QUEENSLAND URBAN UTILITIES

EAGLE FARM WORKSHOPS MAIN SWITCHBOARD

ELECTRICAL SWITCHBOARD OPERATION AND MAINTENANCE MANUAL

Developed by:

J & P RICHARDSON INDUSTRIES CAMPBELL AVENUE WACOL QLD 4076

> ABN 23 001 952 325 ACN 001 952 325 Ph. (07) 3271 2911 Fax. (07) 3271 3623

CONTENTS

- 1 INTRODUCTION
- 2 ELECTRICAL EQUIPMENT TECHNICAL INFORMATION
 - 2.1 CIRCUIT BREAKERS & CHASSIS
 - 2.2 TERMINALS & LINKS
- 3 SWITCHBOARD WORKS TEST RESULTS
- 4 "AS CONSTRUCTED" DRAWINGS
- 5 SERVICE AND MAINTENANCE

1 INTRODUCTION

These operating instructions cover the QUEENSLAND URBAN UTILITIES, Eagle Farm Workshops Main Switchboard electrical equipment supplied by J & P Richardson Industries Pty Ltd in 2012.

C54500-QUU - Eagle_Farm_Workshops Revision 0 Date: November 21, 2012

2 ELECTRICAL EQUIPMENT TECHNICAL INFORMATION

- 2.1 CIRCUIT BREAKERS & CHASSIS
- 2.2 TERMINALS & LINKS

C54500-QUU - Eagle_Farm_Workshops Revision 0 Date: November 21, 2012 4 of 181

2.1 CIRCUIT BREAKERS & CHASSIS

• TERASAKI – **XS800NJ 800 3P** 3P 800A Circuit Breaker

• TERASAKI – **T1HS80R5GM** Handle

• TERASAKI – TKNNHPAA, TKNNHPKEYAA, 14997702

• TERASAKI – **E250NJ332** 3P 32A Circuit Breaker

• TERASAKI – **E250NJ363** 3P 63A Circuit Breaker

• TERASAKI – **E250NJ3100** 3P 100A Circuit Breaker

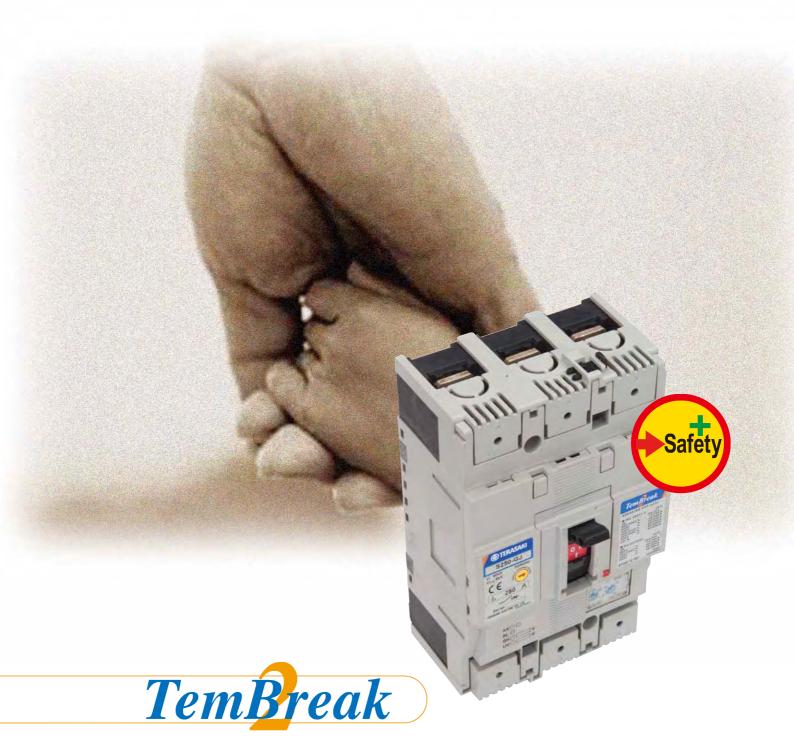
• TERASAKI – **E250NJ3250** 3P 250A Circuit Breaker

• TERASAKI – **T2HS25R5GM** Handle

• TERASAKI – T2CR253SG Shroud

• TERASAKI – T2CF253SSNBA Shroud

• TERASAKI – **E400NJ3400** 3P 400A Circuit Breaker


• TERASAKI – T2CR403SG Shroud

• TERASAKI – T2CF403SLNG Shroud

TERASAKI – HC121203 Top Feed with White Phase 80mm Longer
 1250A 30U Chassis Fitted with 1 x HCLN630 & 8 x HCL250 Tee Off's

C54500-QUU - Eagle_Farm_Workshops Revision 0 Date: November 21, 2012

The Ultimate Safety Breaker

OUR CUSTOMER CARE COMMITMENTS

Quality is Guaranteed

All products supplied from this catalogue carry a guarantee against defects in materials and workmanship for a period of 12 months from date of purchase as standard.

Quality is Accredited

Terasaki has ISO 9001 accreditation for the manufacture, sale and distribution of all products featured in this catalogue.

Ordering is Easy

We have made ordering easy for you by colour coding the sections of this catalogue and including order codes. If you need help with ordering or selection, please call one of the telephone numbers shown below.

We offer free technical support and application software to all customers. This could range from selecting a product for an unusual application through to carrying out a protection study. Please call one of the telephone numbers shown below.

+81 6 67919323

CUSTOMER SERVICE CONTACT DETAILS

Italy: +39 02 92278300 Australia and **New Zealand:** +61 3 9429 2999 Spain & Latin America: +34 93 8796050 **Brazil:** +55 21 33019898 Sweden: +46 8 55628230 +60 3 55493820 Malaysia: Denmark: +45 70 260057 +65 6425 4915 Singapore: UK and all other +86 20 8270 8556 countries in Europe, China: **Middle East** Japan and all and Africa: +44 141 9411940 other countries

in Asia:

Q-Pulse ld: TMS199 17/04/2013 7 of 181

Safety and protection are the prime purposes of Terasaki products. You care about safety and protection. The users of products you specify care about safety and protection. We call TemBreak 2 the Ultimate Safety Breaker. Throughout this catalogue you will see our Safety+ mark. This is designed to draw your attention to safety features which exceed international standards.

Please read further to discover the benefits of TemBreak 2.

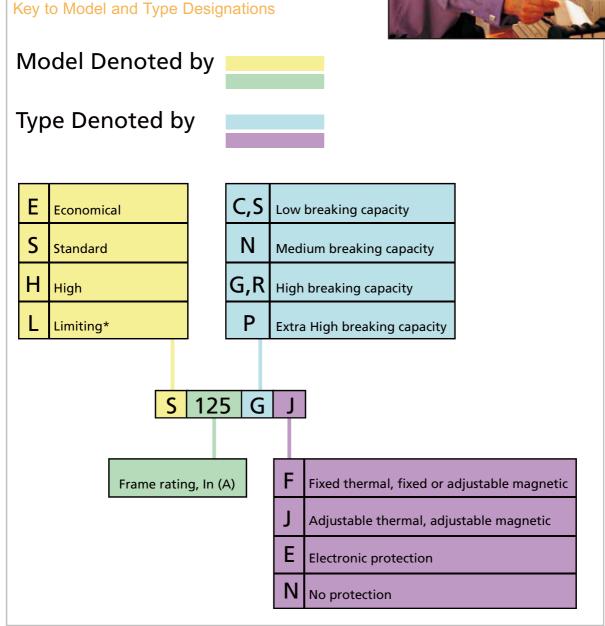
THE TEMBREAK 2 PRODUCT LINES

TEMBREAK 2

MOULDED CASE CIRCUIT BREAKERS

Rated current (I_n) from 20A to 1600A. Breaking Capacity (I_{cu}) from 25kA to 200kA at 415V AC.

Q-Pulse ld: TMS199 17/04/2013 9 of 181


TEMBREAK 2 MOULDED CASE CIRCUIT BREAKERS 16A TO 1600A 1. Welcome to TemBreak 2 **Easy Selection Guide** 10 Reasons to use TemBreak 2 Safety Plus **Exceeding Standards** 11 Reducing Environmental Impact 12 2. Ratings and Specifications 3. Operating Characteristics 4. Application Data 5. Accessories 6. Installation 7. Dimensions

EASY SELECTION GUIDE

The TemBreak 2 range of products includes:

- Moulded Case Circuit Breakers (MCCBs)
- Switch-Disconnectors in the same compact moulded case frame sizes as MCCBs
- A comprehensive range of accessories which are common to MCCBs and Switch-Disconnectors.
 All internal accessories are common to all frame sizes.

EASY SELECTION GUIDE

	Frame Rating (A)														
	125			160/	250		400/	630		800/1	000)	1250	/160	0
	MCCBs														
	Model	Туре	I _{cu} (kA)	Model	Туре	I _{cu} (kA)	Model	Туре	I _{cu} (kA)	Model	Туре	I _{cu} (kA)	Model	Туре	I _{cu} (kA)
	E125	NJ	25	E250	NJ	25	E400 E630	NE	25 36						
	S125	NF	25	S160	NF	25	5400	CJ	36	S800	CJ	36	S1250	SE	50
	S125	NJ	36	S160	NJ	36	5400	NJ	50	S800	NJ	50	S1250	NE	70
	S125	GJ	65	S160	GJ	65	S400	NE	50	S800	NE	50	S1250	GE	85
				S250	NJ	36	S400	GJ	70	S800	RJ	70	S1600	SE	50
S				S250	NE	36	S400	GE	70	S800	RE	70	S1600	NE	85
				S250 S250	GJ GE	65 65	S400 S400	PJ PE	85 85	S1000 S1000	SE NE	50 70			
				S250	PE	70	S630	CE	50	31000	INE	70			
				5233			5630	GE	70						
	H125*	NJ	125	H160	NJ	125	H400	NE	125	H800	NE	125			
Н				H250	NJ	125									
				H250	NE	125									
	L125*	NJ	200	L160	NJ	200	L400	NE	200	L800	NE	200			
	. ,	- \		L250	NJ	200							4	<u> </u>	
	$I_{\rm n}$ (4)												60	U
													1	25	1
										1	00	0		25	U
											‡				
							6	530)		00 63 63				
					25	0		25()						
		12	E		1										
		14)												
		12 * 16	ς		16										
	<u>SW</u>	ITC	n-Disc	conn	ec	tors									
	Model	Туре		Model	Туре		Model	Туре			Туре		Model	Туре	
	S125	NN		S160 S250	NN NN		S400 S630	NN NN		S800 S1000	NN NN		S1250 S1600	NN NN	
				3230	1414		3030	ININ	J	31000	ININ		31000	ININ	
l				r.m.s. symm		. 445): : : 5									

Note: All breaking capacities are r.m.s. symmetrical at 415V AC

12 of 181

Q-Pulse Id: TMS199

10 REASONS TO USE TEMBREAK 2

1. FIELD-INSTALLABLE ACCESSORIES

Accessories can be fitted by the switchboard builder or added by the end-user.

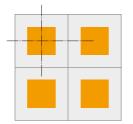
Handles and motor operators can be rapidly fitted using the locking pegs. It takes **less than 10 seconds to secure a handle or motor** to the MCCB – a great time saving compared to alternative products.

The plug-in MCCB is locked to the base when the toggle is ON. It cannot be removed unless the toggle is OFF or TRIPPED. The safety lock prevents a trip occurring

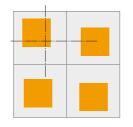
as the MCCB is being removed from the base.

All accessories are endurance tested to the same level as the host MCCB.

2. SAFETY LOCK FOR PLUG-IN VERSIONS



Plug-in MCCB and base


Plug-in connection kit, including safety lock

3. SYMMETRICAL DOOR CUTOUT PATTERNS

Using TemBreak 2 Operating Handles

Using other MCCB Operating Handles

Door cutout patterns for handles are symmetrical, even when breakers are mounted in opposite directions.

4. MODULAR SIZES

All current ratings up to 630A can be supplied in 2 sizes: the 250A and 630A sizes.

The compact 125A size offers the same features and performance but with reduced dimensions and cost.

5. ADVANCED L.C.D. DISPLAY, OCR


The XOW-1S OCR comes standard with the backlit LCD display. It can monitor and indicate phase currents, voltages, power, energy, power factor, harmonic currents, and more. Data communications via Modbus, an open network, are supported.

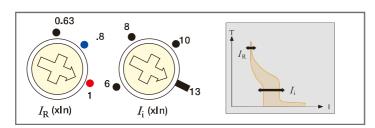
page 7 TemBreak The Ultimate Safety Breaker

10 REASONS TO USE TEMBREAK 2

6. COMPACT CHANGEOVERS

Viewed from Below (250A frame)

The mechanical interlock is installed on the front of the MCCB, and is compatible with motor operators and handles. An automatic changeover system can be assembled very easily by a switchboard builder or end-user.


7. DIRECT OPENING

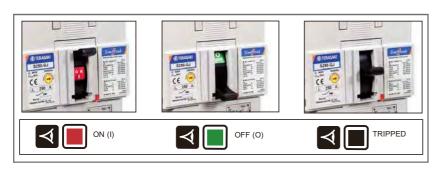
Under the heading "Measures to minimise the risk in the event of failure", IEC 60204-1 Safety of Machinery-Electrical Equipment of Machinery includes the following recommendation:

"-the use of switching devices having positive (or direct) opening operation."

8. UNSURPASSED FLEXIBILITY

Overload protection is adjustable between 63% and 100% of the rating.

Short-circuit protection is adjustable on all thermal magnetic models.


Short-circuit protection settings are suitable for motor starting on all models, including the compact 125A frame.

9. CUSTOMISED TRIPPING TIMES

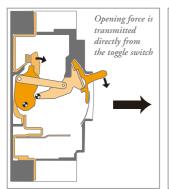
If you require a characteristic which is not available as a preset on our electronic protection unit, send us the details and we will program a customised characteristic to suit your application. (Within certain limits - contact us for details).

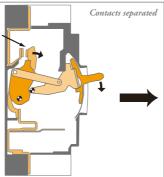
10. VISUAL SAFETY

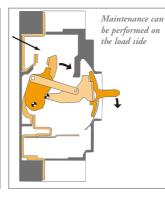
Coloured indicators display the ON or OFF status. The indicators are fully covered if the breaker trips, and black is the only visible colour.

SAFETY PLUS

Terasaki have an innovative approach to product design. Our goal is to develop products which not only meet, but exceed recognised standards.


We use our knowledge of related applications to improve circuit breaker designs. For instance, when developing the Direct Opening Action, we applied ideas from a machinery safety standard to the design of the TemBreak 2 switching mechanism.


This proactive development policy confirms our reputation as Innovators in Protection Technology.



Machine Safety

TemBreak 2 MCCBs are marked with IEC symbol indicating Direct Opening Action.

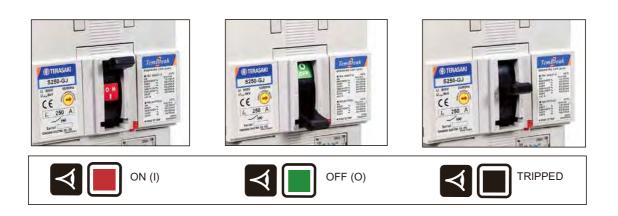
The robust mechanism ensures that the force you apply to the toggle is transmitted directly to the contacts.

Under the heading "Measures to minimise risk in the event of failure", IEC 60204-1 Safety of Machinery - Electrical Equipment of Machines includes the following recommendation:

" - the use of switching devices having positive (or direct) opening operation."

TemBreak 2 MCCBs help you to comply with the world's most stringent safety standards. It is one of the safest switching devices for machinery.

Q-Pulse ld: TMS199 17/04/2013 15 of 181


SAFETY PLUS

Visual Safety

You can easily see if a breaker is open, closed or tripped. **SAFETY+** coloured indicators boldly display the ON or OFF status. The indicators are fully covered if a breaker trips, and black is the only visible colour.

This is a *unique* safety feature. You can identify faulty circuits at a glance.

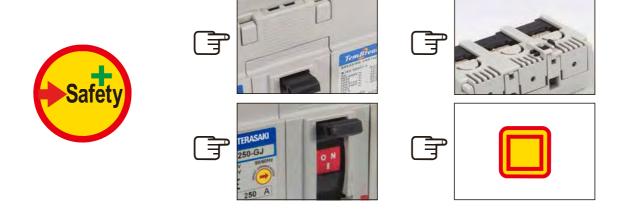
The toggle position always matches the position of the main contacts.

Touch Safety

The risk of touching live parts has been minimised by design.

These features reduce the risk of touching live parts:

There are no exposed metal screws on the front face


IP20 protection at the terminals

IP30 protection at the toggle

If the toggle is broken by accident or misuse, no live part is exposed

No live parts are exposed when fitting accessories

Double Insulation

EXCEEDING STANDARDS

Safety Plus

TemBreak 2 MCCBs exceed the requirements of recognised standards.

International Compliance

The TemBreak 2 MCCB complies with the international standard IEC 60947-2

TemBreak 2 Switch Disconnectors comply with IEC 60947-3

Accessories comply with IEC 60947-5-1 or IEC 61058-1

The entire range conforms to the IEC general rules for switchgear, IEC 60947-1

TemBreak 2 MCCBs comply with JIS C 8201-2-1 Ann.1

The TemBreak 2 range complies with the EC Low Voltage Directive and all models are CE marked

TemBreak 2 MCCBs carry the IEC symbol indicating Direct Opening Action as defined by IEC 60947-5-1. IEC 60204-1, Safety of Machinery - Electrical Equipment of Machines recommends that switches used for machinery have Direct Opening Action to minimise risk in the event of failure

Independent Tests

TemBreak 2 circuit breakers have been tested at independent laboratories as well as in Terasaki's own laboratory in Osaka, Japan. Copies of independent test reports are available on request.

TemBreak 2 MCCBs are approved by the leading marine approval organisations.

REDUCING ENVIRONMENTAL IMPACT

Longer Life Cycle

It makes good environmental sense to install a product with a long life expectancy. If you install a TemBreak 2 MCCB, you can expect it to stay in service for at least 30,000 mechanical operations (250A Frame). This is 22,000 more operations than recommended by IEC 60947-2, the international standard for circuit breakers.

If a system must be upgraded in future, we have made the following provisions for recycling:

- 1 The modular design of TemBreak 2 allows component parts and accessories to be easily disassembled and separately disposed of. Moulded parts do not contain any embedded metal parts.
- 2 Materials are clearly marked to allow future identification for easy recycling.

Uses Eco-friendly Materials

The following materials are used in most TemBreak 2 circuit breakers:

Thermoplastic resin not containing PBBs or PBDEs

Lead-free solder

Cadmium-free contacts

Lighter and Smaller

Components with low weight and volume make life easy for users, but high performance from smaller products also means less material used and less waste produced.

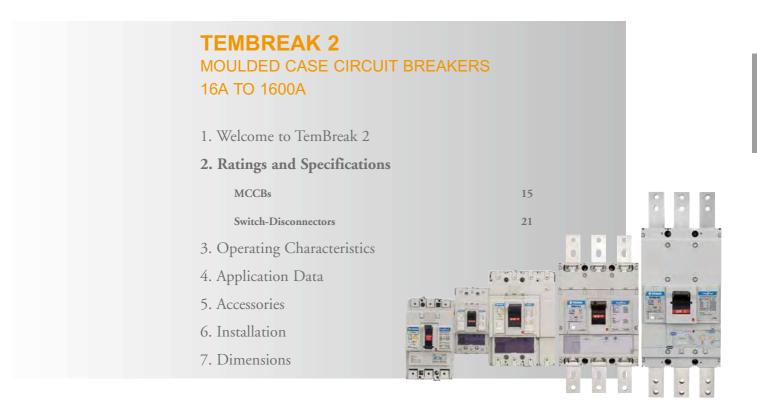
ISO 14001

(1)

Terasaki operate an Environmental Management System accredited to ISO 14001:1999. This requires us to monitor and measure the environmental performance of our activities, products and services in order to continually improve such performance.

Further information about this standard can be found on the internet at: www.tc207.org

FIELD-INSTALLABLE ACCESSORIES



Accessories can be fitted by the switchboard builder or added by the end-user. All internal accessories are common for TemBreak 2 MCCBs.

Handles and motor operators can be rapidly fitted using the locking pegs. It takes less than 10 seconds to secure a handle or motor to the MCCB – a great time saving compared to alternative products.

All accessories are endurance tested to the same level as the host MCCB.

MCCB ELECTRICAL CHARACTERISTICS TO IEC 60947-2, EN 60947-2, JIS C 8201-2-1 ANN.1, AS/NZS 3947-2, NEMA AB-1

Frame	Quantity	Unit	Condition	125	
Model				E125	S125
Number of Poles Type				3, 4 NJ	1 NF
Nominal current ratings					
Electrical characteristics	I_{n}	(A)	45°C	20,32,50, 63,100,125	16,20,25, 32,40,50, 63, 80, 100,125
Rated operational voltage	$U_{\rm e}$	(V)	AC 50/60 Hz	525	240
	Oe	()	DC	500	-
Rated insulation voltage Rated impulse withstand voltage	$U_{ m i}$ $U_{ m imp}$	(V) (kV)		800 8	800 8
Ultimate breaking capacity (IEC, JIS, AS/NZS)	$I_{ m cu}$	(kA)	690V AC 525V AC 440V AC 400/415V AC 220/240V AC 250V DC	- 8 15 25 35 25	- - - - 25
Service breaking capacity (IEC, JIS, AS/NZS)	I_{cs}	(kA)	690V AC 525V AC 440V AC 400/415V AC	- 6 12	
			220/240V AC 250V DC	27 19	13 -
Rated breaking capacity (NEMA)		(kA)	480V AC 240VAC	8 35	- 25
Protection					
Adjustable thermal, adjustable magnetic Fixed thermal, fixed magnetic Microprocessor				•	
Utilisation category				A	A
Installation					
Front connection (FC) Extension bar (FB) Cable clamp (FW) Rear connection (RC) Plug-in (PM) Draw- out (DR) DIN rail mounting (DA) Dimensions	h w	(mm) (mm)	3 pole, (1 pole) 4 pole	- 155 90 120	- - - - 155 (30)
Weight	d W	(mm) (kg)	3 pole, (1 pole) 4 pole	68 1.1 1.4	68 (0.45)
Operation					
Direct Opening Action Toggle operation Door mounted (HS, HP) / Breaker mounted handle (HB) Motor operation (MC)				:	
Endurance	Electrical Mechanical	cycles cycles	440V AC		

page 15 TemBreak

TemBreak The Ultimate Safety Breaker

Standard

Optional

- Not Available

				160				
S125	S125	H125	L125	S160	S160	S160	H160	L160
3, 4	3,4	3, 4	3, 4	1	3, 4	3, 4	3, 4	3, 4
NJ	GJ	NJ	NJ	NF	NJ	GJ	NJ	
NJ	GJ	INJ	INJ	INF	NJ	GJ	INJ	NJ
20,32,50,	20,32,50,	20,32,50,	20,32,50,	16,20,25,32,	20,32,50,63,	50,63,100,	160	160
							100	100
63,100,125	63,100,125	63,100,125	63,100,125	40,50,63,80,	100,125,160	125,160		
				100,125,160				
690	690	690	690	415	690	690	690	690
600	600	600	600	125	600	600	600	600
800	800	800	800	800	800	800	800	800
8	8	8	8	8	8	8	8	8
O	0	0	O	0	0	0	0	0
6	6	20	25		7 5 (5*)	7.5	20	25
	6	20	25	-	7.5 (5*)	7.5	20	25
22	25	45	65	-	25 (18*)	25	45	65
25	50	120	180	-	25 (18*)	50	120	180
36	65	125	200	-	36 (30*)	65	125	200
50	85	150	200	25	65 (42*)	85	150	200
25	40	40	40	-	40 (30*)	40	40	40
20	40	40	40	-	40 (30)	40	40	40
		4.5	00		7 F (F+)		4.5	00
6	6	15	20	-	7.5 (5*)	7.5	15	20
22	22	45	65	-	25 (18*)	25	45	65
25	25	80	135	-	25 (18*)	25	80	135
36/30	36/33	85	150	_	36 (25*)	36	85	150
50	85	150	150	19	65 (35*)	85	150	150
19	40	40	40	-	40 (25*)	40	40	40
00	05	45	0.5		00 (10*)	05	45	0.5
22	25	45	65	-	22 (18*)	25	45	65
50	85	150	200	25	65 (42*)	85	150	200
_	_	_	_		_	_	_	-
				_				
Α	A	A	A	A	Α	Α	A	A
_	_	_	_	_		_	_	-
				-				
				-				
-	-	-	-	-	-	-	-	-
		_	-	_	-	-	_	-
155	155	165	165	165	165	165	165	165
								I
90	90	105	105	(35)	105	105	105	105
120	120	140	140	-	140	140	140	140
68	68	103	103	68	68	68	103	103
1.1	1.1	2.4	2.4	(0.5)	1.5	1.5	2.5	2.5
1.4	1.4	3.2	3.2	(* *)	1.9	1.9	3.3	3.3
1	1	0.2	0.2		1.0	1.0	0.0	0.0
	I							
:	:	:			Ē			
				-				
				-				

*Applies only to 20A and 32A models

The Ultimate Safety Breaker

TemBreak page 16

MCCB ELECTRICAL CHARACTERISTICS TO IEC 60947-2, EN 60947-2, JIS C 8201-2-1 ANN.1, AS/NZS 3947-2, NEMA AB-1

Frame	Quantity	Unit	Condition	250				
Model				E250	S250	S250	S250	S250
Number of Poles				3, 4	3, 4	3, 4		3, 4
Туре				NJ	NJ	GJ	NE	GE
Nominal current ratings								
	$I_{\rm n}$	(A)	45°C	20,32	160	160	40,	40,
				50,63	200	200		125,
				1 <mark>00,</mark> 125 160,200	250	250	160 250	160 250
Electrical characteristics				250			230	250
Rated operational voltage	$U_{\rm e}$	(V)	AC 50/60 Hz	525	690	690	690	690
Rated insulation voltage	$U_{\rm i}$	(V)	DC	500 800	600 800	600 800	800	800
Rated insulation voltage Rated impulse withstand voltage	$U_{\rm imp}$	(kV)		8	8	8	8	8
Ultimate breaking capacity	I_{cu}	(kA)	690V AC	_	7.5	7.5	7.5	7.5
(IEC, JIS, AS/NZS)	100	(10.1)	525V AC	10	25	25	25	25
,			440V AC	15	25	50	25	50
			400/415V AC	25	36	65	36	65
			220/240V AC 250V DC	35 25	65 40	85 40	65	85
				20				
Service breaking capacity	$I_{\rm CS}$	(kA)	690V AC	-	7.5	7.5	7.5	7.5
(IEC, JIS, AS/NZS)			525V AC 440V AC	7.5 12	25 25	25 25	25 25	25 25
			400/415V AC	19	36	36	36	36
			220/240V AC	27	65	85	65	85
			250V DC	19	40	40	-	-
Rated breaking capacity (NEMA)		(kA)	480V AC	10	22	25	25	25
			240VAC	35	65	85	65	85
Rated short-time withstand current	I_{cw}	(kA)	0.3 Seconds	-	-	-	-	-
Protection								
Adjustable thermal, adjustable magnetic								
Fixed thermal, fixed magnetic								
Microprocessor Utilisation category				_	_	٨	A	A
Julisation category				A	Α	Α	A	A
Installation								
Front connection (FC)								
Extension bar (FB) Cable clamp (FW)								
Rear connection (RC)								
Plug-in (PM)								
Draw- out (DR)				-	-	-	-	-
DIN rail mounting (DA) Dimensions	h	(mm)		165	165	- 165	- 165	165
ZIIIIGII3IUII3	W	(mm) (mm)	3 pole	105	105	105	105	105
		(mm)	4 pole	140	140	140	140	140
	d	(mm)		68	68	68	103	103
Weight	W	(kg)	3 pole	1.5 1.9	1.5 1.9	1.5	2.3	2.3 3.1
			4 pole	1.9	1.9	1.9	3.1	J. I
Operation								
Direct Opening Action								
Toggle operation	HR)			-	-			_
Toggle operation Door mounted (HS, HP) / Breaker mounted handle (H	НВ)			•		•	•	_
Toggle operation	HB) Electrical Mechanical	cycles cycles	415V AC					

page 17 TemBreat

TemBreak The Ultimate Safety Breaker

Standard

Optional

- Not Available

				400										630		
S250	H250	H250	L250	E400	S400	S400	S400	S400	S400	S400	S400	H400	L400	E630	S630	S630
3, 4 PE	3, 4 NJ	3, 4 NE	3, 4 NJ	3, 4 NJ	3, 4 CJ	3, 4 NJ	3,4 NE	3, 4 GJ	3, 4 GE	3, 4 PJ	3, 4 PE	3, 4 NE	3, 4 NE	3,4 NE	3, 4 CE	3, 4 GE
40, 125, 160 250	160, 250**	40, 125, 160 250	160, 250**	250, 400	250, 400	250, 400	250, 400	250, 400	250, 400	250, 400	250, 400	250, 400	250, 400	630	630	630
690 - 800 8	690 600 800 8	690 - 800 8	690 600 800 8	525 500 800 8	690 600 800 8	690 600 800 8	690 - 800 8	690 600 800 8	690 - 800 8	690 600 800 8	690 - 800 8	690 - 800 8	690 - 800 8	690* - 800 8	690* - 800 8	690* - 800 8
20 35 50 70 125	20 45 120 125 150 40	20 45 120 125 150	25 65 180 200 200 40	- 15 22 25 35 25	15 22 30 36 50 40	20 30 45 50 85 40	20 30 45 50 85	20 30 65 70 100 40	20 30 65 70 100	20 30 80 85 100 40	20 30 80 85 100	35 45 120 125 150	50 65 180 200 200	10* 15 25 36 50	20* 30 45 50 85	20* 30 65 70 100
15 35 50 70 125	15 45 80 85 150 40	15 45 80 85 150	20 65 135 150 150 40	- 15 22 25 35 19	15 22 30 36 50 40	15 30 45 50 85 40	15 30 45 50 85	15 30 50 50 85 40	15 30 50 50 85	15 30 80 85 85 40	15 30 80 85 85	35 45 80 85 150	50 65 135 150 150	10* 15 25 36 50	15* 30 45 50 85	15* 30 50 50 85
35 125	45 150	45 150	65 200	15 35	22 50	25 85	25 85	30 100	30 100	30 100	30 100	45 150	65 200	15 50	25 85	30 100
-	-	-	-	-	-	-	5	-	5	-	5	5	5	-	-	-
A	A	A	A	A	A	A	В	A	В	A	В	■ B	■ B	A	A	A
•	•	•	•	•			•	•	•		•	•	•	-		
- - 165 105 140 103 2.5 3.3	† - - 165 105 140 103 2.4 3.2	- - 165 105 140 103 2.5 3.3	† - - 165 105 140 103 2.4 3.2	- 260 140 185 103 4.2 5.6	- 260 140 185 103 4.2 5.6	- 260 140 185 103 4.2 5.6	- 260 140 185 103 4.3 5.7	- 260 140 185 103 4.2 5.6	- 260 140 185 103 4.3 5.7	- 260 40 185 103 4.2 5.6	- 260 140 185 103 4.3 5.7	260 140 185 140 7.1 9.4	260 140 185 140 7.1 9.4	‡ - 260 140 185 103 5.0 6.5	260 140 185 103 5.0 6.5	‡ - 260 140 185 103 5.0 6.5
10	000	:	:	:	•	•		4,5	500	•	•	:	:	:	4,500	:
	000			—				15,					-	*	15,000	\longrightarrow

^{*}MCCB cannot be used in IT systems at this voltage.

The Ultimate Safety Breaker TemBreak

page 18

^{**}Max. rating 225A for Plug-in.

[†] Refer to Temperature Ratings, Section 6.

Contact us for details.

SAFETY LOCK FOR PLUG-IN VERSIONS

The plug-in MCCB is locked to the base when the toggle is ON. It cannot be removed unless the toggle is OFF or TRIPPED.

The safety lock prevents a trip occurring as the MCCB is being removed from the base.

TEMBREAK 2

MOULDED CASE CIRCUIT BREAKERS 16A TO 1600A

- 1. Welcome to TemBreak 2
- 2. Ratings and Specifications
- 3. Operating Characteristics

Thermal Magnetic Protection	25						
Thermal Magnetic Time / Current Characteristics	28						
Electronic Protection							
Standard type	36						
With LCD	47						
Electronic Time / Current Characteristics							
Standard type	40						
With LCD	51						
Let-through Peak Current Characteristics	53						
Let_through Energy Characteristics	60						

- 4. Application Data
- 5. Accessories
- 6. Installation
- 7. Dimensions

THERMAL MAGNETIC PROTECTION

TemBreak 2 MCCBs from 125A frame to 800A frame are available with thermal magnetic protection units.

Thermal Magnetic trip units are especially suited to the following applications:

Installations where harmonic distortion of current waveforms is likely.

They operate inherently on the root mean square (rms) heating effect of current.

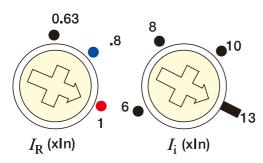
DC circuits. Refer to Section 4, "The Application of MCCBs in DC Systems" for more information.

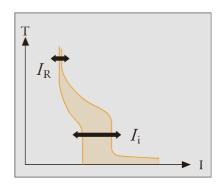
3 Pole MCCB with Adjustable Thermal and Adjustable Magnetic Characteristics

Single Pole MCCB with Fixed Characteristics

Models with Adjustable Thermal and Adjustable Magnetic Characteristics

All standard 3 pole and 4 pole TemBreak 2 thermal magnetic models have adjustable thermal and adjustable magnetic characteristics.


Traditionally, thermal magnetic MCCBs have had adjustable thermal with fixed magnetic characteristics. The fixed magnetic element can limit the application of the MCCB.


An adjustable magnetic characteristic allows short-circuit protection to be matched to the load and supply characteristics, for example motor inrush currents or generator short-circuit currents. Lowering the short-circuit tripping threshold can allow a higher earth-loop impedance in an installation and provide end-of-cable protection with the correct disconnection times.

Q-Pulse Id: TMS199 17/04/2013 27 of 181

THERMAL MAGNETIC PROTECTION

Adjustment Dials

1. $I_{\rm R}$ is the thermal element adjustment dial and is used to set the rated current to match the conductor rating.

 $I_{\rm R}$ can be set between 0.63 and 1.0 times $I_{\rm n}$.

2. I_i is the magnetic element adjustment dial and is used to set the short circuit tripping threshold to suit the application.

Models, Types, Rated Currents and Magnetic trip currents of Thermal Elements

Model	Туре	Rated current I _n (A)	Magnetic trip current <i>I</i> _i (A)
S125	-NF	16, 20, 25, 32, 40, 50, 63, 80, 100	13 × <i>I</i> _n
5125	-INF	125	12.4 ×I _n
E125	-NJ	20, 32, 50, 63, 100	6 – 12 ×I _n
E123	-INJ	125	6 – 10 ×I _n
S125	-NJ	20, 32, 50, 63, 100	6 – 12 ×I _n
3123	-140	125	6 – 10 ×I _n
S125	-GJ	20, 32, 50, 63, 100	6 – 12 × <i>I</i> _n
3123	-63	125	6 – 10 ×I _n
H125	-NJ	20, 32, 50, 63, 100, 125	6 – 12 ×I _n
L125	-NJ	20, 32, 50, 63, 100, 125	6 – 12 ×I _n
S160	-NF	16, 20, 25, 32, 40, 50, 63, 80, 100, 125, 160	10 ×I _n
S160	-NJ	20, 32, 50, 63, 100, 125	6 – 12 ×I _n
5100	-INJ	160	6 – 13 ×I _n
S160	-GJ	50, 63, 100, 125	6 – 12 × <i>I</i> _n
5100	-63	160	6 – 13 × <i>I</i> _n
H160	-NJ	160	6 – 13 ×I _n
L160	-NJ	160	6 – 13 ×I _n
		20, 32, 50, 63, 100, 125	6 – 12 × <i>I</i> _n
E250	-NJ	160, 200	6 – 13 × <i>I</i> _n
		(250)	6 – 10 ×I _n
S250	-NJ	160, 200	6 – 13 × <i>I</i> _n
3230	-140	250	6 – 10 ×I _n
S250	-GJ	160, 200	6 – 13 ×I _n
3230	-00	250	6 – 10 ×I _n
H250	-NJ	160	6 – 13 ×I _n
HZ30	-140	250 (225A for Plug-in)	6 – 10 ×I _n
L250	-NJ	160	6 – 13 ×I _n
LZJU	-140	250 (225A for Plug-in)	6 – 10 ×I _n
E400	-NJ	250, 400	6 – 12 × <i>I</i> _n
S400	-CJ	250, 400	6 – 12 × <i>I</i> _n
S400	-NJ	250, 400	6 – 12 × <i>I</i> _n
S400	-GJ	250, 400	6 – 12 × <i>I</i> _n
S800	-CJ	630, 800	5 – 10 ×I _n
S800	-NJ	630, 800	5 – 10 ×I _n
S800	-RJ	630, 800	5 – 10 ×I _n

THERMAL MAGNETIC PROTECTION

Single Pole MCCBs

Single pole models have fixed thermal and fixed magnetic characteristics.

Generator Protection

Generators may need specially modified protection characteristics, based on their short-circuit capability.

If a generator is capable of delivering short-circuit current greater than six times its full load current, a standard TemBreak 2 thermal magnetic MCCB may be used, with I_i set at less than the available short-circuit current. (Note that MCCBs, with fixed magnetic characteristics may not be suitable for this application.)

A thermal magnetic MCCB with low instantaneous protection may be used where the generator short-circuit current is less than six times its full load current. These are modified versions of the standard MCCB.

Four pole MCCBs with low instantaneous protection have protection on the neutral pole as standard. The magnetic characteristic of MCCBs with low instantaneous protection is fixed at the following values:

Model	Magnetic Trip Current
E125	3xI _n
S125	3xI _n
S160	3xI _n
E250	3xI _n
S250	3xI _n
E400	3.5x <i>I</i> _n
S400	3.5x <i>I</i> _n

Neutral Pole Protection

Neutral pole protection is available as an optional extra on four pole thermal magnetic MCCBs. The thermal and magnetic elements in the neutral pole are related to those in the phase poles as follows:

	Phase Trip Threshold	Neutral Trip Threshold
Thermal	I _r (adjustable)	I _N (adjustable)= I _n
Magnetic	I _i (adjustable)	I _i (adjustable)

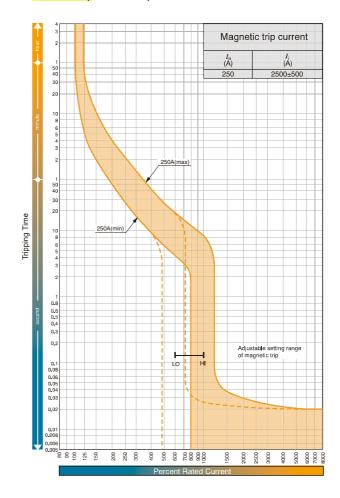
Motor Protection

MCCBs feeding motors are often only required to provide protection from short-circuits. Overload protection is provided by a dedicated thermal or electronic overload relay. Tembreak 2 MCCBs without thermal protection elements are available for this application. Four pole MCCBs with magnetic trip only have protection on the neutral pole as standard.

Q-Pulse Id: TMS199 17/04/2013 29 of 181

THERMAL MAGNETIC CHARACTERISTICS

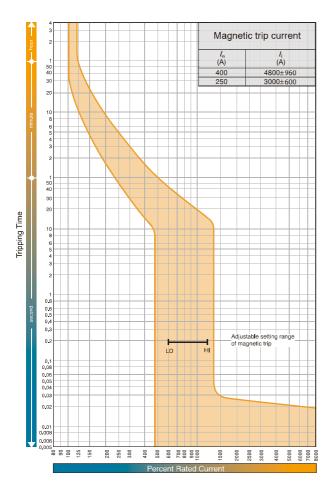
160A and 250A Frames


Time/current characteristic curves

\$160-NJ, \$160-GJ, **E250-NJ**, \$250-NJ, \$250-GJ

Time/current characteristic curves

E250-NJ, S250-NJ, S250-GJ


Q-Pulse ld: TMS199 17/04/2013 30 of 181

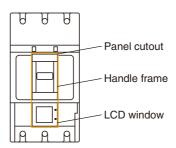
THERMAL MAGNETIC CHARACTERISTICS

400A Frame

Time/current characteristic curves

E400-NJ, S400-CJ, S400-NJ, S400-GJ, S400-PJ

Q-Pulse Id: TMS199 17/04/2013 31 of 181


ELECTRONIC PROTECTION (WITH LCD)

Appearance

The TemBreak2 enhanced electronic breaker with integrated VT and CT monitors the current, voltage, instantaneous electrical power, integrated electrical energy and power factor of a circuit and displays their values on the LCD on the front of the breaker. This breaker using the Modbus protocol allows data such as measured values and event/fault logs to be transmitted to an external device.

- The LCD window provides the phase currents, line voltages (and their maximum values), power factor, electrical power and electrical energy. It can also provide the 1st to 19th harmonic currents for each phase.
- When a fault occurs, the cause of the fault and the fault current are indicated on the LCD. Data in memory is stored even if the power is lost. You can view event or fault logs after the power is restored.

The LCD window is equal to the handle frame in width; the panel cutout can be made easily.

Q-Pulse ld: TMS199 17/04/2013 32 of 181

ELECTRONIC PROTECTION (WITH LCD)

• The breaker is available in three LCD orientations corresponding to the installation orientations of the breaker.

Vertical (move the handle up to ON) (Standard orientation)	Horizontal (move the handle right to ON)	Horizontal (move the handle left to ON)

If the breaker is installed in a horizontal orientation, please specify "Horizontal (move the handle right to ON)" or "Horizontal (move the handle left to ON)" when ordering. Otherwise the standard orientation "Vertical (move the handle up to ON)" will apply.

OCR Power Supply for Electronic Protection with LCD

The XOW OCR, protection relays, requires control power.

The OCR power supply is installed on the right side of the breaker as standard. This can also be installed separately to the breaker. Please specify when ordering.

Note ①: When the OCR power supply is installed on the right side of the breaker, the breaker cannot be equipped with a terminal block for connection to the shunt trip device and under voltage trip device.

Specifications of OCR power supply

Control voltage Note 2	100 - 120 VAC or 200 - 240 VAC
(Rated voltage)	
Current consumption	2VA

Note ②: The permissible range of the control voltage is 85 to 110% of the rated voltage.

Please specify the rated voltage when ordering.

Dimensions of the OCR power supply can be found in Section 7.

ELECTRONIC PROTECTION (WITH LCD)

Available types

		Protective	e function		Alarm function	Dis	play	
Type of OCR	Long time-delay trip Short time-delay trip Instantaneous trip	Ground fault trip	N-phase protection	Phase rotation protection	Pre-trip alarm	LCD window	LCD backlight	
	А	GF	NP	NS	PTA			
XOW-1L-A	•	_	_	_	_	•	_	
XOW-1L-AGN	•	•	•	_	_	•	_	
XOW-1L-AP	•	_	_	_	•	•	_	
XOW-1L-APGNS	•	•	•	•	•	•	_	
XOW-1L-APC	•	_	_	_	•	•	_	
XOW-1L-APGNSC	•	•	•	•	•	•	_	
XOW-1S-A	•	_	_	_	_	•	•	
XOW-1S-AGN	•	•	•	_	_	•	•	
XOW-1S-AP	•	_	_	_	•	•	•	
XOW-1S-APGNS	•	•	•	•	•	•	•	
XOW-1S-APCWH	•	_	_	_	•	•	•	
XOW-1S-APGNSCWH	•	•	•	•	•	•	•	

Standard equipment

Optional

— : Not applicable

Measurement/event indication function specifications

Measurement/event (accuracy)		Modbus communication function O:Yes —: Non	Note	
Lood augreent	Present value for each phase	0	Ground fault current and negative-phase current can be displayed depending on the specifications.	
Load current (±1.5%)	Present max value	0	Among L1, L2, L3 phases, the phase having the highest current is subject to measurement and the value of the current is displayed.	
Line colleges	Present value of each line voltage	0		
Line voltage (±1.0%)	Present max value	0		
(±1.076)	Present phase voltage value for each phase	0	Applies to 4-pole breakers only.	
Harmonic current (±2.5%)	Present value of 3rd, 5th, 7th,19th harmonic current for each phase	_		
Electrical power (±2.5%)	Present value	0		
	Demand value	0		
(12.570)	Max demand value	0		
Electrical energy (±2.5%)	Electrical energy	0		
Power factor (±5%)	Present value	0		
Trip event loc	Fault current (±1.5%)	0		
Trip event log	Indication of cause	0		
Alarm event log	Cause of alarm, Indication of operated value	0		

Note: Electrical energy is stored every hour and the fault current and cause of fault are stored every time a fault occurs in a flash memory.

Q-Pulse Id: TMS199 17/04/2013 34 of 181

Measurement/event indication										
Current	Voltage, electrical power, electrical energy, power factor, demand electrical power	Electrical energy pulse	Harmonic current	Trip event log	Alarm event log	Communication function	External indicator	Test function	Indication via output contact	Control power supply
		W	Н			С	1		Y	
•	_	_	_	•	•		_	•		Required
•	_	_	_	•	•	_	_	•		Required
•	_	_	_	•	•	_	_	•	•	Required
•	_	_	_	•	•	_	_	•	•	Required
•	_	_	_	•	•	•	_	•	•	Required
•	_	_	_	•	•	•	_	•	•	Required
•	•	_	_	•	•	_	_	•	_	Required
•	•	_	_	•	•	_	_	•		Required
•	•	_	_	•	•	_	_	•	•	Required
•	•	_	_	•	•	_	_	•	•	Required
•	•	•	•	•	•	•	0	•	•	Required
•	•	•	•	•	•	•	0	•	•	Required

Network interface I/O specifications

Item	Modbus line	
Communication protocol	RS-485	
Communication mode	2-wire, half-duplex	
Topology	Multi-drop bus	
Transmission rate	19.2 kbps max	
Transmission distance	1.2 km max (at 19.2 kbps)	
Data format	Modbus-RTU	
Max number of nodes	1–31	

The Ultimate Safety Breaker TemBreak

ELECTRONIC CHARACTERISTICS (WITH LCD)

Specifications of over-current release

Applicable MCCB type	CT rated primary current CT
S400-NE, S400-GE, S400-PE,	250A
H400-NE, L400-NE	400A
E630-NE, S630-CE, S630-GE	630A
S800-NE, S800-RE,	630A
H800NE, L800-NE	800A
S1000-SE, S1000-NE	1000A

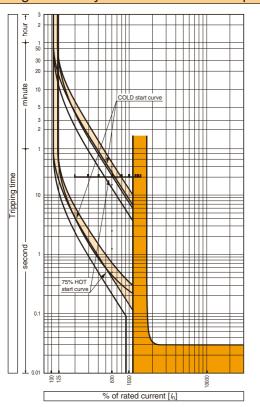
Protective function		Symbol	Setting range	
Rated current (A)		'n	[/ _{CT}] x (0.5-0.63-0.8-1.0)	
Long time-delay trip LT	Pick-up current (A)	A	[偏] x (0.8-0.85-0.9-0.95-1.0) Non tripping at not more than [偏] x 1.05 Tripping at more than [偏] x 1.05 and not more than [偏] x 1.2	
	Time-delay (s)	Æ.	(0.5-1.25-2.5-5-10-15- <u>20</u> -25-30) (sec) at 600% of [/ _R] ① Time-delay setting tolerance: ±20%, +0.13s –0s	
	COLD/HOT	_	COLD/HOT	
Short time-delay trip ST	Pick-up current (A)	/ _{sd}	[/ _n] x (1-1.5-2-2.5-3-4-6-8- <u>10</u> -NON) ② Current setting tolerance: ±15%	
	Time-delay (s)	t _{sd}	I^2t OFF: 0.05- <u>0.1</u> -0.2-0.3s (Definite time characteristic) I^2t ON: 0.05- <u>0.1</u> -0.2-0.3s (Ramp characteristic at less than 1000% of $[\mspace{1mu}_{n}]$, Definite time characteristic at 1000% or more of $[\mspace{1mu}_{n}]$)	
	I ² t ramp characteristic	_	OFF/ON	
Instantaneous trip INST	Pick-up current (A)	4	[/ _n] x (2-3-4-6-8-10-12-13- <u>14</u> -NON) ③④ Current setting tolerance: ±20%	
Ground fault trip GF	Pick-up current (A)	/g	$[\ell_{\text{CT}}] \times (0.2\text{-}0.3\text{-}0.4\text{-NON})$ Current setting tolerance: $\pm 20\%$	
	Time-delay (s)	t _g	2t OFF: 0.1-0.2- $\underline{0.3}$ -0.4-0.8s (Definite time characteristic) Time-delay setting tolerance: $+50$ ms -20 ms 2t ON: 0.1-0.2- $\underline{0.3}$ -0.4-0.8s (Ramp characteristic at less than 40% of [/ _{CT}], Definite time characteristic at 40% or more of [/ _{CT}]) Time-delay setting tolerance: $\pm15\%$, $+50$ ms -20 ms	
	I ² t ramp characteristic	_	OFF/ON	
	Mode	_	TRIP/OFF ®	
N-phase protection NP	Pick-up current (A)	4	[f_{CT}] x (0.4-0.5-0.63-0.8- <u>1.0</u> -NON) Non tripping at not more than [f_{N}] x 1.05 Tripping at more than [f_{N}] x 1.05 and not more than [f_{N}] x 1.2	
	Time-delay (s)	<i>t</i> _N	Tripping at 600% of [$\frac{1}{N}$] with LT time-delay [$\frac{1}{N}$].	
	COLD/HOT	_	COLD/HOT	
Phase rotation protection NS	Pick-up current (A)	√ns	[ʃ _h] x (0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9- <u>1.0</u>) Current setting tolerance: ±10%	
	Time-delay (s)	4NS	(0.4-0.8-1.2-1.6-2.0-2.4-2.8-3.2-3.6- $\frac{4.0}{0}$) (sec) at 150% of [$\frac{1}{NS}$] Time-delay setting tolerance: ±20%, +0.13s –0s	
	Mode	_	TRIP/OFF ⑤	
Pre-trip alarm PTA	Pick-up current (A)	h	$[\frac{1}{10}] \times (0.7-0.8-0.9-1.0)$ Current setting tolerance: ±10%	
	Time-delay (s)	Þ	5-10-15-20- <u>40</u> -60-80-120-160-200s more than [卢] Time-delay setting tolerance: ±10%, +0.1s -0s	
	Mode	_	AL/OFF ⑤	

Note ①: For E630, S630, S1000, (0.5-1.25-2.5-5-10-15-16)sec.

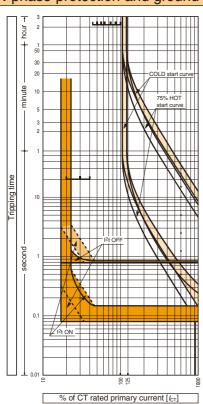
Unless otherwise specified when ordering, the settings will default to those underlined in the table above.

Q-Pulse ld: TMS199 17/04/2013 36 of 181

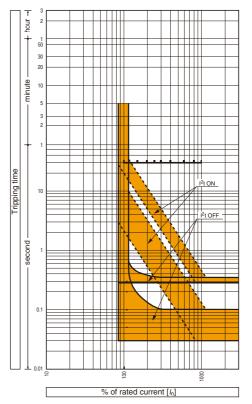
②: For E630, S630, S1000, $[\frac{1}{n}]$ x (1-1.5-2-2.5-3-4-6-8-NON).

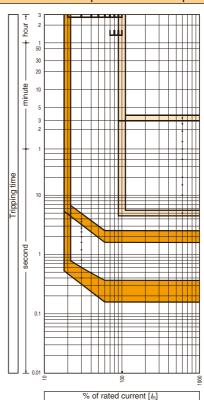

③: The max. pick-up current is set to 1300% x [$\langle_{\text{CT}}\rangle$] for S400, H400 and L400, 1000% x [$\langle_{\text{CT}}\rangle$] for E630, S630 and S1000, 1200% x [$\langle_{\text{CT}}\rangle$] for S800, H800 and L800.

④: When the short time delay trip function has been set to NON, the instantaneous trip function cannot be set to NON. When the instantaneous trip function has been set to NON, the short time delay trip function cannot be set to NON.


⑤: Selecting "OFF" disables protective functions.

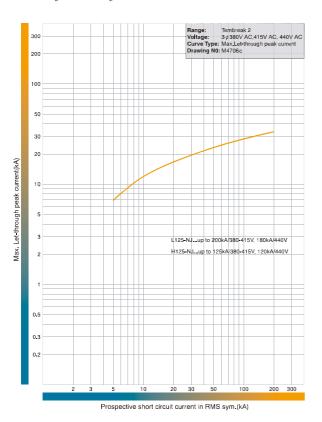
ELECTRONIC CHARACTERISTICS (WITH LCD)

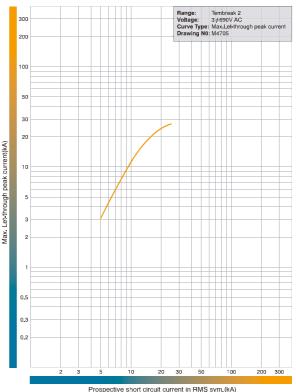

Long time-delay and instantaneous trip


N-phase protection and ground fault trip

Short time-delay trip

Phase rotation protection and pre-trip alarm

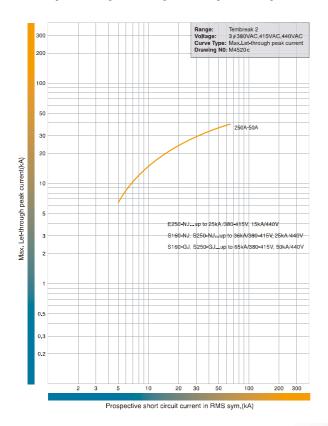

The Ultimate Safety Breaker TemBreak

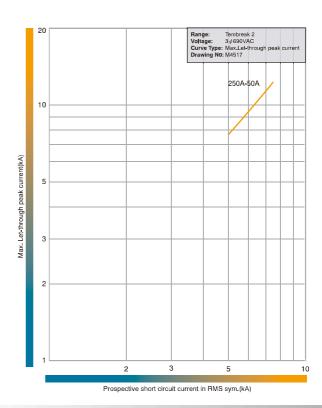

page 52

LET-THROUGH PEAK CURRENT CHARACTERISTICS

H125-NJ, L125-NJ. 440V AC.

H125-NJ, L125-NJ. 690V AC.

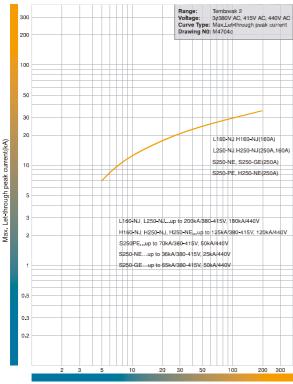




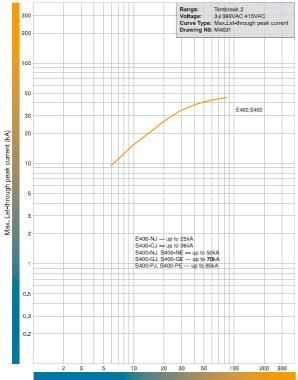
Prospective short circuit current in RMS sym.(kA)

\$160-NJ, \$160-GJ, **E250-NJ**, \$250-NJ, \$250-GJ. 440V AC.

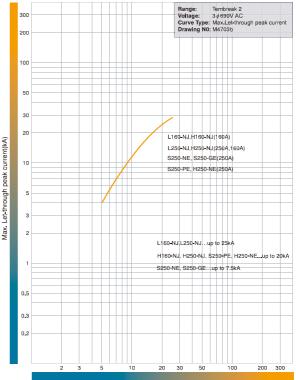
S160-NJ, S160-GJ, S250-NJ, S250-GJ. 690V AC.



The Ultimate Safety Breaker TemBreak


LET-THROUGH PEAK CURRENT CHARACTERISTICS

H160-NJ, L160-NJ, S250-NE, S250-GE, S250-PE, H250-NJ, H250-NE, L250-NJ. 440V AC.


Prospective short circuit current in RMS sym.(kA)

E400-NJ, S400-CJ, S400-NJ, S400-NE, S400-GJ, S400-GE, S400-PJ, S400-PE. 415V AC.

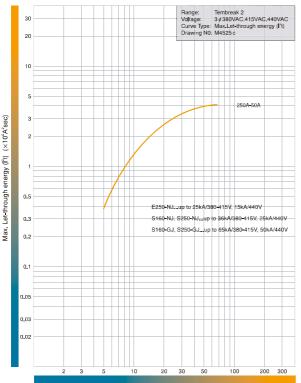
Prospective short circuit current in RMS sym.(kA)

H160-NJ, L160-NJ, S250-NE, S250-GE, S250-PE, H250-NJ, H250-NE, L250-NJ. 690V AC.

Prospective short circuit current in RMS sym.(kA)

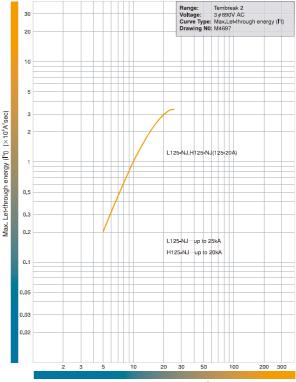
S400-CJ, S400-NJ, S400-NE, S400-GJ, S400-GE, S400-PJ, S400-PE. 690V AC.

Prospective short circuit current in RMS sym.(kA)

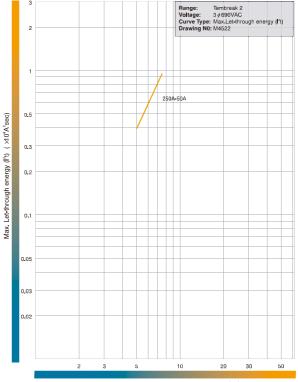

page 55 TemBreak The Ultimate Safety Breaker

LET-THROUGH ENERGY CHARACTERISTICS

H125-NJ, L125-NJ. 440V AC.


Prospective short circuit current in RMS sym.(kA)

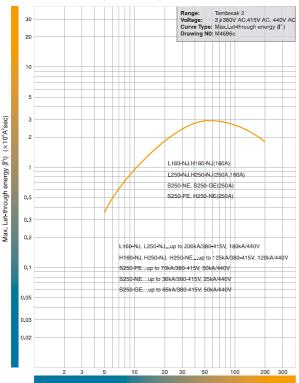
S160-NJ, S160-GJ, **E250-NJ**, S250-NJ, S250-GJ. 440V AC.


Prospective short circuit current in RMS sym.(kA)

H125-NJ, L125-NJ. 690V AC.

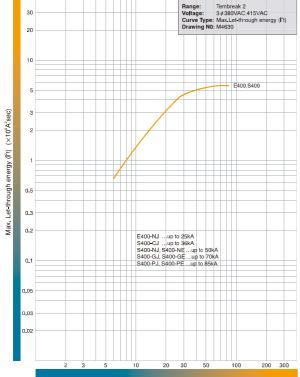
Prospective short circuit current in RMS sym.(kA)

S160-NJ, S160-GJ, S250-NJ, S250-GJ. 690V AC.

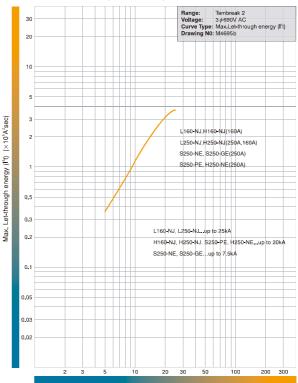


Prospective short circuit current in RMS sym.(kA)

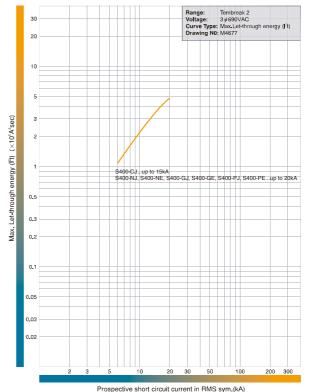
Q-Pulse Id: TMS199 17/04/2013 40 of 181


LET-THROUGH ENERGY CHARACTERISTICS

H160-NJ, L160-NJ, S250-NE, S250-GE, S250-PE, H250-NE, H250-NJ, L250-NJ. 440V AC.

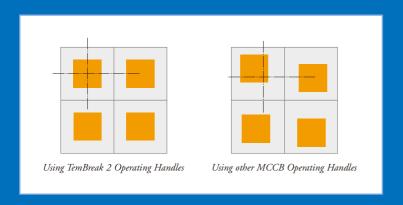

Prospective short circuit current in RMS sym.(kA)

E400-NJ, S400-CJ, S400-NJ, S400-NE, S400-GJ, S400-GE, S400-PJ, S400-PE. 415V AC.


Prospective short circuit current in RMS sym.(kA)

H160-NJ, L160-NJ,S250-NE, S250-GE, S250-PE, H250-NE, H250-NJ, L250-NJ. 690V AC.

Prospective short circuit current in RMS sym.(kA)


S400-CJ, S400-NJ, S400-NE, S400-GJ, S400-GE, S400-PJ, S400-PE. 690V AC.

SYMMETRICAL DOOR CUTOUT PATTERNS

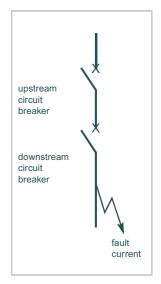
Door cutout patterns for handles are symmetrical, even when breakers are mounted in opposite directions.

MO	MBREAK 2 OULDED CASE CIRCUIT BREAKERS A TO 1600A	
1.	Welcome to TemBreak 2	
2.	Ratings and Specifications	
3.	Operating Characteristics	
4.	Application Data	
	What is Discrimination?	69
	How to Read the Discrimination Tables	70
	Discrimination Tables	71
	What is Cascading?	74
	How to Read the Cascade Tables	75
	Cascade Tables	76
5.	Accessories	
6.	Installation	
7.	Dimensions	

DISCRIMINATION

WHAT IS DISCRIMINATION?

Discrimination, also called selectivity, is the co-ordination of protective devices such that a fault is cleared by the protective device installed immediately upstream of the fault, and by that device alone.


Total discrimination

Discrimination is said to be total if the downstream circuit breaker opens and the upstream circuit breaker remains closed. This ensures maximum availability of the system.

Partial discrimination

Discrimination is partial if the above condition is not fulfiled up to the prospective short-circuit current, but to a lesser value, termed the selectivity limit current (I_s) .

Above this value both circuit breakers could open, resulting in loss of selectivity.

HOW TO READ THE DISCRIMINATION TABLES

Boxes containing the letter "T" indicate total discrimination between the relevant upstream and downstream circuit-breakers. Total discrimination applies for all fault levels up to the breaking capacity of the upstream or the downstream circuit breaker, whichever is the lesser.

For the other boxes, discrimination is either partial or there is no discrimination.

If discrimination is partial then the value of the selectivity limit current, I_s , is shown in the box.

Worked Examples

- Q (1) A main switchboard requires a 1600A ACB feeding a 400A MCCB. The fault level is 70kA. What combination of protective devices would provide total discrimination?
- A (1) A TemPower2 ACB AR216S feeding a TemBreak2 S400-GJ would provide total discrimination up to 70kA. See page 71

Note: Discrimination would be total whether the TemPower 2 ACB had an integral or external protection relay because $I_{cw}(I_s) = I_{cs}$. Most other ACBs have $I_{cw}(I_s) < I_{cs}$.

page 69 TemBreak The Ultimate Safety Breaker

HOW TO READ THE DISCRIMINATION TABLES

- Q (2) A Sub distribution board requires a 630A MCCB feeding a 250A MCCB. The fault level is 65kA. What combination of protective devices would provide total discrimination?
- A (2) Using a TemBreak 2 S630-GE MCCB feeding a TemBreak 2 S250-GJ would provide total discrimination up to 65kA. See page 73
- Q (3) A final distribution board contains a 125A MCCB incomer feeding a 32A Type B MCB. Is discrimination between these devices possible?
- A (3) A TemBreak 2 MCCB type S160-NJ/125A feeding a TD3 DIN type MCB would provide total discrimination. See page 72

Alternatively ANY OTHER MCB can be used provided it has energy limiting ability of class 3 in accordance with EN 60898.

DISCRIMINATION TABLES

Upstream: TemPower 2 ACB with or without Integral Protection Relay. Downstream: TemBreak 2 MCCB.

Upstream ACB

								pstrea	1111 AO										
Frame			800A	125			1600A			2000A		250	00A		00A	4000A	5000A	63	00A
	Model		AR208S	AR212S	AR212H	AR216S	AR216H	AR316H	AR220S	AR220H	AR320H	AR325S	AR325H	AR332S	AR332H	AR440SB	AR650S	AR663S	AR663H
		Breaking Capacity	65kA	65kA	80kA	65kA	80kA	100kA	65kA	80kA	100A	85kA	100kA	85kA	100kA	100kA	120kA	20kA	135kA
125A	E125NJ S125NJ S125GJ H125NJ L125NJ	25kA 36kA 65kA 125kA 200kA	T T T T	T T T T	T T T T	T T T T	T T T T	T T T T	T T T T	T T T T	T T T T	T T T T	T T T T						
160A/ 250A	\$160NJ \$160GJ (E250NJ) \$250NJ \$250GJ \$250PE H250NJ L250NJ	36kA 65kA 25kA 36kA 65kA 70kA 125kA 200KA	T T T T T T	T T T T T	T T T T T T	T T T T T T	T T T T T T	T T T T T T	T T T T T T	T T T T T T	T T T T T T	T T T T T T	T T T T T T	T T T T T T	T T T T T T	T T T T T T	T T T T T T	T T T T T T	T T T T T T
400A/ 630A	E400NJ) S400CJ S400NJ S400NE S400GJ S400GE S400PJ S400PE H400NJ H400NE E630NE S630CE S630GE	25kA 36kA 50kA 50kA 70kA 70kA 85kA 125kA 125kA 125kA 36kA 50kA	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T
800A	\$800-CJ \$800-NJ \$800-RJ \$800-NE \$800-RE H800-NE L800-NE	36kA 50kA 70kA 50kA 70kA 125kA 200kA	T T T T T	T T T T T T	T T T T T	T T T T T	T T T T T	T T T T T	T T T T T	T T T T T	T T T T T	T T T T T	T T T T T	T T T T T	T T T T T	T T T T T	T T T T T	T T T T T	T T T T T
1000A	S1000-SE S1000-NE	50kA 70kA	-	T T	T T	T T	T T	T T	T T	T T	T T	T T	T T	T T	T T	T T	T T	T T	T T
1250A	S1250-SE S1250-NE S1250-GE	50kA 70kA 100kA	-	T T T	T T T	T T T	T T T	T T T	T T T	T T T	T T T	T T T	T T T	T T T	T T T	T T T	T T T	T T T	T T T
1600A	S1600-SE S1600-NE	50kA 100kA	-		-	T T	T T	T T	T T	T T	T T	T T	T T	T T	T T	T T	T T	T T	T T

Notes: 1. All ACB's have Ii set at NON, MCR ON.

Downstream MCCB

page 71

2. Assuming ACB time settings are greater than MCCB.

3. The above table is in accordance with IEC 60947-2, Annex A.

 $4.\ External\ relay can be used$ - Contact Terasaki for further details. 5. All values shown at $400V\ AC.$ T= Total Selectivity

TemBreak The Ultimate Safety Breaker

DISCRIMINATION TABLES

Upstream: TemBreak 2 MCCB (thermal-magnetic)

Downstream: MCB

Upstream MCCB

	l .	5NJ 5NJ	•	,				S16	0NJ	(36kA	۸)					,	36kA 25kA	,						S400	ONJ
m	ln	20A	32A	50A	63A	100A	125A	20A	32A	50A	63A	100A	125A	160A	20A	32A	50A	63A	100A	125A	160A	200A	250A	250A	400A
M	6A	260	Т	Т	Τ	Т	Т	260	Т	_	Т	Т	Т	Τ	260	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Ш	10A	260	420	Т	Т	Т	Т	260	420	Т	Т	Т	Т	Т	260	420	Т	Т	Т	Т	Т	Т	Т	Т	Т
re	16A	260	420	650	Т	Т	Т	260	420	650	Т	Т	Т	Т	260	420	650	Т	Т	Т	Т	Т	Т	Т	Т
nst	20A	260	420	650	1000	Т	Т	260	420	650	1000	Т	Т	Т	260	420	650	1000	Т	Т	Т	Т	Т	Т	Т
\mathbb{Z}	25A	260	420	650	1000	Т	Т	260	420	650	1000	Т	Т	Т	260	420	650	1000	Т	Т	Т	Т	Т	Т	Т
ŏ	32A	260	420	650	1000	1500	Т	260	420	650	1000	1500	Т	Т	260	420	650	1000	1500	Т	Т	Т	Т	Т	Т
	40A	260	420	650	1000	1500	2000	260	420	650	1000	1500	2000	Т	260	420	650	1000	1500	2000	Т	Т	Т	Т	Т
	50A	260	420	650	1000	1500	2000	260	420	650	1000	1500	2000	3000	260	420	650	1000	1500	2000	3000	Т	Т	Т	Т
	63A	260	420	650	1000	1500	2000	260	420	650	1000	1500	2000	3000	260	420	650	1000	1500	2000	3000	2600	Т	Т	Т

Notes: 1. MCBs can be of any manufacture provided they are Energy class three as defined in EN 60898.

- 2. Table based on type B MCBs
 3. MCBs can be 6kA or 10kA at 400V

- 4. The above table is in accordance with IEC 60947-2, Annex A.
- 5. All values shown at 400V AC.
- 6. Is expressed in A.

T= Total Selectivity

DISCRIMINATION TABLES

Upstream: TemBreak 2 MCCB (electronic).

Downstream: TemBreak 2 MCCB.

Upstream MCCB

	Frame				25	0A				400 <i>A</i>		1010		630A			80	0A		100	00A	1	250/	Δ	160	00A
		Model		111		ш	111	111		ш		111		Ш	Ш	111			111							
				S250-NE	S250-GE	S250-PE	H250-NE	S400-NE	S400-GE	S400-PE	H400-NE	L400-NE	E630-NE	S630-CF	S630-GI	S800-NE	S800-RE	H800-NE	L800-NE	S1000-SE	S1000-NE	S1250-SE	S1250-NE	S1250-GE	S1600-SE	S1600-NE
			Breaking Capacity	36 kA	65 kA	70 kA	125 kA	50 kA	70 kA	85 kA	125 kA	200 kA	36 kA	50 kA	70 kA	50 kA	70 kA	125 kA	200 kA	50 kA	70 kA	50 kA	70 kA	100 kA	50 kA	100 kA
	50A	S50-NF	10kA	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	100A	E100-NF	10kA	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
		E125-NJ	25kA	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	125A	S125-NJ	36kA	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	125A	S125-GJ	65kA	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	50	Т	Т	Т	Т	Т	Т	Т	Т	Т
		H125-NJ	125kA	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	50	Т	Т	Т	Т	Т	Т	70	Т	85
	160A/	S160-NJ	36kA	-	-	-	-	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	250A	S160-GJ	65kA	-	-	-	-	Т	Т	Т	Т	Т	Т	Т	Т	36	36	Т	Т	Т	50	Т	Т	Т	Т	Т
		H160-NJ	125kA	-	-	-	-	-	-	-	Т	Т	Т	Т	Т	Т	50	Т	Т	Т	Т	Т	Т	70	Т	85
		E250-NJ	25kA	-	-	-	-	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
		S250-NJ	36kA	-	-	-	-	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
MCCB		S250-GJ	65kA	-	-	-	-	Т	Т	Т	Т	Т	Т	Т	Т	36	36	Т	Т	Т	50	Т	Т	Т	Т	Т
		S250-NE	36kA	-	-	-	-	-	-	-	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
am		S250-GE	65kA	-	-	-	-	-	-	-	Т	Т	Т	Т	Т	36	36	Т	Т	Т	50	Т	Т	Т	Т	Т
tre		H250-NJ	125kA	-	-	-	-	-	-	-	Т	Т	Т	Т	Т	Т	50	Т	Т	Т	Т	Т	Т	70	Т	85
ownstream		S250-PE	70kA	-	-	-	-	-	-	-	Т	Т	Т	Т	Т	36	36	Т	Т	Т	50	Т	Т	70	Т	Т
Dov		H250-NE	125kA	-	-	-	-	-	-	-	Т	Т	Т	Т	Т	36	36	Т	Т	Т	50	Т	Т	70	Т	85
	400A/	E400-NJ	25kA	-	-	-	-	-	-	-	-	-	10	10	10	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	630A	S400-CJ	36kA	-	-	-	-	-	-	-	-	-	10	10	10	25	25	25	25	30	30	Т	Т	Т	Т	Т
		S400-NJ	50kA	-	-	-	-	-	-	-	-	-	10	10	10	25	25	25	25	30	30	36	36	36	Т	Т
		S400-NE	50kA	-	-	-	-	-	-	-	-	-	10	10	10	25	25	25	25	30	30	36	36	36	Т	Т
		S400-GJ	70kA	-	-	-	-	-	-	-	-	-	10	10	10	25	25	25	25	30	30	36	36	36	Т	50
		S400-GE	70kA	-	-	-	-	-	-	-	-	-	10	10	10	25	25	25	25	30	30	36	36	36	Т	50
		S400-PJ	85kA	-	-	-	-	-	-	-	-	-	10	10	10	25	25	25	25	30	30	36	36	36	Т	50
		S400-PE	85kA	-	-	-	-	-	-	-	-	-	10	10	10	25	25	25	25	30	30	36	36	36	Т	50
		H400-NE	125kA	-	-	-	-	-	-	-	-	-	10	10	10	36	36	25	25	Т	50	Т	Т	70	Т	70
		E630-NE	36kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Т	Т	Т	Т	Т
		S630-CE	50kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	36	36	36	Т	Т
		S630-GE	70kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	36	36	36	Т	50
	800A	S800-CJ	36kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20	20
		S800-NJ	50kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20	20
		S800-RJ	70kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20	20
		S800-NE	50kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20	20
		S800-RE	70kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20	20

Notes: 1. All pick-up current and time delay settings are to be set at maximum for upstream MCCBs.
2. The above table is in accordance with IEC 60947-2, Annex A.
3. All values shown at 400V AC.

4. Is expressed in kA.

T= Total Selectivity

Q-Pulse Id: TMS199 17/04/2013 48 of 181

WHAT IS CASCADING?

Cascading is a technique where the current limiting capability of upstream circuit breakers is used to permit the installation of lower rated and therefore lower cost circuit breakers downstream.

The upstream TemBreak 2 circuit breaker acts as a resistance against short-circuit currents. With this assistance, downstream circuit breakers with breaking capacities lower than the prospective short-circuit at their point of installation can interrupt the reduced short-circuit current.

Since the current is limited downstream of the limiting circuit breaker, cascading applies to all switchgear in the downstream circuit. It is not restricted to two consecutive devices.

Cascading is recognised by the following standards related to electrical installations:

IEC 60364

BS 7671

AS/NZS 3000

The Advantages

Installation of a single limiting circuit-breaker results in considerable simplifications and savings for the entire downstream installation:

Simplification of selection of devices using the cascading tables

Savings on downstream devices. Cascading allows circuit-breakers with lower ratings to be used.

In addition the application of cascading will reduce both electrodynamic and thermal stress within the installation.

HOW TO READ THE CASCADE TABLES

The value shown in the table is the increased breaking capacity, expressed in kA, that can be achieved if the downstream MCCB is backed up by the appropriate upstream MCCB.

Worked Examples:

- Q (1) A 36kA panelboard is required with a 400A incomer and 125A outgoing MCCBs. Can cascading be applied?
- A (1) A cost effective solution would be to use an S400-CJ incomer rated at 36kA and E125-NJ MCCBs rated at 25kA downstream.

The upstream S400-CJ MCCB would back up the downstream E125-NJ to 36kA. If this was an 8 Way panelboard you have managed to save cost by installing eight 25kA MCCBs rather than eight 36kA MCCBs.

- Q (2) If the same 8 way panelboard was to be used in an 80kA installation, what MCCBs could be used?
- A (2) You could still use the E125-NJ provided it was backed up by an L400-NE. The Current limiting capacity of the 400A MCCB would back up the E125A from 25kA to 85kA.

Q-Pulse Id: TMS199 17/04/2013 50 of 181

CASCADE TABLES

Upstream: TemBreak 2 MCCB. Downstream: Din type MCB.

Upstream MCCB

	Model		E125NJ (25kA)	S125NJ (36kA)	S125GJ (65kA)	S160NJ (36kA)	S160GJ (65kA)	E250NJ (25kA)	S250NJ (36kA)	S250GJ (65kA)
~		In	125A	125A	125A	160A	160A	250A	250A	250A
MCB	TD3	6A	14	14	14	12	12	12	12	12
	M06	10A	14	14	14	12	12	12	12	12
ıstream	(6kA)	16A	14	14	14	12	12	12	12	12
str		20A	14	14	14	12	12	12	12	12
Ϋ́		25A	14	14	14	12	12	12	12	12
Dov		32A	14	14	14	12	12	12	12	12
ш		40A	12	12	12	10	10	10	10	10
		50A	12	12	12	10	10	10	10	10
		63A	12	12	12	10	10	10	10	10

Notes: 1. All values shown at 400V AC.

2. Cascade fault level limit is expressed in kA.

Upstream MCCB

	Model		E125NJ (25kA)	S125NJ (36kA)	S125GJ (65kA)	S160NJ (36kA)	S160GJ (65kA)	E250NJ (25kA)	S250NJ (36kA)	S250GJ (65kA)
_m		In	125A	125A	125A	160A	160A	250A	250A	250A
MCE	TD3	6A	25	30	30	25	25	25	25	25
	M10	10A	25	30	30	25	25	25	25	25
ag	(10kA)	16A	25	30	30	25	25	25	25	25
Downstream		20A	25	30	30	25	25	25	25	25
ΪĮ		25A	25	30	30	25	25	25	25	25
0		32A	25	30	30	25	25	25	25	25
۱ '		40A	25	30	30	23	23	23	20	23
		50A	25	30	30	23	23	23	23	23
		63A	25	30	30	23	23	23	23	23

Notes: 1. All values shown at 400V AC.

2. Cascade fault level limit is expressed in kA.

CASCADE TABLES

Upstream: TemBreak 2 MCCB. Downstream: TemBreak 2 MCCB.

Upstream MCCB

Frame			125/	4				160A	/250A								
	Model		E125NJ	S125NJ	S125GJ	H125NJ	L125NJ	S160NJ	S160GJ	H160NJ	L160NJ	E250NJ	S250NJ	S250GJ	S250PE	H250NJ H250NE	L250NJ
		Breaking Capacity	25kA	36kA	65kA	125kA	200kA	36kA	65kA	125kA	200kA	25kA	36kA	65kA	70kA	125kA	200kA
50A	S50NF E100NF	10kA 10kA	25 25	25 25	25 25	25 25	25 25	15 15	15 15	25 25	25 25	15 15	15 15	15 15	15 15	25 25	25 25
125A	E125NJ S125NJ S125GJ H125NJ	25kA 36kA 65kA 125kA		36 - - -	50 65 -	65 85 125 -	85 125 150 200	36 - - -	50 65 -	65 85 125 -	85 125 150 200	- - -	36 - -	50 65 -	50 65 70	65 85 125 -	85 125 150 200
160A/ 250A	\$160NJ \$160GJ H160NJ E250NJ \$250NJ \$250GJ \$250PE H250NJ	36kA 65kA 125kA 25kA 36kA 65kA 70kA	-		-	-	-	-	65	85 125 - - - - -	125 150 200 - - - -		- - 36 - -	65 - - 50 65 - -	65 70 - 50 65 70 -	85 125 - 65 85 125 125	125 150 200 85 125 150 150 200

Notes: 1. All values shown at 400V AC.

Downstream MCCB

2. Cascade fault level limit is expressed in kA.

Upstream MCCB

	Frame			400 <i>A</i>	4					630	4		800 <i>A</i>	\/1000)A					1250	A/160)A		
		Model		S400CJ	S400NJ S400NE	400	S400PJ S400PE	H400NE	L400NE	E630NE	S630CE	S630GE	S800CJ	S800NJ S800NE	S800RJ S800RE	H800NE	L800NE	S1000SE	S1000NE	S1250SE	S1250NE	S1250GE	S1600SE	S1600NE
			Breaking Capacity	36kA	50kA	70kA	85kA	125kA	200kA	36kA	50kA	70kA	36kA	50kA	70kA	125kA	200kA	50kA	70kA	50kA	70kA	85kA	50kA	85kA
	125A		25kA 36kA	36	36 50	50 65	50 65	65 85	85 125	36	36 50	50 65	30	36 50	36 50	-	-	-	-	-	-	-	-	-
MCCB			65kA 125kA	-	-	70	85	125	150 200	-	-	70	-	-	70	-	-	-	-	-	-	-	-	-
	160A/		36kA	_	50	65	65	85	125	_	50	65	_	50	70	50	50	50	70	_	_	_	_	_
Downstream	250A	S160GJ H160NJ	65kA 125kA	-	-	70	85	125	150 200	-	-	70	-	-	70	70	70	-	70	-	-	-	-	-
Dow		E250NJ	25kA 36kA	36	36 50	50 65	50 65	65 85	85 125	36	36 50	50 65	30	36 50	50 70	36 50	36 50	36 50	50 70	-	-	-	-	-
			65kA 70kA	-	-	70	85	125 125	150 150	-	-	70	-	-	70	70 85	70 85	-	70	-	-	-	-	-
		H250NJ	125kA	-	-	-		-	200	-	-		-	-	-	-	150			-	-			
	400A	E400NJ	25kA 36kA	36	36	50	50 65	65 70	85	36	36	50	30	36	50	36	36	36 50	36	36	36	36	36	36
		S400CJ S400NJ	50kA	-	50	65 70	70	85	100 125	-	50 -	65 70	-	50	70 70	50 70	50 70	-	50 70	50	50 70	50 70	50 -	50 70
		S400GJ S400PJ	70kA 85kA	-	-	-	85 -	125 125	150 150	-	-		-	-	-	85	85 -	1	1	-	-	1 1	1 1	85

Notes: 1. All values shown at 400V AC.
2. Cascade fault level limit is expressed in kA.

TemBreak The Ultimate Safety Breaker page 77

> Q-Pulse Id: TMS199 17/04/2013 52 of 181

The Application of MCCBs in DC Systems

Terasaki's MCCBs provide an excellent range of protection for DC installations. We offer MCCBs of up to 1000A with DC overload protection and up to 2500A with DC short-circuit protection.

Protection Method

Current transformers require alternating current to generate magnetic flux thereby inducing current to flow in the secondary winding. Any device which relies on current transformers for measurement or detection of current is therefore unsuitable for protection of DC systems. Most electronic MCCBs fall into this category.

The most common method of detecting DC overloads is by the use of a thermal element. Short-circuit protection in DC circuits is provided by electromagnetic tripping elements.

Tripping Characteristics

The time-current characteristics of a thermal element, such as those published in Section 3, are unaffected by the frequency of current applied. They hold good for both AC and DC currents.

A magnetic element operates on the instantaneous value of the current waveform. This means that in practice in an AC circuit, it will operate at the peak value of the sinusoidal waveform. Tripping characteristics are published in AC root mean square (rms) Amperes (A). This means that the value of AC instantaneous current, I_P , which will operate the element is equal to the rms current multiplied by $\sqrt{2}$. Similarly, the value of DC instantaneous current which will operate the element is equal to the AC rms current multiplied by $\sqrt{2}$.

DC operating current of magnetic element = $\sqrt{2} \times AC$ rms operating current of magnetic element.

Time Constant

Time constants associated with DC circuits prevent the voltage of the circuit from reacting immediately when a load current is suddenly interrupted.

The time constant, τ , of a circuit indicates how quickly voltage across capacitors and current through inductors react to transient conditions.

The time constant of a capacitive circuit is the product of capacitance and resistance: $\tau = RC(s)$.

The time constant of an inductive circuit is given by:

 $\tau = L/R$ (s).

The Application of MCCBs in DC Systems

Time Constant

Transient voltages and currents, including those produced by switching, do not approximate their steady state values until 5 time constants have elapsed.

Fault currents occurring in circuits with high time constants are extremely difficult to interrupt due to the lagging voltage. All DC breaking capacities in this section are shown with the assumption that the time constant of the circuit is restricted to the values shown below.

Fault Level	τ
Near the rated current, In, of the circuit breaker	<2.0ms
<2.5 x I _n	<2.5ms
<10kA	<7ms
>10kA	<15ms

Breaking Capacity

The short-circuit ratings of MCCBs suitable for DC installations are shown in the table below. In some cases, two or more poles must be connected in series to achieve the given rating, this is also indicated in the table. Please refer to catalogue I73E for further details.

DC Breaking Ca	pacity, Icı	u (kA), Pr	otection	and Refe	erence			
Voltage	250V DC	350V DC	500V	DC	600\	/ DC	Prote	ection
Poles in Series	2	3	3	4	3	4	Overload	Short Circuit
E125-NJ	25	_	_	_	_	_	Thermal, adjustable	Magnetic, adjustable
S125-ND	_	10	_	7.5	_	5	Thermal, adjustable	Magnetic, fixed
S125-GJ	40	_	_	_	_	_	Thermal, adjustable	Magnetic, adjustable
S160-ND	_	10	_	7.5	_	5	Thermal, adjustable	Magnetic, fixed
E250-NJ	25	_	_	_	_	_	Thermal, adjustable	Magnetic, adjustable
S250-ND	_	10	_	7.5	_	5	Thermal, adjustable	Magnetic, fixed
E400-NJ	25	_	_	_	_	_	Thermal, adjustable	Magnetic, adjustable
S400-CJ	_	_	_	_	_	_	Thermal, adjustable	Magnetic, adjustable
S400-ND	_	20	15	_	15	_	Thermal, adjustable	Magnetic, fixed
S800-CJ	50	_	-	_	_	_	Thermal, adjustable	Magnetic, adjustable
S800-ND	_	30	20	_	20	_	Thermal, adjustable	Magnetic, fixed
XS1000ND	50	30	20	20	20	20	Thermal, fixed	Magnetic, adjustable
XS1250ND	50	50	50	50	20	20	_	Magnetic, adjustable
XS1600ND	50	50	50	50	20	20	_	Magnetic, adjustable
XS2000ND	50	50	50	50	20	20	-	Magnetic, adjustable
XS2500ND	50	50	50	50	20	20	_	Magnetic, adjustable

TEMBREAK 2

MOULDED CASE CIRCUIT BREAKERS 16A TO 1600A

- Welcome to TemBreak 2 1.
- 2. Ratings and Specifications
- Operating Characteristics 3.
- 4. Application Data
- 5. Accessories

- Installation 6.
- 7. Dimensions

ELECTRICAL CONTROL USING INTERNALLY MOUNTED ACCESSORIES

Electrical control accessories for TemBreak 2 are designed with the installer in mind. Status and alarm contacts, remote tripping coils and undervoltage

protection coils are of modular design and

- 1) Heavy-duty auxiliary switch
- 2) Heavy-duty alarm switch
- 3) General-purpose auxiliary switch
- 4) General-purpose alarm switch
- 5) Shunt trip
- 6) Undervoltage trip

Every accessory fits every MCCB and Switch-Disconnector in the range.

All accessories are endurance tested to the same level as MCCBs.

TemBreak 2 internal accessories are easily field-installable.

All accessories are individually packaged and are supplied with fitting instructions.

Control wiring is terminated on the accessory screw terminal. Alternatively a terminal block which clips to the side of the MCCB is available.

Installing Accessories in a 4 pole S400 model

The internal accessories can be easily installed in the field without special tools or product training.

Easy field-Installation of Accessories

Internal accessory can be simply plugged into position

No tools are required for this, except a screwdriver to lift the MCCB front cover clips.

Accessories fit with a firm click when installed correctly.

Colour coding of accessories helps identification and installation

page 81 TemBreak The Ultimate Safety Breaker

ELECTRICAL CONTROL USING INTERNALLY MOUNTED ACCESSORIES

Valid Maximum Accessory Combinations

Frame size (A)	125	160 and 250	400 and 630	800 and 1000	1250 and 1600
E	E125	E250	E400 E630		
s	\$125	\$160 \$250	\$400 \$630	\$800 \$1000	\$1250 \$1600
н		H125 H160 H250	H400	H800	
L		L125 L160 L250	L400	L800	
General Purpose Auxiliary Switch General Purpose Alarm Switch Shunt Trip					
General Purpose Auxiliary Switch General Purpose Alarm Switch Undervoltage Trip					
Heavy Duty Auxiliary Switch Heavy Duty Alarm Switch Shunt Trip					
Heavy Duty Auxiliary Switch Heavy Duty Alarm Switch Undervoltage Trip					

Auxiliary Switch

Alarm Switch

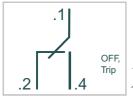
Shunt Trip

Undervoltage Trip

General purpose and heavy duty status indication switches cannot be mixed in the same MCCB.

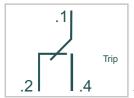
It is not possible to install a shunt trip and an undervoltage trip in an MCCB as they occupy the same location. Undervoltage trips can provide remote tripping if necessary by wiring a normally closed contact or pushbutton in series with the protected supply.

Undervoltage trips with time delays require an external time delay controller which clips to the side of the MCCB.


The Ultimate Safety Breaker TemBreak

ELECTRICAL CONTROL USING INTERNALLY MOUNTED ACCESSORIES

Status Indication Switches


General Purpose Auxiliary Switch

Terminal Designations and Function of General Purpose Auxiliary Switch

General Purpose Alarm Switch

Terminal Designations and Function of General Purpose Alarm Switch

General Purpose Auxiliary Switch (AX)

An auxiliary switch electrically indicates the ON or OFF status of the MCCB. The general purpose type is a changeover switch with 3 terminals.

A microcurrent version is available for switching currents as low as 1mA.

Auxiliary switches are colour coded grey. The cable capacity of the terminals is 0.5 to 1.25mm².

The general purpose auxiliary switch meets the requirements of IEC 61058-1.

General Purpose Alarm Switch (AL)

An alarm switch electrically indicates the TRIP status of the MCCB. The general purpose type is a changeover switch with 3 terminals.

A microcurrent version is available for switching currents as low as 1mA.

Alarm switches are colour coded grey and black. The cable capacity of the terminals is 0.5 to 1.25mm².

The general purpose alarm switch meets the requirements of IEC 61058-1.

General	purpose a	uxiliaries a	nd alarm	switch ratir	ngs	
	А	С		DC		
Volts (V)	Ampei	res (A)	Volts (V)	Amperes	(A)	Minimum
	Resistive Load	Inductive Load		Resistive Load	Inductive Load	Load
440	-	-	250	-	-	100mA at
240	3	2	125	0.4	0.05	15V DC.
110	3	2	30	3	2	

Microcurrent versions								
	DC	Minimum Load						
Volts	Amperes (A)							
(V)	Resistive Load	Loud						
30	0.1	1mA at 5V DC and 30V DC.						

TemBreak The Ultimate Safety Breaker

ELECTRICAL CONTROL USING INTERNALLY MOUNTED ACCESSORIES

Status Indication Switches

Heavy Duty Auxiliary Switch

Terminal Designations and Function of Heavy Duty Auxiliary Switch, a contact

Terminal Designations and Function of Heavy Duty Auxiliary Switch, b contact

Heavy Duty Alarm Switch

Terminal Designations and Function of Heavy Duty Alarm Switch, a contact

Terminal Designations and Function of Heavy Duty Alarm Switch, b contact

Ratings of Heavy Duty Auxiliary and Alarm Switches								
	AC	DC						
Volts (V)	Amperes (A)		Volts (V)	Ampe	Amperes (A)			
	Resistive Load	Inductive Load		Resistive Load	Inductive Load			
500	1	1	-					
440	3	3	250	0.5	0.5			
240	4	4	125	1	1			
110	5	5	48	3	2.5			
48	6	6	24	6	2.5			

Heavy Duty Auxiliary Switch (AX)

The heavy duty auxiliary switch has an impulse withstand voltage (Uimp) of 6kV and is suitable for isolating safety circuits. The auxiliary switch electrically indicates the ON or OFF status of the MCCB. The heavy duty type is a bridge switch with two terminals. It is available in either normally open or normally closed configurations.

Heavy duty auxiliary switches are colour coded grey. The cable capacity of the terminals is 1.25 to 2.5mm².

The heavy duty auxiliary switch meets the requirements of IEC 60947-5-1.

It has direct opening action, recommended by IEC 60204-1 Safety of Machinery - Electrical Equipment for Machines.

Heavy Duty Alarm Switch (AL)

The heavy duty alarm switch has an impulse withstand voltage (Uimp) of 6kV and is suitable for isolating control circuits. The alarm switch electrically indicates the TRIP status of the MCCB. The heavy duty type is a bridge switch with two terminals. It is available in either normally open or normally closed configurations.

Heavy duty auxiliary switches are colour coded grey and black. The cable capacity of the terminals is 1.25 to 2.5mm².

The heavy duty alarm switch meets the requirements of IEC 60947-5-1.

It has direct opening action, recommended by IEC 60204-1 Safety of Machinery - Electrical Equipment for Machines.

The Ultimate Safety Breaker TemBreak

ELECTRICAL CONTROL USING INTERNALLY MOUNTED ACCESSORIES

Remote Tripping Devices

Shunt Trip (SHT)

A shunt trip allows an MCCB to be tripped remotely on the application of the rated coil voltage across the shunt trip terminals. TemBreak 2 shunt trips have **continuously rated coils** and are suitable for use in electrical interlocking applications.

The MCCB contacts and toggle will move to the tripped position when the shunt trip is operated.

The permissible voltage range is 85% to 110% for AC or 75% to 125% for DC.

The cable capacity of the terminals is 0.5 to 1.25mm². Shunt trips are colour coded grey.

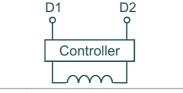
Shunt Trips

Terminal Designations of Shunt Trips

Ratings of Shunt Trips									
Rated		Voltage AC		Voltage DC					
Voltage	100-120	200-240	380-450	24	48	100-120	200-240		
Excitation Current (A)	0.014	0.014	0.0065	0.03	0.03	0.011	0.011		

Under Voltage Trip (UVT)

An undervoltage trip will trip the breaker automatically when the voltage applied to the terminals of the undervoltage coil drops to between 70% and 35% of its voltage rating. The undervoltage trip prevents the circuit breaker being closed unless a voltage corresponding to at least 85% of its voltage rating is applied across the terminals of the undervoltage coil.


The MCCB contacts and toggle will move to the tripped position when the under-voltage trip operates.

Undervoltage trips with AC operating voltages are available with 500ms time delays. Time-delay units are fitted to the outside of MCCBs.

The cable capacity of the terminals is 0.5 to 1.25mm². Undervoltage trips are colour coded grey and black.

A UVT controller is required for time delay UVT only.

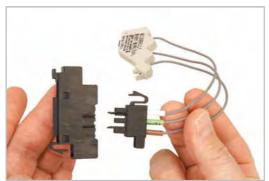
Undervoltage Trips

Terminal Designations of Undervoltage Trips

Ratings of Undervoltage Trips										
		Power supply capacity (VA)						Excitation current (mA)		
MCCB Model		Voltage AC					Voltage DC			
INICCB Model	Voltage	100-120		200-	200-240 380		-450	24	100-120	200-240
E125, S125, H125, L125, S160, H160, L160, E250, S250, H250, L250, E400, S400, H400, L400, E630, S630		1.4		2	.8	2.	.3	23	10	10
MCCB Model	Rated		Voltage AC Voltage DC					C		
INICCE Model	Voltage	100-110	115-120	200-220	230-240	380-415	440-450	24	100-120	200-240
S800, H800, L800, S1000, S1250, S1600		1.5	1.6	2.4	2.9	2.1	2.3	29	13	11

TERMINATION OF CONTROL WIRING

Terminal blocks are for optional use with all types of internally mounted accessory.



Terminal Block for Plug-in MCCBs

The terminal block for a plug-in MCCB consists of:

- a male section pre-fitted with 3 cables with which clips easily to the back of the MCCB
- a female section with 3 user terminals which clips easily into the plug-in base.

Up to 4 terminal blocks can be installed on a 125A, 160A or 250A frame MCCB. Up to 5 terminal blocks can be installed on a 400A to 800A frame MCCB.

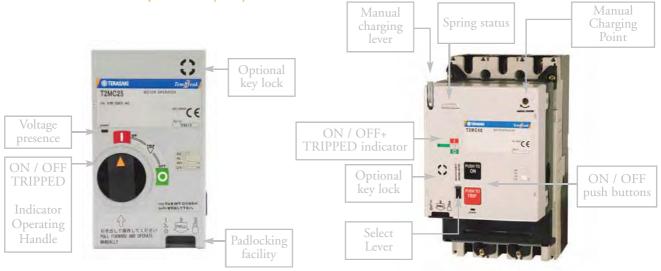
Terminal Block for Plug-in MCCBs

Terminal Block for Front-Connected and Rear-Connected MCCBs (TF)

A terminal block facilitates convenient and accessible control wiring to internally mounted accessories especially the accessories with lead wire.

It allows the use of control wiring cables with larger cross-sectional area than permitted by the internal accessories themselves.

This terminal block can be clipped to either side of the MCCB. If mounted on the left incoming wiring will be fed vertically up to the terminals. If mounted on the right, the incoming wiring will be fed vertically down to the terminals.


The maximum incoming cable size to the terminal block is 2.0mm². 11terminals or 6 terminals can be specified. See page 153.

Terminal Block for Front-Connected and Rear-Connected MCCBs

ELECTRICAL CONTROL USING MOTORISED OPERATION

Overview – Motor Operators (MC)

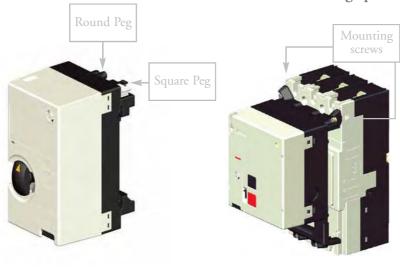
Motor Operator for 125A and 250A Frame MCCB's

Motor Operator for 400A and 630A Frame MCCB's

Motor operators provide the possibility of opening and closing an MCCB on application of electrical control signals. TemBreak 2 motor operators are extremely reliable, having been designed to endure the same switching duty as the host MCCB.

Easy field-installation.

Fast operation ($\leq 100 \text{ms}$).


Positive contact indication.

Padlocking facility as standard (Maximum 3, hasp diameter 8mm).

Optional keylock.

Versions available with automatic reset function.

Voltage presence indication.

Motor Operator for 125A and 250A frame MCCB's

Motor Operator for 400A and

630A frame MCCB's

TemBreak The Ultimate Safety Breaker page 87

Motor operators for 125A and 250A frame are mounted on the front of the breaker. They can be rapidly fitted by locating the round pegs and square pegs on the motor into corresponding round and square holes on the breaker. It takes less than 10 seconds to secure the motor to the MCCB. Two levers securely lock the motor into position. No tools are needed to fit the motor operator.

400A frame to 1000A frame motor operators are held in place with mounting screws. They can be installed easily in the field.

ELECTRICAL CONTROL USING MOTORISED OPERATION

Indication of ON, OFF or TRIPPED Status

The handle of 125A and 250A frame motor operators has dual functions:

- 1. Indication of ON, OFF or TRIPPED status as shown in the photographs below;
- 2. Manual operation when handle is pulled out. The supply to electrical control circuits inside the motor operator is cut when the handle is pulled out.

400A to 1000A frame MCCBs incorporate a mechanical flag which indicates the ON, OFF and TRIPPED status of the MCCB. They can be manually charged using the lever provided.

Motor operators for

Ratings and Specifications

rtatinge and e	o domination					
Type of Motor Op	erators	T2MC12	T2MC25	T2MC40	T2MC80	
Applicable MCCB		E125	E250	E400	S800, S1000	
		S125 S160, S250		S400	H800	
			H125, H160, H250	E630	L800	
			L125, L160, L250	S630		
Rated operating	100-110 V AC					
voltage	200-220 V AC					
	230-240 V AC					
	24 V DC					
	48 V DC					
	100-110 V DC					
	200-220 V DC			NA	NA	
Operating current/ 100-110 V AC Starting current 200-220 V AC		4.5/8		ON/2.3 OFF, RESET 1.4/3.7	ON/2.2 OFF, RESET 1.7/3.5	
		4/8		ON/2.3 OFF, RESET 1.1/3.5	ON/2.2 OFF, RESET 1.3/3.5	
Peak value (A)	230-240 V AC	3.5/7		ON/2.3 OFF, RESET 1.1/3.5	ON/2.2 OFF, RESET 1.3/3.5	
	24 V DC	18/26		ON/7.2 OFF, RESET 3.9/8.1	ON/12 OFF, RESET 6.0/11.5	
	48 V DC	12/18		ON/7.2 OFF/RESET 2.0/5.1	ON/7 OFF, RESET 3.2/6.5	
	100-110 V DC	2.2/6		ON/2.4 OFF/RESET 1.2/3.8	ON/2.2 OFF, RESET 1.3/3.5	
	200-220 V DC	2.2/5.5		_	_	
Operating method		Direct drive		Spring charging	Spring charging	
Operating time (s)	ON	0.1		0.1	0.1	
OFF		0.1		1.5	1.5	
	RESET	0.1		1.5	1.5	
Operating switch ra	ating	100V, 0.1 A, Opening voltage 44V, current 4mA		100V, 0.1 A, Opening voltage 48V, current 1mA		
Power supply requi	ired	300 VA min	imum	300VA minimum 300VA minimum		
Dielectric propertie	s (1 min)	1500 V AC				
Weight		1.4 kg		3.5kg	3.5kg	
vveigni		II.4 Kg		J.JKg	J.JKg	

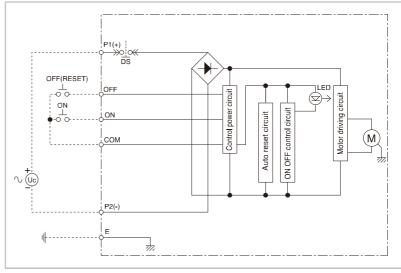
■= Available

Note: Operating times shown in the above table apply only when the rated operational voltage is supplied to the motor operator. The voltage supplied to the motor operator must be within the range of 85% and 110% of the rated operating voltage.

The Ultimate Safety Breaker *Tem<mark>B</mark>reak*

ELECTRICAL CONTROL USING MOTORISED OPERATION

Motor Operator Control Circuits



MCCB and Motor Operator Showing Control Wiring Socket

The Control circuits for Motor Operators are connected using a simple plug and socket system.

Control Wiring Plug

Control circuit for Motor Operators

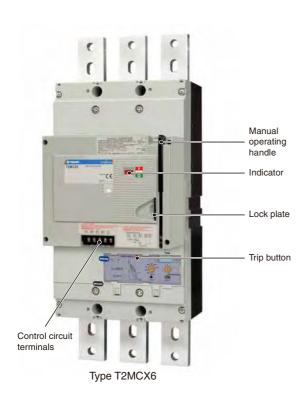
Operation

The motor operator incorporates a self-hold circuit for the closing and opening signals. Therefore a momentary (over 50msec.) open or close signal will ensure a complete operation.

When the breaker trips, the breaker is reset by applying a signal to the OFF terminals of the motor.

When a UVT is used with a motor operator, design the control circuit so that the UVT is energised **before** a reset or close signal is sent to the motor operator. A 40ms time delay in the reset and close signals is sufficient to allow the UVT to energise.

When a shunt trip is used with a motor operator, design the control circuit so that the shunt trip is de-energised before a reset or close signal is sent to the motor operator.


When a mechanical interlock is used with motor operators, design the control circuit to provide electrical interlocking between the motor operators. The electrical interlocking should prevent a close signal being sent to a motor operator unless the other motor operator and circuit breaker are in the OFF position.

Auto-reset

Two types of motor operator are available: motor operators without auto-reset and motor operators with auto-reset. The correct type of motor operator should be selected for the application. MCCB auxiliary and alarm switches do not have to be used in the control circuits for motor operators whether they have auto-reset or not, saving cost and space.

page 89 TemBreak The Ultimate Safety Breaker

ELECTRICAL CONTROL USING MOTORISED OPERATION

Ratings and Specifications

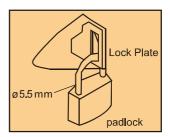
Type of Motor Opera	tors		T2MCX6			
Applicable MCCB	S1250					
	S1600					
Rated Operating	AC	100-115V 50/60Hz				
Voltage (V)		200-230V 50/60Hz				
	DC	100-110V				
		24V				
Lock in "OFF" position	(standard)					
Manual Trip Button			*			
Steady-state r.m.s.	AC100-115V	ON1	-/ 3.1			
Amp/inrush Amp (A)		OFF, RESET①	1.8/6.0			
	AC200-230V	ON2	-/1.2			
		OFF, RESET②	1.0/3.2			
	DC100-110V	ON3	-/0.8			
		OFF, RESET3	1.1/4.2			
	DC24V	ON	-/4.5			
		OFF, RESET	4.0/12.0			
Type of operation			Spring Charged			
Operating Time(s)	ON (Maximi	um values)	0.06			
	OFF, RESET4					
Control Switch Ratings	250V, 5A					
Power Source Capacit	300VA					
Dielectric withstand von The value in brackets	AC1500V (AC500V)					
Weight (kg)	6.4					

■= Available

* Trip button on breaker to be used (accessible with motor fitted)

Positive contact indication

Colour coding indicates the true position of the contacts clearly: ON (red), OFF (green), TRIP (white).


Easy maintenance

Breaker mounting, removal, and even setting changes can be done without removing the motor operator.

Manual ON/OFF operation with one stroke

Fast closing operation

Closing in 60ms or less. The closing time remains constant over repeated operations.

The breaker can be padlocked in the "OFF" position by pulling out the lock plate, and locking it with a padlock.
When the breaker is "ON", the lock plate cannot be

Up to three locks can be used. Padlocks not supplied.

NOTE

- ①: Maximum values at AC115V, 50Hz
- 2 : Maximum values at AC230V, 50Hz
- ③: Maximum values at DC110V
- 4 : Maximum values at the rated operating voltages

ELECTRICAL CONTROL USING MOTORISED OPERATION

Motorised operation

ON CONTROL

When the ON switch is closed, the latch release coil (LRC) is excited and the closing spring is released. The breaker quickly closes and goes into ON status. When the closing spring is released, the limit switch (LS) is opened and the LRC is de-excited.

OFF CONTROL

When the off switch is closed, self-hold control relay (Y) is activated and motor (M) operates to charge the closing spring. The breaker changes to OFF status.

RESET CONTROL

When the breaker is in TRIP status, closing the OFF switch activates self-hold control relay (Y) and starts motor (M). Motor (M) charges the closing spring and resets the breaker.

Manual operation

ON, OFF (RESET)

The breaker can be opened (OFF or RESET) and closed (ON) alternately by pulling the operating lever down in one full stroke, ON/ OFF operation of the breaker is possible without charging or releasing the closing spring.

Emergency Trip

page 91

Opening the breaker (OFF) using the motor operator takes up to 3 seconds. If a remote emergency OFF function is necessary, incorporate the shunt trip device (SHT) or the undervoltage trip device (UVT) into the breaker.

PRECAUTIONS REGARDING USAGE

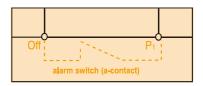
- If using the UVT option, be sure to reset the UVT before closing the breaker.
- The motor operator must be supplied with voltage within the following range:
 DC: 75-110% of rated voltage
 AC: 85-110% of rated voltage
 Operation at low voltage may burn out the motor.

Anti-pumping function

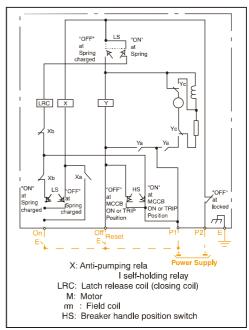
When the breaker is turned ON and the closing spring is released, self-hold control relay X is activate. Xa-contact is held closed, and Xb-contact is opened. While the ON switch is closed, latch release coil (LRC) will not be excited even if the OFF switch is closed or an automatic reset circuit is being used. Pumping is thus prevented.

Automatic charge/discharge function

If the breaker is closed manually (ON) while the power source is on, the handle switch (HS) induces automatic release of the closing spring. Likewise, if the breaker is opened manually (OFF), the springs are automatically charged. If the breaker is opened or closed while the power source is off, later when the power source is turned on, the closing spring will automatically be charged or discharged to match the ON/OFF status of the breaker. This automatic charge/ discharge function is necessary to prepare the closing mechanism for the next ON/OFF operation. The sound of the charging or discharging of the spring should not be mistaken for a malfunction.


Automatic reset

An alarm switch (a-contact) fitted in the breaker, can be used to induce recharging of the closing spring and automatically reset the MCCB. Connect the automatic reset circuit as shown below.


If the alarm switch is used, a pulse signal will be produced in the automatic reset circuit when the alarm is activated. Be sure to use a self-hold circuit to avoid possible problems caused by this pulse signal.

It is recommended that a time delay of approximately 3 minutes is introduced to the automatic reset circuit for thermal magnetic MCCB's. In the event of an overload trip this will prevent the motor operator repeatedly driving the MCCB between the tripped and reset positions while the thermal element is hot.

If an alarm signal is also required for external control, use a 2 alarm switch combination.

Control circuit AC and DC

Note: Customer wiring shown in orange

OPERATING HANDLES & LOCKING DEVICES

TemBreak 2 external operating handles are extremely reliable, having been designed to endure the same switching duty as the host MCCB.

It is easy to fit the operating unit to the MCCBs up to 250A frame. Fitting involves three easy steps:

- 1. Align breaker toggle with operating mechanism
- 2. Push external operating handle into position (the handle's round pegs locate securely in the breaker's round holes and the external operating handle's* square pegs in the breaker's square holes).
- 3. Twist locking screws through 45 degrees.*

Safety Features

Door interlock mechanism with override facility included as standard

IP55 as standard (HS), IP54 as standard (HP), IP3X as standard (HB)

IP65 optional (HS, HP), IP5X optional (HB)

Locks OFF with up to 3 padlocks (8mm hasps)

Optional Key fitting facility is available for Castell FS1 (HS)

Contact us for the details of mounting dimension.

Optional keylock in OFF postion (HP, HB)

Available Gray handle with Black base or Red handle with Yellow base (HS)

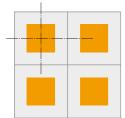
Available in black or red and yellow (HP, HB)

A trip test can be performed with the external operating handle fitted to the MCCB

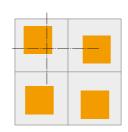
Orientation

To switch the breaker from OFF to ON the external operating handle is rotated through 90 degrees in a clockwise direction.

The ON (I) and OFF (O) indication of the external operating handle can be re-oriented in steps of 90 degrees with respect to the operating mechanism. This allows the indication position to remain the same whether the breaker is mounted vertically (right side up or upside down) or horizontally (on its left side or on its right side).



MCCB ON


MCCB ON

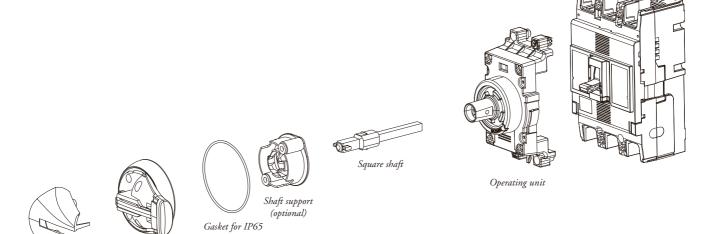
The hole cut-out dimensions for a panel or door will remain unchanged if the external operating handle is re-oriented. The external operating handle's axis of rotation is on the intersection of the centre lines of a 3P MCCB. This means that the positioning of the door cutouts is symmetrical for breakers mounted horizontally on either side of a vertical busbar system.

Cubicle Door Cutouts

Using TemBreak 2 Operating Handles

Using other MCCB Operating Handles

OPERATING HANDLES & LOCKING DEVICES


Door Mounted Handle (HS) standard type

The door mounted handles allow breakers installed in control centers or switchboards to be manually operated from outside and complies with IEC 60204-1.

It consists of an operating mechanism that is mounted on the breaker, an operating handle that is mounted on the door, and a shaft that transmits the turning force from the handle to the operating unit. The shaft can be cut to the required length.

The shaft support makes easy to insert to the operating handle when the panel door is being closed.

Door interlock mechanism

The external operating handle keeps the panel door locked when in the 'ON' position. There is OFF open type only.

Operating handle

(optional)

OFF open type

Handle cover

The handle is turned to the OFF position to open the panel door.

Door interlock release button

The release button enables the panel door to be opened with the handle in the 'ON'

position.

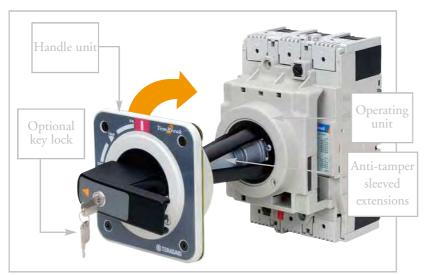
To release: push the release button on the side of the operating handle with a flat-bladed screwdriver.

Toggle lock mechanism

Padlock (Standard)

This mechanism allows the breaker to be padlocked in the OFF position.

Padlocks are not supplied.


Up to three padlocks can be installed.

page 93 TemBreak The Ultimate Safety Breaker

OPERATING HANDLES & LOCKING DEVICES

Door Mounted Handle (HP) ordinal type

The door mounted handle is used to operate a circuit breaker mounted inside a cubicle from outside the door. It consists of an operating mechanism that is mounted on the breaker, an operating handle that is mounted on the door, and a shaft that transmits the turning force from the handle to the operating unit. The shaft can be cut to the required length.

Door Mounted Handle with Optional Keylock

Breaker Mounted Handle (HB)

Breaker Mounted Handle Padlocked in the OFF Position

This external operating handle is used to operate a circuit breaker mounted just behind a compartment door with the door closed. The operating unit and the handle itself are mounted directly onto the circuit breaker. The handle protrudes through a cutout in the door. A moulded door flange is supplied with the external operating handle which covers the cutout from the front.

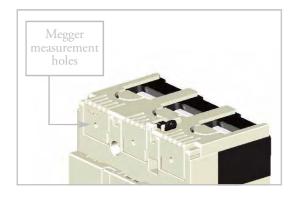
Padlocking and keylocking is possible in the OFF position.

Locking Devices

Toggle locking devices allow MCCBs to be locked ON or OFF using up to three padlocks. Locking devices for 125A, 160A and 250A frame models accept padlocks with 5mm hasp diameter. Locking devices for 400A to 1600A frame models accept padlocks with 8mm hasp diameter.

S250 Locked OFF

S400 Locked OFF


Fittings for Castell and Fortress locks are available. They are suitable for use on door mounted handles (HP) for MCCBs.


The Ultimate Safety Breaker TemBreak

INSULATION ACCESSORIES

Terminal Covers

Terminal covers are used to prevent direct contact with live MCCB terminations. They also provide additional insulation to reduce the possibility of a short circuit between phases or to earth when large conductors are used.

Terminal Cover Lock with Lead Seal

Earth Barrier Fitted to Rear of Terminal Cover

General features

Terminal covers for 125A to 630A frame models require no tools for installation

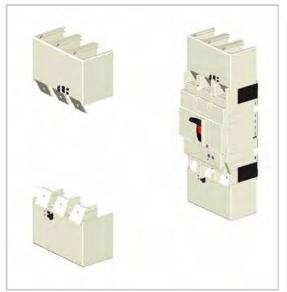
Terminal covers for 125A to 630A frame models have an IP20 ingress protection rating

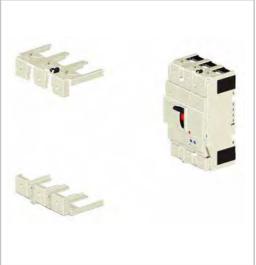
Terminal covers are ordered individually. Two terminal covers are required to cover both the line and load terminals of an MCCB. Each cover can either be fitted to the top or bottom of the MCCB

Terminal covers have a megger measurement hole of 4mm diameter on each phase.

Options

A terminal cover for 125A to 630A frame models lock allows an anti-tampering seal to be added.


An earth barrier for 125A and 250A frame models can be added to terminal covers for front connection. The earth barrier provides insulation at the rear of the terminations.


70 of 181

INSULATION ACCESSORIES

Terminal Covers for Front Connection (CF)

Terminal covers for front connection are suitable for covering the exposed live parts of conductors terminated on the MCCB.

Terminal Covers for Front Connection

Flush Terminal Covers

Flush Terminal Covers (CS)

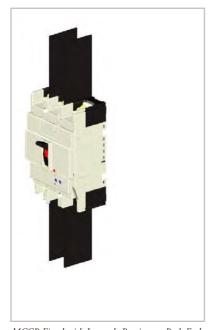
Flush terminal covers are available for 125A to 630A frame models and are useful for increasing the ingress protection rating at the terminals without increasing the overall length. They can be used with busbar and for direct entry of stranded cable (with cable clamp terminals (FW), refer to Section 6, Installation).

Flush terminal covers are identical to rear terminal covers for 400A and 630A frame models. The user can remove a section of the rear terminal cover using a tool to allow entry of the conductor.

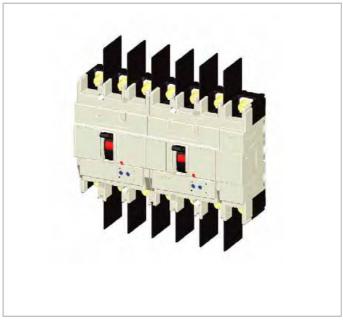
Terminal covers for Rear Connection (CR)

Terminal covers for rear connection are available for 125A to 1000A frame models and may be used on MCCBs fitted with rear connections (RC) or plug-in connections (PM). They prevent access to the terminals from the front and top.

Terminal Covers for Rear Connection


The Ultimate Safety Breaker TemBreak page 96

INSULATION ACCESSORIES

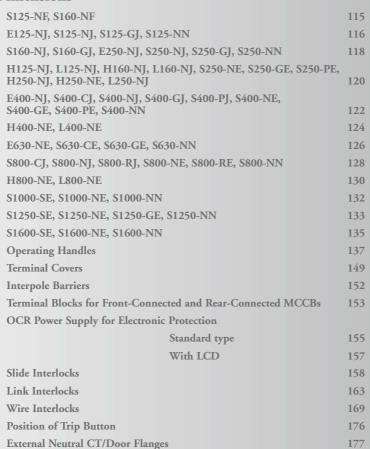

Interpole Barriers (BA)

Interpole barriers provide maximum insulation between phases at the terminals of the MCCB. They cannot be fitted at the same time as any of the terminal covers. Interpole barriers for use on one end of the MCCB are supplied as standard. Additional interpole barriers can be ordered individually. All interpole barriers can easily be fitted to either end of an MCCB.

MCCB moulds have been designed to accept an additional interpole barrier between two adjacent MCCBs.

Interpole Barriers between Adjacent MCCBs

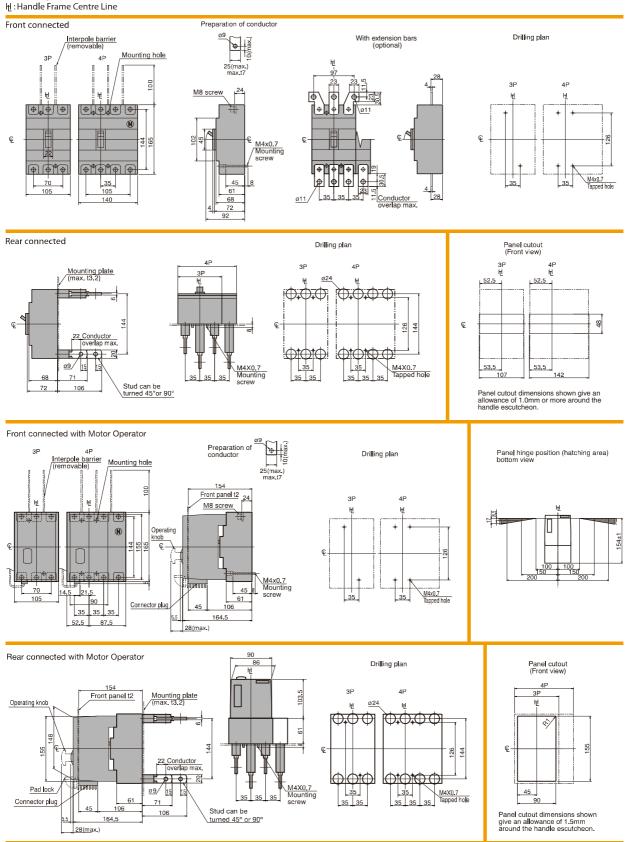
Q-Pulse Id: TMS199 17/04/2013 72 of 181

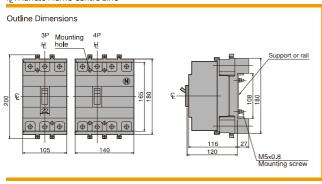

TEMBREAK 2

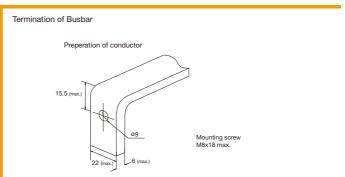
MOULDED CASE CIRCUIT BREAKERS 16A TO 1600A

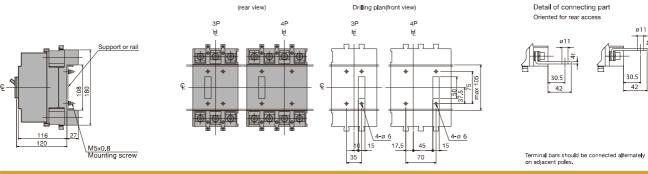
1	W/100		Tomp	4001-	2
L.	Welcon	ne to	remr	reak	\mathcal{L}

- Ratings and Specifications 2.
- 3. Operating Characteristics
- 4. Application Data
- 5. Accessories
- 6. Installation

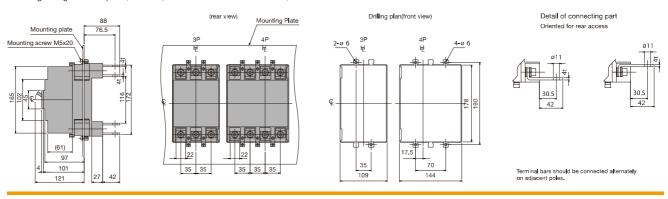

7. **Dimensions**

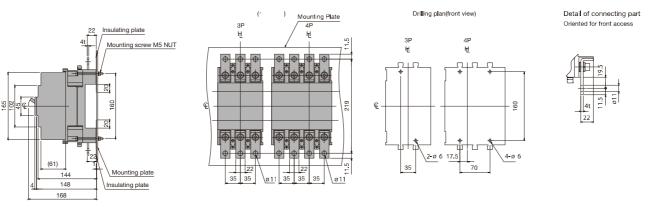

S160-NJ, S160-GJ, **E250-NJ**, S250-NJ, S250-GJ, S250-NN


ASL: Arrangement Standard Line


S160-NJ, S160-GJ, **E250-NJ**, S250-NJ, S250-GJ, S250-NN Plug-in Versions

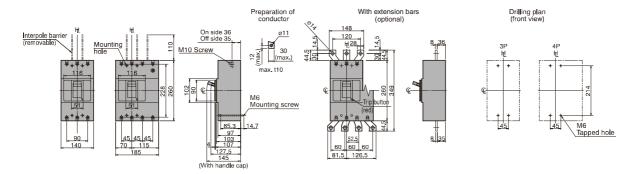
ASL: Arrangement Standard Line Hृं : Handle Frame Centre Line

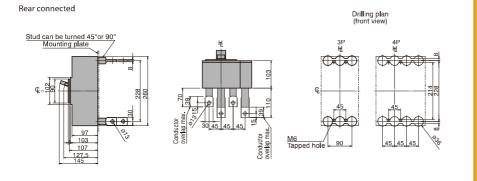


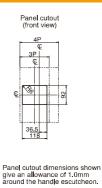

Mounting on a support or rails (shown with optional connection bars oriented for rear access)

Mounting through the backplate (shown with optional connection bars oriented for rear access)

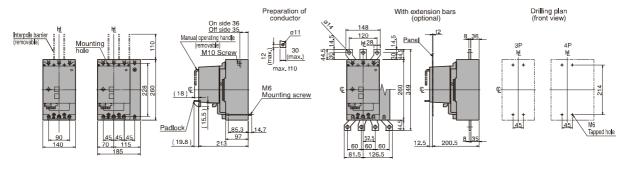
Mounting on the backplate (optional connection bars must be oriented for front access)

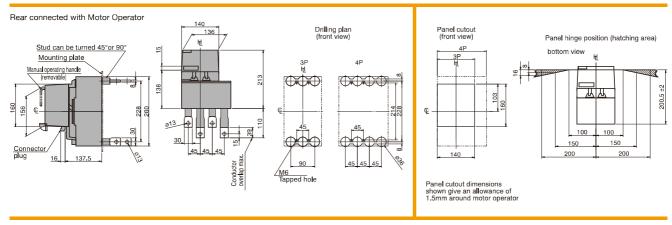



Q-Pulse ld: TMS199 17/04/2013 75 of 181

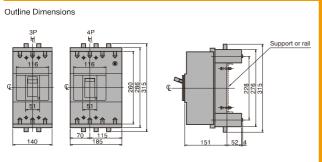

E400-NJ, S400-CJ, S400-NJ, S400-NE, S400-GJ, S400-GE, S400-PJ, S400-PE, S400-NN

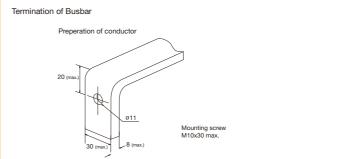
ASL: Arrangement Standard Line 낸 : Handle Frame Centre Line



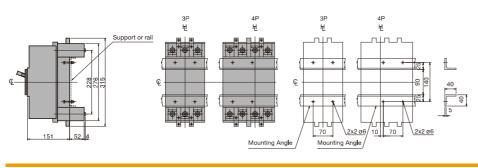


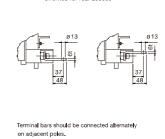
Front connected with Motor Operator

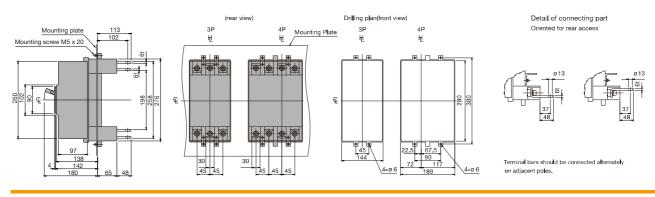


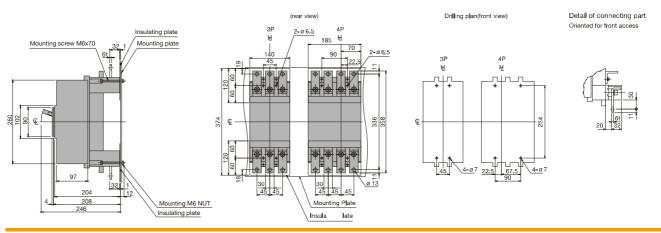


The Ultimate Safety Breaker TemBreak


E400-NJ, S400-CJ, S400-NJ, S400-NE, S400-GJ, S400-GE, S400-PJ, S400-PE, S400-NN Plug-in Versions

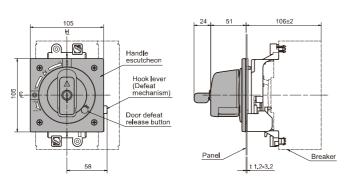

ASL: Arrangement Standard Line 낸 : Handle Frame Centre Line

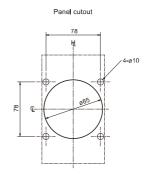

Mounting on a support or rails (shown with optional connection bars oriented for rear access)

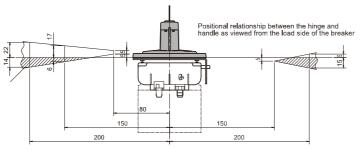


Detail of connecting part

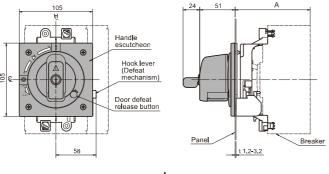
Mounting through the backplate (shown with optional connection bars oriented for rear access)

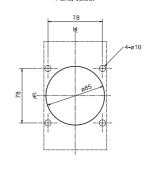

Mounting on the backplate (optional connection bars must be oriented for front access)

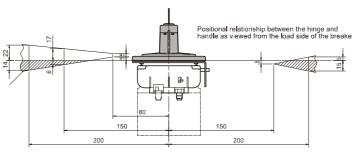



Q-Pulse Id: TMS199 17/04/2013 77 of 181

Breaker Mounted Handle

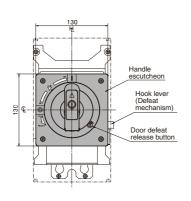

Applicable MCCB E125, S125

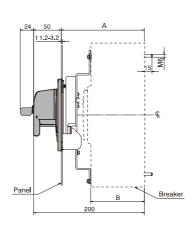


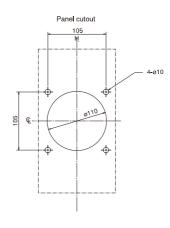


Applicable MCCB	Α
S160-NJ, <mark>E250-NJ,</mark> S250-NJ, S250-GJ, S250-NN	106±2
H125, L125, H160, L160, S250-NE, S250-GE, S250-PE, H250, L250	141±2

Panel cutout

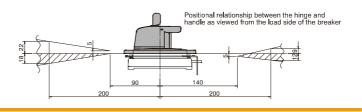

ASL: Arrangement Standard Line 년 : Handle Frame Centre Line

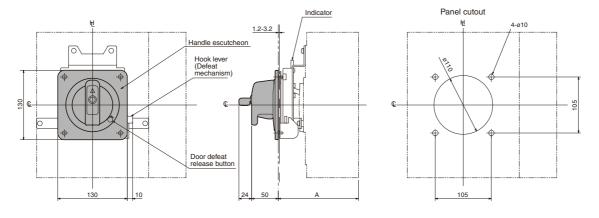

ૄ: Handle Centre Line


TemBreak The Ultimate Safety Breaker page 137

Breaker Mounted Handle

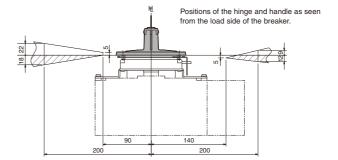
Applicable MCCB	Α	В
E400 S400 E630 S630	150±2	97
H400 I 400	187+2	134





ASL: Arrangement Standard Line 년 : Handle Frame Centre Line

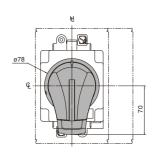
€: Handle Centre Line

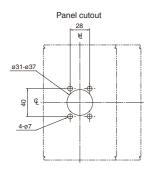


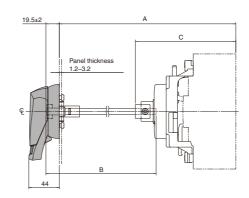
Applicable MCCB	Α
S800 S1000	150±2
HOND I OND	107±2

ASL: Arrangement Standard Line ਮੁ : Handle Frame Centre Line

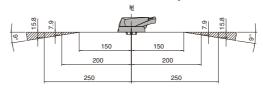
¶: Handle Centre Line


The Ultimate Safety Breaker TemBreak


Door Mounted Handle standard type


Applicable MCCB	A*1	В	С
S160-NJ, E250-NJ,			
S250-NJ, S250-GJ	453 max.	358	144
S250-NN			
H125, L125, H160, L160,			
S250-NE, S250-GE, S250-PE,	488 max.	358	179
H250, L250			

^{*1:} Max. means the maximum length fot A without cutting the shaft.


A: Distance from the panel surface to the breaker mounting surface B: Length of the square shaft used

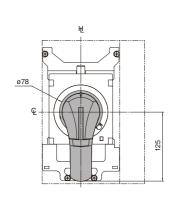
Positional relationship between the hinge and handle as viewed from the load side of the breaker. The hinge must be inside the hatched area.

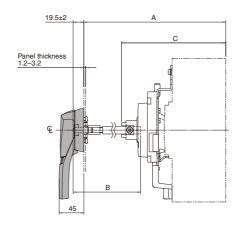
ASL: Arrangement Standard Line

իլ: Handle Frame Centre Line

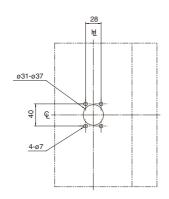
Q: Handle Centre Line

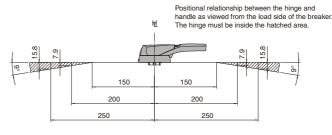
Padlock dimensions (mm)


⁺ The shaft can be cut to the required length.

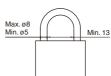

Door Mounted Handle standard type

Applicable MCCB	A*1	В	С
E400 E630	220 min.	86	188.5
S400 S630	456 max.	322	188.5
H400	257 min.	86	225.5
L400	493 max.	322	225.5


- *1: Min. means the minimum length for A by cutting the shaft.


 Max. means the maximum length fot A without cutting the shaft.
- + The shaft can be cut to the required length.
- A: Distance from the panel surface to the breaker mounting surface
- B: Length of the square shaft used

Panel cutout

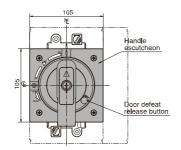


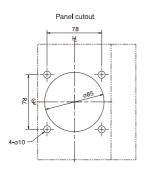
ASL: Arrangement Standard Line

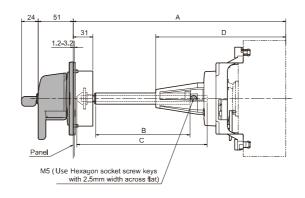
H: Handle Frame Centre Line

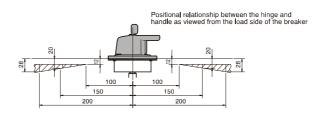
Q: Handle Centre Line

Padlock dimensions (mm)


Q-Pulse Id: TMS199 17/04/2013 81 of 181


Door Mounted Handle ordinal type


Applicable MCCB	A*1	В	С	D	Shaft support
S160-NJ, E250-NJ,					
S250-NJ, S250-GJ	543 max.	370	421	186	With +
S250-NN					
H125, L125, H160, L160,					
S250-NE, S250-GE, S250-PE,	578 max.	370	421	221	With +
H250, L250					


^{*1:} Max. means the maximum length fot A without cutting the shaft.

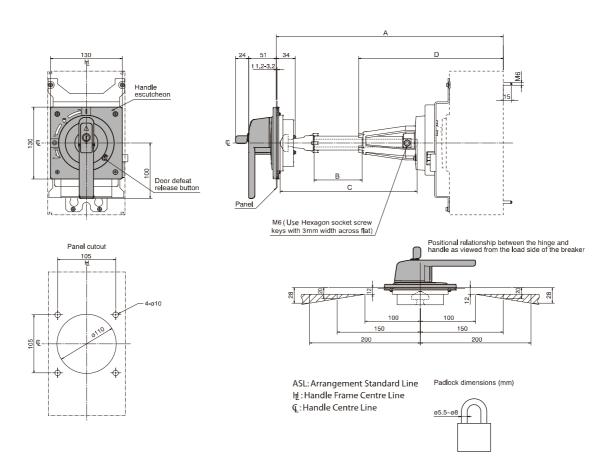
⁺ The shaft can be cut to the required length. If it is necessary to cut the shaft so short that it does not protrude beyond the shaft support, the shaft support may be removed.

ASL: Arrangement Standard Line

મૄ : Handle Frame Centre Line

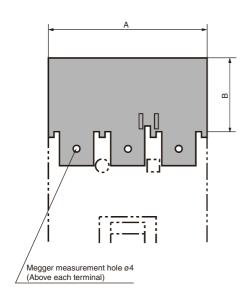
←: Handle Centre Line

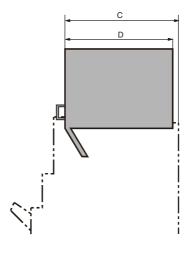
Padlock dimensions (mm)



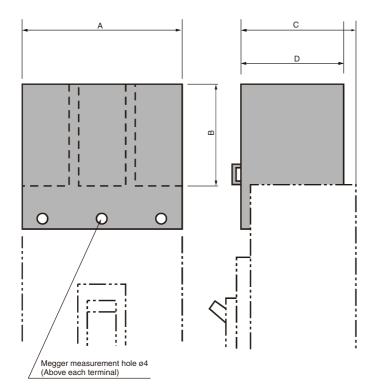
Door Mounted Handle ordinal type

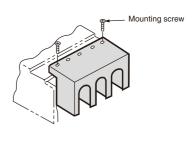
Applicable MCCB	A*1	В	С	D	Shaft support
E400 E630	270 min.	12	107.5	_	Without
S400 S630	610 max.	280	447.5	261	With +
H400	307 min.	12	107.5	_	Without
L400	647 max.	280	447,5	298	With +


^{*1:} Min. means the minimum length for A by cutting the shaft. Max. means the maximum length for A without cutting the shaft.

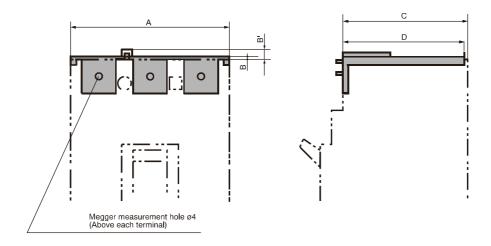

⁺ The shaft can be cut to the required length. If it is necessary to cut the shaft so short that it does not protrude beyond the shaft support, the shaft support may be removed.

Terminal Covers


Terminal covers for Front connected MCCB's (CF)


Plug-in mounted version
This version can be mounted

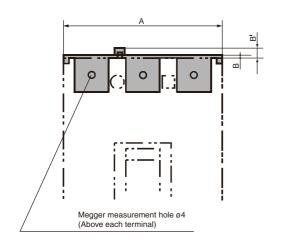
This version can be mounted simply by being plugged in the breaker body.

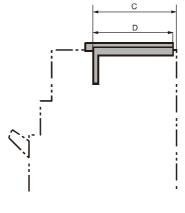

Screw-mounted version

The terminal covers for 630 to 800AF are mounted to the breakers using tapping screws. The terminal cover for 1250AF is mounted to insert nuts of the breaker cover using screws. The insert nuts do not come standard with the breaker. Please be sure to state "with terminal cover (CF)" when ordering the breaker.

Terminal Covers

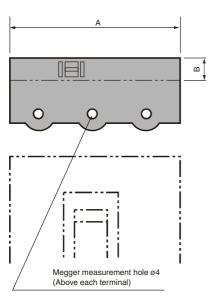
Terminal covers for Cable clamp terminal type MCCB's (CS)

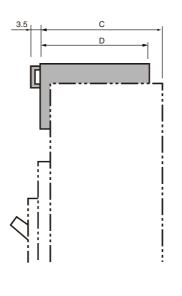



			Α		В		B'	С		D			Mounting version			
MCCB type	Connection	1P	3P	4P	1P	3P	4P	3P, 4P	1P	3P	4P	1P	3P	4P	Plug-in mounted	Screw- mounted
E125,S125	Front conn.	30	90	120	40	40	40	0	48	48	48	46	46	46	0	_
	Cable clamp	30	90	120	2.5	2.5	2.5	6	62.5	61	61	60	59.5	59.5	0	_
S160,-NJ, S160NN E250-NJ, S250-NJ,	Front conn. (1)	35	105	140	55	55	55	0	54	54	54	52	52	52	0	_
S250-GJ, S250-NN	Cable clamp	35	105	140	2.5	2.5	2.5	6	63	61	61	49.5	59.5	59.5	0	_
H125, L125, H160, L160,	Front conn. (1)	0	105	140	0	55	55	0	0	89	89	0	87	87	0	_
S250-NE, S250-GE, S250-PE H250, L250	Cable clamp	0	105	140	0	2.5	2.5	4.5	0	96	96	0	59.5	59.5	0	_
E400, S400	Front conn. Wide type	0	180	240	0	110	114	0	0	97	98	0	96	98	0	_
E630, S630	Front conn. Straight type	0	140	185	0	85	85	0	0	97	97	0	94.5	94.5	0	_
	Cable clamp	0	140	185	0	3	3	4.5	0	97	97	0	93	93	0	_
H400, L400	Front conn. Wide type	0	180	240	0	110	114	0	0	134	135	0	96	98	0	_
	Front conn. Straight type	0	140	185	0	85	85	0	0	134	134	0	94.5	94.5	0	_
	Cable clamp	_	140	185	0	3	3	4.5	0	134	134	0	93	93	0	_
S800, S1000	Front conn. (3)	_	215	285	_	130	130	_	_	99.5	99.5	_	99	99	_	0
										(102)	(102)		(101.5)	(101.5)		
H800, L800	Front conn. (2) (3)	_	215	285	_	130	130	_	_	99.5 (139)	99.5 (139)	_	99 (101.5)	99 (101.5)	_	0
S1250	Front conn. (3)	_	215	285	_	130	130	_	_	115	115	-	99 (102.5)	99 (102.5)	_	0

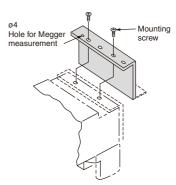
- (1) Not applicable when extension bars (FB) are fitted.
 (2) There will be an approx. 40 mm gap between the bottom of the terminal cover and the breaker mounting surface.
 (3) Values in parentheses indicate the distance to the head of terminal cover mounting screws.

Terminal Covers


Terminal covers for Rear connected and Plug-in MCCB's (CR)

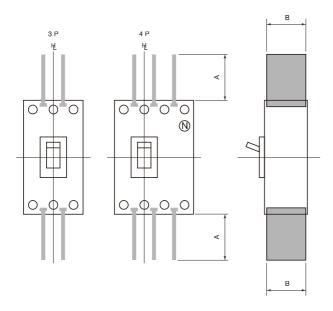


Plug-in mounted version


This version can be mounted simply by being plugged in the breaker body.

Screw-mounted version

The terminal covers for 630 to 800AF are mounted to the breakers using tapping screws.

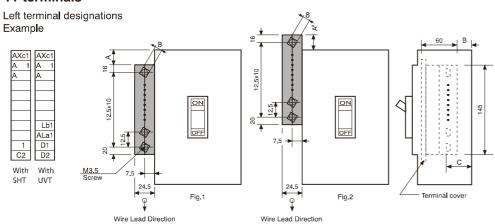


	A B		В		С			D	Mounting version		
MCCB type	MCCB type 3 poles 4 poles 3 poles 4 poles B' 3 poles	4 poles	3 poles	4 poles	Plug-in mounted	Screw- mounted					
E125, S125	90	120	2	2	6	41.5	41.5	40.5	40.5	0	_
S160 <mark>, E250,</mark> S250-NJ, S250-GJ, S250-NN	105	140	2	2	6	42.5	42.5	39.5	39.5	0	_
H125, L125, H160, L160, S250-NE, S250-GE, S250-PE, H250, L250	105	140	2	2	6	77.5	77.5	39.5	39.5	0	_
E400, S400, E630, S630	140	185	3	3	5	97	97	93	93	0	_
H400, L400, (1)	140	185	3	3	5	134	134	93	93	0	_
S800, S1000 (2)	206	280	14	18	_	101 (103.5)	99 (101.5)	100.5 (103)	98 (100.5)	_	0
H800, L800 (2)	206	280	14	18	_	138 (140.5)	136 (138.5)	137.5 (140)	135 (137.5)	_	0

Notes:
(1): There will be an approx. 40 mm gap between the bottom of the terminal cover and the breaker mounting surface.
(2): Values in parentheses indicate the distance to the head of terminal cover mounting screws.

Interpole Barriers

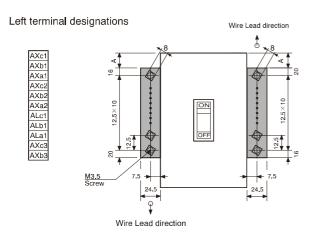
Terminal Interpole Barriers (BA)


MCCB type	Α	В
E125, S125	47	53
S160, E250, S250-NJ,	100	53
S250-GJ, S250-NN		
H125, L125, H160, L160,	100	88
S250-NE, S250-GE, S250-PE,		
H250, L250		
E400, S400, E630, S630	110	95
H400, L400	110	95
S800, H800, L800,	110	95
S1000		

ASL: Arrangement Standard Line 낸 : Handle Frame Centre Line

←: Handle Centre Line

Terminal Blocks for Front-Connected and Rear-Connected MCCBs

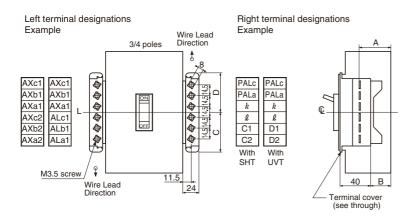

11 terminals

MCCB type	A	A'	В	С	Fig
E125, S125	_	3	0.5	40	2
S160, E250, S250-NJ,					
S250-GJ, S250-NN	2	_	0.5	40	1
H125, L125, H160, L160,					
S250-NE, S250-GE, S250-PE,	2	_	35.5	75	1
H250, L250					

- 1. The tightening torque for the M3.5 terminal screws is 0.9 to 1.2 N·m. 2. Connection wire size is 2.5mm² (max).

11 terminals

_	-
	60 B ■
	1-3-5-3
PALC PALC PALC PALC PALC PALC PALC PALC	Terminal cover


Right terminal designations

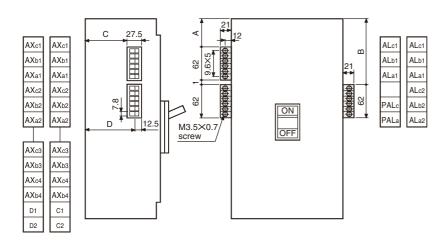
MCCB type	Α	В	С
E400, S400, E630, S630	39.5	30.5	70
H400, L400	39.5	67.5	107
S800, S1000	31	30.5	70
H800, L800	31	67.5	107

- 1. The tightening torque for the M3.5 terminal screws is 0.9 to 1.2 N·m. 2. Connection wire size is 2.5mm² (max).
- When you specify Ground Fault Trip on electronic MCCBs with 3 poles the terminal block is automatically fitted to connect with the external neutral CT for 3 phases 4 wires system.

Terminal Blocks for Front-Connected and Rear-Connected MCCBs

6 terminals

MCCB Type	Α	В	С	D
E125, S125	42.5	27	53	53
S160, E250, S250-NJ, S250-GJ, S250-NN	42.5	27	53	53
H125, L125, H160, L160, S250-NE, S250-GE, S250-PE, H250, L250	77.5	62	53	53
E400, S400, E630, S630	72.5	57	43	63
H400, L400	109.5	94	43	63
S800, S1000	72.5	57	23.5	82.5
H800, L800	109.5	94	23.5	82.5


Comments:

- 1. The tightening torque for the M3.5 terminal screws is 0.9 to 1.2 N·m.
- 2. Connection wire size is 1.25mm² (max).

6 terminals

Left terminal designations Example

Right terminal designations Example

MCCB Type	Α	В	С	D
S1250	51	114 (124)	57	72
S1600	51	114 (124)	77	92

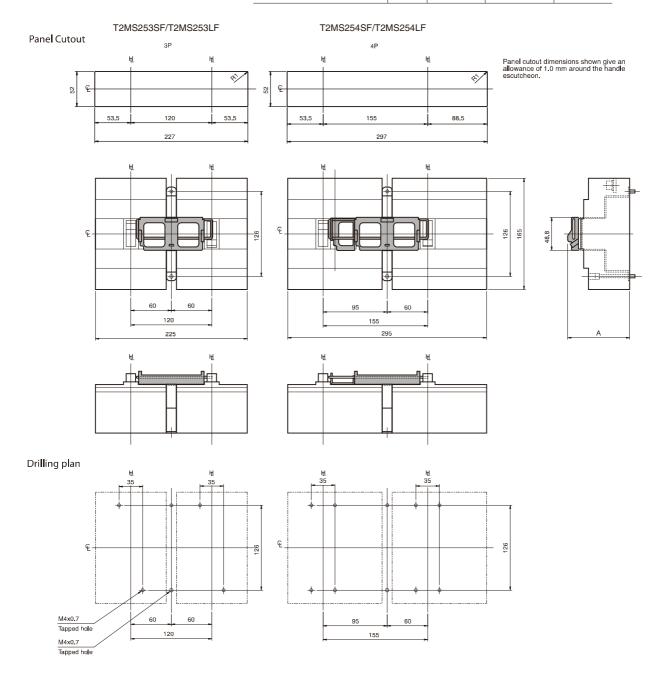
Comments:

- 1. Values in parentheses applies to 4-pole breakers. 2. Tightening torque of M3.5 terminal screws: $0.9-1.2~N\cdot m$.

3. Connection wire size: 2.0mm² max x 2.

Slide Interlocks

Mechanical Interlocks slide type (MS)


For 125A, 160A, 250A frame size

ASL: Arrangement Standard Line 년 : H

년 : Handle Frame Centre Line

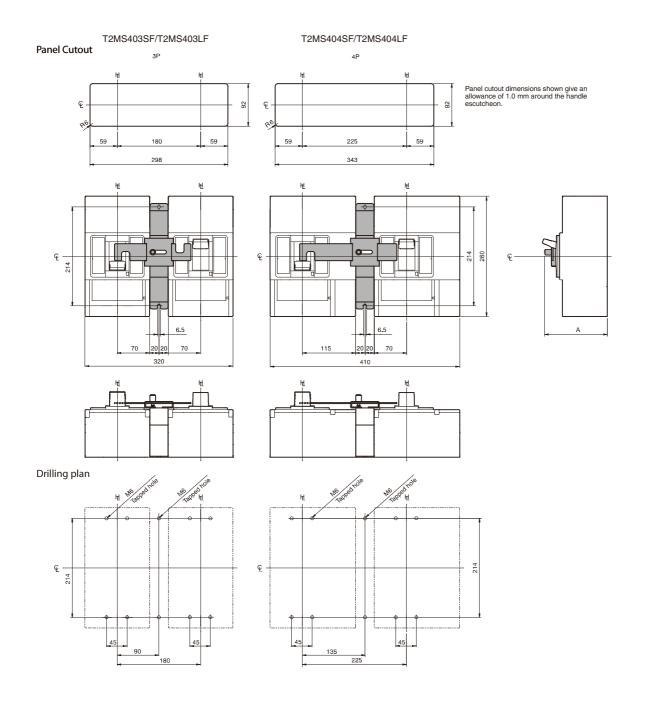
Q: Handle Centre Line

MCCB Type	Poles	Conn.	Parts No.	Α
S160, E250, S250-NJ,	3	FC, RC	T2MS253SF	91.7
S250GJ, S250-NN	4	FC, RC	T2MS254SF	31.7
H125, L125, H160, L160, S250-NE, S250-GE, S250-PE,	3	FC, RC	T2MS253LF	126.7
H250, L250	4	FC, RC	T2MS254LF	120.7

Q-Pulse ld: TMS199 17/04/2013 90 of 181

Slide Interlocks

Mechanical Interlocks slide type (MS)


For 400A, 630A frame size

ASL: Arrangement Standard Line

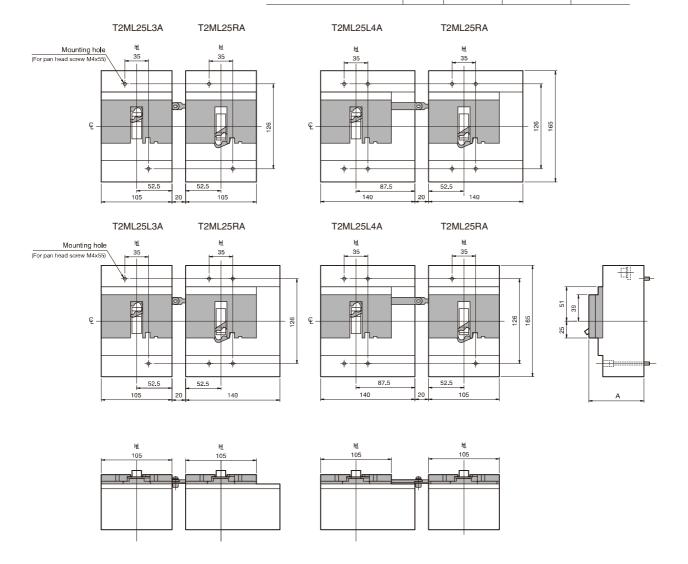
년 : Handle Frame Centre Line

Q:Handle Centre Line

MCCB Type	Poles	Conn.	Parts No.	Α
E400, S400, E630, S630	3	FC, RC	T2MS403SF	135.5
E400, 5400, E030, 5030	4	FC, RC	T2MS404SF	133.3
H400 L400	3	FC, RC	T2MS403LF	172.5
H400, L400	4	FC, RC	T2MS404LF	172.5

Link Interlocks

Mechanical Interlocks link type (ML)


For 125A, 160A, 250A frame size

ASL: Arrangement Standard Line

년 : Handle Frame Centre Line

Q: Handle Centre Line

MCCB Type	Poles	Position	Parts No.	A
\$160, E250, \$250-NJ, \$250-GJ, \$250-NN	3	Right	T2ML25RA	
	4	nigiii	12ML25hA	
	3	Left	T2ML25L3A	81.7
	4		T2ML25L4A	
	3	Diabt	T2ML25RA	
H125, L125, H160, L160, S250-NE, S250-GE, S250-PE, H250, L250	4	Right	12WLZSKA	1107
	3	Left	T2ML25L3A	116.7
	4	Leit	T2ML25L4A	

ASL: Arrangement Standard Line

H400, L400

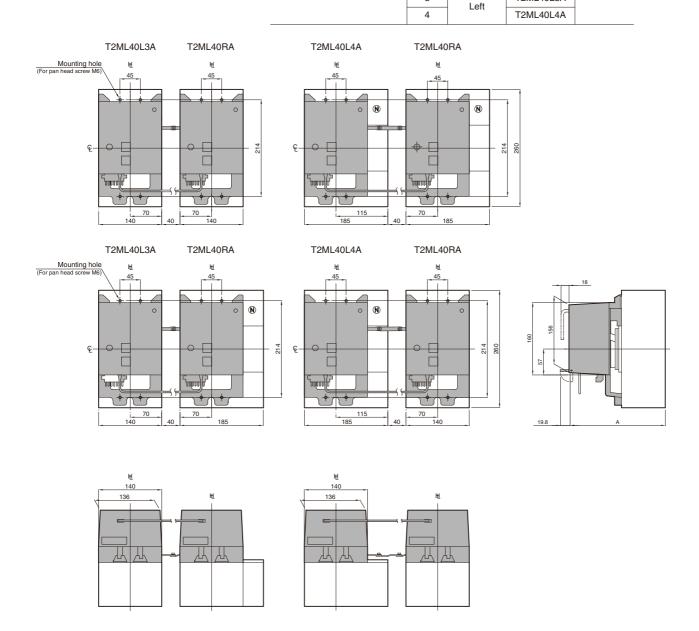
DIMENSIONS

Link Interlocks with motor operators

Mechanical Interlocks link type (ML)

For 400A, 630A frame size

MCCB Type	Poles	Position	Parts No.	Α
E400, S400	3	Dight	T2ML40RA	
	4	Right	12ML40hA	
E630, S630	3	Left	T2ML40L3A	213
	4		T2ML40L4A	
	3	Dight	T2ML40RA	
	1	Right	I ZIVIL4UNA	


3

년 : Handle Frame Centre Line

Q: Handle Centre Line

250

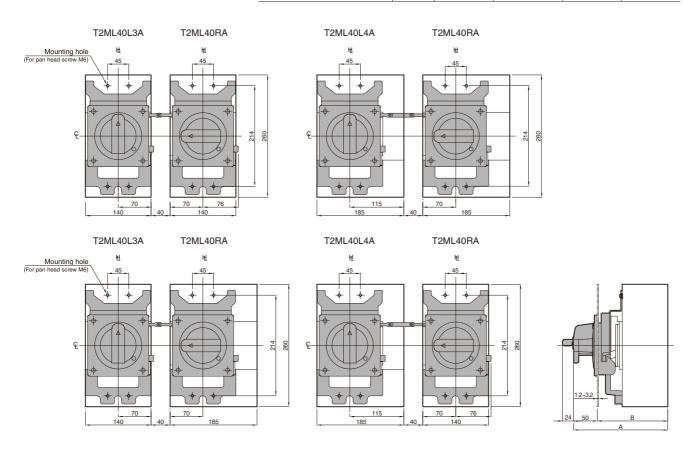
T2ML40L3A

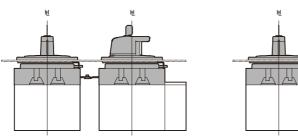
For 400A and 630A frame, the link mechanical interlocks can not be used without motor operators. Please specify also the motor operators when ordering. Furthermore, please request the additional labels for the breakers to TERASAKI and put the labels on the side of the breakers.

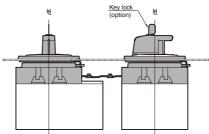
Q-Pulse Id: TMS199 17/04/2013 93 of 181

Link Interlocks with breaker mounted handles

Mechanical Interlocks link type (ML)


For 400A, 630A frame size


ASL: Arrangement Standard Line


년 : Handle Frame Centre Line

Q: Handle Centre Line

MCCB Type	Poles	Position	Parts No.	A	В
E400, S400	3	Right	T2ML40RA	200	
	4	nigiii	12WL4UNA		150±2
E630, S630	3	Left	T2ML40L3A		
	4	Leit	T2ML40L4A		
	3	Right	T2ML40RA		
H400, L400	4	nigiii	12WL4UNA	237	187±2
	3	Left	T2ML40L3A	231	10/±2
	4	Leit	T2ML40L4A		

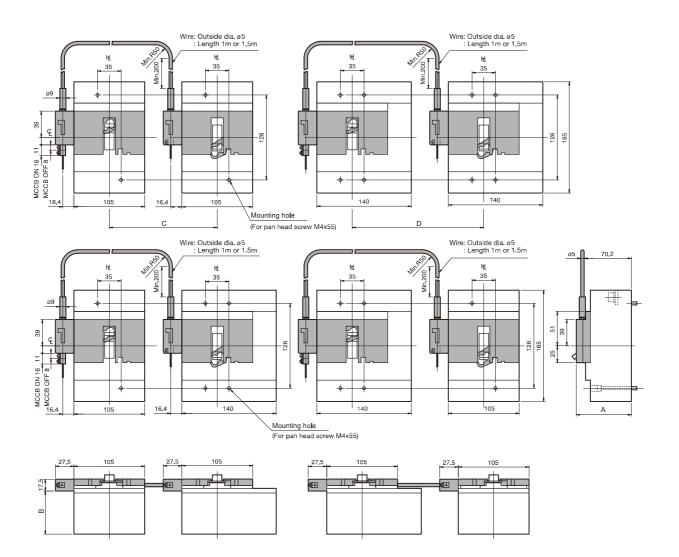
For 400A and 630A frame, the link mechanical interlocks can not be used without breaker mounted handles. Please specify also the breaker mounted handles when ordering. Furthermore, please request the additional labels for the breakers to TERASAKI and put the labels on the side of the breakers.

The Ultimate Safety Breaker TemBreak

Wire Interlocks

ASL: Arrangement Standard Line

년 : Handle Frame Centre Line


Q: Handle Centre Line

Mechanical Interlocks wire type (MW)

For 125A, 160A, 250A frame size

MCCB Type	Parts No.	Α	В
S160, E250, S250-NJ S250-GJ, S250-NN	T2MW25CA	81.7	64
H125, L125, H160, L160, S250-NE, S250-GE, S250-PE, H250, L250	T2MW25CA	116.7	99

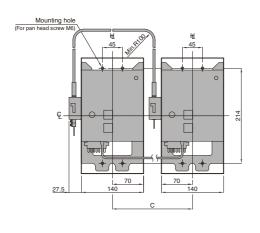
No.	В С	
00SA 155min.	– 480max. 180min. –	480max.
00LA 155min.	– 980max. 180min. –	980max.
	00SA 155min.	00SA 155min. – 480max. 180min. – 4

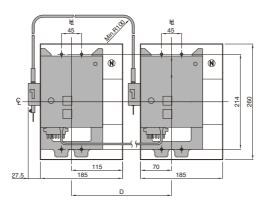
95 of 181

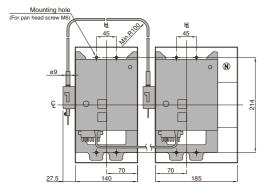
Wire Interlocks with motor operators

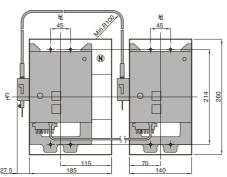
Mechanical Interlocks wire type (MW)

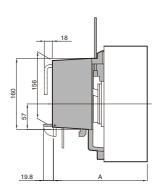
For 400A, 630A frame size

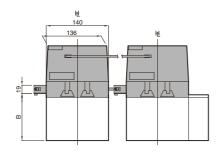

ASL: Arrangement Standard Line

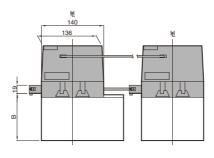

ਮੁ : Handle Frame Centre Line


Q: Handle Centre Line


MCCB Type	Parts No.	Α	В
E400, S400, E630, S630	T2MW40CA	213	105.4
H400, L400	T2MW40CA	250	142.4


Cable length	Parts No.	В	С
1.0m	T2MW00SA	180min. – 480max.	225min. – 480max.
1.5m	T2MW00LA	180min. – 930max.	225min. – 930max.





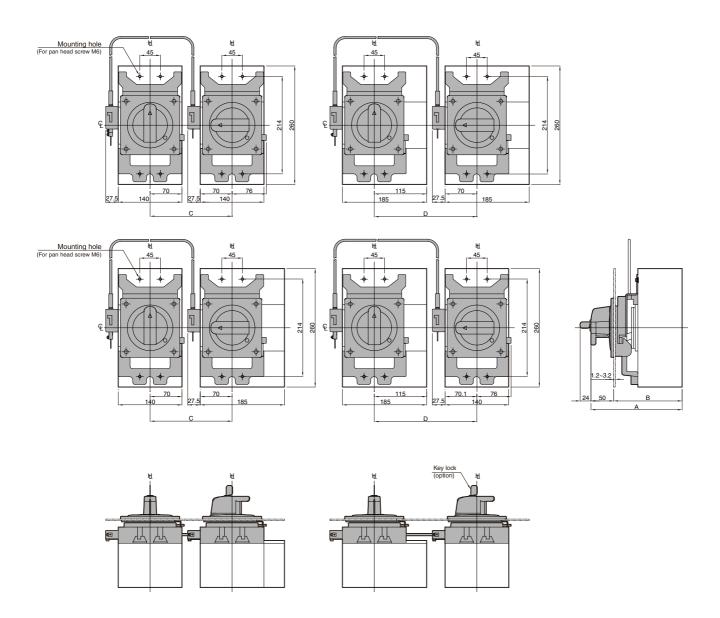
For 400A and 630A frame, the wire mechanical interlocks can not be used without motor operators. Please specify also the motor operators when ordering. Furthermore, please request the additional labels for the breakers to TERASAKI and put the labels on the side of the breakers.

Q-Pulse ld: TMS199 17/04/2013 96 of 181

Wire Interlocks with breaker mounted handles

Mechanical Interlocks wire type (MW)

For 400A, 630A frame size


ASL: Arrangement Standard Line

ਮੁ : Handle Frame Centre Line

Q: Handle Centre Line

MCCB Type	Parts No.	Α	В
E400, S400, E630, S630	T2MW40CA	200	150±2
H400, L400	T2MW40CA	237	187±2

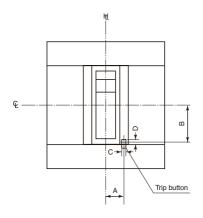
Cable length	Parts No.	В	С
1.0m	T2MW00SA	180min. – 430max.	225min. – 430max.
1.5m	T2MW00LA	180min. – 930max.	225min. – 930max.

For 400A and 630A frame, the wire mechanical interlocks can not be used without breaker mounted handles. Please specify also the breaker mounted handles when ordering. Furthermore, please request the additional labels for the breakers to TERASAKI and put the labels on the side of the breakers.

The Ultimate Safety Breaker TemBreak

ASL: Arrangement Standard Line

S800, S1000


H800, L800

DIMENSIONS

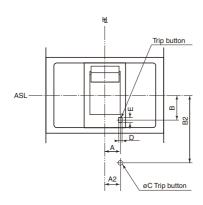
Q:Handle Centre Line

Position of Trip Button

Positions of Trip Button

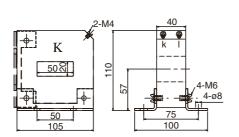
MCCB Type	Poles	Α	В	С	D
E125, S125	3, 4	13.8	20.4	3.3	4.3
S160, E250, S250-NJ, S250-GJ, S250-NN,	3, 4	17.2	20.4	3.3	4.3
H125, L125, H160, L160, S250-NE, S250-GE, S250-PE, H250, L250	3, 4	17.2	20.4	3.3	4.3
E400, S400 H400, L400, E630, S630	3, 4	21.6	37.2	5.3	6.6

21.6

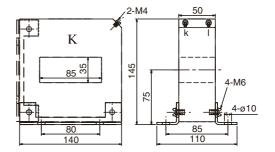

33

5.3

6.6


3, 4

낸: Handle Frame Centre Line



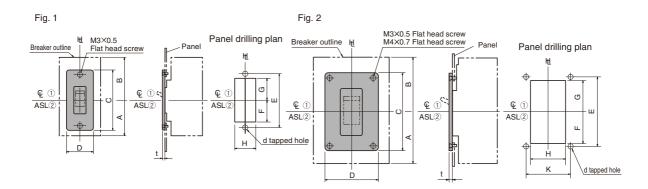
MCCB Type	Poles	Α	В	A2	B2	С	D	Е
S1250 S1600	3, 4	30	37.5	31	70.5	6	6	8

External Neutral CT

Type of CT	Rated primary current (A)	Rated secondary current (mA)
T2GB40N04	400	100
T2GB40N06	630	100
T2GB40N08	800	100

Type of CT	Rated primary current (A)	Rated secondary current (mA)
T2GBX6N10	1000	100
T2GBX6N12	1250	100
T2GBX6N16	1600	100

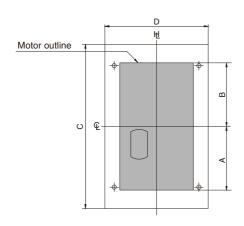
Door Flanges

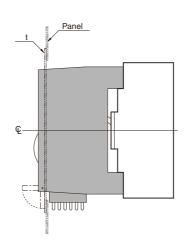

Door flanges are recommended to be used to cover the cutout of a switchboard panel.

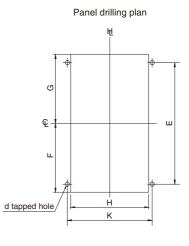
Door Flange for toggle-operated MCCBs (mm)

MCCB Type	Parts No.	Fig.	Α	В	С	СВ			F	G		Н		К	d	t
wiceb type	raits No.	rig.	_ ^				Е	Min	Max	Min	Max	Min	Max	K	u	
E125, S125	T2DF25	1 ①	77.5	77.5	105	50	92	37	42	37	42	32	45	_	M3×0.5	2
H125, L125, H160, L160, S250-NE, S250-GE, S250-PE, H250, L250	T2DF25	1 ①	82.5	82.5	105	50	92	37	42	37	42	32	45	_	M3×0.5	2
S160, E250, S250-NJ, S250-GJ, S250-NN	T2DF25	1 ①	82.5	82.5	105	50	92	37	42	37	42	32	45	_	M3×0.5	2
E400, S400, E630, S630	T2DF40	2 ①	130	130	135	95	120	48	56	48	56	57	90	80	M3×0.5	2
H400, L400	T2DF40	2 ①	130	130	135	95	120	48	56	48	56	57	90	80	M3×0.5	2
S800, S1000	T2DF40	2②	132	141	135	95	120	48	56	48	56	57	90	80	M3×0.5	2
H800, L800	T2DF40	2②	132	141	135	95	120	48	56	48	56	57	90	80	M3×0.5	2
S1250	T2DFX6	2②	170	200	150	120	135	51	63.5	51	63.5	85	115	80	M3×0.5	2
S1600	T2DFX6	22	170	200	150	120	135	51	63.5	51	63.5	85	115	80	M3×0.5	2

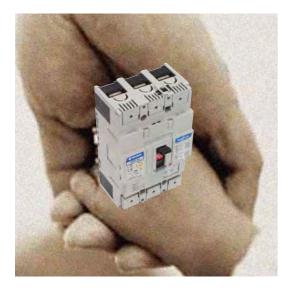
- Notes:
 1):


 Handle centre line is applied.
 2: ASL Arrangement standard line is applied.




Q-Pulse Id: TMS199 17/04/2013 99 of 181

Door Flange for motor-operated MCCBs (mm)


MCCB Type	Porto No	Parts No. A		С	D	Е		F	(3	ı	1	К	d	t
мссь туре	rans No.	_ A	В	C	U	_	Min	Max	Min	Max	Min	Max		u	
E125 S125	T2DM25	77.5	77.5	200	130	151	80	90	80	90	94	98	106	4	3.5
H125, L125, H160, L160 S250-NE, S250-GE, S250-PE H250, L250	T2DM25	77.5	77.5	200	130	151	80	90	80	90	94	98	106	4	3.5
S160, E250, S250-NJ, S250-GJ, S250-NN	T2DM25	77.5	77.5	200	130	151	80	90	80	90	94	98	106	4	3.5
E400, S400 E630, S630	T2DM40	57	103	200	180	150	59	69	105	115	144	148	156	4	3.5
H400, L400	T2DM40	57	103	200	180	150	59	69	105	115	144	148	156	4	3.5
S800, S1000	T2DM40	58	102	200	180	150	60	70	104	114	144	148	156	4	3.5
H800, L800	T2DM40	58	102	200	180	150	60	70	104	114	144	148	156	4	3.5

TERASAKI ELECTRIC (EUROPE) LTD.

79 Beardmore Way, Clydebank Industrial Estate Clydebank, Glasgow, G81 4HT, Scotland (UK)

Telephone: 44-141-941-1940
Fax: 44-141-952-9246
Email: marketing@terasaki.co.uk
http://www.terasaki.com/

TERASAKI ITALIA s.r.l.

Via Ambrosoli, 4A-20090 Rodano, Milano, Italy

Telephone: 39-02-92278300 Fax: 39-02-92278320 Email: terasaki@terasaki.it http://www.terasaki.it/

TERASAKI ELECTRIC (EUROPE) LTD. BRANCH IN SPAIN

Cal Ros Dels Ocells 5-7, Granollers 08403,

Barcelona, Spain

 Telephone:
 34-93-879-60-50

 Fax:
 34-93-870-39-05

 Email:
 terasaki@terasaki.es

 http://www.terasaki.es/

TERASAKI SKANDINAVISKA AB

 Box 2082 SE-128 22 Skarpnäk Sweden

 Telephone:
 46-8-556-282-30

 Fax:
 46-8-556-282-39

 Email:
 info@terasaki.se

 http://www.terasaki.se/

TERASAKI CIRCUIT BREAKERS (S) PTE. LTD.

9 Toh Guan Road East 03-01 Alliance Building

Singapore 608604

Telephone: 65-6425-4915 Fax: 65-6425-4351 Email: tecs@pacific.net.sg

TERASAKI ELECTRIC (M) SDN, BHD.

Lot 3, Jalan 16/13D, 40000 Shah Alam, Selangor Darul

Ehsan, Malaysia

 Telephone:
 60-3-5549-3820

 Fax:
 60-3-5549-3960

 Email:
 terasaki@terasaki.com.my

TERASAKI DO BRASIL LTDA.

Rua Cordovil, 259-Parada De Lucas, 21250-450

Rio De Janeiro-R.J., Brazil

 Telephone:
 55-21-3301-9898

 Fax:
 55-21-3301-9861

 Email:
 terasaki@terasaki.com.br

 http://www.terasaki.com.br

TERASAKI ELECTRIC (CHINA) LTD.

72 Pacific Industrial Park, Xin Tang Zengcheng, Guangzhou 511340, China

Telephone: 86-20-8270-8556 Fax: 86-20-8270-8586

Email: terasaki@public.guangzhou.gd.cn

TERASAKI ELECTRIC GROUP SHANGHAI REPRESENTATIVE OFFICE

Room No. 1405-6, Tomson Commercial Building 710 Dong Fang Road, Pudong, Shanghai, 200122, China

Telephone: 86-21-58201611 Fax: 86-21-58201621 Email: terasaki@vip.163.com

TERASAKI ELECTRIC CO., LTD.

Head Office: 7-2-10 Hannancho, Abenoku

Osaka, Japan

Circuit Breaker Division: 7-2-10 Kamihigashi, Hiranoku Osaka, Japan

 Telephone:
 81-6-6791-9323

 Fax:
 81-6-6791-9274

 Email:
 int-sales@terasaki.co.jp

http://www.terasaki.co.jp/

Ratings and specifications are subject to change without notice.

CAT REF. '11-I61E

T1HS / T2HS HANDLES

For Terasaki moulded case circuit breakers up to 1600 A.

- IP55 rated plastic handle
- Long variable depth shaft supplied standard
- Heavy duty metal locking lever standard
- Internal door interlocking components are all metal
- All handles mount in a 31-37 mm hole
- Short lever handles on MCCBs to 250 A, longer types 400 - 1600 A
- 105 mm² or 130 mm² escutcheon plates are optional

- Handles are padlockable in the OFF position as standard
- ON padlocking optional via on site handle modification
- Accepts up to three 4 8 mm locks or multi lock devices
- Door opens when handle is switched to OFF position
- Door will not open when handle is padlocked OFF
- Door defeat function standard
- Door defeat non functional when padlocked OFF

- Padlock option for handle mechanism mounted on MCCB
- All handle mechanisms allow MCCB dial setting viewing and access
- For IP 65 applications T1HP/T2HP handles are available
- ON indication flag on handle mechanism
- Prosafe trapped key interlock options

1300 NHP NHP nhp.com.au 0800 NHP NHP nhp-nz.com

Q-Pulse Id: TMS199 17/04/2013 102 of 181

T1HS / T2HS Handles For Terasaki moulded case circuit breakers

Features

- IP 55 rated plastic handle
- Suitable for MCCBs 0.7 A to 1600 AF
- Long variable depth shaft supplied standard
- Heavy duty METAL locking lever standard
- Internal door interlocking components are metal
- All handles mount in a 31 37 mm hole
- Short lever handles on MCCBs to 250 A, longer types 400 1600 A (short handles optional for 400/630 A)
- 100 mm² escutcheon plates are optional
- Handles are padlockable in the OFF position as standard
- ON padlocking optional via on site handle modification
- Accepts up to three 4 8 mm locks or multi lock devices
- Door opens when handle is switched to OFF position
- Door will not open when handle is padlocked OFF
- Door defeat function standard
- Door defeat non functional when padlocked OFF
- Padlock option for handle mechanism mounted on MCCB
- All handle mechanisms allow MCCB dial setting viewing and access
- For IP 65 applications T1HP/T2HP handles are available

ON indicator flag S250 250 A MCCB Black shaft cone is removable Handle mechanism on MCCB.

Field applications

- General and heavy duty applications
- Applications requiring padlocking
- Indoor and some outdoor areas

Metal lock lever standard

Handle escutcheon plate option

Mechanism padlock option available.

MCCB setting viewing window

T1HS and T2HS Handle Catalogue Numbers to suit MCCBs TemBreak 2, 125 - 630 A and TemBreak 1, 0.7 - 1600 A

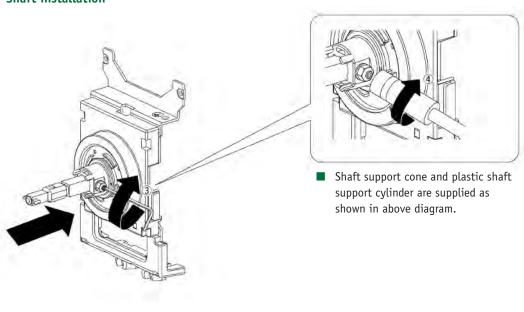
MCCB Ampere Frame	0.7 – 12A	125AF	250AF	400 / 630AF	630 / 800AF	1250 / 1600AF
Grey handle:	T1HS03R5GM	T2HS12R5GM	T2HS25R5GM	T2HS40R5GM	T1HS80R5GM	T1HSX6R5GM
Red/Yellow handle:	T1HS03R5RM	T2HS12R5RM	T2HS25R5RM	T2HS40R5RM	T1HS80R5RM	T1HSX6R5RM
MCCB Amp ratings:	XM30PB	E125NJ	S160NJ / GJ	E400NJ	XS / XH630	XS1250SE
		S125NJ	H / L160NJ	S400CJ / NJ	XV630PE	XV1250NE
15 A to 1600 A		S125GJ	E250NJ	S400NE	XS / SH800	XS1600SE
		ZS250GJ	S250NJ/GJ/PE	S400GJ	XV800PE	TL630NE
		H125NJ	H250NJ / NE	S400NE / GE		TL800NE
		L125NJ	L250NJ	E630NE		TL1250NE
			ZS125GJ	S630CE / GE		

T1HS Handle Catalogue Numbers to suit TemBreak 1 MCCBs, 125 - 400 A

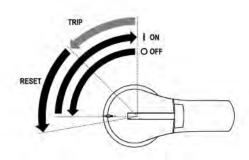
MCCB sizes	Grey handle:	T1HS12XR5GM	T1HS25XR5GM	T1HS40R5GM
15 A to 400 A		TL30NJ	XS250NJ	XS400NJ
		XS125NJ	XH250NJ	XH400SE
		XH125NJ		XV400NE
		TL100NJ		TL250NJ

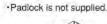
Panel mount external operating handle Type T1HS/T2HS

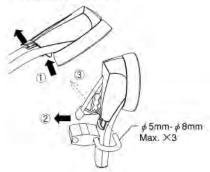
Handle type

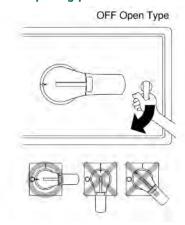


Handle assembly


Shaft installation

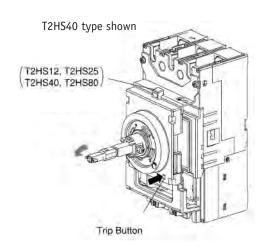

Panel mount external operating handles Type T1HS/T2HS


Handle operation

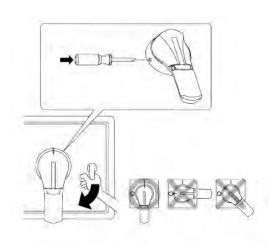

Notes: OFF position can be set at 9:00 o'clock or 12:00 o'clock orientation.

Handle lock operation

Panel opening procedure



ON position locking

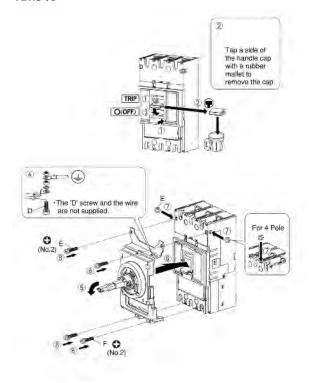

Modifying T1HS/T2HS handles to lock in the ON position

- Unclip and remove the cover from the rear of the handle
- 2. Locate and remove the knock-out tab in the rear of the handle to enable locking pin movement.
- 3. Check operation for ON locking.
- 4. Replace the clip on rear cover onto the rear of the handle.
- 5. The handle can now be installed. It will lock in both ON and OFF.

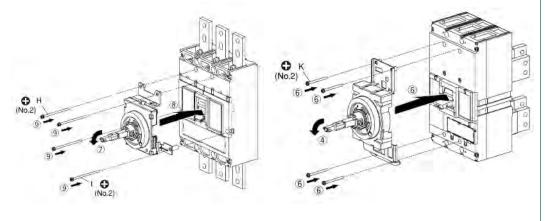
TRIP Operation with the panel open

Panel opening procedure by panel lock release

This applies when the panel requires to be opened while the breaker is in the | (ON) position.


Panel mount external operating handles Type T1HS/T2HS

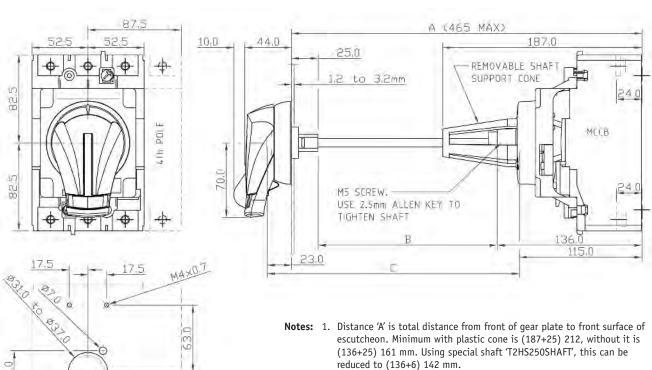
T2HS12, T2HS25



(standard)

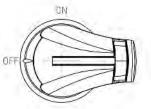
T2HS40

T1HS80 T1HSX6 / T1HSX6



7 - 37

TemBreak 2 MCCB accessories T1HS / T2HS Handle dimensions (mm)

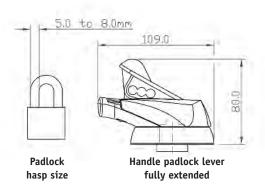

T2HS handle with S160NJ, S160GJ, E250NJ, S250NJ, S250GJ and ZS250GJ MCCB

- 2. Cut plastic sleeve to length 'B' determined by .B=A-(136+25).
- 3. Cut shaft to length 'C' determined by C=(A+23)-115.

Handle orientation options for OFF/ON

BREAKER MOUNTING AND DRILLING

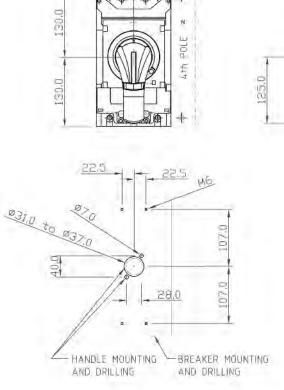


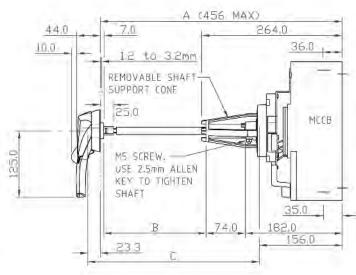

28.0

HANDLE MOUNTING

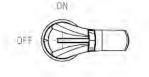
AND DRILLING

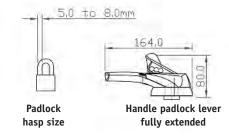
Standard orientation using hole drilling shown on this page.
Also suitable for optional T2HSESC100 escutcheon label (not shown)




7 - 42

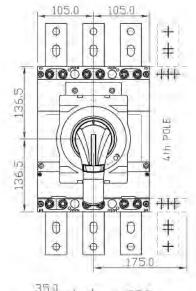
TemBreak 2 MCCB accessories T1HS / T2HS Handle dimensions (mm)

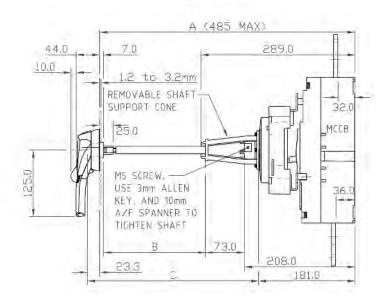

T2HS handle with **E400NJ**, S400CJ, S400NJ, S400NE, S400GJ, S400GE, E630NE, S630CE, S630GE MCCB

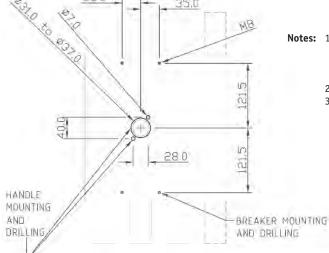

- Notes: 1. Distance 'A' is total distance from front of gear plate to front surface of escutcheon. Minimum with plastic cone is (264+7) 271, without it is (182+25) 207 mm. Using special shaft 'T2HS400SHAFT', this can be reduced to (182+6) 188 mm.
 - 2. Cut plastic sleeve to length 'B' determined by . B=A-(182+74+7).
 - 3. Cut shaft to length 'C' determined by C=(A+23)-156.

Handle orientation options for OFF/ON

Standard orientation using hole drilling shown on this page.
Also suitable for optional T2HSESC100 escutcheon label (not shown)

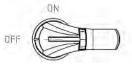


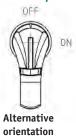

7 - 44

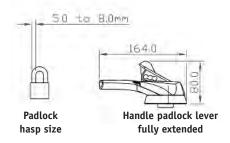


TemBreak 2 MCCB accessories T1HS / T2HS Handle dimensions (mm)

T1HS handle with XS/XH 630 - 800, MCCBs



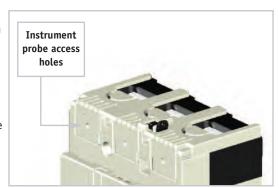



- Notes: 1. Distance 'A' is total distance from front of gear plate to front surface of escutcheon. Minimum with plastic cone is (289+7) 296, without it is (208+25) 233 mm. Using special shaft 'T2HS400SHAFT', this can be reduced to (208+6) 214 mm.
 - 2. Cut plastic sleeve to length 'B' determined by . B=A-(208+73+7).
 - 3. Cut shaft to length 'C' determined by C=(A+23)-181.

Handle orientation options for OFF/ON

Standard orientation using hole drilling shown on this page. Also suitable for optional T2HSESC100 escutcheon label (not shown)

7 - 46


TemBreak 2 MCCB accessories Insulation barriers, terminal covers

Terminal covers

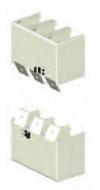
Terminal covers are used to prevent direct contact with live circuit breaker terminations. They also provide additional insulation, to reduce the possibility of a short circuit between phases or to earth, when large conductors are used.

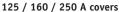
General features

- Terminal covers require no tools for installation
- All terminal covers have an IP 20 ingress protection rating
- Terminal covers are ordered individually. Two terminal covers are required to cover both the line and load terminals of an MCCB. Each cover can either be fitted to the top or bottom of the MCCB
- Terminal covers have an instrument probe access hole of 4 mm diameter on each phase.

Options

- A terminal cover lock allows an anti-tampering seal to be added.
- An earth barrier can be added to terminal covers for front connection, which provides insulation at the rear of the terminations.


Terminal cover lock with lead seal



Earth barrier fitted to rear of terminal cover

TemBreak 2 MCCB accessories Insulation barriers, terminal covers (cont)

Terminal covers for front connection (T2 CF)

Terminal covers for front connection are designed to cover the exposed live parts of conductors terminated on the MCCB.

Terminal covers are clip-on, and require no tools. For the 125 A and 250 A MCCBs, 'short' covers and longer, standard covers, are available. Rear insulation inserts are available for protection against earthing.

Flush terminal covers

Flush terminal covers (T2 CS)

Flush terminal covers are useful for increasing the ingress protection rating at the terminals, without increasing the overall length. They can be used with busbar and for direct entry of stranded cable (with solderless cable clamp terminals).

Flush terminal covers are identical to rear terminal covers for the 400 A and 630 A models. The user can remove a section of the rear terminal cover to allow entry of the conductor.

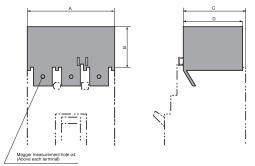
Terminal covers for rear connection (T2 CR)

Terminal covers for rear connection can be used on MCCBs fitted with rear connections (RP) or plug-in connections (PM). They prevent access to the terminals from the front and top.

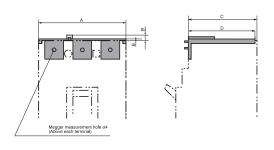
MCCB Fitted with interpole barriers on both ends

Interpole barriers between adjacent MCCBs

Interpole barriers (T2 BA)


Interpole barriers provide maximum insulation between phases at the terminals of the MCCB. They cannot be fitted at the same time as any of the terminal covers. Interpole barriers for use on one end of the MCCB are supplied as standard. Additional interpole barriers can be ordered individually and can easily be fitted to either end of an MCCB.

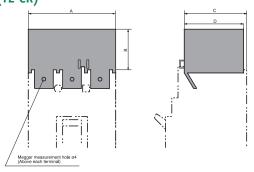
MCCB moulds have also been designed to accept an additional interpole barrier between two adjacent MCCBs.

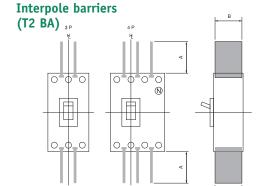


TemBreak 2 MCCB accessories Terminal covers and interpole barriers Dimensions (mm)

Terminal covers for front connected MCCBs (T2 CF)

Terminal covers for tunnel clamp terminal MCCBs (T2 CS)



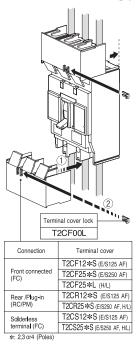

Dimensions (in mm)

				(,									
			Α			В		B¹		С			D	
Breaker	Connection	1P	3P	4P	1P	3P	4P	3P 4P	1P	3P	4P	1P	3P	4P
E125, S125, ZS125	Front (long)	30	90	120	40	40	40	_	48	48	48	46	46	46
	Front (short)	_	90	120	_	22	22	_	_	48	48	_	46	46
	Tunnel clamp	30	90	120	2.5	2.5	2.5	6	62.5	61	61	60	59.5	59.5
S160	Front 1) (long)	35	105	140	55	55	55	_	54	54	54	52	52	52
E250, S250 (except S250-PE)	Front (short) 1)	_	105	140	_	30	30	_	_	54	54	_	52	52
ZS250	Tunnel clamp	35	105	140	2.5	2.5	2.5	6	63	61	61	49.5	59.5	59.5
H125, L125, H160, L160	Front 1)	_	105	140	_	55	55	_	_	89	89	_	87	87
H250, L250, S250-PE	Tunnel clamp	_	105	140	_	2.5	2.5	4.5	_	96	96	_	59.5	59.5
E400, S400	Front (wide)	_	140	185	_	110	110	_	_	97	99	_	96	98
E630NE, S630CE, S630GE	Front (wide)	_	180	240	_	110	114	_	_	97	99	_	96	98
	Front (narrow) 1)	_	140	185	_	80	85	_	_	134	134	_	93	93
H400, L400	Tunnel clamp	_	140	185	_	3	3	4.5	_	97	97	_	93	93
	Front (wide)	_	180	240	_	110	114	_	_	134	136	_	96	98
	Tunnel clamp	_	140	185		3	3	4.5		134	134		93	93

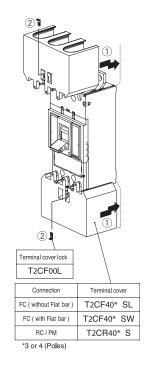
Note: 1) Not applicable when flat bars (FB) are fitted.

Terminal covers for rear connected and plug-in type MCCBs (T2 CR)

Dimensions (in mm)

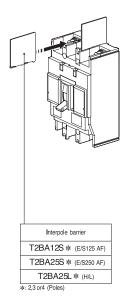

Dimensions (in mm)

	A								
Breaker	3 pole	4 pole	В	B¹	C	D	Breaker	Α	В
E125, S125, ZS125	90	120	2	6	41.5	40.5	E125, S125	47	53
S160, ZS250	105	140	2	6	41.5	39.5	S160	100	53
E250, S250 (except S250-PE)							E250, S250 (except S250-PE)		
H125, L125, H160, L160	105	140	2	6	77.5	39.5	H125, L125, H160, L160	100	88
H250, L250, S250-PE							H250, L250, S250-PE		
E400, S400	140	185	3	4.5	97	93	E400, S400, E630, S630	110	95
H400, L400							H400, L400		

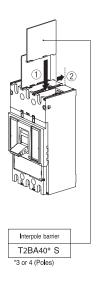

TemBreak 2 MCCB accessories TemBreak 2 Terminal cover fitting

Terminal cover mounting procedure 125-250 A

· When removing, remove the items in reverse order of mounting.


Terminal cover mounting procedure 400-630 A

• When removing, remove the items in reverse order of mounting.

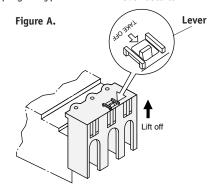

TemBreak 2 Interpole barriers 125-630 A

Interpole barrier mounting procedure 125-250 A

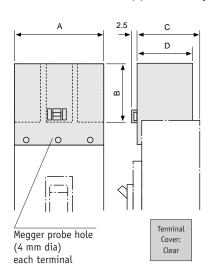
• When removing, remove the items in reverse order of mounting.

Interpole barrier mounting procedure 400-630 A

TemBreak 1 MCCB technical data Terminal covers for front connected breakers

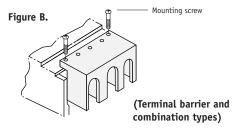

Terminal covers are designed to protect breaker terminals and other live parts from exposure.

Terminal covers are available for front or rear connection and plug-in types.


Lever details

Snap-on cover

XPR type. To remove; press lever in direction of 'TAKE OFF' position (Refer to figure **A**).


Front-connection application (TCF)

Screw-on cover

(Refer to figure B)

This cover screws directly onto insert nuts in the breaker cover however, insert nuts are not provided as standard on the breaker cover. Please specify if terminal cover (TCF) is to be used, when ordering the breaker.

Dimensions (in mm)

Frame			No. of					Snap-on 1)	Cover 3)	Refer
(A)	Breaker	Cat. No.	poles	Α	В	С	D	cover	screw size	fig.
125	XS125	2H14O7DAA	3	89	40	79	78	•	_	Α
	XH125, TL30F	2H1408DAA	4	124	40	79	78	_	_	Α
160/250	XS250	2H2135DAA	3	104	55	81	80	•	_	Α
		2H1410DAA	4	144	70	81.4	80	_	_	Α
	XH160PJ,	2H2136DAA	3	104	55	98	97	•	_	Α
	XH250NJ	2H1412DAA	4	144	70	98.4	97	_	M3	Α
250/400	XH250PJ,	2H1413DAB	3	180	110	99	96	_	M3	В
	XS400, XH400	2H1414DAB	4	240	110	99	96	_	M3	В
	XV400	2H1415DAB ²)	3	145	85	99	96.5	_	M3	В
		2H1416DAB ²)	4	190	85	99	96.5	_	M3	В
630/800	XS630, XH630,	2H1417DAB	3	215	130	99.5 ('ON' side)	99	_		В
	XS800, XH800,					105.5 ('OFF' side)			M3	
	XV630/800	2H1418DAB	4	285	130	99.5 ('ON' side)	99	_		В
						105.5 ('OFF' side)			M3	
1250	XS1250	2H1419DAB	3	215	130	115	99	_	M3	В
	XV1250	2H1420DAB	4	285	130	115	99	_		В

Notes:

- ¹) 'yes' or 'available'
 - 'no' or 'not available'.
- ²) without attached busbars.
- ³) For screw-on cover.

TemBreak 1 MCCB technical data Terminal covers for rear-connect and plug-in breakers

Screw-on cover (TCR)

(Refer to figure A)

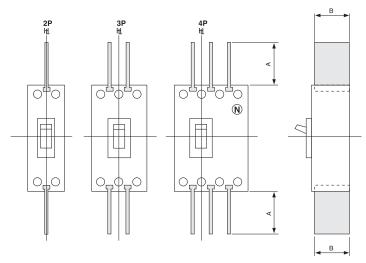
These covers screw directly onto insert nuts in the breaker cover however, insert nuts are not provided as standard on the breaker cover. Please specify if terminal cover (TCR) is to be used, when ordering the breaker.

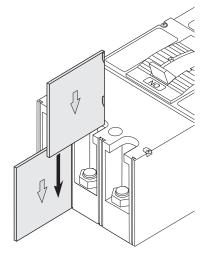
Dimensions (in mm)

Frame (A)	Breaker	Cat. No.	No of poles	Α	В	С	D	Cover screw size ³)
125	XS125, XH125	UXPD0031A	3	89	2	79.5	78.5	M2.6
	TL30F	UXPD0032A	4	119	2	79.5	78.5	M2.6
225	XE225	2H1079CAA	3	105	2	58	55	M2.6
160/250	XS250	UXPD0027B	3	104	3	81.5	80.5	M2.6
		UXPD0028B	4	139	3	81.5	80.5	M2.6
	XH160PJ	UXPD0033B	3	104	3	78.5	97.5	М3
	XH250NJ	UXPD0034B	4	139	3	78.5	97.5	M3
250/400	XH250PJ	UXPD0011B	3	140	3	99	98	M3
	XS/XH/XV400	UXPD0012A	4	185	3	99	98	M3
630/800	XS/XH/XV630	UXPD0013B	3	210	3	99 1)	93	M3
	XS/XH/XV800					105 ²)		
		UXPD0014B	4	280	3	99 1)	93	M3
						105 ²)		

Notes: 1) ('ON' side).

²) ('OFF' side).


³) For screw-on cover.



TemBreak 1 MCCB technical data Interpole/isolation barrier

Interpole barriers completely isolate terminals to prevent accidental short-circuiting between two or more terminals.

Interpole barriers are supplied for the lineside only, as standard, with all 125 A - 1600 A MCCBs.

Interpole barriers are inserted into grooves between the terminals, as shown.

Dimensions (in mm)

Colour: Black

Frame			Barrier		
(A)	Breaker		Cat. No.	Α	В
125	XS125	1)	UXQH0002A	67	77
	XH125	1)			
160/225/250	XH160PJ		UXQH0002A	67	96
	XE225	1)			
	XS250	1)			
	XH250NJ	1)			
250/400	XH250PJ		UXQH0004A	110	95
	XS400				
	XH400				
	XV400				
630	XS630		UXQH0004A	110	95
	XH630				
	XV630				
800	XS800		UXQH0004A	110	95
	XH800				
	XV800				
1250	XS1250		UXQH0004A	110	95
	XV1250				
1600	XS1600		UXQH0004A	110	95

Note: 1) The number of barriers are standard, as follows: 1 for 2 pole, 2 for 3 pole and 3 for 4 pole.

SECTION 9

TEMBREAK MOULDED CASE CIRCUIT BREAKERS

TEMBREAK 2

MOULDED CASE CIRCUIT BREAKERS 16A TO 630A

- 1. Welcome to TemBreak 2
- 2. Ratings and Specifications
- 3. Operating Characteristics
- 4. Application Data
- 5. Accessories
- 6. Installation
- 7. Dimensions

TEMBREAK 2

MINI MOULDED CASE CIRCUIT BREAKERS 10A TO 100A

8. TemBreak 2 MINI Moulded Case Circuit Breakers

TEMBREAK

MOULDED CASE CIRCUIT BREAKERS 630A TO 1600A

9. TemBreak Moulded Case Circuit Breakers

•	Easy Selection Guide	141
•	Ratings and Specifications	143
•	Operating Characteristics	147
•	Electrical Control Using Internally Mounted Accessories	149
•	Electrical Control Using Motor Operation	153
•	Operating Handles	155
•	Insulation Accessories	157
•	Toggle Accessories	158
	Mechanical Interlocks	159

• Dimensions

Installation

160

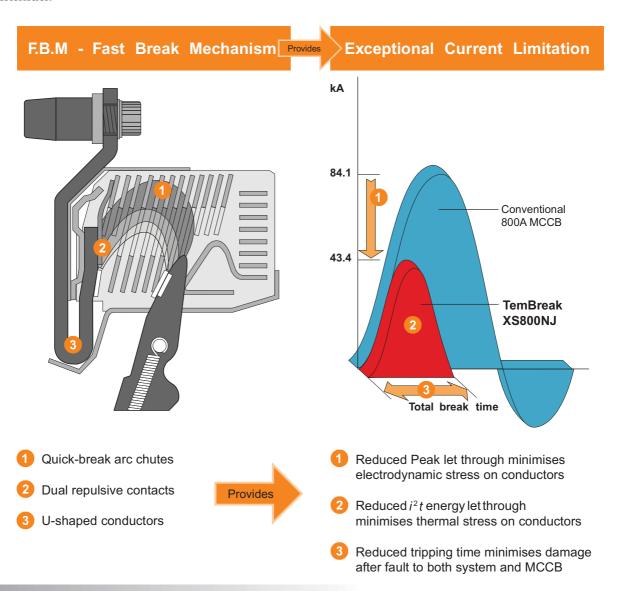
167

10. Order Codes

TemBreak

EASY SELECTION GUIDE

The TemBreak range of products includes:


- -Moulded Case Circuit Breakers
- -Switch-Disconnectors
- -A comprehensive range of accessories.

EXCEPTIONAL CURRENT LIMITING

Terasaki's ingenuity in current breaking is exemplified by the Fast Break Mechanism (FBM) of the TemBreak range.

The quick breaking performance of TemBreak provides exceptional current limiting characteristics.

EASY SELECTION GUIDE

Frame 50-100	Ratings 125-630	(A) 800	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	125	0			160	0		
		MCCBs									
TemBreak 2 Moulded Case Circuit Breakers. Refer to Section 8	TemBreak 2 Moulded Case Circuit Breakers. Refer to Sections 1 to 7	Model Type Icu (kA) XS800 NJ 65 XS800 SE 50 XH800 SE 65 XH800 PJ 100 XH800 PE 65 TL800 NE 125		Model XS1250 XS1250 TL1250	Type CE SE NE	/cu (kA) 50 85 125		Model XS1600 XS1600	Type CE SE	/cu (kA) 50 100	
In (A)									16	00	
					12 1 10	50 [00					
		800 1 630									
10 - 100	630 1 20										
10 1100		Constants D									
		Switch-D	ISCO	onne	ecto	ors					
		Model Type XS800 NN		Model XS1250	Type NN			Model XS1600	Type NN		

Note: All breaking capacities are r.m.s. symmetrical at 400V AC

TemBreak

RATINGS AND SPECIFICATIONS

TemBreak MCCB Electrical Characteristics to IEC 60947-2, EN 60947-2, JIS C 8201-2-1 Ann. 1, AS/NZS 3947-3, NEMA-AB1

Frame	Quantity	Unit	Condition	800	800
Model				XS800NJ	XS800SE
Number of Poles				3, 4	3, 4
Nominal current ratings					
	$I_{\rm n}$	(A)	50°C	630, 800	800
Electrical characteristics					
Rated operational voltage	$U_{\rm e}$	(V)	AC 50/60 Hz DC	690 250	690
Rated insulation voltage Rated impulse withstand voltage	$U_{ m i}$ $U_{ m imp}$	(V) (kV)		690 8	690 8
Ultimate breaking capacity (IEC, JIS, AS/NZS)	I_{cu}	(kA)	690V AC* 440V AC	20 50	20 50
(IEC, JIS, AS/NZS)			415V AC	50	50
			380/400V AC	65	50
			220/240V AC 250V DC	85 50	85 -
Service breaking capacity	I_{cs}	(kA)	690V AC*	10	10
(IEC, JIS, AS/NZS)			440V AC 415V AC	25 25	25 25
			380/400V AC	33	25
			220/240V AC 250V DC	43 25	43 -
Rated short-time withstand current	$I_{\rm cw}$	(kA rms)	0.3 Seconds	-	10
Rated breaking capacity (NEMA)		(kA)	480V AC 240V AC	50 85	50 85
Protection					
Adjustable thermal, adjustable magnetic Fixed hydraulic, fixed magnetic				•	
Microprocessor					
Utilisation category				A	В
Installation Front connection (FC)					
Attached flat bar (FB)				•	•
Solderless terminal (cable clamp)				•	•
Rear connection (RC) Plug-in (PM)				•	•
Draw-out (DR)				•	•
DIN rail mounting (DA) Dimensions	h	(mm)		273	273
	W	(mm)	3 pole	210	210
	d	(mm)	4 pole	280 103	280 103
Weight	W	(kg)	3 pole	9.4	9.7
Operation			4 pole	12.2	12.5
Operation Toggle operation					
Variable depth/direct mount operating handle (HB/HP) Motor operator (MC)				•	•
iviolor operator (IVIO)				•	•

page 142 *TemBreak*

Q-Pulse Id: TMS199 17/04/2013 120 of 181

[■] Standard • Optional - Not Available
*MCCBs cannot be used in IT earthed systems at this voltage.

3, 4 3, 4 3, 4 3, 4 3, 4 3, 4 3, 4 3, 4	90
800 630, 800 630, 800 630, 800 1000, 1250 1000, 1250 1000, 1250 1600 1600 1600 1600 1600 1600 1600 16	90
690 690 690 690 690 690 690 690 690 690	90
690 690 690 690 690 690 690 690 690 690	90
690 690 690 690 690 690 690 690 690 690	90
- 250 690 690 690 690 690 690 690	90
- 250 690 690 690 690 690 690 690	90
- 250 690 690 690 690 690 690 690	90
20 45 20 45 20 25 45 20 45 65 85 65 125 50 65 125 50 85	
65 85 65 125 50 65 125 50 85	
65 100 65 125 50 85 125 50 100	00
100	
- 50	
10 23 10 34 10 19 34 10 34	4 000
33 43 50 70 25 50 65 25 65 33 50 50 70 25 50 65 25 65	5 37 0
33 50 50 70 25 65 70/65 25 75	5 g
50 63 50 113 43 75 113 43 94	4 8
- 25	
10 - 10 15 15 15 20 20	0 Jo
65 50 65 75 50 65 75 50 85 85 85 85 150 85 85 150 85 128	5 <u>sig</u>
	25 Jep
	Visit www.terasaki.com for details of MCCBs up to 2500A
	i.cor
	sak
B A B B B B B	tera.
	MM.
	Sitv
- - - - - - - - - -	
210 210 210 210 210 210 210 210 210 210	
280 280 280 280 280 280 280 280 280 280	80
103 103 103 140 120 120 140 140 140 9.7 9.4 9.7 25.8 22.0 22.0 26.0 27.0 27.	
	5.0

TemBreak

RATINGS AND SPECIFICATIONS

TemBreak Switch-Disconnectors Electrical Characteristics to IEC 60947-3, EN 60947-3, AS/NZS 3947-3

Frame	Quantity	Unit	Condition	800	1250
Model				XS800NN	XS1250NN
Number of Poles				3, 4	3, 4
Nominal current ratings					
	In	(A)		800	1250
Electrical characteristics					
Rated operational voltage	$U_{\rm e}$	(V)	AC 50/60 Hz	690	690
Dated inculation valtage	7.7	^^	DC	250 690	250 690
Rated insulation voltage Rated impulse withstand voltage	U_{i} U_{imp}	(V) (kV)		8	8
D. 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				4.5	
Rated short-circuit making capacity Rated short-time withstand current	$I_{\rm cm}$ $I_{\rm cw}$	(kA peak) (kA rms)	0.3 Seconds	15 9.6	32 15
Utilisation category	1 CW	(10 11110)	AC	AC-23A	AC-23A
Installation					
Front connection (FC)					-
Attached flat bar (FB)				•	•
Solderless terminal (cable clamp) Rear connection (RC)				•	•
Plug-in (PM)				•	•
Draw-out (DR) DIN rail mounting (DA)				•	•
Dimensions	h	(mm)		273	370
	W	(mm)	3 pole	210	210
	d	(mm)	4 pole	280 103	280 120
Weight	W	(kg)	3 pole	9.4	20.4
			4 pole	12.2	26.4
Operation					
Toggle operation					
Variable depth/direct mount operating handle (HB/HP) Motor operator (MC)				•	•
ivioloi operator (IVIO)					

page 144 **TemBreak**

Standard

Optional

- Not Available

SECTION 9

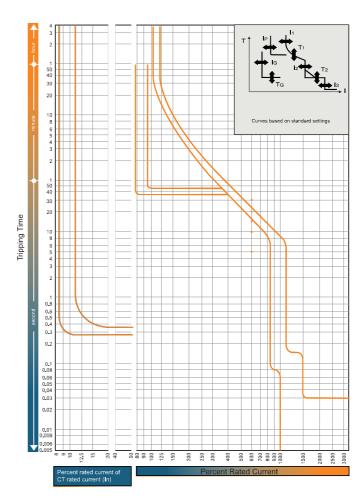
TEMBREAK MOULDED CASE CIRCUIT BREAKERS

1600
XS1600NN
3, 4
1600
690 250 690 8
45 20 AC-23A
- - - - 370 210 280 140 24.9 32.9
•

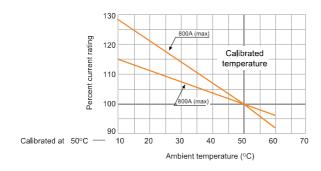
TemBreak

OPERATING CHARACTERISTICS

800A Frame MCCBs


Time/current characteristic curves

XS800NJ, XH800PJ


Magnetic trip current Mag. trip curr. (A) Tripping Time 0.8 0.6 0.5 0.4 0.3 0.08 0.08 0.08 0.05 0.04 0.03

Time/current characteristic curves

XS800SE, XH800SE, XH800PE

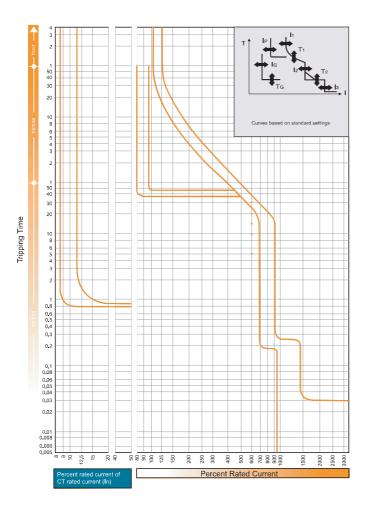
Ambient compensating curves

Over current tripping characteristics

CT rated current (A) (In)	630,800
Base current setting (A): (Io)	(In) x (0.63-0.8-1.0)
Long time-delay pick-up current (A): (I1)	(Io) x (0.8-0.85-0.9-0.95-1.0) Non-tripping at (I1)
	setting x 105% and below. Tripping at 125% & above.
Long time-delay time settings (S) (T ₁)	(5-10-15-20-30) at (I ₁) x 600% current.
	Setting tolerance ± 20%
Short time-delay pick-up current (A): (I2)	(lo) x (2-4-6-8-10) Setting tolerance ± 15%
Short time-delay time settings (S) (T2)	Opening time (0.1, 0.15, 0.2, 0.25, 0.3) in the definite
	time-delay. Total clearing time is + 50 mS and
	resettable time -20mS for the time-delay setting.
Instantaneous trip pick-up current (A) (I3)	Continuously adjustable from (Io) x (3 to12)
	Setting tolerance ± 20%
* Pre-trip alarm pick-up current (A) (IP)	(I ₁) x (0.7, 0.8, <u>0.9</u> , 1.0) Setting tolerance ±10%
* Pre-trip alarm time setting (S) (TP)	40 fixed definite time-delay. Setting tolerance ±10%
* Ground fault trip pick-up current (A): (IG)	Continiuously adjustable from (In) x (0.1 to 0.4)
	Setting tolerance ± 15%
* Ground fault trip time setting (S): (To)	Opening time (0.1-0.2-0.3-0.4-0.8) in the definite
	time-delay. Total clearing time is + 50mS and
	resettable time is - 20mS for the time-delay settings
N-t * Optional	

Note: * Optional

Note: The underlined values will be applied as standard ratings unless otherwise specified when ordering.


TemBreak page 146

OPERATING CHARACTERISTICS

1250A and 1600A Frame MCCBs

Time/current characteristic curves

TL800NE, XS1250CE, XS1250SE, TL1250NE, XS1600CE, XS1600SE

Over current tripping characteristics

CT rated current (A) (In)	630, 800, 1000, 1250, 1600, 2000, 2500
Base current setting (A): (Io)	(In) x (0.63-0.8-1.0)
Long time-delay pick-up current (A): (I1)	(Io) x (0.8-0.85-0.9-0.95-1.0) Non-tripping at (I ₁)
	setting x 105% and below. Tripping at 125% & above.
Long time-delay time settings (S) (T ₁)	(5-10-15-20-30) at (I ₁) x 600% current.
	Setting tolerance ± 20%
Short time-delay pick-up current (A): (I2)	(Io) x (2-4-6-8-10) Setting tolerance ± 15%
Short time-delay time settings (S) (T ₂)	Opening time (0.1, 0.15, <u>0.2</u> , 0.25, 0.3) in the definite
	time-delay. Total clearing time is + 50 mS and
	resettable time -20mS for the time-delay setting.
Instantaneous trip pick-up current (A) (I ₃)	Continuously adjustable from (Io) x (3 to 12)
	Setting tolerance ± 20%
* Pre-trip alarm pick-up current (A) (IP)	(I ₁) x (0.7, 0.8, <u>0.9</u> , 1.0) Setting tolerance ±10%
* Pre-trip alarm time setting (S) (T _P)	40 fixed definite time-delay. Setting tolerance ±10%
* Ground fault trip pick-up current (A): (IG)	Continiuously adjustable from (In) x (0.1 to 0.4)
	Setting tolerance ± 15%
* Ground fault trip time setting (S): (TG)	Opening time (0.1-0.2-0.3-0.4-0.8) in the definite
	time-delay. Total clearing time is + 50mS and
	resettable time is - 20mS for the time-delay settings

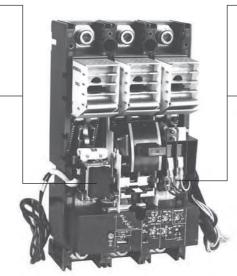
Note: * Optional

Note: The underlined values will be applied as standard ratings unless otherwise specified when ordering.

TemBreak

ELECTRICAL CONTROL USING INTERNALLY MOUNTED ACCESSORIES

Shunt Trip (SHT)


Remote tripping of the breaker

Undervoltage Trip (UVT)

Automatically trips the breaker when the circuit voltage falls below pre-set value. Remote tripping of the breaker is also possible.

Note: The UVT controller is installed externally, when provided with AC UVT. (Refer to Dimensions)

Note: The SHT and UVT cannot be mounted in the same breaker.

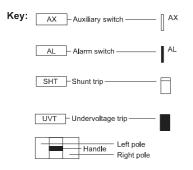
Auxiliary Switch (AX)

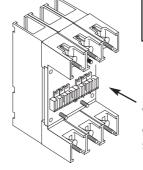
Electrically indicates On/Off status of the breaker.

Alarm Switch (AL)

Electrically indicates when the breaker is in the "Tripped" state.

Overview of Internally Mounted Accessories


page 148 TemBreak


ELECTRICAL CONTROL USING INTERNALLY MOUNTED ACCESSORIES

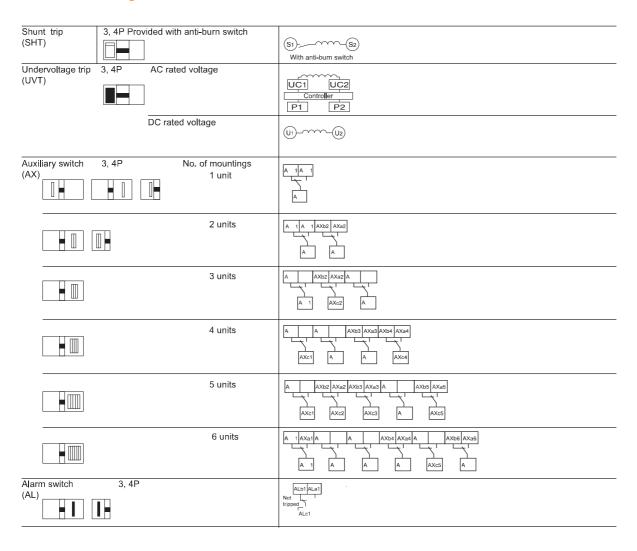
Valid Combinations of Internally Mounted Accessories

Accessory Combinations

Breaker type XS800NJ XS800SE XH800SE XH800PJ XH800PE TL800NE XS1250CE XS1250SE TL1250NE XS1600CE XS1600SE **Internally mounted accessories** AX,AXE AL,ALE SHT UVT AX AL AX SHT AX UVT SHT AL UVT AX AL SHT AX AL UVT

Accessory Combinations for Plug-in MCCBs

Frame (A)		800-1250A Frame
Number of auxiliary terminals to be installed (maximum)		
SHT	LINE LOAD	S1 S2
UVT	LINE LOAD	P1 P2
1AB	LINE LOAD	AXc1 AXc1 AXb1
2AB	LINE LOAD	AXc1 AXb1
ЗАВ	LINE LOAD	AXc1 AXb1 AXc3
SHT & 1AB	LINE LOAD	AXe1 AXe1 Xb1 S1 S2
SHT & 2AB	LINE LOAD	AXc1 AXc1 AXb1 AXc2 AXc2 AXb2 S1 S2
SHT & 3AB	LINE LOAD	AXc1 AXc1 AXc3
UVT & 1AB	LINE LOAD	AXc1 AXb1
UVT & 2AB	LINE LOAD	AXc1 AXa1 AXc2 AXc2 P1 P2
UVT & 3AB	LINE LOAD	AXc1 AXs1 AXc3 P1 P2
ALT & 1AB	LINE LOAD	
ALT & 2AB	LINE LOAD	
UVT & ALT & 1AB	LINE LOAD	AXc1 AXc1 AXc1 ALc1 ALc2 ALc2 P1 P2
UVT & ALT & 2AB	LINE LOAD	AXc1 AXb1 AXc2 AXb2 ALc1 ALa2 P1 P2
SHT & ALT & 1AB	LINE LOAD	AXc AXs AXb1 ALc ALa1 ALb1
SHT & ALT & 2AB	LINE LOAD	AXc1 AXc1 AXc2 AXc2 AXc2 AXc2 ALc1 ALa1 S1 S2
ALT	LINE LOAD	ALc1 ALb1
SHT & ALT	LINE LOAD	ALc1 ALa1 ALb1 S1 S2
UVT & ALT	LINE LOAD	ALc1 ALa1 ALb1 P1 P2


Alarm switch is an 'a' contact only DC UVT without controller will have terminals U1 and U2 [AxC1 Due to restricted space, these terminals are common [AXC2].

The arrangements shown above represent the view on the arrow, that is, looking at the MCCB body from the rear.

TemBreak

ELECTRICAL CONTROL USING INTERNALLY MOUNTED ACCESSORIES

Connection Diagrams and Terminal Numbers

Ratings of Auxiliary Switches (AX) and Alarm Switches (AL)

AC	Voltage (V)		480	250	125
	Current (A)	Resistive load	3	5	5
		Lamp load	0.3	1.5	2
		Inductive load	2	5	5
		Motor load	0.4	2	3
DC	Voltage (V)		250	125	30
	Current (A)	Resistive load	0.3	0.6	5
		Lamp load	0.05	0.1	3
		Inductive load	0.3	0.6	4
		Motor load	0.05	0.1	3

SECTION 9

TEMBREAK MOULDED CASE CIRCUIT BREAKERS

ELECTRICAL CONTROL USING INTERNALLY MOUNTED ACCESSORIES

Operation of Auxiliary and Alarm Switches

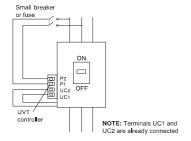
Switch type	Breaker 'ON'	Breaker 'OFF'	Breaker 'TRIP'
AX	AXb1 AXa1	A AXc1	AXb1 AXa1

Switch type	Breaker 'ON'	Breaker 'OFF'	Breaker 'TRIP'
AL	ALb1 ALa1	ALb1 ALa1	ALb1 ALa1

Ratings of Shunt Trips

Rate	Exciting coil current [peak value (A)] Values at the highest voltage)
voltage:	110-115VAC	200-480VAC	24VDC	48VDC	100-115VDC	200-2
	1.1	0.93	2.52	1.55	0.67	0.35

Note: AC rated, permissible operating voltage range is 85 to 110%. DC 75 to 125%. Note: Special voltages available on request. Contact Terasaki for details.


Ratings of Undervoltage Trips

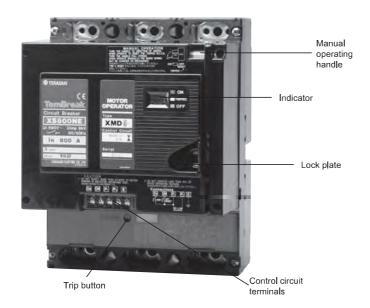
Rated	Power s	upply, VA (with UV	Exciting co	oil current (mA)	
voltage:	100-120VAC 200-240VAC 300-450VAC			24VDC	100-115VDC
	5VA	5VA	5VA	22.7	6.0

 $\textbf{Note} : \textbf{Tripping voltage is 35-70\% of the rated voltage.} \quad \textbf{Resettable voltage is 85\% or less, of the rated voltage.} \\$

Note: Special voltages available on request, Contact Terasaki for details

If the UVT is for AC use, an external controller will be installed. The controller is fitted to the left side of the breaker as standard. The controller may be installed separately if required (please specify location). Separate installation is necessary when mechanical interlocks are fitted. UVT controllers incorporating time delay units are also available (contact us for details). Refer to dimensions of terminal blocks for the mounting positions of UVT controllers.

Connection of UVT Controller


Termination of Control Wiring

Leads for internally mounted accessories can be connected to the terminal block. Each terminal block has six terminals. Terminal arrangements are standardised. Refer to dimensions for standard terminal arrangements.

TemBreak page 151

ELECTRICAL CONTROL USING MOTORISED OPERATION

Type XMD6, XMD9

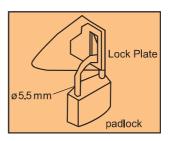
Positive contact indication

Colour coding indicates the true position of the contacts clearly: ON (red), OFF (green), TRIP (white).

Easy maintenance

Breaker mounting, removal, and even setting changes can be done without removing the motor operator.

Manual ON/OFF operation with one stroke


Fast closing operation

Closing in 60ms or less. The closing time remains constant over repeated operations.

Ratings and Specifications

Type of Motor Operat	ors	XMD6	XMD9
Applicable Breakers		XS800NJ	TL800NE
		XS800SE	XS1250CE
		XH800SE	XS1250NE
		XH800PJ	TL1250NE
		XH800PE	XS1600CE
			XS1600NE
Rated Operating	AC 100-115V 50/60Hz	•	•
Voltage (V)	200-230V 50/60Hz	•	•
	DC 100-110V	•	•
	24V	•	•
Lock in "OFF" position	(standard)	•	•
Manual Trip Button		*	*
Steady-state r.m.s.	AC100 ON ①	-/3.1	-/3.1
Amp/inrush Amp (A)	-115V OFF, RESET ①	1.8/6.0	1.8/6.0
	AC200 ON 2	<u>-/1.2</u>	-/1.2
	-230V OFF, RESET 2	1.0/3.2	1.0/3.2
	DC100 ON 3	-/0.8	-/0.8
	-110V OFF, RESET 3	1.1/4.2	1.1/4.2
	DC24V ON	<u>-/4.5</u>	-/4.5
	OFF, RESET_	4.0/12.0	4.0/12.0
Type of operation		Spring Charged	Spring Charged
Operating Time(s)	ON (Maximium values)	0.06	0.06
	OFF, RESET 4	3	3
Control Switch Ratings	<u> </u>	250V, 5A	250V, 5A
Power Source Capacity	y (VA)	300VA	300VA
Dielectric withstand vo	ltage	AC1500V (AC500V)	AC1500V (AC500V)
The value in brackets f	or 24V DC		
Weight (kg)		5.6	6.4

^{*} Trip button on breaker to be used (accessible with motor fitted)

The breaker can be padlocked in the "OFF" position by pulling out the lock plate, and locking it with a padlock.

When the breaker is "ON", the lock plate cannot be pulled out.
Up to three locks can be used.

Padlocks not supplied.

NOTE

• : Yes or available

① : Maximum values at AC115V, 50Hz ② : Maximum values at AC230V, 50Hz

3 : Maximum values at AC230V,

 $\ensuremath{\mathfrak{A}}$: Maximum values at the rated operating voltages

page 152 **TemBreak**

ELECTRICAL CONTROL USING MOTORISED OPERATION

Motorised operation

ON CONTROL

When the ON switch is closed, the latch release coil (LRC) is excited and the closing spring is released. The breaker quickly closes and goes into ON status. When the closing spring is released, the limit switch (LS) is opened and the LRC is de-excited.

OFF CONTROL

When the off switch is closed, self-hold control relay (Y) is activated and motor (M) operates to charge the closing spring. The breaker changes to OFF status.

RESET CONTROL

When the breaker is in TRIP status, closing the OFF switch activates self-hold control relay (Y) and starts motor (M). Motor (M) charges the closing spring and resets the breaker.

Manual operation

ON, OFF (RESET)

The breaker can be opened (OFF or RESET) and closed (ON) alternately by pulling the operating lever down in one full stroke. ON/ OFF operation of the breaker is possible without charging or releasing the closing spring.

Emergency Trip

Opening the breaker (OFF) using the motor operator takes up to 3 seconds. If a remote emergency OFF function is necessary, incorporate the shunt trip device (SHT) or the undervoltage trip device (UVT) into the breaker.

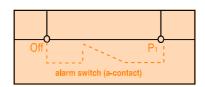
PRECAUTIONS REGARDING USAGE

- If using the UVT option, be sure to reset the UVT before closing the breaker.
- The motor operator must be supplied with voltage within the following range:
 DC: 75-110% of rated voltage
 AC: 85-110% of rated voltage
 Operation at low voltage may burn out the motor.

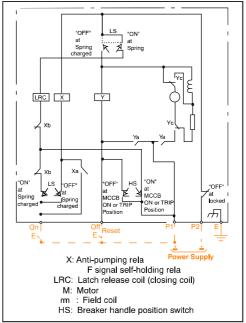
Anti-pumping function

When the breaker is turned ON and the closing spring is released, self-hold control relay X is activate. Xa-contact is held closed, and Xb-contact is opened. While the ON switch is closed, latch release coil (LRC) will not be excited even if the OFF switch is closed or an automatic reset circuit is being used. Pumping is thus prevented.

Automatic charge/discharge function


If the breaker is closed manually (ON) while the power source is on, the handle switch (HS) induces automatic release of the closing spring. Likewise, if the breaker is opened manually (OFF), the springs are automatically charged. If the breaker is opened or closed while the power source is off, later when the power source is turned on, the closing spring will automatically be charged or discharged to match the ON/OFF status of the breaker. This automatic charge/ discharge function is necessary to prepare the closing mechanism for the next ON/OFF operation. The sound of the charging or discharging of the spring should not be mistaken for a malfunction,

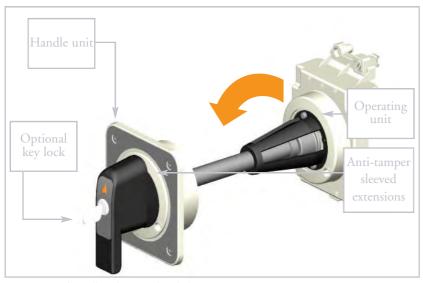
Automatic reset


An alarm switch (a-contact) fitted in the breaker, can be used to induce recharging of the closing spring and automatically reset the MCCB. Connect the automatic reset circuit as shown below.

It is recommended that a time delay of approximately 3 minutes is introduced to the automatic reset circuit for thermal magnetic MCCB's. In the event of an overload trip this will prevent the motor operator repeatedly driving the MCCB between the tripped and reset positions while the thermal element is hot.

If an alarm signal is also required for external control, use a 2 alarm switch combination.

Control circuit AC and DC



Note: Customer wiring shown in orange

TemBreak

OPERATING HANDLES

Door Mounted Handle

Door Mounted Handle with Optional Keylock

The door mounted operating handle is used to operate a circuit breaker mounted inside a cubicle from outside the door. It consists of an operating mechanism that is mounted on the breaker, an operating handle that is mounted on the door, and a shaft that transmits the turning force from the handle to the operating unit. The shaft can be cut to the required length.

The appearance and operation of this handle match those of the door mounted handle for Tembreak 2 MCCBs (details in Section 5).

This means that a switchboard containing a combination of TemBreak and TemBreak 2 MCCBs from this catalogue can be operated with handles which all look the same, and work the same way.

OPERATING HANDLES

Breaker Mounted Handle (OHJ)

90° ON/OFF OPERATION.

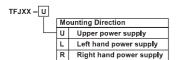
The handle operation and ON/OFF indicator are the same irrespective of the breaker mounting direction, being vertical or horizontal. This also applies to the panel cut-out.

Double insulation structure

Provides an even higher degree of safety.

Panel lock mechanism

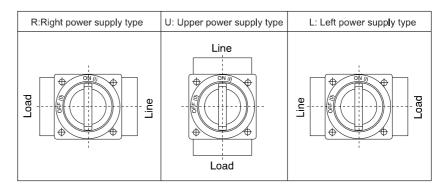
The panel door cannot be opened when the handle is in the ON or OFF position. The panel door can only be opened in the RESET position.


- •Equipped with a lock (reverse interlock) mechanism which does not permit the breaker to be closed while the panel door is opened. The lock can be released.
- •When the panel lock release is turned counterclockwise the panel door can be opened even when the handle is in the ON or OFF position.

Handle Lock Mechanism

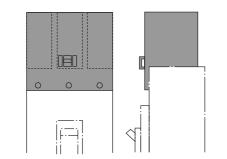
The handle can be locked in the ON or OFF position. Upto 3 padlocks can be fitted (padlock not supplied).

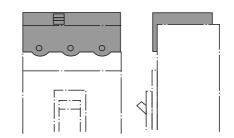
Ordering code


Please specify the correct type code when ordering

Additional Options

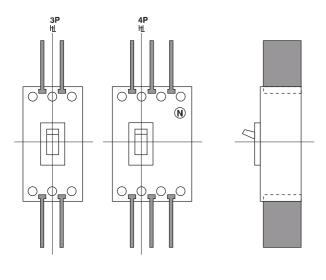
Please specify at the time of ordering

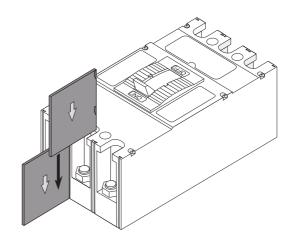

	Standard	Option
Colour	Black	Yellow base
		Red handle
IP	3X	55


INSULATION ACCESSORIES

Terminal Covers

Terminal covers prevent exposure of terminals and other live parts.

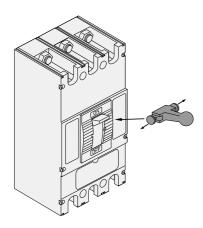

Terminal Covers for Front Connection.



Terminal Covers for Rear Connection and Plug-in.

Interpole Barriers

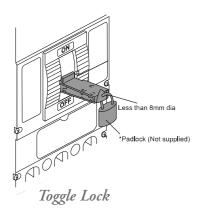
Interpole barriers provide maximum insulation between phases at the terminals of the MCCB. They can not be fitted at the same time as any of the terminal covers. Interpole barriers can easily be fitted to either end of an MCCB.

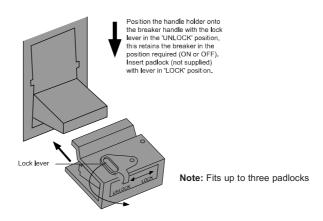


Interpole Barriers

TOGGLE ACCESSORIES

Toggle Extension


The toggle extension provides extra leverage for the operator when performing manual ON, OFF and RESET operations.



Toggle Extension

Toggle Lock

The toggle lock enables padlocking of the MCCB in either the ON or OFF position. Padlocks are not supplied.

Key Lock

MCCBs, including those fitted with door mounted handles and some motor operators can be supplied with Castell locking systems. Contact us for details.

Door Flange

A door flange provides a neat finish for the toggle cutout on the outside of the panel door.

TemBreak

MECHANICAL INTERLOCKS

Rear Mechanical Interlocks

Rear interlocks consist of a mechanism mounted at the back of each MCCB of an adjacently mounted pair. The interlock inhibits the closure of one MCCB if the other is already in the ON position. MCCBs cannot be mounted directly to a flat plate, but are installed on a frame to ensure space for the interlock mechanism.

Two MCCBs or switch-disconnectors of the same frame size may be rear interlocked.

An operating handle or motor operator can be fitted to an MCCB with rear interlock.

Wire Mechanical Interlock

Wire interlocks consist of two mechanisms connected by a cable. The mechanisms are mounted on the back of two MCCBs located at a distance from each other which is limited by the length and bend radius of the cable. The mechanisms inhibit the closure of one MCCB if the other is already in the ON position. MCCBs cannot be mounted directly to a flat plate, but are installed on a frame to ensure space for the interlock mechanism.

Any two of the TemBreak MCCBs or switch disconnectors featured in this catalogue may be wire interlocked.

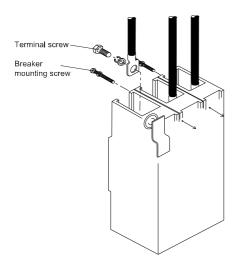
An operating handle or motor operator can be fitted to an MCCB with rear interlock.

TemTransfer Automatic Changeover Controller

TemBreak MCCBs can be configured to provide automatic supply changeover. They are compatible with the TemTransfer changeover controller. Refer to section 5 for details.

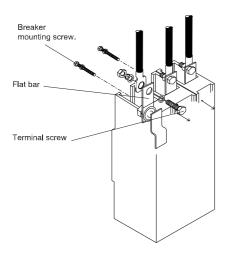
Front Mechanical Interlock

Front interlocks are manually operated toggle locking devices which can be installed between two adjacent MCCBs. Depending on the position of the interlock, one or other of the MCCBs is inhibited from being in the ON position.


Two MCCBs or switch-disconnectors of the same frame size may be front interlocked.

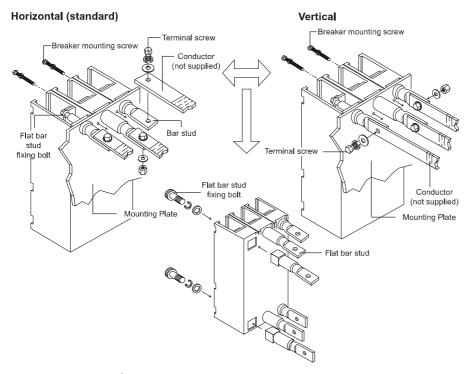
Operating handles and motor operators cannot be fitted to MCCBs with front mechanical interlocks.

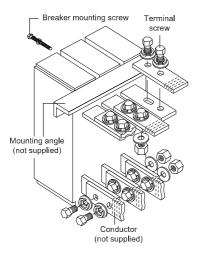
INSTALLATION


Connection of Busbars and Terminated Cables

This method is standard for 800A frame models. Solid conductors or cables terminated with compression terminals can be used.

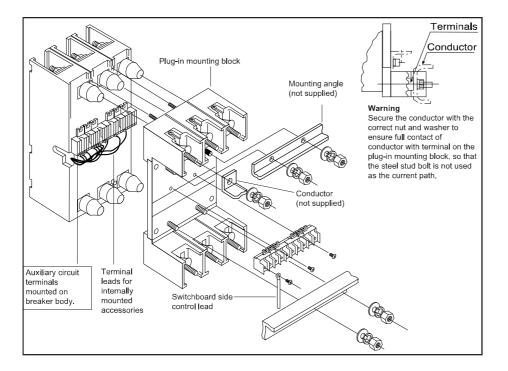
Connection of Large Conductors and Multiple Conductors


Flat bars are terminal extensions which can be fitted to line or load side terminals and are used to connect large conductors and multiple conductors. Optional for 800A frame, standard for 1250A and 1600A frame models.


INSTALLATION

Termination in a Separate Compartment

Rear connections allow termination of conductors in a different switchboard compartment to the MCCB body. Optional.


Rear Connections for 800A Frame MCCBs

Rear Connections for 1250A and 1600A frame MCCBs

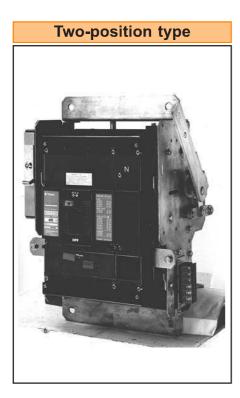
Plug-in Mounting

The plug-in mounting system allows fast replacement of the MCCB body without the need to disturb the terminations. Solid conductors or cables terminated with compression terminals can be used. Plug-in mounting is available for 800A and 1250A frame MCCBs.

IP20 Protection (Optional)

IP-20 degree of protection and safety trip are available for plug-in type breakers, for switchboard and distribution board use.

Safety Trip (standard)


(Trip first, plug-in mechanism)

The breaker will trip automatically, if it is withdrawn while still in the 'ON' position. It is not possible to "plug-in" the breaker when it is in the 'ON' position.

TemBreak

Drawout Mounting

Two types of drawout mounting system are used, depending on the frame size of the MCCB.

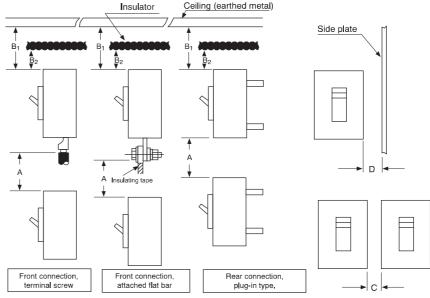
800A frame and 1250A frame

- The plug-in type breaker is housed in the draw-out cradle.
- The draw out cradle has two positions "Connected" and "Isolated".
- The auxiliary circuits are automatically connected or isolated by the auxiliary circuit terminals on the plug-in breaker. Manual connector type is available on request. When a motor operator is fitted, the circuits are manually connected (manual connector type).
- Safety Trip (first trip draw out mechanism). The breaker will trip automatically if it is drawn out while still in the "on" position.
- Position keylock in isolated position (optional) available on request.
- Position switch (1ab) in Connected position (optional) available on request.
- IP-20 degree of protection (Standard)

1600A frame

- The draw out cradle has three positions "Connected", "Test" and "Isolated".
- The auxiliary circuits are automatically connected and isolated by the disconnect contacts.
- The auxiliary circuits are as follows: Connected in "Connected" and "Test" positions and isolated in the "Isolated" position.
- Safety shutters are available (optional) which automatically cover the live parts on the cradle side in the isolated position.
- Safety trip (trip first, draw-out mechanism)
 The breaker will trip automatically if it is drawn out while still in the "ON" position.

SECTION 9


TEMBREAK MOULDED CASE CIRCUIT BREAKERS

Insulation Distances

Attention

Exposed conductors must be insulated up to the breaker terminals. Interpole barriers or optional terminal covers are recommended. If optional terminal covers are used, insulate the exposed conductor until it overlaps the terminal cover.

This table is valid for 380/415V

A: Distance (refer to Table 1) from lower breaker to open charging part of terminal on upper breaker (front connection) or the distance from lower breaker to upper breaker end (rear connection and plug-in type).

B1: Distance from breaker end to ceiling (earthed metal)

B2 : Distance from breaker end to insulator

C : Clearance between breakers

D : Distance from breaker side to side plate (earthed metal)

Table 1

Series	Breaker	Α	B ₁	B ₂	С	D
		120	70	40	0	30
	XH800SE, XH800PJ					
	XH800PE					
	XS1250CE, XS1250SE	150	70	40	0	30
	TL800NE, XS1600CE,	150	150	100	0	100
	XS1600SE TI 1250NE					

TemBreak

Standard Installation Environments and Special Treatments

Tembreak Ciruit Breakers are designed and built to be used under standard operating conditions. Breakers required for conditions other than standard are available on request. Please specify when ordering.

Standard operating conditions are in accordance with IEC 60947-2

Operating ambient temperature - 5° C to 40° C

When a thermal magnetic breaker is used at a temperature exceeding its calibrated temperature of 40°c, 45°c or 50°c, the operating current should be reduced in accordance with ambient compensation curves, section 3. Please contact Terasaki for temperature performance details of microprocessor protected breakers.

Relative humidity 85% max Altitude 2,000m max

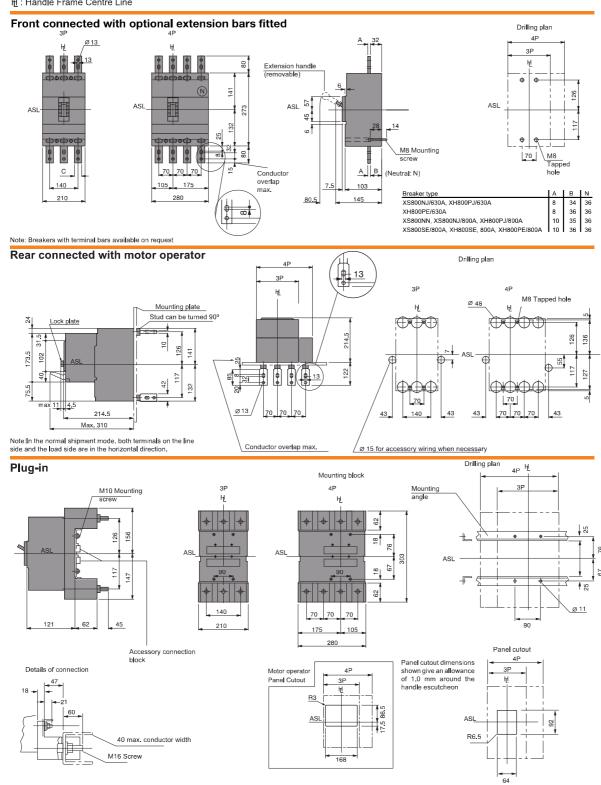
Note:*Atmosphere should not contain dust, smoke, corrosive gases, inflammable gases, moisture or salt.

Special environment	Specification	Nameplate indication
Low Temperature Breaker	This is specially treated for storage and use at low temperature. The lowest limit is -40° C for storage and -20° C for use. The breaker is calibrated at 40° C or, 45° C for marine use and requires an appropriate adjustment of the specified characteristics. At low temperatures the environment must be free from rapid temperature changes that result in condensation forming or freezing of the breaker.	PROOFED FOR LOW TEMPERATURE Storage -40° C or higher Operation - 20° C or higher
Tropicalization (fungus moisture proof) Breaker	The dielectric strength and other electrical properties of insulating materials that are likely to deteriorate at high temperature and high humidity. The tropicalised breaker uses specially selected materials and special surface treatment for such conditions. Note: The maximum conditions for use are 60° C ambient and 95% relative humidity provided that there are no rapid changes in temperature likely to occur. Contact Terasaki for details.	TROPICALISATION Fungus moisture proof
Corrosive Resistant Breaker	The corrosive resistant breaker is specially surface treated for increased corrosion resistance. Note: If the breaker is to be used in an atmosphere that has an excess of corrosive gases or moisture and salt then the breaker must be housed in an air tight box, container or cabinet.	CORROSIVE RESISTANT

page 164 TemBreak

Power Consumption

Breaker	Rated		esistance (DC mΩ)	Power consum	
	current (A)	Value per		Value per pole	
		FC	Plug-in	FC	Plug-in
XS800NJ	800	0.07	0.11	44.8	70.4
XS800SE	400	0.07	0.11	11.2	17.6
XH800SE	450	0.07	0.11	14.2	22.3
XH800PJ	500	0.07	0.11	17.5	27.5
XH800PE	600	0,07	0,11	25,2	39,6
	700	0.07	0.11	34.3	53.9
	800	0.07	0.11	44.8	70.4
XS1250CE	600	0.04	0.053	14.4	19.1
XS1250SE	700	0.04	0.053	19.6	26.0
	800	0.04	0.053	25.6	33.9
	1000	0.04	0.053	40.0	53.0
	1250	0.04	0.053	57.6	76.3
XS1600CE	800	0.022	** 0.039	14.1	25.0
XS1600SE	900	0.022	** 0.039	17.8	31.6
TL800NE	1000	0.022	** 0.039	22.0	39.0
TL1250NE	1200	0.022	** 0.039	31.7	56.2
	1400	0.022	** 0.039	43.1	76.4
	1600	0.022	** 0.039	56.3	99.8

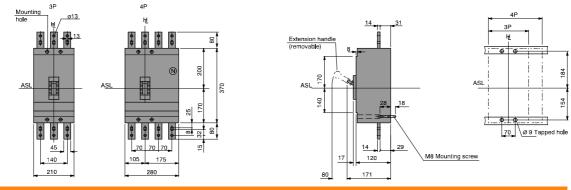

Note: * Value of rear connected type breaker. ** Value of draw-out type breaker. Note: All values are intended as a guide only

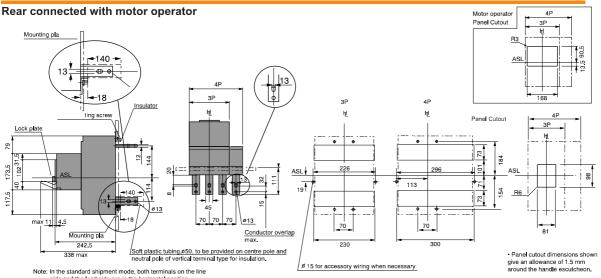
TemBreak

DIMENSIONS

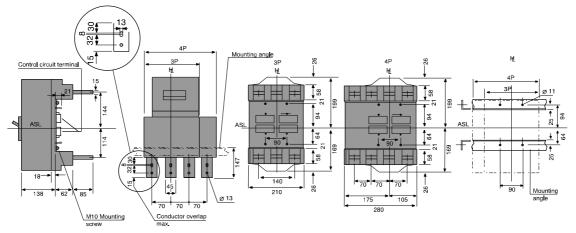
XS800NN, XS800NJ, XS800SE, XH800SE, XH800PJ, XH800PE

ASL: Arrangement Standard Line 낹 : Handle Frame Centre Line




DIMENSIONS

XS1250NN, XS1250CE, XS1250SE

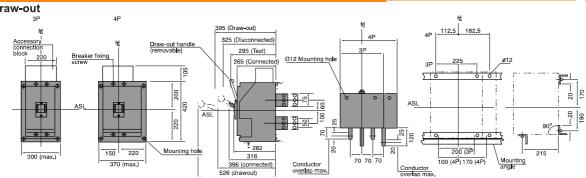

ASL: Arrangement Standard Line Hg: Handle Frame Centre Line

Front connected

Plug-in

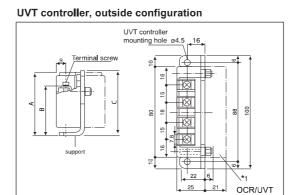
TemBreak |

DIMENSIONS

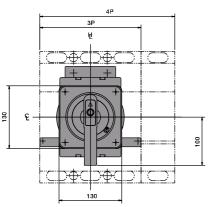

TL800NE, TL1250NE, XS1600NN, XS1600CE, XS1600SE

ASL: Arrangement Standard Line

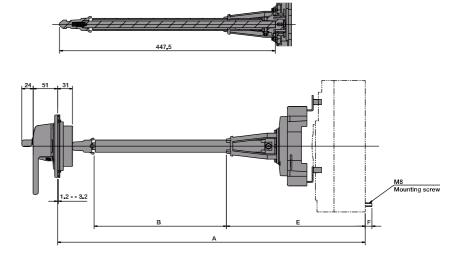
<u>H</u>: Handle Frame Centre Line



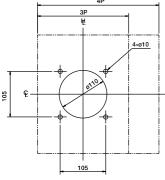
contoller

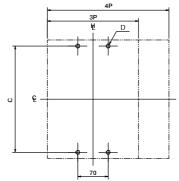

DIMENSIONS

UVT Controller/ OCR Controller

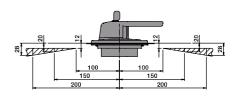


	Α	В	С
OCR controller	57.5	45	59
UVT controller	81.5	69	83


Door Mounted Handle



Panel cutout



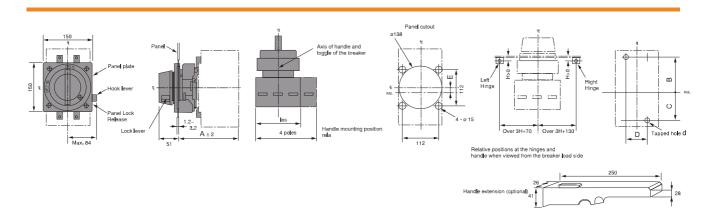
년 : Handle Frame Centre Line

Drilling plan

Positional relationship between the hinge as viewed from the OFF side the breaker.

*The handle shows "OFF" position

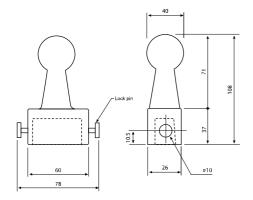
Dimensions table (mm)


Frame (A)	Breaker	Α	В	С	D	E	F	Shaft Support
800	XS800NJ XS800SE XH800SE XH800PJ XH800PE	638	280	243	M8	288	14	Included
1250	XS1200CE XS1200SE	667	280	338	ø9	317	18	Included
1600	XS1600CE XS1600SE TL800NE TL1250NE	687	280	338	ø9	337	18	Included

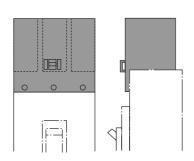
TemBreak

<sup>Dimension A is the maximum dimension without the shaft being cut.
The shaft can be cut to the required length, if it is neccessary to cut the shaft so short that it does not protrude beyond the shaft support, the shaft support may be removed.</sup>

DIMENSIONS

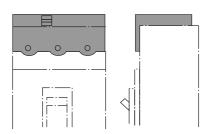

Breaker Mounted Handle

Dimensions table (mm)


Frame (A)	Breaker	Α	В	C	D	d	E
800	XS800PJ	168	126	117	70	M8	+4.5
	XS800NJ						
	XS800SE						
	XH800PE						
	XH800SE						
1250	XS1250CE	197	184	154	70	Ø9	+15
	XS1250SE						
1600	XS1600CE	217	184	154	70	Ø9	+15
	XS1600SE						
	TL800NE						
	TL1250NE						

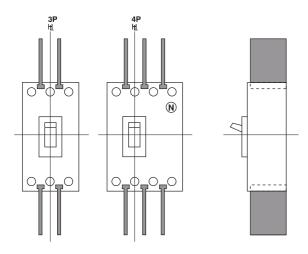
Toggle Extension

DIMENSIONS


Terminal Covers for Front-Connections

Dimensions table (mm)

Frame (A)	Breaker	Pole	Α	В	С	D
800	XS800NJ, XH800PJ	3	215	130	99.5 ('ON' side)	99
	XS800SE, XH800SE, XH800PE	4	285		102.5 ('OFF' side)	
1250	XS1250SE, XS1250CE	3	215	130	115	99
		4	285			


Terminal Covers for Rear Connections and Plug-in Connections

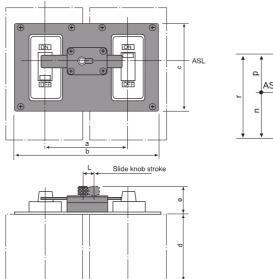
Dimensions table (mm)

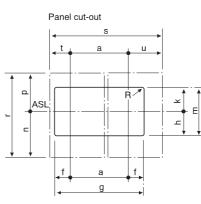
Frame (A)	Breaker	Pole	Α	В	С	D
800	XS800NJ, XH800PJ	3	206	14	102 ('ON' side)	100.5
	XS800SE, XH800SE, XH800PE	4	280	18	102 ('OFF' side)	98

Interpole Barriers

Dimensions table (mm)

Frame (A)	Breaker	Α	В
800	XS800NJ, XH800PJ, XS800SE, XH800SE, XH800PE, TL800NE	110	95
1250	XS1250SE, XS1250CE, TL1250NE	110	95
1600	XS1600CE, XS1600SE	110	95

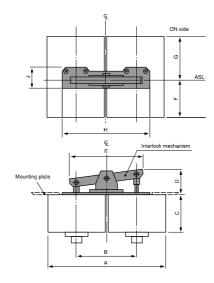

TemBreak

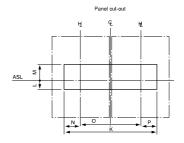

page 171

DIMENSIONS

Front Mechanical Interlock

ASL: Arrangement Standard Line

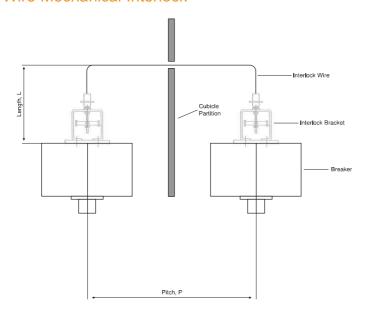



Dimensions table (mm)

Frame (A)	Breaker	Pole	а	b	С	d	е	f	g	h	k	m	n	р	r	s	t	u	L	R
800		3	220	350	136	103	31.	66.5	353	57.5	81.5	139	132	141	273	430	105	105	30	8.5
XS800SE	4	290	420	136	103	31.	66.5	423	57.5	81.5	139	132	141	273	570	105	175	30		
	XH800PJ																			
	XH800SE																			
	XH800PE																			
1250	XS1250SE	3	220	340	129	120	39.	61.5	343	58	74	132	170	200	370	430	105	105	30	8.5
	XS1250CE	4	290	410	129	120	39.	61.5	413	58	74	132	170	200	370	570	105	175	30	8.5
1600	XS1600SE	3	220	340	129	140	39.	61.5	343	58	74	132	170	200	370	430	105	105	30	8.5
	TL800NE																			
	TL1250NE	4	290	410	129	140	39.	61.5	413	58	74	132	170	200	370	570	105	175	30	8.5
	XS1600CE																			

Rear Mechanical Interlock

ASL: Arrangement Standard Line 낸 :Handle Frame Centre Line

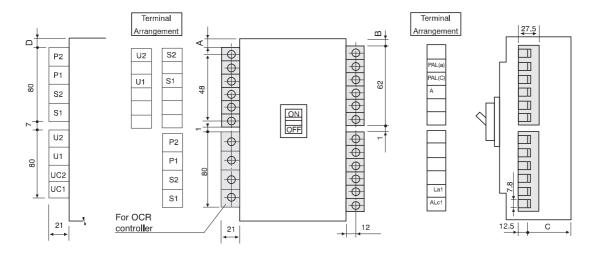

Dimensions table (mm)

D	.0.00	40.0	(/														
Frame (A)	Breaker	Pole	Α	В	С	D	Е	F	G	Н	J	K	L	М	N	0	Р
800	XS800NJ	3	430	220	103	74	250	132	141	430	83	440	41	52	110	220	110
	XS800SE XH800PJ XH800SE XH800PE	4	570	290	103	74	320	132	141	500	83	510	41	52	110	290	110

page 172 TemBreak

DIMENSIONS

Wire Mechanical Interlock


Installation of wire mechanical interlock

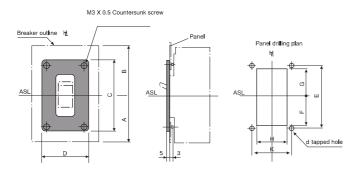
Wire Length (m)	Mounting Pitch, P (mm)	Hole Position Length, L (mm)	Wire Support Method
1.5	1000 \$\bullet\$ 900 \$\bullet\$ 750	550 → 600 → 700	Support 2 points at equal intervals
1.0	650 \$500 \$350 \$(1) \$(2)	450 ↓ 500 ↓ 530	Support at the centre

- * (1): minimum of 60mm + cubicle partition thickness
 * (2): minimum of arc base distance if vertical.

 \$\Pi\$: intermediate dimensions are acceptable.

Terminal Blocks

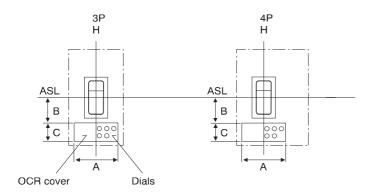
Dimensions table (mm)


	11310113	Lak	יון טוי	· · · · · <i>,</i>	
Frame (A)	Breaker	Α	В	С	D
800	XS800NJ XS800SE XH800PJ XH800SE XH800PE	88	88	60	64
1250	XS1250SE XS1250CE	51	51	72	51
1600	XS1600CE XS1600SE TL1250NE TL800NE	51	51	92	51

TemBreak

page 173

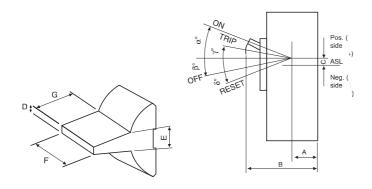
DIMENSIONS


Door Flange

Dimensions table (mm)

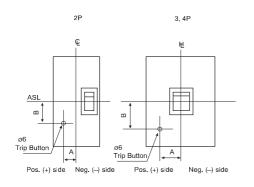
Frame (A)	Breaker	Α	В	С	D	Е	F		G		Н		K	d
							Min	Max	Min	Max	Min	Max		
800	XS800NJ XS800SE XH800PJ XH800SE XH800PE	132	141	135	95	120	48	56	48	56	70	90	80	M3×0.5
1250	XS1250SE XS1250CE	170	200	150	120	135	51	63.5	51	63.5	85	115	80	M3x0.5
1600	XS1600SE XS1600CE TL800NE TL1250NE	170	200	150	120	135	51	63.5	51	63.5	85	115	80	M3x0.5

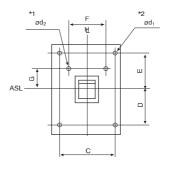
Panel Cutout for Adjustment Dials



Dimension table (mm)

	,			
Frame	MCCB		Dimensio	ons
size (A)	type	Α	В	С
800	XS800NJ XS800SE XH800PJ XH800PE XH800SE	210	57	48.5
1250	XS1250CE XS1250SE	210	57.5	58
1600	XS1600CE XS1600SE TL800NE TL1250NE	210	57.5	58


DIMENSIONS


Toggle Operation and Dimensions

Frame (A)	Breaker	Operat	ion angle:	3		Dimens	sions (mm)					Opera	tion eff	(kgf.)	
800	XS800NJ XS800SE XH800PJ XH800PE XH800SE	20	8.5	11	10.5	43.2	144	-6.8	11	12.5	40	33	12.3	15	24	100.8
1250	XS1250CE XS1250SE	22	4	12	9	73.5	171.8	-2.8	11	12.5	40	30	16	30	35	98.3
1600	XS1600CE XS1600SE TL800NE TL1250NE	22	4	12	9	93.5	191.8	-2.8	11	12.5	40	30	16	30	35	98.3

Position of Trip Button and Externally Mounted Accessories

Frame (A)	Breaker	Poles	Trip bu	utton	Diamete	er					Lowe	r hole	
			Α	В	С	D	E	F	G	ød ₁	Depth	ød ₂	Depth
800	XS800NJ XS800SE XH800PJ XH800PE XH800SE	3 4	_ +15	74	90 160	_ 125.5	134.5	105	73	4.65	5.1	5.65	6
1250	XS1250CE XS1250SE	3 4	_ 0	72.5	100 170	_ 155	185	-	-	4.65	5	-	-
1600	XS1600CE XS1600SE TL800NE TL1250NE	3 4	_ 0	72.5	100 170	_ 155	185	-	-	4.65	5	-	-

TemBreak

Moulded Case Circuit Breaker Chassis systems

Overview

MCCBs are often required to be mounted singly, in the case of a motor control centre, or in groups, as part of a larger power distribution system. To help assist with grouped MCCB power distribution requirements, NHP manufacture standardised busbar systems, simply called chassis. NHP stock a range of basic chassis which can be purchased "off the shelf", while more complex, or higher current chassis, are produced on a custom basis to a suit a customer specification.

Common features

- A new mounting channel common to all chassis to make installation quicker & easier
- All chassis suitable for use up to 690 V AC

TemWay XA, XB, XC chassis

- 36 and 40 kA ratings on standard TemWay XA and XB chassis
- 50 and 65 kA ratings on TemWay XC chassis
- XC 1000 A chassis are stocked with 400 A and 250 A tee off combinations
- A range of TemWay 4 pole XA and XB chassis, suitable for earth leakage MCCBs

Heavy current "HC" chassis

- HC heavy current chassis for MCCBs, 20 1250 A
- HC heavy current chassis, compact single sided version, or double sided
- 11 box sizes more economical sizing to suit applications. Saves cost
- Common configurations of HC chassis now stocked fully assembled for quick delivery

MCCB chassis

Testing

Both TemWay and HC Chassis have been unconditionally type tested (no MCCBs fitted) in Australia, at the short time ratings shown in the table below.

Chassis ratings

s Description	Main bar rating (A)	Fault current level lcw Rating	MCCB frame size	eMCCB Cat. No.
Double sided	630, 800 A ¹)	36 kA for 1 second 40 kA for 0.5 second	125 AF	E/S/ZS125 12A – 125 A
Double sided	800 A 1)	36 kA for 1 second 40 kA for 0.5 second	250 AF	E/S/ZS250 NJ/ GJ 12 A-250 A
Single sided Left or right sided	800 A ¹)	36 kA for 1 second 40 kA for 0.5 second	250 AF	E/S/ZS250 NJ/ GJ 12 A-250 A
Double sided	800 A	36 kA for 1 second 40 kA for 0.5 second	250 AF	S250PE, or a mix of 250 AF sizes
Double sided	1000 A ¹)	50 kA for 1 second 65 kA for 0.5 second	250 AF, 400 A	E/S/ZS160-250 up to E/S400
Double sided or Single sided left or right	1250 A, 1600 A, 2200 A	65 kA for 1 second	250 AF to 1250 AF	E/S160 up to XS1250SE
	Double sided Double sided Single sided Left or right sided Double sided Double sided Double sided	Descriptionrating (A)Double sided630, 800 A ¹)Double sided800 A ¹)Single sided Left or right sided800 A ¹)Double sided800 ADouble sided1000 A ¹)Double sided or Single sided left or right1250 A, 1600 A,	Descriptionrating (A)level lcw RatingDouble sided630, 800 A 1)36 kA for 1 second 40 kA for 0.5 secondDouble sided800 A 1)36 kA for 1 second 40 kA for 0.5 secondSingle sided Left or right sided800 A 1)36 kA for 1 second 40 kA for 0.5 secondDouble sided800 A 36 kA for 1 second 40 kA for 0.5 secondDouble sided800 A 36 kA for 1 second 40 kA for 0.5 secondDouble sided1000 A 1)50 kA for 1 second 65 kA for 0.5 secondDouble sided or Single sided left or right1250 A, 1600 A, 1600 A, 65 kA for 1 second	Descriptionrating (A)level lcw Ratingframe sizeDouble sided630, 800 A 1)36 kA for 1 second 40 kA for 0.5 second125 AFDouble sided800 A 1)36 kA for 1 second 40 kA for 0.5 second250 AFSingle sided Left or right sided800 A 1)36 kA for 1 second 40 kA for 0.5 second250 AFDouble sided800 A 36 kA for 1 second 40 kA for 0.5 second250 AFDouble sided800 A 36 kA for 1 second

Notes:

¹⁾ XB Chassis main bars are rated at 800 A, and XC bars are rated 1000 A, while for XA chassis 800 A is an option.

To comply with the new Australian New Zealand AS/NZS 3000 - 2007 standard regarding separation, XA, XB and XC chassis should be only used in switchboards having operational currents less than 800A. For chassis that includes integral separation and for utilisation currents equal to, and exceeding 800 A, a HC high current chassis must be used.

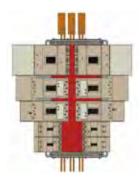
HC Chassis will not accept TemBreak 1, 125 AF, 250 AF and 400 AF MCCBs.

Moulded Case Circuit Breaker Chassis systems

MCCB Chassis selection guide

Chassis type	Description	Main bar rating (A)	Fault current level lcw Rating	Poles	Suits MCCB frame size
XA	Double sided	630, 800 A ¹)	36 kA for 1 second 40 kA for 0.5 second	3 or 4	125 AF
ХВ	Double sided	800 A ¹)	36 kA for 1 second 40 kA for 0.5 second	3 or 4	250 AF
XBSS	Single sided Left or right sided	800 A ¹)	36 kA for 1 second 40 kA for 0.5 second	3	250 AF
XC	Double sided	1000 A ¹)	50 kA for 1 second 65 kA for 0.5 second	3	250 AF 400 AF
нс	Double sided or Single sided left or right	1250 A 1600 A 2200 A	65 kA for 1 second	3P Double sided or 3 or 4P Single sided	250 AF 400/630 AF 630/800 AF 1250 AF

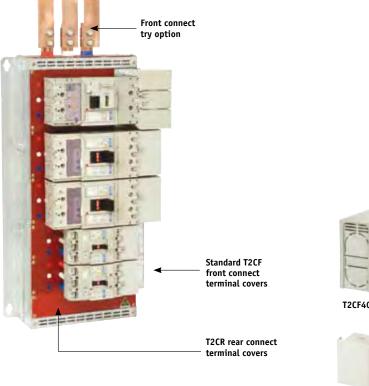
MCCB types to suit XA, XB, XBSS, PXB, XC and HC chassis


XA 1)	XB/ XBSS 1)	PXB	XC 1)	HC 1)	
Main bar sizes: 630 A or 800 A	Main bar size: 800 A	Main bar size: 800 A	Main bar size: 1000 A	Main bar size: 1250 A, 1600 A, 2200 A	MCCB depth (mm)
S125NF 5-100 A	_	_	_	_	68
E125NJ 12-125 A	_	_	_	_	68
S125NJ 12-125 A	_	_	_	_	68
S125GJ 12-125 A	_	_	_	_	68
ZS125GJ 12A-125 A	-	-	-	-	68
	S160NF 12-160 A	S160NF	S160NF 12-160 A	S160NF 12-160 A	68
	S160NJ 12-160 A	S160NJ	S160NJ 12-160 A	S160NJ 12-160 A	68
E/S 160/	S160GJ 32-160 A	S160GJ	S160GJ 32-160 A	S160GJ 32-160 A	68
250 NJ-GJ ²)	E250NJ 12-250 A	E250NJ	E250NJ 12-250 A	E250NJ 12-250 A	68
	S250NJ 12-250 A	S250NJ	S250NJ 12-250 A	S250NJ 12-250 A	68
	S250GJ 32-250 A	S250GJ	S250GJ 32-250 A	S250GJ 32-250 A	68
	ZS250GJ 100-250 A	ZS250GJ	ZS250GJ 100-250 A	ZS250GJ 100-250 A	68
H125 and		_		H125NJ 12-125 A	103 ²)
S250PE ²)		S250PE 50-250 A		S250PE 50-250 A	103 ²)
			E400NJ 160-400 A	E400NJ 160-400 A	103
			S400CJ 160-400 A	S400CJ 160-400 A	103
			S400NJ 160-400 A	S400NJ 160-400 A	103
			S400NE 400-400 A	S400NE 100-400 A	103
			S400GE 100-400 A	S400GE 100-400 A	103
				E630NE 252-630 A	103
				S630CE 252-630 A	103
				S630GE 252-630 A	103
				XS630NJ 396-630 A	103
				XS630SE 315-630 A	103
				XH630SE 315-630 A	103
				XS800NJ 504-800 A	103
				XS800SE 400-800 A	103
				XH800SE 400-800 A	103
				XS1250SE 500-1250 A	103

¹⁾ XB Chassis main bars are rated at 800 A, and XC bars are rated 1000 A, while for XA chassis 800 A is an option. To comply with the new Australian New Zealand AS/NZS 3000 - 2007 standard regarding separation, XA, XB and XC chassis should be only used in switchboards having operational currents less than 800A . For chassis that includes integral separation and for utilisation currents equal to, and exceeding 800 A, a HC high current chassis must be used.

²⁾ H125NJ and S250PE 250 AF MCCBs are deeper than other 160/250 AF MCCBs. H125 and S250PE MCCB tee offs must be specified for PXB and HC Chassis.
HC Chassis will not accept TemBreak 1, 125 AF, 250 AF and 400 AF MCCBs.

HC High Current chassis for 250 AF to 1250 AF MCCBs


Features

- Double sided 3 pole MCCB chassis
- Compact single sided chassis 3 or 4 pole
- 1250 A, 1600 A or 2200 A rated main bars
- 11 enclosure sizes for more economical chassis sizing
- Front connect tags supplied as standard
- Complies with AS/NZS 3439, AS/NZS 3000 2007
- Form of separation 4bih. AS/NZS 3439.1: 2000 (Annex ZF)
- Circuit breakers are reverse fed as standard
- 4th pole neutral bars 100 % rated
- Accepts MCCBs rated 12 A to 1250 A
- Ordering: choose from pre-assembled types, or custom assembly

Stocked assembled chassis selection - Suit MCCB amp frames shown below

Main bar rating	Chassis Size	800 A 6 units	630 A 5 units	400 A 4 units	250 A 3 units	Cat. No.
1600 A	DS	=	2 x 630	2 x 400	4 x 250	HCSTD1DS16153
1600 A	DS	-	4 x 630	-	8 x 250	HCSTD2DS16243
1600 A	SS left	-	1 x 630	1 x 400	2 x 250	HCSTD3SSL16153
1600 A	SS right	-	1 x 630	1 x 400	2 x 250	HCSTD4SSR16153
1600 A	SS left	-	1 x 630	1 x 400	4 x 250	HCSTD5SSL16213
1600 A	SS right	-	1 x 630	1 x 400	4 x 250	HCSTD6SSR16213
2200 A	SS left	1 x 800	1 x 630	1 x 400	3 x 250	HCSTD7SSL22243
2200 A	SS right	1 x 800	1 x 630	1 x 400	3 x 250	HCSTD8SSR22243

Example of a single side HC chassis with MCCBs and terminal covers fitted

T2CF40 - Narrow

T2CR253S

HC High Current chassis 250 AF to 1250 AF MCCBs

Chassis box selection - for custom assembly

			MCCB		
Chassis	Main bar	Icw kA rating	unitspace	Overall height	
Size	rating (A)	(1 sec)	(mm)	(mm) ¹)	Cat. No.
1	_		15 U	610	HC12153
2	_		18 U	718	HC12183
3	_		21 U	826	HC12213
4	_		24 U	934	HC12243
5	1250 A		27 U	1042	HC12273
6	(2 x 10	65	30 U	1150	HC12303
7	x 20 mm bars)		33 U	1258	HC12333
8	_		36 U	1366	HC12363
9	_		39 U	1474	HC12393
10			42 U	1582	HC12423
11	_		45 U	1690	HC12453
1			15 U	610	HC16153
2	_		18 U	718	HC16183
3	_		21 U	826	HC16213
4	_		24 U	934	HC16243
5	 1600 A		27 U	1042	HC16273
6	(2 x 10	65	30 U	1150	HC16303
7	x 30 mm bars)		33 U	1258	HC16333
8	_		36 U	1366	HC16363
9	_		39 U	1474	HC16393
10	_		42 U	1582	HC16423
11	_		45 U	1690	HC16453
1			15 U	610	HC22153
2	_		18 U	718	HC22183
3	_		21 U	826	HC22213
4	_		24 U	934	HC22243
5	2200 A (2 x 10 x 50 mm bars)		27 U	1042	HC22273
6		65	30 U	1150	HC22303
7			33 U	1258	HC22333
8			36 U	1366	HC22363
9	_		39 U	1474	HC22393
10	_		42 U	1582	HC22423
11			45 U	1690	HC22453

Notes: 1) Height excludes extended and attached busbar

Overall chassis depth when MCCBs are fitted is 269 mm

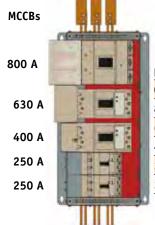
Dual feed optional.

Refer next page for chassis Tee Off details

Refer to the following pages for detailed dimensions

Ordering form refer to page 6 - 27 HC chassis not compatible with TemBreak 1, 125 A - 400 A MCCBs

HC High Current MCCB chassis MCCB


HC Chassis TEE OFF's

Frame	MCCB Amp Frame (A)	MCCB width	Single sided Cat. No. Right load	Single sided Cat. No. Left load	Double sided Cat. No.
S160 / 250	250	3 U	HCR250	HCL250	HCD250
H125 / S250PE	250	3 U	HCR250P	HCL250P	HCD250P
E/S400-630 Narrow	400-630	4 U	HCRN630	HCLN630	HCDN630
E/S400-630 Wide	400-630	5 U	HCRW630	HCLW630	HCDW630
XS/XH630/800	630-800	6 U	HCR800	HCL800	HCD800
XS1250 Right hand loa	d1250	6 U	HCR1250	-	HCR1250
XS1250 Left hand load	1250	6 U	-	HCL1250	HCL1250

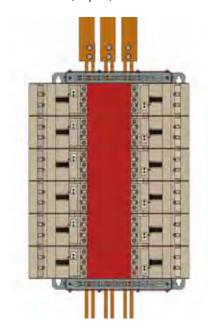
Ordering

- 1) Add tee off's as required to the chassis enclosure to complete the chassis components list.
- ²) Note: If MCCBs below 32 A and a kA rating above 30 kA are required, use H125NJ320 and H125NJ332 with 250 A Tee Off catalogue number above.
- ³) 400 A MCCBs fitted with a same width narrow cover are 4 units in width.
- 4) 630 A MCCBs fitted with a 'wide' width cover are 5 units in width.
- ⁵) For ordering, use order from chassis catalogue or contact NHP.

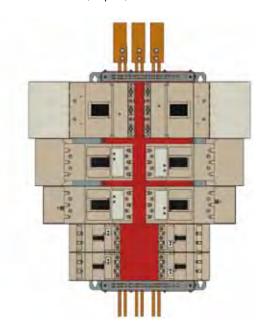
Ordering example

Example: Single sided chassis	Chassis components	Quantity
Chassis box 1600 A, less tee offs	HC16183	1
800 A left load tee off set	HCL800	1
630 A left load tee off set	HCLW630	1
400 A left load tee off set	HCLN630	1
250 A left load tee off set	HCL250	1
250 A left load tee off set	HCL250	1

Testing:


The HC chassis has been unconditionally type tested (no MCCBs fitted) in Australia, at a short time rating of 65 kA for 1 second.

Notes: Bottom or top extended main bars are optional. For MCCB terminal cover selection use refer pages 6 - 9 and 6 - 10.



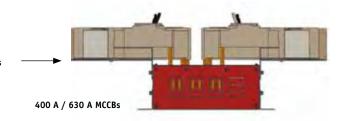
HC Chassis configuration types Examples

HC Chassis with 250 A Frame MCCBs Double sided, 3 pole, 1250 A main bars

HC Chassis with 250 A - 800 A MCCBs Double sided, 3 pole, 2200 A main bars

400/630 A termial covers

A 630 A MCCB using a T2CF403SWNG wide cover is 5 units of width (narrow cover optional)

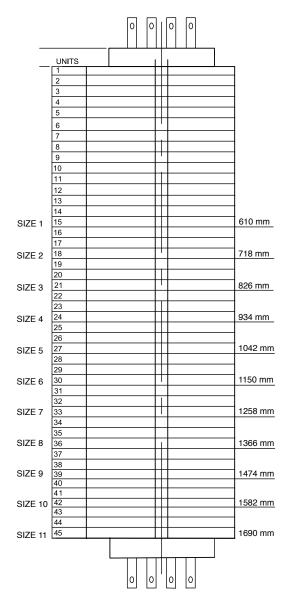

5 Units wide: MCCB + wide cover

4 Units wide: MCCB + narrow cover

A 400 A MCCB using a T2CF403SLNG narrow (same width as MCCB) cover is 4 units wide (wide cover optional)

HC Chassis MCCB mounting brackets

Metal extension brackets are attached to the side of HC chassis to cover rear of fitted MCCBs & terminal covers



6 - 26

HC High Current chassis order form

Customer	Account No
Deliver to	Order No
	Quantity
	Price \$
Contact	Required Delivery / /

TORQUE SETTINGS

MCCB LINE SIDE BOLTS		
250 AMPS	M6	7Nm
400 - 800 AMPS	M8	14Nm
1250 AMPS	M10	30Nm
MAIN BAR CONNECTIONS	M10	44Nm

CUSTOMER REFERENCE DRAWINGS FOR ALL MOUNTING, CUT OUT AND CONNECTION DETAILS

3 Pole Double Sided	MD-L002584
3 Pole Single Sided	MD-L002585
4 Pole Left Hand Single Sided	MD-L002586
4 Pole Right Hand Single Sided	MD-L002587

CHASSIS SPECIFICATIONS

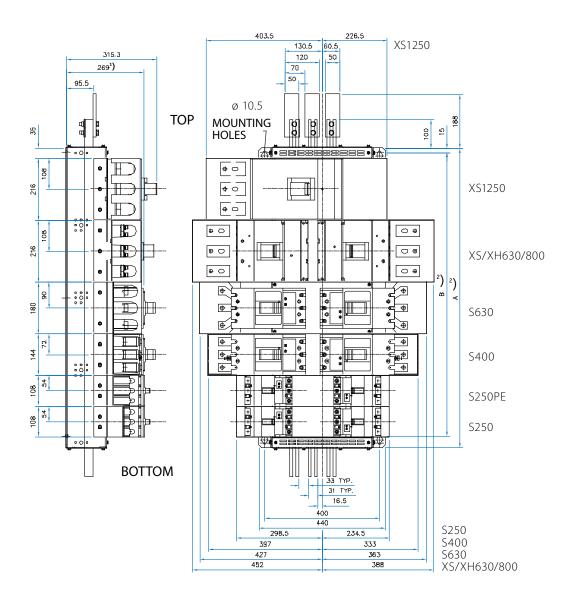
	3 Pole	Double sided				
POLES &	3 Pole	Single Sided Right Hand Load				
	3 Pole	Single Sided Left Hand Load				
	4 Pole	Single Sided Right Hand Load				
	4 Pole	Single Sided Left Hand Load				
		Top Entry only				
ENTRY	Bottom Entry only					
LINIKI		Dual Feed				
RATING		1250 Amp 2-10 x 20 mm				
65 kA for		1600 Amp 2-10 x 30 mm				
1 sec		2200 Amp 2-10 x 50 mm				

3 POLE TEE OFFS - DOUBLE OR SINGLE SIDED

	31 OLL TEL OIT 3 - DOODLE ON SINGLE SIDED						
Qty		Units		Total	Type		
	х	3	=		250	S160-E250/S250	
	х	3	=		250P	H125/S250PE	
	х	4	=		400	E400/S400	
	х	5	=		630	* E630/S630	
	х	6	=		800	XS/XH630/800	
	х	6	=		1250	XS1250 (1per tee-off)	
Total * 18 r			ach si	 de of 630 a	Indicate lo	Right	

4 POLE TEE OFFS - SINGLE SIDED ONLY

Qty		Units		Total	Туре	
	х	4	=		250	S160./S250
	х	4	=		250P	H125/S250PE
	х	6	=		400	E400/S400
	х	7	=		630	* E630/S630
	х	8	=		_ 800	XS/XH630/800
	х	8	=		_ 1250	XS1250
Total Units * 18 mm gap each side of 630 amp MCCB						


Note: ** 250P TEE OFFS SUIT H125 AND S250PE ONLY

- Chassis are supplied crated and without MCCBs fitted
- All circuit breakers to be fitted reverse fed by customer
- Pan Width = 440 mm including mounting channel
- Depth = 269 mm from rear to escutcheon
- 1 Unit = 36 mm

Internal use only
NHP Branch
NHP Contact
Sales Order
Works order

HC High Current chassis Double sided, 3 pole Dimensions

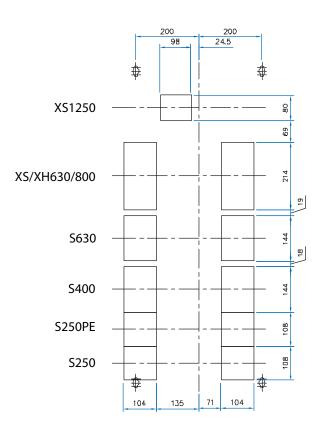
Notes: 1) Escutcheon/ door height: from the surface of the chassis mounting panel to the outside of the escutcheon or door surface.

²) Refer next page for dimensions.

Form of construction to AS/NZS 3439.1: 2000: Up to 4 bih (requires terminal covers to be fitted and switchboard design to segregate the incoming connections and other busbars in the switchboard.)

For a double sided chassis, only circuit breakers of the same width can be mounted opposite each other.

1600 A chassis shown above. Options - 1250 A with 2 off 20 x 10 mm busbars per phase


1600 A with 2 off 30 x 10 mm busbars per phase

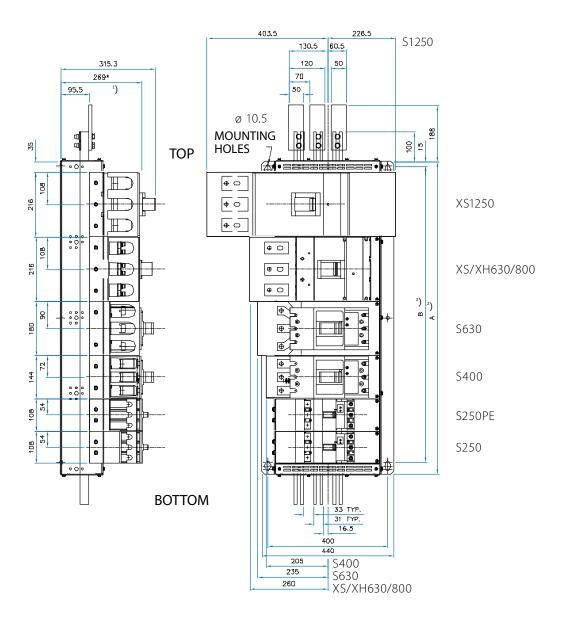
2200 A with 2 off 50 x 10 mm busbars per phase

XS1250 1250 A MCCBs are always single sided mounted, and left or right side load connection is specified at the time of ordering.

HC High Current chassis Double sided, 3 pole Dimensions and panel cut-out detail

Chassis Dimension reference table

Chassis size	DIM A	DIM B
Size 1 - 15 Units	610	556
Size 2 - 18 Units	718	664
Size 3 - 21 Units	826	772
Size 4 - 24 Units	934	880
Size 5 - 27 Units	1042	988
Size 6 - 30 Units	1150	1096
Size 7 - 33 Units	1258	1204
Size 8 - 36 Units	1366	1312
Size 9 - 39 Units	1474	1420
Size 10 - 42 Units	1582	1528
Size 11 - 45 Units	1690	1636


MCCB unit widths - 1 Unit = 36 mm

MCCB frame size	Units
S250	3
S250PE	3
S400	4
S630	5
XS/XH630/800	6
XS1250	6

Notes: Cut out dimensions are centered on the MCCB toggle

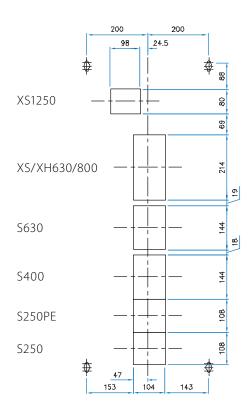
HC High Current chassis Single sided, 3 pole **Dimensions - LEFT hand load connection**

1) Escutcheon / door height: from the surface of the chassis mounting panel to the outside of the escutcheon or door surface.

2) Refer next page for dimensions.

The chassis busbar supports allow for a full size neutral.

Form of construction to AS/NZS 3439.1: 2000: Up to 4 bih (requires terminal covers to be fitted and switchboard


design to segregate the incoming connections and other busbars in the switchboard.)

1600 A chassis shown above. Options: 1250 A with 2 off 20 x 10 mm busbars per phase 1600 A with 2 off 30 x 10 mm busbars per phase

2200 A with 2 off 50 \times 10 mm busbars per phase A left sided chassis is shown above. For RIGHT sided versions the 1250 A MCCB will be the only breaker that changes location on the chassis. A RIGHT sided MCCB mounted layout will be mirror image of a left sided chassis for all MCCBs .

HC High Current chassis Single sided, 3 pole Dimensions - LEFT hand load connection

Chassis Dimension reference table

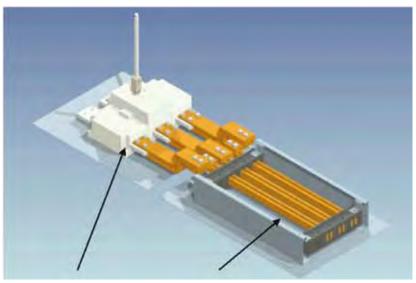
Chassis size	DIM A	DIM B
Size 1 - 15 Units	610	556
Size 2 - 18 Units	718	664
Size 3 - 21 Units	826	772
Size 4 - 24 Units	934	880
Size 5 - 27 Units	1042	988
Size 6 - 30 Units	1150	1096
Size 7 - 33 Units	1258	1204
Size 8 - 36 Units	1366	1312
Size 9 - 39 Units	1474	120
Size 10 - 42 Units	1582	1528
Size 11 - 45 Units	1690	1636

MCCB unit widths - 1 Unit = 36 mm

MCCB frame size	Units
S250	3
S250PE	3
S400	4
S630	5
XS/XH630/800	6
XS1250	6

Notes: A left sided chassis is shown above. For right handed single sided versions, cut out dimensions are mirrored on the chassis centerline.

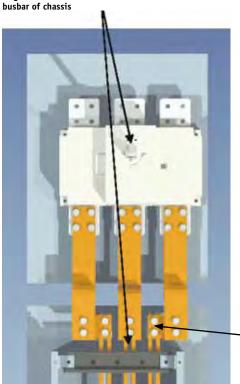
For RIGHT sided versions the 1250 A MCCB will be the only breaker that changes location on the chassis. A RIGHT sided 1250 A MCCB mounted layout will be mirror image of a left sided mounted MCCB.

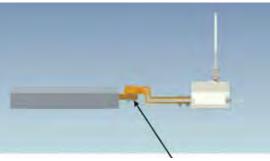


HC Chassis/load-break switch combination One possible connection method for a HC High current chassis and a Socomec load-break switch

HC front connect tags are optional

Example - Connection method


HC Chassis and Socomec 1600 A Load-break switch



Socomec 1600 A load-break switch

HC Chassis

Align centre of load-break switch with centre

CUBIC captive nuts for fastening to chassis busbar (nuts supplied with chassis as standard) ¹)

Spacers fitted between connection tags and chassis busbars

ss: ¹) A connection 'Clamp, nut and bolt kit' is available, Catalogue Number: 08930044.

The kit contains 4 x 60 mm x M10 hex head bolts, 4 clamp-nuts and 4 spring washers.

NHP Chassis testing

Temway and HC Chassis have been unconditionaly type tested (no MCCBs fitted) in Australia. Testing has been performed for:

- Temway XA, XB and XC chassis
- HC high current chassis

Test Report No. 1458/1

Date Issued:

15 October, 2007

Product:

"Temway XB Double Sided 3P 42W" chassis

Clients rating:

415 V, 50 Hz Rated short-time current (I_{ew}) = 40 kA, 0.5 s

Client

NHP Engineering Products Pty Ltd 104-106 William Angliss Drive

Laverton 3026 Australia

Verification of short-circuit withstand strength of the main busbars, according to Clause 8.2.3.2.3 b) of AS/NZS 3439.1:2002

The product withstood the tests, refer results herein.

NATA Approved Signatory

John Strugarck

Prepared by:

CS Head Office & EMC 6 Second Street, wden, South Australia 5007 ad PO Box 300 rememb, South Australia 500

ITACS High Power

Antony K. Milovac

This document is issued in occor

Test Report No. 1470

12 August, 2008

"HC 27 Unit Chassis" Product:

415 V, 50 Hz Rated short-time current (I_{cw}) = 65 kA, 1.0s

NHP Engineering Products Pty Ltd 104-106 William Angliss Drive Client:

Laverton Vic 3026 Australia

Nature of tests:

Verification of short-circuit withstand strength of the main busbars, according to Ciause 8.2.3.2.3 b) of AS/NZS 3439.1:2002

The product withstood the tests, refer results herein

Prepared by:

John Strugarek

Tested at: ACS Hood Office & EMC
-6 Second Street,
owden, South Austrolia 5007
stall FO Box 300
indimash, South Austrolia 500
inphone (08) 8346 8680
csimile (08) 8346 7077 ITACS High Power

NATA Approved Signatory

This document is issued in exceedan

Notes: Refer NHP for further information.

Load break switches

125 to 4000 A

Functions References

Accessories Enclosed load break switches

Characteristics Dimensions

Accessories

Inter phase barriers

Use Safety isolating separation between the terminals, essential for use at 690 VAC or in a polluted or dusty atmosphere. The terminal shrouds also provide phase separation for

SIRCOs from 125 to 630 A.

References		
Rating (A)	No. of poles	References
125 160	3 P	2998 0033
125 160	4 P	2998 0034
200 250	3 P	2998 0023
200 250	4 P	2998 0024
315 630	3 P	2998 0013
315 630	4 P	2998 0014
800 3200	3/4 P	included

Handle key interlocking accessories

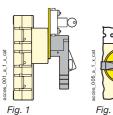


Fig. 3

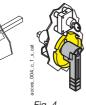


Fig. 4

Use

operation handle:

- using a padlock (not supplied) and factory integrated into the handle. From 125 to 1800 A, the padlock on the external front operation handle also locks the door,
- using lock (not included): see diagrams opposite,
- using undervoltage coil: the SIRCO can only be closed if the coil is live.

For 6/8 pole, please consult us.

References

Locking in position 0 of the front Locking using RONIS EL11AP lock (not included)

Rating (A)	No. of poles	Operation	Figure	References
125 630	3/4 P	direct front	1	2699 6008 ⁽¹⁾
125 1800	3/4 P	external front	3	1499 7701
800 3200	3/4 P	direct front	2	2699 6027
2000 4000	3/4 P	external front	4	2799 7002
4000	3/4 P	direct front	2	2699 7017

Locking using CASTELL lock (not included)

	No.		Lock		
Rating (A)	of poles	Operation	type	Figure	References
125 1800	3/4 P	external front	FS	3	1499 7703
125 1800	3/4 P	external front	K	3	1499 7702
2000 4000	3/4 P	external front	K	2	2799 7003
125 160	6/8 P	external front	K	2	4109 8507
250 630	6/8 P	external front	K	2	2999 8707
800 1600	6/8 P	external front	K	2	2799 7003

Locking using 230 VAC undervoltage coil (other voltages: please consult us)

Rating (A)	No. of poles	Operation	References	
125 630	3/4 P	external front	2699 9063 ⁽²⁾	
800 3200	3/4 P	direct front	2699 9315 (2)	

- (1) Front operation handle included.
- (2) The locking system is mounted directly on the device.

2.2 TERMINALS & LINKS

• JPR MANUFACTURED BUSBAR Earth Bar

• JPR MANUFACTURED BUSBAR Neutral Bar

C54500-QUU - Eagle_Farm_Workshops Revision 0 Date: November 21, 2012

3 SWITCHBOARD WORKS TEST RESULTS

© 2010 J & P RICHARDSON INDUSTRIES PTY

Form No. F1017/3

J. & P. RICHARDSON INDUSTRIES PTY LTD

114 Campbell Avenue, WACOL QLD 4076 Ph: (07) 3271 2911 - Fax: (07) 3271 3623 E-mail: jpr@jpr.com.au

SWITCHBOARD & SHEETMETAL INSPECTION REPORT

PRODUCT DETAIL Documents Documents Switchboard Doors	INSPECTED BY D.M. D.M.	DATE 25-1-(2	Vo:	CORRECTIVE ACTION REQUEST OR COMMENTS
PRODUCT DETAIL Documents Documents Switchboard	INSPECTED BY D.M D.M	DATE 25-1-(2	PASS/	CORRECTIVE ACTION REQUEST OR
Documents Documents Switchboard	D.M-	25-1-12	2.4	REQUEST OR
Documents Switchboard	D.MC		P	
witchboard	-	2 - 1 - 1 -)
	-	25-1-12	. P	
Doors	D.C	27-2-12	P	
	D.C	27-2-12	P	
Cell/Panels		15	-	
owder / Wet				
	1/1/			
	111 1/2	1 1		
	They	28/02/0	P	
		-(-(-	1	
,				
S. VARY				
	A.VAR	8-5-12	Pass	
	7	02/5/12	Pass	
	Theage	02/3/12	1103	
ou!L	W.	28/	02/10	2
ting Inspection		cess unit the l	tem has pas	ssed inspection
	not to proceed ting Inspection ction & Test Pa	not to proceed to the next	A.VARY 8-5-12 Treage 02/5/12 not to proceed to the next process unit the 1 ting Inspection	A VARY 8-5-12 PASS Treage 02/5/12 Pass not to proceed to the next process unit the item has paining Inspection action & Test Passed

Form No. F1018/4 Page 1 of 2

J. & P. RICHARDSON INDUSTRIES PTY. LTD.

114 Campbell Avenue, WACOL QLD 4076 Ph: (07) 3271 2911 - Fax: (07) 3271 3623 E-mail: jpr@jpr.com.au

SWITCHBOARD / SHEETMETAL INSPECTION CHECKLIST

CLIENT:	QUU	7.	• .			JOB	NO: C54500
PRODUCT I	DESCRIPTION: 1 X EAGLE	FARM		DRAWIN	G & SC	CHED	ULE NUMBERS
WORK	SHOP MAIN SWITCH !	BOARD		E11-	<u>C 50</u>	45Q	0/00-04
	CONSTRUCTION	QUALITY		COMPLIANCE WITH DRAWING			REMARKS OR ACTION
		GOOD	POOR	YES	NO)	11011
1. Fold	S						
2. Weld	ls			,//			
3. Edge	s / File			/			
4. Gaug	ge						
5. Mate	rial			/			: ^
6. Vent	ilation Openings / Filter Bracket						NA
7. Wate	er Ingress Test						,
8. Equi	pment Mounting Arrangement						
9. Door	s Stiffened						
10. Escut	cheons and Lexan Covers						
11. Cable	e Saddles						NA
<i>12.</i> Grind	ling						/ '
13. Door	Stays Fitted			/	,	·	
14. Earth	Studs						
<i>15.</i> Rubb	er Retainer						NA
<i>16</i> . Draw	ing Holder	,					
17. Hat S	ections			/			
<i>18</i> . Locki	ng Bars Fitted			/			
19. Exter	nal Crevice Welded and Ground			. /	je.		
<i>20</i> . Legen	d Cards	-		/			
21. Gener	al Conditions Satisfactory			,			
22. Cabin	et Clean	\$ week	ţ;	/			
23. Job Na and Pa	ame and Number Marked on Board anels						
24. Lap T	op Tray			/			** **********************************
25. Gland	Plates Fitted			/			
26. Sunshi	elds Fitted			/		j	

Form No. F1018/4 Page 2 of 2

J. & P. RICHARDSON INDUSTRIES PTY. LTD.

114 Campbell Avenue, WACOL QLD 4076 Ph: (07) 3271 2911 - Fax: (07) 3271 3623 E-mail: jpr@jpr.com.au

SWITCHBOARD / SHEETMETAL INSPECTION CHECKLIST

CONSTRUCTION	QUA	QUALITY		JANCE AWINGS	REMARKS OR ACTION	
	GOOD	POOR	YES	NO		
27. Mullion Welded to Divider	/					
28. Double Hinge Meter Panel Fitted		- 1			NA	
29. Plinth Fitted		-1	-			
30. Wall Mount Brackets				3 1	NA	
31. Light Switch Brackets					NA	
32. Cowls					NA	
INSPECTED BY: D. CRAA	DATE:	27-2	2-12		1	

AFFIX STATUS HERE

Yellow

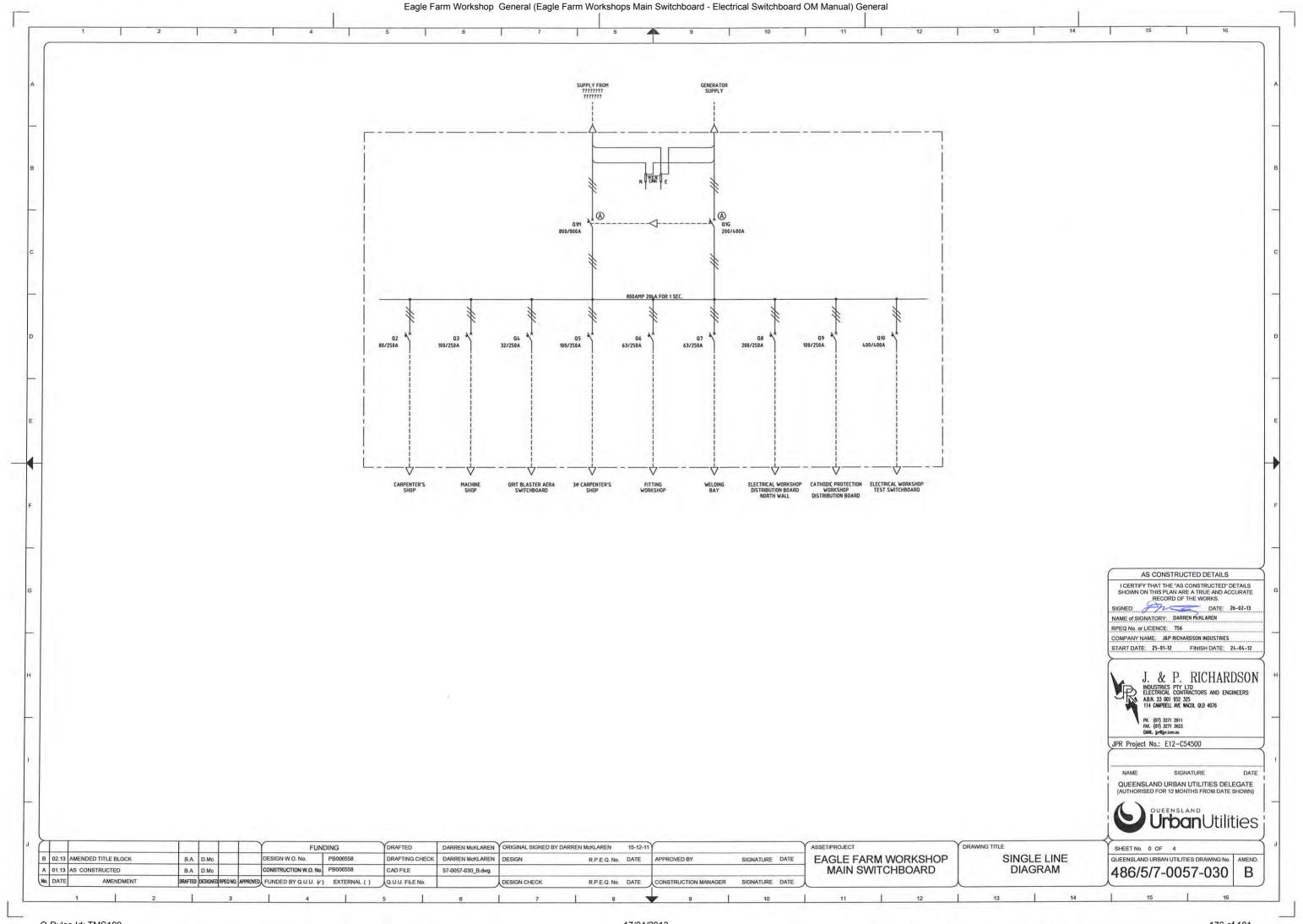
Green Red Awaiting Inspection Inspected/Tested Passed

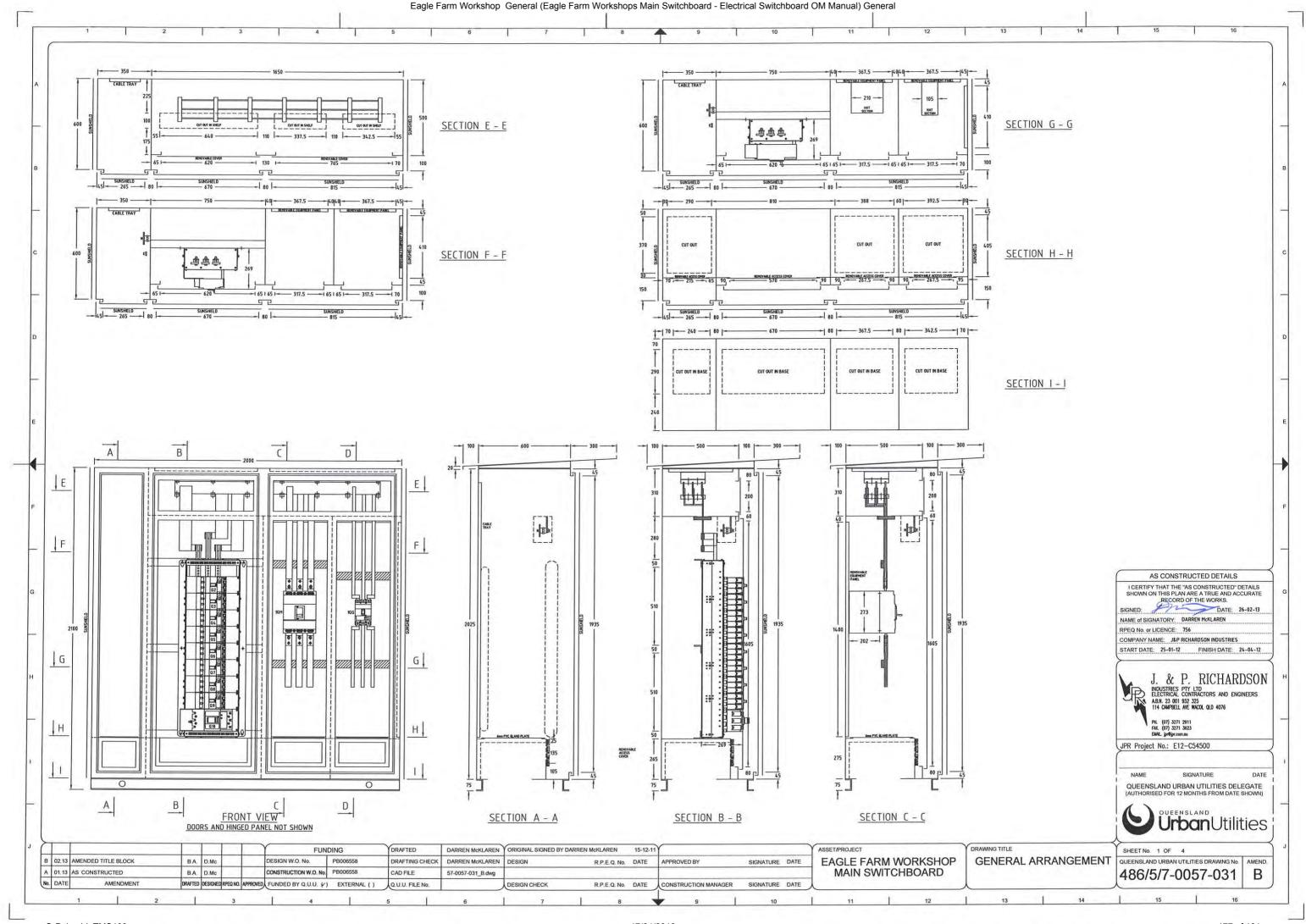
Inspected/Tested Awaiting Rectification

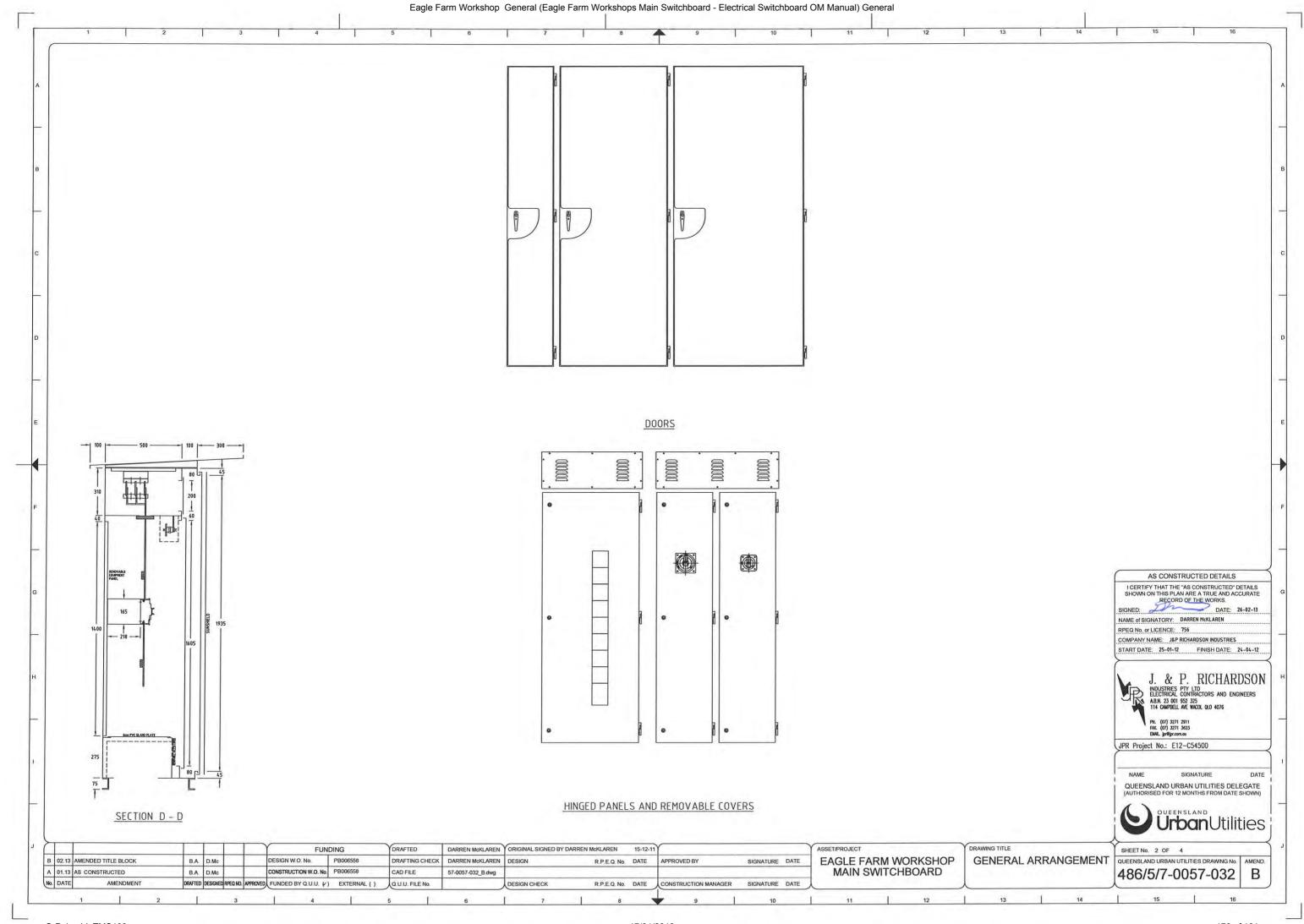
SWITCHBOARD CONTINUITY & INSULATION TEST REPORT

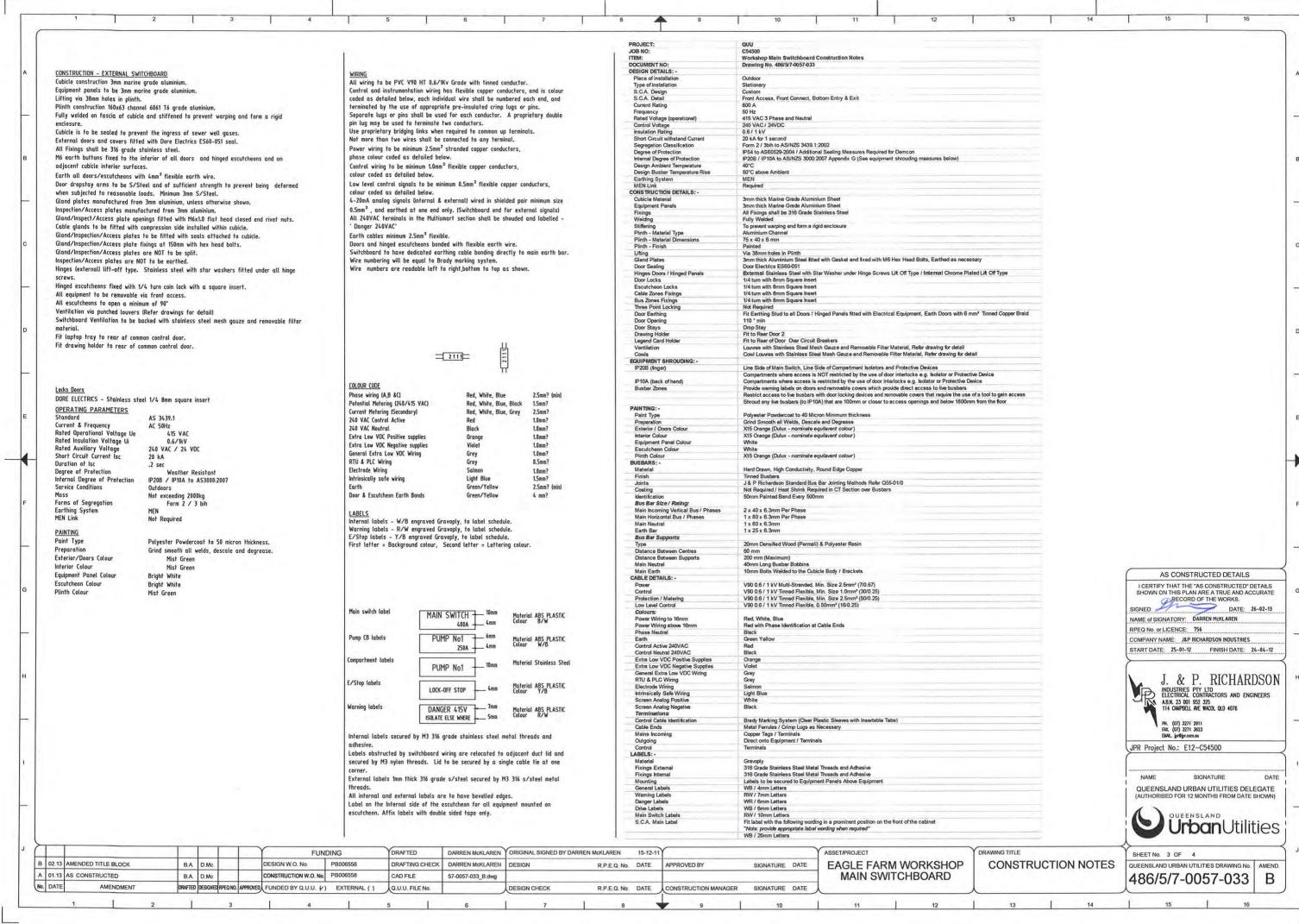
Projects Fa	NO VESPA UTILITIES	7			
Customer Name: QUEEK 3LA Project: Eagle FARM PR Job No: M 54500	WORKSHOP	. 1			
PR JOB NO: 1454580	Switchboard: Tested by:	MAIN SC	INCHBOP	<u> </u>	<i>(</i> ** <i>(</i> *)
Constructed by: /.VARY	Tested by:	· / C	KIPPEN	Date: A	<u>5-12</u>
From	CONTINUUTATE				
START	To To	Red	White	Blue 102	Neutra
J /AICI	 	120	103	104	
	 	144	123	1 125	
	$\rightarrow $	300,	468	470	
	E	145	129	1 729	
	F	204	186	198	l
_		1			
				1	
			<u> </u>		
				ļ	
				_	
			 	<u> </u>	ļ
	**************************************			ļ	
			<u> </u>	<u> </u>	<u> </u>
			ļ	ļ	
			<u> </u>	-	<u> </u>
			ļ	<u> </u>	<u> </u>
]
			ļ	}	<u> </u>
	1				
etch:					
•	•				•
.t		B		. 4	•
*** **********************************	*	*			
·	<u></u>				
		\star_{a}		ļ	
			de	. [de
	1	*/ +	4/5	*/	17/5
	10 F	7 11	a/s Airs	1	M/S GEN
	8	,	3		
19	[4]	START		^ D	
	SISSAMO	a ; 77 %]		-	
	The State Constitution of the State Constitu				
 .					

Designation	1000 V Test (MΩ)	2.5 kV Test (1min)	1000 V Test (MΩ)
Red to Earth	500	100	500
White to Earth	500	IMA	500
Blue to Earth	500	100	500
Neutral to Earth			
Red to White	500	1 00 4	500
Red to Blue	500	1 ma	500
White to Blue	. 500	IMA	500


J. & P. RICHARDSON INDUSTRIES PTY LTD


114 Campbell Avenue, WACOL QLD 4076 Ph: (07) 3271 2911 - Fax: (07) 3271 3623 E-mail: jpr@jpr.com.au


SWITCHBOARD ELECTRICAL INSPECTION & TEST REPORT


	CEENSCI	AND URB	AN UTIL	LITIES				
Project: EAGLE JPR Job No: M	FARM	(WORKSH	IQP					
JPR Job No:	54500		Item: 11	AIN Swe	TCH BOA	l.		
				Tested by: CKIPPEN Date: 1-5-1				
tem check his		\mathcal{H}_{t_0}			inerus se so	attentine.		
Main Functional Unit/s	Qty		Size		Settings			
Fuse Fittings	Qty		Size	1 .	Fuse Size			
Circuit Breakers	Qty	/	Size	<i>-</i>	Settings			
Motor Protection C.B.	Rating		Setting		Function			
Veutral	Reqd		Size		ID			
Equipment Earthing C.T.s	Checked		Size		1	<u> </u>		
Aeters	Qty Qty	<u> </u>	Rating Rating		Pri Inject.	ļ		
Contactors	Qty		Rating		Function Voltage			
Overloads	Qty		Rating		Function			
Celays	Qty		Rating		Voltage	 		
imers	Qty		Rating	-	Voltage			
Control Switches	Qty		Rating		Function			
ush Buttons	Qty		Rating		Function			
ilot Lights	Qty		Rating		Voltage			
ransformers	Qty		Rating		Voltage			
TT/VFD/Soft Starter C Supply	Qty		Rating	·	Function			
erminals	Qty		Rating		Voltage			
ngraving	Qty Qty		Size		ID ID	<u> </u>		
abling	Type		Size Size		ID	<u> </u>		
usbars	Type		Size		ID ID			
scutcheons / Shrouds	Type	•	Label		IP rating			
A. Metering CTs	Qty		Rating		ir rating			
A Metering Links	Type		24444					
A. Meters	Type		Size					
R Label	Fitted		Stamped		Safety Stkr			
egend Card	Qty		Correct					
LC/Telemetry	Qty		Size			- 112 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 111		
ower Monitor Relay	Qty.		Rating		Function			
eneriil Chao's Visit								
Sealing	Rating				<u> </u>			
or Latches/Hinges	Qty		Туре	***************************************	Operation		·	
ntilation cuit Schedule	Required		Туре	·	Operation	***************************************		
minal Tightness	Markup		Checked	***************************************	Supplied			
sbar System	Power Clearances		Control Joints		Result			
rth Continuity	Body to E		Doors to E		ID Panels to E			
bicle Cleaned	Dody to D		DOOIS to E		Failers to E			
nt Finish Intact								
arity Check	R-R		W-W		B - B			
	Power		Control	·····	PLC/Telem			
nction	I LOWOL 1		W-W					

4 "AS CONSTRUCTED" DRAWINGS

Item	Qty	Make & Number	Description	Label
Q1M	1	TERASAKI XS800NJ 800 3P + T1HS80R5GM HANDLE + TKNNHPAA, TKNNHPKEYAA, 14997702	3P 800AMP CIRCUIT BREAKER	MAIN SWITCH MAINS
Q1G	1	TERASAKI E250NJ3250 + T2HS25R5GM HANDLE + TKNNHPAA, 14997702	3P 250AMP CIRCUIT BREAKER	MAIN SWITCH GENERATOR
	1	TERASAKI HC121203 TOP FEED WITH WHITE PHASE 80mm LONGER,	1250A 30U CHASSIS	
		FITTED WITH 1 x HCLN630 & 8 x HCL250 TEE OFF'S		
Q2	1	TERASAKI E250NJ3100 + T2CR253SG SHROUDS + T2CF253SSNBA SHROUDS	3P 100AMP CIRCUIT BREAKER	CARPENTER'S SHOP
Q3	1	TERASAKI E250NJ3100 + T2CR253SG SHROUDS + T2CF253SSNBA SHROUDS	3P 100AMP CIRCUIT BREAKER	MACHINE SHOP
Q4	1	TERASAKI E250NJ332 + T2CR253SG SHROUDS + T2CF253SSNBA SHROUDS	3P 32AMP CIRCUIT BREAKER	GRIT BLASTER AREA SWITCHBOARD
Q5	1	TERASAKI E250NJ3100 + T2CR253SG SHROUDS + T2CF253SSNBA SHROUDS	3P 100AMP CIRCUIT BREAKER	3 PHASE CARPENTER'S SHOP
Q6	1	TERASAKI E250NJ363 + T2CR253SG SHROUDS + T2CF253SSNBA SHROUDS	3P 63AMP CIRCUIT BREAKER	FITTING WORKSHOP
Q7	1	TERASAKI E250NJ363 + T2CR253SG SHROUDS + T2CF253SSNBA SHROUDS	3P 63AMP CIRCUIT BREAKER	WELDING BAY
Q8	1	TERASAKI E250NJ3250 + T2CR253SG SHROUDS + T2CF253SSNBA SHROUDS	3P 250AMP CIRCUIT BREAKER	ELECTRICAL WORKSHOP DB NORTH WALL
Q9	1	TERASAKI E250NJ3100 + T2CR253SG SHROUDS + T2CF253SSNBA SHROUDS	3P 100AMP CIRCUIT BREAKER	CATHODIC PROTECTION WORKSHOP DB
Q10	1	TERASAKI E400NJ3400 + T2CR403SG SHROUDS + T2CF403SLNG SHROUDS	3P 400AMP CIRCUIT BREAKER	ELECTRICAL WORKSHOP TEST SWITCHBOARD
NL	1	JPR MANUFACTURED BUSBAR	NEUTRAL BAR	MAIN NEUTRAL
EL	1	JPR MANUFACTURED BUSBAR	EARTH BAR	MAIN EARTH

DRAWING TITLE

EAGLE FARM WORKSHOP

MAIN SWITCHBOARD

B 02.13 AMENDED TITLE BLOCK

AMENDMENT

A 01.13 AS CONSTRUCTED

B.A. D.Mc

APPROVED BY

CONSTRUCTION MANAGER

SIGNATURE DATE

SIGNATURE DATE

R.P.E.Q. No. DATE

R.P.E.Q. No. DATE

DARREN MCKLAREN YORIGINAL SIGNED BY DARREN MCKLAREN 15-12-11

DESIGN CHECK

DARREN McKLAREN DESIGN

DRAFTED

CAD FILE

Q.U.U. FILE No.

DRAFTING CHECK

FUNDING

CONSTRUCTION W.O. No. PB006558

PB006558

DESIGN W.O. No.

DRAFTED DESIGNED RPEQ NO. APPROVED FUNDED BY Q.U.U. (1) EXTERNAL (1)

5 SERVICE AND MAINTENANCE

This product is designed to operate under specific environmental, supply and load conditions. Should these conditions change, consult a licenced electrician or electrical engineer before operating this product.

These procedures are to be performed only by a licenced electrician as they may expose live equipment.

The Switchgear and Controlgear Assembly is essentially maintenance free, however the following safety measures and routine maintenance is recommended.

- Where fitted, ensure cabinet vents and filters are clear and clean.
- During operation, ensure all doors and covers are secure and closed.
- All faults are to be investigated and repaired by an appropriately licenced electrician.
- All components to be operated in accordance with manufacturers data.
- The protective devices within switchboards are designed to operate in the event of a short circuit or overload condition. In the event of these devices operating under such conditions the device or devices must be inspected and tested by a suitably trained person to ascertain its condition prior to reconnecting the protective device to the supply.

Periodic checks should ensure

- The switchboard is clean and free of any contaminants, which could reduce the insulation properties of the switchboard.
- All entries are sealed to ensure no vermin can enter.
- There is no evidence of overheating, arcing or moisture.
- The earthing system is maintained and is adequate to allow correct operation of protective devices.
- Insulation resistance is maintained to appropriate levels.
- Check terminations for correct tension.
- Test operation of protective devices.
- Re-calibrate instrument loops as required.

Refer to AS-INSTALLED electrical drawings for details of protection equipment settings.

No special tools or equipment are required to perform routine maintenance.

C54500-QUU - Eagle_Farm_Workshops Revision 0 Date: November 21, 2012