Raubers Road

Vacuum Pumping Station

Electrical

Equipment

Manuals

1 to 4 pens -
full application flexibility

NEMA 4X/IP66 construction -
Hose-down protection

- Multiple 6-digit indicator panels continuous display of all signal values
0.1\% measurement accuracy -
precise process information
- High noise immunity robust, dependable operation

RS485 MODBUS serial communications open systems compatibility

- Totalizers and math functions built-in fully integrated solutions

COMMANDER 1900 - a rugged, reliable recorder with the full capability to meet your application needs

COMMANDER 1900

The COMMANDER 1900 is a fully programmable circular chart recorder for up to four process signals. The COMMANDER's straightforward operator controls and robust construction make it suitable for a variety of industrial environments. Excellent standard facilities are complemented by a powerful range of options to give the flexibility to match your application.

Comprehensive Process Information

The COMMANDER lets you see the status of your process at a glance: high visibility 6 -digit displays provide a clear indication of up to four process values simultaneously and active alarms are signalled by flashing LED's below the main display.

Simple Operation

The clearly-labelled tactile keypad gives direct access for operator adjustments and configuration programming, without the need to open the recorder's door. Clear text prompts on the digital displays guide the user around the various menus. A password-protected security system prevents unauthorized access to configuration adjustment menus.

The chart is easily set up to show the information you need in the way you want. Pen ranges are individually set to give the best resolution for each signal; the time per revolution can be selected between 1 hour and 32 days. Additionally a true time event pen facility enables one pen to be set up as a 3-position event marker on the same time line as Pen 1.

Flexibility to Solve Problems

The COMMANDER 1900 offers seamless integration of loop functionality to solve process problems, eliminating the need for auxiliary devices.

Totalizers, Math and Logic

Integrating fluid flow to calculate total volume is performed by the built-in totalizers available for each channel. Relays can be assigned to increment or reset extemal counters to match the recorder's totalizer values.

User configurable math functions, mass flow calculations and RH tables are all fully supported.

Logic capability allows interlocking and integration of discrete and continuous functions to solve a wide range of process problems.

Timers and Clock

The COMMANDER offers two event timers driven by the recorder's real-time clock. The timers can be configured to operate relays, start/stop the chart or trigger other actions within the recorder.

MODBUS RS485 Communications

Communications with PCs or PLCs are achieved via the RS485 serial communications link, enabling the COMMANDER to serve as the front end of plant-wide data acquisition systems. Using MODBUS RTU protocol all process inputs and other variables can be continuously read by a host PC running any of a wide variety of standard SCADA packages.

Built to Meet Your Needs

The COMMANDER's modular architecture gives rise to a high level of hardware choice: up to five i/o modules can be added
to the basic instrument.
The standard input/output module supplied with every pen comes complete with a fully isolated analog input, a relay output, transmitter power supply, isolated analog retransmission and two digital inputs. Further input and output capability is provided by a range of plug-in modules:

- Analog input and relay - for use with math functions
- Four relays - channel alarm outputs

E Eight digital inputs - linked using logic equations

- Eight digital outputs - TTL level alarm outputs
- MODBUS RS485 communications - interfaces with P.C.s

Expandable for the Future

The COMMANDER may be quickly upgraded to meet your changing process requirements.
Additional recording channels, math capability or input and output functions can be retrofitted on-site using plug-in cards and easily fitted pen arms. Input calibration data is stored on each card, allowing quick changes to input cards without the need for recalibration.
Changes to input sensors or recording procedures are accommodated by reconfiguration using the main keypad.

Minimal Maintenance

Excellent long-term stability keeps recalibration to a minimum, cutting the costs of ownership. User-selectable chart speeds and long-life pens combine to limit usage of consumables.

Designed to Survive

NEMA $4 X$ protection ensures the COMMANDER can survive in the harshest environments and makes the recorder ideal for use in panels which are regularly hosed down. The tough, acidresistant case and secure cable-entry glands maintain the NEMA 4 X rating for wall-mounted or pipe-mounted instruments.

Noise Immunity

Recording accuracy is maintained in noisy industrial environments due to the advanced EMC shielding within the recorder. The power supply has been designed to give excellent protection from power spikes and brownouts and all configuration and status information is held in nonvolatile memory to ensure rapid recovery after a power failure.

Easy to Install

A choice of mounting options enables simple installation of the recorder in a panel, on a wall or on a pipe. Detachable terminal blocks allow for trouble-free connection of input and output wiring, with mains isolation provided by a power switch within the instrument.

Built-in Quality

The COMMANDER 1900 is designed, manufactured and tested to the highest quality standards, including ISO 9001, and is guaranteed by a 2 year parts and labour warranty.

Commander 1900 Performance Specification

Summary

1,2,3 or 4 pens
10" Chart size
Standard i/o with each pen includes:
Analog input, analog output, transmitter power supply, relay output and 2 digital inputs.

General

Construction

 Size:Weight: Case material: Window Material: Door latch:
$15.23^{\prime \prime}(\mathrm{h}) \times 15.04^{\prime \prime}(\mathrm{w}) \times 5.57^{\prime \prime}(\mathrm{d})$ $(386.8 \times 382.0 \times 141.5 \mathrm{~mm})$ 18 lb (8.2 kg)
Glasstiber-filled reinforced polyester
Polycarbonate
High-compression with optional lock
Environmental
Operational temperature range: 32° to $130^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$

Operational humidity range: 5 to $95 \% \mathrm{RH}$ (non-condensing) 5 to 80% RH (chart only) NEMA 4X (IP66)
Case sealing: IEC 801-4 Level 3

Installation

Mounting options: Panel, wall or pipe
Terminal type:
Wire size (max):
Screw
14 AWG (i/o), 12 AWG (power)

Operation and Configuration

Programming method: Via front panel keys Security:

Password protected menus

Safety

General safety:
Isolation:
Memory protection:
Approvals:

Power Supply

Voltage:
Consumption:
Line interruption:

IEC348
500 V dc (channel/channel) 2 kV dc (channel/ground) Nonvolatile EEPROM
CSA (optional)
CE (optional)
$115 / 230 \mathrm{~V}$ ac $\pm 15 \%, 50 / 60 \mathrm{~Hz}$ $<40 \mathrm{VA}$ (typical for full spec. unit)) Up to 60 ms

Process Inputs and Outputs

General

Noise Rejection:

CJC rejection ratio: $\quad<0.05^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
Sensor break protection: Upscale or downscale drive

Out of range detection: Temperature stability:

Long-term dritt: Input impedance:

Analog Inputs

Signal types:
Thermocouple types:
Resistance Thermom
Other linearizations:
Sample interval:
Isolation:
Digital Filter:
Transmitter Power Supplies

Number:	1 per channel
Voltage:	24 Vdc nominal
Drive:	Up to 25 mA
Isolation:	500 Vdc channel/channel

Analog Input Performance

Type	Range Lo	Range Hi	Min. Span	Accuracy
mV	0	150	5	$\pm 0.1 \%$ reading or $10 \mu \mathrm{~V}$
V	0	5	0.1	$\pm 0.1 \%$ reading or $20 \mu \mathrm{~V}$
mA	0	50	1	$\pm 0.2 \%$ reading or $0.2 \mu \mathrm{~A}$
Ohms (low)	0	750	20	$\pm 0.2 \%$ reading or 0.1Ω
Ohms (high)	0	10 k	400	$\pm 0.5 \%$ reading or 10Ω

	${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{F}$		
Type	Range Lo	Range Hi	Range Lo	Range Hi	Accuracy (excl. CJC)
B	-18	1800	0	3270	$\pm 2.0^{\circ} \mathrm{C}$ (above $200^{\circ} \mathrm{C}$)
E	-100	900	-140	1650	$\pm 0.5^{\circ} \mathrm{C}$
J	-100	900	-140	1650	$\pm 0.5^{\circ} \mathrm{C}$
K	-100	1300	-140	2350	$\pm 0.5^{\circ} \mathrm{C}$
N	-200	1300	-325	2350	$\pm 0.5^{\circ} \mathrm{C}$
R	-18	1700	0	3000	$\pm 1.0^{\circ} \mathrm{C}$ (above 300°)
S	-18	1700	0	3000	$\pm 1.0^{\circ} \mathrm{C}$ (above $200^{\circ} \mathrm{C}$)
T	-250	300	-400	550	$\pm 0.5^{\circ} \mathrm{C}$
PT100	-200	600	-325	1100	$\pm 0.5^{\circ} \mathrm{C}$

Analogue Outputs

Type:
Accuracy:
Maximum load:
Isolation:

Relay Outputs
Type:
Rating (with non-inductive load)

4 to 20 mA
$\pm 0.1 \%$
750Ω
500 V dc

Digital Inputs

Type:
Minimum pulse:
Isolation:

TTL or volt-free
250 ms
500 Vdc between modules, no isolation within module
Digital Outputs
Type:
Rating:
Isolation:
5V TTL
5 mA per output
500 Vdc between modules, no isolation within module

Serial Communications

Connections:
RS485, 4 wire
MODBUS RTU

Pneumatic inputs/outputs

$\begin{array}{ll}\text { Type: } & 3 \text { to } 15 \mathrm{psig} \mathrm{I} / \mathrm{P}, 3 \text { to } 15 \mathrm{psig} \mathrm{P} / / \\ \text { Mounting: } & \text { External DIN rail on rear of unit }\end{array}$

Recording System

Pens

Number:
Response:
Resolution:
Pen lift:

Event Pens

Standard:
Real time:

Chart

Chart size:
Chart speed:

1,2,3, or 4 (red, blue, green, black)
7 seconds (full scale)
0.1% steps
Motor-driven, with optional autodrop

3-position event recording on any channel
3-position event recording on the same time line as Pen 1

10 " or 105 mm
1 to 167 hours or 7 to 32 days per revolution

Display and Operator Panels

Displays

Number:
Type:
Status indicators:
Alarm indicators:

Panel keys

Function:

Alarms and Logic

Alarms
Number:
Type:
Adjustments:

Logic Equations

Number:
Function:
Inputs:
Outputs:

2 (1 or 2 pens) or 4 (3 or 4 pens)
6 -digit red LED, $0.56^{\prime \prime}$ (14 mm) high Indicate channel number on display Indicate channel with active alarms

Programming access, increment/ decrement, pen lift and user-defined function key.

4 per channel
High/low process, fast/slow rate of change
Hysteresis, time delay

4
OR, AND
Alarm states, digital inputs, totalizers, logic
Relays, digital outputs, chart stop, alarm acknowledge

Advanced Software Functions

Totalizers

Number:
Size:
Output:

Math

Number of eqns.:
Type:

Timers
Number:
Type:
Output:
Option Module
Number:
Connection:

1 per pen 99,999,999 max.
External counter driver, "wrap" pulse signal

4
$+,-, x,+$, low \& high select, max, min, average, mass flow, RH

2

Real-time clock driven event, adjustable duration Relay, digital output, logic equation

5 plus $1 \times$ standard input/output module
Plug in cards with detachable connection blocks

Option Module Types	I/o per module							
	Analog i/p	Analog o/p	Trans. PSU	Relays	Digital i/p	Digital o/p	Comms.	Max. No. per instrmt
Standardi/o	1	1	1	1	2			3
Analog i/p + relay	1			1				5
4 relays				4				2
8 digital i/p					8			3
8 digital o/p						8		3
RS485 comms.							1	1
1901J (non-upgradeable)	1							

Ordering Guide
PART 1

Key to Module Types
0 No module fitted / Pen input channel *
1 Standard Input/Output
2 Analog Input (Math input) + Relay
3 Four Relays
4 Eight Digital Inputs
5 Eight Digital Outputs
6 True Time Event Pen (Violet)
8 MODBUS RS485 Communications

* On 2,3 or 4 pen instruments a standard I/O module is always fitted in the corresponding module position (enter ' 0 ' in the corresponding order code field).

[^0]

Cut-Out Size
Dimensions in inches (mm)
Dimensional Details

ABB Kent-Taylor Ltd.
St. Neots
Cambs.
England, PE19 3EU
Tel: (01480) 475321
Fax: (01480) 217948

ABB Kent-Taylor Inc.
PO Box 20550, Rochester
New York 14602-0550 USA
Tel: (716) 2926050
Fax: (716) 2736207

ABB Kent-Taylor SpA
22016 Lenno
Como
Italy
Tel: (0344) 58111
Fax: (0344) 56278

The Company's policy is one of continuous product improvement and the right is reserved to modify the information contained herein without notice.
© December 1995 ABB Kent-Taylor Printed in U.K.

Indicator Controller

Continuous level indication and control of up to ten devices.

The MTIC was specifically designed for applications requiring continuous liquid level display, pump control and analog utput.

The simple installation and operation make this unit one of the asiest retrofit level control devices in the MultiTrode range when pgrading from ball floats. Combining the MTIC with a 10 sensor robe provides the ultimate in low-cost reliability.

- Controls up to 10 devices.
- Ten-segment level indication.
- 10 programmable N / O or N / C outputs.
- Visual indication of set points.
- Four sensitivities.
- Four activation delays.
- $4-20 \mathrm{~mA}$ and $0-10 \mathrm{~V}$ DC outputs.
- Panel mounted.
- Power On indication.
- Ideal retrofit for troublesome ball floats.
- Perfect for I.S. application when used with MTISB.

The MTIC is used where level indication or control of multiple pumps and/or alarms is required. The unit's simple operation and mounting allow it to be easily installed. Key MTIC features are: ten separate relay outputs (one per LED) which can be set as N/O or N/C via the DIP switches located on the rear, and the inclusion of $4-20 \mathrm{~mA}$ and $0-10 \mathrm{~V}$ analog outputs.

Local indication at up to four remote sites when utilising the MTRIC can be achieved by adding additional MTRIC units.

The $4-20 \mathrm{~mA}$ and $0-10 \mathrm{~V}$ analog outputs can operate chart recorders, variable speed drives, telemetry or other control devices. The MTIC can be connected to a MultiTrode MTRIC, MTIPC, MT2PC or MT3PC via its $4-20 \mathrm{~mA}$ output providing full multiple pump control.

Typical applications are water reservoirs with remote pump stations or water tanks in high-rise buildings, with basement pumps.

All MultiTrode Products carry a full two year warranty

Rear Face

Dip Switch Settings

Dimensions

Approvals

UL listed 2P27

Approved for I.S. applications when installed in conjunction with a MultiTrode MTISB Intrinsically Safe Barrier

MTIC Specifications

Mode of Operation
 Charge or Discharge (Fill or Empty)

Probe Inputs

Sensor inputs	10
Sensor voltage	12 VAC Nominal
Sensor current	0.8 mA max. (per sensor)
Sensitivity	$1 \mathrm{k}, 4 \mathrm{k}, 20 \mathrm{k}, 80 \mathrm{k} \Omega$
Other Inputs	
None	
Relay Outputs	
No of relay outputs	$10 \mathrm{~N} / \mathrm{O}$ or N/C
Selectable delays	$0,5,10,15 \mathrm{sec}$
Relay contact rating	250 VAC 5 A Resistive, 2A Inductive
Relay contact life	10^{5} Operations
Terminal size	$2 \times 2.5 \mathrm{~mm}^{2} \# 13$

Other Outputs

Analog \quad| $4-20 \mathrm{~mA}$ |
| :--- |
| $0-10 \mathrm{VDC}$ | $\mathrm{R}_{\mathrm{L}} \leq 500 \Omega$

Display

LEDs
10 LED bargraph \& Power On
Communications
None

Physical Product

Dimensions mm
Mounting
Enclosure

97H $\times 97 \mathrm{~W} \times 129 \mathrm{D}$
Panel mounted through cut-out using brackets supplied. Extruded aluminium.

Power Supply

Supply Voltage AC
Power Consumption
Supply Voltage DC

110, 220-240VAC Nominal $50 / 60 \mathrm{~Hz}$ 16VA max
10 to 30VDC - 10 Watts max.

Working Temperature Range

$$
\begin{aligned}
& -10^{\circ} \text { to }+60^{\circ} \mathrm{C} \\
& +14^{\circ} \text { to }+140^{\circ} \mathrm{F}
\end{aligned}
$$

Ordering Information

AVAILABLE MODELS

MTIC-2 240VAC
MTIC - 3 110VAC
MTIC - 7 10-30VDC

All MultiTrode Products carry a full two year warranty

Supplied mounting kit

The MTAK-1 mounting bracket is SUPPLIED STANDARD with all multi-sensored probes.

The MTAK-1 mounting bracket has an integral cleaning device.

All metal
components are manufactured from \#316 stainless steel.

Custom Probes also available

MultiTrode offers a variety of custom probes. Your custom probe is manufactured exactly to your requirements.
(Within the following limits.)

No. of Sensors	25 max
Sensor spacing	85 mm min
Section length	$3 m$ max
Cable length	500 m max

Your assistance with an application drawing, specifying cable lengths and sensor spacings will ensure prompt and accurate service.
Note. Probes over three metres in length are made in sections.

Please contact your local MultiTrode representative for a copy of the Custom Probe Order Form.

Mounting Options:
MultiTrode's MTAK-2 Extended mounting bracket provides up to 300 mm of extra wall clearance.
(For further details please refer to the Multiliode accessories section)

MTAK-2

Approvals:

UL listed 2P27

Approved for I.S. applications when installed in conjunction with a Multitrode MTISB Intrinsically Safe Barrier

Probe Specifications
Materials

Sensors:	Avesta 254 SMO High Grade Stainless Steel Alloy
Probe Casing:	uPVC Premium Quality Extruded Tube
Cable:	PVC/PVC Multi-core,

Dimensions

32 mm diameter \times specified length
Mounting Via the supplied suspension/
cleaning bracket inside the wet well

Temperature Range

0° to $100^{\circ} \mathrm{C}$

Cable

Conductor:	Multicore	Three core	Single core
Conductor Size	$0.75 \mathrm{~mm}^{2}$	$0.75 \mathrm{~mm}^{2}$	$1.0 \mathrm{~mm}^{2}$
Strands	24	24	30
ת/km	25	25	20
$\Omega /$ mile	40	40	32
Oversheath: Nom Diameter	12 mm	8 mm	6.9 mm
Colours:	Multi cores Oversheath	Light blue / Dark blue/ Lig	hite high Blue
Identification:	All cores are 1-ONE-1, 2- (Numbering	printed to re WO-2, etc. pplies to multic	very 200 mm . re cable only).

Ordering Information - Standard Probes

MODEL			Length	Spacing		Cable
A /	D	- C	A		B	C
			m		mm	m
0.21		- C	0.2	1	N/A	- 10 or 30 m
0.5/	3	- C	0.5	1	150	- 10 or 30 m
1.0/	10	- C	1	1	100	- 10 or 30 m
1.5/	10	- C	1.5	1	150	- 10 or 30 m
$2.0 /$	10	- C	2	1	200	- 10 or 30 m
2.5/	10	- C	2.5	1	250	- 10 or 30m
3.0/	10	- C	3	1	300	- 10 or 30m
6.01	10	- C	6	1	600	- 10 or 30m
$9.0 /$	10	- C	9	,	900	- 30 m

A = Nominal probe length
$B=$ Distance between sensor points
C = Cable length
D = Number of sensors

Cable lengths of up to 500 m are available

Liquid Level Sensing Probe

Probe

Conductive level sensor

The Probe is ideal for conductive liquids in aggressive and turbulent applications.

Virtually nil maintenance required.
Simple installation from outside of sump.
Safe, low sensing voltage.
Unaffected by fat, grease, debris and foam.
Excellent in turbulent sumps.

- Positive pump cutout (no overruns).

Cost-savings, short and long term.
\square Environmentally friendly.

- Intrinsically Safe operation using MultiTrode's I.S. Barrier.

MultiTrode has proven to be the most reliable and cost-effective liquid level control system available. MultiTrode Probes were specifically designed for the arduous, turbulent conditions encountered in water, sewage and industrial tanks and sumps.

Installation: Probe instaliation is easily achieved without the need to enter the wet area. The probe is simply lowered in from the top and suspended by its own cable, using the mounting kit supplied.

Fat, Grease, Debris and Foam: The probe's operation is unaffected by the build-up of fat, grease, debris and foam, which cause systems such as floats, bubblers, pressure and ultrasonic transducers, as well as other conductive probe systems, to fail.

Turbulence: Turbulence does not affect the probes operation, in fact it has a beneficial cleaning effect. The rugged, streamlined construction of the probe eliminates tangling, allows for operation in confined spaces and is a perfect partner for the Flygt mix \& flush valve.

Safety: The personal safety of operators and maintenance staff is assured, due to the extra-low sensing voltage. Eliminates the use of dangerous high voltage equipment, and the risk of electric shock.

Positive Pump Cut-Out: The probe ensures your pumps are turned off at the same level every time. This avoids damage due to pump overrun and the cost of additional control equipment.
Cost Savings The low cost of equipment and installation makes MultiTrode one of the most economical systems available. MultiTrode's long life ensures continued cost savings, as compared to alternate forms of level control.

Environmentally Safe

MultiTrode probes do not contain mercury or any other environmentally damaging contaminants.

Stuart Burus
O411-425-445 38086518

Kent-Taylor Deltapi K Series ${ }^{\circledR}$ Electronic Transmitters Model K - GP Pressure Transmitter

Model K-GP is a field mounted electronic transmitter using advanced measurement techniques, including a piezo-resistive sensing element, to provide accurate, reliable measurement of gauge and absolute pressure inthe most difficultand hazardous industrial environments.

Table of ContentsTransport, Handling, Storage
Page
Product Identification 1
Principle of Operation 2
Installation 2
Electrical Connections 3
Calibration 3
Simple Fault Finding 4
Dismantling and Reassembly 5 5
Trouble Sheet Form 6
Product Code 7 7 8-9
Product Specification 10

Transport

After final calibration, the instrument is packed in a carton (*) that protects it from physical damage.
(*) Type 2 to ANSI/ASME N45.2.2-1978

Handling

The instrument does not require any particular caution during handling.

Storage

The instrument does not require any special treatment if stored as despatched and remains within the ambient conditions specified under Transportation and Storage conditions in the Specification Sheet and/or in the Specification in the last page of this publication. There is no limil to the storage period, although the terms of guarantee remain as agreed with Company and as given in the order acknowledgement.

> Use of DANGER, WARNING, CAUTION and NOTE
> This Publication includes DANGER, WARNING, CAUTION and NOTE information where appropriate to point out safety related or other important information.

DANGER
WARNING - Hazards which could result in personal injury.
CAUTION - Hazards which could result in equipment or property damage.
NOTE - Alerts user to pertinent facts and conditions.
Although DANGER and WARNING hazards are related to personal injury, and CAUTION hazards are associated with equipment or propenty damage, it should be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process system performance leading to personal injury or death. Therefore comply fully with all DANGER, WARNING and CAUTION recommendations.

Product identification

The instrument is identified by some plates as shown in the figure below.

The Nameplate (ref. A), indicates the technical characteristic such as Code number, maximum working pressure, range and span limit, power supply and output signal. For details on code see page.

The Serial Number plate (ref. B) shows the transmitter serial number: please always refer to this number when making enquiries.

The Safety Marking plate (ref. C) fitted when the transmitter is required with a safety protection mode.

Principle of operation

The process fluid (liquid, gas or vapours) transmits, via a separation diaphragm and a filling fluid, the measured pressure to a piezo-resistive measuring diaphragm.

The other side of this diaphragm is either open to the atmosphere for low pressure measurement, or sealed for high pressure measurement or evacuated for absolute pressure measurement.

The deflection of the measuring diaphragm changes the resistances of a Wheatstone bridge: these, in turn, are fed to the electronics module which gives an output signal of 4 to 20 mA that is proportional to the amount of pressure applied to the transmitter.

Zero and span adiustements are provided to adjust, within the sensor specified limits, the transmitter calibration to the requested value.

ABB Kent-Taylor spa
Deltapi K \uparrow

IMPORTANT

The instrument serial number must always be given when making enquiries. .

Installation

WARNING - In order to ensure operator and plant safety it is essential that installation is carried out by suitably trained personnel and according to the technical data given in the specification.
The transmitter should be mounted, by means of the supplied mounting bracket, to a wall or to a 2 inch pipe support. The process connection should be done using $1 / 2$ inch piping for the connecting line: an union and a shut-off valve should be installed for maintenance.

For gas service the transmitter should be installed above the elevation of the process connection so that possible condensate will drain back to the process.
For steam or vapours the transmitter should be installed below the process connection: a T or a X pipe fitting should be provided in order to fill the connection, before the startup, with water or other suitable filling liquid. The seal liquid prevents overheating of the sensor element by live steam and ensures a constant liquid head to the transmitter process connection (see figure below).
Drain Plug Shut-off

For liquid service the transmitter can be installed at any convenient elevation w.r.t. the process connection: although the positive or negative head pressures due to the different elevations of the transmitter and pressure tap should be considered during the calibration.

Electrical connections

DANGER - Do not make electrical connections, in areas classified as HAZARDOUS LOCATIONS, unless the safety code designation shown on the transmitter safety marking plate agrees with the area classification. Can result in hazard of FIRE and EXPLOSIONS.

Signal terminals are located in a separate compartment of the electronics housing. On the top works of the transmitter two connection ports for cable glands or conduit fittings are provided. The connection ports are protected with a plastic plug for transport purposes: after the installation, the unused port should be adequately plugged. Connections can be made by removing the cover on the side designated as "FIELD TERMINALS" on the topplate.
CAUTION - Unless it's necéssary avoid the removal on site of the protective cover which gives access to the electronic circuitry. Although the electronics is fully tropicalized it should not be subjected to humidity for long periods.
Make the connections to the terminal block as indicated in the figure: note that the standard terminal block does not include the terminals for the remote indicator ($5 \& 6$) and those for test points ($9 \& 10$). The internal output meter, when required, can be mounted simply by plugging it into the appropriate socket, after the removal of the short circuit link fitted between the terminal $1 \& 2$. The power to the transmitter is supplied over the signal wiring and no additional wiring is required. The signal wiring does not need to be shielded but the use of a twisted pair is highly recommended.
CAUTION - Do not connect the powered signal wiring to the mA signal testing terminals ($1 \& 2$). Power could damage the by-pass diode fitted through the test connections.
Do not run the signal wiring in close proximity to power cables or high powerequipment: use dedicated conduits or cable trays for signal wiring. Signal wiring may be ungrounded (floating) or grounded at any place in the signal loop. however if intrinsic safety is used the wiring and grounding must follow the specific rules for this technique. The transmitter case may be grounded or

Unless otherwise specified the instrument is factory calibrated at maximum span. Instruments adjusted and tagged for a specific range will not require recalibration; however recommended procedures are outlined below.

Set a test rig as appropriate and in accordance with the figure below. Remove the cover opposite to the electrical connection to access the zero and span trimmer.
a) the calibration accuracy is stricly related to the accuracy of the test equipment used.
b) for instrument with standard terminal block version (without test point) calibrate by connecting a milliammeter between the terminal 1 and 2 after the removal of the short circuit link. Values of 4 and 20 mA should be read for zero and span calibration respectively.

Electrical connections

Zero and Span Calibration (Zero based range)
 \section*{Absolute Pressure Measurement}

- Make "a' connection
- Switch on the power supply
- Close valve V
- Operate the vacuum source P until the best possible vacuum, read on M. is achieved
- The value read on the DVM should be 40 mV (or 4 mA): if it is not adjust the zero trimmer (see figure) to obtain this value
If the value of calibration span is less than the atmospheric pressure allow, via valve V. the pressure in the system to ise to the value of the upper range value
Close the valve V when this value is achieved
The value read on the DVM should be 200 mV (or 20 mA) if it is not adjus the span trimmer to obtain this value
It the value of the calibration span is greater than the atmospheric pressure. remove ' a " connection and make " b " connection.
By means of G1 generate a pressure, read on M1. equal to thevalue of the upper range value. The value read on the DVM should be 200 mV (or 20 mA): it it is not adjust the span trimmer to obtain this value.

Gauge Pressure Measuremen

- Switch on the power supply
- With no pressure applied the value read on the DVM should be 40 mV (or 4 mA): if it is not adjust the zero trimmer (see figure) to obtain this value - Make 'b" connection
- By means of $\mathbf{G 1}$ generate a pressure, read on M1. equal to the value of the upper range value. The value read on the DVM should be 200 mV (or 20 mA): : it is not adjust the span trimmer to obtain this value.

Zero and Span calibration (zero suppressed range)

Absolute Pressure Measuremen

- Make connession 'a'.
- Switch on the power supply.
- Close the valve V and operate the vacuum source until M reads the value of the pressure to be suppressed.
The value read on the DVM should be 40 mV (or 4 mA): if it is not adjus the zero trimmer (see figure) to obtain this value.
- By means of P or $G 1$ (after having made connection "b*) generate a pressure equal to the upper range value (sum of the pressure to be suppressed and the calibration span) of the instrument
The value read on the DVM should be 200 mV (or 20 mA): if it is not adjust the span trimmer to obtain this value

Simple Fault Finding

If the transmitter does not appear to be working satisfactorily, carry out the following fault finding checks before contacting yournearest ABB Kent-Taylor Service Center.

If the instrument is to be returned for repair, ensure that it is adequately cleaned and decontaminated. Use for packing the original polystyrene box or high density chip foam.

WARNING - If the transmitter forms part of a control loop, the plant must placed under manual control while the instrument is examined or taken out of service.
Equipment needed : $31 / 2$ digits DVM, solvent contact cleaner
NOTE :
Unless otherwise specified all checks on test points must be carried out with negative reference terminal on TP2
Fault : No Output
Start (power on)

Dismantling and reassembly

CAUTION - Dismantling and reassembly should not be carried out on site because the risk of damage to components and printed circuits as a result of adverse ambient conditions (e.g. humidity, dust, etc.). The dismantling and reassembly procedures given below should be carried out in the listed order to avoid instrument damage.

Equipment required

Small Phillips screwdriver
 Small screwdriver
 Small soldering iron
 - Output meter, surge protector and terminal block

Dismantling

a) Unscrew and remove the cover (1)
b) If fitted, pull out the output meter (2)
c) If the meter is not fitted, remove, unscrewing the relevant screws, the shorting link (3)
d) If the surge protector is fitted, remove it unscrewing the fixing screws
e) Unscrew the terminal block fixing screws (4)
f) Unsold the terminal block wires
g) Unscrew the ground connection (5) and remove the terminal block

Reassembly

Proceed as above but do the operation in the reverse order. Care should be taken on the polarity of the connection: the negative wire (black) should be soldered to the outer pin. Do not pinch the wires while fitting the terminal block. Before screwing the cover, check that the " O " ring is not damaged.

- Electronics

Dismantling

a) Unscrew and remove the cover (6)
b) Using the soldering iron remove the sensor connections from the terminal pins
c) Unscrew the two Phillips screws that hold in place the electronics
d) Pulling on the two black plastic pillars remove the electronics (7) paying attention to not damage the sensor cable.

Reassembly

a) Holding the electronics by the two black plastic pillar fit it in place, paying attention that the flat part of the printed circuits is parallel to the top of the housing, in order to allow the correct passage for the sensor cable and the correct electrical connection. When the electronics is in place push it gently down to plug into the connector
b) Screw down the two Phillips screws that fix the electronics to the housing
c) Using the soldering iron solder the sensor wires in the printed circuit ferminal pins, paying attention that the colors of the wires fit with the colors indicated on the printed circuit
d) Make the pressure and electrical connections as indicated in page 4 and power up the transmitter
e) Connect a DVM between TH2 (-) and TP5 (+), see Fig. on page 5. With no pressure applied trim RV2 to read exactly 0 V .
Apply the URL pressure and trim RV1 to read exactly 600 mV . Repeat these operations twice.
f) Proceed with the Zero and Span Calibration procedures as explained at page 4
g) Fit the cover in place.

FUNCTIONAL SPECIFICATIONS

Overrange limit

- Sensor 2.: 0.3 MPa , 3.bar, 43.5 psi
- Sensor 3 : $0.9 \mathrm{MPa}, 9 \mathrm{bar}, 130 \mathrm{psi}$
- Sensor 4 : $2.4 \mathrm{MPa}, 24 \mathrm{bar}, 348 \mathrm{psi}$
- Sensor 5: 6 MPa, 60 bar, 870 psi
- Sensor 6: $15 \mathrm{MPa}, 150 \mathrm{bar}, 2175 \mathrm{psi}$
- Sensor 7 : 37.5 MPa, 375 bar, 5435 psi
- Sensor 8 : $90 \mathrm{MPa}, 900$ bar, 13050 psi

Normal operating pressure limits operates within specifications between line pressures of 2 kPa abs, 20 mbar abs or 0.29 psia and the Upper Range Limits, for gauge measurement version and between 0 kPa abs, 0 mbar abs or 0 psia and the Upper Range Limit for absolute measurement version.
Power supply (at the transmitter terminals)
The transmitter operates on 12 to 42 Vdc with no load and is protected against reverse polarity connection.
Minimum operating voltages:

- 12 Vdc without options
-13.5 Vdc with surge protection
- 14 Vdc with optional LCD meter
-12.2 Vdc with optional analog meter
-15.5 Vdc with all options

Operating conditions

SPECIFICATIONS

Optional surge protection

Up to 2.5 kV (5 kA discharge current) of $8 \mu \mathrm{~s}$ rise time $/ 20 \mu \mathrm{~s}$ decay to half value.
Volumetric displacement
$<0.5 \mathrm{~mm}^{3}$ for max span.
Power-up time
Operation within specification in less than 1 sec . with minimum damping.
Insulation resistance
$>100 \mathrm{M} \Omega$ © 500 Vdc (1000 Vdc option)
Output signal
Two-wire 4 to 20 mA dc.
Ripple content on the output
less than 2% at 33.4 kHz
Load limitations - total loop resistance including optional remote indicator line: see figure below
Line resistance to remote indicator: $15 \Omega \max$

T Temperatur

Ambient pressure (absolute)	Relative Humidity (\%)	Vibration (IEC 654-3)	$\begin{aligned} & \text { EMI/RFI } \\ & \text { (SAMA } \\ & \text { PMC 33.1) } \end{aligned}$	Supply voltage Vdc (2)	Output load $\Omega(3)$
$96 \mathrm{kPa} \pm 10 \%$ $960 \mathrm{mbar} \pm 10 \%$ $720 \mathrm{mmHg} \pm 10 \%$	$60 \pm 25 \%$	None	None	24 ± 0.5	600
Atmospheric pressure	0 and 100 condens. permissible	Severity class: steady state $\cdot \mathrm{f}=1$ to 10 Hz displ. 1.5 mm -acc. 0.5 g $-f=10 \text { to } 60 \mathrm{~Hz}$ displ. 0.15 mm $\cdot f=60 \text { to } 500 \mathrm{~Hz} \cdot \mathrm{acc} .2 \mathrm{~g}$	Class 2-abc Field strengths up to $10 \mathrm{~V} / \mathrm{m}(5)$	12 and 42	$\begin{gathered} 0 \\ \text { and } \\ 1500 \end{gathered}$
			Class 3-abc Field strengths up to $30 \mathrm{~V} / \mathrm{m}$ (5)		
		Severity class: unusual - Velocity $=300 \mathrm{~mm} / \mathrm{s}$ -f = 1 to 150 Hz	Not applicable		

[^1]
PERFORMANCE SPECIFICATIONS

Unless otherwise stated performance specifications are given at reference operating conditions and zero based range for transmitter with isolating diaphragm in AISI 316 L ss and Silicone oil fill. Test procedures and operating influences are in accordance with relevant IEC and SAMA standards. Unless otherwise modified, all errors are quoted as percentages of output span. Total effect is the maximum effect (zero and span shitts) at any point in the calibrated range.

Accuracy

Accuracy rating (') :

- $\pm 0.25 \%$ of calibrated span (for sensors 2 to 7 with calibrated span up to 75% of max span)
$- \pm 0.50 \%$ of calibrated span (for sensors 2 to 7 with calibrated span above 75% of max span and for sensor 8).
(") Includes combined effects of terminal based linearity, hysteresis and repeatability. - For effects of operating influence refer to K-GP specification sheet.

ABB Kent-Taylor spa
Via Statale 113
22016 Lenno (Como)
Italia

Tel. (0344) 58111
Facsimile (0344) 56278

ABB Kent-Taylor.Ltd.
Howard Road
St. Neots, Cambs.
England PE19 3EU
Tel. (01480) 475321
Facsimile (01480) 2129/84/2014

ABB Kent-Taylor Inc.
1175 John Street
PO Box 20550, Rochester
NY 14602-0550 USA
Tel. (716) 2926050
Facsimile (716) 2736207

COMMANDER 1900 Series
 Programming Guide

 Circular Chart RecordersRecorder Versions

ABB Instrumentation

CONTENTS
Section1
2 GENERAL PROGRAMMING 2
2.1 Preparation for Changes to the Parameters 2
2.2 Security System 2
3 BASIC CONFIGURATION LEVEL 2
3.1 Set Up Input (Process Variable) 4
3.2 Set Up Pen Range/Event Source 8
3.3 Set Up Chart 9
3.4 Set Up Alarms 10
3.5 Set Up Relay Output 14
3.6 Set Up Digital Output 16
3.7 Set Up Analog Output 18
3.8 Digital Inputs 20
3.9 Access Page 21
3.10 Scale Adjust 22
4 ADVANCED CONFIGURATION LEVEL 25
4.1 Set Up Function Keys 25
4.2 Set Up Logic
26
26
4.3 Set Up Pen Functions 28
CONNECTIONS \& LINKS 29

1 INTRODUCTION

The COMMANDER 1900 series of documentation is shown in Fig. 1.1. The Standard Manuals, including the specification sheet, are supplied with all instruments. The Supplementary Manuals supplied depend on the specification of the instrument.

Fig. 1.1 COMMANDER 1900 Documentation

2 GENERAL PROGRRAMMING ${ }^{\text {Nudgee SPS SP27 Ge Bee BASIC' COINFIGURATION LEVEL }}$

The programming procedures are used to make changes to the operating parameter values and for scale adjustment - see Fig. 3.2.

I
The programming of all channels is performed using faceplate 1 - see Fig. 3.1

When changing the input type it may be necessary to reposition the input selector links accordingly - see Section 5, CONNECTIONS \& LINKS.

2.1 Preparation for Changes to the Parameters

Ensure that the external alarm/control circuits are isolated if inadvertent operation during programming is undesirable.

Any change to the operating parameters are implemented using the Δ or \square switches - see Section 3 of the Operating Guide.

Note. The instrument responds instantly to parameter changes which are saved automatically when leaving the current frame.

2.2 Security System

A security system is used to prevent tampering with the programmed parameters by restricting access to programming levels, other than the OPERATOR LEVEL; all users have access to this level.

A security password is used to give access to the programming pages. The password can be set to any value from 0 to 9999. The instrument is despatched with the password set to ' 0 ' - see Section 4.5 of Operating Guide.

Faceplate 1
Fig. 3.1 Location of Faceplate 1

.. 3 BASIC CONFIGURATION LEVEL

3.1 Set Up Input (Process Variable)

Information.

- Universal inputs - mV , mA , V, THC, RTD and resistance.
- Internal cold junction compensation.
- Linearization - of temperature sensors to allow use of non-linearizing transmitters or any electrical input.
- Programmable fault levels and actions.
- Digital filter - to reduces the effect of noise on inputs.

Example A - setting up:

- a current input of 4 to 20 mA
- displaying a range of 0 to 200 ps
- a fault detection level 10\% above 200psi (engineering/display range) and 10\% below 0psi (engineering/display range)
- in the event of a fault being detected and/or the fault detection level being exceeded the process variable is driven downscale.

Example B - setting up:

- a Type K thermocouple
- displaying temperature in ${ }^{\circ} \mathrm{F}$
- displaying a range of 0 to $2000^{\circ} \mathrm{F}$
- a fault detection level 10% above $2000^{\circ} \mathrm{F}$ (engineering/display range) and 10% below $0^{\circ} \mathrm{F}$ (engineering/display range)
- in the event of a fault being detected and/or the fault detection level being exceeded the process variable is driven upscale.

. 3 BASIC CONFIGURATION LEVEL

.3.1 Set Up Input (Process Variable)

Input Range High
Set the maximum electrical input value required (in electrical units).
Note. The value set must be within the limits detailed in the table below.

Input Type	Range Low Min.	Range High Max.	Min. Range (Low to High)
Millivolts	0	150	5.0
Volts	0	5	0.1
Milliamps	0	50	1.0
Resistance Low	0	750	20
Resistance High	0	9999	400

Input Range Low
Set the minimum electrical input value required (in electrical units).
Note. The value set must be within the limits detailed in the above table.
Temperature Units
Select units required.

Engineering Range High
Set the maximum engineering (display) value required.
Note. The value set must be within the limits detailed in the tables below.

Linearizer Type	Degrees Fahrenheit			Degrees Celslus		
	Min.	Max.	Min. Span	Min.	Max.	Min. Span
Type B	0	3272	1278	-18	1800	710
Type E	-148	1652	81	-100	900	45
Type J	-148	1652	90	-100	, 900	50
Type K	-148	2372	117	-100	1300	65
Type N	-328	2372	162	-200	1300	90
Type R \& S	0	3092	576	-18	1700	320
Type T	-418	572	108	-250	300	60
			45	-200	600	25
RTD	-328	1112				

Performance accuracy is not guaranteed below $725^{\circ} \mathrm{F} / 400^{\circ} \mathrm{C}$ for types B, R and S thermocouples.
Minimum span below zero Type $\mathrm{T} 126^{\circ} \mathrm{F} / 70^{\circ} \mathrm{C}$
Minimum span below zero Type $\mathrm{N} 189^{\circ} \mathrm{F} / 105^{\circ} \mathrm{C}$
THC standard DIN 4730 IEC 584
RTD standard DIN 43760 IEC 751

Linearizer Type	Engineering Range High and Low	
	Min.	Max.
$5 / 2$		
$3 / 2$		
Square Root		
None		

[^2]
3 BASIC CONFIGURATION LEVEL...

...3.1 Set Up Input (Process Variable)

Decimal Point

Set the decimal point position required for both the engineering range high and engineering range low values.

Engineering Range Low

Set the minimum engineering (display) value required,
Note. The value set must be within the limits detailed in Engineering Range High tables opposite.

Broken Sensor Protection Drive

In the event of a fault being detected on the input and/or if the Fault Detection Level Percentage is exceeded (see next frame), the process variable is driven in the direction of the drive selected.

Select the broken sensor drive required:

ПONE	-	No drive
$U P$	-	Upscale drive
d	-	Downscale drive.

Fault Detection Level Percentage

A fault level percentage can be set to detect a deviation above or below the display limits.
For example, if set at 10.0%, then if an input goes more than 10% above Engineering Range High or more than 10\% below Engineering Range Low, a fault is detected.

On some ranges the input circuitry may saturate before the fault level set is reached. In this case an error is detected below the level set.

Set the level required, between 0.0 and 100.0\% of engineering span (range low to high) in 0.1% increments.

Note. If an input exceeds the minimum or maximum value for the linearizer selected an error is detected regardless of any fault level.

Programmable Filter

Filters the process variable input, i.e. if the input is stepped it smooths the transition between steps and may also be used for some degree of cleaning of noisy inputs. The filter time represents the time a step in the input takes to change the displayed process variable from 10 to 90% of the step.

Set the value required, between 0 and 60 in 1 second increments.
Return to Select Channel frame.

Coding

The physical and functional characteristics of this transmitter of the Deltapi K Series are summarized into specific document named "code list". Basis catalogue and sequential identification number are as follows:

abcdefghijkI

c CERTIFICATION

SENSOR

[d Span Ilmits (adjustabie berwoon)

- 0 Preparation

(1)

Use code

9
Process connection
OIN $16289 \cdot$ Form B.G. $1 / 2$ A Male
$1 / 2$ NPT Female

1] Outnut meter

None-

Ar.alo $36 \mathrm{~mm} . ~$	$\left(90^{\circ}\right)$ linear scale
Analog $\left.36 \mathrm{~mm} .90^{\circ}\right)$ special scale	

Analog 36 mm . 90°) special scale

- Dipital LCO slandard scale (010100% linear)

Diyilal LCO spocial calibration

Surge protection
None
Yes

k

... 3 BASIC CONFIGURATION LEVEL

3.2 Set Up Pen Range/Event Source

i Information.

- Trend pens - have an independent chart range allowing a selected part of the engineering (display) range to be used for extra resolution on the chart.
- Three position event pen function - can be driven by digital inputs, alarms, logic equation results and real time events (when timer option is fitted).

EVENT

$1 n 5 r[$
$E C \cap-4$

กопก
(1)

Page Header - Set Up Pen Range

To advance to Set Up Chart Page press the \square switch.

Select Pen

Select the pen to be programmed

Note.

- In the remaining frames press the \square switch to view the pen selected.
- Record (trend) or event pen function is set in the ADVANCED CONFIGURATION LEVEL (if True Time Event Pen option is selected, the fourth pen is fitted with a special pen arm and is set automatically for event pen function) - see Section 4.3, Set Up Pen Functions.

Pen Range High

Set the maximum value required on the chart, in engineering units (the value must be within the engineering range set in Set Up Input Page - see Section 3.1).

Pen Range Low

Set the minimum value required on the chart, in engineering units (the value must be within the engineering range set in Set Up Input Page).

In Source

Select a source to move the pen inwards on the chart.
For a description of sources - see Table 3.1 on page 15.

Out Source

Select a source to move the pen outwards on the chart.
For a description of sources - see Table 3.1 on page 15.

Return to Select Pen frame.

3 BASIC CONFIGURATION LEVEL...

3.3 Set Up Chart

Information.

- Programmable chart duration - between 1 and 167 hours or 7 and 32 days.
- Chart stop function - the chart can be stopped by an alarm, digital input, logic equation result or a real time event (if timer option is fitted).
- Auto pen drop - automatically drops the pen(s) onto the chart after a 5 minute delay to ensure recording is not left disabled inadvertently.

Page Header - Set Up Chart
To advance to Set Up Alarms Page press the \square switch.

Chart Duration
Select the chart duration required per revolution of the chart; between 1 and 167 hours or 7 and 32 days.

Stop Chart Source

Select the source required for stopping the chart.
For a description of sources - see Table 3.1 on page 15.

Auto Pen Drop

Select ' $4 E 5$ ' to enable or ' $n 0$ ' to disable.
If ' $Y E 5$ ' selected, pen(s) drop automatically onto the chart 5 minutes after they are lifted.
If ' NO ' selected, the pen(s) remain lifted until they are manually dropped by the operator.
Pen Lift Enable/Disable
The \triangle switch can be disabled if required. Select ' $Y E S$ ' to enable or ' $\cap O$ ' to disable.

Pen Lift/Pen Status

To raise pen(s) press Δ switch. The following status displays are shown:

rECOrd	-	pen records on chart
LIFE	-	pen lifts off chart
PRrH.	-	pen moves to park position
RE $r E F$	-	pen at reference position

To lower pen(s) press $\$$ switch. The following status displays are shown:
rEEUR \cap - pen returns to record position
drOP - drops (lowers) onto chart
rEEOrd - pen records on chart
Return to top of Set Up Chart Page.

... 3 BASIC CONFIGURATION LEVEL

3.4 Set Up Alarms

Information.

- Four alarms per channel - identified A1 to D1 (for channel 1) up to A4 to D4 (for channel 4).
- Three operator acknowledge options.
- Global alarm acknowledgment - by digital input, alarm, logic equation result or real time event (if option fitted).
- High/low process alarms.
- Fast/slow rate of change - of process variable alarms.
- Adjustable hysteresis value - to prevent oscillation of alarm state.
- Time hysteresis - to allow delayed triggering of alarms.

Fig. 3.4 Time Hysteresis Alarm

...3.4 Set Up Alarms

3 BASIC CONFIGURATION LEVEL

...3.4 Set Up Alarms

3 BASIC CONFIGURATION LEVEL...

...3.4 Set Up Alarms

Alarm Type

Select the alarm type required for the alarm selected.
HI-PrC - high process
LO-PrC - low process
F-rEE - fast rate (rate of change of process variable)
$5-r t E$ - slow rate (rate of change of process vaniable)
OFF - alarm off

Trip Level
Set the trip value required for the alarm selected.
The following are displayed in engineering units:
hPrC. LPrC.
The following are displayed as a percentage of the engineering span (engineering range high engineering range low) per hour between ± 0.5 and $\pm 500 \%$:

FrtE and SrtE.

Hysteresis
 Hysteresis is operational when the alarm is active.

Set the hysteresis value required for high/low process, in engineering units (within the engineering range) or in 0.1% increments for rate alarms. The alarm is activated at the trip level but is only turned off after the alarm variable has moved into the safe region by an amount equal to the hysteresis value. For rate alarms this setting is a percentage of the trip rate - see 'FrtE' and 'S $\quad t E$ ' in previous frame.

Time Hysteresis
 Set the time hysteresis value required between 0 and 9999 seconds.

Note. The alarm condition must be present continually for the time set, before the alarm becomes active. If a hysteresis level is also set, the alarm condition remains active until the process variable moves outside the hysteresis band. When the alarm condition no longer exists the alarm becomes inactive, i.e. time hysteresis does not affect turning off of alarm states.

Return to Select Alarm frame.

.. 3 BASIC CONFIGURATION LEVEL

3.5 Set Up Relay Output

Information.

- Relay Output - omitted on 1901J (non-upgradeable version).
- Relays - can be energized by alarms, logic equation results, digital inputs, real time events (timer option) and totalizer wrap signal (totalizer option).
- External Totalizer count function - external counter can only be driven by module type 3 (4 relays module) fitted in module positions 4,5 and 6 .
- Polarity - to allow failsafe settings.

Page Header - Set Up Relays

To advance to Set Up Digital Output Page press the \square switch

Select Relay Output

Select the output to be programmed. The selections in this frame relate to the number of fitted modules with relays and their relative module positions.

Example - for a type 3 (four relays) module fitted in position five the following selections are also programmable:

$$
\begin{aligned}
& \text { rEL AY } 5.1 \text { (position 5, relay 1) } \\
& \text { rELAY } 5.2 \text { (position 5, relay 2) } \\
& \text { rEL KY } 5.3 \text { (position 5, relay 3) } \\
& \text { rELAY } 5.4 \text { (position 5, relay 4) }
\end{aligned}
$$

Note. In the remaining frames press the ${ }^{*}$ switch to view the relay selected.

Relay Source

Select the source required to activate the selected relay.
For a description of sources - see Table 3.1 on page 15.

* Note. To drive an external counter COUnt.x must be selected.

Continued on next page

...3.5 Set Up Relay Output

Source	Description
AL_ $8[H$	Alarm Acknowledge - Unacknowledged process alarm anywhere in the unit
$\begin{aligned} & \text { E I-Er. } \\ & \text { E I-Er.i } \end{aligned}$	Real time event 2 Real time event 1 Real time events (only available if timer option fitted - see Advanced Software Options Manual).
$\begin{aligned} & E C \cap-4 \\ & E C \cap-3 \\ & E C \Pi-2 \\ & E C \Pi-1 \end{aligned}$	$\left.\begin{array}{l}\text { Programmable logic equation 4 } \\ \text { Programmable logic equation } 3 \\ \text { Programmable logic equation 2 } \\ \text { Programmable logic equation } 1\end{array}\right\}$ Programmable logic equations - see Section 4.2, Set Up Logic
$\begin{gathered} \text { *RP-4 } \\ \text { count. } \\ \vdots \\ \text { rap- } \\ \text { * count. } \end{gathered}$	
	Digital Input 6.8 Digital input 1.1 \qquad Digital Input number
$\begin{aligned} & A L-d 3 \\ & R L-C 3 \\ & A L-b 3 \\ & A L-R 3 \end{aligned}$	
$\begin{aligned} & R L-d Z \\ & R L-C Z \\ & R L-b ? \\ & R L-R Z \end{aligned}$	
	$\left.\begin{array}{l} \text { Alarm D } \\ \text { Alarm C } \\ \text { Alarm B } \\ \text { Alarm A } \end{array}\right\} \text { Channel } 1 \text { Alarms }$
none	No source required

* Only available on 4-relay and 8-digital output modules (types 3 and 5), fitted in module positions 4,5 and 6.

Table 3.1 Description of Sources

... 3 BASIC CONFIGURATION LEVEL

i Information.

- This page is not displayed if there are no digital outputs fitted.
- Up to 24 digital outputs are available - depending on the module types fitted.
- Digital outputs - can be energized by alarms, logic equations results, digital inputs, real time events (timer option) and totalizer wrap signal (totalizer option).
- External Totalizer count function - external counter can only be driven by module type 5 (8 digital outputs module) fitted in module positions 4,5 and 6.
- Polarity - inverts the effect of the selected source on the output state.

...3.6 Set Up Digital Output

Page Header - Set Up Digital Outputs
to advance to Set Up Analog Output page press the \square switch.

Select Digital Output

Select the output to be programmed - the selections in this frame relate to the number of fitted digital output modules and their relative module positions.

Example - for a type 5 (eight digital outputs) module fitted in position five the following selections are also programmable:

OUE S.I (position 5, output 1)
OUt 5.2 (position 5 , output 2)
OUt 5.3 (position 5, output 3)
OUt 5.4 (position 5, output 4)
OUE 5.5 (position 5, output 5)
OUE 5.6 (position 5, output 6)
OUE 5.7 (position 5, output 7)
OUE 5.8 (position 5, output 8)
Note. In the remaining frames press the [来 switch to view the output selected.

Output Source

Select the source required to activate the selected digital output.
For a description of sources - see Table 3.1 on page 15.
Note. To drive an external counter count.x must be selected.

Polarity

The polarity selection is used to invert the effect of the source state on the output as shown in the following table:

Source State	Polarity	Output State
Active	Positive Negative	Energized Non-active
	Positive	
Negative	De-energized	

Select the polarity required
Caution. Check connections before operating - see Section 5, CONNECTIONS \& LINKS.
Return to Select Digital Output frame.

1.. 3 BASIC CONFIGURATION LEVEL

3.7 Set Up Analog Output

Information.

- Analog Output - omitted on 1901J (non-upgradeable version).
- Fitted analog outputs - assignable to retransmit any process variable.
- Selectable retransmission range - allows maximum resolution on range of interest.
- Adjustable output range - for non-standard and reversed outputs.
$\left[\begin{array}{l}* \text { Note. The example below shows analog output } 1 \text { set to retransmit part of process variable } 1 \text { 's engineering range (250 to } \\ 750^{\circ} \mathrm{C} \text {) as a } 4.0 \text { to } 20.0 \mathrm{~mA} \text { current output. }\end{array}\right.$
$\left.\begin{array}{c}\begin{array}{c}\text { Select Analog } \\ \text { Output }\end{array} \\ \text { Output } 1 \\ \text { Source }\end{array}\right]$ Setting Output Ranges

...3.7 Set Up Analog Output

Page Header - Set Up Analog Output
To advance to Digital Inputs Page press the switch.

Select Analog Output

Select the analog output to be programmed. The selections in this frame relate to the number of fitted modules with analog output.

Example - Output 1 is the analog output in position 1 (fitted on the main board), output 3 is the analog output fitted in module position 3.

Note. In the remaining frames press the [*] switch to view the analog output selected.

Output Source

Select output source required. The selections in this frame correspond to the channels on the instrument (as available) - PV1 (channel 1), PV2 (channel 2) etc.

Retransmission Range High
Set the engineering range value (in engineering units) at which maximum output is required.

Retransmission Range Low

Set the engineering range value (in engineering units) at which minimum output is required.

Output Range High

Set the maximum current output required for the Retransmission Range programmed between 2.0

[^3]Return to Select Analog Output frame.

... 3 BASIC CONFIGURATION LEVEL

3.8 Digital Inputs

- i Information.
- Digital input - omitted on 1901J (non-upgradeable version).
- Up to $\mathbf{3 0}$ digital inputs are available - depending on the module types fitted.
- Volt-free contacts or TTL levels.
- Polarity - sets the logic state (unchanged or inverted) for the module position(s).

3.9 Access Page

[i) Information.

- Configurable password protection - of PROGRAMMING LEVELS.
- Internal security link - enable/disable password protection.

Page Header - Access Page.
To advance to Scale Adjust Page press the \square switch.

Configuration Password

Prevents access to the Programming Pages.
Set the required password, between 0 and 9999.
Return to top of Access Page.

Fig. 3.7 Use of Security Code in Operator Level

Fig. 3.8 Location of Security Link

... 3 BASIC CONFIGURATION LEVEL

3.10 Scale Adjust

i information.

- Analog Inputs - do not require re-calibrating when the input type or range is changed.
- Process variable adjust reset - removes any previously programmed offset or scale adjustment settings.
- System offsets errors - can be removed using process variable scale offset adjustment.
- System scale errors - can be removed using process variable span adjustment.
- Process variable offset/span adjustment - can be used to perform spot calibration
- Pen(s) - can be independently calibrated and checked across the full range of the chart.
- Mains filter - selectable for maximum noise rejection.
- Pen Linearity Check - automatically draws a pen linearity test pattern.

Scale Adjustment

4 ADVANCED CONFIGURATION LEVEL.

...4.2 Set Up Logic

... 3 BASIC CONFIGURATION LEVEL

...3.10 Scale Adjust

SELECE

 FILEER
Calibrate Pen At 100\%

Drives the pen automatically to the full scale position on the chart.
Use the \square andswitches to set pen to 100% on the chart.

Calibrate Pen At 0\%

Drives the pen automatically to the zero position on the chart.
Use the \square and \square switches to set pen to 0% on the chart.

Check Pen Calibration

The pen calibration can be checked at any point on the chart.
Use the Δ and \square switches to move the selected pen from the zero point up to the 100% position on the chart.

Note. If the true time event option is fitted the red pen does not move beyond the 94% position on the chart.

Select Filter

Select the mains frequency of the supply used to ensure maximum noise rejection on analog inputs.

Return to Select Process Variable/Pen frame.

4 ADVANCED CONFIGURATION LEVEL

4.1 Set Up Function Keys \qquad
4.2 Set Up Logic
4.3 Set Up Pen Functions

Fig. 4.1 Advanced Configuration Level

4.1 Set Up Function Keys

Information.

- Programmable function key - on each faceplate
- Home function - returns the instrument display to the start of the operating page when at the top of any page.
- Global alarm acknowledge function - acknowledges any unacknowledged alarms on all channels.

Page Header - Set Up Function Keys
To advance to the Set Up Logic press the switch.

Function Key 1

Select function required.

HO_E	-	Home (return to Operating Page in OPERATING LEVEL)
AL_ $A[\mu$	$-\quad$ Acknowledge alarm	

Function Key 2

Select function required (if applicable).

[^4]
... 4 ADVANCED CONFIGURATION LEVEL

4.2 Set Up Logic

For each equation, the logic elements 1 to 7 are arranged sequentially, as shown below. Odd numbered elements are used for logic inputs and even numbered elements for logic gates.
Logic inputs must be set to one of the digital sources listed in Table 3.1 on page 15.
Logic gates must be set to $A A_{d}, O_{\text {r }}$ or End. Setting an element to End terminates the equation.

Note. Elements on each equation are calculated sequentially, i.e. elements 1,2 and 3 are evaluated first and this result is then combined with elements 4 and 5. Similarly, this resultant is then combined with elements 6 and 7 to give the logic equation result.

Example - Reservoir level monitoring using:

- process variable 1 with an engineering range 0 to 100 feet
- logic equation 1 result assigned to relay 1.1 which is used to operate the control valve.

Flow Conditions
Close reservoir control valve if:
- Reservoir level >50 feet AND
rate of change $>10 \mathrm{fthr}$
OR
- Reservoir level $>80 \mathrm{ft}$
Of
- Manual override switch
operated

Input Elements

- Alarm A1 - set to high process trip at 50 ft
- Alarm 81 - set to high process trip at 80 ft
- Alarm C1 - set to fast rate trip at 10% of range per hour (10 tthr)
- Manual override switch:

Connected to digital input 1.1
Digital input number -_
Module number
Negative polarity Volt-free switching

Raubers Road Nudgee SPS SP276 Electrical Equipment OM Manual

... 4 ADVANCED CONFIGURATION LEVEL

4.3 Set Up Pen Functions

Page Header - Pen Functions
To advance to Advanced Configuration frame press the switch.

Pen 1

Select pen function required:
trEnd - Trend pen
EUE \quad -

Note. The event pen and true time line event pen are separate functions and only the event pen can be selected in this page. The true time line event pen option allows event marking on the same time line as the red pen and requires a special pen arm and motor assembly. Refer to the order code in the Specification Sheet.

Pen 2 to 4

Repeat as for Pen 1 (if applicable).

Return to top of Set Up Pen Functions Page.

[^0]: 3 pen
 4 relays
 Module RS485 communications

[^1]: 1) Process temperature above $85{ }^{\circ} \mathrm{C}\left(185{ }^{\circ} \mathrm{F}\right)$ require derating the ambient limits by $1.5: 1$ ratio.
 (3) Refer to external loop "load limitations".
 (4) No damage
 (0) Nomal peraling is used, the lower process temperature limit is $-10^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right)$.
 (2) Refer to "power supply" requirements.
 (0) Normal operating temperature limits for LCD output met:
 (5) Frequency range: 20 to 1000 MHz .
[^2]: Continued on next page.

[^3]: Output Range Low
 Set the minimum current output required for the Retransmission Range programmed between 2.0

[^4]: Return to Set Up Function Keys frame.

