for spring return or stepping applications. E Panel Mount PK Plastic Enclosure GK Aluminum Enclosure Also Available in 6CL 56 Plastic Enclosure.	G800/B	PRICES AVAILABLE ON REQUEST				
	Rope Operator Heavy duty for GK / PK or 6CL 56 series enclosures. Drive Only Also Available in 6CL 56 Plastic Enclosure	G900/B	PRICES AVAILABLE ON REQUEST				
	Aluminium Enclosures for Drives Switch length 4 stages. Various sizes available on request.	GK	PRICES AVAILABLE ON REQUEST				
	Plastic Enclosures for Drives Switch length 4 stages. Various sizes available on request.	PK	PRICES AVAILABLE ON REQUEST				
	HAZARDOUS AREAS Dust Ignition Proof Flame Proof	DIP Ex d	PRICES AVAILABLE ON REQUEST				
	Stainless Steel Enclosures Marine Grade 316 $\begin{aligned} & 208 \mathrm{H} \times 113 \mathrm{~W} \times 96 \mathrm{D} \\ & 240 \mathrm{H} \times 140 \mathrm{~W} \times 120 \mathrm{D} \\ & 350 \mathrm{H} \times 230 \mathrm{~W} \times 170 \mathrm{D} \\ & 500 \mathrm{H} \times 320 \mathrm{~W} \times 175 \mathrm{D} \\ & 710 \mathrm{H} \times 320 \mathrm{~W} \times 175 \mathrm{D} \text { c/W rain hood } \end{aligned}$ (Other sizes available on request)	$6 S$	Options:- Rain Hood. Hinge Door. Variations on request:- Stop / Start Pushbuton. Control \& Changeover Switches. Selection of auxiallary contacts.				

Standard Enclosures

Enclosure Information

The following options can be included by substituting suffix code "E" for the optional code number.. PF, KS, KL, 6CL...

Note: KG enclosed isolators listed complete on page 17

Example: 3pole 20Amp Off/On Switch
Enclosed with Padlockabe handle

CA 10 A292-621 PF
V840G

Enclosures	Description	Code No.	$\begin{array}{r} \text { CG } 4 \\ - \text { CA } 4 \end{array}$	$\begin{array}{r} \text { CA10 } \\ - \text { CA20 } \end{array}$	$\begin{gathered} \text { CA10B } \\ -\mathrm{C} 42 \end{gathered}$	$\begin{array}{r} \text { C } 43 \\ - \text { C125 } \end{array}$	$\begin{array}{r} \text { C315 } \\ -\mathrm{L} 2000 \end{array}$
	CG 4 \& CA 4 Switches Material - Very high UV resistance - High chemical resistance Dimensions mm 1 stage $-90 \mathrm{~L} \times 70 \mathrm{~W} \times 60 \mathrm{H}$ 2 stage $-90 \mathrm{~L} \times 70 \mathrm{~W} \times 72.5 \mathrm{H}$	$\begin{aligned} & \text { KS } \\ & \text { KS } \end{aligned}$	PRICES AVAILABLE ON REQUEST				
	Standard without Cover Interlock Very high UV resistance Excellent chemical resistance	PF	PRICES AVAILABLE ON REQUEST				
	Industrial Enclosure IP66 Dimensions mm $-101 \mathrm{~L} \times 101 \mathrm{~W} \times 91 \mathrm{H} / 98$ series $-198 \mathrm{~L} \times 101 \mathrm{~W} \times 91 \mathrm{H} / 195$ series Chemical resistant orange available on request. (Nominate entries prefered).	6 CL 56/98 6 CL 56/98-4 6 CL 56/195	Flip Lid PRICES AVAILABLE ON REQUEST				
	General Purpose ABS Enclosures Excellent Chemical resistance IP67. 6FE B85AG $-110 \mathrm{H} \times 80 \mathrm{~W} \times 85 \mathrm{D}$ 6FE C65AG - $140 \mathrm{H} \times 80 \mathrm{~W} \times 65 \mathrm{D}$ 6FE C85AG $-140 \mathrm{H} \times 80 \mathrm{~W} \times 85 \mathrm{D}$ 6FE D85AG $-170 \mathrm{H} \times 60 \mathrm{~W} \times 85 \mathrm{D}$ 6FE M95AG $-230 \mathrm{H} \times 140 \mathrm{~W} \times 95 \mathrm{D}$	6FE B85AG 6FE C65AG 6FE C85AG 6FE D85AG 6FE M95AG	PRICES AVAILABLE ON REQUEST				
	Polycarbonate Enclosures IP67 6 FEC $-190 \mathrm{H} \times 190 \mathrm{~W} \times 130 \mathrm{D}$ 6 FEC $-190 \mathrm{H} \times 190 \mathrm{~W} \times 180 \mathrm{D}$ 6 FEC $-280 \mathrm{H} \times 190 \mathrm{~W} \times 130 \mathrm{D}$ 6 FEC $-280 \mathrm{H} \times 190 \mathrm{~W} \times 180 \mathrm{D}$ 6 FEC $-280 \mathrm{H} \times 280 \mathrm{~W} \times 130 \mathrm{D}$ 6 FEC $-380 \mathrm{H} \times 280 \mathrm{~W} \times 130 \mathrm{D}$ 6 FEC $-380 \mathrm{H} \times 280 \mathrm{~W} \times 180 \mathrm{D}$ 6 FEC $-560 \mathrm{H} \times 380 \mathrm{~W} \times 180 \mathrm{D}$ 6 FEC $-560 \mathrm{H} \times 380 \mathrm{~W} \times 230 \mathrm{D}$		PRICES AVAILABLE ON REQUEST				
	Metal Enclosures IP67 Switches mounted to gear tray with door interlock. 6AE $1033 / 300 \times 300 \times 210$ 6AE $1385 / 380 \times 380 \times 250$ 6AE $1338 / 600 \times 380 \times 350$ Additional metal enclosures available	6AE 1033 6AE 1385 6AE 1338	PRICES AVAILABLE ON REQUEST				

Kraus \& Naimer
BLUE LINE switchgear

DC Disconnectors for Solar Photovoltaic (PV) Power Supply System
acc. to IEC 60364-7-712:2002
Disconnectors for

Contact development: 2 pole, 6 contacts per circuit (2×3 in series)

General Data			
Switch Disconnector according to EN 60947-3 respectively VDE 0660 Part 107			
Utilization Category: for Photovoltaic Application with rapid handle operation	DC-21B (Switching of resistive loads, including moderate overloads)		
0 vervoltage category III, pollution degree II			
Terminal Lugs finger-proof a ccording to VDE 0660-514 and BGV A3, IP 20			
M aximum permissible wire size (use copper wire only) single core wire or stranded wire flexible wire	KFD25: $6 \mathrm{~mm}^{2}$ KFD25: $4 \mathrm{~mm}^{2}$, or $6 \mathrm{~mm}^{2}$ flexible wire with a diameter not larger than $3,9 \mathrm{~mm}$ after the insulation has been removed and the end has been reshaped.		
Mounting			
Plastic Enclosures, Protection IP66/ 67, totally insulated, threaded entries,			
OFF-position lockable with padlocks, cover coupling with interlock			
Rated Value/ Order Number			
Operational Current (enclosed up to $50^{\circ} \mathrm{C}$) DC-21B	19 A	23 A	25 A
1,2 x Voc 2 pol	1380 V	1200 V	1020 V
$1,2 \times$ Voc on each side	690 V	600 V	510 V
Insulation Voltage	1500 V	1500 V	1500 V

New Product

G20 (S) - DC Switch With Knife Contacts

Kraus and Naimer have developed and designed a new DC Switch; the G20(S)
The 'Knife contacts' have been designed in a new way resulting in a switching capacity of 20 Amps at 690V DC (DC-22A) and high short circuit withstand capability.
Finger-proof terminals according to EN 50274 and protection degree IP20 offer maximum safety. With a standard latching mechanism, the G20 complies with all regulations required for main switches according to IEC/EN 60204.
In addition the G20 is also ideal for AC applications with high short circuit fault levels, as well as electronic circuitry with low current and voltages.

- Self-cleaning and vibration resistant knife contacts
- Compact design
- High DC switching capacity
- Highest contact reliability (better than any H-bridge contact system)
- High short circuit withstand capability
- Finger-proof terminals (IP20) even if jumper leads are used
- Terminal extensions (accessory item) for ring type cable lugs (max. width 6 mm) and quick connect lugs available
- Heat resistant contact system according to standard EN 12101-3

G20 - with normal latching (in preparation)
G20S - with snap action latching

Utilisation Category	No. of Series Contacts G20S Total Voltage in Volts						Rated Operational Current le/A
	1	2	3	4	5	6	
DC-21A	250	500	750	1000	-	-	20
	440	880	-	-	-	-	13
DC-22A	250	500	750	1000	-	-	20
	330	660	990	-	-	-	10
	440	880	-	-	-	-	5
DC-23A	48	96	144	192	240	144	20
	60	120	180	240	300	288	15
	110	220	330	440	550	360	12
	160	320	480	640	-	-	8
	250	500	750	1000	-	-	5
	330	660	990	-	-	-	3
	440	880	-	-	-	-	1

KF Switch Range 1 Pole per module (16-32A)

The innovative modular system is both simple and very safe while offering enormous flexibility.
The position of the various modules in relation to each other can be defined by the user.
Than assembled in the factory

Rotating contact movement (instead of the classical vertical lifting) allows

- Big contact gaps
- High mechanical life expectancy
- Very precise movement sequence
- Self cleaning contacts
- Forced opening and closing of contacts
- Compact (very shallow design)
- Up to 1000V insulation voltage according to IEC possible
- Lateral drive possible (latching module not in the centre but on left or right hand side)
- Coupling profile determines pre-closing function of switched 4th pole
- Visible contacts (windows) available on request
- Design allows a big variation of terminal markings

Telephone now for a demonstration

Kraus \& Naimer
BLUE LINE switchgear

Maintenance Switches for EMC-compliant connectión.

DOWNLOAD NOW FROM www.krausnaimer.com.au

Kraus \& Naimer tat

BLUE LINE switchgear

3 \& 4 POLE CONTACTORS $4 \mathrm{~kW}-160 \mathrm{~kW}$ DC CONTACTORS

MOTOR STARTERS—DOL, STAR -DELTA \& REVERSING
MODULAR CONTACTORS
EXTRAS INCLUDE-THERMAL OVERLOADS,CLIP ON AUX (TOP AND SIDE MOUNT), MECHANICAL INTERLOCKS, COIL SUPPRESSOR, MECHANICAL LATCH

AC \& DC COILS - SPECIAL COIL VOLTAGES AVAILABLE ON REQUEST

Control \& Signalling Units 22mm - Assembled Units

For further information refer to Catalogue 302
*NOTE ALSO AVAILABLE AS RESET BY PULLING OR
KEY OPERATION
Palm Push Buttons AC-15 230v 6A, IP66

Potentionmeter Units Heavy Duty \& Standard 22mm Mounting

Heavy Duty With K\&N Switch Front IP65 Reienforced Stop. Optional Keyed or Stepping 48mm Square Front Engraved With Swoop					
1 k	CA10NZQ172**2FT2				
2.2	CA10NZU606*01FT2				
4.7 k	CA10NZU607*01FT2				
10k	CA10NZV049*02FT2				
64 mm Square Front Engraved With Swoop					
1k	CA10NZQ172*02FH3				
2.2 k	CA10NZU606*01FH3				
4.7 k	CA10NZQ607*01FH3				
10 k	CA10NZQ049*02FH3				

Standard IP66 3 Screw Terminals		
P max = 0.5 watt		
1.0k Ohm	PSN/R1k	
4.7k Ohm	PSN/R4K7	
10k Ohm	PSN/R10K	

[^30]
Control \& Signalling Units 22mm - Loose Components

Double Push Buttons AC-15 230v 6A, IP66 Colour Cap Opaque

Pilot Lights IP67/69K

Castell \& Fortress Trapped Key Interlocking Systems

Products	Applications
Panel Door Interlock Mutiple Panel Door Interlock	As part of an interlock system, the locks are used to control access to areas, e.g. switchgear panels or machines where hazards may be present, until a safe condition has been achieved.
Key Operated Rotary Switches	As part of an interlock system, the switch units are used for the direct control or isolation of control or power circuits controlling the plant or machinery.
Solenoid Controlled Interlock Unit	As above with a solenoid facility to integrate with other electronic control processes within the system.
Key Operated Rotary Switch for Use in Hazardous Areas	A key operated rotary switch for use as part of an interlocked system, in areas where explosive/flammable gases or dust particles may be present. BASEEFA certified (EExdIIC T6 Zones 1 \& 2.)
H31 Basic Interlock and Keys	This form of basic interlock is normally used in the mechanical interlocking of electrical switchgear. Used in conjunction with other interlocking systems.
Door Interlock	Specifically designed for sliding doors.
Interlock Deadlock	Single or multi-keyed deadlocks, with either claw bolt or limit switch.
Mechanical Key Exchange Boxes	A range of mechanical key exchange units into which any sequence of trapped and freed keys can be incorporated.
Electronic Time Delay Rotation Sensing Unit Temperature Sensing	As part of an interlock system, the locks are used to control access to areas, e.g. switchgear panels or machines where hazards may be present, until a safe condition has been achieved.
Other Products	Fortress Amgard Modular Safety Systems. Castell Products. Smith Ellis - Valve Interlocks. HF Securite Products. Load banks

Handles

Type	Colour	Code	Size	Type	Colour	Code	Size

Dimensions mm

Rotary Cam Switches - Panel Mounting

E Panel Mounting

Size 0 - Size 3

	CG4	$\begin{aligned} & \text { CAD‘s } \\ & \text { CA10 } \end{aligned}$	CA20	CA25	$\begin{aligned} & \text { CA63 } \\ & \text { CA50 } \\ & \text { CA40 } \\ & \text { C26 } \end{aligned}$	C32	C42	C80	C200-4 C125	C315 L400
A	30	48	48	48	64	64	64	88	88	130
B	28	43	45	46	45/58	60	66	84	88	126
C	4	4	4	4	4	4	4	5,5	5,5	7
D1	3,2	5	5	5	5	5	5	6	6	7
D2	8	8	8	10	10	10	10	13	13	16
E	-	36	36	36	48	48	48	68	68	104
M	-	4,5	4,5	5,5	6,5	7.5	7.5	9,4	9,4	11,9

Length L

Stages	CA63									
	CG4	CAD's		CA50					C200-4	C315
					CA40					L-switche
		CA10	CA20	CA25	C26	C32	C42	C80	C125	Size S3
1	38,5	31,7	35,9	37,2	41	45,8	49,8	61,5	67,5	78,6
2	50	41,2	48,6	51,2	53.7	63,3	71,3	88	100	117,2
3	62,5	50,7	61,3	65,2	66.4	80,8	92,8	114,5	132,5	155,8
4	74,5	60,2	74	79,2	79.1	98,3	114,3	141	165	194,4
5	86,5	69,7	86,7	93,2	91.8	115,8	135,8	167,5	197,5	233
6	94,5	79,2	99,4	107,2	104.5	133,3	157,3	194	230	271,6
7	110,5	88,7	112,1	121,2	117.2	150,8	178,8	220,5	262,5	310,2
8	122,5	98,2	124,8	135,2	129.9	168,3	200,3	247	295	348,8
9	-	107,7	137,5	149,2	142.6	185,8	221,8	273,5	327,5	387,4
10	-	117,2	150,2	163,2	155.3	203,3	243,3	300	360	426
11	-	126,7	162,9	177,2	168	220,8	264,8	326,5	392,5	464,6
12	-	136,2	175,6	191,2		238,3	286,3	353	425	503,2

Dimensions mm
KG Main Switches
Panel Mounting

A	B	C	D1	D2	F	G	H	L	M1	M2	M3
48	36	4	11	5	48	48	50	48.2			
48	36	4	10	5	48	42	54	53.8			
64	48	4	10	5	64	42	54	53.8	13.5	9	2
64	48	4	10	5	64	50	64	60.5	16	12.5	16
64	48	4	10	5	70	70	80	70.6	22	10	25
88	68	5.5	13	6	-	112	108	96	38	21	22
88	68	5.5	13	6	-	145	126	103	52.5	21	24.5×2

M1 = Extra Length 4th Pole / Neutral Contact / Earth Block M2 = Extra Length Top Mounted Auxilliary Contacts M3 = Extra Length Terminal Cover

Base Mounted

3 and 4 Pole

\mathbf{A}	\mathbf{B}	\mathbf{C}	D1	D2	\mathbf{G}	\mathbf{H}	\mathbf{L}	M1	M2	M3
48	36	12	8	5	48	50	49.2			
48	36	12	8	5	42	54	50			
64	48	13.5	10	5	42	54	50	13.5	-	20
64	48	13.5	10	5	50	64	61	16	10	16
64	48	13.5	10	5	70	80	68	22	10	25
88	68	16	13	6	112	108	91	38	0	22
88	68	16	13	6	145	126	98	52.5	0	24.5×2

M1 = Extra Length 4th Pole / Neutral Contact / Earth Block
M2 = Extra Length Top Mounted Auxilliary Contacts M3 = Extra Length Terminal Cover

Padlock Device V840G
36 mm sq. Fixation
KG10, KG20, KG32

Door Interlock M280E 48mm sq
36 mm sq. Fixation
KG10, KG20, KG32

Padlock Device V840G
48 mm sq. Fixation
KG10B, KG20B, KG32B, KG41B, KG64B, KG80, KG100, KG105

Door Interlock M280E 64mm sq
48 mm sq. Fixation
KG10, KG20, KG32, KG41, KG64, KG80, KG100, KG105

Padlock Device V845
68mm sq. Fixation
KG126, KG161, KG251, KG316

88

Door Interlock M280E 88mm sq.
68mm sq. Fixation
KG126, KG161, KG251, KG316

Single Hole Mounting FS1/FS2
(Size 00)

To accomodate
16.2 in 22.3 Hole S00 T160-01

SWITCH ORDERING CHART

Mounting Requirements

E Panel Mount. (5 hole mount)VE Base mount suitable for door clutch etc.

E-V Panel Mount.(vertical access to terminals

E22 Panel mount. (3 hole, size 0)ER Combined panel square base plates.

T146 K DIN rail mounting plate. (size 0 and size 1)

FT1 Single hole mtg. w/o esc. plate IP65. $(\mathrm{SO}=22.3 \mathrm{~mm})$
FT2 single hole mtg . wth square plate IP65. $(\mathrm{S} 0=22.3 \mathrm{~mm})$EF Panel seal IP65. (mounts between switch and panel).KD/KN
Heavy duty mounting plate and metal shaft.
\square L100 Various shaft lengths (metal)M004 Adjustable shaft (advise length).
PF Enclosure ABS IP56

GK Enclosure aluninium IP54.

M280E Door clutch (specify depth required).

6 CL Enclosure 56 series.
6 SS Enclosure stainless steel.

KS/KL Enclosures IP65.
$6 S 115 \times 70$ Wall plate stainless or Plastic

Other, nominate type of mounting required.

Handle Operation

Normal/standard handle (G251) or $\qquad$$\square$ V840A/.Padlockable handle (S0 \& S1). V750D Key operator size $00 \sim 0$.V845 Padlock Handle. (c/w esc.plate)

V755A or C Key operator (530 series) .
\square V750/A9 Key operator size 0 switch.(Lockwood) \square V850 Padlockable with handle device

6SOLW V750 Key operator (201 Lockwood etc.) \square V400 Push-button interlock device.V760 Seperate key and handle (programmable). \square Other specify

Essential Data

1. Switch/circuit requirement. .

Amp \qquad Volts \qquad kW \qquad
2. Cable size \qquad or limiting dimensions \qquad
3. AC or DC (DC voltage required). \qquad Duty:- AC21/AC22/AC23/AC11 or other.
4. PLC/Electronic circuit/dry circuit or standard switch.

Ohm's Law

SYMBOLS

$\mathrm{U}=$ Voltage in volts
I = Current in amperes
R = Resistance on ohms
$P=$ Power in watts

Useful Formulae

$\mathrm{kW}=\mathrm{kVA} \times \mathrm{pF}$	Line Amps $=\frac{\mathrm{hp} \times 746}{\text { Line volts } \times 1.732 \times \text { Eff } \times \mathrm{pF}}$
$\mathrm{kW}=\frac{\mathrm{hp} \times 746}{1000 \times \text { Eff }} \quad \frac{\mathrm{hp} \times 746 \times 100}{1000 \times \text { Eff }}$	$\begin{aligned} & \text { Horsepower }=\frac{\text { kVA } \times 1000 \times \text { Eff }}{746} \\ & \quad(\mathrm{hp}) \end{aligned}$
$\mathrm{kW}=\frac{\text { Line amps } \times \text { Line volts } \times 1.732 \times \mathrm{pF}}{1000}$	$\mathrm{hp}=\underline{\mathrm{kVA} \times 1000 \times \mathrm{Eff} \mathrm{pF}}$
$\mathrm{kVA}=\frac{\mathrm{kW}}{\mathrm{pF}}$	$\mathrm{hp}=\underline{\text { Line amps } \times \text { Line volts } \times 1.732 \times \mathrm{Eff} \times \mathrm{pF}}$
$\mathrm{kVA}=\frac{h p \times 756}{1000 \times \text { Eff } \times p F}$	1 Watt = 1 joule/second
$\mathrm{kVA}=\frac{\text { Line amps } \times \text { Line volts } \times 1.732}{1000}$	$1 \mathrm{hp}=746$ Watts
$\text { Line Amps }=\frac{\mathrm{kVA} \times 1000}{\text { Line volts } \times 1.732}$	
$\text { Line Amps }=\frac{\mathrm{kW} \times 1000}{\text { Line volts } \times 1.732 \times \mathrm{pF}}$	$1 \mathrm{hp}=746$ joules/second

VOLT-DROP Single Phase
Service Voltage $=240 \mathrm{~V}$
Max Permissible Vd $=\frac{240 \times 2.5}{100} \quad(2.5 \%$ Service Voltage $)$

$$
=6 \mathrm{~V}
$$

Max Unit Vd $=\frac{\text { Max Vd x } 1000}{1 \times \text { distance }}$ (Length of cable run)

Index

A

Ammeter Switches 12
Auxiliary Contacts (KG) 23

B

Binary Code Switches 8
Base Mounting Unit (C/CA) 22
C
Changeover Switches (C/CA) 7,8 Rope Operated 24 Changeover with Off (KG) 17,18,20,21

D
Dimensions 34, 35
DIN Rail Mount 22
Door Clutch 23

E

Element Switches 7
Enclosures 17, 20, 21, 24, 25
Extension Shaft 23

F

Fortress Systems 32

G

Gang Switches 7

H

Handles 33
Hole Mounting Dimensions 34, 35

K

Key Drives 22,26
Key lock Unit 22, 26
Key Switches 22, 26
KG Main Switch Options 22, 23
Auxiliary Contacts 23
Terminal Covers 22
KG Main Switches 16, 17, 18
Current Ratings 16
Enclosed 17
Padlockable 17, 18

L

Limit Switch 24
Low Voltage Switches 4
Lockwood Key Drives 22
M
Motor Control Switches 12
Tap wound motor 12
Off-Star-Delta 12
Reversing 12
Rope Operated 24
Split Phase 12
Mounting Options 22-23
Base mounting 22
Single hole mounting Unit 22
Water resistant seal 22
Multi Step Switches 9-11
Mains Off Generator 20-21
Mains Off Auxillary 20-21
0
Off/On (C/CA) 6
Off/On (KG) 17-18
Enclosed - Padlockable 17
Key Operated 22
Optional Extras 22, 23
Ordering Guide 36

P

Padlock Device 23
Pilot Lights $\quad 30-31$
Push Buttons 30-31
Emergency Stops 30-31
Enclosures 30-31

R

Reversing Switch 12
Enclosed 12
Ring Terminals (Refer Catalogue 120)
Rope Operator 24

S

Shaft extensions 23
Single Hole Mounting Device 22-23
Special Engraving 22
Spring Return Switch 11
Standard Mounting Options 22
Stainless Steel Enclosures 17, 24
Star-Delta Switch 12
Stepping Switches 9-11
Stop Start Switch 11
Spring return to "RUN" 11
Switch Dimensions 34, 35
Smart Switches 14-15

T
Terminal Covers 22

U
UPS-Maintenance Bypass Switches 13
V
Voltmeter Switches 14
3 Ph - Ph / 3 Ph - 14
3 Phase-3 Wire 14

W

Water resistant seal 22

AC-1

Resistive or low inductive loads.
AC-3
Direct on line starting, star delta starting.

AC-4

Direct on line starting, reversing, plugging and inching.

AC-21
Switching of resistive loads, including moderate overloads.

AC-23A

Frequent switching of motors or other highly inductive loads (selection criteria for main switches).

AC-22

Isolation of 6 Pole star delta motor circuits

POWER Motor Size		CURRENT three phase $50-60 \mathrm{~Hz}$	
kW	h.p.	415 V	440 V
0.37	0.5	1.2	1
0.55	0.75	1.6	1.3
0.75	1	2	1.68
1.1	1.5	2.5	2.37
1.5	2	3.5	3.06
2.2	3	5	4.42
3	4	6.5	5.77
4	5.5	7.5	7
5.5	7.5	11	10.4
7.5	10	14	13.7
10	13.5	19	16.5
11	15	21	20.1
15	20	28	26.5
18.5	25	35	32.8
22	30	40	39
30	40	55	51.5
37	50	66	64
45	60	80	76.3
55	75	100	90
75	100	135	125
90	125	165	156
110	150	200	186
132	175	230	216
160	220	280	256
200	270	340	321
220	300	385	353
250	350	450	400
315	430	535	500

IP Ratings

IP65 - where 6 means complete protection against accidental contact with live or internal moving parts. Protection against the ingress of dust (dust tight). Where 5 means water projected by nozzle against the equipment from any direction shall have no harmful effect.

IP66 - where 6 means complete protection against accidental contact with live or internal moving parts. Protection against the ingress of dust (dust tight). Where 6 means water projected by powerful jets against the enclosure from any direction shall have no harmful effect.

IP69K - where 6 means complete protection against accidental contact with live or internal moving parts. Protection against the ingress of dust (dust tight). Where 9K means where water directed against the enclosure under extremely high pressure from any direction must not have any harmful effect. Water pressure of 100 bar. Water temperature of 80 deg C.

The Range of Blue Line Switchgear

Technical Catalogues for the following products are available from our website. www.krausnaimer.com.au
Main Switches and Main Switches with Emergency Function 16 A-315 A
Maintenance Switches 20 A-315 A
Switch Disconnectors 20 A-315 A
500
According to IEC 60947 - 3, EN 60947 - 3, VDE 0660 part 107, IEC 60204, EN 60204 and VDE 0113

CL SWitches 10 A-20 A

C, CA and CAD Switches 10 A-315 A and L Switches 350 A- 2400 A
C, CA andCAD switches are designed for universal application. They are recommended for instument, isolator, double-throw and motor 100 control.
L switches are designed for load and off-load applications. They are used to switch resistive or low inductive loads.

Optional Extras and Enclosures

The complete product line, a large number of oiptional extras is available, including door interlocks, push-pull devces, cylinder and padlock attachments, control and indicator devices, Ac motor drives, as well as enclosures, both inslated and metal.

A and AD Switches 6 A- 25 A

A and AD Switches have 4 contacts in each switching stage. These switches provide an extensive range of switch functions and require a 110 minimum mounting depth. Up to 36 switching postions are possible, with availability of 48 contacts per 12 stage column.

CG, CH and CHR Switches 10 A-25 A

Ultra compact CG, CH and CHR switches are ideally suited for control and instumentation applications.
Switch terminals are 'finger-proof' and conveniently accessible for wiring and are delivered open. All CG4 ewiches offer specially designed
gold plated contacts or H -bridges with 'cross-wire' contact systems, which facilitates their use in electronic circuitry and chemically aggressive environments.

DH, DHR, DK and DKR Switches 6 A-16 A

DH, DHR, DK, and DKR switches incorporate unique corrosion resistant contacts that permit operation on system voltage as low as 1 V. They have fully enclosed and protected contacts which can be operated either by rotary and/or lateral handle movement. D switches are used in calibration and semiconductor circuits. They are also used for relay and contactor control.

X Switches 80 A-630 A

X swiches can be applied for load, tap and gang duties. They incorporate 6 contacts in each switching stage. Their compact design provides
a minimum lengtgh dimension for mounting purpose.

KG Switches 20 A-315 A and KH and KHR Switches 16 A-80 A
KC, KG, KH anh KHR switches are excellent circuit interruptors. They have high through fault and fault making capacities and are especially designed for use as isolators and safety switches for machine tools, distribution panels and switchboards. KG ON/OFF switches offer unusually high dimensioned air and creepage distances between terminals which are designed for time saving 'straight-line' wiring. ON/OFF switches are available with up to 8 poles and double-throw switches are available with up to 4 poles.
KC switches offer spring cage terminals for greater termination security.

Push Buttons and Pilot Lights, $22.5 \mathrm{~mm} \varnothing$
A complete range of state-of-the-art push buttons and pilot lights represent an ideal combination of functional security economical efficiency in a modular design.

Disconnectors for Photovoltaic

Maintence Switches for EMC - Compliant Connection

Frequency regulated motors.

We reserve the right to make technical and dimensional changes without prior notice. Any errors or omissions are not binding.

Kraus \& Naimer ${ }_{\text {rowes }}$ BLUE LINE switchgear

Sydney
 379 Liverpool Road
 Ashfield, NSW 2131

Telephone: +61297977333 Fax: +61 297970092
Email: salesaus@kraus naimer.com

M elbourne
 14 Brunsdon Street
 Bayswater, Vic 3153

Telephone: +61 397209777 Fax: +61 397209766
Email: salesvic@krausnaimer.com

Brisbane
22 Brookes Street
Bowen Hills, Qld 4006
Telephone: +61732528344 Fax: +61732521497
Email: salesqld@krausnaimer.com

Adelaide
 Unit9/780-802 South Road
 Glandore, SA 5037

Telephone: +6188371 1443 Fax: +6188371 0901
Email: salessa@krausnaimer.com

Distributor:

The Cam Switch Creators and Innovators.

TECHNICAL DATA SHEET

Equipment Type: RTU
Location:RTU Section
Model Numbers:
GE Fanuc
Manufacturer: GE
Supplier:
Control Logic25 Lavarack Ave, Eagle FarmQLD 4009(07) 36231212

GE Fanuc Automation

Programmable Control Products

Series 90 ${ }^{\text {TM }}$-30/20/Micro PLC CPU Instruction Set

Reference Manual

Warnings, Cautions, and Notes as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note

Notes merely call attention to information that is especially significant to understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts have been made to be accurate, the information contained herein does not purport to cover all details or variations in hardware or software, nor to provide for every possible contingency in connection with installation, operation, or maintenance. Features may be described herein which are not present in all hardware and software systems. GE Fanuc Automation assumes no obligation of notice to holders of this document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No warranties of merchantability or fitness for purpose shall apply.

The following are trademarks of GE Fanuc Automation North America, Inc.

Alarm Master	Genius	PROMACRO	Series Six
CIMPLICITY	Helpmate	PowerMotion	Series Three
CIMPLICITY 90-ADS	Logicmaster	PowerTRAC	VersaMax
CIMSTAR	Modelmaster	Series 90	VersaPro
Field Control	Motion Mate	Series Five	VuMaster
GEnet	ProLoop	Series One	Workmaster

©Copyright 1989-2002 GE Fanuc Automation North America, Inc. All Rights Reserved.

This manual describes the system operation, fault handling, and Logicmaster 90^{TM} programming instructions for the Series $90^{\mathrm{TM}}-30$, Series 90-20 and Series 90 Micro programmable logic controllers. Series 90-30 PLCs, Series 90-20 PLCs, and Series 90 Micro PLCs are members of the Series 90 family of programmable logic controllers from GE Fanuc Automation.

Revisions to This Manual

- Added the model 374 CPU, which supports connection to an Ethernet network through two built-in 10BaseT/100BaseTx auto-negotiating full-duplex Ethernet ports. Models 364 (release 9.10 and later) and 374 are the only Series 90-30 CPUs that support Ethernet Global Data. Note that the CPU374 is supported only by the Windows®-based programmers.
- Other corrections and clarifications as necessary.

Related Publications

Logicmaster ${ }^{\mathrm{TM}} 90$ Series $90^{\mathrm{TM}}-30 / 20 /$ Micro Programming Software User's Manual (GFK-0466).
VersaPro ${ }^{\text {TM }}$ Programming Software User's Guide (GFK-1670)
CIMPLICITY® Machine Edition Getting Started (GFK-1868)
Series 90™-30 Programmable Controller Installation Manual (GFK-0356)
Series 90™ 20 Programmable Controller Installation Manual (GFK-0551)
Series 90™ 30 I/O Module Specifications Manual (GFK-0898)
Series 90^{Tm} Programmable Coprocessor Module and Support Software User's Manual (GFK-0255)

Series $90^{\text {TM }}$ PCM Development Software (PCOP) User's Manual (GFK-0487)
CIMPLICITY ${ }^{\text {тм }} 90-A D S$ Alphanumeric Display System User's Manual (GFK-0499)
CIMPLICITYтм 90-ADS Alphanumeric Display System Reference Manual (GFK-0641)
Series 90™-30 and 90-20 PLC Hand-Held Programmer User's Manual (GFK-0402)
Power Mate APM for Series 90™ 30 PLC—Standard Mode User's Manual (GFK-0840)
Power Mate APM for Series 90™_30 PLC—Follower Mode User's Manual (GFK-0781)
Motion Mate ${ }^{\mathrm{TM}}$ DSM302 for Series 90 ${ }^{\mathrm{TM}}-30$ PLCs User's Manual (GFK-1464)
Series 90тм 30 High Speed Counter User's Manual (GFK-0293)
Series $90^{\mathrm{TM}}-30$ Genius Communications Module User's Manual (GFK-0412)

Series 90 ${ }^{\mathrm{TM}}-30$ Genius ${ }^{\mathrm{TM}}$ Bus Controller User's Manual (GFK-1034)
Series 90Tм 70 FIP Bus Controller User's Manual (GFK-1038)
Series 90™ 30 FIP Remote I/O Scanner User's Manual (GFK-1037)
Field Control ${ }^{\mathrm{TM}}$ Distributed I/O and Control System Genius ${ }^{\mathrm{TM}}$ Bus Interface Unit User's Manual (GFK-0825)

Series 90™ Micro Programmable Logic Controller User's Manual (GFK-1065)
Series 90 ${ }^{\text {тм }}$ PLC Serial Communications User's Manual (GFK-0582)
Chapter 1 Introduction 1-1
Chapter 2 System Operation 2-1
Section 1: PLC Sweep Summary 2-2
Standard Program Sweep 2-2
Sweep Time Calculation 2-7
PLC Sweep Details 2-8
PCM Communications with the PLC (Models 331 and Higher) 2-12
Digital Servo Module (DSM) Communications with the PLC 2-13
Standard Program Sweep Variations 2-13
Constant Sweep Time Mode 2-13
PLC Sweep When in STOP Mode 2-14
Communication Window Modes 2-14
Keylock Switch on 35x, 36x and 37x Series CPUs: Change Mode and Flash Protect 2-15
Section 2: Program Organization and User References/Data 2-17
Subroutine Blocks 2-18
Examples of Using Subroutine Blocks 2-18
How Blocks Are Called 2-19
Execution Sequence in Programs Containing Subroutines 2-19
Periodic Subroutines 2-20
User References 2-20
Nicknames 2-22
Transitions and Overrides. 2-22
Retentiveness of Data 2-22
Data Types 2-23
System Status References 2-24
Function Block Structure 2-27
Format of Ladder Logic Relays 2-27
Format of Program Function Blocks (Instructions) 2-27
Function Block (Instruction) Parameters 2-29
Power Flow In and Out of a Function 2-30
Section 3: Power-Up and Power-Down Sequences 2-32
Power-Up 2-32
Power-Down 2-35
Section 4: Clocks and Timers 2-36
Elapsed Time Clock 2-36
Time-of-Day Clock 2-36
Watchdog Timer 2-37
Elapsed Power Down Timer 2-37
Constant Sweep Timer 2-37
Time-Tick Contacts 2-38
Section 5: System Security 2-39
Passwords 2-39
Privilege Level Change Requests 2-40
Locking/Unlocking Subroutines 2-40
Permanently Locking a Subroutine 2-40
Section 6: Series 90-30, 90-20, and Micro I/O System. 2-41
Series 90-30 I/O Modules 2-42
I/O Data Formats 2-44
Default Conditions for Series 90-30 Output Modules 2-44
Diagnostic Data 2-45
Global Data 2-45
Genius Global Data 2-45
Ethernet Communications 2-45
Series 90-20 I/O Modules. 2-46
Configuration and Programming 2-46
Chapter 3 Fault Explanation and Correction 3-1
Section 1: Fault Handling 3-2
Alarm Processor 3-2
Classes of Faults 3-2
System Reaction to Faults 3-3
Fault Tables 3-3
Fault Action 3-4
Fault References 3-4
System Status References 3-4
Additional Fault Effects 3-5
PLC Fault Table Display 3-5
I/O Fault Table Display 3-5
Accessing Additional Fault Information. 3-6
Section 2: PLC Fault Table Explanations 3-7
Fault Actions 3-8
Loss of, or Missing, Option Module 3-8
Reset of, Addition of, or Extra, Option Module. 3-8
System Configuration Mismatch 3-9
Option Module Software Failure 3-10
Program Block Checksum Failure 3-10
Low Battery Signal 3-10
Constant Sweep Time Exceeded 3-11
Application Fault 3-11
No User Program Present 3-12
Corrupted User Program on Power-Up 3-12
Password Access Failure 3-12
PLC CPU System Software Failure 3-13
Communications Failure During Store 3-15
Section 3: I/O Fault Table Explanations 3-16
Loss of I/O Module 3-16
Addition of I/O Module 3-17
Chapter 4 Relay Functions 4-1
Using Contacts 4-1
Using Coils 4-2
Normally Open Contact - | 4-3
Normally Closed Contact - $|\mid-$ 4-3
Coil - () - 4-3
Example 4-3
Negated Coil -(/)- 4-4
Example 4-4
Retentive Coil -(M)- 4-4
Negated Retentive Coil -(/M)- 4-4
Positive Transition Coil -(\uparrow)- 4-4
Negative Transition Coil -(\downarrow)- 4-5
Example 4-5
SET Coil - (S) - 4-5
RESET Coil -(R)- 4-5
Example. 4-6
Retentive SET Coil -(SM)- 4-6
Retentive RESET Coil -(RM)- 4-6
Links 4-7
Example. 4-7
Continuation Coils ($-\ll+>$) and Contacts (<+>-_—) 4-8
Chapter 5 Timers and Counters 5-1
Function Block Data Required for Timers and Counters 5-1
ONDTR 5-3
Parameters 5-4
Valid Memory Types 5-4
Example 5-5
TMR 5-5
Parameters 5-6
Valid Memory Types 5-6
Example. 5-7
OFDT 5-8
Parameters 5-9
Valid Memory Types. 5-10
Examples 5-10
UPCTR 5-11
Parameters 5-11
Valid Memory Types 5-12
Examples 5-12
DNCTR 5-13
Parameters 5-13
Valid Memory Types 5-14
Examples 5-14
Inventory Count Examples 5-15
Chapter 6 Math Functions 6-1
Standard Math Functions (ADD, SUB, MUL, DIV) 6-2
Parameters 6-3
Valid Memory Types 6-3
Math Function Examples 6-4
Math Functions and Data Types 6-5
Example 6-6
MOD (INT, DINT) 6-7
Parameters 6-7
Valid Memory Types. 6-8
Example 6-8
SQRT (INT, DINT, REAL) 6-9
Parameters 6-9
Valid Memory Types. 6-10
Examples 6-10
Trig Functions (SIN, COS, TAN, ASIN, ACOS, ATAN) 6-11
Parameters 6-12
Valid Memory Types. 6-12
Example 6-12
Logarithmic/Exponential Functions (LOG, LN, EXP, EXPT) 6-13
Parameters 6-13
Valid Memory Types 6-14
Example 6-14
Radian Conversion (RAD, DEG). 6-15
Parameters 6-15
Valid Memory Types 6-15
Example 6-16
Chapter 7 Relational Functions 7-1
Standard Relational Functions (EQ, NE, GT, GE, LT, LE) 7-2
Parameters 7-2
Expanded Description 7-3
Valid Memory Types 7-3
Example 7-3
RANGE (INT, DINT, WORD) 7-4
Parameters 7-5
Valid Memory Types. 7-5
Example 1 7-5
Example 2 7-6
Chapter 8 Bit Operation Functions 8-1
AND and OR (WORD) 8-3
Parameters 8-3
Valid Memory Types 8-4
Example. 8-4
XOR (WORD) 8-5
Parameters 8-5
Valid Memory Types. 8-6
Example of an Alarm Circuit Using an XOR 8-6
NOT (WORD) 8-7
Parameters 8-7
Valid Memory Types 8-7
Example. 8-7
SHL and SHR (WORD) 8-8
Parameters 8-9
Valid Memory Types. 8-9
Example. 8-9
ROL and ROR (WORD) 8-10
Parameters 8-10
Valid Memory Types. 8-11
Example 8-11
BTST (WORD) 8-12
Parameters 8-12
Valid Memory Types. 8-13
Example 8-13
BSET and BCLR (WORD) 8-14
Parameters 8-14
Valid Memory Types. 8-15
Examples 8-15
BPOS (WORD) 8-16
Parameters 8-16
Valid Memory Types. 8-17
Example. 8-17
MSKCMP (WORD, DWORD) 8-18
Parameters 8-19
Valid Memory Types 8-19
Example 1 - MSKCMP Instruction 8-20
Example 2 - Fault Detection with a Masked Compare Function. 8-21
Chapter 9 Data Move Functions 9-1
MOVE (BIT, INT, WORD, REAL) 9-2
Parameters 9-3
Example 1 - Overlapping Addresses (only for CPUs 311-341) 9-4
Example 2 - for all CPUs 9-4
BLKMOV (INT, WORD, REAL) 9-5
Parameters 9-5
Valid Memory Types 9-6
Example. 9-6
BLKCLR (WORD) 9-7
Parameters 9-7
Valid Memory Types. 9-7
Example. 9-7
SHFR (BIT, WORD) 9-8
Parameters 9-9
Valid Memory Types. 9-9
Example 1 9-10
Example 2 9-10
BITSEQ (BIT) 9-11
Control Block Memory Required for a Bit Sequencer 9-12
Parameters 9-13
Valid Memory Types. 9-13
Example 9-14
COMMREQ 9-15
Command Block 9-15
Parameters 9-16
Valid Memory Types. 9-16
Example 9-17
Chapter 10 Table Functions 10-1
ARRAY_MOVE (INT, DINT, BIT, BYTE, WORD) 10-2
Arrays and Data Elements Defined 10-2
Index Numbers 10-2
The Array Move Instruction 10-2
Parameters 10-4
Valid Memory Types 10-4
Example 1 10-5
Example 2 10-5
Example 3 10-6
Search Functions 10-7
Parameters 10-8
Valid Memory Types 10-8
Example 1 10-9
Example 2 10-10
Chapter 11 Conversion Functions 11-1
\rightarrow BCD-4 (INT) 11-2
Parameters 11-2
Valid Memory Types 11-2
Example 11-2
—>INT (BCD-4, REAL) 11-3
Parameters 11-3
Valid Memory Types 11-3
Example 1 - BCD4 to Integer 11-4
Example 2 - Real to Integer 11-4
—>DINT (REAL). 11-5
Parameters 11-5
Valid Memory Types 11-5
Example. 11-6
\rightarrow REAL (INT, DINT, BCD-4, WORD) 11-7
Parameters 11-7
Valid Memory Types 11-7
Example 1 - Integer to Real Conversion 11-8
Example 2 - Double Integer to Real Conversion 11-8
——WORD (REAL) 11-9
Parameters 11-9
Valid Memory Types. 11-9
Example - Real to Word Conversion 11-10
TRUN (INT, DINT) 11-11
Parameters 11-11
Valid Memory Types 11-11
Example 1 - Truncate Real to Integer with Output Coil for CPU352 11-12
Example 2 - Truncate Real to Double Integer with Output Coil for CPU352 11-12
Chapter 12 Control Functions 12-1
CALL 12-2
Example. 12-2
DOIO 12-3
Parameters 12-4
Valid Memory Types 12-4
Input Example 1 12-5
Input Example 2 12-5
Output Example 1 12-6
Output Example 2 12-6
Enhanced DO I/O Function for 331 and Later CPUs 12-7
SER (Sequential Event Recorder) 12-8
Parameters 12-9
Valid Memory Types 12-9
Function Control Block 12-10
Status Extra Data States 12-12
SER Data Block Format 12-13
SER Operation 12-13
Sampling Modes 12-14
SER Function Block Trigger Timestamp Formats 12-17
SER Example 12-18
END 12-23
Example 12-23
MCRN/MCR 12-24
Overview of MCR and MCRN 12-24
CPU Compatibility 12-25
Nesting an MCRN 12-25
MCR Operation 12-26
Parameters 12-26
Differences Between MCR/MCRN and JUMP 12-27
Example 1 12-28
Example 2 12-29
ENDMCRN/ENDMCR 12-30
Example 12-30
JUMP 12-31
Examples 12-32
LABEL 12-33
Example 12-33
COMMENT 12-34
SVCREQ 12-35
SVC REQ Overview 12-36
SVCREQ \#1: Change/Read Constant Sweep Timer 12-38
SVCREQ \#2: Read Window Values 12-41
SVCREQ \#3: Change Programmer Communications Window Mode and Timer Value12-43SVCREQ \#4: Change System Comm Window Mode and Timer Value12-45
SVCREQ \#6: Change/Read Number of Words to Checksum 12-47
SVCREQ \#7: Change/Read Time-of-Day Clock 12-49
SVCREQ \#8: Reset Watchdog Timer 12-53
SVCREQ \#9: Read Sweep Time from Beginning of Sweep. 12-54
SVCREQ \#10: Read Folder Name 12-55
SVCREQ \#11: Read PLC ID 12-56
SVCREQ \#12: Read PLC Run State 12-57
SVCREQ \#13: Shut Down (Stop) PLC 12-58
SVCREQ \#14: Clear Fault Tables 12-59
SVCREQ \#15: Read Last-Logged Fault Table Entry 12-60
SVCREQ \#16: Read Elapsed Time Clock 12-64
SVCREQ \#18: Read I/O Override Status. 12-65
SVCREQ \#23: Read Master Checksum 12-66
SVCREQ \#24: Reset Smart Module 12-67
SVCREQ \#26/30: Interrogate I/O 12-68
SVCREQ \#29: Read Elapsed Power Down Time 12-69
SVCREQ \#45: Skip Next Output \& Input Scan 12-70
SVCREQ \#46: Fast Backplane Status Access 12-71
SVCREQ \#48: Reboot After Fatal Fault Auto Reset 12-77
SVCREQ 49 Auto Reset Statistics 12-79
PID 12-80
Parameters 12-81
Valid Memory Types 12-81
PID Parameter Block 12-82
Operation of the PID Instruction 12-84
Appendix A Instruction Timing A-1
CPU Boolean Execution Times A-15
Instruction Sizes for CPUs 350-374 A-15
Appendix B Interpreting Fault Tables B-1
PLC Fault Table B-1
Example. B-2
I/O Fault Table B-8
Appendix C Instruction Mnemonics C-1
Appendix D Key Functions D-1
Appendix E Using Floating-Point Numbers E-1
Floating-Point Numbers E-1
Real Number Terminology E-2
Internal Format of Floating-Point Numbers E-3
Values of Floating-Point Numbers E-4
Entering and Displaying Floating-Point Numbers E-5
Errors in Floating-Point Numbers and Operations E-6
Appendix F Programming Software Comparison F-1
Figure 2-1. PLC Sweep 2-3
Figure 2-2. Programmer Communications Window Flow Chart 2-10
Figure 2-3. System Communications Window Flow Chart 2-11
Figure 2-4. PCM Communications with the PLC 2-12
Figure 2-5. Power-Up Sequence 2-33
Figure 2-6. Time-Tick Contact Timing Diagram 2-38
Figure 2-7. Series 90-30 I/O Structure 2-41
Figure 2-8. Series 90-30 I/O Modules 2-42
Figure 12-1. Example of Pre-Trigger SER Sampling (for 512 Samples) 12-15
Figure 12-2. Example of Mid-Trigger SER Sampling (for 512 Samples) 12-15
Figure 12-3. Post-Trigger SER Sampling (for 512 samples). 12-16
Figure 12-4. Independent Term Algorithm (PIDIND) 12-89
Table 2-1. Sweep Time Contribution 2-4
Table 2-2. I/O Scan Time Contributions (in milliseconds) for Series 90-30 35x, 36x and 37x CPUs 2-5
Table 2-3. I/O Scan Time Contributions (in milliseconds) for the Series 90-30 CPU311 through CPU341 2-6
Table 2-4. Register References 2-20
Table 2-5. Discrete References 2-21
Table 2-6. Data Types 2-23
Table 2-7. System Status References 2-24
Table 2-8. Series 90-30 I/O Modules - Continued. 2-43
Table 2-8. Series 90-30 I/O Modules - Continued. 2-44
Table 3-1. Fault Summary 3-3
Table 3-2. Fault Actions 3-4
Table 4-1. Types of Contacts 4-1
Table 4-2. Types of Coils 4-2
Table 12-1. Function Control Block for SER Example 12-19
Table 12-2. Sample Contents for SER Example. 12-21
Table 12-3. Data Block for SER Control Block Example 12-21
Table 12-4. Service Request Functions 12-35
Table 12-5. Parameter Block for Read Extra Data Function 12-72
Table 12-6. Parameter Block for Write Data Function 12-73
Table 12-7. Parameter Block for Read/Write Data Function 12-74
Table 12-8. Error Codes 12-75
Table 12-9. Parameter Block for Reboot after Fatal Fault 12-78
Table 12-10. Return Status Definitions for Reboot after Fatal Fault 12-78
Table 12-11. Parameter Block for Auto Reset Statistics 12-79
Table 12-12. Return Status Definitions for Auto Reset Statistics 12-79
Table 12-13. PID Parameters Overview 12-82
Table 12-13. PID Parameters Overview - Continued 12-83
Table 12-14. PID Parameter Details 12-85
Table 12-14. PID Parameter Details - Continued 12-86
Table 12-14. PID Parameter Details - Continued 12-87
Table A-1. Instruction Timing, Standard Models A-2
Table A-1. Instruction Timing, Standard Models-Continued A-3
Table A-1. Instruction Timing, Standard Models-Continued A-4
Table A-1. Instruction Timing, Standard Models-Continued A-5
Table A-2. Instruction Timing, 35x-36x Models A-6
Table A-2. Instruction Timing, 35x-36x Models-Continued A-7
Table A-2. Instruction Timing, 35x-36x Models-Continued A-8
Table A-2. Instruction Timing, 35x-36x Models-Continued A-9
Table A-3. SER Function Block Timing A-10
Table A-4. Instruction Timing, 37x Models A-11
Table A-43. Instruction Timing, 37x Models-Continued A-12
Table A-4. Instruction Timing, 37x Models-Continued A-13
Table A-4. Instruction Timing, 37x Models-Continued A-14
Table B-1. PLC Fault Groups B-4
Table B-2. PLC Fault Actions B-5
Table B-3. Alarm Error Codes for PLC CPU Software Faults B-5
Table B-4. Alarm Error Codes for PLC Faults B-6
Table B-5. PLC Fault Data - Illegal Boolean Opcode Detected B-7
Table B-6. PLC Fault Time Stamp B-7
Table B-7. I/O Fault Table Format Indicator Byte B-9
Table B-8. I/O Reference Address B-9
Table B-9. I/O Reference Address Memory Type B-9
Table B-10. I/O Fault Groups B-10
Table B-11. I/O Fault Actions B-11
Table B-12. I/O Fault Specific Data B-11
Table B-13. I/O Fault Time Stamp B-12
Table E-1. General Case of Power Flow for Floating-Point Math Operations E-8

Chapter

Introduction

The Series 90-30, 90-20, and Micro PLCs are members of the GE Fanuc Series 90 family of Programmable Logic Controllers (PLCs). They are easy to install and configure, offer advanced programming features, and are compatible with the Series 90-70 PLCs.

The 341 and lower Series 90-30 PLCs and Series 90-20 PLC use an 80188 microprocessor. The $35 x$ and $36 x$ series of $90-30$ PLCs use an 80386EX microprocessor. The $37 x$ series of $90-30$ PLCs use a 586 microprocessor. The Series 90 Micro PLC uses the H8 microprocessor. Both program execution and basic housekeeping tasks such as diagnostic routines, input/output scanners, and alarm processing are supported. The system firmware also contains routines to communicate with the programmer. These routines provide for the upload and download of application programs, return of status information, and control of the PLC.

In the Series 90-30 PLC, the application (user logic) program that controls the end process to which the PLC is applied is controlled by a dedicated Instruction Sequencer Coprocessor (ISCP). The ISCP is implemented in hardware in the Model 313 and higher and in software in the Model 311 systems, and the Micro PLC. The microprocessor and the hardware-based ISCP can execute simultaneously, allowing the microprocessor to service communications while the ISCP is executing the bulk of the application program; however, the microprocessor must execute the nonBoolean function blocks.

Faults occur in the Series 90-30 PLC, Series 90-20 PLC, and the Micro PLC when certain failures or conditions happen that affect the operation and performance of the system. These conditions may affect the ability of the PLC to control a machine or process. Other conditions may only act as an alert, such as a low battery signal to indicate that the voltage of the battery protecting the memory is low and should be replaced. The condition or failure is called a fault.

Faults are handled by a software alarm processor function that records the faults in either the PLC fault table or the I/O fault table. (Model 331 and higher CPUs also time-stamp the faults.) These tables can be displayed through the programming software on the PLC Fault Table and I/O Fault Table screens in Logicmaster 90-30/20/Micro software using the control and status functions.

Note

Floating-point capabilities are only supported on the 35 x and 36x series CPUs Release 9 or later, and on all releases of CPU352 and CPU374.

The CPU364 (release 9.10 or later) and the CPU374 are the only Series 90-30 CPUs that support Ethernet Global Data (EGD).

The Series 90-20 PLC provides a cost-effective platform for low I/O count applications. The primary objectives of the Series 90-20 PLC are as follows:

- To provide a small PLC that is easy to use, install, upgrade, and maintain.
- To provide a cost-effective family-compatible PLC.
- To provide easier system integration through standard communication hardware and protocols.

The Series 90 Micro PLC also provides a cost-effective platform for lower I/O count applications. The primary objectives of the Micro PLC are the same as those for the Series 90-20. In addition, the Micro offers the following:

- The Micro PLC has the CPU, power supply, inputs and outputs all built into one compact device.
- Most models also have a high speed counter.
- Because the CPU, power supply, and inputs and outputs are all built into one device, it is very easy to configure.

Note

For additional information, see the appendices in the back of this manual.

- Appendix A lists the memory size in bytes and the execution time in microseconds for each programming instruction.
- Appendix B describes how to interpret the message structure format when reading the PLC and I/O fault tables.
- Appendix C lists instruction mnemonics for searching or editing a program.
- Appendix D lists the special keyboard assignments used in the Logicmaster 90-30/20/Micro Software.
- Appendix E describes the use of floating-point math operations.

Note to Windows-Based PLC Programming Software Users

This manual was written for Logicmaster (a DOS-based PLC programming software) users. The Windows-based PLC software products, such as CIMPLICITY® Machine Edition Logic Developer and VersaPro ${ }^{\circledR}$, provide PLC instruction set information in the software's built-in on-line help system rather than in a manual. Users of the Windows-based programming software should be aware that instructions appear differently from the way they appear on a Logicmaster screen (they still work the same in the PLC). The online help system has the most accurate information about using the instruction set in the Windows-based programming software. For a summary of major differences between the two software types, refer to Appendix F.

Chapter

System Operation

This chapter describes certain system operations of the Series 90-30, 90-20, and Micro PLC systems. These system operations include:

- A summary of PLC sweep sequences (Section 1)...2-2
- Program organization and user references/data (Section 2)....................................2-17
- Power-up and power-down sequences (Section 3) ...2-31
- Clocks and timers (Section 4)..2-35
- System security through password assignment (Section 5).....................................2-38
- Series 90-30 I/O modules (Section 6)...2-40

Section 1: PLC Sweep Summary

The logic program in the Series 90-30, 90-20, and Micro PLCs executes repeatedly until stopped by a command from the programmer or a command from another device. The sequence of operations necessary to execute a program one time is called a sweep. In addition to executing the logic program, the sweep includes obtaining data from input devices, sending data to output devices, performing internal housekeeping, servicing the programmer, and servicing other communications.

Series 90-30, 90-20, and Micro PLCs normally operate in STANDARD PROGRAM SWEEP mode. Other operating modes include STOP WITH I/O DISABLED mode, STOP WITH I/O ENABLED mode, and CONSTANT SWEEP mode. Each of these modes, described in this chapter, is controlled by external events and application configuration settings. The PLC makes the decision regarding its operating mode at the start of every sweep.

Standard Program Sweep

STANDARD PROGRAM SWEEP mode normally runs under all conditions. The CPU operates by executing an application program, updating I/O, and performing communications and other tasks. This occurs in a repetitive cycle called the CPU sweep. There are seven parts to the execution sequence of the Standard Program Sweep:

1. Start-of-sweep housekeeping
2. Input scan (read inputs)
3. Application program logic solution
4. Output scan (update outputs)
5. Programmer communications
6. System communications
7. Diagnostics

All of these steps execute every sweep. Although the Programmer Communications Window opens each sweep, programmer services only occur if a board fault has been detected or if the programming device issues a service request; that is, the Programmer Communications Window first checks for work to do and exits if there is none. The sequence of the standard program sweep is shown in the following figure.

Figure 2-1. PLC Sweep

As shown in the PLC sweep sequence, several items are included in the sweep. These items contribute to the total sweep time as shown in the following table.

Table 2-1. Sweep Time Contribution

Sweep Element	Description		Time Contribution (milliseconds) ${ }^{4}$						
			Micro	211	311/313	331	34x	35x/36x	37x
Housekeeping	- Calculate sweep time - Schedule start of next sweep - Determine mode of next sweep - Update fault reference tables - Reset watchdog timer		0.368	0.898	0.714	0.705	0.424	0.279	0.027
Data Input	Input data is received option modules	from input and	Note 5	See Tables 2-2 and 2-3 for scan time contributions					
Program Execution	User logic is solved		Execution time is dependent upon the length of the program and the types of instructions used in the program. Instruction execution times are listed in Appendix A.						
Data Output	Output data is sent to output and option modules		1.656	See Tables 2-2 and 2-3 for scan time contributions					
Programmer and System Communications	Service requests from programming devices and intelligent modules are processed ${ }^{1}$	HHP	1.93	6.526	4.426	4.524	2.476	0.334	N/A
		Programmer	0.380	3.536	2.383	2.454	1.248	0.517	0.026
		PCM ${ }^{2}$	N/A	N/A	N/A	3.337	1.943	0.482	0.029
Reconfiguration	Slots with faulted modules and empty slots are monitored		$\mathrm{N} / \mathrm{A}^{6}$	N/A	0.458	0.639	0.463	0.319	0.243
Diagnostics	Verify user program integrity (time contribution is the time required per word checksummed each sweep) ${ }^{3}$		N/A ${ }^{7}$	0.083	0.050	0.048	0.031	0.010	0.022

1. The scan time contribution of external device service is dependent upon the mode of the communications window in which the service is processed. If the window mode is LIMITED, a maximum of 8 milliseconds for the $311,313,323$, and 331 CPUs and 6 milliseconds for the 340 and higher CPUs will be spent during that window. If the window mode is RUN-TO-COMPLETION, a maximum of 50 milliseconds can be spent in that window, depending upon the number of requests which are presented simultaneously.
2. These measurements were taken with the PCM physically present but not configured and with no application task running on the PCM
3. The number of words checksummed each sweep can be changed with the SVCREQ function block.
4. These measurements were taken with an empty program and the default configuration. The Series 90-30 PLCs were in an empty 10 -slot rack with no extension racks connected. Also, the times in this table assume that there is no periodic subroutine active; the times will be longer if a periodic subroutine is active
5. The data input time for the Micro PLC can be determined as follows: 0.365 ms (fixed scan) +0.036 ms (filter time) x (total sweep time) / 0.5 ms .
6. Since the Micro PLC has a static set of I/O, reconfiguration is not necessary.
7. Since the user program for the Micro PLC is in Flash memory, it will not be checked for integrity.

Table 2-2. I/O Scan Time Contributions (in milliseconds) for Series 90-30 35x, 36x and 37x CPUs

Module Type		35x and 36x Series CPUs			37x Series CPUs		
		Main Rack	Expansion Rack	Remote Rack	Main Rack	Expansion Rack	Remote Rack
8-point discrete input		. 030	. 055	. 206	. 030	. 055	. 206
16-point discrete input		. 030	. 055	. 206	. 030	. 055	. 206
32-point discrete input		. 043	. 073	. 269	. 048	. 075	. 272
8-point discrete output		. 030	. 053	. 197	. 024	. 052	. 198
16-point discrete output		. 030	. 053	. 197	. 030	. 052	. 199
32-point discrete output		. 042	. 070	. 259	. 047	. 069	. 258
Combination discrete input/output		. 060	. 112	. 405	. 052	. 110	. 408
4-channel analog input		. 075	. 105	. 396	. 085	. 109	. 403
2-channel analog output		. 058	. 114	. 402	. 046	. 101	. 393
16-channel analog input (current or voltage)		. 978	1.446	3.999	. 423	. 700	1.741
8-channel analog output		1.274	1.988	4.472	. 873	1.492	3.635
Combination analog input/output		1.220	1.999	4.338	. 862	1.487	4.103
High Speed Counter		1.381	2.106	5.221	1.142	1.808	5.234
I/O Processor		1.574	2.402	6.388	1.270	2.125	6.269
Ethernet Interface (no connection)		. 7129	2.067	3.681	. 426	. 795	2.302
Power Mate APM (1-axis)		1.527	2.581	6.388	1.236	2.073	6.032
Power Mate APM (2-axis)		1.807	2.864	7.805	1.539	2.439	7.369
DSM 302 *	$40 \mathrm{AI}, 6 \mathrm{AQ}$	2.143	3.315	9.527	1.801	2.963	9.275
	50AI, 9 AQ	2.427	3.732	11.092	2.075	3.373	10.840
	64 AI, 12 AQ	2.864	4.317	13.138	2.441	3.931	12.881
DSM314 *	1 Axis Configured	1.6	2.6	6.9	1.330	2.337	6.905
	2 Axes Configured	2.2	3.8	9.9	1.888	3.148	9.917
	3 Axes Configured	2.8	4.3	13.0	2.421	3.953	12.929
	4 Axes Configured	3.3	5.2	15.9	2.969	4.761	15.982
GCM	8 32-bit devices	8.826	16.932	21.179	7.386	9.520	20.591
GCM+	no devices	. 567	. 866	1.830	. 457	. 759	1.743
	3264 -word devices	19.497	25.588	80.871	17.036	24.390	80.044
GBC	no devices	. 798	1.202	2.540	. 544	. 908	2.209
	16 64-word devices	29.976	40.570	131.702	26.976	38.564	130.639
PCM 311	not configured, or no application task	. 476	N/A	N/A	. 195	N/A	N/A
	running 20 Kb application program	1.746	N/A	N/A	. 538	N/A	N/A
ADC (no task)		. 476	N/A	N/A	. 193	N/A	N/A
I/O Link Master	no devices	. 569	. 865	1.932	. 996	1.618	3.749
	sixteen 64-point devices	4.948	7.003	19.908	5.924	8.240	26.637
I/O Link Slave	32-point	. 087	. 146	. 553	. 095	. 149	. 540
	64-point	. 154	. 213	. 789	. 165	. 219	. 803

* For applications where the DSM's contributions to scan time will affect machine operation you may need to use the Do I/O function block, and the Suspend I/O and Fast Backplane Status Access service requests to transfer necessary data to and from the Motion module without getting all the data every scan. For the DSM302, refer to the Motion Mate DSM302 for Series 90-30 PLCs User's Manual, GFK1464 for details. For the DSM314, refer to the Motion Mate DSM314 for Series 90-30 PLCs User's Manual, GFK1742 for details. NOTE: The DSM314 will only work with the CPUs $350,352,360,363,364$, and 374 and only with CPU firmware version 10.00 or later.

Table 2-3. I/O Scan Time Contributions (in milliseconds) for the Series 90-30 CPU311 through CPU341

Module Type		CPU Model							
		$\begin{array}{\|c} \hline 311 / 313 \\ \hline / 323 \\ \hline \end{array}$	331			340/341			
		Main Rack	$\begin{aligned} & \text { Expansion } \\ & \text { Rack } \end{aligned}$	Remote Rack	Main Rack	$\begin{aligned} & \text { Expansion } \\ & \text { Rack } \end{aligned}$	Remote Rack		
8-point discrete input			. 076	. 054	. 095	. 255	. 048	. 089	. 249
16-point discrete input		. 075	. 055	. 097	. 257	. 048	. 091	. 250	
32-point discrete input		. 094	. 094	. 126	. 335	. 073	. 115	. 321	
8-point discrete output		. 084	. 059	. 097	. 252	. 053	. 090	. 246	
16-point discrete output		. 083	. 061	. 097	. 253	. 054	. 090	. 248	
32-point discrete output		. 109	. 075	. 129	. 333	. 079	. 114	. 320	
8-point combination input/output		. 165	. 141	. 218	. 529	. 098	. 176	. 489	
4-channel analog input		. 151	. 132	. 183	. 490	. 117	. 160	. 462	
2-channel analog output		. 161	. 138	. 182	. 428	. 099	. 148	. 392	
High-Speed Counter		2.070	2.190	2.868	5.587	1.580	2.175	4.897	
Power Mate APM (1-axis)		2.330	2.460	3.175	6.647	1.750	2.506	5.899	
Power Mate APM (2-axis)		3.181	3.647	4.497	9.303	2.154	3.097	7.729	
DSM 302*	$40 \mathrm{AI}, 6 \mathrm{AQ}$	3.613	4.081	5.239	11.430	2.552	3.648	9.697	
	50AI, 9 AQ	4.127	4.611	5.899	13.310	2.911	4.170	11.406	
	64 AI, 12 AQ	4.715	5.276	6.759	15.747	3.354	4.840	13.615	
GCM	no devices	. 041	. 054	. 063	. 128	. 038	. 048	. 085	
	864 -point devices	11.420	11.570	13.247	21.288	9.536	10.648	19.485	
GCM +	no devices	. 887	. 967	1.164	1.920	. 666	. 901	1.626	
	32 64-point devices	4.120	6.250	8.529	21.352	5.043	7.146	20.052	
PCM 311	not configured, or no application task	N/A	3.350	N/A	N/A	1.684	N/A	N/A	
	read $128 \% \mathrm{R}$ as fast as possible	N/A	4.900	N/A	N/A	2.052	N/A	N/A	
ADC 311		N/A	3.340	N/A	N/A	1.678	N/A	N/A	
16-channel analog input (current or voltage)		1.370	1.450	1.937	4.186	1.092	1.570	3.796	
I/O Link Master	no devices	1.910	2.030	1.169	1.925	. 678	. 904	1.628	
	sixteen 64-point devices	6.020	6.170	8.399	21.291	4.992	6.985	20.010	
I/O Link Slave	32-point	. 206	. 222	. 289	. 689	. 146	. 226	. 636	
	64-point	. 331	. 350	. 409	1.009	. 244	. 321	. 926	

[^31]
Sweep Time Calculation

Table 2-1 lists the seven items that contribute to the sweep time of the PLC. The sweep time consists of fixed times (housekeeping and diagnostics) and variable times. Variable times vary according to the I/O configuration, size of the user program, and the type of programming device connected to the PLC.

Example of Sweep Time Calculation

An example of the calculations for determining the sweep time for a Series 90-30 model 331 PLC are shown in the table below.

The modules and instructions used for these calculations are listed below:

- Input modules: five 16-point Series 90-30 input modules.
- Output modules: four 16-point Series 90-30 output modules.
- Programming instructions: A 1200-step program consisting of 700 Boolean instructions (LD, AND, OR, etc.), 300 output coils (OUT, OUTM, etc.), and 200 math functions (ADD, SUB, etc.).

Sweep Component		Time Contribution		
		Without Programmer	With HHP	With Logicmaster
Housekeeping	0.705 ms	0.705 ms	0.705 ms	0.705 ms
Data Input	$0.055 \times 5=0.275 \mathrm{~ms}$	0.275 ms	0.275 ms	0.275 ms
Program Execution	$1000 \times 0.4 \mu \mathrm{~s}^{*}+200 \times 89 \mu \mathrm{~s}^{* *}+18.2 \mathrm{~ms}$	18.2 ms	18.2 ms	18.2 ms
Data Output	$0.061 \times 4=0.244 \mathrm{~ms}$	0.244 ms	0.244 ms	0.244 ms
Programmer Service	$0.4 \mathrm{~ms}+$ programmer time +0.6 ms	0 ms	4.524 ms	2.454 ms
Non- Programmer Service	None in this example	0 ms	0 ms	0 ms
Reconfiguration	0.639 ms	0.639 ms	0.639 ms	0.639 ms
Diagnostics	0.048 ms	0.048 ms	0.048 ms	0.048 ms
PLC Sweep Time	Housekeeping + Data Input + Program Execution + Data Output + Programmer Service + Non-Programmer Service + Diagnostics	12.611 ms	17.135 ms	15.065 ms

PLC Sweep Details

This section discusses details of the major portions of the PLC Sweep:

1. Housekeeping
2. Input Scan
3. Application Program Logic Scan
4. Output Scan
5. Programmer Service
6. System Communications
7. Reconfiguration
8. Checksum Calculation

1. Housekeeping

The housekeeping portion of the sweep performs all of the tasks necessary to prepare for the start of the sweep. If the PLC is in CONSTANT SWEEP mode, the sweep is delayed until the required sweep time elapses. If the required time has already elapsed, the OV_SWP \%SA0002 contact is set, and the sweep continues without delay. Next, timer values (hundredths, tenths, and seconds) are updated by calculating the difference from the start of the previous sweep and the new sweep time. In order to maintain accuracy, the actual start of sweep is recorded in 100 microsecond increments. Each timer has a remainder field which contains the number of 100 microsecond increments that have occurred since the last time the timer value was incremented.

2. Input Scan

Scanning of inputs occurs during the input scan portion of the sweep, just prior to the logic solution. During this part of the sweep, all Series 90-30 input modules are scanned and their data stored in \%I (discrete inputs) or \%AI (analog inputs) memory, as appropriate. Any global data input received by a Genius Communications Module (GCM), an Enhanced Genius Communications Module (GCM+), or a Genius Bus Controller (GBC) is stored in \%G memory.
Modules are scanned in ascending reference address order, starting with any installed Genius Module, then discrete input modules, and finally analog input modules.

If the CPU is in STOP mode and the CPU is configured to not scan I/O in STOP mode, the input scan is skipped.

3. Application Program Logic Scan or Solution

The application program logic scan occurs immediately following the completion of the input scan. The application program logic scan performs two main tasks: (1) solving/executing the program logic and (2) updating \%Q, \%AI, and \%AQ output memory. (Output modules, however, are not updated until the output scan occurs). In general, ladder logic is solved from left to right and top to bottom, although this flow direction can be altered temporarily by subroutine calls and jumps. The
logic solution ends when an END instruction is encountered or when the default END OF PROGRAM LOGIC is reached.

The 313 and higher CPUs have an Instruction Sequence Coprocessor (ISCP) that executes the Boolean instructions, and an 80C188,80386 or AMD SC 520 microprocessor executes the timer, counter, and function blocks. In the Model 311 and 90-20 CPUs, the 80 C 188 executes all Boolean, timer, counter, and function block instructions. On the Micro, the H8 processor executes all Boolean and function blocks.

A list of execution times for each programming function can be found in Appendix A.

4. Output Scan

Outputs are scanned during the output scan portion of the sweep, immediately following the logic solution. Outputs are updated using data from \%Q (for discrete outputs) and \%AQ (for analog outputs) memory, as appropriate. If you have a Genius Communications Module or Genius Bus Controller that is configured to transmit global data, then data from $\% \mathrm{G}$ memory is sent to the GCM, GCM+, or GBC. The Series 90-20 and Micro output scans include discrete outputs only.

During the output scan, all Series 90-30 output modules are scanned in ascending reference address order. The output scan is completed when all output data has been sent to all Series $90-30$ output modules.

If the CPU is in the STOP mode and IPScan-Stop parameter on the CPU configuration screen is set to $N O$, the output scan is skipped.

Caution

If the IPScan-Stop parameter on the CPU configuration screen is set to YES, real-world outputs may be turned ON even when the PLC is in STOP mode, because the PLC will write the current values in the output tables to the output modules during the Output Scan.

5. Programmer Communications Window

This part of the sweep is dedicated to communicating with the programmer. If there is a programmer attached, the CPU executes the programmer communications window. The programmer communications window will not execute if there is no programmer attached and no module to be configured in the system. Only one module is configured each sweep.

Support is provided for the Hand-Held Programmer and for other programmers that can connect to the serial port and use the Series Ninety Protocol (SNP) protocol. Support is also provided for programmer communications with intelligent option modules.

Programmer Communications Window Modes

- Limited Mode. In the default Limited window mode, the CPU performs one operation for the programmer each sweep, that is, it honors one service request or response to one key press. If the programmer makes a request that requires more than 6 (or 8 depending on the CPU—see Note) milliseconds to process, the request processing is spread out over several
sweeps so that no sweep is impacted by more than 6 (or 8 depending on the CPU—see Note) milliseconds.

Note

The time limit for the communications window is 6 milliseconds for the 340 and higher CPUs and 8 milliseconds for the $311,313,323$, and 331 models.

- Complete Mode. In the Complete mode, the CPU will conduct programmer communications until they are complete or until 50 milliseconds elapses.

The following figure is a flow chart for the programmer communications portion of the sweep.

Figure 2-2. Programmer Communications Window Flow Chart

6. System Communications Window (Models 331 and Higher)

This is the part of the sweep where communications requests from intelligent option modules, such as the PCM or DSM, are processed (see flow chart). Requests are serviced on a first-come-firstserved basis. However, since intelligent option modules are polled in a round-robin fashion, no intelligent option module has priority over any other intelligent option module.

In the default Run-to-Completion mode, the length of the system communications window is limited to 50 milliseconds. If an intelligent option module makes a request that requires more than 50 milliseconds to process, the request is spread out over multiple sweeps so that no one sweep is impacted by more than 50 milliseconds.

Figure 2-3. System Communications Window Flow Chart

7. Reconfiguration

During this portion of the sweep, the CPU checks the actual hardware lineup against the configured hardware lineup. Slots that are configured for a module but that are empty physically, or slots that contain faulted modules, will not be scanned by the CPU (i.e. the CPU will not read any input data from, and will not send any output data to that module or slot). During reconfiguration, if the CPU detects that a slot previously identified as containing a faulted module now has a good module, or that a configured module has been physically added to the PLC, it will begin scanning that module.

Reconfiguration enables the CPU to do the following:

- Recognize a legitimate change that you make in the configuration.
- Ignore potentially corrupted or inaccurate input data from faulted or missing modules.
- Avoid sending output data that could become corrupted by a faulted output module.

8. Checksum Calculation

A checksum calculation is performed on the user program at the end of every sweep. Since it would take too long to calculate the checksum of the entire program, you can specify the number of words from 0 to 32 to be checked on the CPU configuration screen.

If the calculated checksum does not match the reference checksum, the program checksum failure exception flag is raised. This causes a fault entry to be inserted into the PLC fault table and the PLC mode to be changed to STOP. If the checksum calculation fails, the programmer communications window is not affected. The default number of words to be checksummed is 8 .

PCM Communications with the PLC (Models 331 and Higher)

There is no way for intelligent option modules (IOM), such as the PCM, to interrupt the CPU when they need service. The CPU must poll (check periodically) each intelligent option module for service requests. This polling occurs asynchronously in the background during the sweep (see flow chart below).

When an intelligent option module is polled and sends the CPU a service request, the request is queued for processing during the system communications window.

Figure 2-4. PCM Communications with the PLC

Digital Servo Module (DSM) Communications with the PLC

The DSM302 and DSM314 are intelligent option modules that operate asynchronously with the Series 90-30 CPU module. Data is exchanged between the CPU and a DSM automatically via $\% \mathrm{Q}$, $\% \mathrm{I}, \% \mathrm{AQ}$, and \%AI memory. A PLC CPU requires time to read and write the exchange data across the PLC backplane with the DSM module. Table 2-2 lists the sweep impact for the various possible DSM configurations. For additional timing considerations that apply to the DSM modules, refer to the following manuals:

- Motion Mate DSM302 for Series 90-30 PLCs User's Manual, GFK-1464.
- Motion Mate DSM314 for Series 90-30 PLCs User's Manual, GFK-1742.

Standard Program Sweep Variations

In addition to the normal execution of the standard program sweep, certain variations can be encountered or forced. These variations, described in the following paragraphs, can be displayed and/or changed from the programming software.

Constant Sweep Time Mode

In the standard program sweep, each sweep executes as quickly as possible with a varying amount of time consumed each sweep. An alternative to this is CONSTANT SWEEP TIME mode, where each sweep consumes the same amount of time. You can achieve this by setting the Configured Constant Sweep, which will then become the default sweep mode, thereby taking effect each time the PLC goes from STOP to RUN mode. You may set a CONSTANT SWEEP TIME mode value between 5 to 200 milliseconds for CPUs 311-341 or between 5 and 500 milliseconds for the 350364 and 374 CPUs.

Due to variations in the time required for various parts of the PLC sweep, the constant sweep time should be set at least 10 milliseconds higher than the sweep time that is displayed on the status line when the PLC is in NORMAL SWEEP mode. This prevents the occurrence of extraneous oversweep faults.

Use the CONSTANT SWEEP TIME mode when I/O points or register values must be polled at a constant frequency, such as in control algorithms. Another reason might be to ensure that a certain amount of time elapses between the output scan and the next sweep's input scan, permitting inputs to settle after receiving output data from the program.

If the constant sweep timer expires before the sweep completes, the entire sweep, including the communications windows, is completed. However, an oversweep fault is logged at the beginning of the next sweep.

Configuring Constant Sweep Mode

There are two ways to configure Constant Sweep Mode:

- In Logicmaster configuration software, the CPU configuration screen has configurable Sweep Mode and Sweep Timer parameters. After making your selections, you must store the configuration from the programmer to the PLC during STOP mode before the changes will take effect. Once stored, this configuration becomes the default sweep mode.
- In Logicmaster programming software, the PLC Sweep Table selection on the PLC Control and Status menu has Sweep Mode and Timing parameter selection options. The parameters on this screen can only be edited in RUN mode. Changes made from this screen are only stored to the PLC, not to the folder on your PC, and are only effective while the PLC remains in Run mode. Once the PLC stops, it assumes the default Sweep Mode, which becomes effective the next time the PLC goes into Run mode. This method for temporarily configuring the Sweep Mode is useful for system design and debug operations.

PLC Sweep When in STOP Mode

When the PLC is in STOP mode, the application program is not executed. Communications with the programmer and intelligent option modules continue. In addition, faulted module polling and module reconfiguration execution continue while in STOP mode. For efficiency, the operating system uses larger "time-slice" values than those used in RUN mode (usually about 50 milliseconds per window). You can choose whether or not the I/O is scanned. I/O scans may execute in STOP mode if the IOScan-Stop parameter on the CPU detail screen is set to YES.

Caution

If the IPScan-Stop parameter on the CPU detail screen is set to YES, realworld outputs may be turned ON even when the PLC is in STOP mode, because the PLC will write the current values in the output tables to the output modules during the Output Scan.

Communication Window Modes

The default window mode for the programmer communication window is "Limited" mode. That means that if a request takes more than 6 milliseconds to process, it is processed over multiple sweeps, so that no one sweep is impacted by more than 6 milliseconds. For the 313, 323, and 331 CPUs, the sweep impact may be as much as 12 milliseconds during a RUN-mode store. The active window mode can be changed using the "Sweep Control" screen in Logicmaster-for instructions on changing the active window mode, refer to Chapter 5, "PLC Control and Status," in the Logicmaster 90^{TM} Series 90^{TM} 30/20/Micro Programming Software User's Manual (GFK-0466).

Note

If the system window mode is changed to Limited, then option modules such as the PCM or GBC that communicate with the PLC using the system window will have less impact on sweep time, but response to their requests will be slower.

Keylock Switch on 35x, 36x and 37x Series CPUs: Change Mode and Flash Protect

All 350-374 CPUs have a keylock switch (CPUs 311-341 do not); however, some versions of CPU firmware do not support all keylock switch features. These differences are discussed in this section. Note that the keylock switches on some of these CPUs are labeled ON/RUN and OFF/STOP, and on others are labeled ON and OFF. Regardless of the labeling, all of these keylock switches work as described below.

Flash Memory Protection (Hard-Wired)

This hard-wired, non-configurable feature can be used to prevent Flash memory from being changed by unauthorized people (people without a key). When the keylock switch is in the ON position, Flash memory cannot be written to. Flash memory can only be written to when this switch is OFF. This keylock switch feature is always in effect, regardless of how the next two configurable features are set.

Run/Stop (Configurable)

This configurable feature was introduced in CPU firmware release 7.00. It is set by the R/S Switch parameter on the CPU configuration screen. The R/S Switch parameter is set to Disabled by default. If the R/S Switch parameter is set to Enabled, you can stop the PLC by turning the keylock switch to OFF, and start the PLC by turning the switch to ON (if there are no faults). If faults exist, one of the following will happen:

- If the PLC has a non-fatal fault, turning the keylock switch from OFF to ON will cause the PLC to go into run mode, and the RUN light will turn on steady, but the fault tables will not be cleared.
- If the PLC has a fatal fault, turning the keylock switch from OFF to ON will cause the RUN light to flash on and off for a period of five seconds, and the PLC will not go into run mode. This flashing light indicates the presence of one or more fatal faults in the Fault Tables. You can try to clear the fault table faults by turning the keylock switch from OFF to ON again during the five-second period. (If the five-second period has expired, turning the keylock switch from OFF to ON will start another five-second period.) If the faults do not clear using this method, you will have to remedy the causes of the fatal faults before being able to resume operation. See Chapter 3 for fault details.

Other Run/Stop Keylock Switch Considerations

- If the R/S Switch parameter is set to Enabled and the keylock switch is in the OFF position, the PLC will be in STOP mode, and the programming software cannot be used to place the PLC into RUN mode.
- If the R/S Switch parameter is set to Enabled, the keylock switch is in the ON position, and there are no fatal faults, the programming software can be used to toggle the PLC between the RUN and STOP modes.
- If the R/S Switch parameter is set to Enabled, the keylock switch is in the ON position, but the PLC is stopped, you can place the PLC into RUN mode by either turning the keylock switch to the OFF position and then back to ON, or by using the programming software.

RAM Memory and Override Protection (Configurable)

This feature was introduced in CPU firmware release 8.00. It is set by the Mem Protect parameter on the CPU configuration screen. The Mem Protect parameter is set to Disabled by default.

If the Mem. Protect parameter is set to Enabled, and the keylock switch is in the ON position, the following is true:

- User RAM memory (program and configuration) cannot be changed.
- Discrete points cannot be overridden.
- The Time of Day (TOD) clock cannot be changed with the Hand-Held Programmer (however, the TOD clock can still be changed using the configuration software).

Safeguard your Keys

Each new 350-374 CPU is shipped with two keys for the keylock switch. If you use one or more of the keylock switch protection features described above, we recommend you carefully safeguard your keys. If they are lost, misplaced, or stolen, you may be locked out from working on your PLC, and unauthorized persons may have access to it. You may want to purchase spare keys for backup purposes, or if more than two persons need access to the PLC. A keylock switch key kit, containing three sets of keys, can be purchased from a GE Fanuc distributor. When ordering, request catalog number 44A736756-G01. All 350-374 CPUs use the same key.

Disabling Keylock Switch Features

If you do not need to use any of the protection features of the keylock switch, you can choose to disable them all. To do so, leave the keylock switch set to the OFF position, and set the R/S Switch and Mem. Protect parameters (described above) to Disabled (their default setting). In this condition, all keylock switch protection features will be disabled, and you will not need to use a key to access the PLC.

Section 2: Program Organization and User References/Data

The user memory size for the Series $90-30$ programmable controllers is listed in the following table.

User Memory Size	
CPU Models	User Memory (Kbytes)
CPU311	6
CPU313, CPU323	12
CPU331	16
CPU340	32
CPU341	80
CPU350	80 (release 9.00 and later) 32 (prior to release 9.00)
CPU351, CPU352,	240 (release 9.00 and later) CPU360, CPU363, CPU364, CPU374

Beginning with firmware release $9.00 \mathrm{CPUs}, \% \mathrm{R}, \% \mathrm{AI}$, and \%AQ memory sizes for the 351, 352, 360, 363, 364 and 374 CPUs are configurable. (For details, refer to the Logicmaster 90^{TM} Series 90™-30/20/Micro Programming Software User's Manual, GFK-0466K or later or the User's Manual for your programmer software). A program for the Series 90-20 programmable controller can be up to 2 KB in size for a Model 211 CPU , and the maximum number of rungs allowed per logic block (main or subroutine) is 3000 . For Series $90-30$ PLCs, the maximum block size is 80 kilobytes for C blocks and 16 kilobytes for LD and SFC blocks; however, in an SFC block, some of the 16 KB is used for the internal data block. As shown in the next figure, user program logic is executed repeatedly by the PLC while the PLC is in normal Run mode.

Refer to the Series 90-30 Programmable Controller Installation and Hardware Manual, GFK0356, or the Series 90-20 Programmable Controller User's Manual, GFK-0551, for a listing of program sizes and reference limits for each model CPU.
All programs have a variable table that lists the variable and reference descriptions that have been assigned in the user program.

The block declaration editor lists subroutine blocks declared in the main program.

Subroutine Blocks

A program can "call" subroutine blocks as it executes. A subroutine must be declared through the block declaration editor before a CALL instruction can be used for that subroutine. A maximum of 64 subroutine block declarations in the program and 64 CALL instructions are allowed for each logic block in the program. The maximum size of a subroutine block is 16 KB or 3000 rungs, but the main program and all subroutines must fit within the logic size constraints for that CPU model.

Note

Subroutine blocks are not supported in the Series 90-20 PLC or the Micro PLC.
The use of subroutines is optional. Dividing a program into smaller subroutines can simplify programming, enhance understanding of the control algorithm, and possibly reduce the overall amount of logic needed for the program.

Examples of Using Subroutine Blocks

As an example, the logic for a program could be divided into three subroutines, each of which could be called as needed from the program. In this example, the program block might contain little logic, serving primarily to sequence the subroutine blocks.

A subroutine block can be used many times as the program executes. Logic which needs to be repeated several times in a program could be entered in a subroutine block. Calls would then be made to that subroutine block to access the logic. In this way, total program size is reduced.

In addition to being called from the program, subroutine blocks can also be called by other subroutine blocks (this is called "nesting"). A subroutine block may even call itself.

The PLC will only allow eight nested calls before an "Application Stack Overflow" fault is logged and the PLC transitions to STOP/Fault mode. The call level nesting counts the main program as level 1.

How Blocks Are Called

A subroutine block executes when called from program logic in a ladder program or from another subroutine block.

This example shows the subroutine CALL instruction as it will appear on the ladder logic screen.

Execution Sequence in Programs Containing Subroutines

If a subroutine is called from a program or other subroutine, the called subroutine will execute to its end, then return control back to the program or subroutine that called it. Control will return to the rung following the rung that contains the subroutine call. In the example below, the heavy dotted line shows program flow (the order in which logic is executed). In this example, a simple two-rung subroutine is called from Rung 4 of the Main Program. After the two subroutine rungs are executed, program flow returns to the Main Program, starting with Rung 5.

Periodic Subroutines

Version 4.20 or later of the 340 and higher CPUs support periodic subroutines. Please note the following restrictions:

1. Timer (TMR, ONDTR, and OFDTR) function blocks will not execute properly within a periodic subroutine. A DOIO function block within a periodic subroutine whose reference range includes references assigned to a Smart I/O Module (HSC, APM, DSM, Genius, etc.) will cause the CPU to lose communication with the module. The FST_SCN and LST_SCN contacts ($\% \mathrm{~S} 1$ and $\% \mathrm{~S} 2$) will have an indeterminate value during execution of the periodic subroutine. A periodic subroutine cannot call or be called by other subroutines.
2. The latency for the periodic subroutine (that is, the maximum interval between the time the periodic subroutine should have executed and the time it actually executes) can be around 0.35 milliseconds if there is no PCM, CMM, or ADC module in the main rack. If there is a PCM, CMM or ADC module in the main rack-even if it is not configured or used-the latency can be almost 2.25 milliseconds. For that reason, use of the periodic subroutine with PCM-based products is not recommended.

User References

The data used in an application program is stored as either register or discrete references.
Table 2-4. Register References

Type	Description
$\% \mathrm{R}$	The prefix \%R is used to assign system register references, which will store program data such as the results of calculations.
\%AI	The prefix \%AI represents an analog input register. This prefix is followed by the register address of the reference (for example, \%AI0015). An analog input register holds the value of one analog input or other value.
\%AQ	The prefix \%AQ represents an analog output register. This prefix is followed by the register address of the reference (for example, \%AQ0056). An analog output register holds the value of one analog output or other value.

Note

All register references are retained across a power cycle to the CPU.

Table 2-5. Discrete References

Type	Description
\% I	The \%I prefix represents input references. This prefix is followed by the reference's address in the input table (for example, \%I00121). \%I references are located in the input status table, which stores the state of all inputs received from input modules during the last input scan. A reference address is assigned to discrete input modules using the configuration software or the Hand-Held Programmer. Until a reference address is assigned, no data will be received from the module. \%I data can be retentive or non-retentive.
\%Q	The $\% \mathrm{Q}$ prefix represents physical output references. The coil check function of Logicmaster 90-30/20/Micro software checks for multiple uses of \% Q references with relay coils or outputs on functions. Beginning with Release 3 of the software, you can select the level of coil checking desired (SINGLE, WARN MULTIPLE, or MULTIPLE). Refer to the Programming Software User's Manual, GFK-0466, for more information about this feature. The $\% \mathrm{Q}$ prefix is followed by the reference's address in the output table (for example, $\% \mathrm{Q} 00016$). \%Q references are located in the output status table, which stores the state of the output references as last set by the application program. This output status table's values are sent to output modules during the output scan. A reference address is assigned to discrete output modules using the configuration software or the Hand-Held Programmer. Until a reference address is assigned, no data is sent to the module. A particular \%Q reference may be either retentive or non-retentive. *
\%M	The $\% \mathrm{M}$ prefix represents internal references. The coil check function checks for multiple uses of $\% \mathrm{M}$ references with relay coils or outputs on functions. Beginning with Release 3 of the software, you can select the level of coil checking desired (SINGLE, WARN MULTIPLE, or MULTIPLE). Refer to GFK-0466 for more information about this feature. A particular \%M reference may be either retentive or non-retentive. *
\% T	The $\% \mathrm{~T}$ prefix represents temporary references. Because these references are never checked for multiple coil use, they can be used many times in the same program, even when coil use checking is enabled. \%T can be used to prevent coil use conflicts while using the cut/paste and file write/include functions. Because this memory is intended for temporary use, it is not retained through power loss or RUN-TO-STOP-TO-RUN transitions and cannot be used with retentive coils.
\%S	The $\%$ S prefix represents system status references. These references are used to access special PLC data, such as timers, scan information, and fault information. System references include $\% \mathrm{~S}, \% \mathrm{SA}, \% \mathrm{SB}$, and $\% \mathrm{SC}$ references. $\% \mathrm{~S}, \% \mathrm{SA}, \% \mathrm{SB}$, and $\% \mathrm{SC}$ can be used on any contacts. $\% \mathrm{SA}, \% \mathrm{SB}$, and $\% \mathrm{SC}$ can be used on retentive coils $-(\mathrm{M})-$. $\% \mathrm{~S}$ can be used as word or bit-string input arguments to functions or function blocks. $\% \mathrm{SA}, \% \mathrm{SB}$, and $\% \mathrm{SC}$ can be used as word or bit-string input or output arguments to functions and function blocks.
\%G	The $\% \mathrm{G}$ prefix represents global data references. These references are used to access data shared among several PLCs. \%G references can be used on contacts and retentive coils because $\% \mathrm{G}$ memory is always retentive. $\% \mathrm{G}$ cannot be used on non-retentive coils.

* Retentiveness is based on the type of coil. For more information, refer to "Retentiveness of Data" on the next page.

Nicknames

A user may, optionally, assign a nickname to a reference address. A nickname is useful because it can convey information to the user about the purpose or function of the address. For example, in a PLC system installed in a factory, output coil $\% \mathrm{Q} 0001$ is used to energize a motor starter relay that controls a physical pump, commonly called "Pump Number 1" by the factory's employees. Assigning the nickname PUMP1 to $\% \mathrm{Q} 0001$ would help an employee who is troubleshooting the system to recognize the purpose of $\% \mathrm{Q} 0001$.

Nicknames must begin with a letter and may be from one to seven characters long. To distinguish between a memory address (reference) and a nickname, a percent sign (\%) is used as the first character of a memory address. So, for example, M1 is considered by the PLC to be a nickname, but \%M1 is considered to be a memory address. For more information about nicknames, please see manual GFK-0466 (the Logicmaster user's manual for the Series 90-30 PLC).

Transitions and Overrides

The $\% \mathrm{I}, \% \mathrm{Q}, \% \mathrm{M}$, and $\% \mathrm{G}$ user references have associated transition and override bits. $\% \mathrm{~T}, \% \mathrm{~S}$, $\% \mathrm{SA}, \% \mathrm{SB}$, and $\% \mathrm{SC}$ references have transition bits, but not override bits. The CPU uses transition bits for counters and transitional coils. Note that counters do not use the same kind of transition bits as coils. Transition bits for counters are stored within the locating reference.

In the Model 331 and higher CPUs, override bits can be set. When override bits are set, the associated references cannot be changed from the program or the input device; they can only be changed on command from the programmer. CPU Models 323, 321, 313, and 311, and the Micro CPUs do not support overriding discrete references.

Retentiveness of Data

Data is said to be retentive if it is saved by the PLC when the PLC is stopped. The Series 90 PLC preserves program logic, fault tables and diagnostics, overrides and output forces, word data (\%R, $\% \mathrm{AI}, \% \mathrm{AQ})$, bit data ($\% \mathrm{I}, \% \mathrm{SC}, \% \mathrm{G}$, fault bits and reserved bits), $\% \mathrm{Q}$ and $\% \mathrm{M}$ data (unless used with non-retentive coils), and word data stored in $\% \mathrm{Q}$ and $\% \mathrm{M} . \% \mathrm{~T}$ data is not saved. Although, as stated above, $\% \mathrm{SC}$ bit data is retentive, the defaults for $\% \mathrm{~S}, \% \mathrm{SA}$, and $\% \mathrm{SB}$ are non-retentive.
$\% \mathrm{Q}$ and $\% \mathrm{M}$ references are non-retentive (that is, cleared at power-up when the PLC switches from STOP to RUN) whenever they are used with non-retentive coils. Non-retentive coils include coils - ()—, negated coils -(/)—, SET coils -(S)—, and RESET coils -(R)—.

When $\% \mathrm{Q}$ or $\% \mathrm{M}$ references are used with retentive coils, or are used as function block outputs, the contents are retained through power loss and RUN-TO-STOP-TO-RUN transitions. Retentive coils include retentive coils - (M)—, negated retentive coils - (/M)—, retentive SET coils (SM)—, and retentive RESET coils -(RM)—.

The last time a $\% \mathrm{Q}$ or $\% \mathrm{M}$ reference is programmed on a coil instruction determines whether the $\% \mathrm{Q}$ or $\% \mathrm{M}$ reference is retentive or non-retentive based on the coil type. For example, if \%Q0001 was last programmed as the reference of a retentive coil, the $\% \mathrm{Q} 0001$ data will be retentive. However, if \%Q0001 was last programmed on a non-retentive coil, the $\% \mathrm{Q} 0001$ data will be non-retentive.

Data Types

Table 2-6. Data Types

Type	Name	Description	Data Format
INT	Signed Integer	Signed integers use 16-bit memory data locations, and are represented in 2's complement notation. (Bit 16 is the sign bit.) The valid range of an INT data type is $-32,768$ to $+32,767$.	Register 1 $\mathrm{~S} \mid$ (16 bit positions) 16 1
DINT	Double Precision Signed Integer	Double precision signed integers are stored in 32-bit data memory locations (actually two consecutive 16 -bit memory locations) and represented in 2's complement notation. (Bit 32 is the sign bit.) The valid range of a DINT data type is $-2,147,483,648$ to $+2,147,483,647$.	Register 2 Register 1 $\mathrm{~S} \mid$ 32 17 16 1 (Two's
BIT	Bit	A Bit data type is the smallest unit of memory. It has two states, 1 or 0 . A BIT string may have length N .	
BYTE	Byte	A Byte data type has an 8-bit value. The valid range is 0 to 255 (0 to FF in hexadecimal).	
WORD	Word	A Word data type uses 16 consecutive bits of data memory; but, instead of the bits in the data location representing a number, the bits are independent of each other. Each bit represents its own binary state (1 or 0), and the bits are not looked at together to represent an integer number. The valid range of word values is 0 to FFFF.	Register 1 16 1
DWORD	Double Word	A Double Word data type has the same characteristics as a single word data type, except that it uses 32 consecutive bits in data memory instead of 16 bits. The valid range of double word values is 0 to FFFFFFFF.	
BCD-4	Four-Digit Binary Coded Decimal	Four-digit BCD numbers use 16-bit data memory locations. Each BCD digit uses four bits and can represent numbers between 0 and 9 . This BCD coding of the 16 bits has a legal value range of 0 to 9999.	Register 1 4 3 2 1 16 13 9 5 1\quad (4 BCD digits)
REAL	Floating Point	Real numbers use 32 consecutive bits (actually two consecutive 16-bit memory locations). The range of numbers that can be stored in this format is from \pm $1.401298 \mathrm{E}-45$ to $\pm 3.402823 \mathrm{E}+38$.	Register 2 Register 1 S 32 17 16 1 (Two's Complement Value)

$\mathrm{S}=$ Sign bit $(0=$ positive, $1=$ negative $)$.

System Status References

System status references in the Series 90 PLC are assigned to \%S, \%SA, \%SB, and \%SC memory. They each have a nickname. Examples of time tick references include T_10MS, T_100MS, T_SEC, and T_MIN. Examples of convenience references include FST_SCN, ALW_ON, and ALW_OFF.

Note

\%S bits are read-only bits; do not write to these bits. You may, however, write to $\% \mathrm{SA}, \% \mathrm{SB}$, and $\% \mathrm{SC}$ bits.

Listed below are system status references that can be used in an application program. When entering logic, either the reference or the nickname can be used. Refer to chapter 3, "Fault Explanations and Correction," for more detailed fault descriptions and information on correcting the fault. You cannot use these special nicknames to name other memory references.

Table 2-7. System Status References

Reference	Nickname	Definition
\%S0001	FST_SCN	Set to 1 when the current sweep is the first sweep.
\%S0002	LST_SCN	Reset from 1 to 0 when the current sweep is the last sweep.
\%S0003	T_10MS	0.01 second timer contact.
\%S0004	T_100MS	0.1 second timer contact.
\%S0005	T_SEC	1.0 second timer contact.
\%S0006	T_MIN	1.0 minute timer contact.
\%S0007	ALW_ON	Always ON.
\%S0008	ALW_OFF	Always OFF.
\%S0009	SY_FULL	Set when the PLC fault table fills up. Cleared when an entry is removed from the PLC fault table and when the PLC fault table is cleared.
\%S0010	IO_FULL	Set when the I/O fault table fills up. Cleared when an entry is removed from the I/O fault table and when the I/O fault table is cleared.
\%S0011	OVR_PRE	Set when an override exists in \%I, \%Q, \%M, or \%G memory.
\%S0013	PRG_CHK	Set when background program check is active.
\%S0014	PLC_BAT	Set to indicate a bad battery in a Release 4 or later CPU. The contact reference is updated once per sweep.
\%S0017	SNPXACT	SNP-X host is actively attached to the CPU.
\%S0018	SNPX_RD	SNP-X host has read data from the CPU.
\%S0019	SNPX_WT	SNP-X host has written data to the CPU.
\%S0020	Set ON when a relational function using REAL data executes successfully. It is cleared when either input is NaN (Not a Number).	
\%S0032	Reserved for use by the programming software.	
\%SA0001	PB_SUM	Set when a checksum calculated on the application program does not match the reference checksum. If the fault was due to a temporary failure, the discrete bit can be cleared by again storing the program to the CPU. If the fault was due to a hardware RAM failure, the CPU must be replaced.
\%SA0002	OV_SWP	Set when the PLC detects that the previous sweep took longer than the time specified by the user. Cleared when the PLC detects that the previous sweep did not take longer than the specified time. It is also cleared during the transition from STOP to RUN mode. Only valid if the PLC is in ConSTANT swEEP mode.

Reference	Nickname	
$\%$ SA0003	APL_FLT	Set when an application fault occurs. Cleared when the PLC transitions from STOP to RUN mode.
$\%$ SA0009	CFG_MM	Set when a configuration mismatch is detected during system power-up or during a store of the configuration. Cleared by powering up the PLC when no mismatches are present or during a store of configuration that matches hardware.
\%SA0010	HRD_CPU	Set when the diagnostics detects a problem with the CPU hardware. Cleared by replacing the CPU module.
\%SA0011	LOW_BAT	Set when a low battery fault occurs. Cleared by replacing the battery and ensuring that the PLC powers up without the low battery condition.
\%SA0014	LOS_IOM	Set when an I/O module stops communicating with the PLC CPU. Cleared by replacing the module and cycling power on the main rack.
$\%$ SA0015	LOS_SIO	Set when an option module stops communicating with the PLC CPU. Cleared by replacing the module and cycling power on the main rack.
\%SA0019	ADD_IOM	Set when an I/O module is added to a rack. Cleared by cycling power on the main rack and when the configuration matches the hardware after a store.
\%SC0014	HRD_FLT	Set when a hardware fault occurs. Cleared when both fault tables have no entries.
\%SA0020	ADD_SIO	Set when an option module is added to a rack. Cleared by cycling power on the main rack and when the configuration matches the hardware after a store.
\%SC0012	SY_PRES	SFT_FLT Set as long as there is at least one entry in the PLC fault table. Cleared when the PLC fault table has no entries.
Set when a software fault occurs. Cleared when both fault tables have no		
entries.		

Note: Any \%S reference not listed here is reserved and must not be used in program logic.

Function Block Structure

Each rung of logic is composed of one or more programming instructions. These may be simple relays or more complex functions.

Format of Ladder Logic Relays

The programming software includes several types of relay functions. These functions provide basic flow and control of logic in the program. Examples include a normally open relay contact and a negated coil. Each of these relay contacts and coils has one input and one output. Together, they provide logic flow through the contact or coil.
Each relay contact or coil must be given a reference which is entered when selecting the relay. For a contact, the reference represents a location in memory that determines the flow of power into the contact. In the following example, if reference $\% \mathrm{I} 0122$ is ON , power will flow through this relay contact.
\%I0122
-| |-
For a coil, the reference represents a location in memory that is controlled by the flow of power into the coil. In this example, if power flows into the left side of the coil, reference $\% \mathrm{Q} 0004$ is turned ON.

> \%Q0004
> $-(\quad)-$

The programming software and the Hand-Held Programmer both have a coil check function that checks for multiple uses of $\% \mathrm{Q}$ or $\% \mathrm{M}$ references with relay coils or outputs on functions.

Format of Program Function Blocks (Instructions)

Some functions are very simple, like the Master Control Relay (MCR) function, which is shown with the abbreviated name of the function within brackets:
-[MCR]-
Other functions are more complex. They may have several places where you will enter information (parameter data) to be used by the function.

The example function block illustrated below is a multiplication (MUL) instruction. Its parts are typical of many function blocks. However, the number and types of parameters used can vary widely among the various type of function blocks. The upper part of the function block shows the name of the function. It may also show a data type, in this case, signed integer.

Many program functions (instructions) allow you to select the data type for the function after selecting the function. For example, the data type for the MUL function could be changed to double precision signed integer (D_INT). Additional information on data types is provided earlier in this chapter.

Function Block (Instruction) Parameters

Each line entering the left side of a function block represents an input for that function. There are two forms of input used with function blocks, discrete and analog. Discrete inputs are either ON or OFF. In the figure below, the enabling contact $\% \mathrm{I} 0001$ is an example of a discrete input. Analog inputs can be either constants or references. A constant is an explicit value. A reference is the memory address of a value. Generally, a reference is used if the input data is subject to change. For example, a reference might be the address of an input from an analog measuring device.
In the following example, input parameter I1 for an ADD function block is a constant, and input parameter I2 is a reference.

Each line exiting the right side of the function block represents an output. Outputs can be either discrete or analog. If analog, the value is placed into a register (reference). In the example above, the function block's OK output is discrete and it controls coil \%Q0001. Its Q output, however, holds the resulting value from the math operation, so it is placed into a register, \%R0002 in this example.

Where the question marks appear on the left of a function block, you will enter either the data itself, a reference location where the data is found, or a variable representing the reference location where the data is found. Where question marks appear on the right of a function block, you will usually enter a reference location for data to be output by the function block or a variable that represents the reference location for data to be output by the function block.

Most function blocks do not change input data; instead, they utilize input data in an operation and place the result of the operation in an output reference.

For functions that operate on groups of memory addresses (references), a length can be selected for the function. In the following function block, the LEN operand specifies the number of input words to be moved (3 in this example).

Timer, counter, BITSEQ, and ID functions require an address for the location of three words (registers) that store the current value, preset value, and a control word or "Instance" of the function. The first word of the three consecutive words appears on-screen below the function block, shown in the following figure as "(Address)."

Power Flow In and Out of a Function

Power flows into a function block's Enable input on the upper left through enabling logic. Most function blocks have a power flow output, called the "OK" output. If the function block executes properly, the OK output goes high and passes power flow out. If another device is connected to the OK output, such as the output coil shown below, that device is enabled. However, use of the OK output is optional for many function blocks, since their primary purpose is to obtain the result of the operation (multiplication in the example below) at the Q output.

Note

If using Logicmaster programming software, function blocks cannot be tied directly to the left power rail. You can use \%S7, the ALW_ON (always on) bit with a normally open contact tied to the power rail to call a function every sweep.

Power flows out of the function block on the upper right. It may be passed to other program logic or to a coil (optional). Function blocks pass power when they execute successfully.

Section 3: Power-Up and Power-Down Sequences

There are two possible power-up sequences in the Series 90-30 PLC; a cold power-up and a warm power-up. The CPU normally uses the cold power-up sequence. However, in a Model 331 or higher PLC system, if the time that elapses between a power-down and the next power-up is less than five seconds, the warm power-up sequence is used.

Power-Up

A cold power-up consists of the following sequence of events. A warm power-up sequence skips Step 1.

1. The CPU will run self-diagnostics. This includes checking a portion of battery-backed RAM to determine whether or not the RAM contains valid data.
2. If an EPROM, EEPROM, or flash is present and the PROM power-up option in the PROM specifies that the PROM contents should be used, the contents of PROM are copied into RAM memory. If an EPROM, EEPROM, or flash is not present, RAM memory remains the same and is not overwritten with the contents of PROM.
3. The CPU interrogates each slot in the system to determine which boards are present.
4. The hardware configuration is compared with software configuration to ensure that they are the same. Any mismatches detected are considered faults and are alarmed. For example, if a module is specified in the software configuration but a different module is present in the actual hardware configuration, this condition is a fault and is alarmed.
5. If there is no software configuration, the CPU will use its built-in default configuration.
6. The CPU establishes the communications channel between itself and any intelligent modules.
7. In the final step of the execution, the mode of the first sweep is determined based on CPU configuration. Figure 2-5 on the next page shows the decision sequence for the CPU when it decides whether to copy from PROM or to power-up in STOP or RUN mode.

Note

Steps 2 through 7 above do not apply to the Series 90 Micro PLC. For information about the power-up and power-down sequences for the Micro, refer to the "Power-up and Power-down Sequences" section of Chapter 5, "System Operation," in the Series 90 Micro PLC User's Manual (GFK-1065).

Figure 2-5. Power-Up Sequence
Prior to the START statement on the Power Up Flowchart, the CPU goes through power up diagnostics which test various peripheral devices used by the CPU and tests RAM. After completing diagnostics, internal data structures and peripheral devices used by the CPU get initialized. The CPU then determines if User Ram has been corrupted. If User Ram is corrupted, the user program and configuration are cleared out and defaulted and all user registers are cleared.

FLOW CHART TERMS:

PRG $=$ User program (PRG SRC $=$ Program Source $)$
$\mathrm{CFG}=$ User configuration
REGS = User registers (\%I, \%Q, \%M, \%G, \%R, \%AI, and \%AQ references).
USD $=$ User storage device, either an EPROM, EEPROM, or Flash device.
URAM = Non-volatile user ram which contains PRG, CFG, and REGS.
HHP = Hand-Help Programmer
PU = Power-up
CLR = Clear
BATT = Battery

FLOW CHART EXPANDED TEXT:

(1) Are the <CLR> and <M_T> keys being pressed on the HHP (Hand-Held Programmer) during power-up to clear all URAM?
(2) Is the USD (user storage device) present and is the information in the USD valid?
(3) Is the PRG SRC parameter in the USD set to Prom meaning to load the PRG (program logic) and CFG (configuration) from the USD device?
(4) Is the PRG SRC parameter in the URAM set to Prom meaning to load the PRG and CFG from the USD device?
(5) Is the REG SRC parameter in the USD set to Prom meaning to load the REGS (registers) from the USD device?
($6 \& 7$) Are the <LD> and <NOT> keys being pressed on the HHP during power-up to keep the PRG, CFG, and REGS from being loaded from USD?
(8) Copy PRG, CFG, and REGS from the USD to URAM.
(9) Copy PRG and CFG from the USD to URAM.
(10) Is the PRG or CFG checksums just loaded from USD invalid?
(11) Is the URAM corrupted? Could be due to being powered down without a battery attached or a low battery. Could also be due to updating firmware.
(12) Is the PRG SRC parameter in the URAM set to Prom meaning to load the PRG and CFG from the USD device?
(13) Is the USD present? This check only applies to CPUs 311-341. The USD is assumed to be present for CPUs 350-364 and 374.
(14) Are the <NOT> and <RUN> keys being pressed on the HHP during power-up to unconditionally power-up in Stop Mode?
(15) Is the PWR UP parameter in URAM set to RUN?
(16) Is the battery low?
(17) Is the PWR UP parameter in URAM set to STOP?
(18) Set the power up mode to what ever the power down mode was.
(19) Clear PRG, CFG, and REGS.

Note

The first part of this chart on the previous page does not apply to the Series 90 Micro PLC. For information about the power-up and power-down sequences for the Micro, refer to the "Power-up and Power-down Sequences" section of Chapter 5, "System Operation," in the Series 90 Micro PLC User's Manual (GFK-1065).

Power-Down

System power-down occurs when the power supply detects that incoming AC power has dropped for more than one power cycle or the output of the 5 -volt power supply has fallen to less than 4.9 volts DC.

Section 4: Clocks and Timers

Clocks and timers provided by the Series 90-30 PLC include an elapsed time clock, a time-of-day clock (Models 331, 340/341, 350-374, and the 28 -point Micro), a watchdog timer, and a constant sweep timer. Three types of timer function blocks include an on-delay timer, an off-delay timer, and a retentive on-delay timer (also called a watch clock timer). Four system time-tick contacts cycle on and off for 0.01 second, 0.1 second, 1.0 second, and 1 minute intervals.

Elapsed Time Clock

The elapsed time clock uses 100 microsecond "ticks" to track the time elapsed since the CPU powered on. The clock is not retentive across a power failure; it restarts on each power-up. Once per second the hardware interrupts the CPU to enable a seconds count to be recorded. This seconds count rolls over approximately 100 years after the clock begins timing.
Because the elapsed time clock provides the base for system software operations and timer function blocks, it can not be reset from the user program or the programmer. However, the application program can read the current value of the elapsed time clock by using Service Request 16.

Time-of-Day Clock

The time of day in the 28-point Micro and Series 90-30 PLC Model 331 and higher is maintained by a hardware time-of-day clock. The time-of-day clock maintains seven time functions:

- Year (two digits)
- Month
- Day of month
- Hour
- Minute
- Second
- Day of week

The time-of-day (TOD) clock is battery-backed and maintains its present state across a power failure. However, unless you initialize the clock, the values it contains are meaningless. The application program can read and set the time-of-day clock using Service Request \#7.

The time-of-day clock can also be read and set from the CPU configuration software and with the Hand-Held Programmer (HHP). However, starting with CPU (350-364) firmware release 8.00, if the CPU Mem. Protect parameter is set to Enabled, the HHP cannot change the TOD clock if the CPU keylock switch is in the ON position. Note that keylock protection features only apply to CPUs 350-374 (other CPUs do not have a keylock switch).

The time-of-day clock is designed to handle month-to-month and year-to-year transitions. It automatically compensates for leap years until the year 2079.

Watchdog Timer

A watchdog timer in the Series 90-30 PLC is designed to catch catastrophic failure conditions that result in an unusually long sweep. The timer value for the watchdog timer is 200 milliseconds for CPUs 311-341, and 500 milliseconds for CPUs 350-374; this is a fixed value that cannot be changed. The watchdog timer always starts from zero at the beginning of each sweep.

For 331 and lower model 90-30 CPUs, if the watchdog timeout value is exceeded, the OK LED goes off; the CPU is placed in reset and completely shuts down; and outputs go to their default state. No communication of any form is possible, and all microprocessors on all boards are halted. To recover, power must be cycled on the rack containing the CPU. In the 90-20, Series 90 Micro and 340 and higher 90-30 CPUs, a watchdog timeout causes the CPU to reset, execute its powerup logic, generate a watchdog failure fault, and change its mode to STOP.

Elapsed Power Down Timer

The elapsed power down timer is used to determining how long the PLC was powered off. When the PLC is powered off, it resets to 0 and starts to time. When the PLC is powered on, timing stops and the value is retained. Service Request \#29, described in chapter 12, can be used to read the value of this timer.

Note

This function is available only in the 331 or higher Series 90-30 CPUs.

Constant Sweep Timer

The constant sweep timer controls the length of a program sweep when the Series 90-30 PLC operates in CONSTANT SWEEP TIME mode. In this mode of operation, each sweep consumes the same amount of time. The value of the constant sweep timer is set by the programmer and can be any value from 5 to the value of the watchdog timer. Constant Sweep Time default is 100 milliseconds. Typically, for most application programs, the input scan, application program logic scan, and output scan do not require exactly the same amount of execution time in each sweep.

If the constant sweep timer expires before the completion of the sweep and the previous sweep was not an oversweep, the PLC places an oversweep alarm in the PLC fault table. At the beginning of the next sweep, the PLC sets the OV_SWP fault contact. The OV_SWP contact is reset when the PLC is not in CONSTANT SWEEP TIME mode or the time of the last sweep did not exceed the constant sweep timer.

Time-Tick Contacts

The Series 90 PLC provides four time-tick contacts with time durations of 0.01 second, 0.1 second, 1.0 second, and 1 minute. The state of these contacts only changes during the housekeeping portion of the PLC sweep. These contacts provide a pulse having an equal on and off time duration. The contacts are referenced as T_10MS (0.01 second), T_100MS (0.1 second), T_SEC (1.0 second), and T_MIN (1 minute).

The following timing diagram represents the on/off time duration of these contacts.

Figure 2-6. Time-Tick Contact Timing Diagram

Section 5: System Security

Security in Series 90-30, Series 90-20, and in the Micro PLCs is designed to prevent unauthorized changes to the contents of a PLC. There are four security levels available in the PLC. The first level, which is always available, provides only the ability to read PLC data; no changes are permitted to the application. The other three levels have access to each level protected by a password.
Each higher privilege level permits greater change capabilities than the lower level(s). Privilege levels accumulate in that the privileges granted at one level are a combination of that level, plus all lower levels. The levels and their privileges are:

| Privilege
 Level | Description |
| :---: | :--- |$|$| Level 1 | Any data, except passwords may be read. This includes all data memories (\%I, \%Q, \%AQ,
 $\%$ R, etc.), fault tables, and all program block types (data, value, and constant).
 No values may be changed in the PLC. |
| :---: | :--- |
| Level 2 | This level allows write access to the data memories (\%I, \%R, etc.). |
| Level 3 | This level allows write access to the application program in STOP mode only. |
| Level 4 | This is the default level for systems that have no passwords set. The default level for a
 system with passwords is to the highest unprotected level. This level, the
 highest, allows read and write access to all memories as well as passwords in both RUN and
 STOP mode. (Configuration data cannot be changed in RUN mode.) |

Passwords

There is one password for each privilege level in the PLC. (No password can be set for level 1 access.) Each password may be unique; however, the same password can be used for more than one level. Passwords are one to four ASCII characters in length; they can only be entered or changed with the programming software or the Hand-Held Programmer.

A privilege level change is in effect only as long as communications between the PLC and the programmer are intact. There does not need to be any activity, but the communications link must not be broken. If there is no communication for 15 minutes, the privilege level returns to the highest unprotected level.

Upon connection to the PLC, the programming software requests the protection status of each privilege level from the PLC. The programming software then requests the PLC to move to the highest unprotected level, thereby giving the programming software access to the highest unprotected level without having to request any particular level. When the Hand-Held Programmer is connected to the PLC, the PLC reverts to the highest unprotected level.

Privilege Level Change Requests

A programmer requests a privilege level change by supplying the new privilege level and the password for that level. A privilege level change is denied if the password sent by the programmer does not agree with the password stored in the PLC's password access table for the requested level. The current privilege level is maintained and no change will occur. If you attempt to access or modify information in the PLC using the Hand-Held Programmer without the proper privilege level, the Hand-Held Programmer will respond with an error message that the access is denied.

Locking/Unlocking Subroutines

Subroutine blocks can be locked and unlocked using the block-locking feature of programming software. Two types of locks are available:

Type of Lock	Description
View	Once locked, you cannot zoom into that subroutine.
Edit	Once locked, the information in the subroutine cannot be edited.

A previously view locked or edit locked subroutine may be unlocked in the block declaration editor unless it is permanently view locked or permanently edit locked.

A search or search and replace function may be performed on a view locked subroutine. If the target of the search is found in a view locked subroutine, one of the following messages is displayed instead of logic:

Found in locked block <block_name> (Continue/Quit)
or

Cannot write to locked block <block_name> (Continue/Quit)
You may continue or abort the search.
Folders that contain locked subroutines may be cleared or deleted. If a folder contains locked subroutines, these blocks remain locked when the programming software Copy, Backup, and Restore folder functions are used.

Permanently Locking a Subroutine

In addition to VIEW LOCK and EDIT LOCK, there are two types of permanent locks. If a PERMANENT VIEW LOCK is set, all zooms into a subroutine are denied. If a PERMANENT EDIT LOCK is set, all attempts to edit the block are denied.

Caution

The permanent locks differ from the regular VIEW LOCK and EDIT LOCK in that once set, they cannot be removed.

Once a PERMANENT EDIT LOCK is set, it can only be changed to a PERMANENT VIEW LOCK. A PERMANENT VIEW LOCK cannot be changed to any other type of lock.

Section 6: Series 90-30,90-20, and Micro I/O System

The PLC I/O system provides the interface between the Series 90-30 PLC and user-supplied devices and equipment. Series 90-30 I/O modules plug directly into slots in Series 90-30 baseplates. The number of Series I/O modules supported depends upon the CPU model:

- CPU models 350 - 374 support up to 79 I/O modules. These CPUs support up to eight racks, which includes the CPU rack plus a total of seven expansion and/or remote racks.
- CPU models 331,340 , and 341 , support up to 49 I/O modules. These CPUs support up to five racks, which includes the CPU rack plus a total of four expansion and/or remote racks.
- CPU models 311 and 313 (5-slot baseplates) support up to 5 Series 90-30 I/O modules. CPU model 323 (10-slot baseplate) supports up to 10 Series $90-30$ I/O modules. These three CPUs do not support expansion or remote racks.
The I/O structure for the Series 90-30 PLC is shown in the following figure.

PLC I/O System

Figure 2-7. Series 90-30 I/O Structure

Note

The drawing shown above is specific to the 90-30 I/O structure. Intelligent and option modules are not part of the I/O scan; they use the System Communication Window. For information about the 90-20 I/O structure, refer to the Series 90™20 Programmable Controller User's Manual (GFK-0551). For information about the Micro PLC I/O structure, refer to the Series $90^{\text {TM }}$ Micro PLC User's Manual (GFK-1065).

Series 90-30 I/O Modules

Series 90-30 I/O modules are available as five types, discrete input, discrete output, analog input, analog output, and option modules. The following table lists the Series $90-30$ I/O modules by catalog number, number of I/O points, and a brief description of each module.

Note

Contact your local GE Fanuc distributor for availability of the modules listed. Refer to the "Pub Number" column for publications that contain the specifications and wiring information of each Series 90-30 I/O module.

Figure 2-8. Series 90-30 I/O Modules

Catalog Number	Points	Description	Pub Number
		Discrete Modules - Input	
IC693MDL230	8	120 VAC Isolated	GFK-0898
IC693MDL231	8	240 VAC Isolated	GFK-0898
IC693MDL240	16	120 VAC	GFK-0898
IC693MDL241	16	24 VAC/DC Positive/Negative Logic	GFK-0898
IC693MDL630	8	24 VDC Positive Logic	GFK-0898
IC693MDL632	8	125 VDC Positive/Negative Logic	GFK-0898
IC693MDL633	8	24 VDC Negative Logic	GFK-0898
IC693MDL634	8	24 VDC Positive/Negative Logic	GFK-0898
IC693MDL640	16	24 VDC Positive Logic	GFK-0898
IC693MDL641	16	24 VDC Negative Logic	GFK-0898
IC693MDL643	16	24 VDC Positive Logic, FAST	GFK-0898
IC693MDL644	16	24 VDC Negative Logic, FAST	GFK-0898
IC693MDL645	16	24 VDC Positive/Negative Logic	GFK-0898
IC693MDL646	16	24 VDC Positive/Negative Logic, FAST	GFK-0898
IC693MDL652	32	24 VDC Position/Negative Logic	GFK-0898
IC693MDL653	32	24 VDC Positive/Negative Logic, FAST	GFK-0898
IC693MDL654	32	5/12 VDC (TTL) Positive/Negative Logic	GFK-0898
IC693MDL655	32	24 VDC Positive/Negative Logic	GFK-0898
IC693ACC300	8/16	Input Simulator	GFK-0898

Table 2-8. Series 90-30 I/O Modules - Continued

Catalog Number	Points	Description	Pub Number
		Discrete Modules - Output	
IC693MDL310	12	$120 \mathrm{VAC}, 0.5 \mathrm{~A}$	GFK-0898
IC693MDL330	8	120/240 VAC, 2 A	GFK-0898
IC693MDL340	16	120 VAC, 0.5A	GFK-0898
IC693MDL390	5	120/240 VAC Isolated, 2A	GFK-0898
IC693MDL730	8	12/24 VDC Positive Logic, 2A	GFK-0898
IC693MDL731	8	12/24 VDC Negative Logic, 2A	GFK-0898
IC693MDL732	8	12/24 VDC Positive Logic, 0.5A	GFK-0898
IC693MDL733	8	12/24 VDC Negative Logic, 0.5A	GFK-0898
IC693MDL734	6	125 VDC Positive/Negative Logic, 2A	GFK-0898
IC693MDL740	16	12/24 VDC Positive Logic, 0.5A	GFK-0898
IC693MDL741	16	12/24 VDC Negative Logic, 0.5A	GFK-0898
IC693MDL742	16	12/24 VDC Positive Logic, 1A	GFK-0898
IC693MDL750	32	12/24 VDC Negative Logic	GFK-0898
IC693MDL751	32	12/24 VDC Positive Logic, 0.3A	GFK-0898
IC693MDL752	32	5/24 VDC (TTL) Negative Logic, 0.5A	GFK-0898
IC693MDL753	32	12/24 VDC Positive/Negative Logic, 0.5A	GFK-0898
IC693MDL760	16	11 Pneumatic and five 24VDC Positive Logic, 0.5 A	GFK-1881
IC693MDL930	8	Relay, N.O., 4A Isolated	GFK-0898
IC693MDL931	8	Relay, BC, Isolated	GFK-0898
IC693MDL940	16	Relay, N.O., 2A	GFK-0898
		Input/Output Modules	
IC693MDR390	8/8	24 VDC Input, Relay Output	GFK-0898
IC693MAR590	8/8	120 VAC Input, Relay Output	GFK-0898
		Analog Modules	
IC693ALG220	4 ch	Analog Input, Voltage	GFK-0898
IC693ALG221	4 ch	Analog Input, Current	GFK-0898
IC693ALG222	16	Analog Input, Voltage	GFK-0898
IC693ALG223	16	Analog Input, Current	GFK-0898
IC693ALG390	2 ch	Analog Output, Voltage	GFK-0898
IC693ALG391	2 ch	Analog Output, Current	GFK-0898
IC693ALG392	8 ch	Analog Output, Current/Voltage	GFK-0898
IC693ALG442	4/2	Analog, Current/Voltage Combination Input/Output	GFK-0898

Table 2-8. Series 90-30 I/O Modules - Continued

Catalog Number	Description	Pub Number
	Option Modules	
IC693APU300	High Speed Counter	GFK-0293
$\begin{aligned} & \text { IC693APU301 } \\ & \text { IC693APU301 } \end{aligned}$	Motion Mate APM Module, 1-Axis-Follower Mode Motion Mate APM Module, 1-Axis-Standard Mode	$\begin{aligned} & \hline \text { GFK-0781 } \\ & \text { GFK-0840 } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { IC693APU302 } \\ \text { IC693APU302 } \\ \text { IC693MCS001/002* } \end{array}$	Motion Mate APM Module, 2-Axis-Follower Mode Motion Mate APM Module, 2-Axis-Standard Mode Power Mate J Motion Control System (1 and 2 Axis)	$\begin{aligned} & \text { GFK-0781 } \\ & \text { GFK-0840 } \\ & \text { GFK-1256 } \end{aligned}$
$\begin{array}{\|l\|} \text { IC693DSM302 } \\ \text { IC693DSM314 } \end{array}$	Motion Mate Digital Servo Module Motion Mate Digital Servo Module	$\begin{aligned} & \text { GFK-1464 } \\ & \text { GFK-1742 } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { IC693APU305 } \\ \text { IC693CMM321 } \end{array}$	I/O Processor Module Ethernet Communications Module	$\begin{aligned} & \text { GFK-1028 } \\ & \text { GFK-1541 } \end{aligned}$
IC693ADC311	Alphanumeric Display Coprocessor	GFK-0521
IC693BEM331	Genius Bus Controller	GFK-1034
IC693BEM320	I/O Link Interface Module (slave)	GFK-0631
IC693BEM321	I/O Link Interface Module (master)	GFK-0823
IC693CMM311	Communications Coprocessor Module	GFK-0582
IC693CMM301	Genius Communications Module	GFK-0412
IC693CMM302	Enhanced Genius Communications Module	GFK-0695
IC693PBM200	Profibus Master Module	GFK-2121
IC693PBS201	Profibus Slave Module	GFK-2193
IC693PCM300	PCM, 160K Bytes (35Kbytes User MegaBasic Program)	GFK-0255
IC693PCM301	PCM, 192K Bytes (47Kbytes User MegaBasic Program)	GFK-0255
IC693PCM311	PCM, 640K Bytes (190Kbytes User MegaBasic Program)	GFK-0255
IC693PTM100/101	Power Transducer Module (PTM)	GFK-1734
IC693TCM302/303	Temperature Control Module (TCM), eight-channel	GFK-1466

* Obsolete. Listed for reference only.

I/O Data Formats

Discrete inputs and discrete outputs are stored as bits in bit cache (status table) memory. Analog input and analog output data are stored as words and are memory resident in a portion of application RAM memory allocated for that purpose.

Default Conditions for Series 90 -30 Output Modules

At power-up, Series 90-30 discrete output modules default to outputs off. They will retain this default condition until the first output scan from the PLC. Analog output modules can be configured with a jumper located on the module's removable terminal block to either default to zero or retain their last state. Also, analog output modules may be powered from an external power source so that, even if the PLC has no power, the analog output modules will continue to operate in their selected default state.

Diagnostic Data

Diagnostic bits are available in \%S memory that will indicate the loss of an I/O module or a mismatch in I/O configuration. Diagnostic information is not available for individual I/O points. More information on fault handling can be in Chapter 3, "Fault Explanations and Correction."

Global Data

Genius Global Data

The Series 90-30 PLC supports very fast sharing of data between multiple CPUs using Genius global data. The Genius Bus Controller, IC693BEM331 in CPU, version 5 and later, and the Enhanced Genius Communications Module, IC693CMM302, can broadcast up to 128 bytes of data to other PLCs or computers. They can receive up to 128 bytes from each of the up to 30 other Genius controllers on the network. Data can be broadcast from or received into any memory type, not just $\% \mathrm{G}$ global bits.

The original Genius Communications Module, IC693CMM301, is limited to fixed \%G addresses and can only exchange 32 bits per serial bus address from SBA 16 to 23 . For new installations, we recommend this module not be used; instead, use the newer enhanced GCM, which has considerably more capability.

Global data can be shared between Series Five, Series Six, and Series 90 PLCs connected to the same Genius I/O bus.

Ethernet Communications

The Model 364 CPU (release 9.0 and later) supports connection to an Ethernet network through either (but not both) of two built-in Ethernet ports. AAUI and 10BaseT ports are provided. The Model 374 CPU supports connection to an Ethernet network through two built-in 10BaseT/100BaseTx auto-negotiating full-duplex Ethernet ports.

Both the CPU364 and CPU374 support Ethernet Global Data (EGD), which is similar to Genius Global Data in that it allows one device (the producer) to transfer data to one or more other devices (the consumers) on the network. EGD is not supported by Logicmaster 90 software (requires a Windows-based programmer for Series 90 PLCs.)

Series 90-20 I/O Modules

The following I/O modules are available for the Series 90-20 PLC. Each module is listed by catalog number, number of I/O points, and a brief description. The I/O is integrated into a baseplate along with the power supply. For the specifications and wiring information of each module, refer to chapter 5 in the Series 90-20 Programmable Controller User's Manual, GFK-0551.

Catalog Number	Description	I/O Points
IC692MAA541	I/O and Power Supply Base Module, 120 VAC In/120 VAC Out/120 VAC Power Supply	16 In/12 Out
IC692MDR541	I/O and Power Supply Base Module 24 VDC In/Relay Out/120 VAC Power Supply	16 In/12 Out
IC692MDR741	I/O and Power Supply Base Module 24V DC In/Relay Out/240 VAC Power Supply	16 In/12 Out
IC692CPU211	CPU Module, Model CPU 211	Not Applicable

Configuration and Programming

Configuration is the process of assigning logical addresses, as well as other characteristics, to the hardware modules in the system. It can be done either before or after programming, using the configuration software or Hand-Held Programmer; however, it is recommended that configuration be done first. Refer to the User's Manual for your programming software for details on how to create, transfer, edit, and print programs. Chapters 4 through 12 describe the programming instructions that can be used to create ladder logic programs for the Series 90-30 and Series 90-20 programmable controllers.

Chapter 3

Fault Explanation and Correction

This chapter is an aid to troubleshooting the Series 90-30, 90-20, and Micro PLC systems. It explains the fault descriptions, which appear in the PLC fault table, and the fault categories, which appear in the I/O fault table.

Each fault explanation in this chapter lists the fault description for the PLC fault table or the fault category for the I/O fault table. Find the fault description or fault category corresponding to the entry on the applicable fault table displayed on your programmer screen. Beneath it is a description of the cause of the fault along with instructions to correct the fault.

Chapter 3 contains the following sections:

Section	Title	Description	Page
1	Fault Handling	Describes the type of faults that may occur in the Series 90-30 and how they are displayed in the fault tables. Descriptions of the PLC and I/O fault table displays are also included.	$3-2$
2	PLC Fault Table Explanations	Provides a fault description of each PLC fault and instructions to correct the fault.	$3-7$
3	I/O Fault Table Explanations	Describes the Loss of I/O Module and Addition of I/O Module fault categories.	$3-16$

Section 1: Fault Handling

Note

This information on fault handling applies to systems programmed using Logicmaster 90-30/20/Micro software.

Faults occur in the Series 90-30, 90-20, or Series 90 Micro PLC system when certain failures or conditions happen that affect the operation and performance of the system. These conditions, such as the loss of an I/O module or rack, may affect the ability of the PLC to control a machine or process. Or, a reported condition may only act as an alert, such as a low battery signal, which indicates that the memory backup battery needs to be changed. However, some conditions reported in the fault tables are not reports of failures. For example, if you were to add a new module to the PLC, this would be listed in the I/O fault table as "Addition of I/O Module."

Alarm Processor

A fault is the condition or failure itself. When a fault is received and processed by the CPU, it is called an alarm. The firmware in the CPU that handles these conditions is called the Alarm Processor. The user interface for the Alarm Processor is through the programming software. Any detected fault is recorded in a fault table and displayed on either the PLC fault table screen or the I/O fault table screen, as applicable.

Classes of Faults

The Series 90-30, 90-20, and Micro PLCs detect several classes of faults. These include internal failures, external failures, and operational failures.

Fault Class	Examples
Internal Failures	Non-responding modules. Low battery condition. Memory checksum errors.
External I/O Failures	Loss of rack or module. Addition of rack or module.
Operational Failures	Communication failures. Configuration failures. Password access failures.

Note

For information specific to Micro PLC fault handling, refer to the Series 90 Micro PLC User's Manual (GFK-1065).

System Reaction to Faults

Hardware failures require that either the system be shut down or the failure be tolerated. I/O failures may be tolerated by the PLC system, but they may be intolerable by the application or the process being controlled. Operational failures are normally tolerated. Series 90-30, 90-20, and Micro PLC faults have two attributes:

Attribute	Description
Fault Table Affected	I/O Fault Table PLC Fault Table
Fault Action	Fatal Diagnostic Informational

Fault Tables

Two fault tables are maintained in the PLC for logging faults, the I/O fault table for logging faults related to the I/O system and the PLC fault table for logging all other faults. The following table lists the fault groups, their fault actions, the fault tables affected, and the "name" for system discrete $\%$ S points that are affected.

Table 3-1. Fault Summary

Fault Group	Fault Action	Fault Table	Special Discrete Fault References			
Loss of or Missing I/O Module	Diagnostic	I/O	io_flt	any_flt	io_pres	los_iom
Loss of or Missing Option Module	Diagnostic	PLC	sy_flt	any_flt	sy_pres	los_sio
System Configuration Mismatch	Fatal	PLC	sy_flt	any_flt	sy_pres	cfg_mm
PLC CPU Hardware Failure	Fatal	PLC	sy_flt	any_flt	sy_pres	hrd_cpu
Program Checksum Failure	Fatal	PLC	sy_flt	any_flt	sy_pres	pb_sum
Low Battery	Diagnostic	PLC	sy_flt	any_flt	sy_pres	low_bat
PLC Fault Table Full	Diagnostic	-	sy_full			
I/O Fault Table Full	Diagnostic	-	io_full			
Application Fault	Diagnostic	PLC	sy_flt	any_flt	sy_pres	apl_flt
No User Program	Informational	PLC	sy_flt	any_flt	sy_pres	no_prog
Corrupted User RAM	Fatal	PLC	sy_flt	any_flt	sy_pres	bad_ram
Password Access Failure	Diagnostic	PLC	sy_flt	any_flt	sy_pres	bad_pwd
PLC Software Failure	Fatal	PLC	sy_flt	any_flt	sy_pres	sft_cpu
PLC Store Failure	Fatal	PLC	sy_flt	any_flt	sy_pres	stor_er
Constant Sweep Time Exceeded	Diagnostic	PLC	sy_flt	any_flt	sy_pres	ov_swp
Unknown PLC Fault	Fatal	PLC	sy_flt	any_flt	sy_pres	
Unknown I/O Fault	Fatal	I/O	io_flt	any_flt	io_pres	

Fault Action

Faults can be fatal, diagnostic or informational.
Fatal faults cause the fault to be recorded in the appropriate table, any diagnostic variables to be set, and the system to be halted. Diagnostic faults are recorded in the appropriate table, and any diagnostic variables are set. Informational faults are only recorded in the appropriate table.

Possible fault actions are listed in the following table.
Table 3-2. Fault Actions

Fault Action	Response by CPU
Fatal	Log fault in fault table. Set fault references. Go to STOP mode.
Diagnostic	Log fault in fault table. Set fault references.
Informational	Log fault in fault table.

When a fault is detected, the CPU uses the fault action for that fault. Fault actions are not configurable in the Series 90-30 PLC, Series 90-20, or the Series 90 Micro PLC.

Fault References

System fault references in the Series 90-30 are of one type - fault summary references. Fault summary references are set to indicate what fault occurred. The fault reference remains on until the PLC is cleared or until cleared by the application program.

An example of a system fault bit being set and then cleared is shown in the following figure. In this example, the coil, Light_01, is turned on when system contact OV_SWP (\%SA0002) closes, which indicates that an oversweep occurred. The OV_SWP contact and Light_01 coil are turned off if contact \%I0359 is closed, because closing \%I0359 turns on reset coil OV_SWP.

System Status References

The alarm processor maintains the states of the 128 system status bits in \%S memory. Many of these status references indicate where a fault has occurred and what type of fault it is. Status references are assigned to $\% \mathrm{~S}, \% \mathrm{SA}, \% \mathrm{SB}$, and $\% \mathrm{SC}$ memory, and each reference has a nickname. For example, status bit \%SA0009 has a nickname of CFG_MM, and it goes high to indicate a
configuration mismatch. These references are available for use in the application program as required. Refer to Chapter 2, "System Operation," for a list of the system status references.

Additional Fault Effects

Two faults described later in this chapter have additional effects associated with them. These effects are discussed in the following table.

Fault	Effect Description
PLC CPU Software Failure	When a PLC CPU software failure is logged, the Series 90-30 or 90-20 CPU immediately transitions into a special ERROR SWEEP mode. No activity is permitted in this mode. The only method of clearing this condition is to reset the PLC by cycling power.
PLC Sequence Store Failure	If, while performing a store to the PLC, communication between the PLC and the programmer is interrupted or any other failure occurs which terminates the download (store), the PLC Sequence Store Failure fault is logged. As long as this fault is present in the system, the PLC will not transition to RUN mode. To resume operation, the error must be cleared. This can be accomplished by clearing the fault on the applicable Fault Table Screen of the programming software.

PLC Fault Table Display

The PLC Fault Table screen displays PLC faults such as password violations, PLC/configuration mismatches, parity errors, and communications errors.

Faults are stored in the PLC, so if the programming software is in the OFFLINE mode, no faults are displayed in this fault table. If the programming software is in either the ONLINE or MONITOR mode, PLC fault data is displayed. In ONLINE mode, faults can be cleared, although this feature may be password protected.

Once cleared, faults that are still present are not logged again in the table (except for the "Low Battery" fault) unless power is cycled or a new configuration is stored.

I/O Fault Table Display

The I/O Fault Table screen displays I/O faults such as circuit faults, address conflicts, forced circuits, and I/O bus faults.

Faults are stored in the PLC, so if the programming software is in the OFFLINE mode, no faults are displayed in this fault table. If the programming software is in either the ONLINE or MONITOR mode, I/O fault data is displayed. In ONLINE mode, faults can be cleared, although this feature may be password protected.

Once cleared, faults that are still present are not logged again in the table unless power is cycled or a new configuration is stored.

Accessing Additional Fault Information

The fault tables contain basic information regarding the fault. Additional information pertaining to each fault can be displayed through the programming software. In addition, the programming software provides a hexadecimal fault code for each fault.

The last item, "Correction", in each fault explanation in this chapter lists the action(s) to be taken to correct the fault. Note that the corrective action for some of the faults includes the statement:

```
Display the PLC Fault Table on the Programmer. Contact GE Fanuc Field
Service, giving them all the information contained in the fault entry.
```

This second statement means that you must tell Field Service both the information readable directly from the fault table and the hexadecimal fault code. Field Service personnel will then give you further instructions for the appropriate action to be taken.

The following figure of a Logicmaster fault detail screen shows the additional fault information and hexadecimal fault code discussed above. (The fault code is the first two hexadecimal digits in the fifth group of number from the left.) To reach this screen, select a Fault Table fault (Loss of I/O Module) by using the keyboard cursor control arrow keys, and then "zoom" using the F10 key. To return to the Fault Table screen, press either the Escape key or the Shift and F10 key combination.

Section 2: PLC Fault Table Explanations

Each fault explanation contains a fault description and instructions to correct the fault. Many fault descriptions have multiple causes. In these cases, the error code, displayed with the additional fault information, is used to distinguish different fault conditions sharing the same fault description. The error code is the first two hexadecimal digits in the fifth group (from the left) of numbers, as shown in the following example.

01	000000	01030100	0902	0200	00000000000
Error Code (first two hex					
digits in fifth group)					

Some faults can occur because random access memory on the PLC CPU board has failed. These same faults may also occur because the system has been powered off and the battery voltage is (or was) too low to maintain memory. To avoid excessive duplication of instructions when corrupted memory may be a cause of the error, the correction simply states:

```
Perform the corrections for Corrupted Memory.
```

This means:

1. If the system has been powered off, replace the battery. Battery voltage may be insufficient to maintain memory contents.
2. Replace the PLC CPU board. The integrated circuits on the PLC CPU board may be failing.

The following table enables you to quickly find a particular PLC fault explanation in this section. Each entry is listed as it appears on the programmer screen.

Fault Description	Page
Loss of, or Missing, Option Module	$3-8$
Reset of, Addition of, or Extra, Option Module	$3-8$
System Configuration Mismatch	$3-9$
Option Module Software Failure	$3-10$
Program Block Checksum Failure	$3-10$
Low Battery Signal	$3-10$
Constant Sweep Time Exceeded	$3-11$
Application Fault	$3-11$
No User Program Present	$3-12$
Corrupted User Program on Power-Up	$3-12$
Password Access Failure	$3-12$
PLC CPU System Software Failure	$3-13$
Communications Failure During Store	$3-15$

Fault Actions

- Fatal faults cause the PLC to enter a form of STOP mode at the end of the sweep in which the error occurred.
- Diagnostic faults are logged and corresponding fault contacts are set; the PLC stays in RUN mode.
- Informational faults are simply logged in the PLC fault table; the PLC stays in RUN mode.

Loss of, or Missing, Option Module

The Fault Group Loss of, or Missing Option Module occurs when an option module fails to respond. The failure may occur at power-up if the module is missing or during operation if the module fails to respond. The fault action for this group is Diagnostic.

Error Code:	1,42
Name:	Option Module Soft Reset Failed Description:
PLC CPU unable to re-establish communications with option module after soft reset (such as pressing a Reset button) is tried.	
Correction:	(1) Repeat soft reset procedure recommended for this module. (2) Replace the option module.
	(3) Power off the system. Verify that the module is seated properly in the
	(4) Test or replace the cables.

Reset of, Addition of, or Extra, Option Module

The Fault Group Reset of, Addition of, or Extra Option Module occurs when an option module (PCM, ADC, etc.) comes online, is reset, or a module is found in the rack, but none is specified in the configuration. The fault action for this group is Diagnostic.

Correction: (1) Update the configuration file to include the module.

(2) Remove the module from the system.

System Configuration Mismatch

The Fault Group Configuration Mismatch occurs when the module occupying a slot is different from that specified in the configuration file. The fault action is Fatal.

Error Code:	1
Name:	System Configuration Mismatch
Description:	The PLC operating software generates this fault when the module occupying a slot is not of the same type that the configuration file indicates should be in that slot, or when the configured rack type does not match the actual rack present.
Correction:	Identify the mismatch and reconfigure the module or rack.
Error Code:	6
Name:	System Configuration Mismatch
Description:	This is the same as error code 1 in that this fault occurs when the module occupying a slot is not of the same type that the configuration file indicates should be in that slot, or when the configured rack type does not match the actual rack present.
Correction:	Identify the mismatch and reconfigure the module or rack.
Error Code:	18
Name:	Unsupported Hardware
Description:	A PCM or PCM-type module is present in a CPU 311, 313, or 323 system, or in an expansion or remote rack.
Correction:	Physically correct the situation by removing the PCM or PCM-type module or install a CPU that does support the module. NOTE: These modules must reside only in a CPU rack and only with a CPU that supports them.
Error Code:	26
Name:	Module busy-config not yet accept by module
Description:	The module cannot accept new configuration at this time because it is busy with a different process.
Correction:	Allow the module to complete the current operation and re-store the configuration.
Error Code:	51
Name:	END Function Executed from Sequential Function Chart (SFC) Action
Description:	The placement of an END function in SFC logic or in logic called by SFC will produce this fault.
Correction:	Remove the END function from the SFC logic or logic being called by the SFC logic.

Option Module Software Failure

The Fault Group Option Module Software Failure occurs when a non-recoverable software failure occurs on a PCM or ADC module. The fault action for this group is Fatal.

Error Code:	All
Name:	COMMREQ Frequency Too High
Description:	COMMREQs are being sent to a module faster than it can process them.
Correction:	Change the PLC program to send COMMREQs to the affected module at a slower rate.

Program Block Checksum Failure

The Fault Group Program Block Checksum Failure occurs when the PLC CPU detects error conditions in program blocks received by the PLC (downloaded by the programming software). It also occurs when the PLC CPU detects checksum errors during power-up verification of memory or during RUN mode background checking. The fault action for this group is Fatal.

Error Code:	All
Name:	Program Block Checksum Failure
Description:	The PLC Operating Software generates this error when a program block is corrupted.
Correction:	(1) \quad Clear PLC memory and retry the store.
	(2)Display the PLC fault table on the programmer. Contact GE Fanuc PLC Field Service, giving them all the information contained in the fault entry.

Low Battery Signal

The Fault Group Low Battery Signal occurs when the PLC CPU detects a low battery on the PLC power supply or a module, such as the PCM, reports a low battery condition. The fault action for this group is Diagnostic.

Error Code:	0
Name:	Failed Battery Signal
Description:	The CPU module (or other module having a battery) battery is dead.
Correction:	Replace the battery. Do not remove power from the rack.
Error Code:	1
Name:	Low Battery Signal
Description:	A battery on the CPU, or other module has a low signal.
Correction:	Replace the battery. Do not remove power from the rack.

Constant Sweep Time Exceeded

The Fault Group Constant Sweep Time Exceeded occurs when the PLC CPU operates in CONSTANT SWEEP mode, and it detects that the sweep has exceeded the constant sweep timer. The fault extra data contains the actual time of the sweep in the first two bytes and the name of the program in the next eight bytes. The fault action for this group is Diagnostic.

Correction:	(1)	Increase constant sweep time.
	(2)	Remove logic from application program.

Application Fault

The Fault Group Application Fault occurs when the PLC CPU detects a fault in the user program. The fault action for this group is Diagnostic, except when the error is a Subroutine Call Stack Exceeded, in which case it is Fatal.

Error Code:	7			
Name:	Subroutine Call Stack Exceeded			
Description:	Subroutine calls are limited to a depth of 8. A subroutine can call another subroutine which, in turn, can call another subroutine until 8 call levels are attained.			
Correction:	Modify program so that subroutine call depth does not exceed 8.	\quad	Error Code:	1B
:---	:---			
Name:	CommReq Not Processed Due To PLC Memory Limitations			
Description:	No-wait communication requests can be placed in the queue faster than they can be processed (e.g., one per sweep). In a situation like this, when the communication requests build up to the point that the PLC has less than a minimum amount of memory available, the communication request will be faulted and not processed			
Correction:	Issue fewer communication requests or otherwise reduce the amount of mail being exchanged within the system.			
Error Code:	5A Name: Description:			
User Shut Down Requested The PLC operating software (function blocks) generates this informational alarm when Service Request \#13 (User Shut Down) executes in the application				
Correction:	program. None required. Information-only alarm.			

No User Program Present

The Fault Group No User Program Present occurs when the PLC CPU is instructed to transition from STOP to RUN mode or a store to the PLC and no user program exists in the PLC. The PLC CPU detects the absence of a user program on power-up. The fault action for this group is Informational.
Correction: Download an application program before attempting to go to RUN mode.

Corrupted User Program on Power-Up

The Fault Group Corrupted User Program on Power-Up occurs when the PLC CPU detects corrupted user RAM. The PLC CPU will remain in STOP mode until a valid user program and configuration file are downloaded. The fault action for this group is Fatal.

Error Code:	1
Name:	Corrupted User RAM on Power-Up
Description:	The PLC operating software (operating software) generates this error when it detects corrupted user RAM on power-up. (1) Reload the configuration file, user program, and references (if any).
Correction:	(2) Replace the battery on the PLC CPU. (3) Replace the expansion memory board on the PLC CPU. (4) Replace the PLC CPU.
Error Code:	2
Name:	Illegal Boolean OpCode Detected
Description:	The PLC operating software (operating software) generates this error when it
detects a bad instruction in the user program.	
	(1) Restore the user program and references (if any).
	(2) Replace the expansion memory board on the PLC CPU.
	(3) Replace the PLC CPU.

Password Access Failure

The Fault Group Password Access Failure occurs when the PLC CPU receives a request to change to a new privilege level and the password included with the request is not valid for that level. The fault action for this group is Informational.

Correction: Retry the request with the correct password.

PLC CPU System Software Failure

Faults in the Fault Group PLC CPU System Software Failure are generated by the operating firmware of the Series 90-30, 90-20 or Micro PLC CPU. They can occur at many different points of system operation. When a Fatal fault occurs, the PLC CPU immediately transitions into a special ERROR SWEEP mode. No activity is permitted when the PLC is in this mode. The only way to clear this condition is to cycle power on the PLC. The fault action for this group is Fatal.

Error Code: Name: Description:	1 through B
	User Memory Could Not Be Allocated
	The PLC operating software (memory manager) generates these errors when software requests the memory manager to allocate or de-allocate a block or blocks of memory from user RAM that are not legal. These errors should not occur in released products; they are normally encountered only during the firmware development process at the factory.
	Display the PLC fault table on the programmer. Contact GE Fanuc PLC Field Service, giving them all the information contained in the fault entry.
Error Code:	D
Name:	System Memory Unavailable
Description:	The PLC operating software (I/O Scanner) generates this error when its request for a block of system memory is denied by the memory manager because no memory is available from the system memory heap. It is Informational if the error occurs during the execution of a DO I/O function block. It is Fatal if it occurs during power-up initialization or autoconfiguration.
Correction:	Display the PLC fault table on the programmer. Contact GE Fanuc PLC Field Service, giving them all the information contained in the fault entry.
Error Code:	E
Name:	System Memory Could Not Be Freed
Description:	The PLC operating software (I/O Scanner) generates this error when it requests the memory manager to de-allocate a block of system memory and the de-allocation fails. This error can only occur during the execution of a DO I/O function block.
Correction:	(1) Display the PLC fault table on the programmer. Contact GE Fanuc PLC Field Service, giving them all the information contained in the fault entry.
	(2) Perform the corrections for corrupted memory.
Error Code:	10
Name:	Invalid Scan Request of the I/O Scanner
Description:	The PLC operating software (I/O Scanner) generates this error when the operating system or DO I/O function block scan requests neither a full nor a partial scan of the I/O. This should not occur in a production system.
Correction:	Display the PLC fault table on the programmer. Contact GE Fanuc PLC Field Service, giving them all the information contained in the fault entry.
Error Code:	13
Name:	PLC Operating Software Error
Description:	The PLC operating software generates this error when certain PLC operating software problems occur. This error should not occur in released products; they are normally encountered only during the firmware development process at the factory.
Correction:	(1) Display the PLC fault table on the programmer. Contact GE Fanuc PLC Field Service, giving them all the information contained in the fault entry.
	(2) Perform the corrections for corrupted memory.

Error Code:	14, 27
Name:	Corrupted PLC Program Memory
Description:	The PLC operating software generates these errors when certain PLC operating software problems occur. These errors should not occur in released products; they are normally encountered only during the firmware development process at the factory.
Correction:	(1) Display the PLC fault table on the programmer. Contact GE Fanuc PLC Field Service, giving them all the information contained in the fault entry.
	(2) Perform the corrections for corrupted memory.
Error Code:	27 through 4E
Name:	PLC Operating Software Error
Description:	The PLC operating software generates these errors when certain PLC operating software problems occur. These errors should not occur in released products; they are normally encountered only during the firmware development process at the factory.
Correction:	Display the PLC fault table on the programmer. Contact GE Fanuc PLC Field Service, giving them all the information contained in the fault entry.
Error Code:	4F
Name:	Communications Failed
Description:	The PLC operating software (service request processor) generates this error when it attempts to comply with a request that requires backplane communications and receives a rejected response.
Correction:	(1) Check the bus for abnormal activity.
	(2) Replace the intelligent option module to which the request was directed.
Error Code:	50, 51, 53
Name:	System Memory Errors
Description:	The PLC operating software generates these errors when its request for a block of system memory is denied by the memory manager because no memory is available or contains errors.
Correction:	(1) Display the PLC fault table on the programmer. Contact GE Fanuc PLC Field Service, giving them all the information contained in the fault entry.
	(2) Perform the corrections for corrupted memory.
Error Code:	52
Name:	Backplane Communications Failed
Description:	The PLC operating software (service request processor) generates this error when it attempts to comply with a request that requires backplane communications and receives a rejected mail response.
Correction:	(1) Check the bus for abnormal activity.
	(2) Replace the intelligent option module to which the request was directed.
	(3) Check parallel programmer cable for proper attachment.
Error Code:	All Others
Name:	PLC CPU Internal System Error
Description:	An internal system error has occurred that should not occur in a production system.
Correction:	Display the PLC fault table on the programmer. Contact GE Fanuc PLC Field Service, giving them all the information contained in the fault entry.

Communications Failure During Store

The Fault Group Communications Failure During Store occurs during the store of program blocks and other data to the PLC. If communications with the programming device performing the store is interrupted or any other failure occurs which terminates the load, this fault is logged. As long as this fault is present in the system, the controller will not transition to RUN mode.

This fault is not automatically cleared on power-up; the user must specifically order the condition to be cleared. The fault action for this group is Fatal. For additional information on this fault, please see the "Additional Fault Effects" section earlier in this chapter.

Correction: Clear the fault and retry the download of the program or configuration file.

Section 3: I/O Fault Table Explanations

The I/O fault table reports data about faults in three classifications:

- Fault category.
- Fault type.
- Fault description.

The faults described on the following page have a fault category, but do not have a fault type or fault group.

Each fault explanation contains a fault description and instructions to correct the fault. Many fault descriptions have multiple causes. In these cases, the error code, displayed with the additional fault information obtained by pressing CTRL-F, is used to distinguish different fault conditions sharing the same fault description. (For more information about using CTRL-F, refer to Appendix B, "Interpreting Fault Tables," in this manual.) The Fault Category is the first two hexadecimal digits in the fifth group of numbers, as shown in the following example.

The following table enables you to quickly find a particular I/O fault explanation in this section. Each entry is listed as it appears on the programmer screen.

Loss of I/O Module

The Fault Category Loss of I/O Module applies to Model 30 discrete and analog I/O modules. There are no fault types or fault descriptions associated with this category. The fault action is Diagnostic.

Description:	The PLC operating software generates this error when it detects that a Model 30 I/O module is no longer responding to commands from the PLC CPU, or when the configuration file indicates an I/O module is to occupy a slot and no module exists in the slot. Correction: (1) Replace the module. (2) Correct the configuration file. (3) Display the PLC fault table on the programmer. Contact GE Fanuc PLC Field Service, giving them all the information contained in the fault entry.

Addition of I/O Module

The Fault Category Addition of I/O Module applies to Model 30 discrete and analog I/O modules. There are no fault types or fault descriptions associated with this category. The fault action is Diagnostic.

Description:	The PLC operating software generates this error when an I/O module which had been faulted returns to operation.		
Correction:	(1) No action necessary if the module was removed or replaced,		
or the remote rack was power cycled.		\quad	(2) Update the configuration file or remove the module.
:---	:---		

Chapter Relay Functions

4

This chapter explains the use of contacts, coils, and links in ladder logic rungs.

Function	Page
Coils and negated coils.	$4-2$
Normally open and normal closed contacts.	$4-1$
Retentive and negated retentive coils.	$4-4$
Positive and negative transition coils.	$4-5$
SET and RESET coils.	$4-6$
Retentive SET and RESET coils.	$4-7$
Horizontal and vertical links.	$4-7$
Continuation coils and contacts.	$4-8$

Using Contacts

A contact is used to monitor the state of a reference. Whether the contact passes power flow depends on the state or status of the reference being monitored and on the contact type. A reference is ON if its state is 1 ; it is OFF if its state is 0 .

Table 4-1. Types of Contacts

Type of Contact	Display	Contact Passes Power to Right	
Normally Open	$-\\|-$	When reference is ON.	
Normally Closed	$-\mid /-$	When reference is OFF.	
Continuation Contact	$\langle+>-$	If the preceding continuation coil is set ON.	

Using Coils

Coils are used to control discrete references such as $\% \mathrm{Q}$ and $\% \mathrm{M}$ memory types. Conditional logic must be used to control the flow of power to a coil. Coils cause action directly; they do not pass power flow to the right. If additional logic in the program should be executed as a result of the coil condition, an internal reference (contact) should be used for that coil or a continuation coil/contact combination may be used.

Coils are always located at the rightmost position of a line of logic. A rung may contain up to eight coils.

The type of coil used will depend on the type of program action desired. The states of retentive coils are saved when power is cycled or when the PLC goes from STOP to RUN mode. The states of non-retentive coils are set to zero when power is cycled or the PLC goes from STOP to RUN mode.

Table 4-2. Types of Coils

Type of Coil	Display	Power to Coil	Result
Normally Open	-()-	ON OFF	Sets reference ON. Sets reference OFF.
Negated	-(/)-	ON OFF	Sets reference OFF. Sets reference ON.
Retentive	-(M)-	ON OFF	Sets reference ON, retentive. Sets reference OFF, retentive.
Negated Retentive	-(/M)-	ON OFF	Sets reference OFF, retentive. Sets reference ON, retentive.
Positive Transition	-(\uparrow)-	$\mathrm{OFF} \rightarrow \mathrm{ON}$	If reference is OFF, sets it ON for one sweep.
Negative Transition	-(\downarrow)-	$\mathrm{ON} \leftarrow \mathrm{OFF}$	If reference is OFF, sets it ON for one sweep.
SET	-(S)-	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	Sets reference ON until reset OFF by -(R)—. Does not change the coil state.
RESET	-(R)-	ON OFF	Sets reference OFF until set ON by -(S)—. Does not change the coil state.
Retentive SET	-(SM)-	ON OFF	Sets reference ON until reset OFF by -(RM)—, retentive. Does not change the coil state.
Retentive RESET	-(RM)-	ON OFF	Sets reference OFF until set ON by -(SM)-, retentive. Does not change the coil state.
Continuation Coil	-_<+>	ON OFF	Sets next continuation contact ON. Sets next continuation contact OFF.

Normally Open Contact -||-

A normally open contact acts as a switch that passes power flow if the associated reference is ON (at logic 1).

Normally Closed Contact -|I|-

A normally closed contact acts as a switch that passes power flow if the associated reference is OFF (at logic 0).

Example

The following example shows a rung with 10 elements having nicknames (see Chapter 2 for information on nicknames) from E1 to E10. Coil E10 is ON when reference E1, E2, E5, E6, and E 9 are ON and references E3, E4, E7, and E8 are OFF.

Coil -()-

A coil sets a discrete reference ON while it receives power flow. It is non-retentive; therefore, it cannot be used with system status references ($\% \mathrm{SA}, \% \mathrm{SB}, \% \mathrm{SC}$) or global Genius references ($\% \mathrm{G}$).

Example

In the following example, coil E 3 is ON when reference E 1 is ON and reference E 2 is OFF.

Negated Coil -(I)-

A negated coil sets a discrete reference ON when it does not receive power flow. It is not retentive; therefore, it cannot be used with system status references (\%SA, \%SB, \%SC), or global Genius references (\%G).

Example

In the following example, coil E3 is ON when reference E 1 is OFF .

Retentive Coil -(M)-

Like a normally open coil, the retentive coil sets a discrete reference ON while it receives power flow. The state of the retentive coil is retained across power failure. Therefore, it cannot be used with references from strictly non-retentive memory (\%T).

Negated Retentive Coil -(IM)—

The negated retentive coil sets a discrete reference ON when it does not receive power flow. The state of the negated retentive coil is retained across power failure. Therefore, it cannot be used with references from strictly non-retentive memory (\%T).

Positive Transition Coil

If the reference associated with a positive transition coil is OFF, when the coil receives power flow it is set to ON. Any contacts associated with that coil will change state for one PLC scan (sweep). (If the rung containing the coil is skipped on subsequent sweeps, it will remain ON.) This coil can be used as a one-shot.

Each reference should only be used as a transition coil once in the application program, so as to preserve the one-shot nature of the coil.

Transitional coils can be used with references from either retentive or non-retentive memory (\%Q, $\% \mathrm{M}, \% \mathrm{~T}, \% \mathrm{G}, \% \mathrm{SA}, \% \mathrm{SB}$, or $\% \mathrm{SC}$).

Negative Transition Coil -(\downarrow)

If the reference associated with this coil is OFF, when the coil stops receiving power flow, the reference is set to ON and any contacts associated with that coil will change state for one sweep.

A reference used with a transition coil should only be used as a coil once in the application program, so as to preserve the one-shot nature of the coil.

Transitional coils can be used with references from either retentive or non-retentive memory ($\% \mathrm{Q}$, $\% \mathrm{M}, \% \mathrm{~T}, \% \mathrm{G}, \% \mathrm{SA}, \% \mathrm{SB}$, or $\% \mathrm{SC}$).

Example

In the following example, when reference E1 goes from OFF to ON, coils E2 and E3 receive power flow, turning E2 ON for one logic sweep. When E1 goes from ON to OFF, power flow is removed from E2 and E3, turning coil E3 ON for one sweep.

SET Coil -(S) -

SET and RESET are non-retentive coils that can be used to keep ("latch") the state of a reference either ON or OFF. When a SET coil receives power flow, its reference stays ON (whether or not the coil itself continues to receive power flow) until the reference is reset by another coil.

RESET Coil -(R)—

The RESET coil sets a discrete reference OFF if the coil receives power flow. The reference remains OFF until the reference is reset by another coil. The last-solved SET coil or RESET coil of a pair takes precedence.

Example

In the following example, the coil represented by E1(S) is turned ON if E2 turns ON. Even if E2 turns OFF, coil E1 stays ON until coil $\mathrm{E} 1(\mathrm{R})$ is energized by E3.

NOTE: If both E2 and E3 were ON at the same time, coil E1 would be OFF. This is because rungs are scanned from top to bottom, so the status of the reset coil in the second rung is the last one to be written to the output table. If the order of the rungs was reversed, the set coil would be the last one scanned, so E1 would be ON if E2 and E3 were both ON at the same time.

Note

When the level of coil checking is SINGLE, you can use a specific $\% \mathrm{M}$ or $\% \mathrm{Q}$ reference with only one Coil, but you can use it with one SET Coil and one RESET Coil simultaneously. When the level of coil checking is WARN MULTIPLE or MULTIPLE, then each reference can be used with multiple Coils, SET Coils, and RESET Coils. With multiple usage, a reference could be turned ON by either a SET Coil or a normal Coil and could be turned OFF by a RESET Coil or by a normal Coil.

Retentive SET Coil -(SM) -

Retentive SET and RESET coils are similar to SET and RESET coils, but they are retained across power failure or when the PLC transitions from STOP to RUN mode. A retentive SET coil sets a discrete reference ON if the coil receives power flow. The reference remains ON until reset by a retentive RESET coil.

Retentive SET coils write an undefined result to the transition bit for the given reference. (Refer to the information on "Transitions and Overrides" in chapter 2, "System Operation.")

Retentive RESET Coil -(RM)—

This coil sets a discrete reference OFF if it receives power flow. The reference remains OFF until set by a retentive SET coil. The state of this coil is retained across power failure or when the PLC transitions from STOP to RUN mode.

Retentive RESET coils write an undefined result to the transition bit for the given reference. (Refer to the information on "Transitions and Overrides" in chapter 2, "System Operation.")

Horizontal and vertical links, which appear as straight lines on-screen, are used to connect elements of a line of ladder logic between functions. Their purpose is to complete the flow of logic ("power") from left to right in a line of logic.

Note

You can not use a horizontal link to tie a function or coil to the left power rail. You can, however, use \%S7, the AWL_ON (always on) system bit with a normally open contact tied to the power rail to call a function every sweep.

Example

Several links are used in the following example:

- Horizontal links connect contact E2 to contact E5, and contact E5 to coil E1.
- Vertical links connect contact E8 across contact E6, contact E9 across contact E7, and the right side of contacts E7/E9 to the junction of contacts E2 and E5.

Continuation Coils (-<+>) and Contacts (<+>-_)

Continuation coils ($\_$_<+>) and continuation contacts (<+>-_-) are used to continue relay ladder rung logic beyond the limit of ten columns. The state of the last executed continuation coil is the flow state that will be used on the next executed continuation contact. There needs to be a continuation coil before the logic executes a continuation contact. The state of the continuation contact is cleared when the PLC transitions from Stop to Run, and there will be no flow unless the transition coil has been set since going to Run mode.

There can be only one continuation coil and contact per rung; the continuation contact must be in column 1 , and the continuation coil must be in column 10. An example continuation coil and contact are shown below:

Chapter
5

Timers and Counters

This chapter explains how to use on-delay and stopwatch-type timers, up counters, and down counters. The data associated with these functions is retentive through power cycles.

Abbreviation	Function	Page
ONDTR	Retentive On-Delay Timer	$5-3$
TMR	Simple On-Delay Timer	$5-5$
OFDT	Off-Delay Timer	$5-8$
UPCTR	Up Counter	$5-11$
DNCTR	Down Counter	$5-13$

Function Block Data Required for Timers and Counters

Each timer or counter uses three words (registers) of \%R memory to store the following information:

current value (CV)	word 1
preset value (PV)	word 2
control word	word 3

When you enter a timer or counter, you must enter a beginning address (the address for word 1) for this three-word block directly below the graphic representing the function. In the following example, this beginning address is \%R00100.

Make sure that the addresses in the three-word block are not used elsewhere in your program (this duplicate use is called "overlapping"). Logicmaster does not check or warn you if register blocks overlap. Timers and counters will not work correctly if you overlap their three-word blocks.

The control word (the third word in the three-word block) stores the state of the Boolean inputs and outputs of its associated function block, as shown in the following format:

Bits 0 through 11 are reserved by the PLC for use in maintaining timer accuracy; these bits (0 through 11) are not used for counter function blocks.

Note

Use care if you use the same address for the function's PV (Preset Value) input parameter as the second word in the three-word block. If PV is not a constant, the PV input normally is addressed to a different memory location than the second word. Some programmers choose to use the second word address for the PV input, such as using \%R0102 when the three-word block starts at \%R0101. This allows an application to change the PV while the timer or counter is running. Applications can read the first (CV) or third (Control) words, but the application cannot write to these values, because if they were written to, the function would not work.

Special Note on Certain Bit Operations

When using the Bit Test, Bit Set, Bit Clear or Bit Position function, the bits are numbered 1 through 16 , NOT 0 through 15 as shown above.

ONDTR

A retentive on-delay timer (ONDTR) increments while it receives power flow and holds its value when power flow stops. Time may be counted in tenths of a second (the default selection), hundredths of a second, or thousandths of a second. The range is 0 to $+32,767$ time units; therefore, the timing range is 0.001 to $3,276.7$ seconds. The state of this timer is retentive on power failure; no automatic initialization occurs at power-up.

When the ONDTR first receives power flow, it starts accumulating time (current value). When this timer is encountered in the ladder logic, its current value is updated.

Note

If multiple occurrences of the same timer with the same reference address are enabled during a CPU sweep, the current values of the timers will be the same.

When the current value equals or exceeds the preset value PV , output Q is energized. As long as the timer continues to receive power flow, it continues accumulating until the maximum value is reached. Once the maximum value is reached, it is retained and output Q remains energized regardless of the state of the enable input.

$\mathrm{A}=$ ENABLE goes high; timer starts accumulating.
$\mathrm{B}=\mathrm{CV}$ reaches PV ; Q goes high.
$\mathrm{C}=$ RESET goes high; Q goes low, accumulated time is reset.
$\mathrm{D}=$ RESET goes low; timer then starts accumulating again.
$\mathrm{E}=$ ENABLE goes low; timer stops accumulating. Accumulated time stays the same.
$F=$ ENABLE goes high again; timer continues accumulating time.
$\mathrm{G}=\mathrm{CV}$ becomes equal to $\mathrm{PV} ; \mathrm{Q}$ goes high. Timer continues to accumulate time until ENABLE goes low, RESET goes high, or CV becomes equal to the maximum time.
$\mathrm{H}=$ ENABLE goes low; timer stops accumulating time.
When power flow to the timer stops, the current value stops incrementing and is retained. Output Q, if energized, will remain energized. When the function receives power flow again, the current value again increments, beginning at the retained value. When reset R receives power flow, the current value is set back to zero and output Q is de-energized. On 35x, 36x, and 37x series PLCs, if the enable to the ONDTR is low, $\mathrm{PV}=0$ and reset R receives power-flow, then the output will be low. However, on the 311-341 PLCs, under these same conditions, the output will be high.

Parameters

Parameter	Description
Address of Three-Word Block	The ONDTR uses three consecutive words (registers) of \%R memory to store the following: - Current value (CV) = word 1. - Preset value (PV) = word 2 . - Control word $=$ word 3 . When you enter an ONDTR, you must enter an address for the location of the first of three consecutive words (registers) directly below the graphic representing the function (the use of the other two words is implied). Caution: Do not write to these three words with other instructions. Overlapping these references will result in erratic operation of the timer.
Enable	When enable receives power flow, the timer begins functioning.
R	Reset input. When R receives power flow, it resets the current value to zero. Input R , if used, must be connected by one or more contacts to the power rail. This requires that the ONDTR instruction be placed in the first position (left-most position) in the rung.
PV	Preset Value input. PV is the value to copy into the timer's preset value when the timer is enabled or reset. The timer will turn on the Q output when it times to the PV value.
Q	Output Q is energized when the current value (CV) is greater than or equal to the preset value (PV).
Time Base	This parameter may be programmed for time increment of tenths (0.1), hundredths (0.01), or thousandths (0.001) of seconds. This time base value is multiplied by the number in the Preset Value (PV) input parameter to determine the actual preset value.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
address								\bullet				
enable	\bullet											
R	\bullet											
PV		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
Q	\cdot											\bullet

- Valid reference or place where power may flow through the function.

Example

In the following example, a retentive on-delay timer is used to produce an output (\%Q0011) that turns on 8.0 seconds after $\% \mathrm{Q} 0010$ turns on, and turns off when $\% \mathrm{Q} 0010$ turns off. This is because when \%Q0010 turns off, its normally closed contact passes power to the reset (R) input. The 8.0 second time value is obtained by multiplying the PV value (80) times the time base value (0.1 s).

The simple on-delay timer (TMR) function increments while it receives power flow and resets to zero when power flow stops. Time may be counted in tenths of a second (the default selection), hundredths of a second, or thousandths of a second. The range is 0 to $+32,767$ time units, therefore the timing range is 0.001 to $3,276.7$ seconds. The state of this timer is retentive on power failure; no automatic initialization occurs at power-up.

When the TMR receives power flow, the timer starts accumulating time (current value). The current value is updated when it is encountered in the logic to reflect the total elapsed time the timer has been enabled since it was last reset.

Note

If multiple occurrences of the same timer with the same reference address are enabled during a CPU sweep, the current values of the timers will be the same.

The timer's elapsed time value (CV - current value) continues to accumulate as long as the enabling logic remains ON. When the current value (CV) equals or exceeds the preset value (PV), the function begins passing power flow to the right. The timer continues accumulating time until the maximum value (32,767 time units) is reached. When the enabling input transitions from ON to OFF, the timer stops accumulating time and the current value is reset to zero.

Parameters

Parameter	Description
Address of Three-Word Block	The TMR uses three consecutive words (registers) of \%R memory to store the following: $-\quad$ Current value (CV) $=$ word 1.
	Preset value (PV) $=$ word 2. - When you enter an ONDTR, you must enter an address for the location of the first of three consecutive words (registers) directly below the graphic representing the function (the use of the other two words is implied).
	Caution: Do not write to these three words with other instructions. Overlapping these references will result in erratic operation of the timer.
Enable	When enable receives power flow, the timer begins functioning. When the enable input goes off, the current value is reset to zero and Q is turned off.
PV	Preset Value input. PV is the value to copy into the timer's preset value when the timer is enabled or reset. The timer will turn on the Q output when it times to the PV value.
Q	Output Q is energized when the current value (CV) is greater than or equal to the preset value (PV).
Time Base	This parameter may be programmed for time increment of tenths (0.1), hundredths (0.01), or thousandths (0.001) of seconds. This time base value is multiplied by the number in the Preset Value (PV) input parameter to determine the actual preset value.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
address								\bullet				
enable	\bullet											
PV		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
Q	\bullet											\bullet

- Valid reference or place where power may flow through the function.

Example

In the following example, a TMR timer is used to control the length of time that coil DWELL is on. The timing process starts when the normally open (momentary) contact DO_DWL turns on, which turns on coil DWELL. A DWELL contact keeps coil DWELL energized ("latched") when contact DO_DWL opens; also, another DWELL contact enables the timer. When the timer reaches its preset value of one-half second, coil REL energizes. The normally closed REL contact opens, interrupting the latched-on condition of coil DWELL, which turns off. The DWELL contact on the timer's enable input opens, which interrupts power flow to the timer, resets its current value, and de-energizes coil REL. The circuit is then ready for another activation of contact DO_DWL.

The off-delay timer's (OFDT) accumulated value increments while power flow is off, and resets to zero when power flow is on. Time may be counted in tenths of a second (the default selection), hundredths of a second, or thousandths of a second. The range is 0 to $+32,767$ time units, which gives a range of .001 to $3,276.7$ seconds. The state of this timer is retentive on power failure; no automatic initialization occurs at power-up.

When the OFDT first receives power flow, it passes power to the right, and the current value (CV) is set to zero. (The OFDT uses word 1 [register] as its CV storage location-see the "Parameters" section on the next page for additional information.) The output remains on as long as the function receives power flow. If the function stops receiving power flow from the left, its output remains on temporarily, and the timer starts accumulating time in the current value; once the accumulated value reaches the preset value, the output turns off.

Note

If multiple occurrences of the same timer with the same reference address are enabled during a CPU sweep, the current values of the timers will be the same.

The OFDT does not pass power flow if the preset value is zero or negative.
Each time the function is invoked by turning off the enabling logic (at the enable input), the current value is updated to reflect the elapsed time since the timer was turned off. When the current value (CV) is equal to the preset value (PV), the function stops passing power flow to the right. When that occurs, the timer stops accumulating time-see Part C below.

When the function receives power flow again, the current value resets to zero.

$\mathrm{A}=$ ENABLE and Q both go high ; timer is reset $(\mathrm{CV}=0)$.
$\mathrm{B}=$ ENABLE goes low; timer starts accumulating time.
$\mathrm{C}=\mathrm{CV}$ value equals PV value; Q goes low, and timer stops accumulating time.
$\mathrm{D}=$ ENABLE goes high; timer is reset $(\mathrm{CV}=0), \mathrm{Q}$ goes high.
$\mathrm{E}=$ ENABLE goes low; timer starts accumulating time, Q stays high.
$\mathrm{F}=$ ENABLE goes high; timer is reset $(\mathrm{CV}=0), \mathrm{Q}$ stays high.
$\mathrm{G}=$ ENABLE goes low; timer starts accumulating time, Q stays high.
$\mathrm{H}=\mathrm{CV}$ value equals PV value; Q goes low, and timer stops accumulating time.

When the OFDT is used in a program block that is not called every sweep, the timer accumulates time between calls to the program block unless it is reset. This means that it functions like a timer operating in a program with a much slower sweep than the timer in the main program block. For program blocks that are inactive for a long time, the timer should be programmed to allow for this catch-up feature. For example, if a timer in a program block is reset and the program block is not called (is inactive) for four minutes, when the program block is called, four minutes of time will already have accumulated. This time is applied to the timer when enabled, unless the timer is first reset.

Parameters

Parameter	Description
Address of Three-Word Block	The OFDT timer uses three consecutive words (registers) of $\% \mathrm{R}$ memory to store the following: - Current value (CV) = word 1. - Preset value $(\mathrm{PV})=$ word 2 . - Control word $=$ word 3 . When you enter an OFDT, you must enter an address for the location of the first of three consecutive words (registers) directly below the graphic representing the function (the use of the other two words is implied). Caution: Do not write to these three words with other instructions. Overlapping these references will result in erratic operation of the timer.
Enable	While the enable input is on, output Q stays on, and the current value (CV) is held to zero. When the enable input turns off, the timer begins timing. When the current value (CV) reaches the preset value (PV), the timer stops timing, and Q turns off.
PV	Preset Value input. PV is the value to copy into the timer's preset value when the timer is enabled or reset. The timer will turn off the Q output when it times to the PV value.
Q	Output Q is energized (1) when the enable input is on and (2) while the current value (CV) is less than the preset value (PV) after the enable input turns off.
Time Base	This parameter may be programmed for time increment of tenths (0.1), hundredths (0.01), or thousandths (0.001) of seconds. This time base value is multiplied by the number in the Preset Value (PV) input parameter to determine the actual preset value.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
address								\bullet				
enable	\bullet											
PV	\bullet	\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
Q	\bullet											\bullet

- Valid reference or place where power may flow through the function.

Examples

In the following example, an OFDT timer turns on output coil \%Q0001 whenever contact \%I0001 is closed. After $\% \mathrm{I} 0001$ opens, $\% \mathrm{Q} 0001$ stays on for 2 seconds then turns off.

In the next example, the output action is reversed by the use of a negated output coil. In this circuit, an OFDT timer turns off negated output coil $\% \mathrm{Q} 0001$ whenever contact $\% \mathrm{I} 0001$ is closed. After \%I0001 opens, $\%$ Q0001 stays off for 2 seconds then turns on.

The Up Counter (UPCTR) function is used to count up to a designated value. The range is 0 to $+32,767$ counts. When the up counter reset is ON, the current value of the counter is reset to 0 . Each time the enable input transitions from OFF to ON, the current value is incremented by 1 . The current value can be incremented past the preset value PV . The output is ON whenever the current value is greater than or equal to the preset value.

The state of the UPCTR is retentive on power failure; no automatic initialization occurs at powerup.

Parameters

Parameter	Description
Address of Three-Word Block	The UPCTR Up Counter uses three consecutive words (registers) of \%R memory to store the following: $-\quad$ Current value (CV) = word 1.
Enable	Preset value (PV) = word 2. When you enter a UPCTR, you must enter an address for the location of the first of three consecutive words (registers) directly below the graphic representing the function (the use of the other two words is implied).
Caution: Do not write to these three words with other instructions. Overlapping these references will result in erratic operation of the timer.	
PVOn each positive transition (off to on) of the enable input, the current count value (CV) is incremented by one.	
Preset Value input. PV is the value copied into the counter's preset value when the Q counter is enabled or reset. The counter will turn on the Q output when it counts up to the PV value. If the preset value is a constant, it must be a positive number between 0 and 32,767.	
R	Output Q is energized when the current count value (CV) is greater than or equal to the preset value (PV).
Reset Input. When the R input turns on, the current count value (CV) is reset to zero.	

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	$\boldsymbol{\%} \mathbf{S}$	$\boldsymbol{\%} \mathbf{G}$	$\boldsymbol{\%} \mathbf{R}$	\%AI	\%AQ	const	none
address								\bullet				
enable	\bullet											
R	\bullet											
PV		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
Q	\cdot											\bullet

- Valid reference or place where power may flow through the function.

Examples

Basic Counter Circuit

In the following example, the UPCTR will increment its current count value (CV) by one each time \%I0001 transitions from off to on. The PV input sets the preset value to 100 counts. When the counter counts to 100 , coil $\% \mathrm{Q} 0001$ will be turned on. The counter will continue to count $\% \mathrm{I} 0001$ transitions beyond its preset value (of 100) until it either reaches its maximum count value (32 767), or until \%I0020 closes and resets the counter. \%Q0001 will be on anytime the CV value is equal to or greater than the PV value.

Self-Resetting Counter Circuit

In the next example, every time input \%IO012 transitions from OFF to ON, the UPCTR counter counts up by 1 . Coil \%M0001 is energized whenever $100 \% \mathrm{I} 0012$ transitions have been counted. Once $\% \mathrm{M} 0001$ turns ON, the accumulated count is reset to zero by the $\% \mathrm{M} 0001$ contact on the R input, and $\% \mathrm{M} 0001$ will turn off.

DNCTR

The Down Counter (DNCTR) function is used to count down from a preset value. The minimum preset value is zero; the maximum present value is $+32,767$ counts. The minimum current value is $-32,768$. When reset, the current value of the counter is set to the preset value PV. When the enable input transitions from OFF to ON, the current value is decremented by one. The output is ON whenever the current value is less than or equal to zero.

The current value of the DNCTR is retentive on power failure; no automatic initialization occurs at power-up.

Parameters

Parameter	Description
Address of Three-Word Block	The DNCTR Down Counter uses three consecutive words (registers) of \%R memory to store the following: - Current value (CV) = word 1 . - Preset value (PV) = word 2 . - Control word $=$ word 3. When you enter a DNCTR, you must enter an address for the location of the first of three consecutive words (registers) directly below the graphic representing the function (the use of the other two words is implied). Caution: Do not write to these three words with other instructions. Overlapping these references will result in erratic operation of the counter.
Enable	On each positive transition (off to on) of the enable input, the current count value (CV) is decremented by one.
PV	Preset Value input. PV is the value copied into the counter's preset value (PV) and current value (CV) registers when the counter is enabled or reset. The counter will turn on the Q output when it counts down from the current value to zero.
Q	Output Q is energized when the current count value (CV) is less than or equal to zero.
R	Reset Input. When the R input turns on, the current count value (CV) is reset to the preset value (PV , and output Q is turned off.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
address								\bullet				
enable	\bullet											
R	\bullet											
PV		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
Q	\bullet											\bullet

- Valid reference or place where power may flow through the function.

Examples

In the following example, the down counter identified as COUNTP counts 5000 new parts before energizing output \%Q0005.

Inventory Count Examples

In the next example, the PLC is used to keep track of the number of parts contained in a temporary storage area. There are two ways of accomplishing this function using the Series 90-30/20/Micro instruction set.

The first method is to use an up/down counter pair with a shared register for the accumulated or current value. When the parts enter the storage area, the up counter increments by 1 (\%I0001 closes), increasing the current value of the parts in storage by a value of 1 . When a part leaves the storage area, the down counter decrements by 1 (\%I0002 closes), decreasing the inventory storage value by 1. To avoid conflict with the shared register, both counters use different register addresses. When a register counts, its current value is moved to the current value register of the other counter.

In the following example, $\% \mathrm{I} 0001$ increments the count, $\% \mathrm{I} 0002$ decrements the count, $\% \mathrm{I} 0009$ resets the count to zero, and $\% \mathrm{I} 0003$, when on, holds the count at its current value regardless of what $\% \mathrm{I} 0001$ and $\% \mathrm{I} 0002$ do. The count value can be read from $\%$ R0100.

A second method to provide storage tracking, shown below, uses ADD and SUB functions that share a common register, \%R00201, on their outputs. When the count increases ($\$ \mathbf{I} 0004$ closes), the ADD instruction increments the value in \%R00201. When the count decreases (\%I0005 closes), the SUB instruction decrements the value in \%R00201. In this case, transition coils are used to provide "one-shot" inputs to the ADD and SUB functions. If the enable inputs were not one-shot types, the ADD and SUB functions would execute once for every scan that they were enabled. (Transition coils are not needed with UPDTR and DNCTR functions since their enable inputs have a built-in transition function.) See Chapter 6 for details about the ADD and SUB functions.

Chapter
6

Math Functions

This chapter describes the math functions of the Series 90-30/20/Micro Instruction Set:

Abbreviation	Function	Description	Page
ADD	Addition	Add two numbers.	6-2
SUB	Subtraction	Subtract one number from another.	6-2
MUL	Multiplication	Multiply two numbers.	6-2
DIV	Division	Divide one number by another, yielding a quotient.	6-2
MOD	Modulo Division	Divide one number by another, yielding a remainder.	6-7
SQRT	Square Root	Find the square root of an integer or real value.	6-9
SIN, COS, TAN, ASIN, ACOS, ATAN	Trigonometric Functions †	Perform the appropriate function on the real value in input IN.	6-11
$\begin{aligned} & \text { LOG, LN } \\ & \text { EXP, EXPT } \end{aligned}$	Logarithmic/Exponential Functions \dagger	Perform the appropriate function on the real value in input IN.	6-13
RAD, DEG	Radian Conversion \dagger	Perform the appropriate function on the real value in input IN.	6-15

\dagger Trigonometric Functions, Logarithmic/Exponential Functions, and Radian Conversion functions are only available on the model 35 x and 36x series CPUs, Release 9.00 or later, and on all releases of CPU352 and CPU37x.

Note

Division and modulo division are similar functions that differ in their output; division finds a quotient, while modulo division finds a remainder.

Standard Math Functions (ADD, SUB, MUL, DIV)

Math functions include addition, subtraction, multiplication, and division. When a function receives power flow, the appropriate math function is performed on input parameters I1 and I2. These parameters must be the same data type. Output Q is the same data type as I1 and I2.

Rules for Math Functions

Sign of Result	Standard math rules for signed number arithmetic apply to determining the sign of the result.
Addition	The ADD instruction uses the formula $\mathrm{I} 1+\mathrm{I} 2=\mathrm{Q}$.
Subtraction	The SUB instruction uses the formula $\mathrm{I} 1-\mathrm{I} 2=\mathrm{Q}$.
Multiplication	The MUL instruction uses the formula $\mathrm{I} 1 \times \mathrm{I} 2=\mathrm{Q}$.
Division	The DIV instruction uses the formula $\mathrm{I} 1 \div \mathrm{I} 2=\mathrm{Q}$. For INT and DINT types. DIV rounds down to a whole number quotient (any remainder is discarded) for the INT or DINT types; it does not round to the closest integer. For example, 53 divided by $5=10$ (the remainder of 3 is discarded). For REAL type. DIV produces a decimal number result for the Real type
Modulo Division	The MOD instruction can only use types INT and DINT (REAL is not supported). The MOD instruction uses the formula $\mathrm{I} 1 \div \mathrm{I} 2=\mathrm{Q}$. However, MOD produces only the remainder from the division operation and discards the quotient. For example, 53 divided by $5=3$ (the quotient of 10 is discarded).

Data Types for Math Functions

After you have programmed a math function, you can select the data type. The data type will appear on the function just below the function's name (see example in next figure). The three data types available for math functions are listed in the following table:

Data Type	Description
INT	Signed integer.
DINT	Double precision signed integer.
REAL* $^{*}$	Floating Point

*REAL data type is only available on $35 x$ and $36 x$ series CPUs, Firmware Release 9.00 or later, and on all releases of CPU352 and CPU37X.

The default data type is signed integer. For more information on data types, please refer to Chapter 2, Section 2, "Program Organization and User References/Data."
If the operation of INT or DINT results in overflow, the output reference is set to its largest possible value for the data type. For signed numbers, the sign is set to show the direction of the
overflow. If the operation does not result in overflow (and the inputs are valid numbers), the ok output is set ON; otherwise, it is set OFF. If signed or double precision integers are used, the sign of the result depends on the signs of inputs I1 and I2.

Parameters

Parameter	Description
enable	When the function is enabled, the operation is performed.
I1	I1 contains a constant or reference for the first value used in the operation. (I1 is on the left side of the mathematical equation, as in I1 - I2).
I2	I2 contains a constant or reference for the second value used in the operation. (I2 is on the right side of the mathematical equation, as in I1 - I2).
ok	The ok output is energized when the function is performed without overflow, unless an invalid operation occurs.
Q	Output Q contains the result of the operation.

Valid Memory Types

Parameter	flow	\%I	\% Q	\%M	\% T	\%S	\% G	\% R	\%AI	\%AQ	const	none
enable	-											
I1		o	o	o	o		o	-	-	-	\bullet -	
I2		o	o	o	o		o	-	-	-	\bullet -	
ok	-											-
Q		o	o	o	o		o	-	-	-		

- Valid reference or place where power may flow through the function.
o Valid reference for INT data only; not valid for DINT or REAL.
\dagger When using Logicmaster, you will only be able to enter values between $-32,768$ and $+32,767$ for double precision signed integer operations. With VersaPro, you can enter full double precision values.

Note

The default type is INT for 16-bit or single register operands. In Logicmaster, press F10 to change the Types selection to DINT, 32-bit double word, or REAL (for the $35 x, 36 x$, and $37 x$ series CPUs only). PLC INT values occupy a single 16 -bit register, $\%$ R, $\% \mathrm{AI}$ or $\% \mathrm{AQ}$. DINT values require two consecutive registers with the low 16 bits in the first word and the upper 16 bits with the sign in second word. REAL values, in the 35x and 36x series CPU (Release 9.00 or later) and all releases of CPU352 and CPU37x, also occupy a 32-bit double register with the sign in the high bit followed by the exponent and mantissa.

Math Function Examples

ADD Circuit with a Problem

In the following example, an attempt was made to create a counter circuit that would count the number of times switch \%I0001 closes. The running total is stored in register \%R0002. The intent of this design is that when \%I0001 closes, the ADD instruction adds one to the value in \%R0002 (the input on I2) and places the new value right back into \%R0002 (the output on Q). The problem with this design is that the ADD instruction will execute once every PLC scan while \%I0001 is closed. So, for example, if \%IO001 stays closed for five scans, the output will increment five times, even though \%I0001 only closed once during that period. To correct this problem, the enable input to the ADD instruction should come from a transition ("one-shot") coil, as shown in the second figure below.

In the following improved circuit, the \%I0001 input switch controls a transition ("one-shot") coil, $\% \mathrm{M} 0001$, whose contact turns on the enable input of the ADD function for only one scan each time contact $\% \mathrm{I} 0001$ closes. In order for the $\% \mathrm{M} 0001$ contact to close again, contact $\% \mathrm{I} 0001$ has to open and close again.

Corrected ADD Circuit Design

Math Functions and Data Types

Function	Operation	Displays as
ADD INT	$\mathrm{Q}(16 \mathrm{bit})=\mathrm{I} 1(16 \mathrm{bit})+\mathrm{I} 2(16$ bit $)$	5-digit base 10 number with sign
ADD DINT	$\mathrm{Q}(32 \mathrm{bit})=\mathrm{I} 1(32 \mathrm{bit})+\mathrm{I} 2$ (32 bit)	8-digit base 10 number with sign
ADD REAL*	$\mathrm{Q}(32 \mathrm{bit})=\mathrm{I} 1(32 \mathrm{bit})+\mathrm{I} 2$ (32 bit $)$	7-digit base 10 number, sign and decimal
SUB INT	$\mathrm{Q}(16 \mathrm{bit})=\mathrm{I} 1(16$ bit $)-\mathrm{I} 2(16 \mathrm{bit})$	5-digit base 10 number with sign
SUB DINT	$\mathrm{Q}(32 \mathrm{bit})=\mathrm{I} 1(32 \mathrm{bit})-\mathrm{I} 2$ (32 bit)	8-digit base 10 number with sign
SUB REAL*	$\mathrm{Q}(32 \mathrm{bit})=\mathrm{I} 1(32 \mathrm{bit})-\mathrm{I} 2$ (32 bit $)$	7-digit base 10 number, sign and decimal
MUL INT	$\mathrm{Q}(16 \mathrm{bit})=\mathrm{I} 1(16 \mathrm{bit}) * \mathrm{I} 2$ (16 bit)	5-digit base 10 number with sign
MUL DINT	$\mathrm{Q}(32 \mathrm{bit})=\mathrm{I} 1(32 \mathrm{bit}) * \mathrm{I} 2(32 \mathrm{bit})$	8 -digit base 10 number with sign
MUL REAL*	$\mathrm{Q}(32 \mathrm{bit})=\mathrm{I} 1(32 \mathrm{bit}) * \mathrm{I} 2(32 \mathrm{bit})$	7 -digit base 10 number, sign and decimal
DIV INT	$\mathrm{Q}(16 \mathrm{bit})=\mathrm{I} 1(16 \mathrm{bit}) / \mathrm{I} 2(16 \mathrm{bit})$	5-digit base 10 number with sign
DIV DINT	$\mathrm{Q}(32 \mathrm{bit})=\mathrm{I} 1(32 \mathrm{bit}) / \mathrm{I} 2(32 \mathrm{bit})$	8-digit base 10 number with sign
DIV REAL*	$\mathrm{Q}(32 \mathrm{bit})=\mathrm{I} 1(32 \mathrm{bit}) / \mathrm{I} 2(32 \mathrm{bit})$	7-digit base 10 number, sign and decimal

* $35 x$ and $36 x$ series CPUs only, Release 9 or later, and all releases of CPU352 and CPU37x.

Note

The input and output data types must be the same for math functions. The MUL and DIV functions do not support a mixed mode as the Series 90-70 PLCs do. For example, the MUL INT of two 16-bit inputs produces a 16-bit product, not a 32-bit product. Using MUL DINT for a 32-bit product requires both inputs to be 32-bit. The DIV INT divides a 16-bit I1 by a 16-bit I2 for a 16-bit result, while DIV DINT divides a 32-bit I1 by 32-bit I2 for a 32-bit result.

When enabled, these functions pass power if there is no math overflow. If an overflow occurs, the result is the largest value with the proper sign and no power flow.

Be careful to avoid overflows when using MUL and DIV functions. If you have to convert INT to DINT values, remember that the CPU uses standard 2's complement with the sign extended to the highest bit of the second (most significant) word. You must check the sign of the low 16-bit word and extend it into the second 16 -bit word. If the most significant bit in a 16 -bit INT low word is 0 (indicating positive value), move a 0 to the second word. If the most significant bit in a 16-bit word is 1 (indicating a negative value), move a -1 or hex 0FFFFh to the second word. Converting from DINT to INT is easier as the low 16-bit word (first register) is the INT part of a DINT 32-bit word. The upper 16 bits or second word should be either a 0 (positive) or -1 (negative) value or the DINT number is too big to convert to 16 bit.

Example

A common application is to scale analog input values with a MUL operation followed by a DIV and possibly an ADD operation. A 0 to ± 10 volt analog input will place values of 0 to $\pm 32,000$ in its corresponding \%AI input register. Multiplying this input register using an INT MUL function will result in an overflow since an INT type instruction has an input and output range of 32,767 to $-32,768$. Using the \%AI value as in input to a MUL DINT will also not work as the 32-bit I1 will combine 2 analog inputs at the same time. To solve this problem, you can move the analog input to the low word of a double register, then test the sign and set the second register to 0 if the sign tests positive or -1 if negative. Then use the double register just created with a MUL DINT which gives a 32-bit result, and which can be used with a following DINT DIV function.

For example, the following logic could be used to scale a ± 10 volt input $\%$ AI1 to ± 25000 engineering units in \%R5.

An alternate, but less accurate, way of programming this circuit using INT instructions involves placing the DIV instruction first, followed by the MUL instruction. The value of I2 for the DIV instruction would be 32, and the value of I2 for the MUL would be 25 . This maintains the scaling proportion of the above circuit and keeps the values within the working range of the INT type instructions. However, the DIV instruction inherently discards any remainder value, so when the DIV output is multiplied by the MUL instruction, the error introduced by a discarded remainder is multiplied. The percent of error is non-linear over the full range of input values and is greater at lower input values.

By contrast, in the example above, the results are more accurate because the DIV operation is performed last, so the discarded remainder is not multiplied. If even greater precision is required, substitute REAL type math instructions in this example so that the remainder is not discarded.

MOD (INT, DINT)

The Modulo (MOD) function is used to divide one value by another value of the same data type to obtain the remainder. The sign of the result is always the same as the sign of input parameter I1.

The MOD function operates on these types of data:

Data Type	Description
INT	Signed integer.
DINT	Double precision signed integer.

The default data type is signed integer; however, it can be changed after selecting the function. For more information on data types, please refer to chapter 2, section 2, "Program Organization and User References/Data."

When the function receives power flow, it divides input parameter I1 by input parameter I2. These parameters must be the same data type. Output Q is calculated using the formula:

$$
Q=I 1-([I 1 \text { DIV I2] * I2) }
$$

where DIV produces an integer number. Q is the same data type as input parameters I1 and I2.
OK is always ON when the function receives power flow, unless there is an attempt to divide by zero. In that case, it is set OFF.

Parameters

Parameter	Description
Enable	When the function is enabled, the operation is performed.
I1	I1 contains a constant or reference for the value to be divided by I2.
I2	I2 contains a constant or reference for the value to be divided into I1.
OK	The ok output is energized when the function is performed without overflow.
Q	Output Q contains the remainder, if any, that results from dividing I1 by I2. If the value in I2 is an even multiple of I1, output Q will be zero, indicating no remainder.

Valid Memory Types

Parameter	flow	\% I	\%Q	\%M	\% T	\%S	\%G	\% R	\% AI	\%AQ	const	none
enable	-											
I1		o	o	o	o		o	-	-	-	\bullet -	
I2		o	o	o	o		o	-	-	-	- \dagger	
ok	-											-
Q		o	o	o	o		o	-	-	-		

- Valid reference or place where power may flow through the function.
o Valid reference for INT data only; not valid for DINT.
\dagger Constants are limited to values between $-32,768$ and $+32,767$ for double precision signed integer operations.

Example

In the following example, boxes are being automatically filled with parts. One box holds six parts. This circuit determines the status of the current box being filled by using modulo division. When enabled, the MOD function divides the register (PARTS) holding the count of parts produced, by six. The output (STATUS) of the MOD instruction indicates how many parts (between 1 and 5) have been loaded into the current box. When the current box is full, the output at Q will equal zero; if the current box is only partially filled, the output will indicate the number of parts already in the box. The values in the example show that a total 17 parts have been produced and that the current box has five parts in it. (The other 12 parts filled two boxes.)

To determine the number of boxes filled, you could use the DIV instruction in the following circuit.

One possible problem with these circuits is that the register nicknamed PARTS can only hold a maximum of 32,767 counts. If you need to count higher than that, some additional logic will be required to (1) reset the PARTS register before it reaches maximum, (2) to capture the number of boxes filled before you reset the PARTS register, and (3) to reset the PARTS register when the STATUS register is zero so that its count stays accurate.

SQRT (INT, DINT, REAL)

The Square Root (SQRT) function is used to find the square root of a value. When the function receives power flow, the value of output Q is set to the integer portion of the square root of the input IN. The output Q must be the same data type as IN.

The SQRT function operates on these types of data:

Data Type	Description
INT	Signed integer.
DINT	Double precision signed integer.
REAL	Floating Point.

For data types INT and DINT, only the whole number portion of the square root will be output. The fractional portion will be dropped. For example, the square root of 2 or 3 will be 1 , and the square root of $5,6,7$, or 8 will be 2 .

Note

The REAL data type is only available on $35 x$ and $36 x$ series CPUs, Release 9.00 or later, and on all releases of CPU352 and CPU37x.

The default data type is signed integer; however, it can be changed after selecting the function. For more information on data types, please refer to chapter 2, section 2, "Program Organization and User References/Data."

OK is set ON if the function is performed without overflow. If one of the following invalid operations occurs, OK is set OFF:

- $\quad \mathrm{IN}<0$
- IN is NaN (Not a Number)

Parameters

Parameter	Description
enable	When the function is enabled, the operation is performed.
IN	IN contains a constant or reference for the value whose square root is to be calculated. If IN is less than zero, the function will not pass power flow.
ok	The ok output is energized when the function is performed without overflow, unless an invalid operation occurs.
Q	Output Q contains the square root of IN. However, for INT and DINT, only the whole number portion will be kept; any fractional portion will be discarded.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
IN		o	o	o	o		o	\bullet	\bullet	\bullet	$\bullet \dagger$	
ok	\bullet											\bullet
Q		o	o	o	o		o	\bullet	\bullet	\bullet		

- Valid reference or place where power may flow through the function.
o Valid reference for INT data only; not valid for DINT and REAL.
\dagger Constants are limited to values between $-32,768$ and $+32,767$ for double precision signed integer operations.

Examples

In the following example, the square root of the integer number located at $\% \mathrm{R} 0008$ is placed into the $\% \mathrm{R} 0009$ register whenever $\% \mathrm{I} 0001$ is ON.

As an alternative to the previous example, the same function can be performed with a REAL-type SQRT instruction, which gives a more precise result as shown in the next figure.

Trig Functions (SIN, COS, TAN, ASIN, ACOS, ATAN)

The SIN, COS, and TAN functions are used to find the trigonometric sine, cosine, and tangent, respectively, of its input. When one of these functions receives power flow, it computes the sine (or cosine or tangent) of IN, whose units are radians, and stores the result in output Q. Both IN and Q are floating-point values.

The ASIN, ACOS, and ATAN functions are used to find the inverse sine, cosine, and tangent, respectively, of its input. When one of these functions receives power flow, it computes the designated function on the value at the IN input, and stores the result in output Q , whose units are radians. Both IN and Q are floating-point values.

The SIN, COS, and TAN functions accept a broad range of input values, where $-2^{63}<\mathrm{IN}<+2^{63},\left(2^{63} \approx 9.22 \times 10^{18}\right)$.

The ASIN and ACOS functions accept a narrow range of input values, where $-1 \leq \mathrm{IN} \leq 1$. Given a valid value for the IN parameter, the ASIN _REAL function will produce a result Q such that:

$$
\operatorname{ASIN}(\mathrm{IN})=-\frac{\pi}{2} \leq \mathbf{Q} \leq \frac{\pi}{2}
$$

The ACOS_REAL function will produce a result Q such that:

$$
\operatorname{ACOS}(\mathbf{I N})=0 \leq 0 \leq \pi
$$

The ATAN function accepts the broadest range of input values, where $-\infty \leq \mathrm{IN} \leq+\infty$. Given a valid value for the IN parameter, the ATAN_REAL function will produce a result Q such that:

Note

The TRIG functions are only available on the $35 x$ and $36 x$ series CPUs, Release 9 or later, and on all releases of CPU352 and CPU37x.

Parameters

Parameter	Description
enable	When the function is enabled, the operation is performed.
IN	IN contains the constant or reference real value to be operated on.
ok	The ok output is energized when the function is performed without overflow, unless an invalid operation occurs and/or IN is NaN.
Q	Output Q contains the trigonometric value of IN.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
IN								\cdot	\bullet	\bullet	\bullet	
ok	\cdot											\bullet
Q								\bullet	\bullet	\bullet		

Valid reference or place where power may flow through the function.

Example

In the following example, the COS of the value in \%R0001 is placed in \%R0033.

Logarithmic/Exponential Functions (LOG, LN, EXP, EXPT)

The LOG, LN, and EXP functions have two input parameters and two output parameters. When the function receives power flow, it performs the appropriate logarithmic/exponential operation on the real value in input IN and places the result in output Q .

- For the LOG function, the base 10 logarithm of IN is placed in Q .
- For the LN function, the natural logarithm of IN is placed in Q .
- For the EXP function, \boldsymbol{e} is raised to the power specified by IN and the result is placed in Q. (NOTE: \boldsymbol{e} is a constant used in logarithmic calculations. It has an approximate value of 2.71828.)
- For the EXPT function, the value of input I1 is raised to the power specified by the value I2 and the result is placed in output Q. (The EXPT function has three input parameters and two output parameters.)

The ok output will receive power flow, unless IN is NaN (Not a Number) or is negative.

Parameters

Parameter	Description
enable	When the function is enabled, the operation is performed.
IN	IN contains the real value to be operated on.
ok	The ok output is energized when the function is performed without overflow, unless an invalid operation occurs and/or IN is NaN or is negative.
Q	Output Q contains the logarithmic/exponential value of IN.

Note

The LOG, LN, EXP and EXPT functions are only available on the $35 x$ and $36 x$ series CPUs, Release 9 or later, and on all releases of CPU352 and CPU37x.

Note

When the input value, IN, for the EXP function is negative infinity $(-\infty)$, the function returns a value of 0 , as expected. In this case, for the CPU352, the function does not pass power. For all other 90-30 CPUs, the function does pass power, even though the output is 0 . (A value of $-\infty$ results from dividing a negative value by zero. It will appear on a Logicmaster screen as -OVERFLOW.)

Valid Memory Types

Parameter	flow	\% I	\% Q	\%M	\% T	\%S	\% G	\% R	\%AI	\%AQ	const	none
enable	-											
IN*								-	-	-	-	
ok	-											-
Q								-	-	-		
I1*								-	-	-	-	
I2*								-	-		-	

* For the EXPT function, input IN is replaced by input parameters I1 and I2.
- Valid reference or place where power may flow through the function.

Example

In the following example, the value of $\%$ AIO001, +3.000000 , is raised to the power of +2.500000 , and the result, +15.58846 , is placed in \%R0001

Radian Conversion (RAD, DEG)

When the function receives power flow, the appropriate conversion (RAD_TO_DEG or DEG_TO_RAD, i.e., Radian to Degree or vice versa) is performed on the real value in input IN and the result is placed in output Q .

The ok output will receive power flow unless IN is NaN (Not a Number).

Parameters

Parameter	Description
enable	When the function is enabled, the operation is performed.
IN	IN contains the real value to be operated on.
ok	The ok output is energized when the function is performed without overflow, unless IN is NaN.
Q	Output Q contains the converted value of IN.

Note

The Radian conversion functions are only available on the $35 x$ and $36 x$ series CPUs, Release 9 or later, or on all releases of CPU352 and CPU37x.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\cdot											
IN								\bullet	\bullet	\bullet	\bullet	
ok	\cdot											\bullet
Q								\bullet	\bullet	\bullet		

[^32]
Example

In the following example, +1500 is converted to DEG and is placed in \%R0001.

Chapter

Relational Functions

Relational functions are used to determine the relationship of two values. This chapter describes the following relational functions:

Abbreviation	Function	Description	Page
EQ	Equal	Test two numbers for equality.	$7-2$
NE	Not Equal	Test two numbers for non-equality.	$7-2$
GT	Greater Than	Test for one number greater than another.	$7-2$
GE	Greater Than or Equal	Test for one number greater than or equal to another.	$7-2$
LT	Less Than	Test for one number less than another.	$7-2$
LE	Less Than or Equal	Test for one number less than or equal to another.	$7-2$
RANGE	Range	Determine whether a number is within a specified range (available for Release 4.5 or higher CPUs).	$7-4$

Standard Relational Functions (EQ, NE, GT, GE, LT, LE)

When the function receives power flow, it compares input parameter I1 to input parameter I2, which must be of the same data type. Relational functions operate on these types of data:

Data Type	Description
INT	Signed integer.
DINT	Double precision signed integer.
REAL	Floating Point (not available for the RANGE function)

Note

The REAL data type is only available on the $35 x$ and $36 x$ series CPUs, Release 9 or later, and on all releases of CPU352 and CPU37x. The \%S0020 system bit is set ON when a relational function using REAL data executes successfully. It is cleared when either input is NaN (Not a Number). The Range function block does not accept REAL type.

The default data type is signed integer. To compare either signed integers, double precision signed integers, or real numbers select the new data type after selecting the relational function. To compare data of other types or of two different types, first use the appropriate conversion function (described in chapter 11, "Conversion Functions") to change the data to one of the supported types.

If input parameters I1 and I2 match the specified relationship, output Q receives power flow and is set ON (1); otherwise, it is set OFF (0).

Parameters

Parameter	Description
enable	When the function is enabled, the operation is performed.
I1	I1 contains a constant or reference for the first value to be compared. (I1 is on the left side of the relational equation, as in I1 < I2).
I2	I2 contains a constant or reference for the second value to be compared. (I2 is on the right side of the relational equation, as in I1 < I2).
Q	Output Q is energized when I1 and I2 match the specified relation.

Note

I1 and I2 must be valid numbers, i.e., cannot be NaN (Not a Number).

Expanded Description

Function	Description
Equal	When enabled, if the value at input I1 is equal to the value at input I2, output Q is energized.
Not Equal	When enabled, if the value at input I1 is NOT equal to the value at input I2, output Q is energized.
Greater Than	When enabled, if the value at input I1 is greater than the value at input I2, output Q is energized.
Greater Than or Equal	When enabled, if the value at input I1 is greater than or equal to the value at input I2, output Q is energized.
Less Than	When enabled, if the value at input I1 is less than the value at input I2, output Q is energized.
Less Than or Equal	When enabled, if the value at input I1 is less than or equal to the value at input I2, output Q is energized.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
I1		0	0	0	0		0	\bullet	\bullet	\bullet	$\bullet \dagger$	
I2		0	0	0	0		0	\bullet	\bullet	\bullet	$\bullet \dagger$	
Q	\bullet											\bullet

- Valid reference or place where power may flow through the function.
o Valid reference for INT data only; not valid for DINT or REAL.
\dagger Constants are limited to integer values $(+32,767$ to $-32,768)$ for double precision signed integer operations when programmed with Logicmaster PLC software. When programmed with VersaPro software, full double precision signed integer values are allowed.

Example

RANGE (INT, DINT, WORD)

The RANGE function is used to determine if a value is between the range of two numbers.

Note

This function is available only to Release 4.41 or later CPUs.

The RANGE function operates on these types of data (REAL type is not supported in the RANGE function):

Data Type	Description
INT	Signed integer.
DINT	Double precision signed integer.
WORD	Word data type.

The default data type is signed integer; however, it can be changed after selecting the function. For more information on data types, please refer to chapter 2, section 2, "Program Organization and User References/Data."

When the function is enabled, the RANGE function block will compare the value in input parameter IN against the range specified by limit parameters L1 and L2. When the value is within the range specified by L1 and L2, inclusive, output parameter Q is set $\mathrm{ON}(1)$. Otherwise, Q is set OFF (0).

Note

Limit parameters L1 and L2 represent the end points of a range. There is no minimum/maximum or high/low connotation assigned to either parameter. Thus, a desired range of 0 to 100 could be specified by assigning 0 to L1 and 100 to L2 or 0 to L2 and 100 to L1.

Parameters

Parameter	Description
enable	When the function is enabled, the operation is performed.
L1	L1 contains the start point of the range.
L2	L2 contains the end point of the range.
IN	IN contains the value to be compared against the range specified by L1 and L2.
Q	Output Q is energized when the value in IN is within the range specified by L1 and L2, inclusive.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
L1		o	o	o	o		o	\bullet	\bullet	\bullet	$\bullet \neq$	
L2		o	o	o	o		o	\bullet	\bullet	\bullet	$\bullet \neq$	
IN		o	o	o	o		o	\bullet	\bullet	\bullet		
Q	\bullet											\bullet

- Valid reference or place where power may flow through the function.
o Valid reference for INT or WORD data only; not valid for DINT.
\ddagger Constants are limited to integer values for double precision signed integer operations.

Example 1

In the following example, $\%$ AIO001 is checked to be within a range specified by two constants, 0 and 100 .

RANGE Truth Table for Example 1				
Enable State \%I0001	L1 Value Constant	L2 Value Constant	IN Value \%AI0001	Q State \% Q0001
ON	100	0	<0	OFF
ON	100	0	$0-100$	ON
ON	100	0	>100	OFF
OFF	100	0	Any value	OFF

Example 2

In this example, $\%$ AIO001 is checked to be within a range specified by two register values.

RANGE Truth Table for Example 2				
Enable State \%I0001	L1 Value \%R0001	L2 Value \%R0002	IN Value \%AI0001	Q State \%Q0001
ON	500	0	<0	OFF
ON	500	0	$0-500$	ON
ON	500	0	>500	OFF
OFF	500	0	Any value	OFF

Chapter

 8
Bit Operation Functions

Bit operation functions perform comparison, logical, and move operations on bit strings. The AND, OR, XOR, and NOT functions are limited to operating on a single word. The remaining bit operation functions may operate on multiple words, with a maximum string length of 256 words. All bit operation functions require the WORD data type.

Although data must be specified in 16-bit increments, these functions operate on data as a continuous string of bits, with bit 1 of the first word being the Least Significant Bit (LSB). The last bit of the last word is the Most Significant Bit (MSB). For example, if you specified three words of data beginning at reference $\%$ R0100, it would be operated on as 48 contiguous bits.

\%R0100	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	$\leftarrow \text { bit } 1(\text { LSB })$
\% R0101	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	
\%R0102	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	

Note

Overlapping input and output reference address ranges in multi-word functions may produce unexpected results.

The following bit operation functions are described in this chapter:

Abbreviation	Function	Description	Page
AND	Logical AND	If a bit in bit string I1 and the corresponding bit in bit string I2 are both 1 , place a 1 in the corresponding location in output string Q .	8-3
OR	Logical OR	If a bit in bit string I1 and/or the corresponding bit in bit string I2 are both 1 , place a 1 in the corresponding location in output string Q.	8-3
XOR	Logical exclusive OR	If a bit in bit string I 1 and the corresponding bit in string I2 are different, place a 1 in the corresponding location in the output bit string.	8-5
NOT	Logical invert	Set the state of each bit in output bit string Q to the opposite state of the corresponding bit in bit string I1.	8-7
SHL	Shift Left	Shift all the bits in a word or string of words to the left by a specified number of places.	8-8
SHR	Shift Right	Shift all the bits in a word or string of words to the right by a specified number of places.	8-8
ROL	Rotate Left	Rotate all the bits in a string a specified number of places to the left.	8-10
ROR	Rotate Right	Rotate all the bits in a string a specified number of places to the right.	8-57
BTST	Bit Test	Test a bit within a bit string to determine whether that bit is currently 1 or 0 .	8-12
BSET	Bit Set	Set a bit in a bit string to 1 .	8-14
BCLR	Bit Clear	Clear a bit within a string by setting that bit to 0 .	8-14
BPOS	Bit Position	Locate a bit set to 1 in a bit string.	8-16
MSKCMP	Masked Compare	Compare the contents of two separate bit strings with the ability to mask selected bits (available for Release 4.5 or higher CPUs).	8-18

AND and OR (WORD)

For each scan that it is enabled, an AND or OR function compares the state of each bit in bit string I1 with the corresponding bit in bit string I2, beginning at the least significant bit in each.

For each two bits compared for the AND function, if both are 1 , then a 1 is placed in the corresponding location in output string Q . If either or both bits are 0 , then a 0 is placed in string Q in that location.

The AND function is useful for building masks or screens, where only certain bits are passed through (those that are opposite a 1 in the mask), and all other bits are set to 0 . The function can also be used to clear the selected area of word memory by ANDing the bits with another bit string known to contain all 0s. The I1 and I2 bit strings specified may overlap.

For each two bits examined for the OR function, if either or both bits are 1 , then a 1 is placed in the corresponding location in output string Q . If both bits are 0 , then a 0 is placed in string Q in that location.

The OR function is useful for combining strings, and to control many outputs through the use of one simple function block. The function is the equivalent of two relay contacts in parallel for each bit position in the string. It can be used to drive indicator lamps directly from input states, or superimpose blinking conditions on status lights.

The function passes power flow to the right whenever power is received.

Parameters

Parameter	Description
enable	When the function is enabled, the operation is performed.
I1	I1 contains a constant or reference for the first word of the first string.
I2	I2 contains a constant or reference for the first word of the second string.
ok	The ok output is energized whenever enable is energized.
Q	Output Q contains the result of the operation.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
I1		\bullet										
I2		\bullet										
ok	\bullet											\bullet
Q		\bullet	\bullet	\bullet	\bullet	$\bullet \dagger$	\bullet	\bullet	\bullet	\bullet		

- Valid reference or place where power may flow through the function.
$\dagger \% \mathrm{SA}, \% \mathrm{SB}$, or $\% \mathrm{SC}$ only; $\% \mathrm{~S}$ cannot be used

Example

In the following example, whenever input $\% \mathrm{I} 0001$ is set, the 16 -bit strings represented by nicknames WORD1 and WORD2 are examined. The results of the Logical AND are placed in output string RESULT.

WORD1 (I1)	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$						
WORD2 (I2)	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

RESULT (Q) | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

XOR (WORD)

The Exclusive OR (XOR) function is used to compare each bit in the bit string at input I1 with the corresponding bit in the bit string at input I2. If the corresponding bits are different, a 1 is placed in the corresponding position in the output bit string.

The XOR function is useful for comparing two bit strings, or to flash a group of bits on and off at the rate of one ON state per two scans.

For each scan that the XOR is enabled, it compares each bit in string I1 with the corresponding bit in string I2, beginning at the least significant bit in each string. In a comparison, if only one is a $\operatorname{logic} 1$, then a 1 is placed in the corresponding location in bit string Q . The XOR function passes power flow to the right whenever power is received.

If string I2 and output string Q begin at the same reference, a 1 placed in string I1 will cause the corresponding bit in string I2 to alternate between 0 and 1, changing state with each scan as long as power is received. Longer cycles can be programmed by switching the enable input to the function at twice the desired rate of flashing; for this application, the enable input should go high for one scan long (use a contact from a one-shot type coil or self-resetting timer circuit).

Parameters

Parameter	Description
enable	When the function is enabled, the operation is performed.
I1	I1 contains a constant or reference for the first word to be XORed.
I2	I2 contains a constant or reference for the second word to be XORed.
ok	The ok output is energized whenever enable is energized.
Q	Output Q contains the result of I1 XORed with I2.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
I1		\bullet										
I2		\bullet										
ok	\bullet											\bullet
Q		\bullet	\bullet	\bullet	\bullet	$\bullet \dagger$	\bullet	\bullet	\bullet	\bullet		

- Valid reference or place where power may flow through the function.
$\dagger \% \mathrm{SA}, \% \mathrm{SB}$, or \%SC only; \%S cannot be used.

Example of an Alarm Circuit Using an XOR

In the following example, whenever enable contact $\% \mathrm{M} 0001$ is on, the 16 -bit string nicknamed SWITCH is compared to a reference bit string, nicknamed REFER. The SWITCH bit string is a group of bits that represent the on/off status of alarm switch contacts. The REFER bit string represents the normal or non-alarm status of these bits. If the state of any SWITCH bit is different from its corresponding REFER bit, their corresponding output at Q goes to logic 1. Under normal (no alarm) conditions, the value of the word nicknamed STATUS will be zero.

The data in STATUS could be used as an input to a Not Equal (NE) function, which would compare the word nicknamed STATUS to a constant of zero. If STATUS does not equal zero, the NE turns on its output, indicating the presence of an alarm.

The bits in STATUS that are equal to logic 1 can be identified with the BPOS (Bit Position) function, which would search the bits in STATUS and report the position (a number between 1 and 16) of the first bit (starting at bit 1) it encounters that is at logic 1. In the example above, the BPOS would output the number 4, indicating the fourth bit is a logic 1 . To test for more than one bit, you could store a record of bit 4, use a BCLR (Bit Clear) function to clear bit 4, then repeat the BPOS test to find the next bit that is equal to logic 1 (bit 9 in the example above). This process can be repeated until no more non-zero bits are found. Note that the BCLR and BPOS functions are discussed in detail elsewhere in this chapter.

NOT (WORD)

The NOT function is used to set the state of each bit in the output bit string Q to the opposite of the state of the corresponding bit in bit string I1.

The NOT function executes and passes power flow for each scan that it's enable input is on.

Parameters

Parameter	Description
enable	When the function is enabled, the operation is performed.
I1	I1 contains the constant or reference for the word to be negated.
ok	The ok output is energized whenever enable is energized.
Q	Output Q contains the NOT (negation) of I1.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
I1		\bullet										
ok	\bullet											\bullet
Q		\bullet	\bullet	\bullet	\bullet	$\bullet+$	\bullet	\bullet	\bullet	\bullet		

- Valid reference or place where power may flow through the function. $\dagger \quad \% \mathrm{SA}, \% \mathrm{SB}$, or $\% \mathrm{SC}$ only; $\% \mathrm{~S}$ cannot be used.

Example

In the following example, whenever input $\% \mathrm{I} 0001$ is set, the bit string represented by the nickname NOTCAT is set to the inverse of bit string CAT, as seen in the truth table below.

CAT	1	1	0	1	0	1	0	0	1	1	0	1	0	0	0	1
NOTCAT	0	0	1	0	1	0	1	1	0	0	1	0	1	1	1	0

SHL and SHR (WORD)

The Shift Left (SHL) function is used to shift all the bits in a word or group of words to the left by a specified number of places. When the shift occurs, the specified number of bits is shifted out of the output string to the left. As bits are shifted out of the high end of the string, the same number of bits is shifted in at the low end.

The Shift Right (SHR) function is used to shift all the bits in a word or group of words a specified number of places to the right. When the shift occurs, the specified number of bits is shifted out of the output string to the right. As bits are shifted out of the low end of the string, the same number of bits is shifted in at the high end.

\[

\]

A string length of 1 to 256 words can be selected for either function.
If the number of bits to be shifted (N) is greater than the number of bits in the array $(\mathrm{LEN}) * 16$, or if the number of bits to be shifted is zero, then the array (Q) is filled with copies of the input bit (B1), and the input bit is copied to the B2 output. If the number of bits to be shifted is zero, then no shifting is performed; the input array is copied into the output array; and input bit B1 is copied to the B2 output.

The bits being shifted into the beginning of the string are specified via input parameter B1, which requires a contact to the power rail. If a length greater than 1 has been specified as the number of bits to be shifted, each of the bits is filled with the same value (0 or 1) of $B 1$. The B1 input can be controlled by

- An ALW_ON (\%S07) contact, which holds B1 permanently at logic 1.
- An ALW_OFF (\%S06) contact, which holds B1 permanently at logic 0.
- A contact from an internal coil such as $\% \mathrm{M}$ or $\% \mathrm{Q}$ that lets you change the value.
- A \%I contact that lets you change the value from an input contact.

The SHL or SHR function passes power flow to the right, unless the number of bits specified to be shifted is zero.
Output Q is the shifted copy of the input string. If you want the input string to be shifted, the output parameter Q must use the same memory location as the input parameter IN. The SHL/SHR instructions execute each scan that their enable input is on. Output B2 holds the value of the last bit shifted out; for example, if four bits were shifted, B2 would contain be the value (either 1 or 0) of the fourth bit shifted out.

Parameters

Parameter	Description
enable	When enable is logic 1, the shift is performed.
IN	IN contains the address of the first word to be shifted.
N	N contains the number of places (bit positions) that the array is to be shifted.
B1	B1 contains the bit value $(0$ or 1$)$ to be shifted into the array.
B2	B2 contains the bit value $(0$ or 1$)$ of the last bit shifted out of the array.
Q	Output Q contains the first word of the shifted array.
LEN	LEN is the number of words $(1-256)$ in the array to be shifted.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
IN		\bullet										
N		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	
B1	\bullet											
B2	\bullet											\bullet
Q		\bullet	\bullet	\bullet	\bullet	$\bullet+$	\bullet	\bullet	\bullet	\bullet		

- Valid reference or place where power may flow through the function.
\dagger \%SA, \%SB, or \%SC only; \%S cannot be used.

Example

In the following example, when input $\% \mathrm{M} 0001$ is on, the SHL makes a copy of the bit string at IN (nicknamed WORD1). Then, in the copy, it shifts all bits to the left by 8 bit positions (specified by the value at N). The bits from bit positions $9-16$ are shifted out (discarded), and the bits that were in positions $1-8$ now occupy bit positions $9-16$. Bit positions $1-8$, which were "vacated" when bits 1-8 were shifted, are filled with ones because, for this example, contact \%M0002 is closed, making the B1 input equal to logic 1. Finally, the shifted/filled word is written to the address at output Q (nicknamed WORD2). The original WORD1 at IN is not changed. Output B2 equals zero since the last bit shifted out was logic zero (the bit that occupied bit position 9), and coil $\% \mathrm{M} 0003$ is on because the function worked correctly and therefore produced power flow at its OK output.

ROL and ROR (WORD)

The Rotate Left (ROL) function rotates all the bits in a string a specified number of places to the left. When rotation occurs, the specified number of bits is rotated out of the input string to the left and back into the string on the right.

The Rotate Right (ROR) function rotates all bits in a string a specified number of places to the right. When rotation occurs, the specified number of bits is rotated out of the input string to the right and back into the string on the left.

A string length of 1 to 256 words can be selected for either function.
The number of places specified for rotation at input N must be more than zero and less than the number of bits in the string. Otherwise, no movement occurs and no power flow is generated.

The rotation result is placed in output string Q. If you want the input string to be rotated, the output parameter Q must use the same memory location as the input parameter IN. The rotate function executes each scan that the enable input is on.

Parameters

Parameter	Description
enable	When the enable input is on, the rotation is performed.
IN	IN contains the address of the first word to be rotated.
N	N contains the number of places (bit positions) that the array is to be rotated.
ok	The ok output is energized when the rotation function is enabled and the rotation length (at N) is greater than zero but is not greater than the array size.
Q	Output Q contains the first word of the rotated array.
LEN	LEN is the number of words $(1-256)$ in the array to be rotated.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
IN		\bullet										
N		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	
ok	\bullet											\bullet
Q		\bullet	\bullet	\bullet	\bullet	$\bullet+$	\bullet	\bullet	\bullet	\bullet		

- Valid reference or place where power may flow through the function.
$\dagger \% \mathrm{SA}, \% \mathrm{SB}$, or $\% \mathrm{SC}$ only; $\% \mathrm{~S}$ cannot be used.

Example

In the following example, whenever enable input $\% \mathrm{I} 0001$ is on, the ROL makes a copy of the input string at IN. Then, in the copy, it rotates the input bit string 3 bits (specified by the value of input $\mathrm{N})$ and places the result in \%R0002. After execution of this function, the input bit string \%R0001 is unchanged. However, if you wish to rotate the input string, use the same reference address for IN and Q.

\%R0001:

\%R0002 (after rotation occurs):
MSB

| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

BTST (WORD)

The Bit Test (BTST) function is used to test a bit within a bit string to determine whether that bit is currently 1 or 0 . The result of the test is placed in output Q .

Each sweep power is received, the BTST function sets its output Q to the same state as the specified bit. If a register rather than a constant is used to specify the bit number, the same function block can test different bits on successive sweeps. If the value of BIT is outside the range specified by the following formula, then Q is set OFF.

Formula: $1 \leq$ BIT $\leq(16 *$ LEN $)$
A string length of 1 to 256 words can be selected.

Parameters

Parameter	Description
enable	When the function is enabled, the bit test is performed.
IN	IN contains the first word of the data to be operated on.
BIT	BIT contains the bit number of IN that should be tested. Valid range is $(1 \leq$ BIT $\leq(16 *$ LEN $).$
Q	Output Q is energized if the bit tested was a 1.
LEN	LEN is the number of words in the string to be tested.

Note

When using the Bit Test, Bit Set, Bit Clear or Bit Position function, the bits are numbered 1 through 16, NOT 0 through 15.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
IN		\bullet										
BIT		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	
Q	\bullet											\bullet

- Valid reference or place where power may flow through the function.

Example

In the following example, whenever enable input $\% \mathrm{M} 0001$ is on, bit 14 in word $\% \mathrm{R} 0001$ is tested (bit 14 is specified by the value in \%R0002). Since bit 14 is zero in the value shown for $\%$ R0001 (5C7C), output Q does not turn on. Note that this function can only be a WORD type; therefore, any memory address used at IN will appear on a Logicmaster screen in hexadecimal format. However, the value at BIT will appear in integer format regardless of whether a constant or memory address is used.

BSET and BCLR (WORD)

The Bit Set (BSET) function is used to set a bit in a bit string to 1 . The Bit Clear (BCLR) function is used to clear a bit within a string by setting that bit to 0 .

Each sweep that power is received, the function sets the specified bit to 1 for the BSET function or to 0 for the BCLR function. If a variable (register) rather than a constant is used to specify the bit number, the same function block can set different bits on successive sweeps.

A string length of 1 to 256 words can be selected. The function passes power flow to the right, unless the value for BIT is outside the range $(1 \leq$ BIT $\leq(16 *$ LEN $))$. Then, ok is set OFF. For example, if LEN is set to 1 , then the length of the bit string to be tested is 16 . If, in this case, the number at BIT was 17 or higher, it would be out of range, so the ok output would not come on.

Parameters

Parameter	Description
enable	When the enable input is on, the bit operation is performed.
IN	IN contains the address of the first word of the bit string to be operated on.
BIT	BIT contains the bit number of IN that should be set or cleared. Valid range is $(1 \leq$ BIT $\leq(16 *$ LEN $))$.
ok	The ok output is energized whenever enable is energized, unless the value at the BIT input is outside the valid range.
LEN	LEN is the number of words in the bit string whose starting address is configured at IN..

Note
When using the Bit Test, Bit Set, Bit Clear or Bit Position function, the bits are numbered 1 through 16 , NOT 0 through 15.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
IN		\bullet	\bullet	\bullet	\bullet	\dagger	\bullet	\bullet	\bullet	\bullet		
BIT		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	
ok	\bullet											\bullet

- Valid reference or place where power may flow through the function.
$\dagger \% \mathrm{SA}, \% \mathrm{SB}$, or $\% \mathrm{SC}$ only; \%S cannot be used.

Examples

Note that the Bit Set and Bit Clear functions can only be WORD types; therefore, any memory address used at IN will appear on a Logicmaster screen in hexadecimal format. However, the value at BIT will appear in integer format whether a constant or memory address is used.

In the following example, when input $\% \mathrm{M} 0001$ is on, bit 12 (specified by the BIT input) of the string beginning at reference \%R0001 (the address at the IN input) is set to 1 (set).

In the next example, when input $\% \mathrm{M} 0001$ is on, bit 5 (the value of the BIT input) of the string beginning at reference $\%$ R0001 (the address at the IN input) is set to 0 (cleared).

BPOS (WORD)

The Bit Position (BPOS) function is used to locate in a bit string, a bit whose value is logic 1 .
Each sweep that the function is enabled, it scans the bit string starting at IN. When the function stops scanning, either a bit equal to 1 has been found or the entire length of the string has been scanned.

POS is set to the position within the bit string of the first non-zero bit; POS is set to zero if no nonzero bit is found.

A string length of 1 to 256 words can be selected. The function passes power flow to the right whenever enable is ON.

Parameters

Parameter	Description
enable	When the enable input is on, a bit search operation is performed.
IN	IN contains the first word of the bit string to be operated on.
ok	The ok output is energized whenever enable is energized.
POS	The position of the first non-zero bit found, or zero if a non-zero bit is not found.
LEN	LEN is the number of words in the bit string.

Note

When using the Bit Test, Bit Set, Bit Clear or Bit Position function, the bits are numbered 1 through 16, NOT 0 through 15.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
IN		\bullet										
POS		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet		
ok	\bullet											\bullet

- Valid reference or place where power may flow through the function.

Example

Note that the Bit Position function can only be a WORD type; therefore, any memory address used at IN will appear on a Logicmaster screen in hexadecimal format. However, the value at POS will appear in integer format. Logicmaster displays the first 16 bits at IN in hexadecimal format.

In the following example, if \%I0001 is on, the bit string starting at \%M0001 is searched until a bit equal to 1 is found, or until the entire bit string has been searched. Coil $\%$ M0100 is turned on. If a bit equal to 1 is found, its location within the bit string is written to $\%$ R 0002 ; otherwise a value of 0 is written to \%R0002. In the example shown, bit 5 is the first logic 1 encountered by the search (which starts at bit 1), so the value written to $\% \mathrm{R} 0002$ is 5 .

MSKCMP (WORD, DWORD)

The Masked Compare (MSKCMP) function (available for Release 4.41 or later CPUS) is used to compare the contents of two separate bit strings with the ability to mask selected bits. The length of the bit strings to be compared is specified by the LEN parameter (where the value of LEN specifies the number of 16-bit words for the MSKCMP word-type function or 32-bit words for the MSKCMP double-word type function).

When its enable input is on, the function compares the bits in the first string with the corresponding bits in the second string. Comparison continues until a miscompare is found, or until the end of the string is reached. The function executes each scan that the enable input is on, so, for many applications, a "one-shot" contact is used for the enable input.

The BIT input is used to store the bit number where the next comparison should start (where a 0 indicates the first bit in the string). The BN output is used to store the bit number where the last comparison occurred (where a l indicates the first bit in the string). Using the same reference for BIT and BN causes the compare to start at the next bit position after a miscompare; or, if all bits compared successfully upon the next invocation of the function block, the compare starts at the beginning.

If you want to start the next comparison at some other location in the string, you can enter different references for BIT and BN. If the value of BIT is a location that is beyond the end of the string, BIT is reset to 0 before starting the next comparison.

If All Bits in I1 and I2 are the Same

If all corresponding bits in strings I1 and I2 match, the function sets the "miscompare" output MC to 0 and BN to the highest bit number in the input strings. The comparison then stops. On the next invocation of MSKCMP, BN will be reset to 0 .

If a Miscompare is Found

When the two bits currently being compared are not the same, the function checks the correspondingly numbered bit in string M (the mask). If the mask bit is a 1 , the miscompare is ignored and the comparison continues until it reaches another miscompare or the end of the input strings.

If a miscompare is detected and the corresponding mask bit is a 0 , the function does the following:

1. Sets the corresponding mask bit in M to 1 .
2. Sets the miscompare (MC) output to 1 .
3. Updates the output bit string Q to match the new content of mask string M .
4. Sets the bit number output (BN) to the number of the miscompared bit.
5. Stops the comparison.

Parameters

Parameter	Description
enable	Permissive logic to enable the function.
I1	Reference for the first bit string to be compared.
I2	Reference for the second bit string to be compared.
M	Reference for the bit string mask.
BIT	Reference for the bit number where the next comparison should start.
MC	Goes to a logic 1 for one scan if a miscompare has occurred. A set coil can be used on this output if it is desired to "capture" the output beyond one scan.
Q	Output copy of the mask (M) bit string.
BN	Number of the bit where the last compare occurred.
LEN	LEN is the number of words in the bit string.

Valid Memory Types

Parameter	flow	\% I	\% Q	\%M	\% T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	-											
I1		o	o	o	o	o	o	-	-	-		
I2		o	o	o	o	o	o	-	-	-		
M		o	o	o	o	ot	o	-	-	-		
BIT		-	-	-	-	-	-	-	-	-	-	
LEN											\bullet •	
MC	-											-
Q		o	o	o	o	o†	o	-	-	-		
BN		-	-	-	-	-	-	-	-	-		

- Valid reference or place where power may flow through the function.
o Valid reference for WORD data only; not valid for DWORD.
$\dagger \quad \% \mathrm{SA}, \% \mathrm{SB}, \% \mathrm{SC}$ only; \%S cannot be used.
$\ddagger \quad$ Max const value of 4095 for WORD and 2047 for DWORD.

Example 1 - MSKCMP Instruction

When \%M0200 closes, the contact from the \%M0201 transition coil closes for one scan, which enables the MSKCMP function to execute once. \%M0001 through \%M0016 (I1) are compared with \%M0017 through \%M0032 (I2). \%M0033 through \%M0048 (M) contains the mask value. The value in \%R0001 (BIT) determines at which bit position (0) the comparison starts within the two input strings at I1 and I2.

Condition Before the First MSKCMP Execution

The contents of the input references before the MSKCMP executes are as follows:

$\% \mathrm{M}$ Bits	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Input $1(\mathrm{I} 1)$	0	1	1	0	1	1	0	0	0	1	1	0	1	1	0	0

\%M Bits	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
Input 2(I2)	0	1	1	0	1	1	0	1	0	1	1	0	1	1	1	1

$\% \mathrm{M}$ Bits	48	47	46	45	44	43	42	41	40	39	38	37	36	35	35	33
Mask (M/Q)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

BIT/BN $(\% R 0001)=0$
$\mathrm{MC}(\% \mathrm{M} 0202)=\mathrm{OFF}$

Condition After the First MSKCMP Execution

The following table shows the contents of the Mask (M/Q) references after the MSKCMP executes one time. (I1 and I2 are still at the values shown above.) Since the ninth bit produced a miscompare, the ninth bit (\%M0041) in the Mask string is set to logic 1, BIT/BN contains a value of 9 , and the MC output turned on for one scan. Although the first and second bit positions are not equal, they do not produce a miscompare because the mask bits are 1 for these positions.

$\% \mathrm{M}$ Bits	48	47	46	45	44	43	42	41	40	39	38	37	36	35	35	33
Mask (M/Q)	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	1

BIT/BN (\%R0001) = 9
$\mathrm{MC}(\% \mathrm{M} 0202)=\mathrm{ON}($ for one scan $)$

Example 2 - Fault Detection with a Masked Compare Function

Intermittent problems can be difficult to troubleshoot. One example is when several switches are arranged in a series circuit that energizes a fault relay. Under normal conditions, all switches are closed and the fault relay is energized (a "fail-safe" arrangement). When a fault occurs, one of the contacts opens and the fault relay drops out. If the faulted contact remains open, a troubleshooter will be able to easily determine which switch caused the fault. However, sometimes a contact only opens for a brief time, perhaps for less than a second, then closes again. This causes the fault relay to drop out briefly and shut down the process. Since the contact closes again, everything appears normal.

To help with such a problem, the following circuit acts as a "fault catcher" in that it detects which contact opened and stores its number in a register. In the first rung, contacts from the input switches, which are each wired to an input module point (\%I1 - \%I9), are programmed in series to energize \%M0021, a negative transition coil.
The second rung initializes the MSKCMP so it is ready to capture the fault. The first Move instruction writes all logic ones to the I2 input of the MSKCMP. The second Move writes values of 1 to bits $10-16$ of the mask word (so that these bits are ignored), since only the first nine bits of the compared words (the MSKCMP uses full words) are needed for switches \%I0001—\%I0009. The third Move zeroes the output register, \%R0001, so it is ready to report the latest fault.
During normal operation, the first nine bits on input I1 of the MSKCMP are at logic 1 since the switches are all closed. Input I2 is initialized with all logic 1 s since that is the normal condition to which the input switches are compared. The mask has 1 s in bits $10-16$ because these bits are not used since there are nine input switches. When a switch opens, \%M0201's contacts close for one scan. This causes the initializing moves to occur in the second rung, and in the third rung, the MSKCMP is enabled. The MSKCMP compares the input switches against the logic 1s at its I2 input, identifies which switch is logic 0 (open), and writes the bit number of the open switch to the BN (\%R0001) output. The bits are numbered from $1-9$ beginning with \%I1. For example, if \%I4 were to open, \%R0001 would contain the number 4.
Note that, in this circuit, if a switch opens and closes again, coil \%M0201 drops out and picks back up, but the number of the switch that opened will be stored in \%R0001. However, if a switch opens again, for example, the machine operator pushes an emergency stop button or opens a safety gate, the masked compare activates again and writes the number of the latest switch opening in \%R0001. This means that the equipment should be left untouched after the fault occurs until the value in \%R0001 can be checked. If this is not practical, an additional Move instruction could be used.

Data move functions provide basic data move capabilities. This chapter describes the following data move functions:

Abbreviation	Function	Description	Page
MOVE	Move	Copy data as individual bits. The maximum length allowed is 256 words, except MOVE_BIT is 256 bits. Data can be moved into a different data type without prior conversion.	$9-2$
BLKMOV	Block Move	Copy a block of seven constants to a specified memory location. The constants are input as part of the function.	$9-5$
BLKCLR	Block Clear	Replace the content of a block of data with all zeros. This function can be used to clear an area of bit (\%I, \%Q, \%M, \%GG, or \%T) or word (\%R, \%AI, or $\%$ AQ) memory. The maximum length allowed is 256 words.	$9-7$
SHFR	Shift Register	Shift one or more data words into a table. The maximum length allowed is 256 words.	$9-8$
BITSEQ	Bit Sequencer	Perform a bit sequence shift through an array of bits. The maximum length allowed is 256 words.	$9-11$
COMMREQ	Communications	Allow the program to communicate with an intelligent module, such as a Genius Request Communications Module or a Programmable Coprocessor Module.	$9-15$
		(

MOVE (BIT, INT, WORD, REAL)

Use the MOVE function to copy data (as individual bits) from one location to another. Because the data is copied in bit format, the new location does not need to be the same data type as the original location.

The MOVE function has two input parameters and two output parameters. When the function is enabled, it copies data from input parameter IN to output parameter Q as bits. If data is moved from one location in discrete memory to another, (for example, from \%I memory to \%T memory), the transition information associated with the discrete memory elements is updated to indicate whether or not the MOVE operation caused any discrete memory elements to change state. Data at the input parameter does not change unless there is an overlap in the input and output references.

For the BIT type there is another consideration. If a BIT array specified on the Q parameter does not encompass all of the bits in a byte, the transition bits associated with that byte (which are not in the array) will be cleared when the MOVE_BIT receives power flow.

Input IN can be either a reference for the data to be moved or a constant. If a constant is specified, then the constant value is placed in the location specified by the output reference. For example, if a constant value of 4 is specified for IN, and the length (LEN) equals 1 , then 4 is placed in the memory location specified by Q . If the length is greater than 1 and a constant is specified, then the constant is placed in the memory location specified by Q and the locations following, up to the length specified. For example, if the constant value 9 is specified for $I N$ and the length equals 4 , then 9 is placed in the memory location specified by Q and also in the three locations following.

The LEN operand specifies the number of:

- Words to be moved for MOVE_INT and MOVE_WORD.
- Bits to be moved for MOVE_BIT.
- Real numbers to be moved for MOVE_REAL.

Note

The REAL data type is only available on $35 x$ and $36 x$ series CPUs, Release 9 or later, and all releases of CPU352 and 37x.

The function passes power to the right whenever power is received.

Parameters

Parameter	Description
enable	When the function is enabled, the move is performed.
IN	IN contains the value to be copied (moved). For MOVE_BIT, any discrete reference may be used; it does not need to be byte aligned. However, a 16-bit value, beginning with the reference address specified, is displayed on the Logicmaster screen.
ok	The ok output is energized whenever the function is enabled.
Q	When the move is performed, the value at IN is copied to Q. For MOVE_BIT, any discrete reference may be used; it does not need to be byte aligned. However, a 16-bit value, beginning with the reference address specified, is displayed on the Logicmaster screen.
LEN	LEN specifies the number of words or bits to be moved. For MOVE_WORD and MOVE_INT, LEN must be between 1 and 256 words. For MOVE_BIT, when IN is a constant, LEN must be between 1 and 16 bits; otherwise, LEN must be between 1 and 256.

Note

On 351, 352, 36x and 37x series CPUs, the MOVE_INT and MOVE_WORD functions do not support overlapping of IN and Q parameters, where the IN reference is less than the Q reference. For example, with the following values: IN=\%R0001, Q=\%R0004, LEN=5 (words), the \%R0007 and \%R0008 contents will be indeterminate; however, using the following values: $\mathrm{Q}=\% \mathrm{R} 0001$, $\mathrm{IN}=\% \mathrm{R} 0004$, LEN=5 (words) will yield valid contents.

Also, please note that only $35 x$ and $36 x$ series CPUs (Release 9.00 and later), and all releases of CPU35 and 37x have Floating Point capabilities and are therefore the only Series 90-30 CPUs capable of MOVE_REAL.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
IN		\bullet	\bullet	\bullet	\bullet	\circ	\bullet	\bullet	\bullet	\bullet	\bullet	
ok	\bullet											\bullet
Q		\bullet	\bullet	\bullet	\bullet	$\circ \dagger$	\bullet	\bullet	\bullet	\bullet		

Note: For REAL data, the only valid types are \%R, \%AI, and \%AQ.

- Valid reference for BIT, INT, or WORD data, or place where power may flow through the function. For MOVE_BIT, discrete user references $\% \mathrm{I}, \% \mathrm{Q}, \% \mathrm{M}$, and $\% \mathrm{~T}$ need not be byte aligned.
o Valid reference for BIT or WORD data only; not valid for INT.
$\dagger \quad \% \mathrm{SA}, \% \mathrm{SB}, \% \mathrm{SC}$ only; $\% \mathrm{~S}$ cannot be used.

Example 1 - Overlapping Addresses (only for CPUs 311-341)

When enable input contact $\% \mathrm{Q} 0014$ is $\mathrm{ON}, 48$ bits are moved from memory location $\% \mathrm{M} 0001$ to memory location $\% \mathrm{M} 0033$. Even though the destination overlaps the source for 16 bits, the move is done correctly (except for the 35 x and 35 x CPUs as noted previously).

Before using the Move function:

INPUT (\%M0001 through \%M0048)

\%M0016	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
\%M0032	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
\%M0048	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

After using the Move function:
OUTPUT (\%M0033 through \%M0080)
33

\%M0048	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
\%M0064	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
\%M0080	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Example 2 - for all CPUs

In this example, whenever $\% \mathrm{I} 0003$ is on, the values in the three bits $\% \mathrm{M} 0001, \% \mathrm{M} 0002$, and $\% \mathrm{M} 0003$ are moved to $\% \mathrm{M} 0100$, $\% \mathrm{M} 0101$, and $\% \mathrm{M} 0102$, respectively, and coil $\% \mathrm{Q} 0001$ is turned on.

BLKMOV (INT, WORD, REAL)

Use the Block Move (BLKMOV) function to copy a block of seven constants to a specified location.

Note

The REAL data type is only available on $35 x$ and $36 x$ series CPUs, Release 9 or later, and all releases of CPU352 and 37x.

The BLKMOV function has eight input parameters and two output parameters. When the function receives power flow, it copies the constant values into consecutive locations, beginning at the destination specified in output Q . Output Q cannot be the input of another program function.

Note

For BLKMOV_INT, the values of IN1 - IN7 are displayed as signed decimals. For BLKMOV_WORD, IN1 - IN7 are displayed in hexadecimal. For BLKMOV_REAL, IN1— IN7 are displayed in Real format.

The function passes power to the right whenever it is enabled.

Parameters

Parameter	Description
enable	When the function is enabled, the block move is performed.
IN1— IN7	IN1 through IN7 contain seven constant values.
ok	The ok output is energized whenever the function is enabled.
Q	Output Q contains the first integer of the moved array. IN1 is moved to Q.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
IN1 - IN7											\bullet	
ok	\bullet											\bullet
Q		\bullet	\bullet	\bullet	\bullet	$\circ \dagger$	\bullet	\bullet	\bullet	\bullet		

Note: For REAL data, the only valid types are \%R, \%AI, and \%AQ.

- Valid reference for place where power may flow through the function.
o Valid reference for WORD data only; not valid for INT or REAL.
$\dagger \% \mathrm{SA}, \% \mathrm{SB}, \% \mathrm{SC}$ only; $\% \mathrm{~S}$ cannot be used.

Note

Floating Point capabilities exist only on 35x and 36x series CPUs, Release 9 or later, and all releases of CPU352 and 37x. These 90-30 CPUs are the only ones capable of BLKMV_REAL.

Example

In the following example, when input enable contact \%M0201 is on, the BLKMOV function copies the seven input constants into memory locations \%R0001 (specified at output Q) through \%R0007. If the BLKMV executes successfully, it turns on its OK output, which energizes \%M0202. In turn, an \%M0202 contact enables the Service Request function in the next rung, which uses \%R0001 through \%R0007 as its parameter block. (See Chapter 12 for more information on Service Request instructions.)

BLKCLR (WORD)

Use the Block Clear (BLKCLR) function to fill a specified block of data with zeros.
The BLKCLR function has two input parameters and one output parameter. When the function receives power flow, it writes zeros into the memory location beginning at the reference specified by IN . When the data to be cleared is from discrete memory ($\% \mathrm{I}, \% \mathrm{Q}, \% \mathrm{M}, \% \mathrm{G}$, or $\% \mathrm{~T}$), the transition information associated with the references is also cleared. The function passes power to the right.

Parameters

Parameter	Description
enable	When the function is enabled, the array is cleared.
IN	IN contains the first word of the array to be cleared.
ok	The ok output is energized whenever the function is enabled.
LEN	LEN must be between 1 and 256 words.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
IN		\bullet	\bullet	\bullet	\bullet	$\bullet \dagger$	\bullet	\bullet	\bullet	\bullet		
ok	\bullet											\bullet

- Valid reference or place where power may flow through the function.
$\dagger \% \mathrm{SA}, \% \mathrm{SB}, \% \mathrm{SC}$ only; $\% \mathrm{~S}$ cannot be used.

Example

In the following example, at power-up, 32 words of $\% \mathrm{Q}$ memory (512 points) beginning at \%Q0001 are filled with zeros.

SHFR (BIT, WORD)

Use the Shift Register (SHFR) function to shift one or more data words or data bits from a reference location into a specified area of memory. For example, one word might be shifted into an area of memory with a specified length of five words. As a result of this shift, another word of data would be shifted out of the end of the memory area.

Note

When assigning reference addresses, overlapping input and output reference address ranges in multi-word functions may produce unexpected results.

The SHFR function has four input parameters and two output parameters. The reset input (R) takes precedence over the function enable input. When the reset is active, all references beginning at the shift register (ST) up to the length specified for LEN, are filled with zeros.

If the function receives power flow and reset is not active, each bit or word of the shift register is moved to the next highest reference. The last element in the shift register is shifted into Q . If Q has a unique address, the data shifted out of Q is discarded. However, if IN and Q are given the same address, the data will re-circulate in the shift register. The highest reference of the shift register element of IN is shifted into the vacated element starting at ST. The contents of the shift register are accessible throughout the logic program because they are all contained in addressable memory.

The function passes power to the right whenever power is received through the enable logic.
The function will execute once each scan while it is enabled; so it may be beneficial to use a "oneshot" type enable contact from a transition coil if it is desired to just shift one time for a given contact closure.

Parameters

Parameter	Description
enable	When the enable input is on and the R input is off, the shift is performed. Note that the SHFR will execute once for each scan that it is enabled.
R	When the R input is on, the shift register located at ST is filled with zeros.
IN	IN contains the value to be shifted into the first bit or word of the shift register. For SHFR_BIT, any discrete reference may be used; it does not need to be byte aligned. However, 16 bits, starting with the reference address specified, are displayed online.
ST	ST contains the first bit or word of the shift register. For SHFR_BIT, any discrete reference may be used; it does not need to be byte aligned. However, 16 bits, starting with the reference address specified, are displayed online.
ok	The ok output is energized whenever the enable input is on and the R input is off.
Q	Output Q contains the bit or word shifted out of the shift register. For SHFR_BIT, any discrete reference may be used; it does not need to be byte aligned. However, 16 bits, starting with the reference address specified, are displayed online.
LEN	LEN determines the length of the shift register. For SHFR_WORD, LEN must be between 1 and 256 words. For SHFR_BIT, LEN must be between 1 and 256 bits.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
R	\bullet											
IN		\bullet										
ST		\bullet	\bullet	\bullet	\bullet	$\bullet+$	\bullet	\bullet	\bullet	\bullet		
ok	\bullet											\bullet
Q		\bullet										

- Valid reference for BIT or WORD data, or place where power may flow through the function. For SHFR_BIT, discrete user references $\% \mathrm{I}, \% \mathrm{Q}, \% \mathrm{M}$, and $\% \mathrm{~T}$ need not be byte aligned.
\dagger \%SA, \%SB, \%SC only; \%S cannot be used.

Example 1

In this example, the shift register operates on three (LEN=3) memory locations, \%R0002 through $\% \mathrm{R} 0004$. When the reset contact $\% \mathbf{I} 0002$ is on, the three shift register words are set to zero.

When contact \%I0001 closes, the \%M0201 contact at the SHFR's enable input closes for one scan. This shifts the data in \%R0004 into output Q's address, \%R0005 (the data that was in \%R0005 is discarded). The data in \%R0003 shifts into \%R0004; the data in \%R0002 shifts into \%R0003, and the data in \%R0001 (IN) shifts into \%R0002 (ST). This data flow is shown in the figure below. If desired, data can be re-circulated by using the same address at IN and Q .

Example 2

In Example 2, the shift register is a BIT type. With a LEN of 100, it operates on memory locations \%M0001 through \%M0100. When the reset reference CLEAR is active, the SHFR function fills \%M0001 through $\% \mathrm{M} 0100$ with zeros.

When NXT_CYC (a "one-shot" contact from a transition coil) is on and CLEAR is off, the SHFR function shifts the data in \%M0001 through $\% \mathrm{M} 0100$ up one bit. The bit in $\% \mathrm{Q} 0033$ is shifted into $\% \mathrm{M} 0001$ while the bit shifted out of \%M0100 is written to Q (\%M0200). The previous value of Q is discarded.

BITSEQ (BIT)

The Bit Sequencer (BITSEQ) function shifts a single logic 1 bit sequentially in a circular path through an array of bits. When the bit is shifted to the end of the array, it will wrap around to the other end of the array on the next shift and continue from there. The BITSEQ function has five input parameters and one output parameter.

Enable Input Requirement

The Bit Sequencer's Enable input requires a transition from logic zero to logic one in order for the function to execute one shift, and it will not execute again until it receives another positive-going Enable input transition. Therefore, using the contact from a positive transition coil for the Enable input is unnecessary.

R (Reset) Input

When this input is on, the Bit Sequencer will not execute.
The reset input (R) overrides the enable (EN) and always resets the sequencer. When R is active, the current step number is set to the value specified in the STEP number parameter and all other bits are set to 0 . If no STEP number is specified (STEP=0), the step is set to bit 1 and all other bits are set to 0 .

When EN is active and R is not active, the bit pointed to by the current step number is cleared. The current step number is either incremented or decremented, based on the DIR (direction) parameter. Then, the bit pointed to by the new step number is set to 1 .

STEP Input

- When the step number is being incremented and it goes outside the range of ($1 \leq$ step number \leq LEN), it is set back to 1 .
- When the step number is being decremented and it goes outside the range of ($1 \leq$ step number \leq LEN), it is set to LEN.

The parameter ST is optional. If it is not used (it is left equal to its default of zero), the BITSEQ operates as described above, except that no bits are set or cleared. Basically, the BITSEQ then just cycles the current step number through its legal range.

DIR (Direction) Input

The direction of bit rotation can be changed by turning the DIR input on or off. If on, the bit is incremented through the array. If off, the bit is decremented.

ST (Starting Address) Input and LEN (Length) Parameter

The ST input contains a memory location for the starting address of the sequencer array. The length of the array, in bits, is set by the LEN parameter. For example, if ST is \%M0001 and LEN equals 16 , the array is composed of $\% \mathrm{M} 0001$ through $\% \mathrm{M} 0016$. If ST is a $\% \mathrm{R}$ address, then LEN determines how many consecutive bits in \%R memory are included in the array. For example, if ST is \%R0004, and LEN equals eight, only the first eight bits of register $\% \mathrm{R}$ will be used in the array; the last eight bits of \%R0004 will be ignored by the Bit Sequencer.

Control Block Memory Required for a Bit Sequencer

Each bit sequencer uses three words (registers) of \%R memory to store the following information:

When you program a bit sequencer with Logicmaster, you must enter a beginning address for these three words (registers) directly below the graphic representing the function (see example on next page).

The control word stores the state of the Boolean inputs and outputs of its associated function block, as shown in the following format:

Note

Bits 0 through 13 are not used in the Control Block. Also, note that bits need to be entered as 1 through 16, NOT 0 through 15 in the STEP parameter.

Parameters

Parameter	Description
address	Address is the location of the bit sequencer's current step, length, and the last enable and ok statuses.
enable	When the function is enabled, if it was not enabled on the previous sweep and if R is not energized, the bit sequence shift is performed.
R	When R is energized, the bit sequencer's step number is set to the value in STEP (default 1), and the bit sequencer is filled with zeros, except for the current step number bit.
DIR	When DIR is energized, the bit sequencer's step number is incremented prior to the shift. Otherwise, it is decremented.
STEP	When R is energized, the step number is set to this value.
ST	ST contains the first word of the bit sequencer.
ok	The ok output is energized whenever the function is enabled.
LEN	LEN must be between 1 and 256 bits.

Note

Coil checking for the BITSEQ function checks 16 bits from the ST parameter, even when LEN is less than 16.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
address								\bullet				
enable	\bullet											
R	\bullet											
DIR	\bullet											
STEP		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
ST		\bullet	\bullet	\bullet	\bullet	$\bullet \dagger$	\bullet	\bullet	\bullet	\bullet		\bullet
ok	\bullet											\bullet

- Valid reference or place where power may flow through the function.
$\dagger \mathrm{SA}, \% \mathrm{SB}, \% \mathrm{SC}$ only; \%S cannot be used

Example

In the following example, the Bit Sequencer operates on bits \%M0011 (specified in the ST input) through \%M0022 (since LEN equals twelve). Its three-word control block is stored in registers \%R0010, \%R0011, and \%R0012. When \%I0002 (on the R input) is on, the sequencer is reset, which means that the bit for step three (specified in the STEP input) will be set to logic one and all other bits will be set to zero.

When \%I0001 goes to logic 1 (with \%I0002 off), the bit for step number 3 is cleared and either the bit for step number 4 will be set if DIR is on, or the bit for step number 2 will be set if DIR is off.

COMMREQ

Use the Communication Request (COMMREQ) function if the program needs to communicate with an intelligent module, such as a Genius Communications Module or a Programmable Coprocessor Module.

Note

The information presented on the following pages shows the general format of the COMMREQ function. You will need additional information to program the COMMREQ for each type of device. Programming requirements for each module that uses the COMMREQ function are described in the module's documentation.

The COMMREQ function has three input parameters and one output parameter. When the COMMREQ function receives power flow, a command block of data is sent to the intelligent module. The command block begins at the reference specified using the parameter IN. The rack and slot \# of the intelligent module are specified in SYSID.

The COMMREQ may either send a message and wait for a reply, or send a message and continue without waiting for a reply. If the command block specifies that the program will not wait for a reply, the command block contents are sent to the receiving device and the program execution resumes immediately. (The timeout value is ignored.) This is referred to as NOWAIT mode.

If the command block specifies that the program will wait for a reply, the command block contents are sent to the receiving device and the CPU waits for a reply. The maximum length of time the PLC will wait for the device to respond is specified in the command block. If the device does not respond within that time, program execution resumes. This is referred to as WAIT mode.

The Function Faulted (FT) output may be set ON if:

1. The specified target (SYSID) is not present in that location.
2. The specified task (TASK) number is not valid for the targeted device
3. The data length is 0 (in the Command Block).
4. The device's status pointer address (part of the Command Block) does not exist. This may be due to an incorrect memory type selection, or an address within that memory type that is out of range.

Command Block

The Command Block provides information to the targeted intelligent module. It contains the command number to be performed as well as any data to be transferred.

The address of the Command Block is specified at the IN input to the COMMREQ function. This address may be in any word-oriented area of memory (\%R, \%AI, or \%AQ). The length of the command block depends on the type of module targeted by the COMMREQ and the amount of data to be sent.

The command block has the following structure:

Length (in words)	address
Wait/No Wait Flag	address +1
address +2	
Status Pointer Memory	address +3
Status Pointer Offset	address +4
Idle Timeout Value	address +5 Maximum Communication Time
Data Block	address +6 to address +133

Information required for the command block can be placed in command block memory using an appropriate programming function such as a Block Move or a series of Moves.

Parameters

Parameter	Description
enable	While the enable input is on, the communications request is performed once per scan. If it is not desirable to send the COMMREQ multiple times, the enable input should be a contact from a Transition Coil.
IN	IN contains the starting address of the first word of the command block.
SYSID	SYSID contains the rack number (most significant byte) and slot number (least significant byte) of the targeted module.
TASK	TASK contains the task ID of the process on the targeted module.
FT	The FT (fault) output is energized if an error is detected processing the COMMREQ.

Note

The Series 90-30 COMMREQ does not have an OK output.
Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
IN								\bullet	\bullet	\bullet		
SYSID		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	
TASK								\bullet	\bullet	\bullet	\bullet	
FT	\bullet											\bullet

- Valid reference or place where power may flow through the function.

Example

In the following example, when enable input \%IO001 is on, a command block starting at \%R0100 (specified at the IN input) is sent to communications task 1 (TASK input $=1$) in the module located at rack 0 , slot 8 (SYSID=0008) of the PLC. If an error occurs while processing the COMMREQ, the Fault (FT) output turns on, which turns on \%M0100.

Notice that the address at input IN specifies the starting address of the Command Block. Also, the hex. number at SYSID specifies the rack and slot number of the targeted module; the high byte refers to the rack number and the low byte refers to the slot number. Therefore, the SYSID of 0008 in the example refers to rack 00 and slot 08 , as shown. Rack 0 (zero) always refers to the main or CPU rack, so if the targeted module was in an expansion or remote rack, the high byte of SYSID would contain a non-zero number that corresponds to the configured rack number where the targeted module is located.

Chapter 10

Table Functions

Table instructions are used to perform the following functions:

Abbreviation	Function	Description	Page
ARRAY_MOVE	Array Move	Copy a specified number of data elements from a source array to a destination array.	$10-2$
SRCH_EQ	Search Equal	Search for all array values equal to a specified value.	$10-7$
SRCH_NE	Search Not Equal	Search for all array values not equal to a specified value.	$10-7$
SRCH_GT	Search Greater Than	Search for all array values greater than a specified value.	$10-7$
SRCH_GE	Search Greater Than or Equal	Search for all array values greater than or equal to a specified value.	$10-7$
SRCH_LT	Search Less Than	Search for all array values less than a specified value.	$10-7$
SRCH_LE	Search Less Than or Equal	Search for all array values less than or equal to a specified value.	$10-7$

The maximum length allowed for these functions is 32,767 bytes or words, or 262,136 bits (bits are available for ARRAY_MOVE only).

Table functions operate on these types of data:

Data Type	Description
INT	Signed integer.
DINT	Double precision signed integer.
BIT $*$	Bit data type.
BYTE	Byte data type.
WORD	Word data type.

* Only available for ARRAY_MOVE.

The default data type is signed integer. The data type can be changed after selecting the specific data table function in the ladder logic software. To compare data of other types or of two different types, first use the appropriate conversion function (described in chapter 11, "Conversion Functions") to change the data to one of the data types listed above.

ARRAY_MOVE (INT, DINT, BIT, BYTE, WORD)

Arrays and Data Elements Defined

For the purpose of this discussion, an array is a grouping of contiguous addressable PLC memory, such as $\%$ R0100 through $\%$ R0120. A data element is the data held in one unit of array memory. For example, if an array is a Bit type, then each data element is held in a single bit of memory, such as \%M0001 (or it could be a single bit in register-type memory). Or, if an array is a Word type, then each data element is held in a 16-bit word of memory, such as \%R0100 (or it could be 16 consecutive \%I bits). See the "Valid Memory Types" table for more information on this.

Index Numbers

Each data element of an array has a reference number called an index number, which is automatically assigned by the PLC. The index number indicates the data element's position in the array. The data elements are numbered in ascending order, starting with the lowest memory address in the array, which is assigned index number one.

For example, the following Word-type array has a starting address of \%R0105. It has ten data elements, whose index numbers are 1 through 10.

Address	Index No.
$\% \mathrm{R} 0105$	1
$\% \mathrm{R} 0106$	2
$\% \mathrm{R} 0107$	3
$\% \mathrm{R} 0108$	4
$\% \mathrm{R} 0109$	5
$\% \mathrm{R} 0110$	6
$\% \mathrm{R} 0111$	7
$\% \mathrm{R} 0112$	8
$\% \mathrm{R} 0113$	9
$\% \mathrm{R} 0114$	10

The Array Move Instruction

Use the Array Move function to copy a specified number of data elements from a source array to a destination array. Each array referenced by an Array Move instruction has an equal number of data elements. The Array Move allows the relative locations involved in the move to be different between the source and destination arrays. For example, three data elements, starting at index 5 in the source array, may be copied to three data elements in the destination array starting at index 7 .

The ARRAY_MOVE function has five input parameters and two output parameters. When the function is enabled, the number of data elements in the count indicator (N) are copied from the input array starting with the indexed location specified at the SNX input. The data elements are written to the output array starting with the indexed location specified at DNX The LEN operand specifies the number of elements that make up each array.

For ARRAY_MOVE_BIT, when word-oriented memory is selected for the parameters of the source array and/or destination array starting address, the least significant bit of the specified word is the first bit of the array. The value displayed on the Logicmaster screen contains 16 bits, regardless of the length of the array.

The indices in an ARRAY_MOVE instruction are 1-based. In using an ARRAY_MOVE, no element outside either the source or destination arrays (as specified by their starting address and length) may be referenced.

The ok output will receive power flow, unless one of the following conditions occurs:

- Enable is OFF.
- ($\mathrm{N}+\mathrm{SNX}-1$) is greater than LEN. This formula is used by the PLC to ensure that no element outside the source array is referenced.
- ($\mathrm{N}+\mathrm{DNX}-1$) is greater than LEN. This formula is used by the PLC to ensure that no element outside the destination array is referenced.
- $\quad \mathrm{SNX}$ or $\mathrm{DXN}=0$.

Parameters

Parameter	Description
enable	When the enable input is on, the Array Move operation is performed.
SR	SR contains the starting address of the source array. For ARRAY_MOVE_BIT, any reference may be used; it does not need to be byte aligned. However, 16 bits, beginning with the reference address specified, are displayed on the Logicmaster screen.
SNX	SNX contains the index number in the source array of the first data element to be copied.
DNX	DNX contains the index number in the destination array of the first element to be copied to.
N	The number of data elements to be copied.
ok	The ok output is energized whenever enable is energized.
DS	DS contains the starting address of the destination array. For ARRAY_MOVE_BIT, any reference may be used; it does not need to be byte aligned. However, 16 bits, beginning with the reference address specified, are displayed online.
LEN	LEN specifies the number of data elements, starting at SR and DS, that make up each array.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
SR		o	o	o	o	$\Delta \dagger$	\circ	\bullet	\bullet	\bullet		
SNX		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	
DNX		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	
N		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	
ok	\bullet											\bullet
DS		o	o	o	o	\dagger	\circ	\bullet	\bullet	\bullet		

- Valid reference or place where power may flow through the function.

For ARRAY_MOVE_BIT, discrete user references $\% \mathrm{I}, \% \mathrm{Q}, \% \mathrm{M}$, and $\% \mathrm{~T}$ need not be byte aligned.
o Valid reference for INT, BIT, BYTE, or WORD data only; not valid for DINT.
Δ Valid data type for BIT, BYTE, or WORD data only; not valid for INT or DINT.
$\dagger \% \mathrm{SA}, \% \mathrm{SB}, \% \mathrm{SC}$ only; \%S cannot be used.

Example 1

In this example, both arrays are INT types that are 10 elements (integers) long, specified by LEN $=10$. Their starting addresses are specified at SR and DS. When enable contact $\% \mathrm{M} 0201$ is on, five data elements (specified by $\mathrm{N}=5$) are copied from the source array to the destination array. The five copied data elements of the source array start with index number 3, since $\mathrm{SNX}=3$. The locations copied to in the destination array start with index number 5, since DNX=5. So \%R0003 through \%R0007 of the source array are read and then copied into \%R0104 through \%R0108 of the destination array.

Example 2
In this example, both arrays are BIT types that are10 elements (bits) long, specified by LEN=10. Their starting addresses are specified at SR and DS. When enable contact $\%$ M0201 is on, four data elements (specified by $\mathrm{N}=4$) are copied from the source array to the destination array. The four copied data elements of the source array start with index number 4, since $\mathrm{SNX}=4$. The locations copied to in the destination array start with index number 2, since DNX=2. So \%M0012 through $\% \mathrm{M} 0015$ of the source array are read and then copied into $\% \mathrm{Q} 0023$ through $\% \mathrm{Q} 0026$ of the destination array.

Example 3

In this example, both arrays are BIT types that are 20 elements (bits) long, specified by LEN=20. Their starting addresses are specified at SR and DS. When enable contact $\% \mathrm{M} 0201$ is on, 12 data elements (specified by $\mathrm{N}=12$) are copied from the source array to the destination array. The 12 copied data elements of the source array start with index number 6 , since $\mathrm{SNX}=6$. The locations copied to in the destination array start with index number 8, since DNX=8. So \%R0001, bit 6 through $\%$ R0002, bit 1 of the source array are read and then copied into \%R0100, bit 8 through \%R0101, bit 3 of the destination array.

Search Functions

Use the appropriate Search function listed below to search for all array values for that particular operation.

Abbreviation	Function	Description
SRCH_EQ	Search Equal	Search for all array values equal to a specified value.
SRCH_NE	Search Not Equal	Search for all array values not equal to a specified value.
SRCH_GT	Search Greater Than	Search for all array values greater than a specified value.
SRCH_GE	Search Greater Than or Equal	Search for all array values greater than or equal to a specified value.
SRCH_LT	Search Less Than	Search for all array values less than a specified value.
SRCH_LE	Search Less Than or Equal	Search for all array values less than or equal to a specified value.

Each function has four input parameters and two output parameters. When the function receives power, the array is searched starting at ($\mathrm{AR}+$ input NX). This is the starting address of the array (AR) plus the index into this array (input NX).

The search continues until the array element of the search object (IN) is found or until the end of the array is reached. If an array element is found, output parameter (FD) is set ON and output parameter (output NX) is set to the relative position of this element within the array. If no array element is found before the end of the array is reached, then output parameter (FD) is set OFF and output parameter (output NX) is set to zero.

The valid values for input NX are 0 to LEN - 1. NX should be set to zero to begin searching at the first element. This value increments by one at the time of execution. Therefore, the values of output NX are 1 to LEN. If the value of input NX is out-of-range, (<0 or \geq LEN $)$, its value is set to the default value of zero.

Parameters

Parameter	Description
enable	When the enable input is on, the operation is performed.
AR	AR contains the starting address of the array to be searched (the target array).
Input NX	Input NX contains an index number (in the target array) where the search is to begin.
IN	IN contains the object to be searched for.
Output NX	If the object of the search is found, its location in the array (its index number) will be written here.
FD	This output turns on to indicate that the searched for object has been found in the array.
LEN	LEN specifies the number of elements starting at AR that make up the array to be searched. It may be 1 to 32,767 bytes or words.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
AR		o	o	o	o	Δ	0	\bullet	\bullet	\bullet		
NX in		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	
IN		o	o	o	o	Δ	0	\bullet	\bullet	\bullet	\bullet	
NX out		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet		
FD	\bullet											\bullet

- Valid reference or place where power may flow through the function.
o Valid reference for INT, BYTE, or WORD data only; not valid for DINT.
Δ Valid reference for BYTE or WORD data only; not valid for INT or DINT.

Example 1

The SRCH_EQ function (INT type) in this example searches the block of memory that starts at \%R0001 (specified at AR) and continues through \%R0010 (LEN=10). The value to be searched for, defined at IN , is +16566 . Input NX , with a value of 3 , indicates that the search is to begin at the fourth data element in the array since the NX value is incremented by 1 when the function executes.

When enable contact $\% \mathrm{M} 0201$ is on, the SRCH_EQ function searches the specified array, starting at index number 4 , for a value equal to the value at $\mathrm{IN},+16566$. It finds this value in $\% \mathrm{R} 0007$, which has an index number of 7 , so it writes the number 7 into the output NX at $\%$ R0100. It also turns on output FD, which indicates that it found the search object in the array. Note that although address $\%$ R0002 also contains the searched-for value of +16566 , this data element was not included in the search because the input NX parameter value of 3 specified that the search start with the fourth data element, which is \%R0004.

Example 2

The array in this example starts at \%AI0001 (specified at AR) and continues through \%AI0016 ($\mathrm{LEN}=16$). The value to be searched for, defined at IN , is +16566 . The input NX, with a starting value of 0 , indicates that the search is to begin at the first data element in the array since the NX value increments by 1 when the function executes.

When \%M0200 closes for the first time, the function executes its first search, starting with data element 1 , for a value equal to the value at $\mathrm{IN}, 00000$. It finds this value in $\% \mathrm{AI} 0003$, which has an index number of 3 , so it writes the number 3 into the output NX and input NX, which both have the reference address of $\%$ R0001. It also turns on output FD, which indicates that it found the search object in the array.

When \%M0200 closes the second time, the input NX value, which is now set to 3 , increments by 1 , so the second search begins at the fourth array element, \%AI0004. The target value of 00000 is now found in \%AI0007, the seventh data element, so the number 7 is written to $\%$ R0001. Each succeeding search follows this pattern, until the fifth search, in which no target is found. Since no target is found, a 0 is written to $\%$ R0001, which will ensure that the search will start at the beginning of the array the next time the search is initiated.

Search No.	Search Starts at Data Element	Search Results (in \% R0001)
1	1	3
2	4	7
3	8	11
4	12	15
5	16	0

Chapter
 Conversion Functions

11

Use the conversion functions to convert a data item from one number type to another. Many programming instructions, such as math functions, must be used with data of one type. This section describes the following conversion functions:

Abbreviation	Function	Description	Page
BCD-4	Convert to BCD-4	lonvert a signed integer to 4-digit BCD format.	$11-2$
INT	Convert to Signed Integer	Convert BCD-4 or REAL to signed integer.	$11-3$
DINT	Convert to Double Precision Signed Integer	Convert REAL to double precision signed integer format.	$11-5$
REAL	Convert to REAL	Convert INT, DINT, BCD-4, or WORD to REAL.	$11-7$
WORD	Convert to WORD	Convert REAL to WORD format.	$11-9$
TRUN	Truncate	Round the real number toward zero.	$11-11$

\rightarrow BCD-4 (INT)

The Convert to BCD-4 function is used to output the 4-digit BCD equivalent of signed integer data. The original data is not changed by this function. Data can be converted to BCD format to drive BCD-encoded LED displays or presets to external devices such as high-speed counters.

When the function receives power flow, it performs the conversion, making the result available via output Q . The function passes power flow when power is received, unless the specified conversion would result in a value that is outside the range 0 to 9999 .

Parameters

Parameter	Description
enable	When the function is enabled, the conversion is performed.
IN	IN contains a reference for the integer value to be converted to BCD-4.
ok	The ok output is energized when the function is performed without error.
Q	Output Q contains the BCD-4 form of the original value in IN.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
IN		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	
ok	\bullet											\bullet
Q		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet		

- Valid reference or place where power may flow through the function.

Example

In the following example, when input $\% \mathrm{I} 0002$ is set and no errors exist, the integer at input location $\% \mathrm{M} 0017$ through $\% \mathrm{M} 0032$ is converted to four BCD digits, and the result is stored in memory locations \%Q0033 through \%Q0048. Coil \%M0032 turns on to verify successful conversion.

The Convert to Signed Integer function is used to output the integer equivalent of BCD-4 or REAL data. The original data is not changed by this function.

Note

The REAL data type is only available on 35x and 36x series CPUs, Release 9 or later, and on all releases of CPU352 and CPU37x.

When the function receives power flow, it performs the conversion, making the result available via output Q . The function always passes power flow when power is received, unless the data is out of range.

Parameters

Parameter	Description
enable	When the enable input is on, the conversion is performed.
IN	IN contains a reference for the BCD-4, REAL, or Constant value to be converted to integer.
ok	The ok output is energized whenever enable is energized, unless the data is out of range or NaN (Not a Number).
Q	Output Q contains the integer form of the original value in IN.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
IN		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	
ok	\bullet											\bullet
Q		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet		

Note: For REAL data, the only valid types are \%R, \%AI, and \%AQ.

- Valid reference or place where power may flow through the function.

Example 1 - BCD4 to Integer

In the following example, whenever input $\% \mathrm{IO} 002$ is set, the BCD-4 value in PARTS is converted to a signed integer and placed in \%R0001. In the following ADD function, \%R0001 is added to the signed integer value represented by the reference RUNNING. The sum is output by the ADD function to the reference TOTAL.

Example 2 - Real to Integer

This example shows conversion of a real number at \%R0101 to an integer number at \%R0200. When the enable input contact $\% \mathrm{M} 0100$ is on, the conversion takes place. Note that during the conversion, the real number is rounded to the nearest integer. If the decimal portion of the real number is 0.5 or greater, the resulting integer is rounded up by a value of 1 . If the decimal portion of the real number is less than 0.5 , this decimal portion is discarded and the integer number is not rounded up. In the example below, real value 378.9462 is rounded up to integer value 379 .

If rounding is not wanted, use the REAL_TRUN_INT function, which truncates the decimal portion of the real number, regardless of its value, during the conversion.

\rightarrow DINT (REAL)

The Convert to Double Precision Signed Integer function is used to output the double precision signed integer equivalent of real data. The original data is not changed by this function.

Note

The REAL data type is only available on 35x and 36x series CPUs, Release 9 or later, and on all releases of CPU352 and CPU37x.

When the function receives power flow, it performs the conversion, making the result available via output Q . The function always passes power flow when power is received, unless the real value is out of range.

Parameters

Parameter	Description
enable	When the function is enabled, the conversion is performed.
IN	IN contains a reference for the value to be converted to double precision integer.
ok	The ok output is energized whenever enable is energized, unless the real value is out of range.
Q	Q contains the double precision signed integer form of the original value in IN.

Note

It is possible for a loss of precision to occur when converting from REAL to DINT since the REAL has 24 significant bits.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\cdot											
IN		0	0	0	0		0	\bullet	\bullet	\bullet	\bullet	
ok	\cdot											\bullet
Q								\bullet	\bullet	\bullet		

- Valid reference or place where power may flow through the function.

Example

In the following example, whenever enable input $\% \mathrm{M} 0100$ is on, the real value at input location $\% \mathrm{R} 0101$ is converted to a double precision signed integer, and the result is placed in location \%R0200. Note that during the conversion, the real number is rounded to the nearest integer. If the decimal portion of the real number is 0.5 or greater, the resulting integer is rounded up by a value of 1 . If the decimal portion of the real number is less than 0.5 , this decimal portion is discarded and the integer number is not rounded up. In the example below, real value 7890.542 is rounded up to double integer value 7891 .

If rounding is not wanted, use the REAL_TRUN_DINT function, which truncates the decimal portion of the real number, regardless of its value, during the conversion.

\rightarrow REAL (INT, DINT, BCD-4, WORD)

The Convert to Real function is used to output the real value of the input data. The original data is not changed by this function.

When the function receives power flow, it performs the conversion, making the result available via output Q . The function passes power flow when power is received, unless the specified conversion would result in a value that is out of range.

It is possible for a loss of precision to occur when converting from DINT to REAL since the number of significant bits is reduced to 24 .

Note

This function is only available on $35 x$ and $36 x$ series CPUs, Release 9 or later, and on all releases of CPU352 and CPU37x.

Parameters

Parameter	Description
enable	When the function is enabled, the conversion is performed.
IN	IN contains a reference for the integer value to be converted to REAL.
ok	The ok output is energized when the function is performed without error.
Q	Q contains the REAL form of the original value in IN.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\cdot											
IN		0	0	0	0		0	\cdot	\bullet	\cdot	\cdot	
ok	\bullet											\bullet
Q								\bullet	\bullet	\bullet		

[^33]
Example 1 - Integer to Real Conversion

In the following example, the integer value of input IN is +07891 . The resulting value placed in \%R0200 after the conversion to real format is +7891.000 .

Example 2 - Double Integer to Real Conversion

In the following example, the double integer value of input IN is +1234567891 . The resulting value placed in \%R0200 after the conversion to real format is +1234568000 . Note that a double integer number has 10 significant places, but a real number has only 7 significant places; therefore, an integer number is rounded to 7 significant places during the conversion to a real number. In the example shown, the four least significant digits, 7891 , of the double integer number are rounded to 8000 in the four least significant digits of the real number.

\rightarrow WORD (REAL)

The Convert to WORD function is used to output the WORD equivalent of real data. The original data is not changed by this function.

Note

This function is only available on the $35 x, 36 x$, and $37 x$ series CPUs.
When the function receives power flow, it performs the conversion, making the result available via output Q . The function passes power flow when power is received, unless the specified conversion would result in a value that is outside the range 0 to FFFFh.

Parameters

Parameter	Description
enable	When the function is enabled, the conversion is performed.
IN	IN contains a reference for the value to be converted to WORD.
ok	The ok output is energized when the function is performed without error.
Q	Q contains the unsigned integer form of the original value in IN.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
IN								\bullet	\bullet	\bullet	\bullet	
ok	\bullet											\bullet
Q		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet		

[^34]
Example - Real to Word Conversion

In this example, since the RANGE function is not available as a REAL type, the real value in $\% \mathrm{R} 0001$ is first converted to a word value (at \%R0003), which is then used as the input to the following RANGE WORD function.

The table below shows the values at the various inputs and outputs for the following figure.

Item	Value or State
\%R0001	15767.83
\%R0003	3A89h $(15,768$ decimal $)$
HI LIM	4E20h $(20,000$ decimal $)$
LOW LIM	$2710 \mathrm{~h}(10,000$ decimal $)$
Q1	ON

TRUN (INT, DINT)

The Truncate function is used to round a real number toward zero. During the conversion, all numbers to the right of the decimal place are discarded in the output number. The original number is not changed by this function.

Note

The $35 x$ and $36 x$ series CPUs (Release 9.00 or later and all releases of CPU352), and 37 x are the only Series 90-30 CPUs with floating point capability; therefore, the TRUN function has no applicability for other 90-30 CPUs.

When the function receives power flow, it performs the conversion, making the result available via output Q. For CPU 352, the function passes power flow when power is received, unless the specified conversion would result in a value that is out of range or unless IN is NaN (Not a Number). For all other $35 x$ and $36 x / 37 x$ series CPUs, the function does not pass power.

Parameters

Parameter	Description
Enable	When the function is enabled, the conversion is performed.
IN	IN contains a reference for the real value to be truncated.
Ok	The ok output is energized when the function is performed without error, unless the value is out of range or IN is NaN.
Q	Q contains the truncated INT or DINT value of the original value in IN.

Note

It is possible for a loss of precision to occur when converting from REAL to DINT since the REAL has 24 significant bits.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
IN								\bullet	\bullet	\bullet	\bullet	
ok	\bullet											\bullet
Q		0	0	0	0		0	\bullet	\bullet	\bullet		

[^35]
Example 1 - Truncate Real to Integer with Output Coil for CPU352

In the following example, the value at \%R0101 is truncated (the decimal portion is discarded) and the resulting integer value of +05432 is placed into $\%$ R0200. . If a CPU352 were used, $\%$ M0101 would turn on, indicating a successful conversion. If any other $35 x, 36 x$, or 37 x CPU is used, no power flow is produced at the OK output, so no output coil would be programmed.

Example 2 - Truncate Real to Double Integer with Output Coil for CPU352

In the following example, the value at $\%$ R0101 is truncated (the decimal portion is discarded) and the resulting double integer value of +0000005432 is placed into $\%$ R0200. If a CPU352 were used, \%M0101 would turn on, indicating a successful conversion. If any other 35x, 36x, or 37x CPU is used, no power flow is produced at the OK output, so no output coil would be programmed.

Chapter
 12

Control Functions

This chapter describes the control functions, which can be used to limit program execution and alter the way the CPU executes the application program. Refer to Chapter 2, section 1, "PLC Sweep Summary," for information on the CPU sweep.

Function	Description	Page
CALL	Causes program execution to go to a specified subroutine block.	$12-2$
DOIO	For one sweep, immediately services a specified range of inputs or outputs. (All inputs or outputs on a module are serviced if any reference locations on that module are included in the DO I/O function. Partial I/O module updates are not performed.) Optionally, a copy of the scanned I/O can be placed in internal memory, rather than the real input points.	$12-3$
SER	Sequential Event Recorder- collects a series of samples. A function control block contains user- supplied configuration of function block execution, sample configuration and operation parameters.	$12-8$
END	Provides a temporary end of logic. The program executes from the first rung to either the last rung or the END instruction, whichever is encountered first. This instruction is useful for debugging purposes, but it is not permitted in SFC programming (refer to the Note on page 12-8).	$12-23$
MCR and MCRN	Programs a Master Control Relay. An MCR causes all rungs between the MCR and its subsequent ENDMCR to be executed without power flow. Logicmaster 90-30/20/Micro software supports two forms of the MCR function, a nested form (MCRN) and a non-nested form (MCR).	$12-24$
ENDMCR and ENDMCRN	Indicates that the subsequent logic is to be executed with normal power flow. Logicmaster 90- 30/20/Micro software supports two forms of the ENDMCR function, a nested form (ENDMCRN) and a non-nested form (ENDMCR).	$12-30$
JUMP and	Causes program execution to jump to a specified location (indicated by a LABEL, see below) in the logic. Logicmaster 90-30/20/Micro software supports two forms of the JUMP function, a non-nested form (JUMP) and a nested form (JUMPN).	$12-31$
JUMPN		

Use the CALL function to cause program execution to go to a specified subroutine block.

When the CALL function receives power flow, it causes the scan to go immediately to the designated subroutine block and execute it. After the subroutine block execution is complete, control returns to the rung in the logic immediately following the CALL instruction.

Example

In the following example, the CALL instruction is programmed to call the subroutine named ROTATE when contact $\% \mathrm{I} 0006$ is on. (Note that before you can enter a subroutine name in a CALL instruction, the subroutine name must already exist in the Block Declarations table.) By positioning the cursor within the CALL instruction, you can press F10 to zoom into the subroutine to view the subroutine logic. Once a subroutine is called, program execution will branch to the subroutine, which will execute to completion, then pass program execution over to the rung following the calling rung. In the example below, the subroutine is called from the second rung, so when the subroutine finishes executing, the program scan will resume with the third rung.

Note

Micro PLCs do not accommodate subroutines; therefore, the CALL function is inappropriate for use with a Micro PLC.

The DO I/O (DOIO) function is used to update specified inputs or outputs for one scan while the program is running. The DOIO function can also be used to update selected I/O during the program in addition to the normal I/O scan. Under normal circumstances, the input tables are updated during the input scan portion of the PLC sweep and will not be updated again until the next sweep. The output tables are updated during the logic solution portion of the PLC sweep, but the output modules are not updated until the logic solution portion is finished. With the DO I/O function, updates of the input tables and output modules can be forced during the logic solution portion of the scan. This capability allows you to read input changes and write to outputs more quickly than is possible with the normal PLC scan. Refer to Chapter 2 for more information about the PLC sweep.

If input references are specified, the function allows the most recent values of inputs to be obtained (written to the input tables) for program logic. If output references are specified, DO I/O updates output modules based on the most current values stored in I/O memory. I/O is serviced in increments of entire I/O modules; the PLC adjusts the references, if necessary, while the function executes.

Use with Input Modules

The DOIO function has four input parameters and one output parameter. When the function receives power flow and input references are specified, the input points at the starting reference (ST) and ending at END are scanned. If a reference is specified for ALT, a copy of the new input values is placed in memory, beginning at that reference, and the applicable input table is not updated. ALT must be the same size as the reference type scanned. If a discrete reference is used for ST and END, then ALT must also be discrete. If no reference is specified for ALT, the applicable input table is updated.

Use with Output Modules

When the DOIO function receives power flow and output references are specified, the output points at the starting reference (ST) and ending at END are written to the output modules. If outputs should be written to the output modules from internal memory, other than $\% \mathrm{Q}$ or $\% \mathrm{AQ}$, the beginning reference can be specified for ALT. The range of outputs written to the output modules is specified by the starting reference (ST) and the ending reference (END).

Execution of the function continues until either all inputs in the selected range have reported, or all outputs have been serviced on the I/O modules. Program execution then returns to the next function following the DO I/O.

Use with Option Modules

If the range of references includes an option module (HSC, APM, etc.), then all of the input data (\%I and \%AI) or all of the output data ($\% \mathrm{Q}$ and $\% \mathrm{AQ}$) for that module will be scanned. The ALT parameter is ignored while scanning option modules. Also, if it is desired to use the DOIO with an Enhanced GCM module (IC693CMM302), the requirement in the following note must be met.

Note

The DOIO function can only be used with an Enhanced GCM module (IC693CMM302) in systems with Release 9.0 and later CPUs.

The function passes power to the right whenever power is received, unless:

- Not all references of the type specified are present within the selected range.
- The CPU is not able to properly handle the temporary list of I/O created by the function.
- The range specified includes I/O modules that are associated with a "Loss of I/O" fault.

Parameters

Parameter	Description
enable	When the enable input is on, a limited input or output scan is performed.
ST	ST is the starting address of a group of input or output points or words to be serviced.
END	END is the ending address of the group of input or output points or words to be serviced.
ALT	For the input scan, ALT specifies the address to store scanned input point/word values. For the output scan, ALT specifies the address to get output point/word values from to send to the I/O modules. For Model 331 and later CPUs, the ALT parameter can have an effect on speed of DOIO function block execution (see Note below and the section on the enhanced DO I/O function for 331 and later CPUs later in this chapter). If the ALT function is not used, this input should be left blank; if a constant value of $\mathbf{0}$ is programmed for ALT, the CPU may experience Watchdog Timeout Errors.
ok	The ok output is energized when the input or output scan completes normally.

Note

An Enhanced DOIO function is available for Model 331 and later CPUs. In the Enhanced DOIO, the ALT parameter can be used to enter the slot number of a single discrete input or output module in the main rack. This Enhanced DOIO function will execute in 80 microseconds instead of the 236 microseconds required when the DOIO is programmed without the ALT parameter. No error checking is performed to prevent overlapping reference addresses or module type mismatches. See the "Enhanced DO I/O Function" section later in this chapter for details.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
ST		\bullet	\bullet						\bullet	\bullet		
END		\bullet	\bullet						\bullet	\bullet		
ALT		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet		\bullet
ok	\bullet											\bullet

- Valid reference or place where power can flow through the function.

Input Example 1

In the following example, when enabling input \%M0001 turns ON, references \%I0001 (specified at ST) through \%I0064 (specified at END) are scanned and \%Q0001 is turned on. A copy of the scanned inputs is placed in internal memory from reference $\% \mathrm{M} 0001$ (specified at ALT) through \%M0064. Because an alternate location was specified at ALT, the \%I input table is not updated by the DO_IO. This form of the function can be used to compare the current values of input points with their previous values (i.e. their values at the beginning of the logic solution scan).

Input Example 2

In the following example, when enabling input $\% \mathrm{M} 0001$ is ON, references \%I0001 (specified at ST) through \%I0064 (specified at END) are scanned and \%Q0001 is turned on. Since no alternate memory location is specified at ALT, the scanned input values are used by the DO_IO to update the input table from reference $\% \mathrm{I} 0001$ to $\% \mathrm{I} 0064$. This form of the function allows input points to be scanned and updated one or more times during the logic solution portion of the CPU sweep. Note that when the ALT input is not used, it should be left blank as shown. Do not place a zero on the ALT input because that will cause Watchdog Timer faults.

Output Example 1

In the following example, when enabling input $\% \mathrm{M} 0001$ is ON , the values of analog output channels \%AQ001 (specified at ST) through \%AQ004 (specified at END) are written to references \%R0001 (specified at ALT) through \%R0004 respectively, and \%Q0001 is turned on. Because the \%R0001 alternate location was specified at ALT, the values at \%AQ001 through \%AQ004 are not written to the analog output modules by the DO_IO.

Output Example 2

In the following example, when the enabling input $\% \mathrm{M} 0001$ is ON , the values at references \%AQ001 through \%AQ004 are written to analog output channels \%AQ001 through \%AQ004 on the applicable analog output modules, and \%Q0001 is turned on. The DO_IO updates the analog output modules because no alternate memory location is specified at ALT. Note that when the ALT input is not used, it should be left blank as shown. Do not place a zero on the ALT input because that will cause Watchdog Timer faults.

Enhanced DO I/O Function for 331 and Later CPUs

Caution

Programs containing an Enhanced DO I/O should not be loaded by a version of Logicmaster 90-30/20 software earlier than 4.01.

An enhanced version of the DO I/O (DOIO) function is available for Release 4.20 or later, of Models 331 and later CPUs. This enhanced version of the DOIO function can only be used on a single discrete input or discrete output 8 -point, 16 -point, or 32 -point module.

The ALT parameter identifies the slot in the main rack of the target module. For example, a constant value of 2 at ALT indicates that the module in slot 2 is targeted. The ST and END parameters set the range of memory to be acted upon.

Note

The only checking associated with the enhanced DOIO function block is a basic check of the target module's condition.

The enhanced DOIO function only applies to modules located in a modular CPU rack. Therefore, the ALT parameter must be between 2 and 5 for a 5 -slot rack or 2 and 10 for a 10-slot rack.

The start (ST) and end (END) references must be either \%I or \%Q. These references specify the first and last reference the module is configured for. For example, if a 16 -point input module is configured at \%I0001 through \%I0016 in slot 7 of a 10 -slot main (CPU) rack, the ST parameter must be $\% \mathrm{I} 0001$, the END parameter must be $\% \mathrm{I} 0016$, and the ALT parameter must be 10 , as shown below:

The following table compares the execution times of a normal DOIO function block for an 8-point, 16-point, or 32-point discrete input/output module with those of an enhanced DOIO function block.

Module	Normal DOIO Execution Time	Enhanced DOIO Execution Time
8-Pt Discrete Input Module	224 microseconds	67 microseconds
8-Pt Discrete Output Module	208 microseconds	48 microseconds
16-Pt Discrete Input Module	224 microseconds	68 microseconds
16-Pt Discrete Output Module	211 microseconds	47 microseconds
32-Pt Discrete Input Module	247 microseconds	91 microseconds
32-Pt Discrete Output Module	226 microseconds	50 microseconds

SER (Sequential Event Recorder)

Requires CPUs 35x or 36x with Firmware 9.00 or later, or CPU37x

- The SER (Sequential Event Recorder) function block collects a series of discrete samples (it only works with discrete data). An SER function block collects up to 32 contiguous or noncontiguous bits per sample when the Enable input receives power flow.
- Each SER can capture up to 1024 samples, with up to 32 bits per sample.
- If the SER function block is embedded in a periodic subroutine, sampling rate is based on the periodic subroutine execution rate.
- Only the trigger sample is time stamped. The trigger sample can be time-stamped in BCD (maximum resolution is 1 second) or POSIX format (maximum resolution is 10 ms). The time stamp is only placed once at the trigger point. The SER does not support more than one time stamp per recording.
- The SER can be configured for pre-, mid-, or post-trigger modes. (See page 12-14.)
- SER operation is configured by a function control block that you can create using a series of Block Move (BLKMV) commands. (See page 12-10.)
- An input module may be optionally specified that will be scanned each time the SER executes. This helps ensure that the data captured from the specified module is as up-to-date as possible.

Note

PLC-to-PLC synchronization is not supported.

The SER function block has one output and three inputs: enable, reset (R), and trigger (T).

As shown below, $8,16,24$, or 32 channels may be configured, with each channel representing a discrete point. Also, up to 1024 samples may be specified.

Parameters

Parameter	Description
enable	Whenever the function is enabled and the reset input is off, the SER function block collects one sample from all configured channels.
R	When the reset input receives power flow, the SER function is reset regardless of the state of the enable input. Sample Buffer, Trigger Sample Offset, Trigger Time, and Current Sample Offset are all cleared to zero. The function block remains in the reset state until power flow is removed from the reset input. The OK output is turned off while in the reset state. When the power flow is removed from the reset input, sampling resumes.
T	If the Trigger Input mode is selected and the function block is enabled, when the trigger input goes on, the SER to transition to the triggered state. The Trigger Time, Trigger Sample Offset, and a data sample are recorded. The trigger sample will be recorded regardless of the number of samples taken. Once triggered, the event recorder continues sampling until the Number of Samples After Trigger is satisfied, at which time it stops collecting samples until power flow is seen on the reset input. If Trigger Mode is set to Full Buffer, the trigger signal is ignored. For information on configuring Trigger Mode, see "Function Control Block" on page 12-10.
Starting Reference	The 78-word function control block array begins at this reference. The function control block defines function block execution, sample configuration, and operation parameters. For details, see "Function Control Bloc" on page 12-10
ok	The ok output is energized when the trigger conditions are satisfied (specified by the Trigger Mode parameter), and all sampling is complete. The output continues to receive power flow regardless of the state of the enable input until the reset receives power flow.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\cdot											
Control Block								\bullet				
R	\bullet											
T	\cdot											
ok	\cdot											\bullet

- Valid reference or place where power can flow through the function.

Function Control Block

The function control block is a 78-word array that defines information about the data capture and trigger mechanism for the SER function. In a particular program, only one Sequential Event Recorder function block can be associated with each function command block and data block.

Perform the following steps to configure parameters for the SER function block:

1. Set up the stored values for the array as defined in the table below. You can use block moves to initialize the registers, or initialize the data in the register table and store the table before activating the SER function.
2. Add the SER function block to your ladder logic.

Note

If you require x channels where x is not equal to $8,16,24$, but is less than 32 , you must select a number of channels which is greater than x and a multiple of 8 , and fill in a null channel description for the unused channels. A null channel description has a segment selector of $0 x F F h$, a length parameter equal to the number of unused channels, and a 0 offset.

Word	Parameter	Description
0 (starting reference)	Status	Read only variable that indicates the current state of the SER function block. Additional information is provided in Status Extra Data, (Word 1). Note: If an error is detected in the Control Block, the status will be set to 6 , the OK output will be cleared, and no action will occur. Settings for Status include: $\begin{aligned} & 0=\text { Reset } \\ & 1=\text { Inactive } \\ & 2=\text { Active } \\ & 3=\text { Triggered } \\ & 4=\text { Complete } \\ & 5=\text { Overrun Error } \\ & 6=\text { Parameter error } \end{aligned}$
1	Status Extra Data	A read-only variable that provides additional state information about the SER function. See "Status Extra Data States" on page 12-12 for settings for this parameter.
2	Trigger Mode	Defines conditions for the SER function block to transition to the triggered state. Valid settings are: $0=$ Trigger Input mode 1 = Full Buffer mode In Trigger Input mode, if the function block is enabled, a time stamp is generated when the Trigger signal is activated. Sampling continues until the Number of Samples After Trigger value has been satisfied. When this occurs, the OK output is activated. In Full Buffer mode, the Trigger signal is ignored. When the function block is enabled, sampling continues until the sample buffer is filled. When this happens the OK output is activated. The Number of Samples parameter sets buffer size.
3	Trigger Time Format	Determines how the Trigger Time will be displayed. For BCD display, set this parameter to 0 . For POSIX display, set this parameter to 1. (For details, see page 12-17.)
4-7	Reserved	Words 4 through 7 are reserved and should be set to zero.

Word	Parameter	Description
8	Number of Channels (bits per sample)	Specifies the number of bits of data that will be sampled and copied to the sample buffer for each execution of the function block. Valid choices are $8,16,24$, or 32 bits. Any unused channels must be configured with a null channel description. (See Words 14-77.) For example, if 19 bits are needed, you must configure 24 and specify that the last five are null.
9	Number of Samples	Specifies the sample buffer size. Valid choices are 1 to 1024 samples. (Actual buffer size in bits is Number of Samples times Number of Channels.)
10	Number of Samples After Trigger	Specifies the number of samples that are collected after the trigger condition becomes true. This parameter can be set to a value between 0 and the Number of Samples. This parameter is valid only when the Trigger Mode is set to zero (Trigger Input).
11	Input Module Slot	Specifies the location in the main rack (Rack 0) of an input module that will be scanned each time the SER executes. If the value is 0 , no module is scanned. When an input module is scanned, its values are stored locally and the values of the reference addresses configured for the module are not affected. To store values from the scanned input module into the data block sample buffer, a channel description must be provided. If the module is not present or is faulted at the time of the scan, the data returned will be zero. A fault will not be logged in the fault table if this occurs; fault indication will be left to the IO scanner.
12	Data Block Segment Selector (Memory Type)	Specifies the data type allocated for the Data Block. For example, if you wanted use the $\%$ R memory type, you would enter 08 for this parameter. Valid settings for this parameter include: $\% \mathrm{R}(08 \mathrm{~h}), \% \mathrm{AI}(0 \mathrm{Ah}), \% \mathrm{AQ}(0 \mathrm{Ch})$. For details on the data block, see page 12-13.
13	Data Block Offset	Specifies the starting reference for the Data Block. This parameter is zero based. For example, if you wanted to begin at \%R0100, you would enter 99 for this parameter. Be sure to allow enough memory for the entire data block.
14-77	Channel Descriptions	Specifies the reference location (Segment Selector, Length and Offset) associated with a particular channel. There can be from 1 to 32 channel descriptions, depending upon the number of channels being sampled and data length. Data is returned in the order defined in this section.
	Channel Segment Selector/Length	Entered as a hexadecimal value, this word defines the segment selector and data length (in bits). MSB = Segment Selector. LSB = Data Length. The data length is useful for samples that are contiguous. The Segment Selector can be set to any discrete data type: \%I (46h), \%Q (48h), \%M (4Ch), \%T (4Ah), \%G (56h), \%S (54h), \%SA (4Eh), \%SB (50h), \%SC (52h), Null Selector (FFh), and Input Module Selector (00h).
		The length parameter can range from 1-32, but the sum of all of the lengths must not be greater than the Number of Channels parameter. A length greater than 1 allows multiple contiguous channels to be configured with a single channel description.
	Channel Offset	Entered as a hexadecimal value, this word defines the BIT offset for the data type or input module specified in the Segment Selector. This offset is zero-based. The range for this parameter varies, depending on the Segment Selector (data type and length). The offset indicates the location within the data table or input module at which to sample.

Status Extra Data States

The Status Extra Data (Word 1 in the function control block) provides additional state information for the SER function.

Value	State	Description
0	Reset State	$\begin{array}{l}\text { The Reset input is receiving power flow. Sample Buffer, Trigger Sample Offset, Trigger } \\ \text { Time, and Current Sample Offset are all cleared to zero. The output is held to no power flow. } \\ \text { Transition to the Inactive State occurs when the reset power flow is removed. Status Extra } \\ \text { Data has no significance and will be cleared to zero. }\end{array}$
1	Anactive	$\begin{array}{l}\text { State between the Reset State and the Active State. No actions are performed in this state. } \\ \text { The SER output is held to no power flow. Transition to the Active State occurs when the } \\ \text { function block receives enable power flow. }\end{array}$
2	Triggered	$\begin{array}{l}\text { The Enable input has received power flow, but the function block is not reset, in error, or } \\ \text { triggered. One sample is recorded for each execution when the function block is enabled. The } \\ \text { output is held to no power flow. The Trigger condition (specified by the Trigger Mode } \\ \text { parameter) is monitored and will cause transition to the Triggered State if conditions are true. }\end{array}$
If more than the "Number of Samples" have been taken, Status Extra Data will be set to		
0x01, otherwise it will be Ox00.		

depending upon the trigger mode and parameter settings. The output is held to no power

flow. Transition to the Complete state will occur when all sampling is complete. If more than

the "Number of Samples" have been taken, Status Extra Data will be set to 0x01, otherwise it

will be 0x00.\end{array}\right\}\)

SER Data Block Format

The SER Data Block contains the sample buffer, sample offsets, and trigger information. This information is supplied by the CPU and you should only read from this data area. It is your responsibility to allocate enough register space for the Data Block. The block format is as follows:

Word*	Parameter Description
0	Current sample offset number. References the location where the most recent sample was placed. The parameter is zero-based. Valid ranges are -1 to 1023. Register Location of Sample = (Num Bytes per Sample) * (Offset Parameter)/2 + (Sample Buffer Starting Register). Note: This value is not valid until a sample is taken. This value is set to -1 when the SER function is reset through the Reset input.
1	Trigger sample offset number. References the storage location of the sample obtained when the trigger condition transitioned to the True state. The parameter is zero-based. Valid ranges are 0 to 1023. Register Location of Sample = (Num Bytes per Sample) * (Offset Parameter)/2 + (Sample Buffer Starting Register). Note: This value is not valid until the trigger condition is met. This value is set to 0 when the SER function is reset (through the reset input).
2 through 5	Trigger Time: Indicates the time, according to the Time of Day clock within the PLC, that the trigger condition transitioned to the true state within the function block. The time value can be displayed in BCD format (default) or POSIX format. The format is determined by the Trigger Time Format parameter in the Control Block. This value is initialized to zero upon activation of the reset input.
6 to end of	
sample buffer.	Sample Buffer. The area of memory that holds the data samples. This area is set to zero when the reset parameter is energized. The sample buffer size varies, depending on the number of channels and sample size. The sample buffer is a circular buffer - when the last location is written, the next sample will overwrite the sample in the first register. End of sample buffer = $5+(\{[(\#$ of samples to be taken) * (\# of channels to be sampled / 8)] +1\} / 2

*Offset from starting reference defined by Data Block Segment Selector (Word 12) and Data Block Offset (Word 13) in Function Control Block.

SER Operation

If the SER is enabled when scanned, it reads the configured sample points and puts them in a circular list. After the configured number of samples is taken, the output is turned on. The transition of the output can be used to record the time that the last sample is taken or to initiate additional sampling. (See "Sampling Modes.")

The SER function block must be reset (enable the Reset input power flow) before sampling is started. Resetting initializes the data block area. If the function block status is not reset, it will execute with the current values in the data block, causing the current sample offset to be incorrect and invalid data in the data block.

The Control Block of the SER function block is scanned every time the function block is executed in the Reset, Active, or Triggered State. If you change a configuration parameter in the Control Block during program execution, the change takes effect the next time the SER function block associated with that Control Block is scanned. If an error is encountered, operation stops and the
function block goes to the appropriate error state. You must correct the error and then reset the function block (enable the Reset input power flow) to begin sampling again.

If you select an input module to be scanned the PLC will not verify that the module is a Discrete Input Module, or that Channel Descriptions associated with the module have valid lengths and offsets based upon the module size. You must correctly set up the sampling of an Input Module. Although multiple channel descriptions can target an input module, the module is still only scanned once per function block execution.

The SER function block can be placed in the normal user logic program or within a periodic subroutine. If placed in the user logic program, the resolution of the interval between scans is the resolution of the scan time, which can vary depending on the number and types of functions active on any particular scan. If placed in an interrupt subroutine, the interval can be set to as little as 1 ms , and the resolution will be highly repeatable at 1 ms with little jitter.

Execution time of one function block with a 1 ms periodic subroutine can consume up to 50% of the CPU's resources. You should not plan on execution of more than two SER functions within a 1 ms periodic subroutine.

Sampling Modes

The SER sampling mode is determined by the Trigger Mode (Word 2 in the Function Control Block) and Number of Samples After Trigger (Word 10) parameters. You will need to interpret the contents of the sample buffer based on how you configured these parameters.

The following table summarizes how the sampling modes are determined.

Mode	Word 2	Word 10
Pre-Trigger	0	0
Mid-Trigger	0	From 1 to (Number of Samples - 1)
Post-Trigger	0	equal to Number of Samples (specified in Word 9)
Full Buffer	1	Word 10 and trigger input signal are ignored

Trigger-Controlled Sampling

In order to configure pre-, mid-, and post-trigger sampling modes, Trigger Mode (Word $2=0$) must be selected. The sampling mode is controlled by the Number of Samples After Trigger value (Word 10). In all cases, sampling starts when the Enable signal goes high. When the Trigger signal goes high, sampling continues until the number specified in the Number of Samples After Trigger parameter is collected. The SER's OK Output signal goes high when sampling is completed.

If more than the configured Number of Samples (Word 9) is collected before the Number of Samples After Trigger condition is satisfied, the buffer "wraps around," meaning that the SER returns to the beginning of the buffer and overwrites the initial samples.

When the trigger first transitions from off to on, the trigger time is placed in a configured location.

Pre-Trigger

Collects samples continuously until trigger is detected.

To configure this mode, set Word 10 to a value of 0 , so that when the trigger signal is activated, sampling stops and a time stamp is generated. (All samples are collected before the trigger.)

Figure 12-1. Example of Pre-Trigger SER Sampling (for 512 Samples)

Mid-Trigger

Collects samples continuously until Number of Samples After Trigger has been collected.

To configure this mode, set Word 10 to a value between 1 and the (Number of Samples - 1). When the trigger signal is activated, sampling continues until the configured number has been collected. In the following example, Number of Samples After Trigger is 12 . When sampling is complete, the buffer will contain 500 pre-trigger samples and 12 post-trigger samples.

Figure 12-2. Example of Mid-Trigger SER Sampling (for 512 Samples)

Post-Trigger

Collects sample continuously until Number of Samples is reached.

To configure this mode, set Word 10 to a value equal to the Number of Samples (Word 9). When the trigger signal is activated, sampling continues until the configured number has been collected. (Note: all samples are collected after the trigger.)

Figure 12-3. Post-Trigger SER Sampling (for 512 samples)

Full Buffer (Trigger Does Not Control Sampling)

If the Trigger Mode is set to 1 , the Number of Samples After Trigger parameter (Word 10) is ignored and the Trigger input signal has no effect on function block operation. When the function block is enabled, sampling continues until the Number of Samples (Word 9) is collected, filling the sample buffer. When the buffer is full, sampling stops, a Trigger time stamp is generated, and the function block OK output goes high.

SER Function Block Trigger Timestamp Formats

BCD Format		
Data Block Word No.	Contents (High Byte/Low Byte)	Suggested Viewing Format
Word 2	Month/Year	Hex. (MMYY)
Word 3	Hours/Day of Month	Hex. (HHDD)
Word 4	Seconds/Minutes	Hex. (SSMM)
Word 5	Not Used	All zeros

POSIX Format		
Data Block Word No.	Contents	Suggested Viewing format
Words 2 and 3	Number of Seconds Since January 1, 1970	Dint
Words 4 and 5	Number of Nano-Seconds into next Second	Dint

Example

The next two tables show how the trigger time of November 3, 1998 at 8:34:05.010 a.m. would appear in BCD and in POSIX formats in a data block that starts at \%R0201 (Word 0).

November 3, 1998 at 8:34:05.010 a. m. in BCD Format		
Register	Parameter	Value (hex)
\%R0203	Month/Year	1198
\%R0204	Hours/Day of Month	0803
\%R0205	Seconds/Minutes	0534
\%R0206	Unused	0000

November 3, 1998 at 8:34:05.010 a. m. in POSIX Format

Register	Parameter	Value (decimal)	Value (hex)
$\%$ R0203/R0204	Seconds	$910,082,045$	363 EBFFD
\%R0205/R0206	Nano-seconds	$010,000,000$	00989680

SER Example

The following shows the interrelationships, of the ladder logic instruction, the control block in PLC memory, and the affected Input module in the PLC. The control block has been set up as described in Table 12-1.

Function Control Block Example

In this example, a 16 -point discrete input module in rack 0 , slot 4 , has been specified (in Word 11) as the target to sample. It has been executing long enough that 572 samples $(512+60)$ have been taken. The Enable input is receiving power flow, but the Reset and Trigger inputs are not.

Table 12-1. Function Control Block for SER Example

Word	Register	Parameter	Value (dec)	Value (hex)	Description
0	\%R0100	Status	2	0002	Function block is in the Active state. This means the function block is executing normally, and taking a sample each time the function block is encountered in program logic.
1	\%R0101	Status Extra Data	1	0001	The extra status data indicates that more that 512 samples have been taken and thus the sample buffer has already wrapped at least once.
2	\%R0102	Trigger mode	0	0000	The event recorder is configured to trigger based on the Trigger input.
3	\%R0103	Trigger Time Format	0	0000	$0=\mathrm{BCD}$
4	\%R0104	Reserved	0	0000	The Reserved parameters are always set to 0 .
5	\%R0105	Reserved	0	0000	
6	\%R0106	Reserved	0	0000	
7	\%R0107	Reserved	0	0000	
8	\%R0108	\# of channels	24	0018	Each sample consists of 24 bits (3 bytes) of data.
9	\%R0109	\# of samples to be taken	512	0200	Sample buffer size is 512 samples. Note that the sample buffer equals $512 \times(24 / 8)=1536$ bytes or 768 words. (Each sample is 3 bytes long as specified in Word 8 above.)
10	\%R0110	\# of samples after trigger	12	000C	The number of samples to be collected after the trigger occurs is 12 .
11	\%R0111	Input module slot	4	0004	The input module in rack 0 , slot 4 will be scanned when the SER executes so that its current values are available for sampling by the SER.
12	\%R0112	Data Block Segment Selector	8	0008	The data segment is 0x08(\%R).
13	\%R0113	Data Block Offset	200	00C8	This offset of 200 places the start of the data block at \%R0201. The offset is a zero-based value, but the register tables begin at $\%$ R0001. Therefore, the data block starting point is $\%$ R0001 $+200=\%$ R0201 .

Continued on Next Page

Word	Register	Parameter	Value (dec)	Value (hex)	Description
Channel	escriptions	The remaining words contain the channel descriptions. In this example six channel descriptions have been defined.			
14	\%R0114	Set. Sel. : Length	17921	4601	Channel description 1: The first channel description selects the \%I Segment with a length of 1 , and an offset of 0 . This chooses \%I0001 for channel 1.
15	\%R0115	Offset	0	0000	
16	\%R0116	Seg. Sel. : Length	-253	FF03	Channel description 2: The second channel description selects the NULL Selector with length of 3 , and offset of 0 . The NULL selector causes channels 2-4 to be ignored or "skipped." These channels will always contain a sample value of Zero.
17	\%R0117	Offset	0	0000	
18	\%R0118	Seg. Sel. : Length	3	0003	Channel description 3: The third channel description selects the Input Module Selector with a length of 3 and offset of 12 . The Input Module Selector causes samples to be taken from the input module. This channel description chooses the values in points 13 , 14 , and 15 of the input module for channels 5 7.
19	\%R0119	Offset	12	0012	
20	\%R0120	Seg. Sel. : Length	18434	4802	Channel description 4: The fourth channel description selects the \%Q Segment with a Length of 2 , and offset of 8 . This chooses $\% \mathrm{Q} 0009$ and $\% \mathrm{Q} 0010$ for channels 8 and 9.
21	\%R0121	Offset	8	0008	
22	\%R0122	Seg. Sel. : Length	8	0008	Channel description 5: The fifth channel description is another Input Module Selector. It has a length of 8 , and offset of 0 . This causes the values for points 1 to 8 of the input module to be placed in channels 10-17.
23	\%R0123	Offset	0	0000	
24	\%R0124	Seg. Sel. : Length	-249	FF07	Channel description 6: The sixth channel description is another NULL Selector. It has a Length of 7, and offset of 0 . This NULL channel description causes channels 18-24 to be filled with zeros. This last channel description is required to pad the sample buffer out to the 24 bits specified in the number of channels parameter. Since all 24 channels are configured, no more channel descriptions are needed.
25	\%R0125	Offset	0	0000	

Channel Configuration for Above Example

32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
U	U	U	U	U	U	U	U	N	N	N	N	N	N	N	C 8	C 7	C 6	C 5	C 4	C 3	C 2	C 1	$\% \mathrm{Q}$	$\% \mathrm{Q}$	C 15	C 14	C 13	N	N	N	$\% 1$

$\mathrm{U}=$ Unused, $\mathrm{N}=$ Null, C prefix indicates channel number on configured Input module (for example, C0 $=$ input point 1, C15 = input point 16)

Example Sample Contents

Table 12-2 summarizes the values contained in a single sample based upon the channel descriptions in the sample control block. This is based on the example screen capture shown on the following page. Note in this example that bits $1-16$ are contained in $\%$ R00207 and bits $17-24$ are part of \%R00208.

Table 12-2. Sample Contents for SER Example

Channel Number	Channel Contents	Value
1	$\% \mathrm{IO001}$	1
$2-4$	Zeros	000
5	Input Module Point 13	1
6	Input Module Point 14	1
7	Input Module Point 15	1
8	$\% \mathrm{Q} 0009$	0
9	$\% \mathrm{Q} 0010$	0
$10-17$	Input Module Points $1-8$	100100010
$18-24$	Zeros	0000000

Data Block for Control Block Example

Table 12-3 lists the format of the data block resulting from the example control block given on page 12-19. Note that it begins at register 201 as described by the segment offset parameters (Words 12 and 13) in the control block.

Table 12-3. Data Block for SER Control Block Example

Offset	Register	Parameter Description	Value (dec)	Value (hex)
0	$\% R 0201$	Current sample offset \#	59	003 B
1	202	Trigger sample offset \#	0	0000
$2-5$	$203-206$	Trigger time (BCD)	0	0000
			0	0000
			0	0000
			0000	
$6-768$	$207-975$	Sample Buffer	sample data	sample data

Current sample offset is 59 , meaning that the 59th sample is the last sample placed in the sample buffer. With 3 bytes per sample, the current offset is actually at $59 * 3=177$ bytes or the high byte of the 89th register. Since the trigger conditions have not been met, the trigger sample and trigger time are 0 and the output is not set. The sample buffer contains 512 samples where 59 is the newest sample and 60 is the oldest sample.

Example Data Capture

Examining the Captured Data

The following screen snap was taken after a trigger. The Control Block starts at \%R00100, and the Data Area starts at \%R00201. The cursor is positioned on \%R00207 as noted near the top and bottom of the screen.
\%R00207 is the first register in the data block that actually holds the measured input data. Note that its integer value (-21855) has little meaning in this context; however, by placing your cursor on \%R00207, its value is displayed in binary near the top of the screen. Using this binary format, you can determine the states of the bits configured in the Channel Descriptions portion of the control block.

Registers \%R00203 through \%R00205 give the time and date, in 24-hour format, as 16:06 (and 57 seconds) on May 15, 2001.

END

The END function provides a temporary end of logic. The program executes from the first rung to either the last rung or to the END function, whichever is encountered first.

The END function unconditionally terminates program execution. There can be nothing after the end function in the rung. No logic beyond the END function is executed, and control is transferred to the beginning of the program for the next sweep. Note that in rungs past the END marker, inputs will appear to turn on and off, but outputs will not be updated. Although a normal condition, this will appear to be a problem if it isn't apparent that an END marker precedes the affected rungs.

The END function is useful for debugging purposes because it allows you to isolate a section of logic. It does this by preventing any logic that follows it from being executed.

Logicmaster programming software provides, by default, an [END OF PROGRAM LOGIC] marker after the last rung of logic to indicate the end of program execution. This marker is used if no END function is programmed in the logic.

```
-[ END ]
```


Example

In the following example, the rung containing contact \%IO222 and coil \%Q0017, and any rungs after it, will not be executed because of the presence of the END instruction.

Placing an END function in SFC logic or in logic called by SFC logic produces an "END Function Executed from SFC Action" fault in Release 7 or later CPUs. (In pre-Release 7 CPUs, it did not work correctly, but no Fault was generated.) For information about this fault, refer to the "System Configuration Mismatch" part of Chapter 3, Section 2.

MCRN/MCR

Overview of MCR and MCRN

A Master Control Relay (MCR/MCRN) function must be used with a corresponding End Master Control Relay (ENDMCR/ENDMCRN) function. Both functions must have the same name. The MCR/MCRN must have an enable contact between it and the power rail. All rungs between an enabled MCR/MCRN and its corresponding ENDMCR/ENDMCRN function are executed without power flow to coils. The ENDMCR/ENDMCRN function associated with the MCR/MCRN causes normal program execution to resume. Unlike the JUMP instruction, an MCR/MCRN can only occur in the forward direction. An ENDMCR/MCRN instruction must appear later in a program than its corresponding MCR/MCRN instruction.

The following controls are imposed on logic controlled by an enabled MCR/MCRN:

- Timers do not increment or decrement. Any TMR type timer is reset (accumulator is set to zero). For an ONDTR timer, the accumulator is "frozen" at the value that was current when the MCR/MCRN was enabled.
- Power flow does not occur for any instruction. Normal outputs are off; negated outputs are on.
- Instructions do not update their outputs. For example, an ADD instruction will not produce a current sum in its Q output register, a Move will not copy its current input value to its output, a Shift Register will not shift data, etc. The values in these output registers will be frozen at the values that were present when the MCR/MCRN was enabled.

Note

When an MCR/MCRN is energized, the logic it controls is evaluated and contact status is displayed, but no outputs are energized. If you are not aware that an MCR/MCRN is controlling the logic being observed, this might appear to be a faulty condition. To indicate that a range of ladder logic is under MCR/MCRN control, Logicmaster displays a double power rail on the ladder logic screen. This double power rail appears regardless of whether or not the MCR/MCRN is enabled.

Logicmaster 90-30/20/Micro software supports two forms of the Master Control Relay function, an older, non-nested (MCR) and a newer, nested form (MCRN).

CPU Compatibility

CPU Type	Supported Form
CPU311 - CPU341, Release 1	Use only the non-nested form (MCR)
CPU311 - CPU341, Release 2 and later	Use only the nested form (MCRN)
35x, 36x, and 37x series CPUs	Use only the nested form (MCRN)

Possible MCRN Compatibility Problem

When converting a CPU340 or CPU341 program to run in a $35 \mathrm{x} / 36 \mathrm{x} / 37 \mathrm{x}$ series CPU, it is possible to see a "Feature not Supported" error ("Nesting Levels Exceeded") from Logicmaster 90. This would occur when the converted program is stored to a $35 \mathrm{x} / 36 \mathrm{x} / 37 \mathrm{x}$ CPU if more than eight levels of MCRN nesting is used in the original program.

The MCRN instructions are actually function block instructions in the CPU340/341, which means they are executed in CPU firmware and not executed by the embedded Boolean Coprocessor (BCP). The nesting limit for the function block was set to 256 . This limit is many more levels than you would generally use. When the $35 x / 36 x / 37 x$ CPU series was designed, the MCRN instructions were moved to the BCP to improve CPU performance (function block instructions execute slower than BCP counterparts). At that time a tradeoff of nesting levels and performance was made and the BCP3 used in $35 \mathrm{x} / 36 \mathrm{x} / 37 \mathrm{x}$ CPUs implemented eight levels of nesting, which are normally more than users require. So, Logicmaster 90 enforces eight levels of nesting when the program conversion is performed, and if there are more than eight levels used, a "Nesting Levels Exceeded" message is issued.

Therefore, if you have more than eight MCR nesting levels in a CPU340/341 program, it will require a modification to work in a $35 \mathrm{x} / 36 \mathrm{x} / 37 \mathrm{x}$ CPU. You might consider using Jump statements instead.

Nesting an MCRN

An MCRN function can be placed anywhere within a program, as long as it is properly nested with respect to other MCRNs, and does not occur in the range of any non-nested MCR or non-nested JUMP.

If an MCRN/ENDMCRN pair is nested within another MCRN/ENDMCRN pair, it must be contained completely within the other pair. Up to eight levels of nesting are allowed. For an example, see page 12-28.

There can be multiple MCRN functions corresponding to a single ENDMCRN (except for the $35 x / 36 x / 37 x$ series CPUs as noted below). Each MCRN as well as the ENDMCRN must have the same name. This is analogous to the nested JUMP, where you can have multiple JUMPs to the same LABEL. For a comparison of the JUMP function and the MCR function, refer to the "Differences Between MCRs and Jumps" section below.

Note

Use only one MCRN for each ENDMCRN with 35x, 36x and 37x series CPUs.

MCR Operation

There can be only one MCR instruction for each ENDMCR instruction. The range for non-nested MCRs and ENDMCRs cannot overlap or contain the range of any other MCR/ENDMCR pair or any JUMP/LABEL pair of instructions. Non-nested MCRs cannot be within the scope of any JUMP/LABEL pair.

Parameters

Both forms of the MCR function have the same parameters. They both have an enable Boolean input EN and a name that identifies the MCR. This name is used again with an ENDMCR instruction. Neither the MCR nor the MCRN function has any outputs; there can be nothing after an MCR in a rung.

| ??????? | |
| ---: | ---: | ---: |
| [MCR] | or ?????? |
| | |
| | |

Differences Between MCR/MCRN and JUMP

With an MCR function, function blocks within the scope of the MCRN are evaluated without power flow, and coils are not energized. In the following example, when $\% \mathrm{M} 0150$ is ON, the MCRN is enabled. When the MCRN is enabled, even if \%I004 is ON, the ADD function block is evaluated without power flow (i.e., it does not add 100 to \%R0001), and \%M0210 does not receive power flow. Status of contacts such as $\% \mathrm{I} 0004$ and values in registers used on inputs, such as \%R0001, will update on the Logicmaster screen, but registers on outputs under control of the MCRN, such as \%R0010, will be frozen at their current values when the MCRN is enabled.

With a JUMP function, any function blocks between the JUMP and the LABEL are not evaluated, and coils are not affected. In the following example, when \%I0001 is ON, the JUMP named TEST1 is enabled. Since the logic between the JUMP and the LABEL is skipped, \%M0210 is unaffected (i.e., if it was ON, it remains ON; if it was OFF, it remains OFF). Status of contacts such as \%M0004 and values in registers used on inputs, such as \%R0001, will update on the Logicmaster screen, but registers on outputs under control of the JUMP, such as \%R0010, will be frozen at their current values when the JUMP is enabled.

Example 1

The following example shows an MCRN named "Second" nested inside the MCRN named "First." Whenever \%I0002 allows power flow into the MCRN function, program execution will continue without power flow to the coils until the associated ENDMCRN is reached. If \%I0001 and \%I0003 are $\mathrm{ON}, \% \mathrm{Q} 0001$ is turned OFF and $\% \mathrm{Q} 0003$ remains ON .

To aid in troubleshooting ladder programs, a double power rail identifies logic that is within the control range of an MCR.

```
%I0002 FIRST
%IOOO4 SECOND
%IO001 % % %0001 -
%I0003 %Q0003
SECOND
+[ ENDMCRN ]
FIRST
+[ ENDMCRN ]
```


Example 2

In the following example, the first rung is functioning normally. However, the MCRN named SKIP is controlling the rest of the rungs, which have a double power bar to indicate this. In the first rung controlled by the MCRN, the ONDTR timer's accumulated value (\%R0004) is frozen, and even though it reached its preset value, its output ($\% \mathrm{M} 0200$) is not energized. In the following rung, the TMR has been reset by the MCRN. Its accumulated value (\%R0007) is held at zero and its output (\%M02025) is not energized. In the next rung, the ADD instruction's output is frozen (its output at $\%$ R0010 is not the sum of its inputs) and its power flow coil ($\% \mathrm{M} 0210$) is not energized. Note, however, that the status of contacts and values of input registers (such as \%R0001 on the ADD instruction I1 input) are updated on-screen within the MCRN control area.

ENDMCRN/ENDMCR

Use the End Master Control Relay ENDMCR/ENDMCRN function to resume normal program execution after an MCR/MCRN function. When the MCR associated with the ENDMCR is active, the ENDMCR causes program execution to resume with normal power flow. When the MCR associated with the ENDMCR is not active, the ENDMCR has no effect.

Logicmaster 90-30/20/Micro software supports two forms of the ENDMCR function, a non-nested and a nested form. The non-nested form, ENDMCR, must be used with the non-nested MCR function, MCR. The nested form, ENDMCR, must be used with the nested MCR function, MCRN.

The ENDMCR function has a negated Boolean input EN. The instruction enable must be provided by the power rail; execution cannot be conditional. The ENDMCR function also has a name, which identifies the ENDMCR and associates it with the corresponding MCR(s). The ENDMCR function has no outputs; there can be nothing before or after an ENDMCR instruction in a rung.

Example

In the following examples, an ENDMCR instruction is programmed to terminate the MCR named "CLEAR."

Example of a non-nested ENDMCR

CLEAR

```
-[ ENDMCR ]
```

Example of a nested ENDMCR:

CLEAR

- [ENDMCRN]

JUMP

Use the JUMP instruction to cause a portion of the program logic to be bypassed. Program execution will continue at the LABEL specified. When the JUMP is active, all coils within its scope are left at their previous states. This includes coils associated with timers, counters, latches, and relays.

Logicmaster 90-30/20/Micro software supports two forms of the JUMP instruction, a non-nested and a nested form. The non-nested form has been available since Release 1 firmware for the CPU311-CPU341 CPUs, and has the form ——> LABEL01, where LABEL01 is the name of the corresponding non-nested LABEL instruction.

For non-nested JUMPs, there can be only a single JUMP instruction for each LABEL instruction. The JUMP can be either a forward or a backward JUMP.

The range for non-nested JUMPs and LABELs cannot overlap the range of any other JUMP/LABEL pair or any MCR/ENDMCR pair of instructions. Non-nested JUMPs and their corresponding LABELs cannot be within the scope of any other JUMP/LABEL pair or any MCR/ENDMCR pair. In addition, an MCR/ENDMCR pair or another JUMP/LABEL pair cannot be within the scope of a non-nested JUMP/LABEL pair.

Note

The non-nested form of the JUMP instruction is the only JUMP instruction that can be used in a Release 1 Series 90-30 PLC. The nested JUMP function can be used (and is suggested for use) for all new applications.

Also, please note that the $35 \mathrm{x} / 36 \mathrm{x} / 37 \mathrm{x}$ series CPUs support only nested jumps.
The nested form of the JUMP instruction has the form $-\mathrm{N} \longrightarrow>$ LABEL01, where LABEL01 is the name of the JUMP and its corresponding nested LABEL instruction. The nested JUMP is available in Release 2 and later releases of Logicmaster 90-30/20/Micro software and PLC firmware.

A nested JUMP instruction can be placed anywhere within a program, as long as it does not occur in the range of any non-nested MCR or non-nested JUMP.

There can be multiple nested JUMP instructions corresponding to a single nested LABEL. Nested JUMPs can be either forward or backward JUMPs.

Both forms of the JUMP instruction are always placed in columns 9 and 10 of the current rung line; there can be nothing after the JUMP instruction in the rung. Power flow jumps directly from the instruction to the rung with the named label.

Non-nested JUMP: ???????

Nested JUMP:
$\longrightarrow-\mathrm{N}$ ——> ???????

Caution

To avoid creating an endless loop with backward JUMP instructions, a backward JUMP must contain a way to make it conditional.

Examples

In the following example, whenever contact \%I0001 turns on, the JUMP named TEST1 is enabled, and power flow is jumped ahead to the TEST1 LABEL. Since the logic between the JUMP and the LABEL is skipped, \%M0210 is unaffected (i.e., if it was ON, it remains ON; if it was OFF, it remains OFF). Status of contacts such as \%M0004 and values in registers used on inputs, such as $\%$ R0001, will update on the Logicmaster screen, but registers on outputs under control of the JUMP, such as \%R0010, will be frozen at their current values when the JUMP is enabled. Note the use of the double power rail in the section of logic located between the JUMP and its LABEL.

LABEL

The LABEL instruction functions as the target destination of a JUMP. Use the LABEL instruction to resume normal program execution after a JUMP instruction.

There can be only one LABEL with a particular label name in a program. Programs without a matched JUMP/LABEL pair can be created and stored to the PLC, but cannot be executed.

Logicmaster 90-30/20/Micro software supports two forms of the LABEL function, a non-nested and a nested form. For example, the non-nested form, LABEL01 :, must be used with the nonnested JUMP function, \qquad $\rightarrow>$ LABEL01; the nested form, LABEL01 : (nested), must be used with the nested JUMP function, $-\mathrm{N} \longrightarrow>$ LABEL01.

The LABEL instruction has no inputs and no outputs. Also, there can be nothing either before or after a LABEL in a rung.

Non-nested LABEL:

Nested LABEL:
\square

Example

In the following example, when JUMP TEST1 is enabled, the scan skips ahead to the TEST1: (nested) LABEL, which means that the rung in-between the JUMP and LABEL is not scanned.

Comments are useful for adding explanations, notes, revision level information, etc. to your ladder program. Use of comments is highly recommended because they provide valuable information to those who may have to troubleshoot or update the system in the future. Also, since human memories are imperfect, comments are valuable references for even the creator of the ladder program.

Note

To conserve PLC memory, annotations (comments, nicknames, and descriptions) are not written to the PLC. Therefore, to view these annotations, you must have a copy of the original program folder (which includes the annotations) on your computer. Then, when you connect your computer to the PLC, the links to the annotations will automatically be made by your programming software.

Creating a Standard Comment

A comment can have up to 2048 characters of text. In Logicmaster, it is represented in the ladder logic like this:

(* COMMENT *)

Creating a Comment

1. Create a new rung. A COMMENT rung cannot have any other logic besides the COMMENT instruction.
2. Insert the COMMENT, which is found in the Control group of instructions.
3. Accept the rung by pressing the Escape key.
4. Move the cursor over the (* COMMENT *) instruction just created and press the Zoom key (F10) to enter the comment editor screen.
5. Type in your comment text. Note that the lines do not automatically wrap in the comment editor. You must press the Enter key at the end of a line to begin typing on the next line.
6. When finished, press Escape key to exit the comment editor and save the comment.

Once created, COMMENT text can be read or edited by moving the cursor to (* COMMENT *) and selecting Zoom (F10). Rung Comments can also be printed from Logicmaster's Print menu.

Creating a Long Comment for use in Logicmaster Printouts

In Logicmaster longer text can be included in printouts using an annotation text file:

1. Create the comment (see previous section for comment creation details):
A. Enter comment text to the point where the text from the other file should begin.
B. On a new line, enter \I (or \i), the drive letter followed by a colon, a backslash, the subdirectory or folder, a backslash, and the file name, as shown in this example:
\I d:\text\commnt1
(Drive designation is not necessary if the file is on the same drive as the program folder.)
C. Press Escape to exit the comment editor and save the comment text.
2. Open a text processor and create a text file.
3. Save the text file in a .txt format, giving it the file name entered in the comment, and saving it on the drive and in the path specified in the comment.

SVCREQ

The Service Request instruction is a general purpose instruction that can perform a wide variety of special instructions (services) that are not available as individual function blocks. Use the Service Request (SVCREQ) function to request one of the following special PLC services:

Table 12-4. Service Request Functions

Function	Description
1	Change/Read Constant Sweep Timer.
2	Read Window Values.
3	Change Programmer Communications Window Mode and Timer Value.
4	Change System Comm. Window Mode and Timer Value.
6	Change/Read Checksum Task State and Number of Words to Checksum.
7	Change/Read Time-of-Day Clock.
8	Reset Watchdog Timer.
9	Read Sweep Time from Beginning of Sweep.
10	Read Folder Name.
11	Read PLC ID.
12	Read PLC Run State.
13	Shut Down the PLC.
14	Clear Fault Tables.
15	Read Last-Logged Fault Table Entry.
16	Read Elapsed Time Clock.
18	Read I/O Override Status.
23	Read Master Checksum.
24	Reset Smart Module
$26 / 30$	Interrogate I/O.
29	Read Elapsed Power Down Time.
45	Skip Next Output and Input Scan. (Suspend I/O.)
46	Access Fast Backplane Status.
48	Reboot After Fatal Fault Auto Reset
49	Auto Reset Statistics

SVC REQ Overview

The SVCREQ function has three input parameters and one output parameter. When the SVCREQ receives power flow, the PLC is requested to perform the function FNC indicated. Parameters for the function begin at the reference given for PARM. The SVCREQ function passes power flow unless an incorrect function number, incorrect parameters, or out-of-range references are specified. Additional causes for failure are described on the pages that follow.

The reference given for PARM can represent any type of word memory (\%R, \%AI, or \%AQ). This reference is the first of a group that make up the "parameter block" for the function. Successive 16-bit locations store additional parameters. The total number of references required will depend on the type of SVCREQ function being used.

Parameter blocks can be used both as inputs for the function and as the location where data is output after the function executes. Therefore, data returned by the function is accessed at the same location specified for PARM.

Parameters

Parameter	Description
enable	When enable is on, the service request is performed.
FNC	Each type of Service Request has a unique function number, which must be programmed at the FNC input. FNC may contain either a constant or a reference address that contains the function number of the requested service.
PARM	PARM contains the beginning reference for the parameter block for the requested service.
ok	The ok output is energized when the function is performed without error.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
FNC		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	
PARM		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet		
ok	\bullet											\bullet

- Valid reference or place where power can flow through the function.

Example

In the following example, when enable contact \%I0001 is ON, SVCREQ function number 7, specified at input FNC, is performed. The function's parameter block starts at $\%$ R0001 (specified at PARM). Output coil \%Q0001 is set ON if the operation succeeds.

SVCREQ \#1: Change/Read Constant Sweep Timer

Beginning with 90-30 CPU Release 8.0, use SVCREQ function \#1 to:

- Disable CONSTANT SWEEP mode.
- Enable CONStANT SWEEP mode and use the old timer value.
- Enable CONSTANT SWEEP mode and use a new timer value.
- Set a new timer value only.
- Read CONSTANT SWEEP mode state and timer value.

Note

Of the CPUs discussed in this manual, Service Request 1 is supported only by 9030 CPUs, beginning with Release 8.0.

The parameter block has a length of two words.
To disable CONSTANT SWEEP mode, enter SVCREQ function \#1 with this parameter block:

To enable CONSTANT SWEEP mode, enter SVCREQ function \#1 with this parameter block:

Note

If the timer should use a new value, enter it in the second word. If the timer value should not be changed, enter 0 in the second word. If the timer value does not already exist, entering 0 will cause the function to set the OK output to OFF.

To change the timer value without changing the selection for sweep mode state, enter SVCREQ function \#1 with this parameter block:

To read the current timer state and value without changing either, enter SVCREQ function \#1 with this parameter block:

Note

After using SVCREQ function \#1 with the parameter block on the previous page, Release 8 and higher CPUs will provide the return values 0 for Normal Sweep, 1 for Constant Sweep. Do not confuse this with the input values shown below.

Successful execution will occur, unless:

1. A number other than $0,1,2$, or 3 is entered as the requested operation:

0	Disable CONSTANT SWEEP mode.
1	Enable CONSTANT SWEEP mode.
2	Set a new timer value only.
3	Read CONSTANT SWEEP mode and timer value. (See Note above).

2. The time value is greater than 2550 ms (2.55 seconds).
3. Constant sweep time is enabled with no timer value programmed, or with an old value of 0 for the timer.

After the function executes, the function returns the timer state and value in the same parameter block references:

| $0=$ Disabled |
| :--- | :--- |
| $1=$ enabled |\quad address

If word address +1 contains the hexadecimal value FFFF, no timer value has ever been programmed.

Example

This example shows logic in a program block. When enabling contact OV_SWP is set, the constant sweep timer is read, the timer is increased by two milliseconds, and the new timer value is sent back to the PLC. The parameter block is in local memory at location \%R3050. Because the MOVE and ADD functions require three horizontal contact positions, the example logic uses discrete internal coil $\% \mathrm{M} 0001$ as a temporary location to hold the successful result of the first rung line. On any sweep in which OV_SWP is not set, $\%$ M0001 is turned off.

SVCREQ \#2: Read Window Values

Use SVCREQ function \#2 to obtain the current window mode time values for the programmer communications window and the system communications window.

Note

Of the CPUs discussed in this manual, Service Request 2 is supported only by 90-30 CPUs, beginning with Release 8.0.

There are three modes for each window:

Mode Name	Value	Description
Limited Mode	0	The execution time of the window is limited to its respective default value or to a value defined using SVCREQ function \#3 for the programmer communications window or SVCREQ function \#4 for the systems communications window. The window will terminate when it has no more tasks to complete.
Constant Mode	1	Each window will operate in a RUN TO COMPLETION mode, and the PLC will alternate between the two windows for a time equal to the sum of each window's respective time value. If one window is placed in CONSTANT mode, the remaining two windows are automatically placed in CONSTANT mode. If the PLC is operating in CONSTANT WINDOW mode and a particular window's execution time is not defined using the associated SVCREQ function, the default time for that window is used in the constant window time calculation.
Run to Completion	2	Regardless of the window time associated with a particular window, whether default or defined using a service request mode
function, the window will run until all tasks within that window are		
completed.		

A window is disabled when the time value is zero.
The parameter block has a length of three words:

	High Byte	Low Byte
	Mode	Value in ms
Programmer Window	address	
System Communications Window	Mode	Value in ms
	address + 1	
Reserved*	*See Note	*See Note
	address +2	

* Note. The address +2 word is reserved for use by the system. All zeros will be returned here.

All parameters are output parameters. It is not necessary to enter values in the parameter block to program this function. Output values for both window are given in milliseconds.

Example

In the following example, when enabling output $\% \mathrm{Q} 0102$ is set, the PLC operating system places the current time values of the three windows in the parameter block starting at location \%R0100. Additional examples showing the Read Window Values function are included in the next three SYS REQ function descriptions.

\%Q0102		
-\|		SVC
	REQ	
CONST -	FNC	
0002		
\%R0100-	PARM	

SVCREQ \#3: Change Programmer Communications Window Mode and Timer Value

Use SVCREQ function \#3 to change the programmer communications window mode and timer value. The change will occur in the CPU sweep following the sweep in which the function is called.

Note

Of the CPUs discussed in this manual, Service Request 3 is supported only by 90-30 CPUs, beginning with Release 8.0.

The SVCREQ function \#3 will pass power flow to the right unless a mode other than 0 (Limited), 1 (Constant), or 2 (Run-to-Completion) is selected.

The parameter block has a length of one word.
To disable the programmer window, enter SVCREQ function \#3 with this parameter block:

To enable the programmer window, enter SVCREQ function \#3 with this parameter block:

High Byte	Low Byte
Mode	Value from 1 to 255 ms

Example

In the following example, when $\%$ M0125 transitions on, the programmer communications window is enabled and assigned a value of 25 ms . The parameter block is in memory location \%R5051.

To disable the programmer communications window, use Service Request 3 to assign a value of zero (0). In this example, when \%M0126 transitions on, the programmer communications window is enabled and assigned a value of 0 ms . The parameter block is in memory location \%R5051.

SVCREQ \#4: Change System Comm Window Mode and Timer Value

Use SVCREQ function \#4 to change the system communications window mode and timer value. The change will occur in the CPU sweep following the sweep in which the function is called.

Note

Of the CPUs discussed in this manual, Service Request 4 is supported only by 90-30 CPUs, beginning with Release 8.0.

The SVCREQ function \#4 will pass power flow to the right unless a mode other than 0 (Limited), 1 (Constant), or 2 (Run-to-Completion) is selected.

The parameter block has a length of one word.
To disable the system communications window, enter SVCREQ function \#4 with this parameter block:

To enable the system communications window, enter SVCREQ function \#4 with this parameter block:

High Byte	Low Byte
Mode	Value from 1 to 255 ms

Example

In the following example, when enabling output $\% \mathrm{M} 0125$ transitions on, the mode and timer value of the system communications window is read. If the timer value is greater than or equal to 25 ms , the value is not changed. If it is less than 25 ms , the value is changed to 25 ms . In either case, when the rung completes execution the window is enabled. The parameter block for all three windows is at location \%R5051. Since the mode and timer for the system communications window is the second value in the parameter block returned from the Read Window Values function (function \#2), the location of the existing window time for the system communications window is in the low byte of \%R5052.

SVCREQ \#6: Change/Read Number of Words to Checksum

Use the SVCREQ function with function number 6 in order to:

- Read the current word count.
- Set a new word count.

Successful execution will occur, unless some number other than 0 or 1 is entered as the requested operation (see below).

For the Checksum Task functions, the parameter block has a length of 2 words.

To Read the Current Word Count:

Enter SVCREQ function 6 with this parameter block:

After the function executes, the function returns the current checksum in the second word of the parameter block. No range is specified for the read function; the value returned is the number of words currently being checksummed.

To Set a New Word Count:

Enter SVCREQ function 6 with this parameter block:

Entering 1 causes the PLC to adjust the number of words to be checksummed to the value given in the second word of the parameter block. For any Series 90-30 CPU, the second word value can be from 0 to 32. If the value is outside this range, an error will be generated. For the Series 90-20 CPU211, the value can be either 0 or 4 .

Note

This Service Request is not available on Micro PLCs.

Example

In the following example, when enabling contact FST_SCN is set, the parameter blocks for the checksum task function are built. Later in the program when input \%I0137 turns on, the number of words being checksummed is read from the PLC operating system. This number is increased by 16 , with the results of the ADD_INT function being placed in the "hold new count for set" parameter. The second service request block requests the PLC to set the new word count.

The example parameter blocks are located at address \%R0150. They have the following content:

$0=$ read current count	\%R0150
Hold current count	\%R0151
$1=$ set current count	\%R0152
Hold new count for set	\%R0153

SVCREQ \#7: Change/Read Time-of-Day Clock

Use the SVCREQ function with function number 7 to read and set the time-of-day clock in the PLC.

Note

This function is available only in 331 or higher 90-30 CPUs and on the 28-point Series 90 Micro PLC CPUs (that is, IC693UDR005, IC693UAA007, and IC693UDR010) and the 23-point Series 90 Micro PLC CPUs (IC693UAL006).

Successful execution will occur unless:

1. Some number other than 0 or 1 is entered as the requested operation (see below).
2. An invalid data format is specified.
3. The data provided is not in the expected format.
4. An invalid date is entered, such as $02 / 29 / 01$, which incorrectly specifies a leap year day in the year 2001 (2001 is not a leap year).

For the date/time functions, the length of the parameter block depends on the data format. BCD format requires 6 words; packed ASCII requires 12 words.

In word 1, specify whether the function should read or change the values.

```
0 = read
1 = change
```

In word 2 , specify a data format:

```
1 = BCD
3 = packed ASCII with embedded spaces and colons
```

Words 3 to the end of the parameter block contain output data returned by a read function, or new data being supplied by a change function. In both cases, format of these data words is the same. When reading the date and time, words (address +2) through (address +8) of the parameter block are ignored on input.

Example

In the following example, when called for by previous logic, a parameter block for the time-of-day clock is built to first request the current date and time, and then set the clock to 12 noon using the BCD format. The parameter block is located at global data location \%R0300. Array NOON has been set up elsewhere in the program to contain the values 12,0 , and 0 . (Array NOON must also contain the data at \%R0300.) The BCD format requires six contiguous memory locations for the parameter block.

Parameter Block Contents

Parameter block contents for the different data formats are shown on the following pages. For both data formats:

- Hours are stored in 24-hour format.
- Day of the week is a numeric value:

Value	Day of the Week
1	Sunday
2	Monday
3	Tuesday
4	Wednesday
5	Thursday
6	Friday
7	Saturday

To Change/Read Date and Time Using BCD Format:

In BCD format, each of the time and date items occupies a single byte. This format requires six words. The last byte of the sixth word is not used. When setting the date and time, this byte is ignored; when reading date and time, the function returns a null character (00).

High Byte		Low Byte	address
1 = change	or	$0=$ read	
1			address + 1
month		year	address +2
hours		day of month	address +3
seconds		minutes	address +4
(null)		day of week	address + 5

Example output parameter block:
Read Date and Time in BCD format
(Sun., July 3, 1988, at 2:45:30 p.m.)

0	
1	
07	88
14	03
30	45
00	01

To Change/Read Date and Time Using Packed ASCII with Embedded Colons Format

In Packed ASCII format, each digit of the time and date items is an ASCII formatted byte. In addition, spaces and colons are embedded into the data to permit it to be transferred unchanged to a printing or display device. This format requires 12 words.

High Byte	Low Byte	address address + 1	Example output parameter block: Read Date and Time in Packed ASCII Format (Mon, Oct. 2, 1989 at 23:13:00)	
1 = change or	0 = read			
3				
year	year	address +2	39	38
month	(space)	address +3	31	20
(space)	month	address +4	20	30
day of month	day of month	address +5	32	30
hours	(space)	address +6	32	20
:	hours	address + 7	3A	33
minutes	minutes	address +8	33	31
seconds	:	address +9	30	3A
(space)	seconds	address +10	20	30
day of week	day of week	address + 11	32	30

SVCREQ \#8: Reset Watchdog Timer

Use SVCREQ function \#8 to reset the watchdog timer during the sweep.

Note

Of the CPUs discussed in this manual, Service Request 8 is supported only by 90-30 CPUs, beginning with Release 8.0.

When the watchdog timer expires, the PLC shuts down without warning. This function allows the timer to keep going during a time-consuming task (for example, while waiting for a response from a communications line).

Caution

Be sure that restarting the watchdog timer does not adversely affect the controlled process.

This function has no associated parameter block; however, the programming software requires that an entry be made for PARM. Enter any appropriate reference here; it will not be used.

Example

In the following example, when $\% \mathrm{Q} 0127$ turns ON , the watchdog timer is reset.

SVCREQ \#9: Read Sweep Time from Beginning of Sweep

Use SVCREQ function \#9 to read the time in milliseconds since the start of the sweep. The data is in 16-bit Word format.

Note

Of the CPUs discussed in this manual, Service Request 9 is supported only by 90-30 CPUs, beginning with Release 8.0.

The parameter block is an output parameter block only; it has a length of one word.

$$
\begin{array}{|l|}
\hline \text { time since start of sweep } \\
\text { address } \\
\hline
\end{array}
$$

Example

In the following example, the elapsed time from the start of the sweep is always read into location $\% \mathrm{R} 5200$. If it is greater than the value in $\% \mathrm{R} 5201$, internal coil $\% \mathrm{M} 0200$ is turned on.

SVCREQ \#10: Read Folder Name

Use SVCREQ function \#10 to read the name of the currently-executing folder.

Note

Of the CPUs discussed in this manual, Service Request 10 is supported only by 90-30 CPUs, beginning with Release 8.0.

The output parameter block has a length of four words. It returns eight ASCII characters; the last is a null character (00 h). If the program name has fewer than seven characters, null characters are appended to the end.

Low Byte	High Byte
character 1	character 2
character 3	character 4
address	
character 5	character 6
adress +1	
character 7	00
address +2	

Example

In the following example, when enabling contact \%I0301 transitions ON, register location \%R0099 is loaded with the value 10 , which is the function code for the Read Folder Name function. In the following rung, when $\% \mathbf{I} 0102$ is ON, the Service Request reads the folder name and stores it in the four-word block of memory starting at \%R0100 (specified at PARM).

SVCREQ \#11: Read PLC ID

Use SVCREQ function \#11 to read the name of the Series 90 PLC executing the program.

Note

Of the CPUs discussed in this manual, Service Request 11 is supported only by 90-30 CPUs, beginning with Release 8.0.

The output parameter block has a length of four words. It returns eight ASCII characters; the last is a null character (00h). If the PLC ID has fewer than seven characters, null characters are appended to the end.

Low Byte	High Byte
character 1	character 2
character 3	character 4
address	
character 5	address +1
character 7	00
chacter 6	address +2

Example

In the following example, when enabling contact \%IO001 transitions OFF, register location $\%$ R0099 is loaded with the value 11, which is the function code for the Read PLC ID function. . In the following rung, when $\% \mathrm{Q} 0102$ is ON, the Service Request reads the PLC ID and stores it in the four-word block of memory starting at \%R0100 (specified at PARM).

SVCREQ \#12: Read PLC Run State

Use SVCREQ function \#12 to read the current RUN state of the PLC CPU.

Note

Of the CPUs discussed in this manual, Service Request 12 is supported only by 90-30 CPUs, beginning with Release 8.0.

The parameter block is an output parameter block only; it has a length of one word. There are only two valid results obtainable from the execution of this Service Request:
$1=$ run/disabled
$2=$ run/enabled address

Example

In the following example, when \%I0102 turns ON, the Service Request reads the PLC run state and places the result in memory address \%R402. If the PLC is in Run/Disabled mode, \%R402 will contain a value of 1 . If the PLC is in Run/Enabled mode, $\%$ R402 will contain a value of 2.

\qquad

SVCREQ \#13: Shut Down (Stop) PLC

Use SVCREQ function \#13 in order to stop the PLC at the end of the next sweep. All outputs will go to their designated default states at the beginning of the next PLC sweep. An informational fault is placed in the PLC fault table, noting that a "SHUT DOWN PLC" function block was executed. The I/O scan will continue as configured.

This function has no parameter block.

Example

In the following example, when a "Loss of I/O Module" fault occurs, SVCREQ function \#13 executes. Since no parameter block is needed, the PARM input is not used; however, the programming software requires that an entry be made for PARM.

This example uses a JUMP to the end of the program to force a shutdown if the Shut Down PLC function executes successfully. This JUMP and LABEL are needed because the transition to STOP mode does not occur until the end of the sweep in which the function executes. Once the PLC receives this STOP command from the Service Request, it will execute one more sweep and then stop (see NOTE below).

Note

To ensure that the $\%$ S0002 LST_SCN contact will operate correctly, the PLC will execute one additional sweep after the sweep in which the SVCREQ function \#13 was executed.

SVCREQ \#14: Clear Fault Tables

Use SVCREQ function \#14 in order to clear either the PLC fault table or the I/O fault table. The SVCREQ output is set ON unless some number other than 0 or 1 is entered as the requested operation (see below).

For this function, the parameter block has a length of 1 word. It is an input parameter block only.

Example

In the following example, when contacts \%I0346 and \%I0349 are both on, the PLC fault table is cleared. When contacts \%I0347and \%I0349 are both on, the I/O fault table is cleared. When contacts \%I0348 and \%I0349 are both on, both fault tables are cleared.

The parameter block for the PLC fault table is located at \%R0500, and for the I/O fault table the parameter block is located at \%R0550. Both parameter blocks are set up elsewhere in the program (they both must be at logic 1 in order to clear their respective tables).

SVCREQ \#15: Read Last-Logged Fault Table Entry

Use SVCREQ function \#15 in order to read the last entry logged in either the PLC fault table or the I/O fault table. The SVCREQ output is set ON unless some number other than 0 or 1 is entered as the requested operation (see below), or the fault table is empty. (For additional information on fault table entries, refer to chapter 3, "Fault Explanations and Correction.")

For this function, the parameter block has a length of 22 words. The input parameter block has this format:
$0=\operatorname{Read}$ PLC fault table.
$1=\operatorname{Read}$ I/O fault table.

The format for the output parameter block depends on whether the function reads data from the PLC fault table or the I/O fault table.

PLC Fault Table Output Format

Low Byte	High Byte
long/short	
spare	
PLC fault address	
fault group and action	
error code	
fault specific data	
time stamp	

I/O Fault Table Output Format

Low Byte High Byte	
long/short	
reference address	
I/O fault address	
fault group and action	
fault category	fault type
fault description	
fault specific data	

In the first byte of word address +1 , the Long/Short indicator defines the quantity of fault specific data present in the fault entry. It can be:

```
PLC Fault Table: 00 = -8 bytes (short)
    01 = 24 bytes (long)
I/O Fault Table: 02 = -5 bytes (short)
    03 = 21 bytes (long)
```


Example 1

In the following example, when input $\% \mathrm{I} 0251$ is on and input $\% \mathrm{I} 0250$ is on, the last entry in the PLC fault table is read into the parameter block. When input $\% \mathrm{I} 0251$ is off and input $\% \mathrm{I} 0250$ is on, the last entry in the I/O fault table is read into the parameter block. The parameter block is located at location \%R0600.

Example 2

In the next example, the PLC is shut down when any fault occurs on an I/O module except when the fault occurs on modules in rack 0 , slot 9 and in rack 1 , slot 9 . If faults occur on these two modules, the system remains running. The parameter for "table type" is set up on the first sweep. The contact IO_PRES, when set, indicates that the I/O fault table contains an entry. The PLC CPU sets the normally open contact in the next sweep after the fault logic places a fault in the table. If faults are placed in the table in two consecutive sweeps, the normally open contact is set for two consecutive sweeps.

The example uses a parameter block located at \%R0600. After the SVCREQ function executes, the fourth word of the parameter block contains the rack and slot location of the I/O module that faulted:

1	\%R0600	
long/short	\%R0601	
reference address		\%R0602
rack number	slot number	\%R0603
I/O bus no.	bus address	\%R0604
point address		\%R0605
fault data		

In the program, the EQ_INT blocks compare the rack/slot address in the table to hexadecimal constants. The internal coil $\% \mathrm{M} 0007$ is turned on when the rack/slot where the fault occurred meets the criteria specified above. If coil $\% \mathrm{M} 0007$ is on, its normally closed contact is off, preventing the shutdown. Conversely, if coil \%M0007 is off because the fault occurred on a different module, its normally closed contact is on and the shutdown occurs.

SVCREQ \#16: Read Elapsed Time Clock

Use the SVCREQ function with function number 16 in order to read the value of the system's elapsed time clock. This clock tracks elapsed time in seconds since the PLC powered on. The timer will roll over approximately once every 100 years.

This function has an output parameter block only. The parameter block has a length of 3 words.

seconds from power on (low order)	address
seconds from power on (high order)	address +1
100 microsecond ticks	address +2

The first two words are the elapsed time in seconds. The last word is the number of 100 microsecond ticks in the current second.

Example

In the following example, when internal coil $\% \mathrm{M} 0233$ is on, the value of the elapsed time clock is read and coil \%M0234 is set. When it is off, the value is read again. The difference between the values is then calculated, and the result is stored in register memory at location \%R0250.

The parameter block for the first read is at \%R0127; for the second read, at \%R0131. The calculation ignores the number of hundred microsecond ticks and the fact that the DINT type is actually a signed value. The calculation is correct until the time since power-on reaches approximately 50 years.

SVCREQ \#18: Read I/O Override Status

Use SVCREQ function \#18 in order to read the current status of overrides in the CPU.

Note

This feature is available only for 331 or higher CPUs.

For this function, the parameter block has a length of 1 word. It is an output parameter block only.
$0=$ No overrides are set.
$1=$ Overrides are set. address

Note

SVCREQ \#18 reports only overrides of \%I and \%Q references.

Example

In the following example, the status of I/O overrides is always read into location \%R1003. If any overrides are present, output $\% \mathrm{~T} 0001$ is set on.

SVCREQ \#23: Read Master Checksum

Use SVCREQ function \#23 to read the master checksums for the user program and the configuration. The SVCREQ output is always set to ON if the function is enabled, and the output block of information (see below) starts at the address given in parameter 3 (PARM) of the SVCREQ function.

When a RUN MODE STORE is active, the program checksums may not be valid until the store is complete. Therefore, two flags are provided at the beginning of the output parameter block to indicate when the program and configuration checksums are valid.

For this function, the output parameter block has a length of 12 words with this format:

Example

In the following example, when input $\% \mathrm{I} 0251$ is ON , the master checksum information is placed into the parameter block, and the output coil (\%Q0001) is turned on. The parameter block is located at \%R0050.

SVCREQ \#24: Reset Smart Module

Use SVCREQ function \#24 to reset a daughterboard or smart module. The SVCREQ output is set ON unless an invalid number for rack and/or slot is entered as shown below.

For this function, the parameter block has a length of 1 word. It is an input parameter block only.

Module Slot (low byte) Module Rack (high byte)

Note: Rack 0, Slot 1 shall indicate a reset is to be sent to the daughterboard.

Example

In the following example, when input $\% \mathrm{I} 0346$ is on and input $\% \mathrm{I} 0349$ is on, the module indicated by the Rack/Slot present in \%R0500 is reset.

The parameter block containing the modules rack and slot for the reset module Service Request is located at $\%$ R0500. The parameter block is set up elsewhere in the program.

SVCREQ \#26/30: Interrogate I/O

Use SVCREQ function \#26 (or \#30-they are identical; i.e., you can use either number to accomplish the same thing) to interrogate the actual modules present and compare them with the rack/slot configuration, generating addition, loss, and mismatch alarms, as if a store configuration had been performed. This SVCREQ will generate faults on both the PLC and I/O fault tables, depending on the fault.

This function has no parameter block and always outputs power flow.

Note

The time for this SVCREQ to execute depends on how many faults exist. Therefore, execution time of this SVCREQ will be greater for situations where more modules are at fault.

Example

In the following example, when input $\% \mathrm{I} 0251$ is ON , the actual modules are interrogated and compared to the rack/slot configuration. Output $\% \mathrm{Q} 0001$ is turned on after the SVCREQ is complete.

This Service Request is not available on Micro PLCs.

SVCREQ \#29: Read Elapsed Power Down Time

Use the SVCREQ function \#29 to read the amount of time elapsed between the last power-down and the most recent power-up. The SVCREQ output is always set to ON, and the output block of information (see below) starts at the address given in parameter 3 (PARM) of the SVCREQ function.

Note

This function is available only in the 331 or higher CPUs.
This function has an output parameter block only. The parameter block has a length of 3 words.

Power-Down Elapsed Seconds (low order)	address
Power-Down Elapsed Seconds (high order)	address +1
100 Microsecond ticks	address +2

The first two words are the power-down elapsed time in seconds. The last word is the remaining power-down elapsed time in 100 microsecond ticks (which is always 0). Whenever the PLC can not properly calculate the power down elapsed time, the time will be set to 0 . This will happen when the PLC is powered up with CLR M/T pressed on the HHP. This will also happen if the watchdog timer times out before power-down.

Example

In the following example, when input $\% \mathrm{I} 0251$ is ON , the Elapsed Power-Down Time is placed into the parameter block, and the output coil $(\% \mathrm{Q} 0001)$ is turned on. The parameter block is located at \%R0050.

SVCREQ \#45: Skip Next Output \& Input Scan

(Suspend I/O) Use the SVCREQ function \#45 to skip the next output and input scans. Any changes to the output reference tables during the sweep in which the SVCREQ \#45 was executed will not be reflected on the physical outputs of the corresponding modules. Any changes to the physical input data on the modules will not be reflected in the corresponding input references during the sweep after the one in which the SVCREQ \#45 was executed.

This function has no parameter block.

Note

The DOIO Function Block is not affected by the use of SVCREQ \#45. It will still update the I/O when used in the same logic program as the SVCREQ \#45.

Example

In the following example, when the "Idle" contact passes power flow, the next Output and Input Scan are skipped.

SVCREQ \#46: Fast Backplane Status Access

This function is a method of communicating a few bits to or from one or more smart modules very quickly across the PLC backplane compared with the normal communication method. This increase in communication speed is achieved by limiting the amount of data and the number of replies.

Use SVCREQ function \#46 to perform one of the following fast backplane access functions:

- Read a word of extra status data from one of more specified smart modules.
- Write a word of extra status data from one of more specified smart modules.
- Read/Write: Read a word of extra status data from one or more specified modules and write the data value between 0 and 15 to the same module, all in one operation.

Notes

Currently, the only module designed to support this Service Request is the DSM314 (Digital Servo Module).

A COMM_REQ or DOIO function block should not be performed with the specified module(s) during the same logic sweep during which either of the data write functions are performed, since they can cause the write data to be lost.

Two functions that write to a module (Write or Read/Write) should not be performed with the same module during the same logic sweep because they can cause the first write data to be lost.

This Service Request is also known as "SNAP."
This Service Request has a variable length as described below. The first word of the parameter block determines which function will be used and has the following format:
$1=$ Read extra data
$2=$ Write extra data
$3=$ Read/write extra data address (word 1)

Read Extra Status Data (Function \#1)

The Read Extra Data function reads a word of extra status data from each of the modules specified by a list in the parameter block and places the status data values into the parameter block. The parameter block requires $(N+4)$ words of reference memory, where N is the number of modules to which the data will be written.

Use the table on the following page to interpret the output values.
Table 12-5. Parameter Block for Read Extra Data Function

Location	Field	Meaning
Address	Function	1 = read extra status data
Address + 1	Error Code	An error code is placed here if the function fails because any of the modules is not present, inappropriate, or not working. For details, see "Error Codes" on page 12-75.
Address +2	Error rack \& slot	The rack \& slot number at which the error occurred
Address +3	First rack \& slot	Rack and slot number (in the form RRSS in hexadecimal, where RR is the rack number and SS is the slot number) of the 1st module from which the data will be read
Address +4	Read data from first module	The data read from the first module will be place here
Address +5	Second rack \& slot	Rack and slot number (in the form RRSS in hexadecimal, where RR is the rack number and SS is the slot number) of the 2nd module from which the data will be read
Address +6	Read data from second module	The data read from the second module will be place here
Address $+(\mathrm{I} * 2)+1$	Ith rack \& slot	Rack and slot number (in the form RRSS in hexadecimal, where RR is the rack number and SS is the slot number) of the Ith module from which the data will be read
Address $+(\mathrm{I} * 2)+2$	Read data from Ith module	The data read from the Ith module will be place here
Address $+(\mathrm{N} * 2)+1$	Last rack \& slot	Rack and slot number (in the form RRSS in hexadecimal, where RR is the rack number and SS is the slot number) of the last module from which the data will be read
Address $+(\mathrm{N} * 2)+2$	Read data from last module	The data read from the last module will be place here
Address $+(\mathrm{N} * 2)+3$	End of list indicator	A zero in this word indicates the end of the list of modules

Write Data (Function \#2)

The write data function writes a data value between 0 and 15 from the parameter block to one or more modules specified by a list in the parameter block. The parameter block requires $(\mathrm{N}+4)$ words of reference memory, where N is the number of modules to which the data will be written.

Table 12-6. Parameter Block for Write Data Function

Location	Field	Meaning
Address	Function	2 = write data
Address + 1	Error Code	An error code is placed here if the function fails because any of the modules is not present, inappropriate, or not working. No error code is set if the function executes but any of the modules does not receive the write data properly. For details, see "Error Codes" on page 12-75.
Address + 2	Error rack \& slot	The rack \& slot number at which the error occurred
Address + 3	First rack \& slot	Rack and slot number (in the form RRSS in hexadecimal, where $R R$ is the rack number and SS is the slot number) of the 1 st module to which the data will be sent
Address + 4	Write data for first module	This data value will be written to the first module
Address + 5	Second rack \& slot	Rack and slot number (in the form RRSS in hexadecimal, where $R R$ is the rack number and SS is the slot number) of the 2nd module to which the data will be sent
Address + 6	Write data for second module	This data value will be written to the second module
Address + (I * 2) +1	Ith rack \& slot	Rack and slot number (in the form RRSS in hexadecimal, where $R R$ is the rack number and SS is the slot number) of the Ith module to which the data will be sent
Address + (I * 2) +2	Write data for Ith module	This data value will be written to the Ith module
Address + (N * 2) + 1	Last rack \& slot	Rack and slot number (in the form RRSS in hexadecimal, where $R R$ is the rack number and SS is the slot number) of the last module to which the data will be sent
Address + ($\left.\mathrm{N}^{*} 2\right)+2$	Write data for last module	This data value will be written to the last module
Address + (N*2) + 3	End of list indicator	A zero in this word indicates the end of the list of modules

Read/Write Data (Function \#3)

The read/write function reads a word of extra status data from a module specified in the parameter block, then writes a data value between 0 and 15 from the parameter block to that module. This read write process is repeated for each module in a list in the parameter block. The parameter block $(\mathrm{N} * 3)+3$ words of reference memory, where N is the number of modules with which data will be exchanged.

Table 12-7. Parameter Block for Read/Write Data Function

Location	Field	Meaning
Address	Function	$3=\mathrm{read} / \mathrm{write}$
Address + 1	Error Code	An error code is placed here if the function fails because any of the modules is not present, inappropriate, or not working. No error code is set if the function executes but any of the modules does not receive the write data properly. For details, see "Error Codes" on page 12-75.
Address + 2	Error rack \& slot	The rack \& slot number at which the error occurred
Address + 3	First rack \& slot	Rack and slot number (in the form RRSS in hexadecimal, where $R R$ is the rack number and SS is the slot number) of the 1st module with which data will be exchanged
Address + 4	Read data from first module	The data read from the first module will be placed here
Address + 5	Write data for first module	This data value will be written to the first module
Address + 6	Second rack \& slot	Rack and slot number (in the form RRSS in hexadecimal, where $R R$ is the rack number and $S S$ is the slot number) of the 2nd module with which data will be exchanged
Address + 7	Read data from second module	The data read from the second module will be placed here
Address + 8	Write data for second module	This data value will be written to the second module
Address + ((I-1) * 3$)+3$	Ith rack \& slot	Rack and slot number (in the form RRSS in hexadecimal, where RR is the rack number and SS is the slot number) of the Ith module with which data will be exchanged
Address + ((I-1) * 3) + 4	Read data from Ith module	The data read from the Ith module will be placed here
Address + ((I-1)*3) + 5	Write data for Ith module	This data value will be written to the Ith module
Address + ((N-1)*3) +3	Last rack \& slot	Rack and slot number (in the form RRSS in hexadecimal, where $R R$ is the rack number and SS is the slot number) of the last module with which data will be exchanged
Address + ((N-1)*3) + 4	Read data from last module	The data read from the last module will be placed here
Address + ((N-1) * 3$)+5$	Write data for last module	This data value will be written to the last module
Address $+(\mathrm{N} * 3)+3$	End of list indicator	A zero in this word indicates the end of the list of modules

Table 12-8. Error Codes

Value	Description
1	Success - the function has executed normally.
-1	Module not present in the specified slot.
-2	Module inappropriate - module in the specified slot is not a smart module or does not support this functionality.
-3	Module not working - module in the specified slot is not communicating with the CPU properly.
-4	Read data parity error - parity error occurred during a read operation from an expansion or remote rack.
-5	Invalid function specified in the command block.

Example 1

The following example shows a Read (Specified in \%R0001) of a single module, located at Rack 2, Slot 4 (specified in $\%$ R0004). If the function completes successfully, the data read will be stored in $\%$ R0005. If an error occurs, however, an error code will be written to \%R0002, and the rack/slot location of the module generating the error will appear in \%R0003. Note that since this is a Read function for a single module, Address +5 and Address +6 are not used. Therefore, the corresponding memory locations, \%R0006 and \%R0007, are filled with zeros from the BLKMV instruction's IN6 and IN7 inputs. If an additional module were to be read, \%R0006 and \%R0007 would be used for the additional module. For more information on the Read function, see Table 12-5 earlier in this chapter.

Example 2

In this example the BLKMV and two MOVE instructions write the required data to the parameter block, which starts at \%R0001 (specified by the SVCREQ PARM input). When enabled, the SVCREQ reads the extra status word data from the module in Rack 0 , Slot 4 and from the module in Rack 1, Slot 1. It writes a value of 0005 to the module in Rack 0 , Slot 4 , and a value of 0009 to the module in Rack 1, Slot 1. (Note that the modules do not need to be listed in the parameter block in order by slot numbers.) Data read from the module in Rack 0 , Slot 4 will be placed into \%R0008. Data read from the module in Rack 1, Slot 1 will be placed in \%R0005.

SVCREQ \#48: Reboot After Fatal Fault Auto Reset

Compatibility for SVCREQ 48

CPU - This Service Request is supported by firmware release 10.00 (or later version) for Series 90 30 CPUs 331, 340, 341, 350, 36x, and 37x.

Software - This Service Request is only supported by VersaPro Version 1.1 (or later version) PLC software. Logicmaster does not support this feature.

Warning

Abstract

The Reboot After Fatal Fault feature should not be used (Ignore Fatal Faults parameter set to Disabled) in applications where an automatic PLC restart under fault condition could produce an unsafe condition in the controlled equipment. It is the responsibility of the system designer to determine whether this feature can be used safely with their equipment. Failure to follow this warning could result in injury or death to personnel and/or damage to equipment.

Description

The Reboot After Fatal Fault Service Request lets the PLC automatically resume normal operation after a fatal fault has occurred. Following the fatal fault, the PLC will automatically reset and resume execution. The faults will not be cleared, but will be treated as non-fatal. If fatal faults are present following the power up, the PLC will still be allowed to transition to run mode. This feature is enabled by the Ignore Fatal Faults (or Fatal Fault Override) parameter in the CPU's hardware configuration.

SVCREQ 48 sets the maximum number of retries and the time period during which the retries may occur. If the number of retries allowed within the time period is exceeded, the CPU mode is set to STOP/FAULT. If the period is 0 , the CPU mode is set to STOP/FAULT when the number of retries allowed is exceeded.

If the operator cycles power, fatal faults are ignored. The current fault count and time period are initialized. The total number of fatal faults is unchanged, but the total number of retries is incremented. System bit $\% \mathrm{~S} 0021$ is set to 1 whenever retry is successful and remains set until all fatal faults are cleared, or the mode is set to STOP/FAULT.

Table 12-9. Parameter Block for Reboot after Fatal Fault

Location	Field	Meaning
Word 1	Service Request Status	See Return Status Definition, below. User program must initialize this word to zero.
Word 2	Unlimited Retries	$0=$ Disable (number of retries is set by Word 3) $1=$ Enable (Words 3 and 4 ignored)
Word 3	Number of Retries Allowed	Range is 0 to 128 $0=$ Automatic Reboot is Disabled 1 to 128 = Maximum number of retries that are allowed to occur within the period set in Word 4.
Word 4	Retry Period (in minutes)	Range is 0 to 5940 minutes (99 hours) $0=$ No time limit on maximum number of retries set in Word 3. Auto Reboot will be allowed for the number of retries. 1 to 5940 = Auto Reboot is disabled if the number of retries specified is exceeded within the period specified.

Table 12-10. Return Status Definitions for Reboot after Fatal Fault

Status	Description	Notes	Power Flow
-5	Invalid Retry Period	Valid range is 0 to 5940	No
-4	Invalid No. of Retries	Valid range is 0 to 128	No
-3	Invalid Unlimited Retries	Must be 0 or 1	No
-2	Configuration Disabled	Ignore Fatal Faults (Fatal Fault Override) option must be enabled in hardware configuration.	No
0	No Action	Command requires no change	Yes
1	Auto Reset Enabled	Valid command enables reboot after Fatal Fault	Yes
2	Auto Reset Disabled	Valid command disables Reboot after Fatal Fault. Ignore Fatal Faults remains enabled.	

SVCREQ 49 Auto Reset Statistics

Service Request 49 provides access to two variables which record total number of fatal faults and retires that have occurred. The range of these variables is 0 to 65535 . These variables do not roll over if their maximum value is exceeded. (Service Request 48 is used to configure the maximum number of retries allowed and the time limit during which the retries can occur.)

Table 12-11. Parameter Block for Auto Reset Statistics

Word 1	Service Request Status	See Return Status Definitions below. User program must initialize this word to zero.
Word 2	Command	$0=$ Return total number of Fatal Faults and Number of Retries that have occurred. $1=$ Initialize the Total Number of Fatal Faults and Total Number of Retries to Zero.
Word 3	Returned Value $=$ Total number of Fatal Faults that have occurred.	User program should initialize to zero.
Word 4	Returned Value $=$ Total number of Auto Reset Retries	User program should initialize to zero.

Table 12-12. Return Status Definitions for Auto Reset Statistics

Status	Description	Notes	Power Flow
-2	Configuration Disabled	Ignore Fatal Faults (Fatal Fault Override) option must be enabled in hardware configuration.	No
-1	Invalid Command	Command must be 0 or 1.	No
1	Normal Status	Valid Command	Yes

CPU Compatibility for SVCREQ 49

This Service Request is supported by Firmware Release 10.00 for the Series 90-30 CPUs 331, 340, $341,350,36 x$, and $37 x$.

The Proportional plus Integral plus Derivative (PID) control function is the best known general purpose algorithm for closed loop process control. The Series 90 PID function block compares a Process Variable (PV) feedback with a desired process Set Point (SP) and updates a Control Variable (CV) output based on the error.

The block uses PID loop gains and other parameters stored in an array of 4016 bit words (discussed on page 12-82) to solve the PID algorithm at the desired time interval. All parameters are 16 bit integer words for compatibility with 16 bit analog process variables. This allows \%AI memory to be used for input Process Variables and \%AQ to be used for output Control Variables. The example shown below includes typical inputs.

As scaled 16 integer numbers, many parameters must be defined in either PV counts or units or CV counts or units. For example, the SP input must be scaled over the same range as PV because the PID block calculates the error from the difference of these two inputs. The PV and CV counts can be -32000 or 0 to 32000 , matching analog scaling or from 0 to 10000 , to display variables as 0.00% to 100.00%. The PV and CV Counts do not have to have the same scaling, in which case there will be scale factors included in the PID gains.

Note

The PID will not execute more often than once every 10 milliseconds. This could change your results if you set it up to execute every sweep and the sweep is less than 10 milliseconds. In such a case, the PID function will not run until enough sweeps have occurred to accumulate an elapsed time of 10 milliseconds. For example, if the sweep time is 9 milliseconds, the PID function will execute every other sweep with an elapsed time of 18 milliseconds for every time it executes.

Parameters

Parameter	Description
enable	When enabled through a contact, the PID function is performed.
SP	SP is the control loop or process set point. Set using PV Counts, the PID adjusts the output CV so that PV matches SP (zero error).
PV	Process Variable input from the process being controlled, often a \%AI input.
MAN	When energized to 1 (through a contact), the PID block is in MANUAL mode. If this parameter is not energized (0), the PID block is in automatic mode.
UP	If energized along with MAN, it adjusts the CV up by 1 CV per solution.*
DN	If energized along with MAN, it adjusts the CV down by 1 CV per solution.*
RefArray Address	Address is the location of the PID control block information (user and internal parameters). Uses 40 \%R words that cannot be shared.
ok	The ok output is energized when the function is performed without error. It is off if error(s) exist.
CV	CV is the control variable output to the process, often a \%AQ analog output.

*Increments (UP parameter) or decremented (DN parameter) by 1 per access of the PID function.

Valid Memory Types

Parameter	flow	\%I	\%Q	\%M	\%T	\%S	\%G	\%R	\%AI	\%AQ	const	none
enable	\bullet											
SP		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	
PV		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet		
MAN	\bullet											
UP	\bullet											
DN	\bullet											
address								\bullet				
ok	\bullet											\bullet
CV		\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet		

- Valid reference or place where power can flow through the function.

PID Parameter Block

Besides the 2 input words and the 3 Manual control contacts, the PID block uses 13 of the parameters in the RefArray. These parameters must be set before calling the block. The other parameters are used by the PLC and are non-configurable. The \%Ref shown in the table below is the same RefArray Address at the bottom of the PID block. The number after the plus sign is the offset in the array. For example, if the RefArray starts at \%R100, the \%R113 will contain the Manual Command used to set the Control Variable and the integrator in Manual mode.

Table 12-13. PID Parameters Overview

Register	Parameter	Low Bit Units	Range of Values
\%Ref+0000	Loop Number	Integer	0 to 255 (for user display only)
\%Ref+0001	Algorithm	N/A; set and maintained by the PLC	Non-configurable
\%Ref+0002	Sample Period	10 milliseconds	0 (every sweep) to 65535 (10.9 Min). Use at least 10 for 90-30 PLCs (see Note on page 12-80).
\%Ref+0003	Dead Band +	PV Counts	0 to 32000 (never negative)
\%Ref+0004	Dead Band -	PV Counts	-32000 to 0 (never positive)
\%Ref+0005	Proportional Gain -Kp	0.01 CV\%/PV\%	0 to $327.67 \% 1 \%$
\%Ref+0006	Derivative Gain-Kd	0.01 seconds	0 to 327.67 sec
\%Ref+0007	Integral Rate-Ki	Repeat/1000 Sec	0 to 32.767 repeat/sec
\%Ref+0008	CV Bias/Output Offset	CV Counts	-32000 to 32000 (add to integrator output)
\%Ref+0009	Upper Clamp	CV Counts	-32000 to 32000 (>\%Ref+10) output limit
\%Ref+0010	Lower Clamp	CV Counts	-32000 to 32000 (<\%Ref+09) output limit
\%Ref+0011	Minimum Slew Time	Second/Full Travel	0 (none) to 32000 sec to move 32000 CV
\%Ref+0012	Config Word	Low 5 bits used	Bit 0 to 2 for Error +/-, OutPolarity, Deriv.
\%Ref+0013	Manual Command	CV Counts	Tracks CV in Auto or Sets CV in Manual
\%Ref+0014	Control Word	Maintained by the PLC, unless Bit 1 is set.	PLC maintained unless set otherwise: low bit sets Override if 1 (see description in the "PID Parameter Details" table on page 12-85)
\%Ref+0015	Internal SP	N/A; set and maintained by the PLC	Non-configurable
\%Ref+0016	Internal CV	N/A; set and maintained by the PLC	Non-configurable
\%Ref+0017	Internal PV	N/A; set and maintained by the PLC	Non-configurable
\%Ref+0018	Output	N/A; set and maintained by the PLC	Non-configurable

Table 12-13. PID Parameters Overview - Continued

Register	Parameter	Low Bit Units	Range of Values
\%Ref+0019	Diff Term Storage	N/A; set and maintained by the PLC	Non-configurable
$\begin{aligned} & \text { \%Ref+0020 } \\ & \text { and } \\ & \% \operatorname{Ref}+0021 \end{aligned}$	Int Term Storage	N/A; set and maintained by the PLC	Non-configurable
\%Ref+0022	Slew Term Storage	N/A; set and maintained by the PLC	Non-configurable
\%Ref+0023	Clock	N/A; set and	
\%Ref+0024		maintained by	Non-configurable
\%Ref+0025	(time last executed)	the PLC	
\%Ref+0026	Y Remainder Storage	N/A; set and maintained by the PLC	Non-configurable
\%Ref+0027	Lower Range for SP, PV	PV Counts	$\begin{aligned} & -32000 \text { to } 32000 \text { (>\%Ref+28) for } \\ & \text { display } \end{aligned}$
\%Ref+0028	Upper Range for SP, PV	PV Counts	-32000 to 32000 ($<\%$ Ref +27) for display
$\begin{gathered} \text { \%Ref+0029 } \\ +\cdot \\ \% \text { Ref+0034 } \end{gathered}$	Reserved for internal use	N/A	Non-configurable
$\begin{gathered} \text { \%Ref+0035 } \\ \text { • } \\ \% \text { Ref }+0039 \end{gathered}$	Reserved for external use	N/A	Non-configurable

The RefArray array must consist of \%R registers on the 90-30 PLC. Note that every PID block call must use a different 40-word array even if all 13 user parameters are the same because other words in the array are used for internal PID data storage. Make sure the array does not extend beyond the end of memory.

To configure operating parameters, select the PID function and press F10 to zoom in to a screen displaying User Parameters; then use arrow keys to select fields and type in desired values. You can use 0 for most default values, except the CV Upper Clamp, which must be greater than the CV Lower Clamp for the PID block to operate. Note that the PID block does not pass power if there is an error in User Parameters, so monitor with a temporary coil while modifying data.

Once suitable PID values have been chosen, they should be defined as constants in the BLKMOV so that they can be used to reload default PID user parameters if needed.

Operation of the PID Instruction

Normal Automatic operation is to call the PID block every sweep with power flow to Enable and no power flow to Manual input contacts. The block compares the current PLC elapsed time clock with the last PID solution time stored in the internal RefArray. If the time difference is greater than the sample period defined in the third word (\%Ref+2) of the RefArray, the PID algorithm is solved using the time difference and both the last solution time and Control Variable output are updated. In Automatic mode, the output Control Variable is placed in the Manual Command parameter $\%$ Ref+13.

If power flow is provided to both Enable and Manual input contacts, the PID block is placed in Manual mode and the output Control Variable is set from the Manual Command parameter $\% \operatorname{Ref}+13$. If either the UP or DN inputs have power flow, the Manual Command word is incremented or decremented by one CV count every PID solution. For faster manual changes of the output Control Variable, it is also possible to add or subtract any CV count value directly to/from the Manual Command word.

The PID block uses the CV Upper and CV Lower Clamp parameters to limit the CV output. If a positive Minimum Slew Time is defined, it is used to limit the rate of change of the CV output. If either the CV amplitude or rate limit is exceeded, the value stored in the integrator is adjusted so that CV is at the limit. This anti-reset windup feature (defined on page 12-87) means that even if the error tried to drive CV above (or below) the clamps for a long period of time, the CV output will move off the clamp as soon as the error term changes sign.

This operation, with the Manual Command tracking CV in Automatic mode and setting CV in Manual mode, provides a bumpless transfer between Automatic and Manual modes. The CV Upper and Lower Clamps and the Minimum Slew Time still apply to the CV output in Manual mode and the internal value stored in the integrator is updated. This means that if you were to step the Manual Command in Manual mode, the CV output will not change any faster that the Minimum Slew Time (Inverse) rate limit and will not go above or below the CV Upper or CV Lower Clamp limits.

Note

A specific PID function should not be called more than once per sweep.
The following table provides more details about the parameters discussed briefly in Table 12-3. The number in parentheses after each parameter name is the offset in the RefArray.

Table 12-14. PID Parameter Details

Data Item	Description
Loop Number (00)	This is an optional parameter available to identify a PID block. It is an unsigned integer that provides a common identification in the PLC with the loop number defined by an operator interface device. The loop number is displayed under the block address when logic is monitored from the Logicmaster 90-30/20/Micro software.
Algorithm (01)	An unsigned integer that is set by the PLC to identify what algorithm is being used by the function block. The ISA algorithm is defined as algorithm 1, and the independent algorithm is identified as algorithm 2.
Sample Period (02)	The shortest time, in 10 millisecond increments, between solutions of the PID algorithm. For example, use a 10 for a 100 millisecond sample period. If it is 0 , the algorithm is solved every time the block is called (see section below on PID block scheduling). The PID algorithm is solved only if the current PLC elapsed time clock is at or later than the last PID solution time plus this Sample Period. Remember, that the $90-30$ will not use a solution time less than 10 milliseconds (see Note on page 12-80); so sweeps will be skipped for smaller sweep times. This function compensates for the actual time elapsed since the last execution, within 100 microseconds. If this value is set to 0 , the function is executed each time it is enabled; however, it is restricted to a minimum of 10 milliseconds as noted above.
$\begin{gathered} \text { Dead Band } \\ (+/-) \\ (03 / 04) \end{gathered}$	INT values defining the upper (+) and lower (-) Dead Band limits in PV Counts. If no Dead Band is required, these values must be 0 . If the $\operatorname{PID} \operatorname{Error}(\mathrm{SP}-\mathrm{PV})$ or $(\mathrm{PV}-\mathrm{SP})$ is above the $(-)$ value and below the (+) value, the PID calculations are solved with an Error of 0. If non-zero, the (+) value must be greater than 0 and the (-) value less than 0 or the PID block will not function. You should leave these at 0 until the PID loop gains are setup or tuned. After that, you might want to add Dead Band to avoid small CV output changes due to small variations in error, perhaps to reduce mechanical wear.
Proportional Gain-Kp (05)	This INT number, called the Controller gain, Kc, in the ISA version, determines the change in CV in CV Counts for a 100 PV Count change in the Error term. It is displayed as $0.00 \% / \%$ with an implied decimal point of 2 . For example, a Kp entered as 450 will be displayed as 4.50 and will result in a Kp*Error/100 or $450 *$ Error $/ 100$ contribution to the PID Output. Kp is generally the first gain set when adjusting a PID loop.
Derivative Gain-Kd (06)	This INT number determines the change in CV in CV Counts if the Error or PV changes 1 PV Count every 10 milliseconds. Entered as a time with the low bit indicating 10 milliseconds, it is displayed as 0.00 Seconds with an implied decimal point of 2. For example, a Kd entered as 120 will be displayed as 1.20 Sec and will result in a Kd * delta Error/delta time or $120 * 4 / 3$ contribution to the PID Output if Error was changing by 4 PV Counts every 30 milliseconds. Kd can be used to speed up a slow loop response, but is very sensitive to PV input noise.
Integral Rate Gain-Ki (07)	This INT number determines the change in CV in CV Counts if the Error were a constant 1 PV Count. It is displayed as 0.000 Repeats/Sec with an implied decimal point of 3. For example, a Ki entered as 1400 will be displayed as 1.400 Repeats/Sec and will result in a Ki *Error *dt or $1400 * 20 * 50 / 1000$ contribution to PID Output for an Error of 20 PV Counts and a 50 millisecond PLC sweep time (Sample Period of 0). Ki is usually the second gain set after Kp .
CV Bias/Output Offset (08)	An INT value in CV Counts added to the PID Output before the rate and amplitude clamps. It can be used to set non-zero CV values if only Kp Proportional gains are used, or for feed forward control of this PID loop output from another control loop.

Table 12-14. PID Parameter Details - Continued

Data Item	Description
CV Upper and Lower Clamps (09/10)	INT values in CV Counts that define the highest and lowest value for CV . These values are required and the Upper Clamp must have a more positive value than the Lower Clamp, or the PID block will not work. These are usually used to define limits based on physical limits for a CV output. They are also used to scale the Bar Graph display for CV for the LM90 or ADS PID display. The block has anti-reset windup to modify the integrator value when a CV clamp is reached.
Minimum Slew Time (11)	A positive value to define the minimum number of seconds for the CV output to move from 0 to full travel of 100% or 32000 CV Counts. It is an inverse rate limit on how fast the CV output can be changed. If positive, CV can not change more than 32000 CV Counts times Delta Time (seconds) divided by Minimum Slew Time. For example, if the Sample Period was 2.5 seconds and the Minimum Slew Time is 500 seconds, CV can not change more than $32000 * 2.5 / 500$ or 160 CV Counts per PID solution. As with the CV Clamps, there is an anti-windup feature that adjusts the integrator value if the CV rate limit is exceeded. If Minimum Slew Time is 0 , there is no CV rate limit. Make sure you set Minimum Slew Time to 0 while you are tuning or adjusting PID loop gains.
Config Word	The low 5 bits of this word are used to modify three standard PID settings. The other bits should be set to 0 . Set the low bit to 1 to modify the standard PID Error Term from the normal (SP - PV) to (PV - SP), reversing the sign of the feedback term. This is for Reverse Acting controls where the CV must go down when the PV goes up. Set the second bit to a 1 to invert the Output Polarity so that CV is the negative of the PID output rather than the normal positive value. Set the fourth bit to 1 to modify the Derivative Action from using the normal change in the Error term to the change in the PV feedback term. The low 5 bits in the Config Word are defined in detail below: Bit $\mathbf{0}=$ Error Term. When this bit is set to 0 , the error term is $\mathrm{SP}-\mathrm{PV}$. When this bit is set to 1 , the error term is PV - SP. Bit $1=$ Output Polarity. When this bit is set to 0 , the CV output represents the output of the PID calculation. When it is set to 1 , the CV output represents the negative of the output of the PID calculation.
	Bit $2=$ Derivative action on PV. When this bit is set to 0 , the derivative action is applied to the error term. When it is set to 1 , the derivative action is applied to PV. All remaining bits should be zero. Bit $3=$ Deadband action. When the Deadband action bit is set to zero, then no deadband action is chosen. If the error is within the deadband limits, then the error is forced to be zero. Otherwise the error is not affected by the deadband limits. If the Deadband action bit is set to one, then deadband action is chosen. If the error is within the deadband limits, then the error is forced to be zero. If, however, the error is outside the deadband limits, then the error is reduced by the deadband limit $($ error $=$ error - deadband limit $)$. Bit 4 =Anti-reset windup action. When this bit is set to zero, the anti-reset windup action uses a reset back calculation. When the output is clamped, this replaces the accumulated Y remainder value (defined on page 12-87) with whatever value is necessary to produce the clamped output exactly. When the bit is set to one, this replaces the accumulated Y term with the value of the Y term at the start of the calculation. In this way, the pre-clamp Y value is held as long as the output is clamped. NOTE: The anti-reset windup action bit is only available on release 6.50 or later 90-30 CPUs. Remember that the bits are set in powers of 2. For example, to set Config Word to 0 for default PID configuration, you would add 1 to change the Error Term from SP-PV to PV-SP, or add 2 to change the Output Polarity from CV $=$ PID Output to CV $=-$ PID Output, or add 4 to change Derivative Action from Error rate of change to PV rate of change, etc.

Table 12-14. PID Parameter Details - Continued

Data Item	Description
Manual Command (13)	This is an INT value set to the current CV output while the PID block is in Automatic mode. When the block is switched to Manual mode, this value is used to set the CV output and the internal value of the integrator within the Upper and Lower Clamp and Slew Time limits.
Control Word (14)	This is an internal parameter that is normally left at 0 . If the Override low bit is set to 1 , this word and other internal SP, PV and CV parameters must be used for remote operation of this PID block (see below). This allows remote operator interface devices, such as a computer, to take control away from the PLC program. Caution: if you do not want this to happen, make use the Control Word is set to 0 . If the low bit is 0 , the next 4 bits can be read to track the status of the PID input contacts as long as the PID Enable contact has power. A discrete data structure with the first five bit positions in the following format:
SP (15)	(Non-configurable-set and maintained by the PLC) Tracks SP in; must be set externally if Override $=1$.
CV (16)	(Non-configurable-set and maintained by the PLC) Tracks CV out.
PV (17)	(Non-configurable-set and maintained by the PLC) Tracks PV in; must be set externally if Override bit = 1.
Output (18)	(Non-configurable-set and maintained by the PLC) This is a signed word value representing the output of the function block before the application of the optional inversion. If no output inversion is configured and the output polarity bit in the control word is set to 0 , this value will equal the CV output. If inversion is selected and the output polarity bit is set to 1 , this value will equal the negative of the CV output.
Diff Term Storage (19)	Used internally for storage of intermediate values. Do not write to this location.
Int Term Storage (20/21)	Used internally for storage of intermediate values. Do not write to this location.
Slew Term Storage (22)	Used internally for storage of intermediate values. Do not write to this location.
Clock (23-25)	Internal elapsed time storage (time last PID executed). Do not write to these locations.
Y Remainder (26)	Holds remainder for integrator division scaling for 0 steady state error.
Lower and Upper Range (27/28)	Optional INT values in PV Counts that define the highest and lowest display value for the SP and PV Logicmaster Zoom key horizontal bar graph and ADS PID faceplate display.
$\begin{aligned} & \text { Reserved (29-34 } \\ & \text { and 35-39) } \end{aligned}$	29-34 are reserved for internal use; 35-39 are reserved for external use. They are reserved for GE Fanuc use, and cannot be used for other purposes.

Internal Parameters in RefArray

As described in Table 12-3 on the previous pages, the PID block reads 13 user parameters and uses the rest of the 40 word RefArray for internal PID storage. Normally you would not need to change any of these values. If you are calling the PID block in Auto mode after a long delay, you might want to use SVC_REQ \#16 to load the current PLC elapsed time clock into \%Ref+23 to update the last PID solution time to avoid a step change on the integrator. If you have set the Override low bit of the Control Word (\%Ref+14) to 1, the next four bits of the Control Word must be set to control the PID block input contacts (as described in Table 12-3 on the previous pages), and the Internal SP and PV must be set as you have taken control of the PID block away from the ladder logic.

PID Algorithm Selection (PIDISA or PIDIND) and Gains

The PID block can be programmed selecting either the Independent (PID_IND) term or standard ISA (PID_ISA) versions of the PID algorithm. The only difference in the algorithms is how the Integral and Derivative gains are defined. To understand the difference, you need to understand the following:

Both PID types calculate the Error term as SP - PV (Reverse Acting), which can be changed to Direct Acting mode (PV - SP) by setting the Error Term to 1 . The Error Term is the low bit ($0-$ bit) in the Config. Word (\%Ref+0012). In a Direct Acting proportional (P) loop, an increase in the Process Variable (PV) causes an increase in the output (CV). In a Reverse Acting proportional (P) loop, an increase in the Process Variable (PV) causes a decrease in the output (CV). Introducing the integral term (I) changes the behavior. In a Direct Acting PI loop, the output (CV) will increase when the process variable (PV) is greater than the setpoint (SP). In a Reverse Acting PI loop, the output (CV) will decrease when the Process Variable (PV) is greater than the Setpoint (SP).

Direct Acting: Error $=$ measurement - setpoint $($ PV-SP $)$, Error Term $=1$
Reverse Acting: Error $=$ setpoint - measurement $($ SP-PV $)$, Error Term $=0$
Note. Direct Acting is sometimes referred to as Forward Acting.
The Derivative is normally based on the change of the Error term since the last PID solution, which may cause a large change in the output if the SP value is changed. If this is not desired, the third bit of the Config Word can be set to 1 to calculate the Derivative based on the change of the PV. The dt (or Delta Time) is determined by subtracting the last PID solution clock time for this block from the current PLC elapsed time clock.
$\mathbf{d t}=$ Current PLC Elapsed Time clock - PLC Elapsed Time Clock at Last PID solution
Derivative $=($ Error - previous Error $) / \mathrm{dt} \quad$ or $(\mathrm{PV}-$ previous PV$) / \mathrm{dt}$ if 3rd bit of Config Word set to 1

The Independent term PID (PID_IND) algorithm calculates the output as:
PID Output $=\mathrm{Kp} *$ Error $+\mathrm{Ki} *$ Error $* \mathrm{dt}+\mathrm{Kd} *$ Derivative +CV Bias
The standard ISA (PID_ISA) algorithm has a different form:
PID Output $=\mathrm{Kc} *($ Error + Error $* \mathrm{dt} / \mathrm{Ti}+\mathrm{Td} *$ Derivative $)+\mathrm{CV}$ Bias
where Kc is the controller gain, and Ti is the Integral time and Td is the Derivative time. The advantage of ISA is that adjusting the Kc changes the contribution for the integral and derivative terms as well as the proportional one, which may make loop tuning easier. If you have PID gains in terms or Ti and Td , use
$\mathrm{Kp}=\mathrm{Kc} \quad \mathrm{Ki}=\mathrm{Kc} / \mathrm{Ti} \quad$ and $\quad \mathrm{Kd}=\mathrm{Kc} / \mathrm{Td}$
to convert them to use as PID User Parameter inputs.
The CV Bias term above is an additive term separate from the PID components. It may be required if you are using only Proportional Kp gain and you want the CV to be a non-zero value when the PV equals the SP and the Error is 0. In this case, set the CV Bias to the desired CV when the PV is at the SP. CV Bias can also be used for feed forward control where another PID loop or control algorithm is used to adjust the CV output of this PID loop.

If an Integral Ki gain is used, the CV Bias would normally be 0 as the integrator acts as an automatic bias. Just start up in Manual mode and use the Manual Command word (\%Ref+13) to set the integrator to the desired CV, then switch to Automatic mode. This also works if Ki is 0 , except the integrator will not be adjusted based on the Error after going into Automatic mode.

The following diagram shows how the PID algorithms work:

Figure 12-4. Independent Term Algorithm (PIDIND)
The ISA Algorithm (PIDISA) is similar except the Kp gain is factored out of Ki and Kd so that the integral gain is Kp * Ki and derivative gain is Kp * Kd. The Error sign, DerivAction and Polarity are set by bits in the Config Word user parameter.

CV Amplitude and Rate Limits

The block does not send the calculated PID Output directly to CV. Both PID algorithms can impose amplitude and rate of change limits on the output Control Variable. The maximum rate of change is determined by dividing the maximum 100% CV value (32000) by the Minimum Slew Time, if specified as greater than 0. For example, if the Minimum Slew Time is 100 seconds, the rate limit will be 320 CV counts per second. If the dt solution time was 50 milliseconds, the new CV output can not change more than $320 * 50 / 1000$ or 16 CV counts from the previous CV output.

The CV output is then compared to the CV Upper and CV Lower Clamp values. If either limit is exceeded, the CV output is set to the clamped value. If either rate or amplitude limits are exceeded modifying CV, the internal integrator value is adjusted to match the limited value to avoid reset windup.

Finally, the block checks the Output Polarity (2nd bit of the Config Word \%Ref+12) and changes the sign of the output if the bit is 1 .

CV $=$ Clamped PID Output \quad or - Clamped PID Output if Output Polarity bit set

If the block is in Automatic mode, the final CV is placed in the Manual Command $\%$ Ref+13. If the block is in Manual mode, the PID equation is skipped as CV is set by the Manual Command, but all the rate and amplitude limits are still checked. That means that the Manual Command can not change the output above the CV Upper Clamp or below the CV Lower Clamps and the output can not change faster than the Minimum Slew Time allowed.

Sample Period and PID Block Scheduling

The PID block is a digital implementation of an analog control function, so the dt sample time in the PID Output equation is not the infinitesimally small sample time available with analog controls. The majority of processes being controlled can be approximated as a gain with a first or second order lag, possibly with a pure time delay. The PID block sets a CV output to the process and uses the process feedback PV to determine an Error to adjust the next CV output. A key process parameter is the total time constant, which is how fast does the PV respond when the CV is changed. As discussed in the Setting Loop Gains section below, the total time constant, Tp+Tc, for a first order system is the time required for PV to reach 63% of its final value when CV is stepped. The PID block will not be able to control a process unless its Sample Period is well under half the total time constant. Larger Sample Periods will make it unstable.

The Sample Period should be no bigger than the total time constant divided by 10 (or down to 5 worst case). For example, if PV seems to reach about $2 / 3$ of its final value in 2 seconds, the Sample Period should be less than 0.2 seconds, or 0.4 seconds worst case. On the other hand, the Sample Period should not be too small, such as less than the total time constant divided by 1000 , or the Ki * Error * dt term for the PID integrator will round down to 0 . For example, a very slow process that takes 10 hours or 36000 seconds to reach the 63% level should have a Sample Period of 40 seconds or longer.

Unless the process is very fast, it is not usually necessary to use a Sample Period of 0 to solve the PID algorithm every PID sweep. If many PID loops are used with a Sample Period greater than the sweep time, there may be wide variations in PLC sweep time if many loops end up solving the algorithm at the same time. The simple solution is to sequence a one or more 1 bits through an array of bits set to 0 that is being used to enable power flow to individual PID blocks.

Determining the Process Characteristics

The PID loop gains, Kp, Ki and Kd , are determined by the characteristics of the process being controlled. Two key questions when setting up a PID loop are:

1. How big is the change in PV when CV changes by a fixed amount, or what is the open loop gain?
2. How fast does the system respond, or how quick does PV change after the CV output is stepped?

Many processes can be approximated by a process gain, first or second order lag and a pure time delay. In the frequency domain, the transfer function for a first order lag system with a pure time delay is:

$$
\mathbf{P V}(\mathbf{s}) / \mathrm{CV}(\mathrm{~s})=\mathbf{G}(\mathrm{s})=\mathrm{K} * \mathrm{e}^{* *}(-\mathrm{Tp} \mathrm{~s}) /(1+\mathrm{Tc} s)
$$

Plotting a step response at time t0 in the time domain provides an open loop unit reaction curve:

The following process model parameters can be determined from the PV unit reaction curve:

K	Process open loop gain $=$ final change in PV/change in CV at time t0 (Note no subscript on K)
Tp	Process or pipeline time delay or dead time after t0 before the process output PV starts moving
Tc	First order Process time constant, time required after Tp for PV to reach 63.2% of the final PV

Usually the quickest way to measure these parameters is by putting the PID block in Manual mode and making a small step in CV output, by changing the Manual Command $\%$ Ref+13, and plotting the PV response over time. For slow processes, this can be done manually, but for faster processes a chart recorder or computer graphic data logging package will help. The CV step size should be large enough to cause an observable change in PV, but not so large that it disrupts the process being measured. A good size may be from 2 to 10% of the difference between the CV Upper and CV Lower Clamp values .

Setting User Parameters Including Tuning Loop Gains

As all PID parameters are totally dependent on the process being controlled, there are no predetermined values that will work, however, it is usually a simple, iterative procedure to find acceptable loop gain.

1. Set all the functional block parameters to 0 , then set the CV Upper and CV Lower Clamps to the highest and lowest CV expected. Set the Sample Period to the estimated process time constant (above)/10 to 100 .
2. Put block in Manual mode and set Manual Command (\%Ref+13) at different values to check if CV can be moved to Upper and Lower Clamp. Record PV value at some CV point and load it into SP.
3. Set a small gain, such as 100 * Maximum CV/Maximum PV, into Kp and turn off Manual mode. Step SP by 2 to 10% of the Maximum PV range and observe PV response. Increase Kp if PV step response is too slow or reduce Kp if PV overshoots and oscillates without reaching a steady value.
4. Once a Kp is found, start increasing Ki to get overshooting that dampens out to a steady value in 2 to 3 cycles. This may required reducing Kp. Also try different step sizes and CV operating points.
5. After suitable Kp and Ki gains are found, try adding Kd to get quicker responses to input changes providing it doesn't cause oscillations. Kd is often not needed and will not work with noisy PV.
6. Check gains over different SP operating points and add Dead Band and Minimum Slew Time if needed. Some Reverse Acting processes may need setting Config Word Error Sign or Polarity bits.

Setting Loop Gains—Ziegler and Nichols Tuning Approach

Once the three process model parameters, K, Tp and Tc , are determined, they can be used to estimate initial PID loop gains. The following approach, developed by Ziegler and Nichols in the 1940's, is designed to provide good response to system disturbances with gains producing a amplitude ratio of $1 / 4$. The amplitude ratio is the ratio of the second peak over the first peak in the closed loop response.

1. Calculate the Reaction rate:

$$
\mathrm{R}=\mathrm{K} / \mathrm{Tc}
$$

2. For Proportional control only, calculate Kp as

$$
\mathrm{Kp}=1 /(\mathrm{R} * \mathrm{Tp})=\mathrm{Tc} /(\mathrm{K} * \mathrm{Tp})
$$

3. For Proportional and Integral control, use

$$
\begin{aligned}
& \mathrm{Kp}=0.9 /(\mathrm{R} * \mathrm{Tp})=0.9 * \mathrm{Tc} /(\mathrm{K} * \mathrm{Tp}) \\
& \quad \mathrm{Ki}=0.3 * \mathrm{Kp} / \mathrm{Tp}
\end{aligned}
$$

4. For Proportional, Integral and Derivative control, use

$$
\begin{array}{ll}
\mathrm{Kp}=\mathrm{G} /(\mathrm{R} * \mathrm{Tp}) & \text { where } \mathrm{G} \text { is from } 1.2 \text { to } 2.0 \\
\mathrm{Ki}=0.5 * \mathrm{Kp} / \mathrm{Tp} & \\
\mathrm{Kd}=0.5 * \mathrm{Kp} * \mathrm{Tp} &
\end{array}
$$

5. Check that the Sample Period is in the range $(\mathrm{Tp}+\mathrm{Tc}) / 10$ to $(\mathrm{Tp}+\mathrm{Tc}) / 1000$

Another approach, the "Ideal Tuning" procedure, is designed to provide the best response to SP changes, delayed only by the Tp process delay or dead time.

$$
\begin{array}{ll}
\mathrm{Kp}=2 * \mathrm{Tc} /(3 * \mathrm{~K} * \mathrm{Tp}) \\
\mathrm{Ki}=\mathrm{Tc} & \\
\mathrm{Kd}=\mathrm{Ki} / 4 & \text { if Derivative term is used }
\end{array}
$$

Once initial gains are determined, they must be converted to integer User Parameters. To avoid scaling problems, the Process gain, K, should be calculated as a change in input PV Counts divided by the output step change in CV Counts and not in process PV or CV engineering units. All times should also be specified in seconds. Once Kp, Ki and Kd are determined, Kp and Kd can be multiplied by 100 and entered as integer while Ki can be multiplied by 1000 and entered into the User Parameter \%RefArray.

Sample PID Call

The following example has a Sample Period of 100 milliseconds, a Kp gain of 4.00 and a Ki gain of 1.500 . The Set Point is stored in \%R1 with the Control Variable output in \%AQ2 and the Process Variable returned in \%AI3. CV Upper and CV Lower Clamps must be set, in this case to 20000 and 400 , and an optional small Dead Band of +5 and -5 has been included. The 40 word RefArray starts in \%R100. Closing the \%M0006 contact enables a pair of BLKMV instructions, which set the initial parameter values by copying constants into the 14 words starting at \%R102 (\%Ref+2). (Note: to optimize parameters during the tuning process, access parameters by placing the Logicmaster cursor on the PID instruction and pressing the F10 key, which is the Zoom key.)

The block can be switched to Manual mode with \%M0001 so that the Manual Command, \%R0113, can be adjusted. Bits $\%$ M0004 or $\% \mathrm{M} 0005$ can be used to increase or decrease $\% \mathrm{R} 0113$ and the PID CV and integrator by 1 every 100 millisecond solution. For faster manual operation, bits $\% \mathrm{M} 0002$ and $\% \mathrm{M} 0003$ can be used to add or subtract the value in \%R0002 to/from \%R0113 every PLC sweep. The $\%$ T0001 output is on when the PID is OK. Note that some of the registers in the 40-register parameter block are not included either because they are not used in this example, or they are not configurable because they are used by the PLC system. For additional parameter information, see Table 12-8.

Address	Value	Description
\%R0102	+00010	Sample Period
\%R0103	+00005	Dead Band +
\%R0104	+00005	Dead Band -
\%R0105	+00400	Proportional Gain (Kp)
\%R0106	+00000	Derivative Gain (Kd)
\%R0107	+01500	Integral Gain (Ki)
\%R0108	+00000	CV Bias/Output Offset
\%R0109	+20000	Upper Clamp
\%R0110	+00400	Lower Clamp
\%R0111	+00000	Minimum Slew Time
\%R0112	+00000	Config. Word
\%R0113	+00000	Manual Command
\%R0114	+00000	Control Word
\%R0115	+00000	Internal SP (Non-Configurable)

Appendix
 A

Instruction Timing

The Series 90-30, 90-20, and Micro PLCs support many different functions and function blocks. This appendix contains tables showing the memory size in bytes and the execution time in microseconds for each function. Memory size is the number of bytes required by the function in a ladder diagram application program.

Two execution times are shown for each function:

Execution Time	Description
Enabled	Time required to execute the function or function block when power flows into and out of the function. Typically, best-case times are when the data used by the block is contained in user RAM (word-oriented memory) and not in the discrete memory.
Disabled	Time required to execute the function when power flows into the function or function block; however, it is in an inactive state, as when a timer is held in the reset state.

Note

Timers and counters are updated each time they are encountered in the logic, timers by the amount of time consumed by the last sweep and counters by one count.

Note

For the $350,351,352$, and 360 PLC CPUs, times are identical except for the MOVE instruction, which is different for the 350 CPU-refer to the note at the bottom of the table on page A-6.

Table A-1. Instruction Timing, Standard Models

Function Group	Function	Enabled				Disabled				Increment				Size
		311	313	331	340/41	311	313	331	340/41	311	313	331	340/41	
Timers	On-Delay Timer	146	81	80	42	105	39	38	21	-	-	-	-	15
	Off-Delay Timer	98	47	44	23	116	63	58	32	-	-	-	-	9
	Timer	122	76	75	40	103	54	53	30	-	-	-	-	15
Counters	Up Counter	137	70	69	36	130	63	62	33	-	-	-	-	11
	Down Counter	136	70	69	37	127	61	61	31	-	-	-	-	11
Math	Addition (INT)	76	47	46	24	41	0	1	0	-	-	-	-	13
	Addition (DINT)	90	60	60	34	41	1	0	0	-	-	-	-	13
	Subtraction (INT)	75	46	45	25	41	0	1	0	-	-	-	-	13
	Subtraction (DINT)	92	62	62	34	41	1	0	0	-	-	-	-	13
	Multiplication (INT)	79	49	50	28	41	0	1	0	-	-	-	-	13
	Multiplication (DINT)	108	80	101	43	41	1	0	0	-	-	-	-	13
	Division (INT)	79	51	50	27	41	0	1	0	-	-	-	-	13
	Division (DINT)	375	346	348	175	41	1	0	0	-	-	-	-	13
	Modulo Division (INT)	78	51	49	27	41	0	1	0	-	-	-	-	13
	Modulo Div (DINT)	134	103	107	54	41	1	0	0	-	-	-	-	13
	Square Root (INT)	153	124	123	65	42	0	1	0	-	-	-	-	9
	Square Root (DINT)	268	239	241	120	42	0	0	1	-	-	-	-	9
Relational	Equal (INT)	66	35	36	19	41	1	1	0	-	-	-	-	9
	Equal (DINT)	86	56	54	29	41	1	0	0	-	-	-	-	9
	Not Equal (INT)	67	39	35	22	41	1	1	0	-	-	-	-	9
	Not Equal (DINT)	81	51	51	28	41	1	0	0	-	-	-	-	9
	Greater Than (INT)	64	33	35	20	41	1	1	0	-	-	-	-	9
	Greater Than (DINT)	89	59	58	32	41	1	0	0	-	-	-	-	9
	Greater Than/Eq (INT)	64	36	34	19	41	1	1	0	-	-	-	-	9
	Greater Than/Eq (DINT)	87	58	57	30	41	1	0	0	-	-	-	-	9
	Less Than (INT)	66	35		19	41	1	1	0	-	-	-	-	9
	Less Than (DINT)	87	57		30	41	1	1	0	-	-	-	-	9
	Less Than/Equal (INT)	66	36	34	21	41	1	1	0	-	-	-	-	9
	Less Than/Equal (DINT)	86	57	56	31	41	1	1	0	-	-	-	-	9
	Range (INT)	92	58	54	29	46	1	0	1	-	-	-	-	15
	Range(DINT)	106	75	57	37	45	0	0	0	-	-	-	-	15
	Range(WORD)	93	60	54	29	0	0	0	0	-	-	-	-	15

Notes: 1. Time (in microseconds) is based on Release 5.01 of Logicmaster $90-30 / 20$ software for Models 311, 313, 340, and 341 CPUs (Release 7 for the 331).
2. For table functions, increment is in units of length specified.; for bit operation functions, microseconds/bit.; for data move functions, microseconds/number of bits or words.
3. Enabled time for single length units of type $\%$ R, $\% A I$, and $\% A Q$.
4. COMMREQ time has been measured between CPU and HSC.
5. DOIO is the time to output values to discrete output module.
6. Where there is more than one possible case, the time indicated above represents the worst possible case.

Table A-1. Instruction Timing, Standard Models-Continued

Function Group	Function	Enabled				Disabled				Increment				Size
		311	313	331	340/41	311	313	331	340/41	311	313	331	340/41	
Bit Operation	Logical AND	67	37	37	22	42	0	0	1	-	-	-	-	13
	Logical OR	68	38	38	21	42	0	0	1	-	-	-	-	13
	Logical Exclusive OR	66	38	37	20	42	0	1	1	-	-	-	-	13
	Logical Invert, NOT	62	32	31	17	42	0	1	1	-	-	-	-	9
	Shift Bit Left	139	89	90	47	74	26	23	13	11.61	11.61	12.04	6.29	15
	Shift Bit Right	135	87	85	45	75	26	24	13	11.63	11.62	12.02	6.33	15
	Rotate Bit Left	156	127	126	65	42	1	1	0	11.70	11.78	12.17	6.33	15
	Rotate Bit Right	146	116	116	62	42	1	1	0	11.74	11.74	12.13	6.27	15
	Bit Position	102	72	49	38	42	1	0	0	-	-	-	-	13
	Bit Clear	68	38	35	21	42	1	1	1	-	-	-	-	13
	Bit Test	79	49	51	28	41	0	0	1	-	-	-	-	13
	Bit Set	67	37	37	20	42	0	0	0	-	-	-	-	13
	Masked Compare (WORD)	217	154	141	74	107	44	39	21	-	-	-	-	25
	Masked Compare (DWORD)	232	169	156	83	108	44	39	22	-	-	-	-	25
Data Move	Move (INT)	68	37	39	20	43	0	0	0	1.62	1.62	5.25	1.31	13
	Move (BIT)	94	62	64	35	42	0	0	0	12.61	12.64	12.59	6.33	13
	Move (WORD)	67	37	40	20	41	0	0	0	1.62	1.63	5.25	1.31	13
	Block Move (INT)	76	48	50	28	59	30	30	16	-	-	-	-	27
	Block Move (WORD)	76	48	49	29	59	29	28	15	-	-	-	-	27
	Block Clear	56	28	27	14	43	0	0	0	1.35	1.29	1.40	0.78	9
	Shift Register (BIT)	201	153	153	79	85	36	34	18	0.69	0.68	0.71	0.37	15
	Shift Register (WORD)	103	53	52	29	73	25	23	12	1.62	1.62	2.03	1.31	15
	Bit Sequencer	165	101	99	53	96	31	29	16	0.07	0.07	0.08	0.05	15
	COMM REQ	1317	1272	1489	884	41	2	0	0	-	-	-	-	13
Table	Array Move													
	INT	230	201	177	104	72	41	40	20	1.29	1.15	10.56	2.06	21
	DINT	231	202	181	105	74	44	42	23	3.24	3.24	10.53	2.61	21
	BIT	290	261	229	135	74	43	42	23	-. 03	-. 03	-0.01	0.79	21
	BYTE	228	198	176	104	74	42	42	23	0.81	0.82	8.51	1.25	21
	WORD	230	201	177	104	72	41	40	20	1.29	1.15	10.56	2.06	21
	Search Equal													
	INT	197	158	123	82	78	39	37	20	1.93	1.97	2.55	1.55	19
	DINT	206	166	135	87	79	38	36	21	4.33	4.34	4.55	2.44	19
	BYTE	179	141	117	74	78	38	36	21	1.53	1.49	1.83	1.03	19
	WORD	197	158	123	82	78	39	37	20	1.93	1.97	2.55	1.55	19

[^36]Table A-1. Instruction Timing, Standard Models-Continued

Function	Function	Enabled				Disabled				Increment				Size
Group		311	313	331	340/41	311	313	331	340/41	311	313	331	340/41	
Search Not Equal														
	INT	198	159	124	83	79	39	36	21	1.93	1.93	2.48	1.52	19
	DINT	201	163	132	84	79	37	35	21	6.49	6.47	6.88	3.82	19
	BYTE	179	141	117	73	79	38	36	19	1.54	1.51	1.85	1.05	19
	WORD	198	159	124	83	79	39	36	21	1.93	1.93	2.48	1.52	19
	Search Greater Than													
	INT	198	160	125	82	79	37	38	19	3.83	3.83	4.41	2.59	19
	DINT	206	167	135	88	78	38	36	20	8.61	8.61	9.03	4.88	19
	BYTE	181	143	118	73	79	37	36	19	3.44	3.44	3.75	2.03	19
	WORD	198	160	125	82	79	37	38	19	3.83	3.83	4.41	2.59	19
	Search Greater Than/Eq													
	INT	197	160	124	83	77	38	36	20	3.86	3.83	4.45	2.52	19
	DINT	205	167	136	87	80	39	36	21	8.62	8.61	9.02	4.87	19
	BYTE	180	142	118	75	79	37	37	20	3.47	3.44	3.73	2.00	19
	WORD	197	160	124	83	77	38	36	20	3.86	3.83	4.45	2.52	19
	Search Less Than													
	INT	199	159	124	84	78	38	36	20	3.83	3.86	4.48	2.48	19
	DINT	206	168	135	87	79	38	38	19	8.62	8.60	-1.36	4.88	19
	BYTE	181	143	119	75	80	38	37	20	3.44	3.44	3.75	2.00	19
	WORD	199	159	124	84	78	38	36	20	3.83	3.86	4.45	2.48	19
	Search Less Than/Equal													
	INT	200	158	124	82	79	38	37	21	3.79	3.90	4.45	2.55	19
	DINT	207	167	137	88	78	39	37	19	8.60	8.61	9.01	4.86	19
	BYTE	180	143	119	74	78	40	37	19	3.46	3.44	3.73	2.02	19
	WORD	200	158	124	82	79	38	37	21	3.79	3.90	4.45	2.55	19
Conversion	Convert to INT	74	46	39	25	42	1	1	1	-	-	-	-	9
	Convert to BCD-4	77	50	34	25	42	1	1	1	-	-	-	-	9

Notes: 1. Time (in microseconds) is based on Release 5.01 of Logicmaster $90-30 / 20$ software for Models 311, 313, 340, and 341 CPUs (Release 7 for the 331).
2. For table functions, increment is in units of length specified.; for bit operation functions, microseconds/bit.; for data move functions, microseconds/number of bits or words.
3. Enabled time for single length units of type $\%$ R, $\% \mathrm{AI}$, and $\% \mathrm{AQ}$
4. COMMREQ time has been measured between CPU and HSC.
5. DOIO is the time to output values to discrete output module.
6. Where there is more than one possible case, the time indicated above represents the worst possible case.
7. For instructions that have an increment value, multiply the increment by (Length -1) and add that value to the base time.

Table A-1. Instruction Timing, Standard Models-Continued

Function Group	Function	Enabled				Disabled				Increment				Size
		311	313	331	340/41	311	313	331	340/41	311	313	331	340/41	
Control	Call a Subroutine	155	93	192	85	41	0	0	0	-	-	-	-	7
	Do I/O	309	278	323	177	38	1	0	0	-	-	-	-	12
	PID - ISA Algorithm	1870	1827	1812	929	91	56	82	30	-	-	-	-	15
	PID - IND Algorithm	2047	2007	2002	1017	91	56	82	30	-	-	-	-	15
	End Instruction	-	-	-	-	-	-	-	-	-	-	-	-	-
	Service Request													
	\# 6	93	54	63	45	41	2	0	0	-	-	-	-	9
	\# 7 (Read)	-	37	309	161	-	2	0	0	-	-	-	-	9
	\# 7 (Set)	-	37	309	161	-	2	0	0	-	-	-	-	9
	\#14	447	418	483	244	41	2	0	0	-	-	-	-	9
	\#15	281	243	165	139	41	2	0	0	-	-	-	-	9
	\#16	131	104	115	69	41	2	0	0	-	-	-	-	9
	\#18	-	56	300	180	-	2	0	0	-	-	-	-	9
	\#23	1689	1663	1591	939	43	1	0	0	-	-	-	-	9
	\#26/30*	1268	1354	6680	3538	42	0	0	0	-	-	-	-	9
	\#29	-	-	55	41	-	-	1	0	-	-	-	-	9
	Nested MCR/ENDMCR Combined	135	73	68	39	75	25	21	12	-	-	-	-	8

*Service request \#26/30 was measured using a high speed counter, 16 -point output, in a 5 -slot rack.
Notes: 1. Time (in microseconds) is based on Release 5.01 of Logicmaster $90-30 / 20$ software for Models 311, 313, 340, and 341 CPUs (Release 7 for the 331).
2. For table functions, increment is in units of length specified.; for bit operation functions, microseconds/bit.; for data move functions, microseconds/number of bits or words.
3. Enabled time for single length units of type $\%$ R, $\% \mathrm{AI}$, and $\% \mathrm{AQ}$.
4. COMMREQ time has been measured between CPU and HSC.
5. DOIO is the time to output values to discrete output module.
. Where there is more than one possible case, the time indicated above represents the worst possible case.
7. For instructions that have an increment value, multiply the increment by (Length -1) and add that value to the base time

Table A-2. Instruction Timing, 35x-36x Models

Function Group	Function	$\begin{gathered} \text { Enabled } \\ 350 / 351 / 36 x \end{gathered}$	$\begin{gathered} \text { Disabled } \\ 350 / 351 / 36 x \end{gathered}$	$\begin{gathered} \text { Increment } \\ \mathbf{3 5 0} / 351 / 36 x \end{gathered}$	Enabled	Disabled	Increment	Size
					352	352	352	
Timers	On-Delay Timer	4	6	-	4	5	-	15
	Timer	3	3	-	2	2	-	15
	Off-Delay Timer	3	3	-	3	2	-	15
Counters	Up Counter	1	3	-	2	2	-	13
	Down Counter	3	3	-	1	2	-	13
Math	Addition (INT)	2	0	-	1	0	-	13
	Addition (DINT)	2	0	-	2	0	-	19
	Addition (REAL)	52	0	-	33	0	-	17
	Subtraction (INT)	2	0	-	1	0	-	13
	Subtraction (DINT)	2	0	-	2	0	-	19
	Subtraction (REAL)	53	0	-	34	0	-	17
	Multiplication (INT)	21	0	-	21	0	-	13
	Multiplication (DINT)	24	0	-	24	0	-	19
	Multiplication (REAL)	68	1	-	38	1	-	17
	Division (INT)	22	0	-	22	0	-	13
	Division (DINT),	25	0	-	25	0	-	19
	Division (REAL)	82	2	-	36	2	-	17
	Modulo Division (INT)	21	0	-	21	0	-	13
	Modulo Div (DINT)	25	0	-	25	0	-	19
	Square Root (INT)	42	1	-	41	1	-	10
	Square Root (DINT)	70	0	-	70	0	-	13
	Square Root (REAL)	137	0	-	35	0	-	11
Trigonometric	SIN (REAL)	360	0	-	32	0	-	11
	COS (REAL)	319	0	-	29	0	-	11
	TAN (REAL)	510	1	-	32	1	-	11
	ASIN (REAL)	440	0	-	45	0	-	11
	ACOS (REAL)	683	0	-	63	0	-	11
	ATAN (REAL)	264	1	-	33	1	-	11
Logarithmic	LOG (REAL)	469	0	-	32	0	-	11
	LN (REAL)	437	0	-	32	0	-	11
Exponential	EXP	639	0	-	42	0	-	11
	EXPT	89	1	-	54	1	-	17
Radian Conversion	Convert RAD to DEG	65	1	-	32	1	-	11
	Convert DEG to RAD	59	0		32	0		11

Notes: 1. Time (in microseconds) is based on Release 7 of Logicmaster 90-30/20/Micro software for Model 351 and 352 CPUs.
2. For table functions, increment is in units of length specified.; for bit operation functions, microseconds/bit.; for data move functions, microseconds/number of bits or words.
3. Enabled time for single length units of type $\%$ R, $\% A I$, and $\% A Q$.
4. COMMREQ time has been measured between CPU and HSC
5. DOIO is the time to output values to discrete output module.
6. Where there is more than one possible case, the time indicated above represents the worst possible case.

Table A-2. Instruction Timing, 35x-36x Models-Continued

Function Group	Function	Enabled	Disabled	Increment	Enabled	Disabled	Increment	
		350/351/36x	350/351/36x	350/351/36x	352	352	352	Size
Relational	Equal (INT)Equal (DINT)Equal (REAL)Not Equal (INT)Not Equal (DINT)Not Equal (REAL)Greater Than (INT)Greater Than (DINT)Greater Than (REAL)Greater Than/Equal (INT)Greater Than/Equal (DINT)Greater Than/Equal (REAL)Less Than (INT)Less Than (DINT)Less Than (REAL)Less Than/Equal (INT)Less Than/Equal (DINT)Less Than/Equal (REAL)Range (INT)Range (DINT)Range (WORD)(Wal	1	0	-	1	0	-	10
		2	0	-	2	0	-	16
		57	0	-	28	0	-	14
		1	0	-	1	0	-	10
		1	0	-	1	0	-	16
		62	0	-	31	0	-	14
		1	0	-	1	0	-	10
		1	0	-	1	0	-	16
		57	0	-	32	0	-	14
		1	0	-	1	0	-	10
		1	0	-	1	0	-	10
		57	1	-	31	1	-	14
		1	0	-	1	0	-	10
		1	0	-	1	0	-	16
		58	1	-	36	1	-	14
		1	0	-	1	0	-	10
		3	0	-	3	0	-	16
		37	0	-	37	0	-	14
		2	1	-	2	1	-	13
		2	1	-	2	1	-	22
		1	0	-	1	0	-	13
Bit Operation	Logical ANDLogical ORLogical Exclusive ORLogical Invert, NOTShift Bit LeftShift Bit RightRotate Bit LeftRotate Bit RightBit PositionBit ClearBit TestBit SetMask Compare (WORD)Mask Compare (DWORD)	2	0	-	2	0	-	13
		2	0	-	2	0	-	13
		1	0	-	1	0	-	13
		1	0	-	1	0	-	10
		31	1	1.37	31	1	1.37	16
		28	0	3.03	28	0	3.03	16
		25	0	3.12	25	0	3.12	16
		25	0	4.14	25	0	4.14	16
		20	1	-	20	1	-	13
		20	0	-	20	0	-	13
		20	0	-	20	0	-	13
		19	1	-	19	1	-	13
		52	0	-	52	0	-	25
		50	0	-	49	0	-	25

Notes: 1. Time (in microseconds) is based on Release 7 of Logicmaster 90-30/20/Micro software for Model 351 and 352 CPUs.
2. For table functions, increment is in units of length specified.; for bit operation functions, microseconds/bit.; for data move functions, microseconds/number of bits or words.
3. Enabled time for single length units of type $\%$ R, $\% \mathrm{AI}$, and $\% \mathrm{AQ}$.
4. COMMREQ time has been measured between CPU and HSC.
5. DOIO is the time to output values to discrete output module.
6. Where there is more than one possible case, the time indicated above represents the worst possible case
7. For instructions that have an increment value, multiply the increment by (Length -1) and add that value to the base time

Table A-2. Instruction Timing, 35x-36x Models-Continued

Function	Function	Enabled	Disabled	Increment	Enabled	Disabled	Increment	Size
Group		350/351/36X	350/351/36X	350/351/36X	352	352	352	
Data Move	Move (INT) Move (BIT) Move (WORD) Move (REAL) Block Move (INT) Block Move (WORD) Block Move (REAL) Block Clear Shift Register (BIT) Shift Register (WORD) Bit Sequencer COMM_REQ	2	0	0.41	2	0	0.41	10
		28	0	4.98	28	0	4.98	13
		2	0	0.41	2	0	0.41	10
		24	1	0.82	24	1	0.82	13
		2	0	-	2	0	-	28
		4	4	-	3	0	-	28
		41	0	-	41	0	-	13
		1	0	0.24	1	0	0.24	11
		49	0	0.23	46	0	0.23	16
		27	0	0.41	27	0	0.41	16
		38	22	0.02	38	22	0.02	16
		765	0	-	765	0	-	13
Table	Array MoveINTDINT							
		54	0	0.97	54	0	0.97	22
		54	0	0.81	54	0	0.81	22
		69	0	0.36	69	0	0.36	22
		54	1	0.64	54	1	0.64	22
		54	0	0.97	54	0	0.97	22
	Search Equal INT DINT BYTE WORD							
		37	0	0.62	37	0	0.62	19
		41	1	1.38	41	1	1.38	22
		35	0	0.46	35	0	0.46	19
		37	0	0.62	37	0	0.62	19
	Search Not Equal INT DINT BYTE WORD							
		37	0	0.62	37	0	0.62	19
		38	0	2.14	38	0	2.14	22
		37	0	0.47	37	0	0.47	19
		37	0	0.62	37	0	0.62	19
	Search Greater Than INT DINT BYTE WORD							
		37	0	1.52	37	0	1.52	19
		39	0	2.26	39	0	2.26	22
		36	1	1.24	36	1	1.24	19
		37	0	1.52	37	0	1.52	19
	Search Greater Than/Equal INT DINT BYTE WORD							
		37	0	1.48	37	0	1.48	19
		39	0	2.33	39	0	2.33	22
		37	1	1.34	37	1	1.34	19
		37	0	1.48	37	0	1.48	19

Notes: 1. Time (in microseconds) is based on Release 7 of Logicmaster 90-30/20/Micro software for 350 and 360 Series CPUs.
2. For table functions, increment is in units of length specified.; for bit operation functions, microseconds/bit.; for data move functions, microseconds/number of bits or words.
3. Enabled time for single length units of type $\%$ R, $\% \mathrm{AI}$, and $\% \mathrm{AQ}$.
4. COMMREQ time has been measured between CPU and HSC.
5. DOIO is the time to output values to discrete output module.
6. Where there is more than one possible case, the time indicated above represents the worst possible case
7. For instructions that have an increment value, multiply the increment by (Length -1) and add that value to the base time.

Table A-2. Instruction Timing, 35x-36x Models-Continued

*The PID times shown above are based on the 6.5 release of the 351 CPU.
**Service request \#26/30 was measured using a high speed counter, 16 -point output, in a 5 -slot rack.
Notes: 1. Time (in microseconds) is based on Release 7 of Logicmaster 90-30/20/Micro software for 350 and 360 Series CPUs.
2. For table functions, increment is in units of length specified.; for bit operation functions, microseconds/bit.; for data move functions, microseconds/number of bits or words.
3. Enabled time for single length units of type $\%$ R, $\% \mathrm{AI}$, and $\% \mathrm{AQ}$.
4. COMMREQ time has been measured between CPU and HSC.
5. DOIO is the time to output values to discrete output module.
6. Where there is more than one possible case, the time indicated above represents the worst possible case.
7. For instructions that have an increment value, multiply the increment by (Length -1) and add that value to the base time

Table A-3. SER Function Block Timing

Configuration	Example	Time (μ sec)
No power flow (disabled)	-	26.50
Contiguous		
8 channels	\% 11 -8	79.94
16 channels	\%I1-16	80.58
24 channels	\%I1-24	81.56
32 channels	\%I1-32	81.73
$8+8$ contiguous channels	\%I1-8 and \%Q1-8	111.03
$8+8+8$ contiguous channels	$\begin{aligned} & \% \mathrm{I} 1-8, \% \mathrm{Q} 1-8 \text { and } \\ & \% \mathrm{M} 1-8 \end{aligned}$	143.38
$8+8+8+8$ contiguous channels	$\% \mathrm{I} 1-8, \% \mathrm{Q} 1-8$ and $\% \mathrm{M} 1-8$ and $\% \mathrm{~T} 1-8$	175.79
Noncontiguous	\%I1, \%M10, \%Q3, etc.	
8 channels		299.64
16 channels		552.83
24 channels		806.35
32 channels		1059.85
Reset		
with 8 channels	-	162.63
with 16 channels	-	267.51
with 24 channels	-	372.73
with 32 channels	-	477.95

Notes: When a slot with an Input module is specified add an additional $46 \mu \mathrm{secs}$ to each of the Contiguous and Noncontiguous timings.
When the trigger occurs, add an additional 29 usec if using BCD format or 148 usec if using Posix format.
Times shown for reset are for the maximum buffer size of 1024 samples. (Reset clears all samples in the sample buffer.)

Table A-4. Instruction Timing, 37x Models

Function Group	Function	Enabled	Disabled	Increment	Size
		37x	37x	37x	
Timers	On-Delay Timer	4	5	-	15
	Timer	2	2	-	15
	Off-Delay Timer	3	2	-	15
Counters	Up Counter	2	2	-	13
	Down Counter	1	2	-	13
Math	Addition (INT)	1	0	-	13
	Addition (DINT)	2	0	-	19
	Addition (REAL)	5	0	-	17
	Subtraction (INT)	1	0	-	13
	Subtraction (DINT)	2	0	-	19
	Subtraction (REAL)	5	0	-	17
	Multiplication (INT)	5	0	-	13
	Multiplication (DINT)	5	0	-	19
	Multiplication (REAL)	5	0	-	17
	Division (INT)	5	0	-	13
	Division (DINT),	5	0	-	19
	Division (REAL)	5	0	-	17
	Modulo Division (INT)	5	0	-	13
	Modulo Div (DINT)	5	0	-	19
	Square Root (INT)	5	0	-	10
	Square Root (DINT)	10	0	-	13
	Square Root (REAL)	5	0	-	11
Trigonometric	SIN (REAL)	10	0	-	11
	COS (REAL)	10	0	-	11
	TAN (REAL)	10	0	-	11
	ASIN (REAL)	10	0	-	11
	ACOS (REAL)	10	0	-	11
	ATAN (REAL)	5	0	-	11
Logarithmic	LOG (REAL)	5	0	-	11
	LN (REAL)	5	0	-	11
Exponential	EXP	10	0	-	11
	EXPT	10	0	-	17
Radian Conversion	Convert RAD to DEG	5	0	-	11
	Convert DEG to RAD	5	0		11

Notes: 1. For table functions, increment is in units of length specified.; for bit operation functions, microseconds/bit.; for data move functions, microseconds/number of bits or words.
2. Enabled time for single length units of type $\%$ R, $\% \mathrm{AI}$, and $\% \mathrm{AQ}$.
3. COMMREQ time has been measured between CPU and HSC.
4. DOIO is the time to output values to discrete output module.
5. Where there is more than one possible case, the time indicated above represents the worst possible case.

Table A-4. Instruction Timing, 37x Models- Continued

Function Group	Function	Enabled	Disabled	Increment	
		37x	37x	37x	Size
Relational	Equal (INT)	1	0	-	10
	Equal (DINT)	2	0	-	16
	Equal (REAL)	5	0	-	14
	Not Equal (INT)	1	0	-	10
	Not Equal (DINT)	1	0	-	16
	Not Equal (REAL)	5	0	-	14
	Greater Than (INT)	1	0	-	10
	Greater Than (DINT)	1	0	-	16
	Greater Than (REAL)	5	0	-	14
	Greater Than/Equal (INT)	1	0	-	10
	Greater Than/Equal (DINT)	1	0	-	10
	Greater Than/Equal (REAL)	5	0	-	14
	Less Than (INT)	1	0	-	10
	Less Than (DINT)	1	0	-	16
	Less Than (REAL)	5	0	-	14
	Less Than/Equal (INT)	1	0	-	10
	Less Than/Equal (DINT)	3	0	-	16
	Less Than/Equal (REAL)	5	0	-	14
	Range (INT)	2	0	-	13
	Range (DINT)	2	0	-	22
	Range (WORD)	1	0	-	13
Bit Operation	Logical AND	2	0	-	13
	Logical OR	2	0	-	13
	Logical Exclusive OR	1	0	-	13
	Logical Invert, NOT	1	0	-	10
	Shift Bit Left	5	0	1	16
	Shift Bit Right	5	0	1	16
	Rotate Bit Left	5	0	1	16
	Rotate Bit Right	5	0	1	16
	Bit Position	5	0	-	13
	Bit Clear	5	0	-	13
	Bit Test	5	0	-	13
	Bit Set	5	0	-	13
	Mask Compare (WORD)	9	0	-	25
	Mask Compare (DWORD)	10	0	-	25

Notes: 1. For table functions, increment is in units of length specified.; for bit operation functions, microseconds/bit.; for data move functions, microseconds/number of bits or words.
2. Enabled time for single length units of type $\%$ R, $\% \mathrm{AI}$, and $\% \mathrm{AQ}$.
3. COMMREQ time has been measured between CPU and HSC
4. DOIO is the time to output values to discrete output module.
5. Where there is more than one possible case, the time indicated above represents the worst possible case.

Table A-4. Instruction Timing, 37x Models- Continued

Function Group	Function	Enabled	Disabled	Increment	
		37x	37x	37x	Size
Data Move	Move (INT)	2	0	1	10
	Move (BIT)	5	0	1	13
	Move (WORD)	2	0	1	10
	Move (REAL)	5	0	1	13
	Block Move (INT)	2	0	-	28
	Block Move (WORD)	3	0	-	28
	Block Move (REAL)	11	1	-	13
	Block Clear	1	0	1	11
	Shift Register (BIT)	10	0	1	16
	Shift Register (WORD)	15	0	1	16
	Bit Sequencer	14	10	1	16
	COMM_REQ	200	200	-	13
Table	Array Move				
	INT	10	0	1	22
	DINT	15	0	1	22
	BIT	10	0	1	22
	BYTE	10	0	1	22
	WORD	10	0	1	22
	Search Equal				
	INT	5	0	1	19
	DINT	5	0	2	22
	BYTE	5	0	1	19
	WORD	5	0	1	19
	Search Not Equal				
	INT	5	0	1	19
	DINT	10	0	2	22
	BYTE	5	0	2	19
	WORD	5	0	2	19
	Search Greater Than				
	INT	5	0	1	19
	DINT	5	0	2	22
	BYTE	10	0	1	19
	WORD	5	0	1	19
	Search Greater Than/Equal				
	INT	5	0	1	19
	DINT	5	0	2	22
	BYTE	5	0	1	19
	WORD	5	0	1	19

Notes: 1. For table functions, increment is in units of length specified.; for bit operation functions, microseconds/bit.; for data move functions, microseconds/number of bits or words.
2. Enabled time for single length units of type $\%$ R, $\% \mathrm{AI}$, and $\% \mathrm{AQ}$.
3. COMMREQ time has been measured between CPU and HSC.
4. DOIO is the time to output values to discrete output module.
5. Where there is more than one possible case, the time indicated above represents the worst possible case.
6. For instructions that have an increment value, multiply the increment by (Length -1) and add that value to the base time.

Table A-4. Instruction Timing, 37x Models- Continued

Function		Enabled	Disabled	Increment	Size
Group	Function	37x	37x	37x	
	Search Less Than				
	INT	5	0	1	19
	DINT	10	0	2	22
	BYTE	5	0	1	19
	WORD	5	0	1	19
	Search Less Than/Equal				
	INT	5	0	1	19
	DINT	5	0	2	22
	BYTE	5	0	1	19
	WORD	5	0	1	19
Conversion	Convert to INT	5	0	-	10
	Convert to BCD-4	5	0	-	10
	Convert to REAL	5	0	-	8
	Convert to WORD	5	0	-	11
	Truncate to INT	5	0	-	11
	Truncate to DINT	5	0	-	11
Control	Call a Subroutine	15	0	-	7
	Do I/O	5	0	-	13
	PID - ISA Algorithm	14	10	-	16
	PID - IND Algorithm	14	10	-	16
	End Instruction	-	-	-	-
	Service Request				
	\#6	5	0	-	10
	\#7 (Read)	10	0	-	10
	\#7 (Set)	5	0	-	10
	\#14	15	0	-	10
	\#15	5	0	-	10
	\#16	10	0	-	10
	\#18	255	0	-	10
	\#23	25	0	-	10
	\#26//30**	155	0	-	10
	\#29	5	0	-	10
	Nested MCR/ENDMCR Combined	1	0	-	4
	Sequential Event	60	0	$=$	
	Recorder (SER) 8 Channels				
	Sequential Event	199	0	$=$	
	Recorder (SER) 16 Channels				

**Service request \#26/30 was measured using a high speed counter, 16-point output, in a 5-slot rack.
Notes: 1. For table functions, increment is in units of length specified.; for bit operation functions, microseconds/bit.; for data move functions, microseconds/number of bits or words.
2 Enabled time for single length units of type $\%$ R, $\% \mathrm{AI}$, and $\% \mathrm{AQ}$.
3. COMMREQ time has been measured between CPU and HSC
4. DOIO is the time to output values to discrete output module.
5. Where there is more than one possible case, the time indicated above represents the worst possible case.
6. For instructions that have an increment value, multiply the increment by (Length -1) and add that value to the base time.

CPU Boolean Execution Times

This table lists execution times of coils and contacts for the Series 90-30 CPU modules.
Table A-5. Boolean Execution Times

CPU Model	Execution Time per 1,000 Boolean Contacts/Coils
Models 37x	0.15 milliseconds
Models 35x and 36x	0.22 milliseconds
Models 340/341	0.3 milliseconds
Model 331	0.4 milliseconds
Models 313/323	0.6 milliseconds
Model 311	18.0 milliseconds

Instruction Sizes for CPUs 350-374

Memory Size in the following table refers to the number of bytes of user memory required by a given instruction in a ladder diagram application program.

Table A-6. Instruction Sizes for CPUs 350-374

Function	Memory Size
Pop stack and AND to top	1
Pop stack and OR to top	1
Duplicate top of stack	1
Pop stack	1
Initial stack	1
Label	5
Jump	5
All other instructions	3
Function blocks - see Table A-2	various

Appendix
 B

Interpreting Fault Tables

The Series 90-30, Series 90-20, and Series 90 Micro PLCs maintain two fault tables, the I/O fault table for faults generated by I/O devices (including I/O controllers) and the PLC fault table for internal PLC faults. The information in this appendix will enable you to interpret the message structure format when reading these fault tables. Both tables contain similar information. The fault data in these tables only exists in the PLC, not in the folder. Therefore, if using Logicmaster, you must be connected in either the ONLINE or MONITOR mode to view faults.

- The PLC fault table contains:

ㅁ Fault location.
\square Fault description.
ㅁ Date and time of fault.

- The I/O fault table contains:

ㅁ Fault location.

- Reference address.

ㅁ Fault category.

- Fault type.
- Date and time of fault.

PLC Fault Table

Access the PLC fault table through the programming software. For information about accessing fault tables, refer to the online help, Logicmaster 90 Series 90-30/20/Micro Programming Software User's Manual, GFK-0466.

Example

The following figure shows the example of a System Configuration Mismatch fault that has been zoomed to its fault detail screen.

The following diagram identifies each field in the fault entry for the System Configuration Mismatch fault displayed above:

This System Configuration Mismatch fault entry is explained below. (All data is in hexadecimal.)

Field	Value	Comment
Long/Short	00	$00=$ Short, which indicates only 8 bytes of the Fault Extra Data field are used
Rack	00	Main rack (rack 0)
Slot	03	Slot 3
Task	F2	
Fault Group	0 B	System Configuration Mismatch fault
Fault Action	03	FATAL fault
Error Code	06	
Fault Extra Data	00	No Fault Extra Data reported in the 8 bytes

The following paragraphs describe each field in the fault entry. Included are tables describing the range of values each field may have.

Long/Short Indicator

This byte indicates whether 8 bytes or all 24 bytes of the Fault Extra Data field are used.

Type	Code	Fault Extra Data
Short	00	8 bytes
Long	01	24 bytes

Spare

These six bytes are pad bytes, used to make the PLC fault table entry exactly the same length as the I/O fault table entry.

Rack

The rack number ranges from 0 to 7. Zero is the main rack, containing the PLC. Racks 1 through 7 are expansion racks, connected to the PLC through an expansion cable.

Slot

The slot number ranges from 0 to 9 . The PLC CPU always occupies slot 1 in the main rack (rack $0)$.

Task

The task number ranges from 0 to $+65,535$. Sometimes the task number gives additional information for PLC engineers; typically, the task can be ignored.

PLC Fault Group

Fault group is the highest classification of a fault. It identifies the general category of the fault. The fault description text displayed by Logicmaster 90-30/20/Micro software is based on the fault group and the error codes.

Table B-1 lists the possible fault groups in the PLC fault table.
The last non-maskable fault group, Additional PLC Fault Codes, is declared for the handling of new fault conditions in the system without the PLC having to specifically know the alarm codes. All unrecognized PLC-type alarm codes belong to this group.

Table B-1. PLC Fault Groups

Group Number			
Decimal	Hexadecimal	Group Name	Fault Action
1	1	Loss of, or missing, rack	Fatal
4	4	Loss of, or missing, option module	Diagnostic
5	5	Addition of, or extra, rack	Diagnostic
8	8	Addition of, or extra, option module	Diagnostic
11	B	System configuration mismatch	Fatal
12	C	System bus error	Diagnostic
13	D	PLC CPU hardware failure	Fatal
14	E	Non-fatal module hardware failure	Diagnostic
16	10	Option module software failure	Diagnostic
17	11	Program block checksum failure	Fatal
18	12	Low battery signal	Diagnostic
19	13	Constant sweep time exceeded	Diagnostic
20	14	PLC system fault table full	Diagnostic
21	15	I/O fault table full	Diagnostic
22	16	User Application fault	Diagnostic
-	-	Additional PLC fault codes	As specified
128	80	System bus failure	Fatal
129	81	No user's program on power-up	Informational
130	82	Corrupted user RAM detected	Fatal
132	84	Password access failure	Informational
135	87	PLC CPU software failure	Fatal
137	89	PLC sequence-store failure	Fatal

Fault Action

Each fault may have one of three actions associated with it. These fault actions are fixed on the Series 90-30 PLC and cannot be changed by the user.

Table B-2. PLC Fault Actions

Fault Action	Action Taken by CPU	Code
Informational	Log fault in fault table	1
Diagnostic	Log fault in fault table Set fault references	2
Fatal	Log fault in fault table Set fault references Go to STOP mode	3

Error Code

The error code further describes the fault. Each fault group has its own set of error codes. Table B3 shows error codes for the PLC Software Error Group (Group 87H).

Table B-3. Alarm Error Codes for PLC CPU Software Faults

Decimal	Hexadecimal	Name
20	14	Corrupted PLC Program Memory
39	27	Corrupted PLC Program Memory
82	52	Backplane Communications Failed
90	5 A	User Shut Down Requested
All others		PLC CPU Internal System Error

Table B-4 shows the error codes for all the other fault groups.

Table B-4. Alarm Error Codes for PLC Faults

Decimal	Hexadecimal	Name
PLC Error Codes for Loss of Option Module Group (4)		
44	2 C	Option Module Soft Reset Failed
45	2D	Option Module Soft Reset Failed
255	FF	Option Module Communication Failed
79	4F	Loss of Daughterboard
Error Codes for Reset of, Addition of, or Extra Option Module Group (8)		
2	2	Module Restart Complete
04	4	Addition of Daughterboard
05	5	Reset of Daughterboard
	All others	Reset of, Addition of, or Extra Option Module
Error Codes for Option Module Software Failure Group (10 hex)		
1	1	Unsupported Board Type
2	2	COMREQ - mailbox full on outgoing message that starts the COMREQ
3	3	COMREQ - mailbox full on response
5	5	Backplane Communications with PLC; Lost Request
11	B	Resource (alloc, tbl ovrflw, etc.) error
13	D	User program error
401	191	Module Software Corrupted; Requesting Reload
Error Codes for System Configuration Mismatch Group (B hex)		
8	8	Analog Expansion Mismatch
10	A	Unsupported Feature
23	17	Program exceeds memory limits
58	3A	Mismatch of Daughterboard
Error Codes for System Bus Error Group (C hex)		
All others		System Bus Error
Error Codes for Program Block Checksum Group (11 hex)		
3	3	Program or program block checksum failure
Error Codes for Low Battery Signal		
0	0	Failed battery on PLC CPU or other module
1	1	Low battery on PLC CPU or other module
Error Codes for User Application Fault Group (16 hex)		
2	2	PLC Watchdog Timer Timed Out
5	5	COMREQ - WAIT mode not available for this command
6	6	COMREQ - Bad Task ID
7	7	Application Stack Overflow
Error Codes for System Bus Failure Group (80 hex)		
1	1	Operating system
Error Codes for Corrupted User RAM on Powerup Group (82 hex)		
1	1	Corrupted User RAM on Power-up
2	2	Illegal Boolean Opcode Detected
3	3	PLC_ISCP_PC_OVERFLOW
4	4	PRG_SYNTAX_ERR
Error Codes for PLC CPU Hardware Faults (D hex)		
All codes		PLC CPU Hardware Failure

Fault Extra Data

This field contains details of the fault entry. The following example shows what data may be present:

Example - Corrupted User RAM Group

Four of the error codes in the System Configuration Mismatch group supply fault extra data:
Table B-5. PLC Fault Data - Illegal Boolean Opcode Detected

Fault Extra Data	Model Number Mismatch
$[0]$	ISCP Fault Register Contents
$[1]$	Bad OPCODE
$[2,3]$	ISCP Program Counter
$[4,5]$	Function Number

For a RAM failure in the PLC CPU (one of the faults reported as a PLC CPU hardware failure), the address of the failure is stored in the first four bytes of the field.

PLC Fault Time Stamp

PLC CPU Hardware Failure (RAM Failure)

The six-byte time stamp is the value of the system clock when the fault was recorded by the PLC CPU. (Values are coded in BCD format.)

Table B-6. PLC Fault Time Stamp

Byte Number	Description
1	Seconds
2	Minutes
3	Hours
4	Day of the month
5	Month
6	Year

I/O Fault Table

The following figure shows the example of a Loss of I/O Module fault that has been zoomed to its fault detail screen.

The following diagram identifies the hexadecimal information displayed in each field in the example fault entry (System Configuration Mismatch) shown in the figure above.

The following paragraphs describe each field in the I/O fault table. Included are tables describing the range of values each field may have.

Long/Short Indicator

This byte indicates whether the particular fault uses 5 bytes or ass 21 bytes of the Fault Specific Data field.

Table B-7. I/O Fault Table Format Indicator Byte

Type	Code	Fault Specific Data
Short	02	5 bytes
Long	03	21 bytes

Reference Address

Reference address is a three-byte address containing the I/O memory type and location (or offset) in that memory which corresponds to the point experiencing the fault. Or, when a Genius block fault or integral analog module fault occurs, the reference address refers to the first point on the block where the fault occurred.

Table B-8. I/O Reference Address

Byte	Description	Range
0	Memory Type	$0-\mathrm{FF}$
$1-2$	Offset	$0-7 \mathrm{FF}$

The memory type byte is one of the following values.
Table B-9. I/O Reference Address Memory Type

Name	Value (Hexadecimal)
Analog input	0 A
Analog output	0 C
Analog grouped	0 D
Discrete input	10 or 46
Discrete output	12 or 48
Discrete grouped	1 F

I/O Fault Address

The I/O fault address is a six-byte address containing rack, slot, bus, block, and point address of the I/O point that generated the fault. The point address is a word; all other addresses are one byte each. All five values may not be present in a fault.

When an I/O fault address does not contain all five addresses, a 7 F hex appears in the address to indicate where the significance stops. For example, if 7F appears in the bus byte, the fault is a module fault. Only rack and slot values are significant.

Rack

The rack number ranges from 0 to 7 . Zero is the main rack, i.e., the one containing the CPU. Racks 1 through 7 are expansion racks.

Slot

The slot number ranges from 0 to 9. The PLC CPU always occupies slot 1 in the main rack (rack 0).

Point

Point ranges from 1 to 1024 (decimal). It tells which point on the block has the fault when the fault is a point-type fault.

I/O Fault Group

Fault group is the highest classification of a fault. It identifies the general category of the fault. The fault description text displayed by Logicmaster 90-30/20/Micro software is based on the fault group and the error codes.

Table B-10 lists the possible fault groups in the I/O fault table. Group numbers less than 80 (Hex) are maskable faults.

The last non-maskable fault group, Additional I/O Fault Codes, is declared for the handling of new fault conditions in the system without the PLC having to specifically know the alarm codes. All unrecognized I/O-type alarm codes belong to this group.

Table B-10. I/O Fault Groups

Group Number	Group Name	Fault Action
3	Loss of, or missing, I/O module	Diagnostic
7	Addition of, or extra, I/O module	Diagnostic
9	IOC or I/O bus fault	Diagnostic
A	I/O module fault	Diagnostic
-	Additional I/O fault codes	As specified

I/O Fault Action

The fault action specifies what action the PLC CPU should take when a fault occurs. Table B-11 lists possible fault actions.

Table B-11. I/O Fault Actions

Fault Action	Action Taken by CPU	Code
Informational	Log fault in fault table	1
Diagnostic	Log fault in fault table Set fault references	2
Fatal	Log fault in fault table Set fault references Go to STOP mode	3

I/O Fault Specific Data

An I/O fault table entry may contain up to 5 bytes of I/O fault specific data.

Symbolic Fault Specific Data

Table B-12 lists data that is required for block circuit configuration.
Table B-12. I/O Fault Specific Data

Decimal Number	Hex Code	Description
Circuit Configuration		
	1	Circuit is an input - tristate
	2	Circuit is an input
	3	Circuit is an output

Fault Actions for Specific Faults

Forced/unforced circuit faults are reported as informational faults. All others are diagnostic or fatal.

The model number mismatch, I/O type mismatch and non-existent I/O module faults are reported in the PLC fault table under the System Configuration Mismatch group. They are not reported in the I/O fault table.

I/O Fault Time Stamp

The six-byte time stamp is the value of the system clock when the fault was recorded by the PLC CPU. Values are coded in BCD format.

Table B-13. I/O Fault Time Stamp

Byte Number	Description
1	Seconds
2	Minutes
3	Hours
4	Day of the month
5	Month
6	Year

Appendix

C

Instruction Mnemonics

In Program Display/Edit mode, you can quickly enter or search for a programming instruction by typing the ampersand (\&) character followed by the instruction's mnemonic. For some instructions, you can also specify a reference address or nickname, a label, or a location reference address.

This appendix lists the mnemonics of the programming instructions for Logicmaster 90-30/20/Micro programming software. The complete mnemonic is shown in column 3 of this table, and the shortest entry you can make for each instruction is listed in column 4.

At any time during programming in Logicmaster, you can display a help screen that lists these mnemonics by pressing the ALT and I keys.

Function Group	Instruction	Mnemonic						
		All	INT	DINT	BIT	BYTE	WORD	REAL
Contacts	Any Contact Normally Open Contact Normally Closed Contact Continuation Contact	\&CON \&NOCON \&NCCON \&CONC	\&CON \&NOCON \& NCCON \&CONC					
Coils	Any Coil Normally Open Coil Negated Coil Positive Transition Coil Negative Transition Coil SET Coil RESET Coil Retentive SET Coil Retentive RESET Coil Retentive Coil Negated Retentive Coil Continuation Coil	\&COI \&NOCOI \&NCCOI \&PCOI \&NCOI \&SL \&RL \&SM \&RM \&NOM \&NCM \& COILC	\&COI \&NOCOI \&NCCOI \&PCOI \&NCOI \&SL \&RL \&SM \&RM \&NOM \&NCM \&COILC					
Links	Horizontal Link Vertical Link	$\begin{aligned} & \& H O \\ & \& V E \end{aligned}$	$\begin{aligned} & \& H O \\ & \& \mathrm{VE} \end{aligned}$					
Timers	On Delay Timer Elapsed Timer Off Delay Timer	\&ON \&TM \& OF	$\begin{aligned} & \& \mathrm{ON} \\ & \& \mathrm{TM} \\ & \& \mathrm{OF} \end{aligned}$					
Counters	Up Counter Down Counter	$\begin{aligned} & \& U P \\ & \& D N \end{aligned}$	$\begin{aligned} & \& U P \\ & \& D N \end{aligned}$					

Function Group	Instruction	Mnemonic							
		All	BCD-4	INT	DINT	BIT	BYTE	WORD	REAL
Math	Addition Subtraction Multiplication Division Modulo Square Root Sine Cosine Tangent Inverse Sine Inverse Cosine Inverse Tangent Base 10 Logarithm Natural Logarithm Power of e Power of x	\&AD \&SUB \&MUL \&DIV \&MOD \&SQ \&SIN \&COS \&TAN \&ASIN \&ACOS \&ATAN \&LOG \& LN \&EXP \&EXPT		\&AD_I \&SUB_I \&MUL_I \&DIV_I \&MOD_I \&SQ_I	$\begin{aligned} & \text { \&AD_DI } \\ & \& \text { SUB_DI } \\ & \& M U L \_D I \\ & \& D I V \_D I \\ & \text { \&MOD_DI } \\ & \& S Q \_D I \end{aligned}$				$\begin{aligned} & \text { \&AD_R } \\ & \text { \&SUB_R } \\ & \text { \&MUL_R } \\ & \text { \&DIV_R } \\ & \text { \&MOD_R\&SQ_R } \end{aligned}$
Relational	Equal Not Equal Greater Than Greater or Equal Less Than Less Than or Equal	\&EQ \&NE \> \&GE \& LT \& LE		\&EQ_I \&NE_I \>_I \&GE_I \<_I \&LE_I	$\begin{aligned} & \text { \&EQ_DI } \\ & \& N E \_D I \\ & \& G T \_D I \\ & \& G E \_D I \\ & \& L T \_D I \\ & \& L E \_D I \end{aligned}$				\&EQ_R \&NE_R \>_R \&GE_R \<_R \&LE_R
Bit Operation	AND OR Exclusive OR NOT Bit Shift Left Bit Shift Right Bit Rotate Left Bit Rotate Right Bit Test Bit Set Bit Clear Bit Position Masked Compare	\&AN \& OR \& XO \&NOT \&SHL \&SHR \&ROL \&ROR \&BT \&BS \&BCL \&BP \&MCMP						\&AN_W \&OR_W \&XO_W \&NOT_W \&SHL_W \&SHR_W \&ROL_W \&ROR_W \&BT_W \&BS_W \&BCL_W \&BP_W \&MCM_W	
Conversion	Convert to Integer Convert to Double Integer Convert to BCD-4 Convert to REAL Convert to WORD Truncate to Integer Truncate to Double Integer	\&TO_INT \&TO_DINT \&BCD4 \&TO_REAL \&TO_W \&TRINT \&TRDINT	\&TO_INT_BCD4		\&TO_REAL_DI			\&TO_REAL_W	\&BCD4_R

Function Group	Instruction	Mnemonic						
		All	INT	DINT	BIT	BYTE	WORD	REAL
Data Move	Move Block Move Block Clear Shift Register Bit Sequencer Communications Request	\&MOV \&BLKM \&BLKC \&SHF \&BI \&COMMR	\&MOV_I \&BLKM_I		\&MOV_BI \&SHF_BI		\&MOV_W \&BLKM_W \&AR_W	\&MOV_R \&BLKM_R
Table	Array Move Search Equal Search Not Equal Search Greater Than Search Greater Than or Equal Search Less Than Search Less Than or Equal	\&AR \&SRCHE \&SRCHN \&SRCHGT \&SRCHGE \&SRCHLT \&SRCHLE	\&AR_I \&SRCHE_I \&SRCHN_I \&SRCHGT_I \&SRCHGE_I \&SRCHLT_I \&SRCHLE_I	\&AR_DI \&SRCHE_DI \&SRCHN_DI \&SRCHGT_DI \&SRCHGE_DI \&SRCHLT_DI \&SRCHLE_DI	\&AR_BI	\&AR_BY \&SRCHE_BY \&SRCHN_BY \&SRCHGT_BY \&SRCHGE_BY \&SRCHLT_BY \&SRCHLE_BY	\&AR_W \&SRCHE_W \&SRCHN_W \&SRCHGT_W \&SRCHGE_W \&SRCHLT_W \&SRCHLE_W_	
Control	Call a Subroutine Do I/O SER PID - ISA Algorithm PID - IND Algorithm SFC Reset End Rung Explanation (Comment) System Services Request Master Control Relay End Master Control Relay Nested Master Control Relay Nested End Master Cntl Relay Jump Nested Jump Label Nested Label	\&CA \&DO \&SER \&PIDIS \&PIDIN \&SFCR \&END \&COMME \&SV \&MCR \&ENDMCR \&MCRN \&ENDMCRN \&JUMP \&JUMPN \&LABEL \&LABELN						

Appendix
 D

Key Functions

This appendix lists the keyboard functions that are active in the software environment. To display this information on the Logicmaster screen, press ALT-K to access key help.

Key Sequence	Description	Key Sequence	Description
Keys Available Throughout the Software Package			
ALT-A ALT-C ALT-M ALT-R ALT-E ALT-J ALT-L ALT-P ALT-H ALT-K ALT-I ALT-N ALT-T ALT-Q ALT-n	Abort. Clear field. Change Programmer mode. Change PLC Run/Stop state. Toggle status area. Toggle command line. List directory files. Print screen. Help. Key help. Instruction mnemonic help. Toggle display options. Start Teach mode. Stop Teach mode. Playback file n ($\mathrm{n}=0$ thru 9).	CTRL-Break Esc CTRL-Home CTRL-End CTRL- \leftarrow CTRL- \rightarrow CTRL-D CTRL-U Tab Shift-Tab Enter CTRL-E F12 or Keypad - F11 or Keypad *	Exit package. Zoom out. Previous command-line contents. Next command-line contents. Cursor left within the field. Cursor right within the field. Decrement reference address. Increment reference address. Change/increment field contents. Change/decrement field contents. Accept field contents. Display last system error. Toggle discrete reference. Override discrete reference.
Keys Available in the Program Editor Only			
ALT-B ALT-D ALT-S ALT-X ALT-U ALT-V ALT-F2	Toggle text editor bell. Delete rung element/Delete rung. Store block to PLC and disk. Display zoom level. Update disk. Variable table window. Go to operand reference table.	Keypad + Enter CTRL-PgUp CTRL-PgDn \| Tab	Accept rung. Accept rung. Previous rung. Next rung. Horizontal shunt. Vertical shunt. Go to the next operand field.
Special Keys			
ALT-O	Password override. Available only on the Password screen in the configuration software.		

The Help card on the next page contains a listing of the key help and also the instruction mnemonics help text for Logicmaster 90-30/20/Micro software. This card is printed in triplicate and is perforated for easier removal from the manual.

Print side 1 of GFJ-055D on this page.

Print side 2 of GFJ-055D on this page.

Appendix
 Using Floating-Point Numbers

E

There are a few considerations you need to understand when using floating-point numbers. The first section discusses these general considerations. Refer to page E-5 and following for instructions on entering and displaying floating-point numbers.

Note

Floating-point capabilities are only supported on the 35 x and 36 x series CPUs Release 9.00 or later, and on all releases of CPU352 and 37x series.

Floating-Point Numbers

The programming software provides the ability to edit, display, store, and retrieve numbers with real values. Some functions operate on floating-point numbers. However, to use floating-point numbers with the programming software, you must have a $35 x$, $36 x$ or $37 x$ series CPU (see Note above). Floating-point numbers are represented in decimal scientific notation, with a display of six significant digits.

Note

In this manual, the terms "floating-point" and "real" are used interchangeably to describe the floating-point number display/entry feature of the programming software.

The following format is used. For numbers in the range 9999999 to .0001 , the display has no exponent and up to six or seven significant digits. For example:

Entered	Displayed	Description
.000123456789	+.0001234567	Ten digits, six or seven significant.
$-12.345 \mathrm{e}-2$	-.1234500	Seven digits, six or seven significant.
1234	+1234.000	Seven digits, six or seven significant.

Outside the range listed above, only six significant digits are displayed and the display has the following form: $+1.23456 \mathrm{E}+12$

Real Number Terminology

A real number is stored in a 32-bit double word register. The following discusses the terms used for the parts of a real number.

Sign - Either plus or minus. Stored in the most significant bit (bit 32) of the double word. A one in bit 32 indicates a negative sign. A zero in bit 32 indicates a positive sign.

Radix - A period (dot) symbol that separates the whole number portion from the fractional number portion of the mantissa. For decimal numbers, the radix is commonly called the decimal point.

Exponent - (Also called a "Characteristic"). It is stored in 8 bits, in bit positions 31 through 24 of the 32-bit double word. The exponent may have values in the range of +127 to -126 ; however, the exponent is always stored as a positive number because the CPU automatically adds 127 to its value before storing it.

Mantissa - (Also called a Significand"). The basic number without the sign and exponent. It is stored in 23 bits, in bit positions 23 through 1 of the 32 -bit word.

Precision - Related to the number of significant digits that can be stored. Since a double integer register uses 31 bits to store a number (bit 32 is used for the sign), it can potentially store numbers with greater precision than a real (floating-point) register, which only uses 23 bits to store a number's mantissa.

Internal Format of Floating-Point Numbers

Floating-point numbers are stored in single precision IEEE-standard format. This format requires 32 bits, which translates to two adjacent 16-bit PLC registers. The encoding of the bits is diagrammed below.

Register use by a single floating-point number is diagrammed below. In this diagram, if the floating-point number occupies registers $\%$ R0005 and $\%$ R0006, for example, $\%$ R0005 is the least significant register and \%R0006 is the most significant register.

Values of Floating-Point Numbers

Use the following table to calculate the value of a floating-point number from the binary number stored in two registers.

Exponent (e)	Mantissa (f)	Value of Floating Point Number
255	Non-zero	Not a valid number (NaN).
255	0	$-1 \mathrm{~s} * \infty$
$0<\mathrm{e}<255$	Any value	$-1^{\mathrm{s} * 2^{\mathrm{e}-127} * 1 . \mathrm{f}}$
0	Non-zero	$-1 \mathrm{~s} * 2^{-126} * 0 . \mathrm{f}$
0	0	0

$\mathrm{f}=$ the mantissa. The mantissa is a binary fraction.
$\mathrm{e}=$ the exponent. The exponent is an integer E such that $\mathrm{E}+127$ is the power of 2 by which the mantissa must be multiplied to yield the floating-point value.
$\mathrm{s}=$ the sign bit.

* $=$ the multiplication operator.

For example, consider the floating-point number 12.5. The IEEE floating-point binary representation of the number is:

$$
01000001010010000000000000000000
$$

or 41480000 hex. The most significant bit (the sign bit) is zero ($s=0$). The next eight most significant bits are 10000010 , or 130 decimal $(e=130)$.

The mantissa is stored as a decimal binary number with the decimal point preceding the most significant of the 23 bits. Thus, the most significant bit in the mantissa is a multiple of 2^{-1}, the next most significant bit is a multiple of 2^{-2}, and so on to the least significant bit, which is a multiple of 2^{-23}. The final 23 bits (the mantissa) are:

$$
10010000000000000000000
$$

The value of the mantissa, then, is .5625 (that is, $2^{-1}+2^{-4}$).
Since e >0 and $\mathrm{e}<255$, we use the third formula in the table above:

```
number = -1 S * 2 e-127 * 1.f
    =-10 * 2 130-127 * 1.5625
    =1 * 2 * * 1.5625
    = 8 * 1.5625
    = 12.5
```

Thus, you can see that the above binary representation is correct.
The range of numbers that can be stored in this format is from $\pm 1.401298 \mathrm{E}-45$ to $\pm 3.402823 \mathrm{E}+38$ and the number zero.

Entering and Displaying Floating-Point Numbers

In the mantissa, up to six or seven significant digits of precision may be entered and stored; however, the programming software will display only the first six of these digits. The mantissa may be preceded by a positive or negative sign. If no sign is entered, the floating-point number is assumed to be positive.

If an exponent is entered, it must be preceded by the letter \boldsymbol{E} or \boldsymbol{e}, and the mantissa must contain a decimal point to avoid mistaking it for a hexadecimal number. The exponent may be preceded by a sign; but, if none is provided, it is assumed to be positive. If no exponent is entered, it is assumed to be zero. No spaces are allowed in a floating-point number.

To provide ease-of-use, several formats are accepted in both command-line and field data entry. These formats include an integer, a decimal number, or a decimal number followed by an exponent. These numbers are converted to a standard form for display once the user has entered the data and pressed the Enter key.

Examples of valid floating-point number entries and their normalized display are shown below.

Entered	Displayed in Logicmaster
250	+250.0000
+4	+4.000000
-2383019	-2383019.
34.	+34.00000
-.0036209	-.003620900
$12 . \mathrm{E}+9$	$+1.20000 \mathrm{E}+10$
$-.0004 \mathrm{E}-11$	$-4.00000 \mathrm{E}-15$
731.0388	+731.0388
$99.20003 \mathrm{e}-29$	$+9.92000 \mathrm{E}-28$

Examples of invalid or incorrect floating-point number entries are shown below.

Incorrect Entry	Explanation/Result
-433 E 23	Missing decimal point. LM90 displays message "Bad numeric value."
$10 \mathrm{e}-19$	Missing decimal point. LM90 displays message "Bad numeric value."
$10 . \mathrm{e} 19$	There is a space between the 1 and the 0 in the mantissa. Real numbers must be entered without spaces between digits or characters. Logicmaster recognizes this entry as the incorrect value +1.000000.
4.1 e 19	There is a space between the e and the 19 in the exponent. Real numbers must be entered without spaces between digits or characters. Logicmaster recognizes this entry as the incorrect value +4.100000.

Errors in Floating-Point Numbers and Operations

Positive and Negative Infinity

On a 352 or 374 CPU, overflow occurs when a number greater than $3.402823 \mathrm{E}+38$ or less than $-3.402823 \mathrm{E}+38$ is generated by a REAL function. On all other $90-30$ models that support floating point operations, the range is greater than 2^{16} or less than $-2^{16 \text {. When your number exceeds the }}$ range, the ok output of the function is set OFF, and the result is set to positive infinity (for a number greater than $3.402823 \mathrm{E}+38$ on a 352 or 374 CPU or 2^{16} on all other models) or negative infinity (for a number less than $-3.402823 \mathrm{E}+38$ or -2^{16} on all other models). You can determine where this occurs by testing the sense of the ok output.

Mnemonic	Ladder Screen Value	Reference Table Value (Hex)	Description
POS_INF	+OVERFLOW	7F80 0000	IEEE positive infinity representation in hex.
NEG_INF	-OVERFLOW	FF80 0000	IEEE negative infinity representation in hex.

Note

If you are using software floating point (all models capable of floating point operations except the 352 or 374 CPU), numbers are rounded to zero (0) at $\pm 1.175494 \mathrm{E}-38$.

If the infinities produced by overflow are used as operands to other REAL functions, they may cause an undefined result. This undefined result is referred to as an NaN (Not a Number). For example, the result of adding positive infinity to negative infinity is undefined. When the ADD_REAL function is invoked with positive infinity and negative infinity as its operands, it produces an NaN for its result.

Not a Number (NaN)

A Not a Number is an undefined number such as the result of dividing zero by zero. Positive and Negative Infinities are not considered to be NaNs. The following sections will help you identify when an NaN result has been obtained.

NaN Codes for 352 or 374 CPU

On a 352 or 374 CPU, each REAL function capable of producing an NaN produces a specialized NaN code that identifies the function and can be read in the applicable Reference Table. The indication on the Logicmaster ladder logic screen will be the unsigned term "OVERFLOW." (If the term "OVERFLOW" is preceded by a plus or minus sign, it indicates a positive or negative infinity.)

Not a Number (NaN) Codes for the 352 and 374 CPU		
Mnemonic	Reference Table Value (Hex)	Description
NaN_ADD.	7F81 FFFF	Real addition error value in hex.
NaN_SUB	7F81 FFFF	Real subtraction error value in hex.
NaN_MUL	7F82 FFFF	Real multiplication error value in hex.
NaN_DIV	7F83 FFFF	Real division error value in hex.
NaN_SQRT	7F84 FFFF	Real square root error value in hex.
NaN_LOG	7F85 FFFF	Real logarithm error value in hex.
NaN_POW0	7F86 FFFF	Real exponent error value in hex.
NaN_SIN	7F87 FFFF	Real sine error value in hex.
NaN_COS	7F88 FFFF	Real cosine error value in hex.
NaN_TAN	7F89 FFFF	Real tangent error value in hex.
NaN_ASIN	7F8A FFFF	Real inverse sine error value in hex.
NaN_ACOS	7F8B FFFF	Real inverse cosine error value in hex.
NaN_BCD	7F8C FFFF	BCD-4 to real error.
REAL_INDEF	FFC0 0000	Real indefinite, divide 0 by 0 error.

NaN Code for 35x, 36x, and 37x CPUs (excluding 352 CPU)

All Series 90-30 CPUs that support firmware-based floating point operations (which excludes the 352 CPU, which is hardware-based) produce only one NaN output: FFFF FFFF. The indication on the Logicmaster ladder logic screen will be the unsigned term "OVERFLOW."

Not a Number (NaN) Type for 35x, 36x, and 37xCPUs (Excluding 352 CPU)		
Mnemonic	Reference Table Value (Hex)	Description
NaN_SW	FFFF FFFF	Software Floating Point code for all NaNs

Propagation and Power Flow for NaN and Infinity Numbers

When an NaN result is fed into another function, it passes through to the result. For example, if an NaN_ADD is the first operand to the SUB_REAL function, the result of the SUB_REAL is NaN_ADD. If both operands to a function are NaNs, the first operand will pass through. Because of this feature of propagating NaNs through functions, you can identify the function where the NaN originated.

Note

For NaN, the ok output is OFF (not energized).
The following table explains when power is or is not passed when dealing with numbers viewed as or equal to infinity for binary operations such as Add, Multiply, etc. As shown previously, outputs that exceed the positive or negative limits are viewed as POS_INF or NEG_INF respectively.

Table E-1. General Case of Power Flow for Floating-Point Math Operations

Operation	Input 1	Input 2	Output	Power Flow
All	Number	Number	Positive or Negative Infinity	No
All Except Division	Infinity	Number	Infinity	Yes
All	Number	Infinity	Infinity	Yes
Division	Infinity	Number	Infinity	No
All	Number	Number	NaN	No

Appendix
 F

Programming Software Comparison

This manual was written for users of Logicmaster (a DOS-based PLC programming software). The Windows-based PLC software products, such as CIMPLICITY® Machine Edition Logic Developer and VersaPro®, provide PLC instruction set information in the software's built-in online help system rather than in a manual. Users of the Windows-based programming software should be aware that instructions appear differently than the way they appear on a Logicmaster screen (they still work the same in the PLC). The online help system has the most accurate information about using the instruction set in the Windows-based programming software.

In addition to the on-line help system, you can refer to the following manuals for information on using the software:

VersaPro ${ }^{\text {TM }}$ Programming Software User's Guide, GFK-1670
CIMPLICITY® Machine Edition Getting Started Guide, GFK-1868

Notes

Support for DRUM Sequencer Instruction

This instruction, supported by CPUs 350-364 release 10.00 and later, and all versions of CPU37x , is not supported in any version of Logicmaster; therefore, not discussed in this manual. This instruction is supported in VersaPro, starting with release 1.1, and in all versions of Logic Developer. Information for this instruction can be found in the on-line help built into these two software packages.

Start and End of Program Markers

These are used in Logicmaster ladder logic screens, but are not visible on the Windows-based programmers' ladder logic screens.

Instruction Control Word Address Location

Certain instructions, such as timers, counters, and the bit sequencer require a group of consecutive words to store certain internal calculations. This group of words is usually called a control block. In Logicmaster, the address of the first word of the control block (as well as any value stored in that address) appears below the instruction on the ladder logic screen (as \%R00100 in the figure below). For the Windows-based programmers, this reference address of the first word appears inside the instruction on the ladder logic screen (as \%R00030 in the figure below). VersaPro also displays
the Variable Name of the reference address (Delay in the in figure below) inside the instruction. If no one has assigned a Variable Name to the reference address, the address itself will be the default Variable Name (so the reference address would appear inside the instruction in both places). Right above the word Delay in the VersaPro view is the value 113, which represents the current value stored in that variable.

Real Number Display Differences

There are differences between the way the programs display undefined results such as when a divide by zero calculation is attempted. Appendix E of this manual discusses how Logicmaster displays these results in both the ladder screen and reference tables.

3

35x/36x/37x series CPUs: key switch, 2-15

A

ACOS, 6-11
ADD, 6-2
ADD_IOM, 2-25
ADD_SIO, 2-25
Addition function, 6-2
Addition of I/O module, 3-17
Alarm, 3-2
Alarm error codes, B-5
Alarm processor, 3-2
ALT keys, D-1
AND, 8-3
ANY_FLT, 2-25
APL_FLT, 2-25
Application fault, 3-11
Application program logic scan, 2-8
ARRAY_MOVE, 10-2
ASIN, 6-11
ATAN, 6-11
Auto Reset Statistics, 12-79

B

BAD_PWD, 2-25
Base 10 logarithm function, 6-13
Battery signal, low, 3-10
BCD-4, 2-23, 11-2
BCLR, 8-14
BIT, 2-23
Bit clear function, 8-14
Bit operation functions, 8-1
AND, 8-3
BCLR, 8-14
BPOS, 8-16
BSET, 8-14
BTST, 8-12
MCMP, 8-18
NOT, 8-7
OR, 8-3
ROL, 8-10
ROR, 8-10
SHL, 8-8
SHR, 8-8
XOR, 8-5
Bit position function, 8-16
Bit sequencer function, 9-11
Bit set function, 8-14
Bit test function, 8-12
BITSEQ, 9-11
memory required, 9-12

BLKCLR, 9-7
BLKMOV, 9-5
Block clear function, 9-7
Block locking feature, 2-40
EDITLOCK, 2-40
permanently locking a subroutine, 2-40
VIEWLOCK, 2-40
Block move function, 9-5
Boolean execution times, A-15
BPOS, 8-16
BSET, 8-14
BTST, 8-12
BYTE, 2-23

C

CALL, 12-2
Call function, 12-2
CFG_MM, 2-25
Change Programmer Communications
Window Mode and Timer Value, 12-43
Change System Comm Window Mode and Timer Value, 12-45
Change/Read Constant Sweep Timer, 12-38
Change/Read Number of Words to Checksum, 12-47
Change/Read Time-of-Day Clock, 12-49
Checksum failure, program block, 3-10
Clear Fault Tables, 12-59
Clocks, 2-36
elapsed time clock, 2-36
time-of-day clock, 2-36
Coil
with Multiple and Single coil checking, 4-6
Coils, 4-2, 4-3
continuation coil, 4-8
negated coil, 4-4
negated retentive coil, 4-4
negative transition coil, 4-5
positive transition coil, 4-4
RESET coil, 4-5
retentive coil, 4-4
retentive RESET coil, 4-6
retentive SET coil, 4-6
SET coil, 4-5
COMMENT, 12-34
Comment function, 12-34
COMMREQ, 9-15
error code, description, and correction, 3-10
Communication request function, 9-15 error code, description, and correction, 3-10
Communication window modes, 2-14
Communications failure during store, 3-15
Communications with the PLC, 2-12, 2-13
Configuration mismatch, system, 3-9
Constant sweep time exceeded, 3-11

Constant sweep time mode, 2-13, 2-37
Constant sweep timer, 2-37
Contacts, 4-1
Continuation contact, 4-8
normally closed contact, 4-3
normally open contact, 4-3
Continuation coil, 4-8
Continuation contact, 4-8
Control functions, 12-1
CALL, 12-2
COMMENT, 12-34
DOIO, 12-3
enhanced DOIO for model 331 and higher CPUs, 12-7
END, 12-23
ENDMCR, 12-30
JUMP, 12-31
LABEL, 12-33
MCR, 12-24
PID, 12-80
Sequential Event Recorder, 12-9
SER, 12-8
SVCREQ, 12-35
Conversion functions, 11-1
BCD-4, 11-2
DINT, 11-5
INT, 11-3
REAL, 11-7
TRUN, 11-11
WORD, 11-9
Convert to BCD-4 function, 11-2
Convert to double precision signed integer function, 11-5
Convert to Real function, 11-7
Convert to signed integer function, 11-3
Convert to Word function, 11-9
Corrupted memory, 3-7
Corrupted user program on power-up, 3-12
COS, 6-11
Cosine function, 6-11
Counters
DNCTR, 5-13
function block data, 5-1
UPCTR, 5-11
CPU sweep, 2-2
CTRL keys, D-1

D

Data move functions, 9-1
BITSEQ, 9-11
BLKCLR, 9-7
BLKMOV, 9-5
COMMREQ, 9-15
MOVE, 9-2
SHFR, 9-8

Data retentiveness, 2-22
Data types, 2-23
BCD-4, 2-23
BIT, 2-23
BYTE, 2-23
DINT, 2-23
INT, 2-23
REAL, 2-23
WORD, 2-23
Defaults conditions for Model 30 output modules, 2-44
DEG, 6-15
Diagnostic data, 2-45
Diagnostic faults, 3-4
addition of I/O module, 3-17
application fault, 3-11
constant sweep time exceeded, 3-11
loss of I/O module, 3-16
loss of, or missing, option module, 3-8
low battery signal, 3-10
reset of, addition of, or extra, option module, 3-8
DINT, 2-23, 11-5
Discrete references, 2-21
discrete inputs, 2-21
discrete internal, 2-21
discrete outputs, 2-21
discrete temporary, 2-21
global data, 2-21
system status, 2-21, 2-24
DIV, 6-2
Division function, 6-2
DNCTR, 5-13
Do I/O function, 12-3
enhanced DO I/O function for model 331 and higher CPUs, 12-7
DOIO, 12-3
enhanced DOIO for model 331 and higher
CPUs, 12-7
Double precision signed integer, 2-23
Down counter, 5-13
DSM communications with the PLC, 2-13

E

EDITLOCK, 2-40
Elapsed Power Down timer, 2-37
Elapsed time clock, 2-36
END, 12-23
End function, 12-23
End master control relay function, 12-30
ENDMCR, 12-30
Enhanced DO I/O function for the model 331 and higher CPUs, 12-7
EQ, 7-1
Equal function, 7-1
Error codes, B-5

Ethernet communications, 2-45
Ethernet Global Data, 2-45
Examples
SER, 12-18
EXP, 6-13
Exponential functions, 6-13
power of e, 6-13
power of X, 6-13
EXPT, 6-13
External I/O failures, 3-2

F

Fast Backplane Status Access, 12-71
Fatal faults, 3-4
communications failure during store, 3-15
corrupted user program on power-up, 3-12
option module software failure, 3-10
PLC CPU system software failure, 3-13
program block checksum failure, 3-10
system configuration mismatch, 3-9
Fault action, 3-4
diagnostic faults, 3-4
fatal faults, 3-4
I/O fault action, B-11
informational faults, 3-4
PLC fault action, B-5
fault actions, 3-8
Fault category, 3-16
Fault description, 3-16
Fault effects, additional, 3-5
Fault explanations and correction, 3-1
accessing additional fault information, 3-6
addition of I/O module, 3-17
application fault, 3-11
communications failure during store, 3-15
constant sweep time exceeded, 3-11
corrupted user program on power-up, 3-12
fault category, 3-16
fault description, 3-16
fault handling, 3-2
fault type, 3-16
I/O fault group, B-10
I/O fault table, 3-5
I/O fault table explanations, 3-16
interpreting a fault, B-1
loss of I/O module, 3-16
loss of, or missing, option module, 3-8
low battery signal, 3-10
no user program present, 3-12
non-configurable faults, 3-8
option module software failure, 3-10
password access failure, 3-12
PLC CPU system software failure, 3-13
PLC fault group, B-4
PLC fault table, 3-5
PLC fault table explanations, 3-7
program block checksum failure, 3-10
reset of, addition of, or extra, option module, 3-8
system configuration mismatch, 3-9
Fault group, B-4, B-10
Fault handling, 3-2
alarm processor, 3-2
fault action, 3-4
Fault references, 3-4
Fault type, 3-16
Faults, 3-2
accessing additional fault information, 3-6
actions, 3-8
addition of I/O module, 3-17
additional fault effects, 3-5
application fault, 3-11
classes of faults, 3-2
communications failure during store, 3-15
constant sweep time exceeded, 3-11
corrupted user program on power-up, 3-12
error codes, B-5
external I/O failures, 3-2
fault action, 3-4
I/O fault action, B-11
I/O fault group, B-10
I/O fault table, 3-3, 3-5
I/O fault table explanations, 3-16
internal failures, 3-2
interpreting a fault, B-1
loss of I/O module, 3-16
loss of, or missing, option module, 3-8
low battery signal, 3-10
no user program present, 3-12
operational failures, 3-2
option module software failure, 3-10
password access failure, 3-12
PLC CPU system software failure, 3-13
PLC fault action, B-5
PLC fault group, B-4
PLC fault table, 3-3, 3-5
PLC fault table explanations, 3-7
program block checksum failure, 3-10
references, 3-4
reset of, addition of, or extra, option module, 3-8
system configuration mismatch, 3-9
system reaction to faults, 3-3
Faults, interpreting, B-1
Flash protection on $35 x / 36 x / 37 x$ series CPUs, 2-15
Floating-point numbers, E-1
entering and displaying floating-point numbers, E-5
errors in floating-point numbers and operations, E-6
internal format of floating-point numbers, E-3 values of floating-point numbers, E-4
Function block parameters, 2-29
Function block structure, 2-27
format of program function blocks, 2-27
format of relays, 2-27
function block parameters, 2-29
power flow, 2-30

G

GE, 7-1
Genius Global Data, 2-45
Global data, 2-45
Global data references, 2-21
Greater than function, 7-1
Greater than or equal function, 7-1
GT, 7-1

H

Horizontal link, 4-7
Housekeeping, 2-8
HRD_CPU, 2-25
HRD_FLT, 2-25
HRD_SIO, 2-25

I/O data formats, 2-44
I/O fault table, 3-3, 3-5, B-8
explanations, 3-16
fault action, B-11
fault actions for specific faults, B-11
fault address, B-9
fault group, B-10
fault specific data, B-11
fault time stamp, B-12
interpreting a fault, B-1
long/short indicator, B-9
point, B-10
rack, B-10
reference address, B-9
slot, B-10
symbolic fault specific data, B-11
I/O structure, Series 90-30 PLC, 2-41
I/O system, Series 90-30 PLC, 2-41
I/O system, Series 90-20 PLC, 2-41
model 20 I/O modules, 2-46
I/O system, Series 90-30 PLC
default conditions for Model 30 output modules, 2-44
diagnostic data, 2-45
global data, 2-45
I/O data formats, 2-44
model 30 I/O modules, 2-42
Informational faults, 3-4
no user program present, 3-12
password access failure, 3-12
Input references, discrete, 2-21
Input register references, analog, 2-20

Input scan, 2-8
Instruction mnemonics, C-1
Instruction set
bit operation functions, 8-1
control functions, 12-1
conversion functions, 11-1
data move functions, 9-1
math functions, 6-1
relational functions, 7-1
relay functions, 4-1
table functions, $10-1$
Instruction timing, A-1
35x-36x models, A-6
37x, A-11
SER, A-10
standard models, A-2
Instructions, programming
bit operation functions, 8-1
control functions, 12-1
conversion functions, 11-1
data move functions, 9-1
instruction mnemonics, C-1
math functions, 6-1
relational functions, 7-1
relay functions, 4-1
table functions, $10-1$
INT, 2-23, 11-3
Internal failures, 3-2
Internal references, discrete, 2-21
Interrogate I/O, 12-68
Inverse cosine function, 6-11
Inverse sine function, 6-11
Inverse tangent function, 6-11
IO_FLT, 2-25
IO_PRES, 2-25
J
JUMP, 12-31
Jump instruction, 12-31

K

Key switch on $35 \mathrm{x} / 36 \mathrm{x} / 37 \mathrm{x}$ series CPUs, 2-15

LABEL, 12-33
Label instruction, 12-33
LE, 7-1
Less than function, 7-1
Less than or equal function, 7-1
Levels, privilege, 2-39
change requests, 2-40
Links, horizontal and vertical, 4-7

LN, 6-13
Locking/unlocking subroutines, 2-40
LOG, 6-13
Logarithmic functions, 6-13
base 10 logarithm, 6-13
natural logarithm, 6-13
Logic solution, 2-8
Logical AND function, 8-3
Logical NOT function, 8-7
Logical OR function, 8-3
Logical XOR function, 8-5
LOS_IOM, 2-25
LOS_SIO, 2-25
Loss of I/O module, 3-16
Loss of, or missing, option module, 3-8
Low battery signal, 3-10
LOW_BAT, 2-25
LT, 7-1

M

Maintenance, 3-1
Manuals
for I/O modules, 2-42
Masked compare function, 8-18
Master control relay function, 12-24
Math functions, 6-1
ACOS, 6-11
ADD, 6-2
ASIN, 6-11
ATAN, 6-11
COS, 6-11
DEG, 6-15
DIV, 6-2
EXP, 6-13
EXPT, 6-13
LN, 6-13
LOG, 6-13
MOD, 6-7
MUL, 6-2
RAD, 6-15
SIN, 6-11
SQRT, 6-9
SUB, 6-2
TAN, 6-11
MCR, 12-24
Memory, corrupted, 3-7
Mnemonics, instruction, C-1
MOD, 6-7
Model 20 I/O modules, 2-46
Model 30 I/O modules, 2-42
Modulo function, 6-7
MOVE, 9-2
Move function, 9-2
MSKCMP, 8-18
MUL, 6-2

Multiplication function, 6-2

N

NaN, E-6
Natural logarithm function, 6-13
NE, 7-1
Negated coil, 4-4
Negated retentive coil, 4-4
Negative transition coil, 4-5
Nested ENDMCR, 12-30
Nested MCR, 12-24
Nicknames, 2-22
No user program present, 3-12
Normally closed contact, 4-3
Normally open contact, 4-3
NOT, 8-7
Not a Number, E-6
Not equal function, 7-1

OFDT, 5-8
Off-delay timer, 5-8
On-delay timer, 5-3, 5-5
ONDTR, 5-3
Operation of system, 2-1
Operational failures, 3-2
Option module software failure, 3-10
OR, 8-3
Output references, discrete, 2-21
Output register references, analog, 2-20
Output scan, 2-9
OV_SWP, 2-24
Overrides, 2-22

P

Password access failure, 3-12
Passwords, 2-39
PB_SUM, 2-24
PCM communications with the PLC, 2-12
Periodic subroutines, 2-20
PID, 12-80
PLC CPU system software failure, 3-13
PLC fault table, 3-3, 3-5, B-1
error codes, B-5
explanations, 3-7
fault action, B-5
fault extra data, B-7
fault group, B-4
fault time stamp, B-7
interpreting a fault, $\mathrm{B}-1$
long/short indicator, B-3
rack, B-3
slot, B-3
spare, B-3
task, B-3
PLC sweep, 2-2
application program logic scan, 2-8
configured constant sweep time mode, 2-13
constant sweep time mode, 2-13, 2-37
DSM communications with the PLC, 2-13
housekeeping, 2-8
input scan, 2-8
logic solution, 2-8
output scan, 2-9
PCM communications with the PLC, 2-12
programmer communications window, 2-9
scan time contributions for $35 \mathrm{x} / 36 \mathrm{x} / 37 \mathrm{x}$ series, 2-5, 2-6
standard program sweep mode, 2-2
standard program sweep variations, 2-13
STOP mode, 2-14
sweep time calculation, 2-7
system communications window, 2-10
PLC system operation, 2-1
Positive transition coil, 4-4
Power flow, 2-30
Power of e function, 6-13
Power of X function, 6-13
Power-down, 2-35
Power-up, 2-32
Power-up and power-down sequences, 2-32
power-down, 2-35
power-up, 2-32
Privilege level change requests, 2-40
Privilege levels, 2-39
change requests, 2-40
Program block
how blocks are called, 2-19
how C blocks are called, 2-19
how subroutines are called, 2-19
Program block checksum failure, 3-10
Program organization and user data
floating-point numbers, E-1
Program organization and user references/data, 2-17
data types, 2-23
function block structure, 2-27
retentiveness of data, 2-22
system status, 2-24
transitions and overrides, 2-22
user references, 2-20
Program structure
how blocks are called, 2-19
how C blocks are called, 2-19
how subroutines are called, 2-19
Program sweep, standard, 2-2
Programmer communications window, 2-9
Programming instructions
bit operation functions, 8-1
control functions, 12-1
conversion functions, 11-1
data move functions, 9-1
instruction mnemonics, C-1
math functions, 6-1
relational functions, 7-1
relay functions, 4-1
table functions, 10-1
Proportional Integral Deviation (PID), 12-80

R

RAD, 6-15
Radian conversion function, 6-15
RANGE, 7-4
Range function, 7-4
Read after Fatal Fault Auto Reset, 12-77
Read Elapsed Power Down Time, 12-69
Read Elapsed Time Clock, 12-64
Read Folder Name, 12-55
Read I/O Override Status, 12-65
Read Last-Logged Fault Table Entry, 12-60
Read Master Checksum, 12-66
Read PLC ID, 12-56
Read PLC Run State, 12-57
Read Sweep Time from Beginning of Sweep, 12-54
Read Window Values, 12-41
REAL
convert to REAL, 11-7
Data type structure, 2-23
Using floating-point numbers, E-1
Using Real numbers, E-1
Real numbers
terminology, E-2
references, 2-21
Register Reference
system registers, 2-20
Register references, 2-20
analog inputs, 2-20
analog outputs, 2-20
Relational functions, 7-1
EQ, 7-1
GE, 7-1
GT, 7-1
LE, 7-1
LT, 7-1
NE, 7-1
RANGE, 7-4
Relay functions, 4-1
coils, 4-2, 4-3
contacts, 4-1
continuation coil, 4-8
continuation contact, 4-8
horizontal and vertical links, 4-7
negated coil, 4-4
negated retentive coil, 4-4
negative transition coil, 4-5
normally closed contact, 4-3
normally open contact, 4-3
positive transition coil, 4-4
RESET coil, 4-5
retentive coil, 4-4
retentive RESET coil, 4-6
retentive SET coil, 4-6
SET coil, 4-5
RESET coil, 4-5
Reset of, addition of, or extra, option module, 3-8
Reset Smart Module, 12-67
Reset Watchdog Timer, 12-53
Retentive coil, 4-4
Retentive RESET coil, 4-6
Retentive SET coil, 4-6
Retentiveness of data, 2-22
ROL, 8-10
ROR, 8-10
Rotate left function, 8-10
Rotate right function, 8-10

S

Scan time contributions for $35 \mathrm{x} / 36 \mathrm{x} / 37 \mathrm{x}$ series CPUs, 2-5, 2-6
Scan, input, 2-8
Scan, output, 2-9
Search array move function, 10-2
Search greater than or equal function, 10-7
Search less than or equal function, 10-7
Security, system, 2-39
locking/unlocking subroutines, 2-40
passwords, 2-39
privilege level change requests, 2-40
privilege levels, 2-39
Sequential Event Recorder, 12-9. See SER function
SER function, 12-8
Series 90-20 PLC I/O system, 2-41
model 20 I/O modules, 2-46
Series 90-30 PLC I/O system, 2-41
default conditions for Model 30 output modules, 2-44
diagnostic data, 2-45
global data, 2-45
I/O data formats, 2-44
I/O structure, 2-41
model 30 I/O modules, 2-42
Service Request
change/read number of words to checksum, 1247
Service request functions
auto reset statistics (\#49), 12-79
change programmer communications window (\#3), 12-43
change system communications window (\#4), 12-45
change/read constant sweep timer (\#1), 12-38
change/read number of words to checksum, 1247
change/read time-of-day clock, 12-49
clear fault table, 12-59
Fast Backplane Status Access, 12-71
interrogate I/O, 12-68
list, 12-35
read elapsed power down time, 12-69
read elapsed time clock, 12-64
read folder name (\#10), 12-55
read I/O override status, 12-65
read last-logged fault table entry, 12-60
read master checksum, 12-66
read PLC ID (\#11), 12-56
read PLC run state (\#12), 12-57
read sweep time (\#9), 12-54
read window values (\#2), 12-41
reboot after fatal fault auto reset (\#48), 12-77
reset smart module (\#24), 12-67
reset watchdog timer (\#8), 12-53
shut down PLC, 12-58
skip next output and input scan, 12-70
SET coil, 4-5
SFT_CPU, 2-25
SFT_FLT, 2-25
SHFR, 9-8
Shift left function, 8-8
Shift register function, 9-8
Shift right function, 8-8
SHL, 8-8
SHR, 8-8
Shut Down PLC SVCREQ, 12-58
Signed integer, 2-23
SIN, 6-11
Sine function, 6-11
Skip Next Output \& Input Scan, 12-70
SNPX_RD, 2-24
SNPX_WT, 2-24
SNPXACT, 2-24
Software failure, option module, 3-10
SQRT, 6-9
Square root function, 6-9
SRCH_GE, 10-7
SRCH_LE, 10-7
Standard program sweep mode, 2-2
Standard program sweep variations, 2-13
Status references, system, 2-21, 2-24
STOP mode, 2-14
STOR_ER, 2-25
SUB, 6-2

Subroutines, locking/unlocking, 2-40
Subtraction function, 6-2
Suspend I/O, 12-70
SVCREQ. See Service request functions
Sweep time calculation, 2-7
Sweep, PLC, 2-2
application program logic scan, 2-8
constant sweep time mode, 2-13, 2-37
DSM communications with the PLC, 2-13
housekeeping, 2-8
input scan, 2-8
logic solution, 2-8
output scan, 2-9
PCM communications with the PLC, 2-12
programmer communications window, 2-9
scan time contributions for $35 \mathrm{x} / 36 \mathrm{x} / 37 \mathrm{x}$ series
CPUs, 2-5, 2-6
standard program sweep mode, 2-2
standard program sweep variations, 2-13
STOP mode, 2-14
sweep time calculation, 2-7
system communications window, 2-10
SY_FLT, 2-25
SY_PRES, 2-25
System communications window, 2-10
System configuration mismatch, 3-9
System operation, 2-1
clocks and timers, 2-36
PLC sweep summary, 2-2
power-up and power-down sequences, 2-32
program organization and user references/data, 2-17
Series 90-20 PLC I/O system, 2-41
Series 90-30 PLC I/O system, 2-41
system security, 2-39
System register references, 2-20
System status references, 2-21, 2-24
ADD_IOM, 2-25
ADD_SIO, 2-25
ANY_FLT, 2-25
APL_FLT, 2-25
BAD_PWD, 2-25
CFG_MM, 2-25
HRD_CPU, 2-25
HRD_FLT, 2-25
HRD_SIO, 2-25
IO_FLT, 2-25
IO_PRES, 2-25
LOS_IOM, 2-25
LOS_SIO, 2-25
LOW_BAT, 2-25
OV_SWP, 2-24
PB_SUM, 2-24
SFT_CPU, 2-25
SFT_FLT, 2-25
SNPX_RD, 2-24
SNPX_WT, 2-24
SNPXACT, 2-24

STOR ER, 2-25
SY_FLT, 2-25
SY_PRES, 2-25

T

Table functions, 10-1
ARRAY_MOVE, 10-2
search less than or equal function, 10-7
SRCH_GE, 10-7
TAN, 6-11
Tangent function, 6-11
Temporary references, discrete, 2-21
Time-of-day clock, 2-36
Timers, 2-36
constant sweep timer, 2-37
Elapsed power down timer, 2-37
function block data, 5-1
OFDT, 5-8
ONDTR, 5-3
time-tick contacts, 2-38
TMR, 5-5
Watchdog timer, 2-37
Time-tick contacts, 2-38
Timing, instruction, A-1
35x-36x models, A-6
37 x , A-11
SER, A-10
standard models, A-2
TMR, 5-5
Transitions, 2-22
Troubleshooting, 3-1
accessing additional fault information, 3-6
I/O fault table, 3-5
I/O fault table explanations, 3-16
interpreting a fault, B-1
non-configurable faults, 3-8
PLC fault table, 3-5
PLC fault table explanations, 3-7
TRUN, 11-11
Truncate function, 11-11

U

Up counter, 5-11
UPCTR, 5-11
User references, 2-20
analog inputs, 2-20
analog outputs, 2-20
discrete inputs, 2-21
discrete internal, 2-21
discrete outputs, 2-21
discrete references, 2-21
discrete temporary, 2-21
global data, 2-21
register references, 2-20
system registers, 2-20
system status, 2-21, 2-24

V

VersaPro
note to users, 1-2
Vertical link, 4-7
VIEWLOCK, 2-40

W

Watchdog timer, 2-37
Window
programmer communications window, 2-9
system communications window, 2-10
WORD, 2-23, 11-9
X
XOR, 8-5

TECHNICAL DATA SHEET

Equipment Type: Batteries
Location:Battery Compartment
Model Numbers: NP 712
Manufacturer: Yuasa
Supplier:
Battery Specialties6/10 Argon StSumner Park(07) 32794375

NP SERIES - NP7-12

Reliability is your Security

Utilizing the latest advance design Oxygen

 Recombination Technology, Yuasa have applied their 80 years of experience in the lead acid battery field to produce the optimum design of Sealed Lead Acid batteries.
FEATURES

- Superb recovery from deep discharge.
- Electrolyte suspension system.
- Gas Recombination.
- Multipurpose: Float or Cyclic use.
- Usable in any orientation
- Superior energy density.
- Lead calcium grids for extended life.
- Manufactured World wide.
- Application specific designs.

Technical Features

Sealed Construction

Yuasa's unique construction and sealing technique ensures no electrolyte leakage from case or terminals.

Electrolyte Suspension System

All NP batteries utilize Yuasa's unique electrolyte suspension system incorporating a microfine glass mat to retain the maximum amount of electrolyte in the cells. The electrolyte is retained in the separator material and there is no free electrolyte to escape from the cells. No gels or other contaminants are added.

Control of Gas Generation

The design of Yuasa's NP batteries incorporates the very latest oxygen recombination technology to effectively control the generation of gas during normal use.

Low Maintenance Operation

Due to the perfectly sealed construction and the recombination of gasses within the cell, the battery is almost maintenance free.

Terminals

Terminals

NP batteries are manufactured using a range of terminals which vary in size and type. Please refer to details as shown.

Operation in any Orientation

The combination of sealed construction and Yuasa's unique electrolyte suspension system allows operation in any orientation, with no loss of performance or fear of electrolyte leakage.

Valve Regulated Design

The batteries are equipped with a simple, safe low pressure venting system which releases excess gas and automatically reseals should there be a build up of gas within the battery due to severe overcharge. Note. On no account should the battery be charged in a sealed container.

General Specifications

Layout

Nominal Capacity (Ah)	NP7-12
20 hr to $1.75 \mathrm{vpc} 30^{\circ} \mathrm{C}$	7
1 Ohr to $1.75 \mathrm{vpc} 20^{\circ} \mathrm{C}$	6.4
5 hr to $1.70 \mathrm{vpc} 20^{\circ} \mathrm{C}$	5.9
1 hr to $1.60 \mathrm{vpc} 20^{\circ} \mathrm{C}$	4.2
Voltage	12
Energy Density (Wh.L.20hr)	91
Specific Energy (Wh.kg.20hr)	32
Int. Resistance (m.Ohms)	25
Maximum discharge (A)	$40 / 75$
Short Circuit current (A)	210
Dimensions (mm)	
Length	151
Width	65
Height overall	97.5
Weight (Kg)	2.65
Terminal	A / D
Layout	4
Terminal Torque Nm	-

NP SERIES - NP7-12

Lead Calcium Grids

The heavy duty lead calcium alloy grids provide an extra margin of performance and life in both cyclic and float applications and give unparalleled recovery from deep discharge.

Long Cycle Service Life

Depending upon the average depth of discharge, over a thousand discharge/charge cycles can be expected.

Float Service Life

The expected service life is five years in float standby applications.

Separators

The use of the special separator material provides a very efficient insulation between plates preventing inter-plate short circuits and prohibiting the shedding of active materials.

NP DISCHARGE CHARACTERISTICS
CURVES AT $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ CURVES AT $\mathbf{2 5}^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$

FLOAT SERVICE LIFE NP RANGE

Long shelf Life

The extremely low self discharge rate allows the battery to be stored for extended periods up to one year at normal ambient temperatures with no permanent loss of capacity.

Operating Temperature Range

The batteries can be used over a broad temperature range permitting considerable flexibility in system design and location.
Charge $\quad-15^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Discharge $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Storage $\quad-20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (fully charged battery)

FLOAT CHARGE CHARACTERISTICS

TYPICAL DISCHARGE CHARACTERISTICS NP RANGE

CYCLE SERVICE LIFE IN RELATION TO DEPTH OF DISCHARGE

TECHNICAL DATA SHEET

Equipment Type:

Location:

Model Numbers:

Lumifa LF1B-N Series

Manufacturer:
IDEC

Supplier:

IPD Australia Pty Ltd Unit 17
104 Ferntree Gully Road
Oakleigh, Victoria 3166,
Ph: 0385235900
Fax: 0385235999
Web: www.idec.com

LF1B Series

 LED Illumination Units $\mathbb{L} \mathbb{M} \mathbb{M} \mathbb{F}$

IIlumination Colors \＆Application Examples					
			yMers．	n乍尘	2Mers
$1 l l u m$ Col	mination or	Cool White	Warm White	Yellow	Red
		24V DC			
	Clear Cover			－，． $0+3$	-1
	White Cover	$\xrightarrow[4]{4}$	－\square		
Spectrum					
Features		Suppressing glare，the bright，clear cool white illumination color lights up a target object clearly．This illumination color gives off a color temperature of 5500 K ．	Warm color similar to that of incandescent lamps．This illumination color gives off a color temperature of 2800K．	Yellow illumination color gives off an emission spectrum with a dominant wavelength of 590 nm ．	Red illumination color gives off an emission spectrum with a dominant wavelength of 625 nm ．
Applications		－Control panel －Plant equipment －Refrigerator／freezer －Inspection／test equipment －Advertising display／board －Machine tool	－Food processing machines －Cosmetic plants －Chemical plants －Showcases －Food display cases	－Manufacturing equipment －IC foundries	－Photosensitive materials －Semiconductor manufac－ turing equipment

Features

－Brightness：62．5 Lumens／Watt
－Low heat generation．
－Less energy usage，longer operation life，smaller mounting space，and no electrical noise．
－ 71% reduction of power and CO_{2} emission when compared to 20 W fluorescent lamps（LF1B－C／D）
－Thin and slim style fits into compact spaces．
－Two cover colors：clear and white（diffused light）
－Cool white，warm white，yellow and red illumination colors available．
－UL Listed \＆IP54 protection against dust and water splash（IEC 60529）

Part No．Development

LF1B－C 3 S -2 THWW4

LED Module Arrangement
A： 3 LEDs $\times 1$ row
B： 6 LEDs $\times 1$ row
C： 12 LEDs $\times 1$ row
D： 24 LEDs $\times 1$ row

LED Optics Specifications

Illumination Color	Cool White	Warm White	Yellow	
Luminous Intensity（typ．）（Single LED module）	5000 mcd	4500 mcd	2300 mcd	
Color Temperature（typ．）／Dominant Wavelength（typ．）	5500 K	2800 K	590 nm	
Reference Illuminance（typ．）at 500 mm（clear cover）	3 LEDs $\times 1$ row	90 lx	60 lx	20 lx
	6 LEDs $\times 1$ row	170 lx	600 mcd	
	12 LEDs $\times 1$ row	330 lx	20 lx	
	24 LEDs $\times 1$ row	560 lx	200 lx	40 lx

Note：Illumination colors and illuminance may vary．Specifications shown in the above table are typical values and may vary depending upon actual environment．

Performance Specifications

- Do not use the LF1B illumination units in environments subject to corrosive gases, otherwise illuminance may deteriorate.

Dimensions

Type No.	A	B	C
LF1B-A	134	64	123
LF1B-B	210	140	199
LF1B-C	330	260	319
LF1B-D	580	510	569

All dimensions in mm.

Internal Circuit

IDEC Corporation • 1175 Elko Drive • Sunnyvale, CA 94089•800-262-IDEC (4332) • Fax: 408-745-5258 • www.IDEC.com/usa ©2009 IDEC Corporation. All Rights Reserved. PDF only. Updated 07/09

TECHNICAL DATA SHEET

Equipment Type:

Location:

Model Numbers:

Manufacturer:

Supplier:

Radio Power Supply

RTU Section

PBIH

Powerbox

Powerbox Australia Pty Ltd 433 Logan Road
Stones Corner, QLD 4120

Ph: 0733948372
Fax: 0733948373
Web: www.powerbox.com.au

15-150 WATTS DC/DC SINGLE OUTPUT

FEATURES

- Wide selection of models
- 4 input voltage ranges
- High efficiency
- Low output ripple
- Proven reliability
- Good thermal margins

SPECIFICATIONS

INPUT	
Input voltage	12VDC (9.2-16)
	24VDC (19-32)
	48VDC (38-63)
	110VDC (85-140)
Inrush current	20A max. for 110V only
OUTPUT	
Output voltage	See table
Voltage adjustment	$\pm 10 \%, \pm 5 \%$ for PBIH-F
Output current	See table
Ripple \& noise	Output Volts x 1\% + 50mV to -100mV pk-pk
Line regulation	0.8\% over input range
Load regulation	0.9\%, 0\%-100\% load
Temperature coefficient	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 0.03 \%$ per ${ }^{\circ} \mathrm{C}$
Overvoltage protection	O.V. clamp, PBIH-F Output shutdown, PBIH-G, J, M, R - input must be switched off for at least 30S to reactivate
Overcurrent protection	Fold back - PBIH-F Current limiting, PBIH-G, J, M, R (PBIH-R series is adjustable); PBIH110xxR models are not adjustable
Drift	Output V x $0.5 \%+15(\mathrm{mV})$ per 8 hrs after 1 hr warm-up
Rise Time	$\begin{aligned} & \text { 200ms max. - PBIH-F, M, R } \\ & \text { 100ms max. - PBIH-G, J (at } 25^{\circ} \mathrm{C} \text {) } \end{aligned}$
Holdup time	10ms (only 110V input)
Remote sense	PBIH-R Series only

OPERATING	
Efficiency	70\%-89\%
Safety isolation (1 minute)	Type - 12, 24, 48V input Input - Output: 1500VAC Input- Case: 1500VAC Output- Case: 500VAC Type-110V input Input- Output: 2000VAC Input- Case: 2000VAC Output- Case: 500VAC
Insulation resistance	50Mž (500VDC) Input - Case
Parallel operation	Consult sales office for details
Remote control	PBIH-R Series: Open link: output normal Short link: output off
ENVIRONMENTAL	
Operating temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
Temperature derating	Derate 100% load from $50^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ at 1.5% per ${ }^{\circ} \mathrm{C}$ to 30% load.
Cooling	Convection cooled
Storage temperature	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Humidity	85\%
Shock	30G, PBIH-F, G and J
Vibration	($5 \mathrm{~Hz}-10 \mathrm{~Hz}, 10 \mathrm{~mm}$), ($10 \mathrm{~Hz}-50 \mathrm{~Hz}$) $2 \mathrm{G}, \mathrm{PBIH}-\mathrm{F}, \mathrm{G}$ and J
STANDARDS AND APPROV	ALS
Safety	Designed to UL1950
C-Tick	AS/NZS CISPR11 Group 1, Class A
MECHANICAL	
Weight	PBIH-F : 250g PBIH-G: 380g PBIH-J:410g PBIH-M : 800g PBIH-R: 1.4kg

PBIH Series

15-150 WATTS DC/DC SINGLE OUTPUT

SELECTION TABLE

| MODEL
 NUMBER | INPUT | OUTPUT | OUTPUT |
| :--- | :---: | :---: | :---: | :---: |
| POWER | | | |

MODEL NUMBER	INPUT	OUTPUT		OUTPUT POWER
PBIH-11012G	85-140V	12V	2.1A	25W
PBIH-11015G	85-140V	15V	1.7A	25W
PBIH-11024G	85-140V	24 V	1.1A	25W
PBIH-11048G	85-140V	48 V	0.5A	25W
PBIH-1205J	9.2-16V	5 V	8A	40W
PBIH-1212J	9.2-16V	12 V	3.3 A	40W
PBIH-1215J	9.2-16V	15 V	2.7A	40W
PBIH-1224J	9.2-16V	24 V	1.7A	40W
PBIH-1248J	9.2-16V	48V	0.8A	40W
PBIH-2405J	19-32V	5 V	10A	50W
PBIH-2412J	19-32V	12 V	4.3A	50W
PBIH-2415J	19-32V	15 V	3.4A	50W
PBIH-2424J	19-32V	24 V	2.5A	50W
PBIH-2448J	19-32V	48 V	1A	50W
PBIH-4805J	38-63V	5 V	10A	50W
PBIH-4812J	38-63V	12 V	4.3A	50W
PBIH-4815J	38-63V	15 V	3.4A	50W
PBIH-4824J	38-63V	24 V	2.5A	50W
PBIH-4848J	38-63V	48 V	1A	50W
PBIH-11005J	85-140V	5 V	10A	50W
PBIH-11012J	85-140V	12 V	4.3 A	50W
PBIH-11015J	85-140V	15 V	3.4A	50W
PBIH-11024J	85-140V	24 V	2.5A	50W
PBIH-11048J	85-140V	48 V	1A	50W
PBIH-1205M	9.2-16V	5 V	18A	100W
PBIH-1212M	$9.2-16 \mathrm{~V}$	12 V	9A	100W
PBIH-1215M	9.2-16V	15 V	7A	100W
PBIH-1224M	$9.2-16 \mathrm{~V}$	24 V	4.5A	100W
PBIH-1248M	9.2-16V	48 V	2 A	100W
PBIH-2405M	19-32V	5 V	20A	100W
PBIH-2412M	19-32V	12 V	9A	100W
PBIH-2415M	19-32V	15 V	7A	100W

MODEL	INPUT	OUTPUT	OUTPUT		
NUMBER				\quad	
:---:	:---:	:---:	:---:		
POWER					

PBIH-F

PBIH Series

15-150 WATTS SINGLE OUTPUT

PBIH-G

Termunal	Cosmeotion
0	Fa
1	DC +V in
2	OV in
3	LFG
4	NO
5	NO
6	-V out
7	+V out

PBIH-J

PBIH-M

Tweminnal	Connection
1	$+V_{\text {onl }}$
2	+V out
3	$-V_{\text {out }}$
4	-V out
5	FG
6	$-V$ in
7	$+V$ in

PBIH-R

Torminal	Cannectron
1,2	$+V$ out
3	+S
4	-9
5,6	V out
I	Memole
8	Control
9	$\mathrm{DC}+\mathrm{VIn}$
10	DC OV in
	FG

TECHNICAL DATA SHEET

Equipmen Location:

Model Numbers:

Manufacturer:

Supplier:

VSD

Motor Starter Section

FC202

Danfoss

Queensland
Unit 26/67 Depot Street
Banyo, QLD 4014
Tel: +61 732923600
Fax: +61 732664571

Operating Instructions
VLT ${ }^{『}$ AQUA Drive FC 202 Low Harmonic Drive

Contents
Operating Instructions

Contents

1 Introduction 4
1.1 Purpose of the Manual 4
1.2 Additional Resources 4
1.3 Product Overview 4
1.3.1 Intended Use 4
1.3.2 Working Principle 5
1.3.3 Exploded View Drawings 6
1.4 Enclosure Types and Power Ratings 14
1.5 Approvals and Certifications 14
1.5.1 Approvals 14
1.5.2 Compliance with ADN 14
2 Safety 15
2.1 Safety Symbols 15
2.2 Qualified Personnel 15
2.3 Safety Precautions 15
3 Mechanical Installation 16
3.1 Equipment Pre-Installation Checklist 16
3.2 Unpacking 16
3.2.1 Items Supplied 16
3.3 Installation Environment 17
3.3.1 Planning the Installation Site 17
3.4 Mounting 17
3.4.1 Cooling and Airflow 17
3.4.2 Lifting 19
3.4.3 Cable Entry and Anchoring 20
3.4.4 Terminal Locations for Frame Size D13 22
3.4.5 Terminal Locations for Frame Size E9 23
3.4.6 Terminal Locations for Frame Size F18 24
3.4.7 Torque 27
4 Electrical Installation 28
4.1 Safety Instructions 28
4.2 EMC Compliant Installation 28
4.3 Power Connections 28
4.4 Grounding 29
4.5 Input Options 29
4.5.1 Extra Protection (RCD) 29
4.5.2 RFI Switch 29
4.5.3 Shielded Cables 30
4.6 Motor Connection 30
4.6.1 Motor Cable 30
4.6.2 Brake Cable 30
4.6.3 Brake Resistor Temperature Switch 31
4.6.4 Motor Insulation 31
4.6.5 Motor Bearing Currents 31
4.6.6 Motor Thermal Protection 32
4.7 AC Mains Connection 32
4.7.1 Mains Connection 32
4.7.2 External Fan Supply 32
4.7.3 Power and Control Wiring for Unscreened Cables 32
4.7.4 Mains Disconnects 34
4.7.5 F-Frame Circuit Breakers 34
4.7.6 F-Frame Mains Contactors 34
4.8 Control Wiring 35
4.8.1 Control Cable Routing 35
4.8.2 Access to Control Terminals 36
4.8.3 Electrical Installation, Control Terminals 36
4.8.4 Electrical Installation, Control Cables 38
4.9 Additional Connections 39
4.9.1 Mechanical Brake Control 39
4.9.2 Parallel Connection of Motors 40
4.9.3 Motor Thermal Protection 40
4.9.4 Safe Torque Off (STO) 41
4.9.5 Switches S201, S202, and S801 41
4.9.6 Serial Communication 41
4.9.7 F-frame Options 41
4.10 Final Set-up and Test 43
5 Commissioning 45
5.1 Safety Instructions 45
5.2 Applying Power 47
5.3 Local Control Panel Operation 47
5.3.1 Local Control Panel 47
5.3.2 LCP Layout 47
5.3.3 Parameter Settings 48
5.3.4 Uploading/Downloading Data to/from the LCP 49
5.4 Basic Programming 50
5.4.1 Commissioning with SmartStart 50
5.4.2 Commissioning via [Main Menu] 50
5.4.3 Asynchronous Motor Set-up 51
5.4.4 Permanent Magnet Motor Set-up 51
5.4.5 Automatic Energy Optimisation (AEO) 52
5.4.6 Automatic Motor Adaptation (AMA) 52
5.5 Checking Motor Rotation 52
5.6 Local-control Test 53
5.7 System Start-up 53
6 Application Examples 54
6.1 Introduction 54
6.2 Application Examples 54
6.2.1 Speed 54
6.2.2 Start/Stop 55
6.2.3 External Alarm Reset 56
6.2.4 RS-485 57
6.2.5 Motor Thermistor 57
7 Diagnostics and Troubleshooting 58
7.1 Status Messages 58
7.2 Warning and Alarm Types 60
7.2.1 Warnings 60
7.2.2 Alarm Trip 60
7.2.3 Alarm Trip-lock 60
7.3 Warnings and Alarm Definitions - Frequency Converter 61
7.4 Warning and Alarm Definitions - Filter (Left LCP) 69
7.5 Troubleshooting 74
8 Specifications 76
8.1 Power-Dependent Specifications 76
8.1.1 Mains Supply $3 \times 380-480$ V AC 76
8.1.2 Derating for Temperature 79
8.2 Mechanical Dimensions 79
8.3 General Technical Data - Frequency Converter 81
8.4 General Technical Data - Filter 86
8.5 Fuses 89
8.5.1 Fuse Specifications 90
9 Appendix 92
9.1 Abbreviations and Conventions 92
Index 93

Introduction
Operating Instructions

1 Introduction

1.1 Purpose of the Manual

The purpose of this manual is to provide information for the installation and operation of a VLT^{\circledR} Low Harmonic Drive. The manual includes relevant safety information for installation and operation. Chapter 1 Introduction and chapter 2 Safety introduce the unit function and cover proper mechanical and electrical installation procedures. There are chapters on start-up and commissioning, applications and basic troubleshooting. Chapter 8 Specifications provides a quick reference for ratings and dimensions, as well as other operating specifications. This manual provides a basic knowledge of the unit and explains setup and basic operation. $\mathrm{VLT}{ }^{\circledR}$ is a registered trademark.

1.2 Additional Resources

Other resources are available to understand advanced functions and programming.

- The VLT ${ }^{\circledR}$ AQUA Drive FC 202 Operating Instructions provide details on installation and operation of the frequency converter.
- The VLT ${ }^{\oplus}$ AQUA Drive FC 202 Programming Guide provides greater detail on working with parameters and many application examples.
- The VLT ${ }^{\circledR}$ AQUA Drive FC 202 Design Guide provides detailed capabilities and functionality to design motor control systems.
- Supplemental publications and manuals are available from Danfoss. See www.danfoss.com/BusinessAreas/DrivesSolutions/Documentations/Technical +Documentation.htm for listings.
- Optional equipment may change some of the procedures described. Reference the instructions supplied with those options for specific requirements. Contact the local Danfoss supplier or visit the Danfoss website: www.danfoss.com/ BusinessAreas/DrivesSolutions/Documentations/ Technical+Documentation.htm, for downloads or additional information.
- The VLT ${ }^{\circledR}$ Active Filter AAF00x Operating Instructions provide additional information about the filter portion of the Low Harmonic Drive.

1.3 Product Overview

1.3.1 Intended Use

A frequency converter (also called a drive) is an electronic motor controller that converts $D C$ into a variable $A C$ waveform output. The frequency and voltage of the output are regulated to control the motor speed or torque. The frequency converter can vary the speed of the motor in response to system feedback, such as with position sensors on a conveyor belt. The frequency converter can also regulate the motor by responding to remote commands from external controllers.

The frequency converter

- monitors the system and motor status
- issues warnings or alarms for fault conditions
- starts and stops the motor
- optimises energy efficiency

Operation and monitoring functions are available as status indications to an outside control system or serial communication network.

A Low Harmonic Drive (LHD) is a single unit that combines the frequency converter with an advanced active filter (AAF) for harmonic mitigation. The frequency converter and filter are 2 separate pieces packaged together in an integrated system, but each functions independently. In this manual, there are separate specifications for the frequency converter and the filter. Since the frequency converter and filter are together in the same enclosure, the unit is transported, installed, and operated as a single entity.

Introduction
Operating Instructions

1.3.2 Working Principle

The VLT Low Harmonic Drive is a high-power frequency converter with an integrated active filter. An active filter is a device that actively monitors harmonic distortion levels and injects compensative harmonic current onto the line to cancel the harmonics.

Illustration 1.1 Basic Layout for the Low Harmonic Drive

Low Harmonic Drives are designed to draw an ideal sinusoidal current waveform from the supply grid with a power factor of 1 . Where traditional non-linear load draws pulse-shaped currents, the Low Harmonic Drive compensates that via the parallel filter path, lowering the stress on the supply grid. The Low Harmonic Drive meets the highest harmonic standards with a THiD less than 5% at full load for $<3 \%$ pre-distortion on a 3% unbalanced 3 -phase grid.

Introduction
Operating Instructions

1.3.3 Exploded View Drawings

1	Control card	14	SCR/diode module
2	Control input terminals	15	IGBT output bus bar
3	Local control panel (LCP)	16	Output motor terminals
4	Control card C option	17	Current sensor
5	Mounting bracket	18	Fan assembly
6	Power card mounting plate	19	Fan transformer
7	Power card	20	AC input terminals
8	Capacitor bank assembly	21	AC input bus bar
9	Soft charge fuses	22	Input terminal mounting plate assembly
10	Soft charge card	23	Fan fuse
11	DC inductor	24	Capacitor bank cover plate
12	Soft charge module	25	IGBT gate drive card
13	IGBT module		

Illustration 1.2 Frame Size D13 Drive Enclosure

1	Local control panel (LCP)	13	Mains fuses
2	Active filter card (AFC)	14	Mains disconnect
3	Metal oxide varistor (MOV)	15	Mains terminals
4	Soft charge resistors	16	Heat sink fan
5	AC capacitors discharge board	17	DC capacitor bank
6	Mains contactor	18	Current transformer
7	LC inductor	19	RFI differential mode filter
8	AC capacitors	20	RFI common mode filter
9	Mains bus bars to drive input	21	HI inductor
10	IGBT fuses	22	Power card
11	RFI		

[^37]

1	Control card	14	SCR and diode
2	Control input terminals	15	Fan inductor (not on all units)
3	Local control panel (LCP)	16	Soft charge resistor assembly
4	Control card C option	17	IGBT output bus bar
5	Mounting bracket	18	Fan assembly
6	Power card mounting plate	19	Output motor terminals
7	Power card	20	Current sensor
8	IGBT gate drive card	21	Main AC power input terminals
9	Upper capacitor bank assembly	22	Input terminal mounting plate
10	Soft charge fuses	23	AC input bus bar
11	DC inductor	24	Soft charge card
12	Fan transformer	25	Lower capacitor bank assembly
13	IGBT module		

Illustration 1.4 Frame Size E9 Drive Enclosure

1	Local control panel (LCP)	12	AC capacitor current transducers
2	Active filter card (AFC)	13	Heat sink fan
3	Mains contactors	14	Mains terminals
4	Soft charge resistors	15	Mains disconnect
5	RFI differential mode filter	16	Mains fuses
6	RFI common mode filter	17	LC inductor
7	Current transformer (CT)	18	HI inductor
8	Mains bus bars to drive output	19	Power card
9	AC capacitors	20	Control card
10	RFI	21	LCP cradle
11	Lower DC capacitor bank		

Illustration 1.5 Frame Size E9 Filter Enclosure

1	Contactor	4	Circuit breaker or disconnect (if purchased)
2	RFI filter	5	AC mains/line fuses (if purchased)
3	Mains AC power input terminals		

Illustration 1.6 Frame Size F18 Options Cabinet*
*The options cabinet is not optional for the LHD. The ancillary equipment is stored in the cabinet.

1	Local control panel (LCP)	10	Mains bus bars to drive input
2	Active filter card (AFC)	11	Heat sink fans
3	Soft charge resistors	12	Mains terminals (R/L1, S/L2, T/L3) from options cabinet
4	Metal oxide varistor (MOV)	13	RFI differential mode filter
5	AC capacitors discharge board	14	RFI common mode filter
6	LC inductor	15	Mains contactor
7	HI inductor	16	Power card
8	Mixing fan	17	Control card
9	IGBT fuses	18	LCP cradle

Illustration 1.7 Frame Size F18 Filter Cabinet

1	Rectifier module	7	Module lifting eye bolts (mounted on a vertical strut)
2	DC bus bar	8	Module heat sink fan
3	SMPS fuse	9	Fan door cover
4	(Optional) back AC fuse mounting bracket	10	SMPS fuse
5	(Optional) middle AC fuse mounting bracket	11	Power card
6	(Optional) front AC fuse mounting bracket	12	Panel connectors

Illustration 1.8 Frame Size F18 Rectifier Cabinet

1	Fan transformer	9	Fan door cover
2	DC link inductor	10	Module heat sink fan
3	Top cover plate	11	Inverter module
4	MDCIC board	12	Panel connectors
5	Control card	13	DC fuse
6	SMPS fuse and fan fuse	14	Mounting bracket
7	Motor output bus bar	15	$(+)$ DC bus bar
8	Brake output bus bar	16	$(-)$ DC bus bar

[^38]Introduction
Operating Instructions

1.4 Enclosure Types and Power Ratings

Frame size		D13	E9	F18
Enclosure protection	IP	21/54	21/54*	21/54
	NEMA	Type 1/Type 12	Type 1/Type 12	Type 1/Type 12
High overload rated power - 160\% overload torque		$\begin{aligned} & 160-250 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ & (380-480 \mathrm{~V}) \end{aligned}$	$\begin{gathered} 315-450 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & 500-710 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ & (380-480 \mathrm{~V}) \end{aligned}$
Drive dimensions [mm/inch]	Height	1780.570 .1	2000.7/78.77	2278.4/89.70
	Width	$1021.9 \mathrm{~mm} / 40.23$	1200/47.24	2792/109.92
	Depth	377.8/14.87	493.5/19.43	605.8/23.85
Drive dimensions [kg/lbs]	Max Weight	390/860	676/1490	1900/4189
	Shipping Weight	454/1001	840/1851	2345/5171

Table 1.1 Mechanical Dimensions and Rated Power, D, E and F Frames

1.5 Approvals and Certifications

1.5.1 Approvals

Table 1.2 Compliance Marks: CE, UL, and C-Tick

1.5.2 Compliance with ADN

For compliance with the European Agreement concerning International Carriage of Dangerous Goods by Inland Waterways (ADN), refer to ADN-compliant Installation in the Design Guide.

2 Safety

2.1 Safety Symbols

The following symbols are used in this document:

AWARNING

Indicates a potentially hazardous situation which could result in death or serious injury.

ACAUTION

Indicates a potentially hazardous situation which could result in minor or moderate injury. It may also be used to alert against unsafe practices.

NOTICE

Indicates important information, including situations that may result in damage to equipment or property.

2.2 Qualified Personnel

Correct and reliable transport, storage, installation, operation and maintenance are required for the safe operation of the frequency converter. Only qualified personnel are allowed to install or operate this equipment.

Qualified personnel is defined as trained staff, who are authorised to install, commission, and maintain equipment, systems and circuits in accordance with pertinent laws and regulations. Additionally, qualified personnel are familiar with the instructions and safety measures described in this document.

2.3 Safety Precautions

AWARNING
 high voltage

Frequency converters contain high voltage when connected to AC mains input power. Qualified personnel only should perform installation, start up, and maintenance. Failure to perform installation, start up, and maintenance by qualified personnel could result in death or serious injury.

\triangle WARNING
 UNINTENDED START

When the frequency converter is connected to AC mains, the motor may start at any time. The frequency converter, motor, and any driven equipment must be in operational readiness. Failure to be in operational readiness when the frequency converter is connected to AC mains could result in death, serious injury, equipment, or property damage.

AWARNING

DISCHARGE TIME

Frequency converters contain DC-link capacitors that can remain charged even when the frequency converter is not powered. To avoid electrical hazards, disconnect AC mains, any permanent magnet type motors, and any remote DC-link power supplies, including battery backups, UPS, and DC-link connections to other frequency converters. Wait for the capacitors to fully discharge before performing any service or repair work. The amount of wait time is listed in the Discharge Time table. Failure to wait the specified time after power has been removed before doing service or repair could result in death or serious injury.

Voltage [V]	Power range [kW]	Minimum waiting time (minutes)
$380-500$	$132-250 \mathrm{~kW}^{*}$	20
	$315-630 \mathrm{~kW}$	40

Table 2.1 Discharge Times
*Power ranges are for normal overload operation.

3 Mechanical Installation

3.1 Equipment Pre-Installation Checklist

- Before unpacking the frequency converter, examine the packaging for signs of damage. If the unit is damaged, refuse delivery and immediately contact the shipping company to claim the damage.
- Before unpacking the frequency converter, locate it as close as possible to the final installation site
- Compare the model number on the nameplate to what was ordered to verify the proper equipment
- Ensure each of the following are rated for the same voltage:
- Mains (power)
- Frequency converter
- Motor
- Ensure the output current rating is equal to or greater than the motor full load current for peak motor performance.
- Motor size and frequency converter power must match for proper overload protection.
- If frequency converter rating is less than that of the motor, full motor output is impossible.

3.2 Unpacking

3.2.1 Items Supplied

Items supplied may vary according to product configuration.

- Make sure the items supplied and the information on the nameplate correspond to the order confirmation.
- Check the packaging and the frequency converter visually for damage caused by inappropriate handling during shipment. File any claim for damage with the carrier. Retain damaged parts for clarification.

1	Type code
2	Order number
3	Serial number
4	Power rating
5	Input voltage, frequency and current (at low/high voltages)
6	Output voltage, frequency and current (at low/high voltages)
7	Enclosure type and IP rating
8	Maximum ambient temperature
9	Certifications
10	Discharge time (Warning)

Illustration 3.1 Product Nameplate (Example)

NOTICE

Do not remove the nameplate from the frequency converter (loss of warranty).

3.3 Installation Environment

3.3.1 Planning the Installation Site

Select the best possible operation site by considering the following (see details on the following pages, and in the Design Guide):

- Ambient operating temperature
- Installation method
- Cooling
- Position of the unit
- Cable routing
- Voltage and current supply from power source
- Current rating within range
- Fuse ratings if not using built-in fuses

3.4 Mounting

3.4.1 Cooling and Airflow

Cooling

Cooling can be obtained in different ways, by using the cooling ducts in the bottom and the top of the unit, by taking air in and out the back of the unit or by combining the cooling possibilities.

Enclosure protection	Frame size	Door fan/top fan airflow Total airflow of multiple fans	Heat sink fan Total airflow for multiple fans
IP21/NEMA 1 IP54/NEMA 12	$\begin{array}{\|l} \hline \text { D13 } \\ \text { (LHD120) } \end{array}$	3 door fans, $510 \mathrm{~m}^{3} / \mathrm{h}$ (300 cfm) $(2+1,3 \times 170=510)$	2 heat sink fans, $1530 \mathrm{~m}^{3} / \mathrm{h}$ (900 cfm) $(1+1,2 \times 765=1530)$
	$\begin{aligned} & \text { E9 P315-P400 } \\ & \text { (LHD210) } \end{aligned}$	4 door fans, $680 \mathrm{~m}^{3} / \mathrm{h}$ (400 cfm) $(2+2,4 \times 170=680)$	$\begin{aligned} & 2 \text { heat sink fans, } 2675 \mathrm{~m}^{3} / \mathrm{h} \\ & (1574 \mathrm{cfm}) \\ & (1+1,1230+1445=2675) \end{aligned}$
	$\begin{array}{\|l} \text { F18 } \\ \text { (LHD330) } \end{array}$	```6 door fans, 3150 m3/h (1854 cfm) (6x525=3150)```	$\begin{aligned} & 5 \text { heat sink fans, } 4485 \mathrm{~m}^{3} / \mathrm{h} \\ & (2639 \mathrm{cfm}) \\ & 2+1+2,((2 \times 765)+(3 \times 985)=4485) \end{aligned}$

Table 3.1 Heat Sink Air Flow

NOTICE

For the drive section, the fan runs for the following reasons:

- AMA
- DC Hold
- Pre-Mag
- DC Brake
- 60% of nominal current is exceeded
- Specific heat sink temperature exceeded (power size dependent)
- Specific power card ambient temperature exceeded (power size dependent)
- Specific control card ambient temperature exceeded

Once the fan is started, it runs for minimum 10 minutes.

NOTICE

For the active filter, the fan runs for the following reasons:

- Active filter running
- Active filter not running, but mains current exceeding limit (power size dependent)
- Specific heat sink temperature exceeded (power size dependent)
- Specific power card ambient temperature exceeded (power size dependent)
- Specific control card ambient temperature exceeded

Once the fan is started, it runs for minimum 10 minutes.

External ducts

If additional duct work is added externally to the Rittal cabinet, the pressure drop in the ducting must be calculated. Use the charts below to derate the frequency converter according to the pressure drop.

Illustration 3.2 D-Frame Derating vs. Pressure Change
Drive Air Flow: 450 cfm ($765 \mathrm{~m}^{3} / \mathrm{h}$)

Illustration 3.3 E-Frame Derating vs. Pressure Change (Small Fan), P315
Drive Air Flow: 650 cfm ($1105 \mathrm{~m}^{3} / \mathrm{h}$)

Illustration 3.4 E-Frame Derating vs. Pressure Change (Large Fan) P355-P450

Drive Air Flow: 850 cfm ($1445 \mathrm{~m}^{3} / \mathrm{h}$)

Illustration 3.5 F-Frame Derating vs. Pressure Change
Drive Air Flow: $580 \mathrm{cfm}\left(985 \mathrm{~m}^{3} / \mathrm{h}\right.$)

3.4.2 Lifting

Lift the frequency converter using the dedicated lifting eyes. For all D-frames, use a bar to avoid bending the lifting holes of the frequency converter.

Illustration 3.6 Recommended Lifting Method, Frame Size D13

Illustration 3.7 Recommended Lifting Method, Frame Size E9

AWARNING

The lifting bar must be able to handle the weight of the frequency converter. See chapter 8.2 Mechanical Dimensions for the weight of the different frame sizes. Maximum diameter for bar is 2.5 cm (1 inch). The angle from the top of the frequency converter to the lifting cable should be 60° or greater.

NOTICE

A spreader bar is also an acceptable way to lift the Fframe.

NOTICE

The F18 pedestal is packaged separately and included in the shipment. Mount the frequency converter on the pedestal in its final location. The pedestal allows proper airflow and cooling.

Mechanical Installation
Operating Instructions

3.4.3 Cable Entry and Anchoring

Cables enter the unit through gland plate openings in the bottom. The illustrations in this section show gland entry locations and detailed views of anchoring hole dimensions.

Bottom View, D13

\section*{| 1 | Cable entry locations |
| :--- | :--- |}

Illustration 3.9 Cable Entry Diagram, D13

Bottom View, E9

[^39]
Bottom View, F18

1	Mains cable entry	4	Motor cable entry
2	Option enclosure	5	Inverter enclosure
3	Filter enclosure	6	Rectifier enclosure

[^40]
3.4.4 Terminal Locations for Frame Size D13

Illustration 3.12 Frame Size D13 Terminal Locations

Allow for bend radius of heavy power cables.

NOTICE

All D-frames are available with standard input terminals, fuse, or disconnect switch.

3.4.5 Terminal Locations for Frame Size E9

Illustration 3.13 Frame Size E9 Terminal Locations

Allow for bend radius of heavy power cables.

NOTICE

All E-frames are available with standard input terminals, fuse, or disconnect switch.

Illustration 3.14 Close-up Terminal Diagrams

Mechanical Installation
Operating Instructions

3.4.6 Terminal Locations for Frame Size F18

Consider the position of the terminals when designing the cable access.

F-frame units have 4 interlocked cabinets:

- Input options cabinet (not optional for LHD)
- Filter cabinet
- Rectifier cabinet
- Inverter cabinet

See chapter 1.3.3 Exploded View Drawings for exploded views of each cabinet. Mains inputs are located in the input option cabinet, which conducts power to the rectifier via interconnecting bus bars. Output from the unit is from the inverter cabinet. No connection terminals are located in the rectifier cabinet. Interconnecting bus bars are not shown.

1	Right side cut-away	3	Left side cut-away
2	Front view	4	Ground bar

Illustration 3.15 Frame Size F18 Input Option Cabinet - Fuses Only

The gland plate is 42 mm below the 0 level. Shown are the left side view, front, and right.

	$500 \mathrm{~kW}(\mathrm{~mm}$ [in.])	$560-710 \mathrm{~kW}(\mathrm{~mm}[\mathrm{in}])$.
1	Ground Bar	$46.3[1.8]$
2	$34.9[1.4]$	$98.3[3.9]$
3	$86.9[3.4]$	$119[4.7]$
4	$122.2[4.8]$	$171[6.7]$
5	$174.2[6.9]$	
*Disconnect location and related dimensions vary with kilowatt rating		

Illustration 3.16 Frame Size F18 Input Option Cabinet with Circuit Breaker

The gland plate is 42 mm below the 0 level. Shown are the left side view, front, and right.

Illustration 3.17 Frame Size F18 Inverter Cabinet

The gland plate is 42 mm below the 0 level. Shown are the left side view, front, and right.

3.4.7 Torque

Correct torque is imperative for all electrical connections. Incorrect torque results in a bad electrical connection. Use a torque wrench to ensure correct torque.

Illustration 3.18 Use a Torque Wrench to Tighten the Bolts

Frame size	Terminal	Torque [Nm] (inlbs)	Bolt size
D	Mains Motor	$\begin{array}{\|l\|} \hline 19-40 \\ (168-354) \end{array}$	M10
	Load sharing Brake	$\begin{aligned} & 8.5-20.5 \\ & (75-181) \end{aligned}$	M8
E	Mains Motor Load sharing	$\begin{array}{\|l} 19-40 \\ (168-354) \end{array}$	M10
	Brake	$\begin{aligned} & 8.5-20.5 \\ & (75-181) \end{aligned}$	M8
F	Mains Motor	$\begin{array}{\|l\|} \hline 19-40 \\ (168-354) \end{array}$	M10
	Load sharing Brake Regen	$\begin{array}{\|l} \hline 19-40 \\ (168-354) \\ 8.5-20.5 \\ (75-181) \\ 8.5-20.5 \\ (75-181) \end{array}$	M10 M8 M8

Table 3.2 Torque for Terminals

4 Electrical Installation

4.1 Safety Instructions

See chapter 2 Safety for general safety instructions.

\triangle WARNING

INDUCED VOLTAGE

Induced voltage from output motor cables that run together can charge equipment capacitors even with the equipment turned off and locked out. Failure to run output motor cables separately or use screened cables could result in death or serious injury.

- Run output motor cables separately, or
- use screened cables

ACAUTION

SHOCK HAZARD

The frequency converter can cause a DC current in the PE conductor. Failure to follow the recommendation below means the RCD may not provide the intended protection.

- When a residual current-operated protective device (RCD) is used for protection against electrical shock, only an RCD of Type B is permitted on the supply side.

Overcurrent Protection

- Additional protective equipment such as short circuit protection or motor thermal protection between frequency converter and motor is required for applications with multiple motors.
- Input fusing is required to provide short circuit and overcurrent protection. If not factorysupplied, fuses must be provided by the installer. See maximum fuse ratings in chapter 8.5 Fuses.

Wire Type and Ratings

- All wiring must comply with local and national regulations regarding cross-section and ambient temperature requirements.
- Power connection wire recommendation: Minimum $75{ }^{\circ} \mathrm{C}$ rated copper wire.

See chapter 8.1 Power-Dependent Specifications and chapter 8.3 General Technical Data - Frequency Converter for recommended wire sizes and types.

4.2 EMC Compliant Installation

To obtain an EMC-compliant installation, follow the instructions provided in chapter 4.4 Grounding, chapter 4.5 Input Options, chapter 4.6 Motor Connection, and chapter 4.8 Control Wiring.

4.3 Power Connections

NOTICE

Cables-General Information

All cabling must comply with national and local regulations on cable cross-sections and ambient temperature. UL applications require $75^{\circ} \mathrm{C}$ copper conductors. For non-UL applications, 75 and $90^{\circ} \mathrm{C}$ copper conductors are thermally acceptable.

The power cable connections are situated as shown in Illustration 4.1. Dimension cable cross-section in accordance with the current ratings and local legislation. See chapter 8.3.1 Cable lengths and cross-sections for details.

For protection of the frequency converter, use the recommended fuses if there are no built-in fuses. Fuse recommendations are provided in chapter 8.5 Fuses. Ensure that proper fusing is made according to local regulation.

The mains connection is fitted to the mains switch, if included.

Illustration 4.1 Power Cable Connections

NOTICE

To comply with EMC emission specifications, screened/ armoured cables are recommended. If an unscreened/ unarmoured cable is used, see chapter 4.7.3 Power and Control Wiring for Unscreened Cables.

See chapter 8 Specifications for correct dimensioning of motor cable cross-section and length.

Screening of cables

Avoid installation with twisted screen ends (pigtails). They spoil the screening effect at higher frequencies. If breaking the screen is necessary to install a motor isolator or contactor, continue the screen at the lowest possible HF impedance.

Connect the motor cable screen to both the de-coupling plate of the frequency converter and to the metal housing of the motor.

Make the screen connections with the largest possible surface area (cable clamp). Use the installation devices within the frequency converter.
Cable-length and cross-section
The frequency converter has been EMC tested with a given length of cable. Keep the motor cable as short as possible to reduce the noise level and leakage currents.

Switching frequency

When frequency converters are used together with sinewave filters to reduce the acoustic noise from a motor, the switching frequency must be set according to 14-01 Switching Frequency.

Term. no.	96	97	98	99	
	U	V	W	$\mathrm{PE}^{1)}$	Motor voltage 0-100\% of mains voltage. 3 wires out of motor
	U 1	V 1	W 1	$\mathrm{PE}^{1)}$	Delta-connected
	W 2	U 2	V 2	6 wires out of motor	
	U 1	V 1	W 1	$\mathrm{PE}^{1)}$	Star-connected U2, V2, W2 U2, V2, and W2 to be interconnected separately.

Table 4.1 Terminal Connections

1) Protective Earth Connection

Illustration 4.2 Y and Delta Terminal Configurations

4.4 Grounding

Consider the following basic issues for electromagnetic compatibility (EMC) during installation:

- Safety grounding: The frequency converter has a high leakage current and must be grounded appropriately for safety reasons. Apply local safety regulations.
- High-frequency grounding: Keep the ground wire connections as short as possible.

Connect the different ground systems at the lowest possible conductor impedance. Keep the conductor as short as possible and use the greatest possible surface area for the lowest possible conductor impedance.
The metal cabinets of the different devices are mounted on the cabinet rear plate using the lowest possible HF impedance. Doing so avoids different HF voltages for individual devices and the risk of radio interference currents running in connection cables between the devices. The radio interference is reduced.
To obtain a low HF impedance, use the fastening bolts of the devices as HF connection to the rear plate. Remove insulating paint or similar from the fastening points.

4.5 Input Options

4.5.1 Extra Protection (RCD)

ELCB relays, multiple protective grounding, or standard grounding provide extra protection, if local safety regulations are followed.

In the case of a ground fault, a DC component develops in the fault current.

If using ELCB relays, observe local regulations. Relays must be suitable for protection of 3-phase equipment with a bridge rectifier and for a brief discharge on power-up.

4.5.2 RFI Switch

Mains supply isolated from ground

If the frequency converter is supplied from an isolated mains source or TT/TN-S mains with grounded leg, turn off the RFI switch via 14-50 RFI Filter on both frequency converter and the filter. For further reference, see IEC 364-3. When optimum EMC performance is needed, parallel motors are connected, or the motor cable length is above 25 m , set 14-50 RFI Filter to [ON].
In OFF, the internal RFI capacitors (filter capacitors) between the chassis and the intermediate circuit are cut off to avoid damage to the intermediate circuit and reduce ground capacity currents (IEC 61800-3).
Refer to the application note VLT on IT mains. It is important to use isolation monitors that work together with power electronics (IEC 61557-8).

4.5.3 Shielded Cables

It is important to connect shielded cables properly to ensure high EMC immunity and low emissions.

Connection can be made using either cable glands or clamps:

- EMC cable glands: Generally available cable glands can be used to ensure an optimum EMC connection.
- EMC cable clamp: Clamps allowing easy connection are supplied with the unit.

4.6 Motor Connection

4.6.1 Motor Cable

Connect the motor to terminals U/T1/96, V/T2/97, W/T3/98, on the far right of the unit. Ground to terminal 99. All types of 3-phase asynchronous standard motors can be used with a frequency converter. The factory setting is for clockwise rotation with the frequency converter output connected as follows:

Terminal No.	Function
$96,97,98$	Mains U/T1, V/T2, W/T3
99	Ground

Table 4.2 Terminal Functions

- Terminal U/T1/96 connected to U-phase
- Terminal V/T2/97 connected to V-phase
- Terminal W/T3/98 connected to W-phase

The direction of rotation can be changed by switching 2 phases in the motor cable or by changing the setting of 4-10 Motor Speed Direction.

Motor rotation check can be performed via 1-28 Motor Rotation Check and following the steps shown in the display.

F-frame requirements

Use motor phase cables in quantities of 2, resulting in 2, 4, 6 , or 8 to obtain an equal number of wires on both inverter module terminals. The cables are required to be equal length within 10% between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.

Output junction box requirements

The length, minimum 2.5 m , and quantity of cables must be equal from each inverter module to the common terminal in the junction box.

NOTICE

If a retrofit application requires an unequal number of wires per phase, consult the factory or use the top/ bottom entry side cabinet option, instruction 177R0097.

4.6.2 Brake Cable

Frequency converters with factory installed brake chopper option
(Only standard with letter B in position 18 of type code).

Electrical Installation

Operating Instructions

The connection cable to the brake resistor must be screened and the max. length from frequency converter to the $D C$ bar is limited to 25 m .

Terminal No.	Function
81,82	Brake resistor terminals

Table 4.3 Terminal Functions
The connection cable to the brake resistor must be screened. Connect the screen with cable clamps to the conductive back plate of the frequency converter and the metal cabinet of the brake resistor.
Size the brake cable cross-section to match the brake torque. See also Brake Instructions for further information regarding safe installation.

AWARNING

Note that voltages up to 790 V DC, depending on the supply voltage, are possible on the terminals.

F-frame requirements

The brake resistors must be connected to the brake terminals in each inverter module.

4.6.3 Brake Resistor Temperature Switch

The input for the brake resistor temperature switch can be used to monitor the temperature of an externally connected brake resistor. If the connection between 104 and 106 is removed, the frequency converter trips on warning/alarm 27, Brake IGBT.
Install a Klixon switch that is 'normally closed' in series with the existing connection on either 106 or 104. Any connection to this terminal must be double insulated against high voltage to maintain PELV.
Normally closed: 104-106 (factory installed jumper).

Terminal No.	Function
$106,104,105$	Brake resistor temperature switch.

Table 4.4 Terminal Functions

ACAUTION

If the temperature of the brake resistor is too high and the thermal switch drops out, the frequency converter stops braking. The motor coasts.

Illustration 4.4 Factory-installed Jumper

4.6.4 Motor Insulation

For motor cable lengths \leq the maximum cable length, the motor insulation ratings listed in Table 4.5 are recommended. The peak voltage can be twice the DC-link voltage or 2.8 times mains voltage, due to transmission line effects in the motor cable. If a motor has lower insulation rating, use a dU/dt or sine wave filter.

Nominal Mains Voltage	Motor Insulation
$\mathrm{U}_{\mathrm{N}} \leq 420 \mathrm{~V}$	Standard $\mathrm{U}_{\mathrm{LL}}=1,300 \mathrm{~V}$
$420 \mathrm{~V}<\mathrm{U}_{\mathrm{N}} \leq 500 \mathrm{~V}$	Reinforced $\mathrm{U}_{\mathrm{LL}}=1,600 \mathrm{~V}$

Table 4.5 Recommended Motor Insulation Ratings

4.6.5 Motor Bearing Currents

Motors with a rating 110 kW or higher combined with frequency converters are best with NDE (Non-Drive End) insulated bearings to eliminate circulating bearing currents caused by motor size. To minimise DE (Drive End) bearing and shaft currents, proper grounding is required for:

- Frequency converter
- Motor
- Motor-driven machine
- Motor to the driven machine

Although failure due to bearing currents is infrequent, use the following strategies to reduce the likelihood:

- Use an insulated bearing
- Apply rigorous installation procedures
- Ensure that the motor and load motor are aligned
- Strictly follow the EMC Installation guideline
- Reinforce the PE so the high frequency impedance is lower in the PE than the input power leads
- Provide a good high frequency connection between the motor and the frequency converter
- Ensure that the impedance from frequency converter to building ground is lower than the grounding impedance of the machine. Make a direct ground connection between the motor and load motor.
- Apply conductive lubrication
- Try to ensure that the line voltage is balanced to ground.
- Use an insulated bearing as recommended by the motor manufacturer (note: Motors from reputable manufacturers typically have insulated bearings as standard in motors of this size)

If found to be necessary and after consultation with Danfoss:

- Lower the IGBT switching frequency
- Modify the inverter waveform, 60° AVM vs. SFAVM
- Install a shaft grounding system or use an isolating coupling between motor and load
- Use minimum speed settings if possible
- Use a dU/dt or sinus filter

4.6.6 Motor Thermal Protection

The electronic thermal relay in the frequency converter has received UL-approval for single motor protection, when 1-90 Motor Thermal Protection is set for ETR Trip and 1-24 Motor Current is set to the rated motor current (see the motor name plate).
For thermal motor protection, it is also possible to use the MCB 112 PTC Thermistor Card option. This card provides ATEX certificate to protect motors in explosion hazardous areas, Zone $1 / 21$ and Zone 2/22. When 1-90 Motor Thermal Protection, set to [20] ATEX ETR, is combined with the use of MCB 112, it is possible to control an Ex-e motor in explosion hazardous areas. Consult the Programming Guide for details on how to set up the frequency converter for safe operation of Ex-e motors.

4.7 AC Mains Connection

4.7.1 Mains Connection

Mains must be connected to terminals 91, 92 and 93 on the far left of the unit. Ground is connected to the terminal on the right of terminal 93.

Terminal No.	Function
$91,92,93$	Mains R/L1, S/L2, T/L3
94	Ground

Table 4.6 Terminal Functions

Ensure that the power supply can supply the necessary current to the frequency converter.

If the unit is without built-in fuses, ensure that the appropriate fuses have the correct current rating.

4.7.2 External Fan Supply

If the frequency converter is supplied by $D C$ or the fan must run independently of the power supply, use an external power supply. Make the connection on the power card.

Terminal No.	Function
100,101	Auxiliary supply S, T
102,103	Internal supply S, T

Table 4.7 Terminal Functions

The connector on the power card provides the connection of line voltage for the cooling fans. The fans are connected from the factory to be supplied from a common AC line (jumpers between 100-102 and 101-103). If external power supply is needed, remove the jumpers and connect the supply to terminals 100 and 101 . Protect with a 5 A. In UL applications, use a LittelFuse KLK-5 or equivalent.

4.7.3 Power and Control Wiring for Unscreened Cables

AWARNING

induced voltage

Induced voltage from coupled output motor cables charges equipment capacitors even with the equipment turned off and locked out. Run motor cables from multiple frequency converters separately. Failure to run output cables separately could result in death or serious injury.

ACAUTION

COMPROMISED PERFORMANCE

The frequency converter runs less efficiently if wiring is not isolated properly. To isolate high frequency noise, the following in separate metallic conduits:

- power wiring
- motor wiring
- control wiring

Failure to isolate these connections could result in less than optimum controller and associated equipment performance.

Because the power wiring carries high frequency electrical pulses, it is important to run input power and motor power in separate conduit. If incoming power wiring is in the same conduit as motor wiring, these pulses can couple electrical noise back onto the power grid. Isolate control wiring from high-voltage power wiring.

When screened/armoured cable is not used, at least 3 separate conduits are connected to the panel option (see Illustration 4.5).

Illustration 4.5 Proper Electrical Installation Using Conduit

4.7.4 Mains Disconnects

Frame size	Power \& Voltage	Type
D	P132-P200 $380-500 \mathrm{~V}$	OT400U12-9 or ABB OETL-NF400A
E	P250 $380-500 \mathrm{~V}$	ABB OETL-NF600A
E	P315-P400 $380-500 \mathrm{~V}$	ABB OETL-NF800A
F	P450 $380-500 \mathrm{~V}$	Merlin Gerin NPJF36000S12AAYP
F	P500-P630 $380-500 \mathrm{~V}$	Merlin Gerin NRK36000S20AAYP

Table 4.8 Recommended Mains Disconnects

4.7.5 F-Frame Circuit Breakers

Frame size	Power \& Voltage	Type
F	P450 $380-500 \mathrm{~V}$	Merlin Gerin NPJF36120U31AABSCYP
F	P500-P630 $380-500 \mathrm{~V}$	Merlin Gerin NRJF36200U31AABSCYP

Table 4.9 Recommended Circuit Breakers

4.7.6 F-Frame Mains Contactors

Frame size	Power \& Voltage	Type
F	P450-P500 $380-500 \mathrm{~V}$	Eaton XTCE650N22A
F	P560-P630 $380-500 \mathrm{~V}$	Eaton XTCEC14P22B

Table 4.10 Recommended Contactors

4.8 Control Wiring

4.8.1 Control Cable Routing

Tie down all control wires to the designated control cable routing as shown in Illustration 4.6, Illustration 4.7, and Illustration 4.8. Remember to connect the shields in a proper way to ensure optimum electrical immunity.

Fieldbus connection

Connections are made to the relevant options on the control card. For details, see the relevant fieldbus instruction. The cable must be placed in the provided path inside the frequency converter and tied down together with other control wires (see Illustration 4.6 and Illustration 4.7).

[^41]

Illustration 4.8 Control Card Wiring Path for Frame Size F18

4.8.2 Access to Control Terminals

All terminals to the control cables are located beneath the LCP (both filter and frequency converter LCPs). They are accessed by opening the door of the unit.

4.8.3 Electrical Installation, Control Terminals

To connect the cable to the terminal:

1. Strip insulation by about $9-10 \mathrm{~mm}$

Illustration 4.9 Length to Strip the Insulation
2. Insert a screwdriver (max. $0.4 \times 2.5 \mathrm{~mm}$) in the square hole.
3. Insert the cable in the adjacent circular hole.

Illustration 4.10 Inserting the Cable in the Terminal Block
4. Remove the screwdriver. The cable is now mounted in the terminal.

To remove the cable from the terminal:

1. Insert a screwdriver (max. $0.4 \times 2.5 \mathrm{~mm}$) in the square hole.
2. Pull out the cable.

Illustration 4.12 Control Terminal Locations

Illustration 4.11 Removing the Screwdriver after Cable Insertion

4.8.4 Electrical Installation, Control Cables

[^42]Electrical Installation

Long control cables and analog signals may result in 50/60 Hz ground loops due to noise from mains supply cables.

If ground loops occur, break the screen or insert a 100 nF capacitor between screen and chassis, if needed.

Connect the digital and analog inputs and outputs to the control cards of the units separately to avoid ground currents. These connections are on terminals 20,55, and 39 for both the filter and frequency converter sections.

Illustration 4.14 Input Polarity of Control Terminals, PNP

Illustration 4.15 Input Polarity of Control Terminals, NPN

NOTICE

To comply with EMC emission specifications, screened/ armoured cables are recommended. If using unscreened/ unarmoured cable, see chapter 4.7.3 Power and Control Wiring for Unscreened Cables. If using unscreened control cables, use ferrite cores to improve EMC performance.

Illustration 4.16 Connecting Shielded Cables

Connect the shields in a proper way to ensure optimum electrical immunity.

4.9 Additional Connections

4.9.1 Mechanical Brake Control

In hoisting/lowering applications, it is necessary to be able to control an electro-mechanical brake:

- Control the brake using any relay output or digital output (terminal 27 or 29).
- Keep the output closed (voltage-free) as long as the frequency converter is unable to 'support' the motor, due to the load being too heavy, for example.
- \quad Select [32] Mechanical brake control in parameter group 5-4* Relays for applications with an electromechanical brake.
- The brake is released when the motor current exceeds the preset value in 2-20 Release Brake Current.
- The brake engages when the output frequency is less than the frequency set in 2-21 Activate Brake Speed [RPM] or 2-22 Activate Brake Speed [Hz], only if the frequency converter completes a stop command.

If the frequency converter is in alarm mode or in an overvoltage situation, the mechanical brake immediately cuts in.

4.9.2 Parallel Connection of Motors

The frequency converter can control several parallelconnected motors. The total current consumption of the motors must not exceed the rated output current $\mathrm{I}_{\mathrm{M}, \mathrm{N}}$ for the frequency converter.

NOTICE

Installations with cables connected in a common joint as in Illustration 4.17, is only recommended for short cable lengths.

NOTICE

When motors are connected in parallel, 1-29 Automatic Motor Adaptation (AMA) cannot be used.

NOTICE

The electronic thermal relay (ETR) of the frequency converter cannot be used as motor protection for the individual motor in systems with parallel-connected motors. Provide further motor protection with thermistors in each motor or individual thermal relays. Circuit breakers are not suitable as protection.

Illustration 4.17 Installations with Cables Connected in a Common Joint

Problems are possible at start and at low RPM values if motor sizes vary widely. The relatively high ohmic resistance in the stator of small motors calls for a higher voltage at start and at low RPM values.

4.9.3 Motor Thermal Protection

The electronic thermal relay in the frequency converter has received UL-approval for single motor protection, when 1-90 Motor Thermal Protection is set for [4] ETR Trip 1 and 1-24 Motor Current is set to the rated motor current (see motor name plate).
For thermal motor protection, it is also possible to use the VLT ${ }^{\circledR}$ PTC Thermistor Card MCB 112. This card provides ATEX certification to protect motors in explosion hazardous areas, Zone $1 / 21$ and Zone 2/22. When 1-90 Motor Thermal Protection is set to [20] ATEX ETR and MCB 112 are combined, it is possible to control an Ex-e motor in explosion hazardous areas. Consult the Programming Guide for details on how to set up the frequency converter for safe operation of Ex-e motors.

4.9.4 Safe Torque Off (STO)

To run Safe Torque Off, additional wiring for the frequency converter is required. Refer to VLT ${ }^{\circledR}$ Frequency Converters Safe Torque Off Operating Instructions for further information.

4.9.5 Switches S201, S202, and S801

Use switches S201 (A53) and S202 (A54) to select a current $(0-20 \mathrm{~mA})$ or a voltage (-10 V to 10 V) configuration of the analog input terminals 53 and 54 .

Switch S801 (BUS TER.) can be used to enable termination on the RS-485 port (terminals 68 and 69).

See Illustration 4.13.

Default setting:

$$
\begin{aligned}
& \text { S201 (A53) = OFF (voltage input) } \\
& \text { S202 (A54) }=\text { OFF (voltage input) } \\
& \text { S801 (Bus termination) }=\text { OFF }
\end{aligned}
$$

NOTICE

When changing the function of S201, S202 or S801 do not use force for the switch-over. Remove the LCP cradle when operating the switches. The switches must not be operated with power on the frequency converter.

Illustration 4.18 Remove the LCP Cradle to Access Switches

4.9.6 Serial Communication

RS-485 is a 2-wire bus interface compatible with multi-drop network topology, i.e. nodes can be connected as a bus, or via drop cables from a common trunk line. A total of 32 nodes can be connected to one network segment. Repeaters divide networks.

NOTICE

Each repeater functions as a node within the segment in which it is installed. Each node connected within a given network must have a unique node address, across all segments.

Terminate each segment at both ends, using either the termination switch (S801) of the frequency converters or a biased termination resistor network. Always use screened twisted pair (STP) cable for bus cabling, and always follow good common installation practice.
Low-impedance ground connection of the screen at every node is important, including at high frequencies. Thus, connect a large surface of the screen to ground, for example with a cable clamp or a conductive cable gland. It may be necessary to apply potential-equalizing cables to maintain the same ground potential throughout the network - particularly in installations with long cables. To prevent impedance mismatch, always use the same type of cable throughout the entire network. When connecting a motor to the frequency converters, always use screened motor cable.

Cable	Screened twisted pair (STP)
Impedance	120Ω
Cable length $[\mathrm{m}]$	Max. 1200 (including drop lines) Max. 500 station-to-station

Table 4.11 Cable Recommendations

4.9.7 F-frame Options

Space heaters and thermostat

There are space heaters mounted on the cabinet interior of F-frame frequency converters. These heaters are controlled by an automatic thermostat and help control humidity inside the enclosure. The thermostat default settings turn on the heaters at $10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$ and turn them off at 15.6 ${ }^{\circ} \mathrm{C}\left(60{ }^{\circ} \mathrm{F}\right)$.

Cabinet light with power outlet

A light mounted on the cabinet interior of F-frame frequency converters increases visibility during servicing and maintenance. The housing includes a power outlet for temporarily powering tools or other devices, available in 2 voltages:

- $\quad 230 \mathrm{~V}, 50 \mathrm{~Hz}, 2.5 \mathrm{~A}, \mathrm{CE} / E N E C$
- $120 \mathrm{~V}, 60 \mathrm{~Hz}, 5 \mathrm{~A}, \mathrm{UL} / \mathrm{cUL}$

Transformer tap set-up

If the cabinet light and outlet and/or the space heaters and thermostat are installed, transformer T1 requires its taps to be set to the proper input voltage. A 380-480/500 V frequency converter is initially set to the 525 V tap and a $525-690 \mathrm{~V}$ frequency converters is set to the 690 V tap to ensure no overvoltage of secondary equipment occurs if the tap is not changed before applying power. See Table 4.12 to set the proper tap at terminal T1 located in the rectifier cabinet.

Input voltage range [V]	Tap to select [V]
380 V-440	400
441 V-490	460
491 V-550	525
551 V-625	575
626 V-660	660
661 V-690	690

Table 4.12 Transformer Tap Set-up

NAMUR terminals

NAMUR is an international association of automation technology users in the process industries, primarily chemical and pharmaceutical industries in Germany. Selecting this option provides terminals organised and labeled to the specifications of the NAMUR standard for frequency converters input and output terminals. This requires VLT ${ }^{\circledR}$ PTC Thermistor Card MCB 112 VLT ${ }^{\circledR}$ Extended Relay Card MCB 113.

RCD (Residual Current Device)

Uses the core balance method to monitor ground fault currents in grounded and high-resistance grounded systems (TN and TT systems in IEC terminology). There is a pre-warning (50% of main alarm set-point) and a main alarm set-point. Associated with each set-point is an SPDT alarm relay for external use. Requires an external "windowtype" current transformer (supplied and installed by the customer).

- Integrated into the frequency converter safe torque off circuit
- IEC 60755 Type B device monitors AC, pulsed DC, and pure DC ground fault currents
- LED bar graph indicator of the ground fault current level from 10-100\% of the set-point
- Fault memory
- TEST/RESET button

Insulation Resistance Monitor (IRM)

Monitors the insulation resistance in ungrounded systems (IT systems in IEC terminology) between the system phase conductors and ground. There is an ohmic pre-warning and a main alarm set-point for the insulation level. An SPDT alarm relay for external use is associate with each setpoint.

NOTICE

Only one insulation resistance monitor can be connected to each ungrounded (IT) system.

- Integrated into the frequency converter safe torque off circuit
- LCD display of the ohmic value of the insulation resistance
- Fault memory
- INFO, TEST, and RESET buttons

IEC emergency stop with Pilz safety relay
Includes a redundant 4-wire emergency-stop push button mounted on the front of the enclosure and a Pilz relay that monitors it in conjunction with the frequency converter STO circuit and the mains contactor located in the options cabinet.

Manual motor starters

Provide 3-phase power for electric blowers often required for larger motors. Power for the starters is provided from the load side of any supplied contactor, circuit breaker, or disconnect switch. Power is fused before each motor starter, and is off when the incoming power to the frequency converters is off. Up to 2 starters are allowed (one if a 30 A , fuse-protected circuit is ordered), and are integrated into the frequency converter STO circuit. Unit features include:

- Operation switch (on/off)
- Short-circuit and overload protection with test function
- Manual reset function

30 A, fuse-protected terminals

- 3-phase power matching incoming mains voltage for powering auxiliary customer equipment
- Not available if 2 manual motor starters are selected
- Terminals are off when the incoming power to the frequency converter is off
- Power for the fused protected terminals is provided from the load side of any supplied contactor, circuit breaker, or disconnect switch

In applications where the motor is used as a brake, energy is generated in the motor and sent back into the frequency converter. If the energy cannot be transported back to the motor, it increases the voltage in the frequency converter DC line. In applications with frequent braking and/or high inertia loads, this increase may lead to an overvoltage trip in the frequency converter and finally a shut down. Brake resistors are used to dissipate the excess energy resulting from the regenerative braking. The resistor is selected based on its ohmic value, its power dissipation rate and its physical size. Danfoss offers a wide

Electrical Installation
Operating Instructions
variety of different resistors that are specifically designed for Danfoss frequency converters.

Load sharing

Load sharing is a feature on standard frequency converters, but is not available on the LHD unit.

4.10 Final Set-up and Test

Before operating the frequency converter, perform a final test of the installation:

1. Locate the motor name plate to find out whether the motor is star- (Y) or delta- connected (Δ).
2. Enter the motor name plate data in the parameter list. Access the list by pressing the [Quick Menu] key and selecting Q2 Quick Set-up. See Table 4.13.

1.	Motor Power [kW] or Motor Power [HP]	1-20 Motor Power [kW] $1-21$ Motor Power [HP]
2.	Motor Voltage	1-22 Motor Voltage
3.	Motor Frequency	1-23 Motor Frequency
4.	Motor Current	1-24 Motor Current
5.	Motor Nominal Speed	$1-25$ Motor Nominal Speed

Table 4.13 Quick Set-up Parameters

3b Activate the AMA 1-29 Automatic Motor Adaptation (AMA).
3c Select either complete or reduced AMA. If an LC filter is mounted, run only the reduced AMA, or remove the LC filter during the AMA procedure.
3d Press [OK]. The display shows "Press [Hand On] to start."

3e Press [Hand On]. A progress bar indicates whether the AMA is in progress.
$3 f$ Press [Off] - the frequency converter enters into alarm mode and the display shows that the user terminated AMA.

Illustration 4.19 Motor Name Plate
3. Perform an Automatic Motor Adaptation (AMA) to ensure optimum performance.

3a Connect terminal 27 to terminal 12 or set 5-12 Terminal 27 Digital Input to [0] No operation.

BAUER D-7 3734 ESLINGEN				
3~ MOTOR NR. 18274212003				
S/E005A9				
	1,5	kw		
n2 31,5	/min.	400	Y	v
ni 1400	/min.		50	Hz
$\cos \theta 0,80$			3,6	A
1,7L				
,		H1/1		

Stop the AMA during operation

Successful AMA

- The display shows "Press [OK] to finish AMA".
- Press [OK] to exit the AMA state.

Unsuccessful AMA

- The frequency converter enters into alarm mode. A description of the alarm can be found in chapter 7.5 Troubleshooting.
- "Report Value" in the alarm log shows the last measuring sequence carried out by the AMA, before the frequency converter entered alarm mode. This number, along with the description of the alarm, helps with troubleshooting. Mention the number and alarm description when contacting Danfoss service personnel.

Unsuccessful AMA is the result of incorrectly registered motor name plate data or too large a difference between the motor power size and the frequency converter power size.

Set up the desired limits for speed and ramp time

Minimum Reference	3-02 Minimum Reference
Maximum Reference	3-03 Maximum Reference

Table 4.14 Reference Parameters

Motor Speed Low Limit	$4-11$ Motor Speed Low Limit $[R P M]$ or 4-12 Motor Speed Low Limit [Hz]
Motor Speed High Limit	$4-13$ Motor Speed High Limit $[R P M]$ or 4-14 Motor Speed High Limit $[H z]$

Table 4.15 Speed Limits

Ramp-up Time 1 [s]	3-41 Ramp 1 Ramp Up Time
Ramp-down Time 1 [s]	3-42 Ramp 1 Ramp Down Time

Table 4.16 Ramp Times

5 Commissioning

5.1 Safety Instructions

See chapter 2 Safety for general safety instructions.

\triangle WARNING

HIGH VOLTAGE

Frequency converters contain high voltage when connected to AC mains input power. Failure to perform installation, start-up, and maintenance by qualified personnel could result in death or serious injury.

- Installation, start-up, and maintenance must be performed by qualified personnel only.

Before applying power:

1. Close cover properly.
2. Check that all cable glands are firmly tightened.
3. Ensure that input power to the unit is OFF and locked out. Do not rely on the frequency
converter disconnect switches for input power isolation.
4. Verify that there is no voltage on input terminals L1 (91), L2 (92), and L3 (93), phase-to-phase and phase-to-ground.
5. Verify that there is no voltage on output terminals 96 (U), 97 (V), and $98(\mathrm{~W})$, phase-tophase and phase-to-ground.
6. Confirm continuity of the motor by measuring ohm values on U-V (96-97), V-W (97-98), and W-U (98-96).
7. Check for proper grounding of the frequency converter as well as the motor.
8. Inspect the frequency converter for loose connections on terminals.
9. Confirm that the supply voltage matches voltage of frequency converter and motor.

CAUTION

Before applying power to the unit, inspect the entire installation as detailed in Table 5.1. Check mark those items when completed.

Inspect for	Description	\square
Auxiliary equipment	- Look for auxiliary equipment, switches, disconnects, or input fuses/circuit breakers on the input power side of the frequency converter or output side to the motor. Ensure that they are ready for full speed operation. - Check function and installation of any sensors used for feedback to the frequency converter - Remove power factor correction caps on motors, if present	
Cable routing	- Use separate metallic conduits for each of the following: - input power - motor wiring - control wiring	
Control wiring	- Check for broken or damaged wires and loose connections - Check that control wiring is isolated from power and motor wiring for noise immunity - Check the voltage source of the signals, if necessary - The use of shielded cable or twisted pair is recommended. Ensure that the shield is terminated correctly	
Cooling clearance	- Measure that top and bottom clearance is adequate to ensure proper air flow for cooling	
EMC considerations	- Check for proper installation regarding electromagnetic compatibility	
Environmental considerations	- See equipment label for the maximum ambient operating temperature limits - Humidity levels must be $5-95 \%$ non-condensing	

Inspect for	Description	$\boxed{\square}$
Fusing and circuit breakers	- Check for proper fusing or circuit breakers - Check that all fuses are inserted firmly and in operational condition and that all circuit breakers are	
Grounding	- The unit requires a ground wire from its chassis to the building ground - Check for good ground connections that are tight and free of oxidation	
Input and output power wiring	- Grounding to conduit or mounting the back panel to a metal surface is not a suitable ground	

Table 5.1 Start-up Checklist

5.2 Applying Power

AWARNING

HIGH VOLTAGE!

Frequency converters contain high voltage when connected to AC mains. Installation, start-up and maintenance should be performed by qualified personnel only. Failure to comply could result in death or serious injury.

AWARNING

UNINTENDED START!

When the frequency converter is connected to AC mains, the motor may start at any time. The frequency converter, motor, and any driven equipment must be in operational readiness. Failure to comply could result in death, serious injury, equipment, or property damage.

1. Confirm that the input voltage is balanced within 3%. If not, correct input voltage imbalance before proceeding.
2. Ensure that optional equipment wiring, if present, matches the installation application.
3. Ensure that all operator devices are off. Panel doors should be closed or cover mounted.
4. Apply power to the unit. Do not start the frequency converter at this time. For units with a disconnect switch, turn the switch on to apply power.

NOTICE

If the status line at the bottom of the LCP reads AUTO REMOTE COASTING or Alarm 60 External Interlock is displayed, this indicates that the unit is ready to operate but is missing an input signal on terminal 27.

5.3 Local Control Panel Operation

5.3.1 Local Control Panel

The local control panel (LCP) is the combined display and keypad on the front of the unit.

The LCP has several user functions:

- Start, stop, and control speed when in local control
- Display operational data, status, warnings and cautions
- Programming frequency converter functions
- Manually reset the frequency converter after a fault when auto-reset is inactive

An optional numeric LCP (NLCP) is also available. The NLCP operates in a manner similar to the LCP. See the Programming Guide for details on use of the NLCP.

NOTICE

For commissioning via PC, install MCT 10 Set-up Software. The software is available for download (basic version) or for ordering (advanced version, order number 130B1000). For more information and downloads, see www.danfoss.com/BusinessAreas/DrivesSolutions/Software +MCT10/MCT10+Downloads.htm.

5.3.2 LCP Layout

The LCP is divided into 4 functional groups (see Illustration 5.1).
A. Display area
B. Display menu keys
C. Navigation keys and indicator lights (LEDs)
D. Operation keys and reset

Illustration 5.1 Local Control Panel (LCP)

A. Display Area

The display area is activated when the frequency converter receives power from mains voltage, a DC bus terminal, or an external 24 V DC supply.

The information displayed on the LCP can be customised for user application. Select options in the Quick Menu Q3-13 Display Settings.

Callout	Display	Parameter number	Default setting
1	1.1	$0-20$	Reference \%
2	1.2	$0-21$	Motor current
3	1.3	$0-22$	Power [kW]
4	2	$0-23$	Frequency
5	3	$0-24$	kWh counter

Table 5.2 Legend to Illustration 5.1, Display Area

B. Display Menu Keys

Menu keys are used for menu access for parameter set-up, toggling through status display modes during normal operation, and viewing fault log data.

Callout	Key	Function
6	Status	Shows operational information.
7	Quick Menu	Allows access to programming parameters for initial set-up instructions and many detailed application instructions.
8	Main Menu	Allows access to all programming parameters.
9	Alarm Log	Displays a list of current warnings, the last 10 alarms, and the maintenance log.

Table 5.3 Legend to Illustration 5.1, Display Menu Keys

C. Navigation Keys and Indicator Lights (LEDs)

 Navigation keys are used for programming functions and moving the display cursor. The navigation keys also provide speed control in local (hand) operation. There are also 3 frequency converter status indicator lights in this area.| Callout | Key | Function |
| :---: | :---: | :--- |
| 10 | Back | Reverts to the previous step or list in the
 menu structure. |
| 11 | Cancel | Cancels the last change or command as
 long as the display mode has not
 changed. |
| 12 | Indo | Press for a definition of the function being
 displayed. |
| 13 | Navigation
 keys | Press to move between items in the
 menu. |
| 14 | OK | Press to access parameter groups or to
 enable a choice. |

Table 5.4 Legend to Illustration 5.1, Navigation Keys

Callout	Indicator	Light	Function
15	ON	Green	The ON light activates when the frequency converter receives power from mains voltage, a DC bus terminal, or an external 24 V supply.
16	WARN	Yellow	When warning conditions are met, the yellow WARN light comes on and text appears in the display area identifying the problem.
17	ALARM	Red	A fault condition causes the red alarm light to flash and an alarm text is displayed.

Table 5.5 Legend to Illustration 5.1, Indicator Lights (LEDs)

D. Operation Keys and Reset

Operation keys are located at the bottom of the LCP.

Callout	Key	Function
18	Hand On	Starts the frequency converter in local control. - An external stop signal by control input or serial communication overrides the local hand on
19	Off	Stops the motor but does not remove power to the frequency converter.
20	Auto On	Puts the system in remote operational mode. - Responds to an external start command by control terminals or serial communication
21	Reset	Resets the frequency converter manually after a fault has been cleared.

Table 5.6 Legend to Illustration 5.1, Operation Keys and Reset

NOTICE

The display contrast can be adjusted by pressing [Status] and $[\mathbf{\Delta}] /[\mathbf{v}]$ keys.

5.3.3 Parameter Settings

Establishing the correct programming for applications often requires setting functions in several related parameters.

Programming data are stored internally in the frequency converter.

- For back-up, upload data into the LCP memory
- To download data to another frequency converter, connect the LCP to that unit and download the stored settings
- Restoring factory default settings does not change data stored in the LCP memory

5.3.4 Uploading/Downloading Data to/from the LCP

1. Press [Off] to stop the motor before uploading or downloading data.
2. Go to [Main Menu] 0-50 LCP Copy and press [OK].
3. Select [1] All to LCP to upload data to LCP or select [2] All from LCP to download data from the LCP.
4. Press [OK]. A progress bar shows the uploading or downloading process.
5. Press [Hand On] or [Auto On] to return to normal operation.

5.3.5 Changing Parameter Settings

Parameter settings can be accessed and changed from the [Quick Menu] or from the [Main Menu]. The [Quick Menu] only gives access to a limited number of parameters.

1. Press [Quick Menu] or [Main Menu] on the LCP.
2. Press $[\mathbf{\Delta}][\mathbf{v}]$ to browse through the parameter groups, press [OK] to select a parameter group.
3. Press $[\mathbf{\Delta}][\mathbf{v}]$ to browse through the parameters, press [OK] to select a parameter.
4. Press $[\mathbf{\Delta}][\mathbf{v}]$ to change the value of a parameter setting.
5. Press $[\triangleleft][\bullet]$ to shift digit when a decimal parameter is in the editing state.
6. Press $[\mathrm{OK}]$ to accept the change.
7. Press either [Back] twice to enter Status, or press [Main Menu] once to enter Main Menu.

View changes

Quick Menu Q5 - Changes Made lists all parameters changed from default settings.

- The list shows only parameters which have been changed in the current edit-setup.
- Parameters which have been reset to default values are not listed.
- The message Empty indicates that no parameters have been changed.

5.3.6 Restoring Default Settings

NOTICE

Risk of loosing programming, motor data, localisation, and monitoring records by restoration of default settings. To provide a back-up, upload data to the LCP before initialisation.

Restoring the default parameter settings is done by initialisation of the frequency converter. Initialisation is carried out through 14-22 Operation Mode (recommended) or manually.

- Initialisation using 14-22 Operation Mode does not reset frequency converter settings such as operating hours, serial communication selections, personal menu settings, fault log, alarm log, and other monitoring functions.
- Manual initialisation erases all motor, programming, localisation, and monitoring data and restores factory default settings.

Recommended initialisation procedure, via 14-22 Operation Mode

1. Press [Main Menu] twice to access parameters.
2. Scroll to 14-22 Operation Mode and press [OK].
3. Scroll to Initialisation and press [OK].
4. Remove power to the unit and wait for the display to turn off.
5. Apply power to the unit.

Default parameter settings are restored during start-up. This may take slightly longer than normal.
6. Alarm 80 is displayed.
7. Press [Reset] to return to operation mode.

Manual initialisation procedure

1. Remove power to the unit and wait for the display to turn off.
2. Press and hold [Status], [Main Menu], and [OK] at the same time while applying power to the unit (approximately 5 s or until audible click and fan starts).

Factory default parameter settings are restored during start-up. This may take slightly longer than normal.

Manual initialisation does not reset the following frequency converter information:

- 15-00 Operating hours
- 15-03 Power Up's
- 15-04 Over Temp's
- 15-05 Over Volt's

5.4 Basic Programming

5.4.1 Commissioning with SmartStart

The SmartStart wizard enables fast configuration of basic motor and application parameters.

- At first power up or after initialisation of the frequency converter, SmartStart starts automatically.
- Follow on-screen instructions to complete commissioning of the frequency converter. Always reactivate SmartStart by selecting Quick Menu Q4 - SmartStart.
- For commissioning without use of the SmartStart wizard, refer to chapter 5.4.2 Commissioning via [Main Menu] or the Programming Guide.

NOTICE

Motor data are required for the SmartStart set-up. The required data are normally available on the motor nameplate.

5.4.2 Commissioning via [Main Menu]

Recommended parameter settings are intended for startup and checkout purposes. Application settings may vary.

Enter data with power ON, but before operating the frequency converter.

1. Press [Main Menu] on the LCP.
2. Press the navigation keys to scroll to parameter group 0-** Operation/Display and press [OK].

1107 RPM	3.84 A	$1^{6}(1)$
Main menu		
$\begin{aligned} & \overline{0-* *} \overline{\text { Oper }} \\ & \overline{1-* *} \overline{\text { Load }} \\ & 2-* * \text { Brake } \\ & 3-* * \text { Refer } \end{aligned}$	ay ps	

Illustration 5.2 Main Menu
3. Press navigation keys to scroll to parameter group 0-0* Basic Settings and press [OK].

Illustration 5.3 Operation/Display
4. Press navigation keys to scroll to 0-03 Regional Settings and press [OK].

Illustration 5.4 Basic Settings
5. Press navigation keys to select [0] International or [1] North America as appropriate and press [OK]. (This changes the default settings for a number of basic parameters).
6. Press [Main Menu] on the LCP.
7. Press the navigation keys to scroll to 0-01 Language.
8. Select language and press [OK].
9. If a jumper wire is in place between control terminals 12 and 27, leave 5-12 Terminal 27 Digital Input at factory default. Otherwise, select No Operation in 5-12 Terminal 27 Digital Input.
10. 3-02 Minimum Reference
11. 3-03 Maximum Reference
12. 3-41 Ramp 1 Ramp Up Time
13. 3-42 Ramp 1 Ramp Down Time
14. 3-13 Reference Site. Linked to Hand/Auto Local Remote.

5.4.3 Asynchronous Motor Set-up

Enter the motor data in parameter 1-20 Motor Power [kW] or 1-21 Motor Power [HP] to 1-25 Motor Nominal Speed. The information can be found on the motor nameplate.

1. 1-20 Motor Power [kW] or 1-21 Motor Power [HP]
2. 1-22 Motor Voltage
3. 1-23 Motor Frequency
4. 1-24 Motor Current
5. 1-25 Motor Nominal Speed

5.4.4 Permanent Magnet Motor Set-up

NOTICE

Only use permanent magnet (PM) motor with fans and pumps.

Initial Programming Steps

1. Activate PM motor operation 1-10 Motor Construction, select (1) PM, non salient SPM
2. Set 0-02 Motor Speed Unit to [0] RPM

Programming motor data

After selecting PM motor in 1-10 Motor Construction, the PM motor-related parameters in parameter groups 1-2* Motor Data, 1-3* Adv. Motor Data and 1-4* are active. The necessary data can be found on the motor nameplate and in the motor data sheet.
Program the following parameters in the listed order

1. 1-24 Motor Current
2. 1-26 Motor Cont. Rated Torque
3. 1-25 Motor Nominal Speed
4. 1-39 Motor Poles
5. 1-30 Stator Resistance (Rs)

Enter line to common stator winding resistance $\left(R_{5}\right)$. If only line-line data are available, divide the line-line value with 2 to achieve the line to common (starpoint) value. It is also possible to measure the value with an ohmmeter, which takes the resistance of the cable into account. Divide the measured value by 2 and enter the result.
6. 1-37d-axis Inductance (Ld)

Enter line to common direct axis inductance of the PM motor.
If only line-line data are available, divide the lineline value with 2 to achieve the line-common (starpoint) value.
It is also possible to measure the value with an inductancemeter, which takes the inductance of
the cable into account. Divide the measured value by 2 and enter the result.
7. 1-40 Back EMF at 1000 RPM

Enter line to line back EMF of PM Motor at 1000 RPM mechanical speed (RMS value). Back EMF is the voltage generated by a PM motor when no drive is connected and the shaft is turned externally. Back EMF is normally specified for nominal motor speed or for 1000 RPM measured between 2 lines. If the value is not available for a motor speed of 1000 RPM, calculate the correct value as follows: If back EMF is e.g. 320 V at 1800 RPM, it can be calculated at 1000 RPM as follows: Back EMF $=($ Voltage $/$ RPM $) * 1000=$ $(320 / 1800)^{*} 1000=178$. This is the value that must be programmed for 1-40 Back EMF at 1000 RPM.

Test motor operation

1. Start the motor at low speed (100 to 200 RPM). If the motor does not turn, check installation, general programming and motor data.
2. Check if start function in 1-70 PM Start Mode fits the application requirements.

Rotor detection

This function is the recommended choice for applications where the motor starts from standstill, e.g. pumps or conveyors. On some motors, an acoustic sound is heard when the impulse is sent out. This does not harm the motor.

Parking

This function is the recommended choice for applications where the motor is rotating at slow speed eg. windmilling in fan applications. 2-06 Parking Current and 2-07 Parking Time can be adjusted. Increase the factory setting of these parameters for applications with high inertia.

Start the motor at nominal speed. If the application does not run well, check the VVC ${ }^{+}$PM settings. Recommendations in different applications can be seen in Table 5.7.

Commissioning
$\left.\begin{array}{|l|l|}\hline \text { Application } & \text { Settings } \\ \hline \begin{array}{l}\text { Low inertia applications } \\ I_{\text {Load }} / I_{\text {Motor }}<5\end{array} & \begin{array}{l}1-17 \text { Voltage filter time const. to be } \\ \text { increased by factor } 5 \text { to } 10 \\ 1-14 \text { Damping Gain should be }\end{array} \\ \text { reduced } \\ 1-66 \text { Min. Current at Low Speed } \\ \text { should be reduced (<100\%) }\end{array}\right\}$

Table 5.7 Recommendations in Different Applications

If the motor starts oscillating at a certain speed, increase 1-14 Damping Gain. Increase the value in small steps. Depending on the motor, a good value for this parameter can be 10% or 100% higher than the default value.

Starting torque can be adjusted in 1-66 Min. Current at Low Speed. 100\% provides nominal torque as starting torque.

5.4.5 Automatic Energy Optimisation (AEO)

NOTICE

AEO is not relevant for permanent magnet motors.

Automatic Energy Optimisation (AEO) is a procedure that minimises voltage to the motor, reducing energy consumption, heat, and noise.

To activate AEO, set parameter 1-03 Torque Characteristics to [2] Auto Energy Optim. CT or [3] Auto Energy Optim. VT.

5.4.6 Automatic Motor Adaptation (AMA)

NOTICE

AMA is not relevant for PM motors.

Automatic motor adaptation (AMA) is a procedure that optimises compatibility between the frequency converter and the motor.

- The frequency converter builds a mathematical model of the motor for regulating output motor current. The procedure also tests the input phase balance of electrical power. It compares the
motor characteristics with the data entered in parameters 1-20 to 1-25.
- The motor shaft does not turn and no harm is done to the motor while running the AMA.
- Some motors may be unable to run the complete version of the test. In that case, select [2] Enable reduced $A M A$.
- If an output filter is connected to the motor, select Enable reduced $A M A$.
- If warnings or alarms occur, see chapter 7 Diagnostics and Troubleshooting.
- Run this procedure on a cold motor for best results.

To run AMA

1. Press [Main Menu] to access parameters.
2. Scroll to parameter group $1-{ }^{* *}$ Load and Motor and press [OK].
3. Scroll to parameter group 1-2* Motor Data and press [OK].
4. Scroll to 1-29 Automatic Motor Adaptation (AMA) and press [OK].
5. Select [1] Enable complete $A M A$ and press [OK].
6. Follow on-screen instructions.
7. The test runs automatically and indicate when it is complete.

5.5 Checking Motor Rotation

NOTICE

Risk of damage to pumps/compressors caused by motor running in wrong direction. Before running the frequency converter, check the motor rotation.

The motor runs briefly at 5 Hz or the minimum frequency set in 4-12 Motor Speed Low Limit [Hz].

1. Press [Main Menu].
2. Scroll to 1-28 Motor Rotation Check and press [OK].
3. Scroll to [1] Enable.

The following text appears: Note! Motor may run in wrong direction.
4. Press [OK].
5. Follow the on-screen instructions.

NOT/CE

To change the direction of rotation, remove power to the frequency converter and wait for power to discharge. Reverse the connection of any 2 of the 3 motor wires on the motor or frequency converter side of the connection.

5.6 Local-control Test

1. Press [Hand On] to provide a local start command to the frequency converter.
2. Accelerate the frequency converter by pressing [$\mathbf{\Delta}]$ to full speed. Moving the cursor left of the decimal point provides quicker input changes.
3. Note any acceleration problems.
4. Press [Off]. Note any deceleration problems.

In the event of acceleration or deceleration problems, see chapter 7.5 Troubleshooting. See chapter 7.3 Warnings and Alarm Definitions - Frequency Converter and
chapter 7.4 Warning and Alarm Definitions - Filter (Left LCP) for resetting the frequency converter after a trip.

5.7 System Start-up

The procedure in this section requires user-wiring and application programming to be completed. The following procedure is recommended after application set-up is completed.

1. Press [Auto On].
2. Apply an external run command.
3. Adjust the speed reference throughout the speed range.
4. Remove the external run command.
5. Check sound and vibration level of the motor to ensure that the system is working as intended.
If warnings or alarms occur, see chapter 7.3 Warnings and Alarm Definitions - Frequency Converter.

Application Examples
Operating Instructions

6 Application Examples

6.1 Introduction

The examples in this section are intended as a quick reference for common applications.

- Parameter settings are the regional default values unless otherwise indicated (selected in 0-03 Regional Settings).
- Parameters associated with the terminals and their settings are shown next to the drawings.
- Where switch settings for analog terminals A53 or A54 are required, these are also shown.

NOTICE

When the optional Safe Torque Off feature is used, a jumper wire may be required between terminal 12 (or 13) and terminal 37 for the frequency converter to operate when using factory default programming values.

6.2 Application Examples

6.2.1 Speed

Table 6.1 Analog Speed Reference (Voltage)

Table 6.2 Analog Speed Reference (Current)

Table 6.3 Speed Reference (Using a Manual Potentiometer)

Table 6.4 Speed Up/Down

Illustration 6.1 Speed Up/Down

6.2.2 Start/Stop

			Parame	ters	
FC		\circ $\underset{\sim}{1}$ 0 0 0 0	Function	Setting	
+24V 120			5-10 Terminal 18 Digital Input	[8] Start*	
+24V	130				
DIN	180°		5-12 Terminal 27 Digital Input	[0] No operation	
DIN	190				
COM	20ϕ		$\begin{array}{\|l\|} \hline 5-19 \text { Terminal } 37 \\ \text { Safe Stop } \\ \hline \end{array}$	[1] Safe Stop Alarm	
DIN	$27 \varnothing$				
DIN	290		* = Default Value		
DIN	320		Notes/comments: If 5-12 Terminal 27 Digital Input is set to [0] No operation, a jumper wire to terminal 27 is not needed. D IN 37 is an option.		
DIN	330				
DIN	$37 \varnothing-$				
+10	$50 ¢$				
A IN	530				
A IN	$54 \varnothing$				
COM	55ϕ				
A OUT					
COM	390				

Table 6.5 Start/Stop Command with Safe Stop Option

Illustration 6.2 Start/Stop Command with Safe Stop

Table 6.6 Pulse Start/Stop

Illustration 6.3 Latched Start/Stop Inverse

Table 6.7 Start/Stop with Reversing and 4 Preset Speeds

6.2.3 External Alarm Reset

Table 6.8 External Alarm Reset

6.2.4 RS-485

Table 6.9 RS-485 Network Connection

6.2.5 Motor Thermistor

ACAUTION

THERMISTOR INSULATION

Risk of equipment damage exists.

- Use only thermistors with reinforced or double insulation to meet PELV insulation requirements.

Table 6.10 Motor Thermistor

7 Diagnostics and Troubleshooting

7.1 Status Messages

When the frequency converter is in status mode, status messages are generated automatically and appear in the bottom line of the display (see Illustration 7.1).

Illustration 7.1 Status Display

Table 7.1 to Table 7.3 describe the displayed status messages.

Off	The frequency converter does not react to any control signal until [Auto On] or [Hand On] is pressed.
Auto On	The frequency converter is controlled from the control terminals and/or the serial communi- cation.
Hand On	Control the unit via the navigation keys on the LCP. Stop commands, reset, reversing, DC brake, and other signals applied to the control terminals can override local control.

Table 7.1 Operation Mode

Remote	The speed reference is given from external signals, serial communication, or internal preset references.
Local	The frequency converter uses [Hand On] control or reference values from the LCP.

Table 7.2 Reference Site

AC Brake	AC Brake was selected in 2-10 Brake Function. The AC brake over-magnetises the motor to achieve a controlled slow down.
AMA finish OK	Automatic motor adaptation (AMA) was carried out successfully.
AMA ready	AMA is ready to start. Press [Hand On] to start.
AMA running	AMA process is in progress.
Braking	The brake chopper is in operation. The brake resistor absorbs generative energy.
Braking max.	The brake chopper is in operation. The power limit for the brake resistor has been reached.
Coast	- Coast inverse was selected as a function for a digital input (parameter group 5-1* Digital Inputs). The corresponding terminal is not connected. - Coast activated by serial communication
Ctrl. Ramp-down	Control Ramp-down was selected in 14-10 Mains Failure. - The mains voltage is below the value set in 14-11 Mains Voltage at Mains Fault at mains fault - The frequency converter ramps down the motor using a controlled ramp down
Current High	The frequency converter output current is above the limit set in 4-51 Warning Current High.
Current Low	The frequency converter output current is below the limit set in 4-52 Warning Speed Low
DC Hold	DC hold is selected in 1-80 Function at Stop and a stop command is active. The motor is held by a DC current set in 2-00 DC Hold/ Preheat Current.
DC Stop	The motor is held with a DC current (2-01 DC Brake Current) for a specified time (2-02 DC Braking Time). - DC brake is activated in 2-03 DC Brake Cut In Speed [RPM] and a stop command is active. - DC brake (inverse) is selected as a function for a digital input (parameter group 5-1* Digital Inputs). The corresponding terminal is not active. - The DC brake is activated via serial communication.
Feedback high	The sum of all active feedbacks is above the feedback limit set in 4-57 Warning Feedback High.
Feedback low	The sum of all active feedbacks is below the feedback limit set in 4-56 Warning Feedback Low.

Diagnostics and Troubleshoo...

Operating Instructions

Freeze output	The remote reference is active, which holds the present speed. - Freeze output was selected as a function for a digital input (parameter group 5-1* Digital Inputs). The corresponding terminal is active. Speed control is only possible via the terminal functions Speed Up and Speed Down. - Hold ramp is activated via serial communication.
Freeze output request	A freeze output command has been given, but the motor remains stopped until a run permissive signal is received.
Freeze ref.	Freeze Reference was selected as a function for a digital input (parameter group 5-1* Digital Inputs). The corresponding terminal is active. The frequency converter saves the actual reference. Changing the reference is now only possible via terminal functions speed up and speed down.
Jog request	A jog command has been given, but the motor remains stopped until a run permissive signal is received via a digital input.
Jogging	The motor is running as programmed in 3-19 Jog Speed [RPM]. - Jog was selected as function for a digital input (parameter group 5-1* Digital Inputs). The corresponding terminal is active. - The jog function is activated via the serial communication. - The jog function was selected as a reaction for a monitoring function. The monitoring function is active.
Motor check	In 1-80 Function at Stop, Motor Check was selected. A stop command is active. To ensure that a motor is connected to the frequency converter, a permanent test current is applied to the motor.
OVC control	Overvoltage control was activated in 2-17 Overvoltage Control, [2] Enabled. The connected motor supplies the frequency converter with generative energy. The overvoltage control adjusts the V / Hz ratio to run the motor in controlled mode and to prevent the frequency converter from tripping.
PowerUnit Off	(Only frequency converters with an external 24 V power supply installed). Mains supply to the frequency converter is removed, but the control card is supplied by the external 24 V .

Protection md	Protection mode is active. The unit has detected a critical status (an overcurrent or overvoltage). - To avoid tripping, the switching frequency is reduced to 4 kHz . - If possible, protection mode ends after approximately 10 s . - Protection mode can be restricted in 14-26 Trip Delay at Inverter Fault.
QStop	The motor is decelerating using 3-81 Quick Stop Ramp Time. - Quick stop inverse was selected as a function for a digital input (parameter group 5-1* Digital Inputs). The corresponding terminal is not active. - The quick stop function was activated via serial communication.
Ramping	The motor is accelerating/decelerating using the active ramp up/down. The reference, a limit value, or a standstill is not yet reached.
Ref. high	The sum of all active references is above the reference limit set in 4-55 Warning Reference High.
Ref. low	The sum of all active references is below the reference limit set in 4-54 Warning Reference Low.
Run on ref.	The frequency converter is running in the reference range. The feedback value matches the setpoint value.
Run request	A start command has been given, but the motor is stopped until a run permissive signal is received via digital input.
Running	The frequency converter drives the motor.
Sleep Mode	The energy saving function is enabled. The motor has stopped, but restarts automatically when required.
Speed high	Motor speed is above the value set in 4-53 Warning Speed High.
Speed low	Motor speed is below the value set in 4-52 Warning Speed Low.
Standby	In Auto On mode, the frequency converter starts the motor with a start signal from a digital input or serial communication.
Start delay	In 1-71 Start Delay, a delay starting time was set. A start command is activated and the motor starts after the start delay time expires.
Start fwd/rev	Start forward and start reverse were selected as functions for 2 different digital inputs (parameter group 5-1* Digital Inputs). The motor starts in forward or reverse depending on which corresponding terminal is activated.
Stop	The frequency converter has received a stop command from the LCP, digital input, or serial communication.

Trip	An alarm occurred and the motor is stopped. Once the cause of the alarm is cleared, the frequency converter can be reset manually by pressing [Reset] or remotely by control terminals or serial communication.
Trip lock	An alarm occurred and the motor is stopped. Once the cause of the alarm is cleared, power must be cycled to the frequency converter. The frequency converter can then be reset manually by pressing [Reset] or remotely by control terminals or serial communication.

Table 7.3 Operation Status

NOTICE

In auto/remote mode, the frequency converter requires external commands to execute functions.

7.2 Warning and Alarm Types

The frequency converter monitors the condition of its input power, output, and motor factors as well as other system performance indicators. A warning or alarm does not necessarily indicate a problem internal to the frequency converter itself. In many cases, it indicates failure conditions from:

- input voltage
- motor load
- motor temperature
- external signals
- other areas monitored by internal logic

Investigate as indicated in the alarm or warning.

7.2.1 Warnings

A warning is issued when an alarm condition is impending or when an abnormal operating condition is present and may result in the frequency converter issuing an alarm. A warning clears by itself when the abnormal condition is removed.

7.2.2 Alarm Trip

An alarm is issued when the frequency converter is tripped, that is, the frequency converter suspends operation to prevent frequency converter or system damage. The motor coasts to a stop. The frequency converter logic continues to operate and monitors the frequency converter status. After the fault condition is remedied, reset the frequency converter. It is then ready to start operation again.

A trip can be reset in any of 4 ways:

- Press [Reset] on the LCP
- Digital reset input command
- Serial communication reset input command
- Auto reset

7.2.3 Alarm Trip-lock

An alarm that causes the frequency converter to trip-lock requires that input power is cycled. The motor coasts to a stop. The frequency converter logic continues to operate and monitors the frequency converter status. Remove input power to the frequency converter and correct the cause of the fault, then restore power. This action puts the frequency converter into a trip condition as described in chapter 7.2.2 Alarm Trip and may be reset in any of the 4 ways.

Illustration 7.2 Warning Display

An alarm or trip-lock alarm flashes in the display along with the alarm number.

Illustration 7.3 Alarm Display

In addition to the text and alarm code in the display, there are 3 status indicator lights.

Illustration 7.4 Status Indicator Lights

	Warning LED	Alarm LED
Warning	On	Off
Alarm	Off	On (Flashing)
Trip-Lock	On	On (Flashing)

Table 7.4 Status Indicator Lights Explanations

7.3 Warnings and Alarm Definitions Frequency Converter

The warning/alarm information below defines each warning/alarm condition, provides the probable cause for the condition, and details a remedy or troubleshooting procedure.

WARNING 1, 10 Volts low

The control card voltage is below 10 V from terminal 50. Remove some of the load from terminal 50, as the 10 V supply is overloaded. Max. 15 mA or minimum 590Ω.

A short circuit in a connected potentiometer or improper wiring of the potentiometer can cause this condition.

Troubleshooting

- Remove the wiring from terminal 50. If the warning clears, the problem is with the wiring. If the warning does not clear, replace the control card.

WARNING/ALARM 2, Live zero error

This warning or alarm only appears if programmed in 6-01 Live Zero Timeout Function. The signal on one of the analog inputs is less than 50% of the minimum value programmed for that input. Broken wiring or faulty device sending the signal can cause this condition.

Troubleshooting

- Check connections on all the analog input terminals. Control card terminals 53 and 54 for signals, terminal 55 common. MCB 101 terminals 11 and 12 for signals, terminal 10 common. MCB

109 terminals 1, 3, 5 for signals, terminals 2, 4, 6 common).

- \quad Check that the frequency converter programming and switch settings match the analog signal type.
- Perform input terminal signal test.

WARNING/ALARM 3, No motor

No motor has been connected to the output of the frequency converter.

WARNING/ALARM 4, Mains phase loss

A phase is missing on the supply side, or the mains voltage imbalance is too high. This message also appears for a fault in the input rectifier on the frequency converter. Options are programmed at 14-12 Function at Mains Imbalance.

Troubleshooting

- Check the supply voltage and supply currents to the frequency converter.

WARNING 5, DC link voltage high

The intermediate circuit voltage (DC) is higher than the high-voltage warning limit. The limit is dependent on the frequency converter voltage rating. The unit is still active.

WARNING 6, DC link voltage low

The intermediate circuit voltage (DC) is lower than the lowvoltage warning limit. The limit is dependent on the frequency converter voltage rating. The unit is still active.

WARNING/ALARM 7, DC overvoltage

If the intermediate circuit voltage exceeds the limit, the frequency converter trips after a time.

Troubleshooting

- Connect a brake resistor
- Extend the ramp time
- Change the ramp type
- Activate the functions in 2-10 Brake Function
- Increase 14-26 Trip Delay at Inverter Fault
- If the alarm/warning occurs during a power sag, use kinetic back-up (14-10 Mains Failure)

WARNING/ALARM 8, DC under voltage

If the DC-link voltage drops below the undervoltage limit, the frequency converter checks if a 24 V DC backup supply is connected. If no 24 V DC backup supply is connected, the frequency converter trips after a fixed time delay. The time delay varies with unit size.

Troubleshooting

- Check that the supply voltage matches the frequency converter voltage.
- Perform input voltage test.
- Perform soft charge circuit test.

WARNING/ALARM 9, Inverter overload

The frequency converter is about to cut out because of an overload (too high current for too long). The counter for electronic, thermal inverter protection issues a warning at 98% and trips at 100%, while giving an alarm. The frequency converter cannot be reset until the counter is below 90%.
The fault is that the frequency converter has run with more than 100% overload for too long.

Troubleshooting

- Compare the output current shown on the LCP with the frequency converter rated current.
- Compare the output current shown on the LCP with measured motor current.
- Display the thermal drive load on the LCP and monitor the value. When running above the frequency converter continuous current rating, the counter increases. When running below the frequency converter continuous current rating, the counter decreases.

WARNING/ALARM 10, Motor overload temperature

According to the electronic thermal protection (ETR), the motor is too hot. Select whether the frequency converter issues a warning or an alarm when the counter reaches 100\% in 1-90 Motor Thermal Protection. The fault occurs when the motor runs with more than 100% overload for too long.

Troubleshooting

- Check for motor overheating.
- Check if the motor is mechanically overloaded
- Check that the motor current set in 1-24 Motor Current is correct.
- Ensure that Motor data in parameters 1-20 to 1-25 are set correctly.
- If an external fan is in use, check in 1-91 Motor External Fan that it is selected.
- Running AMA in 1-29 Automatic Motor Adaptation (AMA) tunes the frequency converter to the motor more accurately and reduces thermal loading.

WARNING/ALARM 11, Motor thermistor over temp

The thermistor might be disconnected. Select whether the frequency converter issues a warning or an alarm in 1-90 Motor Thermal Protection.

Troubleshooting

- Check for motor overheating.
- Check if the motor is mechanically overloaded.
- Check that the thermistor is connected correctly between either terminal 53 or 54 (analog voltage input) and terminal 50 (+10 V supply). Also check that the terminal switch for 53 or 54 is set for
voltage. Check that 1-93 Thermistor Resource selects terminal 53 or 54.
- When using digital inputs 18 or 19 , check that the thermistor is connected correctly between either terminal 18 or 19 (digital input PNP only) and terminal 50.
- If a KTY sensor is used, check for correct connection between terminals 54 and 55
- If using a thermal switch or thermistor, check that the programming of 1-93 Thermistor Resource matches sensor wiring.
- If using a KTY Sensor, check the programming of 1-95 KTY Sensor Type, 1-96 KTY Thermistor Resource and 1-97 KTY Threshold level match sensor wiring.

WARNING/ALARM 12, Torque limit

The torque has exceeded the value in 4-16 Torque Limit Motor Mode or the value in 4-17 Torque Limit Generator Mode. 14-25 Trip Delay at Torque Limit can change this warning from a warning-only condition to a warning followed by an alarm.

Troubleshooting

- If the motor torque limit is exceeded during ramp up, extend the ramp up time.
- If the generator torque limit is exceeded during ramp down, extend the ramp down time.
- If torque limit occurs while running, possibly increase the torque limit. Make sure that the system can operate safely at a higher torque.
- Check the application for excessive current draw on the motor.

WARNING/ALARM 13, Over current

The inverter peak current limit (approximately 200\% of the rated current) is exceeded. The warning lasts about 1.5 s , then the frequency converter trips and issues an alarm. Shock loading or quick acceleration with high inertia loads can cause this fault. If the acceleration during ramp up is quick, the fault can also appear after kinetic back-up. If extended mechanical brake control is selected, trip can be reset externally.

Troubleshooting

- Remove power and check if the motor shaft can be turned.
- Check that the motor size matches the frequency converter.
- Check parameters 1-20 to 1-25 for correct motor data.

ALARM 14, Earth (ground) fault

There is current from the output phases to ground, either in the cable between the frequency converter and the motor or in the motor itself.

Troubleshooting

- Remove power to the frequency converter and repair the ground fault.
- \quad Check for ground faults in the motor by measuring the resistance to the ground of the motor cables and the motor with a megohmmeter.
- Perform current sensor test.

ALARM 15, Hardware mismatch

A fitted option is not operational with the present control board hardware or software.

Record the value of the following parameters and contact Danfoss:

- $\quad 15-40$ FC Type
- 15-41 Power Section
- 15-42 Voltage
- 15-43 Software Version
- 15-45 Actual Typecode String
- 15-49 SW ID Control Card
- 15-50 SW ID Power Card
- 15-60 Option Mounted
- 15-61 Option SW Version (for each option slot)

ALARM 16, Short circuit

There is short-circuiting in the motor or motor wiring.
Remove power to the frequency converter and repair the short circuit.

WARNING/ALARM 17, Control word timeout

There is no communication to the frequency converter.
The warning is only active when 8-04 Control Word Timeout Function is not set to [0] Off.
If 8-04 Control Word Timeout Function is set to [2] Stop and [26] Trip, a warning appears and the frequency converter ramps down until it trips and then displays an alarm.

Troubleshooting:

- Check connections on the serial communication cable.
- Increase 8-03 Control Word Timeout Time
- Check the operation of the communication equipment.
- Verify a proper installation based on EMC requirements.

WARNING/ALARM 22, Hoist mechanical brake

Report value shows what kind it is.
$0=$ The torque ref. was not reached before time out
(2-27 Torque Ramp Time).
1 = Expected brake feedback not received before time out
(2-23 Activate Brake Delay, 2-25 Brake Release Time).

WARNING 23, Internal fan fault

The fan warning function is an extra protective function that checks if the fan is running/mounted. The fan warning can be disabled in 14-53 Fan Monitor ([0] Disabled).

Troubleshooting

- Check fan resistance.
- Check soft charge fuses.

WARNING 24, External fan fault
The fan warning function is an extra protective function that checks if the fan is running/mounted. The fan warning can be disabled in 14-53 Fan Monitor ([0] Disabled).

Troubleshooting

- Check fan resistance.
- Check soft charge fuses.

WARNING 25, Brake resistor short circuit

The brake resistor is monitored during operation. If a short circuit occurs, the brake function is disabled and the warning appears. The frequency converter is still operational, but without the brake function.

Troubleshooting

- Remove power to the frequency converter and replace the brake resistor (see 2-15 Brake Check).

WARNING/ALARM 26, Brake resistor power limit

The power transmitted to the brake resistor is calculated as a mean value over the last 120 s of run time. The calculation is based on the intermediate circuit voltage and the brake resistance value set in 2-16 AC brake Max. Current. The warning is active when the dissipated braking is higher than 90% of the brake resistance power. If [2] Trip is selected in 2-13 Brake Power Monitoring, the frequency converter trips when the dissipated braking power reaches 100\%.

\triangle WARNING

If the brake transistor is short-circuited, there is a risk of substantial power being transmitted to the brake resistor.

WARNING/ALARM 27, Brake chopper fault

The brake transistor is monitored during operation and if a short circuit occurs, the brake function is disabled and a warning is issued. The frequency converter is still operational, but since the brake transistor has shortcircuited, substantial power is transmitted to the brake resistor, even if it is inactive.
Remove power to the frequency converter and remove the brake resistor.

This alarm/warning could also occur if the brake resistor overheats. Terminals 104 and 106 are available as brake resistors Klixon inputs.

WARNING/ALARM 28, Brake check failed

The brake resistor is not connected or not working.
Check 2-15 Brake Check.

Diagnostics and Troubleshoo...

Operating Instructions

ALARM 29, Heat Sink temp

The maximum temperature of the heat sink has been exceeded. The temperature fault resets when the temperature falls below a defined heat sink temperature The trip and reset points are different based on the frequency converter power size.

Troubleshooting

Check for the following conditions.

- Ambient temperature too high.
- Motor cables too long.
- Incorrect airflow clearance above and below the frequency converter
- Blocked airflow around the frequency converter.
- Damaged heat sink fan.
- Dirty heat sink.

For the D, E, and F enclosures, this alarm is based on the temperature measured by the heat sink sensor mounted inside the IGBT modules. For the F enclosures, the thermal sensor in the rectifier module can also cause this alarm.

Troubleshooting

- Check fan resistance.
- Check soft charge fuses.
- IGBT thermal sensor.

ALARM 30, Motor phase U missing

Motor phase U between the frequency converter and the motor is missing.

Remove power from the frequency converter and check motor phase U.

ALARM 31, Motor phase V missing

Motor phase V between the frequency converter and the motor is missing.

Remove power from the frequency converter and check motor phase V.

ALARM 32, Motor phase W missing

Motor phase W between the frequency converter and the motor is missing.

Remove power from the frequency converter and check motor phase W.

ALARM 33, Inrush fault

Too many power-ups have occurred within a short time period. Let the unit cool to operating temperature.
WARNING/ALARM 34, Fieldbus communication fault The fieldbus on the communication option card is not working.

WARNING/ALARM 36, Mains failure

This warning/alarm is only active if the supply voltage to the frequency converter is lost and 14-10 Mains Failure is not set to [0] No Function. Check the fuses to the frequency converter and mains supply to the unit.

ALARM 38, Internal fault

When an internal fault occurs, a code number defined in Table 7.5 is displayed.

Troubleshooting

- Cycle power
- Check that the option is properly installed
- Check for loose or missing wiring

It may be necessary to contact Danfoss service or the supplier. Note the code number for further troubleshooting directions.

No.	Text
0	Serial port cannot be initialised. Contact your Danfoss supplier or Danfoss Service Department.
256-258	Power EEPROM data is defective or too old
512	Control board EEPROM data is defective or too old.
513	Communication time-out reading EEPROM data
514	Communication time-out reading EEPROM data
515	Application-oriented control cannot recognise the EEPROM data.
516	Cannot write to the EEPROM because a write command is on progress.
517	Write command is under time-out
518	Failure in the EEPROM
519	Missing or invalid barcode data in EEPROM
783	Parameter value outside of min/max limits
1024-1279	A CAN telegram that has to be sent could not be sent.
1281	Digital signal processor flash time-out
1282	Power micro software version mismatch
1283	Power EEPROM data version mismatch
1284	Cannot read digital signal processor software version
1299	Option SW in slot A is too old
1300	Option SW in slot B is too old
1301	Option SW in slot C0 is too old
1302	Option SW in slot C1 is too old
1315	Option SW in slot A is not supported (not allowed)
1316	Option SW in slot B is not supported (not allowed)
1317	Option SW in slot C0 is not supported (not allowed)
1318	Option SW in slot C1 is not supported (not allowed)
1379	Option A did not respond when calculating platform version
1380	Option B did not respond when calculating platform version
1381	Option CO did not respond when calculating platform version.
1382	Option C1 did not respond when calculating platform version.
1536	An exception in the application-oriented control is registered. Debug information written in LCP.

Diagnostics and Troubleshoo...
Operating Instructions

No.	Text
1792	DSP Watch Dog is active. Debugging of power part data, motor-oriented control data not transferred correctly.
2049	Power data restarted
2064-2072	H081x: Option in slot x has restarted
2080-2088	H082x: Option in slot x has issued a powerup-wait
2096-2104	H983x: Option in slot x has issued a legal powerup-wait
2304	Could not read any data from power EEPROM
2305	Missing SW version from power unit
2314	Missing power unit data from power unit
2315	Missing SW version from power unit
2316	Missing lo_statepage from power unit
2324	Power card configuration is determined to be incorrect at power-up
2325	A power card has stopped communicating while main power is applied
2326	Power card configuration is determined to be incorrect after the delay for power cards to register.
2327	Too many power card locations have been registered as present.
2330	Power size information between the power cards does not match.
2561	No communication from DSP to ATACD
2562	No communication from ATACD to DSP (state running)
2816	Stack overflow control board module
2817	Scheduler slow tasks
2818	Fast tasks
2819	Parameter thread
2820	LCP stack overflow
2821	Serial port overflow
2822	USB port overflow
2836	cfListMempool too small
3072-5122	Parameter value is outside its limits
5123	Option in slot A: Hardware incompatible with control board hardware
5124	Option in slot B: Hardware incompatible with control board hardware.
5125	Option in slot CO: Hardware incompatible with control board hardware.
5126	Option in slot C1: Hardware incompatible with control board hardware.
5376-6231	Out of memory

Table 7.5 Internal Fault, Code Numbers

ALARM 39, Heat Sink sensor

No feedback from the heat sink temperature sensor.
The signal from the IGBT thermal sensor is not available on the power card. The problem could be on the power card, on the gate drive card, or the ribbon cable between the power card and gate drive card.

WARNING 40, Overload of digital output terminal 27

Check the load connected to terminal 27 or remove shortcircuit connection. Check 5-00 Digital I/O Mode and 5-01 Terminal 27 Mode.

WARNING 41, Overload of digital output terminal 29
Check the load connected to terminal 29 or remove shortcircuit connection. Check 5-00 Digital I/O Mode and 5-02 Terminal 29 Mode.

WARNING 42, Overload of digital output on X30/6 or overload of digital output on X30/7
For X30/6, check the load connected to X30/6 or remove the short-circuit connection. Check 5-32 Term X30/6 Digi Out (MCB 101).

For X30/7, check the load connected to X30/7 or remove the short-circuit connection. Check 5-33 Term X30/7 Digi Out (MCB 101).

ALARM 45, Earth fault 2

Ground fault.

Troubleshooting

- Check for proper grounding and loose connections.
- \quad Check for proper wire size.
- \quad Check motor cables for short-circuits or leakage currents.

ALARM 46, Power card supply

The supply on the power card is out of range.
There are 3 power supplies generated by the switch mode power supply (SMPS) on the power card: $24 \mathrm{~V}, 5 \mathrm{~V}, \pm 18 \mathrm{~V}$. When powered with 24 V DC with the MCB 107 option, only the 24 V and 5 V supplies are monitored. When powered with 3 phase mains voltage, all 3 supplies are monitored.

WARNING 47, 24 V supply low

The 24 V DC is measured on the control card. This alarm arises when the detected voltage of terminal 12 is lower than 18 V .

Troubleshooting

- Check for a defective control card.

WARNING 48, 1.8 V supply low

The 1.8 V DC supply used on the control card is outside of allowable limits. The power supply is measured on the control card. Check for a defective control card. If an option card is present, check for an overvoltage condition.

WARNING 49, Speed limit

When the speed is not within the specified range in 4-11 Motor Speed Low Limit [RPM] and 4-13 Motor Speed High Limit [RPM], the frequency converter shows a warning. When the speed is below the specified limit in 1-86 Trip Speed Low [RPM] (except when starting or stopping), the frequency converter trips.

ALARM 50, AMA calibration failed

Contact Danfoss supplier or Danfoss service department.

Diagnostics and Troubleshoo...
Operating Instructions

ALARM 51, AMA check $U_{\text {nom }}$ and $I_{\text {nom }}$

The settings for motor voltage, motor current and motor power are wrong. Check the settings in parameters 1-20 to 1-25.

ALARM 52, AMA low Inom

The motor current is too low. Check the settings.

ALARM 53, AMA motor too big

The motor is too big for the AMA to operate.
ALARM 54, AMA motor too small
The motor is too small for the AMA to operate.
ALARM 55, AMA parameter out of range
The parameter values of the motor are outside of the acceptable range. AMA cannot run.

ALARM 56, AMA interrupted by user
The user has interrupted the AMA.
ALARM 57, AMA internal fault
Try to restart AMA again a number of times, until the AMA is carried out.

NOTICE

Repeated runs may heat the motor to a level where the resistance R_{s} and R_{r} are increased. In most cases, however, this behaviour is not critical.

ALARM 58, AMA Internal fault

Contact the Danfoss supplier.

WARNING 59, Current limit

The current is higher than the value in 4-18 Current Limit. Ensure that motor data in parameters 1-20 to 1-25 are set correctly. Possibly increase the current limit. Be sure that the system can operate safely at a higher limit.

WARNING 60, External interlock

External interlock has been activated. To resume normal operation, apply 24 V DC to the terminal programmed for external interlock and reset the frequency converter (via serial communication, digital I/O, or by pressing [Reset]).

WARNING/ALARM 61, Tracking error

An error between calculated motor speed and speed measurement from feedback device. The function warning/ alarm/disable is set in 4-30 Motor Feedback Loss Function. Accepted error setting in 4-31 Motor Feedback Speed Error and the allowed time the error occur setting in 4-32 Motor Feedback Loss Timeout. During a commissioning procedure, the function could be effective.

WARNING 62, Output frequency at maximum limit The output frequency is higher than the value set in 4-19 Max Output Frequency.

ALARM 63, Mechanical brake low

The actual motor current has not exceeded the release brake current within the start delay time window.

ALARM 64, Voltage Limit

The load and speed combination demands a motor voltage higher than the actual DC-link voltage.

WARNING/ALARM 65, Control card over temperature

The cut-out temperature of the control card is $80^{\circ} \mathrm{C}$.

Troubleshooting

- Check that the ambient operating temperature is within limits
- Check for clogged filters
- Check fan operation
- Check the control card

WARNING 66, Heat sink temperature low
The frequency converter is too cold to operate. This warning is based on the temperature sensor in the IGBT module.
Increase the ambient temperature of the unit. Also, a trickle amount of current can be supplied to the frequency converter whenever the motor is stopped by setting 2-00 DC Hold/Preheat Current at 5\% and 1-80 Function at Stop

Troubleshooting

The heat sink temperature measured as $0{ }^{\circ} \mathrm{C}$ could indicate that the temperature sensor is defective, causing the fan speed to increase to the maximum. If the sensor wire between the IGBT and the gate drive card is disconnected, this warning would result. Also, check the IGBT thermal sensor.

ALARM 67, Option module configuration has changed One or more options have either been added or removed since the last power-down. Check that the configuration change is intentional and reset the unit.

ALARM 68, Safe Stop activated

Safe Torque Off has been activated. To resume normal operation, apply 24 V DC to terminal 37 , then send a reset signal (via bus, digital I/O, or by pressing [Reset].

ALARM 69, Power card temperature

The temperature sensor on the power card is either too hot or too cold.

Troubleshooting

- Check the operation of the door fans.
- Check that the filters for the door fans are not blocked.
- Check that the gland plate is properly installed on IP21/IP 54 (NEMA 1/12) frequency converters.

ALARM 70, Illegal FC configuration

The control card and power card are incompatible. To check compatibility, contact the Danfoss supplier with the type code of the unit from the nameplate and the part numbers of the cards.

ALARM 71, PTC 1 Safe Torque Off

Safe Torque Off has been activated from the VLT ${ }^{\circledR}$ PTC Thermistor Card MCB 112 (motor too warm). Normal operation can resume when the VLT ${ }^{\circledR}$ PTC Thermistor Card MCB 112 applies 24 V DC to T-37 (when the motor temperature is acceptable) and when the digital input
from the VLT^{\circledR} PTC Thermistor Card MCB 112 is deactivated. When that happens, a reset signal must be is be sent (via Bus, Digital I/O, or by pressing [Reset]). Note that if automatic restart is enabled, the motor could start when the fault is cleared.

ALARM 72, Dangerous failure

Safe Torque Off with trip lock. Unexpected signal levels on safe stop and digital input from the VLT^{\circledR} PTC Thermistor Card MCB 112.

WARNING 73, Safe Stop auto restart

Safe stopped. With automatic restart enabled, the motor could start when the fault is cleared.

WARNING 76, Power unit setup

The required number of power units does not match the detected number of active power units.

WARNING 77, Reduced power mode

The frequency converter is operating in reduced power mode (less than the allowed number of inverter sections). This warning is generated on power cycle when the frequency converter is set to run with fewer inverters, and remains on.

ALARM 79, Illegal power section configuration

The scaling card has an incorrect part number or is not installed. The MK102 connector on the power card could not be installed.

ALARM 80, Drive initialised to default value

Parameter settings are initialised to default settings after a manual reset. To clear the alarm, reset the unit.

ALARM 81, CSIV corrupt
CSIV file has syntax errors.
ALARM 82, CSIV parameter error
CSIV failed to init a parameter.

ALARM 85, Dang fail PB
 Profibus/Profisafe error.

WARNING/ALARM 104, Mixing fan fault

The fan is not operating. The fan monitor checks that the fan is spinning at power-up or whenever the mixing fan is turned on. The mixing-fan fault can be configured as a warning or an alarm trip by 14-53 Fan Monitor.

Troubleshooting

- Cycle power to the frequency converter to determine if the warning/alarm returns.

ALARM 243, Brake IGBT

This alarm is only for F-frame frequency converters. It is equivalent to Alarm 27. The report value in the alarm log indicates which power module generated the alarm:

$$
\begin{aligned}
& 1 \text { = left most inverter module. } \\
& 2=\text { middle inverter module in F12 or F3 frame } \\
& \text { sizes. } \\
& 2=\text { right inverter module in F10 or F11 frame } \\
& \text { sizes. }
\end{aligned}
$$

2 = second frequency converter from the left inverter module in F14 frame size.

3 = right inverter module in F12 or F13 frame sizes.

3 = third from the left intverter module in F14 frame size.
4 = far right inverter module in F14 frame size.
5 = rectifier module.
$6=$ right rectifier module in F14 frame size.

ALARM 244, Heat Sink temperature

This alarm is only for F-frame frequency converters. It is equivalent to Alarm 29. The report value in the alarm log indicates which power module generated the alarm.
$1=$ left most inverter module.
2 = middle inverter module in F12 or F3 frame sizes.
2 = right inverter module in F10 or F11 frame sizes.

2 = second frequency converter from the left inverter module in F14 frame size.

3 = right inverter module in F12 or F13 frame sizes.

3 = third from the left intverter module in F14 frame size.

4 = far right inverter module in F14 frame size.
$5=$ rectifier module.
$6=$ right rectifier module in F14 frame size.

ALARM 245, Heat Sink sensor

This alarm is only for F -frame frequency converters. It is equivalent to Alarm 39. The report value in the alarm log indicates which power module generated the alarm

1 = left most inverter module.
2 = middle inverter module in F12 or F13 frame sizes.

2 = right inverter module in F10 or F11 frame sizes.

2 = second frequency converter from the left inverter module in F14 frame size.
3 = right inverter module in F12 or F13 frame sizes.

3 = third from the left inverter module in F14 frame size.

4 = far right inverter module in F14 frame size.
$5=$ rectifier module.
$6=$ right rectifier module in F14 frame size.

ALARM 246, Power card supply

This alarm is only for F-frame frequency converter. It is equivalent to Alarm 46. The report value in the alarm log indicates which power module generated the alarm

1 = left most inverter module.
$2=$ middle inverter module in F12 or F13 frame sizes.

2 = right inverter module in F10 or F11 frame sizes.

2 = second frequency converter from the left inverter module in F14 frame size.

3 = right inverter module in F12 or F13 frame sizes.

3 = third from the left inverter module in F14 frame size.

4 = far right inverter module in F14 frame size.
5 = rectifier module.
$6=$ right rectifier module in F14 frame size.

ALARM 247, Power card temperature

This alarm is only for F -frame frequency converters. It is equivalent to Alarm 69. The report value in the alarm log indicates which power module generated the alarm

1 = left most inverter module.
2 = middle inverter module in F12 or F13 frame sizes.

2 = right inverter module in F10 or F11 frame sizes.

2 = second frequency converter from the left inverter module in F14 frame size.

3 = right inverter module in F12 or F13 frame sizes.

3 = third from the left inverter module in F14 frame size.

4 = far right inverter module in F14 frame size.
5 = rectifier module.
$6=$ right rectifier module in F14 frame size.

ALARM 248, Illegal power section configuration

This alarm is only for F -frame frequency converters. It is equivalent to Alarm 79. The report value in the alarm log indicates which power module generated the alarm:
$1=$ left most inverter module.
$2=$ middle inverter module in F12 or F13 frame sizes.

2 = right inverter module in F10 or F11 frame sizes.

2 = second frequency converter from the left inverter module in F14 frame size.

3 = right inverter module in F12 or F13 frame sizes.
$3=$ third from the left inverter module in F14 frame size.

4 = far right inverter module in F14 frame size.
5 = rectifier module.
$6=$ right rectifier module in F14 frame size.

WARNING 250, New spare part

A component in the frequency converter has been replaced. Reset the frequency converter for normal operation.

WARNING 251, New typecode

The power card or other components have been replaced and the typecode changed. Reset to remove the warning and resume normal operation.

7.4 Warning and Alarm Definitions - Filter (Left LCP)

NOTICE

This section covers warnings and alarms on the filter side LCP. For warning and alarms for the frequency converter, see chapter 7.3 Warnings and Alarm Definitions - Frequency Converter

A warning or an alarm is signalled by the relevant LED on the front of the filter and indicated by a code on the display.

A warning remains active until its cause is no longer present. Under certain circumstances operation of the unit may still be continued. Warning messages may be critical, but are not necessarily so.

In the event of an alarm, the unit has tripped. To restart operation, reset the rectified alarms.

This may be done in 4 ways:

1. By pressing [Reset].
2. Via a digital input with the Reset function.
3. Via serial communication/optional fieldbus.
4. By resetting automatically using the [Auto Reset] function.

NOTICE

After a manual reset pressing [Reset], press [Auto On] or [Hand On] to restart the unit.

If an alarm cannot be reset, the reason may be that its cause has not been rectified, or the alarm is trip-locked (see also Table 7.6).

Alarms that are trip-locked offer additional protection, meaning that the mains supply must be switched off before the alarm can be reset. After being switched back on, the unit is no longer blocked and may be reset as described above once the cause has been rectified.

Alarms that are not trip-locked can also be reset using the automatic reset function in 14-20 Reset Mode (Warning: automatic wake-up is possible)

If a warning and alarm is marked against a code in Table 7.6, either a warning occurs before an alarm, or it can be specified whether it is a warning or an alarm that is to be displayed for a given fault.

No.	Description	Warning	Alarm/Trip	Alarm/Trip Lock	Parameter Reference
1	10 Volts low	X			
2	Live zero error	(X)	(X)		6-01
4	Mains phase loss	X			
5	DC link voltage high	X			
6	DC link voltage low	X			
7	DC over voltage	X	X		
8	DC under voltage	X	X		
13	Over current	X	X	X	
14	Earth fault	X	X	X	
15	Hardware mismatch		X	X	
16	Short circuit		X	X	
17	Control word timeout	(X)	(X)		8-04
23	Internal fan fault	X			
24	External fan fault	X			14-53
29	Heatsink temp	X	X	X	
33	Inrush fault		X	X	
34	Fieldbus fault	X	X		

Diagnostics and Troubleshoo... Operating Instructions

No.	Description	Warning	Alarm/Trip	Alarm/Trip Lock	Parameter Reference
35	Option fault	X	X		
38	Internal fault				
39	Heatsink sensor		X	X	
40	Overload of digital output terminal 27	(X)			5-00, 5-01
41	Overload of digital output terminal 29	(X)			5-00, 5-02
46	Pwr. card supply		X	X	
47	24 V supply low	X	X	X	
48	1.8 V supply low		X	X	
65	Control board over-temperature	X	X	X	
66	Heat sink temperature low	X			
67	Option configuration has changed		X		
68	Safe torque off activated		$\mathrm{X}^{1)}$		
69	Pwr. card temp		X	X	
70	Illegal FC configuration			X	
72	Dangerous Failure			$\mathrm{X}^{1)}$	
73	Safe torque off auto restart				
76	Power unit setup	X			
79	Illegal PS config		X	X	
80	Unit initialised to default value		X		
244	Heatsink temp	X	X	X	
245	Heatsink sensor		X	X	
246	Pwr.card supply		X	X	
247	Pwr.card temp		X	X	
248	Illegal PS config		X	X	
250	New spare part			X	
251	New type code		X	X	
300	Mains cont. fault	X			
301	SC cont. fault	X			
302	Cap. over current	X	X		
303	Cap. earth fault	X	X		
304	DC over current	X	X		
305	Mains freq. limit		X		
308	Resistor temp	X		X	
309	Mains earth fault	X	X		
311	Switch. freq. limit		X		
312	CT range		X		
314	Auto CT interrupt		X		
315	Auto CT error		X		
316	CT location error	X			
317	CT polarity error	X			
318	CT ratio error	X			

Table 7.6 Alarm/Warning Code List

A trip is the action when an alarm has appeared. The trip coasts the motor and can be reset by pressing [Reset] or make a reset by a digital input (parameter group 5-1* Digital Inputs [1] Reset). The origin event that caused an alarm cannot damage the frequency converter or cause dangerous conditions. A trip lock is an action when an alarm occurs, which may cause damage to frequency converter or connected parts. A Trip Lock situation can only be reset by a power cycling.

Warning	yellow
Alarm	flashing red
Trip locked	yellow and red

Table 7.7 LED Indicator Lights

Table 7.8 Description of Alarm Word, Warning Word and Extended Status Word

The alarm words, warning words and extended status words can be read out via serial bus or optional fieldbus for diagnosis. See also 16-90 Alarm Word, 16-92 Warning Word and 16-94 Ext. Status Word. Reserved means that the bit is not guaranteed to be any particular value. Reserved bits should not be used for any purpose.

7.4.1 Fault Messages for Active Filter

WARNING 1, 10 volts low

The control card voltage is below 10 V from terminal 50. Remove some of the load from terminal 50 , as the 10 V supply is overloaded. Max. 15 mA or minimum 590Ω. Fault messages - active filter

WARNING/ALARM 2, Live zero error

The signal on terminal 53 or 54 is less than 50% of the value set in parameters 6-10, 6-12, 6-20 or 6-22.

WARNING 4, Mains phase loss

A phase is missing on the supply side, or the mains voltage imbalance is too high.

WARNING 5, DC link voltage high

The intermediate circuit voltage (DC) is higher than the high-voltage warning limit. The unit is still active.

WARNING 6, DC link voltage low

The intermediate circuit voltage (DC) is below the undervoltage limit of the control system. The unit is still active.

WARNING/ALARM 7, DC overvoltage

If the intermediate circuit voltage exceeds the limit, the unit trips.

WARNING/ALARM 8, DC under voltage

If the intermediate circuit voltage (DC) drops below the under voltage limit, the filter checks if a 24 V back-up supply is connected. If not, the unit trips. Check that the mains voltage matches the nameplate specification.

WARNING/ALARM 13, Over Current
the unit current limit has been exceeded.
ALARM 14, Earth (ground) fault
The sum current of the IGBT CTs does not equal zero.
Check if the resistance of any phase to ground has a low value. Check both before and after mains contactor. Ensure IGBT current transducers, connection cables, and connectors are ok.

ALARM 15, Incomp. Hardware

A mounted option is incompatible with the present control card SW/HW.

ALARM 16, Short circuit

There is a short-circuit in the output. Turn off the unit and correct the error.

WARNING/ALARM 17, Control word timeout

There is no communication to the unit.
The warning is only active when 8-04 Control Word Timeout Function is not set to off.
Possible correction: Increase 8-03 Control Word Timeout Time. Change 8-04 Control Word Timeout Function

WARNING 23, Internal fan fault

Internal fans have failed due to defect hardware or fans not mounted.

WARNING 24, External fan fault

External fans have failed due to defect hardware or fans not mounted.

ALARM 29, Heat sink temp

The maximum temperature of the heat sink has been exceeded. The temperature fault is not reset until the temperature falls below a defined heat sink temperature.
ALARM 33, Inrush fault
Check whether a 24 V external DC supply has been connected.

WARNING/ALARM 34, Fieldbus communication fault
The fieldbus on the communication option card is not working.

WARNING/ALARM 35, Option Fault:
Contact Danfoss or supplier.
ALARM 38, Internal fault
Contact Danfoss or supplier.
ALARM 39, Heat sink sensor
No feedback from the heat sink temperature sensor.
WARNING 40, Overload of Digital Output Terminal 27
Check the load connected to terminal 27 or remove shortcircuit connection.

WARNING 41, Overload of Digital Output Terminal 29
Check the load connected to terminal 29 or remove shortcircuit connection.

WARNING 43, Ext. Supply (option)

The external 24 V DC supply voltage on the option is not valid.

ALARM 46, Power card supply

The supply on the power card is out of range.
WARNING 47, 24 V supply low
Contact Danfoss or supplier.
WARNING 48, 1.8 V supply low
Contact Danfoss or supplier.
WARNING/ALARM/TRIP 65, Control card over

temperature

Control card over temperature: The cut-out temperature of the control card is $80^{\circ} \mathrm{C}$.

WARNING 66, Heat sink temperature low

This warning is based on the temperature sensor in the IGBT module.

Troubleshooting

The heat sink temperature measured as $0^{\circ} \mathrm{C}$ could indicate that the temperature sensor is defective, causing the fan speed to increase to the maximum. If the sensor wire between the IGBT and the gate drive card is disconnected, this warning would results. Also, check the IGBT thermal sensor.

ALARM 67, Option module configuration has changed One or more options have either been added or removed since the last power-down.

ALARM 68, Safe Torque Off activated

Safe Torque Off has been activated. To resume normal operation, apply 24 V DC to terminal 37 , then send a reset signal (via bus, digital I/O, or by pressing [Reset]. See 5-19 Terminal 37 Safe Stop.

ALARM 69, Power card temperature

The temperature sensor on the power card is either too hot or too cold.

ALARM 70, Illegal FC Configuration

Actual combination of control board and power board is illegal.

WARNING 73, Safe Torque Off auto restart

Safe stopped. Note that with automatic restart enabled, the motor can start when the fault is cleared.

ALARM 79, Illegal power section configuration The scaling card is the incorrect part number or not installed. Also MK102 connector on the power card could not be installed.

ALARM 80, Unit initialised to default value Parameter settings are initialised to default settings after a manual reset.

ALARM 244, Heat sink temperature

Report value indicates source of alarm (from left):
1-4 inverter
5-8 rectifier

ALARM 245, Heat sink sensor

No feedback from the heat sink sensor. Report value indicates source of alarm (from left):
1-4 inverter
5-8 rectifier
ALARM 246, Power card supply
The supply on the power card is out of range. Report value indicates source of alarm (from left):
1-4 inverter
5-8 rectifier

ALARM 247, Power card temperature

Power card over temperature. Report value indicates source of alarm (from left):
1-4 inverter
5-8 rectifier
ALARM 248, Illegal power section configuration
Power size configuration fault on the power card. Report value indicates source of alarm (from left):
1-4 inverter
5-8 rectifier

ALARM 250, New spare part

The power or switch mode power supply has been exchanged. The filter type code must be restored in the EEPROM. Select the correct type code in 14-23 Typecode Setting according to the label on the unit. Remember to select 'Save to EEPROM' to complete.

ALARM 251, New type code

The filter has a new type code.

ALARM 300, Mains Cont. Fault

The feedback from the mains contactor did not match the expected value within the allowed time frame. Contact Danfoss or supplier.

ALARM 301, SC Cont. Fault

The feedback from the soft charge contactor did not match the expected value within the allowed time frame. Contact Danfoss or supplier.

ALARM 302, Cap. Over Current

Excessive current was detected through the AC capacitors. Contact Danfoss or supplier.

ALARM 303, Cap. Earth Fault

An earth fault was detected through the AC capacitor currents. Contact Danfoss or supplier.

ALARM 304, DC Over Current

Excessive current through the DC-link capacitor bank was detected. Contact Danfoss or supplier.

ALARM 305, Mains Freq. Limit

The mains frequency was outside the limits. Verify that the mains frequency is within product specification.

ALARM 306, Compensation Limit
The needed compensation current exceeds unit capability. Unit is running at full compensation.

ALARM 308, Resistor temp

Excessive resistor heat sink temperature detected.

ALARM 309, Mains Earth Fault

An earth fault was detected in the mains currents. Check the mains for shorts and leakage current.

ALARM 310, RTDC Buffer Full
Contact Danfoss or supplier.
ALARM 311, Switch. Freq. Limit
The average switching frequency of the unit exceeded the limit. Verify that 300-10 Active Filter Nominal Voltage and 300-22 CT Nominal Voltage are set correctly. If so, contact Danfoss or supplier.

ALARM 312, CT Range

Current transformer measurement limitation was detected. Verify that the CTs used are an appropriate ratio.

ALARM 314, Auto CT Interrupt

Auto CT detection has been interrupted.
ALARM 315, Auto CT Error
An error was detected while performing auto CT detection. Contact Danfoss or supplier.

WARNING 316, CT Location Error

The auto CT function could not determine the correct locations of the CTs.

WARNING 317, CT Polarity Error

The auto CT function could not determine the correct polarity of the CTs.

WARNING 318, CT Ratio Error

The auto CT function could not determine the correct primary rating of the CTs.

Diagnostics and Troubleshoo...
Operating Instructions

7.5 Troubleshooting

Symptom	Possible cause	Test	Solution
Display dark/No function	Missing input power	See Table 5.1	Check the input power source
	Missing or open fuses or circuit breaker tripped	See Open fuses and Tripped circuit breaker in this table for possible causes	Follow the recommendations provided
	No power to the LCP	Check the LCP cable for proper connection or damage	Replace the faulty LCP or connection cable
	Shortcut on control voltage (terminal 12 or 50) or at control terminals	Check the 24 V control voltage supply for terminals $12 / 13$ to 20-39 or 10 V supply for terminals 50 to 55	Wire the terminals properly
	Wrong LCP (LCP from VLT ${ }^{\circledR} 2800$ or 5000/6000/8000/ FCD or FCM)		Use only LCP 101 (P/N 130B1124) or LCP 102 (P/N 130B1107)
	Wrong contrast setting		Press [Status] + [$\mathbf{\Delta}] /[\mathbf{v}]$ to adjust the contrast
	Display (LCP) is defective	Test using a different LCP	Replace the faulty LCP or connection cable
	Internal voltage supply fault or SMPS is defective		Contact supplier
Intermittent display	Overloaded power supply (SMPS) due to improper control wiring or a fault within the frequency converter	To rule out a problem in the control wiring, disconnect all control wiring by removing the terminal blocks.	If the display stays lit, then the problem is in the control wiring. Check the wiring for shorts or incorrect connections. If the display continues to cut out, follow the procedure for display dark.
Motor not running	Service switch open or missing motor connection	Check if the motor is connected and the connection is not interrupted (by a service switch or other device).	Connect the motor and check the service switch
	No mains power with 24 V DC option card	If the display is functioning but no output, check that mains power is applied to the frequency converter.	Apply mains power to run the unit
	LCP Stop	Check if [Off] has been pressed	Press [Auto On] or [Hand On] (depending on operation mode) to run the motor
	Missing start signal (Standby)	Check 5-10 Terminal 18 Digital Input for correct setting for terminal 18 (use default setting)	Apply a valid start signal to start the motor
	Motor coast signal active (Coasting)	Check 5-12 Coast inv. for correct setting for terminal 27 (use default setting).	Apply 24 V on terminal 27 or program this terminal to no operation
	Wrong reference signal source	Check reference signal: Local, remote or bus reference? Preset reference active? Terminal connection correct? Scaling of terminals correct? Reference signal available?	Program correct settings. Check 3-13 Reference Site. Set preset reference active in parameter group 3-1* References. Check for correct wiring. Check scaling of terminals. Check reference signal.
Motor running in wrong direction	Motor rotation limit	Check that 4-10 Motor Speed Direction is programmed correctly.	Program correct settings
	Active reversing signal	Check if a reversing command is programmed for the terminal in parameter group 5-1* Digital inputs.	Deactivate reversing signal
	Wrong motor phase connection		See chapter 4.6.1 Motor Cable in this manual

Diagnostics and Troubleshoo... Operating Instructions

Symptom	Possible cause	Test	Solution
Motor is not reaching maximum speed	Frequency limits set wrong	Check output limits in 4-13 Motor Speed High Limit [RPM], 4-14 Motor Speed High Limit [Hz] and 4-19 Max Output Frequency.	Program correct limits
	Reference input signal not scaled correctly	Check reference input signal scaling in 6-0* Analog I/O Mode and parameter group 3-1* References. Reference limits in parameter group 3-0* Reference Limit.	Program correct settings
Motor speed unstable	Possible incorrect parameter settings	Check the settings of all motor parameters, including all motor compensation settings. For closed loop operation, check PID settings.	Check settings in parameter group 1-6* Load Depen. Setting. For closed loop operation, check settings in parameter group 20-0* Feedback.
Motor runs rough	Possible overmagnetisation	Check for incorrect motor settings in all motor parameters	Check motor settings in parameter groups 1-2* Motor Data, 1-3* Adv Motor Data, and 1-5* Load Indep. Setting.
Motor will not brake	Possible incorrect settings in the brake parameters. Possible too short ramp down times	Check brake parameters. Check ramp time settings	Check parameter group 2-0* $D C$ Brake and 3-0* Reference Limits.
Open power fuses or circuit breaker trip	Phase-to-phase short	Motor or panel has a short phase to phase. Check motor and panel phase for shorts	Eliminate any shorts detected
	Motor overload	Motor is overloaded for the application	Perform startup test and verify motor current is within specifications. If motor current is exceeding nameplate full load current, motor may run only with reduced load. Review the specifications for the application.
	Loose connections	Perform pre-startup check for loose connections	Tighten loose connections
Mains current imbalance greater than 3\%	Problem with mains power (See Alarm 4 Mains phase loss description)	Rotate input power leads into the frequency converter one position: A to B, B to C, C to A.	If imbalanced leg follows the wire, it is a power problem. Check mains power supply.
	Problem with the frequency converter	Rotate input power leads into the frequency converter one position: A to B, B to C, C to A.	If imbalance leg stays on same input terminal, it is a problem with the unit. Contact the supplier.
Motor current imbalance greater than 3\%	Problem with motor or motor wiring	Rotate output motor leads one position: U to V, V to W, W to U .	If imbalanced leg follows the wire, the problem is in the motor or motor wiring. Check motor and motor wiring.
	Problem with the frequency converters	Rotate output motor leads one position: U to V, V to W, W to U .	If imbalance leg stays on same output terminal, it is a problem with the unit. Contact the supplier.
Acoustic noise or vibration (e.g. a fan blade is making noise or vibrations at certain frequencies)	Resonances, e.g. in the motor/fan system	Bypass critical frequencies by using parameters in parameter group 4-6* Speed Bypass	Check if noise and/or vibration have been reduced to an acceptable limit
		Turn off over-modulation in 14-03 Overmodulation	
		Change switching pattern and frequency in parameter group 14-0* Inverter Switching	
		Increase Resonance Dampening in 1-64 Resonance Dampening	

Table 7.9 Troubleshooting

Specifications
Operating Instructions

8 Specifications

8.1 Power-Dependent Specifications

8.1.1 Mains Supply $3 \times 380-480$ V AC

	P160	P200	P250
Normal Overload $=110 \%$ current for 60 s	NO	NO	NO
Typical shaft output at 400 V [kW]	160	200	250
Typical shaft output at 460 V [hp]	250	300	350
Typical shaft output at 480 V [kW]	200	250	315
Enclosure IP21/54		D13	
Output current			
Continuous (at 400 V) [A]	315	395	480
Intermittent (60 s overload) (at 400 V) [A]	347	435	528
Continuous (at 460/480 V) [A]	302	361	443
Intermittent (60 s overload) (at 460/480 V) [A]	332	397	487
Continuous kVA (at 400 V) [kVA]	218	274	333
Continuous kVA (at 460 V) [kVA]	241	288	353
Continuous kVA (at 480 V) [kVA]	262	313	384
Max. Input current			
Continuous (at 400 V) [A]	304	381	463
Continuous (at 460/480 V) [A]	291	348	427
Max. pre-fuses ${ }^{1)}$ [A]	400	500	630
Max. cable size			
Motor ($\left.\mathrm{mm}^{2} / \mathrm{AWG}^{2}\right)$	2x185 (2x300 mcm)		
Mains ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)			
Loadsharing ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)			
Brake ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)			
Total LHD loss $400 \mathrm{~V} \mathrm{AC} \mathrm{[kW]}$	8868	10527	11751
Total back channel loss 400 V AC [kW]	7318	8903	10033
Total filter loss $400 \mathrm{~V} \mathrm{AC} \mathrm{[kW]}$	4954	5714	6234
Total LHD loss 460 V AC [kW]	9059	10192	11706
Total back channel loss 460 V AC [kW]	7123	8209	9635
Total filter loss 460 V AC [kW]	5279	5819	6681
Weight, enclosure IP21, IP54 [kg]			406
Efficiency ${ }^{4}$		0.96	
Output frequency [Hz]		0-800	
Heatsink overtemp. trip [${ }^{\circ} \mathrm{C}$]		105	
Power card ambient trip [${ }^{\circ} \mathrm{C}$]		85	
*High overload $=160 \%$ torque during 60 s ; Normal overload $=110 \%$ torque during 60 s			

Table 8.1 Mains Supply $3 \times 380-480$ V AC

Specifications
Operating Instructions

Table 8.2 Mains Supply 3x380-480 V AC

Specifications
Operating Instructions

	P500	P560	P630	P710
Normal Overload $=110 \%$ current for 60 s	NO	NO	NO	NO
Typical shaft output at 400 V [kW]	500	560	630	710
Typical shaft output at 460 V [hp]	650	750	900	1000
Typical shaft output at 480 V [kW]	560	630	710	800
Enclosure IP21/54				
Output current				
Continuous (at 400 V) [A]	880	990	1120	1260
Intermittent (60 s overload) (at 400 V) [A]	968	1089	1232	1386
Continuous (at 460/480 V) [A]	780	890	1050	1160
Intermittent (60 s overload) (at 460/480 V) [A]	858	979	1155	1276
Continuous kVA (at 400 V) [kVA]	610	686	776	873
Continuous kVA (at 460 V) [kVA]	621	709	837	924
Continuous kVA (at 480 V) [kVA]	675	771	909	1005
Max. Input current				
Continuous (at 400 V) [A]	857	964	1090	1227
Continuous (at 460/480 V) [A]	759	867	1022	1129
Max. pre-fuses ${ }^{1{ }^{1}}$ [A]	1600		2000	
Max. cable size				
Motor ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	$8 \times 150(8 \times 300 \mathrm{mcm})$			
Mains ($\left.\mathrm{mm}^{2} / \mathrm{AWG}^{2}\right)$	$8 \times 240(8 \times 500 \mathrm{mcm})$			
Brake ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	4×185 ($4 \times 350 \mathrm{mcm}$)			
Total LHD loss 400 V AC [kW]	21909	24592	26640	30519
Total back channel loss 400 V AC [kW]	17767	19984	21728	24936
Total filter loss 400 V AC [kW]	11747	12771	14128	15845
Total LHD loss 460 V AC [kW]	19896	22353	25030	27989
Total back channel loss 460 V AC [kW]	16131	18175	20428	22897
Total filter loss 460 V AC [kW]	11020	11929	13435	14776
Weight, enclosure IP21, IP54 [kg]	2009			
Efficiency ${ }^{4}$	0.96			
Output frequency [Hz]	0-600			
Heatsink overtemp. trip [${ }^{\circ} \mathrm{C}$]	105			
Power card ambient trip [${ }^{\circ} \mathrm{C}$]	85			
*Normal overload $=110 \%$ torque during 60 s				

Table 8.3 Mains Supply $3 \times 380-480$ V AC

1) For type of fuse, see chapter 8.5.1 Fuses.
2) American wire gauge.
3) Measured using 5 m screened motor cables at rated load and rated frequency.
4) The typical power loss is at nominal load conditions and expected to be within $\pm 15 \%$ (tolerence relates to variety in voltage and cable conditions). Values are based on a typical motor efficiency (IE2/IE3 border line). Motors with lower efficiency also add to the power loss in the frequency converter and opposite. If the switching frequency is increased to the default setting, the power losses may rise significantly. LCP and typical control card power consumptions are included. Further options and customer load may add up to 30 W to the losses. (Though typical only 4 W extra for a fully loaded control card, or options for slot A or slot B, each).
Although measurements are made with state-of-the-art equipment, some measurement inaccuracy must be allowed for ($\pm 5 \%$).

8.1.2 Derating for Temperature

The frequency converter automatically derates the switching frequency, switching type, or output current under certain load or ambient conditions as described below. The derating curves in Illustration 8.1 apply to both SFAVM and 60 AVM switching modes.

Illustration 8.1 Derating Frame Sizes D, E, and F 380-500 V (T5) Normal Overload 110\%

8.2 Mechanical Dimensions

Illustration 8.2 Frame Size D13

Illustration 8.3 Frame Size E9

Illustration 8.4 Frame Size F18, Front and Side View

8.3 General Technical Data - Frequency Converter

Mains supply (L1, L2, L3)
Supply voltage
$380-480 \mathrm{~V}+5 \%$
Mains voltage low/mains drop-out:
During low mains voltage or mains drop-out, the frequency converter continues until the intermediate circuit voltage drops below the minimum stop level, corresponding to 15% below the lowest rated supply voltage. Power up and full torque cannot be expected at mains voltage lower than 10% below the lowest rated supply voltage.
Supply frequency
$50 / 60 \mathrm{~Hz} \pm 5 \%$
Max. imbalance temporary between mains phases $\quad 3.0 \%$ of rated supply voltage
True power factor (λ) >0.98 nominal at rated load
Displacement power factor $(\cos \varphi)$ near unity
THiD
Switching on input supply L1, L2, L3 (power-ups) \qquad maximum once/2 min. Environment according to EN60664-1 overvoltage category III/pollution degree 2
The unit is suitable for use on a circuit capable of delivering not more than 100.000 RMS symmetrical Amperes, 480/690 V maximum.

Motor output (U, V, W)
Output voltage
$0-100 \%$ of supply voltage
Output frequency $0-590 \mathrm{~Hz}^{11}$
Switching on output Unlimited
Ramp times $0.01-3600 \mathrm{~s}$

[^43]Specifications
Operating Instructions

Torque characteristics
Starting torque (constant torque)
Starting torque
Overload torque (constant torque)

1) Percentage relates to nominal torque of the unit.

Cable lengths and cross-sections
Max. motor cable length, screened/armoured 150 m
Max. motor cable length, unscreened/unarmoured $\quad 300 \mathrm{~m}$
Max. cross-section to motor, mains, load sharing, and brake ${ }^{1)}$
Maximum cross-section to control terminals, rigid wire
Maximum cross-section to control terminals, flexible cable $1 \mathrm{~mm}^{2} / 18$ AWG
Maximum cross-section to control terminals, cable with enclosed core $0.5 \mathrm{~mm}^{2} / 20$ AWG
Minimum cross-section to control terminals $0.25 \mathrm{~mm}^{2}$

1) See chapter 8.1.1 Mains Supply 3x380-480 V AC for more information

Digital inputs
Programmable digital inputs
Terminal number
Logic
Voltage level
Voltage level, logic'0' PNP
Voltage level, logic'1' PNP
Voltage level, logic ' 1 ' NPN
Voltage level, logic 1 ' NPN

All digital inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

1) Terminals 27 and 29 can also be programmed as output.

Analog inputs
Number of analog inputs
Terminal number
Modes
Mode select
Voltage mode
Voltage level
Input resistance, R_{i}
Max. voltage
Current mode
Current level
Input resistance, R_{i}
Max. current
Resolution for analog inputs
Accuracy of analog inputs
Bandwidth

The analog inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Illustration 8.5 PELV Isolation of Analog Inputs

Pulse inputs
Programmable pulse inputs
Terminal number pulse
Max. frequency at terminal, 29, 33
Max. frequency at terminal, 29,33
Min. frequency at terminal 29, 33
Voltage level
Maximum voltage on input
Input resistance, R_{i}
Pulse input accuracy (0.1-1 kHz)

Analog output
Number of programmable analog outputs
Terminal number
Current range at analog output
Max. resistor load to common at analog output
Accuracy on analog output
Resolution on analog output

The analog output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Control card, RS-485 serial communication
Terminal number 68 (P,TX+, RX+), 69 ($N, T X-, R X-)$
Terminal number 61 Common for terminals 68 and 69

The RS-485 serial communication circuit is functionally seated from other central circuits and galvanically isolated from the supply voltage (PELV).

Digital output
Programmable digital/pulse outputs 2
Terminal number 27, 291)
Voltage level at digital/frequency output $0-24 \mathrm{~V}$
Max. output current (sink or source) 40 mA
Max. load at frequency output $1 \mathrm{k} \Omega$
Max. capacitive load at frequency output 10 nF
Minimum output frequency at frequency output 0 Hz
Maximum output frequency at frequency output 32 kHz
Accuracy of frequency output Max. error: 0.1% of full scaleResolution of frequency outputs12 bit

1) Terminal 27 and 29 can also be programmed as input.

The digital output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Specifications
Operating Instructions

Control card, 24 V DC output
Terminal number
Output voltage
Max. load

The 24 V DC supply is galvanically isolated from the supply voltage (PELV), but has the same potential as the analog and digital inputs and outputs.

Relay outputs

Programmable relay outputs 2
Relay 01 Terminal number $1-3$ (break), 1-2 (make)
Max. terminal load (AC-1) ${ }^{1}$) on 1-3 (NC), 1-2 (NO) (resistive load) $240 \mathrm{VAC}, 2 \mathrm{~A}$

Max. terminal load $(A C-15)^{1)}$ (inductive load @ $\left.\cos \varphi 0.4\right) \quad 240 \mathrm{~V} \mathrm{AC}, 0.2 \mathrm{~A}$
Max. terminal load (DC-1) $)^{1}$ on 1-2 (NO), 1-3 (NC) (resistive load) $60 \mathrm{VDC}, 1 \mathrm{~A}$
Max. terminal load (DC-13) ${ }^{1}$ (inductive load) 24 V DC, 0.1 A
Relay 02 Terminal number $4-6$ (break), 4-5 (make)
Max. terminal load (AC-1) ${ }^{1}$) on 4-5 (NO) (resistive load) ${ }^{2 / 3)} 400 \mathrm{~V} \mathrm{AC}, 2 \mathrm{~A}$
Max. terminal load (AC-15) ${ }^{1)}$ on 4-5 (NO) (inductive load @ $\cos \varphi$ 0.4) $240 \mathrm{~V} \mathrm{AC}, 0.2 \mathrm{~A}$
Max. terminal load ($\mathrm{DC}-1)^{1)}$ on 4-5 (NO) (resistive load) $80 \mathrm{VDC}, 2 \mathrm{~A}$
Max. terminal load (DC-13) ${ }^{1)}$ on 4-5 (NO) (inductive load) 24 V DC, 0.1 A
Max. terminal load (AC-1) ${ }^{1}$ on 4-6 (NC) (resistive load) 240 V AC, 2 A
Max. terminal load $(\mathrm{AC}-15)^{1)}$ on 4-6 (NC) (inductive load @ $\cos \varphi$ 0.4) 240 V AC, 0.2 A
Max. terminal load (DC-1) ${ }^{1}$ on 4-6 (NC) (resistive load) 50 V DC, 2 A
Max. terminal load (DC-13) ${ }^{1)}$ on 4-6 (NC) (inductive load) 24 V DC, 0.1 A
Min. terminal load on 1-3 (NC), 1-2 (NO), 4-6 (NC), 4-5 (NO) 24 V DC $10 \mathrm{~mA}, 24 \mathrm{~V}$ AC 20 mA
Environment according to EN 60664-1 overvoltage category III/pollution degree 2

1) IEC 60947 parts 4 and 5

The relay contacts are galvanically isolated from the rest of the circuit by reinforced isolation (PELV).
2) Overvoltage Category II
3) UL applications 300 V AC 2 A

Control characteristics
Resolution of output frequency at $0-1000 \mathrm{~Hz}$
$\pm 0.003 \mathrm{~Hz}$
System response time (terminals 18, 19, 27, 29, 32,33) $\leq 2 \mathrm{~ms}$
Speed control range (open loop)
1:100 of synchronous speed
Speed accuracy (open loop) 30-4000 RPM: Maximum error of ± 8 RPM

All control characteristics are based on a 4-pole asynchronous motor

Specifications Operating Instructions
Surroundings
Enclosure, frame size D and E
Enclosure, frame size F
Vibration test
Relative humidity
Aggressive environment (IEC $60068-2-43$) $\mathrm{H}_{2} \mathrm{~S}$ test
Test method according to IEC $60068-2-43 \mathrm{H}_{2}$ (10 days)
Ambient temperature (at 60 AVM switching mode)

- with derating
- with full output power, typical IE2 motors (see chapter 8.1.2 Derating for Temperature
- at full continuous FC output current
Minimum ambient temperature during full-scale operation
Minimum ambient temperature at reduced performance
Temperature during storage/transport
Maximum altitude above sea level without derating
Maximum altitude above sea level with derating
For more information on derating, consult the design guide
EMC standards, emission
EMC standards, immunity
Control card performance

NOTICE

Connection to PC is carried out via a standard host/device USB cable.
The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
The USB connection is not galvanically isolated from protective earth. Use only isolated laptop/PC as connection to the USB connector on the frequency converter or an isolated USB cable/converter.

Protection and features:

- Electronic thermal motor protection against overload.
- Temperature monitoring of the heat sink ensures that the frequency converter trips if the temperature reaches a predefined level. An overload temperature cannot be reset until the temperature of the heat sink is below the allowed values.
- The frequency converter is protected against short-circuits on motor terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$.
- If a mains phase is missing, the frequency converter trips or issues a warning (depending on the load).
- Monitoring of the intermediate circuit voltage ensures that the frequency converter trips if the intermediate circuit voltage is too low or too high.
- The frequency converter is protected against earth faults on motor terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$.

Specifications
Operating Instructions

8.4 General Technical Data - Filter

Frame size	D13	E9	F18
Voltage [V]	$380-480$	$380-480$	$380-480$
Current, RMS [A]	120	210	330
Response time [ms]		<0.5	
Settling time - reactive current control [ms]		<40	
Settling time - harmonic current control (filtering) [ms]		<20	
Overshoot - reactive current control [\%]		<10	
Overshoot - harmonic current control [\%]			

Table 8.4 Power Ranges (LHD with AF)

8.4.1 Power Rating

Grid conditions

Supply voltage	380-480 V
Mains voltage low/mains drop-out:	
During low mains minimum stop expected at mai rated voltage, th voltages exceed	he be er highest until main

Supply frequency	$50 / 60 \mathrm{~Hz} \pm 5 \%$
Max. imbalance temporary between mains phases where mitigation performance is kept high.	3.0% of rated supply voltage Filter mitigates at higher mains imbalance but harmonic mitigation performance is reduced
Max THDv pre-distortion	10% with kept mitigation performance Reduced performance for higher pre-distortion levels
Harmonic mitigation performance	
	Best performance <4\%
THiD	Depending on filter vs. distortion ratio.
Individual harmonic mitigation ability:	Current maximum RMS [\% of rated RMS current]
2nd	10\%
4th	10\%
5th	70\%
7th	50\%
8th	10\%
10th	5\%
11th	32\%
13th	28\%
14th	4\%
16th	4\%
17th	20\%
19th	18\%
20th	3\%
22nd	3\%
23rd	16\%
25th	14\%
Total current of harmonics	90\%
The filter is performance tested to the 40th order	
Reactive current compensation	
Cos phi	Controllable 1.0 to 0.5 lagging
Reactive current, \% of filter current rating	100\%

Specifications
Operating Instructions

Max grid cable length (direct internal connection to drive)	Unlimited (determined by voltage drop)
Maximum cross-section to control terminals, rigid wire	$1.5 \mathrm{~mm}^{2} / 16$ AWG ($2 \times 0.75 \mathrm{~mm}^{2}$
Maximum cross-section to control terminals, flexible cable	$1 \mathrm{~mm}^{2} / 18$ AWG
Maximum cross-section to control terminals, cable with enclosed core	$0.5 \mathrm{~mm}^{2} / 20$ AWG
Minimum cross-section to control terminals	$0.25 \mathrm{~mm}^{2}$
CT terminals specification	
CT number	3 (one for each phase)
The AAF burden equals	$2 \mathrm{~m} \Omega$
Secondary current rating	1 A or 5 A (hardware set-up)
Accuracy	Class 0.5 or better
Digital inputs	
Programmable digital inputs	2 (4)
Terminal number	18, 19, 271), 291)
Logic	PNP or NPN
Voltage level	$0-24-\mathrm{V}$ DC
Voltage level, logic'0' PNP	< 5 V DC
Voltage level, logic'1' PNP	$>10 \mathrm{VDC}$
Voltage level, logic '0' NPN	$>19 \mathrm{VDC}$
Voltage level, logic '1' NPN	$<14 \mathrm{VDC}$
Maximum voltage on input	28 V DC
Input resistance, R_{i}	approx. $4 \mathrm{k} \Omega$

All digital inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

1) Terminals 27 and 29 can also be programmed as output.

Control card, RS-485 serial communication
Terminal number
68 (P, TX+, RX+), 69 (N, TX-, RX-)
Terminal number 61
Common for terminals 68 and 69
The RS-485 serial communication circuit is functionally separated from other central circuits and galvanically isolated from the supply voltage (PELV).

Digital output
Programmable digital/pulse outputs 2
Terminal number 27, 29 1)
Voltage level at digital/frequency output $0-24 \mathrm{~V}$
Max. output current (sink or source) 40 mA

1) Terminal 27 and 29 can also be programmed as input.

Control card, 24 V DC output
Terminal number $\quad 13$ Max. load 200 mA

The 24 V DC supply is galvanically isolated from the supply voltage (PELV), but has the same potential as the analog and digital inputs and outputs.

Specifications Operating Instructions

Connection to PC is carried out via a standard host/device USB cable. The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. The USB connection is not galvanically isolated from protective earth. Use only isolated laptop/PC as connection to the USB connector on the unit or an isolated USB cable/converter.

Protection and features

- Temperature monitoring of the heat sink ensures that the active filter trips if the temperature reaches a predefined level. An overload temperature cannot be reset until the temperature of the heat sink is below the acceptable values.
- If a mains phase is missing, the active filter trips.
- The active filter has a short circuit protection current rate of 100 kA if properly fused
- Monitoring of the intermediate circuit voltage ensures that the filter trips if the intermediate circuit voltage is too low or too high.
- The active filter monitors the mains current as well as internal currents to reassure that current levels do not reach critical levels. If current exceeds a critical level, the filter trips.

8.4.2 Derating for Altitude

The cooling capability of air is decreased at lower air pressure.

Below $1,000 \mathrm{~m}$ altitude no derating is necessary but above $1,000 \mathrm{~m}$ the ambient temperature ($\mathrm{T}_{\text {AmB }}$) or max. output current (lout) should be derated in accordance with Illustration 8.6.

An alternative is to lower the ambient temperature at high altitudes and thereby ensure 100% output current at high altitudes. As an example of how to read the graph, the situation at $2,000 \mathrm{~m}$ is elaborated. At a temperature of 45 ${ }^{\circ} \mathrm{C}$ ($\mathrm{T}_{\text {Amb, max }}-3.3 \mathrm{~K}$), 91% of the rated output current is available. At a temperature of $41.7^{\circ} \mathrm{C}, 100 \%$ of the rated output current is available.

Altitude Derating

Derating of output current versus altitude at $\mathrm{T}_{\mathrm{AMB}}$, MAX for frame sizes D, E and F.

Illustration 8.6 Altitude Derating

8.5 Fuses

It is recommended to use fuses and/or circuit breakers on the supply side as protection in case of component breakdown inside the frequency converter (first fault).

NOTICE

This is mandatory to ensure compliance with IEC 60364 for CE or NEC 2009 for UL.

AWARNING

Protect personnel and property against the consequence of component break-down internally in the frequency converter.

Branch circuit protection

To protect the installation against electrical and fire hazard, all branch circuits in an installation, switch gear, machines etc., must be protected against short-circuit and overcurrent according to national/international regulations.

NOTICE

The recommendations given do not cover branch circuit protection for UL.

Short-circuit protection

Danfoss recommends using the fuses/circuit breakers mentioned below to protect service personnel and property in case of component break-down in the frequency converter.

Overcurrent protection

The frequency converter provides overload protection to limit threats to human life, property damage and to avoid fire hazard due to overheating of the cables in the installation. The frequency converter is equipped with an internal overcurrent protection (4-18 Current Limit) that can be used for upstream overload protection (UL-applications excluded). Moreover, fuses or circuit breakers can be used to provide the overcurrent protection in the installation. Overcurrent protection must always be carried out according to national regulations.

The following tables list the recommended rated current. Recommended fuses are of the type gG for small to medium power sizes. For larger powers, aR fuses are recommended. Circuit breakers must be used, provided they meet the national/international regulations and they limit the energy into the frequency converter to an equal or lower level than the compliant circuit breakers.
If fuses/circuit breakers according to recommendations are selected, possible damage on the frequency converter is mainly limited to damage inside the unit.

Non UL compliance

If $\mathrm{UL} / \mathrm{cUL}$ is not to be complied with, use the following fuses, which ensure compliance with EN50178:

P160-P250	$380-480 \mathrm{~V}$	type gG
P315-P450	$380-480 \mathrm{~V}$	type gR

Table 8.5 Fuse Types by Power Range

Specifications
Operating Instructions

8.5.1 Fuse Specifications

UL compliance

380-480 V, frame sizes D, E and F
The fuses below are suitable for use on a circuit capable of delivering 100,000 $\mathrm{A}_{\text {rms }}$ (symmetrical), 240 V , or 480 V , or 500 V , or 600 V depending on the frequency converter voltage rating. With the proper fusing the frequency converter Short Circuit Current Rating (SCCR) is 100,000 Arms.

$\begin{aligned} & \text { Size/ } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \text { Bussmann } \\ \text { E1958 } \\ \text { JFHR2 }^{2)} \end{gathered}$	$\begin{gathered} \text { Bussmann } \\ \text { E4273 } \\ \text { T/JDDZ }{ }^{2)} \end{gathered}$	$\begin{gathered} \text { SIBA } \\ \text { E180276 } \\ \text { JFHR2 } \end{gathered}$	LittelFuse E91611 JFHR2 ${ }^{2)}$	Ferraz- Shawmut E60314 JFHR2 ${ }^{2)}$	$\begin{gathered} \text { Bussmann } \\ \text { E4274 } \\ \text { H/JDDZ }{ }^{2)} \end{gathered}$	Bussmann E125085 JFHR2 ${ }^{1)}$	Internal Option Bussmann
P160	$\begin{gathered} \text { FWH- } \\ 400 \end{gathered}$	$\begin{aligned} & \text { JJS- } \\ & 400 \end{aligned}$	2061032.40	L50S-400	A50-P400	$\begin{gathered} \text { NOS- } \\ 400 \end{gathered}$	170M4012	170M4016
P200	$\begin{gathered} \text { FWH- } \\ 500 \end{gathered}$	$\begin{aligned} & \text { JJS- } \\ & 500 \end{aligned}$	2061032.50	L50S-500	A50-P500	$\begin{gathered} \text { NOS- } \\ 500 \end{gathered}$	170M4014	170M4016
P250	$\begin{aligned} & \text { FWH- } \\ & 600 \end{aligned}$	$\begin{aligned} & \hline J S- \\ & 600 \end{aligned}$	2062032.63	L50S-600	A50-P600	$\begin{aligned} & \text { NOS- } \\ & 600 \end{aligned}$	170M4016	170M4016

Table 8.6 Frame size D, Line Fuses, 380-480 V

Size/Type	Bussmann PN ${ }^{1)}$	Rating	Ferraz	Siba
P315	170 M 4017	$700 \mathrm{~A}, 700 \mathrm{~V}$	6.9 URD31D08A0700	2061032.700
P355	170 M 6013	$900 \mathrm{~A}, 700 \mathrm{~V}$	6.9 URD33D08A0900	2063032.900
P400	170 M 6013	$900 \mathrm{~A}, 700 \mathrm{~V}$	6.9 URD33D08A0900	2063032.900
P450	170 M 6013	$900 \mathrm{~A}, 700 \mathrm{~V}$	6.9 URD33D08A0900	2063032.900

Table 8.7 Frame size E, Line Fuses, 380-480 V

Size/Type	Bussmann PN ${ }^{1)}$	Rating	Siba	Internal Bussmann Option
P500	170 M 7081	$1600 \mathrm{~A}, 700 \mathrm{~V}$	2069532.1600	170 M 7082
P560	170 M 7081	$1600 \mathrm{~A}, 700 \mathrm{~V}$	2069532.1600	170 M 7082
P630	170 M 7082	$2000 \mathrm{~A}, 700 \mathrm{~V}$	2069532.2000	170 M 7082
P710	170 M 7082	$2000 \mathrm{~A}, 700 \mathrm{~V}$	2069532.2000	170 M 7082

Table 8.8 Frame size F, Line Fuses, 380-480 V

Size/Type	Bussmann PN ${ }^{1)}$	Rating	Siba
P500	170 M 8611	$1100 \mathrm{~A}, 1000 \mathrm{~V}$	2078132.1000
P560	170 M 8611	$1100 \mathrm{~A}, 1000 \mathrm{~V}$	2078132.1000
P630	170 M 6467	$1400 \mathrm{~A}, 700 \mathrm{~V}$	2068132.1400
P710	170 M 6467	$1400 \mathrm{~A}, 700 \mathrm{~V}$	2068132.1400

Table 8.9 Frame Size F, Inverter module DC Link Fuses, 380-480 V

1) 170 M fuses from Bussmann shown use the -/80 visual indicator, -TN/80 Type T, -/110 or TN/110 Type T indicator fuses of the same size and amperage may be substituted for external use
2) Any minimum 500 V UL listed fuse with associated current rating may be used to meet UL requirements.

Supplementary fuses

Frame size	Bussmann PN ${ }^{1)}$	Rating
D, E and F	KTK-4	$4 \mathrm{~A}, 600 \mathrm{~V}$

[^44]Specifications
Operating Instructions

Size/Type	Bussmann PN ${ }^{1)}$	LittelFuse	Rating
P160-P315, 380-480 V	KTK-4		$4 \mathrm{~A}, 600 \mathrm{~V}$
P355-P710, 380-480 V		KLK-15	$15 \mathrm{~A}, 600 \mathrm{~V}$

Table 8.11 Fan Fuses

Size/Type		Bussmann PN ${ }^{1)}$	Rating	Alternative Fuses
P500-P710, 380-480 V	$2.5-4.0 \mathrm{~A}$	LPJ-6 SP or SPI	$6 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual Element, Time Delay, 6 A
P500-P710, $380-480 \mathrm{~V}$	$4.0-6.3 \mathrm{~A}$	LPJ-10 SP or SPI	$10 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual Element, Time Delay, 10 A
P500-P710, 380-480 V	$6.3-10 \mathrm{~A}$	LPJ-15 SP or SPI	$15 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual Element, Time Delay, 15 A
P500-P710, 380-480 V	$10-16 \mathrm{~A}$	LPJ-25 SP or SPI	$25 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual Element, Time Delay, 25 A

Table 8.12 Manual Motor Controller Fuses

Frame size	Bussmann PN ${ }^{1)}$	Rating	Alternative Fuses
F	LPJ-30 SP or SPI	$30 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual Element, Time Delay, 30 A

Table 8.13 30 A Fuse Protected Terminal Fuse

Frame size	Bussmann PN ${ }^{1)}$	Rating	Alternative Fuses
D	LP-CC-8/10	$0.8 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class CC, 0.8 A
E	LP-CC-1 $1 / 2$	$1.5 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class CC, 1.5 A
F	LPJ-6 SP or SPI	$6 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual Element, Time Delay, 6 A

Table 8.14 Control Transformer Fuse

Frame size	Bussmann PN ${ }^{1)}$	Rating
F	GMC-800MA	$800 \mathrm{~mA}, 250 \mathrm{~V}$

Table 8.15 NAMUR Fuse

Frame size	Bussmann PN ${ }^{1)}$	Rating	Alternative Fuses
F	LP-CC-6	$6 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class CC, 6 A

Table 8.16 Safety Relay Coil Fuse with PILZ Relay

1) 170 M fuses from Bussmann shown use the -/80 visual indicator, -TN/80 Type $T,-/ 110$ or TN/110 Type T indicator fuses of the same size and amperage may be substituted for external use

Appendix
Operating Instructions

9 Appendix

9.1 Abbreviations and Conventions

AC	Alternating Current
AEO	Automatic Energy Optimization
AMA	Automatic Motor Adaptation
AWG	American Wire Gauge
${ }^{\circ} \mathrm{C}$	Degrees Celsius
DC	Direct Current
EMC	Electromagnetic Compatibility
ETR	Electronic Thermal Relay
$\mathrm{f}_{\mathrm{M}, \mathrm{N}}$	Nominal Motor Frequency
FC	Frequency Converter
ILIM	Current Limit
linv	Rated Inverter Output Current
$\mathrm{I}_{\mathrm{M}, \mathrm{N}}$	Nominal Motor Current
IVLt,max	The Maximum Output Current
Ivit,N	The Rated Output Current Supplied by the Frequency Converter
IP	Ingress Protection
LCP	Local Control Panel
N.A.	Not applicable
$\mathrm{P}_{\mathrm{M}, \mathrm{N}}$	Nominal Motor Power
PCB	Printed Circuit Board
PE	Protective earth
PELV	Protective Extra Low Voltage
Regen	Regenerative Terminals
RPM	Revolutions Per Minute
TLIM	Torque Limit
$\mathrm{U}_{\mathrm{M}, \mathrm{N}}$	Nominal Motor Voltage

Table 9.1 Abbreviations

Conventions

Numbered lists indicate procedures.
Bullet lists indicate other information and description of illustrations.
Italicised text indicates

- cross reference
- link
- footnote
- parameter name, parameter group name, parameter option
Index Conduit 45
Control cable. 39
A Control card. 61
Abbreviation 92 Control card performance 85
AC mains 15 Control card, 24 V DC output 84
Active filter 4 Control card, RS-485 serial communication. 83
Additional literature 4 Control card, USB serial communication. 85, 88
ADN compliance 14 Control characteristic 84
AEO. 52 Control signal 58
Airflow. 17 Control system 4
Alarm log 48
Control terminal. $36,48,50,58,60$
Alarm, warning 69 Control terminal, access 36
Alarm/warning code list 69 39
AMA.43, 52, 58, 62, 66 Control wiring.AMA, successful44 Convention45AMA, unsuccessfu44 Cooling17
Analog input 61,82 Cooling clearance. 45
Analog output 83 CT terminal, specification 87
Analog signal. 61 Current rating 16, 62
Analog speed reference 54
Anchoring 20 D
Approval. 14
DC current. 28, 58
Auto on 48, 53, 58, 59
Auto remote coasting. 47 Default setting 49
Automatic Motor Adaptation (AMA) 43 Definition 4
Auto-reset 47 Delta 43
Derating, altitude 89
BBack cooling17
Bottom view 20 Dimension83
Brake cable 30 Dimension, mechanical. 79
Brake chopper 30 Discharge time 15
Brake control 62 Disconnect switch 45, 47
Brake resistor 61 Distortion 5
Brake resistor temperature switch 31 Download manual 4
Braking 58, 63
Branch circuit protection 89
E
CCable length, cross-section82, 87
Cable size, maximum 76, 77, 78
Cable-length, cross-section 29
Cabling 28
CE compliance mark 14
Circuit breaker. 46
Communication option64
Earth connection 45
Earth wire 45
Earthing 45
Earthing (grounding) 46
ELCB relay 29
Electrical installation 36, 39
Electromechanical brake 40
EMC 28,45
Enclosure. $14,76,77,78$
Exploded view 6 42
External alarm reset 56
External command. 60 IT main
32
External fan supply
F
Factory installed brake chopper option 30
Fan 32
Fault log 48
Fault message, active filter 72
Feedback
Feedback 45, 58, 65 45, 58, 65
F-frame option 41
Fieldbus connection 35
Filter capacitor 29
Final set-up and test 43
Full load current 16
Fuse. $28,45,64,74,89$
90
Fuse specification
45
Fusing.
G
Grid condition 86
Ground connection 45
Ground wire 45
Grounding 29, 45, 46
H
Hand 58
Hand on 58
Hand On. 48
Harmonic mitigation performance 86
Harmonics 5
Heat sink 65
Heater. 41
High voltage 45
I
IEC emergency stop, Pilz safety relay 42
Initialisation 49
Input current, maximum 76, 77, 78
Input polarity, control terminal, PNP 39
Input power $15,45,60,74$
Input terminal 45, 61
Nameplate. 16N
Input voltage. 47, 60
Installation 45, 47
NAMUR. 42
Installation site, planning 17
Noise isolation 45
Run permissive 59
Non UL compliance 89
Normal overload 76, 77, 78
0
Operation key 47
Optional equipment 4,47
Output current $16,58,62,76,77,78$
Output performance ($\mathrm{U}, \mathrm{V}, \mathrm{W}$).81
Output terminal. 45
Overcurrent. 59
Overcurrent protection 28
Overload protection 16
Overvoltage 59
P
Parallel connection, motor. 40
PELV. 57
Phase loss. 61
PNP 39
Power connection 28
Power factor 45
Power rating 14
Power, input 60
Programming. 47, 48, 61
Protection, feature 85
Pulse input 83
Pulse start/stop. 56
Q
Qualified personnel 15
Quick menu. 47, 48
R
RCD. 29
RCD (Residual Current Device) 42
Reactive current compensation. 86
Reference. $47,54,58,59$
Relay output 84
Remote reference 59
Reset $47,48,49,60,62,66,67$
29
RFI capacitor. 29
RFI switch 29
RS-485. 41
RS-485 network connection. 57
Run command 53
V
S
Safe Torque Off 41
Screened/armoured. 33
Screened/armoured cable 32
Screening, cable. 29
Serial communication $48,58,59,60,85$
Setpoint 59
Set-up. 48,53
Shielded cable. 30,45
Shipping damage 16
Short circuit 63
Sleep mode 59
Speed reference. 53,54,58
Speed reference, analog 54
Start/stop command 55
Start-up. 49, 74
Status mode 58
STO. 41
Stop command 59
Supply voltage 45, 64
Surrounding. 85
Switches S201, S202, S801 41
Switching frequency 29,59
T
Temperature limit. 45
Terminal function 32
Terminal location 22
Thermal motor protection 62
Thermistor. 57, 62
Torque. 27,62
Torque characteristic 82
Torque, terminal. 27
Voltage imbalance 61
Voltage level. 82, 87
Voltage, input. 60
VVC+. 51
W
Wire size. 28
Working principle 5

www.danfoss.com/drives

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

TECHNICAL DATA SHEET

Equipment Type:
Location:
Model Numbers:FZK011
Manufacturer:
Supplier:NHP Pty Ltd
16 Riverview Place
Murarrie(07) 39094999

STEGO FZK 011 SERIES

MECHANICAL THERMOSTAT SERIES FZK 011

The mechanical thermostat is used for controlling heating and cooling equipment， filter fans or signal devices．The thermostat registers the surrounding air and can switch both inductive and resistive loads via snap－ action contact．
－Adjustable temperature
－Small hysteresis
－Changeover contact

Dimensions（mm）

Load 1：
Enclosure heater
Load 2：
Filter fan，Cooling equipment，Signal device

Technical Data：
Operating voltage： 230 V AC

Switch temperature difference：

Sensor element：Thermostatic bimetal
Contact type：Changeover snap－
action contact
Contact resistance：

Service life：$\quad>100,000$ cycles
Max．Switching
250 V AC， 10 A
DC 30 W
250 V AC， 5 A DC 30 W

Acc．to EN 55014－1－2，
EN 61000－3－2，
EN 61000－3－3
4－pole terminal for $2.5 \mathrm{~mm}^{2}$ ，clamping torque 0.8 Nm

Clip for 35 mm DIN rail， EN50022

Plastic according to UL－94 V－0，light grey
$67 \times 50 \times 38 \mathrm{~mm}$
Approx． 0.10 kg
Operating／Storage -20 to $+80^{\circ} \mathrm{C}$
temperature：$\quad /-45$ to $+80^{\circ} \mathrm{C}$
Protection type：IP 20

C

Note：${ }^{1}$ ）Connecting terminal＂ N ＂（RF heating resistor）causes the thermal feedback to work and so reduces the switch temperature difference to approx． 0.5 K ．

TECHNICAL DATA SHEET

Equipment Type:MTR Relays
Location:RTU Section
Model Numbers: MTR
Manufacturer:Xylem
Supplier:
Brisbane Technology Park
Unit 1, 18 Brandl Street
P.O. Box 4633
Eight Mile Plains
Queensland 4113
Australia

The MTR level relay has proven itself to be simple and extremely reliable in pump stations everywhere. The MTR controls one pump or one alarm. The MTRA controls one pump and one alarm.

- Safe

The extra low sensing voltage ensures maintenance staff and operators are protected at all times.

- Four sensitivities

Allows the relay to operate effectively in a wide range of conductive liquids.

- Activation delays

Each output can have a different time delay to overcome wave action and turbulence.

- LED indication

High intensity LED indicators ensure clear signals. Power On (green). Alarm On (red). Pump On (yellow).

- Dipswitch programmable

All settings are easily selectable from the front panel.

- Proven reliability

The proven design and performance of the relay ensures long-term reliability of the MultiTrode system.

- I.S application

Perfect for I.S application when used with an MTISB.

- Unique two-sensor operation (MTRA only)

Pump and alarm can be controlled using two or three sensors. Two-sensor operation is ideal for budget applications or where space is limited.

- DIN rail or screw mounting
- Low installed cost

Specifications

Mode of operation:

MTR Mode MTRA Mode

Charge/Discharge (Fill or Empty) Discharge ONLY

Probe Inputs: Sensor inputs Sensor voltage Sensor current Sensitivity

MTR : 2 / MTRA : 3 10/12VAC Nominal 0.8 mA max. (per sensor) 1k, 4k, 20k, 80k

Relay Outputs:

MTR relay output	2 contact sets :1 N/O \& $1 \mathrm{C} / \mathrm{O}$
MTR Output delay	$0,2.5,5,10,20,40,80,160 \mathrm{sec}$
MTRA relay output	2 relays : both N/O
MTRA Output delay	Pump: 0.5,10; Alarm: $0.5,15 \mathrm{sec}$
Relay contact rating	250 VAC
	5 A Resistive, 2A Inductive
Relay contact life	10^{5} Operations Terminal size

Terminal size

Display			
LEDs:	Power On	Pump	Alarm
MTR	Green	Red	
MTRA	Green	Yellow	Red

Physical Product:
Dimensions
Mounting
Enclosure
2.7/8H $\times 1.3 / 4 \mathrm{~W} \times 4.1 / 2 \mathrm{D}$ (Inches) $72 \mathrm{H} \times 45 \mathrm{~W} \times 114 \mathrm{D}$ (mm)
DIN Rail or 2 x \#6 Screws / 2 x M4 Screws Makrolon (self-extinguishing)

Power Supply:

Supply Voltage AC	$24,110,240,415 \mathrm{VAC}^{*}-50 / 60 \mathrm{~Hz}$
Power Consumption	3.5 Watts max
年(MTR only)	
Supply Voltage DC	12 or 24 VDC,
Power Consumption	3 Watts max

Available Models \& Ordering Information

415VAC	MTR-1	n/a
240VAC	MTR-2	MTRA-2
110VAC	MTR-3	MTRA-3
24VAC	MTR-4	MTRA-4
24VDC	MTR-5	MTRA-5
12VDC	MTR-6	MTRA-6

MultiTrode Pty Ltd • Australia Brisbane Technology Park 18 Brandl Street PO Box 4633 Eight Mile Plains QId 4113 Tel: +61733407000 Fax: +61733407077
Q-Pulse Id: TMS140;ales@multitrode.com.au
Active: 30/09/2015
Tel: +1 5619948090 Fax: +1 5619946282 sales@multitrodepâge 1293 of 1633

TECHNICAL DATA SHEET

Equipment Type:

Location:
Model Numbers:SAFE FSP
Manufacturer:
Xylem
Supplier:
Brisbane Technology Park
Unit 1, 18 Brandl Street
P.O. Box 4633
Eight Mile Plains Queensland 4113
Australia

multitrode
 WATER • WASTEWATER • PIIMP STATION • TECHNOLOGY

SAFESMART Backup Controller SAFE-FSP

Installation \& Operation Manual

This Manual is the support documentation for the installation, commissioning and operation of the SafeSmart FSP Backup Controller

Document No. 00242600
Document Revision 1
Last updated 2 June 2009

NOTICE

MULTITRODE® and MULTISMART® are registered trademarks of MultiTrode Pty Ltd in Australia, USA, and Europe. PUMPVIEW® is a registered trademark of MultiTrode Pty Ltd in the USA and Australia. Designs registered for the MultiSmart Pump Controller Remote and Base Modules in Australia, USA, Europe and China. Patents pending in Australia, USA, and Europe.
©2009 MultiTrode Pty Ltd. This publication is protected by copyright. No part of this publication may be reproduced by any process, electronic or otherwise, without the express written permission of MultiTrode Pty Ltd.

Contents

1 Warnings \& Cautions 5
1.1 Information to User 5
1.2 Documentation Standards 5
1.3 Installation Notes 5
2 Introduction 5
3 Specifications 6
4 Installation 7
5 Power Supply Options 8
6 Operation Modes \& Probe Inputs 9
6.1 Empty (Discharge) Mode 9
6.2 Fill (Charge) Mode 10
7 Level Alarms (AL Probe) 10
8 Thermal Pump Fault 11
9 Probe Faults 12
9.1 Failsafe Probe Fault 12
9.2 Assumed Probe Fault 12
10 Digital Output and Pump Sensor Connection Options 13
10.1 Local or Remote Monitoring of Pump Status \& Faults 13
10.2 MultiSmart and FSP Controller Thermal Sensor Options 13
11 Manual (Hand) Operation. 15
12 Pump Activation and Deactivation Delays 15
13 Alarm Activation and Deactivation Delays 15
14 Probe Sensitivity 15
15 LED Status Summary 16
16 DIP Switch Settings 16
17 Example Applications 17
17.1 Backup Operation 17
17.2 Dual Thermal Fault Monitoring (with MultiSmart) 18
17.3 Simplex Pump Controller 19
18 Backup Controller SAFE-FSP Label 20

1 Warnings \& Cautions

1.1 Information to User

Read this manual prior to installing or operating the SafeSmart-FSP Backup Controller. It contains all the information necessary to configure it for maximum performance for your application. After reading, place the manual in a safe place for future reference.

1.2 Documentation Standards

DANGER:

This symbol is used where non-compliance could result in injury or death.

WARNING:

This symbol is used where non-compliance could result in incorrect operation, damage to or failure of the equipment.

NOTE:
This symbol is used to highlight an issue or special case within the body of the manual.

1.3 Installation Notes

WARNING:

The SafeSmart-FSP installation and wiring must be performed by qualified personnel.

DANGER:

The SafeSmart-FSP has no user serviceable parts. To reduce the risk of electric shock leave all servicing to qualified Multitrode technical staff.

2 Introduction

The SAFE-FSP Backup Controller is a solid-state electronic level control module housed in a hi-impact plastic case with a DIN rail attachment on the back. It is used to control a pump (via a contactor or soft starter) in response to a liquid level sensor such as a MultiTrode probe.
The FSP Controller can be used as the primary source of control for a single pump or as a backup control device (for a single pump) when the primary control equipment fails. When using an FSP Controller as a backup controller, it only controls the pump in response to high or low level signals from dedicated level sensors.
A thermal sensor can be connected to the FSP Controller for pump protection. During operation, the LED indicators on the front panel display the current status including - Power, Pump On/Off, Level alarm, Thermal fault and Probe fault.

The FSP Backup Controller is designed to be easy to install and configure. All connections are clearly labelled on the side of the device and options are configured using a set of Dip switches on the front of the Controller.

3 Specifications

Dimensions	
Width	22.5 mm (7/8")
Height	101 mm (4")
Length (depth)	$120 \mathrm{~mm}\left(43 / 4{ }^{\prime \prime}\right)$
Environmental	
Ambient Temperature	-10 to $60{ }^{\circ} \mathrm{C}$ (14 to $140{ }^{\circ} \mathrm{F}$)
Humidity	5% to 90% non-condensing
AC Power Supply	
Voltage Range	85-265V AC
Frequency	$50 / 60 \mathrm{~Hz}$
Power	3.5W
DC Power Supply	
Voltage Range	12 -30V DC
Current	0.15A max
Relay Outputs	
Type	Form A
Current (Resistive)	5A
Current (Inductive)	2A
Voltage Rating DC	30V DC
Voltage Rating AC	250V AC
Thresholds*	
Thermal Fault Present	> 4k ohms
Thermal Fault Cleared	< 2k ohms
Thermal BU Input	0.15V DC

Table 1 - SAFE-FSP Specifications
*Where applicable, values include a 56 ohm series resistor on the thermal input.

4 Installation

The FSP Backup Controller is designed to be mounted onto a standard DIN rail. The power supply, input and output connections are located on the top of the Controller housing.

The features of the Controller are listed below and are discussed in the following sections.

- Power Supply Options
- Four Configurations
- Operation Modes \& Probe Inputs
- Empty (Discharge) Mode
- Fill (Charge) Mode
- Level Alarm Fault
- Level Alarm (AL Probe)
- Pump Faults
- Thermal Pump Fault
- Probe Faults
- Failsafe Probe Fault
- Assumed Probe Fault
- Digital Output and Pump Sensor Connection Options
- Local or Remote Monitoring of Pump Status \& Faults
- MultiSmart Connections - Conductive Thermal Sensor
- MultiSmart Connections - FLS Thermal Sensor
- Manual (Hand) Operation
- Alarm Activation and Deactivation Delays
- Probe Sensitivity
- LED Status Summary
- DIP Switch Settings

5 Power Supply Options

The FSP Controller can be supplied power in the following ways:

- $85-240 \mathrm{~V}$ AC Supply Only
- 12 - 30V DC Supply Only
- $85-240 \mathrm{~V}$ AC with $12-14 \mathrm{~V}$ DC as Backup
- $15^{*}-30 \mathrm{~V}$ DC with $85-240 \mathrm{~V}$ AC as Backup
* When the DC supply is 15 V or greater, the DC supply is the primary source.

A Power LED (steady green) indicates when the Controller is powered. If the LED flashes, supply voltage is too low.

NOTE:

If the power supply is below 24 VDC , the voltage alarm threshold is automatically set to 11.5 V . If the supply is 24 VDC or above, the voltage alarm threshold is automatically set to 23 V .

A switch or circuit-breaker and an over-current protection device must be included in the installation. The protection device must be in close proximity to the equipment, within easy reach of the operator, and be marked as the protection device for the equipment.
The input wiring and the switch/circuit-breaker/over-current device must be rated to at least the nominal input voltage being used. The recommended current ratings are below.

Unit Supply Range	Recommended Switch/Circuit- Breaker/Overcurrent Protection Device Rating	Minimum Supply Wiring Rating
$85-180 \mathrm{VAC}$	0.1 A	0.1 A
$180-265 \mathrm{VAC}$	0.05 A	0.05 A
$12-20 \mathrm{VDC}$	0.3 A	0.3 A
$20-30 \mathrm{VDC}$	0.15 A	0.15 A

Table 2 - Current Ratings

NOTE:
The MultiTrode probe uses an earth/ground return path for the signal. Ensure that the GROUND (DC-) terminal on the FSP Controller is also grounded.

6 Operation Modes \& Probe Inputs

The SafeSmart-FSP Backup Controller can be configured to operate in either Empty (Discharge) or Fill (Charge) mode.

- Empty (Discharge) Mode - Dip Switch 1 = OFF
- Fill (Charge) Mode - Dip Switch $1=$ ON

The Controller has three (3) probe inputs, High, Low and Alarm. The Alarm probe input can be configured as a low or high level alarm.

- High Level Alarm - Dip Switch 2 = OFF
- Low Level Alarm - Dip Switch 2 = ON

6.1 Empty (Discharge) Mode

This mode is used to pump liquid out of a well once it reaches a preset level. (Figure 1) In this mode the Controller operates as follows:

- The pump activates when the liquid reaches the sensor in the high level probe.
- The pump continues to operate until the liquid level drops below the low level probe and the pump deactivation period expires.
- When a thermal fault occurs, the Pump Control output is deactivated regardless of the liquid level. The pump stops, the Pump Fault output (DO1) is deactivated and the Thermal LED flashes.

Figure 1 - Empty (Discharge) Mode

6.2 Fill (Charge) Mode

This mode is used to fill up a well with liquid when the level falls to a preset level. (Figure 2) In this mode the Controller operates as follows:

- The pump activates when the liquid falls just below the sensor in the low level probe.
- The pump continues to operate until the liquid level reaches the sensor in the high level probe and the pump deactivation period expires.
- When a thermal fault occurs the Pump Control output deactivates regardless of the liquid level. The pump stops, the Pump Fault output is deactivated and the Thermal LED flashes.

Figure 2 - Fill (Charge) Mode

7 Level Alarms (AL Probe)

A conductive level sensor is connected to the AL Probe input to detect when the liquid level has risen above or fallen below an acceptable level.

In Empty (Discharge) mode this is typically a high level alarm and is activated when the AL Probe input detects liquid and the activation delay has expired.
In Fill (Charge) mode this is typically a low level alarm and is activated when the AL Probe input is no longer detecting level (i.e. the level has dropped below the sensor) and the activation delay has expired.

When a level alarm is detected the Level Alarm output (DO1) changes state and the Level Alarm LED flashes at 1 Hz . The Level Alarm/Pump Fault output can be used to operate an alarm device such as a beacon.

The Level Alarm/Pump Fault output (DO1) can be configured as normally open or normally closed.

- Normally Closed Output - Dip Switch 6 = OFF
- Normally Open Output - Dip Switch $6=$ ON

NOTE:
Dip Sw6 also has the same effect on the Probe/Failsafe Alarm output (DO3).

8 Thermal Pump Fault

The FSP Controller can detect thermal and FLS thermal faults. The FSP Controller can not detect a Seal fault. Types of sensors that maybe connected are FLS (Flygt Leakage Sensor), FLS10 or a thermal only sensor such as non-linear PTC thermistor or bi-metallic switch.

A thermal sensor is connected as illustrated in Figure 3. No Dip Switch setting change is required.

Figure 3 - Thermal Sensor Connection (Flygt and Non-Flygt Pumps)

When a thermal fault is detected, the pump stops, (DO2 is deactivated), the Level Alarm / Pump Fault output (DO1) changes state and the Thermal Fault LED begins to flash.
A thermal fault is automatically reset when the pump returns to normal operating temperature (i.e. the fault is no longer present). The flashing Thermal LED becomes steady and the pump is free to run.

A manual acknowledgement is required to clear the Thermal LED. A manual acknowledgement is performed by momentarily connecting Ground/Earth to the Manual (Hand) terminal. See Figure 4 below. (Note, the pushbutton switch is not supplied).

Figure 4 - Manual Thermal Fault Reset \& Manual (Hand) Operation

The Level Alarm/Pump Fault output (DO1) can be configured as normally open or normally closed.

- Normally Closed Output - Dip Switch 6 = OFF
- Normally Open Output - Dip Switch $6=$ ON

©
NOTE:
Dip Sw6 also has the same effect on the Probe/Failsafe Alarm output (DO3).

9 Probe Faults

The FSP Controller detects two types of probe faults, a Failsafe Probe fault and an Assumed Probe fault. When either fault is detected the Probe/Failsafe Alarm output (DO3) changes state. This output can be configured as normally open or normally closed.

- Normally Closed Output - Dip Switch 6 = OFF
- Normally Open Output - Dip Switch $6=$ ON

NOTE:
Dip Sw6 also has the same effect on the Level Alarm/Pump Fault output (DO1).

9.1 Failsafe Probe Fault

MultiTrode probes are available with a failsafe connection to the top-most sensor to enable detection of a sensor fault. If a broken cable is detected to the top-most sensor, the Probe/FailSafe fault output (DO3) changes state, the Probe Fault LED flashes and the pump stops.
A Failsafe probe is typically used in discharge (empty) applications only. By its very nature the probes used in a charge or fill application are covered, so for example if the low level alarm probe goes open circuit, a low level alarm would be present immediately.

NOTE:

If a non-failsafe probe is used, then a jumper must be connected between the Alarm Probe and the Failsafe Probe inputs to suppress erroneous probe faults.

NOTE:

When using single sensor probes, the Failsafe Probe input should be connected to the highest probe in the system.

9.2 Assumed Probe Fault

For an Empty (Discharge) application, if a High Level probe is activated and the Low Level probe is deactivated, then the Controller assumes the Low Level probe is faulty. This condition is called an "Assumed Probe Fault" and the Probe Fault LED illuminates.

The Controller changes its pumping behaviour to a timed method until the fault condition is no longer present. So the pump continues to run for 60 s after the High Level probe has deactivated and during this time the Pump LED flashes.

For a Fill (Charge) application, if a High Level probe is activated and the Low Level probe is deactivated, then the Controller assumes the Low Level probe is faulty. This condition is called an "Assumed Probe Fault" and the Probe Fault LED illuminates.

The Controller changes its pumping behaviour to a timed method until the fault condition is no longer present. So the Controller waits for 60 seconds after the High Level probe has deactivated then starts the pump, and during this time the Pump LED flashes.

When an Assumed Probe fault occurs, the Probe/FailSafe fault output (DO3) changes state.

10 Digital Output and Pump Sensor Connection Options

10.1 Local or Remote Monitoring of Pump Status \& Faults

The FSP Controller's digital outputs can be wired into the inputs of a wide range of devices (e.g. a PLC, RTU or Dialler etc.) and the state of the pump monitored. The valid states and what they signify are tabled below.

DO1	DO2	DO3	DO1	DO2	DO3
0	0	0	-	Off	-
0	0	1	-	Off	Y
1	0	0	Y	Off	-
1	0	1	Y	Off	Y
0	1	0	-	On	-
0	1	1	-	On	Y
1	1	0	Y	On	-
1	1	1	Y	On	Y

Table 3 - FSP Controller Output States

* Dip Sw 6 = On (Normally Open)

10.2 MultiSmart and FSP Controller Thermal Sensor Options

The FSP Controller can be used in conjunction with a MultiSmart Pump Station Manager.
The MultiSmart is indirectly connected to the thermal sensor via a relay within the FSP Controller. The Controller monitors this line and if it detects that the MultiSmart is no longer connected, the internal relay switches over and the FSP Controller drives the sensor.

The Controller monitors the voltage on the Thermal BU input to the MultiSmart. If the MultiSmart fails, the Controller takes over and controls the pump (but does not inhibit the MultiSmart pump control) and monitors for a thermal fault - thus providing backup control and thermal overload protection to the pump.

10.2.1 MultiSmart Connections - Conductive Thermal Sensor

The conductive thermal sensor is connected to the Thermal input. The Thermal BU (backup) is connected to a digital input on the MultiSmart (configured as a Motor OverTemp fault). See Figure 5 below.

The MultiSmart and FSP controller are both capable of responding to a thermal fault. When a thermal fault is detected, the pump stops, if running. A Motor OverTemp fault is displayed on the MultiSmart and a thermal fault is displayed on the Controller. The pump can not be restarted until the thermal fault clears. The FSP Controller automatically resets the fault when the fault condition is no longer present, this allows the pump to run again but only via the Controller The fault must be reset at the MultiSmart before the MultiSmart is able to run the pump again.

Figure 5 -Thermal Sensor Connections to a MultiSmart

10.2.2 MultiSmart Connections - FLS Thermal Sensor

The FLS sensor is connected to the Thermal input. The Thermal BU is connected to a digital input on the MultiSmart (configured as an FLS fault). (See Figure 6 below). The FSP Controller is not able to detect a seal fault however the MultiSmart can.

When an FLS thermal fault is detected, the pump stops, if running - shut down by the MultiSmart and/or the FSP Controller. An FLS Flygt Thermal fault is displayed on the MultiSmart and on the Controller. The pump can not be restarted until the thermal fault clears. The FSP Controller automatically resets the fault when the fault condition is no longer present, this allows the pump to run again but only via the Controller The fault must be reset at the MultiSmart before the MultiSmart is able to run the pump again.

When an FLS Seal fault occurs the FSP Controller is unable to detect it however the MultiSmart can and will display an FLS Flygt Seal fault. By default, the MultiSmart allows the pump to continue to run when a seal fault occurs.

Figure 6 - FLS Connections to a MultiSmart (Flygt Pump)

11 Manual (Hand) Operation

A momentary action pushbutton (not supplied) may be connected to the Manual (Hand) input and used to operate the pump directly. (See Figure 7). Once pressed the pump begins to operate immediately irrespective of the liquid level. A second momentary action pushbutton switch is required to switch the pump off. It is connected across the Off input and Ground/Earth.

WARNING:

If operating the pump manually via the Manual (Hand) switch, the pump does NOT automatically turn off when the level falls below the low sensor. So ensure that the pump is switched off via the Pump Off switch before the level becomes critically low to avoid potential damage to the pump.

Figure 7 - Manual Pump Operation - On \& Off Switches

12 Pump Activation and Deactivation Delays

Activation delays are used to prevent spurious pump starts. The delay allows the level device to positively detect the liquid before operating the pump.

There are two delay periods for Pump Activation delay:

- $0.5 \mathrm{sec}-$ Dip Switch $3=$ OFF
- 30 sec - Dip Switch 3 = ON

There are two delay periods for Pump Deactivation delay:

- $0.5 \mathrm{sec}-$ Dip Switch $4=$ OFF
- 30 sec - Dip Switch 4 = ON

13 Alarm Activation and Deactivation Delays

Activation and Deactivation delays are used to prevent spurious level alarms. The delay allows the level device to positively detect the liquid before triggering the alarm.

There are two delay periods:

- $0.5 \mathrm{sec}-$ Dip Switch $5=$ OFF
- 10 sec - Dip Switch $5=$ ON

This delay applies to both the alarm activation and deactivation delay.

14 Probe Sensitivity

The Controller is used in conjunction with a conductive level sensing device, such as the MultiTrode probe. Conductive probes rely on conductivity through the liquid to earth in order to detect level. Highly conductive liquids, such as saltwater, generally require the Controller be set to a lower sensitivity than for low conductivity liquids, such as distilled water.

For most applications, the default probe setting of 20 k ohms is satisfactory but the Controller allows the operator to adjust its sensitivity as needed for specific conditions. The sensitivity is set using Dip Switches 7 and 8.

Dip Sw 7	Dip Sw 8	Sensitivity	Typical Application
OFF	OFF	1 k ohm	Concentrates Acids, Minerals, Alkalis
ON	OFF	4 k ohm	Acids, Alkalis, Diluted Brine, Sea Water
OFF	ON	20 k ohm	Sullage, Sewage Effluent, Town Water
ON	ON	80 k ohm	Industrial Effluent, Purified Water*

Table 4 - Probe Sensitivity

* Not recommended for use with purified de-ionised water or pristine rain water.

15 LED Status Summary

Five LEDs on the front of the Controller indicate the power, level alarm, pump status, thermal and probe fault status of the Controller.

LED	Status	Indication
Power	Power on	Steady
	Low voltage	Flashing
Level	Level alarm	Flashing
Pump	Pump on	Steady
	Activation delay period	Flashing
Thermal	Manual ack required	Steady
	Thermal fault active	Flashing
	Standalone locked mode*	Flashing - Double
Probe	Assumed probe fault	Steady
	Failsafe probe fault **	Flashing

Table 5 - LED Summary Status

* In Standalone Locked mode the FSP Controller ignores the THERMAL BU input. Standalone Locked mode occurs if the voltage on the THERMAL BU input is unstable (i.e. voltage is $<0.15 \mathrm{~V}$ and $>6 \mathrm{~V}$ in less than 0.5 s for 30 seconds). To exit Standalone Locked mode, press the Manual (Hand) button.
** Failsafe probe fault has higher priority than Assumed probe fault.

16 DIP Switch Settings

The Controller is configured using the DIP switches located on the front of the enclosure.

DIP \#	Setting	Mode Description	Section
$\mathbf{1}$	OFF	Empty (Discharge) Mode	6
	ON	Fill (Charge) Mode	6
$\mathbf{2}$	OFF	High Level Alarm	6
	ON	Low Level Alarm	6
$\mathbf{3}$	OFF	0.5 sec Pump Activation Delay	12
	ON	30 sec Pump Activation Delay	12
$\mathbf{4}$	OFF	0.5 sec Pump Deactivation Delay	12
	ON	30 sec Pump Deactivation Delay	12
$\mathbf{5}$	OFF	0.5 sec Alarm Activation \&	13
	ON	10 sec Alarm Activation \&	13
$\mathbf{6}$	OFF	N/C (Normally Closed) (DO3 \& DO1)	$7,8,9$
	ON	N/O (Normally Open) (DO3 \& DO1)	$7,8,9$
$\mathbf{7}$	$\mathbf{8}$	Probe Sensitivity	14
OFF	OFF	1k ohm	
ON	OFF	4k ohm	
OFF	ON	20 k ohm	
ON	ON	80 k ohm	

Table 6 - Dip Switch Settings

17 Example Applications

17.1 Backup Operation

Following is an example an empty (discharge) application using the FSP Controller as backup to a pump controller (the primary control device). In this configuration the FSP Controller does not control the pump until the High Level probe is covered which should only occur if the pump controller fails.

If the level continues to rise and it reaches the Alarm probe, a high level alarm is tripped. This indicates that the pump for whatever reason is unable to cope and the level has risen to an excessively high level (and overflow is possibly imminent).
The Alarm and High Level probes are positioned higher than the highest activation point used by the pump controller.

EMPTY (DISCHARGE) MODE


```
Dip Sw 1 = Off (Empty Mode )
Dip Sw 2 = Off ( High Level Alarm )
Dip Sw \(3=\) On (Pump Activation Delay \(=30\) s)
Dip Sw \(4=\) Off ( Pump Deactivation Delay \(=0.5 \mathrm{~s}\) )
Dip Sw \(5=\) Off (Alarm Delay \(=0.5 \mathrm{~s}\) )
Dip Sw 6 = Off (N/C Level \& Probe Alarms )
```

Figure 8 - Example of a Backup Application

If the pump controller is located at a site with no telemetry, a low level alarm could be configured (rather than a high level alarm). If the alarm trips, it indicates (by means of say a beacon) that the primary pump controller has most likely failed. However in this case no further alarm can be generated by the FSP Controller to indicate an excessively high level has been reached.

NOTE:

The actual probe position is at the discretion of the end user, the only requirement for a discharge (empty) application is that the high probe must be positioned higher than the (highest*) activation setpoint. (* In some pump controllers, more then one activation setpoint may be defined).

17.2 Dual Thermal Fault Monitoring (with MultiSmart)

The following wiring diagram (Figure 9), illustrates an application where the FSP Controller and a MultiSmart pump controller operate in parallel.

The thermal sensor is connected to the FSP Controller and the Thermal Bu input is connected to the MultiSmart. This allows both devices to act on a thermal fault.

If a seal sensor is present it is connected to the MultiSmart.

Figure 9 - Dual Thermal Fault Monitoring

SAFE-FSP Relay Manual

17.3 Simplex Pump Controller

In this example the FSP Controller is configured as the primary pump controller for a single pump. The FSP Controller takes no action until the High Level probe is covered. When it is covered, the Pump Control output (DO2) closes turning on the pump.
When the Alarm Level probe is covered, a high level alarm is generated and the Level Alarm/Pump Fault output (DO1) changes state.

The FSP Controller monitors the thermal sensor. If a seal sensor is present it is not connected to the FSP Controller.

The FSP Controller and associated probes can control a maximum of one pump. The wiring is illustrated in Figure 10 below.

Figure 10-Simplex Pump Controller

Figure 11 - SafeSmart SAFE-FSP Label.

MultiTrode Pty Ltd-UK Operations Ivybridge, Devon

Tel: +44 1752547355
Fax: +44 1752894615

E-mail:UKsales@multitrode.com

MultiTrode Pty Ltd-Head Office Brisbane Technology Park 18 Brandl Street
PO Box 4633
Eight Mile Plains Qld 4113
Ph: +61733407000
Fx: +61 733407077
E-mail: AUsales@multitrode.com

MultiTrode Inc-USA

Unit 3, 990 South Rogers Circle Boca Raton Florida 33487

Tel: +1 5619948090
Fax: +1 5619946282
E-mail: USsales@multitrode.net

Visit www.multitrode.com for the latest information

TECHNICAL DATA SHEET

Equipment Type: Satec Power Meter
Location:
RTU Section
Model Numbers:PM130EH
Manufacturer: Satec
Supplier:
Control Logic
25 Lavarack Ave,Eagle Farm QLD 4009(07) 36231212

PM130 PLUS Powermeter Series PM130P/PM130E/PM130EH

Installation and Operation Manual

BG0425 Rev. A15

LIMITED WARRANTY

The manufacturer offers the customer a 24-month functional warranty on the instrument for faulty workmanship or parts from date of dispatch from the distributor. In all cases, this warranty is valid for 36 months from the date of production. This warranty is on a return to factory basis.

The manufacturer does not accept liability for any damage caused by instrument malfunction. The manufacturer accepts no responsibility for the suitability of the instrument to the application for which it was purchased.

Failure to install, set up or operate the instrument according to the instructions herein will void the warranty.

Only a duly authorized representative of the manufacturer may open your instrument. The unit should only be opened in a fully anti-static environment. Failure to do so may damage the electronic components and will void the warranty.

The greatest care has been taken to manufacture and calibrate your instrument. However, these instructions do not cover all possible contingencies that may arise during installation, operation or maintenance, and all details and variations of this equipment are not covered by these instructions.
For additional information regarding installation, operation or maintenance of this instrument, contact the manufacturer or your local representative or distributor.

WARNING

Read the instructions in this manual before performing installation and take note of the following precautions:

4.	Ensure that all incoming AC power and other power sources are turned OFF before performing any work on the instrument. Protect the measurement AC I nputs voltage (V1, V2, V3) with 2A external overcurrent protection device and the power supply source inputs with 5A external overcurrent protection device, located close to the equipment.
1.	Before connecting the instrument to the power source, check the labels on the back of the instrument to ensure that your instrument is equipped with the appropriate power supply voltage, input voltages and currents. Failure to do so may result in serious or even fatal injury and/ or equipment damage.
4.	Under no circumstances should the instrument be connected to a power source if it is damaged.
1.	To prevent potential fire or shock hazard, do not expose the instrument to rain or moisture.
1.	The secondary of an external current transformer must never be allowed to be open circuit when the primary is energized. An open circuit can cause high voltages, possibly resulting in equipment damage, fire and even serious or fatal injury. Ensure that the current transformer wiring is secured using an external strain relief to reduce mechanical strain on the screw terminals, if necessary.
4.	Only qualified personnel familiar with the instrument and its associated electrical equipment must perform setup procedures.
4	Do not open the instrument under any circumstances when it is connected to a power source.

1. Do not use the instrument for primary protection functions where failure of the device can cause fire, injury or death. The instrument can only be used for secondary protection if needed.
\$ Read this manual thoroughly before connecting the device to the current carrying circuits. During operation of the device, hazardous voltages are present on input terminals. Failure to observe precautions can result in serious or even fatal injury or damage to equipment.
$\Rightarrow \quad$ This equipment does not require cleaning for proper operation

All trademarks are property of their respective owners
Copyright © 2007-2009

Quick Start Guide

This section can be used by a licensed electrician to install and perform basic PM130 PLUS setup. For more detailed PM130 PLUS setup and use instructions, see the following chapters in this manual.

This quick start guide will assist you to have the unit running for the first time.

During the operation of the meter, hazardous voltages are present in the input terminals. Failure to observe precautions can result in serious or even fatal injury, or damage to equipment.

For complete and accurate in-depth instructions, refer to the following chapters in this manual.

1. Installing the PM130 PLUS

Mounting the PM130 PLUS Unit

To mount the PM130 PLUS:

1. Position the PM130 PLUS unit in the square or round cutout. If two PLM130 PLUS are positioned side by side, take care of proper interval between them.
2. Attach the PM130 PLUS unit using washers and nuts. Make sure that the unit is securely attached into the wall or cabinet fixture.

Mounting the PM130 PLUS (Square or Round Cut-out)

Mounting two PM130 PLUS side by side

Connecting the PM130 PLUS Unit

To connect the PM130 PLUS:

1. Ensure that all incoming power sources are OFF.
2. Check that you have the appropriate power supply.
3. Connect to the external CT by passing the external CT wire through the meter CT core. Observe the arrow that indicates the current direction.
4. In case of a retrofit application where each external CT ends with two wires:

- Pass one wire through the meter CT core.
- Connect the wire to one of the meter termination screws.
- Connect the second wire from the external CT to the termination screw.

5. Connect the measured voltage inputs
6. Connect COM1 - RS-485 communication port
7. Connect the Power Supply inputs using 1.5 $\mathrm{mm}^{2} / 14 \mathrm{AWG}$-dedicated wires.

Common Wiring Mode: 4LL3 or 4Ln3

CT wiring

To connect an Option module:

1. Assemble the module on the meter.
2. Power the PM130 PLUS unit on.

Assembling a module

To operate the PM130 PLUS:

1. Perform device diagnostics.
2. Configure the device through the PM130 PLUS unit front panel display.

2. Configuring the PM130 PLUS remotely

1. Install the PAS application software on your PC.
2. Configure the PAS database for your meter.
3. Configure the PAS communications settings.
4. Upgrade the meter firmware if a new version is available.
5. Set up the meter using the PAS application software.
6. Configure your security settings through the meter security setup.
7. Configure your communication protocol settings.
8. Configure Billing/TOU registers.

At this stage, the PM130 PLUS should be ready for operation.

Table of Contents

Chapter 1 General I nformation 12
1.1 Features 12
1.2 Available Options 14
Digital I/O 14
Analog Output 15
Additional Communication Port - COM2 15
TOU - Battery-Operated Clock Unit 15
1.3 Customized Options 15
Device Resolution 15
Energy Rollover 15
Display Options 16
1.4 Measured Parameters 16
Chapter 2 Installation 18
2.1 Site Requirements 18
2.2 Package Contents 18
2.3 Mechanical I nstallation. 19
Panel Mounting 20
DIN Rail Mounting 20
2.4 Electrical I nstallation 22
Typical Installation 22
Terminals 23
Power Source Connection 23
Voltage Input connection 24
Current Input Connection 24
Wiring Diagrams 25
2.5 I/ O Connections 30
4DI/2DO Module 30
4AO Module - Analog Outputs. 33
TOU module - RTC and 4 Digital Inputs 33
2.6 Communications Connections. 35
COM1 RS-485 Connection 36
ETH module - COM2 Ethernet Connection 37
PRO module - COM2 Profibus Connection 38
RS-232/422-485 module - COM2 Connection 39
Connecting a GSM/GPRS modem 40
Chapter 3 Using Front Display 42
3.1 I ndicators and Controls 42
Device Diagnostics 42
Numeric LED Display 42
Load Bar Graph 43
Energy Pulse LED 43
Port Activity LEDs 43
Navigation Buttons 43
3.2 Data Display 43
Display Features 43
Navigation Buttons 45
Simple Reset of Accumulated Data 45
Common Measurements Display 46
Min/Max and Maximum Demand Display 47
Harmonics Display (PM130EH) 48
Energy Display (PM130E/EH) 49
3.3 Status Display 50
Pulse and Time Counters 52
Alarm Display 52
Diagnostics Display 52
3.4 Using the Menus 53
Navigation Buttons 53
Selecting Menus 53
Entering the Password 54
Selecting a Menu Entry 54
Viewing and Changing Setup Options 55
Chapter 4 Using PAS Software 57
4.1 Installing PAS 57
4.2 Creating a New Site for your Meter 57
4.3 Setting up Communications 59
Communicating through a Serial Port 59
Communicating through the Internet 60
4.4 Setting Up the Meter 61
Preparing Setups for the Meter 61
Downloading Setups to the Meter 62
Uploading Setups from the Meter 62
4.5 Authorization 63
Chapter 5 Configuring the PM130 PLUS 64
5.1 Configuring Communications 64
Setting Up Serial Communication Ports 64
Setting Up Ethernet 65
Setting Up GPRS Network 67
Setting Up eXpertPower Client 68
Setting Up TCP Notification Client 69
5.2 General Meter Setup 71
Basic Meter Setup 71
Device Options 73
Configuring Digital Inputs. 75
Configuring Relay Outputs 77
Configuring Analog Outputs 79
Configuring Counters 82
Configuring Alarm/Control Setpoints 83
Configuring the Display 86
Local Time Settings 87
5.3 Configuring Meter Security 89
5.4 Configuring Billing/ TOU 91
Configuring Billing/Tariff Registers 91
Configuring the Daily Tariff Schedule 93
Configuring the Season Tariff Schedule. 94
5.5 Configuring Recorders 96
Configuring Meter Memory 96
Configuring the Event Recorder 98
Configuring the Data Recorder 98
5.6 Configuring Communication Protocols 102
Configuring Modbus 102
Configuring DNP3 103
Chapter 6 Device Control and Upgrading 106
6.1 Resetting Accumulators, Maximum Values and Files 106
6.2 Updating the Meter Clock 107
6.3 Viewing and Clearing Device Diagnostics 109
6.4 Viewing Communication Status and Statistics 110
6.5 Remote Relay Control 110
6.6 Upgrading Device Firmware 111
Chapter 7 Monitoring Meters 113
7.1 Viewing Real-time Data 113
7.2 Viewing Real-time Min/ Max Log 115
7.3 Viewing Real-time Waveforms 116
7.4 Viewing Real-time Harmonic Spectrum 118
Chapter 8 Retrieving and Storing Files 122
8.1 Uploading Files on Demand 122
8.2 Using the Upload Scheduler 123
8.3 Viewing Files On-line 125
8.4 Exporting Files 125
Exporting Files in COMTRADE and PQDIF Formats 125
Exporting Files in Excel Format 127
8.5 Archiving Files 127
Chapter 9 Viewing Files 128
9.1 Operations with Files 128
9.2 Viewing Options 128
Customizing Views 128
Working with Tables 129
Working with Graphic Windows 129
9.3 Viewing the Event Log 131
9.4 Viewing the Data Log 132
Appendix A Technical Specifications 134
Appendix B Analog Output Parameters 141
Appendix C Setpoint Triggers and Actions 143
Appendix D Parameters for Data Monitoring and Logging 146
Appendix E Billing/ TOU Profile Log File 155
Appendix F Data Scales 157
Appendix G Device Diagnostic Codes 158
Index 159

Chapter 1 General Information

The PM130 PLUS is a compact, multi-function, three-phase AC powermeter specially designed to meet the requirements of users ranging from electrical panel builders to substation operators.

$\Rightarrow \quad$ The PM130 PLUS measuring and power supply inputs comply with Measuring Category II

The PM130 PLUS comprises of three types of models:

- PM130P: the basic model which offers standard voltage, current, power and frequency measurements, and control capabilities. A special amp-demand version can be ordered with a simplified display layout especially suitable for current measurements.
- PM130E: offers all the features of the basic model plus energy measurements and data logging.
- PM130EH: offers all the features of the PM130E plus harmonic analysis capabilities.

The PM130 PLUS units include:

- A bright 3-row LED display enabling easy reading of local meters.
- A standard RS-485 communication port and a second optional Ethernet, Profibus or RS-232/RS-422/RS-485 port. These ports allow local and remote automatic meter readings and setup through the supplemental communication or user data acquisition software.
- Different communication options for remote communications with the meter. These options enable LAN and Internet communication with the unit.
All models are suitable for mounting on both 4 -inch round and $92 \times 92 \mathrm{~mm}$ square cutouts.

1.1 Features

Multifunctional 3-phase Power Meter

- 3 voltage inputs and 3 current transformer-isolated AC inputs for direct connection to power line or via potential and current transformers
- True RMS, volts, amps, power, power factor, neutral current, voltage and current unbalance, frequency
- Ampere/Volt demand meter
- $25 / 50 / 60 / 400 \mathrm{~Hz}$ measurement capabilities

Billing/TOU Energy Meter (PM130E and PM130EH)

- Class 0.5S IEC 62053-22 four-quadrant active and reactive energy polyphase static meter
- Three-phase total and per phase energy measurements; active, reactive and apparent energy counters
- Time-of-Use, 4 totalization and tariff energy/demand registers x 8 tariffs, 4 seasons $\times 4$ types of days, 8 tariff changes per day,
- One-time easy programmable tariff calendar schedule
- Automatic daily energy and maximum demand profile log for total and tariff registers

Harmonic Analyzer (PM130EH)

- Voltage and current THD, current TDD and K-Factor, up to 40th order harmonic
- Voltage and current harmonic spectrum and angles

Real-time Waveform Capture

- Real-time "scope mode" waveform monitoring capability
- Simultaneous 6-channel one-cycle waveform capture at a rate of 64 samples per cycle

Programmable Logical Controller

- Embedded programmable controller
- 16 control setpoints; programmable thresholds and delays
- Relay output control (see Available Options)
- 1-cycle response time

Event and Data Recording (PM130E and PM130EH)

- Non-volatile memory for long-term event and data recording
- Event recorder for logging internal diagnostic events and setup changes
- Two data recorders; programmable data logs on a periodic basis; automatic daily energy and maximum demand profile log

Digital I/O

- Optional four or twelve digital inputs with 1-ms scan time; automatic recording of last five digital input change events with timestamps (see the PM130 PLUS Modbus Reference Guide)
- Optional two or four relay outputs with 1-cycle update time; unlatched, latched, pulse and KYZ operation; energy pulses

Display

- Easy to read 3 -row (2×4 characters $+1 \times 5$ characters) bright LED display, adjustable update time and brightness
- Auto-scroll option with adjustable page exposition time; autoreturn to a default page
- LED bar graph showing percent load with respect to userdefinable nominal load current

Real-time Clock

- Internal clock with 20-second retention time
- Optional battery-operated clock unit (see Available Options)

Communications

- Standard 2-wire RS-485 communication port; Modbus RTU, DNP3, SATEC ASCII communication protocols and IEC 61870-5-101
- Optional second communication port (see Available Options); Modbus RTU, Modbus/TCP, DNP3, DNP3/TCP, IEC 61870-5101/104, SATEC ASCII and Profibus DP communication protocols
- eXpertPower ${ }^{\text {TM }}$ client for communicating with the SATEC proprietary eXpertPower ${ }^{\mathrm{TM}}$ Internet services (with the Ethernet or GPRS module), see Setting Up eXpertPower Client)
- TCP notification client for communicating with a remote Modbus/TCP server on events or periodically on a time basis (with the Ethernet or GPRS module), see Setting Up TCP Notification Client)

Meter Security

- Password security for protecting meter setups and accumulated data from unauthorized changes

Upgradeable Firmware

- Easy upgrading device firmware through a serial or Ethernet port.

Software Support

- PAS - free meter configuration and data acquisition tool
- eXpertPower ${ }^{\text {TM }}$ - SATEC proprietary Internet services

1.2 Available Options

The PM130 PLUS can be provided with an optional expansion module from the following list:

- Digital I/O
- Analog outputs
- TOU - Battery-operated clock unit
- Ethernet communication port
- Profibus DP communication port
- RS-232/RS-422/RS-485 communication port
- GPRS communication port

Digital I/O

The PM130 PLUS digital I/O expansion module provides:

4DI/ 2DO module

- 4 dry contact digital inputs (DI) for monitoring external contacts and receiving pulses from energy, water, and gas meters
- Programmable de-bounce time; 1-ms scan time.
- 2 electro-mechanical or solid-state relay outputs (RO) for alarms and controls, and for output energy pulses; unlatched, latched and pulse operations, failsafe operation for alarm notifications; programmable pulse width; direct remote relay control through communications; 1-cycle update time.

12DI / 4DO module

- 12 dry contact digital inputs (DI) for monitoring external contacts and receiving pulses from energy, water, and gas meters
- Programmable de-bounce time; 1-ms scan time.
- 4 electro-mechanical relay outputs (RO) for alarms and controls, and for output energy pulses; unlatched, latched and pulse operations, failsafe operation for alarm notifications; programmable pulse width; direct remote relay control through communications; 1-cycle update time.

The PM130 PLUS analog output (AO) expansion module provides:

- 4 optically isolated analog outputs with an internal power supply;
- Options for 0-20mA, 4-20mA, 0-1mA, and $\pm 1 \mathrm{~mA}$ output; 1-cycle update time.

Additional Communication Port - COM2

A second COM2 communication port can be ordered as an expansion module. COM2 options available:

- Ethernet 10/100BaseT port; MODBUS/TCP , DNP3/TCP and IEC 60870-5-104 communications protocols
- Profibus DP port
- RS-232/RS-422/RS-485 port; MODBUS RTU, DNP3, SATEC ASCII and IEC 60870-5-101 communication protocols;
- GPRS communications port

TOU - Battery-Operated Clock Unit

The TOU module provides:

- A precise clock with battery backup; 6-year clock retention time
- 4 dry contact digital inputs (DI) for monitoring external contacts and receiving pulses from energy, water and gas meters; programmable de-bounce time; 1-ms scan time.

1.3 Customized Options

Presentation of data on the front display and via communications can be customized to best suit the user application.

Device Resolution

A low or high-resolution option can be selected for the presentation of voltage, current, and power for use in high and low power applications. See Measurement Units for more information.

Energy Rollover

The energy rollover limit can be changed in the meter to provide 4-digit to 9 -digit energy resolution. See Device Options in Chapter 5 for details. The meter display is capable of showing full 9-digit energy counters using two LED windows.

Display Options

Different display options are available for customization to be used in dark or non-safe locations, or in places that are hardly accessible for observation. See Configuring the Display in Chapter 5 for more information.

1.4 Measured Parameters

Table 1: Measured and Displayed Parameters

Parameter	Display	Comm.	Analog	Pulse	Alarm
1-cycle Real-time Measurements					
RMS Voltage per phase		\checkmark	\checkmark		\checkmark
RMS Current per phase		\checkmark	\checkmark		\checkmark
kW per phase		\checkmark			\checkmark
kvar per phase		\checkmark			\checkmark
kVA per phase		\checkmark			\checkmark
Power Factor per phase		\checkmark			\checkmark
Total kW		\checkmark	\checkmark		\checkmark
Total kvar		\checkmark	\checkmark		\checkmark
Total kVA		\checkmark	\checkmark		\checkmark
Frequency		\checkmark	\checkmark		\checkmark
Neutral Current		\checkmark	\checkmark		\checkmark
Total Power Factor		\checkmark	\checkmark		\checkmark
Voltage \& Current unbalance		\checkmark			\checkmark
1-sec Average Measurements					
RMS Voltage per phase	\checkmark	\checkmark	\checkmark		\checkmark
RMS Current per phase	\checkmark	\checkmark	\checkmark		\checkmark
kW per phase	\checkmark	\checkmark			\checkmark
kvar per phase	\checkmark	\checkmark			\checkmark
kVA per phase	\checkmark	\checkmark			\checkmark
Power Factor per phase	\checkmark	\checkmark			\checkmark
Total kW	\checkmark	\checkmark	\checkmark		\checkmark
Total kvar	\checkmark	\checkmark	\checkmark		\checkmark
Total kVA	\checkmark	\checkmark	\checkmark		\checkmark
Total Power Factor	\checkmark	\checkmark	\checkmark		\checkmark
Frequency	\checkmark	\checkmark	\checkmark		\checkmark
Neutral Current	\checkmark	\checkmark	\checkmark		\checkmark
Voltage \& Current unbalance	\checkmark	\checkmark			\checkmark
Amps \& Volt Demands					
Ampere \& Volt Demand per phase		\checkmark			\checkmark
Ampere Maximum Demand per phase	\checkmark	\checkmark			\checkmark
Voltage Maximum Demand per phase	\checkmark	\checkmark			\checkmark
Power Demands E, EH					
kW Accumulated Demand Import \& Export		\checkmark	\checkmark		\checkmark
kvar Accumulated Demand Import \& Export		\checkmark	\checkmark		\checkmark
kVA Accumulated Demand		\checkmark	\checkmark		\checkmark
kW Demand Import \& Export		\checkmark			\checkmark
kvar Demand Import \& Export		\checkmark			\checkmark
kVA Demand		\checkmark			\checkmark
kW Sliding Demand Import \& Export		\checkmark			\checkmark
kvar Sliding Demand Import \& Export		\checkmark			\checkmark
kVA Sliding Demand		\checkmark			\checkmark

Parameter	Display	Comm.	Analog	Pulse	Alarm
kW Predicted Demand Import \& Export		\checkmark			\checkmark
kvar Predicted Demand Import \& Export		\checkmark			\checkmark
kVA Predicted Demand		\checkmark			\checkmark
kW Maximum Demand Import	\checkmark	\checkmark			
kW Maximum Demand Export		\checkmark			
kvar Maximum Demand Import	\checkmark	\checkmark			
kvar Maximum Demand Export		\checkmark			
kVA Maximum Demand	\checkmark	\checkmark			
Total Energy E, EH					
Total kWh Import \& Export	\checkmark	\checkmark		\checkmark	
Total kvarh Import \& Export	\checkmark	\checkmark		\checkmark	
Total kvarh Net		\checkmark			
Total kVAh	\checkmark	\checkmark		\checkmark	
Energy per Phase E, EH					
kWh Import per phase	\checkmark	\checkmark			
kvarh Import per phase		\checkmark			
kVAh per phase	\checkmark	\checkmark			
TOU Registers E , EH					
4 TOU energy registers (kWh and kvarh import \& export, kVAh, 4 pulse sources)	\checkmark	\checkmark			
4 TOU maximum demand registers		\checkmark			
8 tariffs, 4 seasons $\times 4$ types of day		\checkmark			\checkmark
Harmonic Measurements $\mathbf{E H}$					
Voltage THD per phase	\checkmark	\checkmark	\checkmark		\checkmark
Current THD per phase	\checkmark	\checkmark	\checkmark		\checkmark
Current TDD per phase	\checkmark	\checkmark	\checkmark		\checkmark
K-factor per phase	\checkmark	\checkmark	\checkmark		\checkmark
Voltage harmonics per phase up to order 40	\checkmark	\checkmark			
Current harmonics per phase up to order 40	\checkmark	\checkmark			
Voltage harmonic angles up to order 40		\checkmark			
Current harmonic angles up to order 40		\checkmark			
Fundamental Component ${ }^{\text {EH }}$					
Voltage and Current per phase		\checkmark			
kW, PF per phase	\checkmark	\checkmark			
kvar, KVA per phase		\checkmark			
Total kW, PF	\checkmark	\checkmark			
Total kvar, KVA		\checkmark			
Min/ Max Logging					
Min/Max A, V, total kW, kvar, kVA, PF	\checkmark	\checkmark			
Min/Max Frequency, Neutral current	\checkmark	\checkmark			
Phase Rotation	\checkmark	\checkmark			\checkmark
Voltage and Current Phase Angles	\checkmark	\checkmark			
Day and Time	\checkmark	\checkmark			
Pulse Counters	\checkmark	\checkmark			\checkmark
Digital I nputs (optional)	\checkmark	\checkmark			\checkmark
Relay Outputs (optional)	\checkmark	\checkmark			\checkmark
Remote Relay Control (optional)		\checkmark			
Alarm Triggers/ Setpoints		\checkmark			\checkmark
Self-diagnostics	\checkmark	\checkmark			

Chapter 2 Installation

This chapter discusses the following types of physical installations for the PM130 PLUS Powermeter:

- Mechanical Installation
- Electrical Installation
- I/O Connections
- COM Port Connections.

2.1 Site Requirements

- Environmental conditions: as specified in Technical Specifications in Appendix A
- Electrical requirements: as specified in Technical Specifications in Appendix A
See Technical Specifications in Appendix A for more details

2.2 Package Contents

The PM130 PLUS Powermeter package contains the following items:

- PM130 PLUS Powermeter unit
- Technical Documentation CD
- Optional accessories (depending on the options ordered, if any)
- Cables

2.3 Mechanical I nstallation

Refer to the figures provided in this section to properly perform the mechanical installation.

Figure 2-1. Dimensions

Panel Mounting

To mount the meter in cutout (ANSI 4" round or DI N 92x92mm square cutout):

1. Position the meter in the cutout.
2. Affix the meter using washers and nuts. (Add short text on Panel Mounting, a heading should always have text)

Figure 2-2. Mounting

DIN Rail Mounting

The PM130 can be mounted on a $35-\mathrm{mm}$ DIN rail.

Figure 2-3. Dimensions

Figure 2-4. DIN Rail Mounting

Figure 2-5 PM130 PLUS with 12DI/ 4RO module

2.4 Electrical Installation

The equipment installation shall conform to the following
instructions:
a) a switch or circuit-breaker shall be included in the building
installation;
b) It shall be in close proximity to the equipment and within
easy reach of the OPERATOR;
c) It shall be marked as the disconnecting device for the
equipment.
Before installing, ensure that all incoming power sources
are shut OFF. Failure to observe this practice can result in
serious or even fatal injury and damage to equipment.

Typical Installation

Figure 2-6 Typical I nstallation Diagram

Terminals

Figure 2-7 Terminals - Rear View

Power Source Connection

The equipment installation shall conform to the following instructions:
a) a switch or circuit-breaker shall be included in the building installation;
b) It shall be in close proximity to the equipment and within easy reach of the OPERATOR;
c) It shall be marked as the disconnecting device for the equipment.
Before installing, ensure that all incoming power sources are shut OFF. Failure to observe this practice can result in serious or even fatal injury and damage to equipment.

The power source can be a dedicated fuse, or a monitored voltage if it is within the instrument power supply range.

To connect an AC power supply:

1. Connect the Line wire to terminal L/+.
2. Connect the Neutral wire to terminal $\mathrm{N} /-$.

To connect to a DC power supply:

1. Connect the positive wire to terminal

L/+
2. Connect the negative wire to terminal N/-.

Voltage Input connection

The equipment installation shall conform to the following instructions:
a) a switch or circuit-breaker shall be included in the building installation;
b) It shall be in close proximity to the equipment and within easy reach of the OPERATOR;
c) It shall be marked as the disconnecting device for the equipment.
Before installing, ensure that all incoming power sources are shut OFF. Failure to observe this practice can result in serious or even fatal injury and damage to equipment.

690V Inputs (Standard)

690 V inputs are usually used with direct connection. Use any of the seven wiring configurations shown in Figures 2-8 through 2-15.
120V Inputs (Option U)

120 V inputs usually imply use of a potential transformer (PT). The PT requires use of any of the four wiring configurations shown in Figures 2-7 through 2-10.

Current Input Connection

The PM130 does not have current terminals.

- Using internal CT, the PM130 PLUS does not have current terminals
- Using external CT (HACS - High Accuracy SATEC Current Sensor), the PM130 PLUS provides current terminals

To connect to the external CT, pass the external CT wire through the meter CT core, see Figure 2-8 for details and observe the arrow that indicates the current direction.

In case of a retrofit application where each external CT ends with two wires:

1. Pass one wire through the meter CT
core.
2. Connect the wire to one of the meter termination screws.
3. Connect the second wire from the external CT to the termination screw to close the loop.

Figure 2-8 Current I nput Connection

Wiring Diagrams

For AC input ratings, see Technical Specifications in Appendix A for more details.
Table 2 presents the available wiring configurations in the meter. For more details, see Basic Meter Setup in Chapter 5.

Table 2: Wiring Configurations

Wiring Configuration	Setup Code	Figure
3-wire 2-element Delta direct connection using 2 CTs 4 -wire 3-element Wye direct connection using 3 CTs 4-wire 3-element Wye connection using 3 PTs, 3 CTs 3-wire 2 -element Open Delta connection using 2 PTs, 2 CTs 4 -wire 212 -element Wye connection using 2 PTs, 3 CTs 3 -wire $21 / 2$-element Open Delta connection using 2 PTs, 3 CTs 4-wire 3-element Delta direct connection using 3 CTs 3-wire $2 ½$-element Broken Delta connection using 2 PTs, 3 CTs	3dir2 4Ln3 or 4LL3 4Ln3 or 4LL3 3OP2 3Ln3 or 3LL3 30P3 4Ln3 or 4LL3 3bLn3 or 3bLL3	$\begin{aligned} & 2-9 \\ & 2-10 \\ & 2-11 \\ & 2-12 \\ & 2-13 \\ & 2-14 \\ & 2-15 \\ & 2-16 \end{aligned}$

Figure 2-9 3-Wire 2-Element Delta Direct Connection Using 2 CTs (Wiring Mode = 3dir2)

Figure 2-10 4-Wire Wye 3-Element Direct Connection Using 3 CTs (Wiring Mode = 4LL3 or 4Ln3)

Figure 2-11 4-Wire Wye 3-Element Connection Using 3 PTs, 3 CTs (Wiring Mode = 4LL3 or 4Ln3)

Figure 2-12 3-Wire 2-Element Open Delta Connection Using 2 PTs, 2 CTs (Wiring Mode = 30P2)

This configuration provides accurate power measurements only if the voltages are balanced.
Figure 2-13 4-Wire Wye 2½-Element Connection Using 2 PTs, 3 CTs (Wiring Mode = 3LL3 or 3Ln3)

Figure 2-14 3-Wire 2½-Element Open Delta Connection Using 2 PTs, 3 CTs (Wiring Mode = 3OP3)

Figure 2-15 4-Wire 3-Element Delta Direct Connection Using 3 CTs (Wiring Mode = 4LL3 or 4Ln3)

Figure 2-16 3-Wire 2½-Element Broken Delta Connection Using 2 PTs, 3 CTs (Wiring Mode = 3bLn3 or 3bLL3)

2.5 I/ O Connections

Before I/O Module installation ensure that all incoming power sources are shut OFF. Failure to observe this practice can result in serious or even fatal injury and damage to equipment.

Figure 2-17 Module Connector Cover - Before Module Assembly
For I/O ratings, see Technical Specifications in Appendix A.

4DI/2DO Module

Figure 2-18 4DI / 2DO Module Assembly

Relay Outputs

There are two relay outputs provided for energy pulsing, alarms, or remote control.

Figure 2-19 Relay Output Connection

Digital Inputs

Four optically isolated status inputs are provided for status monitoring, pulse counting, external power demand period, and time synchronization.

Figure 2-20 Digital I nput Connection

12DI/4RO Module

The 12DI/4RO module can be equipped with optional communication port COM2 - ETHERNET or RS-422/485.

Figure 2-21 12DI / 4RO Module
Before I/O Module installation ensure that all incoming power sources are shut OFF. Failure to observe this practice can result in serious or even fatal injury and damage to equipment.

Relay Outputs

There are four electro-mechanic relay outputs provided for energy pulsing, alarms, or remote control.

Figure 2-22 Relay Output Connection

Digital Inputs

12 optically isolated status inputs are provided for status monitoring, pulse counting, external power demand period, and time synchronization.

Figure 2-23 12 Digital I nput Connection

4AO Module - Analog Outputs

The 4AO module has four optically isolated analog outputs with an internal power supply and current output options of $0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$ (current loop load of up to 500 Ohm), 0-1 mA and $\pm 1 \mathrm{~mA}$ ($2 \mathrm{~mA} 100 \%$ overload, current loop load of up to 5 kOhm).

Figure 2-24 Analog Output Connection

It is recommended to connect unused Analog output channels to Common terminal.

- The 4AO module TERMINAL is for use only with equipment which has no live parts which are ACCESSIBLE
- The RATING of the insulation of the external equipment for use with the 4AO module, shall comply according to Installation Category II for insulation to be suitable for SINGLE FAULT CONDITION
$\Rightarrow \quad$ - The external equipment TERMINAL connection type is normally terminal block for wire size 14 AWG (up to 1.5 mm2)
- The type of equipment that might be connected to the TERMINAL is:
- Programmable Logic Controller for automation - PLC
- Digital or Analog meter

TOU module - RTC and 4 Digital Inputs

The TOU provides a battery-operated real time clock (RTC) with four optically isolated inputs for status monitoring, time synchronization, pulse counting, and external power demand period.

Digital Inputs

Figure 2-25 TOU Digital Input Connection
TOU - Battery Replacement

WARNING!

Only qualified personnel familiar with the instrument and its associated electrical equipment must perform the RTC battery backup replacement.

To replace the CR1632 RTC battery:

1. Remove the TOU module from the PM130 PLUS compartment
2. Open the TOU MODULE case by applying a flat screwdriver at three snap-in slit (1, 2 and 3), as shown in Figure 2-26.
3. Remove the old battery by lifting up the battery holder retractable tab.
4. Place the new CR1632 battery into the battery holder while holding up the battery holder retractable tab in such a way that the (+) battery pole is toward the battery holder, as shown in Figure 2-26.

Figure 2-26 TOU RTC Battery Replacement

2.6 Communications Connections

> Before installing the Communication Module, ensure that all incoming power sources are shut OFF. Failure to observe this practice can result in serious or even fatal injury and damage to equipment.

Several communication options are available for the PM130:

- COM1: RS-485
- COM2:

Ethernet 10/100BaseT
Profibus DP
GPRS
RS-232 or RS-422/485
A connection to the Ethernet connector is made through a cable adaptor provided with your meter.
A full description of the communication protocols is found in the PM130 protocol guides that come with your meter.

COM1 RS-485 Connection

Figure 2-27 COM1 RS-485 2-Wire Connection
The connector is removable with three captured-wire terminals.

ETH module - COM2 Ethernet Connection

Figure 2-28 COM2 Ethernet Connection

- The ETH module TERMINAL is for use only with equipment which has no live parts which are ACCESSIBLE
- The RATING of the insulation of the external equipment for use with the ETH module, shall comply according to Installation Category II for insulation to be suitable for SINGLE FAULT CONDITION
$\Rightarrow \quad$ - The external equipment TERMINAL connection type is RJ-45
- The type of equipment that might be connected to the TERMINAL is:
- Personal Computer - PC or LAPTOP
- 10/100Base-T LAN HUB and/or Switch

PRO module - COM2 PROFIBUS Connection

Figure 2-29 COM2 PROFI BUS Connection

- The PRO module TERMINAL is for use only with equipment which has no live parts which are ACCESSIBLE
- The RATING of the insulation of the external equipment for use with the PRO module, shall comply according to Installation Category II for insulation to be suitable for $\Rightarrow \quad$ SINGLE FAULT CONDITION
- The external equipment TERMINAL connection type is DB9
- The type of equipment that might be connected to the TERMINAL is:
- Programmable Logic Controller for automation - PLC

RS-232/422-485 module - COM2 Connection

Figure 2-30: COM2 RS-232 connection

Figure 2-31 COM2 RS-422/ 485 connection

- The RS-232/422-485 module TERMINALS are for use only with equipment which has no live parts which are ACCESSIBLE
- The RATING of the insulation of the external equipment for use with The RS-232/422-485 module, shall comply according to Installation Category II for insulation to be suitable for SINGLE FAULT CONDITION
- The external equipment TERMINAL connection type is normally terminal block for wire size 14 AWG (up to 1.5 mm^{2}) - RS-422/485 port and DB9 male-to-female cable more than 22 AWG ($0.3 \mathrm{~mm}^{2}$)
- The type of equipment that might be connected to the TERMINAL is:
- Personal Computer - PC or LAPTOP

Connecting a GSM/GPRS modem

A GSM/GPRS modem module can be connected to the meter COM2 port to provide communications with the remote MODBUS/TCP server via a wireless GPRS network.

| The GSM/GPRS SIM must not have any incoming voice call. |
| :--- | :--- |
| The customer must require from the Service Provider for DATA |
| services only |
| The GPRS modem module can be equipped with two different |
| antennas: internal Antenna for installation into plastic closet or |
| no-metallic environment. For metallic installation use external |
| antenna |

See Setting Up GPRS Network in Chapter 5 for information on configuring GPRS communications in your meter.

Chapter 3 Using Front Display

This chapter provides PM130 PLUS Power meter series front panel information and operating procedures.

Figure 3-1: PM130 PLUS Unit

3.1 Indicators and Controls

Device Diagnostics
After applying power to the meter, a one-digit start-up diagnostic code is shown for 1 second on all LEDs. Code 8 indicates a normal power-up sequence. You can observe the list of device diagnostic codes recorded during restart and meter operation via the Status Display.
When the meter records a diagnostic message, the diagnostic "i" LED flashes until you reset the device diagnostics via the Status Display. The diagnostic LED can be disabled or enabled through the display setup (see Configuring the Display).

Numeric LED Display

The meter has a simple user interface that allows you to view numerous measurement parameters by scrolling through different display pages. The numeric LED display shows up to three parameters at a time. Small rectangular or round LEDs at the right and below the display indicate the displayed parameters and their measurement units.
The display layout may change depending on the meter type and mode of operation.

There are three modes of display operation:

- Data display
- Status display
- Programming mode display.

The load bar graph displays the amount, in percent (40\% to 110%), of the present current load with respect to user-defined nominal load current. The reference nominal current can be set up in amps through the display setup (see Configuring the Display). If it is set to 0 (default), the current load is referenced to the specified CT primary current.

Energy Pulse LED

The PM130E and PM130EH have a red "Energy Pulse" LED. It flashes at a constant rate when a load is applied to the meter.

There are two modes of LED operation:

- NORMAL mode: the LED pulses indicate imported Wh at a rate of 1,000 pulses per kWh
- TEST mode: the LED pulses indicate either imported Wh, or imported (inductive) varh at a rate of 10,000 pulses per kWh/kvarh

The energy test mode can be enabled through the Device Options setup. When in test mode, the energy and demand accumulators do not account for consumed energy.

Port Activity LEDs

The meter has two green LEDs "RX" and "TX", which indicate activity on the COM1 communication port. The LEDs flash when the port is receiving or transmitting data.

Navigation Buttons

The PM130 is provided with six push buttons that are normally used to navigate between different measurement displays.
The function of buttons changes depending on what operating mode the display is in. In programming mode, the buttons access the device setup menus where the default factory-set device settings can be changed.

3.2 Data Display

In data mode, the display is normally updated once every second. You can adjust the display update rate via the display setup (see Configuring the Display).

Display Features

Measurement Units
The PM130 PLUS has a selectable resolution for volts, amps and powers presented on the front display and via communications. See Device Options in Chapter 5 for information on selecting the data resolution in the PM130 PLUS.

Low Resolution Option

Currents are displayed in whole amperes below 10,000 A, and in kilo amperes above 10,000 A.

Measurement units for voltage and power depend on the voltage connection scheme:

- For direct wiring ($\mathrm{PT}=1$) or wiring via PT with the PT ratio up to and including 4.0, voltages are displayed in volts, and power in kilowatts.
- For the PT ratio above 4.0, voltages are displayed in kilovolts with three decimal places, and power in megawatts with three decimal places.

High Resolution Option

Currents are displayed in amperes with up to two decimal places below 10,000 A, and in kilo amperes above 10,000 A.

Measurement units for voltage and power depend on the voltage connection scheme:

- When direct wiring is used ($\mathrm{PT}=1$), voltages are displayed in volts with one decimal place, and power in kilowatts with three decimal places.
- When wiring via PT is used with the PT ratio up to and including 4.0, voltages are displayed in volts, and power in whole kilowatts.
- For the PT ratio above 4.0, voltages are displayed in kilovolts with three decimal places, and power in megawatts with three decimal places.
The small round "Kilo" and "Mega" LEDs light up showing the appropriate measurement units for a displayed page.

Primary and Secondary Volts

Volts can be displayed in primary (default) or secondary units. The volts display mode can be changed through the display setup (see Configuring the Display).

Phase Power Readings

In configurations with the neutral wire, in addition to total three-phase powers, the meter can show per-phase power readings. By default, they are disabled. See Configuring the Display on how to enable per-phase power readings in your meter.

Fundamental Component

The PM130EH can display total displacement power factor and active power for the fundamental component if it is enabled through the display setup (see Configuring the Display).

When phase power readings are allowed, the PM130EH also displays perphase displacement power factor and active power for the fundamental component.

Auto Return

If no buttons are pressed for 30 seconds while the display Auto Return option is enabled, the display automatically returns to the main screen from any other measurement display.

The Auto Return option can be enabled through the display setup (see Configuring the Display).

Auto Scroll

If no buttons are pressed for 30 seconds while in the common measurements display, and the Auto Scroll option is enabled in the meter, the display automatically scrolls through all available pages. The scroll interval can be adjusted through the display setup (see Configuring the Display).

To stop auto scrolling, press briefly the UP or DOWN button.

Brightness

The PM130 display has a 3-level adjustable brightness. It is normally preset at the factory to the highest level. You can adjust the display through the display setup (see Configuring the Display).

Navigation Buttons

Figure 3-2: Navigation Buttons
See the following table for button operations in data display mode.

Button	Action	Operations
UP	Press and release	Scroll through pages backwards. Hold down the button for continuous scrolling.
DOWN	Press and release	Scroll through pages forwards. Hold down the button for continuous scrolling.
UP + DOWN	Press and release	Return to the start page within a present display.
SELECT	Press and release	Enter programming mode.
MAX/ MI N	Press and release	Enter (return from) the minimum/maximum display. Switch between the Max/Min and Maximum Demands displays.
H/ ESC	Press and release	Enter (return from) the harmonics display. Switch between the Total Harmonics and Individual Harmonics displays.
ENERGY/ ENTER Enter (return from) the energy display. Switch between the total and per phase energy display and TOU registers display (if configured). The button is not operational in the PM130P.		
SELECT + ENERGY/ ENTER (in selected pages)	Press and hold for 5 seconds or longer	Reset accumulators or minimum/maximum on the currently displayed page (see Simple Reset of Accumulated Data below).

Simple Reset of Accumulated Data

You can clear the Min/Max log, maximum demands or energies from the data display mode without accessing the reset menu with the simple "twobutton" reset option:

1. Select a display page where the data you want to reset is displayed:

- Min/ Max log: select a Min/Max page from the Min/Max Display
- Ampere and volt maximum demands: select the Ampere or Volt maximum demand page from the Min/Max Display.
- Power maximum demands: select the power maximum demand page from the Min/Max Display.
- Total and phase energies: select a total energy, or a phase energy page from the Energy Display.

2. While holding the SELECT button down, press and hold the ENTER button for about 5 seconds.

The displayed data is reset to zero.

This function is not operational if the meter is password protected and the simple reset is not allowed in protected mode (see Configuring the Display).

Common Measurements Display

Scroll through pages with the UP and DOWN arrow buttons.
Table 3: Common Measurements (Regular version)

1	L	$\begin{aligned} & \hline \text { V12 } \\ & \text { V23 } \\ & \text { V31 } \end{aligned}$	Line-to-line volts
2	P	$\begin{aligned} & \hline \text { V1 } \\ & \text { V2 } \\ & \text { V3 } \end{aligned}$	Line-to-neutral volts (in 4LN3, 3LN3, 3BLN3 configurations)
3		$\begin{aligned} & \hline \text { I1 } \\ & \text { I2 } \\ & \text { I3 } \end{aligned}$	Amps
4		kVA/MVA PF kW/MW	Total VA Total PF Total W
5		In Hz kvar/Mvar	Neutral current Frequency Total var
6		Ph.L1 PF kW/MW	Phase L1 powers (if enabled)
7		kVA/MVA Ph.L1 kvar/Mvar	Phase L1 powers (if enabled)
8		$\begin{aligned} & \text { Ph.L2 } \\ & \text { PF } \\ & \text { kW/MW } \end{aligned}$	Phase L2 powers (if enabled)
9		kVA/MVA Ph.L2 kvar/Mvar	Phase L2 powers (if enabled)
10		Ph.L3 PF kW/MW	Phase L3 powers (if enabled)
11		kVA/MVA Ph.L3 kvar/Mvar	Phase L3 powers (if enabled)
12		H01 PF kW/MW	Fundamental total powers (PM130EH, if enabled)
13		$\begin{aligned} & \text { H1.L1 } \\ & \text { PF } \\ & \text { kW/MW } \end{aligned}$	Fundamental phase L1 powers (PM130EH, if enabled)
14		$\begin{aligned} & \hline \text { H1.L2 } \\ & \text { PF } \\ & \text { kW/MW } \end{aligned}$	Fundamental phase L2 powers (PM130EH, if enabled)
15		$\begin{aligned} & \hline \text { H1.L3 } \\ & \text { PF } \\ & \text { kW/MW } \end{aligned}$	Fundamental phase L3 powers (PM130EH, if enabled)
16		U.Unb V\% unb	Voltage unbalance, percent
17		C.Unb I\% unb	Current unbalance, percent

Table 4: Common Measurements (Amp-Demand version)

1		I1	Amps
	I2		
I3			
2		In	Neutral current

Min/Max and Maximum Demand Display

1. Press the MAX/ MIN button.

The MI N, MAX, or MAX DMD LED is illuminated when in the MIN/MAX display.
2. Use the UP and DOWN arrow buttons to scroll through the Min/Max and Max. Demand pages.

To see the time and date of the event occurrence:

1. Press simultaneously the SELECT and UP buttons.
2. Use the UP and DOWN arrow buttons to scroll through the parameters displayed on the page. A corresponding LED at the right is illuminated showing the parameter for which the timestamp is displayed.

The time is displayed in format hh.mm, and the date in format MM-DD-YY (default) or in any other format you can select via the display setup (see Configuring the Display).

Note that Volts readings are line-to-neutral in 4LN3, 3LN3 and 3BLN3 wiring modes, and line-to-line in other modes.

Table 5: Min/ Max and Maximum Demands (Regular version)

1	MI N	V1/V12 V2/V23 V3/V31	Minimum volts			
2	MI N	I1 I2 I3	Minimum amps			
3	MI N	kVA/MVA PF kW/MW	Minimum total VA Minimum total PF (absolute) Minimum total W			
4	MI N	In Hz kvar/Mvar	Minimum neutral current Minimum frequency Minimum total var			
5	MAX	V1/V12 V2/V23 V3/V31	Minimum volts			
$\mathbf{7}$	MAX	I1 I2 I3	kVA/MVA PF kW/MW			
8	MAX	In Hz kvar/Mvar	Maximum total VA Maximum total PF (absolute) Maximum total W			
9	MAX	V1/V12	Maximum neutral current Maximum frequency			
Maximum total var				$	$	Maximum volt demands
:---						

	DMD	V2/V23 V3/V31	
10	MAX DMD	I1 I2 I3	Maximum ampere demands
11	MAX DMD	kVA/MVA PF kW/MW	Maximum VA demand PF at maximum VA demand Maximum W demand
12	MAX DMD	A neut. var	Maximum neutral current demand Maximum var demand

Table 6: Min/ Max and Maximum Demands (Amp-Demand version)

1	MAX DMD	I1 I2 I3	Maximum ampere demands
2	MAX DMD	A neut.	Maximum neutral current demand

Harmonics Display (PM130EH)

1. Press the H/ESC button.

The THD/ TDD LED is illuminated.
2. Use the UP and DOWN arrow buttons to scroll through total harmonics measurements.
3. Press the H/ ESC button again to move to the individual harmonics.

Note that voltage harmonics readings are line-to-neutral in the 4LN3, 3LN3, 3BLN3 wiring modes, and line-to-line in all other modes.

Table 7: Total Harmonics

1		V1/V12 THD V2/V23 THD V3/V31 THD	Voltage THD
	thd.	I1 THD	Current THD
2		I2 THD	
	thd.	I3 THD	
3		I1 TDD	Current TDD
	tdd.	I2 TDD	I3 TDD

Table 8: Individual Voltage Harmonics

1		V1/V12 HD\%	Order 3 harmonic distortion
	$\mathbf{3 .}$	V2/V23 HD\%	
2		V3/V31 HD\%	
	$\mathbf{5 .}$	V1/V12 HD\%	Order 5 harmonic distortion
	V2/V23 HD\%		
	\ldots		

19		V1/V12 HD\%	Order 39 harmonic distortion
	39.	V2/V23 HD\%	

Table 9: I ndividual Current Harmonics

1	3.	I1 HD\% I2 HD\% I3 HD\%	Order 3 harmonic distortion
2		I1 HD\% I2 HD\% I3 HD\%	Order 5 harmonic distortion
	$\mathbf{5 .}$	\ldots	
19		I1 HD\% I2 HD\% I3 HD\%	Order 39 harmonic distortion
	39.		

Energy Display (PM130E/EH)

ENERGY

ENTER

1. Press the ENERGY button.

The kVAh, kvarh, or kWh LED is illuminated.
2. If TOU registers are configured in the meter, you can press the button again to scroll through all active TOU registers.
3. Use the UP and DOWN arrow buttons to scroll through energy pages.

Per phase energy accumulators are displayed along with total energies if phase energy calculation is enabled in the Device Options setup.

Table 10: Total and Phase Energies

1		Ac.i 1234 56789	Total kWh import
2		rE.i	Total kvarh import
		1234	
3		AP.	Total kVAh
		1234	
4		Ac.E	Total kWh export
		1234	
5		rE.E	Total kvarh export
		1234	
6		Ac.i 1	Phase L1 kWh import
		1234	
7		rE.i 1	Phase L1 kvarh import
		1234	
8		AP. 1	Phase L1 kVAh
		1234	

9		Ac.i 2 1234 56789	Phase L2 kWh import
10		rE.i 2	
		1234	Phase L2 kvarh import
		56789	
11		AP. 2	Phase L2 kVAh
		1234	
12		Ac.i 3	Phase L3 kWh import
		1234	
13		rE.i 3	Phase L3 kvarh import
		1234	
14		AP789 3	Phase L3 kVAh
		1234	

Table 11: TOU Energy Register 1

1		r1.t1	
1234			
		r187	Tariff 1 reading
		kWh	
2		56789	Tariff 2 reading
			kWh
	\ldots	r1.t8	
4		1234	Tariff 8 reading
		56789	kWh

-."
Table 12: TOU Energy Register 4

1		r4.t1 1234 56789	Tariff 1 reading
		r4.t2	kWh
2		1234	Tariff 2 reading
			kWh
	\ldots	r4.t8	Tariff 8 reading
4		1234	kWh
		56789	

3.3 Status Display

The meter has a separate status information display accessible through the primary meter menu. See Using the Menus for information on navigating in menus.

The Status Display shows rarely used information that is especially helpful for troubleshooting or when connecting the meter to an external equipment.

To access the Status Display:

1. From the Data display, press the SELECT button to access the primary meter menu.
The StA window is highlighted.
2. Press ENTER to access the Status Display.
3. Use the UP and DOWN arrow buttons to scroll through the status pages.

Figure 3-3: Status Display

To exit the Status Display:

1. Press ESC to return to the primary device menu.
2. Press ESC to return to the Data display.

Table 13: Status Display Parameters

1		$\begin{aligned} & \hline \text { PhS } \\ & \text { rot } \\ & \text { POS/nEG/Err } \end{aligned}$	Phase rotation order
2	A.	V1 angle V2 angle V3 angle	Voltage angles ($\pm 180^{\circ}$, referenced to V1)
3	A.	I1 angle I2 angle I3 angle	Current angles ($\pm 180^{\circ}$, referenced to V1)
4		$\begin{gathered} \hline \text { rEL } \\ 1.2 \\ 00 \end{gathered}$	Relay status (with a digital I/O module)
5		$\begin{gathered} \text { St.In } \\ 1.2 .3 .4 \\ 0000 \end{gathered}$	Status inputs (with a digital I/O module)
6		Cnt. 1 <hour> 12345	Counter \#1 value (a time counter - in 0.1 hour units)
7		Cnt. 2 <hour> 12345	Counter \#2 value (a time counter - in 0.1 hour units)
8		Cnt. 3 <hour> 12345	Counter \#3 value (a time counter - in 0.1 hour units)
9		Cnt. 4 <hour> 12345	Counter \#4 value (a time counter - in 0.1 hour units)
10		Alar SP.<Setpoint Number> <Alarm Trigger >	Setpoint alarms (see Alarm Display below)
11		diAG <Diagnostic Code> <Diagnostic Message>	Device diagnostics (see Diagnostics Display below)
12		$\begin{array}{\|c} \hline \text { SEr.n } \\ 1 \\ 23456 \end{array}$	Device serial number
13		SoFt	Firmware version number

| | 11.
 01.01 | |
| :--- | :--- | :--- | :--- |
| 14 | rSSi
 <RSSI>
 <GPRS status> | GPRS communications status (with an
 external GPRS modem):
 RSSI = received signal strength, dBm
 GPRS status: Uncon = not connected,
 UnrEG = not registered, rEG =
 registered |

Pulse and Time Counters

You can use the 5-digit meter counters either as regular pulse/event counters to count external pulses or setpoint events, or as time counters to count setpoint operation time.

See Configuring Counters in Chapter 5 for information on configuring pulse/event counters.
See Using Time Counters in Configuring Alarm/Control Setpoints for information on configuring time counters. Time counters have the hour label in the middle window and indicate the setpoint operation time in 0.1 -hour units.

You can clear a counter using the simple "two-button" reset option if the meter is not password protected, or if the meter security is overridden by the "two-button" reset mode setting (see Configuring the Display).

To clear a counter:

1. Select a counter page.
2. While holding the SELECT button, press and hold the ENTER button for about 5 seconds.

The displayed data is reset to zero.

Alarm Display

The alarm display shows a list of operated alarm setpoints along with the alarm trigger labels if there are alarms recorded during meter operation.

Use the UP and DOWN arrow buttons to scroll through the alarm list.
The setpoint status is latched into a non-volatile register, which is not affected by loss of power and may only be cleared via communications or from the meter display.

To clear alarms:

1. Select an alarm page.
2. While holding the SELECT button, press and hold the ENTER button for about 5 seconds until the alarm code is reset to none.

Diagnostics Display

The diagnostics display shows a list of the device diagnostic codes recorded as a result of the meter self-test diagnostics during start-up and operation. When there are recorded diagnostic messages, the " i " diagnostic LED on the front display briefly flashes two times to indicate that the meter may require servicing.

The diagnostic LED can be disabled or enabled via the display setup menu (see Configuring the Display).

Use the UP and DOWN arrow buttons to scroll through the diagnostic message list. See Device Diagnostic Codes in Appendix G for the list of diagnostic codes and their meanings.

Frequent hardware failures may be the result of excessive electrical noise in the region of the device. If the meter continuously resets itself, contact your local distributor.

A configuration reset may also be a result of the legal changes in the meter configuration when other configuration data is affected by the changes.

The diagnostics codes are stored in a non-volatile register, which is not affected by loss of power and may be cleared via communications (see Viewing and Clearing Device Diagnostics in Chapter 6) or from the meter display.

To clear the meter diagnostics:

1. Select a diagnostics page.
2. While holding the SELECT button, press and hold the ENTER button for about 5 seconds until the diagnostic message is reset to none.

3.4 Using the Menus

Navigation Buttons

The PM130 PLUS has a menu-driven setup. Press and release the SELECT button to access the meter menus.

See the following table for button operations in menus.

Button	Action	Operations
SELECT	Press and release	Highlight (activate) a menu window.
UP	Press and release	Scroll through menu items forwards or increment a number in the highlighted window. Hold down the button for continuous scrolling.
DOWN	Press and release	Scroll through menu items backwards or decrement a number in the highlighted window. Hold down the button for continuous scrolling.
ENERGY/ ENTER	Press and release	Confirm the selection and store the changed item or perform an action indicated in a highlighted window.
H/ ESC	Press and release	Quit the highlighted window without saving a selected item or return to the upper level menu.

Selecting Menus

To access the menus, press and release the SELECT button. The primary meter menu is displayed as shown in the picture below.

The menu has three entries:

- StA: Status Display entry (see the Status Display section)
- OPS: Main setup menu entry allowing to review setup options
- CHG: Main setup menu entry allowing changing setups, updating the clock and resetting accumulated values.

To access the Status Display:

1. If the StA window is not highlighted, use the SELECT button to activate it.
2. Press the ENTER button to access the Status Display

To review the meter setup options:

1. Press the SELECT button to activate the OPS window.
2. Press the ENTER button to access the main menu.

To change the meter setup:

1. Press the SELECT button to activate the CHG window.
2. Press the ENTER button to access the main menu.

Entering the Password

The Setup Change menu can be secured by a four-digit user password.
You can change the password and enable password protection through the Access Control menu (see Configuring Meter Security). The meter is primarily shipped with the password preset to 0 and password protection disabled.

If password protection is enabled, you are prompted for a password when entering the setup change menu.

To enter the password:

1. Adjust the first digit with the UP or DOWN arrow buttons.
2. Press the SELECT button to advance to the next digit. As you move to the next place, the entered digit is saved and then zeroed. If you missed a digit, you should re-type all preceding digits before you reach the missed place again.
3. Adjust the remaining digits in the same manner.
4. Press ENTER to confirm the password.

If the password you entered is correct, you are moved to the Main menu, otherwise you return back to the primary menu.

Selecting a Menu Entry

Selecting the OPS or CHG entry moves you to the Main menu that is represented by two entries:

- the upper window displays a list of menu entries
- the bottom item acts as an assisting exit window.

To select a menu entry from the main menu:

1. If the upper item is not highlighted, use the SELECT button to activate it.

Figure 3-4: Main Menu
2. Scroll through the menu list by pressing briefly the UP or DOWN arrow buttons until the required menu entry appears.
3. Press the ENTER button.

Viewing and Changing Setup Options

A second level menu normally consists of three items:

- the upper static window indicates the menu name
- the middle window represents a list of setup parameters you can scroll through
- the lower window shows the parameter value.

To select a parameter you want to view or change:

1. Highlight the middle window by
pressing the SELECT button.

Figure 3-5: Selecting a Parameter
2. Scroll through the parameter list with the UP or DOWN arrow buttons until the required parameter name appears.

To change the selected parameter:

1. Press the SELECT button to highlight the lower item.

Figure 3-6: Changing a Parameter
2. If the parameter is represented by a list of values, select the required option with the UP or DOWN arrow buttons.
3. If the parameter is represented by a numeric value, adjust the number with the UP or DOWN arrow buttons. When the button is briefly pressed and released, the number is incremented or decremented by one. When the button is
pressed continuously, the number is changed approximately twice per second.
4. Press the ENTER button to store your selection or press the ESC button to leave the parameter unchanged.
You return to the middle window and can continue scrolling through the remaining parameters or return to the main menu.
5. Press ESC to exit the menu.

Chapter 4 Using PAS Software

The support PAS software is a configuration and data acquisition tool that allows you to configure all of the PM130 PLUS features, monitor your meters on-line, retrieve recorded files and view reports. PAS can communicate with your PM130 PLUS via a serial port and via the Ethernet.

This chapter gives information on how to install and run PAS on your computer, and how to prepare information for your meter using PAS.
See Chapter 5 Configuring the PM130 PLUS for instructions on how to configure particular features in your meter. Refer to Chapters 7 and 8 for instructions on retrieving data from the meters and viewing reports.

4.1 Installing PAS

You need PAS V1.4 Build 4 or higher to take an advantage of the meter data logging options.

To install PAS on your PC:

1. Insert the installation CD supplied with your meter into CD drive.
2. Open My Computer on your Desktop.
3. Click on your CD drive icon, select the PAS directory, and then double click on Setup (shown as an Application type file).
4. Follow InstallShield $®$ Wizard instructions on the screen.

PAS is installed by default to the C: \Pas folder.
When installation is complete, the PAS icon appears on your Desktop. Double click on the PAS icon to run PAS.

For general information on how to work with PAS, see the "PAS Getting Started" guide supplied on the installation CD.

4.2 Creating a New Site for your Meter

PAS keeps all communication and configuration data for your meter in a configuration database called a site database. During configuration, store all setup data to the site database so that PAS recognizes device properties regardless of whether the meter is online or offline.
To communicate with the meters, create a separate site database for each device.

To create a new database for your meter:

1. Select Configuration from the Tools menu.

Figure 4-1: Configuration Dialog Box - Instrument Setup Tab
2. Click the Sites button on the right-hand-side.

3. From the Look in box, select the directory where a new database will be stored. By default, it is the Sites directory.
4. Type a site name for your device in the File name box, click New, and then click OK.
5. On the Instrument Setup tab, select PM130 PLUS in the Model box. PAS automatically selects the appropriate instrument options for your meter.
6. Select a correct CT secondary current (5A or $1 A$) for your meter.
7. If you wish to add any comments for your meter, type the comments in the Comment box.

4.3 Setting up Communications

You can communicate with the PM130 PLUS via a PC RS-232 serial port or through the Internet.

To configure communications with the PM130 PLUS:

1. Select Configuration from the Tools menu. Under the Communication group on the I nstrument Setup tab, select the type of connection for your device.
2. Set the device communication address you assigned to the PM130 PLUS port. When communicating via the Ethernet, the PM130 PLUS responds to any address you select.
3. In the Sampling Rate box, select a rate at which PAS updates data on your screen when you continuously poll the device in the PAS Data Monitor.
The communication protocol and port settings must match the settings you made in your meter.

Communicating through a Serial Port

Select Serial Port/ Modem Site on the Configuration tab, and then click on the Connection tab to configure your serial port settings.

Configuring a Serial Port

1. On the Connection tab, select a COM port from the Device box, and then click Configure.

Figure 4-2: Serial Port Setup Dialog Box
2. Specify the baud rate and data format for the port. Choose the same baud rate and data format as you have set in the meter, and then click OK.

The factory settings for the local PM130 PLUS RS-232 and RS-422/485 ports are 9600 baud, 8 bits with no parity.

Selecting the Communications Protocol

1. On the Connection tab, click Protocol.

Figure 4-3: Protocol Setup Dialog Box
2. In the Protocol box, select the same communications protocol as you have set in your meter.
3. In the Response Timeout box, define the maximum time that PAS should wait for the meter response before announcing a failure.
4. In the Break Timeout box, define the maximum line idle time that PAS should wait after receiving the last message character before closing a connection with the Modbus RTU or DNP3 protocol. It does not affect ASCII communications. Note that this time is added to the message transfer time, and excessive increasing it may slow down communications. If you frequently receive the "Communication error" message, try to increase Break Timeout.
5. In the Retries box, define the number of attempts that PAS should use to receive a response from the meter in the event the communication fails, before announcing a communication failure.

Communicating through the Internet

If you are communicating through the Ethernet port, define the IP address of your meter on the network.

To configure the meter IP address:

1. On the I nstrument Setup tab, select I nternet Site.
2. Click on the Connection tab.
3. Click on the IP address and type in the IP address of your meter. The default IP address preset in the meter at the factory is 192.168.0.203.
4. In the Protocol box, select the communications protocol for the TCP port. The meter provides Modbus/TCP connections on TCP port 502 and DNP3/TCP connections on port 20000. The host port is set automatically as you select the protocol. Select Modbus RTU/ TCP for Modbus/TCP or DNP3 for DNP3/TCP.
5. In the Wait for answer box, adjust the time that PAS waits for a connection before announcing an error.

Figure 4-4: Configuration Dialog Box - Connection Tab
6. In the Retries box, specify the number of retries PAS will use to receive a response from the meter if communications fail.
7. Click OK.

4.4 Setting Up the Meter

Preparing Setups for the Meter

PAS allows you to prepare setup data for your meter off-line without the need to have it connected to your PC.

To prepare a setup for your meter:

1. Select the device site from the list box on the PAS toolbar.
2. Select the desired setup group from the Meter Setup menu. Click on the tab with the setup you want to create or modify.
3. Fill in the boxes with the desired configuration data for your meter.
4. Click the Save as... button to store the data to the meter site database
5. Click OK.

Always set up and store the Basic Setup data to the site database first. PAS uses this data as a reference when arranging other meter setups.

To save your setup to another site database:

1. Click the Save as... button.
2. Select the target database from the file pane.
3. Click OK.

You can also reuse a setup from another site by copying it to your present site database.

To copy a setup from another site's database:

1. Click Open.
2. Select the desired source site database.
3. Click OK. The opened setup is copied to your dialog window.
4. Click the Save as... button.
5. Select the target database from the file pane.
6. Click OK.

To copy all setups from one site database to another site's database:

1. In the list box on the toolbar, select a source device site from which you wish to copy setups.
2. Select Copy to... from the Meter Setup menu.
3. Select the target site database to which you wish to copy setups, and click OK.

Downloading Setups to the Meter

You can update each setup in your meter one at a time or download all setups together from the site database.

I ndividual Download

To update a particular setup in your meter:

1. Check the On-line button on the PAS toolbar
2. Select a meter site from the list box on the toolbar.
3. Select the desired setup group from the Meter Setup menu. Click on the setup tab you want to download to the meter. As the setup dialog box opens, PAS retrieves and displays the present meter setup data.
4. If you wish to download a setup saved in the site database, click Open, and then click OK, or fill in the boxes with the desired configuration data for your device.
5. Click Send.

Batch Download

To download all setups to your device at once:

1. Check the On-line button on the PAS toolbar
2. Select the device site from the list box on the toolbar.
3. Select Download Setups from the Meter Setup menu.

Uploading Setups from the Meter

I ndividual Upload

To get a particular setup from your device:

1. Check the On-line button on the PAS toolbar.
2. Select a meter site from the list box on the toolbar, and then select the desired setup group from the Meter Setup menu.
3. Click on the tab of the setup you want to read from the meter. As the dialog box opens, PAS retrieves and displays the present setup data from the meter. Click Receive if you wish to retrieve the meter setup once again.
4. To store the setup to the meter site database, click Save As, and then click OK.

Batch Upload

To upload all setups from the device to the site database at once:

1. Check the On-line button on the toolbar.
2. Select the device site from the list box on the toolbar.
3. Select Upload Setups from the Meter Setup menu.

4.5 Authorization

If communications with your meter is secured, you are prompted for the password when you send new setup data to the meter.

Figure 4-5: Authorization Dialog Box
Enter the password and click OK.
If your authorization was successful, you are not prompted for the password again until you close the dialog box.
See Configuring Meter Security in Chapter 5 for more information on the meter password security.

Chapter 5 Configuring the PM130 PLUS

This chapter describes how to configure different options in your meter from the front panel display or via PAS.

5.1 Configuring Communications

Setting Up Serial Communication Ports

Using the Front Display

Select Prt1 for COM1 or Prt2 for COM2 from the main menu. See Viewing and Changing Setup Options in Chapter 3 for information on configuring parameters via the front display.

See Table 14 below for available communication options.

Using PAS

Select Communications Setup from the Meter Setup menu, and then click on the Serial Ports Setup tab. In the Port box, select the desired device port.

Figure 5-1: Communication Setup Dialog Box - Serial Ports Setup Tab

See Table 14 below for available communication options.
Table 14: COM Port Options

Display Label	Parameter	Options	Default	Description
Prot	Protocol	```ASCII = SATEC ASCII rtu = Modbus RTU dnP3 = DNP3 PrFb = Profibus DP (COM2)```	Modbus RTU	The communications protocol for the port Not changeable on COM2 with the Profibus module
rS	Interface	COM1: 485 = RS-485 COM2: 232 = RS-232 485 = RS-485 422 = RS-422 Eth $=$ Ethernet $\mathrm{PrFb}=$ Profibus DP GPrS = GPRS modem	RS-485	Communication interface. Not changeable on COM2 with the Ethernet and Profibus modules
Addr	Device address	SATEC ASCII: 0-99 Modbus: 1-247 DNP3: 0-65532 Profibus: 0-126	$\begin{array}{\|l\|} 1 \\ \text { (126 for } \\ \text { Profibus) } \end{array}$	Device network address
bAud	Baud rate	$300 \mathrm{bps}-115.2 \mathrm{kbps}$	9600 bps	The port baud rate
dAtA	Data format	7E, 8N, 8E	8 N	Data format and parity. 7E data format should not be used with the Modbus RTU and DNP3 protocols
dLAY	Response delay	0-1000 ms	5 ms	The minimum time after the last request character is received to start the transmission.
CPtb	ASCII compatibility mode	$\begin{aligned} & \text { diS = Disabled } \\ & \text { En = Enabled } \end{aligned}$	Disabled	Enables a low-resolution device emulation for ASCII request " 0 " in highresolution devices (see Device Options)

NOTES:

1. The meter provides the permanent Modbus TCP server on port 502.
2. Selecting the DNP3 protocol launches the second DNP3 TCP server in addition to the Modbus server allowing simultaneous connections on both ports. Selecting the Modbus protocol disables the DNP3 TCP server.
3. When you change the COM2 settings through the Ethernet port, the device port restarts so communications will be temporarily lost. You may need to wait some additional time until PAS restores a connection with your device

Setting Up Ethernet

Using the Front Display

Select nEt from the main menu. This menu entry appears only if the optional Ethernet module is plugged into the meter. It allows you to set up the meter network address and the default gateway.

See Viewing and Changing Setup Options in Chapter 3 for information on configuring parameters via the front display.

Chapter 5 Configuring THE PM130 PLUS
Configuring COMMUNICATIONS

A. 192.

168.0 운
00.203

Using PAS

Select Communications Setup from the Meter Setup menu, and then click on the Network Setup tab.

Figure 5-2: Communication Setup Dialog Box - Network Setup Tab
The table below lists available network options.
Table 15: Ethemet Setup Options

Display Label	Parameter	Options	Default
A	Device IP Address		192.168 .0 .203
-	Network Subnet Mask		255.255 .255 .0
G	Network Default Gateway		192.168 .0 .1
-	TCP Service Port	$502=$ Modbus/TCP $20000=$ DNP3/TCP	502

NOTES

1. The meter provides the permanent Modbus TCP server on port 502.
2. Selecting the DNP3 TCP service port launches the second DNP3 TCP server allowing simultaneous connections on both TCP ports. Selecting the Modbus TCP port disables the DNP3 TCP server.

The TCP service port can also be changed trough the COM2 serial port setup. Changing the communication protocol for the port automatically changes the TCP port for the Ethernet.
3. When you change the device network settings through the Ethernet port, the device port restarts so communication will be temporarily lost. You may need to wait some additional time until PAS restores a connection with your device.

Setting Up GPRS Network

The PM130 PLUS can provide wireless GPRS communications with the remote Modbus/TCP server via GPRS modem module. See Connecting a GSM/GPRS modem in Chapter 2 on how to connect a modem to your meter.

To set up GPRS communications:

1. Select Communications Setup from the Meter Setup menu, and then click on the GPRS Setup tab.

Figure 5-3: Communication Setup Dialog Box - GPRS Setup Tab
The following table lists available GPRS options

Table 16: GPRS Setup Options

Parameter	Default	Description
Access Point Name (APN)	internetg	The mobile network APN name
User name		Username (if required)
Password		Password (if required)

2. Configure your mobile network APN, username and password. Consult your network operator regarding proper network settings. Leave the username and password fields blank if network authorization is not required.
3. Send your GPRS settings to the meter.
4. Select the GPRS interface in the COM2 port setup (see Setting Up Serial Communication Ports).
5. Configure your eXpertPower client (see Setting Up eXpertPower Client) or/and TCP Notification client (see Setting Up TCP Notification Client) for communicating with a remote server.

You can check the status of the GPRS communications from the front panel via the Status Display or via the Device Control dialog in PAS (see Viewing Communication Status and Statistics).

Setting Up eXpertPower Client

The PM130 PLUS has an embedded eXpertPower ${ }^{\text {TM }}$ client that provides communications with the eXpertPower ${ }^{T M}$ server - the SATEC proprietary Internet services. Connections to the eXpertPower ${ }^{\text {TM }}$ server are handled on a periodic basis.

To set up communications with the eXpertPower ${ }^{\text {TM }}$ server, select
Communication Setup from the Meter Setup menu, and then click on the ExpertPower Client Setup tab.

Figure 5-4: eXpertPower Client Setup Tab
The following table lists available options. Refer to your eXpertPower service provider for the correct network settings.

Table 17: eXpertPower Client Setup Options

Parameter	Options	Default	Description
XPW Server IP Address		207.232 .60 .18	The IP address of the eXpertPower server
XPW Server Port	$0-65535$	5001	The TCP service port of the eXpertPower server
XPW Client Enabled	NO, YES	NO	Enables operations of the eXpertPower client
Time to Next Session, min	$1-99999$		The time remaining to the next connection session

NOTES

1. Do not enable the eXpertPower client in your meter if you do not use the eXpertPower ${ }^{T M}$ service.
2. Do not change the connection time setting. It is for information only. The eXpertPower server updates it automatically.

Setting Up TCP Notification Client

The TCP notification client can establish connections with a remote Modbus/TCP server and send notification messages either on events, or periodically on a time basis.

To set up communications with a remote TCP Notification server, select Communication Setup from the Meter Setup menu, and then click on the TCP Notification Client Setup tab.

```
M130 - Communication Setup
Network Setup \(\mid\) ExpertPower Client Setup \(\mid\) Serial Ports Setup \(\mid\) GPRS Setup TCP Notification Client Setup
```


Open	Save as...	Default	Print	Send	Receive
	OK	Cancel	Spply	Help	

Figure 5-5: TCP Notification Client Setup Tab
The following table lists available client options.
Table 18: TCP Notification Client Setup Options

Parameter	Options	Default	Description
Client Enabled	NO, YES	NO	Enables operations of the notification client
Server IP Address		192.168 .0 .3	The IP address of the notification server
Server Port	$0-65535$	502	The TCP service port of the notification server
Message Exchange Address	$0-65535$	1000	The start address of a block of 16 Modbus registers for receiving notification messages

Connections with a remote server are triggered via programmable setpoints. To send event notifications to a server, configure a setpoint to respond to desired triggers or to periodic time events and put the "Notification" action to the setpoint action list (see Configuring Alarm/Control Setpoints).

See the PM130 PLUS Modbus Reference guide for more information on operation of the notification client and the notification message structure.

5.2 General Meter Setup

Basic Meter Setup

This section describes how to configure the PM130 PLUS for your particular environment and application.

Before operating your meter, provide the device with basic information about your electrical network.

Using the Front Display

Select the baSc entry from the main menu. See Viewing and Changing Setup Options in Chapter 3 for information on configuring parameters via the front display.

See the table below for the Basic Setup options.

Using a shortcut to the Basic Setup menu:

From the Data Display, press and release the SELECT button to enter the primary meter menu and then simultaneously press the SELECT and UP buttons. You are directly moved to the CT setting entry.

The shortcut is not operational if the meter is password protected.

Using PAS

Select General Setup from the Meter Setup menu. See the table below for the Basic Setup options.

Table 19: Basic Setup Options

Display Label	Parameter	Options	Default	Description
Basic Configuration				
ConF	Wiring Mode	See Table 20	4Ln3	The wiring connection of the device
Pt	PT Ratio	1.0-6500.0	1.0	The phase potential transformer's primary to secondary ratio
Pt.F	PT Ratio Multiplier	$\times 1, \times 10$	$\times 1$	PT Ratio multiplication factor. Used in extra high voltage networks to accommodate the PT ratio for 500 kV and higher networks.
Ct	CT Primary Current	1-50000 A	5 A	The primary rating of the phase current transformer
Freq	Nominal Frequency	50,60,25,400 Hz	60 Hz	The nominal line frequency
LoAd	Maximum Demand Load Current	0-50000 A	0	The maximum demand load current ($0=\mathrm{CT}$ primary current)
Demand Setup				
d.P	Power block demand period ${ }^{\mathrm{E}}$, EH	1, 2, 3, 5, 10, 15, 20, 30, 60 min , $\mathrm{E}=$ external sync	15 min	The length of the demand period for power demand calculations. If the external synchronization is selected, a pulse front on the digital input DI1 denotes the start of the demand interval.

Chapter 5 Configuring THE PM130 PLUS
General meter setup

Display Label	Parameter	Options	Default	Description
nd.P	The number of blocks in the sliding demand window E, EH	$1-15$	1	The number of blocks to be averaged for sliding window demands
Ad.P	Volt/Ampere Demand Period	$0-1800 \mathrm{sec}$	900 sec	The length of the demand period for ampere and volt demand calculations

1. Always specify the wiring mode and transformer ratings prior to setting up setpoints and analog outputs.
2. The maximum value for the product of the phase CT primary current and PT ratio is $57,500,000$. If the product is greater, power readings are zeroed.

Figure 5-6: General Setup Dialog Box - Basic Setup Tab
Table 20 lists the available wiring modes.
Table 20: Wiring Modes

Wiring Mode	Description
3OP2	3-wire Open Delta using 2 CTs (2 element)
4LN3	4-wire Wye using 3 PTs (3 element), line-to-neutral voltage readings
3DIR2	3-wire Delta Direct Connection using 2 CTs (2 element)
4LL3	4-wire Wye using 3 PTs (3 element), line-to-line voltage readings
3OP3	3-wire Open Delta using 3 CTs (2½ element)
3LN3	4-wire Wye using 2 PTs (2 $1 ⁄ 2$ element), line-to-neutral voltage readings

Wiring Mode	Description
3LL3	4 -wire Wye using 2 PTs (2 $1 / 2$ element), line-to-line voltage readings
3BLN3	3 -wire Broken Delta using 2 PTs, 3 CTs (2 $1 / 2$ element), line-to-neutral voltage readings
3BLL3	3 -wire Broken Delta using 2 PTs, 3 CTs (2 $1 / 2$ element), line-to-line voltage readings

In 4LN3, 3LN3 and 3BLN3 wiring modes, Min/Max volts, volt demands and voltage harmonics represent line-to-neutral voltages; otherwise, they will be line-to-line voltages.

Device Options

The Device Options setup allows changing user-configurable device options or putting the meter into energy test mode.

Using the Front Display

Select OPtS from the main menu. See Viewing and Changing Setup Options in Chapter 3 for information on configuring parameters via the front display.

Using PAS

Select General Setup from the Meter Setup menu, and then click on the Device Options tab.

Table 21 lists available device options.
Table 21: User-configurable Device Options

Display Label	Parameter	Options	Default	Description
P.cAL	Power Calculation Mode	```rEAc = using reactive power S=f(P,Q), nAct = using non-active power Q=f(S,P)```	$S=f(P, Q)$	The method used for calculating reactive and apparent powers (see Power Calculation Modes below)
roLL	Energy Roll Value E, EH	$\begin{aligned} & 10 . E 4=10000 \mathrm{kWh} \\ & 10 . E 5=100000 \mathrm{kWh} \\ & 10 . E 6=1000000 \mathrm{kWh} \\ & 10 . E 7=10000000 \mathrm{kWh} \\ & 10 . E 8=100000000 \mathrm{kWh} \\ & 10 . E 9=1000000000 \mathrm{kWh} \end{aligned}$	10000000	The value at which energy counters roll over to zero
Ph.En	Phase Energy Calculation E, EH	diS = Disabled En = Enabled	Disabled	Enables phase energy calculations
tESt	Energy Test Mode E, EH	$\begin{aligned} & \text { OFF = disabled } \\ & \mathrm{Ac} . \mathrm{Ei}=\text { Wh pulses } \\ & \text { rE.Ei = varh pulses } \end{aligned}$	Disabled	Setting this option puts the meter into the energy test mode (see Energy Pulse LED in Chapter 3)
U. Str	Starting Voltage	1.5-5.0\%	1.5\%	The device starting voltage in percent of FS (120V or 400 V)

Chapter 5 Configuring THE PM130 PLUS
General meter setup

Display Label	Parameter	Options	Default	Description
rESL	Device Resolution	Lo $=$ Low $\mathrm{Hi}=$ High	Low	The voltage, current and power resolution on the front display (see Measurement Units in Chapter 3) and in communications (see communication guides)
U.ScL	Volts Scale, V	$60-828 \mathrm{~V}$	144 V	The maximum voltage scale allowed, in secondary volts. See Data Scales in Appendix F
C.ScL	Amps Scale, A	$1.0-10.0 \mathrm{~A}$	$2 \times \mathrm{CT}$ secondary	The maximum current scale allowed, in secondary amps. See Data Scales in Appendix F

Figure 5-7: General Setup Dialog Box - Device Options Tab

Power Calculation Modes

The power calculation mode option allows you to change the method for calculating reactive and apparent powers in presence of high harmonics. The options work as follows:

- When the reactive power calculation mode is selected, active and reactive powers are measured directly and apparent power is calculated as:

$$
\mathrm{S}=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}
$$

This mode is recommended for electrical networks with low harmonic distortion, commonly with THD < 5\%
for volts, and THD < 10\% for currents. In networks with high harmonics, the second method is preferable.

- When the non-active power calculation mode is selected, active power is measured directly, apparent power is taken as product S $=\mathrm{V} \times \mathrm{I}$, where V and I are the RMS volts and amps, and reactive power (called non-active power) is calculated as:

$$
N=\sqrt{S^{2}-P^{2}}
$$

Configuring Digital Inputs

The PM130 PLUS can be provided with four digital inputs that can be linked to control setpoints to give an indication on input status change (see Configuring Alarm/Control Setpoints), or can be linked to general pulse counters to count incoming pulses (see Configuring Counters). They can also be linked to the Billing/TOU registers to count pulses from external wattmeters or gas and water meters.

Using the Front Display

Select dinP from the main menu. This menu entry appears only if the digital I/ O module is plugged into the meter.

Use the UP and DOWN arrow buttons to scroll to the required digital input.

To select a digital input parameter:

1. Press the SELECT button to activate the middle window.
2. Use the UP and DOWN arrow buttons to scroll to the required parameter.

To change the parameter value:

1. Press the SELECT button to activate the lower window.
2. Use the UP and DOWN arrow buttons to select the required value.
3. Press ENTER to confirm the new parameter setting or press ESC to discard changes. You are returned to the middle window and can configure other parameters.

To store your new settings:

1. Press the ENTER button when the middle window is highlighted.

You are returned to the upper window and can select another digital input or exit the menu.
2. Press ESC to exit the menu.

The available options are shown in Table 22.

Using PAS

Select General Setup from the Meter Setup menu, and then click on the Digital Inputs tab.

Figure 5-8: General Setup Dialog Box - Digital I nputs Dialog Box
The available options are shown in Table 22.
Table 22: Digital I nput Options

Display Label	Parameter	Options	Default	Description
	Input Polarity	NORMAL INVERTING	NORMAL	For the normal polarity, the open to closed transition is considered closed. For the inverting polarity, the closed to open transition is considered closed
PuLS	Pulse Input Mode	PLS.A = PULSE MODE, PLS.C = KYZ MODE	PULSE MODE	In pulse mode, either leading, or trailing edge of the input pulse is recognized as an event. In KYZ mode, both leading and trailing edges of the input pulse are recognized as separate events.
Polr	Pulse Polarity	nor = NORMAL (N.O.), InS = INVERTING (N.C.)	NORMAL	For the normal polarity, the open to closed transition is considered a pulse. For the inverting polarity, the closed to open transition is considered a pulse. It has no meaning in KYZ mode where both transitions are used.
dbnc	Debounce Time	$1-100$ ms	10 ms	The amount of time while the state of the digital input should not change to be recognized as a new state. Too low debounce time
could produce multiple events on				
the input change.				

The debounce time is applied the same for all digital inputs. If you change the debounce time for a digital input, the same debounce time is automatically assigned to the others.

Configuring Relay Outputs

The PM130 PLUS can be provided with two optional relay outputs. Each relay can be operated either locally from the alarm/control setpoints in response to an event or by a remote command sent through communications. It can also be linked to an internal pulse source to produce energy pulses.

Using the Front Display

rEL. 1

tYPE
Puls

rEL. 1 目

Polr
nor

rEL. 1

PuLS
100

rEL. 1
Unit
1.0 园

Select reL from the main menu. This menu entry appears only if the digital I/ O module is plugged into the meter.

Use the UP and DOWN arrow buttons to scroll to the required relay.

To select a relay parameter:

1. Press the SELECT button to activate the middle window.
2. Use the UP and DOWN arrow buttons to scroll to the required parameter.

To change the parameter value:

1. Press the SELECT button to activate the lower window.
2. Use the UP and DOWN arrow buttons to select the required value.
3. Press ENTER to confirm the new parameter setting or press ESC to discard changes.

You are returned to the middle window and can configure other relay parameters.

To store your new settings:

1. Press the ENTER button when the middle window is highlighted.

You are returned to the upper window and can select another relay output or exit the menu.
2. Press ESC to exit the menu.

See Table 23 for the available relay outputs options.

Using PAS

Select General Setup from the Meter Setup menu, and then click on the Relay Outputs tab.

Figure 5-9: General Setup Dialog Box - Relay Outputs Tab
The available relay outputs options are shown in Table 23.
Table 23: Relay Output Options

Display Label	Parameter	Options	Default	Description
tYPE	Operation mode	UnLt = UNLATCHED Ltch = LATCHED PLS.A = PULSE PLS.C = KYZ pulse	UNLATCHED	Unlatched mode: the relay goes into its active state when the control setpoint is in active (operated) state, and returns into iss non-active state when the setpoint is released. Latched mode: the relay goes into its active state when the control setpoint goes into active state and remains in the active state until it is returned into its non-active state by a remote command. Pulse mode (normal pulse): the relay goes into its active state for the specified time, goes into non-active state for the specified time and remains in the non-active state. KYZ mode (transition pulse): the relay generates transition pulses. The relay changes its output state upon each command and remains in this state until the next command.
Polr	Polarity	nor = NORMAL (N.O.) InS (N.C.) INVERTING	NORMAL	Normal polarity: the relay is normally de- energized in its non-active state and is energized in its active (operated) state. Inverting polarity: the relay is normally energized in its non-active state and is de- energized it its active (operated) state. It is called failsafe relay operation.

$\begin{array}{l}\text { Display } \\ \text { Label }\end{array}$	Parameter	Options	Default	Description
PuLS	Pulse width	$20-1000 \mathrm{~ms}$	100 ms	$\begin{array}{l}\text { The actual pulse width is a multiple of the } \\ 1-c y c l e ~ t i m e ~ r o u n d e d ~ t o ~ t h e ~ n e a r e s t ~ b i g g e r ~\end{array}$
value.				
The pause time between pulses is equal to				
the pulse width.				

pulse source. The relay must be set into

either pulse, or KYZ mode.\end{array}\right\}\)

Generating Energy Pulses through Relay Outputs

To generate energy pulses through a relay output:

1. Set a relay to either pulse, or KYZ mode, and then select a polarity (active pulse edge) for energy pulses and a pulse width.
2. Select a source energy accumulator and the pulse rate for your output.
3. Send your new setup to the meter.

Configuring Analog Outputs

The meter can be ordered with two optional analog outputs with options for $0-1 \mathrm{~mA}, \pm 1 \mathrm{~mA}, 0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$ current outputs.

Using the Front Display

Select Aout from the main menu. This menu entry appears only if the

An. 1

 optional analog output module is plugged into the meter.Use the UP and DOWN arrow buttons to scroll to the required analog output.

To select the analog output option:

1. Press the SELECT button to activate the middle window.
2. Use the UP and DOWN arrow buttons to scroll to the required parameter.

To change the parameter value:

1. Press the SELECT button to activate the lower window.
2. Use the UP and DOWN arrow buttons to select the required value.
3. Press ENTER to confirm the new parameter setting or press ESC to discard changes.

You are returned to the middle window and can configure other parameters.
To store your new settings:

Chapter 5 Configuring THE PM130 PLUS
General meter setup

1. Press the ENTER button when the middle window is highlighted.

You are returned to the upper window and can select another analog output or exit the menu.
2. Press ESC to exit the menu.

See Table 24 for the available analog output options.

Using PAS

Select General Setup from the Meter Setup menu, and then click on the Analog Outputs tab.

Figure 5-10: General Setup Dialog Box - Analog Outputs Tab
The available analog output options are described in Table 24.
Table 24: Analog Output Options

Display Label	Option	Range	Description
-	AO type	$0-1 \mathrm{~mA}$ $\pm 1 \mathrm{~mA}$ $0-20 \mathrm{~mA}$ $4-20 \mathrm{~mA}$	The analog output type. When connected to the meter, shows the actual AO type received from the device. When working off-line, select the analog output option corresponding to your analog module.
OutP	Output parameter	See Appendix B	Selects the measured parameter to be transmitted through the analog output channel.
Lo	Zero scale		Defines the low engineering scale (in primary units) for the analog output corresponding to a lowest (zero) output current (0 or 4 mA)

Display Label	Option	Range	Description
Hi	Full scale		Defines the high engineering scale (in primary units) for the analog output corresponding to a highest output current (1 or 20 mA$)$

When you select an output parameter for the analog output channel, the default engineering scales are set automatically. They correspond to the maximum available scales. If the parameter actually covers a lower range, you can change the scales to provide a better resolution on an analog output.

Scaling Non-Directional Analog Outputs

For non-directional analog outputs with a $0-1 \mathrm{~mA}, 0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ current option, you can change both zero and full engineering scales for any parameter. The engineering scale need not be symmetrical.

Scaling Directional Power Factor

The engineering scale for the signed power factor emulates analog power factor meters.

The power factor scale is -0 to +0 and is symmetrical with regard to $\pm 1.000(-1.000 \equiv+1.000)$. The negative power factor is scaled as -1.000 minus the measured value, and non-negative power factor is scaled as +1.000 minus the measured value. To define the entire power factor range from -0 to +0 , the default scales are specified as -0.000 to 0.000 .

Scaling $\pm 1 m A$ Analog Outputs

Programming engineering scales for directional $\pm 1 \mathrm{~mA}$ analog outputs depends on whether the output parameter represents unsigned (as volts and amps) or signed (as powers and power factor) values.

For an unsigned output value, you can change both zero and full engineering scales.
For a signed (directional) value, you should only provide the engineering scale for the +1 mA output current.

The engineering scale for the 0 mA output current is always equal to zero for all values except the signed power factor, for which it is set to 1.000 (see Scaling Directional Power Factor above).
The meter does not allow access to the low scale setting if the parameter is directional. Whenever the sign of the output parameter is changed to negative, the meter automatically uses the full engineering scale setting for +1 mA with a negative sign.

Scaling Analog Outputs for 0-2 mA and $\mathbf{\pm 2} \mathbf{~ m A}$

The $0-1 \mathrm{~mA}$ and $\pm 1 \mathrm{~mA}$ current outputs provide a 100% overload, and actually output currents up to 2 mA and $\pm 2 \mathrm{~mA}$ whenever the output value exceeds the engineering scale you set for the 1 mA or $\pm 1 \mathrm{~mA}$.
The output scales for 0-1 mA and $\pm 1 \mathrm{~mA}$ analog outputs are programmed for 0 mA and +1 mA regardless of the required output current range.

To use the entire output range of 2 mA or $\pm 2 \mathrm{~mA}$, set the analog output scales as follows:

- 0-2 mA: set the 1 mA scale to $1 / 2$ of the required full scale output for uni-directional parameters, and set the 0 mA scale to the negative full scale and the 1 mA scale to zero for bi-directional parameters.
- $\mathbf{\pm 2} \mathbf{~ m A}$: set the 1 mA scale to $1 / 2$ of the required full-scale output for both uni-directional and bi-directional parameters.

For example, to provide the 0 to 2 mA output current range for Volts measured by the meter in the range of 0 to 120 V , set the 1 mA scale to 60 V ; then the 120 V reading will be scaled to 2 mA .

Configuring Counters

The PM130 PLUS has four six-digit general counters that can count pulses delivered through the device digital inputs with a programmable scale factor. Each counter can also be incremented in response to any internal or external event, checked and cleared through the Control Setpoints.

Using the Front Display

Select Cnt from the main menu. This menu entry appears only if the optional digital I/ O module is plugged into the meter.

Use the UP and DOWN arrow buttons to scroll to the required counter.

To select a counter parameter:

1. Press the SELECT button to activate the middle window.
2. Use the UP and DOWN arrow buttons to scroll to the required parameter.

To change the parameter value:

Cnt. 1

1. Press the SELECT button to activate the lower window.
2. Use the UP and DOWN arrow buttons to select the required value.
3. Press ENTER to confirm the new parameter setting or press ESC to discard changes.
You are returned to the middle window and can configure another parameter.

To store your new settings:

1. When the middle window is highlighted, press the ENTER button.
You are returned to the upper window and can select another counter or exit the menu.
2. Press ESC to exit the menu.

See Table 25 for the counter options.

Using PAS

Select General Setup from the Meter Setup menu, and then click on the Pulse/ Event Counters tab.

Table 25 lists available counter options.
Table 25: Counter Options

Display Label	Option	Range	Default	Description
InP	Pulse Input	None, DIGITAL INPUT $\# 1-\# 12$	None	Links a digital input to the counter

Figure 5-11: General Setup Dialog Box - Pulse/ Event Counters
You can preset a counter to a required value or clear it without affecting the counter setup.

To preset or clear a counter:

1. Click the Online button on the PAS toolbar before accessing the setup dialog box.
2. Type in the required value into the Counter Value field.
3. Click Send.

Configuring Alarm/Control Setpoints

The PM130 PLUS has an embedded logical controller that can perform different actions in response to user-defined internal and external events. Unlike a PLC, the meter uses a simplified programming technique based on setpoints that allows the user to define a logical expression based on measured analog and digital values that produce a required action.
The meter provides 16 control setpoints with programmable operate and release delays. Each setpoint evaluates a logical expression with one trigger argument. Whenever an expression is evaluated as "true", the setpoint performs a programmable action that can send a command to the output relay, or increment a counter.

The logical controller provides very fast response to events. The scan time for all setpoints is 1 cycle time (16.6 ms at 60 Hz and 20 ms at $50 / 400$ Hz).

Using the Front Display

Select SEtP from the main menu to enter the setup menu.
Use the UP and DOWN arrow buttons to scroll to the required setpoint.

On
200

OFF E
180

OFFd
180

To select a setpoint parameter:

1. Press the SELECT button to activate the middle window.
2. Use the UP and DOWN arrow buttons to scroll to the required parameter.
To change the parameter value:
3. Press the SELECT button to activate the lower window.
4. Use the UP and DOWN arrow buttons to select the required value.
5. Press ENTER to confirm the new setting or press ESC to discard changes.
You are returned to the middle window and can configure another parameter.

To store your new setpoint settings after you configured all setpoint parameters:

1. Press the ENTER button when the middle window is highlighted.

You are returned to the upper window and can select another setpoint or exit the menu.
2. Press ESC to exit the menu.

See the table below for the available setpoint options.

Using PAS

Select General Setup from the Meter Setup menu, and then click on the Control/ Alarm Setpoints tab.

The following table lists the available setpoint options.
Table 26: Setpoint Options

Display Label	Option	Range	Description
TriG	Trigger parameter	See Appendix C	The trigger parameter that is used as an argument in the logical expression
On	Operate limit		The threshold (in primary units) at which the conditional expression would be evaluated to true. Not applicable for digital triggers.

Display Label	Option	Range	Description
OFF	Release limit		The threshold (in primary units) at which the conditional expression would be evaluated to false. Defines the hysteresis for analog triggers. Not applicable for digital triggers.
On d	Operate delay	$0.1-999.9$ sec	The time delay before operation when the operate conditions are fulfilled
OFFd	Release delay	$0.1-999.9$ sec	The time delay before release when the release conditions are fulfilled
Act	Action	See Appendix C	The action performed when the setpoint expression is evaluated to true (the setpoint is in operated state)

Figure 5-12: General Setup Dialog Box - Control/ Alarm Setpoints Tab

Using Numeric Triggers

For numeric (analog) triggers, you can specify two thresholds for each trigger to provide hysteresis (dead band) for setpoint operations.

The Operate Limit defines the operating threshold, and the second Release Limit defines the release threshold for the trigger. The trigger thresholds are specified in primary units.

If you do not want to use hysteresis for the trigger, set the Release Limit to the same value as the Operate Limit.

Using Binary Triggers

Binary (digital) triggers like digital inputs and relays are tested for ON/CLOSED or OFF/OPEN status.

In the PM130, the binary events are level-sensitive events. An event is asserted all the time while the corresponding condition exists.

Delaying Setpoint Operations

Two optional delays can be added to each setpoint to extend monitoring triggers for a longer time before reaching a decision on whether the expected event occurred or not. When a delay is specified, the logical controller changes the setpoint status only if all conditions are asserted for a period of at least as long as the delay time.

Using Setpoint Events and Actions

When a setpoint status changes, i.e., a setpoint event is either asserted or de-asserted, the following happens in your meter:

- The new setpoint status is logged to the setpoint status register that can be monitored through communications from the SCADA system or from a programmable controller in order to give an indication on the expected event.
- The operated setpoint status is latched to the setpoint alarm latch register that can be inspected through communications and via the display (see Status Display in Chapter 3). The register holds the last setpoint alarm status until it is explicitly cleared through communications or via the display.
- A programmable action is performed on setpoint status transition when a setpoint event is asserted.

Generally, setpoint actions are performed independently for each setpoint and can be repeated a number of times for the same target. The exceptions are relay operations that are shared for each target relay between all setpoints using an OR scheme.

A relay output is operated when one of the setpoints linked to the relay is activated and remains operated until all of these setpoints are released (except for latched relays that require a separate release command to be deactivated).

Using Time Counters

Any of the general counters can be used to count the setpoint operation time. If you select the TI ME CNT \mathbf{n} action for a setpoint, the target counter measures the time while the setpoint is in the operated state. The counter resolution is 0.1 hour. See Status Display in Chapter 3 on how to examine the counters via the front display.

Configuring the Display

This setup allows configuring the meter display. It also has an entry for launching the meter Flash Loader.

Using the Front Display

Select the diSP entry from the main menu. See Viewing and Changing Setup Options in Chapter 3 for information on configuring parameters via the front display.

See Table 27 for the available options.

Table 27: Display Setup Options

Display Label	Parameter	Options	Default	Description
UPdt	Display update rate	0.1-10.0 sec	1 sec	Defines the interval between display updates
ScrL	Auto scroll interval	$\begin{aligned} & \text { None, } \\ & 2-15 \text { sec } \end{aligned}$	None	Defines the scroll interval for the main data display or disables auto scroll
rEtn	Auto return to the main screen	$\begin{aligned} & \text { diS = disabled, } \\ & \text { En = Enabled } \end{aligned}$	Enabled	Enables automatic return to the main display if no buttons are pressed for 5 minutes
bAr	Reference load current for LED bar graph	$\begin{aligned} & 0-10,000 \mathrm{~A} \\ & (0=\mathrm{CT} \text { primary } \\ & \text { current }) \end{aligned}$	0	Defines the nominal load (100\%) level for the bar graph display
Uolt	Primary/Secondary volts units	$\begin{aligned} & \text { Pri = primary } \\ & \text { SEc = secondary } \end{aligned}$	Primary	Selects primary or secondary units for volts display
Ph.P	Phase powers display mode	diS, En	Disabled	Disables or enables phase powers in the main display
Fund.	Fundamental component display mode	diS, En	Disabled	Disables or enables fundamental values in the main display
dAtE	Date order	dnY, ndY, Ynd (d=day, n=month, $\mathrm{y}=\mathrm{year}$)	mm.dd.yy	Defines the date order in the RTC display
rSt	Simple reset mode	$\begin{aligned} & \text { PASS = password } \\ & \text { protected } \\ & \text { En = always } \\ & \text { enabled } \end{aligned}$	PASS	PASS = the simple reset is not allowed if password protection is enabled En = enables the simple reset buttons regardless of password protection
brGt	Brightness	1-3	3	Sets the LED brightness
diAG	Diagnostic LED	diS, En	Disabled	Enables the diagnostic LED
FLSH	Flash Loader call	N/A	N/A	Launches the Flash Loader

Local Time Settings

This setup allows you to specify your time zone, daylight saving time, and clock synchronization options.

Using the Front Display

Select rtc from the main menu. See Viewing and Changing Setup Options in Chapter 3 for information on configuring parameters via the front display.

Using PAS

Select General Setup from the Meter Setup menu, and then click on the Local Settings tab.

Chapter 5 Configuring THE PM130 PLUS
General meter setup

Figure 5-13: General Setup Dialog Box - Local Settings Tab
The available options are described in Table 28.
Table 28: Local Time Options

Display Label	Parameter	Options	Default	Description
-	Country	Default, or country name	Default	Defines calendar setting. The default setting stands for the U.S.A.
dSt	Daylight Saving Time	diS = disabled En = enabled	Disabled	When DST is disabled, the RTC operates in standard time only. When enabled, the meter automatically updates the time at the predefined DST switch dates.
dSt.S	DST Start Month DST Start Week DST Start Weekday	Month-week-weekday Week = 1, 2, 3, 4 or L (last week of the month)	Second Sunday in March	The date when Daylight Saving Time begins.
dSt.S Hour	DST Start Hour	1-6	2	The hour when Daylight Saving Time begins.
dSt.E	DST End Month DST End Week DST End Weekday	Month-week-weekday Week = 1, 2, 3, 4 or L (last week of the month)	First Sunday in November	The date when Daylight Saving Time ends.
dSt.E Hour	DST End Hour	1-6	2	The hour when Daylight Saving Time ends.
SYnC	Time Synchronization Input	None di. $1=$ DII di. $2=$ DI2 di. $3=$ DI3 di. $4=$ DI4	None	The external port receiving the time synchronization pulses

Daylight Saving Time

When the daylight saving time is enabled, the meter automatically advances the device clock by one hour when daylight saving time begins and puts the clock back one hour when it ends. The default daylight saving time change points are preset for the U.S.A.

The daylight saving time option is disabled in the PM130 by default. If the daylight saving time option is disabled, you need to manually adjust the device clock for daylight saving time.

Time Synchronization Pulses

External time synchronization pulses can be delivered through one of the digital inputs.

If a digital input is selected as the time synchronization source, the edge of an external pulse adjusts the device clock at the nearest whole minute. The time accuracy could be affected by the debounce time of the digital input, and by the operation delay of the external relay.

5.3 Configuring Meter Security

This setup allows changing the user password and enabling or disabling password protection.
The password in your meter is preset to 0 at the factory, and password protection is disabled.

Using the Front Display

Select the AccS entry from the main menu. See Viewing and Changing Setup Options in Chapter 3 for information on configuring parameters via
 the front display.

To change the password:

1. Select the PASS entry in the middle window with the UP and DOWN arrow buttons.
2. Press the SELECT button to activate the lower window.
3. Use the UP and DOWN arrow buttons to adjust the password.
4. Press ENTER to confirm the new password.

The new password is effective for both the display and communication ports.

To enable or disable password protection:

1. Select CtrL in the middle window using the UP and DOWN arrow buttons.
2. Press the SELECT button to activate the lower window.
3. Use the UP and DOWN arrow buttons to select the option.

ON enables password protection and OFF disables password protection.
4. Press ENTER to confirm your new setting, or ESC to discard changes.
5. Press ESC to exit the menu.
password protection is enabled, you are not able to change the device settings through the display or communications unless you provide a correct password.

If you cannot provide a proper password, contact your local distributor for the appropriate password to override password protection.

Using PAS

Ensure that the On-line button on the PAS toolbar is checked, select Administration from the Monitor menu, and then select Change Password -> Password 1.

Figure 5-14: Password Setup Dialog Box

To change the password:

1. Type in a new 4-digit password
2. Repeat the password in the Confirm new password box
3. Check Enable password protection to enable password checking
4. Click Send.

5.4 Configuring Billing/ TOU

The TOU battery-backed clock unit is highly recommended in case of using time-scheduled tariff rates, otherwise a long power outage may cause the meter clock to lose time so your tariff counters would not comply with the calendar schedule.

Billing Energy Registers

The PM130E/EH PLUS has 4 fully programmable billing energy registers that can be linked to any internal energy source or to an external pulse source that delivers pulses through the meter digital inputs.
Any energy register can provide either a single-tariff energy accumulation or be individually linked to the TOU system providing both total and multitariff energy billing.

Tariff Rates

The meter tariff structure supports 8 different tariff rates using an arbitrary tariff schedule. A total of 4 types of days and 4 seasons are supported with up to eight tariff changes per day.

Maximum Demand Registers

Any of billing energy registers can be individually linked to the maximum demand register providing the same demand tariff structure as you selected for energy registers.

Recording Billing Data and Load Profiling

The PM130E/EH PLUS can provide automatic recording of the daily energy and maximum demand profile to a data log file. Maximum demand profiling can be individually configured for every register.
See Factory Preset Data Log Files in Chapter 5 and Billing Profile Log File in Appendix E for more information on the file layout and contents.

To configure the billing registers and the tariff system in your meter:

1. Link the billing registers to the respective energy sources.
2. Configure the options for the registers to whether the only totalization or both total and tariff registers would be used, and whether daily profiling should be enabled for the energy usage and maximum demand registers.
3. Configure the daily tariff schedule using the TOU daily profiles for all types of days and seasons.
4. Configure the season tariff schedule using the TOU calendar.

Configuring Billing/Tariff Registers

To configure the billing/TOU registers in your meter:

1. Select Energy/ TOU from the Meter Setup menu.

Figure 5-15: Energy/ TOU Setup Dialog Box - Billing/ TOU Registers tab
2. Configure the register options according to the valid parameters shown in Table 29.

Table 29: Billing/ TOU Register Options

Parameter	Options	Default	Description
Billing/ TOU Registers			
TOU	Unchecked Checked	Unchecked	Links tariff registers to the selected energy source
Use Profile	Unchecked Checked	Checked	Enables recording energy registers in a daily billing profile file (both total and tariff registers if TOU is enabled).
Dmd Profile	Unchecked Checked	Unchecked	Enables recording maximum demand registers in a daily billing profile file (both total and tariff registers if TOU is enabled)
Sum Profile	Unchecked Checked	Checked	Enables recording total (summary) registers in a daily billing profile file.
Units	kWh, kvarh, kVAh, $\mathrm{m}^{3}, \mathrm{CF}$ (cubic foot), CCF (hundred cubic feet)	None	The register measurement units. When a register is linked to an internal energy source, it is set automatically. When an external pulse source is used, the user can select a measurement unit for the register.
Register Source List			
Source Input	None kWh Import kWh Export kvarh Import kvarh Export kVAh, DI1-DI4	None	Links an energy source to the register

Parameter	Options	Default	Description
Multiplier	0.001 to 100.000	1.000	The multiplication factor for the energy source. Unchangeable for internal energy sources.
Target	Reg\#1-Reg\#4	None	Defines the target billing register for the energy source. It is set automatically.

Configuring the Daily Tariff Schedule

To configure your daily tariff schedule, select Energy/ TOU from the Meter Setup menu, and then click on the TOU Daily Profiles tab.

Figure 5-16: Energy/ TOU Setup Dialog Box - TOU Daily Profiles Tab
The daily profile setup allows you to specify the daily tariff change points with a 15-minute resolution for 4 seasons using 4 different daily schedules for each season.

To configure your daily profiles:

1. Select the desired season and day type.
2. Select the start time for each tariff change point and the corresponding active tariff number.
3. Repeat the setup for all active profiles.

The first tariff change point is fixed at 00:00 hours, and the last tariff change you specified will be in use until 00:00 hours on the next day.

NOTE
The billing daily profile log file is automatically configured for the number of active tariffs you defined in the meter TOU daily profiles.

Configuring the Season Tariff Schedule

To configure your season tariff schedule, select Energy/ TOU from the Meter Setup menu, and then click on the TOU Calendar tab.

Figure 5-17: TOU Calendar Setup Dialog Box - TOU Calendar Tab
The meter TOU calendar allows you to configure any tariff schedule based on any possible utility regulation. The calendar provides 32 entries that allow you to specify profiles for working days and holidays through all seasons in any order that is convenient for you, based on simple intuitive rules.

To configure your season tariff schedule:

1. In the Season/ Period box, select the season, and in the Day Type box, select a day type for this calendar entry.
2. Define the time interval when this daily tariff schedule is effective, based on the start and end weekdays and, for a multi-season schedule, on the start and end month for the selected season. It does not matter which order of weekdays or months you select: the meter recognizes the correct order.
3. For exception days like weekends and designated holidays, define a specific day either by a month and a month day, or by selecting a month, a week and a weekday within the month.

There are no limitations on how to build your schedule. A common recommendation is to use minimum time constraints and only when it is needed to avoid ambiguity. You need not to define month days if a daily schedule is effective all days of the month, or to define the start and end months if it is effective through all the year. If you wish to define a specific period within a month using the start and end days, put this entry
before allocating the remaining days to another daily schedule without specified month days, so it would be checked first for a match.

The above picture shows a typical single-season tariff schedule with two daily tariff profiles configured for working days, and weekends and the designated U.S.A. holidays.

5.5 Configuring Recorders

The PM130E/EH PLUS has a 58-KByte onboard non-volatile memory for data and event recording. The memory is fully configurable and can be freely partitioned between log files.
The meter provides memory for a total of $3 \log$ files:

- Event log
- Two data logs

The two data log files are pre-configured at the factory for recording a 15minute energy and demand profile and for the daily billing energy data profile. If you wish to change the factory settings, follow the guidelines in the next section.

Configuring Meter Memory

To view the present memory settings, select Memory/ Log from the Meter Setup menu, and then click on the Log Memory tab.

Figure 5-18: Log Setup Dialog Box - Log Memory Tab
The following table describes file options.

Option	Range	Description
Type	Wrap-around Non-wrap	Wrap-around: recording continues over the oldest records. Non-wrap: recording is stopped until the file is cleared.
Size	$0-8$	The size of memory allocated to the file.
Sections/Channels	The numbers of sections in a multi-section profile data log file	
Num. of Records	$0-65535$	Allocates the file memory for predefined number of records
Record size		The size of the file record for a single channel or a single section. It is set automatically depending on the file and on the number of parameters in the data records
Parameters	$0-9$	The number of parameters in a single data log record

To change the file properties or to create a new file:

1. Double click on the file you want to change.

2. Select desired parameters for your log.
3. Click OK.

For your reference, the record size and the number of records available for your file are reported in the dialog box.

To delete an existing file partition:

1. Click on Delete.
2. Click OK.

NOTES

1. Memory is allocated for a file statically when you set up your files and will not change unless you re-organize files.
2. The meter automatically performs defragmentation of the memory each time you re-organize your files. This prevents possible leakage of memory caused by fragmentation. It may take a couple of seconds.

For more information on configuring specific files, see the following sections.

The following table can help you calculate an estimated file size when planning your memory allocation.

File	Record Size, Bytes	File Size, Bytes
Event Log	16	Record size \times Number of records
Conventional data Log	$12+4 \times$ Number of parameters	Record size \times Number of records
Billing/TOU daily profile log	$12+4 \times$ (Number of season tariffs +1 for the TOU summary/total register)	Record size \times Number of billing registers $(\times 2$ for the maximum demand profile $) \times$ Number of records

The factory pre-set file configuration is shown in the following table.

No.	File	Size, Bytes	Channels	Number of Records	Number of Events	Factory-set Configuration
1	Event log	3200		200	200	200 last events
2	Data log \#1	46080		5760	5760	15-min data profile for 15 days

No.	File	Size, Bytes	Channels	Number of Records	Number of Events	Factory-set Configuration
17	Data log \#16	8640	4	90	90	Daily billing/TOU profile for 90 days, 4 registers, totals +3 tariffs

Configuring the Event Recorder

To configure the Event log file:

1. Double click on the Event Log file partition with the left mouse button.

2. Select a desired file type for your file.
3. Select the maximum number of records you want to be recorded in the file.
4. Click OK, then send your new setup to the meter or save to the device database.

By default, the Event recorder stores all events related to configuration changes, resets, and device diagnostics.

Configuring the Data Recorder

Conventional Data Log Files

The Data recorder is programmable for recording up to 9 data parameters per record in each of the conventional data log files. The list of parameters to be recorded to a data \log is configurable individually for each file.

To create a new data log file or re-configure an existing file:

1. Double click on the file partition with the left mouse button.

Chapter 5 Configuring THE PM130 PLUS
Configuring RECORDERS

2. Select a partition type for your file.
3. Select the number of parameters you want to be recorded in the file records.
4. Select the maximum number of records you want to be recorded in the file.
5. Click OK, and then send your new setup to the meter, or save to the device database.

To define the contents of the file:

1. Highlight the data log file row with the left mouse button, and then click on the Setup Recorder button, or click on the Data Recorder tab and select the corresponding log number.

Figure 5-19: Log Setup Dialog Box - Data Recorder Tab
2. Configure the list of parameters to be recorded in a log file. You are not allowed to select more parameters than you defined when configuring your file. Refer to Appendix D for a list of available parameters.
3. For your convenience, PAS follows your selection and helps you configure a series of the neighboring parameters: when you open the Group box for the next parameter, PAS highlights the same group as in your previous selection; if you select this group again, PAS automatically updates the Parameter box with the following parameter in the group.
4. Add the name for your data log file in the Name box. It will appear in the data log reports.
5. Save your new setup to the device database, and send it to the meter.

Billing/TOU Daily Profile Log File

Data $\log \# 16$ is configurable to store TOU daily profile log records on a daily basis.
The file is organized as a multi-section file that has a separate section of the same structure for each billing energy and maximum demand register. The number of sections is taken automatically from the Billing/TOU Registers setup (see Configuring Billing/Tariff Registers). If the maximum demand profiling is used, then the number of sections in the file will be twice the number of the allocated billing registers.

To configure a daily profile log file:

1. Configure your Billing/TOU registers and tariff schedule in the meter (see Configuring Billing/Tariff Registers) first.
2. Double click on the Data Log\#16 partition with the left mouse button.

3. Select the TOU Daily Profile file type.
4. Select the number of season tariffs in your TOU schedule. Add one additional parameter if you selected to record the Summary (TOU total) registers as well.
5. Select the maximum number of records you want to be recorded in the file assuming that a new record will be added once a day.
6. Click OK and send your setup to the meter or save to the meter database.

Factory Preset Data Log Files

Conventional Data Log \#1

Data $\log \# 1$ is factory preset for $15-$ min periodic recording of the standard energy and demand quantities. You can freely change the list of recorded parameters and the file update rate.

The default list of parameters is shown in the following table.

No.	Parameter
1	kWh import
2	kWh export
3	kW import sliding demand
4	V1 demand
5	V2 demand
6	V3 demand

Periodic recording data is triggered by Setpoint \#1 that is linked to the meter clock. To change the periodic rate at which data is recorded, change the time interval for the MINUTE INTERVAL trigger in Setpoint \#1 (see Configuring Alarm/Control Setpoints).

Billing/ TOU Profile Data Log \#16

Data $\log \# 16$ is pre-configured for daily billing energy and maximum demand recording for the last 90 days. It is automatically updated once a day.
See Billing Profile Log File in Appendix E for the file record structure.

5.6 Configuring Communication Protocols

This section describes how to customize protocol options for use with your application software.

Configuring Modbus
 Modbus Point Mapping

The PM130 PLUS provides 120 user assignable registers at addresses 0 to 119. You can re-map any register available in the meter to any assignable register so that registers found at different locations may be accessed with a single request by re-mapping them to adjacent addresses.

Initially these registers are reserved and none of them points to an actual data register. To build your Modbus register map:

1. Select Protocol Setup from the Meter

Setup menu, and click on the Modbus
Registers tab.
2. Click on the Default button to cause the assignable registers to reference the actual default meter register 6656 (0 through 119 are not allowable register addresses for re-mapping).

Figure 5-20: Protocol Setup Dialog Box - Modbus Registers Tab
3. Type in the actual addresses you want to read from or write to via the assignable registers. Refer to the PM130 PLUS Modbus Reference Guide for a list of the available registers. Note that 32-bit Modbus registers should always start at an even register address.
4. Click Send to download your setup to the meter.

Changing 32-bit Register Format

The PM130 PLUS allows you to read 32-bit Modbus analog registers, energy counters and binary counters either in integer format, or in IEEE single precision floating point format.

The 32-bit Modbus registers are factory-set to integer format. To change the register format:

1. Select Protocol Setup from the Meter Setup menu, and click on the Modbus Registers tab.
2. Change the 32 -bit register format in the Modbus Options pane.
3. Click Send to download your setup to the meter.

Configuring DNP3

Refer to the PM130 DNP3 Reference guide for information on the DNP3 protocol implementation and a list of the available data points.
DNP Options
Select Protocol Setup from the Meter Setup menu and click on the DNP Options tab.

Figure 5-21: Protocol Setup Dialog Box - DNP Options Tab
The following table describes available options. Refer to the DNP3 Data Object Library document available from the DNP User's Group on the DNP3 object types.

Table 30: DNP Options

Parameter	Options	Default	Description
Binary Inputs (BI)			
Binary Input Object	Single-bit With Status	Single-bit	The default BI object variation for requests with qualifier code 06 when no specific variation is requested
Analog Inputs (AI)			
Analog Input Object	$\begin{aligned} & \hline 32 \text {-bit } \\ & 32 \text {-bit-Flag } \\ & 16 \text {-bit } \\ & 16 \text {-bit-Flag } \end{aligned}$	16-bit-Flag	The default AI object variation for requests with qualifier code 06 when no specific variation is requested
Binary Counters (BC)			
Binary Counter Object	$\begin{aligned} & \text { 32-bit+Flag } \\ & 32 \text {-bit-Flag } \\ & 16 \text {-bit+Flag } \\ & 16 \text {-bit-Flag } \end{aligned}$	32-bit-Flag	The default BC object variation for requests with qualifier code 06 when no specific variation is requested
DNP General Options			
16-bit AI Scaling	Disabled Enabled	Enabled	Allows scaling 16-bit analog input objects (see description below)
16-bit BC Scaling	$\begin{aligned} & x 1, x 10, \\ & \times 100, x 1000 \end{aligned}$	x1	Allows scaling 16-bit binary counter objects (see description below)
SBO Timeout ${ }^{1}$	2-30 sec	10	Defines the Select Before Operate (SBO) timeout when using the Control-Relay-Output-Block object
Time Sync Period ${ }^{2}$	0-86400 sec	86400	Defines the time interval between periodic time synchronization requests
Multi Fragment Interval	$50-500 \mathrm{~ms}$	50	Defines the time interval between fragments of the response message when it is fragmented

Scaling 16-bit AI objects

Scaling 16-bit AI objects allows accommodating native 32-bit analog input readings to 16 -bit object format; otherwise it may cause an over-range error if the full-range value exceeds a 16 -bit point limit.

Scaling is enabled by default. It is not related to points that are read using 32-bit AI objects.
Refer to the PM130 DNP3 Reference Guide for information on the data point scales and a reverse conversion that should be applied to the received scaled values.

Scaling 16-bit Binary Counters

Scaling 16-bit Binary Counters allows changing a counter unit in powers of 10 to accommodate a 32-bit counter value to 16 -bit BC object format.

If the scaling unit is greater than 1, the counter value is reported being divided by the selected scaling unit from 10 to 1000 . To get the actual value, multiply the counter reading by the scaling unit.

[^45]
Configuring DNP Class 0 Responses

The most common method of getting static object information from the meter via DNP is to issue a read Class 0 request. The PM130 allows you to configure the Class 0 response by assigning ranges of points to be polled via Class 0 requests.

To view or build a DNP Class 0 response message:

1. Select Protocol Setup from the Meter

Setup menu and click on the DNP
Class 0 Points tab.
2. Select the object and variation type for a point range.
3. Specify the start point index and the number of points in the range. Refer to the PM130 DNP3 Reference Guide for available data points.
4. Repeat these steps for all point ranges you want to be included into the Class 0 response.
5. Click Send to download your setup to the meter.

The factory-set Class 0 point ranges are shown in the picture below.

Figure 5-22: Protocol Setup Dialog Box - DNP Class 0 Points Tab

Chapter 6 Device Control and Upgrading

This section describes operations on the meter you can perform from the front display or via PAS. To access device control options from PAS, you should have your meter online.

6.1 Resetting Accumulators, Maximum Values and Files
 Using the Front Display
 Select the rst entry from the main menu. See Viewing and Changing Setup Options in Chapter 3 for information on configuring parameters via the front display.

To reset the desired values:

1. Highlight the middle window by pressing briefly the SELECT button.
2. Select a reset entry by scrolling through the list with the UP and DOWN arrow buttons.
3. Press the SELECT button briefly to highlight the lower item.
4. Press and hold the ENTER button for 5 seconds.
5. Release the button.

The do entry is replaced with done showing the operation is complete.

Table 31 shows the reset options available from the front display.
Table 31: Front Display Reset Options

Display Label	Description
EnrG	Clears all total energies
dnd	Clears all maximum demands
P.dnd	Clears power maximum demands
A.dnd	Clears ampere and volt maximum demands
Lo.Hi	Clears Min/Max log
Cnt	Clears all counters
Cnt1 - Cnt4	Clears counter \#1-\#4
diAG	Clears device diagnostics

Using PAS

Ensure that the On-line button on the PAS toolbar is checked, and then select Reset from the Monitor menu.

Figure 6-1: Reset Dialog

To reset the desired values or files:

1. Click on the corresponding button, and then confirm your command.
2. If an entry has more than one target, you are allowed to select targets to reset.
3. Check the corresponding boxes, and then click OK.

Figure 6-2: Reset Maximum Demands Dialog Box

6.2 Updating the Meter Clock
 Using the Front Display

Select the rtc entry from the main menu.

To change the time or date:

1. Use the UP and DOWN arrow buttons to select a setup option
2. Highlight an item you want to change by pressing briefly the SELECT button.
3. When you access the time setup display, the hours and minutes are frozen allowing you to adjust the time.
4. Adjust the selected item with the UP and DOWN arrow buttons.
5. Highlight the next item to change and adjust it in the same manner.
6. Press ENTER to confirm your changes or press ESC to leave the clock settings unchanged.
7. If you confirm the time change while the seconds are highlighted, the seconds are zeroed; otherwise they stay unchanged.
8. Press ESC to exit the menu.

Table 32 describes available options.
Table 32: Clock Setup Options

Display Label	Parameter	Options	Description
hour	Time	hh.mm.ss	The time is displayed as hh.mm.ss, where the hours and minutes are shown in the middle window separated by a dot, and the seconds - in the lower window.
dAte	Date	YY.MM.DD MM.DD.YY DD.MM.YY	The date is displayed as per the user definition, where the first two items are shown in the middle window, and the last one - in the lower window. See Configuring the Display for instructions on how to select the date format.
dAY	Day of week	Sun = Sunday חon = Monday tuE = Tuesday WEd = Wednesday thu = Thursday Fri = Friday Sat = Saturday	The day of the week is set automatically when you change the date.

Using PAS

Ensure that the On-line button on the PAS toolbar is checked, and then select RTC from the Monitor menu or click on the Real-Time Clock button on the PAS toolbar.
The RTC dialog box displays the current PC time and the time in your meter.

Figure 6-3: Real Time Clock Window
To synchronize the meter clock with the PC clock, click Set

6.3 Viewing and Clearing Device Diagnostics

Using the Front Display

See Diagnostics Display in Chapter 3 on how to view and clear device diagnostics from the front display.

Using PAS

Ensure that the On-line button on the PAS toolbar is checked, select Device Control from the Monitor menu, and then click on the Device Diagnostics tab.

See Device Diagnostic Codes in Appendix G for the list of diagnostic codes and their meaning.

Figure 6-4: Device Control Dialog Box - Device Diagnostics Tab
To clear the device diagnostics events, click on Clear.

6.4 Viewing Communication Status and Statistics

Ensure that the On-line button on the PAS toolbar is checked, select Device Control from the Monitor menu, and then click on the Communications tab

Figure 6-5: Device Control Dialog Box - Communications Tab
This window indicates the present GPRS communication status (see Setting Up GPRS Network in Chapter 5) and connection statistics of the TCP clients (see Setting Up eXpertPower Client and Setting Up TCP Notification Client in Chapter 5).
To clear the communication counters, click on Clear.
You can also clear the communications counters via the PAS Reset dialog (see Resetting Accumulators, Maximum Values and Files).

6.5 Remote Relay Control

You can use PAS to send a remote command to your meter to operate any relay output or release a latched relay, except of the relays linked to an internal pulse source. These relays are blocked for operating from outside of the meter.

To access the relay control dialog, ensure that the On-line button on the PAS toolbar is checked, select Device Control from the Monitor menu, and then click on the Remote Relay Control tab.

Figure 6-6: Device Control Dialog Box - Remote Relay Control Tab

To send a remote command to a relay:

1. Select a desired command in the Relay Command box for a relay:

OPERATE - to operate a relay
RELEASE - to remove your remote command, or to release a latched relay
2. Click Send.

6.6 Upgrading Device Firmware

Your meter has upgradeable firmware. If you need to upgrade your device, download a new firmware file to the meter through PAS.

Firmware can be downloaded via the Modbus RTU or Modbus/TCP protocol through any communication port.

To download a new firmware file to your device:

1. Ensure that the communication port you are connected through to the meter operates in Modbus mode.
2. If you are connected to the meter through a serial interface, it is recommended to set the port baud rate to $115,200 \mathrm{bps}$. See Setting Up Serial Communication Ports on how to remotely change the protocol and baud rate in your meter.
3. Ensure that the On-line button on the PAS toolbar is checked, and then select Flash Downloader from the Monitor menu and confirm downloading.
4. Point to the firmware upgrade file for your meter, click Open, and then confirm upgrading the meter.

5. You are asked for the password regardless of the password protection setting in your meter. Type the meter password, and click OK. If you did not change the password in the meter, enter the default password 0 .

6. Wait until PAS completes upgrading your device. It takes about 3-4 minutes at 115,200 bps to download the file to the meter.

7. After upgrading firmware is completed, the meter restarts, so communications can be temporarily lost. You may need to wait a short duration until PAS restores a connection with your device.

Chapter 7 Monitoring Meters

7.1 Viewing Real-time Data

Real-time data can be continuously retrieved from your devices and updated on the screen at the rate you defined in the Instrument Setup.
To get real-time data from your meter:

1. Ensure that the On-line button on the PAS toolbar is checked.
2. Select the device site from the list box on the PAS toolbar.
3. Point to RT Data Monitor on the Monitor menu, and then select a data set you want to view.
Polling Devices
Click on the "Poll" or "Continuous poll" button to poll the meter once or continuously.

Click on the Stop button \mathbf{x} to stop continuous polling.
The following picture shows a typical data monitor window.

Figure 7-1: RT Data Monitor Window
You can open as many monitor windows as you wish, either for different sites, or for the same site using different data sets. An open data monitor
window is linked to the current site and does not change if you select another site in the site list.

You can view acquired data in a tabular form or in a graphical form as a data trend.

Organizing Data Sets

PAS supports 33 programmable data sets with up to 40 data parameters. Set \#0 is intended for simple meters, which have a limited number of parameters, and is not recommended for the use with the PM130 PLUS. To re-organize data sets, select RT Data Sets from the Monitor menu or click on the button 羽 on the local toolbar.

Some data sets are preset for your convenience and others are empty. You can freely modify data sets.

See Appendix D for a list of data available in your meter.

Polling Options

To change the polling options, click on the Data Monitor window with the right mouse button and select Options.

If you check Do not stop on errors, polling is resumed automatically when a communication error occurs, otherwise polling stops until you restart it manually.

Viewing a Data Table

Changing the Data View

PAS displays data in either a single record or multi-record view. To change the view, click on the Data Monitor window with the right mouse button and select either Wrap to see a single record, or UnWrap to go to the multi-record view.

Adjusting the Number of Rows in a Multi-Record View

Click the window with the right mouse button, select Options, adjust the number of records you want to see in the window, and then click OK. When the number of retrieved records exceeds the number of rows in the window, the window scrolls up so that older records are erased.

See Working with Tables in Chapter 9 for more information on working with tables.

Viewing Data Trend

To view a data trend, click on the button on the local toolbar.
To change the time range for your graph, click on the 1.7 button on the local toolbar, and then select the desired date and time range.

See Working with Graphic Windows in Chapter 9 for more information on working with graphs.

Saving Data to a File

To save retrieved data to a file for later analysis, click on the Save button select an existing database or type the name for a new database, and then click Save.
To avoid confusion, do not store data files into the Sites directory where site databases are located.

Printing Data

To check the report, as it will look when printed, select Print Preview from the File menu.

To print retrieved data, click on the button on the PAS toolbar, select a printer, and then click OK.

Real-time Data Logging

PAS allows you to store data records to a database automatically at the time it updates data on the screen.

To setup the real-time logging options:

1. Open the Data Monitor window.
2. Click on the RT Logging On/ Off button on the local toolbar, or select RT Logging Options from the Monitor menu.
3. Select a database, or type the name for a new database and select a directory where you want to save it.
4. Select the number of tables, and the number of records in each table you want recorded.
5. Adjust the file update rate for automatic recording. It must be a multiple of the sampling rate that you defined in the Instrument Setup dialog.
6. Click Save.

When you run real-time data polling, PAS automatically saves retrieved records to a database at the rate you specified.
The RT Logging On/ Off button on the toolbar should be checked all the time. You can suspend logging by un-checking the button, and then resume logging by checking it again.

7.2 Viewing Real-time Min/ Max Log

To retrieve the real-time Min/Max log data from your meter:

1. Select the device site from the list box on the PAS toolbar.
2. Point to RT Min/ Max Log on the Monitor menu, and then select a data set you want to view.
3. Ensure that the On-line button on the PAS toolbar is checked.
4. Click on the Poll button

PAS supports 9 programmable data sets that you can organize as you wish. To build your data sets, select MinMax Data Sets from the Monitor menu or click on the 㔰 button on the local toolbar.

See Working with Tables in Chapter 9 for more information on working with tables.

7.3 Viewing Real-time Waveforms

To retrieve real-time waveforms from your meter:

1. Ensure that the On-line button on the PAS toolbar is checked.
2. Select the device site from the list box on the toolbar.
3. Select RT Waveform Monitor from the Monitor menu or click on the button on the PAS toolbar.

Use the Poll button for a single-step poll or the Continuous poll button for continuous polling.
To stop continuous polling, click on the Stop button $\mathbf{\chi}$.
The meter provides simultaneous capture of six one-cycle voltage and current AC waveforms at a rate of 64 samples per cycle. To give you a more representative picture, PAS extends the waveforms across the window up to eight cycles by repeating the captured waveforms.

To select the channels you want to view, click with the right mouse button on the waveform window, select Channels..., check the channels for the phase you want displayed, and then click OK.

See Working with Graphic Windows in Chapter 9 for more information on working with waveforms.

Retrieved waveforms can be displayed in different views as overlapped or non-overlapped waveforms, as RMS cycle-by-cycle plot, or as a harmonic spectrum chart or table.

Viewing a Waveform Graph

When you open a new file, PAS shows you a waveform graph with nonoverlapped waveforms as shown in the picture above.
Click on the button on the local toolbar to see overlapped waveforms. Click on the button for non-overlapped waveforms.

Figure 7-2: RT Waveform Monitor Window

Viewing a Frequency Plot

Click on the $\mathbf{H z}$ button to view a cycle-by-cycle frequency plot for the sampled voltage waveforms.

Viewing a Harmonic Spectrum

Click on the waveform channel. PAS provides voltage, current, active power and reactive power spectrum charts. See Viewing Real-time Harmonic Spectrum for more information on viewing options.

Viewing Phasor Diagrams

The phasor diagrams show you relative magnitudes and angles of the three-phase voltage and current fundamental component. All angles are shown relative to the reference voltage channel.

To change the reference channel, click on the waveform window with the right mouse button, select Options..., click on the Phasor tab, check the channel you want to make a reference channel, and then click OK.

Viewing Symmetrical Components

Waveform views have an additional pane at the right where PAS displays the symmetrical components for voltages and currents, calculated for the point indicated by the left marker line.
To enable or disable the symmetrical components, click on the waveform window with the right mouse button, select Options..., check or uncheck
the Symmetrical components box on the Channels tab, and then click OK.

Viewing Phase-to-phase Voltages

PAS can transform phase-to-neutral voltage waveforms in configurations with a neutral into phase-to-phase waveforms allowing you to view the waveshape, angle relationships and harmonics of the phase-to-phase voltages.
Click on the $Y_{\text {tL }}$ button on the waveform window toolbar. Click the button once again to return to phase-to-neutral waveforms.

7.4 Viewing Real-time Harmonic Spectrum

To retrieve real-time harmonic spectrum from your meter:

1. Ensure that the On-line button
 on the PAS toolbar is checked.
2. Select the device site from the list box on the toolbar.
3. Select RT Harmonic Monitor from the Monitor menu or click on the button on the PAS toolbar.

Click on the "Poll" or "Continuous poll" button to poll the meter once or continuously. Click on the Stop button \mathbf{x} to stop continuous polling.

Figure 7-3: RT Harmonic Monitor - Spectrum Chart
PAS retrieves harmonic spectrum for V1-V3 and I1-I3 channels.
Harmonics can be displayed as a spectrum chart for a selected channel or in a table. PAS can also synthesize waveforms based on the harmonic
spectrum to let you view a shape of the voltage and current waveforms in your network.

Viewing a Spectrum Chart

Click on the To change a channel, click on the window with the right mouse button, select Channels..., check the channel you want displayed, and then click OK. PAS provides voltage, current, active power and reactive power spectrum charts.

PAS can give you indication on whether harmonic levels in the sampled waveforms exceed compliance limits defined by the power quality standards or local regulations.

To review or change harmonic limits:

1. Click on the spectrum window with the right mouse button and select
Limits...
2. Select a known harmonics standard, or select Custom and specify your own harmonic limits.
3. Check the Enabled box to visualize harmonic faults on the spectrum graph and in harmonic tables.

Harmonics that exceed selected compliance levels are colored in red on the graph and in the tables.

Figure 7-4: Harmonic Limits

Viewing a Spectrum Table

Click on the 囲 button on the local toolbar to display the harmonics spectrum in a tabular view for a selected phase or for all phases together.

The spectrum table shows voltage, current, active power and reactive power harmonic components both in percent of the fundamental and in natural units, and harmonic phase angles.

To change a phase, click on the window with the right mouse button, select Options..., check the phase you want displayed, and then click OK.

Figure 7-5: RT Harmonic Monitor - Spectrum Table

Viewing Synthesized Waveforms

To view the synthesize waveforms based on the sampled harmonic spectrum, click on the button on the local toolbar to view non-overlapped voltage and current waveforms, or click on the button to view them overlapped.

PAS shows a pair of 4-cycle voltage and current synthesized AC waveforms for a single phase.

To select the channels you want to view, click with the right mouse button on the waveform window, select "Channels...", check the channels for the phase you want displayed, and then click OK.

Figure 7-6: RT Harmonic Monitor - Synthesized Waveforms

Chapter 8 Retrieving and Storing Files

PAS allows you to retrieve recorded events and data from your meters and to save them to files on your PC in the Microsoft Access database format.

Historical data can be uploaded on demand any time you need it, or periodically through the Upload Scheduler that retrieves data automatically on a predefined schedule, for example, daily, weekly or monthly.

If you do not change the destination database location, new data is added to the same database so you can store long-term data profiles in one database regardless of the upload schedule you selected.

8.1 Uploading Files on Demand

To retrieve the log files from your meter:

1. Ensure that the On-line button on the PAS toolbar is checked.
2. Select a device site from the list box on the PAS toolbar.
3. Select Upload Logs from the Logs menu.

4. Select a database, or type the name for a new database, and select a directory where you want to save it.
5. Click on the Select Logs button and check boxes for logs you want to be retrieved from the meter.
6. If you wish to retrieve data starting with a known date, check the "From" box and select the start date for retrieving data.
7. If you wish to retrieve data recorded before a known date, check the "To" box and select the last date for retrieving data.
8. Click OK.

Chapter 8 Retrieving AND STORING FILES
Using the upload scheduler

8.2 Using the Upload Scheduler

To setup the Upload Scheduler:

1. Select Upload Scheduler from the Logs menu.

Figure 8-1: Upload Scheduler Setup Dialog Box
2. Click Add Site, point to the site database for which you want to organize the schedule, and then click OK.
3. Click Browse and select a database for storing retrieved data, or type the name for a new database, select a directory where you want to save it, and then click OK.
4. Click Configure or double click on the site row.

5. Select a daily, weekly or monthly schedule, and adjust the start time. If you wish to upload data periodically in predefined intervals, click on Periodic and define the time period in hours and minutes.
6. Select the number of attempts to upload data in the event of temporary communication problems or unavailability of your device, and the delay between attempts in minutes and seconds.
7. If you wish to use the schedule to synchronize the device clock with your PC, check the RTC Synchronization Enable box. If your device is password protected by a communications password, type in the password you set in the device to allow PAS to update the clock.
8. Click on the Select Logs button, check the boxes for logs you want to upload on a schedule, and then click OK.
9. Check the Enabled box at left to activate a schedule for the device.
10. Click Close to store your schedule.

To keep the Upload Scheduler running, the On-line button
 on the PAS toolbar must be checked all the time. If you uncheck it, the scheduler stops operations. This does not cause loss of data, since the scheduler will resume operations when you check this button again.

Suspending the Scheduler

To suspend the Upload Scheduler, check the Suspend Scheduler box at right. To activate the Upload Scheduler, leave this box unchecked.

Running the Scheduler on Demand

You can run the scheduler at any time outside the schedule by checking the Start Now box at right. This is a one-time action. After uploading is completed, the Upload Scheduler un-checks this box automatically.

Reviewing Upload Problems

When the Upload Scheduler fails to retrieve data from the device, or some data is missing, or another problem occurs, it puts an error message to the log file. To review this file, select System Log from the View menu.

8.3 Viewing Files On-line

Sometimes, it is useful to review a particular piece of historical data online at the time you expect new events to appear in the log. PAS allows you to retrieve historical data from a particular log without storing it to a file. The data appears only in the window on your screen. You can save it manually to the database.

To view the log data on-line, check the On-line button on the PAS toolbar, select the log you want to retrieve in the Logs menu, and then click on the Poll button . Only new log records are retrieved from the device. If you want to review the entire log from the beginning, click on the Restore log button \ll, and then click on the Poll button .

NOTE
When reading multi-section profile data, only the first section is available for reading online.
See Chapter 9 Viewing Files for information on using different log views.

8.4 Exporting Files

Exporting Files in COMTRADE and PQDIF Formats

The COMTRADE and PQDIF file converters allow you to convert saved realtime waveforms into COMTRADE or PQDIF file format, and data log tables - into PQDIF format.

Manual Converting

To manually convert your waveforms or a data log into COMTRADE or PQDIF format:

1. Click on the Export button on the PAS toolbar.

2. Select the database and a data log table you want to export, and then click Open.

3. Select a folder where you want to store your exported files, type a file name that identifies your files, select a file output format, and then click on the Save button.
4. The PQDIF files are commonly recorded in compressed format. If you do not want your files to be compressed, uncheck the Compress box before saving the file.
In COMTRADE format, each waveform event is recorded into a separate file.

PQDIF file names are followed by a timestamp of the first event recorded to the file, and may look like follows:

12KVSUB_20040928T133038.pqd.

Automatic Converting

PAS allows you to automatically convert data logs into PQDIF format at the time you upload data from your devices via the Upload Scheduler.

To automatically convert your data log tables into PQDIF format:

1. Open the Upload Scheduler.
2. Highlight a desired device site with the left mouse button, and then click on the Export button.
3. Check the Enabled box for a data log or a waveform log table you want to automatically convert at the upload time.
4. Highlight the Record to... row for the selected table and click on the Browse button.
5. Select a folder where you want to store converted files, type in the converted file's name, select a desired output file format, and then click on Save.
6. Repeat the same for all tables you wish to be converted.
7. Click OK.

Exporting Files in Excel Format

PAS allows you to convert data tables into the Microsoft Excel workbook format, either manually, or automatically while retrieving data from your meters via the Upload Scheduler.
To store files in Excel format, follow instructions in the previous section and select Excel Workbook as the output file format.

The first row of the Excel table lists data names (see Appendix D) and the second row provides data codes, which identify recorded data points (see Modbus communications guide for data codes) that may be useful for automated table processing.

Each table row is provided with the device identifier that you can define in the meter database (see Creating a New Site for your Meter).

8.5 Archiving Files

Microsoft Access databases tend to grow fast. Databases above 0.5 Gigabytes can drastically slow down file operations.

To avoid enormous growing files, you can either periodically change the target database, or use the Upload Scheduler's file archiver to automatically move older data to archives.

The Upload Scheduler archives files upon a weekly, monthly or yearly schedule. When archiving data, a new database is created to where older data from your present database with the expired archiving date is moved.

An archive file keeps the original database name to which the date of the oldest database record is added, so you can easily identify your archives and work with them as you work with a regular database.
To provide a schedule for archiving files:

1. When defining a schedule for uploading files from your meter, click on Configure or double click on the site row.
2. Click Auto Archive.

3. Check the Enable box and select a periodic schedule for archiving your files for this site.
4. Click OK.

To avoid archiving partially updated data, archiving is performed in a day after expiring a scheduled period and not before 2 hours a.m.

Chapter 9 Viewing Files

9.1 Operations with Files

Files you read from the meters are stored in one or in a number of tables in the meter database. Sections of multi-section files like energy load profiles are stored in multiple tables - each file section in a separate database table.
Opening a Database Table
To open a database table:

1. Click on the Open button $\underset{\sim}{\sim}$ on the PAS toolbar, or select Open... from the File menu.
2. Select Access Database (*.mdb) in the Files of type box; select a directory where your files are located, and point to the file you wish to open.
3. Select a desired table on the right pane, and then click Open, or double click on the table name.

Names of the last 16 files you opened are stored in the File menu, so you can select them directly from the menu.

Saving Data to a File

To save data from the open database table to a file:

1. Click on the Save button \square, and select a directory where you want your file to be stored.
2. Select a database or type the name for a new database.
3. Click Save.

To avoid confusion, do not store data files into the Sites directory where site databases are located.

9.2 Viewing Options

Customizing Views

Changing Date Order

To change the way PAS displays the date:

1. Select Options from the Tools menu and click on the Preferences tab.
2. Select the preferred date order.
3. Click OK.

Selecting Timestamp Format

The timestamp is normally recorded and displayed on the screen at a 1ms resolution. If you have an application that does not support this format, you may instruct PAS to drop milliseconds.

To change the way PAS records and displays the timestamp:

1. Select Options from the Tools menu and click on the Preferences tab.
2. Select the preferred timestamp format.
3. Click OK.

Working with Tables

Selecting Font and Grid
To change the table font or a type of the grid lines:

1. Click with right mouse button on the table, select Options and click on the Table tab.
2. Select the font type and size and how you wish the table grid to be shown.
3. Click OK.

Selecting Primary and Secondary Units

Voltages and currents can be displayed in primary or secondary units.
To change units, click on the table with the right mouse button, select Options, select the desired units for voltages and currents, and then click OK.

Copying a Table

To copy the entire table, or its part, into the Clipboard or into another application such as Microsoft Excel or Word:

1. Click on the data window with the right mouse button and choose Select All, or click on the upper-left corner of the table (where the "No." label is commonly displayed).
2. Click with the right mouse button on the window again and choose Copy, or click on the Copy button 顳 on the PAS toolbar.
3. Run the application to which you want to copy data, position the cursor at the correct place.
4. Click the Paste button on the application's toolbar or select Paste from the Edit menu.

When copying, table columns are separated by a tab character.

Printing a Table

To check how your document appears on a printed page, select Print Preview from the File menu.

To print a table to a printer, click on the print button $\begin{aligned} & \text { 苞 }\end{aligned}$ on the toolbar, select a printer and click OK.

Working with Graphic Windows

Selecting Channels
To select the channels you want to view on the screen, click on the graph window with the right mouse button, select Channels..., check the channels you want displayed, and then click OK.
Checkboxes for channels that are not available in the present view are dimmed.

Selecting Primary and Secondary Units

Voltages and currents can be displayed in primary or secondary units.
To change units, click on the table with the right mouse button, select Options, select the desired units for voltages and currents, and then click OK.

Selecting the Time Axis

In waveform views, the horizontal axis can be displayed either in absolute time with date and time stamps, or in milliseconds relatively to the beginning of a waveform.
To change the time units, click on the waveform window with the right mouse button, select Options..., click on the Axes tab, select the desired units, and then click OK.

Selecting Line Styles and Colors

Channel waveforms can be displayed using different colors and line styles.
To change the colors or line styles, click on the graph window with the right mouse button, select Options..., click on the Display tab, adjust colors and styles, and then click OK.

Selecting Grid and Frame Colors

Click on the graph window with the right mouse button, select Options..., and click on the Display tab
To change the color or style of the grid lines, click on the Grid line on the left pane, and then select the color and style for the grid. To disable the grid, uncheck the Grid Visible box.
To change the window frame color to white, check the White Frame box at right.

Using Marker Lines

The waveform and trend windows have two blue dashed marker lines. The left marker indicates the starting position and the right marker indicates the end position for calculating the average and peak values.

The minimum distance between the two markers is exactly one cycle.
To change the marker position, click on the 非 button, or click on the window with the right mouse button and select Set Marker, and then click on the point where you want to put the marker.
You can also drag both markers with the mouse, or use the right and left arrow keys on your keyboard to change the marker position. Click on the graph pane to allow the keyboard to get your input before using the keyboard.

Delta Measurements

To measure the distance between two waveform or trend points, click on the Delta button Δ, then click on the first point, and then click on the second point.

The first reference point is still frozen until you uncheck and check the Delta button again, while the second point can be placed anywhere within the graph line by clicking on the graph to the left or right from the reference point.

To disable delta measurements, click on the Delta button once again.

Using a Zoom

You can use a horizontal and, for waveforms, also a vertical, zoom to change size of your graph.

Use the $\stackrel{\Delta}{\boldsymbol{\Delta}}$ বD $\triangleright \triangleleft$ buttons on your local toolbar to zoom in and zoom out. One click gives you a 100-percent horizontal or 50-percent vertical zoom. Two buttons ${ }^{\oplus}, ~ \Theta-$ representing magnifying glasses give you a proportional zoom in both directions.

Copying a Graph

To copy a graph, or its part, into the Clipboard or into another application such as Microsoft Excel or Word:

1. Click on the graph window with the right mouse button and choose Copy
All, or Copy Waveform. Some windows may have additional options.
2. Position the cursor at the place where you whish to copy the graph.
3. Click the Paste button on the application's toolbar or select Paste from the Edit menu.

Printing a Graph

To check how the graph appears on a printed page, select Print Preview from the File menu.

To print a graph to a printer, click on the Print button 量 on the PAS toolbar, select a printer and click OK.

9.3 Viewing the Event Log

The Event log contains time-tagged events related to configuration changes, resets and device diagnostics.
The Event log is displayed in a tabular view, one event per row. Use the scroll bar to view the entire log contents.

Figure 9-1: Event Log Window
See Working with Tables for more information on viewing options.

Filtering and Sorting Events

You can use filtering to find and work with a subset of events that meet the criteria you specify.
Click on the Filter button f_{x}, or click on the report window with the right mouse button and select Filter.... Check the causes of events you want to display, and then click OK. PAS temporary hides rows you do not want displayed.

To change the default sorting order based on the date and time, click on the Sort button $\stackrel{A}{Z} \downarrow$, or click on the report window with the right mouse button and select Sort..., check the desired sort order, and then click OK.

9.4 Viewing the Data Log

Data log files can be displayed in a tabular view, one data record per row, or in a graphical view as a data trend graph.

Figure 9-2: Data Log Window

Viewing Data Trend

To view data in a graphical form, click on the Data Trend button on the local toolbar.

To change the time range for your graph, click on the Time Range button $1{ }^{17} 7$ on the local toolbar, and then select the desired date and time range.

Appendix A Technical Specifications

A. 1 Environmental Conditions

Operating temperature: $-30^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Storage temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
Humidity: 0 to 95% non-condensing

A. 2 Construction

Dimensions see Figure 2-1

Weight: $0.70 \mathrm{~kg}(1.54 \mathrm{lb}$.

Materials

Case enclosure: plastic PC/ABS blend
Front panel: plastic PC
PCB: FR4 (UL94-V0)
Terminals: PBT (UL94-V0)
Connectors-Plug-in type: Polyamide PA6.6 (UL94-V0)
Packaging case: Carton and Stratocell® (Polyethylene Foam) brackets
Labels: Polyester film (UL94-V0)

A. 3 Power Supply

120/ 230 VAC-DC Option:

Rated input: 85-265VAC 50/60/400 Hz, 88-290VDC, Burden 9VA
Isolation:
Input to ground: 2500 VAC

12 VDC Option:

Rated input: 9.5-18 VDC, Burden 4VA
Isolation: 1500VDC

24/ 48 VDC Option:

Rated input: 18.5-58 VDC, Burden 4VA
Isolation: 1500VDC
Wire size: up to 12 AWG (up to 3.5 mm 2)

A. 4 I nput Ratings

Voltage Inputs

Operating range: 690VAC line-to-line, 400VAC line-to-neutral
Direct input and input via PT (up to 828VAC line-to-line, up to 480VAC line-to-neutral)

Input impedance: $1000 \mathrm{k} \Omega$
Burden for 400V: < 0.4 VA
Burden for 120V: < 0.04 VA
Over-voltage withstands: 1000 VAC continuous, 2000 VAC for 1 second Wire size: up to 12 AWG (up to 3.5 mm 2)
Current Inputs (via CT)
Wire size: 12 AWG (up to 3.5 mm 2)
Galvanic isolation: 3500 VAC

5A secondary (standard)

Operating range: continuous 10A RMS
Burden: < 0.2 VA @ In=5A (with 12AWG wire and 1 m long)
Overload withstand:
15A RMS continuous, 300A RMS for 1 second (with 12AWG section wire)

1A secondary (option)

Operating range: continuous 2A RMS
Burden: < 0.02 VA @ In=1A (with 12AWG wire and 1 m long)
Overload withstand:
3A RMS continuous, 80A RMS for 1 second (with 12AWG section wire)

Sampling Rate measurement

128 samples/cycle

A. 5 Optional Relay Outputs

Electromechanical relay - DRY contact, option (DI/DO Optional module)

2 relays rated at 5A/250 VAC; 5A/30 VDC, 1 contact (SPST Form A)
Galvanic isolation:
Between contacts and coil: 3000 VAC 1 min
Between open contacts: 750 VAC
Operate time: 10 ms max.
Release time: 5 ms max.
Update time: 1 cycle
Wire size: 14 AWG (up to 1.5 mm 2)

Solid State relay option

2 relays rated at $0.15 \mathrm{~A} / 250 \mathrm{~V}$ AC/DC, 1 contact (SPST Form A)
Galvanic isolation: 3750 VAC 1 min
Operate time: 1 ms max.

Release time: 0.25 ms max.
Update time: 1 cycle
Connector type: removable, 4 pins.
Wire size: 14 AWG (up to 1.5 mm 2)

A. 6 Optional Digital I nputs

4 Digital Inputs Dry Contacts, internally wetted @ 24VDC (DI/DO Optional module)

Sensitivity: Open @ input resistance $>100 \mathrm{k} \Omega$, Closed @ Input resistance < 100Ω

Galvanic isolation: 3750 VAC 1 min
Internal power supply: 24VDC
Scan time: 1 ms
Connector type: removable, 5 pins.
Wire size: 14 AWG (up to 1.5 mm 2)

A. 7 Optional Analog Outputs

4 Analog Outputs optically isolated (AO Optional module)
Ranges (upon order):
$\pm 1 \mathrm{~mA}$, maximum load $5 \mathrm{k} \Omega$ (100% overload)
0-20 mA, maximum load 510Ω
4-20 mA, maximum load 510Ω
0-1 mA, maximum load $5 \mathrm{k} \Omega$ (100% overload)
Isolation: 2500 VAC 1 min
Power supply: internal
Accuracy: 0.5\% FS
Update time: 1 cycle
Connector type: removable, 5 pins.
Wire size: 14 AWG (up to 1.5 mm 2)

A. 8 Communication Ports

COM1

RS-485 optically isolated port
Isolation: 3000 VAC 1 min
Baud rate: up to 115.2 kbps.
Supported protocols: Modbus RTU, DNP3, and SATEC ASCII.
Connector type: removable, 3 pins.
Wire size: up to 14 AWG (up to 1.5 mm 2).
COM2 (Optional module)

Ethernet Port

Transformer-isolated 10/100BaseT Ethernet port.
Supported protocols: Modbus/TCP (Port 502), DNP3/TCP (Port 20000).

Number of simultaneous connections: 4 (2 Modbus/TCP + 2 DNP3/TCP).
Connector type: RJ45 modular.
Profibus DP (IEC 61158)
RS-485 optically isolated Profibus interface.
Connector type: removable, 5 pins.
Baud rate: 9600 bit/s - $12 \mathrm{Mbit} / \mathrm{s}$ (auto detection).
32 bytes input, 32 bytes output.
Supported protocols: PROFIBUS.

RS-232/ 422-485 Port

RS-232 or RS-422/485 optically isolated port
Isolation: 3000 VAC 1 min
Baud rate: up to 115.2 kbps.
Supported protocols: Modbus RTU, DNP3, and SATEC ASCII.
Connector type: removable, 5 pins for RS-422/485 and DB9 for RS-232.
Wire size: up to 14 AWG (up to 1.5 mm 2).

A. 9 Real-time Clock

Standard Meter Clock

Non-backed clock
Accuracy: typical error 1 minute per month @ $25^{\circ} \mathrm{C}$
Typical clock retention time: 30 seconds

TOU Module Meter Clock

Battery-backed clock
Accuracy: typical error 7 seconds per month @ $25^{\circ} \mathrm{C}$ ($\pm 2.5 \mathrm{ppm}$)
Typical clock retention time: 36 months

A. 10 Display

High-brightness seven-segment digital LEDs, two 4-digit + one 5-digit windows
3 color led load bar graph (40-110\%)
Keypad: 6 push buttons

A. 11 Standards Compliance

Accuracy:

Complies IEC62053-22, class 0.5S
Meets ANSI C12.20-1998, class 10 0.5\%

Electromagnetic I mmunity:

Comply with IEC 61000-6-2:
IEC 61000-4-2 level 3: Electrostatic Discharge
IEC 61000-4-3 level 3: Radiated Electromagnetic RF Fields
IEC 61000-4-4 level 3: Electric Fast Transient
IEC 61000-4-5 level 3: Surge

IEC 61000-4-6 level 3: Conducted Radio Frequency
IEC 61000-4-8: Power Frequency Magnetic Field
Meets ANSI/IEEE C37.90.1: Fast Transient SWC
Electromagnetic Emission:
Comply with IEC 61000-6-4: Radiated/Conducted class A
Comply with IEC CISPR 22: Radiated/Conducted class A

Safety/ Construction:

UL File no. E236895
Meets IEC 61010-1: 2006

AC and Impulse Insulation:

Comply with IEC 62052-11:
2500 VAC during 1 minute
$6 \mathrm{KV} / 500 \Omega$ @ $1.2 / 50 \mu \mathrm{~s}$ impulse

A. 12 Measurement Specifications

Table 33: Measurement Specifications Parameters

Parameter	Full Scale @ Input Range	Accuracy			Range
		$\begin{gathered} \text { \% } \\ \text { Reading } \end{gathered}$	\% FS	Conditions	
Voltage	$\begin{aligned} & \text { 120VxPT @ 120V } \\ & 400 \mathrm{VPPT} @ 690 \mathrm{~V} \end{aligned}$	0.2	0.02	10\% to 120\% FS	0 to 1,150,000 V Starting voltage 1.5-5.0\% FS (selectable)
Line current	CT	0.2	0.02	For In $=5 \mathrm{~A}$ 1\% to 200\% FS For In = 1A 5\% to 200\% FS	$0 \text { to 50,000 A }$ Starting current 0.1\% FS
Active power	$\begin{aligned} & 0.36 \times \mathrm{PT} \times \mathrm{CT} @ 120 \mathrm{~V} \\ & 1.2 \times \mathrm{PT} \times \mathrm{CT} @ 690 \mathrm{~V} \end{aligned}$	0.3	0.02	$\|\mathrm{PF}\| \geq 0.5^{1}$	$\begin{aligned} & -10,000,000 \mathrm{~kW} \text { to } \\ & +10,000,000 \mathrm{~kW} \end{aligned}$
Reactive power	$\begin{aligned} & 0.36 \times \mathrm{PT} \times \mathrm{CT} @ 120 \mathrm{~V} \\ & 1.2 \times \mathrm{PT} \times \mathrm{CT} @ 690 \mathrm{~V} \end{aligned}$	0.3	0.04	$\|\mathrm{PF}\| \leq 0.9^{1}$	$\begin{aligned} & \text {-10,000,000 kvar to } \\ & +10,000,000 \mathrm{kvar} \end{aligned}$
Apparent power	$\begin{aligned} & 0.36 \times \mathrm{PT} \times \mathrm{CT} @ 120 \mathrm{~V} \\ & 1.2 \times \mathrm{PT} \times \mathrm{CT} @ 690 \mathrm{~V} \end{aligned}$	0.3	0.02	$\|\mathrm{PF}\| \geq 0.5^{1}$	0 to 10,000,000 kVA
Power factor	1.000		0.2	$\begin{aligned} & \|P F\| \geq 0.5 \\ & I \geq 2 \% \text { FSI } \end{aligned}$	-0.999 to +1.000
Frequency	$\begin{aligned} & 50 \mathrm{~Hz} \\ & 60 \mathrm{~Hz} \\ & 25 \mathrm{~Hz} \\ & 400 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.04 \end{aligned}$		$\mathrm{V}_{\mathrm{L}-\mathrm{N}}>25 \mathrm{~V}$	15 Hz to 70 Hz 15 Hz to 70 Hz 15 Hz to 70 Hz 320 Hz to 480 Hz
Total Harmonic Distortion, THD V (I), \% V_{f} (\% $\left.\mathrm{If}_{\mathrm{f}}\right)$	999.9	1.5	0.2	$\begin{aligned} & \mathrm{THD} \geq 1 \%, \\ & \mathrm{~V} \geq 10 \% \mathrm{FSV} \text { and } \\ & \mathrm{V}_{\mathrm{L}-\mathrm{N}}>25 \mathrm{~V}, \\ & \mathrm{I} \geq 10 \% \text { FSI } \end{aligned}$	0 to 999.9
Total Demand Distortion, TDD, \%	100		1.5	$\begin{aligned} & \mathrm{TDD} \geq 1 \%, \\ & \mathrm{I} \geq 10 \% \text { FSI, } \\ & \mathrm{V}_{\mathrm{L}-\mathrm{N}}>25 \mathrm{~V} \\ & \hline \end{aligned}$	0 to 100
Active energy Import \& Export		Class 0.5 S under conditions as per IEC 62053-22:2003			0 to 999,999,999 kWh
Reactive energy Import \& Export		Class 0.5 S under conditions as per IEC 62053-22:2003, $\|P F\| \leq 0.9$			0 to 999,999,999 kvarh
Apparent energy		Class 0.5 S under conditions as per IEC 62053-22:2003			0 to 999,999,999 kVAh

PT - external potential transformer ratio
CT - primary current rating of the external current transformer
FSV - voltage full scale
FSI - current full scale
Vf - fundamental voltage
If - fundamental current

NOTES

1. Accuracy is expressed as \pm (percentage of reading + percentage of full scale) ± 1 digit. This does not include inaccuracies introduced by the user's potential and current transformers. Accuracy calculated at 1second average.

[^46]2. Specifications assume: voltage and current waveforms with THD $\leq 5 \%$ for kvar, kVA and PF, and reference operating temperature $20^{\circ} \mathrm{C}-26^{\circ} \mathrm{C}$.
3. Measurement error is typically less than the maximum error indicated.

Appendix B Analog Output Parameters

The following table lists parameters that can be provided on the meter's analog outputs.

Table 34: Analog Output Parameters

Display Code	Designation	Description
none	NONE	None (output disabled)
		1-Cycle Phase Values
rt.U1	V1/12 RT ${ }^{1}$	V1/V12 Voltage
rt.U2	V2/23 RT ${ }^{1}$	V2/V23 Voltage
rt.U3	V3/31 RT ${ }^{1}$	V3/V31 Voltage
rt.U12	V12 RT	V12 Voltage
rt.U23	V23 RT	V23 Voltage
rt.U31	V31 RT	V31 Voltage
rt.C1	I1 RT	I1 Current
rt.C2	I2 RT	I2 Current
rt.C3	I3 RT	I3 Current
		1-Cycle Total Values
rt. P	kW RT	Total kW
rt. q	kvar RT	Total kvar
rt. S	kVA RT	Total kVA
rt. PF	PF RT	Total PF
r.PF.LG	PF LAG RT	Total PF Lag
r.PF.Ld	PF LEAD RT	Total PF Lead
		1-Cycle Auxiliary Values
r.nEU.C	In RT	In Current
rt. Fr	FREQ RT	Frequency
		1-Sec Phase Values
Ar.U1	V1/12 AVR ${ }^{1}$	V1/V12 Voltage
Ar.U2	V2/23 AVR ${ }^{1}$	V2/V23 Voltage
Ar.U3	V3/31 AVR ${ }^{1}$	V3/V31 Voltage
Ar.U12	V12 AVR	V12 Voltage
Ar.U23	V23 AVR	V23 Voltage
Ar.U31	V31 AVR	V31 Voltage
Ar.C1	I1 AVR	I1 Current
Ar.C2	I2 AVR	I2 Current
Ar.C3	I3 AVR	I3 Current
		1-Sec Total Values
Ar. P	kW AVR	Total kW
Ar. q	kvar AVR	Total kvar
Ar. S	kVA AVR	Total kVA
Ar. PF	PF AVR	Total PF
A.PF.LG	PF LAG AVR	Total PF Lag
A.PF.Ld	PF LEAD AVR	Total PF Lead
		1-Sec Auxiliary Values
A.nEU.C	In AVR	In Current
Ar. Fr	FREQ AVR	Frequency
		Demands E, EH
Acd.P.i	kW IMP ACD	Accumulated kW import demand
Acd.P.E	kW EXP ACD	Accumulated kW export demand

Appendix B Analog Output Parameters

Display Code	Designation	Description
Acd.q.i	kvar IMP ACD	Accumulated kvar import demand
Acd.q.E	kvar EXP ACD	Accumulated kvar export demand
Acd.S	kVA ACD	Accumulated kVA demand

1 In 4LN3, 3LN3 and 3BLN3 wiring modes, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

Appendix C Setpoint Triggers and Actions

Table 35: Setpoint Triggers

Display Code	Designation	Description
nonE	NONE	None (condition is not active)
		Status I nputs
S1.On	STAT INP \#1 ON	Status input \#1 ON
S2.On	STAT INP \#2 ON	Status input \#2 ON
S3.On	STAT INP \#3 ON	Status input \#3 ON
S4.On	STAT INP \#4 ON	Status input \#4 ON
S1.OFF	STAT INP \#1 OFF	Status input \#1 OFF
S2.OFF	STAT INP \#2 OFF	Status input \#2 OFF
S3.OFF	STAT INP \#3 OFF	Status input \#3 OFF
S4.OFF	STAT INP \#4 OFF	Status input \#4 OFF
		Relays
r1.On	RELAY \#1 ON	Relay \#1 ON
r2.On	RELAY \#2 ON	Relay \#2 ON
r1.OFF	RELAY \#1 OFF	Relay \#1 OFF
r2.OFF	RELAY \#2 OFF	Relay \#2 OFF
		Phase Reversal
POS.P.r	POS PHASE REVERSAL	Positive phase rotation reversal
nEG.P.r	NEG PHASE REVERSAL	Negative phase rotation reversal
		Low/ High 1-Cycle Values on any Phase
r.Hi. U	HI VOLT RT ${ }^{1}$	High voltage
r.Lo. U	LO VOLT RT ${ }^{1}$	Low voltage
r.Hi. C	HI AMPS RT	High current
r.Lo. C	LO AMPS RT	Low current
r.thd.U	HI V THD ${ }^{2}$	High voltage THD
r.thd.C	HI I THD ${ }^{2}$	High current THD
r.HFc.C	HI KF RT	High K-Factor
r.tdd.C	HI I TDD	High current TDD
		1-Cycle Auxiliary Values
r.Hi.Fr	HI FREQ RT	High frequency
r.Lo.Fr	LO FREQ RT	Low frequency
r.U.Unb	HI V UNB\% RT ${ }^{1}$	High voltage unbalance
r.C.Unb	HI I UNB\% RT	High current unbalance
		1-Sec Phase Values
A.Hi.C1	HI I1 AVR	High I1 current
A.Hi.C2	HI I2 AVR	High I2 current
A.Hi.C3	HI I3 AVR	High I3 current
A.Lo.C1	LO I1 AVR	Low I1 current
A.Lo.C2	LO I2 AVR	Low I2 current
A.Lo.C3	LO I3 AVR	Low I3 current
		1-Sec Values on any Phase
A.Hi. U	HI Volt AVR ${ }^{1}$	High voltage
A.Lo. U	LO VOLT AVR ${ }^{1}$	Low voltage
A.Hi. C	HI AMPS AVR	High current
A.Lo. C	LO AMPS AVR	Low current

Display Code	Designation	Description
		1-Sec Total Values
A.Hi.P.i	HI kW IMP AVR	High total kW import
A.Hi.P.E	HI kW EXP AVR	High total kW export
A.Hi.q.i	HI kvar IMP AVR	High total kvar import
A.Hi.q.E	HI kvar EXP AVR	High total kvar export
A.Hi. S	HI kVA AVR	High total kVA
A.PF.LG	HI PF LAG AVR	Low total PF Lag
A.PF.Ld	HI PF LEAD AVR	Low total PF Lead
		1-Sec Auxiliary Values
A.nEU.C	HI In AVR	High neutral current
A.Hi.Fr	HI FREQ RT	High frequency
A.Lo.Fr	LO FREQ RT	Low frequency
		Demands
Hi.d.U1	HI V1/12 DMD ${ }^{1}$	High V1/V12 Volt demand
Hi.d.U2	HI V2/23 DMD ${ }^{1}$	High V2/V23 Volt demand
Hi.d.U3	HI V3/31 DMD ${ }^{1}$	High V3/V31 Volt demand
Hi.d.C1	HI I1 DMD	High I1 Ampere demand
Hi.d.C2	HI I2 DMD	High I2 Ampere demand
Hi.d.C3	HI I3 DMD	High I3 Ampere demand
Hi.d.P	HI kW IMP BD	High block kW import demand
Hi.d.q	HI kvar IMP BD	High block kvar import demand
Hi.d. S	HI kVA BD	High block kVA demand
Hi.Sd.P	HI kW IMP SD	High sliding window kW import demand
Hi.Sd.q	HI kvar IMP SD	High sliding window kvar import demand
Hi.Sd. S	HI kVA SD	High sliding window kVA demand
Hi.Ad.P	HI kW IMP ACD	High accumulated kW import demand
Hi.Ad.q	HI kvar IMP ACD	High accumulated kvar import demand
Hi.Ad. S	HI kVA ACD	High accumulated kVA demand
Hi.Pd.P	HI kW IMP PRD	High predicted kW import demand
Hi.Pd.q	HI kvar IMP PRD	High predicted kvar import demand
Hi.Pd. S	HI kVA PRD	High predicted kVA demand
		Time and Date Parameters
U.day	DAY OF WEEK	Day of week
YEAr	YEAR	Year
Mon	MONTH	Month
M.day	DAY OF MONTH	Day of month
hour	HOURS	Hours
Min	MINUTES	Minutes
SEC	SECONDS	Seconds
Intr	MINUTE INTERVAL	Minute interval: $1-5,10,15,20,30,60 \mathrm{~min}$

1 In 4LN3, 3LN3 and 3BLN3 wiring modes, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages

Table 36: Setpoint Actions

Display Code	Designation	Description
none	NONE	None (no action)
r1 On	OPERATE RELAY \#1	Operate relay RO1
r2 On	OPERATE RELAY \#2	Operate relay RO2
r1 OFF	RELEASE RELAY \#1	Release latched relay RO1
r2 OFF	RELEASE RELAY \#2	Release latched relay RO2
In.Cn.1	INC CNT \#1	Increment counter \#1

Display Code	Designation	Description
In.Cn.2	INC CNT \#2	Increment counter \#2
In.Cn.3	INC CNT \#3	Increment counter \#3
In.Cn.4	INC CNT \#4	Increment counter \#4
ti.Cn.1	TIME CNT \#1	Count operation time using counter \#1
ti.Cn.2	TIME CNT \#2	Count operation time using counter \#2
ti.Cn.3	TIME CNT \#3	Count operation time using counter \#3
ti.Cn.4	TIME CNT \#4	Count operation time using counter \#4
notiF	NOTIFICATION	Send a notification message
dLoG1	DATA LOG \#1	Record data to Data Log \#1

Appendix D Parameters for Data Monitoring and Logging

The following table lists parameters measured by the meter that are available for monitoring through communications and for recording to a data log file. The left column shows data abbreviations used in PAS. Parameter groups are highlighted in bold.

Table 37: Data Monitoring and Logging Parameters

Designation	Description
NONE	None (stub, read as zero)
DI GI TAL I NPUTS	Digital I nputs
DI1:16	Digital Inputs Status DI1:DI4
RELAYS	Relays
RO1:16	Relay Status RO1:RO2
COUNTERS	Pulse Counters
COUNTER 1	Counter \#1
COUNTER 2	Counter \#2
COUNTER 3	Counter \#3
COUNTER 4	Counter \#4
RT PHASE	1-Cycle Phase Values
V1	V1/V12 Voltage ${ }^{1}$
V2	V2/V23 Voltage ${ }^{1}$
V3	V3/V31 Voltage ${ }^{1}$
I1	I1 Current
I2	I2 Current
I3	I3 Current
kW L1	kW L1
kW L2	kW L2
kW L3	kW L3
kvar L1	kvar L1
kvar L2	kvar L2
kvar L3	kvar L3
kVA L1	kVA L1
kVA L2	kVA L2
kVA L3	kVA L3
PF L1	Power factor L1
PF L2	Power factor L2
PF L3	Power factor L3
V1 THD	V1/V12 Voltage THD ${ }^{1}$
V2 THD	V2/V23 Voltage THD ${ }^{1}$
V3 THD	V3/V31 Voltage THD ${ }^{1}$
I1 THD	I1 Current THD
I2 THD	I2 Current THD
I3 THD	I3 Current THD
I1 KF	I1 K-Factor
I2 KF	I2 K-Factor
I3 KF	I3 K-Factor
I1 TDD	I1 Current TDD
I2 TDD	I2 Current TDD

Designation	Description
I3 TDD	I3 Current TDD
V12	V12 Voltage
V23	V23 Voltage
V31	V31 Voltage
RT TOTAL	1-Cycle Total Values
kW	Total kW
kvar	Total kvar
kVA	Total kVA
PF	Total PF
PF LAG	Total PF lag
PF LEAD	Total PF lead
kW IMP	Total kW import
kW EXP	Total kW export
kvar IMP	Total kvar import
kvar EXP	Total kvar export
V AVG	3-phase average L-N/L-L voltage
V LL AVG	3-phase average L-L voltage
I AVG	3-phase average current
RT AUX	1-Cycle Auxiliary Values
In	In (neutral) Current
FREQ	Frequency
V UNB\%	Voltage unbalance ${ }^{2}$
I UNB\%	Current unbalance ${ }^{2}$
AVR PHASE	1-Second Phase Values
V1	V1/V12 Voltage
V2	V2/V23 Voltage
V3	V3/V31 Voltage
I1	I1 Current
I2	I2 Current
I3	I3 Current
kW L1	kW L1
kW L2	kW L2
kW L3	kW L3
kvar L1	kvar L1
kvar L2	kvar L2
kvar L3	kvar L3
kVA L1	kVA L1
kVA L2	kVA L2
kVA L3	kVA L3
PF L1	Power factor L1
PF L2	Power factor L2
PF L3	Power factor L3
V1 THD	V1/V12 Voltage THD ${ }^{1}$
V2 THD	V2/V23 Voltage THD ${ }^{1}$
V3 THD	V3/V31 Voltage THD ${ }^{1}$
I1 THD	I1 Current THD
I2 THD	I2 Current THD
I3 THD	I3 Current THD
I1 KF	I1 K-Factor
I2 KF	I2 K-Factor

Designation	Description
I3 KF	I3 K-Factor
I1 TDD	I1 Current TDD
I2 TDD	I2 Current TDD
I3 TDD	I3 Current TDD
V12	V12 Voltage
V23	V23 Voltage
V31	V31 Voltage
AVR TOTAL	1-Second Total Values
kW	Total kW
kvar	Total kvar
kVA	Total kVA
PF	Total PF
PF LAG	Total PF lag
PF LEAD	Total PF lead
kW IMP	Total kW import
kW EXP	Total kW export
kvar IMP	Total kvar import
kvar EXP	Total kvar export
V AVG	3-phase average L-N/L-L voltage ${ }^{1}$
V LL AVG	3-phase average L-L voltage
I AVG	3-phase average current
AVR AUX	1-Second Auxiliary Values
In	In (neutral) Current
FREQ	Frequency
V UNB\%	Voltage unbalance ${ }^{2}$
I UNB\%	Current unbalance ${ }^{2}$
PHASORS	Phasors
V1 Mag	V1/V12 Voltage magnitude ${ }^{1}$
V2 Mag	V2/V23 Voltage magnitude ${ }^{1}$
V3 Mag	V3/V31 Voltage magnitude ${ }^{1}$
I1 Mag	I1 Current magnitude
I2 Mag	I2 Current magnitude
I3 Mag	I3 Current magnitude
V1 Ang	V1/V12 Voltage angle ${ }^{1}$
V2 Ang	V2/V23 Voltage angle ${ }^{1}$
V3 Ang	V3/V31 Voltage angle ${ }^{1}$
I1 Ang	I1 Current angle
I2 Ang	I2 Current angle
I3 Ang	I3 Current angle
DEMANDS	Present Demands (Power Demands E, EH)
V1 DMD	V1/V12 Volt demand ${ }^{1}$
V2 DMD	V2/V23 Volt demand ${ }^{1}$
V3 DMD	V3/V31 Volt demand ${ }^{1}$
I1 DMD	I1 Ampere demand
I2 DMD	I2 Ampere demand
I3 DMD	I3 Ampere demand
kW IMP BD	kW import block demand
kvar IMP BD	kvar import block demand
kVA BD	kVA block demand
kW IMP SD	kW import sliding window demand

Designation	Description
kvar IMP SD	kvar import sliding window demand
kVA SD	kVA sliding window demand
kW IMP ACD	kW import accumulated demand
kvar IMP ACD	kvar import accumulated demand
kVA ACD	kVA accumulated demand
kW IMP PRD	kW import predicted sliding window demand
kvar IMP PRD	kvar import predicted sliding window demand
kVA PRD	kVA predicted sliding window demand
PF IMP@kVA DMD	PF (import) at Maximum kVA sliding window demand
kW EXP BD	kW export block demand
kvar EXP BD	kvar export block demand
kW EXP SD	kW export sliding window demand
kvar EXP SD	kvar export sliding window demand
kW EXP ACD	kW export accumulated demand
kvar EXP ACD	kvar export accumulated demand
kW EXP PRD	kW export predicted sliding window demand
kvar EXP PRD	kvar export predicted sliding window demand
In DMD	In (neutral) current demand
SUMM ACC DMD	Billing Summary (Total) Accumulated Demands E, EH
REG1 ACD	Register \#1 accumulated demand
REG2 ACD	Register \#2 accumulated demand
REG3 ACD	Register \#3 accumulated demand
REG4 ACD	Register \#4 accumulated demand
SUMM BLK DMD	Billing Summary (Total) Block Demands E, EH
REG1 BD	Register \# 1 block demand
REG2 BD	Register \#2 block demand
REG3 BD	Register \#3 block demand
REG4 BD	Register \#4 block demand
SUMM SW DMD	Billing Summary (Total) Sliding Demands E, EH
REG1 SD	Register \#1 sliding demand
REG2 SD	Register \#2 sliding demand
REG3 SD	Register \#3 sliding demand
REG4 SD	Register \#4 sliding demand
ENERGY	Total Energy E, EH
kWh IMPORT	kWh import
kWh EXPORT	kWh export
kvarh IMPORT	kvarh import
kvarh EXPORT	kvarh export
kVAh TOTAL	kVAh total
SUMMARY REGS	Billing Summary (Total) Energy Registers E, EH
SUM REG1	Summary energy register \#1
SUM REG2	Summary energy register \#2
SUM REG3	Summary energy register \#3
SUM REG4	Summary energy register \#4
PHASE ENERGY	Phase Energy E, EH
kWh IMP L1	kWh import L1
kWh IMP L2	kWh import L2
kWh IMP L3	kWh import L3
kvarh IMP L1	kvarh import L1
kvarh IMP L2	kvarh import L2
kvarh IMP L3	kvarh import L3

Designation	Description
kVAh L1	kVAh total L1
kVAh L2	kVAh total L2
kVAh L3	kVAh total L3
\% HD V1	V1/ V12 Harmonic Distortions EH 1
V1 \%HD01	H01 Harmonic distortion
V1 \%HD02	H02 Harmonic distortion
...	...
V1 \%HD40	H40 Harmonic distortion
\% HD V2	V2/ V23 Harmonic Distortions EH 1
V2 \%HD01	H01 Harmonic distortion
V2 \%HD02	H02 Harmonic distortion
...	...
V2 \%HD40	H40 Harmonic distortion
\% HD V3	V3/ V31 Harmonic Distortions EH 1
V3 \%HD01	H01 Harmonic distortion
V3 \%HD02	H02 Harmonic distortion
...	...
V3 \%HD40	H40 Harmonic distortion
\% HD I 1	11 Harmonic Distortions EH
I1 \%HD01	H01 Harmonic distortion
I1 \%HD02	H02 Harmonic distortion
...	...
I1 \%HD40	H40 Harmonic distortion
\% HD 12	12 Harmonic Distortions EH
I2 \%HD01	H01 Harmonic distortion
I2 \%HD02	H02 Harmonic distortion
...	...
I2 \%HD40	H40 Harmonic distortion
\% HD I 3	13 Harmonic Distortions EH
I3 \%HD01	H01 Harmonic distortion
I3 \%HD02	H02 Harmonic distortion
...	\cdots
I3 \%HD40	H40 Harmonic distortion
ANG V1	V1/ V12 Harmonic Angles EH 1
V1 H01 ANG	H01 Harmonic angle
V1 H02 ANG	H02 Harmonic angle
...	...
V1 H40 ANG	H40 Harmonic angle
ANG V2	V2/ V23 Harmonic Angles EH 1
V2 H01 ANG	H01 Harmonic angle
V2 H02 ANG	H02 Harmonic angle
...	\ldots
V2 H40 ANG	H40 Harmonic angle
ANG V3	V3/ V31 Harmonic Angles EH 1
V3 H01 ANG	H01 Harmonic angle
V3 H02 ANG	H02 Harmonic angle
...	...
V3 H40 ANG	H40 Harmonic angle
ANG I 1	11 Harmonic Angles EH
I1 H01 ANG	H01 Harmonic angle

Designation	Description
I1 H02 ANG	H02 Harmonic angle
...	...
I1 H40 ANG	H40 Harmonic angle
ANG 12	12 Harmonic Angles EH
I2 H01 ANG	H01 Harmonic angle
I2 H02 ANG	H02 Harmonic angle
...	...
I2 H40 ANG	H40 Harmonic angle
ANG 13	13 Harmonic Angles EH
I3 H01 ANG	H01 Harmonic angle
I3 H02 ANG	H02 Harmonic angle
...	...
I3 H40 ANG	H40 Harmonic angle
H1 PHASE	Fundamental (H01) Phase Values
V1 H01	V1/V12 Voltage ${ }^{1}$
V2 H01	V2/V23 Voltage ${ }^{1}$
V3 H01	V3/V31 Voltage ${ }^{1}$
I1 H01	I1 Current
I2 H01	I2 Current
I3 H01	I3 Current
kW L1 H01	kW L1
kW L2 H01	kW L2
kW L3 H01	kW L3
kvar L1 H01	kvar L1
kvar L2 H01	kvar L2
kvar L3 H01	kvar L3
kVA L1 H01	kVA L1
kVA L2 H01	kVA L2
kVA L3 H01	kVA L3
PF L1 H01	Power factor L1
PF L2 H01	Power factor L2
PF L3 H01	Power factor L3
HRM TOT POW	Fundamental and Harmonic Total Power Values
kW H01	Total fundamental kW
kvar H01	Total fundamental kvar
kVA H01	Total fundamental kVA
PF H01	Total fundamental PF
MIN PHASE	Minimum 1-Cycle Phase Values
V1 MIN	V1/V12 Voltage ${ }^{1}$
V2 MIN	V2/V23 Voltage ${ }^{1}$
V3 MIN	V3/V31 Voltage ${ }^{1}$
I1 MIN	I1 Current
I2 MIN	I2 Current
I3 MIN	I3 Current
MI N TOTAL	Minimum 1-Cycle Total Values
kW MIN	Total kW
kvar MIN	Total kvar
kVA MIN	Total kVA
PF MIN	Total PF

Designation	Description
MI N AUX	Minimum 1-Cycle Auxiliary Values
In MIN	In Current
FREQ MIN	Frequency
MAX PHASE	Maximum 1-Cycle Phase Values
V1 MAX	V1/ V12 Voltage ${ }^{\mathbf{1}}$
V2 MAX	V2/V23 Voltage ${ }^{1}$
V3 MAX	V3/V31 Voltage ${ }^{1}$
I1 MAX	I1 Current
I2 MAX	I2 Current
I3 MAX	I3 Current
MAX TOTAL	Maximum 1-Cycle Total Values
kW MAX	Total kW
kvar MAX	Total kvar
kVA MAX	Total kVA
PF MAX	Total PF
MAX AUX	Maximum 1-Cycle Auxiliary Values
In MAX	In Current
FREQ MAX	Frequency
MAX DMD	Maximum Demands (Power Demands E, EH)
V1 DMD MAX	V1/V12 Maximum volt demand ${ }^{1}$
V2 DMD MAX	V2/V23 Maximum volt demand ${ }^{1}$
V3 DMD MAX	V3/V31 Maximum volt demand ${ }^{1}$
I1 DMD MAX	I1 Maximum ampere demand
I2 DMD MAX	I2 Maximum ampere demand
I3 DMD MAX	I3 Maximum ampere demand
kW IMP SD MAX	Maximum kW import sliding window demand
kW EXP SD MAX	Maximum kvar import sliding window demand
kvar IMP SD MAX	Maximum kW export sliding window demand
kvar EXP SD MAX	Maximum kvar export sliding window demand
kVA SD MAX	Maximum kVA sliding window demand
In DMD MAX	In (neutral) current maximum demand
MAX SUMMARY DMD	Billing Summary (Total) Maximum Demands E, EH
REG1 MD	Summary register \#1 maximum demand
REG2 MD	Summary register \#2 maximum demand
REG3 MD	Summary register \#3 maximum demand
REG4 MD	Summary register \#4 maximum demand
AO RAW	Raw Analog Outputs (A/ D Units)
AO1	Analog output AO1
AO2	Analog output AO2
AO3	Analog output AO3
AO4	Analog output AO4
TOU PRMS	TOU Parameters E, EH
ACTIVE TARIFF	Active TOU tariff
ACTIVE PROFILE	Active TOU profile
TOU REG1	Billing TOU Energy Register \#1 E, EH
REG1 TRF1	Tariff \#1 register
REG1 TRF2	Tariff \#2 register
...	...
REG1 TRF8	Tariff \#8 register

Designation	Description
TOU REG2	Billing TOU Energy Register \#2 E, EH
REG2 TRF1	Tariff \#1 register
REG2 TRF2	Tariff \#2 register
\ldots	...
REG2 TRF8	Tariff \#8 register
TOU REG3	Billing TOU Energy Register \#3 E, EH
REG3 TRF1	Tariff \#1 register
REG3 TRF2	Tariff \#2 register
...	...
REG3 TRF8	Tariff \#8 register
TOU REG4	Billing TOU Energy Register \#4 E, EH
REG4 TRF1	Tariff \#1 register
REG4 TRF2	Tariff \#2 register
...	...
REG4 TRF8	Tariff \#8 register
TOU MAX DMD REG1	Billing TOU Maximum Demand Register \#1 E, EH
REG1 TRF1 MD	Tariff \#1 maximum demand
REG1 TRF2 MD	Tariff \#2 maximum demand
...	...
REG1 TRF8 MD	Tariff \#8 maximum demand
TOU MAX DMD REG2	Billing TOU Maximum Demand Register \#2 E, EH
REG2 TRF1 MD	Tariff \#1 maximum demand
REG2 TRF2 MD	Tariff \#2 maximum demand
...	...
REG2 TRF8 MD	Tariff \#8 maximum demand
TOU MAX DMD REG3	Billing TOU Maximum Demand Register \#3 E, EH
REG3 TRF1 MD	Tariff \#1 maximum demand
REG3 TRF2 MD	Tariff \#2 maximum demand
...	...
REG3 TRF8 MD	Tariff \#8 maximum demand
TOU MAX DMD REG4	Billing TOU Maximum Demand Register \#4 E, EH
REG4 TRF1 MD	Tariff \#1 maximum demand
REG4 TRF2 MD	Tariff \#2 maximum demand
...	...
REG4 TRF8 MD	Tariff \#8 maximum demand

1 In 4LN3, 3LN3 and 3BLN3 wiring modes, the voltages will be line-to neutral; for any other wiring mode, they will be line-to-line voltages.
2 The value is calculated as a relation of the maximum deviation of phase values from a 3-phase average value to a 3-phase average.

NOTE

Designations of some enginering demands and billing energy and demand registers are shown using a short name notation available in PAS V1.4. By default, PAS uses long names compatible with older versions of PAS. You can select a desired notation from the Tools/Options/Preferences tab.

PAS does not allow to store data in files using different data names. If you have a file uploaded with a previous version of PAS using long data names, either continue using long data names, or store data in a new file.
See table below for a list of parameters with short and long names.

Appendix D Parameters for DATA MONITORING AND LOGGING

Short Data Name	Long Data Name	Description
kW IMP ACD	kW IMP ACC DMD	Accumulated demand
kW IMP PRD	kW IMP PRD DMD	Predicted sliding window demand
PF IMP@kVA MD	PF IMP@kVA MXDMD	PF (import) at maximum kVA demand
REG1 ACD	SUM REG1 ACC DMD	Billing summary (total) register accumulated demand
REG1 BD	SUM REG1 BLK DMD	Billing summary (total) register block demand
REG1 SD	SUM REG1 SW DMD	Billing summary (total) register sliding demand
REG1	SUM REG1	Billing summary (total) energy register
REG1 MD	SUM REG1 DMD MAX	Billing summary (total) register maximum demand
REG1 TRF1	TOU REG1 TRF1	Billing tariff energy register
REG1 TRF1 MD	DMD1 TRF1 MAX	Billing tariff register maximum demand
TRF1	SEASON TRF1	Generic billing tariff energy register
TRF1 MD	SEASON TRF1	Generic billing tariff register maximum demand

Appendix E Billing/ TOU Profile Log File

The following table shows the record structure for the daily billing data profile log file.

The second column shows data abbreviations used in the PAS data log reports. Data log file sections are highlighted in bold.

Table 38: Daily Billing/TOU Profile Data Log (Data Log \#16)

Field No.	Designation	Description
		Energy Register \#1
1	REG1	Summary (total) energy reading
2	TRF1	Tariff \#1 energy reading
3	TRF2	Tariff \#2 energy reading
4	TRF3	Tariff \#3 energy reading
5	TRF4	Tariff \#4 energy reading
6	TRF5	Tariff \#5 energy reading
7	TRF6	Tariff \#6 energy reading
8	TRF7	Tariff \#7 energy reading
9	TRF8	Tariff \#8 energy reading
		...
		Energy Register \#4
1	REG4	Summary (total) energy reading
2	TRF1	Tariff \#1 energy reading
3	TRF2	Tariff \#2 energy reading
4	TRF3	Tariff \#3 energy reading
5	TRF4	Tariff \#4 energy reading
6	TRF5	Tariff \#5 energy reading
7	TRF6	Tariff \#6 energy reading
8	TRF7	Tariff \#7 energy reading
9	TRF8	Tariff \#8 energy reading
		Daily Maximum Demand Register \#1
1	REG1 MD	Summary (total) max. demand reading
2	TRF1 MD	Tariff \#1 max. demand reading
3	TRF2 MD	Tariff \#2 max. demand reading
4	TRF3 MD	Tariff \#3 max. demand reading
5	TRF4 MD	Tariff \#4 max. demand reading
6	TRF5 MD	Tariff \#5 max. demand reading
7	TRF6 MD	Tariff \#6 max. demand reading
8	TRF7 MD	Tariff \#7 max. demand reading
9	TRF8 MD	Tariff \#8 max. demand reading
		...
		Daily Maximum Demand Register \#4
1	REG4 MD	Summary (total) max. demand reading
2	TRF1 MD	Tariff \#1 max. demand reading
3	TRF2 MD	Tariff \#2 max. demand reading
4	TRF3 MD	Tariff \#3 max. demand reading
5	TRF4 MD	Tariff \#4 max. demand reading
6	TRF5 MD	Tariff \#5 max. demand reading
7	TRF6 MD	Tariff \#6 max. demand reading
8	TRF7 MD	Tariff \#7 max. demand reading
9	TRF8 MD	Tariff \#8 max. demand reading

The number of parameters in each section is automatically configured depending on the number of actual tariffs you defined in the TOU Daily Profiles.

Appendix F Data Scales

The maximum values for volts, amps and power in the PM130 PLUS setup and in communications are limited by the voltage and current scale settings. See Device Options in Chapter 4 on how to change the voltage and current scales in your meter.
The following table shows the meter data scales.
Table 39: Data Scales Values

Scale	Conditions	Range
Maximum voltage (V max)	All configurations	Voltage scale \times PT Ratio, V 1
Maximum current (I max)	All configurations	Current scale \times CT Ratio, A 2, 3
Maximum Power 4	Wiring 4LN3, 3LN3, 3BLN3	V max \times I max \times 3, W
	Wiring 4LL3, 3LL3, 3BLL3, $30 P 2,30 P 3,3 D I R 2 ~$	V max \times I max $\times 2, \mathrm{~W}$
	25,50 or 60 Hz	100 Hz
	400 Hz	500 Hz

1 The default voltage scale is 144 V . The recommended voltage scale is $120 \mathrm{~V}+20 \%=144 \mathrm{~V}$ for using with external PT 's, and $690 \mathrm{~V}+20 \%=828 \mathrm{~V}$ for a direct connection to power line.
2 CT Ratio = CT primary current/CT secondary current
3 The default current scale is $2 \times$ CT secondary (2.0A with 1 A secondary and 10.0A with 5A secondary).
4 Maximum power is rounded to whole kilowatts. With $\mathrm{PT}=1.0$, it is limited to 9,999,000 W.

Appendix G Device Diagnostic Codes

Table 40: Device Diagnostic Codes

Diagnostic Code	Diagnostic Message	Description	Reason
2	dAtA	Memory/Data fault	Hardware failure
3	rSt	Hardware watchdog reset	Hardware failure
5	CPU	CPU exception	Hardware failure
6	tout	Run-time software error	Hardware failure
7	PWr.UP	Software watchdog timeout	Hower Down/Up
8	ConF	Warm restart	Normal power-up sequence
9	rtc	External restart via communications or by firmware upgrade	
10	Lo.bAt	Low battery (with a battery backup unit)	Corrupted setup data has been replaced with the default configuration
11	EEPr	EEPROM fault	The clock time has been lost required
13			Hardware failure
15			

See Diagnostics Display in Chapter 3 for more information on the PM130 PLUS built-in diagnostics.

Index

A
Accuracy, 136
Active energy, 136
Active power, 136
analog outputs, $15,32,70,77$, 79, 138
Apparent energy, 136
Apparent power, 136
Auto Scroll, 43
B
billing, 89
Broken Delta, 25, 29, 71
communication, 57, 62
counters, 80
CT Primary Current, 69

D

Data recorder, 95
daylight saving, 87
Delta, 25
demand, 17, 70
diagnostic, 51, 106
digital inputs, 13, 15, 73, 75, 80, 84, 87, 89
display, 40, 84
DNP3, 99

E

Ethernet, 9, 10, 12, 14, 15, 34, 36, 55, 57, 58, 63, 64, 65, 134
Event recorder, 95
eXpertPower, 66

F

factory defaults, 95

G

GPRS, 9, 10, 14, 15, 39, 50, 63, 65, 66, 107

H

High Resolution Option, 42

I
inputs, 17

L
Low Resolution Option, 42

M
Maximum Demand Load Current, 69
menus, 52
Modbus, 98

N
notification, 67

O

Open Delta, 25, 27, 28, 71
P
PAS, 55
password, 52, 61
Phase Energy, 72
Power Source, 9, 23
Profibus, 9, 12, 14, 15, 34, 37, 63, 134
PT Ratio, 69, 154
Pulse LED, 41
R
Reactive energy, 136
Reactive power, 136
relay outputs, 13, 15, 30, 75, 76
reset, 103
RTC, 105
S
setpoints, 82
Starting Voltage, 72

T
test mode, 41, 71, 72
Total Demand Distortion, 136
Total Harmonic Distortion, 136
TOU, 89
TOU module, 9, 15, 33

W

Wiring Mode, 6, 26, 27, 28, 29, 69, 71
Wye, 25, 26, 27, 28, 71

TECHNICAL DATA SHEET

Equipment Type: HMI
Location:
RTU Section
Model Numbers: G306A
Manufacturer: Red Lion
Supplier:
Control Logic
25 Lavarack Ave,Eagle Farm QLD 4009
(07) 36231212

MODEL G306A - GRAPHIC COLOR LCD OPERATOR INTERFACE TERMINAL WITH TFT QVGA DISPLAY AND TOUCHSCREEN

PROCESS CONTROL EQUIPMENT

- CONFIGURED USING CRIMSON ${ }^{\circledR}$ SOFTWARE (BUILD 424 OR NEWER)
- UP TO 5 RS-232/422/485 COMMUNICATIONS PORTS (2 RS-232 AND 1 RS-422/485 ON BOARD, 1 RS-232 AND 1 RS422/485 ON OPTIONAL COMMUNICATIONS CARD)
- 10 BASE T/100 BASE-TX ETHERNET PORT TO NETWORK UNITS AND HOST WEB PAGES
- USB PORT TO DOWNLOAD THE UNIT'S CONFIGURATION FROM A PC OR FOR DATA TRANSFERS TO A PC
- UNIT'S CONFIGURATION IS STORED IN NON-VOLATILE MEMORY (8 MBYTE FLASH)
- COMPACTFLASH ${ }^{\circledR}$ SOCKET TO INCREASE MEMORY CAPACITY
- 5.7-INCH TFT ACTIVE MATRIX 256 COLOR QVGA 320×240 PIXEL LCD WILED BACKLIGHT
- 5-BUTTON KEYPAD FOR ON-SCREEN MENUS
- THREE FRONT PANEL LED INDICATORS
- POWER UNIT FROM 24 VDC $\pm 20 \%$ SUPPLY
- RESISTIVE ANALOG TOUCHSCREEN

GENERAL DESCRI PTI ON

The G306A Operator Interface Terminal combines unique capabilities normally expected from high-end units with a very affordable price. It is built around a high performance core with integrated functionality. This core allows the G306A to perform many of the normal features of the Paradigm range of Operator Interfaces while improving and adding new features.

The G306A is able to communicate with many different types of hardware using high-speed RS232/422/485 communications ports and Ethernet 10 Base T/100 Base-TX communications. In addition, the G306A features USB for fast downloads of configuration files and access to trending and data logging. A CompactFlash socket is provided so that Flash cards can be used to collect your trending and data logging information as well as to store larger configuration files.

In addition to accessing and controlling of external resources, the G306A allows a user to easily view and enter information. Users can enter data through the touchscreen and/or front panel 5-button keypad.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the manual or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use the controller to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the controller.

The protective conductor terminal is bonded to conductive parts of the equipment for safety purposes and must be connected to an external protective earthing system.

WARNING - EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION 2

CAUTION: Risk Of Danger Read complete instructions prior to installation and operation of the unit.

CONTENTS OF PACKAGE

- G306A Operator Interface.
- Panel gasket.
- Template for panel cutout.
- Hardware packet for mounting unit into panel.
- Terminal block for connecting power.

ORDERI NG I NFORMATI ON

MODEL NO.	DESCRIPTION	PART NUMBER
G306A	Operator Interface for indoor applications, textured finish with embossed keys	G306A000
G3CF	CompactFlash Card $^{5}$	G3CFxxxx
G3RS	RS232/485 Optional Communication Card $^{\text {G3RS0000 }}$	
G3CN	CANopen Optional Communication Card	G3CN0000
G3DN	DeviceNet option card for G3 operator interfaces with isolated high speed communications ports	G3DN0000
G3PBDP	Profibus DP Optional Communication Card	G3PBDP00
SFCRM2	Crimson 2.0 ${ }^{2}$	SFCRM200
CBL	RS-232 Programming Cable	CBLPROG0
	USB Cable	CBLUSB00
	Communications Cables ${ }^{1}$	CBLxxxxx
DR	DIN Rail Mountable Adapter Products ${ }^{3}$	DRxxxxxx
	Replacement Battery ${ }^{4}$	BNL20000
G3FILM	Protective Films	G3FILM06

1 Contact your Red Lion distributor or visit our website for complete selection.
${ }^{2}$ Use this part number to purchase the Crimson ${ }^{\circledR}$ software on CD with a printed manual, USB cable, and RS-232 cable. Otherwise, download for free from www.redlion.net.
${ }^{3}$ Red Lion offers RJ modular jack adapters. Refer to the DR literature for complete details.
${ }^{4}$ Battery type is lithium coin type CR2025.
${ }^{5}$ Industrial grade two million write cycles.

CompactFlash is a registered trademark of CompactFlash Association.

SPECI FICATI ONS

1. POWER REQUIREMENTS:

Must use a Class 2 circuit according to National Electrical Code (NEC), NFPA-70 or Canadian Electrical Code (CEC), Part I, C22.1 or a Limited Power Supply (LPS) according to IEC 60950-1 or Limited-energy circuit according to IEC 61010-1.
Power connection via removable three position terminal block.
Supply Voltage: $\quad+24$ VDC $\pm 20 \%$
Typical Power ${ }^{1}$: 8 W
Maximum Power ${ }^{2}$: 10 W
Notes:

1. Typical power with +24 VDC, RS232/485 communications, Ethernet communications, CompactFlash card installed, and display at full brightness.
2. Maximum power indicates the most power that can be drawn from the G306A. Refer to "Power Supply Requirements" under "Installing and Powering the G306A."
3. The G306A's circuit common is not connected to the enclosure of the unit. See "Connecting to Earth Ground" in the section "Installing and Powering the G306A."
4. Read "Power Supply Requirements" in the section "Installing and Powering the G306A" for additional power supply information.
5. BATTERY: Lithium coin cell. Typical lifetime of 10 years.
6. LCD DISPLAY:

SIZE	5.7-inch
TYPE	TFT
COLORS	256
PIXELS	320×240
BRIGHTNESS	$380 \mathrm{~cd} / \mathrm{m}^{2}$
BACKLIGHT*	$50,000 \mathrm{HR}$ TYP.

*Lifetime at room temperature. Refer to "Display" in "Software/Unit Operation"
4. 5-KEY KEYPAD: for on-screen menus.
5. TOUCHSCREEN: Resistive analog
6. MEMORY:

On Board User Memory: 8 Mbyte of non-volatile Flash memory.
Memory Card: CompactFlash Type II slot for Type I and Type II CompactFlash cards.
7. COMMUNICATIONS:

USB Port: Adheres to USB specification 1.1. Device only using Type B connection.

1
WARNING - DO NOT CONNECT OR DISCONNECT CABLES WHILE POWER IS APPLIED UNLESS AREA IS KNOWN TO BE NON-HAZARDOUS. USB PORT IS FOR SYSTEM SET-UP AND DIAGNOSTICS AND IS NOT INTENDED FOR PERMANENT CONNECTION.

Serial Ports: Format and Baud Rates for each port are individually software programmable up to 115,200 baud.
PGM Port: RS232 port via RJ12.
COMMS Ports: RS422/485 port via RJ45, and RS232 port via RJ12.
DH485 TXEN: Transmit enable; open collector, $\mathrm{V}_{\mathrm{OH}}=15 \mathrm{VDC}$,
$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V} @ 25 \mathrm{~mA}$ max.
Note: For additional information on the communications or signal common and connections to earth ground please see the "Connecting to Earth Ground" in the section "Installing and Powering the G306A."
Ethernet Port: 10 BASE-T / 100 BASE-TX
RJ45 jack is wired as a NIC (Network Interface Card).
Isolation from Ethernet network to G3 operator interface: 1500 Vrms
8. ENVIRONMENTAL CONDITIONS:

Operating Temperature Range: 0 to $50^{\circ} \mathrm{C}$
Storage Temperature Range: -20 to $70^{\circ} \mathrm{C}$
Operating and Storage Humidity: 80% maximum relative humidity (noncondensing) from 0 to $50^{\circ} \mathrm{C}$.
Vibration according to IEC 68-2-6: Operational 5 to $8 \mathrm{~Hz}, 0.8^{\prime \prime}$ (p-p), 8 to 500 Hz , in X, Y, Z direction, duration: 1 hour, 3 g .
Shock according to IEC 68-2-27: Operational $40 \mathrm{~g}, 9 \mathrm{msec}$ in 3 directions.
Altitude: Up to 2000 meters.
9. CERTIFICATIONS AND COMPLIANCES:

SAFETY

UL Listed, File \#E245515, UL61010-1, ANSI/ISA 12.12.01-2007, CAN/CSA 22.2 No. 61010.1, CSA 22.2 No. 213-M1987 and File \#E179259, UL61010-1, CAN/CSA 22.2 No.61010-1 LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards
Type 4X Indoor Enclosure rating (Face only), UL50
IECEE CB Scheme Test Report \#E179259-A1-CB-3 Issued by Underwriters Laboratories Inc.
IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use, Part 1.
IP66 Enclosure rating (Face only), IEC 529
ELECTROMAGNETIC COMPATIBILITY
Emissions and Immunity to EN 61326: 2006: Electrical Equipment for Measurement, Control and Laboratory use.

Immunity to Industrial Locations:

Electrostatic discharge EN61000-4-2 Criterion A
4 kV contact discharge
8 kV air discharge
Electromagnetic RF fields

Fast transients (burst)

Surge

RF conducted interference	EN61000-4-6	2 kV L to G power 1 kV signal
		Criterion A
		3Vrms
Power frequency magnetic	EN61000-4-8	Criterion A
fields		30A/m
Emissions:		
Emissions	EN55011	Class A

Emissions
EN55011
Class A
Note:

1. Criterion A: Normal operation within specified limits.
2. CONNECTIONS: Compression cage-clamp terminal block.

Wire Gage: 12-30 AWG copper wire
Torque: 5-7 inch-pounds ($56-79 \mathrm{~N}-\mathrm{cm}$)
11. CONSTRUCTION: Steel rear metal enclosure with NEMA 4X/IP66 aluminum front plate for indoor use only when correctly fitted with the gasket provided. Installation Category II, Pollution Degree 2.
12. MOUNTING REQUIREMENTS: Maximum panel thickness is 0.25 " (6.3 $\mathrm{mm})$. For NEMA 4X/IP66 sealing, a steel panel with a minimum thickness of $0.125^{\prime \prime}(3.17 \mathrm{~mm})$ is recommended.
Maximum Mounting Stud Torque: 17 inch-pounds ($1.92 \mathrm{~N}-\mathrm{m}$)
13. WEIGHT: $3.0 \mathrm{lbs}(1.36 \mathrm{Kg})$

DI MENSI ONS In inches (mm)

I nstalling and Powering the G306A

MOUNTI NG I NSTRUCTI ONS

This operator interface is designed for through-panel mounting. A panel cutout diagram and a template are provided. Care should be taken to remove any loose material from the mounting cut-out to prevent that material from falling into the operator interface during installation. A gasket is provided to enable sealing to NEMA 4X/IP66 specification. Install the ten kep nuts provided and tighten evenly for uniform gasket compression.

Note: Tightening the kep nuts beyond a maximum of 17 inch-pounds (1.92 $N-m)$ may cause damage to the front panel.

ALL NONINCENDIVE CIRCUITS MUST BE WIRED USING DIVISION 2 WIRING METHODS AS SPECIFIED IN ARTICLE 501-4 (b), 502-4 (b), AND 503-3 (b) OF THE NATIONAL ELECTRICAL CODE, NFPA 70 FOR INSTALLATION WITHIN THE UNITED STATES, OR AS SPECIFIED IN SECTION 19-152 OF CANADIAN ELECTRICAL CODE FOR INSTALLATION IN CANADA.

CONNECTING TO EARTH GROUND

The protective conductor terminal is bonded to conductive parts of the equipment for safety purposes and must be connected to an external protective earthing system.

Each G306A has a chassis ground terminal on the back of the unit. Your unit should be connected to earth ground (protective earth).

The chassis ground is not connected to signal common of the unit. Maintaining isolation between earth ground and signal common is not required to operate your unit. But, other equipment connected to this unit may require isolation between signal common and earth ground. To maintain isolation between signal common and earth ground care must be taken when connections are made to the unit. For example, a power supply with isolation between its signal common and earth ground must be used. Also, plugging in a USB cable may connect signal common and earth ground. ${ }^{1}$
${ }^{1}$ USB's shield may be connected to earth ground at the host. USB's shield in turn may also be connected to signal common.

POWER SUPPLY REQUI REMENTS

The G306A requires a 24 VDC power supply. Your unit may draw considerably less than the maximum rated power depending upon the options being used. As additional features are used your unit will draw increasing amounts of power. Items that could cause increases in current are additional communications, optional communications card, CompactFlash card, and other features programmed through Crimson.

In any case, it is very important that the power supply is mounted correctly if the unit is to operate reliably. Please take care to observe the following points:

- The power supply must be mounted close to the unit, with usually not more than 6 feet $(1.8 \mathrm{~m})$ of cable between the supply and the operator interface. Ideally, the shortest length possible should be used.
- The wire used to connect the operator interface's power supply should be at least 22 -gage wire. If a longer cable run is used, a heavier gage wire should be used. The routing of the cable should be kept away from large contactors, inverters, and other devices which may generate significant electrical noise.
- A power supply with an NEC Class 2 or Limited Power Source (LPS) and SELV rating is to be used. This type of power supply provides isolation to accessible circuits from hazardous voltage levels generated by a mains power supply due to single faults. SELV is an acronym for "safety extra-low voltage." Safety extra-low voltage circuits shall exhibit voltages safe to touch both under normal operating conditions and after a single fault, such as a breakdown of a layer of basic insulation or after the failure of a single component has occurred.

Installing An Option Card

WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN DISCONNECTED AND THE AREA IS KNOWN TO BE NON-HAZARDOUS.

Each option card comes with a cable for communications and three screws for ataching the option card to the G306's rear cover. To install the option card, remove all power and I/O communications cables from the unit. Use the three screws provided to mount the option card to the rear cover of the G306 as shown in Figure 1.

Connect the cable from the option card to CN11 on the main board of the G306 as shown in Figure 2. Be sure both ends of the cable are firmly seated into their appropriate connector housing. Carefully replace the rear cover by reversing the instructions for removing the rear cover.

Communicating With the G306A

CONFI GURI NG A G306A

The G306A is configured using Crimson ${ }^{\circledR}$ software. Crimson is available as a free download from Red Lion's website, or it can be purchased on CD. Updates to Crimson for new features and drivers are posted on the website as they become available. By configuring the G306A using the latest version of Crimson, you are assured that your unit has the most up to date feature set. Crimson ${ }^{\circledR}$ software can configure the G306A through the RS232 PGM port, USB port, or CompactFlash.

The USB port is connected using a standard USB cable with a Type B connector. The driver needed to use the USB port will be installed with Crimson.

The RS232 PGM port uses a programming cable made by Red Lion to connect to the DB9 COM port of your computer. If you choose to make your own cable, use the "G306A Port Pin Out Diagram" for wiring information.

The CompactFlash can be used to program a G3 by placing a configuration file and firmware on the CompactFlash card. The card is then inserted into the target G3 and powered. Refer to the Crimson literature for more information on the proper names and locations of the files.

USB, DATA TRANSFERS FROM THE COMPACTFLASH CARD

WARNING - DO NOT CONNECT OR DISCONNECT CABLES WHILE POWER IS APPLIED UNLESS AREA IS KNOWN TO BE NON-HAZARDOUS. USB PORT IS FOR SYSTEM SET-UP AND DIAGNOSTICS AND IS NOT INTENDED FOR PERMANENT CONNECTION.

In order to transfer data from the CompactFlash card via the USB port, a driver must be installed on your computer. This driver is installed with Crimson and is located in the folder C:\Program Files\Red Lion Controls\Crimson 2.0\Device\after Crimson is installed. This may have already been accomplished if your G306A was configured using the USB port.

Once the driver is installed, connect the G306A to your PC with a USB cable, and follow "Mounting the CompactFlash" instructions in the Crimson 2 user manual.

CABLES AND DRIVERS

Red Lion has a wide range of cables and drivers for use with many different communication types. A list of these drivers and cables along with pin outs is available from Red Lion's website. New cables and drivers are added on a regular basis. If making your own cable, refer to the "G306A Port Pin Outs" for wiring information

ETHERNET COMMUNI CATI ONS

Ethernet communications can be established at either 10 BASE-T or 100 BASE-TX. The G306A unit's RJ45 jack is wired as a NIC (Network Interface Card). For example, when wiring to a hub or switch use a straight-through cable, but when connecting to another NIC use a crossover cable.

The Ethernet connector contains two LEDs. A yellow LED in the upper right, and a bi-color green/amber LED in the upper left. The LEDs represent the following statuses:

LED COLOR	DESCRIPTION
YELLOW solid	Link established.
YELLOW flashing	Data being transferred.
GREEN	10 BASE-T Communications
AMBER	100 BASE-TX Communications

On the rear of each unit is a unique 12-digit MAC address and a block for marking the unit with an IP address. Refer to the Crimson manual and Red Lion's website for additional information on Ethernet communications.

G306A PORT PIN OUTS

$\sum_{0}^{\mathbf{Z}}$	1
	\%ㅇํ
	+
	$\dot{\sim}$
\checkmark	\sim m
- 0	
POWER	
CONNECTOR	

PGM PORT

RS232 PORTS

The G306A has two RS232 ports. There is the PGM port and the COMMS port. Although only one of these ports can be used for programming, both ports can be used for communications with a PLC.

The RS232 ports can be used for either master or slave protocols with any G306A configuration.
Examples of RS232 communications could involve another Red Lion product or a PC. By using a cable with RJ12 ends on it, and a twist in the cable, RS232 communications with another G3 product or the Modular Controller can be established. Red Lion part numbers for cables with a twist in them are CBLPROG0 ${ }^{1}$, CBLRLC01 ${ }^{2}$, or CBLRC02 ${ }^{3}$.

G3 RS232 to a PC

Connections			
G3: RJ12	Name	PC: DB9	Name
4	COMM	1	DCD
5	Tx	2	Rx
2	Rx	3	Tx
	N/C	4	DTR
3	COM	5	GND
	N/C	6	DSR
1	CTS	7	RTS
6	RTS	8	CTS
	N/C	9	RI

${ }^{1}$ CBLPROG0 can also be used to communicate with either a PC or an ICM5.
${ }^{2}$ DB9 adapter not included, 1 foot long.
${ }^{3}$ DB9 adapter not included, 10 feet long.

G3 to Modular Controller (CBLRLC05)

Connections			
G3	Name	Modular Controller	Name
1,4	TxB	1,4	TxB
4,1	RxB	4,1	RxB
2,3	TxA	2,3	TxA
3,2	RxA	3,2	RxA
5	TxEN	5	TxEN
6	COM	6	COM
7	TxB	7	TxB
8	TxA	8	TxA

RS422/ 485 COMMS PORT

The G306A has one RS422/485 port. This port can be configured to act as either RS422 or RS485.

Note: All Red Lion devices connect A to A and B to B, except for Paradigm devices. Refer to www.redlion.net for additional information.

DH485 COMMUNI CATIONS

The G306A's RS422/485 COMMS port can also be used for Allen Bradley DH485 communications.

WARNING: DO NOT use a standard DH485 cable to connect this port to Allen Bradley equipment. A cable and wiring diagram are available from Red Lion.

G3 to AB SLC 500 (CBLAB003)

Connections			
RJ45: RLC	Name	RJ45: A-B	Name
1	TxB	1	A
2	TxA	2	B
3,8	RxA	-	$24 V$
4,7	RxB	-	COMM
5	TxEN	5	TxEN
6	COMM	4	SHIELD
4,7	TxB	-	COMM
3,8	TxA	-	$24 V$

Software/ Unit Operation

CRIMSON ${ }^{\circledR}$ SOFTWARE

Crimson ${ }^{\circledR}$ software is available as a free download from Red Lion's website or it can be purchased on a CD, see "Ordering Information" for part number. The latest version of the software is always available from the website, and updating your copy is free.

DISPLAY

This operator interface uses a liquid crystal display (LCD) for displaying text and graphics. The display utilizes aa LED backlight for lighting the display. The backlight can be dimmed for low light conditions.

The LED backlight has a limited lifetime. Backlight lifetime is based upon the amount of time the display is turned on at full intensity. Turning the backlight off when the display is not in use can extend the lifetime of your backlight. This can be accomplished through the Crimson ${ }^{\circledR}$ software when configuring your unit.

FRONT PANEL LEDS

There are three front panel LEDs. Shown below is the default status of the LEDs.

LED	INDICATION
RED (TOP, LABELED "PWR")	
FLASHING	Unit is in the boot loader, no valid configuration is loaded. ${ }^{1}$
STEADY	Unit is powered and running an application.
YELLOW (MIDDLE)	
OFF	No CompactFlash card is present.
STEADY	Valid CompactFlash card present.
FLASHING RAPIDLY	CompactFlash card being checked.
FLICKERING	Unit is writing to the CompactFlash, either because it is storing data, or because the PC connected via the USB port has locked the drive. ${ }^{2}$
FLASHING SLOWLY	Incorrectly formatted CompactFlash card present.
GREEN (BOTTOM)	
FLASHING	

${ }^{1}$ The operator interface is shipped without a configuration. After downloading a configuration, if the light remains in the flashing state continuously, try cycling power. If the LED still continues to flash, try downloading a configuration again.
${ }^{2}$ Do not turn off power to the unit while this light is flickering. The unit writes data in two minute intervals. Later Microsoft operating systems will not lock the drive unless they need to write data; Windows 98 may lock the drive any time it is mounted, thereby interfering with logging. Refer to "Mounting the CompactFlash" in the Crimson 2 User Manual.

TOUCHSCREEN

This operator interface utilizes a resistive analog touchscreen for user input. The unit will only produce an audible tone (beep) when a touch on an active touchscreen cell is sensed. The touchscreen is fully functional as soon as the operator interface is initialized, and can be operated with gloved hands.

KEYPAD

The G306A keypad consists of five keys that can be used for on-screen menus.

TROUBLESHOOTI NG YOUR G306A

If for any reason you have trouble operating, connecting, or simply have questions concerning your new G306A, contact Red Lion's technical support. For contact information, refer to the back page of this bulletin for phone and fax numbers.

EMAIL: techsupport@redlion.net
Web Site: http://www.redlion.net

BATTERY \& TI ME KEEPI NG

WARNING - EXPLOSION HAZARD - THE AREA MUST BE KNOWN TO BE NON-HAZARDOUS BEFORE SERVICING/ REPLACING THE UNIT AND BEFORE INSTALLING OR REMOVING I/O WIRING AND BATTERY.

WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN DISCONNECTED AND THE AREA IS KNOWN TO BE NON-HAZARDOUS.

A battery is used to keep time when the unit is without power. Typical accuracy of the G306A time keeping is less than one minute per month drift. The battery of a G306A unit does not affect the unit's memory, all configurations and data is stored in non-volatile memory.

CAUTION: The circuit board contains static sensitive components. Before handling the operator interface without the rear cover attached, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the operator interface at a static controlled clean workstation. Also, do not touch the surface areas of the circuit board. Dirt, oil, or other contaminants may adversely affect circuit operation.

To change the battery of a G306A, remove power, cabling, and then the rear cover of the unit. To remove the cover, remove the four screws designated by the arrows on the rear of the unit. Then, by lifting the top side, hinge the cover, thus providing clearance for the connectors on the bottom side of the PCB as shown in the illustration below. Install in the reverse manner.

Remove the old battery* from the holder and replace with the new battery. Replace the rear cover, cables, and re-apply power. Using Crimson or the unit's keypad, enter the correct time and date.

* Please note that the old battery must be disposed of in a manner that complies with your local waste regulations. Also, the battery must not be disposed of in fire, or in a manner whereby it may be damaged and its contents come into contact with human skin.

The battery used by the G306A is a lithium type CR2025.

Optional Features and Accessories

OPTI ONAL COMMUNI CATI ON CARD

Red Lion offers optional communication cards for fieldbus communications. These communication cards will allow your G306A to communicate with many of the popular fieldbus protocols.

Red Lion is also offering a communications card for additional RS232 and RS422/485 communications. Visit Red Lion's website for information and availability of these cards.

CUSTOM LOGO

Each G3 operator interface has an embossed area containing the Red Lion logo. Red Lion can provide custom logos to apply to this area. Contact your distributor for additional information and pricing.

COMPACTFLASH SOCKET

CompactFlash socket is a Type II socket that can accept either Type I or II cards. Use cards with a minimum of 4 Mbytes and formatted to a maximum of 2 Gbytes (See Note box below) with the G306A's CompactFlash socket. Cards are available at most computer and office supply retailers.

CompactFlash can be used for configuration transfers, larger configurations, data logging, and trending.
 CompactFlash card while power is applied. Refer to "Front Panel LEDs."

Information stored on a CompactFlash card by a G306A can be read by a card reader attached to a PC. This information is stored in IBM (Windows ${ }^{\circledR}$) PC compatible FAT16 file format.

NOTE

For reliable operation of this and other Red Lion products, one of the following brands of CompactFlash card must be used...
SimpleTech
SMART ${ }^{\circledR}$ Modular
SanDisk ${ }^{\circledR}$
Silicon Systems

Not all of the above manufacturers offer CompactFlash cards recognized to UL standards, which may be required for your application.
Although RLC products limit use of CompactFlash card memory to 2 GB, cards with a larger capacity can be used. They MUST be formatted to 2 $G B$ and use the FAT 16 file system. It is recommended to format the CF card using the format utility from within Crimson.

LI MITED WARRANTY

The Company warrants the products it manufactures against defects in materials and workmanship for a period limited to two years from the date of shipment, provided the products have been stored, handled, installed, and used under proper conditions. The Company's liability under this limited warranty shall extend only to the repair or replacement of a defective product, at The Company's option. The Company disclaims all liability for any affirmation, promise or representation with respect to the products.
The customer agrees to hold Red Lion Controls harmless from, defend, and indemnify RLC against damages, claims, and expenses arising out of subsequent sales of RLC products or products containing components manufactured by RLC and based upon personal injuries, deaths, property damage, lost profits, and other matters which Buyer, its employees, or sub-contractors are or may be to any extent liable, including without limitation penalties imposed by the Consumer Product Safety Act (P.L. 92-573) and liability imposed upon any person pursuant to the Magnuson-Moss Warranty Act (P.L. 93-637), as now in effect or as amended hereafter.
No warranties expressed or implied are created with respect to The Company's products except those expressly contained herein. The Customer acknowledges the disclaimers and limitations contained herein and relies on no other warranties or affirmations.

Red Lion Controls	Red Lion Controls	Red Lion Controls	
Headquarters	Europe	India	China
20 Willow Springs Circle	Softwareweg 9	Unit 302, XinAn Plaza	
York PA 17406	NL -3821 BN Amersfoort	Opp	2nd Floor, Park Centra

3. Drawings

Drawings - As Built

UÜriounumules SP033 ADAM STREET SEWAGE PUMPING STATION SITE COVER SHEET

ELECTRICAL DRAWINGS INDEX							
DWG ${ }^{\text {。 }}$ ．	TITLE	SHEET	REVISIONS				
486／5／7－0471－000	SITE COVER SHEET	00	0	A	8		
486／5／7－0471－001	POWER OIITRIBUTION SCHEMATIC DIAGRAM	01	0	A	8		
486／5／7－0471－002a	PUMP 01 SCHEMATIC DIAGRAM	028	0	A	8		
486／5／7－0471－002b	PUMP 02 SCHEMATIC DIAGRAM	026	0	A	8		
486／5／7－0471－003a	PUMP 03 SCHEMATIC DIAGRAM	03a	0	A	8		
486／5／7－0471－003b	PUMP OL SCHEMATIC DIAGRAM	03b	0	A	8		
486／5／7－0671－004a	ACTUATOR 01 SCHEMATIC DIAGRAM	04a	0	A	8		
486／5／7－0471－004b	ACTUATOR 02 SCHEMATIC DIAGRAM	04b	0	A	8		
486／5／7－0471－005	DRY WELL \＆EM．STORAGE DEWATERING PUMPS SCHEMATIC DIAGRAM	05	0	A	8		
486／5／7－0471－006	MTS CONTROL WIRING DIAGRAM	06	0	A	8		
486／5／7－0471－007	COMMON CONTROLS SCHEMATIC DIAGRAM ®	07	0	A	8	c	
486／5／7－0471－008	COMMON RTUI／O SCHEMATIC DIAGRAM	08	0	A	8		
486／5／7－0671－009	RTU POWER IISTRIBUTIIN SCHEMATIC \＆NETWORK DIAGRAM	09	0	A	－		
486／5／7－0471－010	RTU DIGITAL INPUTS TERMINATION DIAGRAM－SHEET 10 O 3	10	0	A	8		
486／5／7－0671－011	RTU DIGIITAL INPUTS TERMINATION DIAGRAM－SHEET 2 OF 3	11	0	A	8		
486／5／7－0471－012	RTU DIGITAL INPUTS TERMINATION DIAGRAM－SHEET 3 OF 3	12	0	A	8		
486／5／7－0471－013	RTU DIGITAL OUTPUTS TERMINATION DIAGRAM－SHEET 1 OF 2	13	0	A	B		
486／5／7－04771－014	RTU DIGITAL OUTPUTS TERMINATION DIAGRAM－SHEET 2 OF 2	14	0	A	8		
486／5／7－0471－015	RTU ANALOG INPUTS TERMINATION DIAGRAM	15	0	A	8		
486／5／7－0471－016	RTU ANALOG OUTPUTS TERMINATION DIAGRAM	16	0	A	8		
486／5／7－0471－017	COMMON CONTROLS TERMINATION DIAGRAM	17	0	A	8		
486／5／7－0471－018	EQUPMENT LIST A	18	0	A	8	c	
486／5／7－0671－019	CAbLE SCHEDULE	19	0	A	8		
486／5／7－0671－020	SWITCHBOARD LABEL SCHEDULE	20	0	A	8		
486／5／7－0671－021	SWITCHBOARD CONSTRUCTION DETALLS－SHEET 1 of 3	21	0	A	B		
486／5／7－0471－022	SWITCHBOARD CONSTRUCTION DETALLS－SHEET 2 of 3	22	0	A	8		
486／5／7－0671－023	SWITCHBOARD CONSTRUCTION DETALLS－SHEET 3 of 3	23	0	A	8		
486／5／7－0471－024	FIELD INSTRUMENTATION－INSTALLATION DETALLS	24	0	A	8		
486／5／7－0471－025	Reserveo icathooi protectionunil）	25					
486／5／7－0471－026	RESERVEO ItENERATOR CONTROU	26					
486／5／7－0471－027	DRY WELL DISCONNECTION BOX GENERAL ARRANGEMENT	27	0	A	8		
486／5／7－0677－028	WETWELL INSTRUMENTATION DISCONNECT BOX GENERAL ARRANGEMENT	28	0	A	B		
486／5／7－0471－029	SWBD GENERAL ARRANGEMENT－SHEET 10F 4	29	0	A	8		
486／5／7－0471－030	SWBD GENERAL ARRANGEMENT－SHEET $20 \mathrm{~F} / 6$	30	0	A	B		
486／5／7－0471－031	SWBD GENERAL ARRANGEMENT－SHEET 3 OF 4	31	0	A	B		
486／5／7－0471－032	SWBO GENERAL ARRANGEMENT－SHEET L OF 4	32	0	A	B		
486／5／7－0671－033	EXTERNAL GENERATOR CONNECTION CUBIILE	33	0	A	B		
486／5／7－0471－036	DRY WELL MOTOR DISCONNECTION BOX INSTALLATION OETAILS	36	0	A	B		
486／5／7－0471－040	SWITCHBOARD SLAB－LOCALITY AND SITE PLANS－SHEET 1 of 3	40	0	A	B		
486／5／7－0471－041	SWITCHBOARO SLAB ANO CONDUIT DETAILS－SHEET 2 of 3	41	0	A	B		
486／5／7－0471－042	SWITCHBOARD AND ELECTRICAL CONDUIT LAYOUT－SHEET 3 of 3	42	0	A	8		

Andy Walmsley

Electrical License：A30723
Date：05／06／2015

2.15	RE－ISSUED FOR CONSTRUCTION	P．H．	A．w	इwnep	P．hague			
A 05.14	ISSUED FOR CONSTRUCTION	Р．	A．w．	notex	AWITTHOFT	cesen	Eame	oate
－ 0214	ISSUED For tender	H．	Aw．	Come	57－0471302LC	Anmmert	\％m	su
mane		cos．	No	Iccmena		ceson ciear	RPEQ M	M，

STANDARD VARIABLES		
DESCRIPTION	VALUES	
CTMETERING ISOLATOR	6304	5166303 P
NORMAL SUPPLY MAIN SWITCH	10 （630A）	56300E／630
GENERATOR SUPPLY MAIN SWITCH	$10(630 \mathrm{~A})$	5630EE／330
PUMP1 CIRCUIT BREAKER	0.63 （2524］	560001／400
PUMP2 CIRCUIT BREAKER	0.63 ［252A］	56006］／400
PUMP3 CIRCUIT BREAKER	$0.8128 \mathrm{~A})$	516001／／60
PUMPL CIRCUIT BREAKER	08 （128A）	51600］／／60
ORY WELL SUMP PUMP CIRCUIT BREAKER	$20 \mathrm{~A} \quad 5$	5125N／20
EM．STORAGE DEWATERING PUMP CCT BREAKER	NOT APPLICABLE	
PUMP VSO STARTER SIZE	FC202N32	260 A
PUMP RATINGS	B2kW 252A	50kW 87A
PUMP LINE CONTACTOR	NOT APPLICABLE	
DRY WELL SUMP PUMP RATING	22kN 688 A	
DRY WELL SUMP PUMP CONTACTOR \＆TOL	CA7－23（T） 23863	
PUMP SOCKET OUTLET－INCLINE SLEEVE	NOT APPLICABLE	
PUMP INEET PLUG－HANDLE	NOT APPLICABLE	
WET WELL LEVEL TRANSMITTER	WILS2XA44AMOTOTX 6 m	
EMEPGENCY STORAGE WELL LEVEL TRANSMITER	NOT APPLICABLE	
EM STORAGF OFWATERING PUMP RATMG	NOT APPYICABIF	
EM STORAGE DEWATERING PUMP CONTR \＆TOL	NOT APPLICABLE	
FLOWMETER RANGE	5001／s	
WET WELL UL TRASONIC LEVEL SENSOR	NOT APPILCABLE	
OELIVERY PRESSURE TRANSMITTER	BR52XXCALEHPMAS $L=2025 \mathrm{~m}$	
RADIO	DR990－064022－D0	
EMERGENCY PUMPING TIME	t．b．aset	
No of SINGLE POINT PROBES	6	
INCOMING MAINS SUPPLY CABLE	$2 \times 165 m^{2}$	
MAIN EARTHING CABLE	$120 \mathrm{~mm}{ }^{2}$	
WCOMING GENERA TOR SUPPL Y CABLE	NOT APPLICABLE	
VSD STARTER 3 PHASE SUPPLY	$132 \mathrm{~kW}=95 \mathrm{~mm}{ }^{2} \quad 50 \mathrm{WW}=35 \mathrm{ma}$	

STANDARD DESIGN OPTIONS		
OPTION	DESCRIPTION	FITTED
A	INDIVIDUAL PUMP MOISTURE IN OIL（MIO）SENSOR AND FAULT RELAY	YES Cx
B	INDIVIDUAL PUMP MOISTURE IN STATOR（MISI SENSOR AND FAULT RELAY	YES ${ }^{\text {cke }}$
¢	INDIVIDUAL PUMP REFLUX VALVE PROXIMITY SWITCH	
0	Station manhole surchatge Imminent	N N0
E	STATION DRY WELL SUMP PUMP AND LEVEL INOICATION SENSORS AND RELAYS	YES 极
F	PERMANENT GENERATOR INSTALLED	NO
G	STATION EMERGENCY STORAGE LEVEL SENSOR，DEWA TERING PUMP	N0
H	STATION DELIVERY FLOWMETER－260VAC ABB	YES $\times 10$
1	BACKUP COMMUNICATION－GSM	YES cras
J	PUMP CONNECTION IVia Dry Well J－8ox）	YES \times \％
K	CATHOOIC Protection	NO
L	MOTOR THERMISTORS（Via Dry Well J－Box）	YES
M	ODOUR CONTROL	NO
N	CURRENT TRANSFORMER（CT）MEt TERING	
0	NO PUMP INTERLOCKING	NO
p	WET WELL WASHER	［10 ${ }^{1}$
0	AUX PIT SUMP PUMP ANO LEVEL PROGE	W NO
R	TELEMETRY RADIO	YES \times R0
5.	WET WELL SECONDARY LEVEL SENSOR	W NO^{1}
T	WET WELL PRIMARY LEVEL SENSOR（Via Field instrument Box）	YES［姐
U	DELIVERY PRESSURE TRANSMITTER（Direct Connected）	
v	CHEMICAL DOSING	W ${ }^{10}$
W	PUMP START METHOO－VARIABLE SPEED DRIVE	
X	3rd \＆4th PUMP INSTALLED	YES \times सR
r	POWER METER	YES［ \times K

FOR CONSTRUCTION

SP033 Adam Street Wynnum North SPS - Electrical Installation OM Manual

Q-Pulse Id: TMS1407

SP033 Adam Street Wynnum North SPS - Electrical Installation OM Manual

SP033 Adam Street Wynnum North SPS - Electrical Installation OM Manual

SP033 Adam Street Wynnum North SPS - Electrical Installation OM Manual

SP033 Adam Street Wynnum North SPS - Electrical Installation OM Manual

SP033 Adam Street Wynnum NorthrSPS - Electrical Installation OM Manual

SP033 Adam Street Wynnum North-SPS - Electrical Installation OM Manual

SP033 Adam Street Wynnum North-SPS - Electrical Installation-OM Manual

SP033 Adam Street Wynnum North_SPS - Electrical Installation OM Manual

SP033 Adam Street Wynnum North SPS - Electrical Installation OM Manual

SWITCHBOARO INTERNAL LIGHTING AND SECURITY

SP033 Adam Street Wynnum North_SPS - Electrical Installation.OM Manual

SP033 Adam Street Wynnum North SPS - Electrical Installation.OM Manual

SP033 Adam Street Wynnum North SPS - Electrical Installation OM Manual

Sbicie consfruction Ian Mazne grade Aluminum 52551
 ree fron splatter and groond smoath where needed
Aternal doors and covers fitte with adnesive neoprene tubber seal.
Wrose plated "0" Handies fites where indicited on the cravings.
Carth shuss thred to the intenor of all doors and hinged escutcheons and on afictent or siffeners, does steys ave an the dravings
Cos 5 St 10 subjected to reassonabie loods Mninum 3mn $5 / 5$ steel
Lith-ot1 covers and mounting panels fixed with H8 studs 3 chrose plited doner nuts. Gland plates manofectured from 5 mm mulurinum, unless otherwise shown
Gland/ /nspect/A Aceses plate ppeniogs fitted with Nstxto flat tead closed end ivet nuts. (Oetal F) Cable g lands to be filted with conpression sice nstalled within cubicie. (Detaí G liand/hspection/Access plates to be fitted with seals attrobed to wbicie biand hrspection/A/ccesss plave fixings at 10 Conm .
anm clearance from section dividers
All gland plates to be earthed
Ibpection/Actess plates 2an Not to
Hovide Sncouding to all live parts to 1 P20 where regited
Foges lexternall Selectix thebso. Chrome plated. Sisteel star vashers fitted under all hinge screws.
All equipment to be te removatble via front wecess 1000 -Uin
All equipment to be removable via front ace
All suitchoord L ED lights to be muonted on the horizontal plane
Loces Doers 1-18
oxfocus - THende Itraak. Grooe Plated
5^{*} Reotation
5 Pa beass cyiter

Sterer vate Pane

SELECTPX - 3 paint loch rod set - 1000-1587
tersgex key Nozs. $1 / 2 \mathrm{lhey}$

Standarct	A5 3639, 1
Curent 8 Frequency	A 5 50Hz
Aateed Operational Yoltrge Ue	415 Vac
Rateed Insulation Voltage Ull	650 V
Rated Auxiliary Voltage	$260 \mathrm{VAC} / 22 \mathrm{VDC}$
Rated Current MMan Eusi	630 A APPS
Short Cirtuil Current is	20 kA
Duration of ise Oegree of Protection	
Measure of Protection by barriecs and enclosures.	1P5640A51939
Service Conations	Incoors
${ }_{\text {Mass }}^{\text {Masms of Segreation }}$	Not excee

 below, each nidwhat wre shal he numbe Separate vess or phas shall be useed for each conductor. A proprietary double pin lug may be usee to terminate two conductors
 Not nore than one wire shall be comectes on one sice of any fumeil type ternimal. Where mut
 as detailed below.

Wring befween RTU terminals \& RTU mashalling terninals to be nuticicre coble with 0.5 ssqmer

 All 2 2.VAVC viring in me Re Ru section and cabie zenes shail be docble insulated and all terminatis shall De showsed and labellec. Dangee 26 WVVAC or Dangee 45 VVAC
Provide strowding with wering lapel over all 2 LoVAC door/escutheon mounted equifment
 Earth cables minimua 2 ssonm fiexbl:

Wire numbers are readable left to rignof popten panel to ad temininat in
$=2$ 2115 $=$

$\frac{1 \text { ABELS }}{\text { Internal }}$

 $E /$ Stop ibbels Y / B engraved ABS P P LaSTIC tol thel shel shedule inst letter $=$ Backy ound dolour. Second letter $=$ Leflering colon.

Men sw	MAINSWITCH -	Mateid Ass elastic
Pupp ctiabels	$\underset{20 \mathrm{~A}}{\mathrm{PUMP} \text { No1 }-\mathrm{fmm} \mathrm{~mm}}$	
Conpartmear ibeels	$1-10 \mathrm{~mm}$	Naterial Stantess 5 tee
E/fitop fadels	bacery stop - imm	
Waring daeis	$\begin{aligned} & \text { DANGER LISV - } \\ & \text { ISOMTE LSE WEERE - } \\ & \text { Tom } \end{aligned}$	

Andy Walmsley

 Electrical License: A30723Internal labels secvere by M3 chrome plated sefal thereds.
C's's ta be dentititet with idedivitaet labels as per label scheduie
Tabels obstructed by swiththoowd wiring ace relocated to adjazent tuct lid and secured by y3
pylon threads. Lid to be seured by a single cable tie at one corner
Externat suttchboerd daels to be ASS plactic setured by M3 chrome netal the eads
Ill internal anc extemal labels are to have bevelied reges
colaracions
Potemal Metering $120 / 15 \mathrm{vac\mid}$ Red, White, Ilue

 Estractor Voc Pesitive supplies Itra lor voc Restive supples Generad Etrato tov vo Wring detcroste Werch Electrod Wheng
ntrisicily safe wining

Doo: Ekutconen Earth Bo

panting

Auminium Surface Pepearation
Finish smooth ail exposee welds, clean, descale, and degrease all surfaces Surfoces bretreatitent in accorfdence vith AS 1550 \& AS 3715 using Novex LF eicl etch

 NTERIOR IEEMS Inoviting panals, escutcheons, etch-OLLUX Bright White (37166)

Light llue
Green Yelow

6 scon fievible
iscom find

DETALL M2

DETALI M
Sub-ostroution bocap arpangagit

$0_{0} 02.15$	RE-ISSUEO POR Construction	P. ${ }^{\text {P }}$	Aw.	CRateo	P. Hague	Pumowe	324	
${ }^{*}$ O 0.14	ISSUED FOR CONSTRUCTION	P. H.	aw	wernocice	AWITTHOFT	oseer	RPEOM art	unv
- 03.14	ISSUED POR TENDER	H.	A.w	cowte	57-0471802-C	Amminot	\%ss 3 3,	
\% Date	Q-Pulsetd: TMS1407	Ont	N0	Sccinem		oescerome	Rpeame out	banUtilitiksive

${ }^{\text {sinpo3s }}$ WWAGE PUMP STATIO

SWITCHBOARD CONSTRUCTION DETALIS

suerno a	
mundismusan owemo	newo
	B

SP033 Adam Street Wynnum North_SPS - Electrical Installation OM Manual

tree fron spalter end yound snooth where creaced
Mb Earths sods fixed to the interior of all boors and higged escatchems

to reasoukte lack
Proride Shrosfong as stam on etrving to all busurs to Pro
Ste wathers fited under all hisg ecrevs.

Locks Door 1

TExT		$\begin{array}{\|l\|l\|} \hline \mathrm{E} \times \mathrm{XX} \\ \mathrm{HECOHT} \end{array}$	$\begin{aligned} & \text { Nategal } \\ & \text { cocooi } \end{aligned}$	522	atr
PuMP No? Oiscowectrox	[EXTERMal)	2 am	5/steel- Blach Text	30×35	1
WARNNG LSV EEHNO OOOR	[ExTEPMAI	Vmm	5/steel - Reat Text	150x<0	1

EXTERNAL LABELS 1 mm THCK. 316 GRADE STANILESS STEE
FIXED WTH M3 316 STANLESS STEEL METAL THREADS

DPERATME PRRAMEIPRS

Current $\$$ Frequax
Curreat 8 Frequary
Rated 0 peration voltrge e Rated hrusiation Voltage U Rated Auntary Yoltage
Rateded Current lussars
 Stect Crewilt Cureet ise
Dration of se Degree of Protection Dequer ef Protetcion

Andy Walmsley
Electrical License: A30723
Date: 05/06/2015
Signed:

$\square \quad!\quad 1$	01 \square 0 \square 1		1		
				\%	\square
		I 1		8	
poountmasman					

0.02 .15	RE-ISSUED FOR CONSTRUCTION	P.H.	Awl	Bewte	prague	Pmaze		23.4					setrina $\%$	
${ }^{1}$ 065.14	ISSUED For construction	P. H.	aw.		AWTTHOFT	ceson	ReLome	Stiz			ADAM STREET	Generator connection cuicle		
\bigcirc		P. H	Aw	canhe	57.0471502C	Aumberr	${ }_{\text {mse }}$	${ }^{2}$	(6) Ürban Utilit Activee: 30009%	15 , mbun	SEWAGE PUMP STATION	SHEET 2 OF 4		B

$\frac{\text { DETAIL } 1}{\text { CABLE ENTRYS }}$

POWERLOCK
CONNECTION
BOX

DETAlL 2
 REMOVABLE PANEL

for mounting of powerlock connection box

NOTES:

1 STAINLESS STEEL FLAP WITH FULLLENGTH S / S PIANO HINGE WEATHERPROOF \& CLOSED WITH 2 S/S SLIDE BOLTS FROM INSIDE
2 SUPPLY LOOSE - 1 SET OF 'POWERLOCK' PLUGS TO SUIT CONNECTION TO POWERLOCK CONNECTION BOX

CONSTRUCTION

Cubicle construction 16 mm Stainless Steel
Folded, "Pulse MIG" \& "TIG welded with all visible seams and joints fully welded
tree from splatter and ground smooth where needed
External doors and covers fitted with Emka 1011-207 self grip seal
16 Cubicle Earth stud welded to cubicle behind mefal escutcheon.
M6 earth studs welded to the interior door and on adjacent cubicle interior surface
Provide metal escutcheon as shown on drawing to shroud all cabling
Hinges (externall Selectrix HiB650ss-316 Stainless Steel
Star washers fitted under all hinge screws
Locks Door 1
SELECTRIX - Swing Handle 1107SSSU3-45
SELECTRIX - 3 point lock rod set 1000-1587-SS
Lockwood Barrel Loch
Finish
Stainless Steel 20 Finish
Labels
Provide labels as shown. External labels imm thick
316 grade stanless stee.
med with m3 316 stainless steel metal threads
Sheet 33

0.02 .15	RE-ISSUED FOR CONSTRUCTION	P. M.	Aw.	cewte	Prague	PMas		234					fetra	
${ }^{1}$ os, 16	ISSUED For construction	P.,	A		A Witriort	cesen	ReEane	aris				GE		newo
0 0, 0,4		P..	aw	corn	57-0471	surneo	\%	3318	Ürbanu		SEWAGE Pump station			

FIELD DISCONNECTION BOXES
(4 OFF) FOR PUMPS 1,2,3 AND 4

Andy Walmsley
Electrical License: A30723
Date: 05/06/2015

Signed:

Motes
1- ACTUAL DIMENSION DETERMINED BY DEPTH OF DISCONNECT BOX
2- PROVIDE PROVIIION FOR SEPARATION OF DISSIMILAR METALS
3- EXISTING CABLE LADDER TO BE UTILISED FOR NEW MOTOR CABLES
L- NOMINAL 40×40 STAINLESS STEEL UNISTRUT IOR EQUIVALENT) WITH END (APS
5- CHEMSET REO 502 STAINLESS STEEL OR EQUIVALENT MINMUM DEPTH $=110 \mathrm{~mm}$

THIS INSTALLATION DETAIL MAY BE ALTERED TO SUIT SITE SPECIFIC APPLICATION WITH PRIOR APPROVAL FROM QUU \& CARDNO

Sheet 34
FOR CONSTRUCTION

Drawings-Functional

Q-Pulse Id: TMS1407

RTU DIGITAL INPUTS

RTU DIGITAL OUTPUTS

POINT TOPOINT DAY 9 MTH 9 YEAR 14 Name: Joshua lardey
Licence no:.
Licence no:

Sheet 4a
FOR CONSTRUCTION

SP033 Adam Street Wynnum North SPS - Electrical Installation OMM Manual

SWITCHBOARD INTERNAL LIGHTING AND SECURITY

Drawings - Point to Point

Q-Pulse Id: TMS1407

Q-Pulse Id: TMS1407

SP033 Adam Street Wynnum North- SPS - Electrical Installation OM Manual

SP033 Adam Street Wynnum North-SPS - Electrical Instatlation-OM Manual

4. Inspection and Test Results

Inspection and Test Check List

Check List（Tick（ ）acceptable items only，note deviations under＂REMARKS＂）（If not applicable mark as N／A）

Switch Board and Control Panels Construction Check List

＂This check list is to be used in conjunction with the correct construct schematic／wiring diagrams＂				
Item	Activity Description	Hold Points	Checked	By（Initial）
Busbar			（ ）	
1	Correct size busbar to rated current load to meet AS 2067		（b）	70
2	Appearance is good i．e．Straight \＆level		（V）	\checkmark
3	Correct phase identification		（の）	
4	Correct hole sizes for joins and terminations		（V）	
5	All clearances have been meet		（ソ）	
6	Correct busbar support material has been used and edges sealed with varnish．		（V）	
7	Busbar supports are at the correct distances apart		（V）	
8	Correct tensioning at all joins \＆terminations and witnessed marked．		（2）	
9	Correct hole format in joining cubicle		（2）	
10	Sufficient clearances for terminating cable		（ ）	
11	All joins are dressed flat		（V）	
12	Busbar is insulated at supports when required，		（以）	
Cabling				
13	Correct size for demand of circuit		（い）	
14	Correct phase colouring		（）	
15	Correct termination \＆insulated		（V）	
16	Correct numbering		（レ）	
17	Correctly formed and neat		（レ）	
18	Correctly supported		（V）	
19	All cable entry holes are insulated		（ \downarrow ）	
20	Check cable tray is mounted correctly \＆all sharp surfaces are removed		（V）	
21	All cable ties are neatly trimmed		（v）	
22	All cable clear from busbar＇s		（V）	
23	Check all analog inputs and outputs are shielded		（V）	
26	All shielded cables have been earthed		（V）	V

Remarks／Reme dial Action Required Hold Points：

Inspection and Test Check List

Inspection and Test Check List

Switch Board and Control Panels Construction Check List（SJQF 502）				
Item	Activity Description	Hold Points	Checked	By（Initial）
Fuses				
1	Check that the cartridge is correct size		（ $)$	TP
2	Correct mountings		（V）	\bigcirc
3	Correct labelling		（V）	
4	Check that line side conductors are SDI		（＊）	
Current Transformers				
5	Correct ratio \＆size		（V）	
6	Correct direction of feed		（V）	
7	Correct earthing		（V）	
8	Correct cabling		（ ）	
Voltage／Current Monitoring Equipment				
9	Correct voltage／current range on meter to the installation		（v）	
10	Correct Ct Ratio		（v）	
11	Voltmeter terminations are insulated		（2）	
12	Check that all meters are preset to zero		（V）	
13	Correct indication labels applied		（ $)$	
Indication Equipment				
14	Correct colour		（ 2 ）	
15	Correct voltage size with matching lamp attached		（v）	
16	Correct operation eg．Push to test		（V）	
17	Correct labelling		（i）	
Terminal Blocks				
18	Correct size to cable		（こ）	
19	Correct colour coding		（い）	
20	Correct numbering		（2）	
21	Correctly mounted with lock ends		（v）	
22	Correct labels		（ひ）	
Neutral Links				
23	Check that they are accessible		(\checkmark)	
24	Correct labelling		(\checkmark)	
25	Correct numbers stamped to match circuit identification		（v）	
26	Correct cabling to circuit identification		（ ）	
27	Check that all neutral links \＆bar are insulated from the switchboard frame		（v）	
Earthing				
28	Check that all main earth bar is correct size		（V）	
29	Check that the main earth is continuous		（V）	
30	Correctly labelled		(\checkmark)	
31	Continuous for CT wiring		（V）	
32	Check that all doors with equipment mount are electrically earth			
33	Check all frames are earthed		（レ）	\checkmark
Remarks／Remedial Action Required：				

Inspection and Test Check List

Switch Board and Control Panels Construction Check List (SJQF 502)				
Item	Activity Description	Hold Points	Checked	By (Initial)
Earthing Resistance \& Continuity Test (Note all readings should be $<0.5 \Omega$)			.	
1	Make sure the MEN connection is removed		()	$\sqrt{ }$
2	Attach lead to main earth connection point than test with other lead between		(V)	
3	The frame of each section		(V)	
4	The doors		(\sim)	
5	All mounting bolts to all equipment		()	
6	All brackets		(v)	
7	All earth links		()	
8	All bolts \& threads for the mounting of escutcheon		(v)	
9	All gland plates		(v)	
10	All cable trays		(\checkmark)	
11	All earth connection		(v)	
12	Earth secondary of transformers and power supplies where applicable		(v)	
13	Earth surge diverters		(v)	
14	Current transformers		(V)	\checkmark
Insulation Test		Hold Points	Test Result	By (Initial)
1	Make sure all control fuses and earths are removed from all electronic equipment before this test is carried out		(${ }^{\text {(}}$	JP
2	Set insulation tester (meggar) to 500 volts before proceeding. Note reading to be $>1 \mathrm{M} \Omega$		()	
3	Test between: - Red - White		$+200 \mathrm{~m} \Omega$	
	- Red-Blue		$+200 \mathrm{~m} \Omega$	
	- Red - Earth		$1200 \mathrm{~m} \Omega$	
	- Red-Neutral		$+200 \mathrm{~m} \Omega$	
	- White-Blue		$+2004 \Omega$	
	- White - Earth		$+2 \mathrm{com} \Omega$	
	- White - Neutral		$+200: n$	
	- Blue - Earth		$+200 \mathrm{~m} \Omega$	
	- Blue - Neutral		$+200 \mathrm{~m} \Omega$	
4	If all readings are clear the insulation tester is to be set at 1000 volts then proceed with the following Note reading to be $>1 \mathrm{M} \Omega$		()	
5	Test between: - Red - White		+200m2	
	- Red - Blue		$+200 \mathrm{~m} \Omega$	
	- Red - Earth		$+200 \mathrm{~m} \Omega$	
	- Red - Neutral		$+200 \mathrm{~m} \Omega$	
	- White-Blue		+200m Ω	
	- White - Earth		$+200 \mathrm{~m} \Omega$	
	- White - Neutral			
	- Blue-Earth		$+200 \mathrm{~m} \Omega$	
	- Blue - Neutral		$+200 \mathrm{~m}$	\checkmark
Remarks/Remedial Action Required:				
Remedial Actions Completed \square Signature:		\ldots	Date:	

Inspection and Test Check List

Inspection and Test Check List

Site ID SPO33 \quad site Name - Adam St Wynnum

 Date $12 / 5 / 15$
A. Electrical Installation Test Records

AS/NZS 3000:2007 requires that prior to placing an electrical installation or any part thereof in service following its construction, alteration, addition or repair, it shall be inspected and tested to verify that the installation is safe to energize and that it will operate correctly in accordance with the requirements of AS3000:2007.
This section is aimed to ensure that the switchboard manufacturer has carried out and documented all applicable AS3000:2007 tests considered as mandatory, prior to execution of the Factory Acceptance Test.
AS/NZS 3017 Electrical Installations - Verification Guidelines provides inspection, test methods and test acceptance parameters to verify AS3000:2007 safety requirements, however these methods are provided for guidance and other alternative methods are acceptable, AS3017:2007 may be applied through legislative requirements made in each State and Territory of Australia and in New Zealand.

Item No.	Activity Description	Contractor Results			Signed QUU	Comments	!
		Pass	Fail	N/A			
A. 1						AS3000:2007 Section 8.3.5 AS3017:2007 Section 3.1	
A. 2						For acceptance criteria and test methods refer to: AS3000:2007 Section 8.3.6 AS3017:2007 Section 3.2)

C: \backslash Users \backslash brendan.stringer $\backslash A p p D a t a \backslash L o c a l \backslash M i c r o s o f i \backslash$ Wind
File Path: ows \Temporary infernet
Files \Content.Ouflook $\backslash 8 E Q 11 Z 7 L \backslash Q U U$ FAT document (3).docx

Pre Factory Inspection Tests

Item No.	Activity Description	Contractor Results			Signed QUU	Comments
		Pass	Fail	N/A		
A. 3						For acceptance criteria and test methods refer to: AS3000:2007 Section 8.3.7 AS3017:2007 Sections 3.3 and 3.5
A. 4	Records for the verification of Correct Circuit connection tests records shall include: a) Interconnection between conductors of different circuits b) Socket-Outlet Sub-Circuits c) Lighting Points d) Equipment Sub-circuits	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$				For acceptance criteria and test methods refer to: AS3000:2007 Section 8.3.8 AS3017:2007 Section 3.4
A. 5	Records for the verification of operation of RCD's shall include: a) Circuits protected by an RCD	\checkmark				For acceptance criteria and test methods refer to: AS3000:2007 Section 8.3.10 AS3017:2007 Section 3.7

Company Name SJ Electric Group Qld

Company Electrical Licence No:73286
Contractor's Tester Name - Joshua Pardey signature .ryintm.................................. Date $10 / 5 / 15$

Doc ID:	CHEI35
	C:VUsers \backslash brendan.stringer \backslash AppData \backslash Local \backslash Microsoft \backslash Wind

: \Users \brendan.stringer \backslash AppData \backslash Local \backslash Microsoft \backslash Wind
ows \backslash Temporary internet
(3).docx

QUU Electrical Inspector Name John Clayton

Major Projects \& Commercial Services

Checklist
Pre Factory Inspection Tests

Date

C: \Users \brendan.sfringer \backslash AppData \backslash Local \backslash Microsoft \backslash Wind
File Path: ows \Vemporary internet
Files \Content.Outlook $\backslash 8 E Q 1$ IZ7L \QUU FAT document
(3).docx
B. Testing Area, Documentation and Test Set Up Arrangements

This section is aimed to ensure that all documentation and test set up arrangements have been provided to allow execution and readiness to carry out the FAT.

Item No.	Activity Description	Contractor Results			Signed QUU	Comments
		Pass	Fail	N/A		
B. 1	Verify that a suitable test area has been provided, the test area shall be: - Clearly identified and barricaded - Test bench with enough space for testing equipment and documentation - Well ventilated					
B. 2	All testing equipment to simulate field inputs and outputs including field instruments and motors shall be pre-connected	V				
B. 3	Progressive "As Built" drawings marked up available.	\checkmark				
B. 4	"Point to Point" test drawing and Function Test schematic mark-ups provided	\checkmark				A set for each

C. Visual Inspections - Sheet Metal / Mechanical Construction Works

The following visual inspections shall take place previous to energising the switchboard circuits. All power supplies shall be disconnected, including the main power supply, generator power supplies and battery power supplies.

Pre Factory Inspection Tests

Major Projects \& Commercial Services
Checklist
Pre Factory Inspection Tests

Company Name SJ Electric Group Qld

Contractor's Tester Name Joshua Pardey QUU Electrical Inspector Name John Clayton

D. Visual Inspections- Neutral and Earthing

A visual inspection shall be made when work on an electrical installation has been completed in order to verify that the work complies with the requirements of AS/NZS 3000.

The visual inspection shall be carried out before, or in association with testing, and as far as possible it should be made before the electrical installation is placed in service.

Major Projects \& Commercial Services

Date

E. Visual Inspections - Electrical Components Mounting, Wiring and Labelling

As a minimum a visual inspection shall be made when work on an electrical installation has been completed in order to verify that the work complies with the requirements of AS/NZS 3000. This visual inspection section includes AS/NZS 3000 checks as well as several checks to verify that the electrical installation meets the specific design and quality requirements and scope of work.
The visual inspection shall be carried out before, or in association with testing, and as far as possible it should be made before the electrical installation is placed in service.

OUEENSLANO
Major Projects \& Commercial Services
Checklist
Pre Factory Inspection Tests

Pre Factory Inspection Tests

Item No.	Activity Description	Contractor Results			Signed QUU	Comments
		Pass	Fail	N/A		
E. 26	All cable cores ferruled \& numbered.	\checkmark				
E. 27	24VDC power supply shall be mounted to prevent obstruction to the field instrument terminals.	\checkmark		1		
E. 28	Multicore cables shall be used for RTU harnesses to provide neat wiring installation.	\checkmark			6	
E. 29	Verify that adequate access to RTU and communication plug is provided	\checkmark				
E. 30	Modbus communication cables (RS 485) shall be 1200 hm impedance twisted pair's.	\checkmark				Road Worx is a good cable to use
E. 31	Aerial surge arrestor shall be mounted with a small section of DIN rail	$\sqrt{ }$		V		the earthed shall be run as directly as possible 6 mm
E. 32						
E. 33						
E. 34						
E. 35						

Company Name SJ Electric Group Qld

	Contractor's tester Name Joshua Parde QUU Electrical Inspector Name John Clayton
Doc in:	CHE135
File Path:	C. \backslash Users \backslash brendan.stringer \backslash AppDato \backslash Locol Microsoff \backslash Wind ows \backslash Temporary internet Files\Content.Outlook \8EQ1IZ7L \QUU FAT document (3). docx

F. Live Power and Operational Tests

The following tests shall be made with all switchboard electrical circuits energized in order to check that the switchboard meets all operational requirements.

Major Projects \& Commercial Services
Checklist
Pre Factory Inspection Tests

Item No.	Activity Description	Contractor Results			Signed QUU	Comments
		Pass	Fail	N/A		
	when connected to 240 VAC main.			\bigcirc		
F. 10	Record output of 24 VDC power supply when disconnected to 240 VAC main.	\checkmark		7		$27.1 \quad \cup D C$
F. 11	RTU provided with corresponding firmware/ software	\checkmark				soffware version:
F. 12	Redlion HMI provided with corresponding soffware configuration	\checkmark				Software Version:
F. 13	I/O tested to RTU terminals	\checkmark				
F. 14	Manual functions tested as per the below list	$\sqrt{ }$				Before the function test the RTU \& Redlion has been loaded with the correct code OK 回

MOTOR STARTER

Task	Outcome
Check that the motor starter is programmed and able to start the each pump	Pump 1-OK of Pump 2-OK

Primp 3-OK

Pump4-OK

modBus

Task	Outcome
Confirm that the modbus link from the RTU to the Soft Starters and the Display Panel is operating correctly	OK 区

BATTERY

Doc 10:	CHE135
File Path:	C: \Users \brendan.stringer\AppData \backslash Local \backslash Microsoff \backslash Wind ows \backslash Temporary infernet Files \Content.Ouilook \8EQ IIZ7L\QUU FAT document (3).docx

Task	Outcome
Check that the battery is connected and charging (i.e. 26 V across the terminals).	OK
Check that the RTU is running off battery when the mains supply is isolated	OK

POINT TO POINT
Task Outcome Using the schematic page I/O list check each individual physical l-O Wired to the RTU from beginning to end. ie press the actual button and watch the I-O change in the Redlion debug page Output lights and relays activate Inject 4-20mA into the Analog Inputs monitor the result on the Redlion debug page OK The schematic page I/O should be highlighted and signed by the tester and attached to this
FAT Test Document. Also confirm that the display panel is showing the correct information during each point to point check
Run Both pumps (Check for Interlocking) Turn the station to local and start pump 1.
Then simultainiuosly start pump 2.
Stop both pumps and then start pump 2. and then start pump 1. Confirm test results match expected. Repeat this exersize via the emergency peump mode switches and in remote, inhect a wet well level signal above the duty "B" start point. (For Interlocked sites - also complete the next section)

Doc ID:

File Path: ows \backslash Temporary internet
Files \Content.Outlook \8EQ 1 IITL\QQUU FAT document
(3).docx

Doc ID:	CHEl35	Active Date:4 July 2013 Review Date: 4/7/154 July 2013 Review Date: $4 / 7 / 15$	Printed at 6:22 AM on 10/04/15
File Path:	C: \Users \brendan.stringer \backslash AppData \backslash Local Microsoft \backslash Wind ows \backslash Temporary internet Files \Content.Outlook \8EQ 1 IZ7L\QUU FAT document (3).docx		

GENERATOR FUNCTIONALITY

Task	Outcome
Ensure all inteposing Relays are wired as per the drawings test all relays and monitor the	OK 团
Redlion debug page to confirm all inputs are correct．	

CATHODIC PROTECTION

（OPTION K）

	Task
Ensure all CP Circuit has been wired as per the drawings	Outcome

SUMP PUMP AND DRY WELL CIRCUIT
（OPTIONE）

Task	Outcome
Activate the stop electrode input to simulate a level above the stop level－The sump pump should still be off at this stage	OK \downarrow
Activate the start electrode input to simulate a level above the start level－The sump pump should now start	OK \square^{8}
De－activate the start electrode－the pump should keep running	OK［1］
De－activate the stop electrode－the pump should stop	OK \square^{\prime}
Activate the Alarm level electrode	\checkmark
Confirm operation of relay and input to RTU	OK 区
Activate the Trip level electrode wait 10 seconds This will stop all sewer pumps from running in local，remote（via Software）or under the control of the Emergency Pumping Circuit Circuit（Via the sewer pump interupt relays）． Confirm this by trying to start the sewer pumps in all 3 modes．	Pump 1－OK Pump 2 －OK
Confirm that the each sewer pump can still be run under the control of that pumps Emergency Start Switch	Pump 1 －OK口 Pump 2－OK

PUMP INTERLOCKING

（OPTION O）

For a fully interlocked site
Doc ID：CHE135 Acfive Date：4 July 2013 Review Date： $4 / 7 / 154$ July 2013 Review

Major Projects \& Commercial Services

Checklist
Pre Factory Inspection Tests

Ensure that the 2 pumps can not run either from a RTU command, Emergency Pumping Circuit or the Emergecy Pumping Mode Switch	OK■
For a generator only interlocked site	
Ensure that 2 pumps can run simultaneously when the station is powered by Energex. (From the RTU, Emergency Pumping Circuit and the Emergecy Pumping Mode Switch)	OK口
Ensure that the 2 pumps can not run either from a RTU command, Emergency Pumping Circuit or the Emergecy Pumping Mode Switch while the stations is powered from the Generator	OK \square
Pump Faulted Scenario	
Ensure that if pump 1 is faulted, pump 2 can still start both via the RTU and the Emergency Pumping Circuit.	OK ${ }^{\text {® }}$
Ensure that if pump 2 is faulted, pump 1 can still start both via the RTU and the Emergency Pumping Circuit.	OK ${ }^{\prime}$

Company Name SJ Electric Group QId
Company Electrical Licence No: 73286

Doc ID:	CHE135	Active Dafe:4 July 2013 Review Date: $4 / 7 / 154$ July 2013 Review Date: $4 / 7 / 15$	Printed of 6:22 AM on 10/04/15
File Path:	```C:\Users\brendan.stringer\AppData\Loca\Microsof\\Wind ows\Temporary internet Files\Content.Outlook\8EQIIZ7L\\QUU FAT document (3).docx```		

Date
Date
G. Non-Conformances and Unauthorised Modifications

Major Projects \& Commercial Services
Checklist
Pre Factory Inspection Tests

This section is to be completed only at the conclusion of the FAT:

Final FAT Results	YES	NO	Comments
Pre-FAT Completed			
Minor NCRs Generated			
Major NCRs Generated			
Pre-FAT Accepted			

Notes:

1. FAT results to be recorded above by Contractor.
2. FAT results to be approved by Queensland Urban Utilities Electrical Inspector.
3. Pre-FAT results to be approved by Queensland Urban Utilities Electrical Inspector at Pre-FAT (if present) or at the start of the FAT.
4. NCRs are to be generated by the Queensland Urban Utilisies Electrical Inspector for all NCRs not resolved by the end of the test.

Doc ID:	CHEl35	Active Date:4 July 2013 Review Date: 4/7/154 July 2013 Review Date: 4/7/15	Printed at 6:22 AM on 10/04/15
File Poth:	C: \Users \brendan.sfringer\AppData \Local Microsoft \backslash Wind ows \backslash Temporary internet Files \Content.OuHook $\backslash 8 E Q 11$ IZ7LIQUU FAT document (3).docx		

Company Name SJ Electric Group Qld Contractor's Tester Name Nick Shal QUU Electrical Inspector Name John Clayton

C: \backslash Users \backslash brendan.stringer \backslash AppData \backslash Local \backslash Microsoft \backslash Wind
File Path: ows \backslash Jemporary Internet
Files \Content.OUtlook $\backslash 8 E Q 1$ IZ7L\QUU FAT document
(3).docx
lobo. 43402226 \qquad
Project Ad lawn St
switchboard Puinp Station

SP033 ADAM STREET, WYNNUM SEWAGE PUMP STATION

COMMISSIONING PLAN

In Attendance

Electrical Contactor's Supervisor
Name: Andy Walmsley \qquad Date: $1-6-15$

QUU Commissioning Manager

Name: John Clayton

Signature:
 Signature:

1 INTRODUCTION

!! IMPORTANT !!

This commissioning Procedure is not to replace the electrical contractors own internal quality control and statutory documentation.

At all times during the switchboard upgrade, the pump station must be capable of running at least 2 of the 4 pumps.

This changeover will progress over four to five days.

The sequence of works shall be:

1. Station Preliminary Works.
2. Set up temporary switchboard with two pumps
3. Run temporary switchboard on alternate power
4. Shut down existing switchboard
5. Install new switchboard start connecting cables
6. Remove existing switchboard and ancillaries
7. Continue to connect switchboard
8. Run new switchboard on main power
9. Connect pump 4 to new switchboard and test.
10. Connect pump 3 to new switchboard and test.
11. Connect pump 2 to new switchboard and test.
12. Connect pump 1 to new switchboard and test.
13. Confirm communications work
14. Post Changeover

1.1 MAINTENANCE CHECK OF EXISTING INSTALLATION

Before the works on site can commence, QUU staff to ensure that both pumps are fully operational shall perform a thorough maintenance inspection of the site.

1.2 PRE COMMISSIONING CHECKLIST

The following checklist is to be completed and signed by the electrical contractor.

1.2.1 Switchboard Factory Acceptance Test

Contractor Task	Completed
FAT has been completed as per QUU FAT Document and all defects that were identified have been rectified.	OK ロ

1.2.2 Pump Station preliminary operational checks

QUU Task	Checked
These are checks will ensure the pump station is fully operational and that no delays will be incurred due to any pump station problem out side of the contract. These tasks are desirable to have completed before the SAT but are not essential. The job can proceed if they are not done. Commissioning Manager to request networks maintenance to inspect and rectify if necessary	
The wet well does not need pumping out.	
Ensure that the station is fully functional (all pumps can run)	

1.2.3

2 STATION PRELIMINARY WORKS

Contractor Task	Completed
Install internal lighting	
Install 3 phase and 1 phase outlets	
Install wet well instrument box	
Install Surge Imminent Probe	
Install High Level Probe	
Install Hydrostatic level Probe	
Install new pressure transmitter	
Install Pump Field Disconnection Boxes and cable ladder	
Install Sump Pump Outlet	
Install Sump Pump level probes	
Install E Stop switches	

3 QUU CONTAINER SWITCHROOM

Contractor Task	Outcome
QUU are to provide a containerised VSD switch room that is equipped with VSD's, an RTU and a communications module.	
This switch room will be delivered to site before the changeover starts and placed on the new concrete driveway next to the wet well.	

4 SWITCHBOARD CHANGEOVER PROCEDURE

OVERVIEW

The following sequence of change over works is the order in which they must be followed. Two pumps must be operational at all times. After each phase has been completed, the commissioning manager will record the results and instruct the commissioning team to commence work on the next phase.

4.1 CHANGEOVER SWITCHBOARD

DAY 1

4.1.1 Register with Control Room

Contractor and Commissioning Manager Task	Outcome
Call the QUU Control Room Operator (CRO) and inform him that you are on site. Record the CRO's Name and Officer Code and record the time of the call.	Name:
Advise CRO that you are performing a switchboard changeover and that you	
will initially be taking one pump off line. Give the operator your contact	
name and number and advise the operator that communications will be	
lost to the pump station until the job is finished	

4.1.2

Contractor Task	Outcome
Total Generators are to provide a 200 KVA Generator this will be delivered at 7.00 am and placed in front of the container switch room	
Run temporary power cabling ($95 \mathrm{~mm}^{2}$ Flexible) from the generator to the container switch room and connect. Temporary cables are to be hired from Total Generators	
Carry out the appropriate testing	
Start the generator	

4．1．3 Existing Switchboard Parameters

Contractor Task	Outcome
Ensure that the station is fully functional（all pumps can run）	P1ロ P2ロ P3प P4ロ
Check 3 phase voltages and phase rotation	U． \qquad V． \qquad W． \qquad Uロ Uロ טロ
Record 3 phase motor currents pump\＃1 pump\＃2 pump\＃3 pump\＃4 $50 H 2 \quad 76 A$.	U． \qquad V． \qquad W \qquad U． \qquad V． \qquad W． \qquad U． \qquad V． \qquad W． \qquad U． \qquad V．＿ W． \qquad
THIS IS A HOLD POINT． Do not proceed until the All PUMPS are confirmed to be fully operational	

4．1．4

4．1．5 Connect pumps to switch room

Contractor Task	Outcome
Pumps 3 and $4(50 \mathrm{Kw})$ will be used during the changeover	OK－
Shut down Pump 4 Lock and Tag the circuit breaker	
Disconnect the cable $\left(35 \mathrm{~mm}^{2} 3 \mathrm{C}+\mathrm{E}\right)$ and redirect through the core hole located behind the switchboard	

This cable will be extended using the hire cables $\left(35 \mathrm{~mm}^{2}\right)$ so that it will reach the container switch room Bolt cables together and place in temporary conduits Cables should be able to feed through the wall where the existing generator cables run.	
While the pump cables are being connected at the container switch room install temporary probes in the wet well and connect.	
At the container switch room open, lock \& tag vsd 1 circuit breaker open, lock \& tag vsd 2 circuit breaker	
Energise circuit breaker feeding container switch room	
Carry out appropriate electrical tests at the container switch room	
QUU to test communications to confirm that they work and to disable communications on the site RTU.	

4.1.6 Commission Pump 4 on container switch room

Contractor Task	Outcome
At the container switch room unlock, remove tag and close VSD 1 circuit breaker	OK-
Carry out appropriate electrical tests	OK®-
Energise Pump 4 confirm that it is running in correct direction and empties the well	OKd
QUU to test appropriate signals are being received at the control room	OK日
Q-Pulse Id: TMS1407 Active: 30/09/2015	Page 1611 of 1633

At this stage pump 4 is running from the container switch room on generator power with communications working.
Pumps 2, 3 and 4 are still running on the existing switchboard
\qquad

4.1.7 Commission Pump 3 on container switch room

Contractor Task	Outcome
At existing switchboard shut down pump 3 open, lock \& tag pump 3 circuit breaker test for dead at pump 3 disconnect the cable and remove from the switchboard	
The cable feeding pump 3 is $120 \mathrm{~mm}^{2} 3 \mathrm{C}+\mathrm{E}$ therefore will be too large to fit through the core hole therefore feed the $35 \mathrm{~mm}^{2}$ hire cables through the core hole and connect to the Pump 3 cable	
At the container switch room unlock, remove tag and close VSD 2 circuit breaker	
Carry out appropriate electrical tests	
At this stage pumps 3 and 4 are running on the Container Switch room on Generator power with communications working. Pumps 1 and 2 are still running on the existing switchboard	

4.1.8 Shut down existing switchboard

Contractor Task	Outcome
Shut down Pumps 1 and 2	Soher
Shut down existing switchboard at the switch labelled Main Switch and at the Metering Isolator (this is also labelled Main Switch but sits above the Manual Transfer Switch)	

Test for dead at the Original Main Switch (there will still be power on the LINE side of the Metering Isolator	
Disconnect any batteries from existing equipment	
Disconnect mains at existing switchboard	
Disconnect field cabling and equipment that will no longer be used and dispose of.	
When all field cabling has been removed from the switchboard unbolt switchboard from the Metering Isolator Tier and move outside building. The Metering Isolator Tier will stay in place until Energex have isolated power to the transformer.	
Old Switchboard to be disposed of at United Scrap Metal Traders 913 Lytton Rd Murarrie 4172 Phone 38902637	

DAY 2

4.1.9 Transformer to be De-energised

Contractor Task	Outcome
Energex to be onsite Tuesday 8.002 June 2015 to isolate transformer.	OK
After Energex have isolated power to transformer remove the last tier from the building.	
The existing consumer mains are to be reused at this stage.	

4.1.10 Install new Switchboard

102 - Delivery pressure transmitter	OKD
103 - Flowmeter Field Marshalling Box	OK,
When all field cables connected carry out the appropriate tests and note results on attached testpage- Book.	

DAY 3

4.1.11 Transformer to be Energise

Contractor Task	Outcome
After the consumer mains have been reconnected and tested Energex can re-energise the transformer Energex Booker for Wednesday 3 June 2015	OK \square

4.1.12 ENERGISE NEW SWITCHBOARD

Contractor Task	
After power has been restored at the switchboard close the meter isolator	
Check 3 phase voltages and rotation	
At this point the new switchboard is running on mains power with the temporary container switch room is running pumps 3 and 4	
Complete testing of field cables noting results	

Andy Walmsley initial:

4.1.13 COMMISSION PUMP 1

Contractor Task	
Test for dead at existing field disconnect box for pump 1	
Disconnect pump 1 cabling from existing field disconnect box	
Redirect pump 1 cabling to new field disconnect box	
Connect pump 1 cabling at new field disconnect box	
On new switchboard close circuit breaker Q4	
Test pump 1 confirm that the probes work and that the pump will empty the wet well	
Commission pump 1	
Confirm with the QUU Commissioning Manager if the thermistors on the existing motor are operational. If they are confirm that the parameters are set to 1.Load and Motorl1.9 Motor Temperature.ID 190 Motor Thermal Protection	
Setup 1 to be set to Thermistor Trip Confirm the VSD shuts down when the thermistor wires are removed	

At this stage the new switchboard is running on mains power and pump 1 is commissioned

4.1.14 COMMISSION PUMP 2

Test for dead at existing field disconnect box for pump 2	Contractor Task
Disconnect pump 2 cabling from existing field disconnect box	
Redirect pump 2 cabling to new field disconnect box	
Connect pump 2 cabling at new field disconnect box	
On new switchboard close circuit breaker Q5	
Test pump 2 confirm that the probes work and that the pump will empty the wet well	
Commission pump 2	
Confirm with the QUU Commissioning Manager if the thermistors on the existing motor are operational. If they are confirm that the parameters are set to 1.Load and Motorl1.9 Motor Temperature ID 190 Motor Thermal Protection	
At this stage the new switchboard is running on mains power and pump 2 is commissioned Setup 1 to be set to Thermistor Trip Confirm the VSD shuts down when the thermistor wires are removed	

4.1.15 COMMISSION PUMP 3

Contractor Task	Outcome
Shut down Pump3 in the container switchboard	OK-1
Test for dead at existing field disconnect box for pump 3	DEAD
Disconnect pump 3 cabling from existing field disconnect box	OK上
Redirect pump 3 cabling to new field disconnect box	OK
Connect pump 3 cabling at new field disconnect box	OK, \varnothing
On new switchboard close circuit breaker Q6	OK■
Test pump 3 confirm that the probes work and that the pump will empty the wet well	
Commission pump 3	
Confirm with the QUU Commissioning Manager if the thermistors on the existing motor are operational. If they are confirm that the parameters are set to 1.Load and Motorl1.9 Motor Temperature ID 190 Motor Thermal Protection	
Setup 1 to be set to Thermistor Trip Confirm the VSD shuts down when the thermistor wires are removed	
At this stage the new switchboard is running on mains power and pump 3 is commissioned	
 John Clayton initial:	
Q-Pulse Id: TMS1407 Active: 30/09/2015	Page 1620 of 1633

4.1.16 COMMISSION PUMP 4

Contractor Task	
Shut down Pump 4 in the container switchboard	
Test for dead at existing field disconnect box for pump 4	
Disconnect pump 4 cabling from existing field disconnect box	
Redirect pump 4 cabling to new field disconnect box	
Connect pump 4 cabling at new field disconnect box	
On new switchboard close circuit breaker Q7	
Test pump 4 confirm that the probes work and that the pump will empty the wet well	
Test pump 4 confirm that the probes work and that the pump will empty the wet well	
Commission pump 4	
Confirm with the QUU Commissioning Manager if the thermistors on the existing motor are operational. If they are confirm that the parameters are set to 1.Load and Motorl1.9 Motor Temperature ID 190 Motor Thermal Protection	
Setup 1 to be set to Thermistor Trip Confirm the VSD shuts down when the thermistor wires are removed	

4.1.17 DECOMMISSION CONTAINER SWITCHROOM

Contractor Task	Outcome
Shut down the container switch room and generator	OKa
Test for dead at circuit breakers	OKa
Disconnect cabling suppling container switchboard	OKa
Arrange for generator and container switchboard to be removed from site	
Demobilise from site	

4.2 SUGGESTIONS FOR IMPROVEMENT

Suggestion	Recommended By

Electrical Contractor supervisor and QUU Commissioning manager to sign document to indicate that this site has been commissioned successfully.

Electrical Contactor's Supervisor

QUU Commissioning Manager

TEST SHEET
CUSTOMER NAME:..... CO
sWITCHBOARD ID:......SPO33 DATE: $2-6-15$ CUSTOMERS ADDRESS:..ADAM 3)-, LOYNuM11 Jов No.: $/ 3402225$

test equipment:. Megeler, Loop, Rco SERIAL NO:.... $571380,7011093,0043156$ test due date:...NoV 2015

NAME:........nnoy (uncuslay LIC No:. \square ASO23.

TEST SHEET

CUSTOMER NAME:........ Qu

C/B	$\begin{aligned} & \text { CABLE } \\ & \text { SIZE } \end{aligned}$	$\begin{gathered} \text { C/B } \\ \text { SIIE } \end{gathered}$	$\begin{gathered} \text { N } \\ \text { NO. } \end{gathered}$	CIRCUIT DESCRIPTION	VISUAL INSPECTION	$\begin{gathered} \text { CORRECT } \\ \text { CIRCUIT } \\ \text { CONNECTION } \end{gathered}$	$\begin{aligned} & \text { EARTH } \\ & \text { CONT. } \end{aligned}$	A-E	$\begin{aligned} & \mathrm{N}-\mathrm{E} \\ & \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & \text { A-E } \\ & \text { VOLTS } \end{aligned}$	$\begin{aligned} & \text { A-N } \\ & \text { volts } \end{aligned}$	$\begin{aligned} & \text { ø-ø } \\ & \text { VOLTS } \end{aligned}$	RCD TEST		Fault loopImpendance measurement
NO.								M Ω					mA	mS	
Q40	2.5	6		Rotorne NO	\checkmark	\checkmark	0.4	200 m	nla	240	nla	4×15			0.4
041	2.5	6		Rotork NO2	\checkmark	\checkmark	0.4	200 m	$N \mid A$	240	n\a	4.5			0.4
042	2.5	10		DRycrel Vent fand.	,	\checkmark	$0 \cdot 1.2$	200 M	NAS	24°	nla	45			0.34

				-											

test equipment:.... Méggen........................ SERIAL No:.... ST171380, 2011093,0043156 test due date:...nov. 2015

NAME: Anong Wrinsurg
LIC NO:Ason23
SIGNATURE:

5. Compliance Certificate

S.J Electric Group (Old) Pry Ltd

CERTIFICATE OF:

(Please mark relevant check-box)

X TESTING AND COMPLIANCE (Electrical Installations)
Issued in accordance with s227 of the Electrical Safety Regulation 2013

X TESTING AND SAFETY (Electrical Equipment)
 Issued in accordance with s26 of the Electrical Safety Regulation 2013

*Work performed for:
Customer: Queensland Urban Utilities
(Company Name)
Address: $\underset{\text { (Street) }}{\text { Level 2, }} 15$ Green Square Close
Fortitude Valley ald 4006
(Suburb/own)
(State)
(Postcode)
*Electrical installation / equipment tested (please include site address for electrical installation work if different from above):
Work carried out at SP033 Adam Street, Wynnum
Installation tested as per Drawings 486/5/7-0471-000 to 486/5/7-0473-042
*Date of test 5 / June / 2015 *Electrical contractor licence number: 73286
Name on contractor licence: SJ Electric Group (Gid) Ply Ltd
Electrical contractor phone number: 0732561522
For electrical installations, this certifies that the electrical installation, to the extent it is affected by the electrical work, has been tested to ensure that it is electrically safe and is in accordance with the requirements of the wiring rules and any other standard applying under the Electrical Safety Regulation 2013 to the electrical installation.

For electrical equipment, this certifies that the electrical equipment, to the extent it is affected by the electrical work, is electrically safe.

Name: Andy Walmsley
(Person who performed, or person who is responsible for the electrical work)
Signature:

Date:

16
$1 / 5$

*Indicates a mandatory field

6. Photos

Photos - Before

IMG_3301

IMG_3304

IMG_3307

IMG 3310
Q-Pulse la.-TMST407

IMG_3302

IMG_3305

IMG_3308

IMG 3311
Active: $30709 / 2015$

IMG_3306

IMG_3309

IMG 3312
Page1629 of 1633

IMG_3313

IMG_3316

IMG_3319

IMG_4397

IMG 4400
Q-Putse ld:-TMS 1407

IMG_3314

IMG_3317

IMG_3320

IMG_4398

IMG 4401 Active: 30/09/2015

IMG_3315

IMG_3318

IMG_4396

IMG_4399

IMG 4402 Pagel6 30 of 1633

Photos - After

IMG_5233

IMG_5236

[^0]: Corporate DNA The NHP Value Proposition

[^1]: Notes: ') Refer to NHP for HC chassis with new TemBreak 2800 A - 1250 A MCCBs. Bottom or top extended main bar are optional.
 For MCCB terminal cover selection use refer pages 4-13 and 4-14

[^2]: Notes: ${ }^{1}$) This cable is used to connect between a TL101 electronic controller interface panel (LTLP2 or LTLP2S) and a standard TemBreak 1 transfer switch. Refer page 5-33 for a features comparison table between TLP1, TLP2 \& TL101.
 ${ }^{2}$) Modbus communications: A 24 V DC power supply is needed.

[^3]: Notes: ${ }^{1}$) Alternate interconnecting cable lengths are available on application. Refer NHP catalogue numbers for the alternate lengths indicated above.

[^4]: Notes: ${ }^{1)}$ TemBreak 2 MCCB. This is an electrical equivalent, though check the application as the physical size of the TemBreak 2 equivalent will be different.

[^5]: Notes: ${ }^{1)}$ H excludes attached busbar.
 $\left.{ }^{2}\right)$ GF MCCBs require a 4th Neutral CT to be ordered for 3 and 4 pole MCCB applications. (If a neutral is present) Refer accessories. NRC: Nominal rated current. ASR: Adjustable setting range.

[^6]: Notes: ${ }^{1)} \mathrm{H}$ excludes attached busbar.
 NRC: Nominal rated current.
 ASR: Adjustable setting range.
 Magnetic only available on application.
 Specify for DC rating.

[^7]: Notes: 1) H excludes attached busbar.
 NRC: Nominal rated current.
 ASR: Adjustable setting range.

[^8]: Notes: ${ }^{1)}$ H excludes attached busbar.
 ${ }^{\text {2) }}$) GF MCCBs require a 4th Neutral CT to be ordered for 3 and 4 pole MCCB applications. (If a neutrel is present) Refer accessories.
 NRC: Nominal rated current.
 ASR: Adjustable setting range.
 Accessories, refer to page 6-35.

[^9]: Notes: ${ }^{1)}$ H excludes attached busbar.
 ${ }^{\text {2) }}$) GF MCCBs require a 4 th Neutral CT to be ordered for 3 and 4 pole MCCB applications. (If a neutrel is present) Refer accessories.
 NRC: Nominal rated current.
 ASR: Adjustable setting range.
 Accessories, refer to page 6-35.

[^10]: Notes: ${ }^{1}$) An AC UVT controller is required for $100-440$ V AC.
 ${ }^{2}$) A DC UVT controller is needed for 200-230 V DC operation. None required for $24-110 \mathrm{~V}$ DC.

[^11]: Notes: 1) Yellow and red handles available.
 ${ }^{2}$) 6 pieces required for $3 P / 8$ pieces required for $4 P$.
 ${ }^{3}$) Specify quantity required (up to 6 pieces).
 ${ }^{4}$) Individual barrier (not a set).
 $\left.{ }^{5}\right)$ Use interpole barriers for 1600 A MCCBs.

[^12]: Notes: TEMPro PREMIER pricing is POA. Please contact NHP estimating with

[^13]: Notes: ${ }^{1}$) Line voltage and phase voltage cannot be displayed at the same time.
 ${ }^{2}$) LTD-Long time delay trip, STD-Short time delay trip, INST-Instantaneous trip, GF-Unrestricted ground fault (not available for 'S' curve model OCR).

[^14]: Notes: --- Customer wiring
 $\left.{ }^{1}\right) 1 \mathrm{~PB}$ and wiring to be supplied by user. Tripping signal PB contact must be rated for 48 V DC/5 mA. Apply tripping signal for at least 80 ms .
 If a separate shunt trip facility is required (i.e. not using UVT trip terminals 24 and 30 as described above), a short time rated (STR) device can be provided.

[^15]: Notes: ${ }^{1)}$ Remote test on AC versions only. Refer page 9-68 for AS/NZS requirements when using earth leakage relays.

[^16]: Creation date August 5, 2013 3:10:33 AM CEST

[^17]: ANSI is a registered trademark of the American National Standards Institute. IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Incorporated. NEMA is a registered trademark of the National Electrical Manufacturers Association. UL is a registered trademark of Underwriters Laboratories, Inc.

 ## WARNING

 ERICO products shall be installed and used only as indicated in ERICO's product instruction sheets and training materials. Instruction sheets are available at www.erico.com and from your ERICO customer service representative. Improper installation, misuse, misapplication or other failure to completely follow ERICO's instructions and warnings may cause product malfunction, property damage, serious bodily injury and death.

 Copyright ©2008 ERICO International Corporation. All rights reserved.
 CADDY, CADWELD, CRITEC, ERICO, ERIFLEX, ERITECH, and LENTON are registered trademarks of ERICO International Corporation.

[^18]: ${ }^{1)}$ Connect screen to ground terminal. Connect ground terminal on the outside of the housing as prescribed. The two terminals are galvanically connected.
 2) Connect screen to ground terminal. Connect ground terminal on the outside of the housing as prescribed. The two terminals are galvanically connected.

[^19]: 7) Determined according to the limit point method according to IEC 60770, incl. non-linearity, hysteresis and non-repeatability.
[^20]: Example D7PD3CX11 $=24 \mathrm{~V}$ AC/DC Incandescent lamp block, lamp ordered separately ($24,110,240$ available with LED).
 ${ }^{2}$) Enter lamp colour $\mathbf{C}=$ clear (incandescent), $\mathbf{R}=$ Red LED, $\mathbf{G}=$ Green LED, $\mathbf{Y}=$ Yellow LED, $\mathbf{W}=$ White LED,
 B = Blue LED - Example D7PN3RX11 = 24 V AC/DC RED integrated LED lamp block.
 ${ }^{3}$) A full range of labelled press plates available separately refer to page 37 .

[^21]: Notes: ${ }^{1}$) Enter voltage $6 \mathrm{~V} \mathrm{AC} / \mathrm{DC}=1,12 \mathrm{~V} \mathrm{AC} / \mathrm{DC}=2,24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}=3,48 \mathrm{~V} \mathrm{AC} / \mathrm{DC}=\mathbf{4}, 120 \mathrm{~V} \mathrm{AC} / \mathrm{DC}=5,240 \mathrm{~V} \mathrm{AC} / \mathrm{DC}=7$ Example D7PD3CX11 $=24 \mathrm{~V}$ AC/DC Incandescent lamp block, lamp ordered separately ($24,110,240$ available with LED).
 ${ }^{2}$) Enter lamp colour $\mathbf{C}=$ clear (incandescent), $\mathbf{R}=$ Red LED, $\mathbf{G}=$ Green LED, $\mathbf{Y}=$ Yellow LED, $\mathbf{W}=$ White LED,
 B = Blue LED - Example D7PN3RX11 = 24 V AC/DC RED integrated LED lamp block.
 ${ }^{3}$) A full range of labelled press plates available separately refer to page 37 .

[^22]: Example D7PD3CX11 $=24 \mathrm{~V}$ AC/DC Incandescent lamp block, lamp ordered separately ($24,110,240$ available with LED).
 ${ }^{2}$) Enter lamp colour $\mathbf{C}=$ clear (incandescent), $\mathbf{R}=$ Red LED, $\mathbf{G}=$ Green LED, $\mathbf{Y}=$ Yellow LED, $\mathbf{W}=$ White LED,
 B = Blue LED - Example D7PN3RX11 = 24 V AC/DC RED integrated LED lamp block.
 ${ }^{3}$) A full range of labelled press plates available separately refer to page 37.

[^23]: Example D7PD3CX11 = 24 V AC/DC Incandescent lamp block, lamp ordered separately (24, 110, 240 available with LED) ${ }^{2}$) Enter lamp colour $\mathbf{C}=$ clear (incandescent), $\mathbf{R}=$ Red LED, $\mathbf{G}=$ Green LED, $\mathbf{Y}=$ Yellow LED, $\mathbf{W}=$ White LED, B = Blue LED - Example D7PN3RX11 $=24$ V AC/DC RED integrated LED lamp block.

[^24]:
 Example D7PD3CX11 $=24 \mathrm{~V}$ AC/DC Incandescent lamp block, lamp ordered separately ($24,110,240$ available with LED)
 ${ }^{2}$) Enter lamp colour $\mathbf{C}=$ clear (incandescent), $\mathbf{R}=$ Red LED, $\mathbf{G}=\mathrm{Green}$ LED, $\mathbf{Y}=$ Yellow LED, $\mathbf{W}=$ White LED, $\mathbf{B}=$ Blue LED, Example D7PN3RX11 $=24 \mathrm{~V}$ AC/DC RED integrated LED lamp block.
 Full list of labelled press plates refer to page 37 .
 $\left.{ }^{3}\right)$ Shown fitted with inserts.

[^25]: Example D7PD3CX11 = 24 V AC/DC Incandescent lamp block, lamp ordered separately (24, 110, 240 available with LED)
 ${ }^{2}$) Enter lamp colour $\mathbf{C}=$ clear (incandescent), $\mathbf{R}=$ Red LED, $\mathbf{G}=$ Green LED, $\mathbf{Y}=$ Yellow LED, $\mathbf{W}=$ White LED,
 $\mathbf{B}=$ Blue LED - Example D7PN3RX11 = 24 V AC/DC RED integrated LED lamp block
 Safety auto break contact available, refer to page 28.

[^26]: Example D7PD3CX11 $=24 \mathrm{~V}$ AC/DC Incandescent lamp block, lamp ordered separately (24, 110, 240 available with LED) ${ }^{2}$) Enter lamp colour $\mathbf{C}=$ clear (incandescent), $\mathbf{R}=$ Red LED, $\mathbf{G}=$ Green LED, $\mathbf{Y}=$ Yellow LED, $\mathbf{W}=$ White LED, $B=$ Blue LED - Example D7PN3RX11 $=24 V$ AC/DC RED integrated LED lamp block.

[^27]: Notes: ${ }^{2}$) Enter voltage $6 \mathrm{~V} \mathrm{AC} / D C=\mathbf{1}, 12 \mathrm{VAC} / \mathrm{DC}=\mathbf{2 , 2 4} \mathrm{VAC} / \mathrm{DC}=\mathbf{3}, 48 \mathrm{VAC} / \mathrm{DC}=\mathbf{4}, 120 \mathrm{VAC} / \mathrm{DC}=\mathbf{5}, 240 \mathrm{VAC} / \mathrm{DC}=\mathbf{7}$ Example D7PD3CX11 $=24 \mathrm{~V}$ AC/DC Incandescent lamp block, lamp ordered separately (24, 110, 240 available with LED) ${ }^{\text {s) }}$) Enter lamp colour $\mathbf{C}=$ clear (incandescent), $\mathbf{R}=$ Red LED, $\mathbf{G}=$ Green LED, $\mathbf{Y}=$ Yellow LED, $\mathbf{W}=$ White LED, B = Blue LED - Example D7PN3RX11 = 24V AC/DC RED integrated LED lamp block

[^28]: Notes: 1. Not all combinations are held in stock. Indent items are engraved to order allow 1-2 days.
 2. Supplied with white engraving (black with white lettering). Add insert colour code as follows eg: D7-AF3CE208 is green.
 3. Diffusers are supplied clear with black lettering.

[^29]: Note: ${ }^{1}$) Supplied blank refer to page 40-41 for available legends.
 ${ }^{2}$) Three snap-in legend plates are required for each D7-400 legend plate frame.

[^30]: Heavy Duty Pot Units.
 Developed by Kraus \& Naimer for use in industrial applications.
 The 270° single turn pot drive features a HEAVY DUTY drive, large operator handle and sealing to IP65. With easy mount 22 mm single hole mounting the drive has smooth stepless operation and comes complete with a header label. Options include keys and additional contacts

[^31]: * For applications where the DSM's contributions to scan time will affect machine operation you may need to use the Do I/O function block, and the Suspend I/O and Fast Backplane Status Access service requests to transfer necessary data to and from the Motion module without getting all the data every scan. Refer to the Motion Mate DSM302 for Series 90-30 PLCs User's Manual, GFK1464 for details. NOTE: The DSM314 is not supported by the 311 through 341 CPUs.

[^32]: - Valid reference or place where power may flow through the function.

[^33]: - Valid reference or place where power may flow through the function.
 o Not valid for DINT_TO_REAL.

[^34]: - Valid reference or place where power may flow through the function.

[^35]: - Valid reference or place where power may flow through the function.
 o Valid for REAL_TRUN_INT only.

[^36]: Notes: 1. Time (in microseconds) is based on Release 5.01 of Logicmaster 90-30/20 software for Models 311, 313, 340, and 341 CPUs (Release 7 for the 331).
 2. For table functions, increment is in units of length specified.; for bit operation functions, microseconds/bit.; for data move functions, microseconds/number of bits or words.
 3. Enabled time for single length units of type $\%$ R, $\% A I$, and $\% A Q$
 4. COMMREQ time has been measured between CPU and HSC.
 5. DOIO is the time to output values to discrete output module.
 6. Where there is more than one possible case, the time indicated above represents the worst possible case.
 7. For instructions that have an increment value, multiply the increment by (Length -1) and add that value to the base time.

[^37]: Illustration 1.3 Frame Size D13 Filter Enclosure

[^38]: Illustration 1.9 Frame Size F18 Inverter Cabinet

[^39]: Illustration 3.10 Cable Entry Diagram, E9

[^40]: Illustration 3.11 Cable Entry Diagram, F18

[^41]: Illustration 4.6 Control Card Wiring Path for Frame Size D13

[^42]: Illustration 4.13 Terminal Diagram

[^43]: 1) Voltage and power dependent
[^44]: Table 8.10 SMPS Fuse

[^45]: ${ }^{1}$ The Select Before Operate command causes the meter to start a timer. The following Operate command must be sent before the specified timeout value expires.
 ${ }^{2}$ The meter requests time synchronization by bit 4 in the first octet of the internal indication word being set to 1 when the time interval specified by the Time Sync Period elapses. The master should synchronize the time in the meter by sending the Time and Date object to clear this bit. The meter does not send time synchronization requests if the Time Sync Period is set to 0 .

[^46]: ${ }^{1}$ @ 80% to 120% of voltage FS, 1% to 200% of current FS and frequency $50 / 60 \mathrm{~Hz}$

