Dedicated to a better Brisbane

BRISBANE CITY COUNCIL BRISBANE WATER

SP302 - Progress Road Pump Station

Operation \& Maintenance Manual Contract Number BW50080-04/05

Progress Road Pump Station-SP302 Operation \& Maintenance Manual

 Table of Contents

Progress Road Pump Station-SP302 Operation \& Maintenance Manual Table of Contents

Vol	Sect	Description	Pages
2.2	2	Generator	
2.2	2	SE Power Cover Pages and Generator Site Delivery Instructions	3
2.2	2	Common Logic Generator Operation and Maintenance Manual	6
2.2	2	SE Power - Factory Test Report - Generator	6
2.2	2	BW - Generator Functional Tests (Document never completed, by inspector)	9
2.2	2	BW - Program and Hardware Configuration \{Contained on the CD-ROM only\}	58
2.2	2	Common Logic - SAT for Generator Changeover Panels	7
2.2	2	BW Generator IDTS, Point Commissioning \& Supply Operational Checks	5
2.2	2		
2.2	2	Diesel Standby Generator Local Control Panel Functional Description	14
2.2	2	SE Power - Instructions for delivering Generator to site and preparing it for operation	1
2.2	2	John Deere Diesel Engine Operation Manual	86
2.2	2	Diesel Standby Generator Drawings / Wiring Diagrams	6
2.2	2	Diesel Standby Generator Wiring Diagrams/Schematics	7
2.2	2	Genset Power Units - Service Manual (Service manual for multiple power units) \{Document contained on the CD-ROM only\}	637
2.2	2	Generator Component Data Sheets	18
2.2	2	Generator PLC Ladder Diagram \{Contained on the CD-ROM only\}	52
2.2	2	Generator Cabinet Drawings	2
2.2	2	Stamford AC Generator Installation, Operation \& Maintenance Manual	44
2.2	2	GE Fanuc Automation PLC Series 90 ${ }^{\text {TM }}-30$ Brochure	2
2.2	2	GE Fanuc Automation Series $90^{\text {TM }}$-30 Programmable Controller Troubleshooting Guide	18
2.2	2	$\begin{aligned} & \text { Excerpts from GE Fanuc PLC Series } 90^{\top M}-30 \text { Installation \& Hardware Manual } \\ & \text { \{Complete Document contained on the CD-ROM only\} } \\ & \text { For Reference Only:- } \quad \text { \{Contained on the CD-ROM only\} } \end{aligned}$	445
2.2	2	Old Generator Wiring Diagrams and SP302 / SP069 Site Plan	
2.2	2	SE Power Documentation CD - containing some of the above information	
2.2	3	Cathodic Protection	
2.2	3	BW - Progress Road Cathodic Protection Operating Manual \& Proposed Commissioning	11
2.2	4	Main Switchboard \& Associated Equipment	
2.2	4	BW - Factory Inspection Check - Switchboard Variable Speed Drive Manuals and Parameter Settings: VFD Settings and Parameters	5
2.2	4	VFD Settings and Parameters after Commissioning for Pump 1 \& Pump 2 Original VFD Settings \& Parameters as supplied To/By Contractor	$\begin{aligned} & 4 / 4 \\ & 3 \end{aligned}$
2.2	4	BW Factory Acceptance Tests (FAT)	4
2.2	4	JPR Inspection and Test Reports - Switchboard	14
2.2	4	Danfoss VFD (VLT® 8000 AQUA) Operating Instructions	197
2.3	4	Danfoss VFD Instruction Manual Modbus RTU	33

Progress Road Pump Station-SP302 Operation \& Maintenance Manual Table of Contents Description

Vol Sect
Pages

BRISBANE CITY COUNCIL
BCC Contract No. BW50080-04/05
Brisbane Water
Progress Road P/S SP302
Progress Road Pump Station-SP302 Operation \& Maintenance Manual Table of Contents

Vol	Sect	Description	Pages
3		Drawtngs \& Drawting Register	
3	1	As Constructed Drawings (Drawing register: Refer to either the Civil or Electrical)	
3	1	SP302 Location Map	1
3	1	Civil	11
3	1	Electrical	27
3	1	Pit Covers	3
3	1	Top Slab Layou:	1
3	1	Pipework Layouts	2
3	1	Switchboard Conduit Details / Location	1
3	1	Consumer Mains Location (Underground_Conduit Location)	1
4		Traitnitag 0 System Testing 0 Pre-Gommissioning 0 Installation Method Statement 0 QA Records	
4	1	Site Based Training	
4	1.	BW - Site Based Training	28
4	2	BW: System Integration Testing	
4	2	BW (Network Control Systems) - Electrical Site Acceptance Test (SAT)	7
4	2	BW (Network Control Systems) - Electrical Pre-Commissioning Acceptance Test	4
4	2	BW (Network Control Systems) - Electrical Factory Acceptance Tests (FAT)	4
4	3	PFC : Inspection \& Test Plan	
4	3	PFC ITP - Pipelines	46
4	3	PFC ITP - Concrete Pump Station	42
4	3	PFC ITP - Grit Collector	25
4	3	PFC ITP - Flow Meter Pit	18
4	3	PFC ITP - Manhole 2/1 and 3/1	17
4	3	PFC ITP - Switchboard Slab	3
4	3	PFC ITP - Driveway Slab	3
4	3	Geotechnical Reports - Bowler Geotechnical	11
4	3	Concrete Slump Test Results	2
4	4	Non Conformance Reports	
4	4	PFC - Non Conformance Reports (NCR)	20
4	5	Pre-Commissioning Plan, Commissioning Plan, Pump Test Results	
4	5	PFC Pre-Commissioning Plan \& Commissioning Plan with Pump Test Results Including: Scope of Work Constraints / References Staff Responsibilities / Construction Sequence Reinstatement of System	61

Progress Road Pump Station-SP302 Operation \& Maintenance Manual Table of Contents

Yol	Sect	Description	Pages
4	6	Hazards / Risks Appendix A - Manufacturers Test Data Appendix B - Pre Commissioning Test Data Appendix C - Functional Specification	
4.	6	Construction Method Statements	
4	6	PFC Construction Method Statement - General	6
4	6	PFC Construction Method Statement - Pipelines	4
4	7	Certificates	
4	7	AS3000 Compliance Certificate	1
4	7	MagMaster 200 mm Flowmeter Calibration Certificate	1
4	7	MagMaster 300 mm Flowmeter Calibration Certificate	1
4	7	Energex Electricity Connection \& Test Certificate	1
4	7	VEGABAR 64 Site Calibration Test Certificate	1
4	7	VEGABAR 64 Factory Test Certificate	1
4	7	PFC Statement of Conformity to the Contract Requirements	1
4	7	Statement of Conformity - Epoxy Resin Repair to Grit Collector Lid and Surrounds	1
4	7	Spark Test Record for repair to the Well Liner where the ladder was originally affixed	1
5		Appendlces	
5	1	Outstanding İssues/Defect List	
5	1.	PM-04E: Form-List of Contractual Defect (List updated by Bill Edwards 22/03/07)	5
5	2	Extras (Documents contained on the CD-ROM only)	
5	2	Manual covers for the printed version	6
5	2	Manual spine labels for the printed version	2
5	2	Operation \& Maintenance Manual CD Cover	1
5	2	Drawings CD Introduction Page	1

VLT 5000
VLT* 6000 HVAC

Danfoss Graham

Modbus RTU Option Card

VLT ${ }^{\circledR} 6000$ Adjustable Frequency Drive

Instruction Manual

ADANGER

Rotating shafts and electrical equipment can be hazardous. Therefore, it is strongly recommended that all electrical work conform to National Electrical Code (NEC) and all local regulations. Installation, startup and maintenance should be performed only by qualified personnel.

Motor control equipment and electronic controls are connected to hazardous line voltages. When servicing drives and electronic controls, there will be exposed components at or above line potential. Extreme care should be taken to protect against shock. Stand on an insulating pad and make it a habit to use only one hand when checking components. Always work with another person in case of an emergency. Disconnect power whenever possible to check controls or to perform maintenance. Be sure equipment is properly grounded. Wear safety glasses whenever working on electric control or rotating equipment.

AWARNING

Warnings Against Unintended Start

1. While the drive is connected to the $A C$ line, the motor can be brought to a stop by means of external switch closures, serial bus commands or references. If personal safety considerations make it necessary to ensure that no unintended start occurs, these stops are not sufficient.
2. During programming of parameters, the motor may start. Be certain that no one is in the area of the motor or driven equipment when changing parameters.
3. A motor that has been stopped may start unexpectedly if faults occur in the electronics of the drive, or it an overload, a fault in the supply $A C$ line or a fault in the motor connection or other fault clears.
4. If the "Local/Hand" key is activated, the motor can only be brought to a stop by means of the "Stop/Off" key or an external safety interlock.

Abstract

ACAUTION Electronic components of BACLink portal are sensitive to electrostatic discharge (ESD). ESD can reduce performance or destroy sensitive electronic components. Follow proper ESD procedures during installation or servicing to prevent damage.

ADANGER

Touching electrical parts may be fatal, even after equipment has been disconnected from AC line. To be sure that capacitors have fully discharged, wait 14 minutes after power has been removed before touching any internal component.

Table of Contents
Overview
Introduction 4
About This Manual 4
Assumptions 4
What You Should Already Know 4
References 4
Modbus RTU Overview 5
VLT 6000 with Modbus RTU Option Overview 5
Pre-installation Option Card and Drive Settings
Modbus RTU Option Card Baud Rate and Pạrity Settings 7
Modbus RTU Option Card Address Settings 8
VLT 6000 Parameter Settings 8
Installation of Modbus Option Card
Modbus RTU Option Card Environmental Requirements 9
Power Supply 9
Installation 9
Status LEDs 13
Option Card Operability Loop Back Test. 13
Network Configuration
Remote Terminal Unit 14
Modbus RTU Message Structure 14
Translation from Modbus RTU Protocol to FC Protocol 16
FC Protocol Control Word Bit Description 17
Conversion Factor 17
Memory Mapping 17
Memory Mapping: Status Coil Maps 18
Memory Mapping: Register Maps 18
Message Translation Examples 19
Exception Codes
Exception Code Tables 23
Appendix A
Supported Modbus RTU Function Codes 24

Danfoss

Introduction

About This Manual

This manual provides comprehensive instructions on the installation and set up of the Modbus RTU option card for the VLT 6000 Adjustable Frequency Drive to communicate over a Modbus network.

For specific information on installation and operation of the adjustable frequency drive, refer to the VLT 6000 Operating instructions.

This manual is intended to be used for both instruction and reference. It only briefly touches on the basics of the Modbus protocol whenever necessary to gain an understanding of the Modbus RTU option card for the VLT 6000.

This manual is also intended to serve as a guideline when you specify and optimize your communication system. Even if you are an
experienced Modbus programmer, it is suggested that you read this manual in its entirety before you start programming since important information can be found in all - sections.

Assumptions This manual assumes that you have a controller that supports the interfaces in this document and that all the requirements stipulated in the controller, as well as the

VLT 6000 Adjustable Frequency Drive, are strictly observed, along with all limitations therein.

What You Should Already Know

The VLT 6000 Modbus RTU option card is designed to communicate with any controller that supports the interfaces defined in this
document. It is assumed that you have full knowledge of the capabilities and limitations of the controller.

References $\quad V L T^{\infty} 6000$ Installation, Operation and Instruction Manual, Danfoss Graham document number 23-6108-00.
(Referred to as the VLT 6000 Operating instructions in this document.)

Modbus RTU Overview

VLT 6000 with Modbus RTU Option Overview

The common language used by all Modicon controllers is the Modbus RTU (Remote Terminal Unit) protocol. This protocol defines a message structure that controllers will recognize and use, regardless of the type of networks over which they communicate. it describes the process a controller uses to request access to another device, how it will respond to requests from the other devices, and how errors will be detected and reported. It establishes a common format for the layout and contents of message fields.

During communications on a Modbus RTU network, the protocol determines how each controlier will know its device address, recognize a message addressed to it, determine the kind of action to be taken, and extract any data or other information contained in the message. If a reply is required, the controller will construct the reply message and send it.

Controllers communicate using a masterslave technique in which only one device (the master) can initiate transactions (called
queries). The other devices (slaves) respond by supplying the requested data to the master, or by taking the action requested in the query.

The master can address individual slaves, or can initiate a broadcast message to all slaves. Slaves retum a message (called a response) to queries that are addressed to them individually. Responses are not returned to broadcast queries from the master.

The Modbus RTU protocol establishes the format for the master's query by placing into it the device (or broadcast) address, a function code defining the requested action. any data to be sent, and an error-checking field. The slave's response message is atso constructed using Modbus protocol. It contains fields confirming the action taken, any data to be returned, and an errorchecking field. If an error occurred in receipt of the message, or if the slave is unable to perform the requested action, the slave will construct an error message and send it in response.

The VLT 6000 Adjustable Frequency Drive with the Modbus RTU option card installed communicates in Modbus RTU format over an EIA-485 (formerly RS-485) network. The option card acts as a translator between the drive's internal FC protocol and Modbus RTU. This allows access to the drive's Control Word and Bus Reference.

The Control Word allows Modbus to control several important functions of the drive:

- Start
- Stop the drive in several ways:

Coast stop
Quick stop
DC Brake stop
Normal (ramp) stop

- Reset after a fault trip
- Run at a variety of preset speeds
- Run in reverse
- Change the active setup
- Control the drive's two built-in relays

The Bus Reference is commonly used for speed control.

It is also possible to access the drive parameters, read their values, and, where possible, write values to them. This permits a range of control possibilities, including controlling the drive's setpoint when its internal PID controller is used.

Danfoss

VLT 6000 Modbus RTU Option Card

Modbus RTU Option Card Baud Rate and Parity Settings

The Modbus RTU communication protocol accesses the internal Danfoss FC protocol within the VLT 6000 to control the drive through serial communications. (The Modbus-to-FC interface uses 9600 Baud, 8 Bits, Even Parity, and 1 Stop Bit.)

The Modbus RTU option card has a 9-input DIP switch for setting baud rate and parity (see figure below). The option card generally uses 9600 baud rate with no parity. Set the switch positions in accordance with the following instructions.

- Set input switches 1-3 to ON to select 9600 baud rate.
- Set input switches 4 and 5 to ON to select no parity.

Switches 6-9 are unassigned reserved switches. Their setting does not matter.

NOTE

Set baud rate and parity switch settings prior to installing Modbus RTU option card for ease of access.

For Modbus RTU networks operating at other than 9600 baud and no parity, determine switch positions from the tables provided below.

9600 Baud Rate and No Parity Switch Settings

Baud Rate	SW1	SW2	SW3
300	OFF	OFF	OFF
1200	OFF	OFF	ON
2400	OFF	ON	OFF
4800	OFF	ON	ON
9600	ON	ON	ON
19200	ON	OFF	ON

Parity	SW4	SW5
None	ON	ON
Odd	OFF	ON
Even	OFF	OFF

Optional Baud Rate and Parity Switch Settings

Danfuss

Modbus RTU Option Card Network
Address Settings

The Modbus RTU option card has an address and termination 9-input DIP switch. The Modbus network address for the VLT 6000 is set by DIP switch positions on the switch. Pin 9 is an ON/OFF switch for network termination. DIP switch positions are read on power-up onty, so position changes will not be recognized until the next power-up.

- Set the Modbus address for the VLT 6000 in accordance with the table below. The default input setting is for ADDRESS 1 and termination ON .

Address and Termination

Address (Hex)	SW1 2^{0}	SW2 2^{1}	SW3 2^{2}	SW4 2^{3}	SW5 2^{4}	SW6 2^{5}	SW7 2^{6}	SW8 2^{7}	TERM
Default 01	ON	OFF	ON						
55	ON	OFF	ON	OFF	ON	OFF	ON	OFF	ON
AA	OFF	ON	OFF	ON	OFF	ON	OFF	ON	ON
F7	ON	ON	ON	OFF	ON	ON	ON	ON	ON

Address Input Selection

VLT 6000
Parameter Settings

The Modbus RTU option card interface to the VLT 6000 Adjustable Frequency Drive FC protocol requires drive parameter values selected as shown. They are the default settings for those parameters and probably require no change to operate the drive using Modbus. The Modbus RTU option card always transmits to the drive in which it resides as address one (001). See the VLT 6000 Operating Instructions for details on selecting and changing parameter values, if necessary.

- Parameter 500, Protocol: FC protocol
- Parameter 501, Address: 001
- Parameter 502, Baud Rate: 9600 baud

Modbus RTU Option Card Environmental Requirements

Environmental requirements for the Modbus RTU option card are listed below.

Description	Requirement
Operating temperature	$-5^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$
Storage temperature	$-40^{\circ} \mathrm{F}$ to $+176^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+80^{\circ} \mathrm{C}\right)$
Humidity	5% to 95% relative, non-condensing

Power	The Modbus RTU option card is powered by
Supply	24 VDC and draws 38 mA of current at 24 V .

Installation

The following section describes the installation procedures for the Modbus RTU option card. For additional information on installation and operation of the VLT 6000 , refer to the VLT6000 Operating Instructions.

ADANGER

VLT adjustable frequency drive contains dangerous voltages when connected to line voltage. After disconnecting from power line, wait at least 14 minutes before touching any electrical components.

AWARNING

Only a competent electrician should carry out electrical installation. Improper installation of motor or drive can cause equipment failure, serious injury or death. Follow this manual, National Electrical Codes and local safety codes.

ACAUTION

Electronic components of. adjustable frequency drive and Modbus RTU option card are sensitive to electrostatic discharge (ESD). ESD can reduce performance or destroy sensitive electronic components. Follow proper ESD procedures during installation or servicing to prevent damage.

ACAUTION

It is responsibility of user or installer of VLT adjustable frequency drive to provide proper grounding and motor overload and branch protection according to National Electrical Codes and local codes.

Damposs

1. Access to Control Card Cassette

2. Disconnect Control Card Cassette

NEMA 1 Drives:

- Remove Local Control Panel (LCP) by pulling out from top of display (A) by hand. LCP connector on panel back will disconnect.
- Remove protective cover by gently prying with a screw driver at notch (B) and lift cover out of guide pin fittings.

NEMA 12 Drives:

- Open front panel of drive by loosening captive screws and swing open.
- Disconnect Local Control Panel (LCP) cable.

- Remove control wiring by unplugging connector terminals (A).
- Remove grounding clamps (B) by removing two screws holding each in place. Save screws for reassembly.
- Loosen two captive screws (C) securing cassette to chassis.

3. Remove Cassette and Ribbon Cables

- Lift control card cassette from bottom.
- Unplug two ribbon cables (A) and (B) from VLT 6000 control board.
- Unhinge cassette at top to remove.

NOTE

Ribbon cables will need to be reconnected to same connections from which removed.

4. Secure Modbus RTU Option Card

- On back of cassette, insert edge of Modbus RTU option card into slot at side of cassette (A).
- Secure opposite side of card with 2 self-tapping screws and washers provided (B). Using a Torx T - 10 screw driver, tighten to 8 in-lbs.

5. Wire

Modbus RTU
Option Card Connector to VLT 6000 Terminals

NOTE

Use 18 to 22 gauge wire. Torque terminals to 4.5 in-lbs. Modbus interface connector terminals 5 and 6 are spares.

- Wire Modbus interface connector (24 V power) pin 1 to VLT 6000 terminal 12 or 13.
- Wire Modbus interface connector (RTxD) pin 2 to VLT 6000 terminal 69.
- Wire Modbus interface connector (com) pin 3 to VLT 6000 terminals 39 and 61.
- Wire Modbus interface connector ($\mathrm{RT} \times \mathrm{D}^{\prime}$) pin 4 to VLT 6000 terminal 68.
- Plug Modbus interface connector into bottom of Modbus RTU option card.

Pin 1

6. Install Ribbon Cables

NOTE

Ribbon cables must be reconnected to same connections from which removed.

- Connect control card cassette to hinge at top of drive.
- Connect ribbon cables.

- Fasten control card cassette by alternately tightening two captive screws (A). Tighten to 8 in -lbs.
- Route control wires through clamp fasteners (B) and secure clamps with two screws.
- Connect control terminals (C) by firmty pressing them into connector receptacles.

NEMA 1 Drives

- Install LCP by sliding bottom into guide slats on cradle, then press into place ensuring that connector on back of LCP is engaged.
- Replace protective cover by positioning guide pins at bottom of cover into holes in bottom of chassis and snap top of cover into place.

NEMA 12 Drives

- Plug cable from LCP into connector on main control card.

8. Plug in

Terminal Connector

- Connect Modbus signal wire ($\mathrm{RT} \times \mathrm{D}+$) to pin 1 of EIA-485 (formerly RS-485) connector.
- Connect Modbus signal wire (Com) to pin 2 of EIA-485 connector.
- Connect Modbus signal wire (RTxD-) to pin 3 of EIA-485 connector.
- Plug EIA-485 connector into terminal port at side of Modbus RTU option card.

EIA-485 Connector

NEMA 12 Drives

- Close front cover panel and fasten with captive screws. Tighten to 7 in-lbs.

The Modbus RTU option card has two LEDs. One LED is used as a status for Modbus RTU communications and the other as a status for VLT 6000 drive communications. Both LEDs use the same communications patterns. On power up, each LED state is flashed on for 250 milliseconds (Red, Green, Orange, Off). The VLT 6000 LED powers up
first, then the Modbus LED. After power up, the following are the only valid states:

- Flashing Green (1 Hz): Communications online (VLT 6000 LED) or receiving data (Modbus LED)
- Flashing Red (1 Hz): Communications time out
- Solid Red: Fault, communications halted

Option Card Operability Loop Back Test

A loop back test to confirm Modbus RTU option card operability can be performed. The option card must be removed from the adjustable frequency drive to gain access to the 9 -input dip switch for baud rate and parity and to rewire the option card connectors.

ADANGER

Ensure that power has been removed from adjustable frequency drive for a minimum of 14 minutes to allow voltage to dissipate.

- Remove the option card in accordance with the procedures described in the installation section of this manual.
- Set the dip switch positions in accordance with the table below.
- Remove all wiring from both the 6 -pin option card connector and the 3-pin EIA-485 connector.
- Wire the 6-pin option card connector to the 3-pin ElA-485 connector as described below.

6-Pin Connector ElA-485 Connector

Pin 2	to	Pin 3
Pin 3	to	Pin 2
Pin 4	to	$\operatorname{Pin} 1$

- Apply power to the unit.

After the normal status LED check at power-up (see Status LEDs), the loop back test sets both LEDs to orange for a successful test or red if the test fails. The orange or red indicator lasts around 10-15 seconds. The - LEDs will then flash red or green communication indications.

SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8	SW9
ON	ON	ON	OFF	OFF	ON	ON	ON	ON

Loop Back Test Switch Positions

Remote Terminal Unit

The controllers are setup to communicate on the Modbus network using RTU (Remote Terminal Unit) mode, with each 8-bit byte in
a message contains two 4-bit hexadecimal characters. The format for each byte is shown below.

Coding System:	8-bit binary, hexadecimal 0-9, A-F Two hexadecimal characters contained in each 8 -bit field of the message
Bits Per Byte:	4 start bit 8 data bits, least significant bit sent first 1 bit for even/odd parity; no bit for no parity 1 stop bit if parity is used; 2 bits if no parity
Error Check Field:	Cyclical Redundancy Check (CRC)

Modbus RTU Message
Framing Structure

A Modbus RTU message is placed by the transmitting device into a frame with a known beginning and ending point. This allows receiving devices to begin at the start of the message, read the address portion, determine which device is addressed (or all devices, if the message is broadcast), and to know when the message is completed. Partial messages are detected and errors set as a result.

The allowable characters transmitted for all fields are hexadecimal 0-9, A-F. The adjustable frequency drives monitor the network bus continuously, including 'silent'
intervals. When the first field (the address field) is received, each drive or device decodes it to determine whether it is the addressed device.

Modbus RTU messages addressed to zero are converted to broadcast messages using the FC protocol. No response is needed on broadcast messages.

To ensure the attribute data returned is the most current, each attribute access must include one attribute only.

A typical message frame is shown below.

Start	Address	Function	Data	CRC Check	End
T1-T2-T3-T4	8 Bits	8 Bits	$n \times 8$ Bits	16 Bits	T1-T2-T3-T4

Typical Modbus RTU Message Structure

Modbus RTU
Message
Framing
Structure (continued)

Start/Stop Field

Messages start with a silent interval of at least 3.5 character times. This is implemented as a multiple of character times at the 9600 network baud rate (shown as Start T1-T2-T3-T4). The first field then transmitted is the device address. Following the last transmitted character, a similar interval of at least 3.5 character times marks the end of the message. A new message can begin after this interval.

The entire message frame must be transmitted as a continuous stream. If a silent interval of more than 1.5 character times
occurs before completion of the frame, the receiving device flushes the incomplete message and assumes that the next byte will be the address field of a new message.

Similarly, if a new message begins earlier that 3.5 character times following a previous message, the receiving device will consider it a continuation of the previous message. This will set an error, since the value in the final CRC field is not valid for the combined messages.

Modbus RTU
 Message
 Framing
 Structure
 (continued)

Address Field

The address field of a message frame contains 8 bits. Valid slave device addresses are in the range of $0-247$ decimal. The individual slave devices are assigned addresses in the range of $1-247$. (0 is reserved for broadcast mode, which all slaves recognize.) A master addresses a slave by placing the slave address in the address field of the message. When the slave sends its response, it places its own address in this address field to let the master know which slave is responding.

Function Field

The function field of a message frame contains 8 bits. Valid codes are in the range of 1-255 decimal. (See Appendix A tor a description of supported Modbus functions.) When a message is sent from a master to a slave device, the function code field tells the slave what kind of action to perform.

When the slave responds to the master, it uses the function code field to indicate either a normal (error-free) response, or that some kind of error occurred (called an exception response). For a normal response, the slave simply echoes the original function code. For an exception response, the slave returns a code that is equivalent to the original function code with its most-significant bit set to a logic 1. In addition, the slave places a unique code into the data field of the response message. This tells the master what kind of error occurred, or the reason for the exception. See the Exception Codes section in this maniual for definitions.

Data Field

The data field is constructed using sets of two hexadecimal digits, in the range of 00 to FF hexadecinal. These are made from one RTU character. The data field of messages sent from a master to slave device contains additional information which the slave must use to take the action defined by the function code. This can include items like discrete and register addresses, the quantity of items to be handled, and the count of actual data bytes in the field. The data field can have a length of zero.

CRC Check Field

Messages include an error-checking field that is based on a cyclical redundancy check (CRC) method. The CRC field checks the contents of the entire message. It is applied regardless of any parity check method used for the individual characters of the message. The CRC value is calculated by the transmitting device, which appends the CRC as the last field in the message. The receiving device recalculates a CRC during receipt of the message and compares the calculated value to the actual value received in the CRC field. If the two values are not equal, an error results.

The error checking field contains a 16 -bit binary value implemented as two 8 -bit bytes. When this is done, the low-order byte of the field is appended first, followed by the highorder byte. The CRC high-order byte is the last byte sent in the message.

Coil/Register Addressing

All data addresses in Modbus messages are referenced to zero. The first occurrence of a data item is addressed as item number zero. For example:

The coil known as 'coil 1' in a programmable controller is addressed as coil 0000 in the data address field of a Modbus message. Coil 127 decimal is addressed as coil $007 \mathrm{E}_{\text {HEX }}$ (126 decimal).

Holding register 40001 is addressed as register 0000 in the data address field of the message. The function code field already specifies a 'holding register' operation. Therefore, the ' $4 \times 0 \times X$ ' reference is implicit. Holding register 40108 is addressed as register $006 \mathrm{~B}_{\text {IEX }}$ (107 decimal).

Translation from Modbus RTU Protocol to FC Protocol

Refer to Serial Communication for FC Protocol in the VLT 6000 Operating instructions for details on the Danfoss FC protocol used for Modbus RTU serial communication within the VLT 6000 Adjustable Frequency Drive.

Parameter Block

PKE

PKE contains AK with the parameter commands and replies, and PNU with the parameter number. The AK value is determined by the Modbus function code. Coil 65 decimal determines whether data written to the drive are stored in EEPROM and RAM (coil $65=1$) or just RAM (coil $65=$ 0). PNU is translated from the register address contained in the Modbus read/write message. The parameter number is translated to Modbus as ($10 \times$ parameter number) DECMAL.

IND

IND contains the index. The index is used, together with the parameter number, for read/write access. Index has 2 bytes - a low byte and a high byte. However, only the low byte is used for indexing. The high byte is used for reading and writing text. IND is set by a register in Modbus ($40001_{\text {HEE }}$). ND must be cleared by the Modbus master after reading/writing text.

PWE $E_{\text {HIGn }} / P W E_{\text {LOW }}$
PWE contains the parameter value. The parameter value block consists of 2 words (4 bytes). The value depends on the command given (AK). PWE is zero filled on reads. On writes, PWE is filled with the data field of the Modbus write message.

$\mathrm{PCD}_{1} / \mathrm{PCD}_{2}$

PCD contains the process word block. The parameter value block consists of 2 words (4 bytes). The process word block is divided into two blocks of 16 bits and is stored in Modbus as status coils. The mapping of the PCD is shown below.

Process Block Updates

Upon every write to the PCD coils, the process block is written to the drive and returned from the drive. On parameter reads and writes, the PCD is deactivated on messages from the Modbus RTU option card to the drive. The PCD coils are updated on response messages from the drive to the Modbus RTU option card.

Text Blocks

Parameters stored as text strings are accessed the same as the other parameters except PWE is replaced with the text block. The maximum text block size is 20 characters. If a read request for a parameter is for more characters than the parameter stores, the response is space filled. If the read request for a parameter is for less characters than the parameter stores, the response is truncated.

	PCD_{1}	PCD_{2}		
Control packet (master \rightarrow slave)	Control word (Coils 1-16)	Reference value (Coils 17-32) (
Reply pack				
(slave \rightarrow master)				Status word
:---				
(Coils 33 -48)		Given output frequency		
:---				
(Coils 49 -64$)_{\text {DEC }}$				

PCD Mapping

FC Protocol Control Word Bit Descriptions

Control Word Bit Descriptions

00	Premet Refflsis	
04	Prepet Ref. MSE	
42	Dt Brate	Ho DCEmeke
03	Cometstop	notonetstop
04	"oulck" stop	Ho-Galckistop
05	Freexe Fres.	G0Freste Freq.
08	Remptiep	start
07	no Reset	Retert
0 0魅	mo Jog	Jog
09	mofanation	
10	Data Not Vaild	Detr Velld
11	Re!ny 1 ofF	Relsy 10 N
12	Rellay 2 OFF	Rollay 2 ON
13	. setupLsB	
14	Setupmst	
13	-0 Reversima	Reverelag

Stop Commands

The precedence of the stop commands is as follows:

1. Coast stop
2. Quick stop
3. DC Brake
4. Normal (Ramp) stop

Conversion

 FactorMemory Mapping

Conversion

The different attributes for each parameter can be seen in the section on factory settings. Since a parameter value can only be transferred as a whole number, a conversion factor must be used to transfer decimals.

Example:

Parameter 201: Minimum Frequency, conversion factor 0.1. If parameter 201 is to be set to 10 Hz , a value of 100 must be. transferred, since a conversion factor of 0.1 means that the transferred value will be

Index	Factor
74	3.6
2	100.0
1	10.0
0	1.0
-1	0.1
-2	0.01
-3	0.001
-4	0.0001

Parameter Values

Standard Data Types

Standard data types are int16, int32, uint8, uint 16 and uint 32 . They are stored as $4 \times$ registers ($40001-4$ FFFF). The parameters. are read using function 03 Registers." Parameters are written using function $6_{\text {Hex }}$ "Preset Single Register" for 1 register (16 bits), and function $10_{\text {rex }}$ "Preset Multiple Registers" for 2 registers (32 bits). Valid sizes to read are 1 register (16 bits) and 2 registers (32 bits).

Nonstandard Data Types

Nonstandard data types are text strings and are stored as $4 x$ registers (40001-4FFFF). The parameters are read using function $03_{\text {mex }}$ "Read Holding Registers" and written using function ${ }^{-10}$ HEX "Preset Mulliple Registers." Valid sizes to read are 1 register (2 characters) through 10 registers (20 characters). See Text Blocks section in this manual for truncation/ space fill rules. IND (Modbus Register 1) must be written with a value of $0400_{\text {HEX }}$ (read) or $0500_{\text {HEX }}$ (write) prior to reading or writing a text string.

Status Coils Map (128 coils total)

Address (Decimal)	Description
$1-16$	PCD_{1} Control word (master \rightarrow slave)
$17-32$	PCD_{2} Reference value (master \rightarrow slave)
$33-48$	PCD_{1} Status word (slave \rightarrow master)
$49-64$	PCD_{2} Given output frequency (slave \rightarrow master)
65	Write memory storage type bit (used with AK), see PKE $^{26-128}$

Memory
Mapping:
Register
Maps

Register Maps ($\mathbf{6 5 5 3 6}$ registers total)

Address (Decimal)	Description
00001	IND (index word)
00002	Modbus Communications Timeout Value (10 millisecond units)
00003	Drive Communications Timeout Value (10 millisecond units)
00004-00009	Reserved
$\begin{aligned} & \hline 00010 \\ & \downarrow \\ & 00170 \\ & \hline \end{aligned}$	Parameter 001, Language \downarrow Parameter 017, Operating State at Power-up
00180-09999	Reserved
$\begin{aligned} & 01000 \\ & \downarrow \\ & 01170 \end{aligned}$	Parameter 100, Configuration \downarrow Parameter 117, Motor Thermal Protection
01180-01999	Reserved
$\begin{aligned} & 02000 \\ & \downarrow \\ & 02280 \end{aligned}$	Parameter 200, Output Frequency Range \downarrow Parameter 228, Warning: High Feedback
02290-02999	Reserved
$\begin{aligned} & 03000 \\ & \downarrow \\ & 03280 \\ & \hline \end{aligned}$	Parameter 300, Terminal 16 Digital Input \downarrow Parameter 328, Pulse Feedback, Max. Freq.
03290-03999	Reserved'
$\begin{aligned} & 04000 \\ & \downarrow \\ & 04270 \\ & \hline \end{aligned}$	Parameter 400, Reset Function \downarrow Parameter 427, PID Lowpass Filter Time
04280-04999	Reserved
$\begin{aligned} & 05000 \\ & \downarrow \\ & 05660 \end{aligned}$	Parameter 500, Protocol \downarrow Parameter 566, FLN Time Function
05670-05999	Reserved
$\begin{aligned} & 06000 \\ & \downarrow \\ & 06310 \\ & \hline \end{aligned}$	Parameter 600, Operating Data: Operating Hours Parameter 631, Nameplate: Communication Option Ordering No.
06320-06999	Reserved
$\begin{aligned} & \hline 07000 \\ & \downarrow \\ & 07110 \\ & \hline \end{aligned}$	Parameter 700, Relay 6, Output Function \downarrow Parameter 711, Relay 9, Off Delay
07120-65536	Reserved

Message
Translation Examples

EXAMPLE 1: Start Motor, Run Speed $\mathbf{4 0 \%}$

Modbus function OF HEX (Force Multiple Coils).
Message sent to Modbus RTU option card from Modbus master

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 8	Byto 7
$\begin{gathered} \text { Slave } \\ \text { Address } \\ \hline \end{gathered}$	Function	Coil Addr HI	Coll Addr LO	\% of Coils HI	\% of Coils CO	Byte Cotnit	$\begin{gathered} \text { Force Data HI } \\ \text { Coils }(0.7) \\ \hline \end{gathered}$
01	OF	00	00	00	20	04	7C

Byte 8	Byte 9	Byte 10	Byte11
Force Data LO Coils (8-15)	Force Data HI Colls (16-23)	Forca Data L0 Colls (24-31)	Error Check
04	99	19	$[37][43]$

Modbus message string:
[01] [OF [OO] [00] [00] [20] [04] [7C] [04] [99] [19] [37] [43]
Start Command: $0000010001111100=047 C_{\text {HEX }}$ (reversed)
(see FC Protocol Control Word Bit Descriptions)
Modbus message string:
[01] [OF] [00] [00] [00] [20] [04] [7C] [04] [99] [19] [37] [43]
NOTE: Speed Command: $4000_{\text {HEX }}=100 \%$ speed 40% of $4000_{\text {Hex }}=1999_{\text {HEX }}$ (reversed)

Message retumed to Modbus master from Modbus RTU option card

| Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slave
 Address | Function | Coil Addr Hi | Coil Addr LO | No. of Coils
 HI | No. of Coils
 LO | Error Check |
| 01 | $0 F$ | 00 | 00 | 00 | 20. | $[54][13]$ |

All values are in hexadecimal.

Message Translation Examples (continued)

EXAMPLE 2: Ramp Stop Motor
Message sent to Modbus RTU option card from Modbus master

Byta 0	Byte 1	Byte 2	Byte 3	Byte 4	Byta 5	Byte 8	Byte 7
Slave	Function	Coil Addz HII	Coll Addr LO	\# of Coils HI	of Coils LO	Bye Count	$\begin{aligned} & \text { Force Dath } \mathrm{HI} \\ & \text { Colls }(0-7) \end{aligned}$
01	OF	00	00	00	20	04	3 C

Byte 8	Byta 9	Byte 10	Byte 11
Force Data LO Coils (0-15)	Force Data HI Colls (16-23)	Force Data LO Coils (24-31)	
04	00	00	Eror Check
	$[89][191$		

Modbus message string:
[01] [0F] [00] [00] [00] [20] [04] [3C] [04] [00] [00] [89] [19]
Stop Command: $0000010000111100=043 C_{\text {Hex }}$ (reversed) (see FC Protocol Control Word Bit Descriptions)
. Speed Command: 0\%
Message returned to Modbus master from Modbus RTU option card

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Slave Address	Function	Coil Addr HI	Coil Addr LO	No. of Coils HI	No. of Coils Lo	Emor Check
01	$0 F$	00	00	00	20	-

All values are in hexadecimal.

EXAMPLE 3: Coast Stop Motor

Message sent to Modbus RTU option card from Modbus master

Byte 0	Byte 1	Byta 2	Byta 3	Byte 4	Byta 5	Byta 6	Byte 7
$\begin{gathered} \text { Slawe } \\ \text { Address } \end{gathered}$	Function	Coll Addr Hi	Coll Addr LO	\# of Colls Hi	\% of Coils LO	Byte Count	$\begin{aligned} & \text { Foroe Data HI } \\ & \text { Coils (0.7) } \end{aligned}$
01	- OF	00	00	00	20	04	20

Byte E	Byte 9	Byte 10	Byte 11
Force Data LO Colis (B-15)	Force Data HI Coils (16-23)	Force Data LO Colis (24-31)	Error Check
2 C	00	00	-

Modbus message string:
[01] [0F] [00] [00] [00] [20] [04] [20] [2C] [00] [00] [--]
Coast Command: $0010110000100000=2 \mathrm{C} 2 \mathrm{O}_{\text {HEX }}$ (reversed) (see FC Protocol Control Word Bit Descriptions)
Speed Command: 0\%

Message returned to Modbus master from Modbus RTU option card

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Stave Address	Function	Coil Addr HI	Coil Addr LO	No. of Coils	No. of Coils	Error Check
01	$-0 F$	0		00	00	20

Message Translation Examples (continued)

EXAMPLE 4: Write Parameter 104, Motor Frequency, with 60 Hz
(Data Type 6: UINT16)
(Conversion factor $=0$)
Modbus Function $06_{\text {HEx }}$ Preset Single Register
Message sent to Modbus RTU option card from Modbus master

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Slave Address	Function	Register Addr HI	Register Addr LO	$\begin{gathered} \text { Preset Data } \\ \text { HI } \end{gathered}$	$\begin{gathered} \hline \text { Preset Data } \\ \text { LO } \\ \hline \end{gathered}$	Error Check
01	06	04	0 F	00	3 C	-

Modbus message string:
[01] 06] [04] [0F] [00] [3C] [error check]
\rightarrow
Parameter $104=0 \mathrm{FO} 4_{\mathrm{HEX}}$ (reversed)
Note that the starting address of a register is the parameter number $\times 10 \%$ in HEX .
$104 \times 10=1040-1=1039=0$ FO4 ${ }_{\text {нex }}$ (reversed)
Modbus message string:
[01] 06] [O4] [OF] [OO] [3C] [error check]

$$
\text { Speed }(60 \mathrm{~Hz})=3 \mathrm{C}_{\mathrm{HEX}}
$$

Message returned to Modbus master from Modbus RTU option card

Byte 0	Byte 1	Byta 2	Byte 3	Byte 4	Byta 5	Byte 6
Slave Address	Function	Register Addr $\mathbf{H I}$	Register Addr LO	Preset Data HI	Preset Data LO	Error Check
01	06	04	$0 F$	00	$3 C$	

All values are in hexadecimal.

EXAMPLE 5: Read Parameter 514,
Motor Current = 3 Amps
(Data Type 7: UINT32)
(Conversion Factor =-2)

Modbus Function 03 ${ }_{\text {HEX }}$ Read Holding Registers
Message sent to Modbus RTU option card from Modbus master

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Slave Address	Function	Start Addr HI	Start Addr LO	No. of Points HI	No. of Points LO	Error Check
01	03		14	13	0	0

Parameter 514 (5139) $=1413_{\text {rex }}$
Note that the starting address of a register is the parameter number $\times 10-1$ in HEX.
Message sent to Modbus master from Modbus RTU option card

Byto 0	Byta 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byat 7
Slave Address	Function	Byte Count	$\begin{gathered} \text { Data } \mathrm{HI} \\ \text { (Reg 45140) } \end{gathered}$	$\begin{gathered} \text { Dataio } \\ (\text { Reg } 4514 \mathrm{D}) \end{gathered}$	$\begin{gathered} \text { Data HI } \\ \text { (Reg 45141) } \end{gathered}$	$\begin{gathered} \text { Data LO } \\ \text { (Reg } 45141 \text {) } \\ \hline \end{gathered}$	Error Check
01	03	04.	00	00	01	2 C	-

All values are in hexadecimal.

Message Translation Examples (continued)

EXAMPLE 6: Write Parameter 533, Display Text 1, (VLT 6000 only) with "1234567890" (Data Type 9: Text String).

Modbus Function 06 Hex Preset Single Register
Write IND with "0500" to perform a text
write.
Message sent to Modbus RTU option card from Modbus master

Byte 0	Byte 1	Byte 2	Byto 3	Byte 4	Byte 5	Byte 6
Slave Address	Funclion	Register	Register	Presel Data	Preset Data	Error Check
01	06	Addr HI	Addr LO	HI	LO	
01	00	00	05	00	-	

Message sent to Modbus master from Modbus RTU option card

Byte 0	Byte 1	Byte 2	Byta 3	Byte 4	Byte 5	Byte 6
Slave Address	Function	Register Addr H$]$	Register Addr LO	Presel Data H1	Preset Data LO	Error Check
01	06	00	00	05	00	

Commands Modbus to text mode.
Modbus Function $10_{\text {HEX }}$ Preset Multiple Registers
Message sent to Modbus RTU option card from Modbus master

Byta 0	Byte 1	Byte 2	Byte 3	Byta 4	Byte 5	Byte 6	Byte 7
Slave Address	Function	Start Addr HI	Stat Addr LO	No. of Reglstars HI	No. of Registers LO	Byte Count	$\begin{aligned} & \text { Data HI } \\ & \text { (Reg } 414 \mathrm{Dz}) \end{aligned}$
01	10	14	D1	00	05	OA	31

Bytes	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13	Byte 14	Byta 15
$\begin{gathered} \text { Dota HI } \\ \text { (Reg 414D2) } \end{gathered}$	$\begin{gathered} \text { Data Hi } \\ \text { (Reg 414D3) } \end{gathered}$	$\begin{aligned} & \text { Data +1 } \\ & (\text { Reg } 41403) \end{aligned}$	$\begin{aligned} & \text { Data HI } \\ & \text { (Reg 414D. } \end{aligned}$	$\begin{gathered} \text { Data HI } \\ \text { (Reg } 414 \mathrm{D} 4 \text {) } \end{gathered}$	$\begin{gathered} \text { Data HI } \\ \text { (Reg } 414 \mathrm{D} 5 \text {) } \end{gathered}$	$\begin{gathered} \text { Data BI } \\ (\text { Reg } 41405) \end{gathered}$	$\begin{gathered} \text { Data Hi } \\ \text { (Reg 414D6) } \end{gathered}$
32	33	34	35	36.	37	38	39

Byta 16	Byte 17
Data HI	Error Check
(Reg 414D6)	
30	-

Note that the starting address of a register is the parameter number $\times 10-1$ in HEX .
Message sent to Modbus master from Modbus RTU option card

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Slave Address	Function	Start Addr HI	Start Addr LO	No. Regislers HI	No. Registers LO	Error Check
01	10	14.	D1	.00	05	

All values are in hexadecimal.

Exception Codes

When the VLT 6000 responds to the master via the Modbus serial network, it uses the function code field to indicate either a normal (error-free) response or an error (called an exception response). In an error-free response, the drive simply echoes the original function code. For an exception response, the drive will return a code that is equivalent
to the original function code with its mostsignificant bit set to a logic 1. In addition, the drive places a unique code into the data field of the response message. This tells the master what kind of error occurred, or the reason for the exception. The tables below identify the codes and describe their meaning.

Modbus Code (decimal)	Meaning
00	The parameter number does not exist
01	There is no write access to the parameter
02	The data value exceeds the parameter limits
03	The used sub-index does not exist
04	The parameter is not of the array type
05	The data type does not match the parameter called
17	Data change in the parameter called is not possible in the present mode of the drive. Some parameters can only be changed when the motor has stopped
130	There is no bus access to the parameter called
131	Data Change is not possible because factory setup is selected
255	Message Timeout

VLT 6000 Errors

Modbus Code (decimal)	Meaning
64	Invalid Data Address
65	Invalid Message Length
66	Invalid Data Length
67	Invalid Function Code

Modbus RTU Errors

APPENDIX A

Supported
Function
Codes

Appendix A describes the following functions supported by the Modbus RTU option card.

Read Coil Status ($01_{\text {HeX }}$)	Read Holding Registers (03 Hex)
Force Single Coil (05	Preset Single Register (06
Force Multiple Coils ($0 \mathrm{~F}_{\text {Hex }}$)	Preset Multiple Registers ($10_{\text {HEX }}$)

Description

Reads the ON/OFF status of discrete outputs ($0 \times$ references, coils) in the slave. Broadcast is never supported for reads.

Query

The query message specifles the starting coil and quantity of coils to be read. Coils are addressed starting at zero. Coils 1-16 are addressed as 0.15.

Example of a request to read coils 1-16 from slave device 01.

Field Name	Example (HEX)
Slave Address	01
Function	01
Starting Address HI	00
Starting Address LO	00
No. of Points HI	00
No. of Points LO	10
Error Check (CRC)	-

Response

The coil status in the response message is packed as one coil per bit of the data field. Status is indicated as: $1=O N ; 0=O F F$. The LSB of the first data byte contains the coil addressed in the query. The other coils follow toward the high order end of this byte, and from 'low order to high order' in subsequent bytes.

If the returned coil quantity is not a multiple of eight, the remaining bits in the final data byte will be padded with zeros (toward the high order end of the byte). The Byte Count field specifies the quantity of complete bytes of data.

Field Name	Example (HEX)
Slave Address	01
Function	01
Byte Count	02
Data (Coils 8-1)	55
Data (Coils 16-9)	AA
Error Check (CRC)	-

Force Single Coil ($05_{\text {HEX }}$)

Description

Forces a single coil ($0 X$ reference) to either ON or OFF. When broadcast, the function forces the same coil references in all attached slaves.

Query

The query message specifies the coil reference to be forced. Coils are addressed starting at zero. Coil 1 is addressed as 0 . Force Data $=0000_{\text {HEX }}$ (OFF) or FF $00_{\text {HEX }}$ (ON).

Example of a request to set coil 1 (addressed as 0) from slave device 01 .

Field Name	Example (HEX)
Slave Address	01
Function	05
Coil Address HI	00
Coil Address LO	00
Force Data HI	FF
Force Data LO .	00
Error Check (CRC)	-

Response

The normal response is an echo of the query, returned after the coil state has been forced.

Field Name	Example (HEX)
Slave Address	01
Function	05
Force Data HI	FF
Force Data LO	00
Quantity of Coils HI	00
Quantity of Coils LO	0 A
Error Check (CRC)	-

APPENDIX A

Force

Description

Multiple Coils
($0 \mathrm{~F}_{\text {HEX }}$)
Forces each coil ($0 X$ reference) in a sequence of coils to either ON or OFF. When broadcast, the function forces the same coil references in all attached slaves.

Query

The query message specifies the coil references to be forced. Coils are addressed starting at zero. Coil 1 is addressed as 0 .

Example of a request to set 10 coils starting at coil 1 (addressed as 0) from slave device 01 .

Field Name	Example (HEX)
Slave Address	01
Function	0 F
Coil Address HI	00
Coil Address LO	00
Quantity of Coils HI	00
Quantity of Coils LO	0 A
Byte Count	02
Force Data HI (Coils 8-1)	FF
Force Data LO (Coils 10-9)	03
Error Check (CRC)	-

Response

The normal response returns the slave address, function code, starting address, and quantity of coils forced.

Field Name	Example (HEX)
Slave Address	01.
Function	0 F
Coil Address HI	00
Coil Address LO	00
Quantity of Coils HI	00
Quantity of Coils LO	0 A
Error Check (CRC)	-

APPENDIX A

Read
Holding Registers
($03_{\text {HEX }}$)

Description

Reads the binary contents of holding registers ($4 x$ references) in the slave. Broadcast is never supported for reads.

Query

The query message specifies the starting register and quantity of registers to be read. Registers are addressed starting at zero. Registers 1-4 are addressed as 0-3.

Example of a request to read registers 40001-03 from slave device 01.

Field Name	Example (HEX)
Slave Address	01
Function	03
Starting Address HI	00
Starting Address LO	00
No. of Points HI	00
No. of Points LO	03
Error Check (CRC)	-

Response

The register data in the response message are packed as two bytes per register, with the binary contents right justified within each byte. For each register, the first byte contains the high order bits and the second contains the low order bits.

Field Name	Example (HEX)
Slave Address	01
Function	03
Byte Count	06
Data HI (Register 40001)	55
Data LO (Register 40001)	AA
Data HI (Register 40002)	55
Data LO (Register 40002)	AA
Data HI (Register 40003)	55
Data LO (Register 40003)	AA
Error Check (CRC)	-

APPENDIX A

Preset
Single Register ($\mathbf{0 6}_{\text {HEX }}$)

Description

Presets a value into a single holding register ($4 \times$ reference). When broadcast, the function presets the same register reference in all attached slaves.

Query

The query message specifies the register reference to be preset. Registers are addressed starting at zero. Register 1 is addressed as 0 .

Example of a request to preset register 40002 to 0003_{HEx} in slave device 01.

Field Name	Example (HEX)
Slave Address	01
Function	06
Register Address HI	00
Register Address LO	01
Preset Data HI	00
Preset Data LO	03
Error Check (CRC)	--

Response

The normal response is an echo of the query, returned after the register contents have been passed.

Field Name	Example (HEX)
Slave Address	01
Function	06
Register Address HI	00
Register Address LO	01
Preset Data HI	00
Preset Data LO	03
Error Check (CRC)	--

APPENDIX A

Preset	Description Multiple
Presets values into a sequence of holding registers ($4 \times$ references). When broadcast,	
Registers	$\left.\begin{array}{l}\text { the function presets the same register } \\ \text { (10 } \\ \text { HEX }\end{array}\right)$
	references in all attached slaves.
	Query
	The query message specifies the register references to be preset. Registers are addressed starting at zero. Register 1 is addressed as 0.

Example of a request to preset two registers starting at 40002 to $00 \mathrm{AA}_{\text {HEX }}$ and 0102_{HE}, in slave device 1.

Field Name	Example (HEX)
Slave Address	01
Function	10
Starting Address HI	00
Starting Address LO	01
No. of Registers HI	00
No. of Registers LO	02
Byte Count	04
Write Data HI (Register 40001)	00
Write Data LO (Register 40001)	0 A
Write Data HI (Register 40002)	01
Write Data LO (Register 40002)	02
Error Check (CRC)	-

Response

The normal response returns the slave address, function code, starting address, and quantity of registers preset.

Field Name	Example (HEX)
Slave Address	01
Function	10
Starting Address HI	00
Starting Address LO	01
No. of Registers HI	00
No. of Registers LO	02
Error Check (CRC)	-

APPENDIX A

Danfoss Graham

Division of Danfoss Inc.

8800 West Bradley Road
P.O. Box 245041

Milwaukee, Wisconsin 53224-9541
Phone: (414) 355-8800 Fax: (414) 355-6117
Toll free: (800) 621-8806
E-mail: graham@grahamdrives.com
http://www.namc.danfoss.com

www.danfoss.com/drives

Danfoss shall not be responsible tor any errors in catalogs, brochures or other printed material. Danfoss resserves the night to alter its proctucts at ary tirna without rotice, prowided that
alterations to products already on order shall not require material changes in specificatians previoushy agreed upon by Dantoss and the Purchaser. Alteratons to products eliready on order shail not require material charges in specitications provioushy agreed upon by Dantoss and the Purchaser.

For: Industrial Sales, Application Engineering
Danfoss Drives
Division of Danfoss lnc. 4401 N. Bell School Road
Loves Park, IL. 61111
Toll free: 800/432-6367
Telephone: 815/639-8600
Fax: 815/639-8000
www.namc.danfoss com

For: HVAC Sales, Water Sates, Engineered Panels
Danfoss Graham and Danfoss US Water
Division of Danfoss lnc.
8800 W. Bradley Road
Mihwaukee, WI. 53224
Toll free: 800/621-8806
Telephone: 414/355-8800
Fax; 414/355-6117
www.namc.danfoss.com

Detailed Specifications for ERICO's TDS-DINLINE SURGE DIVERTER TDS180-4S

Applications

Lightning transients and surges are a major cause of expensive electronic equipment failure and business disruption. Damage may result in loss of computers, data and communications, loss of revenue, and loss of profits. The new TDSDINLINE family of surge diverters and filters offer economical and reliable protection from power transients in even the most strenuous applications.

Transient Discriminating Technology (TDS) introduces the first quantum leap in transient suppression technology for mains powered equipment. It offers a new level of safety and reliability, yet retains optimum protection levels critical for electronic equipment. TDS is an active frequency based device that discriminates between the slower mains voltages and the higher speed transients. When transient frequencies are detected the patented TDS "Quick-Switch" technology "switches in" robust protection devices to limit the transient to safe levels. The frequency discrimination circuit controlling the TDS "Quick-Switch" ensures that the device is virtually immune to the effects of the $50 / 60 \mathrm{~Hz}$ sustained overvoltages, allowing fault voltages of up to 480 V rms without degradation, and providing over-voltage robustness in excess of the demanding new and emerging standards.

TDS technology is essential for any site where abnormal over-voltages can occur or where the possible catastrophic failure of traditional technologies due to overvoltage events can not be tolerated.

The TDS 180-4S unit provides this technology in a single mode shunt-only, 72 mm width module. Its unique design allows it to be configured for $\mathrm{Ph}-\mathrm{N}$ or $\mathrm{Ph}-\mathrm{E}$ or N -E applications.

Rated to a surge capacity of $80 \mathrm{kA}(8 / 20 \mu \mathrm{~s})$, internally 160 kA of surge material is provided for additional robustness and to provide long service life. The unit is designed for sites with a medium risk of transients or for secondary protection applications. For the protection of high exposure sites or critical equipment higher surge rated TDS DINLINE units, or TDS MOVTEC ${ }^{\text {TM }}$ should be installed.

Features

- Robust against abnormal over-voltage
- UL1449 Edition 2 compliant
- Single phase primary protection for medium exposure sites or secondary protection applications
- Single mode protection, configurable to $\mathrm{Ph}-\mathrm{N}, \mathrm{Ph}-\mathrm{E}$ or $\mathrm{N}-\mathrm{E}$ protection
- 35 mm DIN rail mount, DIN 43880 profile matches common MCBs
- 72 mm width compact design fits into most switch and distribution boards
- Electronic status indicator ideal for poorly illuminated locations
- Long Service life
- Optional retrofittable TDS Alarm Relay for remote alarms

LIGHTNING PROTECTION/GRQUNDIFG

TDS-DINLINE SURGE DIVERTER TDS180-4S

SPECIFICATIONS
Operation:
Nominal input voltage
Input frequency
Max. permissible abnormal over-voltage
Power systems
Earth leakage current Protection: Modes
Let through voltage @ $3 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$
Let through voltage @ $20 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$
Surge rating $8 / 20 \mu \mathrm{~s}$
Surge rating $10 / 350 \mu \mathrm{~s}$
Energy rating
Multipulse ${ }^{\text {TM }}$ capability
Aggregate surge material
Alarms and Indicators:
Protection status indication
Alarm contacts Physicals:
Environmental rating
Operating conditions
Enclosure style
Dimensions (W x D x H)
Weight
Encapsulation
Enclosure material
Surface finish
Wiring terminals
Warranty

220-277 Vrms
$50 / 60 \mathrm{~Hz}$
480 Vrms
TN-C, TN-S, TN-C-S (MEN), TT
$<2 \mathrm{~mA}$
$\mathrm{Ph}-\mathrm{N}, \mathrm{Ph}-\mathrm{E}$ or $\mathrm{N}-\mathrm{E}$
$<720 \mathrm{~V}$
$<910 \mathrm{~V}$
80kA
16kA
3840J
Yes
$160 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$
Two, electronic. $\mathrm{On}_{\mathrm{n}}=\mathrm{OK}$
User configurable, with optional TDS-AR
IP20
-35 to $+55^{\circ} \mathrm{C}, 0-90 \%$ humidity
DIN 43880
$72 \times 88 \times 70 \mathrm{~mm}$
350 g (approx.)
Shockguard
Flame Retardent UL94V-0
Spark eroded finish
Accepts up to $6 \mathrm{~mm}^{2}$
5 years
UL1449 Edition 2
AS 3260, IEC 950
Certificate of suitability, Electricity Regulator ANSI/IEEE C62.41-1991 Cat A, Cat B, Cat C. ANSI/IEEE C62.45-1987 Life cycle testing. AS/NZS 1768-1991 Cat A, Cat.B, Cat C. BS 6651:1992 Cat A, Cat B. IEC801-5 Installation Class 5. IEC 61643-1

Note: Other operating voltages and frequencies are available on application.
For specifications on other DNNLINE products, refer to relevant Specifications Sheet.
Exceeding nominal operating voltage while transient events occur may affect product life.
TDS, MULTIPULSE, PROLINE, CRITEC, MOVTEC, DINLINE and SURGE REDUCTION FILTER are trademarks of ERICO.

Due to a policy of continual product development, specifications are subject to change without notice. © Copyright 1998

Model Number
TDS180-4S-277

Description
TDS 277V 80KA SURGE SUPPRESSOR

Hobar	Ph:46136337-3200	1ax+813 3273-0399	Adelaide	phote1 $88886-8555$	fax+818 8388-6559
Sydrey	Ph:+81 2 9479-8500	fax+ 112 8980-5092	Perth	ph:-61189358-1233	fax+6189350-1404
Medboume	Ph:+81 3 9894-2677	tax+8139894-3216	Singapore	ph:+ 85-783-2477	faxt $655633-2397$
Canberra	ph:+812 8257-3055	tax+812 6257-3127	Mhailand	ph= 868 627-8037-8	fax.+662 627-9168

ERICO's coordinated approach to facility protection - CADWELD, CRITEC, ERITECH www.erico.com

Power interruptions can affect productivity, cost dollars and at times, safety

Circuit condition sensing circuit

In today's highly competitive environment it is essential to be able to rely on a continuous power supply.
Modern buildings and industrial complexes have critical loads such as essential lighting, computers and continuously operating industrial equipment. An uninterrupted power supply is vital for these functions.
Reliability of your power supply can be achieved with a Terasaki automatic transfer switch comprising a basic transfer switch for the actual switching and a logic control panel, or control circuit to automatically sense when to switch. Whenever mains voltage drops below 85% of the nominal line voltage, the logic controller signals the emergency source engine to start, then automatically transfers the load to the emergency source by activating the motor driven circuit breakers in the BTS (basic transfer switch).

The transfer operation is initiated and controlled by a compact logic panel comprising voltage and phase monitoring relays, time delay relays and logic relay (or PLC logic type). An adjustable time delay relay prevents changeover due to momentary voltage fluctuation. When the load has been transferred the supply is continually monitored to determine when the load can be transferred back to the preferred supply. An adjustable time delay relay (TDEN) prevents the transfer switch returning the load to the normal supply until the voltage has stabilised.
The basic transfer section comprising motor operated circuit breakers and interlocks is controlled by the logic panel and performs the automatic transfer only when commanded to do so by the logic panel.
The logic control also provides a voltage-free contact to initiate starting the emergency engine.
The standard TemLogic panels may be customised with up to 12 optional functions (refer pages 9-22 to 9-25 for details)

Caption?

Caption?

TERASAKI

Transfer switches

BASIC TRANSFER SWITCHES

Terasaki transfer switches may be supplied without TemLogic control panels where customers prefer to design their own automatic control. This assembly is known as a basic transfer switch.

Each basic transfer switch includes two motor operated circuit breakers mechanically and electrically interlocked for safety. One additional auxiliary switch for customer use is supplied as standard on each circuit breaker. The assembly is mounted on a white painted base plate and wired to terminals allowing for simple customer connection.

BTS options:

Extra auxiliary contacts.
Alarm switch.
Shunt trip.
Other options include:
Common loadside busbars.
Enclosure.
Voltage:
Standard voltage is 240 V AC .
Special voltages:
110 V, AC, 110 V DC, 24 V DC
available on request.

Transfer switches

Multiple functions -
 Protection, isolation and switching in one compact device

Circuil breaker transfer switches provide integral circuit protection, automatic switching and circuit isolation in one compact device. Other features include:

- A choice of moulded case or air circuit breaker.
- Auxiliary and optional alarm contacts which indicate the status of each MCCB 'on - off or tripped', and may be used to signal to a master controller or building management system.
- Indicator flags on the motor mechanism to show motor operation status.

D Dual mechanical and electrical interlocking is provided for safety.
] Simple connection. Control wiring is pre-wired to a terminal strip. External control connections are simple 3 wire on-off/reset common. Terasaki automatic transfer switches are space saving, economical and more flexible when compared to the alternative arrangement using electro-magnetic contactors and switch fuse units for circuit protection.

Precise protection co-ordination

MCCBs with microprocessor overcurrent relays, have the flexibility to provide multiple protective functions. Their precise co-ordination enables the transfer switch to become an integral part of the overall grading (selectivity) scheme.

Terasaki electronic MCCB protection characteristics

TERASAKI
 Transfer switches

Conserves energy

Circuit breaker transfer switches have three stable positions: 'on', 'off' and 'tripped'. These positions are maintained mechanically, thus energy consumption and maintenance is reduced by eliminating the need for electromagnetic coils.

3 Stable positions

Stable positions - conserve energy, reduce maintenance
Each position is mechanically stable eliminating the need for continuously energised coils curtailing waste energy and reducing maintenance compared to electrically held devices.

True RMS monitoring unaffected by harmonics

Tem-Break MCCBs with electronic OCRs detect true RMS of the load current. Therefore, the tripping characteristics are unaffected by harmonics. Thermal magnetic MCCBs are also unaffected. Nuisance tripping is avoided and precise protection is maintained.

(9) TERASAKI

Automatic transfer switches

Moulded case interlocked pairs

The versatility of the cable mechanical interlock fitting allows us to offer almost any combination of MCCBs from 400 A to 2500 A as an interlocked pair. Each MCCB is supplied asembled with cable mechanical interlock fitting, motor operator and auxiliary contacts for electrical interlocking plus one for customer use. The auxiliary contact leads are terminated at an auxilary connection block on the side of the breaker for convenience of customer wiring.
The cable wire is supplied. Please specify length.

Interlocked 3 pole type MCCB to MCCB

9

[^0]
Automatic transfer switches

Quality assurance

Each Terasaki automatic transfer switch is made to an identical bill of materials. A wiring schematic and connection diagram is supplied with each BTS to simplify installation and wiring. Quality Assurance is in accordance with Australian Standards.

Remote emergency off (optional)

A shunt trip (optional) is available with Terasaki automatic or basic transfer switches. This optional feature enables remote tripping of the mains or emergency circuit breakers.

Auto reset (optional)

Each basic transfer switch may be equipped for auto reset. If either circuit breaker is tripped manually via a shunt trip or by the sensing of overcurrent, the auto reset automatically returns the MCCB to the 'off' position. This feature requires the use of one additional auxiliary contact or an alarm contact. Please specify when ordering.

Shunt trip

Alarm / auxiliary switch

Transfer switches

SlimLine transfer switches. Available in horizontal or vertical configurations.

Slimline BTS

Slimline transfer switches featuring the cable/rod mechanical interlock system are more flexible than the standard walking beam models and can save valuable switchboard width when in the vertical configuration. The Slimline is available in two forms:
a) Fully assembled wired and mounted vertical or horizontal on a base plate (with rod type mechanical interlock).
b) Without baseplate and wiring. An interlocking cable is supplied loose.

The arrangement described in b) above finds its application in Form 2, 3 and 4 compartmented switchboards. This model is supplied partially assembled to enable the interlocking cable (wire) to be passed from one compartment to another without disturbing segregation barriers.
The MCCBs are supplied with motor, mechanical interlock fitting and auxiliary contacts fully assembled. The switchboard manufacturer then has the option of mounting the MCCBs complete with accessories in the position which best suits the switchboard construction.

Flexibility in MCCB selection

Different current (and frame size) rated MCCBs may be selected where the EMERGENCY supply feeds essential circuits only. By using a smaller frame MCCB on the emergency circuit a more economical arrangement can be achieved.
A wide diversity of Slimline transfer switches are available featuring models as diverse as 2500 A - 400 A. Three pole/four pole models are also available.

(9) TERASAK! Basic transfer switches (BTS) With motor

MCCBs used	Ampere Range	Interrupting cap.$(415 \mathrm{~V})$			Overall 3 pole ${ }^{4}$) dimensions (mm)			Cat. No. ') 3 pole BTS	Cat. No. ') 4 pole BTS
		Icu	Ics	OCR type	W	$\mathrm{H}^{\mathbf{~}}$)	D		
XS125CJ	40-63	18	9	Therm Mag	305	209	235	BS1C633	BS1C644
XS125CJ	63-100	18	9	Therm Mag	305	209	235	BS1C133	BS1C144
XSt25CJ	79-125	18	9	Therm Mag	305	209	235	BS1C233	BS1C244
XS125NJ	40-63	30	15	Therm Mag	305	209	235	BS1N633	BS1N644
XS125NJ	63-100	30	15	Therm Mag	305	209	235	BS1N133	BS1N144
XS125NJ	79-125	30	15	Therm Mag	305	209	235	BS1N233	BS1N244
XH125NJ	40-63	50	25	Therm Mag	305	209	235	BH1N633	BH1N644
XH125NJ	63-100	50	25	Therm Mag	305	209	235	BH1N133	BH1N144
XH125NJ	79-125	50	25	Therm Mag	305	209	235	BH1N233	BH1N244
XH125PJ	40-63	50	50	Therm Mag	305	209	235	BH1P633	BH1P644
XH125PJ	63-100	50	50	Therm Mag	305	209	235	BH1P133	BH1P144
XH125PJ	79-125	50	50	Therm Mag	305	209	235	BH1P233	BH1P244
XH160PJ	100-160	50	50	Therm Mag	336	237	258	BH2P133	BH2P144
XS250NJ	100-160	35	18	Therm Mag	336	237	241	BS2N133	BS2N144
XS250NJ	163-250	35	18	Therm Mag	336	237	241	BS2N233	BS2N244
XH250NJ	100-160	50	25	Therm Mag	336	237	258	BH2N133	BH2N144
XH250NJ	100-250	50	25	Therm Mag	336	237	258	BH2N233	BH2N244
X5400CJ	100-250	35	18	Therm Mag	500	323	325	BS4C233	BS4C244
X\$400C.	250-400	35	18	Therm Mag	500	323	325	BS4C433	BS4C444
XS400NJ	163-250	50	25	Therm Mag	500	323	325	BS4N233	BS4N244
XS400NJ	250-400	50	25	Therm Mag	500	323	325	BS4N433	BS4N444
XH400PJ	250-400	65	50	Therm Mag	500	323	325	BH4P433	BH4P444
X ${ }^{\text {d }}$ 400SE	125-250	50	25	Ejectronic	500	323	325	B\$4S233	BS4S244
XS400SE	200-400	50	25	Electronic	500	323	325	BS4S433	BS4S444
XH400SE	125-250	65	33	Electronic	500	323	325	BH4S233	BH4S244
XH400SE	200-400	65	33	Electronic	500	323	325	BH4S433	BH4S444
XH400PE	125-250	65	50	Electronic	500	323	325	BH4P233	BH4P244
XH400PE	200-400	65	50	Electronic	500	323	325	BH4P433	BH4P444
XS630CJ	250-400	45	23	Therm Mag	550	433	341	BS6C433	BS6C444
XS630CN	400-630	45	23	Therm Mag	550	433	341	BS6C633	BS6C644
XS630NJ	250-400	65	33	Therm Mag	550	433	341	BS6N433	BS6N444
XS630NJ	400-630	65	33	Therm Mag	550	433	341	ES6N633	BS6N644
XH630PJ	250-400	85	50	Therm Mag	550	433	341	BH6P433	BH6P444
XH630PJ	400-630	85	50	Therm Mag	550	433	341	BH6P633	BH6P644
XS630SE	315-630	50	33	Electronic	550	433	341	B56S633	BS6S644
XH630SE	315-630	65	33	Electronic	550	433	341	BH6S633	BH6S644
XH630PE	315-630	65	50	Electronic	550	433	341	EH6P633	BH6P644
XS800NJ	500-800	65	33	Therm Mag	550	433	341	BS8N833	BS8N844
XH800PJ	500-800	85	50	Therm Mag	550	433	341	BH8P833	BH8P844
XS800SE	400-800	50	25	Electronic	550	433	341	BS8S833	BS8S844
XH800PE	400-800	65	50	Electronic	550	433	341	BH8P833	BH8P844
XS1250SE	500-1000	65	49	Electronic	553	530	300	ES12S1033	BS12S1044
XS1250SE	625-1250	65	49	Electronic	553	530	300	BS12S1233	BS12S1244
XS1600SE	800-1600	85	64	Electronic	553	570	320	BS16\$1633	BS16\$1644
XS2000SE	1000-2000	100	64	Electronic	774	490	$361{ }^{3}$)	BS20E2033	BS20E2044
XS2500SE	1250-2500	100	64	Electronic	774	490	$361{ }^{3}$)	B\$25E2533	B\$25E2544
TL100NJ	40-63	85	85	Therm Mag	305	300	235	BT1N633	BT1N644
TL100NJ	63-100	85	85	Therm Mag	305	300	235	BTtN133	BT1N144
TL250NJ	163-250	100	100	Therm Mag	500	323	325	BT2N233	BT2N244
TL400NE	200-400	100	100	Electronic	500	323	325	BT4E433	BT4E444
TL630NE	315-630	125	70	Electronic	553	490	320	BT6E633	BT6E644
TL800NE	400-800	125	70	Electronic	553	490	320	BT8E833	BT8E844
TL1250NE	625-1250	125	85	Electronic	553	490	320	BT12E1233	BT12E1244
Note: ') Ordering sheet refer page 9-21					${ }^{3}$) Depth does not include rear connect busbars. ${ }^{\text {4 }}$) Detailed dimensions $3 / 4$ pole reler following pages.				

(9) TERASAK
 Basic transfer switches (BTS)
 3 and 4 pole combinations

MCCBs used	Ampere Range	Interrupting cap. (415 V)		OCR type	Overall dimensions (mm) ')			$\begin{aligned} & \text { Cat. No. ') } \\ & 3 \mathrm{P}+4 \mathrm{P} \\ & \text { BTS } \end{aligned}$	$\begin{aligned} & \text { Cat. No. }{ }^{1} \text {) } \\ & 4 \mathrm{P}+3 \mathrm{P} \\ & \text { BTS } \end{aligned}$
		Icu	Ics		W (4 p		D		
XS125ca	40-63	18	9	Therm Mag	350	209	235	BS1C634	BS1C643
XS125G	63-100	18	9	Therm Mag	350	209	235	BS1C134	BS1C143
XS125Ca	79-125	18	9	Therm Mag	350	209	235	BS1C234	BS1C243
XS125NJ	40-63	30	15	Therm Mag	350	209	235	BS1N634	BS1N643
XS125NJ	63-100	30	15	Therm Mag	350	209	235	BS1N134	BS1N143
XS125NJ	79-125	30	15	Therm Mag	350	209	235	BS1N234	BS1N243
XH125NJ	40-63	50	25	Therm Mag	350	209	235	BH1N634	BH1N643
XH125NJ	63-100	50	25	Therm Mag	350	209	235	BH1N134	BH1N143
XH125NJ	79-125	50	25	Therm Mag	350	209	235	BHiN234	BH1N243
XH125PJ	40-63	50	50	Therm Mag	350	209	235	BH1P634	BH1P643
XH125PJ	63-100	50	50	Therm Mag	350	209	235	BH1P134	BH1P143
XH125PJ	79-125	50	50	Therm Mag	350	209	235	BH1P234	BH1P243
XH160PJ	100-160	50	50	Therm Mag	406	237	258	BH2P134	BH2P143
XS250NJ	100-160	35	18	Therm Mag	406	237	241	BS2N134	BS2N143
XS250NJ	163-250	35	18	Therm Mag	406	237	241	BS2N234	BS2N243
XH250NJ	100-160	50	25	Therm Mag	406	237	258	BH2N134	BH2N143
XH250NJ	100-250	50	25	Therm Mag	406	237	258	BH2N234	BH2N243
xS400\%	100-250	35	18	Therm Mag	500	323	325	BS4C234	BS4C243
XS400CJ	250-400	35	18	Therm Mag	500	323	325	BS4C434	BS4C443
XS400NJ	163-250	50	25	Therm Mag	500	323	325	BS4N234	BS4N243
XS400NJ	250-400	50	25	Therm Mag	500	323	325	BS4N434	BS4N443
XH400PJ	250-400	65	50	Therm Mag	500	323	325	BH4P434	BH4P443
XS400SE	125-250	50	25	Electronic	500	323	325	BS4S234	BS4S243
XS400SE	200-400	50	25	Electronic	500	323	325	BS4S434	BS4S443
XH400SE	125-250	65	33	Electronic	500	323	325	BH4S234	BH4S243
XH400SE	200-400	65	33	Electronic	500	323	325	BH4S434	BH4S443
XH400PE	125-250	65	50	Electronic	500	323	325	BH4P234	BH4P243
XH400PE	200-400	65	50	Electronic	500	323	325	BH4P434	BH4P443
XS630CJ	250-400	45	23	Therm Mag	690	433	341	BS6C434	BS6C443
XS6300	400-630	45	23	Therm Mag	690	433	341	BS6C634	BS6C643
XS630NJ	250-400	65	33	Therm Mag	690	433	341	BS6N434	BS6N443
XS630NJ	400-630	65	33	Therm Mag	690	433	341	BS6N634	BS6N643
XH630PJ	250-400	85	50	Therm Mag	690	433	341	BH6P434	BH6P443
XH630PJ	400-630	85	50	Therm Mag	690	433	341	BH6P634	BH6P643
XS630SE	315-630	65	33	Electronic	690	433	341	BS6S634	BS6S643
XH630SE	315-630	65	33	Electronic	690	433	341	BH6S634	BH6S643
XH630PE	315-630	65	50	Electronic	690	433	341	BH6P634	BH6P643
XS800NJ	500-800	65	33	Therm Mag	690	433	341	BS8N834	BS8N843
XH800PJ	500-800	85	50	Therm Mag	690	433	341	BH8P834	BH8P843
XS800SE	$400-800$	50	25	Electronic	690	433	341	BS85834	BS8S843
XH800PE	400-800	65	50	Electronic	690	433	341	BH8P834	BH8P843
XS1250SE	500-1000	65	49	Electronic	693	530	300	BS12S1034	BS12S1043
XS1250SE	625-1250	65	49	Electronic	693	530	300	BS12S1234	BS12S1243
XS1600SE	800-1600	85	64	Electronic	693	570	320	BS16S1634	BS16S1643
XS2000SE	1000-2000	100	64	Electronic	994	490	$361{ }^{\text {² }}$)	BS20E2034	BS20E2043
XS2500SE	1250-2500	100	64	Electronic	994	490	$361{ }^{\text {\% }}$)	BS25E2534	BS25E2543
TL100NJ	40-63	85	85	Therm Mag	350	300	235	BT1N634	BT1N643
TL100NJ	63-100	85	85	Therm Mag	350	300	235	BT1N134	BT1N143
TL250NJ	163-250	100	100	Therm Mag	500	323	325	BT2N234	BT2N243
TL400NE	200-400	100	100	Electronic	500	323	325	BT4E434	BT4E443
TLG30NE	315-630	125	70	Electronic	693	490	320	BT6E634	BT6E643
TL800NE	400-800	125	70	Electronic	693	490	320	BT8E834	BT8E843
TL1250NE	625-1250	125	65	Electronic	693	490	320	BT12E1234	BT12E1243

Note: ${ }^{1}$) Ordering sheet refer page 9-21.
${ }^{3}$) Depth does not include rear connect busbars.
${ }^{2}$) Height includes attached busbar on sizes 630 A \& above.
*) Refer NHP for dimensions (generally similar to 4 pole sizes)

MCCB Technical data

Thermal Magnetic MCCBs

Thermal-Magnetic MCCBs are available from 125AF to 800AF. Depending on the type of MCCB thermal and/or magnetic trip setting may be adjustable.

MCCB type	Fixed thermal	Adjustable thermal	Fixed magnetic	Adjustable magnetic
XS125CS, XS125NS	-	-	-	-
XS125CJ, XS125NJ	-	-	-	-
XH125NJ, XH125PJ	-	-	-	-
XH160PJ	-	-	-	
XE225NC	-	-	-	
XS250NJ, XH250NJ	-	-	-	
XH250PJ	-	-	-	
XS400CJ, XS400NJ, XH400PJ	-	-	-	
XS630CJ, XS630NJ, XH630PJ	-	-	-	
XS800NJ		-	-	
XH800PJ		-	-	

- Yes
- No

Access to setting dials
From 125AF to 250AF the thermal adjustment is visible from the front of the MCCB. At 400AF and above a protective cover must be removed to gain access to the settings. To achieve access to the settings the cover screw under the 'sealed' label must be removed.

To adjust the individual trip settings turn the setting dial with a flat bladed screwdriver.
Once set secure the cover and apply a new sealing label.

XH250NJ

XS400NJ

XS400NJ (cover removed)

TEASAK!

MCCB Technical data

Thermal Adjustment

TemBreak MCCBs have a wide thermal adjustment range, one of the largest on the market. The rated current ' l ' is continuously adjustable from 63% to 100% of its nominal current ' In '. There are three main points of calibration marked at $63 \%, 80 \%$ and 100%, as shown in the diagram below.

Magnetic Adjustment

The magnetic adjustment is available on MCCBs of 400AF and above. The magnetic setting ' 1 m ' is continuously adjustable from 500% to 1000% of its rated current ' $1 n$ '. There are five main points of calibration marked as multiples of $\mathrm{In}_{\mathrm{n}} ; 5,6,7.1,8.5, \& 10$. These are shown in the diagram below.

Examples

1. XS125NJ/125A MCCB set at $\mathrm{I}_{\mathrm{r}}=0.8$, the rated current is calculated as $125 \times 0.8=100 \mathrm{~A}$
2. $X S 400 \mathrm{NJ} / 400 \mathrm{~A} M C C B$ set at $\mathrm{I}_{\mathrm{m}}=6$, the magnetic setting is calculated as $400 \times 6=2400 \mathrm{~A}$
3. $\mathrm{XS} 630 \mathrm{NJ} / 630 \mathrm{~A} M C C B$ set at $\mathrm{I}_{\mathrm{f}}=0.8 \& \mathrm{Im}=5.0$

The rated current is calculated as $630 \times 0.8=504 \mathrm{~A}$
The magnetic setting is calculated as $630 \times 5=3150 \mathrm{~A}$
Note that the magnetic setting is a multiple of the nominal current l_{n} and not the rated current t. Alt thermal and magnetic trip settings are expressed as $A C$ r.m.s. values.
All MCCBs are calibrated at $45^{\circ} \mathrm{C}$ unless otherwise specified.

Breakers with adjustable magnetic trip

Breaker	Rated current (A)	Magnetic trip current (A)			6	5
		Scale 10	8.5	7.1		
XS400CJ	250	2500	2125	1775	1500	1250
XH400PJ	400	4000	3400	2840	2400	2000
XS630NJ	630	6300	5355	4473	3780	3150
XH630PJ	630 ,	\%66300	5355	人29.4473.	3780	+ 3150
XS800NJ	800	8000	6800	5680	4800	4000
XH800PJ	800	± 88000	6800	,	4800	- 4000

Note: Settings; 3-poles can be adjusted simultaneously with one adjustment dial.

TEBASAK
 MCCB Technical data

Time/current characteristic curves

Ambient compensating curves

Example 1

The XS250NJ set at its maximum thermal setting of 250A experiences an overload of 1000A. What would be the tripping time?

Solution

As the axis are 'percent' rated current the overload as a percentage to rated current is

$$
\frac{100 \mathrm{~A}}{250}=400 \%
$$

The maximum and minimum on the curve are the tolerance bands. Therefore at 400% overload the tripping time would be as follows:
Maximum trip time $=30$ seconds
Minimum trip time $=10$ seconds
Average trip time $=\mathbf{2 0}$ seconds
Due to strict quatity control of the manufacturing and calibration processes, the characteristic curve of most MCCBs will follow the 'average' curve within the tolerance band.

Example 2

The XS250NJ is calibrated at 250 A for $45^{\circ} \mathrm{C}$ ambient. If the temperature rose to $55^{\circ} \mathrm{C}$ what effect would this have?

Solution

At $55^{\circ} \mathrm{C}$ the ambient compensating factor is 93%, i.e. $250 \times 0.93=232.5 \mathrm{~A}$.

In other words the XS160NJ would act as an MCCB set at 232.5A, in $55^{\circ} \mathrm{C}$.

(9) TEASAMI
 MCCB Technical data

XS125CS, XS125NS

Time/current characteristic curves

Ambient compensating curves

XS125CJ, XS125NJ, XH125NJ, XH125NJ

Time/current characteristic curves

Ambient compensating curves

(9) ITBASAN
 MCCB Technical data

XE225NC

Time/current characteristic curves

Ambient compensating curves

XH160PJ, XS250NJ, XH250NJ

Time/current characteristic curves

Ambient compensating curves

(9) TEBASAM
 MCCB Technical data

XH250PJ, XS400CJ, XS400NJ, XH400PJ

Time/current characteristic curves

Ambient compensating curves

XS630CJ, XS630NJ, XH630PJ

Time/current characteristic curves

Ambient compensating curves

(9) TEASAK
 MCCB Technical data

XS800NJ, XH800PJ

Timefcurrent characteristic curves

Ambient compensating curves

XM30PB

Time/current characteristic curves

Ambient compensating curves

(9) IEASAN
 MCCB Technical data
 新
 A

TL30F

Time/current characteristic curves

Ambient compensating curves

TL100NJ

Time/current characteristic curves

Ambient compensating curves

MCCB Technical data

TL100EM

Time/current characteristic curves

Ambient compensating curves

TL250NJ

Time/current characteristic curves

Ambient compensating curves

MCCB Technical data

Microprocessor based characteristics and adjustments

Characteristics

The standard microprocessor based MCCB from Terasaki has the most flexible characteristics on the European market. In addition to the standard overload and short circuit protection, there are a number of options available to meet specific applications.

- Standard
- Optional
- Not available

MCCB types include XV mining MCCBs.

Legend		Application	
LTD	Long Time Delay	Overload protection, True R.M.S.	
STD	Short Time Delay	Short circuit protection and selectivity	Standard for all
INST	Instantaneous	Short circuit protection, fast acting	TemBreak
1^{2} R RAMP		Provides easier grading with downstream fuses	Microprocessor
Pick-up LED		Lights on LTD overload, flashes on PTA pick-up	MCCBs
Test Port		Facility for TNS-1 OCR checker for calibration checking	
PTA	Pre-Trip Alarm	Useful for loadshedding application	
GFT	Ground Fault Trip	Protection against ground faults	
LEDs	Light Emitting Diodes	Indication of fault for faster diagnosis	
HI-INST	High Instantaneous	High inrush applications, increased selectivity	

Access to setting dials

To adjust the settings on the microprocessor TemBreak, the sealed label must be broken and the cover fixing screws removed. To adjust the individual trip settings, turn the setting dial with a flat bladed screwdriver. Align the setting required between the black dots marked on the dial.

MCCB Technical data

Microprocessor based characteristics and adjustments operation settings

Standard time current curves

Standard microprocessor adjustments

The I^{2} t ramp switch, which is provided as standard, assists in discrimination with downstream fuses.
With the switch off, the STD operates with a definite time characteristic: L with the switch on, the characteristic alters to a ramp: k, cutting off the corner which poses a potential selectivity problem.

Setting Dial		Available adjustments	
Base current setting	10	0.63-0.8-1.0 $\mathrm{ln}^{\text {m }}$	Amps
LTD pick up	11	0.8-0.85-0.9-0.95-1.0 $\times 10$	Amps
LTD setting	T1	5-10-15-20-25-30 (at la $\times 600 \%$)	Secs
STD pick up	12	2-4-6-8-10 10	Amps
STD setting	T2	0.1-0.15-0.2-0.25-0.3	Secs
INST pick up	13	3-12-x lo (continuously adjustable)	Amps

[^1]
MCCB Technical data

Adjustment of TemBreak (electronic type) tripping characteristics

Electronic models of TemBreak come standard with an 8-bit microprocessor Over Current Relay (OCR). It is the OCR which provides the functions necessary for protection, while maintaining a high level of reliability.

The wide OCR adjustment range allows the circuit breaker to be set-up in order to trip under certain conditions. Adjustments can be made to the tripping current as well as tripping time of the breaker.

Note: The ground fault trip and pre-trip alarm cannot be used simultaneously in a single breaker.

Front view

Figure 1. Electronic OCR adjustment possible (with label removed).

Adjustment method

Remove the sealing label, loosen and remove the cover fixing screws and remove the cover. To adjust the individual trip settings, turn the setting dial with a flat bladed screwdriver.
Note: Align the groove (end marked with dots) between the bands for the required setting.
For example, the diagram right shows $l_{0}=1.0$.
The INST. and GFT pick-up currents are continuously adjustable.

Secure the cover and apply the sealing label.

(9) TBiasak

MCCB Technical data

Microprocessor based characteristics and adjustments operation and examples

Overload adjustment

The rated current of the microprocessor based TemBreak is adjusted using two current multipliers. This process achieves high accuracy adjustment from 50% to 100%. These are the LTD pickup dial (I_{1}) and the Base Current (l_{0}) selector switch.

The rated current (LTD pick-up) is achieved as follows:
$l_{\text {Rawe }}=\ln \times l_{0} \times l_{1}$
In the example shown on the right the rating would be:
$I_{\text {farito }}=1250 \times 1.0 \times 1.0=1250 \mathrm{~A}$
In total there are 15 possible increments of adjustment
 between 50 and 100% as shown below.

Base current

Current dial

Breaker
rated current 72% in this
rated current

Example - Settings

In the example shown on the right what are all the settings in Amps?
Solution
$I_{\text {Ratima }} L T D$ pickup $=\ln \times \operatorname{lo} \times l_{1}$
$1250 \times 0.8 \times 0.9=900 \mathrm{~A}$
STD pickup $=\ln \times \ln \times l_{2}$
$1250 \times 0.8 \times 4=4000 \mathrm{~A}$
INST pickup $=\ln \times 10 \times 13$
$1250 \times 0.8 \times 12=12,000 \mathrm{~A}$
GFT pickup $=\ln \times 10$

$$
1250 \times 0.1=125 \mathrm{~A}
$$

(Nole that GFT is a function of l_{n} and not lo)

Example - Time/Current Curves

TERASAK

MCCB Technical data

Options (electronic type) TemBreak

Pre-trip alarm (PTA)

The PTA continuously monitors the true r.m.s. value of the load current. When the load current exceeds the pre-set current (lp) an LED gives local alarm that the MCCB is approaching an overload situation.
Should the current lp be exceeded for 40 secs a (1a) contact will close to provide remote indication and/or load shedding.

PTA specifications
Pick up current (A) : [le]

Adjustable steps of $70,80,90,100 \%$ of the selected rated current [1 l$]$.
Setting tolerance $\pm 10 \%$
Note: The long time-delay trip does not operale 'first' when the pick-up current is adjusted to 100% of the rated current $[1 \mathrm{l}]$.

PTA characteristics

Operating time (s) [lp]		40 secs (fixed definite time-delay) setting tolerance is $\pm 10 \%$		
Output contact	Rating of contact	Normally open contact, (1a) Integral lead is standard length (450 mm)		
			Resistive load	Inductive load
		250 V AC	125 V A (2 A max)	20 V A (2 A max)
		220 V DC	60 W (2 A max)	10 W (2 A max)
PTA indication		Pick-up LE		

MCCB Technical data

Adjustment of TemBreak electronic type OCR with ground fault

Ground fault trip

The GFT pick-up current is continuously adjustable from 10% to 40% of the rated CT current.
Notes: The ground fault trip and pre-trip alarm cannot be used simultaneously in a single breaker.
XS400NE, XH400NE are not available with ground fault function.
When a three pole breaker is used in a 3 phase, 4 wire system, a separate CT is required for the neutral line. (refer NHP).

GFT specifications

Continuously adjustable from 10 to 40% of the rated CT current (lct) setting tolerance is $+/-15 \%$

Is XIct
Time-delay (S): [TG]

The GFT has a definite time-delay characteristic and is adjustable in steps of $0.1,0.2,0.3,0.4,0.8 \mathrm{~s}$. Total clearing time is +50 ms and resettable time is -20 mS for the preset time delay.
GFT characteristics
Tg SEC

4th CT for GFT

Rating (A)	Type
2500	UXOY0007A
2000	UXOY0006A
1600	UXOY0005A
1250	UXOY0004A
1000	UXOY0003A
800	UXOY0002A
630	UXOY0001A

Dimensions (mm)

Rating (A)	A	B	C	D	E	F	H	CH	M	N
$2500-1000$	140	110	50	10	80	85	145	75	85	35
$800-630$	105	100	40	8	50	75	110	57	50	20

TERASAK

MCCB Technical data

TemBreak electronic type with ground fault

External neutral sensor (4th CT)
External neutral sensors are required whenever optional earth fault is used on 3 phase 4 wire systems

The position and direction of 4th CT

The direction of 4th CT

MCCB Technical data

Trip indicators

The LEDs when lit, indicate which trip function tripped the breaker, long-time-delay (LTD), short-time delay' instantaneous (STD/NST) or ground fault (GFT) (control power required).

Note: If a pre-trip alarm (PTA) is fitted, the LED control power can be used (common).

Trip indicator display (1250AF and above)

Trip indicator display (400AF to 800AF) and OCR controller example: XS, XH, XV400
An optional feature available with TemBreak electronic type
An external trip indicator box is required with 400AF models. are fault indication contacts - these are voltage free and provide a signal of the cause of trip (long time, STDINST).

Notes: For dimensions of $\mathrm{XS} / \mathrm{XH800SE}, \mathrm{PE}$ and $\mathrm{XV630/800PE}$ refer to pages 7-39 and 7-40, add dimensions of OCR CONTROLLER and TRIP INDICATION box (above).

MCCB Technical data

OCR controller (PTA and trip indication)

OCR controller mounting position

Dimension table (mm)

Ampere frame	Type of мсСв			B
		With UVT controller	Without UVT controller	
400	X 8400	34	97	48
	XH400	34	97	48
800	X 8800	64	151	60
	XH800	64	151	60
1600	XS1600SE	51	114	92
2500	XS2500NE	54	180	115

OCR controller (PTA and trip indication)
The OCR controller is installed in the left hand side of the breaker (standard). This can also be installed externally to the breaker (please specify when ordering).
OCR controller specifications
Control power source
Rated voltage $100-120 \mathrm{~V} \mathrm{AC}$ or $200-240 \mathrm{~V} \mathrm{AC}$
Consumption 2 VA
Note: The permissible range of control power is $85-110 \%$ of the rated voltage.
OCR controller connection diagram $\left.\left.{ }^{1}\right)^{\prime}\right)$

OCR controller dimensions (Installed external to the breaker)

7

[^2] MCGB Technical dat

Time/Current curves XS400, XH400, XV400
Time/current characteristic curves

Overcurrent tripping characteristics

CT rated curent (A) (li.)	250, 400
Base current setting (A) (10)	(In$) \times(0.63-0.8-1.0)$
Long time-delay pick-up currert (A) (${ }^{\text {(1) }}$)	(10) \times (0.8.0.85-0.9.0.95-1.0) Non-tripping at (li) setting $\times 105 \%$ and below. Tripping at 125% and above.
Long time-delay time setings (S) (T)	($5 \cdot 10-15 \cdot 27.30$) at (11) $\times 600 \%$ current. Setting toterance $\pm 20 \%$
Sheot time-delay pick-up current (A): (l)	(10) \times (2-4-6-8-10) Setuing tolerance $\pm 15 \%$
Shert time-delay time settings (S) (T_{2})	Opening time $(0.1,0.15,0.2,0.25,0.3)$ in the definite time-delay. Total clearing time is +50 mS and resetuable time - 20 mS for the time-delay setting
Instantaneous trip pick-up current (A) (b)	Continuously adjustable from (io) x (3 io 12) Setting tolerance $\pm 20 \%$
- Pre-trip alarm pick-up current (A) (1.)	(1.) $\times(0.7,0.8,0.91 .0)$ Seiting tolerance $\pm 10 \%$
- Pre-trip alam time setting (S) (T)	40 fixed definite time-delay. Sening tolerance $\pm 10 \%$

Note: - Optional
Under lined values will be applied as standard ratings unless otherwise specified when ordering

XS630, XH630, XV630, XS800, XH800, XV800
 Time/current characteristic curves

Overcurrent tripping characteristics

MCCB Technical data

Microprocessor based characteristics and adjustments XS1250SE, XV1250NE, XS1600SE, XS2000NE, XS2500NE

Time/current characteristic curves

Overcurrent tripping characteristics

CT rated current (A) (tn)	1000, 1250, 1600, 2900, 2500
Base current setting (A) (k)	(h$) \times(0.63-0.8-1.0)$
Long [ime-delay pick-up current (A) (1)	(b) \times (0.8-0.85-0.9-0.95-1.0) Non-tripping at (l) setting $\times 105 \%$ and below. Tripping at 125% and above.
Long lime-delay time settings (S) (T_{1})	(5-10-15-20-30) at (1.1) $\times 600 \%$ curtent. Setting tolerance $\pm 20 \%$
Short time-delay pick-up curent (A):	(k) \times (2-4-6-8-10) Setting tolerance $\pm 15 \%$
Short time-delay time setings (S) (Ti)	Opening time $\{0.1,0.15,0.2,0.25,0.3\}$ in the defirite time-delay. Total clearing time is +50 mS and resettable time - 20 mS for the time-delay setting
Inslantaneours trip pick-up ourrenl (A) (1)	Continuously adjustable from (lo) \times (3 to 12) Sening tolerance $\pm 20 \%$
- Pte-tip alarm pick-up curent (A) (1.)	(h) $\times(0.7,0.8,0.9,1.0)$ Setting tolerance $\pm 10 \%$
- Pre-trip alarm time seting (S) (Tr)	40 fuxed definite time-delay. Senting tolerance $\pm 10 \%$
- Ground fault trip pick-up current (A) (la)	Continuously adjustable from $\left(\mathrm{I}_{\mathrm{r}}\right) \times(0.1$ to 0.4$)$ Setting tolerance $\pm 15 \%$
- Ground fault trip time setting (S) (To)	opening time ($0.1-0.2-0.3-0.4-0.8)$ in the definite time-delay. Total clearing time is +50 mS and resettable time is - 20 mS for the time-delay settings

Note: - Opicnal
Undertined values will be appled as standard ratings unless otherwise
specified when ordering

MCCB Technical data

Time/Current curves Mathematical analysis

MCCB curves

A microprocessor MCCB has three major regions on its overcurrent tripping characteristic, namely Long Time Delay (LTD) for overload protection, Short Time Delay (STD) and Instantaneous (INST), both for short-circuit protection.

The following is an insight into how these curves interact and could act as a guide for hand-drawing the curves. TemCurve Selectivity Analysis Software is available for computerised generation of curves (refer to page 7-24).
Firstly consider the following basic characteristic curve shown in figure 1.
The LTD takes the form of a curve and has the following characteristic equation:

$$
\left(l^{2}-1\right) \cdot t=k
$$

where ' k ' is a constant. To determine k, the calibration point of the LTD should be used, i.e. $t=T_{1}$ at $\mathrm{I}_{1}=6(600 \%)$.
IEC - 947-2 states that a breaker must not trip below 105\% of its rated current, and always trip at 130% of its rated current. Terasaki microprocesssor MCCBs however are calibrated to trip between 105% and 125%, giving them a higher degree of accuracy. If the middle point is taken then the pick-up of the MCCB is 115% of its rated current.
The STD and INST parts of the curve can be drawn more easily as they are simply a series of horizontal and vertical lines determined by the I_{2} and T_{2} settings for the STD, and I_{3} setting for the INST.

Example
If we assume that we have:
XS1250SE with 1250A CTs and
$\mathrm{I}_{0}=1, \mathrm{I}_{1}=0.8, \mathrm{~T}_{1}=30 \mathrm{secs}$,
$\mathrm{I}_{2}=8, \mathrm{~T}_{2}=0.2 \mathrm{sec}$ and
$I_{3}=12$ (dial setting on OCR)
then the characteristic curve can be constructed as follows.
To draw the LTD we firstly need to determine the constant k, as follows:
$k=\left(l^{2}-1\right) \cdot t=\left(6^{2}-1\right) \cdot 30=1050$
giving the characteristic equation:
$\left(1^{2}-1\right) \cdot t=1050$
By simple arithmetic the tripping times for each level of overload can now be determined.
For 400% overload (for the example this is equivalent to $1250 \times 1.0 \times$ $0.8 \times 4=400 \mathrm{~A}$).

$$
t=\frac{1050}{\left(1^{2}-1\right)}=\frac{1050}{\left(4^{2}-1\right)}=70 \mathrm{secs}
$$

The STD and INST can be constructed as follows with
$I_{2}=I_{n} \times I_{0} \times I_{2}$
$I_{3}=I_{n} \times I_{0} \times I_{3}$
Please note that 20 ms is taken as an average tirne for the INST trip of the MCCB as it is the maximum time it will take the MCCB to trip. In practice the breaker will open much faster, particularly at high faults where the current limiting qualities of the MCCB become more effective.

MCCB Technical data

OCR checker, inspection and maintenance

The TemBreak (Electronic) OCR checker, Type TNS-1, is a portable easy-to-use instrument for field testing the trip functions.
It checks the pick-up current and tripping time value of the LTD, STD, INST. and GFT functions.

MCCB Technical data

TemBreak XM30PB
Outline dimensions (mm)

ASL: Arrangement standard line H: Handle frame centre line

Preparation of conductor

Drilling plan

Rear connected (optional)

Drilling plan

Panel cut-out dimensions shown give an allowance of 1.0 mm
around the handle escutcheon.

Plug-in (optional)
Drilling plan

(9) TBASAK

MCCB Technical data

TemBreak XS125CS, CJ, NS, NJ, XH125NJ, PJ and TL30F MCCBs

Outline dimensions (mm)
Front connected (standard)

ASL: Arrangement standard line H: Handle frame centre line

Note: XS125NS 1 pole only
Drilling plan

Rear connected (optional)

Plug-in (optional)
Mounting block
Drilling plan

(9) TBasan

MCCB Technical data

TemBreak TL100F - TL100EM - TL100NJ
ASL: Arrangement standard line ㄴ: Handle frame centre line
Outline dimensions (mm)

Rear connected
Bold stud type

Front connected

 TL100NJ

Panel cut-out

Panel cut-out dimensions should give an allowance of 1.0 mm around the handle escutcheon.

Nate: Interpole barriers standard on TL100EM and TL.100NJ.

MCCB Technical data

Motor operators for XS125, XH125,

 TL100NJ, TL30F $\left.{ }^{\prime}\right)^{2}$)ASL: Arrangement standard line H: Handle frame centre line

Outline dimensions (mm)
Front connected (standard)

Rear connected (optional)

7

Plug-in (optional)

Notes: ') For dimensions of 7MB-3BA2 used for TL100EM TL100F refer to NHP.
${ }^{\text { }}$) Dimensions for TL100NJ not showing length of MCCB. Refer page 7-27.
Above outline dimensions are for $A C$ motors. Contact NHP for details for DC motors.

ITRASAK

MCCB Technical data

TemBreak XE225NC

ASL: Arrangement standard line H : Handle frame centre line
Outline dimensions (mm)

Front connected (standard)

 available on request
Panel cutout

Panel cut-out dimensions should give an allowance of 1.5 mm around the handle escutcheon.

Rear connected (optional)

Drilling plan

Note: In the standard shipment mode, both terminals on the line side and the load side are in a horizontal direction.

MCCB Technical data

Motor operators for XE225NC

Outline dimensions (mm)
Front connected (standard)

With terminal bars
Drilling plan
conductor

- Breakers with terminal bars available on request.

Rear connected (optional)

ASL: Arrangement standard line
나: Handle frame centre line

(9) TERASAK

MCCB Technical data

TemBreak XS250NJ

ASL: Arrangement standard line
H: Handle frame centre line
Outline dimensions (mm)
Front connected (standard)

Breakers with terminal bars available on request.

MCCB Technical data

Motor operators for XS250NJ

Outline dimensions (mm)
Front connected (standard)

Preparation of conductor

With terminal

 bars (optional)Drilling plan

- Breakers with terminals bars available on request.

ASL: Arrangement standard line
H: Handle frame centre line

TERASAKI

MCCB Technical data

TemBreak XH160PJ and XH250NJ

Outline dimensions (mm)

Note: Breakers with terminal bars available on request.

MCCB Technical data

Motor operators for XH160PJ and XH250NJ

Outline dimensions (mm)

Front connected (standard)
 the line side and the load side are in the horizontal direction
Plug-in (optional)

MCCB Technical data

TemBreak TL225F, TL250NJ
Outline dimensions (mm)

Front connected

Note: In the standard shipment mode, both teminals on the line side and the load side are in a horizontal direction.

Drilling plan

Panel cut-out

Panol cut-out dimensions should ghe an allowance of 1.0 mm around the handle escutcheon.

MCCB Technical data

TemBreak XS400, XH400, XV400, XH250PJ
ASL: Arrangement standard line
H : Handle frame centre line
Outline dimensions (mm)

Front connected (standard)
Optional extension busbars

Rear connected (optional)

Note: In the standard shipment mode, both terminals on the line side or the load side are in horizontal direction.

Drilling plan

Panel cut-out

Pamel cut-out dimenslons shown give an allowance of 1.0 mm around the handle escutcheon.

Plug-in (optional)

MCCB Technical data

TemBreak TL400NE
ASL: Arrangement standard line
H: Handle frame centre line
Outline dimensions (mm)

MCCB Technical data

Motor operators for XS400, XH400, XV400, TL250NJ, TL400NE ${ }^{1}$)

Outline dimensions (mm)
Front connected (standard)

Drilling plan

Rear connected (optional)

Note: In the standard selection mode, both terminals on the line side and the load side are in the horizontal direction

Plug-in (optional)

Panel cut-out

Panel cut-out dimenslons shoutd give an allowance of 1.0 mm around the handie escutcheon.

ASL: Arrangement standard line
t: Handle frame centre line

MCCB Technical data

TemBreak 630A frames
XS630, XH630, XV630
Outline dimensions (mm)
Front connected (standard)

Rear connected (optional)

7

Plug-in (optional)

MCCB Technical data

TemBreak 800A frames XS800, XH800, XV800

ASL: Arrangement standard line
H : Handle frame centre line

Outline dimensions (mm)

Front connected (standard)

Rear connected (optional)

Panel cut-out

Panel cut-out dimensions shown give an allowance al 1.0 mm around the handle escutcheon.
Plug-in (optional)

Mounting block
Drilling plan

MCCB Technical data

Motor operators for XS630, XH630,

 XV630PE, XS800, XH800, XV800PEOutline dimensions (mm)

Front connected (standard)

Rear connected (optional)

Note: In the standard selection mode, both terminals on the line side and the load side are in the horizontal direction.

Plug-in (optional)

ASL: Arrangement standard line
H : Handle frame centre line

MCCB Technical data

TemBreak XS/XV1250

Outline dimensions (mm)

ASL: Arrangement standard line
H: Handle frame centre line

Front connected (standard)

Drilling plan

Noto: In the standard shipment mode, both terminals on the line side and the load side are in a horizontal direction.

Panel cut-out

Panel cut-out dimensions shown give an allowance of 1.5 mm around the handle escutcheon.

Plug-in (optional)

Drilling plan

MCCB Technical data

Motor operators for XS/XV1250, (1000A and 1250A) NE \& SE types

Outline dimensions (mm)
Front connected (standard)

Drilling plan

Rear connected (optional)
Drilling plan

Noto: In the standard selection mode, both terminals on the line side and the load side are in the horizontal direction.

Panel cut-out

Panel cut-out dimensions shown give an allowance of 1.0 mm around the motor operator frame.

Plug-in (optional)

Mounting block
Drisling plan

ASL: Arrangement standard line H: Handle trame centre line

MCCB Technical data

TemBreak XS1600SE, TL630, TL800, TL1250NE
ASL: Arrangement standard line H : Handle frame centre line
Outline dimensions (mm)

Front connected (standard)

Panel cut-out

Panell cut-out dimensions shown give an allowance of 1.5 mm around the hande escutcheon.

Draw-out (optional)
Drilling plan

MCCB Technical data

Motor operators for XS1600 SE types, TL630NE, TL800NE, TL1250NE

Outline dimensions (mm)

Rear connected

Draw out (optional)

ASL: Arrangement standard line
$\mathrm{L}: \quad$ Handle frame centre line

MCCB Technical data

Motor operators for XS1600

TL630NE, TL800NE, TL1250NE

Outline dimensions (mm)

Front connected (standard)
Drilling plan

Panel cut-out

Panel cut-out dimensions shown give an allowance of 1.0 mm around the motor operator frame.

Draw out Drilling plan

ASL: Arrangement standard line
H: Handle frame centre line

MCCB Technical data

TemBreak XS2000NE
ASL: Arrangement standard line
H : Handle frame centre line
Outline dimensions (mm)

MCCB Technical data

TemBreak XS2500NE

ASL: Arrangement standard tine
H: Handle frame centre line

Outline dimensions (mm)
Rear-connected (RC standard, no FC version)

- Panel cut-out dimenslons shown given an allowance of 2 mm around the handle escutcheon.

MCCB Technical data

Motor operators XMB types for XS2000NE \& XS2500NE

MCCB accessories

Outline dimensions (mm)
Front connected (optional)

Drilling plan

Rear connected (standard)

Draw-out (optional)

ASL: Arrangement standard line
H : Handle frame centre line

MCCB Technical data

Motor operators XMB types for XS2000NE \& XS2500NE

Outline dimensions (mm)

Front connected (standard)

Drilling plan

ASL: Arrangement standard line
ㄴㄴ: Handle frame centre line

TemBreak MCCB's

XH400 series electronic type

- Current limiting.
- True RMS monitoring.
- 1^{2} t switch to assist in obtaining selectivity.
- Unique contact structure.
- Electronic trip unit with Long, Short \& Instantaneous adjustments.
- Adjustment range 50-100\% of nominal current rating.
- Standards AS 2184/AS 3947-2.
- Special models.
- Max voltage (INSUL) 690V.

XH400NE (65kA) 3 pole ${ }^{1}$)

160	80	160	XH400NE 160 3
250	125	250	XH40ONE 250 3
400	250	400	XH400NE 400 3

Short circuit capacity

Model	VC	Voltage
XH400NE	65 kA	415 V 50 Hz

Refer to ratings chart at the front of this section. For ratings to AS 3947-2 and AS 2184, and Ics/lcu.

OCR options (factory fitted)

Description	Code
Pre-trip alarm	LSIP
Fault indicators	FI
Special LTD curves	-

Product extensions
Chassis (MHC, UHC)
OCR checker
OCR adjustments
TemCurve
Residual current relays

Base standards
IEC 947-2
BS EN 60947 Part 2
VDE 0660 Part 1
AS 3947-2/Australia
AS 2184-1990/Australia ${ }^{2}$)
NEMA USA
ANSI C37. 13/USA
JIS C 8372/JAPAN
JEC 160/JAPAN

Approvals
ASTA/UK, Aust. standards
Marine
NK/JAPAN
LR/UK
AB/USA
GL/GERMANY
BV/FRANCE

Dimensions (mm) Description	Height	Width	Depth	kg
XH400NE 3 pole	260	140	103	5
XH400NE 4 pole	260	185	103	6.2

${ }^{2}$) MCCB's only.

MCCB Technical data

Connections and mountings

MCCB accessories

Front-connection type (FC)

Compression terminals

Attached flat bar

Types of terminal screws (Compression terminal and bar)
Breakers and screw size
XE series
(Economical)

XS series (Standard)	XH series (High-fault level)	XM series (Motor protection)

Pan headed screw

XS125CJ M8 XH125NJ M8 XM30PB M5

XS125NJ M8 XH125PJ M8

Hex socket head bolt

XE225NC	M8	XS250NJ M8	XH250NJ M8		
				XH160PJ M8	
		XS400	M10	TL250NJ M10	
		XH400	M10	TL400NJ	M10

Connections and mountings

MCCB accessories
Rear-connection type (RC)

Bolt stud

Horizontal (standard)

Vertical

Applicable breakers
XE series XE225NC

- X Xs series

XS250, XS400
XS630, XS800.

- XH series

XH160, XH250, XH400, XH630, XH800.

- XM series XM30РB.

Flat bar stud

Applicable breakers
Horizontal ') XS1250, XV1250NE
Vertical XS1600, XS2000NE XS2500NE.

MCCB accessories

Types of connections and mountings

Plug-in Type

Switchboard use

mounting block

MCCB Technical data

Types of connections and mountings

Draw-out type (DO indent)
Two-position type i
Applicable breakers

- XS series

XS400, XS630, XS800, XS1250.

- XH series

XH160, XH250, XH400, XH630, XH800.

- The plug-in type breaker is housed in the draw-out cradle.
- The draw out cradle has two positions "connected" and "isolated".
- The auxiliary circuits are automatically connected or isolated by the auxiliary circuit terminals on the plug-in breaker.
- Manual connector type is available.
- Safety trip (first draw out mechanism). The breaker will trip automatically if it is drawn out while still in the 'on' position.
- Position keylock in isolated position (optional). Available on request.
- IP 20 degree of protection (optional). Available on request.

MCCB Technical data

Crimp lugs (compression type)

Frame (A)	Breaker	Nominal wire size (mm^{2})						
		1.5	2.5	4	6	10	16	25
XM30	XM30PB	CAL1.5-5	CA12.5-5	CAL4-5	CAL6-5	CALTO-5	Cal16-6	
		MT25-M5	MT2.5-M5	MT4-M5	MT6-M5	MT10-M5	MT16-M5	
125	XS125CJ	-	CAL25-8	CAL4-8	CAL6-8	CAL10-8	CAL16-8	CAL25-8
	XS125NJ	MT2.5-M8	MT2.5-M8	MT4-MA	MTE-M6	MT10-M8	MT16-M8	MT25-M8
	XH125NJ							
	XH125PJ							
	TL100NJ							
	TL30F							

\square Commercially available compression terminals available from CABAC - Cable Accessories and JST Australia.
Key: CAL = CABAC lugs
MT = JST lugs

Connection

(one electric cable)
If low clearance occurs use a recommended tape or insulation.

Connection (two electric cables) H low clearance occurs use a recommended tape or insulation.

MCCB Technical data

Time/Current curves
 Mathematical analysis

A microprocessor MCCB has three major regions on its overcurrent tripping characteristic, namely Long Time Delay (LTD) for overload protection, Short Time Delay (STD) and Instantaneous (INST), both for short-circuit protection.
The following is an insight into how these curves interact and could act as a guide for hand-drawing the curves. TemCurve Selectivity Analysis Software is available for computerised generation of curves (refer to page 9-80).
Firstly consider the following basic characteristic curve shown in figure 1 .
The LTD takes the form of a curve and has the following characteristic equation:

$$
\left(l^{2}-1\right) \cdot t=k
$$

where ' k ' is a constant. To determine k, the calibration point of the LTD should be used, i.e. $t=T_{1}$ at $I_{1}=6(600 \%)$.
IEC - 947-2 states that a breaker must not trip below 105\% of its rated current, and always trip at 130% of its rated current. Terasaki microprocesssor MCCBs however are calibrated to trip between 105% and 125%, giving them a higher degree of accuracy. If the middle point is taken then the pick-up of the MCCB is 115% of its rated current.

The STD and INST parts of the curve can be drawn more easily as they are simply a series of horizontal and vertical lines determined by the I_{2} and T_{2} settings for the STD, and I_{3} setting for the INST.

If we assume that we have:
XS1250NE with 1250A CT's and
$\mathrm{l}_{0}=1, \mathrm{l}_{1}=0.8, \mathrm{~T}_{1}=30 \mathrm{secs}$,
$\mathrm{I}_{2}=8, \mathrm{~T}_{2}=0.2 \mathrm{sec}$ and
$I_{3}=12$
then the characteristic curve can be constructed as follows.
To draw the LTD we firstly need to determine the constant k, as follows:
$k=\left(l^{2}-1\right) \cdot t=\left(6^{2}-1\right) \cdot 30=1050$
giving the characteristic equation:
($1^{2}-1$) $t=1050$
By simple arithmetic the tripping times for each level of overload can now be determined.
For 400% overload (for the example this is equivalent to $1250 \times 1.0 \times$ $0.8 \times 4=400 A$).

$$
t=\underset{\left(1^{2}-1\right)}{1050}=\frac{1050}{\left(4^{2}-1\right)}=70 \text { secs }
$$

The STD and INST can be constructed as follows with
$I_{2}=I_{n} \times I_{0} \times I_{2}$
$I_{3}=I_{n} \times I_{0} \times I_{3}$
Please note that 20 ms is taken as an average time for the INST trip of the MCCB as it is the maximum time it will take the MCCB to trip. In practice the breaker will open much faster, particularly at high faults where the current limiting qualities of the MCCB become more effective.

TemBreak XH400

ASL: Arrangement Standard Line L : Handle frame centre line

Outline dimensions (mm)

Front connected (standard)

Drilling plan

Rear connected (optional)

Note: In the standard shipment mode, both terminals on the line side or the load side are in horizontal direction.

Panel mount

Panel cutout dimensions shown give an allowance of 1.0 mm around the handle escutcheon.

Plug-in (optional)

Motor operators for XH400

Outline dimensions (mm)
Front connected (standard)

Drilling plan

Rear connected (optional)

Note: In the standard selection mode, both terminals on the line side and the load side are in the horizontal direction

Plug-in (optional)

ASL: Arrangement Standard Line
난: Handle frame centre line

Miniature circüit breakers and fuse fault current limiters co-ordination chart
For fault current levels up to 50kA at 415 V

Notes: 1) Minimum fuse size is based on grading under overload of one MCB with one set of fuses. Where a single set of fuses protects more than one MCB, the minimum fuse size shall be increased to allow for load biasing effects.
${ }^{2}$) Maximum fuse size based on testing to AS 3439.1 clause 8.2.3.

[^3]Application data

Selectivity and Cascading Applications

A higher reliance on electrical supply and safety in commerce and industry has increased awareness in circuit breaker technology and applications. Additionally, while maximising system safety and reliability, efficient economy of overall costs is also of great importance.
The combination of these factors has given rise to more precise methods of circuit breaker application.
Two common terminologies relating to general power backup and system protection are: Selectivity (Discrimination) and Cascading (Back-up). In general terms, Selectivity is used to improve system reliability and to ensure a continuous supply of power to as high a degree as possible. Cascading on the other hand is where an upstream breaker is used to "back-up" a lower specification breaker installed downstream to clear a fault current, and is generally used where economics plays a significant part in system design.

Selectivity (Discrimination)

Previously known as "Discrimination", the most basic form of Selectivity is where two circuit breakers are connected in senies. A higher amperage breaker is installed upstream, and a lower amperage breaker downstream. Should an overload or short circuit occur downstream, the downstream breaker will trip, but the upstream breaker will not, hence feeding parts of the system which are fault-free. This is the concept of Selectivity.
Selectivity is generally used, for example in critical applications, feeding essential loads. It is important to ensure total installation power is not lost due to a small or minor fault in a sub part of the overall electrical system, for example in a local distribution board. Total power loss could affect vital systems such as in Hospitals or Computer Centres etc.
The principle of Selectivity (Discrimination) is based upon an analysis of several types of circult breaker characteristics. These include tripping characteristics (timecurrent curves), Peak Let Through Current (Iment and Energy Let Through (ITT).
Selectivity can be "enhanced" beyond the breaking capacity of the downstream device provided it is backed up by an appropriately selected upstream device, which should not trip (unlatch) under stated conditions.

Cascading (Back-up)

Cascading is achieved by using an upstream device to assist (back-up) a downstream device in clearing a fault current that happens to be greater than the breaking capacity of the downstream device.
In Cascading applications, the upstream device may have to trip (unlatch) in order to give sufficient protection to the downstream device, thus interrupting supply of power to all devices downstream. Therefore, Cascading is generally used in applications involving the supply of non-essential loads, such as basic lighting. The main benefit of Cascading is that in certain circumstances circuit breakers with breaking capacities lower than the prospective fault level, and hence lower in cost, can be safely used downstream provided it is backed-up by the relevant upstream breaker.

Cascade / Selectivity Tables

The Selectivity and Cascade tables shown in the following pages are structured as follows.

Selectivity: The Selectivity or Enhanced Selectivity limit of the two nominated devices in series. Up to this level of fault current the downstream device will trip (unlatch) before the upstream device. Above this level, the upstream may also trip.
Cascade: The enhanced or maximum downstream fault current that can be safely interrupted when both breakers are installed in series. Both breakers may trip (unlatch).
The Selectivity and Cascade levels stated by NHP are fully compliant with the requirements of the applicable standards. Selection of breakers should be in accordance with the selection tables.
The figures stated in NHP tables are for nominated Terasaki devices only, and should not be used as guidance for using alternative brands of circuit breakers.

TemBreak MCCB's and Safe-T/Din-T MCB's - Selectivity and Cascade tables at 415V

Guide

Upstream MCCB
XS400SE

Downstream MCB	kA (rms)	$\begin{gathered} \text { XS125CJ } \\ 18 \end{gathered}$	$\begin{gathered} \text { XS125NJ } \\ 30 \end{gathered}$	XH125NJ 50	$\begin{gathered} \text { XS250NJ } \\ 35 \end{gathered}$	$\begin{gathered} \text { XH250NJ } \\ 50 \end{gathered}$	$\begin{gathered} \text { XS400CJ } \\ 35 \end{gathered}$	$\begin{gathered} \text { XS400NJ } \\ 50 \end{gathered}$
Din-T6 (2-25A)	6	18/18	25/25	25/25	25/25	25/25	-	-
DIn-T6 (32-63A)	6	18/18	$20 / 25$	20/25	25/25	25/25	-	-
Din-T10 (0.5-25A)	10	18/18	25/30	30/50	35/35	35/50	35/35	35/50
Din-T10 (32-63A)	10	18/18	20/25	20/25	25/25	25/25	25/25	25/25
DRCBH (10-25A)	10	18/18	25/30	30/50	35/35	35/50	35/35	35/50
DRCBH (32A)	10	18/18	20/25	20/25	25/25	25/25	25/25	25/25
Din-T10H (80-125A)	10	4/18	4/25	4/25	15/15	15/15	10/10	10/10
Din-T15 (6-16A)	25	18/25	25/30	30/50	35/35	35/50	35/35	35/50
Din-T15 (20A)	20-25)	18/20	25/30	30/50	35/35	35/50	35/35	$\therefore 35 / 50$
Din-T15 (32A)	15-25)	18/18	25/30	30/50	35/35	35/50	35/35	35/50
Din-T15 (40-63A)	10-12.5)	18/18	20/25	20/25	25/25	25/25	25/25	25/25
Safe-T (16-63A)	6	3/10	3/10	3/10	-	-	-	-
SRCB (16-20A)	6	3/10	3/10	3/10	-	-	-	-

Note: ') Dependant on the number of poles. Refer to NHP.

TemBreak Plus MCCB's'- Selectivity and Cascade tables at 415V

Guide

Selectivity Cascade
Upstream MCCB

Downstream MCCB	kA (rms)	$\begin{gathered} \text { XS400SE } \\ 50 \end{gathered}$	$\begin{gathered} \text { XH400SE } \\ 65 \end{gathered}$	$\begin{gathered} \text { XS630SE } \\ 50 \end{gathered}$	$\begin{gathered} \text { XH630SE } \\ 65 \end{gathered}$	$\begin{gathered} \text { Xs800SE } \\ 50 \end{gathered}$	XH800SE 65	$\begin{gathered} \text { XS1250SE } \\ 65 \end{gathered}$	$\begin{gathered} \text { XS1600SE } \\ 85 \end{gathered}$
XS125CJ	18	15/50	15/50	18/30	18/30	18/30	18/30	18/18	18/18
XS125NJ	30	25/50	25/50	30/30	30/30	30/30	30/30	30/30	30/30
XH125NJ	50	35/50	35/65	50/50	50/65	50/50	50/65	50/50	50/50
XH125PJ	50	35/50	35/65	50/50	50/65	50/50	50/65	50/50	50/50
XH160PJ	50	25/50	25/65	50/50	50/65	50/50	50/65	$\cdots 50 / 50$	50/50
XE225NC	18	15/30	15/30	18/30	18/30	18/30	18/30	18/18	18/18
XS250NJ	35	15/50	15/65	35/50	35/65	35/50	35/65	35/35	35/35
XH250NJ	50	25/50	25/65	50/50	50/65	50/50	50/65	50/50	50/50
XH250PJ	65	-	-	10/50	10/65	25/50	25/65	50/65	50/65
XS400CJ.	$\underline{35}$	-/50	-/50	10/50	10/65	25/50	25/65	35/42	35/42
XS400NJ	50	-	-/65	10/50	10/50	25/50	25/65	50/65	50/65
XS400SE	50	\cdots	-/65	10/50	10/65	25/50	25/65	50/65	50/65
XH400PJ	65	$\cdots-$	-	10/50	10/65	25/50	25/65	50/65	50/65
XH400SE	65.	-	-	10/50	10/65	25/50	25/65	50/65	50/65
XH400PE	65	-	-	10/50	10/65	25/50	25/65	50/65	50/65
XS630CJ	45	-	-	-	-/50	7/50	$7 / 50$	$30 / 45$	30/45
XS630NJ	65	-	-	-	-	7/50	7/65	30165	30/85
XS630SE	50	$\cdots \cdot$	-	-	-/65	-	-	$30 / 65$	$30 / 85$
XH630PJ	85	-	-	-	-	-	-	30/65	30/85
XH630SE	65	\cdots	-	-	-	-	-	30/65	30/85
XH630PE	65	-	-	-	\pm	-	-	30/65	30/85
XS8000NJ	65	- - .	-	, -	\%	-	-	15/65	-20/85
XS800SE	50	-	-	-	-	-	-165	15/65	20/85
XH800PJ	85	-	-	-	-	\cdot	-	15/65	20185
XH800SE	65	-	-	-	-	\bullet	-	15/65	20185
XH800PE	65	-	-	\cdots	-	-	-	15/65	$20 / 85$
XS1250SE	65	-	-	-	-	-	-	-	20/65

Standard TemBreak MCCB's - Selectivity and Cascade tables at 415V
Guide

Selectivity Cascade
Upstream MCCB

Downstream MCCB	kA (ms)	$\begin{gathered} \mathrm{XH} 125 \mathrm{NJ} \\ 50 \end{gathered}$	$\begin{gathered} \text { XS250NJ } \\ 35 \end{gathered}$	$\begin{gathered} \text { XH250NJ } \\ 50 \end{gathered}$	$\begin{gathered} \text { XS400CJ } \\ 35 \end{gathered}$	$\begin{gathered} \text { XS400 NJ } \\ 50 \end{gathered}$	$\begin{gathered} \text { XS400NE } \\ 50 \end{gathered}$	$\begin{gathered} \text { XH400NE } \\ 65 \end{gathered}$
XS125CJ	18	-/50	3730	$3 / 50$	4/35	4/50	$6 / 50$	$6 / 50$
XS125NJ	30	-/50	3/30	3/50	4/35	4/50	6/50	6/50
XH125NJ	50	-	-	-	-	-	6/50	6/65
XE225NC	18	-	-130	-130	-130	-/30	6/30	6/30
XS250NJ	35	-	-	-	-	4/50	6/50	6/65
XH250NJ	50	-	-	-	-	$4 / 50$	6/50	6/65
XS400CJ	35	-	-	-	-	-/50	-/50	-150
XS400NJ	50	-	-	-	-	-	-	-165
XS400NE	50	-	-	-	-	-	-	165
XH400NE	65	-	-	-	-	\cdots	-	-
XS630CJ	45	*	$=$	- *	-	-	-	\pm
XS630NJ	65	-	-.	-	-	-	\bullet	-
XS630NE	50	-	-	-	-	-	-	-
XH630NE	65	-	-	-	-	-	\cdots	-
XS800NJ	65	-	-	-	-	-	-	-
XS800NE	50	-	-	-	-	. -	\cdots	-
XS1250NE	65	-	-	-	-	-	-	-
XS1600NE	100	-	-	-	-	-	-	-

Upstream MCCB

Downstream MCCB	kA (rms)	$\begin{gathered} \text { XS630CJ } \\ 45 \end{gathered}$	$\begin{gathered} \text { XS630NJ } \\ 65 \end{gathered}$	$\begin{gathered} \text { XS630NE } \\ 50 \end{gathered}$	$\begin{gathered} \text { XH630NE } \\ 65 \end{gathered}$	$\begin{gathered} \text { XS800NJ } \\ 65 \end{gathered}$	$\begin{gathered} \mathrm{XSBOONE} E \\ 50 \end{gathered}$	$\begin{gathered} \text { XH800NE } \\ 65 \end{gathered}$
XS125CJ	18	6/30	$6 / 30$	14/30	18/30	10/30	14/30	14/30
XST25NJ	30	6/30	6/30	18/30	18/30	10/30	18/30	18/30
XH125NJ	50	-	-	-	-	12/65	30150	-
XE225NC	18	6/25	6/30	10/30	10/30	8/30	$12 / 30$	12/30
XS250NJ	35	6/45	6/50	. 10/50	10/65	$8 / 50$	$12 / 50$	$12 / 65$
XH250NJ	50	-	-	10/50	-	10/65	$22 / 50$	-
XS400CJ	35	6/35	6/50	7.5/50	7.5/65	6/50	10/50	10/65
XS400NJ	50	-	-	7.5/50	7.5/65	6/50	$10 / 50$	10/65
XS400NE	50	-	-	$10 / 50$	10/65	$6 / 50$	10/50	10/65
XH400NE	65	-	-	-	-	-	-	10/65
XS630CJ	45	-	\cdot	-	-	-	-	-
XS630NJ	65	-	-	-	-	*	-	-
XS630NE	50	-	-	-	*	-	+	*
XH630NE	65	-	\square	*	*	-	-	-
XS800NJ	65	-	-	*	*	-	-	-
XS800NE	50	-	- -	- -	-	-	"	-
XS1250NE	65	-	\bullet	-	-	-	-	-
XS1600NE	100	-	\cdots	-	-	- -	\cdots	-

Standard TemBreak MCCB's - Selectivity and Cascade tables at 415V

Guide

Downstream MCCB	kA (rms)	XH800PJ 85	$\begin{gathered} \mathrm{XS} 1250 \mathrm{NE} \\ 65 \end{gathered}$	$\begin{gathered} \text { XS1600NE } \\ 100 \end{gathered}$	$\begin{gathered} \text { XS2000NE } \\ 100 \end{gathered}$	$\begin{gathered} \text { XS2500NE } \\ 100 \end{gathered}$
XS125CJ	18	10/30	18118	18/18	18/18	18/18
XS125NJ	30	10/30	30/30	30/30	30/30	30/30
XH125NJ	50	12/65	50/50	50/50	50/50	50/50
XE225NC	--. 18	8/30	$18 / 18$	18/18	18/18	18/18
XS250NJ	35	8/65	25/35	35/35	35/35	35/35
XH250NJ	50°	10/65	35/50	50/50	50/50	50/50
XS4000.J	35	6/65	20/42	35/42	35/42	35/42
XS400NJ	50 .	6/65	20/65	35/65	35/65	50/65
XS400NE	50	6/65	20/65	35/65	35/65	50/65
XH400NE	65	-	$20 / 65$	35/65	35/65	50/65
XS630CJ	45	-/50	15145	20/45	35/45	35/45
XS630NJ	$=65$	-7/85	15/65	20/85	35/85	35/85
XS630NE	50	-/85	$15 / 65$	20/85	35/85	35185
XH630NE	- 65	-/85	15/65.	-. 20/85	35/85	$35 / 85$
XSB00NJ	65	-/85	15/65	20/85	35/85	35/85
XS800NE	50	-/85	15/65	20/85	35/85	35/85:
XS1250NE	65	-	-	20/65	35/65	35/65
XS1600NE	100		-	-	$\therefore=$	35/65

Motor Starting - Introduction

Generally, an item of switchgear is selected on the basis of one or more performance criteria, be it current/power carrying or interrupting capabilities.

Additional consideration is often necessary when several different pieces of switchgear are connected in series, none more so than in motor starting applications. As motors play a significant part in most modern day electrical systems it is important to ensure that the components of switchgear controlling and protecting the motor will interact with each other, or in other words, they are "co-ordinated".
In order to protect and operate a motor several components may be used, each with a different function. A typical set-up is as follows:

Short Circuit	
Protective Device	
(S.C.P.D.)	The main purpose of the Short Circuit Protective Device (SCPD) is to give protection against short circults. Commonly used devices are circuit breakers or fuses. Each offer particular benefits and both Configurations are commonly used.

M

What problems can occur?
At the instant the motor is supplied with power it draws an "in-rush current" to its terminals, before gradually decaying to a normal operating current.
Should the in-rush current be high, it could be detected by the SCPD and classed as a fault current. If a high in-rush current should occur or even after repeated stop-start (inching) operations of the motor the SCPD may trip, albeit without a fault in the system. This is commonly known as "nuisance tripping" of the SCPD.
Special care must be taken when selecting a SCPD for motor-starting applications to prevent nuisance tripping, and at the same time ensuring adequate protection to the motor and associated cabling.

Another function of the SCPD is to protect the control device (e.g. contactor) from high-current, high-energy faults. Therefore, attention must also be paid when selecting an SCPD-Starter (contactor + thermal overload relay) combination.

When clearing a fault every SCPD has a finite opening time, which will result in an amount of fault current and energy being "let-through" to the downstream system and other devices. At the same time, a control device, such as a contactor can only withstand a finite level of fault current and energy, otherwise internal damage could occur.
Even at relatively low fault levels the electromagnetic forces created by the fault current can cause the contacts of a contactor to lift. This can cause heating or even mild arcing which in turn can damage or weld the contacts of the contactor.

Furthermore, the let-through current of the SCPD can distort the bi-metal strip in the overload relay. This can prevent the restoration of the bi-metal strip to its original configuration on cooling, altering the relay's protection characteristics and resulting in under or over protection of the motor.

What solutions are available to me? Good component design in association with correct component co-ordination is the only way to ensure reliable protection and operation under abnormal condition.
Terasaki circuit breakers and Sprecher + Schuh starter combinations are tested to provide full and safe co-ordination for most motor starting applications.

Motor Starting

What is co-ordination

The motor starter consists of a combination of contactor, overload relay and Short Circuit Protection Device (SCPD) being either fuses or circuit breakers.
During motor starting and at normal loading, the overload relay protects both the motor and cables by tripping the cortactor in a time inversely proportional to the current. However, under short circuit conditions, the response time would be too long and the fuses or circuit breakers must takeover to interrupt the fault current therefore limiting energy passed through the starter components. When this is successfully achieved, the combination is said to be co-ordinated.

It is a requirement of the Australian Standard AS 3947.4.1 that combination motor starters are capable of withstanding the effects of load side short circuits. Some damage to the combination is permitted, but this must be confined and not present a risk to the operator, or damage equipment adjacent to the starter.
Contactors and thermal overload relays only have limited ability to withstand the high current associated with a fault such as an intemal motor short. Their design is optimised for performance at much lower currents and to design in the ability to control or withstand high fault levels would add to costs and possibly reduce its performance at normal levels.

The standards

The requirements of several standards can be applied to these combination units. The Wiring Rules, AS 3000, are concerned mainly with setting standards for the fixed wiring. In this regard the concern is the wiring between the protection device and the motor.
As motors can experience short term overloading the current rating of a fuse can be up 4 times and a circuit breaker 2.5 times the full load rating of the motor. The Wiring Rules allow the overload protection and the short circuit protection to be provided by different devices. This allows magnetic only circuit breakers, or back-up type fuses, to be used in conjunction with a contactor/thermal overload relay configuration.
Isolating switches must also be provided in the motor or control circuit. These are to be in clear view of any person working on the motor, or provided with a locking device.
AS 3947.4.1 specifies testing requirements for the combination of components required to perform the motor control and protection functions. If the equipment has been mounted in a switchboard it is possible to meet the testing requirements of AS 3947.2 short circuit withstand of the outgoing circuit at the same time as the tests to AS 3947.4.1 are performed.

Both standards look at the performance of the equipment when a fault occurs on the outgoing circuit. It is accepted in these standards that some damage may be sustained by the components of the starter when subjected to short circuit conditions.
AS 3947.2 requires that during the tests the equipment installed in the switchboard performs in accordance to its own standard. A selection by the customer of the performance required needs to be made, as AS 3947.4.1 allows for Type ' 1 ' and Type ' 2 ' performance.

Type ' 1 '

Under short circuit conditions the starter shall not cause danger to persons or the installation. The starter itself may need repair.
Type ' 2 '
After a short circuit the starter is suitable for further service. A contact weld is permitted, but it must be easily separated - for example, by a screwdriver, without significant deformation.
Type ' 2 ' co-ordination does not mean the starter is suitable for normal operation without inspection/repair of the contacts. So, in both cases it is important that the condition of the starter is checked, to ensure that the SCPD has operated and that no damage has taken place.

Notes: IEC Standards are the basis of many Australian Standards. AS 3947.4.1 is equivalent to IEC 947.4.1 and AS 3947.2 is equivalent to IEC 947.2.
Both Australian standards list some amendments to the IEC versions.

Typical arrangement for co-ordination test

Application data

Motor Starting
 Protective devices selection

In most cases very liftle difference will be noticed in the service performance of a system using fuses as against circuit breakers.
The circuit breaker is easier when it comes to restoring power, but as tripping should only be the result of a system fault it is unwise to reclose the circuit breaker without finding the cause. In this regard it is normal for only a "skilled person" to attend to fuse replacement and they are more likely to check for other problems.
As the circuit breaker or fuse is operating in conjunction with separate motor overload protection, it is the contactor which responds to overload problems. This is different to a protective device on a distribution circuit. For this application the advantages of the circuit breakers easy return to service has caused a general trend towards using circuit breakers.

Consideration should be given to preventing unskilled people from reclosing a tripped circuit breaker in a motor control application. This can be done by making the switchboard only accessible to the correct people, or by requiring the switchboard to be opened to reset the circuit breaker.
It must be assumed with both Type ' 1 ' and Type ' 2 ' co-ordination that if the short circuit protective device has operated there is a fault in the motor, or wiring to it and that the starter itself needs attention.
It is the let-through energy of the protective device which determines the damage to the starter. As this varies greatly between different models, it is essential that only proven combinations are used.

NHP, Sprecher + Schuh and Terasaki have now conducted many tests on different combinations and these are detailed in the co-ordination tables.

Terasaki circuit breakers for short circuit protection

Terasaki circuit breakers have been tested in combination with Sprecher + Schuh contactors and overloads and can be used for Type '1' and Type '2' co-ordination requirements. (Refer to following tables for actual combinations).
TemBreak
A new generation of MCCB's offering a choice of 3 series (economical, standard and high fault) and two types, ie, adjustable thermal magnetic or microprocessor based solid state OCR are available from Terasaki. Both types have common construction features and interchangeable plug-in accessories. TemBreak thermal-magnetic MCCB's offer a wide adjustment range, with 63% to 100% of rated current. Each MCCB is individually calibrated to ensure precision tripping on overcurrent.

TemBreak electronic type

The rated current of the electronic type TemBreak is adjustable in 15 steps from 50% to 100% of the nominal rated current, using the base current (lo) select switch and the pickup current (11) setting dial.

This is one of the essential features for precise protection co-ordination and for low voltage distribution systems.

TemBreak motor protection circuit breaker

The XM30PB circuit breaker will protect contactor starters with direct connected overcurrent relays with ratings 1 amp to 12 amp in systems with up to 50 kA ms prospective short circuit. The protection is due to the special current limiting effect of the XM30PB.

Motor starter protection

The XM30PB circuit breaker has been developed for motor starter protection and is suitable as the Short Circuit Protection Device (SCPD) for motor starters equipped with either direct connected or CT connected overcurrent relays.

XM30PB compared to HRC fuse

The circuit breaker tripping characteristic is more suitable for protection of starters than the HRC fuse. Unlike the HRC fuse, the breaker can be selected to trip instantaneously at a predetermined current level just lower than the maximum breaking current of the starter contactor, thus always protecting the contactor against opening fault currents higher than its capability. This can be seen from the typical breaker and fuse tripping characteristics compared to the contactor breaking capacity in figure 1.
No protection is provided by the fuse when the overcurrent is of value B to C amps should the contactor open by earth fault relay. If the breaker is used as a SCPD then protection is provided for all currents in excess of the instantaneous trip current of the breaker. Also, the circuit breaker can be tripped by earth fault relay and so prevent the risk of contactor damage due to the long delay of the HRC fuse interruption if the fault current is of a value between B and C.

Flg 1.

Type ' 1 ' short circuit co-ordination Motor starter co-ordination table for DOL starting 50kA at 415 V to AS 3947-41

TYPE 1 50kA

Motor size kW
Approx. amps
0.37
0.55

Type ' 2 ' short circuit co-ordination Terasaki Din-T at 50kA

The 10kA Din-T miniature circuit breaker gives an amazing 50kA performance when used in the combinations shown in the co-ordination tables. For the low current ratings, the resistance of the thermal overloads assists in reducing the current to a level that the Din-T can handle with ease. For the higher ratings a Sprecher + Schuh limiter block lifts the combined performance to the 50 kA level.
All the listed Din-T combinations include a rotary isolator which allows external control. To reset the starter after a short circuit, access to the breaker is required. This can be used to prevent unskilled operators from reclosing the motor starter after a fault.
It should also be remembered that whenever the circuit breaker trips under high fault currents, the contactor must be checked for welded contacts.

TYPE 2 50kA

KTA 3 Motor starter combination

Type '2' co-ordination table for Din-T circuit breakers with rotary isolator DOL starting 50kA @ 415V to AS 3947.4.1

Motor size kW	Approx. amps 영 415V	Sprecher + Schuh isolator	Terasaki circuit breaker	Sprecher + Schuh current limiter	Sprecher + Schuh contactor	Sprecher + Schuh thermal overload relay	Thermal overload range
0.37	1.1	LA3-80	Dint 10/4	-	CA 7-9	CT $7-24 \div$	1-1.6
0.55	1.5	LA 3-80	Din $-T$ 10/4	-	CA 7-9	CT 7-24	1-1.6
0.75	1.8	LA 3-80	Din-T 10/4	- :	CA 7-9	CT 7-24	1.6-2.4
1.1	$\underline{2.6}$	LA 3-80	Din-T 10/6	$\cdots \quad$ -	CA 7-23	CT 7-24	2.4-4
1.5	3.4	LA 3-80	Din-T10/6	\cdots	CA $7-23$	CT 7-24	2.44
2.2		LA 3-80	Din-T $10 / 10$	KTL 3-65	CA 7-23	CT 7-24	$4-6$
3.0	6.5	LA 3-80	Din-T $10 / 16$	KTL 3-65	CA 7-23	CT 7-24	6-10
4.0	8.2	LA 3-80	Din-T 10/16	KTL. 3-65	CA 7-23	CT 7-24	$6-10$
5.5	11.0	LA 3-80	Din-T 10/20	KTL 3-65	CA 7-23	CT 7-24	10-16
7.5	14.0	LA 3-80	Din-T $10 / 32$	KTL 3-65	CA 7-30	CT $7-45$	10-16
11.0	21.0	LA 3-80	Din-T 10/40	KTL 3-65	CA $7-30$	CT 7-45	16-24
15:0	28.0	LA 3-100	Din-T 10/63	KTL 3-65	CA 7-37	CT 7-45	18-30
18.5	34.0	LA 3-100	Din-T $10 / 63$	KTL 3-65	CA 7-37	CT 7-45	30-45

Type ' 2 ' short circuit co-ordination
Motor starter co-ordination table for DOL starting 50 kA at 415 V to AS 3947-4-1

Motor size kW	Approx. amps	Terasaki circuit breaker	Sprecher + Schuh contactor type	Sprecher + Schuh thermal overload relay type ${ }^{\text { }}$)	Settings range amps
0.37	1.1	XM30PB/1.4	CA 7-9	CT 7-24-1.6	1-1.6
0.55	1.5	XM30PB/2	CA 7-9	CT. 7-24-1.6	1-1.6
0.75	1.8	XM30PB/2.6	CA 7-9	CT 7-24-2.4	1.6-2.4
1.1	2.6	XM30PB/4.0	CA 7-16	CT 7-24-4	2.4-4
1.5	3.4	XM30PB/5	CA 7-16	CT 7-24-4	2.4-4
2.2	4.8.	XM30PB/8	CA 7-16	CT 7-24-6	4-6
3	6.5	XM30PB/10	CA 7-30	CT 7-24-10	6-10
/4	8.2	XM30PB/12	CA 7-30	CT 7-24-10	6-10
5.5	11	XH125NJ/20	CA 7-30	CT 7-24-16	10-16
7.5	14	XH125NJ/20	CA 7-30	CT 7-24-16	10-16
11	21	XH125NJ/32	CA 7-30	CT 7-24-24	16-24
15	28 \%	XH125NJ/50	\therefore CA $7-43$	CT 7-45-30	18-30
18.5	34	XH125NJ/50	CA 7-43	CT 7-45-45	30-45
'22	40	XH125NJ/63	CA $7-43$	CT 7-45-45	30-45
30	55	XH125NJ/100	CA 7-85	CT 7-75 ${ }^{2}$)	45-60
37	66	XH125NJ/100	CA 7-85	CT $7.75{ }^{2}$)	60-75
45	80	XH125NJ/125	CA 6-105-(E)	CT 6-90	70-90
55	100	XH125NJ/125)	CA 6-105-(E)	CT 6-110	85-110
75	130	XH250NJ/250	CA 6-140-(E])	CT 6-150	105-150
90	-155,	XH250NJ/250	CA 6-170-EI	CT 6-200	140-200
110	200	XH250NJ/250 ')	CA 6-210-El	CEF 1-41/42	160-400
132	225	XS400SE/400	CA 6-210-EI	CEF 1-41/42	160-400
160	270	XS400SE/400	CA 6-300-E]	CEF 1-41/42	160-400
200	361	XS400SE/400	CA 6-420-EI	CEF 1-41/42	160-400
200	361.	XS400SE/400	CA 5-450	CEF 1-22 ${ }^{2}$)	160-400
250	425	XS630SE/630	CA 5-700	CEF 1-52 ${ }^{2}$	160-630
320 :	538 -	XS630SE/630	- CA 5-700	CEF 1-52 ${ }^{2}$	160-630

Notes: ${ }^{1}$) Use 'magnetic only' breaker or next higher circuit breaker/contactor combination. Refer NHP.
2) Use with separate mounting bracket.
${ }^{3}$) Thermal or electronic overload relays may be used. Combinations based on the thermal overload relay tripping before the circuit breaker at overload currents up to the molor locked rotor current.

Type ' 2 ' short circuit co-ordination
 Motor starter co-ordination table for DOL starting $65 \mathrm{kA}, 415 \mathrm{~V}$ to AS 3947-4-1

Motor size kW	Approx. amps	Terasaki circuit breaker	Sprecher + Schuh contactor	Sprecher + Schuh overload relay ')	Settings range amps
0.37	1.1	XM30PB/1.4	CA 7-9	CEP 7	1.0-2.9
0.55	1.5	XM30PB/2	CA 7-9	CEP 7	1.0-2.9
0.75	1.8	XM30PB/2.6	CA 7-9	CEP 7	1.0-2.9
1.1	2.6	XM30PB/4.0	CA 7-16	CEP 7	1.6-5
1.5	3.4	XM30PB/5	CA 7-16	CEP 7	1.6-5
2.2	4.8	XM30PB/8	CA 7-16	CEP 7	3.7-12
3	6.5	XM30PB/10	CA 7-30	CEP 7	3.7-12
4	8.2	XM30PB/12	CA 7.30	CEP 7	3.7-12
5.5	11	TL30F/20A	CA 7.30	CEP 7	3.7-12
7.5	14	TL30F/30A	CA 7-30	CEP 7	12-32
11	21	TL30F/30A	CA 7-30	CEP 7	12-32
15	28	TL100NJ/50A	CA 7-43	CEP 7	12-32
18.5	34	TL100NJ/50A	CA 7-43	CEP 7	12-37
22	40	TL100NJ/63A	CA 7-43	CEP 7	14-45
30	55	TL100NJ/100A	CA 7-72	CEP 7	26-85
37	66	TL.100NJ/100A	CA 7-72	CEP 7	26-85
45	80	TL.100NJ/100A	CA 6-105-(El)	CT 6-90	70-90
55	100	XH400SE/250	CA 6-105-(EI)	CT 6-110	85-110
75	130	XH400SE/250	CA 6-140-(E)	CT 6-150	105-150
90	155	XH400SE/250	CA 6-170-EI	CT 6-200	140-200
110	200	XH400SE/250	CA 6-210-EI	CEF 1-41/42	160-400
132	225	XH400SE/400	CA 6-210-EI	CEF 1-41/42	160-400
150	250	XH400SE/400	CA 6-250-EI	CEF 1-41/42	160-400
160	270	XH400SE/400	CA 6-300-EI	CEF 1-41/42	160-400
200	361	XH400SE/400	CA 6-420-EI	CEF 1-41/42	160-400
200	361	XH400SE/400	CA 5-450	CEF 1-22 ${ }^{2}$)	160-400
250	425	XH630SE/630	CA 5-700	CEF 1-52 ${ }^{2}$)	160-630
320	538	XH630SE/630	CA 5-700	CEF 1-52 ${ }^{2}$)	160-630

[^4]${ }^{2}$) Use with separate mounting bracket.
Combinations based on the overload relay tripping before the circuit breaker at overload currents up to the motor locked rotor current.

Type ' 2 ' short circuit co-ordination Motor starter co-ordination table for DOL starting 85kA, 415V to AS 3947-4-1

TYPE 2

 85kA| Motor size kW | Approx. FLC at 415 V amps | Terasaki circuit breaker | Sprecher + Schuh contactor type | Sprecher + Schuh thermal overload type ') | Settings range amps |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.37 | 1.1 | XM30PB/1.4 | CA 7-9 | CEP 7-M32-2.9-10 | 1.0-2.9 |
| 0.55 | 1.5. | \cdots XM30PB/2 | CA 7-9 | CEP 7-M32-2.9-10 | 1.0-2.9 |
| 0.75 | 1.8 | XM30РВ/2.6 | CA 7-9 | CEP 7-M32-2.9-10 | 1.0-2.9 |
| 1.1 | 2.6 | XM30РB/4 | CA 7-16 | CEP 7-M32-2.9-10 | 1.0-2.9 |
| 1.5 | 3.4 | XM30PB/5 | CA 7-16 | CEP 7-M32-5-10 | 1.6-5 |
| 2.2 | 4.8 | XM30РB/8 | CA 7-30 | CEP 7-M32-12-10 | 3.7-12 |
| 3 | 6.5 | XM30PB/8 | CA 7-30 | CEP 7-M32-12-10 | 3.7-12 |
| 14 | 8.2 | XM30PB/10 | CA 7-30 | СЕР 7-M32-12-10 | 3.7-12 |
| 5.5 | 11 | TL100NJ/20 | CA 7-30 | CEP 7-M32-12-10 | 3.7-12 |
| 7.5 | 14 | TL100NJ/20 | CA 7-30 | CEP 7-M32-32-10 | 12-32 |
| 9 | 17 | TL100NJ/32 | CA 7-30 | CEP 7-M32-32-10 | 12-32 |
| 10 | 19 | TL100NJ/32 | CA 7-30 | CEP 7-M32-32-10 | 12-32 |
| 11 | 21 | TL100NJ/32 | CA 7-30 | CEP 7-M32-32-10 | 12-32 |
| 115 | 28 | .TL100 NJ/50 | CA 7-43 | CEP 7-M32-32-10 | 12-32 |
| 18.5 | 34 | TL100NJ/50 | CA 7-43 | CEP 7-M37-37-10 | 12-37. |
| 22 | 40 | TL100NLI/63 | CA 7-43 | - CEP 7-M45-45-10 | 14-45 |
| 30 | 55 | TL100N $\mathrm{N} / 100$ | CA 7-72 | CEP 7-M85-85-10 | 26-85 |
| 37 | 66 | TL100NJ/100 | CA 7-72 | CEP 7-M85-85-10 | 26-85 |
| 45 | 80 | TL250NJ/160 | CA 6-105 | CEP 7-M85-85-10 | 26-85 |
| 55 | 100. | TL250NJ/160 | CA 6-105 | CEF 1-11/12 | 0.5-180 |
| 75 | 135 | TL250NJ/250 | CA 6-210-EI | CEF 1-11/12 | 0.5-180 |
| 90 | 160. | TL250NJ/250 | CA 6-210-EI | CEF 1-11/12 | -0.5-180 |
| 110 | 200 | TL.250NJ/250 | CA 6-210-EI | CEF 1-41/42/52 | 160-630 |
| 132 | 230 | TL400NE/400 | CA 6-210-EI | CEF 1-41/42/52 | 160-630 |
| 160 | 270 | TL400NE/400 | CA 6 -300-EI | CEF 1-41/42/52 | 160-630 |
| 200 | 361 | TL400NE/400 | CA 6-420-EI | CEF 1-41/42/52 | 160-630: |

[^5]Combinations based on the overload relay tripping before the circuit breaker at overload currents up to the motor locked rotor current.

Motor circuit application table for DOL starting General applications

High fault range

Motor rating (kW)	Approx. FLC (amps)	Din-T C\&D Curve	Safe-T	$\begin{aligned} & \text { XS125CJ } \\ & \text { XS125NJ } \\ & \text { XH125NJ } \end{aligned}$	XE225NC	XS250NJ XH250NJ	XS400SE XH400SE XS400CJ XS400NJ	XH630SE XS630SE XS630CJ XS630NJ	XS800NJ XH800SE XS1250SE XSBOOSE 1000
0.37	1.1	4	6					.	
0.55	1.5	4	6	20	-		-		
0.75	1.8	6	6	20					
1.1	2.6	10	6	20					
1.5	3.4	10	10	20					
2.2	- 4.8	16	16	20		-			
3.0	6.5	20	16	20					
14	8.2	: 25	20	20			\cdots		
4.5	9	32	25	20					
5.5	11	32	32%	32					
7.5	14	40	40	32					
10	19	50	50	50			*		
11	21	50	50	50					
15	28 -	63	63	63					
18.5	34	$100{ }^{\text {) }}$	80	100					
22	40	125)		100	$2 \times$	$\square-5$	-	andex	
25	46	125)	100	100					
30	55			125		160		4.	
37	66			$125{ }^{9}$)	125	160			
45	80			125^{3})	125	160			+
55	100				175	160	250		
75	130	+		F	225	250	250	\%	
00	155					250	250		
110	200					\cdots	400	400	
132	225						400	400	
160°	270	\cdots					400	400	
185	320						$400{ }^{\text {\% }}$)	630	
200	361	\%					400^{2})	630	. \cdot. \cdot -
220	380							630	$800{ }^{2}$)
250	430							630	800
280	480							$630{ }^{2}$)	800
300	510	。	.					$630{ }^{2}$)	800
375	650								$800{ }^{2}$)
450	. 750								1000

Notes: These motor circuit application tables are to be used as a selection guide for average 3 phase, 4 pole 415 V motors for standard applications only. The table is based on holding 125% of full load current (FLC) continuously and 600% ol FLC for at least 10 seconds. Lower circuit breaker ratings are possible in some applications. Refer NHP.
I) 80,100 and 125 amp refers to Din-T10H type.
${ }^{2}$) Type 'SE' TemBreak MCCB only.
${ }^{\text {² }}$) Use magnetic-only TemBreak MCCB. Refer NHP.
Adjustable magnetic trips set to high. Thermal magnetic TemBreak adjustable $63 \%-100 \%$ of NRC (nominal rated current). Din-T MCB's are calibrated to IEC 898 Curve ' C ' \& 'D'. Selected sizes of ' D ' Curve are available from stock. Refer NHP.

Motor circuit application table for reduced voltage starting General applications

Breaker type and current rating, star delta, auto transformer resistor or reactance starting

				XS125CJ			XS400SE	XH630SE		
Motor	Approx.	Din-T		XS125NJ			XH400SE	XS630SE	XS800NJ	
rating	FLC	C\& D		XH125NJ		XS250NJ	XS400CJ	XS630CJ	XH800SE	XS1250
(kW)	(amps)	Curve	Safe-T	TL100NJ ${ }^{\text {) }}$	XE225NC	XH250NJ	XS400NJ	XS630NJ	XSboose	1000

0.37	1.1	4	6							
0.55	1.5	4	6	20						
0.75	1.8	4	6	20						
1.1	2.6	6	6	20						
1.5	3.4	10	6	20						
2.2	4.8	10	10	20 -	*					
3.0	6.5	16	16	20						
4	8.2	20	16	20	-..					
4.5	9	20	16	20						
5.5	11	25	20	20						
7.5	14	32	25	20						
10	19	40	40	32	- -					
11	21	50	40	32						
15	28 -	50	50	50	"			+		
18.5	34	63	63	50	-					
22	40	80.$)$	63	63	*-".			*		
25	46	100)	80	100						
30	$55 .$.	125)	100	100	\% 160				.	
37	66	125)		100	125.160					
45	80			125	125 160	250		-		
55	100				$150 \quad 160$	250				
75	130	- -		4	175 250	250				$=$
90	155				225 250	250				
110	200			-	250	250	400			
132	225					400	400			
160	270	.				400	400			-
185	320					400	400	800^{2})		
200	361				\%	400^{2})	630	800^{2})		
220	380						630	800		
250	430			,	-	*	630	800		
280	480						630	800		
300	510	\%	\because		.		630	800		
375	650							800^{2})	1000	

[^6]
Motor circuit application table fō DOL FIRE PUMP starting duty

Breaker type and current rating (A)

Motor rating (kW)	Approx. FLC (amps)	Din-T Curve	Safe-T	хM30PB	$\begin{aligned} & \text { XS125CJ } \\ & \text { XS125NJ } \\ & \text { XH125NJ } \\ & \text { TL100NJ }{ }^{\prime} \text {) } \end{aligned}$	TLit00F TL100C	XE225NC	$\begin{aligned} & \text { XS250NJ } \\ & \text { XH250NJ } \end{aligned}$	XS400SE XH400SE $\times 5400 \mathrm{CJ}$ $\times 5400 \mathrm{NJ}$	$\begin{aligned} & \text { XH630SE } \\ & \text { XS630SE } \\ & \text { XS630CJ } \\ & \text { XS630NJ } \end{aligned}$	xs800 XH800 XS800	XS1250SE 1000
0.37	1.1	4	6	3.6								
0.55	1.5	6	6	3.6						$\because \cdot$		
0.75	1.8	6	6	5	20	15						
1.1	2.6	10.	6	7.4	20	15	-					
1.5	3.4	16	10	10	20	15						
2.2	4.8 ${ }^{\text {\% }}$	20	16	12	20	15			\cdots	-		
3	6.5	25	20		20	20						
4	8.2	32-	25.		32	30						
4.5	9	32	32		32	30						
5.5	11:	40	40	*	$32 \cdots$	30	*		...			
7.5	14	50	50		50	40						--
10.	19	63	50		50	50			-	.		
17	21	63	63		63	60						
15	$28{ }^{\text {" }}$	100)	80		100	75			-			
18.5	34	125)	100		100	75						
22-	40	- 3	-		125	75		\cdots			.	
25	46				125	100						
30	55	:-		\%		100	125	160	-			\because
37	66						150	160				\%
45	80		.				175	250	250	,		
55	100						225	250	250		-	
75	130		.						$400 \quad \because$			
90	155								400			
110	200			"				"	400	630	-	
132	225								400	630		
160	270								400	630		
185	320					\%			$400{ }^{2}$)	630		
200	361									630	800	
220	380									630	800	
250	430									630	800	
280	480										800	
300	510									\because	800	
375	650										$800{ }^{\circ}$)	1000
450	750		\because					\cdots	-	;		1000

[^7] applications only. The table is based on holding 125% FLC continuously and 600% FLC for at least 20 seconds. ') 80,100 and 125 amp refers to Din-T10H type.
${ }^{2}$) Type 'SE' TemBreak MCCB only.
3) TL100NJ up to 100A only.

Din-T MCB's are calibrated to IEC 898 Curve ' C ' \& 'D'. Selected sizes of 'D' Curve are available from stock refer NHP.

Motor starting table for DOL starting at 1000 V AC 50 Hz

Motor size kW	Full load current amperes	MCCB	Voltage
$0.37-10$	$0.4-7.5$	TL100EM/15	1000 V
11.0	9.0	TL100EM/20	1000 V
$15-18.5$	$12-14.5$	TL100EM/30	1000 V
$22-33$	$17-23$	TL100EM/40	1000 V
$37-50$	$28-38$	TL100EM/50	1000 V
$55-80$	$40-57$	TL100EM/75	1000 V
$90-110$	$65-78$	TLL100EM/100	1000 V
150	102	XV400NE/160	1000 V
$185-220$	$138-160$	XV400NE/250	1000 V
$220-500$	$160-350$	XV400NE/400	1000 V

TemBreak XV400NE
mining breaker

Sprecher + Schuh 1000V CA 6 contactor
(Refer Part A for more information)

MCCB's for protection of Power Factor Correction (PFC) units

In circuits containing capacitor banks for Power Factor Correction (PFC) two conditions that the circuit breaker must overcome are as follows:

1. Voltage surges during MCCB opening.
2. Nuisance tripping due to in-rush current.
3. Voltage surges during MCCB opening At the instant where the MCCB has to open, the voltage developed across its contacts can be up to twice the supply voltage, which can have damaging consequences should the breaker be slow to operate. If this worse case scenario actually occurs a potential re-arcing can take place across the contacts of the MCCB, until the breaker has fully opened and the distance between the contacts is at a maximum.
Re-arcing at each instant can be:
$\begin{array}{ll}\text { 1st re-arcing } & - \\ \text { 2nd re-arcing } & - \\ \text { 3 } & \text { supply voltage } \\ \text { 3rd re-arcing } & -\quad 7 \times \text { supply voltage voltage }\end{array}$
Internal capacitor damage will occur if the voltage level is greater than the capacitor's Dielectric Strength. With modern-day protection devices, (for example the Terasaki TemBreak MCCB's) this problem will not occur.
The numerous cases of re-arcing are mainly a result of older style "dependant manual closing" devices, which rely on the operator speed for opening or closing.
All Terasaki MCCB's are of the "manually independent closing" type, with high speed opening to prevent re-arcing between the contacts.
4. Nuisance tripping due to in-rush current When feeding a circuit containing a PFC unit the circuit breaker and the PFC unit can be exposed to a large in-rush current, equal to the instantaneous value of the power source. The end result of this is a large in-rush current, which could cause the circuit breaker to operate instantaneously due to its shon-circuit protection. (The value of in-rush current will depend on the source voltage, the inductance and reactance in the circuit).
Special care should be taken to ensure that the MCCB selected will not nuisance trip due to high in-rush currents.
The table below shows typical MCCB selections for varying capacitor ratings, and the breaker selection is by a rule-ofthumb.

$$
\text { Capacitor Rated Current }=\frac{\mathrm{kVAR} \times 1000}{\sqrt{3} \times \mathrm{V}} \quad(\mathrm{~A})
$$

kVAR: Capacitor Rating

V: Source Voltage

MCCB Rating = Capacitor Rated Current $\times 1.5(\mathrm{~A})$
Once the MCCB rating has been determined, the MCCB type should be selected according to the short circuit fault level of the system.

MCCB's selection for power factor capacitor application

Voltage 415V (3D) Capacitor Capacitor rating (kVAR) ratred (A)			Recommended MCCB's $\left.{ }^{1}\right)^{7}$) Type/Rating (A)			
5	7		$\underline{\square}$	XS125CJ/20	XS125NJ/20	XH125NJ/20
10	13.9			XS125CJ/32	XS125NJ/32	XH125NJ/32
15	20.9		\pm	XS125CJ/50	XS125NJ/50	XH125NJ/50
20	27.8			XS125CJ/50	XS125NJ/50	XH125NJ/50
25	34.8		\ddagger	XS125CJ/63	XS125NJ/63	XH125NJ/63
30	41.7			XS125CJ/100	XS125NJ/100	XH125NJ/100
40	55.6			XS125CJ/100	XS125NJ/100	XH125NJ/100
50	69.6			XS125CJ/125	XSt25NJ/125	XS125NJ/125
75	104	XE225NC/150	XS250NJ/160	XH250NJ/160		
100	139	XE225NC/225	XS250NJ/250	XH250NJ/250	XS400SE/250	XH400SE/250
150	209		XS400CJ/400	XS400NJ/400	XS400SE/400	XH400SE/400
200	278		XS400C.J/400	XS400NJ/400	XS400SE/400	XH400SE/400
300	417		XS630CJ/630	XS630NJ/630	XS630SE/630	XH630SE/630
400	556	XS800NJ/800	XS800SE/800	XH800SE/800		
500	696	XS1250SE/1250				
600	835	XS1250SE/1250				
800	1113	XS1600SE/1600				
1000	1391	XS2000SE/2000			"	

Note: ${ }^{1}$) Select applicable short circuit rating required by system specifications.
${ }^{\text {z }}$) TemBreak Plus MCCBs can also be used.

Application data

MCCB use in high frequency (400 Hz) applications

. General
Terasaki TemBreak MCCB's are designed to operate primarily in 50 or 60 Hz systems. However, it is possible to use the same MCCB's in high frequency (400 Hz) applications provided consideration is taken to the effects high frequencies will have on the breaker.
A consequence of high frequencies is an increase in Eddy currents in conductors, including those internal to the breakers. This generally causes an increase of temperature in and around the breaker. As such, some derating allowances must be made when selecting a breaker in these 400 Hz systems.
Thermal Magnetic MCCB's
In low overload (thermal) regions the current required to trip the MCCB is reduced as a result of the heat generated due
to the higher Eddy currents. As a result the thermal protection must be derated to take the heating effect into account.
In short-circuit (magnetic) regions, the demagnetising effects of the Eddy currents mean that a larger fault will be required to trip the breaker. The rule of thumb generally used is that the Magnetic/Instantaneous Trip setting will be approximately twice that at normal $50 / 60 \mathrm{~Hz}$ operation.
Electronic MCCB's
Electronic MCCB's offer better performance at higher frequencies, although some consideration must be taken with regards to the heating effects caused by the Eddy currents. The figures in the table give the maximum Over Current Relay (OCR) rated current setting $\left(I_{0} \times I_{1}\right)$ that should be used when in high frequency applications.

MCCB Model	MCCB Type	Rating at $50 / 60 \mathrm{~Hz}$ (A)	Cable size in $\mathrm{mm}^{\mathbf{2}}$ as specified IEC 947-1	MCCB rating at 400 Hz (A)
XS125CJ	Th/Mag	20	2.5	18
XS125NJ		32	6	30
		50	10	45
		63	16	58
		100	35	89
		125	50	110
XH160PJ	Th/Mag	160	70	147
XE225NC	Th/Mag	125	50	116
		150	50	135
		175	70	155
		200	95	185
		225	95	195
XS250NJ	Tw/Mag	160	70	147
-		250	120	210
XH250NJ	Th/Mag	160	70	147
		250	120	210
XH250PJ	Th/Mag	250	120	240
XS400NJ	Th/Mag	250	120	240
XH400P.J		400	240	330
XS630CJ	Th/Mag	400	240	320
XS630NJ		630	2×185	475
XS600NJ	Th/Mag	800	2×240	600
XS400SE	Electronic	250	120	238
XH400NE/SE/PE	Electronic	400	240	360
XS630SE	Electronic	630	2×185	600
XH530NE/SE/PE				
XS800SE	Electronic	800	2×240	640
XH800NE/SE/PE			,	-
XS1250SE	Electronic	1250	$2 \times(80 \times 5 t)$	800
XS1600SE	Electronic	1600	$2 \times(100 \times 5 t)$	900

Note: When used at 400 Hz , the rated current setting of the OCR must not exceed the values shown in Column 4.

Circuit breaker selection for DC applications

The characteristics of an MCB or MCCB for DC applications are different from AC. The main differences are as follows:

1. Maximum permissible voltage is reduced in value (refer table).
2. Number of electrical operations is reduced (refer table).
3. Magnetic trip current increases by 40%.

Selecting the circuit breaker

When selecting the MCB most suitable for the protection of DC circuits the following criteria must be considered:
\square Rated current.
P. Rated voltage which determines the number of poles required to be involved in the interruption of the circuit.

- The type of DC system used.
- Maximum short circuit current to determine the breaking capacity.
As a general rule the Isc (short circuit current at the battery terminals) can be calculated as follows:

$$
\mathrm{Isc}=\frac{\mathrm{Vb}}{\mathrm{Ri}}
$$

Where Vb - maximum discharge battery voltage
Where Ri - internal resistance (sum of all calls resistance) generally expressed in Ampere/hour capacity of the battery.

Terasaki MCB use in DC systems

| MCB | Breaking
 capacity
 type | KA ${ }^{1}$) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Example: For a Din-T10 to break 10kA at 110V DC it must have 2 poles connected in series.
Breaking capacities of TemBreak MCCB in DC systems
MCCB

type	24/48/60V	125 V	250 V	350 V	500V	600 V
XS125NJ	25^{*}	20	15	10	7.5^{2})	$\left.5{ }^{2}\right)$
XH125NJ	. 50	40	40	10.	$7.5{ }^{2}$)	5^{2}).
XS250NJ	25	40	40	10	7.5	5
XH250NJ	50	40	40	20	15	$\cdots 10$
XS400NJ	50	40	40	20	15	15
XS630NJ	50	40	40	30	20	20
XS800NJ	50	40	40	30	20	20
XS1000ND ${ }^{\text { }}$)	-	40	40	30	20	20
XS1250ND ${ }^{\text { }}$)	-	40	40	30	20	20
XS1600ND ${ }^{\text {\% }}$	-	40	40	30	20	20
(XS2000ND ${ }^{\text {9 }}$	-	40	40	30	20	20
XS2500ND ${ }^{\text {) }}$	-	40	40	$\because 30$	20	20

Notes:

${ }^{1}$) Time constant $(U R)<=15 \mathrm{~ms}$; excludes 50/63A where the time constant $(\llcorner/ \mathbb{R})<=4 \mathrm{~ms}$.
${ }^{2}$) Special version of the standard AC circuit breaker. Standard circuit breakers cannot be used at these ratings. Please specify for use on 500 or 600 V DC on application. Indent only.
${ }^{3}$) Magnetic trip only, without overload protection. Indent only.
For voltage levels up to and including 250V DC standard 2 -pole breakers maybe be used, with both poles connected in series. For voltage levels greater than 250 V DC 3 -pole breakers must be used, with all three poles connected in series as shown.
The time constant (L / R) of the circuit should be:
less than 2 ms at rated current.
less than 2.5 ms for overload ($2.5 \times \mathrm{in}$). less than 7 ms for short circuit $\leq 10 \mathrm{kA}$. less than 15 ms for short circuit > 10 kA .

The following connection diagram should be applled to TemBreak circuit breakers when the voltage is greater than 250 V DC.

Circuit breaker selection for DC application (cont.)

Arrangement of breaking poles according to type of system.

Both poles insulated from earth
Protection only

The poles required to interrupt the fault can be divided between the (+) and (-) polarities. The total number of poles connected in series should be capable of breaking the short circuit current at a voltage level of U_{b}.
Sharing the circuit breaker interrupting poles between both polarities also ensures isolation as well as protection of the system.

One polarity of the DC supply is earthed
Protection only

Full protection is assured if the total number of poles in series on the side not connected to earth are capable of breaking the short circuit current at a voltage level of U_{b}.
If full isolation is required then at least one interrupting pole is also required on the earthed polarity side.

MCCB selection for 50 V DC battery applications 3 poles in parallel
TemBreak MCCBs may be connected with 3 poles in parallel.
Rated current $=3 \times 0.8=2.4 \times \mathrm{MCCB}$ nominal rated current (I) for 3 poles in parallel.

Protection and Isolation

Protection and Isolation

Protection and Isolation

The centre point of the DC supply is earthed

To ensure full protection the number of poles connected in series on each polarity must be capable of breaking the maximum short circuit current, but at a reduced voltage level of $U_{b} / 2$.
Having circuit breaker interrupting poles breaking both polarities ensures isolation as well as protection of the system.

Selection of MCCB's for use in welder circuits

1. Definitions
$\mathbf{P}=\quad$ Rated capacity of welder in kVA.
$\mathbf{V}=\quad$ Welder rated voltage.
$11=$ Maximum primary current (PN).
$\mathrm{T}_{1}=$ Current 'ON' period.
$T_{2}=$ Current 'OFF' period.
$\mathrm{T}_{\mathbf{1}}+\mathrm{T}_{\mathbf{2}}=$ One welding cycle time.
B = Duty ratio, current 'ON' period divided by one welding cycle.
Ie $=\quad$ Thermally equivalent continuous current.
2. MCCB selection
a) Current rating

It can be seen from the diagrams below that the welder only draws current intermittently. MCCB selection should be based on the thermally equivalent continuous current, l.e. the current which would produce the MCCB average temperature shown in the dlagram below.
It can further be seen that the MCCB temperature will not be constant but will vary as the load varies.

The thermally equivalent continuous current, le, may be calculated from:

$$
\left(B=\frac{T_{1}}{T_{1}+T_{2}}\right)
$$

Note: The rated capacity of a spot welder is normally expressed in terms of its 50% duty ratio, ie. $\mathrm{B}=0.5$.

Once an MCCB has been selected, it is necessary, to compare the maximum primary current I_{1} and the current 'ON' period, T_{t} with the MCCB characteristic curve to ensure that it will not trip.

Current

Note: A tolerance of 10 to 15% should be included to allow for variations in the supply voltage and equipment.

General guide lines for MCCB selection

Selection factor	MCCB rating
Resistance welders	3.00 max
Transfomer arc welders	2.00 max

SAA wiring rules states that a circuit breaker protecting a circuit from which one or more welders are supplied may be greater than the rating of the protected conductor calculated as follows:
The maximum demand of the circuit excluding that of the largest welding machine plus
i) Three times the primary current of the largest resistance welding.
ii) Two times the primary ratings of the largest transformer arc welders.

Selection of MCCB's for use in welder circuits

b) Instantaneous setting

The MCCB's instantaneous trip setting should be high enough to avoid nuisance tnipping due to the welding transformers excitation inrush current. When voltage is supplied to the transformers primary side, the iron core is saturated. This results in the flow of a large inrush current caused by a combination of the DC component of the voltage at the instant of closing and the residual magnetic flux of the transformer. The transformer input current value when the welder secondary is completely short-circuited is about 30% higher than the value calculated from the nominal maximum power input of the welder. So the maximum welder input current, Im, at the start of welding is given by:

$$
I_{m}=\frac{P_{m} \times 1000}{V} \times 1.3 \times \mathrm{K}
$$

The value of K varies depending on the type of welder control employed. (Some form of synchronous closing is nearly always employed in order to stabilise the welding work and to prevent nuisance tripping of the MCCB).
$K=1$ to 1.5 for synchronous type with peak control.
$K=1.4$ to 3 for synchronous type without peak control.
$K=2$ to 6 for non-synchronous soft start type.
If the protection of the thyristor stack is also required, the instantaneous trip setting must be greater than Im, but less than the surge on-state current rating of the thyristor stack:

Im < $\mathrm{I}_{\text {ws }}<$ \qquad
where:
Is = surge on-state current rating of thyristor stack, in A
Im = maximum welder input current at start of welding, in A

1 inst $=$ MCCB Instantaneous trip setting, in A
$1.1=$ Factor to allow for $\pm 10 \%$ tolerance on the instantaneous setting
c) MCCB breaking capacity

The MCCB breaking capacity should be higher than the estimated shor-circuit fault level of the system.

Primary LV/LV transformer protection

When selecting an MCCB to protect the primary of an LV/LV transtormer, the inrush current during initial energisation must be taken into account.
The magnitude of inrush current for any transformer is governed by several variables:

1. The primary winding resistance.
2. The supply impedance.
3. The excitation current.

The excitation current is, in theory at a maximum when the voltage is at a minimum, and vice versa.
Usually the level does not exceed 30 times the normal operating current.
If the incush current is not known then a rule of thumb is that it is approximately 15 x the Primary Current.

	1 phase 240V			3 phase 415V		
$\begin{aligned} & \text { Transformer } \\ & \text { (kVA) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MCCB } \\ & \text { type } \\ & \hline \end{aligned}$	MCCB rating	$\mathrm{BC}(\mathrm{kA})$ $\text { at } 240 \mathrm{~V}$	MCCB type	MCCB rating	BC (kA) at 415 V
5	XS125NS	50	25	XS 125 NJ	20	30
7.5	XS125NS	63	25	XS 125 NJ	32	30
10	XS125NS	100	25	XS125NJ	32	30
15	XE225NC	125	25	XS125NJ	50	30
-*	XS250NJ	160	50		\cdots	
-	XH250NJ	160	85			
20	XS250NJ	160	50	XS125NJ	63	30
	XH250NJ	160	85			
30				XS 125 NJ	100	30
50				XS125NJ	125	30
75				XE225NC	225	18
	-			XS250NJ	250	35
100				XS400SE	250	50
150	- -			XS400SE	250	50
200				XS400SE	400	50
300	\cdots			XS630SE	630	50

The above breaker selections are based upon inrush currents calculated using the table below

(kVA)	Single-phase transformer		Three-phase transformer	
	First peak multiplier	Decay time constant	First peak multiplier	Decay time constant
5-10	34	3-6	32	3-6
15-20	33	3-6	30	3-6
30	-	-	26	3-6
50	-	-	24	4-7
75	-	-	20	4-7
100	-	-	18	6-10
150	-	\bullet	16	6-10
200	-	-	14	6-10
300	-	-	12	6-10

Notes: First peak multiplier is the first peak current as a multiple of the transformer rated current.
The above table/multipliers are in general larger than the practical current levels, as the current limiting by the circuit impedance is not taken into account.

MCB selection for high pressure sodium lamps

Assumption

1. The maximum inrush current which the circuit will pass is a feature of the current limiting ballast and not the lamp.
Assuming these ballasts comply with the relevant IEC specification the circuit will pass currents not exceeding twice the appropriate lamp nominal current.
2. Run up time 10 minutes with the current decaying exponentially.
3. Based on $415 / 240 \mathrm{~V} 3$ phase or 240 V single phase systems.

This table provides details for Din-T type 'C' MCB's

Power	Number of fittings per phase										
50w	2	4	7	9	12	24	86	48	60	76	108
70W	1	3	5	6	8	17	25	34	42	54.	77
150W	-	8	2	3	4	8	12	16	20	25	36
250W	-	-	1	1	2	4	0.7	9	12	15	21
400w	-	\bigcirc	\bigcirc	1	9	3	4	6	8	9	13
700W	-				-	1	± 2	3	4	5	$7 \geqslant$
MCB(Amps)	7	2	4		6	10	46	20	25	32	50

Example

Given 42 lamps each 250 W installed on a 415 V 3 phase
system.
Which MCB must be selected?
Number of tubes per phase $=\frac{42}{3}=14$
Therefore from the table above a 32A MCB should be selected.
A short circuit rating as appropriate must be selected.

MCB selection for fluorescent lighting loads

Assumptions

1. The power rating of the ballast is 25% of power of the tubes.
2. Power factor -0.6 for non compensated fittings 0.86 for compensated fittings.
3. MCB's are installed in an enclosure with external ambient of $25^{\circ} \mathrm{C}$.
4. Based on $415 / 240 \mathrm{~V} 3$ phase or 240 V single phase systems.
5. MCB is used for circuit protection only, not switching.

For switching duties of Din-T MCBs refer NHP.

This table provides details for Din-T type 'C' MCB's

MCB selection for incandescent lighting loads

Assumptions

1) Tungsten lamps have theoretical inrush current of 14 times normal current, when switched from cold.
2) The circuit impedance typically limits the inrush to 10 times normal running current, the inrush current peaking at 0.0007 seconds falling exponentially to normal nunning current within 0.1 seconds.
3) Consider the worst case, if all lamps are switched on simultaneously, then nuisance tripping of MCB may result.
4) Above is based on $415 / 240 \mathrm{~V} 3$ phase and neutral or 240 V single phase system and 240 V lamps.
5) MCB is used for circuit protection only, not switching. For switching duties of Din-T MCB's refer NHP.

Method

In order to cope with this inrush the following formula should be used to calculate breaker size:
Breaker rating $=\frac{W \times 10}{P \times 240 \times 1 \text { inst }}$
Where $W=$ total wattage
Where $P=$ Number of phases
I inst $\quad=$ Minimum instantaneous tripping co-efficient.
C curve $=5$
D curve $=10$

Notes: Observe the requirements of AS 3000 tor No. of lighting points on a final sub-circuit.

TemBreak MCCB clearance requiréments at $380 / 415 \mathrm{~V}$

Clearance requirements for MCCB's (phase to phase and earth).
When MCCB's are called upon to interrupt large short circuits lonised gas and arcing material is expelled from the vents, usually at the top of the MCCB.
This ionised gas is highly conductive and is also at an elevated temperature when it exits the MCCB via the arc vents. Care must be taken therefore to avoid an arcing fault occurring due to the presence of the ionised gas.

Therefore, incoming conductors must be insulated right up to the terminal opening of the MCCB. This also applies to the attached busbars supplied as a proprietory part with the MCCB.
Proprietary type interpole barriers may be used to achieve creepage and clearance requirements.
Conductors must not impede the flow of ionised gas.

Insulating distance from Line-End for 380/415V

When earth metal is installed within the proximity of the breakers the correct insulating distance must be maintained.

WARNING:
EXPOSED CONDUCTORS INCLUDING TERMINALS AT ATTACHED BUSBARS MUST BE INSULATED TO AVOID POSSIBLE SHORT CIRCUITING OR EARTHING DUE TO FOREIGN MATTER COMING INTO CONTACT WITH THE CONDUCTORS.

Notes: When using the terminal bar (optional), the specified insulating distance must be maintained.
All dimensions in mm .
When earthed metal is installed within the proximity of the breakers the correct insulating distance must be maintained (refer to Table 1). This distance is necessary to allow the exhausted arc gases to disperse.

This distance is necessary to allow the exhausted arc gases to disperse.

Table 1 below illustrates the min clearance that must be maintained

A Distance from lower breaker to open charging part of terminal on upper breaker (front connection) or the distance from lower breaker to upper breaker end (rear connection and plug-in type)
B1 Distance from breaker end to ceiling (earthed metal)

Table 1
This table is valid for 380/415V

Clearance fór mining MCCB's (1100 V) and incoming coonnections

The arc chamber in Terasaki TemBreak circuit breakers is located adjacent to the LINE side terminals. The chamber is vented through holes located just above each line terminal. The holes are covered by a flap which deflects when arc gases are being expelled. Even at low fault levels the arc gases that are released are very hot and reduce the dielectric strength of the air in the vicinity of the terminals. If care is not taken when installing the TemBreak this gas can cause arcing faults on the incoming bars or cables.

Significant voltage transients may also be produced as inductive circuits are switched and contribute to an arcing fault.

These problems attect all circuit breaker installations to varying degrees.
To ensure that problems are not created by the installation please observe the following recommendations.

Notes:

1: Always observe LINE/LOAD marking.
2: Ensure insulation on incoming conductors is adequate. Do not use low grade heat shrink (some grades split at operating temperatures).
3: Minimum clearance to earth metal, Above and below breaker - 120mm (XV1250NE-150mm) To sides of breaker $\mathbf{~} 40 \mathrm{~mm}$.

4: Switchboard construction to be a minimum form 2 to AS 3439.1 with $\mathrm{P} 3 \times$ protection between busbar and circuit break zones.
5: Actual construction can vary to the above but in all cases it is the responsibility of the switchboard manufacturer to ensure compliance to the relevant standard ie. AS 3439.1.
9) TL100EM MCCB's must use a TL100EMTLC lineside terminal cover, XV400 can use either a terminal cover or Interpole Barniers.

MCCB mounting angles

The overcurrent tripping characteristics of TemBreak are not influenced by the mounting angles for electronic and thermal magnetic types.

The XM30PB motor circuit protectors however, use an oil filled dashpot style trip mechanism, which can be affected. Refer to the diagram below.

Note:
1: The above diagram applies to an XM30 MCCB mounted either way

Calculation of circuit fault level

NHP Nomogram

Fault calculation
The NHP Nomogram is a simple and easy to use aid. Developed by NHP to enable convenient and accurate calculation of circuit fault current.
When selecting circuit breakers for the use in modern distribution systems, it is important to calculate the fault level and then choose an MCCB with breaking capacity that is either higher or at least equal to the circuit fault current.

How to use the Nomogram
In the nomogram all you need to know is the size and length of the cable or cables and the size of the Transformer in KVA. The fault level at the terminals of the transformer is very dependant upon the Transformer internal impedance eg. the Australian Standard for a 2000 kVA transformer is $6.5 \%-7 \%$ impedance. This results in a fault level of $40-43 \mathrm{kA}$.

However, many Supply Authorities are now installing low impedance transformer eg. 5\% or less. Thus if the impedance is 5% then the fault level will be 56 kA . If the impedance is unknown on the side of caution choose $Z=$ 5% in your calculations.
eg. From the table, the maximum fault level of a 2000 kVA transformer, with $Z=5 \%$ is 56 kA . Proceed then to calculate the resultant fault level by applying the cable size and length in metres to the Transformer secondary fault level and calculate the resultant. By following the example shown it can be seen that the fault level is reduced from 50 kA to 6.7 kA .

Application data

Short circuit calculation nomogram

Please refer to previous page for instructions on use.

Application notes
A series of application notes are available on Terasaki breakers from your nearest NHP branch. The notes cover the following subjects.
Ref No. Description
5006 Specification for corrosive proofing of MCCB's
5025 De-rated current of ACB's when enclosed
5093 De-rated current of MCCB's when enclosed
5088 De-rating of TemBreak electronic MCCB's when enclosed
5067 DC applications of ACB's
5065 Reverse connection
5074 Thynistor protection with MCCB's
5078
ELCB's at high frequency
5087
5083
5086
5195
ACB's and MCCB's at high altitude
Circuit breaker life mechanical and electrical
TemBreak UVT: transient response time
Inspection and maintenance of earth leakage and moulded case circuit breakers.

IP rating protection against ingress of dust and liquids

	1st digit Degree of protection against contact and ingress of foreign bodies	IP	2nd digit Degree of protection against ingress of liquids
	No protection	0	No protection
1	Protection against ingress of solid foreign bodies with diameters greater than 50 mm	1	Protection against vertically falling water drops
2	Protection against contact with the fingers, protection against ingress of solid foreign bodies with diameter greater than 12 mm	2	Protection against obliquely falling water, up to an angle of 15°
	Protection against contact with wires etc., with diameters greater than 2.5 mm , or ingress of solid foreign bodies with diameters greater than 2.5 mm	3	Protection against obliquely sprayed water, up to an angle of 60° from the vertical
	Protection against contact with wires etc., with diameter greater than 1 mm , or ingress of solid foreign bodies with diameters greater than 1 mm	4	Protection against sprayed low pressure water from any direction
	Complete protection against contact with live parts, protection against harmful deposits of dust	5	Protection against water-jets from any direction - limited ingress permitted
6	Complete protection against contact with live parts, protection against ingress of dust	6	Protection against strong jets of water eg. ship decks
		7	Protection against temporary immersion in water
		8	Protection against indefinite immersion in water - under pressure

XS125 series
D Adjustment range 63-100\% of nominal current rating.

- Standards AS 2184/AS 3947-2.
[] Adjustable thermal and fixed magnetic trip.
- Max. voltage (INSUL) 690V.

XS125CJ (18kA) 3 pole
Ampere

rating	Min	Max	Cat. No.
20	12.5	20	XS125C0203
32	20	32	XST250J323
50	32	50	XS125CJ503
63	40	63	XS125CJ633
100	63	100	XST25CJ4003
125	80	125	XS125CJ4253
125	Non-Auto (1.8kA for 1sec)	XS125NN394)	

XS125NJ (30kA) 2 pole
Ampere

rating	Min	Max	Cat. No.
20	12.5	20	XS12500202
32	20	32	X 5125013322
50	32	50	XS12500502
63	40	63	XS12500632
100	63	100	XS125N04002
125	80	125	XS12503 ¢252

XS125NJ (30kA) 3 pole

20	12.5	20	XS12500203
32	20	32	XS125以323
50	32	50	XS125M0503
63	40	63	XS12510633
100	63	100	XS125N0 4003
125	80	125	XS125N0 2253

XS125NJ (30kA) 4 pole

Dimensions (mm)

Description	Height			Width	Depth	kg
$X S 125 C J$	3 pole	155	90	86	1.3	
$X S 125 N J$	2 pole	155	90	86	1.3	
$X S 125 N J$	3 pole	155	90	86	1.3	
$X S 125 N J$	4 pole	155	120	86	1.58	

Short circult capacity

Model	I/C	Voltage
$X S 125 \mathrm{CJ}$	$18 \mathrm{kA}(\mathrm{AS} 2184)$	415 V 5 Hz
XS 125 NJ	$30 \mathrm{kA}(\mathrm{AS} 2184)$	415 V 50 Hz

DCuse	I/C ${ }^{3}$)	Voltage
$X S 125 C J$	10 kA	250 VDC
$X S 125 \mathrm{NJ}$	15 kA	250 VDC

Refer to ratings chart at the front of this section. For ratings to AS 3947-2 and AS 2184, and Icsi/cu.

MCCB Technical data

Connectións and mountings

MCCB accessories
Front-connection type (FC)

Compression terminals

Attached flat bar

Types of terminal screws (Compression terminal and bar)
Breakers and screw size
XE series
(Economical)

XS series	XH series (High-fault level)	XM series (Motor protection)

Pan headed screw

Hex socket head bolt

D)	XE225NC	M8	XS250NJ	M8	XH250NJ	M8
					XH160PJ	M8
\%			X 8400	M10	TL250NJ	M10
(${ }^{\text {a }}$			XH400	M10	TL400NJ	M10
\Rightarrow			XV400	M10	XH250PJ	M10

MCCB Technical data

Connections and mountings
 Rear-connection type (RC)

Bolt stud
Breaker

Applicable breakers

- XS series

XS125CJ, XS125NJ
] XH series XH125NJ, XH125PJ

TemBreak XS125CS, CJ, NS, NJ, XH125NJ, TL30F MCCBs

ASL: Arrangement Standard Line ㄴ: Handle frame centre line

Outine dimensions (mm)
Front connected (standard)

Note: XS125NS 1 pole onty Drilling plan

Plug-in (optional)
Mounting block
Drilling plan

Plug-in Type

Switchboard use

Types of plug-in mounting blocks for switchboard use

Plug-in type

Degree of protection

The degree of protection provided by the mounting blocks for plug in type TemBreak is IP 20 as defined in IEC Pub 529
Standard Safety Trip (Trip first plug-in mechanism) indent.

- The breaker will trip automatically if it is withdrawn while still in the "ON" position. It is not possible to "plug-in" the breaker when it is in the "ON" position.

Application table (up to 100A frame)

Breaker	IP cover code	Pole	Qty Req.
XS125	IP 20	$2,3 P$	1 2

XH125

[^8]Crimp lugs' (compression type)

Frame (A)	Breaker	Nominal wire size ($\mathrm{mm}^{\mathbf{2}}$)						
		1.5	2.5	4	6	10	16	25
XM30	XM30PB	CAL1.5-5	CAL2.5-5	CAL4-5	CALS-5	CAL10-5	CAL16-6	
		MT2.5-M5	MT2.5-415	MT4-M5	MT6-M5*	WT10-M5	MT16-M5	
125	XS125CJ	-	CAL2.5-8	CAL4-8	CAL6-8	CAL10-8	CAL16-8	CA125-8
	XS125NJ	MT2.5-M8	MT2.5-M18	MT4-M8	MT6-N8	NT10-MB	MT16-M8	MT25-M ${ }^{\text {M }}$
	XH125NJ							
	XH125PJ							
	TL100NJ							
	TL30F	\%..						

Commercially available compression terminals available from CABAC - Cable Accessories and JST Australia.
Key: CAL = CABAC lugs
MT $=$ JST lugs

Connection

(one electric cable)
If low clearance occurs use a recommended tape or insulation.

Connection

(two electric cables)
If low clearance occurs use a recommended tape or insulation.

MCCB Technical data

XS125CJ, XS $125 \mathrm{NJ}, \mathrm{XH} 125 \mathrm{NJ}$
XH125NJ
Time/current characteristic curves

Ambient compensating curves

TemBreak XS125CS, CJ, NS, NJ, XH125NJ,'PJ and TL30F MCCBs
ASL: Arrangement Standard Line
H : Handle frame centre line
Outline dimensions (mm)
Note: XS125NS 1 pole only Drilling plan

Rear connected (optional) Drilling plan

Panel mount

Panel cut out dimensions shown give an allowance of 1.0 mm around the handle escutcheon.

Plug-in (optional)

Mounting block

Drilling plan

Môtor ōperators fồ XS125

Outline dimensions (mm)

Rear connected (optional)

Plug-in (optional)

ASL: Arrangement Standard Line
L : Handle frame centre line

Notes: 'Above outline dimensions are for AC motors. Contact NHP for details for DC motors.

Application data

-Miniatừê circuit breakers and fúşe fault current lîmiters co-ordiñation chaŕ
For fault current levels up to 50kA at 415 V

Circuit breaker Type	Rating amps	Min. fuse amps ${ }^{\text {1 }}$)	Maximum fuse - amp	
			BS 88	DIN
Safe-T	6-10	50	$160{ }^{2}$)	160
	16-25	63	200%	200
	32	80	200^{2})	200
	40-50	100	$200{ }^{2}$)	200
	63-100	160	200^{2})	200
SRCB	10	50	160	160
	16-20	63	200	200
Din-T6	2-25	20-63	160	160
	32-63	100	160	160
Din-T10 \&	0.5-6	20	200	200
Din-T15	10	25	200	200
	16	35	200	200
	20-32	63	200	200
	40-63	100	200	200
DRCEH	10	25	200	200
(10kA)	16	35	200	200
	20-32	63	200	200
Din-T10H	80	160	200	200
	100	200	200	200
	125	250	250	250
Tembreak MCCB's				
XS125NJ/CJ	16-125	250	400	400

Notes: ") Minimum fuse size is based on grading under overload of one MCB with one set of fuses. Where a single set of fuses prolects more than one MCB, the minimum fuse size shall be increased to allow for load biasing effects.
${ }^{2}$) Maximum fuse size based on testing to AS 3439.1 clause 8.2.3.

Tables based on the following maximum pre-arching 1^{2} t for both BS 88 and DIN fuses:
$160 \mathrm{~A}-0.62 \times 10^{5}, \quad 200 \mathrm{~A}-1.2 \times 10^{5}, \quad 250 \mathrm{~A}-2.1 \times 10^{5}$.
Suitable fuses include NHP, GEC, Siemens and Brovara-Crady.
Fuses with higher current ratings may be used providing $l^{2} t$ values are equal to, or less than the levels above.
Semi-conductor fuses have very low $1^{2} t$ values and may suit some applications.
Attention is also drawn to AS 3000 clause 7.10 .4 .4 regarding the use of fault current limiters in installations containing fire and smoke control equipment, evacuation equipment and lifts.

A higher reliance on electrical supply and satety in commerce and industry has increased awareness in circuit breaker technology and applications. Additionally, while maximising system safety and reliability, efficient economy of overall costs is atso of great importance.
The combination of these factors has given rise to more precise methods of circuit breaker application.
Two common terminologies relating to general power backup and system protection are: Selectivity (Discrimination) and Cascading (Back-up). In general terms, Selectivity is used to improve system reliability and to ensure a continuous supply of power to as high a degree as possible. Cascading on the other hand is where an upstream breaker is used to "back-up" a lower specification breaker installed downstream to clear a fault current, and is generally used where economics plays a significant part in system design.

Selectivity (Discrimination)

Previously known as "Discrimination", the most basic form of Selectivity is where two circuit breakers are connected in series. A higher amperage breaker is installed upstream, and a lower amperage breaker downsiream. Should an overload or short circuit occur downstream, the downstream breaker will trip, but the upstream breaker will not, hence feeding parts of the system which are fault-free. This is the concept of Selectivity.
Selectivity is generally used, for example in critical applications, feeding essential loads. It is important to ensure total installation power is not lost due to a small or minor fault in a sub part of the overall electrical system, for example in a local distribution board. Total power loss could affect vital systems such as in Hospitals or Computer Centres etc.
The principle of Selectivity (Discrimination) is based upon an analysis of several types of circuit breaker characteristics. These include tripping characteristics (timecurrent curves), Peak Let Through Current ($l_{\text {pook }}$) and Energy Let Through (IZT).
Selectivity can be "enhanced" beyond the breaking capacity of the downstream device provided it is backed up by an appropriately selected upstream device, which should not trip (unlatch) under stated conditions.

Cascading (Back-up)

Cascading is achieved by using an upstream device to assist (back-up) a downstream device in clearing a fault current that happens to be greater than the breaking capacity of the downstream device.
In Cascading applications, the upstream device may have to trip (unlatch) in order to give sufficient protection to the downstream device, thus interrupting supply of power to all devices downstream. Therefore, Cascading is generally used in applications involving the supply of non-essential loads, such as basic lighting. The main benefit of Cascading is that in certain circumstances circuit breakers with breaking capacities lower than the prospective fault level, and hence lower in cost, can be safely used downstream provided it is backed-up by the relevant upstream breaker.
Cascade / Selectivity Tables
The Selectivity and Cascade tables shown in the following pages are structured as follows.

Selectivity: The Selectivity or Enhanced Selectivity limit of the two nominated devices in series. Up to this level of fault current the downstream device will trip (unlatch) before the upstream device. Above this level, the upstream may also trip.
Cascade: The enhanced or maximum downstream fault current that can be safely interrupted when both breakers are installed in series. Both breakers may trip (unlatch).
The Selectivity and Cascade levels stated by NHP are fully compliant with the requirements of the applicable standards. Selection of breakers should be in accordance with the selection tables.

The figures stated in NHP tables are for nominated Terasaki devices only, and should not be used as guidance for using alternative brands of circuit breakers.

Application data

TemBreak MCCB's and Safe-T/Diñ-T MCB's - Selectivity and Cascade
tables at 415 V
Guide

Upstream MCCB
XS400SE

Downstream MCB	kA (rms)	$\begin{gathered} \text { XS125CJ } \\ 18 \\ \hline \end{gathered}$	$\begin{gathered} \text { XS125NJ } \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} \text { XH125NJ } \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} \text { XS250NJ } \\ \mathbf{3 5} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{XH} 250 \mathrm{NJ} \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} \text { XS400CJ } \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} \text { XS400NJ } \\ 50 \end{gathered}$
Din-T6 (2-25A)	6	18/18	$25 / 25$	25/25	25/25	$25 / 25$	-	-
Din-T6 (32-63A)	6	18/18	$20 / 25$	20/25	25/25	25/25	-	\cdots
Din-T10 (0.5-25A)	10	18/18	25/30	$30 / 50$	35/35	35150	35/35	35/50
Din-T10 (32-63A)	10	18/18	20/25	20/25	25/25	$25 / 25$	25/25	25/25
DRCBH (10-25A)	10	$18 / 18$	25/30	30150	35/35	35/50	35/35	35150
DRCBH (32A)	10	18/18	$20 / 25$	$20 / 25$	25/25	25/25	25/25	$25 / 25$
Din-T10H (80-125A)	10	4/18	$4 / 25$	4/25	15/15	15/15	$10 / 10$	$10 / 10$
Din-T15 (6-16A)	25	18/25	25/30	$30 / 50$	35/35	35/50	35/35	35/50
Din-T15 (20A)	20-25)	$18 / 20$	25/30	$30 / 50$	35/35	35/50	35/35	35/50
Din-T15 (32A)	15-25)	18/18	25/30	$30 / 50$	35/35	35/50	35/35	35/50
Din-T15 (40-63A)	10-12.5)	18118	20/25	$20 / 25$	25/25	25/25	$25 / 25$	25/25
Safe-T (16-63A)	6	3/10	3/10	3/10	- -	*	-	-
SRCB (16-20A)	6.	310	$3 / 10$	3110	-	\%	- -	-

Note: ') Dependant on the number of poles. Refer to NHP.

Application data

TèmBreak Plus MCCB's -Selectivity and Cascade tablès ât 415V
Guide

Upstream MCCB

Downstream MCCB	kA (rms)	$\begin{gathered} \text { XS400SE } \\ 50 \end{gathered}$	$\begin{gathered} \mathrm{XH} 400 \mathrm{SE} \\ 65 \end{gathered}$	$\begin{gathered} \text { XS630SE } \\ 50 \end{gathered}$	$\begin{gathered} \mathrm{XH} 630 \mathrm{SE} \\ 65 \end{gathered}$	$\begin{gathered} \text { XS800SE } \\ 50 \end{gathered}$	$\begin{gathered} \text { Xh800SE } \\ 65 \end{gathered}$	$\underset{65}{\mathrm{XS} 1250 \mathrm{SE}}$	XS1600SE 85
XS125CJ	18	15/50	15/50	18/30	18/30	18/30	18/30	18/18	98118
XS125NJ	30	25/50	25/50	30/30	30/30	30/30	30/30	30/30	30/30
XH125NJ	50	35/50	35/65	50/50	50/65	50/50	$50 / 65$	$50 / 50$	50150
XH125PJ	50	35/50	35/65	$50 / 50$	50/65	50/50	$50 / 65$	$50 / 50$	50/50
XH160PJ	50	$25 / 50$	25/65	50/50	50/65	$50 / 50$	$50 / 65$	$50 / 50$	$50 / 50$
XE225NC	18	15/30	15/30	18/30	18/30	18/30	18/30	18/18	18118
XS250NJ	35	15150	15/65	35/50	35/65	$35 / 50$	$35 / 65$	35/35	35/35
XH250NJ	50	25/50	$25 / 65$	$50 / 50$	50/65	50/50	50/65	$50 / 50$	50150
XH250PJ	65	-	-	$10 / 50$	10/65	25150	$25 / 65$	50165	$50 / 65$
XS400CJ	35	-/50	-150	10/50	10/65	25/50	25/65	35/42	35/42
XS400NJ	50	-	-65	$10 / 50$	10/50	$25 / 50$	25165	50/65	50165
XS400SE	50	-	-165	$10 / 50$	10/65	25/50	25/65	$50 / 65$	50/65
XH400PJ	65	-	-	$10 / 50$	10/65	25/50	$25 / 65$	50/65	$50 / 65$
XH400SE	65	-	-	$10 / 50$	10/65	25/50	25/65	50/65	$50 / 65$
XH400PE	65	$=$	-	$10 / 50$	10/65	25/50	$25 / 65$	$50 / 65$	50/65
XS630C-J	45	-	-	-	-150	$7 / 50$	$7 / 50$	$30 / 45$	$30 / 45$
XS630NJ	65	-	-	-	-	7150	$7 / 65$	30/65	$30 / 85$
XS630SE	50	-	-	-	-165	-	-	$30 / 65$	$30 / 85$
XH630PJ	85	-	-	-	-	-	*	30/65	30185
XH630SE	65	-	-	-	-	-	-	30/65	30185
XH630PE	65	-	-	-	-	-	$=$	$30 / 65$	30/85
XS800NJ	65	-	-	-	-	-	-	15/65	$20 / 85$
XS800SE	50	-	-	-	-	-	-65	15/65	$20 / 85$
XH800PJ	85	-	-	-	-	-	-	15/65	20185
XH8000SE	65	-	-	-	-	-	-	15/65	$20 / 85$
XH800PE	65	-	-	-	-	-	-	$15 / 65$	$20 / 85$
XS1250SE	65	-	-	-	-	-	-	-	20/65

Štandard TemBreak MCCB's. Selectivity ảnd Cascade tables at 415 V
Guide

Selectivity Cascade
Upstream MCCB

Downstream MCCB	kA (rms)	$\begin{gathered} \text { XH125NJ } \\ 50 \end{gathered}$	$\begin{gathered} \text { XS250NJ } \\ 35 \end{gathered}$	$\underset{50}{\mathrm{XH} 250 \mathrm{NJ}}$	$\begin{gathered} \text { XS400CJ } \\ 35 \end{gathered}$	$\begin{gathered} \text { XS400NJ } \\ 50 \end{gathered}$	$\begin{gathered} \text { XS400NE } \\ 50 \end{gathered}$	XH400NE 65
XS125CJ	18	-150	3/30	3/50	4/35	$4 / 50$	$6 / 50$	6/50
XS125NJ	30	-150	3/30	$3 / 50$	4/35	4/50	6/50	6/50
XH125NJ	50	-	-	-	-	-	6/50	6/65
XE225NC	18	-	-/30	-30	-130	-130	6/30	6/30
XS250NJ	35	-	-	-	-	$4 / 50$	$6 / 50$	6/65
XH250NJ	50	-	-	-	-	$4 / 50$	6/50	6/65
XS400CJ	35	-	-	-	-	-150	-150	-150
XS400NJ	50	-	-	-	-	-	-	-/65
XS400NE	50	-	-	-	-	-	-	-/65
XH400NE	65	\bullet	-	\cdots	-	-	-	-
XS630CJ	45	-	-	-	-	-	-	-
XS630NJ	65	-	-	-	-	-	-	-
XS630NE	50	-	-	-	-	-	-	-
XH630NE	65	-	-	-	-	-	-	-
XS800N 3	65	-	-.	-	-	\bullet	-	-
XS800NE	50	*	-	-	. \cdot.	-	-	-
XS1250NE	65	-	-	-	-	\checkmark	-	-
XS1600NE	100	-	-	-	-	-	\cdots	-

Upstream MCCB

Downstream MCCB	kA (rms)	$\begin{gathered} \text { XS630CJ } \\ 45 \end{gathered}$	$\begin{gathered} \text { XS630NJ } \\ 65 \end{gathered}$	$\begin{gathered} \text { XS630NE } \\ 50 \end{gathered}$	$\begin{gathered} \mathrm{XH} 630 \mathrm{NE} \\ 65 \end{gathered}$	XS800NJ 65	$\begin{gathered} \mathrm{XS800NE} \\ 50 \end{gathered}$	$\begin{gathered} \text { XH800NE } \\ 65 \end{gathered}$
XS125C.	18	$6 / 30$	6130	14/30	18130	10/30	$14 / 30$	14/30
XS125NJ	30	6130	$6 / 30$	18/30	18/30	10/30	18/30	18/30
XH125NJ	50	-	-	-	-	12/65	30150	-
XE225NC	18	$6 / 25$	$6 / 30$	$10 / 30$	$10 / 30$	8/30	12 ¢30	12/30
XS250NJ	35	$6 / 45$	6150	$10 / 50$	10/65	8150	12150	$12 / 65$
XH250NJ	50	-	-	$10 / 50$	-	10/65	$22 / 50$	-
XS400CJ	35	$6 / 35$	$6 / 50$	7.5/50	7.5/65	6/50	10/50	10/65
XS400NJ	50	-	-	7.5/50	7.5165	6/50	10/50	10/65
XS400NE	50	-	-	$10 / 50$	10/65	6/50	$10 / 50$	$10 / 65$
XH400NE	65	-	-	-	-	-	-	10/65
XS630CJ	45	-	*	-	-	-	-	-
XS630NJ	65	-	-	- .	-	-	*	-
XS630NE	50	-	-	-	-	-	-	-
XH630NE	65	-	-	-	-	-	-	-
XS800NJ	65	-	-	-	-	-	-	-
XS800NE	50	-	-	-	-	-	-	-
XS1250NE	65	-	-	-	-	-	-	-
XS1600NE	100	-	$=$	* -	-	-	-	-

Application data

Standard TemBreak MCCB's. Selectivity and Cascade tables at 415 V
Guide

Selectivity Cascade

Downstream MCCB	kA (rms)	$\begin{gathered} \text { XH800PJ } \\ 85 \end{gathered}$	$\begin{gathered} \mathrm{XS} 1250 \mathrm{NE} \\ 65 \end{gathered}$	$\begin{gathered} \text { XS1600NE } \\ 100 \end{gathered}$	$\begin{gathered} \text { XS2000NE } \\ 100 \end{gathered}$	$\begin{gathered} \text { XS2500NE } \\ 100 \end{gathered}$
XS125C3	18	10/30	$18 / 18$	18/18	$18 / 18$	18118
XS125NJ	30	$10 / 30$	30/30	30/30	$30 / 30$	30/30
XH125NJ	50	$12 / 65$	50/50	50/50	$50 / 50$	$50 / 50$
XE225NC	18	8/30	18/18	18/18	$18 / 18$	18/18
XS250NJ	35	$8 / 65$	25/35	35/35	35/35	35/35
XH250NJ	50	10/65	35/50	50/50	50/50	50/50
XS400CJ	35	$6 / 65$	20/42	35/42	35/42	35/42
XS400NJ	50	$6 / 65$	20/65	35/65	35/65	50/65
XS400NE	50	$6 / 65$	20/65	35/65	35/65	50/65
XH400NE	65	-	20/65	35/65	35/65	50/65
XS630C. ${ }^{\text {J }}$	45	-/50	15/45	20/45	35/45	35/45
XS630NJ	65	-/85	15/65	$20 / 85$	35/85	35/85
XS630NE	50	-185	15/65	$20 / 85$	35/85	35/85
XH630NE	65	-185	15/65	$20 / 85$	35/85	35/85
XS800NJ	65	-185	15/65	20185	35/85	35/85
XS800NE	50	-/85	15/65	20/85	35/85	35185
XS 1250 NE	65	-	-	$20 / 65$	35/65	35/65
XS1600NE	100	-	-	-	-	35165

Motor Starting - Introduction

Generally, an item of switchgear is selected on the basis of one or more performance criteria, be it current/power carrying or interrupting capabilities.

Additional consideration is often necessary when several different pieces of switchgear are connected in series, none more so than in motor starting applications. As motors play a significant part in most modern day electrical systems it is important to ensure that the components of switchgear controlling and protecting the motor will interact with each other, or in other words, they are "co-ordinated".
In order to protect and operate a motor several components may be used, each with a different function. A typical set-up is as follows:

M

What problems can occur?

At the instant the motor is supplied with power it draws an "in-rush current" to its terminals, before gradually decaying to a normal operating current.

Should the in-rush current be high, it could be detected by the SCPD and classed as a fault current. If a high in-rush current should occur or even after repeated stop-start (inching) operations of the motor the SCPD may trip, albeit without a fault in the system. This is commonly known as "nuisance tripping" of the SCPD.

Special care must be taken when selecting a SCPD for motor-starting applications to prevent nuisance tripping, and at the same time ensuring adequate protection to the motor and associated cabling.
Another function of the SCPD is to protect the control device (e.g. contactor) from high-current, high-energy faults. Therefore, attention must also be paid when selecting an SCPD-Starter (contactor + thermal overload relay) combination.

When clearing a fault every SCPD has a finite opening time, which will result in an amount of fault current and energy being "let-through" to the downstream system and other devices. At the same time, a control device, such as a contactor can only withstand a finite level of fault current and energy, otherwise internal damage could occur.
Even at relatively low fault levels the electromagnetic forces created by the fault current can cause the contacts of a contactor to lift. This can cause heating or even mild arcing which in turn can damage or weld the contacts of the contactor.

Furthermore, the let-through current of the SCPD can distort the bi-metal strip in the overload relay. This can prevent the restoration of the bi-metal strip to its original configuration on cooling, altering the relay's protection characteristics and resulting in under or over protection of the motor.
What solutions are available to me? Good component design in association with correct component co-ordination is the only way to ensure reliable protection and operation under abnormal condition.
Terasaki circuit breakers and Sprecher + Schuh starter combinations are tested to provide full and safe co-ordination for most motor starting applications.

Motor Stâting
 What is co-ordination

The motor starter consists of a combination of contactor, overload relay and Short Circuit Protection Device (SCPD) being either fuses or circuit breakers.
During motor starting and at normal loading, the overload relay protects both the motor and cables by tripping the contactor in a time inversely proportional to the current. However, under short circuit conditions, the response time would be too long and the fuses or circuit breakers must takeover to interrupt the fault current therefore limiting energy passed through the starter components. When this is successfully achieved, the combination is said to be co-ordinated.

It is a requirement of the Australian Standard AS 3947.4.1 that combination motor starters are capable of withstanding the effects of load side short circuits. Some damage to the combination is permitted, but this must be confined and not present a risk to the operator, or damage equipment adjacent to the starter.
Contactors and thermal overtoad relays only have limited ability to withstand the high curtent associated with a fault such as an internal motor short. Their design is optimised for performance at much lower currents and to design in the ability to control or withstand high fault levels would add to costs and possibly reduce its performance at normal levels.
The standards
The requirements of several standards can be applied to these combination units. The Wiring Rules, AS 3000, are concerned mainly with setting standards for the fixed wiring. In this regard the concern is the wiring between the protection device and the motor.
As motors can experience short term overloading the current rating of a fuse can be up 4 times and a circuit breaker 2.5 times the full load rating of the motor. The Wiring Rules allow the overload protection and the short circuit protection to be provided by different devices. This allows magnetic only circuit breakers, or back-up type fuses, to be used in conjunction with a contactor/thermal overload relay configuration.
Isolating switches must also be provided in the motor or control circuit. These are to be in clear view of any person working on the motor, or provided with a locking device.
AS 3947.4.1 specifies testing requirements for the combination of components required to perform the motor control and protection functions. If the equipment has been mounted in a switchboard it is possible to meet the testing requirements of AS 3947.2 short circuit withstand of the outgoirg circuit at the same time as the tests to AS 3947.4.1 are performed.

Both standards look at the performance of the equipment when a fault occurs on the outgoing circuit. It is accepted in these standards that some damage may be sustained by the components of the starter when subjected to short circuit conditions.

AS 3947.2 requires that during the tests the equipment installed in the switchboard performs in accordance to its own standard. A selection by the customer of the performance required needs to be made, as AS 3947.4.1 allows for Type ' 1 ' and Type ' 2 ' performance.

Type ' 1 '
Under short circuit conditions the starter shall not cause danger to persons or the installation. The starter itself may need repair.
Type '2'
After a short circuit the starter is suitable for further service. A contact weld is permitted, but it must be easily separated - for example, by a screwdriver, without significant deformation.
Type ' 2 ' co-ordination does not mean the starter is suitable for normal operation without inspection/repair of the contacts. So, in both cases it is important that the condition of the starter is checked, to ensure that the SCPD has operated and that no damage has taken place.

Notes: IEC Standards are the basis of many Australian Standards. AS 3947.4.1 is equivalent to IEC 947.4.1 and AS 3947.2 is equivalent to IEC 947.2.
Both Australian standards list some amendments to the IEC versions.

Typical arrangement for co-ordination test

Môtồ Stârting

Protective devices selection
In most cases very little difference will be noticed in the service performance of a system using fuses as against circuit breakers.
The circult breaker is easier when it comes to restoring power, but as tripping should only be the result of a system fault it is unwise to reclose the circuit breaker without finding the cause. In this regard it is normal for only a "skilled person" to attend to fuse replacement and they are more likely to check for other problems.
As the circuit breaker or fuse is operating in conjunction with separate motor overload protection, it is the contactor which responds to overload problems. This is different to a protective device on a distribution circuit. For this application the advantages of the circuit breakers easy return to service has caused a general trend towards using circuit breakers.
Consideration should be given to preventing unskilled people from reclosing a tripped circuit breaker in a motor control application. This can be done by making the switchboard only accessible to the correct people, or by requiring the switchboard to be opened to reset the circuit breaker.
It must be assumed with both Type ' 1 ' and Type ' 2 ' co-ordination that if the short circuit protective device has operated there is a faut in the motor, or wiring to it and that the starter itself needs attention.
It is the let-through energy of the protective device which determines the damage to the starter. As this varies greatly between different models, it is essential that only proven combinations are used.

NHP, Sprecher + Schuh and Terasaki have now conducted many tests on different combinations and these are detailed in the co-ordination tables.

Terasaki circuit breakers for short circuit protection

Terasaki circuit breakers have been tested in combination with Sprecher + Schuh contactors and overloads and can be used for Type '1' and Type '2' co-ordination requirements. (Refer to following tables for actual combinations).

TemBreak

A new generation of MCCB's offering a choice of 3 series (economical, standard and high fault) and two types, ie, adjustable thermal magnetic or microprocessor based solid state OCR are available from Terasaki. Both types have common construction features and interchangeable plug-in accessories. TemBreak thermal-magnetic MCCB's offer a wide adjustment range, with 63% to 100% of rated current. Each MCCB is individually calibrated to ensure precision Iripping on overcurrent.

TemBreak electronic type

The rated current of the electronic type TemBreak is adjustable in 15 steps from 50% to 100% of the nominal rated current, using the base current (l) select switch and the pickup current (11) setting dial.
This is one of the essential features for precise protection co-ordination and for low voltage distribution systems.

TemBreak motor protection cirĉuit breaker

The XM30PB circuit breaker will protect contactor starters with direct connected overcurrent relays with ratings 1 amp to 12 amp in systems with up to 50 kA rms prospective short circuit. The protection is due to the special current limiting effect of the XM30PB.
Motor starter protection
The XM30PB circuit breaker has been developed for motor starter protection and is suitable as the Short Circuit
Protection Device (SCPD) for motor starters equipped with either direct connected or CT connected overcurrent relays.

XM30PB compared to HRC fuse

The circuit breaker tripping characteristic is more suitable for protection of starters than the HRC fuse. Unlike the HRC fuse, the breaker can be selected to trip instantaneously at a predetermined current level just lower than the maximum breaking current of the starter contactor, thus always protecting the contactor against opening fault currents higher than its capability. This can be seen from the typical breaker and fuse tripping characteristics compared to the contactor breaking capacity in
figure 1.
No protection is provided by the fuse when the overcurrent is of value B to C amps should the contactor open by earth fault relay. If the breaker is used as a SCPD then protection is provided for all currents in excess of the instantaneous trip current of the breaker. Also, the circuit breaker can be tripped by earth fault relay and so prevent the risk of contactor damage due to the long delay of the HRC fuse interruption if the fault current is of a value between B and C.

Fig 1.

[^9]Application data

Motor starter co-ordination table for DOL starting 50kA at 415V to AS 3947-41

TYPE 1 50kA

Motor size kW
Approx. amps
0.37
0.55
0.75
1.1

[^10]
Type ' 2 ' short circuit co-ordination Terasaki Din-T at 50kA

The 10kA Din-T miniature circuit breaker gives an amazing 50kA performance when used in the combinations shown in the co-ordination tables. For the low current ratings, the resistance of the thermal overloads assists in reducing the current to a level that the Din-T can handle with ease. For the higher ratings a Sprecher + Schuh limiter block lifts the combined performance to the 50 kA level.

All the listed Din-T combinations include a rotary isclator which allows external control. To reset the starter after a short circuit, access to the breaker is required. This can be used to prevent unskilled operators from reclosing the motor starter after a fault.

It should also be remembered that whenever the circuit breaker trips under high fault currents, the contactor must be checked for welded contacts.

TYPE 2 50kA

KTA 3 Motor starter combination

Type '2' co-ordination table for Din-T circuit breakers with rotary isolator DOL starting 50kA @ 415V to AS 3947.4.1

Motor size kW	Approx. amps @ 415 V	Sprecher + Schuh Isolator	Terasaki circuit breaker	Sprecher + Schuh current limiter	Sprecher + Schuh contactor	Sprecher + Schuh thermal overload relay	Thermal overload range
0.37	1.1	LA 3-80	Din-T 10/4	-	CA 79	CT $7-24$	1-1.6
0.55	1.5	LA 3-80	Din-T $10 / 4$	-	CA 7-9	CT 7-24	1-1.6
0.75	1.8	LA 3-80	Din-T 1014	-	CA $7-9$	CT 7-24	1.6-2.4
4.4	2.6	LA 3-80	Din-T 10/6	-	CA 7-23	CT 7-24	2.4-4
1.5	3.4	LA 3-80	Din-T 10/6	,	CA 7-23	CT $7-24$	2.4-4
2.2	4.8	LA 3-80	Din-T 10/10	KTL 3-65	CA 7-23	CT 7-24	4-6
3.0	6.5	LA 3-80	Din-T 10/16	KTL 3-65	CA 7-23	CT 7-24	6-10
4.0	8.2	LA 3-80	Din-T 10/16	KTL 3-65	CA 7-23	CT 7-24	6-10
5.5	11.0	LA 3-80	Din-T 10/20	KTL 3-65	CA $7-23$	CT $7-24$	10-16
7.5	14.0	LA 3-80	Din-T 10/32	KTL 3-65	CA 7 -30	CT 7-45	10-16
11.0	21.0	LA 3-80	Din-T 10/40	KTL 3-65	CA. $7-30$	CT 7-45	16-24
15.0	28.0	LA 3-100	Din-T 10/63	KTL 3-65	CA. 7.37	CT 7-45	18-30
18.5	34.0	LA 3-100	Din-T 10/63	KTL 3-65	CA 7-37	CT 7-45	30-45

Application data

Type ' 2 ' short circuit co-ordination
Motor starter co-ordination table for DOL starting 50kA at 415V to AS 3947-4-1

TYPE 2 50kA

Motor size kW	Approx. amps	Terasaki circuit breaker	Sprecher + Schuh contactor type	Sprecher + Schuh thermal overload relay type ${ }^{3}$)	Settings range amps
0.37	1.1	XM30PB/1.4	CA 7-9	CT 7-24-1.6	t-1.6
0.55	1.5	XM30PB/2	CA $7-9$	CT 7-24-1.6	1-1.6
0.75	1.8	XM30PB/2.6	CA $7-9$	CT 7-24-2.4	1.6-2.4
1.1	2.6	XM30PB/4.0	CA 7-16	CT 7-24-4	2.4-4
1.5	3.4	XM30PB/5	CA 7-16	CT 7-24-4	2.4-4
2.2	4.8	XM30PB/8	CA 7-16	CT 7-24-6	4-6
3	6.5	XM30PB/10	CA 7-30	CT 7-24-10	6-10
4	8.2	XM30PB/12	CA 7-30	CT 7-24-10	6-10
5.5	11	XH125NJ/20	CA 7-30	CT 7-24-16	10-16
7.5	14	XH125NJ/20	CA 7 -30	CT 7-24-16	10-16
11	21	XH125NJ/32	CA. 7 -30	CT 7-24-24	16-24
[15	28	XH125NJ/50	CA 7-43	CT 7-45-30	18-30
18.5	34	XH125NJ/50	CA 7-43	CT 7-45-45	30-45
22	40	XH125NJ/63	CA 7-43	CT 7-45-45	30-45
30	55	$\times H 125 N J / 100$	CA 7-85	CT $7.75{ }^{2}{ }^{\circ}$	45-60
37	66	XH125NJ/100	CA 7-85	CT 7-75 ${ }^{\text {2 }}$	60-75
45	80	X $\mathrm{H} 125 \mathrm{~N} / \mathrm{M} / 25$	CA 6-105-(E)	CT $6-90$	70-90
55	100	XH125NJ/125)	CA 6-105-(EI)	CT 6-110	85-110
75	130	XH250NJ/250	CA 6-140-(E)	CT 6-150	105-150
90	155	XH250NJ/250	CA 6-170-Er	CT 6-209	140-200
110	200	XH250NJ/250 ${ }^{\text {) }}$	CA. $6-210$ - ${ }^{\text {ct }}$	CEF 1-4/442	160-400
132	225	XS400SE/400	CA 6-210-EI	CEF 1-41/42	160-400
160	270	XS400SE/400	CA6-300-E	CEF 1-41/42	160-400
200	361	XS400SE/400	CA 6-420-EI	CEF 1-41/42	160-400
200	361	XS400SE/400	CA 5-450	CEF 1-22 ${ }^{\text {\% }}$)	160-400
250	425	XS630SE/630	CA 5-700	CEF $1-52{ }^{\text {2 }}$	160-630
320	538	XS630SE/630	CA 5-700	CEF 1-52 ${ }^{\text {2 }}$	160-630

[^11]
Application data

Motor size kW	Approx. amps	Terasaki circuit breaker	Sprecher + Schuh contactor	Sprecher + Schuh overload relay ')	Settings range amps
0.37	1.1	XM30PB/1.4	CA 7-9	CEP 7	1.0-2.9
0.55	1.5	XM30PB/2	CA 7.9	CEP 7	1.0-2.9
0.75	1.8	XM30PB/2.6	CA 7-9	CEP 7	1.0-2.9
1.1	2.6	XM30PB/4.0	CA 7-16	CEP 7	1.6-5
1.5	3.4	XM30PB/5	CA 7-16	CEP 7	1.6-5
2.2	4.8	XM30РB/8	CA 7-16	CEP 7	3.7-12
3	6.5	XM30PB/10	CA 7 -30	CEP 7	3.7-12
4	8.2	XM30РB/12	CA 7 -30	CEP 7	3.7-12
5.5	11	TL30F/20A	CA 7-30	CEP 7	3.7-12
7.5	14	TL30F/30A	CA 7-30	CEP 7	12-32
11	21	7L30F/30A	CA 7-30	CEP 7	12-32
15	28	TL100NJ/50A	CA 7-43	CEP 7	12-32
18.5	34	TL100NJ/50A	CA 7-43	CEP 7	12-37
22	40	TL. 100NJ/63A	CA 7-43	CEP 7	14-45
30	55	TL100NJ/100A	CA 7.72	CEP 7	26-85
37	66	TL.100NJ/100A	CA 7-72	CEP 7	26-85
45	80	TL100NJ/100A	CA 6-105-(EI)	CT 6-90	70-90
55	100	XH400SE/250	CA 6-105-(El)	Cr 6-110	85-110
75	130	XH400SE/250	CA 6-140-(El)	CT 6-150	105-150
90	155	XH400SE/250	CA 6-170-EI	CT 6-200	140-200
110	200	XH400SE/250	CA 6-210-El	CEF 1-41/42	160-400
132	225	XH400SE/400	CA 6-210-EI	CEF 1-41/42	160-400
150	250	XH400SE/400	CA 6-250-EI	CEF 1-41/42	160-400
160	270	XH400SE/400	CA 6-300-EI	CEF 1-41/42	160-400
200	361	XH400SE/400	CA 6-420-EI	CEF 1-4/142	160-400
200	361	XH400SE/400	CA 5-450	CEF 1-22 ${ }^{2}$)	160-400
250	425	XH630SE/630	CA 5-700	CEF 1-52 ${ }^{2}$)	160-630
320	538	XH630SE/630	CA 5-700	CEF 1-52 ${ }^{2}$)	160-630

[^12]
trpasak

Type ' 2 ' short circuit co-ordination
Motor starter co-ordination table for DOL starting
85kA, 415V to AS 3947-4-1

Motor size kW	Approx. FLC at 415 V amps	Terasaki circuit breaker	Sprecher + Schuh contactor type	Sprecher + Schuh thermat overload type ')	Settings range amps
0.37	1.1	XM30PB/1.4	CA 7-9	CEP 7-M32-2.9-10	1.0-2.9
0.55	1.5	XM30PB/2	CA 7.9	CEP 7-M32-2.9-10	1.0-2.9
0.75	1.8	XM30PB/2.6	CA 7-9	CEP 7-M32-2.9-10	1.0-2.9
1.1	2.6	XM30PB/4	CA 7-16	CEP 7-M32-2.9-10	1.0-2.9
1.5	3.4	XM30PB/5	CA 7-16	CEP 7-M32-5-10	1.6-5
2.2	4.8	XM30PB/8	CA 7-30	CEP 7-M32-12-10	3.7-12
3	6.5	XM30PB/8	CA 7-30	CEP 7-M32-12-10	3.7-12
4	8.2	XM30PB/10	CA 7-30	CEP 7-M32-12-10	3.7-12
5.5	11	TL100NJ/20	CA 7.30	CEP 7-M32-12-10	3.7-12
7.5	14	TL100NJ/20	CA 7-30	CEP 7-M32-32-10	12-32
9	17	TL100NJ/32	CA 7-30	CEP 7-M32-32-10	12-32
10	19	TL100NJ/32	CA 7-30	CEP 7-M32-32-10	12-32
11	21	TL100NJ/32	CA 7-30	CEP 7-M32-32-10	12-32
15	28	TL100NJ/50	CA 7-43	CEP 7-M32-32-10	12-32
18.5	34	TL100NJ/50	CA 7-43	CEP 7-M37-37-10	12-37
22	40	TL100NJ/63	CA 7-43	CEP 7-M45-45-10	14-45
30	55	TL100NJ/100	CA 7-72	CEP 7-M85-85-10	26-85
37	66	TL100NJ/100.	CA 7-72	CEP 7-M85-85-10	26-85
45	80	TL250NJ/160	CA 6-105	CEP 7-M85-85-10	26-85
55	100	TL250NJ/160	CA 6-105	CEF 1-11/12	0.5-180
75	135	TL250NJ/250	CA 6-210-E	CEF 1-11/12	0.5-180
90	160	TL250NJ/250	CA 6-210-E	CEF 1-11/12	0.5-180
410	200	TL250NJ/250	CA 6-210-EI	CEF 1-41/42/52	160-630
132	230	TL400NE/400	CA 6-210-E1	CEF 1-41/42/52	160-630
160	270	TL400NE/400	CA 6-300-E	CEF 1-41/42/52	160-630
200	361	TL400NE/400	CA 6-420-EI	CEF 1-41/42/52	160-630

Notes: ') Thermal or electronic overload relays may be used. Combinations based on the overload relay tripping before the circuit breaker at overload currents up to the motor locked rotor current.

Application data

Môtor circcuit application table for DOL starting
General applications
High fault range

Motor rating (kW)	Approx. FLC (amps)	Din-T C\&D Curve	Safe-T	$\begin{aligned} & \text { XS125CJ } \\ & \text { XS125NJ } \\ & \text { XH125NJ } \end{aligned}$	XE225NC	$\begin{aligned} & \text { XS250NJ } \\ & \text { XH250NJ } \end{aligned}$	XS400SE XH400SE XS400CJ XS400NJ	XH630SE XS630SE XS630CJ XS630NJ	XS800NJ XH800SE XS1250SE XS800SE 1000
0.37	1.1	4	6						
0.55	1.5	4	6	20	;			-	
0.75	1.8	6	6	20					
1.1	2.6	10	6	20					
1.5	3.4	10	10	20					
2.2	4.8	16	16	20					
3.0	6.5	20	16	20					
4	8.2	25	20	20					
4.5	9	32	25	20					
5.5	11	32	32	32	.				
7.5	44	40	40	32	* -		- -	.	\cdots
10	19	50	50	50					
11	21	50	50	50	\cdots				\cdots
15	28	63	63	63					
18.5	34	1009	80	100			\bigcirc		
22	40	$125{ }^{\text {') }}$	100	100					
25	46	125)	100	100		-	\because	\cdots	
30	55			125		160			
37	66			$125{ }^{3}$)	125	160			
45	80			$125{ }^{3}$)	125	160		,	
55	100				175	160	250		
75	130				225	250	250		
90	155					250	250		
110	200						400	400	?
132	225						400	400	
160	270						400	400	
185	320						400^{2})	630	
200	361						$400{ }^{2}$)	630	
220	380							630	800^{2})
250	430							630	800
280	480							6307	800
300	510							$630{ }^{2}$)	800
375	650								800^{2})
450	750								1000

Notes: These motor circuit application tables are to be used as a selection guide for average 3 phase, 4 pole 415 V motors for standard applications only. The table is based on holding 125% of full load current (FLC) continuously and 600% of FLC for at least 10 seconds. Lower circuit breaker ratings are possible in some applications. Refer NHP.
${ }^{1}$) 80.100 and 125 amp refers to Din-T10H type.
${ }^{\text {2 }}$) Type 'SE' TemBreak MCCB only.
${ }^{3}$) Use magnetic-only TemBreak MCCB. Refer NHP.
Adjustable magnetic trips set to high. Thermal magnetic TemBreak adjustable $63 \%-100 \%$ of NRC (nominal rated current). Din-T MCB's are calibrated to IEC 898 Curve 'C' \& 'D'. Selected sizes of 'D' Curve are avallable from stock. Refer NHP.

Môtor cir̂cuit application table for reduced voltage starting General applications

Breaker type and current rating, star delta, auto transformer resistor or reactance starting

Motor rating (kW)	Approx. FLC (amps)	$\begin{aligned} & \text { Din-T } \\ & \text { C\&D } \\ & \text { Curve } \end{aligned}$	Safe-T	$\begin{aligned} & \text { XS125CJ } \\ & \text { XS125NJ } \\ & \text { XH125NJ } \\ & \text { TL100NJ }{ }^{\prime} \text {) } \end{aligned}$	XE225NC	$\begin{aligned} & \text { XS250NJ } \\ & \text { XH250NJ } \end{aligned}$	XS400SE XH400SE XS400CJ XS400NJ	XH630SE XS630SE XS630CJ XS630NJ	XS800NJ XH800SE XS800SE	$\begin{aligned} & \text { XS1250SE } \\ & \text { t000 } \end{aligned}$
0.37	1.1	4	6							
0.55	1.5	4	6	20						
0.75	1.8	4	6	20						
1.1	2.6	6	6	20						.
1.5	3.4	10	6	20						
2.2	4.8	10	10	20						
3.0	6.5	16	16	20						
4	8.2	20	16	20			-	\cdots		
4.5	9	20	16	20						
5.5	11	25	20	20						
7.5	14	32	25	20						
10	19	40	40	32	\cdots.					
11	21	50	40	32						
15	28	50	50	50						
18.5	34	63	63	50						
22	40	$\left.80{ }^{1}\right)$	63	63						
25	46	100)	80	100				\cdots		
30	55	125)	100	100		160				
37	66	125)		100	125	160				
45	80			125	125	160	250			
55	100				150	160	250			
75	130				175	250	250			
90	155				225	250	250	\cdots	\cdots	
110	200	*				250	250	400		
132	225						400	400		
160	270						400	400		
185	320						400	400	$\left.800^{2}\right)$	
200	361						400^{2})	630	800^{2})	
220	380				-			630	800	
250	430			.				630	800	
280	480							630	800	
300	510							630	800	,
375	650								$800{ }^{\text {² }}$	1000

[^13]Mồtor cir̂çûit application table for DOL FIRE PUMP starting dû́ty
Breaker type and current rating (A)

Motor rating (kW)	Approx. FLC (amps)	Din-T C\& Curve	Sate-T	XM30PB	$\begin{aligned} & \text { XS125CJ } \\ & \text { XS125NJ } \\ & \text { XH125NJ } \\ & \text { TL100NJ ') } \end{aligned}$	TL100F TL100C	XE225NC	XS250NJ XH250N」	XS400SE XH400SE XS400CJ XS400NJ	XH630SE XS630SE XS630CJ XS630NJ	XS800 XH800 XS800	$\begin{aligned} & \text { E XS1250SE } \\ & \text { E } 1000 \end{aligned}$
0.37	1.1	4	6	3.6								
0.55	1.5	6	6	3.6								
0.75	1.8	6	6	5	20	15						
1.1	2.6	10	6	7.4	20	15						
1.5	3.4	16	10	10	20	15						+
2.2	4.8	20	16	12	20	15						
3	6.5	25	20		20	20						
${ }_{4}$	8.2	32	25		32	30						
4.5	9	32	32		32	30						
5.5	11	40	40		32	30						
7.5	14	50	50		50	40						
10	19	63	50		50	50						
11	21	63	63		63	60						
15	28	100 ${ }^{\text {) }}$	80		100	75						
18.5	34	125)	100		100	75						
22	40				125	75						
25	46				125	100						
30	55					100	125	160				
37	66						150	160				
45	80						175	250	250			
55	100						225	250	250			
75	130								400			
90	155								400			
110	200								400	630		
132	225								400	630		
160	270								400	630		
185	320								400^{2})	630		
200	361									630	800	
220	380									630	800	
250	430									630	800	
280	480										800	
300	510										800	
375	650										$800{ }^{2}$)	1000
450	750											1000

Notes: These motor circuit application tables are to be used as a selection guide for average 3 phase, 4 pole 415 V motors for standard applications only. The table is based on holding 125% FLC continuously and 600% FLC for at least 20 seconds.

1) 80,100 and 125 amp refers to Din-T10H type.
${ }^{2}$) Type 'SE' TemBreak MCCB only.
${ }^{3}$) TL100NJ up to 100A only.
Din-T MCB's are calibrated to IEC 898 Curve 'C' \& 'D'. Selected sizes of 'D' Curve are available from stock refer NHP.

Application data

Motor starting table for DOL starting at 1000 V AC 50 Hz

Motor size kW	Full load current amperes	MCCB	Voltage
$0.37-10$	$0.4-7.5$	TL100EM/15	1000 V
11.0	9.0	TL100EM/20	1000 V
$15-18.5$	$12-14.5$	TL100EM/30	1000 V
$22-33$	$17-23$	TL100EM/40	1000 V
$37-50$	$28-38$	TL100EM/50	1000 V
$55-80$	$40-57$	TLL00EM/75	1000 V
$90-110$	$65-78$	TL100EM/100	1000 V
150	102	XV400NE/160	1000 V
$185-220$	$138-160$	XV400NE/250	1000 V
$220-500$	$160-350$	XV400NE/400	1000 V

TemBreak XV400NE mining breaker

Sprecher + Schuh 1000V CA 6 contactor
(Refer Part A for more information)

MicCB's fôr protection of Power Factor Correction (PFC) units

In circuits containing capacitor banks for Power Factor Correction (PFC) two conditions that the circuit breaker must overcome are as follows:

1. Voltage surges during MCCB opening.
2. Nuisance tripping due to in-rush current.
3. Voltage surges during MCCB opening At the instant where the MCCB has to open, the voltage developed across its contacts can be up to twice the supply voltage, which can have damaging consequences should the breaker be slow to operate. If this worse case scenario actually occurs a potential re-arcing can take place across the contacts of the MCCB, until the breaker has fully opened and the distance between the contacts is at a maximum.
Re-arcing at each instant can be:
1st re-arcing - $3 \times$ supply voltage
2nd re-arcing - $5 \times$ supply voltage
3rd re-arcing - $7 \times$ supply voltage
Internat capactor damage will occur if the voltage level is greater than the capacitor's Dielectric Strength. With modern-day protection devices, (for example the Terasaki TemBreak MCCB's) this problem will not occur.
The numerous cases of re-arcing are mainly a result of older style "dependant manual closing" devices, which rely on the operator speed for opening or closing.
All Terasaki MCCB's are of the "manually independent closing" type, with high speed opening to prevent re-arcing between the contacts.
4. Nuisance tripping due to in-rush current When feeding a circuit containing a PFC unit the circuit breaker and the PFC unit can be exposed to a large in-rush current, equal to the instantaneous value of the power source. The end result of this is a large in-rush current, which could cause the circuit breaker to operate instantaneously due to its short-circuit protection. (The value of in-rush current will depend on the source voltage, the inductance and reactance in the circuit).
Special care should be taken to ensure that the MCCB selected will not nuisance trip due to high in-rush currents.
The table below shows typical MCCB selections for varying capacitor ratings, and the breaker selection is by a rule-ofthumb.

$$
\begin{equation*}
\text { Capacitor Rated Current }=\frac{\mathrm{kVAR} \times 1000}{\sqrt{3} \times V} \tag{A}
\end{equation*}
$$

kVAR: Capacitor Rating

V: Source Voltage

MCCB Rating $=$ Capacitor Rated Current $\times 1.5(\mathrm{~A})$
Once the MCCB rating has been determined, the MCCB type should be selected according to the short circuit fault level of the system.

MCCB's selection for power factor capacitor application

Voltage 415V (3D)		Recommended MCCB's ${ }^{\boldsymbol{\eta}}{ }^{2}$) Type/Rating (A)				
Capacitor rating (kVAR)	Capacitor rated current (A)					
5	7			XS125CJ/20	XS125NJ/20	X $\mathrm{H} 125 \mathrm{NJ} / 20$
10	13.9			XS125CJ/32	XS125NJ/32	XH125NJ/32
15	20.9			XS125CJ/50	XS $125 \mathrm{NJ} / 50$	XH125NJ/50
20	27.8			XS125CJ/50	XS125NJ/50	$\mathrm{XH} 125 \mathrm{NJ} / 50$
25	34.8			XS125CJ/63	XS125NJ/63	XH125NJ/63
30	41.7			XS125CJ/100	XS125NJ/100	XH125NJ/100
40	55.6			XS125CJ/100	XS125NJ/100	$\mathrm{XH} 125 \mathrm{NJ} / 100$
50	69.6			XS125CJ/125	XS125NJ/125	XS125NJ/125
75	104	XE225NC/150	XS250NJ/160	XH250NJ/160		
100	139	XE225NC/225	XS250NJ/250	XH250NJ/250	XS400SE/250	XH400SE/250
150	209		XS400CJ/400	XS400NJ/400	XS400SE/400	XH400SE/400
200	278		XS400CJ/400	XS400NJ/400	XS400SE/400	XH400SE/400
300	417		XS630CJ/630	XS630NJ/630	XS630SE/630	XH630SE/630
400	556	XS800NJ/800	XS800SE/800	XH800SE/800		
500	696	XS1250SE1250				
600	835	XS1250SE1250				
800	1113	XS1600SE1600				
1000	1391	XS2000SE/2000				

${ }^{2}$) TemBreak Plus MCCBs can also be used.

MCCB use in high frequency $(400 \mathrm{~Hz})$ applications

General
Terasaki TemBreak MCCB's are designed to operate primarily in 50 or 60 Hz systems. However, it is possible to use the same MCCB's in high frequency (400 Hz) applications provided consideration is taken to the effects high frequencies will have on the breaker.
A consequence of high frequencies is an increase in Eddy currents in conductors, including those internal to the breakers. This generally causes an increase of temperature in and around the breaker. As such, some derating allowances must be made when selecting a breaker in these 400 Hz systems.
Thermal Magnetic MCCB's
In low overioad (thermal) regions the current required to trip the MCCB is reduced as a result of the heat generated due
to the higher Eddy currents. As a result the thermal protection must be derated to take the heating effect into account.
In short-circuit (magnetic) regions, the demagnetising effects of the Eddy currents mean that a larger fault will be required to trip the breaker. The rule of thumb generally used is that the Magnetic/Instantaneous Trip setting will be approximately twice that at normal $50 / 60 \mathrm{~Hz}$ operation.

Electronic MCCB's

Electronic MCCB's offer better performance at higher frequencies, although some consideration must be taken with regards to the heating effects caused by the Eddy currents. The figures in the table give the maximum Over Current Relay (OCR) rated current setting ($I_{0} \times I_{;}$) that should be used when in high frequency applications.

MCCB Model	MCCB Type	Rating at $50 / 60 \mathrm{~Hz}(\mathrm{~A})$	Cable size in mm ${ }^{\mathbf{2}}$ as specified IEC 947-1	MCCB rating at 400 Hz (A)
XS125C.J	Th/Mag	20	2.5	18
XS125NJ		32	6	30
		50	10	45
		63	16	58
		100	35	$89 \div \cdots$
		125	50	110
XH160PJ	Th/Mag	160	70	147
XE225NC	Th/Mag	125	50	116
		150	50	135
		175	70	155
		200	95	185
		225	95	195
XS250NJ	Th/Mag	160	70	147
		250	120	210
XH250NJ	Th/Mag	160	70	147
		250	120	210
XH250PJ	Th/Mag.	250	120	240
XS400NJ	Th/Mag	250	120	240
XH400PJ		400	240	330
XS630CJ	Th/Mag	400	240	320
XS630NJ		630	2×185	475
XS800NJ	Th/Mag	800	2×240	600
XS400SE	Electronic	250	120	238
XH400NE/SE/PE	Electronic	400	240	360
XS630SE	Electronic	630	2×185	600
XH630NE/SE/PE				
XS800SE	Electronic	800	2×240	640
XH800NE/SE/PE				
XS1250SE	Electronic	1250	$2 \times(80 \times 5 t)$	800
XS4600SE	Electronic	1600	$2 \times(100 \times 5 t)$	900

Note: When used at 400 Hz , the rated current setting of the OCR must not exceed the values shown in Column 4.

Application data

Circuit breaker selection for DC applications

The characteristics of an MCB or MCCB for DC applications are different from $A C$. The main differences are as follows:

1. Maximum permissible voltage is reduced in value (refer table).
2. Number of electrical operations is reduced (refer table).
3. Magnetic trip current increases by 40%.

Selecting the circuit breaker
When selecting the MCB most suitable for the protection of DC circuits the following criteria must be considered:

- Rated current.
- Rated voltage which determines the number of poles required to be involved in the interruption of the circuit.
- The type of DC system used.
- Maximum short circuit current to determine the breaking capacity.
As a general rule the Isc (short circuit curfent at the battery terminals) can be calculated as follows:

$$
\mathrm{Isc}=\frac{\mathrm{Vb}}{\mathrm{Ri}}
$$

Where Vb - maximum discharge battery voltage
Where Ri - internal resistance (sum of all calls resistance) generally expressed in Ampere/hour capacity of the battery.

Terasaki MCB use in DC systems
$\left.\begin{array}{|lllllllll|}\hline \begin{array}{l}\text { MCB } \\ \text { type }\end{array} & \begin{array}{l}\text { Breaking } \\ \text { capacity } \\ \text { KA }\end{array} & & \text { No. of poles connected in series }\end{array}\right)$

Example: For a Din-T10 to break 10kA at 110 V DC it must have 2 poles connected in series.
Breaking capacities of TemBreak MCCB in DC systems
MCCB

type	24/48/60V	125 V	250V	350 V	500 V	600 V
XS125NJ	25	20	15	10	$7.5{ }^{2}$)	5^{2})
XH125NJ	50	40	40	10	$7.5{ }^{\text {2 }}$)	5^{2})
XS250NJ	25	40	- 40	10	7.5	5
XH250NJ	50	40	40	20	15	10
XS400NJ	50	40	40	20	15	15
XS630NJ	50	40	40	30	20	20
XS800NJ	50	40	40	30	20	20
XS1000ND ${ }^{\text {' }}$	-	40	40	30	20	20
XS1250ND ${ }^{\text {) }}$	-	40	40	30	20	20
XS1600ND ${ }^{\text {I }}$	-	40	40	30	20	20
XS2000ND ')	-	40	40	30	20	20
(XS2500ND ')	-	40	40	30	20	20

Notes:

1) Time constant $(\mathrm{L} / \mathrm{R})<=15 \mathrm{~ms}$; excludes 50/63A where the time constant (LR) $<=4 \mathrm{~ms}$.
${ }^{2}$) Special version of the standard AC circuit breaker. Standard circuil breakers cannot be used at these ratings. Please specify for use on 500 or 600 V DC on application. Indent only.
${ }^{3}$) Magnetic trip only, without overload protection. Indent only.
For voltage levels up to and including 250V DC standard 2-pole breakers maybe be used, with both poles connected in series. For voltage levels greater than 250V DC 3-pole breakers must be used, with all three poles connected in series as shown.
The time constant (L/R) of the circuit should be:
less than 2 ms at rated current.
less than 2.5 ms for overload (2.5 xin).
less than 7 ms for short circuit $\leq 10 \mathrm{kA}$.
less than 15 ms for short circuit > 10 kA .

The following connection diagram should be applied to TemBreak circult breakers when the voltage is greater than 250 V DC.

Ciřcuit bréaker selection for DC application (cont.)

Arrangement of breaking poles according to type of system.

Both poles insulated from earth
Protection only

The poles required to interrupt the fault can be divided between the (+) and (-) polarities. The total number of poles connected in series should be capable of breaking the short circuit current at a voltage level of U_{b}.
Sharing the circuit breaker interrupting poles between both polarities also ensures isolation as well as protection of the system.

One polarity of the DC supply is earthed
Protection only

Full protection is assured if the total number of poles in series on the side not connected to earth are capable of breaking the short circuit current at a voltage level of U_{b}.

If full isolation is required then at least one interrupting pole is also required on the earthed polarity side.

MCCB selection for 50 V DC battery applications 3 poles in parallel
TemBreak MCCBs may be connected with 3 poles in parallel.
Rated current $=3 \times 0.8=2.4 \times$ MCCB nominal rated current (In) for 3 poles in parallel.

Protection and Isolation

Protection and Isolation

Protection and Isolation

The centre point of the DC supply is earthed

To ensure full protection the number of poles connected in series on each polarity must be capable of breaking the maximum short circuit current, but at a reduced voltage level of $\mathrm{U}_{\mathrm{b}} / 2$.

Having circuit breaker interrupting poles breaking both polarities ensures isolation as well as protection of the system.

Sélêctión ${ }^{n}$ óf'MCCB's for use in

 welder circuits1. Definitions
$\mathbf{P}=\quad$ Rated capacity of welder in KVA.
$V=\quad$ Welder rated voltage.
I1 = Maximum primary current (PN).
$T_{1}=$ Current 'ON' period.
$\mathrm{T}_{2}=$ Current 'OFF' period.
$T_{1}+T_{2}=$ One welding cycle time.
B = Duty ratio, current 'ON' period divided by one welding cycle.
Ie $=$ Thermally equivalent continuous current.
2. MCCB selection
a) Current rating

It can be seen from the diagrams below that the welder only draws current intermittently. MCCB selection should be based on the thermally equivalent continuous current, i.e. the current which would produce the MCCB average temperature shown in the diagram below.
It can further be seen that the MCCB temperature will not be constant but will vary as the load varies.

The thermally equivalent continuous current, le, may be calculated from:

$$
\text { Ie }=
$$

$\times \sqrt{B}$

$$
\left(B=\frac{T_{1}}{T_{1}+T_{2}}\right)
$$

Note: The rated capacity of a spot welder is normally expressed in terms of its 50% duty ratio, ie. $\mathrm{B}=0.5$.

Once an MCCB has been selected, it is necessary, to compare the maximum primary current I and the current 'ON' period, T_{1} with the MCCB characteristic curve to ensure that it will not trip.

Note: A tolerance of 10 to 15% should be included to allow for variations in the supply voltage and equipment.

General guide lines for MCCB selection

Selection factor	MCCB rating
Resistance welders	3.00 max
Transformer arc welders	2.00 max

SAA wiring rules states that a circuit breaker protecting a circuit from which one or more welders are supplied may be greater than the rating of the protected conductor calculated as follows:
The maximum demand of the circuit excluding that of the largest welding machine plus
i) Three times the primary current of the largest resistance welding.
ii) Two times the primary ratings of the largest transformer arc welders.
b) Instantaneous setting

The MCCB's instantaneous trip setting should be high enough to avoid nuisance tripping due to the welding transformers excitation inrush current. When voltage is supplied to the transformers primary side, the iron core is saturated. This results in the flow of a large inrush current caused by a combination of the DC component of the voltage at the instant of closing and the residual magnetic flux of the transformer. The transformer input current value when the welder secondary is completely short-circuited is about 30% higher than the value calculated from the nominal maximum power input of the welder. So the maximum welder input curtent, 1 m , at the start of welding is given by:

$$
I_{m}=\frac{P_{m} \times 1000}{V} \times 1.3 \times K
$$

The value of K varies depending on the type of welder control employed. (Some form of synchronous closing is nearly always employed in order to stabilise the welding work and to prevent nuisance tripping of the MCCB).
$K=1$ to 1.5 for synchronous type with peak control.
$K=1.4$ to 3 for synchronous type without peak control.
K $=2$ to 6 for non-synchronous soft start type.
If the protection of the thyristor stack is also required, the instantaneous trip setting must be greater than $1 m$, but less than the surge on-state current rating of the thyristor stack:
$\mathrm{I}_{\mathrm{m}}<\mathrm{I}_{\text {Wst }}<$ \qquad
where:
Is = surge on-state current rating of thyristor stack, in A
Im = maximum welder input current at start of welding, in A
$I_{\text {mst }}=$ MCCB Instantaneous trip setting, in A
$1.1=$ Factor to allow for $\pm 10 \%$ tolerance on the instantaneous setting
c) MCCB breaking capacity

The MCCB breaking capacity should be higher than the estimated short-circuit fault level of the system.

Application data

Primary LV/LV trañsformer protection

When selecting an MCCB to protect the primary of an LV/LV transformer, the inrush current during initial energisation must be taken into account.
The magnitude of inrush current for any transformer is governed by several variables:

1. The primary winding resistance.
2. The supply impedance.
3. The excitation current.

The excitation current is, in theory at a maximum when the voltage is at a minimum, and vice versa.
Usually the level does not exceed 30 times the normal operating current.
If the inrush current is not known then a rule of thumb is that it is approximately 15 x the Primary Current.

	1 phase 240V			3 phase 415V		
Transformer (kVA)	MCCB type	MCCB rating	BC (kA) at 240 V	MCCB type	MCCB rating	$\begin{aligned} & \mathrm{BC}(\mathrm{kA}) \\ & \text { at } 415 \mathrm{~V} \end{aligned}$
5	XS125NS	50	25	XS125NJ	20	30
7.5	XS125NS	63	25	XS125NJ	32	30
10	XS125NS	100	25	XS125NJ	32	30
15	XE225NC	125	25	XS125NJ	50	30
	XS250NJ	160	50			
	XH250NJ	160	85			
20	$\mathrm{XS} 250 \mathrm{NJ}$	160		$X S 125 \mathrm{NJ}$	63	30
30				XS125NJ	100	30
50		\cdots		XS125NJ	125	30
75				XE225NC	225	18
				XS250NJ	250	35
100			\cdots	XS400SE	250	50
150				XS400SE	250	50
200			-	XS400SE	400	50
300				XS630SE	630	50

The above breaker selections are based upon inrush currents calculated using the table below

Single-phase transformer

Notes: First peak multiplier is the first peak current as a multiple of the transformer rated current.
The above table/multipliers are in general larger than the practical current levels, as the current limiting by the circuit impedance is not taken into account.

MCB selection for high pressure so dium lamps

Assumption

1. The maximum inrush current which the circuit will pass is a feature of the current limiting ballast and not the lamp.
Assuming these ballasts comply with the relevant IEC specification the circuit will pass currents not exceeding twice the appropriate lamp nominal current.
2. Run up time 10 minutes with the current decaying exponentially.
3. Based on $415 / 240 \mathrm{~V} 3$ phase or 240 V single phase systems.

This table provides details for Din-T type 'C' MCB's
Power Number of fittings per phase

50W	2	4	7	9	42	24	36	48	60	76	108
70W	1	3	5	6	8	177	25	34	42	54	$\overline{7}$
150W	0	9	2	3	4	8	12	16	20	25	36
250W	0	-	1	3	2	4	07	9	12	15	21
400W	0	0	-	4	0	3	4	6	7	9	13
700W	:	\bigcirc	앙	O	-	1.	2	3	4	5	7
MCB(Amps)	4	2	4	4	6	10	16	20	25	32	50

Example

Given 42 lamps each 250 W installed on a 415 V 3 phase system.
Which MCB must be selected?
Number of tubes per phase $=$
$\frac{42}{3}=14$

Therefore from the table above a 32A MCB should be selected.
A short circuit rating as appropriate must be selected.

MCB selêction for fluorescent lighting loãds
Assumptions

1. The power rating of the ballast is 25% of power of the tubes.
2. Power factor -0.6 for non compensated fittings 0.86 for compensated fittings.
3. MCB's are installed in an enclosure with external ambient of $25^{\circ} \mathrm{C}$.
4. Based on $415 / 240 \mathrm{~V} 3$ phase or 240 V single phase systems.
5. MCB is used for circuit protection only, not switching.

For switching duties of Din-T MCBs refer NHP.

This table provides details for Din-T type 'C' MCB's

Type of fitting	Power (W)	Number of fittings per phase					
Single non compensated	20	45	66	79	100	116	150
	40	22	33	39	50	57	75
	65	14	20	24	30	36	50
	80	11	16	20	25	29	40
Single compensated	20	64	94	113	143	166	200
	40	32	47	57	72	83	110
	65	20	29	35	44	51	70
	80	16	23	28	36	41	55
Itwin compensated	2×20	32	47	57	72	83	110
	2×40	16	23	28	36	41	55
	2×65	10	14	17	22	25	35
	2×80	8	11	14	17	20	30
Recommended MCB rating	Amps	10	16	20	25	32	50

MCB selection for incandescent lighting loads

Assumptions

1) Tungsten lamps have theoretical inrush current of 14 times normal current, when switched from cold.
2) The circuit impedance typically limits the inrush to 10 times normal running current, the inrush current peaking at 0.0007 seconds falling exponentially to normal running current within 0.1 seconds.
3) Consider the worst case, if all lamps are switched on simultaneously, then ruisance tripping of MCB may result.
4) Above is based on $415 / 240 \vee 3$ phase and neutral or 240 V single phase system and 240 V lamps.
5) MCB is used for circuit protection only, not switching. For switching duties of Din-T MCB's refer NHP.

Method
In order to cope with this inrush the following formula should be used to calculate breaker size:
Breaker rating $=\frac{W \times 10}{P \times 240 \times 1 \text { inst }}$

Where $\mathrm{W}=$ total wattage
Where $P=$ Number of phases
\mid inst $\quad=$ Minimum instantaneous tripping co-efficient.
C curve $=5$
D curve $=10$

Application data

TemíBreak MCCB clearance requírementŝ at $380 / 415 \mathrm{~V}$

Clearance requirements for MCCB's (phase to phase and earth).
When MCCB's are called upon to interrupt large short circuits ionised gas and arcing material is expelled from the vents, usually at the top of the MCCB.
This ionised gas is highly conductive and is also at an elevated temperature when it exits the MCCB via the arc vents. Care must be taken therefore to avoid an arcing fault occurring due to the presence of the ionised gas. Therefore, incoming conductors must be insulated
right up to the terminal opening of the MCCB. This also applies to the attached busbars supplied as a proprietory part with the MCCB.
Proprietary type interpole barriers may be used to achieve creepage and clearance requirements.
Conductors must not impede the flow of ionised gas.

Insulating distance from Line-End for 380/415V
When earth metal is installed within the proximity of the breakers the correct insulating distance must be maintained.

WARNING:
EXPOSED CONDUCTORS INCLUDING TERMINALS AT ATTACHED BUSBARS MUST BE INSULATED TO AVOID POSSIBLE SHORT CIRCUITING OR EARTHING DUE TO FOREIGN MATTER COMING INTO CONTACT WITH THE CONDUCTORS.

Notes: When using the terminal bar (optional), the specified insulating distance must be maintained.
All dimensions in mm.
When earthed metal is installed within the proximity of the breakers the correct insulating distance must be maintained (refer to Table 1). This distance is necessary to allow the exhausted arc gases to disperse.

This distance is necessary to allow the exhausted arc gases to disperse.

Table 1 below illustrates the min clearance that must be maintained

A Distance from lower breaker to open charging part of terminal on upper breaker (front connection) or the distance from lower breaker to upper breaker end (rear connection and plug-in type)

B2 Distance from breaker end to insulator
C Clearance between breakers
D Distance from breaker side to side plate (earthed metal)

B1 Distance from breaker end to ceiling (earthed metal)
Table 1
This table is valid for $380 / 415 \mathrm{~V}$

MCCB type	A	B1	B2	C	D
XM30PB	30	10	10	0	25
XS125CJ, XS 125 NJ , XH125NJ, XH125PJ,	+ 75	45	这 25	0	25
XE225NC	50	40	40	0	50
XS250NJ , Y,	80	60	+2 30	0	25
	400	60	30	0	25
XH250PJ, XS400CJ, XS $400 \mathrm{NJ}, \mathrm{XS} 400 \mathrm{SE}$	100	70	40	0	30
	120	70	40	0	30
XH630SE, XH800SE; XH800PE	150	80	- 50	0	40
XS1250SE	150	720	- 40	0	30
XH630PJ, XH800PJ, XS1600NE, XS2000NE, XS2500NE	150	150	, 100	0	100

Cleârance for mining MCCB's (1100 V) and inĉoring cónnections

The arc chamber in Terasaki TemBreak circuit breakers is located adjacent to the LINE side terminals. The chamber is vented through holes located just above each line terminal. The holes are covered by a flap which deflects when arc gases are being expelled. Even at low fault levels the arc gases that are released are very hot and reduce the dielectric strength of the air in the vicinity of the terminals. If care is not taken when installing the TemBreak this gas can cause arcing faults on the incoming bars or cables.

Significant voltage transients may also be produced as inductive circuits are switched and contribute to an arcing fault.
These problems affect all circuit breaker installations to varying degrees.
To ensure that problems are not created by the installation please observe the following recommendations.

Notes:

1: Ahways observe LINE/LOAD marking.
2: Ensure insulation on incoming conductors is adequate. Do not use low grade heat shrink (some grades split at operating temperatures).
3: Minimum clearance to earth metal, Above and below breaker - 120 mm (XV1250NE -150 mm) To sides of breaker -40 mm .

4: Switchboard construction to be a minimum form 2 to AS 3439.1 with IP3x protection between busbar and circuit break zones.
5: Actual construction can vary to the above but in all cases it is the responsibility of the switchboard manufacturer to ensure compliance to the relevant standard ie. AS 3439.1.
${ }^{\text {b }}$) TL100EM MCCB's must use a TL100EMTLC lineside terminal cover. XV400 can use either a terminal cover or Interpole Barniers.

MCCB mounting angles

The overcurrent tripping characteristics of TemBreak are not infuenced by the mounting angles for electronic and thermal magnetic types.

The XM30PB motor circuit protectors however, use an oil filled dashpot style trip mechanism, which can be affected. Refer to the diagram below.

Diagram at right is only applicable to XM30PB motor circuit protectors.

Note:
1: The above diagram applies to an XM30 MCCB mounted either way

Calculation of circuit fault level

NHP Nomogram

Fault calculation

The NHP Nomogram is a simple and easy to use aid. Developed by NHP to enable convenient and accurate calculation of circuit fault current.

When selecting circuit breakers for the use in modern distribution systems, it is important to calculate the fault level and then choose an MCCB with breaking capacity that is either higher or at least equal to the circuit fault current.

How to use the Nomogram

In the nomogram all you need to know is the size and length of the cable or cables and the size of the Transformer in kVA. The fault level at the terminals of the transformer is very dependant upon the Transformer internal impedance eg. the Australian Standard for a 2000kVA transformer is $6.5 \%-7 \%$ impedance. This results in a fault level of 4043kA.

However, many Supply Authorities are now installing low impedance transformer eg. 5% or less. Thus if the impedance is 5% then the fault level will be 56 kA . If the impedance is unknown on the side of caution choose $Z=$ 5% in your calculations.
eg. From the table, the maximum fault level of a 2000 kVA transformer, with $Z=5 \%$ is 56 kA . Proceed then to calculate the resultant fault level by applying the cable size and length in metres to the Transformer secondary fault level and calculate the resultant. By following the example shown it can be seen that the fault level is reduced from 50 kA to 6.7 kA .

Please refer to previous page for instructions on use.

Âpplicatiốn notes

A series of application notes are available on Terasaki breakers from your nearest NHP branch. The notes cover the following subjects.
Ref No. Description
5006 Specification for corrosive proofing of MCCB's
5025 De-rated current of ACB's when enclosed
5093 De-rated current of MCCB's when enclosed
5088 De-rating of TemBreak electronic MCCB's when enclosed
5067 DC applications of ACB's
5065
5074
5078
Reverse connection
Thyristor protection with MCCB's
ELCB's at high frequency
5087
5083
ACB's and MCCB's at high altitude
Circuit breaker life mechanical and electrical
5086
TemBreak UVT: transient response time
5195
Inspection and maintenance of earth leakage and moulded case circuit breakers.

IP rating protection against ingress of dust and liquids

IP 1st digit
Degree of protection against contact and ingress of foreign bodies

0	No protection
1	Protection against ingress of solid foreign bodies with

2 Protection against contact with the fingers, protection against ingress of solid foreign bodies with diameter greater than 12 mm
3 Protection against contact with wires etc., with diameters greater than 2.5 mm , or ingress of solid foreign bodies with diameters greater than 2.5 mm

4 Protection against contact with wires etc., with diameter greater than 1 mm , or ingress of solid foreign bodies with diameters greater than 1 mm

5 Complete protection against contact with live parts, protection against harmful deposits of dust

6 Complete protection against contact with live parts, protection against ingress of dust

IP 2nd digit Degree of protection against ingress of liquids

0 No protection
1 Protection against vertically falling water drops

2 Protection against obliquely falling water, up to an angle of 15°

3 Protection against obliquely sprayed water, up to an angle of 60° from the vertical

4 Protection against sprayed low pressure water from any direction

5 Protection against water-jets from any direction-limited ingress permitted

6 Protection against strong jets of water eg. ship decks

7 Protection against temporary immersion in water
8 Protection against indefinite immersion in water - under pressure

SLB

New Range

Standard load－break

 switches20 to 4000 A

－Double break contacts per phase
－Fully visible breaking indication
－Excellent electrical characteristics
－Full range of standard and customised accessones
－COMO M range isolators designed for motor control applications

『Gロanmec

SLB Standard load-break switches COMO M 20 to 100 A

The COMO M range of load-break switches offer compact IP 20 finger safe solutions for switching up to and including 100 A . They are ideal for the arduous switching of motors.
Standard mounting is by DIN rail or base mount with screws.
The COMO M comes complete with direct mount handle, or pistol handles and shaft. Fourth pole and auxiliary switching can also be achieved with easy clip-on modutes - refer accessories.

Front operated surface mount

(Supplied with direct or external handle)

	AC 22400 V (A)	AC 23400 V (A)	$\begin{aligned} & \mathrm{AC} 23400 \mathrm{~V} \\ & (\mathrm{~kW}) \end{aligned}$	Handle type	Cat. No.
20 A	20	20	9	Direct	SLB20D3P
				Pistol	SLB 2OP 3P
25 A	25	25	11	Direct	SLE2503P
				Pistol	SLB25P3P
32 A	32	32	15	Direct	SLB32D3P
				Pistol	SLB32P3P
40 A	40	40	18.5	Direct	SLP4003P
				Pistol	SIBG60P3P
63 A	63	63	30	Direct	SLB63D3P
				Pistol	SLB63P3P
80 A	80	80	40	Direct	SLBEOD 3P
				Pistol	SLB80P3P
100 A	100	80	40	Direct	SLBFTOOD 3 P
				Pistol	SLBEOOP3P

SLB 63... 100

SLB Standard load-break switches SIRCO 125 to 4000 A

The SIRCO range of load-break switches offer compact solutions for switching from 125 A to 4000 A . Base mounting is standard.
The SIRCO range are a proven, reliable design that more than suit harsh Australian conditions.
The switches come complete with extended shaft and door mountable pistol grip handle. Available in three and four pole versions with a large range of accessories to choose from.
Front operated surface mount
(Supplied with external handle and shaft)
SLB 125... 630

125 A	(A)	(A)	(kW)	No. of poles ${ }^{\text {') }}$)	Cat. No.
	125	125	63	3	S1B2253P
				4	S1812544P
160 A	160	160	80	3	SLB1603P
				4	SLB 1604 P
200 A	200	200	100	3	SLE2003P
				4	518,2004P
250 A	250	250	132	3	SL82503P
				4	SLB2504P
315 A	315	315	160	3	SLB3153P
				4	SLB3534P
400 A	400	400	220	3	SLBG003P
				4	SLE4004P
500 A	500	400	280	3	5LB5003P
				4	SLB5004P
630 A	630	500	280	3	SLB6303P
				4	BSLB6304P
800 A	800	800	450	3	SLB8003P
				4	['SLB8004P

Notes: ${ }^{2} 6$ and 8 pole switches available on indent. Refer NHP.
i) Available on indent only.

SLB 800... 3150

SLB Standard load-break switches
 SIRCO 125 to 4000 A (cont'd)

The SIRCO range of load-break switches offer compact solutions for switching from 125 A to 4000 A .

SLB 800... 3150 Base mounting is standard.
The SIRCO switches come complete with extended shaft and door mountable pistol grip handle. Available in three and four pole versions with a large range of accessories to choose from.

Front operated surface mount

(Supplied with external handle and shaft)

	AC 21400 V (A)	AC 23400 V (A)	$\text { AC } 23400 \mathrm{~V}$ (kW)	No. of poles ${ }^{1}$)	Cat. No.
1000 A	1000	1000	560	3	SLB10003P
				4	i] SLE 10004 P
1250 A	1250	1000	560	3	SLB 122503P
				4	- ${ }^{\text {SLB }} 12506 \mathrm{P}$
1600 A	1600	1000	560	3	SLB160003P
				4	i SLB 16004P
1800 A	1800	1000	560	3	SLBE18003P
				4	1) 51818004 P
2000 A	2000	1250	710	3	SLB20003P
				4	[i] ${ }^{\text {L }}$ 200004P
2500 A	2500	1250	710	3	SLB 25003P
				4	1] SLB250064P
3150 A	3150	1250	710	3	SEB315093P
				4	- SEB31504P
4000 A	4000	1250	710	3	StB40009P ${ }^{2}$)
				4	152B40004 ${ }^{\text {P }}$)

Notes: i) 6 and 8 pole switches available on indent. Refer NHP.
${ }^{2}$) Supplied with $2 \mathrm{~N} / 0$ and $2 \mathrm{~N} / \mathrm{C}$ auxiliaries as standard.
[i] Available on indent only.

SL8 4000

SLB Standard load-break switches
Accessories

Extemal mount handles (accepts up to 3 padlocks in the 'OFF' position)

To suit	Type	Colour	IP rating	Cat. No.
SLB 20... 100	Selector	Black	65	SEBPHOE
		Red/Yellow	65	(SEBPH02
	Pistol	Black	65	SEBPH03
		Red/yellow	65	1 $54 B \mathrm{PH} 09$
SLB 125... 630	Pistol	Black	65	SLBPH405
		Red	65	4 SLBPH06
SLB 800... 1800	Pistol	Black	65	SLBPR 07
		Red	65	LisLBPRO8
SLB 2000... 3150	Pistol	Black	65	SLBPRO9
		Red	65	(SLBPPHTO
SLB 4000	Pistol	Black	65	SLBPHEA

SLB DH

Direct mount handles

To suit	Colour	Cat. No.
SLB 20...40	Black	SEEDHOL
SLB 63... 100	Black	SLBDH02
SLB 125...160	Black	SLBDH03
SLB 200...630	Black	SLBDH03
SLB 800... 3150	Black	SLBDH 05
SLB 4000	Black	SLBDP06

Fourth pole module (Simultaneous switching)

SLB FP

To suit	AC 22400 V (A)	AC 23400 (A)
SLB 20... 40	20	20
	25	25
	32	32
	40	40
SLB 63... 100	63	63
	80	80
	100	100

To suit	Thermal rating (A)	Cat. No.
SLB 20...40	40	SLBN 40
SLB $63 \ldots 100$	100	SLBN 100

Note: Special handles available (IP 66, metal versions) - contact NHP.
i Avaitable on indent only.

SLB Standard load-break switches
Accessories

Shaft extensions

To suit	Shaft length(mm)	Type		Cat. No.
		Selector	Pistol	
SLB 20... 100	55	\checkmark		Wabiss5
	150	\checkmark		
	200	\checkmark		SVIEBSS200.
	300	\checkmark		S SLBS300
	150		\checkmark	ESLBS150_1
	200		\checkmark	- SLBIS200-1
	300		\checkmark	\% 5 SLB5 530001

To suit	Shaft length (mm)	Cat. No.
SLB 125... 250	120	
SLB 125...630	200	C-SLBS20020
	250	CMES520.
	320	S SLES320
	500	SLBS500
	750	SLES750

To suit	Shaft length (mm)	$\begin{aligned} & 800- \\ & 1800 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2000- \\ & 3150 \mathrm{~A} \\ & \hline \end{aligned}$	4000 A	Cat. No.
SLB 800... 3150	200	\checkmark	\checkmark		
	450	\checkmark	\checkmark		- SLBE450,
SLB 800...4000	320	\checkmark	\checkmark	\checkmark	

Interlocking device - to accommodate Castell lock (Lock not supplied)

To suit	Castell lock	Cat. No.
SLB $125 \ldots 630$	K Type	KLBLRA
SLB $800 \ldots 1800$	K Type	SLBLK2
SLB $2000 \ldots 4000$	K Type	SLBLE3

SLB Standard load-break switches

Accessories

Terminal shrouds and screens (Screw fixing)

SLB TS
Shrouds

SLB TS
Screens

To suit	IP rating	Mounting position	No. of poles	Cat. No.
SLB 20... 40		top/bottom	3	SLBESTO1
SLB $63 . . .100$		top/bottom	3	SLBTSIO2
SLB 20... 40		top/bottom	1	SLBTS103
SLB 63...100		top/bottom	1	SLBITSO4
SLB 125... 160	20	top/bottom	3	SEBTST05
	20	top/bottom	4	1SEBTS 06
SLB 200... 250	20	top/bottom	3	SEBTSO7
	20	top/bottom	4	[i] SEBTS08
SL8 315...630	20	top/bottom	3	SLRTSS09
	20	top/bottom	4	i SEBTST0
SL8 800	screen	top/bottom	3	SLPISS
			4	[15 SETS 12
SLB 1000... 1800	screen	top/bottom	3	SLBITSM3
			4	- $\mathrm{SLBTS54}$
SLB 2000...4000 ${ }^{1}$		top/bottom		0)

Auxiliary contacts (Early-break)

To suit	Type	(A)	Contacts	Cat. No.
SLB 20... 100			N/O/N/C	SlBAX 01
SLB 125... 3150	N/O/N/C	16	1st $\mathrm{N} / \mathrm{O} / \mathrm{N} / \mathrm{C}$	SLBAX 02
			2nd $N / O / N / C$	SLBAXO3
SLB $4000{ }^{\text { }}$)	$\mathrm{N} / \mathrm{O} / \mathrm{N} / \mathrm{C}$	16	$2 \mathrm{~N} / 0 / \mathrm{N} / \mathrm{C}$	${ }^{\text {a }}$)
SLB 125... 800	$\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$	16	1st $\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$	SLBAX 04
	$\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$	16	2nd $N / O+N / C$	SLB/AX05
SLB 1000... 3150	$\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$	16	1st $\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$	SLBAX06
	$\mathrm{N} / 0+\mathrm{N} / \mathrm{C}$	16	2nd $\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$	SLBAX 07

Notes: Included as standard with switch.
(1) Available on indent only.

Shaft table (Standard shaft supplied with switch and handle)

To suit	Shaft	Max back-plate to door
SLB 20...100	SLB S150-1	185 mm
SLB $125 \ldots 160$	SLB S120	174 mm
SLB 200...250	SLB S120	185 mm
SLB $315 \ldots 630$	SLB S200-2	297 mm
SLB $800 \ldots 1800$	SLB S320-1	546 mm
SLB 2000...3150	SLB S320-1	693 mm

NHP

Technical data and ratings chart

COMO M SLB 20 to 100 A

Ratings to AS 3947-3 and IEC 60947-3

Note: $240 / 415 \mathrm{~V}$ ratings suitable for use on $230 / 400 \mathrm{~V}$ in accordance with AS 60038 : $\mathbf{2 0 0 0}$.

Technical data and ratings chart

SIRCO SLB 125 to 630 A

Ratings to AS 3947-3 and IEC 60947-3

[^14]
Technical data and ratings chart SIRCO SLB 800 to 4000 A

Ratings to AS 3947-3 and IEC 60947-3

Notes: ${ }^{1} 50 \mathrm{kA}$ switch available in larger frame size. Refer NHP.
240/415 V ratings suitable for use on 230/400 V in accordance with AS 60038: 2000.

Technical data and dimensions (mm) COMO M SLB 20 to 100 A

COMO M 20 to 40 A

COMO M 63 to 100 A

COMO M Selector handle door drilling

COMO M Pistol handle door drilling

Technical data and dimensions (mm) SIRCO SLB 125 to 2500 A

SIRCO 125 to 2500 A

Rating A	Switch bodyF 3 pF		Switch mounting M 3p M 4p		T	U	v	Connection terminals			z	AA
800	280	360	255	335	80	50	60.5	7	47.5	47.5	46.5	321
1000	280	360	255	335	80	50	60.5	7	47.5	47.5	46.5	321.
1250	372	492	347	467	120	90	44	8	53.5	53.5	47.5	288
1600	372	492.	347	467	120	90	44	8	53.5	53.5	47.5	288
1800	372	492	347	467	120	90	44	8	53.5	53.5	47.5	288

Rating	Overall dimensions		Switch mounting	
A	A 3p	A 4p	M 3p	M 4p
2000	372	492	347	467
2500	372	492	347	467

國5回回而匠

Technical data and dimensions（mm） SIRCO SLB 3150 to 4000 A

SIRCO 3150 A

Castell Drilling

Switch mounting

Rating	Overall dimensions			A 4p
\mathbf{A}	A 3p	Switch mounting		
3150	372	492	M 4p	

SIRCO 4000 A

Rating	Overall dimensions		Switch body		Switch mounting	
A	A 3p	A 4p	F 3p	F 4p	M 3p	M 4p
4000	684	－804．	470	590	347	467

SIRCO Connection terminals－ $\mathbf{8 0 0}$ to $\mathbf{4 0 0 0} \mathrm{A}$

800－1000 A

1250－1800 A

2000－2500 A

$3150-4000$ A

AC contactors
 3 pole open type with AC coil

Ratings to IEC 947 and AS 3497 415V

Contactor CA 7-9

Contactor CA 7-72

Contactor CA 6-105-EI

Contactor CA 6-170-EI

Contactor CA 6-250-EI

Contactor CA 6-420-EI
O For CA 7 contactors with coil terminals on line side, add ...V AC to Catalogue No. Eg - CA 7-9-10-240V AC ${ }^{\text {J }}$)
O For CA 7 contactors with coil terminals on load side, add ...V AC-U to Catalogue No. Eg - CA 7-9-10-240V AC-U

AC ${ }^{19}$) AC $1{ }^{\prime \prime}$) Auxiliary contacts

Notes: ') 1000 volt ratings (). Standard voltages for CA 6-300-EI.. 420-EI 48, 110, 240 and 415V AC. Standard voltages for CA 5-370...1200, 110, 240 and 415 V AC. held in NHP stock for convenience.
${ }^{\text {}}$) Electronically controlled mechanism (ECM) with interface suffix (EI).
$\left.{ }^{5}\right) \quad 55^{\circ} \mathrm{C}$ enclosed.

$\begin{aligned} & \text { AC } \mathbf{3}^{2} \\ & \left.\mathbf{k W}{ }^{1}\right) \end{aligned}$	AC 3 Amps ')	Amps $40^{\circ} \mathrm{C}$	Amps $60^{\circ} \mathrm{C}$	stand N/O	dard N/C	Max.	Cat. No. ${ }^{2}$)	
4	9	32	32	1	0	9	CA 7-9-10...V AC CA 7.9.01...V AC	
				0	1	9		
5.5	12	32	32	1	0	9	CA 7-12-10...V AC	
				0	1	9	CA 7-12-01...V AC	
7.5	16	32	32	1	0	9	CA 7-16-10...V AC	
				0	1	9	CA 7-16-01...V AC	
11	23	32	32	1	0	9	CA 7-23-10..V AC	
				0	1	9	CA 7-23-01...VAC)	
15	30	50	45	0	0	8	CA 7-30-00. VAC	
18.5	37	50	45	0	0	8	CA 7-37-00..VAC $=$	
22	43	85	63	0	0	8	CA 7 -43-00...VAC	
30	60	100	100	0	0	8	CA $760000 . . V A C$	
37	72	100	100	0	0	8	CA 7.72 .00. V V AC	
45	85	100	100	0	0	8	CA 7-85-00...V AC	
55 (45)	95 (33)	160	135	1	1	8	CA 6-85-11, V AC)	
75 (55)	130 (40)	160	135	1	1	8	CA 6-105-1t.VAC=	
90(75)	155 (55)	250	210	1	1	8	CA 6-140-11..V AC	
75 (55)	130 (40)	160	135	1	1	8	CA 6-105-EF-11..V AC)	
90 (75)	155 (55)	250	210	1	1	8	CA 6-140-EI-11...V AC)	
100 (90)	170 (65)	250	210	1	1	8	CA 6-170-EI-11..V AC)	
132 (111)	225 (80)	350	300	1	1	8	CA 6-210-E-11...V AC)	
150 (133)	258 (95)	350	300	1	1	8	CA 6-250-E1-11...V AC ${ }^{+}$)	
185 (163)	320 (115)	450	380	1	1	8	CA 6-300-El-11...V AC)	
250 (225)	425 (160)	500	425	1	1	8	CA 6-420-El-11...V AC)	
220 (220)	370 (155)	500	420	2	2	8	CA 5-370... ${ }^{\text {V AC' }}$	
265 (280)	450 (200)	600	510	2	2	8	CA 5-450..V AC')	
325 (355)	550 (250)	780	645	2	2	8	CA 5-550..V AC)	
430 (500)	700 (340)	1000	850	2	2	8	CA 5-700...V AC ${ }^{5}$)	
520 (550)	860 (380)	1100	930	2	2	8	CA 5-860...V AC')	
600	1000	1200	1020	1	1	8	CA 5-1000...V AC')	
700	1150	1350	1150	1	1	8	CA 5-1200...V AC)	

${ }^{2}$) Add control voltage to Cat. No. when ordering: 24, 32, 110, 240, 415, 440 V 50 Hz . Standard voltages for CA 6-105-El...250-El are 24, 48, 110, 240 and 415 V AC.
${ }^{3}$) All CA 7 coils can be reversed for line or load side coil terminals as required. Both versions are
${ }^{\text {a }}$) Contact NHP for recommended cable size.

The highest switching capacity in the smallest space

Compact without compromise

Compact without compromise is the best way to describe the CA 7 range of contactors and motor protection relays from Sprecher + Schuh. In spite of the new compact dimensions, the CA 7 range features high breaking capacity and extraordinary flexibility. Up to 18.5 kW the contactors are only 45 mm wide and even the largest 45 kW frame is only 72 mm wide. The CA 7 contactors are the main component in the new Advanced Control System (ACS).

With CA 7 you have flexibility with auxiliary contacts

Common auxiliaries from 9 to 85 amps
Three fitting positions
O Front mounting.
O Side mounting left.
O Side mounting right.
Alternatively you can choose to combine left, right and front mounting auxiliary contacts to fulfil your requirements.
Instead of the top mounted auxiliary contacts, on or off delay timing modules or mechanical latches can be fitted.

Motor switching rating AC 3 @ 415V

CA 7-9	4kW	45 mm	9
CA 7-12	5.5 kW		12A
CA 7-16	7.5kW		16A
CA 7-23	11 kW		23A
CA 7-30	15kW	45 mm	30A
CA 7-37	18.5kW	mm	37A
CA 7-43	22kW	54 mm	43A
CA 7-60	30kW		60A
CA 7-72	37 kW	72 mm	72A
CA 7-85	45kW		85A

With CA 7 you have more clip on accessories

Common accessories from 9 to 85 amps
O On and off delay pneumatic timers.
O Coil mounted electronic timers on delay, off delay, star delta.
O Coil mounted 24 V DC interface.
O Coil mounted RC and varistor suppressor modules.
O Mechanical latch.
O Mechanical interlock.
O Mechanical interlock with integrated N/C interlock contacts.
O Moulded wire link sets for DOL, reversing and star delta starters.
O Large choice of front and side mounting auxiliary contacts.

Refer catalogue SACS

Innovation and ease of use provide solutions for your control systems

Coil terminals are always in the correct position

The coil terminations on the CA 7 contactors can be supplied optionally at the top or the bottom of the contactor. It is also a simple task to change this on site should the requirements change.
When CA 7 contactors are used in combination with KTA 7 circuit motor circuit breakers the bottom coil terminations are used. For use with standard CT 7 thermal or CEP 7 electronic overloads the top coil termination should be selected.

Mechanical interlocks save space

Only 9 mm wide, the CM 7 mechanical interlock snaps into place between any of the CA 7 contactors. It is allowed also to interlock different sizes of the CA 7 range with the same interlock.
The basic mechanical interlock is supplemented by a variation with built in N/C auxiliary contacts for electrical interlocking. This version is also only 9 mm wide and further minimises space requirements.

With Sprecher + Schuh you can choose the best protection for your motors.

CA 7 contactors provide improved wiring terminals
The main terminals of all CA 7 contactors are designed to accept at least two cables. At the same time they comply with safety standards regarding touch protection.
The larger contactors CA 7-30 and upwards employ a special cage terminal which allows the connection of two cables in separate chambers.
The ease of wiring with CA 7 contactors saves both time and money.

High tech electronic protection type CEP 7 in trip class 10 or 20.

Standard thermal overloads type CT 7
sprechert
sthuh

Accessories for ACS contactors CA 7

Wiring sets - spare coils

Refer catalogue SACS

Unique reversible coil

The CA 7 coils can be freely rotated so that the coil connections are on the line side or the load side of the contactor. Line side connection is ideal for access to terminals when an overtoad CT 7 or CEP is fitted. Load side connection of coils is advisable when a KTA 3-25 circuit breaker is used for example.

CA 7

CA 7...U0

ACS Short circuit co-ordination Type '2' with KT 7 circuit breakers

-Refer Catalogue $\mathrm{C}-\mathrm{CO}$

Automatic Type ' 2 ' co-ordination ') with no-oversizing of contactors

DOL starting
50/65 kA @ 415V

Motor size kW	Approx. amps @ 415V	Sprecher + Schuh circuit breaker	Setting range amps	Magnetic amps	Sprecher + Schuh contactor	IAC-3 amps
0.18	0.60	KT 7-25S	$0.40-0.63$	8.2	CA 7-9	9
0.25	0.80	KT 7-25S	$0.63-1.00$	13	CA 7-9	9
0.37	1.10	KT 7-25S	$1.00-1.60$	21	CA 7-9	9
0.55	1.50	KT 7-25S	$1.00-1.60$	21	CA 7-9	9
0.75	1.80	KT 7-25S	$1.60-2.50$	33	CA 7-9	9
1.10	2.60	KT 7-25S	$2.50-4.00$	52	CA 7-9	9
1.15	3.40	KT 7-25S	$2.50-4.00$	52	CA 7-9	9
2.20	4.80	KT 7-25S	$4.00-6.30$	80	CA 7-9	9
3.00	6.50	KT 7-25S	$6.30-10.0$	130	CA 7-9	9
4.00	8.20	KT 7-25S	$6.30-10.0$	130	CA 7-9	9
5.50	11.00	KT 7-25S	$10.0-16.0$	208	CA 7-12	12
7.50	14.00	KT 7-25S	$10.0-16.0$	208	CA 7-16	16
9.00	17.00	KT 7-25H	$14.5-20.0$	260	CA 7-23	23
11.00	21.00	KT 7-25H	$18.0-25.0$	325	CA 7-23	23
15.00	28.00	KT 7-45H	$23.0-32.0$	416	CA 7-30	30
18.50	34.00	KT 7-45H	$32.0-45.0$	585	CA 7-37	37
22.00	40.00	KT 7-45H	$32.0-45.0$	585	CA 7-43	43
30.00	55.00	KT 3-100	$40.0-63.0$	882	CA 7-60	60
37.00	66.00	KT 3-100	$63.0-90.0$	1260	CA 7-72	72
45.00	80.00	KT 3-100	$63.0-90.0$	1260	CA 7-85	85

Definition Type '2' co-ordination according to IEC 947-4-1:

- The contactor or the starter must not endanger persons or systems in the event of a short circuit
- The contactor or the starter must be suitable for further use
- No damage to the overload relay or other parts may occur with the exception of welding of the contactor or starter contacts provided that these can be easily separated without significant deformation (such as with a screwdriver)
- In the event of a short circuit, fast opening current limiting circuit breakers KT 7 make it possible to build economical, fully short circuit co-ordinated starter combinations in accordance with IEC 947-4-1, Type '2' co-ordination
- Type '2' co-ordination without oversizing of contactors means: Type ' 1 ' = Type ' 2 '

Note: ${ }^{1}$) What is meant by Automatic Type '2' co-ordination?
The high speed operation of the new KT 7 motor protection circuit breakers means that contactors need not be oversized to achieve type ' 2 ' co-ordination. Simply select the normal AC 3 rated contactor and the corresponding KT 7 circuit breaker and type ' 2 '
 co-ordination is assured.

Refer Catalogue C-co
TemBreak or fuse DOL starting
50/65kA @ 415V to AS 3947.4.1

TemBreak or fuse

Terasaki

Motor size $\mathbf{k W}$	Approx. amps	circuit or breaker	NHP HRC fuse	Sprecher + Schuh contactor type	Sprecher + Schuh thermal O/L relay type	Setting range amps
0.37	1.1	XM30PB/1.4	NTIA-6	CA 7-9	CT 7-24	0.6-1.6
0.55	1.5	XM30PB/2	NTIA-6	CA 7-9	CT 7-24	0.6-1.6
0.75	1.8	XM30PB/2.6	NTIA-10	CA 7-9	CT 7-24	1.6-2.6
1.1	2.6	XM30PB/4.0	NTIA-10	CA 7-9	CT 7-24	2.4-4
1.5	3.4	XM30PB/5	NT/A-10	CA 7-9	CT 7-24	2.4-4
2.2	4.8	XM30PB/8	NTIA-16	CA 7-9	CT 7-24	4-6
3.0	6.5	XM30PB/10	NTIA-16	CA 7-9	CT 7-24	6-10
4.0	8.2	XM30PB/12	NTIA-25	CA 7-9	CT 7-24	6-10
5.5	11	XH125NJ/20	NTIA-32	CA 7-12	CT 7-24	10-16
7.5	14	XH125NJ/20	NTIS-40	CA 7-16	CT 7-24	10-16
11	21	XH125NJ/32	NTIS-50	CA 7-23	CT 7-24	16-24
15	28	XH125NJ/50	NTIS-63	CA 7-30	CT 7-45	18-30
18.5	34	XH125NJ/50	NTCP-80	CA 7-37	CT 7-45	30-45
22	40	XH125NJ/63	NTCP-80	CA 7-43	CT 7-45	30-45
30	55	XH125NJ/100	NTCP-100	CA 7-60	CT 7.75	45-60
37	66	XH125NJ/100	NTF-160	CA 7.72	CT 7.75	60-75
45	80	XH125NJ/125 ${ }^{\text {) }}$	NTF-160	CA 6-85	CT 7-100	70-90
55	100	XH125NJ/125 ')	NTF-200	CA 6-105-(El)	CT 6-110	85-110
75	130	XH250NJ/250	NTKF-250	CA 6-140-(El)	CT 6-150	105-150
90	155	XH250NJ/250 ${ }^{\text {) }}$	NTKF-250	CA 6-170-EI	CT 6-200	140-200
110	200	XH250NJ/250)	NTKF-315	CA 6-210-EI	CEF 1-41/42	160-400
132	225	XH400NE/400	NTMF-355	CA 6-210-EI	CEF 1-41/42	160-400
150	250	XH400NE/400	NTMF-355	CA 6-250-EI	CEF 1-41/42	160-400
160	270	XH400NE/400	NTMF-400	CA 6-300-EI	CEF 1-41/42	160-400
185	310	XH400NE/400	NTTF-450	CA 6-300-Et	CEF 1-41/42	160-400
200	361	XH400NE/400	NTTM-500	CA 6-420-E//CA 5-450	CEF 1-41/42	160-400
250	425	XH630NE/630	NTTM-630	CA 6-420-EI/CA 5-450	CEF 1-52	160-630
315	530	XH630NE/630	NTLM-710	CA 5-550	CEF 1-52	160-630.

Notes: Fuses 65 kA . XH125NJ circuit breaker combinations limited to 50 kA , others 65 kA . Overloads may be changed to different types eg. thermal style to electronic. Some combinations also gives Type ' 2 ' performance.

1) Use 'magnetic only' breaker.

Refer Catalogue C -co
Fuse protection DOL starting ')
Fuse
50 \& 65kA @ 415V to AS 3947.4.1

Motor size kW	Approx. amps @ 415 V	NHP HRC fuse to BS88	Sprecher + Schuh contactor	Sprecher + Schuh overload relay $\left.{ }^{2}\right)^{3}$)	Setting range amps
0.37	1.1	NTIA-4	CA 7-9	CEP 7	1.0-2.9
0.75	1.8	NTIA-6	CA 7-9	CEP 7	1.0-2.9
1.5	3.4	NTIA-10	CA 7-9	CEP 7	1.6-5
2.2	4.8	NTIA-16	CA 7-9	CEP 7	3.7-12
4.0	8.2	NTIA-20	CA 7-9	CEP 7	3.7-12
5.5	11	NTIA-25	CA 7-12	CEP 7	3.7-12
7.5	14	NTIA-32	CA 7-16	CEP 7	12-32
11	21	NTIS-50	CA 7-30	CEP 7	12-32
15	28	NTIS-63	CA 7-30	CEP 7	12-37
18.5	34	NTCP-80	CA 7-37	CEP 7	12-37
22	40	NTCP-80	CA 7-43	CEP 7	14-45
30	55	NTCP-100	CA 7-60	CEP 7	26-85
37	66	NTF-125	CA 7-72	CEP 7	26-85
45	80	NTF-160	CA 7-85	CEP 7	26-85
55	100	NTF-200	CA 6-105 (EI)	CT 6-110	85-110
75	130	NTKF-250	CA 6-140-EI	CT 6-150	105-150
90	155	NTKF-250	CA 6-170-E	CT 6-200	140-200
110	200	NTKF-315	CA 6-210-E	CEF 1-41/42 ${ }^{\text {4 }}$)	160-400
132	225	NTMF-355	CA 6-210-E!	CEF 1-41/42 ${ }^{\text {4 }}$)	160-400
150	250	NTMF-355	CA 6-250-EI	CEF 1-41/42 ${ }^{\text {4 }}$)	160-400
185	320	NTTM-450	CA 6-300-E!	CEF 1-41/42 ${ }^{\text { }}$)	160-400
250	425	NTTM-560	CA 6-420-E!	CEF 1-52 ${ }^{4}$)	160-630
320	538	NTLM-710	CA 5-550	CEF 1-52 ${ }^{4}$)	160-630
380	650	NTLM-800	CA 5-700	CEF 1-11/12P ${ }^{4}$)	$300-1200$

Notes: 7 Fuses with equal or lower let through energy may also be used.
${ }^{\text {2 }}$) Thermal overloads may be used instead of electronic CEP 7.
${ }^{3}$) Above 37 kW overloads may also be electronic or thermal.
4) CET 4 may be used instead of CEF 1.

Refer Catalogue C-CO
TemBreak circuit breakers DOL starting
50kA @ 415 V to AS 3947.4.1

TemBreak

Motor size kW	Approx. amps	Terasaki circuit breaker	Sprecher + Schuh contactor	Sprecher + Schuh overload relay	Setting range amps
0.37	1.1	XM30PB/1.4	CA 7.9	CT 7-24-1.6	1-1.6
0.55	1.5	XM30PB/2	CA 7-9	CT 7-24-1.6	1-1.6
0.75	1.8	XM30PB/2.6	CA 7-9	CT 7-24-2.4	1.6-2.4
1.1	2.6	ХМ30PB/4.0	CA 7-16	CT 7-24-4	2.4-4
1.5	3.4	XM30PB/5	CA 7-16	CT 7-24-4	2.4-4
2.2	4.8	XM30PB/8	CA 7-16	CT 7-24-6	4-6
3	6.5	XM30PB/10	CA 7-30	CT 7-24-10	6-10
4	8.2	XM30PB/12	CA 7-30	CT 7-24-10	6-10
5.5	11	XH125NJ/20	CA 7-30	CT 7-24-16	10-16
7.5	14	XH125NJ/20	CA 7-30	CT 7-24-16	10-16
11	21	XH125NJ/32	CA 7-30	CT 7-24-24	16-24
15	28	XH125NJ/50	CA 7-43	CT 7-45-30	18-30
18.5	34	XH125NJ/50	CA 7-43	CT 7-45-45	30-45
22	40	XH125NJ/63	CA 7-43	CT 7-45-45	30-45
30	55	XH125NJ/100	CA 6-85	CT 7-75 ${ }^{2}$)	45-60
37	66	XH125NJ/100	CA 6-85	CT 7-75 ${ }^{\text {\% }}$)	60-75
45	80	XH125NJ/125	CA 6-105-EI	CT 6-90	70-90
55	100	XH125NJ/125 ${ }^{\text {) }}$	CA 6-105-EI	CT 6-110	85-110
75	130	XH250NJ/250	CA 6-140-EI	CT 6-150	105-150
90	155	XH250NJ/250	C A6-170-EI	CT 6-200	140-200
110	200	XH250NJ/250)	CA 6-210-EI	CEF 1-41/42	160-400
132	225	XS400NE/400	CA 6-210-EI	CEF 1-41/42	160-400
150	250	XS400NE/400	CA 6-250-EI	CEF 1-41/42	160-400
160	270	XS400NE/400	CA 6-300-EI	CEF 1-41/42	160-400
200	361	XS400NE/400	CA 6-420-El	CEF 1-41/42	160-400
200	361	XS400NE/400	CA 5-450	CEF 1-22 ${ }^{2}$)	160-400
250	425	XS630NE/630	CA 5-700	CEF 1-52 ${ }^{2}$)	160-630
320	538	XS630NE/630	CA 5-700	CEF 1-52 ${ }^{2}$)	160-630

Notes: Overloads may be thermal or electronic.
Combinations based on the overload tripping before the circuit breaker at overload currents up to the motor locked rotor current.
${ }^{1}$) Use 'magnetic only' breaker or next higher circuit breaker / contactor combination.
${ }^{2}$) Use with separate mounting bracket.
Data for 65 kA co-ordination available refer Cat. C-CO.

Refer Catalogue C-CO
TemBreak circuit breakers DOL starting. 85kA @ 415V to AS 3947.4.1 TemBreak

Motor size kW	Approx. FLC © 415 V (A)	Terasaki circuit breaker	Sprecher + Schuh contactor	Sprecher + Schuh thermal O/L type	Setting range (A)
0.37	1.1	XM30PB/1.4	CA 7-9	CEP 7-M32-2.9-10	1.0-2.9
0.55	1.5	XM30PB/2.0	CA 7-9	CEP 7-M32-2.9-10	1.0-2.9
0.75	1.8	XM30PB/2.6	CA 7-9	CEP 7-M32-2.9-10	1.0-2.9
1.1	2.6	XM30РB/4	CA 7-16	CEP 7-M32-2.9-10	1.0-2.9
1.5	3.4	XM30РВ/5	CA 7-16	CEP 7-M32-5-10	1.6-5
2.2	4.8	XM30PB/8	CA 7-30	CEP 7-M32-12-10	3.7-12
3	6.5	XM30PB/8	CA 7-30	CEP 7-M32-12-10	3.7-12
4	8.2	XM30PB/10	CA 7-30	CEP 7-M32-12-10	3.7-12
5.5	11	TL100NJ/20	CA 7-30	CEP 7-M32-12-10	3.7-12
7.5	14	TL100NJ/20	CA 7-30	СЕР 7-M32-32-10	12-32
9	17	TL100NJ/32	CA 7-30	CEP 7-M32-32-10	12-32
10	19	TL100NJ/32	CA 7-30	CEP 7-M32-32-10	12-32
11	21	TL100NJ/32	CA 7-30	CEP 7-M32-32-10	12-32
15	28	TL100NJ/50	CA 7-43	CEP 7-M32-32-10	12-32
18.5	34	TL.100NJ/50	CA 7-43	CEP 7-M37-37-10	12-37
22	40	TL100NJ/63	CA 7-43	CEP 7-M45-45-10	14-45
30	55	TL100NJ/100	CA 7-72	CEP 7-M85-85-10	26-85
37	66	TL100 NJ/100	CA 7.72	CEP 7-M85-85-10	26-85
45	80	TL250NJ/160	CA 6-105	CEP 7-M85-85-10	26-85
55	100	TL250 $\mathrm{N} / 160$	CA 6-105	CEF 1-11/12	0.5-180
75	135	TL250NJ/250	CA 6-210-EI	CEF 1-11/12	0.5-180
90	160	TL250NJ/250	CA 6-210-EI	CEF 1-11/12	0.5-180
110	200	TL250NJ/250	CA 6-210-EI	CEF 1-41/42/52	160-630
132	230	TL400NE/400	CA 6-210-EI	CEF 1-41/42/52	160-630
160	270	TL400NE/400	CA 6-300-EI	CEF 1-41/42/52	160-630
200	361	TL400NE/400	CA 6-420-EI	CEF 1-41/42/52	160-630

Din-T circuit breakers with rotary isolator. DOL starting. 50kA @ 415V to AS 3947.4.1

Motor size kW	Approx. amps @ 415 V	Sprecher + Schuh isolator	Terasaki circuit breaker	Sprecher + Schuh current limiter	Sprecher + Schuh contactor	Schuh thermal O/L relay	Thermal overload range
0.37	1.1	LA 7-80	Din-T 10/4	-	CA 7-9	CT 7-24	0.6-1.6
0.55	1.5	LA 7-80	Din-T 10/4	-	CA $7-9$	CT 7-24	1-1.6
0.75	1.8	LA 7-80	Din-T 10/4	-	CA 7-9	CT 7-24	1.6-2.4
1.1	2.6	LA 7-80	Din-T $10 / 6$	-	CA 7-23	CT 7-24	2.4-4
1.5	3.4	LA 7-80	Din-T 10/6	-	CA 7-23	CT 7-24	2.4-4
2.2	4.8	LA 7-80	Din-T $10 / 10$	KTL 3-65	CA 7-23	CT 7-24	4-6
3	6.5	LA 7-80	Din-T 10/16	KTL 3-65	CA 7-23	CT 7-24	6-10
4	8.2	LA 7-80	Din-T $10 / 16$	KTL 3-65	CA 7-23	CT 7-24	6-10
5.5	11	LA 7-80	Din-T 10/20	KTL 3-65	CA 7-23	CT 7-24	10-16
7.5	14	LA 7-80	Din-T 10/32	KTL 3-65	CA 7-30	CT 7-45	10-16
11	21	LA 7-80	Din-T $10 / 40$	KTL. 3-65	CA 7-30	CT 7-24	16-24
15	28	LA 7-100	Din-T 10/63	KTL 3-65	CA 7-37	CT 7-45	$18 \cdot 30$
18.5	34	LA 7-100	Din-T $10 / 63$	KTL 3-65	CA 7-37	CT 7-45	30-45

ACS contactors CA 7
Technical data

tactor		CA＇7－9	CA 7 －12	CA 7－16	CA 7－23	CA 7－30
Number of switching operations						
Mechanical	［Mill］	13	13	13	13	13
Electrical AC 3 （400V）	［Mill］	1.3	1.3	1.3	1.3	1.3
Weight with AC coil（DC coil）	［kg］	0.39 （0．6）	0.39 （0．6）	0.39 （0．6）	0.39 （0．73）	0.48 （0．85）
Terminal for main contacts		点	点	帯	兴	匋
Terminal size to IEC 947－1		$2 \times$ A4	2×14	$2 \times \mathrm{A} 4$	$2 \times$ A4	2×86
Flexible wire with sleeve ET曷	1 wire［ mm^{2} ］	1．．． 4	1．．． 4	$1 . . .4$	1．．． 4	2．5．．． 10
	2 wire［ $\left.\mathrm{mm}^{2}\right]$	1．．． 4	1．．． 4	1．．．4	1．．． 4	2．5．． 10
Stranded／solid core 	1 wire［ mm^{2} ］	1．5．．． 6	1．5．．． 6	1．5．．．6	1．5．．． 6	2．5．．． 16
	2 wire［mm］	1．5．．． 6	1．5．．． 6	1．5．．．6	1．5．．． 6	2．5．．．16
Tightening torque	［ Nm ］	1．．． 2.5	1．．．2．5	1．．．2．5	1．．．2．5	1．5．．．3．5
Contactor		CA 7－37	CA 7－43	CA 7－60	CA 7.72	CA 7－85

Number of switching operations

Mechanical	［Mill］	13	12	10	10	10
Electrical AC 3 （400V）	［Mill］	1.3	1.3	1	1	1
Weight with AC coil（DC coil）	［kg］	0.49 （0．85）	0.51 （1．0）	1.45 （1．47）	1.45 （1．47）	1.45 （1．47）
Terminal for main contacts			田		皆	舃
Terminal size to IEC 947－1		2×86	B7＋B6	B9＋B7	B9＋${ }^{\text {7 }}$	B9＋ B_{7}
Flexible wire with sleeve	1 wire［ mm^{2} ］	2．5．．． 10	2．5．．． 16	2．5．．． 35	2．5．．． 35	2．5．．． 35
E－T－	2 wire［ $\left.\mathrm{mm} \mathrm{m}^{2}\right]$	2．5．．． 10	2．5．．． 10	2．5．．． 25	2．5．． 25	2．5．．． 25
Stranded／solid core	1 wire［ mm^{2} ］	2．5．．． 16	2．5．．． 25	2．5．．． 50	2．5．．．50	2．5．．．50
E－7	2 wire［ mm^{2} ］	2．5．．．16	2．5．．．16	2．5．．． 35	2．5．．． 35	2．5．．． 35
Tightening torque	［ Nm ］	1．5．．．3．5	1．5．．．3．5	2．．． 6	2．．． 6	2．．． 6
Control circuit		CA 7－9	CA 7－12	CA 7－16	CA 7－23	CA 7－30
Operating limits						
AC 50／60Hz	Pick－up［ $\mathrm{xU}_{\text {d }}$ ］	0．85．．．1．1	0．85．．．1．1	0．85．．1．1	0．85．．．1．1	0．85．．．1．1
	Drop－out［ xU_{5} ］	0．3．．．0．6	0．3．．．0．6	0．3．．．0．6	0．3．．．0．6	0．3．．．0．6

| Pick－up and hold power
 AC $50 / 60 \mathrm{~Hz}$ | | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Pick－up［VAW］PF | $70 / 50 / 0.71$ | $70 / 50 / 0.71$ | $70 / 50 / 0.71$ | $70 / 50 / 0.71$ | $80 / 60 / 0.75$ |
| Hold［VAW］PF | $8 / 2.60 / 0.33$ | $8 / 2.6 / 0.33$ | $8 / 2.6 / 0.33$ | $9 / 3 / 0.33$ | $9 / 3 / 0.33$ | |

Operating times

AC $50 / 60 \mathrm{~Hz}$	Make［ms］	15．．． 30	15．．． 30	15．．． 30	15．．． 30	15．．． 30
	Break［mS］	10．．． 60	10．．． 60	10．．． 60	10．．．60	10．．． 60
Control circuit		CA 7－37	CA 7－43	CA 7－60	CA 7.72	CA 7－85
Operating limits						
AC $50 / 60 \mathrm{~Hz}$	Pick－up［ XU_{5} ］	0．85．．．1．1	0．85．．1．1	0．85．．．1．1	0．85．．．1．1	0．85．．．1．1
	Drop－out［ XU_{5} ］	0．3．．．0．6	0．3．．．0．6	0．3．．．0．6	0．3．．． 0.6	0．3．．． 0.6

Pick－up and hold power

| AC $50 / 60 \mathrm{~Hz}$ | Pick－up［VAW］PF | $80 / 60 / 0.75$ | $80 / 60 / 0.75$ | $200 / 110 / 0.55$ | $200 / 110 / 0.55$ | $200 / 110 / 0.55$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Hold［VA／W］PF | $9 / 3 / 0.33$ | $10 / 3.2 / 0.32$ | $16 / 4.5 / 0.28$ | $16 / 4.5 / 0.28$ | $16 / 4.5 / 0.28$ |
| Operating times | | | | | | |
| AC $50 / 60 \mathrm{~Hz}$ | Make［mS］ | $15 \ldots 30$ | $15 \ldots 30$ | $18.5 \ldots 30$ | $18.5 \ldots . .30$ | $18.5 \ldots 30$ |
| | Break［mS］ | $10 \ldots 60$ |

ACS contactors CA 7 Technical data

ACS contactors CA 7
Technical data

		Built-in auxiliary contacts CA 7-9... 85					Clip-on auxiliary contacts Front mount Side mount									
Switching DC loads																
L/R<1ms, resistive loads at:	[V]	24	48	110	220	440	24	48	110	220	440	24	48	110	220	440
	[A]	12	9	3.5	0.55	0.2	12	9	3.5	0.55	0.2	6	3.2	0.45	0.18	0.1
L/R<15ms, inductive loads with economy resistor in series at:																
	[V]	24	48	110	220	440	24	48	110	220	440	24	48	110	220	440
	[A]	9	5	2	0.4	0.16	9	5	2	0.4	0.16	2	1.6	0.3	0.12	0.05
DC-13, switching electro																
magnets at:	[V]	24	48	110	220	440	24	48	110	220	440	24	48	110	220	440
	[A]	5	2	0.7	0.25	0.12	5	2	0.7	0.25	0.12	3	1.5	0.6	0.3	0.2

ACS contactors CA 7 Technical data

Âdditional rating data - contactors to IEC'947

Contactor
CA 7-9 CA 7-12 CA 7-16 CA 7-23 CA 7-30 CA 7-37 CA 7-43 CA 7-60 CA 7-72 CA 7-85
AC1 resistive load
switching 3-
Ambient temperature $40^{\circ} \mathrm{C}$

$\left.J_{8}^{1}\right)$	$[\mathrm{A}]$	32	32	32	32	50	50	85	100	100	100
240 V	$[\mathrm{~kW}]$	10	10	13	13	18	20	25	36	36	40
415 V	$[\mathrm{~kW}]$	18	18	23	23	32	36	45	64	64	71
690 V	$[\mathrm{~kW}]$	30	30	38	38	54	60	75	108	108	120

Ambient temperature $60^{\circ} \mathrm{C}$

$\left.\rho_{6}{ }^{\prime}\right)$	$[\mathrm{A}]$	32	32	32	32	45	45	63	100	100	100
240 V	$[\mathrm{~kW}]$	8	8	10	10	14	16	20	29	29	34
415 V	$[\mathrm{~kW}]$	14	14	17	17	26	28	36	51	51	61
690 V	$[\mathrm{~kW}]$	24	24	29	29	44	48	60	86	86	102

AC motor switching
AC 2, AC 3, AC 4

240 V	$[\mathrm{~A}]$	11.5	14.5	20	26.5	34	37	42	62	70	85
415 V	$[\mathrm{~A}]$	9	12	16	23	30	37	43	60	72	85
690 V	$[\mathrm{~A}]$	5	7	9.3	12	17	20	25	34	42	49
240 V	$[\mathrm{~kW}]$	3	4	5.5	7.5	10	11	13	18.5	22	25
415 V	$[\mathrm{~kW}]$	4	5.5	7.5	11	15	18.5	22	30	37	45
690 V	$[\mathrm{~kW}]$	4	5.5	7.5	10	15	18.5	22	30	37	45

Rated making capacity

$I_{\theta} \mathrm{AC} 4,50 \mathrm{~Hz}$	$\max .690 \mathrm{~V}[\mathrm{~A}]$	135	180	240	345	450	555	645	900	1080	1275

Rated breaking capacity

le AC 4	max. $460 \mathrm{~V}[\mathrm{~A}]$	135	180	240	345	450	555	645	900	1080	1275
	max. 690 V [A$]$	75	105	140	140	255	300	375	510	630	735

Short circuit protection
without protection relay
fuse 9 G to IEC 947-4-1

co-ordination type '1'	[A]	50	50	50	63	100	125	160	200	250	250
co-ordination type '2'	[A]	20	25	25	35	50	80	100	100	125	160

Main current circuit

| resistance | $[m \Omega]$ | 2.7 | 2.7 | 2.7 | 2 | 2 | 2 | 1.5 | 0.9 | 0.9 | 0.9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Power dissipated by all
circuits at le AC 3

$[w]$	0.7	1.2	2.1	3.2	5.4	8.2	8.3	9.7	14	19.5

Total power dissipation

at le AC 3	AC control [w]	3.3	3.8	4.7	6.2	8.4	11.2	11.5	14.2	18.5	-
	DC control [w]	6.7	7.2	8.1	12.4	14.6	17.4	18.4	14.6	18.9	-
Life span in millions of operations											
Mechanical	AC control	13	13	13	13	13	13	12	10	10	10
	DC control	13	13	13	13	13	13	13	10	10	10

Operating times (DC)

Make (mS)	40...70	40... 70	40... 70	40... 70	50... 80	50... 80	50... 80	20.. 40	20... 40	20... 40
Break (mS)	7... 15	7... 15	7... 15	7... 15	$7 . .15$	7... 15	-	-	-	-

Note: ${ }^{1}$) Contact NHP for recommended cable size.

ACS contactors CA 7 Dimensions

Dimensions in (mm)

Mounting position

Contactor (AC control)

Type	a	b	c	c1	c2	od	d1	d2 $\left.{ }^{\prime}\right)$
CA 7-9...CA 7-23 ${ }^{2}$)	45	81	80.5	75.5	6	4.5	60	35
CA 7-30...CA 7-37	45	81	97.5	92.6	6.5	4.5	60	35
CA 7-43	54	81	100.5	95.6	6.5	4.5	60	45
CA 7-60...CA 7-85	72	122	117	111.5	8.5	5.4	100	55

(DC control)

Type	a	b	c	c1	c2	dd	d1	d2')
CA 7-9C...CA 7-16C	45	81	106.5	101.5	6	4.5	60	35
CA 7-23C	45	81	123.5	119	6	4.5	60	35
CA 7-30C...CA 7-37C	45	81	141.5	136.5	6.5	4.5	60	35
CA 7-43C	54	81	144.5	140	6.5	4.5	60	45
CA 7-60C...CA 7-85C	72	122	117	111.5	8.5	5.4	100	55

Accessories

Accessories Contactor with		(AC control) (mm)	(DC control) (mm)
Front mounting auxiliary contact	2 or 4 pole	c/c1 + 39	c/c1 + 39
Side mounting auxiliary contact	1 or 2 pole	a+9	a+9
Pneumatic timing module		c/c1 + 58	-
Electronic timing module	coil mounting	b +24	$b+24$
Mechanical interlock	mounts between contactors	a +9	a +9
Mechanical latch		c/c1 + 61	-
Interface	coil mounting	b +9	-
Suppressor	coil mounting	b + 3	b +3
With inscriptions ${ }^{3}$)	labels	+0	+0
	label support system V4N5	+5.5	+5.5

Notes: \quad) DIN Rail mounting 35mm to EN 50022

${ }^{2}$) Dimensions for 4 pole contactors same as 3 pole with auxiliary.
${ }^{3}$) Dimensions with inscriptions.

Dimensions with and without contactors

Dimensions in (mm)
CEP 7, CEP 7s and CEP 7-B mounted on CA 7 contactors

Cat. No.	a	b	b4	c	e1	e2	d1	d2	h	j	6d
CA 7-9/12/16/23 with CEP 7 or CEP 7 S	45	131	86	88.5	16.5	69	60	35	86.5	2	4.2
CA 7-9/12/16/23 with CEP 7-B	54	137	97	90.7	5.1	59	60	35	85.1	2	4.2
CA 7-30/37 with CEP 7 or CEP 75	45	136.5	91.5	92	16.5	69	60	35	104	2	4.2
CA 7-30/37 with CEP 7-B	54	137	97	92.1	5.2	59	60	35	104.7	2	4.2
CA 7-43 with CEP 7, CEP 75 or CEP 7-B	54	136.5	91.5	93	22	69	60	45	107	2	4.2
CA 7-60/72/85 with CEP 7, CEP 75 or CEP 7-B	72	188.5	120	120	18	84.5	100	55	125.5	2	5.5

CEP 7 with separate mounting bracket

Type	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
CEP 7-37-P-A	45	90	75	30	75
CEP 7-45-P-A	55	90	96.5	40	75
CEP 7-85-P-A	70	115	110	55	105

General $\cdots n$

CT 7.24
CT 7-45
CT 7-75
CT $7: 100^{\prime}$

Weight	$[\mathrm{kg}]$	0.13	0.21
Standards		0.21	1.3
Climatic		IEC 947, EN 60 947, DIN VDE 0660, UL, LRS, GUS, CSA	
		damp/heat, constant, to DIN, IEC 68, Part 2-3	
Ambient temperature	open	damp/heat, cyclic, to DIN, IEC 68, Part 2-30	
	enclosed	$-25 \ldots+60^{\circ} \mathrm{C}$	

Temperature compensation
continuous temperature range $-5 \ldots+40^{\circ} \mathrm{C}$ to IEC 947,
EN 60947; PFB: $-5 . . .+50^{\circ} \mathrm{C}$
Shock resistance (sinusoidal 10ms) [G]

Protection	IP 00 IP 2LX
Protection	touch proof (VDE 0106, Part 100)

Contactor, timer and overload selection chart for auto transformer starters

ATS kW	Line contactor	Trans contactor	Star contactor	Timer	Overload
11	CA 7-23-10	CA 7-16-10	CA 7-9-10	RZ7 FSY2D	CEP 7-M32-32-10
15	CA 7-30-00	CA 723-10	CA 7-12-10	RZ7 FSY2D	CEP 7-M37-37-10
18.5	CA 7-37-00	CA 7-30-00	CA 7-16-10	RZ7 FSY2D	CEP 7-M37-37-10
22	CA 7-43-00	CA 7-30-00	CA 7-23-10	RZ7 FSY2D	CEP 7-M45-45-10
30	CA 7-60-00	CA 7-37-00	CA 7-30-00	RZ7 FSY2D	CEP 7-M85-85-10
37	CA 7-72-00	CA 7-43-00	CA 7-30-00	RZ7 FSY2D	CEP 7-M85-85-10
45	CA 7-85-00	CA 7-60-00	CA 7-37-00	RZ7 FSY2D	CEP 7-M85-85-10
55	CA 6-85-11	CA 7-60-00	CA 7-43-00	RZ7 FSY2D	CT 6-110
75	CA 6-105-11	CA 7-85-00	CA 7-60-00	RZ7 FSY2D	CT 6-150
90	CA 6-140EI-11	CA 6-85-11	CA 7-72-00	RZ7 FSY2D	CT 6-200
110	CA 6-170EI-11	CA 6-105-11	CA 7-85-00	RZ7 FSY2D	CEF 1-41
132	CA 6-210EI-11	CA 6-140EI-11	CA 6-105-11	RZ7 FSY2D	CEF 1-41
150	CA 6-250EI-11	CA 6-140EI-11	CA 6-105-11	RZ7 FSY2D	CEF 1-41
185	CA 6-300EI-11	CA 6-210EI-11	CA 6-140EI-11	RZ7 FSY2D	CEF 1-41
220	CA 6-420EI-11	CA 6-210EI-11	CA 6-140-EI-11	RZ7 FSY2D	CEF 1-41

Contactor, timer and overload selection chart for star delta starters

SDSkW	Line contactor	Delta contactor	Star contactor	Timer	Overload
7.5	CA 7-9-10	CA 7-9-01	CA 7-9-01	RZ7 FSY2D	CEP 7-M32-12-10
11	CA 7-12-10	CA 7-12-01	CA 7-9-01	RZ7 FSY2D	CEP 7-M32-32-10
15	CA 7-16-10	CA 7-16-01	CA 7-9-01	RZ7 FSY2D	CEP 7-M32-32-10
18.5	CA 7-23-10	CA 7-23-01	CA 7-12-01	RZ7 FSY2D	CEP 7-M32-32-10
22	CA 7-23-10	CA 7-23-01	CA 7-16-01	RZ7 FSY2D	CEP 7-M32-32-10
$30-37$	CA 7-37-00	CA 7-37-00	CA 7-23-01	RZ7 FSY2D	CEP 7-M45-45-10
45	CA 7-60-11	CA 7-60-11	CA 7-30-00	RZ7 FSY2D	CEP 7-M85-85-10
55	CA 7-60-11	CA 7-60-11	CA 7-37-00	RZ7 FSY2D	CEP 7-M85-85-10
75	CA 7-85-00	CA 7-85-00	CA 7-43-00	RZ7 FSY2D	CEP 7-M85-85-10
90	CA 6-85-11	CA 6-85-11	CA 7-60-00	RZ7 FSY2D	CT 6-90
110	CA 6-105-11	CA 6-105-11	CA 7-72-00	RZ7 FSY2D	CT 6-110
132	CA 6-140EI-11	CA 6-140EI-11	CA 7-85-00	RZ7 FSY2D	CT 6-150
150	CA 6-170EI-11	CA 6-170EI-11	CA 6-85-00	RZ7 FSY2D	CTA 6-200
185	CA 6-210EI-11	CA 6-210EI-11	CA 6-105-11	RZ7 FSY2D	CEF 1-41
220	CA 6-210-EI-11	CA 6-210-El-11	CA 6-140-EI-11	RZ7 FSY2D	CEF 1-41

ACS thermal overloads CT 7 Dimensions with and without contactors

Mounted on CA 7 contactors

CT 7-24, CT 7-45, CT $7-75$

Type	For contactor	a	b	b1	c	c1	c2	c3	c4	c5	6d	d1	d2	e1	e2
CT 7-24	CA 7-9... 23	45	127	83	96	91	15	51	39	5	4.5	60	$\left.35{ }^{\prime}\right)$	16.5	51
	CA 7-30... 37	45	127	83	105	99	6.5	51	39	9.5	4.5	60	$\left.35{ }^{\prime}\right)$	16.5	51
CT 7-45	CA 7-30... 37	60	140	97	105	99	6.5	51	39	6.5	4.5	60	$\left.35^{\prime}\right)$	16.5	57
	CA 7-43	60	140	97	107	103	6.5	51	39	8.5	4.5	60	$\left.45^{1}\right)$	16.5	57
CT 7-75	CA 7-60... 85	72	185	120	125	120	8.5	51	39	28.5	5.4	100	55^{\prime})	16.5	82

Separate mounting with bracket

Separate mounting

Type	\mathbf{a}	\mathbf{b}	$\mathbf{b 1}$	\mathbf{c}	$\mathbf{c 1}$	$\mathbf{c 2}$	$\mathbf{c 3}$	dd	d1	d2	e1
CT 7-24	45	85	44	95	70.5	5	51	4.5	$60 \ldots 74$	$\left.35^{1}\right)$	16
CT 7-75	60	90	44	117	112	15	51	5.4	74	$\left.50^{1}\right)$	16
CT 7-90	100	120	-	135	-	5	51	6.2	74	$\left.80^{1}\right)$	0

Notes: ') Standard DIN rail to EN 50 022-35
${ }^{2}$) With reset rod, maintain 9 mm maximum operating radius from centre of reset button.
c3 Reset magnet
c4 Auxiliary contact block

MTR Level Relay

The MTR level relay has proven itself to be simple and extremely reliable in pump stations everywhere. The MTR controls one pump or one alarm. The MTRA controls one pump and one alarm.

- Safe

The extra low sensing voltage ensures maintenance staff and operators are protected at all times.

- Four sensitivities

Allows the relay to operate effectively in a wide range of conductive liquids.

- Activation delays

Each output can have a different time delay to overcome wave action and turbulence.

- LED indication

High intensity LED indicators ensure clear signals. Power On (green). Alarm On (red). Pump On (yellow).

- Dipswitch programmable

All settings are easily selectable from the front panel.

- Proven reliability

The proven design and performance of the relay ensures long-term reliability of the MultiTrode system.

- I.S application

Perfect for I.S application when used with an MTISB.

- Unique two-sensor operation (MTRA only) Pump and alarm can be controlled using two or three sensors. Two-sensor operation is ideal for budget applications or where space is limited.
- DIN rail or screw mounting
- Low installed cost

Specifications

Mode of operation: MTR Mode MTRA Mode	Charge/Discharge (Fill or Empty) Discharge ONLY
Probe Inputs:	
Sensor inputs	MTR : 2 / MTRA: 3
Sensor voltage	10/12VAC Nominal
Sensor current	0.8 mA max. (per sensor)
Sensitivity	1k, 4k, 20k, 80k
Relay Outputs:	
MTR relay output	2 contact sets : 1 N/O \& 1 C/O
MTR Output delay	0, 2.5, 5, 10, 20, 40, 80, 160 sec
MTRA relay output	2 relays : both N / O
MTRA Output delay	Pump: 0.5, 10; Alarm: 0.5, 15 sec
Relay contact rating	250 VAC
	5A Resistive, 2A Inductive
Relay contact life	10^{5} Operations
Terminal size	2×13 AWG / $2.5 \mathrm{~mm}^{2}$
Display	
LEDs:	Power On Pump Alarm
MTR	Green Red
MTRA	Green Yellow Red
Physical Product:	
Dimensions	$2.7 / 8 \mathrm{H} \times 1.3 / 4 \mathrm{~W} \times 4.1 / 2 \mathrm{O}$ (Inches) $72 \mathrm{H} \times 45 \mathrm{~W} \times 14 \mathrm{D}(\mathrm{mm})$
Mounting Enclosure	DIN Rail or $2 \times \# 6$ Screws / $2 \times$ M4 Screws
	Makrolon (self-extinguishing)

Available Models \&		
415VAC	MTering Information	
240 VAC	MTR-1	n/a
110VAC	MTR-2	MTRA-2
24VAC	MTR-3	MTRA-3
24VDC	MTR-4	MTRA-4
12VDC	MTR-5	MTRA-5
	MTR-6	MTRA-6

MULTITRODE

> MultiIrode Inc : USA
> 6560 East Rogers Circle
> Boca Raton Florida 33487
> Tel: +15619948090 Fax +15619946282

sales@ıültitrode:n̄et =

1 Introduction

The MultiTrode level control relay is a solid-state electronic module in a hi-impact plastic case with a DIN rail attachment on the back, making a snap-on-snap-off installation. Any number of relays can be easily added to the DIN metal rail then wired together to form a complex pumping system that other wise may have to be controlled and operated by a programmed PLC.

The relay is normally matched with the MulitiTrode probe which works in conjunction with the relay and uses the conductivity of the liquid to complete an electrical circuit.

2 Electrical Overview

There are 10 screw terminals on the unit. Facing the relay as shown, we look at the bottom terminals (left to right):

- Lo - (Charge mode). This is the point when the probe is dry the relay will turn on.
- Lo - (Discharge mode). This is the point when the probe in the tank is dry the relay will tum off.
- Hi -(Charge mode). This is the point when the probe in the tank is wet a relay will tum off
- Hi - (Discharge mode). This is the point when the probe in the tank is wet a relay will tum on.
- C - is common earth. All earth bonding must be terminated here for correct operation.
- "L " is "live" (240V AC)
- " N " is "neutral" (240V AC)

If the tank is plastic, or if you are conducting tests in a plastic bucket, or the vessel has no earth point inside, you must install an earth rod within the tank, vessel or bucket and make sure that it is bonded back to C on the relay unit.

3 DIP Switches

3.1 DIP Switches

(See Wiring Diagram for full program functions.)

3.1.1 DIP 182

DIP 1 and 2 control the Sensitivity, in other words the cleaner the liquid the higher the sensitivity setting must be. Concentrated acids, minerals are by their own chemical composition highly conductive, so a low level of sensitivity is required, purified water is almost an insulator against electrical current flow so a higher sensitivity inside the relay is required.

3.1.2 DIP 3, 4 \& 5

DIP switches 3,4 and 5, control delay on activation. For example, in discharge mode with DIP switches 3, 4 and 5 set to 10 seconds, when the Hi point becomes wet it will activate the motor and it will take 10 seconds of continual coverage of the probe sensor to make the relay close and start the pump. This is invaluable when the probe is in a turbulent part of a well where fluid is splashing around touching the sensors momentarily, and false activation cannot be tolerated.

3.1.3 DIP 6

DIP switch 6 controls the charge/discharge function. Set "ON" for charge, and "OFF" for discharge

3.2 Relay Contacts \& their Applications

3.2.1 Contacts $15,16 \& 18$

Contacts 15,16 , and 18 are used for electronic or visual notification of a change in state at the pump itself. Contacts 15,16 , and 18 are used for more advanced applications because they are a changeover relay, their state may be the same as contacts 25,28 or the opposite. Both sets of contactors are triggered simultaneously. An example is when in discharge mode, (see Figure 1).
You have a gravity flow coming in so the fluid reaches the lower sensor PB1, contacts 15 and 18 are open (15 being common to both contact 16 and 18) contacts 25 and 28 are also normally open but contacts 1516 in this current situation are closed, whether PB1 is wet or dry is of no concern all will stay the same. The level now rises to PB2 and both relays change state, contacts 25 and 28 close to turn on the pump, contacts 15 and 16 are open, with 15 and 18 closed.

In advanced applications this state change may be fed into a logic device to indicate the pump is running or the pump has stopped and perhaps light an LED or incandescent light source for visual confirmation that a change has occurred in the relay.

3.2.2 Contacts 25 \& 28

Contacts 25 and 28 are used to control pump states. Contacts 25 and 28 are mostly used for tuming on motors via a starting relay or solenoid, so, these sets of contacts react to the rising or falling levels of the fluid inside the tank, they will operate to turn on a pump in discharge mode when the top sensor is wet and in charge mode tum on the pump when the bottom sensor is dry.

4 Practical Overview

4.1 Discharge Mode - DIP switch 6 set to "OFF"

Figure 1 - Discharge Mode
Figure 1 shows two probes, (PB1 connected to Lo and PB2 connected to Hi). The pit is mostly underground and there is a gravity-fed inlet at the top left-hand side. The pit is empty with PB1 completely dry. Dipswitch 6 is set to "OFF."

The relay operation depends on the electrical conductivity of liquid in the pit, i.e. no liquid = no current flow. The level starts to rise and covers PB1.

This is a discharge operation so we do not want the relay to close and start a pump until the well is full so as the water rises it reaches PB2, the relay closes and the pump starts. The level now drops below PB2 but the pump still continues to run, the level continues to drop below PB1 the relay opens the pump stops.

4.2 Charge Mode - DIP switch 6 set to "On"

Figure 2 - Charge Mode
Note: $\quad C$ " is connected to common bonded earth. The unit will not operate correctly if not earthed.
Let's look at the same relay but in a tank that is charging (DIP 6 is now on). See Figure 3, where liquid is being pumped into a tank, and discharging through a gravity feed, the tank is on steel stands " x " metres above the ground.

With the tank full, PB1 and PB2 will be wet, the relay is off, and the pump has stopped. Water is slowly fed out from the bottom, and now as PB2 (HI) becomes dry nothing happens; the water now drops to below PB1 (Lo), and the pumps restarts to fill the tank.
The pump will continue to fill the tank until PB2 (HI), becomes wet again.

4.3 MTRA Relay with Alarm (Discharge Applications Only)

Figure 3-MTRA Operation MTIRM形RA Installation \& Troubleshooting

The MTRA relay works in the same way as the MTR relay except the MTRA has a separate alarm output, and does not have a charge mode. The planned application is to close a contact to illuminate a warning alarm light. . Various other applications have included introducing a third probe to latch another relay.

In Figure 2 we see three probes in a pit that is plastic, note the steel rod in the tank. (In a plastic vessel a steel rod must be used to create an earth retum in the liquid so probes can function.) PB1, PB2, and PB3 are dry, and the relay power LED is on. When water enters the pit and wets PB1, nothing happens, water now reaches PB2 causing contacts 13 and 14 to close, the pump LED to light, and the water to drop.

If, for example, the pump has its inlet partially blocked, the level continues to rise and wets PB3. This closes a separate relay that can activate a red flashing light, an audible fog hom or send a 5 volt pulse into another device with the common cause to warn human beings that a spill is due to occur. If the pumps become unclogged and PB3 becomes dry the alarm opens again and breaks the circuit that stops the light from flashing or the foghorn from sounding.

5 Most Common Installation Problems

The relay requires a path between the probes to earth through the liquid. If you are testing in a plastic bucket, have installed the probe in a plastic tank or have no good earthing in the vessel you will need to install a separate earth and make sure all earth bonding comes back to the C terminal. Most problems like these are traced back to a lack of or poor earthing, or open circuits in the probe wiring.
Now is the time to check the relay by using "the bridge testing line technique" remember you must simulate a fluid flow to correctly ascertain a good relay or a bad one. (All DIPswitch settings from 1 to 6 should be off.)
Cut two pieces of insulated flexible copper wire one black one red 250 mm long, strip both ends back 10 mm on both cables, and join one black end and one red end. Insert the joined ends into C on the relay box, observing all safe electrical practises. You should have one black wire and one red wire free.

Set your relay for discharge mode (DIP switch 6 is off) with no sensors connected to the unit, connect the red wire to Lo - nothing should happen (if it does retum the relay for replacement or repair*). Now connect the black wire to the Hi terminal the relay activated LED should light instantly (if it does not, the relay should be returned for repair*).

6 Troubleshooting

I have checked all the DIPswitches and settings but in discharge mode as soon as the bottom sensor gets wet the pump turns on then tums off almost straight away.	- This is the most common problem encountered with relay set up and commissioning, the probe in the bottom of the tank is wired into the Hi terminal instead of the Lo terminal.
The installation went fine but now and again the pump will not tum on even though I am sure the probe ls wet.	- Check the sensitivity level sel on the relay, some times the level is set for foul water but due to changes in the flow the water becomes grey or clear, try changing the setting from 20 KO to $80 \mathrm{~K} \Omega$ and monitor the results carefully.
All wiring is complete and all DIPswitches have been checked but the pump will not tum on at all.	- If you have completed the test schedule for the relay and it passed then check the wiring to the sensors - for this is now where the problem lies or in the earthing arrangements. If possible check the resistance between the sensor cable and the steel sensor on the probe to prove a solid connection.

* Please contact your distributor or agent before returning any product for repair or warranty claim.

The MultiTrode Probe

MultiTrode probes are unsurpassed for rugged reliability, cost effectiveness and simplicity. Designed for the tough, turbulent conditions found in water, sewage and industrial tanks and sumps, the probes can be found in the simplest and the most complex water and wastewater management systems around the world.

- Low maintenance
- Simple installation
- Excellent in turbulence
- Short \& long term cost savings
- Environmentally friendly
- Safe, low sensing voltage
- Unaffected by fat, grease, debris and foam
- Positive pump cut-out
- Safe - MTISB Barrier

Reliable in all conditions

Operation is unaffected by build up of fat, grease debris and foam, which causes other systems such as floats, bubblers, pressure and ultrasonic transducers to fail. Turbulence does not affect the probe operation. The rugged, streamlined design eliminates tangling and is ideal for confined spaces.
Positive pump cut-out
Operational consistency is important to longevity, low maintenance and cost control. The positive pump cut-out ensures pumps are turned off at the same level every time. This avoids damage due to pump over run and the cost of additional control equipment.
Safe for people and environment The extra low sensing voltage ensures operators and maintenance staff are protected. All MultiTrode products are environmentally safe, containing no mercury or other harmful contaminants.

Cost savings

The low cost of equipment, installation and maintenance makes MultiTrode one of the most efficient level control systems available. Plus robust construction and longevity ensures continued cost savings when compared to other systems on the market.

Standard and custom probes

MultiTrode manufactures a wide range of standard probes, from a single sensor $(200 \mathrm{~mm})$ to a ten-sensor probe $(1000 \mathrm{~mm}$ increasing to a maximum of nine metres). Custom probes can be manufactured to suit your requirements.

Installation

Installation is straightforward. Probes are easy to install without entering the wet area. The probe is simply lowered in from the top and suspended by its own cable, using the mounting kit supplied.

MTAK-1 Mounting Kit (Supplied)

The mounting bracket is a standard accessory supplied with all multi-sensor probes (not standard with 0.2/1-xx single sensor probe).
The MTAK-1 mounting bracket has an integral cleaning device. All metal components are stainless steel.

MTAK-2 Mounting Kit (Optional extra)

This extended bracket provides up to 300 mm extra wall clearance. This bracket is not included as standard with probes.

Ordering Examples and Information

Model Code	Probe Length $(\mathbf{m} / \mathbf{i n})$	Sensor Separation $(\mathbf{m m} / \mathbf{i n})$	Cable Length* $(\mathbf{m} / \mathrm{ft})$	Number of Sensors
$0.2 / 1-10$	$0.2 / 8$	$\mathrm{~N} / \mathrm{A}$	$10 / 33$	1
$0.5 / 3-10$	$0.5 / 16$	$150 / 6$	$10 / 33$	3
$1.0 / 10-10$	$1 / 40$	$100 / 4$	$10 / 33$	10
$1.5 / 10-30$	$1.5 / 60$	$150 / 6$	$30 / 100$	10
$2.0 / 10-30$	$2 / 80$	$200 / 8$	$30 / 100$	10
$2.5 / 10-30$	$2.5 / 96$	$250 / 10$	$30 / 100$	10
$3.0 / 10-30$	$3 / 115$	$300 / 12$	$30 / 100$	10
$6.0 / 10-30$	$6 / 224$	$600 / 24$	$30 / 100$	10
$9.0 / 10-30$	$9 / 368$	$900 / 40$	$30 / 100$	10

*Cable Length $10 \mathrm{~m} / 33 \mathrm{ft}$ or $30 \mathrm{~m} / 100 \mathrm{ft}$

Probe Length (meters)	Sensor Points	Cable Length (meters)
2.5	10	10

> MultiTrode Pty Ltd • Australia Brisbane Technology Park 18 Brandl Street PO Box 4633 Eight Mile Plains Qld 4113 Tel: $+61>33407000$ Fax: $+61>33407077$ sales@multitrode.com.au

MultiTrode Inc • USA
6560 East Rogers Circle
Boca Raton Florida 33487
Tel: +15619948090 Fax: +1 5619946282
sales@multitrode.net

Product:	MultiTrode Probe
Notes:	Correct probe installation and troubleshooting

Probe Installation \& Troubleshooting

1 Correct Probe Installation

1.1 Important Notes

- Hang probe in turbulent area of wet well
- Do not install the probe in a stagnant area or comer where grease and debris may collect. Stilling wells are not suggested.
- Ensure a minimum of 300 mm (12 inches) clearance from any surface
- Ensure bottom of probe is 12.5 mm ($1 / 2$ inch) above minimum pumping level
- Do not use the bottom sensor as earth or ground
- The Probe cable must be buried (outside the well) in a separate metal conduit and shielded for correct operation of the level-sensing device
- Most pits are adequately earthed or grounded and do not require any reference rods, however PVC or Fibre Glass Tanks without pumps or metallic grounded pipe require reference rods

2 Probe Location

Figure 1-Locating the probe in the vessel
The MultiTrode probe is designed to be supported on its control cable (see Fig.1) from the Suspension/ Cleaning bracket supplied with the probe. It is desirable for the probe to be located near the inflow in a reasonably turbulent area of the wet well.

The inflow should not be allowed to run directly on to the probe, but the surface agitation of the inflow area is beneficial in keeping the probe clean. Before deciding on the probe location, the wet well should be pumped down as far as possible and the probe suspended from its approximate position to ensure that adequate clearance exists from objects in the pit. A minimum of 300 mm (12 inches) clearance should be maintained from any conductive surfaces.

Application Note
AN55-2

Product:	MultiTrode Probe
Notes:	Comect probe installation and troubleshooting

3 Mounting

Fix the Suspension/Cleaning Bracket (Fig.1) on to the inside of the wet well, ensuring the clearance form covers and the ladder access. To mount the probe, first thread the cable through the stainless steel hook provided. Place the hook onto the mounting bracket or eyeball and adjust the cable length until the bottom of the probe is $12.5 \mathrm{~mm}\left(1 / 2^{1 /}\right)$ above the minimum liquid level.

Fasten the cable to the hook using cable ties. Draw the loose end through the conduit to the control panel.

4 Cleaning

Provide sufficient slack in the cable to allow the probe to be drawn through the cleaning bracket (Fig.1), or taken out of the well for cleaning. MultiTrode systems are designed so that the need for probe cleaning is greatly reduced or eliminated. This is achieved by correctly, positioning the probe and selecting sensitivity on the level controller.

5 Accessories

5.1 MTAK 2 Extended Mounting Bracket

The MTAK-2 (Fig.2) is an optional extra. It is made from $2.5 \mathrm{~mm}\left(1 / 8^{n}\right) 3 / 16$ stainless steel and can be used with all multi-sensored probes to give a greater, free-swinging area. It has an in-built squeegee blade style probe cleaner and includes stainless steel hook and cable ties.

Figure 2 - MTAK 2 Extended Mounting Bracket Kit

6 How the MultiTrode Probe Works

As the level rises and contacts the probes sensor/s a circuit is completed.

Figure 3 - How the probe works

Application Nơte

Product:	MultiTrode Probe
Notes:	Correct probe installation and troubleshooting

7 Probe Theory

The probe is manufactured from uPVX moulded Housing incorporating 2 sensor points of Avesta 254 SMO high-grade stainless alloy.
The probe has no moving parts and no electronic components inside; the probe utilizes the conductive state of the liquid to complete a circuit.
If tank is PVC or fibreglass and has no metal grounded objects such as pumps, then the system will need a ground reference rod. Multitrode suggests a 6 mm stainless steel rod suspended in liquid, then grounded.

8 Trouble Shooting

Controller falls to activate (when expected)	Remove probe connection from controller - Short circuit the probe inputs on the controller to ground, start with p10 working your way down to p 1
Does the controller activate?	No, Setup problem or actual faults on controller - go to trouble shooting guide or the product manual Yes, This means controller functional - while the probe (or probe segment) is immersed measure the resistance to ground of that sensor with a high Ω resistance meler. Is it open circuited? - Yes - end of issue - wires faulty - check for damages cables - No - Check grounding on earth rod in pit, and grounding on Controller, check for earth continuity across installation Note: Extemal contamination such as excess oil can insulate probe in aneas such as wash down plants and workshops for diesel motors.
Pumps activate prematurely	Check sensitivity setting on controller. Set to next lowest setting. Note: \quad This is caused by extemal contaminates of sticky composition, and also very conducfive - can cause premature activation in some industrial applications.
Excessive fat build-up on probes	- Move probe to a more turbulent area of pit, preferably close to inflow
Probe works erratically	Check any junctions in probe cable, especially where moisture can penetrate. Note: Running the probe cable in the same conduit as pump power cables can cause inductance into probe cable and give false readings.
High alarm activates after some delay when sensor is immersed	Check build-up on sensor - clean Note: \quad This may be caused by some areas containing heavy sludge such as finals of treatment plants, the sludge can, over extended time, dry out over sensor. A delay of 20 to 60 seconds can be experienced due to moisture slowly penetrating build-up. Increasing sensitivity will also remedy the problem.

Visit http://www.multitrode.com/for the latest information

6.2 Maintenance Procedures

This product is designed to operate under specific environmental, supply and load conditions. Should these conditions change, consult a licenced electrician or electrical engineer before operating this product.

These procedures are to be performed only by a licenced electrician as they may expose live equipment.

The Switchgear and Controlgear Assembly is essentially maintenance free, however the following safety measures and routine maintenance is recommended.

- Where fitted, ensure cabinet vents and filters are clear and clean.
- During operation, ensure all doors and covers are secure and closed.
- All faults are to be investigated and repaired by an appropriately licenced electrician.
- All components to be operated in accordance with manufacturers data.
- The protective devices within switchboards are designed to operate in the event of a short circuit or overload condition. In the event of these devices operating under such conditions the device or devices must be inspected and tested by a suitably trained person to ascertain its condition prior to reconnecting the protective device to the supply.

Periodic checks should ensure

- The switchboard is clean and free of any contaminants, which could reduce the insulation properties of the switchboard.
- All entries are seajed to ensure no vermin can enter.
- There is no evidence of overheating, arcing or moisture.
- The earthing system is maintained and is adequate to allow correct operation of protective devices.
- Insulation resistance is maintained to appropriate levels.
- Check terminations for correct tension.
- Test operation of protective devices.
- Re-calibrate instrument loops as required.

Refer to AS-CONSTRUCTED electrical drawings for details of protection equipment settings.

No special tools or equipment are required to perform routine maintenance.

CUBICLE FAN TYPE

FAN TYPE:

COSMOTEC
MODEL GKV 3000-220 + GKF - 30

The SARI 2 is a combined monitoring device for motor insulation resistance and seal oil water content for sewage water pumps.
The SARI 2 is small and easy to install. It provides local warnings as well as relays the data to all major control and monitoring outstations like PumpManager 2000.

OPERATION

The SARI 2 monitoring device supervises the insulation resistance of motor stator windings. The SARI 2 is simply wired between one of the mains phases and ground. The resistance is measured when the motor is stopped and disconnected from the mains. While the motor is running, the monitoring is halted and the latest measurement is valid until the pump stops again.
The SARI 2 also continuously monitors the water content in the seal oil chamber when connected to a proper oil conductivity probe with the standard $4 \ldots 20 \mathrm{~mA}$ output. Grundfos highly recommends to use the most modern OCT 1 oil condition transmitter, that easily bolts on to large Grundfos sewage pumps.
The monitoring function can be limited to only one type of use, if required. The SARI 2 is normally mounted on an DIN rail of the pumping station's control panel.

NOTE Please note, that the insulation resistance monitoring can not be used with pumps continuously connected to frequency converters. The internal resistance of the converter itself disturbs the measurement.

INSTALLATION

The SARI 2 is intended for both stand-alone alarm use and for interfacing with a remote monitoring system.

STAND-ALONE USE

For the stand-alone use the two separate alarm limits can be locally adjusted from the control knobs. The SARI 2 has one green and one red indication lights for each control: In the stand-alone use the lights indicate the measured value in respect to the alarm limit as described in the table beside. Normally, when the pump is fully operational, both the green indication lights are continuously on.
The SARI 2 has a local alarm output, which is a potential free, normally open relay contact. The output is common to both controls. This can be used for relaying the alarm and/or for stopping the operation of the pump.

The SARI 2 provides detailed information on the condition of the winding insulation as well as on the seal leakage before alarm levels are reached. This again provides an early warning for maintenance and enables prediction of the required service actions.

USE WITH REMOTE CONTROL \& MONITORING

Additionally, the SARI 2 monitoring device has a transistor output giving a pulse width modulated information on both measurements for the PumpManager 2000 or other suitable telemetry system.
The PumpManager 2000 continuously receives the measured data, compares them to the pre-set alarm limits and stores into the local memory. The alarms are given within seconds at the display and the control lights. They are also provided to the alarm relays of the PumpManager 2000 outstation as well as to the manager system, if used. In this configuration the alarm limits are set at the outstation as parameters and the control knob adjustments are not valid. Therefore, when the SARI 2 is used in conjunction with the PumpManager 2000, it is recommended not to use the alarm relay of the SARI 2 for stopping the pump. Including the measurements from the SARI 2 requires modification in the standard program of the PumpManager 2000.
The stored data can be further relayed to the manager system for the trend analysis by the manager system software. The values are daily averages of the measurements.

CONTROLS

Both insulation resistance and seal oil condition measurements have control knobs for adjusting the alarm limits for the stand-alone use.
The setting range for seal oil condition is $5 . . .60 \% \mathrm{H}_{2} \mathrm{O}$. The recommended alarm limit is $20 . . .40 \%$.
The setting range for insulation resistance is $100 \mathrm{k} \Omega . .10 \mathrm{M} \Omega$. The recommended alarm limit is 2...5M .

FREQUENCY CONVERTER USE

The continuous use of frequency converters prevents motor winding insulation resistance monitoring with the help of SARI 2 monitoring device. The SARI 2 is wired between one of the mains phases and ground. The resistance is measured, when the motor is stopped and disconnected from the mains. Therefore in installations, where the pump is continuously connected to a frequency converter, the measurement may present the resistance of the converter instead of the motor.

The content may vary due to continuous product development.

DEMAG

Cranes \& Components

C

Operating instructions

Demag chain hoist DKUN 2 - DKUN 5 - DKUN 10 - DKUN 16 - DKUN 20

Manufacturer

Demag Cranes \& Components GmbH

P.O. Box 67 - D-58286 Wetter

Telephone ($+49 / 2335$) 92-0 : Telefax $(+49 / 2335) 927676$
www.dernagcranes.com

Please fill in the following table before first putting the chain hoist into service. This provides you with a definitive documentation of your. Dernag chain hoist and important information if you ever have to contact the manufacturer or his representative.

Owner
Where in use
Model
Serial number
Main/creep hoist motor number
Main hoist motor number
Travel drive unit nümber
Operating voltage
Control voltage
Frequency
Wiring diagram number
Direct control
Contactor control

Accompanying documents

Component parts:list for Demag chein hoist

DKUN 2	22250144	721 15817
DKUN5	22250644	721 IS 817
DKUN 10	22251144	721 IS 817
DKUN 16	22254644	721 IS 817
DKUN 20	22251644	721 IS 817
DSK Assembly instructions	20648544	720:18951
Component parts list for DSK control pendant	222.380 .44	721 IS 951
Assembly instructions DST	20616544	720 is 951
Component parts Ifst for DST control pendant	22214244	721 is 951
DSE assembly instructions	21421444	720:15 951
Technical data for DSE control pendant	20311944	714.15951
Test and inspection booklet for Demag chain hoist	21426044	720:IS 817
Technical data		
Demag chain hoist DKUN 1-20	20284644	714 IS 817
RU/HU/EU DK assembly instructions	see page 54	
Assembly - Adjustment - Dimensions		
RKDK-EKDK low-headroom.monorail hoist	20287644	714 IS 817
CF 5 Techinical data - Assembly - Component parts	20332944	714 IS 845
CF 8 Technical data - Assembly - Component parts	20320944	714 IS 845

Contents

0 Foreword 5
0.1 Copyright 5
0.2 After-sales service 5
0.3 Liability for defects 6
0.4 Limitations of liability 6
0.5 Definitions 7
1 Safety instructions 8
1.1 Symbols 8
1.2 Appropriate use 8
1.3 Prohibited practices 9
1.4 General safety information 9
1.5 Selection and quaification of operating personnel 10
1.6 Safety instructions for installation and disassembly 10
1.7 Safety instructions when putting the hoist into service after completing installation 11
t.8 Safety instructions for operation 11
1.9 Safety instructions for maintenance 12
2. Technical data 14
2.1 Designation 14
2.2 Explanation of chain hoist designation 14
2.3 Selection criteria 15
2:4 Selection table 16
2.5 Hoist motor data 19
2.6 Travel motor data 20
2.7 Hook dimensions C
Standard-headroom monorall hoist 21
2.7.1 RU/HU/EUDK trolley 21
2.7.2 CF 5/CF 8 trolley 22
2.7.3 Curve radii for RU/HU/EUOK and CF 5/CF 8 22
2.7.4 Trolley with special crosstar, flange width $144-300 \mathrm{~mm}$ 23
2.8 EU 11/EU 22 DK travel speeds with 13/3 PKF and 13/6 PKF motor 24
2.9 EU $36-\mathrm{N} / E \mathrm{U} 55 \mathrm{DK}$ travel speeds with $13 / 6$ PF motor up to 3600 kg 24
2.10 EU 55 DK travel speeds with KMF 80 motor up to 5000 kg 24
3 General 26
3.1 Handling 26
3.2 Noise emission measurement according to DIN 45635 26
3.3 Chain hoists operating outdoors 26
3.4 Packing and storage 27
3.5 Paint finish 27
3.6 Operating conditions 27
3.7 Demag chain troist used in medical facilities 27
4 Description 28
4.1 Design 28
4.2 Hoist motor 28
4.3 Gearbox 28
4.4 Chain and sprocket drive 29
4.5 Chaì hoist 29
4.6. Electrical equipment. 29
4:6:1 Direct control 29
4.6.2 Contactor contro 29
4.7 Control pendant 29
4.8 Suspension fittings 30
4:9 Trolley 30
4.9.1 Track 30
5 Assembly instructions 32
5.1 Electrical equipment 32
5.2 Connection to the electrical supply 32
5.3 Connecting the control cable 33
5.4 Checking the direction of movement 33
5.5 Replacing the control fuse link 33
5:6 Assembly instructions for DSK controf pendant 34
5:7 Assembly instuctions for DST control pendant 36
5.8 Assembly instructions for DSE control pendant 38
5.8.1 Connecting the conitrol cable with vulcanised strain rellef wire cords to the DSE control pendant 39
5.8:2 Fitting the rubber bumper 39
5.8.3 Cannecting the strain relief wire cord 40
5.9 Fitting the chain for $1 / 1$ reeving 42
5.10 Fitting the chain for $2 / 1$ reeving 44
5.11 Converting suspension eye, suspension hook and suspension ring from $1 / 1$ to $2 / 1$ 46
5:12 Fitting the chain collector box 47
5:13 Ftting the counterweights and cover retainer for OKUN2-5 48
5.14 Fitting the counterweights and cover retainer for DKUN 10-16-20 50
5.15 Fitting the supporting rolier on EU 11 DK trolieys for flange widths $58-143 \mathrm{~mm}$ 52
5.16 Fitting RU/EUDK drop stops 52
5.17 Example for mounting 53
5.18 Assembling RU/HU/EUDK trolleys 54
5.19 Fiting: the CF 5 trolleys 56
5.20 Fitting the CF 8 trolleys 57
5.21 Comerting the travel drive for arduous operating conditions: 59
6 Putting the Demag chain hoist into service 60
6.1 Inspection when putting the hoist into operation: 60
6.2 Safaty instructions 60
6.3 Starting operation 60
6.4 Notes regarding the motor 61
7 Taking the Demag chain hoist out of service 59
7.1 Emergency-stop button 59
7.2 Taking the hoist out of service at the end of the shiff 59
7.3 Taking the hoist out of service for maintenance purposes 59
8. Inspections/maintenance/general overhaul GO 62
8.1 Inspection before starting work and during operation 62
8.2 Inspection and maintenance schedule 62
8.3 General overhaul GO 62
8.4 Suispension eye, hook, trolley crossbar 64
8.5 Hoist Chain 66
8.5:1 Lubricating the chain when putting the hoist into operation and during subsequent operation 66
8.5.2 Checking wear or deformation of the original Demag chain 66
8.6. Brake 68
8.6.1 KMK main hoist motor brake and KMMF 80 travel motor brake 68
8.6.2 Adjusting the brake with shims 68
8.6.3 Changing the brake cup 69
8.6.4 Changing the fan 70
8.6.5 KMP main hoist motor brake 72
8.6.6 Adjusting the brake with shims 72
8.6.7 Travel motor brake $13 / 3$ PKF, 13/6 PKF and $13 / 6$ PF 73
8.6.8 Adjusting the brake with shims 73
8.6.9 Fitting new brake lining to travel motor 73
8.8.10 Gluing on brake linings 74
8.7 Gearbox 74
8.8 EU 11 DKEU 22 DK/EU 36 -N/EU 55 DK electric trolley gearbox 75
8.9 Adjusting the slipping clutch 75
9 Measures necessary for achieving safe working periods 76
9.1 Calculating the actual duration of service S 77
9.1.1 Estimating the load spectrum factor $K_{m 1}$ (by the owner) 77
9.1.2 Calculating the number of hours of operation (operation time) T_{1} (by the owner) 77
9.1.3 Factor depending on type of recording f 77
9.2 Example: DKUN10-1000 KV1 in 1 Am 78

0 Foreword

C ϵ

You have purchased a Dernag product.
This chain hoist was manufactured in äccordance with German and European standards and regulations, e.g. EC. Machinery Directive $98 / 37 / \mathrm{EC}$, and state-ofthe art engineering principles.
Demag electric chain hoists are of modular design.
The main assemblies include:

- the gearbox
- the hoist motor
- the integrated electrics
- the chain drive mectranism
- the control pendant

These operating instructions are designed to provide the operator with appropiriate instructions for safe and conrect operation and to faciltate maintenance.
Every indivdual given the task of trensporting, instaling, commissioning, operathg, maintaining and reparing our chain hoists and additional equipment must have read and understood

- the operating instructions
- the safety regulations and
- safety instructions in the individual chapters and sections.

The operating instructions must be availabie to the operating personnel at all times in order to prevent operating emors and to ensure smooth and trouble-free operation of our products.

0.1 Copyright

These operating instructions must be treated confidentially. They should only be used by authorized personnel. They may onty be entiusted or made available to third partes with the prior witten consent of Dernag. All docurnents are protected within the sense of copynght law.
Nó part of this documentation may be reproduced, utilized or trensmitted without specific prior consent. Infringements are an offence resulting in obligatory compensatory damages.
All industrial rights reserved.

0.2 After-sales service

Our after-sales service will provide you with all tectinicad information on Demeg products and their systematic application.
Should you have any questions regarding our products; please refer to one of our after-sales service stations, the relevant representative or to our main office.
Kindly quote the senal or order number (see test and lisispection bookdet, chain hoist data plate) in any correspondence or for spare part orders.
Specitying this clata ensures that you receive the correct information or the required spare parts.
The relevant after-seles service station of Demag is specified for example on the back page of the test and inspection booket.

0.3 Liability for defects

0.4 Limitations of liability.

These operating: instructions must be read carefully before installing and putting chain hoists into operation.
We assurne no liability for damage and maffunctions resulting from failure to comply with the operating instructions.
Any liability claims for deficts must be made by quoting the order number immediately on detecting the defect:

Liability claims for defects are void in the event of:

- inappropriate use,
- faulty devices or equipment connected or attached to the chain hoist which are not partol our scope of supplies and services,
- use of non-genulne spare:parts and accessories,
- refubishment or modification of the chain hoist unless approved in writing by Demag.
Wearing parts are not subject to liability for defects.

All technical information, data and instrictions for operation contained in these operating instructions were up-to-date on going to print and are compiled on the basis of our experience and to the best of our knowledge.
We reserve the night to incorporate technical modifications within.the scope of further development of the hoist units which are the subject of these operating instructions. The information, illustrations and descriptions contained in these operating instructions are therefore orily intended for information purposes.
The descriptions and illustrations contained in this docurneritation do not necessarily correspond to the scope of delivery or ary subsequent:spare part delivery, either, the drawings and illustrations are not to scale.
Only documentation belonging to the actual order is valid.
We assume no liability tor defects, damage: and malfunctions caused as a result of operating errors, noncompliance with these operating instructions or omitted and/or inappropriate repairs and maintenance.
We expressly point out that only Demag spare parts and accessories approved by us may be used: Accordingly, this also applies to other manufacturers' parts supplied by us.
For satety reasons, the fitting and use of spare parts or accessories which have not been approved and unauthorized modification and conversion of the hoist unit are not permitted; we assume no liability for defects or damages resulting therefrom.
With the exclusion of eny further claims, our liability for defects and other liability obligations for any defects pertaining to the products supplied or fauts in the documentation delivered or any negligence on our part are exclusively based on the stipitations of the original contract. Any further claims, in particular any and all clams for damages, are excluded with the exception of legal claims in accordance with product liability legisiation.

0.5 Definitions

Owner

Owners (employer; company) are defined as persons who own chain hoists and who use them appropriately or allow them to be operated by suitable andinstructed persons.

Operating personnel

Operating personnel are defined'as persons entrusted by the owner of the chain hoist with operation and/or transportation of the equipment.

Specialist personnel

Specialist personnel are defined as persons assigned by the owner to carry out special tasks such as instalation, setting-up, maintenance and faut elmination.

Qualified electrician

Qualified electricians are defined as' persons, who, owing to their technical training, knowledge and experience of electrical installations as well as knowledge of the relevant standards and regutations, are able to assess the tasks given to them and identify and eliminate potential hazards.

Trained person

Trained persons are defined as persons who have been instructed and trained for the tasks assigned to them and on the possible hazards resulting from incorrect handling and who have been informed about the required protective devices, protective measures, relevant regulations, codes of practice, accident prevention regulations and operating conditions and who have proven their qualifications.

Experienced tectinician

Experienced technicians are defined as persons, who, owing to ther technical training and experience, have sufficient knowledge of chain hoists and are familiar with the relevant national industrial safety regulations. codes of practice, accident prevention regulations, directives and generaly accepted engineering standards enabling them to judge the safe operating condition of chain hostts.

Qualified electricians are defined as persons who, owing to their technical training, knowledge and experience of electrical installations as well as knowledge of the relevant standards; codes of practice and regulations, are able to assess the tasks given to thern and to identify and elminnate potential hazards.

Assigned expert engineer (in the Federal Republic of Germany according to BGV D8 $\$ 23$ (VBG 8); for determining the S.W.P.)
An assigned expert engineer is defined as an experienced technician specifically assigned 'by the manufacturer to 'determine the remaining duration of service (service life) of serial hoists and for carying out general overhauls of chain hoists (S.W.P. = safe working perioct).

Authorized expert engineer (according.to BGV D6 § 28 (VBG 9))

In addition to the expert engineers'of the Technical Supervisory and Inspection Board; an authorized expert enginger for the inspection of chain hoists is defined as an expert engineer authoized by the Industrial Employers' Mutual Insurance Association.

Chain hoists

Chain hoists are systems used for lifting and moving loads, such as cranes, crabs and travelling hoist units, rail systems.
-VBG (BGV DG) = Geminan Industial Emplojers' Mutual lnsurance Association respongible tor the provantion of eccidents

1 Safety instructions

1.1 Symbols

These symbols are used throughout the operating instructions in order to visteally indicate hazard wamings.

\triangle
Saftey at work symbol
Thts symbor appears in the operating instructions next to all instructions relating to safety at work whierever a potential denger to life and:limb exists.
Followi these instructions at all times and be perticularty carefuland cautious.
Pass on safety instuctions to all persons entrusted with working on the chain hioist. In addition to thie safety instructions, observe all general safety regulations at all times.

Waming against electrical hazards
Contact with live parts can result in immediate death. Protective covers e.g. covers
and enclosures) marked with this sign may only be opened by qualified electricians:
Before opening ali relevant operating, contro, fead or other voltages must be disconnected.

Warning against suspended load
Ary person rervaining in this danger zone may suffer serious infury or death. This applies in particular to non-positive locked load handing a atachmentse.g. magnet and vacuum systems. In each case the special safetyand poperating. instructions contained in the operating instructons for the load finaliting attachment in question must be compled with.

Operating hazard for the'installation
This symbolin the operating instuctions indicates al warnings whict, it not complied with, may resilt in damage to the chain hoist or the load.

- Electric chain' hoists are only intended for fifting and moving loads and may be used" as stationary or travelling units.
"(4) EGectric chain hoisists may only be operated when in perfect wording order by trained
Tis, personnel In accordance with the retevant safety and accident prevention regulations.
If t This also includes complance with operating and maintenance conditions specified in the operating instructions.
Chain hoists are industral equipment designed to be used with a rated voltage of up to $690 . \mathrm{V}$ for attemating curent.
Power, feed is via power supply lines (moblie cables, open or enclosed power conductor systems; cable duuns). These systems are live up to the terminals of the isolating switch (mains connection switch, isolating switch), The relevantisolating switchmust.be switched of when pertorming maintenance/repar work.
- "During operation or when the main switch is not switched off, electrical components inside enclosures, motors, switchgear cabinets; terminal boxes, etc., carry dangerous voltages. This voltage may cause fatal injuries.
Serious personal injury or damage to property may occur in the event of:
- unauthoized removal of covers.
- inappropriate use of the chain hoist,
- incorrect operation,
- insufficieient maintenarce,
- exceeding the maximum permitted load
(The rated load capacity/S.W.L. is the maximum permitted load: Pay attention to the sum of the load to be lifted and the load handling attachment.),
- working on live parts.

Advise operators to avoid inching as far as possible. It might cause excessive wear' and premature fallure of the chain holst. Inching means giving short pulses to the motor to obtain small movements, e:g. when lifting loads or moving the travelling

1.3 Prohibited practices

Certain work and practices are prochibited when using the chain hoist as they may involve danger to life and limb and result in lasting damage to the chain hoist, e.g::

- Unsafe load hardling (e.g. swinging the load).
- Do not handle suspended loads above persons.
- Do not pull or drag suspended loads at an angle.
- Do not pull free fixed or obstructed loads with the chain hoist.
- Do not exceed the maximum permitted load and permitted load dimensions.
- Do not leave:suspended loads unsupervised.
- Do not allow the chain to inn over edges.
- Do not use the chain as a load bearing sling.
- Always move the chain hoist with puish travel trolley by pulling on the load, bottom block or load hook assembly - never pull on the control pendant.
- Do not allow loads to drop when the chain is in a slack condition.
- Do not subjact the control pencidant to inappropriate mechanical loads.
- Transporting persons, unless ifting devices are specifically approved for transporting:persons, is not permitted.
- Do not tamper with or manipulate electrical equipment.
- Chain hoists must be suspended in such a way that they do not collide with stationary equipment and structures, e.g. when slewing jib cranes are slewed.

1.4 General safety information

Persons under the influence of drugs, adcohol or medicines which affect reactions must not instail, operate, put into service, maintain, repair or disassemble chain hoists:
Any conversions and modifications to the installation require the witten consent of Demag.
Work on electrical equipment of chain hoists may only be camed out by qualifed electricians in accordance with electrical regulations. In the event of malfunctions, chain hoist operation must be stopped; the hoist switched off:and the relevant main switches locked immediatery. Defects must be rectified immediately.
National accident prevention regulations and codes of practice and general safety regutations must be observed whèn operating our products. Important information and instructions are marked by corresponding symbols. Follow these instructions andor safety regulations in order to avoid accidents and damage. The operating instructions must be kept available at the place where the chain hoist is in use at all times. They incude sigrificant aspects and appropriate excerpts from the relevant guidelines, standards and regulations. The owner must instruct his personnel appropriately.
Any failure to comply with the safety instructions stated in these operating instructions can result in death or personal injury.
'Observe general statutory and othèr óbligatory regulations relating to accident prevention:and emvironmental protection and basic heath and safety requirements in addition to those included in these operating instructions. Such requirements may also relate, for example, to the hañlling of hazardous materials or the provision/ wearing of personal protection equipment. Comply with these regulations and general accident provention regulations relevant for the place at which the chain hoist is used and follow the instructions theref: when workng with the chain holst. The chain hoist may still constitute a danger to life and limb if it is not installed, operated, maintained or used appropiatefy by personnel which have not been trained or specially instructed. The operating instructions must, if required, be supplemented by the owner with instructions and infomation (e.g. factory regulations) relating to organization of work, working procedures, operating personnel, etc. Supervising and reporting obligations as well as special operating condifions must also be taken into consideration.
Personnel assigned to woiking with the chain hoist must have read and understood the operating instructions and, in particular, the chapter on safety information.
All activties relating to chain hoists which are not described in these operating instructions may only be carrled out by specialist personnel specifically tralned for the particular chain hoist.
The owner must ensure that personnel work in a safety and hazard-conscious manner in compliance with the operating instructions.

The owner must ensure that the chain hoist is only operated when in proper working order and that all retevent safety requirements and regulations are complied with.

- Chain hoists must be taken out of service immediately if functional defects or irregularities are detected. In the event of a stoppage le.g: "It defects regarding safe and reliable operation äre detected; in emergency sítuations, in the ovient of operating malfunctions, for repairs and maintenance purposes, if damage is detected or after finishing work), the operator/expenenced technician must cany out all prescribed satety measires (e.g. for cränes operating outdoors; ensure wind drift satety catch is fitted) or observe that they are automatically carried out. Personal protective clothing must be worn as necessary or as required by regulations. Personnel must not wear loose clothing, lewelléry, inclurding rings or long hair loose Infiuy may oocur, for example, by being caưht of drawn iñto the mechanism. An safety and hazard information and recommendations on the chain hoist, at access points and mains connection switches must be maintained in complete and legible condition: Inching (i.e. giving shor pulses to the moton) must always be avoided.Emergency limit stop devices (e.g: slipping ciutch or emergency linit switch) must not be approached in nomal operation.
Modifications, additions to and conversions of the chain hoist which may impair safety in any way must not be caried out withour the consent of Demag. This also epplies to the installation and adjustment of safety devicess as well as for porforming welds on load bearing parts. Safety devices must not be rendered inoperative: Only genuine Demag spare parts may be used: Observe prescribed deadines or those specified in the operating instuctions for routine checks/inspections.

1.5 Selection and qualification of operating personnel

For independent operation or maintenance of tiechain hoist, the owner may only employ persons

- who are at least 18 years of age,
- who are mentally and physically suitable.
- who have been instructed in the operation or maintenance of the chain hoist and have proven their qualification to the owner in this respect (n) addition to theoretical training, instruction elso inclüdes sufficient practical operating experience: as well as acquining the ability to identify defects which are a hazard to safe operation),
- who can be expected to cairy out the work assigned to them reliably.

The owner must assign operating and maintenance personnel to their relevant tasks.

- x^{2}

- Installation and disassembly work may only be performed by experienced technicians.
- Installation and disassembly work must be coordinated by the persorn carirying out the work and the owher within the scope of their responsibility.
- The working and danger zone must be made sate:
- The instalation must be isolated in accordance with the relevant electrical regulations.
- Customer-specific regulations must be observed.
- Only appropriate, tested and calibrated tools and equipment may be used.
- The electrode hidder and earth must be connected to the same assembly when welding work is cartied out. If the current flow is retumed via protective conductors, screening elements or anti-fnction beanings, serious damage may be caused to these or other components.

1.7 Safety insstructions when first putting the hoist into serviceiafter completing installation

1.8 Safety instructions for operation

- The working and danger area must be made safe.
- First check that the voltage and frequency specified on the data plates match the owner's mains power supply.
- All clearance dimensions and safety distances (see approval drawing) must be checked before putting the hoist into service.
- When putting the hoist unit into service, it may be neciessary to perform work in the danger zone.
- In the course of putting the hoist unit into service, it may be necessary to temporanity render safety devices or features inoperative.
- It must be ensured that only trained personnel are employed for putting the hoist unit into service:

The operator must check the function of the brakes and emergency limit stop devices before starting work.
All instructions and measures described in the operating instructions with regard to safe operation and items concerning general safety and accident prevention which have to be observed before; during and after putting into service must be strictly complied with. Ary failure to comply can lead to accidents resulting in fatalities. Chain hoists must be taken out of service immediately or not put into operation if any defects relating to operating safety and reliability are detected. Satety devices must not be rendered inoperative or modifed in contradiction to their intended use. Orly operate chain hoists when anf protective devices and safety-retevant equipment, e.g. movable protective devices and emergency-stop devices, are fitted and fully functioning.
Anybody who identifies an ummediate danger of personal injury must actuate the emergency-stop button without delay. This also applies in the case of damage occuring to parts of the installation and equipment which makes immediate stoppage necessary. After an "emergency-stop"; the operator must not switch on and restart the chain hoist until an experienced tectricianitis satisfied that the cause which led to actuation of this fuinctionthas beien rectified and that continued operation of the installation constitutes no füther hazard.
Chain hoists must be switched of immediately in the event of the following faults:

- In the event of damage to electrical devices and cables as well as parts of the insulation.
- In the event of brake and satety device failure.
- The chain hoist is provided with a slipping clutch às overload protection.

In the event of overload, the following situations may occuir:

1. The load is not lifted, the "slipping cutch responds.
2. The load is lifted, however ; atter switching of the 隹ting motion, the load slowity moves downwards. tn this case, the load must be immediately deposited by actuating the control switch.

- Malfunction: The slipping ciutch must be readjusted or overload has occured.

Before:switching on/putting into operation of the chain hoist it must be ensured that nobody is endangered by operation of the hoist.
If the operator notices persons who may be exposed to a risk to health or personal safety by operation of the chain hoist; he must suspend operation immediately and may not resume operation again until the persons are outside the danger zone.

Before putting the chain hoist into operation, the operator musti be satisfied that the installation is in safe and correct operating condition.
Work on chain hoists may only be carried out when instructions to this effect have been issued; when operation and function of the chain hoist have been explained and when the working and danger zone has been made safe. Cooling devices, such as ventilation openings, may not be rendered permanenthy inoperative (e.g. covered or closed).
Special local conditions or special applications can lead to situations which were not known when this chapter was witten. In such cases, special safety measures must be implemented by the owner.

1.9 Safety instructions for maintenance

Maintenancómeasures are defined às regular mantenance inspoction and repair work.
Mechanical and electrical repars and mantenance work may onty be carried out by appropiattely trained personne (experienced technicians)

C
ve z Adustment, maintenanco and inspection activites and inspection deadines inctiding specifications conceming replacernent of parts/assemblies prescribed in the operating instructions must be observed.
Ensure that all electical components are deenergized betore commencing work on electrical instalations and dovices. When ail work on the chain hoist has been completed, operation of the crain hoist must not resume uintil the owner has given approval to this effect:
r
Unauthorized persons must be prochibited trom caring out work on machinery or parts of the chain hoist Béfore stanting allrepair and maintenance work, the chain hoist must be switched offitaken out of operation'and secured (switches must be locked against accidental or unauthonzed puting into operation (restarting). F . st It must be ensured that

- "the chain hoist is switched off and checked that it ts de energized and, in special cases, isolated,
- moving parts are stationary and stopped ty y yt
- moving parts cannot start moving while meintenance work being perfomed
- the power supply caniot be accidentally restored as long as the hoist unit has been taken out of service for maintenance and repair purposes.
- Ensure that operating end eupitiary materials as well as spare parts ary of in a safe and emvironmentally sound way.

Instructions for reparir, work in the course of operation
The danger zone must be marked of with redwhite safety chains or safoty tapeand indicated with warning signs. We Ty yex. In each individual case, the owner of the person specified by tim must check
twhether the retevant work may be carred of il In the course of operation without isk
4 co of, personal infury owing to the partioutar local conditions.
*To avoidiniury only use calibrated and appropiate toos and audilary materials for maintenance, inspection and fepair purposes $n \rightarrow$
Tift there is a risk of objects falling, the danger zone must be made safe. Maintain a sufficient safety distance to rotating paris to prevent dothing, parts of the body or hair becoming entangled 5

Avodid naked fames, extreme heat and sparks in the vicintity of cleaningogents and flammable parts or perts labie to deformation (eg wood plastic parts, of grease):-
 gases may evolve or insulation may be damaged we

Additional instructions for repair workion electical equilpment.
Only use, genuine fuse links with specifed amperage and tripptrig characteristics? Defective fuse links must not be repared or bridged and must only be replaced by: Ftuse links" of the' same type. Switch off the chain hoist immediately in the event of electrical power Suply malfuntions. Work on the electronic and electrical components or equipment may onty be carried out by qualifed electícians. finspection: maintenance and repair work is to be caried out on parts of chain hoists, these must - If rescribed by regulations 6 be isolated First verty the safe isolation of the parts from the suppty before commencing work. The electrical equipment of the chain hoist must be inspected and ctiecked at regular intervals. Defects, such as loose connections, dánaged cabies and worn contactors must be rectified immediately.

Since it is possible that after a longer period of operation the switching points of relays (time, frequency; monitoring relays) chainge due to ageing of the components, the relay switching points in circuits relevant to salety must be checked at regular intervals.
Electrical equipment must be replaced as a preventive measure on reaching the limit of its theoretical duration of service (service life).
If work has to be carted out on live parts, a second person must be avalable in order to actuate the emergency-stop button or mains connection switch/isolating switch for voftage disconnection in an emergency.
The second person must be taniliar with resuscitation measures.
Only use insuated tools:
Before disconrigcting and connecting electrical pugg-and-socket connections, atways disconnect them from the supply this does not epply to mains connections, provided they do not represent at dangerous contact voltage in the sense of the säfety regulations).

2 Technical data

2.1 Designation

2.2 Explanation of chain

 hoist designation

2.3 Selection criteria

The load apectrum
(n most cases estimatect) can be evatiated in ac cordance with the foltowing definitions:

1 1gtht
Hoist infls which are usualy sidfect to vory sinas toeds and in exceptional casps only to mexdmum .back

2 medium
Hoist units which ara usually sublect to smell loats but rather ofter to maximum loeds.

3 heavy
Hokst untts which are usually subject to mestim loads but freciventity to meximum loads.

4 very heavy
Hoist whits which ere usinatly subject to maximum or atriost maximurn loads.

The size of the hoist is determined by the load spectrum, average operating time per working day, SWL and reeving.

1. What are the operating conditions?
2. What is the specifed SWL?
3. To what height must be load be lifted?
4. What is the required lifting speed?
5. Do the loads need to be fifted and lowered with high precision?
6. Is horizontal load travel required?
7. How is controf to be effected?

The group ts determined from the operating time and load specturn.							
Load spectrum				Averegs operating time per day in working tiours			
1			40 to i	40 to 2	24	448	8-16
2	medium \Rightarrow	\cdots	4 t to.0,5	10 to 1	$1-2$	2-4	4-8
3.	haxy		पp to 0,25	up to 0.5	0,5-1	1-2	24
4	very heavy		$4 \mathrm{to} 0,12$	up to 0,25	0,25-0.5	0,5-1.	1-2
Group of mectionisris to FEM			1 cm	1 Bm	1 Am	2 n	3 m
Reoving		Range:	Slza				
1/1	2/1						
SWh kg							
160	315	-	-	-	-	-	180
200	. 400		-	\because	-	+	200
250:	500		\checkmark	-.	$=$	250	250
$315 \Rightarrow 630$		-	$\stackrel{-}{\square}$	-	315	-	315
460	800	DKUN 2	400^{-7}	-	-	400	*
500	1000		\checkmark	-:	500	-	500
630	1250	DOWN 5	830	-	-	- .	630
80	1600	-	-	\cdot	-	800	800
1000	2000	-	-	-	1000	1000	;
1250	25000	Oxdiv 10	1250	-	1250	-	1250
1600	3200	DKAN 16		1600	-	1600	-
2000	4000	-	-	-	2000	-	-
2500	5000 - D	DIUN 20	-	2500	-	\cdots	\pm

Example (see $\Rightarrow-$-)
swi
Load spectum
Lifting speed
315 kg
"medium" from table
$8 \mathrm{~m} / \mathrm{min}$
Reeving
$1 / 1$
Average hook path 2 m
Number of cycles/hour
20
Working time/day 8 hours
Thie average operating time per working day is estimated or calculated as follows:
Op. time/day $=\frac{2 \times \text { average hook path } \times \text { no. of cycles } / \mathrm{h} \times \text { working time/day }}{60 \times \ddot{x} \text { lifting speed }}=$

$$
\begin{array}{ll}
2 \times 2 \times 20 x & =1,34 \text { hours } \\
860 \times 8 &
\end{array}
$$

For the medium load spectrum and an average daily operating time of 1,34 hours the table shows FEM group 1 A m. For an SWL of 315 kg and $1 / 1$ reeving; the table indicates a hoist stze DKUN 2-315.

2．4 Selection table

SWL	\＄tze	FM	Hook palh m．	Hoist speed $\mathrm{m} / \mathrm{min}$			Motor siza	P kW	$n$$n m$$n$	CDF ∞ 	Hook cimersion C min 17	max weight$4 \mathrm{~kg} 3$
16				V1	V2	Vi3						
160	DKUN 2－160 K33 1／1	3 m	3；4；6；8	－	－	25	KMK 7182．	0，75	2680	60	． 35	25
	DKLN $2-160 \mathrm{NV3} 1 / 1 \mathrm{f}$			－	－	25／4	KMK 80B $2 / 12$	0，750，	2720／380	40820	355	31
300	DKUN 2－200 K／ $11 / 1$	3 m	3；4； $6 ; 6$	8	－	－	KMP 71． 82	0.4	2940	60	${ }^{7} 355$	25
	DKUN 2－200 $\mathrm{KV} 11 / 1 \mathrm{~F} 4$			$8 / 2$	－	－	KNK 80 こ28	0.40 .1	2770675	${ }^{4} 4020$	355	29
	DEXUN 2－200 K22 1／1			－	14	－	KMK 71B2	0.76	2680 ＇	$\because 60$	355	25
	DiON $2-200 \mathrm{~K} 21 / 1 \mathrm{~F} 4$			－	14／3，5	－	KMKK 60 B 2／8	0，75／0，17	2800／685	40420	355	31
250	OKUN $2250 \mathrm{KV1} 1 / 1$	2 m	3；4；6；8	8	－	$\stackrel{\rightharpoonup}{*}$	KMP 71 ${ }^{\text {2 } 2}$	0，4．	C28407\％	360	355	25
	DKUN 2－250 KV：1／1 F4．			$8 / 2$	－	－	10MK 80228	0，40，1	27701675	40／20	355	29
	DKNN 2－250 Kiv2 1／1			－	14	－	KMK7182	0，75：	2680	60	356	25
	OHN 2－250 KV2 1／1．F4			－	14／3，5	－	KMK 80828	0，7510，17	28006685	$40 / 20$	355	31
	Dran $5-250 \mathrm{KVa} 1 / 1$	3 m	3；4；6； 8	－	－	${ }^{+}-25$	KMK B0日2	1.4	2720	500\％$\times 1$	395.	38
	DKON 5－250 KV3 ，1／2 F6			－	－	25／4	KMMK 90，B 2／t2	1，20，18	28404430	40／20	T 395	\％45
315	DKLN 2－315 KW1 1／1	1 Am	3；4；6；${ }^{\text {c }}$	8	－	＂	GMK 7182	0，76	2880	60	355	25.
				8×2	－	－	10 NK 8082 t	0，750， 17	28006685	4020	355	31
	DKN $2-315 \mathrm{~K}$／ $1 / 1$			＊	12.5	－	RaK 71.82	0，75	2680	6， 60°	355	25
	DKKN 2－315 KV2 1／1 F4			：	12，5／3，1	－	以кK $80 \mathrm{~B} 2 / 8$	0，750，17	28006685	40／20．	355	31.
	OKKN 5－315 kVi 1／1	3 m	$3 ; 4 ; 6 ; 8$	8	－	－	KMK 71 B 2	0.75	2680	460：	385	34
	DKUN 5－315 KV1 1／t F4			82	－	－${ }^{-}$	KMK80 228	0，75／0，17	2800／685	40／20：	395	38
	DKKUN 5－315 K2 1／1			＊	15	－	KMK 80， 2	1，4	${ }^{2} 2720^{\circ}$	60	396	38
	DGUN 5－315 KV2 1／1 F4			－	12，5／3， 1	\cdots	KMK $8083 / 8$	0，7510，17	28006685	$40 / 20$.	395	38
	DKUN 2－160 KV3 2\％	3 m	3； 4	\because	－	12，5	KMK－71B2	0，75	2680	60	416	26
	DKUN 2－150 KV3 211			－	－	12，5／2	KMK 80 B $2 / 12$	0，750，1．	2720／380	${ }^{7} 4020$	415	32
400	DKUN 2－400 $\mathrm{Ky} 1 / \mathrm{t}$	1 Cm	3；4；6； 8	8	－	\because	GMK 7182	0.75	$\therefore 2880{ }^{2}$	60\％	3555	25
	DFON 2－400 $\mathrm{KV1} 11 / 1 \mathrm{Fs}$			82	－	－	KMK 80 B2／8	0，7510，17	28001685	$4{ }^{4} \mathbf{1} 20^{\circ}$	355．：	${ }_{-} \times 31$
	DKUN 5－400 KV11 1／1	2 m	3；4；6；8	8	－	－	KMK－71 B 2	0，75	2680	－60\％	－ 396	34
	DKAN 5－400 KV1 1／1 F4			$8 / 2$	－	－	KMK 90 2 2／8	$0,85 / 0.2$	2770688	$40 / 20$	C 395	$\bigcirc 43$
	DKUN 5－400 KV2 1／1			－	15	－	KMK 80 日 2	1，4	2720	60 Et	Pr395	438
	OKUN 5－400 KV2 $1 / 1 \mathrm{~F} 4$			－	12，513．1	\cdots	KMK 90 В 28	1，7／0．42	28001640	40，20	395	45
	OKNUN 2－200 KV1 $2 / 1$	3 m	13，4	4	＊	－${ }^{\text {c }}$	KMP71日2	0，4	2940	60	415	26
	OKUN 2－200 KV1 2／1 F4			$4 / 1$	＋	－	KMK B0 228	0，4／0，10．	2770675	40200	415	30
	DKUN 2－200 KV2 $2 / 1$			－	7	．．．	KMK 71：B 2	0，75	2680	60	415	26
	DKUN 2－200 $\mathrm{KV} 22 / 1 \mathrm{F4}$			－	7／1，7	\cdots	KMK 80 － $2 / 8$	0，75／0，17	$2800 \% 685$	$40 / 20$	4． 415	32
500	DKCUN 5－500 KV9 1／1	1 Am	3；4；6；8	8	－	－	KMK 71： 2	0,75	2680	＂60	－ 395	34
	DFON 5－500 K／V1 1／1 F4			842	－	－	KMK 00228	0，850，2	27704665	$40 / 20$	12393	43
	DKUN 5－500 KV2 1／1			－	15	－	KMK 80 B 2	1，4	2720	${ }^{6} 60$		＋38
	DKUN 5－500 KV2 1／1 F4			－	12，5／3，1	$3 \cdot$	KMK 90 В $2 / 8$	1，780，42	28001640	4020	T396	45
	OKUN 10－500 KV3 1／4	3 m	3，4；6；8	\bullet	－	20	KMK 90 B 2	2.1	2730	60	480	64
	DKUN 10－500 KV3 $1 / 1 \mathrm{f6}$			－	＊	2013，3	KMK 100 B 219	20，31	$2800 / 400$	$40 / 20$.	480	73
	DKUN 2－250 KV1 $2 / 1$	2 m	3； 4	4	\checkmark	－	KMP 7182	0，4	2840	60	415	26
	DKUN 2－250 KV1 $2 / 1$ F4			$4 / 1$	－	－＇	KMK $8022 / 8$	0，4／0， 1	2770675	$40 / 20$	415	30
	DKON 2－250 K／ $22 / 1$			－	7	\cdots	KMK 71 B 2	0.75	2680	60	415	26
	DKUN 2－250 KV2 2／1 F4			$=$	7／1，7	－	KMMK 80－8 $2 / 8$	0，7500，17	2800685	40.20	415	39
	DKUN 5－250 $\mathrm{NW} 32 / 1$	3 m	3：4．	\cdot	\bullet	12.5	KWK 80 B2	1.4	2720	60	465	40
	DK1AN 5－250 KV3 2／1 F6			\bullet	\checkmark	12，5／2	KIAK 90 B 2／12	1，2／0，16	$2840 / 430$	$40+20$	465	47.
630	DKUN 5－630 Kivi 1／1	1 Cm	3：4；6； 8	8	：－	－	KMK 80 B 2	4，4	2720	60.	396	38
	OKIN 5－e30 KV1 1／1 F4			$8 / 2$	－	－	KM゙K 90 В 2 自	1，7／0，42	28001840	40／20．	395	45
	DKUN 10－630 KV！1／1	3 m	$3 ; 4 ; 6 ; 8$	9	－	－	KGK 9082	2，9	2730	60	480	64
	DKUN $10-630 \mathrm{KV} 11 / 1 \mathrm{F4}$ ．			9／2，2．	－	$-$	KM1K 90 B 2／8	1，7／0，42	2800／640	$40 / 20$	480.	64

1）Hook dimension＂ O ＂with lang sispenston eye
2）For lymit switch cut－of for the haghest hook position，hook dimension C is increased by 80 imm

SWL	Size	FEM	Hook peth		tokst spead $\mathrm{m} / \mathrm{min}$		Motor sizes	P	n	$\begin{gathered} \mathrm{CDFF} \\ \% \end{gathered}$	Hook crimensian	max． weight
kg			m	V	V2	$v 3$		NW	mpm		mmy ${ }^{\text {m }}$	kg 3
630	DKEN 10－630 KV2 1／1．	3 m	3；4；6； 8	－	12.5	－	KMK 80 B 2	2.1	2730	60	480	64
	OKIN 10－630 KV2 1／1 F4			－	12，513，1］	＊	KMK90日20	1，70，42	23001640	$40 \cdot 20$	480	64
	DFUN 2 － 315 KV 121	1：Aㅍm	3：4	4	－	－	以WK 71 B2	0.75	2030	60	415	26
	OKON 2－315 KV1 2／1F4			$4 / 1$	－	－	101480日2阤	0，75，0，17	2800／685	． $40 / 20$	415	32
	OXXN 2－315 KV2 $2 / 1$			－	6，3．	－	以杖71－ 2	0,75	2680	60	415：	26
	DKYN 2－315 KV2 2／1．F4			－	6，3／4，5	－	19KK80 B 2／8	0，7510，17	28006895	$40 / 20$	415%	32
	DKW 5－315 kVi 21	3 m	3，4	4	－	－	KWK71 B2	0，75	2695	60	465	36
	DiQN $5-315 \mathrm{KV} 12 / 1 \mathrm{F4}$			$4 / 1$	－	－	人MK $80 \mathrm{~B}^{\text {B } 28}$	0，7510，17	$2000 / 695$	40／20	465	40
	DKWN 5－315 kV2 $2 / 1$			－	7，5	\therefore	HMK 80日 2	1.4	2720	60	485	40
	DKUN 5－315 KV2 24 F 4			－	6；3／1；5	－	KMK 80 B $2 / 8$	0，75／0，17	28001685	40／20	465	40
600	DiCN 10.900 KV 171	2 m	3；4；6； 8	9	－	－	HMK90 B2	2，1	2730	60	480	64
	DKLW 10－800 K／1 1／9 F4			9／2，2	－	－	KMK 90828	1．70．42．	$2800 / 840$	40／20	480	64
	DKUN 10－800 kV2 I／			－	12，5	－	КМК 90 ¢ 2	2，1	2730	60	480	64
	DW1／v 10－800 kN2．1／1．F4．			－	12，5／3，${ }^{\text {a }}$	－	KMK 100 E 2／8	2，50，62	2720／820	$40 / 20$	480	73
	OKIN 16－800 kV1 1／9	3 m	3；4；6；8	8	．	－	KNK 90＇B2	2.1	2730	60	540	68
	DKUN 16－800 KV1 1／1：F4			82	－	－	KVK 90 B $2 / \mathrm{A}$	1，7／0，42	2800V40	40／20	540	68
	DKUN 10－800 KV2 1／1：			－	12，5	－	KNK 60 B2	2.1	2730	60	540	68
	Drad $16-800 \mathrm{KV} 21 / 1 \mathrm{F4}$			＋	12，53，1	－	KMK 100 B2／8	2，5／0，62	2720／620	4020	540	77
	DKUN 2－400 KV1 $2 / 1$	1 Cm	3； 4	4	－	＋	KMK 71 22	0.75	2980	∞	415	26
				4／1	－	－	10MK 000 B 28	0．75．0，17	2800／895	40／20	415	32
	DKMN 5－400 kV1 $2 / 1$	2 m	3； 4	4	－	－	KMK 7.1 B 2	0,75	26850	60	485	36
	DKUN 5－400 KVt 2／1 F4			$4 / 1$	－	－	KMK 60 二 $2 / 8$	0．85／0，2	2770665	$40 / 20$	－ 465	45
	OKUN 5－400 KıV2 2 \％			－	7.5	\because	KMK 80 BL 2	1，4	2720^{-}	80	485：	40
	DKUN 5－400 KV2 $2 / 4 \mathrm{~F} 4$			\cdot	6，31，5	－	KMK 90 E 2／8	－1，70，42．	2800／640	－49／20：	－ 486	47
1000	DKIN 10－1000 $\mathrm{KVI} \mathrm{1/1}$	TiAm：	3：4；6；8	9	－	－	GMK9082	2.1	2730	B0	480	64
	OKAN 10－1000 $\mathrm{kV} 11 / 1 \mathrm{FF}$			9／2，2	\square	\because	KMK908 $2 / 8$	1，7／0，42	2800／640	40／20	4480	64 ．
	OKUN 10－1000 K22 1／1			－	＋2，5	－	KMK． 100 B 2	3	2780	60	－ $480{ }^{\circ}$	73
	OKUN 10－1000 KV2 1／1 F4			－	12，5／3， 1	－	KMK 100 S 2／8	2，50，62	27201820	40／20	480	73
	DKUN 16－1000 KV1 1／1	2 m	3；4；6； 8	日	－	－	LGK 90日 2	2.1	2730	60	540.	68
	DKNN 16－1000 KV1 1／1 F4			$8 / 2$	－	－	KOKK 90 B 2／8	1，7\％，42	2800640	$40 / 20$	540 ！	68
	DKIN 16－1000 kV2 $\overline{1 / 1}$			－	12，5	$-$	KMK 10082	3	2780	60	540 ：	77
	DKN 10－1000 KV2 $1 / 1 \mathrm{~F} 4$			\checkmark	－12，5／3， 1	－	KMK 100 B 2／8	2，5／0，62	2720／620	$40 / 20$	540 ：	77
	DKLN 5－500 $\mathrm{KV1}^{2 / 1}$	1 Am	3； 4	4	－	－	KMK 71 72	0，75	2680.	60	465	36
	DKNN 5－500 KV＇2／．F4			4／1	\bullet	－	101K．902．2／8	0，85，0，2	2770／665	4020	465	45
	DKLN 5－500 1022 zr			－	7.5	＊	KMK 8082	1,4	2720	60	465	40
	DKUN 5－500 KV2 2.211 F 4			\cdots	6，3，1，5	－	YMK 90 B2／8	1．76．42	28009640	4020	465	47
	OKIN 10－500 KBS 21	3 m	3：4	\cdot	－	10	KMKK 90 日 2	2，1	2730	60	580	70
	DKUN 10－500 KV3 $2 / 1 \mathrm{FG}$			－	－	＇1011，6	KMK100日 212	2，00，31	2800／400	$40 / 20$	580	79
1250	DKKN 10－1250 مV1 1／1．	1 Cm	3；4；6； 8	9	－	\cdots	KMK 90 В 2	2.1	2730	60	480.	64
	DKUN 10， $1250 \mathrm{KVIT} 1 / 1 \mathrm{F4}$			9／2，2	－	－	KMK $100 \mathrm{~B} 2 / 8$	2，50．62	27206620	40／20	$\cdots, 480 \cdot \square$	＋73．
	DKUN 16－1250 KV1 1／1	1 Am	3；4； $6 ; \overline{8}$	8	－	\cdots	KMK90 B 2	2，1	2730	B0	540	73
	DKUN 1B－1250 KV1 1／1 F4			812	$=$	－	KMK 100 B 2／8	2．5．0．62	2720／620	40／20	540	82
	DKUN 20－1250 KV1 1／1 F4	3 m	3；4；6； 8	$8 / 2$	－	－	KМK 100日 2 艮	2，5／0，62	2720／620	40220	630	100
	DKUN 20－1260 K／v2 1／1．F4			－	12，5／3．1	－	KMK 112 日 28	4／0，97	2770／670	40／20	630	115
	OKUN 20－1250 KV3 1／1 F4			\cdot	－	16／4	KMK 112日 2／8	4，0．97	2770／670	$40 \% 20$	630	115
	DKUN 5－630 $\mathrm{KV1} 2 / 1$	1 Cm	3：4	4	－	－	KMK 8082	1.4	2720	60	465	40
	DKUNV 5－630 KV1 $2 / 1 \mathrm{~F} 4$			$4 / 1$	$\stackrel{+}{-}$	－	10 MK 90 B 278	1，7／0，42	2800640	40,20	465	47
1）Hook dimension＂ C ＂with long suspensioni ${ }^{\text {yjo }}$ 2）For limit switch cut－off for the highest hook position，hook dimension C is increased by 80 n 3）For 3 m hook path												

SWL	Size	FEM	Hook path		ioist speod minin		Motor size	P	n ．	$\%$	Hook dimeniston	－max welght
\log			m	V1	V2	V3		kW．	1 pm		mmiy	kg 3
1600	DKUN 16－1600 KV1 1／1	1 日	3；4；6；8	8	－	－	KNKK 100 安 2	3.0	2780	60	540	82
	DFOUN 16－1600 KV1 1／1 F4			$8 / 2$	－	－	KOK 100 E 28	2．5／0，62	27201200	4020	540	82
	DKUN 20－1600 KV1 1／1 F4	2 m	3；4；6；8	9／2	－	－	KOKK 100 B 288	2，50，62	2720680	40／20	630	100
	DKUN 20－1600 KV2 1／1 F4			－	i2，5／3， 1	－		40，97	27701670	4020	630	115
	DEXN 10－800 KV1 21	2 m	3：4	4，5	－	－	1 MK 90 B 2	2.1	2730	60	580	70
	DIUN 10－800 KV1 $2 / 1$ F4			4，5\％1，	－	＊	H0， 90 Bra	1，7，0，42	2800／640	$40 / 20$	580	70
	OHINN 10－800 KV2 $2 / 1$			－	6，3	－	KMK90 B？	．2，${ }^{\text {＇}}$	－ 2730	60^{-}	580	70
	D＋UN 10－800 KV2 $211 \mathrm{F4}$			－	6，3／1，5	－	KNKK 100 B 2／8	2，50，02	27201820	40／20：	590	78
	DKUN 18－800 KVI $2 / \mathrm{i}$	3 m	3：4	4	－	－	KMK 90 B 2	2.1	2730	60 －	840	． 76
	D＋UN 18－800 KV1 21 F 4			4／1	－	－	KMK 90 B 7／8	1，7，0．42：	28001640	4020.	640	76
	D＋UN 16－800 KV2 $2 / 1$			－	6，3	－	¢01K90－ 2	21	2730	60	640	76
	D／4N 16－800 KV2 2／1．F4			－	6，311，5		ROMS 100828	2，510，62	2720／820	4020．	640	82
2000		1 Äm	3；4；6； 8	$8 / 2$	－	－	FOMC 112 В 28	4／0，97	2770670	$40 / 20$	630	115
	OKON 10－1000 KV1 $2 / 1$	1 Am	3： 4	4，5	－	－	KNK 90 －2	2,1	2730	60.	580	70
	DKUN 10－1000 KV1 $2 \mathrm{fl} \mathrm{F}_{4}$			4，511，11	－	－	KMK 90 B $2 / 8$	1．710．42	2800／840	40／20	580	70
	DKUN 10－1000 KV2 211			－	6,3	－	KNK 100 B 2	3.0	2780	60	530	79
	DRON 10－1000 KV2 $2 / 1$ F4			－	6，3／1，5	－	FMAK 100 B2／8	2，50，62	$2720 / 620$	4020	590	79
	DKTN 16－1000 KV1 2／1	2 m	3：4	4	－	－	内VK90 22	2，1	2730	00	640	76
	DKON 16：1000 KV1 2／1．F4			4／1	＊	－	KMK 90 B20	1；7／0，42	28001640	$40 / 20$	640	76
	DKWN 16．1000 K／2 2il			－	6，3	－	KMK 100 B 2	3.0	2790：	60	840	B5
	OKUN 16－1000 KV2 $2 / 1$ F4			－	6，3／1，5	\cdots	ROM 100828	2，510，62	2720／620	${ }^{2} 40200$	640	85
2500	DKLN 20－2500 KV1 1／1 F4	1 Brim	3，4，6，6	$9 / 2$	－	$=$	KMK 112 E 旦2／8	．40，97	2770870	40×20	630	115
	OHON 10：1250 KV1 $2 / 1$	1 Cm	3	4.5	：	：	WMK90日 2	21	2730	60	580	70
	DKUN 10－1250 KV1 2／1 F4			4，5／1，1	－	－	KMK $100 \mathrm{B2} 28$	2，50，62：	2720／620	40220	580	79
		1／Am	3：4	4	－	－	WMK 90 В 2	2，1．	2730	－ 60	840	76
	DHUN 16－1250 KV1．2／1 F4			4／1	－	－	LOMK 100 B 288	2，50，62	2720／620	$40 / 20$	640	85
	DFUN 20－1250 KV1．21：F4	3 m	$3 ; 4$	$4 / 1$	－	\cdot	KMK 100 B 28 B	2，50，62	2720／520	40，20	755	106
	DKUN 20－1250 102 211F4			－	6．3／1．5	－	KNK 112 B 28 A	40,97	2770670	40／20	755	121
	DKUN 20－1250 KV3 2／1 F4			\cdots	－	82	KMK 112 B 2／B	40，97	2770670	$40 / 20$	755	121
3200	DKNN 16．1600 KV1 211	1 Emm	3； 4	4	$=$	－	KMK 100 B 2	3，0	2780^{-1}	60.	040	85
	DKLN 16－1600 KVE 24 TH			411	－	－	KMK 100 B 2／B	2，50，62	2720620	．40220	640.	85
	D＋LN 20－1600 KVi 214 F 4.	2 m	3：4	$4 / 1$	－	－	KMK 100 B2／8	－2，5／0．62	2720／620	40／20	755	106
	OKON 20－1600 KV2 $211 \mathrm{F4}$			\bullet	6，3／1，5	\because	KMK 112 日 2／8	400，97：	2770／670	40／20	755	121
4000	DKUN 20：2000 KV12 21 F 4	1 Ant	3； 4	$4 / 1$	－	－	KMK 1：12 B 28	40，97	27701780	$40 / 20$	755	121
5000	DKIN 20－2500 KV1 2／1／F4	1 Brm	3： 4	4／1	－	－	KNK $112 \mathrm{~B} 2 / 8$	－4，0，97	2770／670	$40 \% 20$	755	121

1）Hock dimension＂ C ＂with long suspension eye
2）For limit switch cut－aff tor the highest hook position；hook cirnension C is increased by 80 men 3）For 3 mhook path

2.5 Hoist motor data

Main/creep lifting F4
Required supply cable conductor cross sections and fuse links

Size :KMK	Grow of mechartsms 10 FEM	P kW	COF\%	n mpm.	Starts/n	Frated carrent $\mathbb{N N}^{\text {and }}$ starting comment la for 50 Hz						$\frac{\infty}{\infty}$	$\frac{\infty}{\varphi_{A}}$
						230 V		400N		500 V			
						IN(A)	$1 \mathrm{~A}, \mathrm{~A}$	IN (A)	IA (A)	IN (A)	IA (A)		
60 278	1 Cm 1 Bm 1 Am 2 m 3 m	$\begin{aligned} & 0,41 \\ & 0,1 \end{aligned}$	$\begin{aligned} & 401 \\ & 20 \end{aligned}$	$\begin{aligned} & 2770 \\ & 675 \end{aligned}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & 26 \\ & 2.6 \end{aligned}$	$\begin{aligned} & \mathbf{8 , 1} \\ & 3,8 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 1,5 \end{aligned}$	$\begin{aligned} & 5,3 \\ & 2,2 \end{aligned}$	$\begin{aligned} & 1,1 \\ & 1,1 \end{aligned}$	$\begin{aligned} & 3,8 \\ & 1,6 \end{aligned}$	$\begin{aligned} & 0,80 \\ & 0,62 \end{aligned}$	$\begin{aligned} & 0,84 \\ & 0,84 \end{aligned}$
$80 \mathrm{~B} \mathrm{2/8}$		$\begin{aligned} & 0,75 \\ & 0,17 \end{aligned}$	$\begin{aligned} & 401 \\ & 20 \end{aligned}$	$\begin{gathered} 28001 \\ 685 \end{gathered}$	$\begin{aligned} & 1201 \\ & 240 \end{aligned}$	$\begin{aligned} & 3,8 \\ & 3,8 \end{aligned}$	$\begin{gathered} 15,5 \\ 5.5 \end{gathered}$	$\begin{aligned} & 2,2 \\ & 2,2 \end{aligned}$	$\begin{aligned} & 90 \\ & 3,2 \end{aligned}$	$\begin{aligned} & 1,6 \\ & 1,6 \end{aligned}$	$\begin{aligned} & 6,5 \\ & 2,3 \end{aligned}$	$\begin{aligned} & 0,80 \\ & 0,57 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.86 \end{aligned}$
902218		$\begin{array}{r} 0.85 \\ -0,2 \\ \hline \end{array}$	$\begin{aligned} & 401 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} 27701 \\ 665 \\ \hline \end{gathered}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & 4,6 \\ & 2,7 \end{aligned}$	$\begin{aligned} & 20 \\ & 5,1 \end{aligned}$	$\begin{array}{r} 2.6 \\ 1.6 \end{array}$	$\begin{gathered} 11,6 \\ 3.0 \end{gathered}$	$\begin{aligned} & 1,9 \\ & 1.1 \end{aligned}$	$\begin{gathered} 8,4 \\ 2,1 \end{gathered}$	$\begin{aligned} & 0,81 \\ & 0,59 \end{aligned}$	$\left[\begin{array}{r} 0,79 \\ -0,77 \end{array}\right.$
00B2/8		$\begin{array}{r} 1,7 \% \\ 0,42 \\ \hline \end{array}$	$\begin{aligned} & 400 \\ & 20 \end{aligned}$	$\begin{gathered} 28000 \\ 640 \end{gathered}$	$\begin{aligned} & 120 \% \\ & 240 \end{aligned}$	$\begin{array}{r} 7,7 \\ 4,4 \\ \hline \end{array}$	$\begin{array}{r} 35 \\ 8,6 \\ \hline \end{array}$	$\begin{aligned} & 4,4 \\ & 2,5 \\ & \hline \end{aligned}$	$\begin{array}{r} 20 \\ 5,0 \\ \hline \end{array}$	$\begin{array}{r} 3,2 \\ 1,8 \\ \hline \end{array}$	$\begin{array}{r} 14,4 \\ 3,6 \\ \hline \end{array}$	$\begin{aligned} & 0,90 \\ & 0,60 \end{aligned}$	$\begin{array}{r} 0,82 \\ 0,75 \\ \hline \end{array}$
$100 \mathrm{~B} \mathrm{2/8}$		$\begin{aligned} & 2,51 \\ & 0,62 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	$\begin{gathered} 2720 \\ 620 \end{gathered}$	$\begin{aligned} & 1201 \\ & 240 . \end{aligned}$	$\begin{aligned} & 11,9 \\ & \mathbf{5}, 8 \end{aligned}$	$\begin{gathered} 49 \\ 11,9 \end{gathered}$	$\begin{aligned} & 6,9 \\ & 3,4 \end{aligned}$	$\begin{aligned} & 29 \\ & 6.8 \end{aligned}$	$\begin{array}{r} .4 ; 9 \\ 2,4 \end{array}$	$\begin{aligned} & 21 \\ & 49 \end{aligned}$	$\begin{aligned} & 0,86 \\ & 0,65 \end{aligned}$	$\begin{aligned} & 0,79 \\ & 0,72 \end{aligned}$
112 B 2/8		$\begin{gathered} 4 / \\ 0,97 \end{gathered}$	$\begin{aligned} & 40 . \\ & 20 \end{aligned}$	$\begin{gathered} 2770 \\ 670 \end{gathered}$	$\begin{aligned} & 1201 \\ & 240 \end{aligned}$	$\begin{array}{r} 19,2 \\ 11,9 \end{array}$	$\begin{aligned} & 91 \\ & 24 \end{aligned}$	$\begin{aligned} & 11,1 \\ & 6,9 \end{aligned}$	$\begin{gathered} 53 \\ 13,7 \end{gathered}$	$\frac{8}{4,9}$	$\begin{array}{r} 38 \\ .9,9 \end{array}$	$\begin{aligned} & 0,82 \\ & 0,50 \end{aligned}$	$\begin{aligned} & 0,68 \\ & 0,68 \end{aligned}$

Size KMK	Group of mechEnisms to FEM	Mains connection delay huse for 50 Ht 1]			1. Supply traes for 5\% voltage drop Δ U and starting curment la for 50 Hz 2)						
		230 V	400 V	500 V	$230 \mathrm{~V}(4 \mathrm{U} 11.5 \mathrm{~V}$		$400 \mathrm{~V}(\triangle) \cup 20 \mathrm{~V})$		$500 \mathrm{~V}(4) \cup 25 \mathrm{~V})$		
		A	A	A.	mm	m	mm^{2}	m	mmi	m	\cdots
$80 \geq 2 / 8$	1 Cm 1. Bm 1 An 2 m 3 m	6	B	6	1.5	73.	1,5	100	1,5	100	∞
$80 \mathrm{~B} 2 / 8$.		6	6	6	1.5	42--	1,5	100	1.5	100	0
80 $\geqslant 2 / 8$.		10	6	6	1,5	35	1,5	100	1,5	$=100$	0
$90 \mathrm{~B} 2 / 8$		10	10	8	2,5	28	1.5	59	1.5	100	0.
$100 \mathrm{~B} 2 \ddot{8}$		16	16	10:	2,5	23	1.5	42	1,5	77	7
112 a 2/6		35	20	16	2,5	$16{ }^{\circ}$	1,5	30	1,5* ${ }^{3}$	- 47^{2}	74

Main/creep lifting F6

Stza KHK	Group of meochanistis to FB	P. KW	Cof \%	n pm	Startsin	Rated curment IN and starting current la bei 50 Hz						$\begin{aligned} & \cos \\ & \boldsymbol{N} \end{aligned}$	$\begin{aligned} & \infty 0 s \\ & \Phi_{i}: A \end{aligned}$
						230 V		400V		500 V			
						IN (A)	IA A	IN (A)	(A A (${ }^{\text {c }}$	IN(A)	IA (A		
$80 \cdot 82 / 12$	3 m	$\begin{gathered} 0.75 \% \\ 0,1 \\ \hline \end{gathered}$	$\begin{aligned} & 401 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} 27201 \\ 380 \end{gathered}$	$\begin{aligned} & 1201 \\ & 240 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.7 \end{aligned}$	$\begin{gathered} 15.0 \\ 4.8 \end{gathered}$	$\begin{aligned} & 2,1 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 9,0 \\ & 2,7 \end{aligned}$	$\begin{aligned} & 15 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6,5 \\ & 2,0 \end{aligned}$	$\begin{aligned} & 0,84 \\ & 0,73 \end{aligned}$	$\begin{array}{r} 0,87 \\ 0,77 \end{array}$
$90 \mathrm{~B} 2 / 12$		$\begin{aligned} & 1,21 \\ & 0,16 \end{aligned}$	$\begin{aligned} & 401 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} 2840 \\ \hline 430 \\ \hline \end{gathered}$	$\begin{aligned} & 1201 \\ & 240 \\ & \hline \end{aligned}$	$\begin{aligned} & 6,4 \\ & .5,7 \\ & \hline \end{aligned}$	$\begin{gathered} 35 \\ 8,9 \end{gathered}$	$\begin{aligned} & 3,7 \\ & 3,3 \end{aligned}$	$\begin{aligned} & 20 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 2,7 \\ & 2,4 \end{aligned}$	$\begin{aligned} & 14,4 \\ & 2,0 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0,59 \end{aligned}$	$\begin{aligned} & 0,85 \\ & 0.79 \end{aligned}$
$10082 / 12$		$\begin{aligned} & 2,0 \% \\ & 0,31 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	$\begin{gathered} 28001 \\ 400 \end{gathered}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & 9,9 \\ & 8,0 \end{aligned}$	$\begin{aligned} & 49 \\ & 10 \end{aligned}$	$\begin{aligned} & 5,7 \\ & 3,5 \end{aligned}$	$\begin{aligned} & 29 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 4,1 \\ & 2,5 \end{aligned}$	$\begin{aligned} & 20 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 0,89 \\ & 0,53 \end{aligned}$	$\begin{array}{r} 0,79 \\ 0,64 \end{array}$

Main hoist

Sizo	Gröup of mechanisms to FEM	P kW	COF \%	n pm:	Startsh	Rated curent ! N and starting current ! A for 50 Ftz						$\begin{aligned} & \cos \\ & \varphi_{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \cos \\ & \varphi_{A} \end{aligned}$
						230 V		400 N		500 V			
						IN(A)	\|ACA	$1 \mathrm{~N}(\mathrm{~A})$	(A. A)	$\mathbb{N}(4)$	IA (A)		
KMP 7182	$\begin{aligned} & 1 \mathrm{Cm} \\ & 1 \mathrm{Em} \\ & 1 \mathrm{Am} \\ & 2 \mathrm{~m} \\ & 3 \mathrm{~m} \end{aligned}$	0.40	60	2840	360	3.7	16,4	2.1	9.5	1,5	6.8	0.52	0,74
KUK 71 B 2		0,75	60	2680	350	4.2	16,4	2.4	9.5	1,8	8,8	0.75	0,74.
K0\%K 80 B 2		1.4	60	2720	360	73	33	4.2	19	3.0	13,7	0,80	0.82
K0kK $90 . \mathrm{B} 2$		2.1	60	2730	360	9,9	46	5,7	28	4,1	19	. 081	0,83
KHK 100 B 2		3,0	60	2780	360	14,6	77	8.4	44	6.1	32	0,78	0.78

Sizs	Group of mectiarisims to FEM	Mains connection delay fuse for 50 itz 1$)$			Supply fines lor 5\% votege drop 4 U and starting current li lor 50 tz ¢!					
		230 V	400 V	500 V	230 V (\triangle U 11,5V)		$400 \mathrm{~V}(\triangle) 20 \mathrm{~V}$		$500 \mathrm{~V}(\mathrm{~A} \cup 25 \mathrm{~V}$	
		A	A	A	mm ${ }^{2}$	m	mmp	m	$\mathrm{mm}{ }^{2}$	m
KMP 71 B 2	$\begin{aligned} & 1 \mathrm{~cm} \\ & 1 \mathrm{Bm} \\ & 1 \mathrm{Am} \\ & 2 \mathrm{~m} \\ & 3 \mathrm{~m} \end{aligned}$	8	6	6	1,5	46	1,5	100	1,5 ${ }^{\prime}$	100
KMK 71 B 2		6	6	6	1.5	46	15	100	1.5	100
KMK 60 B 2		16	10	6	2,5	34	1,5	62	1,5	100
KMK 90 B 2		16	10	10	2,5	24	1.5	45	1,5	77
KMK 100 B 2		20	16	10	2,5	15	1,5	28	1,5	49

2.6 Travel motor data EUistandard-headroom monorail hoist EK low-headroom monorail hoist

Slze	P kW	COF\%	n ram							$\begin{aligned} & \infty \\ & \Phi . N \end{aligned}$	$\begin{aligned} & \infty \\ & \phi_{A} \end{aligned}$
				230 V		400 N		500 V			
				IN(A)	HA (A)	IN(A)	IA A)	IN(A)	IA (A)		
13/3.PKF 2	0,2	40	2890.	$1 ; 1$	5,7	0,63	3.3	0,46	2,4	0.73	0,74
	0.14	40	1390	0.77	2,6	0,44	1.5	0,32	1.1:	0.76	0.74
13/3 PKF 8	0,05:	40	710	0.95	2.2	0,55	1.3	0,4	0,91	0,48	0,7
13/6 PF 2	0,3	40	2840	1.5	8,8	0,85	5	0,68	4	0,78	0,8
13/6 PF 4	0,2	40	1320	1;1	3	0,62	1.7	0,49	1,4	0,86	0,88
13/6 PF 8	0.1	40	710	1,6	3,7	0,96	2,1	0,68	t,5	0,50	0.72
$13 / 6 \mathrm{PKF} 8 / 2$ 13/6 PF $8 / 2$	$\begin{aligned} & 0,077 \\ & 0,27 \end{aligned}$	40	$\begin{aligned} & 6801 \\ & 2900 \end{aligned}$	$\begin{aligned} & 1,3 \\ & 1,8 \end{aligned}$	$\begin{aligned} & 2,6 / \\ & 8,6 \end{aligned}$	$\begin{gathered} 0,74 / \\ 1,1 \\ \hline \end{gathered}$	$\begin{aligned} & 1,51 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0.53 / \\ & 0.76 \end{aligned}$	$\begin{aligned} & 1,1 / 6 \\ & 3,6 \end{aligned}$	$\begin{gathered} 0,57 / \\ 0,71 \\ \hline \end{gathered}$	$\begin{aligned} & 0,86 \\ & 0,86 \end{aligned}$
13/6 PKF 12/4 13/6 PF 12/4	$\begin{gathered} 0,051 \\ 0,17 \end{gathered}$	$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 4501 \\ & 1440 \end{aligned}$	$\begin{aligned} & 2,2 \\ & 1 ; 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2,81 \\ & 6,2 \end{aligned}$	$\begin{aligned} & 1,3! \\ & 1,1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,6 \\ & 3,6 \end{aligned}$	$\begin{gathered} 0,911 \\ 0,76 \end{gathered}$	$\begin{aligned} & 1,21 \\ & 2,8 \end{aligned}$	$\begin{aligned} & 0,66 / \\ & 0,55 \end{aligned}$	$\begin{aligned} & 0,82 / \\ & 0,86 \end{aligned}$
KMF 80 A 2	0,65	40	2570	3,0	9,6	1.7	5,5	-1,4	4,4	0,93	0,84
KMF 80 A 4	0,32	40	1350	1,7	5.5	0,95	3:1	0.76	2,5	0,74	0.82
KMF 80 A $8 / 2$	$\begin{gathered} 0,13 \\ 0.5 \end{gathered}$	40	$\begin{aligned} & 630 / \\ & 2710 \end{aligned}$	$\begin{aligned} & 2,0 \\ & 2,5 \end{aligned}$	$\begin{aligned} & 3,3 / \\ & 9,9 \end{aligned}$	$\begin{aligned} & 1,11 \\ & 1,4 \end{aligned}$	$\begin{aligned} & 1,9 / \\ & 5.7 \end{aligned}$	$\begin{array}{r} 0.911 \\ 1.1 \end{array}$	$\begin{aligned} & 1,51 \\ & 4,6 \end{aligned}$	$\begin{aligned} & 0,711 \\ & 0,88 \end{aligned}$	$\begin{aligned} & 0.844 \\ & 0.84 \end{aligned}$

2.7.2 Hook dimension C Click-fit trolleys

2.7.3 Curve radii for RU/HU/EUDK and CF 5/CF 8 trolleys

CF 5 standard headroom monorail hoist (max. SWL 550 kg) Hook dimension C from girder nunnling sürface

Mounting arrangement.		Fiange whtth 50-91 mm							
		At rigit angles to the track girder				Peratel to the track gforer			
Range	Reeving	¢	Chain collector box size			C	Orain collector box size		
			1	2	3		1	2	3
			Ci_{1}				C1		
DKUN 2	$1 / 1$	370	435	495	540	390	455	515	560
	21	430				450			

For trolley assembly instructions see section 5.19.
CF. 8 standard headroom monorati hoist (max. SWL 850 kg)
Hook dimension C trom girder running surface.

Mounting arrangement		Track girciors with paraliof flanges							
		Flange whdth $55-143 \mathrm{~mm}$							
		At right anglas to the track girder				Perailet to the track girder			
Range	Reoving	C	Chain cotlector box size			C	Chatn collector box size.		
			1 :	2	3		1.	2	3
			Cl				C1.		
DKUN 2	1/1	400	460	520	565	420	480	540	585
	$2 / 1$. 460				480			
DKUN 5	$1 / 1$	445	490.	550.	595	465	510	570	615
	$2 / 1$	515				535			
Mounting artangement		Track girdera with stoping tanges							
		Flange width $58-143 \mathrm{~mm}$							
		At rigit angieas to the track girder				Parallel to the track girder			
Range	Reering	C	Chain collector box size			0	Chain collactor box size:		
			1	2	3		1	2.	3
				01			C\%		
DKUN 2	$1 / 1$	390	450	510	555	410	470	530	575
	$2 / 1$	450				470			
DKON 3.	$1 / 1$	435	480	540	585	455	500	560	605
	2/1	505				525			

For trolley assembly instructions see section 5.20 .
The specified curve radil apply for normal applications. Contact the manufacturer or his representative for frequent curve travel operation (e.g. automatic installations).

Cuive radill in mm

Trolley stre:	Track groder			
	round-adged		square-edged	
	Flange width	Rimin	Flange width	Rimin
CF 5.	50-91	800	50-91	800
CF. 8	58-143	800	55-143	800
RU 3 OK	$\begin{gathered} 50 \\ 58-90 \end{gathered}$	$\begin{aligned} & 1200 \\ & 900 \end{aligned}$	50-90	900
. HU 6 DK	58-300	1000	58-300	'1200
AU 11 DK HU1t DK EU 11 DK	56-300	1800	58-300	2000
$\begin{aligned} & \text { RU } 22 \mathrm{DK} \\ & \text { HU22DK } \end{aligned}$ $\text { EU } 22 \mathrm{DK}$	$\begin{aligned} & 82-143 \\ & 144-200 \\ & 201.300 \end{aligned}$	$\begin{aligned} & \hline 2300 \\ & 1900 \\ & 1300 \\ & \hline \end{aligned}$	$82-300$ -	2575
RU 36-N EU 36-N:	90-300	3000	90-300	3500
RU 55 DK EU 55 DK	$\begin{aligned} & 106-186 \\ & 187-300 \end{aligned}$	3000	$\begin{aligned} & 106-186 \\ & 187.300 \end{aligned}$	3500

2.7.4 Trolley with special crossbar Flange width $144-300 \mathrm{~mm}$

Suitable for:
Chain hoist turned 90° and suspended with standard sisispension eye.
As RU, HU or EU trolley.
For flange withs $144-300 \mathrm{~mm}$.

For assembling trolleys see 20284644

Hook dimension'C from girder nunning surface

Trolley stze	Max SWLkg	Ftange width mm	Hotst size	Suspension oye.							Suspension thay.											
				$\begin{array}{\|c\|} \hline \text { Hook fitm. C } \\ \hline \text { Peoving } \\ \hline \end{array}$		$\frac{\text { C2 }}{\text { Cisin collector box size }}$					$\begin{array}{\|c\|} \hline \text { Hook dim. C } \\ \text { Reeving } \\ \hline \end{array}$		$\frac{\mathrm{C} 2}{\mid \text { Chain colector box size }}$									
				1/1	$2 / 1$	1	2	3	4	5	$1 / 1$	$2 / 1$	1	2	3	4	5					
RU B:DK	700	144-300	OKUN 1-100-125-180-200	435	495	485	545	-	:	-	-	-	-	-	\cdots	-						
			DKUN2-160-200-250-315	456	515	515	575	820			460	520	520	550	625							
			DKUKL5-250-315	405	565	540	600	845			505	575	550	610	855							
			DKUN5-400-500-630	495	-						505	-										
RU 11 DK	t350	144-300:	DKUN2-400	-	520	520	580	625	-	-	-	525	525	585	630		:					
			DKONS-400-500-630	-	570	545	605	650				580	555	615	660							
RU 22 DK	2600	144-300	DKUN10-500-630-800-1000-1250	625	725	-	-	-	770	890	650	750	-	-	-	B05	925.					
			DEXNT16-800-1000-1250	675	775						;											
			DKUN16-1600	675	-																	
EU 11 HU 11 DK	1350	144-300	DKUN2-160-200-250-375-400	455	520	520	680	625	-	-	465	525	525	585	630	-	-					
			DKUNS -250-315-400-500-630	510	570	545	605	650			510	. 680	555	615	660							
EU 22 Hil 220 OK	2600	144-300	DKUN10-600-530-800-1000-1250	625	725	-	-	-	770	890	650	750	-	,	-	805	925					
			DKUN16 -800-1000-1250	675	775																	
			OKUN16-1600	675	-																	

2.8 EU 11/EU 22 DK travel speeds with 13/3 PKF and 13/6 PKF motor

Travel drive			Possible travel speeds in approc. ... m/min				
			28	14	7	7/29	4,6/14
			13/3 PKF 2	$13 / 3$ PKF 4	13, PKFF 8	13/6 FKF $8 / 2$	13/6 PKF 12/4
Part no.	Votrage	230/400 V	56306244	56306444	56306744	-	-
		400 V	-	-	-	. 56305744	56305644

2.9 EU 36-N/EU 55 DK travel speeds with 13/6. PF motor up to 3600 kg

Travel ditive:			Possibie travel speeds to approx. - m/min				
			25	12,5	$8{ }^{6}$	8,3/25	4,2/12,5
			136 PF 2	13/6 PF 4	1368 FF 8	$136 \mathrm{PF} 8 / 2$	13/6 PF $12 / 4$
Part nis.	Voltage	230/400 V	56391344	:563916 44	56396444°	-	-
		400 V	-	-	-	56396894	:66398244

2.10 EU 55 DK travel speeds with KMF 80 motor up to 5000 kg

3 General

3.1 Handling

Notes on inspections in accordance with

Relevant accident prevention regulations for wiñches, hoists änd towing devices

BGY D8:(VBG 8) Relevant accident:prevention regulations for cranes BGVV D6 (VBG 9)

The EG machinery directive requirements are therefore also complied with. Inspection when putting the hoist into operation for the first time If hoist units are used as cranes, an inspection must be carried out by an expert enginear in accödarice with reevant-accident prevention regulations BGV D6 § 25 for cranes.
Chain hoists used in accordance with relevant accident prevention regulations for winches, hoists and towing devices BGV D8 must be inspected by: an experienced technícian
The inspection in accordance with relevant accident prevention regulations for winches, hoists and towing derices BGV D8 mainly consists of a visual inspection and a function check. It is designed to ensure that the equipment is in a safe condition and that any defects and damage, e.g. caused by inappropriate handing during transport, are identified and repaired.
In addition, regulations specific to cranes must also be taken into consideration duining acceptance and other inspections in accordance with relevant accident prevention regulations for cranes BGV D6

Routine inspections

Hoists and cranes must be inspected by an experienced technician at least once a year. Routine inspections mainly consist of a visual inspection and a function check which shouldinctude a check to determine the condition of components and equipment regarding damage; wear, corrosion or other alterations, and a check to determine the integrity and efficiency of safety devices and brakes. It may be necessary to dismantle the hoist in order to inspect wearing parts.
Load canyingimeans must be inspected along their entire length, including those parts which cannot normally be seen.
The owner must arrange for all inspections to be carried out and documented in the test and inspection:bookst of the:chain:hoist.

3.2 Noise emission measurement according to DIN 45635

The noise emission levels ($L_{\text {one }}$) are:
DKUN 2 up to $14 \mathrm{~m} / \mathrm{min}$

	above $14 \mathrm{~m} / \mathrm{min}$	$73^{+2} \mathrm{~dB}(A)$
OKUN 5	up to $14 \mathrm{~m} / \mathrm{min}$	$72^{+2} \mathrm{~dB}(\mathrm{~A})$
	above $14 \mathrm{~m} / \mathrm{min}$	$74^{+2} \mathrm{~dB}(\mathrm{~A})$
DKUN 10	up to $14 \mathrm{~m} / \mathrm{min}$	$75^{+2} \mathrm{~dB}(A)$
	above $14 \mathrm{~m} / \mathrm{min}$	$77^{+2} \mathrm{~dB}(\mathrm{~A})$
DKUN 16	up,to $14 \mathrm{~m} / \mathrm{min}$	$75^{+2} \mathrm{~dB}(\mathrm{~A})$
	above $14 \mathrm{~m} / \mathrm{min}$	$77^{\circ 2} \mathrm{~dB}(\mathrm{~A})$
DKUN 20		$78^{* 2} \mathrm{~dB}(\mathrm{~A})$

at a distance of 1 mfrom the chain hoist.
These noise emission levels were mëasured under maximum load.
Structural Influences such as

- transmission of noise via steel structures
- reffaction of noise from walls, stc.
were not allowed for in the above measurements.

3.3 Chain hoists operating outdoors

 against the weather. Travelling hoists should be kept under shetter if they are not used for a considerable length of time.
3.4 Packing and storage

The chain hoist and accessories such as chain, hook with fittings, bottom block and control pendant as well as the chain collector box and trolley are shipped in cardboard packaging.
Store the chain hoist and accessortes in a dry place.

3.5 Paint finish

The chain hoist is supplied it the following standard colours:

Chain holst	RAL 5009	Azure blue
Bottom block/hook with fittings	RAL 1007	Chrome yellow
Hook	RAL 9005	Jet black
Trolley	RAL 5009	Azure blue

Other colours and special colours can also be ordered.
3.6 Operating conditions s^{4} the chain hoist can be coerated at:

- -10° to $+40^{\circ} \mathrm{C}$
- air humbity up to 80%
- Air pressure úp to 1000 m above sea level

Other operatring conditions are also possible.
Please refer to the manufacturer for information on any modifications that may be necessary.
See page 2 for the address:

4 Description

4.1 Design

4.2 Hoist motor

4.3 Gearbox

The hoist motor is the proven sliding rotor brake motor with a newly developed ro-tor-shaft connection, torsionally resistant, axially free fail-safe coupling and conical brake with asbestos-free brake lining. Type of enclosure IP 55.

The gearbox is of two-stage coaxial design.
The gearbox is lubricated by a mineral oil to DIN 51502 CLP 220.
The first stage of the reduction gear has helical gearing. The wheel of the first gear stage has an integrated slipping clutch. It performs the function of an emergency limit stop device for the highest and lowest hook position and protects the Demag chain hoist against extreme overloads. The slipping clutch also fulfils the EC guideline requirements regarding a load control device starting with an SWL of 1000 kg .
If the emergency limit stop device - in this case the slipping clutch - is approached in normal operation, operation must be limited according to relevant national regulations and those of Demag.
In this case, an additional operating limit switch is required.

4.4 Chain and sprocket drive

4.5 Chain hoist

4.6 Electrical equipment

4.7 Contról pendant

The standard chain hoist is designed for direct controi: The chain troist can be supplied with contactor control as an option or if requilied by. regulations.
Firther electrical equipment indudes:
Limit switches for lifting and lowering, geared limit switches with up to eight switching points, pulse generator, single-phase design, plüg-and-socket connections for power supply line and controf pendant, electric overigad cut-off.

4.6.1 Direct control

Direct control is effected in the main circuit by means of the DSK 3 D... and DST contró pendarit.
The control pendant is supplied with the control cable connected to it: Connect the separately suipplied control pendant In accordance with the wining diagram. Plastic-sheathed wire cords:are used for strain reliof of the DST control cabte, the DSK 3 : D... control cable is provided with strain relief by means of a flexible hose. For control cable strain relief, see sections 5.6 and 5.7 for DSK 3 D... and DST controf pendant assembly instructions.
The special Demag chain is of highty wear-resistant material with a high degree of surface hardening, zinc-plated with additional surface treatrient. Onty ctiains marked with Demag may be used. The chain hoist has a six-pocket chain drive sprocket and a hardened chain guide.

The housing is of strong die-cast ahminium and thus light-weight and robust.
The pivoting chain collector box is of tough; flexible, impact-resistant plastic.

4.6.2 Contactor control

Contactor control is effected in the auxiliary circuit by means of the Demag control pendant. The control pendant required depends on the application.
Control pendant DSK 3 S... for Dermäg chain hoists without electric'travel trolley, control pendant DST or DSE for Demag chain fioists with electric traved trolley. Connect the separately supplied control pendant in accordance with the wiring diagram:
Plastic-sheathed wire cords are used for strain relief of the DST and DSE control cable, the DSK 3 S... control cable is provided with strain relief by means of a flexible hose.
The hoist and travel drive contactors, as well as the main contactor and the control transformer are combined into one set of electrical equipment (see fig. 1).
The control circuit is fed from a transformer, the secondary of which is connected to earth.

The shock and impact-resistant housings are of high quality thermoplastic in the case of DSK and DSE units and of glass-fibre reinforced polyester in the case of DST units and are resistant to fuels, satt water, fats, oils and alkaline solutions.
Type of enclosure IP 55 (65) for DSK and IP 65 for DST/DSE.
Strong mineral (e.g, hydrochloric or sulphuric) acids may corrode pendant switch casings. Replace such pendant switches in good time.

4:8 Suspension fittings

Five types of suspension fitting provide a wide range of mounting possibilities.
Long suspension eye - standard design
For monorail and KBK trolleys
Short suspension eye
For optimum utilization of the available hook path (not suitable for KBK).
Suspension ring - tumed 90°
For arrangement of the chain foist parallel to the gircer
Suspension hook
For quicidy changing the position of the chain troist and changing the mounting position by increments of 90° (not suitable for trolleys).

Special suspension eye

For fitting the carier link with straln gauge or the electro-magnetic load link. Additional bore holes in the housing of the chain hoist provide further mounting possibibilities.

4.9 Trolley

The load capacity of the Demag chain hoist must not exceed the load capacity of the trolley.

4.9.1 Track

When selecting a track, we suggest you specity our KBK crane construction kit track section (fig. 2) of special design. The light-weight; cold-rolled track sections feature a smooth running surface and offer the advantage of simple power supply by means of trailing cables or integrated busbars. The use of I beans according to DIN 1025 as tracks is also:possible:
The track radius on curved sections should always be as large as possible in order to ensure good travel characteristics.
I beam tracks should be bent with the utmost care in order to obtain a clean, regular curve: Ready-made curved sections are avallable for our special KBK'track, Hoist travel on I beam tracks must in no way be.obstructed by protruding suispension bolts, screw heads, butt straps, clamping plates, etc. These types of obstruction can be avoided by using our special KBK track section.
Resilient buffers should be mounted at travel wheel axde level at the ends of tracks: in order to prevent the hoist from derailing.

KBK 100
KBK I
KBK H-L
II
II-R

KBK III

5 Assembly instructions

5.1 Electrical equipment

Work on electrical equipment may only be carried out by qualified electricians: or trained personnel, see also section 1 "Safety instructions".
Each Demag chain hoist is provided with a wiring diagram showing details of the controls.

The wiring of the chain hoist complies in all respects with current DIN VDE- and accident preverition regulations. Unauthorized intervention and:modifications may result in infringement of these regulations.
The switchgear is designed for extreme conditions. However, its 䓲e depends on usage.
Actuise operators to avoid inching (i.e. giving short pulses to the motor to obtain small movernents) as far as possible, e.g. when:liffing loads, to prevent excessive contact burning and thus premature destruction of the switchigear.
Inching operations can largely be eliminated by using two-speed hoist and traved motors.

5.2 Connection to the electrical supply

First check whether the voltage and frequency stamped on the data plate match your. mains supply:
The terminals for mains connection are located on the rear wall of the electrical enclosure.
To cornect the power supply cable, the electrical equipment cover must be removed and, in the case of hoists with contactor control, the switchgear set must be swung to the side.
A 4-lead cable with an earth lead (PE) is required for current supply.
The required supply cable conductor cross sections, the maximum permissible sup$\bar{p} l y$ cable length and fuse links can bee seen in the tables in sections 2.5 and 2.6.
Please note that the length of the supply line specified for a given cross section must not be exceeded in order to avoid excessive voltage drop, which might prevent the conical rotor of the motor from sliding into running position when the motor is switched on.
The wiring canied out in our factory includes an earth lead which is connected to all parts of the equipment whichrelevant regulations require to be included in the protective measures.
The protective conductor marked green/yellow in the supply line must be connected to the green/yellow earth terminal.
Connect leads LT, L2 and L3 in accordance with the wiring diagram. Open the cage clamp terminals with a $3,5 \mathrm{~mm}$ wide screwdriver as in fig. 3.

5.3 Connecting the control cable
 Connect the control cable in accordance with the wiring diagram.

5.4 Checking the direction of movement

When the control pendant button for "ifting" is pressed, the load hook must move upwards.

If this is not the case, leads L2 and L3 of the supply cable should be changed over. (Switch off the mains supply before changing over the leadsl)
5.5 Replacing the control fuse link

The control fuise link (1) is held in: fuse terminal on the control transformer. The required amperage of the fuse link can be seen on the transformer data plate.

5.6 Assembly instructions for DSK control pendant

Electrical instalation work must only be caried out by a qualified electrician, see also section 1 "Safety instructions".
Control pendant suspension height approx. 1000 mm above floor level:
For spectal strain relief solutions see operating instuctions:
Ident no. 206489 44.(720 IS 951)

Strain relief with special flexiblē hose
Push special flexible hose 1 over slide bush 2 and secuire with hose clip 3. Inisert slide bush 2 in DK housing 11.

Strain relief with special flexible hose and plug-and-socket connection

5.6.1 Connection and strain relief of the DSK controf pendant

Loosen the three housing screws 9 . Remove lower part 8 of the housing. Pass flexible boot 2 over flexible hose 1. Slide flexible hose onto connecting socket 4 unti it stops and secure it to the latter by tightening clip 3. Pass cable 5 through clamp 6 and clarnp tight. Carefully lay conductors 7 and connect them to terminals.

Connect only in compliance with the wining diagram.
Switching elements CBD 1 / CBC 2:
Ft bridges 14-64, 24-54 tor switching element CBD 1 and 13-53, 23-63 for CBD 2.
Switching elements CBD 1, CBS 1, CBD 2 and CBS 2 can ondy be fitted in one predetermined position defined by a rib.
Refit lower part 8 of the housing by tightening the screws provided for this purpose.
Ensure that sealing washers are placed: below screw head 9.

5.6.2 Strain relief with special flexible hose and plug-and-socket connection

Push special flexible hose 1 over threaded bush (not illustrated). Insert strain relief plate 12 under hose cilp 3 and secure by tightening hose clip. Push sealing sileeve 13 over threaded bush until the latter is no longer visible (use grease or simblas hutricant). and secure with hose clip 14.
Hook strain relief rods 15 to Demag chain hoist DK and connect to strain relief plate 12 by means of snap hook 16 .

For further information see assembly instructions DSK control pendants Ident. no. 20848544

5.7 Assembly instruction for DST control pendant

Electrical installation work must only be carried out by a qualfied electrician, see also section 1 "Safaty instructions".
Control pendant suspension height approx. 1000 mm above floor level.

Fig. 5
41000244.eps

Control pendant with sloove protecting against kinking 18 .
Strain rellef by wire cords; see figs. 4 and 5.
Loosen the 4 or 6 housing screws 8 . Remove lower part 7 of the housing: By tightening the two screws securing; cap 12 to upper part 13 of the housing, press, sleeve protecting against kinking 18 against the housing. Cut off steeve protectingagainst kinking 18 as required for the relevant cabte diameter (see markings on sleeve). Pass cable 2 through sleeve 18 and clarmp 4 (small opening for cäblees of. $10-20 \mathrm{~mm}$ diameter and wide opening for cables of 20-26 mm diameter' and ctarmp the cable by tightening the screws. Tighten cip 19 on sleeve 18 This ensures that the cable intet is water-tight. Carefilly bunch conductors 5 behind clip 8 and connect them to terminals as required.

Coninect only in compliances with the wiring diagram.

Only use bridges 33-34, 43-44 for switching element SED 1 ZD and 11-22, 21-12 for switctuing element SED 27D. Remove bridges $34-62$ and 44-52 on switching element SED 27D for liftinghowering. Double switching elements SED 10 and SED 2 2 can only be fitted in one predetermined position defined by pin 14. Fit lower part 7 of the housing by tightening screws 8 . Ensure that sealing washers are placed below screw heads 8 .

Strain relief by means of wire cords

Hook strain relief rods 32 to Demag chain hoist DK. Thread strain reliet cords 33 through loops of strain reliet rods 32 and insert in slots of retaining plates 34 (part no. $864: 662$ 44) in the shape of an " S " (seed fig. 5).

For further information see assembly instructions DST control pendants Ident. no. 20616544

5.8 Assembly instructions for DSE control pendant

5.8.1 Connecting the control cable with vulcanised strain relief wire cords to the DSE control pendant

For connecting the control cable with vulcanised strain relief wire cords; proceed as follows:

- Undo the four recessed head screws (1) and remove rear part (2) of the housing.
- Remove housing cap (3)
- Cut off protective sleeve (4) as required for the relevant control cable diameter.
- Push protective sleeve (4) onto control cable: (5). Use hudricant (e.g. washing-up liquid).
- Separate vulcanised strain relief wire cords (6) from control cable (5) (fig. 8).
- Push tube clip (B) up to strain relief wire cords (6) and control cable (5).
- Undo the two recessed head screws (13) of pressure sleove (7).
- Push pressure sleove (7) onto control cable (5) (fig. 6).
- Side control cable (5) through washer (9) and sealing ring (10).

The sealing washers and the sealing rings are assigned to the corresponding control cable dlameter in accordance with table. 1.

- Strip insulation from the end of the control cable (fig. 7). Pay attention to the mounting dimenerioions!
- Pull conductors into front part (11) of the housing.
- Slide washer (10), sealing'ring (9) and:pressure sleeve: (7) down to the front part (11) of the housing.
- Tighten the two recessed head screws (13).
- Stip sheathing of strain relief wire cords (6) (fig. 6).
- Shorten strain reliaf wire cords (6) (fig. 6) and insert on the side in the groove of pressure sleeve (7)
- Fix strain relief wire cords with tube clip (8) (fig. 6).
- Connect conductors in accordance with witing diagram and assignment diagram in rear part (2) of the housting.
- Open the cage clamp terminals with a 3.5 mm wide screwdriver or an offset screwdriver as shown in fig. 9 (part no. 772798 44).
- Push protective sleeve (4);onto pressure sleeve (7). The protective sleeve is flush with the pressure sleeve flange.
- Fit housing cap (3).
- Screw rear part (2) of the housing back onto front part (11) of the housing.
- Finally fit bumper (12) (see section 5.8.2).

Table 1

Control tabla outside diarneter	Pressure slogve with seal		Control cable outsicte dameter	Prossure slecye with seal	
100.5 = 14,5	$\begin{gathered} \text { Hem } 9 \\ 2 \times 772.57644 \\ \text { Sealing washer } \\ 10.15 \text {. } \end{gathered}$	42029544.008	15-20	Hem 9 1×772574.44 Serifing washer $15-20$	4tBCOH44.eps
	$\begin{gathered} \text { Hem } 10 \\ \times 77257544 \end{gathered}$ Seeting ing 10-15			$\begin{gathered} \text { Ltem } 10 \\ \times 77254644 \end{gathered}$ Sealing ining 15-20.	

5.8.2 Fitting the rubber bumper

Fit the bumper at room temperature.
We recommend that a wbricant (e.g. washing-up liquid) be used for further assembly.

5.8.3 Connecting the strain relief wire cord

Connecting the control cable with wilcanised strain relief wire cords to the DK housing.

- Separate vulcanised strain relief wire cords from the control cable äs shown in the table above (for dimensions see fig. 11).
- Shorten strain relief wire cords by approx. 100 mm and strip sheathing in accordance with the thimble ciameter +30 mm for fiting Talurit clamp (6).
- Slide one Talurit clamp (6), each, onto the strain relief wire cords.
- Place strain relief wire cords around thimbles (4), insert into Talurit clamp (6) and secure using pliers while the rope is tensioned.
- Hook strain relief rods (1) to DK housing (see page 11).
- Hook strain relief rods (1) to thimbles (4) as strown in the fig. 10.

Plug-and-socket connection

Screw-type connection

Fig. 1.1

1) To ensure strain refer of the control cable, the control cetple must be epprox; 100 man longer than the ..required strain retief corts.

5:9 Fitting the chain for 1/1 reeving
 Fitting the load hook assembly and limit stop

5.10 Fitting the chain for $2 / 1$ reeving Fitting the bottom block and limit stop

5.11 Converting suspension eye, suspension hook and suspension ring from $1 / 1$ to $2 / 1$ reeving

$2 / 1$ reeving

$41047344 . e p s$
$41047444 . \mathrm{eps}$
4:047144.eps

5.12 Fitting the chain collector box

5.13 Fitting the counter-

 weights and cover retainer for DKUN 2/DKUN 5 .

Allocation of counterweights

	DKUN 2				DKUN 5				DKUN 2				DKUNS			
	Number of counterweights lor contactor control with transformer:.								Number of counterweights for direct control							
	Pert no.								Partno.							
	83512744				83612744 :				83512744				83612744			
	Motor				Motor				Motor				Motor			
	KNP	1 MKK			10.3 K				KMP	MMK			KMK			
	71:B	71 B	80 B	807	71.8	80 B	90 B	902	71:B:	71 B	80. B	802	71 B	808	90 B	90 Z
With short cover	-	-	-	*	-	-	-	*	4	4	8	7	3	6	-	8
With lorg cover	*	1	3	2	1	2	4	3	2	2	7	4	3	6	7	4

Cover retainer part no. 83655344

5.14 Fitting the counterweights and cover retainer for DKUN 10-16-20

5.15 Fitting the supporting roller on EU 11 DK trolleys for flange widths $58-143 \mathrm{~mm}$

5:16 Fitting RU/EUDK drop

 stops

5.17 Example for mounting

EU'11 DK
Supporting roller up to flange width
143 mm only
with ZMS strain gauge carrier link

EU 11 DK
with suspension eye and crossbar yoke
from flange width 144 mm
EU11 DK
with suspension ring and trolley crossthar yoke from flange width 144 mm

EU 11 DK

with ZMS strain gauge carrier link and crossbar yöke from flange width 144 mm

40266344.eps

5.18 Assembling RU/HU/EUDK trolleys

Assembling RU / EU 36-N (with adjusting rings for infinitely variable track gauge), see assembly instructions 214800.44

For further assembly and adjustment, refer to:
'RU 3 D̈K trolleys
FiU 6 DK trolleys
RU 11 DK trolleys
RU 22 DK trolleys
EU 11 DK trolleys
$\begin{array}{ll}20660044 & 720 \text { IS } 845 \\ 20660144 & 720 \text { IS } 845 \\ 206602.44 & 720 \text { IS } 845 \\ 20660344 & 720 \text { IS } 845 \\ 206604: 44 & 720 \text { IS } 845\end{array}$

EU 11 DK trolleys	20660444	720 IS 845
EU 22 DK trolleys	20660544	720 IS 845
RU $36-$ N.trolleys	21480044	720 IS 845
EU $36-$ trolleys	21480044.	720 IS 845
RU 55 DK trolleys	206.58044.	720 IS 845
EU 55 OK trolleys	20658144	720 IS.845

Trolley crossbars tightening torques RU $3 / \mathrm{RU} 6$ DK

RU 11/RU 22 DK
HU 11/HU 22 DK
EU 11/EU 22 DK

Assembling RU / EU 36-N (with adjusting rings for infinitely variable track gauge), see assembly instructions 21480044

Assembling the trolley

Fitting the travel drive

Removing/fiting the trolley crosšbar loc̈knut EU 11/EU 22 DK

Insert trolley crossbar (1) into:side cheek (2) (see fig. 13). Then adjust the trolley according to the girder flange width of the track by arranging the distance washers as specified on page 54 . Assembling trolleys.

EU11/EU22 DK: The locknut (3) must be tightened to the specified tightening torque (see fig. 12).
EU 55 DK: \quad The castie nut (3) must be tightened to the specific tightening torque (see fig. 12) and secured with a spil pin.
Since girder flange width tolerances are relatively high, the gap between the travel wheel flange and the girder flange must be checked on both sides to ensure that the play does not exceed 2 mm

Knock the split sleeve into the hole in the side cheek (2). Then fill the traved drive with grease - approx. $60 \mathrm{~g}_{;}$part no. 47291544 -see fig. 13. Screw travel drive (6) to side cheok (2) with screw (5). Ft the travel drive in such a way that the play between the teeth of the drive pinion and the two travel wheels is the same.

If the locknut is complately removed from the crossbar; a new locknut acc. to DIN 985 must be used.
The:locknut can be screwed onto the trolley crosisbar for pre-assembly without being pre-tensioned.
For final assembly, only unscrew the locknut until the trolley can be placed on the girder.
Then tighten the locknut with the specified tightening lorque (see fig. 12).
5.19 Fitting the CF 5 trolleys

5.20 Fitting the CF 8 trolleys

Pay attention to girder type!

Fitting the trolleys

6 Putting the Demag chain hoist into service

When determining the hook path/itting height, make sure that when in the lowest hook position, the load hook or bottom block is lying on the floor (limit stop at the dead end of the chain should not touch the chain guide base plate).

6.1 Inspection when putting the hoist into operation

6.2 Safety instructions

6.3 Starting operation

Ali fitting and assembly work must be completed in accordance with the operating instructions and the hoist chaln must be greased.
Operation with defective or damaged chains results in a high risk of accident for persons and the chain hoist and is therefore prohibited.
Any change or modification which preipulices satety must be reported to the nearest person responsible immediately. Unauthorized repairs are not permitted:
When putting the hoist into operation for the first time, the inspections in accordance with section 8.3 ; table 2 must be carried out.

6.4 Notes regarding the motor

The surfices marked on the motor shaft shown in fig. 14 are preserved with Rustban 391. The trwolute spline is coaled with lutricating varrish 321.
The preservative and the lubricating varnish must not be removed when dismantling the motor. When maintenance is caried out, the surfaces marked below must be checked and a new coat must be applied, if, required:

The red paste which can be seen in the area of the braking surface is used for preservation until putting into operation and running th the braking surface of the motor. This preservative must not be removed, however, it is not necessary to apply it again during maintenance.

7 Taking the Demag chain hoist out of 'service

7.1 Emergency-stop button

Every chain hoist features an emergency-stop device with which all motions can be stopped in the event of a hazard.
The emergency-stop button is arranged on the control pendant.
To actuate the emergency-stop button; press the button until it reaches the end stop and automatically latches.
To unlock the actuated emergency-stop button, tum the push button in the direction of the arrows and release.
The emergeicicy-stop device must only be reset after the hazard and its cause have beon eliminated.

7.2 Taking the holst out of service at the end of the shift

When the work has been complêted, raise the hook assombly or bottom blockoutside the travel area: switch of the power supply at the mains connection or isolating switch.

7.3 Taking the hoist out of service for maintenance purposes:

Maintenance work on the Demag chain hoist must not commence before the load has been removed and the mains switch/lsolator switched off. The relevant accident prevention regulations'and statutory regulations must be observed for operation and maintenance.
Tests and inspections required in addition to those specified in the maintenance schedule (see table 2) must be cariled out, see also section 1 "Safety instructions".

8 Inspections/maintenañce/geneeral overhaul GO

8.1 Inspection before starting work and during operation

Table 2
Inspection and maintenance schedule

Check when putting into operation, witien starting operation and during operation	See section	Betore putting into operation	When starting operation	Evary 6 months	Once per yeer
Lubricate chain (under heavy-duty conctions the chain musil be hericateod more feguenth)	8.5	X	x		x
Check etactrical swichetar end wifing	5.1	\dot{x}		x	
Check operation of emergency tritt sidtch, if futed:		x	x		x
Creok strain retoving oboments, control cables and control pendant huxsing for damage		x	X		\times
Check operation of the sfipping ciutch	8.9				X
Check operation of the brake	8.6	' x .	x		x
Check hook and hook safaty catch		\times	\bar{x}		$\bar{\chi}$

Check during operation

Check and apply further grease to bearing pobtts of suspension eyes, suspension hook: assembly and suspension eye turned 90°; as required	$\begin{array}{c\|} \hline 5.11-5.12 \\ 5.18-5.19 \\ 5.20 \\ \hline \end{array}$				x
Check brike stupec, echest brake or replace brake cup, es required	8.6				X.
Check troley crosshar connection	5.18.				X,
Check suspension eye, locking eferments; bracket for sisipension ejya and securing ëloments (clips, etc.)	5.11				X
Check $\overline{\text { Suspenision }}$ eye/suspension hook assemsly and ensure suspension eye turned 90° is property secured	5.11				X
Check tight fit of securing botts on load took assermidy	$5.9{ }^{\circ}$				X
Check hooks fior cracks, deformation and Wiear	8.4	-			X
Check hook safety cateti for doformation \quad "					X
Oneck hook bearing for magr	.				x
Bontorn blocke utricate chain sprocket beering and check thatt fit of securing bots	5.10				X
Check chain sprocket, return sproctuei and chain guide					X
Check ohain and chain conlector boxx me properly secured	.5.12			.	X
Check chain for deformation, crecks, piting, reduction in the thickness of the Rots ar increase in pltch otes to wear , efongation caused by deformation	8.5			,	X
Check securing ehanents (cips, bolts, etc.) for tight fit and corrosion	$\begin{gathered} 5.11-5.12 \\ 5.18-5.1 \theta \\ 5.20 \end{gathered}$				x
Check end epply or. gupplannent corrosion protection, es required	$\stackrel{\square}{\circ}$				X
					X
Chack troliey, crosstar and condition of bufiers	$\begin{gathered} 5.18-5.19 \\ 5.20 \\ \hline \end{gathered}$				X
Check hotrication of gaered travel roliers of monoral hoist	8.8				X
Check On lexal	\cdots -				X
Change ol	8.7 .		every 4 -	- 5 yers	
Check bearing points of rotor for cormsion	6.4		every 5	5 years	

The general overhaud should colncide with the annual inspertion		On reaching the theoretical durstion of service
Ft chain-foist specific Derneg 90 set	8.3	X

The small parts (screws, washers ...) to be replaced during maintenance and assembly work äre not listed separately. The tasks specified in the inspection and maintenance schedule must be carried out during a GO.

The specified maintenance.intervals apply to nommal chain hoist service conditions. If the annual calculation of the actual duration of service S.indicates that the theoretical duration of service D will be reached before a period of $8-10$ years. regutar maintenance work must be adapted to the operating conditions and maintenanice must be cämied out at shorter intervals.
For repairs, only use genuine Demag parts (see component parts list).

8.4 Suspension eye, hook, trolley crossbar

If a check or inspection reveals that these components are wom beyond the dimensions shown in fig: 15 and the tables, or if cracks can be seen in these parts, they must be replaced at once See pages $42-45$ for replacing the hook in the load hook assembly or in the bottom block.

Chain hoist DK						
Range		OKUN 2	DKUN 5	DKiUN 10	DKUN:16	DKUN 20
Suspenslon eve min. coimenstion E		13	17	24:5	24,5	30
Load hook min. demension f for mevinig	1/1	16,2	19.35	23,6	31	31
	$2 / 1$	19,35	23,6	30,86	35	44

Trolley for DKUN 2

Renge.	RU 3	Ru6		PUH1/EUT1	
Flanga width mm	59-90	58-143	144300	58-143	144-300
Trōlley crosstar min. demension V	16	24	30	30	
Trolley croiststar min. dimension hi	*	-	14,5	$=$	17,5

Trolley for DKUN 5

Range	RU3	RUB		PGM1/EU11	
Flange with mm	5800	58-143	144-300	58-143	144-300
Trimpy crosstear min. dimension. v	16	24	32	30	38.5
Trotley croshber min, dmension h1	- -	. -	14.5	-	17,5.

Trolley for DKUN 10

Range	RU 6		RU111EU 11		RU 22FE 22	
Flange with mm	58-143.		50-143	144-300	82-143	144-300
Trolitey orossber min. dimerision v	24	32	30	38,5	45,5	
Trollay croesbar min. comension hy	-	14,5	-	17:5	*	26,5

Trolley for DKUN 16
Range
Fange whth my
Tholley crosstar
min. dirnension v

Trolley for DKUN 20

Painge	RU22ME 22		RUS $30-\mathrm{N} / \mathrm{ELS}^{36-N}$		RU 55/EU 55	
Flange witht imm	82-143	144-300	90-180	181-300	106-188	187-300
Trolley crosstar min dimension \bar{v}	45.5		44	43	57	67

8.5 Hoist chain

Fig. 16
41050444.eps

8:5.2 Checking wear or deformation of the original Demag chain In addition to selecting the correct hoist unit, owners of electric chain hoists are obliged by relevant accident prevention regulations to constantly check the round section steel chain in order to ensure optimum operating safety and, therefore, to avoid serious accidents.
Where normal duty conditions prevail, the chain should be checked once: year (seo section 8.2, table 2).
If routine maintenance reveals that the titervals are too long, they shoutd be adapted to the specific operating conditions.
A partial load must be suspended from the load hook when measuring the chain for weer or defomation. This measurement can be taken in two different ways.

1. As in fig. 17 with a caliper gauge
2. As in fig. 18 with a chaln gauge

Measuring with the caliper gauge

Measurements on: 11 chain links may be taken in steps of 2×3 and 1×5 chain links (see table 3 and fig. 17).
The sum total of the 3 readings taken, i.e. a1 $+a 2+a 3$, must not exceed limit a in table 3. Otherwise, the chain must be replaced.
Since this is a chain of special manufacture with the name Demag stamped on every 12th link for chain size $4,2 \times 12,2$ and 5,3 as well as every 10 th link for chain sizes $7.4 \times 21,2-8,7 \times 24,2$ and $10,5 \times 28,2$ replacements must not be procured from any source other thian Demag.

Do you find that, on fitting a new chain, it does not run smoothly over the sprocket? Please contact our atter-sales service centro.

The use of chains other than those supplied by Dernag is niot permitted.

Chains and chain sprockets are designed to fit each other precisely. Your using a chain of a make other than Demag renders any liability and guarantee claims:null and void.

Table 3

Demag chain thoist	OKUN 2	OKUN 5	DKUN 10	OKUN. 16	DKUN 20
Chain destenation $d x$ i	4,2 $\times 12,2$	$5.3 \times 15,2$	7,4×21:2	8.7×24.2	$10,5 \times 28,2$
Urith dimensionta aceording to DIN 685 pert 5					
Oversil length of 11 fiks, maximum crinerision am a $1+\mathrm{a} 2+\mathrm{a}^{3}$	144.7 mm	180,3 min	253 mm	289,2 min	337.4 mm
Inside length of a link, maxiturn cimension:	12,8 mm	$15,9 \mathrm{~mm}$	22,4 mm	25.5 mm	29.8 mm
Masisiring the ctrath Enk diementar, (see fig. 17) Minimum dimension d $m=0,9 \times d$	3,8mm	4;8 nm	6.7 mm	7.8 mm	9.45 mm

Refer to sections 5.9 and 5.10 for replacing the chain when required.

When the chain hoist is operated with a dry-running chain, the chain guide, chain sprocket and return sprocket of the bottom block must also be replaced when the chain is replaced.

Chain gauge
Part no. 83602544

8.6 Brake

8.6.1 KMK main hoist motor brake and KMF travel motor brake 80

Number of shims		
Motor	Cunntity	Shim thiciness
$71 / 80$	2×5	$0,8 \mathrm{~mm}$
90	2×6	$0,8 \mathrm{~mm}$
100	2×9	1 mm
112	2×10	1 mm

8.6.2 Adjusting the brake with shims

Demag chain hoists are supplied with the brake adjusted for the minimum rotor displacement path of approx.
$1,5-2,0 \mathrm{~mm}$ for $7,1,80,90$ motors and
$1,8-2,3 \mathrm{~mm}$ for 100,112 motors.
As the brake liring wears down, the path of rotor displacement increases.
The brake must be adjusted before the path of displacement has reached a.mavimum of $3,0 \mathrm{~mm}$ for $71,80,90$ motors and $3,5 \mathrm{~mm}$ for 100.112 motors.
It is therefore imperative to ensure, by regular maintenance, that the brake is adjusted before the maximurn rotor displacement is reached.
For brake adjusiment the load must be removed from the chain hoist.
Adjustment can be repeated several times.
it is advisable to have a spare brake cup in stock.

Loosen brake sthicta

8.6.3 Changing the brake cup

206501k5.p65/240105

Brake release stimu
Fi brake shield

20650145.pes/240105

Number of shims

Moter	Quendty	Shim thickuess
71	2×5	$0,8 \mathrm{~mm}$

Demag chain hoists are supplied with the brake adjusted for the minirrum rotor displacement path of approx. $1,5-2 \mathrm{~mm}$ for the KMP 71 motor.
As the brake lining wears down, the path of rotor displacement increases.
The brake must be adiusted before the path of cisplacement has reached a maximum of $3,0 \mathrm{~mm}$ for the KMP 71 motor.
It is therefore imperative to ensure, by reguar maintenance, that the brake is adjusted before the maximum rotor displacement is reached.
For brake adjustment the load must be removed from the Demag chain hoist.
Adjustment can be repeated several times.
It is advisable to have a spare brake cup in stock.

1. Measure the path of rotor clisplacement:

For KMP motors which are not fitted with a fan; remove the black plastic cap from the brake end cap, turn it and determine differeñce dimeinsion lu by pressing on the brake release stimup (see fig. 19).
2. Loosen the four nuts (2) and remove brake end cap (1).
3. Reriove the necessary number of shims (3) in onder to obtain a path of displacement of $1-1.5 \mathrm{~mm}$ (shim thickness $0,8 \mathrm{~mm}$): it is absolutely essential that the number of shims at the top is the same as at the bottom.
4. Screw. on brake end cap (1) everliy with the four hexagon socket nuts (2) with a tightening torque of $10,5 \mathrm{Nm}$. Any paint or dirt trust be removed from the centering faces.
5. Check path of rotor displacement (should be $1-1 ; 5 \mathrm{~mm}$).

8.6.7 Traval motor brake 13/3. PKF, 13/6 PKF and 13/6 PF

Demag travel drives are supplied with the brake adjusted for the minimum rotor displacement of äpprox. $1-1,5 \mathrm{~mm}$.
As the brake linuing wears down, the path of rotor displacement increases.
it is therefore imperative to ensure, by regutar maintenance, that the brake is adjust: ed before the maximum rotor displacement is reached.
Adjustment can be repeated several times.
It is advisable to have a spare brake lining of a complete brake end cap available.

8.6.8. Adjusting the brake with shims

Meäsure the path of rotor cisplacement:
This is done by measuring the distance between the motor shaft end and the brake end cap, first with the brake engaged (fig. 20) and then with the brake released (fig. 21). If the path of displacement is approx. 3 mm , the brake must be adjusted.

Loosen the four nuts (2) and remove brake end cap (1).
Remove the necessary number of shims (3) in order to obtain a path of displacement of $1-1,5 \mathrm{~mm}$ (shim thickness $0,8 \mathrm{~mm}$); it is absolutely essentiad that the number of shiris at the top is the same as at the bottom.
Screw on brake end cap (1) evenly with the four hexagon socket nuts (2) (for tightening torque see fig. 22). Any palnt or dirt must be removed from the centering faces.
Check path of rotor displacement (should be 1-1,5 mm).
Loosen the four hexagon socket nuts (2) and remove brake end cap (1) with its wom lining.
8.6.9 Fitting new brake lining to travel motor

Remove old brake lining from brake end cap.
Glue new brake lining into brake end cap (see section 8.6.10).

8.6.10 Giluing on brake linings

8.7 Gearbox

A two-component glue is supplied with every replacament brake lining. The linifing must be hedd in position by a clamping device.
Remove end cap (brake end shietd) (1), heat to 100-150 C and remove wom brake fining. (To do this, put the end cap on a heating plate and poutr some water into recess " X " of the end cap. The required temperature has been reached when the water boiks. Remove the remains of the old lining with a screwdriver or simitar tool). Surfaces to be glued together must be froe from grease, oil, paint, nust, dirt and moisture. They should be emery-papered and wiped with acetone or any other good solvent.
Squeeze adhesive out of the two tubes supplied and mix the two components thoroughly in a ratio of 1:1. Apply a thin layer to both surfaces with a brush or paint scraper.
Locate annular brake lining (2) in its proper position and apply pressure by fitting pressure disc (3), bott (4), washer (5) and nut (6) as illustrated in fig. 23.
Allow the glue to solidity under pressure for 20 hours at room temperature.
Remove the gluing jig (components 3 to 6).
Fit adjusting shims and end cap (see section 8.6.8).

Oil lubrication

Under normal operating conditions, the oil must be changed at least every 4 years.
Under exceptional conditions, e.g. increased ambient temperatures, we recommend that ol changes be adapted to suit these conditions.

Oil change

Drain the old oil at operating temperature. To do this, first remove the air vent screw at the top of the gearbox and then the plug at the bottom, and the cil will run out: The flushing oil should have a viscosity of $46-68 \mathrm{~mm}^{2} / \mathrm{s}$ at $40^{\circ} \mathrm{C}$.
The quantity of flushing oil used should be approximately twice that specified for Lubrication. Then flush the gears by switching the hotst on and allowing the hook to ruin several times over the entire length of its path. Then drain the flushing oilland refill the gearbox with oil as specified for lubrication. The required quantity and grade of oil can be seen from the table below.

Oil grades

For ambient temperatures of approx. $-10^{\circ} \overline{\mathrm{C}}$ to $+50^{\circ} \mathrm{C}$, a gear of of $220 \mathrm{~mm} \mathrm{~m}^{2} / \mathrm{s}$ at $40^{\circ} \mathrm{C}$ with mild high-pressure additives should be used, DIN 51502 CLP 220 , e.g. BP ENERGOL GR-XP 220, Esso Spartan EP 220, SHEL Omala oili:220, Mobilgear 630 or Aral Degol BG 220.
At higher or lower amblent temiperatures, the type of oil used should be adapted to the specific condilitions:

Dispose of waste oil in accordance with: environmental protection requirements.
Quantity of oil in litres

Piange	OKUN 2	DKUN 5	DKUN10	DKUN 16	DKUN 20
Litre	0,15	0,25	0,4	0,4	0,7

Part no. 47290244 , 1litie

8.8 EU 11 DK/EU 22 DK/ EU $36-\mathrm{N} / \mathrm{EU} 55$ DK electric trolley gearbox

The gearbox is lubricated with grease (approx. 60 g).
Under nomal conditions this grease suffices for approx. 2 years after which the gears need relubricating. The geared travel wheeds must be lubricated regularty with the same grease.
Part no. 011058 44, 60 g .

8.9 Adjusting the slipping clutch

Under nomal operating condifions, the slipping ctutch does not need to be adjusted. The clutch runs in the oil bath and the linings are virtually wear-free. The slipping clutch is initially set in the factory. Adjustment of the slipping cutch may only be carned out by authorized specialists. An increase of the tripping torque which exceeds the factory setting is not permitted.

Adjust the slipping clutch with the fiction force checking device.
Part no. 83670844
For further information see Adjusting the slipping clutch 20697444.

1
Only allow siliping clutch to slip at creep lifting speed (fi provided) while lifting.

A new safety nut must be fitted each time the clutch lining is replaced.

9 Measures necessary for achieving safe working periods

The safety and health provisions of EC directive 98/37/EC make t a legal requirement to eliminate special hazards which may be caused by, for example, fatigue and ageing. This requirement is also reflected in relevant accident prevention regulations and codes of practice, such es the 3rd supplement to UW/BGV D8 (VBG 8) of 1.4.1996 in Germany. This requirement obbges the owner of serial hoist units to determine the actual duration of servica of the hoist unit on the basis of the operating hours, load spectra and/or recording factors. This is based on FEM 9.755/06. 1993 "Measures for achieving safe working periods for powered serial hoist units (S.W.P.)". The objective of this rule is to determine measures for achieving safe working periods over the entire curation of service, athough, according to the state-of-the-art, the hoist units are designed for specific periods of operation.
Premature failure cannot, however, be nuled out.
The following items have been taken from FEM rule 9.755 with reference to the electric chain hoist:

1. The actual duration of service detemined on the basts of operating time and kaad must be documented at leasi once per year.
2. The operating time Ti, (number of operating hours) can be estimated or read on an elapsed time indicator.
3. The load $k_{\text {mi }}$ (foad spectrum) must be estimated.
4. The value determined for operating time T_{i} using an elapsed time indicator must be multiplied by the type of recording factor $f=1,1$.
5. The value determined for the estimated operating hours and load spectrum must be multiplied by the type of recording factor $f=1,2$.
6. The actual duration of service S is calculated as: $S=k_{\text {miv }} \times T_{i} \times f$
7. A general overhaul must be carried out on reaching the theoretical duration of service.
8. All checks and inspections and the general overhaul must be arranged by the owner of the hoist unit.

A general overtaul is defined as:
Inspection of the machinery for the purpose of detecting all defective components and/or components and parts close to failure and the replacement of all such components and parts. Following a general oveihaul, the machinery is in a condition similar to that of the:same machinery in new condition as far as the principle of operation and performance values are concerned.
For electric chain hoists classified according to. FEM 9.511, the following theoretical durations of service apply (converted into full load hours):
Table 4:

	1 Cm	1 Bm	$1 \mathrm{Am}:$	2 m
[h]	200	400	800	1600
			3 m	

The ectual duration of service is considerably increased if the thoist unit is. only operated with partial load. For a chain hoist operated on average with half load, for example, this results in an 8 -fold increase in the actual duration of service; with operation at one quarter of the full.load, a 64 -fold increase.

9.1 Calculating the actual duration of service S

9.1.1 Estimating the load spectrum factor \mathbf{k}_{mm} (by the owner)

The actual duration of service S of the electric chain hoist can be determined as follows:

$$
S=k_{\mathrm{mi}} \times T_{i} \times f
$$

$\mathrm{k}_{\mathrm{mi}} \quad$: Actual load spectum;factor
$\mathrm{T}_{i} \quad$: Number of operating hours
1 : Factor depending on the type of recording
To simplify estimation, each type of load can be grouped into k_{m} baad spectrum modules. The types of load are simplified and quoted as $1 / 4,1 / 2,3 / 4 \mathrm{load}$ and tuil load. Dead loads are added to the kads. Loads up to 20\%, of the rated loed capacity are not taken into consideration.
The operating time for each type of load is divided up within the inspection interval (e.g. 1 year) in terms of percentage.

The folkwing bar diagram shows the $k_{\text {if }}$ load spectrim modules for the load conditions without load up to full load in time increments of 5 and 10%, Larger shares of the time period must be correspondingly added together.

The load spectrum factor $k_{m y}$ can be obtained by adding together the individual k_{m} load spectrum modiules;
9.1.2 Calcutating the number of hours of óperation (operating time) $\mathrm{T}_{\text {; }}$ (by the owner)

The operating time can be calculated by means of an elapsed time indicator or according to the following method:
Operating time per inspection interval:
$T_{1}=\frac{\text { (Lifing }+ \text { loweringi } \times \text { cycles } / h \times \text { working time/day } \times \text { days/inspoction interval }}{60 \times \text { hoist speed }}$ $60 \times$ hoist speed

Only lifting and lowering movements are counted, long and cross travel times are not taken into consideration.

9.1.3 Factor depending on type of recording f

9.2 Example: DKUN 10-1.000 KV1 in 1Am

Hoist speed	$:$	$9 \mathrm{~m} / \mathrm{min}$
No. of cycles per hour	$:$	$10 \mathrm{cycles} / \mathrm{h}$
Lfting and lowering	$:$	$(2+2) \mathrm{m} / \mathrm{cycte}=4 \mathrm{~m} / \mathrm{cyte}$
Operating time per day	$:$	$8 \mathrm{H} /$ day
Days per inspection interval	$:$	250 daysinspection interval
$\qquad T_{i}=\frac{4 \times 10 \times 8 \times 250}{60 \times 9}$	$=148,1 \mathrm{hinspection}$ interval	

In the operating time as calculated above, the chain hoist has transported the following laads:

Adding the load spectrum modules k_{m} together results in the load spectrum factor:

$$
k_{m 1}=0,119
$$

Thus, the actual duration of service amounts to:

$$
S=k_{m o} \times T_{i} \times f=0,119 \times 148,1 \times 1,2=21,2 \text { hours }
$$

For classification in FEM group of mechanisms 1Am (see DKUUN data plate) with 800 hours of theoretical duration of service (see table 5) the hoist has a theoretical remaining duration of service of 778,8 hours.
Documentation
Enter these values in your test and inspection booklet or craneinstallation test and inspection booket. This entry may appear as follows:

Table 5

$\text { DEMAG } \underset{\text { Cranes s componenis }}{ }$	EC conformity declaration Demag chain hoist DKUN, DKES, DKST in acourdance with EC Directives 89/336/EEC, Annex I, 99/37/EEC, Añex LIA and 732323 EGC, Annax III	1 Pagess) Paga 1
		Heant no.
		[20440544

Hereby we,

Demag Cranes \& Components GmbH
 Komponententechnik,

declare that the product

Demag chain hoist DKUN, DKES, DKST

of serial design ready for USe" with or without the relevant serial trolleys has been declared in conformity with the provisions of the following relevant regulations:

EC EMV Directive	$89 / 336 / E E C$
armended by	$92 / 31 / E E C$ and $93 / 68 / E E C$
EC Machinery Directive	$98 / 37 / E E C$
EC Low Voltage Directive	$73 / 23 / E E C$
amended by	$93 / 68 / E E C$
Applied harmonised standards:	

EN 292-1, 292-2 Safoty of Machinery
EN 50081-2 Electromagnetic compatibility
EN 50082-2 Electromagnetic compatibility
EN 60034-1 Rating and performance for rotating electrical machines
EN 60034-5 Types of enclosure for rotating electrical machines
EN 60204-32 Electrical equipment, requirements for hoists
EN 60529 - Types of enclosure (IP code)
EN 60947-1 Low voltage switchgear
Applied standards and technical specifications: \#
DIN VDE 0160 Electronic equipment for use in electrical power installations and their assembly into electrical power Installations
FEM 9.511 Classification of mechanisms
FEM $9.671 \quad$ Chains for holst units
FEM $9.683 \quad$ Travel and hoist motor selection
FEM 9.755 Measures for achleving sale working periods
FEM $9.811 \quad$ Specifications for rope and chain hoists

Wetter, den 19. 7. 1999
Place and datè of issue

ppa. Dr. Neupert Technik
Hebezeuge und Komponenten

Hebe- und Komponententechnik

1) Design ready for use requires a scopos of parts es specified in Works Standard 01231399.

Demag Cranes \& Components GmbH

Handing Technology
Postlach 67 :D-58286 Wetter
Telefon (02335):92-0
Telefax (02335) 922406
E-Mail handlingedemageranes.com:
www.demagcranes.de

Component parts

Demag chain hoist DKUN10

Contents

Main hoist metor KMK 90 B 2
Page
Main/creep hoist motor. KMK 90 B $2 / 8$
Mancephoimolor. 4
Main hoist motor KMK 100 B 2 . 5
Mair/creep hoist motor KMK 100 B $2 / 8 \quad 6$
Main/creep hoist motor KMK 100 B 2/12 7
Helical gearbox, 2-stages 8
Hook with fittings, $1 / 1$ reeving 12
Bottom block, 2/1. rëoving 13
Electrical components
Direct control 14
Contactor control 16
Limit switch for the upper and lower hook position
$1 / 1$ reeving
$2 / 1$ reeving 19
Reinforced M24 $\times 1,5$ cable sleeve insert $\quad 20$
Strain gauge canier link ZMS 1250-1/1 42
Strain gauge camier link ZMS 2500-2/1 43

Standard headroom monorail hoist
RU 6 DK trolley 23
RU 11 DK trolley 24
EU 11 DK trolley 25
RU 22 DK trolley 26
EU 22 DK troiley 27
Travel dive PKF 13/3 and 13/6 28
Drop stop fittings RUDK/ EUDK 44

Hand chain drive for HU 11 DK/HU 22 DK trolley

Contents

PageTrolley B Trolley A
Bridge 30
RKDK low-headromm monorall hoist
Trolley size 11
Flange width $91-300 \mathrm{~mm}$ 32
Trolley size 6/2
Flange width 91-300 mm 33
Trolley size 22
Flanschbreite $82-300 \mathrm{~mm}$ 34
Trolley size 11/2
Alange width $82-300 \mathrm{~mm}$ 35
\# Chain guida
Fittings for RKDK low-headroom monorail hoist 11
Trolley B
Bridge 30
EKDK low-headroom monorail hoistTroliey size 11
Flange width 91 - 143 mm 36
Trolley size 6/2
Flange with $91-143 \mathrm{~mm}$ 37
Trolley size 11
Flange width $144-300 \mathrm{~mm}$ 38
Trolley size 6/2
Flange width $144-300 \mathrm{~mm}$ 39
Trolley size 22
Flange width $82-300 \mathrm{~mm}$ 40Trolley size 11/2Flange with $82-300 \mathrm{~mm}$41
\# Chain guideFittings for EKDK low-headrom monorall hoist11

Main/creep hoist motor KMK 100 B 2/8

$22951003:$

[^15]Main/creep hoist motor KMK 100 B 2/12

Helical gearbox, 2-stages
Helical gearbox, combination with corresponding motor for one/two hoist speeds

Helical gearbox, 2-stages
Helical gearbox, combination with corresponding motor for one/two hoist speeds

20751005.4:

Helical gearbox, 2-stages
Helical gearbox, combination with corresponding motor for one/two hoist speeds

Itern no.	Part no.	Quantity	Desigimation		Material	Standard
35	34638899	1	Ofinder pin 5 h 11×45		St A ${ }^{\text {a }}$ F	Dî̀ ${ }^{\text {d }} 7$
36	34638999	2	Cytuder, in 5 hilx 28		St AaF	ON 7
37	34264799	1	Retaining ing 47X1,75		Fectst	DiN 472
38	36055499	t	Grooved beil bearing 6204		Wh-St it	DNA 625
39	83710244	1	Gearbox housing DK10 T.t	1)		
40	33887499	1	Sealvar ring A10 X16 X1		CU	DiN 7803
41	31335499	1	Screw phug Miox1		5.8	DIN 909
42	34294644	1	Eloeding veive AM10X1			
43	34251744	1	Toterance ring 16x 10			
44	83729444	1	Base plate chrim guide DK10	chwitem 43		
45	83717844	2	Spring cfip tastaner 7,4×21,2			
47	83806344	1	Chain collector box DK10-20GR. 4 -	max 8 mm cherm $48-50$		
47	83806544	1	Ohein colector boox DK10-20GP. 5	max 20 m , cow items $48 \cdot 50$		
48.	83807044	1	Double spring wasteer DK10/20			
49	83806944	1	Septoch 12H1 1) ${ }^{\text {P205 Nut }}$,		
50	34297644	1	Secring cip SL 12 SXN08			
51	83708344	1	Stop placa DK10	2)		-
52	83769944	1	Crain $7,4 \times 21.2$	3)		
53	32142399	4	Hex.socket cyind.bcrew M10 X 20		10.9 A2FLL	DN 912:
54	83737744	1	Chain guide set DK10	c/witems 57-59,66		
55	83716344	2	Bush 40,5) $48,5 \times 12,3$			
56	83738044	1	Output staft DK10/16	cow item 57		
57	36640999	1.	Oif 58.1 A $25 \times 33 \times 6$		NER-CFW	DIN-3760
59	92491644	1	O-ring 34×36		NE 70	메N-3770
59	83707844	1.	Piot section DK10 7×21			
60	83761944	i	Load hook crossbearn DK10	c/w iterss 63-65		
61	83764544	1	Eyering trensverse DK10	C/w items 62,65		
62	83764244	1	Evering OK10			
89	83865044	1	Load hook rimber 52.5 T			
64	83866944	1	Hook Gafuty catch GR. 5			
65	$8 \mathbf{8 3 7 6 2 5 4 4}$	1	Crossbearn CK10			
68	89703544	1	Prolective sleeve DK10/16			
67			Stage 1: for two Hotst speeds	Mot KMK $90 \mathrm{~B} 2 / 8$		
67	13847684	1	Shat DK10 KMK 908.	1000.800, $830, \mathrm{~V} 1.1=79.9$		
67	13847684	1	Shat DK 10 KMK 908	630, $V 2,1=58,8$		
			Stage 1 for two Hotst apoods	Mot KMK $100 \mathrm{~B} 2 / 8$		
67	14335684	\dagger	Shatt coupling DK10/16	1250, V1, i $-79,9$		
67	14335684	1	Shat coupling DK10/18	$1000,800, V 2, i=58,8$		
			Stage 1 for two Holet spoeds	Mot KOMK $100 \mathrm{~B} 2 / 12$		
67	14335684	1	Shaft coinding DK10/16	$500, \vee 3,1=36.2$		
			Stage 1 for one Hoist speed	Mot KMK 90 B 2		
67.	13847884	1	Shaf DK10 HMK 908	$1250,1000,800,630, \vee 1.1=79.9$		
$67{ }^{\text { }}$	13847694	1	Shat DK10 KMK 908	$800,630, \vee 2, i=58,8$:		
67.	13847694	1	Shaft DK10 KAK 908	500, $\vee 3.1=36.2$		
			Stage 1 for one Hoitat epeed	Mot KMIK 100 E 2		
67	14335684	1	Shêt coupling OK10/16	$1000, \vee 2,1=58,8$		

22251005.
1) Quantity 0.40 litre, part no: $47290244(1,0 \mathrm{~kg})$
2) Fox firnit stop (fiem 51) to the 10ith chann ific.

10 3) Suppled per metre, state bength required when ondering.

\# Chain guide

Fittings for RKDK - EKDK low-headroom monorail hoist

22251007.46

Hook with fittings, 1/1 reeving

Item no.	Part $n 0$.	Quantity	Dasigration:		Martorlal	Stardard
1	83774044	1	Hook fiting OK10	cwitems 2;5-7		
2	83775344	1	Buffer cover 1,0 T			
3	35091099	4	Found head dowel pin 3×5		St A2F'	DiN 1476
4	83591044	2	Capactly prate 0,5 T AL	-DKLN 10,500		
4	03591744	2	Capucity plate $0,63 T$ AL.	DIUN 10,630		
4.	83591844	2	Capacity plate 0.8T AL	DKUN 10.800		
4	83590844	2	Capacity plate 1 T AL	DKUN 10, 1000:		
4	83591944	2	Capactiy plate 1,25T AL	OKUN 10, 1250		
5	83775244	1	Hook fitinge DK10			
8	83717844	2	Spring ctp tastenar 7:4×21,2			
7	83765044	1	Loed hook number 4 1,251	chw liem 8		
8	83765944	1	Hook spiety cetch GR. 4			

22051007.41

22351004

Electrical components
Direct control

Electrical components Direct control

Hemmo.	Payt no.	Quantity	Desigragtion		Material	Standard
1	83712044	1	Hood short DK10-20			
1	83712344	i	Hoodiong DK10-20			
,	32158399	2	Hex.socket cyindscrow M 8×50		8.8 A2F	
3	73917544	2	O-ring $7.3 \times 2,4$ B		NE 70769	
4	83712744	.	Coxinterweight DK10/16	Mot. 90 B, cover short		
4	83712744	3	Counterwelight DK10/16	Mot. 90 B , cover kong		
4	83712744	7	Counterwoight DK10/16	Mot. $100 \mathrm{~B} \mathrm{2}$,		
4	83712744	5	Counterweigh OK10/16	Mot. $100 \mathrm{~B} 2 / \mathrm{B}, \mathrm{B} 2 / 12$,		
5	83722144	1	Seal DK10 3×980			
6	34054299	6	Washer A17 $\times 30 \times 3$	Miot. 90 B , cover shat	140 HN A 2 F	
6	34054299	8	Wastrer A17 $\times 30 \times 3$	Mot 90 B, cover fong	140HV A2F	DRN 125
6	34054299	2	Wesher A17 $\times 30 \times 3$	Mot. 100 B 2 ; cover long	140N N A 2 F	$\text { DN } 125$
7	34050199	2	Wester A13 $\times 24 \times 2,5$		$140-N \quad A 2 F$	$\text { DN } 125$
8	15072099	2.	Countersunk screw M $\times 25$		8.8A2FT40	$\text { DNV } 7901$
11	83620244	1	Fughti unit M20	$\stackrel{ }{ }$		
11.	83605844	1	Pught unt PG16			
12	83605144	1	Stide h cornection plece $20 / 3$			
13	83620144	3.	Pright unit, dimmy M25			
13	836605244	3.	Puighin unt, dimmy PG21			
14	53746184	2.	Courter mut M2S EMV M			
19	83605044	1	Seal cable gide	Geerbox side		
20	89541744	1	Suppaiting red $15 / 5,5 \times 160 \mathrm{M}$			
21	89539544	1	Modtrir termmal $2,5 \times 4 \times 1 \mathrm{DFPR}$	4 conoductors		
22	89628444		Módeer tomital $2,5 \times 4 \times 1$ DPDR	4 conductors 1)		
23	89628344		Moctur terminal $2.5 \times 2 \times 1 \mathrm{CPDR}$	2 conductors 1)		
24	89528544	1	End plate 264-368	2 conduetors 1		
25	89641944	1	Enit engle TS15			
26	32475099	3	Traad rofing scriow CEM 4X 12		St-TX A2F	DiN 7500
27	83704844	,	Cabie gide		STX A2F	D-1.750
27	83704744	1	Cable guide 19100 B-Dikio			
28	31892499	2	Haxsocket cyfind. screw M 5×16	Mott 90	10.9 A2F:L	
28	32147999	2	Hexsocket cytrciscrew M 6×16	Mot. 100	10.9 A AFEL	DIN 912
29	34387344	2	Screw locking dovice M 5	Mot 90		
29	34387444	2	Screw bockng device M6	Mot. 100		
30	83604944	1	Elow piece cabte tray GR1	Miot. 90		
30	83704944	1	Elbow piece cable tray Gr. 2	Mot. 100		
31	05480684	1 1:	O-ing $46 \times 2,5+0.08$	Mict. 90		
31	00988684	1	Oing $58 \times 2,5+-0,08$	Mot 100	Perturan	$\text { DIN- } 3771$
34	83615044	1.	Seat catte guida	Motor side		
35	83755344	\pm	Cower socuing sat. DK10,16,20			

22251009.48

Electrical components

Contactor control

Electrical components Contactor control

Limit switch for the upper and lower hook position

1/1 reeving

Limit switch for the upper hook position

tem no.	Part no.	Quantity	Doskignation	Matartar	Standard
1	63776944	1	Limit switcting set OK10		
3	34087999	1	Pressure spring 3,6 $\mathbf{3} \mathbf{3 6 , 4 \times 1 5 5}$		
4	. 83728644	2	Cut-out sleve DK10		

22251011.01

Limit switch for the upper and lower hook position

Hem no.	Part no.	Quantity	Destynation		Material	Standard
1	83778344	1	Limit swithing set OK10	Basic sel		
2	83778244	1	Limut switching set DK1016	Supp. set		
3	34087999	2	Pressure sping $3,8 \times 36,4 \times 155$			
4	83728844	4	Cut-out sleeve DK10			
5	83800654	1	Chain collector box OK10-20GR. 5	max. chain length 17 m		

Limit switch for the upper and lower hook position $2 / 1$ reeving

Limit switch for the upper hook position

83778344	1	Limit Switching set DK 10
34087999	2	Pressture spring $3.6 \times 38.4 \times 155$
83728644	4	Cut-out sleave DK10

$\begin{array}{lll}83728644 & 2 & \text { Pressurre spring } 3.6 \times 38,4 \times 155 \\ & 4 & \text { Cut-out stove DK10 }\end{array}$
22551013.46

Limit switch for the upper and lower hook position

Hemino.	Peatino.	Ouantity	Designation		Materala	Standaind
1	83778344	1	Limit owitching sot DK10	Basic sat		
2	83778244	1	Limit sivitching sät DK10.16	Supp. set		
3	34087989	3	Pressure spring $3,6 \times 36,4 \times 155$			
4	83728644	6	Cut-out sleeve .DK10			
5	83806544	1	Chain collector box DK10-20GR. 5	max. chain length 17 m		

Reinforced M24 x $1: 5$ cable sleeve insert

Hand chain drive for HU 11 DK/HU 22 DK trolley

Standard headroom monorail hoist Trolley RU 6 DK

Suitable for Demag chain hoist DKUN 10-500, 1/1 reeving

SWL 700 kg

Flange width $58-300 \mathrm{~mm}$

Hemno.	Part no.	Quantity	Designation		Material	Standard
1	83963444.	1	Ir,untr,whicylw/o crosso R R 8	chwitem 3		
2	63963244	1	Triuntriwh coniwho crossb. Ruf	c/w them 4		
3	8396144	2	Side plate PUCDK	civ tems 6, 8, 16		
4	83963044.	2	Sice plate truwh.con.w/o geer rim.	chiv lems 6,9, 16		
5	83963944	1	Crossbeam PU 6. Fib. 58-90	ciwitems 10.13		
5	83964044	1	Crossbeem RU 6. Fo. 91-143	Cwiterns 10-13		
5	83952044	1		awiters $10 \cdots+2 ; 14$.		
5	83952144.	1	Crissbeam RU 6. Fbiset-300	Ow iterns 10-12; 14		
6	03970944	2	Bush 17,1×32 $\times 0.6$			
7	36822399	1	Grooved bail bearing 620327		Wer-st	DIN 625
8	03983844	2	Codundical trwheel 65.15PK OZ	cowitisin 7		
9	83563544	2	Conical travel whoet 85.15 PKOZ	c/witem 7		
10	33468699	2	Hexagonal mut M20 X1,5		a A2F	DIN 980
1.1	56312444	10	Wastier $20,3 \times 30 \times 4$	F. W. 58-90		
11	56312444	16	Washer $20,3 \times 30 \times 4$	F. W. 91-143		
$1: 1$	56312444	16.	Washer $20,3 \times 30 \times 4$	FI. W. 144-200		
11	56312444	28	Wastrer $20,3 \times 30 \times 4$	F. W. 201 - 300		
12	83963744	1	Tube $30 \times 4.5 \times 77$	F. W. $58-90$		
12	83963844	1	Tibe $30 \times 4.5 \times 110$	A.W. 91-143		
12	83951244	1	Tube $38 \times 9 \times 163$	A. W. 144 - 200		
12	83951344	1	Tube $38 \times 8 \times 220$	F: W. 201-300		
13	34248890	2	Pretaining ring 30×2	A.W. 53-143	Fedst	DiN 471
14	34248498	2	Fetaining ring 3ix $\times 2,5$	F. W. $144-300$	Fedst	ONN 471
16	83961744	1	Capacity plate 700 KG			
17	32141099	2	Hexs socket cytind.screw M 8×20		10.9 A2FIL	OIN 912
18.	83973744	1	Current collecior tube 400			

22251015. .ta

Standard headroom monorail hoist Trolley RU 11 DK SWL 1350 kg

Suitable for Demag chain hoist
DKUN 10-800/1000/1250, 1/1 reeving
DKUN 10-500/630, 1/1 and 2/1 reeving

Flange width 58-300 mm

Standard headroom monorail hoist Trolley EUU 11 DK
SWL 1350 kg

Suitable for Demag chain hoist DKUN 10-800/1000/1250, 1/4 reeving DKUN 10-500/630, 1/1 and 24 reeving

Flange width 58 - 300 mm

Trolley RU 22 DK
SWL 2600 kg

Suitable for Demag chain hoist DKUN 10-500/630/800/1000/1250,
1/1 and 2/1 reeving

Flange width 82 - 300 mm

ftemno.	Partino.	Quantily	Desigpation			Material	.	Standard
1	84011344	1	Tr.entrwhlurivwio crosgo, RU22	cowitem 2				
2	84011044 .	2	Sido plate trviwh urivwio gim.	ciwiterns 4,5				
3	83955644	1	Crosbbem PU22, FD. 62 -143	CNu ftems B-11				
3	83965744.	1	Crossboern Pue2 Fb. 144-200	cwitems 8-11				
3	B3955844	1	Crossbearn PLJ22. Fb. $201-300$	cowitems 8-11.				
4	83964744	1.	Capecity plate 2600 KS					
5	84016044 .	2	Unversat tratel whoel 112 1SPK OZ	chwitems 6,7				
${ }^{8}$	84017244	1	Bush 30,2X 33×17.4					
7	38822699	1	Gropved bell beering 620822			Whz-St		DNA 625
8	33468799	2	Hevagonal nut M30 $\times 2$			8 A2F		CAN 985
9	50222044	19	Whasher $35,5 \times 60 \times 4$	\%ค. W. $82=143$				
9	50222044	16	Washer 35,5x $50 . \times 4$	FI, W: 144-200				
9	50222044	27	Waster 35, $5 \times 50 \times 4$	F. W. 201-300				
10	83955044	1	Tubig $51 \times 7,1 \times 109$	FI. W. 82 - 143				
10	83955144	1	Tibe $51 \times 7,1 \times 174$	ค. \dot{W}. $144-200$				
10	83955244	1	Tibe $51 \times 7.1 \times 230$	FI. W. 201-300				
11.	34244299	2	Retaring rimg 52×3			Fectst		DiN 471
14	32141099	2	Hexsocket cyndiscrew M 6×20			10.9 AOFIL		DiN 912
15	63973744	1	Current collector tubio 400					
30	56334044	1	Crossbeem RU10PK Fib.144-200	c/w items 31-33				
30	56344544	1	Crostheern RU10PK Fib,201-300	cwiterss 31-33				
31	34243599	2	Retairing ring $35 \times 2,5$			Fodst 14		QN 471^{\prime}
32	34351499	2	Shim 35x $45 \times \mathrm{y}$			St2k50		DN 988
33	56334644	1	Pin $35 \times$ X4,5 Nut					

Standard headroom monorail hoist
Trolley EU 22 DK
SWL 2600 kg

Suitable for Demag chain hoist DKUN 10-500/630/800/1000/1250, 1/1 and 2/1 reeving

Flange width $82-300 \mathrm{~mm}$

Hemin no.	Part no.	Quantity	Destranation		Materlat	Standard	
1	84011444	1	Trun tr.wiliuriv.w/o crossb. Etz2	Cowiterns 2, 8			
2	84011644	1	Side plate tiv.wh.univ.w/o grm	c/whems 4,5			
3	839956344	1	Crossbearn El22 Fh. 82-143	cowterns 12-15			
3	83950444	1	Crossbesm Eul2 Fib:144-200	ciw Items 12-15			
3	83950544	11	Crossbearn EU22 Fib,201-300	c/w terms 12-15			
4	83964744	$1:$	Capactiy plate 2600KG				
5	84016044	2	Universal trevel whioal 11215 CK OZ	ciw terms 6.7			
自	B4017244	1.	Bush 30,2X38 $\times 17,4$				
7	36822699	1	Grooved ball bearing 620022		West	DiN	625
8	84011744	1	Side pate triwth.üviwigear im	Ofw itan 9			
9	64017044	2	Universal tratil wheol 112 1SPKC MZ	cow taris 10, \%1			
10	36822699	1	Grooved bai bearting 620627		Wz-St	DiN	825
11	84017344	1.	Busin 30,2X $38 \times 23,2$				
12	33468799	1.	Hexagonal fut M30 $\times 2$		B. A2F	DIN	985
13	50222044	19	Washer $35,5 \times 50 \times 4$	ค. W, $82-143$			
13	50222044	17	Washer $35,5 \times 50 \times 4$.	F. W. $144-200$			
13	-50222044	28	Wegher $35,5 \times 50 \times 4$	F. W. 201-300			
14	83955044	1	Tube $51 \times 7,1 \times 109$	F. W. $82-143$			
14	83955144	1	Tube $51 \times 7,1 \times 174$	F. W. 144-200			
14	83955244	1	Tube $51 \times 7,1 \times 230$	F. W. $201-300$			
15	34244299	2	Fetaining-ting 52x3		Fedst	DEN	471
18	83973744	1.	Curemt collector tube 400				
19	. 32141098	2	Hexsocker cytind 9crew M 8×20		10.9 A 2 Fl	DiN	912
40	83976844	1	- Crossbeam EU10/22Fto 144-200	c/w iterms $41-43$			
40	83976944	1	Crosstuarn E $10 / 22 F 6,201-300$	CAW Herms $41-43$			
41	34243599	2	Rotaining ring $35 \times 2,5$		Fedst IL	DIN	471
42	34351499	2	Shim $35 \times 45 \times 1$		StekSo	Din	988
43	56334644	1.	Fin $35 \times 84.5 \mathrm{Nut}$				

109011/99d'क्यlsezz

Travel drive PKF 13/3 and PKF 13/6

Bridge

Low-headroom monorail hoist RK/EKDK

Bridge

Low-headroom monorail hoist RK/EKDK

Hemmo.	Part no.	Ouantity:	Dosiqnation		Material	Standard
1	83945144	1	Longiturimed girdor DK10-	siza 22, c/w iterns 2. 3, 5-16		
1	83942544	1	Longituchnad ginder DK10	size 11, Cow iterns 2, 4-16		
2	15048999	4	Hexagonas screw M12 $\times 80$		8.8 ARF	150 4014.
3	83986544	1	Sol-eblyring bearing KDK GR. 22			
4	83084544	1	Seft-aigring bearing KiLK GR. 11			
5	33461244	4	Lock mat VM12		8 A2F	DIN S80
6	34250399	1	Fetaining ith 25×2		Fedst il	ON 471
7	34142499	5	Shim 25x 35×1		St2k50	DNT 988
8	83717146	1	Pin $25 \mathrm{H} 5 \times 78$ Nut			
9	34503399	1	Sptit sleeve 5×36		ST	150-8752
10	34034199	2	Waster $26 \times 44 \times 4$		100HN A2F	DiN 128
11	34349899	2	Supporting plate $25 \times 35 \times$?	-	Fedst	DN 988
12	89788044	1	Retim sheave $7.4 \times 21.2 \mathbf{z 5}$	Neede-rulier assembly, $z=5$		
13	339664999	8	Strain washer $13 \times 28 \times 3$		Fedst	DN 6796
15	83993844	1	Fotaining plate. 7×21			
16	83993444	1	End brackat 7,4×21;20ikio			
17	97820644	2	Butter - $50 \times 20 \mathrm{M10}$ SHP			
18	33461044	2	Lock nut VM10		8 A2F	CON 980
19	83761044	2	Setbon 16H11 1100 Nut			
20	34287744	2	Seçurng clp SL. 16 SXN08			
21	89774044	,	Hock fitings DK10	1/1, see Page 12		
22	89780144	1.	Bottom' block "DK10 1CM RUD:	2/1, see Pexge it		
24	83717844	2	Spring ctp fasterer $7.4 \times 1,2$	2/1.		
25			Travel drive PKF 13/3 and 13/6	seeppage 28		

$225510 c 0$

Low-headroom monorail hoist Trolley size 11 RKDK Flange width $91-300 \mathrm{~mm}$

Suitable for Demag chain hoist DKUNT $10-300 / 1000,1 / 1$ reeving DKUN 10-630, 1/1 and $2 / 1$ reeving

Trolley A

Item no.	Part na.	Quantity	Designation	Miatertal	Standard

1	84010344	1	Triuntrwidunviw/o croseb. RU71	cowntem 2			
2	84010844	2	Side plate trwwhLunlvw/o g.din	chw herni 4.5			
3	83996844	1	Crussteam RKDKK10 Fb. 91-143				
3	83590644	1	Crossbearm FKO 人10 Fb.144-200.	chw items B - 11. 13.			
3	83997044	1	Grussbearn PKOK10 Fin-201-300	c/w iterris 8 - 11, 13			
4	83862744	1	Cepacty ptate 135014				
5	84014044	2	Universal trivel wheel 80 1SPK OZ	cwiteris 6,7			
6	B3970944	1	Collar packing stome				
7	36820499	1	Grooved bell bearing 62042		Wz-St	DIN	625
8	33460299	2	Hepicegional mut M24 X2.		8 A2F	DIN	885
8	54222444	18	Washer $24,5 \times 36,5 \times 4$	A. W. B1-143			
θ	50322444	14	Washer $24,5 \times 36,5 \times 4$	F. W, 144-200			
θ :	56322444	30	Washer 24,5x 36,5X4	F. W. $201-300$			
10	B3993044	1	Tuta $32 \times 3,5 \times 113$	F. W. $91-143$			
10.	83993144	1	Tupe $32 \times 3,5 \times 166$	F, W, 144 - 200			
10	Egg93244	1	Tu6e $32 \times 3,5 \times 223$	A. W. 201-300			
11	34253290	2	Fretaining itng 32×1.5		FedSt	DiN	47.1
13	83953044	1	Pin cross beem Ruli	F. W. $91-143$			
13.	83958144	1	Pin cross beam Rilli	F.W. $144-200$			
13.	83958244	1	Pin cross beam FU11	F. W. 201-300			
14.	32141099	2	Hex socket cytind screw M 9×20		10.9 A2FE	DIN	912
15	83973744	1	Current collector tube 400				

2251021.1 M

Low-headroom monorail hoist
Trolley size $6 / 2 \mathrm{RKDK}$
Flange width 91 - 300 mm

Item no.	Part no.	Cuarity	Dealigration		Niateram	Standard
1	83963944	1		cownem 3		
2	B6394044	1		c/w tem 4		
3	83982544	2	Side plate PU 6-2. $\mathrm{M}^{\text {M }}$	c/whems 6, 8		
4	83982444	2	Side ptate trywhiconw/o geter rim	owiterns 6, 9		
5	83983344	1	Crosibeami FIKDK Fb. 91-143	Swillems 10, 12, 13	-	
5	83983444	1	Crossbeam PACKK Fib.144-200	chw terns 10, 12, 13		
5	83983544	1	Crossbeem RKOK Fib,201-300	ofw iterms 10, 12, 13		
6	83970844	1	Bush 17,1× $32 \times 9,6$			
7	. 36822399	1	Grooved bell bearing 620322		Whest	Din . 625
8	83963644	1	Oytucrical triwheal 65 1SpK OZ	6hwnem 7		
9	-83963544	1	Contal tratel wheal 65 1SPK O2	chwitern 7		
10	33468699	2	Hemegonal nut M20 $\times 1,5$. 8 A2F	DIN 985
12	. 56312444	18	Washer 20,30 30×4	F. W. 91-143		
12	. 56312444	18	Washer 20,3x 30×4	F. W. 144-200		
12	56312444	30	Washer 20,3x 30×4	F. W. 201-300		
13	63983944	1	FIn cross beam FU $\mathcal{C} / 2$	Fl. W. 97-143		
13	63963044	1	Pin cross bearn Pu $6 / 2$	P. W. 144-200		
13	83983144	1	Fin couss beam FU $6 / 2$	F.W. $201-300$		

Low-headroom monorail hoist Trolley size 22 RKDK

Suitable for Demag chain hoist DKUN 10-800 $1000,2 / 1$ reeving

Flange width 82 - 300 mm

Trolley A

..tem no. Part no. Ouantity Designation. Material Stardard

840113 84011644 83956044 83996144 83998244 83964744 84016044 64017244 36822680 33468799 50222044 5022204 50222044 83995544 83995644 83995744 83995444 83955344 83955444 83958344 32141090 83973744
$\frac{\text { Guarity }}{1}$

Cirrent oollector tubs 400
cowhem 2
owiterms 4,5
cowitems 日 - 11: 13
CWiterns $8-11$, 13
CAw itaris $B=11,13$
Chiteriss 6;7

Wz-St	DiN E25
$8 \quad$ AOF	ON 985

F. W. $82-143$
F. W. $144=200$

ค. W. $201-300$
ค. W. 82 - 143
F. W. $144-200$

FI.W. 20t- 300
ค. W. $82-143$
F. W: 144-200
F. W. $201-300$

Low-headroom monorail hoist Trolley size 11 EKDK
Flange width 91-143 mm

Suitable for Demag chain hoist DKUN $10-800 / 1000,1 / 1$ reeving DKUN 10-630, 1/1 and 2/1 reoving

Trolley A

41188045.aps

Hem no.
Past no: Quantity Dealgration

Standard

84010444 84010944 87995144 839837.44 64014044 83970044 36220499 840t0744 84015044 :3682,0499 83975944 33460299 50322444 83993044 34253299 83973744 32141099 83913044 30021144 34142699 08453344 93058944 30044044

Tr.un.tr.whiliunkiw/ocroses. 日ل11 Side pats trvwtilurww/o g.rm Crosstagam ECDK10 FB: 91-143 Cepercity ipláto 1350KG: Uhversel trevel whoal 501 SPK OZ Coliar packing sleove Grooved tial bearing 6204 Z Side plate tw.whlurw.w.geer rin Universal travel wheed 86 1SPKMZ Grooved bet bearing 6204 2 Collar packing sleeve EUII Hexiggonal inut M24 $\times 2$ Wastyer $24.5 \times 36.5 \times 4$ Tube $32 \times 3.5 \times 113$ Reteining ring $32 \times 1,6$ Curtent coniactoritube 400 Hex.sockat cyfrd.scrow M B X 20 Supporting roler urit Supporting roig Urit
Locx screw M 0×25 VB.FIPP Shtio $10 \times 16 \times 0,5$
Trivel wheel 44
Safety ctamp 7
Lockinit M6 VB.RIPP

Chw therns 2, B
cow homs 4; 5
ow items $12 \cdot+5,32$
CAN iterns 6, 7.

Low-headroom monorail hoist
Trolley size 6/2 EKDK

Flange width 91-143 mm

Trolley B

Hemno.	Part no.	Quantity	Destgnation		Metariad	Standard
1	83983944	1	Trunitrutlicyl.w/o crossb, RU 6/2	cowitem 3		
2	83984044	1	Tr.un.twhl.cori.w/o crossb. RU ES_{2}	owntem 4		
3	83982544	2	Side pate PUJ $6-2 \mathrm{ZML}$	chwems 6 , 8		
4	83982444	2	Side plate ituwilicon w/o gear rim	cow thens 6,9		
5	83983344	1	Crossboam RKCK Fib. 91-143.	c/w limme 10, 12, 13		
8	83970844	1	Bush. 17,1× $32 \times 9,6$			
7	36822399	1	Grooved bell bearing 6203 22		Whast	DN 625
8	83983644	1	Cytudrical trwheel 651SPK OZ:	c/w Hem 7		
9	83983544	1	Conical travel wheel 65 1 SPK OZ	cowitem 7		
10	33468899	2	Haxagonal mut $\mathrm{M} 20 \times 1,5$		a A2F	DIN 885
12	56312444	18	Wesher $20,3 \times 30^{\circ} \times 4$			
13	89982944	1	Pin cross beam RUe 2			

Low-headroom monorail hoist
 Trolley size 11 EKDK
 Flange width $144-300 \mathrm{~mm}$

Trolley A

Hem no. -	Part no:	cuantity	Desigrration			Material	Standard
1	84010444	1		cin items 2,			
2	B4010844	1	Slide plate truwhlumiliw/o g.rim	cow itoms 4,5	-		
3	83895244	1.	Crossbeam ECDK10 Fb. 144-200	cow items 12-15.			
3	83995344	1.	Crossbeami EKDK10 Fib $201-300$	chiterts 12 - 15			
4	83062744	1	Capacity plate 1350k6				
5	84014044	2	Universal traval wheol 80 1SPKOZ	chw itoms 6,7			
6	80970944	1	Colar pacting stave				
7	36820498	1	Grooved bail bearing 6204 Z		.	Wr-St	OIN 625
9	84010744	1	Sida plate trvwhluind.w.gear rim	owitem 9			
9	84015044	2	Universal travel wheel 80 1SPK MZZ	cow iteris 10, 11			
10	36820499	1	Growed bed beaning 6204 Z			Whe-St	DIN. 625
11	83975944	1	Cotlar packing sleeve: EU11				
12	33460299	i	Hexagonel nut M24 X2			8 ACF	DAN: 985
13	56322444	18	Waster $24,5 \times 36,5 \times 4$	f. W. 144-200			
13	56322444	29	Wesher $24.5 \times 36,5 \times 4$	R. W. 201: 300			
14	83993144	1	fube $32 \times 3.5 \times 166$	F, W. 144-200			
14	83993244	1	Tibe $32 \times 3,5 \times 223$	F. W. 201-300			
18	34253299	2	Retaining fing 32x1,5			Fedst	DIN. 471
18	83973744	1	Current coilector tube 400				
19	32141099	2	Hexsocket cyind.screw M $\times 20$			10.9 A2F!L	DIN 912
							22257

Low-headroom monorail hoist Trolley size 6/2 EKDK
Flange width $144-300 \mathrm{~mm}$

Troiley B

41180544,6ps

Itern mo.	Part no.	Quantify:	Destratation		Material	Stanctard
1	83983944	1	Truntruhlicyiw/o crossb. AU B/2	cwitem 3		
2	83984044	1	Triuritrwhlicoiniw/o crossb. RUI 6/2	Cowhem 4		
3	83982544	2.	Side plate RU6-2 CH	chitems 6, 8		
4	839892444	2	Side piate truwhiconiwio gear inm	Chw tems 6, 9		
5	83980444	1	Crossbearn PKDK Fb, 144-200	cw Hems-10, 12, 13		
5	83083544	1	Crosstoam FiKOK Fio.201-300	ow thems 10, 12,13		
6 :	69970944	1	Bush 17,1×32 $\times 9,6$			
7	36822399	1	Grocyed ball bearing 620327	*	We-St	DiN 625
6	83983644	1	CyEndrical trwheoa 651SPK OZ	c/witern 7		
9	83963544	1	Conical travel wheel 65 1 SPK O2	c/witern 7		
10	33468699	2	Hexagonal nut M20 $\times 1.5$	80 Nm	8. $A \dot{2}$	DiN 985
. 12	56312444	18.	Washer $20,3 \times 30 \times 4$	F. W. $144=200$		
12	56312444	30°	Washer 20,3x 30×4	FI. W. $201-300$		
13	83983044	1	Prin cross beam RU' $6 / 2$	F. W. $144-200$		*
13	83983144	$\cdot 1$	Pin cross beeñ PUV $6 / 2$	F. W. 201-300		

22250027.女

Flange width $82-300 \mathrm{~mm}$

Hemin no.	Parino.	Quartity	Desigration		Materier	Standerd
1	84011444	1	Tr.unitr.wh.unk. w/o crossh. EJ22	cfwiterns 2,8		
2	84011644	1	Side plate trv,whlurikww/o girft	cwitems 4,5		
3	83996344	1	Crossbeem EKDK Fib. 82-143	chwlems 12: 18		
3	83996444	1	Crossbearn EKDK Fbo.144-200	chwitams 12-16		
3	83996544	1	Crossbeem EKDK Fbo.201-300	chwiterms 12-16		
4	83964744	1	Capacity plate' 2600kg			
5	84016044	2	Universed traval wheat 112.15 SFO Z	ciwiterns 6,7		
6	84017244	1	Bush 30,2×39 $\times 17.4$			
7	S6E22693	1	Grocved bell bearing 620027		W $\mathbf{W}-\mathbf{S t}$	Did 625
8	84011744	1	Side plate truwhluniviwgoer im	chiftern θ		
9	84017044	3	Univerged trevel wheel 11215 KK MZ	c/witerns 10, 11		
10	36822699	1	Grocved bell bearng ax06 27		Wh-St	- Din 625
11	B4017344	1	Bush $302 \times 38 \times 23.2$			
12	30468798	1	Hexagonal nut M39: X2		g A2F	DAN 985
13	50222044	21	Washer 35,5×50 $\times 4$	F. W. $82-143$		
13.	50222044	19	Washar 35,5x 50×4	F. W. 144-200		
13.	50222044	29	Washer $35,5 \times 50 \times 4$	FiW:201-300		
14	83996544	2	Tube $44,5 \times 4 \times 21,5$	F. W. 82 -1143		
14	83995844	2	Tube $44.5 \times 4 \times 54$	F. W. 144-200		
14	c B3995744	2	Ture $44,5 \times 4 \times 82,5$	F. W. $201 \cdot 300$		
15	83905444	1	Tube $44.5 \times 4 \times 48$			
16	83907744	1	Pin cross beam PLB. 82.143			
16	83908144	1	Pin cross beam FLB.144-200			
16	83908544	1	Pro grues beam fig.201-300			
18	83973744	1	Curent collector inbe. 400			
19	32141099	2	Hexsocket cyindscrew M8 $\times 20$		10.9 A2FHL	DAN 912

Low-headroom monorail hoist
Trolley size 11/2 EKDK
Flange width $82-300 \mathrm{~mm}$

Strain gauge carrier link ZMS 1250

1/1 reeving

22251030.410

Strain gauge carrier link ZMS 2500

 $2 / 1$ reeving

Drop stop fittings RU/EUDK

KBK 0, KBK 25, KBK 100

 Trailing power supply lines

Mannesmann Dematic AG
P.O. Box 67, D-58286 Wetter

Telephone (+492335) 92-0, Teletax (+492335) 927676
Internet http/i/www.dematic.com

Contents

Project-drafting and assembly instructions . 3
Project-drafting example 5
KKK 0 - rail and suspension fittings 6
KBK 0 - plastic cable trolleys 8
KKK 25 - plastic cable trolleys 8
KBK 25 - rail and suspension fittings 11
KBK 25 - steel cable trolleys 15
KBK 100 - rail and suspension fittings 18
KBK 100 - plastic cable trolleys 21
KBK 100 - steel cable trolleys 23
KKK 100 - heavy-duty cable trolleys 24
KBK $0 / 25 / 100$ spare parts 26
KBK $0 / 25 / 100$ project-drafting and price: calculations $\quad 28$
Selection criteria, project-drafting example, component parts, assembly instructions, spare parts, price calculation.

For supplying power to mobile equipment, particularly hoists and cranes, three trailing: cable systems are available:

1) 3 keg with snap-on cable holder

The cable trolleys run inside the rail section and are this protected from damaging Influences. They can be used for the flexible routing of flat and round-section cables.
The cable trolleys are suitable for carrying hoses, electrical or pneumatic. tools, for quickly changing the positions of lamps etc:

Project-drafting and assembly instructions

Project-drafting and general assembly For profect-drafting of hoisting installations up to 1000 V rated voltage, the relevant instructions: electrical regulations acc. to VOE 0100 , part 726 (hoisting equipment) must be followed.
The permissible inner bending radius for cables must be adhered to:
\therefore : Bables up to 8 mm externol diameter/thickness: $3 \cdot \mathrm{D}$.
$=4$ cables up to 12 mm extema diameter/thickness: $4 \cdot \mathrm{D}$,
\therefore, cables above 12 mm extemad diametei/thickness: $5 \cdot \mathrm{D}$.
: D = thickness of filat cables or outer diameter of round-section cables.
Afanimiber of flat ciables are lald on each cable trolley, it must be ensured that the
\therefore a thickest cable is on the top. The cables should not be strapped together at the bot: tom of the lóop.
The length of the cable lofps (or cablo trolley spacing) must be sufficient to allow the trolloys to be pushed together easily withoit pressure, even if the cables are compar-

- atively stif or if a number of cables are laid on top of each other:

The lergth of track sections holding accurnudated cable trolleys must be calculated on
the basisof the cable's permissible bending diameter and the number of cables.
E Each of these track sections must be supported by an additional suspension fitting.
The radis of curved tracks should be as wide as possible. The distance between

- individual cablettrolleys must aways be smaller than the curve radius. The cable troligys should be connected by strainer wires shoter than the cable itseff:
Th. is the track sectionsimust be fitted so that there is sufficient space on both sides to rule out the possibitity of the cable bumping against ratings or machinery etc.
In wither assembly instructions are giventin the sections describing the components.

For determining the cable conductor cross-section, see techinical datà sheet 20185744.

For cables, see tëchnical data sheet:201 56544.
For electrical installation materials see technical data sheets 20156644 and 20156844.

Determining the max distance between susperisiön fitings ivi

	KRK0*					КВК 25						
	Plastic cathe trobeys					Steal cable troleys						
						Plastic casle trolleys						
	Load per cable trolty (kg)											
	3	6	9	12	15	3	6	9	12	15	20	25
1	5.2	3.7	3.0	2.6	23	5,7	4.5	3,7	3,2	2.8	2,5	2.2
+. 2	3,7.	2.6	2.1	1,8	1,6:	4.5	- 3,2	2.6	2.3	2,0	1,8	1,6
3	3.0	2,1	1,7	1,5	1,3	: 3.7.	2.6	2,1	1,8	1,6	1.4	1,3
\% 4	2.6	1.8	1,5	1,2	170	3,2.	2,3	1.8	1.6	1.4	1.2	1,1
$4 * 5$	2.3	1.8	1,3	1.0	0.8	2.9	2.0	1.6	1,4	1:3	$1,3$.	1,0
6	2.1	1.5	1.1	0.8	0,7	2,6	1,8	1,5	1,3	1,2	1.0	0,9
	2,0	-1,4	1,0	0,7	80°	2,4	17.7	1.4	1.2	1.1	0.0	*
	1.9	1,3	0.9	-	\therefore	2,3	1,6	1,3	1,1	100	-	-
$\rightarrow{ }^{\text {a }}$	1.7	1.1	-	\therefore	-	2.1	1.5	1.2	1,0	0.9	-	-.
(10)	1.6	\cdots	-	\%	\%	2,0:	$-1,4$	t,1	0,9	-	-	-

n $\rightarrow \rightarrow$ For KBK 25, the maximum distance from foint to centre of suspension fitting is
${ }^{2} \mathrm{xt}^{2}=0,15 \cdot \mathrm{w}_{\mathrm{w}}$
*he For distance of jolnt from suspension fiting for $K B K 0$, see page 6 under "Track connecting clamp".

Fồ KBK 100, the maximurn distance from joint to centre of suspension fitting is $s t=0,15 \cdot t_{w}$
Calculation method for current supply cables:

Number of cable trolleys $=\frac{19 \mathrm{~m}}{0,8 \mathrm{~m}^{2} 2}-1=109^{\circ} \quad$ Selected: 11 cable trolleys

?
armatis
Loadingper cable trolley $=\frac{19 \mathrm{~m} \cdot 1,2 \cdot(142+0,35) \mathrm{kg} / \mathrm{m}}{1-1+1 \mathrm{i}}=28 \mathrm{~kg}$
Distance between suspension fittings as in tabie:

KBKO:	$I=1,6 \mathrm{~m}$
KBK $25:$	$\quad 1=2,0 \mathrm{~m}$

Max. distance of joint from suspension fitting for KBK 25: st: $=0,15 \cdot 2,0 \mathrm{~m}=0,3 \mathrm{~m}$ Solected: KBK 25 with $1 \mathbf{w}=1 ; 7 \mathrm{~m}$
Track section hodding accumulated cable trolleys:
Permissible inner bending diameter of thickest fiat cable $=2 \cdot 5 \cdot 1.4 \mathrm{~mm}=140 \mathrm{~mm}$:
External bending diameter $=140 \mathrm{~mm}+2 \cdot 14 \mathrm{~mm}=168 \mathrm{~mm}$

F4 -
Part no.

Components required for KBK 25 supply line:

4 straight sections, 5 m long (1) sträght section of 4 m cut from 5 m section)
98151544
n. $\because 3$ track connecting clamps it . 981520,44
2 track stop bolts 98112044
1 track end clamp : 98115144
12 "VR" type track holding brackets 98153544
11 trolleys for flat cable 98103044

KBK 0 - rail and suspension fittings

Träck section

Note for assembly:
'-
The end rails of a track are to ibe attached by at least two suspension fittings. On both sides of each rail joint, there must be two suspension fittings. Sub-sections of track are to be placed in the middle.
Curved sections are to be suspended from one suspension fitting near each conneciing ctamp and from one in the middle.
The instructions on page 3 must be followed when curved sections are used.
Fnish: atuminium

Descotation	Approce weight kg:	Pat no.
Staight section IG $=3000 \mathrm{~mm}$	$\therefore 2,1$	981.28844
Straight section IG $=4000 \mathrm{~mm}$	- 2,8	98123044
Straight section 16 = 5000 mm	3.5	98723244

Curved sections with a max. unroled length of 1 m and a radius of $1-3 \mathrm{~m}$ avalable on request.
Track sections with stove enamel finish to protect against acid atmospheres are àvail= able on request.

Track connecting clamp

The track clamp is used for connecting sections together and is clamped in a central position over the joint.
Short-type: only for connecting curved sections, to be arranged near a suspersion trating ary fat

Long-type can be arranged at any distance from a suspension fitting, but not for connecting curved sections.

Finish: gavanized

Desocription .	Approx: weight kg	Pat no.
Track connectirg clamp, tong:	: 0,23	98126844
Frack commecting clamp, short	0:14.."	981.2584

Track stop bolt
K

KBK 0 - rail and suspension fittings

Track endiclamp

Finish: galvanized
Clamping plate: plastic;black

4
4. 5\%

*
Movable limit stop

KBK 0 - plastic cable trolleys
KBK 25 - plastic cable trolleys

Flat cable trolley with snap-on cable holder

Stirup with clamping plate

If the space over the clamping plate of the plastic cable trolley is not sufficient, a stirrup witha clamping plate is suspended from the clamping plate of the plastic cable trolley:
A number of hangers can be arranged one below the other. The total loading on the additional hangers must not be more than $5 . \mathrm{kg}$ (also; do not exceed max. permissible loading for cable trolley).

Finish: Stirup: gafvanized
Clamping plate: plastic, black

Description	Approx wough kg:	part $n 0$.
Stlimp with ctamping plate R25	00^{1}	081.02944
Stimp with clamping plate P 45	0,09	98047044

KBK 0 - plastic cable trolleys KBK 25 - plastic cable trolleys

Cable trolley

Finish:- Fràme and clamping plate: plastic, black, Stirup: galvanized
Axle with ball beanings: steel

- Travel wheels: plastic, neutral colour

Temperature range $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Resistant to mineral lubricating oils and greases, petrol and alkaline sotutions.
ximited resistance to trichloretrylene; carbon tetrachioride and acids. Avoid direct suinlight.
Travel speed: up to $63 \mathrm{~m} / \mathrm{min}$. Higher speeds are possible with reduced loads and shörter opereting periods (max $100 \mathrm{~m} / \mathrm{min}$).

Towing trolley

For towing the current supply cable.

Trolleys for pendant control switch and $16 / 24$-pole plug-and-socket device

Finish: gâkanized
Trofleys same as cable trolley, seepage:5:

a Desorption -	- Approx weght kg	Pat no.
F. Trobeys tor pondant control switcti and plug-aind-socker device	\cdots \% 0,06	981.41544

Trolleys for pendant control switch which can be used with a 16 or 24 pole phog-andsocket device.

Spring-loaded friction pads prevent the trolleys fromiruning back uniritentionally:
The detachable holders to which the strain-relief parts are fitted make it possibie for a defective pendant control switch to be rapidly exchanged together with its control cable.
 device forpendant controls

thepole plug-and-socket device, which can be
switch, oonsisting of an upper and lower part. L Lower part complete with socket and wo eg 21 cable:outlets.
Upper part complete with plug, doublo-sided locking ciamp and straight Pg 21 cable outlet:
For twist-type cable entry glarid and screw-in union for cable entry, seet technical data sheet 20156544.
24-pole plug-and-socket device on request.
' Fintish: AlS clie-cast housing

$2,5 \mathrm{~mm}^{2}, 16$ poles +PE (earth), rated voltage: $380 \mathrm{~V}-$, rated current: 16 A , insulation group: C to VDE:0110, type of enclosure IP 55 to DAN 40050.

KBK 25 - rail and suspension fittings

Track section

Note for assembly:
The end rails of a track are to be attached by at least two suspension fittings. On both sides of each rail jöint, theré must be two suspension fittings. Track subsections are to be placedin the middle.
Cuirved sections are to be suspended from one suspension fitting near each connecting clamp and form one in the middie.
The instructions on page 3 must be followed.

- Finshi galvanized .

Description $\quad \cdots \quad{ }^{\text {at }}$	FApmox weight kg:	Part no.
Straght section $\mathrm{C}_{6}=5000 \mathrm{~mm}$	872	98151544
Curved section $90^{\circ} ; R=750 \mathrm{~mm}{ }^{\text {a }}$	117	98150644
Cirved section 900 R , 1000 mm	${ }^{-7 x}$ I 2,26	98150744
Curvod section, $900,8=1500 \mathrm{~mm}$, 3,39	98150844
\%		

Track connecting clamp
41463844.eps

Note for assembly:
The track sections are firmly connected owing to the frictional force of the track contnecting camp: The track sections are additionally protected against being drawn apart'as follows: using'a pair of pliers (approx. 5 mm wide), bend up the top ends of the sections being joined with a track connecting clamp about 2 to $\$ 3 \mathrm{~mm}$. These bent-up ends are held in a groove in the connecting ctamp.

Finishi: galvanized

| | Acorox. welght kg | Per no. |
| :---: | :---: | :---: | :---: |
| Description | 0.3 | 98152044 |

2. . . .
 fittings.

KBK 25 - rail and súspension fittings

Suspension fitting

Finish: galvanized
Square dowel: plastic, black

Description	Max. iosoing	Approx. weghtikg	Parino:
W Whpo bracket	150 kg	0,11	981530.44
atre type brickat.	150 kg	0, 14	881535.44
Or type bracket	150 kg	0.16	981540.44
* 4, ب-C top tracket	150 kg	0.17	98154544

Track end clamp

KBK 25 - rail and suspension fittings

Note for assembly:
The stop bolt is fitted in the trackbetween the end clamp and the first cable trolley. As'a result; the cable trolley is prevented from nuning into the end clamp.
F. Findsh: galvanize

Dlameter of hole: 9 mm

Description * :	Approx weight kg	Part no.
Track stop bolt ${ }^{\text {a }}$	4 0,06: 4	98112044

E
Track stop bolt

Movable limit stop

Cablectlip

Cable deflector

For preventing cable loops in track sections, where cable trolleys are accumulated, from striking against adjacent objects.

Cable trollèvs

Towing trolleys

Trolleys for pendant control switch and 16/24-pole plug and-socket device

Finish: gatvanized Steel travel wheels, antificiction bearings:
6.2 mm dia hioles are provided for strainer Wires.
Temperature range: see data for cables selected.
Travel speed up to $63 \mathrm{~m} / \mathrm{min}$: Higher speeds are possible with reduced loads. and shorter operating periods (max.
$100 \mathrm{~m} / \mathrm{min})^{\prime}$.

Description	Max. foacing	Approx weight kg	Pat no.
Cable trotiey for tax cabla:			
1) with 25 mm ractus	25 kg	0.29	$\xrightarrow{98165044}$
2) with 45 mm radius	25 kg	0,35	98155144
Figida	25 kg	0,29	198157044
Cable troney for			
one noundsection catie	25 kg	0,27	98156044
two roundsection cables	25 kg	0,34	80156144:

Finish: galvanized
Trolleys same as cable trolley the; above.

Descriptont	A Aprox: weigit kg .	P Pat mor
Towing trolleys	, 1, 1.4	981.576'44.

For towing the current supply cable.

Finish: gatvanized
Trobleys: same as cable trolley, see above

Description	Approx. weight kg.	Part no.
Trodeys tor pendent control switch and	1,25	381,58044

Trolleys for pendant coontrōl switch which can be used with a 16 or 24pole plug-and-socket device. Spingloaded friction pads prevent the trolleys from running back unintentionally: The detachable holders to which the strainreliet paits are fitted make it possible for a defective pendant control switch to be rapidly exchanged together with - its control cable. The plug-and-socket device must be ordered separately. see page 10.

Straight section

The track sections have three coupling sleeves at each end of being boited together or for fiting the end cap with end stop.

Curved section
Curved sections are to be suspended from one suspension fitting near each track joint and from one in the middle.
Finish: red (RAL 2002) - -

"Ange of curve \vdots a			Approx. wibght kg	Part
30°	1 4588	-8325\%	1.4	$99467 \dagger 44$
60°	325	563\%	2,8	98467244
- 7 - 900°	- ${ }^{-650}$	- - - -650"*	4,2	984-873 44

Joint bolt set

The joint bolt set is used for connecting the track section (track joint).
Finish: gavanized

Description
Joint bott set, completa

Track end clamp

The end clamp is fitted to the cap with stop at the end of the track.
The purpose of the end clampis to relleve the cable of strain: This clamp ensures that the cable is carned to the next connecting point without pull.
If cables wider than' 52 mm are laidand/or if the stop boll (see page 16) is used, the
, end clamp shown on page 19 must beemployed.
Finish: galvanizad
Clamping plate: plastic, black

Description	Approx. weight kg	Part no.
Track end clemp	0.1	$982: 11444$

KBK 100 - rail and suspension fittings

Suspension fittings fôr current supply:line

Parts for fitting " D " and "W type brackets to be provided by customer or available on request: For mounting with C rails, see technical data sheet 20175844.
Finish: gavanized

Wh type track holding bracket, comprsing:

Al dampange section	150 kg	0,7	98465644

1) Nole loactabdity of C rall.

End cap with end stop

Finish: Cap with bolts: gakanized, end stop: mubber..

Descripion	Appirx wedit kg	Pain no
End cep with end stop	0,1	08454044

The end of the track is closed by means of the end cap with end stop.

Track stop bolt

Stop at end of track, if an end section mușt be shotened (and the bot hoiding sleoves removed); otherwise use end cap with end slop.
Diameter of holes 11 mm , ${ }^{2}$
Finish: Nut and bolt galvanized
Buffer Vulcollan

Description		Approx. wetght kg	Part no.
Track end ctamp	0.07	884670.44	

KBK 100 - plastic cable trolleys

For a flat cable trolley with snap-on cabie holder the following parts must be ordered separatery:

1. Trolley for cable holder
2. Snap-on cable hodder
3. Cable strap $340 \times 8 \mathrm{~mm}$ for cable holder

Sequence of assembly operations:
Surn tily operaki.

- Pass cable stap (3) through the two slots in the supporting plate of cabie holder (2)
- Distribite cable holders (2) atequal distance over the entire cable length.
- Place cable strap (3) over the cable on each holder (2) and firmly tightent the strap.
- Snap cablé hoddoŕn (2) onto trofley (1).

See top of page 8 for further assembly instructions.
Finish: plästic, black

- Axte with bita

Travel wheels:
Technical details see trolley in the next section.

Description	Max, loading	Approx, weight kg	Pert no.
Cable troley	25 kg	0,2	98046044°

KBK 100 - steel cable trolleys

Cable trolleys

-Finish: gavanized 3

- Sterit travel wheels, entifriction beamgs.
$\because 6.2 \mathrm{~mm}$ dia holes are provided for strainer wires.
Temperature range: see data fó cables selected.
Travel speed up to 63 m/min: Highier spoeds are possible with reduced loads and shorter operating periods.

Description $\quad . \quad$	Max loading	Approx weghtir k.	Payt no.
Cable trolloy for fat catre			
1) with 25 mmiradus	40 kg .	$\therefore 0 ; 29$	98460544
2) with 45 mmi ratu	40 kg	0.35	$984606^{\prime 4}$

For towing trolley see page 19 Trolleys for pendant control switch on request.

KBK 100 －heavy－duty cable trolleys

Flat cable trolley

Finish：gativanized
Plastic travel wheels，antitiction bearings
10 mm dia．holes are provided for strainer wires．
These cable trolleys cannot negotiate ctives．
－2y Temperature range． $20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ．
－务
with reduced loads and
\therefore 为家

Description ．－－－－	－Maxitoadryge	Approx：waight kg	Part no．
Flat catio trolley	$-400 \mathrm{~kg}$	1.5	98465044 ：

Track end clamp

The end clamp is fitted to the end of the track to relieve the cable of strain：This clamp ensures that the cable is carried to the next connection point without pull． The end of the track is closed with the end cap complete with end stop（see page 16）．

Towing trolley

Plastic traver wheels, antifiction bearings
Operating conditions as for flat cable trolleys, see aböve.

For towing the current supply cable.

Part no.

98104544
98101844
98101944
98102044

98102544
98103344
98103444
98046844
98140344
98140444
98141444
98138144

98155244
98156344
98156444
98155844
98157744
98156244
980.46844

98155744
98157144
98459344
98140444
98141444
98138144

98046144
98103344
98103444
980.468 .44

984:607:44
98156344
98156444
98155844
98157744
98156244
980468.44
"981 55744

KBK 0 / 25 / 100 project-drafting and price calculations

Customer.

Gustomer no.:
Project/order no: \qquad

Cross travel power supply cable, KBK
Mobile pendant control switch, KBK
Long travel power supply cable,"KBK
tot power supply cable, approx

$$
4
$$

\qquad m.

For sketch of cable arangerient, seepage 15 :
Processed by, (name/dept): \qquad Date: \qquad $\frac{\text { trating power }}{\text { Trailen }}$

Total cost

Trạiling power
 supply cables

Tótal cost

1) Enter the price of the standard length rounded up to the toll meter.

Certificate of Test and Examination

$$
\begin{aligned}
& 4078
\end{aligned}
$$

;

[^0]: Enclosed BTS

[^1]: Note: A special generator T_{1} setting adjustment of $1-5 \sec \left(a t I_{1} \times 600 \%\right)$, is also available. Please contact NHP for details.

[^2]: Notes: ' ${ }^{1}$) Standard torque for the terminal screws M3.5-0.88~1.18 Nm ($9 \sim 12 \mathrm{Kgf} . \mathrm{cm}$)
 ${ }^{\text { }}$) Connected cable size - Max $2.0 \mathrm{~mm}^{2}$

[^3]: Tables based on the following maximum pre-arching $1^{2} t$ for both BS 88 and DIN fuses:
 $160 \mathrm{~A}-0.62 \times 10^{5}, \quad 200 \mathrm{~A}-1.2 \times 10^{5}, \quad 250 \mathrm{~A}-2.1 \times 10^{5}$.
 Suitable fuses include NHP, GEC. Siemens and Brovara-Crady
 Fuses with higher current ratings may be used providing $I^{2} t$ values are equal to, or less than the levels above. Semi-conductor fuses have very low $1^{2} t$ values and may suit some applications.

 Attention is also drawn to AS 3000 clause 7.10.4.4 regarding the use of fault current limiters in installations containing fire and smoke control equipment, evacuation equipment and lifts.

[^4]: Notes: ') Thermal or electronic overload relays may be used.

[^5]: Notes: ') Thermal or electronic overload relays may be used.

[^6]: Notes: These motor circuit application tables are to be used as a selection guide for average 3 phase, 4 pole 415 V motors for standard applications only. The table is based on holding $\mathbf{1 2 5 \%}$ FLC continuously and 350% FLC for at leasl 20 seconds.
 ${ }^{1}$) 80,100 and 125 amp refers to Din-T10H type.
 ${ }^{2}$) Type 'SE' TemBreak MCCB only.
 ${ }^{3}$) TLIOONJ up to 100 A only.
 If co-ordination to IEC 947-4-1 is required refer to Type 1 and 2 co-ordination tables, contact NHP.
 Din-T MCB's are calibrated to IEC 898 Curve ' C ' 8 ' D '. Selected sizes of ' D ' Curve are available from stock. Refer NHP.

[^7]: Notes: These motor circuit application tables are to be used as a selection guide for average 3 phase, 4 pole 415 V motors for standard

[^8]: IP 20 degree of protection and safety trip ${ }^{1}$) are available for plug-in type breakers, for switchboard and distribution board use.

[^9]: - Normal CA 3 rating of contactor
 - Meximum breading currmat of contactor
 - Cut-off current of tuse

 I - Instiantanecus titpping current of breeker

[^10]: Notes: ') Use 'magnetic only' breaker. Refer NHP for details.
 ${ }^{7}$) Thermal or electronic overload relays may be used. Some combinations also achieve Type ' 2 ' performance. CA 7 contactor can be replaced with equivalent CA 3 size.

[^11]: ${ }^{1}$) Use 'magnetic only' breaker or next higher circuit breaker/contactor combination. Refer NHP
 ${ }^{2}$) Use with separate mounting bracket.
 ${ }^{3}$) Thermal or electronic overload relays may be used.
 Combinations based on the thermal overfoad relay tripping before the circuit breaker at overload currents up to the motor locked rotor current.

[^12]: Notes: ${ }^{1}$) Thermal or electronic overload relays may be used
 ${ }^{2}$) Use with separate mounting bracket.
 Combinations based on the overload relay tripping before the circuit breaker at overload currents up to the motor locked rotor current.

[^13]: Notes: These motor circuit application tables are to be used as a selection guide for average 3 phase, 4 pole 415 V motors for standard applications only. The table is based on holding 125% FLC continuously and 350% FLC for at least 20 seconds.

 1) 80,100 and 125 amp refers to Din-T10H type.
 ${ }^{2}$) Type 'SE' TemBreak MCCB only.
 ${ }^{3}$) TL 100 NJ up to 100A only.
 If co-ardination to IEC 947-4-1 is required refer to Type 1 and 2 co-ordination tables, contact NHP.
 Din-T MCB's are calibrated to IEC 898 Curve ' C ' \& 'D'. Selected sizes of 'D' Curve are available from stock. Refer NHP.
[^14]: Note: 240/415 V ratings suitable for use on 230/400 V in accordance with AS 60038:2000.

[^15]: 1) When ondering a rotor or stator, a set of thrust ings itern no. 12) must also be ordered for adjesting the eir gep
 6. (adjist with feeler gauge no, 2, them no. 38)
