Fairfield Water Treatment Plant

Operation \& Maintenance Manual 0200 Pre Treatment

0200 Pre Treatment
Operation Manual

Volume 3 of 5

4. Manufacturers Technical Data Electrical - Main Switchboard

Halmac Services (Qld) Pły Lłd
ACN 098852923 ABN 40741712113 ECL 53064
30 Palmer Place Murarrie, Qld 4172
Telephone (07) 32499500 Fax (07) 32499599
A QUALITY COMPANY TO AS/IS09001

FAIRFIELD WATER RECLAMATION PLANT MAIN SWITCHBOARD

OPERATION \& MAINTENANCE MANUAL

JOB No A4215

HALMAC SERVICES IS A QUALITY COMPANY SERVING QUEENSLAND SINCE 1960

FAIRFIELD WATER RECLAMATION PLANT
AIR CIRCUIT BREAKERS

1. MASTERPACT NT \& NW CATALOGUE
2. MASTERPACT NW08-63 USER MANUAL
3. MICROLOGIC CONTROL UNITS USER MANUAL
4. MASTERPACT NW INSTALLATION MANUAL
5. SOURCE CHANGEOVER SYSTEM

Source
 changeover systems
 Compact, Interpact and Masterpact

Catalogue 2008

Interlocking of two Interpact switch-disconnectors via rotary handles.

Complete source-changeover assembly with two Interpact switch-disconnectors.

Interlocking of two Compact NS circuit breakers on a base plate.

Interlocking of two Masterpact NT and NW circuit breakers using cables.

To ensure a continuous supply of electrical power, certain installations are connected to two sources: - a normal source N

- a replacement source R used to supply the installation when the normal source is unavailable.

A source-changeover system switches the load between these two sources. It can be automated to manage transfers according to external conditions. A source-changeover system includes two or three circuit breakers or switch-disconnectors.

With Interpact INS, Compact NS and Masterpact NT and NW, new installation solutions are available to optimise the size of the switchboard and simplify installation.

Presentation

Functions
and characteristics A-1

Dimensions

Electrical diagrams

Catalogue numbers and order forms

For maximum continuity of service ...

Commercial and service sector:

- operating rooms in hospitals

■ safety systems for tall buildings
■ computer rooms (banks, insurance companies, etc.)

- lighting systems in shopping centres...

Industry:

- assembly lines
- engine rooms on ships
- critical auxiliaries in thermal power stations...

Infrastructures:
■ port and railway installations

- runway lighting systems
- control systems on military sites...

Manual source-changeover system
This is the most simple type. It is controlled manually by an operator and consequently the time required to switch from the normal to the replacement source can vary.
A manual source-changeover system is made up of two or three mechanically interlocked manually-operated circuit breakers or switch-disconnectors.

Remote-operated source-changeover system

This is the most commonly employed system for devices with high ratings (above 400 A). No human intervention is required. Transfer from the normal to the replacement source is controlled electrically.
A remote-controlled source-changeover system is made up of two or three circuit breakers or switch-disconnectors linked by an electrical interlocking system that may have different configurations. In addition, a mechanical interlocking system protects against electrical malfunctions or incorrect manual operations.

Automatic source-changeover systems

An automatic controller may be added to a remote-operated source-changeover system for automatic source control according to programmable operating modes. This solution ensures optimum energy management:
■ transfer to a replacement source according to external requirements

- management of power sources
- regulation

■ emergency source replacement, etc.
The automatic controller may be fitted with an option for communication with a supervisor.

Interlocking of two Interpact switch-disconnectors via rotary handles.

Complete source-changeover assembly with two Interpact switch-disconnectors.

Interlocking of two Compact NS circuit breakers on a base plate.

Interlocking of two Masterpact NT and NW circuit breakers using cables.

Interlocking of two Masterpact NT or NW circuit breakers using connecting rods.

Interlocking of three Masterpact NW circuit breakers using cables.

Other source-changeover systems: Telemecanique products

See LC2-D series.

[^0]

2 normal sources
1 replacement source

Generator or permanent source

QN	QR
0	0
1	0
0	1

[^1]
schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

The technical guide

These technical guides help you comply with installation standards and rules i.e.: the electrical installation guide, the protection guide, the switchboard implementation guide, the technical booklets and the co-ordination tables all form genuine reference tools for the design of high performance electrical installations. For example, the LV protection co-ordination guide - discrimination and cascading - optimises choice of protection and connection devices while also increasing markedly continuity of supply in the installations.

Presentation 2
Overview of solutions A-2
Manual source-changeover systems Interpact INS and Compact NS 40 A to 630 A A-2
Manual source-changeover systems Compact NS and Masterpact NT/NW 630 A to 6300 A A-3
Remote-operated source-changeover systems
Compact NS100/1600 100 A to 1600 A
Remote-operated source-changeover systems Masterpact NT/NW 630 A to 6300 A A-5
Manual source-changeover systems A-6
Possible combinations A-6
Remote-operated source-changeover systems A-10
Mechanical interlocking A-10
General characteristics A-12
Mechanical and electrical durability A-14
Connection and insulation accessories for Compact NS and INS $\leqslant 630$ A A-15
Electrical interlocking A-16
Standard configurations A-17
Associated controllers A-18
Controller selection A-18
Controller installation A-19
BA controller A-20
BA controller operating sequences A-21
UA controller A-22
UA controller operating sequences A-23
Operating sequences A-26
COM communications option A-28
Dimensions B-1
Electrical diagrams C-1
Catalogue numbers and order forms D-1

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual

Functions and characteristics

Overview of solutions
Manual source-changeover systems Interpact INS and Compact NS 40 A to 630 A

Eame	memme	\%emome	mom
momme	mamm		
$-\square \quad-\square-\square$			15
10	18		压最
		$10 x y$	NE
$\square \square$			
$\square-\square$		10	

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual

Functions and characteristics

Overview of solutions
Manual source-changeover systems Compact NS and Masterpact NT/NW 630 A to 6300 A
(1) Implemented with NS630b to NS1600 electrically-operated devices only.
(2) For source-changeover systems using cables, always respect the installation conditions specified on page A-13.

Functions and characteristics

Overview of solutions
Remote-operated source-changeover systems Compact NS 100/1600 100 A to 1600 A

Range	Compact	
Models	NS100 to NS630	NS630b to NS1600
Rating (A)	100 to 630	630 to 1600
Type of device	N/H/L circuit breakers NA switch-disconnectors	N/H/L circuit breakers NA switch-disconnectors
Remote-operated source-changeover system		
Mechanical interlocking on base plate + electrical interlocking		

 with an electrical interlocking system

(2) For source-changeover systems using cables, always respect the installation conditions specified on page A-13.

Overview of solutions

Remote-operated source-changeover systems Masterpact NT/NW 630 A to 6300 A

Range	Masterpact	
Models	NT06 to NT16	NW08 to NW63
Rating (A)	630 to 1600	800 to 6300
Type of device	H1/L1 circuit breakers HA switch-disconnectors	N1/H1/H2/H3/L1 circuit breakers NA/HA/HF switch-disconnectors

Remote-operated source-changeover system
Mechanical interlocking using connecting rods + electrical interlocking

2 electrically-operated devices side-by-side combined with an electrical interlocking system

Mechanical interlocking using cables + electrical interlocking

2 or 3 electrically-operated devices one above the other combined with an electrical interlocking system ${ }^{(1)}$

2 or 3 electrically-operated devices side-by-side combined with an electrical interlocking system ${ }^{(1)}$

Automatic source-changeover systems

(1) Three devices with Masterpact NW only.
(2) For source-changeover systems using cables, always respect the installation conditions specified on page A-13.

For other cases, please consult us.

Functions and characteristics

Manual source-changeover systems

Possible combinations

A manual source-changeover system can be installed on two or three manually-operated and mechanically interlocked circuit breakers or switch-disconnectors. Interlocks prevent connection to both sources at the same time, even momentarily.

All possibilities for manual source-changeover systems

Type of device	Type of interlocking for two devices			
	Complete assembly	Keylock	Direct rotary handle	Extended rotary handle
Interpact switch-disconnectors				
INS40 to INS160				■
INS250-100 to INS630	-	-	- \triangle	-
INV100 to 630		-	- \triangle	- \triangle -
INS/INV630b to 2500		-		
Legend: - Possible but visible bre A 250 A and 630 A rating	unction disab be mixed by	ing INS320	tary handle int	rlocking system.

Legend:

- Fixed devices only.

■ Fixed or withdrawable devices.

- Devices must be either both fixed or both withdrawable.
- With NS400/630 rotary handle interlocking system.
- Possible with NS400/630 base plate + NS100-250 adaptation kit.
- Devices equipped with rotary handles.

Functions and characteristics

Manual source-changeover systems
 Possible combinations

Possible combinations of "Normal" and "Replacement" source circuit breakers

Interlocking of two or three toggle-controlled devices
Two devices can be interlocked using this system. Two identical interlocking systems can be used to interlock three devices installed side by side, in which case one device is in the ON position and the two others are in the OFF position. Devices must all have the same configuration, i.e. fixed, plug-in, withdrawable or drawout. The system is locked using one or two padlocks (shackle diameter 5 to 8 mm). Two interlocking system models are available for:

- Compact NS100 to 250
- Compact NS400 to 630.

Manual source-changeover systems

Possible combinations

Combination of "Normal" and "Replacement" devices

All Interpact, Compact and Masterpact circuit breakers and switch-disconnectors
from 100 to 6300 A with rotary handles or motor mechanisms can be interlocked.

Interlocking of a number of devices using keylocks (captive keys)

Interlocking is based on two identical keylocks with a single key and a keylock adapter (different for each device). This solution enables interlocking between two devices that are physically distant or that have very different characteristics, for example between a low and a medium-voltage device, or between Compact NS circuit breakers and switch-disconnectors.
A system of wall-mounted captive key boxes makes possible a large number of combinations between many devices.

Keylock-type interlocking of two circuit breakers with rotary handles or motor mechanisms.

Possible combinations of "Normal" and "Replacement" source circuit breakers

Interlocking of two Compact NS circuit breakers with rotary handles.

Interlocking of two devices with rotary handles

The direct or extended rotary handles are padlocked with the devices in the OFF position. The mechanism prevents simultaneous closing of the devices, but allows them to be opened.

"Normal N"	"Replacement" R				
Compact NS100/630 ${ }^{(1)}$	NS100	NS160	NS250	NS400	NS630
NS100					
Ratings 16... 100 A	-	■	-	\square	\square
NS160					
Ratings 80...160 A	-	-	-	-	\square
NS250					
Ratings 125...250 A	-	■	-	-	\square
NS400					
Ratings 160... 400 A	\square	ㅁ	ㅁ	-	-
NS630					
Ratings 630 A	\square	口	-	-	-

- 250 A and 630 A ratings can be mixed by using NS400/630 rotary handle interlocking system.

(1) When mixing NS100/250 and NS400/630 circuit breakers, use the NS400/630 interlocking system.

Functions and characteristics

Manual source-changeover systems

Possible combinations

Possible combinations of "Normal" and "Replacement" source switch-disconnectors

Interlocking of two Interpact switch-disconnectors with direct rotary handles.

Interlocking of two devices with rotary handles
The direct or extended rotary handles are padlocked with the devices in the OFF position. The mechanism prevents simultaneous closing of the devices, but allows them to be opened.

"Normal N"	"Replacement" R					
Interpact INS ${ }^{(1)}$	INS40	INS63	INS80	INS100	INS125	INS160
INS40						
Ratings 40 A	-	-	-	-	-	■
INS63						
Ratings 63A	-	-	\square	-	-	■
INS80						
Ratings 80 A	-	-	\square	-	-	■
INS100						
Ratings 100 A	-	-	\square	-	-	■
INS125						
Ratings 125A	-	-	-	-	-	-
INS160						
Ratings 160 A	-	-	-	-	-	-

(1) With extended rotary handles only.
(2) Possible with INV, but visible-break function is significantly impaired.

"Normal N"	"Replacement" R							
Interpact INS /INV ${ }^{(2)}$	$\begin{aligned} & \text { INS250-100/ } \\ & \text { INV100 } \end{aligned}$	$\begin{aligned} & \text { INS250-160/ } \\ & \text { INV160 } \end{aligned}$	$\begin{aligned} & \text { INS250-200/ } \\ & \text { INV200 } \end{aligned}$	$\begin{array}{\|l} \mid \text { INS250-250/ } \\ \text { INV250 } \end{array}$	$\begin{aligned} & \text { INS3201 } \\ & \text { INV320 } \end{aligned}$	$\begin{aligned} & \text { INS4001 } \\ & \text { INV400 } \end{aligned}$	INS500/ INV500	$\begin{array}{\|l\|l\|} \hline \text { INS630/ } \\ \text { INV630 } \end{array}$
INS250-100/INV100								
Ratings 100 A	■	■	■	■	\square	\square	ㅁ	
INS250-160/INV160								
Ratings 160 A	-	-	-	-				
INS250-200/INV200								
Ratings 200 A	■	■	■	■				
INS250-250/INV250								
Ratings 250 A	-	-	-	-	ㅁ			ㅁ
INS320/INV320								
Ratings 320 A	ㅁ			-	-	■	-	-
INS400/INV400								
Ratings 400 A					-	-	-	-
INS500/INV500								
Ratings 500 A					-	-	-	-
INS630/INV630								
Ratings 630 A	\square			-	■	-	-	-
- 250 A and 630 A ratings	by using INS3	0/630 rotary ha	ndle interlocki	g system.				

Interlocking of two manually-operated Compact NS devices on a base plate.

Interlocking of two devices on a base plate
A base plate is available for mechanical interlocking of two manually-operated Compact circuit breakers or switch-disconnectors.

"Normal N"	"Replacement" R				
	NS100	NS160	NS250	NS400	NS630
NS100					
Ratings 16... 100 A	■	-	-	-	-
NS160					
Ratings 80... 160A	■	-	-	-	-
NS250					
Ratings 125... 250 A	-	-	-	-	-
NS400					
Ratings 150... 400 A	-	-	-	-	-
NS630					
Ratings 630 A	■	-	-	-	-

Interlocking of a number of devices using keylocks (captive keys)

Interlocking uses two identical keylocks with a single key. This solution enables interlocking between two devices that are physically distant or that have significantly different characteristics.

Remote-operated source-changeover systems Mechanical interlocking

Electrical interlocking of two or three devices is used to create a remote-operated source-changeover system. A basic mechanical interlocking system enhances the reliability of system operation.

Interlocking of two electrically-operated Compact NS circuit breakers using a base plate.

Interlocking of two Masterpact NT or NW circuit breakers using connecting rods.

Interlocking of two Compact NS100 to 630 devices using a base plate

A base plate designed for two Compact circuit breakers can be installed horizontally or vertically on a mounting rail. Interlocking is carried out on the base plate by a mechanism located behind the breakers. Access to the circuit breaker controls and trip units is conserved. Circuit breakers must be fixed or plug-in versions, with or without earth-leakage protection or measurement modules. The base plate and the circuit breakers are supplied separately.
■ base plate for Compact NS100 to 250 devices
This base plate is intended for two Compact NS100 to 250 devices.
■ base plate for Compact NS400 to 630 devices
This base plate is intended for two Compact NS400 to 630 devices. It may also be used, without any modifications, to interlock a fixed Compact NS100 to 250 with a Compact NS400 or 630 device.
An adapter kit is required for plug-in versions of the Compact NS100 to 250 devices. Compact NS100 to 250 devices, in both fixed and plug-in versions, may be equipped with spreaders.

Possible combinations of "Normal" and "Replacement" Compact source circuit breakers

Interlocking of two Compact NS630b to 1600 or two Masterpact NT and NW devices using connecting rods
The two devices must be mounted one above the other (either 2 fixed or 2 withdrawable/drawout devices).
Combinations are possible between Compact NS630b to NS1600 devices and between Masterpact NT and Masterpact NW devices.

Installation

This function requires:
■ an adaptation fixture on the right side of each circuit breaker or switchdisconnector
■ a set of connecting rods with no-slip adjustments.
The adaptation fixtures, connecting rods and circuit breakers or switchdisconnectors are supplied separately, ready for assembly by the customer. The maximum vertical distance between the fixing planes is 900 mm .

Remote-operated source-changeover systems Mechanical interlocking

Interlocking of two Masterpact circuit breakers using cables.

Interlocking of two Compact NS630b to 1600 or two Masterpact NT/NW or up to three Masterpact NW devices using cables

For cable interlocking, the circuit breakers may be mounted one above the other or side-by-side.
The interlocked devices may be fixed or drawout, three-pole or four-pole, and have different ratings and sizes.
Interlocking between two devices (Compact NS630b to $\mathbf{1 6 0 0}$ or Masterpact NT and NW)
This function requires:

- an adaptation fixture on the right side of each device
- a set of cables with no-slip adjustments.

The maximum distance between the fixing planes (vertical or horizontal) is 2000 mm . Interlocking between three devices (Masterpact NW only)
This function requires:

- a specific adaptation fixture for each type of interlocking, installed on the right side of each device
- two or three sets of cables with no-slip adjustments.

The maximum distance between the fixing planes (vertical or horizontal) is 1000 mm .
Installation
The adaptation fixtures, sets of cables and circuit breakers or switch-disconnectors are supplied separately, ready for assembly by the customer.

Installation conditions for cable interlocking systems:
■ cable length: 2.5 m

- radius of curvature: 100 mm
- maximum number of curves: 3 .

Possible combinations of "Normal" and "Replacement" source circuit breakers

It is not possible to combine Compact NS630b to 1600 and Masterpact NT (or Masterpact NW) devices.
All combinations of two Masterpact NT and Masterpact NW devices are possible, whatever the rating or size of the devices.

Possible combinations of three device

Only Masterpact NW may be used for three-device combinations.
Types of mechanical interlocking and combinations
See page A-4 to page A-9.

Remote-operated source-changeover systems

 General characteristics

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual

Functions and characteristics

Remote-operated source-changeover systems General characteristics

Functions
and characteristics

Remote-operated source-changeover systems
Mechanical and electrical durability

Interpact INS switch-disconnectors

			INS250-100		INS250-160		INS250-200		INS250	
Number of poles			3, 4		3, 4		3, 4		3, 4	
Conventional thermal current (A)	Ith	At $60^{\circ} \mathrm{C}$	100		160		200		250	
Rated operational current (A)	le	Electrical AC, $50 / 60 \mathrm{~Hz}$	AC22A	AC23A	AC22A	AC23A	AC22A	AC23A	AC22A	AC23A
		$440-480 \mathrm{~V}$	100	100	160	160	200	200	250	250
		$660-690 \mathrm{~V}$	100	100	160	160	200	200	250	250
Durability (category A) ($\mathrm{O}_{\mathrm{N}}-\mathrm{C}_{\mathrm{R}}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{N}}$ cycles)			15000		15000		15000		15000	
	Electrical AC, $50 / 60 \mathrm{~Hz}$		AC22A	AC23A	AC22A	AC23A	AC22A	AC23A	AC22A	AC23A
	$440-480 \mathrm{~V}$		1500	1500	1500	1500	1500	1500	1500	1500
	660-690 V		1500	1500	1500	1500	1500	1500	1500	1500
			INS320		INS400		INS500		INS630	
Number of poles			3,4		3, 4		3, 4		3, 4	
Conventional thermal current (A)	Ith	at $60^{\circ} \mathrm{C}$	320		400		500		630	
Rated operational current (A)	le	Electrical AC, $50 / 60 \mathrm{~Hz}$	AC22A	AC23A	AC22A	AC23A	AC22A	AC23A	AC22A	AC23A
		440-480 V	320	320	400	400	500	500	630	630
		$660-690 \mathrm{~V}$	320	320	400	400	500	500	630	630
Durability (category A) ($\mathrm{O}_{\mathrm{N}}-\mathrm{C}_{\mathrm{R}}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{N}}$ cycles)		Mechanical	10000		10000		10000		10000	
		Electrical AC, $50 / 60 \mathrm{~Hz}$	AC22A	AC23A	AC22A	AC23A	AC22A	AC23A	AC22A	AC23A
		440-480 V	1500	1500	1500	1500	1500	1500	1500	1500
		$660-690 \mathrm{~V}$	1500	1500		1500	1500	1500	1500	1500

Compact NS100-NS1600

	NS1.00-250	NS400-630	NS630bNS1600
Number of poles	3,4	3,4	3,4
Rated current In (A)	100 to 250	400 to 630	630 to 1600
Mechanical durability ($\mathrm{O}_{\mathrm{N}}-\mathrm{C}_{\mathrm{R}}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{N}}$ cycles)	10000	8000	8000
Electrical durability at In ($\mathrm{O}_{\mathrm{N}}-\mathrm{C}_{\mathrm{R}}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{N}}$ cycles) for $\leqslant 440 \mathrm{~V}$ and 480 V NEMA ${ }^{(2)}$	10000	3000	2000
Electrical durability at In ($\mathrm{O}_{N}-\mathrm{C}_{\mathrm{R}}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{N}}$ cycles) for $U=500 \mathrm{~V}$ to 690 V (2)	1500	1500	1500

Masterpact NT06-NT16/NW08-NW63 ${ }^{(1)}$
$\left.\left.\begin{array}{l|l|l|l|l|l|l} & \begin{array}{l}\text { NT06- }\end{array} & \begin{array}{l}\text { NT12- }\end{array} & \begin{array}{l}\text { NW08- } \\ \text { NT10 }\end{array} & \text { NW20 } \\ \text { NT16 }\end{array}\right) ~ \begin{array}{l}\text { NW25- } \\ \text { NW16 }\end{array}\right)$
(1) Mechanical and electrical durability not applicable to Masterpact $H 3$ and L versions.
(2) Electrical durability tests carried out with a power factor of 0.8 as per IEC 947-2.

Note:
On: opening of Normal source
Cr: closing of Replacement source
Or: opening of Replacement source
Cn: closing of Normal source

Remote-operated
 Connection and insulation accessories for Compact NS and INS $\leqslant 630$ A

Downstream coupling accessory

This accessory simplifies connection to bars and cables with lugs.
It may be used to couple two circuit breakers (Compact NS100 to 630) or switch-
disconnectors (Interpact INS/INV100 to 630) of the same size.
Pitch between outgoing terminals:
■ Interpact INS250 and INV100 to 250: 35 mm

- Interpact INS/INV320 to 630: 52.5 mm
- Compact NS100 to 250: 35 mm

■ Compact NS400 to 630: 52.5 mm .
For Compact NS circuit-breakers, the downstream coupling accessory can be used only with fixed versions.

Connection and insulation accessories

The coupling accessory can be fitted with the same connection and insulation accessories as the circuit breakers and switch-disconnectors.

Possible uses	Downstream coupling	
	Possible	Outgoing pitch (mm)
Manual source-changeover systems		
INS250 (100 to 250 A) with rotary handle	\square	35
NS100/250 with rotary handle	\square	35
NS100/250 on base plate with toggle control	\square	35
INS400/630 (320 to 630 A) with rotary handle	\square	52.5
NS400/630 with rotary handle	\square	52.5
NS400/630 on base plate with toggle control	■	52.5
Complete source-changeover assembly		
INS250 (100 to 250 A)	\square	35
INS400/630 (320 to 630 A)	\square	52.5
Remote-operated source-changeover systems		
NS100/250	\square	35
NS400/630	\square	52.5

Remote-operated
source-changeover systems Electrical interlocking

Electrical interlocking is used with the mechanical interlocking system. It electrically interlocks the two circuit breakers and implements the time delays required for proper operation of the system. An automatic controller may be added to take into account information from the distribution system.

Electrical interlocking is carried out by an electrical control device.
For Compact NS up to 630 A, electrical interlocking is implemented by the IVE unit integrating control circuits and an external terminal block. The integrated control circuits implement the time delays required for correct source transfer.
For Compact NS630b to 1600 and Masterpact, this function can be implemented in one of two ways:
■ using the IVE unit

- by an electrician based on the diagrams presented in the "Electrical diagrams" part of this catalogue.

Characteristics of the IVE unit

■ external connection terminal block:

- inputs: circuit breaker control signals
\square outputs: status of the SDE contacts on the "Normal" and "Replacement" source circuit breakers
■ 2 connectors for the two "Normal" and "Replacement" source circuit breakers:
\square inputs:
- status of the OF contacts on each circuit breaker (ON or OFF)
- status of the SDE contacts on the "Normal" and "Replacement" source circuit breakers
\square outputs: power supply for operating mechanisms
■ control voltage:
- 24 to 250 V DC
$\square 48$ to $415 \mathrm{~V} 50 / 60 \mathrm{~Hz}-440 \mathrm{~V} 60 \mathrm{~Hz}$.
The IVE unit control voltage must be same as that of the circuit breaker operating mechanisms.

IVE unit.

Necessary equipment

For Compact NS100 to 630, each circuit breaker must be equipped with:

- a motor mechanism
- an OF contact
- an SDE contact.

The components are supplied ready for assembly and the circuit breakers prewired. The prewiring must not be modified.
For Compact NS630b to 1600, each circuit breaker must be equipped with:

- a motor mechanism

■ an available OF contact
■ a CE connected-position contact (carriage switch) on withdrawable circuit breakers
■ an SDE contact.
For Masterpact NT and NW, each circuit breaker must be equipped with:

- a remote-operation system made up of:
\square MCH gear motor
$\square \mathrm{MX}$ or MN opening release
\square XF closing release
\square PF "ready to close" contact
- an available OF contact

■ one to three CE connected-position contacts (carriage switches) on drawout circuit breakers (depending on the installation).

Remote-operated source-changeover systems

 Standard configurations

[^2]Functions and characteristics

Associated controllers

Controller selection

By combining a remote-operated source-changeover system with an integrated BA
or UA automatic controller, it is possible to automatically control source transfer according to userselected sequences.
These controllers can be used on source-changeover systems comprising 2 circuit breakers. For source-changeover systems comprising 3 circuit breakers, the automatic control diagram must be prepared by the installer as a complement to to diagrams provided in the "electrical diagrams" section of this catalogue.

BA controller.

Controller	BA	UA
Compatible circuit breakers	All Compact NS and Masterpact circuit breakers	
4-position switch		
Automatic operation	\square	\square
Forced operation on "Normal" source	\square	\square
Forced operation on "Replacement" source	\square	-
Stop (both "Normal" and "Replacement" sources off)	\square	■
Automatic operation		
Monitoring of the "Normal" source and automatic transfer	\square	\square
Generator set startup control		-
Delayed shutdown (adjustable) of generator set		■
Load shedding and reconnection of non-priority circuits		\square
Transfer to the "Replacement" source if one of the phases of the "Normal" phase is absent		-
Test		
By opening the P25M circuit breaker supplying the controller	\square	
By pressing the test button on the front of the controller		■
Indications		
Circuit breaker status indication on the front of the controller: on, off, fault trip	■	■
Automatic mode indicating contact	■	■
Other functions		
Selection of type of "Normal" source (single-phase or three-phase) ${ }^{(1)}$		■
Voluntary transfer to "Replacement" source (e.g. energy management commands)	■	■
During peak-tariff periods (energy management commands) forced operation on "Normal" sourceif "Replacement" source not operational		■
Additional contact (not part of controller). Transfer to "Replacement" source only if contact is closed. (e.g. used to test the frequency of UR).	■	■

Setting of maximum startup time for the replacement source

Options

Communication option

Power supply	110 V
Control voltages ${ }^{(2)}$	220 to $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
	380 to $415 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
and 440 V 60 Hz	

Front	IP40	\square	\square
Side	IP30	\square	■
Connectors	IP20	-	\square
Front	IK07	\square	■

Rated thermal current (A)	10 mA at 12 V						
Output contacts:							
Position of the Auto/Stop switch				\square		\square	
Load shedding and reconnection order				■			
Generator set start order.				\square			
		AC				DC	
Utilisation category (IEC 947-5-1)		AC12	AC13	AC14	AC15	DC12	DC13
Operational current (A)	24 V	8	7	5	5	8	2
	48 V	8	7	5	5	2	-
	110 V	8	6	4	4	0.6	-
	220/240 V	8	6	4	3	-	-
	250 V	-	-	-	-	0.4	-
	380/415 V	5	-	-	-	-	-
	440 V	4	-	-	-	-	-
	660/690 V	-	-	-	-	-	-

(1) For example, 220 V single-phase or 220 V three-phase.
(2) The controller is powered by the ACP auxiliaries control plate. The same voltage must be used for the ACP plate, the IVE unit and the circuit-breaker operating mechanisms. If this voltage is the same as the source voltage, then the "Normal" and "Replacement" sources can be used directly for the power supply. If not, an isolation transformer must be used.

Associated controllers Controller installation

ACP auxiliaries control plate

The auxiliaries control plate provides in a single unit:

- protection for the BA or UA controller with two highly limiting P25M circuit breakers (infinite breaking capacity) for power drawn from the AC source
- control of circuit-breaker ON and OFF functions via two relay contactors
- connection of the circuit breakers to the BA or UA controller via a built-in terminal block.
Control voltages
- $110 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
- 220 to 240 V 50/60 Hz

■ 380 to $415 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ and 440 V 60 Hz .
The same voltage must be used for the ACP plate, the controller and the circuitbreaker operating mechanisms.
Installation
Connection between the ACP auxiliaries control plate and the IVE electrical-
interlocking unit may use:

- wiring done by the installer
- prefabricated wiring (optional).

Installation of the BA and UA controllers

The BA and UA controllers may be installed in one of two manners:
■ directly mounted on the ACP auxiliaries control plate

- mounted on the front panel of the switchboard.

The length of the connection between the ACP plate and the controller must not exceed two metres. Wiring is done by the installer.

Mounting on the ACP plate.

Associated controllers
BA controller

The BA controller is used to create simple sourcechangeover systems that switch from one source to another depending on the presence of voltage UN on the "Normal" source.
It is generally used to manage two permanent sources and can control Compact NS and Masterpact NT/NW circuit breakers and switch-disconnectors.

Operating modes

A four-position switch may be used to select:

- automatic operation

■ forced operation on the "Normal" source
■ forced operation on the "Replacement" source

- stop (both "Normal" and "Replacement" sources off).

Setting the time delays

Time delays are set on the front of the controller.
t1. delay between detection that the "Normal" source has failed and the transmission of the order to open the "Normal" source circuit breaker (adjustable from 0.1 to 30 seconds).
t2. delay between detection that the "Normal" source has returned and the transmission of the order to open the "Replacement" source circuit breaker (adjustable from 0.1 to 240 seconds).

Circuit breaker commands and status indications

The status of the circuit breakers is indicated on the front of the controller.

- ON, OFF, fault.

A built-in terminal block may be used to connect the following input/output signals:

- inputs:
\square voluntary order to transfer to source R (e.g. for special tariffs, etc.)
\square additional control contact (not part of the controller). Transfer to the "Replacement" source takes place only if the contact is closed (e.g. used to test the frequency of UR, etc.)
■ outputs:
indication of operation in automatic or stop mode via changeover contacts.

Test

It is possible to test the operation of the BA controller by turning OFF (opening) the P25M circuit breaker for the "Normal" source and thus simulating a failure of voltage UN.

Front of the BA controller.

Associated controllers

BA controller
operating sequences

Switch set to Auto (automatic operation and special-tariff mode)

Switch set to the "R" position (forced operation on the "Replacement" source)

Key
UN : "Normal" source voltage
UR : "Replacement" source voltage
N : "Normal" source circuit breaker
R : "Replacement" source circuit breaker
(1) The number sends to the indicated step when the condition is true.

Associated controllers

The UA controller is used to create a source-
changeover system integrating the following automatic functions:

- transfer from one source to another depending on the presence of voltage UN on the "Normal" source - startup of an engine generator set
- shedding and reconnection of non-priority circuits - transfer to the "Replacement" source if one of the phases on the "Normal" source fails.
The UA controller can control Compact NS and Masterpact NT/NW devices.

Front of the UA controller.

Operating modes

A four-position switch may be used to select:

- automatic operation

■ forced operation on the "Normal" source
■ forced operation on the "Replacement" source
■ stop (both "Normal" and "Replacement" sources off, then manual operation).

Setting the time delays

Time delays are set on the front of the controller.
t1. delay between detection that the "Normal" source has failed and the transmission of the order to open the "Normal" source circuit breaker (adjustable from 0.1 to 30 seconds).
t2. delay between detection that the "Normal" source has returned and the transmission of the order to open the "Replacement" source circuit breaker (adjustable from 0.1 to 240 seconds).
t3. delay following opening of QN with load shedding and before closing of QR (adjustable from 0.5 to 30 seconds).
t4. delay following opening of $Q R$ with load reconnection and before closing of $Q N$ (adjustable from 0.5 to 30 seconds).
t5. delay for confirmation that UN is present before shutting down the engine generator set (adjustable from 60 to 600 seconds).
t6. delay before startup of the engine generator set (120 or 180 seconds).

Commands and indications

Circuit breaker status indications on the front of the controller:
■ ON, OFF, fault.
A built-in terminal block may be used to connect the following input/output signals:

- inputs:
\square voluntary order to transfer to source R (e.g. for special tariffs, etc.)
\square additional control contact (not part of the controller). Transfer to the "Replacement" source takes place only if the contact is closed (e.g. used to test the frequency of UR, etc.)
■ outputs:
\square control of an engine generator set (ON / OFF)
\square shedding of non-priority circuits
\square indication of operation in automatic mode via changeover contacts.

Distribution-system settings

Three switches are used to:
■ select the type of "Normal" source, whether single-phase or three-phase
(e.g. 240 V single-phase or 240 V three-phase)

■ select whether to remain (or not) on the "Normal" source if the "Replacement" source is not operational during operation on special tariffs
\square select the maximum permissible startup time for the engine generator set during operation on special tariffs (120 or 180 seconds).

Test

A pushbutton on the front of the controller may be used to test transfer from the "Normal" source to the "Replacement" source, then the return to the "Normal" source. The test lasts approximately three minutes.

COM communications option

Using the internal bus protocol, this option may be used to remote the following information:
■ circuit breaker status (ON, OFF, fault trip)
■ presence of the "Normal" and "Replacement" voltages

- presence of an order for forced operation (e.g. special tariffs)

■ settings and configuration information

- status of non-priority circuits (loads shed or not)

■ position of the switch (stop, auto, forced operation on the "Normal" source, forced operation on the "Replacement" source).

Associated controllers
UA controller
operating sequences

Switch set to the "R" position (forced operation on the "Replacement" source)

WAITING
The system exits this mode when the operating mode is modified or when an external event occurs (e.g. failure or return of UN).
When the UA controller is not energised, the output for generator set startup is activated).

Key

UN : "Normal" source voltage
UR : "Replacement" source voltage
N : "Normal" source circuit breaker
R : "Replacement" source circuit breaker

Switch set to the "N" position (forced operation on the "Normal" source)

Switch set to the "Stop" position

Associated controllers
UA controller
Operating sequences

Switch set to the "Auto" position (special-tariff mode)
WAITING The system exits this mode when the operating mode is modified or when an external event occurs (e.g. failure or return of UN).
When the UA controller is not energised, the output for generator set startup is activated).

Key

UN: "Normal" source voltage
UR: "Replacement" source voltage
N : "Normal" source circuit breaker
R : "Replacement" source circuit breaker
B : Penalties accepted (NON), i.e. B=1
(1) The number sends to the indicated step when the condition is true.

Associated controllers

UA controller
Operating sequences

Switch set to the "Auto" position (automatic operation and test mode).

WAITING The system exits this mode when the operating mode is modified or when an external event occurs (e.g. failure or return of UN).
When the UA controller is not energised, the output for generator set startup is activated).

Key
UN: "Normal" source voltage
UR: "Replacement" source voltage
N : "Normal" source circuit breaker
R : "Replacement" source circuit breaker
B : Penalties accepted (N ON), i.e. $B=1$
${ }^{(}$) The test lasts 180 seconds.
(1) The number sends to the indicated step when the condition is true.

IVE unit

Symbols
QN : "Normal" Compact C circuit breaker equipped for remote operation (motor mechanism)
QR : "Replacement" Compact C circuit breaker
equipped for remote operation (motor mechanism)
ON: Circuit breaker QN opening order
OR: Circuit breaker QR opening order
IN : Circuit breaker QN closing order
IR : Circuit breaker QR closing order
L1 : Faulty "Normal" indication LED
L2 : Faulty "Replacement" indication LED

Key

O: OFF (circuit open)
1: ON (circuit closed either ON or OFF

Note:

Following all trips (overload, short-circuit, earth-leakage fault, voluntary trip), a manual reset on the front of the motor mechanism is required.

BA controller

Inputs
UN : "Normal" source voltage
UR : "Replacement" source voltage
KT : order for forced-operation on R
KR : additional check before transfer

Outputs

QN : "Normal" source circuit breaker
QR : "Replacement" source circuit breaker

UA controller

Inputs
UN : "Normal" source voltage
UR : "Replacement" source voltage
KT : order for forced-operation on R
KR : additional check before transfer

Outputs
KG : order to the genset
SH: load-shedding order
QN : "Normal" source circuit breaker
QR : "Replacement" source circuit breaker

Communications option for Compact NS and Masterpact NT/NW

The COM communications option is compatible with all the source-changeover systems for Compact NS100 to 1600 and Masterpact NT/NW circuit breakers and switch-disconnectors.
It can be used to remote status information. It may not be used to operate the circuit breakers (only possible locally on the front of the UA150 controller).
Masterpact and Compact NS630b to 1600 circuit breakers and switch-disconnectors are compatible with the Modbus ECO COM option.
Depending on the trip units or control units used, the COM option may also be used to analyse distribution-system parameters required for the operating and maintenance assistance.

Circuit breaker communication		
	Switchdisconnector	Circuit breaker
Compact NS100/1600 status indications		
ON / OFF	■	■
Fault trip		■
Connected / disconnected position	■	■
Masterpact NT/NW status indications		
ON / OFF	■	■
Fault trip		■
Connected / disconnected position	■	■

STR53UE trip unit for Compact NS400/630

Note:
see the description of the Micrologic control units for further details on protection and alarms, measurements, waveform capture, histories, logs and maintenance indicators.

Automatic source-changeover controller	
	UA150
Status indications	
"Normal" source	
ON / OFF	■
Circuit breaker ON	\square
Fault trip (SDE)	\square
Voltage presence	\square
"Replacement" source	
Circuit breaker ON	\square
Fault trip (SDE)	\square
Voltage presence	\square
Status of R voltage contact	\square
Controller	
Automatic mode	-
"Normal" mode	-
"Replacement" mode	\square
Stop mode	\square
Testing	\square
"Replacement" engine generator set	
Genset failure	\square
Genset OFF	\square
Genset ON	\square
Shedding of non-priority circuits	\square
Reconnection of non-priority circuits	\square
Settings	
Time delay t1 for validation of UN absence	\square
Time delay t2 for validation of UN return	\square
Time delay t3 for wait between opening of N and closing of R	■
Time delay $t 4$ for wait between opening of R and closing of N	\square
Time delay $t 5$ for wait between return of UN and order for genset shutdown	\square
Time delay t6 for wait before declaring genset failure	■
Penalties accepted to avoid special tariff transfer	\square

schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

CAD software and tools

The CAD software and tools enhance productivity and safety. They help you create your installations by simplifying product choice through easy browsing in the Schneider Electric offers.
Last but not least, they optimise use of our products while also complying with standards and proper procedures.

Presentation 2
Functions and characteristics A-1
Manual source-changeover systems B-2
Interlocking of direct rotary handles B-2
Interlocking of extended rotary handles B-3
Interlocking of toggles B-5
Complete source-changeover assembly B-6
Downstream coupling accessory B-7
Remote-operated source-changeover systems B-9
Interlocking on a base plate B-9
Interlocking using connecting rods B-13
Interlocking using cables B-15
IVE electrical-interlocking unit BA and UA automatic controllers B-20
Electrical diagrams C-1
Catalogue numbers and order forms D-1

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual

Dimensions

Manual source-changeover systems
Interlocking of direct rotary handles

Dimensions (mm)
NS100/160/250N/H/L
NS400/630N/H/L

Interpact INSIINV250 100 to 250 A / Interpact INSIINV320/400/500/630

Dimensions

Front-panel cutout

Dimensions (mm)

Type	A	B	C	D	F	G	H	K	L	M	N	P
INS/INV $250100 / 160 / 250$ A	325	90	87.5	175	156	106	17.5	295	75.5	150	75	131
INS/INV320/400/500/630	416	115	100	200	210	130	22.5	386	100	175	74.5	160.4

Note: X et Y are the symmetry planes for a 3-pole device.

Manual source-changeover systems
 Interlocking of extended rotary handles

Dimensions (mm)

| Type | A | B | C | D | F | G $\boldsymbol{m i n}$ | G $\boldsymbol{\operatorname { m a x }}$ | H | J | P |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Q \quad (

Interpact INS40/63/80/100/125/160 / Interpact INSIINV250 100 to 250 A / Interpact INSIINV320/400/500/630

Dimensions

Front-panel cutout

Dimensions (mm)

Type	A	B	C	D	F	G min	G max	H	P	Q
INS40/63/80	325	90	87.5	175	156	155	396	0	25.5	25.5
INS100/125/160	325	90	87.5	175	156	200	441	0	25.5	25.5
INS/INV250 100/160/250A	325	90	87.5	175	156	185	600	17.5	25.5	25.5
INS320/400/500/630	416	115	100	200	210	204	600	22.5	30.8	30.8

Manual source-changeover systems
Interlocking of extended rotary handles

Compact NS630b to 1600

Dimensions

Dimensions (mm)

| Type | A | B | C | D | F | G min | G max | H | J | P | Q |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | R \quad R

Manual source-changeover systems
 Interlocking of toggles

Dimensions (mm)

Type	C2	C3	L	L16	L17	L18	R2	R18	R19	P5	P
NS $100 / 160 / 250 \mathrm{~N} / \mathrm{H} / \mathrm{L}$	54	108	52.5	140	245	280	54	89	140	83	115
NS400/630N/H/L	92.5	184	70	185	325	370	71.5	116.5	185	107	144

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual

Dimensions

Manual source-changeover systems

Complete source-changeover assembly

Assembly for INS250 100 to 250 A / Assembly for INS320/400/500/630

Dimensions

Dimensions (mm)

Type	A	B	C	D	E	F	G	H	I	J	K	L	M	N
INS250	60.4	130.4	296	68	136	131	61.8	279.3	42	84	156	186.5	5.5	50
INS320/630	82.5	175	395	102.5	205	155	87	383.7	64	128	210	213	8	50

Dimensions of the complete source-changeover assembly with an extended handle

Type	A	B	C	E	K	L	M	N
$\left.\begin{array}{llllll}\text { INS250 } \\ \text { INV100/250 } & 60.4 & 130.4 & 295 & 136 & 156 \\ 138.5 & 631 & 50 \\ \hline \text { INS320/630 } & 82.5 & 175 & 395 & 205 & 210 \\ \hline\end{array}\right] .162 .5$	658	75						

Dimensions (mm)				
Type	P	Mmax	Mmin	Q
INS250	100	567.5	195	64
INV100/250				
INS320/630	150	593	220.5	64
INV320/630				

Note: Lines X and Y indicate the axes of symmetry of the switch-disconnector. Reference plane Z corresponds to the back of the switch-disconnector.

Manual source-changeover systems
 Downstream coupling accessory

Compact NS100 to NS630 (only for Compact NS fixed devices)
Dimensions

Dimensions

Connection

Dimensions (mm)

Type	G2	G3	G28	G29	G30	G52	K1	K2	K3	K4	K8	K9	K16
NS100/160/250	118	181.5	238	96	140	156	35	35	51	156	70	170	8
NS400/630	165.9	265.7	339.5	143.5	188.5	227.5	45	52.5	75	210	113.5	250.7	3.75

Dimensions (mm)

Type	L28	L29	L30	$\mathbf{L 3 1}$	$\mathbf{L 3 2}$	$\mathbf{L 3 3}$	$\mathbf{L 3 4}$	$\mathbf{\text { L35 }}$	L36	L37	L39	L40	ØT
NS100/160/250	320	99.5	300	89.5	1	123	139.5	74.5	19.5	87.5	9.5	140	6
NS400/630	420	127.5	400	117.5	11.2	187.5	-	96.5	26	115	22.5	210	6

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual

Dimensions

Manual source-changeover systems

Downstream coupling accessory

Interpact INS250 100 to 250 A I Interpact INS320/400/500/630
Dimensions

Dimensions

Connection

Dimensions (mm)

Type	G2	G3	G28	G29	G30	G52	K1	K2	K3	K4	K8	K9	K16
INS250-100/160/200/250	105.5	169	225.5	83.5	127.5	143.5	35	35	51	156	57.5	157.5	25.5
INS320/400/500/630	141	240.7	315	119	163.5	202.5	45	52.5	75	210	88.5	225.7	26.25

Dimensions (mm)

Type	L28	L29	L30	L31	L32	L33	L34	L35	L36	L37	L39	L40	ØT
INS250-100/160/200/250	320	82	300	72	16.5	123	139.5	74.5	21.5	70	8.5	140	6
INS320/400/500/630	420	105	400	95	11.2	187.5	-	98.5	26	92.5	0	210	6

Remote-operated source-changeover systems Interlocking on a base plate

(*) Short terminal shields are mandatory.

Vertical mounting

Horizontal mounting

Dimensions (mm)

Type	G50	G51	H20	H21	H22	H23	H42	H43	H44	H45	H46	K25	K35	K36
NS100/160/250N/H/L	137.5	285	62.5	97	45.5	73	60	120	144.5	300	37	156	210.5	300
NS400/630N/H/L	180	360	100	152	83	123	60	120	189	378	77	210	282.5	400

Dimensions (mm)

Type	L31	L32	P7	P8	P9	P32	P33	P50	P52	P54	ØT9	ØT10	U
NS100/160/250N/H/L	110.5	354	25	45	75	178	143	25	99.5	21	9	6	$\leqslant 32$
NS400/630N/H/L	150.5	466	25	45	100	250	215	25	123	21	9	6	$\leqslant 32$

Note: coupling accessory: only for changeover systems using fixed versions of Compact NS circuit breakers.

Fixed device

Withdrawable device

Dimensions

Note: dimensions see p. B-9.

Remote-operated source-changeover systems Interlocking on a base plate

"Normal" and "Replacement" source devices: NS400 to NS630

Dimensions

Front-panel cutout

[^3]NS400 to NS630 as the "Normal" device, NS100 to NS250 as the "Replacement" device

Front-panel cutout

Remote-operated source-changeover systems

Interlocking using connecting rods

Two Compact NS630b to NS1600 devices one above the other
Withdrawable devices

Two Masterpact NT devices one above the other

Fixed devices

Withdrawable devices

Remote-operated source-changeover systems

Interlocking using connecting rods

Two Masterpact NW devices one above the other

Fixed devices
$\stackrel{\infty}{\stackrel{0}{\circ}}$
$\stackrel{\rightharpoonup}{\circ}$
$\stackrel{\rightharpoonup}{\circ}$

Withdrawable devices

Remote-operated source-changeover systems

Interlocking using cables

Two Compact NS630b to NS1600 devices side-by-side

Withdrawable devices

Two Masterpact NT devices side-by-side

Fixed devices

Drawout devices

Combination of two Masterpact NT and NW devices side-by-side

Fixed devices

Drawout devices

Two Masterpact NW devices side-by-side

Fixed devices
$\ddot{\text { ® }}$
$\stackrel{\rightharpoonup}{0}$
$\stackrel{0}{0}$

Drawout devices

Three Masterpact NW devices side-by-side
Fixed devices

Drawout devices

Remote－operated source－changeover systems

 Interlocking using cables

 Interlocking using cables}

Two Masterpact NT devices one above the other

Schneider
CPquge 60 of 105母－17

Two Masterpact NW devices one above the other

Fixed devices

Drawout devices

Two Masterpact NT and NW devices one above the other
Fixed devices

Drawout devices

Remote-operated source-changeover systems

Interlocking using cables

ACP auxiliaries control plate and BA/UA controller

Door cutout for BA/UA controllers

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

Training

Training allows you to acquire the Schneider Electric expertise (installation design, work with power on, etc.) for increased efficiency and a guarantee of improved customer service.
The training catalogue includes beginner's courses in electrical distribution, knowledge of MV and LV switchgear, operation and maintenance of installations, design of LV installations to give but a few examples.

Presentation 2
Functions and characteristics A-1
Dimensions $B-1$
Remote-operated source-changeover systems C-2
2 Compact NS100/1600 or Masterpact NT/NW devices C-2
2 Compact NS100/630 devices C-3
2 Compact NS630b/1600 devices C-6
2 Masterpact NT or NW devices C-14
3 Masterpact NW devices C-24
Source-changeover systems with automatic controllers C-33
2 Compact NS100/1600 or Masterpact NT/NW devices C-33
2 Masterpact NT or NW devices C-36
Catalogue numbers and order forms D-1

Remote-operated source-changeover systems 2 Compact NS 100/1600 or Masterpact NT/NW devices

Electrical interlocking by the IVE unit
Recommended electrical control system

(1) The "normal" and "replacement" source transfer orders must be interlocked electrically. (2) Operating diagram: the SDE "fault-trip" signals are transmitted to the IVE unit. The SDE auxiliary contacts are mounted in the circuit breakers.

Legends

ON "Normal" source opening order
OR "Replacement" source opening order
FN "Normal" source closing order
FR "Replacement" source closing order
L1 "Normal" source "fault-trip" signal
L2 "Replacement" source "fault-trip" signal
N "Normal" source auxiliary wiring connector
\boldsymbol{R} "Replacement" source auxiliary wiring connector

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual
Electrical diagrams

Remote-operated source-changeover systems 2 Compact NS 100/630 devices
 Diagram no. 51201177

Source-changeover system without automatic-control system

ATTENTION
$\begin{array}{l}\text { The diagram shows the electrical wiring for circuit breakers. } \\ \text { When wiring the SDE with switch-disconnectors, reverse }\end{array}$

the wires connected to terminals 82 and 84.

Legends

QN Normal" source Compact NS equipped with motor mechanism
QR "Replacement" source Compact NS equipped with motor mechanism
SDE "fault-trip" indication contact
IVE electrical interlocking and terminal block unit
MT motor mechanism
OF2 breaker ON/OFF indication contact
RN reset order for breaker QN
RR reset order for breaker QR
(1) Prefabricated wiring: cannot be modified.

States permitted by mechanical interlocking system

Normal	Replacement
0	0
1	0
0	1
Note:	
diagram shown with circuits de-energised, circuit breakers open	
and relays in normal position.	

Source-changeover system without automatic-control system

With emergency off by MN release and automatic reset

Legends
QN Normal" source Compact NS equipped with motor
mechanism
QR "Replacement" source Compact NS equipped with motor mechanism
MN undervoltage release
OF2 breaker ON/OFF indication contact
SDE "fault-trip" indication contact
MT motor mechanism
IVE electrical interlocking and terminal block unit
BP emergency off button with latching
KA3 auxiliary relay
F1 auxiliary power supply circuit breaker

States permitted by mechanical interlocking system

Normal	Replacement
0	0

0	0
1	0
0	1

Note:
after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuits de-energised, circuit breakers open and relays in normal position.

Remote-operated source-changeover systems 2 Compact NS 100/630 devices Diagram no. 51201179

Source-changeover system without automatic-control system
With emergency off by MX release and automatic reset

Legends

QN "Normal" source Compact NS equipped with motor mechanism
QR "Replacement" source Compact NS equipped with motor mechanism
SDE "fault-trip" indication contact
OF2 breaker ON/OFF indication contact
MX shuntrelease
MT motor mechanism
IVE electrical interlocking and terminal block unit
KA1 time-delayed auxiliary relays
KA2 time-delayed auxiliary relays
F1 auxiliary power supply circuit breaker
F2 auxiliary power supply circuit breaker
(1) Prefabricated wiring supplied
(2) This source can be:

- the source present in the case of voltage monitoring - an independent source.

In this case, the MX release must be protected.
(3) The reset orders must be delayed by 0.3 seconds.

States permitted by mechanical interlocking system Normal Replacement

0
1
0
Note:
after a fault trip, the breaker must be reset manually by pressing
its reset button.
Diagram shown with circuits de-energised, circuit breakers open
and relays in normal position.

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84 .
(1) Not to be wired on fixed version.

States permitted by mechanical interlocking system

QN "Normal" source Compact NS630b to 1600
QR "Replacement" source Compact NS NS630b to 1600
OF... breaker ON/OFF indication contact
SDE1"fault-trip" indication contact
CE1 "connected-position" indication contact (carriage switch)
F1 auxiliary power supply circuit breaker
ON "Normal" source opening order
OR "Replacement" source opening order
FN "Normal" source closing order (0.25 second delay)
FR "Replacement" source closing order (0.25 second delay)
MT Motor Mechanism

Normal Replacement

0	0
1	0

Note:
after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, M N \ldots)$.

Remote-operated source-changeover systems 2 Compact NS630b/1600 devices Diagram no. 51201181

Electrical interlocking with emergency off by shunt release

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.
(1) Not to be wired on fixed version.

States permitted by mechanical interlocking system Normal Replacement

0	0
1	0
0	1

Note:
after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, M N . .).$.

Remote-operated source-changeover systems 2 Compact NS630b/1600 devices
Diagram no. 51201182

Electrical interlocking with emergency off by undervoltage

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84 .

Legends

QN "Normal" source Compact NS630b to 1600
QR "Replacement" source Compact NS NS630b to 1600
OF... breaker ON/OFF indication contact
SDE1"fault-trip" indication contact
CE1 "connected-position" indication contact (carriage switch)
F1 auxiliary power supply circuit breaker
MN undervoltage release
BP emergency off button with latching
KA3 auxiliary relay
ON "Normal" source opening order
OR "Replacement" source opening order
FN "Normal" source closing order (0.25 second delay)
FR "Replacement" source closing order (0.25 second delay)
MT Motor Mechanism

Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system Normal Replacement

0	0
1	0
0	1

Note:
after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN...).

Remote-operated source-changeover systems 2 Compact NS630b/1600 devices Diagram no. 51201183

Electrical interlocking by IVE

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.
(1) Not to be wired on fixed version (2) Prefabricated wiring supplied.

Legends
QN "Normal" source Compact NS630b to 1600
QR "Replacement" source Compact NS NS630b to 1600
OF... breaker ON/OFF indication contact
SDE1 "fault-trip" indication contact
CE1 "connected-position" indication contact (carriage switch)
F1 auxiliary power supply circuit breaker
IVE electrical interlocking and terminal block unit
ON "Normal" source opening order
OR "Replacement" source opening order
FN "Normal" source closing order (0.25 second delay)
FR "Replacement" source closing order (0.25 second delay)
MT Motor Mechanism

Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system

 Normal Replacement| Normal | Replacement |
| :--- | :--- |
| 0 | 0 |
| 1 | 0 |
| 0 | 1 |

Note:

after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN...).

Remote-operated source-changeover systems 2 Compact NS630b/1600 devices
Diagram no. 51201184

Electrical interlocking by IVE with emergency off by shunt release

ATTENTION
The diagram shows the electrical wiring for circuit breakers.
When wiring the SDE with switch-disconnectors, connect
wire BK to terminal 82.

When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.
(1) Not to be wired on fixed version.
(2) Prefabricated wiring supplied.

Legends
QN "Normal" source Compact NS630b to 1600
QR "Replacement" source Compact NS NS630b to 1600
OF... breaker ON/OFF indication contact
SDE1 "fault-trip" indication contact
CE1 "connected-position" indication contact (carriage switch)
F1 auxiliary power supply circuit breaker
IVE electrical interlocking and terminal block unit
MX shunt release
BP emergency off button with latching
KA3 auxiliary relay
ON "Normal" source opening order
OR "Replacement" source opening order
FN "Normal" source closing order (0.25 second delay)
FR "Replacement" source closing order (0.25 second delay)
MT Motor Mechanism

Wiring colour codes						
RD GN BK VT YE GY WH BN red green black violet yellow grey white brown						

States permitted by mechanical interlocking system
Normal Replacement

0	0
1	0
0	1

Note:
after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN...).

Remote-operated source-changeover systems 2 Compact NS630b/1600 devices Diagram no. 51201185

Electrical interlocking by IVE with emergency off by undervoltage release

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.
(1) Not to be wired on fixed version.
(2) Prefabricated wiring supplied.

Legends							
QN	"Normal" source Compact NS630b to 1600						
QR	"Replacement" source Compact NS NS630b to 1600						
MCH	spring-charging motor						
MX	standard opening release						
XF	standard closing release						
OF...	breaker ON/OFF indication contact						
SDE1	"fault-trip" indication contact						
CE1	"connected-position" indication contact (carriage switch)						
F1	auxiliary power supply circuit breaker						
IVE	electrical interlocking and terminal block unit						
MN	undervoltage release						
BP	emergency off button with latching						
KA3	auxiliary relay						
ON	"Normal" source opening order						
OR	"Replacement" source opening order						
FN	"Normal" source closing order (0.25 second delay)						
$F R$	"Replacement" source closing order (0.25 second delay)						
MT	Motor	echan					
Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.
(1) Not to be wired on fixed version.

Legends

QN Normal" source Compact NS630b to 1600
QR "Replacement" source Compact NS NS630b to 1600
OF... breaker ON/OFF indication contact
SDE1 "fault-trip" indication contact
CE1 "connected-position" indication contact (carriage switch)
F1 auxiliary power supply circuit breaker
F2/F3 circuit breaker (high breaking capacity)
S1 control switches
KA1 auxiliary relays - UN presence detection
KA2 auxiliary relays - UR presence detection
KM1 contactors with 0.25 second delay (for transfer to "Replacement" source)
KM2 contactors with 0.25 second delay (for transfer to "Normal" source)
Motor Mechanism

States permitted by mechanical interlocking system Normal Replacement
00
$1 \quad 0$

Note:
after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, M N \ldots)$.

Remote-operated source-changeover systems 2 Compact NS630b/1600 devices
 Diagram no. 51201187

Automatic-control system for replacement source generator set

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84 .
(1) Not to be wired on fixed version.

States permitted by mechanical interlocking system

 Normal Replacement| 0 | 0 |
| :--- | :--- |
| 1 | 0 |
| 0 | 1 |

Note:

after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, M N \ldots$...).

Remote-operated source-changeover systems

2 Masterpact NT or NW devices
Diagram no. 51201139

Electrical interlocking with lockout after a fault

ATTENTION
The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84 .

Legends
QN "Normal" source Masterpact NT or NW
QR "Replacement" source Masterpact NT or NW
MCH spring-charging motor
$\begin{array}{ll}\text { MX } & \text { standard opening voltage release } \\ \text { XF } & \text { standard closing voltage release }\end{array}$
$\begin{array}{ll}\text { XF } & \text { standard closing voltage release } \\ \text { OF... } & \text { breaker ON/OFF indication contact }\end{array}$
SDE1 "fault-trip" indication contact
PF "ready-to-close" contact
CE1 "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
ON "Normal" source opening order
OR "Replacement" source opening order
FN "Normal" source closing order (0.25 second delay)
FR "Replacement" source closing order (0.25 second delay)

States permitted by mechanical interlocking system
\qquad

0	0
1	0
0	1

Note:
diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN...).

Remote-operated source-changeover systems 2 Masterpact NT or NW devices Diagram no. 51201140

Electrical interlocking with lockout after a fault and emergency off by shunt release

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.
(1) Not to be wired on fixed version.

States permitted by mechanical interlocking system Normal Replacement

0	0
1	0
0	1

Note:
diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, M N \ldots)$.

Remote-operated source-changeover systems
2 Masterpact NT or NW devices
Diagram no. 51201141

Electrical interlocking with lockout after a fault and emergency off by undervoltage release

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84 .

Legends
QN "Normal" source Masterpact NT or NW
QR "Replacement" source Masterpact NT or NW
MCH spring-charging motor
MX standard opening voltage release
XF standard closing voltage release
MN undervoltage release
OF... breaker ON/OFF indication contact
SDE1 "fault-trip" indication contact
PF "ready-to-close" contact
CE1 "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
BP emergency off button with latching
S1 control switches
KA3 auxiliary relay
ON "Normal" source opening order
OR "Replacement" source opening order
FN "Normal" source closing order (0.25 second delay)
FR "Replacement" source closing order (0.25 second delay)
(1) Not to be wired on fixed version.

States permitted by mechanical interlocking system

Normal	Replacement
0	0
1	0
0	1

Note:
diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, M N \ldots)$.

Remote-operated source-changeover systems 2 Masterpact NT or NW devices Diagram no. 51201142

Electrical interlocking by IVE with lockout after a fault

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.
(1) Not to be wired for the "without lockout after a fault" solution.
(2) Not to be wired on fixed version
(3) Prefabricated wiring supplied.

Legends

QN "Normal" source Masterpact NT or NW
QR "Replacement" source Masterpact NT or NW
MCH spring-charging motor
MX standard opening voltage release
XF standard closing voltage release
OF... breaker ON/OFF indication contact
SDE1 "fault-trip" indication contact
PF "ready-to-close" contact
CE1 "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
IVE electrical interlocking and terminal block unit
F1 auxiliary power supply circuit breaker
ON "Normal" source opening order
OR "Replacement" source opening order
FN "Normal" source closing order (0.25 second delay)
FR "Replacement" source closing order (0.25 second delay)

Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system
Normal Replacement

0	0
1	0
0	1
Note:	

Note:
diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, M N . .$.$) .$

Remote-operated
source-changeover systems
2 Masterpact NT or NW devices
Diagram no. 51201143

Electrical interlocking by IVE with lockout after a fault and emergency off by shunt release

ATTENTION

The diagram shows the electrical wiring for circuit breakers.
When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.
(1) Not to be wired for the "without lockout after a fault" solution.
(2) Not to be wired on fixed version.
(3) Prefabricated wiring supplied.

Legends

QN	"Normal" source Masterpact NT or NW
QR	"Replacement" source Masterpact NT or NW
MCH	spring-charging motor
MX	standard opening voltage release
XF	standard closing voltage release
OF...	breaker ON/OFF indication contact
SDE1	"fault-trip" indication contact
PF	"ready-to-close" contact
CE1	"connected-position" indication contact (carriage switch)
CH	"springs charged" indication contact
IVE	electrical interlocking and terminal block unit
F1	auxiliary power supply circuit breaker
BP	emergency off button with latching
KA3	auxiliary relay
ON	"Normal" source opening order
OR	"Replacement" source opening order
FN	"Normal" source closing order (O.25 second delay)
FR	"Replacement" source closing order (0.25 second delay)

Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system Normal Replacement

0	0
1	0
0	1

Note:
diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, M N . .$.$) .$

Remote-operated source-changeover systems 2 Masterpact NT or NW devices Diagram no. 51201144

Electrical interlocking by IVE with lockout after a fault and emergency off by undervoltage release

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.
(1) Not to be wired for the "without lockout after a fault" solution.
2) Not to be wired on fixed version.
(3) Prefabricated wiring supplied.

Legends							
QN	"Normal" source Masterpact NT or NW						
QR	"Replacement" source Masterpact NT or NW						
MCH	spring-charging motor						
MX	standard opening voltage release						
XF	standard closing voltage release						
MN	undervoltage release						
OF...	breaker ON/OFF indication contact						
SDE1	"fault-trip" indication contact						
PF	"ready-to-close" contact						
CE1	"connected-position" indication contact (carriage switch)						
CH	"springs charged" indication contact						
IVE	electrical interlocking and terminal block unit						
F1	auxiliary power supply circuit breaker						
$B P$	emergency off button with latching						
S1	control switches						
KA3	auxiliary relay						
ON	"Normal" source opening order						
OR	"Replacement" source opening order						
FN	"Normal" source closing order (0.25 second delay)						
$F R$	"Replacement" source closing order (0.25 second delay)						
Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system Normal Replacement

0	0
1	0
0	1

Note:
diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN...).

Remote-operated
source-changeover systems
2 Masterpact NT or NW devices
Diagram no. 51156226

Automatic-control system without IVE for permanent replacement source with lockout after a fault

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84 .

Legends

QN "Normal" source Masterpact NT or NW
QR "Replacement" source Masterpact NT or NW
MCH spring-charging motor
MX standard opening voltage release
XF standard closing voltage release
OF... breaker ON/OFF indication contact
SDE1 "fault-trip" indication contact
PF "ready-to-close" contact
CE1 "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
F2/F3 circuit breaker (high breaking capacity)
S1
KA1 auxiliary relays - UN presence detection
KA2 auxiliary relays - UR presence detection
KM1 contactors with 0.25 second delay (for transfer to
"Replacement" source)
KM2
contactors with 0.25 second delay (for transfer to "Normal" source)
(1) Not to be wired on fixed version.

States permitted by mechanical interlocking system Normal Replacement
\qquad
Note:
diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN...).

Remote-operated source-changeover systems 2 Masterpact NT or NW devices
 Diagram no. 51156227

Automatic-control system for replacement source generator set with lockout after a fault

ATTENTION
 The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84 .

(1) Not to be wired on fixed version.

States permitted by mechanical interlocking system Normal Replacement

Note:

sham shown with circuit breakers in connected position, open,
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, M N \ldots$...

Remote-operated source-changeover systems
2 Masterpact NT or NW devices
Diagram no. 51156904

Automatic-control system for permanent replacement source with lockout after a fault (with MN)

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.
(1) Not to be wired for the "without lockout after a fault" solution.
(2) Not to be wired on fixed version.
(3) Prefabricated wiring supplied.

Legends

QN	"Normal" source Masterpact NT or NW						
QR	"Replacement" source Masterpact NT or NW						
MCH	spring-charging motor						
XF	standard closing voltage release						
MN	undervoltage release						
OF...	breaker ON/OFF indication contact						
SDE1	"fault-trip" indication contact						
PF	"ready-to-close" contact						
CE1	"connected-position" indication contact (carriage switch)						
CH	"springs charged" indication contact						
IVE	electrical interlocking and terminal block unit						
F1	auxiliary power supply circuit breaker						
F2	circuit breaker (high breaking capacity)						
S1	control switches						
KA1	auxiliary relays						
KA2	auxiliary relays						
KA3	auxiliar	relays					
Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

Remote-operated source-changeover systems 2 Masterpact NT or NW devices Diagram no. 51156905

Automatic-control system for replacement source generator set with lockout after a fault (with MN)

ATTENTION
The diagram shows the electrical wiring for circuit breakers.
When wiring the SDE with switch-disconnectors, connect
wire BK to terminal 82.

(1) Not to be wired for the "without lockout after a fault" solution.
(2) Not to be wired on fixed version.
(3) Prefabricated wiring supplied.

Legends							
QN	"Normal" source Masterpact NT or NW						
QR "Replacement" source Masterpact NT or NW	"Replacement" source Masterpact NT or NW						
MCH spring-charging motor							
XF standard closing voltage release							
MN undervoltage release							
OF... breaker ON/OFF indication contact							
SDE1 "fault-trip" indication contact							
PF "ready-to-close" contact							
CE1 "connected-position" indication contact (carriage switch)							
CH "springs charged" indication contact							
IVE electrical interlocking and terminal block unit							
F1 auxiliary power supply circuit breaker							
F2 circuit breaker (high breaking capacity)							
S1 control switches							
KA1 auxiliary relay							
KA2 time delay for genset startup order to avoid starting the genset for transient UN disturbances							
KA3 auxiliary relay							
Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system	
Normal	Replacement
0	0
1	0
0	1
Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close. Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, M N \ldots$...).	

Remote-operated source-changeover systems

3 Masterpact NW devices

Diagram no. 51156906

2 Normal sources and 1 Replacement source: electrical interlocking without lockout after a fault

Legends
QN... "Normal" source Masterpact NW
QR "Replacement" source Masterpact NW
MCH spring-charging motor
MX standard opening voltage release
XF standard closing voltage release
OF... breaker ON/OFF indication contact
PF "ready-to-close" contact
CE "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
order for transfer from " R " to "N1 + N2"
(QN1 and QN2 closing time delay $=0.25$ sec. minimum)
t2 order for transfer from "N1 + N2"to " R "
(QR closing time delay $=0.25 \mathrm{sec}$. minimum

States permitted by mechanical interlocking system		
Normal 1 Normal 2 Replacement 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0		

Note:

diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, M N \ldots)$.

Remote-operated source-changeover systems 3 Masterpact NW devices
 Diagram no. 51156907

2 Normal sources and 1 Replacement source: electrical interlocking with lockout after a fault

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

[^4]Remote-operated source-changeover systems 3 Masterpact NW devices Diagram no. 51156908

2 Normal sources and 1 Replacement source: automatic-control system for generator set without lockout after a fault (with MN)

Legends
QN...
QR "Replacement" source Masterpact NW
XF
XF standard closing voltage release
MN undervoltage release
OF... breaker ON/OFF indication contact
PF "ready-to-close" contact
CE... "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
F2/F3 circuit breaker (high breaking capacity)
S1 control switches
S2 source selection switches
KA1 auxiliary relay
KA2 auxiliary relays with 10 to 180 sec. time delay
KA3 auxiliary relays with 0.1 to 30 sec . time delay
KA4 auxiliary relay
KA5 auxiliary relays with 0.25 sec . time delay
KA6 auxiliary relays with 0.25 sec . time delay

States permitted by mechanical interlocking system and with associated automatism

Normal 1	Normal 2	Replacement
0	0	0
1	1	0
0	0	1
1	0	0
0	1	0

Note:
diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN...).

Remote-operated source-changeover systems 3 Masterpact NW devices Diagram no. 51156909

2 Normal sources and 1 Replacement source: automatic-control system for generator set with lockout after a fault (with MN)

ATTENTION
The diagram shows the electrical wiring for circuit breakers.
When wiring the SDE with switch-disconnectors, connect
the SDE to terminals 81 and 84.

[^5]States permitted by mechanical interlocking system and with associated automatism

Normal 1	Normal 2	Replacement

Normal	Normal 2	Replacement
0	0	0
1	1	0
0	0	1
1	0	0
0	1	0

Note:

diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN...).

3 sources with only 1 device closed: electrical interlocking without lockout after a fault

Legends

QS... "Source" Masterpact NW

MCH spring-charging motor
MX standard opening voltage release
XF standard closing voltage release
OF... breaker ON/OFF indication contact
PF "ready-to-close" contact
CE... "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
t1 order for transfer to "Source 1"
(QS1 closing time delay $=0.25$ sec. minimum)
order for transfer to "Source 2"
(QS2 closing time delay $=0.25 \mathrm{sec}$. minimum)
order for transfer to "Source 3"
States permitted by mechanical interlocking system
Source 1 Source 2 Source 3

0	0	0
1	0	0
0	1	0
0	0	1
Note:		

diagram shown with circuit breakers in connected position, open charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN...).
Schneider

Remote-operated source-changeover systems 3 Masterpact NW devices
 Diagram no. 51156911

3 sources with only 1 device closed: electrical interlocking with lockout after a fault

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84 .

[^6]| States permitted by | | |
| :--- | :--- | :--- |
| Sochanical interlocking system | | |
| Source $\mathbf{1}$ | Source 2 | Source 3 |
| 0 | 0 | 0 |
| 1 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 1 |

Note:

diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, M N \ldots$...).

Remote-operated source-changeover systems 3 Masterpact NW devices
Diagram no. 51156912

2 sources and 1 coupling: electrical interlocking without lockout after a fault

Legends

QS... "Source" Masterpact NW
QC "Coupling" Masterpact NW
MCH spring-charging motor
MX standard opening voltage release
XF standard closing voltage release
OF... breaker ON/OFF indication contact
PF "ready-to-close" contact
CE... "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
t1 coupling order for "Source 1 failure"
(QC closing time delay $=0.25 \mathrm{sec}$. minimum) coupling order for "Source 2 failure" (QC closing time delay $=0.25 \mathrm{sec}$. minimum) coupling order for "Source 1 restored" (QS1 closing time delay $=0.25 \mathrm{sec}$. minimum) coupling order for "Source 2 restored " (QS2 closing time delay $=0.25 \mathrm{sec}$. minimum)

States permitted by mechanical interlocking system		
Source 1	Source 2	Coupling
0	0	0
1	1	0
1	0	1
0	1	1
1	0	0
0	1	0
0	0	1

diagram shown with circuit breakers in connected position, open
charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN...).

Remote-operated source-changeover systems 3 Masterpact NW devices Diagram no. 51156913

2 sources and 1 coupling: electrical interlocking with lockout after a fault

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

[^7]
States permitted by mechanical interlocking system

Source 1	Source 2	Coupling
0	0	0
1	1	0
1	0	1
0	1	1
1	0	0
0	1	0
0	0	1

Note:

diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN...).

Remote-operated source-changeover systems 3 Masterpact NW devices
Diagram no. 51156914

2 sources and 1 coupling: automatic-control system with lockout after a fault

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84 .

Legends
QS... "Source" Masterpact NW
QC "Coupling" Masterpact NW
MCH spring-charging motor
MX standard opening voltage release
XF standard closing voltage release
OF... breaker ON/OFF indication contact
SDE1 "fault trip" indication contact
PF "ready-to-close" contact
CE... "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
F2/F3 circuit breaker (high breaking capacity)
S1 control switches
S2 source selection switches
KA1 auxiliary relays with 10 to 180 sec. time delay
KA2 auxiliary relays with 0.1 to 30 sec . time delay
KA3 auxiliary relays with 10 to 180 sec . time delay
KA4 auxiliary relays with 0.1 to 30 sec . time delay
KA5 auxiliary relays with 0.25 sec . time delay
KA6 auxiliary relays with 0.25 sec . time delay
KA7 auxiliary relays with 0.25 sec . time delay

States permitted by mechanical interlocking system and with associated automatism

Source 1	Source 2	Co
0	0	0
1	1	0
1	0	1
0	1	1
1	0	0
0	1	0
0	0	1

Note:
diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN...).

Source-changeover systems with automatic controllers
 2 Compact NS 100/1600 or Masterpact NT/NW devices

Source-changeover system with BA controller

Coupling

Transfer conditions

Terminals 20 and 21:
additional control contact (not part of controller).

Tests on "Normal" and "Replacement" source voltages
The single-phase check for UN and UR is implemented across terminals 1 and 5 of circuit breakers Q1 and Q2.

Legends

Q1 circuit breaker supplying and protecting the automaticcontrol circuits for the "Normal" source
Q2 circuit breaker supplying and protecting the automaticcontrol circuits for the "Replacement" source
ACP auxiliaries control plate
BA automatic controller
IVE electrical interlocking and terminal block unit

[^8]Load shedding and genset management

Transfer conditions

Terminals 20 and 21:
additional control contact (not part of controller).

Tests on "Normal" and "Replacement" source voltages
"Normal" source voltage UN test

Ref. UA UA150	29472 29474	$\begin{aligned} & 29472 \\ & 29474 \end{aligned}$	$\begin{aligned} & 29473 \\ & 29475 \end{aligned}$
	$\begin{array}{\|c} N / \varphi \\ 220 / 240 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{array}$	$\begin{gathered} \varphi / \varphi \\ 220 / 240 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	φ / φ $380 / 415 \mathrm{VAC}$ $50 / 60 \mathrm{~Hz}$ $440 \mathrm{~V}-60 \mathrm{~Hz}$
$\mathrm{A}=0$			
$\mathrm{A}=1$			

"Replacement" source voltage UR test The single-phase check for UR is implemented across terminals 1 and 5 of circuit breaker Q2.

Legends
Q1
circuit breaker supplying and protecting the automatic-
control circuits for the "Normal" source
Q2 circuit breaker supplying and protecting the automatic-
control circuits for the "Replacement" source
auxiliaries control plate
ACP
automatic controller
IVE electrical interlocking and terminal block unit and relays in normal position.

Source-changeover systems with automatic controllers
 2 Compact NS 100/1600 or Masterpact NT/NW devices

Controller settings

Tests on "Normal" source voltage
$A=0$ single-phase test,
$A=1$ three-phase test.
Voluntary transfert (e.g. for energy management)

- action in the event of genset failure
$B=0$ circuit breaker N opens,
$B=1$ circuit breaker N remains closed.
- maximum permissible genset startup time (T6)
$\mathrm{C}=0 \mathrm{~T}=120 \mathrm{~s}$,
$\mathrm{C}=1 \mathrm{~T}=180 \mathrm{~s}$.
After this time has elapsed, the genset is considered to have failed.

Using communication functions

The address of the UA controller is set using the two BBus dials.

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.

1) Not to be wired for the "without lockout after a fault" solution
(2) Not to be wired on fixed version.
(3) Prefabricated wiring supplied.

Legends

QN "Normal" source Masterpact NT or NW
QR "Replacement" source Masterpact NT or NW
MCH
MX starging motor
XF standard opening voltage release
XF standard closing voltage release
OF... breaker ON/OFF indication contact
SDE1 "fault-trip" indication contact
PF "ready-to-close" contact
CE1 "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
IVE electrical interlocking and terminal block unit

Wiring colour codes

RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system Normal Replacement

Normal	Replacement
0	0
1	0
0	1

diagram shown with circuit breakers in connected position, open, charged, and ready to close.
schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

The electrical installation guide

According to IEC 60364

This guide, part of the Schneider Electric offer, is the essential tool to "guide" you any time in your business: - design office, consultant - contractor, panelbuilder - teacher, trainer.

Comprehensive

 and concrete information on:- all the new technical solutions
- all the components
- of an installation from a global point of view
- all the IEC standards modifications
- all the fundamental electrotechnical knowledge - all the design stages, from medium to low voltage.

Presentation 2
Functions and characteristics A-1
Dimensions B-1
Electrical diagrams C-1
Source-changeover systems for 2 devices D-2
Interpact INS40 to INS2500 and INV100 to INV2500 D-2
Compact NS100 to NS630 D-3
Compact NS630b to NS1600 circuit breakers and switch-disconnectors D-5
Masterpact NT circuit breakers and switch-disconnectors
Masterpact NT circuit breakers and switch-disconnectors D-7 D-7
Source-changeover systems for 2 or 3 devices D-8
Masterpact NW circuit breakers and switch-disconnectors D-8
Source-changeover systems for 2 devices D-10
Interpact INS40 to INS630 Switch-disconnectors D-10
Compact NS100 to NS630 / Circuit breakers and switch-disconnectors D-12
Compact NS630b to NS1600 / Circuit breakers and switch-disconnectors D-14
Masterpact NT or NW / Circuit-breakers and switch-disconnectors D-16
Source-changeover systems for 3 devices D-18
Masterpact NW / Circuit breakers and switch-disconnectors D-18

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual
Catalogue numbers and order forms

Source-changeover systems for 2 devices
 Interpact INS4O to INS2500 and INV100 to INV2500

Manual source-changeover systems Interpact INS40 to INS630 and INV100 to INV630
Interlocking for rotary handle
Connection accessories

Source-changeover systems for 2 devices (cont.) Compact NS100 to NS630

(1) The supply voltages BA/UA control unit, ACP plate, IVE and the remote control must be identical whatever the source changeover type.
(2) See products pages.

Catalogue numbers and order forms

Source-changeover systems for 2 devices (cont.) Compact NS100 to NS630 (cont.)

Source-changeover systems
 for 2 devices (cont.) Compact NS630b to NS1600 circuit breakers and switch-disconnectors

Interlocking for source-changeover systems

Mechanical interlocking

Interlocking using connecting rods for Compact electrically-operated devices
Complete assembly with 2 adaptation fixtures + rods

2 Compact fixed devices	33910

| 2 Compact withdrawable devices | 33913 |
| :--- | :--- | :--- |

Interlocking using cables for Compact electrically-operated devices

Complete assembly with 2 adaptation fixtures + cables

2 Compact withdrawable devices
33911

| | 33915 |
| :--- | :--- | :--- |

Catalogue numbers and order forms

Source-changeover systems for 2 devices (cont.)
 Compact NS630b to NS1600 circuit breakers and switch-disconnectors (cont.)

Associated controller

The automatic-control option includes:
■ an IVE electrical-interlocking unit

- an ACP auxiliaries control plate
- a BA or UA controller, depending on the required functions
- a UA/BA adapter kit.

Note: the circuit breaker auxiliaries (MCH, MX, XF) and the automatic-control components (IVE, ACP, UA or BA) must have the same voltages.

IVE electrical-interlocking unit		$\begin{aligned} & 48 / 415 \text { V AC } 50 / 60 \mathrm{~Hz} \\ & 440 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$
	For 2 devices	29352
	Wiring kit for connection of 2 fixed/withdrawable devices to the IVE unit	54655

Control unit option		110/127 V AC 50/60 Hz	220/240 V AC 50/60 Hz	$\begin{aligned} & 380 / 415 \mathrm{~V} \mathrm{AC} \mathrm{50/60} \mathrm{~Hz} \\ & 440 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$
	ACP + control unit BA ${ }^{(1)}$		29470	29471
	Plate ACP		29363	29364
	Control unit BA		29376	29377
	ACP + control unit UA ${ }^{(1)}$	29448	29472	29473
	Plate ACP	29447	29363	29364
	Control unit UA	29446	29378	29380
	ACP + control unit UA150 ${ }^{(1)}$ (communication option)		29474	29475
	Plate ACP		29363	29364
	Control unit UA150		29379	29381

(1) The supply voltages of the BA/UA controller, ACP plate, IVE unit and circuit breaker operating mechanism must be identical whatever the type of sourcechangeover system.

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual
Catalogue numbers and order forms

Source-changeover systems for 2 devices (cont.)
 Masterpact NT circuit breakers and switch-disconnectors

Associated controller

The automatic-control option includes:
■ an IVE electrical-interlocking unit

- an ACP auxiliaries control plate
- a BA or UA controller, depending on the required functions

■ a UA/BA adapter kit.
Note: the circuit breaker auxiliaries (MCH, MX, XF) and the automatic-control components (IVE, ACP, UA or BA) must have the same voltages.

| IVE electrical-interlocking unit | $48 / 415 \mathrm{~V} \mathrm{AC} \mathrm{50/60} \mathrm{~Hz}$ |
| :--- | :--- | :--- | :--- | :--- |

Control unit option		110/127 V AC 50/60 Hz	220/240 V AC 50/60 Hz	$\begin{aligned} & 380 / 415 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz} \\ & 440 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$
	ACP + control unit BA ${ }^{(1)}$		29470	29471
	Plate ACP		29363	29364
	Control unit BA		29376	29377
	ACP + control unit UA ${ }^{(1)}$	29448	29472	29473
	Plate ACP	29447	29363	29364
	Control unit UA	29446	29378	29380
	ACP + control unit UA150 ${ }^{(1)}$ (com	munication option)	29474	29475
	Plate ACP		29363	29364
	Control unit UA1		29379	29381

(1) The supply voltages of the BA/UA controller, ACP plate, IVE unit and circuit breaker operating mechanism must be identical whatever the type of source-changeover system.

Catalogue numbers and order forms

Source-changeover systems for 2 or 3 devices
Masterpact NW circuit breakers and switch-disconnectors

Associated controller for 2 devices

The automatic-control option includes:

- an IVE electrical-interlocking unit
- an ACP auxiliaries control plate
- a BA or UA controller, depending on the required functions

■ a UA/BA adapter kit.
Note: the circuit breaker auxiliaries ($M C H, M X, X F$) and the automatic-control components (IVE, $A C P, U A$ or $B A$) must have the same voltages.

IVE electrical-interlocking unit		$\begin{aligned} & 48 / 415 \mathrm{~V} \mathrm{AC} \mathrm{50/60} \mathrm{~Hz} \\ & 440 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$
	for 2 devices	29352
\pm	wiring kit for connection of 2 fixed/drawout devices to the IVE unit	54655

Control unit option		110/127 V AC 50/60 Hz	220/240 V AC 50/60 Hz	$\begin{aligned} & 380 / 415 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz} \\ & 440 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$
	ACP + control unit BA ${ }^{(1)}$		29470	29471
	Plate ACP		29363	29364
	Control unit BA		29376	29377
	ACP + control unit UA ${ }^{(1)}$	29448	29472	29473
	Plate ACP	29447	29363	29364
	Control unit UA	29446	29378	29380
	ACP + control unit UA150 ${ }^{(1)}$ (communication option)		29474	29475
	Plate ACP		29363	29364
	Control unit UA150		29379	29381

(1) The supply voltages of the BA/UA controller, ACP plate, IVE unit and circuit breaker operating mechanism must be identical whatever the type of sourcechangeover system.

Interlocking for source-changeover systems for 3 devices

Interlocking of 3 devices using cables

Choose 3 adaptation fixtures (1 complete set with 3 adaptation fixtures + cables)	
3 sources, only 1 device closed, fixed or drawout devices	48610
2 sources, 1 coupling, fixed or drawout devices	48609
2 normal, 1 replacement source, fixed or drawout devices	48608

Source-changeover systems for 2 devices
 Interpact INS40 to INS630
 Switch-disconnectors

To indicate your choices, check the applicable square boxes \qquad and enter the appropriate information in the rectangles

Mechanical interlocking of two INS40 to INS630 devices				
Devices with front rotary handles, mounted side by side				
Two devices with direct rotary handles				
	INS250		INS320/400/50	
Two devices with extended rotary handles				
	INS40/63/80		INS100/125/16	
	INS250		INS320/400/50	
Downstream coupling accessory	INS250		INS320/400/50	
Long terminal shields	INS250		INS320/400/50	
Complete source-changeover assembly				
	INS250-100 A		INS250-160 A	
	INS250-200 A		INS250-250 A	
	INS320		INS400	
	INS500	\square	INS630	

Source-changeover systems for 2 devices
 Interpact INS40 to INS630
 Switch-disconnectors

To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles \square.
(one sheet per device, make copies if necessary)
Device identification:

Q 1 - NORMAL SOURCE	\square
Q 2 - REPLACEMENT SOURCE	\square
Switch-disconnector	
Interpact type	INS40/63/80
	INS100/125/160
	INS250
	INS320/400/500/630
	A
Rating	3 or 4
Number of poles	\square
Connections	\square

Indication and measurements					
4P ammeter module	For INS250	Rating		100 A	
				150 A	
				250 A	
	Adaptation kit required for direct handles				
	For INS320/630	Rating		400 A	
				600 A	
4P current-transformer module	For INS250	Rating		100 A	
				150 A	
				250 A	
	For INS320/630	Rating		400 A	
				600 A	
Auxiliary contact	For INS40/160	10F/CAF/CAO		Stand	
				Low lev	
	For INS250/630	1 OF/CAM		Standa	
				Low lev	
Rotary handles					
Extended front handles	INS40 to INS160	Black Black Black	Red on yellow front Red on yellow front Red on yellow front		
	INS250				
	INS320 to INS630				
	For complete changeover assembly INS				
Locking of rotary handles					
Padlocking	1 to 3 padlocks (in OFF position)				
Keylocking	Keylock adapter (keylock not included)				
	Keylocks Ronis 1351B. 500		Prof	5 B24 D	
Installation accessories					
Front-panel escutcheon	For switch-disconnectors				

Source-changeover systems for 2 devices
 Compact NS 100 to NS630 / Circuit breakers and switch-disconnectors

To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles \qquad .

Diagram for two Compact NS devices

Source-changeover systems
 for 2 devices
 Compact NS100 to NS630 / Circuit breakers and switch-disconnectors

To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles
(one sheet per device, make copies if necessary)
Device identification:

kit

Source-changeover systems for 2 devices
Compact NS630b to NS1600 / Circuit breakers and switch-disconnectors

To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles \qquad .

Diagram for two Compact NS devices

Electrical interlocking with lockout after fault:
Permanent replacement source (without IVE)
(no. 51201180)
With emergency off by MX (without IVE)
(no. 51201181)
With emergency off by MN (without IVE)
(no. 51201182)
Permanent replacement source (with IVE)
(no. 51201183)
With emergency off by MX (with IVE)
(no. 51201184)
With emergency off by MN (with IVE)
(no. 51201185)
Automatic control without lockout after fault:
Permanent replacement source (without IVE) (no. 51201186)
Engine generator set (without IVE)
Interlocking using connecting rods between two NS630b to NS1600 devices Manually operated devices installed side-by-side:

For two fixed NS devices with extended rotary handles
Electrically operated devices installed one above the other:
Select a complete set including two adaptation fixtures and the connecting rods

Complete set for:	2 fixed NS devices
	2 withdrawable NS devices

Interlocking using cables between two NS630b to NS1600 devices
Electrically operated devices installed one above the other or side-by-side:
Select a complete set including two adaptation fixtures and the cables

Complete set for:	2 fixed NS devices
2 withdrawable NS devices	
	1 fixed NS device +1 withdrawable NS device

Electrical interlocking between two NS630b to NS1600 devices
1 IVE unit $48 / 415 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ and $440 \mathrm{~V}-60 \mathrm{~Hz}$
1 wiring kit for connection between 2 fixed / withdrawable devices to the IVE unit
Automatic-control option
ACP + BA controller ACP + UA controller ACP + UA150 controller
Power supply 220/240 V - 50/60 Hz ACP + BA controller ACP + UA controller ACP + UA150 controller
Power supply $380 / 415 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ and $440 \mathrm{~V}-60 \mathrm{~Hz}$: ACP + BA controller ACP + UA controller ACP + UA150 controller

Source-changeover systems for 2 devices
 Compact NS630b to NS1600 / Circuit breakers and switch-disconnectors

To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles
(one sheet per device, make copies if necessary)
Device identification:

Q 1 - NORMAL SOURCE	\square
Q 2 - REPLACEMENT SOURCE	\square
Circuit breaker or switch-disconnector	\square
Compact type	NS630b to NS1600
Rating	A
Circuit breaker	N, H, L
Switch-disconnector	NA
Number of poles	3 or 4
Device	Fixed Withdr. chassis Withdr. without chassis (moving part only)

Indication contacts				
SD trip indication (maximum 1)				
	$6 \mathrm{~A}-240 \mathrm{VAC}$	Low level		
SDE fault-trip indication (maximum 1) (SDE integrated in electrically operated devices)				
	$6 \mathrm{~A}-240 \mathrm{VAC}$	Low level		
OF ON/OFF indication contacts (maximum 3)				
	$6 \mathrm{~A}-240 \mathrm{VAC}$ qty	Low level	qty	
Carriage switches (possible combinations: 3 CE, 2 CD, 1 CT)				
CE - "connected" position	$6 \mathrm{~A}-240 \mathrm{VAC}$ qty	Low level	qty	
CD - "disconnected" position	6 A-240 V AC qty	Low level	qty	
CT - "test" position	6 A-240 VAC qty	Low level	qty	
Auxiliary terminals for chassis alone		Jumpers (set of 10)		
	3 -wire terminal (30 parts)	6-wire ter	parts)	
Remote operation				
Electrical operation	Standard	Communicating		
	Power supply AC		v	
Voltage releases	MX AC		v	
	MN AC	DC	v	
	MN delay unit	Adjustabl	Nonadjustable	
Rotary handles for fixed and withdrawable device				
Direct	Black	Red on yellow front		
Extended	Black Red on yellow front			
Indication auxiliary	6 A-240 V AC	2 early-make switches		
Locking				
Toggle (1 to 3 padlocks)	Removable system	Fixed sys		
Rotary handle using a keylock	OFF position	ON and OFF positions		
	Ronis 1351B. 500	Profalux KS5 B24 D4Z		
	Keylock kit (without keylock)			
For electrically operated devices	VBP - ON/OFF pushbutton locking			
	OFF position locking:			
	VCPO - by padlocks			\square
	VSPO - by keylocks			
	Keylock kit (w/o keylock)	Profalux	Ronis	
	1 keylock	Profalux	Ronis	
	2 identical keylocks, 1 key	Profalux	Ronis	
Chassis locking in "disconnected" position:				
VSPD - by keylocks	Keylock kit (w/o keylock)	Profalux Kirk	Ronis	
			Castell	
	1 keylock	Profalux	Ronis	
	2 identical keylocks, 1 key	Profalux	Ronis	
	2 keylocks, different keys	Profalux	Ronis	
	Optional connected/disconnected/test position locking			
VPEC - door interlock		On right-hand side of chassis		
		On left-ha	f chassis	
VPOC - racking interlock				
VDC - mismatch protection				
Accessories				
CDM - mechanical operation counter				
CDP - escutcheon				
CP - transparent cover for escutcheon				
OP - blanking plate for escutcheon				
Mounting brackets for fixed NS		for mounting on horizontal plane		\square
Test kits	Mini test kit	Portable t		

Source-changeover systems for 2 devices
 Masterpact NT or NW / Circuit breakers and switch-disconnectors

Abstract

To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles \qquad

Diagram for 2 Masterpact NT/NW devices
Electrical interlocking with lockout after fault:

Permanent replacement source (without IVE)	(no. 51201139)	\square
With emergency off by MX (without IVE)	(no. 51201140)	\square
With emergency off by MN (without IVE)	(no. 51201141)	\square
Permanent replacement source (with IVE)	(no. 51201142)	\square
With emergency off by MX (with IVE)	(no. 51201143)	\square
With emergency off by MN (with IVE)	(no. 51201144)	\square
Automatic control without lockout after fault:		
Permanent replacement source (without IVE)	(no. 51156226)	\square
Engine generator set (without IVE)	(no. 51156904)	\square
Automatic control with lockout after fault:	(no. 51156905)	\square
Permanent replacement source (with IVE)	(no. 51156903)	\square
Engine generator set (with IVE)		
BA/UA controller (with IVE)		

Interlocking using connecting rods (NT/NW devices one above the other)
Select a complete set including two adaptation fixtures and the connecting rods

Complete set for:	2 drawout NT devices	2 fixed NT devices
	2 drawout NW devices	2 fixed NW devices

1 fixed NT device +1 fixed NW devices
1 drawout NT device + 1 drawout NW device
Interlocking using cables (NT/NW devices one above the other or side-by-side)
Select two adaptation fixtures (one for each device) and a set of two cables

Source-changeover systems for 2 devices
 Masterpact NT or NW / Circuit breakers and switch-disconnectors

To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles
(one sheet per device, make copies if necessary)
Device identification:

Q 1 - NORMAL SOURCE			
Q 2 - REPLACEMENT SOURCE			
Circuit breaker or switch-disconnector			
Masterpact type	NT	NW	
Rating	A		
Sensor rating	A		
Circuit breaker	N1,		
Switch-disconnector			
Number of poles	3 or		
Option: neutral on right side			
Device	Fixed		
	With		
	With (mov		

Chassis alone without connection
Micrologic control unit

Indication contacts			
OF - ON/OFF indication contacts			
Standard	4 OF 6 A-240 V AC (10 A-240 V AC and low-level for NW)		
Additional	1 block of 4 OF for NW	max. 2	qty
EF - combined "connected/closed" contacts			
	1 EF 6A-240 V AC for NW	max. 8	qty
	1 EF low-level for NW	max. 8	qty

SDE - "fault-trip" indication contact

VBP - ON/OFF pushbutton locking (by transparent cover + padlocks)
OFF position locking:
VCPO - by padlocks
VSPO - by keylocks

Keylock kit (w/o keylock)		Ronis Castell
	Profalux	
	Kirk	
1 keylock	Profalux	Ronis
2 identical keylocks, 1 key	Profalux	Ronis
2 keylocks, different keys (NW)	Profalux	Ronis

Chassis locking in "disconnected" position:

VSPD - by keylocks	Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discon	Profalux Kirk Profalux Profalux Profalux d/test pos	Ronis Caste Ronis Ronis Ronis king
VPEC - door interlock		On right-hand side of chassis On left-hand side of chassis	
VPOC - racking interlock			
IPA - cable-type door interlock			
IBPO - racking interlock between crank and OFF pushbutton for NW			
DAE - automatic spring discharge before breaker removal for NW			
VDC - mismatch protection			
Accessories			
CDM - mechanical operation counter CB - auxiliary terminal shield for chassis CDP - escutcheon CP - transparent cover for escutcheon OP - blanking plate for escutcheon			
Brackets for mounting NW fixed on backp	d on backplates		
Test kits	Mini test kit	Portable	

Source-changeover systems for 3 devices
 Masterpact NW / Circuit breakers
 and switch-disconnectors

To indicate your choices, check the applicable square boxes \square and enter the
appropriate information in the rectangles appropriate information in the rectangles \square
Diagram for 3 Masterpact NW devices
2 "Normal" sources + 1 "Replacement" source:
Electrical interlocking without lockout after fault
(no. 51156906)
Electrical interlocking with lockout after fault
(no. 51156907)
2 "Normal" sources + 1 "Replacement" source with source selection:

Automatic control $w /$ engine generator set w / o lockout after fault	(no. 51156908)
Automatic control $w /$ engine generator set $w /$ lockout after fault	(no. 51156909)

3 sources, only 1 device ON:
Electrical interlocking without lockout after fault (no. 51156910)
Electrical interlocking with lockout after fault
(no. 51156911)
2 "Normal" sources + 1 coupling:
Electrical interlocking without lockout after fault (no. 51156912)
Electrical interlocking with lockout after fault
(no. 51156913)
Automatic control with lockout after fault:
(no. 51156914)
Interlocking using cables (NW devices one above the other or side-by-side)
Select a complete set including three adaptation fixtures and the cables
1 complete set for: 3 sources / 1 device ON, fixed or drawout
2 sources + 1 coupling, fixed or drawout
2 sources +1 replacement source, fixed or drawout

Source-changeover systems for 3 devices
 Masterpact NW / Circuit breakers and switch-disconnectors

To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles
(one sheet per device, make copies if necessary)
Device identification:

Q 1 - NORMAL SOURCE		
Q 2 - REPLACEMENT SOURCE		
Circuit breaker or switch-disconnector		
Masterpact type	NW	
Rating	A	
Sensor rating	A	
Circuit breaker	N1, H1, H2, H3, L1	
Switch-disconnector	NA, HA, HF	
Number of poles	3 or 4	
Option: neutral on right side		
Device	Fixed	
	Drawout with chassis	
	Drawout without chassis (moving part only)	

Chassis alone without connections				
Micrologic control unit				
A-ammeter				
	$2.0 \square 5.0$	6.0	7.0	
P - power meter	5.0	6.0	7.0	
H-harmonic meter	5.0	6.0	7.0	
AD - external power-supply module				
TCE - external sensor (CT) for neutral protection				
Rectangular sensor for earth-leakage protection$\quad 470 \times 160 \mathrm{~mm}$				
TCW - external sensor for SGR protection				
LR - long-time rating plug S			$\begin{aligned} & 0.8 \mathrm{lr} \\ & 1 \mathrm{lr} \end{aligned}$	
PTE - external voltage measurement input (required for reverse supply)				
BAT - battery module				
Communication				
Eco COM module Modbus(for switchboard display units)				
Connections				
Horizontal Top	Top		Bottom	
Vertical Top			Bottom	
Front Top	Top		Bottom	
Interphase barriers Fix				
Disconnectable front \quad Fixedconnection adapter				
VO - safety shutters on chassis				X
VIVC - shutter position indication and locking				

Indication contacts			
OF - ON/OFF indication contacts			
Standard	4 OF 6 A-240 V AC (10 A-240 V AC and low-level)		
Additional	1 block of 4 OF	max. 2	qty
EF - combined "connected/closed" contacts			
	1 EF 6 A-240 VAC	max. 8	qty
	1 EF low-level	max. 8	qty

SDE - "fault-trip" indication contact

VBP - ON/OFF pushbutton locking (by transparent cover + padlocks)
OFF position locking:

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

This document has been printed on ecological paper.
Design: Schneider Electric
Photos: Schneider Electric
Printed: Centre Impression - made in France

Low Voltage Products

Masterpact NW08-63 IEC

User manual

Masterpact NW08-63 IEC

Discovering Masterpact 2
Using Masterpact 8
Understanding the controls and indications 8
Charging the circuit breaker 9
Closing the circuit breaker 10
Opening the circuit breaker 11
Resetting after a fault trip 12
Locking the controls 13
Using the Masterpact drawout chassis 16
Identifying the circuit breaker positions 16
Racking 17
Matching a Masterpact circuit breaker with its chassis 19
Locking the switchboard door 20
Locking the circuit breaker in position 21
Locking the safety shutters 24
Identifying the electrical auxiliaries 26
Identification of the connection terminals 26
Electrical diagrams 27
Operation 29
Discovering Masterpact's accessories 30
Micrologic control units 30
Indication contacts 31
Auxiliaries for remote operation 33
Device mechanical accessories 35
Chassis mechanical accessories 37
Inspecting and testing before use 40
Initial test 40
What to do when the circuit breaker trips 41
Maintaining Masterpact performance 42
Recommended maintenance program 42
Maintenance operations 43
Ordering replacement parts 45
Troubleshooting and solutions 46
Checking Masterpact operating conditions 48

The Masterpact NW range of circuit breakers and switch-disconnectors offer current ratings from 800 A to 6300 A.
Five different performance levels are available:

- N1: standard with total discrimination
- H1: high performance with total discrimination
- H2: a compromise between current limiting and discrimination
- H3: high breaking capacity and discrimination, without current limiting

■ L1: high level of current limiting, with some discrimination.

Rating plate

Masterpact circuit breakers are available in drawout and fixed versions. The drawout version is mounted on a chassis and the fixed version is installed using fixing brackets

Drawout version

Fixed version

Circuit breaker / switch-disconnector

Front

蓇

Trip indication button used to reset before closing

Understanding the controls and indications

Circuit breaker open, charged and "ready to close"

Charging the circuit breaker

The charge status is indicated as follows.

The springs in the circuit breaker operating mechanism must be charged to store the energy required to close the main contacts. The springs may be charged manually using the charging handle or the optional MCH gear motor.

Manual charging:
Pull the handle down seven times until you hear a "clack".

Automatic charging: If the MCH gear motor is installed, the spring is automatically recharged after each closing.
$\stackrel{\square}{\circ}$
$\stackrel{\rightharpoonup}{5}$
$\stackrel{3}{4}$

Device not "ready to close"

Opening the circuit breaker

The circuit breaker signals a fault by:
\square a mechanical indicator on the front panel
■ one or two SDE "fault-trip" indication contacts (SDE/2 is optional).

Locally

If the circuit breaker is not equipped with the automatic reset option, reset it manually.

Locking the controls
 Disabling circuit-breaker local closing and opening

Pushbutton locking using a padlock

(shackle diameter 5 to 8 mm), a lead seal or screws.

Padlock

Lead seal

Insert the padlock shackle, lead seal or screws.

Unlocking
Remove the padlock, lead seal or screws.

Lift the covers and swing them down.

The pushbuttons are no longer locked.

Combination of locking systems

To disable circuit-breaker closing using the pushbuttons or remotely, use as needed:
■ a padlock
■ one or two keylocks
\square a combination of the two locking systems.

Install a padlock (maximum shackle diameter 5 to 8 mm)

Locking
Open the circuit breaker. Pull out the tab. Insert the padlock

Check
The controls are inoperative.

Unlocking
Remove the padlock.

Locking the controls with one or two keylocks

Locking
Open the circuit breaker. Turn the key(s). Remove the key(s).

Check

The controls are inoperative.

Unlocking
Insert the key(s). Turn the key(s)
The key(s) cannot be removed.

Four types of keylocks are available.

RONIS

KIRK

PROFALUX

CASTELL

Identifying the circuit breaker positions

The indicator on the front signals the position of the circuit breaker in the chassis.

■ "connected" position

■ "test" position

■ "disconnected" position

These operations require that all chassislocking functions be disabled (see page 21).

Caution. The right-hand rail cannot be removed if the crank has not been removed or if the circuit breaker is not fully disconnected.

Prerequisites

To connect and disconnect Masterpact, the crank must be used. The locking systems, padlocks and the racking interlock all inhibit use of the crank.

Withdrawing the circuit breaker from the "connected" to "test" position, then to "disconnected" position

The circuit breaker is in "connected" position.

The circuit breaker is in "test" position. Remove the crank or continue to "disconnected" position.
The circuit breaker is in
"test" position.

The circuit breaker is in "disconnected" position

Removing the rails

Press the release tabs and pull the rails out.

To put the rails back in, press the release tabs and push the rails in.

For complete information on Masterpact handling and mounting, see the installation manual(s).

Before mounting the circuit breaker, make sure it matches the chassis.

If you cannot insert the circuit breaker in the chassis, check that the mismatch protection on the chassis corresponds to that on the circuit breaker.

Inserting Masterpact

Position the circuit breaker on the rails. Check that it rests on all four supports.

Open the circuit breaker (in any case, it opens automatically during connection).

Push the circuit breaker into the chassis, taking care not to push on the control unit.

Racking the circuit breaker from the "disconnected" to "test" position, then to "connected" position

The device is in "test" position. Remove the crank or continue to "connected" position.

The device is in "connected" position

Matching a Masterpact circuit breaker with its chassis

To set up a mismatch-prevention
combination for the circuit breaker and the chassis, see the mismatch-prevention installation manual.

The mismatch protection ensures that a circuit breaker is installed only in a chassis with compatible characteristics.

The possible combinations are listed below.

ABCD	567	BCDE	167
ABCE	467	BCDF	157
ABCF	457	BCDG	147
ABCG	456	BCEF	146
ABDE	367	BCEG	137
ABDF	357	B DEF	136
ABDG	356	B DEG	135
ABEF	347	B D F G	134
ABEG	346	CDEF	127
ABFG	345	CDEG	126
ACDE	267	CEFG	124
ACDF	257	DEFG	123
ACDG	256		
ACEF	247		
ACEG	246		
ACFG	245		
ADEF	237		
ADEG	236		
ADFG	235		
AEFG	234		

The locking device is installed on the left or right-hand side of the chassis:
■ when the circuit breaker is in "connected" or "test" position, the latch is lowered and the door is locked
■ when the circuit breaker is in "disconnected" position, the latch is raised and the door is unlocked.

呂

Disabling door opening
Close the door.

Put the Masterpact in
The door is locked. "test" or "connected" position.

Enabling door opening

Put the Masterpact in The door is unlocked.
"disconnected" position.

Locking the circuit breaker in position

Padlocks and keylocks
may be used together.

Combination of locking systems

To disable local or remote opening or closing of the circuit breaker, use as needed:

- one to three padlocks

■ one or two keylocks
■ a combination of the two locking systems.

Disabling connection when the circuit breaker is in "disconnected" position, using one to three padlocks (maximum shackle diameter 5 to 8 mm)

Locking

Circuit breaker in "disconnected" position.

Insert the shackle (max. diameter 5 to 8 mm) of the padlock(s).

Unlocking.
Remove the padlock(s).

The crank can be inserted.

Padlocks and keylocks may be used together. Disabling connection when the circuit breaker is in "disconnected" position, using one or two keylocks.

Unlocking

Insert the key(s).
Turn the key(s).

The crank can be inserted.

Four types of keylocks are available

RONIS

PROFALUX

CASTELL

KIRK

For this operation, the circuit breaker must be removed from the chassis.

Disabling use of the crank in all positions

It is possible to modify the padlock and keylock locking function. Instead of locking only in "disconnected" position, it is possible to lock the circuit breaker in all positions.
Set the circuit breaker to "disconnected" position. Remove the circuit breaker from the chassis.

Insert the crank.

Turn the catch to the right. The circuit breaker can now be locked in all positions.

Locking the circuit breaker when the door is open

When the door is open, the crank cannot be inserted.

Using the shutter locking blocks

Remove the block(s) from Position the block(s) on the guide(s). their storage position.

Lock the block(s) using a padlock.

Four locking possibilities

Top and bottom shutters not locked.

Top shutter not locked, Bottom shutter locked.

Top shutter locked, Bottom shutter not locked.

Top and bottom shutters locked.

Padlocking or position indication on the front

This system offers two functions: ■ padlocking of the top or bottom shutters ■ indication of the position of each shutter:

- shutter open
\square shutter closed.

Locking

Pull out the left-hand tab to lock the top shutter.

Pull out the right-hand tab to lock the bottom shutter.

Pull out both tabs to lock both shutters.

Unlocking

Remove the padlock.

Insert a padlock (shackle 5 to 8 mm).

Insert a padlock (shackle 5 to 8 mm).

Insert a padlock (shackle 5 to 8 mm).

Release the tab(s).

Electrical diagrams Fixed and drawout devices

The diagram is shown with circuits

de-energised, all devices open, connected
and charged and relays in normal position.

Control unit					
Com	UC1	UC2	UC3	UC4	M2C / M6C
$\begin{array}{cc} 0 & 0 \\ \text { E5 } & \text { E6 } \end{array}$	$\begin{array}{lc} \circ \\ \text { Z5 } & \circ \\ \text { M1 } \end{array}$	$\begin{gathered} \circ \\ \text { M2 } \\ \hline \text { M } \end{gathered}$	$\stackrel{\mathrm{F} 2+}{\mathrm{O}}$	$\delta_{\mathrm{V} 3} \mathrm{\delta}^{\circ}$	$\mathrm{S}_{484} \mathrm{O}_{\mathrm{Q} 3}{ }^{\circ}$
$\begin{array}{cc} \circ & \circ \\ \text { E3 } & \text { E4 } \end{array}$	$\begin{array}{cc} \circ & \circ \\ \text { Z3 } & \text { Z4 } \end{array}$	$\begin{array}{cc} \circ & \circ \\ \text { T3 } & \text { T4 } \end{array}$	$\mathrm{O}_{\mathrm{VN}} \mathrm{O}^{\circ}$	$\mathrm{JV2}^{\mathrm{O}}$	$\mathrm{O}_{474}^{\mathrm{o}} \mathrm{O}_{\mathrm{Q} 2}{ }^{\circ}$
$\begin{array}{cc} \circ & \circ \\ \text { E1 } & \text { E2 } \end{array}$	$\begin{array}{ll} \circ & \circ \\ \text { Z1 } & \text { Z2 } \end{array}$	$\begin{array}{cc} \mathrm{O} & \mathbf{o} \\ \mathrm{~T} 1 & \mathrm{~T} 2 \end{array}$	$\stackrel{\circ}{\mathrm{O}_{1}-}$	$\delta_{\mathrm{V} 1}$	$\mathrm{O}_{471}^{\circ} \text { / } \mathrm{QQ1}^{\circ}$

Remote operation						
SDE2 / Res	SDE1	MN / MX2	MX1	XF	PF	MCH
$\delta_{184}^{\circ}, \delta_{K 2}^{\circ}$	δ_{84}°	$\delta_{D 2}^{\delta},{ }_{\mathrm{C} 12}{ }^{\circ}$	$\delta_{\mathrm{C} 2}{ }^{\circ}$	$\delta_{A 2}^{\circ}$	${ }_{254}{ }^{\circ}$	$\delta_{\mathrm{B} 2}^{\circ}$
${ }_{182}{ }^{\circ}$	${ }_{82}{ }^{\circ}$		$\mathrm{O}_{\mathrm{C} 3}$	$\delta_{\mathrm{A} 3}$	${ }_{252}^{0}$	$\delta_{B 3}$
${ }_{181}{ }^{\circ}, \delta_{K 1}^{0}$	${ }_{81}$	$\delta_{D 1}{ }^{\circ},{ }_{C 11}^{\circ}$	$\delta_{\mathrm{C} 1} \mathrm{O}$	$\delta_{A 1}^{\circ}$	${ }_{251}^{0}$	$\mathrm{O}_{\mathrm{B} 1}{ }^{\circ}$

[^9]

Chassis contacts

Chassis contacts								
CD3	CD2	CD1	CE3	CE2	CE1	CT3	CT2	CT1
δ_{834}°	${ }_{824}$	O_{814}	${ }_{334}$	$\stackrel{8}{824}$	$\stackrel{\circ}{0}$	${ }_{934}^{\circ}$	${ }_{924}$	δ_{914}°
$\overline{0_{832}}$	$\begin{aligned} & \delta .8 \\ & 822 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \delta> \\ 812 \end{array}$	${ }_{332}$	ס	$\begin{aligned} & 512 \\ & \hline \end{aligned}$	ס.	O_{922}	$\delta_{912} \delta^{\prime}$
δ_{831}	${ }_{821}$	δ_{811}^{0}	ס	ס	δ_{311}^{0}	$\text { ס }{ }_{931}$	δ_{921}	$\delta_{911}{ }^{\circ}$
or						or		
CE6	CE5	CE4				CE9	CE8	CE7
${ }_{364}$	${ }^{\circ} \mathrm{O}$	$\longdiv { 0 }$				$\stackrel{\circ}{\circ}$	${ }_{384}$	δ_{374}
$\stackrel{8}{0}$	$广 \underset{352}{ }$	$\underset{342}{ }$				ס	δ_{382}	$\delta_{372}{ }^{\circ}$
$\sqrt{861}$	$\mathrm{O}_{351}^{\mathrm{O}}$	$\stackrel{0}{0}$				δ_{391}	δ_{381}	δ_{371}

Chassis contacts

CD3: Disconnected CE3: Connected CT3: Test-position
CD2 -position CE2 -position CT2 contacts

CD1 contacts CE1 contacts CT1 contacts
or
$\begin{array}{ll}\text { CE6: } & \text { Connected } \\ \text { CE5 position } & \text { CE9: Connected } \\ \text { CE4 } & \text { CED }\end{array}$
CE4 contacts CE7 contacts
or
CD6: Disconnected
CD5 position
CD4 contacts

Key:

Drawout device only
SDE1, OF1, OF2, OF3, OF4 supplied as standard
Interconnected connections
(only one wire per connection point)

The ON/OFF indication contacts signal the status of the device main contacts.

open	closed	
closed	open	

OF : ON/OFF (closed/open) indication changeover contacts

The carriage switches indicate the "connected", "test" and "disconnected" positions.

髪 completely disconnected

For more in-depth information,
see the control-unit user manua

Micrologic control units

■ standard equipment,
one per device
■ long-time rating plug and connection cables not included, see below:
Micrologic 2.0
Micrologic 5.0
Micrologic 2.0A
Micrologic 5.0A
Micrologic 6.0A
Micrologic 7.0A
Micrologic 5.0P
Micrologic 6.0P
Micrologic 7.0P
Micrologic 5.0P
Micrologic 6.0 H
Micrologic 7.0 H
■ connection cables:
\square for fixed device
\square for drawout device.
\square depending on the
model, control units offer
in addition:
\square fault indications
\square measurement of
electrical parameters
(current, voltage, power,
etc.)
\square harmonic analysis
a communication.

Long-time rating plugs

■ standard equipment, one per control unit. - 0.4 to 1 x Ir setting - 0.4 to $0.8 \times \operatorname{lr}$ setting - 0.8 to 1 x Ir setting \square Off (no long-time protection).

- the plugs determine the setting range for the Long-time protection.

M2C and M6C programmable contacts

■ optional equipment, used with Micrologic P and H control units. - connection cables not included, see below: - 2 M2C contacts - 6 M6C contacts ■ connection cables: \square for fixed device \square for drawout device.

- contacts can be programmed using the keypad on the control unit or via the COM option.
they indicate: \square the type of fault a instantaneous or delayed threshold overruns.

■ M2C: 2 contacts
($6 \mathrm{~A}-240 \mathrm{~V}$)
■ M6C: 6 contacts
(6A-240V).
■ permissible load on each of the M6C relay outputs:

- 240 V AC:

5 A where p.f $=0.7$

- 380 V AC:

3 A where p.f $=0.7$

- 24 V DC:

8 A where $\mathrm{L} / \mathrm{R}=0$
-48 V DC:
1.5 A where $\mathrm{L} / \mathrm{R}=0$

- 125 V DC:
0.4 A where L/R $=0$
- 250 V DC:
0.15 A where $\mathrm{L} / \mathrm{R}=0$

■ M6C supply voltage:
24 V DC $\pm 5 \%$
■ M6C maximum
consumption: 100 mA

	ON/OFF indication contacts (OF)		
	standard equipment: 4 OF per device.	- OF contacts indicate the position of main contacts - they trip when the minimum isolation distance between the main contacts is reached	■ 4 changeover contacts - rated current: 10 A - breaking capacity 50/60 Hz for AC power (AC12 as per 947-5-1): -480 V: 10 A (rms) $\square 600 \mathrm{~V}: 6 \mathrm{~A}(\mathrm{rms})$ \square breaking capacity for DC power (DC12 as per 947-5-1): 250 V: 3 A.
	Additional ON/OFF - optional equipment, two blocks of 4 OF contacts per device connection cables not included, see below: one block of 4 OF contacts connection cables: \square for fixed device \square for drawout device	dication contacts OF contacts indicate the position of the main contacts they trip when the minimum isolation distance between the main contacts is reached	F) - changeover contacts - rated current: 10 A - breaking capacity $50 / 60 \mathrm{~Hz}$ for AC power (AC12 as per 947-5-1): $\square 480 \mathrm{~V}: 10 \mathrm{~A}$ (rms) $\square 600 \mathrm{~V}: 6 \mathrm{~A}(\mathrm{rms})$ - breaking capacity for DC power (DC12 as per 947-5-1): 250 V : 3 A.
	Combined "connect ■ optional equipment, 8 EF contacts per device each contact is mounted in place of the connector of an additional OF contact - one EF contact	d/closed" contacts ■ the contact combines the "device connected" and the "device closed" information to produce the "circuit closed" information	F) changeover contacts rated current: 10 A breaking capacity 50/60 Hz for AC power (AC12 as per 947-5-1): - $240 \mathrm{~V}: 10 \mathrm{~A}(\mathrm{rms})$ - 380 V : $10 \mathrm{~A}(\mathrm{rms})$ $\square 480 \mathrm{~V}: 10 \mathrm{~A}(\mathrm{rms})$ 600 V: 6 A (rms) breaking capacity for DC power (DC12 as per 947-5-1): - $48 \mathrm{~V}: 2.5 \mathrm{~A}$ - $130 \mathrm{~V}: 0.8 \mathrm{~A}$ - $250 \mathrm{~V}: 0.3 \mathrm{~A}$.
	"Fault-trip" indicatio - standard equipment on circuit breakers, one SDE/1 contact per device not available for switchdisconnector versions	contact (SDE/1) the contact provides a remote indication of device opening due to an electrical fault	- changeover contact rated current: 10 A breaking capacity 50/60 Hz for AC power (AC12 as per 947-5-1): - 240 V : 10 A (rms) - $380 \mathrm{~V}: 5 \mathrm{~A}$ (rms) $\square 480 \mathrm{~V}: 5 \mathrm{~A}(\mathrm{rms})$ - $600 \mathrm{~V}: 3 \mathrm{~A}$ (rms) \square breaking capacity for DC power (DC12 as per 947-5-1): - 48 V : 3 A $\square 125 \mathrm{~V}: 0.3 \mathrm{~A}$ - $250 \mathrm{~V}: 0.15 \mathrm{~A}$.

Electrical reset after fault trip (Res)

■ optional equipment, one Res per device
\square not compatible with the SDE/2 option
■ connection cables not included, see below: 110/130 V AC 220/240 V AC - connection cables: \square for fixed device \square for drawout device

- the contact remotely
resets the device
following tripping due to an electrical fault

"Springs charged" limit switch contact (CH)

■ standard equipment, one CH contact per device

- the contact indicates the "charged" status of the operating mechanism (springs charged)

■ changeover contact
■ rated current: 10 A
■ breaking capacity
50/60 Hz for AC power
(AC12 as per 947-5-1): - $240 \mathrm{~V}: 10 \mathrm{~A}(\mathrm{rms})$

- $380 \mathrm{~V}: 5 \mathrm{~A}(\mathrm{rms})$
- $480 \mathrm{~V}: 5 \mathrm{~A}(\mathrm{rms})$
$\square 600 \mathrm{~V}: 3 \mathrm{~A}$ (rms)
■ breaking capacity
for DC power
(DC12 as per 947-5-1):
- 48 V : 3 A
- $125 \mathrm{~V}: 0.3 \mathrm{~A}$
$\square 250 \mathrm{~V}: 0.25 \mathrm{~A}$.

"Ready to close" contact (PF)

■ optional equipment,
one PF contact per device
■ connection cables not included, see below: one PF contact - connection cables: \square for fixed device \square for drawout device
\square the contact indicates that the device may be closed because all the following are valid: \square circuit breaker is open \square spring mechanism is charged - a maintained closing order is not present \square a maintained opening order is not present
changeover contac

- rated current: 10 A \square breaking capacity $50 / 60 \mathrm{~Hz}$ for AC power (AC12 as per 947-5-1): - 240 V: 10 A (rms) - $380 \mathrm{~V}: 5 \mathrm{~A}$ (rms) \square breaking capacity for DC power (DC12 as per 947-5-1): - $48 \mathrm{~V}: 3 \mathrm{~A}$ - $125 \mathrm{~V}: 0.3 \mathrm{~A}$ $\square 250 \mathrm{~V}: 0.15 \mathrm{~A}$.

Auxiliaries for remote operation

Gear motor (MCH)

- optional equipment,
one MCH gear motor
per device
■ connection cables not
included, see below:
$100 / 130 \mathrm{~V} \mathrm{AC}$
$200 / 240 \mathrm{~V} \mathrm{AC}$
277 V AC
$380 / 415 \mathrm{~V} \mathrm{AC}$
$400 / 440 \mathrm{~V} \mathrm{AC}$
480 V AC
$24 / 30 \mathrm{~V} \mathrm{DC}$
$48 / 60 \mathrm{~V} \mathrm{DC}$
$100 / 125 \mathrm{~V}$ DC
$200 / 250 \mathrm{~V}$ DC
■ connection cables:
\square for fixed device
\square for drawout device
- the gear motor automatically charges and recharges the spring mechanism
- charging time:

4 seconds max.

- consumption:
- 180 VA AC
- 180 W DC
- inrush current:

2 to 3 In for 0.1 second

- operating rate:
maximum 3 cycles
per minute.

480 V AC
400 DC
100/125 V DC
200/250 V DC
\square for fixed device
\square for drawout device

Opening releases MX/1 and MX/2, closing release XF

■ optional equipment,
1 or 2 MX releases per device, 1 XF per device ■ the function (MX or XF) is determined by where the coil is installed

- connection cables not included, see below: - standard version:
- 12 V AC
$50 / 60 \mathrm{~Hz} / \mathrm{DC}$
- 24/30 V AC
$50 / 60 \mathrm{~Hz}$ / DC
- 48/60 V AC
$50 / 60 \mathrm{~Hz} / \mathrm{DC}$
- 100/130 V AC
$50 / 60 \mathrm{~Hz} / \mathrm{DC}$
- 200/250 V AC
$50 / 60 \mathrm{~Hz}$ / DC
-277 V AC
$50 / 60 \mathrm{~Hz} / \mathrm{DC}$
- 380/480 V AC
$50 / 60 \mathrm{~Hz}$ / DC.
a communicating version
(with COM option):
- 12 V AC
$50 / 60 \mathrm{~Hz} / \mathrm{DC}$
- 24/30 V AC
$50 / 60 \mathrm{~Hz} / \mathrm{DC}$
- 48/60 V AC
$50 / 60 \mathrm{~Hz} / \mathrm{DC}$
- 100/130 V AC
$50 / 60 \mathrm{~Hz} / \mathrm{DC}$
- 200/250 V AC
$50 / 60 \mathrm{~Hz} / \mathrm{DC}$
- 240/277 V AC
$50 / 60 \mathrm{~Hz} / \mathrm{DC}$
- 380/480 V AC
$50 / 60$ Hz / DC
- connection cables:
\square for fixed device
\square for drawout device - the MX release instantaneously opens the circuit breaker when energised - the XF release instantaneously closes the circuit breaker when energised, if the device is "ready to close"
- device response time
- MX: $50 \mathrm{~ms} \pm 10$

ㅁXF: $70 \mathrm{~ms}+10 /-15$
>3200 A: $80 \mathrm{~ms} \pm 10$
\square operating threshold:
ם MX: 0.7 to $1.1 \times$ Un

- XF: 0.85 to $1.1 \times$ Un
- the supply can be
maintained
- consumption: - pick-up (80 ms): 200 VA - hold: 4.5 VA

Instantaneous undervoltage releases (MN)

optional equipment, 1 MN per device	the MN release instantaneously opens	- device response time $90 \mathrm{~ms} \pm 5$
\square not compatible with the	the circuit breaker when	■ operating threshold:
MX/2 opening release	its supply voltage drops	- opening:
\square connection cables not		0.35 to $0.7 \times$ Un
included, see below:		- closing: $0.85 \times$ Un
- $24 / 30 \mathrm{~V}$ AC		\square consumption:
$50 / 60 \mathrm{~Hz}$ / DC		口 pick-up (80 ms):
-48/60 V AC		200 VA
$50 / 60 \mathrm{~Hz} / \mathrm{DC}$		\square hold: 4.5 VA
-100/130 V AC		
$50 / 60 \mathrm{~Hz} / \mathrm{DC}$		
- 200/250 V AC		
$50 / 60 \mathrm{~Hz} / \mathrm{DC}$		
- 380/480 V AC		
$50 / 60 \mathrm{~Hz} / \mathrm{DC}$		
- connection cables:		
\square for fixed device		
\square for drawout device		

Delay unit for MN releases

■ optional equipment, 1 MN with delay unit per device.

- delay-unit (must be ordered in addition to the MN):
$\square 48 / 60 \mathrm{~V} \mathrm{AC}$
$50 / 60 \mathrm{~Hz} / \mathrm{DC}$ - 100/130 V AC $50 / 60 \mathrm{~Hz} / \mathrm{DC}$ - 200/250 V AC $50 / 60 \mathrm{~Hz} / \mathrm{DC}$ - 380/480 V AC $50 / 60 \mathrm{~Hz} / \mathrm{DC}$.
\square the unit delays operation of the MN release to eliminate circuit-breaker nuisance tripping during short voltage dips
- the unit is wired in series with the MN and must be installed outside the circuit breaker
\square device response time:
$0.5,1,1.5,3$ seconds - operating threshold: - opening:
0.35 to $0.7 \times$ Un - closing: $0.85 \times$ Un
- consumption:
- pick-up (80 ms):

200 VA

- hold: 4.5 VA

Electrical closing pushbutton (BPFE)

■ optional equipment,
1 BPFE per device - connection cables not included, see below: - connection cables: \square for fixed device \square for drawout device
\square located on the front face of the device, this pushbutton carries out electrical closing of the circuit breaker via the XF release, taking into account all the safety functions that are part of the control/monitoring system of the installation.

Operation counter (CDM)

\square optional equipment,	\square the operation counter
one CDM per device	sums the number of operating cycles.

Escutcheon (CDP)

■ optional equipment,

 one CDP per device \square for fixed device \square for drawout device- the CDP increases the degree of protection to IP 40 and IK 07 (fixed and drawout devices).

[^10]

Transparent cover for pushbutton locking using a padlock, lead seal or screws

- optional equipment, one locking cover per device
- the transparent cover blocks access (together or separately)
to the pushbuttons used
to open and close the device
■ locking requires a padlock, a lead seal or two screws.

Device locking in the OFF position using a padlock

■ optional equipment, one locking system per device
the unit inhibits loca
or remote closing of the device
■ up to three padlocks
may be used for locking.

Device OFF position locking kit for keylocks

■ optional equipement,
one locking kit per device

- locks not included:
\square for Profalux or Ronis
keylocks
- for Castell keylocks
- for Kirk keylocks

Keylocks required for the device locking kit

■ one or two keylocks
per locking kit

- Ronis:

1 keylock
2 keylocks.

- Profalux:

1 keylock
2 keylocks.

Profalux

Chassis mechanical accessories

Bottom shutter closed

Safety shutters

- optional equipment - set of shutters for top and bottom:
- NW08/NW40

3 poles
4 poles

- NW40b/NW63

3 poles
4 poles

- mounted on the chassis, the safety shutters automatically block access to the disconnecting contact cluster when the device is in the "disconnected" or "test" positions.

Shutter locking blocks

■ optional equipment: 2 blocks for NW08 to NW40
4 blocks for NW40b to NW63

- the block may be
padlocked. It:
- prevents connection of the device - locks the shutters in the closed position.

Ronis

Profalux

Door interlock

$$
\begin{array}{ll}
\text { ■ optional equipment, } & \begin{array}{l}
\text { this device inhibits } \\
\text { one door interlock per } \\
\text { chassis }
\end{array} \\
& \begin{array}{l}
\text { opening of the cubicle } \\
\text { door when the circuit }
\end{array} \\
& \text { breaker is in "connected" }
\end{array}
$$

■ it may be mounted on the left or right-hand side of the chassis.

Racking interlock

■ optional equipment, one racking interlock per chassis

- this device prevents insertion of the racking handle when the cubicle door is open
\square it is mounted on the right-hand side of the chassis

Mismatch protection

■ optional equipment, one mismatch protection device per chassis

- mismatch protection offers twenty different combinations that the user may select to ensure that only a compatible circuit breaker is mounted on a given chassis.

Auxiliary terminal shield (CB)

■ optional equipment,
one CB shield per chassis

- NW08/NW040

3 poles
4 poles

- NW40b/NW63

3 poles
4 poles
the shield prevents access to the terminal block of the electrical auxiliaries.

[^11]These operations must be carried out in particular before using a Masterpact device for the first time.

A general check of the circuit breaker takes only a few minutes and avoids any risk of mistakes due to errors or negligence.
A general check must be carried out:
■ prior to initial use
\square following an extended period during which the circuit breaker is not used.
A check must be carried out with the entire switchboard de-energised. In switchboards with compartments, only those compartments that may be accessed by the operators must be de-energised.

Electrical tests

Insulation and dielectric-withstand tests must be carried out immediately after delivery of the switchboard. These tests are precisely defined by international standards and must be directed and carried out by a qualified expert.

Prior to running the tests, it is absolutely necessary to:

- disconnect all the electrical auxiliaries of the circuit breaker
(MCH, MX, XF, MN, Res electrical remote reset)
■ remove the long-time rating plug on the 7.0 A, 5.0 P, 6.0 P, 7.0 P, 5.0 H, 6.0 H, 7.0 H control units. Removal of the rating plug disconnects the voltage measurement input.

Switchboard inspection

Check that the circuit breakers are installed in a clean environment, free of any installation scrap or items
(tools, electrical wires, broken parts or shreds, metal objects, etc.).

Conformity with the installation diagram

Check that the devices conform with the installation diagram:
\square breaking capacities indicated on the rating plates
■ identification of the control unit (type, rating)
\square presence of any optional functions (remote ON/OFF with motor mechanism,
auxiliaries, measurement and indication modules, etc.)
■ protection settings (long time, short time, instantaneous, earth fault)
■ identification of the protected circuit marked on the front of each circuit breaker.

Condition of connections and auxiliaries

Check device mounting in the switchboard and the tightness of power connections.
Check that all auxiliaries and accessories are correctly installed:
■ electrical auxiliaries

- terminal blocks

■ connections of auxiliary circuits.

Operation

Check the mechanical operation of the circuit breakers:
■ opening of contacts

- closing of contacts.

Check on the control unit

Check the control unit of each circuit breaker using the respective user manuals.

What to do when the circuit breaker trips

Note the fault

Faults are signalled locally and remotely by the indicators and auxiliary contacts installed on circuit breakers (depending on each configuration). See page 12 in this manual and the user manual of the control unit for information on the fault indications available with your circuit breaker.

Identify the cause of tripping

A circuit must never be reclosed (locally or remotely) before the cause of the fault has been identified and cleared.

A fault may have a number of causes.

- depending on the type of control unit, fault diagnostics are available. See the user manual for the control unit.
depending on the type of fault and the criticality of the loads, a number of precautionary measures must be taken, in particular the insulation and dielectric tests on a part of or the entire installation. These checks and test must be directed and carried out by qualified personnel.

Inspect the circuit breaker following a short-circuit

\square check the arc chutes (see page 43).
check the contacts (see page 43).
■ check the tightness of connections (see the device installation manual).
\square check the disconnecting-contact clusters (see page 44).

Reset the circuit breaker

The circuit breaker can be reset locally or remotely.
See page 12 in this manual for information on how the circuit breaker can be reset.

Maintaining Masterpact performance
 Recommended maintenance program

Recommended program for devices used under normal operating conditions: Ambient temperature: $-5^{\circ} \mathrm{C} /+60^{\circ} \mathrm{C}$ Normal atmosphere

Periodic inspections required

Interval	Operations	Procedure
each year	■ open and close the device locally and remotely, successively using the various auxiliaries ■ test the operating sequences - test the control unit using the mini test kit	see pages 10 and 11 ■ see page 8 - see the user manual of the control unit
every two years or when the control-unit maintenance indicator reaches 100	\square check the arc chutes - check the main contacts \square check the tightness of connections ■ check the disconnecting-contact clusters	- see page 43 - see page 43 - see the device installation manual ■ see page 44

Parts requiring replacement, depending on the number of operating cycles
The following parts must be replaced periodically to lengthen the service life of the device (maximum number of operating cycles).

Part	Intervening entity	Description or procedure
arc chutes	■ user	■ see page 43.
main contacts	■ inspection: user - replacement: Schneider After Sales Support	■ see page 43.
MCH gear motor	■ user	■ see page 9.
mechanical interlocks	■ user	
connecting-rod springs	Schneider After Sales Support	
MX/MN/XF	■ user	■ see pages 10, 11.

Part replacement must be programmed on the basis of the data below, listing the service life of the various parts in numbers of O / C cycles at the rated current.

Number of O/C cycles at the rated current

Type of	Maximum	Service li	various par		
		Arc chutes	Main contacts	Connecting-rod springs, MCH	MX/XF releases
NW08 to NW16 types N1/H1/H2	25000	10000	10000	12500	12500
NW08 to NW16 type L1	25000	3000	10000	12500	12500
NW20 types H1/H2	20000	$\begin{aligned} & 440 \mathrm{~V}: 8000 \\ & 690 \mathrm{~V}: 6000 \end{aligned}$	$\begin{aligned} & 440 \text { V: } 8000 \\ & 690 \text { V: } 6000 \end{aligned}$	10000	12500
NW20 to NW25 type H3	20000	2000	$\begin{aligned} & 440 \mathrm{~V}: 8000 \\ & 690 \mathrm{~V}: 6000 \end{aligned}$	10000	12500
NW20 type L1	20000	3000	10000	10000	12500
NW25 to NW40 types H1/H2	20000	$\begin{aligned} & 440 \mathrm{~V}: 5000 \\ & 690 \mathrm{~V}: 2500 \end{aligned}$	$\begin{aligned} & 440 \mathrm{~V}: 5000 \\ & 690 \mathrm{~V}: 2500 \end{aligned}$	10000	12500
NW32 to NW40 type H3	20000	1250	$\begin{aligned} & 440 \mathrm{~V}: 5000 \\ & 690 \mathrm{~V}: 2500 \end{aligned}$	10000	12500
NW40b to NW63 types H1/H2	10000	1500	1500	5000	12500

Maintenance operations

Before undertaking any maintenance work, de-energise the installation and fit locks or warnings in compliance with all applicable safety standards.

Arc chutes

- remove the fixing screws:
- types N1, H1 and H2 - NW 40: two screws

■ types H1 and H2 • NW 40b, type H3: three screws
■ type L1: four screws.

- check the arc chutes:
- chamber not cracked

■ separators not corroded.
If necessary, replace the arc chutes.

Wear of main contacts

\square remove the arc chutes

- close the device and check the contacts

Type N1, H1, H2, H3 (- 4000 A)

Contacts OK

Contacts worn

Type H1, H2 (• 4000b A), L1

Contacts OK

Contacts worn

Ordering replacement parts

Electrical accessories

The electrical accessories that may require replacement are the following:
\square MCH gear motor
■ MX opening release(s)
$■$ XF closing release
■ MN undervoltage release.
See pages 33 and 34 in the "Auxiliaries for remote operation" section for their characteristics.

Disconnecting-contact clusters for standard NW

■ 1 cluster

- number per circuit
breaker, see table page

44.

Grease for disconnecting-contact clusters

- 1 can for standard NW.
- 1 can for NW with corrosion protection.

Front

■ 1 front for 3 - or 4-pole ■ 1 per device. devices.

Charging handle

$■ 1$ handle per device.

Crank

- 1 crank per device.

Problem	Probable causes	Solutions
circuit breaker cannot be closed locally or remotely	circuit breaker padlocked or keylocked in the "open" position circuit breaker interlocked mechanically in a source changeover system circuit breaker not completely connected the reset button signalling a fault trip has not been reset stored energy mechanism not charged MX opening shunt release permanently supplied with power MN undervoltage release not supplied with power XF closing release continuously supplied with power, but circuit breaker not "ready to close" (XF not wired in series with PF contact) ■ permanent trip order in the presence of a Micrologic P or H control unit with minimum voltage and minimum frequency protection in Trip mode and the control unit powered	disable the locking fonction ■ check the position of the other circuit breaker in the changeover system modify the situation to release the interlock - terminate racking in (connection) of the circuit breaker - clear the fault - push the reset button on the front of the circuit breaker - charge the mechanism manually ■ if it is equipped with a an MCH gear motor, check the supply of power to the motor. If the problem persists, replace the gear motor (MCH) there is an opening order. Determine the origin of the order. The order must be cancelled before the circuit breaker can be closed \square there is an opening order. Determine the origin of the order. - check the voltage and the supply circuit ($U>0.85 U n$). If the problem persists, replace the release ■ cut the supply of power to the XF closing release, then send the closing order again via the XF, but only if the circuit breaker is "ready to close" - Disable these protection functions on the Micrologic P or H control unit
circuit breaker cannot be closed remotely but can be opened locally using the closing pushbutton	■ closing order not executed by the XF closing release	- check the voltage and the supply circuit (0.85-1.1 Un). If the problem persists, replace the XF release
unexpected tripping without activation of the reset button signalling a fault trip	■ MN undervoltage release supply voltage too low ■ load-shedding order sent to the MX opening release by another device unnecessary opening order from the MX opening release	check the voltage and the supply circuit ($U>0.85$ Un) check the overall load on the distribution system if necessary, modify the settings of devices in the installation determine the origin of the order
unexpected tripping with activation of the reset button signalling a fault trip	a fault is present : ■ overload - earth fault ■ short-circuit detected by the control unit	- determine and clear the causes of the fault ■ check the condition of the circuit breaker before putting it back into service
instantaneous opening after each attempt to close the circuit breaker with activation of the reset button signalling a fault trip the	thermal memory transient overcurrent when closing closing on a short-circuit	- see the user manual of the control unit $■$ press the reset button modify the distribution system or control-unit settings - check the condition of the circuit breaker before putting it back into service - press the reset button - clear the fault - check the condition of the circuit breaker before putting it back into service press the reset button

Problem	Probable causes	Solutions
circuit breaker cannot be opened remotely, but can be opened locally	■ opening order not executed by the MX opening release opening order not executed by the MN undervoltage release	■ check the voltage and the supply circuit (0.7-1.1 Un). If the problem persists, replace the MX release - drop in voltage insufficient or residual voltage (> 0.35 Un) across the terminals of the undervoltage release. If the problem persists, replace the MN release
circuit breaker cannot be opened locally	- operating mechanism malfunction or welded contacts	- contact a Schneider service centre
circuit breaker cannot be reset locally but not remotely	insufficient supply voltage for the MCH gear motor	check the voltage and the supply circuit (0.7-1.1 Un). If the problem persists, replace the MCH release
nuisance tripping of the circuit breaker with activation of the reset button signalling a fault trip	■ reset button not pushed-in completely	■ push the reset button in completely
impossible to insert the crank in connected, test or disconnected position	a padlock or keylock is present on the chassis or a door interlock is present	■ disable the locking function
impossible to turn the crank	- the reset button has not been pressed	- press the reset button
circuit breaker cannot be removed from chassis	- circuit breaker not in disconnected position the rails are not completely out	turn the crank until the circuit breaker is in disconnected position and the reset button out pull the rails all the way out
circuit breaker cannot be connected (racked in)	■ chassis/circuit breaker mismatch protection the safety shutters are locked the disconnecting-contact clusters are incorrectly positioned chassis locked in disconnected position the reset button has not been pressed, preventing rotation of the crank the circuit breaker has not been sufficiently inserted in the chassis	- check that the chassis corresponds with the circuit breaker - remove the lock(s) - reposition the clusters ■ disable the chassis locking function ■ press the reset button ■ insert the circuit breaker completely so that it is engaged in the racking mechanism
circuit breaker cannot be locked in disconnected position	- the circuit breaker is not in the right position the cranck is still in the chassis	- check the circuit breaker position by making sure the resett button is out remove the crank and store it
circuit breaker cannot be locked in connected, test or disconnected position	- check that locking in any position is enabled \square the circuit breaker is not in the right position - the cranck is still in the chassis	■ contact a Schneider service centre ■ check the circuit breaker position by making sure the rese button is out - remove the crank and store it
the crank cannot be inserted to connect or disconnected the circuit breaker	\square the rails are not completely in	■ push the rails all the way in
the right-hand rail (chassis alone) or the circuit breaker cannot be drawn out	- the crank is still in the chassis	■ remove the crank and store it

Ambient temperature

Masterpact NW devices can operate under the following temperature conditions:
\square the electrical and mechanical characteristics are stipulated for an ambient temperature of $-5^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

- circuit-breaker closing is guaranteed down to $-35^{\circ} \mathrm{C}$
\square Masterpact NW (without the control unit) can be stored in an ambient temperature of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\square the control unit can be stored in an ambient temperature of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Extreme atmospheric conditions

Masterpact NW devices have successfully passed the tests defined by the following standards for extreme atmospheric conditions:

■ IEC 68-2-1: dry cold at $-55^{\circ} \mathrm{C}$

- IEC 68-2-2: dry heat at $+85^{\circ} \mathrm{C}$

■ IEC 68-2-30: damp heat (temperature $+55^{\circ} \mathrm{C}$, relative humidity 95%)
■ IEC 68-2-52 level 2 : salt mist.
Masterpact NW devices can operate in the industrial environments defined by standard IEC 947 (pollution degree up to 4).

It is nonetheless advised to check that the devices are installed in suitably cooled switchboards without excessive dust.

Masterpact NW devices with corrosion protection have successfully passed the tests defined by the following standards for extreme atmospheric conditions:

■ IEC 68-2-42: atmospheres containing sulphur dioxide (SO_{2})
■ IEC 68-2-43: atmospheres containing hydrogen sulphide ($\mathrm{H}_{2} \mathrm{~S}$).

Vibrations

Masterpact NW devices resist electromagnetic or mechanical vibrations.
Tests are carried out in compliance with standard IEC 68-2-6 for the levels required by merchant-marine inspection organisations (Veritas, Lloyd's, etc.):
■ 2 to 13.2 Hz : amplitude $\pm 1 \mathrm{~mm}$
■ 13.2 to 100 Hz : constant acceleration 0.7 g .
Excessive vibration may cause tripping, breaks in connections or damage to mechanical parts.

Altitude

Masterpact NW devices are designed for operation at altitudes under 2000 metres.
At altitudes higher than 2000 metres, the modifications in the ambient air (electrical resistance, cooling capacity) lower the following characteristics.

altitude (m)	2000	3000	4000	5000
dielectric resistance voltage (V)	3500	3150	2500	2100
average insulation level (V)	1000	900	700	600
maximum utilisation voltage (V)	690	590	520	460
average thermal current (A) at $40^{\circ} \mathbf{C}$	$1 \times \ln$	$0.99 \times \ln$	$0.96 \times \ln$	$0.94 \times \ln$

Electromagnetic disturbances

Masterpact NW devices are protected against:
■ overvoltages caused by devices that generate electromagnetic disturbances
■ overvoltages caused by an atmospheric disturbances or by a distribution-system outage (e.g. failure of a lighting system)
\square devices emitting radio waves (radios, walkie-talkies, radar, etc.)

- electrostatic discharges produced by users.

Masterpact NW devices have successfully passed the electromagneticcompatibility tests (EMC) defined by the following international standards:

- IEC 947-2, appendix F

■ IEC 947-2, appendix B (trip units with earth-leakage function).
The above tests guarantee that:
■ no nuisance tripping occurs
\square tripping times are respected.

Cleaning

- non-metallic parts:
never use solvent, soap or any other cleaning product. Clean with a dry cloth only - metal parts:
clean with a dry cloth whenever possible. If solvent, soap or any other cleaning product must be used, make sure that it does not come into contact with non-metallic parts.

Schneider Electric Industries SAS
5, rue Nadar
92506 Rueil-Malmaison Cedex France
Tel: +33 (0)1 41298200
Fax:+33 (0)1 47518020
http://www.schneider-electric.com
http://www.merlin-gerin.com
04443720AA-F1
As standards, specifications and designs develop from time, always ask for confirmation of the information given in this publication.

Printed on recycled paper

Designed by: SEDOC
Photos: Schneider
Printed by:
old TMSI415

Masterpact NW Merlin Gerin

(F) Notice d'installation
(EN) Installation manual
(DE) Montageanleitung
(IT) Manuale d'installazione
(ES) Instrucciones de instalación

Disjoncteur fixe et débrochable / Fixed and drawout circuit breaker / Leistungsschalter in Festeinbau und Einschubtechnik / Interruttore fisso ed estraibile / Interruptor automático fijo y seccionable

© Merlin Gerin

A

Danger et avertissement / Danger and warning / Vorsicht Lebensgefahr Norme di sicurezza e avvertenze / Instrucciones de seguridad

Le montage de ces matériels ne peut être effectué que par des professionnels. Le non respect des indications de la présente notice ne saurait engager la responsabilité du constructeur.

RISQUE D'ELECTROCUTION, DE BRULURES OU D'EXPLOSION

- l'installation et l'entretien de cet appareil ne doivent être effectués que par des professionnels
- coupez l'alimentation générale et auxiliaire de cet appareil avant toute intervention sur ou dans l'appareil
- utilisez toujours un dispositif de détection de tension approprié pour confirmer l'absence de tension
- replacez tous les dispositifs, les portes et les couvercles avant de mettre cet appareil sous tension. Le non respect de ces consignes de sécurité exposerait l'intervenant et son entourage à des risques de dommages corporels graves susceptibles d'entraîner la mort.

This equipment should only be mounted by professionals. The manufacturer shall not be held responsible for any failure to comply with the instructions given in this manual.

RISK OF

ELECTROCUTION, BURNS OR EXPLOSION

- the device should only be installed and serviced by professionals
- switch off the general and auxiliary power supply to the device prior to any work on or in the device
- always use an appropriate voltage detection device to confirm the absence of voltage
- replace all interlocks, doors and covers before energising the device. Failure to take these precautions could expose intervener and people round to serious corporal injuries which could cause death.

Diese Bauteile dürfen nur von qualifiziertem Personal montiert werden.
Bei Nichteinhaltung der Anweisungen der vorliegenden Anleitung kann der Hersteller auf keinen Fall haftbar gemacht werden.

GEFAHR VON TÖDLICHEM
ELEKTROSCHOCK, VERBRENNUNGEN UND EXPLOSION

- Installierung und Wartung dieses Gerätes dürfen nur von qualifiziertem Personal vorgenommen werden - Vor jeglichem Eingriff auf oder an dem Gerät muß die Stromversorgung des Geräts unterbrochen werden
■ Vor dem Eingriff ist mit einem geeigneten
Spannungsmesser sicher zu stellen, daß keinerlei Spannung vorhanden ist ■ Bevor das Gerät erneut unter Spannung gesetzt wird, müssen sämtliche Vorrichtungen, Türen und Abdeckungen wieder angebracht sein. Falls diese
Vorsichtsmaßnahmen nicht eingehalten werden, könnte dies zu schwere Verletzungen bis hin zum Tod führen.

Il montaggio di questi materiali deve essere eseguito esclusivamente da personale competente. In caso di mancato rispetto delle indicazioni fornite nel presente manuale, il costruttore non potrà essere ritenuto responsabile.

RISCHIO DI

ELETTROCUZIONE, DI USTIONI O DI ESPLOSIONE

- l'installazione e la manutenzione di questo apparecchio devono essere eseguite esclusivamente da personale competente - prima di qualsiasi intervento sull'apparecchio o al suo interno, interrompere l'alimentazione generale e ausiliare fornita all'impianto - verificare sempre l'assenza di tensione con uno strumento adeguato
- prima di mettere questo apparecchio sotto tensione, riportatelo alle condizioni di sicurezza iniziali rimontando gli eventuali pezzi precedentemente tolti. Il mancato rispetto delle indicazioni sulla sicurezza riportate in questo documento, potrebbe causare gravi incidenti, tali da ferire o portare alla morte l'operatore.

El montaje de estos materiales sólo puede ser realizado por profesionales. El incumplimiento de las indicaciones dadas en estas instrucciones anula la responsabilidad del constructor.

RIESGO DE

ELECTROCUCION, DE QUEMADURAS O DE

EXPLOSION

- la instalación y el mantenimiento de este aparato sólo deben ser realizados por profesionales - corte la alimentación general y auxiliar del aparato antes de cualquier intervención sobre o en el mismo
- utilice siempre un dispositivo de detección de tensión apropiado para confirmar la falta de tensión - vuelva a colocar todos los dispositivos, las puertas y las tapas antes de poner este aparato bajo tensión. La falta de cumplimiento de estas precauciones puede exponer al usuario y a su entorno a riesgos de daños corporales graves susceptibles de producir la muerte.

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual
Avant toute intervention sur l'appareil / Before working on the device / Vor jeglichem Eingriff an dem Gerät / Prima di qualsiasi intervento sull'apparecchio / Antes de cualquier intervención sobre el aparato

Disjoncteur débrochable / Drawout circuit breaker / Leistungsschalter in Einschubtechnik / Interruttore estraibile / Interruptor automático seccionable

Q-Pulse Notice disinstallation / Installation manual / Montageanleitung / Manuale ad'installazioniz/28strucciones de instalación
4 Identification emballage / Package identification 4
Identifizierung der Verpackung / Identificazione dell'imballaggio /
Identificación del embalaje
2 Stockage / Storage / Lagerung / Stoccaggio / Almacenamiento 5
3 Outillage nécessaire / Necessary tools / 6Benötigtes Werkzeuge / Utensili necessari /Herramientas necesarias
4 Déballage / Unpacking / Auspacken / 7-9
Apertura dell'imballaggio / Desembalaje
5 Manutention / Handling / Transport / Trasporto / 10-14
Transporte
6 Installation / Installation / Installation / Installazione / 15-17
Instalación7 Raccordement puissance / Power connections /18-227 Hauptstromanschluß / Collegamento dei circuiti principali /Conexión potencia
Séparateur de phase - disjoncteur fixe / 23-248Interphase insulating screen - fixed circuit breaker /Phasentrenner - Leistngsschalter in Feisteinbau /Separatori di fase - interruttore fisso /Separadores de fases - interruptor automático fijo
9 Séparateur de phase - disjoncteur débrochable/ 25-27
Interphase insulating screen - draw-out circuit breaker /
Phasentrenner - Leistngsschalter in Einschubtechnik/
Separatori di fase - interruttore estraiblile/
Separadores de fases - interruptor automático seccionable
Raccordement auxiliaire / Auxiliary connections / 28-31
Conexión auxiliar
Principe de fonctionnement / Operating principle / 32-33
Funktionsweise / Principio di funzionamento /
Principio de funcionamiento Identification emballage / Package identification / Identifizierung der Verpackung / Identificazione dell'imballaggio / Identificación del embalaje

 Outillage nécessaire / Necessary tools / Benötigtes Werkzeuge / Utensili necessari / Herramientas necesarias

Clef 6 pans, clef à tube, tournevis (Pozidrive $n^{\circ} 2,3$ ou plat).

Hex key, angled socket wrench, screwdriver (Pozidrive $\mathrm{n}^{\circ} 2$, 3 or slotted).

Sechskantschlüssel, Steckschlüssel,

Schraubendreher (Pozidrive Nr. 2, 3 oder Schlitz).
Chiave per viti a brugola, chiave a tubo, cacciavite (Pozidrive n° 2, 3 o piatto).

Llave de allen, llave de tubo acodado, destornillador (Pozidrive n ${ }^{\circ}$ 2, 3 o plano).

Châssis / Chassis / Chassis / Telaio / Chasis

E46157A

Déballage STO2 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual (Unpacking / Auspacken / Apertura dell'imballaggio / Desembalaje

Disjoncteur fixe / Fixed circuit breaker / Leistungsschalter in Festeinbau / Interruttore fisso / Interruptor automático fijo

Disjoncteur débrochable sans châssis / Drawout circuit breaker without chassis / Leistungsschalter in Einschubtechnik ohne Chassis / Interruttore estraibile senza telaio / Interruptor automático seccionable sin chasis

Q-Pulse Notice d'installation / Installation manual / Montageanleitung / Manuale A diipstallazione/Abstrucciones de instalación

Déballage STO2 Fairfield STP - Tenix - 0200 Pre Treatment, Vendor Manuals - Main Switchboard - OM Manual Déballage / Unpacking / Auspacken / Apertura dell'imballaggio / Desembalaje

Disjoncteur débrochable avec châssis / Drawout circuit breaker with chassis / Leistungsschalter in Einschubtechnik mit Chassis / Interruttore estraibile con telaio / Interruptor automático seccionable con chasis

Q-Pulse Notice dilisstallation / Installation manual / Montageanleitung / Manuale d'installazippe Manutention / Handling / Transport / Trasporto / Transporte
3P

NW08 \rightarrow NW40

Châssis seul Chassis only Chassis einzeln Solo telaio Chasis solo

Disjoncteur seul

 Circuit breaker only Leistungsschalter einzelnSolo interruttore Interruptor automático solo

NW40b \rightarrow NW63

Châssis seul Chassis only Chassis einzeln Solo telaio Chasis solo

NW40b \rightarrow NW63

Disjoncteur seul Circuit breaker only Leistungsschalter
einzeln
Solo interruttore Interruptor automático solo

Fixation / Fixing / Befestigung /
Fissageo / Fijación

Raccordement / Connection / Anschluß / Collegamento / Conexión

Installation ST02 Fairfiedd STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manua Installation / Installation / Installation / Installazione / Instalación

Fixation / Fixing / Befestigung /
Fissageo / Fijación

Raccordement / Connection / Anschluß / Collegamento / Conexión

Installation / Installation / Installation / Installazione / Instalación

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual
Raccordement puissance / Power connections / Hauptstromanschluß / Collegamento dei circuiti principali / Conexión potencia

A
Attention : ne pas confondre les connecteurs Cuivre (Cu) et Aluminium (Al).
Caution: Take care to distinguish between Copper (Cu) and Aluminium (Al) connectors
Vorsicht: Es muß darauf geachtet werden, daß die Anschlußteile aus Kupfer (Cu) und Aluminium (Al) nicht verwechselt werden.
Attenzione: non confondere i connettori di Rame (Cu) e di Alluminio (Al).
Atención: No confundir los conectores de Cobre (Cu) y de aluminio (Al)

 Conexión potencia

Disjoncteur fixe / Fixed circuit breaker / Leistungsschalter in Festeinbau / Interruttore fisso / Interruptor automático fijo
 Conexión potencia

Disjoncteur fixe / Fixed circuit breaker / Leistungsschalter in Festeinbau / Interruttore fisso / Interruptor automático fijo

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Raccordement puissance / Power connections / Hauptstromanschluß / Collegamento dei circuiti principali / Conexión potencia

Disjoncteur débrochable / Drawout circuit breaker / Leistungsschalter in Einschubtechnik / Interruttore estraibile / Interruptor automático seccionable

Q-Pulse Nodice d'installation / Installation manual / Montageanleitung / Manuale d'ipstallazione Acfive 0810 Ittucciones de instalación Conexión potencia

Disjoncteur débrochable / Drawout circuit breaker / Leistungsschalter in Einschubtechnik / Interruttore estraibile / Interruptor automático seccionable

Q-Pulse Notice d'installation / Installation manual / Montageanleitung / Manuale d'installazione/I/strucciones de instalación
Page 203 of 105122

STO2 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Séparateurs de phases / Interphase insulating screen / Phasentrenner/ Separatori di fase / Separadores de fases

Disjoncteur fixe / Fixed circuit breaker / Leistungsschalter in Festeinbau / Interruttore fisso / Interruptor automático fijo

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Séparateurs de phases / Interphase insulating screen / Phasentrenner/ Separatori di fase / Separadores de fases

Disjoncteur fixe / Fixed circuit breaker / Leistungsschalter in Festeinbau / Interruttore fisso / Interruptor automático fijo

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Séparateurs de phases / Interphase insulating screen / Phasentrenner/ Separatori di fase / Separadores de fases

Disjoncteur débrochable / Drawout circuit breaker / Leistungsschalter in Einschubtechnik / Interruttore estraibile / Interruptor automático seccionable

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Séparateurs de phases / Interphase insulating screen / Phasentrenner/ Separatori di fase / Separadores de fases

Disjoncteur débrochable / Drawout circuit breaker / Leistungsschalter in Einschubtechnik / Interruttore estraibile / Interruptor automático seccionable

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Séparateurs de phases / Interphase insulating screen / Phasentrenner/ Separatori di fase / Separadores de fases

Disjoncteur débrochable / Drawout circuit breaker / Leistungsschalter in Einschubtechnik / Interruttore estraibile / Interruptor automático seccionable

 Raccordement auxiliaire / Auxiliary connections / Zubehöranschluß / Collegamento degli ausiliari / Conexión auxiliar

STO2 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Raccordement auxiliaire / Auxiliary connections / Zubehöranschluß / Collegamento degli ausiliari / Conexión auxiliar

Section des fils
Cross-section of wires / Kabelquerschnitte / Sezione dei cavi / Sección de los hilos

Schéma (page 24 et 25) représenté circuits hors tension, appareil ouvert, embroché, armé et les relais en position repos.

Diagram (page 24 and 25) shown with circuits deenergised, breaker open and in connected position, spring charged and relays in released position.

Dénudez les fils
Remove insulation / Leitungen abisolieren /
Spelare i cavi / Pele los hilos

Schaltplan (Seite 24 und 25) in stromlosem Zustand,
Schalter Aus, in Betriebstellung, Speicher gespannt und Relais in Ruhestellung Uberstromauslösesystem.

Lo schema (página 24 e 25) e rappresentato con circuiti fuori tensione, interruttore aperto, inserito, armato, con relè in posizione di riposo.

Esquema (página 24 e 25) representado circuito fuera de tensiòn, aparato abierto, conectado, armado, relé en posiciòn reposo.

Disjoncteur fixe et débrochable / Fixed and drawout circuit breaker / Leistungsschalter in Festeinbau und Einschubtechnik / Interruttore fisso ed estraibile / Interruptor automático fijo y seccionable

(1) Amont / Upstream / Einspeiseseitig / Monte / Aguas arriba (2) Aval / Downstream / Abgangsseitig / Valle / Aguas abajo
(3) Défaut / Fault/

Fehler / Guasto / Defecto (4) Prêt à fermer / Ready to close / Einschaltbereit / Pronto alla chiusura / Preparado para cerrar (5) Armé / Spring charged / Gespannt / Armato / Armado (13) Ou / Or / Oder / O / O

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Raccordement auxiliaire / Auxiliary connections / Zubehöranschluß / Collegamento degli ausiliari / Conexión auxiliar

```
Contacts de signalisation / Auxiliary switches / Hilfskontakte /
Contatti ausiliari / Contactos de señalización
```


OF4	OF3	OF2	OF1
${ }_{44}$	$\mathrm{\delta}_{34}{ }^{\circ}$	${ }_{24}^{\circ}$	$\delta_{14} \delta$
$\stackrel{8}{6}$	$\overbrace{32}{ }^{\circ}$	S_{22}	$\delta_{12} \delta$
\bigcirc_{41}°	δ_{31}°	$\mathrm{\delta}_{21}{ }^{\circ}$	$\delta_{11} \delta$

$$
\begin{aligned}
& \text { OF24 } \mid \text { OF23 } \begin{array}{l}
\text { OF22 } \\
\text { OF21 } \\
\text { OF14 } \\
\text { OF13 } \\
\text { OF12 }
\end{array} \text { OF11 }
\end{aligned}
$$

Contacts châssis / Chassis switches / Zubehör

 Einschubchassis / Ausiliari telaio / Contactos del chassis

CD3	CD2	CD1	CE3	CE2	CE1	CT3	CT2	CT1
${ }_{834}$	${ }_{824}$	${ }_{814}$	${ }_{334}$	${ }_{324}$	${ }_{314}$	${ }_{934}$	$\underset{924}{ }$	δ_{914}°
δ_{832}	δ_{822}	δ_{812}	δ_{332}	δ_{322}	O_{312}	δ_{932}	δ_{922}°	δ_{912}°
δ_{831}	${ }_{821}$	δ_{811}	δ_{331}	${ }_{321}$	δ_{311}	δ_{931}	$\stackrel{\sigma}{\mathbf{\delta}}$	δ_{911}

(6) Ouvert / Open / Aus / Aperto / Abierto (7) Fermé / Closed / Ein / Chiuso / Cerrado (8) Non embroché ou embroché ouvert / Not connected or connected open / Nicht in Betriebsstellung oder in Betriebsstellung und aus / Non inserito o inserito aperto / No enchufado o enchufado abierto
(9) Embroché fermé / Connected closed / Betriebsstellung und ein / Inserito chiuso / Enchufado cerrado
(10) Débroché /

Disconnected /
Trennstellung / Estratto /
Desenchufado
(11) Embroché / Connected / Betriebsstellung / Inserito / Enchufado
(12) Position test / Test position / Teststellung / Posizione prova / Posición de test
(13) Ou / Or / Oder / O / O

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Principe de fonctionnement / Operating principle / Funktionsweise / Principio di funzionamento / Principio de funcionamiento

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Principe de fonctionnement / Operating principle / Funktionsweise / Principio di funzionamento / Principio de funcionamiento

Schneider Electric Industries SAS

89, boulevard Franklin Roosevelt
F - 92500 Rueil-Malmaison (France)
Tel : +33 (0)141298500
http://www.schneider-electric.com

Masterpact NT/NW Compact NS630b-1600

Capot transparent pour cadre de porte débrochable Transparent cover for door escutcheon
Türdich tungsrahmen mit transparenter Abdeckung Mostrina con calotta di protezione transparente Marco de puerta con tapa transparente

Schneider
 EElectric

A

Danger et avertissement / Danger and warning / Vorsicht Lebensgefahr Norme di sicurezza e avvertenze / Instrucciones de seguridad

Le montage des ces matériels ne peut être effectué que par des professionnels.
Le non respect des indications de la présente notice ne saurait engager la responsabilité du constructeur.

RISQUE

D'ELECTROCUTION, DE

BRULURES OU

D'EXPLOSION

- l'installation et l'entretien de cet appareil ne doivent être effectués que par des professionnels
- coupez l'alimentation générale de cet appareil avant toute intervention sur ou dans l'appareil ■ utilisez toujours un dispositif de détection de tension approprié pour confirmer l'absence de tension
- replacez tous les dispositifs, les portes et les couvercles avant de mettre cet appareil sous tension. Le non respect de ces consignes de sécurité exposerait l'intervenant et son entourage à des risques de dommages corporels graves susceptibles d'entraîner la mort.

This equipment should only be mounted by professionals. The manufacturer shall not be held responsible for any failure to comply with the instructions given in this manual.

RISK OF

ELECTROCUTION, BURNS OR EXPLOSION

- the device should only be installed and serviced by professionals
■ switch off the general power supply to the device prior to any work on or in the device
- always use an appropriate voltage detection device to confirm the absence of voltage
- replace all interlocks, doors and covers before energising the device.
Failure to take these precautions could expose intervener and people round to serious corporal injuries which could cause death.

Diese Bauteile dürfen nur von qualifiziertem Personal montiert werden. Bei Nichteinhaltung der Anweisungen der vorliegenden Anleitung kann der Hersteller auf keinen Fall haftbar gemacht werden.

GEFAHR VONTÖDLICHEM ELEKTROSCHOCK, VERBRENNUNGEN UND

EXPLOSION

- Installierung und Wartung dieses Gerätes dürfen nur von qualifiziertem Personal vorgenommen werden
- Vor jeglichem Eingriff auf oder an dem Gerät muß die Stromversorgung des Geräts unterbrochen werden - Vor dem Eingriff ist mit einem geeigneten Spannungsmesser sicher zu stellen, daß keinerlei Spannung vorhanden ist
- Bevor das Gerät erneut unter Spannung gesetzt wird, müssen sämtliche Vorrichtungen, Türen und Abdeckungen wieder angebracht sein.
Falls diese Vorsichtsmaßnahmen nicht eingehalten werden, könnte dies zu schwere Verletzungen bis hin zum Tod führen.

Il montaggio di quest materiali deve essere eseguito esclusivamente da personale competente. In caso di mancato rispetto delle indicazioni fornite nel presente manuale, il costruttore non potrà essere ritenuto responsabile

RISCHIO DI

ELETTROCUZIONE, DI USTIONI O DI ESPLOSIONE

- l'installazione e la
manutenzione di questo apparecchio devono essere eseguite esclusivamente da personale competente - prima di qualsiasi intervento sull'apparecchio o al suo interno, interrompere l'alimentazione generale fornita all'impianto
■ verificare sempre l'assenza di tensione con uno strumento adeguato
- prima di mettere questo apparecchio sotto tensione, riportatelo alle condizioni di sicurezza iniziali rimontando gli eventuali pezzi
precedentemente tolti. II mancato rispetto delle indicazioni sulla sicurezza riportate in questo documento, potrebbe causare gravi incidenti, tali da ferire o portare alla morte l'operatore.

El montaje de estos materiales sólo puede ser realizado por profesionales. El incumplimiento de las indicaciones dadas en estas instrucciones anula la responsabilidad del constructor.

RIESGO DE ELECTROCUCION, DE QUEMADURAS O DE

EXPLOSION

- la instalación y el mantenimiento de este aparato sólo deben ser realizados por profesionales - corte la alimentación general del aparato antes de cualquier intervención sobre o en el mismo
- utilice siempre un dispositivo de detección de tensión apropiado para confirmar la falta de tensión - vuelva a colocar todos los dispositivos, las puertas y las tapas antes de poner este aparato bajo tensión.
La falta de cumplimiento de estas precauciones puede exponer al usuario y a su entorno a riesgos de daños corporales graves susceptibles de producir la muerte.

Avant toute intervention sur l'appareil / Before working on the device / Vor jeglichem Eingriff an dem Gerät / Prima di qualsiasi intervento sull'apparecchio / Antes de cualquier intervención sobre el aparato

Outillage nécessaire / Necessary tools / Benötigtes Werkzeuge / Utensili necessari / Herramientas necesarias

Pince, tournevis (Pozidrive n¹, 2 ou plat), foret Ø 5,2.

Plier, screwdriver (Pozidrive n¹, 2 or slotted), drill Ø \varnothing 5.2/.

Zange, Schraubendreher (Pozidrive Nr. 1, 2 oder Schlitz), Bohrer Ø 5.2.

Pinza, cacciavite (Pozidrive nº 1, 2 o piatto), puntatrapano Ø 5.2.

Pinza, destornillador (Pozidrive nº 1, 2 o plano), broca Ø 5.2.

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation / Installation / Installation / Installazione / Instalación

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation / Installation / Installation / Installazione / Instalación

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation / Installation / Installation / Installazione / Instalación

STO2 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation / Installation / Installation / Installazione / Instalación

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation / Installation / Installation / Installazione / Instalación

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation / Installation / Installation / Installazione / Instalación

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Notes / Notes / Anmerkungen / Annotazioni / Notas

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual

Schneider Electric Industries SAS

35, rue Joseph Monier
CS 30323
F- 92506 Rueil Malmaison Cedex
RCS Nanterre 954503439
Capital social $896313776 €$
Designed by: Ameg
www.schneider-electric.com
Printed by:

Masterpact NW

Notice d'installation(EN) Installation manual
(DE) Montageanleitung
(IT) Manuale d'installazione
(ES) Instrucciones de instalación

Cadenassage des boutons poussoirs / Pushbutton padlocking device / Abschliessbarkeit der Betätigungstaster / Blocco a lucchetto dei pulsanti / Enclavamiento de los botones-pulsadores

Schneider BElectric

4

Danger et avertissement / Danger and warning / Vorsicht Lebensgefahr Norme di sicurezza e avvertenze / Instrucciones de seguridad

Le montage des ces matériels ne peut être effectué que par des professionnels.
Le non respect des indications de la présente notice ne saurait engager la responsabilité du constructeur.

RISQUE D'ELECTROCUTION, DE BRULURES OU D'EXPLOSION
■ l'installation et l'entretien de cet appareil ne doivent être effectués que par des professionnels ■ coupez l'alimentation générale de cet appareil avant toute intervention sur ou dans l'appareil

- utilisez toujours un dispositif de détection de tension approprié pour confirmer l'absence de tension
■ replacez tous les dispositifs, les portes et les couvercles avant de mettre cet appareil sous tension. Le non respect de ces consignes de sécurité exposerait l'intervenant et son entourage à des risques de dommages corporels graves susceptibles d'entraîner la mort.

This equipment should only be mounted by professionals. The manufacturer shall not be held responsible for any failure to comply with the instructions given in this manual

RISK OF ELECTROCUTION, BURNS OR EXPLOSION

- the device should only be installed and serviced by professionals
- switch off the general power supply to the device prior to any work on or in the device
- always use an appropriate voltage detection device to confirm the absence of voltage
- replace all interlocks, doors and covers before energising the device.
Failure to take these precautions could expose intervener and people round to serious corporal injuries which could cause death.

Diese Bauteile dürfen nur von qualifiziertem Personal montiert werden. Bei Nichteinhaltung der Anweisungen der vorliegenden Anleitung kann der Hersteller auf keinen Fall haftbar gemacht werden.

GEFAHR VONTÖDLICHEM ELEKTROSCHOCK, VERBRENNUNGEN UND

EXPLOSION

- Installierung und Wartung dieses Gerätes dürfen nur von qualifiziertem Personal vorgenommen werden - Vor jeglichem Eingriff auf oder an dem Gerät muß die Stromversorgung des Geräts unterbrochen werden - Vor dem Eingriff ist mit einem geeigneten Spannungsmesser sicher zu stellen, daß keinerlei Spannung vorhanden ist ■ Bevor das Gerät erneut unter Spannung gesetzt wird, müssen sämtliche Vorrichtungen, Türen und Abdeckungen wieder angebracht sein.
Falls diese Vorsichtsmaßnahmen nicht eingehalten werden, könnte dies zu schwere Verletzungen bis hin zum Tod führen.

Il montaggio di questi materiali deve essere eseguito esclusivamente da personale competente. In caso di mancato rispetto delle indicazioni fornite nel presente manuale, il costruttore non potrà essere ritenuto responsabile.

RISCHIO DI
ELETTROCUZIONE, DI USTIONI O DI ESPLOSIONE - l'installazione e la manutenzione di questo apparecchio devono essere eseguite esclusivamente da personale competente - prima di qualsiasi intervento sull'apparecchio o al suo interno, interrompere l'alimentazione generale fornita all'impianto

- verificare sempre l'assenza di tensione con uno strumento adeguato
- prima di mettere questo apparecchio sotto tensione, riportatelo alle condizioni di sicurezza iniziali rimontando gli eventuali pezzi precedentemente tolti. II mancato rispetto delle indicazioni sulla sicurezza riportate in questo documento, potrebbe causare gravi incidenti, tali da ferire o portare alla morte l'operatore.

El montaje de estos materiales sólo puede ser realizado por profesionales. El incumplimiento de las indicaciones dadas en estas instrucciones anula la responsabilidad del constructor.

RIESGO DE ELECTROCUCION, DE QUEMADURAS O DE

EXPLOSION

- la instalación y el mantenimiento de este aparato sólo deben ser realizados por profesionales - corte la alimentación general del aparato antes de cualquier intervención sobre o en el mismo
- utilice siempre un dispositivo de detección de tensión apropiado para confirmar la falta de tensión - vuelva a colocar todos los dispositivos, las puertas y las tapas antes de poner este aparato bajo tensión.
La falta de cumplimiento de estas precauciones puede exponer al usuario y a su entorno a riesgos de daños corporales graves susceptibles de producir la muerte.

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual
Avant toute intervention sur l'appareil / Before working on the device / Vor jeglichem Eingriff an dem Gerät / Prima di qualsiasi intervento sull'apparecchio / Antes de cualquier intervención sobre el aparato

Disjoncteur débrochable / Drawout circuit breaker / Leistungsschalter in Einschubtechnik / Interruttore estraibile / Interruptor automático seccionable

Disjoncteur fixe / Fixed circuit breaker / Leistungsschalter in Festeinbau / Interruttore fisso / Interruptor automático fijo

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Outillage nécessaire / Necessary tools / Benötigtes Werkzeuge / Utensili necessari / Herramientas necesarias

Tournevis (Pozidrive n², 3 ou plat).
Screwdriver (Pozidrive n ${ }^{\circ}$ 2, 3 or slotted).
Schraubendreher (Pozidrive Nr. 2, 3 oder Schlitz).
Cacciavite (Pozidrive n ${ }^{\circ}$ 2, 3 o piatto).
Destornillador (Pozidrive nº 2, 3 o plano).

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation / Installation / Installation / Installazione / Instalación

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Notes / Notes / Anmerkungen / Annotazioni / Notas

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Notes / Notes / Anmerkungen / Annotazioni / Notas

Schneider Electric Industries SAS

35, rue Joseph Monier
CS 30323
F- 92506 Rueil Malmaison Cedex

RCS Nanterre 954503439
Capital social 896313776 €
Designed by: AMEG
www.schneider-electric.com
51156136AA-02
Printed on recyclable paper.

TMS 1415

Masterpact NW

Notice d'installationEN Installation manual
(DE) Montageanleitung
(IT) Manuale d'installazione
(ES) Instrucciones de instalación

Contact prêt à fermer / Ready to close contact / Meldekontakt "Einschaltbereit" / Contatto pronto alla chiusura / Contacto preparado para cerrar

Danger et avertissement / Danger and warning / Vorsicht Lebensgefahr Norme di sicurezza e avvertenze / Instrucciones de seguridad

Le montage des ces matériels ne peut être effectué que par des professionnels.
Le non respect des indications de la présente notice ne saurait engager la responsabilité du constructeur.

RISQUE D'ELECTROCUTION, DE BRULURES OU

D'EXPLOSION

--- l'installation et l'entretien de cet appareil ne doivent être effectués que par des professionnels --- coupez l'alimentation générale de cet appareil avant toute intervention sur ou dans l'appareil --- utilisez toujours un dispositif de détection de tension approprié pour confirmer l'absence de tension
- replacez tous les dispositifs, les portes et les couvercles avant de mettre cet appareil sous tension. Le non respect de ces consignes de sécurité exposerait l'intervenant et son entourage à des risques de dommages corporels graves susceptibles d'entraîner la mort.

This equipment should only be mounted by professionals. The manufacturer shall not be held responsible for any failure to comply with the instructions given in this manual

RISK OF ELECTROCUTION, BURNS OR EXPLOSION
c the device should only be installed and serviced by professionals
c switch off the general power supply to the device prior to any work on or in the device
c always use an appropriate voltage detection device to confirm the absence of voltage
c replace all interlocks, doors and covers before energising the device.
Failure to take these precautions could expose intervener and people round to serious corporal injuries which could cause death.

Diese Bauteile dürfen nur von qualifiziertem Personal montiert werden. Bei Nichteinhaltung der Anweisungen der vorliegenden Anleitung kann der Hersteller auf keinen Fall haftbar gemacht werden.

GEFAHR VONTÖDLICHEM ELEKTROSCHOCK, VERBRENNUNGEN UND

EXPLOSION

c Installierung und Wartung dieses Gerätes dürfen nur von qualifiziertem Personal vorgenommen werden c Vor jeglichem Eingriff auf oder an dem Gerät muß die Stromversorgung des Geräts unterbrochen werden c Vor dem Eingriff ist mit einem geeigneten Spannungsmesser sicher zu stellen, daß keinerlei Spannung vorhanden ist c Bevor das Gerät erneut unter Spannung gesetzt wird, müssen sämtliche Vorrichtungen, Türen und Abdeckungen wieder angebracht sein.
Falls diese
Vorsichtsmaßnahmen nicht eingehalten werden, könnte dies zu schwere Verletzungen bis hin zum Tod führen.

Il montaggio di questi materiali deve essere eseguito esclusivamente da personale competente. In caso di mancato rispetto delle indicazioni fornite nel presente manuale, il costruttore non potrà essere ritenuto responsabile

RISCHIO DI
ELETTROCUZIONE, DI USTIONI O DI ESPLOSIONE c linstallazione e la manutenzione di questo apparecchio devono essere eseguite esclusivamente da personale competente c prima di qualsiasi intervento sull'apparecchio o al suo interno, interrompere l'alimentazione generale fornita all'impianto
c verificare sempre l'assenza di tensione con uno strumento adeguato
c prima di mettere questo apparecchio sotto tensione, riportatelo alle condizioni di sicurezza iniziali rimontando gli eventuali pezzi
precedentemente tolti. Il mancato rispetto delle indicazioni sulla sicurezza riportate in questo documento, potrebbe causare gravi incidenti, tali da ferire o portare alla morte l'operatore.

El montaje de estos materiales sólo puede ser realizado por profesionales. El incumplimiento de las indicaciones dadas en estas instrucciones anula la responsabilidad del constructor.

RIESGO DE ELECTROCUCION, DE QUEMADURAS O DE

EXPLOSION

c la instalación y el mantenimiento de este aparato sólo deben ser realizados por profesionales c corte la alimentación general del aparato antes de cualquier intervención sobre o en el mismo
c utilice siempre un dispositivo de detección de tensión apropiado para confirmar la falta de tensión c vuelva a colocar todos los dispositivos, las puertas y las tapas antes de poner este aparato bajo tensión.
La falta de cumplimiento de estas precauciones puede exponer al usuario y a su entorno a riesgos de daños corporales graves susceptibles de producir la muerte.

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual
Avant toute intervention sur l'appareil / Before working on the device / Vor jeglichem Eingriff an dem Gerät / Prima di qualsiasi intervento sull'apparecchio / Antes de cualquier intervención sobre el aparato

Disjoncteur débrochable / Drawout circuit breaker / Leistungsschalter in Einschubtechnik / Interruttore estraibile / Interruptor automático seccionable

Disjoncteur fixe / Fixed circuit breaker / Leistungsschalter in Festeinbau / Interruttore fisso / Interruptor automático fijo

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Outillage nécessaire / Necessary tools / Benötigtes Werkzeuge / Utensili necessari / Herramientas necesarias

Tournevis (Pozidrive $\mathbf{n}^{\circ} 2$, 3 ou plat).
Screwdriver (Pozidrive n², 3 or slotted).
Schraubendreher (Pozidrive Nr. 2, 3 oder Schlitz).
Cacciavite (Pozidrive n ${ }^{\circ}$ 2, 3 o piatto).
Destornillador (Pozidrive nº 2, 3 o plano).

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation / Installation / Installation / Installazione / Instalación

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Notes / Notes / Anmerkungen / Annotazioni / Notas

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Notes / Notes / Anmerkungen / Annotazioni / Notas

Schneider Electric Industries SAS

35, rue Joseph Monier
CS 30323
F- 92506 Rueil Malmaison Cedex

RCS Nanterre 954503439
Capital social $896313776 €$
Designed by: AMEG
www.schneider-electric.com
(ES) Instrucciones de instalación

Moto-réducteur MCH / MCH gear motor / Motorantrieb MCH / Motoriduttore MCH / Motorreductor MCH

Schneider 2Electric

Danger et avertissement / Danger and warning / Vorsicht Lebensgefahr Norme di sicurezza e avvertenze / Instrucciones de seguridad

Le montage des ces matériels ne peut être effectué que par des professionnels. Le non respect des indications de la présente notice ne saurait engager la responsabilité du constructeur.

RISQUE

D'ELECTROCUTION,

DE BRULURES OU

D'EXPLOSION

- l'installation et l'entretien de cet appareil ne doivent être effectués que par des professionnels
- coupez l'alimentation générale de cet appareil avant toute intervention sur ou dans l'appareil ■ utilisez toujours un dispositif de détection de tension approprié pour confirmer l'absence de tension
- replacez tous les dispositifs, les portes et les couvercles avant de mettre cet appareil sous tension. Le non respect de ces consignes de sécurité exposerait l'intervenant et son entourage à des risques de dommages corporels graves susceptibles d'entraîner la mort.

This equipment should only be mounted by professionals. The manufacturer shall not be held responsible for any failure to comply with the instructions given in this manual

RISK OF

ELECTROCUTION, BURNS OR EXPLOSION

- the device should only be installed and serviced by professionals
■ switch off the general power supply to the device prior to any work on or in the device
- always use an appropriate voltage detection device to confirm the absence of voltage
- replace all interlocks, doors and covers before energising the device. Failure to take these precautions could expose intervener and people round to serious corporal injuries which could cause death.
Diese Bauteile dürfen nur
von qualifiziertem Personal
montiert werden.
Bei Nichteinhaltung der
Anweisungen der
vorliegenden Anleitung kann
der Hersteller auf keinen Fall
haftbar gemacht werden.

GEFAHR VON TÖDLICHEM ELEKTROSCHOCK, VERBRENNUNGEN UND

EXPLOSION

- Installierung und Wartung dieses Gerätes dürfen nur von qualifiziertem Personal vorgenommen werden
- Vor jeglichem Eingriff auf oder an dem Gerät muß die Stromversorgung des Geräts unterbrochen werden \square Vor dem Eingriff ist mit einem geeigneten Spannungsmesser sicher zu stellen, daß keinerlei Spannung vorhanden ist ■ Bevor das Gerät erneut unter Spannung gesetzt wird, müssen sämtliche Vorrichtungen, Türen und Abdeckungen wieder angebracht sein.

Falls diese

Vorsichtsmaßnahmen nicht eingehalten werden, könnte dies zu schwere Verletzungen bis hin zum Tod führen.

II montaggio di questi materiali deve essere eseguito esclusivamente da personale competente. In caso di mancato rispetto delle indicazioni fornite nel presente manuale, il costruttore non potrà essere ritenuto responsabile.

RISCHIO DI
ELETTROCUZIONE, DI

USTIONI O DI

ESPLOSIONE

- l'installazione e la manutenzione di questo apparecchio devono essere eseguite esclusivamente da personale competente - prima di qualsiasi intervento sull'apparecchio o al suo interno, interrompere l'alimentazione generale fornita all'impianto
■ verificare sempre l'assenza di tensione con uno strumento adeguato - prima di mettere questo apparecchio sotto tensione, riportatelo alle condizioni di sicurezza iniziali rimontando gli eventuali pezzi precedentemente tolti. II mancato rispetto delle indicazioni sulla sicurezza riportate in questo documento, potrebbe causare gravi incidenti, tali da ferire o portare alla morte l'operatore.

El montaje de estos materiales sólo puede ser realizado por profesionales. El incumplimiento de las indicaciones dadas en estas instrucciones anula la responsabilidad del constructor.

RIESGO DE ELECTROCUCION, DE QUEMADURAS O DE

EXPLOSION

- la instalación y el
mantenimiento de este aparato sólo deben ser realizados por profesionales - corte la alimentación general del aparato antes de cualquier intervención sobre o en el mismo
- utilice siempre un dispositivo de detección de tensión apropiado para confirmar la falta de tensión ■ vuelva a colocar todos los dispositivos, las puertas y las tapas antes de poner este aparato bajo tensión. La falta de cumplimiento de estas precauciones puede exponer al usuario y a su entorno a riesgos de daños corporales graves susceptibles de producir la muerte .

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual
Avant toute intervention sur l'appareil / Before working on the device / Vor jeglichem Eingriff an dem Gerät / Prima di qualsiasi intervento sull'apparecchio / Antes de cualquier intervención sobre el aparato

Disjoncteur débrochable / Drawout circuit breaker / Leistungsschalter in Einschubtechnik / Interruttore estraibile / Interruptor automático seccionable

Disjoncteur fixe / Fixed circuit breaker / Leistungsschalter in Festeinbau / Interruttore fisso / Interruptor automático fijo

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Outillage nécessaire / Necessary tools / Benötigtes Werkzeuge / Utensili necessari / Herramientas necesarias

Clef 6 pans, tournevis (Pozidrive $n^{\circ} 2$, 3 ou plat).
Hex key, screwdriver (Pozidrive nº2, 3 or slotted).
Sechskantschlüssel, Schraubendreher (Pozidrive Nr. 2, 3 oder Schlitz).

Chiave per viti a brugola, cacciavite (Pozidrive n° 2, 3 o piatto).

Llave allen, destornillador (Pozidrive n° 2, 30 plano).

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation NW standard / Installation NW standard / Installation NW standard / Installazione NW standard / Instalación NW estándard

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation NW standard / Installation NW standard / Installation NW standard / Installazione NW standard / Instalación NW estándard

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation NW NAVY/ Installation NW NAVY / Installation NW NAVY / Installazione NW NAVY / Instalación NW NAVY

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation NW NAVY/ Installation NW NAVY / Installation NW NAVY / Installazione NW NAVY / Instalación NW NAVY

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation NW NAVY/ Installation NW NAVY / Installation NW NAVY / Installazione NW NAVY / Instalación NW NAVY

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation NW NAVY/ Installation NW NAVY / Installation NW NAVY / Installazione NW NAVY / Instalación NW NAVY

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation NW NAVY/ Installation NW NAVY / Installation NW NAVY / Installazione NW NAVY / Instalación NW NAVY

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Installation NW NAVY/ Installation NW NAVY / Installation NW NAVY / Installazione NW NAVY / Instalación NW NAVY

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Notes / Notes / Anmerkungen / Annotazioni / Notas

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Notes / Notes / Anmerkungen / Annotazioni / Notas

Schneider Electric Industries SAS

35, rue Joseph Monier
CS 30323
F-92506 Rueil Malmaison Cedex

RCS Nanterre 954503439
Capital social 896313776 €
Designed by: AMEG
Printed by:

Masterpact NT and NW

LV power circuit breakers

 and switch-disconnectors
Catalogue 2009

Masterpact NT and NW The standard for power circuit breakers around the world.

Over the years, other major manufacturers have tried to keep up by developing products incorporating Masterpact's most innovative features, including the breaking principle, modular design and the use of composite materials.

In addition to the traditional features of power circuit breakers (withdrawability, discrimination and low maintenance), Masterpact NT and NW ranges offer built-in communications and metering functions, all in optimised frame sizes.

Masterpact NT and NW incorporate the latest technology to enhance both performance and safety. Easy to install, with user-friendly, intuitive operation and environment-friendly design, Masterpact NT and NW are, quite simply, circuit breakers of their time.

Covering all your applications

Masterpact meets the needs of all types of LV electrical distribution networks.

Industry
> Mining and minerals
> Automotive
> Food and beverage
> Chemical industry

菿

Energy and Infrastructures

> Airports
> Oil and gas
> Water
> Electrical energy
> Navy

An answer to specific applications

> 1000 V for mining applications
> Direct current networks
$>$ Corrosion protection
> Switch-disconnectors and earthing switches
$>$ Automatic transfer switching equipment (ATSE) for emergency power systems
> High electrical endurance applications: Masterpact NT H2 is a high performance device offering high breaking capacity (Icu: $50 \mathrm{kA} / 480 \mathrm{~V}$) and a high level of discrimination, all in a small volume.

Whenever high short circuit is involved

Masterpact UR is a low voltage ultra rapid opening circuit breaker. Its fault detection rate and its reaction speed mean that it will stop a short circuit from developing. As a result, this is the key component in very high power installations equipped with a number of power sources connected in parallel.

Masterpact UR truly comes into its own when short circuit currents can reach very high levels and when continuity of service is a must: offshore installations, cement plants, petrochemical industry. It is also especially suited to electrical installations on board merchant.

All standards

Masterpact is compliant with international standards IEC 60947-1 and 2, IEC 68230 for type 2 tropicalisation, UL489, ANSI, UL1066, CCC and GOST.

Two families and three frame sizes

The range of power circuit breakers includes two families:
> Masterpact NT, the world's smallest true power circuit breaker, with ratings from 630 to 1600 A
$>$ Masterpact NW, in two frame sizes, one from 800 to 4000 A and the other from 4000 A to 6300 A.

5 performance levels

$>\mathrm{N} 1$ - for standard applications with low short-circuit levels.
> H1 - for industrial sites with high short-circuit levels or installations with two parallel-connected transformers.
$>\mathrm{H} 2$ - high-performance for heavy industry where very high short-circuits can occur.
$>\mathrm{H} 3$ - for incoming devices supplying critical applications requiring both high performance and a high level of discrimination.
> L1 - for high current-limiting capability and a discrimination level (37 kA) as yet unequalled by any other circuit breaker of its type; intended for the protection of cable-type feeders or to raise the performance level of a switchboard when the transformer power rating is increased.

Masterpact NT

630 to 1600 A

Masterpact NW 800 to 4000 A

4000 to 6300 A

Optimised volumes and ease of installation

Abstract

Aiming at standardising electrical switchboards at a time when installations are increasingly complex, Masterpact provides an unequalled simplicity, both concerning choice and installation.

The smallest circuit breaker in the world

Masterpact NT innovates by offering all the performance of a power circuit breaker in an extremely small volume. The 70 mm pole pitch means a three-pole draw out circuit breaker can be installed in a switchboard section 400 mm wide and 400 mm deep.

Maximum security

The arc chutes absorb the energy released during breaking, thus limiting the stresses exerted on the installation.
They filter and cool the gases produced, reducing effects perceptible from the outside.

Optimised volumes

Up to 4000 A, Masterpact NW circuit breakers are all the same size, the same as the old M08 to 32 range.
From 4000 A to 6300 A, there is just one size.

More than

patents are used to design Masterpact

Retrofit solutions

> Special connections terminals are available to replace a fixed or a drawout Masterpact M08 to 32 with a Masterpact NW, without modifying the busbars or the door cut-out.
$>$ "Plug and Play" retrofit solution : this solution enables retrofitting of Masterpact M units with considerably reducing on-site intervention time and getting the performance of last generation device.

Standardisation of the switchboard

With optimised sizes, the Masterpact NT and NW ranges simplify the design of switchboards and standardise the installation of devices:
> a single connection layout for Masterpact NT
$>$ three connection layouts for Masterpact NW:

- one from 800 to 3200 A
- one for 4000 A
- one up to 6300 A
> horizontal or vertical rear connections can be modified on-site by turning the connectors 90° or they can even be replaced by front connection terminals
> identical connection terminals for the fixed or draw-out version for each rating (Masterpact NW)
$>$ front connection requires little space because the connectors not increase the depth of the device

Practical installation solutions

The Masterpact NW range further improves the installation solutions that have built the success of its predecessors: $>$ incoming connection to top or bottom terminals
> no safety clearance required
$>$ connection:

- horizontal or vertical rear connection
- front connection with minimum extra space
- mixed front and rear connections
$>115 \mathrm{~mm}$ pole pitch on all versions
$>$ no derating up to $55^{\circ} \mathrm{C}$ and 4000 A .

Compliance with environmental requirements

The materials used for Masterpact are not potentially dangerous to the environment and are marked to facilitate sorting for recycling.

Production facilities are nonpolluting in compliance with the ISO 14001 standard.

Monitoring and protecting your low voltage network

Masterpact can be integrated in a general supervision system to optimise your electrical installation.

Micrologic control units are equipped with a digital LCD display used in conjunction with simple navigation buttons. Users can directly access parameters and settings. Navigation between screens is intuitive and the immediate display of values greatly simplifies settings. Text is displayed in the desired language.

Ensuring safety at any time

All Masterpact circuit breakers are equipped with a Micrologic electronic control unit that offers all types of current and advanced protection, measurement and communication. Protection functions are separated from the measurement functions and are managed by an ASIC electronic component. This independence guarantees immunity from conducted or radiated disturbances and ensures the highest degree of reliability.

Maximising continuity of service

Because a LV power supply interruption is unacceptable especially in critical power applications, an automatic system is required for LV transfer switching. For your peace of mind, Masterpact enables automatic control and management of power sources in your low voltage distribution network guaranteeing the hi-reliability of your installation.

Optimising the management of your electrical installation

When equipped with a Micrologic type P, Masterpact can be integrated in a general supervision system to optimise installation operation and maintenance. Alarms may be programmed for remote indications. Used with PowerLogic ION Enterprise software, you can exploit the electrical data (current, voltage, frequency, power, and power quality) to optimise continuity of service and energy management:
$>$ reduce energy and operations costs > improve power quality, reliability and uptime > optimise equipment use.

Real-time display of the data.

Alarms and control functions.

Presentation

Functions and characteristics

Installation recommendations

Dimensions and connection

Additional characteristics

\qquad

TOOLS

schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

The technical guide

These technical guides help you comply with installation standards and rules i.e.: the electrical installation guide, the protection guide, the switchboard implementation guide, the technical booklets and the co-ordination tables all form genuine reference tools for the design of high performance electrical installations. For example, the LV protection co-ordination guide - discrimination and cascading - optimises choice of protection and connection devices while also increasing markedly continuity of supply in the installations.

Presentation 1
General overview
Detailed contents A-2
Circuit breakers and switch-disconnectors
NT06 to NT16 and NW08 to NW63 A-4
NT06 to NT16 A-6
NW08 to NW63 A-8
Micrologic control units
Overview of functions A-10
Micrologic A "ammeter" A-12
Micrologic P "power" A-14
Micrologic H "harmonics" A-18
Accessories and test equipment A-20
Portable data acquisition
Masterpact and GetnSet A-22
Communication
COM option in Masterpact A-24
Overview of functions A-25
Masterpact in a communication network A-26
Masterpact and the MPS100 Micro Power Server A-28
Communication wiring system A-30
Connections
Overview of solutions A-31
Accessories A-32
Locking
On the device A-35
On the chassis A-36
Indication contacts A-37
Remote operation
Remote ON / OFF A-39
Remote tripping A-42
Accessories A-43
Source-changeover systems
Presentation A-44
Mechanical interlocking A-45
Electrical interlocking A-47
Associated automatic controllers A-49
Masterpact NW with corrosion protection 800-4000 A A-50
Earthing switch Masterpact A-52
Installation recommendations B-1
Dimensions and connection C-1
Electrical diagrams D-1
Additional characteristics E-1
Catalogue numbers and order form F-1

General overview
Detailed contents

This chapter describes all the functions offered by Masterpact NT and NW devices. The two product families have identical functions implemented using the same or different components depending on the case.

Circuit breakers and switch-disconnectors page A-4

- ratings:
- Masterpact NT 630 to 1600 A
- Masterpact NW 800 to 6300 A
- circuit breakers type N1, H1, H2, H3, L1

■ switch-disconnectors type NA, HA, HF

- 3 or 4 poles
- fixed or drawout versions

■ option with neutral on the right

- protection derating.
Micrologic control units
Ammeter \mathbf{A}
2.0 basic protection
5.0 selective protection
6.0 selective + earth-fault protection
7.0 selective + earth-leakage protection
Power meter \mathbf{P}
5.0 selective protection
6.0 selective + earth-fault protection
7.0 selective + earth-leakage protection
Harmonic meter \mathbf{H}
5.0 selective protection
6.0
5.0 selective protection
6.0 selective + earth-fault protection
7.0 selective + earth-leakage protection

■ external sensor for earth-fault protection

- rectangular sensor for earth-leakage protection

■ setting options (long-time rating plug):

- low setting 0.4 to $0.8 \times \mathrm{Ir}$
\square high setting 0.8 to $1 \times \mathrm{Ir}$
\square without long-time protection
■ external power-supply module
- battery module.
Portable data acquisition page A-22

■ Masterpact and GetnSet

Communication
page A-24
■ COM option in Masterpact

- Masterpact in a communication network

■ Masterpact and the Micro Power Server MPS100.

$M X, X F$ and $M N$ volage releases.
Accessories
\square auxiliary terminal shield
\square operation counter
\square escutcheon
\square transparent cover for escutcheon
escutcheon blanking plate.

Functions and characteristics

Circuit breakers
and switch-disconnectors
NT06 to NT16 and NW08 to NW63

NT and NW selection criteria

	Masterpact NT			Masterpact NW	
	Standard applications			Standard applications	
	NT06, NT08, NT10, NT H1	$\begin{aligned} & \text { 12, NT16 } \\ & \text { \| H2 } \end{aligned}$	NT06, NT08, NT10 L1	NW08...NW16 N1	NW08...NW40 H1
Type of application	Standard applications with low short-circuit currents	Applications with medium-level shortcircuit currents	Limiting circuit breaker for protection of cabletype feeders or upgraded transformer ratings	Standard applications with low short-circuit currents	Circuit breaker for industrial sites with high short-circuit currents
Icu/Ics at 440 V	42 kA	50 kA	130 kA	42 kA	65 kA
Icu/Ics at 1000 V	-	-	-	-	-
Icu/Ics at 500 V DC L/R $<15 \mathrm{~ms}$	-	-	-	-	-
Position of neutral	Left	Left	Left	Left	Left or right
Fixed	F	F	F	F	F
Drawout	D	D	D	D	D
Switch-disconnector version	Yes	No	No	Yes	Yes
Front connection	Yes	Yes	Yes	Yes	Yes up to 3200 A
Rear connection	Yes	Yes	Yes	Yes	Yes
Type of Micrologic control unit	A, P, H				

Masterpact NT06 to NT16 installation characteristics

Circuit breaker Type		NT06, NT08, NT10			NT12, NT16	
		H1	H2	L1	H1	H2
Connection						
Drawout	FC	\square	\square	\square	\square	\square
	RC	\square	\square	\square	\square	\square
Fixed	FC	\square	\square	\square	\square	\square
	RC	\square	\square	\square	\square	\square

Drawout	$\frac{3 P}{4 P}$
Fixed	$\frac{3 P}{4 P}$

$322 \times 288 \times 277$
$322 \times 358 \times 277$
$301 \times 276 \times 196$
$301 \times 346 \times 196$

Weight (kg) (approximate)

Drawout	$3 P / 4 \mathrm{P}$	$30 / 39$
Fixed	$3 P / 4 \mathrm{P}$	$14 / 18$

Masterpact NW08 to NW63 installation characteristics

Circu	ker	NW08, NW10, NW12, NW16					NW20				
Type		N1	H1	H2	L1	H10	H1	H2	H3	L1	H10
Connection											
Drawout	FC	\square	\square	\square	-	-	\square	-	\square	-	-
	RC	\square									
Fixed	FC	\square	\square	\square	-	-	\square	\square	-	-	-
	RC	\square	\square	\square	-	-	\square	\square	-	-	-
Dimensions (mm) H x W x D											
Drawout	3 P	$439 \times 441 \times 395$									
	4 P	$439 \times 556 \times 395$									
Fixed	3 P	$352 \times 442 \times 297$									
	4P	$352 \times 537 \times 297$									
Weight (kg) (approximate)											
Drawout	3P/4P	90/120									
Fixed	3P/4P	60/80									

(1) Except 4000

			Special applications				
H2	H3	L1	NW H10	NW H2 with corrosion protection	NW10...NW40 N DC	H DC	NW earthing switch
High-performance circuit breaker for heavy industry with high shortcircuit currents	Incoming device with very high performance for critical applications	Limiting circuit breaker for protection of cable-type feeders or upgraded transformer ratings	1000 V systems, e.g. mines and wind power	Environments with high sulphur contents	DC system	DC system	Installation earthing
100 kA	150 kA	150 kA	-	100 kA	-	-	-
-	-	-	50 kA	-	-	-	-
-	-	-	-	-	35 kA	85 kA	-
Left or right	Left	Left	Left	Left or right	-	-	-
F	-	-	-	-	F	F	-
D	D	D	D	D	D	D	D
Yes	Yes	No	Yes	Yes	Yes	Yes	Yes
Yes up to 3200 A	Yes up to 3200 A	Yes up to 3200 A	No	Yes up to 3200 A	No	No	Yes up to 3200 A
Yes							
A, P, H	A, P, H	A, P, H	A, consult us for P and H	A, P, H	DC Micrologic	DC Micrologic	-

NW25, NW32, NW40

NW40b, NW50,NW63

NW25, NW32, NW40			
H1	H2	H3	H10
\square	\square	\square	\square
${ }^{(1)}$	${ }^{(1)}$	-	-
-	-	-	-

$$
\frac{\frac{479 \times 786 \times 395}{479 \times 1016 \times 395}}{\frac{352 \times 767 \times 297}{352 \times 997 \times 297}}
$$

```
225/300
```

120/160

Functions and characteristics

Circuit breakers
and switch-disconnectors
NT06 to NT16

(1) $50^{\circ} \mathrm{C}$: rear vertical connected. Refer to temperature derating tables for other connection types.
(2) See the current-limiting curves in the "additional characteristics" section.
(3) SELLIM system.
(4) Available for 480 V NEMA.
(5) Suitable for motor control (direct-on-line starting).

| Common characteristics | | $3 / 4$ |
| :--- | :--- | :--- | :--- |
| Number of poles | Ui | 1000 |
| Rated insulation voltage (V) | Uimp | 12 |
| Impulse withstand voltage (kV) | Ue | 690 |
| Rated operational voltage (V AC 50/60 Hz) | IEC 60947-2 | KA |
| Suitability for isolation | IEC 60664-1 | 3 |
| Degree of pollution | | |

Basic sweatchgear

Circuit-breaker as per IEC 60947-2
Rated current (A)
In at $40^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}^{(1)}$
Rating of 4th pole (A)
Sensor ratings (A)

Type of circuit breaker		
Ultimate breaking capacity (kA rms)	Icu	$220 / 415 \mathrm{~V}$
V AC 50/60 Hz		440 V
		525 V
		690 V
Rated service breaking capacity (kA rms)	Ics	$\%$ Icu
Utilisation category	Icw	0.5 s
Rated short-time withstand current (kA rms)		1 s
V AC 50/60 Hz		3 s
Integrated instantaneous protection (kA peak $\pm 10 \%)$		
Rated making capacity (kA peak)		$220 / 415 \mathrm{~V}$
V AC 50/60 Hz		440 V
		525 V
		690 V

Break time (ms) between tripping order and arc extinction
Closing time (ms)

Circuit-breaker as per NEMA AB1	
Breaking capacity (kA)	240 V
VAC $50 / 60 \mathrm{~Hz}$	480 V

600 V

Switch-disconnector as per IEC 60947-3 and Annex A	
Type of switch-disconnector	
Rated making capacity (kA peak) Icm	220 V
AC23A/AC3 category V AC 50/60 Hz	440 V
	525/690 V
Rated short-time withstand current (kA rms) Icw	0.5 s
AC23A/AC3 category V AC 50/60 Hz	1 s
	3 s
Ultimate breaking capacity Icu (kA rms) with an external protection relay Maximum time delay: 350 ms	690 V
Mechanical and electrical durability as per IEC 60947-2/3 at In/le	
Service life Mechanical without maintenance C/O cycles $\times 1000$	
Type of circuit breaker Rated current	
C/O cycles $\times 1000$ Electrical without maintenance IEC 60947-2	$\begin{aligned} & 440 V^{(4)} \\ & 690 \mathrm{~V} \end{aligned}$
Type of circuit breaker or switch-disconnector Rated operationnal current	AC23A
C/O cycles x 1000 Electrical without maintenance IEC 60947-3	$\begin{aligned} & 440 \mathrm{~V}^{(4)} \\ & 690 \mathrm{~V} \end{aligned}$
Type of circuit breaker or switch-disconnector Rated operationnal current	AC3 ${ }^{(5)}$
Motor power	$\begin{aligned} & 380 / 415 \mathrm{~V}(\mathrm{~kW}) \\ & 440 \mathrm{~V}(\mathrm{~kW}) \end{aligned}$
$\begin{array}{ll}\text { C/O cycles x } 1000 \text { Electrical } & \text { without maintenance } \\ \text { IEC 60947-3 Annex M/IEC 60947-4-1 }\end{array}$	$\begin{aligned} & \hline 440 V^{(4)} \\ & 690 \mathrm{~V} \end{aligned}$

Sensor selection

Sensor rating (A)	$250{ }^{(1)}$	400	630	800	1000	1250	1600	
Ir threshold setting(A)	100 to 250	160 to 400	250 to 630	320 to 800	400 to 1000	500 to 1250	640 to 1600	

(1) For circuit-breaker NT02, please consult us.

NT06			NT08	NT10	NT12		NT16
$\begin{array}{\|l\|} 630 \\ 630 \end{array}$			800	1000	1250		1600
			800	1000	1250		1600
400 to 630			400 to 800	400 to 1000	630	250	800 to 1600
H1	H2	L1 ${ }^{(2)}$			H1	H2	
42	50	150			42	50	
42	50	130			42	50	
42	42	100			42	42	
42	42	25			42	42	
100 \%					100 \%		
B	B	A			B B		
42	36	10			4236		
42	36	-			4236		
24	20	-			$24 \quad 20$		
-	90	$10 \times \ln ^{(3)}$			- 90		
88	105	330			88105		
88	105	286			88105		
88	88	220			8888		
88	88	52			$88 \quad 88$		
25	25	9			25	25	
<50					< 50		
					4250		
42	50	150					
42	50	100			4250		
42	42	25			$42 \quad 42$		

| HA | HA |
| :--- | :--- | :--- |
| 75 | 75 |
| 75 | 75 |
| 75 | 75 |
| 36 | 36 |
| 36 | 36 |
| 20 | 20 |
| 36 | 36 |

12.5												
H1	H2	L1	H1	H2	L1	H1	H2	L1	H1	H2	H1	H2
630			800			1000			125			
6	6	3	6	6	3	6	6	3	6	6	3	3
3	3	2	3	3	2	3	3	2	3	3	1	1
H1/H2/HA												
630			800			1000			1250		1600	
6			6			6			6		3	
3			3			3			3		1	
H1/H2/HA												
500			630			800			1000		1000	
$\leqslant 250$$\leqslant 300$			$250 \text { to } 335$			335 to 450			450 to 560		450 to 560	
				400 to 500			500 to 630		500 to 630			

6

Functions and characteristics

Circuit breakers and switch-disconnectors
NW08 to NW63

(1) $50^{\circ} \mathrm{C}$: rear vertical connected. Refer to temperature derating tables for other connection types.
(2) See the current-limiting curves in the "additional characteristics" section.
(3) Equipped with a trip unit with a making current of 90 kA peak.
(4) External protection must comply with permissible thermal constraints of the circuit breaker (please consult us).
No fault-trip indication by the SDE or the reset button.
(5) Available for 480 V NEMA.
(6) Suitable for motor control (direct-on-line starting).

Common characteristics		
Number of poles		3/4
Rated insulation voltage (V)	Ui	1000/1250
Impulse withstand voltage (kV)	Uimp	12
Rated operational voltage (V AC 50/60 Hz)	Ue	690/1150
Suitability for isolation	IEC 60	-
Degree of pollution	IEC 60	$4(1000 \mathrm{~V}) / 3$ (1250 V)
Basic circuit-breaker		
Circuit-breaker as per IEC 60947-2		
Rated current (A)		at $40^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}{ }^{(1)}$
Rating of 4th pole (A)		
Sensor ratings (A)		
Type of circuit breaker		
Ultimate breaking capacity (kA rms) V AC $50 / 60 \mathrm{~Hz}$	Icu	220/415/440 V
		525 V
		690 V
		1150 V
Rated service breaking capacity (kA rms)	Ics	\% Icu
Utilisation category		
Rated short-time withstand current (kA rms) VAC 50/60 Hz	Icw	1 s
		3 s
Integrated instantaneous protection (kA peak $\pm 10 \%$)		
Rated making capacity (kA peak)$\text { V AC } 50 / 60 \mathrm{~Hz}$	Icm	220/415/440 V
		525 V
		690 V
		1150 V
Break time (ms) between tripping order and arc extinction		
Closing time (ms)		
Circuit-breaker as per NEMA AB1		
Breaking capacity (kA)		240/480 V
V AC 50/60 Hz		600 V

Unprotected circuit-breaker

Tripping by shunt trip as per IEC 60947-2
Type of circuit breaker

| Ultimate breaking capacity (kA rms) V AC $50 / 60 \mathrm{~Hz}$ | Icu | 220...690 V |
| :--- | :--- | :--- | :--- |
| Rated service breaking capacity (kA rms) | Ics | $\%$ Icu |
| Rated short-time withstand current (kA rms) | Icw | 1 s |
| | | 3 s |

Overload and short-circuit protection
External protection relay: short-circuit protection, maximum delay: $350 \mathrm{~ms}^{(4)}$
Rated making capacity (kA peak) V AC $50 / 60 \mathrm{~Hz}$ Icm $220 . .690 \mathrm{~V}$
Switch-disconnector as per IEC 60947-3 and Annex A
Type of switch-disconnector

Rated making capacity (kA peak)	Icm	$220 \ldots 690 \mathrm{~V}$
AC23A/AC3 category V AC 50/60 Hz		1150 V
Rated short-time withstand current (kA rms)	Icw	1 s
AC23A/AC3 category V AC 50/60 Hz		3 s

Earthing switch

Latching capacity (kA peak)	135		
Rating short time withstand (kA rms)	Icw	1 s	60 Hz
		3 s	50 Hz

Mechanical and electrical durability as per IEC 60947-2/3 at In/le

Service life
Mechanical with maintenance
C/O cycles $\times 1000$
Type of circuit breaker
Rated current
Rated current \quad Electrical without maintenance
$440 \mathrm{~V}^{(5)}$
IEC 60947-2
690 V
1150 V

C/O cycles x $1000 \quad$ Electric
without maintenance
IEC 60947-3
$440 \mathrm{~V}^{(5)}$
$\begin{array}{ll}\text { Type of circuit breaker or switch-disconnector } \\ \text { Rated operational current } & \text { le (A) AC3 }{ }^{(6)}\end{array}$
Motor power

C/O cycles x $1000 \quad$ Electrical
IEC 60947-3 Annex M/IEC 60947-4-1

380/415 V (kW)
$440 \mathrm{~V}^{(5)}(\mathrm{kW})$
690 V (kW)
$440 / 690 \mathrm{~V}^{(5)}$

Sensor selection													
Sensor rating (A)	$250{ }^{(1)}$	400	630	800	1000	1250	1600	2000	2500	3200	4000	5000	6300
Ir threshold setting(A)	$\begin{aligned} & 100 \\ & \text { to } 250 \end{aligned}$	$\begin{aligned} & 160 \\ & \text { to } 400 \end{aligned}$	$\begin{aligned} & 250 \\ & \text { to } 630 \end{aligned}$	$\begin{aligned} & 320 \\ & \text { to } 800 \end{aligned}$	$\begin{aligned} & 400 \\ & \text { to } 1000 \end{aligned}$	$\begin{array}{\|l\|} \hline 500 \\ \text { to } 1250 \\ \hline \end{array}$	$\begin{aligned} & 630 \\ & \text { to } 1600 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 800 \\ \text { to } 2000 \\ \hline \end{array}$	$\begin{aligned} & 1000 \\ & \text { to } 2500 \end{aligned}$	$\begin{aligned} & 1250 \\ & \text { to } 3200 \end{aligned}$	$\begin{array}{\|l\|} \hline 1600 \\ \text { to } 4000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2000 \\ \text { to } 5000 \\ \hline \end{array}$	$\begin{aligned} & 2500 \\ & \text { to } 6300 \\ & \hline \end{aligned}$

(1) For circuit-breaker NW02, please consult us,

NW08	NW10	NW12	NW16		NW20					NW25	NW32	NW40		NW40b	NW50	NW63
$\begin{aligned} & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} 1250 \\ 1250 \\ \hline \end{array}$	1600		2000					$\begin{array}{r} 2500 \\ 2500 \\ \hline \end{array}$	$\begin{array}{\|l\|} 3200 \\ 3200 \\ \hline \end{array}$	$\begin{array}{r} 4000 \\ 4000 \\ \hline \end{array}$		$\begin{array}{r} 4000 \\ 4000 \\ \hline \end{array}$	$\begin{array}{r} 5000 \\ 5000 \end{array}$	$\begin{aligned} & 6300 \\ & 6300 \\ & \hline \end{aligned}$
$\begin{aligned} & 400 \\ & \text { to } 800 \end{aligned}$	$\begin{aligned} & \hline 400 \\ & \text { to } 1000 \end{aligned}$	$\begin{array}{\|l\|} \hline 630 \\ \text { to } 1250 \end{array}$	800 to 1600		1000 to 2000					$\begin{aligned} & 1250 \\ & \text { to } 2500 \end{aligned}$	$\begin{array}{\|l\|} \hline 1600 \\ \text { to } 3200 \end{array}$	2000	4000	$\begin{aligned} & 2000 \\ & \text { to } 4000 \end{aligned}$	$\begin{aligned} & 2500 \\ & \text { to } 5000 \end{aligned}$	$\begin{array}{\|l\|} \hline 3200 \\ \text { to } 6300 \end{array}$
N1	H1	H2	L1 ${ }^{(2)}$	H10	H1	H2	H3	L1 ${ }^{(2)}$	H10	H1	H2	H3	H10	H1	H2	
42	65	100	150	-	65	100	150	150	-	65	100	150	-	100	150	
42	65	85	130	-	65	85	130	130	-	65	85	130	-	100	130	
42	65	85	100	-	65	85	100	100	-	65	85	100	-	100	100	
-	-	-	-	50	-	-	-	-	50	-	-	-	50	-	-	
100 \%					100 \%					100%				100 \%		
B					B					B				B		
42	65	85	30	50	65	85	65	30	50	6565	85	65	50	100	100	
22	36	50	30	50	36	75	65	30	50		75	65	50	100	100	
-	-	190	80	-	-	190	150	80	-	-	190	150	-	-	270	
88	143	220	330	-	$\begin{aligned} & 143 \\ & 143 \\ & 143 \end{aligned}$	220	330	330	-	143	220	330	-	220	330	
88	143	187	286	-		187	286	286	-	143	187	286	-	220	286	
88	143	187	220	-		187	220	220	-	143	187	220	-	220	220	
-	-	-	-	105		-	-	-	105	-	-	-	105	-	-	
25	25	25	10	25	25	25	25	10	25	25	25	25	25	25	25	
<70					<70					< 70				<80		
42	65	100	150	-	65	100	150	150	-	65	100	150	-	100	150	
42	65	85	100	-	65	85	100	100	-	65	85	100	-	100	100	

	HA	$\mathrm{HF}^{(3)}$		HA	$\mathrm{HF}^{(3)}$				HA	$\mathrm{HF}^{(3)}$			HA
	50	85		50	85				55	85			85
	100%			100 \%					100 \%				100 \%
	50	85		50	85				55	85			85
	36	50		36	75				55	75			85
	-	-		-	-				-	-			-
	105	187		105	187				121	187			187
NW	NW10	W12		NW16			NW20			NW25/NW32/NW40			NW40b/NW50/NW63
NA	HA	HF	HA10	HA									
88	105	187	-	105	187	-	105	187	-	121	187	-	187
-	-	-	105	-	-	105	-	-	105	-	-	105	-
42	50	85	50	50	85	50	50	85	50	55	85	50	85
-	36	50	50	36	50	50	36	75	50	55	75	50	85

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

Micrologic control units
Overview of functions

Dependability

All Masterpact circuit breakers are equipped with a Micrologic control unit that can be changed on site. Control units are designed to protect Power circuits and loads. Alarms may be programmed for remote indications.
Measurements of current, voltage, frequency, power and power quality optimise continuity of service and energy management.

Integration of protection functions in an ASIC electronic component used in all Micrologic control units guarantees a high degree of reliability and immunity to conducted or radiated disturbances.
On Micrologic A, P and H control units, advanced functions are managed by an independent microprocessor.

Accessories

Certain functions require the addition of Micrologic control unit accessories, described on page A-20.
The rules governing the various possible combinations can be found in the documentation accessible via the Products and services menu of the www.schneider-electric.com web site.

Micrologic name codes

2.0 A

X Y Z
X: type of protection

- 2 for basic protection
- 5 for selective protection

■ 6 for selective + earth-fault protection
■ 7 for selective + earth-leakage protection.
Y: control-unit generation
Identification of the control-unit generation.
" 0 " signifies the first generation.
Z: type of measurement

- A for "ammeter"
- P for "power meter"
- H for "harmonic meter".

Current protection
Micrologic 2: basic protection

Micrologic 5: basic protection

Protection:
long time

+ short time
+ instantaneous

Micrologic 6: selective + earth-fault protection

long time

+ short time
+ instantaneous
+ earth fault

Micrologic 7: selective + earth-leakage protection

Protection:
long time

+ short time
+ instantaneous
+ earth leakage up to 3200A

Measurements and programmable protection

A: ammeter

$\square I_{1}, I_{2}, I_{3}, I_{N}, I_{\text {earth-faut't }}, l_{\text {earth-leakage }}$ and maximeter for these measurements

- fault indications
- settings in amperes and in seconds.

P: A + power meter + programmable protection

- measurements of $\mathrm{V}, \mathrm{A}, \mathrm{W}, \mathrm{VAR}, \mathrm{VA}, \mathrm{Wh}, \mathrm{VARh}, \mathrm{VAh}, \mathrm{Hz}, \mathrm{V}_{\text {peak }}, \mathrm{A}_{\text {peak }}$, power factor and maximeters and minimeters
- IDMTL long-time protection, minimum and maximum voltage and frequency, voltage and current imbalance, phase sequence, reverse power
- load shedding and reconnection depending on power or current

■ measurements of interrupted currents, differentiated fault indications, maintenance indications, event histories and time-stamping, etc.

H: P + harmonics

power quality: fundamentals, distortion, amplitude and phase of harmonics up to the
31st order
waveform capture after fault, alarm or on request

- enhanced alarm programming: thresholds and actions
|
2.0 A

5.0 A

5.0 P

5.0 H

6.0 A

6.0 P

6.0 H

7.0 A

Functions and characteristics

Micrologic control units
Micrologic A "ammeter"

Micrologic A control units protect power circuits. They also offer measurements, display, communication and current maximeters. Version 6 provides earth-fault protection, version 7 provides earth-leakage protection.

1 long-time threshold and tripping delay
2 overload alarm (LED) at 1,125 Ir
3 short-time pick-up and tripping delay
4 instantaneous pick-up
5 earth-leakage or earth-fault pick-up and tripping delay
6 earth-leakage or earth-fault test button
7 long-time rating plug screw
8 test connector
9 lamp test, reset and battery test
10 indication of tripping cause
11 digital display
12 three-phase bargraph and ammeter
13 navigation buttons

"Ammeter" measurements

Micrologic A control units measure the true (rms) value of currents.
They provide continuous current measurements from 0.2 to 20 In and are accurate to within 1.5 \% (including the sensors)
A digital LCD screen continuously displays the most heavily loaded phase (Imax) or displays the $I_{1}, I_{2}, I_{3}, I_{N}, I_{g}, I_{n}$, stored-current (maximeter) and setting values by successively pressing the navigation button.
The optional external power supply makes it possible to display currents <20 \% In Below 0.05 In , measurements are not significant. Between 0.05 and 0.2 In , accuracy is to within $0.5 \% \ln +1.5 \%$ of the reading.

Communication option

In conjunction with the COM communication option, the control unit transmits the following:

- settings

■ all "ammeter" measurements

- tripping causes
- maximeter readings.

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection.
Thermal memory: thermal image before and after tripping
Setting accuracy may be enhanced by limiting the setting range using a different long-time rating plug.
Overload protection can be cancelled using a specific LT rating plug "Off".

Short-circuit protection

Short-time (rms) and instantaneous protection. Selection of $\mathrm{I}^{2} \mathrm{t}$ type (ON or OFF) for short-time delay.

Earth-fault protection

Residual or source ground return earth fault protection.
Selection of $\mathrm{I}^{2 t}$ type (ON or OFF) for delay.
Residual earth-leakage protection (Vigi).
Operation without an external power supply.
Ω Protected against nuisance tripping.
$\simeq \simeq$ DC-component withstand class A up to 10 A .

Neutral protection

On three-pole circuit breakers, neutral protection is not possible. On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{Ir}(4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2)$, neutral protection at $\operatorname{lr}(4 \mathrm{P} 4 \mathrm{~d})$.
Zone selective interlocking (ZSI)
A ZSI terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before tripping.

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

Fault indications

LEDs indicate the type of fault:

- overload (long-time protection Ir)
- short-circuit (short-time Isd or instantaneous li protection)
- earth fault or earth leakage (\lg or $I \Delta n$)
- internal fault (Ap).

Battery power

The fault indication LEDs remain on until the test/reset button is pressed. Under normal operating conditions, the battery supplying the LEDs has a service life of approximately 10 years.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation. For Micrologic 6.0 A and 7.0 A control units, the operation of earth-fault or earth-leakage protection can be checked by pressing the test button located above the test connector.

Note: Micrologic A control units come with a transparent leadseal cover as standard.

Ammeter

Micrologic 5.0 / 6.0 / 7.0 A

Continuous current measurements
Display from 20 to 200% of In
Accuracy: 1.5% (including sensors)
Maximeters
Note: All current-based protection functions require no auxiliary source.
The test/reset button resets maximeters, clears the tripping indication and tests the battery.

Micrologic control units
 Micrologic P"power"

Micrologic P control units include all the functions
offered by Micrologic A.
In addition, they measure voltages and calculate power and energy values.
They also offer new protection functions based on currents, voltages, frequency and power reinforce load protection in real time.

1 Long-time current setting and tripping delay
2 Overload signal (LED).
3 Short-time pick-up and tripping delay.
4 Instantaneous pick-up.
5 Earth-leakage or earth-fault pick-up and tripping delay.
6 Earth-leakage or earth-fault test button.
7 Long-time rating plug screw.
8 Test connector.
9 Lamp + battery test and indications reset.
10 Indication of tripping cause.
11 High-resolution screen.
12 Measurement display.
13 Maintenance indicators.
14 Protection settings.
15 Navigation buttons.
16 Hole for settings lockout pin on cover.

Protection

Protection settings

The adjustable protection functions are identical to those of Micrologic A (overloads, short-circuits, earth-fault and earth-leakage protection).

Fine adjustment

Within the range determined by the adjustment dial, fine adjustment of thresholds (to within one ampere) and time delays (to within one second) is possible on the keypad or remotely using the COM option.

IDMTL (Inverse Definite Minimum Time lag) setting

Coordination with fuse-type or medium-voltage protection systems is optimised by adjusting the slope of the overload-protection curve. This setting also ensures better operation of this protection function with certain loads.

Neutral protection

On three-pole circuit breakers, neutral protection may be set using the keypad or remotely using the COM option, to one of four positions: neutral unprotected (4P 3d) neutral protection at $0.5 \operatorname{Ir}(4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2)$, neutral protection at $\operatorname{Ir}(4 \mathrm{P} 4 \mathrm{~d})$ and neutral protection at $1,6 \operatorname{lr}(4 \mathrm{P} 3 \mathrm{~d}+1,6 \mathrm{~N})$. Neutral protection at $1,6 \mathrm{Ir}$ is used when the neutral conductor is twice the size of the phase conductors (major load imbalance, high level of third order harmonics).
On four-pole circuit breakers, neutral protection may be set using a three-position switch or the keypad: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{Ir}(4 \mathrm{P} 3 \mathrm{~d}$ $+\mathrm{N} / 2$), neutral protection at $\operatorname{lr}(4 \mathrm{P} 4 \mathrm{~d})$. Neutral protection produces no effect if the long-time curve is set to one of the IDMTL protection settings.

Programmable alarms and other protection

Depending on the thresholds and time delays set using the keypad or remotely using the COM option, the Micrologic P control unit monitors currents and voltage, power, frequency and the phase sequence. Each threshold overrun is signalled remotely via the COM option. Each threshold overrun may be combined with tripping (protection) or an indication carried out by an optional M2C or M6C programmable contact (alarm), or both (protection and alarm).

Load shedding and reconnection

Load shedding and reconnection parameters may be set according to the power or the current flowing through the circuit breaker. Load shedding is carried out by a supervisor via the COM option or by an M2C or M6C programmable contact.

Indication option via programmable contacts

The M2C (two contacts) and M6C (six contacts) auxiliary contacts may be used to signal threshold overruns or status changes. They can be programmed using the keypad on the Micrologic P control unit or remotely using the COM option.

Communication option (COM)

The communication option may be used to:
■ remotely read and set parameters for the protection functions

- transmit all the calculated indicators and measurements
- signal the causes of tripping and alarms
- consult the history files and the maintenance-indicator register.
- maximeter reset.

An event log and a maintenance register, stored in control-unit memory but not available locally, may be accessed in addition via the COM option.

Micrologic control units
MicrologicP"power"

Default display.

Display of a voltage.

Display of a frequency.

Display of a maximum current

Display of a power.

Display of a demand power.

Power View software.

Measurements

(${ }^{\circ}$
The Micrologic P control unit calculates in real time all the electrical values $(\mathrm{V}, \mathrm{A}, \mathrm{W}$, VAR, VA, Wh, VARh, VAh, Hz), power factors and $\cos \varphi$ factors.
The Micrologic P control unit also calculates demand current and demand power over an adjustable time period. Each measurement is associated with a minimeter and a maximeter.
In the event of tripping on a fault, the interrupted current is stored. The optional external power supply makes it possible to display the value with the circuit breaker open or not supplied.
Instantaneous values
The value displayed on the screen is refreshed every second.
Minimum and maximum values of measurements are stored in memory (minimeters and maximeters).

Currents					
1 mms	A	1	2	3	N
	A	E-fault			
Imax rms	A	1	2	3	N
	A	E-fault			
Voltages					
$\underline{\mathrm{Urms}}$	V	12	23	31	
V rms	V	1N	2N	3N	
\underline{U} average rms	V	(U12 +	+ U		
U unbalance	\%				
Power, energy					
P active, Q reactive, S apparent W, Var, VA		Totals			
E active, E reactive, E apparent	Wh, VARh, VAh	Totals consumed - supplied Totals consumed Totals supplied			
Power factor	PF	Total			
Frequencies					
F	Hz				

Demand metering

The demand is calculated over a fixed or sliding time window that may be programmed from 5 to 60 minutes. According to the contract signed with the power supplier, an indicator associated with a load shedding function makes it possible to avoid or minimise the costs of overrunning the subscribed power. Maximum demand values are systematically stored and time stamped (maximeter).

Currents	A				
I demand	A	1	2	3	N
	A	E-fault		E-leakage	
Imax demand	A	1	2	3	N
		E-fault		E-leakage	
Power	W, Var, VA	Totals			
P, Q, S demand	W, Var, VA	Totals			
P, Q, S max demand					

Minimeters and maximeters
Only the current and power maximeters may be displayed on the screen.

Time-stamping

Time-stamping is activated as soon as time is set manually or by a supervisor.
No external power supply module is required (max. drift of 1 hour per year)

Reset

An individual reset, via the keypad or remotely, acts on alarms, minimum and maximum data, peak values, the counters and the indicators.

Additional measurements accessible with the COM option

Some measured or calculated values are only accessible with the COM communication option:

- I peak $/ \sqrt{2},\left(\mathrm{I}_{1}+\mathrm{I} 2+\mathrm{I} 3\right) / 3$, I unbalance
- load level in \% Ir
- total power factor.

The maximeters and minimeters are available only via the COM option for use with a supervisor.

Additional info

Accuracy of measurements (including sensors):
■ voltage (V) 0.5%

- current (A) 1.5 \%
- frequency $(\mathrm{Hz}) 0.1 \%$

■ power (W) and energy (Wh) 2 \%.

Display of a tripping history.

Display after tripping.

RSU configuration screen for a Micrologic.

Histories and maintenance indicators \qquad θ
The last ten trips and alarms are recorded in two separate history files that may be displayed on the screen:

- tripping history:
- type of fault
\square date and time
\square values measured at the time of tripping (interrupted current, etc.)
- alarm history:
- type of alarm
\square date and time
\square values measured at the time of the alarm.
All the other events are recorded in a third history file which is only accessible through the communication network.
■ Event log history (only accessible through the communication network)
\square modifications to settings and parameters
\square counter resets
\square system faults:
\square fallback position
\square thermal self-protection
- loss of time
\square overrun of wear indicators
- test-kit connections
\square etc.
Note:
All the events are time stampled: time-stamping is activated as soon as time is set manually or by a supervisor. No external power supply module is required (max. drift of 1 hour per year).

Maintenance indicators (with COM option)

A number of maintenance indicators may be called up on the screen to better plan for device maintenance:

- contact wear

■ operation counter:
\square cumulative total
\square total since last reset.
Additional maintenance indicators are also available through the COM network, and can be used as an aid in troubleshooting:
■ highest current measured

- number of test-kit connections
- number of trips in operating mode and in test mode.

Additional technical characteristics

Safety

Measurement functions are independent of the protection functions
The high-accuracy measurement module operates independently of the protection module.
Simplicity and multi-language
Navigation from one display to another is intuitive. The six buttons on the keypad provide access to the menus and easy selection of values. When the setting cover is closed, the keypad may no longer be used to access the protection settings, but still provides access to the displays for measurements, histories, indicators, etc.
Micrologic is also multi-language, including the following languages: English,
Spanish, Portuguese, Russian, Chinese, French, German..

Intelligent measurement

Measurement-calculation mode:
■ energies are calculated on the basis of the instantaneous power values, in two manners:

- the traditional mode where only positive (consumed) energies are considered \square the signed mode where the positive (consumed) and negative (supplied) energies are considered separately
■ measurement functions implement the new "zero blind time" concept which consists in continuously measuring signals at a high sampling rate. The traditional "blind window" used to process samples no longer exists. This method ensures accurate energy calculations even for highly variable loads (welding machines, robots, etc.)

Always powered

All current-based protection functions require no auxiliary source. Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

Stored information

The fine setting adjustments, the last 100 events and the maintenance register remain in the control-unit memory even when power is lost.

Micrologic control units
Micrologic H "harmonics"

Micrologic H control units include all the functions offered by Micrologic P. Integrating significantly enhanced calculation and memory functions, the Micrologic H control unit offers in-depth analysis of power quality and detailed event diagnostics. It is intended for operation with a supervisor.

In addition to the Micrologic \mathbf{P} functions, the Micrologic \mathbf{H} control unit offers:
■ in-depth analysis of power quality including calculation of harmonics and the
fundamentals
■ diagnostics aid and event analysis through waveform capture
■ enhanced alarm programming to analyse and track down a disturbance on the AC power system.

Measurements

The Micrologic H control unit offers all the measurements carried out by Micrologic P, with in addition:

- phase by phase measurements of:
- power, energy
- power factors
- calculation of:
- current and voltage total harmonic distortion (THD)
- current, voltage and power fundamentals
\square current and voltage harmonics up to the 31st order.
Instantaneous values displayed on the screen

Currents					
I rms	A	1	2	3	N
	A	E-fault			
Imax rms	A	1	2	3	N
	A	E-fault			
Voltages					
U rms	V	12	23	31	
V rms	V	1N	2N	3N	
\underline{U} average rms	V	(U12 +	+ U		
U unbalance	\%				
Power, energy					
P active, Q reactive, S apparent	W, Var, VA	Totals	1	2	3
E active, E reactive, E apparent	Wh, VARh, VAh	Totals consumed - supplied Totals consumed Totals supplied			
Power factor	PF	Total	1	2	3
Frequencies					
F	Hz				
Power-quality indicators					
Total fundamentals		U I P	S		
THD	\%	U I			
U and Iharmonics	Amplitude	357	111		

Harmonics 3, 5, 7, 9, 11 and 13, monitored by electrical utilities, are displayed on the screen.

Demand measurements

Similar to the Micrologic P control unit, the demand values are calculated over a fixed or sliding time window that may be set from 5 to 60 minutes.

Currents	A	1	2	3	N
I demand	A	E-fault		E-leakage	
Imax demand	A	1	2	3	N
	A	E-fault		E-leakage	
Power					
P, Q, S demand	W, Var, VA	Totals			
P, Q, S max demand	W, Var, VA	Totals			

Maximeters

Only the current maximeters may be displayed on the screen

Histories and maintenance indicators

These functions are identical to those of the Micrologic P.

Display of harmonics up to 21th order.

Log.

With the communication option

Additional measurements, maximeters and minimeters
Certain measured or calculated values are only accessible with the COM
communication option:
■ I peak $/ \sqrt{2}\left(I_{1}+I_{2}+I_{3}\right) / 3, I_{\text {unbalance }}$

- load level in \% Ir
- power factor (total and per phase)

■ voltage and current THD

- K factors of currents and average K factor
- crest factors of currents and voltages
- all the fundamentals per phase

■ fundamental current and voltage phase displacement

- distortion power and distortion factor phase by phase

■ amplitude and displacement of current and voltage harmonics 3 to 31 .
The maximeters and minimeters are available only via the COM option for use with a supervisor.

Waveform capture

The Micrologic H control unit stores the last 4 cycles of each instantaneous current or voltage measurement. On request or automatically on programmed events, the control unit stores the waveforms. The waveforms may be displayed in the form of oscillograms by a supervisor via the COM option. Definition is 64 points per cycle.
Pre-defined analogue alarms (1 to 53)
Each alarm can be compared to user-set high and low thresholds. Overrun of a threshold generates an alarm. An alarm or combinations of alarms can be linked to programmable action such as selective recording of measurements in a log, waveform capture, etc.

Event log and maintenance registers

The Micrologic H offers the same event log and maintenance register functions as the Micrologic P. In addition, it produces a log of the minimums and maximums for each "real-time" value.

Additional technical characteristics

Safety

Measurement functions are independent of the protection functions
The high-accuracy measurement module operates independently of the protection module.

Simplicity and multi-language

Navigation from one display to another is intuitive. The six buttons on the keypad provide access to the menus and easy selection of values. When the setting cover is closed, the keypad may no longer be used to access the protection settings, but still provides access to the displays for measurements, histories, indicators, etc.
Micrologic is also multi-language, including the following languages: English,
Spanish, Portuguese, Russian, Chinese, French, German;;;

Intelligent measurement

Measurement-calculation mode:
■ energies are calculated on the basis of the instantaneous power values, in two manners:
\square the traditional mode where only positive (consumed) energies are considered \square the signed mode where the positive (consumed) and negative (supplied) energies are considered separately
■ measurement functions implement the new "zero blind time" concept which consists in continuously measuring signals at a high sampling rate. The traditional "blind window" used to process samples no longer exists. This method ensures accurate energy calculations even for highly variable loads (welding machines, robots, etc.).

Always powered

All current-based protection functions require no auxiliary source. Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

Stored information

The fine setting adjustments, the last 100 events and the maintenance register remain in the control-unit memory even when power is lost.

External sensor (CT).

Rectangular sensor.

External sensor for source ground return protection.

External sensors

External sensor for earth-fault and neutral protection
The sensors, used with the 3P circuit breakers, are installed on the neutral conductor for:
■ neutral protection (with Micrologic P and H)

- residual type earth-fault protection (with Micrologic A, P and H)..

The rating of the sensor (CT) must be compatible with the rating of the circuit breaker:
■ NT06 to NT16: TC 400/1600
■ NW08 to NW2O: TC 400/2000
■ NW25 to NW40: TC 1000/4000
■ NW40b to NW63: TC 4000/6300.
For oversized neutral protection the sensor rating must be compatible with the measurement range: $1.6 \times \mathrm{IN}$ (available up to NW 40 and NT 16).

Rectangular sensor for earth-leakage protection

The sensor is installed around the busbars (phases + neutral) to detect the zerophase sequence current required for the earth-leakage protection. Rectangular sensors are available in two sizes.
Inside dimensions (mm)

- 280×115 up to 1600 A for Masterpact NT and NW

■ 470×160 up to 3200 A for Masterpact NW.

External sensor for source ground return protection

The sensor is installed around the connection of the transformer neutral point to earth and connects to the Micrologic 6.0 control unit via an MDGF module to provide the source ground return (SGR) protection.

Voltage measurement inputs

Voltage measurement inputs are required for power measurements (Micrologic P or H) and for earth-leakage protection (Micrologic 7...).
As standard, the control unit is supplied by internal voltage measurement inputs placed downstream of the pole for voltages between 220 and 690 V AC. On request, it is possible to replace the internal voltage measurement inputs by an external voltage input (PTE option) which enables the control unit to draw power directly from the distribution system upstream of the circuit breaker. An 3 m cable with ferrite comes with this PTE option.

Long-time rating plug

Four interchangeable plugs may be used to limit the long-time threshold setting range for higher accuracy.
The time delay settings indicated on the plugs are for an overload of 6 Ir (for further details, see the characteristics on page A-13 and page A-15).
As standard, control units are equipped with the 0.4 to 1 plug.

Setting ranges										
Standard	$\ln \times \ldots$	0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98	1
Low-setting option	$\operatorname{Ir}=\ln \times \ldots$	0.4	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.8
High-setting option	$\operatorname{Ir}=\ln \times \ldots$	0.80	0.82	0.85	0.88	0.90	0.92	0.95	0.98	1
Off plug	No long-time protection (Ir $=\ln$ for Isd setting)									
Important: long-time rating plugs must always be removed before carrying out insulation or										

External 24 V DC power-supply module

The external power-supply module makes it possible to use the display even if the circuit breaker is open or not supplied (for the exact conditions of use, see the "electrical diagrams" part of this catalogue).
This module powers both the control unit (100 mA) and the M2C and M6C programmable contacts (100 mA).
If the COM communication option is used, the communication bus requires its own 24 V DC power supply, independent with respect to that of the Micrologic control unit. With the Micrologic A control unit, this module makes it possible to display currents of less than 20% of In.
With the Micrologic P and H , it can be used to display fault currents after tripping.

Characteristics

- power supply:

ㅁ 110/130, 200/240, 380/415 V AC (+10 \% -15 \%)

- $24 / 30,48 / 60,100 / 125 \mathrm{~V}$ DC (+20 \% -20 \%)

■ output voltage: 24 V DC $\pm 5 \%, 200 \mathrm{~mA}$.

- ripple < 1%

■ dielectric withstand : 3.5 kV rms between input/output, for 1 minute
■ overvoltage category: as per IEC 60947-1 cat. 4.

Battery module

The battery module maintains display operation and communication with the supervisor if the power supply to the Micrologic control unit is interrupted. It is installed in series between the Micrologic control unit and the AD module.

Characteristics

■ battery run-time: 4 hours (approximately)

- mounted on vertical backplate or symmetrical rail.

M2C, M6C programmable contacts

These contacts are optional equipment for the Micrologic P and H control units. They are described with the indication contacts for the circuit breakers.

Characteristics		M2C/M6C	
Minimum load		$100 \mathrm{~mA} / 24 \mathrm{~V}$	
Breaking capacity (A)	V AC	240	5
p.f.: 0.7		380	3
	V DC	24	1.8
		48	1.5
	125	0.4	
		250	0.15

M2C: 24 V DC power supplied by control unit (consumption 100 mA).
M6C: external 24 V DC power supply required (consumption 100 mA).

Spare parts

Lead-seal covers

A lead-seal cover controls access to the adjustment dials.
When the cover is closed:
■ it is impossible to modify settings using the keypad unless the settings lockout pin on the cover is removed

- the test connector remains accessible
- the test button for the earth-fault and earth-leakage protection function remains accessible.

Characteristics

- transparent cover for basic Micrologic and Micrologic A control units

■ non-transparent cover for Micrologic P and H control units.

Spare battery

A battery supplies power to the LEDs identifying the tripping causes. Battery service life is approximately ten years.
A test button on the front of the control unit is used to check the battery condition. The battery may be replaced on site when discharged.

Test equipment

Hand-held test kit
The hand-held mini test kit may be used to:
■ check operation of the control unit and the tripping and pole-opening system by sending a signal simulating a short-circuit

- supply power to the control units for settings via the keypad when the circuit-
breaker is open (Micrologic P and H control units).
Power source: standard LR6-AA battery.

Full function test kit

The test kit can be used alone or with a supporting personal computer.
The test kit without PC may be used to check:

- the mechanical operation of the circuit breaker
- the electrical continuity of the connection between the circuit breaker and the control unit
■ operation of the control unit:
\square display of settings
\square automatic and manual tests on protection functions
\square test on the zone-selective interlocking (ZSI) function
- inhibition of the earth-fault protection
\square inhibition of the thermal memory.
The test kit with PC offers in addition:
- the test report (software available on request).

Portable data acquisition
Masterpact and GetnSet

GetnSet is a portable data acquisition and storage accessory that connects directly to the Micrologic control units of Masterpact circuit breakers to read important electrical installation operating data and Masterpact protection settings.
This information is stored in the GetnSet internal memory and can be transferred to a PC via USB or Bluetooth for monitoring and analysis.

Overview of Masterpact GetnSet functions

GetnSet ${ }^{(1)}$ is a portable data acquisition and storage device that works like a USB drive, letting users manually transfer data to and from a Masterpact circuit breaker or PC.
GetnSet can download operating data from Masterpact and download or upload settings
Downloadable operating data include measurements, the last 3 trip history records and contact wear status.
Accessible settings include protection thresholds, external relay assignment modes and pre-defined alarm configurations if applicable.

1 On/Off
2 batterie indicator
3 Download settings
4 Download operating parameters
5 Upload settings
6 USB indicator
7 Bluetooth indicator

Operating data functions

Electrical installation information such as energy measurements and contact wear status is increasingly important to help reduce operating expenses and increase the availability of electrical power. Such data is often available from devices within the installation, but needs to be gathered and aggregated to allow analysis and determine effective improvement actions.
With GetnSet, this operating data can be easily read and stored as .dgl files in the internal memory. It can then be transferred to a PC via a USB or Bluetooth link and imported in an Excel spreadsheet.
The provided Excel spreadsheet can be used to display the operating data from several breakers in order to:

- analyse changes in parameters such as energy, power factor and contact wear - compare the values of parameters between circuit breakers
- create graphics and reports using standard Excel tools

GetnSet data accessible in the Excel spreadsheet

Type of data	Micrologic		
Current	A	P	H
Energy, voltages, frequency, power, power factor		P	H
Power quality: fundamental, harmonics			H
Trip history		P	H
Contact wear		P	H

Protection setting functions

GetnSet can also be used to back up circuit breaker settings and restore them on the same device or, under certain conditions, copy them to any Masterpact circuit breaker equipped with the same type of Micrologic control unit. This concerns only advanced settings, as other parameters must be set manually using the dials on the Micrologic control unit
■ When commissioning the installation, safeguard the configuration parameters of your electrical distribution system by creating a back-up of circuit breaker settings so that they can be restored at any time.
■ The settings read by GetnSet can be transferred to a PC and are compatible with RSU software (Remote Setting Utility). Protection configurations can also be created on a PC using this software, copied to GetnSet's internal memory and uploaded to a Masterpact circuit breaker with a compatible Micrologic trip unit and dial settings.

Operating procedure

The procedure includes several steps.
■ Plug GetnSet into the receptacle on the front of the Micrologic control unit of a Masterpact circuit breaker.
■ On the keypad, select the type of data (operating data or settings) and the transfer direction (download or upload). This operation can be done as many times as required for the entire set of Masterpact circuit breakers.
■ Downloaded data is transferred to the GetnSet internal memory and a file is created for each Masterpact device (either an .rsu file for settings or a.dgl file for operating data).
■ Data can be transferred between GetnSet and a PC via a USB or Bluetooth connection.
■ Operating data can be imported in an Excel spreadsheet and protection settings can be read with RSU (remote setting utility) software.

Features

■ Battery-powered to power a Micrologic control unit even if the breaker has been opened or tripped. This battery provides power for an average of 1 hour of use, enough for more than 100 download operations.
■ Can be used on Masterpact circuit breakers equipped or not equipped with a Modbus "device" communication module.
■ Portable, standalone accessory eliminating the need for a PC to connect to a Masterpact circuit breaker.
■ No driver or software required for GetnSet connection to a PC.

- Can be used with many circuit breakers, one after the other.

■ Embedded memory sized to hold data from more than 5000 circuit breakers
■ Supplied with its battery, a cable for connection to Micrologic trip units, a USB cable for connection to a PC and a battery charger

Compatibility

■ Micrologic control units A, P, H

- PC with USB port or Bluetooth link and Excel software

Technical characteristics

Charger power supply	$100-240 \mathrm{~V} ; \sim 1 \mathrm{~A} ; 50-60 \mathrm{~Hz}$
Charger power consumption	Max 100 W
Battery	$3.3 \mathrm{VDC} ; 9 \mathrm{mAh} ;$ Li-lon
Operating temperature	-20 to $+60^{\circ} \mathrm{C}$
GetnSet dimensions	$95 \times 60 \times 35 \mathrm{~mm}$

The COM option is required for integration of the circuit breaker or switch-disconnector in a supervision system.
Masterpact uses the Modbus communications protocol for full compatibility with the supervision management systems. An external gateway is available for communication on other networks:
■ Ion Enterprise (power management system)
■ Ethernet gateway (MPS100/EGX)
■ Ethernet...

- Profibus.

Eco COM is limited to the transmission of metering data and does not allow the control of the circuit breaker.

Modbus "device" communication module.

Modbus "chassis" communication module.

For fixed devices, the COM option is made up of:

■ a "device" communication module, installed behind the Micrologic control unit and supplied with its set of sensors (OF, SDE ,PF and CH micro-contacts) and its kit for connection to XF and MX1 communicating voltage releases.

For drawout devices, the COM option is made up of:

■ a "device" communication module, installed behind the Micrologic control unit and supplied with its set of sensors (OF, SDE, PF and CH micro-contacts) and its kit for connection to XF and MX1 communicating voltage releases
■ a "chassis" communication module supplied separately with its set of sensors (CE, CD and CT contacts).
Status indication by the COM option is independent of the device indication contacts. These contacts remain available for conventional uses.

Digipact or Modbus "Device" communication module

This module is independent of the control unit. It receives and transmits information on the communication network. An infra-red link transmits data between the control unit and the communication module.
Consumption: $30 \mathrm{~mA}, 24 \mathrm{~V}$.

Digipact or Modbus "chassis" communication module

This module is independent of the control unit. With Modbus "chassis" communication module, this module makes it possible to address the chassis and to maintain the address when the circuit breaker is in the disconnected position.
Consumption: $30 \mathrm{~mA}, 24 \mathrm{~V}$.

XF and MX1 communicating voltage releases

The XF and MX1 communicating voltage releases are equipped for connection to the "device" communication module.
The remote-tripping function (MX2 or MN) are independent of the communication option. They are not equipped for connection to the "device" communication module.

[^12]
Overview of functions

The Masterpact circuit breakers and switch-disconnectors are compatible with the Digipact or Modbus COM option.
The COM option may be used to:

- identify the device
- indicate status conditions
- control the device.

Depending on the different types of Micrologic (A, P, H) control units, the COM option also offers:

- setting of the protection and alarms functions

■ analysis of the AC-power parameters for operating-assistance and maintenance purposes.

Note: see the description of the Micrologic control units for further details on protection and alarms, measurements, waveform capture, histories, logs and maintenance indicators. (1) With modbus it is possible to monitor the PF status please see the instruction bulletin COMBT32AK at page 51/Register 661 documentation.
A: Micrologic with ammeter
P: Micrologic "Power"
H: Micrologic "Harmonics"

Communication
Masterpact in a communication network

Modbus

■ Modbus is the most widely used communication protocol in industrial networks.

- $>$
porpact, Compact NSX, PowerLogic and Sepam products all operate with this protocol. A Modbus network is generally implemented on an LV or MV switchboard scale.

Web page.

Gateway

A Modbus TCP gateway can be used to connect the Modbus network to ethernet. The gateway has the two main functions:

- access to the company intranet (Ethernet) by converting Modbus frames to the TCP/IP Modbus protocol,
- optional web-page server for the information from the devices.

Examples include MPS100, EGX400 and EGX100.

MPS100

■ Plug and play device. It comes loaded with a web-page application for graphic display of currents and voltages and viewing of circuit-breaker status and power and energy values.
To use the application, simply declare the Modbus addresses of the connected slaves. Automatically recognised devices include all Masterpact and Compact NSX Micrologic trip units and the PM500/700/800 and PM9c power monitoring units.

- Can be used for automatic alarm notification via a messaging server available on the site intranet or via mobile phones (e-mail converted into SMS).
- Can be used for logging of data that can be automatically sent as e-mail attachments, e.g. a weekly consumption report.

Devices

Circuit breakers equipped with Micrologic control units may be connected to either a Modbus communication bus. The information made available depends on the type of Micrologic control unit (A, P or H) and on the type of communication bus (Modbus).
Switch-disconnectors can be connected to the Modbus communication bus. The information made available is the status of the switch-disconnector.

Communication bus

Modbus bus

The Modbus RS485 system is an open bus on which communicating Modbus devices (Masterpact with Modbus COM, Power Meter, Sepam, Vigilohm, etc.) are installed. All types of PLCs and microcomputers may be connected to the bus.

Addresses

The Modbus parameters (address, baud rate, parity) are entered using the keypad on the Micrologic A, P or H. For a switch-disconnector, it is necessary to use the RSU (Remote Setting Utility) Micrologic utility.
The software layer of the Modbus protocol can manage up to 255 addresses (1 to 255).
The "device" communication module comprises three addresses linked to:
■ circuit-breaker manager

- measurement manager
- protection manager.

The "chassis" communication module comprises one address linked to the chassis manager.
The division of the system into four managers secures data exchange with the supervision system and the circuit-breaker actuators.
The manager addresses are automatically derived from the circuit-breaker address @xx entered via the Micrologic control unit (the default address is 47).

Logic addresses		
$@ x x$	Circuit-breaker manager	$(1$ to 47)
$@ x x+50$	Chassis manager	$(51$ to 97$)$
$@ x x+200$	Measurement managers	$(201$ to 247$)$
$@ x x+100$	Protection manager	$(101$ to 147$)$

Number of devices

The maximum number of devices that may be connected to the Modbus bus depends on the type of device (Masterpact with Modbus COM, Power Meter, Sepam, Vigilohm, etc.), the baud rate (19200 is recommended), the volume of data exchanged and the desired response time. The RS485 physical layer offers up to 32 connection points on the bus (1 master, 31 slaves).
A fixed device requires only one connection point (communication module on the device).
A drawout device uses two connection points (communication modules on the device and on the chassis).
The number must never exceed 31 fixed devices or 15 drawout devices.

Length of bus

The maximum recommended length for the Modbus bus is 1200 meters.
Bus power source
A 24 V DC power supply is required (less than 20 \% ripple, insulation class II)

Communication interface

The Modbus bus may be connected to the central processing device in any of three manners:
■ direct link to a PLC. The communication interface is not required if the PLC is equipped with a Modbus port
■ direct link to a computer. The Modbus (RS485) / Serial port (RS232)
communication interface is required
■ connection to a TCP/IP (Ethernet) network. The Modbus (RS485) / TCP/IP
(Ethernet) communication interface is required.

Software

To make use of the information provided by the communicating devices, software with a Modbus driver must be used.

Micrologic utilities

This is a set of software that may be used with a PC to:
■ display the variables (I, U, P, E, etc.) with the RDU (Remote Display Utility)
■ read/write the settings with the RSU (Remote Setting Utility)
■ remotely control (ON / OFF) the device with the RCU (Remote Control Utility).
Micrologic utilities are available upon request

SMS (System Manager Software)

SMS is a software to monitor LV and/or MV electrical energy
The SMS family includes a software range depending on the application and function, from single product monitoring to the management of a multiple building:
■ Power Meter and Circuit Monitor units
■ LV devices

- Sepam units.

Communication
 Masterpact and the MPS100 Micro Power Server

The MPS100 Micro Power Server:
■ notifies maintenance staff when
any preset alarm or trip is activated
by the Micrologic trip unit, automatically sending an email and/or SMS
■ data logs are periodically forwarded
by e-mail
\square the e-mails are sent via an Ethernet local area network (LAN) or remotely via modem.

MPS100 Micro Power Server.

Main LV switchboard.

Monitoring of your main LV switchboard via embedded web pages in the MPS100 accessible with a standard web browser.

Micro Power Server makes data collection easy for monitoring Masterpact/Compact circuit breakers

Now, more than ever, there is a need to monitor electrical distribution systems in industrial and large commercial applications. The key to managing all equipment, maximising efficiencies, reducing costs and increasing up time is having the right tools.
Micro Power Server MPS100 is designed to withstand harsh electrical environments and provide a consistent flow of easy to interpret information.

Micro Power Server is designed for unattended operation within the main LV switchboard

The MPS100 is a self-contained facility information server that serves as a standalone device for power system monitoring.
It is used to transfer power system information via a standard web browser over an Ethernet local area network (LAN) or via modem, making it possible to view power system information on a PC with an Ethernet connection.
In either capacity, the Micro Power Server functions as a web server for Micrologic trip unit and Power Meter supervision, automatically notifying (e-mail and/or SMS) maintenance staff when any preset alarm or trip is activated in the Micrologic trip unit.

Benefits

■ view your main LV switchboard without installing software on your local PC, eliminating the need for a dedicated PC with specific software

- Micro Power Server allows centralised monitoring, so you no longer waste precious time walking around the facility to collect data
■ view your main LV switchboard via a modem connection (GSM or switched network), avoiding the need for a LAN
■ maintenance people are automatically notified at any time, wherever they are, so you do not have to stay in front of a monitor all day long
- data logs can be periodically forwarded by sending e-mails to the relevant people (maintenance, accounting, application service provider) automatically
■ possibility to monitor/notify six external events (limit switches, auxiliary switches...)
■ back-up of Micrologic trip unit settings in the memory of the MPS100, so you know where to retrieve it when necessary.

[^13]

Micrologic trip unit.

Power Meter.

Typical architecture

Monitoring from home PC

It is possible to combine the different types of architecture.

Supported Modbus devices

- Micrologic trip units
- Power Meters (PM700, PM800...).

Maximum recommended connected devices is 10 .

Features

- access to the power system via a standard PC web browser
- real-time data displayed with an intuitive and user friendly interface (dashboard)

■ Ethernet Modbus TCP/IP connectivity directly to the LAN or via modem (Point to
Point Protocol services)
■ SMTP (Simple Mail Transfer Protocol) client (capacity to send e-mail)
■ local logging of data such as energy, power, current..
■ set-up and system configuration through MPS100 embedded HTML pages
■ user interface translatable in any language, factory settings in English and French

- 6 inputs/2 outputs (no-volt contact)

■ DHCP (Dynamic Host Configuration Protocol) client.

Technical characteristics

Power supply	$24 \mathrm{~V} \mathrm{DC} \pm 15 \%$, consumption $=250 \mathrm{~mA}$
Operating temperature	0 to $+50^{\circ} \mathrm{C}$
Rugged compact metal housing	$35 \times 218 \times 115 \mathrm{~mm}(\mathrm{H} \times \mathrm{W} \times \mathrm{D})$

Additional information available at: http://194.2.245.4/mkt/microser.nsf
User name: MPS, Password: MPS100

Communication
Communication wiring system

Wiring system

The wiring system is designed for low-voltage power switchboards. Installation requires no tools or special skills.
The prefabricated wiring ensures both data transmission (ModBus protocol) and 24 V DC power distribution for the communications modules on the Micrologic control units.

Masterpact circuit breakers equipped with Micrologic control units and the ModBus COM option.

Maximum distance between module and circuit breaker: 1200 m.

Masterpact circuit breakers equipped with Micrologic control units and the ModBus eco COM option.

Connections Overview of solutions

Three types of connection are available:

- vertical or horizontal rear connection
- front connection

■ mixed connection.
The solutions presented are similar in principle for all Masterpact NT and NW fixed and drawout devices.

Simply turn a horizontal rear connector 90° to make it a vertical connector. For the 6300 A circuit breaker, only vertical connection is available.

Front connection is available for NW fixed and drawout versions up to 3200 A.

Note: Masterpact circuit breakers can be connected indifferently with bare-copper, tinned-copper and tinned-aluminium conductors, requiring no particular treatment.

Connections
Accessories

Type of accessory	Masterpact NT06 to NT16				Masterpact NW08 to NW63			
	Fixed Front connection	Rear connection	Drawout Front connection	Rear connection	Fixed Front connection	Rear connection	Drawout Front connection	Rear connection
Vertical connection adapters	®		®					
Cable lug adapters								
Interphase barriers		(1)						
Spreaders	$\begin{array}{ll} 0.00 \\ 0 \\ 0 \\ 0 \end{array}$	$0 \sqrt{0000}$	$\begin{array}{ll} 0.000 \\ 0.0 \\ 0.0 \\ 0 \end{array}$	$\sqrt{000}$				
Disconnectable front-connection adapter								
Safety shutters with padlocking			N N シ © standard				standard	$\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right][\llbracket]$
Shutter position indication and locking								
Arc chute screen	。	ם (4)						

(1) Mandatory for voltages > 500 V
(2) Except for an NW40 equipped for horizontal rear connection, and for fixed NW40b-NW63.
(3) Mandatory for 1000 V and for fixed NT front-connection versions with vertical-connection adapters oriented towards the front.
(4) Mandatory for 1000 V .

Masterpact M replacement kit

A set of connection parts is available to allow replacement of a Masterpact M08 to M32 circuit breaker by a Masterpact NW without modifying the busbars (please consult us).

Mounting on a switchboard backplate using special brackets
Masterpact NT and NW fixed front-connected circuit breakers can be installed on a backplate without any additional accessories.
Masterpact NW circuit breakers require a set of special brackets.

Vertical-connection adapters (option)

Mounted on front-connected devices or chassis, the adapters facilitate connection to a set of vertical busbars.

Cable-lug adapters (option)

Cable-lug adapters are used in conjunction with vertical-connection adapters.
They can be used to connect a number of cables fitted with lugs.
To ensure adequate mechanical strength, the connectors must be secured together via spacers (catalogue number 07251).

Interphase barriers (option)

These barriers are flexible insulated partitions used to reinforce isolation of connection points in installations with busbars, whether insulated or not For Masterpact NT/NW devices, they are installed vertically between rear connection terminals. They are mandatory for NT devices at voltages $>500 \mathrm{~V}$

Spreaders (option)

Mounted on the front or rear connectors, spreaders are used to increase the distance between bars in certain installation configurations.

Arc chute screen (option)

For fixed Masterpact NT front-connection versions and with vertical-connection adapters oriented towards the front, an arc chute screen must be installed to respect safety clearances.

For Masterpact NT 1000 V, an arc chute screen must be installed to respect safety clearances.

Connections
Accessories

Disconnectable front-connection adapter (option)

Mounted on a fixed front-connected device, the adapter simplifies replacement of a fixed device by enabling fast disconnection from the front.

Safety shutters (VO standard)

Mounted on the chassis, the safety shutters automatically block access to the disconnecting contact cluster when the device is in the disconnected or test positions (degree of protection IP 20) When the device is removed from its chassis, no live parts are accessible.
The shutter-locking system is made up of a moving block that can be padlocked (padlock not supplied). The block:
■ prevents connection of the device

- locks the shutters in the closed position.

For Masterpact NW08 to NW63
A support at the back of the chassis is used to store the blocks when they are not used:

- 2 blocks for NW08 to NW40
- 4 blocks for NW40b to NW63.

Shutter position indication and locking on front face (VIVC, NW only)

This option located on the chassis front plate indicates that the shutters are closed. It is possible to independently or separately padlock the two shutters using one to three padlocks (not supplied).

Access to pushbuttons protected by transparent cover.

Pushbutton locking using a padlock.

OFF position locking using a padlock.

Pushbutton locking VBP

The transparent cover blocks access to the pushbuttons used to open and close the device.
It is possible to independently lock the opening button and the closing button.
The locking device is often combined with a remote operating mechanism.
The pushbuttons may be locked using either:

- three padlocks (not supplied)
- lead seal
- two screws.

Device locking in the OFF position VCPO by padlocks, VSPO by keylocks

The circuit breaker is locked in the OFF position by physically maintaining the opening pushbutton pressed down:
■ using padlocks (one to three padlocks, not supplied)

- using keylocks (one or two different keylocks, supplied).

Keys may be removed only when locking is effective (Profalux or Ronis type locks).
The keylocks are available in any of the following configurations:
■ one keylock
■ one keylock mounted on the device + one identical keylock supplied separately for interlocking with another device

- two different key locks for double locking.

Profalux and Ronis keylocks are compatible with each other.
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).

Accessory-compatibility

For Masterpact NT: 3 padlocks or 1 keylock
For Masterpact NW: 3 padlocks and/or 2 keylocks

Cable-type door interlock IPA

This option prevents door opening when the circuit breaker is closed and prevents circuit breaker closing when the door is open.
For this, a special plate associated with a lock and a cable is mounted on the right side of the circuit breaker. With this interlock installed, the source changeover function cannot be implemented.

OFF position locking using a keylock.

"Disconnected" position locking by padlocks.

"Disconnected" position locking by keylocks.

Door interlock.

Racking interlock.

Mismatch protection.
"Disconnected" position locking by padlocks (standard) or keylocks (VSPD option)
Mounted on the chassis and accessible with the door closed, these devices lock the circuit breaker in the "disconnected" position in two manners:
■ using padlocks (standard), up to three padlocks (not supplied)
■ using keylocks (optional), one or two different keylocks are available.
Profalux and Ronis keylocks are available in different options:
■ one keylock
■ two different keylocks for double locking
■ one (or two) keylocks mounted on the device + one (or two) identical keylocks supplied separately for interlocking with another device.
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).
"Connected", "disconnected" and "test" position locking
The "connected", "disconnected" and "test" positions are shown by an indicator andc are mechanically indexed. The exact position is obtained when the racking handle blocks. A release button is used to free it.
As standard, the circuit breaker can be locked only in "disconnected position". On request, the locking system may be modified to lock the circuit breaker in any of the three positions: "connected", "disconnected" or "test".

Door interlock catch VPEC

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position. It the breaker is put in the "connected" position with the door open, the door may be closed without having to disconnect the circuit breaker.

Racking interlock VPOC

This device prevents insertion of the racking handle when the cubicle door is open.
Cable-type door interlock IPA
This option is identical for fixed and drawout versions.

Racking interlock between crank and OFF pushbutton IBPO (for NW only)

This option makes it necessary to press the OFF pushbutton in order to insert the racking handle and holds the device open until the handle is removed.

Automatic spring discharge before breaker removal DAE (for NW only)

This option discharges the springs before the breaker is removed from the chassis

Mismatch protection VDC

Mismatch protection ensures that a circuit breaker is installed only in a chassis with compatible characteristics. It is made up of two parts (one on the chassis and one on the circuit breaker) offering twenty different combinations that the user may select.

Indication contacts

Indication contacts are available:
■ in the standard version for relay applications
■ in a low-level version for control of PLCs and electronic circuits.
M2C and M6C contacts may be programmed via the Micrologic P and H control units.

ON/OFF indication contacts (OF) (microswitch type).

Additional "fault-trip" indication contacts (SDE).

ON/OFF indication contacts OF

Two types of contacts indicate the ON or OFF position of the circuit breaker:

- microswitch type changeover contacts for Masterpact NT
- rotary type changeover contacts directly driven by the mechanism for Masterpact NW. These contacts trip when the minimum isolation distance between the main circuit-breaker contacts is reached.

OF			NT	NW
Supplied as standard			4	4
Maximum number			4	12
Breaking capacity (A)	Standard		Minim	$100 \mathrm{~mA} / 24 \mathrm{~V}$
p.f.: 0.3	V AC	240/380	6	10/6 ${ }^{(1)}$
AC12/DC12		480	6	10/6 ${ }^{(1)}$
		690	6	6
	V DC	24/48	2.5	10/6 ${ }^{(1)}$
		125	0.5	$10 / 6{ }^{(1)}$
		250	0.3	3
	Low-level		Minim	$2 \mathrm{~mA} / 15 \mathrm{~V}$
	V AC	24/48	5	6
		240	5	6
		380	5	3
	V DC	24/48	5/2.5	6
		125	0.5	6
		250	0.3	3

(1) Standard contacts: 10 A ; optional contacts: 6 A .

"Fault-trip" indication contacts SDE

Circuit-breaker tripping due to a fault is signalled by:
■ a red mechanical fault indicator (reset)
■ one changeover contact SDE.
Following tripping, the mechanical indicator must be reset before the circuit breaker may be closed. One SDE is supplied as standard. An optimal SDE may be added. This latter is incompatible with the electrical reset after fault-trip option (RES).

SDE			NT/NW
Supplied as standard			1
Maximum number			2
Breaking capacity (A)	Standard		Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$
p.f.: 0.3	VAC	240/380	5
AC12/DC12		480	5
		690	3
	V DC	24/48	3
		125	0.3
		250	0.15
	Low-level		Minimum load: $2 \mathrm{~mA} / 15 \mathrm{~V}$
	VAC	24/48	3
		240	3
		380	3
	V DC	24/48	3
		125	0.3
		250	0.15

Combined "connected/closed" contacts EF

The contact combines the "device connected" and the "device closed" information to produce the "circuit closed" information. Supplied as an option for Masterpact NW, it is mounted in place of the connector of an additional OF contact.

EF			NW
Maximum number			8
Breaking capacity (A)	Standard		Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$
p.f.: 0.3	VAC	240/380	6
AC12/DC12		480	6
		690	6
	V DC	24/48	2.5
		125	0.8
		250	0.3
	Low-level		Minimum load: $2 \mathrm{~mA} / 15 \mathrm{~V}$
	VAC	24/48	5
		240	5
		380	5
	V DC	24/48	2.5
		125	0.8
		250	0.3

CE, CD and CT "connected/disconnected/test" position carriage switches.

M2C programmable contacts: circuit-breaker internal relay with two contacts.

M6C programmable contacts:
circuit-breaker external relay with six independent changeover contacts controlled from the circuit breaker via a three-wire connection. (maximum length is 10 meters).

"Connected", "disconnected" and "test" position carriage switches

Three series of optional auxiliary contacts are available for the chassis:
■ changeover contacts to indicate the "connected" position CE

- changeover contacts to indicate the "disconnected" position CD. This position is indicated when the required clearance for isolation of the power and auxiliary circuits is reached
■ changeover contacts to indicate the "test" position CT. In this position, the power circuits are disconnected and the auxiliary circuits are connected.

Additional actuators

A set of additional actuators may be installed on the chassis to change the functions of the carriage switches.

M2C / M6C programmable contacts

These contacts, used with the Micrologic P and H control units, may be programmed via the control unit keypad or via a supervisory station with the COM communication option. They require an external power supply module.
They indicate:

- the type of fault

■ instantaneous or delayed threshold overruns.

- They may be programmed:

■ with instantaneous return to the initial state
■ without return to the initial state
■ with return to the initial state following a delay.

Characteristics		M2C/M6C	
Minimum load		$100 \mathrm{~mA} / 24 \mathrm{~V}$	
Breaking capacity (A)	VAC	240	5
p.f.: 0.7		380	3
	VDC	24	1.8
		48	1.5
		125	0.4
		250	0.15

M6C: external 24 V DC power supply required (consumption 100 mA).

Remote operation Remote ON / OFF

Two solutions are available for remote operation of Masterpact devices:
■ a point-to-point solution

- a bus solution with the COM communication option.

Note: an opening order always takes priority over a closing order.
If opening and closing orders occur simultaneously, the mechanism discharges without any movement of the main contacts. The circuit breaker remains in the open position (OFF).
In the event of maintained opening and closing orders, the standard mechanism provides an anti-pumping function by blocking the main contacts in open position.
Anti-pumping function. After fault tripping or intentional opening using the manual or electrical controls, the closing order must first be discontinued, then reactivated to close the circuit breaker.
When the automatic reset after fault trip (RAR) option is installed, to avoid pumping following a fault trip, the automatic control system must take into account the information supplied by the circuit breaker before issuing a new closing order or blocking the circuit breaker in the open position (information on the type of fault, e.g. overload, short-time fault, earth fault, earth leakage, short-circuit, etc.).

Note: MX communicating releases are of the impulse type only and cannot be used to lock a circuit breaker in OFF position. For locking in OFF position, use the remote tripping function (2nd MX or MN).
When MX or XF communicating releases are used, the third wire (C3, A3) must be connected even if the communication module is not installed. When the control voltage (C3-C1 or A3-A1) is applied to the MX or XF releases, it is necessary to wait 1.5 seconds before issuing an order. Consequently, it is advised to use standard MX or XF releases for applications such as source-changeover systems.

The remote ON / OFF function is used to remotely open and close the circuit breaker. It is made up of:
■ an electric motor MCH equipped with a "springs charged" limit switch contact CH

- two voltage releases:
\square a closing release XF
\square an opening release MX.
Optionally, other functions may be added:
■ a "ready to close" contact PF
- an electrical closing pushbutton BPFE
- remote RES following a fault.

A remote-operation function is generally combined with:
■ device ON / OFF indication OF
■ "fault-trip" indication SDE.

Wiring diagram of a point-to-point remote ON / OFF function

Wiring diagram of a bus-type remote ON / OFF function

Remote operation
Remote ON/OFF

Electric motor MCH for Masterpact NT.

$X F$ and $M X$ voltage releases.

"Ready to close" contacts PF.

Electric motor MCH

The electric motor automatically charges and recharges the spring mechanism when the circuit breaker is closed. Instantaneous reclosing of the breaker is thus possible following opening. The spring-mechanism charging handle is used only as a backup if auxiliary power is absent.
The electric motor MCH is equipped as standard with a limit switch contact CH that signals the "charged" position of the mechanism (springs charged)

Characteristics	
Power supply VAC 50/60 Hz	$48 / 60-100 / 130-200 / 240-277-380 / 415-400 / 440-480$
	$24 / 30-48 / 60-100 / 125-200 / 250$
Operating threshold	0.85 to 1.1 Un
Consumption (VA or W)	180
Motor overcurrent	2 to 3 In for 0.1 s
Charging time	maximum 3 s for Masterpact NT
	maximum 4 s for Masterpact NW
Operating frequency	maximum 3 cycles per minute
CH contact	10 A at 240 V

Voltage releases XF and MX

Their supply can be maintained or automatically disconnected.
Closing release XF
The XF release remotely closes the circuit breaker if the spring mechanism is charged.
Opening release MX
The MX release instantaneously opens the circuit breaker when energised. It locks the circuit breaker in OFF position if the order is maintained (except for MX "communicating" releases).

Note: whether the operating order is maintened or automatically disconnected (pulse-type), XF or MX "communicating" releases ("bus" solution with "COM" communication option) always have an impulse-type action (see diagram).

Characteristics	XF	MX
Power supply \quad V AC 50/60 Hz	$24-48-100 / 130-200 / 250-277-380 / 480$	
	V DC	$12-24 / 30-48 / 60-100 / 130-200 / 250$
Operating threshold	0.85 to 1.1 Un	0.7 to 1.1 Un
Consumption (VA or W)	Hold: 4.5	Hold: 4.5
	Pick-up: $200(200 \mathrm{~ms})$	Pick-up: $200(200 \mathrm{~ms})$
Circuit-breaker response time at Un	$55 \mathrm{~ms} \pm 10($ Masterpact NT)	$50 \mathrm{~ms} \pm 10$
	$70 \mathrm{~ms} \pm 10(\mathrm{NW} \leqslant 4000 \mathrm{~A})$	
	$80 \mathrm{~ms} \pm 10(\mathrm{NW}>4000 \mathrm{~A})$	

"Ready to close" contact PF
The "ready to close" position of the circuit breaker is indicated by a mechanical indicator and a PF changeover contact. This signal indicates that all the following are valid:

- the circuit breaker is in the OFF position
- the spring mechanism is charged
- a maintained opening order is not present:
- MX energised
\square fault trip
\square remote tripping second MX or MN
- device not completely racked in
\square device locked in OFF position
\square device interlocked with a second device.

Characteristics			NT/NW
Maximum number			1
$\begin{aligned} & \text { Breaking capacity (A) } \\ & \text { p.f.: } 0.3 \\ & \text { AC12/DC12 } \end{aligned}$	Standard		Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$
	VAC	240/380	5
		480	5
		690	3
	V DC	24/48	3
		125	0.3
		250	0.15
	Low-level		Minimum load: $2 \mathrm{~mA} / 15 \mathrm{~V}$
	VAC	24/48	3
		240	3
		380	3
	V DC	24/48	3
		125	0.3
		250	0.15

Electrical closing pushbutton BPFE

Located on the front panel, this pushbutton carries out electrical closing of the circuit breaker. It is generally associated with the transparent cover that protects access to the closing pushbutton.
Electrical closing via the BPFE pushbutton takes into account all the safety functions that are part of the control/monitoring system of the installation.
The BPFE connects to the closing release (XF com) in place of the COM module.
The COM module is incompatible with this option.
Different types of voltage exist and the XF electromagnet is compulsary if the BPFE option is selected.

Remote reset after fault trip

Electrical reset after fault trip RES
Following tripping, this function resets the "fault trip" indication contacts SDE and the mechanical indicator and enables circuit breaker closing
Power supply: 110 / 130 V AC and 200 / 240 V AC
The use of XF closing release is compulsory with this option

Automatic reset after fault trip RAR

Following tripping, a reset of the mechanical indicator (reset button) is no longer required to enable circuit-breaker closing. The mechanical (reset button) and electrical SDE indications remain in fault position until the reset button is pressed The use of XF closing release is compulsory with this option

Remote operation

Remote tripping

MX or MN voltage release.
This function opens the circuit breaker via an electrical order. It is made up of:
■ a shunt release second MX
■ or an undervoltage release MN
■ or a delayed undervoltage release MNR: MN + delay unit. The delay unit, installed outside the circuit breaker, may be disabled by an

Wiring diagram for the remote-tripping function

Voltage releases second MX

These releases ($2^{\text {nd }} M X$ or $M N$) cannot be operated by the communication bus. emergency OFF button to obtain instantaneous opening of the circuit breaker.

When energised, the $M X$ voltage release instantaneously opens the circuit breaker. A continuous supply of power to the second MX locks the circuit breaker in the OFF position.

Characteristics		
Power supply	VAC 50/60Hz	$24-48-100 / 130-200 / 250-277-380 / 480$
	VDC	$12-24 / 30-48 / 60-100 / 130-200 / 250$
Operating threshold	0.7 to 1.1 Un	
Permanent locking function	0.85 to 1.1 Un	
Consumption (VA or W)	Pick-up: $200(80 \mathrm{~ms})$	Hold: 4.5
Circuit-breaker response time at Un	$50 \mathrm{~ms} \pm 10$	

Instantaneous voltage releases MN

The MN release instantaneously opens the circuit breaker when its supply voltage drops to a value between 35% and 70% of its rated voltage. If there is no supply on the release, it is impossible to close the circuit breaker, either manually or electrically. Any attempt to close the circuit breaker has no effect on the main contacts. Circuitbreaker closing is enabled again when the supply voltage of the release returns to 85 \% of its rated value.

Characteristics			
Power supply	V AC 50/60 Hz	$24-48-100 / 130-200 / 250-380 / 480$	
	V DC	$24 / 30-48 / 60-100 / 130-200 / 250$	
Operating threshold	Opening	0.35 to 0.7 Un	
	Closing	0.85 Un	
Consumption (VA or W)	Pick-up: $200(200 \mathrm{~ms})$	Hold: 4.5	
MN consumption	Pick-up: $200(200 \mathrm{~ms})$	Hold: 4.5	
with delay unit (VA or W)			
Circuit-breaker response time at Un	$40 \mathrm{~ms} \pm 5$ for NT		
	$90 \mathrm{~ms} \pm 5$ for NW		

MN delay units

To eliminate circuit-breaker nuisance tripping during short voltage dips, operation of the MN release can be delayed. This function is achieved by adding an external delay unit in the MN voltage-release circuit. Two versions are available, adjustable and non-adjustable.

Characteristics		
Power supply	Non-adjustable	$100 / 130-200 / 250$
V AC 50-60 Hz /DC	Adjustable	$48 / 60-100 / 130-200 / 250-380 / 480$
Operating threshold	Opening	0.35 to 0.7 Un
	Closing	0.85 Un
Delay unit consumption	Pick-up: $200(200 \mathrm{~ms})$	
Circuit-breaker response time at Un	Non-adjustable	0.25 s
	Adjustable	$0.5 \mathrm{~s}-0.9 \mathrm{~s}-1.5 \mathrm{~s}-3 \mathrm{~s}$

Accessories

Auxiliary terminal shield CB

Optional equipment mounted on the chassis, the shield prevents access to the terminal block of the electrical auxiliaries.

Operation counter CDM

The operation counter sums the number of operating cycles and is visible on the front panel. It is compatible with manual and electrical control functions.
This option is compulsory for all the source-changeover systems.

Escutcheon CDP with blanking plate.

Transparent cover CCP for escutcheon.

Source-changeover systems Presentation

Manual source-changeover system

This is the most simple type. It is controlled manually by an operator and consequently the time required to switch from the normal to the replacement source can vary.
A manual source-changeover system is made up of two or three mechanically interlocked manually-operated circuit breakers or switch-disconnectors.

Remote-operated source-changeover system

This is the most commonly employed system for devices with high ratings (above 400 A). No human intervention is required. Transfer from the normal to the replacement source is controlled electrically.
A remote-controlled source-changeover system is made up of two or three circuit breakers or switch-disconnectors linked by an electrical interlocking system that may have different configurations. In addition, a mechanical interlocking system protects against electrical malfunctions or incorrect manual operations.

Tertiaire :

- salles d'opérations des hôpitaux
- dispositifs de sécurité d'immeubles de grande hauteur
- salles d'ordinateurs (banques, assurances...)
- systèmes d'éclairage de centres commerciaux...

Industry:

- assembly lines
- engine rooms on ships
- critical auxiliaries in thermal power stations...

Infrastructures:

- port and railway installations
- runway lighting systems
- control systems on military sites...

Mechanical interlocking

Interlocking of two Masterpact NT or NW circuit breakers using connecting rods.

Interlocking of two Compact NS630b to 1600 or two Masterpact NT and NW devices using connecting rods
The two devices must be mounted one above the other (either 2 fixed or 2 withdrawable/drawout devices).
Combinations are possible between Compact NS630b to NS1600 devices and between Masterpact NT and Masterpact NW devices.

Installation

This function requires:
■ an adaptation fixture on the right side of each circuit breaker or switchdisconnector
■ a set of connecting rods with no-slip adjustments.
The adaptation fixtures, connecting rods and circuit breakers or switchdisconnectors are supplied separately, ready for assembly by the customer
The maximum vertical distance between the fixing planes is 900 mm .
Possible combinations of "Normal" and "Replacement" source circuit breakers

Source-changeover systems
Mechanical interlocking

Interlocking of two Masterpact circuit breakers using cable.

Interlocking of two Masterpact NT/NW or up to three Masterpact NW devices using cables

For cable interlocking, the circuit breakers may be mounted one above the other or side-by-side.
The interlocked devices may be fixed or drawout, three-pole or four-pole, and have different ratings and sizes.
Interlocking between two devices (Masterpact NT and NW)
This function requires:

- an adaptation fixture on the right side of each device
- a set of cables with no-slip adjustments
- the use of a mechanical operation counter CDM is compulsory.

The maximum distance between the fixing planes (vertical or horizontal) is 2000 mm .

Interlocking between three devices (Masterpact NW only)

This function requires:

- a specific adaptation fixture for each type of interlocking, installed on the right side of each device
- two or three sets of cables with no-slip adjustments

■ the use of a mechanical operation counter CDM is compulsory.
The maximum distance between the fixing planes (vertical or horizontal) is 1000 mm .

Installation

The adaptation fixtures, sets of cables and circuit breakers or switch-disconnectors are supplied separately, ready for assembly by the customer.

Installation conditions for cable interlocking systems:
■ cable length: 2.5 m

- radius of curvature: 100 mm
- maximum number of curves: 3 .

Possible combinations of "Normal" and "Replacement" source circuit breakers

All combinations of two Masterpact NT and Masterpact NW devices are possible, whatever the rating or size of the devices.

Only Masterpact NW may be used for three-device combinations.

Types of mechanical interlocking and combinations
See catalogue "Source changeover systems", réf. LVPED208007EN.

Electrical interlocking

Electrical interlocking is used with the mechanical interlocking system. It electrically interlocks the two circuit breakers and implements the time delays required for proper operation of the system An automatic controller may be added to take into account information from the distribution system.

Electrical interlocking is carried out by an electrical control device.
For Masterpact, this function can be implemented in one of two ways:
■ using the IVE unit
■ by an electrician based on the diagrams presented in the "Electrical diagrams" part of this catalogue.

Characteristics of the IVE unit

■ external connection terminal block:

- inputs: circuit breaker control signals
- outputs: status of the SDE contacts on the "Normal" and "Replacement" source circuit breakers
■ 2 connectors for the two "Normal" and "Replacement" source circuit breakers:
\square inputs:
- status of the OF contacts on each circuit breaker (ON or OFF)
- status of the SDE contacts on the "Normal" and "Replacement" source circuit breakers
- outputs: power supply for operating mechanisms
- control voltage:
- 24 to 250 V DC
- 48 to $415 \mathrm{~V} 50 / 60 \mathrm{~Hz}-440 \mathrm{~V} 60 \mathrm{~Hz}$.

The IVE unit control voltage must be same as that of the circuit breaker operating mechanisms.

IVE unit.

Necessary equipment

For Masterpact NT and NW, each circuit breaker must be equipped with:

- a remote-operation system made up of:
$\square \mathrm{MCH}$ gear motor
\square MX or MN opening release
\square XF closing release
- PF "ready to close" contact
\square CDM mechanical operation counter
- an available OF contact
- one to three CE connected-position contacts (carriage switches) on drawout circuit

Source-changeover systems Standard configuration

[^14]Associated automatic controllers

By combining a remote-operated source-changeover system with an integrated BA
or UA automatic controller, it is possible to automatically control source transfer according to userselected sequences.
These controllers can be used on source-changeover systems comprising 2 circuit breakers.
For source-changeover systems comprising 3 circuit breakers, the automatic control diagram must be prepared by the installer as a complement to to diagrams provided in the "electrical diagrams" section of this catalogue.

BA controller.

UA controller.

(1) For example, 220 V single-phase or 220 V three-phase.
(2) The controller is powered by the ACP auxiliaries control plate. The same voltage must be used for the ACP plate, the IVE unit and the circuit-breaker operating mechanisms. If this voltage is the same as the source voltage, then the "Normal" and "Replacement" sources can be used directly for the power supply. If not, an isolation transformer must be used.

Masterpact NW with corrosion protection 800-4000 A

Masterpact NW circuit breakers with corrosion protection are designed for use in industrial environments with high concentrations of sulphur compounds. Examples include paper mills, oil refineries, steel works and water treatment plants, all of which produce large quantities of sulphur dioxide (SO2) or hydrogen sulphate (H2S). Under such conditions, silver-plated parts rapidly turn black due to the formation of silver sulphate (AgS) on the surface, an insulating material that can lead to abnorma temperature rise in electrical contacts. This phenomenon can have serious consequences on all equipment installed inside a switchboard.
Circuit breakers used in such environments generally require frequent maintenance and therefore a large number of replacement devices on the site. Furthermore, problems are often encountered even with intensive maintenance.
Masterpact NW circuit breakers with corrosion protection receive special surface treatment on all parts exposed to corrosion and critical with respect to electrical continuity. In this way, the availability of electrical power and operating safety are ensured without special maintenance for the following environmental condition classes as defined by standard IEC 721-3-3:
■ 3C3 for H 2 S (concentrations from 2.1 to 7.1×10^{-6})
■ 3C4 for SO2 (concentrations from 4.8 to 14.8×10^{-6}).
The Masterpact NW range of power circuit breakers with corrosion protection offers the following features:

- rated current from 800 A to 4000 A
- 3 and 4-pole models
- drawout circuit breaker
- operational voltage up to 690 V AC

■ Ics breaking capacity of 100 kA at $220 / 415$ V AC

- reverse feed possible

■ stored-energy mechanism for instantaneous closing (source coupling).

- 3 types of RMS electronic protection

■ adjustable long-time settings from 0.4 to 1 In , with fine adjustment via local keypad or remote supervisor
■ electronic functions dedicated to energy management and power-quality analysis.

The Masterpact NW range complies with the main standards and certifications:

- IEC 60947-1 and 60947-2

■ IEC 68230 (damp heat) and IEC 68252 severity level 2 (salt mist)
■ IEC 60068-2-42 and IEC 60068-2-43 for corrosive environments:
\square SO2 : tested to IEC 60068-2-42 in a 3C4 environment as defined by IEC 60721-3-3
\square H2S: tested to IEC 60068-2-43 in a 3C3 environment as defined IEC 60721-3-3.

A complete range of electrical accessories and auxiliaries:
 ■ motor mechanism (MCH)
 ■ undervoltage release (MN, MNR)
 - shunt trip unit (MX)
 - closing release (XF)
 - auxiliary contacts (OF)
 - low-level indication contacts (SDE, PF, CD, CT, CE and EF)
 - electrical closing button (BPFE)
 - locking by padlocks and/or keylocks
 - source-changeover systems for 2 or 3 devices

Maximum safety

The Masterpact NW range with corrosion protection offers the same safety features as the standard version:
■ positive contact indication

- high impulse withstand voltage (12 kV)
- suitable for isolation in compliance with IEC 60947-2, as indicated by the disconnector symbol on the front face:
■ Front face insulation class 2, allowing class 2 installations with breaker control from outside.

Characteristics according to IEC 60 947-2

Dimensions and connection

Masterpact NW08 to NW32 with corrosion protection.

Masterpact NW40b with corrosion protection.

Drawout device	L (mm)		H (mm)	P (mm)
	3P	4P		
800 to 3200 A	441	556	439	395
4000 A	786	1016	479	395

Connection

- Power circuits:
\square vertical rear connection
\square horizontal rear connection (except for 3200 A)
- Auxiliaries connected to terminal block on circuit breaker front face

The Masterpact Earthing Switch can be racked into any compatible Masterpact NW chassis in place of a Masterpact circuit breaker. It is used to interconnect and earth the phase and neutral conductors of an electrical installation to ensure the safety of personnel during servicing. It can be locked in earthed position.

Main characteristics	
Rated insulation voltage	1000 V
Rated operational voltage	690 V
Rated current	800 to 4000 A
Latching capacity	135 kA peak
Rated short-time withstand	$60 \mathrm{kA} / 1 \mathrm{~s}$
current	$50 \mathrm{kA} / 3 \mathrm{~s}$
Compatibility	Compatible with drawout NW08 to NW40 circuit breakers, types
N1/H1/NA/HA, 3-pole and 4-pole rear connected versions	
Remote indication	12 ON/OFF indication contacts that can be used according to the chassis auxiliary wiring

The Earthing Switch is compatible with Masterpact NW08 to NW40 type N1, H1, NA and HA circuit breakers in both 3-pole and 4-pole versions. It has two parts: ■ a chassis earthing kit for installation on the Masterpact NW chassis. Two different versions are available for 3-pole and 4-pole chassis.

- the Earthing Switch itself, which is a specific Masterpact NW device that can be racked into any chassis equipped with an earthing kit, in place of the circuit breaker. Two versions are available (3-pole and 4-pole).
An earthing kit must be installed on the chassis of each circuit breaker protecting a circuit that may require earthing while work is being carried out. However, a single earthing switch is often sufficient for an entire installation if only one circuit is to be serviced at any given time.
The standard Earthing Switch comes with the short-circuit bar installed across the bottom (downstream) connections for earthing of the upstream portion of the circuit. The user can easily move the short-circuit bar to the top connections upstream if the downstream portion of the circuit needs to be earthed.

Earthing kit

(for chassis)

Earthing switch

(front view)

Earthing switch (rear view)

With short-circuit bar on the top connections.

With short-circuit bar on the bottom connections.

Locking in earthed position by 3 padlocks

The standard Earthing Switch can be locked in earthed position by one to three padlocks as long as the following conditions are satisfied:
■ the Earthing Switch must be in "connected" position in a chassis equipped with an earthing kit
■ the Earthing Switch must be in "ON" position.
Under these conditions, the installation is earthed.

When the Earthing Switch is locked in earthed position:

■ it cannot be moved to "disconnected" position (a shutter prevents insertion of the racking handle)
■ it cannot be turned "OFF" (a shutter prevents access to the "OFF" pushbutton).

Typical applications

The earthing switch is used to protect maintenance personnel working on an installation against the risk of accidental connection of a parallel source or energisation by reverse power. Protection is provided by earthing the part of the installation that is to be worked on.

Application $\mathrm{n}^{\circ} 1$

Earthing of one section of a coupled busbar arrangement

When working on section \mathbf{B}, the bus coupler is normally open. To protect personnel in the event of accidental closing of this device, an earthing switch with the upstream terminals earthed is installed in place of the circuit breaker at \mathbf{B}. In this way section \mathbf{B} will remain at earth potential under all circumstances and the personnel can work in complete safety.

Application $n^{\circ} 2$

Earthing an outgoer

When working on outgoer \mathbf{C}, installation of an earthing switch with the upstream terminals earthed (in place of the circuit breaker at C) ensures complete safety even if all the other devices on the installation are closed.

Application $n^{\circ} 3$

Earthing of an MVILV transformer

Dimensions and connection

TOOLS

schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

CAD software and tools

The CAD software and tools enhance productivity and safety. They help you create your installations by simplifying product choice through easy browsing in the Schneider Electric offers.
Last but not least, they optimise use of our products while also complying with standards and proper procedures.

Presentation 1
$4-1$
Functions and characteristics A-1
Operating conditions B-2
Installation in switchboard B-4
Door interlock catch B-6
Control wiring B-7
Power connection B-8
Recommended busbars drilling
Masterpact NT06 to NT16 B-10
Masterpact NW08 to NW63 B-11
Busbar sizing B-12
Temperature derating
Power dissipation and input / output resistance B-14
Derating in switchboards B-15
Substitution kit
Fixed / drawout devices 800 to 3200 A B-22
Dimensions and connection C-1
Electrical diagrams D-1
Additional characteristics E-1
Catalogue numbers and order form F-1

Ambient temperature

Masterpact devices can operate under the following temperature conditions:
■ the electrical and mechanical characteristics are stipulated for an ambient
temperature of $-5^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
\square circuit-breaker closing is guaranteed down to $-35^{\circ} \mathrm{C}$.
Storage conditions are as follows:
■ - 40 to $+85^{\circ} \mathrm{C}$ for a Masterpact device without its control unit

- $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the control unit.

Extreme atmospheric conditions

Masterpact devices have successfully passed the tests defined by the following standards for extreme atmospheric conditions:
■ IEC 60068-2-1: dry cold at $-55^{\circ} \mathrm{C}$

- IEC 60068-2-2: dry heat at $+85^{\circ} \mathrm{C}$

■ IEC 60068-2-30: damp heat (temperature $+55^{\circ} \mathrm{C}$, relative humidity 95%)
■ IEC 60068-2-52 level 2: salt mist.
Masterpact devices can operate in the industrial environments defined by standard IEC 60947 (pollution degree up to 4)
It is nonetheless advised to check that the devices are installed in suitably cooled switchboards without excessive dust

Vibrations

Masterpact devices are guaranteed against electromagnetic or mechanical vibrations
Tests are carried out in compliance with standard IEC 60068-2-6 for the levels required by merchant-marine inspection organisations (Veritas, Lloyd's, etc.): ■ 2 to 13.2 Hz : amplitude $\pm 1 \mathrm{~mm}$
■ 13.2 to 100 Hz : constant acceleration 0.7 g .
Excessive vibration may cause tripping, breaks in connections or damage to mechanical parts.

Altitude

At altitudes higher than 2000 metres, the modifications in the ambient air (electrical resistance, cooling capacity) lower the following characteristics as follows:

Altitude (m)	2000	3000	4000	5000
Dielectric resistance voltage (V)	3500	3150	2500	2100
Average insulation level (V)	1000	900	700	600
Maximum utilisation voltage (V)	690	590	520	460
Average thermal current (A) at $40^{\circ} \mathrm{C}$	$1 \times \ln$	$0.99 \times \ln$	$0.96 \times \ln$	$0.94 \times \ln$

Electromagnetic disturbances

Masterpact devices are protected against:

- overvoltages caused by devices that generate electromagnetic disturbances

■ overvoltages caused by atmospheric disturbances or by a distribution-system
outage (e.g. failure of a lighting system)
■ devices emitting radio waves (radios, walkie-talkies, radar, etc.)

- electrostatic discharges produced by users.

Masterpact devices have successfully passed the electromagnetic-compatibility tests (EMC) defined by the following international standards
■ IEC 60947-2, appendix F
■ IEC 60947-2, appendix B (trip units with earth-leakage function).
The above tests guarantee that
■ no nuisance tripping occurs

- tripping times are respected.

Possible positions

Power supply

Masterpact devices can be supplied either from the top or from the bottom without reduction in performance, in order to facilitate connection when installed in a switchboard.

Mounting the circuit-breaker

It is important to distribute the weight of the device uniformily over a rigid mounting surface such as rails or a base plate.
This mounting plane should be perfectly flat (tolerance on support flatness: 2 mm) This eliminates any risk of deformation which could interfere with correct operation of the circuit breaker
Masterpact devices can also be mounted on a vertical plane using the special brackets.

Mounting on rails.

Mounting with vertical brackets.

Partitions

Sufficient openings must be provided in partitions to ensure good air circulation around the circuit breaker; Any partition between upstream and downstream connections of the device must be made of nonmagnetic material.
For high currents, of 2500 A and upwards, the metal supports or barriers in the immediate vicinity of a conductor must be made of non-magnetic material A. Metal barriers through which a conductor passes must not form a magnetic loop.

Busbars (NT, NW)

The mechanical connection must be exclude the possibility of formation of a magnetic loop around a conductor.

A : non magnetic material.

Busbars (NT)

For live busbars installed immediately above the circuit breaker (respecting the 100 mm safety clearance), the distance between bars must be 65 mm minimum. In a 1000 V system, the bars must be insulated.

Interphase barrier

If the insulation distance between phase is not sufficient ($\leqslant 14 \mathrm{~mm}$), it is advised to install phase barriers (taking into account the safety clearances). Mandatory for a Masterpact NT > 500 V.

Door interlock VPEC

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position. It the breaker is put in the "connected" position with the door open, the door may be closed without having to disconnect the circuit breaker.

Dimensions (mm)

Type	$\mathbf{(1)}$	(2)
NT08-16 (3P)	135	168
NT08-16 (4P)	205	168
NW08-40 (3P)	215	215
NW08-40 (4P)	330	215
NW40b-63 (3P)	660	215
NW40b-63 (4P)	775	215

Dimensions (mm)		
Type	(1)	(2)
NT	5	23
NW	83	103

Cable-type door interlock IPA

This option prevents door opening when the circuit breaker is closed and prevents circuit breaker closing when the door is open.
For this, a special plate associated with a lock and a cable is mounted on the right side of the circuit breaker. With this interlock installed, the source changeover function cannot be implemented.

Note: the door interlock can either be mounted on the right side or the left side of the breaker

Breaker in "connected" or "test" position
 Door cannot be opened

Breaker in "disconnected" position

Door can be opened

Control wiring

Wiring of voltage releases

During pick-up, the power consumed is approximately 150 to 200 VA. For low control voltages ($12,24,48 \mathrm{~V}$), maximum cable lengths are imposed by the voltage and the cross-sectional area of cables.
Recommended maximum cable lengths (meter).

		$\begin{aligned} & 12 \mathrm{~V} \\ & 2,5 \mathrm{~mm}^{2} \end{aligned}$	1,5 mm ${ }^{2}$	$\begin{aligned} & 24 \mathrm{~V} \\ & 2,5 \mathrm{~mm}^{2} \end{aligned}$	1,5 mm ${ }^{2}$	$\begin{aligned} & 48 \mathrm{~V} \\ & 2,5 \mathrm{~mm}^{2} \end{aligned}$	$1,5 \mathrm{~mm}^{2}$
MN	U source 100 \%	-	-	58	35	280	165
	U source 85%	-	-	16	10	75	45
MX-XF	U source 100 \%	21	12	115	70	550	330
	U source 85%	10	6	75	44	350	210

Note: the indicated length is that of each of the two wires.

24 V DC power-supply module

External 24 V DC power-supply module for Micrologic (F1-, F2+)
■ do not connect the positive terminal (F2+) to earth
■ the negative terminal (F1-) can be connected to earth, except in IT systems - a number of Micrologic control units and M6C modules can be connected to the same 24 V DC power supply (the consumption of a Micrologic control unit or an M6C module is approximately 100 mA)
■ do not connect any devices other than a Micrologic control unit or an M6C module
■ the maximum length for each conductor is ten metres. For greater distances, it is advised to twist the supply wires together

- the 24 V DC supply wires must cross the power cables perpendicularly. If this is difficult, it is advised to twist the supply wires together
- the technical characteristics of the external 24 V DC power-supply module for

Micrologic control units are indicated on page A-20

Communication bus

■ do not connect the positive terminal (E1) to earth
■ the negative terminal (E2) can be connected to earth

- a number of "device" or "chassis" communication modules can be connected to the same 24 V DC power supply (the consumption of each module is approximately 30 mA)
■ the 24 V DC (E1, E2) power supply for the communication bus must be separate from the external 24 V DC power-supply module for Micrologic control units (F1-, F2+).

E1	E2	E3	E4	E5	E6 $^{\prime}$
+	-	A/Tx	$\mathrm{B} / \mathrm{Tx}^{+}$	$\mathrm{A}^{\prime} / R x$	$\mathrm{~B}^{-} / \mathrm{Rx}^{+}$

To create a two-wire Modbus communication bus, simply connect Tx- with Rx- and $T x^{+}$with Rx^{+}.
To connect a Modbus slave (Micrologic) to a Modbus master (PLC), connect:
the slave Tx^{-}to the master Rx the slave Rx^{-}to the master Tx^{-}
the slave Tx^{+}to the master Rx^{+}the slave Rx^{+}to the master Tx^{+}.

RS485 Modbus Junction Block

Pins	Signal
1	0 V
2	24 V
3	NC
4	$\mathrm{~B}^{\prime} / \mathrm{Rx}^{+}$
5	$\mathrm{~B} / \mathrm{Tx}^{+}$
6	0 V
7	24 V
8	$\mathrm{~A}^{\prime} / \mathrm{Rx}$
9	$\mathrm{~A} / \mathrm{Tx}$

Color
Black
Red

Blue
Yellow
Black
Red
White
Brown

Wiring of ZSI: it is recommended to use twisted shielded cable. The shield must be connected to earth at both ends.

Cables connections

If cables are used for the power connections, make sure that they do not apply excessive mechanical forces to the circuit breaker terminals.
For this, make the connections as follows:
■ extend the circuit breaker terminals using short bars designed and installed according to the recommendations for bar-type power connections: - for a single cable, use solution B opposite \square for multiple cables, use solution \mathbf{C} opposite
■ in all cases, follow the general rules for connections to busbars:
\square position the cable lugs before inserting the bolts \square the cables should firmly secured to the framework \mathbf{E}.

Busbars connections

The busbars should be suitably adjusted to ensure that the connection points are positioned on the terminals before the bolts are inserted \mathbf{B}
The connections are held by the support which is solidly fixed to the framework of the switchboard, such that the circuit breaker terminals do not have to support its weight \mathbf{C}. (This support should be placed close to the terminals).

Electrodynamic stresses

The first busbar support or spacer shall be situated within a maximum distance from the connection point of the breaker (see table below). This distance must be respected so that the connection can withstand the electrodynamic stresses between phases in the event of a short circuit.
Maximum distance A between busbar to circuit breaker connection and the first busbar support or spacer with respect to the value of the prospective short-circuit current.

Isc (kA)	30	50	65	80	100	150
Distance A (mm)	350	300	250	150	150	150

1 Terminal screw factory-tightened to 16 Nm (NW), 13 Nm (NT).
Breaker terminal
Busbar.
4 Bolt.
5 Washer.
6 Nut.

Clamping

Correct clamping of busbars depends amongst other things, on the tightening torques used for the nuts and bolts. Over-tightening may have the same consequences as under-tightening.
For connecting busbars (Cu ETP-NFA51-100) to the circuit breaker, the tightening torques to be used are shown in the table below.
These values are for use with copper busbars and steel nuts and bolts, class 8.8. The same torques can be used with AGS-T52 quality aluminium bars (French standard NFA 02-104 or American National Standard H-35-1).

Examples

Isolation distance

Dimensions (mm)

Ui	X min
600 V	8 mm
1000 V	14 mm

Busbar bending

When bending busbars maintain the radius indicated below(a smaller radius would cause cracks).

Dimensions (mm)

e	Radius of curvature r Min	Recommended
5	5	7.5
10	15	18 to 20

Recommended busbars drilling
Masterpact NT06 to NT16

Rear connection Rear connection with spreaders

Middle left or middle right spreader for 4P

Middle spreader for 3P

Left or right spreader for 4P

Left or right spreader for 3P

Vertical rear connection

Masterpact NW08 to NW63

Horizontal rear connection NW08 to NW32

Vertical rear connection NW08 to NW32, NW40b to NW50

Front connection NW08 to NW32

Top connection

Bottom connection

Basis of tables:

■ maximum permissible busbars temperature: $100^{\circ} \mathrm{C}$
■ Ti: temperature around the circuit breaker and its
connection
■ busbar material is unpainted copper.

Front or rear horizontal connection

Masterpact	Maximum service current	$\mathrm{Ti}: 40^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars	$\mathrm{Ti}: 50^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars	$\mathrm{Ti}: 60^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars
NT06	400	$2 \mathrm{~b} .30 \times 5$	1b. 30×10	$2 \mathrm{~b} .30 \times 5$	1b. 30×10	$2 \mathrm{~b} .30 \times 5$	1b. 30×10
NT06	630	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$
NT08 ou NW08	800	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .63 \times 10$
NT10 ou NW10	1000	$3 \mathrm{~b} .50 \times 5$	1 b. 63×10	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$
NT12 ou NW12	1250	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .40 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$
		$2 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .80 \times 5$			
NT16 ou NW16	1400	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .40 \times 10$	$3 \mathrm{~b} .63 \times 5$	2b. 50×10	$3 \mathrm{~b} .80 \times 5$	2b. 63×10
NT16 ou NW16	1600	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .80 \times 5$	$3 \mathrm{~b} .50 \times 10$
NW20	1800	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$
NW20	2000	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$	$3 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .63 \times 10$
NW25	2200	$4 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$	4b. 100×5	$2 \mathrm{~b} .80 \times 10$	4b. 100×5	$2 \mathrm{~b} .100 \times 10$
NW25	2500	$4 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .100 \times 10$	4b. 100×5	$2 \mathrm{~b} .100 \times 10$	4b. 100×5	$3 \mathrm{~b} .80 \times 10$
NW32	2800	$4 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$	$4 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$	$5 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$
NW32	3000	$5 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$8 \mathrm{~b} .100 \times 5$	4b. 80×10
NW32	3200	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$8 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$
NW40	3800		$4 \mathrm{~b} .100 \times 10$		$5 \mathrm{~b} .100 \times 10$		$5 \mathrm{~b} .100 \times 10$
NW40	4000		$5 \mathrm{~b} .100 \times 10$		$5 \mathrm{~b} .100 \times 10$		$6 \mathrm{~b} .100 \times 10$
NW50	4500		$6 \mathrm{~b} .100 \times 10$		$6 \mathrm{~b} .100 \times 10$		$7 \mathrm{~b} .100 \times 10$
NW50	5000		$7 \mathrm{~b} .100 \times 10$		$7 \mathrm{~b} .100 \times 10$		

With Masterpact NT, it is recommanded to use 50 mm wideness bars (see "Recommended busbars drilling").

Example

Conditions:

■ drawout version

- horizontal busbars
- $\mathrm{T}_{\mathrm{i}}: 50^{\circ} \mathrm{C}$

■ service current: 1800 A .
Solution:
For $\mathrm{T}_{\mathrm{i}}=50^{\circ} \mathrm{C}$, use an NW20 which can be connected with three $80 \times 5 \mathrm{~mm}$ bars or two $63 \times 10 \mathrm{~mm}$ bars.

Basis of tables:
■ maximum permissible busbars temperature: $100^{\circ} \mathrm{C}$
■ Ti: temperature around the circuit breaker and its
connection

- busbar material is unpainted copper.

Rear vertical connection

Masterpact	Maximum service current	Ti : $40^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars	$\mathrm{Ti}: 50^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars	$\mathrm{Ti}: 60^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars
NT06	400	$2 \mathrm{~b} .30 \times 5$	1b. 30×10	$2 \mathrm{~b} .30 \times 5$	1b. 30×10	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$
NT06	630	$2 \mathrm{~b} .40 \times 5$	1b. 40×10	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$
NT08 ou NW08	800	$2 \mathrm{~b} .50 \times 5$	1b. 50×10	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$
NT10 ou NW10	1000	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .63 \times 5$	$1 \mathrm{~b} .63 \times 10$
NT12 ou NW12	1250	$2 \mathrm{~b} .63 \times 5$	1b. 63×10	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .40 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .40 \times 10$
NT16 ou NW16	1400	$2 \mathrm{~b} .80 \times 5$	1b. 80×10	$2 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$
NT16 ou NW16	1600	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$
NW20	1800	2b. 100×5	1b. 80×10	$2 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$
NW20	2000	3b. 100×5	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .63 \times 10$	3b. 100×5	$2 \mathrm{~b} .80 \times 10$
NW25	2200	3b. 100×5	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .63 \times 10$	3b. 100×5	$2 \mathrm{~b} .80 \times 10$
NW25	2500	4b. 100×5	$2 \mathrm{~b} .80 \times 10$	4b. 100×5	$2 \mathrm{~b} .80 \times 10$	4b. 100×5	$3 \mathrm{~b} .80 \times 10$
NW32	2800	$4 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .100 \times 10$	$4 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .100 \times 10$	$4 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$
NW32	3000	$5 \mathrm{~b} .100 \times 5$	3b. 80×10	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$5 \mathrm{~b} .100 \times 5$	4b. 80×10
NW32	3200	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$
NW40	3800		$4 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$
NW40	4000		$4 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$
NW50	4500		$5 \mathrm{~b} .100 \times 10$		$5 \mathrm{~b} .100 \times 10$		$6 \mathrm{~b} .100 \times 10$
NW50	5000		$5 \mathrm{~b} .100 \times 10$		$6 \mathrm{~b} .100 \times 10$		$7 \mathrm{~b} .100 \times 10$
NW63	5700		$7 \mathrm{~b} .100 \times 10$		$7 \mathrm{~b} .100 \times 10$		$8 \mathrm{~b} .100 \times 10$
NW63	6300		$8 \mathrm{~b} .100 \times 10$		$8 \mathrm{~b} .100 \times 10$		

Example

Conditions:

- drawout version

■ vertical connections

- $\mathrm{T}_{\mathrm{i}}: 40^{\circ} \mathrm{C}$

■ service current: 1100 A

Solution :

For $\mathrm{T}_{\mathrm{i}}=40^{\circ} \mathrm{C}$ use an NT12 or NW12 which can be connected with two $63 \times 5 \mathrm{~mm}$ bars or with one $63 \times 10 \mathrm{~mm}$ bar.

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.

Installation recommendations

> Temperature derating
> Power dissipation and input / output resistance

Temperature derating

The table below indicates the maximum current rating, for each connection type, as a function of Ti around the circuit breaker and the busbars.
Circuit breakers with mixed connections have the same derating as horizontally connected breakers.
For Ti greater than $60^{\circ} \mathrm{C}$, consult us.
Ti : temperature around the circuit breaker and its connection.

Version	Drawout										Fixed									
Connection	Front or rear horizontal					Rear vertical					Front or rear horizontal					Rear vertical				
Temp. Ti	40	45	50	55	60	40	45	50	55	60	40	45	50	55	60	40	45	50	55	60
NT06 H1/H2/L1	630					630					630					630				
NT08 H1/H2/L1	800					800					800					800				
NT10 H1/H2/L1	1000					1000					1000					1000				
NT12 H1/H2	1250					1250					1250					1250				
NT16 H1/H2	1600		1520	1480	1430	1600			1560	1510	1600				1550	1600				
NW08 N/H/L	800					800					800					800				
NW10 N/H/L	1000					1000					1000					1000				
NW12 N/H/L	1250					1250					1250					1250				
NW16 N/H/L	1600					1600					1600					1600				
NW20 H1/H2/H3	2000			1980	1890	2000					2000				1920	2000				
NW20 L1	2000		1900	1850	1800	2000					-	-	-	-	-	-	-	-	-	-
NW25 H1/H2/H3	2500					2500					2500					2500				
NW32 H1/H2/H3	3200		3100	3000	2900	3200					3200					3200				
NW40 H1/H2/H3	4000		3900	3750	3650	4000				3850	4000			3900	3800	4000				
NW40b H1/H2	4000					4000					4000					4000				
NW50 H1/H2	5000					5000					5000					5000				
NW63 H1/H2	-	-	-	-	-	6300				6200	-	-	-	-	-	6300				

Power dissipation and input / output

resistance

Total power dissipation is the value measured at I_{N}, $50 / 60 \mathrm{~Hz}$, for a 3 pole or 4 pole breaker (values above the power $P=3 R I^{2}$).
The resistance between input / output is the value measured per pole (cold state).

Version	Drawout		Fixed	
	Power dissipation (Watts)	Input/output resistance ($\mu \mathrm{ohm}$)	Power dissipation (Watts)	Input/output resistance ($\mu \mathrm{ohm}$)
NT06 H1/H2/L1	55/115 (H1/L1)	38/72	30/45	26/39
NT08 H1/H2/L1	90/140 (H1/L1)	38/72	50/80	26/39
NT10 H1/H2/L1	150/230 (H1/L1)	38/72	80/110	26/39
NT12 H1/H2	250	36	130	26
NT16 H1/H2	460	36	220	26
NW08 N1	137	42	62	19
NW08 H/L	100	30	42	13
NW10 N1	220	42	100	19
NW10 H/L	150	30	70	13
NW12 N1	330	42	150	19
NW12 H/L	230	27	100	13
NW16 N1	480	37	220	19
NW16 H/L	390	27	170	13
NW20 H/L	470	27	250	13
NW25 H1/H2/H3	600	19	260	8
NW32 H1/H2/H3	670	13	420	8
NW40 H1/H2/H3	900	11	650	8
NW4Ob H1/H2	550	7	390	5
NW50 H1/H2	950	7	660	5
NW63 H1/H2	1200	7	1050	5

Factors affecting switchboard design

The temperature around the circuit breaker and its connections:
This is used to define the type of circuit breaker to be used and its connection arrangement.
Vents at the top and bottom of the cubicles:
Vents considerably reduce the temperature inside the switchboard, but must be designed so as to respect the degree of protection provided by the enclosure For weatherproof heavy-duty cubicles, a forced ventilation system may be required.

The heat dissipated by the devices installed in the switchboard:
This is the heat dissipated by the circuit breakers under normal conditions (service current).

The size of the enclosure:
This determines the volume for cooling calculations.
Switchboard installation mode:
Free-standing, against a wall, etc

Horizontal partitions:

Partitions can obstruct air circulation within the enclosure.

Basis of tables

- switchboard dimensions

■ number of circuit-breakers installed
■ type of breaker connections

- drawout versions
$■$ ambient temperature outside of the switchboard: T_{a} (IEC 60439-1)

Masterpact NT06-16 H1/H2/L1 (switchboard $2000 \times 400 \times 400$) - area of outlet vents: $150 \mathrm{~cm}^{2}$

(1) Area of outlet vents: $150 \mathrm{~cm}{ }^{2}$
(2) Area of intlet vents: $150 \mathrm{~cm}^{2}$

Non ventilated switchboard (- IP54)													
		630	630	800	800	1000/960	1000/1000	1250	1250	1330	1400		
	$\mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C}$			2									
		1											
		4											
		$\frac{3}{2}$	630	630	800	800	1000/910	1000/980	1220	1250	1260	1330	
			2										
		1											
	$\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$	4											
		3	630	630	800	800	1000/860	1000/930	1150	1230	1200	1260	
		2											

[^15]

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
The values indicated for the cross-sectional area of the vents should be considered as genera indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

Masterpact NT10-16 H1/H2/L1 (switchboard $2300 \times 1100 \times 500$) - area of outlet vents: $300 \mathrm{~cm}^{2}$

(1) Area of outlet vents: $300 \mathrm{~cm}^{2}$
(2) Area of intlet vents: $300 \mathrm{~cm}^{2}$

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

Masterpact NW08-10 N/H/L (switchboard $2300 \times 800 \times 900$) - area of outlet vents: $350 \mathrm{~cm}^{2}$

Type Switchboard composition	NW08 N/H/L					NW10 N/H/L													
Switchboard composition	4 3 2 1 																		
Connection type	三	\| \mid \|	\|			\|			\|			三	\|				\|		
Busbar dimensions (mm)	2b. 50×5					3b. 63×5													
Ventilated switchboard (-IP31)	4				800														
-	3			800	800	1000													
(1) ${ }^{\text {(1) }} \mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C}$	2		800	800	800	1000			1000										
	1800	800	800	800	800	1000	1000	1000	1000										
	4				800														
	3			800	800	1000													
${ }^{2300} \mathrm{Ta}^{2}=45^{\circ} \mathrm{C}$	2		800	800	800	1000			1000										
-100	1800	800	800	800	800	1000	1000	1000	1000										
8Y ${ }^{\text {a }}$	4				800														
- ${ }^{\text {c }}$	3			800	800	1000													
$\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$	2		800	800	800	1000			1000										
$900 \backslash 800 \rightarrow$	1800	800	800	800	800	1000	1000	1000	1000										
(1) Area of outlet vents: $350 \mathrm{~cm}^{2}$. (2) Area of intlet vents: $350 \mathrm{~cm}^{2}$.																			
Non ventilated switchboard (- IP54)	4				800														
	3			800	800				1000										
$\mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C}$	2		800	800	800			1000	1000										
	1800	800	800	800	800	1000	1000	1000	1000										
	4				800														
				800	800				1000										
$\mathrm{T}_{\mathrm{a}}=45^{\circ} \mathrm{C}$	$\frac{3}{2}$		800	800	800			1000	1000										
${ }^{2300}$	1800	800	800	800	800	1000	1000	1000	1000										
,	4				800														
	3			800	800				1000										
$\cdots \mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$	2		800	800	800			1000	1000										
	1800	800	800	800	800	1000	1000	1000	1000										

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

Masterpact NW12-16 N/H/L (switchboard $2300 \times 800 \times 900$) - area of outlet vents: $350 \mathrm{~cm}^{2}$

(1) Area of outlet vents: $350 \mathrm{~cm}^{2}$.
(2) Area of intlet vents: $350 \mathrm{~cm}^{2}$.

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

Masterpact NW20-40 N/H/L (switchboard $2300 \times 800 \times 900$) - area of outlet vents: $350 \mathrm{~cm}^{2}$

(1) Area of outlet vents: $350 \mathrm{~cm}^{2}$.
(2) Area of intlet vents: $350 \mathrm{~cm}^{2}$.

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
The values indicated for the cross-sectional area of the vents should be considered as genera indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

Masterpact NW40b-63 H1/H2 (switchboard $2300 \times 1400 \times 1500$) - area of outlet vents: $500 \mathrm{~cm}^{2}$

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

Substitution kit
Fixed/drawout devices 800 to 3200 A

It is possible to replace a Masterpact (M08 to M32) with a new Masterpact (NW08 to NW32) with the same power rating.
Substitution is possible for the following types of circuit breakers:

- N1, H1, H2 for both fixed and drawout versions

■ L1 for drawout versions up to 2000 A .

Fixing points are identical for Masterpact (M08 to M32) and Masterpact (NW08 to NW32), except for the four-pole chassis.

Door cut-out
■ without an escutcheon, the cut-out is identical ($270 \times 325 \mathrm{~mm}$)

- with the former escutcheon, the cut-out is identical ($270 \times 325 \mathrm{~mm}$)

■ with the new escutcheon, the cut-out is different.

Fixed version

Drawout version

Power connection

Select a set of retrofit connectors to replace the standard connectors and avoid any modifications to the busbars (see the retrofit section in "orders and quotations").

Note:

(1) Without escutcheon.
(2) With escutcheon.

References X and Y represent the symmetry planes for threepole devices.

Electrical diagrams

Correspondences between Masterpact NW and Masterpact M terminal blocks.

schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

Training

Training allows you to acquire the Schneider Electric expertise (installation design, work with power on, etc.) for increased efficiency and a guarantee of improved customer service.
The training catalogue includes beginner's courses in electrical distribution, knowledge of MV and LV switchgear, operation and maintenance of installations, design of LV installations to give but a few examples.

Presentation 1
Functions and characteristics A-1
Installation recommendations B-1
NT06 to NT16 circuit breakers
Fixed 3/4-poles device C-2
Drawout 3/4-poles device C-6
NW08 to NW32 circuit breakers
Fixed 3/4-poles device C-10
Drawout 3/4-poles device C-12NW40 circuit breakers
Fixed 3/4-poles device C-14
Drawout 3/4-poles device C-16
NW40b to NW63 circuit breakers
Fixed 3/4-poles device C-18
Drawout 3/4-poles device C-20
NT/NW accessories C-22
NT/NW external modules C-24
Electrical diagrams D-1
Additional characteristics E-1
Catalogue numbers and order form F-1

NT06 to NT16 circuit breakers
Fixed 3/4-poles device

Bottom mounting (on base plate or rails)
Rear mounting detail (on upright or backplate)

(1) Without escutcheon.
(2) With escutcheon.
(3) With a minimum distance between bars of 65 mm (A and B) if the bars are not insulated.
Note: X and Y are the symmetry planes for a 3-pole device.
A (*) An overhead clearance of 50 mm is required to remove the arc chutes. $_{\text {. }}$.
An overhead clearance of 20 mm is required to remove the terminal block.

NT06 to NT16 circuit breakers
Fixed 3/4-poles device

Rear connection with spreaders
Detail

Spreader detail

Middle left or middle right spreader for 4P.

View A detail.

Middle spreader for 3P.

Left or right spreader for 4P.
Left or right spreader for 3P.

Note: X and Y are the symmetry planes for a 3-pole device

Front connection via vertical connection adapters fitted with cable-lug adapters
Detail

Dimensions and connection

NT06 to NT16 circuit breakers
Drawout3/4-poles device

(*) Disconnected position.

Bottom mounting (on base plate or rails) Rear mounting detail

 (on upright or backplate)

For voltages < 690 V or equal to 1000 V.

	Parts Insulated	Metal	Energised
A	0	0	30
B	10	10	60
C	0	0	30

F : datum.
(1) Without escutcheon.
(2) With escutcheon.

Note: X and Y are the symmetry planes for a 3-pole device.

NT06 to NT16 circuit breakers
Drawout3/4-poles device

Connections

Front connection with spreaders

Spreader detail

Middle left or middle right spreader for 4P.

View A detail.

Connections
Front connection via vertical connection adapters fitted with cable-lug adapters

View A detail.

NW08 to NW32 circuit breakers
Fixed3/4-poles device

Dimensions

Mounting detail

Safety clearances

	Insulated parts	Metal parts	Energised parts
A	0	0	100
B	0	0	60

(1) Without escutcheon.
(2) With escutcheon.

Note: X and Y are the symmetry planes for a 3-pole device.
A(*) An overhead clearance of 50 mm is required to remove the arc chutes.
An overhead clearance of 20 mm is required to remove the terminal block.

Front connection

Detail

View A detail.

(*) Disconnected position.

Mounting on base plate or rails

Mounting detail

Door cutout

(1) Without escutcheon.
(2) With escutcheon.

Note: X and Y are the symmetry planes for a 3-pole device.

Dimensions and connection

NW40 circuit breakers
Fixed3/4-poles device

Mounting on base plate or rails

Mounting detail

Safety clearances

Door cutout

	Insulated parts	Metal parts	Energised parts
A	0	0	100
B	0	0	60

: datum.
(1) Without escutcheon.
(2) With escutcheon

Note: X and Y are the symmetry planes for a 3-pole device.
$A\left({ }^{*}\right)$ An overhead clearance of 110 mm is required to remove the arc chutes. An overhead clearance of 20 mm is required to remove the terminal block.

Connections

Horizontal rear connection

Detail

Vertical rear connection

Tightening torque: $\mathbf{5 0} \mathrm{Nm}$ with contact washer

Dimensions and connection

NW40 circuit breakers
Drawout3/4-poles device

(*) Disconnected position.

Mounting on base plate or rails Mounting detail

Connections

Horizontal rear connection

Vertical rear connection

Detail

Note: recommended connection screws: M10 class 8.8 Tightening torque: $\mathbf{5 0} \mathbf{N m}$ with contact washer.

Dimensions and connection

NW40b to NW63 circuit breakers
Fixed3/4-poles device

Mounting on base plate or rails

Mounting detail

Safety clearances

Door cutout

	Insulated parts	Metal parts	Energised parts
A	0	0	100
B	0	0	60

F : datum.
(1) Without escutcheon. (2) With escutcheon.

Note: X and Y are the symmetry planes for a 3-pole device.
$A\left({ }^{*}\right)$ An overhead clearance of 110 mm is required to remove the arc chutes.
An overhead clearance of 20 mm is required to remove the terminal block.

Dimensions and connection

NW40b to NW63 circuit
breakers
Drawout3/4-poles device

Vertical rear connection (NW63)
Detail

Note: recommended connection screws: M10 s/s class A4 80.
Tightening torque: $\mathbf{5 0} \mathbf{N m}$ with contact washer.

Disconnectable front-connection adapter (Masterpact NW08 to 32 fixed)

Rear panel cutout (drawout devices)

NW08 to NW40

NW40b to NW63

Escutcheon
Masterpact NT

Drawout device

Masterpact NW Fixed device

\boldsymbol{F} : datum.

Drawout device

Connection of auxilary wiring to terminal block

One conductor only per connection point.

M6C relay module

External power supply module (AD)

Battery module (BAT)
Mounting

Delay unit for MN release

"Chassis" communication module
ModBUS

BatiBUS

External sensor for source ground return (SGR) protection

Sensor

"MGDF summer" module

External sensor for external neutral

High: 162 mm .
4000/6300 A (NW40b to NW63)

High: 168 mm .

Installation

400/1600 A (NT06 to NT16)

1000/4000 A (NW025 to NW40)

400/2000 A (NW08 to NW20)

4000/6300 A (NW40b to NW63)

Rectangular sensor for earth leakage protection (Vigi)

$470 \times 160 \mathrm{~mm}$ window

Busbars	$\mathbf{I} \leqslant 1600$ A	$\mathbf{I} \leqslant 3200$
Window (mm)	280×115	470×160
Weight (kg)	14	18

Busbars path
280×115 window
Busbars spaced 70 mm centre-to-centre

2 bars 50×10.

2 bars 100×5.
470×160 window
Busbars spaced 115 mm centre-to-centre

4 bars 100×5.

4 bars 125×5.

TOOLS

schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

The electrical installation guide

According to IEC 60364

This guide, part of the Schneider Electric offer, is the essential tool to "guide" you any time in your business: - design office, consultant - contractor, panelbuilder - teacher, trainer.

Comprehensive

 and concrete information on: - all the new technical solutions - all the components - of an installation from a global point of view- all the IEC standards modifications - all the fundamental electrotechnical knowledge - all the design stages, from medium to low voltage.

Presentation 1
Functions and characteristics A-1
Installation recommendations $B-1$
Dimensions and connection C-1
Masterpact NT06 to NT16
Fixed and drawout devices D-2
Masterpact NW08 to NW63
Fixed and drawout devices D-4
Masterpact NT and NW
Communications of the 24 V DC D-6
External power supply AD module D-6
Communications option 24 V DC external power supply D-8
Earth-fault and earth-leakage protection - Neutral protection Zone selective interlocking D-10
Additional characteristics E-1
Catalogue numbers and order form $F-1$

The diagram is shown with circuits de-energised, all
devices open, connected and charged and relays in
normal position.

Remote operation

SDE2 : fault-trip indication contact
or
Res: remote reset
SDE1 : fault-trip indication contact (supplied as standard)
MN : undervoltage release
or
MX2 : shunt release

MX1 : shunt release (standard or communicating)
XF : closing release (standard or communicating)
PF : ready-to-close contact

MCH : electric motor

Note: when communicating MX or XF releases are used, the third wire $(C 3, A 3)$ must be connected even if the communication module is not installed.

A : digital ammeter.

$\boldsymbol{P}: A+$ power meter + additional protection.
H: P + harmonics.

Indication contacts
OF4/ OF3 / OF2 / OF1 : ON/OFF indication contacts.
(*) Spring charging motor 440/480 V AC
(380 V motor + additional resistor).

Chassis contacts					
CD2	CD1	CE3	CE2	CE1	CT1
δ_{824}^{0}	δ_{814}^{0}	δ_{334}^{0}	δ_{324}^{0}	$\delta_{314}{ }^{\circ}$	$\delta_{914}{ }^{\circ}$
$\delta_{822}{ }^{\circ}$	δ_{812}^{0}	$\mathrm{S}_{332}{ }^{3}$	$\mathrm{O}_{322}{ }^{\text {O}}$	$\mathrm{O}_{312}{ }^{\circ}$	$\delta_{912}{ }^{\circ}$
$\delta_{821}{ }^{\circ}$	$\delta_{811}{ }^{\circ}$	$\delta_{331}{ }^{\circ}$	$\delta_{321}{ }^{\circ}$	$\delta_{311}{ }^{\circ}$	$\delta_{911}{ }^{\circ}$

Chassis contacts
CD2: disconnected
CD1 position
CE3: connecte
CE2 position

CT1: test
contacts
position contacts

Key:

drawout device only.SDE1, OF1, OF2, OF3, OF4 supplied as standard. interconnected connections (only one wire per connection point).

Masterpact NW08 to NW63 Fixed and drawout devices

The diagram is shown with circuits de-energised, all devices open, connected and charged and relays in
normal position.

Control unit
 Com : E1-E6 communication

UC1 : Z1-Z5 zone selective interlocking
Z1 = ZSI OUT SOURCE
Z2 = ZSI OUT ; Z3 = ZSI IN SOURCE
Z4 = ZSI IN ST (short time)
Z5 = ZSI IN GF (earth fault)
M1 = Vigi module input (Micrologic 7)
UC2 : T1, T2, T3, T4 = external neutral
M2, M3 = Vigi module input (Micrologic 7)

UC3 : F2+, F1- external 24 V DC power supply
VN external voltage connector (must be connected to the neutral with a 3P circuit breaker)

UC4 : External Voltage Connector (PTE option)
M2C : 2 programmable contacts (internal relay) ext. 24 V DC power supply required
or
M6C : 6 programmable contacts
(to be connected to the external module M6C)
ext. 24 V DC power supply required

Remote operation

SDE2 I R						
$\boldsymbol{\sigma}_{184} \mathbf{0}, \boldsymbol{\sigma}_{K 2}$	O_{84}	$\boldsymbol{\delta} \mathbf{D}, \mathbf{O}_{\mathrm{C} 12}^{\mathbf{0}}$	$\mathrm{O}_{\mathrm{C} 2} \mathrm{O}$	$\mathrm{O}_{\mathrm{A} 2}$	\mathbf{O}_{254}	$\delta_{\mathrm{B} 2} \mathrm{O}$
$\mathrm{O}_{181} \mathbf{O}, \mathbf{O}_{\mathrm{K} 1} \mathbf{O}$		$\mathbf{O}_{\mathrm{D} 1} \mathbf{O}, \mathbf{O}_{\mathrm{C} 11} \mathbf{O}$				

Remote operation

SDE2 : fault-trip indication contact
or
Res : remote reset
SDE1 : fault-trip indication contact (supplied as standard)
MN : undervoltage release
or
MX2 : shunt release
MX1: shunt release (standard or communicating)
XF : closing release (standard or communicating)
PF : ready-to-close contact
MCH: electric motor

Note: when communicating MX or XF releases are used, the third wire
(C3,A3) must be connected even if the communication module is not installed.

A: digital ammeter.
P:A + power meter + additional protection.
H: P+harmonics.

Masterpact NW08 to NW63 Fixed and drawout devices

Masterpact NT and NW
 Communications of the 24 V DC
 External power supply AD module

None of the control-unit protection functions require an auxiliary source.
However, the 24 V DC external power-supply (AD module) is required for certain operating configurations as indicated in the table below.

Circuit breaker Voltage measurement inputs	Closed Powered	Open Powered	Not powered
M2C, M6C programmable contacts option	Yes	Yes	Yes
Protection function	No	No	No
Display function	No ${ }^{(1)}$	No ${ }^{(2)}$	Yes
Time-stamping function	No	No	Yes ${ }^{(3)}$
Circuit-breaker status indications and control via communications bus	No	No	No
Identification, settings, operation and maintenance aids via communications bus	No ${ }^{(1)}$	$\mathrm{No}^{(2)}$	Yes

(1) Except for Micrologic A control units (if current <20 \% In).
(2) Except for Micrologic A control units.
(3) Time setting is manual and can be carried out automatically by the supervisor via the communications bus.

Note: In case of using the 24 V DC external power supply (AD module), maximum cable length between 24 VDC (G1, G2) and the control unit (F1-, F2+) must not exceed 10 meters
The BAT battery module, mounted in series upstream of the AD module, ensures an uninterrupted supply of power if the AD module power supply fails.
The voltage measurement inputs are standard equipment on the downstream connectors of the circuit breaker.

External connections are possible using the PTE external voltage measurement input option. With this option, the internal voltage measurement inputs are disconnected and terminals VN, V1, V2, V3 are connected only to the control unit (Micrologic P and H only). The PTE option is required for voltages less than 220 V and greater than 690 V (in which case a voltage transformer is compulsory). For three-pole devices, the system is supplied with terminal VN connected only to the control unit (Micrologic P and H).

When the PTE option is implemented, the voltage measurement input must be protected against short-circuits. Installed as close as possible to the busbars, this protection function is ensured by a P25M circuit breaker (1 A rating) with an auxiliary contact (cat. no. 21104 and 21117). This voltage measurement input is reserved exclusively for the control unit and must not ever be used to supply other circuits outside the switchboard.

Masterpact NT and NW
 Communications of the 24 V DC
 External power supply AD module

Connection

The maximum length for each conductor supplying power to the trip unit or M6C module is 10 m .
Do not ground F2+, F1-, or power supply output:
■ the positive terminal (F2+) on the trip unit must not be connected to earth ground
■ the negative terminal (F1-) on the trip unit must not be connected to earth ground
■ the output terminals (- and +) of the 24 V DC power supply must not be grounded.
Reduce electromagnetic interference:
■ the input and output wires of the 24 V DC power supply must be physically separated as much as possible
■ if the 24 V DC power supply wires cross power cables, they must cross perpendicularly. If this is not physically possible, the power supply conductors must be twisted together
■ Power supply conductors must be cut to length. Do not loop excess conductor.
Use only one 24 V DC power supply for each Micrologic trip unit.
Connect external 24 V DC power supply only per the following wiring diagrams.

Masterpact NT and NW
 Communications option 24 V DC external powersupply

Example of connection of the communications option
The communications bus requires its own 24 V DC power source (E1, E2).
This source is not the same as the 24 V DC external power-supply module (F1-, F2+).

(1) Drawout device equipped with Modbus chassis COM
(2) Drawout device equipped with Digipact chassis COM.

Masterpact NT and NW Communications option 24VDC external power supply

Examples using the COM communications option

Switchboard display unit

This architecture provides remote display of the variables managed by Micrologic control units equipped with the COM Modbus module.

- I (Micrologic A)

■ I, U, P, E (Micrologic P)

- I, U, P, E, THD (Micrologic H)

No programming is required.
For Micrologic A control unit (if current < $20 \% \mathrm{In}$), it is recommended to use the 24 V DC external power supply (AD module)

Communicating switchboard

This configuration provides remote display and control of Masterpact equipped with the Modbus module.

Earth-faultandearth-leakage protection
Neutral protection
Zoneselective interlocking

External sensor (CT) for residual earth-fault protection

Connection of current-transformer secondary

 circuit for external neutralMasterpact equipped with a Micrologic $6 \mathrm{~A} / \mathrm{P} / \mathrm{H}$:

- shielded cable with 2 twisted pairs
- T1 twisted with T2
- maximum length 10 meters
- cable cross-sectional area 0.4 to $1.5 \mathrm{~mm}^{2}$
- recommended cable: Belden 9552 or equivalent. For proper wiring of neutral CT , refer to instruction Bulletin 48041-082-01 shipped with it.
Do not remove factory-installed jumper between T1 and T2 unless neutral CT is connected.
Do not install jumper between T3 and T4.
If supply is via the top, follow the shematics. If supply is via the bottom, control wiring is identical; for the power wiring, H 1 is connected to the source side, H 2 to the load side.
For four-pole versions, for residual earth-fault protection, the current transformer for the external neutral is not necessary.
Connection for signal VN is required only for power measurements ($3 \varnothing, 4$ wires, 4CTs).

External transformer for source ground return (SGR) earth-fault protection

Connection of the secondary circuit

Masterpact equipped with a Micrologic 6 A/P/H:
■ unshielded cable with 1 twisted pair
■ maximum length 150 meters
■ cable cross-sectional area 0.4 to $1.5 \mathrm{~mm}^{2}$

- terminals 5 and 6 may not be used at the same time

■ use terminal 5 for NW08 to 40

- use terminal 6 for NW40b to 63

■ recommended cable: Belden 9409 or equivalent.

Masterpact NT and NW
 Earth-faultandearth-leakageprotection Neutral protection Zone selective interlocking

Earth-leakage protection

Connection of the rectangular-sensor secondary

 circuitUse the cable shipped with the rectangular sensor.

Neutral protection

■ three pole circuit breaker:
\square neutral protection is impossible with Micrologic A
\square Masterpact equipped with Micrologic P or H
\square the current transformer for external neutral is necessary (the wiring diagram is identical to the one used for the residual earth-fault protection)

- four pole circuit breaker:
\square Masterpact equipped with Micrologic A, P or H \square the current transformer for external neutral is not necessary.

Zone selective interlocking

Zone-selective interlocking is used to reduce the electrodynamic forces exerted on the installation by shortening the time required to clear faults, while maintaining time discrimination between the various devices.
A pilot wire interconnects a number of circuit breakers equipped with Micrologic A/P/H control units, as illustrated in the diagram above.
The control unit detecting a fault sends a signal upstream and checks for a signal arriving from downstream. If there is a signal from downstream, the circuit breaker remains closed for the full duration of its tripping delay. If there is no signal from downstream, the circuit breaker opens immediately, regardless of the tripping-delay setting.

Fault 1.

Only circuit breaker A detects the fault. Because it receives no signal from downstream, it opens immediately, regardless of its tripping delay set to 0.3.

Fault 2.

Circuit breakers A and B detect the fault. Circuit breaker A receives a signal from B and remains closed for the full duration of its tripping delay set
to 0.3. Circuit breaker B does not receive a signal from downstream and opens immediately, in spite of its tripping delay set to 0.2.

Note: the maximum permissible distance between two devices is 3000 m . A downstream circuit breaker can "control" up to ten upstream circuit breakers.

TOOLS

schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

The technical guide

These technical guides help you comply with installation standards and rules i.e.: the electrical installation guide, the protection guide, the switchboard implementation guide, the technical booklets and the co-ordination tables all form genuine reference tools for the design of high performance electrical installations. For example, the LV protection co-ordination guide - discrimination and cascading - optimises choice of protection and connection devices while also increasing markedly continuity of supply in the installations.

Presentation 1
Functions and characteristics A-1
Installation recommendations $B-1$
Dimensions and connection C-1
Electrical diagrams D-1
Tripping curves E-2
Limitation curves
Current limiting E-4
Energy limiting E-5
Catalogue numbers and order form $F-1$

Micrologic 5.0, 6.0, 7.0

Earth fault protection (Micrologic 6.0)

IDMTL curve (Micrologic P and H)

Additional characteristics
Limitation curves
Current limiting

Voltage 380/415/440 V AC
Limited short-circuit current (kÂ peak)

Voltage 660/690 V AC

Rated short-circuit current (kA rms)

Energy limiting

Voltage 380/415/440 V AC

Voltage 660/690 V AC

TOOLS

schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

CAD software and tools

The CAD software and tools enhance productivity and safety. They help you create your installations by simplifying product choice through easy browsing in the Schneider Electric offers.
Last but not least, they optimise use of our products while also complying with standards and proper procedures.

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual
Masterpact

Catalogue numbers, spare parts and order form

Presentation 3
Functions and characteristics A-1
Installation recommendations B-1
Dimensions and connection C-1
Electrical diagrams D-1
Additional characteristics E-1
Retrofit solutions (*) F-2
Connections for fixed devices F-2
Connections for drawout devices F-3
Masterpact NT F-4
Connection F-4
Micrologic control unit, communication option F-5
Remote operation F-6
Chassis locking and accessories F-7
Clusters F-8
Circuit breaker locking and accessories F-9
Mechanical interlocking for source changeover F-10
Indication contacts F-11
Instructions F-12
Portable data acquisition Communication bus accessories and Modbus F-13
Masterpact NW F-14
Connection F-14
Micrologic control unit, communication option F-15
Remote operation F-16
Chassis locking and accessories F-17
Clusters F-18
Circuit breaker locking and accessories F-19
Mechanical interlocking for source changeover F-20
Indication contacts F-21
Instructions F-22
Portable data acquisition
Communication bus accessories and Modbus F-23
Masterpact NT and NW order form F-24

To replace a Masterpact M with a Masterpact NW, order a retrofit device (without connections) and select a set of connectors corresponding to the replaced device.
The Masterpact NW is installed in exactly the same place as the old Masterpact M device, without any modifications required on the switchboard.

Horizontal rear connection			
Device to be replaced	Connection to be ordered		
Masterpact M08 to M12			
Type N1/NI			
	3P		4P
Top 3x	48951	4 x	48951
Bottom 3x	48964	4 x	48964
Type H1/H2/HI/HF			
Top 3x	48954	4 x	48954
Bottom 3x	48965	4 x	48965
Masterpact M16			
Type N1/NI/H1/H2/HI/HF			
Top $3 x$	48954	4 x	48954
Bottom 3x	48965	4 x	48965
Masterpact M20 and M25			
Type N1/NI/H1/H2/HI/HF			
Top 3x	48957	4 x	48957
Bottom 3x	48958	4 x	48958
Masterpact M32			
Type H1/H2/HI/HF			
Top 1x	48962	1 x	48960
Bottom 1x	48961	$1 \times$	48960

Connections for drawout devices

To replace a Masterpact M with a Masterpact NW, order a retrofit device (without connections) and select a set of connectors corresponding to the replaced device.
The Masterpact NW is installed in exactly the same place as the old Masterpact M device, without any modifications required on the switchboard.

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual
Catalogue numbers: spare parts

Masterpact NT
Connection

Micrologic control unit, communication option

Communication option
Chassis

External sensors
External sensor for earth-fault protection (TCE) / 1 part

Rectangular sensor for earth-leakage protection + Vigi cable / 1 part
Test equipments / 1 part

Hand held test kit (HHTK)	33594
Full function test kit (FFTK)	33595
Test report edition come from FFTK	34559
FFTK test cable 2 pin for STR trip unit	34560
FFTK test cable 7 pin for Micrologic trip unit	33590

Catalogue numbers:
Masterpact NT
spare parts
Remote operation

Chassis locking and accessories

Catalogue numbers: spare parts

Masterpact NT Clusters

Clusters

1 disconnecting contact cluster for chassis (see table below) 1 part

Table : number of clusters required for the different chassis models

Chassis rating (A)	Masterpact NT	
	3P	$\mathbf{4 P}$
250	12	18
630	12	18
800	12	18
1000	12	18
1250	12	18
1600	18	24

Note: the minimum order is 6 parts.

Racking handle / 1 part

Circuit breaker locking and accessories

Circuit breaker locking			
Pushbutton locking device / 1 part			
	By padlocks		\| 33897
	Installation manual		47103
OFF position locking / 1 part			
	By padlocks + BPFE support		
			47514
	By Profalux keylocks + BPFE support		
	Profalux	1 lock with 1 key + adaptation kit	64918
		2 locks 1 keys + adaptation kit	64919
	1 keylock Profalux (without adaptation kit):		
		identical key not identified combination	33173
		identical key identified 215470 combination	33174
		identical key identified 215471 combination	33175
	By Ronis keylocks + BPFE support		
	Ronis	1 lock with 1 key + adaptation kit	64920
		2 locks 1 keys + adaptation kit	64921
	1 keylock Ronis (without adaptation kit):		
		identical key not identified combination	33189
		identical key identified EL24135 combination	33190
		identical key identified EL24153 combination	33191
		identical key identified EL24315 combination	33192
	Adaptation kit	adaptation kit Profalux	47515
	(without keylock):	adaptation kit Ronis	47516
		adaptation kit Kirk	47517
		adaptation kit Castell	47518
	Installation manual		47103

Other circuit breaker accessories
Mechanical operation counter/1 part

Catalogue numbers:
spare parts

Masterpact NT
Mechanical interlocking for source changeover

Mechanical interlocking for source changeover
Interlocking using connecting rods

Complete assembly with 2 adaptation fixtures + rods
2 Masterpact NT fixed devices

| 2 Masterpact NT drawout devices | 33913 |
| :--- | :--- | :--- |

Note: the installation manual is enclosed.

Interlocking using cables ${ }^{(1)}$
Choose 2 adaptation fixtures (1 for each breaker) +1 set of cables
1 adaptation fixture for Masterpact NT fixed devices
33200
1 adaptation fixture for Masterpact NT drawout devices
33201
1 set of 2 cables
33209
(1) Can be used with any combination of NT or NW, fixed or drawout devices.

Cable-type door interlock

Indication contacts

Indication contacts		
ON/OFF indication contacts (OF) / 1 part		
	Changeover contacts (6A-240 V)	47076
	1 low-level OF to replace 1 standard OF (4 max.)	47077
	Wiring For fixed circuit breaker	47074
	For drawout circuit breaker	33098
	Installation manual	47103
"Fault trip" indication contacts (SDE) / 1 part		
	1 additional SDE (5A-240 V)	47078
	1 additional low-level SDE	47079
	Wiring \quad For fixed circuit breaker	47074
	For drawout circuit breaker	33098
	Installation manual	47103
"Ready to close" contact (1 max.) / 1 part		
		PF
	1 changeover contact (5A-240 V)	47080
	1 low-level changeover contact	47081
	Wiring For fixed circuit breaker	47074
	For drawout circuit breaker	33098
	Installation manual	47103
Electrical closing pushbutton / 1 part		
		BPFE
	1 pushbutton	64917
	Installation manual	47103
Carriage switches (connected / disconnected / test position) / 1 part		
	Changeover contacts (6A-240 V)	
	1 connected position contact (3 max.)	33170
	1 test position contact (1 max.)	33170
	1 disconnected position contact (2 max.)	33170
	And/or low-level changeover contacts	
	1 connected position contact (3 max.)	33171
	1 test position contact (1 max.)	33171
	1 disconnected position contact (2 max.)	33171
Auxiliary terminals for chassis alone		
	3 wire terminal (1 part), terminal block (1 part)	33098
		47900
	Installation manual	47104

Catalogue numbers: spare parts

Masterpact NT
Instructions

Instructions		
Chassis accessories		47104
Circuit breaker accessories		47103
Fixed and drawout circuit breaker		47102
Micrologic user manual	20/50 (French)	33076
	20/50 (English)	33077
	2A/7A (French)	33079
	2A/7A (English)	33080
	5P/7P (French)	33082
	5P/7P (English)	33083
	5H/7H (French)	33085
	5H/7H (English)	33086
NT user manual	French	47106
	English	47107
Modbus communication notice for manual		33088

Portable data acquisition Communication bus accessories and Modbus

Portable data acquisition

Masterpact GetnSet ${ }^{(4)}$

Masterpact GetnSet product with battery and accessories	48789
Spare battery for Masterpact GetnSet product	48790
Spare cable for Masterpact GetnSet product	48791

RS 485 Modbus pre-wired system
RS 485 Modbus junction block

Micro Power Server MPS100

Converter			
	RS 485/RS 232 (ACE909) 12 V DC power supply included	59648	(2)
	RS 485/RS 232	TSX SCA72	${ }^{(1)}$
	RS 485/Ethernet	174 CEV 300-10	
	RS 485/Ethernet (SMS compatible)	EGX 100/400	(2)

(1) See catalogue Telemecanique.
(2) Consult PMC Department.
(*) Consult us.

Catalogue numbers： spare parts

Masterpact NW
Connection

Connection								
			3P		4P			
Fixed circuit breakers								
Front connection／Replacement kit（3 or 4 parts）								
成	800－1600 A	Top	47990		47991			
	2000／3200 A	Top	47992		47993			
	$800-1600 \mathrm{~A}$	Bottom	47932		47933			
	2000／3200 A	Bottom	47942		47943			
	Installation manual		｜ 47950					
Rear connection（vertical or horizontal mounting）／Replacement kit（3 or 4 parts）								
Vertical mounting	800－2000 A	Vertical	47964		47965			
		Horizontal	47964		47965			
	2500／3200 A	Vertical	47966		47967			
		Horizontal	47966		47967			
	4000 A	Vertical	47968		47969			
		Horizontal	47970		47971			
	4000b／5000 A	Vertical	47966	2x	47967			
		Horizontal	47966	2x	47967			
	6300 A	Vertical	47968	2x	47969			
	Installation manual 47950							
Drawout circuit breakers								
Front connection／Replacement kit（3 or 4 parts）								
				800－1600 A	Top or bottom	47960		47961
	2000／3200 A	Top or bottom	47962		47963			
	Installation manual		47950					
Rear connection（vertical or horizontal mounting）／Replacement kit（3 or 4 parts）								
Vertical mounting	800－2000 A types N1／H1／H2 Vertical		47964		47965			
	$800-1600 \mathrm{At}$	Horizontal	47964		47965			
	2500／3200 A	Vertical	47966		47967			
	2000／3200 A	Horizontal	47966		47967			
	4000 A	Vertical	47968		47969			
等 崩 Horizontal mounting		Horizontal	47970		47971			
	4000b／5000 A	Vertical	47966	2x	47967			
		Horizontal	47966	2x	47967			
	6300 A	Vertical	47968	2x	47969			
	Installation manual		47950					
Connection accessories								
			3P		4P			
Disconnectable front－connection adapter for fixed circuit breaker（3 or 4 parts）								
$\begin{aligned} & \text { 㜦 } \end{aligned}$	1600 A		48464		48466			
	2000／3200 A		48465		48467			
	Installation manual 47950							
Interphase barriers／Replacement kit（3 parts）								
				For fixed rear－connected circuit breaker		48599		48599
	For drawout rear－connected circuit breaker		48600		48600			
	Installation manual		47950					
Additional support brackets for mounting on a backplate								
	For fixed rear	uit breaker（2 pa			47829			

Micrologic control unit，communication option

Replacement parts for Micrologic control units

Long－time rating plug（limits setting range for higher accuracy）／ 1 part

Communication option
Chassis

	Modbus COM	64915
	6 wires terminal drawout（1 part）	47850
	6 wires terminal fixed（1 part）	47075
－盟成	Installation manual	33088

External sensors
External sensor for earth－fault protection（TCE）／ 1 part

	Sensor rating	400／2000 A	34035
		1000／4000 A	34036
		4000／6300 A	48182

Source ground return（SGR）earth－fault protection／ 1 part

	External sensor（SGR）	33579
为	MDGF summing module	48891

Rectangular sensor for earth－leakage protection＋Vigi cable／ 1 part（up to 3200 A）		
	$280 \mathrm{~mm} \times 115 \mathrm{~mm}$	33573
\cdots	$470 \mathrm{~mm} \times 160 \mathrm{~mm}$	33574

Catalogue numbers:
Masterpact NW
Remote operation

Chassis locking and accessories

Chassis locking				
"Disconnected" position locking / 1 part				
	By padlocks			
		VCPO		Standard
	By Profalux keylocks			
	Profalux	1 lock w		64934
		2 locks		64935
		2 locks		64936
	1 keylock Profalux (without adaptation kit):			
		identical key not identified combination		33173
		identical key identified 215470 combination		33174
		identical key identified 215471 combination		33175
	By Ronis keylocks			
	Ronis	1 lock w		64937
		2 locks		64938
		2 locks		64939
	1 keylock Ronis (without adaptation kit):			
		identical key not identified combination		33189
		identical key identified EL24135 combination		33190
				33191
		identical key identified EL24315 combination		33192
	Adaptation kit (without keylock):	adapta		48564
		adaptat		48565
		adaptat		48566
	Installation manual			47952
Door interlock / 1 part				
	Right and left-hand side of chassis (VPECD or VPECG)			47914
	Installation manual			47952
Racking interlock				
	5 parts			64940
	Installation manual			47952
Breaker mismatch protection / 1 part				
	Breaker mismatch protection (VDC)			33767
	Installation manual			47952
Chassis accessories				
Auxiliary terminal shield (CB) / 1 part				
嗺 Safety shutters + lo	$800 / 4000 \mathrm{~A}$	3 P		64942
		4 P3 P		48596
	$4000 \mathrm{~b} / 6300 \mathrm{~A}$			48597
		4 P		48598
	Installation manual			47952
	Safety shutters + locking block / 1 part			
	800/4000 A	$\frac{3 \mathrm{P}}{4 \mathrm{P}}$		48721
				48723
	$4000 \mathrm{~b} / 6300 \mathrm{~A}$	3 P		48722
		4 P		48724
	Installation manual			47952
Shutter locking block (for replacement) / 1 part				
	2 parts for 800/4000 A			48591
	Installation manual			47952
Earthing kit for chassis				
			\|3P	4P
Types for N1/H1/NA/HA				
			\| 48433	48434

Note: the installation manual is enclosed.

Catalogue numbers: spare parts

Masterpact NW
Clusters

Clusters

1 disconnecting contact cluster for chassis (see table below) (part 1)
64906

Table : number of clusters required for the different chassis models

Chassis rating (A)	Masterpact NW 3P				Masterpact NW 4P			
	N1	H1/H2	H3	L1	N1	H1/H2	H3	L1
250		12 (H1)						
630	6	12		24	8	16		32
800	6	12		24	8	16		32
1000	6	12		24	8	16		32
1250	6	12		24	8	16		32
1600	12	12		24	16	16		32
2000		24	24	42		32	32	56
2500		24	24			32	32	
3200		36	36			48	48	
4000		42	42			56	56	
4000b		72				96		
5000		72				96		
6300		72				96		

Note: the minimum order is 6 parts.

Racking handle		
	Racking handle	47944
DC rear connection		
	For NW10/20 DC	48642
$\begin{aligned} & \text { 亳 } \\ & \text { a } \end{aligned}$	For NW40 DC	48643

Circuit breaker locking and accessories

Circuit breaker locking
Pushbutton locking device / 1 part

	By padlocks		48536
	Installation manual		47951
OFF position locking / 1 part			
	By padlocks		
			48539
	By Profalux keylocks		
	Profalux	1 lock with 1 key + adaptation kit	64928
		2 locks 1 keys + adaptation kit	64929
		2 locks 2 different keys + adaptation kit	64930
	1 keylock Profalux (without adaptation kit):		
		identical key not identified combination	33173
		identical key identified 215470 combination	33174
		identical key identified 215471 combination	33175
	By Ronis keylocks		
	Ronis	1 lock with 1 key + adaptation kit	64931
		2 locks 1 keys + adaptation kit	64932
		2 locks 2 different keys + adaptation kit	64933
	1 keylock Ronis (without adaptation kit):		
		identical key not identified combination	33189
		identical key identified EL24135 combination	33190
		identical key identified EL24153 combination	33191
		identical key identified EL24315 combination	33192
	Adaptation kit	adaptation kit Profalux / Ronis	64925
	(without keylock):	adaptation kit Kirk	64927
		adaptation kit Castell	64926
	Installation manua		47951

Other circuit breaker accessories
Mechanical operation counter / 1 part

Operation counter CDM
48535

Catalogue numbers:
spare parts

Masterpact NW
Mechanical interlocking for source changeover

Mechanical interlocking for source changeover

Interlocking of 2 devices using connecting rods

Interlocking of 2 devices using cables ${ }^{(1)}$
Choose 2 adaptation sets (1 for each device +1 set of cables)
1 adaptation fixture for Masterpact NW fixed devices
47926
1 adaptation fixture for Masterpact NW drawout devices
47926
1 set of 2 cables
33209
(1) Can be used with any combination of NT or NW, fixed or drawout devices.

Interlocking of 3 devices using cables
Choose 3 adaptation (inclusing 3 adaptation fixtures + cables)

3 sources, only 1 device closed, fixed or drawout devices	$\mathbf{4 8 6 1 0}$
2 sources +1 coupling, fixed or drawout devices	48609

2 normal + 1 replacement source, fixed or drawout devices
Cable-type door interlock
1 complete assembly for Masterpact NW fixed or drawout device
Note: the installation manual is enclosed.

Indication contacts

Indication contacts
ON/OFF indication contacts (OF)/12 parts

Combined closed / connected contacts for use with 1 auxiliary contact / 1 part

	48477
	48478
	47952
Electrical closing pushbutton / 1 part	
	BPFE
	48534
	\| 47951
Auxiliary terminals for chassis alone	
3 wire terminal (1 part)	47849
6 wire terminal (1 part)	47850
Jumpers (10 parts)	47900

Catalogue numbers: spare parts

Masterpact NW Instructions

Instructions		
Chassis accessories		47952
Circuit breaker accessories		47951
Fixed and drawout circuit breaker		47950
User manual	NW AC (French)	47954
	NW AC (English)	47955
	NW DC (French)	64923
	NW DC (English)	64924
Micrologic user manual	20/50 (French)	33076
	20/50 (English)	33077
	2A/7A (French)	33079
	2A/7A (English)	33080
	5P/7P (French)	33082
	5P/7P (English)	33083
	5H/7H (French)	33085
	5H/7H (English)	33086
Modbus communication notice for manual		33088

Portable data acquisition Communication bus accessories and Modbus

To indicate your choice, check the applicable square boxes and enter the appropriate information in the rectangles \qquad

Circuit breaker or switch-disconnector		Quantity		
Masterpact type NT		NW		
Rating	A			
Sensor rating	A			
Circuit breaker	N1, H1, H2, H3, L1			
Special circuit breaker	H2 anticorrosion, H10 (NW)			
Switch-disconnector	NA, HA, HF, ES, HA10 (NW)			
Number of poles	3 or 4			
Brand Schneider	Schneider Electric		are D	
Option: neutral on right side (NW)				
Type of equipment	Fixed			
	Drawout with chassis			
	Drawou (moving	Drawout without chassis (moving part only)		
Earthing switch kit for chassis				
Micrologic control unit				
A - ammeter 2.0	$2.0 \square 5.0$	6.0	7.0	
P - power meter	eter $\quad 5.0$	6.0	7.0	
H- harmonic meter	c meter 5.0	6.0	7.0	
LR - long-time rating plug	$\begin{array}{ll}\text { e rating plug } & \text { Standar } \\ & \text { Low set } \\ & \text { High se } \\ & \text { LR OFF }\end{array}$	o 1 lr		
AD - external power-supply module			V	
BAT - battery module				
TCE - external sensor (CT) for neutral and residual earth-fault protection				

TCE - external sensor (CT) for over sized neutral

PTE - external voltage connector

Indication contacts			
OF - ON/OFF indication contacts			
Standard	4 OF $6 \mathrm{~A}-240 \mathrm{~V} \mathrm{AC} \mathrm{(10} \mathrm{A-240} \mathrm{~V} \mathrm{AC} \mathrm{and} \mathrm{low-level} \mathrm{for} \mathrm{NW)}$		
Alternate	1 OF low-level for NT	Max. 4	qty
Additional	1 block of 4 OF for NW	Max. 2	qty
EF - combined "connected/closed" contacts			
	$1 \mathrm{EF} 6 \mathrm{~A}-240 \mathrm{VAC}$ for NW	Max. 8	qty
	1 EF low-level for NW	Max. 8	qty

SDE - "fault-trip" indication contact

VBP - ON/OFF pushbutton locking (by transparent cover + padlocks)
OFF position locking:
VCPO - by padlocks
vSPO - by keylocks

Chassis locking in "disconnected" position:

DAE - automatic spring discharge before breaker removal for NW

Accessories		
VO - safety shutters on chassis for NT and NW		X
CDM - mechanical operation counter NT, NW		
CB - auxiliary terminal shield for chassis NT, NW		
CC - arc chute cover for fixed NT		
CDP - escutcheon NT, NW		
CP - transparent cover for escutcheon NT, NW		
OP - blanking plate for escutcheon NT, NW		
Brackets for mounting NW fixed	On backplates	
Test kits Mini test kit	Portable test kit	

Schneider Electric Industries SAS
35, rue Joseph Monier
CS 30323
F- 92506 Rueil Malmaison Cedex
RCS Nanterre 954503439
Capital social $896313776 €$
www.schneider-electric.com

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication

This document has been printed on ecological paper
Design: Schneider Electric
Photos: Schneider Electric
Printed: Imprimerie du Pont-de-Claix/JPF - made in France

Micrologic control units 2.0 A, 5.0 A, 6.0 A and 7.0 A Low Voltage Products

User manual

2.0 A, 5.0 A, 6.0 A and 7.0 A

Discovering your control unit 2
Identifying your control unit 2
Overview of functions 4
Setting your control unit 10
Selecting the type of neutral protection 10
Setting procedure 11
Setting the Micrologic 2.0 A control unit 12
Setting the Micrologic 5.0 A control unit 13
Setting the Micrologic 6.0 A control unit 14
Setting the Micrologic 7.0 A control unit 15
Fault and status indications 16
Resetting the fault indications and checking battery status 16
Testing the ground-fault and earth-leakage functions 17
Menus 18
Accessing the menus 18
Measuring phase currents 19
Displaying the maximum current values 20
Resetting the maximum current values 21
Viewing the settings 22
Setting up the Modbus communications option 23
Technical appendix 24
Tripping curves 24
Changing the long-time rating plug 26
Zone selective interlocking (ZSI) 27
Digital display 28
Thermal memory 29

All Compact NS800-3200 and Masterpact NT and NW circuit breakers are equipped with a Micrologic control unit that can be changed on site. Control units are designed to protect power circuits and connected loads.

Micrologic 2.0 A: basic protection and ammeter

Micrologic 2.0 A

X: type of protection
■ 2 for basic protection

- 5 for selective protection
- 6 for selective + ground-fault protection
$■ 7$ for selective + earth-leakage protection
Y: version number
identification of the control-unit generation.
" 0 " signifies the first generation.
Z: type of measurement
■ A for "ammeter"
■ P for "power meter"
- H for "harmonic meter"

■ no indication: no measurements

Micrologic 5.0 A: selective protection and ammeter

Micrologic 6.0 A: selective + ground-fault protection and ammeter

Long time + Short time + Instantaneous

Ground-fault protection

Micrologic 7.0 A: selective + earth-leakage protection and ammeter

Long time + Short time + Instantaneous

Earth-leakage protection

Presentation

top fastener
bottom fastener protective cover cover opening point
lead-seal fixture for protective cover long-time rating plug screw for long-time rating plug connection with circuit breaker infrared link with communications interfaces terminal block for external connections housing for battery
digital display
three-phase bargraph and ammeter

Adjustment dials

long-time current setting Ir long-time tripping delay tr short-time pickup Isd short-time tripping delay tsd instantaneous pick-up Isd instantaneous pick-up li ground-fault pick-up Ig ground-fault tripping delay tg earth-leakage pick-up $I \Delta n$ earth-leakage tripping delay Δt

Indications

LED indicating long-time tripping LED indicating short-time tripping LED indicating ground-fault or earth-leakage tripping LED indicating auto-protection tripping LED indicating an overload

Navigation

Test

navigation button to change menus navigation button to view menu contents button for fault-trip reset and battery test
ground-fault and earth-leakage protection test connector

Micrologic 7.0 A

Micrologic 2.0 A

Micrologic 5.0 A

Micrologic 6.0 A

Overview of functions

Protection settings

Depending on the type of installation, it is possible to set the tripping curve of your control unit using the parameters presented below.

Micrologic 2.0 A

1. current setting Ir (long time)
2. tripping delay tr (long time) for 6 x Ir
3. pick-up Isd (instantaneous)

Micrologic 5.0 A, 6.0 A
7.0 A

1. current setting Ir (long time)
2. tripping delay tr (long time) for $6 \times \mathrm{Ir}$
3. pick-up Isd (short time)
4. tripping delay tsd
(short time)
5. pick-up li
(instantaneous)

Micrologic 7.0 A

1. pick-up $I \Delta n$ (earth leakage)
2. tripping delay Δt
(earth leakage)

Long-time protection

The long-time protection function protects cables (phases and neutral) against overloads. This function is based on true rms measurements.

Thermal memory

The thermal memory continuously accounts for the amount of heat in the cables, both before and after tripping, whatever the value of the current (presence of an overload or not). The thermal memory optimises the long-time protection function of the circuit breaker by taking into account the temperature rise in the cables. The thermal memory assumes a cable cooling time of approximately 15 minutes.

Long-time current setting Ir and standard tripping delay tr

Micrologic control unit		Accuracy	2.0 A, 5.0 A, 6.0 A and 7.0 A								
current setting tripping between 1.05 and $1.20 \times \mathrm{Ir}$	$\mathrm{lr}=\ln \left(^{*}\right) \times \ldots$		other ranges or disable by changing rating plug								
time delay (s)	tr at $1.5 \times \mathrm{lr}$	0 to -30\%	12.5	25	50	100	200	300	400	500	600
	tr at $6 \times \mathrm{lr}$	0 to -20\%	0.5	1	2	4	8	12	16	20	24
	tr at $7.2 \times \mathrm{lr}$	0 to -20\%	0.34	0.69	1.38	2.7	5.5	8.3	11	13.8	16.6

* In: circuit breaker rating

Setting accuracy of the Ir setting may be enhanced by using a different long-time rating plug.
See the technical appendix "Changing the long-time rating plug".

For the characteristics and external wiring of the zone selective interlocking function, see the technical appendix on "Zone selective interlocking".

The portable test kit can be used to test the wiring between circuit breakers for the zone selective interlocking function.

Short-time protection

- the short-time protection function protects the distribution system against impedant short-circuits
- the short-time tripping delay can be used to ensure discrimination with a downstream circuit breaker
- this function carries out true rms measurements.
- the $\mathrm{I}^{2 \mathrm{t}} \mathrm{ON}$ and $\mathrm{I}^{2} \mathrm{t}$ OFF options enhance discrimination with downstream protection devices
- use of $\mathrm{I}^{2} \mathrm{t}$ curves with short-time protection:
$\square I^{2} t$ OFF selected: the protection function implements a constant time curve; $\square I^{2 t} O N$ selected: the protection function implements an I^{2} t inverse-time curve up to 10 Ir . Above 10 Ir , the time curve is constant.

■ zone selective interlocking (ZSI)
The short-time and ground-fault protection functions enable time discrimination by delaying the upstream devices to provide the downstream devices the time required to clear the fault. Zone selective interlocking can be used to obtain total discrimination between circuit breakers using external wiring.

Short-time pick-up Isd and tripping delay tsd
2.0 A, 5.0 A, 6.0 A and 7.0 A

Micrologic control unit		2.0 A, 5.0 A, 6.0 A and 7.0 A								
pick-up	Isd = Ir x ... accuracy $\pm 10 \%$	1.5	2	2.5	3	4	5	6	8	10
time delay	settings $\mathrm{I}^{2} \mathrm{t}$ OFF	0	0.1	0.2	0.3	0.4				
(ms) at 10 lr	$\mathrm{I}^{2} \mathrm{t}$ ON		0.1	0.2	0.3	0.4				
$\mathrm{I}^{2} \mathrm{t}$ ON or	tsd (max resettable time)	20	80	140	230	350				
$\mathrm{I}^{2} \mathrm{t}$ OFF	tsd (max break time)	80	140	200	320	500				

Instantaneous protection

\square the instantaneous-protection function protects the distribution system against solid short-circuits. Contrary to the short-time protection function, the tripping delay for instantaneous protection is not adjustable.
The tripping order is sent to the circuit breaker as soon as current exceeds the set value, with a fixed time delay of 20 milliseconds.
\square this function carries out true rms measurements.
Instantaneous pick-up Isd

Micrologic control unit	2.0 A									
pick-up	Isd $=\operatorname{lr} x \ldots$ accuracy $\pm 10 \%$	1.5	2	2.5	3	4	5	6	8	10

Instantaneous pick-up li

Micrologic control unit	5.0 A,	6.0 A and 7.0 A								
pick-up	$\mathrm{li}=\ln \left({ }^{*}\right) \times \ldots$ accuracy $\pm 10 \%$	2	3	4	6	8	10	12	15	OFF

* In: circuit-breaker rating

Overview of functions

Protection of the fourth pole on four-pole circuit breakers

Protection of the neutral conductor depends on the distribution system.
There are three possibilities.

Type of neutral	Description.
Neutral unprotected	The distribution system does not require protection of the neutral conductor.
Neutral protection at 0.5 In	The cross-sectional area of the neutral conductor is half that of the phase conductors. - the long-time current setting Ir for the neutral is equal to half the setting value \square the short-time pick-up Isd for the neutral is equal to half the setting value ■ the instantaneous pick-up Isd (Micrologic 2.0 A) for the neutral is equal to half the setting value ■ the instantaneous pick-up li (Micrologic 5.0 A / 6.0 A / 7.0 A) for the neutral is equal to the setting value.
Neutral protection at \ln	The cross-sectional area of the neutral conductor is equal to that of the phase conductors. \square the long-time current setting Ir for the neutral is equal to the setting value ■ the short-time pick-up Isd for the neutral is equal to the setting value ■ the instantaneous pick-ups Isd and li for the neutral are equal to the setting value.

Neutral protection for three-pole devices

Neutral protection is not available on three-pole devices.

Ground-fault protection on Micrologic 6.0 A

■ an ground fault in the protection conductors can provoke local temperature rise at the site of the fault or in the conductors.
The purpose of the ground-fault protection function is to eliminate this type of fault. - there are two types of ground-fault protection.

Type	Description
Residual	current, i.e. the vectorial sum of the phase and neutral currents $■$ it detects faults downstream of the circuit breaker.
Source Ground Return	■using a special external sensor, this function directly measures the fault current returning to the transformer via the earth cable \square it detects faults both upstream and downstream of the circuit breaker ■ the maximum distance between the sensor and the circuit breaker is ten metres.

\square ground-fault and neutral protection are independent and can therefore be combined.

Ground-fault pick-up Ig and tripping delay tg
The pick-up and tripping-delay values can be set independently and are identical for both the residual and "source ground return" ground-fault protection functions.

Micrologic control unit		6.0 A								
pick-up	$\lg =\ln \left({ }^{*}\right) \times \ldots$ accuracy $\pm 10 \%$	A	B	C	D	E	F	G	H	1
	$\mathrm{ln} \leq 400 \mathrm{~A}$	0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
	$400 \mathrm{~A}<\mathrm{ln} \leq 1200 \mathrm{~A}$	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
	$\mathrm{ln}>1200 \mathrm{~A}$	500 A	640 A	720 A	800 A	880 A	960 A	1040 A	1120 A	1200 A
time delay	settings $\mathrm{I}^{2 t}$ OFF	0	0.1	0.2	0.3	0.4				
(ms) at 10 ln (*)	$1^{2} \mathrm{t}$ ON		0.1	0.2	0.3	0.4				
$\mathrm{I}^{2} \mathrm{t}$ ON or	tg (max resettable time)	20	80	140	230	350				
1^{2} t OFF	tg (max break time)	80	140	200	320	500				

[^16]
Current protection and alarms

Overload LED

This LED signals that the long-time current setting Ir has been overrun.

The auto-protection function (excessive temperature or short-circuit higher than circuit-breaker capacity) opens the circuit breaker and turns on the Ap LED.

Caution.

If the circuit breaker remains closed and the Ap LED remains on, contact the Schneider after-sales support department.

Caution.

The battery maintains the fault indications. If there are no indications, check the battery.

Fault indications

Signals tripping due to an overrun of the long-time current setting Ir.

Signals tripping due to an overrun of the groundfault pick-up Ig or the earth-leakage pick-up

Signals tripping due to an overrun of the short-time pick-up Isd or the instantaneous pick-up Isd / li.

Signals tripping due to the auto-protection function of the control unit.

If no information is displayed on the screen, see the technical appendix "Digital display".

- all Micrologic control units measure the true rms value of currents
- the most heavily loaded phase is continuously displayed on the digital screen
- using the navigation buttons, it is possible to display successively the I1, I2, I3, neutral $I N, \lg , I \Delta N$ and stored-current (maximeter) values
- the percent load on each phase is displayed. A bargraph displays the currents measured on phases 1, 2 and 3 as a percentage of the long-time current setting Ir.

- accuracy of the current measurements

Accuracy depends on both the value displayed (or transmitted) and the circuitbreaker rating, where:

Accuracy $=0.5 \% \ln +1.5 \%$ reading

Example

For a circuit breaker with a 4000 A rating and a current displayed on Micrologic of 49 A , the accuracy is:
$0.5 \% \times 4000+1.5 \% \times 49= \pm 21 \mathrm{~A}$

On four-pole circuit breakers, it is possible to select the type of neutral protection for the fourth pole:
■ neutral unprotected (4P 3D);
■ neutral protection at $0.5 \ln (3 \mathrm{D}+\mathrm{N} / 2)$;

- neutral protection at $\ln (4 \mathrm{P} 4 \mathrm{D})$.

Setting procedure

1. Open the protective cover.

2. If no information is displayed, see the technical appendix "Digital display". If no further action is taken, after a few seconds, the display returns to the main menu for current measurements.
3. Close the protective cover and, if necessary, install a lead seal to protect the settings.

Using the portable test kit

To test the control unit, connect the portable test kit via the test connector.

The rating of the circuit breaker in this example is 2000 A.

See pages 4 and 5 for information on the available settings

Set the threshold values

Set the tripping delay

Setting the Micrologic 5.0 A control unit

The rating of the circuit breaker
in this example is 2000 A.

See pages 4 and 5 for information on the available settings

Thresholds

$I^{2} \mathrm{t}$ ON curve
$1^{2} \mathrm{t}$ OFF curve

Tripping delays
$1^{2} \mathrm{t}$ ON curve

I^{2} t OFF curve

Set the threshold values

Set the tripping delay
 control unit

The rating of the circuit breaker in this example is 2000 A.

See pages 4 to 6 for information on the available settings.

Thresholds

${ }^{2}$ t ON curve

Tripping delays

$\mathrm{I}^{2} \mathrm{t}$ OFF curve

Setting the Micrologic 7.0 A control unit

The rating of the circuit breaker
in this example is 2000 A.

See pages 4 to 7 for information on the available settings.

Thresholds

${ }^{2}$ t ON curve
${ }^{2} \mathrm{t}$ t OFF curve

Tripping delays

Set the threshold values

Set the tripping delay

The procedure for closing the circuit breaker following a fault trip is presented in the circuit-breaker user manual.

Resetting the fault indications

- determine why the circuit breaker tripped.

The fault indication is maintained until it is reset on the control unit. - press the fault-trip reset button.

- check the parameter settings of the control unit.

Checking the battery

Press the battery-test button (same as the fault-trip reset button) to display the battery status.

Battery fully charged Battery half charged
Change the battery
If no information is displayed, either:
■ no battery is installed in the control unit, or;

- an auxiliary power supply is required.

See the technical appendix "Digital display".

Changing the control-unit battery

1. Remove the battery
2. Remove the battery.

cover.

3. Insert a new battery. Check the polarity.

4. Put the cover back in place. Press the batterytest button to check the

new battery.

Testing the ground-fault and earth-leakage functions

Charge and close the circuit breaker.
Using a screwdriver, press the test button for ground-fault and earth-leakage protection. The circuit breaker should open.

If the circuit breaker does not open, contact the Schneider after-sales support department.

Symbols used:

Briefly press a key.

Press and hold a key.

It is possible at any time to stop consulting a current measurement, a maximum current value recorded by the maximeter or the setting values. After a few seconds, the Micrologic control unit automatically returns to the main menu displaying the current value of the most heavily loaded phase.

The protection settings can be displayed directly on the digital display.

Three menus may be accessed on Micrologic control units, providing the following information:

- phase current measurements I1, I2, I3, neutral IN, ground-fault current Ig on the Micrologic 6.0 A control unit and earth-leakage current $\mathrm{I} \Delta \mathrm{n}$ on the Micrologic 7.0 A control unit;
■ maximeter current values for phases $11, \mathrm{I} 2, \mathrm{I} 3$, neutral IN , the maximum groundfault current Ig on the Micrologic 6.0 A control unit and the maximum earth-leakage current $I \Delta n$ on the Micrologic 7.0 A control unit;
■ protection settings and tripping delays.

Measuring phase currents

Current values may be read in the
"Measurements" menu, which is also the main menu.

If no particular action is taken, the system displays the current value of the most heavily loaded phase.
"Measurements" menu
Phase 1 is the most heavily loaded.

Display of current I1.

Press the "arrow" button to go on to current l2.

Display of current IN.

Press the "arrow" button to go on to the groundfault current lg or the earth-leakage current $1 \Delta n$.

Display of current 12.

Press the "arrow" button to go on to current 13 .

Display of current Ig (Micrologic 6.0 A) or current I $\Delta \mathrm{n}$ (Micrologic 7.0 A).

Press the "arrow" button to return to current 11 .

Display of current 13 .

Press the "arrow" button to go on to current IN if the neutral is protected.

The system returns to the display of current 11 .
 current values

Resetting the maximum current values

Maximum current values can be reset

 using the "Maximeter" menu.If no particular action is taken, the system returns to the main menu.

"Maximeter" menu.

Select the maximum current value to be reset (e.g. I2 max.).

Press the "arrow" button as many times as required to select I2 max.

Reset.

Press and hold the "arrow" button down for three to four seconds. The current value flashes during the reset, then changes to the present value (the new maximum).

Select another value to reset or return to the main menu.

Press the "arrow" button as many times as required to select another maximum value to reset or return to the main menu.

Viewing the settings

Micrologic control unit 2.0A 5.0 A 6.0 A 7.0 A				
罭Long-time current setting Ir		Select the "Settings" menu. The Ir value is the first displayed.	$\mathrm{Ir}=\\|-1 \prod_{\mathrm{I}}$	
Long-time tripping delay tr		Press the "arrow" button to go on to the tr value.	$\mathrm{tr}=$ 1^{s}	
Short-time pick-up Isd		Press the "arrow" button to go on to the short-time Isd value.	"0x 2800 a	
Short-time tripping delay tsd		Press the "arrow" button to go on to the tsd value.	tsd= 0.200^{5}	
Instantaneous pick-up Isd			isd= TIFFA	
Instantaneous pick-up li		the instantaneous li value.	$\mathrm{I}=\quad \text { TIF }$	
Ground-fault pick-up Ig		Press the "arrow" button to go on to the Ig value. Or	$\lg =\quad 417 \mathrm{~A}$	
Earth-leakage pick-up IDn		the $I \Delta n$ value	$\mid \Delta n=$ $1 \exists 1 \mathrm{~A}$	
Ground-fault tripping delay tg		Press the "arrow" button to go on to the tg value. Or	0.2000^{s} $\operatorname{tg}=$	
Earth-leakage tripping delay Δt			$\Delta t=11010 \mathrm{~s}$	
		Press the "arrow" button to return to the beginning of the menu.	Ir= 141010	

Setting up the Modbus communications option

When a communications option is used, the communications parameters must be set. Note that the COM module should be set up only when installed. Modification of a parameter on a system already in operation may lead to communications faults.

The "Parameter" menu for the communications option displays the: \square address of the communications module; ■ baud rate;

- parity;
- language.

Briefly press the $\boldsymbol{\rightarrow}$ button to scroll through the parameter values.
Press the \rightarrow button somewhat longer to go on to the next parameter.
After selecting the language, press and hold the Θ button to return to the "Metering" menu.

1. Metering menu

You are in the "Metering" menu. Simultaneously press the two buttons to access the parameter settings for the communications option.

3. Baud rate

Set the baud rate,

then go on to the next parameter.

2. Modbus address

Set the Modbus address,
then go on to the next parameter.

then go on to the next parameter.

5. Language

Set the language,
4. Parity

Set the parity.

then return to the "Metering" menu.

Long-time and instantaneous protection (Micrologic 2.0 A)

Long-time, short-time and instantaneous protection (Micrologic 5.0 A, 6.0 A and 7.0 A)

Ground-fault protection (Micrologic 6.0 A)

Changing the long-time rating plug

Select the long-time rating plug

A number of setting ranges for the long-time current setting are available on Micrologic A control units by changing the long-time rating plug.
The available rating plugs are listed below.

Part number	Setting range for the Ir value	
33542	standard	0.4 to $1 \times \mathrm{lr}$
33543	low setting	0.4 to $0.8 \times \mathrm{Ir}$
33544	high setting	0.8 to $1 \times \mathrm{Ir}$
33545	without long-time protection 	$\mathrm{Ir}=\mathrm{ln}$ for the Isd setting

Caution.

Following any modifications to the longtime rating plug, all control-unit protection parameters must be checked.

Caution.

If no long-time rating plug is installed, the control unit continues to operate under the following downgraded conditions:

- the long-time current setting Ir is 0.4;
- the long-time tripping delay tr corresponds to the value indicated by the adjustment dial;
- the earth-leakage protection function is disabled.

Change the long-time rating plug

Proceed in the following manner.

1. Open the circuit breaker.
2. Open the protective cover of the control unit.

3. Snap out the rating
plug.

4. Completely remove the long-time rating plug screw.

5. Clip in the new rating plug.
6. Refit the screw for the long-time rating plug.
7. Check and/or modify the control-unit settings.

Caution.
If the protection function is not used on circuit breakers equipped for ZSI protection, a jumper must be installed to short terminals Z3, Z4 and Z5. If the jumper is not installed, the short-time and ground-fault tripping delays are set to zero, whatever the position of the adjustment dial.

Terminals Z1 to Z5 correspond to the identical indications on the circuit-breaker terminal blocks.

Operating principle

\square A fault occurs at point A.
Downstream device no. 2 clears the fault and sends a signal to upstream device no. 1, which maintains the short-time tripping delay tsd or the ground-fault tripping delay tg to which it is set.

- A fault occurs at point B.

Upstream device no. 1 detects the fault. In the absence of a signal from a downstream device, the set time delay is not taken into account and the device trips according to the zero setting. If it is connected to a device further upstream, it sends a signal to that device, which delays tripping according to its tsd or tg setting.

Note :

On device no. 1, the tsd and tg tripping delays must not be set to zero because this would make discrimination impossible.

Connections between control units

A logic signal (0 or 5 volts) can be used for zone selective interlocking between the upstream and downstream circuit breakers.
■ Micrologic 5.0 A, 6.0 A, 7.0 A.
■ Micrologic $5.0 \mathrm{P}, 6.0 \mathrm{P}, 7.0 \mathrm{P}$.
■ Micrologic $5.0 \mathrm{H}, 6.0 \mathrm{H}, 7.0 \mathrm{H}$.
An interface is available for connection to previous generations of trip units.

Wiring

■ maximum impedance: 2.7Ω / 300 metres
■ capacity of connectors: 0.4 to $2.5 \mathrm{~mm}^{2}$
wires: single or multicore
■ maximum length: 3000 metres
\square limits to device interconnection:
\square the common ZSI - OUT (Z1) and the output ZSI - OUT (Z2) can be connected to a maximum of 10 inputs;
\square a maximum of 100 devices may be connected to the common ZSI - IN (Z3) and to an input ZSI - IN CR (Z4) or GF (Z5).

Test

The portable test kit may be used to check the wiring and operation of the zone selective interlocking between a number of circuit breakers.

For information on connecting an external power supply, see the electrical diagrams in the circuit-breaker user manual.

- display of measurements operates without an external power supply.

The digital display goes off if the current drops below $0.2 \mathrm{x} \ln$ ($\mathrm{ln}=$ rated current) An optional 24 V external power supply may be used to maintain the display of currents.

- display back-lighting is disabled in the following situations:
a current less than $1 \times \ln$ on one phase;
ם current less than $0.4 \times \ln$ on two phases;
\quad current less than $0.2 x \ln$ on three phases.
$■$ the maximeter does not operate for currents under $0.2 \times \mathrm{ln}$.

The display back-lighting and the maximeter may be maintained, whatever the current, by adding a 24 V external power supply. Even if an external power supply is installed, the long-time, short-time, instantaneous and earth protection functions will not use it.

Thermal memory

The thermal memory is the means to take into account temperature rise and cooling caused by changes in the flow of current in the conductors.

These changes may be caused by:

- repetitive motor starting

■ loads fluctuating near the long-time protection settings

- repeated circuit-breaker closing on a fault.

Control units with a thermal memory record the temperature rise caused by each overload, even very short ones. This information stored in the thermal memory reduces the tripping time.

Micrologic control units and thermal memory

All Micrologic control units are equipped as standard with a thermal memory - for all protection functions, prior to tripping, the temperature-rise and cooling time constants are equal and depend on the tr tripping delay: - if the tripping delay is short, the time constant is low \square if the tripping delay is long, the time constant is high.

- for long-time protection, following tripping, the cooling curve is simulated by the control unit. Closing of the circuit breaker prior to the end of the time constant (approximately 15 minutes) reduces the tripping time indicated in the tripping curves.

Short-time protection and intermittent faults

For the short-time protection function, intermittent currents that do no provoke tripping are stored in the Micrologic memory.
This information is equivalent to the long-time thermal memory and reduces the tripping delay for the short-time protection.
Following a trip, the short-time tsd tripping delay is reduced to the value of the minimum setting for 20 seconds.

Ground-fault protection and intermittent faults

The ground-fault protection implements the same function as the short-time protection.

As standards, specifications and designs develop from time, always ask for confirmation of the
5, rue Nadar
92506 Rueil-Malmaison Cedex
France
Tel: +33 (0)1 41298200
Fax:+33 (0)1 47518020
http://www.schneiderelectric.com
information given in this publication.

This document has been printed on ecological paper.
Designed by: HeadLines
Printed by:

FAIRFIELD WATER RECLAMATION PLANT

MOULDED CASE CIRCUIT BREAKERS

1. COMPACT NSX CATALOGUE

2. COMPACT NS630b TO 1600 A USER MANUAL
3. COMPACT NS630b TO 1600 A ACCESSORIES

Compact NSX

Moulded-case circuit breakers and switch-disconnectors
Measurement and communication
from 100 to 630 A

Catalogue 2009

Compact NSX Next-generation circuit breakers

Today, next-generation Compact NSX circuit breakers provide an intelligent outlook and set the standards of tomorrow. A power monitoring unit enhances their invariably impeccable protective functions. For the first time, users can monitor both energy and power, offering new performance in a remarkably compact device.

Compactness, discrimination and modularity - all of the features which defined the success of the Compact NS generation of circuit breakers combined with new functions for safe, easy monitoring and management of installations.

The new range of Compact NSX circuit breakers stands out from the crowd, thanks to its electronic intelligence. Through direct access to in-depth information, and networking via open protocols, Compact NSX lets operators optimise the management of their electrical installations.

Far more than a circuit breaker, Compact NSX is a measurement and communication tool ready to meet energy-efficiency needs through optimised energy consumption, increased energy availability, and improved installation management.

Safety and performance

Compactness, discrimination and modularity - new Compact NSX circuit breakers incorporate advanced monitoring and communication functions, from 40 amps up, combined with impeccable protection.

Expert technology

A roto-active contact breaking principle provides each circuit breaker with very high breaking capacity in a very small device, remarkable fault current limitation performance, and endurance.
$>$ Compact NSX benefits from a patented double roto-active contact breaking concept, together with a reflex tripping system for ultimate breaking.
> Exceptional fault current limitation guarantees robust, reliable protection and, above all, reduces the causes of component aging, thus extending service life for installations.

New breaking capacities

New performance levels for Compact NSX improve application targeting: > 25 kA - standard low short-circuit level applications, e.g., for service businesses,
> 36-50 kA - standard applications (industrial plants, buildings and hospitals),
> 70-100 kA - high performance at controlled cost,
> 150 kA - demanding applications (maritime).

Enhanced protection for motors

Compact NSX meets the requirements of IEC 60947-4-1 standards for protection of motors:
> well adapted to motor-starting solutions up to 315 kW at 400 V , providing protection against short circuits, overloads, phase unbalance and loss,
> also enables set-up of additional protection systems for starting and braking with the motor running, reverse braking, jogging or reversing in complete safety,
> add a Schneider Electric contactor; Compact NSX complies with the requirements of so-called type 2 coordination.

Reduced installation costs

Optimising installations allows for achieving up to 30 \% savings:
$>$ considerable savings at the time of installation, thanks to total discrimination with miniature circuit breakers,
> smaller devices, more economic switchboards mean best overall installation cost, without overcalibration.

The trip units are now true circuit breaker control systems.

With the integration of electronics, trip units have gained in speed and accuracy.

Greater reliability and better

 discrimination allows more refined settings, especially for time delays.
Monitoring and management

Compact NSX is a single device, which contains a monitoring unit to control energy consumption and power.

Integrated monitoring

> The new Compact NSX range incorporates Micrologic electronic trip units in the circuit breaker, offering both:

- an accurate power monitoring unit,
- a highly reliable protective device.
> A Micrologic electronic tripping device combines next-generation sensors:
- an "iron" sensor for the power supply to the electronics,
- an "air" sensor (Rogowski coils) for measurement, guaranteeing high accuracy.
> These electronic systems are designed to withstand high temperatures $\left(105^{\circ} \mathrm{C}\right)$, ensuring reliability under severe operating conditions.
> The originality lies in how Compact NSX measures, processes and displays data, either directly on screen, on the switchboard front panel, or via a monitoring system.

-10 \%
Monitoring consumption can reduce energy costs by as much as 10%.

Accessibility of information...

To keep costs under control and ensure service continuity, relevant information must be available in real time:
> a kilowatt-hour meter helps optimise costs and their allocation,
> harmonic distortion rate shows the quality of electrical supply,
$>$ alarm notification secures operational control and maintenance planning,
> event logs and tables, activated continuously, ensure the installed equipment base operates correctly, so energy efficiency is maximized.

...for power monitoring

> Together with power monitoring software (e.g., PowerLogic), the Compact NSX Modbus communication interface provides operators with a parameter set and tools that make system monitoring very easy.
$>$ Operators have real-time data to control energy availability, to monitor power supply quality, to optimise consumption of different applications or zones, reducing load peaks and continuously supplying priority loads, and to draw up maintenance schedules.
> A software utility (RSU) allows protection and alarm configuration, in addition to testing communications with all installed devices.

Logiciel de supervision PowerLogic ION-E

Measurement functions are controlled
by an additional microprocessor.

Protection functions are electronically managed independently of measurement functions.

An ASIC (Application-Specific Integrated Circuit) is common to all trip units, which boosts immunity to conducted or radiated interference and increases reliability.

Simplicity

Compact NSX takes the principles of easy installation and use -

 which made its predecessor so successful - to a higher level.

Simple in design

Compact NSX is mounted and wired reusing the same measurements as Compact NS.

Cut-outs are the same whatever the type of handle. Engineering drawings are the same, so installation and connection layouts can be used on new projects, simplifying extensions or retrofits, and reducing maintenance costs.

Integration in help software, for parameter settings and switchboard installation, further eases design.

Simple to install

> A Limited Torque Screw (LTS) system ensures proper installation of the tripping device, for added flexibility. It insures each screw is aligned correctly and tightened to the required torque. The LTS system thus avoids the need for a torque wrench.
> A transparent lead-sealable cover protects access to tripping device switches and prevents settings from being changed.
> The new electrical control adjustment also has a transparent lead- sealable cover to prevent it from being operated accidentally.
$>$ Compact NSX has an optional functional terminal shield that offers excellent protection against direct contact (IP40 on all sides, IP20 at cable entry points) and easy installation.
> All Compact NSX devices can be equipped with a communication function via a pre-wired connection with a Modbus interface module. When the Modbus address is declared, the Compact NSX device is integrated into the network.

65 \%

time savings in installation compared with a classic monitoring solution.
> There are four levels of functionalities:

- communication of device status: On/Off position, trip indication and fault-trip indication,
- communication of commands: open, close, and reset,
- communication of measurements: mainly I, U, f, P, E, and THD,
- communication of operating assistance data: settings, parameters, alarms, histograms and event tables, and maintenance indicators.
> The switchboard "plug \& play" display unit connects to the trip unit without any special settings or configuration. A cable fitted with an RJ45 connector allows for easy integration with communications networking.

Simple to use

> Users customise time-stamped alarms for all parameters, assign them to indicator lights, choose display priorities, and configure time delay thresholds and modes.
$>$ Event logs and tables are continuouslyactivated. Providing a wealth of information, they enable users to ensure that the installed equipment base operates correctly, to optimize settings, and to maximise energy efficiency.
> Local and remote displays offer easy access to operators and provide the main electrical values: I, U, V, f, energy, power, total harmonic
 distortion, etc. The user-friendly switchboard display unit with intuitive navigation is more comfortable to read, and offers quick access to information.

Attractively designed.
The front of Compact NSX circuit breakers has an attractive curved profile.
Measurements are easy to read on a backlit LCD display. Screen navigation is intuitive and settings are simplified by immediate readouts in amps.

Service continuity

Compact NSX makes discrimination its main advantage in minimising the impact of short circuits, ensuring service continuity for installations.

Total discrimination

Thanks to its 30 years of experience, Schneider Electric, with Compact NSX, offers perfect mastery of discrimination for ever more reliable service continuity. Compact NSX circuit breakers strongly limit fault currents, occurring as the result of short-circuits, which reduces installation downtime and avoids overdimensioning cables.
When several circuit breakers are used in series, the downstream circuit breaker trips as close as possible to the fault, isolating only the circuit concerned. The upstream circuit breaker is not affected and allows the other circuits to remain operational.

Service continuity

Adding an SDTAM module allows remote indication of motor overloads and actuation of a contactor, ensuring total service continuity: $>$ the SDTAM switches the contactor instead of tripping the circuit breaker,
> the module allows for machine restart directly from the contactor without having to operate circuit breakers.

Preventive maintenance

Maintenance indicators provide information on the number of operations, level of wear on contacts and total load rates. This makes it far easier to monitor equipment ageing and optimise investments over time. Maintenance is now preventive, avoiding faults.

service continuity

Direct access to maintenance indicators

Schneider Electric expertise

Schneider Electric commits to reducing energy costs and CO_{2} emissions for its customers. It offers products, solutions and services that integrate with all levels of the energy value chain. Compact NSX is part and parcel of the Schneider Electric energy efficiency approach.

Solutions for the future

With Compact NSX, Schneider Electric works through flexible solutions for commercial and industrial buildings, Schneider Electric commits to help customers gradually move towards an active approach to their energy efficiency. It helps get more return from investments and future design solutions.

Energy performance contracts

An energy performance contract offers innovative service to modernise technical installations.

The objective is dramatically to reduce energy costs, whilst improving comfort and safety, all in an environmentally-responsible way.

Environmentally responsible

Schneider Electric meets the expectations of its markets with products adapted to the practices of the 190 countries where it is present and strongly commits to respect the norms and directives of each of those countries.

- Compact NSX, like all the products in its LV ranges, is a product designed to comply with all European directives for the environment. It has also received international certifications and approval from independent agencies.
- In compliance with ISO 14001 standards, all of its factories are non-polluting.
- Designed for easy disassembly and recycling at end of life, Compact NSX complies with environmental directives RoHS* and WEEE**.
savings in energy costs

steps

> Diagnosis
> Proposals
> Implementation
> Follow-up

[^17]
Presentation

Functions and characteristics

Installation recommendations B-1
Dimensions and connection C-1Wiring diagramsD-1
Additional characteristics E-1
\qquad

Catalogue numbersF-1

Introduction
Overview of applications A-2
General characteristics of the Compact NSX range A-4
Characteristics and performance of Compact NSX circuit breakers from 100 to 630 A A-6
Compact NSX trip units A-8
Overview of trip units for Compact NSX A-10
Protection of distribution systems
TM thermal-magnetic and MA magnetic trip units A-14
Micrologic 2 and 1.3-M trip units A-16
Micrologic 5 / 6 A or E trip units A-18
Power Meter functions
Electronic Micrologic 5/6A or E A-20
Operating-assistance functions
Micrologic 5/6A or E trip units A-22
Switchboard-display functions
Micrologic 5 / 6 A or E trip units A-24
Compact NSX communication
Communications modules A-26
Networks and software A-28
RSU and RCU utilities A-30
Supervision software A-31
Accessories for Micrologic trip units A-32
Earth-leakage protection
Add-on protection against insulation faults using a Vigi module or Vigirex relay A-34
Motor protection
General information on motor feeders A-36
Motor-feeder characteristics and solutions A-38
Compact NSX motor-feeder solutions A-39
MA and Micrologic 1.3-M instantaneous trip units A-40
Micrologic 2-M electronic trip units A-42
Micrologic 6 E-M electronic trip units A-44
Special applications
Protection of public distribution systems with Micrologic 2-AB A-48
Generator protection with Micrologic 2.2-G A-50
Protection of industrial control panels A-52
$16 \mathrm{~Hz} 2 / 3$ network protection A-53
Micrologic $5 \mathrm{~A}-\mathrm{Z}$ trip unit A-53
Protection of 400 Hz systems A-54
Switch-disconnectors
Overview of applications A-56
Switch-disconnector functions A-57
Characteristics and performance of Compact NSX switch-disconnectors from 100 to 630 NA A-58
Source-changeover systems
A-60
A-60
Presentation
Manual source-changeover systems A-61
Remote-operated and automatic source-changeover systems Coupling accessory on base plate A-62
Accessories and auxiliaries
Overview of Compact NSX100 to 630 fixed version A-64
Overview of Compact NSX100 to 630 plug-in and withdrawable versions A-66
Device installation A-68
Connection of fixed devices A-70
Connection of withdrawable and plug-in devices A-72
Insulation of live parts A-73
Selection of auxiliaries for Compact NSX100/160/250 A-74
Selection of auxiliaries for Compact NSX400/630 A-76
Connection of electrical auxiliaries A-78
Indication contacts A-80
SDx and SDTAM modules for Micrologic A-81
Motor mechanism A-82
Remote tripping A-83
Additional measurement and indication modules A-86
Locks A-88
Sealing accessories A-89
Individual enclosures A-90
Escutcheons and protection collars A-91
Installation recommendations $B-1$ connection C-1

Rotary handles
A-84
Wiring diagrams D-1
Additional characteristics E-1
Catalogue numbers F-1G-1

Introduction
Overview of applications

Applications

Compact NSX100 to 630 offers high performance and a wide range of interchangeable trip units to protect most applications. Electronic versions provide highly accurate protection with wide setting ranges and can integrate measurement, metering and communication functions. They can be combined with the FDM121 switchboard display unit to provide all the functions of a Power Meter as well as operating assistance.

Compact NSX equipped with Micrologic 5/ 6 trip units offer type A (ammeter) or E (energy) metering functions as well as communication. Using Micrologic sensors and intelligence, Compact NSX provides access to measurements of all the main electrical parameters on the built-in screen, on a dedicated FDM121 display unit or via the communication system.

Operating assistance - page A-22

Integration of measurement functions provides operators with operating assistance functions including alarms tripped by user-selected measurement values, time-stamped event tables and histories, and maintenance indicators.

Switchboard display unit - page A-24

The main measurements can be read on the built-in screen of Micrologic 5 / 6 trip units.
They can also be displayed on the FDM121 switchboard display unit along with pop-up windows signalling the main alarms.

Communication
 page A-26

Compact NSX equipped with Micrologic 5 / 6 trip units provide communication capabilities. Simple RJ45 cords connect to a Modbus interface module.

Protection of distribution systems (AC 220/690 V) page A-14

Compact NSX devices are equipped with MA or TM thermal-magnetic trip units or Micrologic $2 / 5$ / 6 electronic trip units to provide protection against shortcircuits and overloads for:
■ distribution systems supplied by transformers

- distribution systems supplied by engine generator sets ■ long cables in IT and TN systems.

They can be easily installed at all levels in distribution systems, from the main LV switchboard to the subdistribution boards and enclosures.
All Compact NSX devices can protect against insulation faults by adding a Vigi module or Vigirex relay.

Protection of

motors
(AC 220/690 V) page A-36

The Compact NSX range includes a number of versions to protect motor applications:
■ basic short-circuit protection with MA magnetic trip units or the electronic Micrologic 1-M version, combined with an external relay to provide thermal protection

- protection against overloads, short-circuits and phase unbalance or loss with Micrologic 2-M trip units
more complete protection against overloads and short-circuits with additional motor-specific protection (phase unbalance, locked rotor, underload and long start) with Micrologic 6 E-M trip units. These versions also offer communication, metering and operating assistance.
The exceptional limiting capacity of Compact NSX circuit breakers automatically provides type-2 coordination with the motor starter, in compliance with standard IEC 60947-4-1.

Protection of
 special
 applications
 page A-48

Special applications:

The Compact NSX range offers a number of versions
for special protection applications:

- service connection to public distribution systems
- page A-48
- generators $>$ page $\mathrm{A}-50$
- industrial control panels $>$ page A-52
with:
- compliance with international standards

IEC 60947-2 and UL 508 / CSA 22-2 N14

- compliance with US standard UL 489
\square installation in universal and functional enclosures.
- $16 \mathrm{~Hz} 2 / 3$ systems $>$ page A-53
- 400 Hz systems $>$ page $\mathrm{A}-54$

Control and

 isolation usingswitch-
disconnectors
page A-56

A switch-disconnector version of Compact NSX circuit breakers is available for circuit control and isolation. All add-on functions of Compact NSX circuit breakers may be combined with the basic switch-disconnector function, including:

- earth-leakage protection
- motor mechanism
- ammeter, etc.

For all these applications, circuit breakers in the Compact NSX range offer positive contact indication and are suitable for isolation in accordance with standards IEC 60947-1 and 2.

For information on other switch-disconnector ranges, see the Interpact (offering positive contact indication and visible break) and Fupact (fusegear) catalogues.

Source changeover systems

> page A-60

To ensure a continuous supply of power, some electrical installations are connected to two power sources:

- a normal source
- a replacement source to supply the installation when the normal source is not available.
A mechanical and/or electrical interlocking system between two circuit breakers or switch-disconnectors avoids all risk of parallel connection of the sources during switching.

A source-changeover system can be:

- manual with mechanical device interlocking

■ remote controlled with mechanical and/or electrical
device interlocking
■ automatic by adding a controller to manage
switching from one source to the other on the basis of external parameters.

Introduction
General characteristics of the Compact NSX range

Standardised characteristics indicated on the rating plate:
1 Type of device: frame size and breaking capacity class
2 Ui: rated insulation voltage.
3 Uimp: rated impulse withstand voltage.
4 Ics: service breaking capacity.
5 Icu: ultimate breaking capacity for various values of the rated operational voltage Ue
6 Ue: operational voltage.
7 Colour label indicating the breaking capacity class.
8 Circuit breaker-disconnector symbol.
9 Reference standard.
10 Main standards with which the device complies. Note: when the circuit breaker is equipped with an extended rotary handle, the door must be opened to access the rating plate.

Compliance with standards

Compact NSX circuit breakers and auxiliaries comply with the following:
■ international recommendations:

- IEC 60947-1: general rules
- IEC 60947-2: circuit breakers
- IEC 60947-3: switch-disconnectors
- IEC 60947-4: contactors and motor starters
- IEC 60947-5.1 and following: control circuit devices and switching elements; automatic control components
■ European (EN 60947-1 and EN 60947-2) and corresponding national standards:
- France NF
\square Germany VDE
- United Kingdom BS
- Australia AS
- Italy CEI
- the specifications of the marine classification companies (Veritas, Lloyd's Register of Shipping, Det Norske Veritas, etc.), standard NF C 79-130 and recommendations issued by the CNOMO organisation for the protection of machine tools. For U.S. UL, Canadian CSA, Mexican NOM and Japanese JIS standards, please consult us.

Pollution degree

Compact NSX circuit breakers are certified for operation in pollution-degree III environments as defined by IEC standards 60947-1 and 60664-1 (industrial environments).

Climatic withstand

Compact NSX circuit breakers have successfully passed the tests defined by the following standards for extreme atmospheric conditions:

- IEC 60068-2-1: dry cold ($-55^{\circ} \mathrm{C}$)
- IEC 60068-2-2: dry heat $\left(+85^{\circ} \mathrm{C}\right)$

■ IEC 60068-2-30: damp heat (95% relative humidity at $55^{\circ} \mathrm{C}$)
■ IEC 60068-2-52 severity level 2: salt mist.

Environment

Compact NSX respects the European environment directive EC/2002/95 concerning the restriction of hazardous substances (RoHS).
Product environment profiles (PEP) have been prepared, describing the environmental impact of every product throughout its life cycle, from production to the end of its service life.
All Compact NSX production sites have set up an environmental management system certified ISO 14001.
Each factory monitors the impact of its production processes. Every effort is made to prevent pollution and to reduce consumption of natural resources.

Ambient temperature

- Compact NSX circuit breakers may be used between $-25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$. For temperatures higher than $40^{\circ} \mathrm{C}\left(65^{\circ} \mathrm{C}\right.$ for circuit breakers used to protect motor feeders), devices must be derated (pages B-8 and B-9).
■ Circuit breakers should be put into service under normal ambient, operatingtemperature conditions. Exceptionally, the circuit breaker may be put into service when the ambient temperature is between $-35^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$.
■ The permissible storage-temperature range for Compact NSX circuit breakers in the original packing is $-50^{\circ} \mathrm{C}{ }^{(1)}$ and $+85^{\circ} \mathrm{C}$.
(1) $-40^{\circ} \mathrm{C}$ for Micrologic control units with an LCD screen

Electromagnetic compatibility

Compact NSX devices are protected against:
■ overvoltages caused by circuit switching (e.g. lighting circuits)
■ overvoltages caused by atmospheric disturbances
■ devices emitting radio waves such as mobile telephones, radios, walkie-talkies, radar, etc.
■ electrostatic discharges produced by users.
Immunity levels for Compact NSX comply with the standards below. ■ IEC/EN 60947-2: Low-voltage switchgear and controlgear, part 2: Circuit breakers:
\square Annex F: Immunity tests for circuit breakers with electronic protection
\square Annex B: Immunity tests for residual current protection

- IEC/EN 61000-4-2: Electrostatic-discharge immunity tests

■ IEC/EN 61000-4-3: Radiated, radio-frequency, electromagnetic-field immunity tests
■ IEC/EN 61000-4-4: Electrical fast transient/burst immunity tests

- IEC/EN 61000-4-5: Surge immunity tests

■ IEC/EN 61000-4-6: Immunity tests for conducted disturbances induced by radio frequency fields
■ CISPR 11: Limits and methods of measurement of electromagnetic disturbance characteristics of industrial, scientific and medical (ISM) radio-frequency equipment.

Discrimination

Compact NSX reinforces the discrimination capabilities of the Compact NS range by applying the rapid calculation capacity of the Micrologic trip units.
Total discrimination is now possible between NSX100 and modular Multi 9 circuit breakers rated $\leqslant 63 \mathrm{~A}$ (see page A-8).

Suitable for isolation with positive contact indication

All Compact NSX circuit breakers are suitable for isolation as defined in IEC standard 60947-2:
■ The isolation position corresponds to the O (OFF) position.
■ The operating handle cannot indicate the OFF position unless the contacts are effectively open.

- Padlocks may not be installed unless the contacts are open Installation of a rotary handle or a motor mechanism does not alter the reliability of the position-indication system
The isolation function is certified by tests guaranteeing:
- the mechanical reliability of the position-indication system

■ the absence of leakage currents

- overvoltage withstand capacity between upstream and downstream connections. The tripped position does not insure isolation with positive contact indication. Only the OFF position guarantees isolation.

Installation in class II switchboards

All Compact NSX circuit breakers are class II front face devices. They may be installed through the door of class II switchboards (as per IEC standards 61140 and 60664-1) without downgrading switchboard insulation. Installation requires no special operations, even when the circuit breaker is equipped with a rotary handle or a motor mechanism

Degree of protection

The following indications are in accordance with standards IEC 60529 (IP degree of protection) and IEC 62262 (IK protection against external mechanical impacts).

Bare circuit breaker with terminal shields

■ With toggle: IP40, IK07
■ With standard direct rotary handle / VDE: IP40 IK07
Circuit breaker installed in a switchboard
■ With toggle: IP40, IK07.

- With direct rotary handle:
- standard / VDE: IP40, IK07
- MCC: IP43 IK07
- CNOMO: IP54 IK08
- With extended rotary handle: IP56 IK08

■ With motor mechanism: IP40 IK07.

Functions and characteristics

Introduction
Characteristics and performance of Compact NSX circuit breakers from 100 to 630 A

Compact NSX100/160/250.

Compact NSX400/630.
(1) OSN: Over Sized Neutral protection for neutrals carrying high currents (e.g. 3rd harmonics).
(2) ZSI: Zone Selective Interlocking using pilot wires.
(3) 2P circuit breaker in 3P case for B and F types, only with thermal-magnetic trip unit.

Common characteristics			
Rated voltages			
Insulation voltage (V)	Ui		800
Impulse withstand voltage (kV)	Uimp		8
Operational voltage (V)	Ue	AC $50 / 60 \mathrm{~Hz}$	690
Suitability for isolation		IEC/EN 60947-2	yes
Utilisation category			A
Pollution degree		IEC 60664-1	3

Characteristics as per Nema AB1

| Breaking capacity (kA rms) | AC 50/60 Hz 240 V |
| :--- | ---: | :--- |
| | |
| | 480 V |
| | 600 V |

600 V

Protection and measurements

Short-circuit protection	Magnetic only
Overload / short-circuit protection	Thermal magnetic

with neutral protection (Off-0.5-1-OSN) ${ }^{(1)}$ with ground-fault protection with zone selective interlocking (ZSI) ${ }^{(2)}$
Display / I, U, f, P, E, THD measurements / interrupted-current measurement

Options	Power Meter display on door	
	Operating assistance	
	Counters	
	Histories and alarms	
	Metering Com	
	Device status/control Com	
Earth-leakage protection	By Vigi module	
	By Vigirex relay	
Installation / connections		
Dimensions and weights		
Dimensions (mm)$\mathrm{W} \times \mathrm{H} \times \mathrm{D}$	Fixed, front connections	2/3P
		4 P
Weight (kg)	Fixed, front connections	2/3P
		4 P
Connections		
Connection terminals	Pitch	With/without spreaders
Large Cu or Al cables	Cross-section	mm ${ }^{2}$

\section*{Common characteristics
 Control
 | With toggle | \square |
| :--- | :---: |
| With direct or extended rotary handle | \square |
| With remote control | \square |
| | \square |
| Plug-in base | \square |
| Chassis | \square |}

-	85	85	85	-	-	-	85	85	85	-	-	-	85	85	85	-	-	85	85	85	-	-	85	85	85	-	-
-	25	50	65	-	-	-	35	50	65	-	-	-	35	50	65	-	-	35	50	65	-	-	35	50	65	-	-
-	10	10	10	-	-	-	10	10	10	-	-	-	15	15	15	-	-	20	20	20	-	-	20	20	20	-	-

\square	\square	\square	\square	\square
\square	\square	\square	-	-
\square	\square	\square	\square	■
\square	\square	\square	\square	\square
\square	\square	\square	\square	\square
\square	\square	\square	\square	\square
\square	\square	\square	\square	\square
\square	\square	\square	\square	■
\square	\square	\square	\square	-
\square	\square	\square	\square	\square
\square	\square	\square	\square	\square
\square	\square	\square	\square	\square
\square	\square	\square	\square	\square
\square	\square	\square	\square	\square
\square	\square	\square	\square	\square
$\begin{aligned} & 105 \times 161 \times 86 \\ & 140 \times 161 \times 86 \end{aligned}$	$\begin{aligned} & 105 \times 161 \times 86 \\ & 140 \times 161 \times 86 \end{aligned}$	$\begin{aligned} & 105 \times 161 \times 86 \\ & 140 \times 161 \times 86 \end{aligned}$	$\begin{aligned} & 140 \times 255 \times 110 \\ & 185 \times 255 \times 110 \\ & \hline \end{aligned}$	$\begin{aligned} & 140 \times 255 \times 110 \\ & 185 \times 255 \times 110 \end{aligned}$
$\begin{aligned} & 2.05 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.6 \end{aligned}$	$\begin{aligned} & \hline 2.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 6.05 \\ & 7.90 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 8.13 \end{aligned}$
35/45 mm	35/45 mm	35/45 mm	$45 / 52.5 \mathrm{~mm}$ $45 / 70 \mathrm{~mm}$	$45 / 52.5 \mathrm{~mm}$ $45 / 70 \mathrm{~mm}$
300	300	300	4×240	4×240

With Micrologic electronic trip units, Compact NSX stands out from the crowd. Thanks to the new generation of sensors and its processing capability, protection is enhanced even further. It also provides measurements and operating information.

Thermal-magnetic or electronic trip unit?

Thermal-magnetic trip units protect against overcurrents and short-circuits using tried and true techniques. But today, installation optimisation and energy efficiency have become decisive factors and electronic trip units offering more advanced protection functions combined with measurements are better suited to these needs. Micrologic electronic trip units combine reflex tripping and intelligent operation. Thanks to digital electronics, trip units have become faster as well as more accurate and reliable. Wide setting ranges make installation upgrades easier. Designed with processing capabilities, Micrologic trip units can provide measurement information and device operating assistance. With this information, users can avoid or deal more effectively with disturbances and can play a more active role in system operation. They can manage the installation, anticipate on events and plan any necessary servicing.

Accurate measurements for complete protection

Compact NSX devices take advantage of the vast experience acquired since the launch of Masterpact NW circuit breakers equipped with Micrologic trip units. From 40 amperes on up to the short-circuit currents, they offer excellent measurement accuracy. This is made possible by a new generation of current transformers combining "iron-core" sensors for self-powered electronics and "aircore" sensors (Rogowski toroids) for measurements.
The protection functions are managed by an ASIC component that is independent of the measurement functions. This independence ensures immunity to conducted and radiated disturbances and a high level of reliability.

Numerous security functions

Torque-limiting screws

The screws secure the trip unit to the circuit breaker. When the correct tightening torque is reached, the screw heads break off. Optimum tightening avoids any risk of temperature rise. A torque wrench is no longer required.

Easy and sure changing of trip units

All trip units are interchangeable, without wiring. A mechanical mismatch-protection system makes it impossible to mount a trip unit on a circuit breaker with a lower rating.

"Ready" LED for a continuous self-test

The LED on the front of the electronic trip units indicates the result of the self-test runs continuously on the measurement system and the tripping release. As long as the green LED is flashing, the links between the CTs, the processing electronics and the Mitop release are operational. The circuit breaker is ready to protect. No need for a test kit. A minimum current of 15 to 50 A , depending on the device, is required for this indication function.
A patented dual adjustment system for protection functions.
Available on Micrologic 5/6, the system consists of:
■ an adjustment using dials sets the maximum value
\square an adjustment, made via the keypad or remotly, fine-tunes the setting. This setting may not exceed the first one. It can be read directly on the Micrologic screen, to within one ampere and a fraction of a second.

Coordinated tripping systems

Compact NSX detects faults even faster and its tripping time is reduced. It protects the installation better and limits contact wear.

Because it directly actuates the mechanism, it precedes the trip unit by a few milliseconds.

Compact NSX100 with Micrologic for total discrimination with Multi 9 devices rated $\leqslant 40$ A or a C60. Better coordination between protection functions reduces the difference in ratings required for total discrimination.

Unmatched discrimination

Discrimination

Compact NSX provides maximum continuity of service and savings through an unmatched level of discrimination:

- given the high accuracy of measurements, overload discrimination is ensured even between very close ratings
- for major faults, the fast processing of the Micrologic trip units means the upstream device can anticipate the reaction of the downstream device. The upstream breaker adjusts its tripping delay to provide discrimination - for very high faults, the energy of the arc dissipated by the short-circuit in the downstream breaker causes reflex tripping. The current seen by the upstream device is significantly limited. The energy is not sufficient to cause tripping, so discrimination is maintained whatever the short-circuit current.

For total discrimination over the entire range of possible faults, from the long-time pick-up Ir to the ultimate short-circuit current Icu, a ratio of 2.5 must be maintained between the ratings of the upstream and downstream devices.
This ratio is required to ensure selective reflex tripping for high short-circuits.

Understanding the names of Micrologic electronic trip units

Examples

| Micrologic 1.3 | Instantaneous only | 400 or 630 A | |
| :--- | :--- | :--- | :--- | :--- |
| Micrologic 2.3 | LS $_{0} \mathrm{I}$ | 400 or 630 A | Distribution |
| Micrologic 5.2 A | LSI | 100,160 or 250 A | Distribution |
| Micrologic 6.3 E-M | LSIG | 400 or 630 A | Ammeter | delay and instantaneous protection.

A-9

Introduction
Overview of trip units
for Compact NSX

Compact NSX offers a range of trip units in interchangeable cases, whether they are magnetic, thermal-magnetic or electronic. Versions 5 and 6 of the electronic trip unit offer communication and metering. Using Micrologic sensors and intelligence, Compact NSX supplies all the information required to manage the electrical installation and optimise energy use.

Type of protection and applications

MA magnetic	TM-D thermal-magnetic

- Distribution and motors

Circuit breakers and trip units
 motors

1.3-M Distribution and motors

Settings and indications

Adjustment and
reading
Pick-up set in amps using dials
Non-adjustable time delay

Adjustment and reading
Pick-up set in amps using dials
Non-adjustable time delay

The capabilities of Micrologic $5 / 6 \mathrm{~A}$ and E trip units come into full play with the FDM121 switchboard display unit.
When the two are connected via a simple cord with RJ45 connectors, the combination offers full Power Meter capabilities and all the measurements required to monitor the electrical installation.

Ammeter Micrologic (A)

I measurements

Current measurements

■ Phase and neutral currents I1, I2, I3, IN

- Average current of the 3 phases lavg
- Highest current of the three phases Imax
- Ground-fault current Ig (Micrologic 6.2 / 6.3 A)
- Maximeter/minimeter for I measurements

Operating and maintenance assistance

Indications, alarms and histories
■ Indication of fault types

- Alarms for high/low alarm thresholds linked to I measurements
- Trip, alarm and operating histories
- Time-stamped tables for settings and maximeters

Maintenance indicators

- Operation, trip and alarm counters
- Operating hours counter
- Contact wear
- Load profile and thermal image

Communication

■ Modbus with add-on module

Protection of distribution systems
 TM thermal-magnetic and MA magnetic trip units

TM thermal-magnetic and MA magnetic trip units can be used on Compact NSX100/160/250 circuit breakers with performance levels B/F/H/N/S/L
TM trip units are available in 2 versions:
\square TM-D, for the protection of distribution cables \square TM-G, with a low threshold, for the protection of generators or long cable lengths.
Vigi modules or Vigirex relays can be added to all the circuit breakers to provide external earth-leakage protection.

Note: All the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

TM-D and TM-G thermal-magnetic trip units

ค	Ir		$\begin{aligned} & \text { TM } 250 \mathrm{D} \\ & 250 \mathrm{~A} / 40^{\circ} \mathrm{C} \end{aligned}$	

Circuit breakers equipped with thermal-magnetic trip units are used mainly in industrial and commercial electrical distribution applications:
■ TM-D, for protection of cables on distribution systems supplied by transformers ■ TM-G, with a low pick-up for generators (lower short-circuit currents than with transformers) and distribution systems with long cable lengths (fault currents limited by the impedance of the cable).

Protection \qquad

Thermal protection (Ir)

Thermal overload protection based on a bimetal strip providing an inverse time curve $I^{2} t$, corresponding to a temperature rise limit. Above this limit, the deformation of the strip trips the circuit breaker operating mechanism.
This protection operates according to:
■ Ir that can be adjusted in amps from 0.7 to 1 times the rating of the trip unit (16 A to
250 A), corresponding to settings from 11 to 250 A for the range of trip units
■ a non-adjustable time delay, defined to ensure protection of the cables.

Magnetic protection (Im)

Short-circuit protection with a fixed or adjustable pick-up Im that initiates instantaneous tripping if exceeded.
■ TM-D: fixed pick-up, Im, for 16 to 160 A ratings and adjustable from 5 to $10 \times \ln$ for 200 and 250 A ratings
■ fixed pick-up for 16 to 63 A ratings.
Protection against insulation faults
Two solutions are possible by adding:

- a Vigi module acting directly on the trip unit of the circuit breaker

■ a Vigirex relay connected to an MN or MX voltage release.

Protection versions

■ 3-pole:

- 3P 3D: 3-pole frame (3P) with detection on all 3 poles (3D)
\square 3P 2D: 3-pole frame (3P) with detection on 2 poles (2D).
- 4-pole:
- 4P 3D: 4-pole frame (4P) with detection on 3 poles (3D).
\square 4P 4D: 4-pole frame (4P) with detection on all 4 poles (same threshold for phases and neutral).

MA magnetic trip units

In distribution applications, circuit breakers equipped with MA magnetic-only trip units are used for:
■ short-circuit protection of secondary windings of LV/LV transformers with overload protection on the primary side.
■ as an alternative to a switch-disconnector at the head of a switchboard in order to provide short-circuit protection.
Their main use is however for motor protection applications, in conjunction with a thermal relay and a contactor or motor starter (see "Motor protection", page A-36).

Protection

\qquad

Magnetic protection (Im)
Short-circuit protection with an adjustable pick-up Im that initiates instantaneous tripping if exceeded.
■ Im $=\ln \mathbf{x} \ldots$ set in amps on an adjustment dial covering the range 6 to $14 x \ln$ for 2.5 to 100 A ratings or 9 to 14 In for 150 to 220 A ratings.

Protection versions

■ 3-pole (3P 3D): 3-pole frame (3P) with detection on all 3 poles (3D).
■ 4-pole (4P 3D): 4-pole frame (4P) with detection on 3 poles (3D).

[^18]Functions and characteristics

Protection of distribution systems
Micrologic 2 and 1.3-M trip units

Micrologic 2 trip units can be used on Compact NSX100 to 630 circuit breakers with performance levels B/F/H/N/S/L.
They provide:

- standard protection of distribution cables
- indication of:
- overloads (via LEDs)
- overload tripping (via the SDx relay module).

Circuit breakers equipped with Micrologic 1.3-M trip units, without thermal protection, are used in certain applications to replace switch-disconnectors at the head of switchboards. Micrologic 1.3-M trip units are dedicated to Compact NSX400/630 A circuit breakers.

Micrologic 2

Circuit breakers equipped with Micrologic 2 trip units can be used to protect distribution systems supplied by transformers. For generators and long cables, Micrologic 2-G trip units offer better suited low pick-up solutions (see page A-50).

Protection

Settings are made using the adjustment dials with fine adjustment possibilities.
Overloads: Long time protection (Ir)
Inverse time protection against overloads with an adjustable current pick-up Ir set using a dial and a non-adjustable time delay tr.
Short-circuits: Short-time protection with fixed time delay (Isd)
Protection with an adjustable pick-up Isd. Tripping takes place after a very short delay used to allow discrimination with the downstream device.
Short-circuits: Non-adjustable instantaneous protection Instantaneous short-circuit protection with a fixed pick-up.
Neutral protection
■ On 3-pole circuit breakers, neutral protection is not possible.
■ On four-pole circuit breakers, neutral protection may be set using a three-position switch:

- 4P 3D: neutral unprotected
$\square 4 P 3 D+N / 2$: neutral protection at half the value of the phase pick-up, i.e. $0.5 \times \mathrm{Ir}$
\square 4P 4D: neutral fully protected at Ir.

Indications

Front indications
■ Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.
■ Orange overload pre-alarm LED: steady on when I> 90% Ir

- Red overload LED: steady on when I > 105 \% Ir

Remote indications
An overload trip signal can be remoted by installing an SDx relay module inside the circuit breaker.
This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is reclosed. For description, see page A-81.

Micrologic 1.3-M for magnetic protection only

Micrologic 1.3-M trip units provide magnetic protection only, using electronic technology. They are dedicated to 400/630 A 3-pole (3P 3D) circuit breakers or 4pole circuit breakers with detection on 3 poles (4P, 3D) and are used in certain applications to replace switch-disconnectors at the head of switchboards. They are especially used in 3-pole versions for motor protection, see page A-40.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

(1) If the trip units are used in high-temperature environments, the Micrologic setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.

Functions and characteristics

Protection of distribution systems
 Micrologic 5 / 6 A or E trip units

Micrologic 5 / 6 A (Ammeter) or E (Energy) trip units can be used on Compact NSX100 to 630 circuit breakers with performance levels $B / F / H / N / S / L$. They all have a display unit.
They offer basic LSI protection (Micrologic 5) or LSI and ground-fault protection G (Micrologic 6).
They also offer measurement, alarm and communication functions.

Trip unit menus.

Display of interrupted current.

SDx remote indication relay module with its terminal block.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

Protection

Settings can be adjusted in two ways, using the dials and/or the keypad . The keypad can be used to make fine adjustments in 1 A steps below the maximum value defined by the setting on the dial. Access to setting modifications via the keypad is protected by a locking function displayed on the screen and controlled by a microswitch . The lock is activated automatically if the keypad is not used for 5 minutes. Access to the microswitch is protected by a transparent lead-sealable cover. With the cover closed, it is still possible to display the various settings and measurements using the keypad.
Overloads: Long time protection (Ir)
Inverse time protection against overloads with an adjustable current pick-up Ir set using a dial or the keypad for fine adjustments. The time delay $t r$ is set using the keypad.
Short-circuits: Short-time protection (Isd)
Short-circuit protection with an adjustable pick-up Isd and adjustable time delay tsd, with the possibility of including a portion of an inverse time curve ($I^{2} t$ On).
Short-circuits: Instantaneous protection (li)
Instantaneous protection with adjustable pick-up li.
Additional ground fault protection (Ig) on Micrologic 6
Residual type ground-fault protection with an adjustable pick-up Ig (with Off position) and adjustable time delay $\mathbf{t g}$. Possibility of including a portion of an inverse time curve (I^{2} t On).

Neutral protection

- On 4-pole circuit breakers, this protection can be set via the keypad:
\square Off: neutral unprotected
\square 0.5: neutral protection at half the value of the phase pick-up, i.e. 0.5 xir - 1.0: neutral fully protected at Ir
\square OSN: Oversized neutral protection at 1.6 times the value of the phase pick-up. Used when there is a high level of 3rd order harmonics (or orders that are multiples of 3) that accumulate in the neutral and create a high current. In this case, the device must be limited to $\mathrm{Ir}=0.63 \times \mathrm{In}$ for the maximum neutral protection setting of $1.6 \times \mathrm{Ir}$.
■ With 3-pole circuit breakers, the neutral can be protected by installing an external neutral sensor with the output (T1, T2) connected to the trip unit.

Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of Micrologic control units to provide zone selective interlocking for short-time (Isd) and ground-fault (Ig) protection, without a time delay. For Compact NSX 100 to 250, the ZSI function is available only in relation to the upstream circuit breaker (ZSI out).

Display of type of fault

On a fault trip, the type of fault (Ir, Isd, Ii, Ig), the phase concerned and the interrupted current are displayed. An external power supply is required.

Indications

\qquad
Front indications

■ Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.
■ Orange overload pre-alarm LED: steady on when I > 90% Ir
■ Red overload LED: steady on when I > 105 \% Ir
Remote indications
An SDx relay module installed inside the circuit breaker can be used to remote the following information:
■ overload trip
■ overload prealarm (Micrologic 5) or ground fault trip (Micrologic 6).
This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is closed.
These outputs can be reprogrammed to be assigned to other types of tripping or alarm. The module is described in detail in the section dealing with accessories.

(1) If the trip units are used in high-temperature environments, the Micrologic setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.
(2) For 40 A rating, the neutral N/2 adjustment is not possible.

Functions
and characteristics

Power Meter functions

Electronic Micrologic 5 / 6 A or E

In addition to protection functions, Micrologic 5 / 6 trip units offer all the functions of Power Meter products as well as operating-assistance for the circuit breaker.
■ display of settings

- measurement functions:
\square Ammeter (A)
\square Energy (E)
- alarms

■ time-stamped histories and event tables

- maintenance indicator

■ communication.

Micrologic built-in LCD display showing an energy measurement.

FDM121 display: navigation.

Current.

Power.

Voltage.

Consumption.

Examples of measurement screens on the FDM121 display unit.

Micrologic A and E measurement functions are made possible by Micrologic intelligence and the accuracy of the sensors. They are handled by a microprocessor that operates independent of protection functions.

Display

Micrologic LCD

The user can display all the protection settings and the main measurements on the LCD screen of the trip unit.
■ Micrologic A: instantaneous rms current measurements
■ Micrologic E: voltage, frequency and power measurements and energy metering, in addition to the measurements offered by Micrologic A
To make the display available under all conditions and increase operating comfort, an external power supply is recommended for Micrologic A.
It is indispensable to:
■ display faults and interrupted current measurements

- use all the functions of Micrologic E (e.g. metering of low power and energy values)
■ ensure operation of the communication system.
The external power supply can be shared by several devices. For description, see page A-32.

FDM121 display unit

An FDM121 switchboard display unit can be connected to a Micrologic trip unit using a prefabricated cord to display all measurements on a screen. The result is a veritable 96×96 mm Power Meter.
In addition to the information displayed on the Micrologic LCD, the FDM121 screen shows demand, power quality and maximeter/minimeter values along with alarms, histories and maintenance indicators.
The FMD121 display unit requires a 24 V DC power supply. The Micrologic trip unit is supplied by the same power supply via the cord connecting it to the FDM121.

PC screen

When the Micrologic, with or without an FDM121 switchboard display unit, is connected to a communication network, all information can be accessed via a PC.

Measurements

\qquad

Instantaneous rms measurements

The Micrologic A and E continuously display the RMS value of the highest current of the three phases and neutral (Imax). The navigation buttons \rightarrow can be used to scroll through the main measurements.
In the event of a fault trip, the current interrupted is memorised.
The Micrologic A measures phase, neutral, ground fault currents.
The Micrologic E offers voltage, frequency and power measurements in addition to the measurements provided by Micrologic A
Maximeters / minimeters
Every instantaneous measurement provided by Micrologic A or E can be associated with a maximeter/minimeter. The maximeters for the highest current of the 3 phases and neutral, the demand current and power can be reset via the trip unit keypad, the FDM121 display unit or the communication system.

Energy metering

The Micrologic E also measures the energy consumed since the last reset of the meter. The active energy meter can be reset via the keypad and the FDM121 display unit or the communication system.

Demand and maximum demand values

Micrologic E also calculates demand current and power values. These calculations can be made using a block or sliding interval that can be set from 5 to 60 minutes in steps of 1 minute. The window can be synchronised with a signal sent via the communication system. Whatever the calculation method, the calculated values can be recovered on a PC via Modbus communication
Ordinary spreadsheet software can be used to provide trend curves and forecasts based on this data. They will provide a basis for load shedding and reconnection operations used to adjust consumption to the subscribed power.

Power quality

Micrologic E calculates power quality indicators taking into account the presence of harmonics up to the 15th order, including the total harmonic distortion (THD) of current and voltage.

(1) Absolute mode: E absolute $=E$ out $+E$ in; Signed mode: E signed $=E$ out $-E$ in.
(2) Available via the communication system only.

Additional technical characteristics

Measurement accuracy

Accuracies are those of the entire measurement system, including the sensors:
■ Current: Class 1 as per IEC 61557-12

- Voltage: 0.5%
- Power and energy: Class 2 as per IEC 61557-12
- Frequency: 0.1%.

FDM121 display: navigation.

Overpower alarm.

Alarm pick-up and drop-out.

Examples of operating-assistance screens on the FDM121 display unit.

Personalised alarms with time-stamping

Alarm types

The user can assign an alarm to all Micrologic A or E measurements or events:
■ up to 12 alarms can be used together:

- two alarms are predefined and activated automatically:
- Micrologic 5: overload (Ir)
- Micrologic 6: overload (Ir) and ground fault (Ig)
\square thresholds, priorities and time delays can be set for ten other alarms.
- the same measurement can be used for different alarms to precisely monitor
certain values, e.g. the frequency or the voltage
- alarms can also be assigned to various states: phase lead/lag, four quadrants,
phase sequence
■ selection of display priorities, with pop-up possibility
- alarm time-stamping.

Alarm settings

Alarms cannot be set via the keypad or the FDM121 display unit. They are set via communication with the PC. Set-up includes the threshold, priority, activation delay before display and deactivation delay. It is also possible to reprogram the standard assignment for the two SDx relay outputs to user-selected alarms.

Alarm reading

Remote alarm indications

- reading on FDM121 display unit or on PC via the communication system

■ remote indications via SDx relay with two output contacts for alarms.

Histories and event tables

Micrologic A and E have histories and event tables that are always active.
Three types of time-stamped histories

- Tripping due to overruns of Ir, Isd, II, Ig: last 17 trips
- Alarms: last 10 alarms
- Operating events: last 10 events

Each history record is stored with:
$■$ indications in clear text in a number of user-selectable languages
■ time-stamping: date and time of event
■ status: pick-up / drop-out
Two types of time-stamped event tables
■ Protection settings

- Minimeters / maximeters

Display of alarms and tables

The time-stamped histories and event tables may be displayed on a PC via the communication system.

Embedded memory

Micrologic A and E have a non-volatile memory that saves all data on alarms, histories, event tables, counters and maintenance indicators even if power is lost.

Maintenance indicators

Micrologic A and E have indicators for, among others, the number of operating cycles, contact wear and operating times (operating hours counter) of the Compact NSX circuit breaker.
It is possible to assign an alarm to the operating cycle counter to plan maintenance.
The various indicators can be used together with the trip histories to analyse the level of stresses the device has been subjected to.
The information provided by the indicators cannot be displayed on the Micrologic LCD. It is displayed on the PC via the communication system.

Management of installed devices

Each circuit breaker equipped with a Micrologic 5 or 6 trip unit can be identified via the communication system:
■ serial number

- firmware version
- hardware version

■ device name assigned by the user.
This information together with the previously described indications provides a clear view of the state of the installed devices.

(2)

(1) The BSCM module (page A-27) is required for these functions.
(2) Available via the communication system only.

Additional technical characteristics

Contact wear

Each time Compact NSX opens, the Micrologic 5/ 6 trip unit measures the interrupted current and increments the contact-wear indicator as a function of the interrupted current, according to test results stored in memory. Breaking under normal load conditions results in a very slight increment. The indicator value may be read on the FDM121 display. It provides an estimation of contact wear calculated on the basis of the cumulative forces affecting the circuit breaker. When the indicator reaches 80%, it is advised to replace the circuit breaker to ensure the availability of the protected equipment.

Circuit breaker load profile

Micrologic 5/6 calculates the load profile of the circuit breaker protecting a load circuit. The profile indicates the percentage of the total operating time at four current levels (\% of breaker In):

- 0 to 49 \% In
- 50 to 79 \% In
- 80 to 89% In
- $\geqslant 90 \%$ In.

This information can be used to optimise use of the protected equipment or to plan ahead for extensions.

Switchboard-display functions
 Micrologic 5 / 6 A or E trip units

Micrologic measurement capabilities come into full play with the FDM121 switchboard display. It connects to Compact NSX via a simple cord and displays Micrologic information. The result is a true integrated unit combining a circuit breaker and a Power Meter. Additional operating assistance functions can also be displayed.

FDM121 display.

Surface mount accessory.

Connection with FDM121 display unit.

FDM121 switchboard display

The FDM121 is a switchboard display unit that can be integrated in the Compact NSX100 to 630 A system. It uses the sensors and processing capacity of the Micrologic trip unit. It is easy to use and requires no special software or settings. It is immediately operational when connected to the Compact NSX by a simple cord. The FDM121 is a large display, but requires very little depth. The anti-glare graphic screen is backlit for very easy reading even under poor ambient lighting and at sharp angles.

Display of Micrologic measurements and alarms

The FDM121 is intended to display Micrologic 5 / 6 measurements, alarms and operating information. It cannot be used to modify the protection settings. Measurements may be easily accessed via a menu.
All user-defined alarms are automatically displayed. The display mode depends on the priority level selected during alarm set-up:
■ high priority: a pop-up window displays the time-stamped description of the alarm and the orange LED flashes
■ medium priority: the orange "Alarm" LED goes steady on

- low priority: no display on the screen.

All faults resulting in a trip automatically produce a high-priority alarm, without any special settings required.
In all cases, the alarm history is updated.
If power to the FDM121 fails, all information is stored in the Micrologic non-volatile memory. The data can be consulted via the communication system when power is restored.

Status indications and remote control

When the circuit breaker is equipped with the BSCM module (page A-27), the FDM121 display can also be used to view circuit breaker status conditions:
■ O/F: ON/OFF
■ SD: trip indication
■ SDE: Fault-trip indication (overload, short-circuit, ground fault)

Main characteristics

■ $96 \times 96 \times 30 \mathrm{~mm}$ screen requiring 10 mm behind the door (or 20 mm when the 24 volt power supply connector is used).
■ White backlighting.

- Wide viewing angle: vertical $\pm 60^{\circ}$, horizontal $\pm 30^{\circ}$.
- High resolution: excellent reading of graphic symbols.

■ Alarm LED: flashing orange for alarm pick-up, steady orange after operator reset if alarm condition persists.

- Operating temperature range $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
- CE / UL marking.
- 24 V DC power supply, with tolerances $24 \mathrm{~V}-20 \%(19.2 \mathrm{~V})$ to $24 \mathrm{~V}+10 \%(26.4 \mathrm{~V})$. When the FDM121 is connected to the communication network, the 24 V is supplied by the communication system wiring system
■ Consumption 40 mA .

Mounting

The FDM121 is easily installed in a switchboard.
■ Standard door cut-out $92 \times 92 \mathrm{~mm}$.

- Attached using clips.

To avoid a cut-out in the door, an accessory is available for surface mounting by drilling only two 22 mm diameter holes.
The FDM121 degree of protection is IP54 in front. IP54 is maintained after switchboard mounting by using the supplied gasket during installation.

Connection

The FDM121 is equipped with:
■ a 24 V DC terminal block:
\square plug-in type with 2 wire inputs per point for easy daisy-chaining
\square power supply range of $24 \mathrm{~V}-20 \%(19.2 \mathrm{~V})$ to $24 \mathrm{~V}+10 \%(26.4 \mathrm{~V})$
■ two RJ45 jacks.
The Micrologic connects to the internal communication terminal block on the Compact NSX via the pre-wired NSX cord. Connection to one of the RJ45 connectors on the FDM121 automatically establishes communication between the Micrologic and the FDM121 and supplies power to the Micrologic measurement functions.
When the second connector is not used, it must be fitted with a line terminator.

Product identification.

Navigation

Five buttons are used for intuitive and fast navigation.
The "Context" button may be used to select the type of display (digital, bargraph, analogue).
The user can select the display language (Chinese, English, French, German, Italian, Portuguese, Spanish, etc.) Other languages can be downloaded.

Screens

Main menu
When powered up, the FDM121 screen automatically displays the ON/OFF status of the device

When not in use, the screen is not backlit. Backlighting can be activated by pressing one of the buttons. It goes off after 3 minutes.

Fast access to essential information

■ "Quick view" provides access to five screens that display a summary of essential operating information (I, U, f, P, E, THD, circuit breaker On / Off).

Access to detailed information

■ "Metering" can be used to display the measurement data (I, U-V, f, P, Q, S, E,
THD, PF) with the corresponding min/max values.

- Alarms displays active alarms and the alarm history.
- Services provides access to the operation counters, energy and maximeter reset function, maintenance indicators, identification of modules connected to the internal bus and FDM121 internal settings (language, contrast, etc.)

Metering: sub-menu.

Metering: meter.

Quick view.

Metering: U average.

Services.

Compact NSX communication

Communications modules

All Compact NSX devices can be equipped with the communication function via a prewired connection system and a Modbus network interface. The interface can be connected directly or via the FDM121 switchboard display unit. Four functional levels can be combined to adapt to all supervision requirements.

Four functional levels

The Compact NSX can be integrated in a Modbus communication environment. Four functional levels can be used separately or combined.

Communication of status indications

This level is compatible with all Compact NSX circuit breakers, whatever the trip unit, and with all switch-disconnectors. Using the BSCM module, the following information is accessible:
■ ON/OFF position (O/F)

- trip indication (SD)

■ fault-trip indication (SDE).

Communication of commands

Also available on all circuit breakers and switch-disconnectors, this level
(communicating remote control) can be used to:
■ open

- close
- reset.

Communication of measurements with Micrologic $5 / 6$ A or E
This level provides access to all available information:

- instantaneous and demand values

■ maximeters/minimeters
■ energy metering

- demand current and power
- power quality.

Communication of operating assistance with Micrologic 5/6 A or E

- protection and alarm settings
- time-stamped histories and event tables
- maintenance indicators.

Communication components and connections

Connections

Compact NSX is connected to the Modbus interface or
FDM121 display unit via the internal terminal block for the NSX cord equipped with an RJ45 connector.

- cord available in three lengths: $0.35 \mathrm{~m}, 1.3 \mathrm{~m}$ and 3 m .
- insulated 0.35 m version for installations > 480 V AC
- lengths up to 10 m possible using extensions.
- The FDM121 display unit is connected to the Modbus
interface by a communication cable with RJ45 connectors on
both ends.

1 Modbus network
2 Modbus interface
3 NSX cord
4 Internal terminal block for communication via NSX cord
5 BSCM module
6 Prefabricated wiring
7 Micrologic trip unit
8 FDM121 display
9 RJ45 cable
10 Line terminator (on unused connector if applicable)

Modbus interface module

Functions

This module, required for connection to the network, contains the Modbus address (1 to 99) declared by the user via the two dials in front. It automatically adapts (baud rate, parity) to the Modbus network in which it is installed.
It is equipped with a lock-out switch to enable or disable operations involving writing to Micrologic, i.e. reset, counter reset, setting modifications, device opening and closing commands, etc.
There is a built-in test function to check the connections of the Modbus interface module with the Micrologic and FDM121 display unit.

Mounting

The module is mounted on a DIN rail. A number of modules may be clipped one next to the other.
For this, a stacking accessory is available for fast clipconnection of both the Modbus link and the 24 V DC supply.
The Modbus interface module supplies 24 V DC to the corresponding Micrologic, FDM121 display and BSCM module. Module consumption is $60 \mathrm{~mA} / 24 \mathrm{~V}$ DC.

Modbus interface module

1 Five-point Modbus and 24 V DC connector
2 Two Modbus address dials (1 to 99)
3 Modbus traffic LED
4 Lock-out to disable writing to the NSX
5 Test LED
6 Test button
7 Two connectors for RJ45 cable

BSCM module

Functions

The optional BSCM Breaker Status \& Control Module is used to acquire device status indications and control the communicating remote-control function.
It includes a memory used to manage the maintenance indicators.

Status indications

 Indication of device status:O/F, SD and SDE

Maintenance indicators

The BSCM module manages the following indicators:

- mechanical operation counter
- electrical operation counter
- history of status indications.

It is possible to assign an alarm to the operation counters.

Controls

The module can be used to carry out communicating remote control operations: (open, close and reset) in different modes (manual, auto).

Mounting

The BSCM module can be installed on all Compact NSX circuit breakers and switch-disconnectors. It simply clips into the auxiliary contact slots. It occupies the slots of one O/F contact and one SDE contact. The BSCM is supplied with 24 V DC power automatically via the NSX cord when the communication system is installed.

[^19]
Compact NSX communication Networks and software

Compact NSX uses the Modbus communication
protocol, compatible with SMS PowerLogic supervision systems.
Two downloadable utilities facilitate implementation of communication functions.

Modbus

Modbus is the most widely used communication protocol in industrial networks. It operates in masterslave mode. The devices (slaves) communicate one after the other with a gateway (master) Masterpact, Compact NSX, PowerLogic and Sepam products all operate with this protocol. A Modbus network is generally implemented on an LV or MV switchboard scale.
Depending on the data monitored and the desired refresh rate, a Modbus network connected to a gateway can serve 4 to 16 devices. For larger installations, a number of Modbus networks can be connected to an Ethernet network (TCP/IP/Modbus protocol) via their gateways.

Micrologic utilities

■ Two utilities, RSU and RCU, presented on the next page, are available to assist in starting up a communicating installation. Intended for Compact NSX and Masterpact, the software can be downloaded from the Schneider Electric internet site.
■ The "Live update" function enables immediate updating to obtain the most recent upgrades. These easy-to-use utilities include starting assistance and online help. They are compatible with Microsoft Windows 2000, XP and Vista.

RSU configuration screen for a Micrologic 5.2.

RCU mini-supervision screen for current measurements.

Gateway

The gateway has two functions
■ access to the company intranet (Ethernet) by
converting Modbus frames to the TCP/IP/Modbus protocol

- optional web-page server for the information from the devices.
Examples include MPS100, EGX400 and EGX100.

MPS100

■ Plug and play device. It comes loaded with a webpage application for graphic display of currents and voltages and viewing of circuit-breaker status and power and energy values.
To use the application, simply declare the Modbus addresses of the connected slaves. Automatically recognised devices include all Masterpact and Compact NSX Micrologic trip units and the PM500/700/800 and PM9c power monitoring units.
■ Can be used for automatic alarm notification via a messaging server available on the site intranet or via mobile phones (e-mail converted into SMS).
■ Can be used for logging of data that can be automatically sent as e-mail attachments, e.g. a weekly consumption report.

Web page
Schneider
A-29

Two utilities, RSU and RCU, are available to assist in starting up a communicating installation.
They can be downloaded from the Schneider Electric internet site and include a "Live update" function that enables immediate updating.

RSU: Micrologic Remote Setting Utility.

RCU: Remote Control Utility for communication tests.

RSU (Remote Setting Utility)

This utility is used to set the protection functions and alarms for each Masterpact and Compact NSX device.
After connection to the network and entry of the circuit-breaker Modbus address, the software automatically detects the type of trip unit installed.
There are two possible operating modes.
Off-line with the software disconnected from the communication network
For each selected circuit breaker, the user can do the following.

Determine the protection settings

The settings are carried out on a screen that shows the front of the trip unit. The Micrologic setting dials, keypad and screen are simulated for easy use of all Micrologic setting functions.
Save and duplicate the protection settings
Each configuration created can be saved for subsequent device programming. It can also be duplicated and used as the basis for programming another circuit breaker.

On-line with the software connected to the network

Similarly, for each selected circuit breaker, the user can do the following.

Display the current settings

The software displays the trip unit and provides access to all settings.

View the corresponding protection curves

A graphic curve module in the software displays the protection curve corresponding to the settings. It is possible to lay a second curve over the first for discrimination studies.

Modify settings in a secure manner

- There are different levels of security:
- password: by default, it is the same for all devices, but can be differentiated for each device
- locking of the Modbus interface module which must be unlocked before the corresponding device can be set remotely
- maximum settings limited by the positions of the two dials on the trip unit.

These dials, set by the user, determine the maximum settings that can be made via the communication system.
■ Settings are modified by:

- either direct, on-line setting of the protection settings on the screen
\square or by loading the settings prepared in off-line mode. This is possible only if the positions of the dials allow the new settings.
All manual settings made subsequently on the device have priority.

Program alarms

■ Up to 12 alarms can be linked to measurements or events.
■ two alarms are predefined and activated automatically:

- Micrologic 5: overload (Ir)
\square Micrologic 6: overload (Ir) and ground fault (Ig)
- thresholds, priorities and time delays can be set for 10 other alarms. They may be selected from a list of 91 alarms

Set the outputs of the SDx relays

This is required when the user wants to change the standard configuration and assign different signals to the 2 outputs of the SDx relay.

RCU (Remote Control Utility)

The RCU utility can be used to test communication for all the devices connected to the Modbus network. It is designed for use with Compact NSX, Masterpact, Advantys OTB and Power Meter devices. It offers a number of functions.

Mini supervisor

■ Display of I, U, f, P, E and THD measurements for each device, via navigation

- Display of ON/OFF status

Open and close commands for each device
A common or individual password must first be entered.
When all functions have been tested, this utility is replaced by the supervision software selected for the installation.

Supervision software

Schneider Electric electrical installation supervision, management and expert system software integrates Compact NSX identification modules.

Connection symbol for Compact NSX compatible modules.

PowerView software.

SMS software screen.

Types of software

Masterpact and Compact NSX communication functions are designed to interface with software dedicated to electrical installations:
■ switchboard supervision

- electrical installation supervision
- power system management: electrical engineering expert systems

■ process control

- SCADA (Supervisory Control \& Data Acquisition), EMS (Enterprise Management System) or BMS (Building Management System) type software.

Integration of Compact NSX

Compact NSX devices are integrated via Modbus interface modules connected via FDM121 display units or NSX cords.
For easy connection of the different modules, the prefabricated cables are identified by ULP (Universal Logic Plug) symbols. The connection points on compatible modules are marked in the same manner

Schneider Electric solutions

Electrical switchboard supervision via MPS100 or EGX400 Web servers

A simple solution for customers who want to consult the main electrical parameters of switchboard devices without dedicated software.
Up to 16 switchboard devices are connected via Modbus interfaces to an MPS100 or EGX400 Ethernet gateway integrating the functions of a web page server. The embedded Web pages can be easily configured with just a few mouse clicks. The information they provide is updated in real time.
The Web pages can be consulted using a standard Web browser on a PC connected via Ethernet to the company Intranet or remotely via a modem. Automatic notification of alarms and threshold overruns is possible via e-mail or SMS (Short Message Service).

Electrical installation supervision via PowerView software

PowerLogic ${ }^{\circledR}$ PowerView software is ideally suited to the supervision needs of small system applications, monitoring up to 32 devices. Installed on a PC under Windows, it represents a cost-effective and easy-to-implement power-monitoring solution that offers:
\square automatic detection of compatible devices
■ real-time monitoring of data including power consumption

- a report generator with a number of pre-defined reports that can be exported to Excel
- cost allocation
- time-stamped data-logging possibilities
- Modbus serial and Modbus TCP/IP compatible communication.

SMS electrical engineering expert system software

PowerLogic ${ }^{\circledR}$ SMS is a family of web-enabled software products for high-end powermonitoring applications. It is designed for large power systems.
SMS products offer detailed analysis of electrical events, long-duration data logging and extensive, economical report-building capabilities (e.g. consumption monitoring and tariff management).
A wide variety of screens can be displayed in real time, including more than 50 tables, analogue meters, bargraphs, alarms logs with links to display waveforms and predefined reports on energy quality and service costs.

Other software

Compact NSX devices can forward their measurement and operating information to special software integrating the electrical installation and other technical facilities:
■ SCADA process control software: Vijeo CITECT

- BMS Building Management System software: Vista.

Please consult us.

External neutral current transformer (ENCT)

The external transformer is a sensor required for a three-pole circuit breaker in a system with a distributed neutral to measure the neutral current in order to:

- protect the neutral conductor
- protect against insulation faults.

This current transformer can be connected to Micrologic 5 / 6 trip units. The transformer rating must be compatible with that of the circuit breaker.
Required current transformers for different circuit breaker models

Type of circuit breaker	Rating	Catalogue number
NS $\times 100 / 160 / 250$	$\underline{25-100 \mathrm{~A}}$	LV429521
NS $\times 400 / 630$	$400-250 \mathrm{~A}$	LV430563

External neutral voltage tap (ENVT)

The neutral voltage transformer is required for Micrologic E power metering with a three-pole circuit breaker in a system with a distributed neutral. It is used to connect the neutral to the Micrologic trip unit to measure phase-to-neutral (Ph-N) voltages.

External 24 V DC power-supply module

Use
An external 24 V DC power supply is required for installations with communication, whatever the type of trip unit.
On installations without communication, it is available as an option for Micrologic 5/6 in order to make it possible to:
■ modify settings when the circuit breaker is open

- display measurements when the current flowing through the circuit breaker is low
(15 to 50 A depending on the rating)
- maintain the display of the cause of tripping and interrupted current.

Characteristics

A single external 24 V DC supply may be used for the entire switchboard.
The required characteristics are:
■ output voltage: $24 \vee \mathrm{DC} \pm 5 \%$
■ ripple: $\pm 1 \%$.
■ overvoltage category: OVC IV - as per IEC 60947-1
External 24 V DC power-supply modules with an output current of 1 A are available:

Available external power-supply modules			Cat. no.
Power supply	V DC (± 5 \%)	24/30	54440
		48/60	54441
		100/125	54442
	VAC (+10 \%, -15 \%)	110/130	54443
		200/240	54444
		380/415	54445
Output voltage		24 V DC	
Ripple		± 1 \%	
Overvoltage ca	OVC)	OVC IV -	

An external 24 V DC power-supply module with an output current of 3 A is also available:

Available external power-supply modules			Cat. no.
Power supply	V DC	110/230	ABL8RPS24030
	VAC	110/240	
Output voltage		24 V DC	
Ripple		± 1 \%	
Overvoltage category (OVC)		OVC II	
Total consumption			
To determine the required output current of the 24 V DC power supply, it is necessary to sum up the currents consumed by the different loads supplied:			
Consumption of Compact NSX modules Module		Consum	
Micrologic 5/6		20	
BSCM module		10	
FDM121		40	
Modbus communication interface		60	
NSX cord U > 480 V AC		30	

Configuration and maintenance module (cat. no. TRV00911).

Using the configuration and maintenance module.

Test battery

This pocket battery connects to the Micrologic test connector. It powers up the Micrologic and the Ready LED. It supplies the screen and allows settings to be made via the keypad.

Battery module

The battery module is a back-up supply for the external power-supply module. The input/output voltages are 24 V DC and it can supply power for approximately three hours (100 mA).

24 V DC power-supply terminal block

The 24 V DC power-supply terminal block can be installed only on Micrologic 5/6 trip units. It is required to power the trip unit when the trip unit is not connected to an FDM121 display unit or to the communication system. When used, it excludes connection of an NSX cord.

NSX cord

■ For voltage $\mathrm{U} \leqslant 480 \mathrm{~V}$, available in 3 prefabricated lengths: $0.35 \mathrm{~m}, 1.3 \mathrm{~m}$ and 3 m .

- For voltages $U>480 \mathrm{~V}$, a special 1.3 m cord with an insulation accessory is required.
- A set of cords with RJ45 connectors is available to adapt to different distances between devices.

Maintenance case

The case includes

- configuration and maintenance module

■ power supply (110... 220 V AC / 50-60 Hz 24 V DC - 1 A)

- special cable for connection to the trip-unit test connector
- standard USB cable
- standard RJ45 cable
- user manual

■ optional Bluetooth link (to PC).

Configuration and maintenance module

Included in the maintenance kit, this module tests Micrologic operation and provides access to all parameters and settings. It connects to the Micrologic test connector and can operate in two modes.
■ Stand-alone mode to:
\square supply the Micrologic and check operation via the Ready LED
\square check mechanical operation of the circuit breaker (trip using pushbutton).
■ PC mode, connected to a PC via USB or Bluetooth link. This mode provides access to protection settings, alarm settings and readings of all indicators. Using the associated RSU software utility, it is possible to store, in a dedicated file for each device, all the data that can transferred to another device.
This mode also offers operating-test functions:
\square check on trip time delay (trip curve)
\square check on non-tripping time (discrimination)
\square check on ZSI (Zone Selective Interlocking) function
\square alarm simulation
\square display of setting curves
\square display of currents
\square printing of test reports.

Functions
and characteristics

Earth-leakage protection
 Add-on protection against insulation faults using a Vigi module or Vigirex relay

There are two ways to add earth-leakage protection to any three or four-pole Compact NSX100 to 630 circuit breaker equipped with a magnetic, thermal-magnetic or Micrologic 2, 5 or 6 trip unit:
\square by adding a Vigi module to the circuit breaker to form
a Vigicompact NSX
$■$ by using a Vigirex relay and separate toroids.

Vigicompact NSX100 to 630.

Earth-leakage relay.

Separate toroids.

Circuit breaker with add-on Vigi module (Vigicompact NSX)

■ For general characteristics of circuit breakers, see pages A-6 and A-7.
■ Add-on Vigi modules. Earth-leakage protection is achieved by installing a Vigi module (characteristics and selection criteria on next page) directly on the circuit breaker terminals It directly actuates the trip unit (magnetic, thermal-magnetic or Micrologic).

Circuit breaker combined with a Vigirex relay

Compact NSX circuit breaker + Vigirex relay

Vigirex relays may be used to add external earth-leakage protection to Compact NSX circuit breakers. The circuit breakers must be equipped with an MN or MX voltage release. The Vigirex relays add special tripping thresholds and time delays for earth-leakage protection.
Vigirex relays are very useful when faced with major installation constraints (circuit breaker already installed and connected, limited space available, etc.).
Vigirex-relay characteristics
■ Sensitivity adjustable from 30 mA to 250 mA and 9 time-delay settings (0 to 4.5 seconds).

■ Closed toroids up to 630 A (30 to 300 mm in diameter), split toroids up to 250 A
(46 to 110 mm in diameter) or rectangular sensors up to 630 A .
■ $50 / 60 \mathrm{~Hz}, 400 \mathrm{~Hz}$ distribution systems.

Options

■ Trip indication by a fail-safe contact

- Pre-alarm contact and LED, etc.

Compliance with standards
■ IEC 60947-2, annex M

- IEC/EN 60755: general requirements for residual-current operated protective devices
■ IEC/EN 61000-4-2 to 4-6: immunity tests
■ CISPR11: radio-frequency radiated and conducted emission tests
■ UL1053 and CSA22.2 No. 144 for RH10, RH21 and RH99 relays at supply voltages up to and including 220/240 V.

Vigicompact NSX100 to 630 circuit breakers with earth-leakage protection

Addition of the Vigi module does not alter circuit-breaker characteristics:

- compliance with standards
- degree of protection, class II front-face insulation
- positive contact indication
- electrical characteristics
- trip-unit characteristics
- installation and connection modes
- indication, measurement and control auxiliaries
- installation and connection accessories.

\left.| Dimensions and weights | | | NSX100/160/250 |
| :--- | :--- | :--- | :--- |$\right)$ NSX400/630

Vigi earth-leakage protection modules

Compliance with standards

- IEC 60947-2, annex B.
- Decree dated 14 November 1988 (for France).
- IEC 60755 , class A, immunity to DC components up to 6 mA
- operation down to $-25^{\circ} \mathrm{C}$ as per VDE 664 .

Remote indications

Vigi modules may be equipped with an auxiliary contact (SDV) to remotely signal tripping due to an earth fault.
Use of 4-pole Vigi module with a 3-pole Compact NSX
In a 3-phase installation with an uninterrupted neutral, an accessory makes it possible to use a 4-pole Vigi module with connection of the neutral cable.

Power supply

Vigi modules are self-supplied internally by the distribution-system voltage and therefore do not require any external source. They continue to function even when supplied by only two phases.

Vigi module selection

1 Sensitivity setting
2 Time-delay setting (for selective earth-leakage protection). 3 Lead-seal fixture for controlled access to settings.
4 Test button simulating an earth-fault for regular checks on the tripping function
5 Reset button (reset required after earth-fault tripping).
6 Rating plate
7 Housing for SDV auxiliary contact

Plug-in devices

The Vigi module can be installed on a plug-in base Special accessories are required (see catalogue number chapter).

Type	Vigi ME	Vigi MH	Vigi MB
Number of poles	3, $4^{(1)}$	3, $4^{(1)}$	3, $4^{(1)}$
NSX100	■	■	-
NXS160	\square	-	-
NSX250	-	-	-
NSX400	-	-	-
NSX630	-	-	-
Protection characteristics			
Sensitivity	fixed	adjustable	adjustable
$1 \Delta \mathrm{n}$ (A)	0.3	0.03-0.3-1-3-10	0.3-1-3-10-30
Time delay	fixed	adjustable	adjustable
Intentional delay (ms)	< 40	0-60 (2) - $150{ }^{(2)}-310^{(2)}$	0-60-150-310
Max. break time (ms)	< 40	$<40<140<300<800$	$<40<140<300<800$
Rated voltage V AC $50 / 60 \mathrm{~Hz}$	200... 440	200... 440-440... 550	200...440-440... 550

(1) Vigi $3 P$ modules may also be used on $3 P$ circuit breakers used for two-phase protection.
(2) If the sensitivity is set to 30 mA , there is no time delay, whatever the time-delay setting.

Operating safety

The Vigi module is a user safety device. It must be tested at regular intervals (every 6 months) via test button.

Motor protection
 General information on motor feeders

The parameters to be considered for motor-feeder protection depend on:

- the application (type of machine driven, operating safety, frequency of operation, etc.)
■ the level of continuity of service required by the load
or the application
■ the applicable standards for the protection of life and
property.
The required electrical functions are:
\square isolation
\square switching, generally at high endurance levels \square protection against overloads and short-circuits, adapted to the motor
$■$ additional special protection.
A motor feeder must comply with the requirements of standard IEC 60947-4-1 concerning contactors and their protection:
■ coordination of feeder components
■ thermal-relay trip classes
- contactor utilisation categories

■ coordination of insulation

Motor-feeder function

A motor feeder comprises a set of devices for motor protection and control, as well as for protection of the feeder itself.

Isolation

The purpose is to isolate the live conductors from the upstream distribution system to enable work by maintenance personnel on the motor feeder at no risk. This function is provided by a motor circuit breaker offering positive contact indication and lockout/ tagout possibilities.

Switching

The purpose is to control the motor (ON / OFF), either manually, automatically or remotely, taking into account overloads upon start-up and the long service life required. This function is provided by a contactor. When the coil of the contactor's electromagnet is energised, the contactor closes and establishes, through the poles, the circuit between the upstream supply and the motor, via the circuit breaker.

Basic protection

■ Short-circuit protection
Detection and breaking, as quickly as possible, of high short-circuit currents to avoid damage to the installation. This function is provided by a magnetic or thermalmagnetic circuit breaker.

- Overload protection

Detection of overload currents and motor shutdown before temperature rise in the motor and conductors damages insulation. This function is provided by a thermalmagnetic circuit breaker or a separate thermal relay.

```
Overloads: I<10x ln
They are caused by:
- an electrical problem, related to an anomaly in the distribution system (e.g. phase failure,
voltage outside tolerances, etc.)
- a mechanical problem, related to a process malfunction (e.g. excessive torque) or damage to
the motor (e.g. bearing vibrations).
These two causes will also result in excessively long starting times.
Impedant short-circuits: 10 x In < I < 50 x In
This type of short-circuit is generally due to deteriorated insulation of motor windings or damaged supply cables.
Short-circuits: I > 50 x In
This relatively rare type of fault may be caused by a connection error during maintenance.
```

Phase unbalance or phase loss protection
Phase unbalance or phase loss can cause temperature rise and braking torques that can lead to premature ageing of the motor. These effects are even greater during starting, therefore protection must be virtually immediate.

Additional electronic protection

■ Locked rotor

- Under-load

■ Long starts and stalled rotor
■ Insulation faults.

Motor-feeder solutions

Standard IEC 60947 defines three types of device combinations for the protection of motor feeders.

Three devices

- magnetic circuit breaker + contactor + thermal relay.

Two devices

■ thermal-magnetic circuit breaker + contactor.

One device

■ thermal-magnetic circuit breaker + contactor in an integrated solution (e.g.
Tesys U).

Device coordination

The various components of a motor feeder must be coordinated. Standard IEC 60947-4-1 defines three types of coordination depending on the operating condition of the devices following a standardised short-circuit test.

Type-1 coordination

■ No danger to life or property.

- The contactor and/or the thermal relay may be damaged.

■ Repair and replacement of parts may be required prior to further service.

Type-2 coordination

■ No danger to life or property.

- No damage or adjustments are allowed. The risk of contact welding is accepted as long as they can be easily separated.
- Isolation must be maintained after the incident, the motor feeder must be suitable for further use without repair or replacement of parts.
- A rapid inspection is sufficient before return to service.

Total coordination
■ No damage and no risk of contact welding is allowed for the devices making up the motor feeder. The motor feeder must be suitable for further use without repair or replacement of parts.
This level is provided by integrated 1-device solutions such as Tesys U.

Contactor utilisation categories

For a given motor-feeder solution, the utilisation category determines the contactor withstand capacity in terms of frequency of operation and endurance. Selection, which depends on the operating conditions imposed by the application, may result in oversizing the contactor and circuit-breaker protection. Standard IEC 60947 defines the following contactor utilisation categories.
Contactor utilisation categories (AC current)

Contactor utilisation categories	Type of load	Control function	Typical applications	
AC1	Non-inductive $(\cos \varphi \geqslant 0.8)$	Energising	Heating, distribution	
AC2	Slip-ring motor $(\cos \varphi \geqslant 0.65)$	Starting Switching off motor during running Counter-current braking Inching	Wiring-drawing machine	
AC3	Squirrel-cage motor $(\cos \varphi=0.45$ for $\leqslant 100 A)$ $(\cos \varphi=0.35$ for $>100 A)$	Starting Switching off motor during running	Compressors, elevators, pumps, mixers, escalators, fans, conveyer systems, air- conditioning	
AC4		Starting Switching off motor during running Regenerative braking Plugging Inching	Printing machines, wire-drawing machines	

Utilisation category AC3 - common coordination tables for circuit breakers and contactors
This category covers asynchronous squirrel-cage motors that are switched off during running, which is the most common situation (85% of cases). The contactor makes the starting current and switches off the rated current at a voltage approximately one sixth of the nominal value. The current is interrupted without difficulty.
The circuit breaker-contactor coordination tables for Compact NSX are for use with contactors in the AC3 utilisation category, in which case they ensure type-2 coordination
Utilisation category AC4 - possible oversizing
This category covers asynchronous squirrel-cage motors capable of operating under regenerative braking or inching (jogging) conditions
The contactor makes the starting current and can interrupt this current at a voltage that may be equal to that of the distribution system.
These difficult conditions make it necessary to oversize the contactor and, in general, the protective circuit breaker with respect to category AC3.

Functions
and characteristics

Motor protection
Motor-feeder characteristics and solutions

The trip class determines the trip curve of the thermal protection device (inverse-time curve) for a motor feeder.
Standard IEC 60947-4-1 defines trip classes 5, 10, 20 and 30.
These classes are the maximum durations, in seconds, for motor starting with a starting current of 7.2 Ir , where Ir is the thermal setting indicated on the motor rating plate.

Example: In class 20, the motor must have finished starting within 20 seconds (6 to 20 s) for a starting current of 7.2 Ir .

Standardised values in kW

Rated operational power	Standardised values in kW currents le (A) for:			
	230 V	400 V	500 V	690 V
kW	A	A	A	A
0.06	0.35	0.32	0.16	0.12
0.09	0.52	0.3	0.24	0.17
0.12	0.7	0.44	0.32	0.23
0.18	1	0.6	0.48	0.35
0.25	1.5	0.85	0.68	0.49
0.37	1.9	1.1	0.88	0.64
0.55	2.6	1.5	1.2	0.87
0.75	3.3	1.9	1.5	1.1
1.1	4.7	2.7	2.2	1.6
1.5	6.3	3.6	2.9	2.1
2.2	8.5	4.9	3.9	2.8
3	11.3	6.5	5.2	3.8
4	15	8.5	6.8	4.9
5.5	20	11.5	9.2	6.7
7.5	27	15.5	12.4	8.9
11	38	22	17.6	12.8
15	51	29	23	17
18.5	61	35	28	21
22	72	41	33	24
30	96	55	44	32
37	115	66	53	39
45	140	80	64	47
55	169	97	78	57
75	230	132	106	77
90	278	160	128	93
110	340	195	156	113
132	400	230	184	134
160	487	280	224	162
200	609	350	280	203
250	748	430	344	250
315	940	540	432	313

Trip class of a thermal-protection device

The motor feeder includes thermal protection that may be built into the circuit breaker. The protection must have a trip class suited to motor starting. Depending on the application, the motor starting time varies from a few seconds (no-load start) to a few dozen seconds (high-inertia load).
Standard IEC 60947-4-1 defines the trip classes below as a function of current setting Ir for thermal protection.
Trip class of thermal relays as a function of their Ir setting

Class	1.05 / r ${ }^{(1)}$	1.2 Ir ${ }^{(1)}$	$1.5 \mathrm{Ir}{ }^{(2)}$	$7.21{ }^{(1)}$
5	$\mathrm{t}>2 \mathrm{~h}$	$t<2 h$	$\mathrm{t}<2 \mathrm{mn}$	$2 \mathrm{~s}<\mathrm{t} \leqslant 5 \mathrm{~s}$
10	$\mathrm{t}>2 \mathrm{~h}$	$\mathrm{t}<2 \mathrm{~h}$	$\mathrm{t}<4 \mathrm{mn}$	$4 \mathrm{~s}<\mathrm{t} \leqslant 10 \mathrm{~s}$
20	$\mathrm{t}>2 \mathrm{~h}$	t $<2 h$	$\mathrm{t}<8 \mathrm{mn}$	$6 \mathrm{~s}<\mathrm{t} \leqslant 20 \mathrm{~s}$
30	$\mathrm{t}>2 \mathrm{~h}$	$\mathrm{t}<2 \mathrm{~h}$	$\mathrm{t}<12 \mathrm{mn}$	$9 \mathrm{~s}<\mathrm{t} \leqslant 30 \mathrm{~s}$

(1) Time for a cold motor (motor off and cold).
(2) Time for warm motor (motor running under normal conditions).

Currents of squirrel-cage motors at full rated load

Standardised values in HP

Rated operational power	Indicative values of the rated operational currents le (A) for						
	$\begin{aligned} & 110- \\ & 120 \text { V } \end{aligned}$	200 V	208 V	$\begin{aligned} & 220- \\ & 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 380- \\ & 415 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 440- \\ & 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 550- \\ & 600 \mathrm{~V} \end{aligned}$
hp							
1/2	4.4	2.5	2.4	2.2	1.3	1.1	0.9
3/4	6.4	3.7	3.5	3.2	1.8	1.6	1.3
1	8.4	4.8	4.6	4.2	2.3	2.1	1.7
$11 / 2$	12	6.9	6.6	6	3.3	3	2.4
2	13.6	7.8	7.5	6.8	4.3	3.4	2.7
3	19.2	11	10.6	9.6	6.1	4.8	3.9
5	30.4	17.5	16.7	15.2	9.7	7.6	6.1
$71 / 2$	44	25.3	24.2	22	14	11	9
10	56	32.2	30.8	28	18	14	11
15	84	48.3	46.2	42	27	21	17
20	108	62.1	59.4	54	34	27	22
25	136	78.2	74.8	68	44	34	27
30	160	92	88	80	51	40	32
40	208	120	114	104	66	52	41
50	260	150	143	130	83	65	52
60	-	177	169	154	103	77	62
75	-	221	211	192	128	96	77
100	-	285	273	248	165	124	99
125	-	359	343	312	208	156	125
150	-	414	396	360	240	180	144
200	-	552	528	480	320	240	192
250	-	-	-	604	403	302	242
300	-	-	-	722	482	361	289

Note: $1 \mathrm{hp}=0.7457 \mathrm{~kW}$.

Asynchronous-motor starting parameters

The main parameters of direct on-line starting of three-phase asynchronous motors (90% of all applications) are listed below.

- Ir: rated current

This is the current drawn by the motor at full rated load (e.g. approximately 100 Arms for 55 kW at 400 V).
■ Id: starting current
This is the current drawn by the motor during starting, on average 7.2 In for a duration td of 5 to 30 seconds depending on the application (e.g. 720 A rms for 10 seconds). These values determine the trip class and any additional "long-start" protection devices that may be needed.
■ I'd: peak starting current
This is the subtransient current during the first two half-waves when the system is energised, on the average 14 In for 10 to 15 ms (e.g. 1840 A peak).

The protection settings must effectively protect the motor, notably via a suitable thermal-relay trip class, but let the peak starting current through.

Typical motor-starting curve

Compact NSX motor-feeder solutions

Compact NSX motor circuit breakers are designed for motor-feeder solutions using:
\square three devices, including an MA or 1.3-M magneticonly trip unit
■ two devices including a TM-D or 2-M thermal-
magnetic trip unit.
They are designed for use with contactors in the AC3 utilisation category (80% of all cases) and they ensure type-2 coordination with the contactor.
For the AC4 utilisation category, the difficult conditions generally make it necessary to oversize the protection circuit breaker with respect to the AC3 category.

Compact NSX motor-protection range

Compact NSX trip units can be used to create motor-feeder solutions comprising two or three devices. The protection devices are designed for continuous duty at $65^{\circ} \mathrm{C}$.

Three-device solutions

- 1 NSX circuit breaker with an MA or Micrologic 1.3-M trip unit
- 1 contactor

■ 1 thermal relay.
Two-device solutions

- 1 Compact NSX circuit breaker
- with a Micrologic 2.2-M or 2.3-M electronic trip unit \square with a Micrologic 6 E-M electronic trip unit. This version offers additional protection and Power Meter functions.
- 1 contactor.

Motor protection
MA and Micrologic 1.3-M
instantaneous trip units

MA magnetic trip units are used in 3-device motorfeeder solutions. They can be mounted on all Compact NSX100/160/250 circuit breakers with performance levels B/F/H/N/S/L.
They provide short-circuit protection for motors up to 110 kW at 400 V .

Micrologic 1.3-M trip units are used in 3-device motorfeeder solutions on Compact NSX400/630 circuit breakers with performance levels B/F/H/N/S/L.
They provide short-circuit protection for motors up to 250 kW at 400 V.
They also provide the benefits of electronic technology: - accurate settings

■ tests
■ "Ready" LED.

MA magnetic trip units

Circuit breakers with an MA trip unit are combined with a thermal relay and a contactor or a starter.

Protection

\qquad
Magnetic protection (Im)
Short-circuit protection with an adjustable pick-up Im that initiates instantaneous tripping if exceeded.
■ Im $=\ln x \ldots$ is set on an adjustment dial in multiples of the rating:
$\square 6$ to $14 \times \ln$ (2.5 to 100 A ratings)

- 9 to $14 \times \ln$ (150 to 200 A ratings)

Protection version
■ 3-pole (3P 3D): 3-pole frame (3P) equipped with detection on all 3 poles (3D).

Micrologic 1.3-M trip units

Circuit breakers with a Micrologic 1.3-M trip unit are combined with a thermal relay and a contactor.

Protection
 \qquad

 Settings are made using a dial.
 Short-circuits: Short-time protection (Isd)
 Protection with an adjustable pick-up Isd. There is a very short delay to let through motor starting currents.
 ■ Isd is set in amperes from 5 to $13 \times \mathrm{ln}$, as follows:
 \square from 1600 to 4160 A for the 320 A rating.
 - from 2500 to 6500 A for the 500 A rating.
 Short-circuits: Non-adjustable instantaneous protection (li)
 Instantaneous protection with non-adjustable pick-up li.
 Protection version
 ■ 3-pole (3P 3D): 3-pole frame (3P) equipped with detection on all 3 poles (3D).

Indications

Front indications
■ Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.

(1) MA100 3P adjustable from 6 to $14 \times$ In.

MA100 4P adjustable from 9 to $14 \times \mathrm{In}$.

(1) Motor standards require operation at $65^{\circ} \mathrm{C}$. Circuit-breaker ratings are derated to take this requirement into account.

Micrologic 2-M trip units provide built-in thermal and magnetic protection. They are used in 2-device motorfeeder solutions on Compact NSX100 to 630 circuit breakers with performance levels B/F/H/N/S/L.
They provide protection for motors up to 315 kW at 400 V against:
■ short-circuits
■ overloads with selection of a trip class (5, 10 or 20) \square phase unbalance.

SDTAM remote indication relay module with its terminal block.

Micrologic 2.2 M

Circuit breakers with a Micrologic 2.2 / 2.3-M trip unit include protection similar to an inverse-time thermal relay. They are combined with a contactor.

Protection

Settings are made using a dial.

Overloads (or thermal protection): Long-time protection and trip class (Ir) Inverse-time thermal protection against overloads with adjustable pick-up Ir. Settings are made in amperes. The tripping curve for the long-time protection, which indicates the time delay tr before tripping, is defined by the selected trip class.
Trip class (class)
The class is selected as a function of the normal motor starting time.

- Class 5: starting time less than 5 s
- Class 10: starting time less than 10 s
- Class 20: starting time less than 20 s

For a given class, it is necessary to check that all motor-feeder components are sized to carry the 7.2 Ir starting current without excessive temperature rise during the time corresponding to the class.

Short-circuits: Short-time protection (Isd)

Protection with an adjustable pick-up Isd. There is a very short delay to let through motor starting currents.
Short-circuits: Non-adjustable instantaneous protection (li) Instantaneous protection with non-adjustable pick-up Ii.

Phase unbalance or phase loss (lunbal) (克)

This function opens the circuit breaker if a phase unbalance occurs:
\square that is greater than the 30% fixed pick-up Iunbal

- following the non-adjustable time delay tunbal equal to:
$\square 0.7$ s during starting
$\square 4 \mathrm{~s}$ during normal operation.
Phase loss is an extreme case of phase unbalance and leads to tripping under the same conditions.

Indications

Front indications

■ Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.

- Red alarm LED for motor operation: goes ON when the thermal image of the rotor and stator is greater than 95\% of the permissible temperature rise.

Remote indications via SDTAM module

Compact NSX devices with a Micrologic 2 can be equipped with an SDTAM module dedicated to motor applications for:
■ a contact to indicate circuit-breaker overload
■ a contact to open the contactor. In the event of a phase unbalance or overload, this output is activated 400 ms before circuit-breaker tripping to open the contactor and avoid circuit breaker tripping.
This module takes the place of the MN/MX coils and an OF contact.

(1) Motor standards require operation at $65^{\circ} \mathrm{C}$. Circuit-breaker ratings are derated to take this requirement into account.
(2) The unbalance measurement takes into account the most unbalanced phase with respect to the average current.

Unbalance of phase currents and voltages

Additional technical characteristics

Phase unbalance

An unbalance in three-phase systems occurs when the three voltages are not equal in amplitude and/or not displaced 120° with respect to each other. It is generally due to single-phase loads that are incorrectly distributed throughout the system and unbalance the voltages between the phases.
These unbalances create negative current components that cause braking torques and temperature rise in asynchronous machines, thus leading to premature ageing. Phase loss
Phase loss is a special case of phase unbalance

- During normal operation, it produces the effects mentioned above and tripping must occur after four seconds.
- During starting, the absence of a phase may cause motor reversing, i.e. it is the load that determines the direction of rotation. This requires virtually immediate tripping (0.7 seconds). Starting time in compliance with the class (Micrologic 2-M)
For normal motor starting, Micrologic 2-M checks the conditions below with respect to the thermal-protection (long-time) pick-up Ir:
■ current > 10% x Ir (motor-off limit)
■ overrun of $1.5 \times$ Ir threshold, then return below this threshold before the end of a 10 s time delay.
If either of these conditions is not met, the thermal protection trips the device after a maximum time equal to that of the selected class.
Pick-up Ir must have been set to the current indicated on the motor rating plate.
Long starts (Micrologic 6 E-M)
When this function is not activated, the starting conditions are those indicated above.
When it is activated, this protection supplements thermal protection (class)
A long start causes tripping and is characterised by:
■ current > 10 \% x Ir (motor-off limit) with:
■ either overrun of the long-time pick-up (1 to $8 \times \mathrm{Ir}$) without return below the pick-up before the end of the long-time time delay (1 to 200 s)
\square or no overrun of the long-time pick-up (1 to $8 \times \mathrm{lr}$) before the end of the long-time time delay (1 to 200 s).
Pick-up Ir must have been set to the current indicated on the motor rating plate.
This protection should be coordinated with the selected class.

Motor protection
Micrologic 6 E-M electronic trip units

Micrologic 6.E-M is used in 2-device motor-feeder solutions.
It provides the same protection as Micrologic 2-M: \square short-circuits
■ overloads with selection of the same trip classes (5,
10 or 20), plus trip class 30 for starting of machines with high inertia.
In addition, it offers specific motor-protection functions that can be set via the keypad.

SDTAM remote indication relay module with its terminal block.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

Protection

The protection functions are identical to those of Micrologic 2-M and can be fineadjusted via the keypad
Access to setting modifications via the keypad is protected by a locking function that is controlled by a microswitch \boldsymbol{O}. The lock is activated automatically if the keypad is not used for 5 minutes. Access to the microswitch is protected by a transparent lead-sealable cover. It is possible to scroll through settings and measurements with the cover closed.

Overloads (or thermal), class and short-circuits
The long-time, short-time and instantaneous functions are identical to those of Micrologic 2-M.
In addition, there is trip class 30 for long-time protection and a setting for self-cooled or fan-cooled motors (\%).
Ground-fault protection (Ig)
Residual type ground-fault protection with an adjustable pick-up Ig (with Off position) and adjustable time delay tg .
Phase unbalance or phase loss (lunbal)
This function opens the circuit breaker if a phase unbalance occurs

- that is greater than the lunbal pick-up that can be fine-adjusted from 10 to 40% (30 \% by default)
- following the tunbal time delay that is:
- 0.7 s during starting
\square adjustable from 1 to 10 seconds (4 seconds by default) during normal operation. Phase loss is an extreme case of phase unbalance and leads to tripping under the same conditions.

Locked rotor (ljam)

This function detects locking of the motor shaft caused by the load.
During motor starting (see page A-43), the function is disabled.
During normal operation, it causes tripping:
■ above the ljam pick-up that can be fine-adjusted from 1 to $8 \times \mathrm{lr}$

- in conjunction with the tjam time delay that can be adjusted from 1 to 30 seconds.

Under-load (Iund)

This function detects motor no-load operation due to insufficient load (e.g. a drained pump). It detects phase undercurrent.
During motor starting (see page A-43), the function is always enabled.
During normal operation, it causes tripping:
■ below the lund pick-up that can be fine-adjusted from 0.3 to $0.9 \times \mathrm{Ir}$
■ in conjunction with the tund time delay that can be adjusted from 1 to 200 seconds.
Long starts (llong)
This protection supplements thermal protection (class).
It is used to better adjust protection to the starting parameters.
It detects abnormal motor starting, i.e. when the starting current remains too high or too low with respect to a pick-up value and a time delay.
It causes tripping:
■ in relation with a llong pick-up that can be fine-adjusted from 1 to 8 x Ir

- in conjunction with the tlong time delay that can be adjusted from 1 to 200
seconds.
(see "long starts" page A-43)

Display of type of fault

On a fault trip, the type of fault (Ir, Isd, Ii, Ig, lunbal, ljam), the phase concerned and the interrupted current are displayed.

Indications

Front indications
■ Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.

- Red alarm LED for motor operation: goes ON when the thermal image of the rotor or stator is greater than 95\% of the permissible temperature rise.
Remote indications via SDTAM or SDx module
See description on page A-42 for SDTAM and page A-81 for SDx.

(1) Motor standards require operation at $65^{\circ} \mathrm{C}$. Circuit-breaker ratings are derated to take this requirement into account.
(2) The unbalance measurement takes into account the most unbalanced phase with respect to the average current.

Motor protection
Micrologic 6 E-M electronic trip units (cont.)

Micrologic 6 E-M provides Power Meter functions with energy metering. With the FDM121 display unit, all metering data and operating indicators are available on the switchboard front panel. This version also displays the thermal image of the motor.

Thermal-image alarm.

Power Meter functions

The built-in Power Meter functions of the Micrologic 6 E-M are the same as those for the Micrologic 6-E presented in the section on distribution (see page A-20). When used exclusively in the three-phase version, neutral measurements are excluded.

Operating-assistance functions

The operating-assistance functions of the Micrologic $6 \mathrm{E}-\mathrm{M}$ are the same as those for the Micrologic 6-E presented in the section on distribution (see page A-22).

Special functions for motor feeders

Additional operating functions specifically for motor feeders are available.

Phase sequence

The order in which the phases L1, L2, L3 are connected determines the direction of motor rotation. If two phases are inverted, the direction is reversed.
Information on the direction of rotation is provided. It can be linked to an alarm to detect an inversion in the direction following servicing on the supply under deenergised conditions and disable restarting.

Thermal image of the rotor and stator

Micrologic 6 E-M offers a thermal-image function.
Taking into account the Ir setting and the class, an algorithm simulates rotor and stator temperature rise. It includes the slow temperature rise of the stator and its metal mass. Also included is the faster temperature rise of the copper rotor. The thermal protection function trips the circuit breaker when the calculated thermal image reaches 100% of the permissible temperature rise.
The communication indicates the thermal-image value as a percentage of the permissible temperature rise. One or more alarms may be assigned to selected thresholds. A red LED on the front signals when the value exceeds 95%. An SDx module with two outputs programmed for thermal-image values can be used to implement other alarm functions.

PC screen with motor thermal image and value monitoring.

(1) Absolute mode: E absolute $=E$ out $+E$ in; Signed mode: E signed $=E$ out $-E$ in.
(2) Available via communication system.
(3) The BSCM module (page A-27) is required for these functions.

Special applications
 Protection of public distribution systems with Micrologic 2-AB

Micrologic $A B$ trip units are used in public distribution systems to limit the current supplied according to the consumer's contract. They are available in 100, 160, 240 and 400 A ratings and are supplied with a lead-seal device to protect the settings.

INV switch-disconnector with visible break.

Compact NSX with Micrologic 2-AB.

SDx remote indication relay module with its terminal block.

Compact NSX circuit breakers equipped with Micrologic AB trip units are installed as incoming devices for consumer installations connected to the public LV distribution system.
With respect to the utility, they have two functions.
■ Consumption is limited to the contractual power level. If the limit is exceeded, a fast thermal-protection function trips the device at the head of the consumer's installation without the utility having to intervene.
■ Total discrimination is ensured with the upstream fuses on the public distribution system in the event of a fault, overload or short-circuit in the consumer's installation, protecting the utility line.
In addition, they provide the consumer with:

- protection for the installation as a whole, with the possibility of adding a Vigi earth-
leakage protection module
■ the possibility of downstream discrimination.
This type of Compact NSX is often used in conjunction with an Interpact INV switchdisconnector located outside the consumer's building and providing the visible-break function.
This means the operator can directly see, through a transparent cover, the physical separation of the main contacts. The Interpact INV range is also suitable for isolation with positive contact indication.
This means utility operators can work on the service-connection unit after isolating it from the upstream line.

Protection

\qquad

Settings are made using the adjustment dials with fine-adjustment possibilities and a lead-seal fixture.

Overloads: Long-time protection (Ir)

Inverse-time thermal protection against overloads with an adjustable current pick-up Ir and a very short, non-adjustable time delay $\mathbf{t r}$ (15 seconds for $1.5 \mathbf{x ~ I r}$).
Short-circuits: Short-time protection (Isd) with fixed time delay
Short-circuit protection with an adjustable pick-up Isd. The short-time pick-up values are high enough to avoid nuisance tripping in the event of transient current spikes.
Short-circuits: Non-adjustable instantaneous protection
Instantaneous short-circuit protection with a fixed pick-up.

Neutral protection

Available on four-pole circuit breakers only. Neutral protection may be set using a three-position switch:
■ 4P 3D: neutral unprotected
■ 4P 3D + N/2: neutral protection at half the value of the phase pick-up, i.e. $0.5 \times \mathrm{Ir}$
■ 4P 4D: neutral fully protected at Ir.
Indications \qquad

Front indications

- Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.
■ Orange overload pre-alarm LED: steady on when I>90 \% ir
■ Red overload LED: steady on when I > 105 \% Ir

Remote indications

An SDx relay module installed inside the circuit breaker can be used to remote the overload-trip signal. This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is closed.
The module is described in detail in the section dealing with accessories page A-81.

(1) If the trip units are used in high-temperature environments, the Micrologic setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.

Consumer connection diagram.

Technical details

Advantages of the AB trip unit
■ Controls the power drawn with respect to contractual power levels. If the contractual level is
overrun, the circuit breaker opens and the consumer is not billed excess costs.
■ If a short-circuit occurs, the circuit breaker opens and the upstream HRC fuses on utility lines are not affected. No expensive utility servicing is billed to the consumer

Special applications
Generator protection with Micrologic 2.2-G

Micrologic G trip units are used for the protection of systems supplied by generators or comprising long cable lengths. They can be mounted on all Compact NSX100/160/250 circuit breakers.
With extensive setting possibilities, Micrologic 5 offers the same functions from 100 to 630 A .
A thermal-magnetic trip unit is also available for the NSX100 to 250 (see page A-15).

SDx remote indication relay module with its terminal block.

Circuit breakers equipped with Micrologic G trip units protect systems supplied by generators (lower short-circuit currents than with transformers) and distribution systems with long cable lengths (fault currents limited by the impedance of the cable).

Protection

\qquad

Settings are made using the adjustment dials with fine adjustment possibilities

Overloads: Long-time protection (Ir)

Inverse-time thermal protection against overloads with an adjustable current pick-up Ir and a very short, non-adjustable time delay tr (15 seconds for 1.5 x Ir).

Short-circuits: Short-time protection (Isd) with fixed time delay

Short-circuit protection with an adjustable pick-up Isd, delayed 200 ms, in compliance with the requirements of marine classification companies.
Short-circuits: Non-adjustable instantaneous protection (li) Instantaneous short-circuit protection with a fixed pick-up required for generator protection.

Neutral protection

■ On 3-pole circuit breakers, neutral protection is not possible.
■ On four-pole circuit breakers, neutral protection may be set using a three-position switch:

- 4P 3D: neutral unprotected
$\square 4 P 3 D+N / 2$: neutral protection at half the value of the phase pick-up, i.e. $0.5 \times \mathrm{Ir}$
\square 4P 4D: neutral fully protected at Ir.

Indications

Front indications

■ Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.
■ Orange overload pre-alarm LED: steady on when I>90 \% Ir
■ Red overload LED: steady on when I > 105 \% Ir

Remote indications

An SDx relay module installed inside the circuit breaker can be used to remote the overload-trip signal.
This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is closed.
The module is described in detail in the section dealing with accessories.

(1) If the trip units are used in high-temperature environments, the Micrologic setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.

Special applications
 Protection of industrial control panels

Compact NSX circuit breakers are also used in industrial control panels.
They serve as an incoming devices or can be combined with contactors to protect motor feeders: ■ compliance with worldwide standards including IEC 60947-2 and UL 508 / CSA 22-2 no. 14
■overload and short-circuit protection
\square isolation with positive contact indication, making it possible to service machines safely by isolating them from all power sources
■ installation in universal and functional type enclosures
■ NA switch-disconnector version.

Industrial control panels

Compact NSX circuit breakers equipped for public distribution or motor protection functions as described in the previous pages can be used in industrial control panels. The accessories for the Compact NSX range are suitable for the special needs of these switchboards.

Auxiliaries

All auxiliaries can be added to the circuit breaker by the user:
■ padlocking devices (in the OFF position)

- rotary handle

■ status-indication auxiliary contacts (ON, OFF and tripped)
■ shunt (MX) or undervoltage (MN) releases
■ early-make or early-break contacts.

Rotary handle

Direct or extended versions for mounting up to 600 mm behind the front:

- black front with black handle

■ yellow front with red handle (for machine tools or emergency off as per IEC 204 /
VDE 0013).
All rotary handles can be padlocked in the OFF position. Optional door interlock, recommended for MCC panels (motor control centres).
When the device is equipped with an extended rotary handle, a control accessory mounted on the shaft makes it possible to operate the device with the door open. The device can be padlocked in the OFF position in compliance with UL508.

Early-make or early-break contacts

These contacts can be used respectively to supply an MN undervoltage release before the circuit breaker closes or to open the contactor control circuit before the circuit breaker opens.

Special functions

- Indication of thermal overloads with the SDx module.
- Early opening of the contactor for overload faults with the SDTAM module.
- Links with PLCs via the communication system.

■ Measurement of all electrical parameters with Micrologic A and E.
■ Programmable alarms with Micrologic 5 and 6.

Installation in enclosures

Compact circuit breakers can be installed in a metal enclosure together with other devices (contactors, motor-protection circuit breakers, LEDs, etc.) (see page A-90).

Compliance with North American industrial control equipment standards

Compact NSX devices have received UL508 / CSA 22-2 no. 14 approval for industrial control equipment of the "Manual Motor Controller", "Across the Line Starter", "General Use" and "Disconnecting Means" types.
Type NA devices are switch-disconnectors that must always be protected upstream.
UL508 approval

Circuit breakers	Trip units	Approvals
Compact NSX100 to 630 F/N/H	TMD, Micrologic 2,5 and 6	General Use
		Motor Disconnecting Means
	NA, MA, Micrologic 1.3 M, 2.2 M,	Manual Motor Controller Across the Line Starter
	2.3 M, Micrologic 6.2 E-M and	Actor Disconnecting Means

V AC ratings		115	230	460	575
TMD Micrologic 2, 5 and 6	NA, MA Micrologic 1.3 M, 2.2 M, 2.3 M Micrologic 6.2 E-M and 6.3 E-M				
25	25	3	7.5	15	20
50	50	7.5	15	30	40
100	100	15	30	75	100
160	150	25	50	100	150
250	220	40	75	150	200
400	320	-	125	250	300
550	500	-	150	350	500

The deratings indicated on pages $B-8$ and $B-9$ apply to TMD, Micrologic 2,5 and 6 trip units, rated at $40^{\circ} \mathrm{C}$.

16 Hz 2/3 network protection Micrologic 5 A-Z trip unit

Compact NSX circuit breakers may be used on 16 Hz 2/3 systems with special thermal-magnetic and electronic (Micrologic $5 \mathrm{~A}-\mathrm{Z}$) trip units.

Phase and isolated neutral interrupted- $250 / 500 \mathrm{~V}$ B and F (3P 2D version) $\quad N$ and H (3P 3D version)

Remark. For an operating voltage >250 V, the installation

16 Hz 2/3 networks

Single-phase distribution networks with a frequency of $16 \mathrm{~Hz} 2 / 3$ are used for railroad applications in certain European countries.
Breaking capacity for $16 \mathrm{~Hz} 2 / 3$ at $250 / 500 \mathrm{~V}$
Compact NSX circuit breakers of the 3P 2D or the 3P 3D type protect $16 \mathrm{~Hz} 2 / 3$ networks at 250 V or 500 V .
They can be equipped with either:
■ a TM-D thermal-magnetic trip unit for Compact NSX100 to 250

- or an electronic Micrologic 5.2 A-Z trip unit for Compact NSX100 to 250 or a 5.3 A-Z for Compact NSX400/630.
The possible breaking-capacity performance levels are B, F, N and H as indicated below.
Breaking capacity Icu

Operating voltage		TMD and Micrologic 5 A-Z trip units			
	Performance	B	F	N	H
$250 \mathrm{~V} / 500 \mathrm{~V}$	Icu (kA)	25	36	50	70

Protection

TM-D thermal-magnetic trip units

Micrologic 5 A-Z trip units

Micrologic 5.2 A-Z and 5.3 A-Z are dedicated to $16 \mathrm{~Hz} 2 / 3$ networks. They use a suitable sampling frequency. The protection settings are identical to those of Micrologic 5 A (see page A-19). They also offer a current-measurement function for this specific frequency.

Trip-unit selection

Wiring for NSX100 to 630 A
2 poles in series - Earthed neutral - 250 / 500 V B and F (3P 2D version)

N and H (3P 3D version)

Special applications Protection of 400 Hz systems

400 Hz distribution systems

The main 400 Hz applications are in aeronautics and certain military ships. Modern aircraft have three-phase $115 / 200 \mathrm{~V} 400 \mathrm{~Hz}$ networks.

Impact on protective devices

Due to the higher frequency, circuit breakers are subjected to additional temperature rise for identical current levels, resulting from higher losses caused by Foucault currents and an increase in the skin effect (reduction in the useful CSA of conductors). To remain within the rated temperature-rise limits of devices, current derating is required.
The power levels of 400 Hz applications rarely exceed a few hundred kW with relatively low short-circuit currents, generally not exceeding four times the rated current.
The standard Compact NSX and Masterpact NT/NW ranges are suitable for 400 Hz applications if derating coefficients are applied to the protection settings. See the derating table below.

Breaking capacity of Compact NSX circuit breakers in $400 \mathrm{~Hz}, 440 \mathrm{~V}$ systems

Circuit breaker	Breaking capacity Icu
NSX100	10 kA
NSX160	10 kA
NSX250	10 kA
NSX400	10 kA
NSX630	10 kA

Trip units equipped with thermal-magnetic protection

The 400 Hz current settings are obtained by multiplying the 50 Hz values by the following adaptation coefficient:

- K1 for thermal trip units
- K2 for magnetic trip units.

These coefficients are independent of the trip-unit setting.
Thermal trip units
The current settings are lower at 400 Hz than at $50 \mathrm{~Hz}(\mathrm{~K} 1<1)$.
Magnetic trip units
The current settings are conversely higher at 400 Hz than at $50 \mathrm{~Hz}(\mathrm{~K} 2>1)$.
Consequently, when the trip units are adjustable, they must be set to the minimum value.
Adaptation coefficients for thermal-magnetic trip units

Circuit breaker	Trip unit	$\begin{aligned} & \text { In (A) } \\ & 50 \mathrm{~Hz} \end{aligned}$	Thermal at $40^{\circ} \mathrm{C}$		$\begin{aligned} & \operatorname{Im}_{50 \mathrm{~Hz}}(A) \end{aligned}$	Magnetic	
			K1	400 Hz		K2	400 Hz
NSX100	TM16G	16	0.95	15	63	1.6	100
	TM25G	25	0.95	24	80	1.6	130
	TM40G	40	0.95	38	80	1.6	130
	TM63G	63	0.95	60	125	1.6	200
NSX100	TM16D	16	0.95	15	240	1.6	300
	TM25D	25	0.95	24	300	1.6	480
	TM40D	40	0.95	38	500	1.6	800
	TM63D	63	0.95	60	500	1.6	800
	TM80D	80	0.9	72	650	1.6	900
	TM100D	100	0.9	90	800	1.6	900
NSX250	TM100D	100	0.9	90	800	1.6	900
	TM160D	160	0.9	144	1250	1.6	2000
	TM200D	200	0.9	180	1000 to 2000	1.6	$\begin{aligned} & 1600 \text { to } \\ & 3200 \end{aligned}$
	TM250D	250	0.9	225	1250 to 2500	1.6	$\begin{aligned} & 2000 \text { to } \\ & 4000 \end{aligned}$

Example

NSX100 equipped with a TM16G with 50 Hz settings $\mathrm{Ir}=16 \mathrm{~A}$ and $\mathrm{Im}=63 \mathrm{~A}$.
400 Hz settings $\mathrm{Ir}=16 \times 0.95=15 \mathrm{~A}$ and $\mathrm{Im}=63 \mathrm{~A} \times 1.6=100 \mathrm{~A}$.

Protection of 400 Hz systems (cont.)

SDx remote indication relay module with its terminal block.

Protection (cont.)

Micrologic electronic trip units

Micrologic 2.2, 2.3 or 5.2, 5.3 with A or E measurement functions are suitable for 400 Hz . The use of electronics offers the advantage of greater operating stability when the frequency varies. However the units are still subject to temperature rise caused by the frequency.
The practical consequences are:

- limit settings: see the Ir derating table below

■ the long-time, short-time and instantaneous pick-ups are not modified (see pages A-17 or A-19)
■ the accuracy of the displayed measurements is 2 \% (class II)
Thermal derating: maximum Ir setting

Circuit breaker	Maximum setting coefficient 1	Max. Ir setting at $\mathbf{4 0 0} \mathbf{~ H z}$
NSX100	1	100
NSX250	0.9	225
NSX400	0.8	320
NSX630	0.8	500

Example

An NSX250N, equipped with a Micrologic 2.2 , $\mathrm{Ir}=250 \mathrm{~A}$ at 50 Hz , must be limited to use at $\mathrm{Ir}=250 \times 0.9=225 \mathrm{~A}$.
Its short-time pick-up with fixed time delay is adjustable from 1.5 to $10 \operatorname{Ir}$ (60 to 400 A). The instantaneous pick-up remains at 3000 A.

OF auxiliary contacts in 400 Hz networks

Electrical characteristics of auxiliary contacts

Contacts		Standard		Low level	
Utilisation cat. (IEC 60947-5-1)		AC12	AC15	CA12	CA15
Operational current (A)	24 V	6	6	5	3
	48 V	6	6	5	3
	110 V	6	5	5	2.5
	$220 / 240 \mathrm{~V}$	6	4	5	2
	$380 / 415 \mathrm{~V}$	6	2	5	1.5

MN and MX voltage releases for Compact NSX100/630 at 400 Hz and 440 V

For circuit breakers on 400 Hz systems, only 125 V DC MN or MX releases may be used. The release must be supplied by the 400 Hz system via a rectifier bridge (to be selected from the table below) and an additional resistor with characteristics depending on the system voltage.

$\mathbf{U}(\mathrm{V}) \mathbf{4 0 0 ~ H z}$	Rectifier	Additional resistor
$220 / 240 \mathrm{~V}$	Thomson 110 BHz or	$4.2 \mathrm{k} \Omega-5 \mathrm{~W}$
	General Instrument W 06 or $380 / 420 \mathrm{~V}$	

Note: other models of rectifier bridges may be used if their characteristics are at least equivalent to those stated above.

SDx indication contacts

The SDx module may be used in 400 Hz systems for voltages from 24 to 440 V . An SDx relay module installed inside the circuit breaker can be used to remote the overload-trip signal.
This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is closed.
These outputs can be reprogrammed to be assigned to other types of tripping or alarm (see page A-81).

Switch-disconnectors

Overview of applications

A switch-disconnector is a control device that can be
used to open and close a circuit under normal
operating conditions.
It is suitable for isolation as indicated on the front by the
symbol

Position of switch-disconnectors

Compact NSX switch-disconnectors are used primarily for the following applications:
■ busbar coupling and isolation

- isolation of industrial distribution boards and industrial control panels

■ isolation of subdistribution boards for modular devices
■ isolation of local enclosures
■ isolation of final distribution enclosures for commercial applications

- industrial control panel switch-disconnectors.

N.B. Adjacent to or built into the machine.

Building utilities

Building final distribution

Continuous processes

Manufacturing processes and individual machines

Compact NSX100 to 630 NA switch-disconnectors are available in fixed, plug-in and withdrawable versions. They use the same accessories and offer the same connection possibilities as the circuit-breaker versions. They may be interlocked with another Compact switchdisconnector or circuit breaker to form a sourcechangeover system.

Compact NSX switch-disconnector.

Compact NSX switch-disconnector equipped with a motor mechanism module

Compact NSX switch-disconnector equipped with a Vigi module.

Suitability for isolation with positive contact indication

Compact NSX switch-disconnectors are suitable for isolation as defined by standard IEC 60947-3. The corresponding conformity tests guarantee:
■ the mechanical reliability of the position indication, i.e. the O (OFF) position indicated by the control device always reflects the open position of the contacts: \square the required distance between contacts is provided
\square padlocks may not be installed unless the contacts are open

- the absence of leakage currents

■ overvoltage withstand capacity between upstream and downstream connections. Installation of a rotary handle or a motor mechanism does not alter the reliability of the position-indication system.

Emergency-off function

A Compact NSX NA is combined with an MN or MX release connected to an emergency-off button. In an emergency, an operator at a remote location can interrupt the circuit at rated load to isolate the entire switchboard and the downstream loads.

Motor mechanism

Compact NSX NA devices equipped with a motor mechanism module enable remote closing and opening. This function may be combined with the emergency-off function. In this case, the emergency off function is combined with a closing lock-out that must be intentionally reset (electrical diagram with closing lock-out).

Earth-leakage protection

A Vigi module may be added to a switch-disconnector to monitor all leakage currents in the outgoing circuits of the switchboard on which the switch-disconnector is installed. When the Vigi module detects an earth-leakage current, the switchdisconnector interrupts the load current. This function may be combined with the motor mechanism and the emergency-off function using an MN or MX release.

Switch-disconnector protection

The switch-disconnector can make and break its rated current. For an overload or a short-circuit, it must be protected by an upstream device, in compliance with installation standards.
The circuit-breaker/switch-disconnector coordination tables determine the required upstream circuit breaker. However, due to their high-set magnetic release, Compact NSX100 to 630 A switch-disconnectors are self-protected.

Switch-disconnector utilisation category

Depending on the rated operational current and the mechanical durability (A for frequent operation or B for infrequent operation), standard IEC 60947-3 defines the utilisation categories as shown in the table below. Compact NSX NA switchdisconnectors comply with utilisation categories AC22A or AC23A.

Utilisation category		Typical applications		
Infrequent operation	Frequent operation	AC-21B		Resistive loads including moderate overloads $(\cos \varphi=$
:---				
AC-21A				
AC-22A	\quad AC-22B \quad	Mixed resistive and inductive loads including moderate		
:---				
overloads ($\cos \varphi=0.65)$		AC-23A		
:---	AC-23B \quad	Motor loads or other highly inductive loads $(\cos \varphi=0.45$		
:---				
or 0.35$)$				

Functions and characteristics

Switch-disconnectors

Characteristics and performance of Compact NSX switch-disconnectors from 100 to 630 NA

Installation standards require upstream protection
However Compact NSX100 to 630 NA switchdisconnectors are self-protected by their high-set magnetic release.

Switch-disconnectors				
Electrical characteristics as per IEC 60947-3 and EN 60947-3				
Conventional thermal current (A)	Ith $60{ }^{\circ} \mathrm{C}$			
Number of poles				
Operational current (A) depending on the utilisation category		AC $50 / 60 \mathrm{~Hz}$		
		220/240 V		
		$380 / 415 \mathrm{~V}$		
		$440 / 480 \mathrm{~V}^{(2)}$		
		500/525 V		
		660/690 V		
		DC		
		250 V (1 pole)		
		500 poles (2 poles in series)		
		750 V (3 poles in series)		
Short-circuit making capacity (kA peak)	Icm	min. (switch-disconnector alone)		
		max. (protection by upstream circuit breaker)		
Rated short-time withstand current (Arms)	Icw	for	1 s	
			3 s	
			20 s	
Durability (C-O cycles)	mechanical			
	electrical	AC		
			440 V	In/2
				In
			690 V	In/2
				In
		DC	250 V	In/2
			500 V	

Positive contact indication
Pollution degree

Protection

Add-on earth-leakage protection	By Vigi module
	By Vigirex relay

Additional indication and control auxiliaries

Indication contacts	
Voltages releases	MX shunt release
	MN undervoltage release

Voltage-presence indicator
Current-transformer module
Ammeter module
Insulation monitoring module

Remote communication by bus

Device-status indication
Device remote operation
Operation counter

Installation / connections		
Dimensions (mm)	fixed, front connections	$2 / 3 \mathrm{P}$
$\mathrm{W} \times \mathrm{H} \times \mathrm{D}$		4 P
Weight (kg)	fixed, front connections	3 P
		4 P

Source-changeover systems (see chapter on Source-changeover systems)

Manual source-changeover systems
(2) Suitable for 480 V NEMA.

Remote-operated or automatic source-changeover systems

NSX100NA

100
$2^{(1)}, 3,4$
AC22A/AC23A
100
100
100
100
100
DC22A/DC23A
100
100
100
2.6
330
1800
1800
690
50000
AC22A/AC23A
35000
20000
15000
8000
10000
5000
■
3

160
$2^{(1)}, 3,4$
AC22A/AC23A
160
160
160
160
160
DC22A/DC23A
160
160
160
3.6
330
2500
2500
960
40000
AC22A/AC23A
30000
15000
10000
5000
10000
5000
\mathbf{B}
3

250	400	630
$2{ }^{(1)}$, 3, 4	3, 4	3, 4
AC22A / AC23A	AC22A / AC23A	AC22A / AC23A
250	400	630
250	400	630
250	400	630
250	400	630
250	400	630
DC22A / DC23A	DC22A / DC23A	DC22A / DC23A
250	-	-
250	-	-
250	-	-
4.9	7.1	8.5
330	330	330
3500	5000	6000
3500	5000	6000
1350	1930	2320
20000	15000	15000
AC22A / AC23A	AC22A / AC23A	AC22A / AC23A
15000	10000	6000
7500	5000	3000
6000	5000	3000
3000	2500	1500
10000	-	-
5000	-	-
-	\square	\square
3	3	3

Source-changeover systems
 Presentation

Some installations use two supply sources to counter
the temporary loss of the main supply.
A source-changeover system is required to safely switch between the two sources.
The replacement source can be a generator set or another network.

Service sector:

- hospital operating rooms
- safety systems for tall buildings
- computer rooms (banks, insurance companies, etc.)
\square lighting systems in shopping centres, etc.

Industry:
■ assembly lines

- engine rooms on ships
- critical auxiliaries in thermal power stations, etc.

Infrastructures:
■ runway lighting systems

- port and railway installations
- control systems for military installations, etc.

Manual source changeover

This is the most simple system. It is controlled manually by a maintenance technician and consequently the time required to switch from the normal source to the replacement source can vary.
A manual source-changeover system is made up of:

- two devices (circuit breakers or switch-disconnectors) controlled manually
- mechanical interlocking.

The interlock prevents connection to both sources at the same time, even momentarily.

Remote-operated source-changeover systems

This is the most commonly employed system. No human invention is required. The transfer from the normal to the replacement source is controlled electrically. A remote-operated source-changeover system is made up of two circuit breakers or switch-disconnectors equipped with motor mechanisms and:
■ an electrical interlocking system implemented in a number of manners
■ a mechanical interlocking system that protects against the consequences of an electrical malfunction and prevents incorrect manual operation.

Automatic source-changeover systems

An automatic controller may be added to the remote-operated source-changeover system for automatic source control according to programmable operating modes. This solution ensures optimum energy management:

- switching to a replacement source depending on external requirements

■ source management

- load shedding

■ emergency source replacement, etc.

A-60 Schneider

Manual source-changeover systems

Interlocking of two or three toggle-controlled devices.

Interlocking of two devices with rotary handles.

Interlocking with keylocks.

Interlocking of two or three toggle-controlled devices

Interlocking system

Two devices can be interlocked using this system. Two identical interlocking systems can be used to interlock three devices installed side by side.
Authorised positions:
■ one device closed (ON), the others open (OFF)

- all devices open (OFF).

The system is locked using one or two padlocks (shackle diameter 5 to 8 mm).
This system can be expanded to more than three devices.
There are two interlocking-system models:
■ one for Compact NSX100 to 250

- one for Compact NSX400/630.

Combinations of Normal and Replacement devices
All toggle-controlled fixed or plug-in Compact NSX100 to 630 circuit breakers and switch-disconnectors of the same frame size can be interlocked. The devices must be either all fixed or all plug-in versions.

Interlocking of two devices with rotary handles

Interlocking system
Interlocking involves padlocking the rotary handles on two devices which may be either circuit breakers or switch-disconnectors.
Authorised positions:
■ one device closed (ON), the other open (OFF)
■ both devices open (OFF).
The system is locked using up to three padlocks (shackle diameter 5 to 8 mm).
There are two interlocking-system models:
■ one for Compact NSX100 to 250
■ one for Compact NS400/630.

Combinations of Normal and Replacement devices

All rotary-handle fixed or plug-in Compact NSX100 to 630 circuit breakers and switch-disconnectors of the same frame size can be interlocked. The devices must be either all fixed or all plug-in versions.

Interlocking of a number of devices using keylocks (captive keys)

Interlocking using keylocks is very simple and makes it possible to interlock two or more devices that are physically distant or that have very different characteristics, for example medium-voltage and low-voltage devices or a Compact NSX100 to 630 circuit breaker and switch-disconnector.

Interlocking system

Each device is equipped with an identical keylock and the key is captive on the closed (ON) device. A single key is available for all devices. It is necessary to first open (OFF position) the device with the key before the key can be withdrawn and used to close another device.
A system of wall-mounted captive key boxes makes a large number of combinations possible between many devices.
Combinations of Normal and Replacement devices
All rotary-handle Compact NSX100 to 630 circuit breakers and switch-disconnectors can be interlocked between each other or with any other device equipped with the same type of keylock.

Interlocking of two devices on a base plate

Interlocking system

A base plate designed for two Compact NSX devices can be installed horizontally or vertically on a mounting rail. Interlocking is carried out on the base plate by a mechanism located behind the devices. In this way, access to the device controls and trip units is not blocked.
Combinations of Normal and Replacement devices
All rotary-handle and toggle-controlled Compact NSX100 to 630 circuit breakers and switch-disconnectors can be interlocked. Devices must be either all fixed or all plugin versions, with or without earth-leakage protection or measurement modules.
An adaptation kit is required to interlock:

- two plug-in devices
- a Compact NSX100-250 with an NSX400-630.

Connection to the downstream installation can be made easier using a coupling accessory (see next page).

Interlocking on a base plate.

Functions
and characteristics

Source-changeover systems Remote-operated and automatic sourcechangeover systems
Coupling accessory on base plate

Remote-operated source-changeover system.

1 Circuit breaker QN equipped with a motor mechanism and auxiliary contacts, connected to the Normal source
2 Circuit breaker QR equipped with a motor mechanism and auxiliary contacts, connected to the Replacement source
3 Base plate with mechanical interlocking
4 Electrical interlocking unit IVE
5 Coupling accessory (downstream connection)

Standard device accessories may be used for the coupling accessory on the base plate.

Remote-operated systems

It is made up of two devices with motor mechanisms, mounted on a base plate and combined with:
■ an electrical interlocking unit
■ optional mechanical interlocking system.

Electrical interlocking unit (IVE)

Interlocks two devices equipped with motor mechanisms and auxiliary contacts. The IVE unit is mandatory to ensure the necessary time-delays required for safe switching.

Mechanical interlocking system

The mechanical interlocking system is strongly recommended to limit the effects of design or wiring errors and to avoid manual switching errors.

Automatic systems

An automatic controller can manage switching from one source to the other.
The controller can be:

- a device provided by the customer

■ an integrated BA controller

- an integrated UA controller

An integrated BA or UA automatic controller manages source transfer according to user-selected sequences that can include source priorities, start-up of a generator return to the Normal source, etc. An ACP auxiliaries control plate facilitates installation of the BA and UA controllers. The plate includes two circuit breakers to protect the control circuits and two contactors to control the motor mechanisms of the devices.

Coupling accessory on base plate

This accessory may be used with a manual or remote-operated source-changeover system (with or without an automatic controller). It respects the mounting distance between the devices secured to the ACP plate and provides downstream coupling of the two sets of busbars. It is compatible with standard device accessories.
The short terminal shields of the device can be installed on the upstream connectors of the coupling accessory. Downstream, it is possible to use the connection accessories and the long or short terminal shields of the device.

[^20]By combining a remote-operated source-changeover system with an integrated BA or UA automatic controller, it is possible to automatically control source transfer according to user-selected sequences.

BA controller.

UA controller.

Auxiliary control plate for a BA or UA controller.

Functions of the BA and UA controllers

(1) The controller is powered by the ACP auxiliaries control plate. The same voltage must be used for the ACP plate, the IVE unit and the circuit-breaker operating mechanisms. If this voltage is the same as the source voltage, then the "Normal" and "Replacement" sources can be used directly for the power supply. If not, an isolation transformer must be used.

Accessories and auxiliaries Overview of Compact NSX100 to 630 fixed version

$$
\text { Electrical auxiliaries }>\mathrm{A}-80
$$

Protection and measurements $>$ A-86

Vigi module

Current-transformer module

Micrologic 2 trip unit

TM-D, TM-G trip unit

Ammeter module

Accessories and auxiliaries
Overview of Compact NSX100 to 630 plug-in and withdrawable versions

Insulation accessories $>$ A-73

Electrical accessories $>$ A-78

Automatic withdrawable auxiliary connector

Manual auxiliary connector

Mechanical accessories $>A-69$

Chassis side plate

Accessories and auxiliaries

Device installation

Compact NSX circuit breakers may be installed horizontally, vertically or flat on their back, without derating performance levels.
There are three installation versions:

- fixed

■ plug-in (on a base)
■ withdrawable (on a chassis).
For the last two, components must be added (base, chassis) to the fixed version.
Many connection components are shared by the three versions.

Fixed Compact NSX250.

Plug-in Compact NSX250.

Installation positions.

Installation positions.

Fixed circuit breakers

Fixed circuit breakers are designed for standard connection using bars or cables with lugs. Bare-cable connectors are available for connection to bare copper or aluminium cables.
For connection of large cables, a number of solutions with spreaders may be used for both cables with lugs or bare cables.

Plug-in circuit breakers

The plug-in version makes it possible to:
■ extract and/or rapidly replace the circuit breaker without having to touch the
connections on the base

- allow for the addition of future circuits by installing bases that will be equipped with
a circuit breaker at a later date
■ isolate the power circuits when the device is mounted on or through a panel. It acts as a barrier for the connections of the plug-in base. Insulation is made complete by the mandatory short terminal shields on the device. The degrees of protection are: \square circuit breaker plugged in $=$ IP
\square circuit breaker removed = IP2
\square circuit breaker removed, base equipped with shutters $=$ IP.

Parts of a plug-in configuration

A plug-in configuration is made by adding a "plug-in kit" to a fixed device. To avoid connecting or disconnecting the power circuits under load conditions, a safety trip causes automatic tripping if the device is ON, before engaging or withdrawing it. The safety trip, supplied with the kit, must be installed on the device. If the device is disconnected, the safety trip does not operate. The device can be operated outside the switchboard.

Accessories

Optional insulation accessories are available.
■ Terminal shields to protect against direct contact.

- Interphase barriers to reinforce insulation between phases and protect against direct contact.

Mounting

Mounting on a backplate.

Mounting through a front panel.

Mounting on rails.

Withdrawable Compact NSX250.

Installation positions.

Connected.

Disconnected

Removed.

Withdrawable circuit breakers

In addition to the advantages provided by the base, installation on a chassis facilitates handling. It offers three positions, with transfer from one to the other after mechanical unlocking:
■ connected: the power circuits are connected

- disconnected: the power circuits are disconnected, the device can be operated to check auxiliary operation
- removed: the device is free and can be removed from the chassis.

Parts of a withdrawable configuration

A withdrawable configuration requires two side plates installed on the base and two sides plates mounted on the circuit breaker. Similar to the plug-in version, a safety trip causes automatic tripping if the device is ON, before engaging or withdrawing it, and enables device operation in the disconnected position.

Accessories

Accessories are the same as for the base, with in addition:

- auxiliary contacts for installation on the fixed part, indicating the "connected" and "disconnected" positions
■ locking by 1 to 3 padlocks (shackle diameter 5 to 8 mm), to:
\square prevent insertion for connection
\square lock the circuit breaker in connected or disconnected position
- toggle collar for circuit breakers with a toggle mounted through a front panel, intended to maintain the degree of protection whatever the position of the circuit breaker (supplied with a toggle extension)
- telescopic shaft for extended rotary handles. The door can then be closed with the device in the connected and disconnected positions.

Mounting

Mounting on a backplate.

Mounting through a front panel.

Mounting on rails.

Accessories and auxiliaries

Connection of fixed devices

Fixed circuit breakers are designed for standard front connection using bars or cables with lugs.
Cable connectors are available for bare cables. Rear connection is also possible.

Insulated bar.

Small lug for copper cables.

Small lug for Al cables.

Mounting at the back of a switchboard

Mounting behind the front panel with a raiser.

Front connection

Bars or cables with lugs

Standard terminals

Compact NSX100 to 630 come with terminals comprising snap-in nuts with screws:
■ Compact NSX100: M6 nuts and screws. Compact NSX160/250: M8 nuts and screws
■ Compact NSX400/630: M10 nuts and screws.
These terminals may be used for:
■ direct connection of insulated bars or cables with lugs

- terminal extensions offering a wide range of connection possibilities.

Interphase barriers or terminal shields are recommended. They are mandatory for certain connection accessories (in which case the interphase barriers are provided).

Bars

When the switchboard configuration has not been tested, insulated bars are mandatory.
Maximum size of bars

Compact NSX circuit breaker			$\mathbf{1 0 0 / 1 6 0 / 2 5 0}$
Without spreaders	pitch (mm)	35	$400 / 630$
	maximum bar size (mm)	20×2	35
With spreaders	pitch (mm)	45	52×6
	maximum bar size (mm)	32×2	40×6

Crimp lugs
There are two models, for aluminium and copper cables.
It is necessary to use narrow lugs, compatible with device connections. They must be used with interphase barriers or long terminal shields. The lugs are supplied with interphase barriers and may be used for the types of cables listed below. Cable sizes for connection using lugs

| Compact NSX circuit breaker | 100/160/250 | $400 / 630$ |
| :--- | :--- | :--- | :--- |
| Copper cables | size $\left(\mathrm{mm}^{2}\right)$ | $120,150,185 \quad 240,300$ |
| | crimping | hexagonal barrels or punching |
| Aluminium cables | $\frac{\text { size }\left(\mathrm{mm}^{2}\right)}{\text { crimping }}$ | $120,150,185 \quad 240,300$ |

Terminal extensions

Extensions with anti-rotation ribs can be attached to the standard terminals to provide numerous connection possibilities in little space:
■ straight terminal extensions

- right-angle terminal extensions

■ edgewise terminal extensions
■ double-L extensions

- 45° extensions.

Spreaders

Spreaders may be used to increase the pitch:
■ NSX100 to 250: the 35 mm pitch can be increased to 45 mm
■ NSX400/630: the 45 mm pitch can be increased to 52 or 70 mm .
Bars, cable lugs or cable connectors can be attached to the ends.

One-piece spreader for NSX100 to 250

Connection of large cables may require an increase in the distance between the device terminals.
The one-piece spreader is the means to:
■ increase the 35 mm pitch of the NSX100 to 250 circuit-breaker terminals to the 45 mm pitch of a NSX400/630 device
■ use all the connection and insulation accessories available for the next largest frame size (lugs, connectors, spreaders, right-angle and edgewise terminal extensions, terminal shields and interphase barriers).
It may also be used for Interpact INS switch-disconnectors.
Equipped with a single-piece spreader, Compact NSX devices can be mounted:
■ at the back of a switchboard

- behind the front panel with a raiser.

The one-piece spreader is also the means to:

- align devices with different frame sizes in the switchboard

■ use the same mounting plate, whatever the device.
Pitch (mm) depending on the type of spreader

Compact NSX circuit breaker	NSX100 to $\mathbf{2 5 0}$	NSX100 to $\mathbf{6 3 0}$
Without spreaders	35	45
With spreaders	45	52.5 or 70
With one-piece spreader	45	-

Bare cables

For bare cables (without lugs), the prefabricated bare-cable connectors may be used for both copper and aluminium cables.
1-cable connectors for Compact NSX100 to 250
The connectors snap directly on to the device terminals or are secured by clips to right-angle and straight terminal extensions as well as spreaders.
1-cable connectors for Compact NSX400 to 630
The connectors are screwed directly to the device terminals.
2-cable connectors for Compact NSX100 to 250 and 400/630
The connectors are screwed to device terminals or right-angle terminal extensions.
Distribution connectors for Compact NSX100 to 250
These connectors are screwed directly to device terminals. Interphase barriers are supplied with distribution connectors, but may be replaced by long terminal shields. Each connector can receive six cables with cross-sectional areas ranging from 1.5 to $35 \mathrm{~mm}^{2}$ each.
Polybloc distribution block for Compact NSX100 to 630
Polybloc connects directly to device terminals.
It is used to connect up to six or nine flexible or rigid cables with cross-sectional areas not exceeding $10 \mathrm{~mm}^{2}$ or $16 \mathrm{~mm}^{2}$, to each pole.
Connection is made to spring terminals without screws.
Maximum size of cables depending on the type of connector

Compact NSX circuit breaker		100/160	250	400	630
Steel connectors	1.5 to $95 \mathrm{~mm}^{2}$	■			
Aluminium connectors	25 to $95 \mathrm{~mm}^{2}$	\square	■		
	120 to $185 \mathrm{~mm}^{2}$	\square	\square		
	2 cables 50 to $120 \mathrm{~mm}^{2}$	\square	\square		
	2 cables 35 to $240 \mathrm{~mm}^{2}$			■	\square
	35 to $300 \mathrm{~mm}^{2}$			■	\square
Distribution connectors	6 cables $35 \mathrm{~mm}^{2}$	■	■		
Polybloc distribution blocks	6 or 9 cables 10/16 mm ${ }^{2}$	\square	\square		

Rear connection

Device mounting on a backplate with suitable holes enables rear connection.

Bars or cables with lugs

Rear connections for bars or cables with lugs are available in two lengths. Bars may be positioned flat, on edge or at 45° angles depending on how the rear connections are positioned.
The rear connections are simply fitted to the device connection terminals. All combinations of rear connection lengths and positions are possible on a given

Bare cables

For the connection of bare cables, the 1-cable connectors for Compact NSX100 to 250 may be secured to the rear connections using clips.
device.

Connection of bare cables to NSX100 to 250 .

Functions
and characteristics

Accessories and auxiliaries

 Connection of withdrawable and plug-in devicesConnection is identical for both withdrawable and plugin versions. The same accessories as for fixed devices may be used.

Bars or cables with lugs

The plug-in base is equipped with terminals which, depending on their orientation, serve for front and rear connection.
For rear connection of a base mounted on a backplate, the terminals must be replaced by insulated, long right-angle terminal extensions.
For Compact NSX630 devices, connection most often requires the 52.5 or 70 mm pitch spreaders.

Front connection.

Front connection with spreaders.

Rear connection of a base mounted on a backplate.

Connection accessories

All accessories for fixed devices (bars, lugs, terminal extensions and spreaders) may be used with the plug-in base (see pages A-70, A-71).

Bare cables

All terminals may be equipped with bare-cable connectors. See the "Connection of fixed devices" section.

With a 100 to 250 A base

With a 400/630 A base.

Adapter for plug-in base

The adapter is a plastic component for the 100 to 250 base and the 400/630 base that enables use of all the connection accessories of the fixed device.
It is required for interphase barriers and the long and short terminal shields.

Adapter for 100 to 250 A - 3P base.
Connection with bars or cables with lugs.

Adapter for 400/630 A - 4P base. Connection with spreaders and interphase barriers.

Insulation of live parts

Terminal shields are identical for fixed and plug-in/withdrawable versions and cover all applications up to 1000 V .
They exist for the 100 to 250 A and 400/630 A ratings, in long and short versions.

Long terminal shields.

1 Partially cut removable squares.
2 Grids with break marks.

Assembled with captive screws.

Terminal shields

Insulating accessories used for protection against direct contact with power circuits. They provide IP40 degree of protection and IK07 mechanical impact protection.

Terminal-shield types

Compact NSX100 to 250 and NSX400/630 3P or 4P can be equipped with:
■ short terminal shields

- long terminal shields.

All terminal shields have holes or knock-outs in front for voltage-presence indicators.

Short terminal shields

They are used with:

- plug-in and withdrawable versions in all connection configurations
- fixed versions with rear connection.

Long terminal shields

They are used for front connection with cables or insulated bars.
They comprise two parts assembled with captive screws, forming an IP40 cover.

- The top part is equipped with sliding grids with break marks for precise adaptation
to cables or insulated bars.
- The rear part completely blocks off the connection zone. Partially cut squares can be removed to adapt to all types of connection for cables with lugs or copper bars.
Long terminal shields may be mounted upstream and downstream of:
- fixed devices

■ the base of plug-in and withdrawable versions, thus completing the insulation provided by the mandatory short terminal shields on the device
■ the one-piece spreader for NSX100 to 250
■ the 52.5 mm spreaders for NSX400/630.
Terminal shields and pitch
Combination possibilities are shown below.

Circuit breaker	NSX100/160/250	NSX400/630	
Short terminal shields	35	45	
Pitch (mm) Long terminal shields	35	45	52.5
Pitch (mm)			

Interphase barriers

Safety accessories for maximum insulation at the power-connection points:

- they clip easily onto the circuit breaker
- single version for fixed devices and adapters on plug-in bases
- not compatible with terminal shields
- the adapter for the plug-in base is required for mounting on plug-in and withdrawable versions.

Rear insulating screens

Safety accessories providing insulation at the rear of the device.
Their use is mandatory for devices with spreaders, installed on backplates, when terminal shields are not used.
The available screen dimensions are shown below.

Circuit breaker		NSX100/160/250	NSX400/630
3 P	$\mathrm{W} \times \mathrm{H} \times$ thickness (mm)	$140 \times 105 \times 1$	$203 \times 175 \times 1.5$
4 P	$\mathrm{W} \times \mathrm{H} \times$ thickness (mm)	$175 \times 105 \times 1$	$275 \times 175 \times 1.5$

Accessories and auxiliaries

Selection of auxiliaries
for Compact NSX100/160/250

Standard

All Compact NSX100/160/250 circuit breakers and switch-disconnectors have slots for the electrical auxiliaries listed below.
5 indication contacts (see page A-80)
■ 2 ON/OFF (OF1 and OF2)

- 1 trip indication (SD)
- 1 fault-trip indication (SDE)
- 1 earth-fault indication (SDV), when the device is equipped with a Vigi module.

1 remote-tripping release (see page A-83)
■ either 1 MN undervoltage release
■ or 1 MX shunt release.

Remote indications

Circuit breakers equipped with Micrologic trip units may be equipped with a fault-trip indication to identify the type of fault by installing:
1 indication module with two outputs (see page A-81)
■ either an SDx module with Micrologic 2.2 / 5.2 A or E/6.2 A or E
■ or an SDTAM module with Micrologic 2.2 M or 6-2 E-M (motor protection).
This module occupies the slots of one OF contact and an MN/MX release.

All these auxiliaries may be installed with a motor mechanism or a rotary handle.
The following table indicates auxiliary possibilities depending on the type of trip unit.

NA, TMD, TMG, MA
Standard

Micrologic 2 / 5 / 6

Standard
Remote indications via SDx or SDTAM

The SDx or SDTAM uses the OF1 and MN/MX slots. External connection is made via a terminal block in the OF1 slot
The 24 V DC supply provides for the Micrologic 5/ 6 display when the device is OFF or under low-load conditions.

Communication

Communication requires specific auxiliaries (see page A-26).

Communication of status indications

1 BSCM module.

- 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the BSCM.
Communication of status conditions is compatible with a standard motor mechanism and a rotary handle.
Communication of status indications and controls
This requires, in addition to the previous auxiliaries:
- 1 communicating motor mechanism connected to the BSCM.

Communication of measurements

Available on Micrologic 5 / 6, the system consists of:

- 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the Micrologic.
Communication of measurements is compatible with a standard or communicating motor mechanism and a rotary handle.
Communication of status indications, controls and measurements
Available on Micrologic 5/6, the system consists of:
- 1 BSCM module

■ 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the BSCM and the Micrologic
■ 1 communicating motor mechanism connected to the BSCM.

Installation of SDx or SDTAM is compatible with communication.
The following table indicates auxiliary possibilities depending on the type of trip unit.

NA, TMD, TMG, MA, Micrologic 2
Communication of status indications

Communication of status indications and controls

Accessories and auxiliaries

Selection of auxiliaries
for Compact NSX400/630

Standard

All Compact NSX400/630 circuit breakers and switch-disconnectors have slots for the electrical auxiliaries listed below.
7 indication contacts (see page A-80)
■ 4 ON/OFF (OF1, OF2, OF3, OF4)

- 1 trip indication (SD)
- 1 fault-trip indication (SDE)
- 1 earth-fault indication (SDV), when the device is equipped with a Vigi module.

1 remote-tripping release (see page A-83)
■ either 1 MN undervoltage release
■ or 1 MX shunt release.

Remote indications

Circuit breakers equipped with Micrologic trip units may be equipped with a fault-trip indication to identify the type of fault by installing:
1 indication module with two outputs (see page A-81)
■ either an SDx module with Micrologic 2.2 / 5.2 A or E/6.2 A or E
■ or an SDTAM module with Micrologic 2.2 M or 6-2 E-M (motor protection).
This module occupies the slots of an MN/MX release.

All these auxiliaries may be installed with a motor mechanism or a rotary
handle.
The following table indicates auxiliary possibilities depending on the type of trip unit.

NA, Micrologic 1.3 M
Standard

Micrologic 2/5/6
Standard

The SDx or SDTAM uses the reserved slot and the MN/MX slots.
External connection is made via a terminal block in the reserved slot.
The 24 V DC supply provides for the Micrologic 5 / 6 display when the device is OFF or under low-load conditions.

Communication

Communication requires specific auxiliaries (see page A-26).

Communication of status indications

- 1 BSCM module
- 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the BSCM
Communication of status conditions is compatible with a standard motor mechanism and a rotary handle.
Communication of status indications and controls
This requires, in addition to the previous auxiliaries:
- 1 communicating motor mechanism connected to the BSCM.

Communication of measurements

Available on Micrologic 5 / 6, the system consists of:

- 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the Micrologic.
Communication of measurements is compatible with a standard or communicating motor mechanism and a rotary handle.
Communication of status indications, controls and measurements
Available on Micrologic 5 / 6, the system consists of:
- 1 BSCM module

■ 1 NSX cord (internal terminal block) for both communication and 24 V DC supply to the BSCM and the Micrologic
■ 1 communicating motor mechanism connected to the BSCM.

Installation of SDx or SDTAM is compatible with communication.
The following table indicates auxiliary possibilities depending on the type of trip unit.

NA, Micrologic 1.3 M, Micrologic 2
Communication of status indications Communication of status indications and controls

Micrologic 5 / 6

Communication of status indications

Communication of status indications, controls and measurements with or without FDM121 display

Accessories and auxiliaries
 Connection of electrical auxiliaries

Fixed Compact NSX.

Plug-in/withdrawable Compact NSX.

Withdrawable Compact NSX

Manual auxiliary connectors

As an option to the automatic auxiliary connectors, withdrawable circuit breakers may be equipped with one to three plugs with nine wires each. In "disconnected" position, the auxiliaries remain connected. They can then be tested by operating the device.

Nine-wire manual auxiliary
connector. connector.

Each auxiliary is equipped with a terminal block with numbered terminals for connection of wires up to:

- $1.5 \mathrm{~mm}^{2}$ for auxiliary contacts and voltage releases
- $2.5 \mathrm{~mm}^{2}$ for the motor-mechanism module.

Circuit breaker	Connector 1		Connector 2	Connector 3
	OF1 MN/MX SD	SDx/ SDTAM	```OF2/SDV / ZSI out (1) SDE NSX cord MT MTc 24 V DC```	OF3 OF4 ZSI in ZSI out
NSX100/160/250	\square		\square	-
NSX400/630	\square		\square	\square

[^21]MT: motor mechanism.
MTc: communicating motor mechanism.

Connector 1
Connector 2
Connector 3

Accessories and auxiliaries

Indication contacts

One contact model provides circuit-breaker status indications (OF - SD - SDE - SDV).
An early-make or early-break contact, in conjunction with a rotary handle, can be used to anticipate device opening or closing.
ACE / CD contact indicates that the chassis is connected / disconnected.

Indication contacts.

CE/CD carriage switches.

These common-point changeover contacts provide remote circuit-breaker status information.
They can be used for indications, electrical locking, relaying, etc.
They comply with the IEC 60947-5 international recommendation.

Functions

Breaker-status indications, during normal operation or after a fault
A single type of contact provides all the different indication functions:
■ OF (ON/OFF) indicates the position of the circuit breaker contacts
■ SD (trip indication) indicates that the circuit breaker has tripped due to:

- an overload
\square a short-circuit
\square an earth fault (Vigi) or a ground fault (Micrologic 6)
\square operation of a voltage release
- operation of the "push to trip" button
\square disconnection when the device is ON.
The SD contact returns to de-energised state when the circuit breaker is reset.
■ SDE (fault-trip indication) indicates that the circuit breaker has tripped due to:
\square an overload
\square a short-circuit
\square an earth fault (Vigi) or a ground fault (Micrologic 6).
The SD contact returns to de-energised state when the circuit breaker is reset.
■ SDV indicates that the circuit breaker has tripped due to an earth fault. It returns to de-energised state when the Vigi module is reset.
All the above auxiliary contacts are also available in "low-level" versions capable of switching very low loads (e.g. for the control of PLCs or electronic circuits).

Rotary-handle position contact for early-make or early-break functions

■ CAM (early-make or early-break function) contacts indicate the position of the rotary handle.
They are used in particular for advanced opening of safety trip devices (early break) or to energise a control device prior to circuit-breaker closing (early make).
Chassis-position contacts
■ CE/CD (connected/disconnected) contacts are microswitch-type carriage switches for withdrawable circuit breakers.

Installation

■ OF, SD, SDE and SDV functions: a single type of contact provides all these different indication functions, depending on where it is inserted in the device. The contacts clip into slots behind the front cover of the circuit breaker (or the Vigi module for the SDV function).
The SDE function on a Compact NSX100-250 A equipped with a magnetic, thermalmagnetic or Micrologic 2 trip unit requires the SDE actuator.

- CAM function: the contact fits into the rotary-handle unit (direct or extended).

■ CE/CD function: the contacts clip into the fixed part of the chassis.

Electrical characteristics of auxiliary contacts

Contacts			Standard				Low level			
Types of contacts Rated thermal current (A)			$\begin{array}{\|l} \text { All } \\ 6 \end{array}$				OF, SD, SDE, SDV 5			
Minimum load			100 mA at 24 V DC				1 mA at 4 V DC			
Utilisation cat. (IEC 60947-5-1)			AC12	AC15	DC12	DC14	AC12	AC15	DC12	DC14
Operational current (A)	24 V	AC/DC	6	6	6	1	5	3	5	1
	48 V	AC/DC	6	6	2.5	0.2	5	3	2.5	0.2
	110 V	AC/DC	6	5	0.6	0.05	5	2.5	0.6	0.05
	220/240 V	AC	6	4	-	-	5	2	-	-
	250 V	DC	-	-	0.3	0.03	5	-	0.3	0.03
	$380 / 440 \mathrm{~V}$		6	2	-	-	5	1.5	-	-
	480 V	AC	6	1.5	-	-	5	1	-	-
	660/690 V	AC	6	0.1	-	-	-	-	-	-

SDx and SDTAM modules for Micrologic

SDx and SDTAM are relay modules with two static outputs. They send different signals depending on the type of fault. They may not be used together.

SDx relay module with its terminal block

SDTAM relay module with its terminal block.

SDx module

The SDx module remotes the trip or alarm conditions of Compact NSX circuit breakers equipped with electronic protection.
The SD2 output, available on all Micrologic trip units, corresponds to the overloadtrip indication.
The SD4 output, available on Micrologic 5/6, is assigned to:
■ overload pre-alarm (Micrologic 5)

- ground-fault trip indication (Micrologic 6)

These two outputs automatically reset when the device is closed (turned ON), For Micrologic 5 / 6, the SD2 and SD4 outputs can be reprogrammed to be assigned to other types of tripping or alarm.

Output characteristics

It is possible to assign a function:

- latching with a time delay. Return to the initial state occurs at the end of the time delay
- permanent latching. In this case, return to the initial state takes place via the communication function.
Static outputs: 24 to 415 V AC / V DC; 80 mA max.

SDTAM module

The SDTAM module is specifically for the motor-protection Micrologic trip units 2.2 M, 2.3 M and 6.2 E-M, 6.3 E-M.

The SDTAM module, linked to the contactor controller, opens the contactor when an overload or other motor fault occurs, thus avoiding opening of the circuit breaker.

Micrologic 2 M

The SD4 output opens the contactor 400 ms before normal circuit-breaker opening in the following cases:
■ overload (long-time protection for the trip class)

- phase unbalance or phase loss.

The SD2 output serves to memorise contactor opening by SDTAM.

Micrologic 6 E-M

The SD4 output opens the contactor 400 ms before normal circuit-breaker opening in the following cases:
■ overload (long-time protection for the trip class)

- phase unbalance or phase loss
- locked rotor
- underload (undercurrent protection)
- long start.

The SD2 output serves to memorise contactor opening by SDTAM.

Output characteristics

Output reset can be:
■ manual by a pushbutton included in the wiring diagram

- automatic after an adjustable time delay (1 to 15 minutes) to take into account the motor-cooling time.
Static outputs: 24 to 415 V AC / V DC; 80 mA max.

SDx wiring diagram.

SDTAM wiring diagram with contactor control.

Accessories and auxiliaries Motor mechanism

Compact NSX250 with motor mechanism.

1 Position indicator positive contact indication)
2 Spring status indicator (charged, discharged)
3 Manual spring-charging lever
4 Keylock device (optional)
Locking device (OFF position), using 1 to 3 padlocks, shackle diameter 5 to 8 mm , not supplied
5 I (ON) pushbutton
6 O (OFF) pushbutton
7 Manual/auto mode selection switch. The position of this switch can be indicated remotely.
8 Operation counter (Compact NSX400/630)

When equipped with a motor-mechanism module, Compact NSX circuit breakers feature very high mechanical endurance as well as easy and sure operation:

- all circuit-breaker indications and information remain visible and accessible,
including trip-unit settings and indications
- suitability for isolation is maintained and padlocking remains possible
- double insulation of the front face.

A specific motor mechanism is required for operation via the communication function. This communicating motor mechanism must be connected to the BSCM module to receive the opening and closing orders. Operation is identical to that of a standard motor mechanism.

Applications

■ Local motor-driven operation, centralised operation, automatic distribution control.

- Normal/standby source changeover or switching to a replacement source to ensure availability or optimise energy costs.
■ Load shedding and reconnection.
- Synchrocoupling.

Operation

The type of operation is selected using the manual/auto mode selection switch (7). A transparent, lead-seal cover controls access to the switch.

Automatic

When the switch is in the "auto" position, the ON/OFF (I/O) buttons and the charging lever on the mechanism are locked.
■ Circuit-breaker ON and OFF controlled by two impulse-type or maintained signals.

- Automatic spring charging following voluntary tripping (by MN or MX), with
standard wiring.
■ Mandatory manual reset following tripping due to an electrical fault.

Manual

When the switch is in the "manual" position, the ON/OFF (I/O) buttons may be used.
A microswitch linked to the manual position can remote the information.

- Circuit-breaker ON and OFF controlled by 2 pushbuttons I/O.

■ Recharging of stored-energy system by pumping the lever 8 times.
■ Padlocking in OFF position.

Installation and connections

All installation (fixed, plug-in/withdrawable) and connection possibilities are maintained.
Motor-mechanism module connections are made behind its front cover to integrated terminals, for cables up to $2.5 \mathrm{~mm}^{2}$.

Optional accessories

■ Keylock for locking in OFF position.

- Operations counter for the Compact NSX400/630, indicating the number of ON/ OFF cycles. Must be installed on the front of the motor-mechanism module.

Characteristics

Motor mechanism			MT100 to MT630
Response time (ms)	opening closing		$\begin{aligned} & <600 \\ & <80 \\ & \hline \end{aligned}$
Operating frequency	cycles/minute max.		4
Control voltage (V)	$\frac{D C}{A C} 50 / 60 \mathrm{~Hz}$		24/30-48/60-110/130-250
			$\begin{aligned} & \hline 48(50 \mathrm{~Hz})-110 / 130- \\ & 220 / 240-380 / 440 \\ & \hline \end{aligned}$
Consumption ${ }^{(1)}$	DC (W)	opening	$\leqslant 500$
		closing	$\leqslant 500$
	AC (VA)	opening	$\leqslant 500$
		closing	$\leqslant 500$

(1) For NSX100 to NSX250, the inrush current is 2 In for 10 ms .

Electrical endurance

Circuit breaker + motor mechanism module, in thousands of operations (IEC 60947 2), at 440 V .

Remote tripping

$M X$ or $M N$ voltage release.

Opening conditions of the MN release.

MN release with a time-delay unit.

Opening conditions of the MX release.

Note: circuit breaker opening using an MN or MX release must be reserved for safety functions. This type of tripping increases wear on the opening mechanism. Repeated use reduces the mechanical endurance of the circuit breaker by 50 \%.

MX or MN voltage releases are used to trip the circuit breaker. They serve primarily for remote, emergency-off commands.
It is advised to test the system every six months.

MN undervoltage release

The MN release opens the circuit breaker when its supply voltage drops to a value below 35\% of its rated voltage Un.
Undervoltage tripping, combined with an emergency-off button, provides fail-safe tripping. The MN release is continuously supplied, i.e. if supply is interrupted:
■ either voluntarily, by the emergency-off button,
■ or accidentally, through loss of power or faulty wiring,
the release provokes opening of the circuit breaker.

Opening conditions

Circuit-breaker tripping by an MN release meets the requirements of standard IEC 60947-2.

- Automatic opening of the circuit breaker is ensured when the continuous voltage supply to the release $\mathrm{U} \leqslant 0.35 \times \mathrm{Un}$.
- If the supply voltage is between 0.35 and 0.7 Un, opening is possible, but not guaranteed. Above 0.7 Un, opening does not take place.

Closing conditions

If there is no supply to the MN release, it is impossible to close the circuit breaker, either manually or electrically. Closing is ensured when the voltage supply to the release $U \geqslant 0.85 \times$ Un. Below this threshold, closing is not guaranteed.
Characteristics

Power supply	VAC	$\frac{50}{} \mathbf{5 0 / 6 0 \mathrm { Hz } : 2 4 - 4 8 - 1 0 0 / 1 3 0 - 2 0 0 / 2 4 0}$
		$50 \mathrm{~Hz}: 380 / 415 \quad 60 \mathrm{~Hz}: 208 / 277$
Operating threshold	Opening	$12-24-30-48-60-125-250$
	Closing	0.35 to 0.7 Un
Operating range		0.85 Un
Consumption (VA or W)		Pick-up: 30 - Hold: 5
Response time (ms)		50

Time-delay unit for an MN release

A time delay unit for the MN release eliminates the risk of nuisance tripping due to a transient voltage dip lasting $\leqslant 200 \mathrm{~ms}$. For shorter micro-outages, a system of capacitors provides temporary supply to the MN at $\mathrm{U}>0.7$ to ensure non tripping. The correspondence between MN releases and time-delay units is shown below.

Power supply	Corresponding MN release
Unit with fixed delay 200 ms	
48 VAC	48 V DC
$220 / 240$ V AC	250 V DC
Unit with adjustable delay $\leqslant 200 \mathrm{~ms}$	
48-60 V AC/DC	48 V DC
100-130 V AC/DC	125 V DC
220-250 V AC/DC	250 V DC

MX shunt release

The MX release opens the circuit breaker via an impulse-type ($\geqslant 20 \mathrm{~ms}$) or maintained order.

Opening conditions

When the MX release is supplied, it automatically opens the circuit breaker. Opening is ensured for a voltage $U \geqslant 0.7 \times U n$.

Characteristics

Power supply	VAC	$\frac{50 / 60 \mathrm{~Hz}: 24-48-100 / 130-200 / 240}{50 \mathrm{~Hz}: 380 / 415 \quad 60 \mathrm{~Hz}: 208 / 277}$
	VDC	$12-24-30-48-60-125-250$
Operating range		0.7 to 1.1 Un
Consumption (VA or W)		Pick-up: 30
Response time $(\mathrm{ms}$)	50	

Circuit breaker control by MN or MX

When the circuit breaker has been tripped by an MN or MX release, it must be rese before it can be reclosed.
MN or MX tripping takes priority over manual closing
In the presence of a standing trip order, closing of the contacts, even temporary, is not possible.
Connection using wires up to $1.5 \mathrm{~mm}^{2}$ to integrated terminal blocks.

Accessories and auxiliaries

There are two types of rotary handle:
\square direct rotary handle
■ extended rotary handle
There are two models:
■ standard with a black handle
■ red handle and yellow front for machine-tool control.

Compact NSX with a rotary handle.

Compact NSX with an MCC rotary handle.

Compact NSX with a CNOMO machine-tool rotary handle.

Compact NSX with an extended rotary handle installed at the back of a switchboard, with the keylock option and key.

Direct rotary handle

Standard handle

Degree of protection IP40, IK07.
The direct rotary handle maintains:

- visibility of and access to trip-unit settings
- suitability for isolation
- indication of the three positions O (OFF), I (ON) and tripped

■ access to the "push to trip" button.
Device locking
The rotary handle facilitates circuit-breaker locking.

- Padlocking:

ㅁ standard situation, in the OFF position, using 1 to 3 padlocks, shackle diameter 5
to 8 mm , not supplied
\square with a simple modification, in the ON and OFF positions. Locking in the ON position does not prevent free circuit-breaker tripping if a fault occurs. In this case, the handle remains the ON position after the circuit breaker tripping. Unlocking is required to go to the tripped then the OFF position.

- Keylock (and padlock)

It is possible to install a Ronis or Profalux keylock (optional) on the base of the handle to obtain the same functions as with a padlock.
Early-make or early-break contacts (optional)
Early-make and/or early-break contacts may be used with the rotary handle. It is thus possible to:
■ supply an MN undervoltage release before the circuit breaker closes
■ open the contactor control circuit before the circuit breaker opens.

MCC switchboard control

Control of an MCC switchboard is achieved by adding a kit to the standard handle. In addition to the standard functions, the kit offers the characteristics listed below.

Higher degree of protection IP

Degree of protection IP43, IK07.
The IP is increased by a built-in gasket.

Door locking depending on device position

■ The door cannot be opened if the circuit breaker is ON or in the tripped position. For exceptional situations, door locking can be temporarily disabled with a tool to open the door when the circuit breaker is closed. This operation is not possible if the handle is locked by a padlock.

- Circuit-breaker closing is disabled if the door is open. This function can be deactivated.

Machine-tool control in compliance with CNOMO

Control of a machine-tool is achieved by adding a kit to the standard handle. In addition to the standard functions, the kit offers the characteristics listed below.
Enhanced waterproofness and mechanical protection

- Degree of protection IP54, IK08.

■ Compliance with CNOMO E03.81.501N.

Extended rotary handle

Degree of protection IP56, IK08.
The extended rotary handle makes it possible to operate circuit breakers installed at the back of switchboards, from the switchboard front.
It maintains:

- visibility of and access to trip-unit settings
- suitability for isolation
- indication of the three positions O (OFF), I (ON) and tripped.

Mechanical door locking when device closed
A standard feature of the extended rotary handle is a locking function, built into the shaft, that disables door opening when the circuit breaker is in the ON or tripped positions.
Door locking can be temporarily disabled with a tool to open the door without opening the circuit breaker. This operation is not possible if the handle is locked by a padlock.
Voluntary disabling of mechanical door locking
A modification to the handle, that can be carried out on site, completely disables door locking, including when a padlock is installed on the handle. The modification is reversible.
When a number of extended rotary handles are installed on a door, this disabling function is the means to ensure door locking by a single device.

Extended rotary handle (cont.)

Device and door padlocking

Padlocking locks the circuit-breaker handle and disables door opening:
■ standard situation, in the OFF position, using 1 to 3 padlocks, shackle diameter 5
to 8 mm , not supplied
\square with a simple modification, in the ON and OFF positions. Locking in the ON position does not prevent free circuit-breaker tripping if a fault occurs.
In this case, the handle remains in the ON position after the circuit breaker tripping Unlocking is required to go to the tripped then the OFF position.
If the door controls were modified to voluntarily disable door locking, padlocking does not lock the door, but does disable handle operation of the device.

Device locking using a keylock inside the switchboard

It is possible to install a Ronis or Profalux keylock (optional) on the base of the rotary handle to lock the device in the OFF position or in either the ON or OFF positions.

Accessory for device operation with the door open

When the device is equipped with an extended rotary handle, a control accessory mounted on the shaft makes it possible to operate the device with the door open.
■ The device can be padlocked in the OFF position.

- The accessory complies with UL508.

Early-make or early-break contacts (optional)
The extended rotary handle offers the same possibilities with early-make and/or early-break contacts as the standard rotary handle.

Parts of the extended rotary handles

■ A unit that replaces the front cover of the circuit breaker (secured by screws).

- An assembly (handle and front plate) on the door that is always secured in the same position, whether the circuit breaker is installed vertically or horizontally ■ An extension shaft that must be adjusted to the distance. The min/max distance between the back of circuit breaker and door is:
- $185 \ldots 600 \mathrm{~mm}$ for Compact NSX100 to 250 - 209... 600 mm for Compact NS400/630.

For withdrawable devices, the extended rotary handle is also available with a telescopic shaft to compensate for device disconnection. In this case, the min/max distances are:

- 248... 600 mm for Compact NSX100 to 250
- 272... 600 mm for Compact NS400/630.

Manual source-changeover systems

An additional accessory interlocks two devices with rotary handles to create a source-changeover system. Closing of one device is possible only if the second is open
This function is compatible with direct or extended rotary handles. Up to three padlocks can be used to lock in the OFF or ON position.

Voltage-presence indicator.

Compact NSX with current-transformer module.

Compact NSX with ammeter module.

Voltage-presence indicator

The indicator detects and indicates that circuit breaker terminals are supplied with power.

Installation

- Mounted in the long or short terminal shields, via the knockouts.
- May be positioned upstream or downstream of the circuit breaker.

■ Degree of protection IP40, IK04.
■ Not compatible with the motor-mechanism module.
Electrical characteristics
Operates on all networks with voltages ranging from 220 to 550 V AC.

Current-transformer module

This module enables direct connection of a measurement device such as an ammeter or a power meter.

Installation

- The module is installed directly on the downstream circuit-breaker terminals.
- Degree of protection IP40, IK04.

■ Class II insulation between front and the power circuits.

- Connection to 6 integrated connectors for cables up to $2.5 \mathrm{~mm}^{2}$.

Electrical characteristics

- Current transformer with 5 A secondary winding.

■ Class 3 for the following output-power consumptions:
Accuracy:

- 100 A rating: 1.6 VA
- 150 A rating: 3 VA
- 250 A rating: 5 VA
- 400/600 A rating: 8 VA.

Current-transformer module with voltage measurement outputs

This module enables direct connection of a digital measurement device such as a Power Meter PM700, PM800, etc. (not supplied).

Installation

- The module is installed directly on the downstream circuit-breaker terminals.

■ Degree of protection IP40, IK04.
■ Class II insulation between front and the power circuits.
■ Built-in connectors for cables from 1.5 to $2.5 \mathrm{~mm}^{2}$.

Electrical characteristics

■ Rated operational voltage Ue: 530 V
■ Frequencies of measured values: $50 \ldots 60 \mathrm{~Hz}$

- Three CTs with 5 A secondary windings for the rated primary current In:
- class 0.5 to 1 for rated power consumption values at the output:
- 125 A, 150 A and 250 A ratings: class 1 for 1.1 VA
- 400/600 A rating: class 0.5 for 2 VA
- Connection using a 2.5 mm 2 cable up to 2.5 m long.

■ Four voltage measurement outputs including protection with automatic reset.
ㅁ voltage measurement output impedance $3500 \Omega \pm 25 \%$, maximum current 1 mA \square The voltage measurement outputs are intended only for measurements (1 mA max.) and may not be used to supply the display.

Ammeter and Imax ammeter modules

Ammeter module

Measures and displays (dial-type ammeter) the current of each phase (selection of phases by 3-position switch in front).

Imax ammeter module

Measures and displays (dial-type ammeter) the maximum current flowing in the middle phase. The Imax value can be reset on the front.

Installation

- Identical for both types of ammeter module.
- The module is installed directly on the downstream circuit-breaker terminals.

■ The ammeter clips into the module in any of four 90° positions, i.e. it can be
installed of devices mounted both vertically and horizontally.
■ Degree of protection IP40, IK04.
■ Class II insulation between front and the power circuits.

Electrical characteristics

- Ammeter module: accuracy class 4.5
- Imax ammeter module: accuracy $\pm 6 \%$

■ Maximum currents are displayed only if they last $\geqslant 15$ minutes.

Insulation monitoring module

This module detects and indicates an insulation drop on a load circuit (TN-S or TT systems).
Operation is identical to that of a Vigi module, but without circuit-breaker tripping. Indication by a red LED in front.
An auxiliary contact may be installed for remote insulation-drop indications. When insulation drops below a minimum, user-set threshold, the LED goes on and the auxiliary contact switches. The fault indication cannot be cancelled except by pressing the manual reset button.

Installation

■ The module is installed directly on the downstream circuit-breaker terminals.

- Degree of protection IP40, IK04.

■ Double insulation of the front face.

Electrical characteristics

■ Settings: 100-200-500-1000 mA
■ Accuracy: -50 +0 \%

- Time delay following insulation drop: 5 to 10 seconds
- AC-system voltage: 200 to 440 V AC.

Locking in the OFF position guarantees isolation as per IEC 60947-2. Padlocking systems can receive up to three padlocks with shackle diameters ranging from 5 to 8 mm (padlocks not supplied). Certain locking systems require an additional accessory.

Control device	Function	Means	Required accessories
Toggle	Lock in OFF position	Padlock	Removable device
	Lock in OFF or ON position	Padlock	Fixed device
$\begin{array}{l}\text { Direct rotary } \\ \text { handle }\end{array}$ Standard MCC CNOMO	Lock in - OFF position - OFF or ON position ${ }^{(1)}$	Padlock	-
		Keylock	Locking device + keylock
	Lock in - OFF position - OFF or ON position ${ }^{(1)}$	Padlock	-
	Lock in - OFF position - OFF or ON position ${ }^{(1)}$	Padlock	-
Extended rotary handle	Lock in - OFF position - OFF or ON position (1) with door opening prevented ${ }^{(2)}$	Padlock	-
	Lock in OFF position	Padlock	UL508 control accessory
	- OFF or ON position ${ }^{(1)}$ inside the switchboard	Keylock	Locking device + keylock
Motor mechanism	Lock in OFF position remote operation disabled	Padlock	-
		Keylock	Locking device + keylock
Withdrawable circuit breaker	Lock in disconnected position	Padlock	-
		Keylock	Locking device + keylock
	- connected position	Keylock	Locking device + keylock

(1) Following a simple modification of the mechanism.
(2) Unless door locking has been voluntarily disabled.

Rotary-handle locking using a padlock or a keylock.

Motor-mechanism locking using a padlock or a keylock.

Sealing accessories

Identification accessories.

Sealing accessories

Outgoing-circuit identification

Compact NSX100 to 630 can be equipped with label holders supplied in sets of ten (cat. no. LV429226).
They are compatible with escutcheons.

Sealing accessories

Sealing accessories are available. Each bag of accessories contains all the parts required for the types of sealing indicated below.
A bag contains:
■ 6 sealing accessories

- 6 lead seals
- 0.5 m of wire
- 2 screws.

Types of seals and corresponding functions

Toggle control

Accessories and auxiliaries
 Individual enclosures

IP55 heavy-duty metal enclosure.

IP55 heavy-duty insulating enclosure.

Individual enclosures are available for Compact/Vigicompact NSX devices with two, three or four poles.
All fixed, front connections are possible, except right-angle, 45°, double-L and edgewise terminal extensions.
All spreaders may be installed in the enclosures intended for Compact/Vigicompact
NSX250 to 630 devices, except the 70 mm spreaders for NSX400/630.

Two models of enclosures

■ IP55 heavy-duty metal individual enclosure, with:
\square metal enclosure

- door with keylock and cut-out for rotary handle
\square extended rotary handle, IP56, IK08, black or red/yellow
\square device mounting plate
- removable plate (without holes) for cable entry through bottom.

■ IP55 heavy-duty insulating individual enclosure, with:

- polyester insulating enclosure
- transparent cover, screwed, lead sealable, with cut-out for extended rotary handle

ㅁ extended rotary handle, IP56, IK08, black or red/yellow
\square device mounting plate
$\square 2$ removable plates (without holes) for cable entry through bottom and/or top.

Dimensions ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$ in mm)
■ Metal enclosures:
\square Compact NSX100/160 $450 \times 350 \times 250$

- Compact NSX250 and Vigicompact NSX100 to 250
- Compact NSX400
- Compact NSX630 and Vigicompact NSX400/630
$650 \times 350 \times 250$
$650 \times 350 \times 250$
$850 \times 350 \times 250$
■ Insulating enclosures:
- Compact NSX100/160
$360 \times 270 \times 235$
\square Compact NSX250 and Vigicompact NSX100/160 $540 \times 270 \times 235$
- Compact NSX400/630
$720 \times 360 \times 235$
- Vigicompact NSX250/630
$720 \times 360 \times 235$

Escutcheons and protection collars

Escutcheons are an optional feature mounted on the switchboard door. They increase the degree of protection to IP40, IK07. Protection collars maintain the degree of protection, whatever the position of the device (connected, disconnected).

IP30 escutcheon.

IP30 escutcheon with access to the trip unit.

IP30 or IP40 escutcheons for fixed devices

IP30
The three types are glued to the cut-out in the front door of the switchboard
■ escutcheon for all control types (toggle, rotary handle or motor mechanism)

- without access to the trip unit
\square with access to the trip unit
■ for Vigi modules, can be combined with the above.

IP40

The four types, with a gasket, are screwed to the door cut-out:
■ three escutcheons identical to the previous, but IP40

- a wide model for Vigi and ammeter modules that can be combined with the above.

Escutcheon for toggle without and with access to the trip unit.

Escutcheon for Vigi module.

Wide escutcheon for ammeter

IP40 escutcheons for withdrawable devices

IP40 for withdrawable devices

The two types, with a gasket, are screwed to the door cut-out:
■ for rotary handle or motor mechanism: standard IP40 escutcheon
■ for toggle with extension: standard escutcheon + collar for withdrawal.

Escutcheon with collar for toggle.

Escutcheon for Vigi module.

Toggle cover.

Standard escutcheon with rotary handle.

Standard escutcheon for motor mechanism.

Standard escutcheon with collar for withdrawal, for toggle.

IP40 for Vigi module on withdrawable devices
The two types, with a gasket, are screwed to the door cut-out:
■ for rotary handle or motor mechanism: standard IP40 escutcheon
■ for toggle: standard escutcheon + collar for withdrawal.

Escutcheon for Vigi module, with escutcheons for the three types of control.

IP43 toggle cover

Available only for devices with toggles. Fits over toggle and front cover of the device ■ Mounted on the front of the circuit breaker.

- Degree of protection IP43, IK07.

Toggle cover.

Retrofit front covers

These replacement front covers make it possible to install NSX devices in existing switchboards containing NS devices by installing the NS-type retrofit covers on the NSX devices.
■ NS100 to 250 cover.
■ NS400/630 cover.
Operating safety

Installation recommendations
 Contents

Functions and characteristics A-1
Operating conditions
Operating conditions B-2
Installation in switchboards
Power supply and weights B-3
Safety clearances and minimum distances B-4
Installation example B-5
Control wiring
Control wiring B-6
Temperature derating
Compact NSX100 to 250 equipped with thermal-magnetic trip units B-8
Compact NSX equipped with electronic trip units B-9 B-9
Power loss/ Resistance
Compact NSX equipped with thermal-magnetic trip units B-10
Compact NSX equipped with electronic trip units B-11
Dimensions and connection C-1
Wiring diagrams D-1
Additional characteristics E-1
Catalogue numbers F-1
Glossary G-1

Altitude derating
Altitude does not significantly affect the characteristics of Compact NSX circuit breakers up to 2000 m . Above this altitude, it is necessary to take into account the decrease in the dielectric strength and cooling capacity of air.
The following table gives the corrections to be applied for altitudes above 2000 metres.
The breaking capacities remain unchanged.
Compact NSX100 to 630

Altitude (m)		2000	3000	$\mathbf{4 0 0 0}$	5000
Dielectric withstand voltage (V)		3000	2500	2100	1800
Insulation voltage (V)	Ui	800	700	600	500
Maximum operational voltage (V)	Ue	690	590	520	460
Average thermal current (A) at $40^{\circ} \mathrm{C}$	$\mathrm{In} \times$	1	0.96	0.93	0.9

Vibrations

Compact NSX devices resist electromagnetic or mechanical vibrations
Tests are carried out in compliance with standard IEC 60068-2-6 for the levels required by merchant-marine inspection organisations (Veritas, Lloyd's, etc.):
■ 2 to 13.2 Hz : amplitude $\pm 1 \mathrm{~mm}$
■ 13.2 to 100 Hz : constant acceleration 0.7 g .
Excessive vibration may cause tripping, breaks in connections or damage to mechanical parts.

Degree of protection

Compact NSX circuit breakers have been tested for degree of protection (IP) mechanical impact protection (IK). See page A-5.

Electromagnetic disturbances

Compact NSX devices are protected against:
■ overvoltages caused by circuit switching
■ overvoltages caused by an atmospheric disturbances or by a distribution-system
outage (e.g. failure of a lighting system)
■ devices emitting radio waves (radios, walkie-talkies, radar, etc.)
■ electrostatic discharges produced directly by users.
Compact NSX devices have successfully passed the electromagnetic-compatibility tests (EMC) defined by the following international standards. See page A-5.
These tests ensure that:
■ no nuisance tripping occurs

- tripping times are respected

Installation in switchboards

Power supply and weights

Power supply from the top or bottom

Compact NSX circuit breakers can be supplied from either the top or the bottom, even when equipped with a Vigi earth-leakage protection module, without any reduction in performance. This capability facilitates connection when installed in a switchboard.
All connection and insulation accessories can be used on circuit breakers supplied either from the top or bottom.

Weight

The table below presents the weights (in kg) of the circuit breakers and the main accessories, which must be summed to obtain the total weight of complete configurations. The values are valid for all performance categories.

Type of device		Circuit breakers	Base	Chassis	Vigi module	Visu module	Motor mech.
NSX100	3P/2D	1.79	0.8	2.2	0.87	2	1.2
	3P/3D	2.05	0.8	2.2	0.87	2	1.2
	4P/4D	2.4	1.05	2.2	1.13	2.2	1.2
NSX160	3P/2D	1.85	0.8	2.2	0.87	2	1.2
	$3 \mathrm{P} / 3 \mathrm{D}$	2.2	0.8	2.2	0.87	2	1.2
	4P/4D	2.58	1.05	2.2	1.13	2.2	1.2
NSX250	3P/2D	1.94	0.8	2.2	0.87	2	1.2
	3P/3D	2.4	0.8	2.2	0.87	2	1.2
	4P/4D	2.78	1.05	2.2	1.13	2.2	1.2
NSX400/630	3P/3D	6.19	2.4	2.2	2.8	4.6	2.8
	4P/4D	8.13	2.8	2.2	3	4.9	2.8

Installation recommendations

Installation in switchboards
Safety clearances and minimum distances

General rules

When installing a circuit breaker, minimum distances (safety clearances) must be maintained between the device and panels, bars and other protection devices installed nearby. These distances, which depend on the ultimate breaking capacity, are defined by tests carried out in accordance with standard IEC 60947-2.
If installation conformity is not checked by type tests, it is also necessary to:
■ use insulated bars for circuit-breaker connections
■ segregate the busbars using insulating screens.
For Compact NSX100 to 630 devices, terminal shields and interphase barriers are recommended and may be mandatory depending on the operating voltage of the device and type of installation (fixed, withdrawable, etc.).

Power connections

The table below indicates the rules to be respected for Compact NSX100 to 630 devices to ensure insulation of live parts for the various types of connection.
\square fixed devices with front connection (FC) or rear connection (RC)

- plug-in or withdrawable devices.

Connection accessories such as crimp lugs, bare-cable connectors, terminal extensions (straight, right-angle, double-L and 45°) and spreaders are supplied with interphase barriers.
Long terminal shields provide a degree of protection of IP40 (ingress) and IK07 (mechanical impact).

Compact NSX100 to 630: rules to be respected to ensure insulation of live parts

Type of connection	Fixed, front connection			Fixed, rear connection	Plug-in or with	awable
					On backplate	Through panel
Possible, recommended or mandatory accessories: With:	No insulating accessory	Interphase barriers	Long terminal shields	Short terminal shields	Short terminal shields	Short terminal shields
operating voltage type of conductor	Possible	Possible	Possible	Recommended		
$\leqslant 500$ V Insulated bars					Recommended	Mandatory
Extension terminals Cables + crimp lugs	No	Mandatory (supplied)	Possible (instead of ph. barriers)	Recommended	Recommended	Mandatory
Bare cables + connectors	$\begin{aligned} & \text { Possible for } \\ & \text { NSX100 to } 250 \end{aligned}$	$\begin{aligned} & \text { Possible for } \\ & \text { NS } \times 100 \text { to } 250 \end{aligned}$	$\begin{aligned} & \text { Possible for } \\ & \text { NSX100 to } 250 \end{aligned}$			
	No	Mandatory (supplied)	Possible (instead of ph. barriers)	Recommended	Recommended	Mandatory
$>500 \mathrm{~V}$ Insulated bars	No	No	Mandatory	Mandatory	Mandatory	Mandatory
	No	No	Mandatory	Mandatory	Mandatory	Mandatory
Bare cables + connectors	No	No	Mandatory	Mandatory	Mandatory	Mandatory

Installation example

Live busbars.
Minimum safety clearances for Compact NSX100 to 630
(1) Only for NSX100 to 250.

Clearances with respect to live bare busbars
Minimum clearances for Compact NSX100 to 630 by tests.

External neutral current transformer (ENCT)

ULP connection system.

Remote tripping by MN or MX release
 Power consumption is approximately:

■ 30 VA for pick-up of the MN and MX releases

- 300 VA to 500 VA for the motor mechanism.

The table below indicates the maximum permissible cable length for different supply voltages and cable cross-sectional areas.
Recommended maximum cable lengths (in metres)

Power supply voltage (V DC) Cable cross-section (mm^{2})	$\begin{aligned} & 12 \mathrm{~V} \\ & 1.5 \end{aligned}$	2.5	$\begin{aligned} & 24 \mathrm{~V} \\ & 1.5 \end{aligned}$	2.5	$\begin{aligned} & 48 \mathrm{~V} \\ & 1.5 \end{aligned}$	2.5
MN U source 100%	15	-	160	-	640	-
U source 85 \%	7	-	40	-	160	-
MX U source 100%	60	-	240	-	960	-
U source 85 \%	30	-	120	-	480	-
Motor mechanism U source 100 \%	-	-	10	16	65	110
U source 85%	-	-	2	4	17	28

Note: the indicated length is that of each of the two wires.

External neutral voltage tap (ENVT)

This connection is required for accurate power measurements on 3-pole circuit breakers equipped with Micrologic 5 / 6 E trip units in installations with a distributed neutral. It can be used to measure phase-neutral voltages and calculate power using the 3 wattmeter method.
Compact NSX 3-pole circuit breakers come with a wire installed on the device for the connection to the ENVT.
This wire is equipped with a connector for connection to an external wire with the following characteristics:
■ cross-sectional area of $1 \mathrm{~mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$
■ maximum length of 10 metres.

External neutral current transformer (ENCT)

This connection is required to protect the neutral on 3-pole circuit breakers equipped with Micrologic 5 / 6 A or E trip units in installations with a distributed neutral. For Micrologic 6 A or E, it is required for type G ground-fault protection.
The ENCT is connected in the same way for fixed, plug-in or withdrawable devices:
■ fixed devices are connected via terminals T1 and T2 of the internal terminal block.
■ plug-in and withdrawable devices are not connected via the auxiliary terminals.
The wires must be connected/disconnected inside the device via terminals T1 and T2.
The ENCT must be connected to the Micrologic trip unit by a shielded twisted pair. The shielding should be connected to the switchboard earth only at the CT end, no more than 30 cm from the CT
■ the power connections of the CT to the neutral $(\mathrm{H} 2$ and H 1$)$ must be made in the same way for power supply from the top or the bottom (see figure). Make sure they are not reversed for devices with power supply from the bottom.
■ cross-sectional area of $0.4 \mathrm{~mm}^{2}$ to $1.5 \mathrm{~mm}^{2}$
■ maximum length of 10 metres.

ULP connection system between Micrologic, FDM 121 switchboard display and Modbus interface

The ULP (Universal Logic Plug) wiring system used by Compact NSX for connections through to the Modbus network requires neither tools nor settings. The prefabricated cords are sued for both data transfer and distribution of 24 V DC power. Connectors on each component are identified by ULP (Universal Logic Plug) symbols, ensuring total compatibility between each component.

Available cords

All connections are made with prefabricated cords:
■ NSX cord for connection of the internal terminal block to the Modbus interface or the FDM 121 display via an RJ45 connector. The cord is available in three lengths, $0.35 \mathrm{~m}, 1.3 \mathrm{~m}$ and 3 m
■ ULP cords with RJ45 connectors at each end for the other connections between components. The cord is available in six lengths, $0.3 \mathrm{~m}, 0.6 \mathrm{~m}, 1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}$ and 5 m . For greater distances, two cords can be interconnected using the RJ45 female/ female accessory.
Maximum length of 10 m between 2 modules and 30 m in all.
A line terminator must be fitted to all components with an unused RJ45 connector.

Power supply, without the Communication function, via the terminal block with a backup battery.

Supply, with the Communication function, via the Modbus interface.

24 V DC power-supply module

Use

An external 24 V DC power supply is required for installations with communication, whatever the type of trip unit.
On installations without communication, it is available as an option for Micrologic 5/6 to:
■ modify settings when the circuit breaker is open (OFF position)

- display measurements when the current flowing through the circuit breaker is low
- maintain the display of the cause of tripping.

Characteristics
The external 24 V DC supply may be used for the entire switchboard. The required characteristics are indicated in the table below.

Characteristics	
Output voltage	24 V DC -20% to $+10 \%$
Ripple	$\pm 1 \%$
Overvoltage category (OVC)	OVC IV - as per IEC $60947-1$

Sizing

Sizing must take into account all supplied modules.

Module	Consumption (mA)
Micrologic 5 / 6	40
BSCM module	10
FDM 121	40
Modbus communication interface	60
NSX cord U >480 V AC	30
SDx / SDTAM module	20

Wiring

Micrologic 5 or 6 not using the Communication function
The external 24 V DC supply is connected via the circuit breaker terminal block. Use of a 24 V DC battery provides backup power for approximate 3 hours (100 mA) in the event of an interruption in the external supply.

Micrologic 5 or 6 using the Communication function

The external 24 V DC supply is connected via the Modbus interface using a five-pin connector, including two for the power supply. Stacking accessories (see page A-27) can be used to supply a number of interfaces by fast clip-on connection.
The 24 V DC power is distributed downstream by the ULP (Universal Logic Plug) communication cords with RJ45 connectors. This system ensures both data transfer and power distribution to the connected modules.

Recommendations for 24 V DC wiring

■ Do not connect the positive terminal to earth.

- Do not connect the negative terminal to earth.

■ The maximum length for each conductor (+/-) is ten metres

- For connection distances greater than ten metres, the plus and minus conductors of the 24 V DC supply must be twisted to improve EMC.
- The 24 V DC conductors must cross the power cables perpendicularly. If this is difficult or impossible, the plus and minus conductors must be twisted.

Modbus

Each Compact NSX circuit breaker equipped with Micrologic 5/6 and an FDM 121 display is connected to the Modbus network via the Modbus interface module. Connection of all the circuit breakers and other Modbus devices in the switchboard to a Modbus bus is made much easier by using a Modbus RJ45 junction block installed in the switchboard.

Recommendations for Modbus wiring

■ The shielding may be earthed.

- The conductors must be twisted to improve immunity (EMC).
- The Modbus conductors must cross the power cables perpendicularly.

1 Modbus interface module with connection accessory
24 V DC power supply of Micrologic for Compact NSX and communication modules
3 ULP cord
4 NSX cord.
5 Modbus cable + 24 V DC: ref. 50965
(Schneider Electric) recommended or ref. 7895A (Belden).
624 V DC power supply of Micrologic for Compact NS/ Masterpact.

Installation recommendations

Temperature derating
Compact NSX100 to 250 equipped with thermal-magnetic trip units

When thermal-magnetic trip units are used at ambient temperatures other than $40^{\circ} \mathrm{C}$, the Ir pick-up is modified.

Temperature derating curve for Compact NSX100.

Example 1. Fault I = 500 A

$\mathbf{I / I r}$	4.5	5	5.5
$\mathbf{T}^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
\mathbf{t} min.	8 s	6 s	5 s
\mathbf{t} max.	80 s	60 s	50 s

Thermal-protection curve with minimum and maximum values.

The overload protection is calibrated at $40^{\circ} \mathrm{C}$ in the lab. This means that when the ambient temperature is less or greater than $40^{\circ} \mathrm{C}$, the Ir protection pick-up is slightly modified.
To obtain the tripping time for a given temperature:
■ see the tripping curves for $40^{\circ} \mathrm{C}$ (see pages E-2 and E-3)

- determine tripping times corresponding to the Ir value (thermal setting on the device), corrected for the ambient temperature as indicated in the tables below.
Settings of Compact NSX100 to 250 equipped with TM-D and TM-G trip units, as a function of the temperature
The table indicates the real $\operatorname{Ir}(\mathrm{A})$ value for a given rating and temperature.

Rat. Temperature $\left({ }^{\circ} \mathrm{C}\right)$ $\mathbf{(A)}$									$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$
$\mathbf{3}$	$\mathbf{3 5}$	$\mathbf{4 0}$	$\mathbf{4 5}$	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 0}$	$\mathbf{6 5}$	$\mathbf{7 0}$					
$\mathbf{1 6}$	18.4	18.7	18	18	17	16.6	16	15.6	15.2	14.8	14.5	14	13.8
$\mathbf{2 5}$	28.8	28	27.5	27	26.3	25.6	25	24.5	24	23.5	23	22	21
$\mathbf{3 2}$	36.8	36	35.2	34.4	33.6	32.8	32	31.3	30.5	30	29.5	29	28.5
$\mathbf{4 0}$	46	45	44	43	42	41	40	39	38	37	36	35	34
$\mathbf{5 0}$	57.5	56	55	54	52.5	51	50	49	48	47	46	45	44
$\mathbf{6 3}$	72	71	69	68	66	65	63	61.5	60	58	57	55	54
$\mathbf{8 0}$	92	90	88	86	84	82	80	78	76	74	72	70	68
$\mathbf{1 0 0}$	115	113	110	108	105	103	100	97.5	95	92.5	90	87.5	85
$\mathbf{1 2 5}$	144	141	138	134	131	128	125	122	119	116	113	109	106
$\mathbf{1 6 0}$	184	180	176	172	168	164	160	156	152	148	144	140	136
$\mathbf{2 0 0}$	230	225	220	215	210	205	200	195	190	185	180	175	170
$\mathbf{2 5 0}$	288	281	277	269	263	256	250	244	238	231	225	219	213

Example 1. What is the tripping time of a Compact NSX100 equipped with a TM100D trip unit set to 100 A , for an overload $\mathrm{I}=500 \mathrm{~A}$?
The overload $I / I r$ is calculated as a function of the temperature. Use the above values and the curve on page E-3 (shown on the left) to determine the corresponding time.

- At $40^{\circ} \mathrm{C}, \mathrm{Ir}=100 \mathrm{~A}, \mathrm{I} / \mathrm{Ir}=5$ and the tripping time is between 6 and 60 seconds.
- At $20^{\circ} \mathrm{C}, \mathrm{Ir}=110 \mathrm{~A}, \mathrm{I} / \mathrm{Ir}=4.54$ and the tripping time is between 8 and 80 seconds.
- At $60^{\circ} \mathrm{C}, \mathrm{Ir}=90 \mathrm{~A}, \mathrm{I} / \mathrm{Ir}=5.55$ and the tripping time is between 5 and 50 seconds.

Example 2. What is the setting to obtain a real Ir of 210 A , taking into account the temperature, for a Compact NSX250 equipped with a TM250D trip unit?
The necessary dial setting, in amperes, is shown below.
■ At $40^{\circ} \mathrm{C}, \mathrm{Ir}=(210 / 250) \times 250 \mathrm{~A}=210 \mathrm{~A}$

- At $20^{\circ} \mathrm{C}, \operatorname{Ir}=(210 / 277) \times 250 \mathrm{~A}=189.5 \mathrm{~A}$

■ At $60^{\circ} \mathrm{C}, \mathrm{Ir}=(210 / 225) \times 250 \mathrm{~A}=233 \mathrm{~A}$

Additional derating coefficient for an add-on module

The values indicated in the previous tables are valid for fixed circuit breakers equipped with one of the following modules:
■ Vigi module

- insulation monitoring module
- ammeter module

■ current-transformer module.
They also apply for plug-in or withdrawable circuit breakers equipped with:

- ammeter module

■ current-transformer module.
However, for plug-in or withdrawable circuit breakers equipped with a Vigi module or an insulation monitoring module, the coefficient 0.84 must be applied.
The table below sums up the situation for add-on modules.

Type of device	Circuit breaker	TM-D trip- unit rating	Vigi or insulation monitoring module	Ammeter or current transformer module
Fixed	NSX100 to 250	16 to 100		
	NSX160 to 250	125		
	NSX160 to 250	160	1	
	NSX250	200 to 250		1
Plug-in or withdrawable	NSX100 to 250	16 to 100		
	NSX160 to 250	125		
	NSX160 to 250	160	0.84	
	NSX250	250		

Compact NSX equipped with electronic trip units

Electronic trip units are not affected by variations in temperature. If the trip units are used in hightemperature environments, the Micrologic setting must nevertheless take into account the temperature limits of the circuit breaker

Changes in temperature do not affect measurements by electronic trip units
■ The built-in CT sensors with Rogowski toroids measure the current.

- The control electronics compare the value of the current to the settings defined for $40^{\circ} \mathrm{C}$.
Because temperature has no effect on the toroid measurements, the tripping thresholds do not need to be modified.
However, the temperature rise caused by the flow of current and the ambient temperature increase the temperature of the device. To avoid reaching the thermal withstand level of the equipment, it is necessary to limit the current flowing through the device, i.e. the maximum Ir setting as a function of the temperature.

Compact NSX100/160/250

The table below indicates the maximum long-time (LT) protection setting $\operatorname{lr}(A)$ depending on the ambient temperature

Type of device	Rating (A) Temperature (${ }^{\circ} \mathrm{C}$)							
		40	45	50	55	60	65	70
NSX100/160								
Fixed, plug-in or withdr.	40	no derating						
	100	no derating						
NSX250								
Fixed, plug-in or withdrawable	100	no derating						
	160	no derating						
Fixed	250	250	250	250	245	237	230	225
Plug-in or withdr.	250	250	245	237	230	225	220	215

Compact NSX400 and 630

The table below indicates the maximum long-time (LT) protection setting Ir (A) depending on the ambient temperature.

Type of device	Rating (A) Temperature (${ }^{\circ} \mathrm{C}$)							
		40	45	50	55	60	65	70
NSX400								
Fixed	400	400	400	400	390	380	370	360
Plug-in/withdr.	400	400	390	380	370	360	350	340
NSX630								
Fixed	630	630	615	600	585	570	550	535
Plug-in/withdr.	630	570	550	535	520	505	490	475

Example. A fixed Compact NSX400 equipped with a Micrologic can have a maximum Ir setting of:

- 400 A up to $50^{\circ} \mathrm{C}$
-380 A up to $60^{\circ} \mathrm{C}$.

Additional derating coefficient for an add-on module

For fixed or plug-in / withdrawable circuit breakers, the addition of a

- Vigi module
- insulation-monitoring module
- ammeter module
- current-transformer module
can modify the derating values. Apply the coefficients shown below.
Derating of a Compact NSX equipped with a Micrologic trip unit

Type of device	Circuit breaker	TM-D trip-unit rating	Vigi I Insulation monitoring module	Ammeter module I External sensor (CT)
Fixed	$\begin{aligned} & \text { NSX100 to } 250 \\ & \text { NSX160 to } 250 \\ & \text { NSX250 } \end{aligned}$	$\begin{aligned} & 40 \text { to } 100 \\ & 125 \\ & 250 \end{aligned}$	1	1
Plug-in or withdrawable	NSX100 to 250 NSX160 to 250	$\begin{aligned} & 40 \text { to } 100 \\ & 160 \end{aligned}$		
	NSX250	250	0.86	
Fixed	$\begin{aligned} & \hline \text { NSX400 } \\ & \text { NSX630 } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 250 \text { to } 400 \\ 250 \text { to } 630 \\ \hline \end{array}$	$\begin{aligned} & 0.97 \\ & 0.90 \end{aligned}$	
Plug-in or withdrawable	$\begin{aligned} & \text { NSX400 } \\ & \text { NSX630 } \end{aligned}$	$\begin{aligned} & 250 \text { to } 400 \\ & 250 \text { to } 630 \end{aligned}$	$\begin{aligned} & 0.97 \\ & 0.90 \end{aligned}$	

Note: to provide the Visu function, Compact NSX circuit breakers, with or without a Vigi module, are combined with INV switch-disconnectors. Tripping values for the selected combination are indicated in the Interpact catalogue.

Installation
recommendations

Power loss/ Resistance
Compact NSX equipped with thermalmagnetic trip units

Compact NSX thermal power loss values are used to calculate total temperature rise in the switchboard in which the circuit breakers are installed.

With a Vigi module, the deviation of the N and $L 3$ bars required to pass through the toroid results in higher power losses compared to those of the L1 and L2 bars.

The values indicated in the tables below are typical values for a device at full rated load and 50/60 Hz.

Power loss per pole (P/pole) in Watts (W)

The value indicated is the power loss at $\mathrm{I}_{\mathrm{N}}, 50 / 60 \mathrm{~Hz}$, for a three-pole or four-pole circuit breaker. Measurement and calculation of power loss are carried out in compliance with the recommendations of Annex G of standard IEC 60947-2.
Resistance per pole (R/pole) in milliohms ($\mathrm{m} \Omega$)
The value of the resistance per pole is provided as a general indication for a new device.
The value of the contact resistance must be determined on the basis of the measured voltage drop, in accordance with the manufacturer's test procedure (ABT instruction document no. 1 - BEE - 02.2-A).
Note: this measurement is not sufficient to determine the quality of the contacts, i.e. the capacity of the circuit breaker to carry its rated current.

Additional power loss

Additional power loss is equal to the sum of the power dissipated by the following:
■ Vigi module: note that the deviation of the N and L3 bars required to pass through the toroid results in higher power losses compared to those of the L1 and L2 bars (diagram opposite). When calculating total power loss, use L1, L2, L3 for a 3P device and N, L1, L2, L3 for a 4P device
■ disconnecting contacts (plug-in and withdrawable devices)

- ammeter module

■ transformer module.

Calculation of total power loss

Total power loss at full rated load and $50 / 60 \mathrm{~Hz}$ is equal to the sum of the device and additional power losses per pole multiplied by the number of poles (2, 3 or 4).
If a Vigi module is installed, it is necessary to differentiate between N and L3 on one hand and L1 and L2 on the other.

Compact NSX100 to 250 equipped with TM-D and TM-G trip

 units| Type of device | | Fixed device | | Additional power / pole | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3/4 poles | Rat.
 (A) | R/pole | P/pole | Vigi $(N, L 3)$ | Vigi $(\mathrm{L} 1, \mathrm{~L} 2)$ | Plug-in I withdr. | Ammeter module | Transfo. module |
| NSX100 | 16 | 11.42 | 2.92 | 0 | 0 | 0 | 0 | 0 |
| | 25 | 6.42 | 4.01 | 0 | 0 | 0.1 | 0 | 0 |
| | 32 | 3.94 | 4.03 | 0.06 | 0.03 | 0.15 | 0.1 | 0.1 |
| | 40 | 3.42 | 5.47 | 0.10 | 0.05 | 0.2 | 0.1 | 0.1 |
| | 50 | 1.64 | 4.11 | 0.15 | 0.08 | 0.3 | 0.1 | 0.1 |
| | 63 | 2.17 | 8.61 | 0.3 | 0.15 | 0.4 | 0.1 | 0.1 |
| | 80 | 1.37 | 8.77 | 0.4 | 0.2 | 0.6 | 0.1 | 0.1 |
| | 100 | 0.88 | 8.8 | 0.7 | 0.35 | 1 | 0.2 | 0.2 |
| NSX160 | 80 | 1.26 | 8.06 | 0.4 | 0.2 | 0.6 | 0.1 | 0.1 |
| | 100 | 0.77 | 7.7 | 0.7 | 0.35 | 1 | 0.2 | 0.2 |
| | 125 | 0.69 | 10.78 | 1.1 | 0.55 | 1.6 | 0.3 | 0.3 |
| | 160 | 0.55 | 13.95 | 1.8 | 0.9 | 2.6 | 0.5 | 0.5 |
| NSX250 | 125 | 0.61 | 9.45 | 1.1 | 0.55 | 1.6 | 0.3 | 0.3 |
| | 160 | 0.46 | 11.78 | 1.8 | 0.9 | 2.6 | 0.5 | 0.5 |
| | 200 | 0.39 | 15.4 | 2.8 | 1.4 | 4 | 0.8 | 0.8 |
| | 250 | 0.3 | 18.75 | 4.4 | 2.2 | 6.3 | 1.3 | 1.3 |

Compact NSX100 to 630 equipped with MA/1.3-M trip units

Type of device		Fixed device		Additional power / pole				
3 poles	Rat. (A)	R/pole	Plpole	Vigi $(\mathrm{N}, \mathrm{~L} 3)$	Vigi $(\mathrm{L} 1, \mathrm{~L} 2)$	Plug-in / withdr.	Ammeter module	Transfo module
NSX100	2.5	148.42	0.93	0	0	0	0	0
	6.3	99.02	3.93	0	0	0	0	0
	12.5	4.05	0.63	0	0	0	0	0
	25	1.66	1.04	0	0	0.1	0	0
	50	0.67	1.66	0.2	0.1	0.3	0.1	0.1
	100	0.52	5.2	0.7	0.35	1	0.2	0.2
NSX160	150	0.38	8.55	1.35	0.68	2.6	0.45	0.45
NSX250	220	0.3	14.52	2.9	1.45	4.89	0.97	0.97
NSX400	320	0.12	12.29	3.2	1.6	6.14	1.54	1.54
NSX630	500	0.1	25	13.99	7	15	3.75	3.75

Compact NSX equipped with electronic trip units

The values indicated in the table below are typical values for a device at full rated load and $50 / 60 \mathrm{~Hz}$. The definitions and information are the same as that for circuit breakers equipped with thermal-magnetic trip units.

Compact NSX100 to 630 equipped with Micrologic trip units

Type of device		Fixed device		Additional power / pole				
$3 / 4$ poles	Rat. (A)	R/pole	P/pole	Vigi (N, L3)	Vigi $(\mathrm{L} 1, \mathrm{~L} 2)$	Plug-in I withdr.	Ammeter module	Transfo. module
NSX100	40	0.84	1.34	0.1	0.05	0.2	0.1	0.1
	100	0.468	4.68	0.7	0.35	1	0.2	0.2
NSX160	40	0.73	1.17	0.4	0.2	0.6	0.1	0.1
	100	0.36	3.58	0.7	0.35	1	0.2	0.2
	160	0.36	9.16	1.8	0.9	2.6	0.5	0.5
NSX250	100	0.27	2.73	1.1	0.55	1.6	0.2	0.2
	250	0.28	17.56	4.4	2.2	6.3	1.3	1.3
NSX400	400	0.12	19.2	3.2	1.6	9.6	2.4	2.4
NSX630	$630{ }^{(1)}$	0.1	39.69	6.5	3.25	19.49	5.95	5.95

(1) The power loss values for the Vigi modules and withdrawable circuit breakers are given for 570 A

Dimensions and connection Contents

Functions and characteristics A-1
Installation recommendations B-1
Dimensions and mounting
Compact NSX100 to 630 fixed version C-2
Vigicompact NSX100 to 630 fixed version C-3
Compact NSX100 to 630 plug-in version C-4
Compact NSX100 to 630 withdrawable version C-6
Vigicompact NSX100 to 630 plug-in and withdrawable versions C-8
Visu function for Compact NSX100 to 250 fixed version C-9
Visu function for Compact NSX400/630 fixed version C-10
Motor mechanism module for Compact NSX100 to 630 C-11
Direct rotary handle for Compact and Vigicompact NSX100 to 630 C-12
MCC and CNOMO type direct rotary handles for Compact NSX100 to 630 fixed version C-13
Extended rotary handle for Compact NSX100 to 630 C-14
Indication and measurement modules for Compact NSX100 to 630 fixed version C-15
One-piece spreader for Compact NSX100 to 250 fixed version C-16
FDM121 switchboard display C-17
Front-panel accessories
Compact NSX100 to 630 C-18
Front-panel cutouts
Compact NSX100 to 630 fixed version C-20
Vigicompact NSX100 to 630 fixed version C-22
Compact NSX100 to 630 plug-in and withdrawable versions C-24
Vigicompact NSX100 to 630 plug-in and withdrawable versions C-25
Visu function for Compact NSX100 to 630 fixed version C-26
Motor mechanism module for Compact and Vigicompact NSX100 to 630 C-27
Direct rotary handle for Compact and Vigicompact NSX100 to 630 C-28
MCC and CNOMO type direct rotary handles for Compact NSX100 to 630 fixed version C-13
Extended rotary handle for Compact NSX100 to 630 C-14
Indication and measurement modules for Compact NSX100 to 630 C-30
FDM121 switchboard display C-17
Power connections
Compact and Vigicompact NSX100 to 630 fixed version C-32
Compact and Vigicompact NSX100 to 630 plug-in and withdrawable versions C-36
Connection of insulated bars or cables with lugs to Compact and Vigicompact NSX100 to 630 C-40
Connection of bare cables to Compact and Vigicompact NSX100 to 630 C-41
Wiring diagrams D-1
Additional characteristics E-1
Catalogue numbers F-1
Glossary G-1

Long terminal shields (also available for NSX400/630 spreaders with 52.5 mm pitch:
Short terminal shields. $B 1=157.5 \mathrm{~mm}, B 2=210 \mathrm{~mm})$.

(1) The $\varnothing T$ holes are required for rear connection only.

For two-pole circuit breakers, the middle holes are not required.

On DIN rail with adapter plate (NSX100 to 250)

Vigicompact NSX100 to 630 fixed version

(1) The $\varnothing T$ holes are required for rear connection only.

For two-pole circuit breakers, the middle holes are not required.

\square Long terminal shields (also available for NSX400/630 spreaders with 52.5 mm pitch $B 1=157.5 \mathrm{~mm}, B 2=210 \mathrm{~mm}$)
Adapter for base, required to mount long terminal shields or interphase barriers.

Mounting			
Through front panel (N)	2/3P	3P	4P
	NSX100 to 250	NSX400/630	NSX100 to 630

On backplate (M)

2/3P
4P
Front connection (an insulating screen is supplied with the base and must be fitted between the base and the backplate)

Connection by exterior-mounted rear connectors

(1) The ØT1 holes are required for rear connection only (for two-pole circuit breakers, the middle holes are not required).

Connection by interior-mounted rear connectors

| Type | A | A1 | A2 | A10 | A11 | B | B1 | B2 | C3 | D1 | E9 | E10 | E11 | E12 | E13 | E14 | E15 | |
| :--- |
| NSX100/160/250 | 80.5 | 161 | 94 | 175 | 210 | 52.5 | 105 | 140 | 126 | 75 | 95 | 190 | 87 | 174 | 77.5 | 155 | 79 | |
| NSX400/630 | 127.5 | 255 | 142.5 | 244 | 281 | 70 | 140 | 185 | 168 | 100 | 150 | 300 | 137 | 274 | 125 | 250 | 126 | |
| Type | E16 | E17 | E18 | E19 | E20 | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | ØT1 | U | | |
| NSX100/160/250 | 158 | 61 | 122 | 37.5 | 75 | 35 | 17.5 | 70 | 54.5 | 109 | 144 | 70 | 105 | 35 | 24 | $\leqslant 32$ | | |
| NSX400/630 | 252 | 101 | 202 | 75 | 150 | 45 | 22.5 | 90 | 71.5 | 143 | 188 | 100 | 145 | 50 | 33 | $\leqslant 35$ | | |

Dimensions and mounting Compact NSX100 to 630 withdrawable version
Dimensions 2/3P 4P

On backplate (M)

2/3P
4 P
Front connection (an insulating screen is supplied with the base and must be fitted between the base and the backplate)

Connection by exterior-mounted rear connectors

Connection by interior-mounted rear connectors

(1) The ØT1 holes are required for rear connection only (for two-pole circuit breakers, the middle holes are not required).

Type	A10	A11	A12	A13	B3	B4	B5	B6	B7	C3	D1	E9	E10	E11	E12	E13
E14																
NS $100 / 160 / 250 ~$	175	210	106.5	103.5	92.5	185	216	220	251	126	75	95	190	87	174	77.5
155																
NSX400/630	244	281	140	140	110	220	250	265	295	168	100	150	300	137	274	125
250																
Type	E15	E16	E17	E18	E19	E20	F1	F2	F3	F7	F8	F9	F10	F11	F12	ØT1
U																
NSX100/160/250	79	158	61	122	37.5	75	35	17.5	70	70	105	35	74	148	183	24
NSX400/630	126	252	101	202	75	150	45	22.5	90	100	145	50	91.5	183	228	33

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual
Dimensions and connection

Dimensions and mounting Vigicompact NSX100 to 630 plug-in and withdrawable versions

\square Interphase barriers for base.
Short terminal shields on circuit breaker.
\square Long terminal shields (also available for NSX400/630 spreaders with 52.5 mm pitch: $B 1=157.5 \mathrm{~mm}, B 2=210 \mathrm{~mm}$).
Adapter for base, required to mount long terminal shields or interphase barriers.

Dimensions - withdrawable version

NSX100 to 630

Mounting

Through front panel (N)
See Compact NSX100 to 630 plug-in version, page C-4, or withdrawable version, page C-6
On backplate (M)
See Compact NSX100 to 630 plug-in version, page C-5, or withdrawable version, page C-7

On rails

See Compact NSX100 to 630 plug-in version, page C-5, or withdrawable version, page C-7

Type	A	A2	A5	A6	A7	A10	A11	B	B1	B2	B3	B4	B5	B6	B7	C3	D1
NSX100/160/250	80.5	94	155.5	236	169	175	210	52.5	105	140	92.5	185	216	220	251	126	75
NSX400/630	127.5	142.5	227.5	355	242.5	244	281	70	140	185	110	220	250	265	295	168	100

Visu function for Compact NSX100 to 250 fixed version

interphase barriers
Short terminal shields
Long terminal shields.
Mounting
On rails or backplate

Dimensions and connection

Dimensions and mounting
Visu function for Compact NSX400/630 fixed version

Dimensions - combination with Interpact INV400 to 630

Interphase barriers for base. Short terminal shields. Long terminal shields.

Mounting

On rails or backplate

Motor mechanism module for Compact NSX100 to 630

Dimensions

3P
4P
Fixed circuit breaker

C5: without keylock
C6: with keylock
Plug-in circuit breaker

Withdrawable circuit breaker

Type	A14	A15	A16	A17	B	B1	B2	B8	B9	C4	C5	C6	D1
NSX100/160/250	27.5	73	34.5	62.5	52.5	105	140	45.5	91	143	182	209.5	75
NSX400/630	40	123	52	100	70	140	185	61.5	123	215	256	258	100

Direct rotary handle for Compact and Vigicompact NSX100 to 630

C9: with keylock

Plug-in circuit breaker

Withdrawable circuit breaker

Type	A14	A15	A18	B	B1	B2	B8	B9	B10	C7	C8	C9	D1
NS $\times 100 / 160 / 250$	27.5	73	9	52.5	105	140	45.5	91	9.25	121	155	164	75
NS $\times 400 / 630$	40	123	24.6	70	140	185	61.5	123	5	145	179	188	100

MCC and CNOMO type direct rotary handles for Compact NSX100 to 630 fixed version

Dimensions
MCC type direct rotary handle

NSX100 to 250

Y

CNOMO type direct rotary handle

Type						
NSX100/160/250	9	60	120	65	130	9.25
NSX400/630	24.6	83	160	82	164	5
Type	$\mathbf{B 1 1}$	$\mathbf{B 1 2}$	$\mathbf{B 1 3}$	$\mathbf{B 1 4}$	$\mathbf{P 1}$	$\mathbf{P 2}$
NSX100/160/250	69	120	65	130	125	135
NSX400/630	85	160	82	164	149	158

Extended rotary handle for Compact NSX100 to 630

Dimensions

Fixed and plug-in circuit breakers

Cutout for shaft (mm)	
Type	R1
NSX100/160/250	min. 171
	max. 600
NSX400/630	$\min .195$ $\max .600$

Withdrawable circuit breaker

Type	A18	B10	D1
NSX100/160/250	9	9.25	75
NSX400/630	24.6	5	100

Dimensions and mounting Indication and measurement modules for Compact NSX100 to 630 fixed version

For two-pole circuit breakers, the middle holes are not required.

Type	A	A2	A3	A4	A5	A6	A7	A8	A9	C1	C2	C11	E1	E5	E6	E7	E8
NSX100/160/250	80.5	94	145	178.5	155.5	236	169	220	253.5	81	86	137	62.5	137.5	200	145	215
NSX400/630	127.5	142.5	200	237	227.5	355	242.5	300	337	95.5	110	162	100	200	300	213.5	327
Type	F1	F2	F3	ØT	U												
NSX100/160/250	35	17.5	70	24	$\leqslant 32$												
NSX400/630	45	22.5	90	32	$\leqslant 35$												

One-piece spreader for Compact NSX100 to 250 fixed version

Mounting

Dimensions

Mounting
Through panel

Front－panel accessories
Compact NSX100 to 630

IP30 front－panel escutcheons
 For toggle，rotary handle or motor mechanism module

For toggle or rotary handle with access to trip unit

For Vigicompact

\circ
O
品
0

IP40 front－panel escutcheons

For toggle，rotary handle or motor mechanism module and protection collar

For Vigicompact with protection collar or ammeter module

Protection collars for IP40 front-panel escutcheons
For toggle

Type	A	A1	A2	A3	A4	A5	B	B1	B2	B3	C
NSX100/160/250	113	138	114	101	73	85	113	157	91	103	40
NSX400/630	163	211	164	151	122.5	138	163	189	122.5	138	60

Dimensions and connection

Front-panel cutouts Compact NSX100 to 630 fixed version

For toggle with access to trip unit

With IP30 front-panel escutcheon
NSX100 to 250
NSX400/630
For toggle

With IP43 toggle cover	NSX100 to 250	NSX400/630
For toggle		

Type	P3	P4
NSX100/160/250	88	89
NSX400/630	112	113

Dimensions and connection

Front-panel cutouts
Vigicompact NSX100 to 630 fixed version

For toggle with access to trip unit

With IP30 front-panel escutcheon	NSX100 to 250	NSX400/630
For toggle		

喈
品

Type	P3	P4
NSX100/160/250	88	89
NSX400/630	112	113

Schneider ${ }_{\text {Ppage }}{ }^{\mathrm{C}} \mathrm{C} 98$ of $1051{ }^{\mathrm{C}}$

Front-panel cutouts Compact NSX100 to 630 plug-in and withdrawable versions

Plug-in version

Bare sheet metal

See Compact NSX100 to 630 fixed version, page C-20

With IP30 front-panel escutcheon

See Compact NSX100 to 630 fixed version, page C-20

With IP40 front-panel escutcheon

See Compact NSX100 to 630 fixed version, page C-21

With toggle cover

See Compact NSX100 to 630 fixed version, page C-21

Vigicompact NSX100 to 630 plug-in and withdrawable versions

Plug-in version

Bare sheet metal
See Compact NSX100 to 630 fixed version, page C-22
With IP30 front-panel escutcheon
See Compact NSX100 to 630 fixed version, page C-22
With IP40 front-panel escutcheon
See Compact NSX100 to 630 fixed version, page C-23

Withdrawable version	NSX100 to 250	NSX400/630
With protection collar and IP40 front-panel escutcheon		

Type	D1	P3	P5
NSX100/160/250	75	88	123
NSX400/630	100	112	147

Dimensions and connection

Front-panel cutouts
Visu function for Compact NSX100 to 630 fixed version

Compact NSX100 to 250 with Interpact INV100 to 250 Visu function
Bare sheet metal

'z

With IP40 front-panel escutcheon

Compact NSX400/630 with Interpact INV400 to 630 Visu function
Bare sheet metal

With IP40 front-panel escutcheon

Y

Motor mechanism module for Compact and Vigicompact NSX100 to 630

With IP40 front-panel escutcheon
NSX100 to 250
NSX400/630
Fixed, plug-in or withdrawable circuit breaker without access to Vigi module

Fixed or plug-in circuit breaker with access to Vigi module

Type	D1	P6 ${ }^{(1)}$	P7 ${ }^{(2)}$	P8 ${ }^{(1)}$	P9 ${ }^{(2)}$	
NSX100/160/250	75	145	177	146	178	(1) Plug-in version.
NSX400/630	100	217	249	218	250	(2) Withdrawable version.

Dimensions and connection

Front-panel cutouts
Direct rotary handle for Compact and Vigicompact NSX100 to 630

Bare sheet metal with access to the trip unit

With IP30 front-panel escutcheon

With IP40 front-panel escutcheon

Fixed or withdrawable circuit breakers	NSX100 to 250	NSX400/630
With IP40 front-panel escutcheon		

Type	D1	P10	P11	P12
NSX100/160/250	75	89	90	123
NSX400/630	100	112	113	147

Dimensions and connection

Front-panel cutouts

Indication and measurement modules for Compact NSX100 to 630

Fixed or plug-in circuit breakers with ammeter module and voltage-presence indicator

Bare sheet metal

With toggle

Rotary handle

With IP40 front-panel escutcheon

With toggle

Rotary handle

Type	D1	J1	J2	J3	K1	K2	P3	P4	P10	P11
NS $\times 100 / 160 / 250$	75	78.5	67.5	55	46.5	74	88	89	89	90
NS $\times 400 / 630$	100	122	129	122.5	64.5	90	112	113	112	113

Compact and Vigicompact NSX100 to 630 fixed version

Connection with accessories
Long and short rear connectors

NSX400/630

Compact and Vigicompact NSX100 to

 630 fixed version

NSX400/630
NSX100 to 250

Double-L terminal extensions

NSX100 to 250

One-piece spreader (for NSX100 to 250 only)

Dimensions and connection

Power connections

Compact and Vigicompact NSX100 to 630 plug-in and withdrawable versions

Rear connection: mounting through front panel (N) or on rails (V)

Power connections

Compact and Vigicompact NSX100 to 630 plug-in and withdrawable versions

45° extensions: mounting through front panel (N) or on rails (V)
NSX100 to 250

NSX400/630

Double-L extensions: mounting on backplate (M) or rails (V)

NSX100 to 250

Double-L extensions: mounting through front panel (N) or on rails (V)
NSX100 to 250

Connection with accessories (cont.)
Spreaders: mounting on backplate (M) or rails (V)

Long insulated rear connectors: mounting on backplate (M) or rails (V)
NSX400/630

Exterior-mounted rear connectors
NSX100 to 250

Interior-mounted rear connectors

Ins

NSX400/630

Long, insulated connectors are mandatory.

Dimensions and connection

Power connections

Connection of insulated bars or cables with lugs to Compact and Vigicompact NSX100 to 630

Bar.

Lug.

Accessories for NSX100 to 250

Straight terminal extensions

Spreaders:
separate parts

Tinned copper
For $\mathrm{U}>600 \mathrm{~V}$, the mandatory insulation kit is not compatible with spreaders made up of separate parts. The one-piece spreader must be used.

Accessories for NSX400 and 630
Spreaders made up of separate parts for 52.5 and 70 mm pitch

Tinned copper
For $U>600 \mathrm{~V}$, use of the 52.5 mm pitch spreaders requires a specific insulation kit.
The 70 mm pitch spreaders may not be used.
Accessories for NSX100 to 630

Right-angle terminal extensions Edgewise terminal extensions

Tinned copper

Tinned copper

Double-L terminal extensions

Direct connection to NSX100 to 630				
Dimensions		NSX100	NSX160/250	NSX400/630
Bars	$\mathrm{L}(\mathrm{mm})$	$\leqslant 25$	$\leqslant 25$	$\leqslant 32$
	I (mm)	d + 10	d + 10	d + 15
	$\mathrm{d}(\mathrm{mm})$	$\leqslant 10$	$\leqslant 10$	$\leqslant 15$
	e (mm)	$\leqslant 6$	$\leqslant 6$	$3 \leqslant e \leqslant 10$
	\varnothing (mm)	6.5	8.5	10.5
Lugs	$\mathrm{L}(\mathrm{mm})$	$\leqslant 25$	$\leqslant 25$	$\leqslant 32$
	\varnothing (mm)	6.5	8.5	10.5
Torque (Nm$)^{(1)}$		10	15	50
Torque (Nm) ${ }^{(2)}$		5/5	5/5	20/11
Torque (Nm) ${ }^{(3)}$		8	8	20

(1) Tightening torque on the circuit breaker for lugs or bars.
(2) Tightening torque on fixed devices for rear connectors//tightening torque on plug-in or
withdrawable devices for power connectors.
(3) Tightening torque on the plug-in base for terminal extensions.

Connection with accessories to NSX100 to 250 (IEC 228)			
Pole pitch			
Without spreaders		35 mm	
With spreaders		45 mm	
Dimensions		With spreaders or terminal extensions	
		NSX100	NSX160/250
	Bars $\quad \mathrm{L}(\mathrm{mm})$	$\leqslant 25$	$\leqslant 25$
	I (mm)	$20 \leqslant 1 \leqslant 25$	$20 \leqslant 1 \leqslant 25$
	$\mathrm{d}(\mathrm{mm})$	$\leqslant 10$	$\leqslant 10$
	e (mm)	$\leqslant 6$	$\leqslant 6$
	$\bar{\varnothing}(\mathrm{mm})$	6.5	8.5
	Lugs $\mathrm{L}(\mathrm{mm})$	$\leqslant 25$	$\leqslant 25$
	$\varnothing(\mathrm{mm})$	6.5	8.5
	Torque (Nm) ${ }^{(1)}$	10	15
	Torque (Nm) ${ }^{(2)}$	5	5

(1) Tightening torque on the circuit breaker for spreaders or terminal extensions.
(2) Tightening torque on the plug-in base for spreaders or terminal extensions.

Spreaders and straight, right-angle, 45°, double-L and edgewise terminal extensions are supplied with flexible interphase barriers.

Connection with accessories to NSX400 and 630 (IEC 228)

Pole pitch				
Without spreaders			45 mm	
With spreaders			52.5 or 70 mm	
Dimensions			With spreaders	With terminal extensions
	Bars	$\underline{L}(\mathrm{~mm})$	$\leqslant 40$	$\leqslant 32$
		I (mm)	d + 15	$30 \leqslant 1 \leqslant 34$
		$\mathrm{d}(\mathrm{mm})$	$\leqslant 20$	$\leqslant 15$
		e (mm)	$3 \leqslant e \leqslant 10$	$3 \leqslant e \leqslant 10$
		\varnothing (mm)	12.5	10.5
	Lugs	$\mathrm{L}(\mathrm{mm})$	$\leqslant 40$	$\leqslant 32$
		$\varnothing(\mathrm{mm})$	12.5	10.5
	Torqu	$\mathrm{Nm})^{(1)}$	50	50
	Torqu	Nm) ${ }^{(2)}$	20	20

(1) Tightening torque on the circuit breaker for spreaders or terminal extensions.
(2) Tightening torque on the plug-in base for spreaders or terminal extensions.

Spreaders and right-angle, 45° and edgewise terminal extensions are supplied with flexible interphase barriers.

Mounting detail: 2 cables with lugs.

Connection of bare cables to Compact and Vigicompact NSX100 to 630

(1) For flexible cables from 1.5 to $4 \mathrm{~mm}^{2}$, connection with crimped or self-crimping ferrules.

Connection to NSX400 and 630

S

Conductor materials and electrodynamic stresses

Compact NSX circuit breakers can be connected indifferently with bare-copper tinned-copper and tinned-aluminium conductors (flexible or rigid bars, cables). In the event of a short-circuit, thermal and electrodynamic stresses will be exerted on the conductors. They must therefore be correctly sized and held in place by supports
Electrical connection points on switchgear devices (switch-disconnectors contactors, circuit breakers, etc.) should not be used for mechanical support. Any partition between upstream and downstream connections of the device must be made of non-magnetic material

Wiring diagrams

Contents

Functions and characteristics A-1
Installation recommendations $B-1$
Dimensions and connection C-1
Compact NSX100 to 630
Fixed circuit breakers D-2
Plug-in / withdrawable circuit breakers D-4
Motor mechanism D-6
SDx module with Micrologic D-8
SDTAM module with Micrologic M D-9
Modbus module D-10
Additional characteristics E-1
Catalogue numbers F-1
Glossary G-1

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in normal position.

Terminals shown in red O must be connected by the customer.

Indication contacts

OF2 I OF1: device ON/OFF indication contacts
OF4 / OF3: device ON/OFF indication contacts (NSX400/630)
SDE: fault-trip indication contact (short-circuit, overload, ground fault, earth leakage)
SD: trip-indication contact
CAF2ICAF1: early-make contact (rotary handle only)
CAO1: early-break contact (rotary handle only)
SDV: earth leakage fault trip indication contact (add-on Vigi module)

Colour code for auxiliary wiring

RD: red	VT: violet
WH: white	GY: grey
YE: yellow	OR: orange
BK: black	BL: blue
GN: green	

Schneider

Compact NSX100 to 630
Plug-in / withdrawable circuit breakers

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in normal position.

Terminals shown in red \square / O must be connected by the customer.

Remote operation	
MN:	undervoltage release
or	
MX:	shunt release

Motor mechanism (MT)	
A4:	opening order
A2:	closing order
B4, A1:	motor mechanism power supply
L1:	manual position (manu)
B2:	SDE interlocking (mandatory for automatic or remote
	recharging)
BPO:	opening pushbutton
BPF:	closing pushbutton

Communicating motor mechanism (MTc)

B4, A1: motor mechanism power supply
BSCM: breaker status and control module

Indication contacts

OF2 I OF1: device ON/OFF indication contacts
OF4 / OF3: device ON/OFF indication contacts (NSX400/630)
SDE: fault-trip indication contact
(short-circuit, overload, ground fault, earth leakage)
SD: trip-indication contact
CAF2/CAF1: early-make contact (rotary handle only)
CAO1: early-break contact (rotary handle only)
SDV: earth leakage fault trip indication contact (add-on Vigi module)

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in normal position.

After tripping initiated by the "Push to trip" button or by the undervoltage (MN) release or the shunt (MX) release, device reset can be automatic, remote or manual.

Following tripping due to an electrical fault (with an SDE contact), reset must be carried out manually.

Symbols

Q: circuit breaker
A4: opening order
A2: closing order
B4, A1:
L1: manual position (manu)
B2: SDE interlocking (mandatory for correct operation)
BPO: opening pushbutton
BPF: closing pushbutton
SDE: fault-trip indication contact (short-circuit overload, ground fault, earth leakage)

Motor mechanism (MT) with automatic reset

Motor mechanism (MT) with remote reset

Motor mechanism (MT) with manual reset

Single-line diagram of communicating motor mechanism Opening, closing and reset orders are transmitted via the communication network. The "Enable automatic reset" and "Enable reset even if SDE" parameters must be set using the RSU software via the screen by clicking the blue text.
"Auto/manu" is a switch on the front of the motor mechanism.

Symbols	
Q:	circuit breaker
B4, A1:	motor mechanism power supply
BSCM:	breaker status and control module

Terminals shown in red O must be connected by the customer.

Terminals shown in red O must be connected by the customer.

Connection

Operation

I: charge current
PAL Ir: thermal overload pre-alarm
SDG: ground-fault signal
SDT: thermal-fault signal
Q: circuit breaker

SDTAM module with Micrologic M

The diagram is shown with circuits deenergised, all devices open, connected and charged and relays in normal position.

Symbols

SD1, SD3: SDTAM-module power supply
SD2: thermal-fault signal output
(80 mA max.)
SD4: contactor-control output (80 mA max.)

	SD2	SD4
Micrologic 2-M	SDT	KA1
Micrologic 6 E-M	SDT	KA1

Terminals shown in red O must be connected by the customer.

Connection

Operation

I: charge current
SDT: thermal-fault signal
KA1: auxiliary relay (e.g. RBN or RTBT relay)
KM1: motor contactor
Q: circuit breaker

Compact NSX100 to 630
Modbus module

Detailed connection of the circuit breakers on communication network Modbus.

Additional characteristics

 ContentsFunctions and characteristics A-1
Installation recommendations B-1
Dimensions and connection C-1
Wiring diagrams D-1
Tripping curves
Compact NSX100 to 250 protection of distribution systems E-2
Compact NSX100 to 250 motor protection E-6
Compact NSX400 to 630 protection of distribution systems E-8
Compact NSX400 to 630 motor protection E-10
Compact NSX100 to 630 reflex tripping E-12
Current and energy limiting curves E-13
Catalogue numbers F-1
Glossary G-1

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Additional characteristics

> Tripping curves
> Compact NSX100 to 250 Protection of distribution systems

\square Reflex tripping.

TM32D / TM40D / TM40G

TM50D / TM63D / TM63G

\square Reflex tripping.

TM200D / TM250D

\square Reflex tripping.

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Additional characteristics

> Tripping curves
> Compact NSX100 to 250 Protection of distribution systems (cont.)

Micrologic 2.2 and 2.2 G electronic trip units

Micrologic 2.2-40... 160 A

\square Reflex tripping.

Micrologic 2.2 G-40... 160 A

Micrologic 2.2-250 A

[^22]
\square Reflex tripping.

Micrologic 6.2 A or E (ground-fault protection)

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Additional characteristics

Tripping curves
Compact NSX100 to 250
Motor protection

Micrologic 2.2 M electronic trip units

Micrologic 2.2 M-25 A

Micrologic 2.2 M-50... 220 A

\square Reflex tripping.

Micrologic 6.2 E-M (ground-fault protection)

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Additional characteristics

> Tripping curves
> Compact NSX400 to 630 Protection of distribution systems

Micrologic 2.3, 5.3 and 6.3 A or E electronic trip units

Micrologic 2.3-250... 400 A

\square Reflex tripping.

Micrologic 2.3-630 A

Micrologic 5.3 and 6.3 A or E-400 A

Micrologic 5.3 and 6.3 A or E-630 A

Micrologic 6.3 A or E electronic trip units (cont.)
Micrologic 6.3 A or E (ground-fault protection)

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Additional characteristics

Tripping curves
 Compact NSX400 to 630
 Motor protection

Micrologic 1.3 M and 2.3 M electronic trip units

Micrologic 1.3 M-320 A

\square Reflex tripping.

Micrologic 2.3 M-320 A

Micrologic 1.3 M-500 A

\square Reflex tripping.

Micrologic 6.3 E-M (ground fault protection)

Compact NSX100 to 630 devices incorporate the exclusive reflex-tripping system.
This system breaks very high fault currents. The device is mechanically tripped via a "piston" actuated directly by the pressure produced in the breaking units by the short-circuit.
For high short-circuits, this system provides a faster break, thereby ensuring discrimination.
Reflex-tripping curves are exclusively a function of the circuit-breaker rating.

Current and energy limiting
 curves

The limiting capacity of a circuit breaker is its aptitude to let through a current, during a short-circuit, that is less than the prospective short-circuit current.

The exceptional limiting capacity of the Compact NSX range is due to the rotating double-break technique (very rapid natural repulsion of contacts and the appearance of two arc voltages in-series with a very steep wave front).

Ics = 100 \% Icu

The exceptional limiting capacity of the Compact NSX range greatly reduces the forces created by fault currents in devices.
The result is a major increase in breaking performance.
In particular, the service breaking capacity Ics is equal to 100% of Icu.
The Ics value, defined by IEC standard 60947-2, is guaranteed by tests comprising the following steps:
■ break three times consecutively a fault current equal to 100\% of Icu

- check that the device continues to function normally, that is:
\square it conducts the rated current without abnormal temperature rise
\square protection functions perform within the limits specified by the standard
\square suitability for isolation is not impaired.

Longer service life of electrical installations

Current-limiting circuit breakers greatly reduce the negative effects of short-circuits on installations.

Thermal effects

Less temperature rise in conductors, therefore longer service life for cables.

Mechanical effects

Reduced electrodynamic forces, therefore less risk of electrical contacts or busbars being deformed or broken

Electromagnetic effects

Fewer disturbances for measuring devices located near electrical circuits.

Economy by means of cascading

Cascading is a technique directly derived from current limiting. Circuit breakers with breaking capacities less than the prospective short-circuit current may be installed downstream of a limiting circuit breaker. The breaking capacity is reinforced by the limiting capacity of the upstream device. It follows that substantial savings can be made on downstream equipment and enclosures.

Current and energy limiting curves

The limiting capacity of a circuit breaker is expressed by two curves which are a function of the prospective short-circuit current (the current which would flow if no protection devices were installed):

- the actual peak current (limited current)

■ thermal stress ($\mathrm{A}^{2} \mathrm{~s}$), i.e. the energy dissipated by the short-circuit in a conductor with a resistance of 1Ω.

Example

What is the real value of a 150 kA rms prospective short-circuit (i.e. 330 kA peak) limited by an NSX250L upstream?
The answer is 30 kA peak (curve page E-14).

Maximum permissible cable stresses

The table below indicates the maximum permissible thermal stresses for cables depending on their insulation, conductor (Cu or Al) and their cross-sectional area (CSA). CSA values are given in mm^{2} and thermal stresses in $\mathrm{A}^{2} \mathrm{~s}$.

CSA		$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$4 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$	$10 \mathrm{~mm}{ }^{2}$
PVC	Cu	2.97×10^{4}	8.26×10^{4}	2.12×10^{5}	4.76×10^{5}	1.32×10^{6}
	AI					5.41×10^{5}
PRC	Cu	4.10×10^{4}	1.39×10^{5}	2.92×10^{5}	6.56×10^{5}	1.82×10^{6}
	AI					7.52×10^{5}
CSA		$16 \mathrm{~mm}^{2}$	25 mm ${ }^{2}$	$35 \mathrm{~mm}^{2}$	$50 \mathrm{~mm}^{2}$	
PVC	Cu	3.4×10^{6}	8.26×10^{6}	1.62×10^{7}	3.31×10^{7}	
	AI	1.39×10^{6}	3.38×10^{6}	6.64×10^{6}	1.35×10^{7}	
PRC	Cu	4.69×10^{6}	1.39×10^{7}	2.23×10^{7}	4.56×10^{7}	
	AI	1.93×10^{6}	4.70×10^{6}	9.23×10^{6}	1.88×10^{7}	

Example

Is a Cu/PVC cable with a CSA of $10 \mathrm{~mm}^{2}$ adequately protected by an NSX160F? The table above indicates that the permissible stress is $1.32 \times 10^{6} \mathrm{~A}^{2} \mathrm{~s}$.
All short-circuit currents at the point where an NSX160F (Icu = 35 kA) is installed are limited with a thermal stress less than $6 \times 10^{5} \mathrm{~A}^{2} \mathrm{~s}$ (curve page $\mathrm{E}-14$). Cable protection is therefore ensured up to the limit of the breaking capacity of the circuit breaker.

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Additional characteristics

Current and energy limiting curves

Energy-limiting curves

Voltage $400 / 440$ V AC
Limited energy

Voltage 660/690 V AC
Limited energy

Catalogue numbers

 ContentsFunctions and characteristics A-1
Installation recommendations B-1
Dimensions and connection C-1
Wiring diagrams D-1
Additional characteristics E-1
NSX100 to 250 F-3
NSX400 to 630 F-29
Order form Compact NSX100 to 630 F-52
Glossary G-1

Compact NSX100 to 250 Contents

NSX100/160/250B: complete fixed/FC device F-4
Compact NSX100/160/250B (25 kA 380/415 V) F-4
Vigicompact NSX100/160/250B (25 kA 380/415 V) F-5
NSX100/160/250F: complete fixed/FC device F-6
Compact NSX100/160/250F (36 kA 380/415 V) F-6
Vigicompact NSX100/160/250F (36 kA 380/415 V) F-8
NSX100/160/250N: complete fixed/FC device F-9
Compact NSX100/160/250N (50 kA 380/415 V) F-9
NSX100/160/250H: complete fixed/FC device F-11
Compact NSX100/160/250H (70 kA 380/415 V) F-11
NSX100/160/250NA: complete fixed/FC device F-13
Compact NSX100/160/250NA F-13
NSX100/160/250B/F/N/H/S/L: fixed/FC device based on separate components F-14
Compact and Vigicompact F-14
Trip unit accessories F-16
Compact and Vigicompact NSX100/160/250 F-16
Installation and connection F-17
Compact and Vigicompact NSX100/160/250 F-17
Accessories F-18
Compact and Vigicompact NSX100/160/250 F-18
Monitoring and control, test tools F-27
Compact and Vigicompact NSX100/160/250 F-27

Catalogue numbers

NSX100/160/250B: complete fixed/FC device Compact NSX100/160/250B ($25 \mathrm{kA} 380 / 415 \mathrm{~V}$)

Compact NSX100/160/250B

With thermal-magnetic trip unit TM-D

Compact NSX100B (25 kA at $380 / 415 \mathrm{~V}$)

Rating	3P 2d	3P 3d
TM16D	LV429547	LV429557
TM25D	LV429546	LV429556
TM32D	LV429545	LV429555
TM40D	LV429544	LV429554
TM50D	LV429543	LV429553
TM63D	LV429542	LV429552
TM80D	LV429541	LV429551
TM100D	LV429540	LV429550

4P 3d	4P 4d
LV429567	LV429577
LV429566	LV429576
LV429565	LV429575
LV429564	LV429574
LV429563	LV429573
LV429562	LV429572
LV429561	LV429571
LV429560	LV429570

Compact NSX160B (25 kA at $380 / 415 \mathrm{~V}$)

Rating	3P 2d
TM80D	LV430303
TM100D	LV430302
TM125D	LV430301
TM160D	LV430300

3P 3d
LV430313
LV430312
LV430311
LV43031

4P 3d $\mid 4$

Compact NSX250B (25 kA at $380 / 415 \mathrm{~V}$)

Rating	3P 2d
TM125D	LV431103
TM160D	LV431102
TM200D	LV431101
TM250D	LV431100

3P 3d
LV431113
LV431112
LV431111
LV431110

4P 3d	4P 4d
LV431123	LV431133
LV431122	LV431132
LV431121	LV431131
LV431120	LV431130

4P 4d LV430333
LV430332
LV430331
LV430330

With electronic trip unit Micrologic 2.2 (LSOI protection)

Compact NSX100B (25 kA at $380 / 415 \mathrm{~V}$)

Rating	3P 3d	4P 3d, 4d, 3d + N/2
40	LV429777	LV429787
100	LV429775	LV429785
Compact NSX160B (25 kA at 380/415 V)		
Rating	3P 3d	4P 3d, 4d, 3d + N/2
100	LV430746	LV430751
160	LV430745	LV430750
Compact NSX250B (25 kA at 380/415 V)		
Rating	3P 3d	4P 3d, 4d, 3d + N/2
100	LV431142	LV431152
160	LV431141	LV431151
250	LV431140	LV431150

Compact NSX100B (25 kA at $380 / 415 \mathrm{~V}$)

Compact NSX100B $(25 \mathrm{kA}$ at $380 / 415 \mathrm{~V})$ Rating 40	3P 3d
100	LV429872
Compact NSX160B (25 kA at 380/415 V	LV429870

Compact NSX160B (25 kA at $380 / 415$ V)
Rating
100
160

3P 3d
LV430871
LV430870
Compact NSX250B (25 kA at $380 / 415 \mathrm{~V}$)

Rating	3P 3d
100	LV431147
160	LV431146
250	LV431145

```
4P 3d, 4d, 3d + N/2, 3d + OSN
LV429877
LV429875
```

$4 P 3 d, 4 d, 3 d+N / 2,3 d+O S N$
LV430876
LV430875

4P 3d, 4d, 3d + N/2, 3d + OSN
LV431157
LV431156
LV431155

With electronic trip unit Micrologic 5.2 E (LSI protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.2 A (LSIG protection, ammeter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.2 E (LSIG protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

NSX100/160/250B:
 complete fixed/FC device Vigicompact NSX100/160/250B (25 kA 380/415 V)

Vigicompact NSX100/160/250B

With thermal-magnetic trip unit TM-D

Vigicompact NSX100B (25 kA at $380 / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d	4P 3d	4P 4d
TM16D	LV429667	LV429707	LV429967
TM25D	LV429666	LV429706	LV429966
TM32D	LV429665	LV429705	LV429965
TM40D	LV429664	LV429704	LV429963
TM50D	LV429663	LV429703	LV429962
TM63D	LV429662	LV429701	LV429961
TM80D	LV429661	LV429700	LV429960

Rating	3P 3d	4P 3d	4P 4d
TM80D	LV430343	LV430353	LV430363
TM100D	LV430342	LV430352	LV430362
TM125D	LV430341	LV430351	LV430361
TM160D	LV430340	LV430350	LV430360

Rating	3P 3d	4P 3d	4P 4d
TM125D	LV431903	LV431913	LV431963
TM160D	LV431902	LV431912	LV431962
TM200D	LV431901	LV431911	LV431961
TM250D	LV431900	LV431910	LV431960

With electronic trip unit Micrologic 2.2 (LS 1 protection)

Vigicompact NSX100B (25 kA at $380 / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d	4P 3d, 4d, 3d + N/2
40	LV429975	LV429985
100	LV429974	LV429984
Vigicompact NSX160B (25 kA at $380 / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)		
Rating	3P 3d	4P 3d, 4d, 3d + N/2
40	LV430962	LV430997
100	LV430961	LV430996
160	LV430960	LV430995
Vigicompact NSX250B (25 kA at $\mathbf{3 8 0 / 4 1 5} \mathrm{V}$) equipped with MH Vigi module (200 to 440 V)		
Rating	3P 3d	4P 3d, 4d, 3d + N/2
100	LV431977	LV431987
160	LV431976	LV431986
250	LV431975	LV431985

With electronic trip unit Micrologic 5.2 A or 5.2 E (LSI protection, ammeter or energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

Catalogue numbers

NSX100/160/250F: complete fixed/FC device Compact NSX100/160/250F (36 kA 380/415 V)

Compact NSX100/160/250F

With thermal-magnetic trip unit TM-D

Compact NSX100F (36 kA at $380 / 415 \mathrm{~V}$)

Rating	3P 2d
TM16D	LV429627
TM25D	LV429626
TM32D	LV429625
TM40D	LV429624
TM50D	LV429623
TM63D	LV429622
TM80D	LV429621
TM100D	LV429620
Compact NSX160F (36 kA at 380/415 V)	

3P 3d	4P 3d	4P 4d
LV429637	LV429647	LV429657
LV429636	LV429646	LV429656
LV429635	LV429645	LV429655
LV429634	LV429644	LV429654
LV429633	LV429643	LV429653
LV429632	LV429642	LV429652
LV429631	LV429641	LV429651
LV429630	LV429640	LV429650

Compact NSX160F (36 kA at 380/415 V)
3P 3d

4P 3d	4P 4d
LV430643	LV430653
LV430642	LV430652
LV430641	LV430651
LV430640	LV430650

Compact NSX250F (36 kA at 380/415 V)

Rating	3P 2d
TM125D	LV431623
TM160D	LV431622
TM200D	LV431621
TM250D	LV431620

3P 3d	4P
LV431633	LV
LV431632	L
LV431631	LV
LV431630	L

4P 3d	4P 4d
LV431643	LV431653
LV431642	LV431652
LV431641	LV431651
LV431640	LV431650

With electronic trip unit Micrologic 2.2 (LS 1 protection)

Compact NSX100F (36 kA at $380 / 415 \mathrm{~V}$)

Rating	
40	
100	

3P 3d	4P 3d, 4d, 3d + N/2
LV429772	LV429782
LV429770	LV429780

Compact NSX160F (36 kA at 380/415 V)

Rating	$3 P$
100	LV
160	LV

$\|$3P 3d LV430771 LV430770
$\|$3P 3d LV431772 LV431771 LV431770

4P 3d, 4d, 3d + N/2
LV430781
LV430780
4P 3d, 4d, 3d + N/2
LV431782
LV431781
LV431780

With electronic trip unit Micrologic 5.2 A (LSI protection, ammeter)

Compact NSX100F (36 kA at $380 / 415 \mathrm{~V}$)
Rating
40
100
Compact NSX160F (36 kA at $380 / 415 \mathrm{~V}$)
Rating
$\frac{100}{160}$

$|$| 3P 3d | 4P 3d, 4d, 3d + N/2, 3d + OSN |
| :--- | :--- |
| LV429882 | LV429887 |
| LV429880 | LV429885 |

3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN
LV430881	LV430886
LV430880	LV430885

3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN
LV431862	LV431867
LV431861	LV431866
LV431860	LV431865

With electronic trip unit Micrologic 5.2 E (LSI protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.2 A (LSIG protection, ammeter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.2 E (LSIG protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual Catalogue numbers

NSX100/160/250F:
 complete fixed/FC device (cont.) Compact NSX100/160/250F (36 kA 380/415 V) (cont.)

Compact NSX100/160/250F
With magnetic trip unit MA

Compact NSX160F (36 kA at $380 / 415$ V)

Rating	3P 3d
MA100	LV430831
MA150	LV430830
Compact NSX250F (36 kA at 380/415 V)	
Rating	3P 3d
MA150	LV431749
MA220	LV431748

With electronic trip unit Micrologic 2.2-M (LS 1 motor protection)

With electronic trip unit Micrologic 6.2 E-M (LSIG motor protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

Catalogue numbers

NSX100/160/250F: complete fixed/FC device (cont.) Vigicompact NSX100/160/250F (36 kA 380/415 V)

Vigicompact NSX100/160/250F
With thermal-magnetic trip unit TM-D

Vigicompact NSX100F (36 kA at $380 / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d	4P 3d	CP 4d
TM16D	LV429937	LV429947	LV429957
TM25D	LV429936	LV429946	LV429956
TM32D	LV429935	LV429945	LV429955
TM40D	LV429934	LV429944	LV429954
TM50D	LV429933	LV429943	LV429953
TM63D	LV429932	LV429942	LV429951
TM80D	LV429931	LV429940	LV429950

Vigicompact NSX160F (36 kA at $380 / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d	4P 3d	4P 4d
TM80D	LV430933	LV430943	LV430953
TM100D	LV430932	LV430942	LV430952
TM125D	LV430931	LV430941	LV430951
TM160D	LV430930	LV430940	LV430950

Vigicompact NSX250F (36 kA at $380 / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d	4P 3d	4P 4d
TM125D	LV431933	LV431943	LV431953
TM160D	LV431932	LV431942	LV431952
TM200D	LV431931	LV431941	LV431951
TM250D	LV431930	LV431940	LV431950

With electronic trip unit Micrologic 2.2 (LSOI protection)

Vigicompact NSX100F (36 kA at $380 / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)

Rating	3P 3d	4P 3d, 4d, 3d + N/2
40	LV429972	LV429982
100	LV429970	LV429980
Vigicompact NSX160F (36 kA at $380 / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)		
Rating	3P 3d	4P 3d, 4d, 3d + N/2
40	LV430973	LV430983
100	LV430971	LV430981
160	LV430970	LV430980
Vigicompact NSX250F (36 kA at $380 / 415 \mathrm{~V}$) equipped with MH Vigi module (200 to 440 V)		
Rating	3P 3d	4P 3d, 4d, 3d + N/2
100	LV431972	LV431982
160	LV431971	LV431981
250	LV431970	LV431980

With electronic trip unit Micrologic 5.2 A or 5.2 E (LSI protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

NSX100/160/250N: complete fixed/FC device Compact NSX100/160/250N ($50 \mathrm{kA} 380 / 415 \mathrm{~V}$)

Compact NSX100/160/250N

With thermal-magnetic trip unit TM-D

Compact NSX100N (50 kA at $380 / 415 \mathrm{~V}$)

Rating	3P 3d
TM16D	LV429847
TM25D	LV429846
TM32D	LV429845
TM40D	LV429844
TM50D	LV429843
TM63D	LV429842
TM80D	LV429841
TM100D	LV429840
Compact NSX160N (50 kA at 380/415 V)	

4P 3d	4P 4d
LV429857	LV429867
LV429856	LV429866
LV429855	LV429865
LV429854	LV429864
LV429853	LV429863
LV429852	LV429862
LV429851	LV429861
LV429850	LV429860

Rating	3P 3d
TM80D	LV430843
TM100D	LV430842
TM125D	LV430841
TM160D	LV430840
Compact NSX250N (50 kA at 380/415 V)	

4P 3d	4P 4d
LV430853	LV430863
LV430852	LV430862
LV430851	LV430861
LV430850	LV430860

Rating	3P 3d	4P 3d	4P 4d
TM125D	LV431833	LV431843	LV431853
TM160D	LV431832	LV431842	LV431852
TM200D	LV431831	LV431841	LV431851
TM250D	LV431830	LV431840	LV431850

Compact NSX100N (50 kA at 380/415 V)

Rating
40
100
Compact NSX160N (50 kA at $380 / 415 \mathrm{~V})$

| 3P 3d

$|$| 4P 3d, 4d, 3d + N/2 |
| :--- |
| LV429807 |
| LV429805 |

$|$| 4P 3d, 4d, 3d + N/2 |
| :--- |
| LV430786 |
| LV430785 |

$|$| 4P 3d, 4d, 3d + N/2 |
| :--- |
| LV431877 |
| LV431876 |
| LV431875 |

With electronic trip unit Micrologic 5.2 A (LSI protection, ammeter)

Compact NSX100N (50 kA at 380/415 V)	3P 3d
Rating LV429892 40 LV429890 (100	

2

4P 3d, 4d, 3d + N/2, OSN
LV429897
LV429895

Rating	3P 3d	4P 3d, 4d, 3d + N/2, OSN
100	LV430891	LV430896
160	LV430890	LV430895
Compact NSX250N (50 kA at 380/415 V)		
Rating	3P 3d	4P 3d, 4d, 3d + N/2, OSN
100	LV431882	LV431887
160	LV431881	LV431886
250	LV431880	LV431885

With electronic trip unit Micrologic 5.2 E (LSI protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.2 A (LSIG protection, ammeter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.2 E (LSIG protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

Catalogue numbers

NSX100/160/250N: complete fixed/FC device (cont.) Compact NSX100/160/250N ($50 \mathrm{kA} 380 / 415 \mathrm{~V}$) (cont.)

Compact NSX100/160/250N

With magnetic trip unit MA
Compact NSX100N (50 kA at 380/415 V)

MA2.5	LV429755

MA6.3	LV429754

MA12.5 LV429753 LV42975
MA50
LV429751
LV429750
Compact NSX160N (50 kA at $380 / 415$ V)

Rating	3P 3d
MA100	LV430833

MA150 \mid LV430832
Compact NSX250N (50 kA at 380/415 V)

Rating	3P 3d

MA150 \mid LV431753
MA220 \mid LV431752

With electronic trip unit Micrologic 2.2-M (LS ${ }_{0}$ I motor protection)

With electronic trip unit Micrologic 6.2 E-M (LSIG motor protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

NSX100/160/250H: complete fixed/FC device Compact NSX100/160/250H (70 kA 380/415 V)

Compact NSX100/160/250H

With thermal-magnetic trip unit TM-D

Compact NS $\times 100 \mathrm{H}$ (70 kA at $380 / 415 \mathrm{~V}$)

Compact NSX100H (70 kA at 3801415 V)	
Rating	3P 3d
TM16D	LV429677
TM25D	LV429676
TM32D	LV429675
TM40D	LV429674
TM50D	LV429673
TM63D	LV429672
TM80D	LV429671
TM100D	LV429670
Compact NSX160H (70 kA at 380/415 V)	

4P 3d	4P 4d
LV429687	LV429697
LV429686	LV429696
LV429685	LV429695
LV429684	LV429694
LV429683	LV429693
LV429682	LV429692
LV429681	LV429691
LV429680	LV429690

Rating	3P 3d
TM80D	LV430673
TM100D	LV430672
TM125D	LV430671
TM160D	LV430670
Compact NSX250H (70 kA at 380/415 V)	

4P 3d	4P 4d
LV430683	LV430693
LV430682	LV430692
LV430681	LV430691
LV430680	LV430690

Rating	3P 3d	4P 3d	4P 4d
TM125D	LV431673	LV431683	LV431693
TM160D	LV431672	LV431682	LV431692
TM200D	LV431671	LV431681	LV431691
TM250D	LV431670	LV431680	LV431690

Compact NSX100H (70 kA at 380/415 V)

Rating	3P 3d	4P 3d, 4d, 3d + N/2
40	LV429792	LV429802
100	LV429790	LV429800
Compact NSX160H (70 kA at 380/415 V)		
Rating 3P 3d 4P 3d, 4d, 3d + N/2 100 LV430791 LV430801 160 LV430790 LV430800 Compact NSX250H (70 kA at 380/415 V) Rating 3P 3d 4P 3d, 4d, 3d + N/2 100 LV431792 LV431802 160 LV431791 LV431801 250 LV431790 LV431800		

Compact NSX100H (70 kA at 380/415 V)			
B	Rating	3P 3d	4P 3d, 4d, 3d + N/2, OSN
Nes	40	LV429794	LV429804
相	100	LV429793	LV429803
	Compact NSX160H (70 kA at 380/415 V)		
Sob	Rating	3P 3d	4P 3d, 4d, 3d + N/2, OSN
	100	LV430795	LV430805
(1)	160	LV430794	LV430804
Iner	Compact NSX250H (70 kA at 380/415 V)		
	Rating	3P 3d	4P 3d, 4d, 3d + N/2, OSN
	100	LV431797	LV431807
	160	LV431796	LV431806
	250	LV431795	LV431805

With electronic trip unit Micrologic 5.2 E (LSI protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.2 A (LSIG protection, ammeter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.2 E (LSIG protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

Catalogue numbers

NSX100/160/250H: complete fixed/FC device (cont.) Compact NSX100/160/250H (70 kA 380/415 V) (cont.)

Compact NSX100/160/250H

With magnetic trip unit MA

Compact NSX100H (70 kA at 380/415 V)
Rating 3P 3d

MA2.5	LV429765

MA6.3 LV429765

MA12.5
LV429763
MA25 LV429762
MA50 LV429761
LV429760
Compact NSX160H (70 kA at $380 / 415$ V)

Rating	3P 3d
MA100	LV430835
MA150	LV430834

Compact NSX250H (70 kA at 380/415 V)

Rating	3P 3d
MA150	LV431757
MA220	LV431756

With electronic trip unit Micrologic 2.2-M (LS 1 motor protection)

Compact NSX100H (70 kA at 380/415 V)

Rating	3P 3d
25	LV429838
50	LV429837
100	LV429835

Compact NSX160H (70 kA at $380 / 415$ V)

Rating	3P 3d
100	LV430992
150	LV430991

Compact NSX250H (70 kA at 380/415 V)

Rating	3P 3d
150	LV431171
220	LV431170

With electronic trip unit Micrologic 6.2 E-M (LSIG motor protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual
Catalogue numbers
NSX100/160/250NA:
complete fixed/FC device Compact NSX100/160/250NA

Compact NSX100/160/250NA switch-disconnector
With NA switch-disconnector unit

Compact NSX100NA			
Rating	2P	3P	4P
100	LV429619	LV429629	LV429639
Compact NSX160NA			
Rating	2P	3P	4P
160	LV430619	LV430629	LV430639
Compact NSX250NA			
Rating	2P	3P	4P
250	LV431619	LV431629	LV431639

Basic frame

	Compact NSX100		
		3P	4P
	NSX100B (25 kA 380/415 V)	LV429014	LV429015
	NSX100F ($36 \mathrm{kA} \mathrm{380/415} \mathrm{V)}$	LV429003	LV429008
	NSX100N ($50 \mathrm{kA} 380 / 415 \mathrm{~V}$)	LV429006	LV429011
	NSX100H (70 kA 380/415 V)	LV429004	LV429009
	NSX100S (100 kA 380/415 V)	LV429018	LV429019
	NSX100L (150 kA 380/415 V)	LV429005	LV429010
	Compact NSX160		
		3P	4P
	NSX160B (25 kA 380/415 V)	LV430390	LV430395
	NSX160F (36 kA 380/415 V)	LV430403	LV430408
	NSX160N ($50 \mathrm{kA} \mathrm{380/415} \mathrm{V)}$	LV430406	LV430411
	NSX160H (70 kA 380/415 V)	LV430404	LV430409
	NSX160S (100 kA 380/415 V)	LV430391	LV430396
	NSX160L (150 kA 380/415 V)	LV430405	LV430410
	Compact NSX250		
		3P	4P
	NSX250B (25 kA 380/415 V)	LV431390	LV431395
	NSX250F (36 kA 380/415 V)	LV431403	LV431408
	NSX250N ($50 \mathrm{kA} 380 / 415 \mathrm{~V}$)	LV431406	LV431411
	NSX250H (70 kA 380/415 V)	LV431404	LV431409
	NSX250S (100 kA 380/415 V)	LV431391	LV431396
	NSX250L (150 kA 380/415 V)	LV431405	LV431410

+ Trip unit

Distribution protection

	Thermal-magnetic TM-D			
	Rating	3P 3d	4P 3d	4P 4d
	TM16D	LV429037	LV429047	LV429057
	TM25D	LV429036	LV429046	LV429056
	TM32D	LV429035	LV429045	LV429055
	TM40D	LV429034	LV429044	LV429054
	TM50D	LV429033	LV429043	LV429053
	TM63D	LV429032	LV429042	LV429052
	TM80D	LV429031	LV429041	LV429051
	TM100D	LV429030	LV429040	LV429050
	TM125D	LV430431	LV430441	LV430451
	TM160D ${ }^{(1)}$	LV430430	LV430440	LV430450
	TM160D ${ }^{(2)}$	LV431432	LV431442	LV431452
	TM200D	LV431431	LV431441	LV431451
	TM250D	LV431430	LV431440	LV431450
	Micrologic 2.2 (LS ${ }_{\text {O }}$ I protection)			
	Rating	3P 3d	4P 3d, 4d, 3d + N/2	
	Micrologic 2.2 40 A	LV429072	LV429082	
	Micrologic 2.2 100 A	LV429070	LV429080	
	Micrologic 2.2 160 A	LV430470	LV430480	
	Micrologic 2.2 250 A	LV431470	LV431480	
	Micrologic 5.2 A (LSI protection, ammeter)			
	Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN	
	Micrologic 5.2 A 40 A	LV429091	LV429101	
	Micrologic 5.2 A 100 A	LV429090	LV429100	
	Micrologic 5.2 A 160A	LV430490	LV430495	
	Micrologic 5.2A 250 A	LV431490	LV431495	
	Micrologic 5.2 E (LSI protection, energy meter)			
	Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN	
	Micrologic 5.2 E 40A	LV429096	LV429106	
	Micrologic 5.2 E 100 A	LV429095	LV429105	
	Micrologic 5.2 E 160 A	LV430491	LV430496	
	Micrologic 5.2 E 250 A	LV431491	LV431496	
	Micrologic 6.2 A (LSIG protection, ammeter)			
	Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN	
	Micrologic 6.2 A 40 A	LV429111	LV429136	
	Micrologic 6.2 A 100 A	LV429110	LV429135	
	Micrologic 6.2A160A	LV430505	LV430515	
	Micrologic 6.2 A 250 A	LV431505	LV431515	
	Micrologic 6.2 E (LSIG protection, energy meter)			
	Rating	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN	
	Micrologic 6.2 E 40A	LV429116	LV429141	
	Micrologic 6.2 E 100 A	LV429115	LV429140	
	Micrologic 6.2 E 160 A	LV430506	LV430516	
	Micrologic 6.2E 250 A	LV431506	LV431516	

(1) For NSX160.
(2) For NSX250.
＋Trip unit（cont．）
Motor protection

Motor protection			
	Rating	3P 3d	4P 3d
	MA2．5	LV429125	
	MA6．3	LV429124	
	MA12．5	LV429123	
	MA25	LV429122	
	MA50	LV429121	
	MA100	LV429120	LV429130
	MA150	LV430500	LV430510
	MA220	LV431500	LV431510
	Micrologic 2．2－M（LSOI protection）		
	Rating	3P 3d	
	Micrologic 2．2－M 25 A	LV429174	
	Micrologic 2．2－M 50 A	LV429172	
	Micrologic 2．2－M 100 A	LV429170	
	Micrologic 2．2－M 150 A	LV430520	
	Micrologic 2．2－M 220 A	LV431520	
	Micrologic 6．2 E－M（LSIG protection，energy meter）		
	Rating	3P 3d	
	Micrologic 6．2 E－M 25A	LV429184	
	Micrologic 6．2 E－M 50 A	LV429182	
	Micrologic 6．2 E－M 80 A	LV429180	
	Micrologic 6．2 E－M 150 A	LV430521	
	Micrologic 6．2 E－M 220 A	LV431521	
Generator protection			
	Thermal－magnetic TM－G		
	Rating	3P 3d	4P 4d
	TM16G	LV429155	LV429165
	TM25G	LV429154	LV429164
	TM40G	LV429153	LV429163
	TM63G	LV429152	LV429162
	Micrologic 2．2 G（LSol protection）		
	Rating	3P 3d	4P 3d，4d，3d＋N／2
	Micrologic 2．2－G 40 A	LV429076	LV429086
	Micrologic 2．2－G 100 A	LV429075	LV429085
	Micrologic 2．2－G 160 A	LV430475	LV430485
	Micrologic 2．2－G 250 A	LV431475	LV431485
Protection of public distribution systems			
	Micrologic 2．2 AB（LSol protection）		
	Rating		4P 3d，4d，3d＋N／2
			LV434550
	Micrologic 2．2－AB 160 A		LV434551
	Micrologic 2．2－AB 240 A		LV434554
$16 \mathrm{~Hz} 2 / 3$ network protection			
	Micrologic 5．2 A－Z（LSI protection，ammeter）		
	Rating	3P 3d	
	Micrologic 5．2 A－Z 100 A	LV429089	
	Micrologic 5．2 A－Z 250 A	LV431489	

＋Vigi module or insulation monitoring module

Vigi module			
\％ $0 \sqrt{0}$		3P	4P
\％0 0	ME type for NSX100／160（200 to 440 V ）	LV429212	LV429213
－de	MH type for NSX100／160（200 to 440 V）	LV429210	LV429211
明	MH type for NSX250（200 to 440 V ）	LV431535	LV431536
，	MH type for NSX100／160（440 to 550 V）	LV429215	LV429216
Na	MH type for NSX250（440 to 550 V ）	LV431533	LV431534
	Connection for a 4P Vigi on a 3P breaker		LV429214
Insulation monitoring module			
		3P	4P
\＃ 0	200 to 440 V AC	LV429459	LV429460
国家	Connection for a 4P insulation monitoring module on a 3P breaker		LV429214

Catalogue numbers
Trip unit accessories
Compact and Vigicompact
NSX100/160/250

Trip unit accessories
External neutral CT for 3 pole breaker with Micrologic 5/6
25-100 A
LV429521
150-250 A
LV430563

24 V DC wiring accessory for Micrologic 5/6

24 V DC power supply connector

ZSI wiring accessory for NS630b NW with NSX

ZSI module

External power supply module (24 V DC - 1 A), class 4

$24-30$ V DC
$48-60$ V DC
$100-125 ~ V ~ D C$
$110-130 ~ V ~ A C$
$200-240 ~ V ~ A C$
$380-415 ~ \vee A C$

Kit for Vigicompact				
	Vigicompact plug-in Comprising: Base Power connections Short terminal shield Safety trip interlock		$\begin{array}{\|l\|} \hline \text { 3P } \\ \hline \text { LV429291 } \\ \\ =1 \times \text { LV429266 } \\ +3 \times \text { LV429269 } \\ + \\ +1 \times \text { LV429515 } \\ +1 \times \text { LV429270 } \end{array}$	4P LV429292 $\begin{array}{\|l} =1 \times \text { LV429267 } \\ +4 \times \text { LV429269 } \\ + \\ +1 \times \text { LV429516 } \\ +1 \times \text { LV429270 } \end{array}$
Withdrawable version = fixed/FC device + withdrawable kit				
Kit for Compact				
	Plug-in kit Chassis side plates for base Chassis side plates for breaker	$\begin{aligned} & \text { 2P (3P) } \\ & \text { Kit for Compact } \\ & = \\ & 1 \times \text { LV429288 } \\ & + \\ & 1 \times \text { LV429282 } \\ & + \\ & 1 \times \text { LV429283 } \end{aligned}$	$\begin{aligned} & \text { 3P } \\ & \text { Kit for Compact } \\ & \quad= \\ & 1 \times \text { LV429289 } \\ & + \\ & 1 \times \text { LV429282 } \\ & + \\ & 1 \times \text { LV429283 } \end{aligned}$	$\begin{aligned} & \text { 4P } \\ & \text { Kit for Compact } \\ & = \\ & 1 \times \text { LV429290 } \\ & + \\ & 1 \times \text { LV429282 } \\ & + \\ & 1 \times \text { LV429283 } \end{aligned}$

Catalogue numbers

Accessories
Compact and Vigicompact
NSX100/160/250

	Bare cable co				
\%		Steel connectors	$1 \times\left(1.5\right.$ to $\left.95 \mathrm{~mm}^{2}\right) ; \leqslant 160 \mathrm{~A}$	Set of 3 Set of 4	$\begin{aligned} & \text { LV429242 } \\ & \hline \text { LV429243 } \end{aligned}$
	(18)	Aluminium connectors	$1 \times\left(25\right.$ to $\left.95 \mathrm{~mm}^{2}\right) ; \leqslant 250 \mathrm{~A}$	Set of 3	LV429227
				Set of 4	LV429228
			$1 \times\left(120\right.$ to $\left.185 \mathrm{~mm}^{2}\right) ; \leqslant 250 \mathrm{~A}$	Set of 3	LV429259
				Set of 4	LV429260
$\begin{aligned} & \text { ※ĩ } \\ & \text { yig } \end{aligned}$		Clips for connectors		Set of 10	LV429241
		Aluminium connectors for 2 cables ${ }^{(1)}$	$2 \times\left(50\right.$ to $\left.120 \mathrm{~mm}^{2}\right) ; \leqslant 250 \mathrm{~A}$	Set of 3	LV429218
裼				Set of 4	LV429219
		Aluminium connectors ${ }^{(1)}$ for 6 cables	$6 \times\left(1.5\right.$ to $\left.35 \mathrm{~mm}^{2}\right) ; \leqslant 250 \mathrm{~A}$	Set of 3	LV429248
癸	di			Set of 4	LV429249
		6.35 mm voltage tap for steel or alumi	nectors	Set of 10	LV429348

"Polybloc" distribution block (for bare cable)

$160 \mathrm{~A}\left(40^{\circ} \mathrm{C}\right) 6$ cables $\mathrm{S} \leqslant 10 \mathrm{~mm}^{2}$	1 P	04031
$250 \mathrm{~A}\left(40^{\circ} \mathrm{C}\right) 9$ cables $\mathrm{S} \leqslant 10 \mathrm{~mm}^{2}$	$\frac{3 P}{4 P}$	04033

(1) Supplied with 2 or 3 interphase barriers.

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual
Catalogue numbers
Accessories (cont.)
Compact and Vigicompact NSX100/160/250 (cont.)

1) Supplied with 2 or 3 interphase barriers.

Catalogue numbers

Accessories (cont.)
 Compact and Vigicompact
 NSX100/160/250 (cont.)

Electrical auxiliaries

Auxiliary contacts (changeover)

A	OF or SD or SDE or SDV	29450
	OF or SD or SDE or SDV low level	29452
鱼	SDE adapter, mandatory for trip unit TM, MA or Micrologic 2	LV429451

SDx output module for Micrologic

SDx module 24/415 V AC/DC
| LV429532

SDTAM contactor tripping module (early-break thermal fault signal) for Micrologic 2.2-M/6.2 E-M

SDTAM 24/415 V AC/DC overload fault indication

	Voltage	MX	MN
AC	$24 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	LV429384	LV429404
	$48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	LV429385	LV429405
	$110-130 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	LV429386	LV429406
	220-240 V 50/60 Hz and 208-277 V 60 Hz	LV429387	LV429407
	$380-415 \mathrm{~V} 50 \mathrm{~Hz}$ and 440-480 V 60 Hz	LV429388	LV429408
	525 V 50 Hz and 600 V 60 Hz	LV429389	LV429409
DC	12 V	LV429382	LV429402
	24 V	LV429390	LV429410
	30 V	LV429391	LV429411
	48 V	LV429392	LV429412
	60 V	LV429383	LV429403
	125 V	LV429393	LV429413
	250 V	LV429394	LV429414
MN $48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ with fixed time delay			
Composed of:	MN 48 V DC		LV429412
	Delay unit $48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		LV429426
MN 220-240 V 50/60 Hz with fixed time delay			
Composed of:	MN 250 V DC		LV429414
	Delay unit $220-240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		LV429427
MN 48 V DCIAC $50 / 60 \mathrm{~Hz}$ with adjustable time delay			
Composed of:	MN 48 V DC		LV429412
	Delay unit $48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		33680
MN110-130 V DCIAC 50/60 Hz with adjustable time delay			
Composed of:	MN 125 V DC		LV429413
	Delay unit 110-130 V 50/60 Hz		33681
MN 220-250 V 50/60 Hz with adjustable time delay			
Composed of:	MN 250 V DC		LV429414
	Delay unit $220-250 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		33682

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual
Catalogue numbers
Accessories (cont.)
Compact and Vigicompact
NSX100/160/250 (cont.)

Catalogue numbers

Accessories (cont.)
Compact and Vigicompact
NSX100/160/250 (cont.)

Indication and measurement modules

Ammeter module

Rating (A)	100	160	250
$3 P$	LV429455	LV430555	LV431565
4P	LV429456	LV430556	LV431566

I max. ammeter module

Rating (A)

| 100 |
| :--- | :--- |
| IV434849 |

\square 250

160

LV434851

Current transformer module

Rating (A)	125
$3 P$	LV42945

150
LV430557

LV430558
LV431567
LV431568

Current transformer module and voltage output

Rating (A)	125
3P	LV42946

| 150 |
| :--- | :--- |
| LV430561 |

250

LV429461	LV430561	LV431569

LV42946
LV430562
LV431570

Voltage presence indicator

Rotary handles

Direct rotary handle

With black handle
LV429337
With red handle on yellow front
CNOMO conversion accessory
LV429342

Extended rotary handle

Accessories for direct or extended rotary handle

Locks

Toggle locking device for 1 to 3 padlocks

By fixed device
| LV429371

Locking of rotary handle

Keylock adapter (keylock not included) Keylock (keylock adapter not included)

Catalogue numbers

Accessories (cont.)
Compact and Vigicompact
NSX100/160/250 (cont.)

Interlocking

Mechanical interlocking for circuit breakers
With toggles

With rotary handles	LV429369

Interlocking with key (2 keylocks / 1 key) for rotary handles

Installation accessories
Front-panel escutcheons

IP30 escutcheon for all control types	LV42952

P30 trip unit access escutcheon for toggle
IP30 escutcheon for Vigi module

LV429344
Keylock kit (keylock not included) ${ }^{(1)}$
1 set of 2 keylocks
(1 key only, keylock kit not included)
41950 42878

LV429526
LV429527

IP40 escutcheon for all control types
LV429317
P40 escutcheon for Vigi module
LV429316
P40 escutcheon for Vigi or ammeter module
LV429318

IP43 rubber toggle cover

1 toggle cover
| LV429319

(1) For only 1 device.

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual

Catalogue numbers

Accessories (cont.)
Compact and Vigicompact NSX100/160/250 (cont.)

Catalogue numbers

Accessories (cont.)
Compact and Vigicompact
NSX100/160/250 (cont.)

Visible break disconnect function
See catalogue dealing with "Interpact INV products (visible break)" and the associated accessories.
The visible break disconnection function is compatible with fixed front-connected/rear-connected Compact NSX devices.

Monitoring and control (remote operation)

Circuit breaker accessories

Breaker Status Control Module
$\operatorname{BSCM}^{(1)}$
LV434205

ULP display module ${ }^{(2)}$

Switchboard front display module FDM121
TRV00121 FDM mounting accessory (diameter 22 mm) TRV00128

ULP communication module

Modbus interface
Modbus SL communication interface module
TRV00210

ULP wiring accessories

	10 Modbus line terminators	VW3A8306DRC	(3)
	RS 485 roll cable (4 wires, length 60 m)	50965	
	5 RJ45 connectors female/female	TRV00870	
	10 ULP line terminators	TRV00880	
	$10 \mathrm{RJ} 45 / \mathrm{RJ} 45$ male cord $\mathrm{L}=0.3 \mathrm{~m}$	TRV00803	
䫆	$10 \mathrm{RJ} 45 / \mathrm{RJ} 45$ male cord $\mathrm{L}=0.6 \mathrm{~m}$	TRV00806	
	5 RJ45/RJ45 male cord L = 1 m	TRV00810	
	5 RJ45/RJ45 male cord L $=2 \mathrm{~m}$	TRV00820	
	5 RJ45/RJ45 male cord L $=3 \mathrm{~m}$	TRV00830	
	1 RJ45/RJ45 male cord L = 5 m	TRV00850	
$\stackrel{\sim}{\sim}$	External power supply module 100-240 V AC 110-230 V DC / 24 V DC-3 A class 2	ABL8RPS24030	(3)
	External power supply module 24 V DC-1 A OVC IV		
\#	24-30 V DC	54440	
-	48-60 V DC	54441	
	100-125 V AC	54442	
	110-130 V AC	54443	
	200-240 V AC	54444	
	380-415 V AC	54445	
	24 V DC battery module	54446	

(1) SDE adapter mandatory for trip unit TM, MA or Micrologic 2 (LV429451).
(2) For measurement display with Micrologic A and E or status display with BSCM.
(3) See Telemecanique catalogue.

Catalogue numbers

Monitoring and control, test tools (cont.)
 Compact and Vigicompact
 NSX100/160/250 (cont.)

Test tool, software, demo		

Spare USB maintenance interface
|TRV00911

Spare power supply 110-240 V AC
|TRV00915

Configuration and setting software RSU
LV4ST100
est software LTU
LV4ST121
LV4SM100
onitoring software RCU
LVISM100

Demo tool
(1) See Telemecanique catalogue.
(2) Downloadable from http://schneider-electric.com.

Compact NSX400 to 630 Contents

NSX400/630F: complete fixed/FC device F-30
Compact NSX400/630F (36 kA 380/415 V) F-30
Vigicompact NSX400/630F ($36 \mathrm{kA} 380 / 415 \mathrm{~V}$) F-31
NSX400/630N: complete fixed/FC device F-32
Compact NSX400/630N (50 kA 380/415 V) F-32
Vigicompact NSX400/630N (50 kA 380/415 V) F-33
NSX400/630H: complete fixed/FC device F-34
Compact NSX400/630H (70 kA 380/415 V) F-34
NSX400/630NA: complete fixed/FC device F-35
Compact NSX400/630NA F-35
NSX400/630F/N/H/S/L: fixed/FC device based on separate components F-36
Compact and Vigicompact F-36
Trip unit accessories F-37
Compact and Vigicompact NSX400/630 F-37
Installation and connection F-38
Compact and Vigicompact NSX400/630 F-38
Accessories F-40
Compact and Vigicompact NSX400/630 F-40
Monitoring and control, test tools F-49
Compact and Vigicompact NSX400/630 F-49
Spare Parts F-51
User manuals F-51

Catalogue numbers

NSX400/630F: complete fixed/FC device Compact NSX400/630F (36 kA 380/415 V)

Compact NSX400/630F
 Electronic trip unit Micrologic 2.3 (LSOI protection)

Compact NSX400F (36 kA at 380/415 V)	250 A
	400 A
Compact NSX630F $(36 \mathrm{kA}$ at $380 / 415 \mathrm{~V}$)	630 A

3P 3d
LV432682
LV432676
LV432876

4P 3d, 4d, 3d + N/2
LV432683
LV432677

Compact NSX630F (36 kA at 380/415 V)
630 A LV432876 LV432877

Electronic trip unit Micrologic 5.3 A (LSI protection, ammeter)

Compact NSX400F (36 kA at 380/415 V)

Compact NSX630F (36 kA at 380/415 V) LV432679 LV432879

Electronic trip unit Micrologic 1.3-M (I motor protection)

		3P 3d
Compact NSX400F 1.3-M (36 kA at 380/415V)	320 A	LV432748
Compact NSX630F 1.3-M (36 kA at 380/415V)	500 A	LV432948

Electronic trip unit Micrologic 2.3-M (LSOI motor protection)

| Compact NSX400F 2.3-M $(36$ kA at $380 / 415 \mathrm{~V})$ | 320 A | 3P 3d |
| :--- | :--- | :--- | :--- |
| Compact NSX630F 2.3-M $(36$ kA at $380 / 415 \mathrm{~V})$ | 500 A | LV432775 |

With electronic trip unit Micrologic 5.3 E (LSI protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.3 A (LSIG protection, ammeter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.3 E (LSIG protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.3 E-M (LSIG motor protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

Catalogue numbers

Vigicompact NSX400/630F
Electronic trip unit Micrologic 2.3 (LSI I protection)

Catalogue numbers

NSX400/630N: complete fixed/FC device Compact NSX400/630N ($50 \mathrm{kA} 380 / 415 \mathrm{~V}$)

Electronic trip unit Micrologic 5.3 A (LSI protection, ammeter)

	3P 3d	4P 3d, 4d, 3d + N/2, 3d + OSN	
Compact NSX400N (50 kA at 380/415 V)	400 A	LV432699	LV432700
Compact NSX630N (50 kA at 380/415 V)	630 A	LV432899	LV432900

Electronic trip unit Micrologic 1.3-M A (I motor protection)

		3P 3d
Compact NSX400N 1.3-M (50 kA at 380/415V)	320 A	LV432749
Compact NSX630N 1.3-M (50 kA at 380/415V)	500 A	LV432949

Electronic trip unit Micrologic 2.3-M (LSOI motor protection)

| | | |
| :--- | :--- | :--- | :--- |
| Compact NSX400N 2.3-M $(50$ kA at $380 / 415 \mathrm{~V})$ | 320 A | 3P 3d |
| Compact NSX630N 2.3-M $(50$ kA at $380 / 415 \mathrm{~V})$ | 500 A | LV432776 |

With electronic trip unit Micrologic 5.3 E (LSI protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.3 A (LSIG protection, ammeter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.3 E (LSIG protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit
With electronic trip unit Micrologic 6.3 E-M (LSIG motor protection, energy meter)
To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

Vigicompact NSX400/630N
Electronic trip unit Micrologic 2.3 (LS I I protection)

LV432933 LV432934

To be ordered with 2 catalogue numbers: 1 basic frame +1 trip unit

Catalogue numbers

NSX400/630H:
 complete fixed/FC device Compact NSX400/630H (70 kA 380/415 V)

Compact NSX400/630H

Electronic trip unit Micrologic 2.3 (LSOI protection)

| Compact NSX400H $(70$ kA at $380 / 415 \mathrm{~V})$ | 250 A | 3P 3d |
| :--- | :--- | :--- | :--- |
| Compact NSX630H $(70$ kA at $380 / 415 \mathrm{~V})$ | 400 A | LV432709 |
| | 630 A | LV432895 |

Electronic trip unit Micrologic 5.3 A (LSI protection, ammeter)

Compact NSX400H (70 kA at $380 / 415 \mathrm{~V}$)
400 A
3P 3d
$4 P 3 d, 4 d, 3 d+N / 2,3 d+O S N$
Compact NSX630H (70 kA at 380/415 V)
630 A LV432901 LV432702 LV432902

Micrologic 1.3-M (I motor protection)

		3P 3d
Compact NSX400H 1.3-M $(70$ kA at $380 / 415 \mathrm{~V})$	320 A	LV432750
Compact NSX630H 1.3-M (70 kA at 380/415V)	500 A	LV432950

Electronic trip unit Micrologic 2.3-M (LSOI motor protection)

		3P 3d
Compact NSX400H 2.3-M $(70$ kA at $380 / 415 \mathrm{~V})$	320 A	LV432777
Compact NSX630H 2.3-M $(70$ kA at $380 / 415 \mathrm{~V})$	500 A	LV432977

With electronic trip unit Micrologic 6.3 E (LSIG protection, energy meter)
Only available as separate components.
With electronic trip unit Micrologic 6.3 E-M (LSIG motor protection, energy meter)
Only available as separate components

Compact NSX400/630 0.3 NA switch-disconnector
With 0.3 NA switch-disconnector unit

LV432956

Compact and Vigicompact

Protection of public distribution systems		
Micrologic 2.3-AB (LS 1 l protection)		
Rating		4P 3d, 4d, 3d + N/2
Micrologic 2.3400 A		LV434557
$16 \mathrm{~Hz} 2 / 3$ network protection		
Micrologic 5.3 A-Z (LSI protection, ammeter)		
Rating	3P 3d	
Micrologic 5.3A-Z 630 A	LV432089	

+ Vigi module or insulation monitoring module

Fixed/FC device with 52.5 mm or 70 mm pitch = fixed/FC device with $\mathbf{4 5} \mathrm{mm}$ pitch + spreaders
The pitch of all Compact and Vigicompact NSX400/630 devices is 45 mm . Spreaders are available for fixed front, plug-in or withdrawable connection with pitch of 52.5 mm or 70 mm .

Upstream or downstream spreaders ${ }^{(1)}$

Plug-in version = fixed/FC device + plug-in kit
Kit for Compact

3P	4P
LV432538	LV432539
$=1 \times$ LV432516	$=1 \times$ LV432517
$+3 \times$ LV432518	$+4 \times$ LV432518
$+2 \times$ LV432591	$+2 \times$ LV432592
$+1 \times$ LV432520	$+1 \times$ LV432520

Kit for Vigicompact			
\% 0		3P	4P
	Vigi plug-in kit Comprising:	LV432540	LV432541
	Base	= $1 \times$ LV432516	= $1 \times$ LV432517
50	Power connections	+ $3 \times$ LV432519	+4x LV432519
	Short terminal shields	+ $2 \times$ LV432591	+ $2 \times$ LV432592
हf bi	Safety trip interlock	+1 \times LV432520	+1 \times LV432520

(1) Supplied with 2 or 3 interphase barriers.

Withdrawable version = fixed/FC device + withdrawable kit

3P	4P
Kit for Compact =	Kit for Compact =
$1 \times$ LV432538	$1 \times$ LV432539
+	+
$1 \times$ LV432532	$1 \times$ LV432532
+	+
$1 \times$ LV432533	$1 \times$ LV432533

	3P	4P
	Kit for Vigicompact $=$	Kit for Vigicompact $=$
Plug-in kit:	$1 \times$ LV432540	$1 \times$ LV432541
	+	+
Chassis side plates	$1 \times$ LV432532	$1 \times$ LV432532
for base	+	+
Chassis side plates for breaker	$1 \times$ LV432533	$1 \times$ LV432533

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual

Catalogue numbers

Accessories
Compact and Vigicompact NSX400/630

(1) Supplied with 2 or 3 interphase barriers.

Accessories (cont.)
Compact and Vigicompact
NSX400/630 (cont.)

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual

Catalogue numbers

Accessories (cont.)
Compact and Vigicompact
NSX400/630 (cont.)

SDTAM contactor tripping module (early-break thermal fault signal) for Micrologic 2.3-M/6.3 E-M

SDTAM 24/415 V AC/DC overload fault indication
| LV429424

Voltage releases				
		Voltage	MX	MN
	AC	$24 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	LV429384	LV429404
		$48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	LV429385	LV429405
		$110-130 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	LV429386	LV429406
		220-240 V 50/60 Hz and 208-277 V 60 Hz	LV429387	LV429407
		$380-415 \mathrm{~V} 50 \mathrm{~Hz}$ and $440-480 \mathrm{~V} 60 \mathrm{~Hz}$	LV429388	LV429408
		525 V 50 Hz and 600 V 60 Hz	LV429389	LV429409
	DC	12 V	LV429382	LV429402
		24 V	LV429390	LV429410
		30 V	LV429391	LV429411
		48 V	LV429392	LV429412
		60 V	LV429383	LV429403
		125 V	LV429393	LV429413
		250 V	LV429394	LV429414
	MN $48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ with fixed time delay			
	Composed of	MN 48 V DC		LV429412
		Delay unit $48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		LV429426
	MN 220-240 V 50/60 Hz with fixed time delay			
	Composed of	MN 250 V DC		LV429414
		Delay unit $220-240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		LV429427
	MN 48 V DCIAC $50 / 60 \mathrm{~Hz}$ with adjustable time delay			
	Composed of	MN 48 V DC		LV429412
		Delay unit $48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		33680
	MN110-130 V DCIAC 50/60 Hz with adjustable time delay			
	Composed of:	MN 125 V DC		LV429413
		Delay unit 110-130 V 50/60 Hz		33681
	MN 220-250 V 50/60 Hz with adjustable time delay			
	Composed of:	MN 250 V DC		LV429414
		Delay unit $220-250 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		33682

Motor mechanism
Motor mechanism module

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual

Catalogue numbers

Accessories (cont.)
Compact and Vigicompact
NSX400/630 (cont.)

Locks

Toggle locking device for 1 to 3 padlocks

By removable device

By fixed device
| LV432631

Locking of rotary handle

Keylock adapter (keylock not included) Keylock (keylock adapter not included)

	LV432604
Ronis 1351B. 500	41940
Profalux KS5 B24 D4Z	42888

Locking of motor mechanism module

| Locking of motor mechanism module | LV432649 | 41940 |
| :--- | :--- | :--- | :--- | :--- |

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual
Catalogue numbers
Accessories (cont.)
Compact and Vigicompact
NSX400/630 (cont.)

Installation accessories
Front-panel escutcheons

IP30 escutcheon for all control types
IP30 trip unit access escutcheon for to
LV432557 IP30 trip unit access escutcheon for toggle LV432559 IP30 escutcheon for Vigi module

LV429527

IP30

IP40 escutcheon for all control types
LV432558
IP40 escutcheon for Vigi module
LV429316
IP40 escutcheon for Vigi or ammeter module
LV429318

(1) For only 1 device.

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual

Catalogue numbers
 Accessories (cont.)
 Compact and Vigicompact NSX400/630 (cont.)

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual

Catalogue numbers

Accessories (cont.)
Compact and Vigicompact
NSX400/630 (cont.)

Visible break disconnect function

See catalogue dealing with "Interpact INV products (visible break)" and the associated accessories
The visible break disconnection function is compatible with fixed front-connected/rear-connected Compact NSX devices

Monitoring and control (remote operation)

Circuit breaker accessories

Breaker Status Control Module BSCM
| LV434205

ULP display module ${ }^{(1)}$

Switchboard front display module FDM121
TRV00121
FDM mounting accessory (diameter 22 mm)
TRV00128
ULP communication module

(1) For measurement display with Micrologic A and E or status display with BSCM
(2) See Telemecanique catalogue

Test tool, software, demo

Pocket battery for Micrologic NSX100-630
| LV434206

Maintenance case
|TRV00910
Comprising:

- USB maintenance interface
- Power supply
- Micrologic cord
- USB cord
- RJ45/RJ45 male cord

Spare USB maintenance interface
 | TRV00911

Spare power supply 110-240 V AC
|TRV00915

Spare Micrologic cord for USB maintenance interface
|TRV00917

Bluetooth/Modbus option for USB maintenance interface
VW3A8114

Configuration and setting software RSU
LV4ST100
Test software LTU
LV4ST121
LV4SM100
Monitoring software RCU
(2) Downloadable from http://schneider-electric.com

Catalogue numbers

Instructions

User manual				
	Circuit breaker	(French)	LV434100	
	(English)	(French)	LV434101	
	(English)	(French)	LV434103	
	(English)	(French)	LV434104	
	(English)	LV434106		

To indicate your choices, check the applicable square boxes or note the quantity
and enter the appropriate information in the rectangles

External power supply module 24 VDC

Adapter for plug-in base (for terminal shield or interphase barriers)
Communication
NSX Cord L $=0.35 \mathrm{~m}$
NSX Cord $\mathrm{L}=1.3 \mathrm{~m}$
NSX Cord U > 480 V AC L $=0.35 \mathrm{~m}$
NSX Cord L $=3 \mathrm{~m}$
BSCM
Communicating motor mechanism 220-240V
Switchboard front display module FDM121
Switchboard front display module FDM121
FDM mounting accessory
Modbus interface
Stacking accessory
ULP line termination
RJ45 connectors fem

Wire length RJ45 \square Wire length RJ45 $\mathrm{L}=0.6 \mathrm{~m}$ \square $\mathrm{~L}=0.3 \mathrm{~m}$	Wire length RJ45 Wire length RJ45 $\mathrm{L}=1 \mathrm{~m}$	\square	\square		
Wire length RJ45					
$\mathrm{L}=3 \mathrm{~m}$				$\quad \square \quad$	$\mathrm{L}=2 \mathrm{~m}$
:---					
Wire length RJ45					
$\mathrm{L}=5 \mathrm{~m}$	$\quad \square$				

Functions and characteristics	A-1
Installation recommendations	
Dimensions and connection	$\mathrm{B}-1$
Wiring diagrams	$\mathrm{D}-1$
Additional characteristics	$\mathrm{E}-1$
Catalogue numbers	G-1
Accessories	G-2
Circuit-breaker characteristics (IEC 60947-2)	G-4
Communication	G-5
Components	G-5
Controls	G-6
Discrimination / Cascading	G-7
Environment	G-8
Harmonics	G-8
Measurements	G-10
Protection	G-10
Relays and auxiliary contacts	G-11
Switchgear	G-12
Three-phase asynchronous motors and their protection	
Trip units	

For each major section (Accessories, Switchgear, etc.) and for each item (Adapter for plug-in base, Connection terminal, etc.), this glossary provides:
\square the page number in the concerned catalogue
■ the reference standard
\square the standardised IEC symbol
\square the definition.
Text in quotation marks is drawn from the standards.

Adapter for plug-in base
-A-72
The adapter is a plastic component that can be installed upstream and/or downstream of the plug-in base and enables use of all the connection accessories of the fixed device.

Bare-cable connector	- A-71	Conducting part of the circuit breaker intended for connection to power circuits. On Compact NSX, it is an aluminium part that screws to the connection terminals of the circuit breaker. There are one or more holes (single or multiple cable connector) for the ends of bare cables.
Connection terminals	- A-70	Flat copper surface, linked to the conducting parts of the circuit breaker and to which power connections are made using bars, connectors or lugs.
One-piece spreader	- A-70	The spreader is a plastic component with copper connectors that can be installed upstream and/or downstream of a Compact NSX100 to 250 circuit breaker with a pole pitch of 35 mm . It increases the pitch of the circuit-breaker terminals to the 45 mm pitch of a NSX400/630 device to facilitate connection of large cables.
Spreaders	- A-70	Set of three (3P device) or four (4P) flat, conducting parts made of aluminium. They are screwed to the circuit-breaker terminals to increase the pitch between poles.

Circuit-breaker characteristics (IEC 60947-2)

	Breaking capacity	Value of prospective current that a switching device is capable of breaking at a stated voltage under prescribed conditions of use and behaviour. Reference is generally made to the ultimate breaking capacity (Icu) and the service breaking capacity (Ics).
Degree of protection (IP)		

Frame size	A-70	"A term designating a group of circuit breakers, the external physical dimensions of which are common to a range of current ratings. Frame size is expressed in amperes corresponding to the highest current rating of the group. Within a frame size, the width may vary according to the number of poles. This definition does not imply dimensional standardization." Compact NSX has two frame sizes covering 100 to 250 A and 400 to 630 A.
Insulation class	A-5	Defines the type of device insulation in terms of earthing and the corresponding safety for user, in one of three classes. Class I. The device is earthed. Any electrical faults, internal or external, or caused by the load, are cleared via the earthing circuit, thus ensuring user safety. - Class II. The device is not connected to a protective conductor. User safety is ensured by reinforced insulation around the live parts (an insulating case and no contact with live parts, i.e. plastic buttons, moulded connections, etc.) or double insulation. ■ Class III. The device may be connected only to SELV (safety extra-low voltage) circuits. The Compact NSX are class II devices (front) and may be installed through the door in class II switchboards (standards IEC 61140 and IEC 60664-1), without reducing insulation, even with a rotary handle or motor mechanism module.
Making capacity		Value of prospective making current that a switching device is capable of making at a stated voltage under prescribed conditions of use and behaviour. Reference is generally made to the short-circuit making capacity Icm.
Maximum break time	- A-17	Maximum time after which breaking is effective, i.e. the contacts separated and the current completely interrupted.
Mechanical durability	- A-6	With respect to its resistance to mechanical wear, equipment is characterised by the number of no-load operating cycles which can be effected before it becomes necessary to service or replace any mechanical parts.
Non-tripping time	-A-17	This is the minimum time during which the protective device does not operate in spite of pick-up overrun, if the duration of the overrun does not exceed the corresponding voluntary time delay.
Pollution degree of environment conditions IEC 60947-1 IEC 60664-1	$\triangle \mathrm{A}-6$	"Conventional number based on the amount of conductive or hygroscopic dust, ionized gas or salt and on the relative humidity and its frequency of occurrence, resulting in hygroscopic absorption or condensation of moisture leading to reduction in dielectric strength and/or surface resistivity". Standard IEC 60947-1 distinguishes four pollution degrees. - Degree 1. No pollution or only dry, non-conductive pollution occurs. - Degree 2. Normally, only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation may be expected. ■ Degree 3. Conductive pollution occurs, or dry, non-conductive pollution occurs which becomes conductive due to condensation. - Degree 4. The pollution generates persistent conductivity caused, for instance, by conductive dust or by rain or snow. Compact NSX meets degree 3, which corresponds to industrial applications.
Prospective short-circuit current	$>\mathrm{E}-13$	Current that would flow through the poles if they remained fully closed during the short-circuit.
Rated current (In)	A-6	This is the current that the device can carry continuously with the contacts closed and without abnormal temperature rise.
Rated impulse withstand voltage (Uimp)	- A-6	"The peak value of an impulse voltage of prescribed form and polarity which the equipment is capable of withstanding without failure under specified conditions of test and to which the values of the clearances are referred. The rated impulse withstand voltage of an equipment shall be equal to or higher than the values stated for the transient overvoltages occurring in the circuit in which the equipment is fitted".
Rated insulation voltage (Ui)	A ${ }^{\text {-6 }}$	"The rated insulation voltage of an equipment is the value of voltage to which dielectric tests and creepage distances are referred. In no case shall the maximum value of the rated operational voltage exceed that of the rated insulation voltage".
Rated operational current (le)		"A rated operational current of an equipment is stated by the manufacturer and takes into account the rated operational voltage, the rated frequency, the rated duty, the utilization category and the type of protective enclosure, if appropriate".
Rated operational voltage (Ue)	- A-6	"A value of voltage which, combined with a rated operational current, determines the application of the equipment and to which the relevant tests and the utilisation categories are referred. For multipole equipment, it is generally stated as the voltage between phases". This is the maximum continuous voltage at which the equipment may be used.

Rated short-time withstand current (Icw)

Service breaking capacity (Ics)	- A-6	Expressed as a percentage of Icu, it provides an indication on the robustness of the device under severe conditions. It is confirmed by a test with one opening and one closing/opening at Ics, followed by a check that the device operates correctly at its rated current, i.e. 50 cycles at In, where temperature rise remains within tolerances and the protection system suffers no damage.
Short-circuit making capacity (Icm)	- A-58	Value indicating the capacity of the device to make and carry a high current without repulsion of the contacts. It is expressed in KA peak.
Suitability for isolation (see also Positive contact indication, page G-5)	-A-5	This capability means that the circuit breaker meets the conditions below. In the open position, it must withstand, without flashover between the upstream and downstream contacts, the impulse voltage specified by the standard as a function of the Uimp indicated on the device. It must indicate contact position by one or more of the following systems: position of the operating handle separate mechanical indicator visible break of the moving contacts Leakage current between each pole, with the contacts open, at a test voltage of 1.1 x the rated operating voltage, must not exceed: - 0.5 mA per pole for new devices - 2 mA per pole for devices already subjected to normal switching operations - 6 mA , the maximum value that must never be exceeded. - It must not be possible to install padlocks unless the contacts are open. Locking in the closed position is permissible for special applications. Compact NSX complies with this requirement by positive contact indication.
Suitable for isolation with positive contact indication (see also Suitability for isolation, page G2)	-A-5	Suitability for isolation is defined here by the mechanical reliability of the position indicator of the operating mechanism, where: - the isolation position corresponds to the O (OFF) position - the operating handle cannot indicate the "OFF" position unless the contacts are effectively open. The other conditions for isolation must all be fulfilled: - locking in the open position is possible only if the contacts are effectively open - leakage currents are below the standardised limits - overvoltage impulse withstand between upstream and downstream connections.
Ultimate breaking capacity (Icu)	$\triangle \mathrm{A}-6$	Expressed in kA, it indicates the maximum breaking capacity of the circuit breaker. It is confirmed by a test with one opening and one closing/opening at Icu, followed by a check that the circuit is properly isolated. This test ensures user safety.

Communication

BSCM

(Breaker status and control module) \quad A-27 | The optional BSCM for Compact NSX is used to acquire device status indications |
| :--- |
| and control the communicating remote-control function. It includes a memory used to |
| manage the maintenance indicators. It serves as a converter between the analog |
| outputs of the devie indication contacts (O/F, SD, SDE) and the digital |
| communicating functions. |

RJ45 connector	$>$ A-26	Universal, 8-wire connector that is widely used in digital communication networks. The RJ45 connector is used to interconnect computer equipment (Ethernet, Modbus, etc.), telephones and audiovisual equipment.
RS485 Modbus	- A-28	Modbus is the most widely used communication protocol in industrial networks. It operates in master-slave mode. An RS485 multipoint link connects the master and slaves via a pair of wires offering throughputs of up to 38400 bits/second over distances up to 1200 m). The master cyclically polls the slaves which send back the requested information. The Modbus protocol uses frames containing the address of the targeted slave, the function (read, write), the datum and the CRC (cyclical redundancy check).
SDTAM	- A-81	Relay module with two static outputs specifically for the motor-protection Micrologic trip units $1 \mathrm{M}, 2 \mathrm{M}$ and $6 \mathrm{E}-\mathrm{M}$. An output, linked to the contactor controller, opens the contactor when an overload or other motor fault occurs, thus avoiding opening of the circuit breaker. The other output stores the opening event in memory.
SDx	- A-81	Relay module with two outputs that remotes the trip or alarm conditions of Compact NSX circuit breakers equipped with a Micrologic electronic trip unit.
Static output	- A-81	Output of a relay made up of a thyristor or triac electronic component. The low switching capability means that a power relay is required. This is the case for the SDx and SDTAM outputs.
ULP (Universal Logic Plug) $\stackrel{\square}{\rightleftarrows}$	- A-31	Connection system used by Compact NSX to communicate information to the Modbus interface via a simple RJ45 cable. Compatible modules are indicated by the symbol opposite.
Components.		
ASIC (Application Specific Integrated Circuit)	- A-8	Integrated circuit designed, built and intended for a specific application. It carries out repetitive sequences of instructions engraved in the silicon chip. For that reason, it is extremely reliable because it cannot be modified and is not affected by environment conditions. Micrologic trip units use an ASIC for the protection functions. The ASIC cyclically polls the network status at a high frequency, using the values supplied by captors. Comparison with the settings forms the basis for orders to the electronic trip units.
Microprocessor	- A-8	A microprocessor is a more general purpose device than an ASIC. In Micrologic, a microprocessor is used for measurements and it can be programmed. It is not used for the main protection functions that are carried out by the ASIC.
Controls.		
Communicating motor mechanism	- A-82	For Compact NSX remote control via the communication system, a communicating motor mechanism is required. Except for the communication function, it is identical to the standard motor mechanism module and connects to and controlled by the BSCM module.
CNOMO machine-tool rotary handle	- A-84	Handle used for machine-tool control enclosures and providing IP54 and IK08.
Direct rotary handle	- A-84	This is an optional control handle for the circuit breaker. It has the same three positions I (ON), O (OFF) and TRIPPED as the toggle control. It provides IP40, IK07 and the possibility, due to its extended travel, of using early-make and early-break contacts. It maintains suitability for isolation and offers optional locking using a keylock or a padlock.
Emergency off	- A-83	In a circuit equipped with a circuit breaker, this function is carried out by an opening mechanism using an MN undervoltage release or an MX shunt release in conjunction with an emergency off button.
Extended rotary handle	- A-84	Rotary handle with an extended shaft to control devices installed at the rear of switchboards. It has the same characteristics as direct rotary handles. It offers multiple locking possibilities using a keylock, a padlock or a door interlock.
Failsafe remote tripping	- A-83	Remote tripping is carried out by an opening mechanism using an MN undervoltage release in conjunction with an emergency off button. If power is lost, the protection device opens the circuit breaker.

Manual toggle control	This is the standard control mechanism for the circuit breaker, with a toggle that can be flipped up or down. In a moulded-case circuit breaker (MCCB), there are three positions, I (ON), O (OFF) and TRIPPED. Once in the TRIPPED position, manual reset is required by switching to O (OFF position before reclosing. The TRIPPED position does not offer isolation with positive contact indication. This is guaranteed only by the O (OFF) position.
MCC rotary handle	
Motor mechanism module	
Handle used for motor control centres and providing IP43 and IK07.	

$\boldsymbol{E}_{\text {nvironment }}$

EMC (Electromagnetic compatibility) > A-5

Power loss

Pole resistance

EMC is the capacity of a device not to disturb its environment during operation (emitted electromagnetic disturbances) and to operate in a disturbed environment (electromagnetic disturbances affecting the device). The standards define various classes for the types of disturbances. Micrologic trip units comply with annexes F and J in standard IEC IE60947-2.

The flow of current through the circuit-breaker poles produces Joule-effect losses caused by the resistance of the poles.

Product environmental profile (PEP) $>$ A-4 LCA: Life-cycle assessment ISO 14040

An assessment on the impact of the construction and use of a product on the environment, in compliance with standard ISO 14040, Environmental management, life-cycle assessment (LCA), principles and framework.
For Compact NSX, this assessment is carried out using the standardised EIME (Environmental Impact and Management Explorer) software, which makes possible comparisons between the products of different manufacturers.
It includes all stages, i.e. manufacture, distribution, use and end of life, with set usage assumptions:

- use over 20 years at a percent load of 80% for 14 hours per day and 20% for ten hours
- according to the European electrical-energy model.

It provides the information presented below.
■ Materials making up the product: composition and proportions, with a check to make sure no substances forbidden by the RoHS directive are included.

- Manufacture: on Schneider Electric production sites that have set up an environmental management system certified ISO 14001.
- Distribution: packaging in compliance with the 94/62/EC packaging directive (optimised volumes and weights) and optimised distribution flows via local centres. ■ Use: no aspects requiring special precautions for use. Power lost through Joule effect in Watts (W) must be $<0.02 \%$ of total power flowing through the circuit breaker. Based on the above assumptions, annual consumption from 95 to 200 kWh . ■ End of life: products dismantled or crushed. For Compact NSX, 81\% of materials can be recycled using standard recycling techniques. Less than 2% of total weight requires special recycling.

Environmental indicators are also frequently used for the PEP (sheet available on request for Compact NSX):

- Depletion of natural resources
- Depletion of energy
- Depletion of water
- Potential for atmospheric warming (greenhouse effect)
- Potential for stratospheric ozone depletion
- Creation of atmospheric ozone (ozone layer)
- Acidification of air (acid rain)
- Production of hazardous waste.

European directive 2002/95/EC dated 27 January 2003 aimed at reducing or eliminating the use of hazardous substances. The manufacturer must attest to compliance, without third-party certification. Circuit breakers are not included in the list of concerned products, which are essentially consumer products. That not withstanding, Schneider Electric decided to comply with the RoHS directive. Compact NSX products are designed in compliance with RoHS and do not contain (above the authorised levels) lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls PBB and polybrominated diphenyl ether PBDE).

Safety clearances \quad A-4

Temperature derating $\quad>B-8$

Vibration withstand $\quad \mathrm{B}-2$
IEC 60068-2-6

WEEE directive $>\mathrm{A}-4$
(Waste of Electrical and Electronic
Equipment)

When installing a circuit breaker, minimum distances (safety clearances) must be maintained between the device and panels, bars and other protection systems installed nearby. These distances, which depend on the ultimate breaking capacity, are defined by tests carried out in accordance with standard IEC 60947-2.

An ambient temperature varying significantly from $40^{\circ} \mathrm{C}$ can modify operation of magnetic or thermal-magnetic protection functions. It does not affect electronic trip units. However, when electronic trip units are used in high-temperature situations, it is necessary to check the settings to ensure that only the permissible current for the given ambient temperature is let through.

Circuit breakers are tested in compliance with standard IEC 60068-2-6 for the levels required by merchant-marine inspection organisations (Veritas, Lloyd's, etc.):
■ 2 to 13.2 Hz : amplitude of $\pm 1 \mathrm{~mm}$

- 13.2 to 100 Hz : constant acceleration of 0.7 g .

European directive on managing the waste of electrical and electronic equipment.
Circuit breakers are not included in the list of concerned products.
However, Compact NSX products respect the WEEE directive.

Current harmonics $>\mathrm{A}-20$	Non-linear loads cause harmonic currents that flow in the 50 Hz (or 60 Hz) distribution system. Total harmonic current is the sum of sinusoidal AC currents for which the rms values can be measured and broken down into: - the fundamental current at the $50 / 60 \mathrm{~Hz}$ frequency of the distribution system, with an rms value of IH_{1} ■ harmonic currents with whole, odd multiples (3, 5, 7, etc.) of the $50 / 60 \mathrm{~Hz}$ frequency, called the third-order, fifth-order, etc. harmonics. For example, IH_{3}, the third-order harmonic at $150 / 180 \mathrm{~Hz}, \mathrm{IH}_{5}$, the fifth-order harmonic at $250 / 300 \mathrm{~Hz}$, etc. The presence of harmonics in the system must be monitored and limited because it results in temperature rise, currents in the neutral (caused by the third-order harmonics and multiples), malfunctions of sensitive electronic devices, etc. Micrologic E trip units take into account harmonics up to order 15 in the THDI and THDU calculations.
Non-linear load	Systems producing harmonics are present in all industrial, commercial and residential sectors. Harmonics are caused by non-linear loads. A load is said to be non-linear when the current drawn does not have the same waveform as the supply voltage. Typically, loads using power electronics are non-linear. Examples of non-linear loads include computers, rectifiers, variable-speed drives, arc furnaces and fluorescent lighting.
Total harmonic distortion of current $>\mathrm{A}-21$ (THDI)	THDI characterises the distortion of the current wave by harmonics. It indicates the quantity of harmonics in the resulting waveform. It is expressed in percent. The higher the THDI, the more the current is distorted by harmonics. THDI should remain below 10%. Above that level, there is said to be harmonic pollution that is considered severe when it rises above 50%.
Total harmonic distortion of voltage $>\mathrm{A}-21$ (THDU)	THDU characterises the distortion of the voltage wave by harmonics. It indicates the quantity of harmonics in the resulting waveform. It is expressed in percent. The higher the THDU, the more the system voltage is distorted by harmonics. It is advised not to exceed 5\% for low-voltage systems.
Voltage harmonics \quad A-20	For each current harmonic IHk , there is a voltage harmonic UHk of the same order k , where the resulting voltage is the sum of the two waves. The voltage wave is therefore distorted with respect to the standard sinusoidal wave

Measurements

Contact wear \quad A-23	Each time Compact NSX opens, the Micrologic 5 / 6 trip unit measures the interrupted current and increments the contact-wear indicator as a function of the interrupted current, according to test results stored in memory.
Current transformer with iron-core>10 toroid	It is made up of a coil wound around an iron frame through which a power busbar runs. The current flowing in the bar, on passing through the sensor, induces a magnetic field that reverses for each half period. This variation in the field in turn creates an induced current in the coil. This current is proportional to the current flowing in the bar. It is sufficient to supply the measurement electronics. The disadvantage of iron-core measurement current transformers (CT) is that they rapidly saturate for currents $>10 \mathrm{In}$.
Current transformer with Rogowski >10 toroid or air-core CT	It is made up of a coil without an iron frame, through which a power busbar runs. The output voltage at the coil terminals is proportional to the current flowing through the bar. The result is a current transformer (CT) with a voltage output. The advantage is that it never saturates whatever the primary current and thus enables measurement of high currents. The output is however a very low current that is too low to supply the measurement electronics. For Micrologic, Rogowski CTs measure the current and a second CT, with an iron core, provides the electrical supply.
Demand current, demand power and / A-21 peak values	Average of the instantaneous current or power values over an adjustable fixed or sliding time interval. The highest value observed over the time interval is the peak value. The time interval runs from the last reset.
Instantaneous current $>$ A-21	True rms value of the current measured by the current transformers over a sliding time interval. Available on Micrologic 5/6 A or E.

Instantaneous voltage	- A-21	True rms value of the voltage measured by the voltage sensors over a sliding time interval. Available on Micrologic $5 / 6 \mathrm{~A}$ or E .
Maximeters/minimeters	- A-20	Micrologic 5 and 6 A or E can record the minimum and maximum values of electrical parameters over set time periods.
Overvoltage category (OVC - Overvoltage category) IEC 60947-1. Annex H	- A-32	Standard IEC 60664-1 stipulates that it is up to the user to select a measurement device with a sufficient overvoltage category, depending on the network voltage and the transient overvoltages likely to occur. Four overvoltage categories define the field of use for a device. - Cat. I. Devices supplied by a SELV isolating transformer or a battery. - Cat. II. Residential distribution, handheld or laboratory tools and devices connected to standardised 2P + earth electrical outlets (230 V). - Cat. III. Industrial distribution, fixed distribution circuits in buildings (main low voltage switchboards, rising mains, elevators, etc.). - Cat. IV. Utility substations, overhead lines, certain industrial equipment.
Percent load	- A-23	Percentage of current flowing through the circuit breaker with respect to its rated current. Micrologic $6 \mathrm{E}-\mathrm{M}$ offers this information and can sum it over the total operating time to provide the load profile for the following ranges, 0 to $49 \%, 50$ to $79 \%, 80$ to 89% and $\geqslant 90 \%$.
Phase sequence	- A-23	The order in which the phases are connected (L1, L2, L3 or L1, L3, L2) determines the direction of rotation for three-phase asynchronous motors. Micrologic $6 \mathrm{E}-\mathrm{M}$ trip units provide this information.
Power and energy metering (consumption)	- A-21	The digital electronics in Micrologic $5 / 6 \mathrm{E}$ calculate the instantaneous power levels, apparent (S in kVA), active (P in kW) and (Q in kV), and integrate over a time interval to determine the corresponding energies (kVAh, kWh kvarh). Calculations are for each phase and for the total.
Time-stamped histories	- A-23	Micrologic trip units store information on events (e.g. alarms and their cause) that are time-stamped to within a millisecond.
P		
Ground-fault protection G (Ig)	- A-19	Protection function specific to electronic circuit breakers, symbolised by G (Ground). This protection can calculate high-threshold residual earth-leakage currents (in the order of tens of Amperes) on the basis of phase-current measurements. Micrologic 5/6 offers this protection function with adjustable pick-up Ig and time delay.
Instantaneous protection I (Ii)	- A-19	This protection supplements Isd. It provokes instantaneous opening of the device. The pick-up may be adjustable or fixed (built-in). This value is always lower than the contact-repulsion level.
Long-time protection L (Ir)	- A-19	Protection function where the adjustable Ir pick-up determines a protection curve similar to the thermal-protection curve (inverse-time curve $\mathrm{l}^{2 \mathrm{t}}$). The curve is generally determined on the basis of the Ir setting which corresponds to a theoretically infinite tripping time (asymptote) and of the point at 6 Ir at which the tripping time depends on the rating.
Magnetic protection (Im)	- A-14	Short-circuit protection provided by magnetic trip units (see this term). The pick-up setting may be fixed or adjustable.
Neutral protection (IN)	- A-16	The neutral is protected because all circuit-breaker poles are interrupted. The setting may be that used for the phases or specific to the neutral, i.e. reduced neutral (0.5 times the phase current) or OSN (oversized neutral) at 1.6 times the phase current. For OSN protection, the maximum device setting is limited to 0.63 In .
Residual-current earth-leakage protection (I $\Delta \mathrm{n}$)	- A-34	Protection provided by Vigi modules, in which the residual-current toroids directly detect low-threshold earth-leakage currents (in the order of tens of mA) caused by insulation faults.
Short-delay protection S (Isd)	- A-19	Protection function specific to electronic circuit breakers, symbolised by S (Short delay or short time). This protection supplements thermal protection. The reaction time is very short, but has a slight time delay to enable discrimination with the upstream device. The short-delay pick-up Isd is adjustable from approximately 1.5 to 10 Ir.
Short-delay protection with fixed time delay So (Isd)	- A-17	Short-delay protection, but with a fixed time delay. This function is available on Micrologic 2. It is symbolised by So . It ensures discrimination with downstream devices.

Thermal protection (Ir) $\quad>$ A-15 Overload protection provided by thermal trip units (see this term) using an inverse-

\boldsymbol{R} elays and auxiliary contacts

Auxiliary contact IEC 60947-1		"Contact included in an auxiliary circuit and mechanically operated by the switching device".
Break contact	>A-84	"Control or auxiliary contact which is open when the main contacts of the mechanical
IEC 60947-1		switching device are closed and closed when they are open".
Make contact	- A-84	"Control or auxiliary contact which is closed when the main contacts of the
IEC 60947-1		mechanical switching device are closed and open when they are open
Relay (electrical)	- A-18	"Device designed to produce sudden, predetermined changes in one or more
IEC 60947-1		electrical output circuits when certain conditions are fulfilled in the electrical input circuits controlling the device".
Relay module with static output	-A-81	Output of a relay made up of a thyristor or triac electronic component. The low interrupting capacity means that a power relay is required. This is the case for the SDx and SDTAM outputs.

$S_{\text {witchgear }}$

Circuit breaker
IEC 60947-2
Circuit-breaker utilisation category $>$ A-6
IEC 60947-2
Contactor $\quad>\mathrm{A}-36$

IEC 60947-1

Contactor utilisation categories

 IEC 60947-4-1
Current-limiting circuit breaker IEC 60947-2

Disconnector

IEC 60947-3

Switch-disconnector $>$ A-56
IEC 60947-3

"Mechanical switching device, capable of making, carrying and breaking currents under normal circuit conditions and also making, carrying for a specified time and breaking currents under specified abnormal circuit conditions such as those of short circuit". Circuit breakers are the device of choice for protection against overloads and short-circuits. Circuit breakers may, as is the case for Compact NSX, be suitable for isolation.

The standard defines two utilisation categories, A and B , depending on breaker discrimination with upstream breakers under short-circuit conditions.

- Category A. Circuit breakers not specifically designed for discrimination applications.
- Category B. Circuit breakers specifically designed for discrimination, which requires a short time-delay (which may be adjustable) and a rated short-time withstand current in compliance with the standard. Compact NSX100 to 630 circuit breakers are category A, however, by design, they provide discrimination with downstream devices (see the Complementary technical information guide).
"Mechanical switching device having only one position of rest, operated otherwise than by hand, capable of making, carrying and breaking currents under normal circuit conditions including operating overload conditions". A contactor is provided for frequent opening and closing of circuits under load or slight overload conditions. It must be combined and coordinated with a protective device against overloads and short-circuits, such as a circuit breaker.

The standard defines four utilisation categories, $\mathrm{AC} 1, \mathrm{AC} 2, \mathrm{AC} 3$ and AC 4 depending on the load and the control functions provided by the contactor. The class depends on the current, voltage and power factor, as well as contactor withstand capacity in terms of frequency of operation and endurance.
"A circuit-breaker with a break-time short enough to prevent the short-circuit current reaching its otherwise attainable peak value".
"Mechanical switching device which, in the open position, complies with the requirements specified for the isolating function". A disconnector serves to isolate upstream and downstream circuits. It is used to open or close circuits under no-load conditions or with a negligible current level. It can carry the rated circuit current and, for a specified time, the short-circuit current.
"Switch which, in the open position, satisfies the isolating requirements specified for a disconnector". A switch-disconnector serves for switching and isolation. The switch function breaks the circuit under load conditions and the disconnection function isolates the circuit. Protection is not provided. It may be capable of making shortcircuit currents if it has the necessary making capacity, but it cannot break shortcircuit currents. Compact NSX100 to 630 NA switch-disconnectors have a making capacity

Switch-disconnector utilisation $\quad>$ A-57	The standard defines six utilisation categories, AC-21A or B, AC-22 A or B, AC23 A or B. They depend on the rated operational current and the mechanical durability (A for
category	frequent operation or B for infrequent operation). Compact NSX NA switch- disconnectors comply with utilisation categories AC22A or AC23A.
IEC 60947-3	

Three-phase asynchronous motors and their protection

Locked-rotor protection (ljam)	> A-44	This function steps in when the motor shaft cannot or can no longer drive the load. The result is a high overcurrent.
Long-start protection (llong)	- A-44	An overly long start means the current drawn remains too high or too low for too long, with respect to the starting current. In all cases, the load cannot be driven and the start must be interrupted. The resulting temperature rise must be taken into account before restarting.
Phase-unbalance or phase- loss protection (lunbal)	-A-43	This protection function steps in if the current values and/or the unbalance in the three phases supplying the motor exceeds tolerances. Currents should be equal and displacement should be one third of a period. Phase loss is a special case of phase unbalance.
Starting current	-A-38	Start-up of a three-phase, asynchronous motor is characterised by: ■ a high inrush current, approximately 14 In for 10 to 15 ms ■ a starting current, approximately 7.2 In for 5 to 30 seconds - return to the rated current after the starting time.
Starting time	-A-38	Time after which the motor ceases to draw the starting current and falls back to the operating current Ir ($\leqslant \operatorname{In}$).
Thermal image of the rotor and stator	-A-44	The thermal image models the thermal behaviour of a motor rotor and stator, taking into account temperature rise caused by overloads or successive starts, and the cooling constants. For each motor power rating, the algorithm takes into account a theoretical amount of iron and copper which modifies the cooling constants.
Thermal protection		Protection against overcurrents following an inverse time curve $I^{2} t=$ constant, which defines the maximum permissible temperature rise for the motor. Tripping occurs after a time delay that decreases with increasing current.
Trip class IEC 60947-4-1	-A-38	The trip class determines the trip curve of the thermal protection device for a motor feeder. The standard defines trip classes 5, 10, 20 and 30 . These classes are the maximum durations, in seconds, for motor starting with a starting current of 7.2 Ir , where Ir is the thermal setting indicated on the motor rating plate.
Under-load protection (lund)	> A-44	This function steps in when the driven load is too low. It detects a set minimum phase current which signals incorrect operation of the driven machine. In the example of a pump, under-load protection detects when the pump is no longer primed.

"rip units

Electronic trip unit (Micrologic)	Trip unit that continuously measures the current flowing through each phase and the neutral if it exists. For Micrologic, the measurements are provided by built-in current sensors linked to an analog-digital converter with a high sampling frequency. The measurement values are continuously compared by the ASIC to the protection settings. If a setting is overrun, a Mitop release trips the circuit-breaker operating mechanism. This type of trip unit offers much better pick-up and delay setting accuracy than thermal-magnetic trip units. It also provides a wider range of protection functions.
Magnetic release	Release actuated by a coil or a lever. A major increase in the current (e.g. a short- circuit) produces in the coil or the lever a change in the magnetic field that moves a core. This trips the circuit breaker operating mechanism. Action is instantaneous. The pick-up setting may be adjustable.
Reflex tripping	Compact NSX circuit breakers have a patented reflex-tripping system based on the energy of the arc and that is independent of the other protection functions. It operates extremely fast, before the other protection functions. It is an additional safety function that operates before the others in the event of a very high short- circuit.

Release
IEC 60947-1

Shunt release (MX)	\quad A-83	This type of release operates when supplied with current. The MX release provokes circuit-breaker opening when it receives a pulse-type or maintained command.
Thermal-magnetic trip unit	$-A-14$	Trip unit combining thermal protection for overloads and magnetic protection.
Thermal release	Release in which a bimetal strip is heated by the Joule effect. Above a temperature- rise threshold that is a function of the current and its duration (l^{2} t curve = constant, which is representative of temperature rise in cables), the bimetal strip bends and releases the circuit-breaker opening mechanism. The pick-up setting may be adjustable.	
Undervoltage release (MN)	This type of release operates when the supply voltage drops below the set minimum.	

Device, mechanically connected to a mechanical switching device (e.g. a circuit breaker), which releases the holding means and permits the opening or the closing of the switching device. For circuit breakers, releases are often integrated in a trip unit.

This type of release operates when supplied with current. The MX release provokes circuit-breaker opening when it receives a pulse-type or maintained command

Release in which a bimetal strip is heated by the Joule effect. Above a temperaturerise threshold that is a function of the current and its duration ($I^{2} t$ curve = constant, releases the circuit-breaker opening mechanism. The pick-up setting may be adjustable.

This type of release operates when the supply voltage drops below the set minimum

Schneider Electric Industries SAS
35, rue Joseph Monier
CS 30323
F-92506 Rueil Malmaison Cedex
RCS Nanterre 954503439
Capital social $896313776 €$
www.schneider-electric.com

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

This document has been printed on ecological paper
Design: Schneider Electric
Photos: Schneider Electric
Printed: Imprimerie du Pont-de-Claix/JPF - made in France

Low Voltage Products

COMPACT NS630b to 1600 A

User manual

Discovering Compact 2
Manually operated Compact with a toggle 4
Components 4
Opening, closing, reset 5
Testing the device 6
Locking the toggle 7
Manually operated Compact with a rotary handle 8
Components 8
Opening, closing, reset 9
Testing the device 10
Locking the rotary handle 11
Remote operated Compact 14
Components 14
Opening, closing, reset 15
Locking the controls 18
Compact chassis 20
Components 20
Matching a device with its chassis 21
Racking 22
Racking 23
Locking in the "disconnected" position 24
Locking the switchboard door 26
Locking the device when the door is open 27
Locking the safety shutters 28
Electrical auxiliaries 30
Electrical diagrams 30
Operation 32
Electrical characteristics of contacts and control auxiliaries 33
Start-up 36
Start-up operations 36
What to do when the circuit breaker trips? 37
Compact operating conditions 38

Rating plate

Opening, closing, reset

Remote opening

Use either:
■ an MX opening release
■ an MN undervoltage release
■ a delayed MN undervoltage release.
When connected to the control panel, these releases may be used to remotely open the device.

$M X, M N$

Delay unit

Resetting the device following a trip

- the device trips.

■ reset the device, then close it again.

■ close the device.

$■$ press the "Press to trip" button.

$■$ push the toggle down to reset the device, then back up close it again.

Locking the toggle

Locking the toggle in the OFF position using one to three padlocks (shackle diameter 5 to 8 mm)

Locking the toggle in the ON or OFF position using one to three padlocks (shackle diameter 5 to 8 mm)

Extended rotary handle

Opening, closing, reset

Remote opening

Use either:
■ an MX opening release

- an MN undervoltage release
- a delayed MN undervoltage release.

When connected to the control panel, these releases may be used to remotely open the device.
$M X, M N$

Delay unit

Resetting the device following a trip

- the device trips.

■ reset the device, then close it again.

- close the device.

■ press the "Press to trip" button.

■ turn the handle to reset the device, then back to close it again.

Locking the rotary handle

Locking the direct or extended rotary handle in all positions using one to three padlocks (shackle diameter 5 to 8 mm)

■ in the standard configuration, the device may be locked in the OFF

- remove the ring as indicated below to enable locking in both the ON and OFF positions.

■ lock the handle.

\square the controls are locked.

Note:

the rotary handle can equipped for locking by both padlocks and keylocks.

Locking the direct rotary handle in all positions using a keylock

■ the controls are locked.

■ unlock.

Two types of keylocks are available

RONIS
PROFALUX

Door locking when the device is in the ON position, using the extended rotary handle

■ in the standard configuration, the door cannot be opened when the rotary handle is set to the ON position.

\square it is possible, however, to defeat the door lock.

■ the door-lock function may be permanently disabled by removing the lock.

Fixed device

Opening, closing, reset

Local opening and closing

Device open (OFF), discharged

Device open (OFF), charged

device closed (ON), charged

Remote opening

Use either:
■ an MX opening release

- an MN undervoltage release
- a delayed MN undervoltage release
- a motor mechanism.

When connected to the control panel, these releases may be used to remotely open the device.

Motor mechanism

Manually recharge the device following a trip

■ the device trips.

■ reset the device, then recharge it.

Locking the device using one to three padlocks (shackle diameter 5 to 8 mm)

■ lock.
Open the device.

Pull out the tab.

■ the controls are locked.

■ unlock.
$■$ push in the tab.

Padlocks and keylocks may be used together.
Locking using padlocks is identical to the system on the previous page.

Locking the device using a keylock and/or one to three padlocks (shackle diameter 5 to 8 mm)

- keylocking.

Open the device.
Turn the key.
Remove the key.

\square the controls are locked.

■ unlock.
Insert the key.

Turn the key.
Push in the tab.

Two types of keylocks are available
RONIS
PROFALUX

Matching a device with its chassis

To set up a mismatch－prevention combination for the device and the chassis， see the mismatch－prevention installation manual．

The mismatch protection ensures that a device is installed only in a chassis with compatible characteristics．

The possible combinations are listed below．

$\{\sqrt{5}$		（5）	
ABC	45	B C D	15
ABD	35	B C E	14
ABE	34	B C	145
A B	345	B D E	13
ACD	25	B D	135
ACE	24	B E	134
A C	245	C D E	12
ADE	23	C D	125
AD	235	C E	124
A E	234	D E	123

For complete information on Compact handling and mounting, see the installation manual(s).

Before mounting Compact NS, make sure it matches the chassis.

If you cannot insert the device in the chassis, check that the mismatch protection on the chassis corresponds
to that on the device.

Removing the rails

Press the release tabs and pull the rails out.

To put the rails back in, press the release tabs and push the rails in.

Inserting the device

Open the circuit breaker
Position the circuit breaker on the rails.
(in any case, it opens automatically during connection). Check that it rests on all four supports.

Push the device into the chassis, taking care not to push on the control unit.

Racking

Prerequisites
 To connect and disconnect the device, the crank must be used.
 The locking systems, padlocks and the racking interlock all inhibit use of the crank.

■"connected"position

■ "test" position

Note:
These operations require that all chassis-locking functions be disabled (see page 24).

The device is in "test" position
The indicator on the front signals the position of the circuit breaker in the chassis.

Racking the circuit breaker from the "disconnected" to "test" position, then to "connected" position

The device is in "test" position. Remove the crank or continue to "connected" position.

The device is in "connected" position.
Withdrawing the circuit breaker from the "connected" to "test" position, then to "disconnected" position

The circuit breaker is in "disconnected" position

Locking in the "disconnected" position
 Using one to three padlocks

Combination of locking systems.
It is possible to lock the device on the chassis in the "disconnected" position using:

- one to three padlocks

■ one or two keylocks

- a combination of both.

Locking

Use padlocks with a maximum shackle diameter of 5 to 8 millimetres.
Device in "disconnected" Pull out the tab. position.

Insert the shackle
(max. diameter 5 to 8 mm)
of the padlock(s).

Unlocking

Remove the padlock(s). Release the tab.

The crank can be inserted.

Note:

Padlocks and keylocks may be used together.
If specified when ordering the chassis, this locking
function may be adapted to operate in all positions
("connected", "test" and "disconnected"), instead of in "disconnected" position alone.

Using one or two keylocks

Locking

Device in "disconnected" Turn the key(s). position.

Unlocking

Insert the key(s).
Turn the key(s)

Trank can be inserted

Three types of keylocks are available.

RONIS

PROFALUX

The locking device is installed on the left or right-hand side of the chassis.
\square when the device is in "connected" or "test" position, the latch is lowered and the door is locked
■ when the device is in "disconnected" position, the latch is raised and the door is unlocked.

Disabling door opening

Close the door.

Turn the crank until the device is in "test" or "connected" position.

The door is locked.

Enabling door opening

Turn the crank until the
device is in
"disconnected" position.

The door is unlocked.

Locking the device when the door is open

When the door is open, the crank cannot be inserted.

When the door is closed, the crank can be inserted.

Four locking possibilities inside the chassis using one or two padlocks (maximum shackle diameter 5 to 8 mm) for each shutter

Top and bottom shutters not locked.

Top shutter locked. Bottom shutter not locked.

Top shutter not locked.
Bottom shutter locked.

Top and bottom shutters locked.

The diagram is shown with circuits
de-energised, all devices open, connected and charged and relays in normal position.

Control unit

Com: E1-E6 communication
UC1: Z1-Z5 zone selective interlocking;
Z1 = ZSI = ZSI OUT SOURCE
Z2 = ZSI OUT; Z3 = ZSI IN SOURCE
Z4 $=$ ZSI IN ST (short time)
Z5 = ZSI IN GF (ground fault)
M1 = Vigi module input (Micrologic 7)
UC2 : T1, T2, T3, T4 = external neutral; M2, M3 = Vigi module input (Micrologic 7)

UC3: F2+, F1- external 24 V DC power supply VN external voltage connector (must be connected to neutral with circuit breaker 3P)

M6C : 6 programmable contacts (must be connected to external relay M6C) ext. 24 V DC power supply required

Remote operation
SDE : Fault-trip indication contact (supplied as standard)
SD : Trip-indication contact (supplied as standard)
MN : Undervoltage release
or
MX : Shunt release (standard or communicating)

[^23]

Indication contacts
OF3 / OF2 / OF1: ON/OFF indication contacts

Chassis contacts					
CD2	CD1	CE3	CE2	CE1	CT1
δ_{824}°	$\delta_{814}{ }^{\circ}$	${ }_{334}{ }^{\circ}$	$\delta_{324}{ }^{\circ}$	${ }_{314}{ }^{\circ}$	$\mathrm{O}_{914}{ }^{\circ}$
$\delta_{822}{ }^{\circ}$	$\delta_{812}{ }^{\circ}$	${ }_{332}{ }^{\circ}$	0_{322}°	δ_{312}°	$\mathrm{O}_{912}{ }^{\circ}$
δ_{821}^{8}	δ_{811}	${ }_{331}^{\circ}$	δ_{321}°	$\overleftarrow{311}^{\delta}$	$\mathrm{O}_{911}{ }^{\circ}$

Chassis contacts

Chassis contacts

 $\begin{array}{lll}\text { CD2: } \text { Disconnected- } & \text { CE3: Connected- } & \text { CT1: Test-position } \\ \text { CD1 position } & \text { CE2 position } & \text { contacts }\end{array}$ CE1 contactsKey:
Withdrawable device only
SDE1, OF1, OF2, OF3, OF4 supplied as standard
Interconnected connections
(only one wire per connection point)

The ON/OFF indication contacts signal

Device

the status of the device main contacts.

open	closed
closed	open

OF: ON/OFF (closed/open) indication changeover contacts

The carriage switches indicate the
Chassis
"connected", "test" and "disconnected"
positions.

Device indication contacts								
designation OF ON/OFF contact	type 3 changeover contacts breaking capacity (AC 12 / DC 12 as per 947-5-1)	standard, minimum current 100 mA 24 V			low level, minimum current 2 mA 15 V			
		V AC	240/380	6 A (rms)	V AC	24/48	5 A (rms)	
			480	6 A (rms)		240	$5 \mathrm{~A}(\mathrm{rms})$	
			690	6 A (rms)		380	5 A (rms)	
		V DC	24/48	2.5 A	V DC	24/48	$5 / 2.5 \mathrm{~A}$	
			125	0.5 A		125	0.5 A	
			250	0.3 A		250	0.3 A	
SD fault indication	1 changeover contact breaking capacity (AC 12 / DC 12 as per 947-5-1)	V AC	240/380	6 A (rms)	V AC	24/48	5 A (rms)	
			480	$6 \mathrm{~A}(\mathrm{rms})$		240	$5 \mathrm{~A}(\mathrm{rms})$	
			690	$6 \mathrm{~A}(\mathrm{rms})$		380	5 A (rms)	
		V DC	24/48	2.5 A	V DC	24/48	$5 / 2.5 \mathrm{~A}$	
			125	0.5 A		125	0.5 A	
			250	0.3 A		250	0.3 A	
SDE fault-trip indication for device with motor mechanism	1 changeover contact breaking capacity (AC 12 / DC 12 as per 947-5-1)	V AC	240/380	6 A (rms)	V AC	24/48	5 A (rms)	
			480	6 A (rms)		240	5 A (rms)	
			690	6 A (rms)		380	5 A (rms)	
		V DC	24/48	2.5 A	V DC	24/48	$5 / 2.5 \mathrm{~A}$	
			125	0.5 A		125	0.5 A	
			250	0.3 A		250	0.3 A	
CAO early-break switch	2 changeover contacts	V AC	240/380	6 A (rms)	V AC	24/48	5 A (rms)	
for device with rotary	breaking capacity			6 A (rms)		240	5 A (rms)	
	(AC 12 / DC 12 as per		690	6 A (rms)		380	5 A (rms)	
	947-5-1)	V DC	24/48	2.5 A	V DC	24/48	$5 / 2.5$ A	
			125	0.5 A		125	0.5 A	
			250	0.3 A		250	0.3 A	
CAF early-make switch	2 changeover contacts	V AC	240/380	6 A (rms)	V AC	24/48	5 A (rms)	
for device with rotary	breaking capacity		480	6 A (rms)		240	$5 \mathrm{~A}(\mathrm{rms})$	
handle	(AC 12 / DC 12 as per		690	6 A (rms)		380	5 A (rms)	
	947-5-1)	V DC	24/48	2.5 A	V DC	24/48	5/2.5 A	
			125	0.5 A		125	0.5 A	
			250	0.3 A		250	0.3 A	

designation	power supply	threshold	consumption	response time
MX opening release	$\begin{aligned} & \text { V AC: } 50 / 60 \mathrm{~Hz}: 24 / 48- \\ & \text { 100/130-200/250-277- } \\ & \text { 380/480 } \\ & \text { V DC: } 12-24 / 30-48 / 60- \\ & \text { 100/130-200/250 } \end{aligned}$	0.7 to 1.1 Un	pick-up: 200 VA or W (80 ms) hold: 4.5 VA or W	device at Un: $50 \mathrm{~ms} \pm 10$
MN undervoltage release	$\begin{aligned} & \text { V AC: } 50 / 60 \mathrm{~Hz}: 24 / 48- \\ & 100 / 130-200 / 250- \\ & 380 / 480 \\ & \text { V DC: } 24 / 30-48 / 60- \\ & 100 / 130-200 / 250 \end{aligned}$	open: 0.35 to 0.7 Un close: 0.85 Un	pick-up: 200 VA or W (80 ms) hold: 4.5 VA or W	$\begin{aligned} & \text { device at Un: } \\ & 40 \mathrm{~ms} \pm 10 \end{aligned}$
Delay unit for undervoltage release	V AC: $50 / 60 \mathrm{~Hz}$ V DC not adjustable: 100/130-200/250 V DC adjustable: 48/60-100/130 - 200/250-380/480	open: 0.35 to 0.7 Un close: 0.85 Un	200 VA	device at Un: not adjustable: 0.25 s adjustable: 0.5-0.9-1.5-3 s

Motor mechanism				
designation	power supply	threshold		consumption and motor overcurrent
Motor mechanism	V AC: $50 / 60 \mathrm{~Hz}: 48 / 60-$	0.85 to 1.1 Un	recharge time and operating rate	
	$100 / 130-200 / 240-277-$		3 overcurrent: 2 to 3 In for 0.1 s	3 seconds max.
	$400 / 440-480$			
	V DC: $24 / 30-48 / 60-$			

Electrical characteristics of contacts and control auxiliaries

Wiring of control auxiliaries

Under pick-up conditions, the level of consumption is approximately 150 to 200 VA. Consequently, for low supply voltages (12, 24, 48 V), cables must not exceed a maximum length determined by the supply voltage and the cross-section of the cables.

Indicative values for maximum cable lengths (in meters)

		12 V		24 V		48 V	
			$1.5 \mathrm{~mm}^{2}$	2.5	1.5 mm²	2.5	1.5 mm²
MN	100% source voltage	-	-	58	36	280	165
	85% source voltage	-	-	16	10	75	45
MX-XF	100\% source voltage	21	12	115	70	550	330
	85% source voltage	10	6	75	44	350	210

Note:

The indicated length is that for each of the two supply wires.

Start-up operations
 Procedure

These operations must be carried out before using a device for the first time.

A general check of the device takes only a few minutes and avoids any risk of mistakes due to errors or negligence.
A general check must be carried out:

- prior to initial use
\square following an extended period during which the device is not used.
A check must be carried out with the entire switchboard de-energised. In switchboards with compartments, only those compartments that may be accessed by the operators must be de-energised.

Electrical tests

Insulation and dielectric-withstand tests must be carried out immediately after delivery of the switchboard. These tests are precisely defined by international standards and must be directed and carried out by a qualified expert.

Prior to running the tests, it is absolutely necessary to:
■ disconnect all the electrical auxiliaries of the device (MCH, MX, MN)
■ remove the long-time rating plug on the 7.0 A control units.
Removal of the rating plug disconnects the voltage measurement input.

Switchboard inspection

Check that the devices are installed in a clean environment, free of any installation scrap or items (tools, electrical wires, broken parts or shreds, metal objects, etc.).

Conformity with the installation diagram

Check that the devices conform with the installation diagram:
\square breaking capacities indicated on the rating plates
■ identification of the control unit (type, rating)

- presence of any optional functions (motor mechanism)
$■$ protection settings (long time, short time, instantaneous, ground fault)
- identification of the protected circuit marked on the front of each device.

Condition of connections and auxiliaries

Check device mounting in the switchboard and the tightness of power connections.
Check that all auxiliaries and accessories are correctly installed:

- electrical auxiliaries

■ terminal blocks

- connections of auxiliary circuits.

Operation

Check the mechanical operation of the devices:

- opening of contacts

■ closing of contacts.

Check on the control unit

Check the control unit of each circuit breaker using the respective user manuals.

What to do when the circuit breaker trips?

Note the fault

Faults are signalled locally and remotely by the indicators and auxiliary contacts installed on devices (depending on each configuration). See page 32 in this manual and the user manual of the control unit for information on the fault indications available with your circuit breaker.

Identify the cause of tripping

A circuit must never be reclosed (locally or remotely) before the cause of the fault has been identified and cleared.

Depending on the type of fault and the criticality of the loads, a number of precautionary measures must be taken, in particular the insulation and dielectric tests on a part of or the entire installation. These checks and test must be directed and carried out by qualified personnel.

Inspect the circuit breaker following a short-circuit

■ check the tightness of connections (see the device installation manual)
■ check the disconnecting-contact clusters.

Reset the circuit breaker

The circuit breaker can be reset locally or remotely. See pages 5, 9 and 15 in this manual for information on how the device can be reset

Ambient temperature

Compact devices can operate under the following temperature conditions:
\square the electrical and mechanical characteristics are stipulated for an ambient temperature of $-5^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
■ circuit-breaker closing is guaranteed down to $-35^{\circ} \mathrm{C}$
■ Compact (without the control unit) can be stored in an ambient temperature of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\square the control unit can be stored in an ambient temperature of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Extreme atmospheric conditions

Compact devices have successfully passed the tests defined by the following standards for extreme atmospheric conditions:
■ IEC 68-2-1: dry cold at $-55^{\circ} \mathrm{C}$

- IEC 68-2-2: dry heat at $+85^{\circ} \mathrm{C}$
- IEC 68-2-30: damp heat (temperature $+55^{\circ} \mathrm{C}$, relative humidity 95\%)

■ IEC 68-2-52 level 2 : salt mist.
Compact devices can operate in the industrial environments defined by standard IEC 947 (pollution degree up to 3).

It is nonetheless advised to check that the devices are installed in suitably cooled switchboards without excessive dust.

Vibrations

Compact devices resist electromagnetic or mechanical vibrations.
Tests are carried out in compliance with standard IEC 68-2-6 for the levels required by merchant-marine inspection organisations (Veritas, Lloyd's, etc.):
■ 2 to 13.2 Hz : amplitude $\pm 1 \mathrm{~mm}$
■ 13.2 to 100 Hz : constant acceleration 0.7 g .
Excessive vibration may cause tripping, breaks in connections or damage to mechanical parts.

Electromagnetic disturbances

Compact devices are protected against:
\square overvoltages caused by devices that generate electromagnetic disturbances a overvoltages caused by an atmospheric disturbance or by a distribution-system outage (e.g. failure of a lighting system)
\square devices emitting radio waves (radios, walkie-talkies, radar, etc.)
a electrostatic discharges produced by users.

Compact devices have successfully passed the electromagnetic-compatibility tests
(EMC) defined by the following international standards:
■ IEC 947-2, appendix F
■ IEC 947-2, appendix B (trip units with earth-leakage function).
The above tests guarantee that:

- no nuisance tripping occurs
\square tripping times are respected.

Cleaning

- non-metallic parts:
never use solvent, soap or any other cleaning product. Clean with a dry cloth only - metal parts:
clean with a dry cloth whenever possible. If solvent, soap or any other cleaning product must be used, make sure that it does not come into contact with non-metallic parts.

Schneider Electric Industries SAS

As standards, specifications and designs develop from time, always ask for confirmation of the information given in this publication.

5, rue Nadar
92506 Rueil-Malmaison Cedex

France

Tel: +33 (0)1 41298200
Fax:+33 (0)1 47518020
http://www.schneider-electric.com
http://www.merlin-gerin.com

Electrical and mechanical accessories Compact NS630b to 1600 (fixed version)

Compact NS630 to 1600 (withdrawable version)

Electrical and mechanical accessories Compact NS630b to 1600

Fixed Compact NS800H

The withdrawable configuration makes it possible to:
■ extract and/or rapidly replace the circuit breaker without having to touch connections,
■ allow for the addition of future circuits at a later date.

Withdrawable Compact NS800H

Installation

Fixed configuration

Compact NS630b to 1600 circuit breakers may be installed vertically, horizontally or flat on their back.

Mounting on a backplate

Mounting on rails

Withdrawable configuration
Compact NS630b to 1600 circuit breakers should be installed vertically only.

Mounting on a backplate

Device on mounting plate

Rear mounting on rails

Device on rails

The device may be in one of four positions on the chassis:
■ connected position. The power circuits and auxiliary contacts are all connected ■ test position. The power circuits are disconnected. The auxiliary contacts are still connected and the device can be operated electrically ■ disconnected position. The power circuits and auxiliary contacts are all disconnected, however the device is still mounted on the chassis. It can be operated manually (ON, OFF, "push to trip"). \square removed position. All circuits are disconnected. The device simply rests on the chassis rails and can be removed.

Connected

Test

Disconnected

Removed

The multifunctional chassis for Compact NS630b to 1600 devices is particularly suited for incoming circuit breakers. Features include:
■ device connection and disconnection through a door, using a crank that can be stored in the chassis
■ three positions (connected, test and disconnected) that are indicated: - locally by a position indicator
\square remotely by carriage switches (3 for the connected position, 2 for the disconnected position and 1 for the test position)
■ circuit-breaker ON/OFF commands through a switchboard front panel.

Locking

There are extensive locking possibilities:
■ chassis locking in connected, disconnected and test positions using three padlocks and two keylocks, on the switchboard front panel
■ door interlock (inhibits door opening with breaker in connected position)
\square racking interlock (inhibits racking with door open)
■ locking in each of the connected, disconnected and test positions during device connection or disconnection. Continuation to the next position requires pressing a release button to free the crank.
Other safety function
Mismatch protection ensures that a circuit breaker is installed only in a chassis with compatible characteristics.

[^24]
Electrical and mechanical accessories Compact NS630b to 1600 (cont.)

Compact NS630b to 1600 fixed and
withdrawable devices can be connected using:
■ horizontal or vertical rear connections

- front connections
- mixed connections
- a combination of front and rear connections.

Types of connection

Front connection

Rear connection

Horizontal

Vertical

Simply turn a horizontal rear connector 90° to make it a vertical connector.
Combination of front and rear connections

Note.

Compact circuit breakers can be connected indifferently with bare-copper, tinned-copper and tinned-aluminium conductors, requiring no particular treatment

To ensure performance and isolation, depending on the type of circuit breaker ($N, H, L, L B$) and type of connection, certain isolation accessories are mandatory.

Connections

Accessories

Type of accessories	Compact NS630b to NS1600				
	Fixed Front connection (except LB)	Rear connection	Withdrawable Front connection	Rear connection	
Vertical-connection adapters					
Set of bare-cable connectors and terminal shields for ratings $\leqslant 1250 \mathrm{~A}$	(except L)				
Cable lug adapters					
Interphase barriers	(1) (2)				(1)
Spreaders					
Connection shield					
Safety shutters with locking by padlocks (IP20)					
Arc chute screen					

[^25]
Electrical and mechanical accessories Compact NS630b to 1600 (cont.)

Front connection of fixed devices (except LB)

Bars

Fixed, front-connection Compact NS630b to 1600 devices are equipped with terminals comprising captive screws for direct connection of bars. Other connection possibilities for bars include verticalconnection adapters for edgewise bars and spreaders to increase the pole pitch to 95 mm .
If the vertical connection adapters are front oriented, then it is mandatory to install the arc chute screen in order to comply with the safety clearances.

Spreaders.

Bare cables (except L)

Special sets of connectors and terminal shields may be used to connect up to four $240 \mathrm{~mm}^{2}$ copper or aluminium cables for each phase. Bare cable connection is possible for ratings up to and including 1250 A.

4-cable connectors

Cables with lugs

Cable lug adapters are combined with the verticalconnection adapters.
One to four cables with crimped lugs ($\leqslant 300 \mathrm{~mm}^{2}$) may be connected.
To ensure stability, spacers must be positioned between the terminal extensions.

If the cable lug adapters are installed over the top of the arc chute chambers, then it is mandatory to install the arc chute screen in order to comply with the safety clearances.

Cable lug adapters

Rear connection of fixed devices

Bars

Fixed, rear-connection Compact NS630b to 1600 devices equipped with horizontal or vertical connectors may be directly connected to flat or edgewise bars, depending on the position of the connectors. Spreaders are available to increase the pole pitch to 95 mm .

Spreaders.

Cables with lugs

Cable lug adapters enable connection of one to four cables with crimped lugs ($\leqslant 300 \mathrm{~mm}^{2}$).
To ensure stability, spacers must be positioned between the terminal extensions.

Cable lug adapters

Electrical and mechanical accessories Compact NS630b to 1600 (cont.)

Front connection of withdrawable devices

Bars

Withdrawable, front-connection Compact NS630b to 1600 devices are suitable for direct connection of bars. Other connection possibilities for bars include verticalconnection adapters for edgewise bars and spreaders to increase the pole pitch to 95 mm .

Cables with lugs

Cable lug adapters enable connection of one to four cables with crimped lugs ($\leqslant 300 \mathrm{~mm}^{2}$).
To ensure stability, spacers must be positioned between the terminal extensions.

Cable lug adapters

Rear connection of withdrawable devices

Bars

Withdrawable, rear-connection Compact NS630b to 1600 devices equipped with horizontal or vertical connectors may be directly connected to flat or edgewise bars, depending on the position of the connectors. Spreaders are available to increase the pole pitch to 95 mm .

Spreaders

Cables with lugs

Cable lug adapters enable connection of one to four cables with crimped lugs ($\leqslant 300 \mathrm{~mm}^{2}$).
To ensure stability, spacers must be positioned between the terminal extensions

Compact NS equipped with connection shield

Insulation of live parts

Connection shield

Mounted on fixed, front-connection devices, this shield insulates power-connection points, particularly when cables with lugs are used

Connection shield

Interphase barriers

These barriers are flexible insulated partitions used to reinforce isolation of connection points in installations with busbars, whether insulated or not.
Barriers are installed vertically between front or rear connection terminals.
They are mandatory for voltages $\geqslant 500 \mathrm{~V}$ for both fixed and withdrawable products and for L and LB types, whatever the voltage.

Interphase barriers for fixed device, front connection

Interphase barriers for fixed device, rear connection

Interphase barriers for withdrawable device, rear connection

Safety shutters

The shutters can be padlocked (padlock not supplied) to:
\square prevent connection of the device
■ lock the shutters in the closed position.

Safety shutters

Mounted on the chassis, the safety shutters automatically block access to the disconnecting contact cluster when the device is in the disconnected or test positions (degree of protection IP20). When the device is removed from its chassis, no live parts are accessible.

Manually operated device

Electrically operated device

Withdrawable device

Connection of electrical auxiliaries

Fixed devices

Connections are made directly to the auxiliaries once the front has been removed.
Wires exit the circuit breaker through a knock-out in the top.

Withdrawable devices

Auxiliary circuits are connected to terminal blocks located in the top part of the chassis.
The auxiliary terminal block is made up of a fixed and moving part. The two parts are in contact when the device is in the test and connected positions.

Electrical and mechanical accessories Compact NS630b to 1600 (cont.)

OF, SD and SDE changeover contacts

All the auxiliary contacts opposite are also available in "low-level" versions capable of switching very low loads (e.g. for the control of PLCs or electronic circuits).

Carriage switches for connected (CE), disconnected (CD) and test (CT) positions

Indication contacts

Contacts installed in the device

Changeover contacts are used to remote circuit-breaker status information and can thus be used for indications, electrical locking, relaying, etc.
They comply with the IEC 60947-5 international recommendation.

Functions

■ OF (ON/OFF) - indicates the position of the main circuit breaker contacts
$■$ SD (trip indication) - indicates that the circuit breaker has tripped due to:

- an overload
- a short-circuit
\square an earth-leakage fault.
- operation of a voltage release
- operation of the "push to trip" button \square disconnection when the device is ON.
Returns to de-energised state when the circuit breaker is reset.
$■$ SDE (fault indication) - indicates that the circuit breaker has tripped due to:
-an overload
- a short-circuit
\square an earth-leakage fault.
Returns to de-energised state when the circuit breaker is reset.
■ CAF / CAO (early-make or early-break function) - indicates the position of the rotary handle. Used in particular for advanced opening of safety trip devices (early break) or to energise a control device prior to circuit-breaker closing (early make).

Installation

$■$ OF, SD and SDE functions - a single type of contact provides all these different indication functions, depending on where it is inserted in the device. The contacts clip into slots behind the front cover of the circuit breaker
■ CAF / CAO function - the contact fits into the rotary-handle unit (direct or extended).
Electrical characteristics of the OF/SD/SDE/CAF/CAO auxiliary contacts

Contacts	Standard			Low level		
Rated thermal current (A)	6			5		
Minimum load	100 mA at 24 V			1 mA at 4 V DC		
Utilisation cat. (IEC 60947-5-1)	AC12 AC15	DC12	DC14	AC12 AC15	DC12	DC14
Operational 24 V	66	6	1	53	5	1
current (A) 48 V	66	2.5	0.2	53	2.5	0.2
110 V	65	0.6	0.05	$5 \quad 2.5$	0.6	0.05
220/240 V	64	-	-	52	-	-
250 V	- -	0.3	0.03	5	0.3	0.03
$380 / 440 \mathrm{~V}$	62	-	-	51.5	-	-
480 V	61.5	-	-	51	-	-
660/690 V	60.1	-	-	-	-	-

Connected, disconnected, test position carriage switches
A single type of changeover contact can be mounted optionally on the chassis to indicate, depending on the slot where it is installed:
■ the connected (CE) position
\square the disconnected (CD) position. This position is indicated when the required clearance for isolation of the power and auxiliary circuits is reached \square the test (CT) position. In this position, the power circuits are disconnected and the auxiliary circuits are connected.

Installation

■ contacts for the connected (CE), disconnected (CD) and test (CT) positions clip into the upper front section of the chassis.
Electrical characteristics of the CE/CD/CT auxiliary contacts

Contacts	Standard		Low level		
Rated thermal current (A)	8		5		
Minimum load	100 mA at 24 V		2 mA at 15 V DC		
Utilisation cat. (IEC 60947-5-1)	AC12 AC15	DC12 DC14	AC12 AC15	DC12	DC14
Operational 24 V	86	2.51	53	5	1
current (A) 48 V	86	2.50 .2	53	2.5	0.2
110 V	85	0.80 .05	$5 \quad 2.5$	0.8	0.05
220/240 V	84	- -	52	-	-
250 V	- -	0.30 .03	5	0.3	0.03
$380 / 440 \mathrm{~V}$	83	- -	51.5	-	-
660/690 V	60.1	- -	- -	-	-

Compact NS with a direct rotary handle

Compact NS with an extended rotary handle

Rotary handles

There are two types of rotary handle:

- direct rotary handle
$■$ extended rotary handle.
There are two models:
■ standard with a black handle
■ VDE with a red handle and yellow front for machine-tool control.

Direct rotary handle

Degree of protection IP40, IK07.
The direct rotary handle maintains:

- visibility of and access to trip unit settings

■ suitability for isolation

- indication of the three positions O (OFF), I (ON) and tripped

■ access to the "push to trip" button

- circuit breaker locking capability in the OFF position by one to three padlocks, shackle diameter 5 to 8 mm (not supplied).
It replaces the circuit-breaker front cover.
Accessories transform the standard direct rotary handle for the following situations:
■ motor control centre (MCC) switchboards:
- door opening disabled when the circuit breaker is ON;
\square circuit-breaker closing is disabled if the door is open;
- a higher degree of protection (IP43, IK07)

■ machine-tool control, complying with CNOMO E03.81.501, IP54, IK07.

Extended rotary handle

Degree of protection IP55, IK07.
This handle makes it possible to operate circuit breakers installed at the back of switchboards, from the switchboard front.
It maintains:
■ suitability for isolation
\square indication of the three positions O (OFF), I (ON) and tripped
■ access to trip unit settings, when the switchboard door is open
■ circuit breaker locking capability in the OFF position by one to three padlocks, shackle diameter 5 to 8 mm (not supplied).
The door cannot be opened if the circuit breaker is ON or locked.
The extended rotary handle is made up of:
■ a unit that replaces the front cover of the circuit breaker (secured by screws)

- an assembly (handle and front plate) on the door that is always secured in the
same position, whether the circuit breaker is installed vertically or horizontally ■ an extension shaft that must be adjusted to the distance. The min/max distance between the back of circuit breaker and door is $218 / 605 \mathrm{~mm}$.

Electrical and mechanical accessories Compact NS630b to 1600 (cont.)

Manually operated circuit breakers may be equipped with an MX shunt release, an MN undervoltage release or a delayed undervoltage release ($M N+$ delay unit). Electrically operated circuit breakers are equipped as standard with a remoteoperating mechanism to remotely open or close the circuit breaker. An MX shunt release or an MN undervoltage release (instantaneous or delayed) may be added.

Remote tripping

This function opens the circuit breaker via an electrical order. It is made up of: ■ a shunt release ($2^{\text {nd }} M X$)
■ or an undervoltage release (MN)
■ or a delayed undervoltage release (MN + delay unit).
These releases ($2^{\text {nd }} M X$ or $M N$) cannot be operated by the communication bus. The delay unit, installed outside the circuit breaker, may be disabled by an emergency OFF button to obtain instantaneous opening of the circuit breaker.

Wiring diagram for the remote-tripping function

Voltage releases ($\mathbf{2}^{\text {nd }} \mathbf{M X}$)
When energised, the $2^{\text {nd }} \mathrm{MX}$ voltage release instantaneously opens the circuit breaker. A continuous supply of power to the $2^{\text {nd }} M X$ locks the circuit breaker in the OFF position.

Characteristics

Power supply	V AC $50 / 60 \mathrm{~Hz}$	$24-48-100 / 130-200 / 250-277-380 / 480$
	VDC	$12-24 / 30-48 / 60-100 / 130-200 / 250$
Operating threshold	0.7 to 1.1 Un	
Permanent locking function	0.85 to 1.1 Un	
Consumption (VA or W)	pick-up: $200(200 \mathrm{~ms})$	hold: 4.5
Circuit-breaker response time at Un	$50 \mathrm{~ms} \pm 10$	

Instantaneous voltage releases (MN)

The MN release instantaneously opens the circuit breaker when its supply voltage drops to a value between 35% and 70% of its rated voltage. If there is no supply on the release, it is impossible to close the circuit breaker, either manually or electrically. Any attempt to close the circuit breaker has no effect on the main contacts. Circuit-breaker closing is enabled again when the supply voltage of the release returns to 85% of its rated value.

| Characteristics | | |
| :--- | :--- | :--- | :--- |
| Power supply V AC 50/60 Hz $24-48-100 / 130-200 / 250-380 / 480$
 V DC $24 / 30-48 / 60-100 / 130-200 / 250$
 Operating
 threshold opening 0.35 to 0.7 Un
 closing 0.85 Un
 Consumption (VA or W) pick-up: $200(200 \mathrm{~ms})$ hold: 4.5
 MN consumption
 with delay unit (VA or W) pick-up: $400(200 \mathrm{~ms})$ hold: 4.5
 Circuit-breaker response
 time at Un $90 \mathrm{~ms} \pm 5$ | | |

MN delay units

To eliminate circuit-breaker nuisance tripping during short voltage dips, operation of the MN release can be delayed. This function is achieved by adding an external delay unit in the MN voltage-release circuit. Two versions are available, adjustable and non-adjustable.

Characteristics		
Power supply V AC $50-60 \mathrm{~Hz} / \mathrm{DC}$	non-adjustable	$100 / 130-200 / 250$
Operating threshold	opening	$48 / 60-100 / 130-200 / 250-380 / 480$
closing	0.35 to 0.7 Un	
Consumption of delay unit alone (VA or W)	pick-up: 200 (200 ms $) \quad$ hold: 4.5	
Circuit-breaker response time at Un	non-adjustable	0.25 s

Electrically operated circuit breakers are equipped as standard with a motor mechanism module.
Two solutions are available for electrical operation:
■ a point-to-point solution
■ a bus solution with the COM
communication option.

Electrically operated Compact NS circuit breaker

Wiring diagram of a bus-type electrical operation solution ~/=

Electrically operated circuit breaker

The motor mechanism module is used to remotely open and close the circuit breaker. It is made up of a spring-charging motor equipped with an opening release and a closing release.
An electrical operation function is generally combined with:
■ device ON/OFF indication (OF)
■ "fault-trip" indication (SDE).
Motor mechanism modul

Power supply	V AC 50/60 Hz	48/60-100/130-200/240-277-380/415			
	V DC	$24 / 30-48 / 60-100 / 125-200 / 250$	$]$	Operating threshold	0.85 to 1.1 Un
:---	:---				
Consumption $($ VA or W)	180				
Motor overcurrent	2 to 3 In for 0.1 second				
Charging time	maximum 4 seconds				
Operating frequency	maximum 3 cycles per minute				

Electrical closing order

The release remotely closes the circuit breaker if the spring mechanism is charged.
Release electrical characteristics are identical to those of an MX release (see above), the operating threshold is from 0.85 to 1.1 Un and the circuit-breaker response time at Un is $60 \mathrm{~ms} \pm 10$.
The Compact NS electrical operation function can be used to implement a synchrocoupling system.

Electrical opening order

The release instantaneously opens the circuit breaker when energised. The supply can be impulse-type or maintained.
Release electrical characteristics are identical to those of an MX release (see above).

Wiring diagram of a point-to-point electrical operation solution

In the event of simultaneous opening and closing orders, the mechanism discharges without any movement of the main contacts.
In the event of maintained opening and closing orders, the standard electrical operation solution provides an antipumping function by blocking the main contacts in open position.

Functions and characteristics

Electrical and mechanical accessories Compact NS630b to 1600 (cont.)

Locking on electrically operated devices
1 reset of mechanical

Locking on manually operated devices

Locking in the OFF position guarantees isolation as per IEC 60947-2. Padlocking systems can receive up to three padlocks with shackle diameters ranging from 5 to 8 mm (padlocks not supplied).

Control device	Function	Means	Required accessories
Toggle	lock in OFF position	padlock	removable device
	lock in OFF or ON position	padlock	fixed device
Direct rotary handle	lock in	padlock	
	- OFF position - OFF or ON position	keylock	locking device + keylock
CNOMO direct rotary handle	lock in	padlock	
	- OFF position - OFF or ON position	keylock	locking device + keylock
Extended rotary handle	lock in OFF position,	padlock	
	door opening prevented	keylock	keylock

Locking in ON position does not prevent the device from tripping in the event of a fault or remote tripping order.
 8 operation counter

Access to pushbuttons protected by transparent cover

Pushbutton locking using a padlock

OFF position locking using padlocks

Pushbutton locking

The transparent cover blocks access to the pushbuttons used to open and close the device.
It is possible to independently lock the opening OFF button and the closing ON button.
The pushbuttons may be locked using either:

- three padlocks (not supplied)

■ lead seal
■ two screws.

OFF position locking using a keylock and padlocks

Disconnected position locking by padlocks

Racking interlock

Mismatch protection

Disconnected position locking

Mounted on the chassis and accessible with the door closed, these devices lock the circuit breaker in the disconnected position in two manners:
■ using padlocks (standard), up to three padlocks (not supplied)
■ using keylocks (optional), one or two different keylocks are available.
Profalux and Ronis keylocks are available in different options:
■ one keylock
■ one keylock mounted on the device + one identical keylock supplied separately, using the same key, for interlocking with another device
■ one (or two) keylocks mounted on the device + one (or two) identical keylocks supplied separately, for interlocking with another device.
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).

Connected, disconnected and test position locking

The connected, disconnected and test positions are shown by an indicator.
The racking crank blocks when the exact position is obtained.
A release button is used to free it.
On request, the disconnected position locking system may be modified to lock the circuit breaker in any of the three positions, connected, disconnected and test.

Door interlock

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in connected or test position. It the breaker is put in the connected position with the door open, the door may be closed without having to disconnect the circuit breaker.

Racking interlock

This device prevents insertion of the crank when the cubicle door is open (device cannot be connected).

Mismatch protection

Mismatch protection ensures that a circuit breaker is installed only in a chassis with compatible characteristics. It is made up of two parts (one on the chassis and one on the circuit breaker) offering twenty different combinations that the user may select.

Electrical and mechanical accessories Compact NS630b to 1600 (cont.)

Auxiliary terminal shield

Operation counter

Transparent cover

Other accessories

Auxiliary terminal shield (CB)

Optional equipment mounted on the chassis, the shield prevents access to the terminal block of the electrical auxiliaries.

Operation counter (CDM)

The operation counter sums the number of operating cycles and is visible on the front panel. It is compatible with electrically operated devices.

Escutcheon (CDP)

Optional equipment mounted on the door of the cubicle, the escutcheon increases the degree of protection to IP40. It is available in fixed and withdrawable versions.

Transparent cover (CCP) for escutcheon

Optional equipment mounted on the escutcheon, the cover is hinged and secured by a screw. It increases the degree of protection to IP54 and the degree of protection against mechanical impacts to IK10. It may be used for withdrawable devices only.

Blanking plate (OP) for escutcheon

Used with the escutcheon, this option closes off the door cutout of a cubicle not yet equipped with a device. It may be used with the escutcheon for both fixed and withdrawable devices.

Electrical and mechanical accessories Compact NS1600b to 3200 (fixed version)

Electrical and mechanical accessories Compact NS1600b to 3200 (cont.)

Fixed Compact NS

Installation

Fixed circuit breakers

Compact NS1600b to 3200 circuit breakers should be installed vertically only

Mounting on rails

Connection

Front connection

NS1600 to 2500

NS3200

Bars

Bars may be directly connected to the terminals of Compact NS1600b to 3200 circuit breakers.
NS1600b to 2500

NS1600b to 2500 with connection for vertical-connection adapters or NS3200

OF, SD and SDE changeover contacts

All the auxiliary contacts opposite are also available in "low-level" versions capable of switching very low loads (e.g. for the control of PLCs or electronic circuits).

Indication contacts

Contacts installed in the device

Changeover contacts are used to remote circuit-breaker status information and can thus be used for indications, electrical locking, relaying, etc.
They comply with the IEC 60947-5 international recommendation.

Functions

\square OF (ON/OFF) - indicates the position of the main circuit breaker contacts
■ SD (trip indication) - indicates that the circuit breaker has tripped due to: \square an overload

- a short-circuit
- an earth-leakage fault
- operation of a voltage release
- operation of the "push to trip" button

Returns to de-energised state when the circuit breaker is reset.
\square SDE (fault indication) - indicates that the circuit breaker has tripped due to:

- an overload
- a short-circuit

ㅁ an earth-leakage fault.
Returns to de-energised state when the circuit breaker is reset.

Installation

■ OF, SD and SDE functions - a single type of contact provides all these different indication functions, depending on the position where it is inserted in the device. The contacts clip into slots behind the front cover of the circuit breaker.
Electrical characteristics of the OF/SD/SDE auxiliary contacts

Contacts	Standard			Low level		
Rated thermal current (A)	6			5		
Minimum load	100 mA at 24 V			1 mA at 4 V DC		
Utilisation cat. (IEC 60947-5-1)	AC12 AC15	DC12	DC14	AC12 AC15	DC12	DC14
Operational 24 V	66	6	1	53	5	1
current (A) 48 V	66	2.5	0.2	53	2.5	0.2
110 V	65	0.6	0.05	$5 \quad 2.5$	0.6	0.05
220/240 V	64	-	-	52	-	-
250 V	- -	0.3	0.03	5	0.3	0.03
380/440 V	62	-	-	51.5	-	-
480 V	$6 \quad 1.5$	-	-	51	-	-
660/690 V	$6 \quad 0.1$	-	-	- -	-	-

Electrical and mechanical accessories Compact NS1600b to 3200 (cont.)

Compact NS1600b to 3200 circuit breakers may be equipped with an MX shunt release, an MN undervoltage release or a delayed undervoltage release (MN + delay unit).

Remote tripping

This function opens the circuit breaker via an electrical order. It is made up of: - a shunt release ($2^{\text {nd }} M X$)

■ or an undervoltage release (MN)

- or a delayed undervoltage release (MN + delay unit).

These releases ($2^{\text {nd }} \mathrm{MX}$ or MN) cannot be operated by the communication bus. The delay unit, installed outside the circuit breaker, may be disabled by an emergency OFF button to obtain instantaneous opening of the circuit breaker.

Wiring diagram for the remote-tripping function

Voltage releases ($\mathbf{2}^{\text {nd }} \mathbf{M X}$)
When energised, the $2^{\text {nd }} \mathrm{MX}$ voltage release instantaneously opens the circuit breaker. A continuous supply of power to the $2^{\text {nd }} M X$ locks the circuit breaker in the OFF position.

Characteristics

| Power supply | V AC 50/60 Hz | $24-48-100 / 130-200 / 250-277-380 / 480$ |
| :--- | :--- | :--- | :--- |
| | V DC | $12-24 / 30-48 / 60-100 / 130-200 / 250$ |
| Operating threshold | 0.7 to 1.1 Un | |
| Permanent locking function | 0.85 to 1.1 Un | |
| Consumption (VA or W) | pick-up: $200(200 \mathrm{~ms})$ | hold: 4.5 |
| Circuit-breaker response
 time at Un | $50 \mathrm{~ms} \pm 10$ | |

Instantaneous voltage releases (MN)

The MN release instantaneously opens the circuit breaker when its supply voltage drops to a value between 35% and 70% of its rated voltage. If there is no supply on the release, it is impossible to close the circuit breaker, either manually or electrically. Any attempt to close the circuit breaker has no effect on the main contacts. Circuit-breaker closing is enabled again when the supply voltage of the release returns to 85% of its rated value.

Characteristics			
Power supply	V AC 50/60 Hz	$24-48-100 / 130-200 / 250-380 / 480$	
	V DC	$24 / 30-48 / 60-100 / 130-200 / 250$	
Operating threshold	opening	0.35 to 0.7 Un	
closing	0.85 Un		
Consumption (VA or W) MN consumption with delay unit (VA or W) Circuit-breaker response time at Un	pick-up: $200(200 \mathrm{~ms})$	hold: 4.5	

MN delay units

To eliminate circuit-breaker nuisance tripping during short voltage dips, operation of the MN release can be delayed. This function is achieved by adding an external delay unit in the MN voltage-release circuit. Two versions are available, adjustable and non-adjustable.

Characteristics		
Power supply	non-adjustable	$100 / 130-200 / 250$
V AC 50-60 Hz /DC	adjustable	$48 / 60-100 / 130-200 / 250-380 / 480$
Operating threshold	opening	0.35 to 0.7 Un
Consumpton of delay unit alone (VA or W)	pick-up: 200 (200 ms $) \quad$ Un \quad hold: 4.5	
Circuit-breaker response time at Un	non-adjustable	0.25 s

$\frac{\overline{6}}{8}$

Compact NS with toggle locked using a fixed device and padlocks

Compact NS with toggle locked using a removable device and padlocks

Escutcheon

Device locking

Locking in the OFF position guarantees isolation as per IEC 60947-2. Padlocking systems can receive up to three padlocks with shackle diameters ranging from 5 to 8 mm (padlocks not supplied).

Control device	Function	Means	Required accessories
Toggle	lock in OFF position	padlock	removable device
lock in OFF or ON position	padlock	fixed device	

Interphase barriers

These barriers are flexible insulated partitions used to reinforce isolation of connection points in installations with busbars, whether insulated or not.
Barriers are installed vertically between front connection terminals.

Escutcheon (CDP)

Optional equipment mounted on the door of the cubicle, the escutcheon increases the degree of protection to IP40.

Compact NS100 to 630
 test equipment for STR electronic trip units

Mini test kit

Mini test kit

The mini test kit is a portable unit requiring no external power supply, used to check operation of the electronic trip unit and circuit-breaker tripping. It connects to the test connector on the front of the circuit breaker. Required power source: five 9 V alkaline batteries (not supplied).

Portable test kit

The portable test kit is used to check all aspects of the protection functions:

- long time protection
- short time protection
- instantaneous protection
- earth-fault protection.

Required power source: 110 or 220 V AC, $50 / 60 \mathrm{~Hz}$.

Compact NS630b to 3200 test equipment for Micrologic control units

Mini test kit

The autonomous hand-held mini test kit may be used to:
■ check operation of the control unit and the tripping and pole-opening system by sending a signal simulating a short-circuit
■ supply power to the control units for settings via the keypad when the circuitbreaker is open (Micrologic P and H control units).
Required power source: standard LR6-AA battery.

Portable test kit

The portable test kit is may be used to check:

- the mechanical operation of the circuit breaker
\square the electrical continuity of the connection between the circuit breaker and the control unit
■ operation of the control unit:
- display of settings
\square operating tests on the ASIC electronic component
- automatic and manual tests on protection functions
\square test on the zone-selective interlocking (ZSI) function
- inhibition of the earth-fault protection
\square inhibition of the thermal memory.

Note

These test kits are identical for all Compact NS630b to 3200 circuit breakers and all Masterpact NT and NW circuit breakers.
Required power source: 110 or 220 V AC, $50 / 60 \mathrm{~Hz}$.

Display modules

Perfectly integrated in the Compact and Masterpact ranges, Display modules are designed for use with Micrologic control units to provide instant and highly intuitive access to all the information provided by the circuit breakers, including device status, current, voltage and power values, etc.

DMB300 display module: basic and harmonic measurements

DMC300 display module: measurements, harmonic analysis, diagnosis

Associated Micrologic control unit

A = Micrologic A
$P=$ Micrologic P
$\mathrm{H}=$ Micrologic H

DMB300 and DMC300 display modules use the power and communications capabilities of the Micrologic control units to centralise the display of electrical values, status conditions and alarms of one or more Compact or Compact circuit breakers.
The mounting and cabling system for the display modules ensures fast, easy and reliable installation.
Start-up is immediate with no configuration or programming required.
Display modules are high-performance devices combining:

- simple and easy-to-read dials

■ powerful and accurate digital processing.
Their small size and extensive communications capabilities make for easy and flexible installation and operation.

Wiring system

The wiring system is designed for low-voltage power switchboards. Installation requires no tools or special skills
The prefabricated wiring ensures both data transmission (Modbus protocol) and 24V DC power distribution for the display module and the communications modules on the Micrologic control units.

Compact circuit breakers equipped with Micrologic control units and the Modbus eco COM option

Connection of DMC300 display module

Maximum distance between module and circuit breaker: 1200 m

CDM 303:
Connection cable between display module and junction block

CJB 306 junction block

CCP 303:
Connection cable between Masterpact or Compact and junction block

CCR 301:
Roll of RS 485 cable
(2 RS 485 wires +2 power supply wires)

CSD 309:
SubD 9-pin connector for colour-coded connection of wires to screw terminals

Halmac Senices (Qld) Pyy. Ldd.

FAIRFIELD WATER RECLAMATION PLANT

MINIATURE CIRCUIT BREAKERS

1. MCB TECHNICAL DETAILS
2. RCBO TECHNICAL DETAILS

Merlin Gerin Multi 9 System Protection Miniature Circuit Breakers

Merlin Gerin

Schneider

Merlin Gerin Multi 9 System
 Miniature circuit breakers
 Tripping curves
 Markings \& limitation capability

Trip Unit Variations
 Circuit Breaker Marking

Circuit Protection

A choice of several curves
Whatever circuit has to be protected, a C60 or C120 circuit breaker provides the perfect solution with a suitable curve.

Curve B
tripping:
3 to 5 times the rated current (In); protection of generators, persons, very long cables.

Curve C
tripping:
5 to 10 In ; protection of circuits, general applications.

Curve D
tripping:
10 to 14 In ;
protection of high surge circuits, welders, transformers, motors.

Curve MA

(magnetic only)
tripping: 12 In; protection of motor starters (+ thermal protection when combined with contactor).

7

1. Circuit Breaker Model Number
2. Tripping Curve
3. Circuit Breaker Current Rating
4. Operating Voltage
5. Rated Breaking Capacity
6. Circuit Breaker Part Number
7. Electrical Diagram - No. of Poles
8. Int classification

Prospective camert and achall limhed cumert

Circuit Breaker Limitation Capability

The limitation capability of a circuit breaker is that characteristic whereby only a current less than the prospective fault current is allowed to flow under short-circuit conditions.

This is illustrated by limitation curves which give:

- The limited peak current in relation to the RMS value of the prospective short-circuit current (the short-circuit current being that current which would flow continuously in the absence of protection equipment).
- The limited current stress in relation to the RMS value of the prospective short-circuit current.
- Current limiting capability. The advanced design of the Multi-9 range provides current limitation with far better protection than conventional circuit breakers. For example, on a 6A rating with a prospective short circuit of 5000A, the current will be limited at 350A or 7\%.

Installation of current limiting circuit breakers offers several advantages:

Better network protection
Current limiting circuit breakers considerably reduce the undesirable effects of short-circuit currents in an installation.
\square Reduced thermal effects
Cable heating is reduced, hence longer cable life.
\square Reduced mechanical effects
Electrodynamic forces reduced, thus electrical contacts are less likely to be deformed or broken.
\square Reduced electromagnetic effects
Measuring equipment situated near an electrical circuit less affected.
Miniature Circuit Breakers - up to 63A Page

18 mm pole width	C60a-4.5kA	2
(ω	C60N - 6kA	3
	C60H-10kA	4
- 0	C32H-DC - 10kA (circuit breakers for DC applications)	18
	electrical auxiliaires - C60	10
	$\begin{aligned} & \text { accessories } \\ & \text { - C60 } \end{aligned}$	16

Miniature Circuit Breakers - up to 125A

$C 120 \mathrm{~N}-10 \mathrm{kA}$	6
$\mathrm{C} 120 \mathrm{H}-15 \mathrm{kA}$	8

$\begin{array}{ll}\text { electrical auxiliaries } & 10\end{array}$
$\begin{array}{ll}\text { accessories } & 16\end{array}$

Tm Motor Mechanism
TM C60/C120

Dimensions

C60a circuit-breakers

$4.5 \mathrm{kA}, \mathrm{C}$ curve
AS/NZS 4898

functions	The circuit-breakers combine the following functions: - protection of circuits against short-circuit currents, - protection of circuits against overload currents, - control, - isolation,

description	tech C60 - po \square vo - nu \square fool - mov inser - cab corre \square iso \square bis	reak g: 240 ycles minal prev cente positio clip, s	ct cable ensure d group ndication assemb	$\begin{aligned} & \text { C cu } \\ & \text { utilisat } \\ & \text { cables } \\ & \text { technia } \\ & \text { a powe } \\ & \text { a trippi } \\ & \text { operate } \\ & \text { a brea } \\ & \text { - accor } \\ & \text { breakin } \end{aligned}$	g conv ta it ves: the ween 5 apacity AS/NZ acity (0	ntional magn and 10 S 4898 C0 cyc	ip unit ultimate
	- environment - tropicalisation: treatment 2 (relative humidity: 95% at $55^{\circ} \mathrm{C}$) - connection: tunnel terminals for the following cables: - up to 25A : $25 \mathrm{~mm}^{2}$ stranded - 32 to $63 \mathrm{~A}: 35 \mathrm{~mm}^{2}$ stranded			$\begin{aligned} & \begin{array}{l} \text { rating } \\ \text { (A) } \end{array} \\ & 1 \ldots . .63 \end{aligned}$	voltage (V) 240		breaking capacity Icu (A) 4500
catalogue numbers	type C cu		rating (A)	catalogu number	width in mod. of 9 mm	quantity per box	
	1P		6	11354	2	12	
		*	10	11355		12	
		$\underline{1}$	16	11356	2	12	
8 youm)	20	11357	2	12	
${ }^{\text {ch }}$ C20		ك	$\underline{25}$	11339	2	12	
			$\frac{32}{40}$	$\frac{11358}{11359}$	2	12	
		2	50	11360	2	12	
			63	11361	2	12	

C60N circuit-breakers

C60H circuit-breakers

10kA, B, C and D curves
AS/NZS 4898

functions	The circuit-breakers combine the following functions: - protection of circuits against short-circuit currents, - protection of circuits against overload currents, - control,	- isolation, - protection of persons against indirect contact.
description	technical data common to C 60 H circuit-breakers	B curve
	- power circuit v voltage rating: 240/415 V AC - breaking capacity - according to AS/NZS 4898, cv ultimate breaking capacity (O-CO cycle)	utilisation when there are small inrush currents (generators, long cables). technical data
	rating type voltage (A) break. cap. (cu la)	- power circuit theripping curve: the magnetic trip units operate between 3 and 5 In .
	$1 \ldots 63$ $\frac{1 P, 2 \mathrm{P}}{}$ $240 / 415$ 10000 $3 P, 4 \mathrm{P}$ $415 \ldots 480$ 10000	
	- I^{2} t classification: 3 \square foolproof terminal design -moving barrier prevents incorrect cable insertion - cable strand centering guides ensure correct cable positions and strand grouping - isolation with positive contact indication - bistable din clip, simplifies disassembly \square isolation with positive contact indication: opening is indicated by a green strip on the device operating handle. This indicator shows opening of all the poles	C curve utilisation cables feeding conventional loads. technical data - power circuit \square tripping curve: the magnetic trip units operate between 5 and 10 ln .
	■ environment व tropicalisation: treatment 2 (relative humidity: 95% at $55^{\circ} \mathrm{C}$) \square connection: tunnel terminals for the following cables: - up to 25A :16mm ${ }^{2}$ flexible with cable end; $25 \mathrm{~mm}^{2}$ stranded -32 to $63 \mathrm{~A}: 25 \mathrm{~mm}^{2}$ flexible with cable end; $35 \mathrm{~mm}^{2}$ stranded	utilisation loads with a high inrush current (motors, transformers). technical data - power circuit \square tripping curve: the magnetic trip units operate between 10 and 14 In .

C60H circuit－breakers

10kA，B，C and D curve

AS／NZS 4898
Approval No：N13634

catalogue numbers	type	rating （A）	$\begin{aligned} & \text { B } \\ & \text { Curve } \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { Curve } \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { Curve } \end{aligned}$
	$\mathrm{C6OH}$				
	1P		25839	25639	25695
		2	25840	25640	25696
		4	$\underline{25841}$	25642	25698
		6	25842	25643	25699
		10	25843	25644	25700
		16	25844	25645	25701
		20	25845	25646	25702
		25	25846	25647	25703
	Width in mod of $9 \mathrm{~mm}-2$	32	$\underline{25847}$	25648	25704
		40	25848	25649	25705
25845		50	$\stackrel{25849}{ }$	25651	25770
		63	$\underline{25850}$	25652	25708
，	${ }^{2 P} \begin{array}{rrr} \\ & \\ \\ & * & 3 \\ & *\end{array}$	1	25852	25653	25709
		2	25853	25654	25710
\＃		4	$\frac{25854}{2585}$	25656	25712
		6	25855	25656	25713
鱼 36		10	$\underline{25856}$	25658	25714
ㅇㅔㅢ		$\frac{16}{16}$	25857	25659	25715
$\xrightarrow{3}$		$\frac{20}{25}$	$\frac{25858}{25859}$	25660	25716
－		25	25859	25661	25717
193		32	25860	25662	25718
		40	$\underline{25861}$	25663	25719
25857	Width in mod of $9 \mathrm{~mm}-4$	$\frac{50}{63}$	$\frac{25862}{25863}$	25665	25721
					25722
	3P	1	25865	25667	25723
		2	25866	25668	25724
		4	$\frac{25867}{}$	25670	25726
1 深	$* * *$	$\frac{6}{10}$	$\frac{25868}{}$	25671	25727
迷		$\frac{10}{16}$	$\frac{25869}{25870}$	25672	25728
지유）		$\frac{16}{20}$	$\underline{25871}$	25674	25730
1	$\begin{array}{lll} 5 & 5 & 5 \\ 2 & 4 & 6 \end{array}$	25	25872	25675	25731
		32	$\underline{25873}$	25676	25732
（i）©		40	25874	25677	25733
25871	Width in mod of $9 \mathrm{~mm}-6$	50	$\stackrel{25875}{25976}$	25679	25735
		63	$\underline{25876}$	25680	25736
$=x-1$		1	25878	25007	25211
3）3		2	$\underline{25879}$	25008	25212
		4	$\underline{25880}$	25010	25214
		$\frac{6}{10}$	$\frac{25881}{25882}$	25011	25215
\％		$\frac{10}{16}$	$\frac{25882}{2583}$	25012	25216
\％ 333		20	25884	25014	25218
		$\frac{25}{32}$	$\underline{25885}$	25015	25219
		32	25886	25016	25220
		40	25887	25017	25221
090	Width in mod of $9 \mathrm{~mm}-8$	$\frac{50}{63}$	$\frac{25888}{25889}$	25018	25222
25883					

C120N circuit-breakers
 10kA, B, C curves - AS/NZS 4898
 10kA, D curve AS 3947-2

function	The circuit-breakers combine the following function: - protection of circuits against short circuit currentst -protection of circuits against overload currents, -control,	- isolation, - porotection of persons against indirect contact.

description

Technical data common to C120N circuit breakers

■ power circuit
a current rating: 63 to 125 A
\square voltage rating 415 V AC
a insulation voltage Ui: 500 V
a impulse withstand voltage Uimp: 6 kV \square breaking capacity:

- according to AS/NZS 4898 Icv ultimate breaking capacity (O-CO cycle)

type	voltage	breaking cap.
	(V)	Icu (A)
$\mathbf{1 , 2 , 3 , 4 P}$	$240 / 415$	10000

- according to AS3947-2 Icu ultimate breaking capacity (O-CO cycle)

type	voltage (V)	breaking cap. Icu (kA)
$\mathbf{1 P}$	240	10
$\mathbf{2 , 3 , 4 P}$	415	3

- mechanical durability:
- 20000 cycles (O-C)
- electrical durability:
- 63 A: 10000 cycles (O-C)
- 80... 125 A: 5000 cycles (O-C)
- $I^{2} t$ classification: 3
\square isolation with positive contact indication: opening is indicated by a green strip on the device operating handle. This indicator shows opening of all the poles \square foolproof terminal design - moving barrier prevents incorrect cable insertion
- cable strand centering guides ensure correct cable positions and strand grouping a bistable din clip: simplifies disassembly a to 125A: - up to $35 \mathrm{~mm}^{2}$ flexible with cable end
- up to $50 \mathrm{~mm}^{2}$ stranded

B curve

utilisation
Approval No:Q00542
when there are small inrush currents (generators, long cables).
technical data

■ power circuit

- tripping curve:
the magnetic trip units operate between 3 and 5 In .

C curve

utilisation
cables feeding conventional loads.
technical data

- power circuit
- tripping curve:
the magnetic trip units operate between 5 and 10 ln .

D curve - For industrial use only
utilisation
loads with a high inrush current (motors, transformers).
technical data

- power circuit
- tripping curve:
the magnetic trip units operate between
10 and 14 In .
circuit-breakers up to 125 A

C120N circuit-breakers

10kA, B, C curves - AS/NZS 4898
10kA, D curve AS 3947-2

C120H circuit-breakers

15kA, B, C curves - AS/NZS 4898
15kA, D curve AS 3947-2

function

The circuit-breakers combine the following functions:

- protection of circuits against short circuit currents,
- protection of circuits against overload
currents,
- control,
- isolation,
- protection of persons against indirect contact.

description

Technical data common to C120N circuit breakers

- power circuit
- current rating: 10 to 125 A
- voltage rating 415 V AC
ainsulation voltage Ui: 500 V
aimpulse withstand voltage Uimp: 6 kV a breaking capacity:
- according to AS/NZS 4898 Icu ultimate breaking capacity ($\mathrm{O}-\mathrm{CO}$ cycle)

type	voltage (V)	breaking cap. Icu (A)
$\mathbf{1 , 2 , 3 , 4 P}$	$240 / 415$	15000

- according to AS3947-2 Icu ultimate breaking capacity ($\mathrm{O}-\mathrm{CO}$ cycle)

type	voltage $($ V)	breaking cap. Icu (kA)
$\mathbf{1 P}$	$\underline{240}$	15
$\mathbf{2 , 3 , 4 P}$	415	4.5

- mechanical durability:
- 20000 cycles (O-C)
- electrical durability:
-63 A: 10000 cycles (O-C)
- 80... 125 A: 5000 cycles (O-C)
- 1^{2} t classification: 3
\square isolation with positive contact indication: opening is indicated by a green strip on the device operating handle. This indicator shows opening of all the poles
\square foolproof terminal design
- moving barrier prevents incorrect cable insertion
- cable strand centering guides ensure correct cable positions and strand grouping a bistable din clip: simplifies disassembly $\square 63$ to 125A: - up to $35 \mathrm{~mm}^{2}$ flexible with cable end
- up to $50 \mathrm{~mm}^{2}$ stranded

B curve

utilisation
Approval No:Q00542
when there are small inrush currents (generators, long cables).
technical data

- power circuit
\square tripping curve:
the magnetic trip units operate between 3 and 5 ln .

C curve

Approval No:Q00542
utilisation
cables feeding conventional loads.
technical data

- power circuit
\square tripping curve:
the magnetic trip units operate between 5 and 10 ln .

D curve - For industrial use only
utilisation
loads with a high inrush current
(motors, transformers).
technical data

- power circuit
\square tripping curve:
the magnetic trip units operate between 10 and 14 ln .

C120H circuit-breakers

15kA, B, C curves - AS/NZS 4898

15kA, D curve AS 3947-2

catalogue numbers

18394

18412

18424

type			C	C	C

of $9 \mathrm{~mm}-12$
\qquad

function

They allow remote tripping or indication of circuit-breakers, with or without a Vigi module.

description

■ they are mounted on the left-hand side of
the circuit-breaker within a width limit of
54 mm
■ fixed using clips (without tools) on the
left-hand side of the circuit-breaker
■ compatible with Vigi modules
(adaptable on the right-hand side)
a maximum of 3 indication auxiliaries on
the same circuit-breaker
a maximum of 2 OF+SD/OF auxiliary
switches on the same circuit-breaker
a maximum of $2 \mathrm{MX}+\mathrm{OF}$ or MN tripping
auxiliaries on the same circuit-breaker
■ maximum of 1 MNS or MNx or MSU
tripping auxiliary on the same
circuit-breaker.
auxiliary combination

tripping

Visualisation of tripping by means of the red indicator on front face.

MX + OF shunt trip

Remote tripping of a circuit-breaker:
■ equipped with an OF changeover switch:

- to indicate the circuit-breaker's position
- to carry out self-breaking allowing the control circuit to remain energized.

Undervoltage releases

(MN, MN [S)

Controls the tripping of a circuit-breaker when its supply voltage drops (threshold between 70 and 35% of Un) It allows for manual closing of the circuit-breaker if its voltage exceeds 85% of the rated voltage

delayed MN \mathbb{S} release

0.2 second time-delay: prevents tripping due to brownouts or momentary voltage decreases.
MNx release for opening pushbutton Completely unaffected by power supply circuit cuts, it is recommended for fail-safe emergency stopping. Replaces the MX
"voluntary" release equipped with its NO/NC indicator lights.

MSU overvoltage

MSU voltage threshold release Specially designed to monitor voltage between the neutral and phase(s) conductors, it cuts power supply by opening the circuit-breaker in event of an overvoltage. For overvoltages lasting for more than a few seconds.

technical data

Complance with standard: AS 3947-2

\square release consumption			
type	voltage (V AC or DC)		power (W or VA)
MX+OF	415 V AC	inrush	120
	220... 240 V AC	inrush	50
	110... 130 V AC	inrush	200
	DC	inrush	10
	$48 \mathrm{~V} \quad \mathrm{AC}$	inrush	22
	DC	inrush	12
	24 V AC	inrush	120
	DC	inrush	120
	$12 \mathrm{~V} \quad \mathrm{AC}$	inrush	20
	DC	inrush	20
MN	220... 240 V AC	holding	4.1
	$48 \mathrm{~V} \quad \mathrm{AC}$	holding	4.3
	DC	holding	2.0
MNS	220... 240 V AC	holding	4.1
MNx	230 AC	inrush	50
	400 AC	inrush	120
MSU	230 AC	inrush	50
	400 AC	inrush	120

remote indication

OF auxiliary switch

- changeover switch that indicates the "open" or "closed" position of the circuit-breaker.
a test button on the front face that allows for the indication circuit to be verified without operating the circuit-breaker SD fault indicating switch - changeover switch that indicates the "fault trip" position of the circuit-breaker \square visualisation of the fault (SD) by means of a mechanical indicator on front face.
OF+SD/OF selector switch
\square double changeover switch that indicates:
a the "open" or "closed" position of the
circuit-breaker (OF)
a the "fault trip" position of the circuit-breaker (SD).
ㅁ 2 circuits:
- upper: OF
- lower: SD or OF.
\square function is selected using rotary selector switch on the right-hand side
\square the selected function is indicated on the front face
- visualisation of the fault (SD) by means of a red mechanical indicator on front face.

technical data

Complies with standard: AS 3947-2
\square rated current of auxiliary contacts

voltage (V AC or DC)		rated current (A)
415 V	AC	3
$\leq 240 \mathrm{~V}$	AC	6
130 V	DC	1
$\leq 48 \mathrm{~V}$	DC	2
$\leq 24 \mathrm{~V}$	DC	6

connection

- using screw clamp terminals for 1 or 2 cables (max. $2.5 \mathrm{~mm}^{2}$)
■ visible markers near terminals.
for C60 and C120 circuit-breakers

26946

26979

26963

26969

MSU overvoltage release

MN undervoltage release

MNX release for opening pushbutton
$\mathrm{Ph}+\mathrm{N}$
220... 240
26969 4

380... 415

26971 \qquad

OF contact and SD switch, MX+OF, MN and MNS releases for C60 and C120 circuit-breakers

shunt release $\mathbf{M X}+$ OF	application
	■ remote opening by circuit-breaker tripping,
of electrical lighting circuits, etc	
	■ terminals 12 and 14 are used for indication of the circuit-breaker OF position, at a voltage identical to coil voltage
	■indication on the front face of the tripped function, by a red mechanical indicator.

undervoltage release MN or MNS

application

- opening of electrical circuits by circuit-breaker tripping:
\square either by emergency stopping (mushroom head pushbutton) - or on mains failure
- impossibility of uncontrolled restart is particularly recommended in two cases cases, thus guaranteeing complete safety: \square when the machine operator is confronted with a risk of untimely restart: circular saw, rotating machine, etc
\square when it is necessary to control restart of an installation further to a mains failure
- indication on the front face of the tripped function, by a red mechanical indicator

■ the MN coil is accepted as an emergency stopping device by the installation standard. However it does not indicate the OFF position of a circuit-breaker.

MNx release for emergency stopping on opening

application

- remote opening of the circuit by circuitbreaker tripping on a voluntary order. remergency stop pushbutton on opening (fail-safe)
a completely unaffected by network fluctuations.
connection

connection

$\mathrm{Ph} / \mathrm{Ph}$

OF contact and SD switch, MX+OF, MN and MNS releases for C60 and C120 circuit-breakers

OF auxiliary contact

application
■ audible or visual indication of
circuit-breaker "open" or "closed" contact
status
a this indication can be transferred to the
front face of a cubicle or enclosure or
centralised on a control desk
ם optional contact testing using the knob on
the front face, with the circuit-breaker open.
circuit-breaker

open	OF contact position
closed	$11-12$
tripped	$11-14$

connection

SD fault indicating switch

OF + SD/OF changeover auxiliary switch
application

- audible or visual indication of circuitbreaker tripped status: climatic room, lift, ventilation, etc
\square front face indication of contact status (red mechanical indicator) and of the "fault clearance" function
a optional resetting of indication separately from the circuit-breaker
\square optional testing of contact on front face, with the circuit-breaker open.

circuit-breaker	OF contact position
open	$91-94$
closed	$91-94$
tripped	$91-92$

connection

application

■ double changeover switch:

- the top switch indicates the "open" or "closed" status of the circuit-breaker \square the bottom switch indicates according to user choice:
- the "open" or "closed" status (OF)
- the "tripped" status (SD)
- front face indication of the tripped status, by red mechanical indicator (regardless of lateral selector switch position)
- optional testing of the bottom switch (SD changeover) on the front face, with the circuit-breaker open
\square optional resetting of indication separately from the circuit-breaker.

circuit-breaker	OF contact position	
open	$11-12$	$21-22$
closed	$11-14$	$21-24$
tripped	$11-12$	$21-22$
circuit-breaker	SD switch position	
open	$91-94$	
closed	$91-94$	
tripped	$91-92$	

connection

Vigi modules for C60 and C120 circuit-breakers

function

Common function

Adaptable toC60 \& C120 circuit-breakers to 125 A-2, 3, 4P, the Vigi up
module ensures

- the protection of electrical installations
against insulation faults
- the protection of persons against indirect
contact: medium sensitivities (300, 500mA)
- additional protection of persons against
direct contact: high sensitivity (30 mA)
The C60/C120 residual current device complies
with standard EN 61009: no heat derating of the circuit-breaker
It is equipped with a locating device that ensures the correct rating and number of poles
The technical data of circuit-breakers that are combined with Vigi modules remain unchanged and the circuit-breakers remain compatible with indication or control auxiliaries
AC class
Vigi module for which tripping is ensured by sinusoidal AC currents whether they are quickly applied or rise slowly

Instantaneous

It ensures instantaneous tripping (not time-delayed)

Selective S

Selective S Vigi modules allow for total vertical discrimination if:

- upstream devices are s or delayed - downstream devices are instantaneous and their sensitivity is less than IDn/2 of the upstream device.

description

Technical data

■ the Vigi module incorporates the residual current relay and toroid in a case. Its earth leakage module is electromechanical.
It functions without an auxiliary power supply source and thus has a very wide operating range
\square protected against nuisance tripping due to transient overvoltages (lightning stroke, switchgear switching on the network, etc.) $■$ breaking and making capacity upon shortcircuit is equal to the breaking capacity of the circuit-breaker
■ instantaneous or selective s trip units

- reinforced electromagnetic compatibility

- remote tripping:

possible using an MX or MN release on circuit-breaker

- connection by tunnel terminals
in mod. of 9 mm
\square fault indication by means of a red strip on the resetting handle
- resetting the Vigi module, at user's convenience:
- either using the circuit-breaker handle \square or independently of the circuit-breaker.

AC class: $50 / 60 \mathrm{~Hz}$

- Minimum operating threshold for test button
- Vigi C60 : 100VAC
\square Vigi C120 : 176VAC
- AS3190, AS/NZS61009 (IEC61009)
- Connection by tunnel terminals
\square Vigi C60 : up to 35 mm 2 stranded cables
\square Vigi C120 : up to 50 mm 2 stranded cables
\square Copper or aluminium cables (using aluminium cable terminal).

type	Vigi C60	Vigi C120
2 P	4	7
3 P	7	10
4 P	7	10

combination of earth
leakage modules with circuit-breakers

Vigi modules for C60 and C120 circuit-breakers

catalogue numbers

type	voltage (V)	sens. (mA)	catalogue number
Vigi C120 type AC $(\leq 125 A)$			

P	230... 415	30	18569
		300	18570
$\underline{ \pm}+\underline{*}$	${ }^{\text {T }} \mathrm{E}-\mathrm{f}$	500	18571

accessories

for C60 and C120 circuit-breakers

catalogue numbers	type	suitable for	catalogue number	quantity per box

insulated sub-	19091	4
terminal		

26976

aluminium cable	27060	1
terminal		

27060
terminal

accessories

for C60 and C120 circuit breakers

	type	catalogue number

spacer 27062
marker strips $\quad \underline{27062}$
marker strips

label holder C120		27150	10
replacement wire cover C60	$\frac{2 P}{3 P}$	$\underline{P P}$	$\underline{26483}$
	$\underline{26484}$	5	

C32H-DC circuit-breakers
 AS3947-2

functions	The C32H-DC circuit-breakers are designed for the protection and control of power circuits used in DC applications (eg; security lighting, automation, telephone systems)				
description	technical data common to C32H-DC circuit-breakers power circuit voltage rating: two pole: 250 V DC - current ratings: 1 to 40 A set at $40^{\circ} \mathrm{C}$ \square breaking capacity as in AS3947-2, Icu ultimate breaking capacity operating cycle)				- tripping curve: type C the magnetic releases operate between numb (O-C) 10,000 operating cycles: \square tropicalisation: treatment 2 (relative humidity 95% at $55^{\circ} \mathrm{C}$) \square connection: tunnel terminals for the following cables $16 \mathrm{~mm}^{2}$ flexible with cable end $25 \mathrm{~mm}^{2}$ stranded
	type	$\begin{aligned} & \text { rating } \\ & \text { (A) } \end{aligned}$	$\begin{aligned} & \text { Voltage } \\ & \text { (VDC) } \end{aligned}$	breaking capacity Icu (kA)	It is imperative to respect the polarity and function of the power supply.
		1 to 40 A	125	10	
	${ }^{2 P}$	1 to 40 A	$\begin{aligned} & \frac{1125}{250} \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & \hline \end{aligned}$	

catalogue numbers

20536

2P

$\frac{1}{2}$
3
6
10
16
20
25
32
40

$\mathbf{2 0 5 3 1}$	2	12
$\mathbf{2 0 5 3 2}$	2	12
$\mathbf{2 0 5 3 3}$	2	12
$\mathbf{2 0 5 3 4}$	2	12
$\mathbf{2 0 5 3 5}$	2	12
$\mathbf{2 0 5 3 6}$	2	12
$\mathbf{2 0 5 3 7}$	2	12
$\mathbf{2 0 5 3 8}$	2	12
$\mathbf{2 0 5 3 9}$	2	12
$\mathbf{2 0 5 4 0}$	2	12

\qquad

$\mathbf{2 0 5 4 1}$	4	6
$\mathbf{2 0 5 4 2}$	4	6
$\mathbf{2 0 5 4 3}$	4	6
$\mathbf{2 0 5 4 4}$	4	6
$\mathbf{2 0 5 4 5}$	4	6
$\mathbf{2 0 5 4 6}$	4	6
$\mathbf{2 0 5 4 7}$	4	6
$\mathbf{2 0 5 4 8}$	4	6
$\mathbf{2 0 5 4 9}$	4	6
$\mathbf{2 0 5 5 0}$	4	6

C32H-DC circuit-breakers for DC applications

selecting
 the circuit-breaker

> The selection of a circuit-breaker most suitable for protection of a DC installation, depends mainly on the following criteria:
> m the nominal current, which determines the rating of the equipment
> \mathbf{t} the type of network
> $\mathbf{\text { the nominal voltage, which determines the }}$ number of poles to be involved in breaking
> $\boxed{\text { the maximum short-circuit current at the }}$ point of installation, which determines the breaking capacity

calculation
 of the short-circuit current
 (Isc) at the terminal of a battery

example

What is the short-circuit current at the terminals of standing battery with the following characteristics:

When a short-circuit occurs at its terminals, a battery discharges a current given by Ohm's law:

Isc $=\frac{\mathrm{Vb}}{\mathrm{Ri}}$
where $\mathrm{Vb}=$ the maximum discharge voltage (battery 100% charged)
and $\mathrm{Ri}=$ the internal resistance equivalent to the sum of the cell resistances
(figure generally given by the manufacturer in terms of Ampere-hour capacity of the battery).

■ capacity: 500 Ah

- maximum discharge voltage:

240 V (110 cells of 2.2 V)

- discharge current: 300 A

■ internal resistance: $0.5 \mathrm{~m} \Omega$ per cell

As the above calculation shows, the short-circuit current is relatively weak.

Note: if the internal resistance is not known, the following aproximate formula can be used: Isc = $k C$, where C is capacity of the battery expressed in Ampere-hours, and k is a coefficient close to 10 but in any case always lower than 20.

C32H-DC circuit-breakers for DC applications

recommendations
for use

The C32H-DC special DC circuit-breaker is designed for the control and protection of circuits up to 250 V DC with Isc $\leq 20 \mathrm{kA}$. For higher voltages or short-circuit currents, refer to the previous pages.

connection diagram

The circuit-breaker connection diagram to be used depends on the service voltage,
the Isc of the installation and the position of the load:

C32H-DC 1 pole

■ service voltage $\leq 125 \mathrm{~V}$ DC

- Isc $\leq 10 \mathrm{kA}$

C32H-DC 2 poles

■ service voltage $\leq 125 \mathrm{~V}$ DC

- Isc $\leq 20 \mathrm{kA}$

Note :

The $\mathrm{C} 32 \mathrm{H}-\mathrm{DC}$ is a polarized circuit-breaker, equipped with a permanent magnet for satisfactory breaking of the rated current. In accordance with the diagram to be used, always respect the + and - polarities indicated on the circuit-breaker.

C32H-DC 2 poles

■ service voltage ≤ 250 V DC

- Isc $\leq 10 \mathrm{kA}$

Tm motor mechanism
 for C60N/H and C120N/H circuit breakers

function

Tm motor mechanism is used for:

- the remote control of C60/C120
circuit-breakers (with or without a Vigi module) via a latched order,
■ circuit-breaker resetting after tripping.

Local control using the operating handle continues to be possible, as is adaptation of other circuit-breaker auxiliaries.

description

Tm remote control
$M X+O F$
or MN auxiliary

circuit-breaker

MSU au

Tm modules are controled by an electrica latched type order.

- a disconnection selector switch placed on
the front panel is used to:
\square neutralise the remote control - lock the remote controlled circuit-breaker in the "open" position ($7 \mathrm{~mm} \varnothing$ padlock not supplied).
- a mechanical indicator shows the "open" or "closed" status of the Tm remote control.
- reclosing after a fault:
a must be carried out in manual mode, locally after search and clearance of the fault a to impose manual and local resetting, an SD auxiliary switch (ref. 26927), cabled in series in the Tm module, prevents automatic and remote reclosing
a remote reclosing is possible provided regulations are complied with: resetting takes place by opening the control circuit for more than 1.5 s .

■ auxiliaries in the C60/C120 range, adaptable to circuit-breakers using clips (without tools),
a instantaneous or delayed undervoltage tripping: MN and MNS

- instantaneous shunt tripping: $\mathrm{MX}+\mathrm{OF}$ \square fault trip indication: SD
a indication of the circuit-breaker's "open" or "closed" position: OF.
■ other possible control modes: a control by an impulse and/or latched order: ACTc - time-delayed: ACTt - by BatiBUS network: ATB1s.

technical data

■ control voltage (Uc):
230 V AC ($-15 \%+10 \%)$
■ frequency: $50 \ldots 60 \mathrm{~Hz}$

- consumption:
a inrush:
- TmC60: 28 VA
- TmC120: 35 VA
- holding: 2 VA

■ insensitive to brownouts: $\leq 0.45 \mathrm{~s}$
■ undervoltage behaviour: $\square>0.45 \mathrm{~s}$, mechanical opening of poles \square reclosing 2 s after power is restored.

- number of cylcles $(\mathrm{O}-\mathrm{C})$ at $40^{\circ} \mathrm{C}$:
- Tm + C60: 20000
-Tm + C120 (≤ 63 A): 10000
- Tm + C120 (80... 125 A): 5000.

■ opening time by $\mathrm{Tm}: 0.5 \mathrm{~s}$
■ closing time by Tm: 2 s

connection

■ using tunnel terminals:

- $1 \times 6 \mathrm{~mm}^{2}$ cable
$\square 2 \times 1.5 \mathrm{~mm}^{2}$ or $2.5 \mathrm{~mm}^{2}$ cables.

weight

■ 1-2P: 300 g
■ 3-4P: 310 g .

Tm motor mechanism
 for C60N/H and C120N/H circuit breakers

Dimensions

C60a/N/H circuit breakers

Vigi C60

C120N/H circuit breakers

Vigi C120

C60/C120 auxiliaries

C60 accessories

C120 accessories

Dimensions

C32H-DC circuit breakers

C32H-DC auxiliaries

Tm C60/C120

Locations

Head Office:

2 Solent Circuit, Norwest Business Park, Baulkham Hills NSW 2153 Tel: (02) 98512800

Sales Offices:

NSW

2 Solent Circuit, Norwest Business Park, Baulkham Hills NSW 2153 Tel: (02)9851 2800 Fax: (02) 96298555

VIC

77 Ricketts Road, Mt Waverley VIC 3149
Tel: (03) 95589876 Fax: (03) 95589701

SA

Building 1A, Corbett Court, Export Park, Adelaide Airport SA 5950
Tel: (08) 82344388 Fax: (08) 82344122

WA
26 Gibberd Road, Balcatta WA 6021
Tel: (08) 93442727 Fax: (08) 93446335
QLD
30 Graystone Street, Tingalpa QLD 4173
Tel: (07) 38902112 Fax: (07) 38902098

Regional Offices:

| Albury - Tel: 0425247097 | Fax: (02) 60591964 | Newcastle - | Tel: (02) 49526900 | Fax: (02) 49529403 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Ballarat - Tel: 0418477539 | Fax: (03) 53304113 Orange - | Tel: (02) 88135231 | Fax: (02) 63621283 | |
| Cairns - Tel: 0407257643 | Fax: (07) 40810972 Rockhampton - Tel: 0417248003 | Fax: (07) 49268200 | | |
| Darwin - Tel: 0417660435 | Fax: (08) 89474498 Wollongong - | Tel: 0413433907 | Fax: (02) 42973970 | |

Manufacturing Facilities

MV Transformers \& Substations
Sydney Road, Benalla VIC

MV Switchgear

77 Ricketts Road, Mt Waverley VIC

Tel: (03) 57623411 Fax: (03) 57625113

Tel: (03) 95589876 Fax: (03) 95589600

Schneider 4 Electric

heLP CENTRE
Tel: 1300369233
Fax: 1300369288
Email: help@schneider.com.au

www.schneider.com.au

Schneider Electric
 (Australia) Pty Limited

Postal Address:
Locked bag 5500
Baulkham Hills Business Centre
NSW 2153 Australia
Tel: +61 (2) 98512800

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

Publishing: Schneider Electric
Design, production: The Graphic Shop
Photos: Schneider Electric
Printing:TBA

Whether you are trying to incorporate earth leakage protection into a main switchboard or a distribution board...

...you will save time \& money with the C 60 H single pole RCBO

Schneider

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Accessories	
Description	Reference
Sealable, line side terminal screw shields	26981
Padlocking attachment	26970

Technical Data

- Voltage rating: 110-240V AC
- Breaking capacity len - 10 KA
- Residual breaking capacity 1 Lm . 6 KA
- Electrical endurance (O-C cycles): 20000
- Tropicalisation: treatment 2 (relative humidity: 95% at $55^{\circ} \mathrm{C}$
- Tropicalisation: treatment 2 (relative humidity: 95% at $55^{\circ} \mathrm{C}$
- Weight 240 g
$-L$ in : tunnel terminals $25 \mathrm{~mm}^{2}$ cables
$L \& N$ out: tunnel terminals $16 \mathrm{~mm}^{2} \mathrm{c}$
- Standards: IEC60898, AS/NZS4888, AS33190 Approval number N13634

C Curve
tripping curve:
tripping curve:
the magnetic trip operates between 5 and 10 in
Tripping Curves

Dimensions

STO2 Faififild STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Manual

- Same profile as all other multi 9 devices
- Toggle position same as multi 9 MCB's
- Full range of auxiliaries \& accessories
- Auxiliaries \& accessories common to standard MCB's
- High stacking density $=$ smaller chassis $\&$ distribution boards
- Tunnel terminals accept cables up to $16 \mathrm{~mm}^{2}$

Performance \& Safety

- High interrupting capacity - 10 KA
- 100% compatible with multi 9 chassis \& distribution boards
- Positive contact indication - suitable for isolation
- Loss of neutral protection - automatic tripping
- Padlockable with standard multi 9 lock dog
- Direction of toggle operation same as multi 9 MCB's \& complies with AS3000:2000 clause 2.9.2.3

Reliability \& Continuity of Service

- Enhanced discrimination with Merin Gerin NS range of MCCB's
- Back up to 50 KA with BS \& DIN fuses
- Retrofits multi 9 MCB's with no chassis tee off or escutcheon modifications
- Robust single case construction

Schneider
 3 Electric

C60H Single Pole RCBO Your favourite miniature circuit breaker now incorporates residual current

Modicon
Square D
Telemecanique

Schneider E.Electric

C60H Single Pole RCBO

Single case construction - ensures product robustness
Industry proven C 60 H MCB mechanism
Provision of functional earth ensures safe operation even with loss of neutral connection Suitable for isolation - handle position always indicates contact position Test trip button - conveniently positioned for periodic testing
Incoming line connection terminal
Outgoing line connection terminal
Outgoing line connection terminal
Incoming neutral connection
(1) Outgoing neutral connectio

- moving barrier prevents incorrect cable insertion
- cable strand centring guides ensure correct cable positions \& strand grouping
new south wales office Norwest Business Park
2 Solent
Circuit Baukham Hills $215{ }^{2}$ Syney NSW
Syd

VICTORIA SALES OFFICE
RMANUFACTURING ${ }_{77}$ IT icketts Sooad M. Waverley 3149 Tel: (03) 9558987

Schneider
WElectric

Medium Voltage Switchgear
 Medium Voltage Transformers
 QUEESLLAND OFFICE 30 Graystone
Tingalpa 4173
Bita Brisbane QLD

south australla office
Builing 1 A Corbett Court
Exoort Park Eunding AA Orbett
Exporl Park
Adide Airport 5950 Adelaide Airport 59
Adelaide $S A$
Tel: $(088) 82344388$
Fax: $(08) 82344122$
WESTERN AUSTRALIA OFFICE
26 Gibberd Road
Balacatat 6021
Perth
WA

FAIRFIELD WATER RECLAMATION PLANT

CONTACTORS

1. TESYS D CONTACTOR TECHNICAL DETAILS

Selection guide

Applications

Rated operational current

$$
\frac{\text { le max. } \mathrm{AC}-3(\mathrm{Ue} \leqslant 440 \mathrm{~V})}{\text { le } \mathrm{AC}-1\left(\theta \leqslant 60^{\circ} \mathrm{C}\right)}
$$

Rated operational voltage

Number of poles

Rated operational power in AC-3	
	$220 / 240 \mathrm{~V}$ $380 / 400 \mathrm{~V}$
$\frac{500 \mathrm{~V}}{600 / 690 \mathrm{~V}}$	
1000 V	

Auxiliary contacts

Thermal overload relays	
manual-auto compatible	
	Class 10 A
Class 20	

Suppressor modules	
(-- and low consumption contactors have built-in suppression as standard)	Diode
	RC circuit
	Bidirectional peak limiting diode
Interfaces	Relay
	Relay + override function
	Solid state
Contactor type references	\sim or --. 3 -pole
	~ 4-pole
	--- 4-pole

Reversing contactor type references	~ 3-pole
	$=3$-pole
	~ 4-pole
	$=4$-pole

Pages $\quad \frac{\text { Contactors }}{\text { Reversing contactors }}$

All types of automation system

9 A	12 A	$\frac{18 \mathrm{~A}}{25 / 32 \mathrm{~A}}$	$\frac{25 \mathrm{~A}}{25 / 40 \mathrm{~A}}$

690 V					
3 or 4	3 or 4	3 or 4	3 or 4	3	
2.2 kW	3 kW	4 kW	5.5 kW	7.5 kW	9 kW
4 kW	5.5 kW	7.5 kW	11 kW	15 kW	18.5 kW
4 kW	5.5 kW	9 kW	11 kW	15 kW	18.5 kW
5.5 kW	7.5 kW	10 kW	15 kW	18.5 kW	18.5 kW
5.5 kW	7.5 kW	10 kW	15 kW	18.5 kW	18.5 kW
-	-	-	-	-	-

$1 \mathrm{~N} / \mathrm{C}$ and $1 \mathrm{~N} / \mathrm{O}$ instantaneous contacts incorporated in the contactors, with add-on blocks common to the whole range, comprising up to $4 \mathrm{~N} / \mathrm{C}$ or N/O instantaneous, up to $1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} /$ C time delay and up to $2 \mathrm{~N} / \mathrm{O}$ or $2 \mathrm{~N} / \mathrm{C}$ protected contacts and 2 screen continuity terminals

40 A				
60 A	50 A	65 A	80 A	95 A
80 A	125 A	115 A	150 A	
200 A				

1000 V on \sim supply, 690 V on =-- supply

3	4	3	3	4	3	4	3	3	4	3
11 kW		15 kW	18.5 kW		22 kW		25 kW	30 kW		40 kW
18.5 kW		22 kW	30 kW		37 kW		45 kW	55 kW		75 kW
22 kW		25/30 kW	37 kW		45 kW		45 kW	59 kW		80 kW
22 kW		30 kW	37 kW		55 kW		55 kW	75 kW		90 kW
30 kW		33 kW	37 kW		45 kW		45 kW	80 kW		100 kW
22 kW		30 kW	37 kW		45 kW		45 kW	75 kW		90 kW

$1 \mathrm{~N} / \mathrm{C}$ and $1 \mathrm{~N} / \mathrm{O}$ instantaneous contacts incorporated in the contactors, with add-on blocks common to the whole range, comprising up to $4 \mathrm{~N} / \mathrm{C}$ or N / O instantaneous, up to $1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$ time delay and up to $2 \mathrm{~N} / \mathrm{O}$ or $2 \mathrm{~N} / \mathrm{C}$ protected contacts and 2 screen continuity terminals

Selection guide

TeSys contactors
TeSys d, low consumption

Rated operational current	
	le max. AC-3 (Ue $\leqslant 440 \mathrm{~V}$)
	le AC-1 ($\theta \leqslant 60^{\circ} \mathrm{C}$)
Rated operational voltage	
Number of poles	
Rated operational power in AC-3	220/240 V
	$380 / 400 \mathrm{~V}$
	$415 / 440 \mathrm{~V}$
	500 V
	660/690 V

Reversing contactor type	
	$\frac{3 \text {-pole }}{4 \text {-pole }}$
Pages	$\frac{\text { Contactors }}{\text { Reversing contactors }}$

$\frac{9 \mathrm{~A}}{20 / 25 \mathrm{~A}} \frac{12 \mathrm{~A}}{20 / 25 \mathrm{~A}} \quad \frac{18 \mathrm{~A}}{25 / 32 \mathrm{~A}}$

690 V		
3 or 4	3 or 4	3 or 4
2.2 kW	3 kW	4 kW
4 kW	5.5 kW	7.5 kW
4 kW	5.5 kW	9 kW
5.5 kW	7.5 kW	10 kW
5.5 kW	7.5 kW	10 kW

2.4 W ($100 \mathrm{~mA}-24 \mathrm{~V}$)

0.7...1.25 Uc
70 ms
$1 \mathrm{~N} / \mathrm{C}$ and $1 \mathrm{~N} / \mathrm{O}$ instantaneous contacts incorporated in the contactors, with add-on blocks common to the whole range, comprising up to $2 \mathrm{~N} / \mathrm{C}$ or $2 \mathrm{~N} / \mathrm{O}$ instantaneous standard contacts

Built-in suppression as standard, by bi-directional peak limiting diode

LC1 D09	LC1 D12	LC1D18
LC1 DT20/D098	LC1 DT25/D128	LC1 DT32/D188
LC2 D09	LC2 D12	LC2 D18
LC2 DT20	LC2 DT25	LC2 DT32
5/58 to 5/61		
5/62 to 5/65		

2.4 W ($100 \mathrm{~mA}-24 \mathrm{~V}$)
 0.7...1.25 Uc

70 ms
 25 ms

$1 \mathrm{~N} / \mathrm{C}$ and $1 \mathrm{~N} / \mathrm{O}$ instantaneous contacts incorporated in the contactors, with add-on blocks common to the whole range, comprising up to $2 \mathrm{~N} / \mathrm{C}$ or $2 \mathrm{~N} / \mathrm{O}$ instantaneous standard contacts

Built-in suppression as standard, by bi-directional peak limiting diode

LC1 D25	LC1 D32	LC1 D38
LC1 DT40/D258		
	LC2 D32	LC2 D38
LC2 D25		
LC2 DT40		

TeSys contactors
TeSys d

(1) Protection provided for the cabling c.s.a.'s indicated on the next page and for connection by cable.
(2) For other operating positions, please consult your Regional Sales Office.
(3) Without change of contact states, in the most unfavourable direction (coil energised at Ue).

| Selection:
 pages $5 / 160$ to $5 / 191$ | References:
 pages $5 / 58$ to $5 / 61$ | Dimensions:
 pages $5 / 82$ to $5 / 85$ |
| :--- | :--- | :--- | | Schemes: |
| :--- |
| pages $5 / 86$ and $5 / 87$ |

TeSys contactors

 TeSys d| Contactor type | LC1 | | D09and D12
 DT20 and
 DT25 | $\begin{aligned} & \text { D18 } \\ & \text { (3P) } \end{aligned}$ | $\begin{aligned} & \text { D25 } \\ & \text { (3P) } \end{aligned}$ | D32 | D38 | D18 and D25 (4P) DT32 and DT40 | D40 | $\begin{aligned} & \text { D50 and } \\ & \text { D65 } \end{aligned}$ | $\begin{aligned} & \text { D80and } \\ & \text { D95 } \end{aligned}$ | D115 and D150 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power circuit connections | | | | | | | | | | | | |
| Connection by cable | | | | | | | | | | | | |
| Tightening torque | | | Screw clamp terminals | | | | | Connector 2 inputs | Screw clamp terminals | Connector 1 input | | Connector 2 inputs |
| Flexible cable without cable end | 1 conductor | mm ${ }^{2}$ | 1... 4 | 1.5...6 | 1.5... 10 | 2.5... 10 | | 2.5... 10 | 2.5... 25 | 2.5... 25 | 4... 50 | 10...120 |
| | 2 conductors | mm^{2} | 1... 4 | 1.5... 6 | 1.5... 6 | 2.5..10 | | 2.5... 10 | 2.5...16 | 2.5... 16 | 4... 25 | 10...120 + 10... 50 |
| Flexible cable | 1 conductor | mm^{2} | 1... 4 | 1... 6 | 1... 6 | 1... 10 | | 2.5... 10 | 2.5... 25 | 2.5... 25 | 4...50 | 10... 120 |
| with cable end | 2 conductors | mm^{2} | 1...2.5 | 1... 4 | 1... 4 | 1.5... 6 | | 2.5... 10 | 2.5... 10 | 2.5... 10 | 4...16 | 10...120 + 10... 50 |
| Solid cable | 1 conductor | mm^{2} | 1... 4 | 1.5...6 | 1.5... 6 | 1.5... 10 | | 2.5... 16 | 2.5... 25 | 2.5... 25 | 4...50 | 10... 120 |
| without cable end | 2 conductors | mm^{2} | 1... 4 | 1.5... 6 | 1.5... 6 | 2.5... 10 | | 2.5... 16 | 2.5...16 | 2.5... 16 | 4... 25 | 10...120 + 10... 50 |
| Screwdriver | Philips | | $\mathrm{N}^{\circ} 2$ | $\mathrm{N}^{\circ} 2$ | $\mathrm{N}^{\circ} 2$ | $\mathrm{N}^{\circ} 2$ | | $\mathrm{N}^{\circ} 2$ | - | - | - | - |
| | Flat screwdriver \varnothing | | $\varnothing 6$ | $\varnothing 6$ | $\varnothing 6$ | $\varnothing 6$ | | $\varnothing 6$ | Ø6...Ø8 | Ø6...08 | Ø6...Ø 8 | - |
| Key for hexagonal headed screw | | | - | - | - | - | | - | - | - | 4 | 4 |
| Tightening torque | | N.m | 1.7 | 1.7 | 2.5 | 2.5 | | 1.8 | 5 | 5 | 9 | 12 |
| Spring terminal connections (1) | | | | | | | | | | | | |
| Flexible cable without cable end | 1 conductor | mm ${ }^{2}$ | $\begin{aligned} & 2.5 \\ & \text { (4: DT25) } \end{aligned}$ | 4 | 4 | 4 - | - | 10 | - | - | - | |
| | 2 conductors | mm ${ }^{2}$ | 2.5
 (except DT25) | 4 | 4 | 4 | - | - | - | - | - | |
| Connection by bars or lugs | | | | | | | | | | | | |
| Bar cross-section | | | - | - | - | - | | - | - | - | 3×16 | 5×25 |
| Lug external \varnothing | | mm | 8 | 8 | 10 | 10 | | 8 (2) | 13 | 16 | 17 | 25 |
| Ø of screw | | mm | M3.5 | M3.5 | M4 | M4 | | M3.5 | M5 | M6 | M6 | M8 |
| Screwdriver | Philips | | $\mathrm{N}^{\circ} 2$ | N ${ }^{2}$ | $\mathrm{N}^{\circ} 2$ | $\mathrm{N}^{\circ} 2$ | | N ${ }^{2}$ | $\mathrm{N}^{\circ} 2$ | № 3 | - | - |
| | Flat screwdriver \varnothing | | $\varnothing 6$ | $\varnothing 6$ | $\varnothing 6$ | $\varnothing 6$ | | $\varnothing 6$ | $\varnothing 8$ | $\varnothing 8$ | $\varnothing 8$ | - |
| Key for hexagonal headed screw | | | - | - | - | - | | - | - | - | 10 | 13 |
| Tightening torque | | N.m | 1.7 | 1.7 | 2.5 | 2.5 | | 1.8 | 5 | 5 | 9 | 12 |
| Control circuit connections | | | | | | | | | | | | |
| Connection via cable (tightening via screw clamps) | | | | | | | | | | | | |
| Flexible cable without cable end | 1 conductor | mm^{2} | 1... 4 | 1... 4 | 1... 4 | 1... 4 | | 1... 4 | 1... 4 | 1... 4 | 1... 4 | 1... 2.5 |
| | 2 conductors | mm^{2} | 1... 4 | 1... 4 | 1... 4 | 1...4 | | 1... 4 | 1... 4 | 1... 4 | 1... 4 | 1...2.5 |
| Flexible cable with cable end | 1 conductor | mm^{2} | 1... 4 | 1... 4 | 1... 4 | 1... 4 | | 1... 4 | 1...2.5 | 1...2.5 | 1...2.5 | 1...2.5 |
| | 2 conductors | mm ${ }^{2}$ | 1...2.5 | 1...2.5 | 1...2.5 | 1...2.5 | | 1...2.5 | 1..2.5 | 1...2.5 | 1...2.5 | 1...2.5 |
| Solid cable without cable end | 1 conductor | mm^{2} | 1... 4 | 1... 4 | 1... 4 | 1... 4 | | 1... 4 | 1... 4 | 1... 4 | 1... 4 | 1...2.5 |
| | 2 conductors | mm^{2} | 1... 4 | 1... 4 | 1... 4 | 1... 4 | | 1... 4 | 1... 4 | 1... 4 | 1... 4 | 1...2.5 |
| Screwdriver | Philips | | $\mathrm{N}^{\circ} 2$ | N ${ }^{2}$ | $\mathrm{N}^{\circ} 2$ | $\mathrm{N}^{\circ} 2$ | | $\mathrm{N}^{\circ} 2$ | N ${ }^{\circ} 2$ | N ${ }^{\circ} 2$ | $\mathrm{N}^{\circ} 2$ | $\mathrm{N}^{\circ} 2$ |
| | Flat screwdriver \varnothing | | $\varnothing 6$ | $\varnothing 6$ | $\varnothing 6$ | $\varnothing 6$ | | $\varnothing 6$ |
| Tightening torque | | N.m | 1.7 | 1.7 | 1.7 | 1.7 | | 1.7 | 1.2 | 1.2 | 1.2 | 1.2 |
| Spring terminal connections (1) | | | | | | | | | | | | |
| Flexible cable without cable end | 1 conductor | mm ${ }^{2}$ | 2.5 | 2.5 | 2.5 | 2.5 - | - | 2.5 | - | - | - | - |
| | 2 conductors | mm^{2} | 2.5 | 2.5 | 2.5 | 2.5 - | - | 2.5 | - | - | - | - |
| Connection by bars or lugs | | | | | | | | | | | | |
| Lug external \varnothing | | mm | 8 | 8 | 8 | 8 | | 8 | 8 | 8 | 8 | 8 |
| Ø of screw | | mm | M3.5 | M3.5 | M3.5 | M3.5 | | M3.5 | M3.5 | M3.5 | M3.5 | M3.5 |
| Screwdriver | Philips | | $\mathrm{N}^{\circ} 2$ | N ${ }^{2}$ | $\mathrm{N}^{\circ} 2$ | $\mathrm{N}^{\circ} 2$ | | N ${ }^{2}$ | N ${ }^{\circ} 2$ | N ${ }^{\circ} 2$ | $\mathrm{N}^{\circ} 2$ | $\mathrm{N}^{\circ} 2$ |
| | Flat screwdriver \varnothing | | Ø 6 | $\varnothing 6$ | $\varnothing 6$ | $\varnothing 6$ | | $\varnothing 6$ |
| Tightening torque | | N.m | 1.7 | 1.7 | 1.7 | 1.7 | | 1.7 | 1.2 | 1.2 | 1.2 | 1.2 |
| (1) If cable ends are used, choose the next size down (example: for $2.5 \mathrm{~mm}^{2}$, use $1.5 \mathrm{~mm}^{2}$) and square crimp the cable ends using a special tool.
 (2) To connect cables with a c.s.a. $>4 \mathrm{~mm}^{2}$ and up to $10 \mathrm{~mm}^{2}$, it is essential to use special connectors, sold in bags of 100 (reference: LAD 96180). | | | | | | | | | | | | |

Contactor type	LC1		$\begin{aligned} & \text { D09 } \\ & \text { (3P) } \end{aligned}$	$\begin{aligned} & \text { DT20 } \\ & \text { D098 } \end{aligned}$	$\begin{aligned} & \text { D12 } \\ & \text { (3P) } \end{aligned}$	$\begin{aligned} & \text { DT25 } \\ & \text { D128 } \end{aligned}$	$\begin{aligned} & \text { D18 } \\ & \text { (3P) } \end{aligned}$	$\begin{aligned} & \text { DT32 } \\ & \text { D188 } \end{aligned}$	$\begin{aligned} & \text { D25 } \\ & \text { (3P) } \end{aligned}$	$\begin{aligned} & \text { DT40 } \\ & \text { D258 } \end{aligned}$
Pole characteristics										
Rated operational current (le) (Ue $\leqslant 440 \mathrm{~V}$)	In AC-3, $\theta \leqslant 60^{\circ} \mathrm{C}$	A	9		12		18		25	
	$\ln \mathrm{AC}-1, \theta \leqslant 60^{\circ} \mathrm{C}$	A	25 (1)	20	25 (1)	25	32 (1)	32	40 (1)	40
Rated operational voltage (Ue)	Up to	V	690		690		690		690	
Frequency limits	Of the operating current	Hz	25... 400		25... 400		25... 400		25... 400	
Conventional thermal current (lth)	$\theta \leqslant 60^{\circ} \mathrm{C}$	A	25 (1)	20	25 (1)	25	32 (1)	32	40 (1)	40
Rated making capacity $(440 \mathrm{~V})$	Conforming to IEC 60947		250		250		300		450	
Rated breaking capacity $(440 \mathrm{~V})$	Conforming to IEC 60947		250		250		300		450	
Permissible short time rating	For 1 s	A	210		210		240		380	
No current flowing for preceding	For 10 s	A	105		105		145		240	
	For 1 min	A	61		61		84		120	
	For 10 min	A	30		30		40		50	
Protection by fuses against short-circuits ($\mathrm{U} \leqslant 690 \mathrm{~V}$)	Without thermaloverload relay, gG fuse $\frac{\text { type } 1}{\text { type } 2}$	A	25		40		50		63	
		A	20		25		35		40	
	With thermal overload relay	A	See pages $6 / 16$ and $6 / 17$, for aM or gG fuse ratings corresponding to the associated thermal overload relay							
Average impedance per pole	At Ith and 50 Hz	$\mathrm{m} \Omega$	2.5		2.5		2.5		2	
Power dissipation per pole for	AC-3	W	0.20		0.36		0.8		1.25	
the above operational currents	AC-1	W	1.56		1.56		2.5		3.2	

Control circuit characteristics, a.c. supply

Rated control circuit voltage (Uc)	$50 / 60 \mathrm{~Hz}$	v	12... 690
Control voltage limits			
50 or 60 Hz coils	Operational		-
	Drop-out		-
$50 / 60 \mathrm{~Hz}$ coils	Operational		0.8...1.1 Uc on 50 Hz and 0.85 ...1.1 Uc on 60 Hz at $60^{\circ} \mathrm{C}$
	Drop-out		0.3...0.6 Uc at $60{ }^{\circ} \mathrm{C}$
Average $\sim 50 \mathrm{~Hz}$	Inrush 50 Hz coil	VA	-
consumption	$\operatorname{Cos} \varphi$		0.75
	$50 / 60 \mathrm{~Hz}$ coil	VA	70
	Sealed 50 Hz coil	VA	-
	$\operatorname{Cos} \varphi$		0.3
	$50 / 60 \mathrm{~Hz}$ coil	VA	7
$\sim 60 \mathrm{~Hz}$	Inrush 60 Hz coil	VA	-
	$\operatorname{Cos} \varphi$		0.75
	$50 / 60 \mathrm{~Hz}$ coil	VA	70
	Sealed 60 Hz coil	VA	-
	$\operatorname{Cos} \varphi$		0.3
	$50 / 60 \mathrm{~Hz}$ coil	VA	7.5
Heat dissipation $50 / 60 \mathrm{~Hz}$		W	2...3
Operating time	Closing "C"	ms	12... 22
(2)	Opening "O"	ms	4... 19
Mechanical durability	50 or 60 Hz coil		-
in millions of operating cycles	$50 / 60 \mathrm{~Hz}$ coil on 50 Hz		15
Maximum operating rate at ambient temperature $\leqslant 60^{\circ} \mathrm{C}$	In operating cycles per hour		3600

(1) Versions with spring terminal connections:

16 A for LC1 D093 and LC1 D123 (20 A possible with $2 \times 2.5 \mathrm{~mm}^{2}$ cables in parallel),
25 A for LC1 D183 to LC1 D323 (32 A possible for LC1 D183 connected with 2×4 mm2 cables in parallel; 40 A possible for LC1 D253 and LC1 D323 connected with $2 \times 4 \mathrm{~mm} 2$ cables in parallel).
(2) The closing time " C " is measured from the moment the coil supply is switched on to initial contact of the main poles. The opening time " O " is measured from the moment the coil supply is switched off to the moment the main poles separate.

| Selection:
 pages $5 / 160$ to $5 / 191$ | References :
 pages $5 / 58$ to $5 / 61$ | Dimensions:
 pages $5 / 82$ to $5 / 85$ |
| :--- | :--- | :--- | | Schemes: |
| :--- |
| pages $5 / 86$ and $5 / 87$ |

D32	D38	D40	D50	D65	D80	D95	D115	D150
32	38	40	50	65	80	95	115	150
50 (1)	50	60	80	80	125	125	200	200
690	690	1000	1000	1000	1000	1000	1000	1000
25... 400	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400	25... 400
50	50	60	80	80	125	125	200	200
550	550	800	900	1000	1100	1100	1260	1660
550	550	800	900	1000	1100	1100	1100	1400
430	430	720	810	900	990	1100	1100	1400
260	310	320	400	520	640	800	950	1200
138	150	165	208	260	320	400	550	580
60	60	72	84	110	135	135	250	250
63	63	80	100	160	200	200	250	315
63	63	80	100	125	160	160	200	250

See pages $24514 / 2$ and $24514 / 3$, for aM or gG fuse ratings corresponding to the associated thermal overload relay

2 2	1.5	1.5	1	0.8	0.8	0.6	0.6
2 3	2.4	3.7	4.2	5.1	7.2	7.9	13.5
5 5	5.4	9.6	6.4	12.5	12.5	24	24
12... 690	24... 660					24... 500	
-	0.85...1.	$5{ }^{\circ} \mathrm{C}$				0.85...1.1	$5{ }^{\circ} \mathrm{C}$
-	0.3...0.6	$5^{\circ} \mathrm{C}$				0.3...0.5	$5^{\circ} \mathrm{C}$
0.8...1.1 Uc on 50 Hz and 0.85...1.1 Uc on 60 Hz at $60^{\circ} \mathrm{C}$	$\begin{aligned} & 0.8 \ldots 1.1 \\ & 0.85 \ldots 1 . \end{aligned}$	0 Hz and 60 Hz at				$\begin{aligned} & 0.8 \ldots 1.15 \\ & \text { at } 55^{\circ} \mathrm{C} \end{aligned}$	$50 / 60 \mathrm{~Hz}$
0.3...0.6 Uc at $60^{\circ} \mathrm{C}$	0.3...0.6	$5^{\circ} \mathrm{C}$				0.3...0.5	$5^{\circ} \mathrm{C}$
-	200					300	-
0.75	0.75					0.8	0.9
70	245					280... 350	280... 350
-	20					22	-
0.3	0.3					0.3	0.9
7	26					2... 18	2... 18
-	220					300	-
0.75	0.75					0.8	0.9
70	245					280... 350	280... 350
-	22					22	-
0.3	0.3					0.3	0.9
7.5	26					2... 18	2... 18
2... 3	6... 10					3... 8	3...4.5
12... 22	20... 26	20... 26	20... 26	20... 35	20... 35	20... 50	20... 35
4..19	8... 12	8... 12	8... 12	6... 20	6... 20	6... 20	40... 75
-	16	16	16	10	10	8	-
15	6	6	6	4	4	8	8
3600	3600	3600	3600	3600	3600	2400	1200

Contactor type				$\begin{aligned} & \text { LC1 D09...D38 } \\ & \text { LC1 DT20...DT40 } \end{aligned}$	$\begin{aligned} & \text { LC1 or LP1 } \\ & \text { D40...D65 } \end{aligned}$	LC1 or LP1 D80 LC1 D95	LC1 D115 and LC1 D150
d.c. control circuit characteristics							
Rated control circuit voltage (Uc)	=--		V	12... 440	12... 440		24... 440
Rated insulation voltage	Conforming to IEC 60947-1		V	690			
	Conforming to UL, CSA		V	600			
Control voltage limits	Operational	Standard coil		$\begin{aligned} & 0.7 \ldots 1.25 \mathrm{Uc} \\ & \text { at } 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.85 \ldots . \ldots 1.1 \mathrm{Uc} \\ & \text { at } 55^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.75 \ldots 1.2 \mathrm{Uc} \\ & \text { at } 55^{\circ} \mathrm{C} \end{aligned}$
		Wide range coil		-	0.75...1.2 Uc at $55^{\circ} \mathrm{C}$		-
	Drop-out			0.1... 0.25 Uc at $60^{\circ} \mathrm{C}$	0.1...0.3 Uc at $55^{\circ} \mathrm{C}$		0.15...0.4 Uc at $55^{\circ} \mathrm{C}$
Average consumption at $20^{\circ} \mathrm{C}$ and at Uc	=-	Inrush	W	5.4	22	22	270 to 365
		Sealed	W	5.4	22	22	2.4...5.1
Average operating time at Uc (1)	$\frac{\text { Closing }}{\text { Opening }}$	"C"	ms	63 ± 15 \%	85... 110	95... 130	20... 35
		"O"	ms	20 ± 20 \%	20... 35	20... 35	40... 75
			Nota : The arcing time depends on the circuit switched by the poles. For all normal 3-phase applications, the arcing time is less than 10 ms . The load is isolated from the supply after a time equal to the sum of the opening time and the arcing time.				
Time constant L/R (L/R)			ms	28	65	75	25
Mechanical durability at Uc	In millions of operating cycles			30	20	20	8
Maximum operating rate at ambient temperature $\leqslant 60^{\circ} \mathrm{C}$	In operating cycl	per hour		3600	3600	3600	1200
Low consumption control circuit characteristics							
Rated insulation voltage	Conforming to IEC 60947-1		V	690	-		
	Conforming to UL, CSA		V	600	-		
Maximum voltage	Of the control circuit on =--			250	-		
Average consumption d.c. at $20^{\circ} \mathrm{C}$ and at Uc	Wide range coil (0.7...1.25 Uc)	Inrush	W	2.4	-		
		Sealed	W	2.4	-		
Operating time (1) at Uc and at $20^{\circ} \mathrm{C}$	Closing "C"		ms	77 ± 15 \%	-		
	Opening "O"		ms	$25 \pm 20 \%$	-		
Voltage limits ($\theta \leqslant 60^{\circ} \mathrm{C}$) of the control circuit	Operational			0.7 to 1.25 Uc	-		
	Drop-out			0.1...0.3 Uc	-		
Time constant L/R (L/R)			ms	40	-		
Mechanical durability	In millions of operating cycles			30	-		
Maximum operating rate	At ambient temperature $\leqslant 60{ }^{\circ} \mathrm{C}$		ops/h	3600	-		
			(1) The operating times depend on the type of contactor electromagnet and its control mode. The closing time "C" is measured from the moment the coil supply is switched on to initial contact of the main poles. The opening time " O " is measured from the moment the coil supply is switched off to the moment the main poles separate.				

| Selection:
 pages $5 / 160$ to $5 / 191$ | References:
 pages $5 / 58$ to $5 / 61$ | Dimensions:
 pages $5 / 82$ to $5 / 85$ |
| :--- | :--- | :--- | | Schemes: |
| :--- |
| pages $5 / 86$ and $5 / 87$ |

Characteristics of auxiliary contacts incorporated in the contactor

Mechanically linked contacts	Conforming to IEC60947-5-1		Each contactor has 2 N/O and N/C contacts mechanically linked on the same movable contact holder
Mirror contact	Conforming to IEC60947-4-1		The N/C contact on each contactor represents the state of the power contacts and can be connected to a PREVENTA safety module
Rated operational voltage (Ue)	Up to	V	690
Rated insulation voltage (Ui)	Conforming to IEC 60947-1	V	690
	Conforming to UL, CSA	V	600
Conventional thermal current (lth)	For ambient temperature $\leqslant 60^{\circ} \mathrm{C}$	A	10
Frequency of the operational current		Hz	25... 400
Minimum switching capacity $\lambda=10^{-8}$	\underline{U} min	V	17
	1 min	mA	5
Short-circuit protection	Conforming to IEC 60947-5-1		gG fuse: 10 A
Rated making capacity	Conforming to IEC 60947-5-1, I rms	A	~: 140, --.: 250
Short-time rating	Permissible for 1 s	A	100
	500 ms	A	120
	100 ms	A	140
Insulation resistance		$\mathrm{M} \Omega$	> 10
Non-overlap time	Guaranteed between N/C and N/O contacts	ms	1.5 on energisation and on de-energisation

Operational power
of contacts
conforming to IEC 60947-5-1

1 million operating cycles
3 million operating cycles 10 million operating cycles
a.c. supply, categories AC-14 and AC-15

Electrical durability (valid for up to 3600 operating cycles/hour) on an inductive load such as the coil of an electromagnet: making current $(\cos \varphi 0.7)=10$ times the power broken $(\cos \varphi 0.4)$.

V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 5}$	$\mathbf{2 3 0}$	$\mathbf{4 0 0}$	$\mathbf{4 4 0}$	$\mathbf{6 0 0}$
VA	60	120	280	560	960	1050	1440
VA	16	32	80	160	280	300	420
VA	4	8	20	40	70	80	100
AC-15							

d.c. supply, category DC-13

Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the load.

V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 2 5}$	$\mathbf{2 5 0}$	$\mathbf{4 4 0}$
W	96	76	76	76	44
\mathbf{W}	48	38	38	32	-
W	14	12	12	-	-
$D C-13$					

Selection: pages $5 / 160$ to $5 / 191$	References:	Dimensions:
pages $5 / 58$ to $5 / 61$	pages $5 / 82$ to $5 / 85$	Schemes:

TeSys contactors
Auxiliary contact blocks without dust and damp protected contacts for TeSys d contactors

Contact block type Environment				LAD N or LAD C	LAD T and LAD S	LAD R	LAD 8
Conforming to standards				IEC 60947-5-1, NF C 63-140, VDE 0660, BS 4794, EN 60947-5-1			
Product certifications				UL, CSA			
Protective treatment	Conforming to IE	006		"TH"			
Degree of protection	Conforming to V	0106		Protection against direct finger contact IP 2X			
Ambient air temperature around the device	Storage		${ }^{\circ} \mathrm{C}$	-60...+ 80			
	Operation		${ }^{\circ} \mathrm{C}$	-5... 60			
	Permissible for	ation at Uc	${ }^{\circ} \mathrm{C}$	- $40 \ldots+70$			
Maximum operating altitude	Without derating		m	3000			
Connection by cable	Phillips $\mathrm{N}^{\circ} 2$ and Flexible or solid with or without		mm ${ }^{2}$	Min: $1 \times 1, \max : 2 \times 2.5$			
Spring terminal connections	Flexible or solid without cable en		mm^{2}	Max. 2×2.5			
Instantaneous and time delay contact characteristics							
Number of contacts				1,2 or 4	2	2	2
Rated operational voltage (Ue)	Up to		V	690			
Rated insulation voltage (Ui)	Conforming to IEC	0947-5-1	V	690			
	Conforming to UL		V	600			
Conventional thermal current (lth)	For ambient tem	ure $\leqslant 60^{\circ} \mathrm{C}$	A	10			
Frequency of the operational current			Hz	25... 400			
Minimum switching capacity		\underline{U} min	V	17			
		1 min	mA	5			
Short-circuit protection	Conforming to and VDE 0660	$0947-5-1$ use	A	10			
Rated making capacity	Conforming to IEC 60947-5-1		A	~: 140 ; --: 250			
Short-time rating	Permissible for	1 s	A	100			
		500 ms	A	120			
		100 ms	A	140			
Insulation resistance			M Ω	> 10			
Non-overlap time	Guaranteed between N/C and N/O contacts		ms	1.5 (on energisation and on de-energisation)			
Overlap time	Guaranteed between N/C and N/O contacts on LAD C22		ms	1.5	-	-	-
Time delay (LAD T, R and S contact blocks) Accuracy only valid for setting range indicated on the front face	Ambient air temperature for operation		${ }^{\circ} \mathrm{C}$	-	- $40 \ldots+70$	- $40 \ldots+70$	-
	Repeat accuracy			-	± 2 \%	± 2 \%	-
	Drift up to 0.5 million operating cycles			-	+ 15%	+ 15%	-
	Drift depending on ambient air temperature			-	0.25 \% per ${ }^{\circ} \mathrm{C}$	0.25 \% per ${ }^{\circ} \mathrm{C}$	-
Mechanical durability	In millions of ope	g cycles		30	5	5	30
Operational power of contacts				See page 5/54			

References: pages $5 / 69$ and $5 / 70$	Dimensions: pages $5 / 82$ and $5 / 83$	Schemes: pages $5 / 86$ and $5 / 87$

TeSys contactors
Auxiliary contact blocks with dust and damp protected contacts for TeSys d contactors

Contact block type			LA1 DX	LA1 DZ		LA1 DY
				Protected	Non protected	
Environment						
Conforming to standards			IEC 60947-5-1, VDE 0660			
Product certifications			UL, CSA			
Protective treatment Conforming to IEC 60068			"TH"			
Degree of protection	Conforming to VDE 0106		Protection against direct finger contact IP 2X			
Ambient air temperature	Storage and operation	${ }^{\circ} \mathrm{C}$	- $25 \ldots+70$			
Connection	Phillips $\mathrm{N}^{\circ} 2$ and $\varnothing 6 \mathrm{~mm}$ Flexible or solid cable with or without cable end	mm ${ }^{2}$	Min: 1×1, max: 2×2.5			
Number of contacts			2	2	2	2
Contact characteristics						
Rated operational voltage (Ue)	Up to	V	50	50	690	24
Rated insulation voltage (Ui)	Conforming to IEC 60947-5-1	V	250	250	690	250
	Conforming to UL, CSA	V	-	-	600	-
Conventional thermal current (lth)	For ambient temperature $\leqslant 40^{\circ} \mathrm{C}$	A	-	-	10	-
Maximum operational current (le)		mA	500	500	-	50
Frequency of the operational current		Hz	-	-	25... 400	-
Minimum switching capacity	$\frac{U \min }{I \min }$	V	17	17	17	3
		mA	4	4	5	0.3
Short-circuit protection	Conforming to IEC 609475-1 gG fuse	A	-	-	10	-
Rated making capacity	Conforming to IEC 60947 5-1, I rms	A	-	-	~: 140; --.: 250	-
Short-time rating	Permissible for $\frac{\frac{1 \mathrm{~s}}{500 \mathrm{~ms}}}{\frac{100 \mathrm{~ms}}{}}$	A	-	-	100	-
		A	-	-	120	-
		A	-	-	140	-
Insulation resistance		M Ω	> 10	> 10	> 10	> 10
Mechanical durability	In millions of operating cycles		5	5	30	5
Materials and technology used for dust and damp protected contacts			Silver - Single break	Silver - Single break	-	Gold - Single break with crossed bars

References: page $5 / 69$	Dimensions: pages $5 / 82$ and $5 / 83$	Schemes: pages $5 / 86$ and $5 / 87$

Characteristics (continued)

TeSys contactors
Auxiliary contact blocks with dust and damp protected contacts for TeSys d contactors

Rated operational power of contacts (conforming to IEC 60947-5-1)

a.c. supply, categories AC-14 and AC-15

Electrical durability (valid for up to 3600 operating cycles/hour) on an inductive load such as the coil of an electromagnet: making current $(\cos \varphi 0.7)=10$ times the power broken $(\cos \varphi 0.4)$.

	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 5}$	$\mathbf{2 3 0}$	$\mathbf{4 0 0}$	$\mathbf{4 4 0}$	$\mathbf{6 0 0}$
1 million operating cycles	VA	60	120	$\mathbf{2 8 0}$	560	960	1050	1440
3 million operating cycles	VA	16	32	80	160	280	300	420
10 million operating cycles	VA	4	8	20	40	70	80	100

d.c. supply, category DC 13

Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the load.

	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 2 5}$	$\mathbf{2 5 0}$	$\mathbf{4 4 0}$
	W	120	90	$\mathbf{7 5}$	68	61
$\mathbf{1}$ million operating cycles	\mathbf{W}	70	50	38	33	28
3 million operating cycles	\mathbf{W}	25	18	14	12	10
10 million operating cycles						

References:		Dimensions:
pages $5 / 69$ and $5 / 70$	pages $5 / 82$ and $5 / 83$	Schemes: pages $5 / 86$ and $5 / 87$

TeSys contactors
Control modules, coil suppressor modules and mechanical latch blocks for TeSys d contactors

Environment

Conforming to standards		IEC 60947-5-1	
Product certifications			UL, CSA
Protective treatment	Conforming to IEC 60068		"TH"
Degree of protection	Conforming to VDE 0106		Protection against direct finger contact IP 2X
Ambient air temperature around the device	Storage ${ }^{\circ} \mathrm{C}$ Operation $-40 \ldots+80$ Permissible for operation at Uc${ }^{\circ} \mathbf{C} \mathbf{C}$	$-25 \ldots+55$	

Auto-Man-Stop control modules

Recommendation			The Auto - Man selector switch must only be operated with the Start - Stop ("O" "l") switch in position "O"					
Rated insulation voltage	Conforming to IEC 60947-5-1	V	250					
Rated operational voltage	Conforming to IEC 60947-5-1	V	250					
Protection	Against electric shocks	kV	2					
Built-in protection	Contactor coil suppression		By varistor					
Indication	By integral LED		Illuminates when the contactor coil is energised					
Electrical durability	In operating cycles		20000					
Suppressor modules								
Module type			LA4 DA, LAD 4RCRC circuit	LA4 DB, LAD 4T		LA4 DC		LA4 DE, LAD 4V
Type of protection				Bidirectional peak limiting diode		Diode		Varistor
Rated control circuit voltage (Uc)		V	$\sim 24 . .415$	\sim or	- $24 . . .72$	=-- $12 . .250$		\sim or $=-24 . . .250$
Maximum peak voltage			3 Uc	2 Uc		Uc		2 Uc
Natural RC frequency	24/48 V	Hz	400	-		-		-
	50/127 V	Hz	200	-		-		-
	110/240 V	Hz	100	-		-		-
	380/415 V	Hz	150	-		-		-
Mechanical latch blocks (1)								
Mechanical latch block type			LA6 DK10		LAD 6K10		LA6 DK20	
For mounting on contactor			LC1 D40...D65, LP1 D65		$\begin{aligned} & \text { LC1 D09...D38, } \\ & \text { DT20...DT40 } \end{aligned}$		LC1 D80...D150 LP1 D80 and LC1 D115	
Product certifications			UL, CSA				UL, CSA	
Rated insulation voltage	Conforming to IEC 60947-5-1	V	690				690	
Rated control circuit voltage	$\sim 50 / 60 \mathrm{~Hz}$ and $=-$	V	24... 415				24...415	
Power required	For unlatching	VA	25				25	
		W	30				30	
Maximum operating rate	In operating cycles/ hour		1200				1200	
On-load factor			10 \%				10 \%	
Mechanical durability at Uc In millions of operating cycles			0.5				0.5	
		(1) Unlatching can be manually operated or electrically controlled (pulsed). The LA6 DK or LAD 6K latch coil and the LC1 D operating coil must not be energised simultaneously. The duration of the LA6 DK or LAD 6K and LC1 D control signals must be $\geqslant 100 \mathrm{~ms}$.						

The LA6 DK or LAD 6 K latch coil and the LC1 D operating coil must not be energised
simultaneously. The duration of the LA6 DK or LAD $6 K$ and LC1 D control signals must be $\geqslant 100 \mathrm{~ms}$.

TeSys contactors
Electronic serial timer module for TeSys d contactors

Module type Environment			LA4 DT (On-delay)
Conforming to standards			IEC 60255-5
Product certifications			UL, CSA
Protective treatment	Conforming to IEC 60068		"TH"
Degree of protection	Conforming to VDE 0106		Protection against direct finger contact IP 2X
Ambient air temperature around the device	Storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+80$
	Operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+55$
	For operation at Uc	${ }^{\circ} \mathrm{C}$	- 25...+ 70
Rated insulation voltage (Ui)	Conforming to IEC 60947-1	V	250
Cabling	Phillips $\mathrm{n}^{\circ} 2$ and $\varnothing 6 \mathrm{~mm}$ Flexible or solid conductor with or without cable end	mm^{2}	Min: $1 \times 1, \max : 2 \times 2.5$
Control circuit characteristics			
Built-in protection	On input		By varistor
	Contactor coil suppression		By varistor
Rated control circuit voltage (Uc)		V	~ or --- 24... 250
Permissible variation			0.8...1.1 Uc
Type of control			By mechanical contact only
Timing characteristics			
Timing ranges		s	0.1...2; 1.5...30; 25... 500
Repeat accuracy	$0 \ldots .40{ }^{\circ} \mathrm{C}$		± 3 \% (10 ms minimum)
Reset time	During time delay period	ms	150
	After time delay period	ms	50
Immunity to microbreaks	During time delay period	ms	10
	After time delay period	ms	2
Minimum control pulse duration		ms	-
Indication of time delay	By LED		Illuminates during time delay period
Switching characteristics (solid state type)			
Maximum power dissipated		W	2
Leakage current		mA	< 5
Residual voltage		V	3.3
Overvoltage protection			3 kV ; 0.5 joule
Electrical durability	In millions of operating cycles		30
Function diagram			
LA4 DT "On-delay" elect	onic timers		

U supply A1-A2
Time delay output
Contactor coil

Red LED

References: page 5/73	Dimensions: pages $5 / 82$ and $5 / 83$	Schemes: pages $5 / 86$ and $5 / 87$

TeSys contactors

Interface modules for TeSys d contactors

Environment

Conforming to standards			IEC 60255-5					
Product certifications			UL, CSA					
Protective treatment Conforming to IEC 60068			"TH"					
Degree of protection Conforming to VDE 0106			Protection against direct finger contact IP 2X					
Ambient air temperature around the device	Storage	${ }^{\circ} \mathrm{C}$	- 40...+ 80					
	Operation	${ }^{\circ} \mathrm{C}$	- $25 \ldots+55$					
	Permissible for operation at Uc	${ }^{\circ} \mathrm{C}$	- $25 \ldots+70$					
Other characteristics								
Module type			LA4 DFBQ With relay	LA4 DFB With relay	LA4 DFE With relay	LA4 DLB LA4 DLE With relay + override		LA4 DWB Solid state
Rated insulation voltage	Conforming to IEC 60947-5-1	V	5	250				
Rated operational voltage	Conforming to IEC 60947-5-1	V	415	250				
Indication of input state		By integral LED which illuminates when the contactor coil is energised						
Input signals	Control voltage (E1-E2)	V	--- 24	--- 24	--- 48	--- 24	--- 48	--- 24
	Permissible variation	V	17... 30	17... 30	33... 60	17... 30	33... 60	5... 30
	Current consumption at $20^{\circ} \mathrm{C}$	mA	25	25	15	25	15	$\begin{aligned} & 8.5 \text { for } 5 \mathrm{~V} \\ & 15 \text { for } 24 \mathrm{~V} \\ & \hline \end{aligned}$
	State "0" guaranteed for U	V	<2.4	<2.4	< 4.8	<2.4	< 4.8	<2.4
		mA	<2	<2	< 1.3	<2	< 1.3	<2
	State "1" guaranteed for U	V	17	17	33	17	33	5
Built-in protection	Against reverse polarity		By diode					
	Of the input		By diode					
Electrical durability at $220 \mathrm{~A} / 240 \mathrm{~V}$	In millions of operating cycles		3	10	10	3	3	20
Maximum immunity to microbreaks		ms	4	4	4	4	4	1
Power dissipated	At $20^{\circ} \mathrm{C}$	W	0.6	0.6	0.6	0.6	0.6	0.4
Direct mounting without contactor	With coil $\begin{aligned} & \sim 24 \ldots 250 \mathrm{~V} \\ & \sim 100 \ldots 250 \mathrm{~V} \\ & \sim 380 \ldots 415 \mathrm{~V}\end{aligned}$		-	LC1 D40...D150				-
			-	-				LC1 D40...D115
			LC1 D40...D150	-				-
Mounting with cabling adapter LAD 4BB	With coil $\begin{aligned} & \sim 24 \ldots 250 \mathrm{~V} \\ & \sim 380 \ldots 415 \mathrm{~V}\end{aligned}$		LC1 D09...D38, DT20...DT40	LC1 D09...D38, DT20...DT40				$\begin{aligned} & \text { LC1 D09...D38, } \\ & \text { DT20...DT40 } \\ & \hline \end{aligned}$
				-				-
Total operating time at Uc (of the contactor)		The operating times depend on the type of contactor electromagnet and its control mode. The closing time " C " is measured from the moment the coil supply is switched on to initial contact of the main poles. The opening time " O " is measured from the moment the coil supply is switched off to the moment the main poles separate.						
			$\begin{array}{\|l} \hline \text { LC1 D09...D38, } \\ \text { DT20...DT40 } \\ \hline \end{array}$		LC1 D40...D65		LC1 D80 and D95	
	$\begin{array}{ll}\text { With LA4 DF, LA4 DL } & \text { " }{ }^{\text {" }} \text { " } \\ & \text { O" }\end{array}$	ms	20... 30		28... 34		28... 43	
		ms	16... 24		20... 24		18... 32	
Cabling	Phillips $\mathrm{N}^{\circ} 2$ and $\varnothing 6$ mm Flexible or solid cable with or without cable end	mm ${ }^{2}$	Min: 1×1; max: 2×2.5					

TeSys contactors

For motor control up to 75 kW at 400 V ， in category AC－3
Control circuit：a．c．，d．c．or low consumption

3－pole contactors for connection by lugs or bars
In the references selected above，insert a figure 6 before the voltage code．
Example：LC1 D09e＊becomes LC1 D096e๑．
Accessories
Auxiliary contact blocks and add－on modules：see pages $5 / 68$ to $5 / 75$ ．
（1）LC1 D09 to D38：clip－on mounting on 35 mm 乙 r rail AM1 DP or screw fixing．
LC1 D40 to D95～：clip－on mounting on 35 mm 乙 rail AM1 DP or 75 mm 乙 rail AM1 DL or screw fixing． LC1 D40 to D95＝－：clip－on mounting on 75 mm 乙 rail AM1 DL or screw fixing．
LC1 D115 and D150：clip－on mounting on $2 \times 35 \mathrm{~mm}$ 乙 rails AM1 DP or screw fixing．
（2）Standard control circuit voltages（for other voltages，please consult your Regional Sales Office）：

| a．c．supply | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Volts | 24 | 42 | 48 | 110 | 115 | 220 | 230 | 240 | 380 | 400 | 415 | 440 | 500 |

LC1 D09．．．D150（D115 and D150 coils with integral suppression device fitted as standard））

$50 / 60 \mathrm{~Hz}$	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7	－
LC1 D40．．．D115													
50 Hz	B5	D5	E5	F5	FE5	M5	P5	U5	Q5	V5	N5	R5	S5
60 Hz	B6	－	E6	F6	－	M6	－	U6	Q6	－	－	R6	－
d．c．supply													
Volts	12	24	36	48	60	72	110	125	220	250	440		
LC1 D09．．．D38（coils with integral suppression device fitted as standard）													
U 0．7．．．1．25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
LC1 D40．．．D95													
U 0．85．．．1．1 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
U 0．75．．．1．2 Uc	JW	BW	CW	EW	－	SW	FW	－	MW	－	－		
LC1 D115 and D150（coils with integral suppression device fitted as standard）													
U 0．75．．．1．2 Uc	－	BD	－	ED	ND	SD	FD	GD	MD	UD	RD		
Low consumption													
Volts－－－	5	12	20	24	48	110	220	250					

LC1 D09．．．D38（coils with integral suppression device fitted as standard）

$U 0.7 \ldots 1.25 \mathrm{Uc}$	AL	JL	ZL	BL	EL	FL	ML	UL

For other voltages between 5 and 690 V ，see pages $5 / 76$ to $5 / 81$ ．

LC1 D11500

（3）The weights indicated are for contactors with a．c．control circuit．For d．c．or low consumption control circuit，add 0.160 kg for contactors LC1 D09 to D38， 0.785 kg for contactors LC1 D40 to D65 and 1 kg for contactors LC1 D80 and D95．

Selection ： pages $5 / 160$ to $5 / 191$	Characteristics： pages $5 / 46$ to $5 / 51$	Dimensions： pages $5 / 82$ to $5 / 85$	Schemes： pages $5 / 86$ and $5 / 87$

TeSys contactors

For motor control up to 15 kW at 400 V , in category AC-3
 Control circuit: a.c., d.c. or low consumption

LC1 D12300

3-pole contactors for connection by spring terminals

Standard power ratings of 3-phase motors $50 / 60 \mathrm{~Hz}$ in category AC-3$\left(\theta \leqslant 60^{\circ} \mathrm{C}\right)$						Rated operational current in AC-3 440 V up to	Instantaneous auxiliary contacts		Basic reference, to be completed by adding the voltage code (2) Fixing (1)	Weight(3)
	380			500	$\begin{aligned} & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$					
kW	kW	kW	kW	kW	kW	A				kg
2.2	4	4	4	5.5	5.5	9	1	1	LC1 D093ee	0.320
3	5.5	5.5	5.5	7.5	7.5	12	1	1	LC1 D123ee	0.325
4	7.5	9	9	10	10	18	1	1	LC1 D183**	0.330
5.5	11	11	11	15	15	25	1	1	LC1 D253ee	0.370
7.5	15	15	15	18.5	18.5	32 (4)	1	1	LC1 D323ee	0.375
3-pole contactors for connection by Faston connectors										

These contactors are fitted with Faston connectors: $2 \times 6.35 \mathrm{~mm}$ on the power poles and $1 \times 6.35 \mathrm{~mm}$ on the coil and auxiliary terminals. It is possible to make $2 \times 6.35 \mathrm{~mm}$ connections to the coil terminals by using a double Faston connector, reference: LA9 6180, to be ordered separately (sold in lots of 100).
For contactors LC1 D09 and LC1 D12 only, in the references selected above, replace the figure $\mathbf{3}$ before the voltage code with a figure 9. Example: LC1 D093•e becomes LC1 D099•e.

Accessories

Auxiliary contact blocks and add-on modules: see pages $5 / 68$ to $5 / 75$.
(1) LC1 D09 to D32: clip-on mounting on 35 mm 乙 rail AM1 DP or screw fixing.
(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

a.c. supply												
Volts	24	42	48	110	115	220	230	240	380	400	415	440
LC1 D09...D32												
$50 / 60 \mathrm{~Hz}$	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7
d.c. supply												
Volts	12	24	36	48	60	72	110	125	220	250	440	
LC1 D09...D32 (coils with integral suppression device fitted as standard)												
U 0.7..1.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD	
Low consumption												
Volts ---	5	12	20	24	48	110	220	250				
LC1 D09...D32 (coils with integral suppression device fitted as standard)												
U 0.7...1.25 Uc	AL	JL	ZL	BL	EL	FL	ML	UL				

For other voltages between 5 and 690 V , see pages $5 / 76$ to $5 / 81$.
(3) The weights indicated are for contactors with a.c. control circuit. For d.c. or low consumption control circuit, add 0.160 kg for contactors LC1 D09 to D32.
(4) Must be wired with $2 \times 4 \mathrm{~mm}^{2}$ cables in parallel on the upstream side. On the downstream side, outgoing terminal block LAD 331 may be used (Quickfit technology, see page 1/219).

Selection: pages 5/160 to 5/191	Characteristics: pages $5 / 46$ to $5 / 51$	Dimensions: pages $5 / 82$ to $5 / 85$

TeSys contactors
For control in category AC－1， 25 to 200 A Control circuit：a．c．，d．c．or low consumption

LC1 D1200

LC1 D12300

3－pole contactors for connection by screw clamp terminals or connectors

3－pole contactors for connection by lugs or bars
In the references selected above，insert a figure 6 before the voltage code．
Example：LC1 D09・ゃ becomes LC1 D096e॰．

3－pole contactors for connection by Faston connectors

These contactors are fitted with Faston connectors： $2 \times 6.35 \mathrm{~mm}$ on the power poles and $1 \times 6.35 \mathrm{~mm}$ on the coil terminals．It is possible to make $2 \times 6.35 \mathrm{~mm}$ connections to the coil terminals by using a double Faston connector，reference：LAD 99635，to be ordered separately（sold in lots of 100）．
For contactors LC1 D09 and LC1 D12 only，in the references selected above，insert a figure 9 before the voltage code． Example：LC1 D09e＊becomes LC1 D099e๑．

3－pole contactors for connection by spring terminals

Accessories

Auxiliary contact blocks and add－on modules：see pages 5／68 to 5／75．

（1）See note（1）page 5／61．

（2）LC1 D09 to D38 and LC1 DT20 to DT40：clip－on mounting on 35 mm 乙 r rail AM1 DP or screw fixing． LC1 D40 to D95～：clip－on mounting on 35 mm 乙 r rail $A M 1$ DP or 75 mm 乙 r rail $A M 1$ DL or screw fixing． LC1 or LP1 D40 to D95＝－：clip－on mounting on 75 mm 乙 r rail AM1 DL or screw fixing．
LC1 D115 and D150：clip－on mounting on $2 \times 35 \mathrm{~mm}$ 乙 r rails AM1 DP or screw fixing．
（3）The weights indicated are for contactors with a．c．control circuit．For d．c．or low consumption control circuit，add 0.160 kg for contactors LC1 D09 to D38， 0.785 kg for contactors LC1 D40 to D65 and 1 kg for contactors LC1 D80 and D95．
（4）Selection according to the number of operating cycles，see AC－1 curve，page 5／164．
（5） $32 A$ with $2 \times 4 \mathrm{~mm}^{2}$ cables connected in parallel．
（6） 20 A with $2 \times 2.5 \mathrm{~mm}^{2}$ cables connected in parallel．
（7） 40 A with $2 \times 4 \mathrm{~mm}^{2}$ cables connected in parallel．

| Selection：
 pages $5 / 160$ to $5 / 191$ | Characteristics：
 pages $5 / 46$ to $5 / 51$ | Dimensions：
 pages $5 / 82$ to $5 / 85$ |
| :--- | :--- | :--- | | Schemes： |
| :--- |
| pages $5 / 86$ and $5 / 87$ |

TeSys contactors

For control in category AC-1, 20 to 200 A Control circuit: a.c., d.c. or low consumption

LC1 DT20•0

4-pole contactors for connection by screw clamp terminals or connectors

4-pole contactors for connection by lugs or bars

In the references selected above, insert a figure 6 before the voltage code (except LC1 D65eeゃ and LP1 D65eee).
Example: LC1 DT20e0 becomes LC1 DT206•e.
4-pole contactors for connection by spring terminals

$\mathbf{2 0}$	4	-	1	1	LC1 DT203	0.380
	2	2	1	1	LC1 D0983	0.380
$\mathbf{2 5}$	4	-	1	1	LC1 DT253	0.380
$\mathbf{3 2}$	2	2	1	1	LC1 D1283	0.380
40	4	-	1	1	LC1 DT323	0.425
2	2	1	1	LC1 D1883	0.425	

Accessories

Auxiliary contact blocks and add-on modules: see pages $5 / 68$ to $5 / 75$.
(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

a.c. supply													
Volts	24	42	48	110	115	220	230	240	380	400	415	440	500
LC1 D09...D150 and LC1 DT20...DT40 (coils with integral suppression device fitted as standard)													
$50 / 60 \mathrm{~Hz}$	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7	-
LC1 D40...D115													
50 Hz	B5	D5	E5	F5	FE5	M5	P5	U5	Q5	V5	N5	R5	S5
60 Hz	B6	-	E6	F6	-	M6	-	U6	Q6	-	-	R6	-
d.c. supply													
Volts	12	24	36	48	60	72	110	125	220	250	440		
LC1 D09...D38 and LC1 DT20...DT40 (coils with integral suppression device fitted as standard)													
U 0.7...1.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
LC1 or LP1 D40...D80													
U 0.85...1.1 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
U 0.75...1.2 Uc	JW	BW	CW	EW	-	SW	FW	-	MW	-	-		
LC1 D115 (coils with integral suppression device fitted as standard)													
U 0.75...1.2 Uc	-	BD	-	ED	ND	SD	FD	GD	MD	UD	RD		
Low consumption													
Volts =--	5	12	20	24	48	110	220	250					

LC1 D09...D38 and LC1 DT20...DT40 (coils with integral suppression device fitted as standard)
U 0.7...1.25 Uc AL JL ZL BL EL FL ML UL
For other voltages between 5 and 690 V , see pages $5 / 76$ to $5 / 81$.
(2) See note (2) page 5/60
(3) The weights indicated are for contactors with a.c. control circuit. For d.c. or low consumption control circuit, add 0.165 kg and for contactors LC1 D80, 1 kg .

TeSys contactors

Reversing contactors for motor control
up to 75 kW at 400 V ，in category AC－3
Horizontally mounted，pre－assembled
Control circuit：a．c．，d．c．or low consumption

LC2 D1200

LC2 D50•0

3－pole reversing contactors for connection by screw clamp terminals or connectors

3－pole reversing contactors for connection by lugs or bars
For reversing contactors LC2 D09 to LC2 D38，LC2 D115 and LC2 D150，in the references selected above，insert a figure 6 before the voltage code．Example：LC2 D09ee becomes LC2 D096ee．

Accessories

Auxiliary contact blocks and add－on modules：see pages $5 / 68$ to $5 / 75$ ．
（1）LC2 D09 to D38：clip－on mounting on 35 mm 乙 r rail AM1 DP or screw fixing．
LC2 D40 to D95：clip－on mounting on 35 mm 乙 r rail $A M 1$ DP or 75 mm 乙 rail AM1 DL or screw fixing． LC2 D115 and D150：clip－on mounting on $2 \times 35 \mathrm{~mm}$ 乙 r rails AM1 DP or screw fixing．
（2）Standard control circuit voltages（for other voltages，please consult your Regional Sales Office）：
a．c．supply

Volts	24	42	48	110	115	220	230	240	380
LC2 D09．．．D150（D115 and D150 coils with integral	3								

$50 / 60 \mathrm{~Hz}$	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7	－
LC2－D40．．．D115													
50 Hz	B5	D5	E5	F5	FE5	M5	P5	U5	Q5	V5	N5	R5	S5
60 Hz	B6	－	E6	F6	－	M6	－	U6	Q6	－	－	R6	－
d．c．supply													
Volts	12	24	36	48	60	72	110	125	220	250	440		
LC2 D09．．．D38（coils with integral suppression device fitted as standard）													
U 0．7．．．1．25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD		
Low consumption													
Volts＝－－	5	12	20	24	48	110	220	250					

LC2 D09．．．D38（coils with integral suppression device fitted as standard）
U 0．7．．．1．25 Uc \quad AL $\quad \mathrm{JL} \quad \mathrm{ZL} \quad \mathrm{BL} \quad \mathrm{EL} \quad \mathrm{FL} \quad \mathrm{ML} \quad \mathrm{UL}$
For other voltages between 5 and 690 V ，see pages $5 / 76$ to $5 / 81$ ．
（3）The weights indicated are for contactors with a．c．control circuit．For d．c．or low consumption control circuit，add 0.330 kg （LC2 D09．．．D38）．
（4）For reversing contactors with electrical interlocking pre－wired at the factory，add suffix V to the references selected above． Example：LC2 D09P7 becomes LC2 D09P7V．

Selection： pages $5 / 160$ to $5 / 191$	Characteristics： pages $5 / 46$ to $5 / 51$	Dimensions，schemes： pages $5 / 88$ and $5 / 89$

TeSys contactors

Reversing contactors for motor control up to 15 kW at 400 V , in category AC-3
 Horizontally mounted, pre-assembled

Control circuit: a.c., d.c. or low consumption

All power connections are to be made by the customer.
These contactors are fitted with Faston connectors: $2 \times 6.35 \mathrm{~mm}$ on the power poles and $1 \times 6.35 \mathrm{~mm}$ on the coil terminals. It is possible to make $2 \times 6.35 \mathrm{~mm}$ connections to the coil terminals by using a double Faston connector, reference: LAD 99635, to be ordered separately (sold in lots of 100).
For contactors LC2 D09 and LC2 D12 only, replace the digit $\mathbf{3}$ with a 9 in the references selected above.
Example: LC2 D093ee becomes LC2 D099•e.

Accessories

Auxiliary contact blocks and add-on modules: see pages $5 / 68$ to 5/75.
(1) LC2 D09 to D32: clip-on mounting on 35 mm 乙 r rail AM1 DP or screw fixing.
(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office).

a.c. supply												
Volts	24	42	48	110	115	220	230	240	380	400	415	440
LC2 D09...D32												
$50 / 60 \mathrm{~Hz}$	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7
d.c. supply												
Volts	12	24	36	48	60	72	110	125	220	250	440	
LC2 D09...D32 (coils with integral suppression device fitted as standard)												
U 0.7...1.25 Uc	JD	BD	CD	ED	ND	SD	FD	GD	MD	UD	RD	
Low consumption												
Volts ---	5	12	20	24	48	110	220	250				
LC2 D09...D32 (coils with integral suppression device fitted as standard)												
U 0.7...1.25 Uc	AL	JL	ZL	BL	EL	FL	ML	UL				

For other voltages between 5 and 690 V , see pages $5 / 76$ to $5 / 81$.
(3) The weights indicated are for reversing contactors with a.c. control circuit. For d.c. or low consumption control circuit, add 0.330 kg .

Selection: pages $5 / 160$ to $5 / 191$	Characteristics: pages $5 / 46$ to $5 / 51$	Dimensions, schemes: pages $5 / 88$ and $5 / 89$

TeSys contactors

Changeover contactor pairs
for control in category AC－1， 20 to 200 A ， horizontally mounted，pre－assembled
Control circuit：a．c．，d．c．or low consumption

LC2 DT20•0

4－pole changeover contactor pairs for connection by screw clamp terminals or
connectors
Pre－wired power connections
LC2 DT20 to LC2 DT40：mechanical interlock without electrical interlocking．
LC2 D40 to LC2 D80：order separately 2 auxiliary contact blocks LAD No1 to obtain electrical interlocking
between the 2 contactors（seep page 5／69．）．For electrical interlocking incorporated in the mechanical interlock，
please consult your Regional Sales Office．
LC2 D115：mechanical interlock with integral，pre－wired electrical interlocking．

| Utilisation category AC－1
 Non inductive loads
 Maximum rated
 operational current
 $\left(\theta \leqslant 60^{\circ} \mathrm{C}\right)$
 Instantaneous auxiliary
 contacts per contactor | Contactors supplied with coil
 Basic reference，
 to be completed by adding the voltage code（1）
 Fixing（2） | Weight |
| :--- | :--- | :--- | :--- | :--- |

20	1	1	LC2 DT206e®	0.730
25	1	1	LC2 DT256•＠	0.730
32	1	1	LC2 DT326•e	0.850
40	1	1	LC2 DT406•e	0.850
60	－	－	LC2 D400046	2.400
80	－	－	LC2 D650046e॰	3.200
125	－	－	LC2 D800046e๑	3.200
200	－	－	LC2 D1150046e॰	7.400

Accessories

Auxiliary contact blocks and add－on modules，see pages 5／68 to 5／75．
（1）See note（1）on next page．
（2）LC2 DT20 to DT40：clip－on mounting on 35 mm 乙 rail AM1 DP or screw fixing． LC2 D65 and D80：clip－on mounting on 35 mm 乙r rail AM1 DP or 75 mm 乙 rail $A M 1$ DL or screw fixing． LC2 D115：clip－on mounting on $2 \times 35 \mathrm{~mm}$ 乙 rails AM1 DP or screw fixing．

Selection： pages $5 / 160$ to $5 / 191$	Characteristics： pages $5 / 46$ to $5 / 51$	Dimensions，schemes： pages $5 / 88$ and $5 / 89$

TeSys contactors

Changeover contactor pairs
for control in category AC-1, 20 A ,
horizontally mounted, pre-assembled
Control circuit: a.c., d.c. or low consumption

4-pole changeover contactor pairs for connection by spring terminals			
Pre-wired power connections			
Utilisation category AC-1	Instantaneous auxiliary	Contactors supplied with coil	Weight
Non inductive loads Maximum rated	contacts per contactor	Basic reference, to be completed by adding the voltage code (1)	
operational current ($\theta \leqslant 60^{\circ} \mathrm{C}$)	11	Fixing (2)	
A			kg
20	11	LC2 DT203e॰	0.760

Accessories

Auxiliary contact blocks and add-on modules, see pages 5/68 to 5/75.
(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office).

For other voltages between 5 and 690 V , see pages $5 / 76$ to $5 / 81$.
(2) Clip-on mounting on 35 mm 乙 rail AM1 DP or screw fixing.

Selection: Characteristics: pages $5 / 160$ to $5 / 191$ pages $5 / 46$ to $5 / 51$	Dimensions, schemes :	pages $5 / 88$ and $5 / 89$

TeSys contactors
Component parts for assembling reversing contactors for motor control or low speed - high speed starters

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(1) To order the 2 contactors: see pages $5 / 58$ and 5/59.
(2) Including mechanical interlock.
(2) Including mechanical interlock.
(3) To build a reversing contactor with spring terminal connections, the following components must be ordered:

- 1 mechanical interlock LAD 9V2,
- 1 upstream power connection kit and 1 downstream power connection kit.

Upstream power connection kit LAD 9V10: installed in the Quickfit system with power connection module LAD 34
(If module LAD 34 is not used, replace LAD 9V10 with LAD 9V12).
Downstream power connection kit LAD 9V11: installed in the Quickfit system with outgoing terminal block LAD 331.
(If module LAD 331 is not used, replace LAD 9V11 with LAD 9V13).

Selection: pages $5 / 160$ to $5 / 163$	Characteristics:	Dimensions, schemes:

TeSys contactors
Component parts for assembling changeover contactor pairs for distribution

LA9 D50978

LA9 D6570

LA9 D8070

For 4-pole changeover contactor pairs (3-phase distribution + neutral)
Contactors with screw clamp terminals or connectors Horizontally mounted, assembled by customer

| Using 2 identical
 contactors (1) | Set of power connections | | Mechanical interlock |
| :--- | :--- | :--- | ---: | ---: |

LC1 DT20...DT40 LAD T9R1V (2) 0.040 - -

Including mechanical interlock with integral electrical interlocking

LC1 D65004	LA9 D6570	0.150	LA9 D4002	0.170
LC1 D80004	LA9 D8070	0.280		LA9 D4002
LP1 D80004	LA9 D8070	0.280		LA9 D8002
LC1 D115004		1.100		LA9 D11502

Including mechanical interlock without electrical interlocking

LC1 DT20...DT40 with screw clamp terminals or connectors	LAD-T9R1 (2)	0.035	-	-
LC1 DT203...DT403 with spring terminal connections	(3)	-	-	-
LC1 or LP1 D65004	LA9 D6570 (4)	0.150	LA9 D50978	0.155
LC1 D80004	LA9 D8070 (4)	0.280	LA9 D50978	0.155
LP1 D80004	LA9 D8070 (4)	0.280	LA9 D80978	0.180

For 3-pole changeover contactor pairs
Including mechanical interlock with integral electrical interlocking

LC1 D115 and D150	LA9 D11571	0.960	LA9 D11502

(1) To order the 2 contactors: see pages 5/61 and 5/62.
(2) Including mechanical interlock.
(3) To build a changeover contactor pair with spring terminal connections, the following components must be ordered in addition to the 2 contactors: - 1 mechanical interlock LAD 9V2,

1 downstream power connection kit LAD 9V9.
(4) Order 2 contact blocks LAD No1 to build the electrical interlock, see page 5/69.

Selection: pages $5 / 160$ to $5 / 163$	Characteristics: pages $5 / 46$ to $5 / 51$	Dimensions, schemes pages $5 / 88$ and $5 / 89$

TeSys contactors

TeSys d contactors and reversing contactors Instantaneous auxiliary contact blocks

TeSys contactors

TeSys d contactors and reversing contactors Instantaneous auxiliary contact blocks

Instantaneous auxiliary contact blocks for connection by lugs
This type of connection is not possible for blocks with 1 contact or blocks with dust and damp protected contacts. For all other instantaneous auxiliary contact blocks, add the figure 6 to the end of the references selected above. Example: LAD N11 becomes LAD N116.

Instantaneous auxiliary contact blocks for connection by spring terminals

This type of connection is not possible for LAD 8, LAD N with 1 contact or blocks with dust and damp protected contacts. For all other contact blocks, add the figure 3 to the end of the references selected above. Example: LAD N11 becomes LAD N113.
Instantaneous auxiliary contact blocks for connection by Faston connectors
This type of connection is not possible for LAD 8, LAD N with 1 contact or blocks with dust and damp protected contacts.
For all other contact blocks, add the figure 9 to the end of the references selected above. Example: LAD N11 becomes LAD N119.
(1) Maximum number of auxiliary contacts that can be fitted

Contactors			Instantaneous auxiliary contacts					Time delay Front mounted	
Type	Number of poles and size		Side mounted		Front mounted				
				1 contact	2 con	4 contacts			
\sim	3P	LC1 D09...D38		1 on LH side	and -		1	or 1	or 1
		LC1 D40...D95 (50/60 Hz)	1 on each side	or 2	2	and 1	or 1	or 1	
		LC1 D40...D95 (50 or 60 Hz)	1 on each side	and 2	2	and 1	or 1	or 1	
		LC1 D115 and D150	1 on LH side	and -		1	or 1	or 1	
	4P	LC1 DT20...DT40	1 on LH side	and -		1	or 1	or 1	
		LC1 D40...D80	1 on each side	or 1	1	or 1	or 1	or 1	
		LC1 D115	1 on each side	and 1		or 1	or 1	or 1	
--	3P	LC1 D09...D38	-		-	1	or 1	or 1	
		LC1 D40...D95	-		2	and 1	or 1	or 1	
		LC1 D115 and D150	1 on LH side	and -		1	or 1	or 1	
	4P	LC1 DT20...DT40	-		-	1	or 1	or 1	
		LC1 D40...D80	-		2	and 1	or 1	or 1	
		LC1 D115	1 on each side		-	and 1	or 1	or 1	
LC (3)	3P	LC1 D09...D38	-		-	1	-	-	
	4P	LC1 DT20...DT40	-		-	1	-	-	

[^26](3) LC: low consumption.

Characteristics:	Dimensions:	
pages $5 / 52$ to $5 / 54$	pages $5 / 82$ to $5 / 85$	pagemes : $5 / 86$ and $5 / 87$

TeSys contactors
TeSys d contactors and reversing contactors
Time delay auxiliary contact blocks
Mechanical latch blocks

Time delay auxiliary contact blocks for connection by screw clamp terminals
Maximum number of auxiliary contact blocks that can be fitted per contactor, see page 5/69.
Sealing cover to be ordered separately, see page 5/75.
LAD T0 and LAD RO: with extended scale from 0.1 to 0.6 s .
LAD S2: with switching time of $40 \mathrm{~ms} \pm 15 \mathrm{~ms}$ between opening of the N/C contact and closing of the N/O contact.

Clip-on mounting	Number of contacts per block	Time delay		Reference	Weight kg
		Type	Setting range		
Front	$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	On-delay	$0.1 . .3$ s	LAD T0	0.060
			$0.1 . .30 \mathrm{~s}$	LAD T2	0.060
			10... 180 s	LAD T4	0.060
			$1 . .30 \mathrm{~s}$	LAD S2	0.060
		Off-delay	$0.1 \ldots 3 \mathrm{~s}$	LAD R0	0.060
			$0.1 . .30 \mathrm{~s}$	LAD R2	0.060
			$10 \ldots 180 \mathrm{~s}$	LAD R4	0.060

Time delay auxiliary contact blocks for connection by lugs
Add the figure 6 to the end of the references selected above. Example: LAD T0 becomes LAD T06.
Time delay auxiliary contact blocks for connection by spring terminals
Add the figure 3 to the end of the references selected above. Example: LAD TO becomes LAD T03.
Time delay auxiliary contact blocks for connection by Faston connectors
Add the figure 9 to the end of the references selected above. Example: LAD TO becomes LAD T09.

Mechanical latch blocks (1) Clip-on mounting Unlatching control	For use on contactor	Basic reference, to be completed by adding the voltage code (2)	Weight

(1) The mechanical latch block must not be powered up at the same time as the contactor. The duration of the control signal for the mechanical latch block and the contactor should be:
$\geqslant 100 \mathrm{~ms}$ for a contactor operating on an a.c. supply
$\geqslant 250 \mathrm{~ms}$ for a contactor operating on a d.c. supply
(2) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

Volts $50 / 60 \mathrm{~Hz}, \ldots$	24	$32 / 36$	$42 / 48$	$60 / 72$	100	$110 / 127$	$220 / 240$	$256 / 277$	$380 / 415$
Code	B	C	E	EN	K	F	M	U	Q

TeSys contactors

TeSys d contactors and reversing contactors Suppressor modules

(1) For satisfactory protection, a suppressor module must be fitted across the coil of each contactor.
(2) From LC1 D09 to D38 and from LC1 DT20 to DT40, d.c. and low consumption 3-pole contactors are fitted with a built-in bidirectional peak limiting diode suppressor as standard. On contactors produced after 15th July 2004, this bidirectional peak limiting diode is removable and can therefore be replaced by the user. (See reference above). If a d.c. or low consumption contactor is used without suppression, the standard suppressor should be replaced with a blanking plug (reference LAD 9DL)
(3) Clipping-on makes the electrical connection. The overall size of the contactor remains unchanged.
(4) Mounting at the top of the contactor on coil terminals A1 and A2.
(5) In order to install these accessories, the existing suppression device must first be removed.

Characteristics: pages $5 / 52$ to $5 / 54$	Dimensions: pages $5 / 82$ to $5 / 85$	Schemes: pages $5 / 86$ and $5 / 87$

Presentation

TeSys contactors
 TeSys d contactors and reversing contactors

See page opposite for mounting possibilities according to contactor type and rating.

TeSys contactors

TeSys d contactors and reversing contactors Accessories

Electronic serial timer modules (1)

■ 3-pole contactors LC1 D09 to D38 and 4-pole contactors LC1 DT20 to DT40: mounted using adapter LAD 4BB, to be ordered separately, see page 5/75

- 3-pole contactors LC1 D40 to D150 and 4-pole contactors LC1 D40 to D115: mounted directly across terminals A1 and A 2 of contactor

On-delay type

Operational voltage ~		Time delay	Reference	Weight kg
24... 250 V	100... 250 V			
$\begin{aligned} & \text { LC1 D09...D38 (3P) } \\ & \text { and DT20...DT40 (4P) } \end{aligned}$	LC1 D40...D150 (3P)	0.1... 2 s	LA4 DT0U	0.040
		$1.5 \ldots 30 \mathrm{~s}$	LA4 DT2U	0.040
		$25 . .500$ s	LA4 DT4U	0.040

Interface modules

■ 3-pole contactors LC1 D09 to D38 and 4-pole contactors LC1 DT20 to DT40: mounted using adapter LAD 4BB, to be ordered separately, see page $5 / 75$

- 3-pole contactors LC1 D40 to D150 and 4-pole contactors LC1 D40 to D115: mounted directly across terminals A1 and A2 of contactor.

Auto-Man-Stop control modules

For local override operation tests with 2-position "Auto-Man" switch and "O-I" switch
■ 3-pole contactors LC1 D09 to D38 and 4-pole contactors LC1 DT20 to DT40: mounted using adapter LAD 4BB, to be ordered separately, see page 5/75.

- 3-pole contactors LC1 D40 to D150 and 4-pole contactors LC1 D40 to D115: mounted directly across terminals A1 and A2 of contactor.

Operational voltage ~		Reference	Weight kg
24... 100 V	100... 250 V		
$\begin{aligned} & \text { LC1 D09...D150 (3P) } \\ & \text { and DT20...DT40 (4P) } \end{aligned}$	-	LA4 DMK	0.040
-	LC1 D40...D150 (3P)	LA4 DMU	0.040

(1) For $24 V$ operation, the contactor must be fitted with a 21 V coil (code Z). See pages $5 / 76$ to 5/81

Characteristics:	Dimensions:	Schemes :
pages $5 / 55$ to $5 / 57$	pages $5 / 82$ to $5 / 85$	pages $5 / 86$ and $5 / 87$

TeSys contactors
TeSys d contactors and reversing contactors

Accessories

LA9 D3260

LA9 D11550•

LA9 D11570•

Description		For use with contactors LC1		Sold in lots of	Unit reference	Weight kg
		\sim	=--			
Connectors for cable, size (1 connector)	4-pole 10 mm²	DT20, DT25	DT20, DT25	1	LA D92560	0.030
	3 -pole $25 \mathrm{~mm}^{2}$	D09...D38	D09...D38	1	LA9 D3260	0.040
Connectors for cable, size (2 connectors)	3 -pole $120 \mathrm{~mm}^{2}$	D115, D150	D115, D150	1	LA9 D115603	0.560
	4-pole $120 \mathrm{~mm}^{2}$	D115	D115	1	LA9 D115604	0.740
Connectors for lug type terminals (2 connectors)	3 -pole	D115, D150	D115, D150	1	LA9 D115503	0.300
	4-pole	D115	D115	1	LA9 D115504	0.360
Protective covers for connectors for lug type terminals	3 -pole (1)	D115, D150	D115, D150	1	LA9 D115703	0.250
	4-pole (1)	D115, D150	D115, D150	1	LA9 D115704	0.300
Links for parallel connection of	2 poles	D09...D38	D09...D38	10	LA9 D2561	0.060
		DT20, DT25 (4P) DT20, DT25 (4P)		10	LA9 D1261	0.012
		DT32, DT40 (4P) DT32, DT40 (4P)		10	LA D96061	0.060
		D40...D65	D40...D65	2	LA9 D40961	0.021
		D80, D95	D80	2	LA9 D80961	0.060
	3 poles (star connection)	D09...D38	D09...D38	10	LAD 9P3 (2)	0.005
		D80, D95	D80, D95	1	LA9 D80962	0.080
	4 poles	DT20, DT25	DT20, DT25	2	LA9 D1263	0.024
		D40...D65	D40...D65	2	LA9 D40963	0.070
		D80, D95	D80	2	LA9 D80963	0.100
Staggered coil connection		-	D40...D80	10	LA9 D09966	0.006
Control circuit take-off from main pole		D40...D65	D40...D65	10	LA9 D6567	0.010
		D80, D95	D80, D95	10	LA9 D8067	0.010
Spreaders for increasing the pole pitch to 45 mm		D115, D150	D115, D150	3	GV7 AC03	0.180

(1) For 3-pole contactors: 1 set of 6 covers, for 4 -pole contactors: 1 set of 8 covers.
(2) Separate connecting bar for connecting 2 poles in parallel.

Dimensions: pages 5/82 to $5 / 85$	Schemes : pages $5 / 86$ and $5 / 87$

TeSys contactors

TeSys d contactors and reversing contactors
 Accessories

Sets of contacts and arc chambers

| Description | For contactor | | Reference | Weight
 $\mathbf{k g}$ |
| :--- | :--- | :--- | :--- | :--- | ---: |
| Sets of contacts | 3 -pole | LC1 D115 | LA5 D1158031 | 0.260 |
| | | LC1 D150 | LA5 D150803 | 0.260 |
| Arc chambers | 3 -pole | LC1 D115004 | LA5 D115804 | 0.330 |
| | | LC1 D115 | LA5 D11550 | 0.395 |
| | 4-pole | LC1 D150 | LA5 D15050 | 0.395 |

Connection accessories

For adapting existing wiring to a new product	LC1 D09...D38 LC1 DT20...DT25	Without coil suppression		LAD 4BB	0.019
		With coil	$\sim 24 . .48 \mathrm{~V}$	LAD 4BBVE	0.014
		suppression	$\sim 50 . .127 \mathrm{~V}$	LAD 4BBVG	0.014
			$\sim 110 . .250 \mathrm{~V}$	LAD 4BBVU	0.014
Set of 63 A busbars for parallelling of contactors	2 contactors LC1 D09...D18 or D25...D38			GV2 G245	0.036
	4 contactors LC1 D09...D18 or D25...D38			GV2 G445	0.077
Terminal block	For supply to one	or more GV2	bar sets	GV1 G09	0.04

Protection accessories

Description	Application	Sold in	Reference	Weight kg	
Miniature circuit-breaker	5×20 with 4 A-250 V fuse	1	LA9 D941	0.025	
Sealing cover	For LAD T, LAD R	1	LA9 D901	0.005	
Safety cover preventing access to the moving contact carrier	LC1 D09...D38 and DT20...DT40	1	LAD 9ET1	0.026	
	LC1 D40...D65	1	LAD 9ET2	0.012	
	LC1 D80 and D95	1	LAD 9ET3	0.004	
	LC1 D115 and D150			LAD 9ET4	0.004

Marking accessories				
Description	Application	Sold in lots of	Unit reference	Weight kg
Sheet of 64 blank legends, self-adhesive, $8 \times 33 \mathrm{~mm}$ (1)	Contactors (except 4P), LC1 D40...D115), LAD N (4 contacts), LA6 DK	10	LAD 21	0.020
Sheet of 112 blank legends, self-adhesive, $8 \times 12 \mathrm{~mm}$ (1)	LAD N (2 contacts), LAD T, LAD R, LRD	10	LAD 22	0.020
Sheet of 64 blank legends for marking using plotter or $8 \times 33 \mathrm{~mm}$ engraver	Contactors (except 4P), LC1 D40...D115), LAD (4 contacts), LA6 DK	10	LAD 23	0.050
Sheet of 440 blank legends for marking using plotter or $8 \times 12 \mathrm{~mm}$ engraver	All products	35	LAD 24	0.200
Marker holder, snap-in $8 \times 22 \mathrm{~mm}$	4-pole contactors, LC1 D40...D80, LA6 DK	100	LA9 D92	0.001
Marker holder, snap-in $8 \times 18 \mathrm{~mm}$	LC1 D09...38, LC1 DT20...40, LAD N (4 contacts), LAD T, LAD R	100	LAD 90	0.001
Bag of 300 blank legends self-adhesive, $7 \times 21 \mathrm{~mm}$	On holder LA9 D92	1	LA9 D93	0.001
"SIS Label" labelling software supplied on CD-Rom	Multi-language version: English, French, German, Italian, Spanish	1	XBY 2U	0.100

Mounting accessories	LA9 D730	0.360		
	For replacement of LC1 F115 or Mounting plate	1		0.020
Fet of shims by LC1 D115 or D150				

(1) These legends are for sticking onto the safety cover of the contactors or add-on block, if fitted.

TeSys contactors
a.c. coils
for 3 or 4-pole contactors LC1 D

For contactors ~ LC1 D09...D38 and LC1 DT20...DT40

Specifications

Average consumption at $20^{\circ} \mathrm{C}$:
inrush ($\cos \varphi=0.75$) 70 VA ,

- sealed $(\cos \varphi=0.3) 50 \mathrm{~Hz}: 7 \mathrm{VA}, 60 \mathrm{~Hz}: 7.5 \mathrm{VA}$

Operating range $\left(\theta \leqslant 60^{\circ} \mathrm{C}\right): 50 \mathrm{~Hz}: 0.8 \ldots 1.1 \mathrm{Uc}, 60 \mathrm{~Hz}: 0.85 \ldots 1.1 \mathrm{Uc}$.

LXD 100

Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C} \pm 10 \%$	Inductance of closed circuit	Reference (1)	Weight
V	Ω	H		kg
			$50 / 60 \mathrm{~Hz}$	
12	6.3	0.26	LXD 1J7	0.070
21 (2)	5.6	0.24	LXD 127	0.070
24	6.19	0.26	LXD 1B7	0.070
32	12.3	0.48	LXD 1C7	0.070
36	-	-	LXD 1CC7	0.070
42	19.15	0.77	LXD 1D7	0.070
48	25	1	LXD 1E7	0.070
60	-	-	LXD 1EE7	0.070
100	-	-	LXD 1K7	0.070
110	130	5.5	LXD 1F7	0.070
115	-	-	LXD 1FE7	0.070
120	159	6.7	LXD 1G7	0.070
127	192.5	7.5	LXD 1FC7	0.070
200	-	-	LXD 1L7	0.070
208	417	16	LXD 1LE7	0.070
220	539	22	LXD 1M7	0.070
230	595	21	LXD 1P7	0.070
240	645	25	LXD 1U7	0.070
277	781	30	LXD 1W7	0.070
380	1580	60	LXD 1Q7	0.070
400	1810	64	LXD 1V7	0.070
415	1938	74	LXD 1N7	0.070
440	2242	79	LXD 1R7	0.070
480	2300	85	LXD 1T7	0.070
500	2499	-	LXD 157	0.070
575	3432	119	LXD 1SC7	0.070
600	3600	135	LXD 1X7	0.070
690	5600	190	LXD 1Y7	0.070

(1) The last 2 digits in the reference represent the voltage code.
(2) Voltage for special coils fitted in contactors with serial timer modules. with 24 V supply.

TeSys contactors
a.c. coils
for 3 or 4-pole contactors LC1 D

LX1 D6eo

For 3 or 4-pole contactors LC1 D40, D50, D65, D80, D95

Specifications

Average consumption at $20^{\circ} \mathrm{C}$

- inrush ($\cos \varphi=0.75$) $50 \mathrm{~Hz}: 200 \mathrm{VA}, 60 \mathrm{~Hz}: 220 \mathrm{VA}$
- sealed ($\cos \varphi=0.3$) $50 \mathrm{~Hz}: 20 \mathrm{VA}, 60 \mathrm{~Hz}: 22 \mathrm{VA}$

Operating range ($\theta \leqslant 55^{\circ} \mathrm{C}$): $0.85 \ldots 1.1 \mathrm{Uc}$.

Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C}$ ± 10 \%	Inductance of closed circuit	Reference (1)	Average resistance at $20^{\circ} \mathrm{C}$ ± 10 \%	Inductance of closed circuit	Reference (1)	Weight
V	Ω	H		Ω	H		kg
			50 Hz			60 Hz	
24	1.4	0.09	LX1 D6B5	1.05	0.06	LX1 D6B6	0.280
32	2.6	0.16	LX1 D6C5	-	-	-	0.280
42	4.4	0.27	LX1 D6D5	-	-	-	0.280
48	5.5	0.35	LX1 D6E5	4.2	0.23	LX1 D6E6	0.280
110	31	1.9	LX1 D6F5	22	1.2	LX1 D6F6	0.280
115	31	1.9	LX1 D6FE5	-	-	-	0.280
120	-	-	-	28	1.5	LX1 D6G6	0.280
127	41	2.4	LX1 D6G5	-	-	-	0.280
208	-	-	-	86	4.3	LX1 D6L6	0.280
220	-	-	-	98	4.8	LX1 D6M6	0.280
220/230	127	7.5	LX1 D6M5	-	-	-	0.280
230	133	8.1	LX1 D6P5	-	-	-	0.280
240	152	8.7	LX1 D6U5	120	5.7	LX1 D6U6	0.280
256	166	10	LX1 D6W5	-	-	-	0.280
277	-	-	-	157	8	LX1 D6W6	0.280
380	-	-	-	300	14	LX1 D6Q6	0.280
380/400	381	22	LX1 D6Q5	-	-	-	0.280
400	411	25	LX1 D6V5	-	-	-	0.280
415	463	26	LX1 D6N5	-	-	-	0.280
440	513	30	LX1 D6R5	392	19	LX1 D6R6	0.280
480	-	-	-	480	23	LX1 D6T6	0.280
500	668	38	LX1 D6S5	-	-	-	0.280
575	-	-	-	675	33	LX1 D6S6	0.280
600	-	-	-	775	36	LX1 D6X6	0.280
660	1220	67	LX1 D6Y5	-	-	-	0.280

Specifications

Average consumption at $20^{\circ} \mathrm{C}$:

- inrush ($\cos \varphi=0.75$) $50 / 60 \mathrm{~Hz}$: 245 VA at 50 Hz ,
- sealed $(\cos \varphi=0.3) 50 / 60 \mathrm{~Hz}: 26$ VA at 50 Hz ,

Operating range $\left(\theta \leq 55^{\circ} \mathrm{C}\right): 0.85 \ldots 1.1 \mathrm{Uc}$.

						50/60 Hz	
24	-	-	-	1.22	0.08	LX1 D6B7	0.280
42	-	-	-	3.5	0.25	LX1 D6D7	0.280
48	-	-	-	5	0.32	LX1 D6E7	0.280
110	-	-	-	26	1.7	LX1 D6F7	0.280
115	-	-	-	-	-	LX1 D6FE7	0.280
120	-	-	-	32	2	LX1 D6G7	0.280
220/230 (2)	-	-	-	102	6.7	LX1 D6M7	0.280
230	-	-	-	115	7.7	LX1 D6P7	0.280
230/240 (3)	-	-	-	131	8.3	LX1 D6U7	0.280
380/400 (4)	-	-	-	310	20	LX1 D6Q7	0.280
400	-	-	-	349	23	LX1 D6V7	0.280
415	-	-	-	390	24	LX1 D6N7	0.280
440	-	-	-	410	27	LX1 D6R7	0.280

(1) The last 2 digits in the reference represent the voltage code.
(2) For use on $230 \vee 50 \mathrm{~Hz}$, apply a coefficient of 0.6 to the mechanical durability of the contactor, see pages 5/48 and 5/49. This coil can be used on 240 V at 60 Hz .
(3) This coil can be used on $220 / 240 \mathrm{~V}$ at 50 Hz and on 240 V only at 60 Hz .
(4) For use on 400 V 50 Hz , apply a coefficient of 0.6 to the mechanical durability of the contactor, see pages 5/48 and 5/49.

TeSys contactors
a.c. coils
for 3 or 4-pole contactors LC1 D

For 3 or 4-pole contactors LC1 D115

Specifications

Average consumption at $20^{\circ} \mathrm{C}$:

- inrush ($\cos \varphi=0.8$) 50 or $60 \mathrm{~Hz}: 300 \mathrm{VA}$,
- sealed ($\cos \varphi=0.3$) 50 or $60 \mathrm{~Hz}: 22 \mathrm{VA}$

Operating range $\left(\theta \leqslant 55^{\circ} \mathrm{C}\right)$: $0.85 \ldots 1.1 \mathrm{Uc}$.

Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C}$ $\pm 10 \%$	Inductance of closed circuit	Reference (1)	Average resistance at $20^{\circ} \mathrm{C}$ $\pm 10 \%$	Inductance of closed circuit	Reference (1)	Weight
V	Ω	H		Ω	H		kg
			50 Hz			60 Hz	
24	1.24	0.09	LX1 D8B5	0.87	0.07	LX1 D8B6	0.260
32	2.14	0.17	LX1 D8C5	-	-	-	0.260
42	3.91	0.28	LX1 D8D5	-	-	-	0.260
48	4.51	0.36	LX1 D8E5	3.91	0.28	LX1 D8E6	0.260
110	26.53	2.00	LX1 D8F5	19.97	1.45	LX1 D8F6	0.260
115	26.53	2.00	LX1 D8FE5	-	-	-	0.260
120	-	-	-	24.02	1.70	LX1 D8G6	0.260
127	32.75	2.44	LX1 D8FC5	-	-	-	0.260
208	-	-	-	67.92	5.06	LX1 D8L6	0.260
220	104.77	7.65	LX1 D8M5	79.61	5.69	LX1 D8M6	0.260
230	104.77	8.29	LX1 D8P5	-	-	-	0.260
240	125.25	8.89	LX1 D8U5	97.04	6.75	LX1 D8U6	0.260
277	-	-	-	125.75	8.89	LX1 D8W6	0.260
380	338.51	22.26	LX1 D8Q5	243.07	17.04	LX1 D8Q6	0.260
400	368.43	25.55	LX1 D8V5	-	-	-	0.260
415	368.43	27.65	LX1 D8N5	-	-	-	0.260
440	441.56	30.34	LX1 D8R5	338.51	22.26	LX1 D8R6	0.260
480	-	-	-	368.43	25.55	LX1 D8T6	0.260
500	566.62	38.12	LX1 D8S5	-	-	-	0.260

For 3 or 4-pole contactors LC1 D115, LC1 D150

Specifications

Average consumption at $20^{\circ} \mathrm{C}$:

- inrush $\cos \varphi=0.9-280$ to 350 VA ,
sealed $\cos \varphi=0.9-2$ to 18 VA .
Operating range $\left(\theta \leqslant 55^{\circ} \mathrm{C}\right)$: $0.8 \ldots 1.15 \mathrm{Uc}$.
Coils with integral suppression device fitted as standard, class B.

Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C}$ $\pm 10 \%$	Inductance of closed circuit	Reference (1)	Average resistance at $20^{\circ} \mathrm{C}$ $\pm 10 \%$	Inductance of closed circuit	Reference (1)	Weight
V	Ω	H		Ω	H		kg
						50/60 Hz	
24	-	-	-	147	3.03	LX1 D8B7	0.290
32	-	-	-	301	8.28	LX1 D8C7	0.290
42	-	-	-	498	13.32	LX1 D8D7	0.290
48	-	-	-	1061	24.19	LX1 D8E7	0.290
110	-	-	-	4377	109.69	LX1 D8F7	0.290
115	-	-	-	4377	109.69	LX1 D8FE7	0.290
120	-	-	-	4377	109.69	LX1 D8G7	0.290
127	-	-	-	6586	152.65	LX1 D8FC7	0.290
208	-	-	-	10895	260.15	LX1 D8LE7	0.290
220	-	-	-	9895	210.72	LX1 D8M7	0.290
230	-	-	-	9895	210.72	LX1 D8P7	0.290
240	-	-	-	9895	210.72	LX1 D8U7	0.290
277	-	-	-	21988	533.17	LX1 D8UE7	0.290
380	-	-	-	21011	482.42	LX1 D8Q7	0.290
400	-	-	-	21011	482.42	LX1 D8V7	0.290
415	-	-	-	21011	482.42	LX1 D8N7	0.290
440	-	-	-	21501	507.47	LX1 D8R7	0.290
480	-	-	-	32249	938.41	LX1 D8T7	0.290
500	-	-	-	32249	938.41	LX1 D8S7	0.290

[^27]TeSys contactors
d.c. coils
for 3 or 4-pole contactors

	For 3-pole contactors LC1 D40...D65 or 4-pole contactors LP1 D40...D65				
	Specifications				
	Average consumption: 22 W . Operating range: 0.85...1.1 Uc.				
	Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C} \pm 10 \%$	Inductance of closed circuit	Reference (1)	Weight
	V	Ω	H		kg
	12	7.1	0.44	LX4 D6JD	0.415
	24	26.8	1.69	LX4 D6BD	0.415
	36	58	3.55	LX4 D6CD	0.415
	48	109	6.86	LX4 D6ED	0.415
	60	173	10.9	LX4 D6ND	0.415
	72	234	14.7	LX4 D6SD	0.415
LX4 D60D	110	560	35.28	LX4 D6FD	0.415
	125	717	45.2	LX4 D6GD	0.415
	220	2255	142	LX4 D6MD	0.415
	250	2940	185	LX4 D6UD	0.415
	440	9080	572	LX4 D6RD	0.415

LX4 D7•D

For 3-pole contactors LC1 D80 or 4-pole contactors LP1 D80

Specifications

Average consumption: 22 W .
Operating range: $0.85 \ldots 1.1 \mathrm{Uc}$.

Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C} \pm \mathbf{1 0} \%$	Inductance of closed circuit	Reference (1)	Weight
\mathbf{V}	Ω	\mathbf{H}	LX4 D7JD	0.680
$\mathbf{1 2}$	6.6	0.46	LX4 D7BD	0.680
$\mathbf{2 4}$	27	1.89	LX4 D7CD	0.680
$\mathbf{3 6}$	57	4	LX4 D7ED	0.680
$\mathbf{4 8}$	107	7.5	LX4 D7ND	0.680
$\mathbf{6 0}$	170	11.9	LX4 D7SD	0.680
$\mathbf{7 2}$	230	16.1	LX4 D7FD	0.680
$\mathbf{1 1 0}$	564	59.5	LX4 D7GD	0.680
$\mathbf{1 2 5}$	718	155	LX4 D7MD	0.6
$\mathbf{2 2 0}$	2215	200	LX4 D7UD	0.680
$\mathbf{2 5 0}$	2850	640	0.680	
$\mathbf{4 4 0}$	9195			

(1) The last 2 digits in the reference represent the voltage code.

TeSys contactors

d.c. coils
for 3 or 4-pole contactors LC1 D

For contactors LC1 D115, D150

Specifications

Consumption: inrush 270 to 365 W , sealed 2.4 to 5.1 W .
Operating range: 0.7...1.2 Uc.
Coils with integral suppression device fitted as standard, class B.

Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C} \pm 10 \%$	Inductance of closed circuit	Reference (1)	Weight
V	Ω	H		kg
24	147	3.03	LX4 D8BD	0.300
48	1061	24.19	LX4 D8ED	0.300
60	1673	38.44	LX4 D8ND	0.300
72	2500	56.27	LX4 D8SD	0.300
110	4377	109.69	LX4 D8FD	0.300
125	6586	152.65	LX4 D8GD	0.300
220	9895	210.72	LX4 D8MD	0.300
250	18022	345.40	LX4 D8UD	0.300
440	21501	684.66	LX4 D8RD	0.300

(1) The last 2 digits in the reference represent the voltage code.

References

TeSys contactors

Wide range d.c. coils
(for specific applications)
for 3 or 4-pole contactors

	For 3-pole contactors LC1 D40...D65 or 4-pole contactors LP1 D40...D65				
	Specifications				
	Average consumption: 22 W . Operating range: $0.75 \ldots 1.2 \mathrm{Uc}$. Coils with "TH" treatment as standard.				
	Control circuit voltage Uc	Average resistance at $20^{\circ} \mathrm{C} \pm 10 \%$	Inductance of closed circuit	Reference (1)	Weight
	V	Ω	H		kg
	12	6.8	0.45	LX4 D6JW	0.415
	24	30	1.9	LX4 D6BW	0.415
	36	53	3.5	LX4 D6CW	0.415
	48	110	7.2	LX4 D6EW	0.415
	72	215	14.2	LX4 D6SW	0.415
	110	580	38.3	LX4 D6FW	0.415
LX4 D6•W	220	2120	140	LX4 D6MW	0.415

For 3-pole contactors LC1 D80 or 4-pole contactors LP1 D80
Specifications
Average consumption: 23 W .
Operating range: 0.75 to 1.2 Uc
Coils with "TH" treatment as standard

Control circuit voltage Uc	Average resistance at $20^{\circ} \mathbf{C} \pm 10 \%$	Inductance of closed circuit	Reference (1)	Weight
\mathbf{V}	Ω	\mathbf{H}	LX4 D7JW	
$\mathbf{1 2}$	6.2	0.49	LX4 D7BW	0.680
$\mathbf{2 4}$	23.5	1.75	LX4 D7CW	0.680
$\mathbf{3 6}$	51.9	4.18	LX4 D7EW	0.680
$\mathbf{4 8}$	94.2	7	LX4 D7SW	0.680
$\mathbf{7 2}$	204	15.7	LX4 D7FW	0.680
$\mathbf{1 1 0}$	483	36	LX4 D7MW	0.680
$\mathbf{2 2 0}$	1922	144	0.680	

(1) The last 2 digits in the reference represent the voltage code.

TeSys contactors

TeSys d contactors
Control circuit: a.c.

LC1 D09...D18 (3-pole)

| |
| :--- | :--- | :--- |

(1) Including LAD 4BB

LC1 D40...D65 (3-pole), LC1 D65004, D40008 \& D65008 (4-pole) LC1 D80 \& D95 (3-pole), LC1 D80004 \& D80008 (4-pole)

| |
| :--- | :--- | :--- |

Selection:	Characteristics:	References:
pages $5 / 160$ to $5 / 191$	pages $5 / 58$ to $5 / 61$	Schemes:
pages $5 / 46$ to $5 / 51$	$5 / 86$ and $5 / 87$	

TeSys contactors
TeSys d contactors
Control circuit: d.c. or low consumption

LC1 D09...D18 (3-pole)

$\xrightarrow{45}$

LC1 D25...D38 (3-pole)

D183...D323

D093...D123	D099...D129	D25...D38	D183...D323
99	80	85	99
93	93	99	99
95	95	101	101
126	126	132	132
138	138	144	144
146	146	152	152
150	150	156	156

$\left.\begin{array}{lllll}\text { LC1 } & \text { DT20 \& DT25 } & \text { DT203 \& DT253 } \\ & \text { D098 \& D128 }\end{array}\right)$

LC1 D40...D65 (3-pole)
LC1 D65004, LP1 D40008...D65008 (4-pole)

LC1 D80 \& D95 (3-pole)
LP1 D80004, LP1 D80008 (4-pole)

	$\begin{aligned} & \text { LC1 } \\ & \text { D40...D65 } \end{aligned}$	LP1 D65004	LP1 D40008 \& D65008	$\begin{aligned} & \text { LC1 } \\ & \text { D80 \& D95 } \end{aligned}$	LP1 D80004	LP1 D80008
c without cover or add-on blocks	171	171	182	181	181	196
with cover, without add-on blocks	176	-	-	186	-	-
c1 with LAD N (1 contact)	196	196	196	204	204	204
with LAD N or C (2 or 4 contacts)	202	202	202	210	210	210
c2 with LA6 DK10	213	213	213	221	221	221
c3 with LAD T, R, S	221	221	221	229	229	229
with LAD T, R, S and sealing cover	225	225	225	233	233	233

LC1 D115000 and LC1 D150•0॰ with =-- coil: see page 5/82

Selection: pages $5 / 160$ to $5 / 491$	Characteristics: pages $5 / 46$ to $5 / 51$	References: pages $5 / 58$ to $5 / 61$	Schemes: pages $5 / 86$ and $5 / 87$

TeSys contactors
TeSys d contactors

LC1 D09...D38, DT20...DT40
On mounting rail AM1 DP200, DR200 or AM1 DE200 (width 35 mm)

| LC1 | D09...D18 D25...D38 DT2 | | DT32 |
| :--- | :---: | :---: | :---: | :--- |
| \& DT25 | \& DT40 | | |

| Control circuit: d.c. | |
| :--- | :--- | :--- | :--- | :--- |
| b 77 85 94 109
 c (AM1 DP200 or DR200) $(1) 97$ 103 103 118
 c (AM1 DE200) (1) 105 110 111 1236 | |

(1) with safety cover.

LC1 D115, D150
On 2 mounting rails DZ5 MB on 120 mm centres

LC1 D40...D95, LP1 D40...D80
On mounting rail AM1 DL200 or DL201 (width 75 mm)
On mounting rail AM1 EDeee or AM1 DE200 (width 35 mm)

Control circuit: a.c. LC1	D40...D65	D80 \& D95
c	(AM1 DL200) (1)	136

| Control circuit: d.c. | | |
| :--- | :--- | :--- | :--- |
| LC1 D40...D65 D80 \& D95
 c (AM1 DL200) (1) 193 203
 C (AM1 DL201) (1) 183 203

 LP1 D40 D65 D80
 c (AM1 DL200) 188 188 198
 C (AM1 DL201) 178 178 198
 (1) with safety cover. . | | |

LC1 D40...D95, LP1 D40...D80
On 2 mounting rails DZ5 MB on 120 mm centres

Control circuit: a.c.		
LC1	D40...D65	D80 \& D95
c with cover	119	130
Control circuit: d.c.		
LC1	D40...D65	D80 \& D95
with cover	176	186
LP1	D40 \& D65	D80
c	171	181

TeSys contactors
TeSys d contactors

LC1 D09...D38 and LC1 DT20...DT40 On 2 mounting rails DZ5 MB

LC1 D09...D38 and LC1 DT20...DT40
On pre-slotted mounting plate AM1 PA, PB, PC

Control circuit:	a.c.		d.c.	
LC1	D09...D18	D25...D38	D09...D18	D25...D38
C with cover	86	92	95	101
G	35	35	35	35
H	$60 / 70$	$60 / 70$	70	70
LC1	DT20	DT32	DT20	DT32
	\& DT25	\& DT40	\& DT25	\& DT40
C with cover	80	93	118	132
G	35	35	35	35
H	60	60	60	60
LC1 D09...D38				
Panel mounted	AC		DC	

| Control circuit: | a.c. | | d.c. | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LC1 | D09...D18 | D25...D38 | D09...D18 | D25...D38 |
| c \quad with cover | 86 | 92 | 95 | 101 |
| 4-pole contactors | | | | |
| LC1 | DT20 | DT32 | DT20 | DT32 |
| | \& DT25 | \& DT40 | \& DT25 | \& DT40 |
| c with cover | 90 | 98 | 90 | 98 |

LC1 D115, D150
Panel mounted

Control circuit:	a.c.	d.c.		
LC1	D09...D18	D25...D38	D09...D18	D25...D38
c with cover	86	92	95	101
G	35	35	35	35
H	60	60	70	70
H1	70	70	70	70
4-pole contactors				
LC1	DT20	DT32	DT20	DT32
	\& DT25	\& DT40	\& DT25	\& DT40
C	92	100	101	109
G	35	35	35	35
H	60	60	70	70
H1	70	70	70	70

LC1 D40...D95, LP1 D40...D80
On pre-slotted mounting plate AM1 PA, PB, PC

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Control circuit: | a.c. | | d.c. | |
| LC1 | D40...D65 | D80 \& D95 | D40...D65 | D80 \& D95 |
| C with cover | 119 | 130 | 176 | 186 |
| LP1 | - | - | D40 \& D65 | D80 |
| c without cover | - | - | 171 | 181 |

LC1 D40...D95, LP1 D40 D80
Panel mounted

| Control circuit: | a.c. | | d.c. | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LC1 | D40...D65 | D80 \& D95 | D4...D65 | D80 \& D95 |
| c with cover | 119 | 130 | 176 | 186 |
| LP1 | - | - | D40 \& D65 | D80 |
| C without cover | - | - | 171 | 181 |

LC1	D115	D1156	D150	D1506
C	132	115	132	115
G (3-pole $)$	$96 / 110$	$96 / 110$	$96 / 110$	$96 / 110$
G (4-pole $)$	$130 / 144$	$130 / 144$	-	-

Contactors

3-pole contactors (References: pages $5 / 58$ to $5 / 61$)
LC1 D09 to D150

4-pole contactors (References: pages 5/60 and 5/61)
LC1 D115004
LC1 DT20 to DT40

Front mounting add-on contact blocks
Instantaneous auxiliary contacts (References: page 5/69)
1 N/O LAD N10 (1)

	$\stackrel{0}{2}$
$\left.\underset{寸}{\prime}\right\|_{\overparen{O}} ^{6}$	\%

	2 N/C LAD N02

4 N/C LAD N04

$2 N / O+2 N / C$ including $1 N / O+1 N / C$ make before break LAD C22
3 N/O + 1 N/C LAD N31

Instantaneous auxiliary contacts conforming to standard EN 50012 (References: page 5/69)
1 N/O + 1 N/C LAD N11G
1 N/O + 1 N/C LAD N11P
2 N/O + 2 N/C LAD N22G
$2 N / O+2 N / C$ LAD N22P

3 N/O + 1 N/C LAD N31G
3 N/O + 1 N/C LADN31P
1 N/O + 3 N/C LAD N13G
1 N/O + 3 N/C LAD N13P

[^28]

TeSys contactors

TeSys d contactors

Front mounting add-on contact blocks
Dust and damp protected instantaneous auxiliary contacts (References: page $5 / 69$)

$\begin{aligned} & 2 \text { N/O }(24-50 \mathrm{~V}) \\ & \text { LA1 DX20 } \end{aligned}$	$\begin{aligned} & 2 \text { N/C (24-50 V) } \\ & \text { LA1 DX02 } \end{aligned}$	$\begin{aligned} & 2 \text { N/O (5-24 V) } \\ & \text { LA1 DY20 } \end{aligned}$	2 N/O protected (24-50 V) 2 N/O standard LA1 DZ40	2 N/O protected (24-50 V) $+1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$ standard LA1 DZ31

Time delay auxiliary contacts (References: page 5/70)
On-delay $1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$ LAD T Off-delay $1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$ LADR On-delay $1 \mathrm{~N} / \mathrm{C}+1 \mathrm{~N} / \mathrm{O}$ break before make LAD S

Mechanical latch blocks (References: page 5/70)
LAD 6K10 and LA6 DK20

Side mounting add-on contact blocks
Instantaneous auxiliary contacts (References: page 5/69)
1 N/O + 1 N/C LAD 8N11 (1) 2 N/O LAD 8N2O (1) 2 N/C LAD $8 N 02$ (1)

(1) Items in brackets are for blocks mounted on right-hand side of contactor.

Electronic serial timer modules
On-delay LA4 DToU

Auto-Man-Stop control modules

LA4 DM•

(1) PLC.

References: page 5/73.

TeSys contactors
TeSys d reversing contactors

LC2 D09 to D38
$2 \times$ LC1 D09 to D38

LC1 or $2 \times$ LC1	a	b	c (1)	e1	e2	G
D09 to D18 ~	90	77	86	4	1.5	80
D093 to D123 ~	90	99	86	-	-	80
D09 to D18 =--	90	77	95	4	1.5	80
D093 to D123 =--	90	99	95	-	-	80
D25 to D38 ~	90	85	92	9	5	80
D183 to D383 ~	90	99	92	-	-	80
D25 to D32 =--	90	85	101	9	5	80
D183 to D383 =--	90	99	101	-	-	80

e1 and e2: including cabling.
(1) With safety cover, without add-on block.

LC2 D40 to D95
$2 \times$ LC1 D40 to D95~

LC2DT20 to DT40
$2 \times$ LC1 DT20 to DT40

LC2 or $2 \times$ LC1	a	b	c	G
DT20 and DT25	90	85	90	80
DT32 and DT40	90	91	98	80

c, e: including cabling.

$2 \times$ LC1 D40 to D95~

c, e1 and e2: including cabling.
c, e1 and e2: including cabling.
LC2 D115 and D150
$2 \times$ LC1 D115 and D150

$\mathrm{c}, \mathrm{e} 1$ and e2: including cabling.

TeSys contactors
TeSys d reversing contactors

Reversing contactors for motor control

LC2 D09...D150
Horizontally mounted

Changeover contactor pairs
LC2 DT20...DT40
Horizontally mounted

LAD 9R1V
With integral electrical interlocking

LAD T9R1V
With integral electrical interlocking

Mechanical interlock without integral electrical contacts
Mechanical interlock with integral electrical contacts

Low speed-High speed cabling kit, screw clamp terminals

LA9 Deeo78, LAD 9R1
-KM2

Low speed-High speed cabling kit, spring terminals

TeSys contactors
 For switching 3-phase capacitor banks, used for power factor correction,
 Direct connection without choke inductors

Switching of multiple-step capacitor banks (with equal or different power ratings)
The correct contactor for each step is selected from the above table, according to the power rating of the step to be switched.
Example: 50 kVAR 3 -step capacitor bank. Temperature: $50^{\circ} \mathrm{C}$ and $\mathrm{U}=400 \mathrm{~V}$ or 440 V .
One 25 kVAR step: contactor LC1 DMK, one 15 kVAR step: contactor LC1 DGK, and one 10 kVAR step: contactor LC1 DFK. (1) Operational power of the contactor according to the scheme on the page opposite.
(2) The average temperature over a 24-hour period, in accordance with standards IEC 60070 and 60831 is $45{ }^{\circ} \mathrm{C}$
(3) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

Volts	$\mathbf{2 4}$	$\mathbf{4 2}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{1 1 5}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0}$	$\mathbf{2 4 0}$	$\mathbf{3 8 0}$	$\mathbf{4 0 0}$	$\mathbf{4 1 5}$	$\mathbf{4 4 0}$
$50 / 60 \mathrm{~Hz}$	B7	D7	E7	F7	FE7	M7	P7	U7	Q7	V7	N7	R7
For other voltages between 24 and 440 V, please consult your Regional Sales Office												

Dimensions,

schemes

TeSys contactors

For switching 3-phase capacitor banks, used for power factor correction

Dimensions LC1 DFK, DGK

LC1	c	Type of fixing	
DFK	117	LC1 D12	See pages $5 / 84$ and $5 / 85$
DGK	122	LC1 D18	See pages $5 / 84$ and $5 / 85$

LC1 DLK, DMK

LC1	c	Type of fixing	
DLK	117	LC1 D25	See pages $5 / 84$ and $5 / 85$
DMK	122	LC1 D32	See pages $5 / 84$ and $5 / 85$

LC1 DPK, DTK

LC1 Type of fixing

DPK	LC1 D40	See pages $5 / 84$ and $5 / 85$
DTK	LC1 D50	See pages $5 / 84$ and $5 / 85$

LC1 DWK

LC1
 DWK

Type of fixing LC1 D80 See pages $5 / 84$ and $5 / 85$

Schemes

LC1 Dok

$R=$ Pre-wired resistor connections.

Contactor type LC1	DFK		DGK		DLK		DMK		DPK, DTK		DWK	
Number of conductors	1	2	1	2	1	2	1	2	1	2	1	2
Flexible cable with cable end (mm^{2})		1.5	4	2.5	4	4	6	4	16	6	50	25
Solid cable with cable end (mm^{2})	4	4	6	6	10	6	16	10	25	16	50	35

[^29]

FAIRFIELD WATER RECLAMATION PLANT

CHASSIS

1. MSC CHASSIS TECHNICAL DETAILS

MSC Chassis

Suitable for C60, C120, DPN \& Vigi RCBO's Multi 9 Merlin Gerin

MSC Chassis have been designed to provide direct connectivity to Merlin Gerin isolators \& Compact NS circuit breakers.

Features

- Industrially proven \& robust range.
- Flexible \& easy to install.
- 12 to 108 pole chassis to suit MCB's up to 125A.
- Tough oven baked insulation.
- Easy identification with colour coded bar work.
- Cold formed single piece conductors ensuring no hot joints.

Options

- Standard range of MSC18, MSC27, MSC18/27, MSC36 \& MSC DC.
- Custom chassis built to your specifications.
- Choice of 250A or 400A current rating.

Technical Data

MSC current rating	250 A	400 A
Peak withstand	52.5 kA	60.0 kA
Short time withstand	25 kA for 0.1 sec	30 kA for 0.1 sec
Busbar thickness	2 mm	2.5 mm
Insulation voltage	690 V	
Standards/Conformity	AS3439-1 \& AS3439-3	

Certificate of Conformity No. 6963

Uniquely designed to provide an uninterrupted connection between final distribution miniature circuit breakers (MCB) \& upstream feeders..

Isolator

MSC 18 - for C60 MCB

Description	Pole Capacity 18 mm	Length (mm) L	Rating	Reference
3 phase	12	110	250A	C325123
	18	164	250A	C325183
	24	218	250A	C325243
	30	272	250A	C325303
	36	326	250A	C325363
	42	380	250A	C325423
	48	434	250A	C325483
	60	542	250A	C325603
	72	650	250A	C325723
	84	758	250A	C325843

MSC 27 - C120 MCB				
Description	Pole Capacity 27mm	Length (mm) L	Rating	Reference
3 phase	12	164	250A	C125123
	18	245	250A	C125183
	$\underline{24}$	326	250A	C125243
	30	407	250A	C125303
	36	488	250A	C125363
	42	569	250A	C125423
	48	650	250A	C125483
	60	812	250A	C125603
	72	974	250A	C125723

MSC 18/27 - for C60 or C120 MCB

Description	Pole Capacity 27mm18mmTotal			Length (mm) L	Rating	Reference
3 phase	6	6	12	137	250A	CH25123
	6	12	18	191	250A	CH25183
	6	18	24	245	250A	CH25243
	6	24	30	299	250A	CH25303
	6	30	36	353	250A	CH25363
	12	30	42	434	250A	CH25423
	12	36	48	488	250A	CH25483
	12	48	60	596	250A	CH25603
	12	60	72	704	250A	CH25723

Notes:

- For 400A MSC rating, please add " 4 " to the end of the 250A chassis reference number.
- Busbars extend 94.5 mm either end of pan, width is 215 mm .
- For custom built chassis' (to meet with your specific requirements), please contact Schneider Help Centre on 1300 369233.

MSC 18/4A - for C60

Description	Pole Capacity 18mm	Length (mm) L	Rating	Reference
3 phase \& neutral (N.R.W.B)	8	74	250A	C3250843
	16	146	250A	C3251643
	24	218	250A	C3252443
	32	290	250A	C3253243
	40	362	250A	C3254043
	48	434	250A	C3254843
	56	506	250A	C3255643
	64	578	250A	C3256443
	72	650	250A	C3257243

MSC 18/4B - for C60

Description	Pole Capacity 18 mm	Length $(\mathrm{mm}) \mathrm{L}$	Rating	Reference
	16	146	250 A	C3251641
3 phase \& neutral	24	218	250 A	C3252441
(N.R.N.W.N.B)	32	290	250 A	C3253241
	40	362	250 A	C3254041
	48	434	250 A	$\mathbf{C 3 2 5 4 8 4 1}$
	56	506	250 A	$\mathbf{C 3 2 5 5 6 4 1}$
	64	578	250 A	$\mathbf{C 3 2 5 6 4 4 1}$
	72	650	250 A	$\mathbf{C 3 2 5 7 2 4 1}$

MSC 36 - for DPN. Vigi (Ph + N)

Description	Pole Capacity	Qty of DPN's	Length $(\mathrm{mm}) \mathrm{L}$	Rating	Reference
3 phase \& neutral	12	6	110	250 A	CD25124N
(N.R.N.W.N.B)	20	10	182	250 A	CD25204N
	24	12	218	250 A	CD25244N
	32	16	290	250 A	CD25324N
	36	18	326	250 A	CD25364N
	48	24	434	250 A	CD25484N
	72	36	650	250 A	CD25724N

MSC DC - for C60

Description	Pole Capacity 18 mm	Length $(\mathrm{mm}) \mathrm{L}$	Rating	Reference
	12	110	250 A	C3DC123
2-pole (Black/Red)	16	146	250 A	C3DC163
	20	182	250 A	C3DC203
	24	218	250 A	C3DC243
	32	290	250 A	C3DC323
	36	326	250 A	C3DC363
	40	362	250 A	C3DC403
	48	434	250 A	C3DC483
	60	542	250 A	C3DC603

Dimensions

DIMENSIONS THE SAME FIR 400A BARS (ADD SUFFIX 4 TO CAT\#)

SCHNEIDER ELECTRIC HELP CENTRE

Tel: 1300369233
Fax: 1300369288
Email: help@schneider.com.au

FAIRFIELD WATER RECLAMATION PLANT

CONTROL RELAY

1. CONTROL RELAY TECHNICAL DETAILS

OmROח

New G2RS Series

Details on the New G2RS

Nameplate
LED indicator
Mechanical indicator
Test button
DC: Blue
AC: Red

New Features

- Nameplate and mechanical indicator provided as a standard.
- Models with two-way-action test button available.
- Environment-friendly construction.

Two-way-action test button

Pull down the test button to the first stop position, then press the yellow button with an insulated tool to operate the contact.

Pull down the test button to the second stop position. (The contact is now in the locked position.)

General-purpose Relay

G2RS New Model

Slim and Space-saving Power Plug-in Relay

- Lockable test button models now available.
- Built-in mechanical operation indicator.
- Provided with nameplate.
- AC type is equipped with a coil-disconnection self-diagnostic function (LED type).
- High switching power (1-pole: 10 A).
- Environment-friendly (Cd, Pb free).
- Wide range of Sockets also available.

Model Number Structure

Model Number Legend

1. Relay Function

Blank: General-purpose
2. Number of Poles

1: $\quad 1$ pole
2: 2 poles
3. Contact Form

Blank: SPDT
4. Contact Type

Blank: Single
5. Terminals

S: Plug-in
6. Classification

Blank: General-purpose
N : LED indicator
D: Diode
ND: LED indicator and diode
NI: LED indicator with test button
NDI: LED indicator and diode with test button
7. Rated Coil Voltage

Ordering Information

List of Models

Classification		Enclosure rating	Coil ratings	Contact form		
		SPDT		DPDT		
Plug-in terminal	General-purpose		Unsealed	AC/DC	G2R-1-S	G2R-2-S
	LED indicator			G2R-1-SN	G2R-2-SN	
	LED indicator with test button			G2R-1-SNI	G2R-2-SNI	
	Diode	DC		G2R-1-SD	G2R-2-SD	
	LED indicator and diode			G2R-1-SND	G2R-2-SND	
	LED indicator and diode with test button			G2R-1-SNDI	G2R-2-SNDI	

Note: When ordering, add the rated coil voltage and "(S)" to the model number. Rated coil voltages are given in the coil ratings table.
Example: G2R-1-S 12 VDC (S)__ New model
RDC (S) - New mode coil voltage

Accessories (Order Separately)

Connecting Sockets

Applicable Relay model	Track/surface-mounting Socket		Back-mounting Socket	
	Screwless clamp terminal	Screw terminal	Terminals	Model
1 poleG2R-1-S(N)(D)(ND)(NI)(NDI)	$\begin{gathered} \hline \text { - P2RF-05S (See note.) } \\ \text { (P2CM-S } \stackrel{+}{\text { option) })} \end{gathered}$	- P2RF-05-E - P2RF-05	PCB terminals	P2R-05P, P2R-057P
			Solder terminals	P2R-05A
$\begin{aligned} & 2 \text { poles } \\ & \text { G2R-2-S(N)(D)(ND)(NI)(NDI) } \end{aligned}$	$\begin{aligned} & \text { - P2RF-08S (See note.) } \\ & \text { (P2CM-S }{ }_{(0 \text { option) }} \end{aligned}$	- P2RF-08-E - P2RF-08	PCB terminals	P2R-08P, P2R-087P
			Solder terminals	P2R-08A

Note: Use of the P2CM Clip \& Release Lever is recommended to ensure stable mounting.

Accessories for Screwless Clamp Terminal Socket (Option)

Name	Model
Clip \& Release Lever	P2CM-S
Nameplate	R99-11 Nameplate for MY
Socket Bridge	P2RM-SR (for AC), P2RM-SB (for DC)

Mounting Tracks

Applicable Socket	Description	Model
Track-connecting Socket	Mounting track	$50 \mathrm{~cm}(\ell) \times 7.3 \mathrm{~mm}(\mathrm{t}):$ PFP-50N $1 \mathrm{~m}(\ell) \times 7.3 \mathrm{~mm}(\mathrm{t}):$ PFP-100N $1 \mathrm{~m}(\ell) \times 16 \mathrm{~mm}(\mathrm{t}):$ PFP-100N2
		PFP-M
	End plate	PFP-S
	Spacer	P2R-P*
Back-connecting Socket	Mounting plate	

*Used to mount several P2R-05A and P2R-08A Connecting Sockets side by side.

Specifications

Coil Ratings

Rated voltage		Rated current*		Coil resistance*	Coil inductance (H) (ref. value)		Must operate	Must release	Max. voltage	Power consumption
		50 Hz	60 Hz		Armature OFF	Armature ON	\% of rated voltage			
AC	24 V	43.5 mA	37.4 mA	253Ω	0.81	1.55	80\% max.	30\% max.	110\%	0.9 VA at 60 Hz
	110 V	9.5 mA	8.2 mA	5,566 Ω	13.33	26.83				
	120 V	8.6 mA	7.5 mA	7,286 Ω	16.13	32.46				
	230 V	4.4 mA	3.8 mA	27,172 Ω	72.68	143.90				
	240 V	3.7 mA	3.2 mA	30,360 Ω	90.58	182.34				

Rated voltage		Rated current*	Coil resistance*	Coil inductance (H) (ref. value)		Must operate	Must release	Max. voltage	Power consumption (approx.)	
		Armature OFF		Armature ON	\% of rated voltage					
DC	6 V		87.0 mA	69Ω	0.25	0.48	70\% max.	15\% min.	110\%	0.53 W
	12 V	43.2 mA	278 ת	0.98	2.35					
	24 V	21.6 mA	1,113 Ω	3.60	8.25					
	48 V	11.4 mA	4,220 Ω	15.2	29.82					

* The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $\pm 10 \%$.

Contact Ratings

Number of poles	1 pole		2 poles	
Load	Resistive load $(\cos \phi=1)$	Inductive load $(\cos \phi=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	$\begin{aligned} & \text { Resistive load } \\ & (\cos \phi=1) \end{aligned}$	Inductive load ($\cos \phi=0.4 ; \mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)
Rated load	10 A at 250 VAC ; 10 A at 30 VDC	$\begin{aligned} & 7.5 \mathrm{~A} \text { at } 250 \mathrm{VAC} ; \\ & 5 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	5 A at 250 VAC; 5 A at 30 VDC	$\begin{aligned} & 2 \mathrm{~A} \text { at } 250 \mathrm{VAC} ; 3 \mathrm{~A} \text { at } \\ & 30 \mathrm{VDC} \end{aligned}$
Rated carry current	10 A		5 A	
Max. switching voltage	440 VAC, 125 VDC		380 VAC, 125 VDC	
Max. switching current	10 A		5 A	
Max. switching power	$\begin{aligned} & 2,500 \mathrm{VA}, \\ & 300 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1,875 \mathrm{VA}, \\ & 150 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 1,250 \mathrm{VA}, \\ & 150 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 500 \mathrm{VA}, \\ & 90 \mathrm{~W} \end{aligned}$
Failure rate (reference value)	100 mA at 5 VDC		10 mA at 5 VDC	

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation

Characteristics

Item	1 pole	2 poles
Contact resistance	$100 \mathrm{~m} \Omega$ max.	
Operate (set) time	15 ms max.	
Release (reset) time	AC: 10 ms max.; DC: 5 ms max. (w/built-in diode: 20 ms max.)	AC: 15 ms max.; DC: 10 ms max. (w/built-in diode: 20 ms max.)
Max. operating frequency	Mechanical: 18,000 operations $/ \mathrm{hr}$ Electrical: 1,800 operations $/ \mathrm{hr}$ (under rated load)	
Insulation resistance	$1,000 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)	
Dielectric strength	5,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts*; 1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity	$5,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts*; 3,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Vibration resistance	$\begin{array}{ll}\text { Destruction: } & 10 \text { to } 55 \text { to } 10 \mathrm{~Hz}, 0.75 \mathrm{~mm} \text { single amplitude (} 1.5 \mathrm{~mm} \text { double amplitude) } \\ \text { Malfunction: } & 10 \text { to } 55 \text { to } 10 \mathrm{~Hz}, 0.75 \mathrm{~mm} \text { single amplitude (} 1.5 \mathrm{~mm} \text { double amplitude) }\end{array}$	
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: $200 \mathrm{~m} / \mathrm{s}^{2}$ when energized; $100 \mathrm{~m} / \mathrm{s}^{2}$ when not energized	
Endurance	Mechanical: AC coil: $10,000,000$ operations min.; DC coil: $20,000,000$ operations min. (at 18,000 operations/hr) Electrical: 100,000 operations min. (at 1,800 operations/hr under rated load) (DC coil type)	
Ambient temperature	Operating: $\quad-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity	Operating: 5\% to 85\%	
Weight	Approx. 21 g	

Note: Values in the above table are the initial values.
*4,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 minute when the P2R-05A or P2R-08A Socket is mounted.

Approved Standards

UL 508 (File No. E41643)

Model	Contact form	Coil ratings	Contact ratings	Operations
G2R-1-S	SPDT	5 to 110 VDC 5 to 240 VAC	$\begin{aligned} & 10 \mathrm{~A}, 30 \text { VDC (resistive) } \\ & 10 \mathrm{~A}, 250 \text { VAC (general use) } \\ & \text { TV-3 (NO contact only) } \end{aligned}$	6×10^{3}
G2R-2-S	DPDT		$\begin{aligned} & 5 \text { A, } 30 \text { VDC (resistive) } \\ & 5 \text { A, } 250 \text { VAC (general use) } \\ & \text { TV-3 (NO contact only) } \end{aligned}$	6×10^{3}

CSA 22.2 No.0, No. 14

(File No. LR31928)

Model	Contact form	Coil ratings	Contact ratings	Opera- tions
G2R-1-S	SPDT	5 to 110 VDC 5 to 240 VAC	10 A, 30 VDC (resistive) 10 A, 250 VAC (general use) TV-3 (NO contact only)	6×10^{3}
		5 A, 30 VDC (resistive) 5 A, 250 VAC (general use) TV-3 (NO contact only)	6×10^{3}	

IEC/VDE (EN61810)

Contact form	Coil ratings	Contact ratings	Operations
1 pole	$6,12,24,48 \mathrm{VDC}$ $24,110,120,230$, 240 VAC	$5 \mathrm{~A}, 440 \mathrm{VAC}(\cos \phi=1.0)$ $10 \mathrm{~A}, 250 \mathrm{VAC}(\cos \phi=1.0)$ $10 \mathrm{~A}, 30 \mathrm{VDC}(0 \mathrm{~ms})$	100×10^{3}
2 poles	$6,12,24,48 \mathrm{VDC}$ $24,110,120,230$, 240 VAC	$5 \mathrm{~A}, 250 \mathrm{VAC}(\operatorname{cos\phi }=1.0)$ $5 \mathrm{~A}, 30 \mathrm{VDC}(0 \mathrm{~ms})$	100×10^{3}

LR

Number of poles	Coil ratings	Contact ratings	Operations
1 pole	$\begin{aligned} & 5 \text { to } 110 \text { VDC } \\ & 5 \text { to } 240 \text { VDC } \end{aligned}$	10 A, 250 VAC (general use) 7.5 A, 250 VAC (PF0.4) $10 \mathrm{~A}, 30$ VDC (resistive) 5A, 30VDC (L/R=7ms)	100×10^{3}
2 poles	5 to 110 VDC 5 to 240 VDC	5 A, 250 VAC (general use) 2 A, 250 VAC (PF0.4) 5 A, 30 VDC (resistive) 3A, 30VDC (L/R=7ms)	100×10^{3}

Engineering Data

Maximum Switching Power

Plug-in Relays

Switching voltage (V)

Switching voltage (V)

Endurance

Plug-in Relays

G2R-1-S

G2R-2-S

Ambient Temperature vs Maximum Coil Voltage

Note: The maximum voltage refers to the maximum value in a varying range of operating power voltage, not a continuous voltage.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Relays with Plug-in Terminals

SPDT Relays

G2R-1-S, G2R-1-SN, G2R-1-SNI
G2R-1-SD, G2R-1-SND, G2R-1-SNDI

Terminal Arrangement/Internal Connections (Bottom View)

G2R-1-S

G2R-1-SD (DC)

G2R-1-SN, G2R-1-SNI (AC)
G2R-1-SN, G2R-1-SNI (DC)

G2R-1-SND, G2R-1-SNDI (DC)

Terminal Arrangement/Internal Connections (Bottom View)
G2R-2-S
G2R-2-SD (DC)

G2R-2-SN, G2R-2-SNI (DC)

G2R-2-SND, G2R-2-SNDI (DC)

Track/Surface Mounting Sockets

P2RF-05-S

Terminal Arrangement (Top View)

Terminal Arrangement (Top View)

Accessories for P2RF- \square-S

Socket Bridge

Clip and Release Lever

P2RF-05-E

Terminal Arrangement (Top View)

Mounting Holes (for Surface Mounting)

Note: Pin numbers in parentheses apply to DIN standard.

P2RF-08-E

Terminal Arrangement
(Top View)
Mounting Holes (for Surface Mounting)

Terminal Arrangement (Top View)

Mounting Holes (for Surface Mounting)

P2RF-08

Terminal Arrangement (Top View)

Mounting Holes (for Surface Mounting)

$=\sqrt{\text { (inloाM }}$

Mounting Height of Relay with Track/Surface Mounting Sockets
P2RF- \square

P2RF- \square-S

Back-connecting Sockets

P2R-05P (1-pole)

Terminal Arrangement (Bottom View)

P2R-08P (2-pole)

Terminal Arrangement (Bottom View)

Terminal Arrangement (Bottom View)

Mounting Holes

Mounting Holes

Mounting Height of Relay with Back-connecting Sockets

Mounting Tracks

It is recommended to use a panel 1.6 to 2.0 mm thick.

End Plate

PFP-M

Spacer

Precautions

- 1 Caution

Do not use the test button for any purpose other than testing. Be sure not to touch the test button accidentally as this will turn the contacts ON. Before using the test button, confirm that circuits, the load, and any other connected item will operate safely.

- \triangle Caution

Check that the test button is released before turning ON relay circuits.

- 1 Caution

If the test button is pulled out too forcefully, it may bypass the momentary testing position and go straight into the locked position.

- \triangle Caution

Use an insulated tool when you operate the test button.

Precautions for P2RF-- - S Connection

- Do not move the screwdriver up, down, or from side to side while it is inserted in the hole. Doing so may cause damage to internal components (e.g., deformation of the clamp spring or cracks in the housing) or cause deterioration of insulation.
- Do not insert the screwdriver at an angle. Doing so may break the side of the socket and result in a short-circuit.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

Cat. No. J140-E1-01 In the interest of product improvement, specifications are subject to change without notice.

OMRON RELAY \& DEVICES Corporation

GENERAL PURPOSE RELAY DIVISION

1110, SUGI, YAMAGA-CITY KUMAMOTO-PREF., 861-0596 JAPAN
Tel: (81)968-44-4149/Fax: (81)968-44-4107

FAIRFIELD WATER RECLAMATION PLANT

CURRENT TRANSFORMERS

1. CURRENT TRANSFORMERS TECHNICAL DETAILS

Accessories
AC Split-Core Current Transformer Type CTD-10S (파 $\max 50 \times 126 \mathrm{~mm}$)

Product Description

Split-core current transformer Rated primary currents from with bus-bar mountng facility. 400 A to 4000 A .

- Bus-bar type split-core current transformer
- Class 1 accuracy
- Currents from 400 A to 4000 A
- Up to 10 Bus-bar isolated fixing screws
- Double screw terminals (up to 8-wire connections)
- Sealable terminal block covers
- Sealable fixing split-core screws

Range Table

Model CTD-10S from 400A to 1200A			Model CTD-10S from 1250A to 4000A		
Primary Current	Burden (VA)		Primary Current	Burden (VA)	
A	CL 1	CL 3	A	CL 1	CL 3
400	1	7	1250	15	25
500	3	10	1500	20	30
600	5	12	1600	20	30
700	8	15	2000	25	40
750	10	15	2500	30	50
800	10	15	3000	30	50
1000	12	20	3200	30	50
1200	15	25	4000	30	50

NOTE: the accuracy class is depending on the burden output. For the same rated primary current, the higher the burden the better the class.

Benefits

- Easy way to open and close the CT core by the dedicate seleable screws (see figure 1).
- Bridging of current transformer output without changing the connection of the secondary, so to avoid any output overvoltage during either the maintenance or the installation procedure (see figure 2).
- Easy output and earth connection (see fig. 3).
- Multiple screws provided with isolation cap screws to grant a strong and reliable fixing of the current transformer to the bus-bar (see figure 4).
- Screw terminals compatible with any kind of wire terminals and protection of screw terminals using specific sealable covers to assure always the best safety (see figure 5-6-7-8).

Wiring Diagram

Dimensions (mm)

Specifications are subject to change without notice CTD-10 S DS ENG 241008

FAIRFIELD WATER RECLAMATION PLANT

FUSE \& FUSE HOLDER

1. FUSE LINKS TECHNICAL DETAILS

2. FUSE HOLDER TECHNICAL DETAILS

Compact fuse holders (Bolt-in)

O New compact size
O Front (FW) or stud/front (SFW) versions
O Smaller dimensions
O Saves panel space

Dimensions (mm)			Suggested Max.	
	H	W	D	cable size
NC32_	87	27	50	$10 \mathrm{~mm}^{2}$
NC63_	109	31	62	$25 \mathrm{~mm}^{2}$
NC100_	118	35	72	$50 \mathrm{~mm}^{2}$
NC200_	154	54	108	$95 \mathrm{~mm}^{2}$

UP TO 30\% SMALLER

Front wired - bolt in

32			NNIT	NC32FW
63		NTIA	NTIS	NC63FW
100	NOS	NTIA	NTIS	NC100FW
200		NTIA $\left.^{1}\right)$	NTIS $\left.^{1}\right)$	NC200FW
	NTFP	NOS $\left.^{1}\right)$	NTCP	

Back stud/front wired - bolt in

| 32 | | | NNIT | NC32SFW |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 63 | | NTIA | NTIS | NC63SFW |
| 100 | NOS | NTIA | NTIS | NC100SFW |
| 200 | | NTIA $\left.^{1}\right)$ | NTIS $\left.^{1}\right)$ | NC200SFW |
| | NTFP | NOS $\left.^{1}\right)$ | NTCP | |

Note: $\quad{ }^{1}$) Fuses can be fitted using adaptor 100M FLK.

Standard fuse holders (Bolt-in)
O Ratings from 20 to 200 A
O Front (FW) or stud/front (SFW) versions
O Complies with BS88

N20FW

Dimensions (mm)

	H	W	D	cable size
N20_	87	27	50	$10 \mathrm{~mm}^{2}$
N32_	109	31	62	$10 \mathrm{~mm}^{2}$
N63_	118	35	72	$50 \mathrm{~mm}^{2}$
N100_	154	54	108	$70 \mathrm{~mm}^{2}$
N200_	193	70	149	$150 \mathrm{~mm}^{2}$

Rating (A)	Fuse link to suit \quad Cat. No.

Front wired - bolt in

20	NNIT	N20FW
32	NTIA	N32FW
63	NTIA NTIS	N63FW
100	NTIA 1) NTIS ${ }^{1}$)	N100FW
200	NOS ${ }^{1}$) NTCP	
	NTBC NTC	NTF

Back stud/front wired - bolt in

20	NNIT	N20SFW
32	NTIA	N32SFW
63	NTIA NTIS	N63SFW
100	NTIA 1) NTIS ${ }^{1}$)	N100SFW
	NOS 1) NTCP	
200	NTBC NTC	N200SFW
	NTF	

Clip-in fuse holders - DIN rail mount

Fast, reliable fitting and removal of fuse links
Rating (A)
Fuse link to suit
Cat. No.

Front wired - clip-in - Black

20	NSS	NV20FW
32	NSS	NV32FW
63	NES	NV63FW

Front wired - Clip-in - White

32	NNS	NV32FWW
63	NES	NV63FWW

N|- - COMPACT
 FUSES

BS compact fuse links

Complies with BS 88
 Reduced dimensions
 Low watts loss

	Clip-in offs				
	Rating (A)	$\begin{aligned} & \text { BS } 88 \\ & \text { ref. } \end{aligned}$	Overall length (mm)	Overall Dia. (mm)	Cat. No. ${ }^{1}$)
	2	F1	60	14	NNS 2
PROVIDE	4				NNS 4
FUSESTR SHO SUPETO	6				NNS 6
protecton	10				NNS 10
	16				NNS 16
	20				NNS 20
	25				NNS 25
	32				NNS 32
	20 M 25				NNS 20M25
	20 M 32				NNS 20M32
	20	F2	68	17	NES 20
	25				NES 25
NNS 2	32				NES 32
	40				NES 40
	50				NES 50
	63				NES 63

Bolted pattern offset tags

Rating (A)	BS 88 ref.	Fixing centres (mm)	
2	A1	44.5	Cat. No. ${ }^{2}$)

Note: $\left.\quad{ }^{1}\right)^{\prime} M^{\prime}$ in catalogue No. denotes motor starting type.

DIN and BS fuse link selection chart

BS Fuses

Switch-fuses								Fuse type Cat. No. Prefix
800	630	400	315	250	200	160	125	
								NNS
								NNIT_
						\checkmark	\checkmark	NTIA
						\checkmark	\checkmark	NTIS_
						\checkmark	\checkmark	NOS
						\checkmark		NTCP
								NTFP_
								NTSLOO_
		\checkmark	\checkmark	\checkmark	\checkmark			NTBC
		\checkmark	\checkmark	\checkmark	\checkmark			NTC-
		\checkmark	\checkmark	\checkmark	\checkmark			NTF-
		\checkmark	\checkmark	\checkmark				NTKF
								NTSL3_
		\checkmark						NTMF_
\checkmark	\checkmark							NTM
\checkmark	\checkmark							NTTM
\checkmark								NTLM

NHP HRC fuse holders									Fuse type Cat. No. Prefix
NC (Bolt-in)						NV (Clip-in)			
315	200	100	63	32	20	63	32	20	
							\checkmark	\checkmark	NNS
						\checkmark			NES_
				\checkmark	\checkmark				NNIT_
	\boldsymbol{V}^{1})	\checkmark	\checkmark						NTIA
	$\left.\boldsymbol{V}^{1}\right)$	\checkmark	$\left.\boldsymbol{V}^{2}\right)$						NTIS
	$\left.\boldsymbol{V}^{1}\right)$	\checkmark							NOS
	\checkmark								NTCP_
	\checkmark								NTFP_
\checkmark									NTBC
\checkmark									NTC
\checkmark									NTF-
\checkmark									NTKF_

DIN Fuses

Switch-fuses						Fuse type Cat. No.
800	630	400	250	160	125	Prefix

Legend:
\checkmark Fuse links fit direct.
${ }^{1}$) Fuses require 100MFLK adaptor, see page 11-107.
${ }^{2}$) 'M' type (motor rated) NTIS not suitable for NC63_. Use NC100 fuse holder.

HRC

High rupturing capacity (HRC) or High breaking capacity denotes the ability of a fuse-link to interrupt extremely high fault currents, usually up to 80 kA .

Current limiting fuse-link
A fuse-link that limits the circuit current during it's operation to a value much lower than the peak value of the prospective current. In practice, the terms HRC and current limiting are synonymous.
Rated breaking capacity
The highest value of fault current that a fuse-link has been tested to interrupt eg. 80kA.

Rated voltage

The maximum system voltage that the fuse-link is designed to interrupt. Rated voltages may be in AC, DC, or both.

Current rating

The value of current that a fuse-link will carry continuously without deterioration under specified conditions.

Minimum fusing current
The minimum value of current that will cause melting of the fuse element.

Power dissipation

The power released in a fuse-link carrying rated current under a specified condition, usually expressed in watts.

Time current characteristics (refer table 1) A curve detailing the pre-arcing or operating time as a function of prospective current.
Let through characteristics ($\left.\mathrm{I}^{2} t\right)$ (refer table 2) A curve or chart showing values 'pre-arcing' and 'operating' let through energies as a function of prospective current, $I^{2} t$ is proportional to energy in Amp ${ }^{2}$ seconds.
Cut off characteristics (refer table 3)
A curve detailing the cut off current as a function of prospective current. Cut off current being the maximum instantaneous value of current let through by the fuse-link during operation.

Discrimination achieved

Discrimination (refer tables 4 and 5)

Discrimination is the ability of fuse-links to operate selectively and to disconnect only the parts of the circuit that are subject to faults. Discrimination can be checked by ensuring that the time current characteristics, including their tolerances, do not overlap at any point and that the total let through energy ($\mathrm{I}^{2} \mathrm{t}$) of the downstream (or minor) fuse-link does not exceed the pre-arcing energy $\left(\mathrm{I}^{2} t\right)$ of the upstream (or major) fuse-link at the applied system voltage. Discrimination is normally achieved with the ratio of 1.6 between upstream and downstream fuses.

Typical time current curves

Operating and pre-arcing $I^{2} t$ values

Cut off characteristics

Discrimination NOT achieved

NTT, NTLT, NTM, NTTM, NTLM types

NTXU type

124 characteristics			
Rating (amperes)	${ }^{1} 2 \mathrm{t} t$ pre-arcing	I 2 t total @ 240 volts	I ${ }^{2}$ t total @ 415 volts
2	2	2	4
4	10	15	21
6	34	52	74
10	188	289	408
16	92	211	412
20	155	355	690
20M25	574	1084	1809
20M32	574	1561	2605
25	826	1084	1809
32	826	1561	2605
35	1200	2400	4100
32M40	2482	4416	7019
32M50	3305	5879	9345
32M63	5875	10452	16612
40	2482	4416	7019
50	3305	5879	9345
63	5875	10452	16612
80 \& 63M80	7800	15500	26000
100 \& 63M100	14000	28000	46000
125 \& 100M125	30000	51000	75500
160 \& 100M160	58500	99000	145000
200 \& 100M200	120000	205000	300000
250 \& 200M 250	210000	360000	530000
315 \& 200M315	270000	460000	680000
355	365000	620000	915000
400 \& 315M400	480000	820000	1200000
450	755000	1300000	1900000
500	1100000	1850000	2700000
560	1200000	2400000	4000000
630	1550000	3100000	5150000
710	1903565	2992861	4306813
800	3820349	6006505	8643534
1000	7000000	1500000	16000000
1250	12000000	20500000	30000000

Fuse curves

NHP Compact
 BS fuses from 20 to 250 amps

NHP Compact BS fuses cut-off current data from 20 to 630 amps

FAIRFIELD WATER RECLAMATION PLANT

POWER METER

1. ION7300 POWER AND ENERGY METER TECHNICAL DETAILS

Gain energy insight and control with PowerLogicTm

PowerLogic ION7300 series

 power and energy meter

Integrated network comprising corporate intranet, Internet, serial, dialup or wireless connections
Power mitigation and main power distribution equipment

PDUs and data servers

Tenants, departments or subcontractors

Features

Measurements

Bidirectional, absolute, and net energy measurements. Rolling block, predicted, and thermal demand. Individual and total harmonic distortion up to the 31st. Advanced logic and mathematical functions.

Internet-enabled communications
Two RS-485 ports, infrared data port standard. Optional built-in modem with ModemGate allows modem access for 31 other devices. Optional Ethernet port with EtherGate allows direct Ethernet-to-RS-485 data transfer to 31 other devices. Modbus RTU, Modbus TCP, DNP 3.0, and PROFIBUS DP. Call-back feature offers fast alarm response. WebMeter and MeterM@il ${ }^{\circledR}$ allow distribution of metered data and alarms over the Internet.

Interoperability

Communicate via multiple protocols to add to existing Modbus, DNP or ION Enterprise networks. Logs and real-time values are available via Modbus. These meters are supported by UTS MV-90 ${ }^{\oplus}$ via serial and Ethernet.

On-board data logging
Scheduled or event-driven logging of up to 96 parameters.
Sequence-of-events and min/max logging.

Setpoints for control and alarms
Use logical operators and setpoints to configure alarms, define basic control algorithms, and implement back-up protection. Setpoints can trigger data logging, digital outputs, pulse outputs, clearing and reset functions, call-back (ION7350).

Logic and math
Sophisticated logic and mathematical functions to perform on-board calculations on any measured value (ION7330, ION7350).

Inputs and outputs
Four digital inputs for status/counter functions. Four digital outputs for control/pulse functions. Optional analogue inputs and outputs.

Front panel display
Easy to read backlit LCD with adjustable contrast, supporting eight customisable data displays (scrolled automatically or manually) and basic setup.

PowerLogic ION7300 with remote modular display

PowerLogic ION7300 series

Schneider Electric PowerLogic ION7300 series meters offer unmatched value, functionality, and ease of use. Used in enterprise energy management applications such as feeder monitoring and sub-metering, PowerLogic ION7300 series meters interface with ION Enterprise software or other power management or automation systems to provide users with real-time information for monitoring and analysis.

The meter is available in three models, with incremental features sets and a variety of options. PowerLogic ION7300 meters are an ideal replacement for analogue meters, while also providing a multitude of power and energy measurements, analog and digital I/O, communication ports and industrystandard protocols. The ION7330 meter adds on-board data storage, emails of logged data, and an optional modem. The ION7350 meter is further augmented by more sophisticated power quality analysis, alarms and a call-back-on-alarm feature. Refer to the detailed descriptions within for a complete list of feature availability.

Applications

For infrastructure, industrials and buildings

- Energy efficiency and cost
- Sub-bill tenants for energy costs
- Allocate energy costs to departments or processes
- Reduce peak demand surcharges
- Reduce power factor penalties
- Power availability and reliability
- Verify the reliable operation of equipment
- Improve response to power quality-related problems
- Leverage existing infrastructure capacity and avoid over-building
- Support proactive maintenance to prolong asset life

For electric utilities

- Power availability and reliability
- Improve T\&D network reliability
- Enhance substation automation
\square Maximise the use of existing infrastructure
- Analyse and isolate the source of power quality problems

Installation

Standard PowerLogic ION7300 series meters with integrated display are designed to fit into DIN standard $92 \times 92 \mathrm{~mm}(3.62 \times 3.62$ in.) cutout. Simply slide the mounting bars into the grooves on either side of the unit. The TRAN option provides a base unit without display that can be mounted either flush against any flat surface in whichever orientation is most convenient; attached to any standard DIN rail (requires optional DIN rail mount); or installed in a cutout (as the standard model). The remote modular display (RMD) can be mounted as the standard unit. A $1.8 \mathrm{~m}(6 \mathrm{ft}$.) cable is supplied.
4-wire Wye, Delta, 3-wire Wye, Direct Delta and single phase systems. 3 voltage and 3 current inputs. No PTs required on voltage inputs for Wye systems up to $347 / 600 \mathrm{~V}$ ac and Delta systems up to 600 V ac. All inputs pass ANSI/IEEE C37.90.1-1989 surge withstand and fast transient tests.

Input(s)	Specifications
Voltage inputs	
Inputs	U1, U2, U3, Uref
Rated inputs1	50 to 347 L-N (87 to 600 L-L) V ac rms (3-phase systems) 50 to 300 L-N (100 to 600 L-L) V ac rms (single-phase systems)
Overload	1500 V ac rms continuous
Input impedance	> 2 M per phase (phase-vref)
Current inputs	
Inputs	11, 12, 13
Rated inputs	10 Arms (+20\% maximum, 300 V rms to ground)
Overload	20 A continuous
Dielectric withstand	500 A for one second (non-recurring)
Burden	0.0625 VA @ 10 Amps
Control power	
Operating range	Standard model: 95 to 240 V ac $\pm 10 \%$ ($47-440 \mathrm{~Hz}$); DC: 120 to 310 V dc $\pm 10 \%$ P24 option: 20 to $60 \mathrm{~V} \mathrm{dc} \pm 10 \%$
Current transformers	
Compatibility	5 A nominal, 10 A full-scale secondaries.
Primary CT rating	Equal to current rating of the power feed protection device. 2
Secondary CT burden capacity	$>3 \mathrm{VA}$

1 Accuracy may be affected if the voltage on V1 falls below 50 .
2 If the peak anticipated load is considerably less than the rated system capacity, you can improve accuracy and resolution by selecting a lower rated CT.

Front panel

Easy to read backlit LCD with adjustable contrast. LCD supports local data display and basic setup. Remote display option to $1.8 \mathrm{~m}(6 \mathrm{ft})$ from base unit. Eight data display screens (kWh net, kWh swd / mx, Volts, Amps, Power, Frequency, V-THD, I-THD) can be customised through the communications port to show chosen parameters, and scrolled manually or automatically. The front panel can display up to nine digits of resolution for numeric values. Four display formats are available: 4 parameter, to single-parameter large character displays. Customer-designed parameter labels are programmable via PowerLogic ION Enterprise software.

PowerLogic ION7350

$\begin{array}{lll}\text { I } & 2 & 265.7 \\ \text { I } & 2 & 256.4 \\ \text { I } & 0 & 259 \\ \text { I } & \text { ヨug } & 260.4\end{array}$

Ia THD	9.3
Ib THD	7.4
ICTHD	3.4
Iav9THD	6.7

KWH Import. 193106

Example meter display formats.

Example from PowerLogic ION Enterprise software showing continuous, wide-area monitoring, data capture and reporting for power quality and reliability conditions.

Power and energy measurements

Fully bi-directional, 4-quadrant, revenue-accurate or revenue-certified energy metering. They can replace discrete energy meters, demand meters and pulse initiators, and perform a wide range of other metering and instrumentation functions.

Supports thermal demand and sliding window (rolling block) demand. Factory-configured to calculate average current demand and kW, kvar and kVA demand. User-configureable time intervals for demand calculations and sensitivity settings.

Measurement specifications (at 50.0 Hz and 60.0 Hz at $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$)	Accuracy 1 $\left(\% \mathrm{rdg}+\% \mathrm{fs}^{2}\right)$
Voltage	$0.25 \%+0.05 \%$
Current	$0.25 \%+0.05 \%$
Power, real (kW)	0.5% reading
Energy, real (kWh)	0.5% reading ${ }^{3}$
Power, apparent (kVA)	$0.5 \%+0.1 \%$
Energy, apparent (kVAh)	1.0% reading
Power, reactive (kvar) >5 \% FS	1.5% reading
Energy, reactive (kvarh)	1.5% reading
Power factor (at unity PF)	1.5% reading
Frequency U1,U2,U3 (42-69 Hz): per phase, total	$\pm 0.01 \mathrm{~Hz}$

Display resolution meets or exceeds accuracy
150 V ac to $347 \mathrm{~V} \mathrm{ac}+25 \%$
2 \% full scale voltage and current. Accuracy specifications comply with IEC 60687 Class 0.5 and ANSI 12.20 Class 0.5 at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$
3 Register bounds 0 to $\pm 3.3 \times 107$ (kW) and 0 to ± 1038 (kWh)

Power quality

Use meter data to help uncover the sources of harmonics and voltage sags/ swells. Analyse problems and avoid repeat interruptions.

- Harmonics (all models): individual harmonics, even, odd, total up to 15th (31st on ION7350). Total harmonic distortion: 1\% Full Scale. 14 derivation. 1% reading + 0.2\% unbalanced. K Factor: 5.0 \% Full Scale.
■ Sag/swells (ION7350 only): monitors applicable phase voltages for temporary undervoltages and overvoltages (i.e. CBEMA Type 2 and Type 3 disturbances). Voltage waveforms for sags and swells; report on each disturbance magnitude and duration.
- Sampling rate (all models): Up to 32 samples per cycle (64 on ION7350).
- Waveform (digital fault) recording (ION7350 only): Simultaneous event capture on all channels, up to 48 cycles each. Resolution: 64 samples per cycle; maximum number of cycles for contiguous waveform capture: 6,900 (16 samples/cycle $\times 48$ cycles). depth of 3 , the interval is triggered on demand.

Example log configurations Waveform recording settings

		$\stackrel{\pi}{0}$	$\overline{0}$ ट © U		${\underset{\sim}{\frac{y}{0}}}_{0}$	$\begin{aligned} & \text { o } \\ & \text { ou } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\infty}{\infty}$
7330	500	A	-	-	-	-	29
	500	B	-	-	-	-	118
	500	C	-	-	-	-	96
	500	D	-	-	-	-	383
7350	500	A	6	32	12	3	28
	500	B	6	32	12	3	111
	500	C	6	16	48	3	26
	500	D	6	64	16	3	331

A 16 parameters recorded every 15 minutes B 16 parameters recorded hourly
C 4 parameters recorded every 15 minutes
D 4 parameters recorded every hour

Data and event logging (ION7330, ION7350)

Ships with a comprehensive data-logging configuration. Data is prioritised and stored onboard in nonvolatile memory to eliminate data gaps in the event of outages or server downtime. Retrieved data is stored in an ODBCcompliant database when using ION Enterprise. Logs various power system data such as energy and demand, or the average power system quantity used over a period of time (Historic Mean Log). Standard memory capacity for both meters is 304 kilobytes. Default logging depth is set for 930 records. - Historic log: record any combination of measurements at scheduled intervals by setpoints or logic conditions. Configure for up to 30 days of recording capacity at 15 minute intervals. Default depth of 930, interval of 900 seconds (15 minutes).
\square Min/Max log: on any parameter, over any time interval (e.g. daily, monthly). Easily record other values coinciding with the new minimum or maximum. Defaults: min and max for all basic power parameters.
\square Report Generator log (EgyDmd Log): Default depth and interval.
■ Sag/Swell log (ION7350 only): Detect sags, swells on any voltage channel and record instantaneous values and waveforms. Depth of 100; interval triggered on demand.

- Event log: Depth of 50; nterval triggered on demand.

Time of use (TOU)
2-year internal calendar with up to 15 daily tariff profiles. Programmable triggers.Separate energy and demand accumulators.
Event priorities and alarming
Configurable event priorities allow you to define alarm conditions. Sequence-of-events time-stamped to $\pm 10 \mathrm{~ms}$ accuracy. Time-stamped record of all configuration changes, setpoint and min/max events.

Inputs and outputs

All meter models: four digital outputs, one infrared data port, one configurable LED output. Four digital status inputs standard on ION7330 and ION7350 meters. Optional analogue I/O ports can be used to monitor flow rates, RPM, fluid levels, oil pressures and transformer temperatures. Output real-time power to an RTU or perform equipment control operations.

Type	Input/ output	Specifications
Solid state relays	4 Form A digital outputs: D1-D4	Maximum voltage: 30 V dc ; maximum current: 80 mA ; isolation: optical; continuous or pulse signals
Digital Self-excited (internal 30 V dc supply)	4 inputs (option): S1-S4	Self-excited (internal 30 VDC supply). Min pulse width: 25 ms . Max. transition rate: 40 transitions per second $(20 \mathrm{~Hz})$.
Analogue $(\text { option })^{1}$	4 inputs: All to Al 4	Accuracy $\pm 0.3 \%$ of full-scale; update rate 1 Hz ; max. common mode voltage 30 V . $0-20 \mathrm{~mA}$ (scalable to $4-20 \mathrm{~mA}$) option: input impedance 25Ω, maximum source impedance 500Ω. 0-1 mA option: input impedance 475Ω, maximum source impedance 10 $\mathrm{k} \Omega$.
	4 outputs: A1 to A4	Accuracy $\pm 0.3 \%$ of full-scale; channel to channel isolation: none. Max. common mode voltage: 30 V . $0-20 \mathrm{~mA}$ (scalable to 4-20 mA) option: max. Ioad drive capability 500Ω. 0-1 mA option: max. Ioad drive capability $10 \mathrm{k} \Omega$.

[^30]
EtherGate and ModemGate

The meters can provide gateway functionality depending on communication options.

EtherGate: provides access from an Ethernet network using Modbus TCP protocol to devices connected to the meter's serial ports.
ModemGate: provides access from the telephone network to devices connected to the meter's serial ports.

Internet connectivity

XML: to integrate with custom reporting, spreadsheet, database, and other applications.
WebMeter: an on-board web server, provides access to real-time values and PQ data through any web-enabled device and even supports basic meter configuration tasks.
MeterM@il: automatically emails user-configured, high-priority alarm notifications or scheduled system-status update messages to anyone, anywhere within the facility or around the world.

Communications

Multiple communication ports that operate simultaneously allow the meters to be used as part of a power and energy management system and to interface with other automation systems. Upload waveforms, alarms, billing data, and more to software for viewing and analysis.

Port	Specifications
RS-485 ports	ION7300 has a single RS-485 port. ION7330 and ION7350 meters can have two RS-485 ports. Supports DNP 3.0
Infrared data port	Front panel optical port. Compatible with an ANSI Type 2 magnetic optical communications coupler. Data rates up to 19,200 bps.
Ethernet port (optional)	Optional 10Base-T port for direct access to metering information via Ethernet LAN/WAN. EtherGate (data transfer between Ethernet and RS-485). ${ }^{1}$
PROFIBUS port (optional ION7300 only)	PROFIBUS DP standard protocol support via sub-D 9 pin female connector.
Internal modem	Data rates from 300 bps to 33,600 bps. RJ-11 connector, ModemGate (data transfer between modem and RS-485).
(ION7330, ION7350)	Compatible with power monitoring software that supports Modbus RTU, ION or DNP 3.0. The ION7350 meter is offered with a call- back feature for quick alarm response.

1 The meter COM2 port functions as a dedicated EtherGate port (RS-485 Master) on ION7330 and ION7350 meters with the Ethernet option 2 The meter COM1 port functions as a dedicated ModemGate port (RS-485 Master) on ION7330 and ION7350 meters with the internal modem option

Software integration

PowerLogic ION7330 and ION7350 can communicate via multiple protocols to extend existing Modbus, DNP or ION Enterprise networks. Logs and realtime values are available via Modbus. Meters supported by UTS MV-90® via serial and Ethernet. Integrate within PowerLogic facility-level or enterprisewide power and energy management systems. Real-time data and data logs stored onboard can be automatically retrieved on a scheduled basis for analysis at the system level. Compatible with PowerLogic ION Enterprise and PowerLogic ION Setup.

Special features

Flash-based firmware allows upgrades via communications without removing the meter from the site. Simply download the latest firmware from www.powerlogic.com.

General specifications

Description	Specifications
Accuracy	IEC 60687 class 0.5S; ANSI C12.16; ANSI class 10, (5 A nominal, 10 A max); OFGEM approved (UK)
Safety/construction	IEC 1010-1; CE marked; UL: Certified to UL 3111; CAN/CSA C22.2 No.1010-1
Electromagnetic compatibility	EN 55014-1:1993; EN 61000-4-4; EN 60687:1993 for immunity to electromagnetic HF fields; EN 60687:1993 for immunity to electrostatic discharges. Analog I/O: each analog I/O pin passes IEC 61000-4-4 (4 kVp-p @ 2.5 kHz for 1 min).
Surge withstand	All inputs pass ANSI/IEEE C37.90-1989 surge withstand and fast transient tests
Environmental conditions	Operation: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$ ambient air; Storage: $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$ Humidity: 5% to 95 \% non-condensing; FCC: Part15, FCC Rules for Class A Digital Device (emissions)

Features and options	ION7300	$10 N 7330$	ION7350
Metering			
Power, energy and demand	\square	\square	\square
Power quality			
Dip/swell monitoring			\square
Harmonics: individual, even, odd, up to	15th	15th	31 st
Sampling rate, maximum samples per cycle	32	32	64
Logging and recording			
Standard memory		300 kB	300 kB
Min/max logging for any parameter	\square	\square	\square
Historical logs, maximum \# of channels		32	96
Waveform logs, maximum \# of cycles			48
Timestamp resolution in seconds		0.001	0.001
Communications and I/O			
RS-485 ports	1	2	2
Ethernet/infrared optical ports	1/1	1/1	1/1
Internal modem		1	1
PROFIBUS DP port	1		
DNP 3.0 through serial, modem, and i/r ports		\square	\square
Modbus RTU slave on serial, modem, and i/r ports	\square	\square	\square
Modbus TCP through Ethernet port	\square	\square	\square
EtherGate data transfer between Ethernet \& RS-485		\square	\square
ModemGate data transfer between internal modem \& RS-485		■	\square
MeterM@il, logged data alarms via email ${ }^{1}$		\square	\square
WebMeter, onboard web server	\square	■	■
Analog inputs/analog outputs	4/4	4/4	4/4
Digital status inputs/counter		4	4
Digital relay outputs	4	4	4
Setpoints, alarming, and control			
Setpoints, number/minimum response time		1 sec	1 sec
Math, logic, trig, log, linearisation formulas		\square	\square
Single \& multi-condition alarms		\square	\square
Call-out on alarms			\square
Other metering functions			
MV-90 on serial, Ethernet ports		\square	\square
Multi-year scheduling: hourly activity profiles		■	\square

The 2007 award recognizes Schneider Electric for its technological advancements and wide product range in the field of power quality (PQ) and energy management solutions. In total, this is the fourth award that Schneider Electric and [recently acquired] Power Measurement have received from Frost \& Sullivan in recognition of achievements in this arena. Prithvi Raj, Frost \& Sullivan research analyst

Please contact your local sales representative for ordering information.

Visit www.powerlogic.com for more information on other PowerLogic products, applications and system solutions.

1 ION7330 and ION7350 models only

Schneider Electric
35 Rue Joseph Monier
CS 30323
92506 Rueil Malmaison Cedex
Tel : +33 (0)1 41297000
www.schneider-electric.com www.powerlogic.com

PLSED106015EN 01-2010 ART\# 821267
© 2010 - Schneider Electric - All rights reserved

As standards, specifications and designs develop over time, always ask for confirmation of the information given in this publication. ION, ION Enterprise, Modbus, and PowerLogic are either trademarks or registered trademarks of Schneider Electric. All other trademarks are property of their respective owners.

Publishing: Schneider Electric Production: Schneider Electric PMC Printing: Imprimerie du Pont de Claix - made in France

FAIRFIELD WATER RECLAMATION PLANT

PHASE FAILURE RELAY

1. PHASE FAILURE RELAY TECHNICAL DETAILS

Features

Three-phase, three or four-wire Adjustable set point Adjustable time delay Internal differential LED trip indication Double-pole relay contacts Automatic reset

Benefits

Monitoring of correct phase rotation
Protects against phantom or
regenerated phase voltage
Protection against phase loss, reversal or sequence
Under-voltage and unbalanced voltage monitoring
Prevents reverse rotation of motor driven equipment

Ensures correct engine rotation
Protects portable electrical equipment
Nuisance tripping avoidance

Applications

Marine panels
Switchgear
Distribution systems
Generator sets
Control panels
Process control
Motor protection
Transformers
Overload protection

250 Series DIN-rail and Wall Mounted Relays

Phase Balance

The 250 series phase balance protector module provides continuous surveillance of a three-phase, three- or four-wire system and monitors the correct phase rotation or sequence of three-phase supply systems. The module protects against phase loss, reversal or sequence, phase unbalance and system under-voltage.

Operation

Rotating machines are particularly vulnerable to incorrect phase sequence. Threephase motors can rotate in the wrong direction, potentially leading to physical damage or the risk of injury to personnel, yet voltage and current readings may appear normal. If one phase is lost because of a blown fuse, electric motors can continue to operate (single-phasing) which can result in severe electrical or mechanical damage. This relay has the added advantage that it will detect the phantom or regenerated phase that can be caused by a single-phase failure on some equipment or when running motors at low load levels.

An unbalanced supply voltage can lead to temperature rises in motors. An unbalanced voltage as little as 10% can increase operating temperature to 150% of normal. For permanent installations, this relay should be used to monitor the incoming supply, protecting all equipment against incorrect connection at initial installation or after maintenance work. Rotating machines that cannot tolerate reverse rotation or pose significant risk to personnel under this condition should be individually protected with this relay. The possibility of incorrect supply connection is much more likely in portable equipment or marine applications.

The protector continuously monitors the three-phase supply. With the correct phase sequence applied and all three voltages balanced within the required limits, the front panel LED will illuminate and the output relay will be energised. An incorrect sequence, missing phase, out of balance or under-voltage condition will de-energise the relay and the LED will be extinguished.

The set point control allows adjustment of the voltage matching between 5% and 15%. The time delay function operates only for the voltage unbalance condition. The delay can be used to prevent nuisance tripping due to short term unbalance situations. Incorrect phase rotation, a missing phase or an under-voltage condition trip the relay immediately.

Product Codes

Relay	Protection	ANSI no.	Cat. no.
3-phase 3- or 4-wire	Phase loss and unbalance 5-15\%	47	252-PSF
3-phase 3- or 4-wire	Phase loss, unbalance and under-voltage 5-15\%	$47 / 27$	252-PSG

Please specify system voltage, frequency and required options at time of ordering.

Specification - Phase Balance

Nominal voltage	$110 \mathrm{~V}, 120 \mathrm{~V}, 208 \mathrm{~V}, 220 \mathrm{~V}, 230 \mathrm{~V}, 240 \mathrm{~V}, 277 \mathrm{~V}$, $380 \mathrm{~V}, 400 \mathrm{~V}, 415 \mathrm{~V}, 440 \mathrm{~V}$ or 480 V
System frequency	50 or 60 Hz
Voltage burden	3VA approx.
Overload	$1.2 \times$ rating continuously, $1.5 \times$ rating for $10 \times$ seconds
Set point repeatability	$>0.5 \%$ of full span
Under-voltage set point	Pre-set at 15% of nominal voltage. Other values 10 to 30% to order (model 252-PSG only)
Trip level adjustment	Phase unbalance adjustable 5 to 15\%
Time delay	10 seconds as standard. Up to 30 seconds available
Auxiliary voltage burden	4VA (max)
Output relay	2-pole change over
Relay contact rating	AC: 240V 5A, non inductive DC: 24V 5A resistive
Relay mechanical life	0.2 million operations at rated loads
Relay reset	Automatic
Operating temperature	$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{C}\right.$ to $+40^{\circ} \mathrm{C}$ for UL models)
Storage temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Temperature co-efficient	0.05\% per ${ }^{\circ} \mathrm{C}$
Interference immunity	Electrical stress surge withstand and non-function to ANSI/IEEE C37 90a
Enclosure style	DIN-rail with wall mounting facility
Material	Flame retardant polycarbonate/ABS
Enclosure integrity	IP50
Model 252 dimensions	55 mm (2.2") wide $\times 70 \mathrm{~mm}$ (2.8") high x 112mm (4.4") deep
Weight	0.4Kg approx.

Dimensions

Model 252

Connections

252-PSF Relay 252-PSG

Note: Neutral connection not required.

FAIRFIELD WATER RECLAMATION PLANT

PUSHBUTTON \& INDICATORS

1. PUSHBUTTON \& INDICATORS TECHNICAL DETAILS

The easy selection guide: for Australia's top selling push button range

Schneider
 3 Electric

Australia's top selling push button range

The Telemecanique Harmony range offers a wide variety of products used in domestic, commercial and industrial applications. The Harmony Range is the smart and easy choice for your control and signalling requirements.

The extensive range provides unrivalled performance through demonstrated reliability in all types of environments. Indoor or outdoor, corrosive or harsh, these products consistently provide efficient operation under any condition.

Gain from the benefits of using the Harmony range of products - easy and time-saving installation, reinforced protection and high performance.

Australia's top selling push buttons, pilot lights and selector switches gives a full array of quality interface solutions for all aspects of electrical control.
-

Built 30\% to last brighter
 to select

The extreme robustness of Harmony ranges ensures functional efficiency and reduced maintenance.

Compliant with strict international standards, the Harmony range of products are tested and guaranteed for safety, reliability and resistance to mechanical shock and vibration.

With LED high-intensity and true colours, Harmony push buttons, pilot lights and selector switches stand out with quality that is clearly visible.

Unequalled brightness and vivid displays enable the operator to know the exact status of a machine or installation.

This new selection guide makes choosing the right product simpler and easier.

Showcasing the wide range of options, features and applications of the Harmony range, it enables you to quickly select products with ease.

Schneider 3 Electric

Designed to help you make the right choice

This guide has been designed to help you make the right choice for push buttons, selector switches and pilot lights.

Once you have selected the style of product required, simply follow the two steps.

It's that easy.

With this guide, selecting the best solution is easy

SELECT THE BODY:
■ Pre-assembled body kits

- Custom body kits
- Optional / Additional accessories (contact blocks, boots)

NON ILLUMINATED	PAGE 4
ILLUMINATED LED	PAGE 6
ILLUMINATED BA9 BULB	PAGE 8

SELECT THE HEAD:
■ Push buttons
■ Selector / Key Switches

- Pilot Lights

\square ?

Select a Pre-assembled body kit, then additional accessories if required

PRE-
 ASSEMBLED BODY KITS

Each kit includes:
■ Metal collar ■ Contact block

Need more functionality?
No problem: simply add more contact blocks to suit your requirement.

METAL COLLAR + CONTACT BLOCK

DESCRIPTION	TYPE OF CONTACT	REF.
METAL COLLAR	$1 N / O$	ZB4BZ101
	$1 N / C$	ZB4BZ102
	$2 N / O$	ZB4BZ103
	$2 N / C$	ZB4BZ104

ADDITIONAL CONTACT BLOCKS (OPTIONAL)

DESCRIPTION	CONTACT RATING	TYPE OF CONTACT	REF.
SINGLE CONTACT BLOCK	3 A 250 VAC,0.55 A 125 VDC	1N/O	ZBE101
		1N/C	ZBE102
DOUBLE CONTACT BLOCK	3 A 250 VAC,0.55 A 125 VDC	2N/O	ZBE203
		2N/C	ZBE204
		$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	ZBE205
SPECIAL CONTACTBLOCK(for low power switching)	0.1A 24VDC	$1 \mathrm{~N} / \mathrm{O}$	ZBE1016
		1N/C	ZBE1026

You can add more contact blocks to Pre-assembled Body Kits

Need extra PROTECTION?

ADDITIONAL PUSH BUTTON BOOTS (OPTIONAL)

DESCRIPTION	FOR USE WITH PUSH BUTTON TYPE (WITH CIRCULAR HEAD)	REF.
CLEAR SINGLE BOOTS	FLUSH	ZBPA
	PROJECTING	ZBPO

STHP 2

Now select either a Push Button, Selector/Key Switch or Emergency Stop Head

PUSH BUTTONS

■ Spring Return
■ Available in Marked and Unmarked

SELECTOR \& KEY SWITCHES
■ Selector Switches (available in Standard and Long handle)
■ Key Switches

EMERGENCY STOP PUSH BUTTON

■ Available in RED ONLY

PUSH BUTTON
SPRING RETURN - MARKED

TYPE	MARKING TEXT	REF.
FLUSH	I	ZB4BA331
	START	ZB4BA333
	ON	ZB4BA341
	\bigcirc	ZB4BA432
	STOP	ZB4BA434
	OFF	ZB4BA435
	\uparrow	ZB4BA334
	\uparrow	ZB4BA335
PROJECTING	\bigcirc	ZB4BL432
	STOP	ZB4BL434
	OFF	ZB4BL435
DOUBLE HEADED	1	ZB4BL9434
	0	

PUSH BUTTON
SPRING RETURN - UNMARKED

$\left.$| COLOUR | FLUSH | PROJECTING | | BOOTED
 COLOURED) | RECESSED |
| :---: | :---: | :---: | :---: | :---: | :---: | | MUSHROOM |
| :---: |
| ©40mm | \right\rvert\,

SELECTOR / KEY SWITCHES

NUMBER \& TYPE OF POSITION	2 - STAY PUT	2-SPRING RETURN FROM RIGHT TO LEFT	3 - STAY PUT	$\begin{aligned} & \text { 3- SPRING } \\ & \text { RETURN } \\ & \text { TO CENTRE } \end{aligned}$	3 - SPRING RETURN FROM LEFT TO GENTRE	$\begin{gathered} \text { 3-SPRING } \\ \text { RETURN FROM } \\ \text { RIGHT TO CENTRE } \end{gathered}$
Selector Switch STD HANDLE	ZB4BD2	ZB4BD4	ZB4BD3	ZB4BD5	ZB4BD7	ZB4BD8
Selector Switch LONG HANDLE	ZB4BJ2	ZB4BJ4	ZB4BJ3	ZB4BJ5	ZB4BJ7	ZB4BJ8
	$\text { \& } \mathrm{ZB4BG} 2$	2 ZB4BG6	$\sqrt[8]{8}$ ZB4BG0 $\sqrt[8]{2}$ ZB4BG3 \Downarrow ZB4BG5 \downarrow ZB4BG9	$\sqrt{8}$ ZB4BG7	\downarrow ZB4BG1	$\begin{aligned} & \sqrt[8]{8} \text { ZB4BG8 } \\ & \text { ZB4BG08 } \end{aligned}$

EMERGENCY STOP PUSH BUTTON

DIAMETER	TURN TO RELEASE	PUSH-PULL	KEY RELEASE
30 mm	ZB4BS44	-	-
40 mm	ZB4BS54	ZB4BT4	ZB4BS14
40 mm (Trigger Action)	ZB4BS844	-	ZB4BS944
60 mm	ZB4BS64	ZB4BX4	ZB4BS24

Select a Pre-assembled Body Kit or Customise your own Body Kit

PRE-
 ASSEMBLED BODY KITS

Each kit includes:

- Metal collar - LED light source ■ Contact block

Need more functionality? No problem: simply add more contact blocks to suit your requirement.

CUSTOM BODY KITS

Select the components you need to suit your specification:

- Greater flexibility

METAL COLLAR + LED LIGHT SOURCE + CONTACT BLOCK

DESCRIPTION	SUPPLY VOLTAGE	colour	1N/O	1N/C	1N/O + 1N/C
METAL COLLAR CONTACT ${ }^{+}$BLOCK LED $\stackrel{+}{\text { LIGHT }}$ SOURCE	24VAC/DC	White	ZB4BW0B11	-	ZB4BW0B15
		Green	ZB4BW0B31	-	ZB4BW0B35
		Red	ZB4BW0B41	ZB4BW0B42	ZB4BW0B45
		Orange	ZB4BW0B51	-	ZB4BWOB55
		Blue	ZB4BW0B61	-	ZB4BWOB65
	48..120VAC	White	ZB4BWOG11	-	ZB4BW0G15
		Green	ZB4BWOG31	-	ZB4BW0G35
		Red	ZB4BW0G41	ZB4BWOG42	ZB4BW0G45
		Orange	ZB4BWOG51	-	ZB4BWOG55
		Blue	ZB4BW0G61	-	ZB4BW0G65
	230..240VAC	White	ZB4BWOM11	-	ZB4BW0M15
		Green	ZB4BW0M31	-	ZB4BW0M35
		Red	ZB4BW0M41	ZB4BW0M42	ZB4BWOM45
		Orange	ZB4BW0M51	-	ZB4BW0M55
		Blue	ZB4BW0M61	-	ZB4BW0M65

You can add more contact blocks to Pre-assembled Body Kits

Now select either a Push Button, Selector Switch or Pilot Light Head

PUSH BUTTONS

Available in:

- Spring Return
- Latching

SELECTOR SWITCHES
$■$ Standard handle

PUSH BUTTON - SPRING RETURN

COLOUR	FLUSH	PROJECTING	MUSHROOM Ø40mm
White	ZB4BW313	ZB4BW113	ZB4BW413
Green	ZB4BW333	ZB4BW133	ZB4BW433
Red	ZB4BW343	ZB4BW143	ZB4BW443
Orange	ZB4BW353	ZB4BW153	ZB4BW453
Blue	ZB4BW363	ZB4BW163	ZB4BW463

PUSH BUTTON - LATCHING

FLUSH	PROJECTING	mUSHROOM PUSH-PULL
$Z B 4 B H 013$	ZB4BH13	-
$Z B 4 B H 033$	ZB4BH33	-
ZB4BH043	ZB4BH43	ZB4BW643
$Z B 4 B H 053$	ZB4BH53	-
$Z B 4 B H 063$	ZB4BH63	-

SELECTOR SWITCHES

NUMBER \& TYPE OF Position	2 - STAY PUT	2 - SPRING RETURN FROM RIGHT TO LEFT	3 - STAY PUT	$\begin{aligned} & \text { 3- SPRING } \\ & \text { RETURN TO } \\ & \text { CENTRE } \end{aligned}$	$\begin{aligned} & \text { 3- SPRING } \\ & \text { RETURN FROM } \\ & \text { LEFT TO CENTRE } \end{aligned}$	$\begin{gathered} \text { 3-SPRING } \\ \text { RETURN FROM } \\ \text { RIGHT TO CENTRE } \end{gathered}$
White	ZB4BK1213	ZB4BK1413	ZB4BK1313	ZB4BK1513	ZB4BK1713	ZB4BK1813
Green	ZB4BK1233	ZB4BK1433	ZB4BK1333	ZB4BK1533	ZB4BK1733	ZB4BK1833
Red	ZB4BK1243	ZB4BK1443	ZB4BK1343	ZB4BK1543	ZB4BK1743	ZB4BK1843
Orange	ZB4BK1253	ZB4BK1453	ZB4BK1353	ZB4BK1553	ZB4BK1753	ZB4BK1853
Blue	ZB4BK1263	ZB4BK1463	ZB4BK1363	ZB4BK1563	ZB4BK1763	ZB4BK1863

PILOT LIGHTS

CLEAR SINGLE BOOTS (OPTIONAL)

(For use with circular head push button)

TYPE OF	REF.
HEAD	
FLUSH	ZBPA
PROJECTING	ZBPO
FLUSH OR PROJECTING IN FOOD INDUSTRY APPLICATION	ZBPOA

PILOT LIGHT - HEAD ONLY

colour	REF.
White	ZB4BV013
Green	ZB4BV033
Red	ZB4BV043
Orange	ZB4BV053
Blue	ZB4BV063

FULLY ASSEMBLED PILOT LIGHT:
METAL COLLAR + LED LIGHT SOURCE + HEAD

LENS COLOUR	24V AC/DC	48..120V AC	$\mathbf{2 3 0 . . 2 4 0 V}$ AC
White	XB4BVB1	XB4BVG1	XB4BVM1
Green	XB4BVB3	XB4BVG3	XB4BVM3
Red	XB4BVB4	XB4BVG4	XB4BVM4
Yellow/Orange	XB4BVB5	XB4BVG5	XB4BVM5
Blue	XB4BVB6	XB4BVG6	XB4BVM6

OR A SINGLE STEP

for a complete pilot light selection...
We've even got a range of fully-assembled pilot lights. Includes the metal collar + LED light source + pilot light head: just add an optional contact block to suit your requirement.

Metal Eody with BA9 Buib IIfuminati

SHAP 1

Select a Push Button Body Kit or Pilot Light Body Kit

PUSH BUTTON BODY KITS

■ DC supply

- AC supply via Integral Transformer

PILOT LIGHT BODY KITS

■ DC supply
■ AC supply via Integral Transformer

Need more functionality or protection accessories? No problem: simply add contact block or boot to suits your requirement.

PUSH BUTTON BODIES

LICHT SOURCE	SUPPLY VOLTAGE	TYPE OF CONTACT	REF.
DC SUPPLY (Bulb NOT Included)	$\leq 250 \mathrm{~V}$	$1 \mathrm{~N} / \mathrm{O}$	ZB4BW061
		1N/C	ZB4BW062
		2N/O	ZB4BW063
		$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	ZB4BW065
AC SUPPLY, VIA INTEGRAL TRANSFORMER 1.2VA, 6V SEC (Bulb Included)	$\begin{gathered} \sim 110 . .120 \mathrm{~V} \\ 50 / 60 \mathrm{HZ} \end{gathered}$	$1 \mathrm{~N} / \mathrm{O}$	ZB4BW031
		$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	ZB4BW035
	$\sim 230 \mathrm{~V} 50 \mathrm{~Hz}$	$1 \mathrm{~N} / \mathrm{O}$	ZB4BW041
	$\sim 220 . .240 \mathrm{~V} 60 \mathrm{~Hz}$	$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	ZB4BW045
	$\sim 400 \mathrm{v} 50 \mathrm{~Hz}$	$1 \mathrm{~N} / \mathrm{O}$	ZB4BW051
		$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	ZB4BW055

PILOT LIGHT BODIES

LIGHT SOURCE	SUPPLY VOLTAGE	REF.
DC SUPPLY (Bulb NOT Included)	$\leq 250 \mathrm{~V}$	ZB4BV6
AC SUPPLY, VIA INTEGRAL TRANSFORMER 1.2VA, 6V SEC (Bulb Included)	$\sim 110 . .120 \mathrm{~V} 50 / 60 \mathrm{HZ}$	ZB4BV3
	$\sim 230 . .24050 / 60 \mathrm{~Hz}$	ZB4BV4

You can add more contact blocks to Pre-assembled Body Kits

ADDITIONAL CONTACT BLOCKS

DESCRIPTION	CONTAGT RATING	TYPE OF CONTAGT	REF.
SINGLE CONTACTBLOCK	3 A 250 VAC,0.55 A 125 VDC	1N/O	ZBE101
		1N/C	ZBE102
DOUBLE CONTACTBLOCK	3A 250VAC,0.55 A 125 VDC	2N/O	ZBE203
		2N/C	ZBE204
		$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	ZBE205
SPECIAL CONTACT BLOCK (for low power switching)	0.1A 24VDC	$1 \mathrm{~N} / \mathrm{O}$	ZBE1016
		1N/C	ZBE1026

CLEAR SINGLE BOOTS (OPTIONAL)
(For use with circular head push button)

TYPE OF	REF.
HEAD	FLUSH
ZBPA	
PROJECTING FLUSH OR	ZBPO
PROJECTING IN FOD INDUSTRY APPLICATION	ZBPOA

STIPP 2

Now select either a Push Button or Pilot Light Head

PUSH BUTTONS

■ Illuminated for BA9s Bulb

PILOT LIGHTS

- Illuminated for BA9s Bulb

PUSH BUTTON - SPRING RETURN

COLOUR	FLUSH	PROJECTING
White	ZB4BW31	ZB4BW11
Green	ZB4BW33	ZB4BW13
Red	ZB4BW34	ZB4BW14
Orange	ZB4BW35	ZB4BW15
Blue	ZB4BW36	ZB4BW16

PILOT LIGHT

COLOUR	REF.
White	ZB4BV01
Green	ZB4BV03
Red	ZB4BV04
Orange	ZB4BV05
Blue	ZB4BV06

BA9 BULB

Required for DC supply body kits.

If you have selected the direct supply option for either the push button or pilot light body kits, select a BA9 incandescent bulb supply voltage that best suited for the job.

Plastic urody with no illumination

SHAP 1

Select a Pre-assembled body kit, then addilitional accessories if required

PRE-
 ASSEMBLED BODY KITS

Each kit includes:

- Plastic collar
- Contact block

Need more functionality?
No problem: simply add more contact blocks to suit your requirement.

PLASTIC COLLAR + CONTACT BLOCK

DESCRIPTION	TYPE OF CONTAGT	REF.
PLASTIC COLLAR + CONTACT BLOCK	$1 N / O$	ZB5BZ101
	$1 N / C$	ZB5BZ102
	$2 N / O$	ZB5BZ103

ADDITIONAL CONTACT BLOCKS (OPTIONAL)

DESCRIPTION	CONTACT RATING	TYPE OF CONTACT	REF.
SINGLECONTACT BLOCK	3A 250VAC,0.55 A 125 VDC	$1 \mathrm{~N} / \mathrm{O}$	ZBE101
		1N/C	ZBE102
DOUBLE CONTACT BLOCK	3A 250VAC,0.55 A 125 VDC	2N/O	ZBE203
		2N/C	ZBE204
		$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	ZBE205
SPECIAL CONTACT BLOCK (for low power switching)	0.1A 24VDC	$1 \mathrm{~N} / \mathrm{O}$	ZBE1016
		1N/C	ZBE1026

OR A SINGLE STEP

for complete push button and selector switch selection...

> Flush push button:
> Head (spring return,
> unmarked) + Plastic
> Collar + Contact Block
> Selector Switch:
> Head (2 position, stay put, standard handle) + Plastic Collar + Contact Block

STHP 2

Now select either a Push Button, Selector/Key Switch or Emergency Stop Head

PUSH BUTTONS

- Spring Return
- Available in Marked and Unmarked

SELECTOR, KEY \& TOGGLE SWITCHES

■ Selector Switches (available in Standard and Long handle)
\square Key Switches
■ Toggle Switches

MUSHROOM HEAD PUSH BUTTON

- Available in RED ONLY

■ Latching Head

PUSH BUTTON
SPRING RETURN - MARKED

TYPE	MARKING TEXt	REF.
FLUSH	START	ZB5AA333
	STOP	ZB5AA434
	UP	ZB5AA343
	DOWN	ZB5AA344
	\uparrow	ZB5AA334
	\uparrow	ZB5AA335
DOUBLE	\uparrow	ZB5AL9434
	\bigcirc	

PUSH BUTTON
SPRING RETURN - UNMARKED

COLOUR	FLUSH	PROJECTING	MUSHROOM 640 mm	BOOTED (coloured)	DOUBLE HEADED
White	ZB5AA1	ZB5AL1	-	ZB5AP1S	-
Black	ZB5AA2	ZB5AL2	ZB5AC2	ZB5AP2S	-
Green	ZB5AA3	ZB5AL3	ZB5AC3	ZB5AP3S	ZB5AL9434
Red	ZB5AA4	ZB5AL4	ZB5AC4	ZB5AP4S	
Yellow	ZB5AA5	ZB5AL5	ZB5AC5	ZB5AP5S	-
Blue	ZB5AA6	ZB5AL6	ZB5AC6	ZB5AP6S	-

SELECTOR / KEY SWITCHES /TOGGLE SWITCHES

NUMBER \& TYPE OF POSITION	2 - STAY PUT	2-SPRING RETURN FROM RIGHT TO LEFT	3 - STAY PUT	3 - SPRING RETURN TO CENTRE	3-SPRING RETURN FROM LEFT TO CENTRE	$\begin{gathered} 3 \text { - SPRING } \\ \text { RETURN FROM } \\ \text { RIGHT TO CENTRE } \end{gathered}$
Selector Switch STD HANDLE	ZB5AD2	ZB5AD4	ZB5AD3	ZB5AD5	ZB5AD7	ZB5AD8
Selector Switch LONG HANDLE	ZB5AJ2	ZB5AJ4	ZB5AJ3	ZB5AJ5	ZB5AJ7	ZB5AJ8
Key Switch $8^{\left(n^{\circ} 455\right)}$ key withdrawal position.	ZB5AG2 ZB5AG4	2 ZB5AG6	ZB5AGO $\sqrt[3]{ }$ ZB5AG3	-8\% ZB5AG7	\downarrow ZB5AG1	$\sqrt{5}$ ZB5AG8 \downarrow ZB5AG08
Toggle Switch bLK LEVER	ZB5AD28	ZB5AD48	-	-	-	

MUSHROOM HEAD FOR LATCHING PUSH BUTTON

DIAMETER	TURN TO RELEASE	PUSH-PULL	KEY RELEASE
30 mm	ZB5AS44	-	-
40 mm	ZB5AS54	ZB5AT4	ZB5AS14
40 mm (Trigger Action)	ZB5AS844	-	ZB5AS944
60 mm	ZB5AS64	ZB5AX4	ZB5AS24

Select a Pre-assembled Body Kit or Customise your own Body Kit

PRE-
 ASSEMBLED BODY KITS

Each kit includes:

- Plastic collar - LED light source - Contact block

Need more functionality? No problem: simply add more contact blocks to suit your requirement.

CUSTOM BODY KITS

Select the components you need to suit your specification:

- Greater flexibility

PLASTIC COLLAR + LED LIGHT SOURCE + CONTACT BLOCK

DESCRIPTION	SUPPLY VOLTAGE	COLOUR	1N/O	1N/C
PLASTIC COLLAR CONTACT ${ }^{+}$BLOCK LED LIGHT SOURCE	24VAC/DC	White	ZB5ZW0B11	-
		Green	ZB5AW0B31	-
		Red	-	ZB5AWOB42
		Orange	ZB5AW0B51	-
		Blue	ZB5AW0B61	-
	48..120VAC	White	ZB5AW0G11	-
		Green	ZB5AW0G31	
		Red	-	ZB5AW0G42
		Orange	ZB5AW0G51	-
		Blue	ZB5AW0G61	-
	230..240VAC	White	ZB5AW0M11	-
		Green	ZB5AW0M31	-
		Red	-	ZB5AW0M42
		Orange	ZB5AW0M51	-
		Blue	ZB5AW0M61	-

CONTACT BLOCKS

DESC.	CONTACT RATING	TYPE OF CONTAGT	REF.
SINGLE CONTACT BLOCK	$\begin{gathered} \text { 3A } 250 \mathrm{VAC}, \\ 0.55 \mathrm{~A} \\ 125 \mathrm{VDC} \end{gathered}$	$1 \mathrm{~N} / \mathrm{O}$	ZBE101
		1N/C	ZBE102
$\begin{aligned} & \text { DOUBLE } \\ & \text { CONTACT } \\ & \text { BLOCK } \end{aligned}$	$\begin{gathered} 3 \mathrm{~A} 250 \mathrm{VAC}, \\ 0.55 \mathrm{~A} \\ 125 \mathrm{VDC} \end{gathered}$	2N/O	ZBE203
		2N/C	ZBE204
		$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	ZBE205
SPECIAL CONTACT BLOCK switching)	$\begin{gathered} 0.1 \mathrm{~A} \\ 24 \mathrm{VDC} \end{gathered}$	$1 \mathrm{~N} / \mathrm{O}$	ZBE1016
		1N/C	ZBE1026

Now select either a Push Button, Selector Switch or Pilot Light Head

PUSH BUTTONS

Available in:
■ Spring Return
■ Latching

OR
 SELECTOR SWITCHES

■ Standard handle

PILOT LIGHTS

CLEAR SINGLE BOOTS (OPTIONAL)
(For use with circular head push button)

TYPE OF	
HEAD	REF.
FLUSH	ZBPA
PROJECTING	ZBPO
FLUSH OR PROJECTING IN FOOD INDUSTRY APPLICATION	ZBPOA

PUSH BUTTON - SPRING RETURN PUSH BUTTON - LATCHING

COLOUR	FLUSH	PROJECTING
White	ZB5AW313	ZB5AW113
Green	ZB5AW333	ZB5AW133
Red	ZB5AW343	ZB5AW143
Orange	ZB5AW353	ZB5AW153
Blue	ZB5AW363	ZB5AW163

FLUSH	PROJECTING	MUSHROOM の40mm (TURN TO RELEASE)
ZB5AH013	ZB5AH13	ZB5AW713
ZB5AH033	ZB5AH33	ZB5AW733
ZB5AH043	ZB5AH43	ZB5AW743
ZB5AH053	ZB5AH53	ZB5AW753
ZB5AH063	ZB5AH63	ZB5AW763

SELECTOR SWITCHES

NUMBER \& TYPE OF position	2 - STAY PUT	$\begin{aligned} & \text { 2- SPRING } \\ & \text { RETURN FOM } \\ & \text { RIGHT TO LEFT } \end{aligned}$	3 - STAY PUT	$\begin{aligned} & \text { 3- SPRING } \\ & \text { RETURN TO } \\ & \text { CENTRE } \end{aligned}$	$\begin{aligned} & \text { 3-SPRING } \\ & \text { RETURN FROM } \\ & \text { LEFT TO GENTRE } \end{aligned}$	$\begin{gathered} \text { 3-SPRING } \\ \text { RETURN FROM } \\ \text { RIGHT TO CENTRE } \end{gathered}$
White	ZB5AK1213	ZB5AK1413	ZB5AK1313	ZB5AK1513	ZB5AK1713	ZB5AK1813
Green	ZB5AK1233	ZB5AK1433	ZB5AK1333	ZB5AK1533	ZB5AK1733	ZB5AK1833
Red	ZB5AK1243	ZB5AK1443	ZB5AK1343	ZB5AK1543	ZB5AK1743	ZB5AK1843
Orange	ZB5AK1253	ZB5AK1453	ZB5AK1353	ZB5AK1553	ZB5AK1753	ZB5AK1853
Blue	ZB5AK1263	ZB5AK1463	ZB5AK1363	ZB5AK1563	ZB5AK1763	ZB5AK1863

PILOT LIGHT - HEAD ONLY

OR A SINGLE STEP

for a complete pilot light selection...
We've even got a range of fully-assembled pilot lights. Includes the plastic collar + LED light source + pilot light head: just add an
optional contact block to
suit your requirement.

Select a Push Button Body Kit or Pilot Light Body Kit

PUSH BUTTON BODY KITS

■ DC supply

- AC supply via Integral Transformer

PILOT LIGHT BODY KITS

■ DC supply
■ AC supply via Integral Transformer

Need more functionality or protection accessories? No problem: simply add contact block or boots to suits your requirement.

PUSH BUTTON BODIES

LICHT SOURCE	SUPPLY VOLTAGE	TYPE OF CONTACT	REF.
DC SUPPLY (BULB NOT INCLUDED)	<250V	$1 \mathrm{~N} / \mathrm{O}$	ZB5AW061
		1N/C	ZB5AW062
		2N/O	ZB5AW063
		$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	ZB5AW065
AC SUPPLY, VIA INTEGRAL TRANSFORMER 1.2VA, 6 V SEC (BULB INCLUDED)	$\begin{gathered} \sim 110.120 \mathrm{~V} \\ 50 / 60 \mathrm{HZ} \end{gathered}$	$1 \mathrm{~N} / \mathrm{O}$	ZB5AW031
		$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	ZB5AW035
	$\sim 230 \mathrm{~V} 50 \mathrm{~Hz}$	$1 \mathrm{~N} / \mathrm{O}$	ZB5AW041
	$\sim 220 . .240 \mathrm{~V} 60 \mathrm{~Hz}$	$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	ZB5AW045
	$\sim 400 \mathrm{v} 50 \mathrm{~Hz}$	$1 \mathrm{~N} / \mathrm{O}$	ZB5AW051
		$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	ZB5AW055

PILOT LIGHT BODIES

LIGHT SOURCE	SUPPLY VOLTAGE	REF.
DC SUPPLY (BULB NOT INCLUDED)	$\leq 250 \mathrm{~V}$	ZB5AV6
AC SUPPLY, VIA INTEGRAL TRANNSFORMER 1.2VA, 6V SEC (BULB INCLUDED)	$\sim 110 . .120 \mathrm{~V} 50 / 60 \mathrm{HZ}$	ZB5AV3
	$\sim 440 . .480 \mathrm{~V} 60 \mathrm{~Hz}$	ZB5AV8

You can add more contact blocks to Pre-assembled Body Kits

ADDITIONAL CONTACT BLOCKS

DESCRIPTION	CONTACT RATING	TYPE OF CONTACT	REF.
$\begin{aligned} & \text { SINGLE CONTACT } \\ & \text { BLOCK } \end{aligned}$	$\begin{gathered} \text { 3A 250VAC, } \\ 0.55 \mathrm{~A} 125 \mathrm{VDC} \end{gathered}$	1N/O	ZBE101
		1N/C	ZBE102
DOUBLE CONTACTBLOCK	3A 250VAC,0.55 A 125 VDC	2N/O	ZBE203
		2N/C	ZBE204
		$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	ZBE205
SPECIAL CONTACT BLOCK (for low power switching)	0.1A 24VDC	$1 \mathrm{~N} / \mathrm{O}$	ZBE1016
		1N/C	ZBE1026

CLEAR SINGLE BOOTS (OPTIONAL)
(For use with circular head push button)

TYPE OF HEAD	REF.
FLUSH	ZBPA
PROJECTING	ZBPO
FLUSH OR PROJECTING IN FOOD INDUSRY APPLICATION	ZBPOA

STHP 2

Now select either a Push Button, or Pilot Light Head

PUSH BUTTONS

■ Spring Return

PILOT

 LIGHTS■ Illuminated for BA9s Bulb

PUSH BUTTON - SPRING RETURN

COLOUR	FLUSH	PROJECTING
White	ZB5AW31	ZB5AW11
Green	ZB5AW33	ZB5AW13
Red	ZB5AW34	ZB5AW14
Orange	ZB5AW35	ZB5AW15
Blue	ZB5AW36	ZB5AW16

PILOT LIGHT

COLOUR	REF.
White	ZB5AV01
Green	ZB5AV03
Red	ZB5AV04
Orange	ZB5AV05
Blue	ZB5AV06

BA9 BULB

Required for DC supply body kits.

If you have selected the direct supply option for either the push button or pilot light body kits, select a BA9 incandescent bulb supply voltage that best suited for the job.

Schneider 3 Electric

Customer Service
Tel: 1300369233
Fax: 1300369288
Email: help@au.schneider-electric.com

www.schneider-electric.com.au

Schneider Electric (Australia) Pty Limited

Head Office

Postal Address:
Locked Bag 5500

FAIRFIELD WATER RECLAMATION PLANT

SELECTOR SWITCH

1. SELECTOR SWITCH TECHNICAL DETAILS

KRAUS \& NAIMER BLUE LINE SWITCHGEAR

Catalog 100

CL Switches 10 A-20 A
C, CA, CAD Switches 10 A-315 A L Switches 350 A-2400 A

KRAUS \& NAIMER

The development of the Blue Line rotary switch, contactor and motor starter product ranges is based on more than seventy-five years experience by Kraus \& Naimer in the design and manufacture of electrical switchgear. Kraus \& Naimer pioneered the introduction of the cam operated rotary switch and continues to be recognized as the world leader in that product field.

BLUE LINE

Blue Line products are protected by numerous patents throughout the industrial world. They are built to national and international standards and designed to withstand adverse temperatures and climates.

Blue Line products are accepted and universally recognized for their quality and workmanship. They are supported by a worldwide sales and service organization.

The Kraus \& Naimer Registered Trademark
Φ

WORLDWIDE SYMBOL FOR QUALITY SWITCHGEAR

Disconnectors and Main Switches acc. to IEC 60947-3 see Catalog 500
Contents Page
Construction Data 2
Dimensions and
Nominal Ratings 3
How to order 4, 5
Switch Function and Configuration
CL Switches 10 A-20 A
C, CA and CAD Switches 10 A-315 A
ON/OFF Switches 6, 7
Double-throw Switches 8-10
General Application Switches 10
Coding Switches 11
Multi-step Switches 12-14
Voltmeter Switches 15-17
Ammeter Switches 17-19
Volt-ammeter Switches 19
Control Switches 19, 20
Motor Switches 21-23
L Switches 350 A-2400 A
ON/OFF Switches 24-26
Double-throw Switches 26, 27
Multi-step Switches 27, 28
Types of Mounting
Panel Mounting 29-33
Base Mounting 34
Wall Mounting 35
Escutcheon Plates 36, 37
Handles 38
International Standards and Approvals 39
Technical Data 40-43
Dimensions
Panel Mounting 44-48
Base Mounting 48, 49
Wall Mounting 50
Overall Switch Lengths 50, 51
Blue Line Switchgear:
Summary 52

Construction Data

The load switches of the C, CA, CAD and CL-series offer a solution for most cam switch applications. Different contact designs, contact materials and terminals allow for their use as control switches, instrumentation switches and motor control switches, as well as in electronic circuitry and in aggressive environments according to IEC 60947-3 and VDE 0660 part 107.

The stage is the basis for all switches and can be supplied with a maximum of 2 contacts. The terminals are accessible from the side. CA and CAD switches are supplied with open terminals to facilitate wiring and are protected against accidental finger contact according to EN 50274, VDE 0660 part 514 and BGV A2. Captive plus-minus terminal screws and integrated screwdriver guides also reduce wiring.

The switches of the new CL-series are supplied with IDC terminals (Insulation Displacement Connection) instead of the conventional screw type terminals. The stripping or preparation of the insulation is no longer required. Eliminate errors due to i.e., stripped end of the conductor too long or too short, incorrect sleeves used, sleeves crimped incorrectly or wrong crimping tool is used, terminal screws not tightened properly etc. The CL switches reduce installation time by $60 \%-70 \%$ compared to the screw type terminals. This translates to significant cost savings. For connecting 2 conductors to a terminal an additional screw terminal with plus-minus screw is available.
If a positive manual operation or a higher DC rating is required, many of these switches can be fitted with a snap action latching mechanism suffix "S" - to the switch type.
The cam-operated switches L350-L2000 are continuous current rated for off-load switching. They may be used to switch resistive or low inductive loads.

Special Contact Systems

CA4/CA4-1

High contact reliability by multiple cross-point contacts, electronic compatible, CA4 with 1μ and CA4-1 with 35μ gold plating

CAD11/CAD12

H-bridge with „cross-wire" contact system, high contact reliability also at lower voltages. CAD11 with gold-plated contacts, CAD12 with silver contact.

Type	Size	Possible Switching Angles	Max. No. of Stages
CA4, CA4-1	S00	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	9
CL4	S00	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	8
CA10-CA25	S0	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
CA10S-CA25S	S0	30°	on request
CAD11, CAD12	S0	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
CL10	S0	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	10
CA10B-CA25B	S1	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
C26, C32, C42	S1	$20^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
C26S, C32S, C42S	S1	60°	on request
C43, C80, C125	S2	$20^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
C315	S3	$20^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
L350/51, L630/31,	S2	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
L1000/01, L1250/51	S3	$30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$	12
L400, L600, L800,	S1200, L1600, L2000		

CA and CAD Switches

C Switches

L Switches

Above illustrates the standard terminal positions.

Nominal Ratings

How to order

Disconnectors and Main Switches according to IEC 60947-3 see Catalog 500
Three types of data (shown below) are required for ordering Blue Line cam-operated switches. Code numbers for ordering are shown in this catalog.

1. Type of Switch

The type of switch required may be easily selected by referring to the table on page 3 which shows the thermal current, power rating and dimensions of each switch. For further technical details, refer to pages 40-43. Variations of contacts and terminals are shown below.

2. Switch Function

The code numbers for standard switches shown on pages 6-28 indicate the switch function, escutcheon plate, handle and any optional extras.

Additional coding to modify type and color of handle and escutcheon plate is explained below.

3. Type of Mounting

Types of mounting are shown on pages 29-35. Catalog 101 describes enclosures and optional extras.

Specify the mounting code to indicate required mounting.

Type of Switch

Extending the switch type coding the following combinations will define:

Amendment	Definition
-1	with gold contacts ${ }^{1}$
-4	with quick connects
B	SO switches with latching mechanism size S1
C	S1 switches with latching mechanism size S2
L	with lockout-relay w/o manual release for std. sw.
M	with lockout-relay with manual release for std. sw.
X	with power failure release
Y	with power failure release and trip-free release
S	with snap action
R	with spring return latching mechanism

For switch types

CA10, CA11, CA10B, CA11B
CA4
CA10, CA11, CA20, CA25, CAD12
C26, C32
CA10, C26, C32, C42
C26, C32, C42
CA10, CA11, CA20, CA25, CAD12, C26, C32, C42
CA10, CA11, CA20
CA10, CA11, CA20, CA25, C26, C32,
C42 with 60° switching
CA10

Example: Coding for switch type CA10 with gold contacts is CA10-1.

Modification of Switches

The part number for switch function and options may be modified in cases where items are required other than standard. The modification may involve the escutcheon plate inscription, color combination of escutcheon plate and handle, type of escutcheon plate and handle or the optional extra.

Switch Size	Escutcheon Plate Frame	Handle	Escutcheon Plate Backing	Escutcheon Plate Lettering	Dash Number
S0, S1, S2, S3	electro-gray	electro-gray	brushed alu	black	-100
S0, S1, S2, S3	electro-gray	electro-gray	black	mat silver	-500
S00, S0, S1, S2, S3	black	black	brushed alu	black	-600
S00, S0, S1, S2, S3	black	black	black	mat silver	-700

How to order

Modification of Switches

Color combinations of escutcheon plate and handle
The standard switch consists of a transparent escutcheon plate with brushed aluminum backing and black inscription. The escutcheon plate frame is black as well as the handle. Page 4 shows further color combinations of escutcheon plate and handle which are available. The appropriate dash number must be substituted in the switch function coding to specify other color combinations as required.
Example: The complete coding for switch type CA10 with a 3 pole ON/OFF switch function, electro-gray handle and electro-gray escutcheon plate frame with brushed aluminum backing and black inscription which reads 0-1 is as follows: CA10 A202-100 E.
The following is a list of special programs for escutcheon plate and handle combinations. They may be obtained by specifying any one of the following two (2) digit dash numbers as a part of the overall dash number. It is still necessary to prefix these two digit numbers with the first digit which represents the color combination desired.

Special programs for escutcheon plate and handle combinations
-000 = without escutcheon plate, without handle

- . 01 = without escutcheon plate
- $.02=$ without handle
-. 03 = with square escutcheon plate without lettering
-. $04=$ with rectangular escutcheon plate without lettering
- $.05=$ with square escutcheon plate without lettering and without handle
- $.06=$ with rectangular escutcheon plate without lettering and without handle
- . 07 = standard escutcheon plate, without lettering on rectangular section
- $.08=$ with F-handle
- $.09=$ with P-handle
-. 10 = escutcheon plate with frame and fixation ring only (if using switches with single hole mounting:-.16)
- . 11 = without escutcheon plate, but with handle bearing plate
-. 12 = with yellow escutcheon plate backing and red handle
- .14 = with B-handle
-. 16 = escutcheon plate with frame and fixation ring only, if using switches with single hole mounting
-. 17 = standard escutcheon plate and rectangular add-on escutcheon plate, if using switches with single hole mounting FT2

Example: The complete coding for switch type CA10 with a 3 pole ON/OFF switch function with electro-gray escutcheon plate frame, square escutcheon plate without lettering, brushed aluminum plate backing and electro-gray handle reads as follows: CA10 A202-103 E.

Handles, Escutcheon Plates and Optional Extras

The handles for standard switches shown on pages 6-28 are suitable for mounting units with four hole mounting. Alternative types of handles available are illustrated on pages 29-35.
When a handle, escutcheon plate or optional extra is required but not covered by the dash number, the code number for the selected component should be entered separately. A comprehensive range of available standard escutcheon plates is illustrated on pages 36 and 37. Non-standard or special escutcheon plate engravings are available at extra cost.
The large number of optional extras and enclosures is covered in Catalog 101.

Switch Size

Blue Line switches are available in sizes S00, S0, S1, S2 and S3. These size codes indicate the dimensions of the mounting, the escutcheon plate and the handle, as well as the size of optional devices and enclosures.
Page 3 lists these sizes and the various switch types they include.

Ordering of Special Switches and Escutcheon Plates

When ordering special switches and escutcheon plates it is advisable to use our order form, as illustrated. The customer's requirements are shown in blue as an example.

For technical reasons, it may not be possible to follow the sequence of contacts requested by the customer. The final contact development which is sent with every switch will show the customer's original terminal markings.

Order forms are available on request.

ON／OFF Switches with 60° Switching

1 pole 2 pole 3 pole 3 pole 3 pole	with red handle with V850 padlock attachment		$\begin{aligned} & \text { b } \\ & \text { io } \\ & \text { ㅂ } \\ & \text { ㅂ } \end{aligned}$			$\begin{aligned} & \text { 包 } \\ & \text { 易 } \\ & \text { 日 } \\ & \text { b } \end{aligned}$	$\begin{aligned} & \text { A200-600 } \\ & \text { A201-600 } \\ & \text { A202-600 } \\ & \text { A202-626 } \\ & \text { A202-627 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	
4 pole 4 pole 5 pole 6 pole 7 pole 8 pole 8 pole 9 pole 10 pole 11 pole 12 pole	1 pole preclose $6^{\circ 1}$ 2 pole preclose $6^{\circ 1}$						A203－600 A653－600 A341－600 A342－600 A343－600 A344－600 A654－600 A345－600 A346－600 A347－600 A348－600	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 5 \\ & 5 \\ & 6 \\ & 6 \end{aligned}$	
1 pole 2 pole 3 pole 4 pole 4 pole 5 pole 6 pole 7 pole 8 pole 8 pole 9 pole 10 pole 11 pole 12 pole	1 pole preclose $6^{\circ 1}$ 2 pole preclose $6^{\circ 1}$			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			A200－620 A201－620 A202－620 A203－620 A653－620 A341－620 A342－620 A343－620 A344－620 A654－620 A345－620 A346－620 A347－620 A348－620	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 5 \\ & 5 \\ & 6 \\ & 6 \end{aligned}$	
1 pole 2 pole 3 pole 4 pole 4 pole 5 pole 6 pole	1 pole preclose $6^{\circ 1}$						A200－621 A201－621 A202－621 A203－621 A653－621 A341－621 A342－621	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	4 pole 1 pole preclose 6°
1 pole 2 pole 3 pole 4 pole 4 pole 5 pole 6 pole	1 pole preclose $6^{\circ 1}$	${ }^{\text {D }}$					A200－622 A201－622 A202－622 A203－622 A653－622 A341－622 A342－622	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	8 pole 2 pole preclose 6°
1 pole 2 pole 3 pole 4 pole 4 pole 5 pole 6 pole	1 pole preclose $6^{\circ 1}$						A200－623 A201－623 A202－623 A203－623 A653－623 A341－623 A342－623	1 1 2 2 2 3 3	
1 pole 2 pole 3 pole 4 pole 4 pole 5 pole 6 pole	1 pole preclose $6^{\circ 1}$					$\begin{aligned} & \square \\ & \square \end{aligned}$	A200－624 A201－624 A202－624 A203－624 A653－624 A341－624 A342－624	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	
1 pole 2 pole 3 pole 4 pole 4 pole 5 pole 6 pole	1 pole preclose $6^{\circ 1}$						A200－625 A201－625 A202－625 A203－625 A653－625 A341－625 A342－625	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	

			Type/Handle				
Function	Escutch. Plate	CA4 CA4-1 CL4	CAD.. CA10- CA10B- CA25 CA25B CL10	$\begin{aligned} & \mathrm{C} 26- \\ & \mathrm{C} 315 \end{aligned}$	Code	Stages	Connection Diagram

ON/OFF Switches with 90° Switching

ON/OFF Switches with 30° Switching

1 pole 2 pole 3 pole 4 pole	${ }^{\Phi} \begin{array}{ll}0 \\ \\ \\ \\ \\ \end{array}$		[$\begin{array}{\|l} \text { A100-600 } \\ \text { A101-600 } \\ \text { A102-600 } \\ \text { A103-600 } \end{array}$	1 1 2 2		1-4 pole
1 pole with spring return	${ }^{\Phi}$ Off on	¢	\square	\square	\square	A204-600	1		
2 pole with spring return		\square	\square	b	-	A205-600	1		
3 pole with spring return		6	\square	-	-	A206-600	2		
4 pole with spring return		\square	\square^{1}	b		A207-600	2	$1{ }^{6}$	e
1 pole with spring return	${ }^{\Phi} \quad 0$	\square	\square	的		A204-620	1		
2 pole with spring return	1	6	\square	-		A205-620	1		
3 pole with spring return		\square	\square	-		A206-620	2		
4 pole with spring return		¢	\square^{1}	-		A207-620	2		

${ }^{1}$ not available for switch type CA25

Double－throw Switches without „OFF＂ 60° Switching

1 pole 2 pole 3 pole 4 pole 4 pole 1 pole preclose $6^{\circ 3}$ 5 pole 6 pole 7 pole 8 pole 8 pole 2 pole preclose $6^{\circ 3}$ 9 pole 10 pole 11 pole 12 pole	${ }^{\infty} \vee^{1}$	\square \square 白 6 5 白 5 \square \square ■ \square^{2}	－ － 白 5 － 可 b ๑） ㅂ․ － － － \square^{4} \square^{4}	\square \square 5 5 5 5 \square \square 品 5 白 \square \square \square	6 0 6 6 0 0 0 0 6 6 6	A220－600 A221－600 A222－600 A223－600 A673－600 A369－600 A370－600 A371－600 A372－600 A972－600 A373－600 A374－600 A375－600 A376－600	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & \\ & 7 \\ & 8 \\ & 8 \\ & 9 \\ & 10 \\ & 11 \\ & 12 \end{aligned}$	6 and 7 pole 8 and 9 pole 8 pole 2 pole preclose 6° 10 and 11 pole $12 \text { pole }$

Double－throw Switches without „OFF＂with electrically isolated contacts

Double－throw Switches without „OFF＂ 30° Switching

[^31]| | | | Type／Handle | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Function | Escutch． Plate | CA4
 CA4－1
 CL4 | $\begin{aligned} & \text { CAD.. } \\ & \text { CA10- CA10B- } \\ & \text { CA25 C43 } \\ & \text { CL10 } \end{aligned}$ | $\begin{aligned} & \mathrm{C80} \\ & \mathrm{C} 315 \end{aligned}$ | Code | Stages | Connection Diagram |

Double－throw Switches with Center „OFF＂ 60° Switching

Double－throw Switches with Center „OFF＂ 90° Switching

Double－throw Switches with Center „OFF＂and electrically isolated contacts

1 pole 2 pole 3 pole 4 pole 4 pole 1 pole preclose $6^{\circ 3}$		$\begin{aligned} & \text { b } \\ & \text { 可 } \\ & \text { 可 } \\ & \text { 日 } \end{aligned}$	$\begin{aligned} & \text { b } \\ & \square \end{aligned}$		$\begin{aligned} & \text { b } \\ & \text { 可 } \\ & \text { 可 } \\ & \text { } \\ & \square \end{aligned}$	A710－600 A711－600 A712－600 A713－600 A963－600	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$		1－4 pole 4 pole 1 pole preclose 6°
1 pole with spring return 2 pole to center		$\begin{aligned} & \text { b } \\ & \text { b } \end{aligned}$	$\begin{aligned} & \text { bl } \\ & \text { bu } \end{aligned}$	$\begin{aligned} & \text { 맘 } \\ & \text { 品 } \end{aligned}$	\square^{2}	$\begin{aligned} & \text { A714-600 } \\ & \text { A715-600 } \end{aligned}$	1 2		1 and 2 pole

${ }^{1}$ switch type C315 with handle ${ }^{2}$ not available for switch type C315 ${ }^{3}$ for use in a three phase four－wire system with switched neutral

Double-throw Switches with Spring Return to Center

1 pole with spring return 2 pole to center 3 pole 1 pole 2 pole 3 pole		$\begin{aligned} & \square \\ & b \\ & \square \end{aligned}$	$\begin{aligned} & \square \\ & \square^{1} \\ & 1 \end{aligned}$	$\begin{aligned} & \square \\ & 5 \\ & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & \square^{2} \\ & \square^{3} \\ & \square^{4} \\ & \sigma^{2} \\ & 4 \end{aligned}$	A214-600 A215-600 A216-600 A214-620 A215-620 A216-620	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	
1 pole with spring return 2 pole from left to center 3 pole 1 pole 2 pole 3 pole		$\begin{aligned} & \square \\ & \square \end{aligned}$		$\begin{aligned} & \text { b } \\ & \text { b } \end{aligned}$		$\begin{aligned} & \text { A320-600 } \\ & \text { A321-600 } \\ & \text { A322-600 } \\ & \text { A320-621 } \\ & \text { A321-621 } \\ & \text { A322-621 } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	

General Application Switches

Coding Switches/Binary Code

			Type／Handle				
Function	Escutch． Plate	$\begin{array}{\|l\|l} \text { CA4 } \\ \text { CA4-1 } \\ \text { CL4 } \end{array}$	$\begin{aligned} & \text { CAD.. } \\ & \text { CA10- CA10B- } \\ & \text { CA25 C43 } \\ & \text { CL10 } \end{aligned}$	$\begin{aligned} & \text { C80- } \\ & \text { C315 } \end{aligned}$	Code	Stages	Connection Diagram

Multi－step Switches without „OFF＂

1 pole 3 Step 2 pole 3 pole 4 pole 5 pole 6 pole	\square		5 \square ㄷ．． b － 百	■ \square \square \square － \square	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	A230－600 A250－600 A270－600 A476－600 A484－600 A489－600	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 6 \\ & 8 \\ & 9 \end{aligned}$	
1 pole 4 Step 2 pole 3 pole 4 pole 5 pole 6 pole	${ }_{1}^{+}{ }^{2}-\sigma^{3}{ }_{4}$	6 6 6 6 6	$\begin{aligned} & \text { b } \\ & \square^{4} \end{aligned}$	$\begin{aligned} & \text { b } \\ & \text { b } \\ & \square \end{aligned}$	5 5 5 5 5 5 5 5 5 5	A231－600 A251－600 A271－600 A477－600 A485－600 A490－600	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \\ & 10 \\ & 12 \end{aligned}$	
1 pole 5 Step 2 pole 3 pole 4 pole		$\begin{aligned} & \text { b } \\ & \text { ㅂ } \\ & \text { ㅂ } \end{aligned}$	！ \square \square \square \square	$\begin{aligned} & \text { bo } \\ & \text { b } \\ & \text { b } \\ & \text { b } \end{aligned}$	$\begin{gathered} 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{gathered}$	$\begin{aligned} & \text { A232-600 } \\ & \text { A252-600 } \\ & \text { A272-600 } \\ & \text { A478-600 } \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 8 \\ & 10 \end{aligned}$	
1 pole 6 Step 2 pole 3 pole		$\begin{aligned} & \text { 『 } \\ & \square^{2} \\ & \square^{2} \end{aligned}$	$\begin{aligned} & \text { b } \\ & \text { b } \\ & \text { b } \end{aligned}$	$\begin{aligned} & \text { b } \\ & \text { b } \\ & \text { b } \end{aligned}$	$\begin{gathered} \text { b } \\ \substack{5 \\ 5 \\ 5 \\ 5} \end{gathered}$	$\begin{aligned} & \text { A233-600 } \\ & \text { A253-600 } \\ & \text { A273-600 } \end{aligned}$	$\begin{aligned} & 3 \\ & 6 \\ & 9 \end{aligned}$	
1 pole 7 Step 2 pole 3 pole	［ ${ }^{+}$	$\begin{aligned} & \text { 맘 } \\ & \text { b } \end{aligned}$	$\begin{aligned} & \text { b } \\ & \square^{4} \\ & \square^{4} \end{aligned}$	$\begin{aligned} & \text { ㅁ } \\ & \square \\ & \square \\ & \square \end{aligned}$	$\begin{gathered} 5 \\ \substack{5 \\ 5 \\ 5 \\ 5} \\ \hline 5 \end{gathered}$	$\begin{aligned} & \text { A234-600 } \\ & \text { A254-600 } \\ & \text { A274-600 } \end{aligned}$	$\begin{aligned} & 4 \\ & 7 \\ & 11 \end{aligned}$	
1 pole 8 Step 2 pole 3 pole	为 ${ }^{+}$		$\begin{aligned} & \square \\ & \square^{4} \\ & \square^{4} \end{aligned}$	$\begin{aligned} & \text { b } \\ & \text { b } \\ & \text { b } \end{aligned}$	$\begin{gathered} 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{gathered}$	$\begin{aligned} & \text { A235-600 } \\ & \text { A255-600 } \\ & \text { A275-600 } \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \\ & 12 \end{aligned}$	
1 pole 9 Step		\square	\square	可	\square	A236－600	5	
1 pole 10 Step		\square	\square	\square	\square	A237－600	5	
1 pole 11 Step		\square	\square	\square	\square	A238－600	6	
1 pole 12 Step 1 pole 360° rotation		\square	\square	$\begin{aligned} & \square^{3} \\ & \square^{3} \end{aligned}$	$\begin{aligned} & \Phi^{1} \\ & \sqsubseteq^{1} \end{aligned}$	$\begin{array}{\|l} \text { A239-600 } \\ \text { A639-600 } \end{array}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	

${ }^{1}$ switch type C315 with ${ }^{\circ}$ handle $\quad{ }^{2}$ not available for switch type CL4 ${ }^{3}$ not available for switch type CA11B $\quad{ }^{4}$ not available for switch type CL10

			Type/Handle				
Function	Escutch. Plate	CA4 CA4-1 CL4	$\begin{aligned} & \text { CAD.. } \\ & \text { CA10- CA10B- } \\ & \text { CA25 C43 } \\ & \text { CL10 } \end{aligned}$	$\begin{aligned} & \mathrm{C} 80- \\ & \mathrm{C} 315 \end{aligned}$	Code	Stages	Connection Diagram

Multi-step Switches without „OFF" with electrically isolated contacts

1 pole 3 Step 2 pole	$\begin{aligned} & x_{2}^{2} b^{3} \\ & 1^{3} \end{aligned}$	\square -	\square \square	- \square	\square \square	A730-600 A750-600	2 3	
1 pole 4 Step 2 pole	$\begin{aligned} & a_{2} 2_{2}^{3} \\ & 1^{3}-\sigma_{4} \end{aligned}$	\square \square		\square \square	\square \square	A731-600 A751-600	2 4	

Multi-step Switches with „OFF"

			Type/Handle				
Function	Escutch. Plate	CA4 CA4-1 CL4	$\begin{aligned} & \text { CAD.. } \\ & \text { CA10- CA10B- } \\ & \text { CA25 C43 } \\ & \text { CL10 } \end{aligned}$	$\begin{aligned} & \mathrm{C80} \\ & \mathrm{C} 315 \end{aligned}$	Code	Stages	Connection Diagram

Multi-step Switches with „OFF"

		Type／Handle				Code	Stages	Connection Diagram
Function	Escutch． Plate	CA4 CA4－1 CL4	$\begin{aligned} & \text { CA10- } \\ & \text { CA25 } \end{aligned}$	$\begin{aligned} & \text { CAD.. } \\ & \text { CL10 } \end{aligned}$	CA10B－ CA25B			

Voltmeter Switches without „OFF＂

3 phase 3 wire		\square \square	\square \square	\square \square	\square \square	$\begin{aligned} & \text { A023-600 } \\ & \text { A023-620 } \end{aligned}$	2 2	$2 \circ \text { V-4 }$
3 phase 3 wire 3 phase to phase and phase to neutral		－	\square \square	\square \square	\square \square	$\begin{aligned} & \text { A025-600 } \\ & \text { A025-620 } \end{aligned}$	3 3	$1 \circ-3$

Voltmeter Switches with „OFF＂

$\begin{aligned} & 2 \text { pole } \\ & 360^{\circ} \text { rotation } \end{aligned}$	\square	\square	西	豊	砉	A002－600	1		$2 \circ \text { (V) }-4$
3 phase 3 wire		\square	\square	\square	\square	A004－600	2		
		\square	㤟	㤟	㤟	A004－620	2		
		\square	㤟	㤟	豊	A004－621	2	$11 \rightarrow \square$	
		\square	\square	\square	－	A004－622	2	$\begin{array}{r} 0 \\ 175 \\ \hline \end{array}$	
		\square	\square	\square	\bigcirc	A004－623	2		
		\square	\square	\square	－	A004－624	2		
		\square	豊	㤟	㤟	A011－600	2		$20-6$

Function	Escutch． Plate	Type／Handle				Code	Stages	Connection Diagram
		CA4 CA4－1 CL4	$\begin{aligned} & \text { CA10- } \\ & \text { CA25 } \end{aligned}$	$\begin{aligned} & \text { CAD.. } \\ & \text { CL10 } \end{aligned}$	CA10B－ CA25B			

Voltmeter Switches with „OFF＂

3 phase to neutral		\square \square \square \square	豊 㻃 \square \square	豊 愚 \square －	睘 㻃 \square \square	A005－600 A005－620 A005－621 A005－622 A005－623	2 2 2 2 2 2	$2 \circ \text { (V) } 08$
3 phase to phase and 3 phase to neutral		\square \square \square \square \square \square	\square 農 娄 \square \square	㤟 豊 \square －	農 農 \square \square \square	A007－600 A007－620 A007－621 A007－622 A007－623 A007－624	3 3 3 3 3 3	$1 \circ(\mathrm{~V}-3$
2 separate 3 phase with center „OFF＂		\square \square \square \square	\square 㤟 豊 \square	\square 畏 带 \square	\square 震 雪 \square	A008－600 A008－620 A008－621 A008－622	4 4 4 4 4	$2 \circ \text { (V) }-10$

Voltmeter Switches with „OFF"

Ammeter Switches

Switch Function and Configuration
C，CA，CAD，CL Switches

			Type／Handle				
Function	Escutch． Plate	CA4 CA4－ CL4	$\begin{aligned} & \text { CAD.. } \\ & \text { CA10- CA10B- } \\ & \text { CA25 C42 } \\ & \text { CL10 } \end{aligned}$	$\begin{aligned} & \text { C43- } \\ & \text { C125 } \end{aligned}$	Code	Stages	Connection Diagram

Ammeter Switches

Single pole with 2 current transformers（3 readings）		5 白	豊 豊	豊		A021-600 A021－620	2	for CL switches： $1 \circ$－A－-3 $5 \circ$－A -3
Single pole with 4 current transformers		$\begin{gathered} \text { bl }^{1} \\ \text { CL4 } \\ \text { CL4 } \\ \sigma^{1} \end{gathered}$	$\begin{gathered} \square^{1} \\ \text { CL10 } \\ \text { 豊 }^{1} \\ \text { CL10 } \end{gathered}$	面		$\begin{aligned} & \text { A036-600 } \\ & \text { A056-600 } \\ & \text { A036-620 } \\ & \text { A056-620 } \end{aligned}$	4 4	$1 \circ$ A -5 $13 \circ$（A）-15
2 pole 2 current transformers		－ \square ■	G 睴 費	\square 曾 豊	\square \square	$\begin{aligned} & \text { A037-600 } \\ & \text { A037-620 } \\ & \text { A037-621 } \end{aligned}$	3 3 3	$1 \circ$（A）-8
2 pole 3 current transformers		\square	㻃 寒	曾		A019－600 A019－620	5	$3 \circ$－A1－-6 $17 \circ$－A2－-20 $8 \circ$－A3－-9
		\square^{1} \square^{1} \square^{1}	\square^{1} 贯 ${ }^{1}$ \square^{1}	－ 曾	\square \square G	$\begin{aligned} & \text { A038-600 } \\ & \text { A038-620 } \\ & \text { A038-621 } \end{aligned}$	5 5 5	$2 \circ$（A）-9
2 pole 4 current transformers		\square^{1} \square^{1}	\square^{1} 豊 ${ }^{1}$	问	－	$\begin{aligned} & \text { A039-600 } \\ & \text { A039-620 } \end{aligned}$	6	$2 \circ \text { (A) } \because 9$

			Type／Handle				
Function	Escutch． Plate	CA4 CA4－1 CL4	CAD． CA10－CA10B－ CA25 CA25B CL10	$\begin{aligned} & \mathrm{C} 26- \\ & \mathrm{C} 43 \end{aligned}$	Code	Stages	Connection Diagram

Volt－ammeter Switches

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
3 phase－phase to phase \\
3 current
\end{tabular} \& \& \[
\square^{1}
\]
CL4
\[
\square^{1}
\] \& \[
\begin{gathered}
\square^{1} \\
\text { CL10 } \\
\\
\square^{1}
\end{gathered}
\] \& \begin{tabular}{l}
－ \\
\(\square\)
\end{tabular} \& \begin{tabular}{l}
\(\square\) \\
\(\square\)
\end{tabular} \& \[
\begin{aligned}
\& \text { A027-600 } \\
\& \text { A057-600 } \\
\& \text { A028-600 }
\end{aligned}
\] \& 6

7 \&

\hline 3 phase voltage 3 phase current 4 wire \& \& \square \& 鄲 \& 厝 \& 酉 \& A033－600 \& 5 \&

\hline | 3 phase voltage |
| :--- |
| 3 phase current |
| 3 wire | \& \& \square \& 㻃 \& 寒 \& 器 \& A035－600 \& 5 \& | for CL switches： |
| :--- |
| 9＊－（A）$-11 * 17$ instead of 9 |
| $1 \circ-3$ |

\hline
\end{tabular}

Control Switches

Stop switch	$\Phi^{\Phi_{\text {surp }}}$	\square	\square	\square	\square	A174－600	1	$\text { stop } r \sum_{2}^{1}$
Start switch	$\underbrace{\infty}$	\bigcirc	\square	\square	\square	A175－600	1	$\underbrace{\text { STAART }}_{2} \mathrm{l}^{0^{1}}$
Stop start switch single pole		\square	\square	\square	\square	A176－600	1	
Stop start switch 2 pole		\square	\square	\square	\square	A183－600	2	
Stop start switch with spring return from start to run		\square	\square	0	b	A178-600 A178-620	1 1	
Stop start switch with spring return to run for 2 units		\square	\square \square	\square	\square \square	A177－600 A177－620	2 2	

Switch Function and Configuration

			Type	andle			
Function	Escutch. Plate	$\begin{aligned} & \text { CA4 } \\ & \text { CA4-1 } \\ & \text { CL44 } \end{aligned}$	$\begin{aligned} & \text { CAD.. } \\ & \text { CA10- } \\ & \text { CA25 } \\ & \text { CL10 } \end{aligned}$	$\begin{aligned} & \text { CA10B- C26 } \\ & \text { CA25B C32 } \end{aligned}$	Code	Stages	Connection Diagram

Control Switches

Stop start switch with spring return to run with contactor interlock contactors for 2 units			b	\square	■	A182-600 A182-620	2 2	
Motor voltage control switch		\square	0	5		A150-600	2	

Control Switches with electrically isolated contacts

Stop start switch single pole		\square	\square	\square	\square	A789-600	1	
Stop start switch with spring return to 1	0	\square	\square	\square	\square	A791-600	1	$\underbrace{0} \hat{1}_{\text {StaAT }} \frac{1}{2}_{1}^{y_{4}^{\prime}}$
Stop start switch with spring return to run for 2 units		\square	\square	\square	\square	A790-600	2	
Contactor control with spring return to „OFF"		\square \square	\square \square	\square \square	\square	A179-600 A179-620	2	
Circuit breaker control		\square	0	\bigcirc	5	A537-600	2	

Control and Alarm Switches ${ }^{1}$

		Type/Handle						
Function	Escutch. Plate	CA4 CA4CL4	$\begin{aligned} & \text { CAD.. } \\ & \text { CA10- } \\ & \text { CA25 } \\ & \text { CL10 } \end{aligned}$	$\begin{aligned} & \text { CA..B } \\ & \text { C26- } \\ & \text { C43 } \end{aligned}$	$\begin{aligned} & \mathrm{C} 80- \\ & \mathrm{C} 315 \end{aligned}$	Code	Stages	Connection Diagram

Motor Reversing Switches

Motor Control Switches

Motor Control Switches

2 speed single winding		\square	\square	\square \square		A440-600 A440-620	4 4	
2 speed single winding without „OFF"		\square	\square	\square	\square	A466-600	4	
2 speed single winding with center „OFF"		\square \square	\square	-		A441-600 A441-620	4 4	
2 speed single winding reversing		\square	\square	-		A442-600 A442-620	6 6	
2 speed single winding for use with contactors		\square	\square	-		$\begin{aligned} & \text { A444-600 } \\ & \text { A444-620 } \end{aligned}$	5 5	
2 speed reversing for 2 way operation with slip clutch for „OFF" load use			\square^{2} \square^{2}	-		$\begin{aligned} & \text { A468-600 } \\ & \text { A468-620 } \end{aligned}$	$\begin{aligned} & 10^{1} \\ & 10^{1} \end{aligned}$	

		Type/Handle						
Function	Escutch. Plate	CA4 CA4-1 CL4	CAD. CA10- CA25 CL10	$\begin{aligned} & \text { СА..B } \\ & \text { C26- } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { C80- } \\ & \text { C315 } \end{aligned}$	Code	Stages	Connection Diagram

Star-delta Switches

OFF-star-delta		\square \square	\square \square	\square	\square \square	$\begin{aligned} & \text { A410-600 } \\ & \text { A410-620 } \end{aligned}$	4 4	
Reversing		\square	\square	\square	\square	A413-600	5	
With auxiliary contact closed in „OFF" position	Br	\square	\square	\square	\square	A416-600	5	
For use with reversing contactors	$\left[\begin{array}{ll} 0 & Y \\ 0-b-\Delta \end{array}\right.$	\square^{1}	\square^{1}	\square	5°	A419-600	4	

Start and Run Switches

Split-phase start		\square \square	\square \square	\square \square		A425-600 A425-620	2 2	
Split-phase start reversing		\square \square	\square^{2} \square^{2}	6		A426-600 A426-620	3 3	
Split-phase reversing auto cutout of start field winding		\square	\square	\square	\square	A622-600	3	

Switch Function and Configuration
L Switches

Function/Type	Escutch. Plate	Handle	Code	Stages	Double Latching	Connection Diagram		L351 L631 L1001 L1251

ON/OFF Switches with 60° Switching

Switch Function and Configuration

Function/Type	Escutch. Plate	Handle	Code	Stages	Double Latching	Connection Diagram		L351 L631 L1001 L1251

ON/OFF Switches with 90° Switching

[^32]Additional length for switches size S 3 for mounting $\mathrm{E} / \mathrm{EF}=31,5 \mathrm{~mm}$ and mounting $\mathrm{ER} / \mathrm{VE}=20,1 \mathrm{~mm}$

Switch Function and Configuration

Function/Type	Escutch. Plate	Handle	Code	Stages	Double Latching	Connection Diagram		L351 L631 L1001 L1251

ON/OFF Switches with 90° Switching

$\begin{array}{ll} 1 \text { pole } & \text { L1600 } \\ 2 \text { pole } & \\ 3 \text { pole } & \end{array}$	(\%rr	$\frac{0}{5}$	$\begin{array}{\|l} \text { A290-600 } \\ \text { A291-600 } \\ \text { A292-600 } \end{array}$	$\begin{aligned} & 4 \\ & 8 \\ & 12 \end{aligned}$		$\begin{array}{ccc} 1 & 17 & 33 \\ 0 & b & 1 \\ 1 & \vdots & 1 \\ 1 & 1 \\ & 32 & 4 \end{array}$	1-3 pole
$\begin{aligned} & 1 \text { pole L2000 } \\ & 2 \text { pole } \end{aligned}$		$\underbrace{5}$	$\begin{aligned} & \text { A290-600 } \\ & \text { A291-600 } \end{aligned}$	$\begin{aligned} & 5 \\ & 10 \end{aligned}$		$\begin{array}{cc} 1 & 21 \\ 0 & 1_{0}^{1} \\ 1 & 1_{20}^{2} \end{array}$	1- and 2 pole

Double-throw Switches without „OFF" 60° Switching

1 pole 2 pole 3 pole 4 pole	L350/L351	${ }^{\Phi} \delta^{2}$	$\begin{aligned} & 5_{5}^{0} \\ & 5_{0}^{5} \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { A220-600 } \\ & \text { A221-600 } \\ & \text { A222-600 } \\ & \text { A223-600 } \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$		
1 pole 2 pole 3 pole 4 pole	L400		$\begin{aligned} & \sum_{5}^{5} \\ & 5_{5}^{5} \\ & 5_{5}^{5} \\ & 5 \end{aligned}$	$\begin{aligned} & \text { A220-600 } \\ & \text { A221-600 } \\ & \text { A222-600 } \\ & \text { A223-600 } \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$		
1 pole 2 pole 3 pole 4 pole	L600	${ }^{\infty}{ }^{1} \gamma^{2}$	$\begin{aligned} & 5_{0}^{0} \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { A220-600 } \\ & \text { A221-600 } \\ & \text { A222-600 } \\ & \text { A223-600 } \end{aligned}$	$\begin{aligned} & 3 \\ & 6 \\ & 9 \\ & 12 \end{aligned}$	0	
1 pole 2 pole 3 pole	L630/L631	${ }^{\Phi}{ }^{1} \gamma^{2}$	$\begin{aligned} & 5_{0}^{5} \\ & 5_{5}^{5} \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { A220-600 } \\ & \text { A221-600 } \\ & \text { A222-600 } \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \\ & 12 \end{aligned}$	-	
1 pole 2 pole 3 pole	L800	${ }^{\Phi} \gamma^{2}$		$\begin{aligned} & \text { A220-600 } \\ & \text { A221-600 } \\ & \text { A222-600 } \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \\ & 12 \end{aligned}$	-	
1 pole 2 pole	L1000/L1001	${ }^{\Phi} \gamma^{2}$	$\begin{aligned} & 5_{0}^{0} \\ & 5_{5}^{5} \\ & 5 \end{aligned}$	$\begin{aligned} & \text { A220-600 } \\ & \text { A221-600 } \end{aligned}$	$\begin{aligned} & 6 \\ & 12 \end{aligned}$	-	
1 pole	L1200	${ }^{\Phi}{ }^{1} \gamma^{2}$	5°	A220-600	6		$\left\{\begin{array}{c} 1 \\ \vdots \\ \vdots \\ 13 \\ 1_{2}^{13} \end{array}\right.$
1 pole	L1250/L1251	${ }^{\Phi}{ }^{1} \delta^{2}$	5°	A220-600	8		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 3 \\ & 3 \end{aligned}$
1 pole	L1600	${ }^{\Phi}{ }^{1}{ }^{2}$	5°	A220-600	8		$\}_{32}^{1} \quad 17$
1 pole	L2000		\square	A220-600	10		\oint_{18}^{1}

[^33]
Switch Function and Configuration

Function/Type	Escutch. Plate	Handle	Code	Stages	Double Latching	Connection Diagram		L351 L631 L1001 L1251

Double-throw Switches with Center „OFF"

1 pole 2 pole 3 pole 4 pole	L350/L351	$\begin{array}{\|lll} \hline & 0 \\ 1 & \gamma^{2} & 2 \\ & & \\ \hline \end{array}$	$\begin{aligned} & 5_{5}^{0} \\ & \text { 5 } \\ & \text { 5 } \\ & \text { 5 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { A210-600 } \\ & \text { A211-600 } \\ & \text { A212-600 } \\ & \text { A213-600 } \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$		
1 pole 2 pole 3 pole 4 pole	L400	$\left[\begin{array}{lll} \hline & 0 \\ 1 & y_{j} & 2 \\ & & \\ \hline \end{array}\right.$		A210-600 A211-600 A212-600 A213-600	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$		
1 pole 2 pole 3 pole 4 pole	L600	$\left[\begin{array}{lll} \$ & 0 \\ 1 & j^{2} & 2 \\ & & \\ & \end{array}\right.$	$\begin{aligned} & \text { 5 } \\ & 0 \\ & 5 \\ & 5 \end{aligned}$	A210-600 A211-600 A212-600 A213-600	$\begin{aligned} & 3 \\ & 6 \\ & 9 \\ & 12 \end{aligned}$	0	
1 pole 2 pole 3 pole	L630/L631	$\left[\begin{array}{lll} \hline & 0 \\ 1 & j^{2} & 2 \\ & & \\ \hline \end{array}\right.$		$\begin{aligned} & \text { A210-600 } \\ & \text { A211-600 } \\ & \text { A212-600 } \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \\ & 12 \end{aligned}$	-	
1 pole 2 pole 3 pole	L800	$\left[\begin{array}{lll} \hline \infty & 0 \\ { }^{1} & \gamma^{2} & 2 \\ & & \\ \hline \end{array}\right.$	$\begin{aligned} & 50 \\ & 5_{5}^{5} \\ & \text { E } \\ & \text { 兵 } \end{aligned}$	$\begin{aligned} & \text { A210-600 } \\ & \text { A211-600 } \\ & \text { A212-600 } \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \\ & 12 \end{aligned}$	-	
1 pole 2 pole	L1000/L1001	$\left[\begin{array}{lll} \hline & & 0 \\ 1 & \gamma^{2} & 2 \\ & & \\ \hline \end{array}\right.$	$\begin{aligned} & 5_{5}^{5} \\ & 5_{5}^{5} \end{aligned}$	$\begin{aligned} & \text { A210-600 } \\ & \text { A211-600 } \end{aligned}$	$\begin{aligned} & 6 \\ & 12 \end{aligned}$	-	
1 pole	L1200	$\left[\begin{array}{lll} \infty & & 0 \\ 1 & \gamma^{2} & 2 \\ & & \\ \hline \end{array}\right.$	0°	A210-600	6		$\begin{gathered} 13 \\ b \\ l_{24}^{1} \end{gathered}$
1 pole	L1250/L1251	$\left[\begin{array}{lll} \$ & 0 \\ 1 & \delta^{2} & 2 \\ & & \\ \hline \end{array}\right.$	5	A210-600	8		
1 pole	L1600	$\left[\begin{array}{lll} \$ & 0 \\ 1 & \gamma^{2} & 2 \\ & & \\ & \end{array}\right.$	5	A210-600	8		17 b $!$ 32
1 pole	L2000	$\left[\begin{array}{lll} \hline & 0 \\ 1 & j^{2} & 2 \\ & & \\ & \end{array}\right.$	\square	A210-600	10		29 b $!$ 18 18

Multi-step Switches single pole without „OFF"

3 Step	L350/L351	$\left[\begin{array}{l} 0 \\ 1-\sigma^{2} \end{array}\right.$	5°	A230-600	4	${ }_{10}^{2} \overbrace{4}^{2}$
3 Step	L400	$\left[\begin{array}{l} a_{2}^{2}-b^{3} \\ 1-2 \end{array}\right.$	5°	A230-600	4	${ }^{3}{ }^{3} \operatorname{cog}_{2} 0^{9}$
4 Step	L350/L351	$\left[{ }_{1}^{\alpha_{2}^{2}-\sigma^{3}}\right.$	5°	A231-600	4	$\stackrel{2}{2_{1} \overbrace{5} 0^{3}}$
4 Step	L400		5°	A231-600	4	$\stackrel{9 。 \circ_{11}^{11}}{10 \overbrace{2}^{\circ}}$
5 Step	L350/L351	$\left[\begin{array}{c} 0 \\ x_{2}^{2}-\sigma^{3}-4 \\ 5 \end{array}\right]$	5°	A232-600	6	

Additional length for switches size S2 for mounting E/EF = 27 mm
Additional length for switches size S3 for mounting $\mathrm{E} / \mathrm{EF}=31,5 \mathrm{~mm}$ and mounting $E R / V E=20,1 \mathrm{~mm}$

Switch Function and Configuration

Function/Type	Escutch. Plate	Handle	Code	Stages	Double Latching	Connection Diagram		

Multi-step Switches single pole without „OFF"

5 Step	L400		5°	A232-600	6	
6 Step	L350/L351		5°	A233-600	6	
6 Step	L400		5°	A233-600	6	
7 Step	L350/L351		5	A234-600	8	
7 Step	L400		5°	A234-600	8	
8 Step	L350/L351		5	A235-600	8	
8 Step	L400		5°	A235-600	8	
9 Step	L350/L351		5	A236-600	10	
9 Step	L400		5°	A236-600	10	
10 Step	L350/L351		5	A237-600	10	
10 Step	L400		5°	A237-600	10	
11 Step	L350/L351		5	A238-600	12	
11 Step	L400		5°	A238-600	12	
12 Step	L350/L351		5°	A239-600	12	
12 Step	L400		5°	A239-600	12	

| Two Hole Panel Mounting or Mosaic Mounting | Terminals
 rotated 90 | Code |
| :--- | :--- | :--- | | CA4 |
| :--- |
| CA4-1 |
| CL4 |

Mounting

C, CA, CAD, CL, L Switches

Two or Four Hole Panel Mounting	Terminals rotated 90°	Code	CAD.. CA10- CA25 CL10	$\begin{aligned} & \text { CA10B- } \\ & \text { C42 } \end{aligned}$	$\begin{aligned} & \hline \text { C43- } \\ & \text { C125 } \\ & \text { L350- } \\ & \text { L1251 } \\ & \text { Size S2 } \end{aligned}$	$\begin{aligned} & \text { C315 } \\ & \text { L400- } \\ & \text { L2000 } \\ & \text { Size S3 } \end{aligned}$

	Panel mounting						
	Four hole panel mounting		$\begin{aligned} & \mathrm{E} \\ & \mathrm{E}-\mathrm{V} \end{aligned}$		$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		
	Four hole panel mounting Protection IP 65		$\begin{aligned} & E F \\ & E F-V \end{aligned}$				
	Two hole panel mounting Protection IP 65		$\begin{aligned} & \text { E22 } \\ & \text { E22-V } \end{aligned}$				
	Panel mounting using larger escutcheon plate and handle and with heavy duty latching						
E99135	Four hole panel mounting		EG	-	$\begin{aligned} & \mathrm{C} 26- \\ & \mathrm{C} 42 \end{aligned}$	$\begin{aligned} & \mathrm{C} 80- \\ & \mathrm{C} 125 \end{aligned}$	
	Four hole panel mounting Protection IP 65		EGF	-	$\begin{aligned} & \mathrm{C} 26- \\ & \mathrm{C} 42 \end{aligned}$	$\begin{aligned} & \mathrm{C} 80- \\ & \mathrm{C} 125 \end{aligned}$	
	Panel and base mounting						
	Four hole mounting		ER	CAD.. CA10- CA25	\bigcirc	\bigcirc	\bigcirc
	Four hole mounting Protection IP 65		ERF	CAD. CA10- CA25	-	-	-

Mounting

C, CA, CAD, CL Switches

| Two or Four Hole Panel Mounting | Code | CAD..
 CA10B
 CA10-
 CA11B
 CA20B
 CA25
 CA25B
 CL10 | C32
 C42 | C43 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Mounting

C, CA, CAD, CL Switches

Single Hole Mounting	Terminals rotated 90	Code	CA4 CA4-1 CL4	CAD.. CA10- CA25 CL10

Mounting

C, CA, CAD, L Switches

Mounting
C, CA, CAD, L Switches

Base Mounting	Code	CA4 CA4-1	CAD.. CA10- CA25 CL10

Snap-on base mounting for track EN 50022 with escutcheon plate for 45 mm standard knock-out.

Snap-on base mounting for track EN 50022. Both the escutcheon plate for 45 mm standard knock-out and the handle are adjustable in height.

Snap-on base mounting for track EN 50022 with circular escutcheon plate for 46 mm knock-out.

Base mounting - four hole - for circular escutcheon plate with 46 mm knock-out.

C, CA, CAD Switches

Mounting Plates for Plaster Depth Boxes acc. to DIN 49070 and ÖNORM E6508	Code	CAD.. CA10- CA25

Escutcheon Plates

45° switching

															Voltmeter		volmeiter
${ }^{\phi_{0}} \gamma^{1}$	${ }^{\Phi}{ }^{1} \gamma^{0}$	${ }^{\Phi}{ }^{\Phi}{ }^{\mathbb{N}} \gamma^{\text {our }}$	${ }^{\Phi}{ }^{1} \delta^{2}{ }^{3}$	${ }^{\Phi_{\mathrm{R}}} V^{\mathrm{I}}$	${ }^{\Phi}{ }^{1} \gamma^{2}$	${ }^{\phi}{ }^{W}{ }^{\mathrm{w}} \mathrm{\sigma}^{\text {Off }}$	${ }^{\Phi}{ }^{1} V^{0 f F}{ }^{2}$		$\begin{array}{\|cc\|} \hline \text { RS } & \\ & \delta^{\text {ST }} \\ & <_{\text {TR }} \end{array}$		${ }^{\alpha_{r}}{ }_{0}-{ }^{1} b^{2}$	${ }_{0}^{\alpha_{1}}{ }_{0} \rightarrow^{2} \sigma^{3}$		$l_{\mathrm{off}}^{{ }^{\infty}-b^{2}}$	$\begin{aligned} & { }_{1.2 .2}^{2.3} \\ & 0.3-b^{3.1} \\ & 0 \end{aligned}$		${ }^{\Phi}{ }_{0 f f} 1^{2} \downarrow^{3}$
F215	F216	F295	F738	F742	F743	F744	F746	F747	F792	F793	F107	F109	F114	F115	F212	F213	F214
			${ }_{1_{2}{ }_{1}^{2} V^{3}}$	${ }^{\Phi_{\text {AUU }}}{ }_{0}^{1} \mho^{2}$					VOLTMETER $\$_{\text {RW }}$ WB OFF- OR		Voltmeter $\Phi_{\text {RN }}$ YN OFF ON	Volimeter Qin WN RN OFF- $\mathrm{C}^{\text {BN }}$	VOLTMEEER RSS RT STF STR	AMMEEER $\Phi_{\mathrm{R}} \mathrm{S}_{\mathrm{S}}$ OFF- O^{\top}		$l_{1.2}^{Q_{1.2}-\delta^{3.1}}$	$\begin{aligned} & \Phi_{\text {RS }}^{\text {ST }} \\ & \text { off }_{-} b^{\text {TR }} \end{aligned}$
F217	F267	F289	F330	F375	F376	F383	F408	F409	F410	F411	F412	F413	F426	F427	F430	F729	F752
		$\underbrace{\text { BR }}_{\begin{array}{l} \phi_{\text {RY }} \\ \text { OFF } \\ \text { YB } \end{array}}$					$\begin{aligned} & \Phi_{\mathrm{RW}} \text { WB } \\ & \text { OFF- }-\iota^{\text {BR }} \end{aligned}$		$\begin{aligned} & \begin{array}{l} \Phi_{\text {RN }} \mathrm{WN} \\ \text { OFF- } \end{array} \underbrace{\mathrm{BN}} \end{aligned}$	$\left[\begin{array}{l} \Phi_{1} \\ 2-\gamma_{0}^{1} \\ 2 \end{array}\right.$							
F775	F776	F777	F778	F779	F780	F781	F796	F797	F798	F105	F108	F112	F113	F117	F118	F293	F419
Volimeter													VOLTMEER	VOLTMEIER	Volimeter	Volimeter	Votmeter
		${ }_{1}^{Q_{2}} \succ^{3} \measuredangle^{4}{ }_{5}$															
F429	F739	F741	F789	F790	F791	F794	F795	F106	F110	F116	F294	F317	F414	F415	F416	F417	F418
F782	F783	F784	F785	F786	F787	F788	F799	F111	F210	F211	F284	F285	F296	F322	F727	F740	

Escutcheon Plates

60° S	witchin																
F070	$\underbrace{\sqrt{1}^{1} \gamma^{2}}_{\text {F072 }}$	F087			F133	GOVERNOR WAISE LOWER R F163	 F164	VOLTMEEER AMMETER OFF $\delta^{\text {ON }}$ F192	$\left.\begin{array}{c}\text { POWER FACTOR } \\ \text { MEIER } \\ \hline \text { OUT } \\ \hline \\ \hline\end{array}\right]$ F193	F196	F197	F198		SYNCHROSCOPE ${ }^{9}$ IN ${ }^{\text {IN }}$ F231	 F232	${ }^{\Phi_{\text {AUTO }}{ }^{\text {maN }}}$ F234	
F070	F072	F087	F088	F089	F133	F163	F164	F192	F193	F196	F197	F198	F230	F231	F232	F234	
${ }^{\Phi_{\text {SEIS }}}{ }^{\text {KaNNT }}$		${ }^{\Phi_{\text {DAG }}}{ }^{\text {NATT }}$			${ }^{0} \gamma^{1}$		$\begin{array}{\|cc\|} \hline \text { PROV DRIF } \\ \hline & \boxed{8} \\ & \\ \hline \end{array}$	$\left\lvert\, \begin{array}{\|c\|c\|} \hline \text { MANO AUTO } \\ \curlyvee & \\ \hline \end{array}\right.$	Φ	$\text { AUS }^{\text {UIN }}$			$\stackrel{\Phi_{\text {Manu. Auto }}}{ }$		$\left\|\begin{array}{c} \text { FRAN } \\ d \\ \\ d \end{array}\right\|$		
F244	F247	F257	F262	F263	F264	F268	F282	F288	F470	F291	F310	F311	F313	F323	F328	F352	F367
	$d^{\text {Auto }}$	Somucrwinter \checkmark	$\stackrel{\Phi_{\text {TRIP }}}{\diamond \text { Normal }}$	$\gamma^{\text {IfF }}$		$\succ^{\text {RIP RESE }}$	b^{2}	${ }^{\phi}{ }^{\phi} 0^{0}$	0^{2}	$\left.\right\|_{0} ^{\top} 1_{-}^{1} \gamma^{2}$	$\stackrel{\phi}{2}_{1^{2}-\gamma^{3}}$	d	${ }^{\phi_{r}}{ }_{0}^{0}$		${ }^{\Phi} \begin{array}{ll} \mathrm{T} & 0 \\ & \\ \hline \end{array}$	${ }^{\infty} \begin{array}{lll} 0 & 0 F F \\ & & 1 \end{array}$	$\begin{gathered} \text { START } \\ \mathrm{J}^{\text {ruNM }} \\ \hline \end{gathered}$
F379	F380	F382	F705	F721	F722	F750	F754	F071	F073	F075	F076	F080	F081	F085	F086	F090	F091
$\begin{array}{ll} \Phi \\ \text { stafit } \\ \text { off } \\ \text { RuN } \end{array}$	$\overbrace{\text { FOR }}^{\infty}$	0^{2}	$\left\lvert\, \begin{array}{ll} \phi & 1 \\ o \mathrm{lF}-\gamma^{2} \end{array}\right.$	$\left\lvert\, \begin{array}{lll} \hline \Phi & \text { OFF } & \\ \text { REV } & j_{2} & \\ \hline \end{array}\right.$							SElector AUTO Off HANO	$\begin{array}{\|cc} \hline \begin{array}{cc} \hline & \text { AUS } \\ \text { SOMMEPWINTER } \\ O \end{array} \end{array}$	${ }^{\Phi} \quad 0$	${ }^{\mathrm{Naf}} \mathrm{f} \text { auro }$			${ }^{\Phi}$
F092	F093	F094	F098	F104	F194	F220	F223	F235	F237	F239	F240	F241	F249	F260	F269	F469	F274
	${ }^{{ }^{P} 1} \underbrace{0}_{0}{ }^{\mathrm{P} 2}$	$\begin{array}{\|cc\|} \hline \text { SHORE } \\ \mathrm{O}^{\text {OFF }} \\ \text { GEN } \end{array}$	$\begin{array}{cc} \Phi \\ \text { mavu. } \\ \underset{\gamma}{\circ} \\ \text { Auto } \end{array}$			$\begin{array}{\|l\|l\|} \hline{ }^{9} \text { aUTO } & 0 \\ \text { Hand } \end{array}$	1	${ }^{\phi}$	$d^{\text {deN }}$	$d^{A N O}$	$\begin{aligned} & \Phi_{\text {EIN }} \\ & 0-\mathrm{C}^{\text {AuTO }} \end{aligned}$		$\begin{array}{ll} \hline \text { T } & 0 \\ \text { TAG }^{\text {NACHT }} \\ \sigma^{\prime} \end{array}$		$\begin{array}{ll} \Phi \\ \text { AUTO } & \text { AUS } \\ \delta^{\text {HNNO }} \end{array}$		
F281	F290	F292	F312	F314	F315	F316	F324	F331	F344	F354	F356	F357	F358	F359	F364	F370	F371
${ }_{\text {MAN }}^{\infty}{ }_{\mathrm{O}}^{\mathrm{j}} \text { AUTO }$	$\begin{aligned} & \left.\begin{array}{l} \Phi_{\text {PUMP BUNNER }} \\ \text { OFF- } \end{array} \right\rvert\, \end{aligned}$	SOMMEFIWNTER σ^{2}				$\left.\right\|^{4}{ }_{0}^{2}{ }^{3}$	$6^{3}{ }_{4}$	${ }_{0 \mathrm{of}-\gamma^{1} \gamma^{2}}$			$\begin{array}{ll} \Phi_{\text {AUF }} & \text { HaIT } \\ \text { AUUOO- }-\delta-z u \end{array}$	${ }^{\Phi}$	${ }_{\text {oist }}^{\Phi} \hat{\alpha}_{\mathrm{ov}}^{0}$				
F373	F377	F381	F385	F723	F732	F735	F077	F100	F101	F102	F309	F342	F343	F361	F362	F363	F365
	${ }_{2}^{\infty} \begin{array}{lll} 1 \\ 2 & & 0 \\ \alpha_{2} \end{array}$				$\left[\begin{array}{ll} \phi_{1} & \text { off } \\ { }_{2} & \delta_{1} \\ \alpha_{2} \end{array}\right.$						$\underbrace{\Phi}_{N}+\frac{1}{2}$				$\begin{array}{cccc} \Phi & 0 & \\ 2 & \underbrace{}_{0} & 1 \\ 1 & \alpha_{0} & 2 \\ & & \end{array}$		
	F074	F078	F082	F096	F097	F191	F195	F256	F325	F326	F720	F724	F079	F083	F084	F095	F099
90° switching																	
$\left[\begin{array}{cc} \hline \alpha & 1 \\ 0 & -1 \end{array}\right.$	$\begin{array}{\|ll} \hline & 0 \\ & 1 \\ & 1 \end{array}$	$\overbrace{\text { off- }}^{\Phi}$	$\begin{array}{l\|} \hline \text { Off } \\ \vdots-1 \end{array}$	$\underbrace{\infty}_{\text {AUS_- }}$		1 0 - HaUPISChaltre	$\begin{array}{\|c\|} \hline \text { Watimeler } \\ \hline \Phi \\ \hline \end{array}$				$\begin{array}{\|l\|l\|} \hline \text { OFF } \\ & \vdots-\mathrm{ON} \end{array}$	$\left[\begin{array}{rr} \hline & 2 \\ 1 & -1 \end{array}\right.$	$\left[\begin{array}{cc} \hline \alpha & \mathbb{N} \\ \mathrm{ur} & -\mathrm{b}^{2} \end{array}\right.$		$\begin{array}{ll} \Phi & 1 \\ & 1 \end{array}$		$\begin{array}{ll} \Phi & I \\ 0 & -1 \\ 0 \end{array}$
F056	F058 HAUPTSCHALTER	F063	F065	F068	F069	F134	F177	F178	F182	F201 AMMETER	F208 AMMETER	F251 TRANSFER	F252	F253	F254 AMMETER	F340	F346
	F378	$\underbrace{$$\infty$ 1 0 1 0 }$_{\text {F456 }}$	F458	$\underbrace{{ }^{0} \sigma^{1}}_{\text {F700 }}$	F743	F057	$0-0-\Delta$ F061	$\left[\begin{array}{cc} \Phi & \text { off } \\ 1 & -1 \\ 1 & -2 \end{array}\right.$ F064	F067	F171	$1-\frac{2}{0} \underbrace{2}$ F181	F205	F207		$\begin{array}{\|cc\|} \hline \Phi & \text { OFF } \\ 1 & -1 \\ \hline \end{array}$ F320	 F349	F715
$\left\|\begin{array}{cc} 9 & 2 \\ 1 & -1 \\ -1 & -3 \end{array}\right\|$																	
F719	F059	F060	F062	F066	F170	F172	F173	F174	F175	F176	F179	F180	F186	F188	F202	F204	F206
				F318	AMMEtER 9 1 4 \vdots 4 1 3 F327	 F338	 F339	 F425	 F716	 F717	F718			 F751		F756	F437
Miscellaneous																	
F119	F122		F126			$\underbrace{\substack{\Phi \\ 0 \text {, STAATT } \\ 0-0}}_{\text {F225 }}$				F341	F123	 F127	 F145	 F146			
$\underbrace{\substack{\Phi \\ 0 \\ 0 \\-\\-1 \\ \hline \\ \hline \\ \hline}}_{\text {F345 }}$	F706	 F707	F120	F121	F124	F128	F131	F132	F749							${ }_{\text {F990 }}{ }^{\Phi}$	F991
Cricur irickit	(texreavin		tegriol	Masif teif	Moror conrial	Spreecoonrou	Stector	VVotmeitr	6uveraor	AMMEIER	$)^{\text {Voumerir }}$	Watmerr		SmChrowze	Vammerir	Tempmerir	transfr
F801	F802	F803	F804	F805	F806	F807	F808	F809	F810	F811	F812	F813	F814	F815	F816	F817	F818
Ssmchinosome	PFitacter	1 ISALTOR	Haurschalim	Waliccialiee	manswich	Hwvositant	Sumarserme	Smamessmit		turvakrinm	ximuntienme	Mitravimin	Raprichat	votmerime	AMPRMEREE	Huorssumerime	
F819	F820	F821	F822	F823	F824	F825	F826	F827	F828	F829	F830	F831	F832	F833	F834	F835	

Handles

Type	Color	Code	Size S00 S0 S1 S2 S3

Type	Color	Code	Size S00 S0 S1 S2 S3

International Standards and Approvals

[^34]
Selection Data

CA4 CA4-1 CL4 CA10B CL10 CA11B CA20B CA25B C26 \quad C32 \quad C43 \quad C80 \quad C125 \quad C316

Rated Utilization Category		IEC 60947-3, EN 60947-3 VDE 0660 part 107		kW													
AC-2	Slip ring motor starting, reversing and plugging, star-delta starting CA4-C32	3 phase	$220 \mathrm{~V}-240 \mathrm{~V}$		2,54,5	$\begin{aligned} & 2,5 \\ & 4,5 \end{aligned}$	$\begin{aligned} & 4 \\ & 7,5 \end{aligned}$	4	4	5,5	7,5	8	10	18,5	30	37	55
		3 pole	$380 \mathrm{~V}-440 \mathrm{~V}$						7,5	11	15	15	18,5	30	45	55	90
			500 V		-	-	10	10	10	15	18,5	18,5	22	40	55	75	110
			660 V-690 V		-	-	10	10	10	13	15	15	22	37	55	55	55
AC-3	Direct-on-line starting, star-delta starting C42-C315	3 phase 3 pole	$220 \mathrm{~V}-240 \mathrm{~V}$	kW	1,5	1,5	3	3	3	4	5,5	5,5	7,5	11	15	22	37
			$380 \mathrm{~V}-440 \mathrm{~V}$		2,2	2,2	5,5	5,5	5,5	7,5	11	11	15	18,5	30	37	55
			500 V		-	-	5,5	5,5	5,5	7,5	11	11	15	18,5	30	37	55
			660 V-690 V		-	-	5,5	5,5	5,5	7,5	11	11	15	18,5	30	37	37
		1 phase 2 pole	110 V	kW	0,3	0,3	0,6	0,6	0,6	1,5	2,2	2,2	2,5	3	3,7	5,5	11
			$220 \mathrm{~V}-240 \mathrm{~V}$		0,55	0,55	2,2	2,2	2,2	3	4	4	5,5	6	7,5	11	22
			$380 \mathrm{~V}-440 \mathrm{~V}$		0,75	0,75	3	3	3	3,7	5,5	5,5	7,5	11	13	18,5	30
AC-4	Direct-on-line starting, reversing, plugging and inching	3 phase 3 pole	$220 \mathrm{~V}-240 \mathrm{~V}$	kW	0,37	0,37	0,55	0,55	0,55	1,5	2,5	2,7	3,7	5,5	6	10	15
			$380 \mathrm{~V}-440 \mathrm{~V}$		0,55	0,55	1,5	1,5	1,5	3	5,5	5,5	6	7,5	11	15	25
			500 V		-	-	1,5	1,5	1,5	3	5,5	5,5	6	7,5	11	15	25
			660 V-690 V		-	-	1,5	1,5	1,5	3	5,5	5,5	6	7,5	11	15	22
		1 phase	110 V	kW	0,15	0,15	0,3	0,3	0,3	0,45	0,75	0,75	1,1	1,2	1,5	2,2	4
		2 pole	$220 \mathrm{~V}-240 \mathrm{~V}$		0,25	0,25	0,75	0,75	0,75	1,1	1,5	1,5	2,2	2,4	3	4	7,5
			$380 \mathrm{~V}-440 \mathrm{~V}$		0,5	0,5	1,5	1,5	1,5	2,2	3	3	3,7	4	5,5	7,5	11
AC-23A	Frequent switching of motors or other high inductive loads	3 phase 3 pole	$220 \mathrm{~V}-240 \mathrm{~V}$	kW	1,8	1,8	3,7	3,7	3,7	5,5	7,5	7,5	11	15	30	37	75
			$380 \mathrm{~V}-440 \mathrm{~V}$		3	3	7,5	7,5	7,5	11	15	15	22	30	45	75	132
			$500 \mathrm{~V}$		-	-	7,5	7,5	7,5	11	15	15	30	45	55	90	132
			660 V-690 V		-	-	7,5	7,5	7,5	11	15	15		55	65	65	
		1 phase 2 pole	110 V	kW	0,37	0,37	0,75	0,75	0,75	1,5	2,2	2,2	2,5	4	5,5	11	18,5
			$220 \mathrm{~V}-240 \mathrm{~V}$		0,75	0,75	2,5	2,5	2,5	3	4	4	5,5	10	15	22	37
			$380 \mathrm{~V}-440 \mathrm{~V}$		1,1	1,1	3,7	3,7	3,7	5,5	7,5	7,5	11	18,5	22	37	55
Ratings	Standard motor load DOL-Rating (similar AC-3)	UL/Canada		HP													
		3 phase 3 pole	120 V		0,75	-	1,5	-	1,5	3	5	5	7,5	7,5	10	15	30
			240 V		1	-	3	-	3	7,5	10	10	15	15	20	25	75
			480 V		-	-	-	-	5	10	-	20	25	25	30	40	75
			600 V		-	-	-	-	5	10	-	25	30	30	40	50	60
			120 V		0,33	-	0,5	-	0,5	1,5	2	2	3	3	5	7,5	15
		1 phase	240 V		0,75	-	1	-	1	3	5	5	7,5	7,5	10	15	40
		2 pole	277 V	HP	0,75	-	2	-	2	3	5	5	7,5	7,5	10	15	40
			480 V		-	-	-	-	2	5	-	10	15	15	20	25	50
			600 V		-	-	-	-	2	5	-	15	20	20	25	30	50
	Heavy motor load		120 V		-	-	0,5	-	0,5	1	2	2	3	5	7,5	10	15
	Reversing-Rating	3 phase	240 V	HP	-	-	1	-	1	2	3	3	5	7,5	15	20	30
	(similar AC-4)	3 pole	$440 \mathrm{~V}-600 \mathrm{~V}$		-	-	-	-	3	5	-	10	15	20	25	30	40
			120 V		-	-	0,17	-	0,17	0,33	1,5	1,5	1,5	2	3	5	7,5
		1 phase	240 V	HP	-	-	0,5	-	0,5	0,75	3	3	3	5	7,5	10	15
		2 pole	277 V		-	-	0,6	-	0,6	1	3	3	3	5	7,5	10	15
Max. Permissible Wire Gage - Use copper wire onlySingle-core or stranded wire					2x	$1 \mathrm{x}^{2}$	2 x	$1 \mathrm{x}^{2}$	2 x	2x	2 x	2 x	2x	2x			
				mm^{2}	1,5	0,5-1,5	2,5	0,5-2,5	2,5	4	6	6	10	16	35	70	$185{ }^{1}$
Single-core or stranded wire				AWG	14	-	12	-	12	10	8	8	8	6	2	2/0	MCM
					2x	$1 \mathrm{x}^{2}$	2 x	$1 \mathrm{x}^{2}$	2 x	2x	2 x	2 x	2 x	2x			350
Flexible wire (sleeving in accordance with DIN 46228) Flexible AWG wires (without sleeve)				mm^{2}	1,5	0,5-1,5	2,5	0,5-2,5	2,5	4	4	6	6	10	25	50	150^{1}
					(-)	(-)	$(2,5)$	(-)	$(2,5)$	$(2,5)$	(4)	(4)	(6)	(10)	(25)	(50)	
				AWG	16	-	14	-	14	12	10	10	8	6	3	1/0	MCM
																	300

${ }^{1}$ Cable lug must accept M12 screw. ${ }^{2}$ The insulation material of the conductor has to be PVC (typical wire codes are H05V-K0,5 ... H07V-K1,5 or H05V-U0,5 ... H07VU1,5 etc.). Other materials on request. Connected conductors, which have to be disconnected and re-connected again must be cut in order to ensure a proper electrical connection and to prevent a complete cut-off of the wire insulation. The permissible ambient temperature range when connecting the wires is $5-40^{\circ} \mathrm{C}$.

Selection Data	L351	L400	1600	L631	L800	L1001	L1200	L251	L1600	L2000

$42 \quad{ }_{2}^{1}$ Valid for lines with grounded common neutral termination, overvoltage category III, pollution degree 3. Values for other supply systems on request.

Selection Data	CAD11	CAD12

[^35]Dimensions

Two or Four Hole Panel Mounting

Dimensions

Two or Four Hole Panel Mounting

			$]_{\infty}$	E22 E22-V							
								CA10 CA11 CAD11 CAD12	$2 \mathrm{CL10}$	CA20	CA25
							A	48 1.89 1	${ }_{1.89}{ }^{48}$	$\begin{aligned} & 48 \\ & 189 \end{aligned}$	${ }_{1}^{48}$
							B	$\begin{aligned} & 43 \\ & 11.69 \end{aligned}$	50×56 1.97×2.20	$\begin{array}{ll} & 45 \\ 0 \quad 1.77 \end{array}$	$\begin{aligned} & 46 \\ & 1.81 \end{aligned}$
							C	4 .16	${ }^{4} 16$	${ }^{4} 16$	${ }^{4} 16$
							D1	$\stackrel{5}{5}$	${ }^{5}$	${ }^{5}$	
								10 1.17	30 1.17	${ }_{1}^{30} 1.17$	30 1.17
EG EGF		L^{1}	\square_{∞}								
			CA10 CA11 CAD11 CAD12	CL10	CA20	CA25	C26	C32	C42	C80	C125 Lswitches Size S2
		A	$\begin{aligned} & 64 \\ & 2.52 \\ & 2 \end{aligned}$	${ }_{2.52}^{64}$	$\begin{aligned} & \hline 64 \\ & \hline 2.52 \end{aligned}$	$\begin{aligned} & 64 \\ & 2.52 \\ & 24 \end{aligned}$	$\begin{aligned} & 88 \\ & 3.46 \end{aligned}$	$\begin{aligned} & 88 \\ & 3.46 \end{aligned}$	$\begin{aligned} & 88 \\ & 3.46 \end{aligned}$	$\begin{aligned} & 130 \\ & 5.12 \end{aligned}$	$\begin{aligned} & 130 \\ & 5.12 \end{aligned}$
		B	43 1.69 1	${ }_{1}^{50 \times 56}$	${ }_{1}^{45}$	$\begin{aligned} & 46 \\ & { }_{1.81} \end{aligned}$	$\begin{aligned} & 58 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 60 \\ & 2.36 \\ & \hline \end{aligned}$	$\begin{aligned} & { }_{26}^{66} \\ & 2.60 \end{aligned}$	$\begin{aligned} & 84 \\ & 3.30 \end{aligned}$	$\begin{aligned} & 88 \\ & 3.46 \end{aligned}$
		C	${ }^{4} .16$	${ }^{4} 16$	4 .16	4 .16	5,5 .22	$\begin{aligned} & 5,5 \\ & \hline 22 \end{aligned}$	$\begin{aligned} & 5,5 \\ & .25 \end{aligned}$	$\begin{aligned} & 7 \\ & .28 \end{aligned}$	$\begin{aligned} & 7 \\ & \hline .28 \end{aligned}$
		D1	$\begin{aligned} & 5 \\ & .20 \end{aligned}$	$\begin{aligned} & 5 \\ & .20 \end{aligned}$	${ }^{5} .20$	$\begin{aligned} & 5 \\ & \hline .20 \end{aligned}$	$\frac{24}{6}$	$\frac{24}{6}$	$\frac{24}{6}$	7.28	$\begin{aligned} & \hline 7 \\ & .28 \end{aligned}$
	EG	D2	$\begin{aligned} & 10-15 \\ & 39-59 \end{aligned}$	$\begin{aligned} & 1.015 \\ & .39-59 \end{aligned}$	$\begin{aligned} & 10-15 \\ & .39-59 \end{aligned}$	$\begin{aligned} & 10-15 \\ & .39-59 \end{aligned}$	$\begin{aligned} & 13-17 \\ & .51-67 \end{aligned}$	$\begin{aligned} & 13-17 \\ & .51-.67 \end{aligned}$	$\begin{aligned} & 13-17 \\ & .51-67 \end{aligned}$	$\begin{aligned} & 15,5-20 \\ & .61-79 \end{aligned}$	$\begin{aligned} & 15,5-20 \\ & \hline 61-79 \end{aligned}$
	EGF	D2	$\begin{aligned} & 19-22 \\ & .75-87 \end{aligned}$	$\begin{aligned} & 19-22 \\ & .75-87 \end{aligned}$	$\begin{aligned} & 19-22 \\ & .75-.87 \end{aligned}$	$\begin{aligned} & 19-22 \\ & .75-87 \end{aligned}$	$\begin{aligned} & \text { 26-30 } \\ & 1.02-1.18 \end{aligned}$	$\begin{aligned} & \text { 26-30 } \\ & 1.02-1.18 \end{aligned}$	$\begin{aligned} & \hline 26-30 \\ & 1.02-1.18 \end{aligned}$	$\begin{aligned} & 22.25 \\ & .87 .98 \end{aligned}$	$\begin{aligned} & 222-25 \\ & .87-98 \end{aligned}$
		E	$\begin{aligned} & 48 \\ & \hline 1.89 \end{aligned}$	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & \hline 68 \\ & \\ & \hline .68 \end{aligned}$	$\begin{aligned} & \hline 68 \\ & 2.68 \end{aligned}$	$\begin{aligned} & 68 \\ & 2.68 \end{aligned}$	$\begin{aligned} & 104 \\ & 4.09 \\ & \end{aligned}$	$\begin{aligned} & 104 \\ & 4.09 \end{aligned}$
	EG	M	6,7 .26	$\begin{aligned} & 6.7 \\ & .26 \end{aligned}$	$\begin{aligned} & \hline 6,7 \\ & \hline, 7 \end{aligned}$	$\begin{aligned} & 6,7 \\ & .26 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & .08 \end{aligned}$	$\begin{aligned} & 2 \\ & .08 \end{aligned}$
	EGF	M	¢,7 .26	6,7 .26	6,7 .26	6,7 .26	$\begin{aligned} & \hline 0.5 \\ & .02 \end{aligned}$	$\begin{aligned} & \hline 0,5 \\ & .02 \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & .02 \end{aligned}$	${ }^{2} .08$	2 .08

Dimensions

Four Hole Panel Mounting or Mosaic Mounting

E92

E93
E94

KN1
KD1

KN1	CA10								
KD1	CA11				CA10B				
	CAD11				CA11B				
	CAD12	CL10	CA20	CA25	CA20B	CA25B	C26	C32	C42
A	64	64	64	64	64	64	64	64	64
	2.52	2.52	2.52	2.52	2.52	2.52	2.52	2.52	2.52
B	43	50x56	45	46	56	56	58	60	66
	1.69	1.97×2.20	1.77	1.81	2.20	2.20	2.28	2.36	2.60
C	4	4	4	4	4	4	4	4	4
	. 16	. 16	. 16	. 16	. 16	. 16	. 16	. 16	. 16
D1	5	5	5	5	5	5	5	5	5
	. 20	. 20	. 20	. 20	. 20	. 20	. 20	. 20	. 20
D2	10-15	10-15	10-15	10-15	10-15	10-15	10-15	10-15	10-15
	. $39-.59$.39-.59	.39-. 59	.39-.59	.39-.59	.39-.59	.39-. 59	.39-. 59	. $39-.59$
E	48	48	48	48	48	48	48	48	48
	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89
M	4,7	4,7	4,7	4,7	7	7	7	7	7
	. 19	. 19	. 19	. 19	. 28	. 28	. 28	. 28	. 28

Dimensions

Two or Four Hole Panel Mounting

				Cmax L		\gg_{8}^{∞}				22	$\begin{aligned} & 01 \\ & \dot{\phi}-4 \\ & \dot{-}-4 \end{aligned}$				$\begin{aligned} & \text { EC } \\ & \text { ED } \\ & \text { EC1 } \\ & \text { ED1 } \end{aligned}$	\circ	cis	$\begin{aligned} & \dot{\square} \\ & - \\ & 0 \end{aligned}$		
		$\begin{aligned} & \text { CA10 } \\ & \text { CAD } \\ & \text { CAD } \end{aligned}$		CA11		CA20		CA25		CA10		CA11		$\begin{aligned} & \text { CA20: } \\ & \text { CA25 } \end{aligned}$		C26		C32	C42	C43
		$\begin{aligned} & \overline{\mathrm{EC}} \\ & \mathrm{ED} \end{aligned}$		$\begin{aligned} & \hline \text { EC } \\ & \text { ED } \end{aligned}$	ED22	$\begin{array}{r} \hline E C \\ 2 E D \end{array}$	ED22	$\begin{aligned} & \hline \text { EC } \\ & \text { ED } \end{aligned}$	ED22	$\begin{aligned} & \hline \text { EC } \\ & \text { ED } \end{aligned}$	$\begin{aligned} & \hline \text { EC1 } \\ & \text { ED1 } \end{aligned}$	$\begin{aligned} & \hline \text { EC } \\ & \text { ED } \end{aligned}$	$\begin{aligned} & \text { EC1 } \\ & \text { ED1 } \end{aligned}$	$\begin{aligned} & \hline \text { EC } \\ & \text { ED } \end{aligned}$	$\begin{aligned} & \hline \text { EC1 } \\ & \text { ED1 } \end{aligned}$	$\begin{aligned} & \hline \text { EC } \\ & \text { ED } \end{aligned}$	$\begin{aligned} & \text { EC1 } \\ & \text { ED1 } \end{aligned}$	$\begin{aligned} & \hline \text { EC } \\ & \text { ED } \end{aligned}$	$\begin{aligned} & \hline \text { EC } \\ & \text { ED } \end{aligned}$	$\begin{aligned} & \hline \text { EC } \\ & \text { ED } \end{aligned}$
	A	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 64 \\ & 2.52 \end{aligned}$	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 64 \\ & 2.52 \end{aligned}$	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & { }_{2.52}^{64} \\ & 2 \end{aligned}$	$\begin{aligned} & 64 \\ & \hline 2.52 \end{aligned}$	$\begin{aligned} & 64 \\ & 2.52 \end{aligned}$	$\begin{aligned} & 64 \\ & 2.52 \end{aligned}$	$\begin{aligned} & 64 \\ & \hline 2.52 \end{aligned}$	$\begin{aligned} & { }_{2.52}^{64} \\ & 2 \end{aligned}$	$\begin{aligned} & { }_{2.52}^{64} \\ & 2 \end{aligned}$	$\begin{aligned} & 64 \\ & \hline 2.52 \end{aligned}$	$\begin{aligned} & 88 \\ & { }_{3.46} \end{aligned}$	$\begin{aligned} & 88 \\ & { }_{3.46} \end{aligned}$	$\begin{aligned} & 88 \\ & 3.46 \end{aligned}$			
	B	$\begin{aligned} & 30 \\ & 1.97 \end{aligned}$	$\begin{gathered} 74 \\ 2.91 \end{gathered}$	$\begin{aligned} & 50 \\ & { }_{1.97} \end{aligned}$	$\begin{aligned} & 74 \\ & 2.91 \end{aligned}$	$\begin{aligned} & 68 \\ & 2.68 \\ & \end{aligned}$	$\begin{gathered} 74 \\ 2.91 \end{gathered}$	$\begin{aligned} & \hline 68 \\ & 2.68 \end{aligned}$	$\begin{gathered} 74 \\ 2.91 \\ \hline \end{gathered}$	$\begin{aligned} & 88 \\ & 3.46 \end{aligned}$	$\begin{gathered} 74 \\ 2.91 \end{gathered}$	$\begin{aligned} & 88 \\ & 3.46 \end{aligned}$	$\begin{aligned} & 74 \\ & 2.91 \end{aligned}$	$\begin{aligned} & 88 \\ & 3.46 \end{aligned}$	$\begin{gathered} 74 \\ 2.91 \end{gathered}$	$\begin{aligned} & 88 \\ & 3.46 \end{aligned}$	$\begin{gathered} 74 \\ 2.91 \end{gathered}$	$\begin{aligned} & 108 \\ & \hline 4.25 \end{aligned}$	$\begin{aligned} & 108 \\ & \hline 1.25 \end{aligned}$	$\begin{aligned} & 108 \\ & 4.25 \end{aligned}$
EC/EC1	C	${ }^{4} 16$:	${ }^{4} 16$:	$\begin{aligned} & 4 \\ & .16 \end{aligned}$	-	${ }_{4}^{4} 16$:	${ }^{4} 16$	$\frac{2}{4}$	$\begin{aligned} & 4 \\ & .16 \end{aligned}$	$\frac{1}{4}$	$\frac{.4}{4}$	$\frac{16}{4}$	$\frac{.46}{4}$	$\frac{2}{4}$	4	$\frac{. c i c}{4} .$	$\frac{.4}{4}$
$\begin{aligned} & \text { ED/ED1/ } \\ & \text { ED22 } \end{aligned}$	C	$\begin{aligned} & 2 \\ & \frac{.08}{5} \\ & .20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \\ & .16 \\ & \hline 5 \\ & \hline 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & .08 \\ & \hline 5 \\ & \hline 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \\ & .16 \\ & \hline 5 \\ & \hline 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & .08 \\ & \hline 5 \\ & .20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \\ & .16 \\ & \hline 5 \\ & \hline .20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & \hline .08 \\ & \hline 5 \\ & .20 \end{aligned}$	$\begin{aligned} & \hline 4 \\ & .16 \\ & \hline 5 \\ & \hline 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline .08 \\ & \hline 5 \\ & \hline 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \\ & .16 \\ & \hline 5 \\ & \hline 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \\ & .16 \\ & \hline 5 \\ & \hline .20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \\ & .16 \\ & \hline 5 \\ & \hline .20 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & .16 \\ & \hline 5 \\ & \hline .20 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & .16 \\ & \hline 5 \\ & \hline .20 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & \hline .16 \\ & \hline 5 \\ & \hline 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \\ & .16 \\ & \hline 5 \\ & \hline .20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & \hline .50 \\ & \hline 6 \\ & \hline .24 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & .30 \\ & \hline 6 \\ & \hline .24 \\ & \hline \end{aligned}$	$\begin{aligned} & 7,5 \\ & .30 \\ & \hline 6 \\ & \hline 24 \end{aligned}$
EC/EC1	D2	$\begin{aligned} & 8-15 \\ & 31-59 \end{aligned}$	-	$\begin{aligned} & 8-15 \\ & .31-59 \end{aligned}$	-	$\begin{aligned} & 8-15 \\ & .31-59 \end{aligned}$		$\begin{aligned} & 8-15 \\ & .11-59 \end{aligned}$		$\begin{aligned} & 10-15 \\ & \hline 39-5 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 10-15 \\ & .39-59 \end{aligned}$	$\begin{aligned} & 10-15 \\ & \hline 39-5 \mathrm{O} \end{aligned}$	$\begin{aligned} & 10-15 \\ & .39-59 \end{aligned}$	$\begin{aligned} & 10-15 \\ & .{ }_{39-59} \end{aligned}$	$\begin{aligned} & 10-15 \\ & 39-59 \end{aligned}$	$\begin{aligned} & \hline 10-15 \\ & .39-59 \end{aligned}$	$\begin{aligned} & 10-15 \\ & .39-.59 \end{aligned}$	$\begin{aligned} & 13-15 \\ & .51-59 \end{aligned}$	$\begin{aligned} & 13-15 \\ & .51-59 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 13-15 \\ .51-59 \end{array} \end{aligned}$
ED/ED1/	D2	$\begin{aligned} & 18-22 \\ & .71 .87 \end{aligned}$	$\begin{aligned} & \hline 11-15 \\ & .43-59 \end{aligned}$	$\begin{aligned} & 18-22 \\ & .71-87 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 11-15 \\ & .43-59 \end{aligned}$	$\begin{aligned} & 18-22 \\ & .71 .87 \end{aligned}$	$\begin{aligned} & \hline 11-15 \\ & 43-5 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 18-22 \\ & .71-.87 \end{aligned}$	$\begin{aligned} & \hline 11-15 \\ & .43-59 \end{aligned}$	$\begin{aligned} & 22-25 \\ & .87 .98 \end{aligned}$	$\begin{aligned} & 19-22 \\ & .75-87 \end{aligned}$	$\begin{aligned} & 22-25 \\ & .87 .98 \end{aligned}$	$\begin{aligned} & 19-22 \\ & .75 .87 \end{aligned}$	$\begin{aligned} & 22-25 \\ & .87 .98 \end{aligned}$	$\begin{aligned} & 19-22 \\ & 75-87 \end{aligned}$	$\begin{aligned} & 222-25 \\ & .87-.98 \end{aligned}$	$\begin{aligned} & 19-22 \\ & .75-87 \end{aligned}$	$\begin{aligned} & \hline 28.33 \\ & 1.1-1.3 \end{aligned}$	$\begin{aligned} & 28-33 \\ & 1.1-1.3 \end{aligned}$	$\begin{aligned} & 28-33 \\ & .1-1.3 \end{aligned}$
	E	$\overline{36}$:	36	:-	$\begin{aligned} & 48 \\ & { }_{1.89} \end{aligned}$:	48	-	48	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	48	48	48	$\begin{aligned} & 48 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 48 \\ & \hline 1 \end{aligned}$	48	$\begin{aligned} & 68 \\ & { }_{2}^{68} \end{aligned}$	68	$\begin{aligned} & 68 \\ & .68 \end{aligned}$
	F	-	$\begin{aligned} & 30 \\ & 1.17 \end{aligned}$:	$\begin{aligned} & 30 \\ & 1.17 \end{aligned}$	-	$\begin{aligned} & 30 \\ & 1.17 \end{aligned}$	-	$\begin{aligned} & 30 \\ & 1.17 \end{aligned}$	-	:	-	-	-	-	-	-	-	-	
ED/ED22	M	$\overline{2} \overline{.08}$	$\begin{aligned} & 1,5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2 \\ & .08 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2 \\ & \hline 08 \end{aligned}$	$\begin{aligned} & 1,5 \\ & \hline 06 \end{aligned}$	$\begin{aligned} & 2 \\ & .08 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2 \\ & { }_{08} \end{aligned}$		$\begin{aligned} & 2 \\ & .08 \end{aligned}$:	$\begin{aligned} & 2 \\ & \hline 08 \end{aligned}$	-	$\begin{gathered} 2,2 \\ 09 \end{gathered}$		$\begin{gathered} 2,2 \\ 09 \end{gathered}$	$\begin{aligned} & 2,2 \\ & \hline 0 \end{aligned}$	$\begin{gathered} 2,2 \\ 09 \end{gathered}$
Stages L	1	$\begin{aligned} & 53,5 \\ & 2.10 \end{aligned}$	$\begin{aligned} & 74,3 \\ & \hline 2.93 \end{aligned}$	$\begin{aligned} & 53,5 \\ & \hline 2.10 \end{aligned}$	$\begin{aligned} & 74,3 \\ & 2.93 \end{aligned}$	-	$\begin{aligned} & 74,3 \\ & \hline 2,93 \end{aligned}$	-	$\begin{aligned} & 74,3 \\ & 2.93 \end{aligned}$	-	$\begin{aligned} & 73,7 \\ & 2.90 \end{aligned}$	-	$\begin{aligned} & 73,7 \\ & \hline 2.90 \end{aligned}$	-	$\begin{aligned} & 7.9,7 \\ & \end{aligned}$	-	$\begin{aligned} & 7.97 \\ & \hline \end{aligned}$	$\begin{aligned} & 101 \\ & 3.98 \end{aligned}$	$\begin{aligned} & 101 \\ & \hline 3.98 \end{aligned}$	$\begin{aligned} & 1010 \\ & \hline \\ & \hline .98 \end{aligned}$
	2	$\begin{aligned} & 53,5 \\ & 2.10 \end{aligned}$	$\begin{gathered} 74,3 \\ 2.93 \end{gathered}$	$\begin{aligned} & 53,5 \\ & 2.10 \end{aligned}$	$\begin{aligned} & { }^{74,3} \\ & 2.93 \end{aligned}$		$\begin{aligned} & 74,3 \\ & 2.93 \end{aligned}$:	$\begin{aligned} & 74,3 \\ & 2.93 \end{aligned}$	-	$\begin{gathered} 7,7 \\ 2.90 \\ 2.7 \end{gathered}$		$\begin{aligned} & 7,7 \\ & \hline 7.90 \end{aligned}$	\div	$\begin{gathered} 77,7 \\ 2.90 \end{gathered}$		$\begin{aligned} & 73,7 \\ & \hline 2.90 \end{aligned}$	$\begin{aligned} & 1011 \\ & \hline \begin{array}{l} 10.8 \end{array} \end{aligned}$	$\begin{aligned} & 101 \\ & 3.98 \end{aligned}$	$\begin{aligned} & 101 \\ & 3.98 \end{aligned}$
	3	$\begin{aligned} & 675.5 \\ & 2.66 \end{aligned}$	$\begin{aligned} & 7,3,3 \\ & 2.93 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 6,5 \\ 2.66 \end{array} \end{aligned}$	$\begin{aligned} & 94,3 \\ & \hline .71 \end{aligned}$		$\begin{aligned} & 7,3,3 \\ & 2.93 \end{aligned}$:	$\begin{aligned} & 94.3 \\ & \begin{array}{l} 9.71 \end{array} \end{aligned}$	-	$\begin{aligned} & \begin{array}{l} 7,7 \\ 7.90 \end{array} \end{aligned}$	-	$\begin{aligned} & 93,7 \\ & 3.69 \end{aligned}$	-	$\begin{aligned} & { }^{93,7} 9 \\ & 3.6 \end{aligned}$:	$\begin{aligned} & 9,7 \\ & \hline 3.69 \end{aligned}$	$\begin{aligned} & 101 \\ & 3.98 \end{aligned}$	$\begin{aligned} & 139 \\ & 5.47 \end{aligned}$	$\begin{aligned} & 1139 \\ & 5.47 \end{aligned}$
	4	$\begin{aligned} & 6,575 \\ & 2.66 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7,3,3 \\ & 2.93 \end{aligned}$	$\begin{aligned} & 81,5 \\ & \begin{array}{l} 8.21 \end{array} \end{aligned}$	$\begin{aligned} & 9,73 \\ & 3.71 \end{aligned}$:	$\begin{aligned} & 94,39 \\ & 3.71 \end{aligned}$	-	$\begin{aligned} & 9,3,3 \\ & 3.71 \end{aligned}$	-	$\begin{aligned} & 9,7 \\ & 3.69 \end{aligned}$:	$\begin{aligned} & 93,7 \\ & 3.69 \end{aligned}$:	$\begin{aligned} & \text { 93,7 } \\ & 3.69 \end{aligned}$	-	$\begin{aligned} & 9,7,7 \\ & 3.69 \end{aligned}$	$\begin{aligned} & 1139 \\ & 5.47 \end{aligned}$	$\begin{aligned} & 1139 \\ & 5.47 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 139 \\ 5.47 \end{array} \end{aligned}$
	5	$\begin{aligned} & 8,5,5 \\ & { }_{3} \end{aligned}$	$94,3$	-	-	$\begin{aligned} & 103 \\ & 4.06 \end{aligned}$	-	$\begin{aligned} & 103 \\ & 4.06 \end{aligned}$:	$93,7$	103		103		$\begin{aligned} & \hline 114,5 \\ & 4.50 \end{aligned}$		$\begin{aligned} & 139 \\ & 5.47 \end{aligned}$	$\begin{aligned} & 177 \\ & 6.97 \end{aligned}$	$\begin{aligned} & 177 \\ & 607 \end{aligned}$
	6	$\begin{aligned} & 8,5,5 \\ & 3.21 \end{aligned}$	$\begin{aligned} & { }_{3.71} 9.3 \\ & 3.7 \end{aligned}$:	:	:	.	-	.	$\begin{aligned} & 103 \\ & 4.06 \end{aligned}$		$\begin{aligned} & 127 \\ & 5 \end{aligned}$.	$\begin{aligned} & 1227 \\ & 5 \end{aligned}$:	$\begin{aligned} & 122 \\ & 5 \end{aligned}$		$\begin{aligned} & 177 \\ & 6.97 \end{aligned}$	$\begin{aligned} & 2515 \\ & 8.46 \end{aligned}$	$\begin{aligned} & 215 \\ & 8.46 \end{aligned}$
	7	-	:	.	:	:		:		$\begin{aligned} & 127 \\ & 5 \end{aligned}$	-	$\begin{aligned} & 139,5 \\ & 5.47 \end{aligned}$		$\begin{aligned} & 139,5 \\ & 547 \end{aligned}$	-	$\begin{aligned} & 139,5 \\ & 547 \end{aligned}$:	$\begin{aligned} & 117 \\ & 6.97 \end{aligned}$	$\begin{aligned} & 215 \\ & 8.46 \end{aligned}$	$\begin{aligned} & 215 \\ & 8.46 \end{aligned}$
	8	-	:	:	-	:	-	-		$\begin{aligned} & 127 \\ & 5 \end{aligned}$	-	$\begin{aligned} & 152 \\ & 5.98 \\ & 5 . \end{aligned}$:	$\begin{aligned} & 1522 \\ & 5.98 \end{aligned}$:	$\begin{aligned} & 152 \\ & 5.98 \end{aligned}$:	$\begin{aligned} & 215 \\ & 8.46 \end{aligned}$	$\begin{aligned} & 253 \\ & 9.96 \end{aligned}$	$\begin{aligned} & 253 \\ & 9.96 \end{aligned}$
	9	.	-		$\begin{aligned} & 1399,5 \\ & 5.47 \end{aligned}$.	$\begin{aligned} & 164,5 \\ & 6.48 \end{aligned}$.	$\begin{aligned} & 164,5 \\ & 6.48 \end{aligned}$	-	$\begin{aligned} & 164,5 \\ & 6.48 \end{aligned}$.	$\begin{aligned} & 221 \\ & 8.46 \end{aligned}$	$\begin{aligned} & 253 \\ & 9.96 \end{aligned}$	$\begin{aligned} & 253 \\ & 9.96 \end{aligned}$
	10	:	-		-	.	,	-		$\begin{aligned} & 152 \\ & 5.98 \end{aligned}$	E	$\begin{aligned} & 177 \\ & 6.97 \end{aligned}$	$\dot{\square}$	$\begin{aligned} & 177 \\ & 6.97 \end{aligned}$	-	$\begin{aligned} & 177 \\ & 6.97 \end{aligned}$.	$\begin{aligned} & 253 \\ & 9.96 \end{aligned}$	-	$\begin{aligned} & 291 \\ & 11.46 \\ & \hline \end{aligned}$
	11	-	-	,	-	-	,	-	-	$\begin{aligned} & 152 \\ & 5.98 \end{aligned}$:	-	.	-	:	:	.	$\begin{aligned} & 293 \\ & 9.96 \end{aligned}$:	$\begin{aligned} & 291 \\ & 11.46 \end{aligned}$
	12	.								$\begin{aligned} & 164,5 \\ & 6.48 \end{aligned}$	-			-				$\begin{aligned} & 253 \\ & .296 \\ & 9.96 \end{aligned}$		${ }_{12}^{329}$

Single Hole Mounting or Base Mounting

Dimensions

Base Mounting

${ }^{1}$ see page $51 \quad{ }^{2}$ not available for switch type CA20

Wall Mounting, Escutcheon Plates and Additional Length

Escutcheon plates for mounting E, EF, ER, ERF, EG, EGF, KN1, KD1, KN2, EC, EC1, ED, ED1, VE, VE1, VF

Additional length for amendment (page 4)

Latching mechanism size S1
Latching mechanism size S2
Snap action

CA10				
CA11				
CAD11	CA20			
CAD12	CA25	C26	C32	C42
5,4	5,4	-	-	-
.41	.21	-	-	-
-	-	9,2	9,2	-
14,3	-	.36	.46	12,2
.36	.56	.48	.48	$.42,2$
.48				

Quick connects for switches CA4-4

Dimensions

Additional Length
Terminal lugs for switches C315, C316 and L switches

Length L

Stages	$\begin{aligned} & \text { CA4 } \\ & \text { CA4-1 } \end{aligned}$	CL4	CA10 CAD11 CAD12	CL10	CA11	CA20	CA25	CA10B	CA11B	CA20B	CA25	C26	C32	C42	C43	C80	C125 L switches Size S2	C315 L switches Size S3
1	$\begin{aligned} & \hline 30 \\ & 1.18 \end{aligned}$	$\begin{aligned} & \hline 34 \\ & 1.34 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 33,5 \\ & 1.32 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37,2 \\ & 1.46 \end{aligned}$	$\begin{aligned} & \hline 36,7 \\ & 1.44 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37,7 \\ & 1.48 \end{aligned}$	$\begin{aligned} & \hline 39 \\ & 1.51 \end{aligned}$	$\begin{aligned} & \hline 38,9 \\ & 1.53 \end{aligned}$	$\begin{aligned} & \hline 42,1 \\ & 1.66 \end{aligned}$	$\begin{aligned} & 43,1 \\ & 1.70 \end{aligned}$	$\begin{aligned} & \hline 44,4 \\ & 1.75 \end{aligned}$	$\begin{aligned} & \hline 42 \\ & 1.65 \end{aligned}$	$\begin{aligned} & \hline 46,8 \\ & 1.84 \end{aligned}$	$\begin{aligned} & \hline 50,8 \\ & 2.00 \end{aligned}$	$\begin{aligned} & 59 \\ & 2.32 \end{aligned}$	$\begin{aligned} & \hline 61,5 \\ & 2.42 \end{aligned}$	$\begin{aligned} & \hline 67,5 \\ & 2.66 \end{aligned}$	$\begin{aligned} & \hline 78,6 \\ & 3.09 \end{aligned}$
2	$\begin{aligned} & \hline 38 \\ & 1.50 \end{aligned}$	$\begin{aligned} & \hline 46 \\ & 1.81 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 43 \\ & 1.69 \\ & \hline \end{aligned}$	$\begin{aligned} & 49,9 \\ & 1.96 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 49,4 \\ & 1.94 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 50,4 \\ & 1.98 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 53 \\ & 2.09 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 48,4 \\ & 1.91 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 54,8 \\ & 2.16 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 55,8 \\ & 2.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 58,4 \\ & 2.30 \\ & \hline \end{aligned}$	$\begin{aligned} & 54,7 \\ & 2.15 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 64,3 \\ & 2.51 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 72,3 \\ & 2.85 \\ & \hline \end{aligned}$	$\begin{aligned} & 80,5 \\ & 3.17 \\ & \hline \end{aligned}$	$\begin{aligned} & 88,0 \\ & 3.46 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 3.94 \\ & \hline \end{aligned}$	$\begin{aligned} & 117,2 \\ & 4.61 \end{aligned}$
3	$\begin{aligned} & \hline 46 \\ & 1.81 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 58 \\ & 2.28 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 52,5 \\ & 2.07 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 62,6 \\ & 2.46 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 62,1 \\ & 2.44 \end{aligned}$	$\begin{aligned} & 63,1 \\ & 2.48 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 67 \\ & 2.64 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 57,9 \\ & 2.28 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 67,5 \\ & 2.66 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68,5 \\ & 2.70 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 72,4 \\ & 2.85 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 67,4 \\ & 2.65 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 81,8 \\ & 3.22 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 93,8 \\ & 3.69 \\ & \hline \end{aligned}$	$\begin{aligned} & 102 \\ & 4.02 \end{aligned}$	$\begin{aligned} & 114,5 \\ & 4.51 \\ & \hline \end{aligned}$	$\begin{aligned} & 132,5 \\ & 5.22 \\ & \hline \end{aligned}$	$\begin{aligned} & 155,8 \\ & 6.13 \end{aligned}$
4	$\begin{aligned} & \overline{54} \\ & 2.13 \end{aligned}$	$\begin{aligned} & \hline 70 \\ & 2.76 \end{aligned}$	$\begin{aligned} & \hline 62 \\ & 2.44 \end{aligned}$	$\begin{aligned} & \hline 75,3 \\ & 2.96 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 74,8 \\ & 2.94 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 75,8 \\ & 2.98 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 81 \\ & 3.19 \end{aligned}$	$\begin{aligned} & \hline 67,4 \\ & 2.65 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 80,2 \\ & 3.16 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 81,2 \\ & 3.20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 86,4 \\ & 3.40 \end{aligned}$	$\begin{aligned} & 80,1 \\ & 3.15 \end{aligned}$	$\begin{aligned} & \hline 99,3 \\ & 3.91 \end{aligned}$	$\begin{aligned} & 115,3 \\ & 4.54 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 123,5 \\ & 4.86 \\ & \hline \end{aligned}$	$\begin{aligned} & 141 \\ & 5.55 \end{aligned}$	$\begin{aligned} & \hline 165 \\ & 6.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 194,4 \\ & 7.65 \end{aligned}$
5	$\begin{aligned} & \hline 62 \\ & 2.44 \end{aligned}$	$\begin{aligned} & \hline 82 \\ & 3.23 \end{aligned}$	$\begin{aligned} & 71,5 \\ & 2.81 \end{aligned}$	$\begin{aligned} & \hline 88 \\ & 3.46 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 87,5 \\ & 3.44 \\ & \hline \end{aligned}$	$\begin{aligned} & 88,5 \\ & 3.48 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 95 \\ & 3.74 \\ & \hline \end{aligned}$	$\begin{aligned} & 76,9 \\ & 3.03 \\ & \hline \end{aligned}$	$\begin{aligned} & 92,9 \\ & 3.66 \\ & \hline \end{aligned}$	$\begin{aligned} & 93,9 \\ & 3.70 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 100,4 \\ & 3.95 \\ & \hline \end{aligned}$	$\begin{aligned} & 92,8 \\ & 3.65 \\ & \hline \end{aligned}$	$\begin{aligned} & 116,8 \\ & 4.60 \\ & \hline \end{aligned}$	$\begin{aligned} & 136,8 \\ & 5.39 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 145 \\ & 5.71 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 167,5 \\ & 6.59 \\ & \hline \end{aligned}$	$\begin{aligned} & 197,5 \\ & 7.78 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 233 \\ & 9.17 \\ & \hline \end{aligned}$
6	$\begin{aligned} & 70 \\ & 2.76 \end{aligned}$	$\begin{aligned} & \hline 94 \\ & 3.70 \end{aligned}$	$\begin{aligned} & 81 \\ & 3.19 \end{aligned}$	$\begin{aligned} & 100,7 \\ & 3.96 \end{aligned}$	$\begin{aligned} & 100,2 \\ & 3.94 \end{aligned}$	$\begin{aligned} & 101,2 \\ & 3.98 \end{aligned}$	$\begin{aligned} & 109 \\ & 4.29 \end{aligned}$	$\begin{aligned} & 86,4 \\ & 3.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 105,6 \\ & 4.16 \end{aligned}$	$\begin{aligned} & 106,6 \\ & 4.20 \end{aligned}$	$\begin{aligned} & 114,4 \\ & 4.50 \end{aligned}$	$\begin{aligned} & 105,5 \\ & 4.15 \end{aligned}$	$\begin{aligned} & 134,3 \\ & 5.29 \end{aligned}$	$\begin{aligned} & \hline 158,3 \\ & 6.23 \end{aligned}$	$\begin{aligned} & 166,5 \\ & 6.56 \end{aligned}$	$\begin{aligned} & \hline 194 \\ & 7.64 \\ & \hline \end{aligned}$	$\begin{aligned} & 230 \\ & 9.06 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 271,6 \\ & 10.69 \\ & \hline \end{aligned}$
7	$\begin{aligned} & \hline 78 \\ & 3.07 \end{aligned}$	$\begin{aligned} & 106 \\ & 4.17 \end{aligned}$	$\begin{aligned} & 90,5 \\ & 3.56 \\ & \hline \end{aligned}$	$\begin{aligned} & 113,4 \\ & 4.46 \\ & \hline \end{aligned}$	$\begin{aligned} & 112,9 \\ & 4.44 \end{aligned}$	$\begin{aligned} & 113,9 \\ & 4.48 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 123 \\ & 4.84 \\ & \hline \end{aligned}$	$\begin{aligned} & 95,9 \\ & 3.78 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 118,3 \\ & 4.66 \\ & \hline \end{aligned}$	$\begin{aligned} & 119,3 \\ & 4.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 128,4 \\ & 5.05 \\ & \hline \end{aligned}$	$\begin{aligned} & 118,2 \\ & 4.65 \\ & \hline \end{aligned}$	$\begin{aligned} & 151,8 \\ & 5.98 \\ & \hline \end{aligned}$	$\begin{aligned} & 179,8 \\ & 7.08 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 188 \\ & 7.40 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 220,5 \\ & 8.68 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 262,5 \\ & 10.33 \\ & \hline \end{aligned}$	$\begin{aligned} & 310,2 \\ & 12.21 \\ & \hline \end{aligned}$
8	$\begin{aligned} & \hline 86 \\ & 3.39 \end{aligned}$	$\begin{aligned} & \hline 118 \\ & 4.65 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 3.94 \\ & \hline \end{aligned}$	$\begin{aligned} & 126,1 \\ & 4.96 \\ & \hline \end{aligned}$	$\begin{aligned} & 125,6 \\ & 4.94 \end{aligned}$	$\begin{aligned} & 126,6 \\ & 4.98 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 137 \\ & 5.39 \\ & \hline \end{aligned}$	$\begin{aligned} & 105,4 \\ & 4.15 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 131 \\ & 5.16 \\ & \hline \end{aligned}$	$\begin{aligned} & 132 \\ & 5.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 142,4 \\ & 5.60 \\ & \hline \end{aligned}$	$\begin{aligned} & 130,9 \\ & 5.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 169,3 \\ & 6.67 \\ & \hline \end{aligned}$	$\begin{aligned} & 201,3 \\ & 7.93 \\ & \hline \end{aligned}$	$\begin{aligned} & 209,5 \\ & 8.25 \end{aligned}$	$\begin{aligned} & \hline 247 \\ & 9.72 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 295 \\ & 11.61 \end{aligned}$	$\begin{aligned} & 348,8 \\ & 13.73 \\ & \hline \end{aligned}$
9	$\begin{aligned} & 94 \\ & 3.70 \end{aligned}$	-	$\begin{aligned} & 109,5 \\ & 4.31 \end{aligned}$	$\begin{aligned} & 138,8 \\ & 5.46 \end{aligned}$	$\begin{aligned} & 138,3 \\ & 5.44 \end{aligned}$	$\begin{aligned} & 139,3 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 151 \\ & 5.94 \end{aligned}$	$\begin{aligned} & 114,9 \\ & 4.52 \end{aligned}$	$\begin{aligned} & 143,7 \\ & 5.66 \end{aligned}$	$\begin{aligned} & 144,7 \\ & 5.70 \end{aligned}$	$\begin{aligned} & 156,4 \\ & 6.15 \end{aligned}$	$\begin{aligned} & 143,6 \\ & 5.65 \end{aligned}$	$\begin{aligned} & 186,8 \\ & 7.36 \\ & \hline \end{aligned}$	$\begin{aligned} & 222,8 \\ & 8.77 \end{aligned}$	$\begin{aligned} & 231 \\ & 9.09 \\ & \hline \end{aligned}$	$\begin{aligned} & 273,5 \\ & 10.77 \end{aligned}$	$\begin{aligned} & \hline 327,5 \\ & 12.89 \end{aligned}$	$\begin{aligned} & 387,4 \\ & 15.25 \end{aligned}$
10	-	-	$\begin{aligned} & \hline 119 \\ & 4.68 \\ & \hline \end{aligned}$	$\begin{aligned} & 151,5 \\ & 5.96 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 151 \\ & 5.94 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 152 \\ & 5.98 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 165 \\ & 6.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 124,4 \\ & 4.90 \\ & \hline \end{aligned}$	$\begin{aligned} & 156,4 \\ & 6.16 \\ & \hline \end{aligned}$	$\begin{aligned} & 157,4 \\ & 6.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 170,4 \\ & 6.70 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 156,3 \\ & 6.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 204,3 \\ & 8.04 \\ & \hline \end{aligned}$	$\begin{aligned} & 244,3 \\ & 9.62 \\ & \hline \end{aligned}$	$\begin{aligned} & 252,2 \\ & 9.54 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 11.81 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 360 \\ & 14.17 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 426 \\ & 16.77 \\ & \hline \end{aligned}$
11	-	-	$\begin{aligned} & 128,5 \\ & 5.06 \end{aligned}$		$\begin{aligned} & 163,7 \\ & 6.44 \end{aligned}$	$\begin{aligned} & \hline 164,7 \\ & 6.48 \\ & \hline \end{aligned}$	$\begin{aligned} & 179 \\ & 7.05 \end{aligned}$	$\begin{aligned} & 133,9 \\ & 5.27 \end{aligned}$	$\begin{aligned} & 169,1 \\ & 6.66 \end{aligned}$	$\begin{aligned} & 170,1 \\ & 6.70 \end{aligned}$	$\begin{aligned} & 184,4 \\ & 7.25 \end{aligned}$	$\begin{aligned} & 169 \\ & 6.65 \end{aligned}$	$\begin{aligned} & 221,8 \\ & 8.73 \end{aligned}$	$\begin{aligned} & 265,8 \\ & 10.46 \end{aligned}$	$\begin{aligned} & \hline 274 \\ & 10.79 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 326,5 \\ & 12.85 \end{aligned}$	$\begin{aligned} & \hline 392,5 \\ & 15.45 \end{aligned}$	$\begin{aligned} & 464,6 \\ & 18.29 \end{aligned}$
12	-	-	$\begin{aligned} & 138 \\ & 5.43 \end{aligned}$	-	$\begin{aligned} & 176,4 \\ & 6.94 \end{aligned}$	$\begin{aligned} & 177,4 \\ & 6.98 \end{aligned}$	$\begin{aligned} & 193 \\ & 7.60 \end{aligned}$	$\begin{aligned} & 143,4 \\ & 5.65 \end{aligned}$	$\begin{aligned} & 181,8 \\ & 7.16 \end{aligned}$	$\begin{aligned} & 182,8 \\ & 7.20 \end{aligned}$	$\begin{aligned} & 198,4 \\ & 7.80 \end{aligned}$	$\begin{aligned} & 181,7 \\ & 7.15 \end{aligned}$	$\begin{aligned} & 239,3 \\ & 9.42 \end{aligned}$	$\begin{aligned} & \hline 287,3 \\ & 11.31 \end{aligned}$	$\begin{aligned} & 295,5 \\ & 11.63 \end{aligned}$	$\begin{aligned} & 353 \\ & 13.90 \end{aligned}$	$\begin{aligned} & 425 \\ & 16.73 \end{aligned}$	$\begin{aligned} & \hline 503,2 \\ & 19.81 \end{aligned}$

The Range of "Blue Line" Switchgear

Technical literature covering the following products is available on request.

Main Switches and Main Switches with Emergency Function 16 A-315 A
 Maintenance Switches 20 A-315 A

 Switch Disconnectors 20 A-315 A

 Switch Disconnectors 20 A-315 A}

According to IEC 60947-3, EN 60947-3, VDE 0660 part 107, IEC 60204, EN 60204 and VDE 0113

CL Switches 10 A-20 A

C, CA and CAD Switches 10 A-315 A and L Switches 350 A-2400 A
C, CA and CAD switches are designed for universal application. They are recommended for instrument, isolator,
L switches are designed for load and off-load applications. They are used to switch resistive or low inductive loads.

Optional Extras and Enclosures

The complete product line, a large number of optional extras is available, including door interlocks, push-pull devices, cylinder and padlock attachments, control and indicator devices, AC motor drives, as well as enclosures, both insulated and metal.

A and AD Switches 6 A-25 A

A and $A D$ switches have 4 contacts in each switching stage. These switches provide an extensive range of switch functions and require a minimum mounting depth. Up to 36 switching positions are possible, with availability of 48 contacts per 12 stage switch column.

CG, CH and CHR Switches 10 A-25 A

Ultra compact CG, CH and CHR switches are ideally suited for control and instrumentation applications. Switch terminals are "finger-proof" and conveniently accessible for wiring and are delivered open. All CG4 switches their use in electronic circuitry and chemically aggressive environments.

DH, DHR, DK and DKR Switches 6 A-16 A

DH, DHR, DK and DKR switches incorporate unique corrosion resistant contacts that permit operation on system voltage as low as 1 V . They have fully enclosed and protected contacts which can be operated either by rotary and/or lateral handle movement. D switches are used in calibration and semiconductor circuits. They are also used for relay and contactor control.

X Switches 80 A-630 A

X switches can be applied for load, tap and gang switching duties. They incorporate 6 contacts in each switching
stage. Their compact design provides a minimum length dimension for mounting purposes.

KG Switches 20 A-315 A and KH and KHR Switches 16 A-80 A

KG, KH and KHR switches are excellent circuit interruptors. They have high through fault and fault making capacities and are especially designed for use as isolators and safety switches for machine tools, distribution

SALES AND SERVICE ORGANIZATION

Australia

australian solenoid Φ co. pty. ltd.
379 Liverpool Road, ASHFIELD, N.S.W. 2131
P. O. Box 1093, ASHFIELD, N.S.W. 1800

Tel: +61 2 9797-7333, Fax: 0092
e-mail: sales@austrasol.com.au

Austria

austro solenoid Φ ges.m.b.h.
Schumanngasse 35, Postfach 431
A-1181 WIEN
Tel: +43 1404 06, Fax: 404 06-190
e-mail: aso@krausnaimer.com

Belgium, Luxembourg

solenoid benelux Φb. v.
Stationstraat 34
B-3070 KORTENBERG
Tel: +32 2 757-0141, Fax: 1640
e-mail: info@solenoid.be
Brazil
solenoid do brasil Φ ltda.
Avenida Berna 230
04774-020 SAO PAULO
Tel: +55 11 5524-1288, Fax: 5521-4659/9633
e-mail: knbrasil@krausnaimer.com.b

Canada

canadian solenoid Φ inc.
219 Connie Crescent, Unit 13A
CONCORD, Ontario, L4K 1 L4
Tel: +1 905 738-1666, Fax: 9327
e-mail: cdnsolenoid@cansol.on.ca
Chile
ASEA BROWN BOVERI S. A.
Vicuña Mackenna 1602, Casilla 3555
SANTIAGO DE CHILE
Tel: +56 2 544-7411, Fax: 7418

Cyprus

ELECTROMATIC CONSTRUCTIONS LTD.
72, Evagoras Pallikarides Str., CY-2235 LATSIA-Nicosia
P. O. Box 12630, CY-2251 LATSIA-Nicosia

Tel: +357 24841 41, Fax: 485747

Czech Republic

OBZOR, výrobní družstvo Zlín
Louky-Slanica 378
CZ-76413 ZLÍN
Tel: +420 57 7195-111/-153 (Techn. Supp.)
Fax: +420 57 7195-152/-138
e-mail: ots@obzor.cz

Denmark

C. THIIM A/S Ingeniørfirma

Transformervej 31
DK-2730 HERLEV
Tel: +45 448580 00, Fax: 8005
e-mail: thiim@thiim.com

Finland

suomen solenoid Φ oy
Karitie 7
FIN-01530 VANTAA
Tel: +358 9 825-4240, Fax: 42410
e-mail: etunimi.sukunimi@finsol.fi

France

solenoid france Φ s. a
33, rue Bobillot
F-75013 PARIS
Tél: +33 1584080 80, Fax: 45809119
e-mail: sales@solfrance.fr

Germany

deutsche solenoid Φ vertriebs-gmbh
Wikingerstraße 20-28, D-76189 KARLSRUHE
Postfach 1001 24, D-76231 KARLSRUHE
Tel: +49 72159 88-0, Fax: 592828
e-mail: desol@krausnaimer.com

Great Britain

u. k. solenoid Φ ltd.

115 London Road
NEWBURY/BERKSHIRE RG14 2AH
Tel: +44 1635 45991, Fax: 37807
e-mail: sales@uksol.co.uk

Greece

KALAMARAKIS-SAPOUNAS S. A.
Ionias \& Neromilou Str., P. O. Box 46566
GR-13671 ACHARNES/ATHENS
Tel: +30 2 10 240-6000-6, Fax: 240-6007
e-mail: ksa@ksa.gr

Hungary

GANZ, Schalter- u. Gerätefabrik
X. Kõbányal út $41 / \mathrm{c}$, Postfach 87

H -1475 BUDAPEST
Tel: +36 1 261-5479, Fax: 4685
e-mail: ganzkk@ganzkk.hu

Iceland

BRAEDURNIR ORMSSON EHF
Lágmúli 6-9, P. O. Box 8670
REYKJAVIK
Tel: +354 530-28 00, Fax: 2810 e-mail: skuli@ormsson.is

Iran

RBS technische und kommerzielle
Beratungsgesellschaft mbH
Kohlriege 14
D-33758 SCHLOSS HOLTE
Tel: +49 5207 9111-0, Fax: 9111-19
e-mail: kontakt@rbs-gmbh.de

Republic of Ireland

irish solenoid Φ ltd.
Bay 145, Shannon Free Zone
SHANNON, Co. Clare
Tel: +353 61 704700, Fax: 471084
e-mail: salesirs@krausnaimer.ie

Italy

solenoid italia Φ s.r.l.
Via Terracini, 9
I-24047 TREVIGLIO (BG)
Tel: +39 0363-30 11 12, Fax: 302113

Japan

solenoid japan Φ co. ltd.
Yoshiwada Building 2F
1-11-6 Hamamatsucho
Minato-Ku, TOKYO 105-0013
Tel: +81 3 3436-6151, Fax: 6325

Kuwait

AMMAR \& PARTNERS ELECTRICAL CO.
P. O. Box 1871

13019 SAFAT
Tel: +965 483-0122/483-0133
Fax: +965 484-1818

Malaysia

INDUSTRIAL AUTOMATION (M) Sdn Bhd
30-3 \& 30-4 Loke New Road
55200 KUALA LUMPUR
Tel: +60 3-9-2210511, Fax: 2222299
e-mail: inquiry@iasb.com.my

Mexico

ING. JAVIER CABALLERO B.
A. Gaviño 30, Satélite,

53100 , Edo. de Mexico, MEXICO
Tel: +52 5555 62-7577, Fax: 0434
e-mail: j_caballero_b@infosel.net.mx

Netherlands

solenoid benelux $\Phi b . v$.
Wegtersweg 38, Postbus 199
NL-7556 BR HENGELO (Ov.)
Tel: +31 74 291-9441, Fax: 8380
e-mail: info@solenoid.nl

New Zealand

new zealand solenoid Φ co. ltd. 42 Miramar Avenue, P. O. Box 15-009 WELLINGTON
Tel: +64 4 380-9888, Fax: 9877
e-mail: sales@nzsolenoid.co.nz

Norway

norsk solenoid $\Phi a / s$
Hjalmar Brantings vei 8, P. O. Box 21, Økern N-0508 OSLO
Tel: +47 226444 20, Fax: 653949
e-mail: nos@norsksol.no

Poland

ASTAT sp. z 0.0
ul. Dąbrowskiego 461
PL-60451 POZNAŃ
Tel: +48 61 848-8871/72, Fax: 8276
e-mail: info@astat.com.pl

Portugal

ELECTRICOL-DAMAS, FERREIRA \& DAMASCENO, S. A.
Apartado 1083
P-2671-852 SANTO ANTÓNIO DOS CAVALEIROS
Tel: +351 21 989-8939, Fax: 988-6464

Kingdom of Saudi-Arabia

HAWA ELECTRIC PANEL BOARD FACTORY
Industrial Area, P. O. Box 1684
DAMMAM 31441
Tel: +966 3 847-2061, Fax: 2056

Singapore

solenoid singapore Φ pte. ltd.
115A, Commonwealth Drive
\# 03-17/23
SINGAPORE 149596
Tel: +65 6473-8166, Fax: 8643
e-mail: krausnaimer@singsol.com.sg

Slovenia

SCHRACK Energietechnik d.o.o.
Glavni trg 47
SI-2380 SLOVENJ GRADEC
Tel: +386 288392 00, Fax: 43471
e-mail: schrack.sg@schrack-energietechnik.si
Republic of South Africa
south african solenoid Φ co. pty. ltd.
7 Village Crescent, Linbro Village
Linbro Business Park, SANDTON 2065
P. O. Box 511, KELVIN 2054

Tel: +27 11 608-6060, Fax: 608-2874
e-mail: sales@sasolenoid.co.za

Spain

HAZEMEYER ESPAÑOLA S. A.
Crta. de Tiana s/n, Esq. N-2
BADALONA-BARCELONA
Tel: +34 93 389-4262, Fax: 384-3586
e-mail: heshaze@catworld.net

Sweden

skandinaviska solenoid Φ ab
Dr. Widerströms Gata 11, FRUÄNGEN
Box 42097, S-126 14 STOCKHOLM
Tel: +46 89700 80, Fax: 978733
e-mail: order@skansol.se

Switzerland

AWAG Elektrotechnik AG
Sandbüelstraße 2, Postfach
CH-8604 VOLKETSWIL
Tel: +41 1 908-1919, Fax: 1999
e-mail: info@awag.ch

Taiwan

NUWTEC ENTERPRISE Co Ltd
No. 301, Sec. 1, Nan Kang Road
TAIPEI 115, Taiwan, R. o. C.
Tel: +886 2 265-13279, Fax: 13264
e-mail: nathan.nuwtec@msa.hinet.net

Turkey

ÜNAL KARDEŞ ELEKTRIK GEREÇLERI A. Ş.
Beşyol, Eski Londra Asfaltı-6
TR-34630 SEFAKÖY-Istanbu
Tel: +90 212 624-9204, Fax: 592-4810
e-mail: info@unalkardes.com.tr

USA

american solenoid Φ co. inc
760 New Brunswick Road, P. O. Box 430 SOMERSET, NJ 08873
Tel: +1 732 560-1240, Fax: 8823
e-mail: amsol@krausnaimer-us.com

Halmac Senices (Qld) Pyy. Ldd.

FAIRFIELD WATER RECLAMATION PLANT

SURGE DIVERTERS

1. SURGE DIVERTER TECHNICAL DETAILS
2. SURGE DIVERTER INSTALLATION INSTRUCTION

STO2 Fairfield ST

Surge and Transient Protection

Featuring CRITEC ${ }^{\circledR}$ Surge Protection Devices

Introduction

ERILC'

Lightning strikes and the dangerous surges and transients induced by lightning, as well as surges caused by motor switching and power supply regulation problems, represent a direct threat to people, building facilities, electrical and electronic equipment.

ERICO recognises that no single technology can protect a facility from the damaging effects of lightning and induced transients, which can severely damage or destroy electronic systems. An integrated approach is required to provide effective direct strike protection and grounding, in combination with effective surge protection, so that valuable assets, data and personnel remain secure and safe.

In order to provide the optimum level of protection, ERICO has developed a Six Point Plan of Protection"', incorporating direct strike protection and grounding and surge protection for incoming power and data lines. This protection plan, combined with engineering and manufacturing excellence established over the last century, has helped position ERICO as a global

Introduction

By following the Six Point Plan of Protection"', ERICO consultants are able to recommend the most effective solutions to individual lightning, grounding and surge problems while retaining an integrated protection philosophy. The products and concepts outlined in this catalogue relate to points 5 \& 6 of the ERICO Six Point Protection Plan.

Point 5 of the Six Point Plan advocates a coordinated approach of distributed protection, where the first stage of defence is the installation of primary protection devices at the mains supply service entrance, followed by secondary protection at distribution branch panels or, where necessary, at point-of-use applications.

Point 6 recognises the need to provide effective surge clamping on cables supplying telecommunications, signal and data management equipment and has resulted in the development of equipment protectors which display a range of transient and operating performance characteristics, designed specifically for the protection of this type of equipment.

The ERICO Six Point Plan of Protection ${ }^{\text {m }}$

Capture the lightning strike to a known and preferred attachment point.
(2) Safely convey this energy to ground.
(3) Dissipate the energy into a low impedance grounding system.
(4) Bond all ground points together to eliminate ground loops and create an equipotential plane.
(5) Protect incoming AC power feeders.
(6) Protect low voltage data/telecommunication circuits.

Figure 1. The Six Point Plan applied to a facility with point 5 showing primary and secondary stage protection for incoming AC power. Point 6 shows protection on telecommunication and data lines.

Critical Factors

Critical factors need to be considered when determining the need for facility protection. M any factors can be determined by answering the following questions:

- What is the risk to personnel?
- What is the risk of equipment damage?
- What are the consequences of equipment failure?
- Is the equipment associated with an essential service?
- How will equipment failure effect overall facility operation and revenue generation?
- What are the legal implications of providing inadequate protection?

The statistical nature of lightning and the broad spectrum of energy delivered by a lightning flash, problems created by various power generation and distribution systems, and the continued trend to more sensitive and specialised electronics, requires careful selection of available technologies if adequate protection is to be provided.

What are the costs of inadequate protection?

The costs that can result from inadequate protection are many and varied. The type of equipment within a facility will have a direct impact on the damage that can occur. Robust 240 V equipment such as lighting and airconditioning systems are able to withstand impulses in the region of 1000 to $1500 \mathrm{Vpk}(\mathrm{L}-\mathrm{N})$ and are not as sensitive to the rapid rate-of-rise exhibited by the preclamped surge waveform as are electronics. These systems are often not critical to the continuing operation of the site and therefore usually do not require the premium level of protection that is essential for more sensitive equipment.

However significant damage can occur, even to the more robust systems, as a result of lightning induced surges resulting within a radius of several kilometres, or from switching induced surges, particularly where long distribution lines are prevalent.

Costs can range from degradation of electrical or electronic systems to data loss, equipment destruction and also to injury of personnel. Some of these costs can appear relatively minor but the loss of an essential service or revenues associated with a facility or plant shut down can be enormous.

According to the Insurance Information Institute, NY, (NY Press Release 11 August 1989): Lightning and over-voltage transients cause damage to property, electrical, electronic and communications equipment estimated to be more than US $\$ 1.2$ billion dollars per year in the US alone. This represents approximately 5\% of all insurance claims in the US. Costs in more lightning prone regions of the world are even greater.
According to Holle, et al., Journal of Applied Met, Vol 35, No.8, August 1996: Insurance claims to lightning and over-voltage damage amount to US\$332 million annually in the US, but many parties remain uninsured against this form of property damage. On average this represents one claim for every 57 lightning strikes in the US.

Sources of Transients and Surges

Although it is the most spectacular form of externally generated transients, lightning is only one source of overvoltage events. Other sources include the switching of power circuits and operation of electrical equipment by neighbouring industries, the operation of power factor correction devices, the switching and clearing of faults on transmission lines and utility substations. It is important to note that lightning does not need to directly strike a power line for such damage to occur; a strike several hundred metres away can induce large damaging transients, even to underground cables.

It is estimated that 70 to 85% of all transients are generated internally within one's own facility by the switching on and off of electrical loads such as lights, heating systems, motors and the operation of laser printers and photocopiers, etc.

M odern industry is highly reliant on electronic equipment and automation to increase productivity and safety. The economic benefits of such devices are well accepted. Computers are commonplace and microprocessorbased Programmable Logic Controllers (PLCs) are used in most manufacturing facilities. Microprocessors can also be found embedded in many industrial machines, security \& fire alarms, time clocks and inventory tracking tools. Given the wide range of transient sources and the potential cost of disruption, the initial installed cost of surge protection can readily be justified for any facility.

As a guide, the cost of protection should be approximately 10% of the cost of the facility's economic risk.

What is the risk of occurrence of transients and surges?

The risk of damage to an individual site will vary depending on a range of factors including the incidence of lightning activity, topography of the site, the source of power distribution and the distances that incoming power and communications lines travel. The incidence of switching loads, both external to and from within a facility, as well as switching of power correction devices will also affect risk factors of a particular location.

Reliable protection of structures, industrial and commercial operations and personnel, demands a systematic and comprehensive approach to minimising the threats caused by transient over-voltages. Grounding, bonding, lightning protection and surge protection all need to be considered for comprehensive facility electrical protection. Each of these are interdependent disciplines that need a holistic design approach to ensure the facility is not left with a vulnerable "blind spot" . The investment in surge protection devices can be wasted if " blind spots" exist. For example, installing a surge protection device on the power supply to a programmable logic controller is of little value if the I/O lines are not also protected. In addition, an air terminal on the facility may capture the lightning
energy but without a dependable ground system, this energy cannot be safely dissipated. Equally, even the most expensive Surge Protection Devices (SPDs) are poor performers if a low impedance electrical ground is not provided. These interdependent disciplines are best applied when looking at a total facility rather than an individual piece of equipment or portion of the facility.

It is for these reasons that the ERICO Six Point Plan was developed. The plan prompts the customer into considering a coordinated approach to lightning protection, surge and transient protection and grounding, an approach that embraces all aspects of potential damage, from the more obvious direct strike to the more subtle mechanisms of differential earth potential rises and voltage induction at service entry points.

Figure 2. The Six Point Plan applied to a manufacturing facility. Surge and transient protection principles applied to a total facility rather than individual pieces of equipment.

Understanding surge protection

How transients enter your facility

Transients can be coupled onto communication and power circuits in a variety of ways. Figure 3 shows three coupling methods onto a power circuit, using lightning as an example source:

- Galvanic coupling is a direct electrical connection.
- Magnetic coupling occurs when the magnetic field of a current carrying conductor induces a current onto an adjacent conductor. This is one reason why burying power cables is not considered adequate protection.
- Capacitive coupling is where the transient voltage is coupled due to the inherent capacitance between two circuits.

Nearby power circuits can be a source for magnetic and capacitive coupled transients onto communication circuits, particularly when run together on cable trays or raceways.

One of the reasons that lightning poses such a threat is because it can couple significant amounts of energy onto adjacent conductors using any one of these methods. For example, a lightning discharge several hundred metres from a power transmission line, railroad track or pipeline can magnetically and capacitively couple sufficient energy to disrupt operations and destroy information or equipment.

Figure 3. Three methods in which transients from lightning can be coupled onto power circuits.

How SPD's are tested and what we use to test SPD's

Due to the random nature of most disturbances and the variable characteristics of the transmission media, transients exhibit wide waveform variations. However, field and laboratory measurements, confirmed by theoretical calculations, have lead to the selection of a small number of waveshapes that are representative of the majority of transients encountered in practice. To assist in the evaluation of the danger posed by transients, standards such as ANSI//EEE C62.41 define typical location categories and corresponding waveforms as detailed in Figure 4.

- CCITT K17, (has now been replaced by ITU-TSS, International Telegraphic UnionTelecommunications Standards Sector) 10/700 μ s unidirectional impulse for the energy absorption specification of telephone protection equipment. This waveform is most representative of the long tail impulse characteristic of higher capacitance telephone lines.
- IEC, $10 / 350$ us current impulse for service entrance power SPDs. This waveshape is thought to better represent the effects of a direct, galvanically coupled, lightning discharge.
- 5/50ns EFT burst - used to measure immunity of equipment from electromagnetic interference.
- $10 / 1000 \mu \mathrm{~s}$ - sometimes used as a measure to test a SPDs energy handling ability.

These waveshapes define the short-circuit current characteristic of the generator (effectively the generators' internal impedance). It is also common to define the open circuit voltage characteristic of the generator. For example, for an IEEE C62.41 Category B test, this is 6kV $1.2 / 50 \mu \mathrm{~s}$. The $8 / 20 \mu \mathrm{~s}$ waveform is perhaps the most commonly quoted waveform. Put simply, it is the short-circuit current from a generator with a $1.2 / 50 \mu$ s open-circuit voltage. The $8 / 20 \mu \mathrm{~s}$ specifies that the current rises from 10% to 90% of peak in 8μ s and then decays to 50% of its peak in $20 \mu \mathrm{~s}$ (taken from the initial rise point, not the peak).

Figure 4. Typical Test Waveforms.

Understanding surge protection

What surge ratings are recommended for various locations?

Two issues need to be considered when determining the surge ratings of an SPD for a specific location:

- What is the largest surge impulse the site is likely to require protection against?
- Will this rating provide sufficient operational life under the more frequent smaller impulses?

A number of sources provide information on the statistical distribution of the current discharge of the direct lightning strike. Figure 5 , shows that direct strike lightning discharges above 100 kA are likely to occur less than 5% of the time.

Figure 5. Probability distribution of direct strike current.
Most discharges do not strike the power line directly. Discharges are usually magnetically or capacitively coupled to the power line and, even with a direct strike, the energy will split in either direction and be attenuated by the
distribution class arresters. This means that only a small fraction of the initial energy actually enters the facility in question.
ANSI/IEEE standard C62.41 has classified the service entrance environment as Cat $\mathrm{B} /$ Cat C (see Figure 6). Under this classification, the highest expected energy level is $10 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$. IEEE argues its case by pointing to many years of data collected on observed failure rates of equipment and impulse insulation of the supply system. Put simply, electrical insulation of equipment prior to the service entrance will not allow enough voltage to develop to source currents in the magnitude of hundreds of thousands of amps.

Recent work within the IEEE by respected scientists and academics has seen the Cat C reclassified to levels nearer a maximum single shot rating of $100 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$. It is important to note this 100 kA rating includes its own safety overhead, thus higher surge ratings are not required. A study that classifies the electrical environment of the primary service entrance to a facility can be found in a 10 -year independent study completed during the 1970s. The purpose of this long duration study was to better understand the frequency and magnitude of surges which a typical building might experience in a location of average isokeraunic level, in order to better protect the computer main frame installations.

This again confirms the observation that large surges (>70kA) are rare, but multiple smaller surges are common. ERICO recommends a single shot rating of $100 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$ as providing a sufficient, cost effective level of protection for most exposed locations. SPDs rated to this level will provide a typical service life in excess of 15 years. This assertion is supported by the satisfactory field performance of many thousands of SPDs in some of the most lightning prone areas in the world. For an explanation of the different format of recommendations of IEEE (stated above) and IEC surge protection standards, please refer to page 9.

Figure 6. Recommended Surge Ratings
RECOMMENDED SURGE RATINGS Imax ($8 / 20 \mu \mathrm{~s}$)

LOCATION CATEGORY				CAT C	CAT B	CAT A
		POINT-OF-ENTRY HIGHLY EXPOSED OR CRITICALLY IMPORTAN SITES	POINT-OF-ENTRY EXPOSED OR RURAL SITES	POINT-OF-ENTRY INNER CITY SITES	SUB CIRCUITS OR NEAR TO POINT-OF-ENTRY	DISTRIBUTED CIRCUITS, POWER OUTLETS, CIRCUITS REM OTE FROM POINT-OF-ENTRY
PRODUCT SERIES		TSG / TDS MO	TSG Surge Redu	ters	ers \& Diverters	
EXPOSURE $\mathrm{Ng}=$ strikes/ km^{2} /year.						
	Ng					
HIGH	>2	100kA	70kA	40kA	20kA	10kA
MED.	0.5-2	65 kA	40kA	20 kA	20 kA	5 kA
' nı'	- 5	ciln	ィ $1 . \wedge$	$1{ }^{\text {cın }}$	г1,	$31 \wedge$

Understanding surge protection

What are clamping voltages, suppressed voltage ratings and let-throughs?

All these terms relate to a measure of the SPDs' ability to protect the downstream equipment by limiting the transient voltage of an applied impulse. No SPD can clamp the transient voltage to zero. Some small amount of residual voltage is let-through to the protected equipment. A good SPD will limit this let-through voltage to a level that can be tolerated by the equipment being protected. For example, it is not unusual for transients to exceed several thousand volts while most 240 V electronic equipment can not withstand a voltage peak greater than 600V. Provided that the SPD can clamp the incident transient to less than the tolerance threshold of the equipment, adequate protection is provided.

Actual equipment withstand voltages vary, but as a guide for electronic equipment transient voltages, twice the nominal peak supply voltage can cause operational problems. Since the let-through voltage of an SPD is proportional to the magnitude of the applied surge, it is important, when considering the relative performance of different devices, to know what test amplitude in kA, and what waveshape (i.e. $8 / 20 \mu \mathrm{~s}$) was used to measure the let-through voltage.

In UL 1449, Underwriters Laboratories defines the term "Suppressed Voltage Rating" (SVR) as the transient voltage reaching the protected equipment (rounded up to the nearest given value in Table 1), under a test condition of $6 \mathrm{kV} 1.2 / 50 \mu \mathrm{~s}, 500 \mathrm{~A} 8 / 20 \mu \mathrm{~s}$. The 500A level was selected by UL as the lowest common denominator to allow even the cheapest lowest surge-rated SPDs to be tested. However, as most manufacturers use 275 V nominal M OVs (for 240 V nominal SPDs) most SVRs will be similar at this 500A $8 / 20 \mu \mathrm{~s}$ level. Larger performance differences will be noted at higher surge ratings.

The IEEE C62.41 defines the electrical environment of the service entrance to a facility as being a Category C exposure. This means that transients of up to $10 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$ with voltages of up to 20 kV can be expected. Under such conditions, two SPDs with similar SVR results under UL 1449 may exhibit significantly different let-through voltages.

UL1449 attempts to make these products comparable by providing SVR levels into which various devices can be categorised. As an example, an SPD with a let-through of 830 V will be considered to have an SVR of 900 V . This allows comparison of devices falling between 800 V and 900 V . These categories extend to 6000 V in increments of 100 V for smaller capacity devices, through 300 and 500 V increments and up to 1000 V increments for larger capacity devices.

UL Suppressed Voltage Ratings								
330	400	500	600	700	800	900	1000	1200
1500	1800	2000	2500	3000	4000	5000	6000	

Table 1. UL suppressed voltage ratings.
The term Clamping Voltage is defined by different standards to refer to the voltage at which an SPD limits a defined transient voltage/current amplitude and wave-shape. M ore correctly, it is intended to define the "knee" of the VI characteristic for a MOV at which the onset of conduction occurs and is generally measured at the 1 mA point i.e. the voltage across the MOV when 1 mA is being conducted.

For Example :	A Critec DSD 140-2S (refer to page 24) has the following performance ratings.
	Clamp Voltage 275 Vms UL SVR Rating (500A, 6 kV) 600 V Cat B Let-through (3kA, 6 kV$)$ 675 V Cat C Let-through (20kA, 6 kV$)$ 940 V
Compared to	A Critec DSD 180-2S (refer to page 24) has the following performance ratings.
	Clamp Voltage 275 V rms UL SVR Rating (500A, 6kV) 600 V Cat B let-through (3kA, 6 kV) 630 V Cat C let-through (20kA, 6 kV 790 V

As it can be shown, if you were comparing these two products using the SVR or Cat B let-through voltage ratings alone they would appear relatively similar in performance. However, when comparing the two products at a higher rating the differences in performance becomes clearer.

It is recommended to compare the performance of SPDs under surge magnitudes similar to that experienced in their application.

7

Shunt versus Series Protection and the benefits of filtering

A single port SPD is a device installed in parallel with the equipment to be protected and serves to simply clamp the peak of the transient voltage. The performance of this clamping depends upon technology used (e.g. MOVs, silicon, spark gaps, etc.) circuit and construction designs. The main limitation of the parallel diverter is that prior to the activation of the device, little is done to modify the leading edge of the incident surge.

Two port SPD devices contain a series inductance and typically, parallel capacitance. Such devices with a lowpass series filter, provide superior performance and are well suited to the protection of electronic equipment including computers, rectifier systems, to all types of electronic systems. A well-designed two port SPD will provide attenuation to, not only the higher frequency RFI/EMI (Radio Frequency Interference/Electro-M agnetic Interference), but critically to 5 to 50 kHz band (the main fundamental frequency range of most lightning induced interference). Figure 7, indicates the typical lightning frequency bandwidth, comparing filters designed for RFI/EM I filtering to those required for effective protection against lightning induced surges.

The benefits of filtering

Lightning or switching transients are characterised by an impulse of very fast rise time. It is not uncommon to experience $10 \mathrm{kA} / \mu \mathrm{s}$ rise times in current and much the same in voltage. Electronic equipment is sensitive not only to the absolute magnitude of the voltage, but also to the rate-of-rise of this impulse.

Figure 7. Typical lightning frequency bandwidth.

Much of the damage occurring in sensitive electronic circuits, which use power semiconductor components such as M OSFETs, thyristors and IGBTs, is the result of these steep changes in $\mathrm{dv} / \mathrm{dt}$ and di/dt rather than simply the peak voltage.

Such fast changes can cause these components to switch at the wrong point in their conduction cycle and self-destruct. Protection of sensitive electronic circuits requires more than simply limiting the voltage of the transient. It is also extremely important to slow down the inherently fast rates of voltage and current rise, or in effect, to condition the waveshape of the incident surge. The inclusion of a " low pass filter" is well suited to such a role. As its name implies, such a device will pass low frequencies, such as the $50 / 60 \mathrm{~Hz}$ mains voltage, with little attenuation, while it will attenuate and slow down the higher frequency components of a fast transient event. These products efficiently reduce the dv/dt of the surge from a nominal $10,000 \mathrm{~V} / \mathrm{s}$ to less than $100 \mathrm{~V} / \mu \mathrm{s}$, a one hundred-fold improvement.

These filters offer two benefits:

1) They further reduce the transient voltage reaching the equipment.
2) Most importantly they alter the rate-of-rise of the leading edge of the impulse. The residual leading edge spike from a standard SPD, although it may only be 500 V in amplitude, can cripple electronics due to its extremely high rate of voltage rise of $3,000-12,000 \mathrm{~V} / \mu \mathrm{s}$. The series surge filter reduces this rate-of-rise to less than $100 \mathrm{~V} / \mu \mathrm{s}$. This slower change in voltage is better withstood by electronic equipment using switched mode power supplies. The filter also attenuates small signal RFI/EMI noise problems.

Figure 8.
Improved reduction in $\mathrm{dv} / \mathrm{dt}$ of Surge Filter

What to look for when selecting surge protection products

Recommended Surge Ratings A Comparison betw een IEC and IEEE Recommendations

Competition between SPD manufacturers has seen everincreasing surge ratings being offered to the market, to the point where surges of this magnitude are unlikely to ever occur in nature. A number of sources provide information on the statistical distribution of the current discharge of the direct lightning strike. M any studies have shown that peak lightning discharges above 100 kA are likely to occur less than 5% of the time. Combined with the fact that most discharges do not strike the power line directly but are magnetically or capacitively coupled to it, and that even under a direct lightning discharge the energy will split in either direction and be attenuated by the distribution arresters and line losses, it is not difficult to determine that a smaller fraction of the initial lightning energy typically enters the facility in question.

ANSI//EEE standard C62.41 has classified the "point-of-entry" environment as $\mathrm{CatB} / \mathrm{C}$. Under this classification the highest expected energy level is $10 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$ (For further detailed information refer to page 6). In contrast, the IEC61312 and DIN VDE 0675 defines some differing guidelines. IEC 61000-56 and IEC 61312-1 describe protection zone concepts. This is similar in nature to the ANSI/IEEE C62.41 concept of Category $A, B \& C$ locations.

A "Zone" is where the lightning electromagnetic environment can be defined/controlled. The zones are characterised by significant changes of electromagnetic conditions at these boundaries. These will typically be building boundaries, or the point where protection is installed.

LPZ OA Zone subject to direct strikes
LPZ Ов Zone not subjected to direct strikes, but unattenuated electromagnetic fields may occur.
LPZ 1 Zone not subjected to direct strikes and where currents in this zone are reduced compared to Zone OB
LPZ 2... If further reductions in current from LPZ 1 are achieved/required further zones can be created.

Actual surge ratings required in each of these zones is not exactly defined and is largely determine by some site-specific details. How ever, to assist with this the VDE0675 Part 6 standard defines the minimum class of product that can be applied to each of these Zones as shown below :

Class A : Arrester for use in Low-Voltage overhead lines
Class B : Arrester for Lightning Current protection (must be at least 100kA $8 / 80 \mu \mathrm{~s}$ or 10As charge, two times). Zones Ob to 1 (M ain distribution Boards, Sub-Boards)
Class C : Arrester for Overvoltage protection (must have a nominal surge rating of at least 5 kA $8 / 20 \mu \mathrm{~s}$) Zones 1 to 2 (mainly sub-boards or low exposure main boards)
Class D : Arrester for mobile use on socket-outlets (must have a nominal surge rating of at least 1.5 kA $8 / 20 \mu \mathrm{~s}$)

Figure 9. Protection zones defined by specific product application.

As it can be shown, protection equipment for power supply systems are classified as follows, according to itstask.

- Lightning Current Arrester
- Overvoltage Arrester

Lightning current arresters must be capable of conducting lightning currents or major components of them without being destroyed. Overvoltage arresters are only used for limiting overvoltages at relatively smaller surge currents. The different " protection zones" assume the division of the initial lightning current, from zone 0 to higher zones. For zone 0 , it is required for the user to select the lightning protection class, from I - IV : (i.e. these refer to max energy within a direct lightning strike).

Protection Level	Current Magnitude	\% Exceeded
Level I	$200 \mathrm{kA}(10 / 350 \mu \mathrm{~s})$	$\sim 0.2 \%$
Level II	$150 \mathrm{kA}(10 / 350 \mu \mathrm{~s})$	$\sim 1.5 \%$
Level III - IV	$100 \mathrm{kA}(10 / 350 \mu \mathrm{~s})$	$\sim 3 \%$

The above levels can be selected based on the statistical level of protection required. A lightning current of $200 \mathrm{kA}(10 / 350 \mu \mathrm{~s})$ can be expected for the Protection Level I. This lightning current is divided as follows in the most exposed sites :
50% ($100 \mathrm{kA}, 10 / 350 \mu \mathrm{~s}$) discharges via the ground system.
$50 \%(100 \mathrm{kA}, 10 / 350 \mu \mathrm{~s})$ flows into the supply systems connected to it. (i.e. power supply system, IT communications system, metal pipes, etc.)

In the worst case, the power supply system is present only with two conductors (L;PEN), then this is loaded with 50% of the lightning current, or $50 \mathrm{kA}(10 / 350 \mu \mathrm{~s})$ per conductor.

In summary, if the IEC and DIN VDE standard were selected, the highest surge current expected at Zone O, with Protection Level I, for single phase two conductor is $50 \mathrm{kA}(10 / 350 \mu \mathrm{~s})$ or $25 \mathrm{kA}(10 / 350 \mu \mathrm{~s})$ for three phase 4 wire systems. In contrast, the lowest required surge current expected at Zone 0 , with Protection Level III-IV, for single phase two conductor is $25 \mathrm{kA}(10 / 350 \mu \mathrm{~s})$ or $12.5 \mathrm{kA}(10 / 350 \mu \mathrm{~s})$ for three phase 4 -wire systems.

ERICO products are designed for IEC, IEEE and other related surge protection zonal and category defined standards. It is a matter of selecting the product with the required surge rating for the exposure application. Please refer to the "Surge rated to meet" selection criteria on the product pages.

How to select surge protection for AC powered equipment

Knowing where to install surge protection can be difficult. The balance must be found between installing SPDs on every distribution board and installing insufficient protection, thereby leaving the facility vulnerable to damage.

The following 3 steps provide guidelines to optimising your investment in protection without paying for overcoverage:

1) The first line of defence is to install an adequate surge protection device at the primary service entrance to the facility. This unit is normally the largest surge rated device, as it may be subjected to the injection of direct lightning currents. Typically a rating of $100 \mathrm{kA}(8 / 20 \mu \mathrm{~s})$ is required. The choice of whether to use shunt or series protection at this location is dependent on the ratio of the current rating of robust electrical equipment, such as lights and motors to the total rating of sensitive electronic equipment on the facility. If the latter rating is smaller or some distance from the service entrance, it may be more economical to install shunt only protection at this location. This primary shunt protection alone is often adequate to protect such robust equipment.
2) If shunt protection is chosen for the service entrance, a second line of defence using series filtering is required for sensitive electronic equipment to further reduce the let-through and rate of voltage rise to this equipment. Generally, this is applied at selected branch distribution boards. This line of defence also serves to protect branch circuit equipment from transients generated internally within the facility. Approximately 70 to 85% of all transients are generated within one's own facility.
3) For large or "spread-out" facilities it is required to consider protection for sensitive electronic equipment at the nearest upstream distribution panel. If the nearest distribution panel is greater than 30 m away, or located in an adjacent building, the protection must be installed closer to the equipment requiring protection. This is termed "point-of-use" protection.

Substantial confusion can occur when attempting to compare different products. There are a number of issues that need to be considered in attempting such an exercise:

1. What is the surge rating ? Are the stated ratings theoretical or tested ?

Not all manufacturers have surge generators capable of testing at high surge levels. It is not uncommon to find products on the market, which claim a $80 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$ surge rating, but use internal fuses or circuit board tracks that rupture at approximately $20 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$.

PREFERRED PROTECTION CONCEPTS

How to select surge protection for AC powered equipment

ERICO recommends that you request test results from manufacturers verifying claimed maximum surge ratings to determine the required surge rating for your application, refer to pages $6 \& 9$ for advice.
2. Are the stated surge ratings using the same current / voltage waveshape?

For example, a $10 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$ impulse has approximately the same Joule energy rating as a $2 \mathrm{kA} 10 / 350 \mu \mathrm{~s}$ impulse.
3. Will the SPD limit the surge voltage to a level which is acceptable for the equipment I wish to protect ?

Not all SPD's perform the same, and as a result different products are required depending upon the robustness of and the exposure of the equipment to be protected.

For example, it would be of little value to compare the let-through voltage of products using a Category B 3kA $8 / 20 \mu \mathrm{~s}$ test if the product were to be installed in an exposed location. The use of a Category C $20 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$ test or higher would be more suitable in this case.

As referred to in certain standards, it is recommended to limit the let-through voltage to electronic equipment to less than 150% of the mains peak voltage. (ie 510 V peak for a typical 240 Vrms system). It is strongly recommended for sensitive electronic equipment to consider both the rate of voltage rise (dv/dt) and the let-through voltage that results from a typical surge.

Figure 10 provides a comparison of the let-through voltage for shunt versus series product. Effective series connected SPDs, as shown, should reduce the $\mathrm{dv} / \mathrm{dt}$ of the surge for a nominal $10,000 \mathrm{~V} / \mu$ s to less than $100 \mathrm{~V} / \mu \mathrm{s}$, a one hundred-fold improvement.
4. Is the M aximum Continuous Operating Voltage (MCOV) of the SPD important?

Recently released standards on Surge Protective Devices (IEC61643-1, UL1449 Ed2) highlight concerns about the safety of traditional technologies under sustained over-voltage conditions which can arise from poor regulation of the distribution system or from a number of other causes. The US-based UL1449 standard has specified that SPDs (operating on Wye circuits) with a nominal operating voltage of 240 Vrms must be tested to sustain over-voltages of $415 \mathrm{~V} r m s$ without the device overheating or becoming a fire risk. An SPD with UL 1449 approval will ensure safe failure due to abnormal over-voltages, while a SPD with UL 1449 approval and TD technology will ensure safe, reliable operation during and after abnormal over-voltages.

Figure 11. Shunt versus Series protection for power applications.

How to select surge protection for data, signalling and control circuits

1) SPDs are designed to clamp the excess transient voltage to safe levels sustainable by the equipment, yet should not interfere with the normal signalling voltages. As a guide, the SPD clamping voltage should be selected to be approximately 20% higher than peak working voltage of the circuit.
2) The line current rating of the SPD should be sufficient to handle the maximum expected signalling current.
3) The SPD bandwidth should be sufficient to allow correct operation of the system without adverse attenuation. This ensures that the attenuation of the SPD at the nominal operating frequency of the system does not exceed the stated limit. For most SPDs, frequency attenuation data or a maximum recommended baud rate is generally specified.
4) The connection termination, mounting method, number of lines to be protected and other physical aspects must be considered.
5) The SPD surge rating should be appropriate for the intended location. For circuits internal to the building, surge ratings of 1-5kA are generally sufficient. For the protection of circuits that connect to exposed lines entering or exiting the facility, 10-20kA is recommended. Alternatively a protocol or standard may be specified that defines the above parameters. As an example, the CRITEC DEP-RS232/9/9 is designed to protect circuits meeting the V. 24 EIA-232 specifications. As items 1-3 are defined by the Standard the DEP-RS232/9/9 will work on any circuit employing the RS-233 signal protocol.

Figure 12. Installed protection on all incoming telecommunications and data signal lines.

To meet the fundamental requirements of performance, longer service life and greater safety under real world conditions, ERICO has developed a range of technologies covering all aspects of the Six Point Plan of protection. In the field of surge protection, several technologies play a critical role.

Traditional Technologies

Conventional SPD technologies utilise metal oxide varistors (MOVs) and/or silicon avalanche diodes (SADs) to clamp or limit transient events. However, these devices are susceptible to sustained $50 / 60 \mathrm{~Hz}$ mains over-voltage conditions, which often occur during faults to the utility system. Such occurrences present a significant safety hazard when the suppression device attempts to clamp the peak of each half cycle on the mains over-voltage. This condition can cause the device to rapidly accumulate heat and in turn fail, with the possibility of creating a fire hazard.

Transient Discriminating ${ }^{\text {TM }}$ (TD) ${ }^{\text {m }}$ Technology

Transient Discriminating ${ }^{\text {TM }}$ (TD) Technology represents a quantum leap in surge protection and adds a level of "intelligence" to the SPD, enabling it to discriminate between sustained abnormal over-voltage conditions and true transient or surge events. Not only does this ensure safe operation under practical application, but it also prolongs the life of the protector.

Figure 13. Diagram shows the wave form and spike differences between traditional technology and Active TD Technology.

The secret to ERICO's Transient Discriminating Technology is its active frequency discrimination circuit. This patented device can discriminate between a temporary over-voltage (TOV) condition and a very fast transient, which is associated with lightning or switching-induced surges. When the transient frequencies are detected, the patented circuitry within the $T^{T M}$ device activates, allowing the robust protection to limit the incoming transient. The frequency discriminating circuit ensures that the SPD device is immune to the effects of a sustained $50 / 60 \mathrm{~Hz} \mathrm{TOV}$. This allows the device to keep operating, providing safe and reliable transient protection to sensitive electronic equipment; even after an abnormal over-voltage condition has occurred.

Meeting \& Exceeding UL Standards

The CRITEC ${ }^{\circledR}$ range of surge protection devices that employ $\mathrm{TD}^{\text {m }}$ Technology have been specifically designed to meet and exceed the safety requirements of UL 1449 Edition 2 . To meet the abnormal over-
voltage testing of UL 1449 Edition 2, many manufacturers of SPD devices have incorporated fuse or thermal disconnect devices, which permanently disconnect all protection from the circuit during an over-voltage event. By comparison, Transient Discriminating Technology allows the SPD to experience an abnormal over-voltage up to twice its nominal operating voltage and still remain operational. TD technology is especially recommended for any site where sustained overvoltages are known to occur, and where failure of traditional SPD technologies cannot be tolerated.

The UL 1449 testing standard addresses the safety of an SPD under temporary and abnormal over-voltage conditions, but does not specifically mandate a design that will give a reliable, long length of service in the real world. Specifically, UL 1449 tests that the TVSS remains operational at 10% above nominal supply voltage, allowing SPD manufacturers to design products that permanently disconnect just above that level. M ost reputable manufacturer's designs allow for up to a 25% over-voltage, while ERICO's TD ${ }^{\text {TM }}$ Technology gives even greater overhead.

TD Technology - Features \& Benefits:

- Long life by eliminating SPD failure under TOV conditions.
- Fully compliant with UL 1449, Edition 2.
- Extended Maximum Continuous Operating Voltage makes this technology ideal where the integrity of the utility power cannot be guaranteed.
- No reliance on permanent over-voltage disconnects means continued protection even after abnormal over-voltage events.
- High surge capacity with low suppressed voltage ratings.

Triggered Spark Gap (TSG) Technology

ERICO continues to seek new and more efficient means by which to provide over-voltage protection and has recently developed an enhanced triggered spark gap to provide high-energy surge diversion. The spark gap was recognised as having the potential to provide effective surge suppression and meet the emerging requirements of various recognised standards, having the ability to clamp a surge to low levels while diverting currents of more than 100kA. This represents extremely efficient energy absorption capability when compared to other technologies.

One of the criticisms of traditional spark gap technology has been the high initiating voltage required to form the arc, typically as much as three to four thousand volts. Clearly this is inappropriate for sensitive AC supply where surges of several hundred volts can be lethal to equipment. ERICO has addressed this problem by incorporating a triggering device, which senses the arrival of a transient and initiates a spark to ionise the region surrounding the spark gap electrodes. This enables the spark gap to operate on significantly lower transient voltages.

Figure 14. Activation of the Triggered Spark Gap Diverter.

Figure 15. Internal components of TSG Shunt Diverter
A second major criticism of traditional spark gaps has been their follow current performance. Spark gaps have a low clamping voltage and can clamp a surge below the peak of the AC mains voltage, meaning in effect that the clamp will remain in place until the next zero crossing of the AC voltage. Such clamping of the fault current capacity of the AC mains is potentially damaging to the device. To overcome this problem, ERICO has incorporated a method of increasing the voltage of the spark gap once the surge has passed, allowing the voltage to rise to the peak of the AC mains and extinguish the arc. This feature is effective even on AC supplies with higher prospective fault current capacities and has the added benefit of preventing upstream fuses or circuit breakers from activating.

The TSG is a parallel device, which is not load dependent and will therefore operate only under transient conditions. It is an ideal point-of-entry device, providing primary protection for robust loads such as electrical motors, air conditioning and lighting systems, greatly reducing the amount of transient energy entering the facility. This allows downstream products such as ERICO's Surge Reduction Filters (SRFs) to provide optimum fine level protection to equipment within a facility.

A plasma shield has been incorporated into this product to prevent the spark gap from venting outside its enclosure. This allows it to be mounted close to the back plane and means that there is no requirement to physically isolate adjacent devices. The TSG has provided a flexibility to the range of SPDs, which was not previously possible. Not only can it be used as a high performance, stand-alone surge diverter, but it has also been incorporated into the premium CRITEC Surge Reduction Filter range, allowing this range of products to provide levels of performance previously unattainable.

Surge Reduction Filter Technology

Recent advances in diverter design have seen the development and incorporation of Transient Discriminating ${ }^{\text {TM }}$ (TD) and Triggered Spark Gap (TSG) technologies into SPDs. These devices employ traditional components, including M etal Oxide Varistors (MOV's), and enhanced performance spark gaps that have been engineered to exhibit different performance characteristics. As a result of this, they have different applications as stand alone products.

New concepts for surge reduction filters

ERICO strives to employ the most suitable technology for each application across its range of SPDs, including high performance Surge Reduction Filters (SRFs). The new CRITEC SRF is the most recent development in SRF technology. It brings together for the first time, TD ${ }^{\text {TM }}$ and TSG technologies, with the additional benefits of series filtering.

Because of the considerable technological advance achieved with the TSG, ERICO is using it as the primary shunt diverter within the new SRF, exploiting the performance benefits offered by spark gap diverters.

Internal configuration showing the combined technologies of the CRITEC three phase Surge Reduction Filter.

The Key Benefits of Combined TSG \& TD ${ }^{\text {m }}$ Technology ARRIVAL OF SURGE PRIMARY DIVERSON STACE RESIDUAL WAVEFRONT

Figure 16. Diagram illustrates the complete filtering effect of combined technologies.

Fundamental breakthrough in filter design

Incorporating TSG Technology into a surge reduction filter has allowed a fundamental breakthrough in the overall design of the filter. Ferrouscored inductors, which are much smaller than non-saturating air-cored inductors required in MOV based surge reduction filters, have been used in the CRITEC TSG-SRF.

The use of ferrous-cored inductors is possible because the let-through voltage from a TSG remains high for only a few microseconds ($\mu \mathrm{s}$). In comparison, the let-through voltage from a MOV based device remains between 600 V and 1000 V for the duration of the surge. This time can range from 30 ms to 400 ms and above for longer tail pulses and determines how much energy the inductor has to store before reaching saturation and becoming ineffective.

This advantage becomes more significant on longer pulses. To incorporate ferrous-cored inductors into a MOV based filter would significantly reduce the filter performance on longer tailed pulses. This loss of performance does not arise in TSG based filters.

What benefits flow from this technology?

The combination of TSG and TD ${ }^{T M}$ Technology provides the benefits of high surge capability, low let-through voltage and considerably reduced $\mathrm{dv} / \mathrm{dt}$. This applies to both surge performance and over-voltage withstand from short and long duration high-energy surges.

Aggregate (Surge) Rating - Sum of the surge current rating of all modes within an SPD, excluding any fuse-limiting effects. This figure is used primarily as an indicator of the total life, which the SPD can be expected to provide and should not be confused with the maximum single shot surge rating that the device may be capable of withstanding.

Capacitive Coupling - Normally unwanted interference between two nearby conductors due to the strength of the electric field surrounding the source conductor. This is a common cause of noise being coupled from a noisy power circuit to a low voltage data circuit.

Clamping Voltage - This term is loosely used in the industry to refer to the voltage at which an SPD limits an applied surge impulse. M ore correctly, for MOV devices the clamping voltage is the point at which the SPD will start to draw current and is generally regarded as the knee of the VI curve at which 1mA DC current flows.

Common Mode Voltage - A voltage between two or more conductors and ground. This is normally an interference or transient voltage between two lines such as Line and Neutral to Ground. Sometimes referred to as the longitudinal mode.

Figure 17. Common Mode Voltage.
Coupling - Interaction between circuits, during which energy is transmitted from one circuit to the other. May be coupled galvanically (directly), magnetically or capacitively.

Electromagnetic Compatibility (EMC) - EMC is the ability of a device to function satisfactorily in its intended electromagnetic environment without producing interference, which may affect other nearby devices.

Energy Rating (in Joules) - Given by some SPD manufacturers to indicate the maximum amount of transient energy that the suppressor can dissipate. Commonly specified for $10 / 1000 \mu \mathrm{~s}$ waveforms. This rating is of little practical value as it is dependent upon three variables: voltage, current and
time. Hence an improved current rating will increase the energy rating, but an improved (lower) let-through voltage will lower the energy rating.

Therefore, it is unwise to compare energy ratings between two different devices.

Follow-Current - Where a "Voltage Clamping" SPD after " firing", clamps below the AC supply voltage and causes line current to flow. Follow-current is normally very large for spark gap (crow bar) type devices. It is for this reason that gas arresters are not used for AC power protection applications. "Voltage Limiting" devices such as M OVs and Silicon Avalanche Diode-based devices do not cause follow-currents.

type	Typical Response
Voltage Limiting type SPD	
Voltage Limiting type SPD	

Figure 18. Follow Current.
Frequency (Noise) Attenuation (dB) - The small signal attenuation for a filter in decibels. This attenuation varies with applied frequency, so it is best given as a graph of frequency versus attenuation. However it is commonly specified at a single point (either at 100 kHz , or the frequency at which attenuation equals -3dB). The Decibel scale is non-linear and a large negative number indicates greater attenuation (each increment of -20 dB increases voltage attenuation by a factor of 10 times, i.e. $40 \mathrm{db}=x 100,60 \mathrm{~dB}=x 1000$). Test signals used are normally in the order of 10 V , so attenuation results are an indication of response to noise signals rather than larger surge performance.

Impulse Withstand Voltage - The peak value of the
highest impulse voltage with a defined waveshape and polarity, which will not lead to a flashover or failure of the device under test (DUT) in the given test conditions.

Lead Length - The length of parallel " T " connected SPD leads from the SPD terminals to the circuit to be protected. This lead length, and size, shape and loop area, adversely increases the let-through voltage reaching the protected equipment. A Kelvin connection is recommended, where possible, to avoid this.
Leakage Current - The miniscule current flowing through

The Benefit of Kelvin Connections

3 kA 8/20 μ s Applied Impulse

Figure 19. The benefits of a Kelvin connection.
insulators and electronic components that are in a nonconductive state, or between two points that are insulated between each other. A rising leakage current can be a warning of an impending insulation or component failure.
Let-through Voltage - The voltage appearing on the equipment side of an SPD when an impulse voltage or current of a defined waveshape and amplitude is applied to the SPD. This is a measure of the SPDs' ability to clamp a transient voltage. As let-through voltage depends on the amplitude and waveshape of the applied current, test conditions must be stipulated with the result. Some SPD results will alter
depending on whether or not the test was conducted with nominal mains voltage present. This should be stated. (Refer to Suppressed Voltage Rating).

Listing - Statement of independent laboratory testing of safety or performance.

Location Categories - ANSI C62.41 defines areas of a typical installation, assigning these location categories with typical maximum expected transient voltages, currents and waveshapes.

Magnetic (or Inductive) Coupling - Formed by the magnetic field surrounding a conductor with a changing current flowing through it. When another conductor cuts the magnetic flux lines, a voltage is developed on that conductor. The greater the rate of change of the flux lines, the greater the voltage developed. This is the main source of lightning impulses on power circuits.

Maximum Continuous Operating Voltage (MCOV) The maximum RMS voltage that can be applied continuously to an SPD without inhibiting its correct operation.

Modes (of Protection) - This refers to the way the SPD is connected to the circuit. Each mode is where a dedicated direct SPD element is connected. Note that an SPD may have multiple internal elements allowing one SPD to protect multiple modes, e.g. L-N, L-G and N-G. An SPD that protects only L1-N and L2-N cannot be claimed as also having an L1-L2 protection mode as no direct element is provided. Note that not all modes require protection. A 3Ph 4W+G power system has 10 possible modes but can be adequately protected with a 4 mode SPD.

MOV (Metal Oxide Varistor) - Commonly used at the clamping device in SPDs. The MOV is a bipolar non-linear resistor with a symmetrical voltage or current characteristic curve whose resistance value decreases as the voltage increases.

Nominal Voltage - The normal operating voltage at which the equipment is intended to operate. Generally the actual voltage is expected to be within +/- 10% of this under normal conditions.

Normal Mode Voltage - The voltage interference between
two conductors of a circuit (Line to Line). Also referred to as Differential M ode or Transverse M ode.

Residual Voltage - Another term for let-through voltage. Some standards, however, define residual voltage as being measured when testing is conducted with nominal or MCOV voltage applied. This is optional with let-through results.

Response Time - M ost commonly thought to be the time it

Figure 20. Normal Mode Voltage.
takes an SPD to respond to a transient, although the actual definition as given in standards is the overshoot time of an SPD. Response time is misleading as to the true performance of an SPD.

Sparkover-voltage - The voltage at which a spark gap SPD becomes conductive. Normally specified with a voltage increasing at $1 \mathrm{kV} / \mathrm{s}$.

Stage (of protection) - Describes the configuration of circuit elements of an SPD where multiple technologies may be used to provide protection.

Suppressed Voltage Rating - A term defined within UL 1449, to measure the let-through voltage with a 6 kV $1.2 / 50 \mu \mathrm{~s}, 500 \mathrm{~A} 8 / 20 \mu \mathrm{~s}$ impulse. The voltage is then rounded up to the next value on a list of preferred values.

Surge Current Rating - M aximum current withstand of an SPD for a single current impulse waveform of defined waveshape (with MCOV voltage applied).

The clamping voltage after this test should not differ by more than 10% of the value prior to the test. Most commonly, surge ratings are quoted for an $8 / 20 \mu \mathrm{~s}$ current waveform, but $10 / 350 \mu \mathrm{~s}$ and $10 / 700 \mu \mathrm{~s}$ are others used.

Surge Filter - An in-line filter specifically designed to reduce the rate of voltage rise (dv/dt) of the pre-clamped waveform. Requires some series impedance between input and output terminals. This type of product is highly recommended for the protection of sensitive electronic equipment.

Surge Protection Device (SPD) - Internationally accepted term for surge diverters. Also referred to by UL as Transient Voltage Surge Suppressors (TVSSs). Note " Surge arresters" is a term normally reserved for devices intended for operation on medium voltage systems ($>1 \mathrm{kV}$), or prior to the main service entrance disconnect. Reduction of dv/dt is not normally provided by low cost EMI/RFI noise filters.

Temporary Over-Voltages (TOV) - An over-voltage occuring on the power system of relatively long duration, typically between 0.05 s and 10 s .

Transient Voltage Surge Suppressor (TVSS) - A term commonly used in the USA for Surge Protection Devices.

A Guide to common voltage distribution systems

Varying power distribution systems are currently in use throughout the world. The following guide identifies the more commonly used systems and lists the appropriate CRITEC products that are compatible with those systems.

Distribution System	Sour ce Configur ation	Supply Voltages		ERICO SPD			
				Shunt			Series Sur ge Reduction Filter
				Type	Qty*	Mode	
Single Phase 1Ph, 2W+G M.EN System		$220-240 \mathrm{~V}$	$\begin{aligned} & 220-240 \mathrm{~V} \\ & \text { L-N, L-G } \end{aligned}$	MOVTEC, DINLINE, DSD, TDS, TDX	1 to 2	L-N, L-G	TSG-SRF140, TDF-240V TSG-SRF163, TSG-SRF1125 TSG-SRF - 120 V version TDF-120V version
				TSG	1	N-G	
		110-120V	$\begin{aligned} & \text { 110-120V } \\ & \text { L-N, L-G } \end{aligned}$	MOVTEC, DINLINE, DSD, TDS, TDX	1 to 2	L-N, L-G	
				TSG	1	N-G	
Single Phase 1 Ph, 3W + G (Edison system)		120/240	$\begin{aligned} & \text { 240V L1-L2, } \\ & \text { 120V L1-N, L2-N } \end{aligned}$	MOVTEC, DINLINE DSD, TDS, TDX	1 to 3	$\begin{gathered} \text { L-L, L-N } \\ \text { N-G } \end{gathered}$	TDF63 120/240, TDF125 120/240 - Special Models (Inquire for Assistance)
				TSG	1	$\mathrm{N}-\mathrm{G}$	
Single Phase 1Ph, 2W+G Non-M.EN		220-240V	220-240 V L-L	MOVTEC, DINLINE DSD, TDS, TSG, TDX	1	L-L	$\begin{aligned} & \text { TDF-3A-240, TDF-10-240, } \\ & \text { TDF-20A-240 } \end{aligned}$
		110-120 V L-G		TSG1130-2S-NE	2	L-G	TDF63 220, TDF125 220- Special models 63A-125A (Inquire for Assistance)
Three Phase 3Ph Y, 3W+G No-Neutral		400-440	400-440V L-L	MOVTEC 480V Version TDX	3	L-L	Special Application Inquire for Assistance
			230-254 L-G	MOVTEC, DINLINE, DSD, TDS, TSG,	3	L-G	
		200-240	200-240V L-L	MOVTEC, DINLINE, DSD, TDS, TSG, TDX	3	L-L	
			115-138V L-G	MOVTEC, DINLINE, DSD, TDS, TSG,	3	L-G	
Three Phase 3Ph Y, 4W+G Neutral		380-440	380-440 L-L	MOVTEC, DINLINE, DSD, TDS, TSG,	3	L-N	TSG-SRF 3Ph 40A2000A
		220-254 L-N		MOVTEC, DINLINE, DSD, TDS, TSG,	1	$\begin{gathered} \mathrm{N}-\mathrm{G} \\ \mathrm{~L}-\mathrm{N}, \mathrm{~N}-\mathrm{G} \end{gathered}$	
				TDS-MPM-277, TDX	1	Protection Module	
		208-230	$\begin{aligned} & 208-230 \mathrm{~L}-\mathrm{L} \\ & 120-130 \mathrm{~L}-\mathrm{N} \end{aligned}$	MOVTEC, DINLINE, DSD, TDS, TSG,	3	L-N	TSG-SRF 3Ph 40A2000A - 120V version
				MOVTEC, DINLINE DSD, TDS, TSG,	1	$\begin{gathered} \mathrm{N}-\mathrm{G} \\ \mathrm{~L}-\mathrm{N}, \mathrm{~N}-\mathrm{G} \end{gathered}$	
				TDS-MPM-120, TDX	1	Protection Module	
Three Phase 3Ph Delta, 4W+G Delta High Leg		0240 V L-L		MOVTEC, DINLINE DSD, TDS, TSG, TDX	Up to 8	L-L, L-N, L-G	Special Application Inquire for Assistance
		(208V L1-N \& G!) 120V L2-N, 120V L3-N		TSG, TDS, DSD, TDX MOVTEC, DINLINE	1	N-G	
Three Phase 3Ph Delta, 3W Delta Ungrounded		480 V 480V L-L		MOVTEC 480V version TDX	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	L-L, L-G	Special Application Inquire for Assistance
		240 V	240 V L-L	MOVTEC, DINLINE DSD,TDS,TSG,TDX	3	L-L	
Three Phase 3Ph Delta, 3W+G Delta Grounded corner		480 V	480 V L-L	MOVTEC 480 V version TDX	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{gathered} \text { L-L } \\ \text { L-L, L-G } \end{gathered}$	Special Application Inquire for Assistance
			488 V L-G		3	L-G	
		240 V	240 V L-L	MOVTEC, DINLINE	3	L-L	
		240V 240V L1 \& L2-G		$\begin{aligned} & \text { DSD,TDS,TSG,TDX } \\ & \text { TSG1130-2S } \end{aligned}$	3	L-G	

Refer to separate documentation for detailed advice on protection modes and connection details.
Table 2. Product applications for different power systems.
Notes * Qty. will depend upon distance from N-G connection and modes to be protected. For exposed sites,
N-G protection may be better fitted with Spark Gap, rather than MOV based device.

AC Power Devices

TD $^{\text {TM }}$ MOVTEC ${ }^{\text {™ }}$

FEATURES

- TD ${ }^{T M}$ Technology for superior life and robust protection against abnormal over-voltage events
- UL 1449 Edition 2 Recognised
- Primary protection for extremely high exposure sites and point-of-entry protection applications
- Multipulse capability
- Available in single and three mode protection
- Small foot print for more effective use of real estate
- 5 segment electronic status indication ideal for poorly illuminated locations with fail safe voltage-free alarm contacts
- Lug terminals for connection of large cables

TD ${ }^{\text {M }}$ MT

The TD-MOVTEC family of surge suppressor modules offers economical and reliable protection from power transients in even the most strenuous applications.

Transient Discriminating ${ }^{T M}$ (TD) Technology introduces a quantum leap in transient suppression technology, providing a new level of safety and reliability while retaining optimum protection critical for sensitive electronic equipment. TD ${ }^{\text {TM }}$ Technology is essential for any site where abnormal over-voltages can occur or where the possible catastrophic failure of traditional technologies cannot be tolerated.

A patented electronic circuit continuously monitors the health of the internal MOVs and displays this status on a 5 -segment LED bar graph. Alarm contacts are provided which may be used to shut down the system or activate an external warning if the internal surge material is below optimum condition.

ORDERING INFORMATION

Item Number	
TDS MT 120	1 MODE, 110-150V, 100kA, 5 LED Status
TDS MT 277	1 MODE, 220-277V, 100kA, 5 LED Status
TDS MTU 120	3 MODE, 110-150V, 100kA, 5 LED Status
TDS MTU 277	3 MODE, 220-277V, 100kA, 5 LED Status
TDSMT 480	1 MODE, 347-480V, 80kA, 5 LED Status

SPECIFICATIONS

Operation	TDS-MTx-120	TDS-MTx-277	TDS-MT-480
Nominal Line Voltage:	100-120 Vrms	220-277 Vrms	480 Vrms
Frequency:	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz} / \mathrm{DC}$
Leakage Current:	<2 mA	$<2 \mathrm{~mA}$	<2 mA
MCOV (Ph-N, Ph-E, N-E):	240 Vrms	480 Vrms	508 Vrms
Max Surge Rating:			
8/20 s	100kA	100 kA	80kA
10/350 $\mu \mathrm{s}$	20kA	20kA	12kA
note: TDS-MTU-xxx 3 mode units 40+40+20kA 8/20 $/$ s			
Energy Rating:	4800J	4800J	5120J
Aggregate Surge			
Material $8 / 20 \mu \mathrm{~s}$:	160kA	200 kA	160kA
Let-through Voltages			
@ 3kA 8/20 $/$ s:	< 480V	< 750V	< 1050V
Let-through Voltages			
@ 20kA 8/20 $/ \mathrm{s}$:	< 760V	<980V	< 1300V
Surge Rated to Meet:	ANSI/IEEE C62.41-1991 Cat A, B, C		
Zone 0 and 1, Class B			

Alarms and Indicators

Status Indication:	Five Segment LED Bar Graph Voltage free (4kV isolation) contact 10 A @ 250VAC NC Fail Safe, change state at $<80 \%$
Physicals	
Temperature and Humidity:	$-35^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}, 0-90 \%$
Terminals:	M6 Lug, $16 \mathrm{~mm}^{2}$ cable
Dimensions (WxDxH):	$45 \times 140 \times 150 \mathrm{~mm}$
Weight:	600 g
Listing:	UL Recognized Component AS3260, IEC950, C-Tick
Warranty:	5 years

ST02 Fairfield STP－Tenix－ 0200 Pre Treatment－Vendor Manuals－Main Switchboard－OM MC MロVTEC AND
TロS－mロVTEC
SURGE DIVERTERS

INSTALLATION INSTRUCTIONS

Includes MPM Movtec Protection Module Instructions

www．erico．com Q－Pulse Id TMS 1415

Active 08／10／2015

Handbook No： HB－HBCR－111
© Copyright
Page 1006sfut 05^{1} April 2003

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Mc

INSIDE FRONT COVER

(Blank)

CONTENTS

Page	Page
1. Warnings 4	9. Isolation and Fusing 20
2. Introduction 5	10. Status Indication and Alarms 22
3. Protection Concepts 7	11. MPM, Movtec Protection Module 24
4. Mounting and Cautions 9	12. Maintenance and Testing 27
5. Voltage Ratings 10	13. Extended Warranty 28
6. Protection Mode 13	14. Six Point Plan 29
7. Connection Method 15	15. Use of Mimic Panels 30
8. RCD, ELCB 20	

I. WARNINGS

- Prior to installation ensure that the Movtec is of the correct voltage and frequency, and is the type recommended for the local power distribution, and for the equipment being protected.
- Hazardous voltages may exist internally to the units. The units should be installed (and replaced) only by qualified personnel in accordance with all relevant Electricity Safety Standards.
- Do not power MPMs and three phase connected Movtecs (Ph-N) without the upstream neutral connected. Failure to do so may damage the Movtecs and/or the load.
- Where the MPMs/Movtecs are connected to an earth, this must be a low impedance earth ($<10 \Omega$) for correct operation.
- X1-X4 connections may be at phase voltages dependant upon connection method.
- If connecting to the Movtec alarm outputs do not exceed the maximum permissible ratings as damage may occur.
- Movtecs must be installed in an enclosure or panel, ensure this does not cause their environmental ratings to be exceeded.
- Do not "Megger" or "Flash Test" circuits with Movtecs installed.
- The DINLINE Surge Counter (DSC) should not be used in voltage sensing mode with TDS-Movtecs. Voltage sensing mode is not compatible with TDS-Movtecs.
- All instructions must be followed to ensure correct and safe operation.
- Diagrams are illustrative only, and should not be relied on in isolation.

2. INTRODUCTION

Movtecs are designed to protect mains powered equipment from the damaging effects of lightning and transients. They are ideal for point-of-entry shunt protection applications where robustness and high surge ratings are required.

The Movtec family is designed to suit many distribution systems including TN-C, TN-S, TN-C-S and TT. They can be selected for use with distribution systems with nominal voltages of $110 / 120 \mathrm{~V}, 220 / 240 \mathrm{~V}$ and 277 Vrms at frequencies of $50 / 60 \mathrm{~Hz}$.

The TDS Technology (Transient Discriminating Suppressor) units are specifically designed for distribution systems that may feature poor voltage regulation where the actual supply voltage may exceed the nominal ratings for extended periods.

This Installation Manual details the preferred procedure for the installation of the family of Critec Movtec ${ }^{\text {TM }}$ Surge Diverters.

The Critec Movtec family includes:

- Critec Movtec, Single Mode, enhanced MOV technology units eg. (MT275V-135K-A)
- Critec TDS-Movtec, Single Mode, TDS technology unit featuring high over-voltage withstand for added robustness (TDS-MT277)
- Critec TDS-Movtec, Three Mode, TDS technology unit featuring high over-voltage withstand for added robustness (TDS-MTU)

TDS-Movtec units are coloured blue for easy identification, while enhanced MOV technology units are coloured red.

In this manual, reference to " Movtec" also includes "TDS-Movtec".

This manual also details the installation of the MPM (Movtec Protection Module). The MPM is a supplied enclosure with three Movtecs and a high energy neutral to earth protection device for three phase protection. The MPM is often used where Movtecs can not be fitted in an existing switchboard and must be mounted externally. Therefore the Movtec installation instructions are also applicable to the MPM. Section 11 gives details which are specific to the MPM.

Two standard MPMs are available:

- Critec TDS-MPM, Single Mode, TDS Technology unit (uses $3 \times$ TDS-MT-277)
- Critec MPM-275V, Single Mode, Enhanced MOV Technology unit (uses $3 \times \mathrm{MT} 275 \mathrm{~V}$ -135K-A)

3. PROTECTION CONCEPTS

To optimise effectiveness of installed protection a concept of "Unprotected" and "Protected" wiring should be followed. Wiring from the transient source to the Movtec should be considered "Unprotected" and kept remote from all other wiring (approximately 300 mm) where possible. Wiring on the equipment side of the Movtec should be considered "Protected".

The separation of "Protected" from "Unprotected" wiring is recommended in order to minimise the risk of transients conducted on "Unprotected" wiring cross coupling on to "Protected" circuits, thus compromising the level of protection available from the Movtec.

4. MOUNTING \& CAUTIONS

The performance of surge diverters can be dramatically affected by the method of connection (refer section 7). Where possible select a mounting method that allows the Movtec to be connected in the "Preferred Connection Method".

Failure of a Movtec under severe AC overvoltage, such as 11 kV on 240 V mains, can result in the generation of significant heat. Consideration should be given to ensure that Movtecs are not installed in close proximity to combustible materials.

Units must be installed in an enclosure or panel to provide the appropriate degree of electrical and environmental protection.

Only use enclosures that:

- Do not cause the Movtec temperature to exceed 60 deg C
- Provide adequate electrical and safety protection
- Prevent the ingress of moisture and water
- Allow Movtec Status Indication to be inspected

5 VOLTAGE RATINGS

The TDS (Transient Discriminating Suppressor) technology has been specifically developed to cater for abnormal over-voltage conditions that may occur on sites with poor voltage regulation, or due to wiring or distribution faults. The TDS units feature an extremely high over-voltage withstand to eliminate heat build up that can occur with standard technologies when the protection devices start to clamp on the peak of each abnormal mains cycle.
Traditional MOV technology (eg MT-275V/ $135 \mathrm{~K} / \mathrm{A}$) is not suitable in applications where sustained over-voltage conditions can be experienced.

Examples of poorly regulated voltage environments include:

- Smaller power generation supplies
- Sites with large earth currents
- Variable motor speed control circuits
- High harmonic voltage environments (nonlinear loads)

The TDS range of Movtecs with a higher over-voltage withstand may be able to be used in these environments following advice.

Transient protection devices are usually rated to protect against non-repetitive pulses from such sources as direct or induced lightning strikes. They are not designed to provide protection against repeated cyclic anomalies. Nor are they designed to provide protection

against sustained over-voltage conditions where the supply voltage exceeds the protection equipment's nominal rating for an extended period of time, ie continuous over-voltages from poorly regulated generators or distribution systems.

Smaller power generation equipment (particularly capacitive excitation induction generators) does not generally conform to the same standards of voltage regulation that are in place for mains power reticulation. A large number of smaller and/or cheaper generators have a voltage waveform that is "loosely" 240 Vrms (often poorly regulated), but more importantly, often contains significant higher order harmonics. These generators may exhibit a peak voltage on each half cycle far in excess of the normal 340 V . The problem is usually worse when the generator is lightly loaded.

Whilst electrical equipment may tolerate this over-voltage for a period of time, the clamping elements in the power protection devices will begin to conduct on the peak of each 50 Hz cycle, as their voltage threshold is reached (typically 400 V peak for a traditional 275 V diverter). This will cause slow degradation and ultimate failure of the clamping device (time dependent upon how poor the waveform is).

Harmonic voltages may also be present in distribution systems that do not feature generators. This is normally where non-linear loads are used, such as UPSs, rectifiers, switch mode power supplies and motor speed controls. The high harmonic voltages in certain applications may have peak voltages in excess of the protective clamping voltage causing problems as described above. Seek the manufacturer's advice before installing any

Pade i2d TMS 1415
product into a circuit which features a total harmonic voltage ratio above 5%.

Model	Nominal Voltage	\dagger Maximum Permissible Abnormal Over-Voltage
TDS-MT-277	$220-277 \mathrm{~V}$	480 V
TDS-MTU	$220-277 \mathrm{~V}$	480 V
MT275V-135K-A	$220-240 \mathrm{~V}$	275 V

Ensure that the correct voltage rating unit is installed. Exceeding the nominal rating while transient events occur may affect product life.
\dagger Note: Other voltage rating Movtecs are available. Refer to Movtec table for actual ratings.

6. PROTECTION MODES

Movtecs are available in Three Mode and Single Mode configurations. This refers to how the internal protection is arranged and applied to the circuit to be protected.

Three Mode units provide protection between the Phase-Neutral*, Phase-Earth* and Neutral-Earth circuit within one Movtec.

Single Mode units provide protection between two conductors connected to the terminals marked T1 and T2. These units can be connected to provide protection from PhaseNeutral* or Phase-Earth* or Neutral-Earth. To allow the status indication and alarm circuitry to operate, a neutral connection is required for Phase-Earth* configured units, and a Phase* connection is required for

Neutral-Earth configured units. Connection details for single mode units are detailed on page 15. Warning - this connection link can be at mains potential.

* Note. Some users may be used to the terminology "Active" or "Line", in place of "Phase". For consistency "Phase" is used throughout this documentation.

Model	Modes
TDS-MTU	Three Mode
TDS-MT-277	Single Mode
MT275V-135K-A	Single Mode

SINGLE MODE

THREE MODE

7. CONNECTION METHOD

To optimise transient performance, attempt to connect the Movtecs in the "Preferred" fashion as depicted on pages 16 and 17. This is recommended for cable sizes between $6 \mathrm{~mm}^{2}$ and $16 \mathrm{~mm}^{2}$. Take care not to run the protected and unprotected wire parallel or in close proximity.

Where this is not possible due to layout or conductor size, use the "Non-preferred" "T" connection method as depicted on pages 16 to 18 . With this connection method, the " T " lead should be between $6 \mathrm{~mm}^{2}$ and $16 \mathrm{~mm}^{2}$. The connection should be as short as practicable (less than 100 mm).

Cable sizes less than $6 \mathrm{~mm}^{2}$ should not be used without specialist advice.

NON-PREFERRED "T" CONNECTION METHOD

Active 08/10/2015
Page 1021 of 1051

PREFERRED CONNECTION METHOD EXAMPLES

SINGLE MODE UNITS

THREE MODE UNITS

8. RCD, ELCB

Where RCDs/ELCBs (Residual Current Devices / Earth Leakage Circuit Breakers) are fitted the Movtecs should be installed in the circuit prior to these devices (ie upstream). Where this can not be avoided and RCDs/ ELCBs are installed upstream, nuisance tripping of the RCD/ELCB may occur during transient activity.

Contact your local ERICO agent for advice if upstream RCDs/ELCBs can not be avoided.

9. ISOLATION AND FUSING

Overcurrent and short circuit protection must be provided to protect the Movtec and associated wiring if a fault develops. The overcurrent protection should be installed in such a manner to also provide a means of isolating the Movtec module from the mains supply. This is an important safety consideration and is required in the event that any future maintenance or testing is needed.

The Movtec uses disconnection devices to isolate internal segments that have reached the end of their service life. In order for this disconnection to occur correctly, Movtecs should be only used on circuits with fuse or circuit breaker ratings of 32 A or greater. (Nuisance operation of the overcurrent protection may occur during transient activity on smaller capacity circuits.)

On circuits with a capacity of greater than 100 A , the Movtecs should be installed in series with a 100A HRC fuse being placed prior to the Movtec, as detailed in the diagram on page 21. This will require the Movtec to be installed in a similar manner to the nonpreferred "T" connection method. Care must be taken to keep " T " connections as short and straight as possible. Note that this fuse may rupture under surge events exceeding 60 kA , thereby disconnecting the protection circuit. Under such conditions it is important that suitable monitoring of the alarm contact should be carried out to detect this possible occurrence.

10. STATUS INDICATION AND ALARMS

A characteristic of all transient and surge protection devices is that they degrade in proportion to the magnitude and number of incident surges to which they have been subjected. Status indication should be periodically monitored to determine if replacement is required.

Each Movtec features 5 protection segments. The status for each of these sectors is provided by way of a 5 segment LED bar graph. If any sector is damaged due to excess surge activity, a LED will extinguish. The LEDs extinguish in a sequential order (100% LED out first, 80% LED out next etc.) irrespective of which sector has sustained damage.

When mains voltage is applied to the fully functional Movtec, the alarm contacts will be closed. Should the surge handling capacity fall to below the alarm threshold, these contacts will open. The contacts are "fail-safe" in that, if power to the unit fails, the contacts will also revert to the open condition.

For Single Mode units (TDS-MT-277 and MT275V-135K-A)

- The voltage free alarm contacts are activated (opened) as soon as the primary protection status displays 60% or less and indicates that the Movtec unit should be replaced.

For Three Mode units (TDS-MTU)

- The voltage-free alarm contacts are activated (opened) as soon as the protection status displays 80% or less. This indicates that damage has been sustained to the protection
of one of the three modes and that the TDSMovtec unit should be replaced.

MOVTEC MODEL	TERMINALS	ALARM OPERATES WHEN
TDS-MT-277	X5 \& X7	MOVTEC displayed capacity $=<60 \%$
MT275V-135K-A	X5 \& X7	MOVTEC displayed capacity $=<60 \%$
TDS-MTU	X5 \& X7	MOVTEC displayed capacity $=<80 \%$
Contact Rating Contact connection	250Vac, 10A resistive, 1A inductive Multi-stranded wire with CSA not greater than 1.5mm	

Where multiple Movtecs are used, such as in three phase distribution systems the alarm contacts may simply be connected in series to provide a common alarm output connection.

II. MPM, MOVTEC PROTECTION MODULE

The MPM utilises a high energy Neutral to Earth spark gap to provide robust protection against earth potential rise problems. Care is required to ensure co-ordination of this device
if any other voltage limiting device is connected either upstream or downstream in the Neutral to Earth circuit. Contact your local agent for further information if other N -E protection devices are installed and co-ordination may be affected.

Active 08/10/2015

INSTALLATION PROCEDURE FOR MPM

1. Remove the cover from the MPM.
2. Select the MPM mounting position to ensure optimum electrical connection method (refer Section 7) and in accordance with all given instructions.
3. Position and mark the mounting position of the MPM on the wall.
4. Depending on the mounting surface, prepare suitable anchoring holes for the marked position.
5. Snap the mounting spacers, supplied, into the rear of the back of the MPM as shown in Figure 1. (see inside back cover P31)
6. Mount the unit to the wall. To ensure the IP33 rating is preserved, the MPM should be mounted to the wall using the spacers provided and one of the fixing methods as shown in Figure 1. (see inside back cover P31)
7. Prepare the appropriate cable glands. It is recommended that a nylon cable gland (typically rated at IP66) be used.
8. Install wiring, taking care to support cabling directly connecting to the MPM unit, and tighten all terminals.
9. Check that the MPM is installed in accordance with all instructions, and relevant electrical safety codes.
10. Replace MPM cover, then apply power.
11.Correct operation of the MPM unit is established by checking that all 5 LED's on each MOVTEC bar graph are lit, and that power is correctly being supplied to the load(s).

INSTALLATION ARRANGEMENT FOR AUSTRALIAN MEN SYSTEMS

Under Australian Standards classification, MPMs are considered a piece of equipment to
be connected to the mains supply. The MPMs are not intended for use as, nor are they, a 'switch board', 'distribution board' or other equipment. As MPMs are classified as 'electrical equipment' (ie: a product), AS 3000 Wiring Regulations apply to the installation and operation of the units.

In the multiple earth neutral (MEN) distribution system, the MPM equipment should be installed as close as possible after the MEN point and after both the main disconnect switch/ overcurrent protector and any metering equipment.

TYPICAL CONNECTION DETAIL FOR MPM POINT-OF-ENTRY INSTALLATION IN MEN DISTRIBUTION SYSTEM

 TMS1415

I2. MAINTENANCE \& TESTING

Before removing any unit from service ensure that power to the device is isolated. Replacement of any Movtec units should only be undertaken in accordance with all relevant Electricity and Safety Standards by suitably qualified personnel.

Movtecs should be inspected periodically, and also following any periods of lightning or transient activity. Check the status indicators and replace if in the "Alarm" condition as detailed in Section 10 -STATUS INDICATION.

For high transient exposure sites or those of a critical operational nature, it is recommended that the alarm outputs be monitored to provide an additional warning of reduced capacity (refer Section 10).

Movtecs are designed for optimum performance under severe transient activity. To provide this performance, electronic components in the Movtec are encased in a patented proprietary, shock and thermal absorbant compound. Units cannot be serviced, they must be replaced.

Do not attempt to open or tamper with the units in any way as this may compromise performance and will void warranty.

Do not "Megger" or perform other types of electrical tests that apply voltages greater than the nominal operating voltage of the Movtec. The Movtec will attempt to limit these voltages thereby affecting the test result. Where these tests must be performed, remove the Movtec from circuit first.

13. EXTENDED WARRANTY

This product has a limited warranty to be free from defects in materials and workmanship for a period of five (5) years from the date of dispatch from the Manufacturer. The Purchaser acknowledges that lightning is a natural event with statistical variation in behaviour and energy levels which may exceed product ratings, and 100% protection is not offered and cannot be provided for. Therefore the Manufacturer's liability is limited to the repair or replacement of the product (at the Manufacturer's sole option) which in its judgement has not been abused, misused, interfered with by any person not authorised by the Manufacturer, or exposed to energy or transient levels exceeding the Manufacturer's specifications for the product. The product must be installed and earthed (where applicable) in strict accordance with the Manufacturer's specifications and all relevant national Electricity and Safety Standards. The Manufacturer and the

Purchaser mutually acknowledge that the product, by its nature, may be subject to degradation as a consequence of the number and severity of surges and transients that it experiences in normal use, and that this warranty excludes such gradual or sudden degradation. This warranty does not indemnify the Purchaser of the product for any consequential claim for damages or loss of operations or service or profits. Customers should contact their nearest manufacturer's agent to obtain a Product Repair Authorisation Number prior to making any claim under this warranty. This is only a summary of the warranty given by the Manufacturer. The full text of the warranty is set out in the Manufacturer's Conditions of Quotation and Sale. The above limited warranty is additional to rights which arise in respect of the sale of industrial and technical products and services to knowledgable buyers under the Australian Trade Practices Act 1974 as amended.

14. SIX POINT PLAN

Critec Movtec surge diverters form an important part of the much larger ERICO lightning, surge and transient protection philosophy (ERICO Lightning Technologies "Six Point Plan"). The level of protection and the degree of attention dedicated to each of the six points will require careful consideration for each site. The degree of protection required is determined by the individual site location/exposure with the aid of risk management principals.

For further advice on your protection needs please contact your local representative.

ERIGO LIGHTNING TEGHNOLOGIES' SIX POINT PROTEETION PLAN

15. USE OF MIMIC PANELS

Movtecs are used in the Proline range of Surge Reduction Filters where superior protection is required for critical or sensitive electronic equipment. Some models of SRF use an electronic mimic panel to display in the
front door the status of the internal Movtecs. The X1-X4 terminals on the Movtec are used for this purpose. If this Movtec is to be used with a mimic panel (possibly as a replacement for an existing Movtec in a SRF) please ensure compatibility as below.

Movtec $\boldsymbol{\&}$ Mimic			Compatibility
Movtec Version	Mimic Version		
	TDS-Mimic	Hybrid Mimic	Discrete Mimic
	\#300732	\#300731	\#300730
	EA-SRFP-117	EA-SRFP-115	EA-SRFP-104
	EA-117	EA-115	EA-104
TDS-MT-277	Yes	Note 1	No
MT-275V/135K/A \#300867	Yes	Yes	Note 2
MT-275V/135K/A \#300865/300866	Yes	Yes	Yes
Note 1	Mimic will operate for supply voltages up to 275Vrms		
Note 2	Request Product Update 44 for further details		

ITMS 1415
Active 08/10/2015
Page 1035 of 1051

ST02 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Mc

Figure 1. MPM mounting spacers.

STO2 Fairfield STP - Tenix - 0200 Pre Treatment - Vendor Manuals - Main Switchboard - OM Mc

FAIRFIELD WATER RECLAMATION PLANT

TEST SHEET

1. MAIN SWITCHBOARD TEST SHEET

DESIGN \& INSPECTION ROUTE SCHEDULE

(TICK APPLICABLE SECTION BELOW: YES / NO / N/A (Not Applicable)

Inspected by:
DAUS Jotchoa MARLON PritatraD
Accepted by: Release Authorized by: DALE JACKSon
of
House. . DATE:
$31 / 3 / 10:$ of of

TENTS DATE: 31/3/110.
\qquad
DATE: is /4.1.1.0.

DUCTOR TEST REPORT

PROJECT DESIGNATION: FAIRFIELD WUR					
SWITCHBOARD DESIGNATION: $m s B$					
JOB NO: A ${ }^{\text {a } 215}$		DRAWING NO: 4215			
DUCTOR TEST OF BUSBAR JOINTS:		DATE: $15 / 3 / 10$			
TIER NO.		TIER No.			
Joint 1	Injection	Joint 7	199.8 Injection 0.2 mv		
$\mathrm{R} \quad . . .2 \ldots . . . \mu \Omega$	199.8 . $19.0 .4 .4 n . \mathrm{V}$	R $0.9 .9 . . . \mu \Omega$			
		$w \quad 0.5$	1995	.OUIM...V	
B ! $13 \ldots \ldots$	2005 -....A 0.3 . m . V	B \%\%\%	1.99.4.....A	o. 3 m ...v	
$\mathrm{N} \quad \mu \Omega$	….... AV	N μAV	
Joint 2	199.6	Joint 8	Injection		
R 0.9..... $\mu \Omega$	199.6 . $19.2 \ldots \ldots$	R , 1:0 $0 . \mu \Omega$	199.4 \%. A 19.3 M		
W 0. 8 \%		w 0.9.9.... Ω	1991.4	Oㅇ..I...mv	
B \quad ¢ $4 \mu \Omega$		B $\quad 0 . .4$.		oin M (m	
N $\mu \Omega$		N $\mu \Omega$V	
Joint 3	Injection	Joint 9	Injection		
R $0.9 .9 \ldots \ldots$	199.50 .8	R 1. $1.8 \ldots . . \mu \Omega$	$\begin{array}{r} 199.0 \ldots \ldots \mathrm{~A} \\ 199.7 \end{array}$.0...3mi.v	
W 0.6	199.4...A O....n....V	w $2.0 \ldots \ldots n$		O. $4.4 . \mathrm{mav}$	
B 1.2	199.5.A 0.3 .n. V	B 3:0...	$\begin{aligned} & 19917 \\ & 199.0 . \mathrm{A} \end{aligned}$	O.6ni....V	
N $\mu \Omega$AV	N $\mu \Omega$ AV	
Joint 4 1.4	$1991{ }^{\text {Injection }}$	$\text { Joint } 10$	$199.3{ }^{\text {Injection }} \mathrm{A} .3 \mathrm{mv}$		
$R \quad \mid .4$	$199.9 \text { O. } 0.3 \text { m... }$	$\frac{1}{R}: 8$			
W 1.3	199.0. A A 0.3 mm	w ./. $2 \ldots . \mu \Omega$	$\begin{aligned} & 199.6 \\ & 199.3 \mathrm{~A} \end{aligned}$	-0.3m. ${ }^{\text {a }}$	
B $\quad .1 .6 \ldots \ldots . . \mu \Omega$	198.9 . 0.3 un. V	B $\quad 2 \cdot 2 \ldots \mu \Omega$		O. 0.1 m. M	
$\mathrm{N} \quad \mu \Omega$AV	N $\mu \Omega$AV	
Joint 5	$199 .{ }^{\text {Injection }}$	Joint 11	Injection		
$\mathrm{R} \quad 2.0 \ldots \mu$	199.3 O. 0.14	$R \quad 1,9$	198.9 A 0.4 mm.		
$w \quad 3$	$199 . \mathrm{m} \quad 0 \quad 3 \mathrm{M} \mathrm{~V}$	$w \quad 12$	$199.1 \ldots \mathrm{~A}$		
B $\quad 1.9$. $9 \ldots \ldots \ldots$	19.9 .5 0.4V	B .1. $19 \mu \Omega$		$0 . j m v$	
N $\mu \Omega$		N $\Omega \Omega$AV	
Joint 6	Injection	Joint 120 Injection			
R . $1.5 \mathrm{~S} . . \mu \Omega$	199.15.. 0.0 .3 mav	$\mathrm{R} \quad 2 \cdot 0 . \mu \Omega$	19910.... 0.4 .4 ma		
	199.2. $0.2 \mathrm{Am}$.	$\mathrm{w} \quad 1 .$	199: 6.	O.I.M......v	
B $\quad1 \mu \Omega$	19.8.8.8. 0.12 mav	B $2 . .1 \mu \Omega$	1.99...3...	0.3 minv	
$\mathrm{N} \quad \mu \Omega$AV	N $\mu \Omega$AV	
IESTED BY (Print Name): DAVE JACKSON SIGNED: \qquad ofled. 16/3/10		WITNESSED BY (Print Name): … DylAm Teff			

DUCTOR TEST REPORT

TRechentals

CERTIIFICATE OF CALIBRATION CONFORMANCE

Certificate Number : 17515
Reference : 409851
Model : MEG,DLRO200
Asset Number : 125915

Date Calibrated: 30/11/2009
Technician : Nick Sawyer
Serial No. : 081108/1547
Calibration valid for: 365 days.

Description : Megger 200A Micro-Ohmmeter DLRO200

The Performance of the above listed equipment has been verified for measurement accuracy to the manufacturers relevant published specification, in accordance with our Quality Assurance Procedures, using the appropriate calibrated equipment, traceable to nationally recognized standards.

SOURCE ASSET 83824 MET,100A REPORT 364779 DUE 28/08/2010 SOURCE ASSET 93810 MET,300A REPORT 364780 DUE 28/08/2010 SOURCE ASSET 93811 MET,50A REPORT 372619 DUE 29/01/2011
for Servicecklanager

Note: Printed copies of this document should be verified for currency against the publlshed electronic copy.

Fairfield Water Reclamation Plant Main Switchboard Drawing Register

Halmac Drawing No.	Brisbane Water Drawing No.	Description	Date	Revision
$4215-01$		Main Switchboard General Arrangement Part 1	30.10 .09	D
$4215-02$		Main Switchboard General Arrangement Part 2	05.11 .09	D
$4215-03$		Main Switchboard General Arrangement Part 3	05.11 .09	D
$4215-04$		Main Switchboard General Arrangement Part 4	05.11 .09	C
$4215-05$		Main Switchboard Part List	05.11 .09	D

\square

 GENERAL ARRANGEMENT PART 2 FRONT VIEW - DOORS REMOVED

SECTION D-D

SECTION E-E

SECTION F-F

SECTION I-I

SECTION J-J

SECTION K-K

SECTION G-G

SECTION L-L

SECTION H-H

Scole: \square

 MAIN SWITCHBOARD

PLINTH FOOTPRINT

SECTION C-C

I.D. No.	Reference	Part No.	DESCRIPTION	Qty.	Supplier
1	Q1	48042	NW 16 H1 3P Basic Frame Fixed	1	Schneider Electric
2	Q2	48014	NW 10 H1 3P Basic Frame Fixed	1	Schneider Electric
1,2	Q1,Q2	47286	Micrologic 6.0 A	2	Schneider Electric
1	Q1	48536	Pushbutton Padlocking Device	1	Schneider Electric
1,2	Q1,Q2	48603	Door Frame	2	Schneider Electric
1,2	Q1,02	48604	Door Frame Transparent Cover	2	Schneider Electric
3	Q1M	48042	NW 16 H1 3P Basic Frame Fixed	1	Schneider Electric
,	Q2M	48014	NW 10 H1 3P Basic Frame Fixed	1	Schneider Electric
3,4	Q1M, Q2M	47280	Micrologic 2.0 A	2	Schneider Electric
3,4	Q1M, Q2M	48603	Door Frame	2	Schneider Electric
3,4	Q1M,Q2M	48604	Door Frame Transparent Cover	2	Schneider Electric
3,4	Q1M,Q2M	48212	MCH 200/240 VAC Motor Drive	2	Schneider Electric
3,4	Q1M,Q2M	47353	XF 200/250 VAC/VDC Closing Release	2	Schneider Electric
3,4	Q1M,Q2M	47363	MX 200/250 VAC Shunt Trip	2	Schneider Electric
3,4	Q1M, Q2M	47342	1 Ready to Close Auxilliary	2	Schneider Electric
3,4	Q1M,02M	47926	Cable Interlock Plate	2	Schneider Electric
3,4	Q1M, Q2M	33209	Set of 2 Interlock Cables	1	Schneider Electric
3.4	Q1M, Q2M	29352	48/415VAC Electric Interlock Box	1	Schneider Electric
5	Q1M,Q2M	54655	IVE Wiring Kit	1	Schneider Electric
6	Q1M, Q2M	29472	ACP PLATE + UA LOGIC 240V AC	1	Schneider Electric
7,8,9	F2,F3,F5	NV20FW	20A Fuse Holder	9	NHP
7,8,9	F2,F3,F5	NNS6	6A Fuse	9	NHP
10	Power Meter	CTD10S16005A	1600/5 Current Tranformer	3	NHP
11	Power Meter	KWHTB01	Test Block	1	IPD
12	Power Meter	ION 7300	Power Meter	1	Schneider Electric
13,14	PFR1,PFR2	252-PSGW	Phase Failure Relay	2	Crompton Instruments
15	F1	NV63FW	63A Fuse Holder	3	NHP
15	F1	NES63	63A Fuse	3	NHP
16	SD1	TDSMT277	1P 100kA Movtech Surge Diverter	3	Energy Corrections Options
17,18	Q3,4	LV432676	3P3D Micrologic 2.3 400A NSX400F Compact C/B	2	Schneider Electric
17,18	Q3,4	LV432591	3P Terminal Shield	4	Schneider Electric
17,18	Q3,4	LV432598	Extended Standard Rotary Handle	2	Schneider Electric
19,20	Q1MR,Q2MR	G2R-1-SNAC240	Relay 240VAC	2	Omron
19,20	Q1MR,Q2MR	P2RF-05-E	Relay Base	2	Omron
21	S2	CA10 A220-600 FT2	Generator Test Switch	1	Kraus \& Naimer
22,23	H11, H21	ZB5AW313	Press to Test Pilot Light (White)	2	Schneider Electric
22,23	H11, H21	ZB5AW0M11	Switch Body inc. LED for above	2	Schneider Electric
22,23	H11, H21	ZBE102	N/C Contact Block for above	2	Schneider Electric
24	Q5	33564 / 33875	NS1250N 3P 5.0 C/W Extended Handle	1	Schneider Electric
24	Q5	33628	3P Terminal Shield	2	Schneider Electric
25	Q6	LV432876	3P3D Micrologic 2.3 630A NSX630N; Compact circuit breaker	1	Schneider Electric
25	Q6	LV432591	3P Terminal Shield	2	Schneider Electric
25	Q6	LV432598	Extended Standard Rotary Handle	1	Schneider Electric
26	Q7	LV431831	3P3D TM200D NSX250N Compact Circuit Breaker	1	Schneider Electric
27,28	Q8,9	LV429843	3P3D TM50D NSX100N Compact Circuit Breaker	2	Schneider Electric
29,30,31,32	Q10,14,15,16	LV431830	3P3D TM250D NSX250N Compact Circuit Breaker	4	Schneider Electric
33,34,35	Q11,12,13	LV430831	3P3D TM125D NSX160N Compact Circuit Breaker	3	Schneider Electric
26-35	Q7-16	LV429517	3 P Terminal Shield	20	Schneider Electric
26-35	Q7-16	LV429338	Extended Standard Rotary Handle NSX100-250	10	Schneider Electric
36	DB-0500-01	C325363	36 way 3P 250A Chassis	1	Schneider Electric
-	Q11-2,3,4	25834	6kA 3 pole 32A Circuit Breaker	3	Schneider Electric
	Q11-5,6,7	25833	6 kA 3 pole 25A Circuit Breaker	4	Schneider Electric
-	Q11-8	25831	6kA 3 pole 16A Circuit Breaker	1	Schneider Electric
-	Q11-9,10,11	25803	6kA 1 pole 16A Circuit Breaker	3	Schneider Electric
-	Q11-12,13	26892	10Ka 1 Pole 25A RCD Circuit Breaker	2	Schneider Electric
-	Q11-14	26858	10Ka 1 Pole 10A RCD Circuit Breaker	1	Schneider Electric
	Q11-15	25798	6kA MCB 1 pole 2A Circuit Breaker	1	Schneider Electric
37	K6	LC1D098U7	4 pole contactor 2N/O $2 \mathrm{~N} / \mathrm{C}$	1	Schneider Electric
38	E/N	ENB36	36 Hole Earth/Neutral Bar	2	Schneider Electric

\qquad
\square

Features:

» Multi-point sealing
》) Captive sealing screws
) Terminals align with standard Cable Holes
) IP20 enclosure with cover fitted
》) Dimensions $148 \mathrm{~mm} \times 207 \mathrm{~mm} \times 58 \mathrm{~mm}$
(H x W x D) Screw projection 13mm

W

Description	Part No.	
Metering Test Block (supplied with loose Link)	KWHTB01	
Metering Test Block (supplied with Z-shape Link fitted)	KWHTB02	

[^0]: See LC2-F series.

[^1]: Typical applications:
 ■ continuous production processes

 - operating rooms
 - computer rooms...

[^2]: "Lockout after fault" option. This option makes it necessary to manually reset the device following fault tripping.

[^3]: Note for Compact NS:
 For dimensions with the accessories (IP40 escutcheons and Vigi escutcheon protection collars), see Catalogue Compact.

[^4]: Legends
 QN... "Normal" source Masterpact NW
 QR "Replacement" source Masterpact NW
 MCH spring-charging motor
 MX standard opening voltage release
 XF standard closing voltage release
 OF... breaker ON/OFF indication contact
 SDE1 "fault-trip" indication contact
 PF "ready-to-close" contact
 CE1 "connected-position" indication contact (carriage switch)
 CH "springs charged" indication contact
 F1 auxiliary power supply circuit breaker
 S1 control switches
 S2 source selection switches
 t1 order for transfer from " R " to "N1 + N2"
 (QN1 and QN2 closing time delay $=0.25 \mathrm{sec}$. minimum) order for transfer from " $\mathrm{N} 1+N 2$ "to " R "
 (QR closing time delay $=0.25 \mathrm{sec}$. minimumm)

[^5]: Legends
 QN... "Normal" source Masterpact NW
 QR "Replacement" source Masterpact NW
 MCH spring-charging motor
 XF standard closing voltage release
 MN undervoltage release
 OF... breaker ON/OFF indication contact
 SDE1 "fault-trip" indication contact
 PF "ready-to-close" contact
 CE... "connected-position" indication contact (carriage switch)
 CH "springs charged" indication contact
 F1 auxiliary power supply circuit breaker
 F2/F3 circuit breaker (high breaking capacity)
 S1 control switches
 S2 source selection switches
 KA1 auxiliary relay
 KA2 auxiliary relays with 10 to 180 sec. time delay
 KA3 auxiliary relays with 0.1 to 30 sec . time delay
 KA4 auxiliary relay
 KA5 auxiliary relays with 0.25 sec. time delay
 KA6 auxiliary relays with 0.25 sec . time delay
 KA7 auxiliary relay
 KA8 auxiliary relay

[^6]: Legends
 QS... "Source" Masterpact NW
 MCH spring-charging motor
 MX standard opening voltage release
 XF standard closing voltage release
 OF... breaker ON/OFF indication contact
 SDE1 "fault-trip" indication contact
 PF "ready-to-close" contact
 CE... "connected-position" indication contact (carriage switch)
 CH "springs charged" indication contact
 F1 auxiliary power supply circuit breaker
 order for transfer to "Source 1"
 (QS1 closing time delay $=0.25 \mathrm{sec}$. minimum)
 order for transfer to "Source 2"
 (QS2 closing time delay $=0.25$ sec. . inimum)
 t3 order for transfer to "Source 3"
 (QS3 closing time delay $=0.25 \mathrm{sec}$. minimum)
 KA1 auxiliary relays
 KA2 auxiliary relays
 KA3 auxiliary relays

[^7]: Legends
 QS... "Source" Masterpact NW
 QC "Coupling" Masterpact NW
 MCH spring-charging motor
 MX standard opening voltage release
 XF standard closing voltage release
 OF... breaker ON/OFF indication contact
 SDE1 "fault-trip" indication contact
 PF "ready-to-close" contact
 CE... "connected-position" indication contact (carriage switch)
 CH "springs charged" indication contact
 springs charged indication contact
 auxiliary power supply circuit breaker
 coupling order for "Source 1 failure"
 (QC closing time delay $=0.25 \mathrm{sec}$. minimum) coupling order for "Source 2 failure"
 (QC closing time delay $=0.25 \mathrm{sec}$. minimum)
 coupling order for "Source 1 restored".
 (QS1 closing time delay $=0.25 \mathrm{sec}$. minimum)
 t4 coupling order for "Source 2 restored "
 (QS2 closing time delay $=0.25 \mathrm{sec}$. minimum)
 KA1 auxiliary relays
 KA2 auxiliary relays
 KA3 auxiliary relays

[^8]: Note:
 diagram shown with circuits de-energised, circuit breakers open and relays in normal position.

[^9]: A : Digital ammeter
 \boldsymbol{P} : A + power meter + programmable protection
 H: P+harmonics

[^10]: Transparent cover (CCP)
 ■ optional equipment,

 - mounted with a CDP,
 one CP per device equipped with a CDP (for fixed and drawout devices)

 > the CP increases the degree of protection to IP 55 and IK 10 (fixed and drawout devices).

[^11]: "Connected", "disconnected" and "test" position carriage switches (CE, CD, CT)

 ■ optional equipment, one
 to nine carriage switches \square standard configuration, 0 to 3 CE, 0 to 3 CD, 0 to 3 CT
 ■ other configurations (by ordering additional actuators):
 0 to 9 CE, 0 CD, 0 CT
 0 to $6 \mathrm{CE}, 0$ to $3 \mathrm{CD}, 0 \mathrm{CT}$ 0 to 6 CE, 0 CD, 0 to 3 CT - connection cables not included, see below: - 1 carriage switch - 1 set of actuators for additional carriage switches

 - connection cables (per carriage switch)
 - the carriage switches indicate the three positions:
 CE: connected position CD: disconnected position (when the minimum isolation distance between the main contacts and the auxiliary contacts is reached) CT: test position

 ■ changeover contact ■ rated current: 10 A - breaking capacity 50/60 Hz for AC power (AC12 as per 947-5-1): 240 V: 10 A (rms)
 $380 \mathrm{~V}: 5 \mathrm{~A}$ (rms)

 - breaking capacity for DC power
 (DC12 as per 947-5-1):
 250 V: 0.3 A.

[^12]: - "Device" communication module
 "Chassis" communication module (option).
 OF, SDE, PF and CH communicating "device" sensors.
 CE, CD and CT communicating "chassis" sensors.
 MX1 and XF communicating release.
 Control unit.

[^13]: Short Message Service (SMS).

[^14]: "Lockout after fault" option. This option makes it necessary to manually reset the device following fault tripping.

[^15]: Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
 The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

[^16]: * In: circuit-breaker rating

[^17]: * RoHS = Restriction of Hazardous Substances
 ** WEEE = Waste Electrical and Electronic Equipment

[^18]: (1) For temperatures greater than $40^{\circ} \mathrm{C}$, the thermal protection characteristics are modified. See the temperature derating table.

[^19]: Mounting with stacking accessory.

[^20]: 1 Short terminal shields
 2 Terminals
 3 Interphase barriers
 4 Long terminal shields

[^21]: (1) Only for NSX100 to 250

[^22]: Reflex tripping.

[^23]: A: Digital ammeter
 $\boldsymbol{P}: A+$ power meter + programmable protection

[^24]: mismatch protection
 door interlock
 racking interlock
 keylock locking
 padlock locking
 position indicator
 chassis front plate (accessible with cubicle door closed)
 crank entry
 9 reset button
 10 crank storage

[^25]: (1) Mandatory for voltages $\geqslant 500 \mathrm{~V}$ unless using the bare-cable connector + terminal shield kit.
 (2) Mandatory for fixed front-connected circuit breakers with vertical-connection adapters oriented towards the front.

[^26]: (2) Device fitted with 4 earth screen continuity terminals

[^27]: (1) The last 2 digits in the reference represent the voltage code.

[^28]: (1) Items in brackets are for blocks mounted on right-hand side of contactor.

[^29]: References
 page 5/90

[^30]: 1 Analogue $1 / 0$ is not available with RMD or Ethernet options.

[^31]: ${ }^{1}$ not available for switch type CA25 $\quad{ }^{2}$ not available for switch type CL4 $\quad{ }^{3}$ for use in a three phase four－wire system with switched neutral ${ }^{4}$ not available for switch type CL10

[^32]: Additional length for switches size S2 for mounting E/EF = 27 mm

[^33]: Additional length for switches size S3 for mounting $E / E F=31,5 \mathrm{~mm}$ and mounting $E R / V E=20,1 \mathrm{~mm}$

[^34]: ${ }^{1}$ Valid for lines with grounded common neutral termination, overvoltage category III, pollution degree 3. Values for other supply systems on request. ${ }^{2}$ Valid for CA4 only.
 ${ }^{3}$ DC switching capacity applies to ON/OFF switches. Switching capacity for other configurations on request. ${ }^{4}$ International Standards and Approvals, refer to page 39.
 ${ }^{5}$ For electromagnetic optional extras see additional data in Catalog 101.

[^35]: ${ }^{1}$ Valid for lines with grounded common neutral termination, overvoltage category III, pollution degree 3 . Values for other supply systems on request.
 ${ }^{2}$ International Standards and Approvals, refer to page $39 .{ }^{3} \mathrm{Max} .300 \mathrm{~V}$. ${ }^{4}$ For electromagnetic optional extras see additional data in Catalog 101.
 ${ }^{5}$ Values for lower voltages on request.

