POWER ELECTRIC Switchboards ${ }_{\text {ITD }}^{\text {PTY }}$

ACN 052204118
Manufacturers of Engineered Switchboards for Mining Industrial and Commercial Projects
P.O. Box 6176, Faiffield Gardens, Brisbane, Queensland, 4103, Australia Telephone (07) 2743922

Facsimile (07) 2743929

MAINTENANCE MANUAL

Sp7
BRISBANE CITY COUNCIL
DEPARTMENT OF WATER SUPPLY AND SEWERAGE

SEWERAGE PUMP STATION FEROL STREET SP7.

ORDER NO:- 481798 EF
DATE:- 1994
PROJECT CODE:- SFLK5/73

\qquad
S E CTION 1

MAINTENANCE INSTRUCTIONS

TEST REPORTS

| S | E | T | O | N | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

EQUIPMENT CATALOGUES

$\begin{array}{lllllll}S E C T I O N & 3\end{array}$
M.C.C. DRAWINGS

1. MAINS CONNECTIONS:

The mains must be checked annually to ensure:

- All bolted connections are tight, dust and corrosion free;
- All fixings and cable supports etc. are positive.

2. MOTOR CONTROL CENTRE

The M.C.C must be checked annually. Firstly, remove all access panels and clean all accumulated dust out of the enclosure, and then check:

- All bolted connections;
- All incoming and outgoing terminations;
- Operations of all C.F.S units, isolators, contactors, controls etc.
- All instruments and instrument connections;
- All labelling and schedules are in place and up to date;
- Main earth connections and continuity;
- Load Balance;
- All fixings are tight and in place;
- Paintwork for blemishes and for any signs of corrosion;
- All hinges, locks, keys, handles, etc. to ensure that they are secure and function properly;
- All gaskets create a good seal;
- Automatic operation of control circuits.

3. Cleaning of Equipment

The equipment should be cleaned with a soft, dry paint brush, feather duster or equivalent, according to the circumstances and if possible with a jet of clean, dry air taking care to avoid damage to the components.

If it should happen that a component such as a relay is not working properly owing to dirt on its moving parts, its immediate replacement by a spare is to be recolumended. In the case of grommets, connectors, contactors, etc., cleaning of the contact area can be done in place, using a cloth moistened with a solvent such as benzine or trichorethylene plus a dab of vaseline. Mll due care should be taken to de-energize the circuits associated with the location being serviced.

Visual Inspection

Visual inspection should be quite frequent. To verify the perfect functioning of the signalling systen is to guarantee the immediate indication of any abnormal occurrence in the equipment or its components.

Manufacturers of Engineered Switchboards for Mining, Industrial and Commercial Projects

FINAL CHECKING PROCEDURE FOR ALL SWITCHBOARDS

SWITCHBOARD TITLE:
JOB NUMBER:

SPY. FEROL STREET
382-01.

COMMENTS: \qquad

(f) TERASAKI

Standard Series

TemBreak Total Protection,Complete Control

(8)
©
(

(3)

TemBreak THREE SERIES, TWO TYPES

A new generation of MCCB's.
Procuring a major evolution in Low Voltage Distribution Systems. Offering a choice of 3 series (economical, standard and high fault) and two types. Adjustable thermal magnetic or microprocessor based solid state O.C.R. Both types have common construction features and interchangeable plug-in accessories. TemBreak thermal magnetic types offer the widest adjustment range and more flexibility than with 63% 100% base current adjustment each MCCB is individually calibrated to ensure precision tripping on overcurrent.
TemBreak.
Widest choice, most flexibility.

Adjustable Rated Current
Adjustable Thermal Magnetic Range

TemBreak (Thermal-magnetic trip type)

The rated current is continuously adjustable from 63% to 100% of the nominal rated current. The scale is marked at three positions; $63 \%, 80 \%$ and 100%.

Microprocessor Range

TemBreak (Electronic type)

The rated current of the electronic type TemBreak is adjustable in 15 steps from 50% to 100% of the nominal rated current, using the base current [lo] select switch and the rated current $\left[I_{1}\right]$ setting dial.

The rated current of a single breaker is adjustable in 15 steps from 50% to 100%. This is one of the essential features for precise protection co-ordination and for upgrading low-voltage distribution systems.

1

Selection

Co-ordination

Standard Protective Characteristics

The electronic type TemBreak incorporates an adjustable long timedelay, short time-delay and instantaneous trips, enabling co-ordination with fuses on the high voltage side and down stream breakers.

Adjustable LTD

Essential for general industrial plants and generator protection

Ramp Characteristic [Rt], STD

The ramp characteristic [$\left.{ }^{2} t\right]$] enables precise co-ordination with thermal magnetic MCCBs or fuses.
The ramp characteristic or the definite time-delay characteristic can be used by operating the OFF-ON switch (on for [$[27]$) ramp characteristic).
The definite time-delay characteristic is 1000% of the rated current [$1 /]$

2 Adjustable rated current in 5 steps

 from 50-100\%.Optimum protection co-ordination is attainable depending on increase/decrease of the load.
NOTE: A cover is provided and sealed to prevent unauthorised changing of the settings.

Rated Current Adjustment Dial (Example)

3
 TemBreak Electronic type) True r.m.s. value control system

Semi-conductor controlled power equipment in a distribution system can be a source of harmonic currents which may cause malfunctioning in other equipment within the system.
TemBreak's electronic protective device detects the true r.m.s. value of the load current, therefore, remaining unaffected by harmonics.

Pre-trip alarm

 function (optional)Electronic office equipment is being increasingly used in today's buildings and factories.
The power demand at peak time can reach overload levels of the breakers installed in the system. If such a situation continued a sudden trip may be generated by the long time-delay trip function of the breaker.
The pre-trip alarm prevents this "sudden trip" enabling uninterrupted power to computers and other important loads.

A forced trip system of a non-essential circuit due to a pre-trip alarm (example).

Fitted with Trip Indicators (Optional)
LED indication of which function tripped the breaker; Long time-delay (LTD), Short time-delay (STD), instantaneous (INST.) or ground fault trip (GFT).

7
 Field checking of the trip functions

The OCR checker is an easy-to-use instrument for field testing the trip functions of TemBreak (Electronic type). It checks the pick-up current and tripping time values of the functions independently (LTD, STD, INST. and GFT).
The values are indicated digitally on a 3-digit LED display.
Power Source $100-110 \mathrm{~V}$ AC or $220-240 \mathrm{~V}$
AC. single phase: $50 / 60 \mathrm{~Hz} 30 \mathrm{~V} \mathrm{~A}$.
Dimension $200 \mathrm{~mm}(\mathrm{~W}) \times 84 \mathrm{~mm}(\mathrm{H}) \times$ $130 \mathrm{~mm}(\mathrm{D})$.

8 Electronic type
 TemBreak (E.M.C.) conformity

The electronic range of TemBreak MCCBs are "electromagnetic compatable" (E.M.C.) within a switchgear environment.

The set current is continuously adjustable from $10 \%-40 \%$ of the C.T. rated current of the overcurrent trip device.

TemBreak
 Common features of a construction

- The shunt trip device is equipped with anti-burnout switches.
- For 3-pole types the shunt trip or undervoltage trip, auxiliary switch and alarm switch can be installed.

All types of Tembreak
 are fitted with Push-To-Trip buttons

Contact status

 indicationIEC defined international symbols are used for Contact status indication I (ON) Red, (Trip) White, (OFF) Green.

5
 Reliable indication mechanism for safety

The operating handle indicates the O (OFF) position only when the required isolating distance, between the fixed and moving contact is achieved (No other indication is necessary).

6
 Plug-in mounting blocks, IP20 (Optional)

The degree of protection provided by the mounting blocks for plug-in type TemBreak breakers (for switchboard and distribution board use) is IP20 as defined in IEC Pub. 529.

7
 Unified dimensions simplifies distribution board design

TemBreak frame sizes up to 400A, a range most often used in distribution boards, are unified in dimensions of two panel cut-out heights (64 mm and 102 mm).
-102mm

$$
\bullet 64 \mathrm{~mm}
$$

[^0]Standard Series

Standard. This configuration used uniess otherwise specified.
Optional standard. Specify when ordering.

Non-automatic Series

Remote tripping is possible with switches without automatic tripping element and with approximately six times the rated current switching capacity, when equipped with shunt trip and
undervoltage trip. Auxiliary switches can also be used.
For details on specifications please refer to the appropriate breaker.

External Operating Handie
(Panel, Variable depth, mounted type) (OHH)

The TemBreak (Electronic) OCR Checker, Type TNS-1, is a portable easy-to-use instrument for field testing the trip functions.
It checks the pick-up current and tripping time values of the LTD, STD, INST. and GFT functions.

Ratings and Specifications

NHP

ELECTRICAL ENGINEERING PRODUCTS PTY LTD

Melbourne: 43-67 River Street, Richmond, Vic. 3121.
P. O. Box 199, Richmond 3121. Telephone: (03) 4292999 Facsimile: (03) 429 1075. Telex: AA31644.
Sydney: 30-34 Day Street North, Silverwater, N.S.W. 2141. P.0. Box 259, Ermington 2115. Telephone: (02) 7483444 Facsimile: (02) 6484353
Brisbane: 25 Turbo Drive, Coorparoo, Qld. 4151.
P.O. Box 1127, Coorparoo DC, 4151. Telephone: (07) 8916008

Facsimile: (07) 8916139
Adelaide: 50 Croydon Road, Keswick, S.A. 5035.
Telephone: (08) 2979055 . Facsimile: (08) 3710962
Newcastle: 57 Crescent Road, Waratah, N.S.W. 2298.
Telephone: (049) 602220 . Facsimile: (049) 602203
Rockhampton: 208 Denison Street, Rockhampton, Qld. 4700.
Telephone: (079) 272277 . Facsimile: (079) 222947
Townsville: 62 Leyland Street, Garbutt, Qld. 4814.
Telephone: (077) 790700 . Facsimile: (077) 751457
Toowoomba: Cnr Carroll St. \& Struan Crt, Toowoomba, Qld. 4350.
Telephone: (076) 344799 . Facsimile: (076) 331796
Perth: Trading as C.J. Young \& Co
38-42 Railway Parade, Bayswater, W.A. 6053.
Telephone: (09) 271 8666. Facsimile: (09) 2723906

AGENTS:
Hobart: H.M. Bamford (Hobart), 199 Harrington Street, Hobart, Tas. 7000. Telephone: (002) 34 9299. Facsimile: (002) 311693
Launceston: H.M. Bamford (Launceston), 59 Garfield Street, Launceston, Tas. 7250 . Telephone: (003) 44 8811. Facsimile: (003) 444069
Darwin: J.Blackwood \& Son Ltd. (inc. Tesco Pearce),
Mataram Street, Winnellie N.T. 0820. Telephone: (089) 844255.
Facsimile: (089) 84 3945. Telex: AA85454

NHP

ELECTRICAL MEASURING INSTRUMENTS

- Moving Iron Ammeters
- Moving Iron Voltmeters
- Max. Demand Ammeters
- Power Factor Meters
- Watt and Varmeters
- Synchronising Instruments
- Frequency Meters
- Current Transformers
- DC Ammeters
- DC Voltmeters
- Profile Meters
- Hour Run Meters

NHP

NHP

Melbourne Premises
N.H.P. is a wholly Australian owned Company and represents a considerable number of overseas companies manufacturing equipment complimentary to the N.H.P. programme.

As suppliers to the full spectrum of the electrical industry N.H.P. continues to pursue improvement in both quality and range of products available.
Experienced Engineering and Management personnel continually visit world centres to ensure that the organisation may draw upon the technological advancements afforded by the research and development of specialising companies such as IME.
Extensive studies by IME have resulted in their research and development of an instrument design that fulfills the requirements of internationally adopted standards.
Housings, of self-extinguishing material offering IP52 protection, have dimensions to the universally used DIN 43700 for the four sizes $48 \times 48,72 \times 72,96 \times 96$ and $144 \times 144 \mathrm{~mm}$.
Panel cut-outs are standard for both 90° and 240° indicators.

NHP SWITCHBOARD INSTRUMENTS

MOVING IRON AMMETERS AND VOLTMETERS FOR A.C. 90° QUADRANT

Accuracy Class	1.5
Working Voltage	600 V
Test Voltage	2 kV
Overload Withstand	
Ammeters:	$10 \times$ rated current for 1 sec . $1.2 \times$ rated current indefinitely
Voltmeters:	$2 \times$ rated voltage for 1 sec .
	$1.2 \times$ rated voltage indefinitely

Self extinguishing housing
Protection
IP52

Ammeters will withstand motor starting currents to 8 times rated meter current therefore 200\% overscaling is suitable for all normal applications.
Overscaling of 500% is optional.

Ammeters: Direct connected

Ranges:
RQ48E, 1/2A, 2.5/5A, 5/10A, 10/20A
RQ72E, RQ96E, RQ144E, 1/2A, 2.5/5A, 5/10A, 10/20A, 15/30A, 25/50A, 40/80A, 60/120A, 100/200A
Current transformer connected meters standard scaling of all sizes for 1A and 5A C.T.'s
5/10A, 10/20A, 15/30A, 20/40A, 25/50A, 30/60A, 40/80A, 50/100A, 60/120A, $75 / 150 \mathrm{~A}, 80 / 160 \mathrm{~A}$ and their decade multiples.

At 1000A and above standard scales are marked in kA. Variations to this are non-standard and numbering is subject to space and numeral size.
Voltmeters: Standard ranges are 300 V and 500 V or ranged and scaled to suit potential transformers with secondary voltages of 100 V or 110 V e.g. transformer ratio $6.6 \mathrm{kV} / 110 \mathrm{~V}$.

DIMENSIONS AND WEIGHT

A	B	C	D	E	Weight (g)
48	44.5×44.5	40	22	4590.	110
72	66.5×66.5	44	12	68907	160
96	91×91	44	12	92908	220
144	137×137	53.5	12	1387.10	

240° CIRCULAR SCALE

Possessing the same general features as the 90° quadrant, circular scale moving iron meters have a depth of 80 mm . The AQ48m/rad is a moving coil meter supplied by an AC converter and may not be overscaled.

Ranges:

AQ48M/rad 1A and 5A;
AQ72E, AQ96E, AQ144E
1/2A, 2.5/5A, 5/10A, 10/20A
C.T. operated ranges as for 90° quadrant types

NHP SWITCHBOARD INSTRUMENTS

MOVING COIL METERS

IME moving coil instruments employ centre core magnet movements. This type of movement is not subject to sensitivity changes due to magnetic shunting when mounted in sheet steel panels and calibration remains unaffected.
Besides the use of their response to DC in measuring DC voltage and currents their low energy requirements are used to advantage in other applications.
Low burden measurements of sinusoidal AC voltage using an internal rectifier are possible.
Their use with internal or external transducers provides frequency meters, wattmeters, tachometers, pressure, temperature indicators and indicators for any physical or electrical quantity for which a sensor or transducer is available to provide a DC signal.

```
Accuracy class: 1.5
Working Voltage 600V
Test Voltage 2kV
Overload withstand
Ammeters: 10 x rated current for 1 sec.
    1.2 x rated current indefinitely
Voltmeters: }2\times\mathrm{ rated voltage for 1 sec.
    1.2\times rated voltage indefinitely
```


90° METERS	RQ48M	RQ72M	RQ96M	RQ144M
DC AMMETERS				
$1-600 \mathrm{~mA}$	\bullet	\bullet	\bullet	\bullet
$1,4,6,10 \mathrm{~A}$		\bullet	\bullet	
$15,25,40,60 \mathrm{~A}$		\bullet	\bullet	
For use with external shunts of 50, $60,75,100,150 \mathrm{mV}$	\bullet	\bullet	\bullet	\bullet

DC VOLTMETERS (approx 1000 ohms $N 0.5-600 \mathrm{~V}$
AC VOLTMETERS (rectified) 6-600V. RMS

$\mathbf{2 4 0}$ 亜 METERS	AQ48M	AQ72M	AQ96M	AQ144M
DC AMMETERS				
$1-600 \mathrm{~mA}$	\bullet	\bullet	\bullet	\bullet
For use with external shunts of 50, $60,75,100,150 \mathrm{mV}$.	\bullet	\bullet	\bullet	\bullet

DC VOLTMETERS (Approx $1000 \mathrm{ohms} / \mathrm{V}$) $0.5-600 \mathrm{~V}$.
AC VOLTMETERS (rectified) $6-600 \mathrm{~V}$. RMS

HOUR RUN METERS
 7 DIGIT (2 decimal) DISPLAY AND RUN INDICATOR

RQ48.0*	RQ72.O	RQ96.O
$55 \times 55 \mathrm{~mm}$ OR $48 \times 48 \mathrm{~mm}$	$72 \times 72 \mathrm{~mm}$	$96 \times 96 \mathrm{~mm}$

$24 \mathrm{~V}, 110 \mathrm{~V}, 240 \mathrm{~V}, 415 \mathrm{~V}, 50 \mathrm{~Hz}$ voltages refer to all sizes

* RQ48.0 cut-out alt. Ø 50 mm

NHP SWITCHBOARD INSTRUMENTS

MAXIMUM DEMAND AMMETERS
 MAXIMUM DEMAND AMMETERS are available in three sizes RQT72, RQT96 and RQT144

An ambient temperature compensated dual bi-metal movement is employed.
A red slave pointer remains at the highest position to which it was driven by the indicator and shows the maximum current taken by the load.
Reset of the slave is achieved using the front knob
Range: $\quad 5 \mathrm{~A}$ overscaled 120% direct or via C.T.
Setting Time: 15 mins. avoids unwanted indication of short term transients.
Accuracy: Class 3

COMBINED MAXIMUM DEMAND AMMETERS

RQTE72, RQTE96 and RQTE144
include a moving iron movement in the same measuring circuit as the bi-metal elements.
An instantaneous indication of prevailing circuit current is therefore available.
The characteristics of the bi-metal movement remain the same as the RQT series above.
Moving Iron:-
Accuracy:
Class 1.5
Range:
Overload
5A overscaled 200% if required
Withstand: $1.2 \times$ rated current indefinitely.

FREQUENCY METERS

Class 0.5

The transducer is contained within the housing of a 90° or 240° moving coil meter.
For normal power applications the indicating range is $45-55 \mathrm{~Hz}$ and a simple 2 wire supply connection is used.
The 240° indicator types are prefixed AQ.
Operating voltages:- $110 \mathrm{~V}, 240 \mathrm{~V}, 415 \mathrm{~V}$.

Page 5

NHP SWITCHBOARD INSTRUMENTS

WIRING DIAGRAMS WATT, VAR AND POWER FACTOR METERS

Each transducer as an integral part of a measuring system carries the wiring diagram appropriate to its application on its housing. The reproductions below are in the interests of quickly determining the requirement and identifying the system by drawing number. They also permit establishment of the number of current transformers needed and their correct phasing. The potential transformers shown on the left of the diagram only become necessary at line voltages above 440 V .

S 200/1 SINGLE PHASE WATT, VAR, POWER FACTOR
S 220/1 3 PHASE 4 WIRE WATT, BALANCED LOAD
S 205/1 3 PHASE 3 WIRE WATT, POWER FACTOR
S 215/1 3 PHASE 3 \& 4 WIRE VAR, BALANCED LOAD
S 225/1 3 PHASE 3 WIRE WATT, VAR, UNBALANCED LOAD
S 230/1 3 PHASE 4 WIRE WATT, UNBALANCED LOAD
S 235/1 3 PHASE 4 WIRE VAR, UNBALANCED LOAD

NHP SWITCHBOARD INSTRUMENTS

WATTMETERS AND VARMETERS

Class 1.5

Wattmeters and Varmeters are comprised of a moving coil indicator and a transducer. The indicating meter may be 90° or 240°. Transducer types are determined by the supply system involved, single or 3 phase, 3 or 4 wire and by the nature of the load, balanced or unbalanced.
For high voltage systems above 440 V , potential transformers are necessary.
Data to be advised when ordering:-

1. Type and size of indicator and full scale value.

2. Single or 3 phase, 3 or 4 wire system.
3. Balanced or unbalanced 3 phase load.
4. Phase to phase voltage.
5. Ratio of current transformer if already existing.
6. Ratio of potential transformers if used.

Each transducer carries its appropriate wiring diagram. These are reproduced on page 6, and the diagram number can be quoted in place of 2 and 3 above.
Figure 1 shows the dimensions of the transducers.

POWER FACTOR METERS

Class 1.5
Power factor meters consist of a moving coil indicator and transducer.
Single or 3 phase units, they are designed for signals of 1 A or 5 A to suit direct or C.T. current inputs and above 440 V require a potential transformer.
Scaled in $\operatorname{Cos} \varnothing$ the standard range is $0.5-1-0.5$ inductive capacitive.

Wiring diagrams are reproduced on page 6 and dimensions of the transducer are as shown in Figure 1.

NHP SWITCHBOARD INSTRUMENTS

RECTANGULAR SECTOR SCALE MOVING COIL METERS

Mod. U2M

Mod. NP2M

Mod. NP2M-NP3M

Mod. RP2M

DC RANGES
$100 u$ A - 600 mA
$50,60,75,100,150 \mathrm{mV}$ for external shunt.
$4-20 \mathrm{~mA}$ mech suppressed
0.5 - 600V

AC (rectified)
6-600V RMS

Page 8

NHP CURRENT TRANSFORMERS

MEASUREMENT CURRENT TRANSFORMERS

SPECIFICATIONS: Housing
Highest system voltage Test Voltage
Frequency of operation
Insulation
Short circuit thermal current (Ith)
Rated dynamic current
Rated continuous thermal current

Self-extinguishing
600 V
3 kV RMS 50 Hz for 1 min .
$40-60 \mathrm{~Hz}$
Class E ($120^{\circ} \mathrm{C}$)
60-100 times rated primary current for 1 sec .
2.5 times Ith
120% of rated primary current

All mounting material and busbar clamps supplied as standard.

5A C.T. TYPE ACCURACY/BURDEN												
PRIMARY CURRENT	TAS 20			TAS 40			TAS 63		TAS 80		TAS 125	
	$\begin{array}{\|c\|} \hline \text { CL } 0.5 \\ \text { VA } \end{array}$	$\begin{gathered} \text { CL } 1 \\ \text { VA } \end{gathered}$	$\begin{gathered} \mathrm{CL} 3 \\ \mathrm{VA} \end{gathered}$	$\begin{gathered} \text { CL } 0.5 \\ \text { VA } \end{gathered}$	$\begin{gathered} \text { CL } 1 \\ \text { VA } \end{gathered}$	$\text { CL } 3$	$\underset{V A}{C L} 0.5$	$\begin{gathered} \text { CL } 1 \\ \text { VA } \end{gathered}$	$\underset{\text { VA }}{\text { CL }} 0.5$	$\underset{\text { VA }}{ } 1$	$\underset{V A}{C L} 0.5$	$\begin{gathered} \text { CL } 1 \\ \text { VA } \end{gathered}$
50	-	-	2									
60	-	-	2.5									
75	-	-	2.5									
80	-	-	3									
100	-	2	4									
120	-	3	5									
150	2	4	6	1	3	6						
200	3	6	8	1.5	4	7						
250	5	8	10	2.5	5	8						
300				4	6	10						
400				6	10	12						
500				8	10	12	6	12				
600				10	12	15	10	20				
800				10	12	15	12	25				
1000				10	12	15	15	30	20	40		
1200							20	40	25	40		
1500							20	40	40	80	40	80
2000									50	100	50	100
2500									60	120	60	120
4000											100	200

WOUND PRIMARY C.T. TAQ 10
High V.A. at Low Ratios 5A Secondary 10VA Class 0.5 15VA Class 1

PRIMARY CURRENTS
5A 10A 15A
20A 25A 30A

40A 50A 60A 75A 80A 100A
C.T. Dimensions; Drawings Page 11.

MEASUREMENT CURRENT TRANSFORMERS

Current transformers (CT's) are required:-
(a) When load currents exceed 100A, the highest rating manufactured for direct connection of standard conveniently sized meters.
(b) When it is difficult or uneconomical to install heavy load cables to and from the meter.
(c) When isolation of the meter from mains voltage is desirable to remove possible hazard.

Main feature of IME C.T.'s include:

Housing:
Test voltage:
Insulation:
Highest system Voltage:
self extinguishing
3 kV 50 Hz for 1 minute
Class E ($120^{\circ} \mathrm{C}$)
600 V

The table below shows typical burden figures for ammeters and the current circuits of various instruments. Also shown are figures of the burden per metre represented by various sizes of cables interconnecting the meter and the C.T.

VA/METER (FIGURES ARE FOR DOUBLE CABLES)

Cable Diam. mm	Cable cross area sq.mm	VA/metre 5A C.T.	Meter Burdens Typical	VA
1	0.78	1.16		
1.1	0.95	0.97		
1.2	1.13	0.85	INDICATORS:	
1.3	1.33	0.69	Ammeters	1.1
1.4	1.54	0.59	Watt and P.F. Meters	0.5
1.5	1.76	0.51	TRANSDUCERS:	
1.6	2.01	0.46	A.C. Amps	1.5
1.8	2.54	0.36	Watt and P.F. Meters	1
2	3.14	0.29		
2.3	4.15	0.22		
2.6	5.3	0.17		
3	7.07			

The addition of the VA figures obtained from the table when compared with the accuracy class burden of C.T.'s assists in determining the expected performance of a proposed measuring system.
The mostly used ring or passing cable C.T.'s have diminishing VA capabilities with lower ratios. Should the meter need to be mounted at a distance greater than that normally encountered within switchboards the VA available may not be sufficient to preserve the required accuracy.
This may be overcome by several methods.

1. A C.T. of higher ratio, hence higher VA, is selected and the light load cable passed through its core the required number of times to obtain the correct current ratio. e.g. A 50/5A C.T. provides Class 3 at up to 2VA burden. A 250/5A C.T. provides 5VA at Class 1.
Passing the 50A load cable 5 times through the larger C.T. gives the ratio of 50/5A up to a burden of 5VA so the meter may be remote by up to some 6.6 metres using cables of 1.54 sq. mm.
2. The above technique is already employed in a Wound Primary C.T. (See TAQ10-10VA at Class 0.5 and 15VA at Class 1). The load cable is terminated at bolted lugs on each side of the C.T.
3. For extremely remote indications a C.T. of the ring type may be connected to a transducer providing a 1 mA to 10 mA DC output for a 5 Amp AC input. The indicator is a moving coil meter of appropriate sensitivity and can provide a linear scale.

DIMENSIONS (in mm) (not to scale)

TAS 20B
NOTE - NEW HOUSING INCLUDES
BUILT-IN DIN RAIL MOUNTING

TAS 40

TAS 63

TAS 80

TAQ 10

N- ELECTRICAL ENGINEERING PRODUCTS PTY LTD

MELBOURNE:
51-67 RIVER STREET, RICHMOND, VICTORIA 3121. Telephone: (03) 4292999
P.O. Box 199. RICHMOND 3121

Telex: AA31644. Fax: (03) 4291075

SYDNEY:

30-34 DAY STREET, SILVERWATER, N.S.W. 2141. Telephone: (02) 6472211
P.O. Box 259, ERMINGTON 2115 Fax: (02) 6484353

BRISBANE:
39 COMMERCIAL ROAD, FORTITUDE VALLEY, QUEENSLAND 4006. Telephone: (07) $\mathbf{2 5 2} \mathbf{9 5 1 7}$
P.O. Box 589, FORTITUDE VALLEY 4006

Telex: AA41097. Fax: (07) 2523415

ADELAIDE:

29 CROYDON ROAD, KESWICK, SOUTH AUSTRALIA 5035. Telephone: (08) 2979055 Fax: (08) 3710962

AGENTS:

W.A. PERTH:
C.J. YOUNG \& CO. PTY. LTD., 38-40 RAILWAY PARADE, BAYSWATER, 6053. Telephone: (09) 2718666 Fax: (09) 2723906 Telex: AA93715

TAS. HOBART:
H.M. BAMFORD (Hobart), 199 HARRINGTON STREET, HOBART, 7000

Telephone: (002) 349299 Fax: (002) 311693

LAUNCESTON:
H.M. BAMFORD (Launceston), 59 GARFIELD STREET, LAUNCESTON, 7250

Telephone: (003) 448811 Fax: (003) 444069 Telex: AA58536
N.S.W. NEWCASTLE:

HUNTER ENGINEERING SALES, 64 BROADMEADOW ROAD, BROADMEADOW, 2292
Telephone: (049) 693122 Fax: (049) 696873 Telex: AA28158

QLD. TOWNSVILLE:
PATERSON ELECTRICAL ENGINEERING AGENCIES, 62 LEYLAND STREET, GARBUTT, 4814
Telephone: (077) 79 0700 Fax: (077) 751457
N.T. DARWIN:
J. BLACKWOOD \& SON LTD. (Inc. Tesco Pearce), MATARAM STREET, WINNELLIE, 5789

Telephone: (089) 844255 Fax: (089) 843945 Telex: AA85454

DT 3
 Control and signalling units 22.5 mm diameter mounting

With time saving central nut mounting

sprecher+ schuh

Control and signalling units for 22.5 mm mounting

New central nut mounting

DT 3 pushbuttons are now available with efficient central nut mounting, allowing for single handed fixing. Although a special tool is available, the lock nut can be easily tightened by hand. This modern design not only reduces assembly time but also gives the range a more attractive appearance, particularly when mounted in the clear lids of plastic enclosures.

Cat. No. DT 3-LT
DT 3 Locking Tool

Improved illumination

Enhancements to the range includes an improved light guide and lens and for the selector switches, a new reflective seal in the indicators and a textured lens on all inscription inserts. These measures serve to improve the light output on illuminated control units.

Complete standard units

A full range of pushbuttons, indicators, selectors, key selectors, multi-function and emergency stop operators are available prepackaged for your convenience.

Complete units to specification

To cater for specific requirements, DT 3 control and signalling units can be built to order utilising variations of optional snap-on front rings, colour caps, control knobs, contact blocks and lamp holders.

Accessories

A comprehensive modular system of enclosures, legends and a locking tool DT 3-LT for positive fixing are available to complement the DT 3 range.

Literature

For further information on the DT 3 range of pushbuttons please refer to our Price List Catalogue Part 'A'. Ask your NHP stockist for details.

ELECTRICAL ENGINEERING PRODUCTS PTY LTD
MELBOURNE: \quad 43-67 River Street, Richmond, Vic. 3121

SYDNEY: BRISBANE: ADELAIDE:
PERTH:
NEWCASTLE:
57 Crescent Road, Waratah, N.S.W. 2298
ROCKHAMPTON: 208 Denison Street, Rockhampton, Qld. 4700
TOWNSVILLE: 62 Leyland Street, Garbutt, Qld. 4814
TOOWOOMBA:
30-34 Day Street North, Silverwater, N.S.W. 2141 25 Turbo Drive, Coorparoo, Qld. 4151 50 Croydon Road, Keswick, S.A. 5035
38-42 Railway Pde, Bayswater, W.A. 6053

AUNCESTON Struan Crt., Toowoomba, Qld. 4350 SELECTION GUIIDE

Contents

Contactor selection guide .. 3 - 6
KT 3 motor protection circuit breakers and KA 1 mounting system ... 7 - 10 Standard modular contactors 4 to 72 kW .. 1 Auxiliary contact ratings
 and accessonies for AC contactors.

Iype 2 short circuit co-ordination.... $\ldots . .16$

Thermal overload relay selection - Cr 3 K
Thermal overlood relay selection - CT 3
Thermal overload relay selection - CT 1

Thermal ovelload relay selection - CT 423
Themal overload relay selection - CT 6 24
Dimensions for contactors and starters - CA 3 25
Dimensions for thermal overload relays - CT 3 26

Thermal overloads to AS 1023 or motor protection circuit breakers (where suitable)

For use with contactors listed above	Types ${ }^{\text {n }}$										CEF 1	$\text { CEF } 1$					
			$\begin{gathered} \mathrm{CT}_{4} \\ \mathrm{KT}_{3}-\cdots{ }^{2} \end{gathered}$	$\begin{aligned} & \text { CT } 3 K-12 \\ & \text { CT } 3-12 \\ & \text { KT } 3-12 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { CT } 3 K-12 \\ \text { CT } 3-12 \\ \text { KT } 3-12 \\ \hline \end{array}$	CT $3 \mathrm{~K}-17$ CT 3-12 CT $3-17$ KT $3-14$	CT 3.12 CT $3-17$ CT $3-2 \mathrm{Fa}$ KT 3-"	CT 3-12 CT $3-17$ CT 3.32 CT $3-32$	$\begin{gathered} \text { CEF } 1 \\ \text { or } \\ \text { or } 3.42 \\ \text { CT } 3.42 \mathrm{an} \end{gathered}$	$\left\lvert\, \begin{array}{c\|} \text { CEF } 1 \\ \text { or } \\ \text { or } 3-42 \\ \text { CT } 3-42 a \end{array}\right.$	$\begin{aligned} & \text { CT } 3-42 \\ & \text { CT } 3-42 \mathrm{an} \\ & \text { CT } 3.52 \\ & \text { CT } 3.63 \end{aligned}$	CT $3-42 \mathrm{a}$ CT $3-52$ CT $3-63$ CT $3-72$	$\begin{gathered} \text { CEF } 1 \\ \text { or } \\ \text { CT } 6.90 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { CEF } 1 \\ \text { or } \\ \text { CT } 6-110 \\ \hline \end{array}$	$\begin{gathered} \text { CEF } 1 \\ \text { or } \\ \text { CT 6-150 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CEF } 1 \\ \text { of } \\ \text { CT } 6-200 \\ \hline \end{gathered}$	

Notes: 1) Star-delta to AS 1202 part 2 class 0.3 .
Auto-transformer to AS 1202 part 3 class 0.1 on load factor 60%.
Ratings based on 80% tapping. Higher ratings for lower taps available
CA $3-9 / 16$ at PF $0.65(415 \mathrm{~V}$. CA 3-23 and above at PF $0.35(415 \mathrm{~V})$
${ }^{3}$) CA 3-9/16 at PF $0.65(415 \mathrm{~V})$. CA 3 -23 and above at PF 0.35 (415 V)
${ }^{5}$) For 2 parallel paths $1.7 \times 1 \mathrm{e}$. For 3 parallel paths $2.5 \times \mathrm{le}$.
${ }^{\circ}$) For $3+4$ pole contactors 185 kW to 500 kW refer cat ' Part A'
Q-Pulse Id ${ }^{3}$ MS721 I Adjustable drop out delay $20-1000 \mathrm{mS}$ refer contactor instructions.

Notes: 9 Ratings for CA $1-480$ to CA $5-1250$ are based on $55^{\circ} \mathrm{C}$. Maximum $60^{\circ} \mathrm{C}$ with 0.85 derating.
9) CT 3 series 0.1 amps to 72 amps. CT1 series 65 amps to 400 amps. CEF 1 series 0.5 amps to 400 amps, or (1200 amps with primary CTs)
19. For 1000 V current and kW ratings refer your local NHP sales office. 12) All switching ratings are at $50 / 60 \mathrm{~Hz}$. May also be suitable for 400 Hz , refer Cat 2200 T .
${ }^{13}$) Magnet systems to be replaced each 1 million operations.
19) For KT 3 MPCB selection refer pages 8 to 10 .
${ }^{15}$) Can be increased using CA 3-P-GE side mounted auxiliary blocks refer cat 'Part A
A^{4} 2910 Based on reduced contact life refer technical catalogues.

Ferol Street Coorparoo SPS SP007 Operations and Maintenance Manual

What do you need to put together compact starters and load feeders?

The lastest solution in fuseless systems!

The new motor protection circuit breaker KT 3 and mounting system KA 1 from Sprecher + Schuh

KT 3 - motor protection circuit breaker One component - four functions
) Short circuit protection
) Thermal overload protection
) Switching
) Signalling

KA 1 mounting system

) Space saving fuseless system
) Quick connection and release
) Continuity and ease of panel design

The new motor protection circuit breaker KT 3 and mounting system KA 1

The latest solution in fuseless systems！

In these days，the demand on the

 industrial control system，as far as economy and flexibility is con－ cerned，is very high indeed．The solution from Sprecher + Schuh is： modular load and motor feeders with the connection and mount－ ing system KA 1，a futuristic starter concept，with the following advantages：－Simple planning because of the modular system．
－Rapid，snap－on mounting of the adaptor units．
－Compact control systems due to the small dimensions of the complete load feeders．
－Increased safety for personnel due to the integrated protection against accidental human contact．
」 Short circuit withstand capacity up to 50 kA ．

Circuit breaker KTA 3－25

This is the key component of the modular system for load feeders． The technical specification is outstanding．
－A broad range of applications form 0.1 to 25 A and at supply voltages up to 660 V ．
－Ultra－rapid short circuit protec－ tion with exceptional current protection and current limita－ tion．
－Rated short circuit breaking capacity 100 kA （at 415 V and up to a rated current of 6.3 A ）．
－High breaking capacity in the current range $6.3 \ldots 25 \mathrm{~A}$ ，at 415 V when used in conjunction with current limiting module KTL 3－65：$I_{\text {cn }}=50 \mathrm{kA}$ ．
－Safe overload protection，due to the accurately calibrated bimetallic release．

Trip indication or auxiliary contacts

Motor protection circuit breaker KTA 3－25
」 Selectable trip indication．
」 Test facility．
」 DIN rail mounting
」 Add on auxiliaries．

」 Undervoltage or shunt trip release．
」 High interrupt capacity．
」 High current limiting capability
」 Padlock attachment．

Enhanced safety

The extremely rapid，all－pole short circuit interruption prevents damages to motors and equipment．Single－ phase startup is virtually eliminated．

KT 3 motor protection circuit breakers

The KT 3 motor protection circuit breaker protects motors, cables and electrical equipment, against thermal overload and short circuit conditions. KT 3 also offers isolation, status indication and signalling, remote and U.V. trip features, as a compact high performance combination. Exceptional current limiting capabilities enable fuseless distribution systems to be engineered and specified with confidence. All KT 3 motor protection circuit breakers offer both P1 and P2 rated short circuit breaking capacity figures to IEC 157-1. Short circuit proof KT 3No ordinary motor protection circuit breaker!

Technical data

Rated short-circuit breaking capacity $I_{\text {cn }}{ }^{1}$)
Power categories P1 and P2 ${ }^{2}$) acc. to IEC 157-1, $40 . . .60 \mathrm{~Hz}$ at:

Thermal trip setting range (A)	Magnetic trip response current (A)	$40 \ldots 60 \mathrm{~Hz}$ at:240 V415 V				500 V		660 V		current in excess of rated make/break capacity			
			P1 (kA)		P1 (kA)		P1 (kA)	$\begin{aligned} & \text { P2 } \\ & \text { (kA) } \end{aligned}$	$\begin{aligned} & \text { P1 } \\ & \text { (kA) } \end{aligned}$	$\begin{aligned} & 240 \mathrm{~V} \\ & (\mathrm{~A}) \end{aligned}$	$\begin{aligned} & 415 \mathrm{~V} \\ & \text { (A) } \end{aligned}$	$\begin{aligned} & 500 \mathrm{~V} \\ & \text { (A) } \end{aligned}$	660 V (A)
$0.1 \ldots 1.6$	1.8	100	100	100	100	100	100	100	100				
1.6...2.5	2.8	100	100	100	100	100	100	4.5	4.5				50
2.5...4.0	44	100	100	100	100	100	100	6	8				50
4.0...6.3	69	100	100	100	100	20	30	6	8			80	80
6.3... 10	110	100	100	10	15	4.5	6	3	4.5		80	80	80
10... 16	176	20	30	6	10	4.5	4.5	3	3	80	80	80	80
16... 20	220	15	20	6	6	4.5	4.5	3	3	80	80	80	80
20... 25	275	15	20	6	6	4.5	4.5	3	3	80	80	80	80

Notes: ')Power factor $\cos \varphi$ for $I_{\text {cn }}$
$3 k A, \cos \varphi=0.9$
$6 \mathrm{kA}, \cos \varphi=0.7$
$10 \mathrm{kA}, \cos \varphi=0.5$
${ }^{2}$) Short circuit power categories: P1: Still functionally serviceable after test with O-t-CO P2: Suitable for normal operation after test with O-t-CO-t-CO $0=$ Break $\quad t=$ Defined pause $\mathrm{CO}=$ Restart and break

Accessories for KT 3 motor protection circuit breakers
Auxiliary contact blocks
Cat. No.

Note: Other accessories available, include padlock attachment, current limiter, compact busbar and connection block. Refer NHP Part A catalogue or catalogues 2103 KT 3 or 2190 KA 1

Standard modular contactors 4 to 72 kW

Quality，design and reliability

Sprecher＋Schuh quality and design is renowned throughout the world in application where contactors and motor starters are used．The Sprecher＋Schuh standard range of contactors provide complete reliability and long life，not equalled by most．The success of these products in Australia and elsewhere has been extraordinary， providing the user with a reliable product for all conditions．
Swiss precision and excellent design are the basis for the success of these products．Not only are the contactors dependable but they are supported by a range of thermal overload relays that offer outstanding motor protec－ tion under all conditions．Each thermal overload relay is individually calibrated at manufacture and thus provide a consistency of performance which is not matched by competitors．
The Sprecher＋Schuh equipment is compact providing an extensive range of ancillary contacts，many options and accessories resulting in flexibility and versatility．

The range
Sprecher＋Schuh offer a range of contactors totalling 24 different sizes which are designed to match standard motors giving the customer an optimum choice．The smallest units comprise the CA 4 range，designed for OEM use and are suitable for interfacing with PLC＇s．The specification provides for very low pull－in and holding currents and high frequency of operation．
The CA 3 programme illustrated above，is the most used range and provides 9 sizes from 4 to 37 kW ．For ratings above 37 kW ．Sprecher＋Schuh provide a further 12 sizes．
When you specify Sprecher + Schuh you get additional quality at minimal extra cost．This quality results in reliability，as after all，there is no substitute for reliability！

Sprecher＋Schuh provide that extra quality which means so much in service！

Features of the CA 3 contactor

－Rated to $60^{\circ} \mathrm{C}$ ．
－Very compact．
」．Mechanical life 10－15 million operations．
」 Coil replacement in seconds from the front and without tools．
〕 Can be mounted：
On conventional base plates On S＋S rapid mounting gear tray
On DIN 35 mm snap－on rail up to CA 3－30．

」 Identification labelling：
－Self adhesive labels
－Strip labels with clear covers
－S＋S marking tags．
－Open type terminals．
－Captive pozi－drive screw．
\lrcorner Self－lifting terminal washers．
－Tropic－proof coils are standard．
」 Provision for snap－on auxiliary contact blocks．
」 Provision for snap－on pneumatic time delay relay．

」 Provision for snap－on mechani－ cal latch．
－Compatible dimensions：
－CA 3－12／16 similar size
－CA 3－23／30 similar size
－CA 3－37N／72N similar size．
」 Guaranteed voltage pick－up．
」 High operating frequency．
」 Control voltages 50 Hz between 12 V and 440 V ．
」 Complies with BS 5424 and 587 SEV，VDE，AS 1029，IEC 158.

Auxiliary contact ratings for contactor auxiliaries and auxiliary contact blocks

For reference of AC 15 and AC 1 ratings for auxiliary contacts. Includes auxiliary contacts fitted as standard in contactors, auxiliary contacts "add on" types.

Description	AC 15 Auxiliary contacts				AC 1 Auxiliary contacts					
	$I_{\text {th }}$				$I_{\text {th }}$				Back-up fuse	
	Contactors		Aux. cont. block		Open		Enclosed		Aux. Block (A)	Cont. (A)
	240 (A)	415 (A)	$\begin{aligned} & 240 \\ & (A) \end{aligned}$	415 (A)	Block (A)	Cont. (A)	Block (A)	Cont. (A)		
CA 4 Contactor (Catalogue 22 04)										
For CA 4-5/CA 4-9	6	2	2	1	10	16	6	12	10	16
CA 3 Contactor (Catalogue 22 02)										
For CA 3-9 to CA 3-16	12	4	5.5	2.5	16	20	12	16	12	20
For CA 3-23 to CA 3-72N	12	4	5.5	2.5	16	20	12	16	12	25
CA 6 Contactor (Catalogue 22 08)										
For CA 6-85/CA 6-105	-	-	5.5	2.5	16	-	12	-	16	-
CA 1 Contactor (Catalogue 22 10)										
For CA 1-100 to CA 1-480	-	5	12	5	25	-	16	-	25	-
CA 5 Contactor (Catalogue 22 12)										
For CA 5-450/550 to CA 5-1200	-	-	-	4.5	25	-	16	-	25	-

Standard modular contactors 45 to 90 kW to 1000 volts

Quality, design and reliability
In keeping with modern industry requirements Sprecher + Schuh are in the process of designing a range of contactors 50 kW and upwards, suitable for a nominal 1000 volt operation.
Increasing demands by heavy industry and in particular the mining industry for switchgear at elevated voltages, has resulted in the new Sprecher + Schuh contractors - designated CA 6 .

Years of research and development has now culminated in the introduction of the contactors CA 6-85 and CA 6-105.

Early in 1992 two further contactors will be added, the CA 6-140 (75 kW) and CA 6-190 (90 kW) will be introduced.
All new contactors incorporate the latesttechnology in switching techniques using the most modern materials and are designed for selection for the most arduous of industrial heavy current contactor applications.
These contactors are compact, robust and offer some outstanding advantages. The contactors can be mounted side by side as the switching arcs are extinguished internally and no venting occurs. The contactors have been designed for optimum safety and security as hand operation via the position indicator is impossible and thus an unintentional motor start is avoided.
Not only are the CA 6 contactors attractive in appearance, but they also permit advanced analogue solutions. Modules for protection against surge voltages are integrated into DC coils as a standard. The high voltage safety level of the magnet system reduce operational interruptions. Interlocks can be fitted between the contactors so that no additional spacing is required.
These contactors join the series CA 5-450/550/700/860 providing a very wide range of 1000 volts switching equipment.

Auxiliary contact blocks for AC contactors

Clip-on auxiliary contact blocks for CA 3-9 to CA 3-72N

Auxiliary contact block 1 pole

1 pole 2 pole (timed contacts) side mtg - convertible Cat. No. CA 3-P-GE

Contact arrang.	Con N/O	$\begin{aligned} & \text { tacts } \\ & \mathrm{N} / \mathrm{C} \end{aligned}$	Basic ') cont.	Cat No.
	1	0	$\begin{aligned} & \hline 01,10, \\ & 11 \\ & \hline \end{aligned}$	CA 3-P-H10
$\begin{gathered} --8_{22}^{21} \end{gathered}$	0	1	10	CA 3-P-01
- ${ }_{-18}^{01}$	0	1	$\begin{aligned} & 01,10, \\ & 11 \\ & \hline \end{aligned}$	CA 3-P-L01 (late break)
$\Varangle \in \int_{08}^{07}$	1	0	$\begin{aligned} & 01,10, \\ & 11 \end{aligned}$	CA 3-P-Z10 40 ms (timed cont.)
$\not \subset \overbrace{06}^{05}$	0	1	$\begin{aligned} & 01,10 . \\ & 11 \end{aligned}$	CA 3-P-ZO1 40 ms (timed cont.)
$\begin{gathered} 2131 \\ \hline 18 \\ .1232 \\ 2232 \end{gathered}$	0	2	10	CA 3-P-02
$\begin{gathered} 2133 \\ -150 \\ -1534 \\ 2234 \end{gathered}$	1	1	10	CA 3-P-11

Notes: ${ }^{1}$) The auxiliary contact blocks can be used with all CA 3 contactors.
The recommended basic contactors consider the correct terminal numbering to Cenelec standards.

Contact arrang.	Contacts N/O N/C		Basic ') cont.	Cat. No.
31 -81 32	0	1	01	CA 3-P-SO1
- ${ }_{34}{ }^{33}$	1	0	$\begin{aligned} & 01,10, \\ & 11 \end{aligned}$	CA 3-P-S10
$\begin{aligned} & 3143 \\ & -815 \\ & 3224 \\ & \hline 18 \end{aligned}$	1	1	$\begin{aligned} & 01,10, \\ & 11 \end{aligned}$	CA 3-P-S11
$\begin{aligned} & 31415363 \\ & +8 f+{ }_{8}^{\circ} \\ & 32425464 \end{aligned}$	2	2	$\begin{aligned} & 01,10, \\ & 11 \end{aligned}$	CA 3-P-S22
-fit	$\begin{gathered} 1 \\ \text { (conve } \end{gathered}$	$\begin{aligned} & 1 \\ & \text { ertible) } \end{aligned}$	$\begin{aligned} & 01,10, \\ & 11 \end{aligned}$	CA 3-P-GE ${ }^{2}$)
2232445	2	2	10	CA 3-P-22
 32445464	3	1	$\begin{aligned} & 01,10, \\ & 11 \\ & \hline \end{aligned}$	CA 3-P-S31
$\begin{aligned} & 21334353 \\ & \text { fot }^{2}+5 \end{aligned}$ 22344454	3	1	10	CA 3-P-31

Mounting options and auxiliary contact blocks
Contactors CA 3-9/16 ${ }^{2}$)

One 1 pole or one 2 pole
One 1 pole + one 2 pole
One 4 pole

Contactors CA 3-23/72N ${ }^{2}$)
One 1 pole or one 2 pole
One 1 pole + one 2 pole
One 4 pole
One 1 pole + one 4 pole

Notes: ${ }^{2}$) Side mount auxiliary contact (max. 2 per contactor) can be added in addition to top mount auxiliary contact. Only 1 single contact block may be mounted, (on top right side).
Only 1 double contact block may be mounted, but it may be mounted with a single contact block. Auxiliary contacts maximum: CA 3-9 to CA 3-16, 5 contacts. CA 3-23, CA 3-30, 6 contacts. CA 3-37N/72N, 7 contacts.

Basic contactor - 10
CA 3-9 to CA 3-30

Basic contactor - 01
CA 3-9 to CA 3-30

Basic contactor - 11
CA 3-37N to CA 3-72N

Auxiliary contact blocks and accessories for AC contactors

Auxiliary contact blocks (convertible) for CA 1-60 to CA 1-480
Terminal markings in accordance with DIN standards

CA 1-60/480
Auxiliary contact blocks for CA 5-550-CA 5-1200 contactors

Description	Cat. No.
2 N/O + 2 N/C Auxiliary block to suit CA 5-550/700/860	CA 5-EF-22
\propto 11-12 And o 23-24 to suit CA 5-1000/1200	CA 5-EB-11
\propto 31-32 And o $43-44$ to suit CA 5-1000/1200	CA 5-EB-11
\propto 51-52 And o $63-64$ to suit CA 5-1000/1200	CA 5-EB-11
\bigcirc 71-72 And o 83-84 to suit CA 5-1000/1200	CA 5-EB-11

Auxiliary contact blocks for CA 6 ')
Description Contacts Cat. No.

Contacts
Cat. No.

For fitting left	$\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$		CA 6-P1-11
	$\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$		CA 6-P3-11
For fitting right	$\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$		CA 6-P2-11
	$\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$		CA 6-P4-11
	$\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$	(late break)	CA 6-P2-L11 ${ }^{\text {2 }}$)

Notes: ${ }^{1}$) Maximum of four blocks per contactor.
${ }^{2}$) To be used with DC coil.

Accessories for CA 6 contactor
Mechanical interlock
Cat. No.

Main terminal cover

For contactors CA 6-85 and CA 6-105	(2 pieces per set)	CA 6-105HA
For electronic motor protection relay CEF 1	(2 pieces per set)	CEF 1-HA

Connection busbar

For electronicmotor protection relay CEF 1 for direct-on line starting with short shank	(3 pieces per set)	CEF 1-VS
with long shank	(3 pieces per set)	CEF 1-VK
For separate fitting-straight without bracket	(3 pieces per set)	CEF 1-VM

Note: For more accessories in the CA o range refer catalogue 2208 K 2

Auxiliary contact blocks and accessories for AC contactors

Auxiliary contact blocks CA 4-P

The terminal markings are in compliance with EN 50012 and can be snap-fitted onto the CA 4 contactor in a 2 or 4 pole form.
All auxiliary blocks have 'bifurcated' contacts which make them suitable for low voltage switching ie. PLC inputs etc.

Accessories for auxiliary contact blocks

Description	Cat. No.	
Mechanical interlock ${ }^{\text {r }}$ (requires no additional space)	CM 4	
Steel DIN rail 35 mm	(2 metre lengths)	SDR
Star-delta timing relay - solid state	(110 or 240V AC)	CRZY 4
On time-delay - solid state $0.1-3 s e c ~(C A ~ 4 ~ c o n n e c t i o n) ~$		CRZE 4-3S
1-30secs (CA 4 connection)	CRZE 4-30S	
Protective cover for CA 4 / CS 4	CA 4-PC	
Adaptor for mounting time relay onto G or DIN rail	CR 4-P	
RC link for coil suppression	$24-48 \mathrm{~V}$ or 110-240V 50Hz	CRC 4
Diode link for coil suppression	$12-110 \mathrm{~V}$ DC	CRD 4
Connection bridge	(50 amp rated)	CB 4

Note: ${ }^{1}$) Not available for use with DC contactors and relays.

Mounting accessories

The KTA 3-25-GP12-0 combination mounting plate allows you to mount two DIN rail devices onto one installed DIN rail.

Combination mounting plate KTA 3-25-GP12-0

Combination mounting plate fitted with KTA 3-25 circuit breaker and CA 4 contactor

Type '2' short circuit co-ordination Introduction - new IEC standard

Short circuit co-ordination between HRC fuses (BS88) and Sprecher + Schuh motor starters, contactors and overloads, are now covered under the new IEC standard. This new International standard is IEC 947-4-1, and supersedes the well known type ' 'c' co-ordination, as defined in IEC 292.
This standard (IEC 947-4-1) demands testing at two fault levels. A high fault level known as the conditional short circuit current Iq (eg 50kA) and a lower fault level known as the prospective current ' r '. The prospective current ' r ' ranges from IkA for small kilowatt starters, up to 42 kA for large kilowatt starters.
The importance of testing at this lower fault level is significant, as the majority of short circuits which occur in the field are limited faults. That is, the fault level has been reduced by impedance in the circuit.
What many designers and consultants may not realise is that the worst short circuit condition for a contactor and overload is not necessarily the maximum fault level, or conditional short circuit current. In many cases the worst condition is a lower, or critical current level, and this critical fault level depends on the let-through energy of the protective fuse, and also the characteristics of the contactor and overload. Therefore, testing at this lower fault level can be more arduous on a motor starter than testing at, say. 50kA.
Tests were carried out at the Sydney County Council ') with a full range of Sprecher + Schuh contactors and overloads, backed up by HRC fuses as the short circuit protective device. It is important to point out that these tests, although carried out in accordance with the new standard IEC 947-4-1, were also conducted to comply with the requirements of the Australian switchboard standard AS 1136-1 that is, the contactors and overloads were mounted in a motor control centre and tested basically in accordance with the switchboard standard. The subtle difference is that the switchboard standard does not normally allow for additional cable impedance, whereas component standards - that is, contactor or motor standards, do allow for a connection cable which, in turn, can limit the fault level actually experienced by the contactor and overload. The following table recommends successful combinations of contactors, overloads and fuses, up to a prospective fault current level of 50kA. Please note, these combinations, although tested to the IEC 947-4-1 standard, are also suitable for the
Australian switchboard standard AS 1136-1.

Type ' 2 ' motor starter co-ordination table

Conditional short circuit current 50kA ${ }^{2}$), 415V, to IEC 947-4-1 ${ }^{3}$)

Motor kW	Rating AC 3 amps	Sprecher + Schuh contactor ${ }^{4}$)	Sprecher + Schuh overload ${ }^{4}$)	GEC ${ }^{\text {5 }}$) HRC fuse Type T to BS 88
0.37	1.2	CA 4-5/CA 3-9	CT 4-1.2/CT 3-12	TIA-4
0.75	2	CA 4-5/CA 3-9	CT 4-2.7/СT 3-12	TIA-6
1.5	3.5	CA 4-5/CA 3-9	CT 4-4/СT 3-12	TIA-16
2.2	5	CA 4-5/CA 3-9	CT 4-6/CT 3-12	TIA-16
4	8	CA 4-9/CA 3-9	CT 4-9/СT 3-12	TIA-25
5.5	11	CA 3-16	CT 3-12	TIA-32
7.5	14	CA 3-16	CT 3-17	TIS-35
11	21	CA 3-23	CT 3-23	TIS-50
15	28	CA 3-30	CT 3-32	TIS-63
18.5	35	CA 3-37N	СТ 3-42	TCP-80
22	40	CA 3-43N	CT 3-42a	TCP-100
30	55	CA 3-60N	СТ 3-63	TCP-100
37	66	CA 3-72N	CT 3-72/CEF 1	TFP-125
45	80	CA 6-85	CT 6-90/CEF 1	TFP-160
55	100	CA 6-105	CT 6-110/CEF 1	TF-200
75	135	CA 1-100/CA 1-150 ${ }^{\circ}$	CT 1-145/CEF 1	TKF-250
90	160	CA 1-150	CT 1-200/CEF 1	TKF-250
150	250	CA 1-250	CT 1-290/CET 3	TMF-355
185	310	CA 5-450	CT 1-400/CET 3	TM-450
250	425	CA 5-450/CA 1-480	CT 1-500/CET 3	TM-500
320	538	CA 5-550	CET 3	TM-630
380	650	CA 5-700	CET 3	TLM-800

[^1]
Thermal overload relay selection and performance graphs for CT 3 K

Economical compact CT 3 K thermal overload relay for use with contactors CA 3
- Single phasing protection
- Ambient temperature compensated $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (to IEC 292-1)
- Operating temperature $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Tripping lever for testing
- No automatic reset available

DOL starting
rating plate - outer calibration

Star delta starting rating plate - inner calibration

Approx. kW $(415 V)$	Setting range (A)	Thermal over-
load Cat. No. ')		

Approx. kW	Setting	Thermal over-
$(415 \mathrm{~V})$	range (A)	load Cat. No. ${ }^{\text {' }}$)

-	0.10-0.15	CT 3K-12	Note:			CA 3-9	0.63A
-	0.15-0.23	CT $3 \mathrm{~K}-12$				CA 3-9	1 A
-	0.23-0.35	CT $3 \mathrm{~K}-12$				CA 3-9	2 A
0.15	0.35-0.55	CT $3 \mathrm{~K}-12$				CA 3-9	2 A
0.15-0.25	0.55-0.80	CT $3 \mathrm{~K}-12$				CA 3-9	2 A
0.25-0.40	0.80-1.20	CT $3 \mathrm{~K}-12$				CA 3-9	4 A
0.40-0.75	1.20-1.80	CT $3 \mathrm{~K}-12$				CA 3-9	4 A
0.75-1.10	1.80-2.70	CT $3 \mathrm{~K}-12$				CA 3-9	6 A
1.10-1.70	2.70-4.00	CT $3 \mathrm{~K}-12$	2.20-3.00	4.70-6.90	CT 3K-12	CA 3-9	10 A
1.70-2.75	4.00-6.00	CT $3 \mathrm{~K}-12$	3.00-5.00	6.90-10.40	CT $3 \mathrm{~K}-12$	CA 3-9	16 A
2.75-4.30	6.00-9.00	CT $3 \mathrm{~K}-12$	5.00-8.00	10.40-15.60	CT 3K-12	CA 3-9	20 A
4.30-6.00	9.00-12.50	CT $3 \mathrm{~K}-12$	8.00-11.00	15.60-21.60	CT 3K-12	CA 3-12	25 A
7.50	12.50-17.50	CT 3K-17	11.00-16.00	21.60-30.30	CT 3K-17	CA 3-16	35 A

Note: ${ }^{1}$) All CT 3K-12 and CT 3K-17 overloads can be fitted onto all contactors up to CA 3-30.

Time/current characteristics of thermal overload relay CT 3 K

Thermally delayed overload relay.
Mean value of tolerance bands three-phase heated.

- Curves relate to relay cold
- - Curves relate to relay at operating temperature
(at set current load).
Tolerance: trip time $\pm 20 \%$ ($\pm 10 \%$ for current) Function limits and temperature compensation from $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Tripping limits specified in IEC $292-1$ for $-5^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$ are satisfied in range $-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Dual scale for direct-on-line and star delta starting.

Multiples of current setting I
CT $3 K-12,0.1 \ldots 4 A$

Multiples of current setting $I_{\text {e }}$
CT 3 K -12, 4...12, 5A
CT $3 K-17,12,5 \ldots 17,5 A$

Thermal overload relay selection for CT 3

Standard type CT 3 thermal overload relay for
use with contactors CA 3

- Relays designed for use with CA 3 contactors
- Incorporating 'differential action' single phase protection
- Three phase - ambient temperature compensated $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (to IEC 292-1)
- Operating temperature $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Tripping lever for testing
- Automatic reset (selectable)
- Overloads individually factory calibrated

DOL starting
 rating plate - outer calibration

Approx. kW (415V)	Setting range (A)	Thermal overload Cat. No.	Approx. kW (415V)	Setting range (A)	Thermal overload Cat. No.	For direct attachment		HRC fuse
-	$0.10-0.16$	CT 3-12	Note:	Ita thermal overloads must nnected in delta mesh		CA 3-9		0.63A
-	0.15-0.24	CT 3-12				CA 3-9		1 A
-	0.24-0.38	CT 3-12				CA 3-9		2 A
0.15	$0.38-0.62$	CT 3-12				СА 3-9		2 A
0.15-0.35	0.62-1.00	CT 3-12				CA 3-9		4 A
0.35-0.60	1.00-1.60	CT 3-12				СА 3-9		4 A
0.60-1.10	$1.60-2.50$	CT 3-12				CA 3-9		6 A
1.10-1.70	2.50-4.00	СТ 3-12	2.00-3.00	4.30-6.90	CT 3-12	CA 3-9		10 A
1.70-2.75	$3.80-6.00$	СТ 3-12	$3.00-5.00$	6.60-10.40	CT 3-12	CA 3-9		20 A
2.75-4.50	$6.00-9.50$	CT 3-12	5.00-8.00	10.40-16.50	CT 3-12	CA 3-9		25 A
4.00-6.00	$8.50-12.50$	СТ 3-12	7.00-11.00	14.70-21.70	CT 3-12	CA 3-12		25 A
6.00-8.00	12.00-17.50	СТ 3-17	11.00-15.00	20.80-30.30	CT 3-17	CA 3-16	3-16	35A
							3-23	40A
8.00-12.00	16.00-23.00	СT 3-23	15.00-21.00	27.70-39.80	CT 3-23	CA 3-23	3-23	50A
							3-30	50A
12.00-17.00	23.00-32.00	СТ 3-32	21.00-30.00	39.80-55.40	CT 3-32	CA 3-30	3-30	63A
							3-37	80A
							3-43	80A
13.00-17.00	25.00-32.00	CT 3-42	25.00-30.00	43.30-55.40	CT 3-42	CA 3-37N	3-37	80A
							3-43	100A
17.00-23.00	$32.00-42.00$	CT 3-42	30.00-40.00	55.40-77.80	CT 3-42	CA 3-37N	3-60	125A
							3-72	125A
22.00-28.00	40.00-52.00	CT 3-52	38.00-50.00	69.20-90.00	CT 3-52	CA 3-43N	3-60	125A
							3-72	125A
28.00-35.00	52.00-63.00	СТ 3-63	50.00-62.00	90.00-110.00	CT 3-63	CA 3-72N	3-72	125A
35.00-40.00	64.00-72.50	СТ 3-72	62.00-72.00	110.00-125.00	CT 3-72	CA $3-72 \mathrm{~N}$	3-72	125A

Notes: Operational limits $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
') CT 3-12 and CT 3-17 overloads can be fitted onto all contactors up to CA 3-30.

Separate mounting type CTA 3-52

Thermal overload relay performance graphs for CT 3

Time/current characteristics of thermal overload relay CT 3

Thermally delayed over-current relay.
Mean value of tolerance bands, heated in three phases.

- Curves from cold state.
- - Curves in operationally warm state (loaded with the set current).
Tolerance: tripping time $\pm 20 \%$ or current $\pm 10 \%$.

Two-phase loading (single phase failure). Trip limiting current approximately 85% of 3-phase trip limiting current.
4 Specified points from the cold state.

Multiples of current setting I CT 3-12, 0.1...0.16 to 3.8... 6 A

Multiples of current setting $I_{\text {e }}$ CT 3-12, 6...9.5A, 8.5...12.5A

Multiples of current setting $I_{\text {e }}$ CT 3-42, CT 3-52, CT 3-63, CT 3-72

Overload relay selection for CA 1 contactors

Heavy current－CT operated thermal and electronic overload relays． for use with contactors CA 1－60 to CA 5－1200
［．＇Differential＇single phasing protection＇）Current transformer operated＇）
－．Three phase ambient temperature compensated $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}^{2}$ ）（to IEC 292－1）

DOL starting
（Yellow rating plate）

Approx．kW （415V）	Setting range（A）	Thermal over－ load Cat．No．	Approx．kW （415V）	Setting range（A）	Thermal over－ load Cat．No．	For direct attachment	HRC fuse
35－55	65－100	CT 1－150	65－95	110－170	СТ 1－150	CA 1－60	160／200 A
55－85	100－150	CT 1－150a	95－150	170－260	CT 1－150a	CA 1－100	160／250 A
						CA 1－150	200／250 A
37－50	70－90	CT 1－90	65－85	121－156	CT 1－90	CA 1－60	200 A
						CA 1－100	200 A
						CA 1－150	315 A
50－80	90－145	CT 1－145	85－140	156－251	CT 1－145	CA 1－150	250 A
						CA 1－250	315 A
80－115	140－200	CT 1－200	140－200	242－346	CT 1－200	CA 1－150	400 A
						CA 1－250	400 A
						CA 1－480	400 A
105－170	180－290	CT 1－290	180－300	312－502	CT 1－290	CA 1－250	500 A
						CA 1－480	500 A
160－230	275－400	CT 1－400	280－400	476－693	CT 1－400	CA 1－480	800 A
						CA 5－550 ${ }^{3}$ ）	800 A
185－300	320－500	CTA 1－500 ${ }^{3}$ ）	320－520	554－866	CTA 1－500 ${ }^{3}$ ）	CA 1－480	800 A
						CA 5－450 ${ }^{3}$ ）	800 A
						CA 5－550 ${ }^{3}$ ）	800 A
						CA 5－700 ${ }^{3}$ ）	1000 A
185－700	300－1200	CEF 1－11P－1200 ${ }^{3}$ ）	320－1200	520－2078	CEF 1－11P－1200 ${ }^{3}$ ）	CA 5－700	1000 A
		CEF 1－12P－1200 ${ }^{3}$ ）			CEF 1－12P－1200 ${ }^{3}$ ）	CA 5－860	1250 A
						CA 5－1000	1600 A
						CA 5－1200	2000 A

Notes：${ }^{1}$ ）CT 1－150（a）is non differential and is not CT driven．
${ }^{2}$ ）Operational limits $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
${ }^{3}$ ）Separately mounted only．（CEF complete with $3 \times 1200 / 5$ current transformers（supplied loose））．

Thermal overload motor protection and features

Sprecher + Schuh has always paid particular attention to the question of motor protection and is untiring in its never ending efforts to only manufacture motor protection devices which are really deserving of this description．Consistent high quality is only ensured by a costly ultimate tripping current calibration process．The lowest and the highest current settings are individually calibrated on every thermal overload relay．This takes place with 1.05×1 ie：（ No trip oc－ currence）and 1.2×1

CT 1－150
」 Suitable for AC and DC use．All 3 phases must be connected into the current path．
」 Manual test trip．
」 Reset convertible to＜hand＞．（with re－close preven－ tion）or＜auto＞（without re－close prevention．
」 Types with scales for direct－on－line（yellow）or star－ delta starting（green）．
」 Short－circuit proof．No damage with the high rating back－up fuses permissible（type＜c＞in accordance with IEC 292－1）．

Thermal overload relay performance graphs for CT 1

Time/current characteristics of thermal overload relay CT 1

for use with contactors CT 1-90 to CT 1-500

Average stray value heated in three phases
—Curves from cold state:
_ _ - Curves from operationally warm state (previously loaded with set current).
Stray - Tripping time $\pm 20 \%$ or current $\pm 10 \%$ Standardised limits from operationally warm state to IEC 292-1 (type 1).

Single phasing
(loss of one phase):
CT 1-43, 1-72, 1-90... 1-500: Ultimate tripping current approx. 85% of the 3 phase ultimate tripping current.
CT 1-10...CT 1-30, CT 1-150:
Ultimate tripping current approx. 105\% of the 3 phase ultimate tripping current.

Multiples of current setting I CT 1-90

Multiples of current setting I CT 1-200...CT1-400

Multiples of current setting I. CT 1-145

Multiples of current setting $I_{\text {e }}$ CT 1-500

Series connection of thermal overload relay poles for single-phase operation

Use of thermal overloads with single and two phase motors

When using a three-pole thermal overload relay with differential tripping for single-phase applications, the free poles must be connected in series so that no phase failure is simulated.
Series connection of thermal overload relay poles for singlephase operation.

Thermal overload relay selection for CT 4

Features of thermal overload relay CT 4

to suit CA 4 contactors

- High tripping accuracy
- Manual reset
- Trip indicator complies with AS 1023
- Maximum volts 660 V

Thermal overload relay CT 4

- Temperature compensation from $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
- Snap-on signal contact available
- No automatic reset available

CT4 Thermal overload relays for mounting on
CA 4-5 and CA 4-9 contactors

Contactor with add-on thermal overload relay

| Adjustment range
 in amps (DOL) | Type T
 HRC fuse | Approx. kW
 415 V | Cat. No. |
| :--- | :--- | :--- | :--- |$|$| $0.10-0.15$ | 0.63 A | 0.06 | CT 4-0.15 |
| :--- | :--- | :--- | :--- |
| $0.15-0.23$ | 1 | 0.09 | CT 4-0.23 |
| $0.23-0.35$ | 2 | 0.12 | CT 4-0.35 |
| $0.35-0.55$ | 2 | 0.18 | CT 4-0.55 |
| $0.55-0.80$ | 2 | 0.25 | CT 4-0.80 |
| $0.80-1.20$ | 4 | 0.5 | CT 4-1.20 |
| $1.20-1.80$ | 4 | 0.55 | CT 4-1.80 |
| $1.80-2.70$ | 6 | 1.5 | CT 4-2.70 |
| $2.70-4.00$ | 10 | 2.2 | CT 4-4 |
| $4.00-6.00$ | 16 | 3 | CT 4-6 |
| $6.00-7.70$ | 20 | 4 | CT 4-7.70 |
| $7.50-9.00$ | 20 | CT 4-9 | |
| Auxiliary signal contact block (N/O) - Clip-on to thermal overload | CT 3K-P-10 | | |

A Electrical connection/mechanical attachment pins for direct attachment to contactors CA 4-5 and CA 4-9.

B Built-in wire connection from tripping contact (95) to coil (A2). Can be removed if required.

C Flag indicator (thermal overload relay ready for operation or tripped).

D Red O/L button: an integral off button for test tripping and resetting.

E Direct start current setting scale with setting knob.
F Auxiliary scale current setting for star delta starting.
G Front mounted trip contact connections.
H Signal contact connections.

CT 4 with snap on auxiliary contact block, CT 3 K-P- 10

Thermal overload relay performance graphs for CT 4

Time/current characteristics of thermal overload relay CT 4

for use with contactors CA 4

Thermally delayed overload relay
Mean value of tolerance bands 3-phase heated.

- Full line curves relate to cold relay.
- - Curves relate to relay at operating temperature (at set current load).
Tolerance: trip time $\pm 20 \%, \pm 10 \%$ for current.
Function limits and temperature compensation from $25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$.
Tripping limit specified in IEC $292-1$ for $-5^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$ are included in the $-20^{\circ} \mathrm{C}$ to +60 C range.

Multiples of current setting I. CT 40.1 ... 2.7 A

Single phasing (phase failure)
Trip limits 1.05 to 1.32 of set current $l_{\text {ef }}$ (1.05 to $1.32 I_{\text {ef }}$ is permissible according to IEC 292-1). For motors up to 10 kW , the 2-phase trip at 1.25 $I_{\text {ef }}$ maximum, guarantees heat build up limitation to the value which occurs in the event of a 3 -phase trip at $1.2 l_{\text {ef }}$

Specified points relative to operating temperature condition, in compliance with IEC 292-1 (type 1) and SEV publication number 138.

Multiples of current setting I。 CT4 2.7 ... 9 A

Dimensions for CA 4 contactors and starters

Mounting position

For direct current operation (DC) any mounting position is possible. For alternating current operation (AC) mounting is restricted as shown in diagram.

Notes: Control relay CS 4, contactors CA 4-5 and CA 4-9 with auxiliary block CS 4-P or CA 4-P.
l) DIN rail attachment possible.
${ }^{2}$) Basic unit without modules.
${ }^{3}$) With auxiliary contact block.
${ }^{4}$) With CRZE 4 timing element.
${ }^{5}$) Overload button: 2.3 mm min. travel $=$ off + reset.
b) With CT $3 \mathrm{~K}-\mathrm{P}$ - 10 auxiliary on thermal relay.

Thermal overload relay selection and performance graphs for CT 6

Features of thermal overload relay CT 6
to suit CA 6 contactors

- CT operated
- Direct connect or free standing available
- Suitable for 1000 V operation
- RT-3 thermistor relay can be mounted on CT-6

CA 6 with RT 3 mounted on CT 6

Approx. kW (415V)	EE Type T HRC Fuse	Setting range for direct-on-line (A)	For Star-delta starting (A)	Thermal overload Cat. No.
For fitting to contactor CA 6				
40-50	200A	70... 90	121... 155	CT 6-90
49-61	200A	85... 110	147... 190	CT 6-110
For separate mounting				
40-50	200A	70... 90	121... 155	CTA 6-90
49-61	200A	85... 110	147...190	CTA 6-110

Thermal overload relay

 CT 6
Time/current characteristics of thermal overload relay CT 6

 for use with contactors CA 6Mean value of thermal overload relay time/current characteristic (thermally delayed overcurrent relay)

Multiple of current setting I
CT 6-90
Dimensions for CA 6 contactors and starters

Contactor CA 6-85 and CA 6-105

Contactor CA 6-85, CA 6-105 and thermal overload relay CT 6

Two-phase loading (loss of one phase (single-phasing)). Trip limiting current approx. 85% of the 3 -phase tripping current.

Multiple of current setting I. CT $6-110$

Contactor CA 6-85, CA 6-105 and motor protection unit CEF 1

Dimensions for CA 3 contactors and starters

CA 3-9 (+CT 3) / CA 3-12 (+CT 3) / CA 3-16 (+CT 3)

CA 3-37N (+CT 3) to CA 3-72N (+CT 3)

Legend:

1) With CZ 3 timing element, or with CV 3 mechanical latch, or with time delayed auxiliary contact
${ }^{2}$) With auxiliary contact block
${ }^{3}$) Basic device without any built-on elements
${ }^{4}$) Fixing possibility onto 35 mm din rail for CA 3-9 to CA 3-30
${ }^{5}$) Not permissible to CSA, UL, DEMKO and Finland

Dimensions for DC versions

DC relay Cs3 C, contactors CA 3-9 C, CA 3-12 C and CA 3-16 C

CA 3-23 (+CT 3) / CA3-30 (+CT 3)

Drilling plan

Two of the fixing holes conform to the preferred vertical distance between holes of 50 mm complying with EN 50 002/EN 50003. The horizontal distance between fixing holes on the CS 3 control relay and the CA 3-9...CA $3-16$ contactors conforms with the widely used measurement of 35 mm . Further holes permit the use of other frequently used drilling plans.

Legend:

1) With timing element CZ 3 or CV 3 latch, or time delayed auxiliary contact
${ }^{2}$) With auxiliary contact block
${ }^{3}$) Basic device without adder elements
${ }^{4}$) With marking tag carrier
2) Fixing possible onto 35 mm Din Rail

Dimensions for CT 3 thermal overload relays

For mounting on contactors

CT $3 K-12$ and CT $3 K-17$

CT 3-12 and CT 3-17

CT 3-23 and CT 3-32

CT 3-42...CT 3-72
Legend:
${ }^{4}$) Reset pushbutton 2.3 mm travel $=$ rese \dagger
${ }^{5}$) Reset buttons 3.5 mm away $=$ reset 6 mm away $=$ test
${ }^{7}$) Possibility of mounting CTA onto mounting rail EN 50022-35

Mounting positions

For separate mounting

CTA 3K-12 and CTA 3K-17

CTA 3-12 and CTA 3-17

CTA 3-23 and CTA 3-32

CTA 3-42...CTA 3-72
9) With reset magnet CMR
${ }^{10}$) With auxiliary contact CT 3K-P10

Dimensions for CA 1 and CA 5 contactors and starters

CA(T) 1-60/100

CA(T) 1-250

CA(T) 5-450/550/700/860
Legend:

1) For CA 5-450/550 mounting hole 9 mm
${ }^{2}$) CA 5-450/550 panel width 220 mm
${ }^{3}$) For CA 5-450/550 protrusion 225 mm
Mounting positions

CA(7) 1-150

CA(T) 1-480

CA 5-1000/1200
For specific detailed information contact your nearest NHP Office or Distributor.

sprecher + schuh

The utumabe ew Mabore Combul

Represented in Australia by

Electrical Engineering
Products Pty Ltd A.C.N. 004304812

Melbourne

43-67 River Street, Richmond VIC. 3121 Phone: (03) 429 2999, Fax: (03) 4291075

Sydney

30-34 Day Street North,
Silverwater N.S.W. 2141
Phone: (02) 748 3444, Fax: (02) 6484353

Brisbane

39 Commercial Road,
Fortitude Valley QLD. 4006
Phone: (07) 252 9517, Fax: (07) 2523415

Adelaide

50 Croydon Road, Keswick S.A. 5035
Phone: (08) 297 9055, Fax: (08) 3710962

Newcastle

57 Crescent Road, Waratah N.S.W. 2298 Phone: (049) 60 2220, Fax: (049) 602203

Rockhampton

208 Denison Street,
Rockhampton QLD. 4700
Phone: (079) 27 2277, Fax: (079) 222947

Townsville

62 Leyland Street,
Garbutt QLD. 4814
Phone: (077) 79 0700, Fax: (077) 751457

Toowoomba

Cnr Carroll St. \& Struan Crt.,
Toowoomba, QLD. 4350
Phone: (076) 34 4799, Fax: (076) 331796

Perth

Formerly C.J. Young \& Co
38-42 Railway Parade,
Bayswater W.A. 6053
Phone: (09) 271 8666, Fax: (09) 2723906

Agents

Hobart

H.M. Bamford (Hobart)

199 Harrington Street, Hobart TAS. 7000
Phone: (002) 34 9299, Fax: (002) 311693

Launceston

H.M. Bamford (Launceston)

59 Garfield Street, Launceston TAS. 7250
Phone: (003) 44 8811, Fax: (003) 444069

Darwin

J. Blackwood \& Son Ltd
(Inc. Tesco Pearce)
Mataram Street, Winnellie N.T. 0820
Phone: (089) 84 4255, Fax: (089) 843945

Thermistor Protection Relay RT 3: direct, precise, dependable

Direct temperature sensing at critical locations with thermistor sensors and its evaluation by the thermistor protection relay RT 3 provides a first-rate safeguard for motors and other temperature-critical devices.

The right device for each application

Thermistor protection relays RT 3 are employed in all those applications where accurate temperature monitoring is of crucial importance:
\square motors and transformers
\square bearings and machines
\square heating systems
\square gases and liquids
The RT 3 takes fully into account extraneous influences such as increased ambient temperature, ventilation system breakdown and obstructed cooling. Three models permit optimal selection according to application.

Maximum safety for systems and personnel

The RT 3 does not only trip reliably in the event of over-temperature but also in the case of a short-circuit or an open-circuit in the sensor measuring circuit.
Additionally two models give safeguards against supply failure, storing their switching state for more than three hours.
All voltage carrying parts of the RT 3 are protected against inadvertent contact according to VBG 4.

Convenient operation

The RT 3 is designed arranged clearly and logically. Tripping is distinctly indicated by a red LED. Two models have a «Reset» button for manual reset and terminals for remote reset up to 1000 m . The model RT 3-U has a «Test» button for checking operating readiness and a green LED to indicate the supply-on state.

Trouble-free installation

Nothing is simpler than installing an RT 3. No settings have to be made on the relay itself.

Additional protective functions possible

For the very highest protection requirements the RT 3 can be used in combination with thermal overload relay CT, circuit breaker KT 3 or the electronic motor protection unit CET 3. In this way further protective functions can be achieved permitting a reduction in the motor feeder line cross-section.

Reduction of the average motor life with over-temperature.

The thermistor protection relay RT 3 is an essential constituent of the comprehensive Sprecher + Schuh motor protection concept. Its combination possibilities with other motor protection devices enables the very highest demands to be satisfied.

Selection table Ordering information

Thermistor protection relay RT 3

- for surface mounting
- with inadvertent contact protection to IP 67
- output relay (with 1 normally open and 1 normally closed contacts) in closed circuit connection

RT 3-A

Model
Thermal overload protection
Short-circuit and open-circuit protection
for sensor measuring circuit
Trip indication (red LED)
Automatic reset
Manual reset
Remote reset (external button)
Storage of status in event of power failure
for more than 3 hours at $+25^{\circ} \mathrm{C}$
unlimited (not temperature-dependent)
«Test»-button
Power-on indication (green LED)

Wiring Diagram

Ordering information	Model		Order No.		Weight [g] 1 item
Thermistor protection relay		RT 3-A	RT 3-A -...V...		260
		RT 3-M	RT 3-M-...V...		265
		RT 3-U	RT 3-U -...V...		270
Order No. supplement					
	DC	$24,48 \mathrm{~V}$	-...V DC		-65

Technical information

0

General

Thermistors are installed in the thermally critical localities of the object to be protected. For motors this is the stator winding.
The resistance of the thermistors has a positive temperature coefficient (PTC).

General

Functions
Approvals

The resistance of the PTC sensor increases immediately the rated response temperature is exceeded. In this way the thermistor protection relay RT 3 initiates the switching off of the protected object eg. a motor - and indicates the fault.

Functions

Tripping

The RT 3 trips in the event of a thermal overtemperature in the protected object also with a short-circuit and an opencircuit in the sensor measuring circuit. The red LED lights.

Test button

An overtemperature is simulated on the RT 3 by pressing the Test button. This is for checking the operational readiness of the device.

Reset

The RT 3-A is automatically reset once the resistance of the sensor measuring circuit falls back below the reset value on cooling down. The red LED trip indication goes out.
To prevent undesirable starting of the motor, automatic reset should only be provided with impulse contact control. The RT 3-M and RT 3-U have an optional reset facility of either manual (with the integrated "Reset" button or external remote reset button) or automatic.

Loss of supply voltage

In the event of a power supply failure the green LED on the RT 3-U goes out.
On the RT 3-M and RT 3-U the switching status is stored for the manual reset. After restoration of the supply the output relay and the LED trip indicator revert to the status existing before the failure.

Temperature prewarning

If the manufacturer installs additional PTC sensors having a lower response temperature, a second RT 3 can be used to provide a preliminary temperature warning. This will permit the early detection of an impending fault and can prevent an operating interruption.

Approvals

The thermistor protection relay RT 3 complies with all important regulations.
The following approvals have been applied for:
SEV, CSA, UL-recognized, NEMKO, Finland.

Approval is being sought from the PTB (Physical and Technical Institute, Federal Republic of Germany) for the protection of motors in zones with a fire and explosion hazard (EEx e).

Technical data

Dimensions [mm]
 Mounting, circuit diagrams

Hole plan RT 3

Position of terminals
r1 and r2 are not available on the RT 3-A

Installation

The thermistor protection relay RT 3 is designed for surface mounting with screw fixing according to hole plan EN 50002 or for snap-on fixing to a top hat rail EN 50 022-35×7.5.

Arrangement, assignment and marking of terminals in accordance with EN 50005. The mounting position of the RT 3 does not influence its function.

Terminal and block circuit diagram of the RT 3

An application example
Starter CA +CT with additional RT 3
介 The contacts are drawn in their poweron position corresponding to those of a standard thermal overload relay in its ready to operate state.

Legend

K1 Contactor CA
F1 Thermal overload relay CT
F2 Thermistor protection relay RT 3
S1 ON button
SO OFF button
S2 Remote reset button
$U_{\mathrm{s}} \quad$ Supply voltage
H1 Signal lamp «Contactor ON"
H2 Signal lamp «RT 3 tripped»
B1 Thermistor in protected object

Circuit diagram
Main circuit

Control circuit
Impulse contact control

[^2][^3]
Represented in Australia by

Electrical Engineering Products P/L

Melbourne

51-67 River Street
Richmond VIC. 3121
Phone: (03) 4292999
Telex: AA31644
Fax: (03) 4291075

Sydney

30-34 Day Street
Silverwater NSW 2141
Phone: (02) 6472211
Fax: (02) 6484353

Brisbane

39 Commercial Road
Fortitude Valley QLD. 4006
Phone: (07) 2529517
Telex: AA41097
Fax: (07) 2523415

Adelaide

29 Croydon Road
Keswick SA 5035
Phone: (08) 2979055
Fax: (08) 3710962

Agents

Perth

C.J. Young \& Co. Pty. Ltd.

38-40 Railway Parade
Bayswater WA 6053
Phone: (09) 2718666
Telex: AA93715
Fax: (09) 2723906

Hobart

H.M. Bamford (Hobart)

199 Harrington Street
Hobart TAS. 7000
Phone: (002) 349299
Fax: (002) 311693

Launceston

H.M. Bamford (Launceston)

59 Garfield Street
Launceston TAS. 7250
Phone: (003) 448811
Telex: AA58536
Fax: (003) 444069

Newcastle

Hunter Engineering Sales
64 Broadmeadow Road
Broadmeadow NSW 2292
Phone: (049) 693122
Telex: AA28158
Fax: (049) 696873

Townsville

Paterson Electrical
Engineering Agencies 62 Leyland Street Garbutt QLD. 4814
Phone: (077) 790700
Fax: (077) 751457

Darwin

J. Blackwood \& Son Ltd.
(Inc. Tesco Pearce)
Mataram Street,
Winnellie NT 5789
Phone: (089) 844255
Telex: AA85454
Fax: (089) 843945
Technical changes reserved
2263/10.88
Pulse Id TMS721

The complete range Switch fuse range OESA (BS-pattern) 32 A to 800 A, 6 - Main suxthes 800 A,

Increased performance ratings.
ASTA tested

Versatile in use

E

Sticz2 2 No 4 and 19

Switch Fuses OESA/bs 32 A. . . 800 A, 660 V

- Reduced Panel size
- Reduced Assembly Costs
- Safety for Personnel
- Versatile Range

5
Overall cost efficiency

Complete range from the leading manufacturer

The overall cost efficiency of the switch fuse

为

Inbuilt safety features

Reduced assembly costs

Compact size

Patented contact construction

An mand

STRÖMBERG means quality in all environments

STROMBERG

KRAUS \& NAIMER blue line switchgear

Switch Types
CA4, CA10, CA11, CA20, CA10B, CA11B, CA20B

- compact design with the smallest escutcheon plate size of $30 \times 30 \mathrm{~mm}$ (1.181 " $\times 1.181$ ")
- finger-proof acc. to VDE 0106, part 100 and VBG 4
- open terminals which are accessible from both sides
- captive plus-minus screws and screwdriver guide
- high switching capability
- contacts with gold plating (switch type CA4)

The terminals of the CA series cam switches are accessible from both sides. This is an advantage in cases where the switch is prewired for installation or in cases where the terminal wiring cannot be done in the sequence of the stage. The compact design, the excellent switching capabilities under AC11, AC3 and AC23 and the obviously unlimited number of switch developments are characteristic for the CA switches.

CA switches of this series are supplied with open terminals and protected against accidental finger contact in accordance with VDE 0106, section 100 (VBG 4). Captive plus-minus terminal screws and integrated screwdriver guides facilitate wiring.

The CA4 switches offer maximum space saving benefits. A CA4 switch in E mounting 1 stage long and 2 contacts fits into $30 \times 30 \times 30 \mathrm{~mm}$ cubicle. The additional length of any further stage is 8 mm . CA4 contacts are supplied standard with gold plating of 1μ.

Single hole mounting according to EN 50007 with protection IP 65 is suitable for either 16 or 22 and 22 or 30 mm diameter holes and is available with key operator, if required.

Switching angle of CA switches may be $30^{\circ}, 45^{\circ}, 60^{\circ}$ or 90°. Switch type CA 4 is available with up to 18 contacts. CA 10, CA 11 and CA 20 switches are available with up to 24 contacts.

A wide range of optional extras and enclosures is available.

Your order should include the following data:

1. Switch type (selection according to the following tables)
2. Switching program (order a prescribed form for special programs)
3. Mounting type
4. Escutcheon plate
5. Handle
6. Optional extras

SWITCH TYPES

| Nominal voltage
 IEC/VDE/BS
 UL/CSA | | |
| :---: | :---: | :--- | :--- |
| SEV | | |
| CEE 24 | | |

Panel mounting and base mounting

Single hole mounting 16 or 22 mm and 22 or 30 mm
FS1
FS2
FS4

Dimensions L and K

	No. of stages/Dimensions L												K
Type	1	2	3	4	5	6	7	8	9	10	11	12	
CA4	$\begin{aligned} & 30 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 38 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 46 \\ & 1.81 \end{aligned}$	$\begin{aligned} & 54 \\ & 2.13 \end{aligned}$	$\begin{aligned} & 62 \\ & 2.44 \end{aligned}$	$\begin{aligned} & 70 \\ & 2.76 \end{aligned}$	$\begin{aligned} & 78 \\ & 3.07 \end{aligned}$	$\begin{aligned} & 86 \\ & 3.39 \end{aligned}$	$\begin{aligned} & 94 \\ & 3.70 \end{aligned}$	\checkmark	-	-	$\begin{aligned} & 28 \\ & 1.1 \end{aligned}$
CA10	$\begin{aligned} & 31,7 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 41,2 \\ & 1.62 \end{aligned}$	$\begin{aligned} & 50,7 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 60,2 \\ & 2.37 \end{aligned}$	$\begin{aligned} & 69,7 \\ & 2.74 \end{aligned}$	$\begin{aligned} & 79,2 \\ & 3.12 \end{aligned}$	$\begin{aligned} & 88,7 \\ & 3.49 \end{aligned}$	$\begin{aligned} & 98,2 \\ & 3.87 \end{aligned}$	$\begin{aligned} & 107,7 \\ & 4.24 \end{aligned}$	$\begin{aligned} & 117,2 \\ & 4.61 \end{aligned}$	$\begin{aligned} & 126,7 \\ & 4.99 \end{aligned}$	$\begin{aligned} & 136,2 \\ & 5.36 \end{aligned}$	$\begin{aligned} & 43 \\ & 1.69 \end{aligned}$
CA11	$\begin{aligned} & 34,9 \\ & 1.37 \end{aligned}$	$\begin{aligned} & 47,6 \\ & 1.87 \end{aligned}$	$\begin{aligned} & 60,3 \\ & 2.37 \end{aligned}$	$\begin{aligned} & 73,0 \\ & 2.87 \end{aligned}$	$\begin{aligned} & 85,7 \\ & 3.37 \end{aligned}$	$\begin{aligned} & 98,4 \\ & 3.87 \end{aligned}$	$\begin{aligned} & 111,1 \\ & 4.37 \end{aligned}$	$\begin{aligned} & 123,8 \\ & 4.87 \end{aligned}$	$\begin{aligned} & 136,5 \\ & 5.37 \end{aligned}$	$\begin{aligned} & 149,2 \\ & 5.87 \end{aligned}$	$\begin{aligned} & 161,9 \\ & 6.37 \end{aligned}$	$\begin{aligned} & 174,6 \\ & 6.87 \end{aligned}$	$\begin{array}{\|l\|} \hline 43 \\ 1.69 \end{array}$
CA20	$\begin{aligned} & 35,9 \\ & 1.41 \end{aligned}$	$\begin{aligned} & 48,6 \\ & 1.91 \end{aligned}$	$\begin{aligned} & 61,3 \\ & 2.41 \end{aligned}$	$\begin{aligned} & 74 \\ & 2.91 \end{aligned}$	$\begin{aligned} & 86,7 \\ & 3.41 \end{aligned}$	$\begin{aligned} & 99,4 \\ & 3.91 \end{aligned}$	$\begin{aligned} & 112,1 \\ & 4.41 \end{aligned}$	$\begin{aligned} & 124,8 \\ & 4.91 \end{aligned}$	$\begin{aligned} & 137.5 \\ & 5.41 \end{aligned}$	$\begin{aligned} & 150,2 \\ & 5.91 \end{aligned}$	$\begin{aligned} & 162,9 \\ & 6.41 \end{aligned}$	$\begin{aligned} & 175,6 \\ & 6.91 \end{aligned}$	$\begin{aligned} & 45 \\ & 1.77 \end{aligned}$
CA10B	$\begin{aligned} & 37,9 \\ & 1.49 \end{aligned}$	$\begin{aligned} & 47,4 \\ & 1.87 \end{aligned}$	$\begin{aligned} & 56,9 \\ & 2.24 \end{aligned}$	$\begin{aligned} & 66,4 \\ & 2.61 \end{aligned}$	$\begin{aligned} & 75,9 \\ & 2.99 \end{aligned}$	$\begin{aligned} & 85,4 \\ & 3.36 \end{aligned}$	$\begin{aligned} & 94,9 \\ & 3.74 \end{aligned}$	$\begin{aligned} & 104,4 \\ & 4.11 \end{aligned}$	$\begin{aligned} & 113,9 \\ & 4.48 \end{aligned}$	$\begin{aligned} & 123,4 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 132,9 \\ & 5.23 \end{aligned}$	$\begin{aligned} & 138,4 \\ & 5.45 \end{aligned}$	$\begin{array}{\|l\|} 56 \\ 2.2 \end{array}$
CA11B	$\begin{aligned} & 41,1 \\ & 1.62 \end{aligned}$	$\begin{aligned} & 53,8 \\ & 2.12 \end{aligned}$	$\begin{aligned} & 66,5 \\ & 2.62 \end{aligned}$	$\begin{aligned} & 79,2 \\ & 3.12 \end{aligned}$	$\begin{aligned} & 91,9 \\ & 3.62 \end{aligned}$	$\begin{aligned} & 104,6 \\ & 4.12 \end{aligned}$	$\begin{aligned} & 117,3 \\ & 4.62 \end{aligned}$	$\begin{aligned} & 130 \\ & 5.12 \end{aligned}$	$\begin{aligned} & 142,7 \\ & 5.62 \end{aligned}$	$\begin{aligned} & 155,4 \\ & 6.12 \end{aligned}$	$\begin{aligned} & 168,1 \\ & 6.62 \end{aligned}$	$\begin{aligned} & 180,8 \\ & 7.12 \end{aligned}$	$\begin{array}{\|l\|} 56 \\ 2.2 \end{array}$
CA20B	$\begin{aligned} & 42,1 \\ & 1,66 \end{aligned}$	$\begin{aligned} & 54.8 \\ & 2.16 \end{aligned}$	$\begin{aligned} & 67,5 \\ & 2.66 \end{aligned}$	$\begin{aligned} & 80,2 \\ & 3.16 \end{aligned}$	$\begin{aligned} & 92,9 \\ & 3.66 \end{aligned}$	$\begin{aligned} & 105,6 \\ & 4.16 \end{aligned}$	$\begin{aligned} & 118,3 \\ & 4.66 \end{aligned}$	$\begin{aligned} & 131 \\ & 5.16 \end{aligned}$	$\begin{aligned} & 143,7 \\ & 5.66 \end{aligned}$	$\begin{aligned} & 156,4 \\ & 6.16 \end{aligned}$	$\begin{aligned} & 169,1 \\ & 6.66 \end{aligned}$	$\begin{aligned} & 181,8 \\ & 7.16 \end{aligned}$	$\begin{array}{\|l\|} 56 \\ 2.2 \end{array}$

BLOCK VARISTORS SA40 SA70 SA100

Critec P_{5} Ltd
A.CN.CO9538739

TRANSIENT SAFETY BARRIERS

Application

LSJK transient barriers are designed to provide transient protection for balanced and unbalanced dataline, signal and communications circuits used in the process control, communications and computer industries.

With its unique base and cap combination LSJK provides extensive application flexibility. Each LSJK transient barrier consists of a base module containing a 10KA 3 element gas filled arrester providing primary transient protection. Secondary protection is available from a range of plug in caps which together with the base module makes up a complete transient protection package.

Four levels of transient protection are available ranging from a simple link circuit, level 1, to low pass filters, level 4, for frequency sensitive applications. All LSJKK models are fitted with self resetting overcurrent protection.

LSJK may be mounted individually, on it own mounting rail which also provides the protective earth return or it may be adapted for DIN rail mounting.

Critec

Critec Pty Ltd is Australia's leader in transient protection. Whether danger arrives via power, data, or telephone lines, Critec engineers can draw on over 20 years experience to find the solution. Critec products include:

Surge Reduction Filters

Δ

Power Line Filters
Δ
Line Conditioners
Δ
UPS and SPS
Δ
Faxguard/Compuguard

Δ

Signal Line Transient Barriers Δ
Intrinsically Safe Barriers
Δ
NEMP Filters

A

LSJK-1 Level 1 Protection

LSJK-1 provides gas arrester only protection for non critical circuits such as switch contacts and electromechanical circuitry.

LSJK-2R Level 2 Protection

LSJK-2R provides 2 levels of protection incorporating gas arrester and transient protection diodes for both transverse and common mode protection.

LSJK-S Telephone Protection

LSJK-S provides protection for telephone circuits. The patented impulse clamping circuit is transparent to all telephone signals yet clamps at a level lower than some of these signals.

LSJK-3R Level 3 Protection

LSJK-3R provides 3 levels of protection incorporating gas arrester, MOV and transient diodes designed for applications on long lines, high expsoure lines and lines susceptible to powerline induction.

LSJK-3I Level 3 Protection

LSJK-3I provides 3 levels of protection in a low resistance, high current configuration for supply lines and power circuits.

LSJK-4F Level 4 Protection

LSJK-4F provides 3 levels of transient protection in addition to a stage of filtering for RFI suppression etc. Standard is 50 kHz low pass filter. Other cut off frequencies are available on request.

MODEL NUMBER	$V_{\text {wkg }}$ at $5 \mu \mathrm{~A}$ (V)	SERIES R_{i} (Ω)	$\begin{gathered} \text { IMPEDANCE } \\ \text { [2] } \\ \begin{array}{c} L_{i} \\ (\mu h) \end{array} \end{gathered}$	$I_{\text {max }}$ (A)	$\begin{gathered} \mathrm{V}_{\mathrm{c}(\max)}^{\text {for }} \\ 8 / 20 \mu \mathrm{~s} \\ \text { (4) } \\ \text { (V) } \end{gathered}$	CATALOGUE NUMBER
LSJK-1	60	0.1	-	2.5	800	376100

MODEL NUMBER	$\begin{gathered} V_{\text {wkg }}^{\text {at }} \\ 5 \mu \mathrm{~A} \\ \text { (V) } \end{gathered}$	SERIES R_{i} (Ω)	$\begin{gathered} \text { IMPEDANCE } \\ \text { [2] } \\ \begin{array}{c} L_{i} \\ (\mu \mathrm{~h}) \end{array} \end{gathered}$	$I_{\text {max }}$ (A)	$\begin{gathered} \mathrm{V}_{\mathrm{c}(\max)}^{\text {for }} \\ 8 / 20 \mu \mathrm{~s} \\ (\mathrm{~V}) \\ \text { (V) } \end{gathered}$	CATALOGUE NUMBER
LSJK-3R-7.5	6.1[1]	17.6	-	0.15	8	376350
LSJK-3R-15	12.2[1]	17.6	-	0.15	15	376360
LSJK-3R-18	14.7	17.6	-	0.15	18	376370
LSJK-3R-30	24.2	17.6	-	0.15	30	376380
LSJK-3R-36	29.0	17.6	-	0.15	36	376390
LSJK-3R-60	48.6	17.6	-	0.15	60	376400
LSJK-3R-135	110.0	23.2	-	0.09	135	376410
LSJK-3R-200	162.0	23.2	-	0.09	200	376420
LSJK-31-7.5	6.1[1]	0.5	80	1.6	8	376430
LSJK-3I-15	12.2[1]	0.5	80	1.6	15	376440
LSJK-3I-18	14.7	0.5	80	1.6	18	376450
LSJK-3I-30	24.2	0.5	80	1.6	30	376460
LSJK-3I-36	29.0	0.5	80	1.6	36	376470
LSJK-3I-60	48.6	0.5	80	1.6	60	376480

MODEL NUMBER	$\mathrm{V}_{\text {wkg }}$ at $5 \mu \mathrm{~A}$ (V)	SERIES R_{i} (Ω)	```IMPEDANCE [2] Li (\muh)```	$I_{\text {max }}$ (A)	$\begin{gathered} \mathrm{V}_{\mathrm{c}(\max)}^{\text {for }} \\ 8 / 20 \mu \mathrm{~s} \\ {\left[\begin{array}{c} 4 \\ \text { (v) } \end{array}\right.} \\ \hline \end{gathered}$	CATALOGUE NUMBER
LSJK-4F50-7.5	6.1[1]	10	750	0.15	8	376490
LSJK-4F50-15	12.2[1]	10	750	0.15	15	376500
LSJK-4F50-18	14.7	10	750	0.15	18	376510
LSJK-4F50-30	24.2	10	750	0.15	30	376520
LSJK-4F50-36	29.0	10	750	0.15	36	376530
LSJK-4F50-60	48.6	10	750	0.15	60	376540
LSJK-4F50-135	110.0	15	750	0.09	135	376550
LSJK-4F50-200	162.0	15	750	0.09	200	376560

General Specifications

Transient performance:
exceeds ANSI/IEEE C62.41 category B. [4]
Rated surge current ($8 / 20 \mu \mathrm{~s}$):
10KA (3 element gas arrester)

Response time:

<1 ns (levels 2-4 and S)
Frequency response:
to 1 MHz except LSJK-4F

Overcurrent protection:

standard on all LSJK models. [3]
Operating temperature range:
$-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.

Weight:

100 g (base and cap)

Case material:

ABS plastic
Cable terminations:
max. $2.5 \mathrm{~mm}^{2}$
Mechanical details:

Notes:
[1] $\mathrm{V}_{\text {wkg }}$ is the maximum voltage that should be applied to the barrier in normal use. For 7.5 V and 15 V barriers, $\mathrm{V}_{\mathrm{wkg}}$ is specified for $500 \mu \mathrm{~A}$ leakage current. LSJK-S is rated for standard telephone line voltages.
[2] The series impedance is the impedance of each leg of the barrier. Loop impedance is 2 x series impedance.
[3] Overcurrent limit is provided by a self resetting solid state thermal switch.
[4] $V_{c(\max)}$ is the maximum voltage measured at the equipment terminals of the barrier when a 6 KV $1 / 50$ us voltage pulse plus 3 KA $8 / 20$ us current pulse is applied to the line terminals. Protection is provided for both common and transverse modes.

Installation Guide

LSJK is designed for individual mounting or on its own mounting rail. The LSJK rail may be mounted on a 35 mm DIN rail by the use of adaptor clips. Where unused pairs in a cable are not connected, LSJK base modules alone should be installed and appropriately earthed. Caps may be added as cable pairs become allocated.

To provide effective protection LSJKs must be earthed. Two basic methods of earthing individual units are available. The first is via a screw connector located between the line side terminals. This method is recommended when LSJKs are individually mounted. When a mounting rail is used the rail mounting screw connects the LSJK earth to the mounting rail. A single earth can then be connected to one end of the rail which then forms an earth bus.

It is recommended that earth leads lay alongside incoming cable pairs and are kept remote from the equipment side cables. This technique will minimise magnetic induction between the protected and unprotected sides.

The prime requirement with earthing is to minimise lead inductance. Earth leads should therefore be as short and direct as possible.

CATALOGUE NUMBER	MODEL NUMBER	DESCRIPTION
373100	LSJK-MR5	5 way mounting rail
373110	LSJK-MR10	10 way mounting rail
373120	LSJK-MR20	20 way mounting rail
373130	LSJK-DIN	35mm DIN rail adaptor clip

All Critec electronic products are guaranteed to perform the function as specified in our product bulletins for a period of one year from the date of shipment, provided they are installed in accordance with the manufacturer's recommendations. Units suspected of being defective should be returned prepaid to the factory. The manufacturer's liability is limited to the repair or replacement of the product (at the manufacturer's option) which in its judgement has not been abused, misued, or operated under conditions exceeding the manufacturer's specifications. Warranty is void if units are overhauled or repaired by other than Critec factory personnel. Critec is not responsible for consequential or implied damages. This warranty is in addition to any rights accruing under the Australian Trade Practices Act.

EXPORT BULLETIN

This document is (c) Copyright 1991 Critec Pty Ltd Australia.
Due to a policy of continuing product improvement, specifications are subject to change without notice.

CRITEC

For additional information, please contact:

Applications

Lightning impulses can have currents exceeding 150,000 Amperes. It is this energy, together with the sharp voltage wavefront of the impulse, which gives rise to equipment damage and possible injury or loss of life.

The typical waveshape is characterised by a very sharp rise in voltage levels and a long tail current of excess energy content. These impulses can be coupled into a reticulation system in a number of ways. Most obvious is the direct strike however, more subtle mechanisms such as inductive and capacitive coupling can allow the destructive influences of strikes many kilometres away to be felt on incoming power and data lines or local earthing systems.

The SafeLine range of panel mount Surge Reduction Filters from Critec incorporates high energy clamping with efficient low pass filtering. SafeLine SRFs are installed in series with the circuit, usually at the local switch board.

Careful attention to electronic and mechanical design has resulted in a range of filter inductors which neither saturate under pulse nor steady state conditions. This makes them ideal for supplying non-linear loads. All models can conduct crest factor currents of at least $3: 1$, a requirement of most modern computer or electronic installations incorporating switched mode power supplies.

SafeLine SRFs are available in single or three phase configurations for load currents of 10A and 16A per phase.

For larger installations, Critec's Proline range from 32A to 1600A is available in single or three phase - ask for Critec brochure SRF03.
\triangle High performance low pass filter
\triangle Protection to AS1768-91 Cat. C
\triangle Very low let through voltages
\triangle Cost effective protection
\triangle Multipulse ${ }^{T M}$ surge capability
\triangle Panel or switchboard mounting
\triangle Electricity Authority certification
Critec, a wholly Australian owned company, designs and manufactures over 150 protection products. With in-house expertise and combined with our world wide engineering network, Critec has the people and experience to solve almost any power or signal line transient problem.

Maintaining a high voltage research facility housing some of Australia's most sophisticated surge and transient test equipment enables Critec to prove the performance of products and offer its customers the latest in technology at the most cost effective price.

It is this experience which gives Critec the leading edge in the field of transient protection.
Model
8/20 $/$ S MOV rating
Protection modes
Energy diversion
Total absorption
Line voltage
Number of phases
Frequency
Line current rating
Current crest factor
Frequency response
Display status
Size (W x H x D mm)
Packaging
Weight

Let through (typ.)**
Multipulse capability ${ }^{* * *}$

SRF110C-SF	SRF116C-SF	SRF316C-SF
40kA/mode	$40 \mathrm{kA} /$ mode	$40 \mathrm{kA} /$ mode
A-N, A-E, N-E	transverse \& common	(all models)
$>1360 \mathrm{~J}$	$>1360 \mathrm{~J}$	$>1360 \mathrm{~J}$
$>12 \mathrm{~kJ}$	$>12 \mathrm{~kJ}$	$>12 \mathrm{~kJ}$
$220-254 \mathrm{~V}$	$220-254 \mathrm{~V}$	$380-440 \mathrm{VAC}$
1	1	3
$50-60 \mathrm{~Hz}$	$50-60 \mathrm{~Hz}$	$50-60 \mathrm{~Hz}$
10 A	16 A	16 A
$3: 1$	$3: 1$	$3: 1$
$<1 \mathrm{kHz}$	$<2 \mathrm{kHz}$	$<2 \mathrm{kHz}$
Surge diversion failure indicator		
$180 \times 190 \times 64$	$180 \times 190 \times 64$	$300 \times 300 \times 120$
Footprint	Footprint	Rittal
1 kg	1 kg	5 kg
$<500 \mathrm{~V}$	$<600 \mathrm{~V}$	$<600 \mathrm{~V}$
Yes	Yes	Yes

* Freq response is based on a voltage fed from a 50 ohm source impedance to the filter input. Attenuation is based on $\mathrm{dB}=20 \log \mathrm{~V} 1 / \mathrm{V} 2$ where V 2 is the open circuit output voltage.
* $6 \mathrm{kV} / 3 \mathrm{kA} 8 / 20 \mathrm{Sec}$ surge superimposed on a 240 VAC mains waveform.
** Critec devices rated for multipulse have been designed to absorb repetitive energy impulses consistent with multiple stroke lightning which occurs in 75% of events.

Installation

SRFs must be well earthed in accordance with the relevant National Electricity Standards. They should be installed physically close to the incoming power lines and earthed to the nearby main switchboard earth system. Alternatively, if the SRF is to be installed on a subcircuit it should be earthed in common with the earth of the equipment it is protecting, subject to Standards requirements. It is important to create an equipotential earth plane, so that earth loops are avoided. SafeLine SRFs are designed for installation in both Multiple Earthed Neutral (MEN) and non MEM systems.

Catalogue No.	Order Code	Detail
120100	SRF110C-SF	$10 \mathrm{~A}, 1 \emptyset, 40 \mathrm{kA}$, small footprint
120110	SRF116C-SF	$16 \mathrm{~A}, 1 \emptyset, 40 \mathrm{kA}$, small footprint
120120	SRF316C-SF	$16 \mathrm{~A}, 3 \emptyset, 40 \mathrm{kA}$, Rittal enclosure

EXPORT BULLETIN SF02

This document is © Copyright 1992, 1993 Critec Pty Ltd.
Due to a policy of continued product improvement, specifications are subject to change without notice.
Multipulse and Surge Reduction Filter are the ${ }^{\text {TM TMademarks of Critec Pty. Ltd. }}$

Fuse Terminals Type ASK 1 SAKS 1 KSK

In accordance with the appropriate regulations, all electrical equipment needs to be protected against overload and short circuits. In general, fuses are placed at the input of a circuit, at each point where current ratings are reduced, or where short circuit capability is reduced in order to protect against short-circuit or overload. The fuse terminal range has been designed to accommodate highrupturing capacity fuses in the G-type, Diazed and Neozed ranges, as follows:-

ASK 1, SAKS 1, KSK

G-type fuses with or without indicator to DIN $41660(5 \times 20 \mathrm{~mm})$. Fuse range 0.08 Amps to 6.3 Amps (250V).

SAKS 2

D-fuse inserts E16 to DIN 49360 Diazed System fuse range 2 Amps to 25 Amps (500V).

KSK 2, KSK 3

Fuses to BS1362 ($\left.1^{n} \times{ }^{1 / 4^{\prime \prime}}\right)$ range from 1 Amp to 13 Amps (250V) Fuses to DEF 5996 Size $O\left(11 / 4^{n} \times 1 / 4^{\prime \prime}\right)$ range from 0.25 Amps to 10 Amps (440 V). Bussman ($11 / 4^{\prime \prime} x$ $1 / 4^{\prime \prime}$) type ABC range from 0.25 Amps to 15 Amps (250V).

SAKS 4

D-fuse inserts D01 to DIN 49522, Neozed System, range from 6 Amps to 16 Amps (380/415V).

SAKS 5

D-fuse inserts D02 to DIN 49522, Neozed System, range from 20 Amps to 63 Amps (440V).

Cross Connection Links QL provide the facility to build fuse distribution assemblies. Ideally, input supply should be at the centre of the assembly with the highest fuse load adjacent to the input terminal.

Guage rings are available as an option for the SAKS 2, SAKS 4 and SAKS 5. When fitted into the fuse terminal these prevent a higher rated fuse being inserted than that originally selected for that circuit.

Characteristic curves for fuses are available on request.

NOTE: The removal or insertion of fuses should not be undertaken without the mains supply being isolated beforehand.

Suitability of fuses for the envisaged application must be checked with the fuse manufacturer.

Screw Clamp Connections

Technical Data

Conductor size	Solid (mm^{2})
	Stranded (mm^{2})
Insulation stripping length	(mm)
Fuse size	
Ordering Data	
Moulding material	
When ordering EEx'e' and Ex'N' terminals, add suffix ' e ' or ' N ' to the catalogue number	Polyamide
Approvals	
All Approvals are listed	
in Approvals Guide	
Terminal Rail (2m)	
C	Steel Steel (M6 Slots)
Locking pin (1m) - optional	Steel
End Bracket (thickness mm)	
[80	

End Plate (thickness mm)

Solid Brass Lnk

Fuse

A list of all fuses stocked is shown
at the end of this section
Hinged Fuse Holder (Spare)

Marking Tags
All marking systems are shown in Section T6

ASK 1
With hinged Cartridge Fuse Housing
250V 6.3A (max. fuse size available)

Thickness 8mm

0
0

9
$20 \times 5 \mathrm{~mm} \quad$ Cat. No.

	037676
	-
Type	Cat. No.
TS 32	012280
TS 32	067610
SST 3	015270
EWK 1 (8.5)	020616

	.
AP (1.5)	038036
TW (0.5)	047470
SBL (25 $\times 5$)	044600
QB 2	046110
QB3	046120
QB 4	046130

TH
037706

List of Preferred Cartridge Fuses

$\begin{aligned} & \text { SAK } 2.5 \\ & 750 V 27 A \end{aligned}$	SAK 4 750V 36A	SAK 6N 750V 47A
Thickness 6mm		Thickness 8mm
		T,
0.5-4	0.5-6	0.5-10
0.5-4	0.5-4	0.5-6
9	12	12
CFINO Cat. No.		
027966	012836	019326
027968	012838	019328
027962	012832	019322
027967	012837	019327
	$\because \cdots$	
BASEEFA-Ex CEGB (10) व1 (1) (D) (5) 9	BASEEFA-Ex CEGB (1) D (1) (D) (5) 4	BASEEFA-Ex CEGB (6) \% (A) (D) (5) 亚
lype \quad Cat. No.	Type tiat	Type $\because \cdots$ Cat. No.
TS32 012280	TS32 012280	TS32 012280
TS32 067610	TS32 067610	TS32 067610
SST 3 015270	SST 3 015270	SST 3 015270
	$\cdots \%$	$\because \quad \therefore \quad \because \quad 4$
EWK1 (8.5) 020616	EWK1 (8.5) 020616	EWK1 (8.5) 020616
\cdots	\cdots	
AP (1.5) 027956	AP (1.5) 011796	AP (1.5) 011796
AP (1.5) 027958	AP (1.5) 011798	AP (1.5) . 011798
$\overline{\text { AP (1.5) }} 027952$	AP (1.5) 011792	AP (1.5) 011792
AP (1.5) 027957	AP (1.5) 011797	AP (1.5) 011797
	$\because \therefore \therefore \quad \therefore$	$\cdots \cdots \cdots$
TW (1.5) 030286	TW (1.5) 013016	TW (1.5) 013016
TW (1.5) 030288	TW (1.5) 013018	TW (1.5) 013018
TW (2.5) 030282	TW (2.5) 013012	TW (2.5) 013012
	TW (2.5) 013017	TW (2.5) 013017
TW (1.0) 029710	TW (0.5) 019710	TW (0.5) _ 019710
	-	$\cdots \cdots$
$\underline{L 2} 015590$	QL2 013060	QL2 019430
QL3 015600	QL3 013070	QL3 019440
QL4 015610	QL 4 O13080	QL4 019450
QL 10 033810	QL 10 033820	QL 10×033830
$\mathrm{VH} 8 \longrightarrow 026670$	VH 13.50024850	VH 12 024900
BS (M3 $\times 15$ - 035900	BS (M3 $\times 20$) 030300	BS (M3 $\times 20$) 030300
Captive on screw	Captive on screw	Captive on screw
DOS2 (See Section T6)	QS2 021270	QS2 027096
	$\cdots \ldots \ldots$	\% $\quad \cdots$
	VL2 019700	VL2 019700
	VH 19 028510	VH $19 \longrightarrow 028510$
	BS (M3 $\times 25$ - 029250	BS(M3 $\times 25$ - 029250
	SS 016440	SS 016440
		4
PS (2.3ø) 018040	PS (2.30) 018040	PS (4Ø)
StB 8.5 O21570	StB 8.5 021570	StB $14 \ldots 016990$
$\therefore . \quad$.		4 4
AD 4 037560	AD 4 037610	AD 4 037600
BSK (M3 + 22) 012890	BSK (M3 $\times 22$) 012890	BSK (M3 $\times 22$ 2 _ 012890
		$\therefore \because \therefore$ aratag
ADP 1 048520	ADP 2 048530	ADP 2 048530
$\xrightarrow{1 \mathrm{P}_{1}} 048556$	HP2 . 048566	HP2 048566
\because	maxperse -1	$\cdots \mathrm{O}$
DEKAFIX - Section T6	DEKAFIX - Section T6	DEKAFIX - Section T6

30 Series Reed Relays

Small multi-contact relay modules

Specifications

Input:	Voltage	$24 \mathrm{Vdc} \quad$ (other voltages also available)
	Current	see ordering data
Output:	Max. voltage	200 Vdc
	Max. current	750 mA
	Max. power	10 W
	Initial contact resistance	100 mohms
	Operate time	1.5 ms
	Release time	1.5 ms
Terminals:		
	Type	GSE5
	Conductor size; solid	$0.5-4.0 \mathrm{~mm}^{2}$
	flexible	$0.5-2.5 \mathrm{~mm}^{2}$
	Insulation stripping length	7 mm

Ordering Data

Contacts	Operating Current (typ.)	Module Width	Type	Cat. No.
1 A	7.3 mA	11.2 mm	$30100-024 \mathrm{D}$	38403.6
2 A	14 mA	16.2 mm	$30200-024 \mathrm{D}$	38413.6
3 A	18 mA	21.2 mm	$30300-024 \mathrm{D}$	38423.6
4 A	24 mA	26.2 mm	$30400-024 \mathrm{D}$	38433.6
5 A	32 mA	31.2 mm	$30500-024 \mathrm{D}$	38443.6
1 B	8.7 mA	16.2 mm	$30010-024 \mathrm{D}$	38453.6
2 B	12 mA	21.2 mm	$30020-024 \mathrm{D}$	38463.6
$1 \mathrm{~A} \mathrm{1B}$	18 mA	21.2 mm	$30110-024 \mathrm{D}$	38473.6
$2 \mathrm{~A} \mathrm{2B}$	21 mA	26.2 mm	$30220-024 \mathrm{D}$	38483.6

[^4]RS 30
Slim single relay modules, 1 NO or 1 N/C contact

Ordering Data

	Input
	Switching Cat. No.
	Voltage
	Current

(max)
30.5 mm OiltightRange

800T

PILOT LIGHTS
 STANDARD UNHS

		DESCRIPTION		

Accuracies comply with BS3938: and IEC 185:

All measurements in millimetres
Type 780-943

Supplied with 2 fixing feet
Max cable $\varnothing=15 \mathrm{~mm}$.
$1 A$ secondaries are avalable for all ratings.
Type 781-943

Supplied with 4 fixing feet
Max cable $\varnothing=23 \mathrm{~mm}$
1A secondaries are available for all ratings
Type 782-943

Supplied with 4 fixing feet
Max cable $\varnothing=43 \mathrm{~mm}$
1A secondaries are available for all ratings except 1200A

CT	VA at Class		
Ratio	5	3	1
$30 / 5$	1.5	-	-
$40 / 5$	2	1.5	-
$50 / 5$	2.8	2.5	-
$60 / 5$	3.5	3	-
$75 / 5$	5	4	-
$80 / 5$	5	4	-
$100 / 5$	-	5	2.5
$120 / 5$	-	5	2.5
$125 / 5$	-	5	2.5
$150 / 5$	-	5	2.5
$200 / 5$	-	6	3
25015	-	7.5	4

CT	VA at Class		VA at Class			VA at Class		
Ratio	3	1	3	1	3	1	0.5	
$40 / 5$	2.5	-	-	-	-	-	-	
$50 / 5$	2.5	-	-	-	-	-	-	
$60 / 5$	2.5	-	-	-	-	-	-	
$75 / 5$	2.5	-	5	2.5	-	-	-	
$80 / 5$	2.5	-	5	2.5	-	-	-	
$100 / 5$	5	-	7.5	5	-	-	-	
$120 / 5$	5	-	7.5	5	-	-	-	
$125 / 5$	5	-	7.5	5	-	-	-	
$150 / 5$	5	-	7.5	5	15	10	5	
$200 / 5$	5	-	7.5	5	15	10	7.5	
$250 / 5$	5	2.5	7.5	5	20	15	10	
$300 / 5$	5	2.5	7.5	5	20	15	10	
$400 / 5$	5	2.5	10	5	30	15	15	
$500 / 5$	5	2.5	10	5	30	15	15	

Type 783-944

Supplied with busbar clamp
For busbar $30 \times 10,20 \times 20 \mathrm{~mm}$ ard cable \varnothing
25 mm
1 s secondaries are available for all ratings

CT	VA at Class 3	VA at Class		VA at Class		
Ratio		3	1	3	1	0.5
$100 / 5$	2.5	-	-	-	-	-
$1201 / 5$	2.5	5	2.5	-	-	-
$125 / 5$	2.5	5	2.5	-	-	-
$150 / 5$	2.5	7.5	4.5	-	5	or
$200 / 5$	2.5	7.5	5	10	6	2.5
25055	5	7.5	5	10	7.5	5
$300 / 5$	5	7.5	5	10	7.5	5
$400 / 5$	5	-	5	15	7.5	5
$500 / 5$	-	-	10	7.5	5	
$600 / 5$	-	-	12	10	7.5	
$750 / 5$	-	-	-	15	10	10
$800 / 5$	-	-	-	15	10	10
10005	-	-	-	20	15	15
$1200 / 5$	-			15	15	

CT	VA at Class		VA at Class			VA at Class		
Ratio	3	1	3	1	3	1.	0.5	
$75 / 5$	2.5	-	-	-	-	-	-	
$80 / 5$	2.5	-	-	-	-	-	-	
$100 / 5$	2.5	-	5	2.5	-	-	-	
$120 / 5$	2.5	-	5	5	-	-	-	
$125 / 5$	2.5	-	5	5	-	-	-	
$150 / 5$	2.5	-	5	5	10	7.5	2.5	
$200 / 5$	5	-	7.5	5	15	10	5	
$250 / 5$	5	2.5	10	7.5	20	15	10	
$300 / 5$	5	2.5	15	10	20	15	10	
$400 / 5$	5	2.5	15	10	20	15	10	
$500 / 5$	-	-	-	-	30	15	10	
$600 / 5$	-	-	-	-	30	15	15	
$750 / 5$	-	-	-	-	30	15	15	
$800 / 5$	-	-	-	-	30	15	15	

INSTALLATION SHEET

Products Covered

Waveform	Current	Voltage	Aux Supply	Output
Sinusoidal		$253-T V Z$	No	All listed
Sinusoidal	253-TAA	$253-T V A$	No	Other than 4-20mA
Sinusoidal	253-TAL	$253-T V L$	Yes	4-20mA only
Non-sinus.	253-TAR	$253-T V R$	Yes	All listed

Introduction

A range of current \& voltage transducers capable of accepting a vanety of ac voltage or current inputs and producing a dc current output directly proportional to the input.

Installation

Units should be installed in a dry position, not in direct sunlight and where the ambient temperature is reasonably stable and will not be outside the range 0 to 60 degrees celsius during operation. Mounting will normally be on a vertical surface but other positions will not affect operation. Vibration should be kept to a minimum. 253 case types are designed for mounting on a DIN rail to DIN 46277. Units may also be screw fixed. To mount a unit on a DIN rail, the top edge of the cutout on the back is hooked over one edge of the rail and the bottom edge carrying the release clip clicked into place. Check that the unit is firmly fixed. Removal or repositioning may be achieved by levering down the release clip and lifting the unit up and off the rail.

Connection wires should be sized to comply with applicable regulations or code of practice. Input cables must be routed away from high voltages \& heavy current carrying cables. Note that dc auxiliary versions contain a square wave inverter \& should not be located near any radio receiving equipment that may be susceptible to RFI.

Labels affixed to the unit show full connection information and data including, auxiliary supply, input, class index and output as applicable.

Setting Up

Units are adjusted before despatch and therefore no adjustments are normally required. However, a zero adjuster and span adjuster are located under cover bungs on the front panel, should trimming to local conditions be found necessary. (Not applicable to 253-TAA \& TVA)

Dimensions

Connection Instructions

Types

 253-TVL line zero voltage 253-TVR RMS voltage
CURRENT TRANSDUCERS

Types auxiliary power 253-TAL current 253-TAR RMS current

SPECIFICATION See sales brochure SW250T tor complete details.
INPUT
Voltage
Current
63.5-480V Standard ranges $63.5,110,120,220,240,380 \& 415 \mathrm{~V}$
0.2-10A direct or via CT secondary. Standard ranges 1A \& 5A

AUXILLIARY SUPPLY

Voltage ac
$63.5 \mathrm{~V}, 110 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}, 380 \mathrm{~V}, 415 \mathrm{~V} \pm 20 \% 50 / 60 \mathrm{~Hz}$
Voltage dc
$12 \mathrm{~V}, 24 \mathrm{~V} \pm 15 \%$ (other dc auxiliaries are available)
Burden
3VA, 3Wdc
QUTPUT

Span	0 to 1 mA into 0 to $10 \mathrm{k} \Omega$ 0 to 20 mA into 0 to 500Ω	0 to 5 mA into 0 to $20 \mathrm{k} \Omega$
4 to 20 mA into 0 to 500Ω		

Ripple $<0.5 \%$ of rated output
Zero adjustment
Span adjustment
$\pm 2 \%$ minimum not applicable to 253 TAA \& TVA
$\pm 10 \%$ minimum
Accuracy class
Accuracy range
0.5%
0 to 125% of span, except TVA \& TAA

GENERAL

Safety requirements
BS5458, IEC 414
Temperature range
Humidity
Enclosure Flame retardant plastic case. Code IP50 to BS5490, IEC529.

Performance
Designed to comply with BS 6253 \& IEC688
Response Time
$<400 \mathrm{~ms}$ to 99% of rated output
Electrical
Electrical stress surge withstand \& non maloperation to IEEE std 472, ANSI C37 90a, SEN 361503 isolation. Input/output. Dielectric test voltage 2kV rms to ANSI C37

WARNING

Voltages dangerous to human life may be present at some of the terminal connections of this unit.
Ensure all supplies are de-energised before attempting any connection/disconnection. It is necessary to make adjustments with the power connected then exercise extreme caution.
Ensure that any protective cover provided is properly fitted after installation or adjustment of this unit.
Our policy is one of continuous developement and although the information is correct at the time of publication, we reserve the right to supply products differing in construction, dimensions or specification from those illustrated and described.

WATT \& VAR TRANSDUCERS

INTRODUCTION

Watt and Var Transducers give an output proportional to the input WATTS or VARS. Zero and span adjustments are accessible without opening the unit. Cases are moulded in a tough flame retardant thermoplastic material and may be DIN rail mounted or screw fixed.

PRODUCTS COVERED

WATTS	
256-TWG	3 Phase 3 Wire Balanced
256-TWH	3 Phase 4 Wire Balanced
256-TWJ	3Phase 4 Wire Unbalanced
256-TWK	Single Phase
256-TWL	3 Phase 3 Wire Balanced
256-TWM	3 Phase 3 Wire Unbalanced
256-TWN	3 Phase 4 Wire Unbalanced Star
256-TWR	3 Phase 3 Wire Balanced (11/2 element)

YARS

256-TXG 3 Phase 3 Wire Balanced 256-TXH 3 Phase 4 Wire Balanced 256-TXJ 3 Phase 4 Wire Unblanced 256-TXK Single Phase
256-TXM 3 Phase 3 Wire Unblanced
256-TXN $\quad 3$ Phase 4 Wire Unblanced 256-TXP 3 Phase 4 Wire Unblanced

Star

Reverse connected CTs

Type
256-TXM
3 phase
3 wire load

Type 256-TXN 3 phase

Star connected CTs

Type
256-TXK
Single phase $[9009090$

INSTALLATION

Units should be installed in a dry position, not indirect sunlight and where the ambient temperature is reasonably stable and not be outside the range 0 to 60 degress celsius. Mounting will normally be on a vertical surface but other positions will not affect operation. Vibration should be kept to a minimum. 256 units are designed for mounting on a 35 mm rail to DIN 4627 . Altematively they may be screw fixed.

To mount on a DIN rail, the top edge" of the cutout on the back is hooked over one edge of the rail and the bottom edge carrying the release dips clicked into place. Check that the unit is firmly fixed. Removal or repositioning may be achieved by levering down the release clips and lifting the unit up and off the rail.
Connection diagrams should be carefully followed to ensure correct polarity and phase rotation. External current and voltage transformers may be used to extend the range.
Current transformers must be used with models 256-TWG, 256-TWH and 256-TWN. Connection wires should be sized to comply to applicable regulations and codes of practice.

Side labels show full connection information and data including type No° : input in WATTS or VARS, maximum voltage, frequency, auxilliary supply when required, class index and output.

sEtTING UP

Units are adjusted before despatch but should it be necessary to trim the transducer output this may be carried out by adjusting the potentiometers located inder the bungs on the front panel. To trim the output it will be necessary to connect a 0.1% watt standard into the input and inject the full secondary current and voltage into the transducer. With all connections made, apply voltage and auxiliary supply if applicable and adjust the zero control to give the desired output. Apply current to bring WATT input up to the value to give the desired output. Adjust span control to give the desired output.

TYPICAL APPUCATIONS

To match input signals for monitoring or recording power in a.c. circuits and transmitting a signal over fong distances.

OPERATION

The voltage and current are fed into a square wave oscillator and chopper circuit. The output from this consists of a pulse train, each pulse has a height proportional to the amplitude of the input current and a width proportional to the input voltage, representing instantaneous power. Integration of the pulses and filtering, produces a signal proportional to RMS power. This is further amplified to give a current output VAR measurement is actieved by shiting either current or voltage input through 90 degrees. This is achieved either by an intemal network or by extemal connections. A seperate auxiliary is required when the transducer is to be operated at voltages below 80% of its rating.

SPECIFICATION

general

Accuracy Class Temp.coeff Frequency Coeff	0.5\%
	0.03\%/1 Degree Celsius Change
	0.05\%/1hz except Single Phase
	Var \& 256-TWE which have a frequency range of $+1-1 \%$ of nominal input
P.F. Range	WATT $\operatorname{Cos} D 0.1$ lead to 0.1 lag
	$V A R S i n \varnothing 0.1$ lead to 0.1 lag
Stability	+/-0.25\% per annum non cumulative
Periormance	Designed to comply with B.S. 6253
Housing	Flame retardant plastic case.
Weight	2.4 kg approximately.
Climate	
Temperature Range	-20 to +70 degrees celsius storage.
	0-60 degrees celsius operational.
	23 degrees celsius calibrated.
Humidity	Upto 95\% RH. Non-condensing
INPUT	
Frequency	$50 / 60 \mathrm{~Hz}$
Current	Between 0/0.2A \& 0/10A
Range	0/125\%
Burden	IVA Maximum
Voltage	Between 50V \& 480V
Range	+/-20\% (0/120\% with seperate aux.)
	Burden 2VA max.

OUTPUT D.C.
0/1mA into 0/10k ohms
$0 / 5 \mathrm{~mA}$ into $0 / 2 \mathrm{k}$ ohms
$0 / 10 \mathrm{~mA}$ into 01 k ohms
0/20 mA into $0 / 500$ ohms
$4 / 20 \mathrm{~mA}$ into $0 / 500$ ohms

RESPONSE TIME

Ripple
Span Adjustment
Zero Adjustment
AUXILIARY SUPPLY
(When required)
400 mS for 1% to 99% of span.
0.5% Max span
H-10\% Min

+ - 2% Min

Nominal 115V, 230V, 415V, $50 / 60 \mathrm{~Hz}$
Range $+1-20 \%$. Burden 2VA. Max
ELECTRICAL TESTS
Dielectric Test
2kV RMS to B.S. 5458
5 kV transient as BEAMA 219 \& B.S. 923
ANSI C37-90A
Surge Withstand

maintenance

No routine maintenance is required. Should repair be necessary it is recommended that the transducer be retumed to the factory or to the nearest CROMPTON INSTRUMENTS SERVICE CENTRE.

Model 256 Measurements in mm

WARNING
Voltages dangerous to human life may be present at some of the terminal connections of this unit. Ensure all supplies are de-energised before attempting any connection/disconnection.
If it is necessary to make adjustments with the power connected then exercise extreme caution.
Ensure that any protective cover provided is properly fited after installation or adjustment of this unit Our policy is one of continuous development and although the information is correct at the time of publication, we reserve the right to supply products differing in construction, dimensions or specification from those illustrated and described.

INTRODUCTION

The phase balance relay module provides coontinuous surveillance of a 3 -phase, 3 or 4 wire system and protects against:

1. Phase loss.
2. Phase reversal
3. Phase unbalance
4. System under voltage

The module de-energises a relay should any of the above faults occur.
An adjustable time delay is fitted to eliminate spurious operation on short term supply fluctuations.
A red LED indicates that the supply is within limits.

Connection Diagram

Note: Neutral connection not required

PRODUCTS COVERED

252-PSFW. Phase loss and unbalance only.
252-PSGW. Phase loss, unbalance and undervoltage.

TYPICAL APPLICATIONS

To provide continuous surveillance of a 3 phase system against, phase loss, phase reversal, unbalance and undervoltage.

The phase unbalance feature protects motors of any size, from full-load to no load, against excessive temperature rise due to unbalanced supplies e.g. a 10\% unbalanced supply can increase the temperature rise by 150%.
In addition, this also protects against the phantom voltage generated during a single phase failure when running at low load.

Dimensions

measurements in mm MODEL 252

The module comprises monitoring circuits for voltage, phase reversal and phase unbalance. Outputs from these circuits are fed to a comparator which changes state under fault conditions.

When the comparator switches, the output relay will de-energise after a pre-set time delay and the red LED will also extinguish.

The relay will automatically energise again and the LED light when all the supply parameters have returned to safe and acceptable limits.

IRSTALLATION

Units should be installed in a dry position, not in direct sunlight and where the ambient temperature is reasonably stable and will not be outside the range 0 to 60 degrees celsius during operation. Mounting will normally be on a vertical surface but other positions will not affect operation. Vibration should be kept to a minimum. 252 units are also designed for mounting on a 35 mm rail to DIN 46277. Alternatively they may be screw fixed using an adaptor.

To mount a unit on a DIN rail, the top edge of the cutout on the back is hooked over one edge of the rail and the bottom edge carrying the release clip clicked into place. Check that the unit is firmly fixed. Removal or repositioning may be achieved by levering down the release clip and lifting the unit up and off the rail.

Connection wires should be sized to comply with applicable regulations or code oi practice.

Ensure that phase sequence is connected correctly. Devices are for single frequency use only.

Side labels carry data including type no, serial no, input voltage and state of relay at trip.

SEITING DP

Two front panel adjustments are provided.
SET adjusts the percentage unbalance to activate the trip, whilst DELAY sets the time delay period before trip occurs. The SET and DELAY controls are adjustable with a screwdriver.
The SET control is continuously variable between 56158 unbalance and the DELAY control between $0 \& 10$ seconds.

GARNING

Should the power supply fail or go to a very low level then there will be negligible time delay on undervoltage units.

Voltages dangerous to human Iffe may be present at some of the terminal connections of this unit.
Ensure all supplies are de-energised before attempting any connection/ disconnection. If it is necessary to make adjustments with the power connected then excercise extreme caution.

Ensure that any protective cover provided is properly fitted after installation or adjustment of this unit.

MAINTENANCE

No routine maintenance is required. Should repair be necessary, it is recommended that the transducer be returned to the factory or the nearest Crompton Instrument Service Centre:

SPECIFICATION

Type No:

Input:
System:
Voltage Ratings:
Burden:
Voltage withstand:

SET POINTS
Unbalance:
Time delay:

Under voltage:
(Type 252-PSGW only)

OUTPUT RELAY

Type:

Rating ac:
Operations:
Reset:

GERERAI
Dielectric test:
Temperature range:
Storage temperature:
Temp. co-efficient:
Interference immunity:

Enclosure code:
Bousing:
Weight:

252-PSFW. Phase loss and unbalance only.
252-PSGW. Phase loss, unbalance and undervoltage.

3 phase, 3 or 4 wire, 50 or 60日z。
$100-125 \mathrm{~V}, 200-250 \mathrm{~V}$ or 380-450v.
3VA
1.2 times continuous. 1.5 times for 10×10 seconds.

Adjustable 5\% to 158.
Typical. Adjustable to 10 sec . maximum.
(not operative if voltage
falls below 70 of nominal or set point on type 252-PSGW) Internally preset at -158 nominal voltage (other values
between -108 and -308
available on request)

DP changeover.
$240 \mathrm{~V}, 5 \mathrm{~A}$ non-inductive.
24V, 2.5A resistive.
2×10 at above loads.
Automatic.
$2 k V$ r.m.s for 1 min.to BS5458/ IEC414.
0 to 60 degrees celcius.
-20 to 60 degrees celsius.
$0.058 /$ degree celcius.
Electrical stress surge withstand and non-maloperation to IEEE Std 472. ANSI C37 90a, SEN 361503. IP50 to BS5490, IEC529.
Plame retardant plastic
Approx. 0.3 kg .

CALIBRATION

The calibrating controls are only good for 10\% setting accuracy if using the scales.
If more accurate settings are
required then an accurate voltmeter
should be used.

Our policy is one of continuous development and although the information is correct at the time of publication, we reserve the right to supply products differing in construction, dimensions or specification from those illustrated and described.

'RED SPOT' HRC FUSE HOLDERS

Dimensions

Type	Rating Amp	A	B	C	D P.PH ONL	E	F P.PH ONLY	GiA P.PH ONLY	H	K	Max Cable Size
RS20	20	27	80	54	63	35	M6	13,5	15	22,2	$10 \mathrm{~mm}^{2}$
RS32	32	32	103	70	81	73	M6	17,5	15	15,1	$16 \mathrm{~mm}^{2}$
RS63	63	35	110	75	84	78	M8	17,5	15	15,9	$50 \mathrm{~mm}^{2}$
RS100	100	51	140	100	87	94	M10	22,2	15	23	$70 \mathrm{~mm}^{2}$
RS200	200	70	216	136,5	95	171,5	M12	25,4	22	22,2	$120 \mathrm{~mm}^{2}$
RS400	400	98,5	254	192	114	140	$M 16$	31,8	32	57,2	$240 \mathrm{~mm}^{2}$

PANEL DRILLING DIMENSIONS

RS 32,63,100\& 200

RS 400

	FUSE HOLDER TYPE																					
DIM	$\begin{gathered} 20 \\ \mathrm{H} \end{gathered}$	20	$\begin{aligned} & 20 \\ & \mathrm{PH} \end{aligned}$	$\begin{aligned} & 20 \\ & B W \end{aligned}$	$\begin{aligned} & 32 \\ & H \end{aligned}$	$\begin{gathered} \hline 32 \\ \mathrm{P} \end{gathered}$	$\begin{aligned} & \hline 32 \\ & \mathrm{PH} \end{aligned}$	$\begin{aligned} & 32 \\ & \text { BW } \end{aligned}$	$\begin{gathered} 63 \\ \mathrm{H} \end{gathered}$	$\begin{aligned} & 63 \\ & p \end{aligned}$	$\begin{aligned} & 63 \\ & \mathrm{PH} \end{aligned}$	$\begin{gathered} 63 \\ \text { BW } \end{gathered}$	$\begin{array}{\|c\|} \hline 100 \\ \mathrm{H} \\ \hline \end{array}$	$\begin{gathered} 100 \\ p \end{gathered}$	$\begin{aligned} & 100 \\ & \mathrm{PH} \end{aligned}$	$\begin{aligned} & 100 \\ & B W \end{aligned}$	$\begin{gathered} 200 \\ H \end{gathered}$	$\begin{gathered} 200 \\ P \end{gathered}$	$\begin{gathered} 200 \\ \mathrm{PH} \end{gathered}$	$\begin{gathered} 400 \\ H \end{gathered}$	$\begin{gathered} 400 \\ P \end{gathered}$	$\begin{aligned} & 400 \\ & \mathrm{PH} \end{aligned}$
A	-	17.5	17.5	17.5	-	36,5	36,5	36,5	-	36,5	36,5	36,5	-	46,8	46,8	46,8	-	85,7	85,7	-	69,9	69,9
B	-	17,5	-	17,5	-	36,5	-	36,5	-	41,3	-	41,3	-	46,8	-	46,8	-	85.7	-	-	69.9	-
C	-	-	-	-	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4	11,1	11,1	11,1	11,1	19,1	19,1	19,1	27	27	27
D	-	-	-	-	3,2	3,2	3,2	3,2	3,2	3,2	3,2	3,2	9,5	9,5	9.5	9,5	28,6	28,6	28,6	-	-	-
E	-	015	015	$\varnothing 8$	-	$\varnothing 20$	$\varnothing 20$	08	-	020	020	08	-	024	$\varnothing 24$	016	-	027	$\varnothing 27$	-	¢35	035
F	HOLES TO SUIT M5 SCREWS												HOLES TO SUIT M6 SCREWS.									

CLIP-IN HRC FUSE LINKS AND HOLDERS - 415V.A.C.

Fuse Fitting	Connections Available	Associated Fuse Link	Kw	HP	FLC	Standard Fuse
SC20	H,P,BW	NS2-20A	:37	0.5	1	NS4
			. 55	0.75	1.5	NS6
			. 75	1	1.9	NS10
			1.1	1.5	2.5	NS10
			1.5	2	3.4	NS16
			2.2	3	4.8	NS16
			3	4	. 6.4	NS20
SC32	H, P, BW	NS2-32A	4	5.5	8.1	NS25
			5.5	7.5	11.6	NS32
SC63	H,BW	$\begin{aligned} & \text { * NS2-32 } \\ & \text { ES40-63 } \end{aligned}$	7.5	10	14.4	ES40
			11	15	21.1	ES50
			15	20	28	ES63

BOLT-IN HRC FUSE LINKS AND HOLDERS - 415V.A.C.

Fuse Fitting	Connections Available	Associated Fuse Links	\dagger "DIRECT ON LINE MOTOR START RECOMMENOATIONS (415V AC)"				
			Kw	HP	FLC	Standard fuse	Motor Fuse
RS20	$H, P, P H, B W$	NIT2-20A NIT20M25 NIT20M32	$\begin{gathered} 0.37 \\ 0.55 \\ 0.75 \\ 1.1 \\ 1.5 \\ 2.2 \\ 3 \\ 4 \\ 5.5 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.75 \\ 1 \\ 1.5 \\ 2 \\ 3 \\ 4 \\ 5.5 \\ 7.5 \end{gathered}$	$\begin{gathered} 1 \\ 1.5 \\ 1.9 \\ 2.5 \\ 3.4 \\ 4.8 \\ 6.4 \\ 8.1 \\ 11.6 \end{gathered}$	NIT4 NIT6 NIT10 NIT10 NIT16 NIT 16 NIT20 -	- - - - - - NIT20M25 NIT20M32
RS32	$\because \mathrm{H}, \mathrm{P}, \mathrm{PH}, \mathrm{BW}$	TIA2-32A TIA32M35 TIA32M50 TIA32M63	$\begin{gathered} 0.37 \\ 0.55 \\ 0.75 \\ 1.1 \\ 1.5 \\ 2.2 \\ 3 \\ 4 \\ 5.5 \\ 7.5 \\ 11 \\ 15 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.75 \\ 1 \\ 1.5 \\ 2 \\ 3 \\ 4 \\ 5.5 \\ 7.5 \\ 10 \\ 15 \\ 20 \end{gathered}$	$\begin{gathered} 1 \\ 1.5 \\ 1.9 \\ 2.5 \\ 3.4 \\ 4.8 \\ 6.4 \\ 8.1 \\ 11.6 \\ 14.4 \\ 21.1 \\ 28 \end{gathered}$	TIAA TIA6 TIA10 TIA10 TIA16 TIA16 TIA20 TIA25 TIA32 - - -	
RS63	H,P,PH.BW	TIA2-32A TIS35-63A TIS63M80 TIS63M100	$\begin{gathered} 7.5 \\ 11 \\ 15 \\ 18.5 \\ 22 \\ 30 \end{gathered}$	$\begin{aligned} & 10 \\ & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{gathered} 14.4 \\ 21.1 \\ 28 \\ 35 \\ 41 \\ 55 \end{gathered}$	$\begin{gathered} \text { TIS35 } \\ \text { TIS50 } \\ \text { TIS63 } \\ - \\ - \\ - \end{gathered}$	$\begin{gathered} - \\ - \\ \text { TIS63M80 } \\ \text { TIS63M80 } \\ \text { TIS63M100 } \end{gathered}$
RS 100	H,P,PH,BW	$\begin{gathered} \text { TCP80 } \\ \text { TCP100 } \\ \text { TCP100M125 } \\ \text { TCP100M160 } \\ \text { TCP100M200 } \end{gathered}$	$\begin{aligned} & 22 \\ & 30 \\ & 37 \\ & 45 \\ & 55 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & 41 \\ & 55 \\ & 69 \\ & 83 \\ & 99 \end{aligned}$	$\begin{gathered} \text { TCP80 } \\ \text { TCP100 } \\ - \\ - \\ - \end{gathered}$	$\begin{gathered} - \\ \text { TCP100M125 } \\ \text { TCP100M160 } \\ \text { TCP100M200 } \end{gathered}$
RS200	H,P,PH	$\begin{aligned} & \text { TBC2-63A } \\ & \text { TC80-100A } \\ & \text { TF125-200A } \\ & \text { TF200M250 } \\ & \text { TF200M250 } \end{aligned}$	$\begin{aligned} & 37 \\ & 45 \\ & 55 \\ & 75 \\ & 90 \end{aligned}$	$\begin{gathered} 50 \\ 60 \\ 75 \\ 100 \\ 120 \end{gathered}$	$\begin{gathered} 69 \\ 83 \\ 99 \\ 136 \\ 162 \end{gathered}$	TF125 TF160 TF200 -	$\begin{gathered} - \\ - \\ \text { TF200M250 } \\ \text { TF200M250 } \end{gathered}$
RS400	H,P,PH	$\begin{aligned} & \text { TKM250/315 } \\ & \text { TKM355/400 } \\ & \text { TKM355/400 } \\ & \text { TM400M450 } \end{aligned}$	$\begin{aligned} & 110 \\ & 132 \\ & 150 \\ & 160 \\ & 185 \\ & 200 \end{aligned}$	$\begin{aligned} & 150 \\ & 175 \\ & 200 \\ & 215 \\ & 250 \\ & 270 \end{aligned}$	$\begin{aligned} & 200 \\ & 231 \\ & 263 \\ & 281 \\ & 324 \\ & 350 \end{aligned}$	TM355 TM355 TM400 TM400 -	- - - TM400M450 TM400M450

A FULL RANGE OF HRC FUSE LINKS ARE AVAILABLE FROM 2 AMP TO 1600 AMP
Refer publication IEF401 for technical details.
Asta 20 certified and complying with AS 2005 \& BS88.
\dagger D.O.L start based upon $7 \times$ FLC for 10 seconds
*To accommodate the 'NS' fuselink additional fuse carrier list No: SCA63 is required. This must be specified at the time of ordering.

[^0]: For further details please refer to
 Ratings and Specifications pages 6-10

[^1]: Notes: ') 'Sydney County Council' are now known as 'Testing and Certification Australia'.

 ## ${ }^{2}$) Conditional short circuit current Iq. and prospective current ' r ' -

 1kA: 0.37 kW to $7.5 \mathrm{~kW}: \quad 3 \mathrm{kA}: 11 \mathrm{~kW}$ to $30 \mathrm{~kW}: \quad 5 \mathrm{kA}: 37 \mathrm{~kW}$ to $55 \mathrm{~kW}: 10 \mathrm{kA}: 75 \mathrm{~kW}$ to $250 \mathrm{~kW}: \quad 18 \mathrm{kA}: 320 \mathrm{~kW}$ to 380 kW .
 ${ }^{3}$) Combinations also suitable for Australian switchboard standard AS 1136-1. duty $1+2$.
 ${ }^{4}$) Alternative combinations of contactors and overloads are possible.
 ${ }^{5}$) Other GEC Type T fuse cartridges of identical current ratings are also suitable.
 o) CA 1-100 separately tested to AS1 136-1.

[^2]: 1) For top hat rail 35 mm , EN 50022.
[^3]: ${ }^{2}$) For automatic reset with RT 3-M and RT 3-U: connect r1-r2.

[^4]: $A=$ Nomally open contact $\quad B=$ Normally closed contact

