QUEENSLAND URBAN UTILITIES
 SP344 - SIX MILE CREEK BRISBANE ROAD, REDBANK SEWAGE PUMPING STATION

CIVIL AND MECHANICAL

 OPERATION AND MAINTENANCE MANUALDeveloped by:

J \& P RICHARDSON INDUSTRIES
CAMPBELL AVENUE
WACOL QLD 4076
ABN 23001952325
ACN 001952325

Ph. (07) 32712911
Fax. (07) 32713623

Index

1. Electrical Installs

2. Equipment Manuals
3. Odour Control \& Generator Slab
4. Overhead Crane
5. Pipe Work, Valves, Pumps Install
6. Platform
7. QUU Drawings AS INSTALLED
8. Spray Coating
9. Brisbane Road Commissioning Plan
10. Surge Tank
11. Photos

1. Electrical Installs

SP344 Brisbane Rd Redbank SPS - Civil and Mechanical OM Manual

โへヨy LOO－OLT0－४」S－โ0－†EOdS－กO L＾ヨy 900－0LT0－४」S－โ0－৮દOdS－กO โへヨУ 9T00－0tโ0－＾IJ－โ0－七દOdS－กO โへヨy 8000－0tโ0－＾IJ－t0－七EOdS－กO		M	x		 	て＇I＇Z
โ＾ヨУ LOO－OTLO－४ปS－T0－ヤEOdS－กO โへヨy $\angle \tau 00-0 \tau \tau 0-\wedge I D-\tau 0-七 \varepsilon 0 d S-ก 0$ 		M	x		 	I＇T＇て
					syı0M	I＇Z
					NOIIVINヨW37dWI	
		x	$4+\mathrm{e}$			でT「T
		x	$4+e$			I＇T＇t
					şuəunวoa u8！səa	I＇T
					NVIS ${ }^{\text {a }}$	
sрлогәу／syдешәу	sұuәunэog әЈиәдəృəу			е！иә！！	әЈuənbəS ssəวоıd	ON سəł｜
spıosəy／spıemə		${ }_{*}$ ィg	啫			Nural

q
七てO－でし」

SP344 Brisbane Rd Redbank SPS－Civil and Mechanical OM Manual

			x		şu！mead pə\｜｜eŗsu｜sy	て＇$\underbrace{\stackrel{\sim}{\square}}$
			x			โ＇ $\mathrm{\sim}^{\text {® }}$
					צヨ＾OONVH	$\varepsilon]$
 		$4+8$	x	sәппрәчэs pue s®u！медр ‘ио！пеэ！！！	әұ！ 	$\varepsilon^{\prime} \tau^{\prime} 乙 \xlongequal{2}$
		1SnJ	ydr			
spı0эәу／syגешәу	รұиәшпэоの әэиәдəృу				әวиәnbəs ssəว๐1d	ON แวทํ

25
ャऽsuəəno

NV7d ISFI 8 NOILJGdSNI

2. Equipment Manuals

Valveco
 Heay Duty Knifegate General Purpose Lugged Style Knifegates

Heavy Duty General Purpose Lugged Style Knifegate Valve

Features

- Compact design for easy installation and maintenance
- Both 304SS and 316SS valves available
- Available in metal \& resilient seat
- Uni \& bi-directional design
- One piece integral cast body, chest and lugs
- Integral cast in gate wedges minimize flow obstructions
- High flow rates with low pressure drops
- Gate guides to support gate
- Complies with AS6401 \& MSS SP-81 face to face dimensions
- Every valve pressure tested
- Gate machined over full length for optimum sealing
- 50 to 1200 mm sizes available, 50 to 600 mm kept in stock
- 10 bar pressure rating

- Specifically formulated PTFE impregnated packing material for increased service life and lower friction
- Specialised packing for chemical resistant or abrasive applications available on request
- Available with a variety of actuators including handwheel, chain wheel, quick acting lever, geared, electric, air or hydraulic cyliner actuator

Options

- Bonneted, non-rising stem adapter, deflection cones, positioners, limit switches, solenoids, pneumatic failsafe \& shrouds.

Applications

The Valveco Heavy Duty General Purpose Knifegate Valve is designed for a wide range of applications such as:

- Waste Water \& Water
- Mining
- Fly Ash Handling Plants
- Bulk Conveying
- Corrosive Environments
- Pulp \& Paper
- Food \& Beverage
- Chemical Plants

Dimensions

Class	Size	In	2	21/2	3	4	5	6	8	10	12	14	16	18	20	24
		mm	50	65	80	100	125	150	200	250	300	350	400	450	500	600
$\begin{gathered} 10 \text { Bar } \\ \& \\ 150 \mathrm{lb} \end{gathered}$	L mm		48	51	51	51	57	57	70	70	76	76	89	89	114	114
	H mm		350	410	440	520	595	660	880	1025	1190	1355	1530	1690	1880	2200
	PCD mm		114	127	146	178	210	235	292	356	406	470	521	584	641	756
	W mm		200	200	200	225	250	250	280	350	400	400	450	450	600	600
	N-H		4-M16	4-M16	4-M16	4-M16	8-M16	8-M16	8-M16	8-M20	12-M20	12-M24	12-M24	12-M24	16-M24	16-M27
	Weight (kg)		9.5	12	13	16	19	22	34	53	65	90	145	180	227	282

*other flange drilling available

Pneumatic Actuation

Standard Materials

No.	Part Name	Material Code (ASTM)
1	Body	SS304, 316 or 316L (A351-CF8)
2	Gate	SS304, 316 or 316L (A351-CF8)
3	Packing	PTFE Impregnated Braided Fibre
4	Packing Gland	SS304, 316 or 316L (A351-CF8)
5	Super Structure	SS304, 316 or 316L (A351-CF8)
6	Clevis	SS304
7	Piston Rod	SS304
8	Cylinder	Aluminium or Fibreglass

Dimensions

Class	Size	In	2	21/2	3	4	5	6	8	10	12	14	16	18	20	24
		mm	50	65	80	100	125	150	200	250	300	350	400	450	500	600
$\begin{gathered} 10 \mathrm{Bar} \\ \& \\ 150 \mathrm{lb} \end{gathered}$	L mm		48	51	51	51	57	57	70	70	76	76	89	89	114	114
	H mm		500	561	574	675	750	815	966	1181	1340	1448	1648	1834	2020	2120
	PCD mm		114	127	146	178	210	235	292	356	406	470	521	584	641	756
	N-H		4-M16	4-M16	4-M16	4-M16	8-M16	8-M16	8-M16	8-M20	12-M20	12-M24	12-M24	12-M24	16-M24	16-M27
	Weight (kg)		11	13	15	21	25	31	58	103	137	158	172	202	256	494

*other flange drilling available

Sydney

48 Whiting Street, Artarmon 2064 P.O. Box 177, Artarmon NSW 2064

Tel:+61 (02) 94327300 Fax: +61(02) 94327399
Email: pogc@halmel.com.au

Morwell

8 Jones Road, Morwell Vic 3840
P.O. Box 647 Morwell Vic 3840

Tel:+ 61 (03) 51348398 Fax: +61 (03) 51345702
Email: dpasales@halmel.com.au

Perth

Unit 1, 34 Ledgar Road, Balcatta WA 6021
Tel: +61 (08) 93453688 Fax:+61 (08) 93448707
Email: hmperth@halmel.com.au

Brisbane

433 Logan road, Stones Corner Qld 4120
(07) 33948272 Fax: +61 (07) 38479755

Email: bschweikert@halmel.com.au

Mackay
44 Michelmore Street, Paget Qld 4740
P.O. Box 6221, Mackay Mail Centre Qld 4741

Tel: +61 (07) 49525555 Fax:+61 (07) 49525322
Email: mackay@halmel.com.au

Townsville
PO Box 347, Aitkenvale Qld 4814
Tel: (07) 47286300 Fax: (07) 47286388
Mobile: 0417996694
Email: ccook@halmel.com.au

New Zealand

215 Tanners Point Road
Rd1, Katikati, Bay of Plenty, NZ
Tel/Fax: +64 75490448
Mobile: +64 7021723803
Email: dlockton@halmel.com.au

DEMAG

Cranes \& Components

Demag DC-Pro chain hoist Demag DCM-Pro Manulift

The new industry standard

Demag hoist units: Perfect load handling

High productivity, efficiency and operating reliability are the most important requirements to be met by state-of-the-art material flow systems. Demag Cranes \&

Contents

|

DC-Pro chain hoist

A new industry standard 3
Tailored solutions
Increased performance, more speed Improved safety and reliability Control pendant
Commissioning and maintenance

DCM-Pro Manulift
DCM-Pro Manulift
$12-15$

Accessories

Pillar and wall-mounted slewing jibs
16-17
KBK track and crane installations 18-19
Trolleys and electric drives
20-23
Clamp-fitted buffers and magnets
24-25
Service
26-27

|

Technical data and selection tools

Selection criteria

28-29
Technical data,
selection and dimension tables $30-37$
Hoist Designer/e-tools
38
Fax service 39

Components develops and produces materials flow solutions for all i ndustries and companies of all sizes, from small workshops to major industrial corporations.

Demag DC-Pro chain hoist:
 A new industrial standard - Made by Demag

All inclusive: fully featured instead of extras price list
M any features are already integrated into the Demag DC-Pro chain hoist as standard that have to be ordered

and bought as extras elsew here.
The DC-Pro chain hoist is a fully featured, highly versatile chain hoist, which can be installed and put into service in a minimum of time.

That is "Standard - M ade by Demag", an investment with added value.

- 20 \% Ionger service life and greater efficiency thanks to Demag $2 n^{\oplus}$
- Improved safety and reliability thanks to 24 V contactor control and operating limit switches
- Fast and ergonomic height-adjustment of the control cable without the need for any wiring
- Flexibility as standard thanks to two sizes of suspension bracket
- Simple installation and commissioning thanks to plug connections - Plug \& Lift und Plug \& Drive
- Gearbox, brake and slipping clutch are maintenancefree for up to 10 years
- Smooth and fast load handling of loads with two hoist speeds
- Elapsed operating time counter and diagnostics interface provide information on the operating status maintenance breaks can be planned
- The plug-fitted chain drive can be replaced quickly and easily

Tailored solutions

Certified

DC-Pro chain hoists are tested and approved by the relevant authorities and also meet the demanding requirements of the CSA specifications. Electromagnetic compatibility is rated according to EN 61000-6-2 to 4 for interference immunity in industrial environments and for interference emissions in commercial and industrial environments.

(1)

Gearbox - maintenance-free for up to 10 years. With classification in FEM Group of Mechanisms Demag 2m+, the DC-Pro sets a new standard with a rated service life of 1900 hours at full load. In practical terms, this means the service life is extended by approx. 20%. The helical gearing of all gearbox stages also reduces operating noise and provides for smooth operation.
(2)

Brake - maintenance-free for up to 10 years (sizes DC 10-25 up to 5 years). Thanks to minimum wear, adjustment is not necessary; short and gentle run-on path. The brake enclosure features double encapsulation and is therefore impervious to poor weather and operating conditions.

(3)

Slipping dutch - maintenance-free for up to 10 years. Integrated behind the brake in the power drive, it provides reliable protection against extreme overload. Damaging permanent slipping is not possible thanks to integrated speed monitoring.

(4)

Height adjustment of the control pendant - The length of the control cable and, therefore, the suspension height of the control pendant can be infinitely varied for a hook path range of 2-5 mand 5-8 m . The length of control cable that is not required is accommodated under the service cover. The control cable is rated for electric travel applications in 3 axes.

(5)

Control - with 24 V contactor control, operating limit switches (upper/lower) and elapsed operating time counter as standard. A geared limit switch with four contacts for fast-to-slow and limit cut-off is used as the operating limit switch for sizes DC 16 and 25.

(6)

Round steel chain - a special Demag chain of high-strength, ageing-resistant material with high surface hardness. Galvanised and additionally surface-treated to protect against hostile environments.

(7)

Suspension bracket - DC-Pro chain hoists are suspended in pendulum fashion and make optimum use of the available height thanks to their small C headroom dimension. DC-Pro units are supplied with short and long suspension brackets as standard and can always be attached to the superstructure with the optimum connection.

(8)

Housing - robust and weight-saving die-cast aluminium housing of compact and modern industrial design. UV-resistant powder-coated finish is unsusceptible to knocks and scratches.

(9)

Hoist motor - robust and enduring high-performance motor with large safety reserves even at high ambient temperatures and in prolonged operation. 2 hoist speeds with F4 ratio as standard. (Insulation class F, 360 s/h and 60 \% CDF)

(10)

Chain drive - The plug-in unit facilitates quick and easy replacement of the entire chain drive without having to remove the motor or gear parts. Downtimes can therefore be cut significantly. The chain drive consists of highly wear-resistant materials for a long service life.

(11)

Chain collector box - attached in pendulum fashion, made of tough, flexible and particularly impactresistant plastic; capacity for up to 8 m hook path. Chain collector bag for chain lengths up to 40 m as well as special lengths up to 120 m can be supplied.

(12)

Bottom block - up to 1000 kg with single chain fall for improved ergonomic handling of the hook with fittings. Chain wear is simultaneously reduced, since no chain return arrangement is required. The new, compact and particularly ergonomic DC bottom block is used for 2/1 reeving arrangements. The cut-off springs required for the limit switches are integrated inside the bottom block and therefore save 60 mm of the valuable C dimension.

Increased performance, more speed

Increased performance, improved ergonomics, safety and reliability for greater productivity. The performance features of the new DC-Pro chain hoist provide for optimum efficiency.

Sensitive and fast

DC-Pro units can be integrated into your work and production processes flexibly and precisely. While the main lifting speed guarantees fast and effective operation at a minimum of $6 \mathrm{~m} / \mathrm{min}$, the creep lifting speed ensures that loads are handled gently and precisely.

$2 n^{\oplus}$ - an even longer service life for greater efficiency.

In practical terms, Demag $\mathbf{2 n}^{\oplus}$ means the service life is extended by approx. 20 \% in comparison with the conventional 2 m classification for chain hoists according to the FEM Group of M echanisms. This results in significantly extended intervals for service work and general overhauls. This extra amount of lasting efficiency is only offered by the new Demag DC-Pro chain hoist.

Duration of service in full load hours

Improved safety and reliability

Thanks to the completely new safety concept developed for the Demag DC-Pro chain hoist, the gearbox, brake and coupling operate without the need for any maintenance for up to ten years (brake for sizes DC 10-25 up to 5 years). The brake-coupling system ensures that the load is held securely in any operating situation. The load cannot drop. This is achieved by arrangement of the brake direct in the power drive chain (red line). Thanks to minimum wear, the brake does not need to be adjusted. Operating safety is generally improved by the single-fall design up to a load capacity of 1000 kg .

The combination of electronic control system and integrated speed sensors continuously monitor the hoist motor, clutch and brake, thus ensuring lasting safety for the operator. The compact and light 24 V contactor control system also ensures that the system is subject to only minimum wear. The run-on path is both smooth and gentle.

The standard control system includes

- 24 V contactor control
- Operating limit switches (upper/lower) to switch the hoist motion off in the highest and lowest hook positions - sizes DC 16 and 25 with geared limit switch with four contacts for for fast-to-slow and limit cut-off
- Elapsed operating time counter can be read from the outside
- Speed detection
- Infrared diagnostics interface

Control pendant:

Always at the right operating height

Height adjustment of the control cable

The adjusting mechanism also contains the strain relief arrangement for the control cable and can resist extreme tensile loads. The same applies to the control cable, which is made of a proven and particularly tough material. At the same time, the control cable is flexible and therefore easy to handle.

Ergonomics:

All in good hand

The DSC control pendant precisely interprets control commands in any situation. It facilitates fatigue-free operation for right and left-handed operators both with and without gloves. Furthermore, electrical interlocks prevent simultaneous initiation of motions in both directions.

Demag control pendants feature an optimised ergonomic sloping design for convenient operation. They are made of high-quality plastic which is highly resistant to impacts and are therefore extremely robust. With bending and impact protection as well as IP 65 enclosure against dust and moisture, DSC units are ideally suited for the demanding requirements of industrial applications. The DSC control pendant is specially developed for push-travel DC-Pro chain hoists and fitted with two-stage switching elements. The DSE 10-C control pendant is
 used for electric travel applications with E 11/E 22 or E 34 drives.

The control pendant can be changed quickly and easily

Slide the protective sleeve upwards over the control cable

Fit the plug with its bayonet connector into the control pendant and turn until it locks

Push protective sleeve downwards

Commissioning:
 Plug \& Lift and Plug \& Drive

|

A great benefit offered by the new Demag DC-Pro chain hoist is simple commissioning. The pivoting suspension bracket and infinitely adjustable flange width of the $\cup 11, \cup 22$ and $U 34$ trolleys make the mechanical parts easy to install.

The plug-in connections beneath the service cover and the power plugs that are already included in the scope of delivery also make the electrical parts simple to connect. This enables the DC-Pro to be ready for operation in a minimum of time.

Integrated beneath the cover

You have rapid access to all important components for service and commissioning beneath the pivoting service cover

- Storage for 3 m of control cable
- Plug-in electrical connections for power cable, control cable, limit switches and trolley
- Strain relief for power supply and trolley supply cables
- Chain guide
- Chain lubrication

[^0]
Maintenance:

Fast and simple

All main drive components of the Demag DC-Pro chain hoist, such as the gearbox, brake and coupling, operate without the need for any maintenance for up to ten years (maintenance-free brake for up to 5 years for sizes 10-25). The outstanding Demag quality of all components provides for a long service life even under heavy use. The few necessary maintenance measures can be carried out quickly and easily thanks to the service-friendly design of the DC-Pro.

The chain drive of the DC-Pro, for example, is designed as a compact unit which is plugged into place and can be replaced in a minimum of time without the need to disassemble motor or gearbox parts. Long downtimes as a result of maintenance work are now a thing of the past.

Chain drive

Diagnosis - wireless via display or via infrared

Service technicians can read the standard operating time counter or call up the relevant information on the operating status - from the outside via the display on the base of the chain hoist housing or by means of the diagnosis interface via infrared data transfer.

Diagnosis interface

Demag DCM-Pro Manulift:
 Ergonomic single-handed load handling at the workplace

The DCM -Pro M anulift was developed for handling loads quickly and safely with only one hand. The new DCM -Pro is based on the lifting unit of the DC-Pro chain hoist and the DSM-C control unit which is connected to it by a helical cable. Thanks to the control unit which is rigidly connected to the load handling attachment for right and left-handed operation, the operator only needs one hand to operate the chain hoist and guide the load.

The quick-change coupling enables a wide variety of load handling attachments to be changed with ease. All M anulift load handling attachments are fitted with a connecting pin with a swivel lock, which snaps into the quick-change coupling. It can be easily disconnected by lifting the unlocking sleeve.

Manulift units can travel on Demag KBK profile sections and I-beams (see pages 16-23), which enables them to be flexibly integrated into work and production processes.

Load hook 250 kg

Slewing load hook 250 kg

Open hook 125 kg

Belt sling
125 kg

Versatile adaptability to any task

A variety of proven load handling attachments facilitate optimum and flexible adaptation of the chain hoist to meet your needs. They range from normal load hooks and various pantograph-type tongs to parallel gripper systems, e.g. for KLT containers used in the automotive industry. The DCM - Pro M anulift can be used with specially developed load handling attachments. The universal coupling pin is used to connect customerdesigned attachments.

It is provided with an M12 internal thread for connecting special load handling attachments.

M anulift load handling attachments can also be connected to the DC-Pro chain hoist load hook by means of an adapter. The versatility and flexibility of the new Demag chain hoist provide for improved load handling efficiency at the workplace.

The quick-change coupling on the DSM -C control unit

PGS-parallel gripper 125 kg

Pantograph tongs for gripping square goods 125 kg

Pantograph tongs for gripping round goods 125 kg

Load hook adapter with connected PGS shaft gripper

PGS parallel gripper system:
 Firm hold on loads up to 125 kg

PGS box grippers

The narrow design and short opening path of the grippers make it possible to pick up and deposit goods safely and easily, even in restricted spaces, and to place them direct into cartons. The 100 mm wide gripping range makes it possible to transport both the actual goods as well as a packed unit using the same gripper.

PGS shaft grippers

Various shaft grippers are available which can be adapted to different shaft types and applications by changing the gripper jaws.

When fitted with a shaft support, they can be used to pick up shafts with various diameters or an unknown centre of gravity. This significantly improves the safety of handling tasks that, until now, have always involved a certain risk.

PGS container grippers

The various container grippers can be supplied for fixed or adjustable container widths. They are easily adjusted to the relevant container size by lifting and turning the locking pins, and by pushing the grippers together or pulling them apart until the stops are reached.

Container type	Container size	
	600×400	400×300
Euro container	rigid	rigid
KLT (VDMA)	rigid	rigid
	adjustable	
	rigid	rigid
Various containers such as PDB, ARCA, M F, SSI Schäfer, Eurotec, Utz KLT, Bito	adjustable	

Grippers for other container types on request

Grippers for various container types

Slewing jibs facilitate load handling at the workplace

Pillar- and wall-mounted slewing jibs with the DC-Pro chain hoist provide inexpensive support at the workplace and facilitate space-saving load handling in production, storage and shipping. When used direct on production

Wall-mounted slew ing jibs

These cranes, which take up no floor space, can be used wherever load-bearing concrete walls or pillars are available. The slewing range of up to 270° and the possibility to fit them to machinery and installations makes them ideal for a wide range of applications.
machinery, they help to cut setting-up and idle times. Wall- and pillar-mounted slewing jibs and pillar-mounted slewing cranes are suitable for virtually any application as standard.

Pillar-mounted slew ing jibs and cranes
The locations served by these free-standing cranes are utilised to the full thanks to their slewing range of up to $\mathrm{n} \times 360^{\circ}$. They can be used for many applications. They can be erected indoors or outside and used for handling goods at loading ramps or for serving machinery. These cranes provide maximum hook paths even where only little headroom is available. The pillar has only a small footprint and is either anchored to the foundations using anchor rods or to an existing concrete floor using anchor bolts.

KBK slewing jibs feature struts and hollow profile section rails and offer a low deadw eight for load capacities up to 1000 kg . Loads can be moved quite simply by hand.

The product range of the l-beam slewing jibs covers a load range up to 10000 kg as standard.

See brochure 20875644 for further information on pillar and wall-mounted slewing jibs and cranes.

Efficient material flow with KBK track and crane installations

|

Interlinking production processes, serving machinery, moving materials - all handling and transport tasks have one thing in common: loads not only have to be lifted and lowered, horizontal motions are also required.

Suspension cranes

Single and double-girder suspension cranes are used for area-serving load handling. The low deadweight enables loads to be easily moved by hand. Travel drives are also available for precise positioning of larger loads.

The KBK crane construction kit is the ideal horizontal transport system for the DC-Pro and DCM -Pro M anulift. KBK installations are used for both linear and areaserving load transport.

Portal cranes

Portal cranes from the KBK system are not mounted on rails and can be easily moved. When fitted with the DC-Pro chain hoist, this makes them ideal and flexible lifting devices, above all for repair and assembly work.

KBK sections are available in various sizes for different load capacities

M any components are available to create efficient overhead materials handling solutions to meet specific application requirements.
The KBK crane construction kit is a suspension system which uses no valuable floor space and therefore leaves
production area free. It is completely modular in design, all connections are bolted or fitted. This enables installations to be modified or extended easily and cost-effectively. These are Demag system solutions for practical material flow requirements.

Sections in various profile sizes for curved tracks

KBK Aluline - aluminium profile sections

Suspension monorails

Suspension monorails are the preferred linear solution to connect pick-up and deposit positions. The many possible designs from simple, manually controlled straight sections to complex, semi or fully automated closed-circuit monorail systems enable a wide variety of applications to be implemented. Flexible routing by means of straight and curved sections, track switches and turntables facilitates cost-effective adaptation to the most diverse operating conditions.

See brochure 20838544 for further information on track and crane systems from the KBK crane construction kit.

Push-travel trolleys for simple horizontal movement

U trolley

The new U trolley generation is available in two sizes for load capacities up to 1100 kg (U 11), 2200 kg (U 22) and 3400 kg (U 34). The flange width can be infinitely adjusted by means of two adjusting rings and covers the ranges from 58 mm to 200 mm , and 201 mm to 310 mm . This facilitates fast and simple installation.

The travel rollers, which are made of high-strength and wear-resistant Polyamide, provide for smooth operating characteristics and low travel resistance. Optional steel rollers can also be used for special ambient conditions, e.g. high temperatures. The universal design of the travel rollers enables them to be used for operation on straight and sloping profile sections.

The lateral steel guide rollers support their curvenegotiating properties down to the minimum radius of 1000 mm and minimise girder wear. A drop-stop arrangement is integrated into the side cheeks, which consist of aluminium die-castings with a powder-coated finish.

Push-travel U trolleys are designed for simple addition of the E electric travel drive at a later date.

CF 5 click-fit trolley

Simply clicked onto the girder, curve-negotiating Click-fit trolleys are ready for operation with a load capacity of up to 550 kg .

The flange widths from 58 to 91 mm , the minimum curve radius of 800 mm and easy adaptability to standard section or parallel flange girders make them suitable for universal applications. The integrated drop-stop and lift-off protection provides for safe operation.

Plug \& Drive with electric trolleys

EU trolley

The E 11, E 22 and E 34 electric travel drives were specially developed for operation with the new DC-Pro chain hoist. This significantly extends the range of applications of this state-of-the-art hoist.

The travel drives can be adapted to the U 11 - U 34 trolleys. Particularly short approach dimensions can be achieved when the units are mounted in a vertical arrangement. Fast retro-fitting and commissioning offer further benefits as no changes need to be made to the push-travel trolleys.

The drive is simply connected to the DC-Pro chain hoist using plug connectors and operated by means of the newly developed DSE 10-C control pendant. The control pendant for long and cross travel is simply fitted by means of a connector. The E 22 travel drive is used as standard for the KBK rail system with the new RF 125 friction wheel travel drive.

The E electric travel drive features a state-of-the-art, compact industrial design and offers outstanding travel characteristics. The control system integrated in the
travel unit provides for gentle starting and braking for low-sway load handling. A convenient load-sway damping system can be activated for the cross-travel motion. The speeds and acceleration and braking rates can also be modified by means of the DSE-10 C control pendant, if required. All electrical connections are of plug-in design.

The trolleys can also be fitted with an optional cross-type limit witch, either with fast-to-slow and limit switch cut-off or only with limit sw itch cut-off.

Clamp-fitted buffers to limit travel

|

KPA/KPT clamp-fitted buffers are the ideal solution to limit travel and are suitable for all DC-Pro trolleys. They can be fitted to sloping and parallel I-beam girders quickly and easily using screws. The travel range is shortened or extended by simply relocating the buffers.

They can be adapted to flange widths from 50 to 300 mm for universal applications.

They are suitable temperature ranges from $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ as well as for operation outdoors thanks to adequate resistance to ageing, ozone and weather conditions. Furthermore, they offer good resistance to acids and lyes. The tightening torque details are cast into the buffer to ease assembly.

Magnets as versatile load handling attachments

DPM N permanent magnets

They offer low operating costs, constant availability and versatility and are suitable for operation both inside manufacturing facilities and outdoors. They function independently of a power supply and are safe, easy and reliable to operate.

When switched to "magnetise", a magnetic field is created between two field poles; no magnetism remains when sw itched to "demagnetise". The outer surface of the magnet armature is always neutral and offers maximum protection against external influences.

DBM 34/68 battery magnets
The compact unit consists of an electromagnet, battery and control unit with an integrated charging set. Battery magnets operate independently of a mains power supply and are used in stationary and travelling applications. They offer safe, reliable and easy operation in stores or production areas. The charging operation is controlled automatically and the charge level is indicated by the battery monitoring display.

R 26 round magnets

These single magnets offer enormous strength. The solid housing is made of highly permeable steel and the coil consists of fully encapsulated enamelled copper wire. They are fitted with integrated rectifiers and switches as standard.

Service - ready to help around the clock

All over the world

We offer you service around the clock with our worldwide network of Demag expert service teams and Demag partners. This ensures the highest availability and safety in your installation.

Rapid and reliable spare part supply

Any spare parts needed can be shipped 24 hours a day, 7 days a week.

Service systems: Demag IDAPSY

We have developed a new integrated service system for the new Demag DC-Pro chain hoist: Demag IDAPSY. IDAPSY stands for Inspection Diagnosis Application System.

And these are your benefits:

- Transparency

By recording utilisation of the installation, Demag IDAPSY facilitates predictive and plannable service. This enables a high level of availability to be ensured.

- Analysis

Recorded data provides an excellent basis for analysis.
The load spectrum recorder can be read out or error messages can be called up for maintenance or repair purposes, for example.

- Efficiency

M aintenance work carried out in good time to ensure your installation is in optimum condition increases overall efficiency.

Demag IDAPSY enables service work to be carried out more quickly. This means that your hoist is ready for operation again even more quickly if service work has to be carried out.

Your individual service package

Demag Service and our Demag partners offer a comprehensive portfolio of services to ensure the lasting availability of your installation throughout its entire lifecycle:

- Recurring inspections according to relevant accident prevention regulations
- Inspection and maintenance
- Fault elimination both with and without on-call standby
- Service training for operators and maintenance engineers

Selection criteria

The size of the hoist is determined by the load spectrum, average operating time per working day, SWL and reeving.

1. What are the operating conditions?
2. What is the specified safe working load?
3. To what height must the load be lifted?
4. What is the required lifting speed?
5. Do the loads need to be lifted and lowered with high precision?
6. Is horizontal load travel necessary?
7. How is the hoist to be controlled?

The load spectrum

(in most cases estimated) can be evaluated in accordance with the following definitions:

1 Light

Hoist units which are usually subject to very small loads and only in exceptional cases to maximum loads.

2 Medium

Hoist units which are usually subject to small loads but rather often to maximum loads.

3 Heavy

Hoist units which are usually subject to medium loads but frequently to maximum loads.

4 Very heavy

Hoist units which are usually subject to maximum and almost maximum loads.

The group is determined by the load spectrum and operating time.

Example:

SWL 250 kg
Load spectrum „medium" from table
Lifting speed $8 \mathrm{~m} / \mathrm{min}$;
1/1 reeving
average hook path 4 m ;
Number of cycles/hour 20
Working time/day 8 hours

The average operating time per working day is estimated or calculated as follow s:

Operating time/day $=\frac{2 \cdot \text { average hook path } \cdot \text { no. of cycles/h } \cdot \text { working time/day }}{60 \cdot \text { speed hoist }}$

$$
=\frac{2 \cdot 4 \cdot 20 \cdot 8}{60 \cdot 8}=2.66 \text { hours }
$$

For the medium load spectrum and an average daily operating time of 2.66 hours, the table shows group $2 \mathrm{~m}+$. For a load capacity of 250 kg , the diagram shows size DC-Pro 2-250.

Technical data

Model code

EU	DC-Pro	10 -	2000	2/1	H5	V6/1,5	380-415/	50	24/6	100
										Flange width [mm] or I beam
									Travel	speed [$\mathrm{m} / \mathrm{min}$]
								Freq	ncy [Hz]	
							Voltage rang	in ho	[V]	
						Hoist sp	d $[\mathrm{m} / \mathrm{min}]$			
					Hoo	path [m]				
				Reevi						
			Load c	capacit	[kg]					
		Size								
	DC	Dem	chain	hoist						
	Trolley type									
CF	Click-fit trolley		E	Elect	trave	drive				
U	Travelling hoist		D	Artic	ated					
R	Push travel									

Demag DCM-Pro Manulift selection table

Load capacity [kg]	Manulift	Hoist speed		Motor size	Hook path[m]	Group of mechanisms FEM	Reeving	Max. weight for 2,8 and 4,3 hook path [kg]
	Typ	[m/min at 50 Hz]	[m/min at 60 Hz]					
80	DCM-Pro $1-\ldots$	8/2	9.6/2.4	ZNK 71 B 8/2	2.8 and 4.3	4 m	1/1	$22 / 23$
	DCM-Pro 2 - ...	16/4	19.2/4.8					
125	DCM-Pro 1-...	8/2	9.6/2.4					
	DCM-Pro $2-\ldots$	16/4	19.2/4.8					
250	DCM -Pro 2 - ...	8/2	9.6/2.4			$2 \mathrm{~m}+1)$		
	DCM-Pro 5-...	16/4	19.2/4.8	ZNK 80 B 8/2		4 m		28/29

1) $2 m+$ corresponds to 1900 hours at full load

Demag DCM-Pro Manulift dimension table

Size	Short suspension bracket			Long suspension bracket		
	c		C1	C		C1
	for hook path		Chaincollector boxH5	for hook path		Chaincollector boxH5
	2.8 m	4.3 m		2.8 m	4.3 m	
DCM -Pro 1	635	705	335	673	743	373
DCM-Pro 2	635	705	335	673	743	373
DCM - Pro 5	680	750	395	718	788	435

DC-Pro chain hoist selection table

SWL [kg]	Chain hoist Typ	Hoist speed		Motor size	Hook path ${ }^{2)}$[m]	Group of mechanisms FEM	Reeving	Max. weight at H5/ H8 respect. H4 [kg]
		[m/min at 50 Hz]	[m/min at 60 Hz]					
80	DC-Pro 1 -...	8/2	9.6/2.4	ZNK 71 B 8/2	5 and 8	4 m	1/1	$22 / 24$
	DC-Pro 2 -...	16/4	19.2/4.8					
100	DC-Pro 1 -...	8/2	9.6/2.4					
	DC-Pro 2 -...	16/4	19.2/4.8					
125	DC-Pro 1 -...	8/2	9.6/2.4					
	DC-Pro 2 -...	16/4	19.2/4.8					
160	DC-Pro 2 -...	8/2	9.6/2.4					
	DC-Pro 5 -...	16/4	19.2/4.8	ZNK 80 B 8/2				$28 / 30$
200	DC-Pro 2 -...	8/2	9.6/2.4	ZNK 71 B 8/2		3 m		$22 / 24$
	DC-Pro 5 -...	16/4	19.2/4.8	ZNK 80 B 8/2		4 m		28/30
250	DC-Pro 2 -...	8/2	9.6/2.4	ZNK 71 B 8/2		$2 \mathrm{~m}+{ }^{11}$		22/24
	DC-Pro 5 -...	16/4	19.2/4.8	ZNK 80 A 8/2		4 m		28/30
315	DC-Pro 5 -...	8/2	9.6/2.4	ZNK 80 A 8/2		4 m		28/30
	DC-Pro 10 -...	12/3	14.4/3.6	ZNK 100 A 8/2				$48 / 52$
400	DC-Pro 5 -...	8/2	9.6/2.4	ZNK 80 A 8/2		3 m		28/30
	DC-Pro 10 -...	12/3	14.4/3.6	ZNK 100 A 8/2		4 m		$48 / 52$
500	DC-Pro 5 -...	8/2	9.6/2.4	ZNK 80 A 8/2		$2 \mathrm{~m}+{ }^{1)}$		28/30
	DC-Pro 10 -...	12/3	14.4/3.6	ZNK 100 A 8/2		4 m		$48 / 52$
630	DC-Pro $10-\ldots$	6/1.5	7.2/1.8	ZNK 100 A 8/2		4 m		$48 / 52$
		12/3	14.4/3.6	ZNK 100 B 8/2				$56 / 60$
800	DC-Pro $10-\ldots$	6/1.5	7.2/1.8	ZNK 100 A 8/2		3 m		$48 / 52$
		12/3	14.4/3.6	ZNK 100 B 8/2				56/60
1000	DC-Pro 10 -...	6/1.5	7.2/1.8	ZNK 100 A 8/2		$2 m^{11}$		$48 / 52$
		12/3	14.4/3.6	ZNK 100 B 8/2				$56 / 60$
1250	DC-Pro 10 -...	6/1.5	7.2/1.8	ZNK 100 B 8/2	5 and 8	4 m	2/1	$65 / 73$
		8/2	9.6/2.4			1 Am	1/1	56/60
	DC-Pro 16 -...	12/3	14.4/3.6	ZNK $100 \mathrm{C} 8 / 2$	4	3 m	1/1	111
1600	DC-Pro 10 -...	6/1.5	7.2/1.8	ZNK 100 B 8/2	5 and 8	3 m	2/1	$65 / 73$
	DC-Pro 16 -...	8/2	9.6/2.4	ZNK 100 B 8/2	4	$2 m^{+11}$	1/1	103
		12/3	14.4/3.6	ZNK $100 \mathrm{C} 8 / 2$				111
2000	DC-Pro 10 -...	6/1.5	7.2/1.8	ZNK 100 B 8/2	5 and 8	$2 \mathrm{~m}+{ }^{11}$	2/1	$65 / 73$
	DC-Pro 25 -...	8/2	9.6/2.4	ZNK 100 C 8/2	4		1/1	113
2500	DC-Pro 10 -...	4/1	4.8/1.2	ZNK 100 B 8/2	5 and 8	1Am	2/1	65/73
	DC-Pro 25 -...	8/2	9.6/2.4	ZNK 100 C 8/2	4		1/1	113
3200	DC-Pro 16 -...	4/1	4.8/1.2	ZNK 100 B 8/2	4	$2 m^{11}$	2/1	110
		6/1.5	7.2/1.8	ZNK 100 C 8/2				
4000	DC-Pro $25-\ldots$	4/1	4.8/1.2		4	$2 \mathrm{~m}+{ }^{11}$	2/1	125
5000						1Am		

1) $2 m+$ corresponds to 1900 hours at full load \quad 2) Longer hook paths possible, please enquire

Demag DC-Pro chain hoist dimension tables

DC-Pro 1-10, up to 1000 kg 1/1 reeving

Size	Motor	Suspension bracket						b	1	b3	d
		short	long	short		long					
				Chain collector box size							
				H5	H8	H5	H8				
		C									
DC-Pro 1	ZNK 71 B 8/2	326	364	335	365	373	403	268	422	183	124
DC-Pro 2											
DC-Pro 5	ZNK 80 B 8/2	378	316	395	425	435	465	280	468	195	151
DC-Pro 10	ZNK 100 A 8/2	472	505	493	582	526	615	349	528	227	187
DC-Pro 10	ZNK 100 B 8/2	472	505	582	582	615	615	349	578	227	187

DC-Pro 10, 1250 to 2500 kg $2 / 1$ reeving

\square

DC-Pro chain hoist with CF 5 trolley dimension table

Size	transverse to girder			parallel to girder		
	C	C1		C	C, 1	
		Chain collector box			Chain collector box	
		H5	H8		H5	H8
DC-Pro 1	385	415	445	380	410	440
DC-Pro 2	385	415	445	380	410	440
DC-Pro 5	430	477	507	425	472	502

Dimension table for DC-Pro 1-10 chain hoists with U 11, U 22 or U 34 trolleys

For further information, see U 11/U 22/U 34 technical data 20357044.

Dimension table for DC-Pro 16 and 25 chain hoists with U 22, U 34, RU 56 trolleys

Trolley curve radii

Trolley size		Load capacity	Runway girder			
			Push travel		Electric travel	
			Flange width [mm]	Rmin [mm]	Flange width [mm]	Rmin [mm]
CF 5		550	50-91	800	-	-
U 11 DC	EU 11 DC	1100	58-310	1000	58-310	2000
U 22 DC	EU 22 DC	2200	82-310	2000	82-310	3000
U 34 DC	EU 34 DC	3400	82-310	2000	82-310	3000
RU 56 DC	EU 56 DC	5600	98-310	$2000{ }^{11}$	98-310	$2500{ }^{1)}$

1) From flange width 106 mm

The specified curve radii apply for normal applications.
Please enquire for frequent curve travel (e.g. in automatic installations).

Travel speeds

Load capacity [kg]	Chain hoist Typ	Reeving	Possible cross-travel speeds in approx. ... m/min							
			V14/3		V12/4		V24/6		V40/10	
			Trolley	Travel drive						
80 up to 1000	$\begin{gathered} \text { DC-Pro } 1-\ldots \\ \text { up to } \\ \text { DC-Pro } 10-\ldots \end{gathered}$	1/1	-	-	-	-	U 11 DC	E 11 DC	-	-
1250	DC-Pro 10 -...	2/1					U 22 DC	E 22 DC		
	DC-Pro 16 -...	1/1			RU 56 DC	$\begin{gathered} \text { ZBF } 80 \mathrm{~A} \\ 12 / 4 \end{gathered}$	U 22 DC	E 22 DC	RU 56 DC	ZBF 80 A 8/2
							RU 56 DC	ZBF 71 A 8/2		
1600	DC-Pro 10 -...	2/1			-	-	U 22 DC	E 22 DC	-	-
	DC-Pro 16 -...	1/1			RU 56 DC	$\begin{gathered} \text { ZBF } 80 \text { A } \\ 12 / 4 \end{gathered}$	U 22 DC	E 22 DC	RU 56 DC	ZBF 80 A 8/2
							RU 56 DC	ZBF 71 A 8/2		
2000	DC-Pro $10-\ldots$	2/1	-	-	-	-	U 22 DC	E 22 DC	-	-
	DC-Pro $25-\ldots$	1/1	U 34 DC	E 34 DC	RU 56 DC	ZBF 80 A	RU 56 DC	ZBF 71 A 8/2	RU 56 DC	ZBF 80 A 8/2
2500	DC-Pro 10 -...	2/1	U 34 DC	E 34 DC	-	-	-	-	-	-
	DC-Pro 25 -...	1/1			RU 56 DC	ZBF 80 A	RU 56 DC	ZBF 71 A 8/2	RU 56 DC	ZBF 80 A 8/2
3200	DC-Pro 16 -...	2/1	U 34 DC	E 34 DC	RU 56 DC	ZBF 80 A	RU 56 DC	ZBF 71 A 8/2	RU 56 DC	ZBF 80 A 8/2
4000	DC-Pro 25 -...		-	-	RU 56 DC	$\begin{gathered} \text { ZBF } 80 \mathrm{~A} \\ 12 / 4 \end{gathered}$	RU 56 DC	ZBF 80 A 8/2	RU 56 DC	ZBF 90 B 8/2
5000										

E 11/E 22/E34 travel drive selection table, 220-480 V, 50/60 Hz, 3 ~

max. displaceable weight incl. dead weight ${ }^{24}$ [kg]	Travel drive Typ	Speed at		Possible trolleys	Max. weight [kg]
		[m/min]	[m/min]		
1100	E 11			U 11	4
2200	E 22			U 22, RF 125	5
3400	E 34	14/3.5	-	U 34	5

1) Possible by programming other parameters 2) Max. 1% climbing ability 3) infinitely variable up to $24 \mathrm{~m} /$ min

See operating instructions 21481044 for further information.

E 22 trolley on KBK RF 125 dimensions

E 11/E 22/E 34 travel drive on U 11/U 22/U 34 trolley dimensions

Pantograph tongs for load capadity up to 125 kg dimension table

www.demag-hoistdesigner.com is the address where all important data and facts on the new Demag DC-Pro chain hoist and M anulift DCM -Pro can be found. This information and planning platform provides you with a comprehensive product overview and contains all the data you need for project engineering. You can also download the CAD drawings of the entire Demag chain hoist range and integrate them into your design drawings.

Suitable hoists and accessories can be selected in this way. A practical and intuitive user interface ensures that you find the right solution to meet your needs quickly and easily. The Demag Internet order system at www.demag-shop.com also makes it possible to order chain hoists and components immediately.

We find the right solution to meet your needs.

Demag Cranes \& Components has the right hoist for every business and every load. In order to select the best product for your individual needs from the wide variety
of sizes and versions, just fill in the following fax form and send it to us or your dealer. You will promptly receive a recommended solution with the corresponding offer.

Fax service

Demag Cranes \& Components GmbH

Dept. 2902

Handling Technology Product Promotion
P.O. Box 67

58286 Wetter/GermanyDC-Pro chain hoistDCM -Pro M anulift

Load capacity \qquad kg

Operating time per day \qquad approx. hours

Lifting height \qquad approx. m

Hoist speed \qquad $\mathrm{m} / \mathrm{min}$
TrolleyPush-travel trolleyElectric-travel trolley

Please send the quote to

Company

Attention of

Department

Road

Town/post code

Telephone

Telefax

E-mail

DEMAG

Cranes \& Components

Demag Cranes \& Components GmbH

Handling Technology
P.O. Box 67 • 58286 Wetter/Germany

Telephone +49 (0)2335 92-0
Telefax +49(0)2335 92-2406
E-mail handling@demagcranes.com
www.demagcranes.com

McBerns AutoWellWasher ${ }^{\text {TM }}$

(Australian Patent No. 655111)
(International Patent Appl.No.PCT/AU00/00084)

INSTALLATION INSTRUCTIONS for WALL MOUNT BRACKET

Positioning of the device in the well can be critical to the effectiveness of the wash system. Configuration of wells can differ but, in general the Washer should be positioned in the clearest available space to ensure the rotating arms do not come in contact with guide rails, chains, probes, etc.
The mounting bracket is designed to pivot back against the wall (see Figure 1) so as

not to impede access when a pump needs to be removed.
Having chosen the position, the mounting bracket is secured to the wall by means of four 12 mm stainless steel Dynabolts ${ }^{\mathrm{TM}}$. The bolt holes should be drilled approximately 1 metre above the normal high water line.
If you need to use the bracket extension piece it should now be attached. The extension piece is not needed in all wells depending on diameter and internal configuration. If not used, save it for later installations when multiple extensions may be useful.
Once the bracket is secured, the Washer head is inserted in the semi-circular clamp and the two locknuts tightened.

Now attach the pivot chain to the lug near the Washer head and pass the chain through the "eye" nut which should be installed in the wall approx. 1 metre above the Washer. The chain then attaches to the chain retainer which is fixed to the lip of the well opening.

Now the water supply can be connected to the Washer head. You can use good quality 3/4" hose (not garden hose), poly, PVC, copper or whatever best suits your requirements. From our experience the hose method is easiest, as it can be simply dropped down the wall and secured out of harms way using electrical ties.

The next step is to set the rotation speed by adjusting the spray buckets. By loosening the bolt which passes through each bucket, the nozzle housing can rotate through 360 degrees (see Figure 2). The nozzles need to be pointing in opposite directions to cause the spray arms to rotate. Speed of rotation is affected by the angle at which the nozzles are set (Figure 3). Best results are obtained with slow rotation, but care must be taken to allow for drops in water pressure at times of peak water usage in the locality. A temporary drop in water pressure can cause the Washer to stop turning if the initial speed is set too low.

FIGURE 2

Fast Rotation

FIGURE 3

Now by twisting the nozzle buckets on the nipples which join them to the spray arms, the nozzles can be directed to wash the desired areas (Figure 4).
Each nozzle gives a wide fan of spray. Usually, one would be directed to cover the well wall from high to low water line. The other can be directed at a sharper angle to

hit the top of the pumps, probe/float switches, guide rails etc.
The last task while in the well is to double check that all nuts have been tightened. Above ground you should have already installed an approved back-flow prevention device to the water supply line. Australian Standard specifies a Reduced Pressure Zone (RPZ) valve, and we recommend a 25 mm model. Between this and the Washer a solenoid valve should be fitted in the water line. This solenoid is wired to the sewage pump control board so as to open when the pump turns on, and close when the pump stops. Thus the Washer operates as the well is being emptied

THE WELL WASHER KIT CONTAINS:

Rotating Washer Assembly
Pivoting Mounting Bracket
Installation Instructions
$4 \times 12 \mathrm{~mm}$ SS Dynabolts
5 metres SS Chain
"Eye" nut \& SS Dynabolt

Chain Retainer with 2 SS Dynabolts
TO INSTALL YOU NEED TO PROCURE:
Back flow prevention device. (Brand is your choice but we recommend 25 mm size.) 24 volt AC Solenoid. (Brand and type is best chosen by your Electrician).
Water conduit and connectors (water inlet for Washer head is 3/4" BSP male).

Please note the dimensions above are a guide only. Slight variations may occur.

McBerns Pty Ltd

Phone 61754467167

PO Box 304
Yandina Qld 4561 Australia
www.autowellwashers.com
©McBerns Pty Ltd April, 2004

Operating Instructions

Proline Promag 50

Electromagnetic flow measuring system
RARTNGD

Table of contents

1 Safety instructions 5
1.1 Designated use 5
1.2 Installation, commissioning and operation 5
1.3 Operational safety 5
1.4 Return 6
1.5 Notes on safety conventions and icons 6
2 Identification 7
2.1 Device designation 7
2.1.1 Nameplate of the transmitter 7
2.1.2 Nameplate of the sensor 8
2.1.3 Nameplate, connections 9
2.2 Certificates and approvals 9
2.3 Registered trademarks 10
3 Installation 11
3.1 Incoming acceptance, transport and storage 11
3.1.1 Incoming acceptance 11
3.1.2 Transport 11
3.1.3 Storage 12
3.2 Installation conditions 13
3.2.1 Dimensions 13
3.2.2 Mounting location 13
3.2.3 Orientation 15
3.2.4 Vibrations 16
3.2.5 Foundations, supports 17
3.2.6 Adapters 17
3.2.7 Nominal diameter and flow rate 18
3.2.8 Length of connecting cable 20
3.3 Installation instructions 21
3.3.1 Installing the Promag D sensor 21
3.3.2 Installing the Promag L sensor 24
3.3.3 Installing the Promag W sensor 26
3.3.4 Installing the Promag P sensor 31
3.3.5 Installing the Promag H sensor 36
3.3.6 Turning the transmitter housing 39
3.3.7 Turning the onsite display 40
3.3.8 Installing the wall-mount housing 41
3.4 Post-installation check 43
4 Wiring 44
4.1 Connecting the remote version 44
4.1.1 Connecting Promag D, L, W, P, H 44
4.1.2 Cable specifications 49
4.2 Connecting the measuring unit 50
4.2.1 Connecting the transmitter 50
4.2.2 Terminal assignment 52
4.2.3 HART connection 53
4.3 Potential equalization 54
4.3.1 Potential equalization for Promag D 54
4.3.2 Potential equalization for Promag W, P, L 54
4.3.3 Potential equalization for Promag H 54
4.3.4 Exampels for potential equalization connections for Promag D 54
4.3.5 Exampels for potential equalization connections for Promag L, W, P 55
4.4 Degree of protection 57
4.5 Post-connection check 58
5 Operation 59
5.1 Display and operating elements 59
5.2 Brief operating instructions on the function matrix 60
5.2.1 General notes 61
5.2.2 Enabling the programming mode 61
5.2.3 Disabling the programming mode 61
5.3 Displaying error messages 62
5.3.1 Type of error 62
5.3.2 Error message types 62
5.4 Communication 63
5.4.1 Operating options 63
5.4.2 Current device description files 64
5.4.3 Device variables 64
5.4.4 Switching HART write protection on/off 64
5.4.5 Universal and common practice HART commands 65
5.4.6 Device status and error messages 69
6 Commissioning 71
6.1 Function check 71
6.2 Switching on the measuring device 71
6.3 Ouick Setup 72
6.3.1 "Commissioning" Quick Setup menu 72
6.4 Configuration 73
6.4.1 Current output: active/passive 73
6.5 Adjustment 74
6.5.1 Empty-pipe/full-pipe adjustment 74
6.6 Data storage device (HistoROM) 75
6.6.1 HistoROM/S-DAT (sensor-DAT) 75
7 Maintenance 76
7.1 Exterior cleaning 76
7.2 Seals 76
8 Accessories 77
8.1 Device-specific accessories 77
8.2 Measuring principle-specific accessories 77
8.3 Communication-specific accessories 78
8.4 Service-specific accessories 79
9 Troubleshooting 80
9.1 Troubleshooting instructions 80
9.2 System error messages 81
9.3 Process error messages 83
9.4 Process errors without messages 84
9.5 Response of outputs to errors 85
9.6 Spare parts 87
9.6.1 Removing and installing printed circuit boards 88
9.6.2 Replacing the device fuse 92
9.6.3 Replacing the exchangeable electrode 93
9.7 Return 95
9.8 Disposal 95
9.9 Software history 95
10 Technical data 97
10.1 Technical data at a glance 97
10.1.1 Application 97
10.1.2 Function and system design 97
10.1.3 Input 97
10.1.4 Output 97
10.1.5 Power supply 99
10.1.6 Performance characteristics 100
10.1.7 Operating conditions: Installation 100
10.1.8 Operating conditions: Environment 101
10.1.9 Operating conditions: Process 102
10.1.10 Mechanical construction 107
10.1.11 Human interface 115
10.1.12 Certificates and approvals 115
10.1.13 Ordering information 116
10.1.14 Accessories 116
10.1.15 Documentation 116
Index 117

1 Safety instructions

1.1 Designated use

The measuring device described in this Operating Manual is to be used only for measuring the flow rate of conductive fluids in closed pipes.
A minimum conductivity of $20 \mu \mathrm{~S} / \mathrm{cm}$ is required for measuring demineralized water. Most liquids can be measured as of a minimum conductivity of $5 \mu \mathrm{~S} / \mathrm{cm}$.
Examples:

- Acids, alkalis,
- Drinking water, wastewater, sewage sludge,
- Milk, beer, wine, mineral water, etc.

Resulting from incorrect use or from use other than that designated the operational safety of the measuring devices can be suspended. The manufacturer accepts no liability for damages being produced from this.

1.2 Installation, commissioning and operation

Please note the following:

- Installation, connection to the electricity supply, commissioning and maintenance of the device must be carried out by trained, qualified specialists authorized to perform such work by the facility's owner-operator. The specialist must have read and understood this Operating Manual and must follow the instructions it contains.
- The device must be operated by persons authorized and trained by the facility's owner-operator. Strict compliance with the instructions in the Operating Manual is mandatory.
- With regard to special fluids, including fluids used for cleaning, Endress+Hauser will be happy to assist in clarifying the corrosion-resistant properties of wetted materials. However, minor changes in temperature, concentration or in the degree of contamination in the process may result in variations in corrosion resistance. For this reason, Endress+Hauser does not accept any responsibility with regard to the corrosion resistance of wetted materials in a specific application.
The user is responsible for the choice of suitable wetted materials in the process.
- If welding work is performed on the piping system, do not ground the welding appliance through the Promag flowmeter.
- The installer must ensure that the measuring system is correctly wired in accordance with the wiring diagrams. The transmitter must be grounded apart from when special protective measures are taken (e.g. galvanically isolated SELV or PELV power supply)
- Invariably, local regulations governing the opening and repair of electrical devices apply.

1.3 Operational safety

Please note the following:

- Measuring systems for use in hazardous environments are accompanied by separate Ex documentation, which is an integral part of this Operating Manual. Strict compliance with the installation instructions and ratings as stated in this supplementary documentation is mandatory. The symbol on the front of this Ex documentation indicates the

- The measuring device complies with the general safety requirements in accordance with EN 61010-1, the EMC requirements of IEC/EN 61326 and NAMUR Recommendations NE 21 and NE 43.
- Depending on the application, the seals of the process connections of the Promag H sensor require periodic replacement.
- When hot fluid passes through the measuring tube, the surface temperature of the housing increases. In the case of the sensor, in particular, users should expect temperatures that can be close to the fluid temperature. If the temperature of the fluid is high, implement sufficient measures to prevent burning or scalding.
- The manufacturer reserves the right to modify technical data without prior notice. Your Endress+Hauser distributor will supply you with current information and updates to these Operating Instructions.

1.4 Return

- Do not return a measuring device if you are not absolutely certain that all traces of hazardous substances have been removed, e.g. substances which have penetrated crevices or diffused through plastic.
- Costs incurred for waste disposal and injury (burns, etc.) due to inadequate cleaning will be charged to the owner-operator.

1.5 Notes on safety conventions and icons

The devices are designed to meet state-of-the-art safety requirements, have been tested, and left the factory in a condition in which they are safe to operate. The devices comply with the applicable standards and regulations in accordance with EN 61010-1 "Safety requirements for electrical equipment for measurement, control and laboratory use".
The devices can, however, be a source of danger if used incorrectly or for anything other than the designated use. Consequently, always pay particular attention to the safety instructions indicated in this Operating Manual by the following icons:
Warning!
"Warning" indicates an action or procedure which, if not performed correctly, can result in injury or a safety hazard. Comply strictly with the instructions and proceed with care.
Caution!
"Caution" indicates an action or procedure which, if not performed correctly, can result in incorrect operation or destruction of the device. Comply strictly with the instructions.
Note!
"Note" indicates an action or procedure which, if not performed correctly, can have an indirect effect on operation or trigger an unexpected response on the part of the device.

2 Identification

2.1 Device designation

The flow measuring system consists of the following components:

- Promag 50 transmitter
- Promag D, Promag L, Promag W, Promag P or Promag H sensor

In the compact version, the transmitter and sensor form a single mechanical unit; in the remote version they are installed separately.

2.1.1 Nameplate of the transmitter

Fig. 1: \quad Nameplate specifications for the "Promag 50" transmitter (example)
1 Ordering code/serial number: See the specifications on the order confirmation for the meanings of the individual letters and digits.
2 Power supply, frequency, power consumption
3 Additional information:
EPD/MSÜ: with Empty Pipe Detection
ECC: with electrode cleaning
4 Outputs available:
I-OUT (HART): with current output (HART)
f-OUT (HART): with frequency output
STATUS-IN: with status input (power supply)
5 Reserved for information on special products
6 Observe device documentation
7 Reserved for additional information on device version (approvals, certificates)
8 Permitted ambient temperature range
9 Degree of protection

2.1.2 Nameplate of the sensor

Fig. 2: Nameplate specifications for the "Promag" sensor (example)
1 Ordering code/serial number: See the specifications on the order confirmation for the meanings of the individual letters and digits.
2 Calibration factor with zero point
3 Nominal diameter / Pressure rating
4 Fluid temperature range
5 Materials: lining/measuring electrodes
6 Reserved for information on special products
$7 \quad$ Permitted ambient temperature range
8 Observe device documentation
9 Reserved for additional information on device version (approvals, certificates)
10 Calibration tolerance
11 Additional information (examples):

- EPD/MSÜ: with Empty Pipe Detection electrode
$-R / B$: with reference electrode
12 Degree of protection
13 Flow direction

2.1.3 Nameplate, connections

Fig. 3: \quad Nameplate specifications for transmitter (example)
1 Serial number
2 Possible configuration of current output
3 Possible configuration of relay contacts
4 Terminal assignment, cable for power supply: 85 to 260 V AC, 20 to 55 V AC, 16 to 62 V DC Terminal No. 1: L1 for $A C, L+$ for $D C$ Terminal No. 2: N for $A C, L-$ for $D C$
5 Signals present at inputs and outputs, possible configuration and terminal assignment (20 to 27), see also "Electrical values of inputs/outputs"
6 Version of device software currently installed
7 Installed communication type, e.g.: HART, PROFIBUS PA, etc.
8 Information on current communication software (Device Revision and Device Description), e.g.: Dev. 01 / DD 01 for HART
9 Date of installation
10 Current updates to data specified in points 6 to 9

2.2 Certificates and approvals

The devices are designed to meet state-of-the-art safety requirements in accordance with sound engineering practice. They have been tested and left the factory in a condition in which they are safe to operate.
The devices comply with the applicable standards and regulations in accordance with EN 61010-1 "Safety requirements for electrical equipment for measurement, control and laboratory use" and with the EMC requirements of IEC/EN 61326/A1.

The measuring system described in this Operating Manual is therefore in conformity with the statutory requirements of the EC Directives. Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

The measuring system meets the EMC requirements of the Australian Communications and Media Authority (ACMA)

2.3 Registered trademarks

KALREZ ${ }^{\circledR}$ and VITON ${ }^{\circledR}$
Registered trademarks of E.I. Du Pont de Nemours \& Co., Wilmington, USA
TRI-CLAMP ${ }^{\circledR}$
Registered trademark of Ladish \& Co., Inc., Kenosha, USA
HART ${ }^{\circledR}$
Registered trademark of the HART Communication Foundation, Austin, USA
HistoROM ${ }^{\mathrm{TM}}$, S-DAT®, Field Xpert ${ }^{\mathrm{TM}}$, FieldCare ${ }^{\circledR}$, Fieldcheck ${ }^{\circledR}$, Applicator ${ }^{\circledR}$
Registered or registration-pending trademarks of Endress+Hauser Flowtec AG, Reinach, CH

3 Installation

3.1 Incoming acceptance, transport and storage

3.1.1 Incoming acceptance

On receipt of the goods, check the following:

- Check the packaging and the contents for damage.
- Check the shipment, make sure nothing is missing and that the scope of supply matches your order.

3.1.2 Transport

The following instructions apply to unpacking and to transporting the device to its final location:

- Transport the devices in the containers in which they are delivered.
- Do not remove the protective plates or caps on the process connections until you are ready to install the device. This is particularly important in the case of sensors with PTFE linings.

Special notes on flanged devices

Caution!

- The wooden covers mounted on the flanges from the factory protect the linings on the flanges during storage and transportation. In case of Promag L they are additionally used to hold the lap joint flanges in place. Do not remove these covers until immediately before the device in the pipe.
- Do not lift flanged devices by the transmitter housing, or the connection housing in the case of the remote version.

Transporting flanged devices $D N \leq 300(\leq 12$ ")
Use webbing slings slung round the two process connections. Do not use chains, as they could damage the housing.
Warning!
Risk of injury if the measuring device slips. The center of gravity of the assembled measuring device might be higher than the points around which the slings are slung.
At all times, therefore, make sure that the device does not unexpectedly turn around its axis or slip.

Fig. 4: \quad Transporting sensors with $D N \leq 300\left(\leq 12^{\prime \prime}\right)$

Transporting flangeddevices $D N>300$ ($>12^{\prime \prime}$)
Use only the metal eyes on the flanges for transporting the device, lifting it and positioning the sensor in the piping.

Ch Caution!

Do not attempt to lift the sensor with the tines of a fork-lift truck beneath the metal casing. This would buckle the casing and damage the internal magnetic coils.

Fig. 5: \quad Transporting sensors with $D N>300$ ($>12^{\prime \prime}$)

3.1.3 Storage

Please note the following:

- Pack the measuring device in such a way as to protect it reliably against impact for storage (and transportation). The original packaging provides optimum protection.
- The storage temperature corresponds to the operating temperature range of the measuring transmitter and the appropriate measuring sensors \rightarrow 目 101.
- Do not remove the protective plates or caps on the process connections until you are ready to install the device. This is particularly important in the case of sensors with PTFE linings.
- The measuring device must be protected against direct sunlight during storage in order to avoid unacceptably high surface temperatures.
- Choose a storage location where moisture does not collect in the measuring device. This will help prevent fungus and bacteria infestation which can damage the liner.

3.2 Installation conditions

3.2.1 Dimensions

The dimensions and installation lengths of the sensor and transmitter can be found in the "Technical Information" for the device in question. This document can be downloaded as a PDF file from www.endress.com. A list of the "Technical Information" documents available is provided in the "Documentation" section on \rightarrow 苗 116 .

3.2.2 Mounting location

Entrained air or gas bubble formation in the measuring tube can result in an increase in measuring errors.
Avoid the following locations:

- Highest point of a pipeline. Risk of air accumulating!
- Directly upstream from a free pipe outlet in a vertical pipeline.

Fig. 6: Mounting location

Installation of pumps

Do not install the sensor on the intake side of a pump. This precaution is to avoid low pressure and the consequent risk of damage to the lining of the measuring tube. Information on the lining's resistance to partial vacuum can be found on \rightarrow 贯 105 .
It might be necessary to install pulse dampers in systems incorporating reciprocating, diaphragm or peristaltic pumps. Information on the measuring system's resistance to vibration and shock can be found on $\rightarrow 101$.

Fig. 7: Installation of pumps

Partially filled pipes

Partially filled pipes with gradients necessitate a drain-type configuration.
The Empty Pipe Detection function (EPD \rightarrow 目 74) offers additional protection by detecting empty or partially filled pipes.

Caution!
Risk of solids accumulating. Do not install the sensor at the lowest point in the drain. It is advisable to install a cleaning valve.

Fig. 8: Installation in a partially filled pipe

Down pipes

Install a siphon or a vent valve downstream of the sensor in down pipes whose length $\mathrm{h} \geq 5 \mathrm{~m}$ (16.4 ft). This precaution is to avoid low pressure and the consequent risk of damage to the lining of the measuring tube.
This measure also prevents the system losing prime, which could cause air pockets. Information on the lining's resistance to partial vacuum can be found on $\rightarrow 105$.

Fig. 9: Measures for installation in a down pipe
1 Vent valve
2 Pipe siphon
$h \quad$ Length of down pipe

3.2.3 Orientation

An optimum orientation position helps avoid gas and air accumulations and deposits in the measuring tube. However, Promag offers the additional Empty Pipe Detection (EPD) function to ensure the detection of partially filled measuring tubes, e.g. in the case of degassing fluids or varying process pressure:

- Electrode Cleaning Circuit (ECC) for applications with accretive fluids, e.g. electrically conductive deposits (\rightarrow "Description of Device Functions" manual).
- Empty Pipe Detection (EPD) ensures the detection of partially filled measuring tubes, e.g. in the case of degassing fluids (\rightarrow 胃 74)
- Exchangeable Measuring Electrodes for abrasive fluids (\rightarrow 目 93)

Vertical orientation

This is the ideal orientation for self-emptying piping systems and for use in conjunction with Empty Pipe Detection.

Fig. 10: Vertical orientation

Horizontal orientation

The measuring electrode plane should be horizontal. This prevents brief insulation of the two measuring electrodes by entrained air bubbles.
Caution!
Empty Pipe Detection functions correctly only when the measuring device is installed horizontally and the transmitter housing is facing upward $(\rightarrow \boxed{\square})$. Otherwise there is no guarantee that Empty Pipe Detection will respond if the measuring tube is only partially filled or empty.

Fig. 11: Horizontal orientation
1 EPD electrode for the detection of empty pipes (not with Promag D and Promag H (DN 2 to $15 ; 1 / 12^{\prime \prime}$ to $1 / 2^{\prime \prime}$))
2 Measuring electrodes for signal detection
2 Measuring electrodes for signal detection
3 Reference electrode for the potential equalization (not with Promag D and H)

Inlet and outlet run

If possible, install the sensor upstream from fittings such as valves, T-pieces, elbows, etc. The following inlet and outlet runs must be observed in order to meet accuracy specifications:

- Inlet run: $\geq 5 \times \mathrm{DN}$
- Outlet run: $\geq 2 \times$ DN

Fig. 12: Inlet and outlet runs

3.2.4 Vibrations

Secure the piping and the sensor if vibration is severe.
Caution!
If vibrations are too severe, we recommend the sensor and transmitter be mounted separately. Information on resistance to vibration and shock can be found on \rightarrow 昆 101.

Fig. 13: \quad Measures to prevent vibration of the device ($L>10 \mathrm{~m}(32.8 \mathrm{ft})$)

3.2.5 Foundations, supports

If the nominal diameter is $\mathrm{DN} \geq 350$, mount the sensor on a foundation of adequate load-bearing strength.
Caution!
Risk of damage.
Do not support the weight of the sensor on the metal casing: the casing would buckle and damage the internal magnetic coils.

Fig. 14: \quad Correct support for large nominal diameters ($D N \geq 350$)

3.2.6 Adapters

Suitable adapters to DIN EN 545 (double-flange reducers) can be used to install the sensor in largerdiameter pipes.
The resultant increase in the rate of flow improves measuring accuracy with very slow-moving fluids. The nomogram shown here can be used to calculate the pressure loss caused by reducers and expanders.

Note!
The nomogram only applies to liquids of viscosity similar to water.

1. Calculate the ratio of the diameters d / D.
2. From the nomogram read off the pressure loss as a function of flow velocity (downstream from the reduction) and the d / D ratio.

Fig. 15: Pressure loss due to adapters

3.2.7 Nominal diameter and flow rate

The diameter of the pipe and the flow rate determine the nominal diameter of the sensor. The optimum velocity of flow is between 2 and $3 \mathrm{~m} / \mathrm{s}(6.5$ to $9.8 \mathrm{ft} / \mathrm{s})$
The velocity of flow (v), moreover, has to be matched to the physical properties of the fluid:

- $\mathrm{v}<2 \mathrm{~m} / \mathrm{s}(\mathrm{v}<6.5 \mathrm{ft} / \mathrm{s})$: for abrasive fluids
- $\mathrm{v}>2 \mathrm{~m} / \mathrm{s}(\mathrm{v}>6.5 \mathrm{ft} / \mathrm{s})$: for fluids producing buildup

Note!
Flow velocity can be increased, if necessary, by reducing the nominal diameter of the sensor (\rightarrow 17) 。

Recommended flow (SI units)

Nominal diameter[mm]	Promag D	Promag L	Promag W	Promag P	Promag H
	Min./max. full scale value ($\mathrm{v} \approx 0.3$ or $10 \mathrm{~m} / \mathrm{s}$) in [$\mathrm{dm}^{3} / \mathrm{min}$]				
2	-	-	-	-	0.06 to 1.8
4	-	-	-	-	0.25 to 7
8	-	-	-	-	1 to 30
15	-	-	-	4 to 100	4 to 100
25	9 to 300	-	9 to 300	9 to 300	9 to 300
32	-	-	15 to 500	15 to 500	-
40	25 to 700	-	25 to 700	25 to 700	25 to 700
50	35 to 1100				
65	60 to 2000				
80	90 to 3000				
100	145 to 4700				
125	-	220 to 7500	220 to 7500	220 to 7500	-
[mm]	Min./max. full scale value ($\mathrm{v} \approx 0.3$ or $10 \mathrm{~m} / \mathrm{s}$) in [$\mathrm{m}^{3} / \mathrm{h}$]				
150	-	20 to 600	20 to 600	20 to 600	-
200	-	35 to 1100	35 to 1100	35 to 1100	-
250	-	55 to 1700	55 to 1700	55 to 1700	-
300	-	80 to 2400	80 to 2400	80 to 2400	-
350	-	-	110 to 3300	110 to 3300	-
375	-	-	140 to 4200	-	-
400	-	-	140 to 4200	140 to 4200	-
450	-	-	180 to 5400	180 to 5400	-
500	-	-	220 to 6600	220 to 6600	-
600	-	-	310 to 9600	310 to 9600	-
700	-	-	420 to 13500	-	-
800	-	-	550 to 18000	-	-
900	-	-	690 to 22500	-	-
1000	-	-	850 to 28000	-	-
1200	-	-	1250 to 40000	-	-
1400	-	-	1700 to 55000	-	-
1600	-	-	2200 to 70000	-	-
1800	-	-	2800 to 90000	-	-
2000	-	-	3400 to 110000	-	-

Recommended flow (US units)

Nominal diameter [inch]	Promag D	Promag L	Promag W	Promag P	Promag H
	Min./max. full scale value ($\mathrm{v} \approx 0.3$ or $10 \mathrm{~m} / \mathrm{s}$) in [gal/min]				
1 $1 / 12{ }^{\prime \prime}$	-	-	-	-	0.015 to 0.5
$5 / 32$ "	-	-	-	-	0.07 to 2
$5 / 16^{\prime \prime}$	-	-	-	-	0.25 to 8
$1 / 21$	-	-	-	1.0 to 27	1.0 to 27
$1{ }^{\prime \prime}$	2.5 to 80	-	2.5 to 80	2.5 to 80	2.5 to 80
1/1/4	-	-	4 to 130	4 to 130	-
$1 \frac{1}{2 \prime \prime}$	7 to 190				
$2^{\prime \prime}$	10 to 300				
$2^{1 / 2}{ }^{\prime \prime}$	16 to 500				
3"	24 to 800				
4"	40 to 1250				
5"	-	60 to 1950	60 to 1950	60 to 1950	-
$6 "$	-	90 to 2650	90 to 2650	90 to 2650	-
8"	-	155 to 4850	155 to 4850	155 to 4850	-
10"	-	250 to 7500	250 to 7500	250 to 7500	-
12"	-	350 to 10600	350 to 10600	350 to 10600	-
$14^{\prime \prime}$	-	-	500 to 15000	500 to 15000	-
$15 "$	-	-	600 to 19000	-	-
$16^{\prime \prime}$	-	-	600 to 19000	600 to 19000	-
18"	-	-	800 to 24000	800 to 24000	-
20"	-	-	1000 to 30000	1000 to 30000	-
$24 "$	-	-	1400 to 44000	1400 to 44000	-
$28{ }^{\prime \prime}$	-	-	1900 to 60000	-	-
$30 "$	-	-	2150 to 67000	-	-
32 "	-	-	2450 to 80000	-	-
$36^{\prime \prime}$	-	-	3100 to 100000	-	-
$40^{\prime \prime}$	-	-	3800 to 125000	-	-
42"	-	-	4200 to 135000	-	-
48"	-	-	5500 to 175000	-	-
[inch]	Min./max. full scale value ($\mathrm{v} \approx 0.3$ or $10 \mathrm{~m} / \mathrm{s}$) in [$\mathrm{Mgal} / \mathrm{d}$]				
54"	-	-	9 to 300	-	-
60"	-	-	12 to 380	-	-
$66^{\prime \prime}$	-	-	14 to 500	-	-
$72 "$	-	-	16 to 570	-	-
78"	-	-	18 to 650	-	-

3.2.8 Length of connecting cable

In order to ensure measuring accuracy, comply with the following instructions when installing the remote version:

- Fix cable run or lay in armored conduit. Cable movements can falsify the measuring signal especially in the case of low fluid conductivities.
- Route the cable well clear of electrical machines and switching elements.
- Ensure potential equalization between sensor and transmitter, if necessary.
- The permitted connecting cable length $\mathrm{L}_{\max }$ is determined by the fluid conductivity $(\rightarrow$ 16). A minimum conductivity of $20 \mu \mathrm{~S} / \mathrm{cm}$ is required for measuring demineralized water. Most liquids can be measured as of a minimum conductivity of $5 \mu \mathrm{~S} / \mathrm{cm}$.
- The maximum connecting cable length is $10 \mathrm{~m}(32.8 \mathrm{ft})$ when empty pipe detection $(E P D \rightarrow$ 胃 74) is switched on.

Fig. 16: Permissible cable length for the remote version
Area shaded gray $=$ permitted range
Lmax $=$ connecting cable length in [m]
Fluid conductivity in [$\mu \mathrm{S} / \mathrm{cm}$]

3.3 Installation instructions

3.3.1 Installing the Promag D sensor

The sensor is installed between the pipe flanges with a mounting kit. The device is centered using recesses on the sensor (\rightarrow 22).

Note!
A mounting kit consisting of mounting bolts, seals, nuts and washers can be ordered separately $(\rightarrow$ 䡒 77). Centering sleeves are provided with the device if they are required for the installation.

Caution!
When installing the transmitter in the pipe, observe the necessary torques $(\rightarrow 23)$.

Fig. 17: Mounting the sensor

1	Nut
2	Washer
3	Mounting bolt
4	Centering sleeve
5	Seal

Seals

When installing the sensor, make sure that the seals used do not project into the pipe cross-section.
Caution!
Risk of short circuit! Do not use electrically conductive sealing compounds such as graphite! An electrically conductive layer could form on the inside of the measuring tube and short-circuit the measuring signal.
Note!
Use seals with a hardness rating of 70° Shore.

Arrangement of the mounting bolts and centering sleeves

The device is centered using recesses on the sensor. The arrangement of the mounting bolts and the use of the centering sleeves supplied depend on the nominal diameter, the flange standard und the pitch circle diameter.

	Process connection		
	EN (DIN)	ANSI	JIS
DN 25 to 40 (DN 1" to 1 ½")			
$\begin{aligned} & \text { DN } 50 \\ & \text { (DN 2") } \end{aligned}$			
DN 65		-	A0012171
$\begin{aligned} & \text { DN } 80 \\ & \text { (DN } \left.3^{\prime \prime}\right) \end{aligned}$	A0010898		
$\begin{aligned} & \text { DN } 100 \\ & \text { (DN 4") } \end{aligned}$			
$1=$ Mounting bolts with centering sleeves $2=$ EN (DIN) flanges: 4 -hole \rightarrow with centering sleeves $3=$ EN (DIN) flanges: 8 -hole \rightarrow without centering sleeves			

Screw tightening torques (Promag D)

Please note the following:

- The tightening torques listed below are for lubricated threads only.
- Always tighten the screws uniformly and in diagonally opposite sequence.
- Overtightening the screws will deform the sealing faces or damage the seals.
- The tightening torques listed below apply only to pipes not subjected to tensile stress.

The tightening torques apply to situations where an EPDM soft material flat seal (e.g. 70 Shore) is used.

Tightening torques, mounting bolts and centering sleeves for EN (DIN) PN 16

Nominal diameter		Centering sleeve length	Tighteni with a pro	[Nm] ge with a
[mm]	[mm]	[mm]	smooth seal face	raised face
25	$4 \times$ M12 $\times 145$	54	19	19
40	$4 \times$ M16 $\times 170$	68	33	33
50	$4 \times$ M16 $\times 185$	82	41	41
651)	$4 \times$ M16 $\times 200$	92	44	44
65 ${ }^{\text {) }}$	$8 \times \mathrm{M} 16 \times 200$	- 3)	29	29
80	$8 \times \mathrm{M} 16 \times 225$	116	36	36
100	$8 \times \mathrm{M} 16 \times 260$	147	40	40
${ }^{1)}$ EN (DIN) flanges: 4-hole \rightarrow with centering sleeves ${ }^{2)}$ EN (DIN) flanges: 8-hole \rightarrow without centering sleeves ${ }^{3)}$ A centering sleeve is not required. The device is centered directly via the sensor housing.				

Tightening torques, mounting bolts and centering sleeves for JIS 10 K

Nominal diameter [mm]	Mounting bolts [mm]	Centering sleeve length [mm]	Tightening torque [Nm] with a process flange with a	
			smooth seal face	raised face
25	$4 \times \mathrm{M} 16 \times 170$	54	24	24
40	$4 \times$ M16 $\times 170$	68	32	25
50	$4 \times$ M16 $\times 185$	-*	38	30
65	$4 \times$ M16 $\times 200$	-*	42	42
80	$8 \times$ M16 $\times 225$	-*	36	28
100	$8 \times \mathrm{M} 16 \times 260$	- *	39	37

Tightening torques, mounting bolts and centering sleeves for ANSI Class 150

Nominal diameter		Centering sleeve length	Tightenin with a pro	[lbf $\cdot \mathrm{ft}]$ ge with a
[inch]	[inch]	[inch]	smooth seal face	raised face
1"	$4 \times$ UNC $1 / 2^{\prime \prime} \times 5.70{ }^{\prime \prime}$	-*	14	7
$1^{1 / 2 \prime \prime}$	$4 \times$ UNC $1 / 2^{\prime \prime} \times 6.50{ }^{\prime \prime}$	-*	21	14
2 "	$4 \times$ UNC 5/8" $\times 7.50$ "	-*	30	27
3"	$4 \times$ UNC $5 / 8{ }^{\prime \prime} \times 9.25{ }^{\prime \prime}$	-*	31	31
4"	$8 \times$ UNC 5/8" $\times 10,4$ "	5,79	28	28
* A centering sleeve is not required. The device is centered directly via the sensor housing.				

3.3.2 Installing the Promag L sensor

Caution!

- The protective covers mounted on the two sensor flanges are used to hold the lap joint flanges in place and to protect the PTFE liner during transportation. Consequently, do not remove these covers until immediately before the sensor is installed in the pipe.
- The covers must remain in place while the device is in storage.
- Make sure that the lining is not damaged or removed from the flanges.

Note!
Bolts, nuts, seals, etc. are not included in the scope of supply and must be supplied by the customer.
The sensor is designed for installation between the two piping flanges.

- Observe in any case the necessary screw tightening torques on $\rightarrow 25$
- If grounding disks are used, follow the mounting instructions which will be enclosed with the shipment
- To comply with the device specification, a concentrical installation in the measuring section is required

Fig. 18: Installing the Promag L sensor

Seals

Comply with the following instructions when installing seals:

- No seals are required.
- For DIN flanges, use only seals according to EN 1514-1.
- Make sure that the seals do not protrude into the piping cross-section.

Caution!
Risk of short circuit!
Do not use electrically conductive sealing compounds such as graphite! An electrically conductive layer could form on the inside of the measuring tube and short-circuit the measuring signal.

Ground cable

- If necessary, special ground cables for potential equalization can be ordered as an accessory (\rightarrow 目 77).
- Information on potential equalization and detailed mounting instructions for the use of ground cables can be found on \rightarrow 曽 55 .

Screw tightening torques (Promag L)

Please note the following:

- The tightening torques listed below are for lubricated threads only.
- Always tighten the screws uniformly and in diagonally opposite sequence.
- Overtightening the screws will deform the sealing faces or damage the seals.
- The tightening torques listed below apply only to pipes not subjected to tensile stress.

Promag L tightening torques for EN (DIN)

Nominal diameter	EN (DIN)		Max. tightening torque Polyurethan [mm]	
	Pressure rating [bar]	Threaded fasteners	[Nm] $[\mathrm{Nm}]$	
50	PN 10/16	$4 \times$ M 16	15	40
65^{*}	PN 10/16	$8 \times$ M 16	10	22
80	PN 10/16	$8 \times$ M 16	15	30
100	PN 10/16	$8 \times$ M 16	20	42
125	PN 10/16	$8 \times$ M 16	30	55
150	PN 10/16	$8 \times$ M 20	50	90
200	PN 10	$8 \times$ M 20	65	130
250	PN 10	$12 \times$ M 20	50	90
300	PN 10	$12 \times$ M 20	55	100
* Designed acc. to EN 1092-1 (not to DIN 2501)				

Promag L tightening torques for ANSI

Nominal diameter		ANSI Pressure rating [lbs]	Threaded fasteners	Max. tightening torque			
				Polyurethane		PTFE	
[mm]	[inch]			[Nm]	[lbf $\cdot \mathrm{ft}$]	[Nm]	[lbf $\cdot \mathrm{ft}$]
50	2 "	Class 150	$4 \times 5 / 8 "$	15	11	40	29
80	$3 "$	Class 150	$4 \times 5 / 8 "$	25	18	65	48
100	$4 "$	Class 150	$8 \times 5 / 8^{\prime \prime}$	20	15	44	32
150	$6 "$	Class 150	$8 \times 3 / 4 "$	45	33	90	66
200	8"	Class 150	$8 \times 3 / 4 "$	65	48	125	92
250	10"	Class 150	$12 \times 7 / 8^{\prime \prime}$	55	41	100	74
300	12"	Class 150	$12 \times 7 / 8^{\prime \prime}$	68	56	115	85

3.3.3 Installing the Promag W sensor

Note!
Bolts, nuts, seals, etc. are not included in the scope of supply and must be supplied by the customer.
The sensor is designed for installation between the two piping flanges.

- Observe in any case the necessary screw tightening torques on $\rightarrow 26$
- If grounding disks are used, follow the mounting instructions which will be enclosed with the shipment

Fig. 19: Installing the Promag W sensor

Seals

Comply with the following instructions when installing seals:

- Hard rubber lining \rightarrow additional seals are always necessary.
- Polyurethane lining \rightarrow no seals are required.
- For DIN flanges, use only seals according to EN 1514-1.
- Make sure that the seals do not protrude into the piping cross-section.

Caution!
Risk of short circuit!
Do not use electrically conductive sealing compounds such as graphite! An electrically conductive layer could form on the inside of the measuring tube and short-circuit the measuring signal.

Ground cable

- If necessary, special ground cables for potential equalization can be ordered as an accessory (\rightarrow 目 77).
- Information on potential equalization and detailed mounting instructions for the use of ground cables can be found on \rightarrow 異 55

Screw tightening torques (Promag W)

Please note the following:

- The tightening torques listed below are for lubricated threads only.
- Always tighten the screws uniformly and in diagonally opposite sequence.
- Overtightening the screws will deform the sealing faces or damage the seals.
- The tightening torques listed below apply only to pipes not subjected to tensile stress.

Tightening torques for：

- EN（DIN）\rightarrow 青 27
- JIS \rightarrow 嘼 29
- ANSI \rightarrow 目 28
－AWWA \rightarrow R 29
- AS $2129 \rightarrow$ 眉 30
- AS $4087 \rightarrow$ 目 30

Promag W tightening torques for EN（DIN）

Nominal diameter ［mm］	EN（DIN）Pressure rating［bar］	Threaded fasteners	Max．tightening torque［Nm］	
			Hard rubber	Polyurethane
25	PN 40	$4 \times \mathrm{M} 12$	－	15
32	PN 40	$4 \times$ M 16	－	24
40	PN 40	$4 \times$ M 16	－	31
50	PN 40	$4 \times$ M 16	－	40
65＊	PN 16	$8 \times$ M 16	32	27
65	PN 40	$8 \times$ M 16	32	27
80	PN 16	$8 \times$ M 16	40	34
80	PN 40	$8 \times$ M 16	40	34
100	PN 16	$8 \times$ M 16	43	36
100	PN 40	$8 \times \mathrm{M} 20$	59	50
125	PN 16	$8 \times$ M 16	56	48
125	PN 40	$8 \times \mathrm{M} 24$	83	71
150	PN 16	$8 \times$ M 20	74	63
150	PN 40	$8 \times \mathrm{M} 24$	104	88
200	PN 10	$8 \times \mathrm{M} 20$	106	91
200	PN 16	$12 \times \mathrm{M} 20$	70	61
200	PN 25	$12 \times \mathrm{M} 24$	104	92
250	PN 10	$12 \times \mathrm{M} 20$	82	71
250	PN 16	$12 \times \mathrm{M} 24$	98	85
250	PN 25	$12 \times \mathrm{M} 27$	150	134
300	PN 10	$12 \times \mathrm{M} 20$	94	81
300	PN 16	$12 \times \mathrm{M} 24$	134	118
300	PN 25	$16 \times \mathrm{M} 27$	153	138
350	PN 6	$12 \times \mathrm{M} 20$	111	120
350	PN 10	$16 \times \mathrm{M} 20$	112	118
350	PN 16	$16 \times \mathrm{M} 24$	152	165
350	PN 25	$16 \times$ M 30	227	252
400	PN 6	$16 \times \mathrm{M} 20$	90	98
400	PN 10	$16 \times$ M 24	151	167
400	PN 16	$16 \times \mathrm{M} 27$	193	215
400	PN 25	$16 \times \mathrm{M} 33$	289	326
450	PN 6	$16 \times \mathrm{M} 20$	112	126
450	PN 10	$20 \times$ M 24	153	133
450	PN 16	$20 \times$ M 27	198	196
450	PN 25	$20 \times$ M 33	256	253
500	PN 6	$20 \times$ M 20	119	123
500	PN 10	$20 \times$ M 24	155	171
500	PN 16	$20 \times$ M 30	275	300
500	PN 25	$20 \times$ M 33	317	360
600	PN 6	$20 \times$ M 24	139	147
600	PN 10	$20 \times$ M 27	206	219
600 ＊	PN 16	$20 \times$ M 33	415	443
600	PN 25	$20 \times$ M 36	431	516
700	PN 6	$24 \times$ M 24	148	139
700	PN 10	$24 \times$ M 27	246	246
700	PN 16	$24 \times$ M 33	278	318

Nominal diameter [mm]	EN (DIN)Pressure rating [bar]	Threaded fasteners	Max. tightening torque [Nm]	
			Hard rubber	Polyurethane
700	PN 25	$24 \times$ M 39	449	507
800	PN 6	$24 \times$ M 27	206	182
800	PN 10	$24 \times$ M 30	331	316
800	PN 16	$24 \times$ M 36	369	385
800	PN 25	$24 \times \mathrm{M} 45$	664	721
900	PN 6	$24 \times \mathrm{M} 27$	230	637
900	PN 10	$28 \times$ M 30	316	307
900	PN 16	$28 \times$ M 36	353	398
900	PN 25	$28 \times$ M 45	690	716
1000	PN 6	$28 \times$ M 27	218	208
1000	PN 10	$28 \times$ M 33	402	405
1000	PN 16	$28 \times$ M 39	502	518
1000	PN 25	$28 \times$ M 52	970	971
1200	PN 6	$32 \times$ M 30	319	299
1200	PN 10	$32 \times$ M 36	564	568
1200	PN 16	$32 \times$ M 45	701	753
1400	PN 6	$36 \times$ M 33	430	398
1400	PN 10	$36 \times$ M 39	654	618
1400	PN 16	$36 \times$ M 45	729	762
1600	PN 6	$40 \times$ M 33	440	417
1600	PN 10	$40 \times$ M 45	946	893
1600	PN 16	$40 \times$ M 52	1007	1100
1800	PN 6	$44 \times$ M 36	547	521
1800	PN 10	$44 \times \mathrm{M} 45$	961	895
1800	PN 16	$44 \times$ M 52	1108	1003
2000	PN 6	$48 \times$ M 39	629	605
2000	PN 10	$48 \times$ M 45	1047	1092
2000	PN 16	$48 \times$ M 56	1324	1261
* Designed acc. to EN 1092-1 (not to DIN 2501)				

Promag W tightening torques for ANSI

Nominal diameter		ANSI Pressure rating [lbs]	Threaded fasteners	Max. tightening torque				
		Hard rubber		Polyurethane				
[mm]	[inch]			[Nm]	[lbf • ft]	[Nm]	[lbf $\cdot \mathrm{ft}$]	
25	$1{ }^{\prime \prime}$		Class 150	$4 \times 1 / 21$	-	-	7	5
25	$1{ }^{\prime \prime}$	Class 300	$4 \times 5 / 8^{\prime \prime}$	-	-	8	6	
40	$11 / 2 "$	Class 150	$4 \times 1 / 2 "$	-	-	10	7	
40	$11 / 2 "$	Class 300	$4 \times 3 / 4 "$	-	-	15	11	
50	$2 "$	Class 150	$4 \times 5 / 8{ }^{\prime \prime}$	-	-	22	16	
50	2 "	Class 300	$8 \times 5 / 8{ }^{\prime \prime}$	-	-	11	8	
80	3"	Class 150	$4 \times 5 / 8{ }^{\prime \prime}$	60	44	43	32	
80	$3 "$	Class 300	$8 \times 3 / 4 "$	38	28	26	19	
100	4"	Class 150	$8 \times 5 / 8{ }^{\prime \prime}$	42	31	31	23	
100	4"	Class 300	$8 \times 3 / 4 "$	58	43	40	30	
150	$6 "$	Class 150	$8 \times 3 / 4 "$	79	58	59	44	
150	$6 "$	Class 300	$12 \times 3 / 4 "$	70	52	51	38	
200	$8{ }^{\prime \prime}$	Class 150	$8 \times 3 / 4 "$	107	79	80	59	
250	$10 "$	Class 150	$12 \times 7 / 8{ }^{\prime \prime}$	101	74	75	55	
300	12 "	Class 150	$12 \times 7 / 8{ }^{\prime \prime}$	133	98	103	76	
350	14 "	Class 150	12×1 "	135	100	158	117	
400	$16^{\prime \prime}$	Class 150	16×1 "	128	94	150	111	
450	18"	Class 150	$16 \times 11 / 8 "$	204	150	234	173	
500	$20 "$	Class 150	$20 \times 11 / 8 "$	183	135	217	160	
600	24 "	Class 150	$20 \times 11 / 4 "$	268	198	307	226	

Promag W tightening torques for JIS

Nominal diameter [mm]	JIS Pressure rating	Threaded fasteners	Max. tightening torque [Nm]	
			Hard rubber	Polyurethane
25	10K	$4 \times$ M 16	-	19
25	20K	$4 \times$ M 16	-	19
32	10K	$4 \times$ M 16	-	22
32	20K	$4 \times$ M 16	-	22
40	10K	$4 \times$ M 16	-	24
40	20K	$4 \times$ M 16	-	24
50	10K	$4 \times$ M 16	-	33
50	20K	$8 \times$ M 16	-	17
65	10K	$4 \times$ M 16	55	45
65	20K	$8 \times$ M 16	28	23
80	10K	$8 \times$ M 16	29	23
80	20K	$8 \times \mathrm{M} 20$	42	35
100	10K	$8 \times$ M 16	35	29
100	20K	$8 \times \mathrm{M} 20$	56	48
125	10K	$8 \times \mathrm{M} 20$	60	51
125	20K	$8 \times \mathrm{M} 22$	91	79
150	10K	$8 \times \mathrm{M} 20$	75	63
150	20K	$12 \times \mathrm{M} 22$	81	72
200	10K	$12 \times \mathrm{M} 20$	61	52
200	20K	$12 \times \mathrm{M} 22$	91	80
250	10K	$12 \times \mathrm{M} 22$	100	87
250	20K	$12 \times \mathrm{M} 24$	159	144
300	10K	$16 \times \mathrm{M} 22$	74	63
300	20K	$16 \times \mathrm{M} 24$	138	124

Promag W tightening torques for $A W W A$

Nominal diameter		AWWA Pressure rating	Threaded fasteners	Max. tightening torque			
				Hard rubber		Polyurethane	
[mm]	[inch]			[Nm]	[lbf $\cdot \mathrm{ft}$]	[Nm]	[$\mathrm{lbf} \cdot \mathrm{ft}$]
700	28"	Class D	$28 \times 11 / 4 "$	247	182	292	215
750	30	Class D	$28 \times 11 / 4 "$	287	212	302	223
800	32"	Class D	$28 \times 11 / 2^{\prime \prime}$	394	291	422	311
900	$36 "$	Class D	$32 \times 11 / 2^{\prime \prime}$	419	309	430	317
1000	40	Class D	$36 \times 1{ }^{1 / 2}{ }^{\prime \prime}$	420	310	477	352
1050	42"	Class D	$36 \times 11 / 2^{\prime \prime}$	528	389	518	382
1200	48"	Class D	$44 \times 11 / 2^{\prime \prime}$	552	407	531	392
1350	$54 "$	Class D	$44 \times 13 / 4 "$	730	538	633	467
1500	60	Class D	$52 \times 13 / 4 "$	758	559	832	614
1650	$66 "$	Class D	$52 \times 13 / 4 "$	946	698	955	704
1800	72"	Class D	$60 \times 13 / 4 "$	975	719	1087	802
2000	78"	Class D	64×2 "	853	629	786	580

Promag W tightening torques for AS 2129

Nominal diameter $[\mathrm{mm}]$	AS 2129 Pressure rating	Threaded fasteners	Max. tightening torque [Nm] Hard rubber
80	Table E	$4 \times$ M 16	49
100	Table E	$8 \times$ M 16	38
150	Table E	$8 \times$ M 20	64
200	Table E	$8 \times$ M 20	96
250	Table E	$12 \times$ M 20	98
300	Table E	$12 \times$ M 24	123
350	Table E	$12 \times$ M 24	203
400	Table E	$12 \times$ M 24	226
450	Table E	$16 \times$ M 24	226
500	Table E	$16 \times$ M 24	271
600	Table E	$16 \times$ M 30	439
700	Table E	$20 \times$ M 30	355
750	Table E	$20 \times$ M 30	559
800	Table E	$20 \times$ M 30	631
900	Table E	$24 \times$ M 30	627
1000	Table E	$24 \times$ M 30	634
1200	Table E	$32 \times$ M 30	727

Promag W tightening torques for AS 4087

Nominal diameter $[\mathrm{mm}]$	AS 4087 Pressure rating	Threaded fasteners	Max. tightening torque [Nm] Hard rubber
80	PN 16	$4 \times$ M 16	49
100	PN 16	$4 \times$ M 16	76
150	PN 16	$8 \times$ M 20	52
200	PN 16	$8 \times$ M 20	77
250	PN 16	$8 \times$ M 20	147
300	PN 16	$12 \times$ M 24	103
350	PN 16	$12 \times$ M 24	203
375	PN 16	$12 \times$ M 24	137
400	PN 16	$12 \times$ M 24	226
450	PN 16	$12 \times$ M 24	301
500	PN 16	$16 \times$ M 24	271
600	PN 16	$16 \times$ M 27	393
700	PN 16	$20 \times$ M 27	330
750	PN 16	$20 \times$ M 30	529
800	PN 16	$20 \times$ M 33	631
900	PN 16	$24 \times$ M 33	627
1000	PN 16	$24 \times$ M 33	595
1200	PN 16	$32 \times$ M 33	703

3.3.4 Installing the Promag P sensor

Caution!

- The protective covers mounted on the two sensor flanges guard the PTFE, which is turned over the flanges. Consequently, do not remove these covers until immediately before the sensor is installed in the pipe.
- The covers must remain in place while the device is in storage.
- Make sure that the lining is not damaged or removed from the flanges.

Note!
Bolts, nuts, seals, etc. are not included in the scope of supply and must be supplied by the customer.
The sensor is designed for installation between the two piping flanges.

- Observe in any case the necessary screw tightening torques on $\rightarrow 32$
- If grounding disks are used, follow the mounting instructions which will be enclosed with the shipment

Fig. 20: Installing the Promag P sensor

Seals

Comply with the following instructions when installing seals:

- PFA or PTFE lining \rightarrow No seals are required!
- For DIN flanges, use only seals according to EN 1514-1.
- Make sure that the seals do not protrude into the piping cross-section.

Caution!
Risk of short circuit! Do not use electrically conductive sealing compounds such as graphite! An electrically conductive layer could form on the inside of the measuring tube and short-circuit the measuring signal.

Ground cable

- If necessary, special ground cables for potential equalization can be ordered as an accessory (\rightarrow 目 77) .
- Information on potential equalization and detailed mounting instructions for the use of ground cables can be found on \rightarrow 雷 55

Installing the high－temperature version（with PFA lining）

The high－temperature version has a housing support for the thermal separation of sensor and transmitter．The high－temperature version is always used for applications in which high ambient temperatures are encountered in conjunction with high fluid temperatures．The high－temperature version is obligatory if the fluid temperature exceeds $+150^{\circ} \mathrm{C}$ ．
Note！
You will find information on permissible temperature ranges on $\rightarrow 102$

Insulation

Pipes generally have to be insulated if they carry very hot fluids，in order to avoid energy losses and to prevent accidental contact with pipes at temperatures that could cause injury．Guidelines regulating the insulation of pipes have to be taken into account．
Caution！
Risk of measuring electronics overheating．The housing support dissipates heat and its entire surface area must remain uncovered．Make sure that the sensor insulation does not extend past the top of the two sensor shells．

Fig．21：Promag P（high－temperature version）：Insulating the pipe

Tightening torques for threaded fasteners（Promag P）

Please note the following：
－The tightening torques listed below are for lubricated threads only．
－Always tighten the screws uniformly and in diagonally opposite sequence．
－Overtightening the screws will deform the sealing faces or damage the seals．
－The tightening torques listed below apply only to pipes not subjected to tensile stress．
Tightening torques for：

- EN（DIN）\rightarrow 目 33
- ANSI \rightarrow 甼 34
- JIS \rightarrow 目 34
- AS $2129 \rightarrow$ 眉 35
- AS $4087 \rightarrow$ 眉 35

Promag P tightening torques for EN (DIN)

Nominal diameter	EN (DIN)	Threaded	Max. ti	[Nm]
[mm]	Pressure rating [bar]	fasteners	PTFE	PFA
15	PN 40	$4 \times \mathrm{M} 12$	11	-
25	PN 40	$4 \times$ M 12	26	20
32	PN 40	$4 \times$ M 16	41	35
40	PN 40	$4 \times$ M 16	52	47
50	PN 40	$4 \times$ M 16	65	59
65 *	PN 16	$8 \times$ M 16	43	40
65	PN 40	$8 \times$ M 16	43	40
80	PN 16	$8 \times$ M 16	53	48
80	PN 40	$8 \times$ M 16	53	48
100	PN 16	$8 \times$ M 16	57	51
100	PN 40	$8 \times \mathrm{M} 20$	78	70
125	PN 16	$8 \times$ M 16	75	67
125	PN 40	$8 \times \mathrm{M} 24$	111	99
150	PN 16	$8 \times \mathrm{M} 20$	99	85
150	PN 40	$8 \times \mathrm{M} 24$	136	120
200	PN 10	$8 \times \mathrm{M} 20$	141	101
200	PN 16	$12 \times \mathrm{M} 20$	94	67
200	PN 25	$12 \times \mathrm{M} 24$	138	105
250	PN 10	$12 \times \mathrm{M} 20$	110	-
250	PN 16	$12 \times \mathrm{M} 24$	131	-
250	PN 25	$12 \times \mathrm{M} 27$	200	-
300	PN 10	$12 \times \mathrm{M} 20$	125	-
300	PN 16	$12 \times \mathrm{M} 24$	179	-
300	PN 25	$16 \times$ M 27	204	-
350	PN 10	$16 \times \mathrm{M} 20$	188	-
350	PN 16	$16 \times \mathrm{M} 24$	254	-
350	PN 25	$16 \times$ M 30	380	-
400	PN 10	$16 \times$ M 24	260	-
400	PN 16	$16 \times \mathrm{M} 27$	330	-
400	PN 25	$16 \times$ M 33	488	-
450	PN 10	$20 \times$ M 24	235	-
450	PN 16	$20 \times$ M 27	300	-
450	PN 25	$20 \times$ M 33	385	-
500	PN 10	$20 \times$ M 24	265	-
500	PN 16	$20 \times$ M 30	448	-
500	PN 25	$20 \times$ M 33	533	-
600	PN 10	$20 \times$ M 27	345	-
600 *	PN 16	$20 \times$ M 33	658	-
600	PN 25	$20 \times$ M 36	731	-
* Designed acc. to EN 1092-1 (not to DIN 2501)				

Promag P tightening torques for ANSI

Nominal diameter		ANSI Pressure rating [lbs]	Threaded fasteners	Max. tightening torque			
				PTFE		PFA	
[mm]	[inch]			[Nm]	[$\mathrm{lbf} \cdot \mathrm{ft}$]	[Nm]	[$\mathrm{lbf} \cdot \mathrm{ft}$]
15	$1 / 21$	Class 150	$4 \times 1 / 2{ }^{\prime \prime}$	6	4	-	-
15	1/2"	Class 300	$4 \times 1 / 2{ }^{\prime \prime}$	6	4	-	-
25	$1 "$	Class 150	$4 \times 1 / 2^{\prime \prime}$	11	8	10	7
25	$1{ }^{\prime \prime}$	Class 300	$4 \times 5 / 8^{\prime \prime}$	14	10	12	9
40	$11 / 2{ }^{\prime \prime}$	Class 150	$4 \times 1 / 21$	24	18	21	15
40	$11 / 2^{\prime \prime}$	Class 300	$4 \times 3 / 4 "$	34	25	31	23
50	2 "	Class 150	$4 \times 5 / 8{ }^{\prime \prime}$	47	35	44	32
50	2 "	Class 300	$8 \times 5 / 8{ }^{\prime \prime}$	23	17	22	16
80	$3 "$	Class 150	$4 \times 5 / 8{ }^{\prime \prime}$	79	58	67	49
80	3"	Class 300	$8 \times 3 / 4 "$	47	35	42	31
100	4"	Class 150	$8 \times 5 / 8{ }^{\prime \prime}$	56	41	50	37
100	4"	Class 300	$8 \times 3 / 4 "$	67	49	59	44
150	$6 "$	Class 150	$8 \times 3 / 4 "$	106	78	86	63
150	$6 "$	Class 300	$12 \times 3 / 411$	73	54	67	49
200	8"	Class 150	$8 \times 3 / 41$	143	105	109	80
250	10	Class 150	$12 \times 7 / 8^{\prime \prime}$	135	100	-	-
300	12"	Class 150	$12 \times 7 / 8^{\prime \prime}$	178	131	-	-
350	14"	Class 150	12×1 "	260	192	-	-
400	$16 "$	Class 150	16×1 "	246	181	-	-
450	18"	Class 150	$16 \times 11 / 8{ }^{\prime \prime}$	371	274	-	-
500	$20 "$	Class 150	$20 \times 11 / 8{ }^{\prime \prime}$	341	252	-	-
600	24 "	Class 150	$20 \times 11 / 4 "$	477	352	-	-

Promag P tightening torques for JIS

Nominal diameter [mm]	JIS Pressure rating	Threaded fasteners	Max. tightening torque [Nm]	
			PTFE	PFA
25	10K	$4 \times$ M 16	32	27
25	20K	$4 \times$ M 16	32	27
32	10K	$4 \times$ M 16	38	-
32	20K	$4 \times$ M 16	38	-
40	10K	$4 \times$ M 16	41	37
40	20K	$4 \times$ M 16	41	37
50	10K	$4 \times$ M 16	54	46
50	20K	$8 \times$ M 16	27	23
65	10K	$4 \times$ M 16	74	63
65	20K	$8 \times$ M 16	37	31
80	10K	$8 \times$ M 16	38	32
80	20K	$8 \times \mathrm{M} 20$	57	46
100	10K	$8 \times$ M 16	47	38
100	20K	$8 \times \mathrm{M} 20$	75	58
125	10K	$8 \times \mathrm{M} 20$	80	66
125	20K	$8 \times \mathrm{M} 22$	121	103
150	10K	$8 \times \mathrm{M} 20$	99	81
150	20K	$12 \times \mathrm{M} 22$	108	72
200	10K	$12 \times \mathrm{M} 20$	82	54
200	20K	$12 \times \mathrm{M} 22$	121	88
250	10K	$12 \times \mathrm{M} 22$	133	-
250	20K	$12 \times \mathrm{M} 24$	212	-
300	10K	$16 \times \mathrm{M} 22$	99	-
300	20K	$16 \times \mathrm{M} 24$	183	-

Promag P tightening torques for AS 2129

Nominal diameter $[\mathrm{mm}]$	AS 2129 Pressure rating	Threaded fasteners	Max. tightening torque [Nm] PTFE
25	Table E	$4 \times$ M 12	21
50	Table E	$4 \times$ M 16	42

Promag P tightening torques for AS 4087

Nominal diameter $[\mathrm{mm}]$	AS 4087 Pressure rating	Threaded fasteners	Max. tightening torque $[\mathrm{Nm}]$ PTFE
50	PN 16	$4 \times$ M 16	42

3.3.5 Installing the Promag H sensor

The sensor is supplied to order, with or without pre-installed process connections. Pre-installed process connections are secured to the sensor with 4 or 6 hex-head threaded fasteners.
Caution!
The sensor might require support or additional attachments, depending on the application and the length of the piping run. When plastic process connections are used, the sensor must be additionally supported mechanically. A wall-mounting kit can be ordered separately from Endress+Hauser as an accessory (\rightarrow 畕 77).

Abb. 22: Promag H process connections (DN 2... 25 / DN 40...100, 1/12"...1" / DN 1½"...4")
A = DN 2...25, 1/12"...1"/ process connections with O-ring

- welding flanges (DIN EN ISO 1127, ODT / SMS),
- flange (EN (DIN), ANSI, JIS), flange PVDF (EN (DIN), ANSI, JIS)
- external and internal thread, hose connection, PVC adhesive fitting
$B=$ DN 2 ...25, 1/12"...1"/ process connections with aseptic gasket vseal
- weld nipples (DIN 11850, ODT/SMS)
- Clamp (ISO 2852, DIN 32676, L14 AM7)
- coupling (DIN 11851, DIN 11864-1, SMS 1145)
- flange DIN 11864-2
$C=D N 40 \ldots 100,11 / 2 \ldots 4^{\prime \prime} /$ process connections with aseptic gasket seal
- weld nipples (DIN 11850, ODT/SMS)
- Clamp (ISO 2852, DIN 32676, L14 AM7)
- coupling (DIN 11851, DIN 11864-1, ISO 2853, SMS 1145)
- flange DIN 11864-2

Seals

When installing the process connections, make sure that the seals are clean and correctly centered.
Caution!

- With metal process connections, you must fully tighten the screws. The process connection forms a metallic connection with the sensor, which ensures a defined compression of the seal.
- With plastic process connections, note the max. torques for lubricated threads ($7 \mathrm{Nm} / 5.2 \mathrm{lbf} \mathrm{ft}$). With plastic flanges, always use seals between connection and counter flange.
- The seals must be replaced periodically, depending on the application, particularly in the case of gasket seals (aseptic version)!
The period between changes depends on the frequency of cleaning cycles, the cleaning temperature and the fluid temperature. Replacement seals can be ordered as accessories $\rightarrow 77$.

Usage and assembly of ground rings (DN 2 to $25,1 / 12$ " to 1 ")

In case the process connections are made of plastic (e.g. flanges or adhesive fittings), the potential between the sensor and the fluid must be equalized using additional ground rings.
If the ground rings are not installed this can affect the accuracy of the measurements or cause the destruction of the sensor through the electrochemical erosion of the electrodes.
Caution!

- Depending on the option ordered, plastic disks may be installed at the process connections instead of ground rings. These plastic disks serve only as spacers and have no potential equalization function. In addition, they provide a sealing function at the interface between the sensor and process connection. For this reason, with process connections without ground rings, these plastic disks/seals must not be removed, or must always be installed.
- Ground rings can be ordered separately from Endress+Hauser as accessories (\rightarrow 贯 77). When placing the order, make certain that the ground ring is compatible with the material used for the electrodes. Otherwise, there is a risk that the electrodes may be destroyed by electrochemical corrosion! Information about the materials can be found on $\rightarrow 112$.
- Ground rings, including the seals, are mounted within the process connections. Therefore, the fitting length is not affected.

1. Loosen the four or six hexagonal headed bolts (1) and remove the process connection from the sensor (4).
2. Remove the plastic disk (3), including the two O-ring seals (2).
3. Place one seal (2) in the groove of the process connection.
4. Place the metal ground ring (3) on the process connection.
5. Now place the second seal (2) in the groove of the ground ring.
6. Finally, mount the process connection on the sensor again.

With plastic process connections, note the max. torques for lubricated threads ($7 \mathrm{Nm} / 5.2 \mathrm{lbf} \mathrm{ft}$).

Fig. 23: Installing ground rings with Promag H (DN 2 to 25, 1/12" to 1")
$1=$ Hexagonal-headed bolt (process connection)
$2=$ O-ring seals
$3=$ Ground ring or plastic disk (spacer)
4 = Sensor

Welding the transmitter into the piping (weld nipples)

Caution!
Risk of destroying the measuring electronics. Make sure that the welding machine is not grounded via the sensor or the transmitter.

1. Tack-weld the sensor into the pipe. A suitable welding jig can be ordered separately as an accessory (\rightarrow 置 77).
2. Loosen the screws on the process connection flange and remove the sensor, complete with the seal, from the pipe.
3. Weld the process connection to the pipe.
4. Reinstall the sensor in the pipe. Make sure that everything is clean and that the seal is correctly seated.
Note!

- If thin-walled foodstuffs pipes are not welded correctly, the heat could damage the installed seal. It is therefore advisable to remove the sensor and the seal prior to welding.
- The pipe has to be spread approximately 8 mm to permit disassembly.

Cleaning with pigs

If pigs are used for cleaning, it is essential to take the inside diameters of the measuring tube and process connection into account. All the dimensions and lengths of the sensor and transmitter are provided in the separate documentation "Technical Documentation" \rightarrow 贯 116.

3.3.6 Turning the transmitter housing

Turning the aluminum field housing

$1!$

Warning!
The turning mechanism in devices with Ex d/de or FM/CSA Cl. I Div. 1 classification is not the same as that described here. The procedure for turning these housings is described in the Ex-specific documentation.

1. Loosen the two securing screws.
2. Turn the bayonet catch as far as it will go.
3. Carefully lift the transmitter housing:

- Promag D: approx. 10 mm (0.39 inch) above the securing screws
- Promag L, W, P, H: to the stop

4. Turn the transmitter housing to the desired position:

- Promag D: max. 180° clockwise or max. 180° counterclockwise
- Promag L, W, P, H: max. 280° clockwise or max. 20° counterclockwise

5. Lower the housing into position and re-engage the bayonet catch.
6. Retighten the two securing screws.

Fig. 24: \quad Turning the transmitter housing (aluminum field housing)

Turning the stainless-steel field housing

1. Loosen the two securing screws.
2. Carefully lift the transmitter housing as far as it will go.
3. Turn the transmitter housing to the desired position (max. $2 \times 90^{\circ}$ in either direction).
4. Lower the housing into position.
5. Retighten the two securing screws.

Fig. 25: \quad Turning the transmitter housing (stainless-steel field housing)

3.3.7 Turning the onsite display

1. Unscrew the cover of the electronics compartment from the transmitter housing.
2. Press the side latches on the display module and remove it from the electronics compartment cover plate.
3. Turn the display to the desired position (max. $4 \times 45^{\circ}$ in both directions) and reset it onto the cover plate of the electronics compartment.
4. Screw the cover of the electronics compartment firmly back onto the transmitter housing.

Fig. 26: \quad Turning the local display (field housing)

3.3.8 Installing the wall-mount housing

There are various ways of installing the wall-mount transmitter housing:

- Direct wall mounting
- Installation in control panel (with separate mounting kit, accessories) \rightarrow 眉 42
- Pipe mounting (with separate mounting kit, accessories) \rightarrow R 42

Caution!

- Make sure that the ambient temperature does not exceed the permissible range at the mounting location, -20 to $+60^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+{ }^{\circ} 140 \mathrm{~F}\right)$, optional -40 to $+60^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$. Install the device at a shady location. Avoid direct sunlight.
- Always install the wall-mount housing in such a way that the cable entries are pointing down.

Direct wall mounting

1. Drill the holes as illustrated in the graphic.
2. Remove the cover of the connection compartment (a).
3. Push the two securing screws (b) through the appropriate bores (c) in the housing.

- Securing screws (M6): max. Ø $6.5 \mathrm{~mm}\left(0.26^{\prime \prime}\right)$
- Screw head: max. $\varnothing 10.5 \mathrm{~mm}(0.41$ ")

4. Secure the transmitter housing to the wall as indicated.
5. Screw the cover of the connection compartment (a) firmly onto the housing.

Fig. 27: Mounted directly on the wall

Panel-mounted installation

1. Prepare the opening in the panel as illustrated in the graphic.
2. Slide the housing into the opening in the panel from the front.
3. Screw the fasteners onto the wall-mount housing.
4. Place the threaded rods in the fasteners and screw them down until the housing is seated tightly against the panel. Afterwards, tighten the locking nuts. Additional support is not necessary.

Fig. 28: Panel installation (wall-mount housing)

Pipe mounting

The assembly should be performed by following the instructions in the graphic.
Caution!
If the device is mounted to a warm pipe, make certain that the housing temperature does not exceed $+60^{\circ} \mathrm{C}\left(+140^{\circ} \mathrm{F}\right)$, which is the maximum permissible temperature.

Fig. 29: Pipe mounting (wall-mount housing)

3．4 Post－installation check

Perform the following checks after installing the measuring device in the pipe：

Device condition and specifications	Notes
Is the device damaged（visual inspection）？	－
Does the device correspond to specifications at the measuring point，including process temperature and pressure，ambient temperature，minimum fluid conductivity，measuring range，etc．？	\rightarrow 目 100
Installation	Notes
Does the arrow on the sensor nameplate match the actual direction of flow through the pipe？	－
Is the position of the measuring electrode plane correct？	\rightarrow 目 15
Is the position of the empty pipe detection electrode correct？	\rightarrow－ 15
Were all screws tightened to the specified torques when the sensor was installed？	Promag D \rightarrow 宜 23 Promag L \rightarrow 目 25 Promag $W \rightarrow 26$ Promag P $\rightarrow 32$
Were the correct seals used（type，material，installation）？	Promag D $\rightarrow 21$ Promag L \rightarrow 眉 24 Promag $W \rightarrow 26$ Promag P \rightarrow 䀂 31 Promag H \rightarrow 目 36
Are the measuring point number and labeling correct（visual inspection）？	－
Process environment／process conditions	Notes
Were the inlet and outlet runs respected？	Inlet run $\geq 5 \times \mathrm{DN}$ Outlet run $\geq 2 \times \mathrm{DN}$
Is the measuring device protected against moisture and direct sunlight？	－
Is the sensor adequately protected against vibration（attachment，support）？	Acceleration up to 2 g by analogy with IEC 600 68－2－8

4 Wiring

Warning！
When connecting Ex－certified devices，see the notes and diagrams in the Ex－specific supplement to these Operating Instructions．
Please do not hesitate to contact your Endress＋Hauser representative if you have any questions．
Note！
The device does not have an internal circuit breaker．For this reason，assign the device a switch or power－breaker switch capable of disconnecting the power supply line from the mains．

4．1 Connecting the remote version

4．1．1 Connecting Promag D，L，W，P，H

Warning！
－Risk of electric shock！Switch off the power supply before opening the device．Do not install or wire the device while it is connected to the power supply．Failure to comply with this precaution can result in irreparable damage to the electronics．
－Risk of electric shock！Connect the protective conductor to the ground terminal on the housing before the power supply is applied．
Caution！
－Only sensors and transmitters with the same serial number can be connected to one another． Communication problems can occur if the devices are not connected in this way．
－Risk of damaging the coil driver．Always switch off the power supply before connecting or disconnecting the coil cable．
Procedure
1．Transmitter：Remove the cover from the connection compartment（a）．
2．Sensor：Remove the cover from the connection housing（b）．
3．Feed the signal cable（c）and the coil cable（d）through the appropriate cable entries．
Caution！
Route the connecting cables securely（see＂Connecting cable length＂\rightarrow 置44）．
4．Terminate the signal and coil current cable as indicated in the table：
Promag D，L，W，P \rightarrow Refer to the table $\rightarrow 47$
Promag H \rightarrow Refer to the＂Cable termination＂table \rightarrow 目 48
5．Establish the wiring between the sensor and the transmitter．
The electrical wiring diagram that applies to your device can be found：
－In the corresponding graphic：
\rightarrow 30 （Promag D）$\rightarrow 31$（Promag L，W，P）；\rightarrow 32 （Promag H）
－In the cover of the sensor and transmitter
（2）Note！
The cable shields of the Promag H sensor are grounded by means of the strain relief terminals （see also the＂Cable termination＂table \rightarrow 置 48）
Caution！
Insulate the shields of cables that are not connected to eliminate the risk of short－circuits with neighboring cable shields inside the connection housing．
6．Transmitter：Screw the cover on the connection compartment（a）．
7．Sensor：Secure the cover on the connection housing（b）．

Promag D

Fig. 30: \quad Connecting the remote version of Promag D
a Wall-mount housing connection compartment
b Cover of the sensor connection housing
c Signal cable
d Coil current cable
n.c. Not connected, insulated cable shields

Wire colors/Terminal No.:
$5 / 6=$ braun, $7 / 8=$ white, $4=$ green, $37 / 36=$ yellow

Promag L, W, P

Fig. 31: \quad Connecting the remote version of Promag L, W, P
a Wall-mount housing connection compartment
$b \quad$ Cover of the sensor connection housing
c Signal cable
d Coil current cable
n.c. Not connected, insulated cable shields

Wire colors/Terminal No.:
$5 / 6=$ braun, $7 / 8=$ white, $4=$ green, $37 / 36=$ yellow

Promag H

Fig. 32: \quad Connecting the remote version of Promag H

[^1]
Cable termination for the remote version
 Promag D / Promag L / Promag W / Promag P

Terminate the signal and coil current cables as shown in the figure below (Detail A). Ferrules must be provided on the fine-wire cores (Detail B: © $=$ red ferrules, $\varnothing 1.0 \mathrm{~mm}$; (2) = white ferrules, $\varnothing 0.5 \mathrm{~mm}$). * Stripping only for reinforced cables 3 Caution! When fitting the connectors, pay attention to the following points: - Signal cable \rightarrow Make sure that the ferrules do not touch the wire shield on the sensor side. Minimum distance $=1 \mathrm{~mm}$ (exception "GND" $=$ green cable $)$ - Coil current cable \rightarrow Insulate one core of the three-core wire at the level of the core reinforcement; you only require two cores for the connection.	
TRANSMITTER	
SENSOR Signal cable	Coil current cable
	A B

Cable termination for the remote version Promag H	
Terminate the signal and coil current cables as shown in the figure below (Detail A). Ferrules must be provided on the fine-wire cores (Detail B: (1) = red ferrules, $\varnothing 1.0 \mathrm{~mm}$; (2) = white ferrules, $\varnothing 0.5 \mathrm{~mm}$). Caution! When fitting the connectors, pay attention to the following points: - Signal cable \rightarrow Make sure that the ferrules do not touch the wire shield on the sensor side. Minimum distance $=1 \mathrm{~mm}$ (exception "GND" = green cable). - Coil current cable \rightarrow Insulate one core of the three-core wire at the level of the core reinforcement; you only require two cores for the connection. - On the sensor side, reverse both cable shields approx. 15 mm over the outer jacket. The strain relief ensures an electrical connection with the connection housing.	
TRANSMITTER Signal cable	Coil current cable
SENSOR	
Signal cable	Coil current cable
	A B mm (inch)

4.1.2 Cable specifications

Signal cable

- $3 \times 0.38 \mathrm{~mm}^{2}$ PVC cable with common, braided copper shield ($\varnothing \sim 7 \mathrm{~mm}$) and individually shielded cores
- With Empty Pipe Detection (EPD): $4 \times 0.38 \mathrm{~mm}^{2}$ PVC cable with common, braided copper shield ($\varnothing \sim 7 \mathrm{~mm}$) and individually shielded cores
- Conductor resistance: $\leq 50 \Omega / \mathrm{km}$
- Capacitance: core/shield: $\leq 420 \mathrm{pF} / \mathrm{m}$
- Permanent operating temperature: -20 to $+80^{\circ} \mathrm{C}$
- Cable cross-section: max. $2.5 \mathrm{~mm}^{2}$

Coil cable

- $2 \times 0.75 \mathrm{~mm}^{2}$ PVC cable with common, braided copper shield ($\varnothing \sim 7 \mathrm{~mm}$)
- Conductor resistance: $\leq 37 \Omega / \mathrm{km}$
- Capacitance: core/core, shield grounded: $\leq 120 \mathrm{pF} / \mathrm{m}$
- Operating temperature: -20 to $+80^{\circ} \mathrm{C}$
- Cable cross-section: max. $2.5 \mathrm{~mm}^{2}$
- Test voltage for cable insulation: ≥ 1433 V AC r.m.s. $50 / 60 \mathrm{~Hz}$ or ≥ 2026 V DC

Fig. 33: Cable cross-section
a Signal cable
b Coil current cable
1 Core
2 Core insulation
3 Core shield
4 Core jacket
5 Core reinforcement
6 Cable shield
7 Outer jacket

Reinforced connecting cables

As an option, Endress+Hauser can also deliver reinforced connecting cables with an additional, reinforcing metal braid. Reinforced connecting cables should be used when laying the cable directly in the ground, if there is a risk of damage from rodents or if using the measuring device below IP 68 degree of protection.

Operation in zones of severe electrical interference:

The measuring device complies with the general safety requirements in accordance with EN 61010 and the EMC requirements of IEC/EN 61326.
Caution!
Grounding is by means of the ground terminals provided for the purpose inside the connection housing. Ensure that the stripped and twisted lengths of cable shield to the ground terminal are as short as possible.

4.2 Connecting the measuring unit

4.2.1 Connecting the transmitter

Warning!

- Risk of electric shock! Switch off the power supply before opening the device. Do not install or wire the device while it is energized. Failure to comply with this precaution can result in irreparable damage to the electronics.
- Risk of electric shock! Connect the protective conductor to the ground terminal on the housing before the power supply is applied (not necessary if the power supply is galvanically isolated).
- Compare the specifications on the nameplate with the local voltage supply and frequency. Also comply with national regulations governing the installation of electrical equipment.

1. Remove the cover of the connection compartment (f) from the transmitter housing.
2. Feed the power supply cable (a) and the signal cable (b) through the appropriate cable entries.
3. Perform the wiring:

- Wiring diagram (aluminum housing) \rightarrow • 34
- Wiring diagram (stainless steel housing) \rightarrow - 35
- Wiring diagram (wall-mount housing) \rightarrow $\bullet 36$
- Terminal assignment \rightarrow 異 52

4. Screw the cover of the connection compartment (f) firmly onto the transmitter housing.

Fig. 34: Connecting the transmitter (aluminum field housing). Cable cross-section: max. $2.5 \mathrm{~mm}^{2}$
a Cable for power supply: 85 to 260 V AC, 20 to 55 V AC, 16 to 62 V DC
Terminal No. 1: L1 for AC, $L+$ for DC
Terminal No. 2: N for $A C, L$ - for $D C$
b Signal cable: Terminals Nos. 20-27 \rightarrow 目 52
c Ground terminal for protective ground
d Ground terminal for signal cable shield
e Service connector for connecting service interface FXA193 (Fieldcheck, FieldCare)
$f \quad$ Cover of the connection compartment
g Securing clamp

Fig. 35: Connecting the transmitter (stainless steel field housing); cable cross-section: max. $2.5 \mathrm{~mm}^{2}$
a Cable for power supply: 85 to 260 V AC, 20 to 55 V AC, 16 to 62 V DC
Terminal No. 1: L1 for AC, $L+$ for $D C$
Terminal No. 2: N for AC, L- for DC
b Signal cable: Terminals Nos. $20-27 \rightarrow$ R 52
c Ground terminal for protective ground
d Ground terminal for signal cable shield
e Service connector for connecting service interface FXA193 (Fieldcheck, FieldCare)
$f \quad$ Cover of the connection compartment

Fig. 36: Connecting the transmitter (wall-mount housing); cable cross-section: max. $2.5 \mathrm{~mm}^{2}$
a Cable for power supply: 85 to 260 V AC, 20 to 55 V AC, 16 to 62 V DC
Terminal No. 1: L1 for AC, L+ for DC
Terminal No. 2: N for $A C$, L - for $D C$
b Signal cable: Terminals Nos. 20-27 \rightarrow R 52
c Ground terminal for protective ground
d Ground terminal for signal cable shield
e Service connector for connecting service interface FXA193 (Fieldcheck, FieldCare)
$f \quad$ Cover of the connection compartment

4.2.2 Terminal assignment

Order version	Terminal No. (inputs / outputs)			
	20 (+) / 21 (-)	22 (+) / 23 (-)	24 (+) / 25 (-)	26 (+) / 27 (-)
50***_***********W	-	-	-	Current output HART
50***_***********	-	-	Frequency output	Current output HART
50***_***********D	Status input	Status output	Frequency output	Current output HART
50***_**********S	-	-	Frequency output Ex i	Current output, Ex i, active, HART
50***_**********T	-	-	Frequency output Ex i	Current output, Ex i, passive, HART

Note!
Functional values of the inputs and outputs \rightarrow 目 97

4.2.3 HART connection

Users have the following connection options at their disposal:

- Direct connection to transmitter by means of terminals 26(+) and 27 (-)
- Connection by means of the 4 to 20 mA circuit.
- The measuring loop's minimum load must be at least 250Ω.
- After commissioning, make the following settings:
- CURRENT SPAN function \rightarrow "4-20 mA HART"
- Switch HART write protection on or off \rightarrow R 64

Connection of the HART handheld communicator

See also the documentation issued by the HART Communication Foundation, and in particular HCF LIT 20: "HART, a technical summary".

Fig. 37: Electrical connection of HART handheld Field Xpert SFX100
1 HART handheld Field Xpert SFX100
2 Auxiliary energy
3 Shielding
4 Other devices or PLC with passive input

Connection of a PC with an operating software

In order to connect a PC with operating software (e.g. "FieldCare"), a HART modem (e.g. "Commubox FXA195") is needed.

Fig. 38: Electrical connection of a PC with operating software
$1 \quad$ PC with operating software
2 Auxiliary energy
3 Shielding
4 Other devices or PLC with passive input
5 HART modem, e.g. Commubox FXA195

4.3 Potential equalization

Warning!
The measuring system must be included in the potential equalization.
Perfect measurement is only ensured when the fluid and the sensor have the same electrical potential. This is ensured by the reference electrode integrated in the sensor as standard.
The following should also be taken into consideration for potential equalization:

- Internal grounding concepts in the company
- Operating conditions, such as the material/grounding of the pipes (see Table)

4.3.1 Potential equalization for Promag D

- No reference electrode is integrated!

For the two ground disks of the sensor an electrical connection to the fluid is always ensured.

- Exampels for connections \rightarrow 胃 54

4.3.2 Potential equalization for Promag W, P, L

- Reference electrode integrated in the sensor as standard
- Exampels for connections \rightarrow 胃 55

4.3.3 Potential equalization for Promag H

No reference electrode is integrated!
For the metal process connections of the sensor an electrical connection to the fluid is always ensured.
Caution!
If using process connections made of a synthetic material, ground rings have to be used to ensure that potential is equalized (\rightarrow B7). The necessary ground rings can be ordered separately from Endress+Hauser as accessories (\rightarrow 77).

4.3.4 Exampels for potential equalization connections for Promag D

Standard case

Operating conditions
When using the measuring device in a:
- Metal, grounded pipe
- Plastic pipe
- Pipe with insulating lining
Potential equalization takes place via the ground terminal of the
transmitter (standard situation).
When installing in metal pipes, we recommend you connect the
ground terminal of the transmitter housing with the piping.

Special cases

Operating conditions
When using the measuring device in a:

- Metal pipe that is not grounded
This connection method also applies in situations where:
- Customary potential equalization cannot be ensured
Potential equalization takes place via the ground terminal of the
transmitter and the two pipe flanges.
Here, the ground cable (copper wire, mm^{2} (0.0093 in ${ }^{2}$) is
mounted directly on the conductive flange coating with flange
screws.
When using the measuring device in a:
- Pipe with a cathodic protection unit
The device is installed potential-free in the pipe.
Only the two flanges of the pipe are connected with a ground
cable (copper wire, 6 mm ${ }^{2}$ (0.0093 in ${ }^{2}$). Here, the ground cable
is mounted directly on the conductive flange coating with flange
screws.
Note the following when installing:
- The applicable regulations regarding potential-free installation
must be observed.
- There should be no electrically conductive connection
between the pipe and the device.
- The mounting material must withstand the applicable
torques.

4.3.5 Exampels for potential equalization connections for Promag L, W, P

Standard case

Operating conditions	Potential equalization
When using the measuring device in a:	
- Metal, grounded pipe	
Potential equalization takes place via the ground terminal of the	
transmitter (standard situation).	
When installing in metal pipes, we recommend you connect the	
ground terminal of the transmitter housing with the piping.	

Special cases

Operating conditions	Potential equalization
When using the measuring device in a: - Metal pipe that is not grounded This connection method also applies in situations where: - Customary potential equalization cannot be ensured - Excessively high equalizing currents can be expected Both sensor flanges are connected to the pipe flange by means of a ground cable (copper wire, $6 \mathrm{~mm}^{2}\left(0.0093 \mathrm{in}^{2}\right)$) and grounded. Connect the transmitter or sensor connection housing, as applicable, to ground potential by means of the ground terminal provided for the purpose. Ground cable installation depends on the nominal diameter: - $\mathrm{DN} \leq 300$: The ground cable is mounted directly on the conductive flange coating with the flange screws. - $\mathrm{DN} \geq 350$: The ground cable is mounted directly on the metal transport bracket. Note! The ground cable for flange-to-flange connections can be ordered separately as an accessory from Endress+Hauser.	Fig. 43: Via the ground terminal of the transmitter and the flanges of the pipe
When using the measuring device in a: - Plastic pipe - Pipe with insulating lining This connection method also applies in situations where: - Customary potential equalization cannot be ensured - Excessively high equalizing currents can be expected Potential equalization takes place using additional ground disks, which are connected to the ground terminal via a ground cable (copper wire, min. $6 \mathrm{~mm}^{2}\left(0.0093 \mathrm{in}^{2}\right)$). When installing the ground disks, please comply with the enclosed Installation Instructions.	Fig. 44: \quad Via the ground terminal of the transmitter
When using the measuring device in a: - Pipe with a cathodic protection unit The device is installed potential-free in the pipe. Only the two flanges of the pipe are connected with a ground cable (copper wire, $6 \mathrm{~mm}^{2}\left(0.0093 \mathrm{in}^{2}\right)$). Here, the ground cable is mounted directly on the conductive flange coating with flange screws. Note the following when installing: - The applicable regulations regarding potential-free installation must be observed. - There should be no electrically conductive connection between the pipe and the device. - The mounting material must withstand the applicable torques.	Fig. 45: Potential equalization and cathodic protection 1 Power supply isolation transformer 2 Electrically isolated

4.4 Degree of protection

The devices meet all the requirements of IP 67 degree of protection.
Compliance with the following points is mandatory following installation in the field or servicing in order to ensure that IP 67 protection is maintained:

- The housing seals must be clean and undamaged when inserted into their grooves. The seals must be dried, cleaned or replaced if necessary.
- All threaded fasteners and screw covers must be firmly tightened.
- The cables used for connection must be of the specified outside diameter $\rightarrow 49$.
- Firmly tighten the cable entries.
- The cables must loop down before they enter the cable entries ("water trap"). This arrangement prevents moisture penetrating the entry. Always install the measuring device in such a way that the cable entries do not point up.
- Remove all unused cable entries and insert plugs instead.
- Do not remove the grommet from the cable entry.

a

b

Fig. 46: Installation instructions, cable entries

Caution!
Do not loosen the threaded fasteners of the sensor housing, as otherwise the degree of protection guaranteed by Endress+Hauser no longer applies.

Note!
The Promag L, Promag W and Promag P sensors can be supplied with IP 68 rating (permanent immersion in water to a depth of 3 meters (10 ft)). In this case the transmitter must be installed remote from the sensor.
The Promag L sensors with IP 68 rating are only available with stainless steel flanges.

4.5 Post-connection check

Perform the following checks after completing electrical installation of the measuring device:

Device condition and specifications	Notes
Are cables or the device damaged (visual inspection)?	-
Electrical connection	Notes
Does the supply voltage match the specifications on the nameplate?	- 85 to 250 V AC (50 to 60 Hz) - 20 to 28 V AC (50 to 60 Hz) 11 to 40 V DC
Do the cables used comply with the necessary specifications?	\rightarrow 目 49
Do the cables have adequate strain relief?	-
Is the cable type route completely isolated? Without loops and crossovers?	-
Are the power-supply and signal cables correctly connected?	See the wiring diagram inside the cover of the terminal compartment
Are all screw terminals firmly tightened?	-
Have the measures for grounding/potential equalization been correctly implemented?	\rightarrow R 54
Are all cable entries installed, firmly tightened and correctly sealed? Cables looped as "water traps"?	\rightarrow 且 57
Are all housing covers installed and firmly tightened?	-

5 Operation

5.1 Display and operating elements

The local display enables you to read all important parameters directly at the measuring point and configure the device.
The display area consists of two lines; this is where measured values are displayed, and/or status variables (direction of flow, partially filled pipe, bar graph, etc.). You can change the assignment of display lines to variables at will in order to customize the display to suit your needs and preferences (\rightarrow "Description of Device Functions" manual).

2

3

Fig. 47: Display and operating elements
1 Liquid crystal display
The two-line liquid-crystal display shows measured values, dialog texts, error messages and information messages.
The display as it appears when normal measuring is in progress is known as the HOME position (operating mode).

- Upper display line: Shows primary measured values, e.g. volume flow in [ml/min] or in [\%].
- Lower display line: Shows supplementary measured variables and status variables, e.g. totalizer reading in [m3], bar graph, measuring point designation

2 Plus/minus keys

- Enter numerical values, select parameters
- Select different function groups within the function matrix

Press the $+/$ - keys simultaneously to trigger the following functions:

- Exit the function matrix step by step \rightarrow HOME position
- Press and hold down +/-keys for longer than 3 seconds \rightarrow Return directly to HOME position
- Cancel data entry

3 Enter key

- HOME position \rightarrow Entry into the function matrix
- Save the numerical values you input or settings you change

5.2 Brief operating instructions on the function matrix

Note!

- See the general notes on \rightarrow 贯 61 .
- Detailed description of all the functions \rightarrow "Description of Device Functions" manual

The function matrix comprises two levels, namely the function groups and the functions of the function groups.
The groups are the highest-level grouping of the control options for the device. A number of functions is assigned to each group. You select a group in order to access the individual functions for operating and configuring the device.

1. HOME position $\rightarrow \Xi \rightarrow$ Enter the function matrix
2. Select a function group (e.g. OPERATION)
3. Select a function (e.g. LANGUAGE)

Change parameter/enter numerical values:
甼 \rightarrow select or enter enable code, parameters, numerical values
E \rightarrow save your entries
4. Exit the function matrix:

- Press and hold down Esc key (-5$)$ for longer than 3 seconds \rightarrow HOME position
- Repeatedly press Esc key $(\exists \pm) \rightarrow$ return step by step to HOME position

Fig. 48: \quad Selecting functions and configuring parameters (function matrix)

5．2．1 General notes

The Quick Setup menu（ \rightarrow 目 71）is adequate for commissioning in most instances．Complex measuring operations on the other hand necessitate additional functions that you can configure as necessary and customize to suit your process parameters．The function matrix，therefore，comprises a multiplicity of additional functions which，for the sake of clarity，are arranged in a number of function groups．

Comply with the following instructions when configuring functions：
－You select functions as described on \rightarrow 目 60.
－You can switch off certain functions（OFF）．If you do so，related functions in other function groups will no longer be displayed．
－Certain functions prompt you to confirm your data entries．
Press 胃 to select＂SURE［ YES ］＂and press ■ again to confirm．This saves your setting or starts a function，as applicable．
－Return to the HOME position is automatic if no key is pressed for 5 minutes．
Note！
－The transmitter continues to measure while data entry is in progress，i．e．the current measured values are output via the signal outputs in the normal way．
－If the power supply fails，all preset and configured values remain safely stored in the EEPROM．
Caution！
All functions are described in detail，including the function matrix itself，in the＂Description of Device Functions＂manual，which is a separate part of these Operating Instructions．

5．2．2 Enabling the programming mode

The function matrix can be disabled．Disabling the function matrix rules out the possibility of inadvertent changes to device functions，numerical values or factory settings．A numerical code （factory setting $=50$ ）has to be entered before settings can be changed．
If you use a code number of your choice，you exclude the possibility of unauthorized persons accessing data（ \rightarrow see the＂Description of Device Functions＂manual）．

Comply with the following instructions when entering codes：
－If programming is disabled and the ${ }^{\oplus}$ operating elements are pressed in any function，a prompt for the code automatically appears on the display．
－If＂0＂is specified as the customer＇s code，programming is always enabled．
－The Endress＋Hauser service organization can be of assistance if you mislay your personal code．
Caution！
Changing certain parameters such as all sensor characteristics，for example，influences numerous functions of the entire measuring system，particularly measuring accuracy．
There is no need to change these parameters under normal circumstances and consequently，they are protected by a special code known only to the Endress＋Hauser service organization．
Please contact Endress＋Hauser if you have any questions．

5．2．3 Disabling the programming mode

Programming is disabled if you do not press the operating elements within 60 seconds following automatic return to the HOME position．
You can also disable programming in the＂ACCESS CODE＂function by entering any number （other than the customer＇s code）．

5.3 Displaying error messages

5.3.1 Type of error

Errors which occur during commissioning or measuring operation are displayed immediately. If two or more system or process errors occur, the error with the highest priority is the one shown on the display.
The measuring system distinguishes between two types of error:

- System errors \rightarrow 贯 81:

This group comprises all device errors, e.g. communication errors, hardware faults, etc.

- Process errors \rightarrow 83:

This group comprises all application errors, e.g. empty pipe, etc.

Fig. 49: Error messages on the display (example)
1 Error type:
$-P=$ process error

- S = system error

2 Error message type:
$-\rangle=$ fault message
-! = notice message
3 Error designation: e.g. EMPTY PIPE = measuring tube is only partly filled or completely empty
4 Error number: e.g. \#401
5 Duration of most recent error occurrence (in hours, minutes and seconds)

5.3.2 Error message types

Users have the option of weighting certain errors differently, in other words having them classed as "Fault messages" or "Notice messages". You can define messages in this way with the aid of the function matrix (\rightarrow "Description of Device Functions" manual).
Serious system errors, e.g. module defects, are always identified and classed as "fault messages" by the measuring device.

Notice message (!)

- Displayed as \rightarrow Exclamation mark (!), error type (S: system error, P: process error)
- The error in question has no effect on the outputs of the measuring device.

Fault message $\simeq \nmid$)

- Displayed as \rightarrow Lightning flash (\langle), error type (S: system error, P: process error).
- The error in question has a direct effect on the outputs.

The response of the individual outputs (failsafe mode) can be defined in the function matrix using the "FAILSAFE MODE" function (\rightarrow "Description of Device Functions" manual).
Note!
For security reasons, error messages should be output via the status output.

5.4 Communication

In addition to local operation, the measuring device can be configured and measured values can be obtained by means of the HART protocol. Digital communication takes place using the $4-20 \mathrm{~mA}$ current output HART \rightarrow 畀 53.

The HART protocol allows the transfer of measuring and device data between the HART master and the field devices for configuration and diagnostics purposes.
The HART master, e.g. a handheld terminal or PC-based operating programs (such as FieldCare), require device description (DD) files which are used to access all the information in a HART device. Information is exclusively transferred using so-called "commands". There are three different command classes:

- Universal commands:

All HART device support and use universal commands.
The following functionalities are linked to them:

- Identify HART devices
- Reading digital measured values (volume flow, totalizer, etc.)
- Common practice commands:

Common practice commands offer functions which are supported and can be executed by most but not all field devices.

- Device-specific commands:

These commands allow access to device-specific functions which are not HART standard. Such commands access individual field device information, amongst other things, such as empty/full pipe calibration values, low flow cutoff settings, etc.
Note!
The device has access to all three command classes. A list of all the "Universal commands" and "Common practice commands" is provided on \rightarrow 目 65 .

5.4.1 Operating options

For the complete operation of the measuring device, including device-specific commands, there are DD files available to the user to provide the following operating aids and programs:

Field Xpert HART Communicator

Selecting device functions with a HART Communicator is a process involving a number of menu levels and a special HART function matrix.
The HART manual in the carrying case of the HART Communicator contains more detailed information on the device.

Operating program "FieldCare"

FieldCare is Endress+Hauser's FDT-based plant Asset Management Tool and allows the configuration and diagnosis of intelligent field devices. By using status information, you also have a simple but effective tool for monitoring devices. The Proline flow measuring devices are accessed via a service interface or via the service interface FXA193.

Operating program "SIMATIC PDM" (Siemens)

SIMATIC PDM is a standardized, manufacturer-independent tool for the operation, configuration, maintenance and diagnosis of intelligent field devices.

Operating program "AMS" (Emerson Process Management)
AMS (Asset Management Solutions): program for operating and configuring devices.

5.4.2 Current device description files

The following table illustrates the suitable device description file for the operating tool in question and then indicates where these can be obtained.
HART protocol:

Valid for device software:	$2.03 . X X$	\rightarrow Function DEVICE SOFTWARE
Device data HART		
Manufacturer ID:	$11_{\text {hex }}$ (ENDRESS+HAUSER)	\rightarrow Function MANUFACTURER ID
Device ID:	$41_{\text {hex }}$	\rightarrow Function DEVICE ID
HART version data:	Device Revision 6/ DD Revision 1	
Software release:	07.2009	

Tester/simulator:	Sources for obtaining device descriptions:
Fieldcheck	Update by means of FieldCare with the flow device FXA193/291 DTM in the Fieldflash module

Note!
The "Fieldcheck" tester/simulator is used for testing flowmeters in the field. When used in conjunction with the "FieldCare" software package, test results can be imported into a database, printed out and used for official certification. Contact your Endress+Hauser representative for more information.

5.4.3 Device variables

The following device variables are available using the HART protocol:

Code (decimal)	Device variable
0	OFF (not assigned)
1	Volume flow
250	Totalizer 1
251	Totalizer 2

At the factory, the process variables are assigned to the following device variables:

- Primary process variable (PV) \rightarrow Volume flow
- Second process variable (SV) \rightarrow Totalizer 1
- Third process variable (TV) \rightarrow not assigned
- Fourth process variable (FV) \rightarrow not assigned

Note!
You can set or change the assignment of device variables to process variables using Command 51.

5.4.4 Switching HART write protection on/off

The HART write protection can be switched on and off using the HART WRITE PROTECT device function (\rightarrow "Description of Device Functions" manual).

5.4.5 Universal and common practice HART commands

The following table contains all the universal commands supported by the device.

Command No. HART command / Access type		Command data (numeric data in decimal form)	Response data (numeric data in decimal form)
Universal commands			
0	Read unique device identifier Access type $=$ read	none	Device identification delivers information on the device and the manufacturer. It cannot be changed. The response consists of a 12 byte device ID: - Byte 0: fixed value 254 - Byte 1: Manufacturer ID, $17=\mathrm{E}+\mathrm{H}$ - Byte 2: Device type ID, 65 = Promag 50 - Byte 3: Number of preambles - Byte 4: Universal commands rev. no. - Byte 5: Device-specific commands rev. no. - Byte 6: Software revision - Byte 7: Hardware revision - Byte 8: Additional device information - Bytes 9-11: Device identification
1	Read primary process variable Access type $=$ read	none	- Byte 0: HART unit code of the primary process variable - Bytes 1-4: Primary process variable Factory setting: Primary process variable = Volume flow Note! - Manufacturer-specific units are represented using the HART unit code "240". - You can change the assignment of device variables to process variables using Command 51.
2	Read the primary process variable as current in mA and percentage of the set measuring range Access type $=$ read	none	- Bytes 0-3: actual current of the primary process variable in mA - Bytes 4-7: \% value of the set measuring range Factory setting: Primary process variable $=$ Volume flow Note! You can change the assignment of device variables to process variables using Command 51.
3	Read the primary process variable as current in mA and four dynamic process variables Access type $=$ read	none	24 bytes are sent as a response: - Bytes 0-3: primary process variable current in mA - Byte 4: HART unit code of the primary process variable - Bytes 5-8: Primary process variable - Byte 9: HART unit code of the second process variable - Bytes 10-13: Second process variable - Byte 14: HART unit code of the third process variable - Bytes 15-18: Third process variable - Byte 19: HART unit code of the fourth process variable - Bytes 20-23: Fourth process variable Factory setting: - Primary process variable = Volume flow - Second process variable = Totalizer 1 - Third process variable $=$ OFF (not assigned) - Fourth process variable $=$ OFF (not assigned) Note! - Manufacturer-specific units are represented using the HART unit code " 240 ". - You can change the assignment of device variables to process variables using Command 51.

Command No. HART command / Access type		Command data (numeric data in decimal form)	Response data (numeric data in decimal form)
6	Set HART shortform address Access type = write	Byte 0: desired address (0 to 15) Factory setting: 0 Note! With an address >0 (multidrop mode), the current output of the primary process variable is set to 4 mA .	Byte 0: active address
11	Read unique device identification using the TAG (measuring point designation) Access type $=$ read	Bytes 0-5: TAG	Device identification delivers information on the device and the manufacturer. It cannot be changed. The response consists of a 12 byte device ID if the given TAG agrees with the one saved in the device: - Byte 0: fixed value 254 - Byte 1: Manufacturer ID, $17=\mathrm{E}+\mathrm{H}$ - Byte 2: Device type ID, 65 = Promag 50 - Byte 3: Number of preambles - Byte 4: Universal commands rev. no. - Byte 5: Device-specific commands rev. no. - Byte 6: Software revision - Byte 7: Hardware revision - Byte 8: Additional device information - Bytes 9-11: Device identification
12	Read user message Access type $=$ read	none	Bytes 0-24: User message Note! You can write the user message using Command 17.
13	Read TAG, descriptor and date Access type $=$ read	none	- Bytes 0-5: TAG - Bytes 6-17: descriptor - Bytes 18-20: Date Note! You can write the TAG, descriptor and date using Command 18.
14	Read sensor information on primary process variable	none	- Bytes 0-2: Sensor serial number - Byte 3: HART unit code of sensor limits and measuring range of the primary process variable - Bytes 4-7: Upper sensor limit - Bytes 8-11: Lower sensor limit - Bytes 12-15: Minimum span Note! - The data relate to the primary process variable (= volume flow). - Manufacturer-specific units are represented using the HART unit code " 240 ".
15	Read output information of primary process variable Access type $=$ read	none	- Byte 0: Alarm selection ID - Byte 1: Transfer function ID - Byte 2: HART unit code for the set measuring range of the primary process variable - Bytes 3-6: upper range, value for 20 mA - Bytes 7-10: lower range, value for 4 mA - Bytes 11-14: Damping constant in [s] - Byte 15: Write protection ID - Byte 16: OEM dealer ID, 17 = E+H Factory setting: Primary process variable $=$ Volume flow Note! - Manufacturer-specific units are represented using the HART unit code "240". - You can change the assignment of device variables to

Command No. HART command / Access type	Command data (numeric data in decimal form)	Response data (numeric data in decimal form)	
16	Read the device production number Access type = read	none	Bytes 0-2: Production number
17	Write user message Access = write	You can save any 32-character long text in the device under this parameter: Bytes 0-23: Desired user message	Displays the current user message in the device: Bytes 0-23: Current user message in the device
18	Write	With this parameter, you can store an 8 character TAG, a 16 character descriptor and a date: - Bytes 0-5: TAG - Bytes 6-17: descriptor - Bytes 18-20: Date	Displays the current information in the device: - Bytes 0-5: TAG - Bytes 6-17: descriptor Bytes 18-20: Date
19	Write the device production number Access = write	Bytes 0-2: Production number Bres	Bytes 0-2: Production number

The following table contains all the common practice commands supported by the device.

Command No. HART command / Access type		Command data (numeric data in decimal form)	Response data (numeric data in decimal form)
Common practice commands			
34	Write damping value for primary process variable Access = write	Bytes 0-3: Damping value of the primary process variable "volume flow" in seconds Factory setting: Primary process variable $=$ Current output damping	Displays the current damping value in the device: Bytes 0-3: Damping value in seconds
35	Write measuring range of primary process variable Access $=$ write	Write the desired measuring range: - Byte 0: HART unit code of the primary process variable - Bytes 1-4: upper range, value for 20 mA - Bytes 5-8: lower range, value for 4 mA Factory setting: Primary process variable $=$ Volume flow Note! - The start of the measuring range (4 mA) must correspond to the zero flow. - If the HART unit code is not the correct one for the process variable, the device will continue with the last valid unit.	The currently set measuring range is displayed as a response: - Byte 0: HART unit code for the set measuring range of the primary process variable - Bytes 1-4: upper range, value for 20 mA - Bytes 5-8: lower range, value for 4 mA Note! - Manufacturer-specific units are represented using the HART unit code " 240 ". - You can change the assignment of device variables to process variables using Command 51.
38	Device status reset (configuration changed) Access = write	none	none Note! It is also possible to execute this HART command when write protection is activated (= ON)!
40	Simulate input current of primary process variable Access = write	Simulation of the desired output current of the primary process variable. An entry value of 0 exits the simulation mode: Bytes 0-3: Output current in mA Factory setting: Primary process variable $=$ Volume flow Note! You can set the assignment of device variables to process variables using Command 51.	The momentary output current of the primary process variable is displayed as a response: Bytes 0-3: Output current in mA
42	Perform master reset Access $=$ write	none	none

Command No. HART command / Access type	Command data (numeric data in decimal form)	Write unit of primary process variable Access = write	Set unit of primary process variable. Only units which are suitable for the process variable are transferred to the device: Byte 0: HART unit code (numeric data in decimal form)
44			

5.4.6 Device status and error messages

You can read the extended device status, in this case, current error messages, via Command "48". The command delivers information which is partly coded in bits (see table below).
Note!

- You can find a detailed explanation of the device status and error messages and their elimination on \rightarrow R 69
- Bits and bytes not listed are not assigned.

Byte	Bit	Error No.	Short error description
0	0	001	Serious device error
	1	011	Measuring amplifier has faulty EEPROM
	2	012	Error when accessing data of the measuring amplifier EEPROM
1	1	031	S-DAT: defective or missing
	2	032	S-DAT: Error accessing saved values
	5	051	I/O and the amplifier are not compatible.
3	3	111	Totalizer checksum error
	4	121	I/O board and amplifier not compatible.
4	3	251	Internal communication fault on the amplifier board.
	4	261	No data reception between amplifier and I/O board
5	0	321	Coil current of the sensor is outside the tolerance.
	7	339	Flow buffer: The temporarily buffered flow portions (measuring mode for pulsating flow) could not be cleared or output within 60 seconds.
6	0	340	
	1	341	
	2	342	
	3	343	Frequency buffer: The temporarily buffered flow portions (measuring mode for pulsating flow) could not be cleared or output within 60 seconds.
	4	344	
	5	345	
	6	346	
	7	347	Pulse buffer: The temporarily buffered flow portions (measuring mode for pulsating flow) could not be cleared or output within 60 seconds.
7	0	348	
	1	349	
	2	350	
	3	351	Current output: Flow is out of range.
	4	352	
	5	353	
	6	354	
	7	355	Frequency output: Flow is out of range.
8	0	356	
	1	357	
	2	358	

Byte	Bit	Error No.	Short error description
8	3	359	Pulse output: Flow is out of range.
	4	360	
	5	361	
	6	362	
10	7	401	Measuring tube partially filled or empty
11	2	461	EPD calibration not possible because the fluid's conductivity is either too low or too high.
	4	463	The EPD calibration values for empty pipe and full pipe are identical, and therefore incorrect.
12	1	474	Maximum flow value entered is overshot
	7	501	Amplifier software version is loaded. Currently no other commands are possible.
13	0	502	Upload/download of device files. Currently no other commands are possible.
14	3	601	Positive zero return active
	7	611	Simulation current output active
15	0	612	
	1	613	
	2	614	
	3	621	Simulation frequency output active
	4	622	
	5	623	
	6	624	
	7	631	Simulation pulse output active
16	0	632	
	1	633	
	2	634	
	3	641	Simulation status output active
	4	642	
	5	643	
	6	644	
17	7	671	Simulation of the status input active
18	0	672	
	1	673	
	2	674	
	3	691	Simulation of response to error (outputs) active
	4	692	Simulation of volume flow active

6 Commissioning

6.1 Function check

Make sure that all final checks have been completed before you start up your measuring point:

- Checklist for "Post-installation check" \rightarrow 䀚 43- Checklist for "Post-connection check" \rightarrow 直 58

6.2 Switching on the measuring device

Once the connection checks have been successfully completed, it is time to switch on the power supply. The device is now operational. The measuring device performs a number of post switch-on self-tests. As this procedure progresses the following sequence of messages appears on the local display:

Normal measuring mode commences as soon as start-up completes.
Various measured-value and/or status variables (HOME position) appear on the display.
Note!
If start-up fails, an error message indicating the cause is displayed.

6.3 Quick Setup

In the case of measuring devices without a local display, the individual parameters and functions must be configured via the operating program, e.g. FieldCare.
If the measuring device is equipped with a local display, all the important device parameters for standard operation, as well as additional functions, can be configured quickly and easily by means of the following Quick Setup menu.

6.3.1 "Commissioning" Quick Setup menu

This Quick Setup menu guides you systematically through the setup procedure for all the major device functions that have to be configured for standard measuring operation.

Fig. 50: "QUICK SETUP COMMISSIONING" menu for the rapid configuration of important device functions

6.4 Configuration

6.4.1 Current output: active/passive

The current output is configured as "active" or "passive" by means of various jumpers on the I/O board.

Warning!
Risk of electric shock! Exposed components carry dangerous voltages. Make sure that the power supply is switched off before you remove the cover of the electronics compartment.

1. Switch off power supply.
2. Remove the I/O board $\rightarrow 88$
3. Position the jumper $\rightarrow 51$

Caution!
Risk of destroying the measuring device. Set the jumpers exactly as shown in the graphic. Pay strict attention to the position of the jumpers as indicated in the graphic.
4. Installation of the I / O board is the reverse of the removal procedure.

Fig. 51: Configuring current outputs using jumpers (I/O board)
1 Active current output (factory setting)
2 Passive current output

6.5 Adjustment

6.5.1 Empty-pipe/full-pipe adjustment

Flow cannot be measured correctly unless the measuring tube is completely full. This status can be permanently monitored using the Empty Pipe Detection:

- EPD = Empty Pipe Detection (with the help of an EPD electrode)
- OED = Open Electrode Detection (Empty Pipe Detection with the help of the measuring electrodes, if the sensor is not equipped with an EPD electrode or the orientation is not suitable for using EPD).
Caution!
Detailed information on the empty-pipe/full-pipe adjustment procedure can be found in the "Description of Device Functions" manual:
- EPD/OED ADJUSTMENT (carrying out the adjustment).
- EPD (switching on and off EPD/OED).
- EPD RESPONSE TIME (input of the response time for EPD/OED).

Note!

- The EPD function is not available unless the sensor is fitted with an EPD electrode.
- The devices are already calibrated at the factory with water (approx. $500 \mu \mathrm{~S} / \mathrm{cm}$). If the fluid conductivity differs from this reference, empty-pipe/full-pipe adjustment has to be performed again on site.
- The default setting for EPD when the devices are delivered is OFF; the function has to be activated if required.
- The EPD process error can be output by means of the configurable relay output.

Performing empty-pipe and full-pipe adjustment (EPD)

1. Select the appropriate function in the function matrix:

2. Empty the piping:

- The wall of the measuring tube should still be wet with fluid during EPD empty pipe adjustment
- The wall of the measuring tube/the measuring electrodes should no longer be wet with fluid during OED empty pipe adjustment

3. Start empty-pipe adjustment: Select "EMPTY PIPE ADJUST" or "OED EMPTY ADJUST" and press E to confirm.
4. After empty-pipe adjustment, fill the piping with fluid.
5. Start full-pipe adjustment: Select "FULL PIPE ADJUST" or "OED FULL ADJUST" and press $⿷^{\text {E }}$ to confirm.
6. Having completed the adjustment, select the setting "OFF" and exit the function by pressing $巨$.
7. Switch on empty pipe detection in the EPD function:

- EPD empty pipe adjustment: Select ON STANDARD or ON SPECIAL and press ε to confirm
- OED empty pipe adjustment: Select OED and confirm with Ξ.

3) Caution!

The adjustment coefficients must be valid before you can activate the EPD function. If adjustment is incorrect the following messages might appear on the display:

- FULL = EMPTY

The adjustment values for empty pipe and full pipe are identical. In cases of this nature you must repeat empty-pipe or full-pipe adjustment!

- ADJUSTMENT NOT OK

Adjustment is not possible because the fluid's conductivity is out of range.

6.6 Data storage device (HistoROM)

At Endress+Hauser, the term HistoROM refers to various types of data storage modules on which process and measuring device data are stored. It is possible to plug these modules into other devices to copy device configurations from one device to another, for example.

6.6.1 HistoROM/S-DAT (sensor-DAT)

The S-DAT is an exchangeable data storage device in which all sensor relevant parameters are stored, i.e., diameter, serial number, calibration factor, zero point.

7 Maintenance

No special maintenance work is required.

7.1 Exterior cleaning

When cleaning the exterior of measuring devices, always use cleaning agents that do not attack the surface of the housing and the seals.

7.2 Seals

The seals of the Promag H sensor must be replaced periodically, particularly in the case of gasket seals (aseptic version).
The period between changes depends on the frequency of cleaning cycles, the cleaning temperature and the fluid temperature.

Replacement seals (accessories) \rightarrow 目 77 .

8 Accessories

Various accessories, which can be ordered separately from Endress+Hauser, are available for the transmitter and the sensor. Your Endress+Hauser service organization can provide detailed information on the specific order codes on request.

8.1 Device-specific accessories

Accessory	Description	Order code
Proline Promag 50 transmitter	Transmitter for replacement or storage. Use the order code to define the following specifications: - Approvals - Degree of protection/version - Cable for remote version - Cable entry - Display/power supply/operation - Software - Outputs/inputs	50XXX - XXXXX ******

8.2 Measuring principle-specific accessories

Accessory	Description	Order code
Mounting set for Promag 50 transmitter	Mounting set for the transmitter (remote version). Suitable for: - Wall mounting - Pipe mounting - Panel-mounted installation Mounting set for aluminum field housing. Suitable for: - Pipe mounting	DK5WM - *
Wall-mounting kit for Promag H	Wall-mounting kit for the Promag H sensor.	DK5HM - **
Cable for remote version	Coil and signal cables, various lengths.	DK5CA - **
Mounting kit for Promag D, wafer version	Mounting kit consisting of: - Mounting bolts - Nuts incl. washers - Flange seals - Centering sleeves (if required for the flange)	DKD** - **
Set of seals for Promag D	Set of seals consisting of two flange seals.	DK5DD - ***
Mounting kit for Promag H	Mounting kit consisting of: - 2 process connections - Threaded fasteners - Seals	DKH** - ****
Set of seals for Promag H	For regular replacement of the seals of the Promag H sensor.	DK5HS - ***
Welding jig for Promag H	Weld nipple as process connection: welding jig for installation in pipe.	DK5HW - ***
Adapter connection for Promag A, H	Adapter connections for installing a Promag 10 H instead of a Promag 30/33 A or Promag 30/33 H DN 25.	DK5HA - *****
Ground rings for Promag H	Ground rings for potential equalization.	DK5HR - ***
Ground cable for Promag L, W, P	Ground cable for potential equalization.	DK5GC - ***
Ground disk for Promag L, W, P	Ground disk for potential equalization.	DK5GD - * ****

Accessory	Description	Order code
Process display RIA45	Multifunctional 1-channel display unit: - Universal input - Transmitter power supply - Limit relay - Analog output	RIA45 - ******
Process display RIA251	Digital display device for looping into the 4 to 20 mA current loop.	RIA251 - **
Field display unit RIA16	Digital field display device for looping into the 4 to 20 mA current loop.	RIA16 - ***
Application Manager RMM621	Electronic recording, display, balancing, control, saving and event and alarm monitoring of analog and digital input signals. Values and conditions determined are output by means of analog and digital output signals. Remote transmission of alarms, input values and calculated values using a PSTN or GSM modem.	RMM621 - $* * * * * * * *$

8.3 Communication-specific accessories

Accessory	Description	Order code
HART Communicator Field Xpert SFX 100	Handheld terminal for remote configuration and for obtaining measured values via the HART current output (4 to 20 mA) and FOUNDATION Fieldbus. Contact your Endress+Hauser representative for more information.	SFX100 - *******
Fieldgate FXA320	Gateway for remote interrogation of HART sensors and actuators via Web browser: - 2-channel analog input (4 to 20 mA) - 4 binary inputs with event counter function and frequency measurement - Communication via modem, Ethernet or GSM - Visualization via Internet/Intranet in Web browser and/or WAP cellular phone - Limit value monitoring with alarm by e-mail or SMS - Synchronized time stamping of all measured values.	FXA320 - *****
Fieldgate FXA520	Gateway for remote interrogation of HART sensors and actuators via Web browser: - Web server for remote monitoring of up to 30 measuring points - Intrinsically safe version [EEx ia]IIC for applications in hazardous areas - Communication via modem, Ethernet or GSM - Visualization via Internet/Intranet in Web browser and/or WAP cellular phone - Limit value monitoring with alarm by e-mail or SMS - Synchronized time stamping of all measured values - Remote diagnosis and remote configuration of connected HART devices	FXA520 - ****
FXA195	The Commubox FXA195 connects intrinsically safe Smart transmitters with HART protocol to the USB port of a personal computer. This makes the remote operation of the transmitters possible with the aid of configuration programs (e.g. FieldCare). Power is supplied to the Commubox by means of the USB port	FXA195 - *

8.4 Service-specific accessories

Accessory	Description	Order code
Applicator	Software for selecting and planning flowmeters. The Applicator software can be downloaded from the Internet or ordered on CD-ROM for installation on a local PC. Contact your Endress+Hauser representative for more information.	DXA80 - *
Fieldcheck	Tester/simulator for testing flowmeters in the field. When used in conjunction with the "FieldCare" software package, test results can be imported into a database, printed out and used for official certification. Contact your Endress+Hauser representative for more information.	50098801
FieldCare	FieldCare is Endress+Hauser's FDT-based asset management tool. It can configure all intelligent field units in your system and helps you manage them. By using status information, it is also a simple but effective way of checking their status and condition.	See the product page on the Endress+Hauser Web site:
www.endress.com		

9 Troubleshooting

9．1 Troubleshooting instructions

Always start troubleshooting with the checklist below if faults occur after start－up or during operation．The routine takes you directly to the cause of the problem and the appropriate remedial measures．

Check the display	
No display visible and no output signals present．	1．Check the supply voltage \rightarrow terminals 1,2 2．Check the power line fuse \rightarrow 贯 92 85 to 260 V AC： 0.8 A slow－blow／ 250 V 20 to 55 V AC／ 16 to 62 V DC： 2 A slow－blow／ 250 V 3．Measuring electronics defective \rightarrow order spare parts $\rightarrow 77$
No display visible，but output signals are present．	1．Check whether the ribbon－cable connector of the display module is correctly plugged into the amplifier board $\rightarrow 88$ 2．Display module defective \rightarrow order spare parts $\rightarrow 77$ 3．Measuring electronics defective \rightarrow order spare parts $\rightarrow 77$
Display texts are in a foreign language．	Switch off power supply．Press and hold down both the $+\square$ buttons and switch on the measuring device．The display text will appear in English（default）and is displayed at maximum contrast．
Measured value indicated，but no signal at the current or pulse output．	Electronics board defective \rightarrow order spare parts $\rightarrow 77$
\downarrow	
Error messages on display	
Errors which occur during commissioning or measuring operation are displayed immediately． Error messages consist of a variety of icons：the meanings of these icons are as follows（example）： －Error type： $\mathbf{S}=$ system error， $\mathbf{P}=$ process error －Error message type：$\{=$ fault message，$!=$ notice message －EMPTY PIPE＝Type of error，e．g．measuring tube is only partly filled or completely empty －03：00：05＝duration of error occurrence（in hours，minutes and seconds） －\＃401＝error number Caution！ －See the information on \rightarrow 有 62 ！ －The measuring system interprets simulations and positive zero return as system errors，but displays them as notice message only．	
Error number： No． 001 － 399 No．501－699	System error（device error）has occurred $\rightarrow 81$
Error number： No．401－499	Process error（application error）has occurred \rightarrow 青 83
\downarrow	
Other error（without error message）	
Some other error has occurred．	Diagnosis and rectification \rightarrow 且 84

9.2 System error messages

Serious system errors are always recognized by the device as "Fault message", and are shown as a lightning flash (\langle) on the display. Fault messages immediately affect the outputs.

Caution!
In the event of a serious fault, a flowmeter might have to be returned to the manufacturer for repair. The necessary procedures on \rightarrow must be carried out before you return a flowmeter to Endress+Hauser. Always enclose a duly completed "Declaration of Contamination" form. You will find a master copy of this form at the back of this manual.

Note!
Also observe the information on \rightarrow 苜 62 .

No.	Error message / Type	Cause	Remedy (spare part \rightarrow 目 87)
No. \# 3xx \rightarrow System limits exceeded			
321	$\begin{aligned} & \text { S: TOL. COIL CURR. } \\ & \text { ל: \# } 321 \end{aligned}$	Sensor: Coil current is out of tolerance.	Warning! Switch off power supply before manipulating the coil current cable, coil current cable connector or measuring electronics boards! Remote version: 1. Check wiring of terminals $41 / 42 \rightarrow$ R 44 2. Check coil current cable connector. Compact and remote version: Replace measuring electronics boards if necessary
$\begin{aligned} & 339 \\ & \text { to } \\ & 342 \end{aligned}$	S: STACK CUR OUT n !: \# 339 to 342	The temporarily buffered flow portions (measuring mode for pulsating flow) could not be cleared or output within 60 seconds.	1. Change the upper or lower limit setting, as applicable. 2. Increase or reduce flow, as applicable.
$\begin{array}{\|l} \hline 343 \\ \text { to } \\ 346 \end{array}$	S: STACK FREQ. OUT n !: \# 343 to 346		MESSAGE (() - Configure the fault response of the output to "ACTUAL VALUE" so that the temporary buffer can be cleared. - Clear the temporary buffer by the measures described under Item 1.
$\begin{aligned} & 347 \\ & \text { to } \\ & 350 \end{aligned}$	S: STACK PULSE OUT n !: \# 343 to 346	The temporarily buffered flow portions (measuring mode for pulsating flow) could not be cleared or output within 60 seconds.	1. Increase the setting for pulse weighting 2. Increase the max. pulse frequency if the totalizer can handle a higher number of pulses. 3. Increase or reduce flow, as applicable. Recommendations in the event of fault category = FAULT MESSAGE (4) - Configure the fault response of the output to "ACTUAL VALUE" so that the temporary buffer can be cleared. - Clear the temporary buffer by the measures described under Item 1.
$\begin{aligned} & 351 \\ & \text { to } \\ & 354 \end{aligned}$	S: CURRENT RANGE n !: \# 351 to 354	Current output: flow is out of range.	1. Change the upper or lower limit setting, as applicable. 2. Increase or reduce flow, as applicable.
$\begin{aligned} & 355 \\ & \text { to } \\ & 358 \end{aligned}$	S: FREQ. RANGE n !: \# 355 to 358	Frequency output: flow is out of range.	1. Change the upper or lower limit setting, as applicable. 2. Increase or reduce flow, as applicable.
$\begin{aligned} & 359 \\ & \text { to } \\ & 362 \end{aligned}$	$\begin{array}{\|l} \hline \text { S: PULSE RANGE } \\ \text { !: \# } 359 \text { to } 362 \end{array}$	Pulse output: the pulse output frequency is out of range.	1. Increase the setting for pulse weighting 2. When selecting the pulse width, choose a value that can still be processed by a connected counter (e.g. mechanical counter, PLC etc.). Determine the pulse width: - Variant 1: Enter the minimum duration that a pulse must be present at the connected counter to ensure its registration. - Variant 2: Enter the maximum (pulse) frequency as the half "reciprocal value" that a pulse must be present at the connected counter to ensure its registration. Example: The maximum input frequency of the connected counter is 10 Hz . The pulse width to be entered is: $\frac{1}{2 \cdot 10 \mathrm{~Hz}}=50 \mathrm{~ms}$ 3. Reduce flow.

No．	Error message／Type	Cause	Remedy（spare part \rightarrow 目 87）
No．\＃5xx \rightarrow Application error			
501	$\begin{aligned} & \text { S: SW.-UPDATE ACT. } \\ & \text { !: \# } 501 \end{aligned}$	New amplifier or communication（I／O module） software version is loaded． Currently no other functions are possible．	Wait until the procedure is finished． The device will restart automatically．
502	$\begin{aligned} & \text { S: UP-/DOWNLOAD ACT } \\ & \text { !: \# } 502 \end{aligned}$	Uploading or downloading the device data via operating program． Currently no other functions are possible．	Wait until the procedure is finished．
No．\＃6xx \rightarrow Simulation mode active			
601	$\begin{aligned} & \text { S: POS. ZERO-RETURN } \\ & \text { !:\# } 601 \end{aligned}$	Positive zero return active Caution！ This message has the highest display priority！	Switch off positive zero return
$\begin{array}{\|l\|} \hline 611 \\ \text { to } \\ 614 \end{array}$	S：SIM．CURR．OUT．n ！：\＃ 611 to 614	Simulation current output active	
$\begin{array}{\|l\|l} \hline 621 \\ \text { to } \\ 624 \\ \hline \end{array}$	$\begin{aligned} & \text { S: SIM. FREQ. OUT. n } \\ & \text { !: \# } 621 \text { to } 624 \end{aligned}$	Simulation frequency output active	Switch off simulation
$\begin{array}{\|l\|} \hline 631 \\ \text { to } \\ 634 \\ \hline \end{array}$	S：SIM．PULSE n ！：\＃ 631 to 634	Simulation pulse output active	Switch off simulation
$\begin{array}{\|l\|} \hline 641 \\ \text { to } \\ 644 \end{array}$	S：SIM．STAT．OUT n ！：\＃ 641 to 644	Simulation status output active	Switch off simulation
$\begin{array}{\|l} \hline 671 \\ \text { to } \\ 674 \end{array}$	$\begin{aligned} & \text { S: SIM. STATUS IN n } \\ & \text { !:\# } 671 \text { to } 674 \end{aligned}$	Simulation status input active	Switch off simulation
691	S：SIM．FAILSAFE ！：\＃ 691	Simulation of response to error（outputs）active	Switch off simulation
692	S：SIM．MEASURAND ！：\＃ 692	Simulation of a measured variable active（e．g．mass flow）．	Switch off simulation
698	$\begin{aligned} & \text { S: DEV. TEST ACT. } \\ & \text { !:\# } 698 \end{aligned}$	The measuring device is being checked on site via the test and simulation device．	－

9．3 Process error messages

Note！
Also observe the information on \rightarrow 眉 62 ．

No．	Error message／Type	Cause	Remedy（spare part \rightarrow 目 87）
P＝Process error h＝Fault message（with an effect on the outputs） $!=$ Notice message（without an effect on the outputs）			
$\mathbf{4 0 1}$	EMPTY PIPE ל：\＃401	Measuring tube partially filled or empty	1．Check the process conditions of the plant 2．Fill the measuring tube
$\mathbf{4 6 1}$	ADJ．NOT OK ！：\＃461	EPD calibration not possible because the fluid＇s conductivity is either too low or too high．	The EPD function cannot be used with fluids of this nature．
$\mathbf{4 6 3}$	FULL＝EMPTY 463	The EPD calibration values for empty pipe and full pipe are identical，therefore incorrect．	Repeat calibration，making sure procedure is correct \rightarrow R 74.

9.4 Process errors without messages

Symptoms	Rectification
Remark: You may have to change or correct certain settings in functions in the function matrix in order to rectify the fault.	
Flow values are negative, even though the fluid is flowing forwards through the pipe.	1. Remote version: - Switch off the power supply and check the wiring \rightarrow R 44 - If necessary, reverse the connections at terminals 41 and 42 2. Change the setting in the "INSTALLATION DIRECTION SENSOR" function accordingly
Measured-value reading fluctuates even though flow is steady.	1. Check grounding and potential equalization $\rightarrow 54$ 2. Check the fluid for presence of gas bubbles. 3. In the "SYSTEM DAMPING" function \rightarrow increase the value
Measured-value reading shown on display, even though the fluid is at a standstill and the measuring tube is full.	1. Check grounding and potential equalization \rightarrow R 54 2. Check the fluid for presence of gas bubbles. 3. Activate the "LOW FLOW CUTOFF" function, i.e. enter or increase the value for the switching point.
Measured-value reading on display, even though measuring tube is empty.	1. Perform empty-pipe/full-pipe adjustment and then switch on Empty Pipe detection $\rightarrow 74$ 2. Remote version: Check the terminals of the EPD cable \rightarrow R 44 3. Fill the measuring tube.
The current output signal is always 4 mA , irrespective of the flow signal at any given time.	1. Select the "BUS ADDRESS" function and change the setting to " 0 ". 2. Value for creepage too high. Reduce the value in the "LOW FLOW CUTOFF" function.
The fault cannot be rectified or some other fault not described above has arisen. In these instances, please contact your Endress+Hauser service organization.	The following options are available for tackling problems of this nature: Request the services of an Endress+Hauser service technician If you contact our service organization to have a service technician sent out, please be ready to quote the following information: - Brief description of the fault - Nameplate specifications (\rightarrow 贯 7): order code, serial number Returning devices to Endress+Hauser The necessary procedures (\rightarrow) must be carried out before you return a flowmeter requiring repair or calibration to Endress+Hauser. Always enclose a duly completed "Declaration of Conformity" form with the flowmeter. You will find a master copy of this form at the back of this manual. Replace transmitter electronics Components in the measuring electronics defective \rightarrow order spare parts $\rightarrow 77$

9.5 Response of outputs to errors

Note!
The failsafe mode of totalizers, current, pulse and frequency outputs can be customized by means of various functions in the function matrix. You will find detailed information on these procedures in the "Description of Device Functions" manual.
You can use positive zero return to set the signals of the current, pulse and status outputs to their fallback value, for example when measuring has to be interrupted while a pipe is being cleaned. This function takes priority over all other device functions: simulations, for example, are suppressed.

Failsafe mode of outputs and totalizers		
	Process/system error is current	Positive zero return is activated
Caution! System or process errors defined as "Notice messages" have no effect whatsoever on the inputs and outputs. See the information on \rightarrow R 65		
Current output	MINIMUM VALUE $0-20 \mathrm{~mA} \rightarrow 0 \mathrm{~mA}$ $4-20 \mathrm{~mA} \rightarrow 2 \mathrm{~mA}$ $4-20 \mathrm{~mA}$ HART $\rightarrow 2 \mathrm{~mA}$ $4-20 \mathrm{~mA}$ NAMUR $\rightarrow 3.5 \mathrm{~mA}$ $4-20 \mathrm{~mA}$ HART NAMUR $\rightarrow 3.5 \mathrm{~mA}$ $4-20 \mathrm{~mA}$ US $\rightarrow 3.75 \mathrm{~mA}$ $4-20 \mathrm{~mA}$ HART US $\rightarrow 3,75 \mathrm{~mA}$ $0-20 \mathrm{~mA}(25 \mathrm{~mA}) \rightarrow 0 \mathrm{~mA}$ $4-20 \mathrm{~mA}(25 \mathrm{~mA}) \rightarrow 2 \mathrm{~mA}$ $4-20 \mathrm{~mA}(25 \mathrm{~mA})$ HART $\rightarrow 2 \mathrm{~mA}$ MAXIMUM VALUE $0-20 \mathrm{~mA} \rightarrow 22 \mathrm{~mA}$ $4-20 \mathrm{~mA} \rightarrow 22 \mathrm{~mA}$ $4-20 \mathrm{~mA}$ HART $\rightarrow 22 \mathrm{~mA}$ $4-20 \mathrm{~mA}$ NAMUR $\rightarrow 22.6 \mathrm{~mA}$ $4-20 \mathrm{~mA}$ HART NAMUR $\rightarrow 22.6 \mathrm{~mA}$ $4-20 \mathrm{~mA}$ US $\rightarrow 22.6 \mathrm{~mA}$ $4-20 \mathrm{~mA}$ HART US $\rightarrow 22.6 \mathrm{~mA}$ $0-20 \mathrm{~mA}(25 \mathrm{~mA}) \rightarrow 25 \mathrm{~mA}$ $4-20 \mathrm{~mA}(25 \mathrm{~mA}) \rightarrow 25 \mathrm{~mA}$ $4-20 \mathrm{~mA}(25 \mathrm{~mA})$ HART $\rightarrow 25 \mathrm{~mA}$ HOLD VALUE Last valid value (preceding occurrence of the fault) is output. ACTUAL VALUE Measured value display on the basis of the current flow measurement. The fault is ignored.	Output signal corresponds to "zero flow"
Pulse output	MIN/MAX VALUE \rightarrow FALLBACK VALUE Signal output \rightarrow no pulses HOLD VALUE Last valid value (preceding occurrence of the fault) is output. ACTUAL VALUE Fault is ignored, i.e. normal measured-value output on the basis of ongoing flow measurement.	Output signal corresponds to "zero flow"

Failsafe mode of outputs and totalizers		
	Process/system error is current	Positive zero return is activated
Frequency output	FALLBACK VALUE Signal output $\rightarrow 0 \mathrm{~Hz}$ FAILSAFE LEVEL Output of the frequency specified in the FALİLSAFE VALUE function. HOLD VALUE Measured value display on the basis of the last saved value preceding occurrence of the fault. ACTUAL VALUE Measured value display on the basis of the current flow measurement. The fault is ignored.	Output signal corresponds to "zero flow"
Totalizer	STOP The totalizers are paused until the error is rectified. ACTUAL VALUE The fault is ignored. The totalizer continues to count in accordance with the current flow value. HOLD VALUE The totalizer continues to count the flow in accordance with the last valid flow value (before the error occurred).	Totalizer stops
Status output	In the event of a fault or power supply failure: Status output \rightarrow non-conductive	No effect on status output

9.6 Spare parts

Detailed troubleshooting instructions are provided in the previous sections $\rightarrow 80$
The measuring device, moreover, provides additional support in the form of continuous selfdiagnosis and error messages.
Fault rectification can entail replacing defective components with tested spare parts. The illustration below shows the available scope of spare parts.
Note!
You can order spare parts directly from your Endress+Hauser service organization by providing the serial number printed on the transmitter's nameplate \rightarrow 目 7
Spare parts are shipped as sets comprising the following parts:

- Spare part
- Additional parts, small items (threaded fasteners, etc.)
- Mounting instructions
- Packaging

Fig. 52: Spare parts for Promag 50 transmitter (field and wall-mounted housings)

[^2]
9.6.1 Removing and installing printed circuit boards

Field housing: removing and installing printed circuit boards $\rightarrow 53$

Warning!

- Risk of electric shock!

Exposed components carry dangerous voltages. Make sure that the power supply is switched off before you remove the cover of the electronics compartment.

- Risk of damaging electronic components (ESD protection). Static electricity can damage electronic components or impair their operability. Use a workplace with a grounded working surface purpose-built for electrostatically sensitive devices!
- If you cannot guarantee that the dielectric strength of the device is maintained in the following steps, then an appropriate inspection must be carried out in accordance with the manufacturer's specifications.
- When connecting Ex-certified devices, see the notes and diagrams in the Ex-specific supplement to these Operating Instructions.
Caution!
Use only original Endress+Hauser parts.

1. Switch off power supply.
2. Unscrew cover of the electronics compartment from the transmitter housing.
3. Remove the local display (1) as follows:

- Press in the latches (1.1) at the side and remove the display module.
- Disconnect the ribbon cable (1.2) of the display module from the amplifier board.

4. Remove the screws and remove the cover (2) from the electronics compartment.
5. Remove the boards $(4,6)$: Insert a suitable tool into the hole (3) provided for the purpose and pull the board clear of its holder.
6. Remove amplifier board (5):

- Disconnect the plug of the electrode signal cable (5.1) including S-DAT (5.3) from the board.
- Loosen the plug locking of the coil current cable (5.2) and gently disconnect the plug from the board, i.e. without moving it to and fro.
- Insert a thin pin into the hole (3) provided for the purpose and pull the board clear of its holder.

7. Installation is the reverse of the removal procedure.

Fig. 53: Field housing: removing and installing printed circuit boards
1 Local display
1.1 Latch
1.2 Ribbon cable (display module)

2 Screws of electronics compartment cover
3 Aperture for installing/removing boards
4 Power supply board
5 Amplifier board
5.1 Electrode signal cable (sensor)
5.2 Coil current cable (sensor)
5.3 Histo-ROM / S-DAT (sensor data memory)

6 I/O board

Wall-mount housing: removing and installing printed circuit boards \rightarrow 苜 91

Warning!

- Risk of electric shock!

Exposed components carry dangerous voltages. Make sure that the power supply is switched off before you remove the cover of the electronics compartment.

- Risk of damaging electronic components (ESD protection). Static electricity can damage electronic components or impair their operability. Use a workplace with a grounded working surface purpose-built for electrostatically sensitive devices!
- If you cannot guarantee that the dielectric strength of the device is maintained in the following steps, then an appropriate inspection must be carried out in accordance with the manufacturer's specifications.
- When connecting Ex-certified devices, see the notes and diagrams in the Ex-specific supplement to these Operating Instructions.
Caution!
Use only original Endress+Hauser parts.

1. Switch off power supply.
2. Remove the screws and open the hinged cover (1) of the housing. Remove screws of the electronics module (2).
3. Then push up electronics module and pull it as far as possible out of the wall-mounted housing.
4. Disconnect the following cable plugs from amplifier board (7):

- Electrode signal cable plug (7.1) including S-DAT (7.3).
- Plug of coil current cable (7.2). To do so, loosen the plug locking of the coil current cable and gently disconnect the plug from the board, i.e. without moving it to and fro.
- Ribbon cable plug (3) of the display module.

5. Remove the screws and remove the cover (4) from the electronics compartment.
6. Remove the boards $(6,7,8)$: Insert a suitable tool into the hole (5) provided for the purpose and pull the board clear of its holder.
7. Installation is the reverse of the removal procedure.

Fig. 54: Wall-mount housing: removing and installing printed circuit boards

1	Housing cover
2	Electronics module
3	Ribbon cable (display module)
4	Cover of electronics compartment (3 screws)
5	Aperture for installing/removing boards
6	Power supply board
7	Amplifier board
7.1	Electrode signal cable (sensor)
7.2	Coil current cable (sensor)
7.3	Histo-ROM / S-DAT (sensor data memory)
8	I/O board

9.6.2 Replacing the device fuse

\triangle

Warning!
Risk of electric shock! Exposed components carry dangerous voltages. Make sure that the power supply is switched off before you remove the cover of the electronics compartment.
The main fuse is on the power supply board (\rightarrow 目 92) .
The procedure for replacing the fuse is as follows:

1. Switch off power supply.
2. Remove the power supply board: field housing \rightarrow 88, wall-mount housing $\rightarrow 90$
3. Remove cap (1) and replace the device fuse (2).

Use only fuses of the following type:

- Power supply 20 to 55 V AC / 16 to 62 V DC $\rightarrow 2.0$ A slow-blow / 250 V ; $5.2 \times 20 \mathrm{~mm}$
- Power supply 85 to $260 \mathrm{~V} \mathrm{AC} \rightarrow 0.8$ A slow-blow / $250 \mathrm{~V} ; 5.2 \times 20 \mathrm{~mm}$
- Ex-rated devices \rightarrow see the Ex documentation.

4. Installation is the reverse of the removal procedure.

Caution!
Use only original Endress+Hauser parts.

Fig. 55: Replacing the device fuse on the power supply board
1 Protective cap
2 Device fuse

9.6.3 Replacing the exchangeable electrode

The Promag W sensor (DN 350 to 2000; 14" to 78") is available with exchangeable measuring electrodes as an option. This design permits the measuring electrodes to be replaced or cleaned under process conditions.

Fig. 50: Apparatus for replacing exchangeable measuring electrodes
View A = DN 1200 to 2000 (48" to 78")
View B $=$ DN 350 to 1050 (14" to 42")
1 Allen screw
2 Handle
3 Electrode cable
4 Knurled nut (locknut)
5 Measuring electrode
6 Stop cock (ball valve)
7 Retaining cylinder
8 Locking pin (for handle)
9 Ball-valve housing
10 Seal (retaining cylinder)
11 Coil spring

	Removing the electrode	Installing the electrode
1	Loosen Allen screw (1) and remove the cover.	1 Insert new electrode (5) into retaining cylinder (7) from below. Make sure that the seals at the tip of the electrode are clean.
2	Remove electrode cable (3) secured to handle (2).	2 Mount handle (2) on the electrode and insert locking pin (8) to secure it in position. Caution! Make sure that coil spring (11) is inserted. This is essential to ensure correct electrical contact and correct measuring signals.
3	Loosen knurled nut (4) by hand. This knurled nut acts as a locknut.	3 Pull the electrode back until the tip of the electrode no longer protrudes from retaining cylinder (7).
4	Remove electrode (5) by turning handle (2). The electrode can now be pulled out of retaining cylinder (7) as far as a defined stop. \qquad Warning! Risk of injury. Under process conditions (pressure in the piping system) the electrode can recoil suddenly against its stop. Apply counter-pressure while releasing the electrode.	4 Screw the retaining cylinder (7) onto ball-valve housing (9) and tighten it by hand. Seal (10) on the cylinder must be correctly seated and clean. Note! Make sure that the rubber hoses on retaining cylinder (7) and stop cock (6) are of the same color (red or blue).
5	Close stop cock (6) after pulling out the electrode as far as it will go. \qquad Warning! Do not subsequently open the stop cock, in order to prevent fluid escaping.	5 Open stop cock (6) and turn handle (2) to screw the electrode all the way into the retaining cylinder.
6	Remove the electrode complete with retaining cylinder (7).	6 Screw knurled nut (4) onto the retaining cylinder. This firmly locates the electrode in position.
7	Remove handle (2) from electrode (5) by pressing out locking pin (8). Take care not to lose coil spring (11).	7 Use the Allen screw to secure electrode cable (3) to handle (2). Caution! Make sure that the machine screw securing the electrode cable is firmly tightened. This is essential to ensure correct electrical contact and correct measuring signals.
8	Remove the old electrode and insert the new electrode. Replacement electrodes can be ordered separately from Endress+Hauser.	8 Reinstall the cover and tighten Allen screw (a).

9.7 Return

Caution!
Do not return a measuring device if you are not absolutely certain that all traces of hazardous substances have been removed, e.g. substances which have penetrated crevices or diffused through plastic.
Costs incurred for waste disposal and injury (burns, etc.) due to inadequate cleaning will be charged to the owner-operator.

The following steps must be taken before returning a flow measuring device to Endress+Hauser, e.g. for repair or calibration:

- Always enclose a duly completed "Declaration of contamination" form. Only then can Endress+Hauser transport, examine and repair a returned device.
- Enclose special handling instructions if necessary, for example a safety data sheet as per EC REACH Regulation No. 1907/2006.
- Remove all residues. Pay special attention to the grooves for seals and crevices which could contain residues. This is particularly important if the substance is hazardous to health, e.g. flammable, toxic, caustic, carcinogenic, etc.
Note!
You will find a preprinted "Declaration of contamination" form at the back of these Operating Instructions.

9.8 Disposal

Observe the regulations applicable in your country!

9.9 Software history

Date	Software version	Changes to software	Operating Instructions
11.2009	Amplifier: V 2.03.XX	Introduction of Calf history	$\begin{aligned} & 71106181 / 12.09 \\ & 71105332 / 11.09 \end{aligned}$
06.2009	Amplifier: V 2.02.XX	Introduction of Promag L	71095684 / 06.09
03.2009	Amplifier: V 2.02.XX	Introduction of Promag D Introduction of new nominal diameter	71088677 / 03.09
11.2004	Amplifier: $1.06 .01$ Communication module: 1.04.00	Software update relevant only for production	50097089 / 10.03
10.2003	Amplifier: $1.06 .00$ Communication module: $1.03 .00$	Software expansion: - Language groups - Flow direction pulse output selectable New functionalities: - Second Totalizer - Adjustable backlight (display) - Operation hours counter - Simulation function for pulse output - Counter for access code - Reset function (fault history) - Up-/download with FieldTool	50097089 / 10.03

Date	Software version	Changes to software	Operating Instructions
08.2003	Communication module: $1.02 .01$	Software expansion: - New / revised functionalities New functionalities: - Current span NAMUR NE 43 - Failsafe mode function - Troubleshooting function - System and process error messages - Response of status output	50097089 / 08.03
08.2002	Amplifier: $1.04 .00$	Software expansion: - New / revised functionalities New functionalities: - Current span NAMUR NE 43 - EPD (new mode) - Failsafe mode function - Acknowledge fault function - Troubleshooting function - System and process error messages - Response of status output	50097089 / 08.02
03.2002	Amplifier: $1.03 .00$	Software expansion: - Suitability for custody transfer measurement Promag 50/51	none
06.2001	Amplifier: 1.02.00 Communication module: $1.02 .00$	Software expansion: - New functionalities: New functionalities: - General device functions - "OED" software function - "Pulse width" software function	50097089 / 06.01
09.2000	Amplifier: 1.01.01 Communication module: $1.01 .00$	Software expansion: - Functional adaptations	none
08.2000	Amplifier: $1.01 .00$	Software expansion: - Functional adaptations	none
04.2000	Amplifier: 1.00.00 Communication module: $1.00 .00$	Original software Compatible with: - FieldTool - Commuwin II (version 2.05 .03 and higher) - HART Communicator DXR 275 (from OS 4.6) with Rev. 1, DD1	50097089 / 04.00

Note!
Uploads or downloads between the individual software versions are only possible with a special service software.

10 Technical data

10.1 Technical data at a glance

10.1.1 Application

\rightarrow - 5

10.1.2 Function and system design

Measuring principle	Electromagnetic flow measurement on the basis of Faraday's Law.
Measuring system	\rightarrow 且 7
	10.1.3 Input
Measured variable	Flow velocity (proportional to induced voltage)
Measuring range	Typically $\mathrm{v}=0.01$ to $10 \mathrm{~m} / \mathrm{s}(0.033$ to $33 \mathrm{ft} / \mathrm{s})$ with the specified accuracy
Operable flow range	Over 1000: 1
Input signal	Status input (auxiliary input) - Galvanically isolated - $\mathrm{U}=3$ to 30 V DC - $\mathrm{Ri}=5 \mathrm{k} \Omega$ - Can be configured for: totalizer reset, positive zero return, error message reset.

10.1.4 Output

Output signal

Current output

- Galvanically isolated
- Active/passive can be selected:
- Active: $0 / 4$ to $20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}<700 \Omega$ (HART: $\mathrm{R}_{\mathrm{L}} \geq 250 \Omega$)
- Passive: 4 to 20 mA , supply voltage $\mathrm{V}_{\mathrm{S}} 18$ to 30 V DC, $\mathrm{R}_{\mathrm{i}} \geq 150 \Omega$)
- Time constant can be selected (0.01 to 100 s)
- Full scale value adjustable
- Temperature coefficient: typ. 0.005% o.f.s. $/{ }^{\circ} \mathrm{C}$, resolution: $0.5 \mu \mathrm{~A}$
o.f.s. $=$ of full scale value

Pulse/frequency output

- Galvanically isolated
- Passive: 30 V DC / 250 mA
- Open collector
- Can be configured as:
- Pulse output

Pulse value and pulse polarity can be selected, max. pulse width adjustable (0.5 to 2000 ms)

- Frequency output

Full scale frequency 2 to $1000 \mathrm{~Hz}\left(\mathrm{f}_{\max }=1.25 \mathrm{~Hz}\right.$), on/off ratio $1: 1$, pulse width max. 10 s .

Signal on alarm	Current output
	Failsafe mode can be selected (e.g. in accordance with NAMUR Recommendation NE 43)
	Pulse/frequency output
	Failsafe mode can be selected
	Status output
	"Not conductive" in the event of fault or power supply failure
Load	See "Output signal"
Switching output	Status output
	- Galvanically isolated - Max. 30 V DC/250 mA - Open collector - Can be configured for: error messages, empty pipe detection (EPD), flow direction, limit values
Low flow cut off	Low flow cut off, switch-on point can be selected as required
Galvanic isolation	All circuits for inputs, outputs, and power supply are galvanically isolated from each other.

10．1．5 Power supply

Electrical connections	\rightarrow 目 44
Supply voltage （power supply）	－ 85 to $260 \mathrm{~V} \mathrm{AC}, 45$ to 65 Hz － 20 to $55 \mathrm{~V} \mathrm{AC}, 45$ to 65 Hz － 16 to 62 V DC
Cable entry	Power supply and signal cables（inputs／outputs）： －Cable entry M20 $\times 1.5$（8 to $12 \mathrm{~mm} / 0.31$ to 0.47 inch） －Sensor cable entry for armored cables M20 $\times 1.5$（ 9.5 to $16 \mathrm{~mm} / 0.37$ to 0.63 inch） －Threads for cable entries $1 / 22^{\prime \prime}$ NPT，G $1 / 22^{\prime \prime}$

Connecting cable for remote version：
－Cable entry M20 $\times 1.5$（ 8 to $12 \mathrm{~mm} / 0.31$ to 0.47 inch）
－Sensor cable entry for armored cables M20 $\times 1.5$（ 9.5 to $16 \mathrm{~mm} / 0.37$ to 0.63 inch）
－Threads for cable entries $1 / 22^{\prime \prime}$ NPT，G $1 / 22^{\prime \prime}$

Cable specifications	\rightarrow 策 50
Power consumption	Power consumption
	－AC：＜15 VA（incl．sensor） －DC：$<15 \mathrm{~W}$（incl．sensor）
	Switch－on current
	－Max $3 \mathrm{~A}(<5 \mathrm{~ms})$ for 260 V AC －Max．13．5 A（ $<5 \mathrm{~ms}$ ）for 24 V DC
Power supply failure	－Lasting min． 1 cycle frequency： －EEPROM saves measuring system data －S－DAT：exchangeable data storage chip which stores the data of the sensor（nominal diameter， serial number，calibration factor，zero point etc．）
Potential equalization	\rightarrow 目 54

10.1.6 Performance characteristics

Reference operating	To DIN EN 29104 and $V D I / V D E ~ 2641:$
conditions	- Fluid temperature: $+28{ }^{\circ} \mathrm{C} \pm 2 \mathrm{~K}$
	- Ambient temperature: $+22^{\circ} \mathrm{C} \pm 2 \mathrm{~K}$
	- Warm-up period: 30 minutes
	Installation:
	- Inlet run $>10 \times \mathrm{DN}$
	- Outlet run $>5 \times \mathrm{DN}$
	- Sensor and transmitter grounded.
	- The sensor is centered in the pipe.
- Current output: plus typically $\pm 5 \mu \mathrm{~A}$	
	- Pulse output: $\pm 0.5 \% ~ 0 . r . \pm 1 \mathrm{~mm} / \mathrm{s}$
	Option: $\pm 0.2 \%$ o.r. $\pm 2 \mathrm{~mm} / \mathrm{s}(0 . \mathrm{r} .=$ of reading $)$
	(o.r. $=$ of reading $)$

Fluctuations in the supply voltage do not have any effect within the specified range.

Fig. 57: Max. measured error in \% of reading

Repeatability

Max. $\pm 0.1 \%$ o.r. $\pm 0.5 \mathrm{~mm} / \mathrm{s}$ (o.r. $=$ of reading)

10.1.7 Operating conditions: Installation

Installation instructions	Any orientation (vertical, horizontal), restrictions and installation instructions \rightarrow e 13
Inlet and outlet run	If possible, install the sensor upstream from fittings such as valves, T-pieces, elbows, etc. The
	following inlet and outlet runs must be observed in order to meet accuracy specifications $(\rightarrow$ 16,
	\rightarrow Inlet run: $\geq 5 \times \mathrm{DN}$
	- Outlet run $: \geq 2 \times \mathrm{DN}$

Adapters $\quad \rightarrow$ 目 17

Length of connecting cable \rightarrow 目 20

10.1.8 Operating conditions: Environment

Ambient temperature range	- Transmitter: - Standard: -20 to $+60^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$ - Optional: -40 to $+60^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$ Note! At ambient temperatures below $-20\left(-4^{\circ} \mathrm{F}\right)$ the readability of the display may be impaired. - Sensor: - Flange material carbon steel: -10 to $+60^{\circ} \mathrm{C}\left(+14\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$ - Flange material stainless steel: -40 to $+60^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$ Caution! - The permitted temperature range of the measuring tube lining may not be undershot or overshot $(\rightarrow$ "Operating conditions: Process" \rightarrow "Medium temperature range"). - Install the device in a shady location. Avoid direct sunlight, particularly in warm climatic regions. - The transmitter must be mounted separate from the sensor if both the ambient and fluid temperatures are high.
Storage temperature	The storage temperature corresponds to the operating temperature range of the measuring transmitter and the appropriate measuring sensors. Caution! - The measuring device must be protected against direct sunlight during storage in order to avoid unacceptably high surface temperatures. - A storage location must be selected where moisture does not collect in the measuring device. This will help prevent fungus and bacteria infestation which can damage the liner.

Degree of protection	Standard: IP 67 (NEMA 4X) for transmitter and sensor
	Optional: IP 68 (NEMA 6P) for remote version of Promag L, W and P sensor.
	Promag L only with stainless steel flanges.

Shock and vibration resistance Acceleration up to 2 g following IEC 60068-2-6
(high-temperature version: no data available)

CIP cleaning

The maximum fluid temperature permitted for the device may not be exceeded.
CIP cleaning is possible:
Promag P, Promag H
CIP cleaning is not possible:
Promag D, Promag L, Promag W
SIP cleaning
Caution!
The maximum fluid temperature permitted for the device may not be exceeded.
SIP cleaning is possible:
Promag H
SIP cleaning is not possible:
Promag D, Promag L, Promag W, Promag P
$\begin{array}{ll}\text { Electromagnetic compatibility } & \text { - As per IEC/EN } 61326 \text { and NAMUR Recommendation NE } 21 \\ \text { (EMC) } & \text { - Emission: to limit value for industry EN } 55011\end{array}$

10.1.9 Operating conditions: Process

Medium temperature range
The permissible temperature depends on the lining of the measuring tube

Promag D

0 to $+60^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$ for polyamide

Promag L

- -20 to $+50^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ for polyurethane (DN 50 to 300)
- -20 to $+90^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+194^{\circ} \mathrm{F}\right)$ for PTFE (DN 50 to 300)

Promag W

- 0 to $+80^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$ for hard rubber (DN 65 to 2000)
- -20 to $+50^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ for polyurethane (DN 25 to 1200)

Promag P

Standard

- -40 to $+130^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+266^{\circ} \mathrm{F}\right)$ for PTFE (DN 15 to $600 / 1 / 2^{\prime \prime}$ to 24 "), Restrictions \rightarrow see the following diagrams
- -20 to $+130^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+266^{\circ} \mathrm{F}\right)$ for PFA/HE (DN 25 to $200 / 1$ " to 8 "), Restrictions \rightarrow see the following diagrams
- -20 to $+150{ }^{\circ} \mathrm{C}\left(-4\right.$ to $+302^{\circ} \mathrm{F}$) for PFA (DN 25 to $200 / 1^{\prime \prime}$ to 8 "), Restrictions \rightarrow see the following diagrams

Optional
High-temperature version (HT): -20 to $+180^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+356^{\circ} \mathrm{F}\right)$ for PFA (DN 25 to $200 / 1^{\prime \prime}$ to $\left.8^{\prime \prime}\right)$

Abb. 58: Compact version Promag P (with PFA- or PTFE-lining)
$T_{A}=$ ambient temperature; $T_{F}=$ fluid temperature; $H T=$ high-temperature version with insulation
(1) $=$ light gray area \rightarrow temperature range from -10 to $-40^{\circ} \mathrm{C}\left(-14\right.$ to $\left.-40^{\circ} \mathrm{F}\right)$ is valid for stainless steel version only
(2) $=$ diagonal hatched area \rightarrow foam lining (HE) and degree of protection IP $68=$ fluid temperature $\max .130^{\circ} \mathrm{C} / 260^{\circ} \mathrm{F}$

Abb. 59: Remote version Promag P (with PFA- or PTFE-lining)
$T_{A}=$ ambient temperature; $T_{F}=$ fluid temperature; $H T=$ high-temperature version with insulation
(1) $=$ light gray area \rightarrow temperature range from -10 to $-40^{\circ} \mathrm{C}\left(-14\right.$ to $\left.-40^{\circ} \mathrm{F}\right)$ is valid for stainless steel version only (2) $=$ diagonal hatched area \rightarrow foam lining (HE) and degree of protection IP68 $=$ fluid temperature $\max .130^{\circ} \mathrm{C} / 260^{\circ} \mathrm{F}$

Promag H

Sensor:

- DN 2 to 25: -20 to $+150^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+302^{\circ} \mathrm{F}\right)$
- DN 40 to 100: -20 to $+150^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+302^{\circ} \mathrm{F}\right)$

Seals:

- EPDM: -20 to $+150^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+302^{\circ} \mathrm{F}\right)$
- Silicone: -20 to $+150^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+302^{\circ} \mathrm{F}\right)$
- Viton: -20 to $+150^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+302^{\circ} \mathrm{F}\right)$
- Kalrez: -20 to $+150^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+302^{\circ} \mathrm{F}\right)$

Conductivity
The minimum conductivity is $\geq 5 \mu \mathrm{~S} / \mathrm{cm}(\geq 20 \mu \mathrm{~S} / \mathrm{cm}$ for demineralized water $)$
Note!
Note that in the case of the remote version, the requisite minimum conductivity is also influenced by the length of the connecting cable $\rightarrow 20$

Medium pressure range (nominal pressure)	Promag D
	- EN 1092-1 (DIN 2501)
	- PN 16
	- ANSI B 16.5
	- Class 150
	- JIS B2220
	-10 K

Promag L

- EN 1092-1 (DIN 2501)
- PN 10 (DN 50 to 300)
- PN 16 (DN 50 to 150)
- EN 1092-1, lap joint flange, stampel plate
- PN 10 (DN 50 to 300)
- ANSI B 16.5
- Class 150 (2" to 12")

Promag W

- EN 1092-1 (DIN 2501)
- PN 6 (DN 350 to 2000)
- PN 10 (DN 200 to 2000)
- PN 16 (DN 65 to 2000)
- PN 25 (DN 200 to 1000)
- PN 40 (DN 25 to 150)
- ANSI B 16.5
- Class 150 (1" to 24")
- Class 300 (1" to 6")
- AWWA
- Class D (28" to 78")
- JIS B2220
- 10 K (DN 50 to 300)
- 20 K (DN 25 to 300)
- AS 2129
- Table E (DN 80, 100, 150 to 1200)
- AS 4087
- PN 16 (DN 80, 100, 150 to 1200)

Promag P

- EN 1092-1 (DIN 2501)
- PN 10 (DN 200 to 600)
- PN 16 (DN 65 to 600)
- PN 25 (DN 200 to 600)
- PN 40 (DN 15 to 150)
- ANSI B 16.5
- Class 150 ($1 / 22^{\prime \prime}$ to 24")
- Class 300 (½" to 6")
- JIS B2220
- 10 K (DN 50 to 300)
- 20 K (DN 15 to 300)
- AS 2129
- Table E (DN 25, 50)
- AS 4087
- PN 16 (DN 50)

Promag H
The permissible nominal pressure depends on the process connection and the seal:

- 40 bar \rightarrow flange, weld nipple (with O-ring seal)
- 16 bar \rightarrow all other process connections

Pressure tightness

Promag D
Measuring tube: 0 mbar abs (0 psi abs) with a fluid temperature of $\leq 60^{\circ} \mathrm{C}\left(\leq 140^{\circ} \mathrm{F}\right)$

Promag L (Measuring tube lining: Polyurethane)

Promag L Nominal diameter		Resistance of measuring tube lining to partial vacuum Limit values for abs. pressure [mbar] ([psi]) at various fluid temperatures		
[\mathrm{mm}]{}	[inch]	$25^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$
	$27^{\circ} \mathrm{F}$	$122^{\circ} \mathrm{F}$	$176^{\circ} \mathrm{F}$	
	2 to $12^{\prime \prime}$	0	0	-

Promag L
Measuring tube lining: PTFE

Promag L Nominal diameter		Resistance of measuring tube lining to partial vacuum Limit values for abs. pressure [mbar] ([psi]) at various fluid temperatures			
[mm]	[inch]	$25^{\circ} \mathrm{C}$		$90^{\circ} \mathrm{C}$	
		$77^{\circ} \mathrm{F}$		$194{ }^{\circ} \mathrm{F}$	
		[mbar]	[psi]	[mbar]	[psi]
50	$2{ }^{\prime \prime}$	0	0	0	0
65	-	0	0	40	0.58
80	$3 "$	0	0	40	0.58
100	4"	0	0	135	1.96
125	-	135	1.96	240	3.48
150	$6{ }^{\prime \prime}$	135	1.96	240	3.48
200	8"	200	2.90	290	4.21
250	10"	330	4.79	400	5.80
300	12"	400	5.80	500	7.25

Promag W

Promag W Nominal diameter		Measuring tube lining	Resistance of measuring tube lining to partial vacuum Limit values for abs. pressure [mbar] ([psi]) at various fluid temperatures						
			$25^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$100{ }^{\circ} \mathrm{C}$	$130{ }^{\circ} \mathrm{C}$	$150{ }^{\circ} \mathrm{C}$	$180{ }^{\circ} \mathrm{C}$
[mm]	[inch]		$77^{\circ} \mathrm{F}$	$122{ }^{\circ} \mathrm{F}$	$176^{\circ} \mathrm{F}$	$212{ }^{\circ} \mathrm{F}$	$266{ }^{\circ} \mathrm{F}$	$302{ }^{\circ} \mathrm{F}$	$356{ }^{\circ} \mathrm{F}$
25 to 1200	1 to 48"	Polyurethane	0	0	-	-	-	-	-
65 to 2000	3 to 78"	Hard rubber	0	0	0	-	-	-	-

Promag P
Measuring tube lining: PFA

Promag P Nominal diameter		Resistance of measuring tube lining to partial vacuum Limit values for abs. pressure [mbar] ([psi]) at various fluid temperatures					
		$25^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$100{ }^{\circ} \mathrm{C}$	$130{ }^{\circ} \mathrm{C}$	$150{ }^{\circ} \mathrm{C}$	$180{ }^{\circ} \mathrm{C}$
[mm]	[inch]	$77{ }^{\circ} \mathrm{F}$	$176{ }^{\circ} \mathrm{F}$	$212{ }^{\circ} \mathrm{F}$	$266{ }^{\circ} \mathrm{F}$	$302{ }^{\circ} \mathrm{F}$	$356{ }^{\circ} \mathrm{F}$
25	$1{ }^{\prime \prime}$	0	0	0	0	0	0
32	-	0	0	0	0	0	0
40	$11 / 2 "$	0	0	0	0	0	0
50	$2{ }^{\prime \prime}$	0	0	0	0	0	0
65	-	0	*	0	0	0	0
80	$3 "$	0	*	0	0	0	0
100	$4 "$	0	*	0	0	0	0

Promag P Nominal diameter		Resistance of measuring tube lining to partial vacuum Limit values for abs. pressure [mbar] ([psi]) at various fluid temperatures					
		$25^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$100{ }^{\circ} \mathrm{C}$	$130{ }^{\circ} \mathrm{C}$	$150{ }^{\circ} \mathrm{C}$	$180{ }^{\circ} \mathrm{C}$
[mm]	[inch]	$77^{\circ} \mathrm{F}$	$176{ }^{\circ} \mathrm{F}$	$212{ }^{\circ} \mathrm{F}$	$266{ }^{\circ} \mathrm{F}$	$302{ }^{\circ} \mathrm{F}$	$356{ }^{\circ} \mathrm{F}$
125	-	0	*	0	0	0	0
150	$6 "$	0	*	0	0	0	0
200	8"	0	*	0	0	0	0

Promag P
Measuring tube lining: PTFE

Promag P Nominal diameter		Resistance of measuring tube lining to partial vacuum Limit values for abs. pressure [mbar] ([psi]) at various fluid temperatures									
[mm]	[inch]	$\begin{gathered} 25^{\circ} \mathrm{C} \\ 77^{\circ} \mathrm{F} \end{gathered}$		$\begin{gathered} 80^{\circ} \mathrm{C} \\ \hline 176^{\circ} \mathrm{F} \end{gathered}$	$100^{\circ} \mathrm{C}$		$130{ }^{\circ} \mathrm{C}$		$150{ }^{\circ} \mathrm{C}$	$180{ }^{\circ} \mathrm{C}$	
				$212{ }^{\circ} \mathrm{F}$	$266{ }^{\circ} \mathrm{F}$		$302{ }^{\circ} \mathrm{F}$	$356{ }^{\circ} \mathrm{F}$			
		[mbar]	[psi]		[mbar]	[psi]	[mbar]	[psi]			
15	$1 / 2{ }^{\prime \prime}$	0	0		0	0	0	100	1.45	-	-
25	$1 "$	0	0	0	0	0	100	1.45	-	-	
32	-	0	0	0	0	0	100	1.45	-	-	
40	$1^{11 / 2 "}$	0	0	0	0	0	100	1.45	-	-	
50	2 "	0	0	0	0	0	100	1.45	-	-	
65	-	0	0	*	40	0.58	130	1.89	-	-	
80	3"	0	0	*	40	0.58	130	1.89	-	-	
100	$4 "$	0	0	*	135	1.96	170	2.47	-	-	
125	-	135	1.96	*	240	3.48	385	5.58	-	-	
150	$6 "$	135	1.96	*	240	3.48	385	5.58	-	-	
200	8"	200	2.90	*	290	4.21	410	5.95	-	-	
250	10"	330	4.79	*	400	5.80	530	7.69	-	-	
300	12 "	400	5.80	*	500	7.25	630	9.14	-	-	
350	14"	470	6.82	*	600	8.70	730	10.59	-	-	
400	$16 "$	540	7.83	*	670	9.72	800	11.60	-	-	
450	$18 "$				Partial vac	m is im	rmissible!				
500	$20 "$										
600	$24 "$										
* No value can be quoted.											

Promag H (Measuring tube lining: PFA)

Promag H Nominal diameter		Resistance of measuring tube lining to partial vacuum Limit values for abs. pressure [mbar] ([psi]) at various fluid temperatures					
		$25^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$100{ }^{\circ} \mathrm{C}$	$130{ }^{\circ} \mathrm{C}$	$150{ }^{\circ} \mathrm{C}$	$180{ }^{\circ} \mathrm{C}$
[mm]	[inch]	$77^{\circ} \mathrm{F}$	$176{ }^{\circ} \mathrm{F}$	$212{ }^{\circ} \mathrm{F}$	$266{ }^{\circ} \mathrm{F}$	$302{ }^{\circ} \mathrm{F}$	$356{ }^{\circ} \mathrm{F}$
2 to 100	1/12 to 4"	0	0	0	0	0	0

Limiting flow \rightarrow 直 18

Pressure loss

- No pressure loss if the sensor is installed in a pipe of the same nominal diameter (Promag H: only DN 8 and larger).
- Pressure losses for configurations incorporating adapters according to DIN EN 545 (see "Adapters" \rightarrow 17)

10.1.10 Mechanical construction

Design, dimensions
The dimensions and installation lengths of the sensor and transmitter can be found in the "Technical Information" for the device in question. This document can be downloaded as a PDF file from www.endress.com. A list of the "Technical Information" documents available is provided in the "Documentation" section on \rightarrow R 116 .

Promag D

Weight data of Promag D in kg				
Nominal diameter		Compact version	Remote version (without cable)	
[mm]	[inch]		Sensor	Transmitter
25	$1{ }^{\prime \prime}$	4.5	2.5	6.0
40	$11 / 2{ }^{\prime \prime}$	5.1	3.1	6.0
50	2 "	5.9	3.9	6.0
65	$21 / 2{ }^{\prime \prime}$	6.7	4.7	6.0
80	$3 "$	7.7	5.7	6.0
100	$4 "$	10.4	8.4	6.0
Transmitter Promag (compact version): 3.4 kg (Weight data valid without packaging material)				

Promag L (lap joint flanges)

Weight data of Promag L in kg														
Nominal diameter$[\mathrm{mm}] \quad[\mathrm{inch}]$		Compact version				Remote version (without cable)								
						Transmitter								
		EN (DIN)	ANSI		EN (DIN)		ANSI							
50	$2{ }^{\prime \prime}$					$\frac{0}{z}$	10.6	$\begin{aligned} & \text { in } \\ & \text { ش } \\ & \text { む } \end{aligned}$	10.6	$\frac{0}{z}$	8.6		8.6	6.0
65	$21 / 2 "$	12.0	-	10.0	-		6.0							
80	$3 "$	14.0	14.0	12.0	12.0		6.0							
100	$4 "$	16.0	16.0	14.0	14.0		6.0							
125	5"	21.5	-	19.5	-		6.0							
150	$6 "$	25.5	25.5	23.5	23.5		6.0							
200	8"	$\frac{0}{z}$	45	45	$\frac{0}{z}$	43	43		6.0					
250	10"		65	65		63	73		6.0					
300	12"		70	-		68	-		6.0					
Transmitter Promag (compact version): 3.4 kg (Weight data valid for standard pressure ratings and without packaging material)														

Promag L (lap joint flanges, stamped plate)

Weight data of Promag L in kg								
Nominal diameter [mm] [inch]		Compact version EN (DIN)		Remote version (without cable)				
		Sensor EN (DIN)	Transmitter					
50	2 "			$\frac{0}{z}$	7.2	$\frac{0}{Z}$	5.2	6.0
65	$21 / 2{ }^{\prime \prime}$	8.0	6.0		6.0			
80	$3{ }^{\prime \prime}$	9.0	7.0		6.0			
100	4"	11.5	9.5		6.0			
125	5"	15.0	13.0		6.0			
150	$6 "$	19.0	17.0		6.0			
200	8"	37.5	35.5		6.0			
250	10"	56.0	54.0		6.0			
300	12"	57.0	55.0		6.0			
Transmitter Promag (compact version): 3.4 kg (Weight data valid for standard pressure ratings and								

Promag W

Weight data of Promag W in kg														
Nominal diameter		Compact version						Remote version（without cable）						
														Trans－
［mm］	［inch］		$\begin{aligned} & \text { DIN) / } \\ & S^{*} \end{aligned}$		IS		$\begin{aligned} & \text { NSI/ } \\ & \text { NWA } \end{aligned}$		$\begin{aligned} & \text { DIN) / } \\ & S^{*} \end{aligned}$		IS		$\begin{aligned} & \text { NSI/ } \\ & \text { NWA } \end{aligned}$	mitter
25	$1{ }^{\prime \prime}$		7.3	$\stackrel{\text { 兰 }}{ }$	7.3	$\begin{aligned} & 0 \\ & \frac{0}{n} \\ & \frac{\tilde{む}}{3} \end{aligned}$	7.3	$\begin{aligned} & \text { of } \\ & z \\ & \text { 2 } \end{aligned}$	5.3	$\stackrel{\text { V }}{\text { O }}$	5.3	$\begin{aligned} & \frac{i n}{w} \\ & \frac{\pi}{0} \\ & \frac{\pi}{0} \end{aligned}$	5.3	6.0
32	$11 / 4 "$		8.0		7.3		－		6.0		5.3		－	6.0
40	$11 / 2{ }^{\prime \prime}$		9.4		8.3		9.4		7.4		6.3		7.4	6.0
50	$2{ }^{\prime \prime}$		10.6		9.3		10.6		8.6		7.3		8.6	6.0
65	$21 / 2{ }^{\prime \prime}$	$\begin{aligned} & 0 \\ & \frac{z}{z} \end{aligned}$	12.0		11.1		－	$\begin{aligned} & 0 \\ & z \\ & z \end{aligned}$	10.0		9.1		－	6.0
80	$3{ }^{\prime \prime}$		14.0		12.5		14.0		12.0		10.5		12.0	6.0
100	$4 "$		16.0		14.7		16.0		14.0		12.7		14.0	6.0
125	$5{ }^{\prime \prime}$		21.5		21.0		－		19.5		19.0		－	6.0
150	$6{ }^{\prime \prime}$		25.5		24.5		25.5		23.5		22.5		23.5	6.0
200	$8{ }^{\prime \prime}$	$\begin{aligned} & \circ \\ & \frac{2}{z} \end{aligned}$	45		41.9		45	$\stackrel{\bigcirc}{\square}$	43		39.9		43	6.0
250	10＂		65		69.4		65		63		67.4		73	6.0
300	12＂		70		72.3		110		68		70.3		108	6.0
350	14＂		115				175		113				173	6.0
400	16＂		135				205		133				203	6.0
450	18＂		175				255		173				253	6.0
500	$20 "$		175				285		173				283	6.0
600	$24{ }^{\prime \prime}$		235				405		233				403	6.0
700	$28{ }^{\prime \prime}$		355			$\begin{aligned} & \text { ص } \\ & \ddot{\varkappa} \\ & \text { むi } \end{aligned}$	400		353			$\begin{aligned} & \text { ® } \\ & \tilde{\pi} \\ & \underset{\sim}{u} \end{aligned}$	398	6.0
－	30＂		－				460		－				458	6.0
800	32 ＂		435				550		433				548	6.0
900	36＂		575				800		573				798	6.0
1000	40＂		700				900		698				898	6.0
－	42＂	$\begin{aligned} & 0 \\ & z \end{aligned}$	－				1100	$\begin{aligned} & 0 \\ & z \end{aligned}$	－				1098	6.0
1200	48＂		850				1400		848				1398	6.0
－	54＂		－				2200		－				2198	6.0
1400	－		1300				－		1298				－	6.0
－	601		－				2700		－				2698	6.0
1600	－		1700				－		1698				－	6.0
－	$66^{\prime \prime}$		－				3700		－				3698	6.0
1800	72＂		2200				4100		2198				4098	6.0
－	78＂		－				4600		－				4598	6.0
2000	－		2800				－		2798				－	6.0
Transmitter Promag（compact version）： 3.4 kg （Weight data valid for standard pressure ratings and without packaging material） ＊Flanges according to AS are only available for DN 80，100， 150 to 400， 500 and 600														

Promag P

Promag H

Weight data of Promag H in kg				
Nominal diameter		Compact version DIN	Remote version (without cable)	
[mm]	[inch]		Sensor	Transmitter
2	1/12"	5.2	2	6.0
4	5/32"	5.2	2	6.0
8	5/16"	5.3	2	6.0
15	$1 / 2{ }^{11}$	5.4	1.9	6.0
25	$1{ }^{\prime \prime}$	5.5	2.8	6.0
40	$11 / 2 "$	6.5	4.5	6.0
50	2 "	9.0	7.0	6.0
65	$21 / 2^{\prime \prime}$	9.5	7.5	6.0
80	3"	19.0	17.0	6.0
100	4"	18.5	16.5	6.0
Transmitter Promag (compact version): 3.4 kg (Weight data valid for standard pressure ratings and without packaging material)				

Weight (US units)

Promag D

Weight da	romag			
Nomin	meter	Compact version	Remote	t cable)
[mm]	[inch]		Sensor	Transmitter
25	$1^{\prime \prime}$	10	6	13
40	$11 / 2 "$	11	7	13
50	$2{ }^{\prime \prime}$	13	9	13
80	$3{ }^{\prime \prime}$	17	13	13
100	4"	23	19	13
Transmitter Promag (compact version): 7.5 lbs (Weight data valid without packaging material)				

Promag L (ANSI)

Weight data of Promag L in lbs						
Nominal diameter		Compact version		Remote version (without cable)		
[mm]	[inch]					Transmitter
50	2 "	$\begin{aligned} & \text { in } \\ & \text { थ̈ } \\ & \tilde{\pi} \end{aligned}$	23		19	13
80	$3 "$		31		26	13
100	$4 "$		35	$\stackrel{\text { ® }}{ }$	31	13
150	$6 "$		56	登	52	13
200	8"		99		95	13
250	$10 "$		143		161	13
Transmitter Promag (compact version): 7.5 lbs (Weight data valid for standard pressure ratings and witho						

Promag P (ANSI/AWWA)

Weight data of Promag P in lbs						
Nominal diameter		Compact version		Remote version (without cable)		
[mm]	[inch]					Transmitter
15	$1 / 2{ }^{\prime \prime}$	$\begin{aligned} & \stackrel{n}{n} \\ & \tilde{\sim} \\ & \underset{\sim}{\omega} \end{aligned}$	14		10	13
25	$1{ }^{\prime \prime}$		16		12	13
40	$11 / 2 "$		21		16	13
50	2 "		23		19	13
80	$3 "$		31		26	13
100	4"		35		31	13
150	$6 "$		56		52	13
200	8"		99		95	13
250	10"		165		161	13
300	12"		243		238	13
350	14"		386		381	13
400	$16 "$		452		448	13
450	18"		562		558	13
500	$20 "$		628		624	13
600	24 "		893		889	13

[^3]
Promag W (ANSI/AWWA)

Weight data of Promag W in lbs								
Nominal diameter [mm] [inch]		Compact version		Remote version (without cable)				
		Sensor	Transmitter					
25	$1{ }^{\prime \prime}$			$\begin{aligned} & \text { in } \\ & \text { ॐ } \\ & \text { ॐ } \\ & \hline 0 \end{aligned}$	16		12	13
40	$11 / 2 "$	21	16		13			
50	$2 "$	23	19		13			
80	$3{ }^{\prime \prime}$	31	26		13			
100	$4 "$	35	31		13			
150	$6{ }^{\prime \prime}$	56	52		13			
200	8"	99	95		13			
250	10"	143	161		13			
300	12 "	243	238		13			
350	$14 "$	386	381		13			
400	$16 "$	452	448		13			
450	18"	562	558		13			
500	20"	628	624		13			
600	24 "	893	889		13			
700	28 "		882		878	13		
-	301		1014		1010	13		
800	32"		1213		1208	13		
900	$36 "$		1764		1760	13		
1000	40"		1985		1980	13		
-	42"	0	2426	0	2421	13		
1200	48"	U	3087	$\underset{U}{\mathscr{U}}$	3083	13		
-	$54 "$		4851		4847	13		
-	60 "		5954		5949	13		
-	$66 "$		8159		8154	13		
1800	72		9041		9036	13		
-	78"		10143		10139	13		
Transmitter Promag (compact version): 7.5 lbs (Weight data valid for standard pressure ratings and without packaging material)								

Promag H

Weight data of Promag H in lbs				
Nominal diameter		Compact version	Remote version (without cable)	
[mm]	[inch]		Sensor	Transmitter
2	1/12"	11	4	13
4	5/32"	11	4	13
8	5/16"	12	4	13
15	$1 / 2{ }^{11}$	12	4	13
25	$1 "$	12	6	13
40	$11 / 2 "$	14	10	13
50	$2{ }^{\prime \prime}$	20	15	13
65	$21 / 2 "$	21	17	13
80	$3{ }^{\prime \prime}$	42	37	13
100	4"	41	36	13
Transmitter Promag (compact version): 7.5 lbs (Weight data valid for standard pressure ratings and without packaging material)				

Material

Promag D

- Transmitter housing: powder-coated die-cast aluminum
- Sensor housing: powder-coated die-cast aluminum
- Measuring tube: polyamide, O-rings EPDM
(Drinking water approvals: WRAS BS 6920, ACS, NSF 61, KTW/W270)
- Electrodes: $1.4435 / 316 \mathrm{~L}$
- Ground disks: 1.4301/304

Promag L

- Transmitter housing:
- Compact housing: powder-coated die-cast aluminum
- Wall-mounted housing: powder-coated die-cast aluminum
- Sensor housing: powder-coated die-cast aluminum
- Measuring tube: stainless steel 1.4301 or $1.4306 / 304 \mathrm{~L}$
- Electrodes: 1.4435, Alloy C-22
- Flange
- EN 1092-1 (DIN 2501): 1.4306; 1.4307; 1.4301; RSt37-2 (S235JRG2)
- ANSI: A105; F316L
- Seals: to DIN EN 1514-1
- Ground disks: $1.4435 / 316 \mathrm{~L}$ or Alloy C-22

Promag W

- Transmitter housing:
- Compact housing: powder-coated die-cast aluminum
- Wall-mounted housing: powder-coated die-cast aluminum
- Sensor housing
- DN 25 to 300: powder-coated die-cast aluminum
- DN 350 to 2000: with protective lacquering
- Measuring tube
- DN ≤ 300 : stainless steel 1.4301 or $1.4306 / 304 \mathrm{~L}$ (for flanges made of carbon steel with $\mathrm{Al} / \mathrm{Zn}$ protective coating)
- DN ≥ 350 : stainless steel 1.4301 or $1.4306 / 304$ (for flanges made of carbon steel with protective lacquering)
- Electrodes: 1.4435 or Alloy C-22, Tantalum
- Flange
- EN 1092-1 (DIN2501): 1.4571/316L; RSt37-2 (S235JRG2); C22; FE 410W B (DN ≤ 300 with $\mathrm{Al} / \mathrm{Zn}$ protective coating; $\mathrm{DN} \geq 350$ with protective lacquering)
- ANSI: A105; F316L (DN ≤ 300 with $\mathrm{Al} / \mathrm{Zn}$ protective coating; $\mathrm{DN} \geq 350$ with protective lacquering)
- AWWA: 1.0425
- JIS: RSt37-2 (S235JRG2); HII; 1.0425/316L
(DN ≤ 300 with $\mathrm{Al} / \mathrm{Zn}$ protective coating; $\mathrm{DN} \geq 350$ with protective lacquering)
- AS 2129
- (DN 150, 200, 250, 300, 600) A105 or RSt37-2 (S235JRG2)
- (DN 80, 100, 350, 400, 500) A105 or St44-2 (S275JR)
- AS 4087: A105 or St44-2 (S275JR)
- Seals: to DIN EN 1514-1
- Ground disks: 1.4435/316L, Alloy C-22, Titanium, Tantalum

Promag P

- Transmitter housing:
- Compact housing: powder-coated die-cast aluminum
- Wall-mounted housing: powder-coated die-cast aluminum
- Sensor housing
- DN 15 to 300: powder-coated die-cast aluminum
- DN 350 to 2000: with protective lacquering
- Measuring tube
- DN ≤ 300 : stainless steel 1.4301 or $1.4306 / 304 \mathrm{~L}$; for flanges made of carbon steel with $\mathrm{Al} / \mathrm{Zn}$ protective coating
- DN ≥ 350.: stainless steel 1.4301 or $1.4306 / 304$ L; for flanges made of carbon steel with $\mathrm{Al} /$ Zn protective coating
- Electrodes: 1.4435 , Platinum, Alloy C-22, Tantalum, Titanium
- Flange
- EN 1092-1 (DIN2501): 1.4571/316L; RSt37-2 (S235JRG2); C22; FE 410W B
($\mathrm{DN} \leq 300$: with $\mathrm{Al} / \mathrm{Zn}$ protective coating; $\mathrm{DN} \geq 350$ with protective lacquering)
- ANSI: A105; F316L
(DN ≤ 300 with $\mathrm{Al} / \mathrm{Zn}$ protective coating; $\mathrm{DN} \geq 350$ with protective lacquering)
- AWWA: 1.0425
- JIS: RSt37-2 (S235JRG2); HII; 1.0425/316L
(DN ≤ 300 with $\mathrm{Al} / \mathrm{Zn}$ protective coating; $\mathrm{DN} \geq 350$ with protective lacquering)
- AS 2129
- (DN 25) A105 or RSt37-2 (S235JRG2)
- (DN 40) A105 or St44-2 (S275JR)
- AS 4087: A105 or St44-2 (S275JR)
- Seals: to DIN EN 1514-1
- Ground disks: $1.4435 / 316 \mathrm{~L}$ or Alloy C-22

Promag H

- Transmitter housing:
- Compact housing: powder-coated die-cast aluminum or stainless steel field housing (1.4301/316L)
- Wall-mounted housing: powder-coated die-cast aluminum
- Window material: glas or polycarbonate
- Sensor housing: stainless steel 1.4301
- Wall mounting kit: stainless steel 1.4301
- Measuring tube: stainless steel 1.4301
- Electrodes:
- Standard: 1.4435
- Option: Alloy C-22, Tantalum, Platinum
- Flange:
- All connections stainless-steel 1.4404/316L
- EN (DIN), ANSI, JIS made of PVDF
- Adhesive fitting made of PVC
- Seals
- DN 2 to 25: O-ring (EPDM, Viton, Kalrez), gasket seal (EPDM, Viton, silicone)
- DN 40 to 100: gasket seal (EPDM, Viton, silicone)
- Ground rings: 1.4435/316L (optional: Tantalum, Alloy C-22)

The material load diagrams (pressure-temperature graphs) for the process connections are to be found in the "Technical Information" documents of the device in question: List of supplementary documentation $\rightarrow 116$.

Fitted electrodes	Promag D
	- 2 measuring electrodes for signal detection
	Promag L, W and P
	- 2 measuring electrodes for signal detection - 1 EPD electrode for empty pipe detection - 1 reference electrode for potential equalization
	Promag H
	- 2 measuring electrodes for signal detection - 1 EPD electrode for empty pipe detection (apart from DN 2 to 15)
Process connections	Promag D
	Wafer version \rightarrow without process connections
	Promag L
	Flange connections: - EN 1092-1 (DIN 2501) - ANSI
	Promag W and P
	Flange connections: - EN 1092-1 (DIN 2501) - DN $\leq 300=$ form A - DN ≥ 350 = flat face - DN 65 PN 16 and DN 600 PN 16 only as per EN 1092-1 - ANSI - AWWA (only Promag W) - JIS - AS
	Promag H
	With O-ring: - Weld nipple DIN (EN), ISO 1127, ODT/SMS - Flange EN (DIN), ANSI, JIS - Flange made of PVDF EN (DIN), ANSI, JIS - External thread - Internal thread - Hose connection - PVC adhesive fitting
	With gasket seal: - Weld nipple DIN 11850, ODT/SMS - Clamp ISO 2852, DIN 32676, L14 AM7 - Threaded joint DIN 11851, DIN 11864-1, ISO 2853, SMS 1145 - Flange DIN 11864-2
Surface roughness	All data relate to parts in contact with fluid.
	- Liner \rightarrow PFA: $\leq 0.4 \mu \mathrm{~m}$ ($15 \mu \mathrm{in}$) - Electrodes: 0.3 to $0.5 \mu \mathrm{~m}$ (12 to $20 \mu \mathrm{in}$) - Process connection made of stainless-steel (Promag H): $\leq 0.8 \mu \mathrm{~m}$ ($31 \mu \mathrm{in}$)

10.1.11 Human interface

Display elements		- Liquid crystal display: illuminated, two-line, 16 characters per line - Custom configurations for presenting different measured-value and status variables - 2 totalizers
	8	Note! At ambient temperatures below $-20\left(-4^{\circ} \mathrm{F}\right)$ the readability of the display may be impaired.
Operating elements		- Local operation with three keys $(-, \pm, ~ E)$ - "Ouick Setup" menus for straightforward commissioning
Language groups		Language groups available for operation in different countries: - Western Europe and America (WEA): English, German, Spanish, Italian, French, Dutch and Portuguese - Eastern Europe/Scandinavia (EES): English, Russian, Polish, Norwegian, Finnish, Swedish and Czech - Southeast Asia (SEA): English, Japanese, Indonesian
	$\underset{\Delta}{s}$	Note! You can change the language group via the operating program "FieldCare".
Remote operation		Operation via HART protocol and Fieldtool

10.1.12 Certificates and approvals

CE mark The measuring system is in conformity with the statutory requirements of the EC Directives. Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

C-tick mark	The measuring system meets the EMC requirements of the Australian Communications and Media Authority (ACMA)
Ex approval	Information about currently available Ex versions (ATEX, FM, CSA, IECEx, NEPSI etc.) can be supplied by your Endress+Hauser Sales Center on request. All explosion protection data are given in a separate documentation which is available upon request.
Sanitary compatibility	Promag D, L, W and P
	No applicable approvals or certification
	Promag H
	- $3 A$ authorization and EHEDG-tested
	- Seals: in conformity with FDA (except Kalrez seals)

Pressure Equipment Directive Promag D and L

No pressure measuring device approval

Promag W, P and H

Measuring devices with a nominal diameter smaller than or equal to DN 25 correspond to Article 3 (3) of the EC Directive 97/23/EC (Pressure Equipment Directive) and have been designed and manufactured according to good engineering practice. Where necessary (depending on the fluid and process pressure), there are additional optional approvals to Category II/III for larger nominal diameters.

Other standards and guidelines

- EN 60529

Degrees of protection by housing (IP code).

- EN 61010-1

Safety requirements for electrical equipment for measurement, control and laboratory use

- IEC/EN 61326

Electromagnetic compatibility (EMC requirements)

- ANSI/ISA-S82.01

Safety Standard for Electrical and Electronic Test, Measuring, Controlling and related Equipment

- General Requirements. Pollution degree 2, Installation Category II.
- CAN/CSA-C22.2 (No. 1010.1-92)

Safety requirements for Electrical Equipment for Measurement and Control and Laboratory Use. Pollution degree 2, Installation Category I.

- NAMUR NE 21

Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment.

- NAMUR NE 43

Standardization of the signal level for the breakdown information of digital transmitters with analog output signal.

10.1.13 Ordering information

Your Endress+Hauser service organization can provide detailed ordering information and information on the order codes on request.

10.1.14 Accessories

Various accessories, which can be ordered separately from Endress+Hauser, are available for the transmitter and the sensor \rightarrow 異 77.
Your Endress+Hauser service organization can provide detailed information on the specific order codes on request.

10.1.15 Documentation

- Flow measuring technology (FA005D/06)
- Technical Information Promag 50D (TI082D/06)
- Technical Information Promag 50L (TI097D/06)
- Technical Information Promag 50W, 53W (TI046D/06)
- Technical Information Promag 50P, 53P (TI047D/06)
- Technical Information Promag 50H, 53H (TI048D/06)
- Description of Device Functions Promag 50 HART (BA049D/06)
- Supplementary documentation on Ex-ratings: ATEX, FM, CSA, etc.

Index

A
Accessories 77
Adapters 17
Ambient temperature range 101
Applicator (selection and configuration software) 79
Approvals 9, 115
C
Cable entry 99
Cable specifications 49
Calibration factor 8-9
CE mark 115
CE mark (Declaration of Conformity). 9
Centering sleeve
Promag D 22
Certificates 9, 115
CIP cleaning 101
Cleaning (exterior cleaning). 76
Code entry (function matrix) 61
Commissioning
General 71
Two current outputs 73
Commissioning Quick Setup menu 72
Commubox FXA 195 (electrical connection) 53, 78
Communication 63
Conductivity of fluid 103
Connecting cable 20
Connection
58
58
HART 53
Remote version 44
C-tick mark. 115
Current output
Configuration (active/passive) 73
D
Declaration of Conformity (CE mark) 9
Degree of protection 57, 101
Design 107
Device description files 64
Device variable via HART protocol. 64
Display
Elements59, 115
Turning the display 40
Documentation 116
Drinking water approval 115
E
Electrical connection
Commubox FXA 191 53
HART handheld terminal 53
Electrical connections 99
Electrodes
EPD electrode 15
EMC (electromagnetic compatibility) 49, 101
Empty-pipe/full-pipe adjustment 74
Error message types. 62
Error messages
Process error (application error) 83
System errors (device errors) 81
European Pressure Equipment Directive 116
Ex approval 115
Exterior cleaning 76
F
Field Xpert SFX100 53
FieldCare. 63, 79
Fieldcheck (tester and simulator) 79
Fitted electrodes 114
Flow rate/limits 18
Function matrix
Brief operating instructions 60
Fuse, replacing 92
FXA193. 79
FXA195. 78
G
Galvanic isolation 98
Gewicht 110
Ground cable
Promag L 24
Promag P 31
Promag W 26
Grounding rings
Promag H 37
H
HART
Command classes. 63
Commands 65
Communicator DXR 375 63
Device description files. 64
Device status / Error messages 69
Write protection. 64
Hazardous substances 95
High-temperature version 32
HOME position (operating mode). 59
I
Incoming acceptance 11
Inlet/outlet run 16
Installation
Promag D 21
Promag H 36
Promag L 24
Promag P 31
Promag W 26
Installation conditions
Adapters 17
Dimensions 13
Down pipe. 14
EPD electrode 15
Foundations, supports 17
Inlet/outlet run 16
Installation of pumps 13
Mounting location 13
Orientation 15
Partially filled pipes 14
Vibrations 16
Installing the wall-mount housing 41
L
Language groups 115
Load 98
Local display See Display
Low flow cut off 98
M
Maintenance 76
Material 112
Material load diagram 113
Maximum measured error 100
Measured variable 97
Measuring principle 97
Measuring range 97
Measuring system 97
Mechanical construction 107
Medium pressure range 103
Medium temperature range 102
Mounting bolts
Promag D 22
Mounting the sensor
See Installing the sensor
N
Nameplate specifications
Connections 9
Sensor 8
Transmitter 7
Nominal diameter and flow rate
Promag W 18
0
Operable flow range 97
Operating conditions
Environment 101
Process 102
Operating elements 59, 115
Operation 59
Device description files 64
FieldCare 63
Operating programs 63
Operational safety 5
Order code
Accessories 77
Sensor 9
Ordering code
Sensor 8
Transmitter 7
Ordering information 116
Output 97
P
Performance characteristics. 100
Pig (cleaning) 38
Post-installation
Check 43
Potential equalization 54
Power consumption 99
Power supply 99
Power supply failure 99
Pressure Equipment Directive 116
Pressure loss
Adapters (reducers, expanders) 17
Pressure tightness 105
Process connections 114
Process error messages 83
Process errors (definition) 62
Programming mode
Disable 61
Enable. 61
Promag D
Centering sleeve 22
Installation 21
Mounting bolts 22
Seals 21
Tightening torques 23
Promag D mounting kit. 21
Promag H
Cleaning with pigs. 38
Grounding ring 37
Installation 36
Seals 36
Weld nipple 38
Promag L
Ground cable 24
Installation 24
Seals 24
Tightening torques 25
Promag P
Ground cable 31
High-temperature version 32
Installation 31
Seals 31
Tightening torques 32
Promag W
Ground cable 26
Installation 26
Seals 26
Tightening torques 26
Q
Quick Setup 72
R
Reference operating conditions 100
Registered trademarks 10
Remote operation 115
Remote version
Connection 44
Repair. 95
Repeatability 100
Replacing
Exchangeable electrode 93
Response to errors 85
Returning devices 95

S

Safety icons 6
Safety instructions 5
Sanitary compatibility 115
S-DAT (HistoROM) 75
Seals 76
Promag D 21
Promag H 36
Promag L. 24
Promag P. 31
Promag W 26
Serial number
Sensor. 8-9
Transmitter 7
Service interface FXA 193 79
Shock resistance 101
Signal on alarm 98
SIP cleaning 101
Software
Amplifier display 71
Spare parts 87
Standards, guidelines 116
Storage temperature 101
Supply voltage. 99
Surface roughness 114
Switching on (measuring device) 71
System error messages 81
System errors (definition) 62
T
Technical data. 97
Temperature 101
Medium 102
Storage 101
Tightening torques 23
Promag L 25
Promag P 32
Promag W 26
Transmitter
Electrical connection 50
Installing the wall-mount housing 41
Turning the field housing (aluminum) 39
Turning the field housing (stainless steel) 39
Troubleshooting 80
Types of error (system and process errors) 62
V
Vibration resistance 101
Vibrations 16
W
Wall-mount housing, installing 41
Weight 107
Wiring. 44

People for Process Automation

Declaration of Hazardous Material and De-Contamination Erklärung zur Kontamination und Reinigung

 auch außen auf der Verpackung. Nichtbeachtung dieser Anweisung führt zur Ablehnung ihrer Lieferung.Because of legal regulations and for the safety of our employees and operating equipment, we need the "Declaration of Hazardous Material and De-Contamination", with your signature, before your order can be handled. Please make absolutely sure to attach it to the outside of the packaging.
Aufgrund der gesetzlichen Vorschriften und zum Schutz unserer Mitarbeiter und Betriebseinrichtungen, benötigen wir die unterschriebene "Erklärung zur Kontamination und Reinigung", bevor Ihr Auftrag bearbeitet werden kann. Bringen Sie diese unbedingt außen an der Verpackung an.

Type of instrument / sensor
Geräte-/Sensortyp

Serial number

Seriennummer
\square Used as SIL device in a Safety Instrumented System / Einsatz als SIL Gerät in Schutzeinrichtungen

Medium and war Warnhinweise zum	ings Medium							
	Medium / concentration Medium / Konzentration	Identification CAS No.	flammable entzündlich	toxic giftig	corrosive ätzend		$\begin{gathered} \text { other * } \\ \text { sonstiges* } \end{gathered}$	harmless unbedenklich
Process medium								
Medium im Prozess								
Medium for process cleaning Medium zur Prozessreinigung								
Returned part cleaned with Medium zur Endreinigung								

* explosive; oxidising; dangerous for the environment; biological risk; radioactive
* explosiv; brandfördernd; umweltgefährlich; biogefährlich; radioaktiv

Please tick should one of the above be applicable, include safety data sheet and, if necessary, special handling instructions.
Zutreffendes ankreuzen; trifft einer der Warnhinweise zu, Sicherheitsdatenblatt und ggf. spezielle Handhabungsvorschriften beilegen.
Description of failure / Fehlerbeschreibung

Company data / Angaben zum Absender

Company / Firma	Phone number of contact person / Telefon-Nr. Ansprechpartner:	
Address / Adresse		Fax / E-Mail

"We hereby certify that this declaration is filled out truthfully and completely to the best of our knowledge.We further certify that the returned parts have been carefully cleaned. To the best of our knowledge they are free of any residues in dangerous quantities."
"Wir bestätigen, die vorliegende Erklärung nach unserem besten Wissen wahrheitsgetreu und vollständig ausgefüllt zu haben. Wir bestätigen weiter, dass die zurückgesandten Teile sorgfältig gereinigt wurden und nach unserem besten Wissen frei von Rückständen in gefahrbringender Menge sind."
www.endress.com/worldwide

Endress+Hauser

People for Process Automation

EFFICIENCY \&
 RELIABILITY THROUGH SIMPLICITY OF DESIGN

Swing-Flex Check Valve

A. 100% FLOW AREA

For improved flow charact-risfict and lower head losw, the Val-Matic Swins-Flox Check Volve provides 100% unrestrictad flow area.

B. REINFORCED DISC

The one piece precision molded dise is steel and nylen reinforced to provide yeorn of trouble free parformance. It is backed by a 25 year warranty for the flex portion of the diss. ITeated for proof of desian - see peqe 5.)

C. ONE MOVING PART

The Memory-Flex" dise, the only moving part, ossures long life with minimal maintonance. No packing or O-tings, mechanical hinges, pivot pins or bearings to wear out.

D. DOMED ACCESS PORT

Full sife top occess pert allowt removal of dise without removing valve from line: Access cover includes a drilled and tapped port for installation of optional Dise Position Indicator.

E. DROP TIGHT SEATING

The synihetic reinforced dise, with its intearal O-ring type sagal detign assures posttive sealing at hith and low pressures.

F. NON-SLAM CLOSURE

"Short Dise Stroke" combined with Memory-Flox Disc Action reduces potentially destructive water hammer.

G. BACKFLOW ACTUATOR (Not Shown)

Body is drilled and tapped for installation of optional beckflow ectuator (see options),

H. NON-GLOG DESIGN

The unrestrited full How area combined with smooth streamlined contouring allows passage of large solids minimizing the potential for cloggins.

I. MECHANICAL DISC POSITION
 INDICATOR* (Optiona)

Ptovides cleor indisation or the valve's ditis posiliton. Con alao be provided wah a SCADA compatible limit swith for off site monitoring (see options).

J. FUSION BONDED EPOXY

Fusion Bonded Epoxy (FAE) is provided standard on the interior and exterior of the valve. The FBE is ANSI/NSF 61 certified. Other coatings are available on request.

INSTALLATION DIMENSIONS AND CONSTRUCTION

VALVE saze	MODEL \#	A	E	F1	F2	H	1	K	L
2	502A	8	2	N/A	317/18	-1/2	$63 / 4$	7/8	11/2
217	525 A	$81 / 2$	$21 / 2$	N / A	3 y 柆	-1/2	7	5/8	11/2
3	503A	91/2	3	7s/s	51/111	$-3 / 8$	71/2	$3 / 4$	13/4
4	504A	11.1/3	4	$81 / 4$	$53 / 4$	11,2	$71 / 4$	238	$23 / 4$
6	506A	15	6	9 a/t	67/11	2	12	61/4	$31 / 4$
8	503A	$191 / 2$	8	11	83/1	2	$153 / 4$	$71 / 2$	$41 / 4$
10	510A	241/2	10	13 2/8	$103 / 4$	4	$203 / 8$	8	5 1/4
12	512 A	27+12	12	15	121/2	$31 / 2$	22.1/2	10	$61 / 2$
14	514A	31	14	17 9/6	13	4	$261 / 4$	$115 / 3$	$71 / 2$
16	516A	32	16	$187 / 4$	$141 / 4$	48.8	30	13 1/4	$8-5 / 8$
18	518A	36	18	20	$151 / 4$	5.1/4	33 2/4	15	93/4
20	520 A	40	20	21 3/3	167/1	5\%, 8	37.1/2	163,8	10\%/10
24	524 A	48	24	23. $7 / 8$	$19 \mathrm{y} / 4$	7	45	20	13
30	530	56	30	27 $3 / 4$	23	-5/8	411/4	12	6
36	536	63	36	31	$273 / 4$	-61/0	$43.1 / 2$	8	6

"Dinersion 'E" represierh nominol velea liza.
Nister Pliunged end cenform to wisi s1c.1 Clon izs

MATERIALS OF CONSTHUCTION			
Component		Standand	Optional
Sody und Cover		Ductile Mon A5tm A535 Grads $65-45.12$	Stelders Steel Brenze.
Dise			VRen [FKM/. ASTM D2000-HK
Coasing:	Interior	Furion Bonded Epexy ${ }^{\text {a }}$	huaber Uling
	Exaprict	Fution Bonded Epexy*	Cemult Fectory

Comel ifoctory fer odinionol reterind and tombey nitiom.
*ANifl/MSF 61 Cersfinentien

ANSI MAXIMUM PRESSURE-TEMPERATURERATING		
Mexinum Neo-Sheck Working Prassure (RSM) ANSI Class 125		
Temperature ${ }^{\circ} \mathrm{F}$	$2^{*}-24^{\text {n }}$	$30^{4 \prime}-36^{\prime \prime}$
100°	-250	-150
150°		
200^{*}	235	135
Hydrontatic Test Preawures	375	230

HEAD LOSS CHART

Flow Tests performed by the Utah Water

Research taboratory of Utah Stote
University.

FLOW OF WATER IN GALLONS PER MINUTE
Consult factory for Digester Gas Service

SAMPLE SPECIFICATIONS

The check value shall be of the Swing-Flex ${ }^{\text {b }}$ full body flanged type, with a domed access cover and only one moving part t the valve disc.

The valve body shall have full flow equal to nominal pipe diameter of ony point through the volve. The seating surface shall be on a 45° angle to minimize disc travel. The top access port shall be full size, allowing removal of the cisc without remoral of the valve from the pipeline ond shall include a port for installation of an optional mechanical position indicator:

The disc whall be of one piece construction, precinion molded with an integral O-ring type sealing surfoce and contain steel and nyion reinforcements in both the Memory Flex and central disc areas. The flex portion of the disc shall be warranted for 25 years. Non-slom dosing characteristic shall be provided through a short 35° disc stroke and o

Memory-Flex ${ }^{*}$ disc return action.

A mechanical indicator shall be provided when specified to provide disc postion Indication on valves $3^{\prime \prime}$ and larger, The Indicator shall have continuous contoct with the disc under all operating condifions to ossure accurate ditc position indication.

A limit switch wili be provided when specified to indicate open/closed position to a remote locotion. The mechanical type limit switch shall be activated by the external position inclicator. The switch shall be roted for NEMA 4, 6, or $6 P$ and shall have U.L rated 5 amp , 125 , or 250 VAC contacts.

Bockflow copobilities shall be available by means of an optional screw type backflow actuctor. Both the disc position indicator and backflow actuctor thall be capable of installation without special tools.

The valve body and cover shall be ASTM A.536 Grode 65-45-12, Class B Ductile Iron. The disc sholl be Buna-N (NBR), ASTM D2000-8G,

The interior and exterior of the valve shall be coated with an ANSI/NSF 61 opproved Fusion Bonded Epoxy.

The valve sholl be proof of derign cycle tested $1,000,000$ times with no signs of weor or distortion to the valve cisc or seat and shall remain drop tight at both high and low pressures. The test results shall be independently certified.

The monufacturer shall have a minimum of five years experience in the manufacture of flexible disc type check valves.

The valve shall be Val-Matic Swing-Flex* series 500 and thall be designed, manufactured and tested in occordance with ANSI/AWWA Standard C508.

INDEPENDENT PROOF OF DESIGN TEST

In the cose of the Val-Matic Swing-Flex ${ }^{\text {E }}$ Oheck Volve, we have taken quality ossurance one step further by having the volve cycle tested, Uelizing an eight-inch Swing-Flex ${ }^{*}$ with optional signal witth, the valve was cycled over $1,000,000$ (one million) times.

To place one million cycles in petspective, it would take an average of 100 cycles per doy for more then 27 years
to equal the $1,000,000$ cycles. Upon conclusion, PSI/Pittsburgh Testing Laboratory Division reported the follow. ing resulta

1. After $1,000,000$ cycles the volve's disc showed no signs of fatigue or siress crocks.
2. After $1,000,000$ cycles the valve seoting areas showed no signs of weor
or distortion. The valve seating remained drop tight during the low and high pressure hydrostotic tests.
3. After $1,000,000$ cycles the signal switch continued to function as designed.

Copies of the PSI/Pittsburgh Testing Laboratory Divition report ere available upon tequert.

QUALITY ASSURANCE

Val-Matic's Quality Assurance is the sum of imaginative derign, solid engineering. careful monufacturing ond dedicoted people.

These oll combine to ensure total customer satisfoction. We recognize the need for, and encouroge, individual pride and the self-satisfaction, which is goined in producing reliable ond quality valves.

This quallity attitude permeates through the corporotion from the president to our newest employee.

Testing (right) is the backbone of our quality assurance. Every Swing-Flex ${ }^{*}$ Check Valve is 100% tested including o seat test to ossure drop tight sealing and hydrestatic testing to assure the integrity of the costing.

Smingetien ${ }^{2}$ Velve at fent.

EFFICIENCY.... RELIABILITY BY DESIGN!

Efficiency ond reliability through simplieity of design is the key to the superior performance ond long life of the ValMatic 5 wing-Flex ${ }^{4}$ Check Valve.

ENERGYEFACIENT BY DESIGN

The treamlined contour of the Swing-Flex ${ }^{5}$ body provides 100% flow orea with no restrictions at any point through the valve (Figure 1.) Flow test performed by an indepenclent laberatory have shown thet thls unique body design produces minimal head loss through the valve. Flow and heod less charts, developed from the test dato, ore thown on Poge 4 .

DISC STABIITZATION BY DESIGN

In the full open position, the disc is stabilized by uting body contouring to ease the direction of flow towards the disc assuting long dise life (Figure I).

NON-CLOGGING BY DESIEN

Clog resistant performance is achieved by maintaining an unobstructed 100% flow area, smooth streamlined body contouring and the simplicity of one moving part. The entropmert or hang-up of solids and striagy materiols is minimized by the ellimination of mechanical devices in the valve derign. The standard 4^{*} Swing-Flex is designed to pass a 3^{-} solid.

NON-SLAM CLOSING BY DESIGN

The non-slom cloting characteristic of the Swing-Flex ${ }^{*}$ Greck Volve is ochieved by utilizing o "Shart Disc Stroke" in conjunction with the unique "Memory-Flex" oction" of the valve's disc. The 35° stroke, a result of the angled seat, is less than half the typical 80° to 90° stroke of a conventional swing check valve. [Figures 1 \& 2] The feature is similar to that found in high performance tilted disc check volver.

VAL-MATIC SWING-FLEX* VALVE

Figure 1

CONVENTIONAL SWING CHECK VALVE

Figure 2

The short disc stroke and "Memory-Fiex" action" (Figure 1) serve to reduce the closing time of the valve. This rectuced closing time minimizes flow reversal and the resultant water hommer normally associated with the sudden stoppoge of reverse flow,

REIABIUTY BY DESICN

Operational reliability is achieved by utilizing fust one moving part, the Memory-Flex "disc. Extended life is -
designed into the disc by the inclusion of steel and nylon reinforcements. The steel and nylon are precision molded into the disc, providing a tough, durable disc with a 25 -year warronty". (Figure 3)

Unilike a conventional horizontal swing check valve, the $\mathbf{S w i n g - F l e x}{ }^{3}$ has no packing or O -rings, mechanicol Vinges, thatts, pivgt pins, or bearings to wear out (Figure 3.) Upon conclusion of a $1,000,000$ (one millisen) cycle test, on independent testing laboratory reported that the volve had no visible signs of weor ond remoined drop tight. (See Page 5.)

Figute 1

POSTIVE SHUT OFF BY DESIGN

The Memory-Flex ${ }^{*}$ dise with its integral O-ring type seal derign atsures drop tight seating ot both high and low working pressures. Eech and every volve is tested to this stondord. A certified report in available upan requert.

OPTIONAL ACCESSORIES

RUBBER UNNG - Unlke convertionol vwing check valves, the Swing-Flex" Check Volve is detigned to accept synthetic or natural rubber lining. Sody lining coupled with syrthetic Memory-fiex discs makes the Swing-Flex" ideally wited for systems containing obronire oe corrosive fuidh.

DISC POSITION INDICATOR - The cover mounted disc position indicotor provides dear indication of the volve's diac position. A SCADA comporible limit iwitch con oho be provided. Both can be provided of the lime of valve purchose or for field installotion ot a later dote.

BACKFLOW ACTUATOR -. Avolloble for use when manual backflow operotion is required. Mot commonly tsed for priming pumpt, bock flusting, draining linet and sytem testing. The Vel-Matic 5 ockflow Acruator con be provided of the there of ralve purdhave of for field instalotion at a leter dove.

Make the change to QUALITY! Specify $\sqrt{\text { AL MATIC: }}$

Vol Matis's quelity of design end meticuloun waramannip hos $10 t$ the stenderch by which all othars are mecoured. Quailiy desien lectures whe on Type 316 stoinless steel tim os standord on Air Releave, Ait/Vacuum and Combination Ait Valvel.combined restilent/metol to metal teating for Silent Gieck Valvat..ttobilized compenenti shet provide extended IIfe of the Dual Dike Check Velves,high strength and wear reshtent aluminum brome trim os slondard for Tilred Dsc Check volves unreshiced fell flow arec through Swing-Flex. Check Valves.heavy duty itoinles steel screened inlet on Sure Seal Foot Valves a Cam-Centric?

Plug Vake with more reguested foatures then eny other eccentric plua volve, and the Arericon-BFV Bhttefly Volve that provides a fiela replaceable seot whihout the need for special rool. Thase fearures coupled with our antention ro derail pur Vat-Maric valves in a class by thersulvet.

Vol-Matic is tstally committed to provicing the highes qually volves ond outitanding servige to our cuitomers. Complete customer satisfoction is our gool.

3. Odour Control \& Generator Slab

Boral Testing Services
Whinstanes Laboratory
Boral Resources (Qld) Pty Limited
ACN: 009671809
Cullen Ave West, Whinstanes, Qld, 4007
Phone: (07) 38618500
Fax: (07) 38618599

Concrete Test Report

| Report No: WWH-12/04542 |
| ---: | ---: |
| Issue No: 1 |
| This reportreplaces all previous issues of report no WWH-1204542: |

Client:	MORGAN BROS
	51 WOODEND CT
	PARK RIDGE QLD 4125
Project:	BRISBANE RD, REDBANK

The document is issued in accordance with NATA's
accreditation requirements.
Accredited for compliance with ISOIEC 17025

COMPRESSIVE STRENGTH OF CONCRETE CYLINDERS

Details of Sampled Concrete Concrete Specimens and Results

Notes

Remarks

1. Sampling in accordance with AS 1012.1
2. Slump Test in accordance with AS 1012.3.1
3. Compaction by vibration, in accordance with AS 1012.8.1 Clause 7.4
4. Initial Curing in accordance with AS 1012.8.1 Clause 9.2 .2
5. Standard Curing in accordance with AS 1012.8.1 Clause 9.3 (a)
6. Capping R - Rubber, S - Sulphur, N-Nil, T-Timber, G-Ground
7. Compressive Strength in accordance with AS 1012.9
8. Density in accordance with AS 1012.12.1
9. Moisture Condition SSD in accordance with AS 1012.12.1, unless otherwise stated

DATE CAST:

REPORT No.
customer: MORGAN BROS
PROJECT: BRISBANE RD, BEDBATAK

CONCRETE FIELD TEST INFORMATION SHEET - AS1012.1,3.1,8.1,8.2
BORAL TESTING SERVICES - ACN 009671809 - PO BOX 162, HAMILTON QLD 4007 - TEL: 38618500 FAX: 38618599

SHEENY \& PARTNERS
PT Y Y I MT T ED CONSULTING ENGINEERS STRUCTURAL AND CIVIL A.C.N. 009899905 ABA 52009899905

TRANSMITTALISITE MEMORANDUM

Projects: DDOUR CONTROL UNIT SLNS

Description of Work:

 - 14 bores pier roles. Inspects

- SIZE AND SOCKET. TEETH IS

DIRECTORS:
P. Jones,
B.Eng, M.I.E. Aust., L.G.E.
P. Cockerill,

Cert.Eng.
S. Thomas, B. Eng.(Hons), M.I. E. Aust.

3 Gregory Terrace SPRING HILL SLD 4000 Phone (07) 38393644 Facsimile: (07) 38393655 RPECQ No. 25 Q-Pulse Id: TMS405

To: DARREN WESLEy date:- $/ / M A / 12$

Projects. कDClR conman Lat si
\qquad
\qquad

| No of | Dwi Description | MERVWIORGAN |
| :--- | :--- | :--- | :--- |
| Copies | No | 0412727671 |

Comments

sent to you for your	\square enclosed herewith	Copies to:
\square information	\square under separate cover	
\square comment	\square our messenger	
\square approval	\square your messenger	
\square action	\square by post	

Sheehy \& Partners Ply (tdd
per
Active: 05/11/2015

DATE CAST: $1,1,-1,2$				REPORT No.			
CUSTOMER: ,					TESTER No.		NATA Accreditation No 18494
PROJECT:	2, $1 / 00$				20		

Customer
Signature:

Driver Instructions:

B07 ComClete SP344 Brisbane Rd Redbank SPS - Civil and Mechanical OM Manual \& Quarries

Customer
Signature: \square

Recerved Cardat
Recelved Pland

Customer accepts the receipt andior the return of the product and the on-site adjustments as fiocumented on this docket. subject to the conditions of sale overleaf.

Prev. Docket:

Driver Instructions:

A crigdit thea surmharge hay apyly RA the GST inclusive

\square
Customer
signature:

Driver ctions:

Customer aceepts the receipt and/or the relurn of the product and the on-site adjustments as documented on this docket, subject to the conditions of sale overleat

Prev. Docket:

HALLCO ENGINEERING prY, Ltd.
 ABN: 29052126619 -ACN: 052126619

Pump Station, Concrete Construction, Steel and Aluminium Fabrication
PO Box 12
Moffat Beach Rid. 4551
Office: (07) 54916811
Fax: (07) 54919818

Inspection \& Checklist - STRUCTURAL CONCRETE PLACEMENT

Lot No \qquad Pour Time \qquad : \qquad Pour Date \qquad
Structure Howe CAB Pure only
If test results are applicable the results are to be reported. For multiple results, report the range (maximum \& minimum). If test results are not applicable (ie. No test performed, visual inspection only) indicate conformance with a tick.

HALO ENGINEERING TY. LTD.
 ABS: 29052126 619-ACN: 052126619

Pump Station, Concrete Construction, Steel and Aluminium Fabrication

PO Box 12
Moffat Beach Old. 4551
Office: (07) 54916811
Fax: (07) 54919818
Mobile: 0418741536

Inspection \& Checklist - STRUCTURAL CONCRETE PLACEMENT

 Job/Contract Name_SP34 No 1709Lot No \qquad Pour Time \qquad $:$ \qquad Pour Date 1410512012
Structure \qquad + Found mat conk
If test results are applicable the results are to be reported. For multiple results, report the range (maximum \& minimum). If test results are not applicable (ie. No test performed, visual inspection only) indicate conformance with a tick.
MBA \qquad AGE 20 SLUMP 80
Delivery Docket No: \qquad Test Docket No:

Compliance Certificate for building Design or Specification

HOTE					

Sheehy \& Partners Pty Ltd Job No. 7789

RESTRICTION: A building certifier (class B) can only give a compliance certificate about whether building work complies with the BCA or a provision of the QDC. A building certifier (Class B) can not give a certificate regarding QDC boundary clearance and site cover provisions.

1. Property description

This section need only be completed if details of street address and property description are applicable.
EG. In the case of (standard/generic) pool design/shell manufacture and/or patio and carport systems this section may not be applicable.

The description must identify all land the subject of the application.
The lot \& pland details (eg. SP / RP) are shown on title documents or a rates notice.
If the plan is not registered by title, provide previous lot and plan details.
2. Description of component/s certified Clearly describe the extent of work covered by this cerificate, e.g. all structural aspects of the steel roof beams.

3. Basis of certification

Detail the basis for giving the certificate and the extent to which tests, specifications, rules, standards, codes of practice and other publications, were relied upon.

Street address (include no, street, suburb /locality \& postcode)
Sewage Pump Stations SP01, SP33 and SP34 Located on Drawing 7789-S00 Lot \& plan details (attach list if necessary) In which local government area is the land situated?$. \quad$ Postcode

Ipswich

All structural aspects of the foundations and slabs on ground as indicated on Sheehy \& Partners Drawings numbered 7789-S00, 7789-S01, 7789-S02 and 7789-S03 in their most up to date revision.

Docurnents relied upon include the project arrangement drawings, equipment vendor drawings and geotechnical investigation report for the project and the following current Australian Standard Codes:

Structural Design Actions Code AS/NZS 1170
Residential Slabs and Footings Code AS2870
Concrete Structures Code AS3600
Piling Code AS2159
Design Criteria are as indicated on the project structural drawings.
Limitations on the certification:

1. The issue of this certificate in no way reduces the responsibility of the Builder to undertake all building works consistent with the relevant plans, Building Act and Regulations and good building practice.
2. Proprietary items (eg deformed reinforcement bar, welded mesh etc) are deemed to be covered by the manufacturer's certification.
3. Reference documentation

Clearly identity any relevant documentation, e.g. numbered structural engineering plans.

Sheehy \& Partners Structural Engineering Drawings numbered 7789-S00, 7789-S01, 7789-S02 and 7789-S03
Civiltech Engineering Geotechnical Investigation Report number 12015 dated 16 February 2012.
Kellog Brown \& Root project arrangement drawings dated 29.07.2011.
Siemens Water Technologies equipment arrangement drawings for project number 20338 dated 12.01.2012.

LOCAL GOVERNMENT USE ONLY

```
Q-Pulse Id: TMS405


\title{
Inspection Certificate / Aspect Certificate / QBSA Licensee Aspect Certificate
}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
HOTE \\
Shaehy \& Pariners Pry Lid Job No. 7759
\end{tabular} & This is to be used for the purposes of section 10(c) of the Building Act 1975 and/or section 47 of the Building Regulation 2006. \\
\hline 1. Indicate the type of cerdificate & \begin{tabular}{l}
Inspection Certificate for \\
Stage of building work (for single detached class 1 a or class 10 building or structure) (indicate the stage) \(\qquad\) \\
Aspect of building work \\
(indicate the aspect) Completed concrete slabs and foundations
\(\square\) QBSA Licensee Aspect Certificate \\
Scope of the work \\
Scope of the work covered by the licence class under the Queensland Building Services Authority Regulation 2003 for the aspect being certified, eg scope of work for a waterproofing licence is "installing waterproofing materials or systems for preventing moisture penetration". An aspect being certified may include "wet area sealing to showers".
\end{tabular} \\
\hline \begin{tabular}{l}
2. Property description \\
The description must identify all land the subject of the application. \\
The lot \& plan details (eg. \$P / RP) are shown on title documents or a rates notice. If the plan is not registered by tite, provide previous lot and plan details.
\end{tabular} & \begin{tabular}{l}
Street address Include no., street, suburb / /ocality \& postcode) \\
In which local government area is the land situated? \\
lpswich
\end{tabular} \\
\hline 3. Building description & \begin{tabular}{ll} 
Building description & Class of building / structure \\
\begin{tabular}{|l|l|}
\hline Foundation slabs for pump station odour control units & 10 b \\
\hline
\end{tabular}
\end{tabular} \\
\hline 4. Description of component/s certified Clearaly describe the extent of work covered by this certificate, e.g. all structural aspects of the steel roof beams. & All structural aspects of the foundations and slabs on ground as indicated on Sheehy \& Partners Drawings numbered 7789-S00, 7789-S01, 7789-S02 and 7789-S03 in their most up to date revision. \\
\hline
\end{tabular}


\section*{6. Reference documentation Clearly identify any relevant documentation, e.g. numbered structural engineering plans.}
\begin{tabular}{|c|}
\hline Sheehy \& Partners Structural Engineering Drawings numbered 7789-S00, 7789-S01, 7789-\$02 and 7789-S03. \\
\hline Civiltech Engineering Geotechnical Investigation Report number 12015 dated 16 February 201 \\
\hline Kellog Brown \& Root project arrangement drawings dated 29.07.2011. \\
\hline Siemens Water Technologies equipment arrangement drawings for project number 20338 dated 12.01.2012. \\
\hline
\end{tabular}
7. Building certifier reference number
and development approval aumber
8. Building Certifier or competent person details
A competent person must be assessed as competent before carrying out the inspection.
The builder for the work cannot give a stage cerificate of inspection.
A competent person is assessed by the building certifier for the work as competent to practice in an aspect of the building and specification design, because of the individual's skill, experience and qualifications. The competent person must be registered or licensed under a law applying in the State to practice the aspect.
If no relevant law requires the individual to be licensed or registered, the cerififer must assess the individual as having appropriate experience, qualifications or skills to be able to give the help.
If the chief executive issues any guidelines for assessing a competent person, the building cerififier must use the guidelines when assessing the person.

9. Signature of building certifier, competent person or QBSA licensee

Х Inspection Certificate for stage or aspect

QBSA Licensee Aspect Certificate

A person who may under 543 give a QBSA licensee certificate for the aspect if it complies with the requirements for self assessable building work under the Building Regulation 2006 \$44.


Date



40 Illoura Grove
PH: 0418733168
Karana Downs Q. 4306
Fax: (07) 32012426
ABN: 53668795825

16 February, 2012
Our Job No. 12017
Sheehy \& Partners Pty. Ltd.
3 Gregory Terrace, Spring Hill, Qld, 4000

\author{
RE: GEOTECHNICAL INVESTIGATION \\ SP34; Ipswich Motorway, Redbank
}

\subsection*{1.0 Introduction}

The work in this investigation was carried out to determine general geotechnical information regarding the proposed building area.

A single test bore with an adjacent scala cone penetrometer probe was undertaken on the 14 February 2012 at the location shown on the attached sketch.

Test locations have been located as per client instructions or as reasonably determined on site by the field officer. Any recommendations made in this report pertain to the area investigated, as defined by the Site Plan attached.

\subsection*{2.0 Investigation Results}

The proposed building area is sparsely grassed with several significant trees in close proximity. There is a slight slope across the building site with the drainage characteristics considered moderate at the time of the investigation.

The soil profile, as established by the test bore, generally consists of partially controlled high plasticity clay fill to a depth of approximately 0.8 m , very stiff high plasticity natural clays.

Local knowledge of these insitu clays defines them as potentially highly reactive.
No groundwater was encountered in the test bore at the time of the investigation.
A more detailed description of the soil profile and test results can be found in Appendix ' 1 '.

\subsection*{3.0 Engineering Assessment}

Based on the results of the field and laboratory investigation, and taking into account the existing environmental conditions, the site would be classified as a 'P' - Problem Site, as defined by AS2870, due to the presence of filled ground greater than 0.4 m in depth.

The filled ground is considered partially controlled, and with proof rolling could be suitable for the support of conventional light (less than 40 kPa ) uniform loads, provided some differential settlement can be tolerated. An accurate estimate of settlement is impossible as the compaction history of the fill is unknown, but it is anticipated that differential settlements could be in the order of 5 to 10 mm per 10 kPa of load.

If the above settlements cannot be tolerated, then all footings should be founded into the underlying very stiff natural clays.

A summary of allowable bearing pressures for footings is presented below.
\begin{tabular}{|l|c|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \multicolumn{2}{c|}{ Allowable Bearing Pressure (kPa) } \\
\hline \multicolumn{1}{c|}{ Material type \ footing element } & Shaft & End \\
\hline \begin{tabular}{l} 
Very stiff Natural clay - strip \\
(200mm penetration)
\end{tabular} & - & 200 \\
\hline \begin{tabular}{l} 
Very stiff Natural clay - bored piers \\
(300mm penetration)
\end{tabular} & 20 & 300 \\
\hline
\end{tabular}

Shaft adhesion should only be applied over that portion of the pile founded below the depth of influence and / or filled ground.

No problems are anticipated with bulk, trench or bored pier excavations using small to medium sized equipment, e.g., Cat D4 or backhoe.

\subsection*{4.0 Limits of Investigation}

Recommendations given in this report are based on the information supplied by the client in conjunction with the findings of the investigation. Any change in the type or form of construction may make the recommendations invalid.

If soil conditions differing from those shown on the borelogs are encountered during construction, Civiltech Engineering should be advised immediately.

Yours Faithfully
Oivîtech Engineering

David Moss
B.E., M.I.E.Aust. R.P.E.Q. (No. 2951)

\section*{Appendix 1: Test Bore and Laboratory Test Results}
\begin{tabular}{|c|c|c|c|}
\hline DEPTH & CLASSIFICATION & SAMPLE & Scala Cone \\
\hline & Bore 1 & & Blows/100mm \\
\hline & & & 4 \\
\hline 0.00 & Fill Topsoil & & 6 \\
\hline \multirow[t]{2}{*}{0.10} & Fill Silty Sandy Gravel (GP) Medium dense, fine to medium & & 5 \\
\hline & gravel, light brown, dry to moist & & 3 \\
\hline 0.25 & Fill Clay (CH) Very stiff, high plasticity, dark grey brown, moist & & 2 \\
\hline \multirow[t]{2}{*}{0.80} & Probable Natural Clay (CH) Very stiff, high plasticity, grey & & 2 \\
\hline & brown, moist & & 2 \\
\hline \multirow[t]{2}{*}{1.20} & Natural Silty Clay (CH) Very stiff, high plasticity, dark grey / & 0.9 : U50 & 4 \\
\hline & grey brown, moist & & 4 \\
\hline \multirow[t]{13}{*}{3.00} & Borehole Discontinued & & 9 \\
\hline & & & 8 \\
\hline & & & 6 \\
\hline & & & 7 \\
\hline & & & 7 \\
\hline & & & 8 \\
\hline & & & 9 \\
\hline & & & 8 \\
\hline & & & 7 \\
\hline & & & 8 \\
\hline & & & 9 \\
\hline & & & 9 \\
\hline & & & 10 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & צヨ＾OONVH & \(\varepsilon\) \\
\hline & & & & & & \\
\hline  SפNIM & s®u！медр＇ио！еәэ！！ & & \(x\) &  &  & \(\nabla^{\prime \prime} L^{\prime}\) \\
\hline \(\forall \wedge \exists y\) ع0S－68LL＇\(\forall\)＾\(\exists\) y 00S－68LL SפNIM & şu！meap＇ио！̣еэ！！ & \(4+\) e & x &  &  & \(\varepsilon \chi^{\prime} \tau^{\prime}\) \\
\hline \(\forall \wedge \exists y\) EOS－68LL＇\(\forall\)＾\(\exists\) y 00S－68LL SפNIM & s®u！медр＇ио！ұеכ！！ & M & x &  &  & て＇T＇Z \\
\hline \begin{tabular}{l}
 \\
＇\(\forall \wedge \exists y\) ع 0 S－68LL＇\(\forall \wedge\)＾ヨ 00s－68LL \\
SפNIM
\end{tabular} &  & M & x &  & \begin{tabular}{l}
uo！̣eגədəдd əseq \\

\end{tabular} & I'T: \\
\hline & & & & & s）100 & TてZ \\
\hline & & & & & NOIIVINJW37dWI & 2 \\
\hline & & & & & & ® \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} & sұчamnэoa toentuos & x & \(4+8\) &  &  &  \\
\hline \(\forall \wedge \exists y\) عOS－68LL＇\(\forall \wedge\) ㅋy 00S－68LL SפNIM &  & x & \(4+8\) &  &  & LTTIT \\
\hline & & & & &  & I＇t \\
\hline & & & & & NDIS3a & \(\tau\) \\
\hline spıoэәу／sулешәу & sұuәunวog әวиวขวృу &  & &  &  & ON سәı｜ \\
\hline
\end{tabular}


号

\(\perp \forall\) WヨLSAS TOצINOJ y
\begin{tabular}{|c|c|}
\hline & puəso1＊ \\
\hline
\end{tabular}

N甘7d ISヨI 8 NOILJヨdSNI




\section*{4. Overhead Crane}


\title{
DEMAG
}

Cranes \& Components


\section*{Demag hoist units: Perfect load handling}

High productivity, efficiency and operating reliability are the most important requirements to be met by state-of-the-art material flow systems. Demag Cranes \&

\section*{Contents}

|

\section*{DC-Pro chain hoist}

A new industry standard 3
Tailored solutions
Increased performance, more speed Improved safety and reliability Control pendant
Commissioning and maintenance


DCM-Pro Manulift
DCM-Pro Manulift
\(12-15\)

\section*{Accessories}

Pillar and wall-mounted slewing jibs
16-17
KBK track and crane installations 18-19
Trolleys and electric drives
20-23
Clamp-fitted buffers and magnets
24-25
Service
26-27

|

\section*{Technical data and selection tools}

\section*{Selection criteria}

28-29
Technical data,
selection and dimension tables \(30-37\)
Hoist Designer/e-tools
38
Fax service 39

Components develops and produces materials flow solutions for all i ndustries and companies of all sizes, from small workshops to major industrial corporations.



■

fi







|







fl


\section*{fi \\ fl}

fi



fl
fi


fi
fl



|
fi ..... fl
fi


fl


■
- fi







\section*{|}




\(\square\)




\section*{}




\section*{fi}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\square\)

\section*{DEMAG}

Cranes \& Components



๖てO-てIL।
॥едรи әиел реәчләло
> \(r=\) Random

риə8̊วา *
NV7d 1S318 NOIID3dSNI




Customer's Signature:



CibackupiSalestCreate Job Filelinstallation foldert1 Install.\& Comm. Report - Ite. 5 - Issue 13.doc




C:IbackuplSalestCreate Job Filelinstallation folder1 Install.\& Comm. Report - It6.5-Issue 13.doc


\section*{5. Pipe Work, Valves, Pumps Install}









\(\mapsto 0\)
\(\Gamma^{*}\)
\(\Gamma\)

\(\llcorner\) 。
\(\rightarrow\)
\(\rightarrow\)










：

SP344 Brisbane Rd Redbank SPS－Civil and Mechanical OM Manual
รอ！！！！！！？ueq＾ก pue｜suәəno

NOIIVINヨW37dW
NOIL



sรu！меда pə｜｜еұsu｜sy
yコMOaNVH
४ヨлОのN
\begin{tabular}{l}
\(n\) \\
\(\vdots\) \\
\hline \\
\hline \\
\hline
\end{tabular}
：גəسozsnj


รə！！！！！！！n uequn pue｜suәəno
カてO－てIL।

Pipe Work ，Valves，Pumps Install
a＝Accept
риәяวา

\section*{Nظ7d ISヨI 8 NOIIDヨdSNI}
all Ald ŞIyISnani nosayvholy dr f
0／60Itョ：Mxo」

Inspection and Test Plan－C54000－SP34－Pipe Work，Valves，Pumps Install

\section*{6. Platform}

:גวшołsn〕

T.
\(\stackrel{0}{0}\).
\(?\).
(20)






SP344 Brisbane Rd Redbank SPS - Civil and Mechanical OM Manual









SP344 Brisbane Rd Redbank SPS - Civil and Mechanical OM Manual


SP344 Brisbane Rd Redbank SPS - Civil and Mechanical OM Manual







SP344 Brisbane Rd Redbank SPS - Civil and Mechanical OM Manual


SP344 Brisbane Rd Redbank SPS - Civil and Mechanical OM Manual


















































SP344 Brisbane Rd Redbank SPS - Civil and Mechanical OM Maņual



SP344 Brisbane Rd Redbank SPS - Civil and Mechanical OM Manual

SP344 Brisbane Rd Redbank SPS－Civil and Mechanical OM Manual





SNOI \(\forall \perp S\) dWnd SヨIュIרIคก N \(\forall\) Syn
NOOSY甘HOIV d 8 ［－7ヨ1S NV507


\(\stackrel{\rightharpoonup}{\mathrm{g}} \quad \stackrel{\rightharpoonup}{\forall}\)


SP344 Brisbane Rd Redbank SPS - Civil and Mechanical OM Manual


SP344 Brisbane Rd Redbank SPS - Civil and Mechanical OM Manual






















\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ICR Draft & ng Pty & Ltd ST & \multicolumn{3}{|l|}{STRUCAD FITTING LIST} & \multicolumn{3}{|l|}{Model : 1112018} \\
\hline \begin{tabular}{l}
Client \\
Contract \\
Site \\
PHASE
\end{tabular} & \[
\begin{aligned}
& \text { LOGAN } \\
& \text { LOGAN } \\
& \text { URBAN } \\
& \text { SP } 034
\end{aligned}
\] & \begin{tabular}{l}
STEEL \\
STEL - J \& P RI \\
UTILITIES PUMP JPPER
\end{tabular} & ARSDON ATIONS & & & ghtsman & \[
\begin{aligned}
& 13-10-12 \\
& 10: 22: 16 \\
& \text { MCS }
\end{aligned}
\] & \\
\hline Mark & No. & Section Size & \[
\begin{gathered}
\text { Mass } \\
(\mathrm{kg} / \mathrm{m})
\end{gathered}
\] & Grade & \begin{tabular}{l}
Length \\
(m)
\end{tabular} & Area
(m2) & \begin{tabular}{l}
Mass \\
(t)
\end{tabular} & \begin{tabular}{l}
Cut \\
Note
\end{tabular} \\
\hline CL01 & 19 & A 253 MPG & 0.59 & \(300+\) & 0.993 & 1.059 & 0.011 & \\
\hline CL23 & 8 & STANDARBP & 5.89 & \(300+\) & 0.146 & 0.211 & 0.007 & \\
\hline CL25 & 55 & T4A253MPG & 0.59 & \(300+\) & 0.640 & 1.979 & 0.021 & \\
\hline CL27 & 11 & TREADEND & 2.55 & \(300+\) & 0.153 & 0.243 & 0.004 & \\
\hline CL29 & 12 & STAUNCOLLAR & 2.00 & \(300+\) & 0.010 & 0.050 & 0.002 & \\
\hline CL149 & 150 & A253MPG & 0.59 & \(300+\) & 1.324 & 11.144 & 0.117 & \\
\hline CL150 & 101 & A253MPG & 0.59 & \(300+\) & 1.074 & 6.090 & 0.064 & \\
\hline CL151 & 13 & A253MPG & 0.59 & \(300+\) & 1.580 & 1.152 & 0.012 & \\
\hline CL152 & 1 & A253MPG & 0.59 & \(300+\) & 0.090 & 0.005 & 0.000 & \\
\hline CL153 & 1 & A253MPG & 0.59 & \(300+\) & 0.540 & 0.030 & 0.000 & \\
\hline CL154 & 3 & A253MPG & 0.59 & \(300+\) & 0.363 & 0.061 & 0.001 & \\
\hline CL155 & 45 & A253MPG & 0.59 & \(300+\) & 1.834 & 4.628 & 0.049 & \\
\hline CL156 & 33 & A253MPG & 0.59 & \(300+\) & 0.744 & 1.380 & 0.014 & \\
\hline CL157 & 11 & TREADEND & 2.55 & \(300+\) & 0.153 & 0.243 & 0.004 & \\
\hline CL161 & 2 & 75X12FL & 7.07 & \(300+\) & 0.209 & 0.076 & 0.003 & \\
\hline CL162 & 2 & 75X12FL & 7.07 & \(300+\) & 0.100 & 0.038 & 0.001 & \\
\hline CL163 & 2 & 75X8EA & 8.73 & \(300+\) & 0.050 & 0.034 & 0.001 & \\
\hline CL164 & 12 & A255MPG & 0.98 & \(300+\) & 0.905 & 0.655 & 0.011 & \\
\hline CL165 & 180 & A 255 MPG & 0.98 & \(300+\) & 1.540 & 16.677 & 0.272 & \\
\hline PL13 & 1 & 50X10FL & 3.92 & \(300+\) & 0.150 & 0.019 & 0.001 & \\
\hline PL64 & 3 & 65X10FL & 5.10 & \(300+\) & 0.155 & 0.069 & 0.002 & BEV'D \\
\hline PL105 & 13 & 150X10FL & 11.78 & \(300+\) & 0.156 & 0.668 & 0.023 & BEV'D \\
\hline PL106 & 16 & 90X12FL & 8.48 & \(300+\) & 0.250 & 0.851 & 0.034 & \\
\hline PL107 & 5 & 75X10FL & 5.89 & \(300+\) & 0.220 & 0.194 & 0.006 & \\
\hline PL108 & 4 & 180X12FL & 16.96 & \(300+\) & 0.180 & 0.229 & 0.009 & BEV'D \\
\hline PL109 & 4 & 75X10FL & 5.89 & \(300+\) & 0.150 & 0.108 & 0.004 & \\
\hline PL110 & 2 & 50X10FL & 3.92 & \(300+\) & 0.100 & 0.026 & 0.001 & \\
\hline PL111 & 1 & 200X12FL & 18.84 & \(300+\) & 0.140 & 0.064 & 0.003 & \\
\hline PL112 & 3 & 90X10FL & 7.07 & \(300+\) & 0.156 & 0.099 & 0.003 & \\
\hline PL113 & 1 & 90X10FL & 7.07 & \(300+\) & 0.156 & 0.033 & 0.001 & \\
\hline PL114 & 1 & 150X10FL & 11.78 & \(300+\) & 0.156 & 0.051 & 0.002 & BEV'D \\
\hline PL116 & 2 & 75X12FL & 7.07 & \(300+\) & 0.170 & 0.063 & 0.002 & \\
\hline PL117 & 2 & 65X12FL & 6.12 & \(300+\) & 0.100 & 0.034 & 0.001 & \\
\hline PL118 & 2 & 50X12FL & 4.71 & \(300+\) & 0.500 & 0.126 & 0.005 & \\
\hline PL119 & 2 & 75X12FL & 7.07 & \(300+\) & 0.250 & 0.091 & 0.004 & \\
\hline Totals PH & SE & SP034UPPER & & 723 & ittings & 48.482 & 0.695 & \\
\hline
\end{tabular}







1112018/rep/prtbymrk_PHASE_SP034 Page 1



\footnotetext{
1112018/rep/sibltsum_PHASE_SP034 Page 1
}




































\begin{tabular}{|c|c|c|}
\hline & \({ }^{\text {SF3 } 344} \mathrm{~B}\) &  \\
\hline  & 离 &  \\
\hline  &  &  \\
\hline (1) & &  \\
\hline  &  &  \\
\hline
\end{tabular}










\section*{7. QUU Drawings AS INSTALLED}































\section*{8. Spray Coating}


\section*{certificate of}

This is to certify that the management systems of

\section*{Construct Environmental}
have been formally assessed by International Certifications and found to comply with the requirements of

\section*{AS/NZS 4801:2001}

Occupational Health \& Safety Management Systems - Specifications with guidance for use

03 Jun 2011
Issue Date

11 May 2014
Expiry Date

D. L. Evans

Managing Director
International Certifications Ltd


Q-Pulse Id: TMS405


This certificate is issued by International Certifications Limited, 138 Harris Road, East Tamaki, Auckland, New Zealand, 2141 (www.intlcert.com). Accreditation by the Joint Accreditation System of Australia and New Zealand (www.jas-anz.org/register). This certificate remains the property of International Certifications Limited and must be returned upon request. It must not be altered or defaced in any way and deliberate misuse of the certificate will result in cancellation without notification.

\section*{certificate of}

This is to certify that the management systems of

\section*{Construct Environmental}
have been formally assessed by International Certifications and found to comply with the requirements of

\section*{Eco Warranty:2010}

\section*{Environmental Management Systems - Requirements}

03 Jun 2011
Issue Date

11 May 2014
Expiry Date

D. L. Evans

Managing Director
International Certifications Ltd


\section*{Scope of Registration:}

Asset Rehabilitation associated with the mining, water and sewerage, civil construction, hydro electrical, tanking and marine sectors including rehabilitation and protection of various substrates including steel, timber and concrete

Registered Site(s):
32 Cessna Drive, Caboolture, QLD , 4510, Australia


This certificate is issued by International Certifications Limited, 138 Harris Road, East Tamaki, Auckland, New Zealand, 2141 (www.inticert.com). This certificate remains the property of International Certifications Limited and must be returned upon request. It must not be altered or defaced in any way and deliberate misuse of the certificate will result in cancellation without notification.

\section*{certificate of}

This is to certify that the management systems of

\section*{Construct Environmental}
have been formally assessed by International Certifications and found to comply with the requirements of

\section*{ISO 9001:2008}

Quality Management Systems - Requirements

03 Jun 2011
Issue Date

11 May 2014
Expiry Date

D. L. Evans

Managing Director
International Certifications Ltd


Q-Pulse Id: TMS405


\section*{certificate of}

This is to certify that the management systems of

\section*{Construct Environmental}
have been formally assessed by International Certifications and found to comply with the requirements of

\section*{ISO 14001:2004}

Environmental Management Systems - Requirements with guidance for use

03 Jun 2011
Issue Date

11 May 2014
Expiry Date

D. L. Evans

Managing Director
International Certifications Ltd


Q-Pulse Id: TMS405

\section*{Scope of Registration:}

Asset Rehabilitation associated with the mining, water and sewerage, civil construction, hydro electrical, tanking and marine sectors including rehabilitation and protection of various substrates including steel, timber and concrete.

Registered Site (s):
32 Cessna Drive, Caboolture, QLD , 4510, Australia


This certificate is issued by International Certifications Limited, 138 Harris Road, East Tamaki, Auckland, New Zealand, 2141 (www.intlcert.com). Accreditation by the Joint Accreditation System of Australia and New Zealand (www.jas-anz.org/register). This certificate remains the property of International Certifications Limited and must be returned upon request. It must not be altered or defaced in any way and deliberate misuse of the certificate Active: \(05 / 11 / 2015\)

\section*{certificate of}

This is to certify that the management systems of

\section*{Construct Environmental}
have been formally assessed by International Certifications and found to comply with the requirements of

\section*{OHSAS 18001:2007}

Occupational Health \& Safety Management Systems - Requirements

03 Jun 2011
Issue Date

11 May 2014
Expiry Date

D. L. Evans

Managing Director
International Certifications Ltd


Q-Pulse Id: TMS405

\section*{Scope of Registration:}

Asset Rehabilitation associated with the mining, water and sewerage, civil construction, hydro electrical, tanking and marine sectors including rehabilitation and protection of various substrates including steel, timber and concrete.

Registered Site (s):
32 Cessna Drive, Caboolture, QLD , 4510, Australia





\author{
\section*{FIBERGLASS} \\ 

PREPARATION
 rust, scale, deposits and other debris or contaminants. All resins, including SprayWall, require a clean and dry
substrate for optimal technical performance of the product.

\section*{STEEL}

Solvent Cleaning (SSPC-SP1) may be necessary for steel. Surfaces to be coated should be prepared in accordance with SSPC-SP10 or NACE No.2: "Near White Blast Cleaning".

When applicable, an alternate procedure may be employed using high ( \(>5,000 \mathrm{psi} />34.5 \mathrm{MPa}\) ) or ultrahigh
( \(>10,000 \mathrm{psi} />69.0 \mathrm{MPa}\) ) pressure water cleaning or water
with sand injection and approved rust inhibitors. The
surface profile must be a minimum of 2 mils \(/ 0.05 \mathrm{~mm}\).

\section*{CONCRETE AND MASONRY}

Low (2,500-3,000 psi / 17.2-20.7 MPa) to high ( \(>5,000 \mathrm{psi} />34.5 \mathrm{MPa}\) ) pressure water cleaning, shot blasting, abrasive blasting or combination acid etching and water cleaning can be used to prepare these surfaces.

Prepare fiberglass by rinsing, neutralizing, scarifying and cleaning with water or a mixture of water and solvent. Be sure that all dust and loose particles are removed. The surface should be thoroughly dry before application of SprayWall.
SHELF LIFE \& STORAGE
Shelf Life: 1 year in sealed, unmixed containers at \(60^{\circ} \mathrm{F} / 15^{\circ} \mathrm{C}\). Store in a sheltered area between \(60^{\circ} \mathrm{F}\) and \(85^{\circ} \mathrm{F} / 15^{\circ} \mathrm{C}\) and \(30^{\circ} \mathrm{C}\).

\section*{SAFETY}


 and container label. If you do not fully understand the notices and procedures provided or if you cannot strictly Кұәјеs ןеп! measures are dependent on application methods and work environment. Contact Sprayroq to obtain a copy of the Material Safety Data Sheet at 205-957-0020.











 WARRANTY AND DISCLAIMER
As best determined, the technical data represented for all
Sprayroq products is deemed to be accurate. All products
are to be applied by trained and approved Sprayroq
Certified Partners only and in strict accordance with the
directions for usage and installation of the Sprayroq product. WARRANTY AND DISCLAIMER
As best determined, the technical data represented for all
Sprayroq products is deemed to be accurate. All products
are to be applied by trained and approved Sprayroq
Certified Partners only and in strict accordance with the
directions for usage and installation of the Sprayroq product. WARRANTY AND DISCLAIMER
As best determined, the technical data represented for all
Sprayroq products is deemed to be accurate. All products
are to be applied by trained and approved Sprayroq
Certified Partners only and in strict accordance with the
directions for usage and installation of the Sprayroq product. WARRANTY AND DISCLAIMER
As best determined, the technical data represented for all
Sprayroq products is deemed to be accurate. All products
are to be applied by trained and approved Sprayroq
Certified Partners only and in strict accordance with the
directions for usage and installation of the Sprayroq product. WARRANTY AND DISCLAIMER
As best determined, the technical data represented for all
Sprayroq products is deemed to be accurate. All products
are to be applied by trained and approved Sprayroq
Certified Partners only and in strict accordance with the
directions for usage and installation of the Sprayroq product. WARRANTY AND DISCLAIMER
As best determined, the technical data represented for all
Sprayroq products is deemed to be accurate. All products
are to be applied by trained and approved Sprayroq
Certified Partners only and in strict accordance with the ..............................................................
directions for usage and installation of the Sprayroq product.

\section*{Sprayroq guarantees the products to conform to} Sprayroq guarantees the products to conform to
OILVY XIW 8 SLNヨNOdWOJ Part A, Resin
\(.65: 1.00\) by volume
Part B, Hardener


\section*{Process Specification}

\section*{Structural Rehabilitation \& Corrosion Protection for Circular Structures in Wastewater Collection Systems and Potable Water Systems}

\section*{SECTION 1: GENERAL}

\subsection*{1.01 DESCRIPTION}

This specification includes all work, materials and equipment required for the structural rehabilitation of circular structures. The purpose is to eliminate infiltration, repair voids, restore structural integrity and provide corrosion protection by the application of a spray-applied monolithic resin liner to the wall and bench surfaces of brick/concrete structures or structures produced with any other masonry construction material. These structures include, but are not limited to manholes, wet wells, lift stations and pump stations.

\subsection*{1.02 QUALITY ASSURANCE}
A. Furnish materials of quality required by the American Society for Testing and Materials (ASTM) standards or other approved standards and specifications.
B. Provide guarantee against defective materials and workmanship in accordance with the requirements of these specifications.
C. The contractor installing the finished protective liner will be a certified trained applicator of the specified process.
D. Provide verifiable independent third party creep test results documenting no less than \(70 \%\) retention of flexural modulus of elasticity after 50 years of service. The third party testing firm may not be affiliated with the manufacturer in any way.

\subsection*{1.03 REFERENCES}

American Society for Testing and Materials (ASTM) Annual Book of Standards:
A. ASTM D638-91: Test Method for Tensile Properties of Plastics.
B. ASTM D790-91: Test Methods for Flexural Properties of Unreinforced and reinforced Plastics and Electrical Insulating Materials.

\subsection*{1.04 PROJECT/SITE CONDITIONS}

Co-ordinate with the Construction Manager for traffic control during rehabilitation work at each designated location.

\subsection*{1.05 SEQUENCING}

All required interruptions of flow through manholes, wet wells, pump stations or any other
portion of the plant sanitary sewer system shall be coordinated with and approval received from the Facility Manager or Construction Manager prior to the interruption.

\section*{SECTION 2: PRODUCTS}

\subsection*{2.01 MATERIALS}

\section*{I. Infiltration Control mix:}
A. Minor Infiltration.

\section*{1. Cementicious Grout (De Neef Industrial Products)}

A rapid-setting cementitious grout or chemical grout specifically formulated for leak control should be used to stop minor water infiltration. It should be mixed and applied according to the manufacturer's recommendations and should meet the following minimum requirements.
\begin{tabular}{|l|l|l|}
\hline Compressive strength & ASTM C 109 & \begin{tabular}{l}
\(1,800 \mathrm{psi} @ 1 / 2 \mathrm{hr}\) \\
\(4,000 \mathrm{psi} @ 24 \mathrm{hrs}\) \\
\(5,000 \mathrm{psi} @ 7\) days
\end{tabular} \\
\hline Tensile strength & & \begin{tabular}{l}
\(300 \mathrm{psi} @ 7\) days \\
\end{tabular} \\
& ASTM C 190 & \(350 \mathrm{psi} @ 28\) days \\
\hline
\end{tabular}

\section*{B. Very Active Infiltration}
1. Chemical Grout (De Neef Industrial Chemicals)
a. A chemical grout must be used for stopping very active infiltration, filling voids and should be mixed and applied according to manufacturer's recommendations. The cementitious grout should be volume stable having a minimum 1 day compressive strength of 50 psi and a 28 day compressive strength of 250 psi .
b. Chemical grouts can be used for stopping very active infiltration and should be mixed and applied per manufacturer's recommendations.

\section*{II. Patching and profiling mix:}
A. Cementicious Compound (Strong Seal or equivalent product)

A quick setting cementitious material can be used to bring the substrate to profile by filling voids, cracks, missing mortar and other substrate defects. It should be mixed and applied according to the manufacturer's recommendations and should meet the following minimum requirements.
\begin{tabular}{|l|l|l|}
\hline Compressive strength & ASTM C 109 & \begin{tabular}{l}
\(1000 \mathrm{psi} @\) 1 hr \\
3500 psi @ 48 hrs \\
\(5000 \mathrm{psi} @ 28\) days
\end{tabular} \\
\hline Tensile strength & ASTM C 307 & \begin{tabular}{l}
\(200 \mathrm{psi} @ 24\) hrs \\
\(300 \mathrm{psi} @\) days
\end{tabular} \\
\hline
\end{tabular}

\section*{III. Resin Based Liner:}
A. The resin based material shall be used to form the sprayed on/structural enhanced monolithic liner covering all interior surfaces of the structure including benches and inverts of manholes. The finished liner shall be SprayWall® as manufactured by Sprayroq, Inc. or approved equal and conform to the minimum physical requirements listed below.
\begin{tabular}{|l|l|l|}
\hline Compressive strength & ASTM D 695 & \(10,500 \mathrm{psi}\) \\
\hline Tensile strength & ASTM D 638 & \(7,000 \mathrm{psi}\) \\
\hline Flexural strength & ASTM D 790 & \(12,000 \mathrm{psi}\) \\
\hline Bond & & Shall exceed tensile strength of substrate \\
\hline Flexural modulus (initial) & ASTM D 790 & \(735,000 \mathrm{psi}\) \\
\hline Density & & \(87 \pm \mathrm{pcf}\) \\
\hline
\end{tabular}
a. The finished structure shall be corrosion resistant to: Hydrogen Sulfide; \(20 \%\) sulfuric Acid; 17\% Nitric Acid; 5\% Sodium Hydroxide; road salts for winter conditions as well as other common ingredients of the sanitary sewage environment.
b. The wall of the resin based liner will be structurally designed to withstand the hydraulic load generated by the groundwater table \& restore structural integrity. The long term ( 50 yr .) value of the flexural modulus of elasticity will be a minimum of \(500,000 \mathrm{psi}\) and is an integral part of the engineering equation used to design the wall thickness of the structural liner.

For this reason the value of the long term flexural modulus of the proposed product will be certified by an independent, third party testing lab and submitted with the design calculations for each individual structure.

Definition- Long term value will be identified as initial flexural modulus less the reduction in value caused by Creep over a fifty (50) year minimum period and verified by DMA testing.
B. Other Materials: Because of the advantages associated with rapid cure and infinite thickness capabilities, no resin based materials other than polyurethane shall be used to achieve the structural enhancement without prior approval of the Construction Manager.

\section*{SECTION 3: EXECUTION}

\subsection*{3.01 INSPECTION}
A. Evaluation of Atmosphere: Prior to entering structures, an evaluation of the atmosphere will be conducted to determine the presence of toxic, flammable vapors or possible lack of oxygen. The evaluation shall be in accordance with local, state or federal safety regulations.
3.02 PREPARATION
A. Place covers over all pipe openings to prevent extraneous material from entering the sewer system. All foreign material shall be removed from the structures' wall and bench/floor using a pressure water spray (minimum 2500 psi ). The use of acid for cleaning purposes, no matter how dilute, will not be allowed. Loose or protruding brick, mortar and concrete shall be removed by using a mason's hammer and chisel. Fill any large voids with quick setting patch mix as described in Paragraph (2.01 IIA). The surface to be repaired must be clean and free of any loose materials.
B. Minor leaks shall be stopped using the quick-setting specially formulated infiltration control mix (paragraph 2.01 IA ) and shall be mixed and applied per manufacturer's recommendations. When severe infiltration is present, drilling may be required in order to pressure grout outside the structure using either a cementitious or chemical grout (paragraph 2.01 IB ). Manufacturer's recommendations shall be followed when pressure grouting is required.

\subsection*{3.03 \\ INSTALLATION/APPLICATION}
A. Application Temperatures: Application of liner shall not be made unless the ambient temperature inside the structure is 50 degrees or higher.
B. Bench/Invert Repair:
1. The manhole bench must be sprayed but depending on availability and future plans, some judgment consideration will have to be made regarding the invert. Important issue here is the necessity to insure a monolithic system is achieved.
2. After blocking flow through the structure and thorough cleaning/preparatory work has been achieved. The sprayed on resin-based liner shall be applied to the invert, bench and wall areas in the same manner as specified for the liner application below. The spray shall be applied such that the entire structure receives a structurally enhanced monolithic liner.
3. The finished invert surfaces shall be smooth, free of ridges and will be sloped in the direction of flow. Special care shall be used to insure a smooth transition between the new manhole invert and intersecting pipeline inverts such that flow will not be impaired.
C. Liner Application: The resin based liner shall be manually sprayed on to all surfaces by a trained technician who is experienced in the application of a spray applied resin and has been certified by the manufacturer. Appropriate personal protection equipment shall be utilized but in every case when applying the liner, the sprayer and personnel in direct contact with the spray atmosphere, will always be protected by supplied air.

The minimum thickness of the material applied is to be no less than 250 mils ( \(1 / 4\) ") in order to support structural integrity. No other products such as cement or grouts may be used as part of the structural reinstatement, however, said products may be used as part of the repair process prior to sprayed application of the structure as specified in 2.01 IIA.

Application of the spray applied material must be completed in one (1) mobilization in order to minimize the disruption and cost of excessive bypassing, pipeline plugging, traffic control and all other support services.

The finished manhole must be returned to full service immediately after the spray
application is complete.
D. Curing: The structure should be allowed to cure for 24 hours and return to ambient temperature prior to any physical testing, including vacuum testing.

\subsection*{3.04}

FIELD QUALITY CONTROL
A. The following test/inspection will be performed by the Construction Manager.
1. Visually verify the absence of leaks from infiltration.
B. The following tests shall be performed by the Contractor.
1. Vacuum Test: A vacuum test conforming to the requirements of ASTM C1244 shall be performed for every lined manhole or circular structure where practical.

Document: QUU12-04

\author{
Queensland Urban Utilities \\ Level 6, Brisbane Transit Centre \\ 171 Roma Street \\ Brisbane
}

To Whom It May Concern:
RE : WARRANTY ON SPRAYWALL COATING FOR IPSWICH PUMP WELLS -SP01- Old Toowoomba Road, SP33-McAuliffe Street and SP34-Brisbane Road.HALLCO ENGINEERING.

Please accept this letter as confirmation that we are happy to extend the warranty to a total of ten (10) years, on the coating of the pump wells through Ipswich.

As licensed applicators of Sprayroq, our staff have been extensively trained in the preparation and coating of various projects including pump stations. Strict conditions are contained in our contract with Sprayroq to ensure projects are completed in the manner specified by Sprayroq.

These requirements, coupled with the quality of the Spraywall product, and our International Certifications for Quality, WPH\&S and Environment offer our clients the highest level of comfort that they are receiving the best available service in their coatings contractor.

Sprayroq, offers a three (3) year warranty as a standard and we, Construct Environmental Pty Ltd are happy to extend that warranty to ten years based on a number of conditions -

1/ The coating supplied will be monolithic, in that it will be one coating, unbroken throughout the pump well. Should penetrations be required postproject, Construct Environmental must be employed to "make good" the area after the penetration is complete.

The overall effectiveness of the coating is based on a number of crucial factors, one of which is that there are no areas where gas/acid can gain access to the protected substrate behind the coating.

2/ The pump station will be used day to day to collect and deliver sewerage and all the chemicals etc which can be reasonably expected.

The Spraywall product has been proven in test conditions and in completed projects to resist the chemicals generally and reasonably found in sewer.

Any abnormally high level of chemical/s (not generally or reasonably found in sewerage) should be made known to Construct Environmental who may decide to complete an inspection of the coating to ensure its longevity.

As part of our standard procedure, Construct Environmental completes an inspection of all of the projects completed after the first year and then after three years. These inspections are designed to ensure we identify, address any issues as soon as possible.

In this case, we will conduct inspections at 1 year, 3 years, five years and ten years.

Spraywall has been life tested in these conditions. The results show, after 50 years exposed to the environmental and chemical conditions found in a sewer system, a loss of just \(27 \%\) of its physical properties is the resultant.

It is with this in mind that I have no hesitation in complying with the requested extension of the warranty.

I trust that this document provides the satisfaction you require. Please feel free to contact me regarding this matter at any time.

Kind Regards,
Dave Turnbull
Managing Director

\section*{Construct finvionmental}

32 Cessna Drive | Caboolture | Qld | 4510
PO Box 1158 | Caboolture | Qld | 4510
P | 0731391697
D | 0754993012
M | 0407224700
E | dturnbull@constructenvironmental.com.au
W | www.constructenvironmental.com.au
W | www.pdstrategic.com.au

: גəwoisn

:



\section*{9. Brisbane Road Commissioning Plan}


\section*{Typical New Sewage Pump Station}

\section*{Commissioning Plan}
\begin{tabular}{|l|l|}
\hline Site ID and Name & SP 344 \\
\hline Commissioning Date(s) & 19 DECEMBER 2012. \\
\hline
\end{tabular}

In Attendance
\begin{tabular}{|l|l|l|}
\hline Name & Role During Commissioning & Company \\
\hline DARRFN WERLEY & CONTRACTOR & J\& PRICHARDSON \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\section*{Contents}
1 ELECTRICAL WORKS CHECKLIST ..... 3
1.1 SWITCHBOARD FACTORY ACCEPTANCE TEST ..... 3
1.2 SWICHBOARD ELECTRICAL INSPECTION ..... 3
1.3 RADIO ANTENNA MAST LOCATION .....  3
1.4 SUPPLY AUTHORITY .....  3
1.5 TELECOMMUNICATION AUTHORITY (FOR SITES LAND LINES) ..... 3
2 ELECTRICAL INSTALLATION CHECKS ..... 5
2.1 INSTALL NEW SWITCHBOARD .....  .5
2.1.1 Install Switchboard ..... 5
2.1.2 Install Generator Mains (For Sites with Permanent Generators) ..... 5
2.1.3 Energise New Switchboard .....  5
2.2 CONNECT FIELD INSTRUMENTATION TO NEW SWITCHBOARD .....  7
2.2.1 Field Devices ..... 7
2.2.2 Radio Antenna Installation .....  7
2.2.3 Radio antenna Installation .....  8
2.2.4 Electrical Inspection .....  8
3 CIVIL STRUCTURE TESTING .....  .8
3.1 TESTING FOR LIQUID RETAINING STRUCTURES (7 DAY FILL TEST) .....  8
3.2 TESTING FOR LIQUID TIGHTNESS (7 DAY EMPTY TEST) ..... 9
4 ELECTRICAL, MECHANICAL \& HYDRAULIC COMMISSIONING .....  .9
4.1 MECHANICAL INTEGRITY CHECKS ..... 10
4.2 HYDRAULIC PRESSURE TEST ..... 10
4.3 FLOWMETER INTEGRITY CHECKS ..... 10
4.4 ELECTRICAL COMMISSIONING OF PUMPS ..... 10
4.5 SCADA TESTING ..... 11
4.6 PRELIMINARY PUMP PERFORMANCE CHECKS ..... 11
4.7 PUMP CURVES PERFORMANCE CHECKS ..... 12
4.8 TOP WATER OPERATION ..... 12
4.8.1 \(\quad 50 \mathrm{~Hz}\) Operation ..... 12
4.8.2 \(\quad 33 \mathrm{~Hz}\) OPERATION ..... 12
4.8.3 \(\quad 25 \mathrm{~Hz}\) OPERATION ..... 13
5 FUNCTIONALITY TESTING OF VFD ..... 14

\section*{1 \\ ELECTRICAL WORKS CHECKLIST}

The following checklist is to be completed and signed by the electrical contractor.
1.1 SWITCHBOARD FACTORY ACCEPTANCE TEST
\begin{tabular}{|l|l|}
\hline Task & Completed \\
\hline \begin{tabular}{l} 
FAT has been completed as per QUU FAT Document and all defects that were \\
identified have been rectified.
\end{tabular} & \(i / 6 / 12\) \\
\hline
\end{tabular}
1.2 SWICHBOARD ELECTRICAL INSPECTION
\begin{tabular}{|l|l|}
\hline Task & Completed \\
\hline \begin{tabular}{l} 
The following QUU Factory Inspection has been completed and all defects have \\
been rectified. \\
CHE28 Factory Inspection Checks - Switchboard
\end{tabular} & \(81: 2\) \\
\hline
\end{tabular}

\subsection*{1.3 RADIO ANTENNA MAST LOCATION}
\begin{tabular}{|l|l|}
\hline Contractor Task & Result \\
\hline \begin{tabular}{l} 
Check the location of the antenna mast and ensure that the new position will not \\
be directly below electrical transmission lines.
\end{tabular} & \begin{tabular}{l} 
Location \\
OK [ \\
Antenna \\
dir.
\end{tabular} \\
\hline
\end{tabular}
1.4 SUPPLY AUTHORITY
\begin{tabular}{|c|c|}
\hline Contractor Task & Outcome \\
\hline The relevant supply authority has been organised to install the metering into the Switchboard. & \begin{tabular}{l}
Company \\
ENERSEX \\
Booked for \\
/ 1 @
\(\qquad\) (time)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{1.5 TELECOMMUNICATION AUTHORITY (FOR SITES LAND LINES)}
\begin{tabular}{|l|l|}
\hline Contractor Task \(N / A\). & Result \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline The relevant telecommunication authority has been organised to install the land \\
line into the Switchboard. & Company \\
\hline Booked for \\
\hline
\end{tabular}

Contactor's Supervisor
Name: PAR R FN............f.Y... Date: .1.9..11.2.1.12. Signature: 9

QUU Commissioning Manager
Name:
Date:
Signature: ......

\section*{2 ELECTRICAL INSTALLATION CHECKS}

\section*{2．1 INSTALL NEW SWITCHBOARD}

2．1．1 Install Switchboard
\begin{tabular}{|c|c|c|}
\hline Contractor Task & & Outcome \\
\hline Install and connect the required mains and earth． & & OK \(\square^{7}\) \\
\hline Record the cable insulation resistance of the 3 phases & \[
\begin{aligned}
& 126 \\
& 127 \\
& 125
\end{aligned}
\] & \begin{tabular}{l}
A \(\qquad\) Megohm \\
B \(\qquad\) Megohm．
\(\qquad\) Megohm
\end{tabular} \\
\hline Record earth resistance & & O 1 i ohms \\
\hline Point to point phase continuity & & R to L1 OK回 Wto L2 OK■ B to L3 OKL \\
\hline Install the direct connected kWhr Meter & \(N / A\) ． & OK \(\square\) \\
\hline
\end{tabular}

\section*{2．1．2 Install Generator Mains（For Sites with Permanent Generators）}
\begin{tabular}{|c|c|c|}
\hline Contractor Task & & Outcome \\
\hline Record insulation resistance of the 3－phases & \[
\begin{aligned}
& 22 \\
& 23 \\
& 21
\end{aligned}
\] & \begin{tabular}{l}
A＿＿Megohm \\
B＿Megohm． \\
C \\
Megohm
\end{tabular} \\
\hline Record earth resistance & & O－1 ohms \\
\hline Point to point phase continuity & & \begin{tabular}{l}
R to L1 OKㅁ \\
Wto L2 OKㅁ \\
B to L3 OK口
\end{tabular} \\
\hline
\end{tabular}

\section*{2．1．3 Energise New Switchboard}
\begin{tabular}{|c|c|}
\hline Contractor Task & Outcome \\
\hline Retrieve mains 3－phase pole fuses from lock out box as per QUU Isolation and Lock Out procedure． & OK \(\mathrm{V}^{\prime}\) D \\
\hline Ensure new switchboard main incomer is turned＂Off＂． & OKロ DW \\
\hline Install the 3－phase pole fuses． & OK® \({ }^{\text {a }}\)－ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Turn on mains switch & OK OW \\
\hline Check 3 phase voltages & \(\mathrm{AB} \underline{416 \mathrm{~V}}\) \\
\hline & BC 417 V \\
\hline & CA 415 V \\
\hline Check MEN connection. & OK回DU \\
\hline
\end{tabular}

Contactor's Supervisor
Name: DARREN WEDLEY...
Date: ..19.).1.2 1! 8
Signature: .1. ........

QUU Commissioning Manager
Name:
Date:
Signature: \(\qquad\)

\section*{2．2 CONNECT FIELD INSTRUMENTATION TO NEW SWITCHBOARD}

\section*{2．2．1 \\ Field Devices}
\begin{tabular}{|c|c|}
\hline Contractor Task & Outcome \\
\hline Install and connect the hydrostatic level probe to the transmitter & \[
\begin{array}{|l|}
\hline \text { OK } D W \\
0 \text { to } \quad(\mathrm{m}) \\
\hline
\end{array}
\] \\
\hline Connect the delivery pressure probe to the transmitter & \[
\begin{aligned}
& \text { OK } \mathbb{d}^{\prime} D \mathcal{D}^{\prime} \mathrm{D} \\
& 0 \text { to } \quad \text { (m) }
\end{aligned}
\] \\
\hline Connect the delivery flow meter to the flow meter transmitter & \[
\begin{aligned}
& \text { OK } \mathbb{Q} \text { DW } \\
& 0 \text { to } \quad(1 / \mathrm{s})
\end{aligned}
\] \\
\hline Install and connect the Multitrode LR3 wet well high level relay Probe & \[
\begin{aligned}
& \text { OK } \mathbb{Q}_{\mathrm{D}}^{\mathrm{D}} \underset{(\mathrm{~m})}{ }
\end{aligned}
\] \\
\hline Install and connect the Multitrode SIR surcharge imminent level relay Probe & \[
\begin{aligned}
& \text { OK } \underset{(\mathrm{m})}{\mathrm{O}} \mathrm{~W} \\
& 0 \text { to }
\end{aligned}
\] \\
\hline Connect the moisture in oil sensor for each pump（sites with option A only） &  \\
\hline Connect the moisture in stator for each pump（sites with option B1 only） & \[
\begin{aligned}
& \text { OK } \square>=1 \\
& \text { N/A } \square
\end{aligned}
\] \\
\hline Connect the motor bearing temperature for each pump（sites with option B2 only） & \[
\begin{aligned}
& \text { OK } ⿴ 囗 ⿰ 丿 ㇄ \\
& \text { N/A } \square \\
& \hline
\end{aligned}
\] \\
\hline Connect the reflux valve micro switch for each pump（sites with option C only） & \[
\begin{aligned}
& \text { OK } \square \text { N/A } \square \\
& \text { N }
\end{aligned}
\] \\
\hline Connect the upstream manhole surcharge imminent probe（sites with option D only） & \[
\begin{aligned}
& \text { OK } \square D w \\
& \text { N/A } \square
\end{aligned}
\] \\
\hline Connect the Multitrode LR2 sump pump start／stop probes（sites with option E only） & \[
\begin{aligned}
& \text { OK } \square \text { N/A } \\
& \text { N }
\end{aligned}
\] \\
\hline Connect the Multitrode LR4 sump pump high／trip probes（sites with option E only） & \[
\begin{aligned}
& \text { OK } \square \text { DW } \\
& \text { N/A } \square
\end{aligned}
\] \\
\hline Connect the sump pump（sites with option E only） &  \\
\hline Connect the generator IO cables（sites with option F only） & \[
\begin{aligned}
& \text { OK } \text { D Du } \\
& \text { N/A } \square
\end{aligned}
\] \\
\hline Connect the thermistors for each pump（sites with option 1 only） & \[
\begin{aligned}
& \text { OK } \square \text { O~ } \\
& \text { N/A } \square
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{2．2．2 Radio Antenna Installation}
\begin{tabular}{|l|l|}
\hline QUU Programmer Task & Outcome \\
\hline
\end{tabular}
\begin{tabular}{|l|l|} 
Install new mast with Antenna, orientate antenna to the position determined in \\
section 3.1.2 connect coaxial cable plugs.
\end{tabular}

\subsection*{2.2.3 Radio antenna Installation}
\begin{tabular}{|l|l|}
\hline QUU Programmer Task & Outcome \\
\hline QUU programmer must complete the following procedures & \\
From the SSM086 Standard Fixed Speed Sewage Pumping Station (S.A.T.) & \(/ /\) \\
Section 1: Setup and Pre-Commissioning Checks & \\
\hline
\end{tabular}

\subsection*{2.2.4 Electrical Inspection}
\begin{tabular}{|l|l|}
\hline QUU Electrical Inspector & Outcome \\
\hline \begin{tabular}{l} 
The following QUU Site Inspection tests have been completed and all defects \\
have been rectified.
\end{tabular} & \\
\hline CHE68 Site Inspection Checks - Cables & \(/\) \\
\hline CHE69 Site Inspection Checks - Electric Motors & \(/\) \\
\hline CHE70 Site Inspection Checks - Instruments & \(/\) \\
\hline CHE71 Site Inspection Checks - Switchboards & \(/\) \\
\hline CHE72 Site Inspection Checks - Cable Ladder/Tray/Duct & \(/\) \\
\hline
\end{tabular}

\section*{3 CIVIL STRUCTURE TESTING}

Before this test can commence, the electrical installation of the wet well level sensor must be complete and the SCADA system must be recording the wet well level.
3.1 TESTING FOR LIQUID RETAINING STRUCTURES (7 DAY FILL TEST)

As per section 7 of AS 3735, civil structures must be tested of liquid tightness. A printout of the wet well level over the entire test period shall be attached in the commissioning report.
\begin{tabular}{|l|l|}
\hline Contractor Task & Outcome \\
\hline Fill the wet well & \\
As per the following procedure the wet well shall be filled to the \\
surcharge imminent level: \\
With the formal agreement of the engineer, the structure should be & OK \(\square\) \\
filled at uniform rate of not greater that 2 m in a 24 hour period. \\
When first filled the liquid shall maintained by the addition of further \\
liquid for a stabilising period of 7 days while absorption and
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l} 
autogenic healing takes place. \\
After the stabilising period the level of the liquid surface shall be \\
recorded at 24 hour intervals for test period of 7 days.
\end{tabular}} & \\
\hline & Date (dd/mm/yy) & Time (hh::mm) & Level (mAHD) \\
\hline Initial level & & & \\
\hline Day 1 & & & \\
\hline Day 2 & & & \\
\hline Day 3 & & & \\
\hline Day 4 & & & \\
\hline Day 5 & & & \\
\hline Day 6 & & & \\
\hline Day 7 & & \\
\hline
\end{tabular}

\subsection*{3.2 TESTING FOR LIQUID TIGHTNESS (7 DAY EMPTY TEST)}

Once the structure has been tested for liquid retention, the wet well and upstream system must also be tested for system infiltration. To do this the wet well must be emptied and the wet well level monitored over a 7 day period. A printout of the wet well level over the entire test period shall be attached in the commissioning report.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Contractor Task } & Outcome \\
\hline \begin{tabular}{l} 
Empty the wet well below the stop duty A level record the wet well \\
level at 24 hour intervals for test period of 7 days.
\end{tabular} & OK \(\square\) \\
\hline & Date (dd/mm/yy) & Time (hh::mm) & Level (mAHD) \\
\hline Initial level & & & \\
\hline Day 1 & & & \\
\hline Day 2 & & & \\
\hline Day 3 & & & \\
\hline Day 4 & & & \\
\hline Day 5 & & & \\
\hline Day 6 & & & \\
\hline Day 7 & & \\
\hline
\end{tabular}

\section*{4 ELECTRICAL, MECHANICAL \& HYDRAULIC COMMISSIONING}

To ensure that the station is fully operations BEFORE it is cut into the live sewage system, the station shall undergo a full functional test by closing the rising main
isolation valve and recirculating flow through the flow meter and back to the wet well via the scour system.

\subsection*{4.1 MECHANICAL INTEGRITY CHECKS}
\begin{tabular}{|l|l|}
\hline Contractor Task & Outcome \\
\hline \begin{tabular}{l} 
Visual examination of the whole of the Works for completeness and acceptable \\
standard of workmanship and finish.
\end{tabular} & OK \\
\hline \begin{tabular}{l} 
Inspect pump mounting bolts, guide rail, flange and support bracket bolts have \\
been tightened
\end{tabular} & OK \\
\hline \begin{tabular}{l} 
Visual inspections to ensure all sealing gaskets are in place; all supporting \\
brackets have been fastened.
\end{tabular} & OK \\
\hline \begin{tabular}{l} 
Operational testing of all valves and check on sealing and direction of closing, \\
reflux valves mounted for the correct direction of flow
\end{tabular} & OK \\
\hline
\end{tabular}

\subsection*{4.2 HYDRAULIC PRESSURE TEST}
\begin{tabular}{|l|l|}
\hline Contractor Task & Outcome \\
\hline \begin{tabular}{l} 
Visual inspection for leaks during hydraulic pressure test for the pump \\
discharge piping up to the rising main isolation valve. Pressure test shall be 1.5 \\
times the pump shut off head
\end{tabular} & OK \\
\hline
\end{tabular}

\subsection*{4.3 FLOWMETER INTEGRITY CHECKS}
\begin{tabular}{|l|l|}
\hline Contractor Task & Outcome \\
\hline \begin{tabular}{l} 
Visual examination of the whole of the Works for completeness and acceptable \\
standard of workmanship and finish.
\end{tabular} & OK \\
\hline \begin{tabular}{l} 
Inspect and check flange bolts for tightness, visual inspections to ensure all \\
sealing gaskets are in place.
\end{tabular} & OK \\
\hline
\end{tabular}

\subsection*{4.4 ELECTRICAL COMMISSIONING OF PUMPS}
\begin{tabular}{|l|l|}
\hline QUU Programmer \& Contractor Task & Outcome \\
\hline \begin{tabular}{l} 
Check the rotation of each pump by bumping the pump On / Off via the local \\
"Emergency Start" switch.
\end{tabular} & Pmp1OK_ \\
\hline \begin{tabular}{l} 
PUMP 1: \\
While running the pump via the Emergency Start switch - Check the 3-phase \\
motor current.
\end{tabular} & B___Amp_Amps Amps \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline PUMP 2: \\
\begin{tabular}{l} 
While running the pump via the Emergency Start switch - Check the 3-phase \\
motor current.
\end{tabular} & Amps \\
\hline \begin{tabular}{l} 
At this stage the Brisbane Water Programmer must complete the following \\
procedures
\end{tabular} \\
\begin{tabular}{l} 
From the SSM086 Standard Fixed Speed Sewage Pumping Station (S.A.T.) \\
Section2 : On Site Commissioning Procedure
\end{tabular} & OK \(\square\) \\
\hline
\end{tabular}

\subsection*{4.5 SCADA TESTING}
\begin{tabular}{|l|l|}
\hline QUU Programmer \& Contractor Task & Outcome \\
\hline The QUU Programmer must complete the following procedures with the & \\
assistance from the Commissioning Engineer and SCADA Commissioning & \\
Engineer in the Control Room. & OK \(\square\) \\
From the SSM086 Standard Fixed Speed Sewage Pumping Station (S.A.T.) & \\
Section3 : SCADA Commissioning Procedure & \\
\hline
\end{tabular}

\subsection*{4.6 PRELIMINARY PUMP PERFORMANCE CHECKS}

A single pump performance curve at the indicated Hz , for each pump, shall be generated by throttling of the scour valve. The curve to be plotted from five points while pump is operating 50 Hz at QUUL and TWL. Plotted points are to be Head v Flow.
\begin{tabular}{|l|l|}
\hline Contractor Task & Outcome \\
\hline \begin{tabular}{l} 
Fill the wet well with clean water to the Top Water Level (TWL)-See Drawing \\
\(486 / 5 / 7-0048-005\)
\end{tabular} & OK \\
\hline \begin{tabular}{l} 
Close rising main isolation valve and check pigging connection isolation valve \\
closed
\end{tabular} & OK \\
\hline Check both pump isolation valves open & ORtally open Scour valve \\
\hline Partiall & ORen air bleed/Anue well washer pump 1 and 2
\end{tabular}

\section*{leakage.}

\subsection*{4.7 PUMP CURVES PERFORMANCE CHECKS}
\begin{tabular}{|l|l|}
\hline Contractor Task & Outcome \\
\hline \begin{tabular}{l} 
The tables in section 4.8 and 4.9 are to be filled out by checking the pump \\
curve performance by throttling the scour valve until flow meter records the \\
required flow (1/s) and recording the discharge pressure, motor amps and \\
voltage readings in the table provided.
\end{tabular} & OK \\
\hline \begin{tabular}{l} 
Open Anue washer isolation valve, operate Pump 2, check operation of Anue \\
well washer
\end{tabular} & \(\mathrm{OK} \square \mathrm{N} / \mathrm{A}\) \\
\hline \begin{tabular}{l} 
Pump curves to be generated from tabled information and added to the " As \\
Constructed Drawings"
\end{tabular} & OK Q \\
\hline
\end{tabular}

\subsection*{4.8 TOP WATER OPERATION}

\subsection*{4.8.1 \(\quad 50 \mathrm{~Hz}\) Operation}
\begin{tabular}{|c|c|c|l|l|l|l|}
\hline \begin{tabular}{l} 
Pump \\
Number
\end{tabular} & \multicolumn{2}{|l|}{Hz} & Flow L/s & \begin{tabular}{l} 
Discharge \\
Pressure \\
(mAHD)
\end{tabular} & \begin{tabular}{l} 
Wet well \\
Level \\
(mAHD)
\end{tabular} & \begin{tabular}{l} 
Motor \\
Amps
\end{tabular} \\
\hline 1 & 50 & 0 & & & Voltage \\
\hline 1 & 50 & 50 & & & & \\
\hline 1 & 50 & 100 & & & & \\
\hline 1 & 50 & 125 & & & & \\
\hline 1 & 50 & 150 & & & & \\
\hline 2 & 50 & 0 & & & & \\
\hline 2 & 50 & 50 & & & & \\
\hline 2 & 50 & 100 & & & & \\
\hline 2 & 50 & 125 & & & & \\
\hline 2 & 50 & 150 & & & & \\
\hline
\end{tabular}

\subsection*{4.8.2 \(\quad 33 \mathrm{~Hz}\) OPERATION}
\begin{tabular}{|c|l|c|l|l|l|l|}
\hline \begin{tabular}{l} 
Pump \\
Number
\end{tabular} & Hz & Flow L/s & \begin{tabular}{l} 
Discharge \\
Pressure \\
(mAHD)
\end{tabular} & \begin{tabular}{l} 
Wet well \\
Level \\
(mAHD)
\end{tabular} & \begin{tabular}{l} 
Motor \\
Amps
\end{tabular} & Voltage \\
\hline \(\mathbf{1}\) & \(\mathbf{3 3}\) & \(\mathbf{0}\) & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & 33 & 40 & & & & \\
\hline 1 & 33 & 60 & & & & \\
\hline 1 & 33 & 100 & & & & \\
\hline 1 & 33 & 120 & & & & \\
\hline 2 & 33 & 0 & & & & \\
\hline 2 & 33 & 40 & & & & \\
\hline 2 & 33 & 60 & & & & \\
\hline 2 & 33 & 100 & & & & \\
\hline 2 & 33 & 120 & & & & \\
\hline
\end{tabular}

\subsection*{4.8.3 \(\quad 25 \mathrm{~Hz}\) OPERATION}
\begin{tabular}{|c|c|c|l|l|l|l|}
\hline \begin{tabular}{l} 
Pump \\
Number
\end{tabular} & \multicolumn{2}{|l|}{Hz} & Flow L/s & \begin{tabular}{l} 
Discharge \\
Pressure \\
(mAHD)
\end{tabular} & \begin{tabular}{l} 
Wet well \\
Level \\
(mAHD)
\end{tabular} & \begin{tabular}{l} 
Motor \\
Amps
\end{tabular} \\
\hline 1 & 25 & 0 & & & Voltage \\
\hline 1 & 25 & 40 & & & & \\
\hline 1 & 25 & 60 & & & & \\
\hline 1 & 25 & 100 & & & & \\
\hline 2 & 25 & 0 & & & & \\
\hline 2 & 25 & 40 & & & & \\
\hline 2 & 25 & 60 & & & & \\
\hline 2 & 25 & 100 & & & & \\
\hline
\end{tabular}

\section*{5 FUNCTIONALITY TESTING OF VFD}

The following test should be carried out once the "SSM085 Standard Fixed Speed SP FAT v1-10.doc" has been completed. NOTE: the VFD drive has 2 setups - local and remote - both of which are configurable. To ensure full functionality, the test below are often repeated for both local and remote mode.
\begin{tabular}{|c|c|c|}
\hline Task & VFD 1 & VFD 2 \\
\hline \begin{tabular}{l}
Local/Remote Mode Setup: When the station local-remote selector switch is selected to \\
Remote: \(\quad\) setup 1 is active on both Drives \\
Local: \(\quad\) setup 2 is active on both Drives
\end{tabular} & \[
\begin{aligned}
& \square \\
& \square
\end{aligned}
\] &  \\
\hline \begin{tabular}{l}
Drive in Auto Mode: \\
In both local and remote modes repeat the following: \\
Ensure that the Auto mode is active \\
Press the "Hand Start" button on the keypad \\
Ensure that the Auto mode feedback deactivates \\
Press the "Auto Start" button on the keypad \\
Ensure that the Auto mode is active
\end{tabular} &  &  \\
\hline Run Command, Speed Control and Speed Feedback, Run at Maximum & & \\
\hline \begin{tabular}{l}
In Remote: - Setup 1 - DO FOR BOTH PUMPS SEPERATLY \\
Command the pump to run via the digital output from the PLC. \\
Ensure that the VFD runs and the running signal is received from by the RTU. \\
Ensure that the VFD speed is controlled by the RTU Analog output. \\
Ensure that the speed of the pump from the VFD to the RYU is accurate. \\
Ensure that the Maximum Speed is 50 Hz (or whatever the current design max is). \\
Initiate Surcharge Pumping mode. \\
Ensure that all required pumps are commanded to run at maximum speed and that the run at max is active. \\
Stop Surcharge Pumping mode but activate duty A and then Duty B start commands \\
Ensure that the duty A and then the duty B pumps are commanded to run at the PID speed control and that the speed feedback is accurate. \\
Set the Drive to run in remote at minimum speed, then force the run at max output. \\
Ensure that the drive runs at maximum speed.
\end{tabular} &  &  \\
\hline \begin{tabular}{l}
In Local: Setup 2 - DO FOR BOTH PUMPS SEPERATLY \\
Command the pump to run via the start pushbutton (output from the PLC) \\
Ensure that the VFD runs and the running signal is received from by the
\end{tabular} & \(\square\) & \(\square\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline RTU. & \(\square\) & \(\square\) \\
Ensure that the VFD speed is controlled by the POT. & \(\square\) & \(\square\) \\
Ensure that the Maximum Speed is 50 Hz (or whatever the current design \\
max is) & \(\square\) & \(\square\) \\
Ensure that the speed of the pump from the VFD to the RTU is accurate. & \(\square\) \\
If the site is interlocked: Try to start 2nd pump \\
Ensure that it gets commanded to run and does so & \(\square\) \\
If the site is interlocked: Try to start 2nd pump \\
Ensure that it does NOT get commanded to run and does not run \\
Set the Drive to run in local at minimum speed, then force the run at max \\
output. \\
Ensure that the drive DOES NOT runs at maximum speed.
\end{tabular}
\(\qquad\)

Signature : Date. \(\qquad\)

\section*{10. Surge Tank}


Shaping the Future
Cardno Bowler Pty Ltd Telephone:

\section*{DRY DENSITY RATIO / MOISTURE RATIO REPORT}
\begin{tabular}{l}
\begin{tabular}{|ll|ll|}
\hline Client: & Hallco Engineering Pty Ltd & Report Number: & 1986/R/3956-1 \\
Client Address: & PO Box 12, MOFFAT BEACH & Project Number: & 1986/P/223 \\
Project: & 6 Mile Creek, McEwan Rd, Dinmore & Lot Number: & \\
Location: & McEwan Rd Dinmore & Report Date: & \(31 / 01 / 2013\) \\
Component: & Surge Tank - Fill & Client Reference/s: & \\
Area Description: & & Page Number: & Page 1 of 1 \\
\hline Test Procedures: & \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|l|l|}
\hline Sample Number & 1986/S/8310 & & \\
ID / Client ID & - & & \\
Lot Number & - & & \\
Date / Time Tested & \(24 / 01 / 2013\) & & \\
Material Source & Unknown & & \\
Material Type & Base & & \\
Sampling Method & AS1289.1.2.1 Cl 6.4 b \\
Test / Layer Depth (mm) & \(150 /-\) & & \\
Standard or Modified & Standard & & \\
LOCATION & Fill under surge tank & & \\
& FL & & \\
Test Fraction (mm) & ols Centre of pad & & \\
Sample Oversize Wet (\%) & <19.0 mm & & \\
Sample Oversize Dry (\%) & 0 & & \\
MDR Sample Number & 0 & & \\
MDR Sample Date / Update & \(1986 /\) S/8310 & & \\
Assigned MDR (Yes / No) & \(24 / 01 / 2013\) & & \\
\hline Moisture Test Results: & No & & \\
Field Moisture Content (\%) & & 4.6 & & \\
Optimum Moisture Content (\%) & 8.0 & & \\
Variation from OMC (\%) & \(3.5 \%\) Dryer than OMC & & \\
Moisture Ratio (\%) & 57.5 & & \\
\hline Density Test Results: & 2.18 & & \\
Field Dry Density (t/m³) & 2.16 & & \\
Maximum Dry Density (t/m 3 ) & 101.0 & & \\
Dry Density Ratio Required (\%) & & & \\
Dry Density Ratio (\%) & & & \\
\hline
\end{tabular}
Remaks


Shaping the Future
Our Ref 10408ms1.13
Contact SUNNY SINGH
\(\left.\begin{array}{ll}\text { Cardno Bowler Pty Ltd } \\ \text { ABN } 74128806735\end{array}\right)\)

\section*{REPORT ON PILING INSPECTIONS}

SIX MILE CREEK PUMP STATION
REDBANK

This is to confirm that Cardno Bowler carried out inspections of bored piles at the Six Mile Creek pump station. Inspections were carried out on the \(23^{\text {rd }}\) and \(24^{\text {th }}\) of January 2013.

The minimum specified requirements for the foundations were as follows:-
All piles inspected required a minimum embedment depth of 4500mm and an allowable bearing capacity of 400 kPa .

We confirm that the piles at Six Mile Creek pump station meet the minimum requirements as per the specifications above.

I trust this meets with your requirements.


\section*{Site Inspection of Pile works at Six Mile Creek Pump Station Project \(13^{\text {th }}\) November 2012.}

Inspected the rebar cages to be used for the pile works and found them to be robustly built using the specified rebar. The cage sizes were as design drawings stipulated.

The bored holes were free of loose material and to design width and depth in clay ground.
Cages were located in the bore holes using clip on PVC spacers to keep a central position to ensure adequate concrete cover.

Brendan Hatherly

13 February 2013
Senior Contracts Manager
Major Projects \& Commercial Services-CPWP
1 Lower Cross Street
Goodna, QLD, 4300

т \(0734362847 \mid\) M 0478300893
E Brendan.hatherly@urbanutilities.com.au
www.urbanutilities.com.au

OUEENSLAND
UrbanUtilities

TECHNICAL SERVICES, BRISBANE
ABN 90009679734
19 Nott Street, South Brisbane Qld 4101
P.O. Box 3250, South Brisbane Qld 4101

PHONE: (07) 30172800

FAX: (07) 38448860
\begin{tabular}{ll} 
Report No. & 74003890 \\
Sample Date : & \(23-01-13\) \\
Page & 1 of 1 \\
FINAL REPORT &
\end{tabular}

This report replaces all previous issues of Report Number: 74003890

\section*{CONCRETE CYLINDER COMPRESSIVE STRENGTH REPORT (1) AS1012.9}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Batch Details} & \multicolumn{11}{|c|}{Specimen Details} \\
\hline Plant Truck & \begin{tabular}{l}
F'c \\
MAS \\
Slump
\end{tabular} & \begin{tabular}{l}
Delivery \\
Docket
\end{tabular} & \begin{tabular}{l}
Batch \\
Time \\
Sample \\
Time
\end{tabular} & \begin{tabular}{l} 
Actual \\
Slump \\
2nd Slump \\
(2) \\
\hline
\end{tabular} & \begin{tabular}{c} 
Sample \\
Method \\
Comp \\
\((3,4,5,6)\) \\
\hline 7
\end{tabular} & \begin{tabular}{l}
Sample \\
No.
\end{tabular} & Date
Tested & \begin{tabular}{|r}
\(|\)\begin{tabular}{r} 
Dime \\
Avg Dia \\
\((\mathrm{mm})\)
\end{tabular} \\
\hline
\end{tabular} & \begin{tabular}{l}
sions \\
Hght \\
(mm)
\end{tabular} & \[
\begin{array}{|c}
\hline \text { Mass per } \\
\text { Unit Vol } \\
(\mathrm{Kg} / \mathrm{m} 3) \\
(7,8)
\end{array}
\] & \[
\left\lvert\, \begin{gathered}
c \\
a \\
p \\
(9)
\end{gathered}\right.
\] & Initial Curing (hrs) & Std Curing (days) (10) & \begin{tabular}{l}
Age \\
Days \\
or \\
Hrs
\end{tabular} & Strength (MPa) & M
a
r
k \\
\hline \[
\begin{gathered}
3095 \\
\text { PLC4500 }
\end{gathered}
\] & \[
\begin{array}{|l|}
\hline S 40 \mathrm{MPa} \\
20.0 \mathrm{~mm} \\
100 \mathrm{~mm}
\end{array}
\] & \[
\begin{aligned}
& \hline 57148235 \\
& \text { T4473914 }
\end{aligned}
\] & \[
\begin{aligned}
& 14: 07 \\
& 14: 30
\end{aligned}
\] & 100 & \[
\begin{gathered}
7.2 .1 \\
E
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { 02077A } \\
& \text { 02077B } \\
& \text { 02077C }
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 30 / 01 / 13 \\
20 / 02 / 13 \\
20 / 02 / 13
\end{array}
\] & \[
\begin{gathered}
99.4 \\
100.2 \\
100.2
\end{gathered}
\] & \[
\begin{aligned}
& 197 \\
& 198 \\
& 198
\end{aligned}
\] & \[
\begin{aligned}
& 2420 \\
& 2380 \\
& 2380
\end{aligned}
\] & G & \[
\begin{aligned}
& 22 \\
& 22 \\
& 22
\end{aligned}
\] & \[
\begin{aligned}
& \hline 6 \\
& 27 \\
& 27
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { 7D } \\
& \text { 28D } \\
& \text { 28D }
\end{aligned}
\] & 34.0
48.5
48.5 & N \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Casting Authority : \\
Sample Remarks : \\
AS1012.1,3.1,8.1 conducted by Allied Concrete Testing NATA Accredited Facility \# 18303, Report No as per Sample No
\end{tabular}} & \multicolumn{11}{|l|}{\begin{tabular}{ll} 
Product Description: PMP M700SH 40/20/100 \\
Location: & PIERS
\end{tabular}} \\
\hline
\end{tabular}


TECHNICAL SERVICES, BRISBANE ABN 90009679734
19 Nott Street, South Brisbane Qld 4101 P.O. Box 3250, South Brisbane Qld 4101

FAX: (07) 38448860

\section*{CLIENT HALLCO ENGINEERING PTY LTD PO BOX 12 MOFFAT BEACH, QLD 4551}
\begin{tabular}{ll} 
Report No. & \(\mathbf{7 4 0 0 4 2 2 3}\) \\
Sample Date : & \(13-02-13\) \\
Page & 1 of 1 \\
INTERIM REPORT &
\end{tabular}

This report replaces all previous issues of

\section*{BRISBANE RD \\ PROJECT NEXT TO SIX MILE CREEK \{BRISBANE RD \\ Cross Street: TILE ST \\ REDBANK, QLD 4301}

CONCRETE CYLINDER COMPRESSIVE STRENGTH REPORT (1) AS1012.9
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Batch Details} & \multicolumn{10}{|c|}{Specimen Details} \\
\hline Plant Truck & \begin{tabular}{l}
F'c \\
MAS \\
Slump
\end{tabular} & Delivery Docket & \begin{tabular}{l}
Batch \\
Time \\
Sample \\
Time
\end{tabular} & \begin{tabular}{l} 
Actual \\
Slump \\
2nd Slump \\
(2) \\
\hline 110
\end{tabular} & \begin{tabular}{c} 
Sample \\
Method \\
Comp \\
\((3,4,5,6)\) \\
\hline 7
\end{tabular} & \begin{tabular}{l}
Sample \\
No.
\end{tabular} & \[
\begin{gathered}
\text { Date } \\
\text { Tested }
\end{gathered}
\] & \begin{tabular}{|c}
\(\mid c\) \\
Dimensions \\
Avg Dia. Hight \\
\((\mathrm{mm})\) \\
\((\mathrm{mm})\) \\
(8)
\end{tabular} & Mass per Unit Vol ( \(\mathrm{Kg} / \mathrm{m} 3\) ) \((7,8)\) & \[
\begin{array}{|l|}
\hline \mathrm{C} \\
\mathrm{a} \\
\mathrm{p} \\
\text { (9) }
\end{array}
\] & \begin{tabular}{l}
Initial \\
Curing \\
(hrs)
\end{tabular} & \begin{tabular}{l}
Std \\
Curing \\
(days) \\
(10)
\end{tabular} & \begin{tabular}{l}
Age \\
Days \\
or \\
Hrs
\end{tabular} & Strength (MPa) & M
a
r
k \\
\hline \[
\begin{gathered}
3097 \\
\text { PLC4555 }
\end{gathered}
\] & \[
\begin{aligned}
& \hline S 40 \mathrm{MPa} \\
& 20.0 \mathrm{~mm} \\
& 100 \mathrm{~mm}
\end{aligned}
\] & T4252370 & \[
\begin{aligned}
& \hline 09: 34 \\
& \text { 09:55 }
\end{aligned}
\] & \[
110
\] & \[
\begin{gathered}
7.2 .1 \\
E
\end{gathered}
\] & 44591601A & 20/02/13 & 100.3196 & 2340 & G & 26 & 6 & 7D & 33.5 & N \\
\hline \multicolumn{6}{|l|}{Casting Authority : Sample Remarks :} & \multicolumn{10}{|l|}{\begin{tabular}{ll} 
Prodact Description: & PMP M700SH 40/20/100 \\
Location: & GROUND SLAB
\end{tabular}} \\
\hline
\end{tabular}


\section*{CHARLATTE}

\section*{MDR Manufacturer's Data Report}

Project:

Desc:

Customer: J \& P Richardson
Vol:
23000 L

Design Pressure: \(\quad 16\) BAR

Test Pressure:
24 BAR

Serial Number(s): 23000KU7
Vol 1 of 1

HYDROPNEUMATIC VESSEL \(N^{\circ}\) :
23000KU7
DRAWING N \({ }^{\circ}\) KU007M00000
customer: OLAER AUSTRALIA Pty Ltd

\section*{MDR AS 4458}

Test certificat
AQ 0226
Declaration of conformity
Inspection certificate Bureau Véritas

\section*{WELDING FILE}

Procédures specifications
Procédures qualifications records
Welders Qualification Certificates

MATERIALS FILE
Metal Characteristics AQ 0078

Shell Metal Certificate
Dished Ends Metal Certificate
INSPECTION FILE
Accreditated Certificate ol non destructive test inspection
Name Plaque (OLAER AUSTRALIA)
Report of Thickness control AQ 0058
Report of Visual control AQ 0059
Inspection Report of Dimensions AQ 0064
Inspection Report of Paint Thickness . AQ 0066
Roughness measurement test report AQ 0069
Dye penetrant examination test report AQ 0376
Inspection on radiographie inspection AQ 0108

\section*{NOTE AND DRAWING}

Commissioning and maintenance instructions
Instructions for changing the bladder
Drawing

AQ 0245
-

SPT 0163
SPT 0212

\section*{CERTIFICATE OF PLANT DESIGN REGISTRATION}

\section*{WorkCover}

Work Health \& Safety Act 2011
Work Health \& Safety Regulation 2011

ABN: 77682742966
Phone: (02) 43215498 Fax: (02) 43255094
Issue Date: \(\underline{27 / 11 / 2012}\)


Note: The design of an item of plant registered under the Occupational Health and Safety Regulation immediately before the repeal of that regulation is deemed to have been registered under part 5.3 of the WHS Regulation.

\section*{PRESSURE VESSEL DESIGN VERIFICATION CERTIFICATE}

HRL Technology Report No 48121304
For: Olaer Australia
Designed by: Sven Geboers
Pressure Vessel Description: 23,000 L 1.6 MPa vertical bladder surge vessel
Design Pressure: 1.6 MPa , Design Temperature: \(0^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{C}\),
Hazard Level: B, Contents: Water, Nitrogen
Hydrostatic Test Pressure: 2.4 MPa , Class: AS 1210-2A

I have verified the design described by the following documents:

\section*{Drawings}

Drawing No. KU007M00000 Rev.4, 'SEWAGE WATER SURGE VESSEL 23000 LITRES', dated 25/10/2012

\section*{Pressure Vessel Calculations}

Calculation Ref. OAU327 Rev.2, 'AS1210-2010 Pressure Vessel Calculation Sheet', dated 24/10/2012
Exclusions or other relevant documents (if applicable)
N/A
Mechanical Testing Requirements
N/A
Design and Verification Standard:
AS 1210-2010 Pressure Vessels

I certify that the above plant design has been assessed to the requirements of the above code and based on the information provided is deemed to comply with the requirements of that code.


\begin{tabular}{|l|l|l|l|}
\hline QA 397C & Date: \(\quad 28 / 11 / 11\) & Page 1 of 1 \\
\hline
\end{tabular}

\title{
 \\ TEST CERTIFICATE for gaz pressurised vessels
}

Suivant AS1210-1
AS1210-1 according
Demandeur redevable et lieu de l'épreuve :
Test requested by and chargeableto :

\section*{17 rue Paul Bert 89400 MIGENNES}

Tél : 03.86.92.30.00 Fax : 03.86.92.30.01

\section*{CARACTERISTIOUES DE L'ÉPREUVE TEST CHARACTERISTICS}

> Date du test: \(\quad\) 11-déc-12 Date of test:

Pression de calcul, service PS :
Working pressure :
Volume V:
Volume :
Désignation des appareils :
Description of vessels :
Matériau :
Material :
Constructeur :
Manufacturer :
23000 litres
ACCUMULATEUR HYDROPNEUMATIQUE HYDROPNEUMATIC ACCUMULATOR

SA516 GR60

\section*{CHARLATTE}

Nombre d'appareil :
Number of vessels :
Numéro (s) d'appareil (s) :
Serial number :
Gaz :
Gas :
Observations :
Remarks :

\section*{CERTIFICAT DE VISITE DE L'APPAREIL AVANT ÉPREUVE CERTIFICATE OF VESSEL VISIT BEFORE HYDRAULIC TEST}

Le contrôleur certifie avoir visité intérieurement et extérieurement dans toutes ses parties, tant en cours de construction qu'après son achèvement, l'appareil ci-dessus visé. Il a constaté que cet appareil est construit dans ses différents éléments, et dans l'assemblage de ces éléments entre eux, sans défaut ni malfaçon. Cet appareil peut en conséquence être soumis à l'épreuve hydrostatique finale.
I the undersigned, quality control inspector, certify having carried out a thorough internal and external inspection, both during and after manufacture, of the above mentionned pressure vessel. I certify that this vessel is constructed in its different components, and in the assembly of these components, without fault or defect. This vessel can there fore undergo the reglementary hydraulic test.
Fait le:
\(A t\) :
11-déc-12
par:
by:
Mr RAPPENEAU, Mr CARON Mr ŁAFORGE, Mr PHACENTINI contrôleur


Année de fabrication : Year of manufacture : 2012

Pression de test PT :
Test pressure :
Fluide de température d'essai :
Fluid and temperatur of test :

24 bar

\section*{EAU \(20^{\circ} \mathrm{C}\) \\ Water \(20^{\circ} \mathrm{C}\)}

1

23000KU7
AZOTE OU AIR
NITROGEN OR AIR


Raison sociale du client /Customer
Cliente/Kunde

\section*{OLAER AUSTRALIA PTY LTD}

Adresse/Adress :
Dirección/Adresse:
Numéro de la commande/Order number
Número del pedido/Auftragsnummer:
Affaire/Job :
Asunto/Geschäft :
12492

\section*{PROJECT CARDNO}

Désignation/Designation : ACCUMULATEUR HYDROPNEUMATIQUE/HYDROPNEUMATIC ACCUMULATOR Descripción/Bezeichnung: ACUMULADOR HIDRONEUMATICO/DRUCKWASSERSPEICHER
\(\mathrm{N}^{\circ}\) plan/Drawing number :
\(N^{\circ}\) de plano/Plansnummer : KU007M00000 / Catégorie IV
Quantité/Quantity :
1
\(\mathrm{N}^{\circ}\) de série/Serial number :
\(N^{\circ}\) de serie/Seriennummer :

\section*{23000KU7}

Autres renseignements/Other information/Otra información/Weitere auskunft:
Normes harmonisées : EN 287-1 ; EN 1092-1; EN 10028-2 ; EN 15614-1
- Nous certifions que la fourniture citée, est conforme aux exigences de l' AS1210 en vigueur, ainsi qu'à la commande ou sous-
commande du client.
- We hereby certify that the above mentioned equipment has been manufactured according of AS1210 as per the specifications
required by the he customer.
- Certificamos que la expedición citada ha sido fabricada con les especificaciones AS 1210, así como al pedido o sub-pedido del
cliente.
- Wir beglaubigen das erwähnte Material, gemäß AS 1210 und des Auftrags oder Teilauftrages des Auftrags oder Teilauftrages
des Kunden.


Nom/Name/Nombre/Name: Date/Date/Fecha/Datum : :
Signature/Signature/Firma/Unterschrift : :
11-déc-12
service controle

Date et visa du responsable nommé par la direction :
Of supervisor, appointed by the management :
11-déc-12
Fecha y visto bueno del Responsable nombrado por la dirección :
Datum und Stempel des vor der Verwaltung ernannten Verantwortlichen :

LAFORGE Alain


RAPPENEAU Etienne

\title{
AUSTRALIAN STANDARD 4458 MANUFACTURER'S DATA REPORT- PRESSURE VESSEL
}
\(\qquad\)
Niems 1 to 9 inclusive to be completed for all vessels





\section*{INSPECTION CERTIFICATE}

\section*{LCS 412025 C41 JP}
\begin{tabular}{|l|l|}
\hline PROJECT: Redbank Queensland - Australia & \begin{tabular}{l} 
Ref: AR 8900 - OLAER AUSTRALIA Pty Ltd \\
CROMER
\end{tabular} \\
\hline BV Client: CHARLATTE RESERVOIRS-MIGENNES & \begin{tabular}{l} 
P/o nr: 4500028600 dated 14/11/2012 \\
(client to BV)
\end{tabular} \\
\hline Manufacturer: CHARLATTE RESERVOIRS-MIGENNES & \begin{tabular}{l} 
P/o nr: 012492 dated 05 September 2012 \\
(client to CHARLATTE RESERVOIRS)
\end{tabular} \\
\hline Inspection requested by: CHARLATTE RESERVOIRS-MIGENNES \\
\hline
\end{tabular}

\section*{SUPPLY / SUBJECT OF INSPECTION}
\& 1 ANTI WATER HAMMER HYDROCHOC Serial n \({ }^{\circ} 23000\) KU 7 - Drawing N \({ }^{\circ}\) KU 007 M00000 rev 4 PS: 16 bar - PT: 24 bar - Design Temperature : \(0^{\circ} \mathrm{C} / 60^{\circ} \mathrm{C}\)

\section*{Scope of inspection:}

The following inspections were performed on \(11^{\text {th }}\) December 2012.
- Visual and dimensional examination
* Manufacturer's file
* Measurement equipment calibration
* Measurement of thickness of tank
4. Hydrostatic test at 24 bar
* Marking on vessel

\section*{Conclusion -}

No deviation found. Vessel met the requirements of AS 1210-2010-2A. It is identified with a nameplate: manufacturer, 2012, volume, PS, PT, TS, serial number.

The undersigned, inspector to Bureau Veritas, certifies that the here abovementioned supply was inspected in conformity with the applicable requirements of the purchase order and the contractual requirements governing the mission enilitisfed to Bureau Veritas without any remarks.

Inspected by:...
Name: JM PLANET Signature:...
Date of issue:... \(13^{\text {th }}\) of December 2012
Inspection centre: BV LE CREUSOT


Signature:...
Distribution: \(\square\) CLIENT \(\boxtimes\) MANUFACTURER
\begin{tabular}{ll} 
Company Name & \begin{tabular}{l} 
Olaer Australia \\
Sven Geboers
\end{tabular} \\
Engineer: & \\
Application Date & \(24-O c t-12\) \\
Olaer Reference & OAU327rev2.xlsx \\
Manufacturer: & Charlatte Reservoirs \\
Desc & \(23000 m^{3}\) Vertical 16 bar EUV Surge Vessel \\
Drawing Number(s) & KU007M00000-04 \\
OLAER Calculation Ref & OAU327rev2.xlsx
\end{tabular}

\section*{Location}

\section*{50012}

Google
Adduas Replant old


\section*{Checks:}
Shell thickness: ..... ok
End Thickness: ..... ok
Manhole Thickness: ..... ok
Inner manhole Thickness: ..... ok
Branch thickness: ..... ok
Flange Allowable Operating Pressure >= Vessel Design pressure ..... ok
Flange Test Pressure >= Vessel Test pressure ..... ok
Inspection Opening for general purpose vessels ..... ok
MANHOLE Reinforcement ..... ok
OUTLET Reinforcement ..... ok
Lifting Lugs ..... ok
Bolts and Legs ..... ok
Local Loads Leg Supports ..... ok

\section*{Design Loadings Considered Section 3.2.3 AS1210-2012}
\begin{tabular}{|c|c|c|}
\hline a & Internal and External Design Pressures & yes \\
\hline b & Maximum Static Head of contained fluid under normal operating conditions and under any specified abnormal fluid levels above normal operating conditions, including the effect of fluids with a specific gravity greater than 1 & yes \\
\hline C & The force due to standard gravity acting on the mass of the vessel and normal contents under operating and test conditions, including conditions of reduced or zero pressure, if applicable & yes \\
\hline d & Superimposed loads, such as other vessels, attached piping weight and operating loads, lining, insulation, operating equipment, platforms, snow, water, ice and the like & no \\
\hline e & Wind Loads - See appendix J for wind loads & yes \\
\hline \(f\) & Earthquake Loads - See appendix J and AS/NZS1200 for selection of earthquake loads & yes \\
\hline g & For transportable vessels, the inertia forces and loads from the chassis or support frames due to motion during transport & n/a \\
\hline \multirow{7}{*}{h} & Local stresses at: & \\
\hline & Lugs & no \\
\hline & saddles & no \\
\hline & girders & n/a \\
\hline & supports & no \\
\hline & nozzles & no \\
\hline & due to the reaction of vessel supports and loads from internal and external structures and connecting piping, considering all creditable imposed loading acting concurrently & no \\
\hline i & Forces caused by the method of support during lifting, transit and erection & yes \\
\hline j & Shock loads due to changes in fluid flow, surging of contents, sloshing of fluids, or reaction forces (e.g. Relief valve discharge) & no \\
\hline k & Moments due to eccentricity of the centre of pressure relative to the neutral axis of the section & n/a \\
\hline 1 & Forces due to temperature conditions, including the effects of differential expansion of parts or attached piping & no \\
\hline m & Other external or environmental conditions (e.g. Floodings, wave action, impact, collision or earth loads & no \\
\hline n & Forces due to fluctuating pressure or temperature & yes \\
\hline
\end{tabular}





\(\omega\)
2
0
0
0
0
0
0
0
0
0
,
\begin{tabular}{|c|c|c|c|}
\hline & 3 & 3 & 3 \\
\hline \multicolumn{4}{|l|}{8} \\
\hline
\end{tabular}



\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}

ұиәшәэıди!әу ұәдпо ‘̌
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{} & edW & \(0 \cdot 0\) & = & \\
\hline & & 00 & =¢'t/ə & 0 & & \\
\hline & & 00 & =s' \(\varepsilon\) /wy & 0 & 09 & \\
\hline 00 & =s't/ə¢ & \(\nu^{\circ}\) & \(00 \pm\) & чјбuәия ррə!к & & edw \\
\hline 00 & \(==^{\prime \prime} \varepsilon /\) /wy & ○。 & \(00 \tau\) & цъбиәия ә!!suәł & & edw \\
\hline \(0{ }^{\circ}\) & \(=s^{\prime} \tau / \partial{ }^{\prime}\) & \(\mathrm{O}_{0}\) & S9 & чıбuә.ıs p|a!к & & edw \\
\hline 00 & \(=S^{\prime} \varepsilon /\) /wy & \(\mathrm{O}^{\circ}\) & ¢9 & цъбиәия ә!!suәł & & edw \\
\hline 00 & =s't/əy & \(\mathrm{O}_{0}\) & Ot &  & & EdW \\
\hline 00 & =s' \(\varepsilon /\) /wy & \(\mathrm{O}_{0}\) & 0 t & цъбиәия ә!!suә! & & edw \\
\hline
\end{tabular}



AS1210-2010 Pressure Vessel Calculation Sheet

\section*{Vessel Information}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{D}_{\text {inside }}=\) & 2455.6 & mm & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\pi * \mathrm{D}_{\text {inside }}^{2}{ }^{*} \mathrm{~h}=\) volume of elliptical end}} \\
\hline \(\mathrm{hellipitical} \mathrm{end}=\) & 636 & mm & & \\
\hline \(\mathrm{r}_{\text {inside }}\) & 1227.8 & mm & \multicolumn{2}{|l|}{6} \\
\hline \(\mathrm{h}_{\text {cylinder part of vessel }}\) & 4,000 & mm & \multicolumn{2}{|l|}{height of cylinder part of vessel} \\
\hline Volume of Cylinder part of vessel & 18,943 & Ltr & \(\pi * r^{2} * h=v\) & = volume of cylinder part of vessel \\
\hline Volume of 2 elliptical ends & 4,016 & Ltr & & \\
\hline Volume of Vessel & 22,959 & Ltr & & \\
\hline Weight of Vessel & 12,099 & kg & 300 & E \\
\hline Design Pressure & 1.6 & MPa & 300 & \\
\hline Test Pressure \(\mathrm{P}_{\mathrm{h}}=\left(\mathrm{P}{ }^{*} 1.5{ }^{*} \mathrm{f}_{\mathrm{h}} / \mathrm{f}\right)\) & 2.4 & MPa & 1000 & \\
\hline Corrosion Allowance & 2 & mm & & \\
\hline Design Temperature & 60 & \({ }^{\circ} \mathrm{C}\) & 1000030 & \\
\hline Material: & \multicolumn{2}{|l|}{SA-516M Gr. 60} & 3E+08 & A \\
\hline Manufacturing Tolerance: & 0.8 & \multicolumn{3}{|l|}{(mm) for shell nom. Thickne 25} \\
\hline & 3.75 & (mm) for & nom. Thicknes 25 & \\
\hline Construction & \multicolumn{4}{|l|}{AS1210-2010 Class 2A} \\
\hline \multicolumn{5}{|l|}{Hazard Level Calculation} \\
\hline Contents 1 & \multicolumn{4}{|l|}{Water} \\
\hline Contents 2 & \multicolumn{4}{|l|}{Air/Nitrogen} \\
\hline \(\mathrm{f}_{\mathrm{c}}=\) & 10 & \multicolumn{3}{|l|}{Compressibility factor for gas} \\
\hline \(\mathrm{f}_{\mathrm{f}}=\) & 1 & \multicolumn{3}{|l|}{non harmful gas} \\
\hline \(\mathrm{f}_{\mathrm{s}}=\) & 3 & \multicolumn{3}{|l|}{service factor} \\
\hline  & 1,102,03 & \multicolumn{3}{|l|}{MPaL} \\
\hline Hazard Level & B & & \multicolumn{2}{|c|}{AS4343-2005} \\
\hline \[
\begin{aligned}
& \text { Design Strength - Shell } \\
& \mathrm{f}=\quad 118.3 \mathrm{MPa} \\
& { }^{*} \mathrm{~N} / \mathrm{mm} 2=\mathrm{MPa} \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{design strength used @} & 60 \({ }^{\circ}\) & SA-516M Gr. 60 \\
\hline \[
\begin{aligned}
& \text { Design Strength - Ends } \\
& \mathrm{f}=\quad 118.3 \quad \mathrm{MPa} \\
& { }^{*} \mathrm{~N} / \mathrm{mm} 2=\mathrm{MPa} \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{design strength used} & 60 ¢ & SA-516M Gr. 60 \\
\hline
\end{tabular}



\section*{Inspection Opening for general purpose vessels}
\begin{tabular}{lccc} 
Inside diameter & 2455.6 & mm & \\
length shell (note 2) & 4,000 & mm & Location \\
& & & End \\
Outlet Inside Opening Size & 480 & mm & End \\
Inspection Opening size & 600 & mm &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Inside diameter & \begin{tabular}{c} 
Minimum Clearance size of \\
openings (mm)
\end{tabular} & \begin{tabular}{c} 
Minimum number of \\
openings (note 2)
\end{tabular} & Location of openings \\
\hline\(>1500\) & \begin{tabular}{c} 
Elliptical manhole or \\
equivalent (see table 3.20.9 \\
in AS1210-2010)
\end{tabular} & One for shells of any length & \begin{tabular}{c} 
In the shell or end to give \\
ready ingress and egress
\end{tabular} \\
\hline- & - & - \\
\hline
\end{tabular}
\(\Upsilon\) Either handhole or headhole option may be selected
Notes:
1. Size openings for jackets of jacketed vessels need not exceed 65 mm OD
2. The length of shell is measured between the welds attaching the ends to the cylindrical shell
3. Inspection, head- and handholes may be omitted if a manhole is provided
4. For shells longer than 3000 mm , the number of openings shall be increased so the maximum distance between handholes does not exceed 2000 mm and that of the handholes 3000 mm
5. For shells up to 2000 mm long, a single headhole in one end may be used

Inspection Openings Comply? Yes


SP344 Brisbane Rd Redbank SPS - Civil and Mechanical OM Manual
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{OUTLET Reinforcement} \\
\hline \(\mathrm{P}_{1}=\) & 1.66 MPa & \multicolumn{6}{|l|}{calculated pressure \(=\) design pressure+static head pressure} \\
\hline & 25.00 mm & \multicolumn{6}{|l|}{nominal thickness of end cap} \\
\hline \(\mathrm{T}_{1}=\) & 23.00 mm & \multicolumn{6}{|l|}{thickness at opening of end cap - corrosion allowance} \\
\hline \(\mathrm{n}=\) & 1.00 & \multicolumn{6}{|l|}{factor for seamless sphere (always 1.0 for fictional areas)} \\
\hline \multicolumn{3}{|l|}{if limit parallel to vessel is > 80\% of vessel diameter than \(\mathrm{t}=\)} & & & 17.4 mm & 3.18.7.2 & as1210-2010 \\
\hline \multicolumn{3}{|l|}{if limit parallel to vessel is \(<=80 \%\) of vessel diameter than \(\mathrm{t}=\)} & \(P_{1} 2 K_{1}\) & & 15.6 mm & 3.18.7.2 & as1210-2010 \\
\hline \multicolumn{8}{|c|}{\(4 f n-P_{1}\)} \\
\hline \(\mathrm{t}=\) & 15.6 mm & \multicolumn{6}{|l|}{thickness required for a seamless end} \\
\hline \(\mathrm{d}=\) & 559 mm & \multicolumn{6}{|l|}{diameter of the finished opening \({ }_{\left(+2^{*} \text { corrosion allowance) }\right.}\)} \\
\hline \(\mathrm{n}=\) & 1 & \multicolumn{6}{|l|}{welded end - flange will be welded to the cylindrical shell} \\
\hline \(F=\) & 1 & \multicolumn{6}{|l|}{factor AS1210-2010 Figure 3.18.7} \\
\hline \(\mathrm{T}_{\mathrm{b} 1}=\) & 92.5 mm & \multicolumn{6}{|l|}{nominal thickness of branch wall (less corrosion allowance)} \\
\hline \multirow[t]{2}{*}{\(\mathrm{t}_{\mathrm{b}}=\)} & \(P_{1} d\) & & & & & & \\
\hline & 2f-P \({ }_{1}\) & & & & & & \\
\hline \multirow[t]{2}{*}{\(\mathrm{t}_{\mathrm{b}}=\)} & 3.95 mm & \multicolumn{6}{|l|}{calculated thickness of a seamless branch wall} \\
\hline & 100 mm & \multicolumn{6}{|l|}{Thickness of flange} \\
\hline \(\mathrm{T}_{\text {r1 }}\) & 0 mm & \multicolumn{6}{|l|}{Extra reinforcement attached to vessel} \\
\hline \(2.5 * \mathrm{~T}_{1}=\) & 57.50 mm & \multicolumn{6}{|l|}{Limit of reinforcement 3.18.10.3 (a) p. 157} \\
\hline 2.5 * \(\mathrm{c}_{\mathrm{b} 1}+\mathrm{T}_{\mathrm{r} 1}\) & 231.25 mm & \multicolumn{6}{|l|}{Limit of reinforcement 3.18.10.3 (b) p. 157} \\
\hline \(\mathrm{L}_{\mathrm{n} 1}=\) & 55 mm & \multicolumn{6}{|l|}{height of reinforcing element (on the outside)} \\
\hline \(\mathrm{f}_{11}=\) & 1.00 & \multicolumn{6}{|l|}{design strength of set through branch divided by design strength of shell end} \\
\hline \(\mathrm{f}_{\mathrm{r} 2}=\) & 1.00 & \multicolumn{6}{|l|}{design strength of branch wall extended beyond the shell thickness divided by design strength of shell} \\
\hline \(\mathrm{D}_{\mathrm{o}}=\) & 780 mm & \multicolumn{6}{|l|}{outside diameter of outlet flange} \\
\hline \(\mathrm{d}_{1}=\) & 555 mm & \multicolumn{6}{|l|}{inside diameter of outlet flange (worse case is the larger inside diameter)} \\
\hline \(\mathrm{BH}=\) & 18 mm & \multicolumn{6}{|l|}{diameter of bolt hole} \\
\hline \(\mathrm{L}_{\text {BH }}=\) & 50 mm & \multicolumn{6}{|l|}{length of bolt hole} \\
\hline \(h=\) & 20 mm & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{height of outlet flange protruding the shell corrosion allowance}} \\
\hline \(\mathrm{ca}=\) & 2.00 mm & & & & & & \\
\hline D/2h & 2.00 & & & & & & \\
\hline \(\mathrm{K}_{1}=\) & 0.90 & \multicolumn{6}{|l|}{value for spherical radius factor \(\mathrm{K}_{1}\) - AS1210-table 3.18.7.2 Pg. 153} \\
\hline \(\mathrm{D}=\) & 2459.6 mm & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{inside diameter less wall thickness sphere radius - AS1210-3.18.7.2}} \\
\hline \(\mathrm{K}_{1} \mathrm{D}=\) & 2213.6 mm & & & & & & \\
\hline \(f_{\text {endcap }}=\) & 118.3 MPa & design strength of & cap @ & \(60^{\circ} \mathrm{C}\) & SA-51 & Gr. 60 & \\
\hline \(f_{\text {reinforcement element }}=\) & 118.3 MPa & design strength r & Elem. @ & \(60^{\circ} \mathrm{C}\) & SA-51 & G r. 60 & \\
\hline \(\mathrm{d}_{2}\) & 480 mm & inside diameter s & & & & & \\
\hline
\end{tabular}

\section*{Limits:}

Parallel to vessel wall
\begin{tabular}{|ll|}
\hline 2* \(^{*}\) & 1118.0 mm \\
\(2^{\star}\left(0.5 \mathrm{~d}+\mathrm{T}_{1}+\mathrm{T}_{\mathrm{b} 1}\right)\) & 790.00 mm \\
Max Value & \(\mathbf{1 1 1 8 . 0 ~ m m}\) \\
\hline
\end{tabular}

Normal to vessel wall
\begin{tabular}{|c|c|c|}
\hline 2.5 * \(\mathrm{T}_{1}=\) & 57.50 mm & \multirow[b]{3}{*}{as per 3.18.10.3 (a) as per 3.18.10.3 (b)} \\
\hline 2.5 * \(\mathrm{T}_{\mathrm{b} 1}+\mathrm{T}_{\mathrm{r} 1}\) & 231.25 mm & \\
\hline Min. value: & 57.50 mm & \\
\hline Min Value & 57.50 mm & \multirow[b]{3}{*}{as per 3.18.10.3 (b) is limit} \\
\hline \(0.8^{*}\left(\mathrm{dT}_{\mathrm{b} 1}\right)^{0.5}+\mathrm{T}_{\mathrm{r} 1}\) & 181.91 mm & \\
\hline Limit is: & 181.91 mm & \\
\hline \(\mathrm{L}_{\mathrm{n} 1}=\) & 55.00 mm & \\
\hline Limit is: & \[
181.91 \mathrm{~mm}
\] & \\
\hline Min. value: & 55.00 mm & Value used for calculating A2 \\
\hline
\end{tabular}

\begin{tabular}{lc}
\(\mathrm{A}=\) & \(d^{\star} t^{\star} F+2^{\star} T_{b 1}{ }^{*} t^{\star} F^{*}\left(1-f_{r 1}\right)\) \\
\(\mathrm{A}=\) & \(8,717.7 \mathrm{~mm}^{2} \quad\) Please see fig 1 for area A \\
\(\mathrm{A} 1=\) & \(\left(n^{*} T 1-F^{\star} t\right)^{\star} d-2^{\star} T_{b 1}{ }^{\star}\left(n^{\star} T 1-F^{\star} t\right)^{\star}\left(1-f_{r 1}\right)\) \\
\(\mathrm{A} 1=\) & \(4154.1 \mathrm{~mm}^{2} \quad\) Please see fig 1 for area \(\mathrm{A}_{1}\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{A} 2=\) & \(2 *\left(T_{b 1}-t_{b}\right)^{*} L_{n 1}{ }^{*} f_{r 2}\) & \\
\hline A2 = & 9,740.3 \(\mathrm{mm}^{2}\) & Please see fig 1 for area \(\mathrm{A}_{2}\) \\
\hline width \(=\) & 108.50 mm & \(\left(D_{0}-d_{1}\right) / 2-\left(2^{*}\right.\) corrosion allowance) \\
\hline height \(=\) & 18.00 mm & \(h\)-corrosion allowance \\
\hline A3 \(=\) & (width*height)*2 & \\
\hline A3 = & \(3,906.0 \mathrm{~mm}^{2}\) & Please see fig 1 for area \(\mathrm{A}_{3}\) \\
\hline \(\mathrm{A}_{\text {reduction }}\) & \(0.0 \mathrm{~mm}^{2}\) & \\
\hline \(\mathrm{A}_{\text {additional }}=\) & \(0 \mathrm{~mm}^{2}\) & \\
\hline
\end{tabular}
\begin{tabular}{||lr||}
\hline Areduction & \\
Edges & 0.00 \\
Boltholes in A3 & 0 \\
& \\
& 0 \\
\hline
\end{tabular}
\(\mathrm{A} 1+\mathrm{A} 2+\mathrm{A} 3+\mathrm{A}_{\text {additional }}-\mathrm{A}_{\text {reduction }}=17,800 \mathrm{~mm}^{2}\)
\(\mathrm{A} 1+\mathrm{A} 2+\mathrm{A} 3+\mathrm{A}_{\text {additional }}-\mathrm{A}_{\text {reduction }}=\quad \mathrm{OK}\)

\section*{Lifting Lugs}

Lifting scenario calculated. min lifting angle: \(30^{\circ}\).



\section*{Lug weld details}
\begin{tabular}{lllc} 
Type of weld & & Weld detail J on drawing \\
Length of attachment weld & mm & L & 300 \\
Width of attachment weld & mm & W & 30 \\
Fillet weld leg & mm & Lw & 14 \\
Weld throat & mm & tw & 9.90 \\
Cross sectional Area of weld & \(\mathrm{mm2}\) & Aw & \(6534(2 \mathrm{~L}+2 \mathrm{~W}) \mathrm{t}\) \\
Shear Area of weld & mm 2 & As & \(52274 / 5^{*}\) Cross sectional area of weld \\
Moment of inertia of weld area & mm 4 & I & 68228344 \\
\hline
\end{tabular}

Lifting loads
\begin{tabular}{lllr} 
Dynamic factor for lifting & - & F & 2 \\
Weight of vessel & kg & W & 12,099 \\
& N & W & 118691 \\
Design Load & N & & 237382 \\
Vertical static load on each lug & N & Fv & 118691 \\
Sling Load & N & Fs & 137053 \\
Horizontal Load & N & Fh & 68526 \\
Bending moment & Nmm & M & 7537903 \\
\hline
\end{tabular}
\begin{tabular}{lllc} 
Stress at base & & \\
Shear stress due to force & MPa & Ss & 13.11 \\
Direct stress due to force & MPa & Sd & 18.17 \\
Bending stress due to moment & MPa & Sb & 16.57 \\
Combined stress & MPa & Sc & 37.13 \\
Allowable stress & MPa & Sa & \(82.870 \%\) allowable \\
Actual Stress \(>\) Allowable Stress & & & Complies \\
\hline
\end{tabular}

Stress at hole
\begin{tabular}{llll} 
Shear stress due to force & MPa & Ss & 28.55 \\
Direct stress due to force & MPa & Sd & 39.56 \\
Combined stress & MPa & Sc & 48.79 \\
Allowable stress & MPa & Sa & \(82.870 \%\) allowable \\
Actual Stress \(>\) Allowable Stress & & & Complies \\
\hline
\end{tabular}

©



\(208333333.3 \mathrm{~mm}^{4}\)
\(333333.3 \mathrm{~mm}^{4}\)
0.001
系 \(- \pm 0^{\pi}\)
\(\sum_{\infty} \sum_{0}\)
ס Ј


3 3 3 3
3
3
\(z z\)
\(z z\)
N
3
\(-\)

\section*{SL109 8 S931 1 \&OddnS}
(incl reinforcement plate if applicable)




\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Earthquake + Full vessel
\[
M_{a}=F_{e} * H
\]} \\
\hline \(\mathrm{M}_{\mathrm{b}}=\mathrm{F}_{\mathrm{e}}{ }^{*}(\mathrm{~L}+\mathrm{H})\) & & 76376033.8 & Nmm \\
\hline \(\mathrm{F}_{\text {bolt } 2}=\left(\mathrm{M}_{\mathrm{b}} /(\mathrm{db} / 2)\right)-\mathrm{W}_{\mathrm{f}} / \mathrm{n}\) & & -11013.89 & N \\
\hline \(\mathrm{P}_{1}=-\mathrm{M}_{\mathrm{a}} / \mathrm{D}\) & & -15690.09 & N \\
\hline \(\mathrm{P}_{2}=\mathrm{M}_{3} / \mathrm{D}\) & & 6.28 & N \\
\hline \(\mathrm{T}_{\text {leg } 1}=\left(-\mathrm{M}_{\mathrm{a}} / \mathrm{D}\right)-\mathrm{W}_{\mathrm{f}} / \mathrm{n}\) & & -101582.44 & N \\
\hline \(\mathrm{T}_{\text {leg } 2}=\left(\mathrm{M}_{\mathrm{a}} / \mathrm{D}\right)-\mathrm{W}_{\mathrm{f}} / \mathrm{n}\) & & -85886.08 & N \\
\hline Axial stress Leg1 & \(\sigma_{1}\) & -10.16 & \\
\hline Axial stress Leg2 & \(\sigma_{2}\) & -8.59 & \\
\hline Leg 1 & & & \\
\hline \(M_{11}=\left(\left(R * F_{e}\right) * L\right)-T_{\text {leg } 1}{ }^{*} \mathrm{e}\) & & 1045497.61 & Nmm \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Wind + Full vessel} \\
\hline \(\mathrm{Ma}_{\mathrm{a}}=\mathrm{F}_{\mathrm{w}}{ }^{*} \mathrm{H}\) & & 42316841.0 & Nmm \\
\hline \(\mathrm{M}_{\mathrm{b}}=\mathrm{F}_{\mathrm{w}}{ }^{*}(\mathrm{~L}+\mathrm{H})\) & & 82395772.1 & Nmm \\
\hline \(\mathrm{F}_{\text {bolt2 }}=\left(\mathrm{M}_{\mathrm{b}} /(\mathrm{db} / 2)\right)-\mathrm{W}_{\mathrm{f}} / \mathrm{n}\) & & -5112.19 & N \\
\hline \(\mathrm{P}_{1}=-\mathrm{M}_{\mathrm{a}} / \mathrm{D}\) & & -16926.74 & N \\
\hline \(\mathrm{P}_{2}=\mathrm{Ma}_{\mathrm{a}} / \mathrm{D}\) & & 16926.74 & N \\
\hline \(\mathrm{T}_{\text {leg } 1}=\left(-\mathrm{M}_{\mathrm{a}} / \mathrm{D}\right)-\mathrm{W}_{\mathrm{f}} / \mathrm{n}\) & & -102819.09 & N \\
\hline \(\mathrm{T}_{\text {leg } 2}=\left(\mathrm{M}_{\mathrm{a}} / \mathrm{D}\right)-\mathrm{W}_{\mathrm{f}} / \mathrm{n}\) & & -68965.62 & N \\
\hline Axial stress leg 1 & \(\sigma_{1}\) & -10.28 & \(\mathrm{N} / \mathrm{mm}^{2}\) \\
\hline Axial stress leg 2 & \(\sigma_{2}\) & -6.90 & \(\mathrm{N} / \mathrm{mm}^{2}\) \\
\hline \multicolumn{4}{|l|}{Leg 1} \\
\hline \(M_{l 1}=\left(\left(R^{*} F_{w}\right) * L\right)-T_{\text {leg } 1}{ }^{*} \mathrm{e}\) & & 1060202.84 & Nmm \\
\hline Bending stress & \(\sigma_{1}=\left(\mathrm{M}_{11} * y\right) / 1\) & 31.8 & MPa \\
\hline \multicolumn{4}{|l|}{Leg 2} \\
\hline \(\mathrm{M}_{12}-\left(\left(\mathrm{R}^{*} \mathrm{~F}_{\mathrm{w}}\right)^{*} \mathrm{~L}\right)+\mathrm{T}_{\text {leg } 2}{ }^{*} \mathrm{e}\) & & -657644.26 & Nmm \\
\hline Bending stress & \(\sigma_{2}=\left(M_{11} * y\right) / 1\) & -20 & MPa \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \({ }^{\mathrm{ed}} \mathrm{W}\) men & \begin{tabular}{l}
ع＇\(\varepsilon-\) \\
カガTS860T
\end{tabular} &  \\
\hline edW & \(\varsigma^{\prime} \downarrow \tau\) &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline edW mun & \begin{tabular}{l}
\(6^{\circ} \downarrow て-\) \\
โ9＇L8T6て8－
\end{tabular} &  \\
\hline edw & †＇tE & \(1 /\left(\chi_{*}{ }^{\text {I }} \mathrm{W}\right.\) ）\(=^{\text { }}\) ¢ \\
\hline
\end{tabular}

\section*{AS1170.4-2007 STATIC ANALYSIS - EARTHQUAKE LOADS}
\begin{tabular}{lc} 
Design Data & \\
Location & Redbank QLD \\
Design Working Life & 25 years \\
Hazard Level - AS4343-2005 & B \\
Importance Level & 3 \\
Site sub-soil class & Class Ae \\
Probability factor (kp) & 1.0 \\
Annual probability of exceedance (P) & \(1 / 500\) \\
Hazard factor (Z) & 0.07 \\
Weight of Vessel (kg) & 12,099 \\
Weight of Water (kg) & 22,959 \\
Weight (kg) & 35058 \\
Seismic Weight (kN) & 343920 \\
Length of extended legs (just extension) & 0.75 \\
EARTHQUAKE DESIGN CATEGORY (ED & \(\|\)
\end{tabular}

\section*{SECTION}
spec. G1-TE-S-0000-SPC0002
AS1210-2010 Appendix J2
AS1210-2010 Appendix J3 (table J1)
Assumption based on Concrete slabs p. 18 1170.4-2007 section 3

AS1170.0 Amendment 4 - Table 3.3 AS1170.4 2007 table 3.2

AS1170.4 - Table 2.1
5.4.2.3 Simplified design for structures not exceeding 15m
Minimum Horizontal Static Force
Permissable Stress Forces
Over Turning Moment About Base

EQUIVALENT STATIC ANALYSIS
6.2.3 Natural period of the structure

SPECTRAL SHAPE FACTOR ( \(\mathrm{Ch}(\mathrm{T})\) )
HORIZONTAL EQUIVALENT STATIC DESIGN FORCE (Fi)
\begin{tabular}{rcll}
\(\mathrm{Fi}=\) & \(\mathrm{Ks}[\mathrm{kpzSp} / \mathrm{\mu}] \mathrm{Wi}\) & & \(\ldots 5.4\) \\
\(\mathrm{Ks}=\) & 2.3 & & Table 5.4 \\
\(\mathrm{Sp}=\) & 1 & \begin{tabular}{l} 
Structural Performance Factor \\
\(\mu=\)
\end{tabular} & \(\ldots 6.5(\mathrm{~B})\) \\
\(\mathrm{Wi}=\) & 343920 & \begin{tabular}{l} 
Structural Ductility \\
Seismic Weight
\end{tabular} \\
\(\mathrm{Fi}=\) & 27685.56 & N & \\
Fip \(=\) & \(\mathrm{Fi} / 1.5\) & & \(\ldots 5.4\) \\
\(\mathrm{Fip}=\) & 18457.04 & N & \\
Fip \(\mathrm{x}=\) & 28.65 & \(\mathrm{kN} / \mathrm{m}\) \\
\(\mathrm{L}=\) & 1.552 & m Distance from base to centre of vessel
\end{tabular}
\(\mathrm{T} 1=1.25 * \mathrm{k}_{\mathrm{t}}{ }^{*} \mathrm{~h}_{\mathrm{n}}{ }^{\wedge} 0.75\)
\(\mathrm{k}_{\mathrm{t}}=\quad 0.05 \quad\) for moment resisting steel frames
\(\begin{array}{lll}\mathrm{h}_{\mathrm{n}}= & 6.95 \quad \text { height of vessel (metres) }\end{array}\)
T1 =
0.26750

Table 6.4
\[
\begin{aligned}
& \mathrm{Fi}==\frac{W_{\mathrm{i}} h_{\mathrm{i}}^{\mathrm{k}}}{\sum_{\mathrm{j}=1}^{\mathrm{n}}\left(W_{\mathrm{h}} \mathrm{~h}_{\mathrm{j}}^{\mathrm{k}}\right)}\left[k_{\mathrm{p}} Z C_{\mathrm{h}}\left(T_{\mathrm{i}}\right) \frac{S_{\mathrm{p}}}{\mu}\right] W_{\mathrm{t}} \\
& \mathrm{Fi}= \\
& 28287.42 \\
& 18858.3
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|}
\hline \(u^{\prime}\) & L8＊ LSTE \(^{\text {a }}\) & \(={ }^{2 M} W\) & \\
\hline & \(7{ }^{\text {² }}\) & \({ }^{\text {IM }}\) W（ & （әsıәлsueıł）ұuәmow бu！̣unıəəло ри！M \\
\hline N & sع9＇เヤ¢0乙 & \(={ }^{1} \mathrm{~J}\) & \\
\hline & \(\forall x\) d & \(={ }^{3}\) & （әseэ әsıәлsueı）әэıо」 pu！M \\
\hline sjeosed & 80＇tくLT & \(=\mathrm{d}\) & \\
\hline sjeosed &  & \(=\mathrm{d}\) & әınssəad pu！M u6！səa \\
\hline & \(\tau\) & \(={ }^{u \kappa p}\) & כ ： \\
\hline zH & \(\nabla L \cdot \varepsilon\) & \(={ }^{\mathrm{K} p} \partial\) &  \\
\hline \(\angle>\mathrm{p} / \mathrm{L}>\) 乙 & 6.0 & \(={ }^{6!} 0\) &  \\
\hline （pıepuełs）\(\varepsilon \omega / \overline{/ 6 \gamma}\) & て＇し & \(={ }^{\underline{4!}} \mathrm{d}\) & K！！suəa \\
\hline \(m\) & SS＇\(โ\) & \(=7\) & щルヲ ハəләา \\
\hline \(z^{m}\) & ガレT & \(=\forall\) & ：əəssə＾¢о әр！̣s eəл＊ \\
\hline m & S6．9 & sł． &  \\
\hline & \(\angle \nabla\) & ＝sə & \\
\hline & \(1 \wedge \times \angle\) T8 0 & \(=\operatorname{sep} \Lambda\) & pəəds u6！səa ssəıtS ə¢¢еss！wıəd \\
\hline & 00＇\(\tau\) & & PW \\
\hline s／u & LS & \(=009 \Lambda\) & \({ }^{1} \wedge\) perds pu！M ןеu！бәу \\
\hline & 009／L & & （d）әэиерәәэхә эо K！！！！qeqoıd ןenuu＊ \\
\hline & sıeə ¢ ¢ & & ә！！¢и！yлом и6！səa \\
\hline & \(\varepsilon\) & &  \\
\hline & ¢ Киобәґеว & & ：u！eıə』 \\
\hline & 8 & & ：uo！бәу \\
\hline & هרֹ & & ：ио！реэоา \\
\hline
\end{tabular}

\section*{PD5500 Annex G - Local Load Shell-Leg Symbol}
\begin{tabular}{|c|c|c|c|c|}
\hline Local Loads Case: Wind & & & L>r & Go \\
\hline Internal Pressure & P & 1.6 MPa & & \\
\hline Allowable Design Strength at design temp. & f & 118 MPa & & \\
\hline Mean Radius of cylinder & \(r\) & 1238.9 mm & avarage in- and outside \(r\) & \\
\hline Thickness & t & 22.20 mm & & \\
\hline Length of cylind. Part of shell & L & 4,000 mm & & \\
\hline Centre of load to mid-length shell & d & 1935 mm & all the way at the end & \\
\hline Ratio of d/L & d/L & 0.48 & & \\
\hline equivalent length of shell & \(\mathrm{L}_{\mathrm{e}}\) & 256 & & \\
\hline Ratio for equivalent length of shell & \(\mathrm{L}_{\mathrm{e}} / \mathrm{L}\) & 0.06 & & \\
\hline Weight of vessel (empty) & M & 12099.00 kg & & \\
\hline Volume & V & 22959.10 I & & \\
\hline Total weight (vessel full) & W & 35058.10 kg & & \\
\hline & & 343.57 kN & & \\
\hline Length of weld & & 130 & & \\
\hline Width of supp leg & & 500 & & \\
\hline
\end{tabular}

\begin{tabular}{lcr} 
Value from figure G.9 & \(\mathrm{N}_{\mathrm{x}} \mathrm{t} / \mathrm{W}\) & \(-0.02 \mathrm{~N} / \mathrm{mm}\) \\
Value from figure G .10 & \(\mathrm{M}_{\Phi} / \mathrm{W}\) & \(-0.025 \mathrm{Nmm} / \mathrm{mm}\) \\
Value from figure G.11 & \(\mathrm{M}_{\mathrm{x}} / \mathrm{W}\) & \(0 \mathrm{Nmm} / \mathrm{mm}\) \\
Value from figure G.12 & \(\mathrm{N}_{\Phi} \mathrm{t} / \mathrm{W}\) & \(-0.0875 \mathrm{~N} / \mathrm{mm}\) \\
Value from figure G.13 & \(\mathrm{N}_{\mathrm{x}} \mathrm{t} / \mathrm{W}\) & \(-0.01 \mathrm{~N} / \mathrm{mm}\) \\
& & \\
Value from figure G.14 & \(\mathrm{M}_{\Phi} / \mathrm{W}\) & \(0.2 \mathrm{Nmm} / \mathrm{mm}\) \\
Value from figure G.15 & \(\mathrm{M}_{\mathrm{x}} / \mathrm{W}\) & \(0.17 \mathrm{Nmm} / \mathrm{mm}\) \\
Value from figure G.16 & \(\mathrm{N}_{\Phi} \mathrm{t} / \mathrm{W}\) & \(-0.21 \mathrm{~N} / \mathrm{mm}\) \\
Value from figure G.17 & \(\mathrm{N}_{\mathrm{x}} \mathrm{t} / \mathrm{W}\) & \(-0.065 \mathrm{~N} / \mathrm{mm}\)
\end{tabular}

Description

Stresses due to radial load
\begin{tabular}{llll} 
Longtitudinal membrane stress & \(\sigma_{N x}\) & 0.00 & \(\left(N_{x} t / W\right) F_{R} / t^{2}\) \\
Longtitudinal bending stress & \(\sigma_{M x}\) & -0.01 & \(\left(M_{x} / W\right) 6 F_{R} / t^{2}\) \\
Circumferential membrane stress & \(\sigma_{N \Phi}\) & 0.00 & \(\left(N_{\Phi} t / W\right) F_{R} / t^{2}\) \\
Circumferential bending stress & \(\sigma_{M \Phi}\) & 0.00 & \(\left(M_{\Phi} / W\right) 6 F_{R} / t^{2}\)
\end{tabular}

Stresses due to circumferential moment
\begin{tabular}{llll} 
Longtitudinal membrane stress & \(\sigma_{N x}\) & 0 & \(\left(N_{x} t / W\right) 1.5\left(M_{C} / C_{\Phi}\right) / t^{2}\) \\
Longtitudinal bending stress & \(\sigma_{M x}\) & 0 & \(\left(M_{x} / W\right) 9\left(M c / C_{\Phi}\right) / t^{2}\) \\
Circumferential membrane stress & \(\sigma_{N \Phi}\) & 0 & \(\left(N_{\Phi} t / W\right) 1.5\left(M_{C} / C_{\Phi}\right) / t^{2}\) \\
Circumferential bending stress & \(\sigma_{M \Phi}\) & 0 & \(\left(M_{\Phi} / W\right) 9\left(M c / C_{\Phi}\right) / t^{2}\)
\end{tabular}

Stresses due to longtitudinal moment
\begin{tabular}{lc} 
Longtitudinal membrane stress & \(\sigma_{N x}\) \\
Longtitudinal bending stress & \(\sigma_{M x}\) \\
Circumferential membrane stress & \(\sigma_{N \Phi}\) \\
Circumferential bending stress & \(\sigma_{M \Phi}\)
\end{tabular}

Stresses due to internal pressure
\begin{tabular}{lc} 
Longtitudinal membrane stress & \(\sigma_{x p}\) \\
Circumferential membrane stress & \(\sigma_{\Phi p}\) \\
Shear stress from torsion moment & \(T_{m}\) \\
Shear stress from circumferential force & \(T_{c}\) \\
Shear stress from longtitudinal force & \(T_{1}\) \\
Load combination & \begin{tabular}{l} 
Condition \\
Combination \\
\(k=\)
\end{tabular}
\end{tabular}
stress combination Axial + Bending ( \(f m+f b+f g\) )
64.1
\begin{tabular}{cl}
44.6 & \(\mathrm{Pr} / 2 \mathrm{t}\) \\
89.3 & \(\mathrm{Pr} / \mathrm{t}\) \\
0.0 & \(2 \mathrm{M}_{\mathrm{t}} /\left(\pi \mathrm{C}_{1}{ }^{2} \mathrm{t}\right)\) \\
0.0 & \(2 \mathrm{~F}_{\mathrm{c}} /\left(\pi \mathrm{C}_{1} \mathrm{t}\right)\) \\
13.0 & \(2 \mathrm{~F}_{\mathrm{L}} /\left(\pi \mathrm{C}_{1} \mathrm{t}\right)\)
\end{tabular}
\begin{tabular}{cl} 
Design & AS1210-2010 3.1.6 \\
C & AS1210-2010 3.1.6 \\
1.2 & AS1210-2010 3.1.6 \\
3 & AS1210-2010 APP. H
\end{tabular}

Stress Summary at edge of loaded area in shell
Max stress intensities
Membrane + bending
167.25 MPa
vs.
355 MPa
Membrane
103.54 MPa
vs.
142 MPa
Complies

Summation of shell stresses, values in Mpa
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Quadrant \\
Surface
\end{tabular}} & \multicolumn{2}{|c|}{Q1} & \multicolumn{2}{|c|}{Q2} & \multicolumn{2}{|c|}{Q3} & \multicolumn{2}{|c|}{Q4} \\
\hline & inside & outside & inside & outside & inside & outside & inside & outside \\
\hline Circumferential stresses & & & & & & & & \\
\hline \multicolumn{9}{|l|}{Membrane component due to:} \\
\hline 1 Radial Load & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 2 Circumferential Moment & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 3 Longitudinal Moment & -11.22 & -11.22 & 11.22 & 11.22 & 11.22 & 11.22 & -11.22 & -11.22 \\
\hline 4 Sub total due to local loads & -11.22 & -11.22 & 11.22 & 11.22 & 11.22 & 11.22 & -11.22 & -11.22 \\
\hline 5 Pressure & 89.29 & 89.29 & 89.29 & 89.29 & 89.29 & 89.29 & 89.29 & 89.29 \\
\hline 6 Sub total & 78.07 & 78.07 & 100.51 & 100.51 & 100.51 & 100.51 & 78.07 & 78.07 \\
\hline \multicolumn{9}{|l|}{Bending component due to:} \\
\hline 7 Radial Load & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 8 Circumferential Moment & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 9 Longitudinal Moment & 64.13 & -64.13 & -64.13 & 64.13 & -64.13 & 64.13 & 64.13 & -64.13 \\
\hline 10 Sub total & 64.12 & -64.12 & -64.13 & 64.13 & -64.13 & 64.13 & 64.12 & -64.12 \\
\hline 11 Total Circumferential Stress & 142.19 & 13.94 & 36.38 & 164.65 & 36.38 & 164.65 & 142.19 & 13.94 \\
\hline \multicolumn{9}{|l|}{Longitudinal Stresses} \\
\hline \multicolumn{9}{|l|}{Membrane component due to:} \\
\hline 12 Radial Load & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 13 Circumferential Moment & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 14 Longitudinal Moment & -3.47 & -3.47 & 3.47 & 3.47 & 3.47 & 3.47 & -3.47 & -3.47 \\
\hline 15 Sub total due to local loads & -3.47 & -3.47 & 3.47 & 3.47 & 3.47 & 3.47 & -3.47 & -3.47 \\
\hline 16 Pressure & 44.65 & 44.65 & 44.65 & 44.65 & 44.65 & 44.65 & 44.65 & 44.65 \\
\hline 17 Sub total & 41.17 & 41.17 & 48.12 & 48.12 & 48.12 & 48.12 & 41.17 & 41.17 \\
\hline \multicolumn{9}{|l|}{Bending component due to:} \\
\hline 18 Radial Load & -0.01 & 0.01 & -0.01 & 0.01 & -0.01 & 0.01 & -0.01 & 0.01 \\
\hline 19 Circumferential Moment & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 20 Longitudinal Moment & 54.51 & -54.51 & -54.51 & 54.51 & -54.51 & 54.51 & 54.51 & -54.51 \\
\hline 21 Sub total & 54.50 & -54.50 & -54.52 & 54.52 & -54.52 & 54.52 & 54.50 & -54.50 \\
\hline 22 Total Longitudinal Stress & 95.67 & -13.33 & -6.40 & 102.64 & -6.40 & 102.64 & 95.67 & -13.33 \\
\hline \multicolumn{9}{|l|}{Shear stresses due to:} \\
\hline 23 Torsion Moment & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 24 Circumferential Shear Force & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 25 Longitudinal Shear force & 12.96 & 12.96 & 12.96 & 12.96 & 12.96 & 12.96 & 12.96 & 12.96 \\
\hline 26 Total Shear Force & 12.96 & 12.96 & 12.96 & 12.96 & 12.96 & 12.96 & 12.96 & 12.96 \\
\hline \multicolumn{3}{|l|}{Total Stress Intensity (membrane + bending)} & \multicolumn{4}{|l|}{Allowable stress for membrane + bending:} & 354.86 & \\
\hline \(27 \mathrm{f}_{1}=\left\{\mathrm{f}_{\Phi}+\mathrm{f}_{\mathrm{x}}+\left[\left(f_{\Phi}-\mathrm{f}_{\mathrm{x}}\right)^{2}+4 \mathrm{~T}^{2}\right]^{1 / 2}\right\} / 2\) & 145.56 & 19.12 & 40.00 & 167.25 & 40.00 & 167.25 & 145.56 & 19.12 \\
\hline \(28 \mathrm{f}_{1}=\left\{f_{\Phi}+\mathrm{f}_{x}-\left[\left(f_{\Phi}-\mathrm{f}_{x}\right)^{2}+4 \mathrm{~T}^{2}\right]^{1 / 2}\right\} / 2\) & 92.30 & -18.50 & -10.02 & 100.04 & -10.02 & 100.04 & 92.30 & -18.50 \\
\hline Stress intensity & 145.56 & 19.12 & 40.00 & 167.25 & 40.00 & 167.25 & 145.56 & 19.12 \\
\hline \multicolumn{9}{|l|}{OK if stresses < allowable} \\
\hline \multicolumn{3}{|l|}{Total Stress Intensity (membrane)} & \multicolumn{4}{|l|}{Allowable stress for membrane:} & 141.94 & \\
\hline \[
f_{1}=\left\{f_{\Phi m}+f_{x m}+\left[\left(f_{\Phi m}-f_{x m}\right)^{2}+4 T^{2}\right]^{1 / 2}\right\} / 2
\] & 82.17 & 82.17 & 103.54 & 103.54 & 103.54 & 103.54 & 82.17 & 82.17 \\
\hline \(\mathrm{f}_{1}=\left\{\mathrm{f}_{\Phi m}+\mathrm{f}_{\mathrm{xm}}-\left[\left(f_{\Phi m}-\mathrm{f}_{\mathrm{xm}}\right)^{2}+4 \mathrm{~T}^{2}\right]^{1 / 2}\right\} / 2\) & 37.07 & 37.07 & 45.09 & 45.09 & 45.09 & 45.09 & 37.07 & 37.07 \\
\hline Stress intensity & 82.17 & 82.17 & 103.54 & 103.54 & 103.54 & 103.54 & 82.17 & 82.17 \\
\hline \multicolumn{9}{|l|}{OK if stresses < allowable} \\
\hline
\end{tabular}


\section*{OLAER Australia Pty Lid}

\section*{AR 8900 \\ 23000 litres \\ \(n^{\circ} \mathbf{2 3 0 0 0 K U 7}\)}

\section*{KU007M00000}
\begin{tabular}{|c|c|c|c|c|}
\hline PRESSURE VESSEL & & WPS & PQR & WOPQ or WPQ \\
\hline \multirow[t]{12}{*}{\[
\begin{aligned}
& 1 \times 23000 \mathrm{~L} \\
& \mathrm{~N}^{\circ} 23000 \mathrm{KU} 7
\end{aligned}
\]} & A (121) & WPS 1 & 11,01 & DUPRE Eric D \\
\hline & B (121) & WPS 1 & 11,01 & DUSSAULT Jean-Claude B \\
\hline & C (121) & WPS 1 & 11,01 & DUPRE Eric D \\
\hline & D (135) & WPS 4 & 11,01 & BUCHET Philippe O \\
\hline & E (135) & WPS 5 & 11,02 & LABARBE Philippe T \\
\hline & F (135) & WPS 1412.0034B.04 M1.1 & 02,04 & LABARBE Philippe T \\
\hline & G (135) & WPS 1412.0034B.04 M1.7 & 02,04 & LABARBE Philippe T \\
\hline & H (135) & WPS 1412.0034B.04 M1.5 & 02,04 & LABARBE Philippe T \\
\hline & I (135) & WPS 1412.0034B. 04 M1.6 & 02,04 & LABARBE Philippe T \\
\hline & \(J(135)\) & WPS 1412.0034B. 04 M1.7 & 02,04 & LABARBE Philippe T \\
\hline & K (135) & WPS 1412.0034B.04 M1.1 & 02,04 & LABARBE Philippe T \\
\hline & L (135) & WPS 1412.0034B.04 M1.1 & 02,04 & LABARBE Philippe T \\
\hline
\end{tabular}


\footnotetext{
*Each base metal-filler metal combination should be recorder individually. The tack weld is performed according to the first pass
}



\footnotetext{
* Each base metal-filler metal combination should be recorder Individually. The tack weld is performed according to the first pass
}



\footnotetext{
"Each base metal-filler metal combination should be recorder indlvidually. The tack weld is performed according to the first pass
}



\footnotetext{
*Each base metal-filler metal combination should be recorder Individually. The tack weid is performed according to the first pass
}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{POSITIONS (QW-405)} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{POSTWELD HEAT TREATMENT (QW-407)}} \\
\hline \multicolumn{6}{|l|}{Position(s) of groove} & & & & \\
\hline \multicolumn{6}{|l|}{Welding Progression Up:
Po
Position(s) of Fillet
Flat} & \multicolumn{4}{|l|}{Time Range No} \\
\hline \multicolumn{6}{|l|}{PREHEAT (QW-406)} & \multicolumn{4}{|l|}{GAS (QW-408)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Preheat Temp.
Interpass Temp.}} & Min. & \multicolumn{3}{|l|}{\(10^{\circ} \mathrm{C}\)} & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{Percent composition}} \\
\hline & & Max. & \(250^{\circ} \mathrm{C}\) & & & & & & \\
\hline & & & & & & & Gas(es) & (Mixture) & Rate \\
\hline \multicolumn{2}{|l|}{Preheat Maintenance} & \multicolumn{4}{|l|}{} & Shielding & Arcal 14 & \[
\begin{gathered}
\mathrm{Arg}_{\mathrm{Ar}(96 \%)} \\
\mathrm{O}_{2}(3 \%) \mathrm{O}_{2}(1 \%)
\end{gathered}
\] & 18L/min \({ }^{\text {t/3 }}\) \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{(Contiuous or special healthing where applicable should be recorded)}} & Trailing & No & No & No \\
\hline & & & & & & \multicolumn{4}{|l|}{} \\
\hline \multicolumn{10}{|l|}{ELECTRICAL CHARRACTERISTICS (QW-409)} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{6}{|l|}{Polarity + pulsed} \\
\hline & & & & Volts (ran & ( \({ }^{\text {a }}\) ) & \multicolumn{4}{|l|}{\(25 \mathrm{~V}^{+1 / 10 \%}\)} \\
\hline \multicolumn{10}{|l|}{Amps and volts range should be recorded for each electrode size, position, and thickness, etc. This information may be listed in a tabular or} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Tungsten electrode Size and Type
Mode of Metal Transfer for GMAW}} & \multicolumn{7}{|l|}{NA} \\
\hline & & & \multicolumn{7}{|l|}{Spray arc} \\
\hline \multicolumn{3}{|l|}{Mode of Metal Transfer for GMAW
Electrode Wire feed speed range} & \multicolumn{7}{|l|}{\(250 \mathrm{~cm} / \mathrm{min}^{+/ 10 \%}\)} \\
\hline \multicolumn{10}{|l|}{TECHNIQUE (QW-410)} \\
\hline \multicolumn{10}{|l|}{Sting of Weave Bead String} \\
\hline \multicolumn{10}{|l|}{Office or Gas Cup size \(\quad 10 \mathrm{~mm}\)} \\
\hline \multicolumn{10}{|l|}{Initial and interpass Cleaning (Brushing, grinding, etc.) Brushing or Grinding} \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Method of Back Gouging No}} \\
\hline & & \multicolumn{8}{|c|}{Oscillation No} \\
\hline \multicolumn{10}{|l|}{Contact Tube to Work distance \(\quad \mathbf{2 0} \mathrm{mm}^{+/-10 \%}\)} \\
\hline \multicolumn{3}{|l|}{Multiple or Single pass (per side)} & \multicolumn{7}{|l|}{Single or multiple} \\
\hline \multicolumn{3}{|l|}{Multiple or Single Electrodes} & \multicolumn{7}{|l|}{Single} \\
\hline \multicolumn{10}{|l|}{Travel speed \(\quad \mathbf{2 5 ~ c m / m i n}{ }^{+1 / 10 \%}\)} \\
\hline \multirow[t]{2}{*}{Peening} & \multicolumn{9}{|l|}{\multirow[t]{2}{*}{Not permitted}} \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|c|}{Electrode spacing: No} \\
\hline & & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Filler Metal}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Current}} & \multirow[b]{3}{*}{Volt Range} & & & \\
\hline \multirow[b]{2}{*}{Weld Layer} & \multirow[b]{2}{*}{Process} & & & & & & \multirow[t]{2}{*}{\[
\underset{\substack{\text { Travel } \\ \text { spaod } \\ \text { chanon }}}{ }
\]} & \multicolumn{2}{|l|}{} \\
\hline & & Class & Dia & Type Polar. & Amp Range & & & \multicolumn{2}{|l|}{Other (e.g remarks, Comments,
Hot wire, addillon, Technique,
Torch anglo, etc)} \\
\hline 1 & GMAW & ERTOS-6 & \(\triangle 1 \mathrm{~mm}\) & DC+ & \(100 A^{+1+10}\) & \(25^{\text {t/-10\% }}\) & \(25^{\text {t/10\% }}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Pulsed}} \\
\hline \multicolumn{10}{|l|}{\multirow[b]{2}{*}{}} \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|l|}{} \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|l|}{} \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|l|}{} \\
\hline
\end{tabular}


\footnotetext{
*Each base metal-filler metal combination should be recorder individually. The tack weld is performed according to the first pass
}



\footnotetext{
* Each base metal-filler metal combination should be recorder individually. The tack weld is performed according to the first pass
}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
CHARLATTE \\
RAYAT GROUP \({ }^{R}\)
\end{tabular} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{PROCEDURE QUALIFICATION RECORD (PQR) (QW-200.2, Section IX, ASME Boiler and Pressure Vessel Code) Record Actual Conditions Used to Weld Test Coupon SERVOIRS}} \\
\hline Company Name: CHARLATTE RESERVOIRS & & \\
\hline Procedure qualification Records \(\mathrm{N}^{\circ}\) : WPS: & \[
11.01
\] & Date: 20/10/2011 \\
\hline Welding Process(es): \({ }^{\text {GMAW + SAW }}\) & & \\
\hline Types(Manual, Automatic, Semi-Auto...) & Semi-Auto + Machine & \\
\hline
\end{tabular}



Guided-Bend Tests (QW-160)
\begin{tabular}{|c|c|}
\hline Type and Figure \({ }^{\circ}\) & \\
\hline C1 Side band test \(39 \times 10\) & Result \\
\hline C2 Side band test \(39 \times 10\) & \(180^{\circ}\) No defect: conform \\
\hline C3 Side band test \(39 \times 10\) & \(180^{\circ}\) No defect: conform \\
\hline C4 Side band test \(30 \times 10\) & \(180^{\circ}\) No defect: conform \\
\hline & \(180^{\circ}\) No defect: conform \\
\hline
\end{tabular}

Thoughess Tests (QW-170)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Specimen \(\mathrm{N}^{\circ}\)} & \multirow[t]{2}{*}{Notch
Location} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Specimen } \\
& \text { size }
\end{aligned}
\]} & \multirow[t]{2}{*}{Test} & \multicolumn{3}{|l|}{} & \multirow[b]{2}{*}{Drop Weight Break (Y/N)} \\
\hline & & & & FT .lbs & \% Shear & Mils & \\
\hline 1 & 1 & 1 & I & 1 & I & 1 & \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & I & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & I & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & / & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & I & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & I & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & I & 1 & 1 \\
\hline I & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

Comments: No comments

Result----Satisfactory:
Penetration in parent Metal:
Macro--- Result:

Fillet-Weld Test (QW-180)


\section*{Other Tests}

Type of test: Radiograhic test, No defect satisfactory Deposit Analysis:
Other:

\begin{tabular}{|c|c|c|c|}
\hline Welder's Name: B & ilipe & \multirow[t]{2}{*}{Clock \(\mathrm{N}^{\circ}\) : \(\frac{1}{\text { Laboratery Test } \mathrm{N}^{\circ} \text { : }}\)} & \multirow[t]{2}{*}{\[
\text { Stamp } N^{\circ}
\]
20115595-2-TP} \\
\hline Test conducted by: & J. REYNAUD & & \\
\hline
\end{tabular}
Date: \(\quad\) 29/10/2011 \(\quad\) Manufacturer:
(Detail of record tests are llustrative only and may be modified to conform to the tyoe and \(\frac{\text { CHARLATTE RESERVOIR }}{\text { RAPPENEAU }}\)
number of test required by the code.)




Tensile Test (QW-150)


Guided-Bend Tests (QW-160)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Guided-Bend Tests \((\) QW-160 ) } \\
\hline T1 Side bend test \(38 \times 10\) & Result \\
\hline C2 Side bend test \(38 \times 10\) & Defect size \(1 \mathrm{~mm}:\) Conform \\
\hline C3 Side bend test \(38 \times 10\) & Defect size \(0,8 \mathrm{~mm}:\) Conform \\
\hline C4 Side bend test \(38 \times 10\) & No defect: Conform \\
\hline & No defect: Conform \\
\hline
\end{tabular}

Thoughess Tests (QW-170)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Specimen \(\mathrm{N}^{\circ}\)} & \multirow[t]{2}{*}{Notch Location} & \multirow[t]{2}{*}{Specimen} & \multirow[t]{2}{*}{Test Temp} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{, Impact values}} & \multirow[b]{3}{*}{\begin{tabular}{l}
Drop Weight \\
Break (Y/N)
\end{tabular}} \\
\hline & & & & & & & \\
\hline 1 & 1 & 1 & \(\underline{1}\) & FT.los & \% Shear & Mils & \\
\hline 1 & 1 & 1 & I & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & / & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & I & 1 & 1 & / & 1 & 1 & 1 \\
\hline
\end{tabular}

Comments: No comments

Result----Satisfactory:
Penetration in parent Metal:
Macro--- Result:

Fillet-Weld Test (QW-180)
\begin{tabular}{lll} 
Yes: & 1 & No: \\
Yes: & 1 \\
\hline
\end{tabular}

Other Tests
Type of test: Radiographic test, No defect satisfactory Deposit Analysis:
Other:
Welder's Name: TRIDON Sebastien
Test conducted by: J. NOEL

Clock \(\mathrm{N}^{\circ}\) : Laboratery Test \({ }^{\circ}\) : Stamp N \({ }^{\circ} \quad W\) 20115595-3-TP 20115595-3-7
We certify that statement in this record are corr

\section*{Date:}

26/10/2011
Manufacturer:

Detall of record tests are illustrative only and may be mod

\section*{CHARLATTE RESERVOIR}

By: RAPPENEAU


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{QW-403 (Back)}} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{PROCEDURE QUALIFICATION RECORD (PQR) (QW-200.2, Section IX, ASME Boiler and Pressure Vessel Code) Record Actual Condifions Used to Weld Test Coupon}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|c|}{Tensile Test (QW-150)} \\
\hline \(\frac{\text { Specimen } \mathrm{N} \text { ( }{ }^{\text {c }} \text { (1 }}{\text { T1 }}\) & Width & Thickness & Area & \[
\begin{aligned}
& \text { Ulitimate } \\
& \text { Total Load } \\
& \text { Lb }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ulitimate } \\
& \text { Unit Stress } \\
& \text { Mpa }
\end{aligned}
\] & Type of Fallure \& Loca \\
\hline T2 & 18,95 & 3,97 & 75,23 & 1 & 433 & Outside Weld \\
\hline 12 & 19,02 & 4,10 & 77,98 & 1 & 423 & Outside Weld \\
\hline & & & & & & \\
\hline
\end{tabular}

Guided-Bend Tests (QW-160)
\begin{tabular}{|c|c|}
\hline \multicolumn{6}{|c|}{ Type and Figure \(\mathrm{N}^{\circ}\)} & Result \\
\hline P1 Trought Face Bend test \(9,4 \times 4\) & \(180^{\circ}\) No Defect Conform \\
\hline P2 Trought Face Bend test \(9,4 \times 4\) & \(180^{\circ}\) No Defect Conform \\
\hline P3 Trought Face Bend test \(9,4 \times 4\) & \(180^{\circ}\) No Defect Conform \\
\hline P4 Trought Face Bend test \(9,4 \times 4\) & \(180^{\circ}\) No Defect Conform \\
\hline
\end{tabular}

Thoughess Tests (QW-170)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Specimen \(\mathrm{N}^{\circ}\)} & \multirow[t]{2}{*}{Notch Location} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Specimen } \\
\text { size }
\end{array}
\]} & \multirow[t]{2}{*}{Test.} & \multicolumn{3}{|l|}{Impact values} & \multirow[b]{2}{*}{Drop Welght Break (V/N)} \\
\hline & & & & FT. .lbs & \% Shear & Mils & \\
\hline 1 & 1 & 1 & 1 & I & 1 & 1 & - 1 \\
\hline 1 & 1 & 1 & 1 & & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & I & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & I & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & , & 1 \\
\hline 1 & 1 & , & 1 & 1 & 1 & , & 1 \\
\hline 1 & 1 & , & 1 & 1 & 1 & I & 1 \\
\hline 1 & 1 & 1 & & & & 1 & 1 \\
\hline & & & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

Comments: No comments

Result----Satisfactory:
Penetration in parent Metal:
Macro--- Result:

Fillet-Weld Test (QW-180)
\begin{tabular}{ll} 
Yes: \\
Yes: \\
\hline
\end{tabular}
Without Defect Satisfactory

No:
No: \(\qquad\)

Other Tests
Type of test: Radiographic test; No defect satisfactory Deposit Analysis:
Other:
\(\qquad\)
Laboratery Test N requirements of Section IX of the ASME Code.
Date: 21/05/2005 Manufacturer: By:CHARLATTE RESERVOIR
(Detail of record tests are lllustrative only and may be modified to conform to the type and number of test required by the code.)

\section*{CHARLATTE QW-484B FORMAT B \\  (See QW-301, Section IX, ASME Boiler and Pressure Vessel Code)} Identification no.: D
Welder's name: DUPRE Eric
Test Description (Information only)
Identification of WPS followed:
Specification of base metal(s):
Base number P or S -number:
 Thickness: 35
\(\sqrt{\square}\) Plate \(\quad \Gamma\) Pipe (enter diameter if pipe or tube) :
Filler metal (SFA) specification: \(\mathbf{5 . 1 7}\) Filler metal or electrode classification: F7A2- EM12
Testing Conditions and Qualification Limits When Using Automatic Welding Equipement Welding Variables (QW-361.1)
Type of welding (Automatic):
Welding process:
Filler metal (EBW or LBW):
Type of laser for LBW (CO2 to YAG, etc.):
Continuous drive or inerta welding (FW):
Vacuum or out of vacuum (EBW):
\begin{tabular}{|c|c|}
\multicolumn{1}{c|}{ Actual Values } & Range Quallfied \\
\hline 1 & 1 \\
\hline
\end{tabular}

Testing Condition and Qualfication Limits When Using Machine Welding Equipement
Welding Variables (QW-361.2)
Type of welding (Machine):
Welding process:
Direct or remove visual control:
Automatic arc voltage control (GTAW):
Automatic joint tracking:
Position qualified (2G, \(6 \mathrm{G}, 3 \mathrm{~F}\), etc.):
Consumable inserts (GTAW or PAW):
Backing (metal, weld metal, etc.):
Single or multiple passes per side:
\begin{tabular}{|c|c|}
\multicolumn{1}{c|}{ Actual Values } & Range Qualified \\
\hline Machine & Machine \\
\hline SAW & SAW \\
\hline Direct & Direct \\
\hline N/A & N/A \\
\hline No & With or Without \\
\hline 1 G & Flat \\
\hline N/A & N/A \\
\hline With & With \\
\hline Multiple & Multiple or Single \\
\hline
\end{tabular}

Results
Satisfactory
\(\Gamma\) Bend test, \(\Gamma\) Transverse root and face [QW-462.3(a)],
\(\Gamma\) Longitudinal root and face [QW-462.3(b)]
F. Side [QW-462.2, F- Pipe bend specimen, corrosion-resistant overlay [QW-462.5(c)],
\(1 \sim\) Plate bend specimen, corrosion-resistant overlay [QW-462.5(d)],
\(T\) Macro test for fusion[QW-462.5(b)], \(\Gamma\) Macro test for fusion[QW-462.5(e)],

CHARLATTE
QW-484B FORMAT B
FOR WELDER OPERATOR PERFORMANCE QUALIFICATIONS (WOPQ) (See QW-301, Section IX, ASME Boiler and Pressure Vessel Code)
Welder's name: DUSSAULT Jean-Claud Identification no.: B
Test Description (Information only)
Identification of WPS followed: WPS 1P2
Specification of base metal(s):
Base number P or S -number:
IV Plate
1 Pipe (enter diameter if pipe or tube) : 1
Filler metal (SFA) specification:
5.17
Filler metal or electrode classification:
F7A2-EM12
Testing Conditions and Qualification Limits When Using Automatic Welding Equipement
Type of welding (Automatic):
\begin{tabular}{|c|c|}
\multicolumn{1}{c|}{ Actual Values } & Range Qualifled \\
\hline 1 & 1 \\
\hline
\end{tabular}
Welding process:
Filler metal (EBW or LBW):
Type of laser for LBW (CO2 to YAG, etc.):
Continuous drive or inerta welding (FW):
Vacuum or out of vacuum (EBW):
\(\Gamma\) Test coupon \(\sqrt{V}\) Production weld Thickness:

35


\section*{70}
\(\qquad\) G, 3 , etc) 1G
\begin{tabular}{|c|c|}
\hline \multicolumn{1}{|c|}{ Actual Values } & Range Qualified \\
\hline Machine & Machine \\
\hline SAW & SAW \\
\hline Direct & Direct \\
\hline N/A & N/A \\
\hline No & With or Without \\
\hline 1G & Flat \\
\hline N/A & N/A \\
\hline With & With \\
\hline Multiple & Single or Multiple \\
\hline
\end{tabular}

Results Satisfactory
\(\Gamma\) Bend test, \(\Gamma\) Transverse root and face [QW-462.3(a)],
\(\Gamma\) Longitudinal root and face [QW-462.3(b)]
\(\Gamma\) Side [QW-462.2, 5 Pipe bend specimen, corrosion-resistant overlay [QW-462.5(c)],
\(\Gamma\) Plate bend specimen, corrosion-resistant overlay [QW-462.5(d)],
\(\Gamma\) Macro test for fusion[QW-462.5(b)], \(\quad\) Macro test for fusion[QW-462.5(e)],


\section*{CHARLATTE}

QW-484B FORMAT B
FOR WELDER OPERATOR PERFORMANCE QUALIFICATIONS (WOPQ) (See QW-301, Section IX, ASME Boiler and Pressure Vessel Code)

Test Description (Information only) Welder's name: ASCLAR Joël Identification of WPS followed: Specification of base metal(s):
Base number P or S -number: Vr Plate \(\quad \Gamma\) Pipe (enter diameter if pipe or tube):
Filler metal (SFA) specification:
5.17 Filler metal or electrode classification:

F7A2 - EM12
Testing Conditions and Qualification LImits When Using Automatic Welding Equipement
Welding Variables (QW-361.1)
Type of welding (Automatic):
Welding process:
Filler metal (EBW or LBW):
Type of laser for LBW (CO2 to YAG, etc.):
Continuous drive or inerta welding (FW):
Vacuum or out of vacuum (EBW):
Actual Values

Testing Condition and Qualification Limits When Using Machine Welding Equipement
Welding Variables (QW-361.2)
Type of welding (Machine):
Welding process:
Direct or remove visual control:
Automatic arc voltage control (GTAW):
Automatic joint tracking:
Position qualified (2G, \(6 \mathrm{G}, 3 \mathrm{~F}\), etc.):
Consumable inserts (GTAW or PAW):
Backing (metal, weld metal, etc.):
Single or multiple passes per side:
\begin{tabular}{|c|c|}
\multicolumn{1}{|c|}{ Actual Values } & Range Qualified \\
\hline 1 & 1 \\
\hline
\end{tabular}


\section*{CMARMMATTE \\ RAYAT GROUP R O I R S}

Welder's name: BUCHET Philippe
OPERATOR PERFORMANCE QUALIFICATIONS (WOPQ) (See QW-301, Section IX, ASME Boiler and Pressure Vessel Code) Identification no.: \(\mathbf{O}\)

Testing Condition and Qualification Limits When Using Machine Welding Equipement Welding Variables (QW-361.2)
\begin{tabular}{|c|c|}
\multicolumn{1}{c|}{ Actual Values } & Range Qualified \\
\hline Machine & Automatic or Machine \\
\hline SAW & SAW \\
\hline Direct & Direct \\
\hline N/A & N/A \\
\hline No & Without \\
\hline 1 G & Flat \\
\hline 1 & \(/\) \\
\hline With & With \\
\hline Multiple & Single or Multiple \\
\hline
\end{tabular}

Type of welding (Machine):
Welding process:
Direct or remove visual control:
Automatic arc voltage control (GTAW):
Automatic joint tracking:
Position qualified (2G, 6G, 3F, etc.):
Consumable inserts (GTAW or PAW):
Backing (metal, weld metal, etc.):
Single or multiple passes per side:

Visual Examination of Completed Weld (QW-302.4):

\section*{Results}
\(\Gamma\) Bend test, \(\Gamma\) Transverse root and face [QW-462.3(a)],
\(\Gamma\) Longitudinal root and face [QW-462.3(b)]
T. Side [QW-462.2, F. Pipe bend specimen, corrosion-resistant overlay [QW-462.5(c)],
\(\Gamma\) Plate bend specimen, corrosion-resistant overlay [QW-462.5(d)],
5 Macro test for fusion[QW-462.5(b)], \(\quad \Gamma\) Macro test for fusion[QW-462.5(e)],



Testing Conditions and Qualification Limits

\section*{Welding Variables (QW-350)}

Welding processes(es)
Type (l.e., manual, semi-auto) used Backing (metal, weld metal, double-welded, etc.) Plate or Pipe (enter diameter If pipe or tube) Base metal P- or S-Number to P-or S-number Filler metal or electrode specification(s) (SFA)(info only) Filler metal or electrode clacification(s) (info only) Filler metal F-Numbers(s)
Consumable insert (GTAW or PAW)
Filler type (solid/metal or flux cored/powder) (GTAW or PAW)
Deposit thickness for each process
Position qualified (2G, 6G, 3F, etc.)
Vertical progression (uphill or downhill)
Type of fuel gas (OFW)
lonert gas backing (GTAW, PAW, GMAW)
Transfer mode (spray/globular or pulse to short circuit-GMAW)
GTAW current type/polarity (AC, DCEP, DCEN)
\begin{tabular}{|c|c|}
\multicolumn{1}{c|}{ Actual Values } & \multicolumn{1}{c}{ Range Qualified } \\
\hline GMAW & GMAW \\
\hline Semi-Auto & Semi-Auto \\
\hline With & With \\
\hline Plate & Plate or Pipe>73 \\
\hline P1 to P1 & P1 to P15-P34-P41 to P49 \\
\hline 5.18 & \(/\) \\
\hline N/A & \(/\) \\
\hline 6 & 6 \\
\hline N/A & N/A \\
\hline N/A & N/A \\
\hline 3 & 6 \\
\hline 1 G & Flat \\
\hline N/A & N/A \\
\hline N/A & N/A \\
\hline No & Yes or No \\
\hline Spray arc & Spray arc or Globular \\
\hline N/A & N/A \\
\hline
\end{tabular}
Visual Examination of Completed Weld (QW-302.4): \(\frac{\text { Results }}{\text { Satisfactory }}\)
\(\Gamma\) Bend test, \(\Gamma\) Transverse root and face [QW-462.3(a)], \(\Gamma\) Longitudinal root and face [QW-462.3(b)]
\(\Gamma\) Side [QW-462.2, T- Pipe bend specimen, corrosion-resistant overlay [QW-462.5(c)],
\(\Gamma\) Plate bend specimen, corrosion-resistant overlay [QW-462.5(d)],
\(\Gamma\) Macro test for fusion[QW-462.5(b)], \(\quad \Gamma\) Macro test for fusion[QW-462.5(e)],
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & Result & Type & Result & Type & Result \\
\hline\(l\) & \(l\) & \(l\) & \(l\) & \(I\) & \(I\) \\
\hline\(l\) & \(l\) & \(l\) & \(l\) & \(I\) & \(I\) \\
\hline
\end{tabular}

Alternative radiographic examination results (QW-191):
Satisfactory 4500 AV 16 (100\%)
Fillet weld - fracture test (QW-180):
Length and percent of defects: Macro examination (QW-184):
- 1

1

Fillet size (in.):
Other tests:

\(\qquad\)

Film or specimens evaluated by: A. LAFORGE
Company: CHARLATTE
Mechanical tests conducted by: I
Laboratery test no.:
Welding supervised by: E. RAPPENEAU
We certify that the statement in this record are correct and that the test coupons were prepared, welded, and tested in accordance with the requirements of section IX of the ASME Code.

Date:
19/12/2011
Organization: CHARLATTE-QAM
By: E. RAPPENEAU

WELDER PERFORMANCE QUALIFICATIONS (WPQ) (See QW-301, Section IX, ASME Boiler and Pressure Vessel Code)

Welder's name: DUSSAULT Jean-Claude Identification no.: B


\section*{Testing Conditions and Qualification Limits}

\section*{Welding Variables (QW-350)}

Actual Values
Range Qualified
Welding processes(es)
Type (lie., manual, semi-auto) used
Backing (metal, weld metal, double-welded, etc.)
Plate or Pipe (enter diameter if pipe or tube)
Base metal P- or S-Number to P-or S-number
Filler metal or electrode specifications) (SFA)(info only)
Filler metal or electrode clacification(s) (info only)
Filler metal F-Numbers(s)
Consumable insert (GTAW or PAW)
Filler type (solid/metal or flux cored/powder) (GTAW or PAW)
Deposit thickness for each process
Position qualified (2G, 6G, 3F, etc.)
Vertical progression (uphill or downhill)
Type of fuel gas (OFW)
lonert gas backing (GTAW, PAW, GMAW)
Transfer mode (spray/globular or pulse to short circuit-GMAW)
GTAW current type/polarity (AC, DCEP, DCEN)
\begin{tabular}{|c|c|}
\hline GNAW & GNAW \\
\hline Semi-Auto & Semi-Auto \\
\hline With & With \\
\hline Plate & Plate or Pipe>73mm \\
\hline P1 to P1 & P1 to P15-P34-P41 to P49 \\
\hline 5.18 & \(/\) \\
\hline N/A & 1 \\
\hline 6 & 6 \\
\hline N/A & N/A \\
\hline N/A & N/A \\
\hline 3 & 6 \\
\hline PG & Flat \\
\hline N/A & N/A \\
\hline N/A & N/A \\
\hline No & Yes or No \\
\hline Spray arc & Spray arc or Globular \\
\hline N/A & N/A \\
\hline
\end{tabular}
Visual Examination of Completed Weld (QW-302.4): \(\frac{\text { Results }}{\text { Satisfactory }}\)
\(\Gamma\) Bend test, \(\Gamma\) Transverse root and face [QW-462.3(a)], \(\Gamma\) Longitudinal root and face [QW-462.3(b)]
\(\Gamma\) Side [QW-462.2, \(\Gamma\) Pipe bend specimen, corrosion-resistant overlay [QW-462.5(c)],
\(T\) Plate bend specimen, corrosion-resistant overlay [QW-462.5(d)],
F Macro test for fusion[QW-462.5(b)], r" Macro test for fusion[QW-462.5(e)],
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & Result & Type & Result & Type & Result \\
\hline\(l\) & \(l\) & \(l\) & \(l\) & 1 & 1 \\
\hline\(l\) & \(l\) & \(l\) & \(l\) & \(l\) & 1 \\
\hline
\end{tabular}

Alternative radiographic examination results (QW-191)
Fillet weld - fracture test (QW-180):
Length and percent of defects:
Macro examination (QW-184):


Other tests: \(\quad 1\)
Film or specimens evaluated by: A. LAFORGE
Company: CHARLATTE
Mechanical tests conducted by: I
Laboratery test no.:
Welding supervised by: A. LAFORGE
We certify that the statement in this record are correct and that the test coupons were prepared, welded, and tested in accordance
with the requirements of section IX of the ASME Code.
Date:
14/02/2012
Organization: CHARLATTE--QAM
By: E. RAPPENEAU

\section*{CHARLATTE}

WELDER PERFORMANCE QUALIFICATIONS (WPQ)
(See QW-301, Section IX, ASME Boiler and Pressure Vessel Code)
Welder's name: BUCHET Philippe


\section*{Testing Conditions and Qualification Limits}
\[
\quad \text { Welding Variables (QW-350) }
\]
Welding processes(es)
Type (i.e., manual, semi-auto) used
Backing (metal, weld metal, double-welded, etc.)
Plate or Pipe (enter diameter if pipe or tube)
Base metal P- or S-Number to P-or S-number
Filler metal or electrode specification(s) (SFA)(info only)
Filler metal or electrode clacification(s) (info only)
Filler metal F-Numbers(s)
Consumable insert (GTAW or PAW)
Filler type (solid/metal or flux cored/powder) (GTAW or PAW)
Deposit thickness for each process
Position qualified (2G, 6G, 3F, etc.)
Vertical progression (uphill or downhill)
Type of fuel gas (OFW)
lonert gas backing (GTAW, PAW, GMAW)
Transfer mode (spray/globular or pulse to short circuit-GMAW)
GTAW current type/polarity (AC, DCEP, DCEN)

Actual Values
\begin{tabular}{|c|c|}
\hline GMAW & GMAW \\
\hline Semi-Auto & Semi-Auto \\
\hline Without & With or Without \\
\hline Plate & Plate >25mm O.D. \\
\hline 1 to 1 & 1 to 1 \\
\hline 5.18 & 1 \\
\hline N/A & 1 \\
\hline 6 & 6 \\
\hline N/A & N/A \\
\hline N/A & N/A \\
\hline 6mm & 12mm \\
\hline 1G & Flat or Horizontal \\
\hline N/A & N/A \\
\hline N/A & N/A \\
\hline Yes or No & Yes or No \\
\hline Pulsed & Pulsed \\
\hline 1 & 1 \\
\hline
\end{tabular}

Visual Examination of Completed Weld (QW-302.4):

\section*{Results Satisfactory}
\(\Gamma\) Bend test, \(\Gamma\) Transverse root and face [QW-462.3(a)],
\(\Gamma\) Longitudinal root and face [QW-462.3(b)]
\(\Gamma\) Side [QW-462.2, \(\Gamma\) Pipe bend specimen, corrosion-resistant overlay [QW-462.5(c)],
\(\Gamma\) Plate bend specimen, corrosion-resistant overlay [QW-462.5(d)],
5 Macro test for fusion[QW-462.5(b)], \(\quad \Gamma\) Macro test for fusion[QW-462.5(e)],
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & Result & Type & Result & Type & Result \\
\hline Root & Satisfactory & & & & \\
\hline Face & Satisfactory & & & & \\
\hline
\end{tabular}
Alternative radiographic examination results (QW-191):

Fillet weld - fracture test (QW-180):
Length and percent of defects:
Macro examination (QW-184):
Fillet size (in.): I
\(\frac{1}{1}\)
Other tests: None
Film or specimens evaluated by: C. BERTRAND
Company: CHARLATTE
Mechanical tests conducted by: BUREAU VERITAS

\section*{Laboratery test no.: \\ BV \(\mathrm{n}^{\circ}\) VT73}

Welding supervised by:
I
We certify that the statement in this record are correct and that the test coupons were prepared, welded, and tested in accordance
with the requirements of section IX of the ASME Code.
Date:
01/10/2007

\section*{CHARHMTETE \\ RAVAT GREUP \({ }^{\text {R }}\) V O:1R S}

WELDER PERFORMANCE QUAL.IFICATIONS (WPQ)
(See QW-301, Section IX, ASME Boiler and Pressure Vessel Code)
Welder's name: LABARBE Philippe
Identification of WPS followed: \(15 \mathrm{E} \quad\) Test Description \(\quad\) Identification no.: \(T\)

Specification of base metal(s): SA 516 grade 60 thickness: 14

Testing Conditions and Qualification Limits

\section*{Welding Variables (QW-350)}

Welding processes(es)
Type (i.e., manual, semi-auto) used
Backing (metal, weld metal, double-welded, etc.)
Plate or Pipe (enter diameter if pipe or tube)
Base metal P- or S-Number to P-or S-number
Filler metal or electrode specification(s) (SFA)(info only)
Filler metal or electrode clacification(s) (info only)
Filler metal F-Numbers(s)
Consumable insert (GTAW or PAW)
Filler type (solid/metal or flux cored/powder) (GTAW or PAW)
Deposit thickness for each process
Position qualified ( \(2 \mathrm{G}, 6 \mathrm{G}, 3 \mathrm{~F}\), etc.)
Vertical progression (uphill or downhill)
Type of fuel gas (OFW)
lonert gas backing (GTAW, PAW, GMAW)
Transfer mode (spray/globular or pulse to short circuit-GMAW)
GTAW current type/polarity (AC, DCEP, DCEN)
Actual Values
Range Qualified
\begin{tabular}{|c|c|}
\hline GMAW & GMAW \\
\hline Semi-Auto & Semi-Auto \\
\hline With & With \\
\hline Plate & Pipe \(\geq 73 \mathrm{~mm}\) \\
\hline 1 to 1 & 1 to 15F-P34-P41 to P49 \\
\hline 5.18 & \(/\) \\
\hline ER70S-6 & 1 \\
\hline 6 & 6 \\
\hline N/A & N/A \\
\hline N/A & N/A \\
\hline 14mm & *max to be welded \\
\hline 3G & Flat or Vertical \\
\hline Uphill & Uphill \\
\hline N/A & N/A \\
\hline N/A & N/A \\
\hline Spray arc & Spray or globular \\
\hline 1 & 1 \\
\hline
\end{tabular}
* with a minimum of 3 layers

Results
1
\(\Gamma\) Bend test, 5 Transverse root and face [QW-462.3(a)],
\(\Gamma\) Longitudinal root and face [QW-462.3(b)]
\(\Gamma\) Side [QW-462.2, \(\Gamma\) Pipe bend specimen, corrosion-resistant overlay [QW-462.5(c)],
\(\Gamma\) Plate bend specimen, corrosion-resistant overlay [QW-462.5(d)],
\(T\) Macro test for fusion[QW-462.5(b)], \(\quad \Gamma\) Macro test for fusion[QW-462.5(e)],
\begin{tabular}{l}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & Result & Type & Result & Type & Result \\
\hline\(l\) & \(l\) & \(l\) & \(l\) & 1 & 1 \\
\hline\(l\) & \(l\) & \(l\) & \(I\) & 1 & 1 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Alternative radiographic examination results (QW-191): Satisfactory
Fillet weld - fracture test (QW-180): I
Length and percent of defects:
Macro examination (QW-184):
Fillet size (in.): I \(\frac{1}{1}\)
Other tests: \(\quad \frac{1}{x} \quad\) Concavity / convexity (in.):
Radiographic inspection report AL111026/02
Film or specimens evaluated by: A. LAFORGE
Company: CHARLATTE
Mechanical tests conducted by: I
Laboratery test no.:
Welding supervised by:

\section*{E. RAPPENEAU}

We certify that the statement in this record are correct and that the test coupons were prepared, welded, and tested in accordance
with the requirements of section IX of the ASME Code.
Date:
26/10/2011

Organization: CHARLATTE- QAM
By: E. RAPPENEAU



\section*{Caracteristics of metals used}
(Parts of the vessel resisting to pressure or assembled by welding provisionally or definitively to a part of the apparatus which is under pressure )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Part of the apparatus} & \multirow[t]{2}{*}{Mark on plan \(n^{\circ}\) appended to the notice} & \multirow[t]{2}{*}{metal} & \multirow[b]{2}{*}{shade} & \multirow[t]{2}{*}{norm or specifications or reference (with date and indication)} & \multicolumn{3}{|l|}{chemical
coposition
(maximun contenance) *} & \multicolumn{4}{|c|}{mechanical characteristics} \\
\hline & & & & & C & S & \(P\) & \begin{tabular}{l}
R \\
\(\mathrm{N} / \mathrm{mm}^{2}\)
\end{tabular} & \begin{tabular}{l}
ReH \\
\(\mathrm{N} / \mathrm{mm}^{2}\)
\end{tabular} & \[
\left|\begin{array}{c}
A \% \text { mini } \\
L o=5,65 x \\
V_{\text {so }}^{-}
\end{array}\right|
\] & \[
\begin{aligned}
& \mathrm{R} \times \mathrm{A} \\
& \mathrm{mini}
\end{aligned}
\] \\
\hline Ends & 1 \& 2 & STEEL & SA516GR60 & ASME II & & *2 & *2 & *3 & *2 *4 & *2 *5 & *2 *5 \\
\hline & & & & ASME II & 0.27 & 0.035 & 0.035 & 485-620 & 260 & 17 & 1 \\
\hline Shell & 3 \& 4 & Steel & SA516GR60 & ASME II & 0.27 & 0.035 & 0.035 & 485-620 & 260 & 17 & 1 \\
\hline Cover & 8 & Steel & SA516GR60 & ASME II & 0.21 & 0.035 & 0.035 & 415-550 & 220 & 21 & 1 \\
\hline \begin{tabular}{l}
Inspection \\
flange
\end{tabular} & 6 & STEEL & SA181-CL60 & ASME II & 0.21 & 0.035 & 0.035 & 415-550 & 220 & 21 & 1 \\
\hline OUTLET : & & & & & & & & & & & \\
\hline Outlet flange & 12 & Steel & SA516GR60 & ASME II & 0.21 & 0.035 & 0.035 & 415-550 & 220 & 21 & 1 \\
\hline Supports & & STEEL & SA516GR60 & ASME II & 0.21 & 0.035 & 0.035 & 415-550 & 220 & 21 & 1 \\
\hline Handling eyes & 22 & STEEL & SA516GR60 & ASME II & 0.21 & 0.035 & 0.035 & 415-550 & 220 & 21 & 1 \\
\hline Support & 49 & STEEL & SA516GR60 & ASME II & & & & & & & \\
\hline Name plate & & & & & 0.21 & 0.035 & 0.035 & 415-550 & 220 & 21 & 1 \\
\hline Feet & 5 & STEEL & SA516GR60 & ASME II & 0.21 & 0.035 & 0.035 & 415-550 & 220 & 21 & 1 \\
\hline Connection & & STEEL & A105 & ASME II & 0.3 & 0.035 & 0.035 & 330-485 & 250 & 27 & 1 \\
\hline Connection & & Steel & A106 & ASME II & 0.35 & 0.04 & 0.035 & 330-485 & 250 & 27 & / \\
\hline Bolts & 9 \& 16 & \[
\begin{gathered}
\text { stainless } \\
\text { steel }
\end{gathered}
\] & SA320-B8M & ASME II & 0.37 & 0.04 & 0.035 & 860 & 720 & 16 & , \\
\hline
\end{tabular}
*1 Maximum product values as indicated by the recomended standard or specification. Only to be indicated for steel parts to be welded by fusion,
*2 Value to be given only for parts of the vessel under pressure.
*3 For parts of the vessel resisting to pressure give the enveloppe of values as indicated by the recomended standard or specification. For other parts give the maximum value of the enveloppe.
*4 For austenilic stainless steels, resistance to minimum traction guaranteed at maximum service temperature is given instead of the elasticity limit. *5 Only to be indicated for gas pressure apparatus for there steel parts participating in the apparatus resistance to pressure.
It is necessary, except for wire wound. :
A - at \(12 \%\) for the bolts.
- at \(14 \%\) in other cases (16.P100 for tubes and tubular products
when the sample is taken in the direction of the generating line).
and \(R A>10500\) (or \(R(A-2)>10500\) for tubes and tubular products).
\[
\text { FO- } 2500-25-63
\]


\section*{CERTIFICAT DE FORMAGE conforme à l'ASME VIII}

Works european certificate / Europaisch Abnahmeprufzeugnis



Normalisation ì \({ }^{\circ} \mathrm{C}\)
Normoluling
(ormelothor

NON

Revenu
Tampering
Antacen

NON \(\quad \begin{aligned} & \text { Hypertrempe } \\ & \text { Soadion moseling }\end{aligned}{ }^{\circ} \mathrm{C}\) LAswatulutien NON

Formage ì templrature de normalisation- Ranming or

 Resuluge
Sablage
es qualifications des soudeurs alinal que les
ana demande specilique.

OUI Controle dimensionnel : conforme



\section*{Nous attestons que les produits livres sont conforates aux prescriptiosis de la commande \\ }


Nom et qualitéNesso mod powitionNime und Stelling
Service coutrole


EURL AU CAPITAL 120.000 EUROS - SIRET 52931609300010 - APE 2550B
Usine : BP N \({ }^{\circ}\) INTRACOMMUNAUTAIRE FR 91529316093




SALEOIYTER: 13006931595811 E10/1960 30.10 .2012
20894122.001 8. 1.v.

MFLLD000093
Comn. 4500029429
ThyssenKrupp Steel, Europe
TO. 25-60

1240


ADD.2008/SA20/S5
TOL.EN 10029 KL.B/N OB EN 10163 KL.B/2
Kennzetchnung: WERKSTOFF; SCHMELZ-NR.; FERTIGUNGS-/PROBE-NR.
Markng:
Marque: Bo6 MATERIAL, HEAT-NO., MANUFACTURING/SAMPLE-NO.

\section*{BO1
ERZEUGNTSEORM \\ TYPE OF PRODUCT: \\ GROBBLECH, BESAEUNTE KANTEN \\ HEAVY PIAATES, TRIMMED EDGES \\ ITSTE DER MATERIATIDENTEN \\ LIST OF NATERIAL IDENTS}
pos.
ITEM
\begin{tabular}{ll} 
BO7 & B07 \\
PAKET & BLECH-NR. \\
BUNDLE & \\
& \\
BOLATE-NO.
\end{tabular}


TRANSPORT-NR.
TRANSFORT-NO.
318048636878

CHEMISCHE ZUSAMMENSETYUNG DER SCHMELZE IN
CHEMICAL COMPOSITION OF THE LADLE SAMPLES B07


ThyssenKrupp Steel Europe AG
Abnahme
-FOLGESEITE.

\section*{ThyssenKrupp Steel Europe AG}
Abnahme
-FOLGESEITE-

ThyssenKrupp Steel Europe AG

\section*{Abnahme}

El wind beatabich, doso dio Llaton
Won Varsinbarungeen boi der Bositolung antepatche.
Wo heraby owritiy, that tho above mendloned matortah
Nave been dowvered in eccordanos with the toand of erser. Noum aitastons qua ha produth findin sonk condarma aux atipuations do la commando.

\section*{TEST REPORT - ASTM/ASME}

Hem
(A) PROCESSI DI ELABORAZIONE/ STEELMAKING PROCESS: E = ELECTRC ; 80 \(=\) BASIC OXYGEN
 N = NORMWLIZZATO / NORMALZED ; R a RICOTTO / ANNEALED
(C) TRATTAMELD TEO + RINVENUTO / NORMALIZED + ANNEALED
(C) TRATTAMENTO TERMICO DEL CAMPIONE / HEAT TREATMENT OF SAMPLE:
\(\mathrm{R}=650^{\circ} \mathrm{C}, 5,5 \mathrm{~m} / \mathrm{m} / \mathrm{man}\); ARLA CNUNA/ STTLL AIR
(D) \(\operatorname{Ceq} 1=C+M n / 6 ; \operatorname{Cec} 2=\mathrm{C}+\mathrm{Ma} / 6+(C r+M 0+V) / 5+(M 1+C u) / 5\)
\(\mathrm{Pcm}=\mathrm{C}+51 / 30+(\mathrm{Mn}+\mathrm{Cu}+\mathrm{C}) / 20+\mathrm{N} / 50+\mathrm{Cr}+\mathrm{MO} / \mathrm{V}) / 5+(\mathrm{N} 1+\mathrm{Cu}) / 15\)
\(\mathrm{Cl} / \mathrm{V} / 10+\mathrm{B}=5\)
(1) POSIZIONE / LOCATION: 1 a TESTA/TOP ; 2 a PIEDE / BOTTOM
 (4) FORMA DEL PROVINO / SHAPE OF TEST PTECE (5) ESITO PROVADI PIEGA /RESULT: OK \(a\) COMPLYNG; NO \(=\) NOT COMPLYNG ; \(C=\) CIUNDRICO / CYUNDRICAL

\section*{cllente / Customer}
\begin{tabular}{|ll|}
\multicolumn{1}{|c|}{ del / date } & \\
\hline sonson/pos & \\
Prodotto / Product & Lamiere / Hot rolled plates \\
Qualità / Steelgrade & SA516GR60 \\
Normativa / Specification & ASME \\
\hline
\end{tabular}

\section*{CHARLATTE RESERVOIRS 17, RUE PAUL ALBERT 89400 MIGENNES}

MFLLD000183
10454





\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Metinvest Trametal spa
\(\qquad\) SEDE LEGALE: 16121 GENOVA - VIA XII OTTOBRE, \(3-6^{\circ}\) PIAN
Captale sociale \(€ 300.120 .000,00\) LV. - R.E.A. Genova n. 4377
C.F., P. Iva e Iscr. Reg. Imp. Genova n. 05956630965}} & \multirow[t]{2}{*}{} \\
\hline & & \\
\hline \({ }^{1} \mathrm{~N}^{\circ}\) Certificato /Certificate.no.
256822 & Fobel Pate & \\
\hline  &  & \multirow[t]{4}{*}{charlatte reservoirs 11789 17, RUE PAUL ALBERT 89400 MIGENNES (FRANCE)} \\
\hline \({ }_{\substack{\text { 3.105s3 } \\ \text { cor }}}\) & 229384 & \\
\hline  & \[
\begin{gathered}
\hline \text { del / date } \\
08 / 03 / 2012
\end{gathered}
\] & \\
\hline Penta flir no. & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Bou/(002/001 } \\
& \text { Prodotte / Product } \\
& \text { Qualità / Steel grade } \\
& \text { Normativa / Speciflcatlo }
\end{aligned}
\]} & & MMENOMONEN \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}



\section*{Certification of non destructive controls inspectors}
regarding the AS1210 and AS4458
\begin{tabular}{|c|c|c|c|c|c|}
\hline Items and ref. of weldings according to drawing annexed to the descriptive sheet & \[
\begin{array}{r}
\text { Vis } \\
\text { de } \\
\text { Name of } \\
\text { Mr CARO } \\
\text { Mr BERTRAND, }
\end{array}
\] & \begin{tabular}{l}
control of TR inspector : \\
r Laforge APPENEAU
\end{tabular} & TR kept by & \begin{tabular}{l}
Radiography date of TR \\
Name of the inspector : \\
Mr LAFORGE
\end{tabular} & TR kept by \\
\hline Longitu. welds & & 11/12/2012 & & certified on 11/12/2012 & \\
\hline Circular welds & certified on : & 11/12/2012 & CHARLATTE & certified on 11/12/2012 & CHARLATTE \\
\hline Connection welds & certified on : & 11/12/2012 & & & \\
\hline Flange welds & certified on: & 11/12/2012 & & & \\
\hline
\end{tabular}

The undersigned, Ste CHARLATTE S.A. , manufacturer, certify that for the here above mentionned pressure vessel, the non destructive controls in regarding the AS1210, AS4458 Their qualification is subjected to a certification for the operations of non destructive control which have been entrusted to them in accordance with the french norm NFEN 473 and ASM These inspectors and certification are hereafter mentionned :


\section*{DESTRUCTIVE CONTROLS}

MIGENNES, The : 11/12/2012
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Macrography Coef 0.7 Mr RAPPENEAU, Mr CARON \begin{tabular}{|l|}
\hline Mr LAFORGE, Mr PIACENTINI \\
\hline PV No: \\
\hline
\end{tabular}} & \multirow[b]{3}{*}{TR kept by} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\[
\begin{gathered}
\text { Coefficient : } 0.85 \\
\text { Date of the TR. } \\
\text { Laboratory of the MECASEM }
\end{gathered}
\]}} & \\
\hline & & & & \multirow[b]{2}{*}{TR kept by} \\
\hline & & & & \\
\hline K12/143 & \multirow[t]{2}{*}{CHARLATTE} & PV \({ }^{\circ}\). & & \\
\hline & & & OS/11/1133 & CHARLATTE \\
\hline
\end{tabular}








SP344 Brisbane Rd Redbạnk SPS - Civil and Mechanical OM Manual



\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{\begin{tabular}{l}
CHARLATTE \\
RAYAT GROUP \({ }_{\text {R }}^{\text {R }}\)
\end{tabular}} & TECHNICAL SPECIFICATION & Assurance Qualité \\
\hline & \begin{tabular}{l}
TITLE: \\
GENERAL COMMISSIONING AND MAINTENANCE INSTRUCTIONS FOR HYDROCHOC BLADDER VESSELS SPECIAL FOR WASTE WATER
\end{tabular} & \begin{tabular}{l}
IDENTIFICATION \\
SPT 0163-07-GB
\end{tabular} \\
\hline & & Page 1/1 \\
\hline
\end{tabular}

For tanks subject to Directive 97/23/EC and to the implementation decree dated 13 December 1999 (or to ASME).
The aim of these instructions is to draw the attention of installers, operators, project managers and other users to some basic precautions to be observed :
\begin{tabular}{l}
\hline I Security and legislation \\
This tank, manufactured according to the European Directive DESP 97/23 CE (or to ASME) is under the rules of pressure gas apparatus. Check that a \\
safety device (compliant with directive \(97 / 23 \mathrm{CE}\) and ASME) is providing protection against any pressure that exceed the maximum service \\
pressure level. We recommend installing this safety device on the pipe as close as possible to the pump.
\end{tabular}
\(>\) Never dismantle or open a vessel under pressure without previously having drained the air and the water completely.
\(>\) Never stay in front of the manhole while opening it.
\(>\) Internal pressure must be zero before any dismantling.

\section*{II Installation Configuration}

Surge bladder vessel for waste water should preferably be installed on line with the pipe. Due to space, civil engineering or other reasons, they can be installed if necessary : either off line with an elbow, or at the end of the pipe in the pumping station,
The network on which the vessel is connected has to enable to isolation, dismantling and draining. The gate and drain valves are part of the design of the installation.

CAUTION : this vessel has been temporaly pre-inflated at 0.5 b in our factory.
The commissioning of this material has to be realized. Reajust the precharge value according to the following instructions.

\section*{III Selection of the vessel pre-charge value}

For the precharge value, please see our study (see the label next the manufacter plate if a study has been done by our departments).
In all cases, never exceed 4 bars relative in order not to damage the bladder. Please follow the pre charge as follow :

\section*{If the precharge value exceeds atmospheric pressure}
1. Isolate the vessel from the network.
2. Open the drain valve of the line between the vessel and the isolation valve. (In the absence of a drain, please unbolt the connecting flange of the vessel) to evacuate the air which is between the bladder and the shell of the vessel in order to make a correct precharge.
3. Inject the air through the precharge valve situated at the top of the vessel (4 bar at the maximum).
4. Control that the sockets, the valves and plugs situated on the vessel are airtight with soapy water.
5. Put the vessel at the static pressure of the network.
6. When the vessel is at static balance (the manometer is stationary).
7. Control again all airtightnesses at service pressure.
8. In case of leak, drain completely the air from the vessel ; repair the seals and start again the commissioning from the beginning.

\section*{If the preharge value is equal to the amospheric pressure}

The case of a precharge at atmospheric pressure is a particular type of tuning.
The volume of compressed air in the vessel corresponds exactly to its capacity when the gas is reduced to atmospheric pressure.
The stages \(\mathrm{N}^{\circ} 2\) to 6 are aimed at ensuring that the total volume of the vessel is full of air at atmospheric pressure when the bladder, inflated against the wall of the vessel is completely fuil.
Stage \(N^{\circ} 5\) is essential : after having pushed the inflated bladder against the wall of the vessel (stage \(N^{\circ} 4\) ), you must prevent the air from getting in while
the pressure is being reduced (stage 6) because the bladder is likely at this moment to fold naturally.
1. Isolate the vessel from the network if the connection is already carried out.
2. Open the water drain or loosen the connection of the vessel from the connection pipe, and leave it open until stage \(\mathrm{N}^{\circ} 5\).
3. Connect a compressor, nitrogen or compressed air bottle to the charge valve.
4. Introduce compressed gas up to 4 bars and check with soapy water the airtightness on the gas side of the device; In case of leakages, drain completely the air from the vessel ; repair the seals and start again the commissioning from the beginning.
5. When the air tightriess is checked, tighten the flange of the device if it has been loosened since the stage \(\mathrm{N}^{\circ} 2\) or simply close the drain opened since stage \(\mathrm{N}^{\circ} 2\).
6. Reduce the gas pressure to 0 bar to regulate the precharge at atmospheric pressure.
7. Open the drain again or loosen the device again.
8. Open very slowly and partially the connection with the network in order that the water under static conditions comes into the connection pipe and the vessel. The open drain or loosened flange must evacuate air then water.
9. Close the drain or tighten the flange that was open since the stage \(\mathrm{N}^{\circ} 7\).
10. Open completely the connection with the network, which was partially open since stage \(\mathrm{N}^{\circ} 8\).
11. During the first hours, after the commissioning, check the airtightness of the gas side of the vessel while the system is in operation at dynamic pressure. In case of leakages, drain completely the air from the vessel ; repair the seals and start again the commissioning from the
beginning.

For any further information, please contact our After Sales Department.
CHARLATTE 17, Rue Paul Bert 89400 MIGENNES tel 0386923014 fax 0386923001
All our documents are available on our website www.charlatte.fr


\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{} \\
\hline &  &  \\
\hline \% &  &  \\
\hline
\end{tabular}



\title{
OPERATION, INSTALLATION AND MAINTENANCE MANUAL
}

PROJECT NAME:
SUPPLIER:
MANUFACTURER:
OLAER CONTACT:
VESSEL TYPE:

Cardno
Olaer Australia Pty Ltd
Charlatte Reservoirs - France
Sven Geboers
EUV Surge Vessel

\section*{Contents}
1. General notes. .....  .4
1.1. General ..... 4
1.2. Technical data ..... 4
1.2.1. Vessel .....  4
1.3. Bladder ..... 4
1.4. Internal Coating ..... 4
1.5. External Coating ..... 5
2. Safety procedures (OH\&S) ..... 6
3. Storage and Handeling .....  7
3.1. Vessel ..... 7
4. Transport procedures. .....  8
5. Installation procedures ..... 9
6. Pressure Gauge ..... 10
7. Commissioning procedures. ..... 11
7.1. Special tools required: ..... 11
7.2. Commissioning ..... 11
7.2.1. Precharging notes ..... 12
8. Dismantling \& assembly procedures ..... 14
8.1. Dismantling ..... 14
8.1.1. Temporary Pump Shutdown with Surge Vessel On-line ..... 14
8.1.2. Isolation and Decommissioning of Surge Vessel ..... 14
8.1.3. Emergency Shutdown ..... 14
8.2. Assembly ..... 14
9. OPERATION \& MAINTENANCE PROCEDURES ..... 15
9.1. Principles of operation ..... 15
9.2. Operation ..... 15
9.2.1. Before starting: ..... 15
9.2.2. Starting: ..... 15
9.2.3. Continuous operation ..... 15
9.2.4. Shutdown. ..... 15
9.3. Maintenance ..... 16
9.3.1. Vessel ..... 16
9.3.2. Notes on checking pre-charge pressure ..... 16
9.3.3. Pressure Vessel Inspections ..... 16
10. General mechanical drawings ..... 18

\section*{11. Protective divices \& Interlock diagrams \& alarm values \\ 20}
11.1. Alarms ..... 20
APPENDIX I
Gas cylinders

\section*{1. General notes}

\subsection*{1.1. General}
- Bladder Surge Vessels can also be referred to as Gas Accumulators, Bladder Surge Tanks \& Air Chambers.
- The Surge Vessel contains gas (dry nitrogen or compressed air) and liquid under pressure.
- Type of vessel used for your project: EUV Surge Vessel
- EUV vessels are pre-inflated to 0.5 bar to prevent them from damaging during transport.

\subsection*{1.2. Technical data}

\subsection*{1.2.1. Vessel}
- External Vessel Diameter:

2500 mm
- OAL:

6199 mm
- Outlet Opening:

DN 450
- Flange:

DN 450 PN16 AS4331
- Design/Hydrostatic Test Pressure: 1600 kPag / 2400 kPag
- Design Code: AS1210-2A
- Vessel Volume:

23000L
- Hazard Level:

B
- Design Temp:

0 to +60 degC
- Pre-charge Value:
tba Barg
- Pre-charge Medium:

Dry Nitrogen Gas or compressed air
WARNING: Nitrogen or compressed air must be used as a pre-charge medium. Do not use alternate gases.

\subsection*{1.3. Bladder}
- Type:
- Model No:
- Max Pre-charge Pressure:
- Design Life:

Reinforced waste water bladder 23000KU7
4 Barg
Up to 12 years, dependent on avoidance of adverse operating conditions (refer Principles of Operation)

\subsection*{1.4. Internal Coating}
- Shot Blast SA 2.5
- \(1^{\text {st }}\) coat:
- \(2^{\text {nd }}\) coat:

Amerlock 400 epoxy th. \(200 \mu \mathrm{~m}\) Amerlock 400 epoxy th. \(200 \mu \mathrm{~m}\)

\subsection*{1.5. External Coating}
- Sand Blast SA 2.5
- Primer:
- 2nd coat:
- 3rd coat:
- Total Thickness:

Zinc Epoxy th. \(100 \mu \mathrm{~m}\)
Anti-corrosive polyurethane th. \(100 \mu \mathrm{~m}\) polyurethane laquer th. \(100 \mu \mathrm{~m}\) RAL 7038 \(300 \mu \mathrm{~m}\)

\section*{2. Safety procedures (OH\&S)}

\section*{IMPORTANT}
- Safety goggles must be worn when charging and discharging nitrogen.
- The surge vessel is a pressure vessel containing water and compressed gas.
- Never disassemble or open a vessel before ensuring vessel is completely drained of water and gas.
- Comply with the nitrogen charging and venting procedures reference doc: BOC Gas Cylinder Users' Manual: "Safe under Pressure" to avoid the risk of asphyxiation.
- Never stay in front of the inspection opening / manhole while opening it.
- Ensure that a Job Safety Analysis is completed before commencing any work on or in the vessel.
- Ensure that the vessel is depressurized before commencing any work on the vessel.
- DO NOT PERFORM HYDROSTATIC TESTING WITH SURGE VESSEL INLINE. SURGE VESSELS HAVE STORED ENERGY.

\section*{3. Storage and Handeling}

\subsection*{3.1. Vessel}
- To protect the bladder do not leave the vessel in the sun without any water in it.
- Only hoist vessels when they are empty. Use the lifting eyes to move the vessels.
- Do not attempt to move the surge vessel when it is full of water and/or nitrogen.
- It is recommended that if elastomeric parts are stored for more than 5 years they are discarded and replaced.

\section*{4. Transport procedures}

Before transporting these vessels; please ensure that:
- The vessels are completely drained from water - i.e. empty
- The vessels have been discharged from Nitrogen (or compressed Air)
- The vessels are safely secured on the transporting truck - i.e. chained and tied down
- The vessels are placed and taken off the transporting truck using the lifting eyes/lugs only

\section*{5. Installation procedures}


Circuit diagram: Power Failure / Pump trip
- Protection against power failure / pump trip: Surge vessel must be installed downstream of the pump check valve as close to the check valve as possible.
- Protection against valve closure: Surge vessel must be installed as close as possible to the valve causing the transient event. This often isn't practical and surge vessel must be installed far from the valve. With this configuration transient will travel to the surge vessel before it is dampened.
- Install an isolation valve between the network and the vessel as there must be a way to isolate the vessel.
- Install a drain valve between the isolation valve and the outlet of the vessel. Vessel volume should be taken into consideration while selecting the diameter of the drain valve. Vessel outlet can have an extra connection that can be used as drain.
- Foundation must be able to support the weight of the full vessel.
- Installation location must be such that all parts of the vessel are accessible and that entry inside the vessel is possible. With vertical vessels allow room above so that bladder can be taken out for future maintenance.
- The vessel should be connected in a way that vibrations from other equipment will not affect it.
- Attachments must not cause any stress to the vessel.
- Measuring equipment should be installed with the vessels. Vessels should have a pressure gauge as minimum.
- The vessel should be bolted down securely (forces during overpressure situation should be considered).
- If required earth the vessel.
- If vessels are in a corrosive environment special paint needs to be applied.
- System must be equipped with a pressure relief device which will ensure that design pressure will not be exceeded.
- Note on equipping a vessel with a PRV: overpressure can only come from the system. If the relief valve is fitted onto the vessel it can only be with a reduced size orifice and could never relieve the full system flow. This can make fitting of the vessel with a PRV obsolete. Code permits this if there is a PRV somewhere else in the system.
- If PRV is fitted note that this should only be done at the water side of the vessel. No PRV should be fitted on the gas side.

\section*{6. Pressure Gauge}
- Vessels are normally supplied with a cross, charge valve, pressure gauge and isolation valve.
- Items should be assembled as per below sketch.
- Air leaks are likely to occur on the threaded connections so ensure that threads will seal.

GAUGE
ISULATIUN


\section*{7. Commissioning procedures}

\subsection*{7.1. Special tools required:}
- A roll of Duct tape (approx 5cm wide)
- Water Spray bottle and soap (detergent) - to detect for AIR leaks
- A set of spanners to check and tighten manhole bolts, water outlet bolts and pipe fittings ( \(10 \mathrm{~mm}-35 \mathrm{~mm}\) )
- A hoist/lift/ladder to check the connections on top of the vessel
- A nitrogen regulator to control the pre-charge process of Nitrogen into the Surge Vessel. A 16 Bar Nitrogen regulator will be fine. BOC can supply this. Just confirm it is a NITROGEN regulator, no other regulator will work (e.g. Oxygen etc) - they look very similar.

\subsection*{7.2. Commissioning}

In order to make the vessel operational it needs to be pre-charged with nitrogen or compressed air. This procedure must be carried out on site. This commissioning procedure assumes that the vessel is already installed in the system. Pumps are isolated during commissioning.
- Ensure that the pump piping and pipeline are filled and under the full pipeline static head.
- Isolate the vessel from the system using the Isolation valve.
- Open the Drain valve located between the vessel and isolation valve. Water and Gas need to be completely drained before the next step. Drain valve stays open until charging is finished.
- Introduce gas until the pre-charge pressure has been reached, using vessel pressure gauge to check. For charging accumulator using nitrogen gas bottles, regulator and charging kit follow instructions below:
a) Ensure that regulator is fitted to the gas bottle before connection. Low pressure side of the regulator should be no more than 10Bar for accurate charging.
b) Attach charging set to accumulator gas valve assembly (do not over tighten).
c) Attach hose between the regulator and charging set.
d) After ensuring that regulator is closed, back off handle on gas regulator until loose.
e) Ensure gas bleed valve on the charging set is closed.
f) Screw handwheel clockwise to open the gas valve. Do not screw knob down tight.
g) Open nitrogen cylinder valve, pressure should register on the inlet (high pressure) side of the regulator.
h) Turn the handle on gas regulator until outlet pressure on left hand gauge is slightly higher then required pre-charge pressure. When pressure on the charging set and regulator outlet gauge are equal, close nitrogen cylinder valve.
i) Turn charging set handwheel anti-clockwise to seal the gas valve.
j) FINE ADJUSTMENT - Crack bleed valve on the charging set (not shown) to exhaust gas from charging hose and remove hose from charging set.
k) FINE ADJUSTMENT - Close bleed valve, turn handwheel clockwise to open gas valve. Do not screw knob down tight. Crack bleed valve to vent down to required pre-charge pressure. Close bleed valve.
l) Turn handwheel anti-clockwise to reseal gas valve, crack bleed valve and remove charging set from accumulator.
m ) Connect the gas valve protection cap.

n) Record the pre-charge value and temperature - this value will be used for future maintenance.
o) Ensure that there are no gas leaks (check water inlet and all gas-side piping and fitting connections, including the gas charging connection and level gauge equipment). Use soapy water. In case there is a leak, drain all the gas from the vessel, fix the leak and commence commission procedure again.
p) Partially open the Isolating valve.
q) Close Drain valve when water starts coming out of it.
r) Fully opened the Isolation valve.
s) Check for gas leaks using the soap test on all gas-side joints.
t) The surge vessel is now operational.

\subsection*{7.2.1. Precharging notes}
- Pre-charge value must be calculated as a part of the hydraulic study (surge analysis).
- Pre-charge value must not exceed 4 Barg.
- Water needs to be introduced immediately after vessel is pre-charged.
- For Gas Cylinder Safety refer to "Safe under pressure manual (BOC)" and for Gas Cylinder transportation refer to "Transport of Gas Cylinder (BOC)" (both manuals attached).
- The gas regulator must be installed immediately after the gas outlet. The gas regulator is used to control the gas flow from the bottles into the surge vessel. Normally gas bottles are at 160Bar; using a regulator will ensure that the surge vessel cannot be exposed to a pressure greater than the regulator set pressure.
- Safety goggles must be worn.
- Ear muffs must be worn if noise level during charging is excessive.

\section*{CAUTION}

In order for the vessel to operate correctly, gas tightness must be ensured. This is why care must be taken in completing the installation and pre-charging. Any leaks must be detected and rectified during initial commissioning. Sometimes leaks might not be obvious and the pressure in the vessel needs to be checked soon after pre-charging (within one or two hours). Threaded connections are a possible location for leaks.

\section*{REMEMBER}

Check that all nuts and bolts are tightly fastened
Check that vessel is gas tight
Fill with water slowly
Don't exceed recommended pre-charge values
Any questions contact charlie@olaer.com.au

\section*{8. Dismantling \& assembly procedures}

\subsection*{8.1. Dismantling}

\subsection*{8.1.1. Temporary Pump Shutdown with Surge Vessel On-line}

NOTE: As the pumps are shut down it is important to know that the surge vessel discharges water into the system until the steady state balance is obtained.
Ensure that there is water inside the vessel when the system is shut down. This is important because if the vessel is completely drained the bladder will be pressed against the inlet/outlet grill. Prolonged contact can cause the bladder to fail.
In the event that either the isolating valve or the bypass valve leaks causing loss of water from the vessel initiating a low level alarm, the nitrogen will need to be discharged to prevent damage to the bladder (please see Safety Procedures OH\&S section 2).

\subsection*{8.1.2. Isolation and Decommissioning of Surge Vessel}
- Ensure that pumps are stopped
- Isolate the vessel from the system using the isolation valve.
- Discharge the nitrogen completely (this can be done using the charging set. WARNING: Potential for asphyxiation.
- Safety goggles must be worn.
- Ear muffs must be worn because of high noise level during discharge at high pressure.
- Do not stand in the path of the nitrogen discharge. Ensure that the area is well ventilated.
- Drain the vessel completely by opening the drain valve.

\subsection*{8.1.3. Emergency Shutdown}
- Emergency shutdown of the surge vessel may be required due to loss of nitrogen, water leak or damage to the vessel.
- Ensure that the vessel is isolated from the system.
- Evaluate whether it is safe to approach the vessel and determine protective measures required, considering the nature of the fault or damage, before venting and draining.
- Discharge the nitrogen and drain the vessel (please see Safety Procedures OH\&S section 2)

\subsection*{8.2. Assembly}

Please refer to Section 4 and 6 - Installation and Commissioning Procedures.

\section*{9. OPERATION \& MAINTENANCE PROCEDURES}

\subsection*{9.1. Principles of operation}

A bladder surge vessel has the same function with regard to surge control as the traditional compressor vessel. The objective of this pneumatic solution is to simplify the method of regulation. In a similar way to a vessel controlled by compressors, a pre-charge pressure is calculated to give the required elasticity to push the water into the system following a pump shut down or power cut.

The nitrogen pre-charge mass has been determined to provide a water level in the vessel suitable for the range of operating conditions and ambient temperatures. The volume and pressure of the nitrogen varies with ambient temperature. Therefore the pre-charge pressure appropriate for the ambient temperature at the time of charging must be selected to ensure that the level is suitable for the complete range of ambient temperatures.

Once the vessel has been commissioned and the correct pre-charge has been introduced, the vessel will operate automatically, emptying when called upon and refilling with the return waves until naturally finding its steady state balance.

Vessel should be sized by way of a surge analysis to protect against positive pressure rise and against vacuum due to transient event (power failure OR valve closure), and carrying out surge tests during commissioning. During sizing of the surge vessel care must be taken that maximum pre-charge pressure for the bladder is not exceeded and that when vessel is fully discharged there is \(20 \%\) safety volume remaining.

\subsection*{9.2. Operation}

\subsection*{9.2.1. Before starting:}

Ensure that the vessel has been commissioned as per procedure in this manual. Ensure that there are no gas leaks.

\subsection*{9.2.2. Starting:}

Ensure that the surge vessel has been commissioned in accordance with the procedure in this manual.
Ensure that the surge vessel has been filled with water and connected to be pipeline in accordance with the procedure in this manual.

\subsection*{9.2.3. Continuous operation}

No operator input is required for continuous operation.

\subsection*{9.2.4. Shutdown}

\subsection*{9.2.4.1. Temporary Pump Shutdown with Surge Vessel On-line}

NOTE: As the pumps are shut down it is important to know that the surge vessel discharges water into the system until the steady state balance is obtained. Ensure that there is water inside the vessel when the system is shut down. This is important because if the vessel is completely drained the bladder will be pressed against the inlet/outlet grill. Prolonged contact can cause the bladder to fail.

In the event that either the isolating valve or the bypass valve leaks causing loss of water from the vessel initiating a low level alarm, the nitrogen will need to be discharged to prevent damage to the bladder (please see Safety Procedures OH\&S section 2).

\subsection*{9.2.4.2. Isolation and Decommissioning of Surge Vessel}
- Ensure that pumps are stopped
- Isolate the vessel from the system using the isolation valve.
- Discharge the nitrogen completely (this can be done using the charging set. WARNING: Potential for asphyxiation.
- Safety goggles must be worn.
- Ear muffs must be worn because of high noise level during discharge at high pressure.
- Do not stand in the path of the nitrogen discharge. Ensure that the area is well ventilated.
- Drain the vessel completely by opening the drain valve.

\subsection*{9.2.4.3. Emergency Shutdown}
- Emergency shutdown of the surge vessel may be required due to loss of nitrogen, water leak or damage to the vessel.
- Ensure that the vessel is isolated from the system.
- Evaluate whether it is safe to approach the vessel and determine protective measures required, considering the nature of the fault or damage, before venting and draining.
- Discharge the nitrogen and drain the vessel (please see Safety Procedures OH\&S section 2).

\subsection*{9.3. Maintenance}

\subsection*{9.3.1. Vessel}
1. Every 3 months (If NO monitoring equipment is installed)
2. Check the Pre-charge value using the pressure gauge.
3. Check for leaks on all gas side connections using soapy water.
4. If gas pressure is \(5 \%\) below set pre-charge value vessel needs to be re-commissioned and care shall be taken that vessel is gastight and the bladder is not damaged or has not deteriorated.

\subsection*{9.3.2. Notes on checking pre-charge pressure}
1. Pressure gauge:
2. Pumps must be switched off
3. Vessel Isolated \& Drained
4. Take the reading and compare to previous value keeping temperature in mind
5. If pre-charge pressure is reduced by more than \(5 \%\) vessel should be decommissioned.
6. Get the vessel back on line ASAP.

\subsection*{9.3.3. Pressure Vessel Inspections}
- Charlatte surge vessels are subject to pressure vessel inspections in accordance with AS/NZS3788. Surge vessel can be classified as a gas accumulator for
inspection purposes. This has to be confirmed with the pressure vessel inspector. Your pressure vessel inspector will consider following:
- The vessel is kept corrosion free externally.
- The water is contained inside the vessel and the gas is contained inside the bladder
- The internal inspection schedule is arranged so that an internal inspection with bladder replacement will be undertaken within the specified design life of the bladder. The design life is specified in the General Notes section 1.
- The integrity of the shell internal coating is to be inspected to ensure that it is maintained, as a secondary protection in case moisture comes in contact with the vessel wall.
- Internal inspections to ensure that all seals are in good working condition.
- Inspection and maintenance procedures to stipulate that care is to be taken to ensure that no foreign material is left inside the vessel and that care is taken not to damage the internal lining or bladder.
- Shell thickness to be checked against the drawing using a thickness tester during external inspections. This is achieved by using an ultrasonic thickness gauge.
- Below is the section of AS3788 that shows nominal yearly inspection periods:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pressure Equipment & \begin{tabular}{c} 
Commissioning \\
Inspection Required?
\end{tabular} & \begin{tabular}{c} 
First Yearly \\
Inspection Required?
\end{tabular} & External Inspection & \begin{tabular}{c} 
Nominal Internal \\
Inspection
\end{tabular} & \begin{tabular}{c} 
Extended Internal \\
Inspection
\end{tabular} \\
\hline \hline \begin{tabular}{c}
10.1 Accumulators with non- \\
corrosive, non-toxic and non \\
flammable contents
\end{tabular} & & & & & \\
\hline PV \(>200 \mathrm{MPaL}\) & Y & & & & \\
\hline & & Y & 2 & 12 & 12 \\
\hline
\end{tabular}

For corrosive fluids nominal internal inspection is reduced to every 4 years. Actual pressure vessel inspection periods will depend purely on the pressure vessel inspector. However, following factors will affect the decision.
- Vessel kept corrosion free externally.
- Explanation that shell has internal coating.

During the inspection ensure that all seals are in good working condition. During the internal inspection ensure that no foreign material is left inside the vessel. Check that internal lining is in good condition.
10. General mechanical drawings


\section*{11. Protective divices \& Interlock diagrams \& alarm values}

\subsection*{11.1. Alarms}
- Low level can cause the vessel to be completely evacuated of water, causing a vacuum in the pipeline that can damage the vessel bladder and cause damage to the cement lining of the pipeline.
- High level and resulting over-pressurization can cause leakage of joints, and yielding or rupture of the vessel or connecting piping.

High pressure alarm: Equal to the piping design pressure and slightly less than the vessel design pressure. Possible causes of initiating this alarm include: loss of nitrogen combined with a surge event (although this event should be prevented by a high level alarm), or rapid valve closure while the high lift pumps are operating.

High level alarm: Possible causes of initiating this alarm include: loss of nitrogen due to leakage of vessel connections or damage to the bladder, or rapid valve closure (also resulting in high pressure)?

Low pressure alarm: Possible causes of initiating this alarm include: a surge event, or leakage of water while the vessel is isolated and the pipeline is drained. A surge event will most likely be caused by loss of power to the high lift pumps. The alarm will stop the pumps, to protect against any other unforeseen cause of surge. The cause of the surge should be ascertained and rectified before re-starting the pumps.

Low level alarm: Possible causes of initiating this alarm are the same as for the low pressure alarm, but with the addition of exceeding the correct pre-charge pressure.

\section*{APPENDIX I}

\section*{Gas cylinders}

No Gas cylinders required.

\section*{11. Photos}




















\section*{I⿴囗十⿱幺小又}

























































```


[^0]: Pivoting service cover

[^1]: a Wall-mount housing connection compartment
 b Cover of the sensor connection housing
 c Signal cable
 d Coil current cable
 n.c. Not connected, insulated cable shields

 Wire colors/Terminal No.:
 $5 / 6=$ braun, $7 / 8=$ white, $4=$ green, $37 / 36=$ yellow

[^2]: 1 Power unit board (85 to 260 V AC, 20 to 55 V AC, 16 to 62 V DC)
 2 Amplifier board
 3 I/O board (COM module)
 4 HistoROM / S-DAT (sensor data memory)
 5 Display module

[^3]: Transmitter Promag (compact version): 7.5 lbs
 High-temperature version: 3.3 lbs
 (Weight data valid for standard pressure ratings and without packaging material)

