

CASWELL STREET PUMP STATION
 MAINTENANCE AND: TNSTRUCTION MANUAL.

INDEX
A
B Matntenance program
C TEST REPORTS
D VARIABLE FREQUENCY DRIVE - FUJI. FRN PT
E FAULT TRIP UNIT - FUJI MCA11-GFD-2 SERIES
LEVEL DISPLAY TRANSMITTER-LIT 500 SERIES
LOAD BREAK SWITCHES - SPRECHER \& SCHUH LK SERIES
CIRCUIT BREAKERS - TERASAKI XS \& XH SERIES
MINIATURE CIRCUIT BREAKERS - TERASAKI DIN T SERIES
CURRENT TRANSFORMERS - CROMPTON780 SERIES
CONTACTORS - SPRECHER \& SCHUH CAI \& CA3 SERIES
PHASE FAILURE RELAY - CROMPTON PSGW SERIES
AMMETERS \& VOLTMETERS - CROMPTON 244 SERIES SELECTOR SWITCHES KRAUS \& NATMIER CG8 SERIES CONTROL RELAYS - ENAIL RH2B-U SERLES
CONTROL FUSES - GEC RS SERIES
FUSE CARARIDGES - GEC TYPE TEERES
CONTROL TERMINALS KKLIPPON SAK 4 SERIES
INDICATING LIGHTS \& PUSHBUTTONS - NHP DT3 SERIES INDICATING LIGHTS \& PUSHBUTTONS -ALAN BRADLEY 800 T SERIES
CONTROL \& STATUS MONITORING UNIT:- ITT FLYGT CAS SERIES
PROXIMITY SWITCHES - SCHMERSAL EN SERIES
LEVEL INDICATING SYSTEM - VEGA TYPE D37
LEVEL DETECTION SYSTEM - MULTIRODE
KENNEDY TAYLOR:(QLD) AS CONSTRUCTED DRAWINGS

ELECTRICAL CONTRACTOR

KENNEDY TAYLOR (QLD) PTY LTD 562 CURTIN AVENUE EAGLE FARM QLD $_{i} 4001$ TELEPHONE: (07) 2681082 (Al Hours) FAX:
(07) 2684121

SECTION A

SECTION B

MAINTENANCE PROGRAM

MAINTENANCE PROGRAM

The Main Switchboard will be subject to many varying conditions during their service life. For this reason it will be necessary to conduct maintenance procedures to ensure the reliability of this equipment.

Listed below is a brief list of major items that require regular maintenance to ensure the correct operation.

1. FUJI FRN 200 P7-4 210KW VARIABLE FREQUENCY DRIVE
2. FUSE SWITCHES
3. CIRCUIT BREAKER
4. CONTACTORS
5. CONTROL SELECTORS
6. FUSES
7. INDICATOR LIGHTS
8. MONITORING \& STATUS UNIT

Other items such as control relays, timers, transducers do not have recommended regular maintenance programme by the suppliers. To ensure that these items function correctly, it is recommended that the whole electrical system be put into full functional test every 12 months and this will ensure that these items will function correctly.

SECTION 1 FUJI FRN 200P7-4 210 KW VARIABLE FREQUENCY DRIVE Please refer to section D Chapter 9 of this manual for Manufactures recommended Maintenance Program.
SECTION 2 FUSE SWITCHES
These items of equipment also require minimal maintenance after the initial connection and cleaning. Once again it is recommended that a functional switching operation be performed once every 12 months. The unit should be opened to check if the correct fuse cartridges are fitted.

SECTION 3 CIRCUIT BREAKER
This item of equipment also requires minimal maintenance after the initial connection and cleaning. Once again it is recommended that a functional switching operation be performed once every 12 months.

SECTION 4 CONTACTORS
The contactors fitted to this board are of high robust design for a reliable operation. It is recommended that every 12 months the coil be removed and magnet surfaces be inspected and cleaned if necessary.

SECTION 5 CONTROL SELECTORS
The control selectors fitted to this board are of high quality and are extremely reliable. However to ensure proper operation of these items it is recommended a functional switching test be performed every 12 months.

SECTION 6 FUSES
It should be verified that fuse connections are tight and that the rating of fuses is correct.

SECTION 7 INDICATING LIGHTS
Indicating light s fitted to these control panels are of high quality manufacture and maintain a long lamp life out put under normal service conditions. To ensure a prolonged lamp life, it is necessary that the control voltage does not exceed 6\% it's normal voltage. Any excessive overvoltage shall rapidly diminish the lamp life of the indicators.

SECTION 8 CONTROL \& STATUS MONITORING UNIT
Please refer to Section U Chapter 8 of this manual for Manufactures recommended maintenance program.

BUSBAR SECTION AND JOINTS
Busbars and busbar chambers and busbar supports should be examined as is necessary practicable as noted in the following comments.
-The examination should include any dismantling required to enable connections to be inspected and any chambers cleaned.
-The examination should include a visual verification of all joints for signs of overheating or loose fixing bolts.

- All fixing bolts should be retorqued to ensure maximum efficiency of the busbar joint. Listed below are recommended torque settings for the fixing bolts used in the switchboard.

M8 - 22 Nm
M10 - 44 Nm
M12 - 77Nm
Cable terminations should be inspected for loose or overheated joints and remedied as necessary.

SWITCHBOARDS \& DISTRIBUTION BOARDS

Switchboards should be examined internally \& externally every 12 months.

- The internal examination should include removal of any internal covers to enable all connections to be inspected \& chambers cleaned. All connections should be checked to ensure they are tightened to recommended torque settings.

The external examination should include.
-Corrosion.
-Check seem welds.
-Chipped paint.
-Build up of dust \& grime.
-Clean \& polish as required.

SECTION C

TEST REPORTS

 \therefore

CHSINALL ST MAIN S/BOARD
MICRO OHM TEST TAKE AT STJE 7/10/93.

MIZRO OHM TEST TAKGO AT 5 ME $7 / 10 / 93$
(Consinu: 0)

AN ABOVR BRODINGS IM MICRO OAN'S.
iobbaken

Postal Address of Consumer:

Address where Electrical Work was Carried Out and Connected CASWELC ST SEWEAGO pumping station

DETAILS OF ELECTRICAL WORK THAT IS NOT REQUIRED TO BE INSPECTED by an installation inspector and that has been tested and connected

DEFECTS REPORTED BY AN INSTALLATION INSPECTOR AND REMEDIED BY THE ELECTRICAL CONTRACTOR

CERTIFICATE OF TEST AND CONNECTION

I certify that the electrical installation work listed above has been tested in accordance with the prescribed procedure and that such work complies in every respect with the requirements of the Electricity Act 1976.1988 and has been connected to the source of supply.

ERTIFJCATE OF TEST I certify that the electrical installation work listed above has been tested in accordance with the prescribed procedures and that such wo: complies in every respect with the requirements of the Electricity Act 1976-1989 and *is now ready for inspection by an Installation inspecic - metering changes are needed (* Strike out whichever is not applicable)

inspection report FORM 2A

\qquad -
Section II - Inspection of the electrical work revealed the following defects in the installation that has been connected to the source of supply. These defects are unlikely to cause fire or a person to sustain and electric shock and your Electrical Contractor has been advised that the installation does not comply in every respect: with the Act and it is his responsibility to remedy such defects.

MEN
Location ito be manhood

C 223.5 s
engin to be erected cavour and belau the carve 2 iC
 combined earthing. system is equesid to cornily coth C8:12.43 weir may begennected to the source or supply.

Earth Elected Resistance Test

Method.
Main Earth Electrode

Western Electrode Test
Meter type $D E T 3 / 2$. Earth mugger
\cdots Result 4.08Ω to earth.

Eastern Electrode Test
initio type Der 3/2. Earth meggar Result 3.94 s to earth.

Combined Electrode Test
Meter type DET3/2: Earth nagger:
Result. 0.25Ω to earth

Rob Killick.

$$
B \cdot C: C .
$$

Eagle Farm M.ヤE.

CASWELL ST. PUMP STATION
 TEST SHEET 26-10.93

INSULATION RESISTANCE

Noil. Pump.

$$
\begin{aligned}
R-E & =100 \mathrm{~m} 0 \mathrm{Hm} \\
W-E & =100 \mathrm{~m} 0 \mathrm{Hm} \\
B-E & =100 \mathrm{moHr}
\end{aligned}
$$

NO 2 Pump

$$
\begin{aligned}
& R-E=100 \mathrm{MOHN} \\
& W-E=100 \mathrm{MOH} \\
& B-E=100 \mathrm{MOH}
\end{aligned}
$$

N3. pump

$$
\begin{aligned}
& R-E=100 \mathrm{NOHM} \\
& W-E=100 \mathrm{NOHM} \\
& \mathcal{B}-E=100 \mathrm{NOHM}
\end{aligned}
$$

CASWELL ST PUMP STATION ELECTRICAL INSTALLATION												
ELECTRICAL CABLING TEST SHEET												
Origin	Inspection	Tests	Date	Cable Type	Cable No	Test Results	Destination	Tests	Name Plate Details	FLC	O/L Setting	Sign
							Field Device					
TX-1	Visual	I.R.	4/10	S1	T1-P1	$\mathrm{R}-\mathrm{W}=>100 \mathrm{M.Ohm}$	MCC					
		Cont.				R-B $=>100 \mathrm{M} .0 \mathrm{hm}$	INCOMER					
						$\mathrm{W}-\mathrm{B}=>100 \mathrm{~m} .0 \mathrm{hm}$	No. 1					
						$\mathrm{R}-\mathrm{N}=>100 \mathrm{M} .0 \mathrm{hm}$.			
						$\mathrm{W}-\mathrm{N}=>100 \mathrm{M} .0 \mathrm{hm}$						
						B-N $=,>100 \mathrm{M} .0 \mathrm{hm}$						
						$\mathrm{R}-\mathrm{E}=>100 \mathrm{M} .0 \mathrm{hm}$						
						$\mathrm{W}-\mathrm{E}=>100 \mathrm{M} .0 \mathrm{hm}$						
						B-E $=>100 \mathrm{M} .0 \mathrm{hm}$						
						$\mathrm{N}-\mathrm{E}=>100 \mathrm{M} .0 \mathrm{hm}$						
						-						
TX 2	Visual	I.R.	4/10	S1	T2-P1	R-W $=>100 \mathrm{M.Ohm}$	MCC					
		Cont.				$\mathrm{R} \cdot \mathrm{B}=>100 \mathrm{M} .0 \mathrm{hm}$	INCOMER					
						$W-B=>100 \mathrm{~m} .0 \mathrm{hm}$	No. 2					
						$\mathrm{R}-\mathrm{N}=>100 \mathrm{M}$.Ohm						
						$\mathrm{W}-\mathrm{N}=>100 \mathrm{M} . \mathrm{Ohm}$						
;						B-N $=>100 \mathrm{M} .0 \mathrm{hm}$						
						$\mathrm{R}-\mathrm{E}=>100 \mathrm{M} .0 \mathrm{hm}$						
					.	$\mathrm{W}-\mathrm{E}=>100 \mathrm{M} . \mathrm{Ohm}$						
						$\mathrm{B}-\mathrm{E}=>100 \mathrm{M} . \mathrm{Ohm}$						
						$\mathrm{N}-\mathrm{E}=>100 \mathrm{M}$. Ohm						
						\ldots						
TX-3	Visual	I.R.	4/10	S1	T3-P1	R-W $=>100 \mathrm{M.Ohm}$	MCC					
		Cont.				$\mathrm{R}-\mathrm{B}=>100 \mathrm{M} .0 \mathrm{hm}$	INCOMER					
						$W-B=>100 \mathrm{~m} .0 \mathrm{hm}$	No. 3					
						$\mathrm{R}-\mathrm{N}=>100 \mathrm{M} .0 \mathrm{hm}$						
						$\mathrm{W}-\mathrm{N}=>100 \mathrm{M} .0 \mathrm{hm}$						
						$\bar{B}-\mathrm{N}=>100 \mathrm{M} .0 \mathrm{hm}$						
						$\mathrm{R}-\mathrm{E}=>100 \mathrm{M} .0 \mathrm{hm}$						
						$\mathrm{W}-\mathrm{E}=>100 \mathrm{M} .0 \mathrm{hm}$						
						$\mathrm{B}-\mathrm{E}=>100 \mathrm{M} .0 \mathrm{hm}$						
	,					$\mathrm{N}-\mathrm{E}=>100 \mathrm{M} .0 \mathrm{hm}$						

SECTION D

VARIABLE FREQUENCY DRIVE

FUJI FRN 200 P7-4 210 KW

SUPPLIED BY: EMSBY EQUIPMENT PTY LTD 33 ACHIEVEMENT CRESENT ACACIA RIDGE QLD 4110
TEL: (07) 2742566
FAX: (07) 2742387

FUJI INVERTER

FRENIC5000G7•FRENIC5000P7 INSTRUCTION MANUAL

200V 30~90kW (G7 EXPORT SERIES) 30~110kW (P7 EXPORT SERIES)
400V 30~220kW (G7 EXPORT SERIES) $30 \sim 280 \mathrm{~kW}$ (P7 EXPORT SERIES)

Preface

Thank you for your purchase of Fuji Inverter FRENIC 5000G7/P7
Please note that the proper use in accordance with this manual can ensure your expectation on performance, the incorrect handing will result in improper operation causing the reduced service life and damages. Therefore, be sure to read through this manual before the actual use. On the other hand, when the equipment incorporating this inverter is due to be shipped, you are requested to promptly supply this manual to your customers without fail.

Table of Contents

Precautions 2

1. Check after Delivery 3
2. Carriage and Storage 3
2-1 Carriage 3
2-2 Storage 3
2.3 Neglect after Installation 3
3. Construction 4
4. Installation 6
4-1 Environment for Use 6
4-2 Direction and Space 6
4-3 Caution on Installing inside a Switchboard 6
5. Connection and Wiring 7
5-1 Terminal position and Connections at Shipment 7
5-2 Main circuit 7
5-3 Control circuit 9
5-4 Bracking circuit 12
6. Touch panel 13
6-1 Function and Configuration of Touch panel 13
6-2 Bacic operational procedure of Touch panel 15
6-3 Function selection and displayed data retrieval 16
6-4 Parameter setting 17
6-5 Fault display and Retrieval 19
7. Trial operation 21
7-1 Preparation for operation 21
7-2 Trial operation 21
8. Operation 22
9. Maintenance and inspection 22
9-1 Cautions in case of maintenance
and inspection 22
9-2 Daily inspection 22
9-3 Periodic inspection 22
9-4 Periodic exchange of parts 22
9-5 Measurement of main circuit
electric capacity 23
9-6 Confirmation of insulation 23
10. Trouble shooting 24
10-1 Diagnosis and remedy in case protection function made action indication 24
10-2 Diagnosis and remedy for abnormal phenomena 27
11. Inverter specification 29
11-1 Standard specification 29
11-2 Outline dimensions 31
11-3 Functions 33
11-4 Terminals 55
12. Options 59
13. Distribution \& Control equipment 65
14. Inspection list 66

PRECAUTIONS

WARNING-HAZARD OF ELECTRICAL SHOCK:

Disconnect incoming power before working on this control.
All motor bases and inverter enclosure housings should be grounded in accordance with the electrical standard.

WARNING-HAZARD OF MOTOR OVERSPEED:

The maximum frequency is 400 Hz , which is equivalent to $12000 \mathrm{r} / \mathrm{min}$ of high speed rotation in 4 -pole motor. The incorrect setting may result in a catastrophic failure for the machine.

CAUTION: Do not connect power supply voltage that exceeds the standard specification voltage permissible fluctuation. If excessive voltage is applied to the inverter, damage to the internal elements will result.

CAUTION: Do not connect power source to the output terminals (U, V, W).
CAUTION: If the $(+)-(-)$ terminals are short-circuited or connected a braking resistor directly without a bracking unit, damage to the inverter will result. Do not fail to match the terminal symbols $(+)$ and (-) between inverter and braking unit.

CAUTION: Do not connect AC power source voltage to the control circuit terminals (except for 30A, 30B, 30C, $\mathrm{AX} 1, \mathrm{AX} 2)$.

CAUTION: Connect the inverter to a power source which capacity is less than 10 times of inverter capacity or 500kVA. If the power sourse capacity is larger than these, install a Line side AC reactor (ACR - option) on the line side of the inverter.

CAUTION: Do not connect a power factor correcting capacitor to the output side of the inverter.
CAUTION: If the inverter protective function is activated, consult Section 10 "Troubleshooting", and after correcting the problem, resume operation. Do not reset the alarm automaticaliy by external sequence, etc.

CAUTION: Do not conduct megger tests between the inverter terminals or control circuit terminals.

NOTE: This manual is described by using "SI unit". It might happen that the unit symbols of the product are different from the ones of this manual.

NOTE: The terminal symbols of DC intermediate circuit of product are reviced as follows.

$$
P \Rightarrow(+), N \Rightarrow(-)
$$

So, if the product's symbols are P or N, please connect the wiring so that " P " is for " $(-)$ " and " N " is for "(-)".

1. Check after Delivery

After unpacking, perform the checking described as follows.
(1) Check the name plate on the cover to confirm that the product delivered is what you have ordered.

--Inverter type
-Rated input AC voltage / frequency
-Rated output current/ output frequency range
-Manufacturer's serial number

Fig. 1-1 Name plate

Inverter type

Fig. 1-2 Name plate position
(2) Check that there should be no faults such as damages and detachment in the parts and concaves on the cover If some have been found, the user is requested to promptly contact the supplier or the nearest Fuii sale office.

2. Carriage and Storage

In the case of carrying and temporary storing after the delivery, the following cautions should be taken.

2-1 Carriage

(1) For carrying, careful handing is required to avoid dropping, etc.
(2) Since carrying by means of holding the terminals or the top cover may result in damages and dropping, be sure to hold the body
(3) The ambient temperature range at carrying (during transportation) should be within $-25^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}$.

2-2 Storage

(1) Ambient temperature

The ambient temp. range in storage is within $-25^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}$
(2) Packing

No packing condition in storage, where the inverter is exposed to rust. dust and damage, is undersirable
Packing is necessary in storage
(3) Place

Avoid leaving the inverter directly on such as the concrete floor and put it on a rack. Avoid also the place which gets the sun light.
(4) Humidity

Don't storage in humid environments.
(5) Corrosive gases

Don't storage in the atomosphere which contains corrosive gases such as sulfurized gas, ammonia gas, and chlorine gas.

2-3 Neglect after Installation

In some cases, the inverter is left intact for a long time after completing the installation. Particulary when it is delivered in the conditions where the construction work is going on, it will be subject to the exposure of water and dust. In such case, take temporary protective measures until the operation starts.

3. Construction

(1) 200V series: Inverters up to FRN055G7/P7-2EX, 400V series: Inverters up to FRN110G7/P7-4EX There are two types of cooling methods depending on the installation method, "inverter cooled inside switchboard" and "inverter cooled outside switchboard". Fig. 3-2 shows a installation method for "inverter cooled inside switchboard", and Fig. 3-3 shows that for "inverter cooled outside switchboard" where a cooling fan is installed outside the unit. In the external cooling method, approx. 60% of the total amount of heat generated in the inverter is discharged outside the unit, facilitating cooling in the unit to achieve an economical unit design. However, because the cooling fan is installed outside the unit. take care to keep it clean in a dusty environment due to thread wastes.
The unit has a two method applicable structure to meet each case by switching an attachment leg position, as shown in Fig. 3-1. If you require "inverter cooled outside switchboard", please move the mounting adapters to the specified positions.

Fig. 3-1 Construction of FRENIC 5000G7/P7 series (1)

(2) 200Vseries: Inverters more than FRN055G7/ P7-2EX, 400V series: Inverters more than FRN110 G7/ P7-4EX

Fig. 3-4 Construction of FRENIC 5000 G7/ P7 series (2)

4. Installation

4-1 Environment for Use

The environments where the inverter is used are extensively various, and can affect greatly its performance and service life.
FRENIC 5000G7/P7 series are designed for the use in the environment conditions described in Table 4-1.
Particulary, in the case of being incorporated into machines, etc., provide sufficient vibration proofing measures.
Table 4-1 Environmental conditions for the use

Ambient temp.	$-10 \sim 50 \mathrm{C}$	Nocondensing and nonicing due to a sharpe change in tempera- ture
Relative humidity	$20 \sim 90 \% \mathrm{RH}$	
Altitude	Not more than 1000 m	The amount of dust and oily dust contained is small. There should be no corrosive gases, no inflammable Atomosphere gases. no oilmist. no vapor, no water drops, and no sun light contained much salt.
Vibration	Not more than 0.5 G	

4-2 Direction and Space

(1) Installation direction

NOTE: Install the inverter in the perpendicular direction against the ground. If the inverter is installed opposite, it should be over-heated.
(2) Space

NOTE: The inverter generates heat with the generating of loss. In order to discharge the heat, a cooling fan is built in to cool by means of forced feed cooling. Sufficient spacing should be provided to reduce obstacles to ventilation and effects on the surrounding, as shown in Fig. 4-2.

4-3 Caution on Installing inside a Switchboad
CAUTION: Because the ambient temperature greatly affects inverter life and reliability, do not install the inverter in any location that exceeds the allowable temperatures.

Fig. 4-2 Space around Inverter
(1) The temperature inside the switchboard should be kept at not more than $50^{\circ} \mathrm{C}$.
(2) Considering an increase in temperature inside switchboard, do not store in a small sealed box nor fill the space surrounding the inverter with parts, heat generators, etc.
NOTE: When installing a cooling (ventilation) fan to the switchboard, make a design so that the air for cooling can pass through the heat generating part.

The improper installation positions of Inverter and Fan may result in preventing the temperature surrounding the inverter from reducing to the specified value, even if the fan which has the required cooling capability has been installed.
NOTE: In the case of installing more than one inverters in the switchboard, arrange them horizontally, as shown in Fig. 4-3 (a). When the vertical arrangement (upper and lower) is inevitable, provide a partition board between inverters to give no effect at all of the heat from the lower inverter to the upper one.
(a) Horizontal arrangement

(b) Vertical arrangement

Fig. 4-3 Inverter arrangements in a switchboad

5. Connection and Wiring

Connections should be carefully implemented in accordance with the following procedures. After completing the connections, be sure to confirm that each wiring has been properly provided. Note that the incorrect connections may cause damages the inverter as well as its improper operation.

5-1 Terminal position and Connections at Shipment.

Under the top cover, the main circuit terminals and control circuit terminals are arranged at the bottom part of the Inverter. At the time of shipment, P1-(+) (except (1) to (3) shown as below) and CM-THR are connected with short-circuit conductors.
NOTE: In the following inverters connect the DC reactor to $\mathrm{P} 1-(+)$, otherwise inverter does not operate.
(1) Inverters of 75 kW and above [G7 series 200V/400V]
(2) Inverters of 75 kW and above [P 7 series 200V]
(3) Inverters of 90 kW and above [P 7 series 400 V]

Fig. 5-1 Terminal positions and connections at Shipment

5-2 Main circuit

CAUTION: Be sure that the power supply is never connected to the U, V, W terminals or the $(+), \mathrm{P} 1,(-)$ terminals.
(1) Connection for Power supply

Do not fail to connect a breaker for wiring (MCCB) between the three-phase circuit power supply and the main circuit terminals (L1, L2, L3). The phase order matching is not required for the connection. Also, connect Magnetic contactor (MC) to cut off the power supply when the inverter protective function actuates; to prevent faults from expanding.
If the MC is turned on and off by a run and stop command, the interval of switching should be less than once an hour. Otherwise, the inrush currents will reduce the service life of the internal components. When the inverter is turned on and off more than once, keep the MC on, run and stop by FWD or REV.

Three-phse power supply
Fig. 5-2-1 connection for Power supply

Fig. 5-2-2 connection for Electric motor
(2) Do not connect the power supply to terminals U, V, W

A voltage externally impressed will damage the inverter. For this reason, when the commercial switching operation is performed, as shown in Fig: 5-2-3, be sure to install Magnetic contactor (MC-2) and to provide electrical or mechanical interlock to prevent turning on MC-2 in the operation using the commercial power supply.
(3) The connection for capacitor is not allowed; otherwise, an inverter and a capacitor will be overheated due to harmonics resulting damaging them.

Fig. 5-2-3 Interlock for Commercial switching operation
(3) Connection for $D C$ reactor for Power factor improvement In the case of connecting DC reactor to Inverter which is not equipped as the standard (supplied outside the unit), detach a short-circuit conductor between terminals P1-(+) connected at shipment, and then connect to those terminals. As to find the location of a short-circuit conductor, look round a port for conductor-connection in the unit (inside) where the conductor is connected.

Fig. 5-2-4 Prohibited connection for Capcitor

Detach a short-circuit conductor connected at shipment

Fig. 5-2-5 Connection for DC reactor
(4) Connection for Grounding terminal

WARNING-HAZARD OF ELECTRICAL SHOCK: All motor bases and inverter enclosure housings should be grounded in accordance with the electrical standard.

It is necessary to provide the grounding in order to be protected against an electric shock due to an electric leakage and to reduce effects of a noise. Preferably, the grounding should be provided for its exclusive use. If it is not possible to have an exclusive grounding, then the alternative one is a common grounding to connect to a ground wire for other equipment at the ground point.
Avoid the grounding where the ground wire is used in common with other equipment. The size of a wire needs to be thick, and the distance should be short.

Fig. 5-2-6 Possible connections of the ground wire
(5) Tap change for Auxiliary transformer

When the supply voltage is $400-440 \mathrm{~V} / 400-460 \mathrm{~V} 50 / 60 \mathrm{~Hz}$, change the tap, Ut.
When the supply voltage is $380 \mathrm{~V} 50 / 60 \mathrm{~Hz}$, change the tap, U2.

Fig. 5-2-7 Connection for Aux. Transformer

5-3 Control circuit

Provide the wiring in accordance with the following diagram and description. The function of each terminal should be referred to "Terminal, 11-4"

Fig. 5-3-1 Connection for Control circuit terminals
(1) Wiring for Control circuit terminals

NOTE: For the wiring control circuit terminals, use a shielded or twisted vinylwire, and keep the distance not less than 100 mm away from the main circuit. However, if wire-crossing is inevitable, wire each to cross at the right
\therefore angle. For the longer wiring route, a twistedshielded wire is recommended.

Fig. 5-3-2 Wiring for inverter control circuit
(2) Connection for Control power supply auxiliary input terminal The control power within the inverter is usually supplied from DC intermediate circuit.
When the protective circuit actuates, if a magnetic contactor of the power supply side is turned off, that will result in cutting off the control power of the inverter, and therefore the fault display and the collective alarm output signal cannot be held. When a continuous actuation of the protective circuit is required, connect with Aux. Control power supply terminal RO and TO as Fig. 5-3-4.

Fig. 5-3-4 Connection for Control power supply
(3) Connection for Frequency setting/ Monitoring terminals

For the input voltage polarity of each of Frequency setter connecting terminal (12) and Voltage input auxiliary terminal $(\mathrm{V} 1)$, both $(+)$ and $(-)$ are applicable. When a frequency setter is used, the polarity can be switched by means of switch SW1 on the printed board (See Fig. 5-3-6 for the installed location).
Note that the polarity at shipment is set at (+).
Control printed board

Fig. 5-3-5 Connection for Frequency setting terminal and for Monitoring terminal

Fig. 5-3-6 Position of switch SW1 and SW2

(4) Connection for Current input selection terminal

NOTE: Without switching of external frequency signals, it is possible by switching ON-OFF between AUT-CM that switching Voltage signals from Frequency setter and Voltage auxiliary input terminal with Current signals.

Fig. 5-3-8 Switching of Frequency set signals
(5) Connection for Frequency meter terminal

Although output frequency is digital-displayed, when the external display such as a display on the inverter panel is required, connect a meter to terminals for the frequency meter (FM1, FM2). Instruments, either analog or digital types, can be connected. Set SW2 in accordance with the instrument used, as shown in Fig.5-3-9. The setting at shipment is for analog instrument.

NOTE: The frequency meter (FM1, FM2) circuits are designed for meter. Because this circuit has filter, the response time of output is approximately 3 sec .

Fig. 5-3-9 Switching of SW2
(6) Connection for Output interlock terminal When the magnetic contactor (MC) is used on the inverter output side, Connect NC (Normally closed) contacts of MC between IL-CM.
For using this terminal, the inverter is able to restart after Power failure. When the power failure occurs and IL-CM is closed, the output frequency is memorized and the inverter stops. When the power is reapplied (IL-CM is opened), the first inverter output frequency is the memorized frequency at the power failure. The frequency is reduced at the predetermined rate until catching the motor speed. After catching the motor, the inverter accelerates or decelerates to the reference frequency at this time.
(7) Connection for Alarm reset switch

To operate alarm reset from the other place than the inverter (the inverter panel, etc.), connect a self-reset switch to RST terminal, as shown in Fig.5-3-11. Note that the application of this terminal allows a parallel operation to be performed with the reset key of Touch panel. Therefore, careless operations at setting parameters and retrieving faults may result in inputting a reset signal, careful operations are required.
(8) Contacts to be connected to Frequency setting/ Contact input terminals
In this circuit, voltage and current such as those shown in Fig. 5-3-11 are impressed.
Due to micro current, the contacts to connected should be highly reliable contacts for micro signals, e.g.: Fuji control relay: HH54PW, etc.
(9) Contact capacity for Contact output The capacity is: AC250V 0.3A (COS $\phi=0 / 3$) In case of switching a large capacity magnetic switch, use a relay which has a large capacity of contact as shown in Fig. 5-3-12.
(10) Connection of Open collectorer output terminals For the use of these output signals, it is recommended to use a relay output unit (MCA II-RY). If not, the electrical specifications for open coliector are: DC27V max. 50 mA max

CAUTION: Be careful to protect it from damage due to surge voltage and not to mistake power supply polarity.

ON between IL-CM: Inverter stops. OFF between IL-CM: Inverter restarts

Fig. 5-3-10 Connection for Output interlock terminal

Fig. 5-3-11 Voltage and Current of Contact input terminal

Fig. 5-3-12 Amplification of Contact capacity

Fig. 5-3-13 Connection for Open collector output terminals
(11) Connection for Surge absorber

CAUTION: Connect a surge absorber directly to the both ends of the coil which is a the causing source. The wiring should be as short as possible, 20 cm at longest.

When a magnetic coil circuit such as a magnetic contactor, control relay, and solenoid valve, opens and closes, the current will sharply fluctuate resulting in generating a surge voltage (noise). In some cases, this surge voltage may cause to misoperate the electric circuits of inverter and the peripheral equipment.

Table 5-3-1 Application of Surge absober (Circuit voltage: Not more than 250V)

Equipment	CR filter or Diode	
Magnetic contactor	DC	S2-A-O or the equivalent
(Main circuit)	AC	Diode or S2-A-O
Auxiliary relay	DC	S1-B-O or the equivalent
	AC	Diode or S2-B-O
	DC	S2-A-O
	AC	Dode

Fig. 5-3-14 Connection for surge voltage

- Specifications of S1-B-O and S2-A-O
: Refer to "12. OPTION" (Page.64)
- Capacity of Diode (when the current of the operating coil is no more than 1 A)

ERB44-06C 600A 1A (Surge 30A/10ms) (Product of Fuji Electric)

5-4 Braking circuit

CAUTION: If the (+)-(-) terminals are short-circuited or connected a braking resistor directly without a braking unit, damage to the inverter will result. Do not fail to match terminal symbols $(+)$ and $(-)$ between inverter and braking unit.
(1) As shown in Fig. 5-4-1 the number of braking units and braking resistors in the combination differs in the type of unit. Connect them as the instruction of the Table 12 (2) Braking unit and Braking resistor specifications (Page 63, 64).
NOTE: Detach the short-circuit conductors connected between THR-CM at shipment, and connect thermal contacts in series so that both the braking unit and the braking resistor will be OFF at overheating. If not connect, the braking circuit will not operate.

Fig. 5-4-1 Connection for Braking unit and for Braking resistor
(2) When 2 braking units are used, set Switch SW1 on the printed board of a braking unit as shown in Fig. 5-4-2 (a). The setting at shipment is (b) in the figure.
(a) Braking unit where terminals 11,12 are connected
(b) Braking unit where terminals $\mathrm{O} 1, \mathrm{O} 2$ are connected

Fig. 5-4-2 Switching of SW1

6. Touch panel

6-1 Function and Configuration of Touch panel

The setting/ display apparatus installed on the front panel of Inverter is called Touch panel, which is used for the data dis. play and the parameter setting and modification. Inverter is operated with the parameters set by this touch panel and with the external operation/ control commands. The flow of this actuation is shown in Fig. 6-1-1.

Fig.6-1-1 Basic actuation of FRENIC 5000 G7/ P7 series

Table 6-1-1 Functions of Keypad

Function -	Description	
Operation monitoring	Monitor the operation states of Inverter	
Parameter setting	Basic parameter	Set data required for operation
	Auxiliary parameter Correcting parameter	Set data required for control Adjust output signals to match with instruments externally installed
	Protect set data against careless operations	
Fault display and retrieval	Display and Retrieval the class of Fault and the operation state at fault	
Reset	Data reset at parameter setting, Set error display reset, reset to return to operation monitoring mode after completing the setting, and fault reset	

Table 6-1-2 Display characters

Number	Displayed character	Number	Displayed character	Letter	Displayed character	Letter	Displayed character	Letter	Displayed character
0	0	5	5	A	8	F	F	U	U
1	;	6	σ	B	6	H	H	\checkmark	U
2	2	7	7	C	[L	L	ACTIVE	\bigcirc
3	3	8	8	D	${ }^{\circ}$	0	0	inactive	-
4	4	9	3	E	ε	R	-		

Function selection indicator
Display the selected digits at function selection. But, in the data display retrieval mode and the parameter setting mode (when shifted the sellected function to the data display), the both two digits will go out.

Shift key
Used to set and retrieve of .functions and data. And select Parameter setting mode.

- Selection order
- Function: 03 to 15 .

08 to
Fito: 5 . FS to:

FUNCTION DATA | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

- Other functions

FUNCTION DATA

- When the data on the data display is flickering, you can not change the selection by pressing SHIFT.
Try the operation after stopping the flicker by pressing SET or RESET.

Function display indicator
Display, in two digits, a selected function in number (Code).

Data display indicator Display operation data each type of parameter setting data and fault states.

The digit selected with the SH:IFT key changes as indicated by the arrow in the figure below.

- Values which do not represent an inverter function are skipped. represent an inverter function are skipped.
- When parameter data setting, values are set limits of lower.
- When parameter data setting, values are set limits of upper.

Fast key

The speed at parameter setting can be increased with
combinations of \square

- Moderate speed can be achieved by pressing FAST one time, and high speed by pressing it two times, while pressing \uparrow or \vee. Release Ω or \square to clear the moderate and high speed settings.

Unit indicator
THE LED on the left of each unit symbol corresponding to the contents of a data display.

Set key

Used to enter set data into the memory at parameter setting.

- When a new data has been set, the data will flicker. Pressing SET will enter the data into the memory, and then the flicker will stop.
- Note that the data which once have been entered (stored) in the inverter do not disapper even after turning off the power supply.

Reset key

Used as follows:

- Parameter setting mode
- Reset of Set data

Press RESET prior to SET in parameter setting mode, and the set data will be cleared so that you can return to the original data.

- Reset of Set error display Press it after inverter stopping when "Err" has been displayed due to the incorrect setting, and the set data will be cleared so that you can return to the data preceding the setting.
- Return to operation monitoring mode after completing the setting. You can return to the function for operation monitoring which had been selected and displayed before setting parameter.
플 Fault monitoring mode
- Fault reset

Turn off the run command and press RESET after solving the problems, and the pretective function actuating will be cleared so that you can return to the function mode selected before the fault occurred.

6-2 Basic operational procedure of Touch Panel

After few seconds from applying power, touch panel indicates the monitor function which was monitoring before power being turned off, and it is able to select the function and set the data.

6－3 Function selection and displayed data retrieval

（1）Function selection

procedure	Examples of Operation and display Case to swich a mode from Set value display mode for the number of poles of motor（Function： 30° ）to monitoring mode for Synchronous speed（Function： 12.2 ）		
	Operation	Display	Description
	－		Display Function and Data for the number of poles of motor．（Display ex．：In case of 4－pole motor）
Press SHIFT and confirm the light of the function selection indicator（1）．Then，the 2nd digit of Function will be selected．	$\begin{aligned} & \text { Press } \\ & \text { SHIFT } \\ & \text { two times } \end{aligned}$		Switch the lighting position of Function selection indicator to select the 2 nd digit of Function．
Press \square or \square to set the code of the 2 nd digit of Function required．At this time，the code of the 1 st digit of Function will be set at 1 ．	Press V three times		Change the display at the 1 st digit of Function to as well as that at the 2nd to 0 to display an output frequency at the data display．（Display ex．：When output frequency is 60 Hz ）
Pressing SHIFT one time will put out the function selection indicator（1）and light （2），and then the 1st digit of Function will be selected．	$\begin{array}{\|l} \text { Press } \\ \hline \text { SHIFT } \\ \hline \text { one time } \end{array}$		Switch the lighting position of Function selection indicator，allowing the setting of the 1st digit of Function．
Press \square or \square to set the code of the 1st digit of Function． The function data set will be displayed in the data display，and its unit indicator．			Change the display at the 1st digit of Function to 2 to display a synchorous speed．

（Note 1）Marks indicate lighting at Function selection indicators and Unit indicator．
（Note 2）Without the following cases，these displays will continue until a new function data is set．
（1）RESET operation after completing the parameter setting or changing．
（2）After completing the setting or release operating of＂Function 99 setting data protection＂
（3）RESET operation at occuring an fault and after retrieving of contents of fault，operating conditions at the fault，and contents of Past failures．
Details should be referred to＂6－4＂，＂6－5＂，（Page $17 \sim 21$ ）
（2）Display examples

Display item	FUNCTION		DATA				Unit display
	2nd digit	1st digit	4th digit	3rd digit	2nd digit	1st digit	
Frequency（When output frequency is 60 Hz ）	O	B		5	0 ．	17	$\square \mathrm{Hz}$
Current（When output current is 100A）	1	3		＇	0	7.	凧A
Voltage（When output voltage is 400 V ）	\square	4		4	\bigcirc	O．	n V
Speed（When machine speed is $1750 \mathrm{r} / \mathrm{min}$ ）	8	5	1	7	5	0.	$\square \mathrm{r} / \mathrm{min}$
Time（When acceleration time is set at 10s．）	；	E		＇	3.	9	E
Percentage（When torque limit is set at 120\％）	3	3		1	17	3.	$\square \%$
Code（When torque boost is set at＂ 3 ＂）	；	9	5	－	－	3	
Selection（When automatic and energy conservation operations are set＂to be specified＂）	＇	9				0	
Factor（When frequency monitoring factor is set at＂ 50 ＂）	4	0			5	9	
No．of poles（When the number of poles of motor is set at＂4＂）	3	0				－	
State（When the state of input terminal is＂in forward operation＂）	0	6	9	17	－	－	
Fault（When the 4th digit ；indicates the first fault in overcurrent at deceralating）	I	17	1.	0	5	2	
Setting error（When the setting of the lower limit of frequency exceeds that of the upper limit frequency）			E	，－	－	；	
Setting error（When a parameter which can not be set during operation has been set）			E	－	，	2	

（Note）Mark indicates lighting on Unit indicator．
（2）Monitoring for display data（input and output signal）

Procedure	Examples of Operation and display Case to confirm whether open collector output terminal FAR has been output		
	Operation	Display	Description
	－	FUNCTION DATA aHz \quad／$/$ min \square^{A} ロ	Example continued from（1）
Press SHIFT \square \square \square to selec the Function required．The contents of A shown in the function column will be displayed in the data display．	Press five times	FUNCTION DATA	Select the output signal check function to display each state of AX，OL，LV．（ 0 ：Output signal received，－：No output signal received）
Pressing SHIFT will put out the function selection indicator（2），it will change to Data retrieval mode．At the same time，it will allowed the retrieval for the data display．	Press SHIFT one time		Put out the function selection indicators to switch to data retrieval mode．No changes in other displays．
Press \square ，and the contents of b will be displayed in symbol．Under the selection of Function $D E$ ，pressing \square in turn will display each contents of E, G, E in order．			Switch the display contents to the confirmation state of each of RUN，FAR，FDT to display the state of RUN output signal required at the 2nd digit on the data display．

6－4 Parameter setting

Procedure	Examples of Operation and display． Case to modify the setting of base frequency 50 Hz to 60 Hz ：		
	Operation	Display	Description
Press SHIFT to select the 2nd digit of Function．and press \triangle or \square to set the $2 n d$ digit of required function．	Setting procedures Set the 2nd digit of Function		Display 10 at the 1 st digit at the same of setting i at the 2nd digit，and also display the max． frequency on the data display．（Display ex．： When the max．frequency is 80 Hz ）
Press SHIFT to set the 1st digit of Function．	$\begin{array}{\|l\|} \hline \text { Press } \\ \hline \text { SHIFT } \\ \hline \text { One time } \end{array}$		Change the lighting position on Function selection indicator to select the 1st digit of Function．
Press \square or \square to set the 1st digit of Function required．	$\begin{aligned} & \text { Press } \\ & \widehat{\text { one time }} \end{aligned}$	FUNCTION DATA	Change the display at the 1st digit of Function to ；to display the current set base frequency．
When SHIFT is pressed，the function will shifts to parameter setting mode．	$\begin{aligned} & \text { Press. } \\ & \begin{array}{l} \text { SHIFT } \end{array} \\ & \text { one time } \end{aligned}$		Put out Function selection indicator to switch to parameter setting mode．
Operate with the combinations of \square FAST to set data． Confirm the set data．At the time，the data is flickering． For revising data，use \square FAST to reset it．	Keep pressing \square and release it when the display shows 60		Confirm the set data flickering on the data display
Press SET to determine the entry，and the flicker of the set data will stop，and then the inverter will operate with data set． Press RESET to stop in the middle of the operation． When selecting other function，press SHiFT to switch to function selection mode．	$\begin{array}{\|l\|} \hline \text { Press } \\ \hline \text { SET } \\ \hline \end{array}$		Stop flickering to enter the data into the memory

WARNING - HAZARD OF MOTOR OVERSPEED:

The maximum frequency is 400 Hz , which is equivalent to $12000 \mathrm{r} / \mathrm{min}$ of high speed rotation in 4 -pole mutor. In such condition, the incorrenct setting may result in a catastrophic failure for the machine. In order to prevent this. i's: High limiter of output frequency upper limit is provided. Set the upper value with this function to cariy out safety operation.

CAUTION: When the DC braking function is used, large value setting for $2::$ DC braking voltage and $23: D C$ braking time will cause heating of motor. The setting appropriate for the capability of motor is required.

NOTE: Set the parameter during inverter stopping.
If you set the parameter during inverter operation, the data display will display the error code.
Few parameter can be set during inverter operation. Details should be referred to "Functions tabla $11-3$ " (Page 33, 34)
"Inverter stopping" means to the states as follows.
(a) State changed function display of operation mode from Lord display after power has suppllad.
(b) Stop state after providing stop commands. (FWD, REV-CM: OFF)
(c) State provided free run command.
(d) After turning off fault display.

NOTE: Press SET (data memorying) certainly, after parameter setting. Otherwise, this setting will get to invalidity.
NOTE: The priority order in the case where the inter-harmony among parameters on output frequency: 10, :3. i4, 15,98 , and $23 \sim 29$ can not be made is shown as follow:

1st order i $\%$: Output frequency high limiter
2nd order is : Output frequency low limiter
3rd order 23~23: Multistep frequency selection
4th order 1: : Max. frequency : 3: Bias frequency, 18: Frequency setting gain
NOTE: For the use of the following parameters, note that $; 4$: Output frequency high limiter and $; 5$: Output frequency low limiter are not applicable to them.

IS: DC braking start frequency 37: Starting frequency
NOTE: When torque limit acceleration and deceleration are extermely frequency performed, depending on the repeating frequency, the limit may exceed the capabilites of motor and of Inverter. Therefore, somg measures, such as to reduce the setting level of torque limit, need to be taken. In such cases, If inaro is any unclear matter, please consult us.
NOTE: For setting 40 : Digital frequency monitor coefficient and 5Ω : Analog frequency meter calibration, switch, in advance, the output selector switch for frequency meter (SW2), as shown in Fig. 5-3-9.

NOTE: The functions having Active (0) or Inactive (-) are also set by using \square or \square \square \square : Active (0), V : Inactive (-)
NOTE: If the following operations are done, the data indicator displays setting error. But, the inverter continues to run by the data before setting. In these cases, after stopping the iriverter and pushing the RESET, set the data once more.

6-5 Fault display and retrieval

(1) Display and retrieval of fault contents

Procedures	Example of operation and display Case, at braking using braking unit and braking resistor in the option, where the protective function has actuated by delecting overvoltage and heating of the braking resistor at braking:		
	Operation	Display	Description
When a fault has occurred, the mode will be switched from other monitoring mode to fault monitoring mode, 50 , the fault order 1 , and its class will be displayed in code, and then the function selection indicator (2) will light.			Switch automatically to fault monitoring mode. The class of the first fault is displayed, and the code will flicker. (Display ex.: When the first detected fault was overvoltage)
The details of the fault need to be retrieved since it may be compiex. First. press SHIFT to switch to faultdetail retrieval mode. At this time, the function selection indicator (2) will turn off.	Press SHIFT one time	FUNCTION DATA	Put out the function selection indicator to switch fault retrieval mode. No changes in other displays.
Press \square and the 2nd fault details (order $?$ and class in code) will be displayed.			Display 2 at the first digit on the data display. and the class of the 2nd fault in code, which will start flickering. (Display ex.: When the second fault was overheating of a braking resistor)
Press \square again, and similarly the 3 rd fault details will be displayed. For the rest, repeat this operation until no class of fault appears.		FUNCTION DATA	No display on the data indicator since there is no 3rd fault.

The confirmation of fault has been completed at this stage.
When the confirmation on the operation data at fault and the fault history are not required, press RESET after solving the problems. By doing so, the protective function actuating will be cleared, and the monitoring operation mode on the indicator will switch to that preceding the occurrence of the fault to get the operation ready.
When you confirm on the operation data at fault and fault-history, operate as following.
（2）Retrieval of operation data at fault

Procedures	Example of operation and display		
	Operation	Display	Description
Press SHIFT to select the 1 st digit of Function．	Press SHIFT two times	FUNCTION DATA	Example continued from（1） Select the first digit of Function
Press \square to select $f i$ ，and output frequency will be displayed． Similary，press \wedge in turn，and：$\digamma \Omega$ ： Set frequency，，$F 3$ ：Output current，and F_{4} ：Operation state will be displayed．			Display Output frequency at fault（Display ex．： When output frequency was 25.5 Hz ）
			Display set frequency at fault（Display ex．：When set frequency was 60 Hz ）
	$\begin{aligned} & \text { Press } \\ & \widehat{\text { one time }} \\ & \hline \end{aligned}$		Display output current at fault（Display ex．： When output current was 123A）
	$\begin{aligned} & \text { Press } \\ & \widehat{\text { one time }} \end{aligned}$		Display，in code，operation state at fault（Dis－ play ex．：When the rotation was reverse）
When ${ }^{4} 4$ has been displayed，press SHIFT to switch to operation state re－ trieval mode．	$\begin{array}{\|l\|} \hline \text { Press } \\ \hline \text { SHIFT } \\ \hline \text { one time } \end{array}$		Switch to operation state retrievai mode．The function selection indicator will go out．No changes in other displays．
Press \square ，and the state at operation will be displayed in code．Press \square in turn until no display will appear．	$\begin{aligned} & \text { Press } \\ & \widehat{\text { one time }} \end{aligned}$		Change the contents of the display（Display ex．：When voltage limit was actuating）
			No displays．The operation state retrieval has been completed．

When the retrieval on the fault history is not required，press RESET．By doing so，the protective function actuating will be cleared，and the monitoring operation mode on the indicator will switch to that preceding the occurrence of fault to get the operation ready．
When you retrieve the fault history，operate as following．
（3）Fault history retrieva！

Procedures	Example of operation and display		
	Operation	Display	Description
Press SHIFT to select the 1 st digit of Function．	$\begin{array}{\|l} \text { Press } \\ \text { SHIFT } \\ \text { two time } \end{array}$		Example continued from（1） Select the first digit of Function．
When F_{5} is selected by press \square ，only the fault which was the first display at the last occurrence of fault will be dis－ played in code．The 2nd and following faults retrieved will not be displayed．	$\begin{aligned} & \text { Press } \\ & \widehat{\text { one time }^{\prime}} \end{aligned}$	FUNCTION DATA	Display the class of the fault which was the first display when the last fault occurred（Display ex．：When electronic thermal was actuating）
When $F 5$ and $F 7$ are selected by Press \square the fault at the time back one time and two times respectively．	$\begin{aligned} & \text { Press } \\ & \widehat{\overbrace{\text { one time }}} \end{aligned}$	FUNCTION DATA \square FETGETI Hz_{2} 日r／min $\square^{A} \square^{s}$ ロV 口\％	Display the class of the fault which was the first display at the time preceding the last occurr－ ence（Display ex．：When overcurrent protective function was actuating at accelerating）
At this stage，the retrieval for fault mode has been completed． Press RESET atter soiving the problems and furning off the run command．By	$\begin{aligned} & \text { Press } \\ & \widehat{\text { one time }} \end{aligned}$		Display the class of the fault which was the fast display at the time back two times since the last occurrence（Display ex．：When fault data has not been input．）
ing will be cleared，and the monitoring mode on the indicator will switch to that preceding the occurrence of the fault to get the operation ready．	$\begin{aligned} & \text { Press } \\ & \text { RESET } \end{aligned}$		Complete fault monitoring operation，and dis－ play the parameters which had been moni－ torerd before the fault occurred．（Display ex．： When monitoring out put frequency）

NOTE:
(1) The 2 nd digit of Function cannot be modified during fault display. On the other hand, the 1 st digit can be selected for fault-detail retrieval.
(2) Reset command can be input by using RESET or alarm reset input terminal.
(3) When reset command is input, the erasing of the data display at fault and the moving-up of a fault history will be executed.
Note that the second and following faults have not been stored in the memory.
It is recommended to record these datas in view of the future operation and maintenance.
(4) Retrieval when no fault has occurred
 because there are no fault inputs, the displays are: $-\ldots$ on the data indicator, and $F: F, F: \square \mathrm{Hz}$, and $F \mathbf{F}: \mathrm{F}$ lighting on the unit indicator, while $5: 7$ and $F-7$ do not light. When $F-5-7$ have been selected, each of fault histories will be displayed on the data display.
(5) When fault mode has been selected in the state of no faults to retrieve such as a fault history and then RESET is pressed, the mode will not execute the moving-up of the fault history.
When the control power supply is turned off during fault display, fault output signal will not be held.
Furthermore, note that, after the control power supply has been turned off, if it is turned on again without eliminating the cause of the fault, that will be detected as a new fault.
(6)

To reset inverter turn off all start signals (FWD, REV), and press RESET key.

7. Trial operation

7-1 Preparation for operation

Don't fail to check the following items before trial operation.
(1) Is the input $A C$ power supply complied with the ratings? 200 V series: 3 -phase 3 -line, 220 to $230 \mathrm{~V} / 50 \mathrm{~Hz}, 230 \mathrm{~V} / 60 \mathrm{~Hz}$ 400 V series: 3 -phase 3 -line, 400 to $420 \mathrm{~V} / 50 \mathrm{~Hz}, 380$ to $400 \mathrm{~V} / 50 \mathrm{~Hz}, 400$ to $460 / 60 \mathrm{~Hz}$
(2) Are the input and output of the main circuit connected in good order? (Input source faling under L1, L2 and L3, Electric motor, U, V, and W)
(3) Is the wiring of the main circuit and control circuit not in contact with the earthing or other terminals or not shortcircuitted?
(4) Is the panel mixed or attached with such foreign matters as metals and electric wire chips?
(5) Are screws, connectors, terminals, etc. not loose?
(6) Confirmation of the operation of the external sequence circuit

7-2 Trial operation

For safety's sake, disconnect the couplings and oeits with winich motors and machinery are connected to allow independent operation by motors. When operating with it directly connected with the machine, be careful not to cause danger.
(1) Set all operating switches to OFF.
(2) Set the frequency setter to the minimum value.
(3) Put the wiring breaker (MCCB) to work
(control circuits and sequence circuits will be turned active), size up the situation for a while, and check to see if cooling fan is rotating normally and if nothing is found in the control circuit, sequence circuit, etc. (heating, fume, abnormal smell, etc.)
In this case, make sure that the "CHARGE" lamp of the front panel is on.
(4) When (MCCB) is put to work, the data display part of the touch panel will display iond and flicker for a while. This is because CPU is doing the reading action of the internal data.
After Lond disappeared, it will set the parameter to check to see if the set data meet the specification.
How to check it is referred to in "6. Touch Panel. (Page 13~21)"
(5) Give a forward or reverse command.

Check to see if the motor begins to rotate with the frequency setter turned righward a little.
Make sure that the rotating direction is correct in such condition.
The turning direction of the motor is counterclockwise looking from the driving side (shaft end) of the motor by the forward turning command.
When reversing the turning direction, set the operation signal to the reversing turning command. If forward and reverse turning commands should be put at the same time, the motor will come to a stop, for which care should be exercised.
(6) Rise the frequency setter gradually and check to see if the inverter output frequency reaches the maximum frequency of the motor.
The maximum frequency of the inverter has been set to 60 Hz at shipment.
(7) After confirmation has been finished, stop it once, set the frequency setter a little higher, and check to see if acceleration and deceleration is made smoothly.
With this, the triai operation comes to an end.
Make operation with the load combined.
If the setting should be changed as a result of the trial operation, follow the procedures described in "6. Touch Panel."
NOTE: When FWD-CM or REV-CM terminals are connected, inverter does not start at power up, causing "OH2" trip. To start the inverter disconnect all the FWD-CM, and REV-CM connections, press RESET key, and make FWD-CM or REV-CM connection.

8. Operation

Make operation in accordance with the following procedures.
For the items not included absent in the following procedures though it is carried in the procedures of the trial operation. it is allowed to add procedures depending upon the circumstances.
(1) Put the power (MCCB) to work.
(2) Confirmation of "CHARGE" lamp of the front panel going on.
(3) When data are required to be changed, follow the procedures described in "6. Touch Panel"
(4) When a forward or reverse turning command is inputted, the motor will be operated at the setting frequency: provided. It will not be operated when the set frequency has been set below the starting frequency.
(5) When changing the contents of the display or data changeable of the setting in course of operation, follow the procedures described in "6. Touch Panel"
(6) Set the forward or reverse turning command terminal to "OFF", and the motor will be decelerated to stop. Unless re-operation takes place immediately, stop the motor for safety and set the power to "OFF".

9. Maintenance and inspection

The inverter is composed of many parts.
Unless those parts operate properly, they will not develop their performance fully.
It is necessary to make good maintenance and inspection to prevent failure in the inverter beforehand and to keep on operation of good reliability.
Inspection methods should be refferred to "Inspection List 14" (page 66).

9-1 Cautions in course of maintenance and inspection

CAUTION: Do not conduct any inspections until disconnecting the power supply and the "CHARGE" lamp on the inverter has gone out.

9-2 Daily inspection

(1) Don't remove the cover, and check to see from outside if abnormal sound, smell, and damage are not perceived in accordance with the inspection items.
(2) Whenever abnormal phenomenon should be found, make sure of its place and extent without delay.
(3) Check the contents of the abnormality. If the operation is allowed to be kept on, record the abnormal details for referential data in case of a periodic inspection.

9-3 Periodic inspection

Remove the covers and check to see if nothing is found abnormal visually or by touch from the outside in accordance with the inspection list items. Don't fail to observe "Item No. 9-1 Cautions for Maintenance and Inspection." "inspection list 14." (page 66)

9-4 Periodic exchange of parts

Usually the life time of electrolytic capacitors are approximately five years and that of cooling fans are approximately three years, but the life times is different from this number of years in according to environment and working time per one day.
Please exchange these parts before occuring the troubles.

9－5 Measurement of main circuit electric capacity

Since the voltage and current of the input and output circuits of the inverter include harmonic wave，it is necessary io select the measuring instrument type．
When a measuring instrument for commercial frequency，measure it with the measuring instrument shown in Fig．9－5．
For reference，the power factor will cause big errors by measuring a power factor meter because it will be subjected ic change in the harmonic wave current and output frequency．
When the power factor is required，measure the voltage，current，and electric power and calculate it from the following equation．

$$
\text { Power factor }=\frac{\text { Power }(\mathrm{kW})}{\sqrt{3} \times \operatorname{Voltage}(\mathrm{V}) \times \operatorname{Current}(\mathrm{A})} \times 100 \%
$$

item	Input side measuring instrument（power side）			Output side measuring instrument（motor side）			Output frequency （Terminal FM1． FM2）
	Voltage wave form Current wave form			Voltage wave form Current wave form			
Name of measuring instrument	Amperemeter $A_{\text {f．S．T }}$	Voltmeter $V_{R, S, T}$	Wattmeter $W_{R, S, T}$	Amperemeter Au．v．w	Voltmeter $V_{U, V, w}$	Wattmeter $W_{\text {u，viw }}$	DC Voltmeter V
Kind of measuring instrument	Moving－iron type	Rectifier type or moving－ iron type	Electrodyna－ mometer type	Moving－iron type	Rectifier type	Electrodyna－ mometer type	Movable coil type
Symbol of measuring instrument	丰	車	$\stackrel{\square}{\square}$	丰	H	$\stackrel{\square}{\square}$	（0）

Fig．9－5 Measurement of main circuit and measuring instrument

9－6 Confirmation of insulation

Insulation test has been made before delivery from the works． It shall not be made as much as possible．
In an unavoidable case，follow the instructions below．
Wrong testing may damage the inverter，for which full attention must be paid．

（1）Main circuit
Make megger test（insulation resistance test）by using the following megger tester．

400 V series：DC 500 V megger
200 V series：DC 250 V megger
（1）Remove the external connections of all terminals
（including control circuit terminals）of the inverter，clean each component，and connect all main circuit terminals with common wires as shown in Fig．9－6．
（2）Make megger test only between main circuit common line and ground（grounding terminal GND（PE））．
（3）If the megger pointer indicates $5 \mathrm{M} \Omega$ and over，it proves normal．
（2）Control circuit
Remove the external connection of the control circuit terminal for earth conductivity test．
Use a high resistance range tester for the tester．Neither megger nor buzzer shall be used．
（3）Cautions for testing of external main circuits and sequence control circuits－
When making a pressure test and megger test of external circuits，remove all terminals of the inverter so that the inverter may not be applied with the test voltage．

10. Troubleshooting

If the function of the inverter is lost by a failure or if an abnormal phenomenon occurred, refer to the following diagnosis and its cause must be pursued for remedy.
If it will not fall under the following explanation, if the inverter is damaged, and if its part was broken, or in case of trouble, please communicate the matter to the agent you bought it or your nearest Fuji sales office.

10-1 Diagnosis and remedy in case protection function made action indication

(1) Overcurrent

(2) Overvoltage

(4) Overload

(note) OL1: Overload protection of inverter unit (protection of main circuit equipment of Unit) OL2: Overload protection of motor (protection by electronic thermal)
(3) Under-voltage

(Note 1) When the DC bus capacitor is discharged by power failure and the control power of the inverter is reduced, automatic resetting will take place.
When the function 43 is selected, no resetting is required. After the power is restored, automatic restart will begin.
(Note 2) Undervoltage will detect the main circuit DC voltage of the inverter, and display and alarm will take place.
When the voltage comes over the following range, display and alarm will take place.
*200v series: DC 200V
*400v series: DC 400V
(5) Inverter overheat

(7) CPU abnormal

(6) External failure and miss operation

10-2 Diagnosis and remedy for abnormal phenomena
(1) Motor will not run.

(Note)
Presence of forward and reverse commands and frequency set signal can be checked easily with the operation monitor function of 06 selected. (Refer to Item No. 11-3. Operation Monitor page36)
(2) Motor will run but speed will not change.

(4) Motor will heat abnormally

11. Inverter specification

11-1 Standard specification

(1) Individual specification
(1) FRENIC 5000G7 series

	Voltage	200 V series				400 V series			
Applicable motor output [kW]		Inverter type	Rated capacity [kVA]	Rated output current [A]	Outbreak loss [kW]	Inverter type	Rated capacity [kVA]	Rated output current [A]	Outbreak loss [kW]
	30	FRN030G7-2EX	44	115	1.3	FRN030G7-4EX	46	60	1.2
	37	FRN037G7-2EX	55	145	1.6	FRN037G7-4EX	57	75	1.4
	45	FRN045G7-2EX	69	180	2.0	FRN045G7-4EX	69	91	1.7
	55	FRN055G7-2EX	82	215	2.3	FRN055G7-4EX	85	112	1.9
	75	FRN075G7-2EX	108	283	3.1	FRN075G7-4EX	114	150	2.6
	90	FRNO90G7-2EX	132	346	3.7	FRN090G7-4EX	134	176	3.0
	110	-	-	-	-	FRN110G7-4EX	160	210	3.3
	132	-	-	-	-	FRN132G7-4EX	193	253	4.1
	160	-	-	-	-	FRN160G7-4EX	232	304	5.0
	200	-	-	-	-	FRN200G7-4EX	287	377	6.0
	220	-	-	-	-	FRN220G7-4EX	316	415	6.8
Output Ratings	Rated output voltage (Note 1)	3 -phase 3-wire system, 200 to 230 V				3 -phase 3-wire system, 380 to 460V			
	Rated output frequency (Note 2)	50 to 400 Hz							
	Overload current rating	150%, for one minute (inverse time characteristics)							
Power	Rated input AC voltage	3-phase 3 -wire system $220-230 \mathrm{~V} / 50 \mathrm{~Hz}, 230 \mathrm{~V} / 60 \mathrm{~Hz}$				3-phase 3 -wire $380-400 \mathrm{~V} / 50 \mathrm{~Hz}$ (Note 3) $400-420 \mathrm{~V} / 50 \mathrm{~Hz} 400-460 \mathrm{~V} / 60 \mathrm{~Hz}$			
	Allowable variation	Voltage: +10 to -15%, Imbalance: less than 3\% (Note 4), Frequency: $\pm 5 \%$							

(2) FRENIC 5000P7 series

	Voltage	200 V series				400V series			
Applicable motor output [kW]		Inverter type	Rated capacity [kVA]	Rated output current [A]	Outbreak loss [kW]	Inverter type	Rated capacity [kVA]	Rated output current [A]	Outbreak loss [kW]
	30	FRNO30P7-2EX	44	115	1.3	FRN030P7-4EX	46	60	1.2
	37	FRN037P7-2EX	55	145	1.6	FRN037P7-4EX	57	75	1.4
	45	FRNO45P7-2EX	69	180	2.0	FRN045P7-4EX	69	91	1.7
	55	FRN055P7-2EX	82	215	2.3	FRN055P7-4EX	85	112	1.9
	75	FRNO75P7-2EX	108	283	3.1	FRN075P7-4EX	114	150	2.6
	90	FRN090P7-2EX	132	346	3.7	FRN090P7-4EX	134	176	3.0
	110	FRN1 10P7-2EX	158	415	4.4	FRN110P7-4EX	160	210	3.3
	132	-	-	-	-	FRN 132P7-4EX	193	253	4.1
	160	-	-	-	-	FRN160P7-4EX	232	304	5.0
	200	-	-	-	-	FRN200P7-4EX	287	377	6.0
	220	-	-	-	-	FRN220P7-4EX	316	415	6.8
	280	-	-	-	-	FRN280P7-4EX	400	520	8.2
Output Ratings	Rated output voltage (Note 1)	3 -phase 3-wire system, 200 to 230 V				3-phase 3-wire system, 380 to 460V			
	Rated output frequency (Note 2)	50 to 400 Hz							
	Overload current rating	120\%, for one minute (inverse time characteristics)							
Power	Rated input AC voltage	3-phase 3-wire system $220-230 \mathrm{~V} / 50 \mathrm{~Hz}, 230 \mathrm{~V} / 60 \mathrm{~Hz}$				3-phase 3 -wire $380-400 \mathrm{~V} / 50 \mathrm{~Hz}$ (Note 3) $400-420 \mathrm{~V} / 50 \mathrm{~Hz} 400-460 \mathrm{~V} / 60 \mathrm{~Hz}$			
	Allowable variation	Voltage: +10 to -15%, Imbalance: less than 3% (Note 4). Frequency: $\pm 5 \%$							

(2) Common specification

liem			Specification		
Control	Control system		Sinusoidal PWM with flux control		
	Output frequency		0.510400 Hz (starting frequency 0.5 to 5.0 Hz adjustable)		
	Frequency stability		Analog setting	$\pm 0.2 \%$ of maximum frequency ($25 \pm 10^{\circ} \mathrm{C}$)	
			Digital setting	$\pm 0.01 \%$ of maximum frequency $\left(-10^{\circ} \mathrm{C}\right.$ to +	
	Frequency resolution		Analog setting	$\pm 0.1 \%$ of maximum frequency	
			Digital setting	$\pm 0.1 \mathrm{~Hz}$ (Option: 0.01 Hz)	
	Voltage/ frequency characteristics (V/i)		200V series	Voltage: 160 to 230V. Frequency: 50 to 400 Hz	Available for continuous adjustment independently for both voltage and frequency
			400 V series	Voltage: 320 to 460 V . Frequency: 50 to 400 Hz	
	Torque boost		21 selectable patterns and automatic energy saving mode		
	Acc/ Dec. time		Acceleration and deceleration time: 0.2 to 3600 sec : linear: 4 patterns setting available; Non-linear acceleration and deceleration: 2 patterns setting avilable		
	Braking torque		Standard	Regenerative brake: 10 to 15%. DC braking: Staning frequency 0.0 to 60 Hz . Time: 0 to 10 seconds, Voitage: 0 to 10%	
			Option	Dynamic brake: 100% (duty cycle 5\%ED)	
	Standard functions		Torque limit control, automatic acceleration and deceleration, slip compensation control, current limiting, multistep frequency, up-down controi. restart after instantaneous power failure, back up sequence from fine to inverter, reversing operation with signal polarity, high or low timiter. bias frequency, and jump frequency		
Protection			Stall prevention, overcurrent, overvoltage, undervoltage (Note 6), instantaneous power failure, inverter overheat. inverter overload. motor overload (electronic thermal action), external failure (external thermal action. etc.), CPU error, output short circuit. ground fault for inverter protection (Option), and incoming surge		
Operation	Frequency setting input		Potentionmeter or voltage input: DC 0 to $\pm 10 \mathrm{~V}$ (DC 0 to $\pm 5 \mathrm{~V}$). Current input: DC 4 to 20 mA		
	Input signal		Forward and stop command, reverse and stop command, 3 -wire control, current signal input selection. multistep frequency selection, up-down control, acc/ dec time selection, coast-to-stop command, switching operation from line to inverter, interlock for load side switch, external alarm input, alarm reset input. and ground fault input		
	External output signal		Relay output:	Power-side electromagnetic contactor command (NO). alarm (SPDT)	
			Open collector output:	Refer to "Auxiliary parameter setting. Function 45 (Page 49)"	
Indication	Frequency meter output signal		Analog: DC 0 to +10 V . Pulse frequency: (6 to 100) \times outjut frequency		
	Touch panel LED indication	Running	Output frequency, reference frequency, motor synchronous speed, output current, output voltage, machine speed, and input and output signal check		
		Setting	Function codes and data code indication (Refer to Function List.)		
		Fault	AC: Overcurrent during Acc., DCE : Overcurrent during dec.. AC3: Overcurrent during running at constant overload, $\mathcal{S H}_{2}$: External failure, $E,-\mathcal{O}$: CPU error and failure (8 points such as output frequency, etc.). failure history (three failure indications in past), etc.		
	Charge lamp (LED indication)		DC intermediate circuit voltage		
Environment	installation location		Indoors. altitude of 1000 m and less, Do not install in a dusty location or expose to corrosive gases or direct sunlight.		
	Ambient temperature		-10 to $50^{\circ} \mathrm{C}$		
	Humidity		20 to 90\% RH (Non-condensing)		
	Vibration		0.5 G and less (conforming to JIS c 0911)		
	Temperature during transportation		$-25 \sim+65^{\circ} \mathrm{C}$		
	Mounting		Panel mounting, external cooling type		
Protection system			Protection case attached unit (IP00: JEM1030, provided that if the applicable electric motor falls under 200 series. the unit of 75 kW and less will be held optional and if the motor does under 400 V series. the unit of 132 kW and less will be held optional too. thus available for 1 P 20 .).		
Cooling system			Forced air-cooling		
Option			Ground fault detection unit for inverter protection (Note 7), relay output unit, touch panel extension cable set. Braking unit, Braking resistor, radio noise reducing zero-phase reactor, line side AC reactor, power factor improvement $D C$ reactor, noise reducing $A C$ reactor, frequency setter, frequency meter, and surge absorver		

(Note 1) The rated capacity falts under 220 V for the 200 V series and 440 V for 400 V ones in the rated output voltage.
(Note 2) Output voltage cannot exceed the power supply voltage.
(Note 3) Change the tap of auxiliary transformer when changing the power supply voltage from 380 V to other voltages, and vice versa.
(Note 4) Use a line side AC reactor when imbalance in power supply voltage exceeds 3%.
Power supply voltage imbalance rate (\%)=\{Maximum voltage (V) $/ 3$-phase mean voltage (V) $\times 100$
(Note 5) Following units are provided with DC reactors for power factor improvement as the standard outfitting (supplied other than units).
(1) G7 series: Inverter of 75 kW and over (2) P7 series 200 V series: Inverter of 75 kW and over (3) P7 series 400 V series: Inverter of 90 kW and over
(Note 6) Even if the power is put out, operation can be kept on at 15 ms or so at full load condition. (In case of light load operation, the operating time will be extended much more.) When the main circuit DC voltage comes below the under-voltage level, the inverter will stop the output without delay to hold tripped condition. However, when the control power of the inverter should come down, automatic resetting will take place.
(Note 7) The ground fault detection unit as an option is protect the inverter itself. Protection for human accident, fire, external equipment, etc. shall be provided with the leakage protecting device described separately.

11-2 Outline dimentions

Fig. A Inverter cooled inside switchboard

Fig. B Inverter cooled outside switchboard

Fig.C Commen-use type

200V series

Applicable motor (kW]	Inverter type		Fig.	Dimensions [mm]																Maunting bolt	Weight [kg]
	G7 series	P7 series		W	W1	W2	W3	H	H1	H2	H3	h1	h2	h3	D	D0	01	1	d		
30	FRN030G7-2EX	FRN030P7-2EX	A, B	340	240	338	331	550	530	504	512	12	25	9	242	245	140	2	10	M8	30
37	FRN037G7-2EX	FRN037P7-2EX		375	275	373	366	615	596	570	578										40
45	-	FRN045P7-2EX		390	290	387	381	700	675	640	650	15	30	12.5					12	M10	45
	FRN045G7-2EX	-						800	775	740	750										53
55	FRN055G7-2EX	FRN055P7-2EX																			
75	FRN075G7-2EX	FRN075P7-2EX		540	440	537	530	750	720	685	695	18	35	12.5	257	260	140	3.2	15	M12	70
90	FRN090G7-2EX	FRN090P7-2EX	C	850	750	780	830	880	855	845	-	-	-	-	-	-	-	-	-		130
110	-	FRN110P7-2EX																			

400 V series

11-3 Functions
FUNCTION TABLE

Function				Data			
	Code	Name of function	Symbol	Setting range	Display	Minimum unit	Factory settirg
Display	00 01 02 03 04 05 06 07 08 03 08 06	Output frequency Reference frequency (Preset frequency) Motor synchronus speed Output current Output voltage Machine speed Input-signal status (checking) Output-signal status (checking) Torque limiting level for driving Torque limiting level for braking Torque calculation value For option PC board		$]$ l $\begin{aligned} & \text { Indicate operating } \\ & \text { condition }\end{aligned}$	Hz Hz $r / m i n$ A V $r / m i n$ - - $\%$ \% $\%$	$\begin{array}{ll} 0.1 \mathrm{~Hz} & \\ 0.1 \mathrm{~Hz} & \\ 1 \mathrm{r} / \mathrm{min} & \cdot 1 \\ 1 \mathrm{~A} & \\ 2 \mathrm{~V}(1 \mathrm{~V}) & \cdot 2 \\ 1 \mathrm{r} / \mathrm{min} & \\ - & \\ - & \\ 1 \% & \cdot \\ 1 \% & \\ 1 \% & \end{array}$	- - - - - - - - - -
Fundamental parameter	12 11 12 13 14 15 15 17 18 19 19 18	Maximum frequency Base frequency Maximum output voltage Bias frequency High limiter Low limiter Acceleration time 1 Deceleration tirne 1 Gain for frequenc̣y setting signal Torque boost Autmatic energy-saving operation Electronic thermal overload relay	$F_{\text {max }}$ $F_{\text {BaSE }}$ $V_{\text {max }}$ F_{H} F_{U} ACC1 DEC1 GAIN	$\|$$50.0-400.0$ $50-400$ $320-460(160-230)$ $0-400$ $0-400$ $0-400$ $0.2-3,600$ $0.2-3,600$ $0-200.0$ C-0 to C-20 Active/ inactive 0 (not in use), $50-105$	Hz Hz V Hz Hz Hz s s \% - \%	0.1 Hz 1 Hz 1 V 1 Hz 1 Hz 1 Hz 0.1 s $\because 3$ 0.1 s $" 3$ 0.1% - - - 1%	 50.0 Hz 50 Hz $380(220) \mathrm{V}$ $\cdot 2$ 0 Hz 50 Hz 0 Hz 20.0 s 20.0 s 105.0% $\mathrm{C}-3$ Inactive 105%
Auxiliary parameter	20	DC brake starting frequency	Foce	0.0-60.0	Hz	0.1 Hz	0.0 Hz
	2	DC brake voltage	VCB	0.0-10.0	\%	0.1\%	10.0\%
	22	DC braking time	Toca	0.0-10.0	S	0.1 s	0.5s
	23.	Multistep frequency setting 1.	MSS1	0.0, 0.5-400.0	Hz	0.1 Hz	0.0 Hz
	24:	Multistep frequency setting 2 -	MSS2	0.0, 0.5-400.0	Hz	0.1 Hz	0.0Hz'
	$\cdots 25$.	Multistep frequency setting. 3	MSS3	$0.0,0.5-400.0 \ldots .$.	Hz	0.1 Hz	0.0 Hz
	25	Multistep frequency setting 4	MSS4	$0.0,0.5-400.0$	$\mathrm{Hz}{ }^{-}$	$0.1 \mathrm{~Hz}$	$0.0 \mathrm{~Hz}$
	$\therefore 27$.	Multistep frequency setting 5 -	MSS5	$0.0,0.5-400.0$	Hz	$0.1 \mathrm{~Hz}$	$\mathrm{O} . \mathrm{OHz}$
	28.	Multistep frequency setting 6 :.	MSS6 :	$0.0,0.5-400.0$	Hz .	$0.1 \mathrm{~Hz}$	$0.0 \mathrm{~Hz}$
	29	Multistep frequency setting ?	MSS7	0.0, 0.5-400.0	Hz	$0.1 \mathrm{~Hz}$	$0.0 \mathrm{~Hz}$
	28	Acceleration time 2	ACC2	0.2-3,600		0.15 *3	100s
.	26	Deceleration time 2	DEC2	0.2-3,600	S	$0.1 \mathrm{~s} \quad 3$	100s
	2 C	Acceleration time 3	ACC3	0.2-3,600	S	$0.1 \mathrm{~s} \quad \cdot 3$	100s
	20	Deceleration time 3	DEC3	0.2-3,600	S	$0.1 \mathrm{~s} \quad 3$	100s
	$2 E$	Acceleration time 4	ACC4	0.2-3,600	S	0.1s $\quad 3$	100s
	$2 F$	Deceleration time 4	DEC4	0.2-3,600	S	0.1s 3	100 s
	30	Accel./decel.pattern		C-0, C-1, C--2	-	-	C--0
	31	Motor noise reduction .		C--1, C--2, C--3, C-4	-	-	C--1
	32	Overload early warning signal	OL	$50-105$	\%	1%	105%
	33	Torque limiter (Driving mode)	T_{a}	$\text { - } 20-180(20-150) \quad 4$	$\%$	1%	$150(120) \% \cdot 4$
	33°	Torque limiter (Braking mode)	$T_{a l}$	$0,20-180(20-150) \quad 4$	$\%$	1%	100%
	35	Frequency level detection	FDT	$1-400$	Hz	$1 \mathrm{~Hz}$	30 Hz
	36	Frequency equivalence detection range	FAR	0.5-5.0	Hz	0.1 Hz	2.5 Hz
	37	Starting frequency	Fsta	0.5-5.0	Hz	0.1 Hz	0.5 Hz
	38	Starting frequency holding time	Thao	0.0-10.0	S	0.1 s	0.0s
	39	Jump frequency 1	JUMP1	$0.0,0.5-400$	Hz	0.1 Hz	0.0 Hz
	30	Jump frequency 2	JUMP2	0.0, 0.5-400	Hz	0.1 Hz	0.0 Hz
	36	Jump frequency 3	JUMP3	$0.0,0.5-400$	Hz	0.1 Hz	0.0 Hz
	$3{ }^{5}$	Jump frequency range		(\pm)0.0-5.0	Hz	0.1 Hz	2.0 Hz
	30	Number of motor poles	POLE	2,4,6,8,10,12	pole	2	4
	$3 E$	Machine speed conversion coefficient		0.1-10.0	-.	0.1	1.0

Function				Data			
	Code	Name of function	Symbol	Setting range	Display	Minimum unit	Factory setting
Auxiliary parameter	$\begin{aligned} & 40 \\ & 41 \\ & 42 \\ & 43 \\ & 44 \\ & 413 \\ & 416 \\ & 47 \\ & 50 \\ & 51 \\ & 52 \end{aligned}$	Digital frequency monitor coefficient FWD/REV command hold (3-wire control) UP/ DOWN control Restart after instantaneous power failure Undervoltage alarm Output signal code selection Slip compensation control Reversing operation with signal polarity Analog frequency meter calibration Analog ammeter calibration "7 Correction of motor primary resistance	SLIP	6-100 Active/ inactive Active/ inactive Active/ inactive Active/ inactive 0,1,2 0.0-2.5 Active/ inactive 70.0-105.0 50.0-200.0 50.200	- $\%$ $\%$ $\%$	$\begin{aligned} & 1 \\ & - \\ & - \\ & - \\ & - \\ & 0.1 \mathrm{~Hz} \\ & - \\ & 0.1 \% \\ & 0.1 \% \\ & 1 \% \end{aligned}$	30 Inactive Inactive Inactive Active 0 0.0 Hz Inactive 100.0\% 100.0\% 100\%
	50 61 62 62 63 64 55 65 67 68 69 68 70 71 72 73 714 75 76 77 78 73	For option PC board		See the instruction manual of the option PC board. When the option PC board does not installed, the inverter indicates			
	95	Manufacturer use function		-	-	-	Inactive
Fault Indication	$\begin{aligned} & 60 \\ & 61 \\ & 62 \\ & 63 \\ & 64 \\ & 65 \\ & 65 \\ & 67 \end{aligned}$	$\left.\begin{array}{l}\text { Faults display } \\ \text { Output frequency } \\ \text { Reference frequency } \\ \text { Output current } \\ \text { Operation mode } \\ \text { Fault memory 1 } \\ \text { Fault memory 2 } \\ \text { Fault memory 3 }\end{array}\right]$When the first fault occurred		${ }^{\circ}$	$\overline{\mathrm{Hz}}$ Hz A - - - -	0.1 Hz 0.1 Hz 1A - - -	

REMARKS

1. When the displayed value exceeds 9999 rpm , the minimum unit becomes $10 \mathrm{rpm} .(12000 \rightarrow 1200)$

2: The values in brakets indicate 200 V series.
NOTE: There is some possiblity that this Function sel data is not 380 V according to the country where this inverter is delivered. Please check this Function whether the motor specification is matched.

3: When the setting values exceed 100 sec , the minimum setting unit becomes 1 sec
4: 20-180\% for G7, 20-150\% for P7.
5: When a function is active or inactive, "o" or " - " is displayed respectively.
"6: The functions marked can be set during inverter operation
-7: Option PC board is necessary.

OPERATION DATA (MONITOR)

This function displays an inverter output frequency [Hz].

B	i	Reference frequency (Preset frequency)

This function displays the reference frequncy set by a frequency setting potentiometer, a voltage signal input from $\vee 1$ terminal, a current signal input from C1 terminal, multistep frequency setting 1 to 7 or Up-down control.

Motor synchronous speed.
This function displays the motor synchronous speed [r/min]calculated by the following formula.
Motor synchronous speed $=\frac{120 \times \text { output frequency }}{\text { number of motor poles }}[\mathrm{r} / \mathrm{min}]$

- For displaying the motor synchronous speed correctly, set 30 (number of motor poles) correctly.
- Because the inverter display is only 4-digit, when the speed is higher than $9999 \mathrm{r} / \mathrm{min}$, the display range is autmatically switched to $1 / 10$ mode, and the decimal point disappears. Example: $1200 \mathrm{r} / \mathrm{min} \rightarrow$:200. $12000 \mathrm{r} / \mathrm{min} \rightarrow 1200$

This function displays an effective value of inverter output current. Its accuracy is $\pm 10 \%$. When a correct output current is needed, use an ammeter.

This function displays an effective value of inverter output voltage. The display indicates a reference value.

This function displays the rotating speed of driven machine, The indicated value is calculated by the following formula,

Machine speed [r/min] = Motor synchronous speed [r/min] \times machine speed conversion coefficient

- The setting of Function $3 E$ (auxiliary parameter), machine speed conversion coefficient (gear ratio, etc.), is required.
- Because the inverter display is only 4-digit, when the speed is higher than $9999 \mathrm{r} / \mathrm{min}$, the display range is autmatically switched to $1 / 10$ mode, and the decimal point disappears.
Example: $1200 \mathrm{r} / \mathrm{min} \rightarrow$ i200. $12000 \mathrm{r} / \mathrm{min} \rightarrow 1200$

\section*{| \bar{U} | E | Input signal status |
| :--- | :--- | :--- |}

\section*{| 17 | 7 | Output signal status |
| :--- | :--- | :--- |}

For an input/output signal check, use the UP/DOWN key to select function code 06 or 07 and press the SHIFT key.
The two LED lamps go out and data setting mode is set. The input/output signal can be checked in this mode. Check the signal by referring to the table and example.
The symbol "o" represents signal presence, and "-" signal absence. Sequence checks can be made easily during operation.

17	Q	Torque limiting level for driving

This function displays torque limiting level for driving [\%] which is set on function 33.
\square
Torque limiting level for braking
This function displays torque limiting level for braking [\%] which is set on function ${ }^{3} \%$.

This function displays torque calculation value [\%] of operating motor which is calculated from the inverter output voltage, current and the motor primary resistance.

BASIC PARAMETER DATA SETTING

V/F Pattern setting

These functions allow V/F pattern adjustment in order to tailor the maximum frequency, base frequency, and rated output voltage according to the rating of the motor and the application. Select a function code using the SHIFT and UPIDOWN keys. Shift the pointer to DATA SETTING MODE Data has been set previously at the factory.
Change it with the UP/DOWN keys only when necessary and press the SET keys to store it.

Note: Data value blinks when changed using the UP/DOWN keys. Press the SET key to stop blinking. New value is now set.

Bias'setting

This function provides speed control using a process control signal (0 to $10 \mathrm{VDC}, 4$ to 20 mA) or a frequency setting POT. The adjustable range is from 0 to 100% ($F_{\text {max }}$. When set at 100% an output frequency of 100% results even if the input signal is zero. However, when starting it begins with 0.5 Hz irrespective of the setting
Fine adjustment is possible if the bias is set at a high value.

Note: The starting frequency is adjustable between OHz and 5 Hz by setting the function code 37 (page 46).

These functions limit the output frequency to prevent the overspeed and underspeed operation of the motor. For instance, the low limiter is used for control of the cooling water pump. This function is suitable for control in which the cooling water level is kept at the lowest allowable level even when the process signal is zero volt.

$F_{\text {mL }}$ $0-400 \mathrm{~Hz}$

FUNCTION

F_{L} $0-400 \mathrm{~Hz}$

Note: When the setting value for HL is smaller than that for LL, the low limit value is ignored. At this time, "Err1" is displayed.

Acceleration and deceleration time

These functions set the acceleration and deceleration times. The acceleration time is the time it takes for the output frequency to incease from zero to $F_{\text {max, }}$ and the deceleration time is the time it takes for the output frequency to decrease from $F_{\text {max }}$ to zero. The time setting range is from 0.2 to 3600 sec .

Note: When the setting values exceed 100 sec , the minimum setting

Function Code No \square : 7

Gain for frequency setting signal

This gain adjustment function is used for compensation when the input signal voltage is below 10 V The adjustable range of the gain is from 0 to 200%. For example, if the frequency selting gain is set at 200\%, the range from 0 to $F_{\text {max }}$ can be controlled by compensation even when the input signal level is 5 V DC.

Torque boost

This function boosts torque during low-speed operation. A torque boost pattern can be selected from 21 types according to the load and/or motor requirements. Patterns (0) and (1) are suitable for variable torque loads such as a fan or a pump. When the pattern is (4) or higher, the voltage is increased and the torque is boosted in the range up to $\mathrm{F}_{\mathrm{Bas} /} / 3$.

Automatic energy-saving operation

This function is for energy-saving operation. Energy is saved by reducing the voltage according to the load current.

Electronic thermal overioad relay

The inverter has a built-in electronic thermal overload relay. No external overload relay is necessary when a single motor (4 -pole) is connected to a single inverter and the function is set according to the motor characteristics. Generally, the cooling effect of a motor is not sufficient during low-speed operation. The eiectronic thermal overload relay provides corrected characteristics.
For several motors connected to a single inverter, external thermal overload relays are needed for each motor feeder for individual protection.
For multiple motor applications, data code should be set to B (zero).

Fig. 1 Minimum operating current characteristics
$\underline{\underline{8}}$

- Setting the electronic thermal overload relay

The setting current is obtained by using the following formula.
$\mathrm{l}_{100}(\%) \leqq \frac{\text { Motor rated current }}{\text { Inverter rated current }} \times 100 \%$
Example: Motor full load current: 56A
Inverter rated current: 91A
(FRNO45G7-4EX)
$1_{100}(\%)=\frac{56}{91} \times 100(\%)=61(\%)$
Data code should be set 61 .

- Line operation \Leftrightarrow Inverter operation

- Group operation

3-element heater

Fig. 2 Inverter current characteristics

Fig. 3 Inverter overload

Note.
These electronic thermal overload relays meet the requirements of 4 -pole standard motors.
Therefore, under the following conditions, use a conventional overload relay in place of the electronic type.

1. When used with motors other than 4 -pole type.
2. When used with special motors (non-standard motors).
3. When used for a group operation (in which two or more motors are run by using a single inverter).
4. When frequent starting can be expected.

(4) AUXILIARY PARAMETER SETTING FUNCTION

DC braking

These functions are used for DC braking to stop the motor. If the braking time exceeds 10 sec., the motor enters the coast-to-stop state.

DC braking start frequency	Focs	$: 0.0$ to 60 Hz
DC braking voltage frequency	$V_{\text {ocs }}$	$: 0$ to 10%
DC braking time	$T_{\text {ocs }}$	$: 0$ to 10 sec

DC braking start frequency	Focs $: 0.0$ to 60 Hz	
DC braking voltage frequency	$V_{\text {ocs }}$	$: 0$ to 10%
DC braking time	$T_{\text {ocs }}$	$: 0$ to 10 sec

Braking duty : 5\% ED or less

FUNCTION

Тосв
0 to 10.0 sec

Multistep frequency setting

Seven different frequencies can be set by turning on and off the external contact signals (at $\times 1-C M, \times 2-C M, \times 3-C M$ terminal groups). The frequency setting range for each step is from 0.5 to 400 Hz . The ramp time for each step is determined by the acceleration and deceleration time settings.

- ON

O: OFF

Multi-frequency setting

Acceleration/deceleration time selting

 The time of acceleration from 0 to $F_{\text {max }}$ and the time of deceleration from Fmax to 0 can be set from 0.2 to 3600 sec . Four different acceleration and deceleration times (including acceleration time 1 and deceleration time 1) can be set by combinations of external control signals (at RT1.CM and RT2-CM terminal groups).

FUNCTION		DATA				$\begin{aligned} & \text { MSS5 } \\ & 0.0,0.5 \text { to } 400.0 \mathrm{~Hz} \end{aligned}$
E'	7		4	1.1	17	
FUNCTION		Data				
I'	$日$		5	IT.	\square	MSS6 $0.0,0.5 \text { to } 400.0 \mathrm{~Hz}$
FUNCTION		DATA				
\square	9		E	T.	\square	$0.0,0.5 \text { to } 400.0 \mathrm{~Hz}$

Multistep frequency control (example)

Accelereation and deceleration pattern

This function allows selection of non-linear acceleration and deceleration. Pattern A is suitable for machine loads where quick changes in accelertion and deceleration are undesirable. Patteren B is more suitabe for fan and blower.

- Further information: see next page

Note: 1) Linear pattern will override pattern B it $F_{\text {max }}$ is greater than 60 Hz .
2) This function cannot be used in the event the multistep frequency selection is made

Pattern	Setting
Linear ACC/DEC.	C--0
Non-Linear A	C--1
Non-Linear B	C--2

The gradient of non-linear acceleration and deceleration is obtained with following methods.

Non-linear pattern A

㑂 ! - -

- $T_{\text {scc }}$: Preset acceleration time
- ToEc : Preset deceleration time
- The actual time from the start of acceleration / deceleration to the time when the reference frequency is reached is 1.2 times the preset acceleration/ deceleration time.
- If the change width of the frequency setting is less than 20% of the maximum frequency ($F_{\text {max }}$), the acceleration/deceleration pattern may be linear.

Non-linear pattern B

涺
 $[--z$

- Non-linear pattern B consists of four line segments each for acceleration and deceleration.
$T_{1}=T_{A C C} \times \frac{29}{109+\alpha}$

$$
T_{5}=T_{\text {DEC }} \times \frac{\beta}{335+\beta}
$$

$T_{2}=T_{\text {ACC }} \times \frac{33}{109+\alpha}$
$T_{6}=T_{\text {DEC }} \times \frac{33}{335+\beta}$
$T_{3}=T_{A C C} \times \frac{47}{109+\alpha}$
$T_{7}=T_{\mathrm{DEC}} \times \frac{47}{335+\beta}$
$T_{4}=T_{A C C} \times \frac{\alpha}{109+\alpha} \quad T_{8}=T_{D E C} \times \frac{255}{335+\beta}$
Where
$\alpha=255 \times \frac{F_{\max }-42}{18}$

$$
\beta=29 \times \frac{F_{\operatorname{Max}}-42}{18}
$$

Motor noise reduction

Noise is reduced by changing the modulation degree of the sawtootn carrier frequency modulation control system.

Overload eariy warning signal

Early warning signals are given if the inverter output current exceeds the overload alarm level for a certain period of time. This is an open-collector output. If the optional relay unit is used, this signal can be used as a contact output. If 0 is set, this function is inactive.

Torque Limiter(driving and braking)

Torque limiting operation is based on calculations derived from the output voltage and current detection. This function enables automatic acceleration and deceleration, excellent recovery_characteristics during impact load at constant speed running, and smooth inverter recovery after an instantaneous power failure.

Automatic acceleration and deceleration control Even if acceleration and deceleration times shorter than those required by the load inertia, G7/P7 inverters will automatically extend proper acceleration and deceleration times, while maintaining the torque limiting level.

Torque limiting level setting range
Driving: - and 20 to 180% (150% for P7 series)
Braking: 0 and 20 to 180% (150% for P7 series)
Note: If " - " is set during driving mode, this function is not active.

Automatic deceleration control

Even if a braking resistor is not used, the function provides faster deceleration and stopping than the normal set time without overvoltage trip.

Note: The data setting for function code 34 is 100%, assuming that a braking resistor is connected. If no braking resistor is connected, setting should be changed to 0 or 20%. If left at 100%, an overvoltage trip will occur during deceleration.

Frequency level detection (FDT)

This signal is active (on) when the output frequency exceeds the detection level. This is an open-collector output. If the

Contact
Refer to
FUNCTION
$\overline{3}$

inal specification (Page 57).

Frequency equivalence detection range (FAR)

This signal is active (on) when the output frequency reaches the reference frequency.

This is an open-collector output. If the optional relay unit is used, this signal can be used as a contact output.
Refer to terminal specification (Page 57).

Starting frequency holding time

The starting frequency FsiA suitable for the starting torque characteristics of the load and the start frequency's holding time Trow can be set. The existence of starting frequency holding time permits a rotating start of a motor freewheeling in the reverse direction.
(These settings are invalid during deceleration or forward \leftrightarrow reverse operation)

E Jump frequency jumpt jump2 jump3

E Jump frequency range
These functions are used to avoid continuous operation at mechanical resonance points.

Function Code No. 38 3 3

3
Three jump frequencies can be set. Jump frequencies are not active during acceleration and deceleration or if the multistep frequency settings are used.
The jump frequency range is adjustable between 0.0 to 5.0 Hz .

FUNC	TION				JUMP1$0.0,0.5 \text { to } 400.0 \mathrm{~Hz}$
I	$\underline{\square}$		17.	9	
FUNCTION		DATA			JUMP2$0.0,0.5 \text { to } 400.0 \mathrm{~Hz}$
3	\bigcirc		3.	\square	
FUNCTION		DATA			JUMP3$0.0,0.5 \text { to } 400.0 \mathrm{~Hz}$
7	\square		17.	17	
FUNCTION		DATA			
3	I-		$\underline{\square}$	1	0.0 to 5.0 Hz

Number of motor poles
Machine speed conversion coefficient
These parameter functions are set to monitor the synchronous speed of the motor and the machine speed.

Machine speed $=$ (Motor synchronous speed of motor) \times
(Machine speed conversion coefficient)

Frequency monitors

The external output frequency meter can be calibrated. Pulse output or analog output can be selected with the internal switch (SW2) of the inverter.

- Pulse output

- Analog output

FWD/REV Command hold (3-wire control)

This function enables control by a momentary (50 ms minimum) RUN/STOP command (FWD and REV command). The self-hoid circuit can be omitted to simplify the circuit. When the function is selected, multistep frequency settings from 1 to 3 can be used, but those from 4 to 7 cannot.

Up-down control

The frequency setting can be increased and decreased using the $\mathrm{X} 1-\mathrm{CM}$ and $\times 2-\mathrm{CM}$ terminal groups. This function is similar in operation to that of a motor driven potentiometer. The selting is retained even if the power supply is turned off. When operation is restarted, the frequency automatically increases to the set value.

Note: 1) When this control function is selected, multistep, frequency setting 4 can de used. but the other 6 settings cannot.
2) Multistep frequency setting, FWD/REV command hold, and up-down control cannot be used simultaneously because the same terminals are used for these functions.
3) If up-down control is selected, operarion by the external voltage or current signal for frequency setting cannot be used.
4) If the Up and Down commands are input together, the Down command has priority.

Function Code					Teminal X 1	Teminal X2	Teminal $\times 3$
23 to 25	26	27 to 29	41	42			
\bigcirc	\bigcirc	\bigcirc	-	-	Multistep frequency setting		
-	\bigcirc	-	-	\bigcirc	UP-DOWN control		Multistep frequency setting 4
\bigcirc	-	-	\bigcirc	-	Multistep frequency setting 0 to 3		FWD/REV command hold
-	-	-	\bigcirc	\bigcirc	UP-DOWN control		FWD/REV command hold

[^0]
Restart after instantaneous power failure

This function specifies whether the inverter is to be restarted automatically when power is restored after an instantaneous power failure. If automatic restart is selected, the inverter is restarted after power recovery under the following conditions:

1) The power failure duration is within the allowable time. (3-wire control)
2) The RUN command is input.

Undervoltage alarm

If the DC intermediate circuit voltage drops to the undervoltage level, the inverter output is turned off. This function specifies whether an alarm signal is to be transmitted when this voltage drop occurs
Selecting this function locks the inverter in a fault monitoring mode when an undervoltage occurs. The restart function(43) has priority over this function.

FUNCTION	DATA	Active: : Inactive: -	Setting	Inverter	Self-hold	Alarm display	Alarm signal
44	\square		0	Stopped	on	on	on
			-	Stopped	off	on	off

Output signal code selection (Open-collector)

The RUN, FAR, FDT, OL, and LV terminals are used to output faults and operation monitoring signals. The output mode can be selected with this function. Three modes, 0,1 , and 2 , can be selected. If mode 1 or 2 is selected, signals are output in a bit pattern.

$0,1,2$

Table(a) Output signal selection

Terminals	Setting		
	0	;	2
RUN	Inverter running	Individual fault output	Combinations of operation monitor and individual fault signals
FAR	Frequency equivalence detection		
FDT	Frequency level detection		
OL	Overload early warning	Overload early warning	
LV	Undervoltage alarm	Undervoltage alarm	

Individual fault output when " \mid " is set at Table (a)

Individual fault Terminal symbol	$\stackrel{\tilde{\sim}}{\text { Overcurrent }}$	IU Overvoltage	Lu' Undervoltage	Oi: Inverter overload	$\begin{gathered} \text { OL2 } \\ \text { Motor } \\ \text { overload } \end{gathered}$	En: Inverter overheat	OH2 External alarm	No fault
RUN	\bigcirc	\bigcirc	\bigcirc	-	-	-	\bullet	\bigcirc
FAR	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bullet	-	\bigcirc
FDT	\bullet	\bigcirc	\bullet	\bigcirc	-	\bigcirc	-	\bigcirc

Note: : ON; O: OFF

Operation monitor output when" 2 " is set at Table (a) (while inverter is running)

Operation monitor	Terminal symbol							
Operating	Frequency equivalence detection (FAR)	Frequency level detection (FDT)	Overload early warring	LV	OL	FDT	FAR	RUN -
\square	\square	\square	\square	0	0	0	0	0
\square	\square	\square	\square	0	\bullet	0	\bullet	0
\square	\square	\square	\square	\bullet	\bullet	0	\bullet	0
\square	\square	\square	\square	0	0	\bullet	\bullet	0
\square	\square	\square	\square	\bullet	0	\bullet	\bullet	0
\square	\square	\square	\square	0	\bullet	\bullet	\bullet	0
\square	\square	\square	\square	\bullet	\bullet	\bullet	\bullet	0
\square	\square	\square	\square	0	0	0	0	\bullet
\square	\square	\square	\square	\bullet	0	0	0	\bullet

Note: \square : monitor signal available: \square : no monitor signal: ON: O: OFF

Individual fault output when " 2 " is set.at Table (a). (when inverter is tripped)

Individual fault	Terminal symbol				
	LV	OL	FDT	FAR	RUN
No ialt	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
Oc: Acceleration overcurrent	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$0[2$ Deceleration overcurrent	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc
$0 ¢ 3$ Constant-speed overcurrent	\bullet	\bullet	\bigcirc	\bigcirc	0
Oiu Overoltage	0	0	\bullet	0	\bigcirc
iii Undervoltage	\bullet	0	-	\bigcirc	\bigcirc
OL: Inverter overload	0	\bullet	-	\bigcirc	\bigcirc
OLE Motor overload	-	-	\bullet	0	0
Sin: Inverter overheat	\bigcirc	0	0	\bullet	\bigcirc
Othe External aiarm	\bullet	O	0	\bullet	0

[^1]
Slip compensation control

This function compensates for variations in speed caused by
load fluctuations. The amount of slip frequency
FUNCTION DATA

| H | E | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

Reversing operation with signal polarity

This function enables the direction of motor rotation to be changed according to the polarity $(+,-)$ of the frequency setting voltage.
To operate the inverter with an external frequency setting potentiometer, turn on the switch between terminals FWD and CM. Apply a positive voltage (+10 V DC) to terminal V1 to turn the motor in the forward direction, or apply negative voltage to the terminal to turn it in the reverse direction. It the switch between terminals REV and CM is on, a positive voltage applied to terminal $V 1$ turns the motor in the reverse direction and a negative voltage to the terminal turns it in the forward direction.
This means that the motor rotation direction can be changed only by changing the polarity of the setting voltage.

Note: When the multistep frequency setting function is used, Function code 47 is invalid.

AUXILIARY PARAMETER SETTING (Appendix)

Analog ammeter calibration (option)

heri an analog l/O card (OPC I-AlO) is used, an analog nmeter can be connected and output current measured. mction code 51 is used for ammeter calibration (10VDC). djustment can be made from 50.0% to 200.0%.
PCII-AIO is mounted inside the inverter.
=unction

Analog ammeter
calibration 50-200\%

Correction of motor primary resistance

unction code 52 data need not to be changed when FUJI's andard motors are used.
te use of low-frequency operation of motors made by other anufactures requires that the function code 52 data be odified. The acceptable error range for torque calculation il be shortened and trip-free control enabled. Calculate the tting value as it follows:

$$
\begin{aligned}
\text { tting value }= & \frac{\text { Primary coil resistance of motor used }}{\text { Primary coil resistance of FUJI's }} \times 100(\%) \\
& \text { standard 3-phase motor. } \\
& \text { (See the table) }
\end{aligned}
$$

djustment range: 50 to 200\%

Correction of motor primary resistance

The table on the right shows primary resistances for FUJI's standard motors. FRENIC5000G7/P7 is designed based on these data.

Primary resistance for FUJI's standard motor

Motor capacity (kW)	200 V series		400V series	
	Type *	R1(Ω)	Type ${ }^{\text {- }}$	R1(Ω)
30	30P7/30G7	0.0285	30P7/30G7	0.1141
37	37P7/37G7	0.0245	37P7/37G7	0.0979
45	45P7/45G7	0.0187	45P7/45G7	0.0748
55	55P7/55G7	0.0145	55P7/55G7	0.0579
75	75P7/75G7	0.0098	75P7/75G7	0.0391
90	90P7/90G7	0.0078	90P7/90G7	0.0311
110	110P7	0.0060	110P7/110G7	0.0241
132			132P7/132G7	0.0191
160			160P7/160G7	0.0150
200			200P7/200G7	0.0113
220			220P7/220G7	0.0100
280			280 P 7	0.0074

- Abbreviation

I Manufacturer use function

unction code: 99
unction code 99 is used for manufactures of machines in

FAILURE MESSAGE

Fault display

The fault display function performs three functions.

1) Displays present faults
2) Displays the operation status when the fault occurs.
3) Displays a record of immediately previous 3 faults. If a fault occurs, the fault monitoring mode is set automatically.

F Faults display *
F: Output frequency •
F Reference frequency ${ }^{*}$
F3 Output current*
Fr Operation mode *

F5 Faull memory 1
F Faull memory 2
; 7 Fault memory 3

- mark: when the first fault occured

Notes: 1) Function code F0 is not displayed at cpu error or memory error.
2) Data of $F 1$ to $F 3$ shown here is examples.

| Protection functions

Jisplay	Function	Description
-	Stall prevention	The accceleration time is automatically extended to avoid an overcurrent trip due to quick acceleration. The deceleration time is also automatically extended to avoid an overcurrent or an overvoltage trip due to quick deceleration.
-	Current limiting	Inverter output current is automatically limited if it reaches the limit level.
-	Instantaneous power failure	When the power failure occurs, the motor is driven fifteen milliseconds at full load. (Running time will be longer on light load).
LU	Undervoltage protection	- When the DC intermediate circuit voltage drops to the undervoltage level, the inverter immediately shuts down and holds the trip status. - If power failure continues and the control voltage in the inverter is lost, and the inventer will de reset automatically.
$\begin{aligned} & B C 1 \\ & 0 C E \\ & B C 3 \end{aligned}$	Overcurrent protection (Short-circuit and Ground fault)	If the inverter output current reaches the overcurrent protection level, the inverter immediately shuts down. and holds the trip status. The overcurrent trip indication is divided into 3 types. OC1: Overcurrent detection during acceleration OC2 : Overcurrent detection during deceleration OC3: Overcurrent detection during running at constant-speed The inverter can de protected from ground fault by adding an optional ground fault detection unit. Since the ground fault detection unit protects the inverter, an earth leakage circuit breaker (ELCB) must be used to prevent injury or accident.
0 U	Overvoltage protection	If the DC intermediate circuit voltage reaches the overvoltage protection level, the inverter immediately shuts down.
-	Input surge protection	The inverter can be protected from 5 kV standard impact wave voltage which will invade from the main circuit power.
Si	Inverter overload protection	If the load exceeds the overload capacity (inverse-time characterisic) of the inverter, the inverter immediately shuts down.
044	Inverter overheating protection	If the heat sink of the inverter overheats or the temperature inside the inverter exceeds the limit, the inverter immediately shuts down.
02	Motor overload protection (Electronic thermal overload relay)	When only one motor is driven, the motor can be protected from an overload without an external thermal overload relay. Since the electronic thermal overload relay is designed with consideration also given to the low cooling effect in the low-speed range, this protection works over a wide range. When driving several motors, attach a thermal overload relay to each motor for protection.
SH2	External fault protection	If the thermostat of the braking unit or braking resistor (options) or the external thermal overload relay for motor protection is active, the inverter immediately shuts down. If FWD-CM or REV-CM is on state when applying the power, the inverter will not run and indicate "OH2".
(-r-2)	CPU error protection	If a CPU error occurs inside the inverter; the inverter shuts down.
Erro	Memory error protection	If a memory error occurs inside the inverter, the inverter shuts down.

11-4 Terminals

(1) Composition of main circuit and terminals

Symbol	Terminal	Description
L1, L2 , L3	Main circuit (Input)	Connect a three-phase power supply.
U, V, W	Inverter output	Connect a three-phase motor
$(+),(-)$	Braking unit connection	Connect the braking unit (option). The braking resistor must be connected via the breaking unit.
$(+)$, P1	DC reactor connection	Connect a DC reactor for power-factor correcting (option). (See page 30)
GND (PE)	Ground terminal	Ground terminal for the inverter chassis (housing) (Be sure to ground the chassis to prevent electrical shock and to reduce radio interference noise.)

「ype	Symbol	Terminal	Description	
Control jower supply	RO, TO	Auxiliary control power supply	Connect a single-phase AC power supply to back up the control circuit power supply	
Erequency setting	11	Frequency control common	Frequency setting signal terminal (common reference voltage for terminals $12,13, \mathrm{~V} 1$, and C 1)	
nonitoring	13	Frequency control power supply	Use this terminal for the frequency setting POT: $+10 \mathrm{VDC} .1 \mathrm{k} \Omega .-10 \mathrm{~V} \mathrm{DC}$ can also be output by changing the internal pin connection. (The output is set to $+10 \mathrm{~V} D \mathrm{C}$ at the factory.)	
	12	Frequency control input terminal	OV to $\pm 10 \mathrm{~V} D C$, input resistance: $22 \mathrm{k} \Omega$ Maximum output frequency at $\pm 10 \mathrm{~V} \mathrm{OC}$	The frequency based on the sum of setting signals 12 and V 1 is output. When the input voltage is 0 V to $\pm 5 \mathrm{~V} \mathrm{DC}$. select and set Function code 18.
	V1	Voltage process signal	OV to $\pm 10 \mathrm{~V}$ DC, input resistance: $22 \mathrm{k} \Omega$ Minimum output frequency at $\pm 10 \mathrm{~V}$ DC	
	C1	Current process signal	4 mA to 20 mA DC, input resistance: 250Ω Minimum output frequency at 4 mA and maximum output frequency at 20 mA $\text { C1: }+, 11:-$	
	FM1, FM2	Frequency meter connection	0 V to 10 VDC (maximum frequency at 10 V) Two voltmeters each having an internal resistance of $10 \mathrm{k} \Omega$, can be connected. Pulse signals can be output by changing the internal setting pins (SW2). FM1: + FM2: -	
Contact	CM	Contact input common	Common terminal for contact input signals	
nput	AUT	Current input selection	Specify an input signal when both voltage and current signals are available for frequency setting. AUT-CM ON: current input, OFF: voltage and frequency setting POT inputs	
	FWD	Forward operation or stop command	FWD-CM ON: forward, OFF: stop	The motor stops when both FWD and REV are on or off together.
	REV	Reverse operation or stop command	REV-CM ON: reverse, OFF: stop	
	$\begin{aligned} & x_{1}, x_{2} \\ & x_{3} \end{aligned}$	Multistep frequency selection	Up to 8 frequencies can be set by turning on and off the external contact signals.	
	X1, X_{2}	Up-down control	Function of terminals X_{1} and $X 2$ changes by making Function code 42 active. X1-CM ON: UP (frequency increase), X2-CM ON: DOWN (frequency decrease)	
	x3	FWD/REV command hold	Function of terminal $\times 3$ changes by making Function code 41 active. X3-CM ON: Self-holds FWD or REV momentary signals input (pulse width: 50 ms or more)	
	RT1. RT2	Acc./dec. time selection 2,3, or 4	The 4 acceleration or deceleration times can be selected by turning on and off the external contact signals.	
	$B X$	Coast-to-stop command	BX-CM ON: Instantaneous stop of inverter output with no alarm signals. Since the self-hold function does not work, turning off $B X$ will restore the inverter if FWD or REV are still on.	
	PU	Switching operation from line to inverter	The inverter is ready when the terminals PU and CM are shorted. Turning off the switch after the specified time changes over from line to inverter operation.	
	IL	Interlock for load side switch	If a switch is installed between the inverter and the motor, the auxiliary contact (NC contact) is connected.	
	THR	External fauit input	If the connection between terminals THR and CM is opened, the inverter output is turned off and a motor coast-to-stop results. (OH2 trip) This input signal is self-held internally.	
	RST	Alarm reset	If the terminals RST and CM are shorted while the inverter is tripped, the protection function is cancelied.	

Control circuit (Cont'd)

Type	Symbol	Terminal	Description	
Opencollector output	CME	Open-collector output common	This is the common terminal for open-collector outputs.	Open-collector output 50 mA max. 27 V max. These terminals can also output individual faults. For details, refer to page 49 and 50.
	RUN	Inverter running	An on signal is output between RUN and CME at and above the starting frequency. This signal is turned off when the inverter is not operating, the motor coasts-to-stop or during DC braking.	
	FAR	Frequency equivalence detection	When the output frequency is in the range of the reference frequency $\pm \Delta \mathrm{fHz}$, an on signal is output between FAR and CME. ($\Delta \mathrm{F}: 0.5$ to 5 Hz variable)	
	FDT	Frequency level detection	An on signal is output between FDT and CME when the output frequency is higher than the preset detection level. The signal is turned off when the output frequency is below the detection level.	
	OL	Overload early warning	An on signal is output between OL and CME when the output current is larger than the preset overload alarm level. The signal is turned off when it is smaller. (Adjustment range: 50\% to 105\%)	
	LV	Undervoltage	An on signal is output between LV and CME when the inverter output is turned off due to undervoltage. This signal is not output for about 1.5 sec . after power-up in order for power supplies to stabilize.	
Contact output	AX1, AX2	Run command or inverter running	This signal is used to open or close the contactor on the power supply side. Aux. power supply (R0-T0) required.	Contact capacity: 250 V AC, 0.3A
	$\begin{aligned} & 30 \mathrm{~A}, 30 \mathrm{~B}, \\ & 30 \mathrm{C} \end{aligned}$	Alarm output (Any fault)	An signal is output when the protection functions of the inverter are active and when the inverter tripps. (Contact: 1SPDT, 30A-30C: on the inverter trips)	$(\cos \phi=0.3)$
Protection	GF1,GF2	Ground fault detection input	This is the input terminal for the ground fault detection unit (op inverter.	on) to protect the

3) Terminal arrangement and size of terminal screw

1 Terminal arrangement figures

(2) Arrangement figure of control circuit terminals

TB5																							TB6		TB4		
	AX1		$\times 2 \mathrm{CM}$	CmE FA		OL FM	FM1	FM2		V1	C1	$1 \times$	$\mathrm{x}_{1} \times$	x2	$\times 3$	${ }^{\text {c }}$	CM	RT1	1	2 A	AUT						
30 A	A 1	08		CRUN	LV	\|FDT	TTII	11	12	13	3 F	FWD	\|REV		8	CM	${ }^{\text {TH }}$	TR R	RST	PU		H.	GF1	GF2	RO		TO

(3) Table of terminal arrangements and terminal screw sizes

12. Options

(1) Reactors
'i. Line side $A C$ reactors

Fig. A

Fig. B

Voltage	Applicable motor output [kW]	Reactor type	Figure	Dimensions [mm]								Power loss [W]	Weight [kg]
				A	B	C	Γ	E	G	H	Terminal hole diameter		
$\begin{aligned} & 200 \mathrm{~V} \\ & \text { Series } \end{aligned}$	30	ACR2-37	A	190	60	90	120	170	7×11	190	8.4	60	11
	37												
	45	ACR2-55	B	190	60	90	120	200	7×10	190	13	82	12
	55												
	75	ACR2-75	B	250	100	90	120	200	9×14	250	13	114	25
	90	ACR2-90	B	285	190	120	158	190	12×20	210	13	120	26
	110	ACR2-110	B	280	150	110	138	200	10×20	270	13	135	30
400 V	30	ACR4-37	A	190	60	90	120	170	7×10	190	8.4	82	11
Series	37												
	45	ACR4-55	B	190	60	90	120	200	7×10	190	10.5	88	12
	55												
	75	ACR4-75	B	190	60	90	126	197	7×10	190	11	89	12
	90	ACR4-110	B	250	100	105	136	202	9.5×18	245	13	98	24
	110												
	132	ACR4-132	B	250	100	115	146	210	9.5×18	250	13	162	32
	160	ACR4-220	B	320	120	110	150	240	12×20	300	13	223	40
	200												
	220												
	280	ACR4-280	B	380	130	110	150	260	12×20	300	13	295	52

(2) Power factor correcting DC reactors

The power factor can be improved to approx. 0.9 by using this reactor.

Note: The following inverters are provided as stanciard with separately supplied a power factor correcting DC reactor.
(1) Inverter of 75 kW and above (G7 series 200400 V class)
(2) Inverter of 75 kW and above (P 7 series 200 V class)
(3) Inverter of 90 kW and above (P 7 series 400 V class) When installing inverters. be sure to connect this reactor.

Fig. A

Fig. B

Fig. D

Voltage	Applicable motor output [kW]	Reactor type	Figure	Dimensions [mm]									Power loss [W]	Weight [kg]
				0	B	C	D	E	F	G	H	Terminal hole diameter		
200 V Series	30	DCR2-30	A	146	75	100	126	130	70	9×15	210	10.5	61	16
	37	DCR2-37	B	156	80	100	126	110	70	9×15	260	10	72	19
	45	DCR2-45	B	156	80	110	136	130	75	9×15	260	10	82	23
	55	DCR2-55	B	170	85	110	136	130.	75	9×15	300	10	98	28
	75	DCR2-75	C	200	80	95	126	180	75	10×16	240	12	100	19
	90	DCR2-90	D	180	100	100	131	150	75	10×15	275	15	140	22
	110	OCR2-110	D	200	100	120	141	150	80	10×15	290	15	210	25
400 V Series	30	DCR4-30	A	150	75	85	111	155	70	9×15	210	8.4	63	14
	37	DCR4-37	A	146	75	100	126	155	70	9×15	210	8.4	56	17
	45	DCR4-45	A	146	75	115	141	180	75	9×15	210	10.5	58	21
	55	DCR4-55	A	146	75	130	156	190	85	9×15	210	10.5	66	25
	75	DCR4.75	D	200	70	120	151	160	80	10×16	250	10.5	95	25
	90	DCR4-90	D	220	70	140	-171	165	85	10×16	280	13	94	32
	110	DCR4-110	0	220	70	150	181	170	95	10×16	290	13	:15	36
	132	DCR4-132	D	190	80	146	177	180	90	11	360	13	100	40
	160	DCR4-160	D	220	90	140	171	200	90	12×20	350	12	115	45
	200	DCR4-200	D	230	100	140	181	180	110	12×20	310	15	140	50
	220	DCR4-220	D	230	100	150	201	180	110	12×20	320	15	160	50
	280	OCR4-280	D	230	100	160	211	180	110	12×20	340	15	170	58

(3) Radio frequency interference (RFI) suppressing reactor

Type: ACL-10A
These reactors are used to suppress radio interference.
Note that the method of connection differs depending on inverter capacity as shown in the figures on the right.

(4) Noise suppressing AC reactor

Fig. A

Fig. B

Voltage	Applicable motor output [kW]	Reactor type	Figure	Dimensions [mm]								Power loss [W]	Weight [kg]
				A	B	C	D	E	G	H	Terminal hole diameter		
200 V Series	30	NR2-55	A	320	120	110	150	230	12×20	300	10.5	182	55
	37												
	45												
	55												
	75	NR2-75	A	300	150	115	156	200	12×20	310	13	215	53
	90	NR2-90	A	360	180	140	188	220	12×20	350	10.5	270	85
	110	NR2-110	A	390	200	150	198	200	12×24	360	13	350	95
400 V	30	NR4-30	A	240	160	120	156	150	12×20	280	8.4	129	32
Series	37	NR4-37	A	250	160	120	156	150	12×20	290	8.4	142	38
	45	NR'4-45	A	270	180	120	156	160	12×20	300	8.4	163	42
	55	NR4-55	A	300	180	130	156	182	12×20	300	8.4	178	53
	75	NR4-75	A	350	180	130	178	190	12×20	340	10.5	220	68
,	90	NR4-90	A	360	180	140	188	200	12×20	350	10.5	240	80
	110	NR4-110	A	380	200	150	198	200	12:20	360	13	270	95
	132	NR4-132	B	380	200	180	233	180	15×24	430	15	370	120
	160	NR4-160	B	400	200	200	256	170	15×24	460	15	360	150
	200	NR4-200.	B	400	200	210	273	190	15×24	500	15	470	180
	220	NR4-220	8	350	200	225	288	200	15:24	550	15	500	200
	280	NR4-280	B	450	300	200	268	275	15×20	470	13	700	165

Caution: When you connect the noise suppressing reactor, a derating (approx. 15 to 20%) of motor output will result due to voltage drop. since the impedance of these reactors is large.
(2) Braking unit (transistor switch) and resistors

Please refer to page 12 for connection

Item			Specification											
200 V	Applicable motor output [kW]		30		37	45				175		90	110	
	Inverter lype		FRNO30 G7iP7-2EX		$\begin{aligned} & \text { FRN037 } \\ & \text { G7IP7.2EX } \end{aligned}$		FRNO45 G7'P7-2EX	$\begin{aligned} & \text { 'FRNO55 } \\ & \text { :G7IPT-2EX } \end{aligned}$		FRN075		FRN090 G7:P7-2EX	FRN 110 P7-2EX	
	Braking	Type	BU030-2AEX		BU055-2AEX					BU075-2AEX		BU055-2AEX		
		Required quantity	1		1					1		2		
	Braking	Type	OBH030-2A		DBH037-2A		DBH045-2A	DBH055-2A		\|OBH037-2A		DBH045-2A	DBH055-2A	
		Required quantity	1		1			11		12		2	2	
		Capacity (kW] - 1	3.6		4.8	6.0		${ }^{7.2}$		9.6		12.0	14.4	
		Resistance [Ω] ${ }^{\prime}$	4.0		3.0	-2.5		2.0		1.5		1.25	1.0	
400 V Series	Applicable motor output [kW]		30	37	45	55	75	90	110	132	160	200	220	280
	Inverter type		$\begin{array}{\|l\|} \hline \text { FRNO30 } \\ \text { G7,P7-4EX } \end{array}$	$\begin{array}{\|l\|} \text { FRN037 } \\ \text { G7P7-4EX } \end{array}$	$\begin{array}{\|l\|} \hline \text { FRNO45 } \\ \text { G7.P7-4EX } \end{array}$	FRN055 G7.P7.4EX	FRNO75 G7.P7-4EX	$\left\lvert\, \begin{aligned} & \text { FRNO90 } \\ & \text { G7P7-AEX } \end{aligned}\right.$	FRN1 10 G7.P7-4EX	FRN132	$\begin{array}{\|l\|} \hline \text { FRN } 160 \\ \text { G7:P7 } 4 \text { EX } \end{array}$	$\begin{aligned} & \text { FRN200 } \\ & \text { G7:P7-4EX } \end{aligned}$	$\begin{array}{ll} \text { FRN220 } \\ \text { G7 P7-4EX } \end{array}$	FRN280 P7.4EX
	Braking unit	Type	BU037-4AEX		BU055-4AEX		BU110-4AEX			$\left\lvert\, \begin{aligned} & \text { BU132 } \\ & -4 \mathrm{AEX} \end{aligned}\right.$	BU110-4AEX			$\left\lvert\, \begin{aligned} & \text { BU } 132 \\ & -4 A E X \end{aligned}\right.$
		Required quantity	1		1		1			1	2			2
	Braking resistor	Type	$\begin{array}{\|l\|} \hline \mathrm{DBH} 030 \\ -4 \mathrm{~A} \\ \hline \end{array}$	DBH037	$\begin{aligned} & \text { OBHO45 } \\ & -4 \mathrm{~A} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{DBH} 055 \\ & -4 \mathrm{~A} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{DBHO} \\ -4 \mathrm{~A} \end{array}\right\|$	$\begin{array}{\|l\|l\|} \hline \mathrm{DBH} \text { H045 } & \mathrm{DBH} 055 \\ \hline-4 \mathrm{~A} & -4 \mathrm{~A} \\ \hline \end{array}$		$\left\lvert\, \begin{aligned} & \mathrm{OBH} 045 \\ & -4 \mathrm{~A} \end{aligned}\right.$	OBH037	$\left\lvert\, \begin{array}{\|l\|} \hline \mathrm{DBH} 045 \\ -4 \mathrm{~A} \end{array}\right.$	$\begin{aligned} & \mathrm{DBH} 055 \\ & -4 \mathrm{~A} \end{aligned}$	$-4 \mathrm{~A}$
		Required quantity	1	1	1	\dagger	2	2	2	3.	4	4	4	6
	-	Capacity [kW] *1	3.6	4.8	6.0	7.2	9.6	12.0	14.4	18.0	19.2	24.0	28.8	36.0
		Resistance [Ω] " ${ }^{1}$	15	12	10	7.5	6.0	5.0	3.75	3.33	3.0	2.5	1.88	1.67

Common specification

Braking torque [\%]	100
Braking duty [\%ED]	5 (allowable duration: 5 sec.) "2
Protective function	If the braking unit or resistor overheats, braking unit transistors are shut down and the inverter protective function is active.
Ambient temperature	-10 to $+50^{\circ} \mathrm{C}$
Painted color	Braking mat: Munsell $5 \mathrm{Y} 3 / 0.5$ half-polish Braking resistor: Munsell $\mathrm{N} 1,2$ half-potish

*1 Total value, not for one resistor. "2 Continuous durable time of braking unit: 60 sec .
(1) Braking unit

Fig. A

Fig. B

Voltage	Type	Figure	Dimensions [mm]						Terminal arrangement screw size			Weight [kg]
			W	W1	H	H1	H2	D	Figure	(+). (-). D8. GND (PE)	1. 2. (11, 12, 01, 02)	
200V Series	BU030-2AEX	A	150	100	240	225	200	150	C	M5	M4	5
	BU055-2AEX	B	230	130	240	225	200	170	0	M6		7
	8U075-2AEX		250	150	370	355	330	170	C	M8		11
400V Series	BU037.4AEX	B	180	100	280	265	240	160	C	M5	M4	6
	BU055-4AEX		230	130	280	265	240	160				6
	BU110-4AEX		250	150	400	385	360	170	D	M6 \cdot		12
	BU132-4AEX								E	M8		

200V Series

Type	Dimensions [mm]						Terminal arrangementand screw size			Weight [kg]
	W	W1	W2	H	H 1	0	Figure	P. DB	1.2.E	
OBH030-2A	400	380	400	660	628	140	B	M5	M4	11
DBH037-2A						240				15
DBH045-2A										20
DBH055-2A			405	750	718					25

400V Series

Type	Dimensions (mm)						Terminal arrangement and screw size			Weight [kg]
	W	W1	W2	H	H1	D	Figure	P. 08	1.2.E	
DBH030-4A	420	388	420	660	628	140	A	M4	M4	11
DBH037-4A										15
DBH045-4A						240	B	M5		20
DBH055-4A			425	750	718					25

Fig. A

Fig. 8

(3) Parts of control circuit
(1) Potentiometer for frequency control

Type: WAR $3 W-1 \mathrm{k} \Omega(3 W) \mathrm{B}$-characteristics

Scale plate Type: 50P

Knob Type: 40 N

Note: Scale plate and knob are sold separately from POT itself.
(2) Surge absorber (Noise suppressor)

S1-B-0, S2-A-0

Type	Use with	Capacitance (F)	Resistance (Ω)	Dimensions. mr			
				W	H	T	A
S-1-B-0	Control relay or timer	0.1	200 (1/2W)	17.5	40	9.1	20.0
S-2-A-0	inagnetic contactor	0.2	500 (1:2W)	27.5	40	10.4	30.0

[^2]
13. Distribution \& Control equipment

Voltage	Applicable motor output [kW]	Inverter type	MCCB (): Interrupting capacity	ELCB ():Interrupting capacity	Magnetic contactor	Main circuit wire U, V, W LI, L2 L3 (mm^{2})	DC intermediate circuit wire $\left(\mathrm{mm}^{2}\right)$		
							P1. (\div)	$1(+) .1-$	
200 V Series	30	FRN030G7/P7-2EX	SA203B/150 (50KA)	EGa203B/150 (18KA)	SC-6N	60	38×2	\%	
	37	FRN037G7/P7-2EX	SA203B/200 (50KA)	EGa203B/200 (18KA)	SC-7N	38×2	38×2	14	
	45	\|FRN045G7/P7-2EX		SA203B/225 (50KA)	EGa203B/225 (18KA)	SC-8N	60×2	60×2	22
	55	FRN055G7IP7-2EX	SA403K 300 (42KA)	EGa403A/300 (35KA)	SC-10N	60×2	100×2	22	
	75	FRN075G7/P7-2EX	SA403K350 (42KA)	EGa403A/350 (35KA)	SC-12N	100×2	150×2	38	
	90	\|FRN090G7/P7-2EX		SA403K/400 (42KA)	EGa403A/400 (35KA)		150\%2	150×2	22×2
	110	FRN110P7-2EX	SA603H/500 (85KA)	EGa603A/500 (42KA)	SC-14N	1200×2	200×2	22×2	
400 V Series	30	\|FRN030G7/P7-4EX	SA1038/75 (25KA)	EG1038/75 (5KA)	SC-3N	22	22	3.5	
	37	FRN037G7/P7-4EX	SA103B/100 (25K)	EG103B/100 (5KA)	SC-4N	38	38	5.5	
	45	FRN045G7/P7-4EX	SA203B/125 (25KA)	EGa203B/125 (10KA)	SC-5N	38	60	8	
	55	FRN055G7/P7-4EX			SC-6N	60	38×2	14	
	75	FRN075G7/P7-4EX	SA203B/200 (25KA)	EGa203B/200 (10KA)	SC-7N	38×2	38×2	14	
	90	FRN090G7/P7-4EX	SA203B/225 (25KA)	EGa203B/225 (10KA)	SC-8N	60×2	60×2	22	
	110	FRN110G7/P7-4EX	SA403K/250 (30KA)	EGa403A/250 (22KA)	SC-10N	60×2	100×2	22	
	132	FRN132G7/P7-4EX	SA403K/300 (30KA)	EGa403A300 (22KA)	SC-11N	$100 \times ?$	150×2	38	
	160	FRN160G7/P7-4EX	SA403K/400 (30KA)	EGa403A/400 (22KA)	SC-12N	100×2	150×2	22\%2	
	200	FRN200G7/P7-4EX	SA603H/500 (42KA)	SG603A/500 (42KA)		150×2	200×2	22×2	
	220	FRN220G7/P7-4EX			SC-14N	200×2	200×2	22×2	
	280	FRN280P7-4EX	SA603H/600 (42KA)	SG603A/600 (42KA)		200×2	200×2	38×2	

Note: 1. The above data is based on Fuii Electric's general-purpose motors. (4-Pole)
2. When using an E series molded case circuit breaker or an SG series earth leakage circuit breaker, match the rated currents.
3. Wire sizes are based on 600 V PVC

Numerals in () fall under WL1 electric wire, i.e.
Furukawa Denko-made 600V leading wire or FSLC, i.e. Furukawa Denko-made panel wiring electric wire.
4. Wire sizes for $(+),(-)$ (Braking) circuit are based on that braking duty is 5% ED.
14. Inspection list

SECTION E

FAULT TRIP UNIT

FUJI MCA11-GFD-2 SERIES

SUPPLIED BY: EMSBY EQUIPMENT PTY LTD 33 ACHIEVEMENT CRESENT ACACIA RIDGE QLD 4110
TEL: (07) 2742566
FAX: (07) 2742387

FUJI INVERTERS Caswell Street East Brisbane SPS SPOIl Operations and Maintenance Manual
MCA series

Auxiliary control equipment

Auxiliary control equipment MCA series
These MCA series equipment are used to carry out an automatic control of systems comprising inverter. They facilitate system control including conveyer synchronized operations, interlocking control, automatic
operations using a sensor and winding control. In addition, when the programmable controller is incorporated, the control circuit can be simplified. For further information on MCA series, please contact FUJI.

Sensor automatic controller	Frequency setter	Frequency jump unit	Signal controller
MCAII-U	MCA II-H	MCAII-J	MCA-SA
- Current/voltage conversion during automatic operation by sensor - Pl control - Signal conversion for sensor - Output frequency limit - Sensor signal monitor - Power supply for sensor	- Potentiometer for frequency setting ($1 \mathrm{k} \Omega$) - Frequency meter flush mounting type is available. Exclusive use: FRENIC5000 series	- Two jump frequencies can be set to prevent resonance. Exclusive use: FRENIC5000 series	- Main speed setting when running several inverters - Ratio setting - DC amplification - Current/voltage conversion - Sensor signal conversion

Dimensions, mm

MCA II-U

MCA II-H

MCA II-J

SECTION F

LEVEL DISPLAY TRANSMITTER

LIT 500

MANN INDUSTRIES PTY LTD

Description

The Mann Industries LPD350 loop powered display provides a local process indication from any 4.20 mA signal.
The input measuremeat is shown on a large, $3+1 / 2$ digit, high contrast LCD display añd can be easily saled to read in percentage or directly in engineering units.

Power for the unit is drawn from the input loop current with a 2.5 V voltage drop across the unit (at 20 mA current) which results in a maximum increase in loop load of 125Ω.

Mann Industries also manufacture a range of pouered displays with analogus RTD, thermocouple and frequency inputs (sec catalogue section 6, PM350 series data sheets for derails).

The LPD 350 and the enite Mann Industries product range are designed and manufactured in Australia and carry a full 2 -year warranty.

Fo: more information or application assistance please contacr your Mann Industies representative or Mann Incusiries manufacturing headquarters.

FIG 1: Use of IPO 350 with 4 wire transmitter and process alarm moule (Powe for iosp eomes from 4 wite transmitset).

FIG 2: Use of LPDSS0 with 2-wire transminer (note that it may be possible to power the loop trom the FLC in which case the power supply will no: be required).

Features

- Large $12.7 \mathrm{~mm}\left(05^{\prime \prime}\right)$ high contrast LCD display
- Accepts 420 mA and 10-50mA inputs
- Loppowered (125 s loop load)
- Linearity $+1 \subset 0.100$ of span
- Easily scaled to display in any engineering unit
- Reverse action display internally selectable
- Screw connections via rear mounted unpluggable terminal block
- Rugged anodised aluminium case it standard $48 \times 96 \mathrm{~mm}$ DIN format
- Two year warranty
- Australian designed and manufactured

For assisiance and advice on recent additions to our range of products please contact our marketing department.

See over for full specifications

ISSUE NO: LPD350 0390-A

SPECIFICATIONS

DISPLAY $\quad \because \quad 13+1 / 2$ digit LCD	POWER \quad; frominput lopp (seeabove)
Digit size $\quad \therefore \quad \therefore .12 .7 \mathrm{~mm}$ (0.5 Inch)	
Range . $\because=1899$ to +1999	\because GENERAY
$\underset{\text { sclection point }}{\text { Decina }} \because 1 \mathbf{X X X X}$	Aduracy $\begin{aligned} & +1-0.05 \% \text { span error } \\ & 1 \text { coupt } \end{aligned}$
(switch selectable) $\quad \begin{aligned} & \text { (XXXX }\end{aligned}$	Repeatabilit $\quad:+7-0.05 \%$ spanemor
Oversange display $\quad \because$ Blanked except for, i at left	Temperature drift \quad Zero $+1-0.1$ counts ${ }^{\circ} \mathrm{C}$
Note :Minus sign is displayed automatically when measured signal is below display zero.	perating temprange $\quad:-20$ to $+70^{\circ} \mathrm{C}$
INPUT ${ }^{\text {a }}$ (20 mA (or 10.50 mA)	torage temp ratage $\quad=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Voliage drop $\quad \therefore \quad 2.5 \mathrm{~V} @ 20 \mathrm{~mA}$	Response time $\quad \therefore 200 \mathrm{mS}$ fromp-10-90\% outpit
Max loop loading $\therefore \quad \therefore 125 \Omega$	Sample rate $\quad \therefore 2.5$ per.sec
Max foniard current $\quad 100 \mathrm{~mA}$ continous	48 min x 96 mí
Max reverse curaent $\because 500 \mathrm{~mA}$ contious	
ADJUSTMENTS	
Span adjustability $\quad 0-3998$ counts $: \quad$ in	NOTES:
Zero adjustability $\quad \therefore \quad \therefore 1999$ 10 ${ }^{\circ}+1999$	
Note : All adjusmencs via 20 turn potentiometers	

FIG 3: LPD350 connection diagram,

TOF VIEW ($96 \mathrm{~mm} \times 75 \mathrm{~mm}$ excluding bevel)

FRONT VIEW ($48 \mathrm{~mm} \times \operatorname{comm}$)

 omiations or amendachu to thit specilifatien.

The thoroughtstíng and quality enteol impored by MANN INDUSTRIES PTY LTD on all theif

 au in providing moluitas te your procest coeasurement and contrel problems

Designed and manufactured by

gECTION Q

LOAD BREAK SWITCHES
 SPRECHER \& SCHUH LK SERIES

LK LKP 3-2500WT LOAD BREAK SWITCH
LK QSA2OON BS FUSE SWITCH UNITS MECHANICAL INTERLOCK

SUPPLIED BY: NHP PTY LTD 25 TURBO DRIVE COORPAROO QLD 4151

TELEPHONE: (07) 8916008
FAX: (07) 8916139

NHP-LK Rollcon Load-break \& Fuse-Switches

Refer Catalogue NL

The importance of the right contacts
The Rollcon range of switches is the result of more than 50 years development, and it complies with all requirements of short-circuit capacity, breaking capacity, and isolating distance as specified in A.S., B.S. and IEC standards.

The Rollcon has a cleverly developed moving contact system with unique features, combining the advantages found in both knife and roller contact systems.

The moving contact system is based on multiple, silver-plated copper rollers, held in position by a spring loaded steel retainer, which permits the rollers to rotate individually.
The spring pressure is so adjusted to the friction between rollers and knife that, during operation, the rollers normally wipe the knife surface (i.e. no roller rotation - self cleaning effect).
However, if the contacts attempt to weld during closing under fault conditions, the mentioned roller/knife friction increases and the rollers will rotate, peeling the points where incipient welding has occured thus preventing any permanent welding from taking place.

This also means that the "rolling" process presents a brand new silver plated surface contact area so there is no increase in the contact temperature.
All these switches are tested to IEC408 and comply with AS1775. Many switchboards containing Rollcon switches have been tested in Australia to AS 1136.

LKS - Fuse - switches 40 amp - 800 amp

For motor switching and general purpose loads
All fuse switch contacts are designed to fully isolate the fuse from both line and terminals.
This enables the switch to be fed from either direction without the danger of one side of the fuse being active when the switch. is open. Also, as the line and load contact carrier move independently within the switch housing, the fuse cartridge does not have to suffer any shock during the very fast opening and closing operations. By using both contact pairs in series, all NHP-LK fuse switches have a very high make/break capacity giving excellent motor load (AC 23) characteristics.
Fitted with IP65 handle as standard.

LKA - Fault make, motor load-break switches 125 amp - 1000 amp

For motor switching and general purpose loads
This style of switch is designed primarily for motor circuit applications, as it has a similar contact design to fuse-switches. It therefore has excellent motorlload (AC 23) characteristics due to the 4 series breaks per pole. The thermal ratings differ from those of the fuse-switches, as the LKA does not have to dissipate the watts loss of a fuse cartridge. This same contact arrangement makes it very suitable for special applications like capacitor or D.C. switching.

Fitted with IP65 handle as standard.

LKP - Fault make load-break switches 250 amp - 3150 amp

For general purpose loads
Arranging the contact pairs in parallel gives the LKP range significantly higher current capacity and short time withstand. For example, the largest rated switch is the LKP 3150 which can carry 3150 amps (enclosed) and has a short circuit withstand of 80 kA for 1 second and 50kA for 3 seconds.

Most of the LKP range have ratings for AC 22 (mixed loads) and AC 21 (mostly static loads).
This range is the most popular for general light and power duties and main switch / isolator application.

Fitted with IP65 handle as standard.

LKV - Fault make, motor load-break switches 40 amp - 3600 amp

For motor switching and general purpose loads
This new series of load-break switches has recently joined the NHP-LK series of switches. This 'V' series of switches, by the use of conventional wiping contacts offer a very shallow depth suited to circuit breaker panelboards.
Another strong advantage of these switches is their visible contacts (125 to 1600 amp) which are required by many customers.
Supplied with IP65 handle as an option.

160 A	200 A	250 A	315 A	400 A
		Frame size R2		

Cat. No. LKS2-200

Cat. No. LKS2-315-PI

Cat. No. LKS2-400

Standard fixed type fuse-switches	$\begin{gathered} \text { LKS2-160 } \\ \$ 520.00 \\ \text { LKS2-160-DIN } \\ \$ 540.00 \end{gathered}$	$\begin{gathered} \text { LKS2-200 } \\ \$ 620.00 \end{gathered}$	LKS2-250 $\$ 720.00$ LKS2-250-DIN $\$ 740.00$	$\begin{gathered} \text { LKS2-315 } \\ \$ 820.00 \end{gathered}$	$\begin{gathered} \text { LKS2-400 } \\ \$ 890.00 \\ \text { LKS2-400-DIN } \\ \$ 900.00 \end{gathered}$
Jug in fuse-switches for MCC applications suitable for IP20 cut-out	-	$\begin{gathered} \text { LKS2-200-PI } \\ \$ 770.00 \\ \hline \end{gathered}$	$\begin{gathered} \text { LKS2-250-PI } \\ \$ 820.00 \end{gathered}$	$\begin{aligned} & \text { LKS2-315-PI } \\ & \$ 1010.00 \end{aligned}$	$\begin{gathered} \text { LKS2-400-PI } \\ \$ 1130.00 \end{gathered}$
Rated thermal current (ith)	160 amps	200 amps	400 amps	400 amps	400 amps
Rated enclosed thermal (lth ${ }_{\mathrm{e}}$)	160 amps	200 amps	250 amps	315 amps	400 amps
Rated operational current and typical motor loads to AS1775 $415 \mathrm{~V}, \mathrm{AC} 23$	160A 90kW	200A 116kW	250A 145 kW	315A 185kW	400A 235kW
Fuse types to A.S., B.S.	B1, B2	B1, B2	B1-B4	B1-B4	B1-B4
AS2005 ${ }^{1}$) DIN	00	-	1,2	-	1,2
Rated fused short circuit current - 500V AC kA RMS Maximum fuse size amps	$\begin{gathered} 100 \mathrm{kA} \\ 160 \mathrm{~A} \end{gathered}$	$\begin{gathered} 100 \mathrm{kA} \\ 200 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 100 \mathrm{kA} \\ & 250 \mathrm{~A} \end{aligned}$	$\begin{gathered} 100 \mathrm{kA} \\ 400 \mathrm{~A} \end{gathered}$	100 kA 400A
$\begin{aligned} & \hline \text { DC operation - } 2 \text { poles in series } \\ & 220 \mathrm{~V} D C, D C 23 \end{aligned}$	160A	200A	250A	315A	400A
3 poles in series $440 \mathrm{~V} D C$, DC 23	160A	200A	250A	315A	400A
Outline dims. - $H \mathrm{~mm}$ $W \mathrm{~mm}$ $D(\min) \mathrm{mm}$ $D(\max) \mathrm{mm}$	$\begin{aligned} & 146 \\ & 240 \\ & 220 \\ & 270 \end{aligned}$	$\begin{aligned} & 146 \\ & 240 \\ & 220 \\ & 270 \end{aligned}$	$\begin{aligned} & 160 \\ & 240 \\ & 220 \\ & 270 \end{aligned}$	$\begin{aligned} & 160 \\ & 240 \\ & 220 \\ & 270 \end{aligned}$	$\begin{aligned} & 160 \\ & 240 \\ & 220 \\ & 270 \end{aligned}$
Max. with longer shaft D mm	390	390	390	390	390

Enclosed (steel) surface mounted fuse-switches	-	$\begin{gathered} \text { LKS2-200-SE } \\ \$ 1080.00 \end{gathered}$	$\begin{gathered} \text { LKS2-250-SE } \\ \$ 1190.00 \end{gathered}$	$\begin{gathered} \text { LKS2-315-SE } \\ \$ 1290.00 \end{gathered}$	$\begin{gathered} \text { LKS2-400-SE } \\ \$ 1350.00 \end{gathered}$
Enclosure type: Sarel Cat. No.	-	53025	53025	53025	53025

Notes: Prices for all switches include standard handle (IP65) and shaft.
Price excludes fuses.
For 'add on' neutral links and switched neutral blocks. - Refer page 1-15.
${ }^{7}$) Refer page .1-18 for fuse types by manufacturer.

1600 A	2000 A	2500 A	2500 A
Frame R4	Frame size 2xR3 without terminal	Frame R4	

Cat. No. LKP4-2500WT

Cat. No. LKP4-3150

Cat. No.	LKP4-1600	LKP4-2000	LKP3-2500WT	LKP4-2500	LKP4-3150
Price S	$\$ 4750.00$	$S 4950.00$	$\$ 4500.00$	$\$ 5320.00$	S6900.00

Rated thermal current (lth)	1600 amps	2000 amps	2500 amps	2500 amps	3150 amps
Rated enclosed thermal (lth $)$	1600 amps	2000 amps	2500 amps	2500 amps	$\left.3150 \mathrm{amps}^{2}\right)$
Rated operational current and					
typical loadings to AS1775					
500V AC, AC 22	800 A	-			
660V AC, AC 21	1600 A	2000 A	2500 A	2500 A	3150 A
Rated protected short circuit					
current - 500V AC kA RMS	100 kA				
Maximum breaker size amps	1600 A	2000 A	2500 A	2500 A	3150 A
Short-time withstand current					
[1 sec. kA RMS]	63 kA	80 kA	80 kA	80 kA	80 kA
[3 sec. kA RMS]	-	50 kA	50 kA	50 kA	50 kA
Outline dims. - H mm	463	463	225	463	463
W mm	500	526	389	526	596
D (min) mm	245	245	374	245	245
D (max) mm	-	-	399	-	-
Max. with longer shaft D mm	550	550	699	550	550

Notes: Price for all switches include standard handle (IP65) and shaft.
${ }^{1}$) Without terminal.
$\left.{ }^{2}\right) I_{\text {tne }}-3150 \mathrm{~A}$ in a ventilated enclosure $/ I_{\text {ine }}-2800 \mathrm{~A}$ when totally enclosed.

LKP4-3150-4P
All multi-box switches are available in 4 pole format on indent.

Arc fault protection of switchboards

The arc detecting relay system is designed to reduce the effects of arcing faults in high and lowvoltage switchboards. These faults are serious especially in switchboards with high shor circuit currents and long overload tripping times. The system can be used in enclosed as well as in open installations.

By means of light sensitive detectors suitably placed inside the switchboard, the relay almost instantaneously upon the ignition of an arc generates a tripping pulse to the circuit breakers supplying the busbars.

Laboratory tests have proved that the tripping pulse is generated less than 1 mSec . after ignition of the arc. The arcing time is thus reduced to the operating time of the circuit breaker which is normally in the range of $20-70 \mathrm{mSec}$. This should be compared to typical overload tripping times of $0.5-1.5$ Secs. (A reduction to as low as 0.4% to 14%).
The use of the system has several advantages:

1. Danger to personnel is avoided. Due to the short arcing time, excessive pressure does not develop inside the switchboard and doors etc. stay in place.
2. Personal injury and eye damage from hot gas blasts are unlikely, since pressure build-up is minimal and the time of intensive light is short.
3. Switchboard damages, both thermal and mechanical, are greatly reduced. Normally the installation can be operated again after cleaning and minor repairs.

ARC Detecting relay

The Arc D-Tect relay is designed to operate all commercially available trip coils. Inside the relay, input and output circuits are electrically separated by means of an opto-coupler. The relay is completely solid state and contains no moving parts. It is resistant to mechanical shock as a result of the operation of the switchboard.

Technical details are available on a separate technical catalogue. Refer Catalogue LKC.

Detector cells

The detectors consist of two silicon photo-voltaic ceils.
The cells generate an open circuit voltage of approx. 400 mV when exposed to light and the resultant current is directly proportional to light intensity.
The detector is encapsulated in transparent polyester which is self-extinguishing. The detector is supplied in two types both with the same dimensions.

Mode of operation

When one or more of the detectors connected in parallel is exposed to light, an output current is generated from each detector illuminated. If the sum of these currents exceeds the input bias current of the relay, the output thyristor is fired via the opto-coupler and the trip coil is energised.

System choices

Arc detection relay

Description	Cat No.	Price $\$$
Arc D-Tect relay 240 V AC capacitor discharge trip	ADR-1	1200.00
Arc D-Tect relay 48-220V DC voltage control type	ADR-2	830.00
Arc D-Tect relay 24V DC voltage control type	[i] ADR-3	830.00
Arc D-Tect relay 32V DC voltage control type	[i] ADR-4	830.00
Type V encapsulated detector	ADR-V	350.00
Type H encapsulated detector	ADR-H	350.00
Optional accessories		
Junction box per 6 detectors	(i] ADR-JB	160.00
Indicating junction box (6 detectors)	(i) ADR-IB	450.00
Diode logic box (multiple relays)	i] ADR-LB	280.00

NETT

SECTION H

CIRCUIT BREAKERS

TERASAKI
XS-400CJ/400-AX CIRCUIT BREAKER XS-800NE/800-AX-LSI CIRCUIT BREAKER

```
SUPPLIED BY: NHP PTY LTD
                                    25 TURBO DRIVE
                                    COORPAROO QLD 4151
TELEPHONE (07) 891 6008
FAX (07) 891 6139
```


 Catalogue I20A

Economical Series

NUMBEA OF POLES

RATING
RATEO CURRENT (In)
$\begin{array}{ll}\text { Calibraled at } & 40^{\circ} \mathrm{C} \text { for General use } \\ & 45^{\circ} \mathrm{C} \text { for Marine use }\end{array}$

$\quad 45^{\circ} \mathrm{C}$ for Marine use		
Rated Insulation voltage (Ui).	$A C$	
AC Rated Breaking capacity sym. r.m.s. (kA)		

$\begin{aligned} & \text { IEC } 947-2[\mathrm{Icu}] \\ & \text { ES } 4752[\mathrm{P}-1] \\ & \text { CEI } 17.5[\mathrm{P}-\mathrm{i}] \end{aligned} \text { \|EC } 947-2 \text { (Ics) }$	AC 690 V
	660 V
	500 V
	440 V
	415 V
	400 V
	380 V
	240 N
AS 2184	$44 \hat{u} \mathrm{~V}$
	415 V
NEMA AB-1	AC 600 V
	480 V
	240 V
DC Rated Breaking	250 N
Capacity (kA)	125 V

CONNECTIONS AND MOUNTINGS: :-	
front connected (FC)	terminal screw
	solderless terminal (PWC)
rear	boft stud
connected (RC)	flat bar stud
plug-in (PM)	for switchboard

draw-out (DO)			
STANDA	RD FEA	URES $\times \cdots$	
Contact Indicator			
Trip buton			
PROTECTIVE FUNCTIONS			
thermal and fixed magnetictrips			
thermal and adjustable magnetic trips			
adjustable thermal and fixed magnetic trips			
adjustable thermal and magnetic trips			
ACCESSORIES (option)			
extemally mounted	motor o	erator	MOT
	external	panel mounted type	OHE
	operaing	breaker mounted type	OHG
	handle	variable depth type	$\bigcirc \mathrm{OHH}$
	extension	andle	EHA
	mechanica	tront type	MIF
	interlock	rear type	MIB
	handle ho		HH
	handle loc		HL
	terminal	front connect type	TCF
	cover	rear connect/plug in ty	eTCR
	interpole b	arrier	TBA
	accessory	ead terminal	LTF
	door flang		D.F

Ambient compensating curves

Refer to Notes, coposite page)
Combinations of Internally Mounted Accessories

ASL: Arrangement Standard Line ㄴㄴ: Handle Frame Centre Line
Outline dimensions (mm) XH125N

Front-connected

NOTES: \odot Standard. This configuration is used unless atherwise specifed. \bigcirc Opional sandard. Specity when ardering.

- "yes" or "avalable"
(2) "no" or "na available"

ASL: Arrangement Standard Line
t : Handle Frame Centre Line

Outine dimensions (mm)

XS400C
Front-Connected

Plug-in

> NOTES: © Standard. This configuraion is used unless aterwise specifed.
> O Oxional sandaru. speeity when oroering.
> - "yes" or "avilate"
> - "no" α "na avalable"
> (2) Special Specicicaion

XS800NE Electronic type

Time／Current characteristic curves \quad ，was
number of poles
RATED CURREMT：（bal），
－Calibrated at $40^{\circ} \mathrm{C}$ or $45^{\circ} \mathrm{C}$
NRC：Nominal Rated Current ASR：Adjustable Setting Range
A．C．RATED INSULATION VOLTAGE（Ui）

A．C．RATED BREAKING CAPACITY－sym r．m．s．$[\mathrm{kA}]$	
IEC 947－2（ICu）／IEC 947－2（ICs）	690 V
BS 4752－1（P－1）／	660 V
CEI 17－5（P－1），	500 V
	440 V
	415 V
	400 V
	380 V
	240 V
AS 2184	440 V
	415 V
NEMA AB－1	600 V
	480 V
	240 V
without inst	$240 \mathrm{~V}-690 \mathrm{~V}$
D．C．RATED	250 V
gREAKING CAPACTTY［ kA ］	125 V

Weight（kgiCT marked standard type
CONNECTIONS a MOUNTINGS trant \quad terminal screw
connected［FC］$\frac{\text { attached flat bar }}{\text { solderless terminal［PWC］}}$ rear bolt stud
connecled RC ］flat bar stud

plng－in［PM］	$\frac{\text { for switchboard }}{\text { for distribution board }}$
draw－oul［DO］	

STANDARD FEATURES：
COntact indicator
trip button

PAOTECTVE保CTIONS（Elactronic type）．
Adjustable LTD，STD \＆INST
Adjustable GFT or Adjustable PTA（option）
trip indicators（option）
ACCESSORIES（option）

externally		
mounted	motor operator	MOT
external panel mounted yoe	OHE	

exter	panel mounted type	OHE
operating	beaker mounted type	OHG
handle	variable depth type	$\overline{O H H}$

extension handle $\frac{\text { EHA }}{\frac{E H A}{\text { MIF }}}$
mechanical front type＿MIF
$\frac{\text { intertock rear type }}{\text { handle holder }}-\frac{\mathrm{MIB}}{\mathrm{HH}}$
$\begin{array}{ll}\text { handle lock } & \mathrm{H} \\ \text { terminal } & \text { tront－connected type TC } \\ \end{array}$ cover rear－connected tyoe

	piug－In type
interpole barrier	TCR
accessory lead terminal	TBA
door flange	$0 \cdot F$

[^3]

Over－current tripping characteristics

CT rated current（A）：（ I n）	800
Base current setting（A）：［ I_{0} ］	（ In）$\times(0.63 \cdot 0.8 \cdot 1.0)$
Long time delay pickup current（A）：（ I ，］	$[\mathrm{I}] \times(0.8-0.85 \cdot 0.9 \cdot 0.95-1.0)$ Non－tripping at（ I_{1} ）setting $\times 105 \%$ and below． Tripping at 125% and above．
Long time delay time setting（S）： T_{1} ］	（5．10．15．20．30）at（ I ，）$\times 600 \%$ current Setting tolerance：$\pm 20 \%$
Short time delay pickup curtent（ A ）：（ I z_{2} ）	［ I 0］$\times(2-4-6 \cdot 8-10)$ Selting toterance：$\pm 15 \%$
Short time delay time selting（ S ）：［ $\left.\mathrm{T}_{\mathbf{2}}\right]$	Opening time（ $0.1 \cdot 0.15 \cdot 0.2 \cdot 0.25 \cdot 0.3$ ）in the defi－ nite time－delay．Total clearing time is +50 ms and resettable time is -20 ms for the time delay setting
Instantaneous trip pickup current（A）：〔I 3	Continuously adjustable from（I o）\times（3 10 12） Setting tolerance：$\pm 20 \%$
※Pre－trıp alarm pıckup current（A）：［ I P］	［ I，］$\times(0.7 \cdot 0.8 \cdot 0.9 \cdot 10)$ Setting tolerance：$\pm 10 \%$
※Pre－trip alarm time setting（S）：［T p］	40 fixed definite time delay．Setting tolerance：$\pm 10 \%$
\％Ground fault trip pickup curent（A）：［ I G ）	Continuously adjustable from（ In_{f} ）$\times(\underline{0.1}$ to 0.4$)$ Setting tolerance：$\pm 15 \%$
\％Ground fault trip ume setting（S）：（TG）	Opening time（ $0.1 \cdot 0.2 \cdot 0.3 \cdot 0.4-0.8$ ）in the definite time－delay．Total clearing time is +50 ms and resettable time is -20 ms for the time－delay setting
\％：Option －：The underlined values will be applied a when ordering．	standard rating unless otherwise specified

Combination of internally mounted accessories

ASL: Arrangement Standard Line ㄴ: Handle Frame Centre Line

Front-connected

NOTES: \odot Standard. This configuration is used unless otherwise specified.
Optional standard. Speecity when ordering.

- "yes" or "available".
- "no or "nut available".

SECTION I

MINIATURE CIRCUIT BREAKERS

TERASAKI
DIN - T6 SERIES CIRCUIT BREAKERS

```
SUPPLIED BY: NHP PTY LTD
    25 TURBO DRIVE
    COORPAROO QLD 4151
```

TELEPHONE (07) 8916008
FAX (07) 8916139

Advantages of the new Miniature Circuit Breakers Diri-T Series

- Short-circuit breaking capacity of up to 14 kA at 415 V AC. - Increased rating to 50 kA when backed up with a 200A HRC fuse. (N.B. Max. fuse I $I^{2 t}$ let through must be $1 \times 10^{5} \mathrm{~A}^{2} S$ pre arcing).
- Rated current range from 0.5A up to 63A.
- Silver graphite (AgC) contacts.
- Input connection by lifting terminal with capacity of up to $35 \mathrm{~mm}^{2}$ giving fast and practical connection.
- Output terminals offer finger and hand protection with a capacity of up to $25 \mathbf{m m}^{2}$.
- Mounting by a new design of snap fixing with two stop locations, for normal Din rail.
- Approval number V87382-11/1987.
- Complies to AS 3111 and AS 2184.

1. Brief Description

The Din-T series miniature circuit breakers have delayed thermal and instantaneous magnetic trips, with sealed adjustment; suitable for mounting in distribution boards or in switchgear panels.

2. Task

Protection against overheating of electrical conductors against excess currents due to overload, short-circuit or earth fault (if combined with earth-leakage module).

3. Application

In switching, control, distribution and measurement systems for buildings, commercial and industrial installations.

4. Tripping characteristic

Characteristics as required by Australian standards, (following European type U) tripping curves for cable and equipment protection in commercial and industrial applications. See Technical Data page.

Handle:

Sealable and padlockable with quick-make and quick-break type mechanism for 14kA model. Handle sealable in ON and OFF position. Due to the free tripping mechanism, the MCB contacts open through overload or short-circuit even when the handle is sealed in the ON position on all types.

Input terminal:

Box type terminal with lifting screw for copper and aluminium conductors:
min. capacity $1 \mathrm{~mm}^{2}$
max. capacity $1 \times 35 \mathrm{~mm}^{2}$ or $2 \times 16 \mathrm{~mm}^{2}$.
When unscrewing the screw, the head lifts; however, on pushing the screw head, the box terminal and the screw sink. This system enables the MCB's to be linked with a non-insulated wire or a connection strip very easily.
The MCB is delivered with a half open box terminal and a lifted screw head. A protection cap is fixed onto the MCB in order to obtain IP-20 protection against finger contact.

Output terminal

Box type terminal with captive terminal screw for copper and aluminium conductors:
$\min .1 \mathrm{~mm}^{2}$ max. $1 \times 25 \mathrm{~mm}^{2}$ or $2 \times 10 \mathrm{~mm}^{2}$.
The box terminals are always delivered in the open position. Output terminals are always supplied with IP-20 protection against direct finger contact by means of an insulating cover.

Arc chamber:

Contains arc extirction plates, de-ionising type, designed to break up and dissipate the arc which is generated during interruption of all types of fault.

Arc magnetic blowout system.

Short-circuit currents do not flow through the bimetal but are directed by the blowout magnet, in such a way that the arc is transferred to a special arc runner, therefore taking the bimetal out of the circuit which ensures the trip characteristics remain unchanged.

Electromagnet:

Operating the plunger which opens the contacts instantaneously.

- The combination of the electromagnet (with a plunger rapidly opening the contacts), the blowout magnet and the arc chamber, results in an extremely high short-circuit breaking capacity, and very low let through energy.

Snap-on clip for DIN-type rail mounting

This special flexible system gives ease of mounting and positioning of the MCB on Din rail.

Din - T SERIES -

Some of the advantages in detail

Input terminal

The newly developed input box terminal which is designed as a "Lift terminal" is suitable for busbar as well as conductor connection. It is delivered already opened so that loosening of the terminal screws is not necessary. The screw heads are held in the upper position so that busbars can be located directly and without any problems. However it is first necessary to remove the standard IP-20 protection cap. For the connection of single or multiple-wire conductors the terminal box is moved down by-pressing the screw head and is opened approx. 5 mm . This means conductors up to $10 \mathrm{~mm}^{2}$ can be inserted without further opening. For thicker conductors up to max $1 \times 35 \mathrm{~mm}^{2}$ or $2 \times 16 \mathrm{~mm}^{2}$ the terminal box needs only to be unscrewed a little. In the same way, a combined connection of busbar and feeding line is possible without additional terminals.

Protection Cap

Simple snap-on cap for the "Lift terminal" can be fixed on to the MCB in order to obtain the IP-20 protection against finger contact. For the Australian market, these are supplied as standard.

Sealing

In both switching positions the handies can be protected against manual switching by means of sealing. Interruption in case of faults is -guaranteed by means of a trip free mechanism.

Snap-on fixing

The newly developed snap-on fixing has an additional stop location which permits slight movement and alignment of the MCB during assembly on the rail. A further advantage is the easy changing of the MCB in this stop location, as the spring device is disengaged when it is taken off the sectional rall:

For fixing of the MCB on the sectional rail the spring device is engaged by simply pressing the projectiageariosbf 224 clip

Din - T SERIES - 6kA

The 6000 Series offers unparalleled choice of DIN rail mounted miniature circuit breakers. This high performance device uses all the latest developments and technology of circuit breaker protection and is capable of dealing with the most difficult problems. These include high short circuit currents and selectivity with a feeder, or back-up protection The 6000 Series is designed and certified to many International and National Specifications, especially AS3111. Truly an International range of high performance miniature circuit breakers.

Mounting:

Suitable for quick mounting (snap-on) symmetric DIN rail.

Ratings:

Rated voltages from 240 / 415 volts A.C. Rated currents from 2 amps to 40 amps . Available in 1 pole, 2 pole and 3 pole.
The 6000 Series is of the highest protection and, as standard with the entire Din-T system, finger protected to IP20.

Ordering Details

Note 1 Din-T MCB's can be backed up by a 125 amp GEC Type-T or equivalent HRC fuse to 50 kA fault level.

AUXILIARY CONTACTS FOR MCB's

	Part No.	Description	Price
	Din-T H	Auxiliary contact (H) only. Half a module (9 mm) with a changeover contact $(1 N C+1 N O)$ Contacts are operated when the MCB is operated manually as well as electrically (i.e. due to overload or short-circuits). Thus this contact indicates the exact position of the contacts of the MCB.	\$19.00
	Din-T S	Alarm contact (S) only. Half a module (9 mm) with a change over contact (1 NC + 1 NO). Manually operated, this contact only follows the closing movement, not the opening movement. When the MCB had tripped electrically (through overload or short-circuit), the signal follows. Thus this contact indicated manual closing and electrical opening of the MCB.	\$25.00
	Din-T H/S	Changeable alarm/auxiliary contact (H/S). Half a module with a changeover contact ($1 \mathrm{NC}+1 \mathrm{NO}$). A small screw can be put in two positions (with a screwdriver). Each of the two positions corresponds for this special contact to have the function of an auxiliary or of a signal contact as explained above. A small screen indicates H (auxiliary) or S (signal) function. Once the auxiliary element is coupled to the MCB the little screw is hidden and thus the function can not be changed.	\$26.00
	$\begin{aligned} & \text { Din-T } \\ & H+H / S \end{aligned}$	Auxiliary contact and changeable alarm/ auxiliary (HH/HS). Half a module (9 mm) contains two changeover contacts. The first one is an auxiliary contact (H). The second one is a changeable signal/. auxiliary contact (H/S). For the function of both changeover contacts. see above. *Refer P. 15 for explanation of contact types.	\$33.00

When coupling an auxiliary element to the side of an MCB both handles must be in identical position.

Bring the MCB and auxiliary function side by side carefully.
Fix together by means of the two specified springs.
Note. When opening the spring again, the auxiliary element can be removed. Attention: Always open spring on MCB-side.

MCB's - GENERAL FEATURES

Characteristics		$1 P$	$2 P$	$3 P$	$4 P$
No. of protected poles		i	2	3	4
Width	mm	18	36	54	72
Depth	mm	68	68	68	68
Rated voltage (Un)	V	240/415	415	415	415
Highest rated current	A	63	63	63	63
No. of operations - at $220 \mathrm{~V} . \operatorname{In}, \cos \eta=0 . \bar{i}$ - at 415V. in. \cos if $=0.9$		$\begin{aligned} & 10000 \\ & 10000 \end{aligned}$	$\begin{array}{r} 10000 \\ 10000 \\ \hline \end{array}$	$\begin{aligned} & 10000 \\ & 10000 \end{aligned}$	$\begin{aligned} & 10000 \\ & 10000 \end{aligned}$
Insulation resistance	M	$>10^{\text {z }}$	$>10^{5}$	$\geq 10^{\circ}$	$>10^{5}$
Dielectric rigidity	kV	ン 4	>4	>4	>4
Capacity - output terminal - input terminal	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \\ & \hline \end{aligned}$
Insulation group according to IEC 112. NBN C20-002. VDE 0110 - group 8 - group C	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 500 \\ & 380 / 415 \end{aligned}$	$\begin{aligned} & 500 \\ & 380 / 4 i 5 \end{aligned}$	$\begin{aligned} & 500 \\ & 380 / 415 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 380 / 415 \end{aligned}$
Use in DC	Max. DC tension		No. of operations at In/time constant $\mathrm{T} \leqq \mathrm{ms}$	Short-cir capacity $\mathrm{T} \leqq \mathrm{ms}$	
1P up to 20A $2 P$ up to 20A 1P 25A to 63A $2 P 25 A$ to 63A	$\begin{aligned} & 48 \mathrm{~V} \\ & 110 \mathrm{~V} \\ & 48 \mathrm{~V} \\ & 110 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 4000 / 15 \\ & 4000 / 15 \\ & 3000 / 15 \\ & 3000 / 15 \end{aligned}$	$\begin{aligned} & 10 / 15 \\ & 15 / 15 \\ & 10 / 15 \\ & 15 / 15 \end{aligned}$	

In DC the magnetic tripping current is approximately 40% higher than in $A C 50 / 60 \mathrm{~Hz}$.
Voltage drop and energy loss

In (A)	Size No.	Drop in voltage M Energy loss (W)	
0.5	0.5	3	1.5
1	1	2	2
2	2	1.5	3
4	4	0.6	2.4
6	6	0.4	2.4
10	12	0.13	1.3
16	17	0.16	2.56
20	22	0.15	3
25	28	0.13	3.25
32	35	0.11	3.52
40	42	0.11	4.4
50	52	0.085	4.25
63	65	0.11	6.9

Use at 400 Hz .
At 400 Hz the magnetic tripping current is $\pm 40 \%$ higher than at $A C 50 / 60 \mathrm{~Hz}$.

NLITTERASAKI Din -T

TEMPERATURE DERATING CHART 0.5-4 AMP $K=$ CORRECTION FACTOR

NTEITERASAKI Din-T
TEMPERATURE DERATING CHART 6-32 AMP

NIETERASAKI Din -T

TEMPERATURE DERATING CHART 40-63 AMP

Din - TCO-ORDINATION MCB and FUSES

($\mathrm{A}^{2} \mathrm{~s}$)

Co-ordination is achieved between the HRC fuses and Din-T Miniature Circuit Breakers when the ${ }^{2} t \mathrm{tet}$-through value of the back-up fuse is greater than the ${ }^{2 t}$ let-through value of the MCB.
To check co-ordination, select a prospective fault level, project it to a selected MCB line (shown by vertical lines) and any fuse line (shown by horizontal curves). Above this projected point will offer back-up protection and coordination between fuses and MCB's.

Din - T CO-ORDINATION MCB and FUSES

Selection Chart

MAKEOFEOUIPMENT	CLASS 0F GEAR	TYPE 0F EQUIPMENT	MAX CONTACT RATING AMPS	LIST NUMBER PREFIX LETTERS \& CURRENT RANGE																				
				$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \stackrel{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$		$\stackrel{\text { N }}{\sim}$ $\stackrel{\text { L }}{2}$	$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \stackrel{y}{Ð} \end{aligned}$		$\begin{aligned} & \stackrel{̣}{\sim} \\ & \stackrel{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{8}{\sim}$ \sim	$\begin{aligned} & 8 \\ & 0 \\ & 20 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \mathbf{2} \\ & 8 \\ & 8 \\ & 8 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & \infty \\ & \hline 8 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { Ni } \\ & \stackrel{1}{2} \\ & \stackrel{1}{2} \end{aligned}$		$\begin{aligned} & \frac{n}{j} \\ & \infty \\ & 0 \\ & \sim \\ & N \\ & \underset{y y y}{c} \end{aligned}$		$$		$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{\oplus}{2} \end{aligned}$				
$\underset{\text { TERASAKI }}{\mathrm{NHP}}$	MCB	$\begin{aligned} & \text { DIN-T } \\ & 9 \mathrm{KA} \end{aligned}$	6	20		20	20		20	20				200										
			10	25			25		25	25				200										
			16					35	35	35				200										
			20		63			63	63	63				200										
			25		63			63	63	63				200										
			32		63			63	63	63				200										
			40								100	100	100	200										
		$\begin{aligned} & \text { DIN-T } \\ & 14 \mathrm{kA} . \end{aligned}$	6	20		20	20		20	20				200										
			10	25			25		25	25				200										
			16					35	35	35				200										
			20		63			63	63	63				200										
			25		63			63	63	63				200										
			32		63			63	63	63				200										
			40								100	100	100	200										
			50								100	100	100	200										
			63								100	100	100	200										

Din-T Cascade Co-ordination Chart

		$\begin{gathered} \text { TO } \\ 100 \mathrm{BA} \end{gathered}$	$\begin{gathered} \mathrm{TL} \\ 225 \mathrm{~B} \end{gathered}$	$\begin{gathered} \text { TO } \\ 225 \text { BA } \end{gathered}$	$\begin{gathered} \text { TG } \\ 225 \mathrm{~B} \end{gathered}$	$\begin{gathered} \text { TO } \\ 400 \mathrm{BA} \end{gathered}$	$\begin{gathered} \text { TG } \\ 400 \mathrm{~B} \end{gathered}$
		22	180	35	50	36	50
DIN-T .5-16	9kA		130				
.5-25	9kA			35	50	35	50
.5-63	9 kA			20	25	20	25

Cascade Co-ordination Application Notes

The Back-up or Upstream Terasaki Moulded Case Circuit Breakers are listed across the top line together with their prospective short circuit interrupting capacity.
The Loadside or Downstream Din-T Miniature Circuit Breakers are listed in the left hand vertical column.
The prospective short circuit interrupting capacity of circuit breaker in Cascade can be read from the chart by running down the vertical column under the selected back-up breaker (eg. To 225 BA) and across the horizontal column of any load size circuit breaker (eg. Din-T 9.5-25).
The figure shown at the intersecting columns is the prospective short circuit interrupting capacity at which the load side miniature circuit breaker will operate safely (eg. 35kA).
Note 1 Cascading is not suitable for special circuits such as fire pumps and lifts.

SECTION J

CURRENT TRANSFORMERS

CROMPTON
789-944T 400/5 A CURRENT TRANSFORMERS 788-944T 500/5 A CURRENT TRANSFORMERS 781-943T 40/5 CURRENT TRANSFORMER (4 PRIMARY TURNS)

CURRENT TRANSFORNERS

Current Transformers

Qontents Guide

CASE STYLE	MODEL. REFERENCE:	PRIMARY CURRENT	SECONDARY CURRENT	SERVICE DUTY.	PAGE
気	Series 780 Moulded Case	1A - 2500A	1A \& 5A	Metering Protection	$4-7$
	Series 770 Tape Insulated	$1 A-100 A$	$10 \mathrm{~mA}-100 \mathrm{~mA}$	Distance Metering Galvanic Isolation	8
	Single Phase \therefore Model 252:94 Three Phase: Model 253-94 DIN:Case:	$\left\lvert\, \begin{aligned} & 1 A-5 A \\ & 1 A-5 A \end{aligned}\right.$	$\begin{aligned} & 10 \mathrm{~mA} \\ & 1 A-5 A \end{aligned}$	Distance Metering Galvanic, Isolationt	$2+50-9$
	Series 810 Tape Irísülated	$\begin{aligned} & 40 A=3000 A \\ & 100 A-3000 A \end{aligned}$ Specials	$1 A: \& 5 A$ 5A\& $1 \bar{A}$ Specials	Metering Protectiont Specials	$10=14$
	Model 809 Moulded Case	$500 A \text { 県 } 4000 \text { A }$			

Multi-Ratio, Summation, Interposing, Core-Balance and Earth Leakage Current Transformers

These special duty current transformers can be supplied to customers' requirements. Please supply details of primary and secondary current ratios required, VA output and accuracy class.

C.T's with alternative specifications

Customers special requirements can usually be met. Please supply full details.

Low Current Ratios

Lower ratios than those listed can be obtained by passing the primary conductor through the ring more than once as specified below.

Current Transformers

Measuring Duty Current Transfomers

Accuracy selection

Class 0.2
Available on request. Designed to individual customer requirements, energy metering, micro control systems.

Class 0.5
Transdụcers, pay integration meters; test equipment; control systems Watt V Ar/Phase:Angle meters; recording meters, protection devices, instrument transducers
Class $1-$

Class 3 Industrial ammeters; maximum demand. indicators

VA Burden Guide

0.5	Short scale moving iron ammeters
0.75-1.5	240° scale moving iron ammeters
0.2-1	Rectified moving coil ammeters
1-1.25	Watt/NAr/Phase Angle meters
2-4	Recording ammeters
2-3.5	Maximum Demand Indicators
3-3.5	Combined MDI \& Mi:
-0.5-4.4.	Paladin transducers:
0.5-4;	Protector modules:
5-10:	Electronic control systems

Protection Duty Current Transformers

Protection duty current transformers are supplied to accuracy classes 5P or 10P. The figures 5 or 10 define the maximum composite errors in percentage permitted at the specified overload value. Letter ' P ' indicates a protection duty.

The rated accuracy limit factor (or overload multiple) is specified by a further figure added to the code. 5, 10 and 15 satisfy most applications and indicate overload values $\times 5, \times 10$ and $\times 15$. For more detailed information, see BS3938: 1973.

Rated outputs available in VA are $2.5,5,7.5,10,15$. Correct selection requires reference to relay manufacturers recommendations.

The secondary circuit must not be open-circuited when primary is energised since a dangerously high voltage can build up in certain conditions. Terminals are not insulated against physical contact.

			Composite error at rated accuracy limit Priman current 4. 5 . $\%$.
	5	± 60. 118.8	2-5 5 \%
		2-my	

Secondary Lead Burden

The resistance of the secondary lead circuit can be significant and must be taken into account when the current transformer burden is chosen. Where the current transformer is mounted remotely a 1 amp secondary should be used.

VA

VA Burden for 1AC.Ts.

780 Series

The Crompton 780 Series offers current ratios, VA outputs and accuracy classes to suit the requirements of modern electrical and electronic installations.
The tough moulded cases are designed for appropriate busbar or cable sizes and incorporate alternative foot or busbar fixing options.
They comply with most intemational standards for ring current transformers.
A major feature is the ease of installation with several base and busbar mounting arrangements.

Features

* high impact, flame-retardant moulded cases (classification UL94V-1).
\star secondary currents for 1 A or 5A
\star primary currents $1 A$ to 2500A
* cable or busbar-styles
* simple busbar clamp or push-in fixing feet
\star alternative: DIN raillmounting adaptor
\star single or twin screwterminals:
* alternative terminations with integral 600 mm leads:
\star wire sealable terminal cover

Secondary Terminals.

All models can be supplied withisingle: or double, M4 screw shell clamp terminals eliminating the use
 When specified insulated flexible leads $(600 \mathrm{~mm})$ can be provided intace of screw terminals.. 2, .

Performance	
System voltage	$=660 \mathrm{~V}$ max
Test voltage	$=3 \mathrm{kV}$ for 1 m
System frequency	$\begin{gathered} =50 / 60 \mathrm{~Hz}(400 \mathrm{~Hz} \text { available } \\ \text { on request) } \end{gathered}$
Short circuit thermal current (lth)	$=\begin{gathered}60 \times \text { rated primary current } \\ \text { for } 1 \text { second }\end{gathered}$
Rated dynamic current (Idyn)	$=2.55 \times \mathrm{lth}$
Saturation co-efficient	$=<5$ for plain ring < 10 for wound primary
Service temperature	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Insulation class BS2757	Class A (max $105^{\circ} \mathrm{C}$)
Enclosure code	IP40

Standards Compliance

Designed to international standards, the 780% Series complies with the following specifications.

A 35 mm DiNsail mounting adaptor is available for allmodels excepti788.

screwifixingsin the base 2 , $\}$

Installation

A set of push-in fixing feet or busbar clamp, as: necessary; are supplied with each CT.

Inline primary busbar insertsfand centre insert are available fô some models

Terminal cover

A. wire sealable cover is available to insulate the secondary terminals.

Type No.	DIMENSIONS mm		
780	A	B	C
All other Types	56	31	14
	71	38	14

DIN Rail Adaptor

\qquad 78

For use with Model 780

Fixing between 2 conductors

A centre insert, designed for types 780 and 781 allows clamping between two bar or cable primary conductors.

Type	DIMENSIONS mm		
No.	D	E	F
780	36	8.2	M8×50
781	46	14	$M 12 \times 75$

Primary Busbars

0800 A

0-1200A

780 Series

Accuracies comply with BS3938: and IEC 185:
All measurements in millimetres

Type 780-943

Supplied with 2 fixing feet.
Max cable $\varnothing^{+}=15 \mathrm{~mm}$.
1A secondaries are available for all ratings.

Type 781-943

Süpplied with 4 fixing: feet
Maxicable $\varnothing=23 \mathrm{~mm}$
1 Aāsecondáries are available, for all ratingss:

Type $782-943$

Type 783-944

Supplied with busbar clamp
For busbar: $30 \times 10,20 \times 20 \mathrm{~mm}$ and cable \varnothing 25 mm
1A secondaries are available for all ratings.

CT	VA at Class		VA at Class			VA at Class		
Ratio	3	1	3	1	3	1	0.5	
$401 / 5$	2.5	-	-	-	-	-	-	
5015	2.5	-	-	-	-	-	-	
6015	2.5	-	-	-	-	-	-	
7515	2.5	-	5	2.5	-	-	-	
8015	2.5	-	5	2.5	-	-	-	
10015	5	-	7.5	.5	-	-	-	
12015	5	-	7.5	5	-	-	-	
$125 / 5$	5	-	7.5	5	-	-	-	
1505	5	-	7.5	5	15	10	5	
$200 / 5$	5	-	7.5	5	15	10	7.5	
25015	5	2.5	7.5	5	20	15	10	
$300 / 15$	5	2.5	7.5	5	20	15	10	
4005	5	2.5	10	5	30	15	15	
50015	5	2.5	10	5	30	15	15	

CT	VA at Class 3	VA at Class								VA at Class		
Ratio		3	1	3	1	0.5						
10015	2.5	-	-	-	-	-						
12015	2.5	5	2.5	-	-	-						
12515	2.5	5	2.5	-	-	-						
15015	-2.5	7.5	4.5	-	5	or						
20015	2.5	7.5	5	10	6	2.5						
25015	5	7.5	5	10	7.5	5						
30015	5	7.5	5	10	7.5	5						
40015	5	7.5	5	15	7.5	5						
50015	-	-	-	10	7.5	5						
6015	-	-	-	12	10	7.5						
75015	-	-	-	15	10	10						
80015	-	-	-	15	10	10						
10015	-	-	-	20	15	15						
120015	-				15	15						

CT	VA at Class		
Ratio	5	3	1
$30 / 5$	1.5	-	-
$40 / 5$	2	1.5	-
$50 / 5$	2.8	2.5	-
$60 / 5$	3.5	3	-
$75 / 5$	5	4	-
$80 / 5$	5	4	-
$100 / 5$	-	5	2.5
$120 / 5$	-	5	2.5
$125 / 5$	-	5	2.5
$150 / 5$	-	5	2.5
$200 / 5$	-	6	3
$250 / 5$	-	7.5	4

CT	VA at Class		VA at Class			VA at Class		
Ratio	3	1	3	1	3	1	0.5	
$75 / 5$	2.5	-	-	-	-	-	-	
$80 / 5$	2.5	-	-	-	-	-	-	
10015	2.5	-	5	2.5	-	-	-	
12015	2.5	-	5	5	-	-	-	
$125 / 15$	2.5	-	5	5	-	-	-	
15015	2.5	-	5	5	10	7.5	2.5	
$200 / 5$	5	-	7.5	5	15	10	5	
25015	5	2.5	10	7.5	20	15	10	
$3001 / 5$	5	2.5	15	10	20	15	10	
$400 / 5$	5	2.5	15	10	20	15	10	
$500 / 5$	-	-	-	-	30	15	10	
$600 / 5$	-	-	-	-	30	15	15	
$750 / 5$	-	-	-	-	30	15	15	
$800 / 5$	-	-	-	-	30	15	15	

780 Series

Accuracies comply with BS3938: and IEC 185: Type 784-944

Supplied with busbar clamp
For busbar $40 \times 10,30 \times 20 \mathrm{~mm}$ and cable $\varnothing 32 \mathrm{~mm}$: 1A. secondaries are available for all ratings: except 1200A

CT	VA at Class 3	VA at Class		VA at Class		
Ratio		3	1	3	1	0.5
$100 / 5$	2.5	-	-	-	-	-
$120 / 5$	2.5	5	2.5	-	-	-
$125 / 5$	2.5	5	2.5	-	-	-
$150 / 5$	2.5	6	4.5	6	4.5	2.5
$200 / 5$	2.5	7.5	5	10	6	2.5
$250 / 5$	5	7.5	5	10	7.5	5
$300 / 5$	5	7.5	5	10	7.5	5
$400 / 5$	5	7.5	5	15	7.5	5
$500 / 5$	-	-	-	10	7.5	5
$600 / 5$	-	-	-	12	10	7.5
$750 / 5$	-	-	-	15	10	10
$800 / 5$	-	-	-	15	10	10
$1000 / 5$	-	-	20	15	15	
$1200 / 5$	-	-	20	15	15	

Type 785-946

CT	VA at Class	VA at Class		VA at Class		
Ratio	3	3	1	3	1	0.5
$1 / 5$	5	7.5	5	18	15	7.5
$5 / 5$	5	7.5	5	18	15	7.5
$7.5 / 5$	5	7.5	5	18	15	7.5
$10 / 5$	5	7.5	5	18	15	7.5
$15 / 5$	5	7.5	5	18	15	7.5
$20 / 5$	5	7.5	5	18	15	7.5
$25 / 5$	5	7.5	5	18	15	10
$30 / 5$	5	7.5	5	18	15	10
$40 / 5$	5	7.5	5	18	15	10
$50 / 5$	5	7.5	5	18	15	10
$60 / 5$	5	7.5	5	15	15	10
$75 / 5$	5	7.5	5	18	15	10
$80 / 5$	5	7.5	5	18	15	10
$100 / 5$	5	7.5	5	18	15	10
$120 / 5$	5	7.5	5	20	15	10
$125 / 5$	5	7.5	5	20	15	10
$150 / 5$	5	7.5	5	15	10	
$200 / 5$	5	5	20	15	10	
$250 / 5$	5	20	15	10		

Type $786-946$
0

$\begin{gathered} \text { CT } \\ \text { Ratio } \end{gathered}$	$\begin{gathered} \text { VA at Class } \\ 3 \end{gathered}$	VA at Class		VA at Class		
		3	1	3	1	0.5
1/5	5	7.5	5	18	15	7.5
$5 / 5$	5	7.5	5	18	15	7.5
7.5/5	5	7.5	5	18	15	7.5
$10 / 5$	5	7.5	5	18	15	7.5
15/5	5	7.5	5	18	15	7.5
$20 / 5$	5	7.5	5	18	15	7.5
$25 / 5$	5	7.5	5	18	15	10
$30 / 5$	5	7.5	5	18	15	10
40/5	5	7.5	5	18	15	10
50/5	5	7.5	5	18	15	10

Type $788 \% 944$

3 Supplied with busbar clamp:- -
4 fixing feet are an optional extra
For busbar $80 \times 30,64 \times 35,50 \times 50 \mathrm{~mm}$ and cable Ø63mm
IA secondaries are available for all ratings. except 2500A

CT	VA at Class			VA at Class			$10 P 10$
Ratio	3	1	0.5	3	1	0.5	VA
$200 / 5$	7.5	2.5	-	10	5	-	-
$250 / 5$	10	5	-	15	10	5	-
$300 / 5$	15	10	5	20	15	10	-
$400 / 5$	15	10	7.5	25	15	10	-
$500 / 5$	20	15	10	30	20	15	5
$600 / 5$	15	10	5	30	20	15	5
$750 / 5$	15	10	5	40	25	15	5
$800 / 5$	20	15	7.5	40	30	20	5
$1000 / 5$	25	20	10	50	40	30	5
$1200 / 5$	30	20	15	50	40	30	5
$1500 / 5$	30	20	15	50	40	30	5
$1600 / 5$	40	30	20	-	-	-	5
$2000 / 5$	50	40	30	-	-	-	5
$2500 / 5$	50	40	30	-	-	-	5

SECTION K

CONTACTORS

SPRECHER \& SCHUH CA1 \& CA3 SERIES

CA3-9-10 110V AC CONTACTOR WITH CT3-12 O/LOAD UNIT CA1-480 110C AC CONTACTOR

```
SUPPLIED BY: NHP PTY LTD
    25 TURBO DRIVE
    COORPAROO QLD 4151
TELEPHONE (07) 891 6008
FAX (07) 891 6139
```


Notes: ${ }^{2}$) CT 3K-12/17 are manual reset only. For automatic reset use CT 3-12/17. Refer page 1-9.
${ }^{2}$) Late break - to be used with DC coil.
${ }^{3}$) Can be increased by using CA 3-P-GE side mounting auxiliary contact block.
Price Schedule ' $A A^{\prime}$
sprecher +
schuh

Refer catalogue 2202 \& 2210

Standard modular contactors 4 to 37 kW

Quality, design and reliability
Sprecher + Schuh quality and design is renowned throughout the world in applications where contactors and motor starters are used. The Sprecher + Schuh standard range of contactors provide complete reliability and long life, not equalled by most. The success of these products in Australia and elsewhere has been extraordinary, providing the user with a reliable product for all conditions.
Swiss precision and excellent design are the basis for the success of these products. Not only are the contactors dependable but they are supported by a range of thermal overload relays that offer outstanding motor protection under all conditions. Each thermal overload relay is individually calibrated at manufacture and thus provides a consistency of performance which is not matched by competitors.
The Sprecher + Schuh equipment is compact providing an extensive range of auxiliary contacts, many options and accessories resulting in flexibility and versatility.

The range

Sprecher + Schuh offer a range of contactors totalling 24 different sizes which are designed to match standard motors giving the customer an optimum choice. The smallest units comprise the CA 4 range, designed for OEM use and are suitable for interfacing with PLC's. The specification provides for very low pull-in and holding currents and high frequency of operation.
The CA 3 programme illustrated above, is the most used range and provides 9 sizes from 4 to 37 kW . For ratings above 37 kW , Sprecher + Schuh provide further sizes up to 710 kW .
When you specify Sprecher + Schuh you get additional quality at minimal extra cost. This quality results in reliability, as after all, there is no substitute for reliability!
Sprecher + Schuh provide that extra quality which means so much in service!

Features of the CA 3 contactor

ว Rated to $60^{\circ} \mathrm{C}$.
) Very compact.
ว Mechanical life $10-15$ million operations.
ว Coil replacement in seconds from the front and without tools.
ว Can be mounted:
On conventional base plates
On $\mathrm{S}+\mathrm{S}$ rapid mounting gear tray
On DIN 35 mm snap-on rail up to CA 3-30.

O Identification labelling:

- Self adhesive labels
- Strip labels with clear covers
- S+S marking tags.

O Open type terminals.
O Captive pozi-drive screws.
O Self-lifting terminal washers.
O Tropic-proof coils are standard.
O Provision for snap-on auxiliary contact blocks.
O Provision for snap-on pneumatic time delay relay.

O Provision for snap-on mechanical latch.
O Compatible dimensions:

- CA 3-12/16 similar size
- CA 3-23/30 similar size
- CA 3-37N/72N similar size.

O Guaranteed voltage pick-up.
O High operating frequency.
O Control voltages 50 Hz between 12 V and 440 V .
O Complies with AS 1029, IEC 947 and 587 SEV, VDE, IEC 158.

Contactor CA 3-16

Contactor CA 3-30

Contactor CA 3-72N

Contactor CA 6-105

Contactor CA 6-170-E

Contactor CA 1-250

Contactor CA 1-480
Price Schedule up to CA 1-480-'AA'
CA 5-370 and up:'A2'

AC 1 Amps $40^{\circ} \mathrm{C}$	AC 1 Amps $60^{\circ} \mathrm{C}$ Encl.	AC 2 AC 3 Amps ${ }^{2}$)	AC 2 AC 3 Approx. kW ${ }^{\text {² }}$	Auxiliary contacts ${ }^{\text {a }}$) standard			Cat. No.	With std. coil Price ${ }^{3}$)
				N/O	N/C	Max. ${ }^{5}$)		
25	16	8	4	1	0	5 (9)	CA 3-9-10	61.00
				0	1	5 (9)	CA 3-9-01	61.00
25	16	11	5.5	1	0	5 (9)	CA 3-12-10	72.00
				0	1	5 (9)	CA 3-12-01	72.00
25	16	14	7.5	1	0	5 (9)	CA 3-16-10	94.00
				0	1	5 (9)	CA 3-16-01	94.00
45	30	21	11	1	0	6 (10)	CA 3-23-10	140.00
				0	1	6 (10)	CA 3-23-01	140.00
45	30	28	15	1	0	6 (10)	CA 3-30-10	188.00
				0	1	6 (10)	CA 3-30-01	188.00
63	45	37	20	1	1	7 (11)	CA 3-37N-11	215.00
63	45	40	22	1	1	7 (11)	CA 3-43N-11	225.00
90	75	60	33	1	1	7 (11)	CA 3-60N-11	350.00
90	75	66	37	1	1	7 (11)	CA $3-72 \mathrm{~N}-11$	420.00
160	120	90 (33)	50 (45)	1	1	8	CA 6-85-11 ${ }^{2}$)	515.00
160	120	90 (33)	50 (45)	1	1	8	CA 6-85-E-11 $\left.{ }^{2}\right)^{5}$)	610.00
160	120	110 (40)	63 (55)	1	1	8	CA 6-105-11 ${ }^{\text {2 }}$)	605.00
160	120	110 (40)	63 (55)	1	1	8	CA 6-105-E-11 $\left.{ }^{2}\right)^{6}$)	700.00
250	210	140 (55)	81 (75)	1	1	8	CA 6-140-E-11 $\left.{ }^{2}\right)^{5}$)	785.00
250	210	170 (65)	98 (90)	1	1	8	CA 6-170-E-11 $\left.{ }^{2}\right)^{8}$)	895.00
180	125	110	63	1	1	6	CA 1-60	680.00
200	140	135	75	1	1	6	CA. 1-100	835.00
240	180	170	95	1	1	8	CA 1-150	955.00
300	250	250	150	1	1	8	CA 1-250	1570.00
500	480	480	300	1	1	8	CA 1-480)	2950.00
500	420	370 (140)	190 (185)	2	2	8	CA.5-370 $\left.{ }^{1}\right)^{2}$)	1820.00
600	510	450 (200)	255 (280)	2	2	8	CA 5-450 $\left.{ }^{1}\right)^{2}$):	2050.00
760	645	550 (250)	315 (355)	2	2	8	CA 5-550 $\left.{ }^{1}\right)^{2}$)	2980.00
900	760	700 (340)	400 (500)	2	2	8	CA 5-700 1) ${ }^{\text {2 }}$	3750.00
1100	930	860 (380)	500 (550)	2	2	8	CA 5-860 $\left.{ }^{1}\right)^{2}$)	6980.00
1200	1080	1000	600	1	1	8	CA 5-1000 ${ }^{\text {) }}$	10950.00
1350	1250	1200	710	1	1	8	CA 5-1200 ${ }^{\text {\% }}$	11500.00

Notes: ') $55^{\circ} \mathrm{C}$ enclosed.
$\left.{ }^{2}\right) 1000$ volt ratings ().
${ }^{3}$) Price with standard coil
${ }^{4}$) Auxiliary contacts for CA 1-60 to CA $1-480$ are convertible N/O, N/C.
${ }^{5}$) Figures in brackets are max. auxiliary contacts with $2 x$ side mount auxiliary fitted.
${ }^{6}$) With electronically controlled mechanism (ECM). Available early 1994 for CA 6-85/105.
Please specify coil voltage: Std. $24,32,110,240,415,440 \mathrm{~V} 50 \mathrm{~Hz}$ CA $1-480$ \& above min. volt. 32V
ECM versions coil voltage: $24,110,240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$

sprecher + Schuh:
 AC control relays Type Cs 3

Features:

O Reliable operation in any desired position
O Operationally reliable under vibration and shock conditions, suitable for use in vehicles and ships
O Unaffected by climate, encapsulated standard design under tropical conditions
O Unaffected by pollution, suitably encapsulated
O On and off switching operation in one movement (tumbler characteristics).
O High in-rush current permissible due to bounce-free contact system and high contact pressure
O High permissible operating frequency

CS 3 Relay with 2 pole auxiliary block

CS 3 Basic relay

Technical data

Rated thermal current

(AC 1) main contacts	$60^{\circ} \mathrm{C}$	16 A
Auxiliary contacts lth	$60^{\circ} \mathrm{C}$	12 A
Ambient temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	

Max. permissible operations per hour	6000
Coil consumption basic relay 4 pole	Pick-up Hold in $59 \mathrm{VA} 7.2 \mathrm{VA} \mathrm{2.2} \mathrm{~W}$
Mechanical life	15 million operations

Nominal voltage	V	240	415
Thermal rated current	A	16	16
open and AC 1 (3 phase)	kW	6.7	11.5
Switching, contactor (AC 15)	A	10	4
Auxiliary contact block	A	5.5	2.5
Life	@415 V mill ops	1.2	(AC 15)

CS 3 Relay with
snap-on mechanical latch

Complete relays (Additional types) 5 \& 8 pole refer next page for standard arrangements.

No. of poles	Contacts on relay		Contacts on aux. contact block		Total contact arrang.		Type	Cat. No.	With std. coil Price $\$$
	N/O	N/C	N/O	N/C	N/O	N/C			
5	4	-	1	-	5	-	Relay with	CS 3-50	77.00
	4	-	-	1	4	1	1 pole aux.	CS 3-41	
	3	1	-	1	3	2	contact	CS 3-32	
	2	2	-	1	2	3	block	CS 3-23	
8	3	1	-	4	3	5	with 4 pole	CS 3-35	94.00
	2	2	-	4	2	6	aux. block	CS 3-26	
When ordering please specify voltage required									Price \$
For non-standard coils									Add 10.00
Spare coils, standard voltages									25.00
Spare coils non-standard voltages									35.0

Standard voltages 24, 32, 110, 240, 415, 440, 480V 50 Hz

Dimensions (mm)

Notes:

${ }^{1}$) Time delayed aux. contact
${ }^{2}$) With aux. contact block
${ }^{3}$) Basic device without adder elements
${ }^{4}$) Fixing possibility onto mounting rail EN 50 022-35 for CS 3
${ }^{5}$) With marking tag carrier

Heavy duty - 660V
Complete relays - standard types

Preferred
arrang. to
EN 50 011
diagram

Note: Standard voitages - 24, 32, 110, 240, 415, 440, $480 \mathrm{~V}, 50 \mathrm{~Hz}$

Example:
Control relay CS 3-62-E
Reference numbers
Reference letters

Control relays

On control relays complying with the European Standard EN 50 011, the reference can be extended by a reference letter. The reference letters E and Y refer to preferred arrangements through which the location of the contacts and terminal markings are clearly specified. The arrangement digit is also the location digit. The CS 3 control relay arrangements shown in this catalogue at the present time having references with no reference letters, correspond to the contact arrangement most often used. The terminal markings comply with EN 50005 .

SECTION L

PHASE FAILURE RELAY

CROMPTON PSGW SERIES

PSGW 415V AC PHASE FAILURE RELAY

SUPPLIED BY: CROMPTON INDUSTRIES
20 CHATFORD STREET
MACGREGOR QLD 4109
TELEPHONE: (07) 8411586

Phase
 Batance
 Relay

The Crompton Protector Phase Balance module provides continuous surveillance of a 3-phase, 3 or 4 wire system and protects against:
\star Phase Loss
\star Phase Reversal
\star Sequence

* Phase Unbalance
* System Under Voltage

The module de-energises a relay should any one of the above faults occur. It is fitted with an adjustable time delay to eliminate premature operation on short duration supply fluctuations.

A red LED indicates that the supply is within limits and that the output relay is energised. N.B. the relay will not energise if the supply is connected in the wrong sequence.

The phase unbalance feature protects motors of any size, from full-load to no-load, against excessive temperature rise due to unbalanced supplies, e.g. a 10% unbalanced supply can increase the temperature rise by 150%. In addition, this also protects against the phantom voltage generated during a single phase failure when running at low load.

Principle of Operation

The module comprises monitoring circuits for voltage phase reversal and phase unbalance. Outputs from these circuits are fed to a comparator which changes state under fault conditions.

When the comparator switches, the output relay will de-energise after a pre-set time delay and the red LED will also de-energise in series.

The relay and LED will automatically energise again when all the supply parameters have returned to safe and acceptable limits.

Connection Diagram

Note: Neutral connection not required.

252-PSFW. Phase loss and unbalance only 252-PSGW. Phase loss, unbalance and undervoltage.
Input
System: $\quad 3$ phase, 3 or 4 wire, 50 or 60 Hz (specify) $100-125 \mathrm{~V}, 200-250 \mathrm{~V}$ or $380-450 \mathrm{~V}$ (nominal voltage to be specified when ordering) 3VA
1.2 times continuous 1.5 times for $10 \times 10 \mathrm{~s}$ To B.S. 6253
Set Points
Unbalance:
Time Delay:

Under Voltage:
(Type 252-PSGW only): nominal voltage (other values

Output Relay
Type:
Rating ac:
dc:
Operations:
Reset:
Weight:
between - 10% and -30% available on request)
Adjustable 5\% to 15\% 200 ms to 10 s adjustable (not operative if voltage falls below 70% of nominal or set point or type 252-PSGW) Internally reset at -15\%

DP changeover
240V, 5A non-inductive $24 \mathrm{~V}, 5 \mathrm{~A}$ resistive 2×10^{5} at above load Automatic Approx. 0.3 kg

SECTION M

AMMETERS \& VOLTMETERS

CROMPTON 244 SERIES

244-026G 0-400A AMMETER
244-02AG 0-500A 5A C/T AMMETERS
244-02VG 0-500V VOLTMETER
244-026G 0-10A AMMETER

Quadratic 240 Series

			C				(6			
Svmbol	Selection table		242	243	244	246	242	243	244	246
	Movement	Page	${ }_{88 \times 8}$	12×12	96×96	14×14.4	88× 88	12×12:	96×9	14×14
$\begin{array}{ll}\text { E } & A \\ \square & A \\ \square & A \\ \square & A \\ \text { D }\end{array}$	Moving Iron Moving Coil Maximum Demand Indicators Moving Iron + MDI	4.	-	\because	\bullet	\because	-	-	$\stackrel{-}{-}$	\bullet
$n Q$ WVAR $n Q$ $\cos \varphi$ no $\cos \phi$ n $H z$	Wattmeter Varmeter Phase Angle meter Power Factor meter. 360° scale Frequency meter - pointer type	5	$\stackrel{*}{*}$	*	0	\bigcirc	$*$ $*$ $*$ $*$	$*$ $*$ $*$ $*$	\bullet	\because
	Frequency meter - reed type Synchronising Voltmeter Synchroscope 360° scale Phase Sequenceilndicator:	6	-	-	$\stackrel{-}{-}$	-	-	-	-	-
	Möving Coil Rectifier Position Indicator Speed Indicator Temperature Indicators	7	*		* ${ }_{*}^{\bullet}$	*	$*$ \bullet $*$	$*$ $*$	$\stackrel{\bullet}{\bullet}$	\bullet
	Elapsed Time Meter Meter Relay	8	\bullet					-		-
	Current Transformers, Shunts Transdücers Connection diagrams Dimensions.	$\frac{8}{12}$								

Features

* Shock-resistant taut band suspension
- Vibration-proof $A 10$ odamping
- Suitable for tropicall climates
t Customised options Gextras
- Complementary transducers current

790° and 240° scale
t Slide in dials for 90° volts amp
frequency:

Standards

All instruments comply with the following specifications:

Case dimensions, Benzels'(slim)" Scale markings

DIN43700: DIN43718DIN43802 DIN43780.

IEC 51
DIN43701
IEC414
IEC5
IEC529

Magnetic influence
Performance.)
Accuracy
Overloads
Measuring ranges Safety requirements Dial symbols Enclosure
Optional compliance on request
Lloyds Marine
National Area Boards

Spec ES141-26+50+8

Hi - Q Taut Band Suspension

In the Crompton world patented $\mathrm{Hi}^{\prime} \mathrm{Q}^{\prime}$ taut band suspension (see diagram) all the delicate parts of the träditional instru ments are elminated. There are no pivots, no jewel bearings, no hair-springs - no air damping vane instead a toughemetal ribbon suspends the moving element between front and rear tensionisprings

Specially contoured pads are fitted to the ends of the spindle and the workinggap at eachend is filled with a highquality silicon flud The pads together with the fluid reservoir form a system wrich acts as resilient built-in shock absorbers This provides both rotational and ${ }^{\text {angitudinal }}$ damping as the moving element floats on oilwwith no bearing friction and is effectively cushioned against shock and vibrationet
360° synchroscopes and power factor meters have robust pivot and jewel bearings:

All movements are self-shielded against external magnetic fields as defined in BS89,IEC51 and DIN 43780

Construction

Models 242,243 and 244 have cases, bezels and terminal plates injection:moulded in flame retardent engineering thermoplastic recognised by Underwriters Laboratory (UL)

Módel 244 Meter Relay and all model 246 have pressed steel cases:

All instruments have glass windows, with zero adjusters where necessary. Non-reflecting glass or polycarbonate shatterproof windows are available.

Enclosure

The cases comply with enclosure code IP54 to IEC 529. They are suitable for use in tropical conditions.

Specification

Performance
Instruments comply with. IEC51.
Accuracy
Class 1.5 is standard Frequency meters offer Class 0.5 or $0: 2$ Maximum demand indicators are Class 3. Synchroscopes and 360° power factor meters are Class $2.5 \quad 12^{\circ}$ electricall.

Overload withstand

12 times rated current or voltage for 2 hours. Ammeters 10 times ratedcurrent, voltmeters and frequencymeters 2 times rated voltage for 5 seconds. Power instruments accept similaroverloads

Dielectrictest
2 KV ac fort minute
Ambient Temperature
Instruments, have a working ambient range of $20^{\circ} \mathrm{E}^{2} 060^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{C}\right.$ Lloyds . with relative. humidity up to 90% They are calibrated for other temperatures within the working range

(Lloyds Shippingat $35^{\circ} \mathrm{C}$)
Damping time
$\langle 3$ seconds is usuale More heavily dampedmovements are avalable on request.
Illumination
Internally iluminated dials are available for Models 243,244 and $246,240^{\circ}$ moving coill The replaceable rear mounted lamps are suppliedfor 6,2 or 24 V .

Mounting Clamps

Models 242,243 and 244 are provided with two corner fixing clamps and tensioning thumb screws.

Diais and Scales

Standard dials are acrylic matt white with black printed scales and bar pointers.
They are scaled in accordance to DIN 43802. Interchangeable slide-in dials are used on models 243 and 244 short ścale moving iron and moving coil.
360° Instruments have platform dials.
Black dials with white or yellow scales and pointers are available:

General options include: red supplementary pointers; , red indexes (quadrant: scales), red, green or blue lines, bands or: segments, finely spaced divisions, multiscales and special scales and captions to customers' requirements:

All. 243 and 24490 scale voltmeters; amme ters and frequency meters have slide in dial;: offering the benefit of low stock costs as only the basicinstruments types need to be stocked together with ranges of dials: Other dials can be obtained rapidy from our local sales and senice centres or agents:

Mounting Angle

Standard instruments are calibrated for mounting on a vertical panel.
Special calibration for othersmounting positions can be provided on request. Specify the angle of inclinations required in degrees, a° from the horizontals

World Patents

Crompton indicators incorporàte features covered by one or more of the following: otents
GREAT BRITAIN: 1, 1,24,667, 1,295,935; 1 212:245, 29,466/77
AUSTRALIA 415,321
CANADA: 792;902; 846,338
GERMANY $1,591,864$, P1,591,864\%
P2747.965.8 G 77.32975 .0
USSA: $3,439: 273 ; 3,590,375 ; 845032$

Model 246 and Meter Relay:model 244-30, have two side-fixing spring clips.

AA\&V

Moving Coil

These self-shielded high-torque movements are suitable for all d.c. systems:
The linear scale is calibrated down to zero: and accuracy maintained. down to 1.0\%.

High current ratings are measured with separate shunts and suitably scaled indicators.
Suppressed centre or off-set zero. models are available and indicators can be: calibrated for use with tachogenerators, transducer outputs; processisignals and similar electricalsensors:
Model $242-90^{\circ}$ scale has a pivotted mövement and ed dycurrent damping

Maximum Demand Indicator

Thé thermal/timetcharacteristic of MDls monitors the most economic use of cable, fusegearand transformers:
The directly heated bimetal element indicatesmean $\frac{r}{m}$ s current over 8,15 or 20 mins A red slave pointer shows highest value reached and has ar wire. sealable reset knob:
The optional saturating C.T. limits the power into the MDI and is used where a protection relay is connected in series: from the same C.T. Scales are calibrated to match the C.T. plus 20\% overload (e.g: 0-5.6A).

Moving Iron

Designed to measure a.c. current or voltage, these rugged movements indicate true r.m.s. values substantially independent of system wave form.
Scales are calibrated down to 20%. Ammeters can have overload scales $\times 2$ or $x 6$ for motor start duty. Heavy damping is available.
Ammeters are scaled for use with -/1A or $-/ 5 \mathrm{~A}$ current transformers for high ratings or remote indication.
Calibration for d.c. can be arranged on 90° ratings.

Moving Iron + MDI

Where the instantaneous and maximum :demand.currents are required, this instrument combines both movements in one case. It can replace an existing M.I. ammeter.

The scales are calibrated to match the C.T. primary plus 20\% overload. End values are selected from:1.2 1.82 .433 .64 .86 7.29 and their multiples of 10 and 100 .

Accuracy

Class 1.5 (Class 2 model 24290° scale) Ratings

Ammeters:

0.5Ato 100A directconnected (25Afor 242-90 \& 240° scales)
Ratings tor use with C.T.s.
Scales with $\times 2$ or $\times 6$ overload.
Low load scales (max 10A).
Voltmeters:
6 V to 600 V direct connected.
100. 133. 140,. 150 V for use with V.T.s. Frequency 50 or 60 Hz .400 Hz on request.
Burden at 50 Hz .
Ammeters: $90^{\circ}-0.5 \mathrm{VA}, 240^{\circ}-1.5 \mathrm{VA}$. Voltmeters: 4.5 VA max.

Accuracy

Class 1.5
Ratings
Ammeters:
100μ A to 25A direct connected.
$4 / 20 \mathrm{~mA}$ suppressed zero.
Voltmeters:
$60 \mathrm{~m}: \mathrm{V}$ to 600 V direct connected.
1/5V Suppressed zero:
$60,75 \% 150 \mathrm{mV}$ for use with shunts. Impedance
Voltmeters: 1000 s $/ V$ above ${ }^{1} 1 \mathrm{~V}$:
Ammeters: 75 mV internal shunt above 60 mA .
For values see publication T1 18

Accuracy Class 3:

Ratings
5A-foruse with separate $\mathrm{C} T$:
5/5A saturating C.T. (dim. C page 12 becomes 83 mm).:

Burdens $50 / 60 \mathrm{~Hz}$
MDE-2:5VA:CT-2VA.
Overioad withstand.
Standard: 5.x. FL, for 5: sec.
$10 \times$ FE for 1 sec :
With saturating C.T:: $10 \times \mathrm{FL}$ for 3 sec
$20 \times$ FL- for 1 sec
Frequency $50 / 60 \mathrm{~Hz}$
Modeis 243; 244, 90° scale.

Accuracy

Bimetal-element. Class 3:
Moving iron ammeter Class. 1.5

Ratings

5A for use with separate C.T.
5/5A saturating C.T. (dim. 'C.' page 12 becomes 83 mm).
Burdens. $50 / 60 \mathrm{~Hz}$
MDI - 2:5VA, CT - 2VA, MI - 0.5VA.
Overload withstand
Standard: $5 \times \mathrm{FL}$ for 5 sec
$10 \times \mathrm{FL}$ for 1 sec
With saturating C.T.: $10 \times$ FL for 3 sec
$20 \times \mathrm{FL}$ for 1 sec
Frequency $50 / 60 \mathrm{~Hz}$
Model 244, 90° scale only.

Quadratic

Symbols based on DIN43 807. Transformer terminal markings to BS3938/3941.

VOLTMETER d.c. -89VG - oivg - 10VG -05VG Direct connected (max. 600V)	VOLTMETER a.c. -02VG. .07VG. 03VG. 78 VG $-89 W G,-01 W G .-10 W G,-05 W G$ Direct connected (max. 600V) With voltage transformer Line volts.
AMMETER d.c.	AMMETER a.c. Moving iron -02AG, -022G, -026G -07AG, -072G, -076G $-03 A G,-032 G,-036 G$ -78G Direct Moving Coil Rectifier $-898 \mathrm{G},-01 \mathrm{BG},-10 \mathrm{BG},-05 \mathrm{BG}$ MOI and MOI plus MI - 16AG. - 168G $-16 C G,-16 D G$
FREQUENCY AND ELAPSED TIME M $\begin{aligned} & -41 \mathrm{SG},-197 \mathrm{G},-19 \mathrm{RG} \\ & -41 \mathrm{LG},-199 \mathrm{G},-19 \mathrm{SG} \\ & -155 \mathrm{G},-156 \mathrm{GG} \end{aligned}$	 TRANSDUCER INDICATOR \& SW250T for Watts. Vars. Frequency. Amps Volts. Phase angle. Resistance. Temperature. Position etc.
POSITION INDICATOR -450B .45P5	TEMPERATURE INDICATORS .45TG Cusiomers Thermocounde

imensions
 Case sizes to DIN43700. Narrow bezels to DIN43718.

Terminals: Voltage and current up to 30A - M5 screw clamps. Current above 30A - M8 studs with nuts.

* Dimensions of external transducers for use with moving coil indicators are given in publication SW2501T or SW250T

Base cover available for 243 and 244 Slide - in dial instruments only.

Terminal Boot available for all Quadratic instruments.

The information contained in this specification is correct at the time of publication, but the right is reserved to supply instruments differing in construction and appearance from those illustrated and described.

CROMPTON INSTRUMENTS (AUSTRALIA) PTY. LTD.

HEAD OFFICE:
N.S.W. Unit 20, Minto Industrial Park, 25-31 Airds Road, Minto, N.S.W. 2566 Ph: 026032066 Fax: 026039335 BRANCH OFFICES:
S.A. 350 Torrens Road, Croydon Park, S.A. 5008 .. Ph: 083471522 Fax: 083473094

VIC. 3 Chesterville Road, Cheltenham, Vic. 3192 .. Ph: 035848844 Fax: 035841042
W.A. Suite 1, 929 Wellington Street, West Perth, W.A. 6005 Ph: 093214387 Fax: 093218901

QUEENSLAND AGENTS:
Bartlett Marketing Co. Pty. Ltd., Underwood, Old. 4119
Industrial \& Marine Electrics, Cairns, Qld. 4870
Ph: 078411586
Ph: 070352722
Fax: 078411676
Marcon Agencies Pty. Ltd., Garbutt, Qld. 4818
Ph: 077254499
N.S.W. AGENTS:

Excell Control Pty. Ltd., Unanderra, N.S.W. 2526 .. Ph: 042721922
Fax: 042721833
TASMANIAN AGENTS:
George Harvey Electric Pty. L.td., Hobart, Tas. 7000 Ph: 049524366 Fax: 049527490

George Harvey Electric Pty. Ltd., Launceston, Tas. 7250
Ph: 002342233 Fax: 002311347
NORTHERN TERRITORY AGENT:
I.S.A.S., Winnetlie, N.T. 0820 Ph: 003316533 Fax: 003341899

SOUTH PACIFIC ISLANDS:
Ph: 089472313 Fax: 089470149
Export Procurement Pty. Ltd., Northgate, Qld. .. Ph: 072605499 Fax: 072605546
NEW ZEALAND AGENT:
Electrade Limited, Auckland.
Ph: 095251031 Fax: 095251756
स-FUISETवTIVS755 Aclive 29/01/2014

SECTION N

SELECTOR SWITCHES
KRAUS \& NAIMIER CG8 SERIES

```
CG8-A007-621-FT2 VOLTMETER SELECTOR SWITCH
CG8-A223-600-FT2 START MODE SELECTOR SWITCH
CG8-A221-600-FT2 START MODE SELECTOR SWITCH
CG8-A369-600-FT2 EMERGENCY MODE SELECTOR SWITCH
CG8-A200-621-FT2 LIGHTING SELECTOR SWITCH
```

SUPPLIED BY: AUSTRALIAN SOLONOID PTY LTD
22 BROOKES STREET
BOWEN HILLS QLD 4006
TELEPHONE: (07) 2528344

, KRAUS \& NAIMER BUU LINE SWITCHGEAR

๔ata[og \{20 CG-SWITCHES - 10 A-25A

Cam switches of the CG series are designed for universal application and may ideally be used for control switches, instrumentation switches and motor control switches with high AC 11-, AC3- and/or AC23 switching capability. All switches of the CG $4-1$ type are particularly suitable for low voltage switching. This facilitates theuse of the CG 4 series even in electronic circuitry as well as in aggressive environments.

All switches of this series are supplied with open terminals which are accessible while the switch is installed. The terminals as well as any terminal connection are protected against accidental finger contact in accordance with VDE 0660, section 100 (VGB 4). Captive plus-minus terminal screws and integrated screwdriver guides facilitate wiring. Due to the particular axial arrangement of the terminals, it is possible to install the switches closely, side by side, or to mount them directly at the cable trays. The contact terminal numbers are easy to read, even if the switch is installed.

Switch types CG4, CG4-1, CG6 and CG7 are equipped with the escutcheon plate size $30 \times 30 \mathrm{~mm}$ ($1.181^{\prime \prime} \times 1.181^{\prime \prime}$). These switches offer maximum space saving benefits. The escutcheon plate is designed to match push-button and indicator units. A single hole mounting with protection grade IP65 is suitable for either 16 or 22 mm and 22 or 30 mm mounting dimensions and is available with key operator, if required.

CG4 and CG4-1 contacts are supplied standard with gold plating 0,3 or 35μ. Hereby a higher contact security is guaranteed.

Switching angle of $C G$ switches may be $30^{\circ}, 45^{\circ}, 60^{\circ}$ or 90°. The maximum number of contacts differs and depends on the particular type of switch.

CG4 and CG4-1	$=16$ contacts
CG6 and CG7	$=8$ contacts
CG8, CG9, CG16, CG17,	
CG16B and CG17B	$=24$ contacts

家

FUNCTION	ESCUTCH. PLATE	TYPE/HANDLE				CODE: No.	STAGES	CONNECTING DIAGRAM
		CG4	CG6	CG8-	CG 16B			
		CG4-1	CG7	CG17	CG17B			

ON/OFF SWITCHES WITH 60° SWITCHING

6

type/handie								
FUNCTION	ESCUTCH.	$\begin{aligned} & \text { CG4 } \\ & \text { CG4-1 } \end{aligned}$	$\begin{aligned} & \text { CG6 } \\ & \text { CG7 } \end{aligned}$	$\begin{aligned} & \text { CG8- } \\ & \text { CG17 } \end{aligned}$	$\begin{aligned} & \text { CG 16B } \\ & \text { CG 17B } \end{aligned}$	$\begin{aligned} & \text { CODE- } \\ & \text { No. } \end{aligned}$	Stages	CONNECTING DIAGRAM

DOUBLE-THROW SWITCHES WITHOUT 'OFF' 60° SWITCHING

DOUBLE-THROW SWITCHES WITHOUT 'OFF' with electrically isolated contacts

DOUBLE-THROW SWITCHES with spring return

VOLTMETER SWITCHES WITH 'OFF'

3 phase to neutral		$=$ $=$ $=$ 5	$=$ $=$ $=$ $=$	킁 F e 앙	8 $=$ $=0$	A005-600 A005-620 A005-621 A005-622 A005-623	2 2 2 2 2 2 2	
3 phase to phase and 3 phase to neutral		0	9	e 을 웅 ρ 반 ρ		A007-600 A007-620 A007-621 A007-622 A007-623 A007-624	3 3 3 3 3 3 3	
2 separate 3 phase with center 'off'		5	5 6 5		앙 E e	A008-600 A008-620 A008-621 A008-622	4 4 4 4 4	

| SELECTION DATA | . | CG6 | CG7 | CG16 | CG17 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | CG4 | CG4-1 | CG8 | CG9 | CG168 | CG17B |

MOTOR RATING IEC/VDE/BS

AC 2	Slip ring motor starting,		220 V		2,5	2,5	4	4	5,5	5,5
	reversing and plugging,		380 V		4,5	4,5	7.5	7,5	11	11
	star-delta starting	3 phase	415 V		4,5	4,5	7,5	7,5	11	11
		3 pole	440 V	kW	4,5	4,5	7,5	7,5	11	11
			500 V		5,5	5,5	10	10	15	15
			660 V		-	-	-	10	-	13
AC 3	Direct-on-line starting		220 V		1,5	1,5	3	3	4	4
		3 phase	380/440 V	KW	2,2	2,2	5.5	5,5	7,5	7,5
		3 pole	500 V	kW	3	3	5,5	5,5	7:5	7,5
			660 V		-	-	-	5,5	-	7,5
			110 V		0,3	0,3	0,6	0,6	1,5	1,5
		$\begin{aligned} & 1 \text { pnase } \\ & 2 \text { pole } \end{aligned}$	220 V	kW	0,55	0,55	2,2	2,2	3	3
			380/440 V		0,75	0,75	3	3	3,7	3,7
AC 4	Direct-on-line starting,		220 V		0,37	0,37	0,55	0,55	1,5	1,5
	reversing, plugging and	3 phase	380/415 V		0,55	0,55	1,5	1,5	3	3
	inching	3 pole	440/500 V	kW	0,55	0,55	1,5	1,5	3	3
			660 V		-	-	-	1,5	-	3
			110 V		0,15	0,15	0,3	0,3	0,45	0,45
		1 phase	220 V		0,25	0,25	0,75	0,75	1,1	1,1
		2 pole	380 V	kW	0,5	0,5	1,5	1,5	2,2.	2,2
			440 V		0,5	0,5	1,5	1,5	2,2	2,2
AC 23	Occasional switching of motors		220 V		1,8	1,8	3,7	3,7	5,5	5,5
	or other high inductive loads	3 phase	380/440 V		3	3	7,5	7,5	11	11
	(selection criterion for main	3 pole	500 V	kW	3,7	3,7	7,5	7,5	11	11
	switches)		660 V		-	-	-	7,5	-	11
			110 V		0,37	0,37	0,75	0,75	1,5	1,5
		1 phase	220 V	kW	0,75	0,75	2,5	2,5	3	3
			$380 / 440 \mathrm{~V}$		1,1	1,1	3,7	3,7	5,5	5,5
RATIN	GS	UL/CSA								
	Standard motor load		120 V		1	1	1,5	1,5	2	2
	DOL-Rating	3 phase	240 V		1	1	3	3	5	5
	(similar AC 3)	3 pole	480 V	HP	-	-	-	5	.	10.
			600 V		-	-	-	5	-	10
			120 V		0,33	0,33	0,5	0,5	1	1
		$2 \text { pole }$	240 V	HP	0,75	0,75	1	1	2	2
			277 V		0,75	0,75	1	1	3	3
	Heavy motor load-reversing		120 V		0,33	0,33	0,5	0,5	1	1
	(similar AC 4)	3 phase	240 V		0,75	0,75	1	1	2	2
		3 pole	480 V	HP		-	-	2	-	5
			600 V		-	-	-	2	-	5
MAX. PERMISSIBLE WIRE GAGE stranded wire $2 x$										
				mm^{2}	1,5	1,5	2,5	2,5	4	4
				AWG	14	14	12	12	10	10
flexible (with sleeve)				mm^{2}	1.5	1,5	2,5	2,5	4	4
					(-)	(-)	$(2,5)$	$(2,5)$	$(2,5)$	$(2,5)$
				AWG	16	16	14	14	12	12

DRY CIRCUIT RATINGS CG4-1					Rated	Itage			110 V	220 V
			1 V	6 V	12 V	24 V	48 V	60 V	120 V	240 V
Rated operational currents	AC 1		1	0,6	0,45	0,3	0,22	0,2	0,15	0,1
	DC 1	A	0,75	0,45	0,35	0,22	0,13	0,1	0,05	0,025

SECTION O

CONTROL RELAYS

EMAIL RH2B-U SERIES

RH2B-U 110V AC RELAY

SUPPLIED BY	EMAIL ELECTRONICS	
	937 KINGSFORD SMITH DRIVE	
	EAGLE FARM	QLD 4007
TELEPHONE	(07) 868 1055 FAX (07) 868 1525	

RH SERIES

Midget Power Type $\underset{\substack{\text { Large Capacity } 10 \mathrm{~A} \\ 1,2,3 \text { - and } 4 \text {-Poles }}}{\text { and }}$

꼬

GENERAL

The IZUMI Yellow Relay RH Series are general purpose power relays with 10A contact capacity, equivalent to RR series relays. As small as IZUMI Miniature Relays, they permit very compact system design and are ideal for installation in small control equipment.
Two types of terminal styles are available: Blade and printed circuit board (2 mm wide) types, with $1,2,3$, or 4 poles. Also available is a top bracket mounting type with blade terminals and 1,2 , or 4 poles.

FEATURES

- Midget Type Large Capacity Power Relay

They have the same capacity as IZUMI Power Relays, with 10 A contact rating, $2,000 \mathrm{~V}$ dielectric strength. but are enclosed in a miniature size relay case.

- Power Saving

Power consumption is as small as IZUMI miniature relays.

- Simple Construction and High Reliability

With simple construction comprising the least number of components possible, these relays are rugged and have high impact resistance.

- UL Recongized and CSA Certified
- Complete with Accessories

In addition to three different types of sockets, various accessories such as hold-down springs and relay holders are available for convenient relay application.

TYPE LIST

Terminal style	Contact configuration	Basic type	With indicator light	With check button	Top bracket mounting type	With indicator light and check button
B (Blade)	SPDT	RH1B-U	--	--	RH1B-UT	-
	DPDT	RH2B-U	RH2B.UL	RH2B-UC	RH28-UT	RH2B-ULC
	3PDT	RH38.U	RH38-UL	RH38-UC	--	RH38-ULC
	4PDT	RH48-U	RH4B-UL	RH4B-UC	RH4B-UT	RH4B-ULC
V2 (PCB 2-mm wide)	SPDT	RH1V2-U	--	--	--	--
	DPDT	RH2V2-U	RH2V2-UL	RH2V2-UC	-	RH2V2-ULC
	3PDT	RH3V2-U	RH3V2-UL	RH3V2.UC	--	RH3V2-ULC
	4PDT	RH4V2-U	RH4V2-UL	RH4V2-UC	--	RH4V2-ULC

COIL RATINGS

Rated voltage (V)		Rated current $(\mathrm{mA}) \pm 15 \%$ at $20^{\circ} \mathrm{C}$								$\begin{aligned} & \text { Coil resistance }(\Omega) \\ & \pm 10 \% \text { at } 20^{\circ} \mathrm{C} \end{aligned}$				Maximum continuous applied voltage at $20^{\circ} \mathrm{C}$	Minimum pickup voltage at $20^{\circ} \mathrm{C}$
		60 Hz				50 Hz									
		SPDT	DPDT	3PDT	4PDT	SPDT	DPDT	3PDT	4PDT	SPDT	DPDT	$3 P D T$	4PDT		
	6	150	200	280	330		238	330	387	18.8	- 9.61	-6.0: 5		110% of rated voltage without over. heating	80% of rated voltage
	12	75	100	140	165	86	118	165	196	76.8	40.5	25.3	21.2		
	24	37	$\bigcirc 50$	70	83	42	59.7	81	98	300	156.7	103	84.5		
	50	18	24	34	40	20.5	28.3	39.5	47	1.280	706	460	340		
	100	9	12	17	20	10.5	14.2	20	23.5	5,220	3,100	1,940	1.560		
4	1101	8.4	12	15.5	18.2	9.6	14.2	18.1	21.6	6.950	3,390	2.200	1,800		
¢	115	7.8	12	14.8 !	17.5	8.9	14.2 ;	17.1	20.8	7.210	3.510	2.620	1,910		
	120	7.5	- 11	14.2	16.5	8.6	12.9	16.4	19.5	7.680	4,280	2,770	2,220		
	- 200	-	8	8.5	10		9.5	9.8	11.8	-	9.230	8,140	6,360		
	- 220	-	6	7.71	9.1	-	7.1	8.8	10.7	-	13,920	10.800	7.360		
	- 230	-	6	7.4	8.7	-	7.1	8.5	10.3	-	14.410	11.500	8,520		
	- 240	-	5.5	7.1	8.3	-	6.5	8.2	9.8	-	15.720	12.100	9.120		
		SPDT		DPDT		3PDT		4 PDT		SPDT	DPDT	3PDT	4 PDT	110% of rated voltage without overheating	
	6	128		150		240		250		47	40	25	24		
	12	64		75		- 120		125		188	160	100	96		
0	24	32		36.9		- 60		62		750	650	400	388		
	48	18		18.5		- 30		31		2.660	2,600	1.600	1.550		
	- 100	-		10		14.5			15	-	10.000	16,900	6.670		
	- 110	9.1				12.8			15	-	12,100	8.600	7.340		

NOTE: Rated voltages marked with • are not available for SPDT models.

CONTACT RATING

Nominal Rating

Voltage	Resistive				Inductive			
	SPDT	DPDT	3PDT	4PDT	SPDT	DPDT	3PDT	4PDT
220 V AC	7 A	7.5A	7.5A	7.5A	4.5A	5A	5A	5 A
110 V AC	10A	10A	10A	10A	7A	7.5 A	7.5A	7.5A
30 V DC	10A	10A	10A	10 A	7A	7.5 A	7.5 A	7.5 A

Inductive load: $\cos \phi=0.3, L / R=7 \mathrm{msec}$

CSA Rating

Voltage	Resistive				General use			
	SPDT	DPDT	3PDT	4PDT SPDT	DPDT	3PDT	4PDT	
240V AC	10 A	10 A	-	7.5 A	7 A	7 A	7 A	5 A
120 V AC	10 A	10 A	10 A	10 A	7.5 A	7.5 A	-	7.5 A
30 V DC	10 A	10 A	10 A	10 A	7 A	7.5 A	-	-

Note: Motor Load
$1 / 3 \mathrm{HP}$ for SPDT, DPDT and 3PDT ($240 \mathrm{VAC} \mathrm{)}$
$1 / 6 \mathrm{HP}$ for SPDT, DPDT and 3PDT (120V AC)

UL Rating

Voltage	Resistive				General use				Motor Load		
	SPOT	DPDT	3PDT	4PDT	SPDT	DPDT	3PDT	4PDT	SPDT	DPDT\|	3PDT
240 V AC	10A	10A	-	7.5A	7 A	7 A	*	5A	1/3rp	1/3¢	1/31/
120 V AC	-	-	10A	10A	-	-	-	7.5A	1/6 + P	1/6:	1/6 1 +
30 V DC	10 A	10A	10A	-	7 A	7A	-	-	-	-	-
28 V DC	-	-	-	10A	-	-	-	-	三	-	-

Note: *6.5A/POLE 20A/TOTTAL

RH SERIES

SPECIFICATIONS

NOTE*: Over 200,000 operations (110V AC, 10A) in SPDT (RH1), 3PDT (RH3) and 4PDT (RH4) types.

CIRCUIT DIAGRAM (Bотtом VIEw)

RH1

RH2

ELECTRICAL LIFE (RH2)

6

RH3

RH4

SOCKET

DIN Rail Mount Socket

Type SH1B-05U
For RH1B
Weight Aporox. 26.5 g

Type SH2B-05U
For RH2B
Weight Approx. 42.5 g

Type SH3B-05U
For RH38
Weight Approx 59g

Type SH4B-05U
For RH4B Weight Approx. 74.5 g

Panel Mount Socket

Type SH18-51
For RH1B
Weight Approx. 6.4 g

Type SH2B-51
For RH2B
Weight Approx. 9.7 g

Type SH38-51
For RH3B
Weight Approx. 14 g

Type SH4B-51
For RH4B
Weight Approx. 17 g

PC Board Mount Socket

Type SH1B-62
For RH1B
Weight Approx. 5.7 g

Type SH2B-62 For RH2B
Weight Approx. 8.2g.

Type SH3B-62
For RH38
Weight Approx. 11 g

Type SH4B-62
For RH4B
Weight Approx. 16g

NOTE: DIN Rail Mount Sockets can securely snap on $35-\mathrm{mm}$-wide IZUMI Types BAA,BAP, and BADA DIN Rails, and can also mount on panel surfaces with screws.

HOLD-DOWN SPRING

Type No.	Compatible socket	Compatible relay
SFA-202, SFA-101	SH1B-05U	RH18
SFA-202, SFA-101	SH2B-05U	RH2B
SFA-101	SH38-05U	RH3B
SFA-101	SH4B-05U	RH4B
SFA-302, SFA-301	SH1B-51	RH1B
SY4S-51F1	SH1B-62	
SFA-302, SFA-301	SH2B-51	
SY4S-51F1	SH2B-51	RH28
(SY4S-02F1)	SH2B-62	
SY4S-51F1	SH3B-51	RH3B
(SH3B-05F1)	SH3B-62	
'SY4S-51F1	SH48-51	\bullet RH4B
(SH4B-02F1)	SH4B-62	

NOTE: 1 For relays with check button (C type), springs marked with * can not be used, instead springs for DIN rail mount sockets shown in ($)$ are appli. cable, but close mounting is impossible.
2. When an RH48 relay marked with e is mounted on a panel mount socker, use two SY4S-51F1 hold-down springs for each unit.

SECTION PQ

CONTROL FUSES

GEC RS SERIES
RS20H BLACK FUSE CARRIERS
RS20H WHITE FUSE CARRIES
\title{ FUSE CARTRIDGES }

GEC TYPE T SERIES
NIT 2

```
SUPPLIED BY G.E.C. AUSTRALIA PTY LTD
    663 KINGSFORD SMITH DRIVE
    EAGLE FARM QLD 4007
```

TELEPHONE: (07) 8681000

GECALSTHOM

Fuse fittings to AS2005.21.2 - 1990 BS88: Part 2: 1988660 volts A.C./D.C. Approved by leading Authorities and used in equipment approved by Lloyds.

SAFETY FEATURES

Full Shrouding for personnel safety and complete compliance with the direct contact electric shock.

洜 Insulating sleeves are fitted to front connected fuse bases to provide increased protection at the cable entry point.

Separate base contact insulating shrouds of great strength and flexibility ensure that no 'live' metal is dangerously exposed when the fuse carrier is removed - this enables an outgoing circuit to be cabled with complete safety to personnel and with continuity of supply to other circuits.

Anti-vibration features protect against release of a fuse-carrier due to vibration in service. In the 400 amp size this includes a safety catch which automatically locks on the insertion of the fuse carrier.

RED SPOT SPECIAL FEATURES

$20,32,63 \& 100 \mathrm{amp}$ fuse fittings
Perfect alignment of contacts with single-screw fixing achieved by registration on facets in moulding.
Large contact area and anti-vibration feature incorporated in brass contacts of accurate dimensions.

Tapered shank of fuse link fixing screw ensures easy re-entry.
Safety shroud (cut-away to show base contact) made from moulded red nylon of great strength and flexibility.
Patented non-twist cable clamping screw of large diameter.

Lasting contact pressure ensured by backing stirrups which are located by the shape of the base contact and the moulding.
Carrier and base moulded from flame retardant, non-hygroscopic phenolic.

REDSPOT

$200 \& 400 \mathrm{amp}$ fuse fittings

High quality mouldings, safety shrouds and precision made copper contacts ensure reliable operation.

Additional special features

Through grip handle for maximum control.
.. Silver plated contacts with generous cross section.

Guides to ensure parallel action on insertion or withdrawal of fuse carrier.

Patented non-twist cable clamping screws of large diameter on the 200 amp and cable clamping plate on the 400 amp fuse holders prevent damage to cables.

回Terminal screw locking device, incorporating the principle used in the twelve sided spanner, can be fitted to the hexagon head of the terminal screw, whatever its position when fully tightened, by using one of the two positions provided for locating the captive screw (arrowed in FIG. 3)

FIG. 3 Front connected 200 amp RED SPOT fuse base with shroud removed and with moulding partly cut-away to show silver-plated base contact and terminal screw locking device.
FIG. 4 Front connected 400 amp RED SPOT fuse fitting with moulding partly cut-away to show silver-plated contact, red nylon shroud and cable clamping device.

LISTNUMBERS

for ordering purposes

Standard Colours: Black \& White (RS20 - RS100)

Rating amp	Alternative type of connection				
	FRONT	BACK	FRONT/BACK	-	BACK WIRED
20	RS20H*	RS20P	RS2OPH		RS20BW
32	RS32H	RS:32P	RS32PH		RS323W
63	RS63H	RS63P	RS63PH		RS63BW
100	RS $100 \mathrm{H}+$	RS100P	RS100PH		RS100BW $\dot{\dagger}$
200	RS200H	RS200P	RS200PH		
400	RS400H	RS400P	AS400PH		

[^4]

FIG. 5 Front connected 63 amp fuse fitting

METHOD OF CABLING

Front connected fuse fittings

1) Remove red nylon insulating shroud to release cable sleeve.
2) Remove cable sleeve.
3) Fit cable sleeve over cable.
4) Fit conductor into fuse base terminal and tighten cable clamping screw to secure. If flexible cables are used, their relatively fine strands may be given increased protection by the use of thin wall copper ferrules over the conductor ends. The following should be taken into account:
a) The inside diameter of the thin wall copper ferrule should match that of the bared conductor end as closely as possible.
b) The length of the thin wall copper ferrule should match that of the tunnel in the fuse base terminal.
c) The wall thickness of the ferrule should be thin enough for the ferrule to be compressed by the tightening of the cable clamping screw. The flexible conductors will then be consolidated within the deformed ferrule.
5) Replace red nylon shroud taking care that it holds the cable sleeve in position by locating the shroud in the groove provided in the sleeves.

RS $100 \mathrm{H}-\mathrm{S}$ \& RS $100 \mathrm{BW}-\mathrm{S}$ (COUNCIL SEALABLE)
6) Fit nylon screw through the red nylon shroud with the heads of the screws against the shrouds. Fasten the wingnuts on to the fuse fitting base.

20 amp RED SPOT Fuse Fittings

FRONT CONNECTED

FRONT/BACK CONNECTEO

BACK CONNECTEO - SURFACE

	A	B	C_{1}	C_{2}	D	E	F	G	H	J	K	L	X	Y	Y_{2}	Z
mm	27.0	79.0	54.0	55.0	63	35	M 6	13.5	15.0	16	22.0	29	6.0	5.6	6.6	37

PANEL DRILLING DIMENSIONS
 Viewed From Front Of Panel

GEC INSTHLLATION EQUIPMENT LTD

Type	Ratings Amp	Utilisation category*	BS88-2 Dimension reference	Maximum voltage rating	
NIT	$2 \cdot 20$	gG	A1	550	250
NIT	20M25.20M32	gM	A1	415	-
TIA	2-32	gG	A2	ô60	460
TIA	32M35-32M63	gM	A2	660	460
TIS	35-63	gG	A3	660	460
TIS	3M80. 63M100	gM	A3	660	-
TCP	80,100	gG	A4	660	460
TCP	100M125-100M200	gM	A4	660	350
TFP	(125.200	gG	-	660	350
TB	2-63	gG	-	660	460
TBC	2-63	gG	-	660	460
TC	80, 100	gG	B1	660	460
TC	100M125-100M200	gM	B1	660	350
TF \ddagger	125-200	gG	B2	660	350
TF	200M250	gM	B2	660	460
TF	200M315	gM	B2	550	-
TKF	250,315	gG	B3	660	460
TKF	315M355	gM	B3	660	460
TKM	250,315	gG	, -	660	460
TMF	355, 400	gG	B4	660	460
TMF	400M450	gM	B4	660	460
TM	355,400	gG	C1	660	460
TM	400M450	gM	C1	660	460
TMT	355, 400	gG	-	660	460
TM	450-630	gG	C 2	660	450
TM	630 M 670	gM	C2	660	450
Π	450-630	gG	-	660	450
TLM \ddagger	670-800	gG	C3	660	350
TLT	670-800	gG	-	660	350
TLU	560-800	gG	-	660	350
Trej	1000, 1250	gG	D1	660	300

[^5]
Notes

1) Non-standard tag
arrangements available Details on request.
2) A 1600 Amp Type TUV 1600 fuse link is also available. This is outside the scope of the specification. Details on request.
'ASTA20 Certified' endorsement on a low voltage fuse link indicates that the design has been proved and Centified by ASTA to the relevant B.S. and that the fuse links are examined periodically under the ASTA surveillance scheme.
125-200A
70.00

The HRC fuse link seiected for any circuit should have a continuous current rating not less than the full load current of the circuit.

A standard rating of type ' T ' iuse link (classified as type 'gG' to BS88:Part 1:1988, and marked accordingly) will protect an associated pve insulated cable against both overload and short
circuit if its current rating $\left(\mathrm{I}_{n}\right)$ is equal to, or less than. the current rating of the cable (I_{2}). This is in accordance with rule 433-2 of 15 th Edition, IEE Wiring Regulations for Electrical Installations.

In some circuits (eg, motor circuits) it is not economical practice to match fuse link and cable ratings to provide complete cable protection in the manner described above, because the circuits produce significant overcurrents during switching. In such
cases the fuse links are chosen to withstand the transient conditions, and provide only short circuit protection to the associated cables and other circuit components, the necessary overload protection then being provided by other means. In a motor circuit, for example,

Conductor cross sectional area mm^{2}	Maximum curre capacity 'Open' conditions Ratings as Column 7 of IEE Table 9DI Method 1 - 3 or 4 single core cables in 'clipped direct' conditions Amp	carrying 'Enclosed' conditions Ratings as Column 5 of IEE Table 901 Method 3 -3 or 4 single core cables in 'enclosed' conditions Amp	Maximum current rating of Type 'T' fuse link that can be used with this conductor Amp
1	14	12	20^{*}
1.5	18	$15 \cdot 5$	25
2.5	25	21	35
4	33	28	50
6	43	36	63
10	59	50	100
16	79	68	160
25	104	89	200
35	129	110	315
50	167	134	355
70	214	171	500
95	261	207	630
120	303	239	750

the contactor and its overload relays afford overload protection to motor windings and cable, and the fuse links are chosen to protect all the circuit components against damage when a short circuit fault occurs (see section on motor circuit protection on page 12).

The short circuit protection of cables is covered by rule 434-6 of the IEE Wiring Regulations, and the table shows how type ' T ' fuse links relate to this rule in protecting pvc insulated copper conductors.

Notes

The formula given in rule 434-6
is: $I^{2} t=k^{2} S^{2}$
Where
$I=$ current which causes fuse to operate in 5 seconds
$t=5$ seconds
$k=115$, the constant for pve insulated copper conductors, when cables run at maximum current carrying capacity
$S=$ conductor cross sectional area in mm^{2}

* $1 \mathrm{~mm}{ }^{2}$ cable to be run
continuously at not more than
6.5A when used with 20A fuse link rating.
\dagger Where a fuse link from the extended range of motor circuit fuse links is used (ie one classified and marked 'gM') the larger of its dual current ratings is applicable. eg. a TCP100M160 can be used with a $16 \mathrm{~mm}^{2}$ conductor.

Short circuit energy limitation

Type 'T' fuse links limit the peak current and energy let through to circuits which experience major short circuit faults. This limitation is so great that equipment manufacturers exploit it to produce economic designs which, when used in combination with type ' T ' fuse links. can withstand very high fault levels.
Such users have to prove their equipment under the worst possible
conditions (ie. at maximum breaking capacity, at 110% rated voltage, very low power factor, and with faults initiated at the most onerous points on the voltage wave), and they require relevant data from the fuse link manufacturer. For type ' T ' fuse links this is given in the form of the cut-off current and $I^{2} t$ characteristics shown on pages 14 to 19 inclusive.

In service, the short circuit fault conditions encountered are usually less exacting than those produced in proving tests on fuse links and associated equipment. BS88:Part 1 1988 states that fuse links experience fault currents which produce pre-arcing times longer than 0.01 second in most cases, and on that basis fuse links complying with the standard are deemed to discriminate with each other when the ratio between the current ratings of 'major' and 'minor' fuse links is $1 \cdot 6: 1$ (see Figure 1).

Whilst the BS88 statement is reasonable in relation to 240 V applications fault currents in major installations can be much greater. However, even in the latter cases conditions are less onerous than those encountered in test stations (in particular, the circuits are usually three phase with relatively high power factors)
In practice therefore, the $I^{2} t$ values of type 'T' fuse links are significantly less than the ones listed on pages 14-17, and they will discriminate with each other at fault levels up to $80 \mathrm{kA}, 415 \mathrm{~V}$, if the relationship between 'major' and 'minor' ratings is as given in the table In most cases the discrimination ratio is $1 \cdot 6: 1$, or less, and this provides economic benefits in modern installations. Tests have been taken to prove this level of performance.
The table also gives details of combinations which will discriminate at 550 V and 660 V

'Minor'	Minimum rating (Amp)
fuse	of 'Major' fuse link
link	that will discriminate
rating	with the 'minor'
	fuse link at the
	voltage shown at
	prospective currents
	up to 80kA

Amp	$\mathbf{4 1 5 V}$	550 V	660 V
800	1250	-	-
750	1250	1250	-
710	1250	1250	1250
670	1250	1250	1250
630	1000	1250	1250
560	800	800	1000
500	750	800	1000
450	670	750	800
400	630	670	750
355	630	630	670
315	500	500	630
250	400	450	500
200	315	400	400
160	250	315	315
125	200	200	250
100	160	200	200
80	125	160	160
63	100	160	160
50	80	100	125
40	63	63	100
35	50	63	80
32	40	50	63
25	40	40	40
20	32	32	35
16	25	25	32

Fig 1

To provide an adequate degree of protection against electric shock in a final circuit. Section 413 of the 15th Edition of the IEE Wiring Regulations for Electrical Installations requires a circuit protective device in a fixed installation to interrupt an earth fault current within 5 seconds. Maximum permitted earth loop impedance values (Z_{s}) are specified for each circuit, the values being dependent on the type of protective device used. Table 41A2(a) of the Regulations specifies values of Z_{s} when fuse links to BS88:Part 2:1988 are used. These are generally higher than those specified for mob's, and the superior performance of fuse links in this respect enables economies to be made in the sizes of protective conductor installed.
$Z_{s}=$ Circuit maximum earth loop impedance.

Type ' T ' rating	Earth loop impedance maximum value $\left(Z_{s}\right)$ for circuits supplying fixed equipment
Amp	ohm
10	7.7
20	3.0
32	1.8
40	1.4
50	1.1
63	0.86
100	0.45
200	0.19
400	0.096
630	0.054
800	0.034

In accordance with BS88:Part 1:1988, type ' T ' fuse links are suitable for use in ambient air temperatures not exceeding $40^{\circ} \mathrm{C}$ with a mean value measured over 24 hours of not more than $35^{\circ} \mathrm{C}$. At higher temperatures derating may be necessary in some cases.
Type 'T' fuse links rated up to 25A do not need to be derated in ambient * air temperatures up to $65^{\circ} \mathrm{C}$, and ratings from 32A to 63A may be used in ambient * air temperatures up to $60^{\circ} \mathrm{C}$ without derating.
Larger current ratings can also be used in ambient * air temperatures greater than those specified in BS88:Part 1:1988, and the table opposite gives maximum permitted load currents for such ambients.

Note

- In service, fuse links are almost invariably mounted in enclosures, and the latter are assumed to have inside temperatures $15^{\circ} \mathrm{C}$ higher than the outside ambient temperature if they comply with relevant British Standards. Such equipment will be derated in accordance with the known outside ambient air temperature (row A of the table). If the enclosure is non standard and/or mounted in a paticularly harsh environment, it is necessary 10 de-rate the fuse link in accordance with the expected temperature inside the enclosure (row B of the table).

Nominal fuse rating	Maximum load current at these * ambient air temperatures (${ }^{\circ} \mathrm{C}$)				
	A				
	40°	45°	50°	55°	60°
	B				
Amp	55°	60°	65°	70°	75°
80	Fuse links can be fully rated			75	70
100				95	90
125				120	110
160				145	135
200			190	180	170
250			235	225	210
315		300	285	270	255
355		350	330	315	295
400		400	380	360	340
450		425	405	380	360
500	475	450	425	400	380
560	540	520	495	465	440
630	600	570	540	510	480
670	650	615	585	550	520
710	700	665	630	595	560
750	750	710	670	630	590
800	760	720	680	640	600
1000	950	900	850	800	750
1250	1140	1070	1020	960	900

Three phase power factor correction capacitors can be protected against case rupture, and their associated cables and equipment protected against damage, by Type ' T ' fuse links in the event of a capacitor failure. A fuse link with a current rating not less than 1.5 times rated capacitor current will be needed to withstand the associated switching transient currents and circuit harmonics.

Please consult GEC Installation Equipment Ltd, for advice on applications not covered in this publication.

All type 'T' fuse links have excellent ability to protect motor circuits. When selected in the manner shown below, they not only withstand motor starting surges and full load currents without deteriorating, but also provide superior short circuit protection to associated motor starter components.
Leading manufacturers of motor starters can offer ASTA certified type ' c ' co-ordination to Appendix C of BS4941:1979 (IEC292-1) by using type 'T' fuse links in combination with their chosen contactors and overload relaýs. Please consult GEC Installation Equipment for further information on this subject.

Table 1 Full load currents of typical 3-phase induction motors at voltages shown

1 Table 1 opposite, gives motor full load currents at various system voltages. In the absence of specific information obtain the motor FLC from this table.
2 The motors are assumed to produce the starting conditions shown in Table2. 3 Choose the recommended fuse link for the motor FLC and starting condition from Table 3 (D.O.L. start) or Table 4 (assisted start).

Motor rating		220V	380 V	415V	440 V	550 V	660 V
kW	HP						
0.37	0.5	2.0	$1 \cdot 15$	1.05	1.0	0.8	0.7
0.55	0.75	$2 \cdot 7$	1.6	1.5	1.4	$1 \cdot 1$	0.9
0.75	1	3.9	$2 \cdot 3$	2.0	1.9	1.5	$1 \cdot 3$
1.1	15	4.7	2.8	2.5	$2 \cdot 4$	1.9	1.6
1.5	2	$6 \cdot 5$	3.8	$3 \cdot 5$	$3 \cdot 3$	$2 \cdot 6$	$2 \cdot 2$
$2 \cdot 2$	3	$9 \cdot 3$	$5 \cdot 4$	5.0	4.7	3.8	$3 \cdot 2$
3	4	12	$7 \cdot 1$	6.5	$6 \cdot 1$	4.9	$4 \cdot 1$
4	$5 \cdot 5$	15.4	$9 \cdot 0$	8.4	7.9	6.4	$5 \cdot 3$
$5 \cdot 5$	$7 \cdot 5$	$20 \cdot 7$	11.9	11	$10 \cdot 3$	8.2	$6 \cdot 9$
7.5	10	28	16.1	14.4	14	$11 \cdot 2$	$9 \cdot 3$
11	15	$39 \cdot 1$	23	21	$19 \cdot 8$	$15 \cdot 8$	$13 \cdot 2$
15	20	52.8	30.5	28	26.4	$21 \cdot 1$	17.6
18.5	25	66	38	35	33	$26 \cdot 4$	22
22	30	77	45	41	39	31	26
30	40	103	60	55	52	42	35
37	50	128	75	69	65	52	$43 \cdot 3$
45	60	151	87	80	75	60	50
55	75	185	107	98	92	74	62
75	100	257	148	136	128	102	85
90	120	308	180	164	154	123	102
110	150	370	214	196	185	148	123
132	175	426	247	226	213	170	142
150	200	500	292	268	252	202	168
160	215	-	300	275	260	207	173
200	270	-	391	358	338	270	225
240	320	-	467	428	404	323	269
280	375	-	533	488	460	368	307
300	400	-	573	525	495	396	330
320	425	-	587	538	507	406	338

Table 2 Assumed starting conditions

Motor rating	Direct-on-line starting conditions	Assisted start conditions
Upto 1 kW	$5 \times$ FLC for 5 secs	$2.5 \times$ FLC for 20 secs
1.1 to 7.5 kW	$6 \times$ FLC for 10 secs	
7.6 to 75 kW	$7 \times$ FLC for 10 secs	$3.5 \times$ FLC for 20 secs
Greater than 75 kW	$6 \times$ FLC for 15 secs	

Current rating	Pre- Arcing $\mathbf{I}^{2} \mathbf{t}$ $\left(\mathbf{A}^{2} \mathbf{s e c}\right)$	Total I ${ }^{2} \mathrm{t}$ $\left(\mathbf{A}^{2} \mathbf{s e c}\right)$ at:	
Amp	$\mathbf{4 1 5 V}$	$\mathbf{5 5 0 V}$	
2	$2 \cdot 2$	$5 \cdot 4$	31
4	$7 \cdot 2$	18	70
6	21	60	400
10	100	280	1000
16	300	850	2000
20	540	1000	2500
20 M 25	900	3000	-
20 M 32	1100	4000	-

SECTION R

CONTROL TERMINALS

KLIPPON SAK 4 SERIES

SUPPLIED BY: QED PTY LTD 9 HARVETON STREET STAFFORD QLD 4053 TELEPHONE: (07) 3525399

Feed-through Terminals Type SAK

The SAK Series of feed-through terminal blocks are employed for the connection of various conductor sizes. The bare conductor is inserted directly into the yoke with no further preparation, and the tightening of the screw effects a vibration proof connection.

Most terminal types are available in either melamine moulding material or polyamide 6.6 and are designed to be mounted directly on assembly rail TS32 to EN50035. (BS5825)

Cross connection can be achieved using standard QL2-QL 10 jumper bars fitted in the centre of each terminal block. Switchable connections can be achieved using the switchable link VL2.

For additional safety covers type AD may be fitted with a plastic screw on top of the minal block.

Screw Clamp Connections

Technical Data

Conductor size	Solid $\left(\mathrm{mm}^{2}\right)$
	Stranded $\left(\mathrm{mm}^{2}\right)$
Insulation stripping length	(mm)

Ordering Data	
Moulding material	Polyamide
When ordering EEx'e' and Ex' N^{\prime}	Polyamide
terminals, add suffix 'e' or ' N ' to the	Melamine ${ }^{\text {3 }}$
catalogue number	Melamine
Approvals	

SAKD 2.5N
500V 20A

Thickness 5mm
0.22-2.5
$0.22-2.5$

9

All Approvals are listed
in Approvals Guide

	Steel	
	Steel (M6 Slots)	T
Locking pin (1m) - optional	Steel	S
End Bracket (thickness mm)		

SAK 2.5

750V 27A

Thickness 6 mm

0.5-4
 0.5-4

$9 \quad$ Cat. No. 027966 027968 027962 027967

BASEEFA-Ex CEGB (18 PI (v) (D)
Type : \quad Cat: No.

TS32	012280
TS32	067610

SST 3	015270
EWK $1(8.5)$	020616

8

SAK 4
750V 36A

Thickness 6.5 mm

0.5-6
 0.5-4

12

	Cat. No.
	012836
	012838
	012832
	012837

BASEEFA-Ex CEGB © 91 (1) (D) (5) 10

Type	Cat. No.
TS32	012280
TS32	067610
SST 3	015270
	EWK 1 (8.5)

$A P(1.5)$	011796
$A P(1.5)$	011798
$A P(1.5)$	011792

AP
AP

TW (1.5)	0013016
TW (1.5)	013018
TW (2.5)	013012
	TW (2.5)

T
-

SAK 6N
750V 47A

Thickness 8 mm

0.5-10

0.5-6

12
Cat. No.
019326 019328 019322 019327

Cat. No:
012280 067610

SST
015270
EWK 1 (8.5)
020616

ADP 2	048530
HP 2	048566

DEKAFIX - Section T6

SECTION S

INDICATING LIGHTS

NHP DT3 SERIES

DT3P-GRB PUSH BUTTONS
DN3-40-01 EMERGENCY STOP PUSH BUTTON

SUPPLIED BY: NHP PTY LTD. 25 TURBO DRIVE COORPAROO QLD 4151
TELEPHONE (07) 8916008
FAX
(07) 8916139

schuh Complete units to specification
Refer catalogue 1803

Pushbuttons
Design
(for front mounting)
Pushbutton
Raised pushbutton ')
Latched pushbutton
Raised latched pushbutton ')
Mushroom pushbutton ') 42 mm Ø
Latched mushroom pushbutton 42 mm Ø
Mushroom pushbutton $68 \mathrm{~mm} \varnothing$
Latched mushroom pushbutton ') 68 mm Ø
Order number suffix

Order number suffix							
Front ring		Raised					
Round	PB	PB	Mush.				
grey plastic	P	P	P	P			
black plastic	N	N	N	N			
metal	L	L	L	L			
metal extended	M	-	-	M			
metal sealed	F	-	-	F			
Square							
grey plastic				QP			
black plastic				QN			

Notes: ${ }^{1}$) Legend caps cannot be used.
${ }^{2}$) Legend carriers and legend inserts, refer pages 10-23 \& 10-24.
${ }^{3}$) Further contact blocks can be fitted at the second level.
Contact blocks for base mounting (separate mounting) refer page 10-22.
For operating contact block in centre position, use of operating bridge DT 3-OB is required refer page $10-21$.

Standards

Electrical Inspectorate
Finland

- CEbeC

Belgium

IEC 204-1, 327; SEV 1005, 1093; VDE 0113,
0660 PART 201; BS 4794; CEE 24; CSA 22.2,
Number 0, Number 14; UL 508, 486 E

Appróvals

SEV, CSA, UL, CEBEC, Germ. Lloyd,
DEMKO, NEMKO, SEMKO, Finland,
Buro Veritas, USSR Reg. in preparation
Rated insulation voltage U_{1}

IEC 337, VDE 0110, insulation group C	660 V				
CSA, UL	600 V				
Test voltage					
phase-phase	$3 \mathrm{kV}, 1 \mathrm{~s}$				
phase-earth	$4 \mathrm{kV}, 1 \mathrm{~s}$				
Life	DT/DP	DS	DTV/DPV	DSS/DN/DNS	
mechanical	million operations	10	-0.5	0.5	0.05
UL Utilisation category					
heavy pilot duty	AC	A 600			
light pilot duty	DC	Q 600			

Ambient temperature

AC 1, AC 15 operation

storage, transport	$-40^{\circ} \mathrm{C} \ldots+80^{2}$
Climatic resistance	
damp heat	56 days
$40^{\circ} \mathrm{C} / 95 \%$ rel. humidity	
humidity cycling	20 cycies

$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}(\mathrm{T} 85)$
(inside and outside the enclosure. For illuminated pushbuttons and switches max. external temperature $40^{\circ} \mathrm{C}$)
$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

20 cycles

IP 65 except rotary switch with key and emergency stop pushbutton with key
(DSS 3, DNS 3)
IP 54 DSS 3, DNS 3
IP 20 contact and lamp blocks
VDE 0106, part 100
Protection against accidental contact to

30 g
as required

sprecher t. schuh
 s.

Refer catalogue 1803

Contact blocks

Rated thermal current I in

Back up fusing permissible rated current

Terminal markings	to DIN EN 50013	
Connections	$0.75 \ldots 2.5 \mathrm{~mm}^{2}$	$18 \div 12$ AWG

Lamp elements

$\mathrm{x} 1-\otimes-\mathrm{x}_{2}$

Lamp elements DEL 3-E	maximum permissible
indicator lamps	2.6 W
illum. pushbuttons and illum. switches	2 W

Control \& signalling units - DT 3 series
 -

.

\therefore
\therefore
\therefore
Refer catalogue 1803

Single person mounting
Front 1... 4
Rear 5... 7

ront element
ound or square, push, with the inarkings at the top, into the 22.5 mm hole in the mounting plate.

2 Locking tabs
for securing the front section against unauthorised removal. From the rear, insert 2 of these 90° apart into the front element.

3 Bridge
for operating contacts at position 3
(centre position).
Fit to front element from the rear.
Recommended with contact blocks on second level (2 bridges required).

4a Legend carrier
for additional inscription on front elements. Insert the tabs into the slots in the front element. (Refer page 10. 23).

4b Legend plates
for additional marking of controls on enclosures (adhesive).

5a Lock nut fixing tool
for fastening lock nut (5b) onto panel.
5b Lock nut (threaded) for front element
is used to secure the front element to the panel/enclosure. Use locknut fixing tool to secure.

6 Coupling plate with securing clip to snap onto front element. Not required for base mounting.
7 Contact blocks and lamp holders flush mounting
snap onto coupling plate, or the rear of an existing contact block (2 levels of contacis).
Base mounting
snap onto the inside of the enclosure base or onto a hat rail, or secure with two screwed fixing straps.

8 Enclosures available in plastic and aluminium die cast and supplied in 4 sizes with up to 5 control points.

Permissible combinations of contact blocks and lamp elements

Pushbuttons DT 3, DTH 3, DTV 3, DTVH 3, DP 3, DPV 3, DPG 3, DPGV 3 rotary switches DSH 3, DSK 3, DSS 3

For filament lamps with central lamp test $6 . . .110 \mathrm{~V}$
for filament lamps with series diode and
resistor and central lamp test $130 \mathrm{~V}, 2.6 \mathrm{~W}$

With transformer element

SECTION T

INDICATING LIGHTS

ALAN BRADLEY 800T SERIES
800T/PL SERTES 110/6V INDICATING LIGHTS 800T/PL SERIES 24V INDICATING LIGHTS

```
SUPPLIED BY: ASEA BROWN BOVERI DISTRIBUTION
    6 \text { EDMONDSTON ROAD}
    MAYNE QLD
TELEPHONE (07) 858 2417
FAX (07) 369 5125
```


- Bulletin 8007 oiltight devices provide a tight seal against most coolants, oils, and other non-corrosive industrial fluids.
- Ideal for demanding applications where controls must operate efficiently and dependably.
- Designed Oiltight and dust-tight to meet NEMA Type 13 standards.
- Offers a wide variety of oiltight control units to meet most industrial requirements.
- Listed by Underwriters' Laboratories, Inc.

Octagonal mounting ring system

Key features of the octagonal mounting ring system:

- Allows higher tightening torque for improved oiltight integrity.
- Easier legend plate alignment to enhance control station appearance.

Up tight and oiltight

Legend Plate availadie ingray or red, with black lettering on anodized aluminum band.

Trim Washer provided for use when a legend plate is not required.

Attractive Control Station Appearance
Illustrated is a typical 6 Unit Custom Built control station. A variety of push buttons, selector switches, pilot lights, and accessories are available to meet the most specialized requirements.

Thrust Washer absorbs tightening torque, allowing legend plate to remain in alignment.

Octagonal Mounting Ring
simplifies application of a higher tightening torque. which provides increased protection against loosening due to vibration.

Flush Head is suitable for most initiating applications.

Mushroom Head where greater accessibility is required.

Push buttons

A complete line of Allen-Bradley, tactory assembled, NEMA Type 13 oiltight push button operators and contact blocks.

Available in 8 solid molded-in colors select from red, yellow, black, blue, orange, green, brown and gray so you can choose colors to identify individual functions.
Wide selection of accessory items . available to meet most needs. Choose from guards, lockouts and more, all available in kit form for field installation. See pages 10 and 11 for illustrated listings.
Full choice of operators . . illustrated are some of the popular Bulletin 800T operators to satisfy most applications.

Cylinder Lock available with many different locking functions.

Attractive design... low silhouette keeps projection in front of panel to a minimum.

Oiltight Integrity... gaskets guard against contaminants entering through panel opening

Rugged die cast body ... provides for rigid mounting.

Factory assembled each push button is shipped ready to install.

Tough diaphragm seal.. guards against contaminants entering around the button.

Fast easy mounting with octagonal mounting ring.
 color is molded throughout the button. No inserts to be lost or removed. Color identification never lost.

Mounting Information (Dimension A)
Where contact block terminals face each other, 2-1/4" spacing is required for proper electrical clearance.
Where terminals do not face each other, 1-27/32" spacing can be used. Transformer Type Pilot Lights, Push-to-Test Pilot Lights, Illuminated Push Buttons, and all Push-Pull Push Buttons, require $2-1 / 4^{\prime \prime}$ spacing.

Basic Shallow. Five basic contact arrangements available.

Mini. Ideal for additional contacts where depth is limited. Block 7/8" deep.

Logic Reed. Five basic arrangements available. High reliability for low power circuits.

Contact blocks

Versatile, modular

Here's the planning and installation flexibility that modular contact blocks offer. A family of modular contact blocks is used throughout the Bulletin 800T line. Double break, tine silver contacts are enclosed to offer additional protection against contaminants and yet allow visual contact inspection.

A wide variety of contact arrangements in basic shallow, mini, logic reed, and sealed switch contact blocks... flexible and modular. Special time delayed and snap action contact blocks also available. Separate blocks are available with mounting hardware for field installation.

CONTACT RATINGS

	AC						DC	
	Maximum Contact Rating Per Pole NEMA Rating Designation A600						Maximum Rating NEMA P6OO	
	Max. AC Voltage 60 or 50 Hz .	Amperes		Continuous Carrying Current	Voltamperes		Voltage Range	Ampere Rating
		Make	Break		Make	Break		
	120	60	6	10	7200	720	115-125	1.1
	240	30	3	10	7200	720	230-250	0.55
	480	15	1.5	10	7200	720	550-600	0.20
	600	12	1.2	10	7200	720		
$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \hline 0 \end{gathered}$	Maximum: 150 VAC. 15 AMPS. 8 VA and 30 VDC. . 06 AMPS. 1.8 VA . should only be used with resistive loads.							

Reliable contact operation
with fine silver, double
break contacts. Basic
shallow and mini blocks only.

Clear side plate for fast visual contact inspection. Contacts can be checked at a glance. Basic shallow and mini blocks only.

Easy wiring, self-lifting pressure clamps cut wiring time to a minimum.

Convenient wiring. Ample wiring room and staggered terminals for easy access.

Special captive mounting screws.
Second contact block can be added under same screw. Tandem blocks can be added by utilizing tapped head. Applies to shallow block only.

Class 1, Division 2, Hazardous Locations and other Harmful Environments

Sealed Switch Contact Block

Hermetically
Sealed
Switch Contact

CONTACT RATINGS

$\begin{aligned} & \text { 毕 } \\ & 3 \\ & 0 \\ & 0 \\ & \frac{0}{N} \\ & 0 \\ & 0 \end{aligned}$	AC						OC	
	Maximum Contact Rating Per Pole NEMA Rating Designation B600						Maximum Rating NEMA P300	
	Max. AC Voltage 60 or 50 Hz .	Amoeres		Continuous Carrying Current	Voltamoeres		Voltage Range	Ampere Rating
		Make	Break		Make	Break		
	120	30	3	5	3600	360		
	240 480	15	1.5	5	3600	360	115-125	1.1
	600	6.0	0.6	5	3600	360	$230 \cdot 250$	

Sealed Switch block available in a variety of contact arrangements to meet most requirements. The sealed switch contact is hermetically sealed in glass for protection against contaminants.
For greater versatility the sealed switch contact block can be mixed or matched with existing Series C shallow, mini, or the logic reed block. NOTE - Sealed switch contact blocks should not be used with any mushroom head or push-pull push buttons, as heavy shock operation may result in contact block damage.
The sealed switch contact block is suitable for use in Class I Division 2 Groups A, B, C and D hazardous locations and is listed by Underwriters Laboratories for this class of service. It is possible with the sealed switch contact block to use a lower classification enclosure than the NEMA Type 7 Hazardous Location Enclosure in Class I, Division 2 Locations. Refer to Page 9 for additional information.

Pilot lights and Yluminated devices

Allen-Bradley offers a wide variety to fit virtually any application. Mounting is identical to the Bulletin 800T push buttons and selector switches.

Wide Variety of Colors .. color caps are available in red; green, amber, blue, white, or clear for all devices except the neon type pilot light which is only available in amber and clear color caps.

Transformer Type where controls are subject to normal machine shock and vibration Transformer allows use of low voltage lamp for long life. Optional glass color caps are available.

Full Voltage Type. Across the line up to 240 volts. Use where pilot light will not be subjected to appreciable shock or vibration.

Neon Type. Across the line up to 240 volts.

Illuminated Push Button does double duty as both push button and pilot light in a single unit.

Illuminated Push Button with Guard

Small Pilot Light is ideal where space is of the essence.

Available in transformer construction at 120 volts; full voltage from 6 to 24 volts; or 120 volt neon bulb type.

Small Push-to-Test with the same features as standard pilot light plus contacts for push-to-test function.

Small pilot lights

Small Dual Input has a unique construction which permits testing a number of pilot lights from a single push button. Applications include flow diagrams of a control panel, pilot lights on a test panel, and any other process where a multiple number of push-to-test type pilot lights are needed. See Application diagram for typical circuit.

The internal design of the Bulletin 800T dual Input device contains a diode circuit which isolates the test supply from the normal supply. Since the input circuits are internally isolated, this pilot light may be energized from either or both of two separate inputs having the same polarity. The internal diodes are protected against damage by transients normally present in relay and solenoid circuits.

Mounting Dimensions
Mount in 11/16" diameter holes on $27 / 32^{\prime \prime} \times 1-1 / 8^{\prime \prime}$ centers to allow a greater density of lights

Push-pull devices

llyminated and Non-Illuminated. Combine
t-stop and pilot light functions in one button. Low silhouette construction, modular contact blocks, and modular constructed transformer in illuminated and non-illuminated push-pull. Ideal where space is at a premium.

Two position with maintained contacts. When operator is pushed in, it will maintain position until manually pulled out.

Three position with center as normal position. In and out are momentary. Ideal for three wire motor starting control circuits with "push to stop". and "pull to start" legends.

Three position with button maintained in the depressed position which keeps stop circuit open until manually returning button to the center position.

Types available include: transformer type, full-voltage type, neon bulb type. Both illuminated and non-illuminated can be furnished with a variety of contact blocks.

Color caps. Illuminated available in amber, blue, clear, green, red and white. Non-illuminated available in red, green, blue, yellow, orange, gray or black.

Spacial purpose devices

Available in a wide variety to complement the Bulletin 800 T line.

In addition to those illustrated, a number of other devices and contact arrangements are available. featuring handy joy stick operator for convenience in multi-purpose control operations.

Selector Jog. A 2 position device combining a momentary contact push button with a selector switch. Ideal for run-jog applications

Potentiometers consist of Allen-Bradley Type J potentiometer and suitable oiltight mounting. Available up to 10 megohms.

- Class I Division 2 for Hazardous Locations

Typical devices shown below are suitable for Class I, Division 2 locations provided they are suitably mounted by the customer in an enclosure as required for the application and by applicable codes and laws. Refer to page 5 for Sealed

Popular modifications and

 accessories readily available for the Allen-Bradley Bulletin 800 T line.

Locking attachment for
extended head push buttons.
This field installable kit enables the button to be locked in the depressed position.

Extra Long Guard with Padlocking Attachment which permits extended head to be locked in the depressed position.

Padiocking attachment for flush head push button units to permit locking in depressed position.

Jumbo Mushroom Head is available in plastic or aluminum

Push Button Guard is $1^{\prime \prime}$ deep for additional protection against accidental operation.

Locking Cover featuring a stainless steel mounting bracket with a clear plastic cover. Guards against unauthorized operation Available for push buttons and selector switches.

Rocker Arm Operating Lever is useful where attendant must wear heavy gloves and still operate 2 push buttons repeatedly. When lever is released it returns to center position. Kits available for field installation.

Legend plates

Legend plates are available in standard, jumbo and large sizes. These legend plates are gray or red in color and feature a natural aluminum engraving area across the top.

Standard size legend plates will accommodate 2 lines with 14 characters per line. Jumbo legend plates will accommodate 14 characters in one line with provisions for a total of 5 lines. Large size legend plates (2.4 inches square) provide 4 lines with 20 characters per line. Large and Jumbo legend plates require greater center to center spacing.
These legend plates can be field engraved with a .020 inch carbide cutter. Black letters are then obtained by treating the freshly engraved plate with a blackening fluid which is used to darken the letters engraved in the new legend plate.
Standard size legend plates with standard markings are factory stocked. Special engraving and custom markings are also available.

SECTION U

CONTROL \& STATUS MONITORING UNIT

ITT FLYGT CAS SERIES

```
SUPPLIED BY: ITT FLYGT LIMITED
    14A DEVLON STREET
    MANSFIELD QLD 4122
TELEPHONE (07) 849 7477
FAX (07) 849 7633
```

INSTALLATION and SERVICE
835840 CAS

> Flygt undertakes to remedy faults in products sold by Flygt provided:
> - that the fault is due to defects in design, materials or workmanship;
> - that the fault is reported to Flygt or Flygt's representative during the guarantee period;
> $\begin{aligned} & \text { that the product is used only under conditions described in the care and main- } \\ & \text { tenance instructions and in applications for which it is intended; }\end{aligned}$
> $\begin{aligned} & \text { tenance instructions and in applications for which it is intended; } \\ & \text { that the monitoring equipment incorporated in the pump/turbine }\end{aligned}$
> - that the monitoring equipment incorporated in the pump/turbine is correctly
> - connected;
> $\begin{aligned} & \text { - that all service and repair work is done by a workshop authorized by Flygt. } \\ & \text { Hence, the guarantee does not cover faults caused by deficient maintenance, im }\end{aligned}$ proper installation, incorrectly executed repair work or normal wear and tear. Flygt assumes no liability for either bodily injuries, material damages or economic losses beyond what is stated above.
> The manufacturer reserves the right to alter performance, specifications or design

Caswell Street East Brisbane SPS SP011 Operations and Maintenance Manual

Resetting can only be ione manually.
(2H 09-OS \% OLF \wedge bZ $4 x$
\pm
x
3

12 V
$1>20 \mathrm{~mA}$
Solid state
$1>20 \mathrm{~mA}$
Solid state relay 24 VAC 100 mA

Activated by alarm and supply failures
Normally closed 240 V 4 A at $\cos \varphi=1$

Itage Supply voltage Power consumption Tomperature range Channel A

я Iəuиечつ

 Output alarm Channel C
 Reset Channel D
 Output

E-alarm Alarm

 InterlockAlarm
Function
Breaking cap
Drilling instruction

Yes

Channel C

 activated?
SECTION V
 PROXIMITY SWITCHES SCHMERSAL EN SERIES

SUPPLIED BY	NHP AUSTRALIA PTY LTD	
	25 TURBO STREET	
	COOPOOROO QLD 4151	
TELEPHONE	$(07) 8916008$	
FAX	$(07) 891$	6139

Inductive Proximity Switches • Series IFL 10-30

10 mm operating distance \cdot shielded

Technical Data:

Series:

Voltage range, U_{b} :
Sensing principle inductive:
Rated operating distance, s_{n} :
Output function:
Supply frequency:
Residual ripple:
Output current, I_{a} :
Inrush-current:
No-load current:
Voltage drop,
loaded, U_{d} :
Minimum load:
Protecteve circuit:
Voltage peaks:
Operating frequency, f:
Response time, t_{E} :
Attenuation range, s_{1} :
Test target size:
Effective operating distance, s_{r} :
Ultimate operating distance, s :
Switching hysteresis, H:
Repeatability, R:
Temperature range:
Enclosure sealing:
Housing:
Active surface symbol coleur:
Connections:

Corresponds to standard EN 50036 - A 34
IFL 10-30-10 .. IFL 10-30-01 .. $90 . . .250$ VAC

2-wire

Corresponds to standard EN 50008 - A 14
IFL 10-30-11.P.
IFL 10-30-11. N
10... 30 VDC-P-type $\quad 10 \ldots 30$ VDC-N-type 4 -wire
10 mm , flush mountable
N.O.
$45-65 \mathrm{~Hz}$
max. 200 mA
$\max 1.25 \mathrm{~A}(10 \mathrm{~ms})$
approx. $1.2 \mathrm{~mA}(110 \mathrm{VAC})$

> approx. $8 \mathrm{~V}_{\text {eff }}$ $\geq 3 \mathrm{VA}$
> induction protection ${ }^{4}$)
max. 5 kV at $\mathrm{Ri}=10 \mathrm{~K}$ up to 10 ms
approx. 10 Hz
$<18 \mathrm{~ms}(220 \mathrm{VAC}) \quad<15 \mathrm{~ms}(220 \mathrm{VAC})$

approx. 300 Hz as per EN 50010 $1.4 \mathrm{~ms}(24 \mathrm{VDC}) \quad 1.4 \mathrm{~ms}(24 \mathrm{VDC})$ 11 mm

$30 \times 30 \times 1 \mathrm{~mm} \mathrm{St} 37$ (mild steel)
$\mathrm{s}_{\mathrm{n}} \pm 10 \%$ at nominal voltage and nominal temperature
$\mathrm{s}_{\mathrm{t}} \pm 10 \%$ over tot temperature and voltage range
$3-15 \%$ s
$\leq 5 \%$ s
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
IP 67 as per DIN 40050 (IP 65 for plug)
brass sleeve +2 nuts ${ }^{2}$), zinc plated and cromated tightening torque for nuts max. $3000 \mathrm{Ncm}(270 \mathrm{in}$. Ibs.)
green yellow red blue
cable HOZVV-F 2×0.5
cable LiYY $4 \times 0.25 \mathrm{~mm}^{2}$
2 m long, permanently embedded with cable protector or plug connector type GDM... ${ }^{3}$)

Connection diagram:

${ }^{1}$) With LED function indicator as standard.
${ }^{2}$) Instead of nuts, mounting clamp H 30 can be supplied (see page $1-56$).
${ }^{3}$) Accessories see page l-56.
${ }^{4}$) Upon request: short circuit and overload protected (index K) $I_{A}=\max .100 \mathrm{~mA}$, $\mathrm{U}_{\mathrm{d}}=$ approx. $15 \mathrm{~V}(100 \mathrm{~mA})$.

Mating connector can be supplied on request at additional cost ${ }^{3}$).

SECTION W
 LEVEL INDICATING SYSTEM VEGA TYPE D37

Application

VEGA-pressure sensors are used in conjunction with remote evaluation instruments and are suitable for continuous level measurement or level detection.

All pressure sensors are available with special measuring ranges.

For the use in hostile environments types D 33 and D 34 are especially suitable. The series D 34 is designed ior increased material temperatures.

Special versions are available for the measurement of aggressive products.

Configuration

Pressure sensor D33... consists of:

- mounting boss, bolting, flange, conus or TRIclamp connection
- special steel housing with fixed special cable
- integrated oscillator type E25 or E25 B with integrated overvoltage arrester with adjustment facility in separate housing with pressure compensation facility, protection $\mathbb{P} 65$

Pressure sensor D34... consists of:

- mounting boss, bolting, flange, conus or TRIclamp connection
- special steel housing. with fixed special cable
- heat sink
- integrated oscillator type E25 with adjustment facility in separate housing with pressure compensation facility, protection IP 65°

Pressure sensor D35... consists of:

- mounting boss, bolting, flange, conus or TRIclamp connection
- Al-housing with pressure compensation facility
- integrated oscillator type E24 with adjustment facility

Pressure sensor D36... consists of:

- Al-housing with pressure compensation facility and mounting boss
- PTFE-suspension hose and transducer
- integrated oscillator type E24 with adjustment facility

Pressure sensor D37... consists of:

- transducer
- cable with straining clamip
- integrated oscillator type E25 or E25 B (only for D 37 H) with integrated overvoltage arrester with adjustment facility in separate housing with pressure compensation facility, protection IP 65

Pressure sensor D38... consists of:

- Al-housing with pressure compensation facility and mounting boss
-. extensicin tube and transducer made of material no. 1.4571 (stainless steel)
\because integrated oscillator type E24 with adjustment facility

A measuring system with pressure sensor D33...,
D34..., D35... or D37... consists of:

- pressure sensor with oscillator
- power supply, not included in this system

Function

The diaphragm transforms the hydrostatic pressure of the product into a mechanical movement (max. $0,3 \mathrm{~mm}$).

This movement is transmitted via a plunger-type capacitor, the capacitance of which changes proportional to the pressure (level).

The incorporated oscillator with adjustment facility converts this capacitance change into a DC-signal 4 ... 20 mA .

Technical data

Output: adjustable
4. .20 mA

Supply voltage:
min. $12 . . \max 36 \mathrm{VDC}$
Floating voltage stability
between housing and current output:
max: 500 VDC

Protection:

Protection class:
see schedule page 4

Permissible product temperature: D $33 . . . \mathrm{D} 35 .$.
III

Permissible product temperature: D34....
$-20 . . .+100^{\circ} \mathrm{C},-4 . .212^{\circ} \mathrm{F}$
$-20 .+150^{\circ} \mathrm{C} /+200^{\circ} \mathrm{C} /-4 . .302^{\circ} \mathrm{F} / 392^{\circ} \mathrm{F}$ $\left(>150, .200^{\circ} \mathrm{C} / 302^{\circ} \mathrm{F} . .392^{\circ} \mathrm{F}\right.$ only with add. screening)
Permissible product temperature: $\mathrm{D} 36 ., \mathrm{D} 37, \mathrm{D} 38 .+20 \% .+80^{\circ} \mathrm{C}, 4,4,176 \mathrm{~F}^{\circ} \mathrm{F}$
Permissible ambient temperature on the housing
or on the adjustment facility:
Storage and transport temperature:
$-20 . .+60^{\circ} \mathrm{C} /-4, .140^{\circ} \mathrm{F}$
$-20 .+70^{\circ} \mathrm{C} /-4 \ldots 158^{\circ} \mathrm{F}$

Characteristics:

Fault in characteristics ind.
hysteresis and reproducibility:

Longterm drift:

Average temperature influence over the whole temperature range related to $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$:

Max pressure load:

Wetted parts:

Diaphragm material:
max. cable length: D33....D34..., D37...

linear

$\leq 0,35 \%$ related to the used measuring distance
$\leq 0,5 \% / 3$ months related to the used measuring distance
$\leq 2,5 \% / 100 \mathrm{~K}$ related to the used measuring distance
15 times related to the max measuring distance however max. 25 bar (355 psi)
material-no. 1.4571 (stainless steel)
and Duratherm 600
Duratherm 600 (special steel)
$150 \mathrm{~m} / 492 \mathrm{ft}$.
Only screened cable should be used from the pressure sensor to the adjustment unit of the oscillator type
Connection of pressure sensors see page 13.
All pressure sensors are available in the following measuring ranges.

Schedule of measuring range					
Standard measuring ranges			Special measuring ranges		
Measuring range in bar / psi	max. measuring distance in bar /psi	min. measuring distance in barl. psi	Measuring range in bar\% psi	max measuring distance in bar / psi	min. measuring distance in $\mathrm{bar} / \mathrm{psi}$
0,1/1,42	0,1,1,42	$0,025 / 0,355$	-0,5...+0,5	1,0/14,2	0,25/3,55
0,2/2,84	$0,2 / 2,84$	0,05/0,71\%	-1,0,..+0,0	1,0/14,2	0,25/3,55
0,4/5,68	0,4 15,68	0,1/1,42	-1,0...1,5	2;5/35,5	0,625 / 8,9
1,0114,2	$1,0 / 14,2$	$0,2573,55$	$-1,0 \ldots+4,0$	5,0/71,0	1,25/17,8
2,5/35,5	2,5 / 35,5	0,625/8,87	$-1,0 \ldots+10$	11/156;2	2,75 39, 1
5,0171	5,0171	1,25 / 17,75	-1,0\%+16	$17 / 241,4$	4,25\%60,4
$10 / 142$	10/142	2,5/35,5	Altention:	In closed pressu	e systems
16/227,2	$16 / 227,2$	4,0156,8	fluctuations	the atmospheric p	essure are
\%	\%		received as	asuring fauts (ap	prox. 20 mbar

Lateral cable outiet

Lateral cable outlet

- This dimension is only valid in conjunction with oscillator type E25 B.

Lateral cable outlet

- This dimension is only valid in conjunction with oscillator type E25 B.

Lateral cable outlet

Lateral cable outlet

Lateral cable outlet

Flange DN4O PN4O

Flange dimensions see page 4

- This dimension is only valid in conjunction with oscillator type E25 B.

Mounting instructions

Attention:

All pressure sensors include a breather to allow an atmospheric pressure onto the backside of the diaphragm.

The following items should be observed when using pressure sensors with fixed connection cable:

- dismantle the cable (see drawing)
- the breather capillaries should be clean cut
- the connection housing should be allowed to breath to atmosphere
- insert the cable into the connection housing acc. to drawing
- on pressure sensors without fixed connection cable the breather is located in the cover of the housing
- it should be observed that this opening is free
- Attention:
it is essential that the screening of the pressure sensor is earthed
The connection housing should only be mounted in the positions indicated on the drawing, to avoid water ingress.

With types D35 ... the housing can be turned manually atter mounting. Therefore the cable entry can be adjusted to the required position.
 not availabla

For pressure sensor type D35..., D36... and D38... in protection IP 67, with oscillator type E24 and fixed special connection cable only the connection housing with pressure compensation facility (protection IP 64) should be used. The connection housing is not included (ref. no. 101 009).

For pressure sensor type D33..., D34... und D37... screened cable should be used to lengthen the fixed special connection cable to the adjustment facility.

The housing with breather should be mounted to the connection position.

Pressure sensor with oscillator type E24 without breather protection IP 67

Pressure sensor with oscillator type E25

Cable from pressure sensor

AAdjusiment unit oscillator type E25 and E25 B

H oscillator type E25 B is used as overvoltage protection, the oscillator in the pressure sensor as well as the adjustment unit (up to terminals 1,2 and-3) are protected.

The 4-20 mA output can be additionally protected by overvoltage arresters type B 62-36, see TIB overvoltage arresters.

Voltage and current values

Start-up

For the start-up a meter (measuring range $0 . . .20 /$ 30 mA) can be connected locally to the measuring sockets, $\mathrm{Ri}=$ max. 20 Ohms.

Empty adjustment

Lower the product to min. level. Connect the meter to -the measuring sockets and adjust a current of 6 mA by means of the potentiometer for empty adjustment. Turn the potentiometer for full adjustment to the right until the current does not increase anymore. Then adjust a current of 4 mA by means of the potentiometer for empty adjustment.

Full adjustment

Fill product to max. level. Adjust the potentiometer for full adjustment such that the meter indicates a
current of 20 mA .
Adjustment of the measuring range
The measuring distance of the pressure sensor is adjusted on the oscillator by means of potentiometer for empty and full adjustment. It can be adjusted in a ratio from $1: 1$ to $4: 1$. The empty adjustment can be shifted by max. 30% to the top.

Example: Measuring range of the pressure sensor 0 ... 1 bar / 0 ... 14,2 psi

Pressure at empty adjustment	Indication on the evaluation instrument	Current at the output of the pressure sensor	Pressure at full adjustment	Indication on the evaluation instrument	Current at the output of the pressure sensor
$0 \text { bar }$	0%,	4 mA ,	1 bar \quad,	100\%	$20 \mathrm{~mA},{ }^{2}$
0 bar	0\%	4 mA	0,25 bar	100%	20 mA
$0,25 \text { bar }$	0%	$4 \mathrm{~mA}$	0,75 bar, \%	100%, \%	$20 \mathrm{~mA}, \mathrm{~N}^{2}$
0,30 bar	0%	4 mA	1 bar	100%	20 mA

0.25 bar / 3,55 psi; 0,30 bar / 4,26 psi; 1 bar / 14,2 psi; 0,75 bar / 10,65 psi

Fault finding

General test of the measuring system

In case of faulty indication, first cheok that the sensor is breathing to atmosphere.

- Check that the breather is clear on sensor housing
- On pressure sensors with extension cables ensure capillaries and junction boxed are clear of obstruction
- The reading on the remote amplifier should not change when the junction box or sensor housing is opened

Electrical test of the measuring system

4... 20 mA two-wire system

- The initial current should be approx. 4 mA when the diaphragm is covered $4 \ldots 20 \mathrm{~mA}$. measurement is o.k. (current depends on the level) $<3 \mathrm{~mA}$. oscillator defect 0 mA - line break $\geq 25 \mathrm{~mA}$. oscillator, pressure sensor defect or short-circuit
- The supply voltage for the electronics should be min. 12 VDC at max. measuring current on terminals 1 and 2

Examples

Prüfzertifikat für Druckaufnehmer

Test certificate for pressure sensors Certificat de contrôle pour capteurs de pression

Adresse - Address - Adresse

| Autrags-Nummer
 Order no.
 No. de commande $561639 / 313$
 thre Kom.Nr.
 Your com. no.
 Votre No de Cde. $\mathrm{VS}-905$
 Kennzeichnungs-Nr.
 ldentification no.
 No. d'identifica:ion l l |
| :--- | :--- |

Druckaufnehmer Typ Cessure sensor type	D37 H		
2uasamgen			

> VEGA Australia P/L 17 Clearview Place BROOKVALE N.S.W. 2100

| Elektronik-Einsatz Typ
 Oscillator type
 Preamplificateur type $\mathbb{E 2 5}$ | Serien Nr.
 Series no.
 No. de serre | 10238151 |
| :--- | :--- | :--- | :--- |

Serien Nr.
Oscillator type
Preamplificateur type
Kennlinienfehler
Fault in characteristics
Erreur de caractéristique

SECTION X

LEVEI DETECTION SYSTEM MULTIRODE TYPE

SUPPLIED BY: BEP ENGINEERING PRODUCTS123 BOUNDARY STREET
WEST END QLD 4101
TELEPHONE: (07) 8441711
FAX: (07) 8448878

MTR LIQUID LEVEL RELAY

METHOD OF OFERATION

The Mult Trose MIR Liquid Level Relay is a conduetive liquid level control device which wheo used with the Multi. Trode multi-sensored or single-sensored probe, enables aud point activation/ deactivation of pungrs, alams and acker momitoritg and control equipment

The relay semses the Eiquid via a safe extra. Jow voltage signal and latches. This state is maintained until the circoif is broken, when the liquid passes the selected stop sensor. The relay then resets for the rext oparation.

Operation of the MIR IIguid Level Relay set for CHARGNG
With the relay finction switch sel for charging, the relay is activated when the liquid falls below the gelected low sensor. Contart . 15 \#16 changes over to \#15 \#18, the elecrically separite open conlact \#25 $\# 23$ coses and the yellow LED is illuminated.

The relay is maminained in this state unctl the liquid reaches the selected high sensor and then is deactivator. It is now neset and ready for the nex operation.

Operation of tbe MTR Liquid Level Relay set for DISCEARGING
Wilh the relay function switch set for discharging, the relay is activated when the Iiquid seaches the seiected high scosor. Contact \#15 in 16 ctanges over to \#15 \#18, the clectrically separate open contact "25 \#28 closes and the yellow LED is Illuminated.

The relay is maiatained in this state until the liquid falls below the sclecied low sensor and then is deactivated. It is now reset and ready for the acst operation.

MULTI SENSORED PROBES

- Safe extra low voltage sensing
- Proven reliability in many countries
- Unaffected by fat and debris
- Unaffected by froth and turbulence
- Simple installation from outside pit
- Positive pump cut out
- Very low maintenance
- Easy lepel selection
- Low installed cost

Multi Trode has proven to be the most reliable cost effective liquid level control system available.

INTRODUCTION TO MULTI TRODE

The Multi Trode liquid level system is a conductance activated control system untilizing the electrical conductivity of the Iiquid to carry a swall current which when sensed, activates the controller.

The one piece, mult-sensored probe is central and essential to the effectiveress of the Molit Trode system. The patentea desigy probe
provides easc of installation, simple adjustuent, Iong term reliability, and freedom from the effects of fouling and turbulence.

PROVEN RELLABILITY

Multi Trode probe systems have been operating effectively in sewerge wet wells since 1980 and they are now used by over 1200 water and sewerage authorities in Australia, USA, Japan, Europe and the Asian Pacific region.

South Austraria Office

 7ov fort Raid Abertion 545014 Tel: (0a) 472627 Fuc (08) 347 7360

Fax: (05) 3371774
 Demont parx Tiandy Tei: (002) 1247444 Fax: (OOS) 728599

New Soutti Whiles Office Urit 12 s. 13 . Cencre Wors 108 SIVerwarer road STVEWat- NSW 27:9 Tet (07) 6473700 Fow (02) 748302

[^6]

West australia 20 fitme Rosd 0 Cannor Wh 010.3 Jel: (O9) 3374411 Fax: (c9) 3512574

Tarmanian Oftice 472 Srooker Higinwry
 Ter: (002) 724745 FDC (002) 72 8599

North Quecruland Road 46 Ingham Road Towtovile Qid 4850 el (077) 722599 fact (075) 723925

SECTION Y

SECTION Z

KENNEDY TAYLOR (QLD) AS CONSTRUCTED DRAWINGS

Q3B02-B1-1	MCC REAR VIEW
Q3B02-B1-2	MCC FRONT VIEW
Q3B02-A3-3	GENERAL NOTES
Q3B02-A1-4	JUNCTION BOXES

PLAN VIEW

note- gasket to be manufactured from sheet neoprene GE - GASKET TO BE MANUFACTURED FROM SHEET NEOPRENE
IN ONE PIECE AND SUPPLIED LOOSE. INSTALLATION of GASKET to be carried out when
CABLES ARE INSTALED. use water tight sealant on both surfaces of Gasket

3 OFF CONTROL JUNCTION BOXES
note: \quad boxes to be manueactured from 316 Stanless steel be grade

[^0]: O: Active

 - : Inactive

[^1]: Note:
 : ON:
 OFF

[^2]: Circuit voltage: less than 250 V (Products of Okatani electric industries)

[^3]: （Refer to Notes，opposite page）

[^4]: Illustrations \& dimensions shown on pages 5, 6, 7 \& 8

[^5]: * See page 8
 \ddagger Type TZF and TZLM Muse links proved at 460 V DC are available for users who need superior DC performance in these dimensional references

[^6]: Vietoria Office 9-10 Biatow Ptace Mulgive Vic 3170 Tet (03) 5617000 faxt (03) 5621322

 ## South Qusensland Offlee
 17 Baundary Suret Vor End Qua 4101 ToL (07) 8441741 fax: (07) 548 9878

