Startup and Advanced TOPICs MANUAL FOR AIr Cooled Perfect Harmony Series
 Adjustable Speed AC Motor Drives with Next Generation Control

Manual Number: 902232*
Version 3.0
July 2004

SIEMENS

Siemens Electrical Drives(Shanghai) Ltd.
No.460,GaoXiangHuan Road,Shanghai 200137,China

Tel: 86-21-61687100
Homepage: www.siemens.com.cn
Email: customer.service.seds@siemens.com

Fax: 86-21-58482538
Service Hotline: 86-21-58485775

This manual applies to all air-cooled Perfect Harmony adjustable-speed AC motor drives including GEN III (GEN3) (200 hp through 10,000 hp) having the following cell sizes:

00A through 5C (460 V cells)
70, 100, 140, 200, and 260 (630 V cells)
0I, 1I, 2I, 3I, and 4 I (690 V cells).
This manual applies to NXG software up to and including version 2.5.
For the support representative nearest you, please call Siemens Electrical Drives(Shanghai)Ltd. main office at (86-21-58485775).
Perfect Harmony, GEN II (GEN2) and GEN III (GEN3) are product lines of AC motor drives from Siemens
PLC is a trademark of Allen-Bradley Company, Inc.

Version History:

Version 1.0	April 2001	Version 1.6	
Version 1.1	May 2001	Version 1.7	June 2002
Version 1.2	May 2001	Version 1.8	December 2002
Version 1.3	December 2001	Version 1.9	October 2003
Version 1.4	February 2002	Version 2.0	March 2004
Version 1.5	March 2002	Version 3.0	July 2004

[^0]
Table of Contents

Safety Precautions and Warnings xi
About This Manual
Separation of Manuals i
Reference Tools
Conventions Used in this Manual ii
Chapter 1: Introduction 1-1
Clean Power Input 1-1
High Power Factor and Nearly Perfect Sinusoidal Input Currents 1-2
Nearly Perfect Sinusoidal Output Voltages 1-3
Chapter 2: Hardware Components 2-1
GEN II Style Hardware Configuration 2-1
Power Input Cabinet 2-2
Blower Section. 2-2
Transformer Cabinet 2-3
Cell Cabinet(s) 2-4
GEN II Cell Specifications 2-5
Output Power Cabinet/Control Cabinet 2-9
GEN III Style Hardware Configuration. 2-10
Transformer Section 2-12
Customer I/O Section 2-15
Cell and Control Sections (GEN III Cell Specifications) 2-16
Cell Bypass Option 2-19
The Cell Control System. 2-19
The Master Control System 2-21
The Power Circuit 2-25
Monitoring of Input Power Quality 2-26
Chapter 3: The Keypad and Display Interface 3-1
Introduction 3-1
The Keypad 3-1
Fault Reset Key and LED Indicator 3-2
Automatic Key. 3-3
Manual Stop Key 3-4
Manual Start Key 3-4
The 0-9 Key 3-4
The Enter/Cancel Key 3-7
Shift Function Keys 3-8
Arrow Keys 3-9
Diagnostic Indicators 3-13
The Display 3-14
Menu Descriptions 3-18
Motor Menu (1) Options 3-21
Drive Menu (2) Options 3-25
Stability Menu (3) Options 3-34
Auto Menu (4) Options 3-41
Main Menu (5) Options 3-51
Log Control Menu (6) Options 3-54
Protect Menu (7) Options 3-56
Meter Menu (8) Options 3-59
Communications Menu (9) Options 3-63
Chapter 4: Startup Procedure 4-1
Introduction 4-1
Pre-power Visual Inspection 4-1
Power Circuit, Modulation and Bypass Contactor Test 4-4
Drive Test in Open Loop Test Mode without Motor 4-5
Drive Test in Open Loop Test Mode with Motor Connected 4-8
Drive Test in Open Loop Vector Control Mode with Motor Connected. 4-10
Drive Test in Synchronous Motor Control Mode 4-17
Tuning the 3PCI (SCR Regulator) 4-18
Testing 3PCI Connection to the VFB 4-21
Drive Test with Synchronous Motor 4-22
Drive Tuning 4-24
Auto-Tuning 4-25
Spinning Load 4-26
Application Menus 4-27
Synchronous Transfer Procedure (if applicable) 4-27
Output Filter Setup (if applicable) 4-28
Adjusting Current Regulator Gains with Output Filters 4-29
Verification of Filter CT Wiring 4-30
Determining Stator Resistance in Long Cable Application 4-31
Encoder Setup (if applicable) 4-31
Verification of encoder operation 4-31
Verification of Input Monitoring 4-32
Chapter 5: Application and Operation Issues 5-1
Introduction 5-1
Synchronous Transfer Operation 5-1
Introduction. 5-1
Transfer Setup and Faults 5-1
Up Transfer 5-1
Down Transfer 5-3
Synchronous Transfer with Multiple Motors and a PLC 5-5
The PLC Interface 5-7
"Up" Transfer (from VFD to Line Control) 5-8
"Down" Transfer (from Line to VFD Control) 5-9
Required Signals 5-11
Additional Parameter Description 5-11
Spinning Load Operation 5-12
User I/O 5-13
Introduction. 5-13
Wago Modbus Coupler Settings 5-15
External I/O Menu (2800) 5-16
Digital I/O 5-17
Analog Output Menu (4660) 5-17
Analog Input Menu (4090) 5-18
Signal Frame of Reference for Motor Control 5-19
Frame of Reference 5-19
Signal Polarities 5-20
Mechanical Bypass 5-20
Fast Bypass 5-21
Neutral Point Shift During Bypass 5-22
Power Monitoring 5-27
Dual Frequency Braking 5-27
Introduction to Dual Frequency Braking 5-27
Operation 5-28
Setting parameters for Dual-Frequency Braking 5-30
Limitations 5-31
Energy Saver 5-31
Motor Thermal Overload Protection 5-32
Process Availability - The Perfect Harmony Advantage 5-34
What is ProToPS? 5-34
How Does ProToPS Work? 5-35
ProToPS Implementation 5-35
The ProToPS Advantage 5-35
PID Controller 5-36
Speed Droop 5-36
Verification of Excessive Drive Losses Protection 5-37
Transformer Protection Constant for One Cycle Protection 5-38
Effect of Slip Compensation on Motor Speed with NXG Control 5-38
Calculating Voltage Attenuator Resistors 5-40
Resistor Calculation 5-40
Software Supported Voltages 5-41
Chapter 6: Theory 6-1
Introduction 6-1
The Power Circuitry 6-1
The Control System 6-8
The Control Modes 6-11
Open Loop Vector Control (OLVC) 6-12
Open Loop Test Mode (OLTM) 6-13
Synchronous Motor Control (SMC) 6-13
Volts/Hertz Control (V/Hz) 6-14
Closed Loop Control (CLVC or CSMC) 6-15
Input Side Monitoring and Protection 6-15
Drive Output Torque Limiting 6-17
Input Under-Voltage Rollback 6-17
Input Single-Phase Rollback 6-17
Transformer Thermal Rollback 6-18
Menu Torque Limit 6-18
Regeneration 6-18
Field-Weakening Limit 6-18
Cell Current Overload 6-19
One Cycle Protection 6-19
Summary 6-19
Implementation 6-19
Transformer Model 6-20
Integral Timer 6-21
Excessive Drive Losses 6-21
Summary 6-21
Implementation 6-21
Inverse Time Curve 6-21
Internal Threshold 6-22
Chapter 7: Troubleshooting and Maintenance 7-1
Introduction 7-1
Faults and Alarms 7-1
Drive Faults and Alarms 7-3
Cell Faults/Alarms 7-30
Troubleshooting General Cell and Power Circuitry Faults 7-38
Troubleshooting Cell Over Temperature Faults 7-39
Troubleshooting Overvoltage Faults 7-39
Troubleshooting Cell Communications and Link Faults 7-40
Status Indicator Summaries for MV Mechanical Bypass Boards 7-40
User Faults and Alarms 7-41
Unexpected Output Conditions 7-41
Drive Input Protection 7-43
One Cycle Protection (or Excessive Input Reactive Current Detection) 7-43
Excessive Drive Losses 7-44
Transformer Over-Temperature and Loss of Cooling 7-44
Flash Disk Corruption. 7-45
Portable Harmony Cell Tester 7-45
Removing Power Cells 7-47
Six Month Inspection 7-49
Replacement of Parts 7-50
Chapter 8: System Programming 8-1
Introduction 8-1
System Program Terminology 8-1
SOP Development Process 8-3
Overview of the Compile Process 8-3
Software Tools 8-5
Input Source File 8-5
System Type Identification 8-6
Operators and Precedence 8-8
Statement (SOP) Format 8-10
Input Flags 8-12
Output Flags 8-13
Redefining Flag Names 8-15
SOP Interpretation 8-15
SOP Timing 8-15
Ladder Logic Translation 8-16
Comparators 8-17
Analog Inputs 8-17
Compiler Invocation 8-18
Compiler Operation 8-19
Output Hex File 8-20
Downloading a System Program (Hex File) 8-20
Siemens SOP Upload/Download Utility Method 8-20
Terminal Emulation Method 8-22
Termination. 8-23
Uploading a System Program (Hex File). 8-27
Reverse Compiler 8-28
Combined Source / Hex File 8-31
Appendix A: Performance Capabilities A-1
General Features A-1
Speed and Torque Control A-1
Starting Torque A-2
Output Voltage and Current Characteristics A-3
Output Voltage A-3
Output Current A-4
Drive Output Transformer Considerations A-4
Voltage Capability A-4
With All Cells Operating A-4
After Cell Bypass A-5
During Synchronous Transfer with Cell Bypass A-5
Example of Calculating Drive Output Voltage Capability A-5
Appendix B: Suggested Spare Parts List B-1
Appendix C: System Control Drawings C-1
Appendix D: Flags and Switches D-1
Introduction D-1
Sample DRCTRY. NGN File D-1
Appendix E: Historical Logger E-1
Historical Logger E-1
NOTES N-1
Reader Comments Form R-1

Safety Precautions and Warnings

Perfect Harmony drives are designed with considerable thought to personal safety. However, as with any piece of high power equipment, there are numerous internal connections that present potentially lethal voltages. In addition, some internal components are thermally hot to the touch. Follow the warnings below when working in or near the Perfect Harmony system.

Danger - Electrical Hazards!

Always follow the proper lock-out/tag-out procedures before beginning any maintenance or troubleshooting work on the drive.
Never touch anything within the Perfect Harmony cabinets (other than the control cabinet) until verifying that it is neither thermally hot nor electrically alive.
Always follow standard safety precautions and local codes during installation of external wiring. Protective separation must be kept between extra low voltage(ELV) wiring and any other wiring as specified in the safety standard.
Never assume that switching off the input disconnect will remove all voltage from internal components. Voltage is still present on the terminals of the input disconnect. Also, there may be voltages present that are applied from other external sources.
Always work with one hand, wear insulated or rubber safety shoes, and wear safety glasses. Also, always work with another person present.
Use only instrumentation (e.g., meters, oscilloscopes, etc.) intended for high voltage measurements (that is, isolation is provided inside the instrument, not provided by isolating the chassis ground of the instrument). Never defeat the instrument's grounding.
Never remove safety shields (marked with a High Voltage sign) or attempt to measure points beneath the shields.
Always use extreme caution when handling or measuring components that are inside the enclosure. Be careful to prevent meter leads from shorting together or from touching other terminals.
Hazardous voltages may still exist within the Perfect Harmony cabinets even when the disconnect switch is open (off) and the supply power is shut off.
Never run the drive with cabinet doors open. The only exception is the control cabinet which contains extra low voltages (ELV).
Only qualified individuals should install, operate, troubleshoot, and maintain this drive. A qualified individual is "one familiar with the construction and operation of the equipment and the hazards involved."

Warning!

- Never disconnect control power while medium voltage is energized. This could cause severe system overheating and/or cell damage.
- Never store flammable material in, on or near the drive enclosure. This includes equipment drawings and manuals.
- Always ensure the use of an even and flat truck bed to transport the Perfect Harmony drive system. Before unloading, be sure that the concrete pad is level for storage and permanent positioning.
- Always confirm proper tonnage ratings of cranes, cables, and hooks when lifting the drive system. Dropping the cabinet or lowering it too quickly could damage the unit.
- Never use fork trucks to lift cabinets that are not equipped with lifting tubes. Be sure that the fork truck tines fit the lifting tubes properly and are the appropriate length.
- Always comply with local codes and requirements if disposal of failed components is necessary (for example, CPU battery, capacitors, etc.).
- During operation, the nominal weighted sound pressure level may exceed 70 dB at a distance of 1 meter from the drive.

ESD Sensitive Equipment!

- Always be aware of electrostatic discharge (ESD) when working near or touching components inside the Perfect Harmony cabinet. The printed circuit boards contain components that are sensitive to static electricity. Handling and servicing of components that are sensitive to ESD should be done only by qualified personnel and only after reading and understanding proper ESD techniques. The following ESD guidelines should be followed. Following these rules can greatly reduce the possibility of ESD damage to PC board components.
- Make certain that anyone handling the Perfect Harmony printed circuit boards is wearing a properly grounded static strap. The wrist strap should be connected to ground through a 1 megaohm resistor. Grounding kits are available commercially through most electronic wholesalers.
- Static charge buildup can be removed from a conductive object by touching the object to a properly grounded piece of metal.
- Always transport static sensitive equipment in antistatic bags.
- When handling a PC board, always hold the card by its edges.
- Do not slide printed circuit boards across any surface (e.g., a table or work bench). If possible, perform PCB maintenance at a workstation that has a conductive covering which is grounded through a 1 megaohm resistor. If a conductive tabletop cover is unavailable, a clean steel or aluminum tabletop is an excellent substitute.
- Avoid plastic, Styrofoam ${ }^{\text {TM }}$, vinyl and other non-conductive materials. They are excellent static generators and do not give up their charge easily.
- Always use a soldering iron that has a grounded tip. Also, use either a metallic vacuum-style plunger or copper braid when desoldering.
- When returning components to SIEMENS, always use static-safe packing. This limits any further component damage due to ESD.

Additional safety precautions and warnings appear throughout this manual. These important messages should be followed to reduce the risk of personal injury or equipment damage.

About This Manual

Reference Tools

Many steps have been taken to promote the use of this manual as a reference tool. Reference tools include the following:

- a thorough table of contents for locating particular sections or subsections
- chapter number thumb nails in the outer margins for easy location of chapters
- special text styles are applied to easily differentiate between chapters, sections, subsections, regular text, parameter names, software flags and variables, and test points.
- a comprehensive index with special locator references for illustrations and tables.

Conventions Used in this Manual

The following conventions are used throughout this manual:

- This manual is for use with the Perfect Harmony product line.
- The terms "Perfect Harmony," "VFD," "variable frequency drive," and "drive" are used interchangeably throughout this manual.

Note: Hand icons in the left margin alert readers of important operational or application information the may have special significance. The associated text is enclosed in a border for high visibility.

Attention! Attention icons in the left margin alert readers of important safety and operationaol precautions. These notes warn readers of potential problems that could cause equipment damage or personal injury. The associated text is enclosed in a border for high visibility.

Caution - Electrical Hazard! Electrical hazard icons in the outer margins alert readers of important safety and operational precautions. These notes warn readers of dangerous voltages, potential safety hazards or shock risks that could be life threatening. The associated text is enclosed in a border for high visibility.

ESD Warning! These icons in the left margin alert readers of static sensitive devices. Proper electdrostatic discharge precautions should be taken before proceeding or handling the equipment.

- Chapter numbers are highlighted in the outer margins to facilitate referencing (see margin).
- Test points and terminal block designations are shown in uppercase, boldface, Arial fonts (e.g., TB1A).
- The symbol " $\nabla \nabla \nabla$ " is used to mark the end of each chapter.
$\nabla \nabla \nabla$

CHAPTER

1 Introduction

1.1 Introduction to the Perfect Harmony

Perfect Harmony is a series of pulse-width modulated, variable frequency AC motor drives designed and manufactured by Siemens. The Perfect Harmony drive system addresses the following power quality issues: providing clean power input, providing a high power factor, and providing nearly perfect sinusoidal output.

1.1.1 Clean Power Input

The Perfect Harmony drive series meets the most stringent IEEE 5191992 requirements for voltage and current harmonic distortion, even if the source capacity is no larger than the drive rating. This series of drives protects other on-line equipment (such as computers, telephones, and lighting ballasts) from harmonic disturbances. Perfect Harmony also prevents "cross talk" with other variable speed drives. Clean power input eliminates the need for timeconsuming harmonic/resonance analyses and costly harmonic filters. Figure 1-1 illustrates input wave forms for typical 6-pulse, 12-pulse and Perfect Harmony series drives.

Figure 1-1. Harmonic Distortion Wave Form Comparisons
(6-pulse, 12-pulse and Perfect Harmony)
Total harmonic distortion of the source current is 25% for the 6 -pulse, 8.8% for the 12 -pulse, and 0.8% for the Perfect Harmony series drive. The corresponding voltage distortions with a typical source impedance are $10 \%, 5.9 \%$ and 1.2%, respectively.

Note: The above comparisons were done using a typical 1,000 hp current source drive (6-pulse and 12-pulse modes) and a Perfect Harmony series drive operating from a $1100 \mathrm{kVA}, 5.75 \%$ impedance source.

1.1.2 High Power Factor and Nearly Perfect Sinusoidal Input Currents

Power factor is a measure of the fraction of current that produces real power to the load. Typically, power factor is given as a percentage. A high power factor VFD (e.g., 95\%) makes much better use of its input line current demand in producing real power to the motor than a VFD operating at a low power factor (e.g., 30\%). VFDs having low operating power factor often generate square-wave shaped line currents. This can lead to harmonics and other associated resonance problems.

The Perfect Harmony series draws nearly perfect sinusoidal input currents having a power factor that exceeds 95\% throughout the entire speed range without the use of external power factor correction capacitors. This eliminates utility penalties for power factor and demand charges, and improves voltage regulation. In addition, feeders, breakers and transformers are not overloaded with reactive power. Low speed applications specifically benefit from the Perfect Harmony series because a high and stable power factor is maintained throughout the entire speed range using standard induction motors. Figure 1-2 compares graphs of power factor versus percent speed for the Perfect Harmony series and a typical phase-controlled SCR drive.

Figure 1-2. Comparison of Perfect Harmony and a Typical Phase-controlled SCR Drive

1.1.3 Nearly Perfect Sinusoidal Output Voltages

The design of the Perfect Harmony series of variable frequency drives inherently provides a sinusoidal output without the use of external output filters. This means that the drive provides a low distortion output voltage wave form that generates no appreciable audible motor noise. In addition, there is no need to derate motors (the drive can be applied to new or existing 1.0 service factor motors). In fact, Perfect Harmony drives eliminate harmful VFD-induced harmonics which cause motor heating. Similarly, VFD-induced torque pulsations are eliminated (even at low speeds), thereby reducing the mechanical stress on equipment. Common mode voltage stress and dV/dt stress are also minimized. A typical graph of the output current from a Perfect Harmony drive is illustrated in Figure 1-3.

Figure 1-3. Nearly Sinusoidal Wave Form of the Output Current from a Perfect Harmony Drive

1.2 Hardware Overview

The cabinet configurations of Perfect Harmony drives vary based on the horsepower of the drive, the number and type of cells, and other factors. However, cabinet configurations can generally be divided into two broad categories:

- GEN II (multiple cabinet) style (shown in Figure 1-4).
- GEN III style (shown in Figure 1-5).

Figure 1-4. Typical GEN II Perfect Harmony VFD Lineup

Figure 1-5. Typical 4,160V (Left) and 6,600V (Right) GEN III Perfect Harmony VFDs
These two styles are discussed in Chapter 2: Hardware Components.

1.3 Features Overview

Additional features of the Perfect Harmony drive include the following:

- redundant cooling blowers
- high efficiency
- reliability
- modular construction
- surge arrestors
- fiber optic control circuitry
- soft start protection
- multi-motor operation
- trip-free operation
- multi-operational modes
- undervoltage ride-through
- spinning load restart
- transparent cell bypass
- PC tool interface
- power cell check
- serial port
- micro PLC capabilities
- keypad and English message display
- on-line diagnostics
- digital display module
- advanced diagnostics
- on-line operation while tuning
- industry standard communications
- dual frequency braking
- auto tuning
- input monitoring

1.4 Specifications

Table 1-11-1 lists common electrical and mechanical specifications for all standard Perfect Harmony systems. Note that Perfect Harmony specifications may be changed without notice.

Table 1-1. Common Specifications for Standard Perfect Harmony Systems

Item	Description
hp range	GEN II: Up to $4,000 \mathrm{hp}$ at $7,200 \mathrm{~V}$ GEN III: Up to $3,000 \mathrm{hp}$ at $6,300 \mathrm{~V}$
Input line voltages	$2.4 \mathrm{kV}, 3.0 \mathrm{kV}, 3.3 \mathrm{kV}, 3.4 \mathrm{kV}, 4.16 \mathrm{kV}, 4.8 \mathrm{kV}, 6.0 \mathrm{kV}, 6.6 \mathrm{kV}, 6.9 \mathrm{kV}$, $7.2 \mathrm{kV}, 8.4 \mathrm{kV}, 10.0 \mathrm{kV}, 11.0 \mathrm{kV}, 12.0 \mathrm{kV}, 12.5 \mathrm{kV}, 13.2 \mathrm{kV}, 13.8 \mathrm{kV}$ and 22 kV.
Input voltage tolerance	$+10 \%,-5 \%$ from nominal 3-phase at rated output (drive will alarm at $+10 \%)$
Input power factor	0.95 above 10% load
Output line voltages	$2.4 \mathrm{kV}, 3.0 \mathrm{kV}, 3.3 \mathrm{kV}, 3.4 \mathrm{kV}, 4.16 \mathrm{kV}, 4.8 \mathrm{kV}, 6.0 \mathrm{kV}, 6.6 \mathrm{kV}, 6.9 \mathrm{kV}$,
and 7.2 kV.	

$\nabla \nabla \nabla$

1

CHAPTER

2 Hardware Components

2.1 GEN II Style Hardware Configuration

Figure 2-1 depicts a typical GEN II style line-up in which each VFD normally consists of six cabinets. These cabinets are:

- the power input cabinet
- the transformer/blower cabinet
- the cell cabinet(s)
- the output power cabinet
- the control cabinet

Figure 2-1. Typical GEN II Perfect Harmony VFD Lineup (Top and Front Views)
These cabinets are described in the sections that follow.

2.1.1 Power Input Cabinet

The power-input cabinet houses the input power cable terminals for the drive. A cutaway side view of this cabinet is shown in Figure 2-2.

Figure 2-2. Typical Power Input Cabinet (Front, Door Removed, and Side Views)

2.1.2 Blower Section

The blower section contains the cooling blower and associated motor. This section resides above the Transformer Cabinet as shown in Figure 2-3. Ambient air in the room enters the cell cabinet(s) through the air intake vents. This air passes over the cells to cool them, then passes across the transformer (in the transformer cabinet) and is finally drawn into the blower section where it is exhausted through the top of the cabinet.

Attention! During operation, the nominal weighted sound pressure level may exceed 70 dB at a distance of 1 meter from the drive.

2.1.3 Transformer Cabinet

The transformer cabinet houses the input phase shifting transformer and surge suppression which supplies 3-phase voltages to the output cells (refer to Figure 2-3). The transformer secondary contains connection points for the various cells' input cables (see Figures 2-3 and 2-4). Surge suppression is also supplied in this cabinet.

Negative Pressure Blowers

Figure 2-3. Typical Blower Cabinet /Transformer Cabinet (Front and Side)

2.1.4 Cell Cabinet(s)

The cell cabinet (shown in Figure 2-4) houses between 3 and 6 cells per output phase (possibly including a redundant cell option). The voltage of each output phase is the series sum of the horizontal cell voltages. Each cell can be disconnected and removed from the cabinet by disconnecting the 3-phase input power, the two output connections, the fiber optic cable and a retaining bolt. All cells are electrically and mechanically identical, so they may be interchanged. Each cell contains its own control boards which communicate with the system through an isolated link using fiber optic cables.

Slides from which cells are mounted (two per cell).

Figure 2-4. Typical Cell Cabinet (Front Views without Doors)

2.1.5 GEN II Cell Specifications

Siemens's Gen II Perfect Harmony AC drive system is offered in 3 basic 460 VAC and 3 basic 690VAC cell sizes (current ratings), grouped to provide output operating voltages of 2,400 VAC (three 460VAC cells in series), 3,300 VAC (four 460VAC cells in series), 4,160 VAC (five 460VAC cells in series), or 4,800 VAC (six 460VAC in series). Tables 2-1, 2-2, and 2-3 shown below provide the basic specifications associated with all 460VAC cell combinations.

The Perfect Harmony Gen II system is also available with three additional (690 VAC) cell sizes for higher voltage applications. These high voltage cells are grouped to provide operating voltages of 6,000 VAC (5 cells in a series-15 total) and 7,200 VAC (6 cells in a series-18 cells total). Refer to Tables 2-5 and 2-6 for 6,000 VAC and 7,200 VAC cell specifications.

Note: Output current ratings are a function of the selected cell size. Input current ratings are a function of the transformer size associated with each horsepower rating. Note that all specifications are subject to change without notice.

The individual output cells are located in the Cell Cabinet. All cells are electrically and mechanically identical, so that they may be interchanged. Each cell contains its own control boards which communicate with the system through a fiber optic link. This link is the only connection between the cells and the master control located in the Control Cabinet, thus each cell is fully isolated from the main control.

A switch mode power supply located on the Cell Control Board (refer to Figure 2-5) allows the control power to be derived from the individual 3-phase rectified secondary connections of the transformer. This power supply is fully operational between 380VDC and 800VDC (460 VAC cells) and 530VDC and 1200 VDC (690 VAC cells).

The Control Cabinet contains PC boards which provide central control of the Harmony drive system. The Control Cabinet is physically and electrically isolated from all medium voltage for safety.

Control for each of the output cells is provided via a fiber optic communications link between the Master Control System and the Cell Control Board located within each output cell.

The tables below give length and weight information for many common configurations of the Perfect Harmony drives, based on 60 Hz input power at the voltages listed. These tables also include input and output currents, heat losses (in BTUs/hour), minimum ventilation requirements (in cubic feet per minute [CFM] and liters per second [lps]), and cell size information. Footnote information for all tables appears at the end of Table 2-5.

Note: If applications require a supply input frequency of 50 Hz or voltages above 5 kV , sizes and weights may increase.

Table 2-1. 2,400 VAC Cell Specifications: 9 Cells Total, 3 (460 VAC) Cells in Series

$\mathbf{H p}{ }^{1}$	$\begin{gathered} \text { Amps } \\ \mathbf{I n}^{2} \end{gathered}$	$\begin{aligned} & \text { Amps } \\ & \text { Out }^{3} \end{aligned}$	Losses ${ }^{4}$	Ventilation ${ }^{5}$	Length ${ }^{6}$	Weight ${ }^{7}$	Size ${ }^{8}$
1250	272	330	125,000	10,000 (4720)	210	11,400	4B
1750	381	440	180,000	10,000 (4720)	234	14,300	5C
2250	490	500	230,000	10,000 (4720)	234	17,200	5B

Table 2-2. 3,300 VAC Cell Specifications: 12 Cells Total, 4 (460 VAC) Cells in Series

$\mathbf{H p}^{\mathbf{1}}$	Amps $\mathbf{I n}^{\mathbf{2}}$	Amps Out $^{\mathbf{3}}$	Losses $^{\mathbf{4}}$	Ventilation $^{\mathbf{5}}$	Length $^{\mathbf{6}}$	Weight $^{\mathbf{7}}$	Size $^{\mathbf{8}}$
2000	317	330	200,000	$10,000(4720)$	234	17,000	4 B
2500	396	440	250,000	$10,000(4720)$	270	18,000	5 C
3000	476	500	300,000	$10,000(4720)$	270	19,000	$5 B$

Table 2-3. 4,160 VAC Cell Specifications: 15 Cells Total, 5 (460 VAC) Cells in Series

$\mathbf{H p}^{\mathbf{1}}$	Amps $\mathbf{I n}^{\mathbf{2}}$	Amps Out $^{\mathbf{3}}$	Losses $^{\mathbf{4}}$	Ventilation $^{\mathbf{5}}$	Length $^{\mathbf{6}}$	Weight 7	Size $^{\mathbf{8}}$
2500	314	330	250,000	$10,000(4720)$	270	19,200	4 B
3000	377	440	300,000	$10,000(4720)$	324	21,900	5 C
3500	440	500	360,000	$13,200(6230)$	324	24,500	$5 B$

Table 2-4. 4,800 VAC Cell Specifications: 18 Cells Total, 6 (460 VAC) Cells in Series

$\mathbf{H p}^{\mathbf{1}}$	Amps $\mathbf{I n}^{\mathbf{2}}$	Amps Out $^{\mathbf{3}}$	Losses $^{\mathbf{4}}$	Ventilation $^{\mathbf{5}}$	Length $^{\mathbf{6}}$	Weight 7	Size $^{\mathbf{8}}$
2500	272	330	250,000	$10,000(4720)$	294	18,600	4 B
3500	381	440	350,000	$13,200(6230)$	348	24,500	5 C
4000	436	500	400,000	$13,200(6230)$	348	26,000	$5 B$

Table 2-5. 6,000 VAC Cell Specifications: 15 Cells Total, 5 (690 VAC) Cells in Series

$\mathbf{H p}^{\mathbf{1}}$	Amps $\mathbf{I n}^{\mathbf{2}}$	Amps Out $^{\mathbf{3}}$	Losses $^{\mathbf{4}}$	Ventilation $^{\mathbf{5}}$	Length $^{\mathbf{6}}$	Weight $^{\mathbf{7}}$	Size $^{\mathbf{8}}$
2250	196	220	230,000	$10,000(4720)$	258	22,000	3 I
3000	261	300	300,000	$10,000(4720)$	324	24,500	4 I $(300 \mathrm{H})$
4000	348	360	400,000	$13,200(6230)$	324	28,500	360 H

Table 2-6. 7,200 VAC Cell Specifications: 18 Cells Total, 6 (690 VAC) Cells in Series

$\mathbf{H p}^{\mathbf{1}}$	Amps In $^{\mathbf{2}}$	Amps Out $^{\mathbf{3}}$	Losses $^{\mathbf{4}}$	Ventilation $^{\mathbf{5}}$	Length $^{\mathbf{6}}$	Weight $^{\mathbf{7}}$	Size $^{\mathbf{8}}$
2500	198	220	230,000	$10,000(4720)$	294	23,100	3 I
3500	277	300	360,000	$13,200(6230)$	348	28,500	4 I $(300 \mathrm{H})$
4000	317	360	400,000	$13,200(6230)$	348	30,000	360 H

1 Motor nameplate hp may not exceed the drive rated hp.
2 Drive rated input current (in Amps) is the transformer rated current.
3 Drive rated output current (in Amps) is the maximum cell current.
4 Losses are given in BTU/hr and are based on a loss of 3 kW per 100 hp .
5 Minimum ventilation requirements are given in CFM (lps in parentheses)
6 Represents lineup minimum length in inches (centimeters in parentheses), subject to change.
7 Represents estimated minimum weight of lineup in pounds (kg in parentheses), subject to change.
8 Cell sizes for each hp are based on motors with $\geq 95 \%$ efficiency and $\geq 85 \%$ power factor.

Figure 2-5. Typical Multiple-Cabinet Harmony Cell (Front, Side and Bottom Views)
(a) Note: The Bus Voltage LED referenced in Figure 2-5 remains illuminated down to at least 50 VDC.

2.1.6 Output Power Cabinet/Control Cabinet

The output power cabinet contains the VFD output connections to the motor. The output power cabinet (and attached control cabinet) is illustrated in Figure 2-6. The control cabinet contains the control boards, optional input/output modules, and customer control connections.

Figure 2-6. Typical Output Power and Control Cabinets (Top, Front, and Side Views)

2.2 GEN III Style Hardware Configuration

Figure 2-7 depicts a typical GEN III style configuration in which each VFD normally consists of a single cabinet with multiple sections. These sections, described below, are:

- the transformer section
- the customer I/O section
- the control section
- the cell section

Figure 2-7. Typical GEN III-style VFDs

2.2.1 Transformer Section

The transformer section of the GEN III-style Perfect Harmony drive contains the input power transformer. Input power wires enter the drive through this section and output wires to the motor exit the drive through this section. The input and output power wiring can enter and exit the drive from either the top or bottom of this section. In addition to the main multi-secondary phase-shifting power transformer, the transformer section contains either one or more blowers (at the top of the cabinet) used to cool the drive. Refer to Figure 2-8. Major components of the transformer section are illustrated in Figure 2-9 and described in Table 2-7.

Note: Input and output wiring enters the cabinet from the top or bottom of the transformer section.

Figure 2-8. Power Section (Typical) of a GEN III-style Perfect Harmony Drive

Table 2-7. Field Connections and Major Components in the Transformer Section

Item	
L1, L2, L3	Input power terminals
T1, T2, T3	Output power terminals
T1	Multi-secondary, phase-shifting power transformer
T5	Control power transformer
F24-F35	Control fuses
F21, F22	Blower fuses
F4, F5	Fuses
BM1-BM5	Blower motor starters
CDS1	Control power disconnect switch
RA1-RA4, RB1-RB4, RC1-RC4	Input and output voltage feedback resistors
CT4, CT5	Output current transformers
TB-120-CUS	Customer wiring terminal strip
METERING	Metering terminal strip
TB-ELV	Low voltage terminal strip (4-20 mA signals, etc.)

2

Figure 2-9. Field Connections and Major Components in the GEN III Transformer Section

2.2.2 Customer I/O Section

The customer I/O section of the GEN III-style Perfect Harmony drive contains terminal blocks for customer control wiring connections, control power connections, and the blower control panel. Optional motor monitors and power quality meters (PQMs) are mounted in this section if they are ordered with the drive. Refer to Figure 2-10.
Note: Refer to the "as built" system drawings that are shipped with the drive for information on specific
customer I/C connections.

Figure 2-10. Customer I/O Section (Typical) of a GEN III-style Perfect Harmony Drive

2.2.3 Cell and Control Sections (GEN III Cell Specifications)

The control section is a hinged section that swings out to provide access to the cell section. The control section contains master control components. The cell contains power cells and up to three blowers mounted on top of the cabinet.

Siemens's GEN III AC drive system is offered in 5 basic cell sizes (current ratings), grouped to provide output operating voltages of 3300 VAC (3 cells in series), 4160 VAC (4 cells in series), 4800 VAC (5 cells in series), and 6600 VAC (6 cells in series). Table 2-8 provides the basic specifications associated with all cell combinations for GEN III Perfect Harmony drives.
(al) Note: Output current ratings are a function of the selected cell size. Input current ratings are a function of the transformer size associated with each hp rating. All specifications are subject to change without notice.

Table 2-8. Cell Specification Details

Output Cells Per Phase	Line-to-line Voltages (VAC)	Cells in Drive (Without Spares)	hp Range	Available Cell Sizes
3	3,300	9	up to 1500	$70 \mathrm{~A}, 100 \mathrm{~A}, 140 \mathrm{~A}, 200 \mathrm{~A}, 260 \mathrm{~A}$
4	4,160	12	up to 2000	$70 \mathrm{~A}, 100 \mathrm{~A}, 140 \mathrm{~A}, 200 \mathrm{~A}, 260 \mathrm{~A}$
6	6,600	18	up to 3000	$70 \mathrm{~A}, 100 \mathrm{~A}, 140 \mathrm{~A}, 200 \mathrm{~A}, 260 \mathrm{~A}$

The individual output cells are located in the Cell Section. All cells are electrically and mechanically identical, so that they may be interchanged. Each cell contains its own control boards, which communicate with the system through a fiber optic link. This link is the only connection between the cells and the master control located in the Control Section, thus each cell is isolated from the main control. Refer to Figure 2-11.

Figure 2-11. Typical GEN III Cell

Figure 2-12. Cell Section (Typical) of a GEN III-style Perfect Harmony Drive
A switch mode power supply located on the Cell Control/Gate Driver Board allows the control power to be derived from the individual 3-phase secondary connections of the transformer.

The Control Section contains PC boards which provide central control of the Perfect Harmony drive system. The Control Section is physically and electrically isolated from all medium voltage for safety.

Control for each of the output cells is provided via a fiber optic communications link between the Master Control System and the Cell Control/Gate Driver Board located within each output cell.

The following tables give length and weight information for many common configurations of sectional Perfect Harmony drives, based on 60 Hz input power at the voltages listed. If applications require inputs at 50 Hz or horsepowers not listed, sizes and weights will increase.
0 Note: The ventilation information (in CFM) and losses information (in BTUs) given in the following tables represent worst case conditions. Actual values may vary based on load, blower size, cell size and transformer size.

Table 2-9. 3,300 VAC Cell Specifications: 9 Cells Total, 3 (630 VAC) Cells in Series

$\mathbf{H p}{ }^{1}$	$\begin{gathered} \text { Amps } \\ \mathbf{I n}^{2} \end{gathered}$	$\begin{aligned} & \text { Amps } \\ & \text { Out }^{3} \end{aligned}$	Losses ${ }^{4}$	Ventilation ${ }^{5}$	Length ${ }^{6}$	Weight ${ }^{7}$	Size ${ }^{8}$
200	33	70	20,000	4,400	100	4,800	70
300	49	70	30,000	4,400	100	4,800	70
400	64	70	40,000	4,400	100	5,600	70
500	80	100	50,000	4,400	100	6,200	100
600	96	100	60,000	4,400	100	6,200	100
700	112	140	70,000	4,400	100	7,500	140
800	128	140	80,000	4,400	100	7,500	140
900	145	200	90,000	8,800	123	7,500	200
1000	162	200	100,000	8,800	123	8,000	200
1250	202	260	125,000	8,800	137	8,500	260
1500	242	260	150,000	8,800	137	9,000	260

Table 2-10. 4,160 VAC Cell Specifications: 12 Cells Total, 4 (630 VAC) Cells in Series

Hp ${ }^{1}$	$\begin{gathered} \text { Amps } \\ \mathbf{I n}^{2} \end{gathered}$	$\begin{gathered} \text { Amps } \\ \text { Out }^{3} \end{gathered}$	Losses ${ }^{4}$	Ventilation ${ }^{5}$	Length ${ }^{6}$	Weight ${ }^{7}$	Size ${ }^{8}$
300	38	70	30,000	4,400	100	5,100	70
400	51	70	40,000	4,400	100	5,100	70
500	63	70	50,000	4,400	100	5,800	70
600	75	100	60,000	4,400	100	6,600	100
700	89	100	70,000	4,400	100	6,600	100
800	101	140	80,000	4,400	100	7,700	140
900	114	140	90,000	4,400	100	7,700	140
1000	126	140	100,000	4,400	100	7,700	140
1250	160	200	125,000	8,800	137	9,500	200
1500	192	200	150,000	8,800	137	9,500	200
1750	224	260	175,000	8,800	137	10,000	260
2000	256	260	200,000	8,800	137	11,000	260

Table 2-11. 6,600 VAC Cell Specifications: 18 Cells Total, 6 (630 VAC) Cells in Series

$\mathbf{H p}{ }^{1}$	$\begin{aligned} & \text { Amps } \\ & \mathbf{I n}^{2} \end{aligned}$	$\begin{aligned} & \text { Amps } \\ & \text { Out }^{3} \end{aligned}$	Losses ${ }^{4}$	Ventilation ${ }^{5}$	Length ${ }^{6}$	Weight ${ }^{7}$	Size ${ }^{8}$
600	48	70	60,000	8,800	137	7,700	70
700	56	70	70,000	8,800	137	9,000	70
800	64	70	80,000	8,800	137	9,000	70
900	72	100	90,000	8,800	137	9,000	100
1000	80	100	100,000	8,800	137	10,400	100
1250	100	100	125,000	8,800	137	10,400	100
1500	120	140	150,000	8,800	137	12,300	140

$\mathbf{H p}^{\mathbf{1}}$	Amps $\mathbf{I n}^{\mathbf{2}}$	Amps Out $^{\mathbf{3}}$	Losses $^{\mathbf{4}}$	Ventilation $^{\mathbf{5}}$	Length $^{\mathbf{6}}$	Weight $^{\mathbf{7}}$	Size $^{\mathbf{8}}$
1750	140	140	175,000	8,800	137	12,300	140
1750	141	200	175,000	13,200	172	12,500	200
2000	162	200	200,000	13,200	192	13,000	200
2250	182	200	225,000	13,200	192	13,000	200
2500	202	260	250,000	13,200	192	13,500	260
2750	222	260	275,000	13,200	192	14,000	260
3000	242	260	300,000	13,200	192	14,000	260

1 Motor nameplate hp may not exceed the drive rated hp.
2 Drive rated input current (in Amps) is the transformer rated current.
3 Drive rated output current (in Amps) is the maximum cell current.
4 Losses are given in BTU/hr and are based on a loss of 3 kW per 100 hp .
5 Minimum ventilation requirements are given in CFM (lps in parentheses)
6 Represents lineup minimum length in inches (centimeters in parentheses), subject to change.
7 Represents estimated minimum weight of lineup in pounds (kg in parentheses), subject to change.
8 Cell sizes for each hp are based on motors with $\geq 95 \%$ efficiency and $\geq 85 \%$ power factor.
The basic electrical diagrams for all Perfect Harmony systems are similar. Depending on the operating voltages, different numbers of output cells are operated in series to develop the required output operating voltage (refer to the previous tables).

2.2.4 Cell Bypass Option

As an option, each cell in the system can be equipped with a bypass contactor. This contactor will be automatically energized by the VFD master control if the associated cell malfunctions. Once the contactor is energized, the damaged cell is no longer electrically part of the system, which allows the VFD to resume operation.

Anytime a cell malfunctions and is bypassed, the control automatically compensates (shifts the neutral point) so that the motor voltage stays balanced. To compensate for the loss in voltage, systems with up to 5 cells per phase can be equipped (as an option) with an extra cell per phase. The 3 spare cells would then compensate for the loss in voltage. If spare cells are not installed, then the VFD will operate at a slightly lower voltage, but will still provide full rated current.

The cell bypass system includes a bypass contactor per cell, a contactor control board (installed inside the cell cabinet) and a fiber optic link between the master control system and the contactor control board.

2.3 The Cell Control System

All Perfect Harmony cells are controlled in the same manner. The Cell Control/Gate Driver Boards reside within the output cell and accept all communication from the Digital Modulator in the Control Cabinet via fiber-optic links.
Control power for all cell boards is supplied from a switch mode power supply resident on the Cell Control/Gate Driver Board.

Figure 2-13. Typical Connection Diagram for an 18 Cell 6.6 KV System

2.4 The Master Control System

The Master Control located within the Control Cabinet consists of a chassis and several control boards refer to Figure 2-14. The chassis is supplied power by a stand alone power supply. The heart of the control is the Microprocessor board. This board is the master of the backplane bus and controls the operation of each board in the system.

Contained on the Microprocessor Board is Flash Disk, which may be removed from the Microprocessor Board if, for any reason, the microprocessor board would need to be replaced. The Flash Disk contains all the specific parameter information and system program for the VFD and therefore, allows the Microprocessor Board to be replaced without the need to re-program the VFD.

Note: If the Microprocessor Board is replaced, the Flash Disk should be moved to the new board. See Figure 2-15.
The System Interface board collects the drive input and output feedback signals and sends them to the Analog to Digital board. The Analog to Digital board executes the conversion at specified intervals and sends digital representations of the feedback signals to the Microprocessor board. The Microprocessor board then computes the next set of values to be sent to the Digital Modulator and sends them. The Digital Modulator then determines the switching commands for each cell and compiles a message with this command for each cell. These messages are then sent through the Fiber Optic Interface boards. Refer to Figure 2-14.

Note that the number of Fiber Optic Interface Boards and the number of fiber optic channels varies depending on the number of cells in the drive.

Also shown in Figure 2-14 is a communications board. This board provides a direct interface to a Modbus network and allows network adapter boards for several other industrial networks to be connected to the drive control. A typical schematic of the master control is shown in Figure 2-16.

Figure 2-14. Master Control System

Figure 2-15. Location of Flash Disk on Microprocessor Board

Figure 2-16. Typical Perfect Harmony Power Circuit

2.5 The Power Circuit

The basic power schematic for an 18 cell (4160 VAC) system is shown in Figure 2-16. Besides the direct operating information received from each cell by the Fiber Optic System, input voltage, output voltage, and current are also directly monitored. Input and output voltage information is supplied to the control boards by an attenuator system consisting of a voltage divider and voltage clamps.

Two Hall Effect sensors placed on output phases B and C sense output motor current. Two CTs placed on input phase B and C sense drive input current. Polarity and burden resistor values must always be maintained.
Each secondary of the power transformer T1 serves one cell only. Each cell receives modulation information through the Fiber Optic System in a way that develops the required output voltage and frequency demanded by the load. Unlike standard PWM systems, the voltage applied to the motor leads is developed in many small steps instead of through a few large steps. This provides two distinct advantages: the voltage stress on the motor insulation is dramatically reduced, and the quality of the motor currents is dramatically increased.

DANGER—Electrical Hazard! Even though each cell by itself develops no more than 690 VAC, the voltage to ground can increase to the rated drive output.

Since each cell is fed from transformer T1 with varying degrees of phase shift (see Figure 2-16), the input VFD current distortion is dramatically reduced. Input power factor is always maintained greater than 0.94 lagging.

Each Perfect Harmony VFD cell within a specific system is identical (refer to Figure 2-17). Larger and smaller versions of power cells differ in the size or quantity of input diodes, filter capacitors and IGBTs.

At a minimum, each cell contains a Cell Control Board and an IGBT Gate Driver Board. The Cell Control Board performs all communication and control for each cell.

2.5.1 Monitoring of Input Power Quality

Input currents and voltages to the drive input T1 transformer are also measured and processed continuously by the control system. Information such as efficiency, power factor, and harmonics are available to the user through the tool suite, communication network, and some on the keypad. The input monitoring also protects against T 1 transformer secondary side faults that cannot be seen by typical primary protection relaying. Thus it is very important that the drive input medium switchgear, if not supplied, is interlocked to the control system so that input medium voltage can be interrupted upon the rare event of such a fault.

A Form C $250 \mathrm{VAC} / 300 \mathrm{VDC}$ rated contact output is supplied standard for liquid cooled drives only, to trip the drive input medium voltage circuit breaker or contactor. This contact is designated "TRIP INPUT MEDIUM VOLTAGE" and changes state whenever the drive input power and power factor are outside hardcoded normal operating conditions. This contact must be integrated with input switchgear to deactivate drive input medium voltage in the rare event of a T1 transformer secondary circuit fault.

DANGER! This contact must be integrated with input switch-gear to deactivate the drive input medium voltage upon the rare event of a secondary circuit fault.

Figure 2-17. Typical Power Cell Schematic

$$
\nabla \nabla \nabla
$$

CHAPTER

3 The Keypad and Display Interface

3.1 Introduction

The menu system is the software program that allows operators to navigate through hierarchical structures (menus), which contain related menu items. Menu items include parameters, pick lists, functions and submenus ("nested" menus). These menu items allow the operator to configure a drive to his particular needs.

It is important to understand the mechanism through which the menu system operates. This mechanism is the front panel keypad and display interface. The display interface is a 24 -by- 2 character back-lit LCD. The keypad provides numerical keys for entering data and arrow keys for scrolling through the menu structure of the Perfect Harmony drive.

The keypad has built-in keys for fault reset, auto mode, manual start, and manual stop functions. Three diagnostic LEDs (power on, fault status, alarm status, and run) are built in to the standard keypad.

Normally, the keypad and display interface is mounted permanently to the drive. However, the keypad/display module need not be mounted for normal operation. With power removed, the keypad/display can be plugged in as an external module for set-up and diagnostic purposes only. Thus, one may use it to provide extra parameter security.
The Perfect Harmony system provides a fully programmable, multi-level security system that assures menu access and modification capabilities by only authorized personnel. A key lockout parameter, which can be set by a physical lockout key or by software in the SOP, can prevent any changes to the set parameters.

3.2 The Keypad

Warning! Do not remove or attach the keypad while the drive is powered.

The Perfect Harmony series contains a user-friendly keypad and display interface. This keypad/display interface is located on the front of the Perfect Harmony Drive Control Cabinet. The Keypad and Display Interface is illustrated in Figure 3-1.

The Keypad and Display Interface is used to access the control parameters and functions of the Perfect Harmony drive. Parameters are organized into logical groups using a menu structure. To view or edit parameters, the operator must maneuver through the menu structure to the desired parameters. This is accomplished using special key sequences. A summary of these key sequences is given later in this chapter.
The [SHIFT] key (which is used in conjunction with the 10 numeric keys and the [ENTER] key) is provided to access nine common system menus, a help display function and a [CANCEL] key. The keypad is used to navigate through the menu system, activate control functions, reset the system after faults have occurred, edit parameter values, enter security access codes, and place the system in either automatic, manual or stop (auto/hand/off) mode.

Figure 3-1. The Keypad and Display Interface of the Perfect Harmony Series

Note: Parameter values are stored in a Flash Disk - a non-volatile memory area. When a parameter value is changed, the new value is saved internally. Even after a power failure, the value remains intact and can be recalled.

The Perfect Harmony keypad contains 20 keys. Each of these keys has at least one function associated with it. Some keys are used for 2 or more functions. The following sections give descriptions and uses for each of the keys on the keypad, as well as the diagnostic LEDs and the built-in display.

3.2.1 Fault Reset Key and LED Indicator

The FAULT RESET key is located in the top left corner of the keypad and has two built-in functions. Function one is to clear fault conditions that may occur in the Perfect Harmony system. Function two is to acknowledge alarm conditions that may occur in the Perfect Harmony system. Faults refer to fatal errors that have been detected by both the hardware and software and prevent the drive from running. Alarms refer to nonfatal errors that have been detected by both the hardware and software and, as such, do not prevent the drive from running. However, alarm conditions that are ignored may ultimately lead to a fatal fault. The current alarm/fault status of the drive is displayed by the Fault indicator LED located above the keypad and display (refer to Figure 3-1).

The Fault LED can be flashing, on continuously, or off.
A flashing LED means that an alarm is either active or unacknowledged. An LED that is on continuously means that a fault condition exists. Table 3-1 details all of the LED conditions.

Table 3-1. Fault LED Conditions

Fault LED Condition	Display	Fault Condition	Alarm Condition	Alarm Acknowledged or Fault Reset?
Flashing	Toggles between alarm name and normal display.	N/A	Active	No
Flashing*	Toggles between alarm name and normal display.	N/A	Cleared	No
Flashing	None	N/A	Active	Yes
Flashing	Toggling between alarm name, normal display, next alarm, normal display, etc.	N/A	Multiple Active Alarms	No
On Continuously	Fault name	Active	N/A	No
On Continuously	Fault name with in display**	Multiple Faults	N/A	No

*After an alarm condition is resolved, the Fault LED will continue to flash until you acknowledge the alarm by pressing the [FAULT RESET] key.
**Use the down and up arrow keys to cycle through the active fault list.

> Note: If an alarm condition occurs before or during a fault condition, the LED and display will not indicate the presence of an alarm until the fault condition is cleared and reset. The alarm conditions are recorded in the Alarm/Fault Log.

When a fault condition occurs, the fault indicator glows red continuously. To reset the system:

1. Determine the cause of the fault (see the display or check the Alarm/Fault Log).
2. Correct conditions that may have caused the fault, if appropriate.
3. Reset the system by pressing the [FAULT RESET] key on the keypad.

When there are no fault conditions and an alarm condition occurs, the fault indicator flashes red. To acknowledge the alarm conditions:

1. Determine the cause of the alarm (see the display or check the Alarm/Fault Log).
2. Correct conditions that may have caused the alarm, if appropriate.
3. Acknowledge the alarm by pressing the [FAULT RESET] key on the keypad. Acknowledging an alarm will cause all alarms to be no longer displayed on the keypad display. However, if any alarm condition still exists, the Fault LED will flash red
4. If there are both faults and alarms, press the [FAULT RESET] key twice to first reset the fault and then acknowledge the alarms.

3.2.2 Automatic Key

The [AUTOMATIC] key is a programmable key located below the [FAULT RESET] key on the keypad and can be used via the SOP, to put the Perfect Harmony drive into automatic mode. In automatic mode, the standard speed
setting for the drive is obtained from the $4-20 \mathrm{~mA}$ input and through speed profile parameters located in the Speed Profile Menu (4000).

5 | Note: Automatic mode can be customized to suit particular application needs by modifying the appropriate |
| :--- |
| I/O parameters from the keypad and display interface. Modification of the standard system program of the |
| Perfect Harmony is also a viable option, although it requires an understanding of the system program format, |
| the compilation process and downloading techniques. |

3.2.3 Manual Stop Key

The [MANUAL STOP] key is a programmable key which can be used, via the SOP, to place the Perfect Harmony into stop mode. Stop mode shuts down the drive in a controlled manner, regardless of its current state (manual, remote or automatic).

Note: Modification of the standard system program of the Perfect Harmony requires an understanding of the system program format, the compilation process and downloading techniques.

3.2.4 Manual Start Key

The [MANUAL START] key is a programmable key located below the [AUTOMATIC] key on the left side of the keypad. [ANUAL START] can be used via the SOP, to put the Perfect Harmony system into manual control mode.

There are two varieties of control mode: local and remote. These varieties are distinguished by the sources of the velocity demand. The sources of velocity demand as well as operation of the drive via the various customer interfaces, are completely configurable through the SOP (or system program). Details of programming the SOP are covered in Chapter 8. An example, which will be referred to in the remainder of the chapter, is illustrated in Figure 3-2.

Figure 3-2. Example of two Programmed Control Modes

3.2.5 The 0-9 Key

Numeric keys are centrally located on the keypad of the Perfect Harmony system. These 10 keys (labeled 0 through 9) provide the following functions:

- Entry of security access codes.
- Speed menu (direct access to 10 basic menus according to assigned menu names [in green text above each numeric key]).
- Direct access to all menus, submenus, and parameters and pick lists (with proper security) based on ID number.
- Ability to change the values of parameters.

One function of the numeric keys of the Perfect Harmony keypad is to enter a 4-digit security access code. The security code consists of any combination of digits 0 through 9 and hexadecimal digits "A" through "F".

Note: Hexadecimal (or hex) is a method of representing numbers using base 16 (digits 0-9, A, B, C, D, E and F) rather than the more common base 10 (digits 0-9). Hex digits "A" through "F" can be entered from the keypad by pressing the [SHIFT] key followed by the numbers [1] through [6], respectively. The keystrokes required to enter hex values "A" through "F" are listed in Table 3-2. Decimal equivalents are also listed.

Another function of the numeric keys is the speed menu feature. Speed menu allows the operator to access 10 common menus within the system using the pre-programmed numeric keys. Each of the numeric keys has an associated menu name printed in green (on top of each numeric key). To access one of these 10 menus, the operator uses the [SHIFT] key followed by the appropriate numeric key (e.g., [SHIFT]+[1] to access the Motor menu, [SHIFT]+[2] to access the Drive menu, etc.). Refer to Figure 3-3.

Table 3-2. Hexadecimal Digit Assignments on the Perfect Harmony Keypad

Key Combination	Hex Value	Decimal Equivalent
SHIFT MOTOR	A	10
SHIFT DRIVE	B	11
SHIFT STAB	C	12
SHIFT AUTO	D	13
SHIFT MAIN	E	14
SHIFT LoGS6	F	15

Figure 3-3. Anatomy of a Numeric Keypad Key
In addition to the speed menu feature, a second menu access feature is available for all remaining menus in the Perfect Harmony system. The speed menu feature is available only from the main meter display on the LCD. The hexadecimal entry feature is available only during security code entry. Therefore, the results of [SHIFT]+[1] through [SHIFT]+[6] key combinations depends on the context in which they are used. This second access feature cannot only be used on menus, but can also be used to go directly to a particular parameter, or pick list. While this second method requires more keystrokes to access target menus, parameters or pick lists, the operator can gain access to all security approved items rather than just the 10 most common menus. Accessing items in this manner requires that the operator know the item ID number. This item number will be a four-digit number. This number is listed on the display each time the item is displayed and is also listed in the menu reference charts later in this chapter. To access
an item using its ID number, press the [SHIFT] key followed by the right arrow key [\Rightarrow]. The display prompts the operator for the desired ID number. Using the numeric keys on the keypad, the operator enters the desired ID number then presses the [ENTER] key. If the number was a valid ID number, and the current security level permits access to that item, then the desired item will be displayed. Refer to Figure 3-4.

> Note: Any menu, parameter, or pick list can be accessed by ID. To do this press [SHIFT]+ [\Rightarrow]. The display will read "Enter Param ID:". Simply enter the ID number of the item you want to go to and hit [ENTER].
> The menu, parameter and pick list ID can be found in the menu tables later in this chapter or is listed on the display in () when the item is displayed.

If the operator requests access to a menu number that is assigned a higher security level than the current security level, the drive will prompt the operator for the appropriate security level code.

Finally, the numeric keys on the keypad can also be used to change the value of system parameters. Once a parameter is selected for modification, the leftmost digit of the parameter value is underlined and is called the active digit. Pressing a numeric key can change the active digit. This method automatically advances the underline to the next digit to the right. The operator continues pressing numeric keys until the desired value is displayed. The [ENTER] key is used to accept the new value.
 For example, to change the value of a 4-digit parameter from 1234 to 975 , the operator must enter 0975.

Figure 3-4. Accessing Items Using ID Numbers
Note: In the case of signed parameters (parameter values that can be either positive or negative), the first active digit is actually the sign of the value. The sign is changed by using the up and down arrow keys when the leftmost (sign) position of the value is underlined (i.e., it is the active "digit"). Either a "+" or "-" will be displayed during the editing process. After the new value is accepted (using the [ENTER] key), positive values are displayed without the " + " sign. Negative values always show the "-" sign unless the negative signs is implied in the parameter name itself.

3.2.6 The Enter/Cancel Key

The [ENTER] key is located below the up and down arrow keys on the right side of the keypad. This key is similar to the Return or Enter key on a standard PC keyboard. It is used to choose/accept a selection or confirm an operation. For example, after locating and displaying a parameter within the Perfect Harmony menu structure, the operator may use the [ENTER] key to edit the parameter's value. Common functions of the [ENTER] key include:

- Selecting a submenu.
- Enter edit mode for a selected parameter value.
- Accept a new parameter value after editing.

By using the [SHIFT] key, the [ENTER] key can be used as a cancel function. The [CANCEL] function is used to abort the current operation or return to the previous menu display. Common functions of the [CANCEL] key include:

- Returning out of the menu system.
- Rejecting any modifications to a parameter value in edit mode.

3.2.7 Shift Function Keys

The [SHIFT] key is located in the bottom right corner of the keypad on the Perfect Harmony system. This key is used to access a second set of functions using existing keys on the keypad. Keypad keys that can be used with the [SHIFT] key have two labels (one on top and one on the bottom of the key). The standard (un-shifted) function of the key is listed on the bottom half of the key and has a white background. The shifted function of the key is shown on the top of the key and has a green background (matching the green background of the [SHIFT] key to identify that they are used together).

When the Perfect Harmony prompts the operator for a numerical value (e.g., during entry of the security access code, parameter modification, etc.), the [SHIFT] function of numerical keys 1 through 6 changes from quick menus to hexadecimal numbers "A" through "F" respectively. Refer to Table 3-2 for more information.

Note: It is not necessary to simultaneously press the [SHIFT] key and the desired function key. The operator must press the [SHIFT] key first, release it, and then press the desired function key. When the [SHIFT] key is pressed, the word "SHIFT" appears in the lower right corner of the interface display (indicating that the Perfect Harmony is waiting for the second key to be pressed). After a key is pressed, the word SHIFT is removed from the LCD. Refer to Figure 3-5.

Figure 3-5. Location of Shift Mode Indicator on the Perfect Harmony Display
Common functions of the [SHIFT] key include:

- Entering "speed menus" ([SHIFT] plus appropriate "speed menu" key from main meter display).
- Using the [CANCEL] function ([SHIFT] + [ENTER] sequence).
- Entering hex values "A" through "F" ([SHIFT] + [1] through [SHIFT] + [6] when editing values or entering security code).
- Accessing menus, parameters or pick lists based on ID numbers ([SHIFT] + [\Rightarrow]).
- Returning to the top of the current menu/submenu ([SHIFT] + [$\uparrow]$).
- Going to the bottom of the menu or submenu ([SHIFT] + [ת]).
- Resetting the current security level to 0 ([SHIFT] + [৮] + [SHIFT] + [৮] + [SHIFT] + [৮] from the main meter display).
- \quad Setting a parameter value back to its factory default ([SHIFT] + [\upharpoonright] $)$.

A summary of [SHIFT] key sequences is listed in Table 3-3.

3.2.8 Arrow Keys

There are four yellow arrow keys on the Perfect Harmony keypad. The up and down arrow keys ([\uparrow] and [$\sqrt{ }]$) are located in the upper right corner of the keypad. The left and right arrow keys ($[\diamond>$] and $[\Rightarrow]$) are located on the lower row of the keypad. Common uses of the arrow keys include:

- Navigating through the menu structure
- Scrolling through lists of parameters
- Incrementing/decrementing parameter values (when in edit mode)
- Manually advancing to the next digit (when in edit mode)
- Increasing (up arrow [仓]) and decreasing (down arrow [$\sqrt{ }$]) the desired velocity demand of the drive (when in local manual mode)
- Clearing security level (press [SHIFT] + [$\langle>3$ times from the default meter display)
- Entering menu access mode ([SHIFT] $+[\Rightarrow]$).

The left and right arrow keys ($[\diamond\rangle$] and $[\zeta]$) can be used to navigate through the menu structure of the Perfect Harmony system. In general, the right arrow [\Rightarrow] is used to penetrate deeper into the menu structure and the left arrow [৮] is used to back out of the menu structure. For example, from the main display, the operator can press the right arrow key [\Rightarrow] to access the Main menu.
The up and down arrow keys ([^] and [Ω]) can be used to scroll through lists of items. For example, after using the right arrow key [\Rightarrow] to reach the Main menu, the operator may select the down arrow key [Ω] to scroll through the list of options within the Main menu. These options may be parameters, pick lists, or submenus. Refer to the next section for information about the structure of the menu system.
The up and down arrows ([仓] and [$\Omega]$) can be used to increment or decrement the desired velocity demand when the system is in local manual mode (refer to 3.2.4). As the up and down arrow keys are pressed, the changes in desired velocity demand can be viewed from the main display on the LCD. Refer to Figure 3-6.

Note: The velocity demand field (DEMD) on the front panel display is assigned by default. This display assignment (and the other three) can be changed from the menu system.

Table 3-3. Summary of Common [SHIFT] Key Sequences

Key Con	bination	Description
SHIFT	Mотов	Speed menu to the Motor menu (from the default meter display) Enters hexadecimal "A" (from value edit and security prompts)
SHIFT	DRIVE	Speed menu to the Drive menu (from the default meter display) Enters hexadecimal "B" (from value edit and security prompts)
SHIFT	STAB	Speed menu to the Stability menu (from the default meter display) Enters hexadecimal "C" (from value edit and security prompts)
SHIFT	AUTO	Speed menu to the Auto menu (from the default meter display) Enters hexadecimal "D" (from value edit and security prompts)
SHIFT	MAIN 5	Speed menu to the Main menu (from the default meter display) Enters hexadecimal "E" (from value edit and security prompts)
SHIFT	Logs	Speed menu to the Logs menu (from the default meter display) Enters hexadecimal " F " (from value edit and security prompts)
SHIFT	DRV PR	Speed menu to the Drive Protect menu (from the default meter display)
SHIFT	METER	Speed menu to the Meter menu (from the default meter display)
SHIFT	comm.	Speed menu to the Communications menu (from the default meter display)

Key Combination	

Figure 3-6. Using the Up and Down Arrow Keys to Control Velocity Demand
Another feature of the arrow keys is that they can be used to edit the values of parameters. To edit a parameter value, the operator must first navigate through the menu structure (using the arrow keys) and locate the parameter to be changed. With the parameter displayed on the LCD, the operator must press the [ENTER] key. This places the selected parameter into edit mode. Once in edit mode, an underscore is displayed beneath the first (i.e., the most significant) position of the parameter value. Changing the value of that position can be accomplished by pressing the desired numeric key or by using the up and down arrow keys ([仓] and [$\sqrt{ }]$) to scroll (and wrap around) through the numbers 0 through 9 for that position. When the up and down arrow keys are used, the operator must press the right and left arrow keys ([ヶ] and [\Rightarrow]) to move to the next (or previous) position in the number to be edited (unlike using the number keys which automatically shift the underscore to the next digit in the number). The operator must press the [ENTER] key to accept the new value or press the [SHIFT] + [ENTER] (i.e., [CANCEL]) to abort the change.

A feature unique to the left arrow key (with the [SHIFT] key) is its ability to cancel the current security mode and return to level 0 . An operator can increase the security access level (by entering the appropriate security codes), but cannot lower the security access level using the standard "Change Security Code" option of the Main menu. If an experienced user enters level 7 (or any other security level) then wishes to return to level 0 when he is finished (for security reasons), he may reset the drive by toggling power to the drive or using the [SHIFT] + [\diamond] sequence three times from the main display (i.e., [SHIFT] + [৮] + [SHIFT] + [৮] + [SHIFT] + [৮]). The latter method is a convenient way to reset the security level to 0 without interrupting the operation of the drive. When the security level is reset, the display shows a "Security Level Cleared" message. Refer to Figure 3-7.

```
MODE DEMD FREQ RPM ITOT
Security Level Cleared
```

Figure 3-7. Security Level Cleared Message on the Perfect Harmony Display
Note:

* Security will return automatically to level 0 after 15 minutes of inactivity.
** The [SHIFT] + [৮] + [SHIFT] + [৮] + [SHIFT] + [৮] key sequence is valid only when performed from the default meter display.

```

The right arrow key [ \(\Rightarrow\) ] is also used in conjunction with the [SHIFT] key to provide a menu, parameter, or pick list access feature. The operator can gain access to all security approved menus parameters, or pick lists. Accessing items in this manner requires that the operator know the ID number associated with the target item. This ID number can be a one, two, three or four digit number. To access an item using its ID number, press the [SHIFT] key followed by the right arrow key \([\Rightarrow]\). The display prompts the operator for the desired ID number. Using the numeric keys on the keypad, the operator enters the desired ID number then presses the [ENTER] key. If the number was a valid ID
number and the current security level permits access to that item, then the desired item will be displayed. Refer to Figure 3-4. Some common arrow key sequences are listed in Table 3-4.

Table 3-4. Summary of Common Arrow Key Sequences
\begin{tabular}{ll} 
Key Combination & \multicolumn{1}{c|}{ Description } \\
\hline
\end{tabular}

\subsection*{3.2.9 Diagnostic Indicators}

The standard keypad and display interface also contains 3 diagnostic LED indicators that are located above the display: Power On, Fault and Run. The Power On indicator is lit when control power is supplied to the system. The Run indicator is illuminated when the drive is running. The Fault indicator is lit when one or more system errors have occurred (e.g., boot-up test failure, overvoltage fault, etc.). The Fault indicator blinks when one or more alarms are
active or unacknowledged. The [FAULT RESET] key must be pressed to clear any existing fault conditions and restore the system to normal operation. Refer to Figure 3-1 for the location of the 3 diagnostic indicators.

\subsection*{3.2.10 The Display}

After power up or reset, the Siemens identification and software version number is displayed for 2-3 seconds. Afterwards, the meter display is shown on the LCD by default. The meter display is the starting point of the menuing system. This display remains on the LCD until keys are pressed.


Figure 3-8. The Identification/Version Screen and Meter Displays
The meter display screen contains five fields that are monitored and updated dynamically. These fields are the MODE (the operational mode), DEMD (the velocity demand), RPM (calculated revolutions per minute), VLTS (motor voltage) and ITOT (total output current) fields. The value (or state) of each field is shown dynamically on the second line of the display. Refer to Figure 3-9. The MODE field is fixed. The last 4 fields on the display contain parameter values that can be defined by the operator.


Figure 3-9. Dynamic Programmable Meter Display
The MODE field displays the current operational mode of the Harmony system. This field can have any one of the displays summarized in Table 3-5 depending on the current operational mode or the current state of the drive.


Figure 3-10. Dynamic Programmable Meter Display in Rollback Mode


Figure 3-11. Dynamic Programmable Meter Display in Regeneration Mode

The following illustrations depict the 2-line, 24-character display in various modes of access as the operator attempts to locate and change the Ratio Control and Motor Frequency parameters.

Figure 3－12 depicts the display immediately following power up or system reset．Note that the first three variable displays（from the right）can be selected from a pick list using the Display Parameters（8000）．


Figure 3－12．Status Display After［SHIFT］［ENTER］（［CANCEL］）Key Sequence
The DEMD display（refer to Figure 3－12）shows the＂commanded speed reference＂in percent．Figure 3－13 depicts the display following a［SHIFT］＋［2］（［DRIVE］）key combination．From this point the nine standard menus listed in Table 3－7 can then be selected using the up／down arrow keys（［仓v］and［ \(\checkmark\) ］）．Figure 3－14 depicts the display after the down arrow key（［ \(\sqrt[\Omega]{ }]\) ）is pressed twice and prior to the selection of the Speed Setup Menu（2060）．If the［ENTER］or right arrow key（［ \(\Rightarrow\) ］）is pressed at this display，the Speed Setup Menu（2060）will be entered．Figure 3－16 depicts the display following a down arrow keystroke to the Ratio Control Parameter（2070）．The down arrow key（［ \(\sqrt[\Omega]{ }\) ］）was pressed once to obtain this display．Figure 3－17 depicts the display once the Ratio control parameter in the Speed Setup Menu（2060）is entered for edit．Note the word edit appears in the display when a parameter is in the edit mode． The left／right arrow keys（ \([\hookleftarrow]\) ］and \([\leftrightharpoons]\) ）can be used to position the cursor under the desired digit（or sign）to be changed．The digit can be set by either using the number keys，or it may be incremented／decremented using the up／ down arrow keys（［仓］and［ \(\sqrt{ }]\) ）．The sign can be changed using the up／down arrow keys．The parameter is selected into memory once the［ENTER］or right arrow key（ \([\leftrightharpoons\) ］）is pressed．Figure 3－18 depicts the display when a number in range is entered．

Note：An asterisk（＊）is used to denote when a parameter is changed from its current default value．This allows the user to quickly see which parameters have been changed．To return a parameter to its factory default value， press［SHIFT］＋［ヶ］while in edit mode．


Figure 3－13．Status Display After［SHIFT］＋［2］Key Sequence


Figure 3－14．Status Display After［ \(\sqrt{ }\) ］［ \(\sqrt{ }\) ］Key Sequence


Figure 3－15．Status Display After［ \(\Rightarrow\) ］


Figure 3-16. Status Display After [ \(\sqrt{ }\) ] Key Sequences


Figure 3-17. Status Display After [ENTER] Key to Change a Parameter
\begin{tabular}{|ll|}
\hline \begin{tabular}{l} 
Ratio control \\
\(*(2070)\)
\end{tabular} & -03.0 \\
\hline
\end{tabular}

Figure 3-18. Status Display Upon Entering a Value In the Range of the System
In the following example, a [SHIFT] [ \(\Rightarrow\) ] to get to the Parameter ID display. The parameter ID for Motor Frequency (1020) is entered. See Figure 3-19. The [ENTER] key is then pressed once to show the Motor Frequency display and then [ENTER] is pressed again to edit its value. Figure 3-21 depicts the display if 010 is attempted to be entered for the Motor Frequency. Since the range of the variable is 15 to 330, an error message will be displayed for approximately 4 seconds, then the initial value, before the edit will be displayed.


Figure 3-19. Status Display After [SHIFT] [ \(\Rightarrow\) ] and the Parameter ID 1020 is entered


Figure 3-20. Status Display After [ENTER] [ENTER]

> Motor Frequency
> OUTOFRANGE

Figure 3-21. Status Display Upon Entering a Value Beyond the Range of the System

Table 3-5. Summary of Operation Mode Displays: Line 1 of Mode Display
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Code } & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Description } \\
\hline FRST & Fault reset & \begin{tabular}{l} 
Displayed after the [FAULT RESET] button is pressed. Note: \\
This may not be visible because of the speed of response to a \\
Fault Reset.
\end{tabular} \\
\hline TLIM & Menu setting rollback & \begin{tabular}{l} 
Drive is being limited by a menu setting. Refer to torque limits \\
settings in 3-9.
\end{tabular} \\
\hline SPHS & Single phasing rollback & \begin{tabular}{l} 
A Single phasing condition of the input line is limiting drive \\
torque.
\end{tabular} \\
\hline UVLT & Under voltage rollback & \begin{tabular}{l} 
A Under Voltage condition of the input line is limiting the drive \\
torque.
\end{tabular} \\
\hline T OL & Thermal overload rollback & \begin{tabular}{l} 
The drive has limited the amount of torque produced to prevent \\
thermal overload of the input transformer.
\end{tabular} \\
\hline F WK & Field weakening rollback & \begin{tabular}{l} 
This condition exists when the motor flux is low and the \\
application requires high torque. This prevents "motor pull-out", \\
an unstable operating condition of the motor.
\end{tabular} \\
\hline C OL & Cell overload rollback & \begin{tabular}{l} 
A Cell current overload model has calculated a thermal overload \\
condition of the drive cells and the drive has limited the amount \\
of torque produced.
\end{tabular} \\
\hline RGEN & Regeneration & \begin{tabular}{l} 
During normal deceleration, this message will be displayed \\
because the drive is preventing the motor from regenerating \\
power back into the drive.
\end{tabular} \\
\hline NET1 & Network 1 limit & \begin{tabular}{l} 
Appears while drive is decelerating with dual frequency braking \\
enabled.
\end{tabular} \\
\hline NET2 & Network 2 limit & \begin{tabular}{l} 
Appears during acceleration if drive has reached its torque limit \\
setting.
\end{tabular} \\
\hline ALIM & Analog Torque Limit & Normal mode display \\
\hline MODE & Dual Frequency Braking & Roll Bypassed \\
\hline Open Loop Test Mode & \begin{tabular}{l} 
Appears if drive control algorithm is set to Open Loop Test \\
Mode.
\end{tabular} \\
\hline Torque limited by network 1 setting. \\
\hline Torque limited by network 2 setting. \\
\hline Torque limited by analog input. \\
\hline This is the typical display message during normal operation. \\
\hline
\end{tabular}

Table 3-6. Summary of Operation Mode Displays: Line 2 of Mode Display
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Code } & \multicolumn{1}{|c|}{ Meaning } & \multicolumn{1}{c|}{ Description } \\
\hline NOMV & No medium voltage & No input line voltage detected. \\
\hline INH & CR3 inhibit & The CR3 or "Drive inhibit" input is asserted. \\
\hline OFF & Idle state & The drive is ready to run but is in an idle state. \\
\hline MAGN & Magnetizing motor state & The drive is magnetizing the motor. \\
\hline SPIN & Spinning load state & \begin{tabular}{l} 
The drive is trying to detect the speed of the motor in order to \\
synchronize the drive frequency.
\end{tabular} \\
\hline UXFR & Up transfer state & \begin{tabular}{l} 
The drive is in the "Up Transfer State" preparing to transfer the \\
motor to the input line.
\end{tabular} \\
\hline DXFR & Down transfer state & \begin{tabular}{l} 
The drive is in the "Down Transfer State" preparing to transfer \\
the motor from the input line to the drive.
\end{tabular} \\
\hline KYPD & Keypad speed demand & The drive speed demand source is the keypad. \\
\hline TEST & Speed/Torque test & The drive is in a Speed or Torque test mode. \\
\hline LOS & Loss of Signal & \begin{tabular}{l} 
The drive 4-20mA analog input signal has dropped below a \\
predefined setting. See Tables 3-35, 3-36, 3-38, and 3-39.
\end{tabular} \\
\hline AUTO & Automatic mode & \begin{tabular}{l} 
The SOP flag AutoDisplayMode_O is set true usually to indicate \\
drive is receiving its speed demand from a source other than the \\
keypad or network. Typically used with a analog input speed \\
source.
\end{tabular} \\
\hline NET1 & Network 1 & Indicates drive is being controlled from Network 1. \\
\hline NET2 & Network 2 & Indicates drive is being controlled from Network 2. \\
\hline DECL & Decelerating (no braking) & The drive is decelerating normally. \\
\hline BRAK & Dynamic Braking & Coasting to stop \\
\hline COAS & Tndicates that dynamic braking is enabled. \\
\hline TUNE & Auto Tuning & \begin{tabular}{l} 
The drive is not controlling th.e motor and it is coasting to a stop \\
due only to friction.
\end{tabular} \\
The drive is in a "Auto Tuning" mode used to determine motor \\
characteristics.
\end{tabular}

\subsection*{3.3 Menu Descriptions}

The following sections contain a condensed description of all parameter items available in the Perfect Harmony menu structure. Table 3-7 depicts main menus and submenus of the system. Each menu and submenu is associated with an ID shown in the ID column. The key sequence [SHIFT]+[ \(\Rightarrow\) ] ([SHIFT] plus the right arrow key) and up/down arrow keys ([ \(\uparrow\) ] and \([\mathfrak{\Omega}]\) ) as described above can be used to directly access each menu item.

Note: To prevent the unauthorized changes to the parameters, you can set a software flag, KeySwitchLockOut_O, to true. You will be able to display all parameters as usual. See Chapter 8 for information about setting software flags.

\section*{Note:}

A help feature for all parameter settings is available by pressing the [SHIFT] + [0] ([HELP]) key sequence on the keypad. This feature provides a text description of the desired selection, plus the parameters minimum and maximum value if applicable. If more that 2 lines of help text are available, the operator may use the up and down arrow keys ([仓] and [ \(\sqrt{ }]\) ) to scroll through the entire help message.
Parameters are always hidden in the menu display when there is insufficient security clearance to edit the parameter.
Menu items may be hidden if they do not apply to the current drive configuration. Example if Spinning load mode (ID 2430) is set to "Off" IDS 2440 through 2480 (spinning load parameters) are not displayed.
Table 3-7 lists menus with associated "Off" submenu names only. Parameters and functions found in these menus are described in the sections that follow. Use the associated table and page number from Table 3-7 to quickly locate the section of the chapter that explains all of the associated items.
Note that menu items change with new releases of software. Hence the menu system described here may be slightly different than the menu system on your drive. Your drive has help functions for every parameter and these can be used if the function is not described here.

Table 3-7. Perfect Harmony Menu and Submenu Summary
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Menu & ID & Submenu Names & ID & Table & Page & Description \\
\hline \multirow[t]{4}{*}{Motor Menu} & \multirow[t]{4}{*}{1} & Motor Parameter & 1000 & Table 3-8 & & \multirow[t]{4}{*}{Used to enter motorspecific data.} \\
\hline & & Limits & 1120 & Table 3-9 & & \\
\hline & & Autotune & 1250 & Table 3-11 & & \\
\hline & & Encoder & 1280 & Table 3-12 & & \\
\hline \multirow[t]{8}{*}{Drive Menu} & \multirow[t]{8}{*}{2} & Drive Parameter & 2000 & Table 3-13 & & \multirow[t]{8}{*}{Used to configure the VFD for various load conditions and drive applications.} \\
\hline & & Speed Setup & 2060 & Table 3-14 & & \\
\hline & & Speed Ramp Setup & 2260 & Table 3-15 & & \\
\hline & & Critical Frequency & 2340 & Table 3-16 & & \\
\hline & & Spinning Load & 2420 & Table 3-17 & & \\
\hline & & Conditional Time Setup & 2490 & Table 3-18 & & \\
\hline & & \begin{tabular}{l}
Cells \\
Sync Transfer \\
External I/O
\end{tabular} & \[
\begin{aligned}
& 2520 \\
& 2700 \\
& 2800
\end{aligned}
\] & \begin{tabular}{l}
Table 3-19 \\
Table 3-20 \\
Table 3-21
\end{tabular} & & \\
\hline & & Output Connection & 2900 & Table 3-22 & & \\
\hline \multirow[t]{3}{*}{Stability Menu} & \multirow[t]{3}{*}{3} & Input Processing & 3000 & Table 3-24 & & \multirow[t]{3}{*}{Used to adjust the VFD's various control loop gains, including current and speed regulator gains.} \\
\hline & & Output Processing & 3050 & Table 3-25 & & \\
\hline & & Control Loop Test & 3460 & Table 3-31 & & \\
\hline \multirow[t]{7}{*}{Auto Menu} & \multirow[t]{7}{*}{4} & Speed Profile & 4000 & Table 3-33 & & \multirow[t]{5}{*}{Used to configure various speed setpoint, profile, and critical speed avoidance and comparator parameters.} \\
\hline & & Analog Inputs & 4090 & Table 3-34 & & \\
\hline & & Analog Outputs & 4660 & Table 3-40 & & \\
\hline & & Speed Setpoints & 4240 & Table 3-42 & & \\
\hline & & Incremental Speed Setup & 4970 & Table 3-43 & & \\
\hline & & PID Select & 4350 & Table 3-44 & & PID Select Menu contains PID setup parameters. \\
\hline & & Comparator Setup & 4800 & Table 3-45 & & Used to configure the analog comparators controlled through the SOP. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Menu & ID & Submenu Names & ID & Table & Page & Description \\
\hline \multirow[t]{9}{*}{Main Menu} & \multirow[t]{9}{*}{5} & Motor & 1 & \begin{tabular}{l}
see Motor \\
Menu, above
\end{tabular} & & \\
\hline & & Drive & 2 & \begin{tabular}{l}
see Drive \\
Menu, above
\end{tabular} & & \\
\hline & & Stability & 3 & Table 3-23 & & \\
\hline & & Auto & 4 & \begin{tabular}{l}
see Auto \\
Menu, above
\end{tabular} & & \\
\hline & & Logs & 6 & \begin{tabular}{l}
see Logs \\
Menu, below
\end{tabular} & & \\
\hline & & Drive Protect & 7 & Table 3-56 & & \\
\hline & & Meter & 8 & Table 3-59 & & \\
\hline & & Communications & 9 & Table 3-64 & & \\
\hline & & Security Edit Functions & 5000 & Table 3-49 & & Configures security features. \\
\hline \multirow[t]{3}{*}{Logs Menu} & \multirow[t]{3}{*}{6} & Event Log & 6180 & Table 3-52 & & \multirow[t]{3}{*}{Used to configure and inspect the event, alarm/fault, and historic logs of the VFD.} \\
\hline & & Alarm/Fault Log & 6210 & Table 3-53 & & \\
\hline & & Historic Log & 6250 & Table 3-54 & & \\
\hline Drive Protect Menu & 7 & Input Protection & 7000 & Table 3-57 & & Adjusts setpoint limits for critical VFD variables. \\
\hline \multirow[t]{4}{*}{Meter Menu} & \multirow[t]{4}{*}{8} & Display Parameters & 8000 & Table 3-60 & & \multirow[t]{4}{*}{Set up Variables for display to LCD.} \\
\hline & & Hour Meter Setup & 8010 & Table 3-62 & & \\
\hline & & Input Harmonics & 8140 & Table 3-63 & & \\
\hline & & Fault display override & 8200 & Table 3-59 & & \\
\hline \multirow[t]{8}{*}{Communications Menu} & \multirow[t]{8}{*}{9} & Serial Port Setup & 9010 & Table 3-65 & & \multirow[t]{7}{*}{Used for configuring the various Communications features of the VFD.} \\
\hline & & Network Control & 9943 & \multirow[t]{3}{*}{Please refer to Communicatio ns manual (number 902399)} & \multirow[t]{3}{*}{} & \\
\hline & & Network 1 Configure & 9900 & & & \\
\hline & & Network 2 Configure & 9914 & & & \\
\hline & & \begin{tabular}{l}
Display Network \\
Monitor
\end{tabular} & 9950 & Table 3-64 & & \\
\hline & & Serial echo back test & 9180 & Please refer to Communicatio ns manual (number 902399) & & \\
\hline & & Sop \& serial functions & 9110 & Table 3-66 & & \\
\hline & & TCP/IP Setup & 9300 & Table 3-67 & & \\
\hline
\end{tabular}

\subsection*{3.3.1 Motor Menu (1) Options}

The Motor Menu (1) consists of the following menu options:
- Motor Parameter Menu (1000)
- Limit Protection Menu (1120)
- Autotune Menu (1250)
- Encoder Menu (1280)

The contents of these menus are explained in tables that follow.
Table 3-8. Motor Parameter Menu (1000)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Motor frequency & 1020 & Hz & 60 & 15 & 330 & Enter the rated or base frequency of the motor from the nameplate. \\
\hline Full load speed & 1030 & RPM & 1780 & 1 & 19800 & Enter the full load speed of the motor from the nameplate. Full load speed is base or rated speed minus slip. \\
\hline Motor voltage & 1040 & V & 4160 & 380 & 13800 & Enter the rated voltage for the motor from the nameplate. \\
\hline Full load current & 1050 & A & 125.0 & 12.0 & 1500.0 & Enter the rated nameplate full load current of the motor. \\
\hline No load current & 1060 & \% & 25.0 & 0.0 & 100.0 & Enter the no load current of the motor, if it is provided, or use the Autotune function. \\
\hline Motor kW rating & 1010 & kW & 746.0 & \[
\begin{aligned}
& 120 . \\
& 0
\end{aligned}
\] & 20000.0 & Enter the motor kW ( 0.746 * Hp) from the nameplate. \\
\hline Leakage inductance & 1070 & \% & 16.0 & 0.0 & 30.0 & Enter the leakage inductance of the motor if it is provided, or use the Autotune function. \\
\hline Stator resistance & 1080 & \% & 0.10 & 0.00 & 25.00 & Enter the stator resistance of the motor, if it is provided. To convert from ohms to \% use the formula: [\%Rs \(=100 * \sqrt{ } 3 * \mathrm{Rs}(\) in ohms \() *\) Motor Current/Motor Voltage], or use the Autotune function. \\
\hline Inertia & 1090 & \(\mathrm{Kgm}^{2}\) & 30.0 & 0.0 & 100000.0 & Enter the rotor inertia of the motor if known \(\left(1 \mathrm{Kgm}^{2}=23.24 \mathrm{lbft}^{2}\right)\), or use the Autotune function. \\
\hline
\end{tabular}

Table 3-9. Limits Menu (1120)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Overload select & \[
\begin{aligned}
& 113 \\
& 0
\end{aligned}
\] & & Constant & & & \begin{tabular}{l}
Selects the overload trip algorithm: \\
Constant (fixed current-based TOL). \\
Straight Inverse Time (motor temperature-based TOL). \\
Inverse Time with speed derating (motor temperature-based TOL). \\
Note: Selecting "constant" here and setting the next tow parameters (1139 \& 1140) to max, effectively disables this function.
\end{tabular} \\
\hline Overload pending & \[
\begin{aligned}
& 113 \\
& 9
\end{aligned}
\] & \% & 100.0 & 10.0 & 210.0 & Sets the overload level at which a warning is issued (constant mode). \\
\hline Overload & \[
\begin{aligned}
& 114 \\
& 0
\end{aligned}
\] & \% & 120.0 & 20.0 & 210.0 & Sets the overload trip level at which the timeout counter is started (constant mode). \\
\hline Overload timeout & \[
\begin{aligned}
& 115 \\
& 0
\end{aligned}
\] & sec & 60.0 & 0.01 & 300.0 & Sets the time for the overload trip (constant mode). \\
\hline Speed Derate Curve & \[
\begin{aligned}
& 115 \\
& 1
\end{aligned}
\] & \multicolumn{4}{|l|}{Submenu} & This menu sets allowable motor load as a function of speed. See Table 3-10. \\
\hline Motor trip volts & \[
\begin{aligned}
& 116 \\
& 0
\end{aligned}
\] & V & 4800 & 5 & 20,000 & Sets the motor over-voltage trip point. \\
\hline Maximum Load Inertia & \[
\begin{aligned}
& \hline 115 \\
& 9
\end{aligned}
\] & \(\mathrm{Kgm}^{2}\) & 0.0 & 0.0 & 500000.0 & Sets the maximum load inertia that the motor can line start without exceeding maximum temperature. \\
\hline Overspeed & \[
\begin{aligned}
& 117 \\
& 0
\end{aligned}
\] & \% & 120.0 & \multirow[t]{2}{*}{0.0} & \multirow[t]{2}{*}{250.0} & Sets the motor overspeed trip level as a percentage of rated speed. \\
\hline Underload enable & \[
\begin{aligned}
& 118 \\
& 0
\end{aligned}
\] & & Disable & & & Enables or disables underload protection. \\
\hline I underload & \[
\begin{aligned}
& 118 \\
& 2
\end{aligned}
\] & \% & 10.0 & 1.0 & 90.0 & Sets the current underload level based on the rated motor current. \\
\hline Underload timeout & \[
\begin{aligned}
& 118 \\
& 6
\end{aligned}
\] & sec & 10.0 & 0.01 & 900.0 & Sets the time for underload trip. \\
\hline Motor torque limit 1 & \[
\begin{aligned}
& 119 \\
& 0
\end{aligned}
\] & \% & 100.0 & 0.0 & 300.0 & Sets the motoring torque limit as a function of the rated motor current. \\
\hline Regen torque limit 1 & \[
\begin{aligned}
& 120 \\
& 0
\end{aligned}
\] & \% & -0.25 & -300.0 & 0.0 & Sets the regenerative torque limit as a function of rated motor current at full speed. The limit is allowed to increase inversely with speed. \\
\hline Motor torque limit 2 & \[
\begin{aligned}
& 121 \\
& 0
\end{aligned}
\] & \% & 100.0 & 0.0 & 300.0 & Sets the motoring torque limit as a function of the available motor current. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Regen torque limit 2 & \[
\begin{aligned}
& 122 \\
& 0
\end{aligned}
\] & \% & -0.25 & -300.0 & 0.0 & Sets the regenerative torque limit as a function of rated motor current at full speed. The limit is allowed to increase inversely with speed. \\
\hline Motor torque limit 3 & \[
\begin{aligned}
& 123 \\
& 0
\end{aligned}
\] & \% & 100.0 & 0.0 & 300.0 & Sets the motoring torque limit as a function of the available motor current. \\
\hline Regen torque limit 3 & \[
\begin{aligned}
& 124 \\
& 0
\end{aligned}
\] & \% & -0.25 & -300.0 & 0.0 & Sets the regenerative torque limit as a function of rated motor current at full speed. The limit is allowed to increase inversely with speed. \\
\hline Phase Imbalance Limit & \[
\begin{aligned}
& 124 \\
& 4
\end{aligned}
\] & \% & 40.0 & 0.0 & 100.0 & Sets the current threshold level for the output phase current imbalance alarm. \\
\hline Ground Fault Limit & \[
\begin{aligned}
& 124 \\
& 5
\end{aligned}
\] & \% & 5.0 & 0.0 & 100.0 & Sets the threshold of voltage for the output ground fault alarm. \\
\hline Ground Fault Time Const & \[
\begin{aligned}
& 124 \\
& 6
\end{aligned}
\] & sec & 0.017 & 0.001 & 2.000 & Sets the filter time constant for averaging the ground voltage and delaying the response of the ground fault detection. \\
\hline H/W Ground Fault Enable & \[
\begin{aligned}
& 124 \\
& 7
\end{aligned}
\] & & Disabled & & & Enables and disables hardware ground fault detection. \\
\hline
\end{tabular}

Table 3-10. Speed Derate Curve Menu (1151)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & \begin{tabular}{c} 
Mi \\
\(\mathbf{n}\)
\end{tabular} & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{|c|}{ Description } \\
\hline 0 Percent Break Point & 1152 & \(\%\) & 0.0 & 0.0 & 200.0 & \begin{tabular}{l} 
Sets the maximum motor load at \(0 \%\) \\
speed.
\end{tabular} \\
\hline 10 Percent Break Point & 1153 & \(\%\) & 31.6 & 0.0 & 200.0 & \begin{tabular}{l} 
Sets the maximum motor load at \\
\(10 \%\) speed.
\end{tabular} \\
\hline 17 Percent Break Point & 1154 & \(\%\) & 41.2 & 0.0 & 200.0 & \begin{tabular}{l} 
Sets the maximum motor load at \\
\(17 \%\) speed.
\end{tabular} \\
\hline 25 Percent Break Point & 1155 & \(\%\) & 50.0 & 0.0 & 200.0 & \begin{tabular}{l} 
Sets the maximum motor load at \\
\(25 \%\) speed.
\end{tabular} \\
\hline 50 Percent Break Point & 1156 & \(\%\) & 70.7 & 0.0 & 200.0 & \begin{tabular}{l} 
Sets the maximum motor load at \\
\(50 \%\) speed.
\end{tabular} \\
\hline 100 Percent Break Point & 1157 & \(\%\) & 100.0 & 0.0 & 200.0 & \begin{tabular}{l} 
Sets the maximum motor load at \\
\(100 \%\) speed.
\end{tabular} \\
\hline
\end{tabular}

Table 3-11. Autotune Menu (1250)
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & ID & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline Autotune stage 1 & \begin{tabular}{l}
126 \\
0
\end{tabular} & Function & \begin{tabular}{l} 
This function determines the stator resistance and leakage \\
inductance of the motor. The motor does not rotate during \\
this stage. If this function is not used the menu-entered values \\
are used. If the function is used, the parameters will be \\
updated with the calculated values.
\end{tabular} \\
\hline Autotune stage 2 & \begin{tabular}{l}
127 \\
0
\end{tabular} & Function & \begin{tabular}{l} 
This function determines the no-load current \& rotor inertia \\
of the motor. The motor rotates during this stage. If this \\
function is not used the menu entered values are used. \\
Note: This should be used in only very special circumstances \\
requiring high response rates, and should only be used under \\
engineering guidance.
\end{tabular} \\
\hline
\end{tabular}

Auto Tuning provides motor information that optimizes the Output Processing Control. Both stages of Auto Tuning are optional. The user can enter the motor information if available (see Table 3-11). The process is performed in two stages.

Table 3-12. Encoder Menu (1280) (Closed Loop Vector Control Only)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Encoder 1 PPR & 1290 & & 720 & 1 & 10000 & Rated number of pulses per revolution delivered by the encoder. (Name plate value). \\
\hline Encoder filter gain & 1300 & & 0.0 & 0.0 & 0.999 & Sets the gain of the filter for encoder feedback. This parameter can have a value between 0.0 (no filtering) and 0.999 (maximum filtering). \\
\hline Encoder loss threshold & 1310 & \% & 0.0 & 0.0 & 75.0 & Sets the level for the error between encoder output and calculated motor speed to determine encoder loss. \\
\hline Encoder loss response & 1320 & & \begin{tabular}{l}
Open \\
Loop
\end{tabular} & & & \begin{tabular}{l}
Sets the drive response to a loss of encoder event. \\
Stop (on Fault) \\
Open Loop (control)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{3.3.2 Drive Menu (2) Options}

The Drive Menu (2) consists of the following submenus:
- (2000) Drive Parameter Menu
- (2060) Speed Setup Menu
- (2260) Speed Ramp Setup Menu
- (2340) Critical Frequency Menu
- (2420) Spinning Load Menu
- (2490) Conditional Timer Menu
- (2520) Cell Menu
- (2700) Sync Transfer Menu
- (2800) External I/O Menu
- (2900) Output Connection Menu

Contents of these menus are explained in the tables that follow.
Table 3-13. Drive Parameter Menu (2000)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Rated input voltage & 2010 & V & 4160 & 200 & 125000 & Rated RMS input voltage of the drive. Set according to the input transformer primary voltage rating. Note: The input attenuator kit should always correspond to the rated primary voltage of the transformer. \\
\hline Rated input current & 2020 & A & 100.0 & 12.0 & 3000.0 & Rated RMS input current of the drive. Set according to input transformer nameplate kVA rating as noted below.* \\
\hline Rated output voltage & 2030 & V & 4160 & 200 & 23000 & \begin{tabular}{l}
Rated drive output voltage RMS. Set according to the rating of the output attenuator kit. \\
Note: This value is typically equal to or higher than the motor voltage rating.
\end{tabular} \\
\hline Rated output current & 2040 & A & 100.0 & 12.0 & 1500.0 & \begin{tabular}{l}
Rated drive output current RMS. Set equal to the cell (output) current rating. \\
Note: The output Hall Effects and burden resistors should be sized for the cell current rating.
\end{tabular} \\
\hline Control loop type See Note below. & 2050 & & OLVC & & & \begin{tabular}{l}
Control loop algorithm type selection. \\
Volts per Hertz (V/Hz) for parallel motors. \\
Open Loop Vector Control (OLVC) for single induction motors. \\
Closed Loop Vector Control (CLVC) for single induction motors with speed sensor(s). \\
Open Loop Test Mode (OLTM) for checking cell modulation and testing Hall-effect transducer. \\
Synchronous Motor Control (SMC) without speed sensor. \\
Closed Loop Synchronous Motor Control (CSMC) with speed sensor.
\end{tabular} \\
\hline
\end{tabular}

Note: Changing the control loop algorithm type to open loop test mode (OLTM) or Volts/Hz (V/Hz) diasables fast bypass and turns off spinning load by changing those parameters (2600 and 2430 respectively).
*The calculation is derived as follows:
Rated Input Current \(=[(\mathrm{kVA}\) rating \() \times(802)] \div[(\sqrt{3}) \times\) (Rated nominal primary voltage) \(\times(0.96) \times(0.94)\)
\[
=[(\mathrm{kVA} \text { rating }) \div(\text { Rated nominal primary voltage })] \times 513.11
\]
Note: The parameters discussed in are based on hardware used within the drive and on the design limits of
drive components. These settings should not be changed in the field to match the conditions on the site unless
hardware modifications have been made and approval from applications engineering has been obtained.

Table 3-14. Speed Setup Menu (2060)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & \[
\begin{gathered}
\text { Unit } \\
\mathrm{s}
\end{gathered}
\] & Default & Min & Max & Description \\
\hline Ratio control & 2070 & & 100.0 & -250.0 & 250.0 & Used to adjust the scaling of the speed reference value. \\
\hline Speed fwd max limit 1 & 2080 & \% & 100.0 & 0.0 & 200.0 & The forward max speed reference limit 1. \\
\hline Speed fwd min limit 1 & 2090 & \% & 0.0 & 0.0 & 200.0 & The forward min speed reference limit 1. \\
\hline Speed fwd max limit 2 & 2100 & \% & 100.0 & 0.0 & 200.0 & The forward max speed reference limit 2. \\
\hline Speed fwd min limit 2 & 2110 & \% & 0.0 & 0.0 & 200.0 & The forward min speed reference limit 2. \\
\hline Speed fwd max limit 3 & 2120 & \% & 100.0 & 0.0 & 200.0 & The forward max speed reference limit 3. \\
\hline Speed fwd min limit 3 & 2130 & \% & 0.0 & 0.0 & 200.0 & The forward min speed reference limit 3. \\
\hline Speed rev max limit 1 & 2140 & \% & -100.0 & -200.0 & 0.0 & The reverse max speed reference limit 1. \\
\hline Speed rev min limit 1 & 2150 & \% & 0.0 & -200.0 & 0.0 & The reverse min speed reference limit 1. \\
\hline Speed rev max limit 2 & 2160 & \% & -100.0 & -200.0 & 0.0 & The reverse max speed reference limit 2. \\
\hline Speed rev min limit 2 & 2170 & \% & 0.0 & -200.0 & 0.0 & The reverse min speed reference limit 2. \\
\hline Speed rev max limit 3 & 2180 & \% & -100.0 & -200.0 & 0.0 & The reverse max speed reference limit 3. \\
\hline Speed rev min limit 3 & 2190 & \% & 0.0 & -200.0 & 0.0 & The reverse min speed reference limit 3. \\
\hline Zero speed & 2200 & \% & 0.0 & 0.0 & 100.0 & The zero speed threshold value. This is used for the threshold of the "Minimum Speed Trip" (or alarm). \\
\hline
\end{tabular}

Table 3-15. Speed Ramp Setup Menu (2260)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & \multicolumn{1}{c|}{ Min } & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{|c|}{ Description } \\
\hline Accel time 1 & 2270 & sec & 5.0 & 0.0 & 3200.0 & Acceleration time 1 in seconds. \\
\hline Decel time 1 & 2280 & sec & 5.0 & 0.0 & 3200.0 & Deceleration time 1 in seconds. \\
\hline Accel time 2 & 2290 & sec & 5.0 & 0.0 & 3200.0 & Acceleration time 2 in seconds. \\
\hline Decel time 2 & 2300 & sec & 5.0 & 0.0 & 3200.0 & Deceleration time 2 in seconds. \\
\hline Accel time 3 & 2310 & sec & 5.0 & 0.0 & 3200.0 & Acceleration time 3 in seconds. \\
\hline Decel time 3 & 2320 & sec & 5.0 & 0.0 & 3200.0 & Deceleration time 3 in seconds. \\
\hline Jerk rate & 2330 & & 0.1 & 0.0 & 3200.0 & \begin{tabular}{l} 
Jerk rate in time to reach an acceleration \\
rate that will achieve rated velocity in 1 \\
sec.
\end{tabular} \\
\hline
\end{tabular}

Table 3-16. Critical Frequency Menu (2340)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & Min & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{|c|}{ Description } \\
\hline Skip center freq 1 & 2350 & Hz & 15.0 & 0.0 & 360.0 & \begin{tabular}{l} 
Enter the center of the first critical \\
frequency band to be avoided.
\end{tabular} \\
\hline Skip center freq 2 & 2360 & Hz & 30.0 & 0.0 & 360.0 & \begin{tabular}{l} 
Enter the center of the second \\
critical frequency band to be \\
avoided.
\end{tabular} \\
\hline Skip center freq 3 & 2370 & Hz & 45.0 & 0.0 & 360.0 & \begin{tabular}{l} 
Enter the center of the third critical \\
frequency band to be avoided.
\end{tabular} \\
\hline Skip bandwidth 1 & 2380 & Hz & 0.0 & 0.0 & 6.0 & \begin{tabular}{l} 
Enter the bandwidth of the first \\
critical frequency band to be \\
avoided.
\end{tabular} \\
\hline Skip bandwidth 2 & 2390 & Hz & 0.0 & 0.0 & 6.0 & \begin{tabular}{l} 
Enter the bandwidth of the second \\
critical frequency band to be \\
avoided.
\end{tabular} \\
\hline Skip bandwidth 3 & 2400 & Hz & 0.0 & 0.0 & 6.0 & \begin{tabular}{l} 
Enter the bandwidth of the third \\
critical frequency band to be \\
avoided.
\end{tabular} \\
\hline
\end{tabular}

The critical frequency feature (sometimes called resonance avoidance) is accomplished using skip frequencies and skip bands as defined in Table 3-16. This is illustrated in Figure 3-22.


Figure 3-22. Critical Speed (Resonance Avoidance) Parameters

Table 3-17. Spinning Load Menu (2420)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline \begin{tabular}{l}
Spinning load mode \\
See Note below
\end{tabular} & 2430 & & Off & & & \begin{tabular}{l}
Enable/Disable Spinning Load and set the direction of frequency scans: \\
- Off \\
- Forward \\
- Reverse \\
- Both (scans first in the forward direction, then in the reverse direction) \\
See Chapter 5, Section 5.3 for information.
\end{tabular} \\
\hline Scan end threshold & 2440 & \% & 20.0 & 1.0 & 50.0 & Point where scan ends if motor flux is above this level, as a percentage of motor rated flux. \\
\hline Current Level Setpoint & 2450 & \% & 15.0 & 1.0 & 50.0 & Sets the drive current level \(\left(\mathrm{I}_{\mathrm{d}}\right)\), as a percentage of motor rated current, used during scanning. \\
\hline Current ramp & 2460 & sec & 0.01 & 0.00 & 5.00 & Time to ramp drive current \(\left(\mathrm{I}_{\mathrm{d}}\right)\) to Current Level Setpoint. \\
\hline Max current & 2470 & \% & 50.0 & 1.0 & 50.0 & Sets the current trip level, as a percentage of motor rated current, for scanning. Use the default value of \(50 \%\). \\
\hline Frequency scan rate & 2480 & sec & 3.00 & 0.00 & 5.00 & Sets the time taken to scan from rated speed to zero. The default value of 3.00 sec should be satisfactory for most cases. \\
\hline
\end{tabular}

Note: The spinning load mode is changed to "off" when either Volts/Hertz (V/Hz) or open loop test mode (OLTM) is selected for control, and must be manually selected before running other control modes if the feature is desired. Spinning load is required for sync transfer.

Table 3-18. Conditional Timer Setup Menu (2490)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & \multicolumn{1}{|c|}{ Units } & Default & Min & Max & \multicolumn{1}{|c|}{ Description } \\
\hline Cond stop timer & 2500 & sec & 0.8 & 0.0 & 999.9 & \begin{tabular}{l} 
Dwell time after stop is invoked. User \\
function defined. (Not currently \\
implemented)
\end{tabular} \\
\hline Cond run timer & 2510 & sec & 0.8 & 0.0 & 999.9 & \begin{tabular}{l} 
Dwell time after start is invoked. User \\
function defined. (Not currently \\
implemented)
\end{tabular} \\
\hline
\end{tabular}

Table 3-19. Cell Menu (2520)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & ID & Units & Default & \multicolumn{1}{|c|}{ Min } & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{c|}{ Description } \\
\hline Installed cells/phase & 2530 & & 4 & 1 & 8 & \begin{tabular}{l} 
Installed cells per phase in the \\
drive.
\end{tabular} \\
\hline \begin{tabular}{l} 
Min cells/phase count \\
(n/3)
\end{tabular} & 2540 & & 4 & 1 & 8 & \begin{tabular}{l} 
Minimum cells per phase count. \\
Due to neutral point shifting, 3 \\
times this number, allowing one \\
active cell per phase, is the \\
minimum allowable cells (n) \\
permitted to run in a system, \\
allowing for the shift in the neutral \\
point.
\end{tabular} \\
\hline Cell voltage & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Fast bypass See the Note below & 2600 & & Disable & & & This parameter enables or disables fast cell bypass. Disabling fast bypass with mechanical contactors will still provide manual bypass after a manual reset. \\
\hline Display Cell Status & 2610 & \multicolumn{4}{|l|}{Function} & \begin{tabular}{l}
Displays cell status:
\[
\begin{aligned}
& \text { A = active, } \\
& \text { B = bypassed, } \\
& \text { F }=\text { faulted } .
\end{aligned}
\] \\
Format is all A phase followed by all B phase followed by all C phase.
\end{tabular} \\
\hline Display Bypass Status & 2620 & \multicolumn{4}{|l|}{Function} & Displays bypass status: Same format as for cell status.
\[
\begin{aligned}
& \text { A = available, } \\
& \text { B = active, } \\
& \text { U = unavailable. }
\end{aligned}
\] \\
\hline Reset Bypassed Cells & 2640 & \multicolumn{4}{|l|}{Function} & Allows bypassed cells to be reset when the drive is in an idle state. Use the reset function only after verifying that the problems with the faulted cell(s) have been resolved. \\
\hline Neutral Connection & 2630 & & T2 & & & Sets the pole inversion type based on the cell neutral connection point. Select the terminal, T1 or T2, which forms the neutral connection. This selection depends on the terminal of cells A1, B1, and C 1 that is used to form the drive start-point neutral. \\
\hline
\end{tabular}

Note: Fast Bypass is changed to "disabled" when Volts/Hertz (V/Hz) or open loop test mode (OLTM) is selected (parameter 2050), and must be manually reset before running other modes.

Table 3-20. Sync Transfer Menu (2700)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & \multicolumn{1}{|c|}{ Min } & \multicolumn{1}{|c|}{ Max } & \multicolumn{1}{c|}{ Description } \\
\hline Phase I gain & 2710 & & 2.0 & 0.0 & 15.0 & Phase integrator gain. \\
\hline Phase P gain & 2720 & & 4.0 & 1.0 & 12.0 & Phase proportional gain. \\
\hline Phase offset & 2730 & deg & 2.0 & -90.0 & 90.0 & \begin{tabular}{l} 
Specifies the phase angle setpoint used \\
during Up Transfer. This is set positive, \\
expressed in degrees leading to prevent \\
power flow back into drive.
\end{tabular} \\
\hline \begin{tabular}{l} 
Phase error \\
threshold
\end{tabular} & 2740 & deg & 1.5 & 0.0 & 5.0 & \begin{tabular}{l} 
Specifies the phase synchronization \\
error window during Up Transfer. This \\
parameter adjusts the amount of error \\
allowed during phase-locking and is \\
expressed in degrees.
\end{tabular} \\
\hline \begin{tabular}{l} 
Frequency \\
Offset
\end{tabular} & 2750 & \% & 0.5 & -10.0 & 10.0 & \begin{tabular}{l} 
Frequency offset used \\
during Down Transfer.
\end{tabular} \\
\hline \begin{tabular}{l} 
Up Transfer \\
Timeout
\end{tabular} & 2760 & sec & 0.0 & 0.0 & 600.0 & \begin{tabular}{l} 
If the time taken for Up Transfer exceeds \\
this value then an Up Transfer Timeout \\
Fault is generated. This setting should be \\
greater than the acceleration time setting \\
(2270, 2290, or 2310). Setting zero
\end{tabular} \\
disables the timeout fault.
\end{tabular}

Table 3-21. External I/O Menu (2800)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & Min & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{|c|}{ Description } \\
\hline Analog Inputs & 2810 & & 0 & 0 & 24 & \begin{tabular}{l} 
Sets the quantity of analog inputs in the \\
attached external I/O.
\end{tabular} \\
\hline Analog Outputs & 2820 & & 0 & 0 & 16 & \begin{tabular}{l} 
Sets the quantity of analog outputs in the \\
attached external I/O.
\end{tabular} \\
\hline Digital Inputs & 2830 & & 0 & 0 & 96 & \begin{tabular}{l} 
Sets the quantity of digital inputs in the \\
attached external I/O.
\end{tabular} \\
\hline Digital Outputs & 2840 & & 0 & 0 & 64 & \begin{tabular}{l} 
Sets the quantity of digital outputs in the \\
attached external I/O.
\end{tabular} \\
\hline Wago timeout & 2850 & sec & 0 & 0 & 600 & \begin{tabular}{l} 
Sets the Wago watchdog timeout period. \\
Setting to zero disables this function.
\end{tabular} \\
\hline
\end{tabular}

Table 3-22. Output Connection Menu (2900)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & Min & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
Filter CT \\
Secondary \\
Turns
\end{tabular} & 2910 & & 0 & 0 & 250 & \begin{tabular}{l} 
Secondary side turns (assuming primary \\
turns = 5) of the CTs used to measure filter \\
capacitor currents.
\end{tabular} \\
\hline \begin{tabular}{l} 
Filter \\
Inductance
\end{tabular} & 2920 & \(\%\) & 0.0 & 0.0 & 20.0 & \begin{tabular}{l} 
Sets the output filter inductor (impedance) \\
value as a ratio of the base output \\
impedance of the drive (typically 5\%).
\end{tabular} \\
\hline \begin{tabular}{l} 
Filter \\
Capacitance
\end{tabular} & 2930 & \(\%\) & 0.0 & 0.0 & 20.0 & \begin{tabular}{l} 
Sets the output filter capacitor (admittance) \\
value as a ratio of the base output \\
admittance of the drive (typically 10\%).
\end{tabular} \\
Admittance is the inverse of impedance.
\end{tabular}\(|\)\begin{tabular}{l} 
\%able \\
Resistance
\end{tabular}

\subsection*{3.3.3 Stability Menu (3) Options}

The Stability Menu (3) consists of the following menu options:
Input Processing Menu (3000)
Output Processing Menu (3050)
Control Loop Test Menu (3460)
The Stability Menu also contains some parameters. These menus and parameters are explained in tables that follow.

Table 3-23. Stability Menu (3) (Parameters)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline \begin{tabular}{l}
Input \\
Processing \\
Menu
\end{tabular} & 3000 & \multicolumn{4}{|l|}{Submenu} & \begin{tabular}{l}
Contains all of the sub menus related to drive line side processing. \\
See Table 3-24.
\end{tabular} \\
\hline \begin{tabular}{l}
Output \\
Processing \\
Menu
\end{tabular} & 3050 & \multicolumn{4}{|l|}{Submenu} & Contains all of the sub menus related to drive motor side processing. See Table 3-25. \\
\hline Control Loop Test Menu & 3460 & \multicolumn{4}{|l|}{Submenu} & Contains all of the sub menus related to speed and torque loop testing. See Table 3-32. \\
\hline Slip constant & 3545 & \multirow[b]{2}{*}{msec} & 0.0 & 0.0 & 20.0 & Gain for slip compensation. This value is calculated by the control software and cannot be changed. \\
\hline Dead time comp & 3550 & & 16.0 & 0.0 & 50.0 & Sets the dead time (or firing delay time) of the IGBTs for software compensation. \\
\hline Feed forward constant & 3560 & & 0.0 & 0.0 & 1.0 & Sets the gain for voltage feed forward. This is used to improve the torque current regulator response. \\
\hline Carrier frequency & 3580 & Hz & 600.0 & 100.0 & 1500.0 & IGBT switching frequency. The control adjusts the entered value according to available resolution from the modulator registers (e.g., if you enter 600, the actual frequency may be 601.0). \\
\hline
\end{tabular}

Table 3-24. Input Processing Menu (3000)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & ID & Units & Default & Min & \multicolumn{1}{|c|}{ Max } & \multicolumn{1}{c|}{ Description } \\
\hline PLL prop gain & 3010 & & 70.0 & 0.0 & 200.0 & \begin{tabular}{l} 
Proportional gain of input phase locked \\
loop (PLL).
\end{tabular} \\
\hline \begin{tabular}{l} 
PLL integral \\
gain
\end{tabular} & 3020 & & 3840.0 & 0.0 & 12000.0 & Integral gain of input PLL. \\
\hline \begin{tabular}{l} 
Input current \\
scaler
\end{tabular} & 3030 & & 1.0 & 0.0 & 2.0 & \begin{tabular}{l} 
Sets the scaling for input current \\
feedback. Normally should be set to 1.0.
\end{tabular} \\
\hline CT Turns & 3035 & & 200 & 50 & 3000 & \begin{tabular}{l} 
Secondary side turns for input current CT \\
(with primary turns equal to 5).
\end{tabular} \\
\hline \begin{tabular}{l} 
Input voltage \\
scaler
\end{tabular} & 3040 & & 1.0 & 0.0 & 2.0 & \begin{tabular}{l} 
Sets the scaling for input line voltage \\
feedback. Normally should be set to 1.0.
\end{tabular} \\
\hline \begin{tabular}{l} 
Input \\
Attenuator \\
Sum
\end{tabular} & 3045 & kOhm & 3000 & 100 & 10000 & \begin{tabular}{l} 
Sets scaling for input nominal value. This \\
is the sum of the two input resistors per \\
phase.
\end{tabular} \\
\hline
\end{tabular}

Note: Many of the parameters in the Output Processing section are automatically set up during autotuning. They are presented here so the user can do additional fine-tuning of the drive. Additional fine-tuning is not generally required, but may be needed in special circumstances.

Table 3-25. Output Processing Menu (3050)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Low freq comp & 3060 & \multicolumn{4}{|l|}{Submenu} & Menu contains parameters that effect motor flux calculation. See Table 3-26. \\
\hline Flux control & 3100 & \multicolumn{4}{|l|}{Submenu} & This menu contains the flux control parameters. See Table 3-27. \\
\hline Speed loop & 3200 & \multicolumn{4}{|l|}{Submenu} & This menu contains the speed loop parameters. See Table 3-28. \\
\hline Current loop & 3250 & \multicolumn{4}{|l|}{Submenu} & This menu contains the current loop parameters. See Table 3-29. \\
\hline Stator resis est & 3300 & \multicolumn{4}{|l|}{Submenu} & \begin{tabular}{l}
This menu contains the stator resistance estimator parameters. \\
See Table 3-30.
\end{tabular} \\
\hline Braking & 3350 & \multicolumn{4}{|l|}{Submenu} & This menu contains the dual frequency braking parameters. See Table 3-31. \\
\hline PLL prop gain & 3420 & & 188.0 & 1.0 & 500.0 & Proportional gain of output phaselocked loop. This value is updated by the control and cannot be changed. \\
\hline PLL integral gain & 3430 & & 2760.0 & 0.0 & 12000.0 & Integral gain of output phase-locked loop. This value is updated only by the control and cannot be changed. \\
\hline Output current scaler & 3440 & & 1.0 & 0.0 & 2.0 & Scaling for output current feedbacks. Normally should be set to 1.0 . \\
\hline Output voltage scaler & 3450 & & 1.0 & 0.0 & 2.0 & Scaling for output voltage feedbacks. Normally should be set to 1.0 . \\
\hline Output attenuator sum & 3455 & kOhms & 3000 & 100 & 10000 & Scaling for the output nominal value. \\
\hline
\end{tabular}

Table 3-26. Low Frequency Compensation Menu (3060)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & Min & Max & \multicolumn{1}{|c|}{ Description } \\
\hline Low Freq Wo & 3070 & Rad & 12.566 & 0.0 & 100.0 & \begin{tabular}{l} 
Pole of hardware RC integrator. This is the \\
setting for the -00 board. For the 02 board \\
the value should be 37.859.
\end{tabular} \\
\hline Low freq com gain & 3080 & & 1.0 & 0.5 & 5.0 & \begin{tabular}{l} 
Low Frequency compensation gain for \\
scaling estimated flux.
\end{tabular} \\
\cline { 4 - 6 } S/W compensator pole & 3090 & & 2.0 & 0.5 & 12.6 & \begin{tabular}{l} 
Pole of software integrator used for flux \\
estimation.
\end{tabular} \\
\hline
\end{tabular}

Table 3-27. Flux Control Menu (3100)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Flux reg prop gain & 3110 & & 1.72 & 0.0 & 10.0 & Flux PI regulator proportional gain term \\
\hline Flux reg integral gain & 3120 & & 1.0 & 0.0 & 1200.0 & Flux PI regulator integral gain term \\
\hline Flux Filter Time Const & 3130 & sec & 0.0667 & 0.0 & 10.0 & Time constant of the low pass filter used on the flux error. \\
\hline Flux demand & 3150 & per unit & 1.0 & 0.0 & 10.0 & Sets the flux demand (or desired Volts-perHertz ratio) in per unit. \\
\hline Flux ramp rate & 3160 & sec & 0.5 & 0.0 & 5.0 & Sets the ramp time to go from zero to rated flux. This time establishes the time to magnetize the motor. \\
\hline Energy saver min flux & 3170 & & 100.0 & 10.0 & 125.0 & This parameter sets the lowest value of flux (as a percentage of Rated Motor Flux) that the drive will apply to an unloaded motor. Energy Saver is enabled if a value that is less than the Flux Demand is entered. The control establishes the amount of flux (or motor voltage) that minimizes the losses in the motor. \\
\hline Ids DC & 3190 & \% & 10.0 & 1.0 & 25.0 & DC current level used when stator resistance estimator is enabled. \\
\hline
\end{tabular}

Table 3-28. Speed Loop Menu (3200)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & Min & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{c|}{ Description } \\
\hline Speed reg prop gain & 3210 & & 0.02 & 0.0 & 1.0 & \begin{tabular}{l} 
Speed PI regulator proportional gain \\
term. Automatically calculated after \\
Auto Tuning stage 2.
\end{tabular} \\
\hline \begin{tabular}{l} 
Speed reg integral \\
gain
\end{tabular} & 3220 & & 0.046 & 0.0 & 1200.0 & \begin{tabular}{l} 
Speed PI regulator integral gain term. \\
Automatically calculated after Auto \\
Tuning stage 2.
\end{tabular} \\
\hline Speed reg Kf gain & 3230 & & 0.6 & 0.1 & 1.0 & \begin{tabular}{l} 
Allows a smooth variation of the speed \\
regulator from a simple PI (Kf =1.0) to \\
a double speed loop (Kf=0.5).
\end{tabular} \\
\hline \begin{tabular}{l} 
Speed filter time \\
const
\end{tabular} & 3240 & & 0.0488 & 0.0 & 10.0 & \begin{tabular}{l} 
Time constant of the low pass filter \\
used on the speed error. Automatically \\
calculated after Auto Tuning stage 2.
\end{tabular} \\
\hline Droop & & & 0.0 & 0.0 & 10.0 & \begin{tabular}{l} 
Droop in percent of rated speed at full \\
load current.
\end{tabular} \\
\hline
\end{tabular}

Table 3-29. Current Loop Menu (3250)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & Min & \multicolumn{1}{|c|}{ Max } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
Current reg prop \\
gain
\end{tabular} & 3260 & & 0.5 & 0.0 & 5.0 & \begin{tabular}{l} 
Current PI regulator proportional gain \\
term.*
\end{tabular} \\
\hline \begin{tabular}{l} 
Current reg integ \\
gain
\end{tabular} & 3270 & & 25.0 & 0.0 & 6000.0 & \begin{tabular}{l} 
Current PI regulator integral gain \\
term.*
\end{tabular} \\
\hline \begin{tabular}{l} 
Prop gain during \\
brake
\end{tabular} & 3280 & & 0.16 & 0.0 & 5.0 & \begin{tabular}{l} 
Current PI regulator proportional \\
during dual frequency braking.*
\end{tabular} \\
\hline \begin{tabular}{l} 
Integ gain during \\
brake
\end{tabular} & 3290 & & 9.6 & 0.0 & 6000.0 & \begin{tabular}{l} 
Current PI regulator integral gain term \\
during dual frequency braking.*
\end{tabular} \\
\hline
\end{tabular}
* All values in this table are automatically updated after AutoTuning stage 1.

Table 3-30. Stator Resistance Estimator Menu (3300)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & Min & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{|c|}{ Description } \\
\hline Stator resistance est & 3310 & & Off & & & \begin{tabular}{l} 
This parameter enables or disables \\
the stator resistance estimator \\
function. \\
Off \\
On
\end{tabular} \\
\hline Stator resis filter gain & 3320 & & 0.0 & 0.0 & 1.0 & Stator resistance estimator filter gain. \\
\hline Stator resis integ gain & 3330 & & 0.002 & 0.0 & 1.0 & \begin{tabular}{l} 
Stator resistance estimator integral \\
gain.
\end{tabular} \\
\hline
\end{tabular}

Table 3-31. Braking Menu (3350)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & \multicolumn{1}{|c|}{ Units } & Default & Min & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{c|}{ Description } \\
\hline Enable braking & 3360 & & Off & & & \(\begin{array}{l}\text { Enable or disable dual frequency braking } \\
\text { (DFB). User must be aware of torque } \\
\text { pulsations and motor heating produced } \\
\text { with this method. }\end{array}\) \\
\hline \(\begin{array}{l}\text { Pulsation } \\
\text { frequency }\end{array}\) & 3370 & Hz & 275.0 & 100.0 & 5000.0 & \(\begin{array}{l}\text { Torque pulsation frequency when dual- } \\
\text { frequency braking is enabled. Adjust for } \\
\text { a different torque pulsation frequency. } \\
\text { The control always recalculates the } \\
\text { desired value due to limited resolution. }\end{array}\) \\
Can be adjusted to avoid mechanical
\end{tabular}\(]\)\begin{tabular}{l} 
resonance frequencies.
\end{tabular}

Note: The need for braking capacity is addressed through a feature known as dual frequency braking. This feature essentially creates a braking function by means of injecting a counter-rotating flux vector at well beyond the slip of the machine. This generates additional losses in the motor. The injection frequency is adjustable via a menu setting to allow critical frequencies (i.e. mechanical resonances) to be avoided.

Table 3-32. Control Loop Test Menu (3460)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & \multicolumn{1}{|c|}{ Units } & Default & Min & \multicolumn{1}{|c|}{ Max } & \multicolumn{1}{c|}{ Description } \\
\hline Test type & 3470 & & Speed & & & \begin{tabular}{l} 
This pick list selects the type of loop \\
test desired (speed or torque). \\
Speed \\
Torque
\end{tabular} \\
\hline Test positive & 3480 & \(\%\) & 30.0 & -200.0 & 200.0 & \begin{tabular}{l} 
Positive going limit of the test \\
waveform.
\end{tabular} \\
\hline Test negative & 3490 & \(\%\) & -30.0 & -200.0 & 200.0 & \begin{tabular}{l} 
Negative going limit of the test \\
waveform.
\end{tabular} \\
\hline Test time & 3500 & sec & 30.1 & 0.0 & 500.0 & \begin{tabular}{l} 
Sets the time for the drive to spend in \\
either the positive or negative test \\
setting.
\end{tabular} \\
\hline Begin test & 3510 & Function & & \begin{tabular}{l} 
This Function starts the speed or \\
torque loop test.
\end{tabular} \\
\hline Stop test & 3520 & Function & & \begin{tabular}{l} 
This function stops the speed or \\
torque loop test.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{3.3.4 Auto Menu (4) Options}

The Auto Menu (4) consists of the following menu options:
- \(\quad\) Speed Profile Menu (4000)
- Analog Input Menu (4090)
- Analog Outputs Menu (4660)
- Speed Setpoint Menu (4240)
- PID Select Menu (4350)
- Comparator Setup Menu (4800)

These menus are explained in the tables that follow.

Table 3-33. Speed Profile Menu (4000)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & Min & Max & \multicolumn{1}{c|}{ Description } \\
\hline Entry point & 4010 & \(\%\) & 0.0 & 0.0 & 200.0 & \begin{tabular}{l} 
Sets the \% of speed cmd at which the drive \\
begins following the speed cmd.
\end{tabular} \\
\hline Exit point & 4020 & \(\%\) & 150.0 & 0.0 & 200.0 & \begin{tabular}{l} 
Sets the \% of speed cmd at which the drive \\
stops following the speed cmd.
\end{tabular} \\
\hline Entry speed & 4030 & \(\%\) & 0.0 & 0.0 & 200.0 & \begin{tabular}{l} 
Sets the speed that the drive accelerates to \\
when given a start command when the \\
speed profile function is enabled.
\end{tabular} \\
\hline Exit speed & 4040 & \(\%\) & 150.0 & 0.0 & 200.0 & \begin{tabular}{l} 
Sets the speed that the drive reaches at the \\
exit point.
\end{tabular} \\
\hline Auto off & 4050 & \(\%\) & 0.0 & 0.0 & 100.0 & \begin{tabular}{l} 
Sets the level of cmd at which the drive \\
turns off.
\end{tabular} \\
\hline Delay off & 4060 & sec & 0.5 & 0.5 & 100.0 & \begin{tabular}{l} 
Sets a time delay between the time the cmd \\
reaches the Auto Off point and the time the \\
drive shuts off.
\end{tabular} \\
\hline Auto on & 4070 & \(\%\) & 0.0 & 0.0 & 100.0 & \begin{tabular}{l} 
Sets the level of cmd at which the drive \\
turns on.
\end{tabular} \\
\hline Delay on & 4080 & sec & 0.5 & 0.5 & 100.0 & \begin{tabular}{l} 
Sets a time delay between the time the cmd \\
reaches the Auto On point and the time the \\
drive starts.
\end{tabular} \\
\hline
\end{tabular}

Figure 3-23 illustrates the advantages of using speed profiling control. This method of control provides an increased "usable control range" for the motor. Ultimately, the speed of the motor can be adjusted in much finer increments when speed profiling is used.



Figure 3-23. Advantages of Using Speed Profiling Control

Table 3-34. Analog Input Menu (4090)
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline Analog input \#1 & 4100 & Submenu & Menu for Analog input \#1. See Table 3-35. \\
\hline Analog input \#2 & 4170 & Submenu & Menu for Analog input \#2. See Table 3-36. \\
\hline Auxiliary input \#1 & 4500 & Submenu & Menu for Auxiliary input \#1. See Table 3-38. \\
\hline Auxiliary input \#2 & 4580 & Submenu & Menu for Auxiliary input \#2. See Table 3-39. \\
\hline
\end{tabular}

Note: When an external PID controller is used as the speed reference, Analog Input 1 is used for PID command, and Analog Input 2 is used for PID feedback. See Tables 3-35 and 3-36 for scaling information.

Table 3-35. Analog Input \#1 Menu (4100)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Source & \[
4105
\] & & Off & & & \begin{tabular}{l}
This parameter sets the input source for analog input \#1. Can be any one of 24 External Analog Inputs. \\
Off \\
Ext 1-24
\end{tabular} \\
\hline Type & 4110 & & \(4-20 \mathrm{~mA}\) & & & This parameter sets the operational mode for analog input 1.
\[
\begin{aligned}
& 0-20 \mathrm{~mA} \\
& 4-20 \mathrm{~mA} \\
& 0-10 \mathrm{~V}
\end{aligned}
\] \\
\hline Min input & 4120 & \% & 0.0 & 0.0 & 200.0 & Minimum Analog input \\
\hline Max input & 4130 & \% & 100.0 & 0.0 & 200.0 & Maximum Analog input \\
\hline Loss point threshold & 4140 & \% & 15.0 & 0.0 & 100.0 & Threshold where loss of signal action is activated. Entered as percentage of upper range for any type. (does not differentiate). \\
\hline Loss of signal action & 4150 & & Preset & & & \begin{tabular}{l}
Select loss of signal action. \\
Preset \\
Maintain \\
Stop
\end{tabular} \\
\hline Loss of signal setpoint & 4160 & \% & 20.0 & 0.0 & 200.0 & Loss of signal preset speed. \\
\hline
\end{tabular}

Table 3-36. Analog Input \#2 Menu (4170)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Source & \[
4175
\] & & Off & & & \begin{tabular}{l}
This parameter sets the input source for analog input \#2. \\
Off \\
Ext 1-3
\end{tabular} \\
\hline Type & 4180 & & \[
\begin{aligned}
& 4- \\
& 20 \mathrm{~mA}
\end{aligned}
\] & & & This parameter sets the operational mode for analog input 2.
\[
\begin{aligned}
& 0-20 \mathrm{~mA} \\
& 4-20 \mathrm{~mA} \\
& 0-10 \mathrm{~V}
\end{aligned}
\] \\
\hline Min input & 4190 & \% & 0.0 & 0.0 & 200.0 & Minimum Analog input \\
\hline Max input & 4200 & \% & 100.0 & 0.0 & 200.0 & Maximum Analog input \\
\hline Loss point threshold & 4210 & \% & 15.0 & 0.0 & 100.0 & Threshold where loss of signal action is activated. Entered as percent of upper range for any type. (does not differentiate). \\
\hline Loss of signal action & 4220 & & Preset & & & \begin{tabular}{l}
Select loss of signal action. \\
Preset \\
Maintain \\
Stop
\end{tabular} \\
\hline Loss of signal setpoint & 4230 & \% & 20.0 & 0.0 & 200.0 & Loss of signal preset speed. \\
\hline
\end{tabular}

Note: When an external PID controller is used as the speed reference, Analog Input 1 is used for PID command, and Analog Input 2 is used for PID feedback. See Tables 3-35 and 3-36 for scaling information.

Table 3-37. Analog Input \#3 Menu (4232)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & Min & Max & \multicolumn{1}{c|}{ Description } \\
\hline Source & 4233 & & Off & & & \begin{tabular}{l} 
This parameter sets the input source for \\
analog input \#1. \\
Off \\
Ext 1-24
\end{tabular} \\
\hline Type & 4234 & & \begin{tabular}{l}
\(4-\) \\
20 mA
\end{tabular} & & \begin{tabular}{l} 
This parameter sets the operational mode \\
for analog input 1. \\
\(0-20 \mathrm{~mA}\) \\
\(4-20 \mathrm{~mA}\)
\end{tabular} \\
\hline Min input & 4235 & \(\%\) & 0.0 & 0.0 & 200.0 & \begin{tabular}{l} 
Minimum Analog input \\
\(0-10 \mathrm{~V}\)
\end{tabular} \\
\hline Max input & 4236 & \(\%\) & 100.0 & 0.0 & 200.0 & \begin{tabular}{l} 
Maximum Analog input
\end{tabular} \\
\hline \begin{tabular}{l} 
Loss point \\
threshold
\end{tabular} & 4237 & \(\%\) & 15.0 & 0.0 & 100.0 & \begin{tabular}{l} 
Threshold where loss of signal action is \\
activated. Entered as percentage of upper \\
range for any type (does not differentiate).
\end{tabular} \\
\hline \begin{tabular}{l} 
Loss of signal \\
action
\end{tabular} & 4238 & & Preset & & & \\
\hline
\end{tabular}

Table 3-38. Auxiliary Input \#1 Menu (4500)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Source & \[
4510
\] & & Off & & & \begin{tabular}{l}
Auxiliary input source \\
Off \\
Ext 1-3
\end{tabular} \\
\hline Type & 4520 & & \[
\begin{aligned}
& 4- \\
& 20 \mathrm{~mA}
\end{aligned}
\] & & & This parameter sets the operational mode for auxiliary input 1.
\[
\begin{aligned}
& 0-20 \mathrm{~mA} \\
& 4-20 \mathrm{~mA} \\
& 0-10 \mathrm{~V}
\end{aligned}
\] \\
\hline Min input & 4530 & \% & 0.0 & 0.0 & 200.0 & Minimum auxiliary input. \\
\hline Max input & 4540 & \% & 100.0 & 0.0 & 200.0 & Maximum auxiliary input. \\
\hline Loss point threshold & 4550 & \% & 15.0 & 0.0 & \[
100.0
\] & Threshold where loss of signal action is activated. Entered as percentage of upper range for any type (does not differentiate) \\
\hline Loss of signal action & 4560 & & Preset & & & \begin{tabular}{l}
Select loss of signal action. \\
Preset \\
Maintain \\
Stop
\end{tabular} \\
\hline Loss of signal setpoint & 4570 & \% & 20.0 & 0.0 & 200.0 & Loss of signal preset speed. \\
\hline
\end{tabular}

Table 3-39. Auxiliary Input \#2 Menu (4580)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & Min & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{c|}{ Description } \\
\hline Source & 4590 & & Off & & & \begin{tabular}{l} 
Auxiliary input source \\
Off \\
Type
\end{tabular} \\
& \multirow{2}{*}{\begin{tabular}{l} 
Ext 1-3
\end{tabular}} \\
\hline Min input & & & \begin{tabular}{l}
\(4-\) \\
20 mA
\end{tabular} & & & \begin{tabular}{l} 
This parameter sets the operational \\
mode for analog input 1.
\end{tabular} \\
\hline Max input & 4610 & \(\%\) & 0.0 & 0.0 & 200.0 & Minimum auxiliary input.
\end{tabular}

Table 3-40. Analog Outputs Menu (4660)
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & \multicolumn{1}{|c|}{ Units } & \multicolumn{1}{c|}{ Default } & \multicolumn{1}{c|}{ Min } & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
Analog Output \\
\(\# n *\)
\end{tabular} & \(4660+4(n-1)+1\) & Submenu & \begin{tabular}{l} 
ID of submenu for Analog \\
Output \#n (n=1-16).
\end{tabular} \\
\hline Analog variable & \(4660+4(n-1)+2\) & & \begin{tabular}{l} 
Total \\
Current
\end{tabular} & & \begin{tabular}{l} 
This variable sets the input \\
source for analog output \#n. \\
See Table 3-41.
\end{tabular} \\
\hline \begin{tabular}{l} 
Output module \\
type
\end{tabular} & \(4660+4(n-1)+3\) & & Unip & & & \begin{tabular}{l} 
Sets the output type for the \\
module. \\
Unip (Unipolar)
\end{tabular} \\
\hline Full range & \(4660+4(n-1)+4\) & \(\%\) & 0.0 & 0.0 & 300.0 & \begin{tabular}{l} 
Scales the output range of the \\
variable selected.
\end{tabular} \\
\hline
\end{tabular}
* Each analog output parameter, 1 to 16, contains a submenu consisting of Analog variable, Output module type, and Full range. The formulas presented in the ID column will give you the direct ID number for the corresponding Analog output. For example, for Analog output 4, the Analog output ID will be 4660+4(4-1)+1, or 4673. The Analog variable ID for Analog output 4 will be \(4660+4(4-1)+2\), or 4674 , etc.

Table 3-41. Pick list for Analog Variable parameters (all units are \%)
\begin{tabular}{|l|l|l|l|}
\hline Motor Voltage & Total Current & Average Power & Analog Input \#1 \\
\hline Motor Speed & Speed Demand & Speed Reference & Analog Input \#2 \\
\hline Raw Flux Demand & Flux Reference & Current (RMS) & Analog Input \#3 \\
\hline Zero Sequence Av & Neg Sequence D & Neg Sequence Q & Analog Input \#4 \\
\hline Input Frequency & Input Power Avg & Input Pwr Factor & Analog Input \#5 \\
\hline Ah Harmonic & Bh Harmonic & Total Harmonics & Analog Input \#6 \\
\hline Xfmr Therm Level & 1 Cycle Protect & Single Phase Cur & Analog Input \#7 \\
\hline Under Volt Limit & Out Neutral Volts & Synch Motor Field & Analog Input \#8 \\
\hline Motor Torque & Encoder Speed & Input KVAR & Drive Losses \\
\hline Excess React I & Droop & & \\
\hline
\end{tabular}

Table 3-42. Speed Setpoint Menu (4240)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Speed setpoint 1 & 4250 & rpm & 0 & -18000 & 18000 & Programmable speed setpoint that can be selected through an external contact and the system program. \\
\hline Speed setpoint 2 & 4260 & rpm & 0 & -18000 & 18000 & Programmable speed setpoint that can be selected through an external contact and the system program. \\
\hline Speed setpoint 3 & 4270 & rpm & 0 & -18000 & 18000 & Programmable speed setpoint that can be selected through an external contact and the system program. \\
\hline Speed setpoint 4 & 4280 & rpm & 0 & -18000 & 18000 & Programmable speed setpoint that can be selected through an external contact and the system program. \\
\hline Speed setpoint 5 & 4290 & rpm & 0 & -18000 & 18000 & Programmable speed setpoint that can be selected through an external contact and the system program. \\
\hline Speed setpoint 6 & 4300 & rpm & 0 & -18000 & 18000 & Programmable speed setpoint that can be selected through an external contact and the system program. \\
\hline Speed setpoint 7 & 4310 & rpm & 0 & -18000 & 18000 & Programmable speed setpoint that can be selected through an external contact and the system program. \\
\hline Speed setpoint 8 & 4320 & rpm & 0 & -18000 & 18000 & Programmable speed setpoint that can be selected through an external contact and the system program. \\
\hline Jog speed & 4330 & rpm & 0 & -18000 & 18000 & This parameter sets the drive jog speed. \\
\hline Safety setpoint & 4340 & rpm & 0 & -18000 & 18000 & Safety Override preset speed. \\
\hline
\end{tabular}

Table 3-43. Incremental Speed Setup Menu (4970)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & ID & Units & Default & Min & \multicolumn{1}{|c|}{ Max } & \multicolumn{1}{|c|}{ Description } \\
\hline Speed increment 1 & 4971 & \(\%\) & 1.0 & 0.0 & 200.0 & \begin{tabular}{l} 
When selected through the SOP it will \\
increase the speed demand by the \\
program amount.
\end{tabular} \\
\hline Speed decrement 1 & 4972 & \(\%\) & 1.0 & 0.0 & 200.0 & \begin{tabular}{l} 
When selected through the SOP it will \\
decrease the speed demand by the \\
program amount.
\end{tabular} \\
\hline Speed increment 2 & 4973 & \(\%\) & 5.0 & 0.0 & 200.0 & \begin{tabular}{l} 
When selected through the SOP it will \\
increase the speed demand by the \\
program amount.
\end{tabular} \\
\hline Speed decrement 2 & 4974 & \(\%\) & 5.0 & 0.0 & 200.0 & \begin{tabular}{l} 
When selected through the SOP it will \\
decrease the speed demand by the \\
program amount.
\end{tabular} \\
\hline Speed increment 3 & 4975 & \(\%\) & 10.0 & 0.0 & 200.0 & \begin{tabular}{l} 
When selected through the SOP it will \\
increase the speed demand by the \\
program amount.
\end{tabular} \\
\hline Speed decrement 3 & 4976 & \(\%\) & 10.0 & 0.0 & 200.0 & \begin{tabular}{l} 
When selected through the SOP it will \\
decrease the speed demand by the \\
program amount.
\end{tabular} \\
\hline
\end{tabular}

Table 3-44. PID Select Menu (4350)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & ID & Units & Default & \multicolumn{1}{|c|}{ Min } & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{|c|}{ Description } \\
\hline Prop gain & 4360 & & 0.39 & 0.0 & 98.996 & Sets the PID loop Proportional (P) gain. \\
\hline Integral gain & 4370 & & 0.39 & 0.0 & 98.996 & Sets the PID loop Integral (I) gain. \\
\hline Diff gain & 4380 & & 0.0 & 0.0 & 98.996 & Sets the PID loop Derivative (D) gain. \\
\hline Min clamp & 4390 & \(\%\) & 0.0 & -200.0 & 200.0 & \begin{tabular}{l} 
Sets the minimum value for the PID loop \\
integrator.
\end{tabular} \\
\hline Max clamp & 4400 & \(\%\) & 100.0 & -200.0 & 200.0 & \begin{tabular}{l} 
Sets the maximum value for the PID loop \\
integrator.
\end{tabular} \\
\hline Setpoint & 4410 & \(\%\) & 0.0 & -200.0 & 200.0 & \begin{tabular}{l} 
Sets a value to be used as the reference \\
setpoint for the external PID loop. The \\
value is set as a percent of full scale.
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
(a0)
Note: When an external PID controller is used as the speed reference, Analog Input 1 is used for PID command, and Analog Input 2 is used for PID feedback. See Tables 3-35 and 3-36 for scaling information.
}

Attention! The user is responsible for providing correct inputs for PDI command and feedback.

Table 3-45. Comparator Setup Menu (4800)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Submenu } & \multicolumn{1}{c|}{ Description } \\
\hline Comparator \(n\) Setup & \begin{tabular}{l} 
Submenus that contain 32 sets of comparators for custom use in the system program. \\
\\
\\
\\
\\
\\
\\
Each comparator set (Compare 1 through Compare 32) consists of three parameters \\
that are located in the comparator setup menus. Comparators are system program \\
flags (Comparator1_I through Comparator32_I ) which can be used anywhere \\
\\
\\
\\
within the system program environment to control software switches. Refer to \\
Table 3-46.
\end{tabular} \\
\hline
\end{tabular}

Table 3-46. Compare 1-32 Setup Menu Parameter Descriptions
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Menu Item } & \multicolumn{1}{c|}{ Default Value } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
Comp \(n\) A in variable select \\
(list) ( \(n=1-32\) )
\end{tabular} & Manual value & \begin{tabular}{l} 
"Comp \(n\) A" and "Comp \(n\) B" inputs can be selected from the \\
list in Table 3-47.
\end{tabular} \\
\hline \begin{tabular}{l} 
Comp \(n\) B in variable select \\
(list) ( \(n=1-32\) )
\end{tabular} & Manual value & \begin{tabular}{l} 
The comparator flag compar_n_f (where \(\boldsymbol{n}=1-16\) ) in the \\
system program is set true if "Comp \(n\) A in" \(>\) "Comp \(n\) B \\
in".
\end{tabular} \\
\hline Comp \(n\) manual value & \(0.0 \%\) & Min: -1,000\% Max: \(1,000 \%\)
\end{tabular}\(|\)\begin{tabular}{l} 
"Compare \(n "\) can be set to the following: \\
\begin{tabular}{l} 
Compare \(n\) type (list) (n=1- \\
\(32)\)
\end{tabular} \\
\begin{tabular}{l} 
'Mag' if \(n=1 ;\) \\
'Off' if \(n>1\)
\end{tabular} \\
\hline
\end{tabular}

Table 3-47. Variable Pick List for Comparator Setup Submenus
\begin{tabular}{|l|l|l|}
\hline Manual Value & \multicolumn{2}{|l}{} \\
\hline Analog Input 1 & Analog Input 13 & Motor speed \\
\hline Analog Input 2 & Analog Input 14 & Motor current \\
\hline Analog Input 3 & Analog Input 15 & Enter Manual Value \\
\hline Analog Input 4 & Analog Input 16 & Manual ID \\
\hline Analog Input 5 & Analog Input 17 & Max Avail Out Vlt \\
\hline Analog Input 6 & Analog Input 18 & Magnetizing Current Ref (Ids Ref) \\
\hline Analog Input 7 & Analog Input 19 & Magnetizing Current (Ids) \\
\hline Analog Input 8 & Analog Input 20 & Torque Current Ref (Iqs Ref) \\
\hline Analog Input 9 & Analog Input 21 & Torque Current (Iqs) \\
\hline Analog Input 10 & Analog Input 22 & Input frequency \\
\hline Analog Input 11 & Analog Input 23 & Manual ID Number \\
\hline Analog Input 12 & Analog Input 24 & \\
\hline
\end{tabular}

\subsection*{3.3.5 Main Menu (5) Options}

The Main Menu (5) consists of the following menu options:
- Motor Menu (1)
- Drive Menu (2)
- Stability Menu (3)
- Auto Menu (4)
- Log Control Menu (6)
- Drive Protect Menu (7)
- Meter Menu (8)
- Communications Menu (9)
- Security Edit Functions Menu (5000)
- Parameter Default/File Functions
- Language and Security Functions

The contents of submenus 1-4 have already been explained earlier in this chapter. The contents of submenus 6-9 are explained later in this chapter. All of these submenus can be accessed directly using the keypad or from the Main Menu (5). Refer to the appropriate sections elsewhere in this chapter for descriptions of menu options within these submenus.

Main Menu (5) functions and submenus are explained in the tables that follow.
Table 3-48. Main Menu (5) Options
\begin{tabular}{|c|c|c|c|}
\hline Parameter (ID) & ID & Type & Description \\
\hline Motor Menu & 1 & submenu & Provides access to the Motor Menu. See page 3-22. \\
\hline Drive Menu & 2 & submenu & Provides access to the Drive Menu. See page 3-26. \\
\hline Stability Menu & 3 & submenu & Provides access to the Stability Menu. See page 3-35. \\
\hline Auto Menu & 4 & submenu & Provides access to the Auto Menu. See page 3-25. \\
\hline Log Control & 6 & submenu & Provides access to the Log Control Menu. See page 3-54. \\
\hline Drive Protect Menu & 7 & submenu & Provides access to the Drive Protect Menu. See page 3-57. \\
\hline Meter Menu & 8 & submenu & Provides access to the Meter Menu. See page 3-59. \\
\hline Communications Menu & 9 & submenu & Provides access to the Communications Menu. See page 3-63. \\
\hline Security Edit Functions Menu & 5000 & submenu & This menu contains functions that are used to edit a menu item's security codes. See Table 3-49. \\
\hline Set Defaults to Current & 5045 & function & Used to set all default parameters to the current parameter settings. \\
\hline Reset to Defaults & 5050 & function & Used to reset all parameters to their factory defaults. \\
\hline Select Language & 5080 & pick list & Sets language for keypad. \\
\hline & & & English (default) \\
\hline & & & French \\
\hline & & & German \\
\hline & & & Spanish \\
\hline Change Security Codes & 5090 & function & Used to change the security codes for the various security levels used by the drive. Default codes are shown in Table 3-51. \\
\hline Enter Security Code & 5500 & function & Used to enter the security code to set the clearance level for access. \\
\hline
\end{tabular}

An electronic security code is provided to limit unauthorized access to various parameters within the drive equipment. The default factory settings for parameter security codes is as follows:

Table 3-49. Security Edit Functions Menu (5000)
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{l} 
Change security \\
level
\end{tabular} & 5010 & Function & \begin{tabular}{l} 
This function is used to change a menu item's security level. When \\
active, an "x" will appear as the first character on the second line of \\
the display. Please scroll past Main(5) into another menu. The \\
current security level will appear as the last character on the second \\
line of the display. Press [ENTER] to edit the security level for the \\
ID that is shown. Choose among levels 0,5, 7, or 8. See \\
Table 3-50.
\end{tabular} \\
\hline \begin{tabular}{l} 
Drive running \\
inhibit
\end{tabular} & 5020 & Function & \begin{tabular}{l} 
This function is used to change a menu item's run inhibit. When \\
active an " \(x "\) will appear as the first character on the second line of \\
the display. The current run inhibit state will appear as the last \\
character on the second line of the display. See Table 3-50.
\end{tabular} \\
\hline
\end{tabular}

Table 3-50. Security Edit Menu Function Descriptions (5010, 5020)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ ID } & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Description } \\
\hline 5010 & \begin{tabular}{l} 
Change Security \\
Level \\
Level \(=0,5,7,8\)
\end{tabular} & \begin{tabular}{l} 
"Change security level" prohibits access to menu or menu items until \\
"enter security level" is set to that level or higher.
\end{tabular} \\
Sets the level of security on that particular menu item.
\end{tabular}


CAUTION!-Do not change the Drive Running Inhibit (5020) setting of any parameter unless you are completely certain that the change is safe. Changes may result in massive environmental and property destruction, injuries, and/or loss of life.

When you select either of these functions, the display returns to the top of the Main Menu (5), allowing you to navigate the menu system as you normally would. When the menu item to be changed is displayed, press the ENTER key to edit the security level, An asterisk character (*) appears on the left of the display to indicate that the menu or submenu is in the security edit mode, and not in normal mode.

Press the CANCEL key to exit the security edit mode.
Table 3-51. Default Security Access Levels and Access Codes
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Access Level } & \multicolumn{1}{|c|}{ Default Access Code } & \multicolumn{1}{c|}{ Level of Security } \\
\hline 0 & None & Minimum Access \\
5 & 5555 & Startup Access for Service and/or Startup \\
\hline 7 & 7777 & Advanced Access for Troubleshooting \\
\hline 8 & Proprietary & Factory Use Only \\
\hline
\end{tabular}

Note that menu options above security level 5 are more technical in nature and are typically used by Siemens personnel during commissioning or servicing.

The Security Edit Menu (5000) can be accessed to change the factory default security settings. When the Harmony is configured for security level 7 access, the Security Edit Menu (5000) is visible from the Main Menu (5). Functions within this menu are used to set the security levels for menu items, to "hide" menu items, and to prevent changes to specific parameters. The Security Edit Functions Menu (5000) contains security functions described in Table 3-51.

\subsection*{3.3.6 Log Control Menu (6) Options}

The Log Control Menu (6) consists of the following menu options:
- Event Log Menu (6180)
- Alarm/Fault Log Menu (6210)
- Historic Log Menu (6250)

The contents of these menus are explained in the tables that follow.
Table 3-52. Event Log Menu (6180)
The event log is stored in a file on the CompactFLASH. The maximum file size is 65Kbytes. The file is overwritten once the maximum size is reached.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & Min & Max & \multicolumn{1}{c|}{ Description } \\
\hline Upload event log & 6190 & \multicolumn{3}{c|}{ Function } & \begin{tabular}{l} 
Upload the event log via the RS232 \\
serial port.
\end{tabular} \\
\hline Clear event log & 6200 & \multicolumn{4}{|c|}{ Function } & Used to clear the event log. \\
\hline
\end{tabular}

Table 3-53. Alarm/Fault Log Menu (6210)
\begin{tabular}{|l|c|c|c|c|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & ID & Units & Default & Min & Max \\
\hline \begin{tabular}{l} 
Alarm/Fault log \\
display
\end{tabular} & 6220 & \multicolumn{3}{c|}{ Function } & Description \\
\hline \begin{tabular}{l} 
Alarm/Fault log \\
upload
\end{tabular} & 6230 & Used to display the fault log. \\
\hline \begin{tabular}{l} 
Alarm/Fault log \\
clear
\end{tabular} & 6240 & Function & Upload the fault log via the RS232 serial port. \\
\hline
\end{tabular}

Table 3-54. Historic Log Menu (6250)
The historic log is stored in non-volatile battery backed up RAM. Seventy-eight "snapshots" are recorded at the slow cycle update rate, 58 before a fault occurs and 20 after. If the "Store in event log" is "On", several historical logs can be stored. The maximum number is limited by the event log size (512Kbytes).
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & \multicolumn{1}{|c|}{ Default } & \multicolumn{1}{c|}{ Description } \\
\hline Store in event log & 6255 & On & When selected, the Historical log is stored in the event log \\
Historic log variable 1 & 6260 & Spd Ref & \begin{tabular}{l} 
Select the 1st variable for the historic log. See Table 3-55 for \\
pick list variables.
\end{tabular} \\
\hline Historic log variable 2 & 6270 & Trq I Cmd & \begin{tabular}{l} 
Select the 2nd variable for the historic log. See Table 3-55 for \\
pick list variables.
\end{tabular} \\
\hline Historic log variable 3 & 6280 & Mtr Flux & \begin{tabular}{l} 
Select the 3rd variable for the historic log. See Table 3-55 for \\
pick list variables.
\end{tabular} \\
\hline Historic log variable 4 & 6290 & Pwr Out & \begin{tabular}{l} 
Select the 4th variable for the historic log. See Table 3-55 for \\
pick list variables.
\end{tabular} \\
\hline Historic log variable 5 & 6300 & \begin{tabular}{l} 
I Total \\
Out
\end{tabular} & \begin{tabular}{l} 
Select the 5th variable for the historic log. See Table 3-55 for \\
pick list variables.
\end{tabular} \\
\hline Historic log variable 6 & 6310 & \begin{tabular}{l} 
Mag I \\
Fdbk
\end{tabular} & \begin{tabular}{l} 
Select the 6th variable for the historic log. See Table 3-55 for \\
pick list variables.
\end{tabular} \\
\hline Historic log variable 7 & 6320 & Mtr Flux & \begin{tabular}{l} 
Select the 7th variable for the historic log. See Table 3-55 for \\
pick list variables.
\end{tabular} \\
\hline Historic log upload & 6330 & & \begin{tabular}{l} 
Upload Historic log to serial port. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Table 3-55. Pick List Variables for Historic Log (all units are \%)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Abbreviation } & \multicolumn{1}{c|}{ Description } \\
\hline Mtr Spd & Motor speed \\
\hline Spd Ref & Speed reference \\
\hline Spd Dmd & Raw Speed Demand \\
\hline Trq I Cmd & Torque Current Command \\
\hline Trq I Fdbk & Torque Current Feedback \\
\hline Mag I Cmd & Magnetizing Current Command \\
\hline Mag I Fdbk & Magnetizing Current Feedback \\
\hline I Total Out & Total Motor Current \\
\hline Mtr Volt & Motor Voltage \\
\hline Mtr Flux & Line Voltage Available \\
\hline V Avail & Line Voltage RMS \\
\hline V Avail RMS & Output Power \\
\hline Pwr Out & Output Neutral Volts \\
\hline V Neutral & Total Input Current \\
\hline I Total In & Input Power \\
\hline Pwr In & Input Frequency \\
\hline Freq In & Input reactive power PU \\
\hline KVAR In & Excessive input reactive current (above limit) PU \\
\hline Xcess I Rct & Output Frequency PU \\
\hline Freq Out & Internal drive power losses in PU input power \\
\hline Drv Loss & Speed Droop PU \\
\hline Droop & \\
\hline & \\
\hline
\end{tabular}

Note: See Appendix D for Historical Log Fault word decoder.

\subsection*{3.3.7 Protect Menu (7) Options}

The Drive Protect Menu (7) consists of the following menu options:
- Input Protect Menu (7000)
- \(\quad\) Single Phasing Menu (7010)

These menus are explained in tables that follow.

Table 3-56. Drive Protect Menu (7) Parameters
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Input Protection & 7000 & \multicolumn{4}{|c|}{Submenu} & Input protection parameters. See Table 3-57. \\
\hline Drive IOC Setpoint & 7110 & \% & 150.0 & 50.0 & 200.0 & Drive instantaneous overcurrent setpoint (as a percentage of drive output rating). \\
\hline Cell Overload Level & \[
7112
\] & \% & \[
100.0
\] & 100.0 & 150.0 & Cell current overload (as a percentage of drive output rating) allowed for 1 minute out of every 10 minutes. \\
\hline Auto Reset Enable & 7120 & & No & & & Enables the reset of the Drive after a fault. \\
\hline Auto Reset Time & 7130 & sec & \[
1
\] & 0 & \[
120
\] & Adjusts the time between the fault and its automatic reset. \\
\hline Auto Reset Attempts & 7140 & & 4 & 1 & 10 & The number of attempts a drive will be reset before a permanent shutdown. \\
\hline Auto Reset Memory Time & 7150 & sec & 10 & 1 & 1000 & The amount of time between faults that will clear the attempts counter. \\
\hline Fault Reset & 7160 & & funct & & & Issues a Drive fault reset when selected. \\
\hline
\end{tabular}

Table 3-57. Input Protect Menu (7000)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Single phasing & 7010 & \multicolumn{4}{|c|}{Submenu} & Single phasing protection parameters. See Table 3-58. \\
\hline Undervoltage prop gain & 7060 & & 0.0 & 0.0 & 10.0 & Under voltage PI regulator proportional gain term. \\
\hline Undervoltage integ gain & 7070 & & 0.001 & 0.0 & 1.0 & Undervoltage PI regulator integral gain term. \\
\hline 1 Cyc Protect integ gain & 7080 & & 0.0025 & 0.0 & 1.0 & Gain of integral regulator for detecting excessive input reactive current. Output of this regulator is used to fault the drive in case high reactive currents flow in the input (other than the instant when MV is applied to the drive). Adjust the gain to change the response to high reactive currents. \\
\hline 1 Cycle Protect Limit & 7081 & \% & 50.0 & 0.0 & 100.0 & Integrator output level at which drive issues a 1 Cycle Protect Fault. \\
\hline Xformer tap setting & 7050 & \% & 0 & & & Choose from the \(\{-5,0,+5 \%\}\) settings to match transformer tap setting. \\
\hline Xformer thermal gain & 7090 & & 0.0133 & 0.0 & 1.0 & Gain of integral regulator to limit input current to \(105 \%\) of its rated value. \\
\hline Xformer protection const & 7100 & & 0.5 & 0.0 & 10.0 & Gain to adjust model of input transformer. Use the default value of 0.5 . \\
\hline Phase Imbalance Limit & 7105 & \% & 40.0 & 0.0 & 100.0 & Input current level (as a percent of Rated Input Current) above which Input Phase Imbalance Alarm is issued. \\
\hline Ground Fault Limit & 7106 & \% & 40.0 & 0.0 & 100.0 & Level above which drive issues an Input Ground Fault Alarm. \\
\hline Ground Fault Time Const & 7107 & sec & 0.2 & 0.001 & 2.0 & Time constant of filter used for averaging input neutral voltage. \\
\hline
\end{tabular}

Table 3-58. Single Phasing Menu (7010)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & Min & Max & \multicolumn{1}{|c|}{ Description } \\
\hline SPD prop gain & 7020 & & 0.0 & 0.0 & 10.0 & \begin{tabular}{l} 
Single phase detector PI regulator \\
proportional gain term.
\end{tabular} \\
\hline SPD integral gain & 7030 & & 0.001 & 0.0 & 1.0 & \begin{tabular}{l} 
Single phase detector PI regulator integral \\
gain term.
\end{tabular} \\
\hline SPD threshold & 7040 & \(\%\) & 50.0 & 0.0 & 100.0 & \begin{tabular}{l} 
Regulator output level below which an \\
alarm is generated
\end{tabular} \\
\hline
\end{tabular}

\subsection*{3.3.8 Meter Menu (8) Options}

The Meter Menu (8) consists of the following menu options:
- Display Parameters Menu (8000)
- Hour Meter Setup Menu (8010)
- General Drive Parameters Menu (Set Time, Software Version, Language, Output Units)
- Input Harmonics Menu (8140)

These menus are explained in tables that follow.
Table 3-59. Meter (8) General Drive Parameters
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline \begin{tabular}{l}
Display Parameters \\
Hour Meter Setup \\
Input Harmonics
\end{tabular} & \[
\begin{aligned}
& 8000 \\
& 8010 \\
& 8140
\end{aligned}
\] & & Sub
Sub
Sub & & & \begin{tabular}{l}
This menu contains display parameters. See Table 3-60. \\
This menu contains hour meter setup. See Table 3-62. \\
This menu contains input harmonics. See Table 3-63.
\end{tabular} \\
\hline \begin{tabular}{l}
Fault Display Override \\
Set the clock time
\end{tabular} & \[
\begin{aligned}
& 8200 \\
& 8080
\end{aligned}
\] & & Off & Function & & Enables or disables the display of Fault/Alarm messages on the keypad. Used to change the time and date of the real-time clock chip. \\
\hline Display version number & 8090 & \multicolumn{4}{|c|}{Function} & Displays the installed version of firmware. \\
\hline Customer order & 8100 & & 0 & 0 & \[
\begin{aligned}
& 999999 \\
& 9
\end{aligned}
\] & Customer order number (7 decimals) \\
\hline Customer drive & 8110 & & 1 & 0 & 20 & Customer drive number. \\
\hline
\end{tabular}

Table 3-60. Display Parameters Menu (8000)
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & \multicolumn{1}{|c|}{ Default } & \multicolumn{1}{c|}{ Description } \\
\hline Status variable 1 & 8001 & DEMD & \begin{tabular}{l} 
Select variable 1 to be displayed on the LCD \\
display. Pick List - See Table 3-61.
\end{tabular} \\
\hline Status variable 2 & 8002 & \%SPD & \begin{tabular}{l} 
Select variable 2 to be displayed on the LCD \\
display. Pick List - See Table 3-61.
\end{tabular} \\
\hline Status variable 3 & 8003 & VLTS & \begin{tabular}{l} 
Select variable 3 to be displayed on the LCD \\
display. Pick List - See Table 3-61.
\end{tabular} \\
\hline Status variable 4 & 8004 & RPM & \begin{tabular}{l} 
Select variable 4 to be displayed on the LCD \\
display. Pick List - See Table 3-61.
\end{tabular} \\
\hline
\end{tabular}

This menu contains the pick lists to select the variables to be displayed on the front panel default display.

Note: Table 3-61 contains name, abbreviation, display and variable columns of standard pick list variables (used in the Historic Log Menu, the Display Variable Menu, etc.). The name column contains the name of the display variable. This is what is displayed as the user scrolls through the list of available display variables. The abbreviation column contains an abbreviation that is displayed after a variable is selected from the list. The display column contains an even more abbreviated form of the variable name. This final abbreviation (between 2 and 5 characters in length) is what the Perfect Harmony displays on the front panel of the drive. The variable column shows the associated system program variable for reference.


Figure 3-24. Dynamic Programmable Meter Display

Table 3-61. Pick List Variables for the Front Display
\begin{tabular}{|c|c|c|c|}
\hline Abbreviation & Description \& Units & Abbreviation & Description \& Units \\
\hline IMRF & Magnetizing current ref (A) & VAIN & Phase A input voltage (V) \\
\hline ITRF & Torque current ref (A) & VBIN & Phase B input voltage (V) \\
\hline FLDS & Flux DS (\%) & VCIN & Phase C input voltage (V) \\
\hline FLQS & Flux QS (\%) & VZSQ & Zero sequence voltage (V) \\
\hline VDRF & Vds reference (\%) & VNSD & Negative sequence D voltage (V) \\
\hline VQRF & Vqs reference (\%) & VNSQ & Negative sequence Q voltage (V) \\
\hline SLIP & Slip frequency (\%) & VDIN & Input D voltage (V) \\
\hline \%SPD & Motor speed (\%) & VQIN & Input Q voltage (V) \\
\hline FREQ & Motor speed (Hz) & VAVI & Input voltage (V) \\
\hline RPM & Motor speed (RPM) & FRIN & Input frequency (Hz) \\
\hline VLTS & Motor voltage (V) & KWIN & Input power average (kW) \\
\hline IMAG & Magnetizing current filtered (A) & PFIN & Input power factor (\%) \\
\hline ITRQ & Torque current filtered (A) & HRCA & Ah harmonic coefficient (\%) \\
\hline ITOT & Motor current (A) & HRCB & Bh harmonic coefficient (\%) \\
\hline \%TRQ & Torque out (\%) & HARM & Total A, B harmonics (\%) \\
\hline KWO & Output power (kW) & XTHL & Transformer thermal level (\%) \\
\hline RESS & Stator resistance & 1CRI & One cycle reactive current level (\%) \\
\hline DEMD & Speed demand (\%) & SPHI & Single phasing current level (\%) \\
\hline SREF & Speed reference (\%) & UNVL & Under Voltage level (\%) \\
\hline FDMD & Raw flux demand (\%) & EFF & Efficiency (\%) \\
\hline FXRF & Flux reference (\%) & THD & Total Harmonic Distortion (\%) \\
\hline IDIN & Id input current (A) & VNGV & Output Neutral Voltage (V) \\
\hline IQIN & Iq input current (A) & \%VNG & Output Neutral Voltage (\%) \\
\hline IAIN & Phase A input current (A) & SMFC & Synch Motor Field Current (A) \\
\hline IBIN & Phase B input current (A) & \%ESP & Encoder Speed (\%) \\
\hline ICIN & Phase C input current (A) & ERPM & Encoder Speed (RPM) \\
\hline IAVI & Total input current (A) & KVAR & Input KVAR in PU power \\
\hline & Phase A filter current (A) & LOSS & Drive losses in PU input power \\
\hline IBF & Phase B filter current (A) & IXEX & Input Excessive Reactive current (Amps) \\
\hline ICF & Phase C filter current (A) & UXFR & Up transfer state machine value \\
\hline MVAO & Measure phase A volts (V) & DXFR & Down transfer state machine value \\
\hline MVBO & Measured phase B volts (V) & \%DRP & Percent Droop (in speed) \\
\hline MVCO & Measured phase c volts (V) & & \\
\hline MVNG & Measured output neutral voltage (V) & & \\
\hline \% MAV & Max avail output volts (\%) & & \\
\hline
\end{tabular}

Table 3-62. Hour Meter Setup (8010)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Display hour meter & 8020 & \multicolumn{4}{|c|}{Function} & Used to display the amount of time that the drive has been operational since it was commissioned. \\
\hline Preset hour meter & 8030 & \multicolumn{4}{|c|}{Function} & Used to preset the hour meter to the accumulated time that the drive has been operational since it was commissioned (in the event that a micro board has been replaced on an existing drive). \\
\hline Reset hour meter & 8040 & \multicolumn{4}{|c|}{Function} & Used to reset the hour meter when the drive is commissioned. \\
\hline Display Output kWH meter & 8050 & \multicolumn{4}{|c|}{Function} & Displays the total output kW hours that have been accumulated since the drive was commissioned. \\
\hline Preset output kWH meter & 8060 & \multicolumn{4}{|c|}{Function} & Presets the output kW hour counter to a previous value (when the microboard is replaced). \\
\hline Reset output kWH meter & 8070 & \multicolumn{4}{|c|}{Function} & Resets the output kW hour counter to zero. \\
\hline Display input kWH meter & 8072 & \multicolumn{4}{|c|}{Function} & Displays the total input kW hours that have been accumulated since the drive was commissioned. \\
\hline Preset input kWH meter & 8074 & \multicolumn{4}{|c|}{Function} & Presets the input kW hour counter to a previous value (when the microboard is replaced). \\
\hline Reset input kWH meter & 8076 & \multicolumn{4}{|c|}{Function} & Resets the input kW hour counter to zero. \\
\hline
\end{tabular}

Table 3-63. Input Harmonics Menu (8140)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & ID & \begin{tabular}{c} 
Unit \\
s
\end{tabular} & Default & Min & \begin{tabular}{c} 
Ma \\
\(\mathbf{x}\)
\end{tabular} & \multicolumn{1}{c|}{ Description } \\
\hline Selection for HA & 8150 & & IA & & & \begin{tabular}{l} 
Selection for harmonic Analysis \\
•
\end{tabular} \\
\hline
\end{tabular}

\subsection*{3.3.9 Communications Menu (9) Options}

The Communications Menu (9) consists of the following menu options:
- Serial Port Setup Menu (9010)
- Network Control (9943)
- Network 1 Configure (9900)
- Network 2 Configure (9914)
- Serial Functions (9110)
- TCP/IP Setup (9300)

These menu items are explained in tables that follow.
Table 3-64. Communications Menu (9) Parameters
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Serial port setup & 9010 & \multicolumn{4}{|c|}{Submenu} & This menu contains all serial port setup parameters. See Table 3-65. \\
\hline Network Control & 9943 & \multicolumn{4}{|c|}{Submenu} & \multirow{5}{*}{Please refer to Communications manual (number 902399).} \\
\hline Network 1 Configure & 9900 & \multicolumn{4}{|c|}{Submenu} & \\
\hline \begin{tabular}{l}
Network 2 \\
Configure
\end{tabular} & 9914 & & Subm & & & \\
\hline Display Network Monitor & 9950 & & Func & & & \\
\hline Serial echo back test & 9180 & & Func & & & \\
\hline Sop \& serial Functions & 9110 & & Subm & & & This menu contains functions that utilize the local serial port. See Table 3-66. \\
\hline TCP/IP Setup & 9300 & & Subm & & & This menu contains functions which set the parameters for TCP/IP. See Table 3-67. \\
\hline
\end{tabular}

Table 3-65. Serial Port Setup Menu (9010)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline Serial port use & 9020 & & Local & & & \begin{tabular}{l}
Designates the usage of the on board serial port. \\
- Remote \\
- Modem \\
- Local
\end{tabular} \\
\hline Modem password & 9025 & & & & & Four character password can consist of 1-9, A-F (Hex). \\
\hline Flow Control & 9030 & & \begin{tabular}{l}
Xon/ \\
Xoff
\end{tabular} & & & \begin{tabular}{l}
Designates the type of flow control used by the serial port. \\
- None \\
- Xon/Xoff
\end{tabular} \\
\hline Baud rate & 9040 & & 19200 & & & \begin{tabular}{l}
Designates the baud rate of the on board serial port: \\
- 9600 \\
- 19200 \\
- 38400 \\
- 57600 \\
- 115200
\end{tabular} \\
\hline
\end{tabular}

Table 3-66. Serial Functions Menu (9110)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & ID & Units & Default & Min & Max & Description \\
\hline System program download & 9120 & \multicolumn{4}{|c|}{Function} & Used to transfer the system program to a remote system. \\
\hline System program upload & 9130 & \multicolumn{4}{|c|}{Function} & Used to transfer the system program from a remote system. \\
\hline Display sys prog name & 9140 & \multicolumn{4}{|c|}{Function} & Displays the current system program name. \\
\hline Display drectry version & 9147 & \multicolumn{4}{|c|}{Function} & Displays current directory file version. \\
\hline Select system program & 9145 & & none & & & Displays the list of system program files. \\
\hline Multiple config files & 9185 & & Off & & & Enables multiple configuration files. \\
\hline Parameter data upload & 9150 & \multicolumn{4}{|c|}{Function} & Used to transfer the current configuration file to a remote system. \\
\hline Parameter data download & 9160 & \multicolumn{4}{|c|}{Function} & Used to transfer the current configuration file from a remote system. \\
\hline Parameter dump & 9170 & \multicolumn{4}{|c|}{Function} & Used to get a print out of the current configuration data. \\
\hline Menu based timer setup & 9111 & \multicolumn{4}{|c|}{Submenu} & Menu contains the menu-based SOP timers 1-16. \\
\hline Menu timers 1-8 & \[
\begin{aligned}
& 9112 \\
& - \\
& 9119
\end{aligned}
\] & Sec & 0 & 0 & 86400 & \\
\hline Menu timers 9-16 & \[
\begin{aligned}
& 9121 \\
& - \\
& 9128
\end{aligned}
\] & Sec & 0 & 0 & 86400 & \\
\hline
\end{tabular}

Parameter upload functions are used to transmit data from the drive to a printer or computer. Parameter download functions are used to transmit data to the drive. A terminal emulator such as Smart Term's "ST220.EXE" or Procomm's "PCPLUS" is required to upload, download, and echo files. Windows "Terminal" protocol settings for the RS232 port are 9600 baud, no parity, and one stop bit.
Note that all parameters are printed on the parameter dump.

Table 3-67. TCP/IP Setup Menu (9300)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & ID & Units & Default & Min & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{c|}{ Description } \\
\hline IP address & 9310 & & 172.16 .106 .16 & 0.0 .0 .0 & 255.255 .255 .255 & \begin{tabular}{l} 
Used to enter the system \\
IP address in dotted \\
decimal.
\end{tabular} \\
Subnet mask & 9320 & & 255.255 .0 .0 & 0.0 .0 .0 & 255.255 .255 .255 & \begin{tabular}{l} 
Used to enter the system \\
subnet mask in dotted \\
decimal.
\end{tabular} \\
\hline \begin{tabular}{l} 
Gateway \\
address
\end{tabular} & 9330 & & 172.16 .1 .1 & 0.0 .0 .0 & 255.255 .255 .255 & \begin{tabular}{l} 
Used to enter the system \\
gateway address in \\
dotted decimal.
\end{tabular} \\
\hline
\end{tabular}

\section*{Menu Setup for Multiple Configuration Files (Slaves)}

The NXG drive is designed to operate with multiple motors that may or may not be of the same size. This is accomplished by using multiple parameter configuration files. There is one master configuration file that is always named current cfg. The slave files are stored in a sub directory of CfgFiles named SubCfgs and can have any legal name conforming to the "eight dot three" file naming convention. (xxxx xxxx.yyy)

NOTE: All slave configuration files have the '.sfg' extension. This is not changeable through the menus, therefore only eight characters can be chosen.

The configuration files can be created at runtime in the drive's memory and then stored to a flash disk. The slave files are created via the keypad menus by setting the slave parameters as desired and writing them to a flash disk. (More on this in the application section, in Chapter 5).
There are up to eight SOP flags that can be set to point to a configuration file. The menus are used to map each SOP flag to a corresponding configuration file. Once mapped, the SOP flags are used to activate the SOP for a particular motor.

\section*{Menu item descriptions}

Multiple config files This pick list enables the switching of the slave configuration files. If set to OFF, no other multiple configuration file menus will be displayed. Once enabled, if any one of SOP flags is set to true, the corresponding configuration file will become active.

Show active config file

Set active config file
This pick list sets the displayed file to be the active configuration file. This function overrides what is set in the SOP program. Any change in the SOP program is checked against the file set in this function. Once a change in the SOP is detected, that file will then be the active file. The keypad menu setting is now ignored. This insures no unintentional toggling of the configuration files. To switch back to the keypad file set it by this menu. If no change in the SOP program occurs, the keypad set configuration file will remain in memory.
Function to display the current active configuration file. If correct configuration file is not displayed, the SOP file should be checked for accuracy. Check the 'Setup SOP configuration flags menu to be sure the correct file is mapped to the SOP flag.

Setup SOP config Submenu for SOP flag configuration.
flags

Create new config file

Set SOPConfigFileX_O ( \(\mathrm{X}=1\) to 8 )

This function allows you to save slave parameters to a file name you specify. The name is entered using the drive keypad. To get to the alphanumeric characters, you must use the left or right arrow keys to position the cursor. Then using the up or down arrow keys, scroll to the desired letter or number.

This function allows you to map the name of the flag in the SOP file, SOPConfigFileX_O, where \(X=1\) to 8 , to a name of a slave configuration file. Then, when the SOP program is running, and this flag is set to 'true', the configuration file will be switched into memory. This is a method of switching among multiple motors using one drive. The file names are selected from a pick list. New files can be created using the method described previously.

NOTE: You do not need to add the file extension. The file extension is always 'sfg'. Press the 'enter' key to save the parameter(s) as they exist in memory to a new configuration file name. This file will be stored to the flash disk in the 'SubCfgs' subdirectory. This function does NOT make this configuration file the active configuration file. It uses the current data in memory to create a new slave configuration file. Any parameter that is saved to a slave configuration file is easily identifiable by the small ' \(\mathbf{s}\) ' adjacent to the parameter ID number if it has not changed from the default setting, or a ' \(\$\) ' if it has been changed from its default setting, i.e. (s9586) or (\$9586).

Table 3-68. Slave Parameter
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & \multicolumn{1}{|c|}{ Default } & Min & Max & \multicolumn{1}{|c|}{ Description } \\
\hline Multiple config files & 9185 & & OFF & & & \begin{tabular}{l} 
Enable multiple config file \\
operation.
\end{tabular} \\
\hline Show active config file & 9195 & & & Defaults.sfg & & \\
\hline Set active config file & 9196 & & Sub menu & & & \begin{tabular}{l} 
Set the displayed file to be the \\
active config file.
\end{tabular} \\
\hline Setup SOP config flags & 9186 & & & \begin{tabular}{l} 
Sub-menu for SOP flag \\
configuration.
\end{tabular} \\
\hline Create new config file & 9197 & & & & \begin{tabular}{l} 
Create new config file using \\
numeric keypad.
\end{tabular} \\
\hline Set SOPConfigFile1_O & 9187 & & Defaults.sfg & & \begin{tabular}{l} 
Set name of config file \#1 that \\
corresponds to the SOP flag \#1.
\end{tabular} \\
\hline Set SOPConfigFile2_O & 9188 & & Defaults.sfg & & & \begin{tabular}{l} 
Set name of config file \#2 that \\
corresponds to the SOP flag \#2.
\end{tabular} \\
\hline Set SOPConfigFile3_O & 9189 & & Defaults.sfg & & & \begin{tabular}{l} 
Set name of config file \#3 that \\
corresponds to the SOP flag \#3.
\end{tabular} \\
\hline Set SOPConfigFile4_O & 9190 & & Defaults.sfg & & & \begin{tabular}{l} 
Set name of config file \#4 that \\
corresponds to the SOP flag \#4.
\end{tabular} \\
\hline Set SOPConfigFile5_O & 9191 & & Defaults.sfg & & & \begin{tabular}{l} 
Set name of config file \#5 that \\
corresponds to the SOP flag \#5.
\end{tabular} \\
\hline Set SOPConfigFile6_O & 9192 & & Defaults.sfg & & & \begin{tabular}{l} 
Set name of config file \#6 that \\
corresponds to the SOP flag \#6.
\end{tabular} \\
\hline Set SOPConfigFile7_O & 9193 & & Defaults.sfg & & & \begin{tabular}{l} 
Set name of config file \#7 that \\
corresponds to the SOP flag \#7.
\end{tabular} \\
\hline
\end{tabular}

Table 3-69. Parameter Menu - Slave
\begin{tabular}{|c|c|c|c|}
\hline Parameter & ID & Parameter & ID \\
\hline \multicolumn{4}{|l|}{Motor Menu} \\
\hline Motor kW rating & 1010 & 50 Percent Break Point & 1156 \\
\hline Motor frequency & 1020 & 100 Percent Break Point & 1157 \\
\hline Full load speed & 1030 & Maximum Load Inertia & 1159 \\
\hline Motor voltage & 1040 & Motor trip volts & 1160 \\
\hline Full load current & 1050 & Overspeed & 1170 \\
\hline No load current & 1060 & Underload enable & 1180 \\
\hline Leakage inductance & 1070 & I underload & 1182 \\
\hline Stator resistance & 1080 & Underload timeout & 1186 \\
\hline Inertia & 1090 & Motor torque limit 1 & 1190 \\
\hline Overload select & 1130 & Regen torque limit 1 & 1200 \\
\hline Overload pending & 1139 & Motor torque limit 2 & 1210 \\
\hline Overload & 1140 & Regen torque limit 2 & 1220 \\
\hline Overload timeout & 1150 & Motor torque limit 3 & 1230 \\
\hline 0 Percent Break Point & 1152 & Regen torque limit 3 & 1240 \\
\hline 10 Percent Break Point & 1153 & Phase Imbalance Limit & 1244 \\
\hline 17 Percent Break Point & 1154 & Ground Fault Limit & 1245 \\
\hline 25 Percent Break Point & 1155 & Ground Fault Time Const & 1246 \\
\hline \multicolumn{4}{|l|}{Drive Menu} \\
\hline Control loop type & 2050 & Skip center freq 3 & 2370 \\
\hline Ratio control & 2070 & Skip bandwidth 1 & 2380 \\
\hline Speed fwd max limit 1 & 2080 & Skip bandwidth 2 & 2390 \\
\hline Speed fwd min limit 1 & 2090 & Skip bandwidth 3 & 2400 \\
\hline Speed fwd max limit 2 & 2100 & Freq avoid accel time & 2410 \\
\hline Speed fwd min limit 2 & 2110 & Spinning load mode & 2430 \\
\hline Speed fwd max limit 3 & 2120 & Scan end threshold & 2440 \\
\hline Speed fwd min limit 3 & 2130 & Current Level Setpoint & 2450 \\
\hline Speed rev max limit 1 & 2410 & Current ramp & 2460 \\
\hline Speed rev min limit 1 & 2150 & Max current & 2470 \\
\hline Speed rev max limit 2 & 2160 & Frequency scan rate & 2480 \\
\hline Speed rev min limit 2 & 2170 & Cond. stop timer & 2500 \\
\hline Speed rev max limit 3 & 2180 & Cond. run timer & 2510 \\
\hline Speed rev min limit 3 & 2190 & Min cells/phase count (n/3) & 2540 \\
\hline Accel time 1 & 2270 & Fast bypass & 2600 \\
\hline Decel time 1 & 2280 & Phase I gain & 2710 \\
\hline Accel time 2 & 2290 & Phase P gain & 2720 \\
\hline Decel time 2 & 2300 & Phase offset & 2730 \\
\hline Accel time 3 & 2310 & Phase error threshold & 2740 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Parameter & ID & Parameter & ID \\
\hline Decel time 3 & 2320 & Frequency Offset & 2750 \\
\hline Jerk rate & 2330 & Up Transfer Timeout & 2760 \\
\hline Skip center freq 1 & 2350 & Down Transfer Timeout & 2770 \\
\hline Skip center freq 2 & 2360 & Cable Resistance & 2940 \\
\hline \multicolumn{4}{|l|}{Stability Menu} \\
\hline Flux reg prop gain & 3110 & Integ gain during brake & 3290 \\
\hline Flux reg integral gain & 3120 & Enable braking & 3360 \\
\hline Flux Filter Time Const & 3130 & Pulsation frequency & 3370 \\
\hline Flux demand & 3150 & Brake power loss & 3390 \\
\hline Flux ramp rate & 3160 & VD Loss Max & 3400 \\
\hline Energy saver min flux & 3170 & Braking constant & 3410 \\
\hline Speed reg prop gain & 3210 & Test Type & 3470 \\
\hline Speed reg integral gain & 3220 & Test positive & 3480 \\
\hline Speed reg Kf gain & 3230 & Test negative & 3490 \\
\hline Speed filter time const & 3240 & Test time & 3500 \\
\hline Current reg prop gain & 3260 & Slip constant & 3545 \\
\hline Current reg integ gain & 3270 & Feed forward constant & 3560 \\
\hline Prop gain during brake & 3280 & & \\
\hline \multicolumn{4}{|l|}{Auto Menu} \\
\hline Entry point & 4010 & Delay on & 4080 \\
\hline Exit point & 4020 & Prop gain & 4360 \\
\hline Entry speed & 4030 & Integral gain & 4370 \\
\hline Exit speed & 4040 & Diff gain & 4380 \\
\hline Auto off & 4050 & Min clamp & 4390 \\
\hline Delay off & 4060 & Max clamp & 4400 \\
\hline Auto on & 4070 & Setpoint & 4410 \\
\hline \multicolumn{4}{|l|}{Logs Menu} \\
\hline Historic log variable 1 & 6260 & Historic log variable 5 & 6300 \\
\hline Historic log variable 2 & 6270 & Historic log variable 6 & 6310 \\
\hline Historic log variable 3 & 6280 & Historic log variable 7 & 6320 \\
\hline Historic log variable 4 & 6290 & & \\
\hline \multicolumn{4}{|l|}{Drive Protection Menu} \\
\hline Auto reset Enable & 7120 & Auto Reset Attempts & 7140 \\
\hline Auto Reset Time & 7130 & Auto Reset Memory Time & 7150 \\
\hline \multicolumn{4}{|l|}{Display Configuration Data Menu} \\
\hline Status variable 1 & 8001 & & 8005 \\
\hline Status variable 2 & 8002 & & 8006 \\
\hline Status variable 3 & 8003 & & 8007 \\
\hline Status variable 4 & 8004 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ Parameter } & ID \\
\multicolumn{3}{|c|}{ Parameter } & ID \\
\hline Meters Menu & 8100 & Harmonics order & 8160 \\
\hline Customer Order & 8110 & Harmonics integral gain & 8170 \\
\hline Customer Drive & 8150 & Fault Display Override & 8200 \\
\hline Selection for HA &
\end{tabular}
\(\nabla \nabla \nabla\)

\section*{CHAPTER}

\section*{4 Startup Procedure}

\subsection*{4.1 Introduction}

This chapter outlines the necessary steps that are required to successfully startup a Perfect Harmony drive from a prepower visual inspection to a complete medium voltage motor test. These checks are discussed individually within the separate sections of this procedure. Following any introductory text and precautions, each section contains a series of individual steps. Tables may be included in some sections. Some tables are used to record parameter settings, test point data, and any errors or deviations from expectations.

DANGER-Electrical Hazard! The steps outlined in the following procedure could cause serious injury or death if the drive has not been properly installed and checked. Before proceeding, be sure to remove power from the drive and follow proper lock out and tag out procedures.


DANGER—Electrical Hazard! Hazardous voltages may still exist within the Perfect Harmony cabinets even when the medium voltage disconnect switch is open (off) and the control power switch is shut off (for example, internally stored energy found in cells).


Warning! Never disconnect control power while medium voltage is energized. This will disable the cooling system and potentially cause severe overheating of the system and possibly cause damage to the cells.


Note: Proper drive setup will require the use of a DC voltmeter, an AC voltmeter and a dual-trace oscilloscope for testing purposes. In addition, a 3-phase, 460 volt source is required. ( 690 volt for high voltage cells. With 55 A fuses, a fixed, three-phase voltage source can also be used with a voltage of 270 V for 460 V cells or 390 V for 690 V cells.

\subsection*{4.2 Pre-power Visual Inspection}

Before power is applied to the drive, pre-power visual inspections must be conducted. Verify the system specifications as detailed below.

Table 4-1. Pre-power Visual Inspection


Figure 4-2. Transformer Cabinet Detail Showing Typical Tap Connections
\begin{tabular}{|l|l|}
\hline 6 & \begin{tabular}{l} 
Verify that all wiring between the transformer and cell cabinet shipping splits has been properly and \\
securely re-connected.
\end{tabular} \\
\hline 7 & \begin{tabular}{l} 
Inspect all connections and wiring ensuring that they are connected appropriately and securely. Verify \\
all torque markings are properly aligned on all electrical connections including power connections. \\
Tighten any incorrect connections in accordance with the torque specifications listed in the Installation \\
Manual.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Step } & \multicolumn{1}{c|}{ Description } \\
\hline 8 & \begin{tabular}{l} 
Ensure that all electrical connections are tight and that all torque markings are intact. Verify that no \\
sheet metal damage nor excessive coating damage has occurred. If found, verify the integrity of the \\
components, cables or other materials behind or below the damage.
\end{tabular} \\
\hline 9 & \begin{tabular}{l} 
Check all cabling for splitting and/or cracking. Verify that no conductors are exposed due to chafing or \\
other shipping abuse.
\end{tabular} \\
\hline 10 & \begin{tabular}{l} 
If applicable, ensure that all stress cones are adequately connected to ground and installed properly on \\
the cables.
\end{tabular} \\
\hline 11 & \begin{tabular}{l} 
Verify the presence of markings or labels on all terminal strips, mounted components, cells, and other \\
sub-assemblies. Notify the factory of any discrepancies.
\end{tabular} \\
\hline 12 & Verify the presence and proper installation of all protective covers. \\
\hline 13 & Verify the installation of the fan hood. Verify that the fan rotates freely while mounted. \\
\hline 14 & \begin{tabular}{l} 
Ensure that control and main power are installed and connected properly and in accordance with local \\
regulations.
\end{tabular} \\
\hline 15 & \begin{tabular}{l} 
Verify all customer connections for tightness and accuracy. \\
\hline 16 \\
\hline 17 \\
Standard safety precautions and local codes must be followed during installation of external wiring. \\
specified in the CE safety standard.
\end{tabular} \\
\hline 18 & \begin{tabular}{l} 
To maintain EMC compliance, be sure to use shielded cables as described on the drawings shipped with \\
the Perfect Harmony system.
\end{tabular} \\
\hline 19 & \begin{tabular}{l} 
Control wiring for GEN II and GEN III Perfect Harmony Drives must be routed down the wireway \\
where the EMI filter is located. (typically the left side), then to the disconnect switch. These wires must \\
be kept away from the output (filtered side) of the EMI Filter. Use of metallic electrical conduit is \\
required to maintain EMC Compliance.
\end{tabular} \\
\hline \begin{tabular}{l} 
Verify that all system grounds are connected between shipping splits. Verify that the system ground is \\
connected to a suitable site ground in accordance with local regulations. Ensure that the entire system is \\
earth grounded at one of its grounding points. Grounding points are located inside the cabinet and are \\
labeled with the protective earth symbol ©
\end{tabular} \\
\hline
\end{tabular}

Note: If any of the previous checks yield inconsistent or unusual results, cancel the startup procedure and notify the factory.

\subsection*{4.3 Power Circuit, Modulation and Bypass Contactor Test}

This test can be performed with a single 55A, 3-phase, 480VAC variac (see Figure 4-3 for the variac connection diagram) and an optional PC/Laptop with Siemens's Tool Suite. Full voltage can be supplied to all cells

Table 4-2. Power Circuit, Modulation, and Bypass Contactor Test
\begin{tabular}{|c|c|}
\hline Step & Descrip \\
\hline 1 & To connect the PC/Laptop to the Pentium control proc jack along with a crossover cable. \\
\hline 2 & Disconnect the series connection between T1 and T2 open the motor contactor. Connect a 3-phase variac (s to the existing cables from the transformer. \\
\hline & \begin{tabular}{l}
Connect V ariac output to the delta intersections of a \(22.5^{\circ}\) or \(25^{\circ}\) secondary winding on the \\
P erfect H armony T ransformer \\
This technique can be used with a 480 V variac to develop required forming voltage ( 700 vac for 630 vac cells and 760 vac for 690 vac cells)
\end{tabular} \\
\hline
\end{tabular}

Figure 4-3. 480 VAC Variac Connection Technique
\begin{tabular}{|l|l|}
\hline 3 & \begin{tabular}{l} 
Connect an AC voltmeter to the input of any cell. Turn on the control power to the Control Cabinet and \\
verify that the control properly initializes.
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Make sure the Drive Parameters (2000) match the rated values for the Drive. Set the Control Loop Type \\
\((2050)\) to Open Loop Test Mode.
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Verify that the Input Voltage (3030) and Input Current (3040) Scalers (Stability -> Input Processing) are \\
set to the default values of 1.0.
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
Select the correct Transformer Tap Setting using Drive Protect -> Input Protect -> Xformer Tap Setting \\
(7050).
\end{tabular} \\
\hline \begin{tabular}{l} 
Turn on the variac and slowly increase the variac’s output voltage to about 75VAC. \\
Measure all cell input voltages to make sure they are all receiving approximately the same voltage. The \\
"Not Safe" neon light should be lit on each Cell Control Board. \\
If all cell voltages are OK, continue increasing the variac to 230VAC and make sure all of the switch- \\
mode power supplies are working (the Lnk ON and cell fault LEDs on the cell control boards should be \\
ON). \\
Continue increasing the voltage to 460VAC (see TN00137 for high voltage cells). Push the Fault Reset \\
Button on the Keypad. All power cell faults should be reset and the normal keypad display should \\
appear. \\
The previous steps verify that the main power transformer is OK and the Attenuator Module in the \\
Transformer Cabinet is properly connected.
\end{tabular} \\
\hline 7
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Step } & \multicolumn{1}{c|}{ Description } \\
\hline 8 & \begin{tabular}{l} 
Check the modulation at the outputs of all cells by placing the VFD in the run mode. \\
Verify that the 4 LED's (Q1 - Q4) on each Cell Control Board should illuminate.
\end{tabular} \\
\hline 9 & \begin{tabular}{l} 
Perform this test only if the Drive is equipped with Mechanical Bypass Contactors. \\
Stop the drive by giving a STOP command. \\
Once the drive is in the OFF or IDLE state, change the Control Mode (2050) to Open Loop Vector \\
Control \\
ENABLE Fast (cell) Bypass (2600). Access this parameter through Drive -> Cells -> Fast Bypass. Also \\
make sure that in the Cells submenu, the Min. Cells/Phase Count (2540) is set to be one less than the \\
installed rank of cells. \\
On the keypad, select Bypass Status (2620). The display should show all "A" (available) characters. The \\
order displayed is A-phase (1 through n), B-phase (1 through \(n\) ), and C-phase (1 through \(n\) ), where n \\
represents the number of cells per phase. \\
Pull a fiber-optic link for an A-phase cell (e.g., A1) out of the fiber-optic interface board. \\
Check Bypass Status (2620). It will now display a "B" (bypassed) character in the location for the cell \\
that the fiber was removed from. \\
Repeat steps A and B for a cell from each of the other two phases (e.g., B1 and C1).
\end{tabular} \\
\hline \begin{tabular}{l} 
Re-connect all fiber-optic links to their corresponding cells and reset their bypass status using Reset \\
Bypassed Cells (2640). \\
Repeat steps A through C until all bypass contactors have been verified. Make sure all fiber-optic links \\
are connected back in the correct order before moving to the next step.
\end{tabular} \\
\hline 10 & Shut down the AC supply to the control and the variac. Disconnect the variac.
\end{tabular}

\subsection*{4.4 Drive Test in Open Loop Test Mode without Motor}

The following steps verify operation of the drive (without a motor) in Open Loop Test Mode.

Table 4-3. Drive Test in Open Loop Test Mode without Motor
\begin{tabular}{|c|c|}
\hline Step & Description \\
\hline 1 & Reconnect the series connections between T 1 and T 2 of all adjacent cells, plus the neutral connection between cells A1, B1 and C1. \\
\hline 2 & Secure all doors to the Cell and Transformer Cabinets. \\
\hline 3 & Enable the blower motor and remove any interlock jumpers. \\
\hline 4 & Re-energize the AC control power. Energize the medium voltage feeder. \\
\hline 5 & Change the Control Loop Type (2050) back to Open Loop Test Mode. \\
\hline 6 & DISABLE Spinning Load using Drive (2) -> Spinning Load (2420) -> Spinning Load Mode (2430). \\
\hline 7 & Make sure that Fast bypass (2600) is DISABLED. Access this parameter through Drive -> Cells -> Fast Bypass. \\
\hline 8 & Configure the Keypad to display input voltage (VDIN), input frequency (FRIN) and motor voltage (VLTS). \\
\hline 9 & Set the Motor Rated Voltage (1040) parameter (access it through Motor -> Motor Parameters) to be equal to the Drive Rated Output Voltage and the Motor Frequency (1020) equal to 60 Hz . \\
\hline 10 & Verify that the Keypad displays the correct value of input voltage and frequency. At rated primary voltage, the AC input voltage feedback on test points VIA, VIB and VIC should be 10.80Vpp or 3.82 Vrms. See Figure 4-4. These test points are on the system interface card. Perform the following corrective step if the input (or line) voltage is too high or too low. \\
\hline
\end{tabular}

Figure 4-4. AC input voltages at test-points VIA, VIB and VIC on system interface card
If the input voltage to the drive is too high, then this needs to be corrected. Harmony Drives are shipped with the transformer tap set to \(+5 \%\) which reduces the voltage by that percentage on the secondary side of the transformer.

If the voltage is low ( \(5 \%\) less than rated) then change the tap on the transformer to the neutral ("O") or the \(-5 \%\) tap.
If the input frequency is displayed as a negative number then one pair of input phases has to be switched.


Figure 4-5. AC output voltages at test-points VMA and VMB at 15 Hz in Open Loop Test Mode
12 Increase the speed demand to \(50 \%\). The output feedback signals should increase in proportion.
Note that in Open Loop Test Mode the flux regulator is not perfect and hence the output voltage will read higher or lower than the calculated value corresponding to \(50 \%\) of rated voltage. Adjust the Flux Demand parameter (3150) such that the motor voltage (on the Keypad or Tool) is approximately equal to \(50 \%\) of rated voltage.

Further increase the speed demand to \(100 \%\). The AC output voltage on test-points VMA, VMB and VMC should be \(10.80 \mathrm{Vpp}+/-0.27\) Vor \(3.82 \mathrm{Vrms}+/-0.20 \mathrm{~V}\). The Motor Voltage on the Keypad should read the rated value of output voltage \(+/-5 \%\). See Figure \(4-6\) for the AC output voltage waveforms VMA and VMB at 60 Hz .


Figure 4-6. AC output voltages at test-points VMA and VMB at 60Hz in Open Loop Test Mode

\subsection*{4.5 Drive Test in Open Loop Test Mode with Motor Connected}

The following steps verify operation of the drive (with a motor connected at its output) in Open Loop Test Mode. This test is required only when the operation of the output Hall Effect Transducers requires to be verified . During this test the motor should be unloaded. If this test is not required then proceed to the next test.

Table 4-4. Drive Test in Open Loop Test Mode with Motor Connected
\begin{tabular}{|c|c|}
\hline Step & Description \\
\hline 1 & Disconnect control voltage and medium voltage sources. Reconnect motor leads or enable motor contactor. \\
\hline 2 & Energize the control circuit breaker. Energize input voltage. \\
\hline 3 & Set the Motor Rated Voltage (1040) and Frequency (1020) parameters (access it through Motor -> Motor Parameters) to be equal to the motor nameplate values. \\
\hline 4 & Make sure that Spinning Load Mode (2430) and Fast Bypass (2600) are DISABLED. \\
\hline 5 & Increase the Speed Ramp parameters in order to slow down drive acceleration and deceleration. \\
\hline 6 & \begin{tabular}{lll} 
Reduce the Flux Demand parameter to 0.5. \\
Stability & \((3)\) \\
Output Processing & \((3050)\) & \\
Flux Control & \((3100)\) & \\
Flux demand & \((3150)\) & 0.5
\end{tabular} \\
\hline 7 & \begin{tabular}{l}
Energize the medium voltage feed to the VFD. Push the Fault Reset Button on the Keypad to reset faults and push the Button a second time to acknowledge any alarms. \\
If the Mode on the Keypad display reads RLBK, then change the Control Loop Type (2050) to Open Loop Vector Control and exit out of the menu entry. This should force the RLBK on the Keypad to change back to Mode. Then change the Control Loop Type (2050) back to Open Loop Test Mode.
\end{tabular} \\
\hline 8 & Configure the Keypad to display motor magnetizing current, motor torque current and motor voltage. \\
\hline 9 & Spin the motor at \(1 \%\) speed and observe proper rotation. \\
\hline
\end{tabular}


Figure 4-7. Open Loop Test Mode operation at \(10 \%\) speed with an unloaded motor. AC motor voltage and motor current at test-points VMA and IMA are shown.

\subsection*{4.6 Drive Test in Open Loop Vector Control Mode with Motor Connected}

At this point the VFD is ready for actual (induction) motor operation. The following steps verify operation of the drive and the load induction motor in Open Loop Vector Control Mode. If the drive is connected to a synchronous motor then use the steps in the following section.

Table 4-5. Drive Test in Open Loop Vector Control Mode with Motor Connected
\begin{tabular}{|c|c|}
\hline Step & Description \\
\hline 1 & Reconnect motor leads or enable motor contactor, if required. \\
\hline 2 & Energize the control circuit breaker. \\
\hline 3 & Change the drive Control Loop Type (2050) to Open Loop Vector Control. \\
\hline 4 & \begin{tabular}{lll} 
DISABLE Spinning Load & \\
Drive (2) & \\
Spinning Load & (2420) & \\
Spinning Load Mode \(\quad\) (2430) Disabled
\end{tabular} \\
\hline 5 & \begin{tabular}{l}
Setup the Speed Ramp parameters according to the following recommendation: \\
The acceleration and deceleration rate for a fan should be set to around 60 seconds and for a pump around 30 seconds.
\end{tabular} \\
\hline 6 & \begin{tabular}{l}
Verify that Fast (cell) bypass is disabled at this time if you have that option \\
Fast bypass \\
(2600) \\
Disabled
\end{tabular} \\
\hline 7 & Setup the following motor parameters according to the nameplate values. \\
\hline 8 & Use default values for the other motor parameters as shown below. For this test set the Stator Resistance to \(0.1 \%\). The entry within square braces refers to the no-load field current setting for Synchronous Motor Control. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{11}{*}{\begin{tabular}{l}
Step \\
9
\end{tabular}} & \multicolumn{3}{|l|}{\multirow[t]{11}{*}{}} \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{31}{*}{\[
\begin{gathered}
\hline \text { Step } \\
10
\end{gathered}
\]} & \multicolumn{4}{|l|}{\multirow[t]{31}{*}{}} \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \[
\begin{gathered}
\hline \text { Step } \\
11
\end{gathered}
\] & \begin{tabular}{l}
Description \\
For synchronous motors make sure that the WAGO Analog Output module providing the command for the Field Supply is correctly selected. Select the appropriate Analog Module \# within the Analog Outputs sub-menu (4660). \\
For this analog module select: \\
- Synch Motor Field as the Analog Variable \\
- Unipolar as the Module Type \\
- \(100 \%\) for the Full Range
\end{tabular} \\
\hline 12 & Verify the System Operational Program and Customer Interface. \\
\hline 13 & Energize the medium voltage feed to the VFD. Push the Fault Reset Button on the Keypad to reset faults and push the Button a second time to acknowledge any alarms. Spin the motor at \(1 \%\) speed and observe proper rotation, if this was not verified in the previous test. \\
\hline 14 & Configure the Keypad to display motor magnetizing current, motor torque current, and motor voltage \\
\hline 15 & \begin{tabular}{l}
Operate the drive with a Speed Demand of \(10 \%\). Observe the AC output voltage feedback and motor current for phase A on test-points VMA and IMA using an oscilloscope. \\
- If the motor is unloaded, then the current waveform should lead the voltage waveform by almost \(90^{\circ}\) (see Figure 4-8 [top frame]). The Hall Effect Current Transducers introduce a negative sign since they are configured to measure the incoming current. The Keypad display should read a positive value of Ids (magnetizing current) equal to the no-load current of the motor and Iqs (the torque current) should read a small value (typically \(1-3 \%\) of rated current). \\
- If the motor is loaded then the current waveform will lead the motor voltage by an angle smaller than \(90^{\circ}\) (see Figure 4-8 [bottom frame]). Ids would still read a positive value that is larger than the no-load current while Iqs would read a value larger than zero. The sign of Iqs directly depends on the direction of rotation. \\
The motor voltage should be \(10 \%\) of the motor rated voltage.
\end{tabular} \\
\hline 16 & Increase the Speed Demand while monitoring the motor voltage. The motor voltage should read according to the following table. See Figure 4-9 for waveforms at \(100 \%\) speed \((60 \mathrm{~Hz})\). Table \(4-6\) shows the drive voltage scaling for signals on test-points VMA, VMB and VMC as a function of speed. Table 4-7 lists the scaling for the currents and voltage feedback signals available on the Signal Conditioning Board at the rated operating point of the drive. \\
\hline
\end{tabular}

Table 4-6. Scaling of drive output voltage as a function of speed
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Speed Command \\
\(\mathbf{( \% )}\)
\end{tabular} & \begin{tabular}{c} 
Motor Speed \\
\(\mathbf{( H z )}\)
\end{tabular} & \begin{tabular}{c} 
Motor Voltage \\
Feedback (V, pp)
\end{tabular} & \begin{tabular}{c} 
Motor Voltage \\
Feedback (V, rms)
\end{tabular} \\
\hline 10 & 6 & 1.08 & 0.38 \\
\hline 25 & 15 & 2.70 & 0.96 \\
\hline 50 & 30 & 5.40 & 1.91 \\
\hline 75 & 45 & 8.10 & 2.87 \\
\hline 100 & 60 & 10.80 & 3.82 \\
\hline
\end{tabular}

Table 4-7. Scaling of drive input and output voltages and currents on Signal Conditioning Board.
\begin{tabular}{|c|c|c|c|}
\hline Variable & Rated value (rms) at drive terminals & Feedback value under rated conditions (Vpeak) & Feedback value under rated conditions (Vrms) \\
\hline Input Current & Primary Current Rating of Input CT & 5.0 & 3.54 \\
\hline Input Voltage & (Rated Input Voltage L-L) / 1.732 & 5.4 & 3.82 \\
\hline Output Current & Output Current Rating ( \(\equiv\) Cell Rating) & 5.0 & 3.54 \\
\hline Output Voltage & (Rated Output Voltage L-L) / 1.732 & 5.4 & 3.82 \\
\hline Examples - & \multicolumn{3}{|l|}{\begin{tabular}{l}
Output Current Scaling: Cell current rating \(\equiv 3.54\) Vrms \\
Output Voltage Scaling: [(Rated output voltage L-L) / 1.732] * 1.414 \(\equiv 5.4\) Vpeak
\end{tabular}} \\
\hline
\end{tabular}


Figure 4-8. AC motor voltage and motor current at test-points VMA and IMA at 10\% speed in Open Loop Vector Control
(a) Unloaded Operation and (b) Full Load Operation


Figure 4-9. AC motor voltage and motor current at test-points VMA and IMA at 100\% speed in Open Loop Vector Control
(a) Unloaded Operation and (b) Full Load Operation

\subsection*{4.7 Drive Test in Synchronous Motor Control Mode}

This section tests the operation of the VFD with a synchronous motor. A 3PCI regulator is typically used for the exciter supply. The following items are required for tuning the 3PCI regulator:

\section*{\(4-20 \mathrm{~mA}\) current output box.}

If the drive is not equipped with meters for displaying output voltage and output current, then DVMs are needed for observing the voltage and current (in one of the phases) at the output of the 3PCI regulator.

Values of (a) rated output current of 3PCI, (b) maximum field current for the synchronous motor field, and (c) rated synch motor field current.

Drawing \#479150 (3PCI control schematics) and the drawing (shipped with drive) that shows connections to the 3PCI regulator will be helpful during setup.


Warning! Field current should not be applied for more than a few minutes at a time to prevent damage to the field current windings.

DANGER! During the following tests, high voltages may be present on the stator side of the motor.

\subsection*{4.7.1 Tuning the 3PCI (SCR Regulator)}

Perform the following set-up changes and tests to tune the 3PCI. The following should be performed with a stationery motor. For these tests MV is not required on the drive. Make sure that the input voltage sequence to the 3 PCI is correct.

Table 4-8. Tuning the 3PCI (SCR Regulator)
\begin{tabular}{|c|c|}
\hline Step & Description \\
\hline 1 & \begin{tabular}{l}
Jumper and Potentiometer Settings. Ensure that the jumper and potentiometer setting are set as follows: \\
Jumper: \\
J1 Should be OPEN, i.e. not connected to any other terminal (for NO ramp) \\
J2 Position A (for Standard Integrator) \\
J3, J4 Position B (for Current Regulation) \\
J5 Position B (for Current Regulation) \\
Potentiometer: Set all pots as stated below, and then adjust them as described in Step 3 . These are 1020 turn pots except for P3 (single turn pot): \\
P100 Full CCW \\
P1 This is the bias pot and is required to be adjusted with zero command so that the SCRs are barely (but not) phased-on \\
P2 This adjusts the gain for current feedback scaling. Set to full CW. \\
P3 This adjusts the max current limit for the 3PCI. Viper of P3 (at Pt. C, block D8, sheet 2, drawing \#479150) should be connected to Pt. C1. This should be first set to Full CW. \\
P4 Full CCW
\end{tabular} \\
\hline 2 & Point A (block J8, sheet 2 of drawing \#479150) should not be connected to either Pt. A1 or Pt. A2. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Step & \multicolumn{1}{c|}{ Description } \\
\hline 3 & \begin{tabular}{l} 
Make sure that the output contactor of the 3PCI is closed. Apply 480V power to the field supply and \\
make the following adjustments as required:
\end{tabular} \\
\hline
\end{tabular}
(1) Adjustment of the bias pot - P1.
a. Check the type of WAGO module that is used to provide the field exciter current command. It should be an Analog Output module with either a \(0-20 \mathrm{~mA}\) or a \(4-20 \mathrm{~mA}\) output.
b. If the module is a \(4-20 \mathrm{~mA}\) type, then connect a \(4-20 \mathrm{~mA}\) box between terminals 7 and 1 on TB1 (refer to block A8, sheet 1 of drawing \#479150). Set the output for 4 mA .
c. If the module has a \(0-20 \mathrm{~mA}\) output, then do not connect any device to the reference inputs on TB1.
d. Adjust pot P1 until the SCRs just begin to be gated-on, i.e. the output voltage meter will begin to show output volts.
(2) Adjustment of the gain adjust pot - P2.
a. Connect the \(4-20 \mathrm{~mA}\) current output box to terminals 7 and TB1, if not already done. Increase the command slowly towards 20 mA while monitoring the current as the output of the field exciter. At 20 mA , the output of the 3PCI should be equal to its rated output (which 60A in this case). Adjust P3 to make sure that the rated current is observed with a 20 mA command.
b. If the winding resistance is such that the rated current cannot be achieved (because the 3PCI regulator runs out of voltage capability), then adjust 20 mA to be equal to the max expected field current (50A in this case) which should be smaller than the PCI current rating. If such an adjustment is made, then skip the adjustment for P3 and leave pot P3 in the Full CW position.
(3) Adjustment of max current limit pot - P3.
c. With the command adjusted for 20 mA , adjust P3 until the output current of the \(3 P C I\) is reduced to the max field current required for the application (which is 50 A in this case).

\subsection*{4.7.2 Testing 3PCI Connection to the VFB}

The following tests verify the WAGO connection of the VFD to the 3PCI Regulator.
Table 4-9. Testing 3PCI Connection to the VFD
\begin{tabular}{|c|l|}
\hline Step & \multicolumn{1}{c|}{ Description } \\
\hline 1 & \begin{tabular}{l} 
Change the variable selection for the Analog Output (that is being used for 3PCI control) from Synch \\
Motor Field I to Speed Demand. This will allow for control of the 3PCI current from the drive Keypad.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Make sure that the output contactor of the 3PCI is closed. With zero Speed Demand, the 3PCI should \\
put out zero voltage.
\end{tabular} \\
\hline 3 & Increase the Speed Demand 10\%. Verify that the 3PCI output is 10\% of the (3PCI) Full-Scale setting. \\
\hline 4 & \begin{tabular}{l} 
Further increase the Speed Demand to 50\%. Verify that the 3PCI output is 50\% of the (3PCI) Full-Scale \\
setting.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.7.3 Drive Test with Synchronous Motor}

The following procedure verifies operation of drive with a synchronous motor in Synchronous Motor Control Mode.
Table 4-10. Drive test with Synchronous Motor
\begin{tabular}{|c|c|c|}
\hline Step & \multicolumn{1}{c|}{ Description } \\
\hline 1 & \begin{tabular}{l} 
Connect the synchronous motor to the drive. Enter motor parameters and use default gains except for the \\
following parameters: \\
(1) Enter Synch Motor Field no-load current as the No-load Current setting (1060). This parameter \\
should be calculated (in \%) on the basis of the actual no-load field current and the maximum \\
capability of the 3PCI regulator. \\
Example: Drive with a synchronous motor that requires 24A of no-load field current and a 3PCI that \\
is tuned such that 75A is the maximum output (at 20mA command input), then the No-Load Current \\
Parameter should be set to: \\
No-Load Current setting = 100\% *24/75A = 32.0\%
\end{tabular} \\
\hline 7 & \begin{tabular}{l} 
(2) Enable Spinning Load (2420). \\
(3) Change the drive control loop type (2050) to Synchronous Motor Control. \\
(4) Use default control loop gains except for the flux loop gains that should be changed as follows: \\
Flux reg prop gain \(\quad\) (3110) \\
Flux reg integral gain (3120) \\
Flux filter time coast (3130)
\end{tabular} \\
\hline (5) The SOP should have been modified to include the logic for controlling the 3PCI output contactor. \\
The contactor should be ON as soon as the Start command to the drive is given and should be turned \\
OFF immediately when the drive trips on a Fault or when the drive goes to Coast State (while \\
stopping).
\end{tabular}


Figure 4-10. AC motor voltage and motor current at test-points VMA and IMA at 10\% speed with Synchronous Motor Control
(a) Unloaded and (b) \(75 \%\) torque operation


Figure 4-11. AC motor voltage and motor current at test-points VMA and IMA at 100\% speed with Synchronous Motor Control
(a) Unloaded and (b) \(\mathbf{7 5} \%\) torque operation

\subsection*{4.8 Drive Tuning}

Use the following sections to complete the startup of the drive. The first section describes Auto-Tuning and its use in determining motor and control parameters. The second section describes the setup of the Spinning Load Menu. This feature is used by the drive control to detect motor speed by scanning the output frequency over the operating range of the application. The last section lists the other menus that may need adjustment for completing the drive setup.

\subsection*{4.8.1 Auto-Tuning}

The basic motor parameters can be divided into two categories - nameplate data and equivalent circuit data. Nameplate data, as the name suggests, is readily available (such as Motor Rated Voltage, Full Load Current, etc.). However, equivalent circuit data (such as Stator Resistance, No-load Current, etc.) is available only from the motor manufacturer.


Notes: (1) Auto Tuning is optional, but is recommended for applications in which high performance, as stated above, is required. (2) The correct equivalent circuit data is required only when good control performance, such as high starting torque or very low speed operation, is desired.
When operating an induction motor, the drive control has the capability to perform Auto-Tuning. This feature allows the drive to estimate parameters of the motor equivalent circuit. There are two stages of auto-tuning; each stage being selected individually. Apart from measuring the motor equivalent circuit parameters during auto-tuning, the control uses the measured motor parameters to adjust the control loops for best possible control bandwidth (the bandwidth for each control loop is fixed internally in software) and hence provides good performance in demanding applications.

Such a feature provides drive tuning without the need for an extensive adjustment procedure. Although, the autotuning feature can be used with all induction motors, there are some limitations. Both stages of auto-tuning can be performed with induction motors (OLVC or CLVC). However, only Stage 1 should be performed with Synchronous Motors (SMC or CSMC) or when Output Filters are connected.

Note: In most general-purpose applications (such as pumps and fans) default data for the motor equivalent circuit is sufficient and auto-tuning is not necessary.
- Autotune Stage 1 (1260)

Stage 1 determines the Stator Resistance and Leakage Inductance. This stage of auto tuning does not require the motor to be de-coupled from the load. The motor does not rotate during this Stage. The data obtained from stage 1 are used to tune the inner regulators that control motor current. The current loop gains are automatically calculated and saved by the control.

DANGER-LETHAL VOLTAGES!! Lethal voltages will appear on the drive outputs during both stages (1 and 2) of Auto Tuning.
- Autotune Stage 2 (1270)

Stage 2 determines the no-load motor current and the motor inertia. The motor rotates at \(30 \%\) of rated speed during this stage. Generally, this stage of auto tuning requires the motor to be de-coupled from the load. Make sure that it is ok (to spin the motor) with the customer before this test is enabled. Data obtained in stage 2 are used to optimize the operation of the outer loops that control motor speed and motor flux. The speed and flux loop gains are automatically calculated and saved by the control.


DANGER!! The motor will spin during stage 2 of Auto Tuning.

Note: Quadratic loads, such as pumps and fans, do not require the motor to be de-coupled. The control is designed to minimize the errors introduced by such loads.

\subsection*{4.8.2 Spinning Load}

Spinning Load should be enabled if one or more of the following operating modes/features are selected:
- Fast Bypass
- Auto-Restart (controlled through the auto reset parameters (7120-7150) and the SOP)
- Synchronous Motor Control (SMC and CSMC)
- Closed Loop Vector Control (CLVC)
(al) Note: Spinning Load does not provide instantaneous restart with \(\mathrm{V} / \mathrm{Hz}\) control.

Note: With synchronous motors, spinning load is always instantaneous, i.e. the drive will never go into a scan mode.

Perform the following steps to tune the scan mode of Spinning Load. Use the Tool Suite to monitor Motor Flux (FluxDS), Motor Speed and Speed Reference.

Table 4-11. Tuning the Scan Mode of Spinning Load
\begin{tabular}{|c|c|}
\hline Step & Description \\
\hline 1 & Enable Spinning Load and make sure the following parameters are set to the values shown. \\
\hline 2 & \begin{tabular}{lrl} 
Spinning Load & \((2420)\) & \\
Spinning Load Mode & \((2430)\) & Forward or Reverse, whicheveris appropriate \\
Scan end threshold (\%) & \((2440)\) & \(20 \%\) \\
Current level set point (\%)(2450) & \(25 \%\) [or equal to the No-load current setting] \\
Current ramp (s) & \((2460)\) & 0.01 s \\
Max current (\%) & \((2470)\) & \(50 \%\) \\
Scan time (s) & \((2480)\) & 3.0 s
\end{tabular} \\
\hline 3 & Operate the drive with a demand of \(30 \%\). \\
\hline 4 & Trip the drive by using ESTOP. \\
\hline 5 & Wait for the motor flux to decay below 4\%. This can take more than a few seconds for large horsepower or high efficiency motors. \\
\hline 6 & Reset ESTOP (and hit Fault Reset if required) and give a RUN command. \\
\hline 7 & \begin{tabular}{l}
On the Tool Suite monitor the speed reference and motor speed at the moment the drive 'catches' the motor. \\
If the speed reference is higher than the motor speed, then the drive has 'caught' the motor too soon. In this case, increase the Scan End Threshold parameter (2440). \\
If the speed reference is lower than the motor speed, then the drive has 'missed' the motor. In this case, reduce the Scan End Threshold parameter (2440).
\end{tabular} \\
\hline 8 & Repeat steps 3 through 7 until the speed reference and motor speed (at the moment the drive 'catches' the motor) are within a few percent of each other. \\
\hline
\end{tabular}

\subsection*{4.8.3 Application Menus}

Setup the following Menus according to user/application requirements:
- Motor Limits (1120) including Phase Imbalance (1244) and Ground Fault (1245)
- Speed Profile Menu (4000)
- Bypass Type (2590) and Fast Bypass (2600)
- Critical Frequency Menu (2340)
- Drive Protection Menu (7)
- Display Parameters Menu (8000)

\subsection*{4.9 Synchronous Transfer Procedure (if applicable)}

This section of the startup procedure involves optional synchronous transfer checks. The Perfect Harmony may be configured for optional synchronous transfer operation in which the drive can be used to control multiple motors (for example) one motor at a time. If such a configuration is not defined for the application, then this section may be skipped. For additional information on signals, flags, transfer steps and sample application refer to Section 9.2 describing Synchronous Transfer Operation in Chapter 9.

The following steps should be used to set up the drive control for Synchronous Transfer:
Table 4-12. Drive Control Setup for Synchronous Transfer
\begin{tabular}{|c|lll|}
\hline Step & & \multicolumn{1}{c|}{ Description } \\
\hline 1 & Configure Synchronous Transfer Menu parameters as shown below. \\
& Synchronous Transfer & \((2700)\) \\
& Phase I gain & \((2710)\) & 2 \\
& Phase P shift & \((2720)\) & 4 \\
& Phase offset & \((2730)\) & 2 deg \\
& Phase error threshold & \((2740)\) & 1.5 deg \\
& Frequency Offset & \((2750)\) & \(0.5 \%\) \\
& Up Transfer Timeout & \((2760)\) & 0 sec \\
\hline 2 & Down Transfer Timeout & \((2770)\) & 0 sec \\
\hline 3 & ENABLE Spinning Load by setting Spinning Load Mode (2430) to Forward. \\
\hline
\end{tabular}

Go through the following checklist to complete the set up for Synchronous Transfer:
Table 4-13. Synchronous Transfer Check List
\begin{tabular}{|c|l|}
\hline Step & \multicolumn{1}{c|}{ Description } \\
\hline 1 & Configure the drive control as described above. \\
\hline 2 & \begin{tabular}{l} 
Ensure that PLC related hardware is properly connected (for information, see the respective PLC \\
communications network manuals supplied by the vendor) to the WAGO I/O modules.
\end{tabular} \\
\hline 3 & Verify wiring of all VFD control and line control electrical contactors. \\
\hline 4 & \begin{tabular}{l} 
Ensure that the system operating program for the "up transfer" and "down transfer" process logic is \\
implemented as described in the Application and Operations chapter.
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
The state machines for up and down transfers reside in the Perfect Harmony's control program. These \\
interface with the control system integrator's PLC network via the VFD system operating program to \\
handle handshaking between each motor control center (MCC) and the VFD. All controls for the VFD \\
and line reactors are controlled from the system integrator's PLC. Verify that these controls are \\
operational.
\end{tabular} \\
\hline 6 & Verify all communications flags. \\
\hline
\end{tabular}

\subsection*{4.10 Output Filter Setup (if applicable)}

An output filter is typically used to prevent the output cable dynamics from interfering with the drive output. The Output Connection submenu (2900) should be used when an output filter is connected at the drive output (refer to Table ).

The Filter CT secondary turns parameter (2910) represents the secondary side turns on the filter CT assuming primary turns are 5 . The percent filter inductance (2920) and capacitance (2930) can be calculated from the inductor value (in Henries) and capacitor value (in Farads), respectively, using the following formula. Typical values for the filter inductance and capacitance are \(5.0 \%\) and \(10.0 \%\), respectively. The cable resistance (in ohms) can be estimated from the total cable length and the cable resistance per foot. For this parameter entry (2940), an estimate is sufficient. Use the last formula to convert from ohms to percent of drive output impedance.

Drive_base_impedance [in ohms] = Drive_output_rated_voltage / (1.732 * Drive_output_rated_current)
\%Filter_inductance \(=100.0\) * 377.0 * Filter_inductance [in Henries] / Drive_base_impedance [in ohms]
\%Filter_capacitance \(=100.0 * 377.0 *\) Filter_capacitance [in Farads] * Drive_base_impedance [in ohms]
\% Cable_resistance \(=100.0\) * Cable_resistance [ in ohms] / Drive_base_impedance [ in ohms]

Note: Entries in the Output Connection submenu are related to the drive and not to the motor. Hence changes in motor parameters do not affect the parameters in this submenu.

Table 4-14Table 4-14. Output Connection Menu (2900)
\begin{tabular}{|l|c|c|c|c|c|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & ID & Units & Default & Min & Max & \multicolumn{1}{|c|}{ Description } \\
\hline \begin{tabular}{l} 
Filter CT secondary \\
turn
\end{tabular} & 2910 & & 0 & 0 & 250 & \begin{tabular}{l} 
Secondary side turns (assuming primary \\
turns = 5) of the CTs used to measure filter \\
capacitor currents.
\end{tabular} \\
\hline Filter inductance & 2920 & \(\%\) & 0 & 0 & 16 & \begin{tabular}{l} 
Sets the output filter inductor value \\
(impedance) as a ratio of the base output \\
impedance of the drive (typically 5\%).
\end{tabular} \\
\hline Filter capacitance & 2930 & \(\%\) & 0 & 0 & 96 & \begin{tabular}{l} 
Sets the output capacitor value (admittance) \\
as a ratio of the base output admittance of \\
the drive (typically 10\%).
\end{tabular} \\
\hline Cable resistance & 2940 & \(\%\) & 0 & 0 & 64 & \begin{tabular}{l} 
Sets the output calble resistance value as a \\
ratio of the base output impedance of the \\
drive.
\end{tabular} \\
\hline Filter damping gain & 2950 & p.u. & 0 & -5.0 & 5.0 & Adjusts the active damping gain. \\
\hline
\end{tabular}

A new parameter called Filter Damping Gain (2950) in the Output Connection submenu is available in versions 2.20 and higher. This allows an adjustment of the damping gain that is used by the control to damp the output frequencies amplified by the filter. For long cables (length \(>\sim 30000\) feet) the damping gain is required to be a negative number, normally between -1.0 and 0.0 . For shorter cable lengths, the gain should be in the range of 0.0 and +1.0 .

For versions 2.02 and 2.11, there is no direct parameter that can be adjusted to control damping. An indirect way of adjusting the internal damping gain is to change the Motor Leakage Inductance parameter. The internal damping gain is directly proportional to the square root of the motor leakage inductance.

For active damping, the sample rate should be above the \(4.0-4.5 \mathrm{kHz}\) range. Depending on the number of ranks in the drive, use the following table to adjust the carrier frequency (3580).

Table 4-15. Recommended value of carrier frequency as a function of cell stages in the drive
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Number of \\
Ranks
\end{tabular} & \begin{tabular}{c} 
Carrier \\
Frequency \\
(Hz)
\end{tabular} \\
\hline 3 & 800 \\
\hline 4 & 600 \\
\hline 5 & 600 \\
\hline 6 & 500 \\
\hline
\end{tabular}

\subsection*{4.10.1 Adjusting Current Regulator Gains with Output Filters}

When output filters are used, the current loop gains (3260 and 3270) should be below 0.30 (for proportional gain) and 30.00 (for integral gain), respectively.

If the drive repeatedly trips on IOC when the start command is given, then the wiring of the filter CTs must be checked for correct connections using the procedure described in the following subsection. After the connections are verified, both visually and by operating in OLTM, then the next step is to reduce current loop gains. Reduction of the current loop gains (in steps on 0.05 and 5.00 , respectively) must be performed until IOC-free operation is obtained. The Filter damping gain should then be adjusted to reduce the high frequency oscillations in the drive output current waveforms. A good value of Filter damping gain will allow an increase in current loop gains towards 0.30 and 30.00.

\subsection*{4.10.2 Verification of Filter CT Wiring}

Three CTs are used for measuring the filter capacitor currents, one CT for each phase. The CTs are placed on the starpoint (or Y-point) of the capacitors so that the CTs are not subject to high common-mode voltages. For each CT, two wires, one from each secondary, go back to the control section. This results in a total of six wires going from the CTs to the control section. Perform a visual inspection of the filter cabinet (with Medium Voltage off) to verify CT placement and connections.

The capacitor current feedback signals are available on test-points IFA, IFB, and IFC, located on the System Interface Board. In order to check the CT connections, the drive should be operated without the motor in Open Loop Test Mode. Run the drive to at least \(50 \%\) speed and observe the drive output voltage, VMA and filter capacitor current, and IFA on a scope. The filter capacitor current should lead the drive voltage as shown in Figure 4-12, where the waveforms were measured at \(100 \%\) speed.


Figure 4-12. Drive output voltage and filter capacitor current on test-points VMA and IFA, respectively, to determine if filter CT wiring is correct

\subsection*{4.10.3 Determining Stator Resistance in Long Cable Application}

If cable resistance data is not available then an alternate way of determining cable and motor resistance (total resistance in series with the drive) is to use Auto-Tuning Stage 1. Use this feature only when the motor current rating is at least \(\mathbf{5 0 \%}\) of the drive current rating. If cable resistance (2940) has already been entered as a value less than the actual resistance value, then the drive will subtract the entered cable resistance value from the estimated (total) stator resistance and save the difference as the motor stator resistance (1080). If cable resistance is entered as 0.0 , then the drive will assign the total (measured) resistance as the stator resistance parameter.

Note: Stator resistance is with respect to motor base impedance, while cable resistance is with respect to drive output base impedance. The drive does the conversion only after Auto-Tuning Stage 1.

Note: After Auto-Tuning Stage 1, the current loop gains have to be manually adjusted such that they are below 0.30 and 30.0 , respectively.

\subsection*{4.11 Encoder Setup (if applicable)}

An encoder is used in applications that require very tight speed control, especially at low speeds. Use the following steps to set the drive that is equipped with an encoder.
\begin{tabular}{|c|lcl|}
\hline Step & \multicolumn{1}{c|}{ Description } \\
\hline 1 & \begin{tabular}{l} 
Set the drive Control Loop Type (2050) to CLVC (for Closed Loop Vector Control). Choose CSMC \\
2
\end{tabular} & (Closed Loop Synchronous Motor Control) if the motor is of synchronous type. \\
\hline 3 & Enable Spinning Load by choosing the appropriate direction in menu 2430. \\
\hline & Enter the parameters in the Encoder Menu (1280) as shown. \\
& Encoder PPR & 1290 & Enter PPR value from encoder \\
& Encoder filter gain & 1300 & 0.75 \\
& Encoder loss threshold & 1310 & \(5.0 \%\) \\
& Encoder loss response & 1320 & Open loop \\
\hline
\end{tabular}

\subsection*{4.11.1 Verification of encoder operation}

Use the following steps to determine if the encoder is operating correctly.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Step } & \multicolumn{1}{c|}{ Description } \\
\hline 1 & Run the drive in Open Loop Vector Control. \\
\hline 2 & \begin{tabular}{l} 
Compare the (estimated) motor speed with the encoder speed (measured) value for different speed \\
demands. They should track each other very closely. If tracking is greater than the rated slip of the \\
motor, then check the Encoder PPR parameter to see if it is correct. To change the polarity of the \\
encoder feedback, switch the pair A, A' with B, B'.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.12 Verification of Input Monitoring}

This section provides steps to verify the monitoring capabilities of the drive. The following steps should be performed after drive operation in one of the (motor) control modes has been verified.
\begin{tabular}{|c|l|}
\hline Step & \multicolumn{1}{c|}{ Description } \\
\hline 1 & Run the drive to a speed at which output power is greater than 20-25\% of rated drive power. \\
\hline 2 & \begin{tabular}{l} 
Check if the calculated values of input and output power are reasonably close, in other words, the drive \\
efficiency should read 95\% or higher. If this is not the case, then an adjustment of voltage and/or current \\
scalers (input or output) may be required.
\end{tabular} \\
\hline
\end{tabular}

Determination of the voltage/current scaling requires independent means of measuring these quantities. In some drives, PQMs are already installed. PQM readings can be compared with the calculated values from the drive control to determine the actual scaler setting (default setting is 1.0). If a PQM is not available, then a PT/CT can be used to make the independent measurement.
Table 4-6 provides values of voltage/current signals on the test points at rated conditions. For each signal, note the drive display reading, the reading from the independent measurement and the value measured at the test point. Compare these three readings to determine the cause of the error. A (drive) scaler adjustment should be made until the measurements are within \(1 \%\) of each other.

Note: Increasing the scaler value (for voltage or current) increases the value of the measured quantity in the control.
\[
\nabla \nabla \nabla
\]

\section*{CHAPTER}

\section*{5 Application and Operation Issues}

\subsection*{5.1 Introduction}

This chapter provides an overview of some of the more complex application and operation issues surrounding the Perfect Harmony VFD.

\subsection*{5.2 Synchronous Transfer Operation}

\subsection*{5.2.1 Introduction}

The term "up transfer" is used to transfer a motor running from a variable frequency drive (VFD) to the line and then decouple the motor from the drive. "Down transfer" is used to match the drive with a motor running off the line and decouple the motor from the line and transfer the motor to the VFD.

\subsection*{5.2.2 Transfer Setup and Faults}

Before attempting synchronous transfer, the command generator options selected during pre-synchronous transfer should be examined. It is important to disable command generator functions that may cause the transfer to fail. Verify that the speed profile, polarity change function, and speed limits do not modify the input frequency when a synch transfer is requested. The input frequency is treated much the same way as any other raw speed demand into the drive. Refer to the Command Generator diagram (459713).

During synchronous transfer there are three alarm/fault conditions that can occur:
- Up Transfer timeout (alarm): Meaning that the transfer has taken longer than allocated in the "Up transfer timeout" menu ( \(\mathrm{ID}=2760\) ).
- Down Transfer timeout (alarm): Meaning that the transfer has taken longer than allocated in the "Up transfer timeout" menu (ID = 2770).
- Phase Sequence (alarm or fault): Indicating that the Drive input phase sequence or direction is different than the Drive output.

The timeout alarms may indicate that other conditions maybe causing the transfer to fail. An example would be that there might not be enough active cells left in the drive to support the line voltage during down transfer. In this case, the drive sets the SOP flag InsufficientOutputVolts_I high.

\subsection*{5.2.3 Up Transfer}

Up transfers are accomplished by taking the motor up to speed on the VFD to match the frequency of the line. This is accomplished by using the drive input line frequency as a velocity reference. This is accomplished by the drive software when the up transfer request is received. Once the frequency is matched the phase also needs to be matched with a predetermined leading phase to ensure the power flow is out of the VFD while the line contactor is closed. This step is done by using the line frequency and phase information from the input PLL and the output phase information from the output PLL to determine a vernier adjustment to the frequency that is added to the velocity command. When the synchronization is complete, the drive contactor is opened and the drive coast-stopped to end the transition. The sequence of control logic is as follows:

Note: All discrete steps imply a time delay for the drive to recognize each step independently. All handshaking must allow a minimum of 250 ms between signals sent.
1. Start the VFD as a normal running drive with proper speed command. The drive must be in the "RUN" state in order to initiate transfer.
2. Initiate the transfer with the transfer request system flag (UpTransferRequest_O) when a transfer is desired. Also a menu timer can be enabled for transfer time-out (a transfer failed alarm). If no transfer failure exists, the drive enters "UP_TRANSFER" state and transfer state "TRANSFER_INIT" (A). If the drive output voltage capability, due to cell bypass or high input line voltage, is less than the line voltage (see Section on Neutral Point Shift during Cell Bypass in this chapter), the control will prevent the Drive from entering the "UP_TRANSFER" state, and set the InsufficientOutputVolts_I flag high.
3. From this point the transfer is controlled through the transfer state machine from within the "UP_TRANSFER" Drive State. With the entry into this state the velocity regulator demand generator is forced to accept the reference from the line frequency measurement.

The Up Transfer State machine consists of the following five states:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ State } & Value* \\
\hline A - TRANSFER_INIT & 0 \\
\hline B - WAITING_FOR_FREQUENCY_LOCK & 1 \\
\hline C - WAITING_FOR_PHASE_LOCK & 2 \\
\hline D - WAITING_FOR_CONTACTOR_CLOSURE & 4 \\
\hline E - TRANSFER_COMPLETE & 6 \\
\hline
\end{tabular}
*Value is the value of the state machine variable for plotting purposes.
4. In Transfer State "TRANSFER_INIT"(A), the new velocity reference represents input line frequency as described above with no vernier for phase offset correction. The drive will stay in this state until the frequency error is reduced to less than 0.5 Hz . At this point the Transfer State is advanced to "WAITING_FOR_FREQUENCY_LOCK"(B).


Figure 5-1. Synchronous Transfer State Diagram for "Up Transfer"
5. In transfer state "WAITING_FOR_FREQUENCY_LOCK"(B) the drive maintains frequency lock for 2 seconds before advancing to the next Transfer State "WAITING_FOR_PHASE_LOCK"(C).
6. In transfer state "WAITING_FOR_PHASE_LOCK"(C) the drive uses the phase lock loop phase error in a P +I loop to calculate a phase correction velocity reference vernier adjustment that is added to the line frequency reference as the input demand to the velocity regulator. This correction is continued until the phase error is less than a user entered value for a period of 3 seconds. An optional offset to the error, programmable through a menu entry in degrees of phase shift, may be added as well. When the minimized phase error has been maintained for the proper time, the state machine sets a system program flag "UpTransferPermit_I" to enable the line contactor and advance to the next transfer state, waiting for contactor closure (D). This flag must be used to enable the line contactor. If frequency lock is lost during this state, the state machine drops back to state B until frequency lock is again restored.
7. In transfer state "WAITING_FOR_CONTACTOR_CLOSURE"(D) the drive maintains the phase lock loop and waits for the acknowledgment of the line contactor pickup. When the contactor closed is sensed via the system program flag "LineContactorAcknowledge_O", the drive sets the "UpTransferComplete_I" and advances to the final Transfer State "TRANSFER_COMPLETE".
8. In transfer state "TRANSFER_COMPLETE"(E) the drive is waiting until the Drive Run request is removed. The flag must be used to drop out the VFD contactor while maintaining the line contactor.
9. Once the drive enters the drive state "UP_TRANSFER", the only way out is through the normal completion of the transfer, or if a transfer time-out failure, or if a drive fault or E-stop occurs. A transfer timeout failure (alarm) occurs if the system is unsuccessful at completing a transfer before the end of the timeout period. If a timeout occurs before reaching the "TRANSFER_COMPLETE" (E) State the drive returns to drive state "RUN" state and presets the Transfer State back to "TRANSFER_INIT"(A). The drive issues a Transfer Failure Warning and waits for a reset before attempting a new Up Transfer. If the drive makes it to the "TRANSFER_COMPLETE" (E) State the drive will not issue a timeout.

A Drive Fault causes the drive to go into "Coast Stop" and then the drive "IDLE" state. A Fault Reset is required to re-enable the drive to run (ready-to-run equals true). A drive restart is required as in Step \# 1 to begin a new Up Transfer Sequence. The drive responds to a CR3 or drive-inhibit in the same way as a Fault. If this occurs in any state other than the Transfer Complete State (E), the drive drops back to the Drive Run State.

\subsection*{5.2.4 Down Transfer}
"Down transfer" is used to transfer a motor from the line to the Drive. With NXG control, the drive monitors the output voltage before locking-in to the motor frequency via the spinning load algorithm. For the drive to perform such a sync, the VFD contactor is required to be closed at the beginning of the Down Transfer sequence. The drive is capable of locking-in within a few milliseconds. The drive then raises the output torque current before indicating that it is ready to accept the motor (and open the line contactor). The sequence for down transfer is as follows:


Figure 5-2. Synchronous Transfer State Diagram for "Down Transfer"
1. NXG Control requires Spinning Load to be enabled, and that the Drive is in the "IDLE" state prior to down transfer. To start, assume that the motor is running from the line, the line contactor is closed and a contactor acknowledge is provided to the drive.
2. The down transfer request system program flag (DownTransferRequest_O) is set.
3. A "run request" is issued to the drive. If the drive is capable of supporting the voltage on the motor, the drive issues a permit (DownTransferPermit_I) which is used to close the VFD Output Contactor, then goes into the Down Transfer State machine. The Drive will begin to sense the voltage from the drive output. If the drive output voltage capability, due to cell bypass is less than the line voltage (see Section on Neutral Point Shift during Cell Bypass in this chapter), the control will prevent the Drive from entering the "DOWN_TRANSFER" state, and set the InsufficientOutputVolts_I flag high.

The Down Transfer State machine consists of the following five states (refer to Figure 5-2):
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ State } & Value* \(^{*}\) \\
\hline A - TRANSFER_INIT & 0 \\
\hline B - WAITING_FOR_FREQUENCY_LOCK & 1 \\
\hline C - WAITING_FOR_TORQUE_TO_BUILD & 3 \\
\hline D - WAITING_FOR_CONTACTOR_OPENING & 5 \\
\hline E - TRANSFER_COMPLETE & 6 \\
\hline
\end{tabular}
*Value is the value of the state machine variable for plotting purposes.
4. After entering "DOWN_TRANSFER" state the drive is initially in the transfer state A-(TRANSFER_INIT), and will transition to transfer state B-(WAITING_FOR_FREQUENCY_LOCK) after the output PLL stabilizes with the motor flux. The drive transistors are enabled in the transition from state A to state B. Transition from B to C requires that the drive output frequency and the line frequency be within \(1 / 2\) hertz for 1 second while the drive is connected to the line.
5. Now that the drive has matched the line frequency, it will begin to raise the amount of torque producing current to the motor in preparation for the transfer of motor control from the line to the drive. Transition from C to D occurs when the torque producing current is greater than or equal to \(25 \%\) of the maximum permissible current (Iqs max). The drive issues a signal (sets it True) to unlatch the line contactor (LineContactorUnlatch_I).
6. Once the PLC opens the line contactor it should clear the line contactor acknowledge flag (LineContactorAcknowledge_O set to False), then the state machine transitions to the E-(TRANSFER_COMPLETE) state. It is vital that this signal is sent only after ensuring that the contactor is open.
7. The drive issues a down transfer complete signal (DownTransferComplete_I) after which the down transfer request (DownTransferRequest_O) can be removed.
8. The drive then ramps to the speed setpoint set by the customer, and the Down Transfer State machine is reinitialized to state "A".
9. If a Transfer Time-out occurs when the drive is within the "DOWN_TRANSFER" state, then the drive goes back to the state A-(TRANSFER_INIT). The drive issues a Transfer Failure Warning and waits for a reset before attempting a new Down Transfer.

To Stop the Drive while it is connected to the line, issue a Stop Request by reviewing the Run Request. This will disable the Drive output immediately. Then remove the VFD Contactor Acknowledge, open the VFD Contactor, and remove the Down Transfer Request.

A Drive Fault causes the drive to go into "Coast Stop" and then to the "IDLE" state. A Fault Reset is required to allow the drive to run again. To reset the Fault, open the VFD Contactor, remove the VFD Contactor Acknowledge, and remove the Down Transfer Request. Follow the sequence listed from Step \# 1 for a new Down Transfer sequence. The drive responds to a CR3 or drive-inhibit in the same way as a Fault, except that a fault reset is not required, but the drive-inhibit must be cleared in order to run again.

\subsection*{5.2.5 Synchronous Transfer with Multiple Motors and a PLC}

Perfect Harmony drives can be used to control multiple motors using synchronous transfer methodology. Such applications are used to sequentially control a series of motors one motor at a time. Consider the following example. A reservoir is being filled with liquid at an unknown, variable rate. Up to three pumps are used to remove the liquid to keep the reservoir level at a certain setpoint (this is the external process). As the external system error (i.e., the positive or negative deviation from the setpoint) continues for an external process (e.g., the feedback value rises above a setpoint value), the first motor (a pump, for example) is controlled by the drive to attempt to correct the error and bring the reservoir level back to its setpoint level. If the error from the external process continues (i.e., the reservoir level remains above its setpoint value), the first pump may be unable to reach or maintain the level setpoint - even at greater than \(100 \%\) speed. If this occurs, the first pump is smoothly transferred to line voltage (at \(100 \%\) speed), and the drive begins to control a second pump motor. If the error of the external process remains, the second pump can then be operated in addition to the first pump (at 100\%) using straight line voltage, while a third motor is brought on line and controlled by the drive. This transfer of drive control from one motor to the next can occur with a single Perfect Harmony drive and any number of motors.

Figure 5-3 shows a reservoir being emptied by pumps 1, 2 and 3 (which use induction motors M1, M2 and M3, respectively). As the tank fills past the setpoint level (monitored by an external feedback signal), the drive controls motor M1 (via motor control center MCC1) to maintain the level. As the tank level continues to increase, the motor on pump 1 will eventually reach \(100 \%\) speed. If the tank level continues to increase, the Perfect Harmony initiates an "up transfer". This process involves electronically switching control of motor M1 to line control (rather than VFD control). This process is done smoothly using a serial communications network (MODBUS protocol, for example)
and a pair of electronically controlled contactors ( \(\mathbf{L} 1\) for line control and V1 for VFD control). With motor M1 running at \(100 \%\) (line voltage), motor M2 (on pump 2) is switched from an idle state into VFD control using PLC commands and contactor \(\mathbf{V} 2\). This process continues with additional motors until the external process feedback indicates that the tank level is at its setpoint. This entire process works in the reverse order (called a "down transfer") when a negative error occurs (i.e., the feedback signal shows that the measured value is below the setpoint value). An "up transfer" process is illustrated graphically in Figure 5-4 . A "down transfer" process is illustrated graphically in Figure 5-5 . These graphs show motor output percentages as functions of time with either continued demand (positive error) for "up" transfers or no demand (negative error) for "down" transfers.

Note that the graphs in Figures 5-4 and 5-5 show very "clean" proportional ramps. These ramps are for illustration purposes only and do not include any integral or derivative control action. A continued demand throughout time period \(t_{4}\) is assumed in Figure 5-4 and no demand is assumed throughout time period \(t_{9}\) in Figure 5-5. An overview of the control states of the motors used in the example of Figure 5-4 is given in Table 5-1. A similar overview for Figure 5-5 is given in Table 5-3.

Note: The state machines for up and down transfers reside in the Perfect Harmony's state control program. These interface with the control system integrator's PLC network via the VFD system operating program to handle handshaking between each motor control center (MCC) and the VFD. All controls for the VFD and line contactors are controlled from the system integrator's PLC.


Figure 5-3 Overview of a Sample Transfer Application


Figure 5-4. Graphical Representation of a Sample "Up Transfer" with Continued Demand

Table 5-1. Control States of Motors in a Sample "Up Transfer"
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Time } & \multicolumn{1}{|c|}{ M1 } & \multicolumn{1}{c|}{ M2 } & \multicolumn{1}{c|}{ M3 } \\
\hline \(\mathrm{t}_{0}\) & VFD Off (0\%) & Off (0\%) & Off (0\%) \\
\hline \(\mathrm{t}_{1}\) & VFD (0-100\%) & Off (0\%) & Off (0\%) \\
\hline \(\mathrm{t}_{2}\) & Line (100\%) & VFD (0-100\%) & Off (0\%) \\
\hline \(\mathrm{t}_{3}\) & Line (100\%) & Line (100\%) & VFD (0-100\%) \\
\hline \(\mathrm{t}_{4}\) & Line (100\%) & Line (100\%) & VFD (100\%) \\
\hline
\end{tabular}


Figure 5-5. Graphical Representation of a Sample "Down Transfer" with No Demand

Table 5-2. Control States of Motors in a Sample "Down Transfer"
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Time } & \multicolumn{1}{|c|}{ M1 } & \multicolumn{1}{c|}{ M2 } & \multicolumn{1}{c|}{ M3 } \\
\hline \(\mathrm{t}_{5}\) & Line (100\%) & Line (100\%) & VFD (100\%) \\
\hline \(\mathrm{t}_{6}\) & Line (100\%) & Line (100\%) & VFD (100-0\%) \\
\hline \(\mathrm{t}_{7}\) & Line (100\%) & VFD (100-0\%) & Off (0\%) \\
\hline \(\mathrm{t}_{8}\) & VFD (100-0\%) & Off (0\%) & Off (0\%) \\
\hline \(\mathrm{t}_{9}\) & VFD Off (0\%) & Off (0\%) & Off (0\%) \\
\hline
\end{tabular}

\subsection*{5.2.6 The PLC Interface}

All VFD control is accomplished over a RS485 serial communications network using a supported communications protocol (e.g., Modicon Corporation's MODBUS communications protocol). For example, a Modicon-compatible PLC interface is located at each motor control center. These PLCs are networked to a main MODBUS controller (e.g., a PC) and the communications board on the Perfect Harmony drive. Refer to Figure 5-6.

PLC interface refers to Modicon’s MODBUS Serial interface only. This is for purposes of example only. Any supported communication network will do and the interface can also be done with no PLC, or by direct logic control.


Figure 5-6. Communications Outline Drawing using a Modbus Network Configuration

\subsection*{5.2.7 "Up" Transfer (from VFD to Line Control)}

Note: All discrete steps imply a time delay for the drive to recognize each step independently. All handshaking must allow a minimum of 250 ms between signals sent.

This section provides the necessary steps to be followed for Up Transfer. The state transitions that occur during these sequences are graphically shown in Figure 5-7.

Note: If the drive is not already running, the PLC should begin by closing the VFD Output Contactor.
1. The PLC issues an "up transfer request" [UpTransferRequest_O].
2. If the drive is not already running, the PLC issues a "run request" [RunRequest_O].
3. The PLC provides the VFD with the output contactor acknowledge [VFDContactorAcknowledge_O].
4. The VFD ramps to line frequency and phase-locks to the line for 3 seconds. (The VFD substitutes the input line frequency as the raw speed demand).
5. The VFD issues an "Up Transfer Permit" command [UpTransferPermit_I] to the PLC.
6. The line contactor (e.g., L1) is closed by the PLC.
7. The PLC signals the VFD that the line contactor (e.g., L1) is closed.
8. The VFD receives the "line contactor closed acknowledge" signal [LineContactorAcknowledge_O] and signals the PLC "up transfer complete" [UpTransferComplete_I].
9. The PLC stops the VFD through the serial interface by removing the "run request" [RunRequest_O].
10. The PLC removes the "up transfer request" [UpTransferRequest_O].
11. The VFD contactor (e.g., V1) is opened by the PLC.
12. The PLC removes the "VFD contactor closed" [VFDContactorAcknowledge_O] signal to the VFD.
13. PLC removes [linecontactoracknowledge] for VFD while maintaining the line contactor closed.
14. New motor parameters are loaded through the serial interface for use in the next operation (or the VFD stays idle). This step is possible in version 2.3 or higher of NXG software.

Note: All hand shaking signals between the VFD and the PLC must be done sequentially as described. No two signals can be sent a the same time as timing is critical for proper operation.


Figure 5-7. State changes during Up Transfer Sequence
The \(\uparrow \downarrow\) arrows indicate transitions that are used by the customer interface (for e.g., a PLC) to control the process.

\subsection*{5.2.8 "Down" Transfer (from Line to VFD Control)}

Note: All discrete steps imply a time delay for the drive to recognize each step independently. All handshaking must allow a minimum of 250 ms between signals sent.
1. The Down Transfer process (refer to Figure 5-8) consists of the following steps. The line contactor is assumed to be closed at the beginning of this procedure.
2. The PLC switches to the correct motor parameters in the VFD through the system program if required. (This step is possible in version 2.3 or higher of NXG software.)
3. The PLC provides the VFD with the acknowledge from the line contactor [LineContactorAcknowledge_O].
4. The PLC issues a "down transfer request" [DownTransferRequest_O].
5. The PLC issues a "run request" \([\) RunRequest_O] to the drive.
6. The VFD issues a "transfer permit" command [DownTransferPermit_I] to the PLC if the drive can provide sufficient voltage to match the line. The VFD then enters the Down Transfer drive state.
7. The PLC closes the VFD contactor. When the VFD contactor is closed, the PLC sends a signal to the VFD indicating the VFD contactor (e.g., v1) is closed [VFDContactorAcknowledge_O]. VFD then waits five seconds for stabilization of the PLL.
8. The VFD locks-in to the line frequency and builds torque current to \(25 \%\); it then issues the "line contactor unlatch" signal [LineContactorUnlatch_I] to the PLC.
9. The PLC verifies that the VFD has not faulted.
10. The line contactor (e.g., L1) is opened by the PLC. When the line contactor is opened, the signal [LineContactorAcknowledge_O] is cleared.
11. The VFD signals the PLC "down transfer complete" [DownTransferComplete_I].
12. The PLC removes the "down transfer request" [DownTransferRequest_O], but maintains the "run request."
13. The VFD clears the [DownTransfer Permit_I] and the Line [ContactorUnlatch_I] flags, exits the Down Transfer Drive state, and enters the Drive Run state.
14. The VFD follows the process setpoint from the PLC.


Figure 5-8. State changes during Down Transfer Sequence
The \(\boldsymbol{\uparrow} \downarrow\) arrows indicate transitions that are used by the customer interface (for e.g., a PLC) to control the process.


Note: Run Request must be maintained after the transfer is complete.

\subsection*{5.2.9 Required Signals}

Table 5-3 lists descriptions of signals that are required for synchronous transfer operation.
Table 5-3. Required Signals and Descriptions
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Signal } & \multicolumn{1}{c|}{ Description } \\
\hline UpTransferRequest_O & Input signal from PLC used to request transfer from VFD to Line. \\
\hline DownTransferRequest_O & Input signal from PLC used to request transfer from Line to VFD. \\
\hline VFDContactorAcknowledge_O & Input from PLC to indicate the VFD output contactor status. \\
\hline LineContactorAcknowledge_O & Input from PLC to indicate the Line contactor status. \\
\hline UpTransferPermit_I & Permit from drive to close the Line contactor during an Up Transfer. \\
\hline UpTransferComplete_I & \begin{tabular}{l} 
Signal from drive indicating successful synchronization of the drive to \\
the line. After receiving this, the PLC can remove the run request and up \\
transfer request.
\end{tabular} \\
\hline LineContactorUnlatch_I & \begin{tabular}{l} 
Signal from drive to open the Line contactor during Down Transfer. This \\
is not a latched signal. It disappears on Transfer complete.
\end{tabular} \\
\hline DownTransferPermit_I & \begin{tabular}{l} 
Indicates the VFD is capable of supporting line voltage, and is used by \\
the PLC to command the closing of the VFD contactor. The drive will \\
then enter the Down Transfer State machine (TRANSFER_INIT state). \\
This is not a latched signal. It disappears on Transfer complete.
\end{tabular} \\
\hline DownTransferComplete_I & \begin{tabular}{l} 
Signal from drive indicating a successful Down Transfer. After receiving \\
this the PLC can remove the down transfer request.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.2.10 Additional Parameter Description}

The Sync Transfer Menu (2700) is used exclusively for synchronous transfer applications. The menu items and descriptions for this menu are listed in Table 5-4. This information is also available in Chapter 3 of this manual.

Table 5-4. Sync Transfer Menu (2700)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & ID & Units & Default & Min & Max & \multicolumn{1}{c|}{ Description } \\
\hline Phase I gain & 2710 & & 2.0 & 0.0 & 15.0 & Phase integrator gain \\
\hline Phase P gain & 2720 & & 4.0 & 1.0 & 12.0 & Phase proportional gain \\
\hline Phase offset & 2730 & Degrees & 2.0 & -90.0 & 90.0 & \begin{tabular}{l} 
Specifies the phase angle setpoint used \\
during Up Transfer. This is set positive, \\
expressed in degrees leading to prevent \\
power flow back into drive.
\end{tabular} \\
\hline \begin{tabular}{l} 
Phase error \\
threshold
\end{tabular} & 2740 & Degrees & 1.5 & 0.0 & 5.0 & \begin{tabular}{l} 
Specifies the phase synchronization error \\
window during Up transfer. This parameter \\
adjusts the amount of error allowed during \\
phase-locking and is expressed in degrees.
\end{tabular} \\
\hline \begin{tabular}{l} 
Frequency \\
Offset
\end{tabular} & 2750 & \(\%\) & 0.5 & -10.0 & 10.0 & \begin{tabular}{l} 
Frequency offset used during Down transfer \\
to establish torque current by driving the \\
speed regulator into limit.
\end{tabular} \\
\hline
\end{tabular}

Note: In software versions up to and including 2.4, parameter 2740 was actually in radians, not degrees. In these versions, the desired degrees should be multiplied by \(\pi / 180\) and then entered.

\subsection*{5.3 Spinning Load Operation}

The Spinning Load feature allows the drive to determine the speed of a motor that is already rotating. The drive is thus able to apply output voltages at the same frequency as the rotating motor and minimize any chance of a speed transient. The Spinning Load feature in NXG Control is divided into two stages. During the first stage Spinning Load operates automatically when enabled, and requires no user adjustments. The drive control monitors motor flux and is able to provide an instantaneous restart. This stage is valid as long as there is detectable flux in the motor. Typically the drive is capable of restarting instantaneously if the time duration between drive disable and re-start is within 3 to 4 motor time constants.

The second stage consists of a scan feature during which a fixed level of current (set by the Current Level Set Point parameter) of varying frequency is applied to the motor. The control monitors the measured motor flux, and when the motor flux exceeds a flux threshold (set by the Scan End Threshold parameter) the control assumes that the applied frequency is equal to the rotating speed of the motor. This stage requires parameters to be tuned in order for the Scan to function properly.

Spinning Load should be enabled if any of the following operating modes or features is selected:
- Fast Bypass
- Auto-Restart
- Synchronous Motor Control (SMC and CSMC)
- Close Loop Vector Control (CLVC)

Note: Spinning Load does not provide instantaneous restart with V/Hz control.
With synchronous motors, spinning load is always instantaneous, i.e., the drive will never go into a scan mode.

Table 5-5 describes the Spinning Load menu.
Table 5-5. Spinning Load Menu (2420)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & ID & Units & Default & Min & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{c|}{\(\begin{array}{c}\text { Description }\end{array}\)} \\
\hline \(\begin{array}{l}\text { Spinning load } \\
\text { mode }\end{array}\) & 2430 & & Off & & & \(\begin{array}{l}\text { Enable/Disable Spinning Load and set } \\
\text { the direction of frequency scans: } \\
\text { Off } \\
\text { - } \\
\text { Forward } \\
\text { Reverse }\end{array}\) \\
- \\
Both (scans first in the forward \\
direction, then in the reverse direc- \\
tion)
\end{tabular}\(]\)

\subsection*{5.4 User I/O}

\subsection*{5.4.1 Introduction}

The I/O modules (Digital In/Out, Analog In/Out) allow user customization of the system for the application requirements. The Next Gen control uses the Wago© I/O system. This system consists of DIN rail mounted modules that can be easily expanded by simply inserting modules to the existing modules (see photo below). The Configuration of the I/O is handled through the External I/O Menu (2800) see Section 5.4.4.

Note: Like modules must be grouped together. Refer to the wage literature for specifics on limitations and power equipment.


Figure 5-9. Wago I/O System Photo
Table 5-6. Wago I/O Module Color Codes
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Module Function } & \multicolumn{1}{c|}{ Color } \\
\hline Digital Outputs & Red \\
\hline Digital Input & Yellow \\
\hline Analog Input & Green \\
\hline Analog Output & Blue \\
\hline Special Modules & Colorless \\
\hline
\end{tabular}

\subsection*{5.4.2 Wago Modbus Coupler Settings}

This section covers the settings of the MODBUS coupler used for communications between the NXG control and the Wago I/O system. Normally this coupler is configured at the factory and there is no need to make changes.

Figure 5-10 shows the bottom of the WAGO Fieldbus coupler case. To access the DIP switches you have to remove the cover. To do so, you must pry with just a little pressure on the bottom of the sides of the unit where there are little "bump" on either side. You can the start applying pressure from the top where the DB9 connector is, pushing down.


Figure 5-10. Wago MODBUS Coupler Bottom
Figure 5-11 shows how the cover should lift off of the WAGO Fieldbus Coupler to give access to the DIPswitches.


Figure 5-11. Wago MODBUS Coupler with Cover lifted

Figure 5-12 shows the actual DIP switches in the WAGO Fieldbus Coupler. The first three switches of the top DIP switches, labeled FR on the cover plate, are to set the baudrate. Switch 1 is off, switch 2 is on, and switch 3 is off. The correct settings are shown here and is different than the picture displayed on the outside cover that is removed to access the DIP switches.


Figure 5-12. Wago MODBUS Coupler DIP switch settings


Figure 5-13. Wago MODBUS Coupler DIP switch settings label

\subsection*{5.4.3 External I/O Menu (2800)}

The External I/O is configured from the External I/O Menu (2800). The user must define the total number of I/O’s per the Table below for each type of I/O (Analog I/O and Digital I/O). If the I/O count is incorrect the Drive will indicate a "Wago Configuration Fault". Once the correct number of I/O is entered, the fault can be cleared by a Fault Reset.

Table 5-7. External I/O Menu (2800)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & \multicolumn{1}{c|}{ Min } & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{|c|}{ Description } \\
\hline Analog Inputs & 2810 & & 0 & 0 & 24 & \begin{tabular}{l} 
Sets the quantity of analog inputs in the \\
attached external I/O.
\end{tabular} \\
\hline Analog Outputs & 2820 & & 0 & 0 & 16 & \begin{tabular}{l} 
Sets the quantity of analog outputs in the \\
attached external I/O.
\end{tabular} \\
\hline Digital Inputs & 2830 & & 0 & 0 & 96 & \begin{tabular}{l} 
Sets the quantity of digital inputs in the \\
attached external I/O.
\end{tabular} \\
\hline Digital Outputs & 2840 & & 0 & 0 & 64 & \begin{tabular}{l} 
Sets the quantity of digital outputs in the \\
attached external I/O.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.4.4 Digital I/O}

The Digital I/O data is only available and useable within the System Program. The System Program has predefined variable names for External Digital Inputs and Outputs. You may write a system program and making use of these I/O for whatever functionality or logic is required. The I/O is assigned system program variable names based on the location or order that the module is inserted into the Wago I/O system. For example, if a single Digital input module and a single Digital Output module are inserted into the Wago system the system program would define them as follows:

Digital Input Module \#1: (assuming the module is a 4 input module)
ExternalDigitalInput01a_I through ExternalDigitalInput01d_I
Digital Output Module \#1: (assuming the module is a 2-output module)
```

ExternalDigitalOutput01a_I through ExternalDigitalOutput01b_I

```

If there are additional modules added they would be defined as follows:
Digital Input Module \#2: (assuming the module is a 4 input module)
```

ExternalDigitalInput01e_I through ExternalDigitalInput01h_I

```

Digital Output Module \#2: (assuming the module is a 2-output module)
ExternalDigitalOutput01c_I through ExternalDigitalOutputO1d_I

\subsection*{5.4.5 Analog Output Menu (4660)}

The analog outputs are set up via the pick list parameters in the Analog Output menus (4661 through 4721). First a pick list is presented to allow selection of the variable to be output to the Analog Output module. To complete the setup the type of output, bipolar, unipolar and the percent of the value to provide full scale analog output to determine the scaling for the variable.

Note: A set of standards has been established for the use of certain I/O. Please refer to these standards as a beginning point of establishing wiring and system program creation. See Chapter 8 on System Programming for details.

Table 5-8. Analog Output \#1 (4661)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ ID } & Units & Default & Min & Max & \multicolumn{1}{c|}{ Description } \\
\hline Analog variable & 4662 & & & & & \begin{tabular}{l} 
This variable sets the input source for analog \\
output \#1.
\end{tabular} \\
\hline \begin{tabular}{l} 
Output module \\
type \\
Full range
\end{tabular} & 4663 & 4664 & \(\%\) & 0 & 0 & 300 \\
\begin{tabular}{l} 
Sets the output type for the module (Unipolar \\
or Bipolar). \\
Scales the output range of the variable \\
selected.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.4.6 Analog Input Menu (4090)}

The analog inputs are set up to receive the converted data from the user modules selected as either 0-20mA, 4\(20 \mathrm{~mA}, 0-10 \mathrm{~V}\). The user defines the minimum and maximum values for scaling as well as the Loss of Signal (LOS) threshold and action. All Analog inputs are available to be used by the Comparators for additional control functionality (refer to the Comparator Setup Menu (4800) in Chapter 3).

Table 5-9. Analog Input \#1 Menu (4100)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & ID & Units & Default & Min & Max & \multicolumn{1}{|c|}{ Description } \\
\hline Type & 4105 & & & & & \\
\hline
\end{tabular}

\subsection*{5.5 Signal Frame of Reference for Motor Control}

The control signals used for controlling the motor must be assigned a polarity for use over four quadrants of control to maintain consistency of the algorithms. This section clarifies what they are and what their polarities mean in the various quadrants.

\subsection*{5.5.1 Frame of Reference}

The four-quadrant frame of reference is defined as the four quadrants of operation of a motor. They are divided left to right by the direction of rotation and from top to bottom by the polarity of the torque in the machine. Energy flow from the drive into the machine is called motoring and out of the machine and into the drive is called regeneration or braking. The diagram is shown in Figure 5-14.

Figure 5-14 shows the relationship between the polarities of the signals. For example, starting at rest (in the ordinances of the two axes), if a positive torque is applied to the motor, the acceleration is positive and the resultant speed increases in the forward direction. This is governed by the following equations:
\[
\alpha=\frac{T}{J} \quad \omega=\int \alpha d t
\]
where:
\(\alpha=\) acceleration
\(\mathrm{J}=\quad\) inertia (an unsigned magnitude)
\(\mathrm{T}=\) torque
\(\omega=\) rotational speed.


Figure 5-14. Four Quadrant Operation of a Motor

This then carries over into quadrant IV showing that a negative torque produces negative acceleration (deceleration) stopping the motor. If however, the same torque is applied continuously, the speed of the motor will decrease to zero and begin to accelerate in the opposite direction producing a negative rotational speed ( \(\omega\) ) in what is now quadrant III. Now if a positive torque is applied, the motor enters quadrant II and begins to decelerate. Since the rotational speed is negative and begins to diminish and approaches a positive value, the acceleration must be positive to conform to the above equations. Again, if the torque is held constant, the motor will slow to zero and then accelerate in the forward direction passing back into quadrant I.

The injection frequency must always be opposing the direction of rotation and is only used in the case of braking or negative energy flow. Therefore it is zero in the motoring quadrants (I and III) and is the inverse polarity of the electrical frequency in the braking quadrants (II and IV).

\subsection*{5.5.2 Signal Polarities}

Table 5-10. Signal Polarities
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Signals } & Quadrant 1 & Quadrant 2 & Quadrant 3 & Quadrant 4 \\
\hline Rotation speed ( \(\omega_{\mathrm{r}}\) ) & + & - & - & + \\
\hline Electrical frequency \(\left(\omega_{\mathrm{s}}\right)\) & + & - & - & + \\
\hline Slip ( \(\omega_{\text {slip }}\) ) & + & + & - & - \\
\hline Torque & + & + & - & - \\
\hline Current \(\left(\mathrm{I}_{\mathrm{q}}\right)\) & + & + & - & - \\
\hline Voltage ( \(\mathrm{v}_{\mathrm{qs}}\) ) & + & + & - \\
\hline Acceleration & + & + & + & - \\
\hline Injection Frequency \(\left(\omega_{\mathrm{inj}}\right)\) & 0 & + & + & + \\
\hline Power (flow) & + & + & + & + \\
\hline Mag Current \(\left(\mathrm{I}_{\mathrm{d}}\right)\) & + & + & - & - \\
\hline Voltage ( \(\mathrm{v}_{\mathrm{ds}}\) ) & + & + & - & + \\
\hline
\end{tabular}

Note: For the electrical frequency ( \(\omega_{\mathrm{s}}\) ) in the braking quadrants (II and IV) where the slip opposes the rotational speed, when the speed magnitude approaches the slip magnitude, the electrical polarity is uncertain (when the slip magnitude is greater than the rotor speed, the sign will match that of the slip rather than the sign of the rotor speed). This is due to the relationship .

\subsection*{5.6 Mechanical Bypass}

When the Perfect Harmony was first introduced, its most salient attributes were improved power quality at the utility interface, and at the motor interface. A third attribute is now becoming recognized, which offers extremely high reliability by utilizing the inherent redundancy of these drives. Mechanical Cell Bypass is the feature that allows this third attribute to be realized.

The Mechanical Cell Bypass option is implemented by adding a contactor to the output of each cell as shown in Figure 5-15. Now when the control detects that a cell has failed, a command can be sent to close the appropriate contactor. This simultaneously disconnects the cell output from the circuit and connects the two adjacent cells together, effectively taking the failed cell out of the circuit. The drive can then be restarted and operation can continue at reduced capacity.

It does not matter which of the components has failed within the cell, as long as the failure can be detected. In fact, even a failure in the fiber optic link that communicates to the cell can be detected and bypassed. Therefore, this approach protects against the failure of any component in the power circuits or in the communications circuits, rather than protecting the drive against power semiconductor failure only.

The amount of reduction in capacity that can be tolerated will depend on the application, but in most cases a reduction in capacity is preferable to a complete shutdown. Neutral Point Shift is a feature that was developed to minimize the reduction in capacity after a bypass. Neutral Point Shift is discussed in Section 5.8. Another related feature is Fast Bypass. This feature is designed to quickly bypass a cell and get the drive running again in less than \(1 / 2\) second. Fast Bypass is discussed in Section 5.7.


Figure 5-15. Typical Cell with Bypass Contactor

\subsection*{5.7 Fast Bypass}

Up time is an important factor in many processes. A Medium Voltage drive is often a critical part of the process and even small interruptions in output torque of a Medium Voltage drive can cause the process to stop. This can result in lost material and production time.

Fortunately, in general, a process can ride through an interruption of \(1 / 2\) second or less. The NXG control has a feature that is designed to limit the interruption of torque to the process to less than \(1 / 2\) second if a cell failure is detected. This feature is called Fast Bypass. The conditions as to when the drive can meet this \(1 / 2\) second maximum interruption are described below.

All cell failures are detected in hardware. This hardware is designed to quickly shut down the drive so that additional damage will not occur. Once this happens the control is notified. The control can then quickly determine which cell failed and the bypass process can be started.

When the drive trips and stops delivering torque to the motor, the motor acts like a generator and produces a voltage on the drive output terminals. This voltage decays over time, but can be near the drive rated output voltage for a few seconds. If a cell is bypassed the remaining cells may not be able to support this voltage and damage can occur.

To prevent this damage a check is done in the control to verify if the motor output voltage can be supported before a cell is bypassed and the drive is restarted. If this check passes when it is first done the cell can be bypassed and torque can be delivered to the drive in under \(1 / 2\) second from the time the fault occurred. If the motor voltage is too high, an additional delay may be needed to allow the voltage to decay.
To guarantee that the drive will bypass a cell fault in under \(1 / 2\) second the drive needs to be running at an output voltage that can be supported by one less than the existing number of cells per phase. One way is for the drive to be sized so that it has more than the minimum number of cells required to provide the voltage needed. Another way is to limit the maximum speed. These issues will have been studied and resolved before the drive is installed.

Note: In a drive with an additional cell per phase, bypass in under \(1 / 2\) second will happen only on the first cell failure per phase. If a second cell in a phase fails the control needs to wait for the motor voltage to decay, hence the bypass time may exceed \(1 / 2\) second.

Note: In Fast Bypass the drive will start to deliver torque to the motor in \(1 / 2\) second after a fault occurs. It may take longer for the drive to get back up to the set-point speed.

\subsection*{5.8 Neutral Point Shift During Bypass}

Since the cells in each phase of a Perfect Harmony Drive are in series, bypassing a failed cell has no effect on the current capability of the drive, but the voltage capability will be reduced. Usually the required motor voltage is roughly proportional to speed, so that the maximum speed at which the drive can fulfill the application requirements will also be reduced. Therefore it is important to maximize the motor voltage available after one or more cells have failed.

Figures 5-16 through 5-20 illustrate the voltage available from a Harmony drive, where the cells, represented by circles, are shown as simple voltage sources. Figure \(5-20\) shows a 15 -cell drive in which no cells are bypassed. With \(100 \%\) of the cells in use, \(100 \%\) of the original voltage is available. The voltage commands to the three phase groups of cells will have phase A displaced from phase B by \(120^{\circ}\), and from phase C by \(120^{\circ}\).


Figure 5-16. A Simplified diagram of a 15 Cell Drive
When cells are bypassed in one of the drive phases, the output voltage will tend to become unbalanced, as illustrated in Figure 5-17. One possible remedy is to bypass an equal number of cells in all three phases, even though some may not have failed. Figure 5-18 illustrates this approach. Obviously, this method prevents unbalance but sacrifices possible voltage capability. In Figure 5-18, 87\% of the cells are functional, but only \(60 \%\) are in use, and only \(60 \%\) voltage is available.


Figure 5-17. Drive output with 2 Cells Bypassed


Figure 5-18. Drive output re-balanced by Bypassing Functional Cells.
A better approach is illustrated in Figure 5-19. This method takes advantage of the fact that the star-point of the cells is floating, and is not connected to the neutral of the motor. Therefore the star-point can be shifted away from the motor neutral, and the phase angles of the cell voltages can be adjusted, so that a balanced set of motor voltages is obtained even though the cell group voltages are not balanced.
Siemens calls this approach Neutral-Shift, and has a US Patent \((5,986,909)\) that covers it. This approach is equivalent to introducing a zero-sequence component into the voltage command vectors for the cells. In Figure 5-19 the full remaining \(87 \%\) of functional cells are in use, and \(80 \%\) of the original voltage is available. The phase angles of the cell voltages have been adjusted so that phase A is displaced from phase B and from phase C by \(132.5^{\circ}\), instead of the normal \(120^{\circ}\).


Figure 5-19. Drive output re-balanced by Adjusting Phase Angles (Neutral-Shift)
The same neutral-shift approach can be applied to more extreme situations, as is illustrated byFigures 5-20 and 5-21. Figure 5-20 shows a drive which originally had five cells per phase, or a total of 15 cells. All five cells remain in phase A, but one cell has failed in phase B and two cells have failed in phase C. Without neutral-shift, all phases would need to be reduced to match the cell count of phase C in order to maintain balanced motor voltages. One functional cell would be bypassed in phase B, and two functional cells would be bypassed in phase A. Only 60\% of the original cells would remain in use, and only \(60 \%\) of the original voltage would be available.

However, with the neutral-shift approach shown in Figure 5-20, only the failed cells are bypassed. The phase angles of the cell voltages have been adjusted so that phase A is displaced from phase B by \(96.9^{\circ}\) and from phase C by \(113.1^{\circ}\), instead of the normal \(120^{\circ}\). The star point of the cells no longer coincides with the neutral of the motor voltages, but the motor voltage is still balanced. The neutral-shift keeps \(80 \%\) of the original cells in use, and \(70 \%\) of the original voltage is available.


Figure 5-20. Drive output after loss of 3 Cells
As another example, Figure 5-21 shows the same 15-cell drive. All five cells remain in phase A, but two cells have failed in phase B and three cells have failed in phase C. Without neutral-shift, one functional cell would be bypassed in phase B, and three functional cells would be bypassed in phase A. Only \(40 \%\) of the original cells would remain in use, and only \(40 \%\) of the original voltage would be available. However, in Figure 5-21, only the failed cells are bypassed. The phase angles of the cell voltages have been adjusted so that phase A is displaced from phase B by \(61.1^{\circ}\) and from phase C by \(61.6^{\circ}\). The star point of the cells is far removed from the neutral of the motor voltages, but
the motor voltage is still balanced. The neutral-shift keeps \(67 \%\) of the original cells in use, and \(50 \%\) of the original voltage is available.


Figure 5-21. Drive output after loss of 5 Cells
Figure 5-22 compares the available voltage after one failure with and without using neutral-shift. In many cases, the extra voltage available with neutral-shift will determine whether or not a cell failure can be tolerated. The voltage capability of a drive after cell bypass can be calculated by using the following procedure.

If \(\mathbf{X}\) is the largest number of cells in bypass in two of the phases, then the maximum voltage at the drive output will be:
where: Vout is maximum output voltage that the drive can deliver (Vout \(=1.78 * N *\) Vcell \()\)
N is the number of ranks (or the total number of cells \(=3 * \mathrm{~N}\) )
Vcell is the cell voltage rating.

Example: Consider a drive with 18 cells, each rated for 690 V. The maximum output voltage that this drive can deliver is (with \(\mathrm{N}=6\) and Vcell = 690):

Vout \(=1.78 * 6 * 690=7.37\) kV
If after cell bypass, the drive has 6 cells operational in phase A, 5 cells in phase B, and 4 cells in phase \(C\), then the maximum voltage that the drive can produce with neutral shift from the above formula is (with \(\mathbf{X}=1+2=3\), because 2 cells in phase C and 1 cell in phase \(B\) are bypassed):

Vout_bypass \(=7370 *(2 * 6-3) /(2 * 6)=5.53 \mathrm{kV}\)
The ratio (Vout_bypass / Vout) is available as the Max. Available Drive Voltage (\%MAV) for display on the Keypad and for use in the Comparator and Analog Output Menus.


Figure 5-22. Available Voltage after First Failure

The drive control uses the information of faulted cells to automatically calculate the phase angles of cell voltages to maintain balanced motor voltages. During neutral-shift, each phase of the drive operates with a different power factor. Under lightly loaded conditions it is possible that one or more phases is absorbing real power while the other phase(s) are delivering power to the motor. In order to prevent the cell dc-voltage (corresponding to cells that are absorbing real power) from increasing (and subsequently causing a drive trip condition) the control automatically enables the "Energy Saver" function. Under light loads the energy saver function reduces motor flux sufficiently so that the motor operates with \(70 \%\) power factor. At this operating point the magnetizing and torque components of motor current are equal and all cells deliver real power to the motor. As motor load is increased, the motor flux level is automatically increased to maintain \(70 \%\) power factor until rated flux (or maximum possible flux) is achieved. This function ensures that the cells are delivering real power under all operating conditions.

Note: In Cell Bypass the drive will invoke Energy Saver under light loads to prevent certain cells from charging-up.

\subsection*{5.9 Power Monitoring}

Many Harmony Drives that Siemens builds have requirements for optional Power Quality Meters (PQM). Adding PQMs can be an expensive option. NXG control builds this functionality into the drive.

NXG control does processing on the input waveforms to aid in control of the drive. Because of this the drive can determine and display information about the drive input. Likewise, since the control is continuously sampling the drive output, the drive output information can also be displayed. Tables 5-11 and 5-12 list the parameters that can currently be displayed. See Meter Menu (8) for details on displaying this information.

Table 5-11. Input
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Input Display Parameters } \\
\hline Phase A Input Current \\
\hline Phase B Input Current \\
\hline Phase C Input Current \\
\hline Phase A Input Voltage \\
\hline Phase B Input Voltage \\
\hline Phase C Input Voltage \\
\hline Input Frequency \\
\hline Average Input Power (kilowatts) \\
\hline Input Power Factor \\
\hline Average Input Current THD \\
\hline Efficiency \\
\hline Input KWHrs \\
\hline Input Reactive Power (kVAr) \\
\hline
\end{tabular}

Table 5-12. Output
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Output Display Parameters } \\
\hline Motor Current \\
\hline Motor Voltage \\
\hline Magnetizing Current \\
\hline Torque Current \\
\hline Motor Speed \\
\hline Output Torque \\
\hline Motor Flux \\
\hline Motor Slip \\
\hline Output Power \\
\hline Output KWHrs \\
\hline
\end{tabular}

\subsection*{5.10 Dual Frequency Braking}

\subsection*{5.10.1 Introduction to Dual Frequency Braking}

There are many applications for VFDs that need occasional negative torque for braking. Unfortunately, at present the most popular static converters used for VFDs are not capable of returning energy to the utility. Such applications
therefore require additional circuits to regenerate the braking energy into the AC mains, or to dissipate the braking energy in a resistor. Both of these solutions add cost to the VFD, and are especially undesirable for large modular medium-voltage VFDs.

Additional power devices can be avoided by using the existing circuits to inject DC current into the motor windings. This method dissipates the braking energy in the motor, and adds little cost to the VFD. However, DC injection braking is not very effective unless the available current is several times rated, especially for large motors. Another drawback is that estimation of motor speed is very difficult during DC injection braking.

Dual Frequency Braking is another method in which braking energy can be dissipated in the motor. Dual Frequency Braking provides much higher torque per ampere than DC injection braking, and permits continuous estimation of motor speed. Like DC injection braking, this approach is implemented in software and requires no additional hardware that can reduce the reliability of the drive.

Siemens has a patent on Dual Frequency Braking (US 6,417,644).

\subsection*{5.10.2 Operation}

Dual Frequency Braking causes extra losses to be induced in the motor, by applying a second set of three-phase voltage vectors to the motor; in addition to the normal set of voltage vectors used for speed control. These extra losses are used to absorb the kinetic energy released during braking.

There are two side effects of Dual Frequency Braking (DFB) that are protected against as follows.
1. Torque pulsations: The motor can be subjected to as much as 1 per-unit torque pulsation at the pulsation frequency with DFB. However, the customer can select the torque pulsation frequency via the menu entry for Pulsation Frequency to avoid any mechanical resonance frequencies.
2. Motor heating: The losses generated during DFB cause motor heating and limit the number of deceleration ramps (from full speed to zero) that can be performed repetitively. Motor heating due to the additional losses is designed to be no worse than a line start. The software motor thermal model in NXG monitors motor heating due to these losses and can provide an alarm and/or a trip to indicate excessive heating. (Refer to the Motor Thermal Overload Protection section in this chapter for information on the thermal model.) The number of repetitive deceleration ramps (from full speed to zero) is limited to 2-per-hour (based on MG-1, Part 20, which assumes that the motor has cooled down to its rated temperature before the second ramp down). This recommendation applies when the load inertia and load torque are those for which the motor is designed. With lower values of load inertia and/or smaller speed reductions, DFB can be used more frequently.

The second set of voltage vectors creates a counter-rotating flux vector that produces high slip in the machine and generates these additional losses in the motor. The pulsation frequency is adjustable via a menu setting to allow critical frequencies (i.e. mechanical resonances) to be avoided. The injection frequency is always in opposite rotation to the applied motor electrical frequency (speed and direction of the machine).

Note: Zero Sequence Voltage is the DC offset voltage.

Figure 5-23 is a block diagram showing how the two voltage vectors (normal VA1 and loss-inducing VA2) are added together to produce the braking function. Figure 5-24 is a scope picture of the two voltage vectors added together. The higher frequency voltage waveform VA2 is riding on the lower frequency waveform VA1.

Note: The pulsation frequency is an input from the menu system (Parameter ID 3370) that is selectable by the end user. It provides the reference to produce the desired additional braking for the system and is adjustable in order to avoid resonance in the system.


Figure 5-23. Dual Frequency Voltages Being Added Together with the Normal Three-Phase Voltages.
Note: Zero Sequence Voltage is the DC offset voltage.


Figure 5-24. Scope picture showing Dual Frequency Braking waveform
In this method the first vector set controls the torque and flux in the motor, and is nearly synchronous. The second vector set induces losses in the motor, to absorb the braking power returned by the first vector set. The amplitudes of the two vector sets are coordinated to best utilize the current and voltage limitations of the converter. The frequency of the loss-inducing vector set is chosen with the goal of maximizing losses per ampere. This automatically minimizes the torque pulsations by minimizing the loss-inducing current.

The dominant losses in a motor are conduction losses, proportional to \(I^{2} R\). Maximum losses per ampere require a large value of R. The nominal resistance of the motor windings is fixed by the design. Fortunately, the effective resistance depends on the frequency. The rotor windings are deliberately designed to exhibit a strong "deep-bar" effect, so that their resistance (above a low threshold) increases roughly proportional to frequency.

In principle the frequency of the loss-inducing vector set should be as high as possible, for maximum effective resistance. Since this high loss-inducing frequency produces negative slip, it will have negative sequence. The maximum applied frequency is limited by the control bandwidth of the converter, and also by the available voltage. However, because the loss-inducing vector set is negative sequence, the rotor frequency will be higher than the stator frequency due to the rotational speed.

\subsection*{5.10.3 Setting parameters for Dual-Frequency Braking}

Table 5-13 provides a description of parameters in the Braking Menu (ID 3350). The Pulsation Frequency should be chosen such that it avoids the (mechanical) resonant frequencies of the system (motor, shaft and load). A study of the mechanical system is required to determine these resonant frequencies. The Brake Power Loss parameter sets the initial value of motor losses; the default value is satisfactory for most cases. The maximum voltage that is applied at the second (loss inducing) frequency is set by VD loss. This parameter cannot be set to a value higher than 0.5 p.u. Adjustment of this parameter will have a direct effect on the achievable braking torque. Braking Constant sets the ratio of the power losses created in the motor to the power absorbed by the drive during braking. Using the default value gives sufficient margin and prevents the cell dc-bus voltages from increasing to trip levels.

Table 5-13. Description of parameters for Dual-Frequency Braking (DFB)
\begin{tabular}{|l|l|l|l|}
\hline Parameter Name & Units & \multicolumn{1}{|c|}{ ID \# } & \multicolumn{1}{c|}{ Description } \\
\hline Enable & & 3360 & \begin{tabular}{l} 
Enable or disable dual frequency braking (DFB). User must \\
be aware of torque pulsations and motor heating produced \\
with this method.
\end{tabular} \\
\hline \begin{tabular}{l} 
Pulsation \\
Frequency
\end{tabular} & Hz & 3370 & \begin{tabular}{l} 
Torque pulsation frequency when dual-frequency braking is \\
enabled. Adjust for a different torque pulsation frequency. \\
The control always recalculates the desired value due to \\
limited resolution. Can be adjusted to avoid mechanical \\
resonance frequencies.
\end{tabular} \\
\hline Brake Power Loss & \(\%\) & 3390 & \begin{tabular}{l} 
Amount of high frequency losses at the onset of braking. \\
Affects the limit of the \(\mathrm{V}_{\mathrm{q}}\) component of output braking \\
voltage.
\end{tabular} \\
\hline VD loss & p.u. & 3400 & \begin{tabular}{l} 
Max amplitude of the loss inducing voltage. Use this to \\
adjust the braking torque. Sets the maximum loss limiting \\
\(\left(\mathrm{V}_{\mathrm{d}}\right)\) voltage amplitude.
\end{tabular} \\
\hline Braking Constant & p.u. & 3410 & \begin{tabular}{l} 
Ratio of motor (induced) losses to power absorbed from \\
load. This parameter should always be set to a value \\
greater than 1.0. Setting this parameter higher increases \\
\(\mathrm{V}_{\mathrm{q}}\) and \(\mathrm{V}_{\mathrm{d}}\) voltage amplitude of losses in the motor and \\
increases braking. Caution must be exercised to prevent a \\
motor thermal trip.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.10.4 Limitations}

The drive output current plus the braking current must not exceed the current capability of the cells in the drive. Hence the braking torque is limited in the drive and is greatest at slow speed and smallest at high speed. Figure 5-25 shows the typical braking torque that can be expected with Dual Frequency Braking.


Figure 5-25. Best case braking torque with Dual Frequency Braking for a typical motor
With high efficiency motors and inverter duty motors, the braking torque that can be achieved with DFB is lower than the values shown in Figure 5-25. Contact IPD with the following motor-related data to determine the braking torque capability with a higher efficiency motor:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Rated HP } & \multicolumn{1}{c|}{ Rated Voltage } \\
\hline Rated Frequency & Full-load Speed \\
\hline Half-load Efficiency & Full-load Efficiency \\
\hline Half-load Power Factor & Full-load Power Factor \\
\hline Locked-rotor Torque & Locked-rotor Current \\
\hline Pull-out Torque & Critical Frequencies of the Mechanical System \\
\hline
\end{tabular}

Information on critical frequencies will allow a selection for the torque pulsation frequency.

\subsection*{5.11 Energy Saver}

Energy saver control allows the reduction of motor losses (and improves overall efficiency) when the demanded motor load is low. To activate the energy saver control, adjust the Energy Saver Min Flux Demand (parameter ID 3170) in the Flux Control Menu (3100) to a value that is less than the Flux Demand (ID 3150, which is typically set to 1.0). Depending on the motor load, the control will reduce motor flux to a level between the Energy Saver Min Flux Demand and Flux Demand. As motor load increases, the control will increase motor flux until the value set by Flux Demand is achieved. Note that the response of the drive to sudden load changes is reduced with lower flux demand.

Energy saver is automatically invoked when an unbalanced set of cells is present after fast bypass. Under light loads, it is possible for one or more phases to be absorbing power from the motor. To prevent the cell DC bus from charging up to a trip level, the control reduces motor flux to improve power factor, which allows all three phases to provide power to the motor, and prevents the cells from charging up.

\subsection*{5.12 Motor Thermal Overload Protection}

Table 5-14. Parameters for Motor Thermal Overload protection.
\begin{tabular}{|c|c|c|c|}
\hline Parameter Overload select & \[
\begin{gathered}
\text { ID } \\
1130
\end{gathered}
\] & \begin{tabular}{l}
Description \\
Selects the overload trip algorithm. \\
- Constant (fixed current-based TOL) \\
- Straight inverse time (motor temperature based TOL) \\
- Inv time w/ speed derating (motor temperature based TOL)
\end{tabular} & \begin{tabular}{l}
Default \\
Constant
\end{tabular} \\
\hline Overload pending & 1139 & Sets the thermal overload level at which a warning is issued (constant mode). & 100.0 \\
\hline Overload & 1140 & Sets the motor thermal overload trip level at which the timeout counter is started (constant mode). & 120.0 \\
\hline Overload timeout & 1150 & Sets the time for the overload trip (constant mode). & 60.0 \\
\hline Speed Derate Curve & 1151 & This menu sets allowable motor load as a function of speed. & Sub-menus \\
\hline Maximum Load Inertia & 1159 & Sets the maximum load inertia that the motor can line start without exceeding maximum temperature. & 0.0 \\
\hline
\end{tabular}

NXG Harmony control provides Motor Thermal Overload (TOL) protection to prevent the motor from being subjected to excessive temperatures. TOL protection of the motor can be set up using the menus shown in Table 5-14. The "overload select" parameter allows one of three options to be selected for motor protection. The first model, which is called "constant," is based on the current flowing into the motor. A Motor Thermal Overload Alarm 1 is issued as a warning to the user (of an impending overload fault) when the motor current exceeds the "overload pending" parameter. When the drive current exceeds the "overload" setting, Motor Thermal Overload Alarm 2 is issued and a thermal trip timer is started. If this condition is present for a period greater than the time set in the "overload timeout" parameter, the drive will trip and annunciate the event as Motor Thermal Overload Fault. It should be noted that both the Alarms - 1 and 2 - have to be enabled through the SOP for the drive to display those conditions.

The second and third thermal models, which are called "straight inverse time" and "inverse time with thresholds," use a software motor thermal model to determine motor temperature. See Figure 5-26. For these options, the "overload pending" and "overload" settings represent the motor temperature limits (in percent of rated motor temperature) at which the overload warning and trip are generated. A brief description of the thermal model follows.


Figure 5-26. Block diagram of motor thermal model

The motor model estimates motor temperature based on the net heat generated in the motor and its thermal mass. A block diagram of the implementation is shown in Figure 5-26. The heat generated in the motor is estimated from the stator voltages, currents and motor parameters, while an estimate of the heat transferred from the motor (due to motor cooling) is made from the allowable motor current (more on this in the following paragraph). The motor loss calculation also includes the losses generated with Dual-Frequency Braking. The thermal mass (shown as \(\mathrm{M}_{\mathrm{TH}}\) ) of the motor (or its heat capacity) is determined from the maximum load inertia listed in Table 20-1 of NEMA Standard MG-1 1993 Part 20.42. The user has the option of entering a known value of max load inertia as well (which can be obtained from the manufacturer).

If "straight inverse time" protection is chosen, then it is assumed that the motor has an allowable current level of \(100 \%\) (for example, when the motor is equipped with a constant-speed cooling fan). With "inverse time with speedderating," the allowable current level is determined from the speed-derating curve entered through the keypad. This curve requires the user to enter allowable motor load for various speed breakpoints. The default-derating curve provides breakpoints for a quadratic cooling curve (and is shown in Figure 5-27 ). The motor manufacturer normally provides data for this curve. The control software uses the allowable current level to determine the cooling capability of the motor.

If the user's preference is to enter a fixed value of an allowable current level other than \(100 \%\) (as with the "straight inverse time" option), the speed-derating curve can be modified to have the same desired level for all the breakpoints.


Figure 5-27. Default speed-derating curve showing maximum motor load as a function of speed

The plot in Figure 5-28 shows results from an experimental evaluation of the software thermal model with the "straight inverse time" option ( \(100 \%\) "overload" setting) for various levels of drive current. A 4 kV , 300 hp motor was used for this test. The experimental data shows the time taken for the estimated motor temperature to go from rated temperature to \(120 \%\) of rated. This curve is quite conservative as compared to a Class 10 TOL that trips at 280 sec with \(150 \%\) current and at 630 sec with \(125 \%\) current.


Figure 5-28. Drive current (in percent of motor rated current) versus time taken for motor temperature to rise from rated temperature to \(120 \%\) of rated. The data was measured with the "straight inverse time" option.

\subsection*{5.13 Process Availability - The Perfect Harmony Advantage}

Process availability is the primary prerequisite for applying a Medium Voltage VFD system in a process critical application. By combining the capabilities of Perfect Harmony's unique distributed power architecture, with the power of the NXG control, and the patented advanced power cell bypass feature, it is possible to deliver unparalleled opportunities for improved process availability. It is also essential that the process operator receive complete and accurate information on VFD status, to allow for process adjustments that can preclude process trips and disruptions in process capability.

\subsection*{5.13.1 What is ProToPS?}

ProToPS is an acronym that stands for "Process Tolerant Protection Strategy". ProToPS is a standard implementation of the VFD SOP (System Operating Program). The ProToPS goal is simply to put the process operator in control of the process. ProToPS is a system program implemented from a customer process perspective.

ProToPS provides the operator with indication of a change in state in the VFD. These annunciation's identify changes that can impact the ability of the VFD to meet process demands, or to provide advance indication of a pending VFD trip. ProToPS allows the process operator to make process corrections to maintain the VFD in use in service, or adjust the process to address a pending VFD trip.

With ProToPS the process operator not only knows the general status of the VFDs, but also understands the VFD condition that has caused the general alarm to exist.

\subsection*{5.13.2 How Does ProToPS Work?}

In the ProToPS SOP all of the automatic roll-back flags are turned off, and both cell bypass and auto-restart are implemented as standard. The need to roll-back is still necessary, but the process operator is now responsible to implement a roll-back as part of a process correction, as opposed to having the VFD roll-back either dictating, or in worse case upsetting, the process.

ProToPS takes the standard fault indications available in the VFD and categorizes them into four basic major categories as follows:
1. Alarm

An alarm is an indication that a VFD parameter limit has been reached, or that a VFD system condition is present. An alarm provides the operator with awareness of the condition, but demands no immediate action. Examples of alarms include: over-voltage, under-voltage, and ground fault.

\section*{2. Process Alarm}

A process alarm is an indication that a VFD parameter limit has been exceeded and that the process either should be limited, or that the VFD capacity to meet the process demand is limited. Examples of process alarms include thermal limits above the rated limit and the condition of a cell having been bypassed.

\section*{3. Trip Alarm}

A trip alarm provides a clear indication that a VFD high parameter limit has been reached. A trip alarm is a indication that a VFD trip is pending. The operator receives a message that that unless the alarm can be cleared by a process change the VFD will trip.

\section*{4. Trip}

Certain VFD faults cannot be provided with advance warning. This limited number of faults will result in a VFD trip. A trip message is also annunciated when a trip alarm time limit has been exceeded. The number of mandated trips is considerably reduced with the implementation of GEN III cell bypass.

With ProToPS the (VFD Run) signal is maintained as "true" and the (VFD Trip) signal is maintained as "false" for all alarm states.

\subsection*{5.13.3 ProToPS Implementation}

With ProToPS the five main protection indication categories are provided as separate digital output signals. The concept is to provide the operator, or the process program, with a clear message to indicate a status change in the VFD. These five digital outputs are delivered from the Wago I/O system. The location of the five outputs is maintained as a standard set of TB2 terminations.

The specific information on the VFD parameter change is indicated (along with the general category information) as a serial address across a serial communications interface. Any serial communications protocol supported by the VFD product can be supported in the ProToPS implementation.
If other specific digital output information is required for a specific customer project that information must be mapped to a new digital output point on an additional digital output module. The five basic category outputs must be present as digital outputs, at the standard designated TB2 terminal point locations, to validate the ProToPS implementation.

\subsection*{5.13.4 The ProToPS Advantage}

With advanced contactor cell bypass there are virtually no cell faults or cell communication faults that are nonbypassable. With NXG control the need for the designation "Transient Alarm" has disappeared as all bypassable faults become process transparent.

With ProToPS and the NXG control, combined with the unique benefits of the Perfect Harmony cell based distributed power technology, process availability can be considerably enhanced and, the process operator can truly control the process.

\subsection*{5.14 PID Controller}


Figure 5-29. PID Controller
The NXG Control has a built-in PID controller available for use as a process control input of the NXG Command Generator. The PID is depicted in the figure below and also in the Command Generator Diagram drawing number 459713 located in Appendix C. The PID output is selected as the Speed Demand for the system by setting the System Program flag "RawDemandPid_0" to true. The PID command feedback source is fixed from Analog Input \#2. This Analog input can be any of the available Analog inputs within the system, but must be designated as Analog input \#2 in the setup menu (refer to section "Analog Input \#2 Menu (4170)" in Chapter 3). The PID command has two possible sources: Analog input \#1 or the PID set point menu item (ID 4410). The source for the PID command is controlled by the state of the system program flag "PidMenu_0". Setting this flag to true selects the PID set point menu as the source. Setting this flag to false selects Analog Input \#1. Analog input \#1 source is configured from the "Analog input \#1 menu (4100)" in Chapter 3. Refer to "PID Select Menu (4350)" Chapter 3 for details regarding the PID parameters.

\subsection*{5.15 Speed Droop}

Droop is the decrease in the speed of a motor with a constant voltage and frequency, when the motor is under load. The difference between the synchronous (unloaded) speed of the motor and the full load speed is known as slip. Normally, slip compensation increases the output frequency of the VFD as the motor speed attempts to decrease. This compensation maintains a constant motor speed by minimizing droop.

However, in some applications, droop is needed. For example, in a multiple motor application, such as two motors mechanically connected to a common load, there are inherent differences between the motors. In case of a torque current increase, these differences may allow one motor to attempt to run faster, causing that motor to bear a greater portion of the load.

By adding droop to the more heavily loaded motor, its speed reference will proportionally decrease (based on load), shifting some of the load to the less loaded motor. The less loaded motor speed reference is not affected as much (because the current is lower) and so will start to pick up more of the load. As the loaded motor's speed reference is decreased, it begins to shed load until an equilibrium is reached, and each motor is bearing its share of the load.
Figure 5-30 illustrates the Siemens method of speed droop control.


Figure 5-30. Method of Droop Control
The droop is entered in \% of rated speed at full load current. The droop increases linearly with an increase in the torque current.

See Section 3.3.3 of Chapter 3 for instructions to set the droop.

\subsection*{5.16 Verification of Excessive Drive Losses Protection}

NXG control utilizes input power and output power calculations to determine whether an internal fault has occurred. Drive Power Loss is estimated as the difference between input power and output power. This quantity is continuously checked with a pre-defined threshold that is inverse time-based, i.e., if the threshold is exceeded by a large margin, then the trip occurs in a short time after the event, and vice-versa.

Because the Drive Losses calculation (See Section 6.8 of Chapter 6) depends on input and output power calculations, it is important to make sure that the Drive Input and Output Rated Values (voltage and current - IDs 2010, 2020, 2030, and 2040), Drive Input Scalers (IDs 3030, 3040), Input CT turns ratio (ID 3045), Output Scalers (IDs 3440 and 3450), and Low Freq Wo (ID 3070) are correctly set.

A typical Harmony Drive has a full load efficiency of 96.0 to \(96.5 \%\). It is at full load that the drive has maximum losses and hence this is the operating point that may get closest to the threshold setting. If, during startup, the drive trips on an Excessive Drive Losses Fault, then the following steps may be followed to determine if it was a nuisance trip:
1. 1.Verify that the parameters listed above are correctly entered. Use VFD drawings along with visual inspection (if possible) to make the verifications. A common error is made in entering the Output Current Rating. This menu entry should always be set equal to the Cell Current Rating. A tech note on setting these parameters, "Drive Rated Parameters in NXG Control Topics," is available on the Siemens website.
2. 2.Make sure that the Low Freq Wo parameter (ID 3070) matches the version of System Interface Board, since this parameter affects the phase-shift introduced in the measured voltage signals (and hence affects the output power calculation). This parameter should be set to \(12.566 \mathrm{rad} / \mathrm{s}\) for the 461 F 53.00 version or to \(37.859 \mathrm{rad} / \mathrm{s}\) for the 461F53.02 version.
3. 3.Run the drive to a speed-point at which measurable values of input and output, voltage and current are present. Use the table in the Startup Procedure chapter of the Harmony Manual to verify if the feedback signals on the System Interface Board (i.e., on the test-points VMA, ..., IMA, ..., VIA, ..., IIB, IIC) correspond to the values displayed by the drive. A Tech Note describing Drive Voltage Feedback scaling and verification is available on the Siemns website.
4. 4.Manually verify that the Drive Losses (= Input Power - Output Power, both of which can be read off from the keypad, ToolSuite, or the Debug Screen) are less than the threshold setting (for this type of drive and NXG software version) as listed in the block diagram and calculated in the equation of Section 6.8.4.
5. 5.Increase speed (and load) to make sure that the Drive Losses are within the range of \(2.5 \%\) to \(4.5 \%\) of Rated Input Power (which is also defined in equation 1 ).

Note: Transformers rated above 5000 hp and those designed prior to summer of 2002 may have higher than normal losses. Drives with such units may have more than \(3.5 \%\) losses at full load. Use of version 2.50 of NXG software will help if drive losses at full load are \(5.0 \%\) or lower. If the losses are higher than \(5.0 \%\), then discuss the issue with Application Engineering or Product Development.

\subsection*{5.17 Transformer Protection Constant for One Cycle Protection}

The menu parameter Xformer Protection Constant (ID 7100) can be set according to the expected input power factor at full load. On a typical Harmony Transformer, the full load power is no worse than 0.96 . Hence, the default value of 0.50 for the Xformer Protection Constant is adequate. Table \(5-15\) shows that the default value is good for power factors as low as 0.90 , but may be marginal. See Chapter 6 for details of the one cycle protection implementation.

Table 5-15. Transformer Protection Constant for Various Full Load Power Factors
\begin{tabular}{|l|c|}
\hline Full load PF & \(\mathbf{K}_{\mathbf{t r}}\) \\
\hline 0.88 & 0.54 \\
\hline 0.89 & 0.51 \\
\hline 0.90 & 0.47 \\
\hline 0.91 & 0.43 \\
\hline 0.92 & 0.40 \\
\hline 0.93 & 0.36 \\
\hline 0.94 & 0.32 \\
\hline 0.95 & 0.29 \\
\hline 0.96 & 0.24 \\
\hline
\end{tabular}

\subsection*{5.18 Effect of Slip Compensation on Motor Speed with NXG Control}

With Slip Compensation, the electrical frequency is always greater than the desired shaft speed (mechanical frequency) for all non-zero loads. Therefore at \(100 \%\) speed demand, the NXG OLVC will maintain the shaft speed at the rated synchronous speed of the motor - not full load speed.

\section*{Example:}

A 6-pole motor rataed for 60 Hz has a synchronous speed of 1200 rpm . The Full Load speed (entered from the nameplate to ID 1030) is 1192 rpm .

Sending a speed demand of \(100 \%\) will produce a mechanical (shaft) speed of 1200 rpm with slip compensation. This will result in a higher output (electrical) frequency to the motor, to provide the necessary torque to achieve the desired
speed. The slip frequency is directly proportional to the required torque, up to the rated torque current. The display will show (depending on what is selected):
- Motor speed, in rpm, of 1200 rpm
- Motor speed, in percent, of \(100 \%\)
- Motor Frequency, in Hz , of 60.4 Hz at rated torque ( \(101 \%\) if motor frequency is displayed in percent)

\section*{Theory:}

Sending the drive a speed demand of \(100 \%\) means that Synchronous or Rated Speed is desired. This is calculated by equation 1 below.

Synchronous Speed, Ns, is defined by the formula:
1. \(\mathrm{N}_{\mathrm{S}}=120 * \mathrm{f}_{\text {RATED }} / \#\) of poles

Slip is defined as a percentage (at rated torque) of the difference between synchronous and full-load speed ( \(\mathrm{N}_{\mathrm{FL}}\) ) divided by the synchronous speed:
2. \(\operatorname{Slip}(\%)=100 *\left(\mathrm{~N}_{\mathrm{S}}-\mathrm{N}_{\mathrm{FL}}\right) / \mathrm{N}_{\mathrm{S}}\)

With slip compensation, the slip frequency is subtracted from the output frequency ( \(\mathrm{f}_{\text {OUT }}\) ) to ensure that the mechanical speed matches the desired speed. In simple terms, this is done by taking the per unit (PU) Torque ( \(\mathrm{T}_{\mathrm{PU}}\) ) times the slip and subtracting it from the speed feedback (in frequency), effectively adding it to the speed reference:
3. \(\mathrm{S}_{\mathrm{MOT}}=\mathrm{f}_{\mathrm{OUT}}-\left(\mathrm{Slip} * \mathrm{~T}_{\mathrm{PU}}\right)\)
4. \(\mathrm{S}_{\mathrm{ERR}}=\mathrm{S}_{\mathrm{DMD}}-\mathrm{S}_{\mathrm{MOT}}\)

In equation \(4, \mathrm{~S}_{\mathrm{ERR}}\) represents the error signal processed by the speed regulator. The implication for this is that for a speed command of \(100 \%\), based on the synchronous speed, the applied electrical frequency will be higher than rated frequency due to the increase created by the slip compensation (equation 3 and 4 ). This will result in the motor running at true requested mechanical speed with the electrical frequency adjusted to provide the torque necessary to produce that speed.

\section*{Limiting Frequency by Disabling Slip Compensation:}

If The motor is to be limited to a specific frequency, then the slip compensation can be disabled. In the same example, the Full Load speed parameter (1030) must be set to 1200 rpm . This effectively disables the slip compensation by reducing equation 2 to produce a slip of zero. Then equation 3 and 4 reduce to:
1. Slip \(=(1200-1200) / 1200=0\)
2. \(\mathrm{S}_{\text {MOT }}=\mathrm{f}_{\text {OUT }}-0=\mathrm{f}_{\text {OUT }}\)

The end result will be that the drive will regulate to the output frequency rather than the motor shaft speed (mechanical speed). No compensation for slip is done.

\section*{Conclusion:}

With Slip compensation
- Output shaft speed will equal the percentage of synchronous speed requested
- The frequency will vary depending on load but the speed will be fixed
- Motor Speed in rpm should be monitored

Without Slip Compensation (parameter 1030 set to the synchronous speed)
- The Output Frequency will equal the speed demand percentage of rated frequency
- The mechanical (shaft) speed will vary with load but the frequency will be fixed
- Motor Frequency in Hz should be monitored

Note: The internal units for speed and frequency are in radians/sec. When plotting any related internal variables with the Siemens Tool Suite, the selected values are normalized to rated speed, so a scaling factor of 1.0 can be used.

\subsection*{5.19 Calculating Voltage Attenuator Resistors}

\subsection*{5.19.1 Resistor Calculation}

Input and output voltages are attenuated to provide a low voltage signal for measurement. Typically, two resistors are used (on both the input and output sides) to support medium voltages. Use the calculations explained below if the resistor values are not available in the Harmony NXG Cookbooks. Note that even if the discrete value of available resistors is not the same as the exact calculated value, no scaling is required; the NXG software automatically scales the voltages as needed.

Note: The input attenuator resistors must be selected to match the input transformer nameplate rating. The output attenuator resistors must be selected to match the motor nameplate rating.

Figure 5-31 shows the attenuator circuit that is used to convert medium voltages to low voltage measurement signals. \(R_{f}\) represents the effective feedback resistance used in the System Interface Board ( \(\mathrm{R}_{\mathrm{f}}=4765 \Omega\) in current versions, i.e., 461F53-00 and 461F53-02).

\(R_{1}, R_{2}=\) Medium voltage resistors \(R_{f}=\) Effective value of feedback resistance

Figure 5-31. Attenuator Circuit
Calculate the resistor values as follows:
\(\mathbf{R}_{\mathbf{1}}+\mathrm{R}_{\mathbf{2}}=\left(722.3 * \mathbf{V}_{\mathrm{mv}}\right)-4765\)
Where:
- \(\mathrm{V}_{\mathrm{mv}}\) is the nominal line-to-line input voltage in RMS
- 4765 is the value of \(\mathrm{R}_{\mathrm{f}}\)
- \(\quad 722.3\) is a combined constant equal to \((4765 / 5.3864) *(\sqrt{ } 2 / \sqrt{3})\)
- \(\quad 5.3864\) is the nominal voltage at the test point for 1 PU
- \(\sqrt{ } 2\) is used to convert from L-L to L-N voltage
- \(\sqrt{3}\) is used to convert from RMS to peak voltage

For example, for a \(\mathrm{V}_{\mathrm{mv}}\) of \(4160 \mathrm{~V}, \mathrm{R}_{1}+\mathrm{R}_{2}=3.0 \mathrm{M} \Omega\). The Harmony NXG Cookbook yields values of \(\mathrm{R}_{1}=2.0 \mathrm{M} \Omega\) and \(R_{2}=1.0 \mathrm{M} \Omega\). In typical applications, \(R_{2}\) is fixed at \(1.0 \mathrm{M} \Omega\) and \(R_{1}\) is selected based on the rated medium voltage level. Both resistors are \(10 \mathrm{~W}, 1 \%\) medium voltage resistors.
For rated voltages below 1.0 kV , fix the value of \(\mathrm{R}_{2}\) at \(120 \mathrm{k} \Omega\).
Warning: Never place a third resistor inside the control cabinet in series with the medium voltage resistors to achieve the calculated values. Doing so will violate the protection of the transorbs in the attenuator circuit and introduce dangerous voltages into the control cabinet.

\subsection*{5.19.2 Software Supported Voltages}

The following input and output voltages are supported by the NXG software and will be automatically scaled for measurement:
\(2400,3000,3300,3400,4160,4800,6000,6600,7200,8400,10000,11000,12000,12500,13200,13800\), and 22000.
\(\nabla \nabla \nabla\)

\section*{CHAPTER}

\section*{6 Theory}

\subsection*{6.1 Introduction}

The Harmony series of drives from Siemens is intended for use with standard medium-voltage three-phase AC induction and synchronous motors. The induction motor is widely used due to its robust and simple construction, its tolerance for bad environments, and its low cost. On the other hand, a synchronous motor is used in applications where very high efficiency or high torque is required. When either of these types of motors is connected to a utility supply at a fixed frequency ( 60 or 50 Hz ), operation at a single fixed speed is obtained. The Harmony series drives allow variable speed operation, without sacrificing any of the desirable properties of the induction motor.

The Harmony series drives provide variable speed operation by converting utility power at fixed frequency and fixed voltage to variable frequency, variable voltage power. This conversion is done electronically, without moving parts. Unlike older drive types, the Harmony series does not force the user to accept unpleasant by-products of this conversion process. Specifically:
- The Perfect Harmony series drives do not inject significant harmonic distortion into the plant’s distribution system. No power filters are required. No interference to sensitive equipment or resonance problems with power factor capacitors will occur.
- The Perfect Harmony series drives present a high power factor to the utility, typically \(95 \%\) or better throughout the speed range. No power factor correction is required.
- The Perfect Harmony series drives do not require any derating of the motor due to output harmonics. No additional motor heating is produced versus operation directly from the utility.
- The Perfect Harmony series drives when set up properly, do not produce torque pulsations, which can excite mechanical resonance.
- The Perfect Harmony series drives cause no noticeable increase in acoustic noise from the motor, versus operation directly from the utility.
- The Perfect Harmony series drives cause no appreciable additional stress to the motor insulation, versus operation directly from the utility.
- The Perfect Harmony series drives allow unrestricted use of rated motor torque throughout the speed range, subject only to the thermal limitations of the motor.
- The Perfect Harmony series drives are virtually silent in operation if liquid-cooled, so that normal conversation is possible next to drives running at full power.
- The Perfect Harmony series drives are completely modular in construction, so that if necessary, a defective module can be replaced in minutes. Sophisticated microprocessor-based diagnostics pinpoint the location of any defects.

\subsection*{6.2 The Power Circuitry}

Note: The examples used in this section refer to drives having low-voltage cells. High-Voltage cell systems will have different values.

The Harmony series drives achieve this uncompromised performance by employing well-proven technology in a new configuration. Medium voltage levels are obtained by adding together the outputs of multiple low-voltage power
cells. The low-voltage power cells are simplified variations of standard PWM motor drives for low-voltage service, which have been built in high volume for many years.

Figure shows a typical power circuit topology for a 2400 or 3300 volt Perfect Harmony series drive, using 690 VAC cells. Each motor phase is driven by 3 power cells connected in series. The groups of power cells are wye connected with a floating neutral. Each cell is powered by an isolated secondary winding of an integral isolation transformer. The nine secondaries are each rated for 690 VAC at one ninth of the total power. The power cells and their secondaries are insulated from each other and from ground for 7.2 kV class service.

For a 4160 or 4800 volt drive, Figure would be extended to have 4 power cells in series in each phase, with 12 secondaries on the integral isolation transformer. For a 6000 volt drive, there would be 5 power cells in series in each phase, with 15 secondaries on the integral transformer. For a 6600 to 7200 volt drive, there would be 6 power cells in series in each phase, with 18 secondaries on the integral transformer.

Each cell is a static power converter. It is capable of receiving input power at 690 VAC 3-phase, \(50 / 60 \mathrm{~Hz}\) and delivering that power to a single-phase load at any voltage up to 690 VAC and at any frequency up to 330 Hz . Note: for output frequencies greater than 180 hertz the VFD power cell current output will be de-rated. Consult the factory for information applicable to the specific application requirements

With three 690 VAC power cells in series per phase, a Perfect Harmony series drive can produce as much as 2080 VAC line-to-neutral, or a maximum V-available of 3600 volts. With four 690 VAC power cells in series per phase, a Perfect Harmony series drive can produce as much as 2780 VAC line-to-neutral, or a maximum V-available of 4800 volts. With five 690 VAC power cells in series per phase, a Perfect Harmony series drive can produce as much as 3470 VAC line-to-neutral, or a maximum V-available of 6000 volts. With six 690 VAC power cells in series per phase, a Perfect Harmony series drive can produce as much as 4160 VAC line-to-neutral, or a maximum V-available of 7200 volts.

It should be noted that it is possible to connect as many as eight power cells in series using the Harmony control, but without some capability. V-available determines the maximum voltage that can be delivered from the VFD output. The actual voltage delivered is fully adjustable. As the Harmony VFD topology is based on multi-level output capabilities the result is true adjusted voltage. The advantages of utilizing the V-available capability of the VFD become apparent when the patented advanced cell bypass option is applied.

Other cell voltages are available, which will change the number of cells needed for a given output voltage. However, the basic principle is unchanged.

The power cells all receive commands from one central controller. These commands are passed to the cells over fiber optic cables in order to maintain the 7 kV class isolation.

The transformer secondaries that supply the power cells in each output phase are wound to obtain a small difference in phase angle between them. This cancels most of the harmonic currents drawn by the individual power cells, so that the primary currents are nearly sinusoidal. The power factor is always high - typically \(95 \%\) at full load.

The schematic of a typical power cell is shown. In this example, a 3-phase diode rectifier, fed by the 690 VAC secondary, charges a DC capacitor bank to about 860 VDC. The DC voltage feeds a single-phase H -bridge of IGBTs.

At any instant of time, each cell has only three possible output voltages. If \(\mathbf{Q 1}\) and \(\mathbf{Q 4}\) are on, the output will be +DC bus volts from T1 to T2. If Q2 and Q3 are on, the output will be -DC bus volts. Finally, if either Q1 and Q3 or Q2 and Q4 are on, the output will be 0 volts.

With 3 power cells per phase, the circuit of can produce 7 distinct line-to-neutral voltage levels ( \(\pm 2570, \pm 1720, \pm 860\), or 0 volts). With 5 cells per phase, 11 distinct voltage levels are available. With 6 cells per phase, 13 distinct voltage levels are available. The ability to generate many different voltage levels allows the Harmony series drives to produce a very accurate approximation to a sinusoidal output waveformm.

Figure hows how these waveforms are generated for the case of 3 cells per phase. First, a reference signal is created for each phase. These signals are digital replicas of the ideal waveform to be approximated. In , RA illustrates the reference signal for phase A . This reference signal is then compared with 3 triangular carrier signals. shows conditions when the output frequency is 60 Hz and the carrier frequency is 600 Hz , so that there are exactly 10 carrier
cycles per reference cycle. The 3 carriers are identical except for successive phase shifts of 60 degrees (based on the number of cells per phase). Phase shift between carriers in each phase is computed based on the following equation:

Carrier Phase Shift (same phase) \(=\frac{\text { 1\&legrees }}{\text { \#ofells/甲has }}\)


Figure 6-1. Topology of Perfect Harmony VFD (3 Cells, 2400 or 3300 VAC)
Whenever the reference is greater than the first (unshifted) carrier, the signal \(\mathbf{L} \mathbf{1}\) is high; otherwise \(\mathbf{L 1}\) is low. \(\mathbf{L 1}\) is used to control the pair of transistors Q1 and Q2 in cell A1 (see the left pair of transistors inFigure ). Whenever the reference is greater than the inverse of the first carrier, the signal \(\mathbf{R 1}\) is low; otherwise \(\mathbf{R 1}\) is high. R1 is used to control the pair of transistors Q3 and Q4 in cell A1 (see the right pair of transistors in Figure ).
The difference between \(\mathbf{L 1}\) and \(\mathbf{R 1}\) gives the output waveform of cell A1, shown in Figure for Phase A as A1.

In a similar manner, the reference signal is compared with the second carrier (shifted 120 degrees) and its inverse to generate control signals \(\mathbf{L} 2\) and \(\mathbf{R 2}\) for the transistors in cell A2. The output waveform of cell A2 is shown as A2.


Figure 6-2. Schematic of a Typical Power Cell
Finally, the reference signal is compared with the third carrier (shifted 240 degrees) and its inverse to generate control signals L3 and R3 for the transistors in cell A3. The output waveform of cell A3 is shown as A3.


Figure 6-3. Waveforms for Phase A

The sum of the output voltages from cells A1, A2 and A3 produces the A-to-neutral output voltage of the drive, shown in Figure 6-3 as AN. There are 7 distinct voltage levels. Note that this voltage is defined between terminal \(\mathbf{A}\) and the floating neutral inside the drive, not the motor neutral.


Figure 6-4. Waveforms for Phase B
Figure 6-4 shows the same signals for Phase B. The 3 carriers are identical to Figure 6-3, except each is shifted by 20 degrees from its Phase A equivalent (see note below). The reference RB is also identical to Figure 6-3 , except that it is delayed by 120 degrees (at the reference frequency).

The sum of the output voltages from cells B1, B2 and B3 produces the B-to-neutral output voltage of the drive, shown in Figure 6-4 as BN.

Figure repeats the two line-to-neutral voltages AN and BN. The numerical difference between AN and \(\mathbf{B N}\) forms the line-to-line voltage impressed on the motor, and is shown in Figure 6-3 as AB.


Figure 6-5. Waveforms for Line-to-line Voltage

Note: The phase shift of the carrier signals between phases is determined by the number of cells in the system. The equation being Phase shift \(=180\) degrees / total number of cells. In this case ( 3 ranks or 9 cells) the carrier signal phase shift phase to phase is \((180 / 9)=20\) degrees. This shift of the carriers between phases reduces the number of devices that are switching at one time. The above is true if no cells are in bypass. If one or more cells are in bypass the carrier signals are offset by 180 degrees / total remaining cells.

\section*{1,000HP, 2,400 VACMdtar at Full Speed, Full Load}


Figure 6-6. Harmony Output Waveforms, 2400 Volt Drive at Full Load
Figure shows motor voltage and current waveforms for a 2400 VAC Harmony drive rated at 1000 hp . The voltage shown is between phase A and the motor neutral (not the same as the drive neutral). The motor current is in phase A during full-load operation. Anyone familiar with such waveforms for other types of static drives will appreciate how accurately they approximate true sine waves. A quantitative measure of the waveform quality is its Total Harmonic Distortion, or THD. The THD of the motor currents with a Harmony series drive is always less than 5 percent.

Figure shows the input voltage and current waveforms for the same drive as in Figure , under the same conditions. The perfect sine wave in Figure is the voltage into the special input transformer, measured between phase A and the neutral of the wye-connected primary. The other waveform is the current into phase A of the same winding.

The currents drawn from the power source by Harmony series drives are also good approximations to true sine waves, due to the harmonic cancellation obtained with the phase-shifted secondary windings of the transformer. The THD of the input currents with a Harmony series drive is also always less than 5 percent.


Figure 6-7. Harmony Input Waveforms for a 2400 Volt Drive at Full Load
Note in Figure that the input current lags behind the input voltage by less than 15 degrees at full load. This represents a power factor better than 96 percent. Harmony series drives always maintain a high power factor, typically better than 95 percent throughout the speed and load range.

Figure shows the motor voltage and current for a 15 cell Harmony drive at full power, while shows the input voltage and current for the same drive and load.


Figure 6-8. Motor A-B Voltage and Current in Phase C at Full Load for a 4160 Volt Harmony Drive


Figure 6-9. Input A-B Voltage and Current in Phase C at Full Load for a 4160 Volt Harmony Drive

\subsection*{6.3 The Control System}

The block diagram in Figure shows the implementation of the Harmony Control System. The Control System consists of Signal Interface and Conditioning Boards, an A/D Converter Board, a Pentium Processor Board, a Digital Modulator Board, and one or two Fiber Optic Interface Boards.

The Signal Interface Board processes the feedback signals collected from the drive. The circuits on this board scale and filter the feedback signals before passing them along to the A/D Converter Board over a 50pin cable. This board also contains connections for an analog input signal and a relay contact. The contact is typically used for ESTOP.

The function of the A/D Converter Board is to sample the input and output currents and voltages, and convert them to digital signals for the Pentium processor. The sample rate varies from 3 kHz to 6 KHz and is a function of the carrier frequency (which is also the IGBT switching frequency) and the number of 'available' cells in the system. The Digital Modulator Board generates the signal for the A/D converters to start sampling. Once the A/D converters finish sampling, they provide an interrupt to the processor to begin its calculation cycle.

The Pentium processor performs all the functions for motor control and generates three-phase voltage commands for the digital modulator. In addition, it monitors the input voltages and currents to provide metering functions (such as power factor, input power and harmonic calculation), input protection (from over-current, excessive reactive current, under-voltage and single-phasing), and input voltage magnitude, frequency and phase angle for Synchronous Transfer.

The Digital Modulator is comprised of four modulator EPLDs (Erasable Programmable Logic Devices), one master and three slaves, each running the same code. Each EPLD provides communications for six Harmony cells. The master EPLD contains registers that are used for communication with the Processor. For each phase voltage command, the processor writes to the EPLDs, two values, the first for the present time instant and the second for a time instant that is half-a-sampling period away. A voltage increment, or step corresponding to these values, and the direct number of steps between values, is also written to the EPLDs. These phase commands are written to the EPLDs once every sampling period.

The master EPLD creates a set of timing signals that causes the control software to sample the feedback signals and run the control, monitoring algorithms. These timing signals cause all of the EPLDs to transmit information to the cells simultaneously, once every 9 to 11 microseconds. This time (is determined by the processor and) is based on the drive configuration and is fixed for a particular configuration. In between every transmission period, each EPLD performs interpolation, phase-shifted carrier generation, pulse-width modulation (PWM), and cell communication. The resulting PWM commands for each cell along with the mode of operation is assembled as an 8-bit packet (at a rate of 5 Megabaud) that is transmitted to the cells through the Fiber Optic Interface. In response to the transmitted data, the modulators receive a similar 8-bit packet from each of the cells. The return message from the cells contains status bits that are decoded by the EPLDs and conveyed to the processor. In case of a fault other EPLDs are also affected. The portion of firmware code that is associated with sending and receiving messages from the cells is called the FOLA (for Fiber Optic Link Adapter).
In addition to the tasks listed above, the master EPLD communicates with the bypass controller and monitors hardware faults such as IOC, ESTOP and power supply faults. The Bypass Controller is implemented in a separate EPLD that is configured to control the cell bypass (mechanical) contactors. This device resides along with the modulator EPLDs on the Modulator Board. After detection of a cell fault the processor communicates with the Bypass Controller to bypass the faulted cells. In addition to bypassing cells, the Bypass Controller constantly checks the status of the contactors to verify if they are in their requested states.

The Fiber Optic Interface transfers data between the modulator EPLDs and the cells over fiber optic channels. Each Fiber Optic Interface Board can communicate with up to 12 cells. Up to two Fiber Optic Interface Boards can be put in the system. Each cell receives its firing commands and status signals from the Interface Board through a dual fiber optic channel.

Every transmission is checked for completeness and parity. If an error is detected a link fault is generated. The 8-bit packet sent to the power cells provides operational mode and switching information. The local communication
circuits in each power cell operate as slaves to the EPLDs on the Modulator Board. The local control circuits on each power cell convert the information received to IGBT firing pulses.

The return packet echos the operational mode and cell status. One bit is the output of a PWM signal that monitors cell temperature. Should a failure occur on an individual cell, the worst case shut down of all power cells requires 2 transmission cycles or \(22 \mu \mathrm{sec}\). maximum.


Figure 6-10. Block Diagram of Harmony Control Structure for 6000 V Drive

\subsection*{6.4 The Control Modes}

Harmony drives use vector control to control induction and synchronous motors. Vector control provides a framework that is simple to implement, but performs nearly as well as a DC motor. Figure shows a simplified representation of the vector control algorithm implemented in Harmony drives. The basic components of vector control are:
1. Motor model: determines motor flux and speed.
2. Current regulators: these regulators are referred to as the inner loops.
3. Flux and speed regulators: these regulators are referred to as the outer loops.
4. Feed-forward (FF) compensation: improves the transient response of torque loop and flux loop.


Figure 6-11. Block diagram of vector control algorithms for induction and synchronous motor control
(Numbers within square brackets indicate the parameter IDs that affect the corresponding functions)
The motor model uses measured motor voltage and estimated stator resistance voltage drop to determine stator flux amplitude, motor speed and flux angle. This allows stator resistance compensation to be automatic. A simplification of motor equations is obtained by transforming the 3-phase AC quantities (which are referred to being in a stationary reference frame) to DC quantities (that are in a synchronously rotating or DQ reference frame). A phase-locked loop (PLL) within the motor model tracks the (stator) frequency and angle of the flux vector.

Motor flux amplitude is controlled by the flux regulator; its output forms the command for the magnetizing (or flux producing) component. Motor speed is determined from stator frequency, and is controlled by the speed regulator. Its output is the command for the torque (producing) current regulator.

The flux angle is used to decompose the measured motor currents into magnetizing and torque producing components. It is this decomposition that allows independent control of flux and torque, similar to DC motor control. These current components are regulated to their commanded values by the current regulators. Outputs of the current regulators are combined to produce three-phase voltage commands that get modified with signals from various other control routines before being passed on to the modulator. These control routines include: (1) dead-time compensation (to compensate for dead-time in the switching of the upper and lower IGBTS of each pole in a power cell), (2) peak reduction for third-harmonic injection (to maximize drive output voltage, and for drive neutral-shift [during transparent cell-bypass]), and (3) voltage commands to produce losses for dual-frequency braking. Transient response of the flux and torque regulators is improved with the use of feed-forward compensation (FF) as shown in Figure 6-11. The following table describes the symbols used to represent various quantities in the control diagram.

Table 6-1. List of Symbols Used in Figure 6-11
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Symbol } & \multicolumn{1}{c|}{ Description } \\
\hline FluxDS & \begin{tabular}{l} 
D-component of motor flux; also equal to the motor flux, since Q-component is zero. Motor Flux \\
is defined as: Motor_Voltage / Stator_Frequency (rad/s). Flux (which has units of Volt-seconds) is \\
also proportional(but not equal) to Volts-per-Hertz ratio.
\end{tabular} \\
\hline r & \begin{tabular}{l} 
For an induction motor: Motor_Speed = Stator_Frequency / Pole_Pairs - Slip_Speed \\
This is the rotor (mechanical) frequency, which is equivalent to the motor speed. \\
For a synchronous motor: Motor__Speed = Stator_Frequency / Pole_Pairs
\end{tabular} \\
\hline \(\mathrm{I}_{\mathrm{ds}}\) & Magnetizing component of motor current. \\
\hline \(\mathrm{I}_{\mathrm{qs}}\) & \begin{tabular}{l} 
Torque component of motor current. \\
\hline \(\mathrm{V}_{\mathrm{ds}, \text { ref }}\)
\end{tabular} \\
\hline \(\mathrm{V}_{\mathrm{qs}, \text { ref }}\) & \begin{tabular}{l} 
Output of magnetizing current regulator used in the D-Q transformation to produce 3-phase \\
voltages.
\end{tabular} \\
\hline s & \begin{tabular}{l} 
Output of torque current regulator used in the inverse D-Q transformation to produce 3-phase \\
voltages.
\end{tabular} \\
\hline s & Stator frequency or output frequency of the drive. This is motorspeed (r) + Slip. \\
\hline \(\mathrm{I}_{\mathrm{a}} \mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{c}}\) & Flux angle. This is the instantaneous position of the rotating Slip vector. \\
\hline
\end{tabular}

Motor torque (in Newton-meters) and shaft power can be calculated as,
```

Torque (Nm)= 3* Pole_Pairs * Flux (Vs)* Iqs (A)
\approx 3* Pole_Pairs * Motor_Voltage (V) * Iqs (A) / (2π * Frequency (Hz)),

```

Shaft Power \((\mathrm{W})=\) Torque \((\mathrm{Nm}) *\) Speed \((\mathrm{rad} / \mathrm{s})=\) Torque \((\mathrm{Nm}) *\) Speed \((\mathrm{rpm}) / 9.55\)

\subsection*{6.4.1 Open Loop Vector Control (OLVC)}

This control mode should be used for most applications with single induction motors. In this method the control estimates motor slip as a function of load torque and provides a performance that matches a vector controlled drive (with speed sensor/transducer) above a certain minimum speed. With the correct motor parameters the control can provide good performance even at \(1 \%\) of rated speed.

Speed feedback is synthesized from the stator frequency and the estimated motor slip, as shown in Figure 6-11. With this control method, slip compensation is automatic.

In this control mode, (if Spinning Load is selected) the drive begins by scanning the frequency range to detect the speed of the rotating motor (please refer to Chapter 5 for a description of Spinning Load Operation). Once the drive has completed the scan or if the feature is disabled, the drive goes into Magnetizing State. During this state the drive ramps the motor flux to its commanded value at the specified Flux Ramp Rate (parameter ID 3160). Only when the flux feedback is within \(90 \%\) of the commanded flux, the drive changes to the Run State. Once in Run State, the drive increases the speed to the desired value. All motor and drive parameters as described in Chapter 3 are required for this mode of operation. Default values for the control loop gains (in the Stability Menu) are sufficient for most applications.

\subsection*{6.4.2 Open Loop Test Mode (OLTM)}

In this control method the motor current feedback signals are ignored. This control mode should be used during drive set-up, when the modulation on the cells is to be verified or when testing the drive without a load. It can also be used when the motor is first connected to the drive to make sure that the Hall Effect Transducers are working correctly and are providing the correct feedback signals. This method should not be used to adjust scale factors for input and output, voltages and currents.
In this mode, the drive goes through the Magnetizing State to the Run State without looking at the motor flux. Only motor nameplate values and some drive related parameters as described in Chapter 3 are required for this mode. Special attention should be given to the following parameters:
1. Spinning Load and Fast Bypass should be disabled.
2. Acceleration and deceleration times (in the Speed Ramp Menu) should be increased.
3. Flux Demand should be reduced.

\subsection*{6.4.3 Synchronous Motor Control (SMC)}

For synchronous motor control (SMC), the drive is equipped with a field exciter that usually consists of a SCR based current regulator; a 3PCI controller is typically used for the exciter. The field exciter operates to maintain a field current level that is commanded by the flux regulator. An example application for a brushless synchronous motor is shown in Figure 6-12. For brushless motors, the diagram assumes that the exciter stator is wound for 3 phase AC in the range of 350 to 400 volts. If that is not the case, a transformer will be necessary between the auxiliary power and the 3PCI. The circuit wheel needs only a rectifier. For the brushless case without bypass, the motor does not require any protection other than that included in the drive. Next Gen Control will trip the drive on a loss of field fault, if the motor draws excessive reactive current, which will occur when the exciter fails full on or off. Please refer to Chapter 7 for further discussion of this fault.
The overall control strategy is similar to Open Loop Vector Control, except for the flux regulator implementation as shown in Figure 6-11. For synchronous motors, the flux regulator provides two current commands, one for the field exciter current, and another for the magnetizing component of stator current.

With synchronous motor control, scanning the motor frequency to determine motor speed is completely avoided. The control uses information from the rotor induced speed voltages on the stator to determine rotor speed before applying torque to the motor. When starting the motor, the drive begins (in the Magnetizing State) by giving a field current command, which is equal to the no-load field current setting, to the exciter. This lasts for a time equal to the flux ramp time that is entered through the keypad (parameter ID 3160).

After this period of time, the drive goes into the run state. In most cases, the regulator in the field exciter is slow, and the drive applies magnetizing current (through the stator windings) to assist the exciter in establishing rated flux on the motor. At the same time, the speed regulator commands a torque-producing current to accelerate the motor to the demanded speed. Once the field exciter establishes the required field current to maintain flux in the motor, the magnetizing component of stator current reduces to zero. From this point onward, the drive provides torqueproducing current (for acceleration or deceleration) that is in-phase with the drive output voltage. In other words, under steady state conditions, unity power factor condition is automatically maintained at the drive output.

The field current command is provided to the field exciter with the use of an analog output module from WAGO. Other differences between SMC and OLVC are summarized below.
- The motor no-load current parameter represents the Field no-load current value in SMC.
- With SMC the flux loop gains are slightly lower than with OLVC.
- Spinning Load should always be enabled with SMC.
- The drive magnetizing current regulator uses only the proportional gain for the flux exciter.
- Only Stage 1 Auto-Tuning can be used with synchronous motors.

Attention! Never use Stage 2 Auto-tuning with synchronous motors.
- When you are performing Stage 1 Auto-Tuning, you must short the field winding to get a proper setup of the stator resistance.


Figure 6-12. Harmony drive arrangement for brushless synchronous motor (with no bypass)

\subsection*{6.4.4 Volts/Hertz Control (V/Hz)}

This control mode should be used when the drive is connected to multiple motors in parallel. The control algorithm is similar to that of Open Loop Vector Control (OLVC), but it does not use some of the motor parameters in its control algorithm that OLVC does.

Note: Many of the features available with OLVC, such as fast bypass, spinning load, and slip compensation, are not available with this method, as the individual feedback and control of each motor is not possible.

\subsection*{6.4.5 Closed Loop Control (CLVC or CSMC)}

In some applications, when stable, low speed (below 1 Hz ) operation under high torque conditions is required, an encoder may be used to provide speed feedback. The drive uses an 'off-the-shelf' carrier board to interface with industry standard encoders.

The control diagram of Figure 6-11 remains the same except for the slip calculation block which is disabled, so that encoder speed feedback is directly used as an input to the speed regulator.
When an encoder is used with the drive, the control loop type is required to be set to CLVC (for closed loop vector control with an induction motor) or to CSMC (for closed loop vector control with a synchronous motor). The encoder menu (ID 1280) contains parameters required for encoder operation. The table below describes the menu entries and provides typical values. Spinning load should be enabled when this control mode is enabled.

Table 6-2. Description of parameters in Encoder Menu (1280) and recommended values
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter name } & ID & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c|}{ Value } \\
\hline Encoder PPR & 1290 & Pulse-per-revolution of the encoder. & \begin{tabular}{l} 
From \\
encoder \\
nameplate
\end{tabular} \\
\hline Encoder filter gain & 1300 & \begin{tabular}{l} 
Sets the gain of the filter for encoder feedback. This parameter can \\
have a value between 0.0 (no filtering) and 0.999 (maximum \\
filtering).
\end{tabular} & 0.75 \\
\hline \begin{tabular}{l} 
Encoder loss \\
threshold
\end{tabular} & 1310 & \begin{tabular}{l} 
When the difference between the encoder feedback and the \\
estimated speed is greater than this level, an encoder loss alarm/ \\
fault is generated.
\end{tabular} & \(5.0 \%\) \\
\hline \begin{tabular}{l} 
Encoder loss \\
response
\end{tabular} & 1320 & \begin{tabular}{l} 
This sets the response of the drive when encoder loss occurs. In the \\
event of an encoder loss, selection of 'Stop (fault)' will cause the \\
drive to trip, while ‘Open loop' will cause the control to switch to \\
Open Loop Vector Control.
\end{tabular} & \begin{tabular}{l} 
Open \\
loop
\end{tabular} \\
\hline
\end{tabular}

\subsection*{6.5 Input Side Monitoring and Protection}

The NXG Control monitors input side voltages and currents, as well as those on the output side. This allows the control to monitor and respond to events on the input side of the drive. RMS values of the input currents and voltages are available, along with input power, kVA, energy and power factor. Figure shows a simplified view of the functions implemented for input side monitoring. Other quantities such as drive efficiency, average input current THD, and individual harmonic component (in input voltages/currents) are also calculated. All variables have an accuracy of \(\pm 1 \%\), except for efficiency ( \(< \pm 2 \%\) ) and input current THD ( \(\pm 1 \%\) above \(\sim 60 \%\) of rated power). A list of symbols used in Figure and a description of the parameters they represent are given in Table 6-3. Note that the definition of \(\mathrm{I}_{\mathrm{d}}\) and \(\mathrm{I}_{\mathrm{q}}\) components of the input current is different from the output side quantities.

Input side monitoring allows the drive to protect the secondary side of the transformer from abnormal conditions. Two faults, excessive drive losses and one cycle protection, are generated under such conditions. Please refer to Chapter 7 for further discussion of these two faults. Input side control also provides torque current limiting for line under-voltage, single-phasing and transformer overload conditions. These are described below. Please note that these three rollback sources can be disabled using the SOP.


Figure 6-13. Block diagram of input-side monitoring. (Numbers within square brackets indicate the parameter IDs that affect the corresponding functions.)

Table 6-3. List of Symbols Used in Figure 6-13
\begin{tabular}{|c|l|}
\hline Name & \multicolumn{1}{|c|}{ Description } \\
\hline \(\mathrm{E}_{\mathrm{rms}}\) & Average rms voltage (of all 3 phases). \\
\hline \(\mathrm{E}_{\mathrm{d}}\) & \begin{tabular}{l} 
Amplitude of voltage taking the transformer tap setting into account. This represents the \\
actual voltage being provided to the cells. If the tap setting is +5\%, Ed will be 5\% smaller than \\
Erms, and vice versa.
\end{tabular} \\
\hline \(\mathrm{E}_{\mathrm{a}, \mathrm{b}, \mathrm{c}}\) & Zeor sequence (DC offset) corrected input phase voltages. \\
\hline u & Input frequency. \\
\hline u & Angle of input-side flux. \\
\hline \(\mathrm{I}_{\mathrm{rms}}\) & Average rms current (in all 3 phases). \\
\hline \(\mathrm{I}_{\mathrm{d}}\) & Real component of input current. \\
\hline \(\mathrm{I}_{\mathrm{q}}\) & Reactive component of input current. \\
\hline \(\mathrm{I}_{\mathrm{a}, \mathrm{b}, \mathrm{c}}\) & Single-phase components of input current. \\
\hline
\end{tabular}

\subsection*{6.6 Drive Output Torque Limiting}

The drive uses measured voltages and currents to implement rollback conditions. Under one or more of these conditions, the drive will continue to operate, but at a lower output torque (or current) level. An output torque limit will force the motor (and the drive) to go into speed rollback, during which speed is reduced until the torque demanded by the load falls below the torque limit. Rollbacks which are triggered by various conditions are described below.

\subsection*{6.6.1 Input Under-Voltage Rollback}

When the input line voltage drops below \(90 \%\) of its rated value, the drive limits the amount of power (and hence the torque) that can be delivered to the load. The maximum allowable drive power as a function of line voltage is shown in Figure 6-14. At \(66 \%\) input voltage, the maximum drive power is limited to \(50 \%\), and is quickly reduced to a slightly negative value (Regen Limit) at \(65 \%\). This limit forces the drive to absorb power from the motor and maintain the (cell) DC-bus voltages in case the input voltage recovers during MV ride-through. The limit is implemented as an inverse function of speed in order to maintain constant power flow to the (cell) DC-bus.

A regulator is implemented to match the maximum drive power ( \(\mathrm{P}_{\mathrm{MAX}}\) ) to the actual power flowing into the drive. The output of this regulator sets the output torque limit. Keypad parameters 7060 and 7070 (in the Drive Protect Menu, under Input Protection) represent the proportional and integral gains of this regulator. Typical values of the proportional and integral gains are 0.0 and 0.001 . An under voltage rollback condition is annunciated by the drive as UVLT on the keypad and in the Tool Suite.


Figure 6-14. Drive power \(\left(P_{\max }\right)\) as a function of input voltage magnitude \(\left(E_{d}\right)\)

\subsection*{6.6.2 Input Single-Phase Rollback}

With Next Gen Control, input voltage unbalance ( \(\mathrm{E}_{\text {unbalance }}\) ) is used for rolling back the drive output torque.
Figure shows the reduction in drive power as a function of the unbalance voltage. When the unbalance is less than \(10 \%\) the drive operates without any output limitation. There is a linear reduction as the unbalance voltage increases from \(10 \%\) to \(30 \%\), at which point the input has a single-phase condition. When the input line voltage unbalance increases above \(30 \%\), the drive limits the amount of output power that can be delivered to the load to \(40 \%\) of rated.


Figure 6-15. Drive power ( \(\mathrm{P}_{\max }\) ) as a function of input unbalance voltage ( \(\mathrm{E}_{\text {unbalance }}\) )
A regulator is implemented to match the maximum drive power ( \(\mathrm{P}_{\mathrm{MAX}}\) ) with the actual power flowing from the drive. The output of this regulator sets the output torque limit. Keypad parameters 7020 and 7030 (in the Drive Protect Menu, under Input Protection, Single Phasing) represent the proportional and integral gains of this regulator. Typical values of the proportional and integral gains are 0.0 and 0.001 . A single-phasing alarm is generated when the output level of this regulator goes below the level set by the SPD threshold parameter (ID 7040). The drive's keypad displays SPHS instead of MODE, and the Tool Suite displays SPHS when a rollback occurs because of this condition. This regulator detects input single phase condition in this manner.

\subsection*{6.6.3 Transformer Thermal Rollback}

The input currents to the drive are monitored continuously. The largest among the three input phase currents is limited to be at or below \(105 \%\) of the nominal rating of the transformer. Drive output torque is reduced when this current level is exceeded.

An integral regulator is implemented to limit the maximum input current to 105\%. The output of this regulator sets the output torque limit. The Xformer thermal gain parameter (ID 7090, in the Drive Protect Menu, under Input Protection) represents the integral gain of this regulator. A typical value of the integral gain is 0.0133 . During transformer thermal rollback, the drive displays T OL on the keypad and in the ToolSuite.

\subsection*{6.6.4 Menu Torque Limit}

When the output torque current exceeds the max torque limit setting (parameter ID 1190, 1210 or 1230), the drive will limit output current. When this happens, the drive displays TLIM on the keypad and in the Tool Suite.

\subsection*{6.6.5 Regeneration}

An inverse speed function based on the Regen torque limit setting (parameter ID 1200, 1220 or 1240) is used during drive deceleration. This forces the drive to absorb a constant amount of power from the load. When this happens, the drive displays RGEN on the keypad and in the Tool Suite.

\subsection*{6.6.6 Field-Weakening Limit}

The field-weakening limit is a torque limit that is based on the motor flux and motor leakage inductance. This limit prevents the motor slip from exceeding pullout torque slip. Thus, it prevents unstable operation of the motor. This limit normally occurs when motor flux is reduced significantly during energy saver operation or when operating beyond the base speed of the motor. Under such conditions, a large step (increase) in load will force the output to be
limited, resulting in a loss of speed rather than motor pullout. When this happens, the drive displays F WK on the keypad and in the Tool Suite.

\subsection*{6.6.7 Cell Current Overload}

The cell (current) overload setting is given by the keypad parameter ID 7112 in the Drive Protect Menu (7). A cell can operate at this overload value for 1 minute out of every 10 minutes. When the current is between the cell rating and the overload rating, then the time spent at that level is inversely proportional to the overload current. An example of the time versus current overload capability with a cell that has \(120 \%\) overload capacity is shown in Table 6-4.

Table 6-4. Example of overload current capability versus time of a cell with \(\mathbf{1 2 0 \%}\) overload
\begin{tabular}{|c|c|}
\hline Drive current (\%) & Allowed operating time (out of every 10 minutes) \\
\hline 120 & 1 minute \\
\hline 110 & 2 minutes \\
\hline 105 & 4 minutes \\
\hline 100 & Continuous \\
\hline
\end{tabular}

If the motor current rating is smaller than the drive rating, then the rollback is annunciated on the keypad and in the Tool Suite as TLIM for Torque Limit. However, when the drive current rating is smaller than the motor rating, C OL (for Cell Overload) is displayed.

Note: The power cells used in Harmony drives do not have a fixed overload capability. Please consult the factory to determine the level of overload capability for a particular type of cell.

\subsection*{6.7 One Cycle Protection}

\subsection*{6.7.1 Summary}

NXG Control utilizes input reactive current to determine whether a "hard" fault on the secondary side of the transformer has occurred. For example, a short-circuit in one of the secondary windings will result in poor power factor on the high-voltage side of the transformer. A model of the transformer based on the power factor at rated load is implemented in the control processor. The drive input reactive current is continuously checked with the predicted value from the model. An alarm/trip is generated if the actual reactive current exceeds the prediction by more than \(10 \%\). This check is avoided during the first 0.25 seconds after medium voltage power-up to avoid the inrush current from causing nuisance trips.

\subsection*{6.7.2 Implementation}

Figure shows the implementation of One Cycle Protection.

\(I_{\text {gain }}=1\) Cyc Protect Integ gain [ID 7080]
\(\mathrm{K}_{\mathrm{tr}}=\) Xformer protection constant [ID 7100]

Figure 6-16. Implementation of One Cycle Protection

\subsection*{6.7.3 Transformer Model}

The Transformer Model block in Figure 6-16 provides the maximum value of the input reactive current for a given value of transformer constant, Ktr as given below:
\[
\mathrm{I}_{\text {Reactive,Max }}=1.10 *\left(0.05+\mathrm{K}_{\mathrm{tr}} * \mathrm{I}_{\text {Real }}{ }^{2}\right)
\]

Figure 6-17 shows a plot of the Max Reactive Current versus Real Current with a transformer constant of 0.5.


Figure 6-17. Plot of Max Reactive Current Versus Real Current with a Transformer Constant of 0.5

\subsection*{6.7.4 Integral Timer}

The integral timer gain can be calculated based on the desired response time ( \(\mathrm{T}_{\text {trip }}\) ) as shown below:
\[
I_{\text {gain }}=T_{\text {trip }} / \text { (Error } * \text { Slow_loop_sample_rate) }
\]

Where:
- Error is the maximum error (in per unit) that can be tolerated between \(\mathrm{I}_{\text {Reactive,Max }}\) and actual reactive current \(\mathrm{I}_{\text {reactive }}\)
- Slow_loop_sample_rate is the sample frequency of the slow loop ( \(450-600 \mathrm{~Hz}\) ).

\section*{Note: Below the sampling rate of 4500 , the slow loop is \(1 / 5\) of the sampling frequency ( \(\mathrm{F}_{\text {samp }}\) ). At 4500 or} above, the slow loop is \(1 / 10\) of \(\mathrm{F}_{\text {samp }}\).

\subsection*{6.8 Excessive Drive Losses}

\subsection*{6.8.1 Summary}

NXG control utilizes input power and output power calculations to determine whether an internal fault has occurred. Drive Power Loss is estimated as the difference between input power and output power. This quantity is continuously checked with a pre-defined threshold that is inverse time-based, i.e., if the threshold is exceeded by a large margin, then the trip occurs in a short time after the event, and vice-versa.

\subsection*{6.8.2 Implementation}

Figure 6-18 shows the implementation of the Drive Loss fault circuit.


Internal Threshold \(\quad=3.5 \%\) in Idle State (for Liquid-Cooled Drives up to version 2.40)
\(=5.5 \%\) in Run State (for Liquid-Cooled Drives up to version 2.40)
\(=5.0 \%\) in Idle State (for Air-Cooled Drives up to version 2.40 and for all Drives for version 2.5)
\(=7.0 \%\) in Run State (for Air-Cooled Drives up to version 2.40 and for all Drives for version 2.5)

Figure 6-18. Implementation of the Drive Loss Fault Circuit

\subsection*{6.8.3 Inverse Time Curve}

Figure shows the inverse time-to-trip curves as a function of Drive Losses. Each plot shows two curves - one for Idle State and the other for Run State (slightly longer time to trip). For software versions 2.22 and lower, a fixed trip time of one second was used instead of the curves shown below.


Figure 6-19. Inverse Time-To-Trip Curves
Left - Idle State, Right - Run State

\subsection*{6.8.4 Internal Threshold}

The internal threshold is a function of the rated drive input power. For example, in Run State, the internal threshold is given as:

Internal Threshold (Watts) \(=0.07\) * rated Drive Input Poser
\[
=0.07 * \sqrt{ } 3 * \text { Rated Input Voltage } * \text { Rated Input Current }
\]

Where:
- Rated Input Voltage and Rated Input Current are menu entries 2010 and 2020, respectively.

Note: For software versions 2.30 and 2.40, Air-Cooled and Liquid-Cooled Drives had different internal threshold settings (as listed in the block diagram). For versions 2.50 and higher, only one common set of threshold settings are used; these correspond to the settings for Air-Cooled Drives as shown Figure 6-18.
\(\nabla \nabla \nabla\)

\section*{CHAPTER}

\section*{7 Troubleshooting and Maintenance}

\subsection*{7.1 Introduction}

We have designed, built and tested the Perfect Harmony variable speed drive for long, trouble-free service. However, periodic maintenance is required to keep the drive working reliably, to minimize system down time, and to maintain safety.

DANGER-Electrical Hazard! Always switch off the main input power to the equipment before attempting inspection or maintenance procedure.


Warning: Only qualified service personnel should maintain Perfect Harmony equipment and systems.
- This chapter is contains information that can be categorized as:
- Fault and Error troubleshooting (beginning)
- Supporting (technical) information (middle)
- Maintenance information (end).

The sections at the beginning of this chapter explain faults, how they are annunciated, fault messages, fault logging, and troubleshooting techniques. The sections in the middle of this chapter provide supporting information such as technical data, test point locations, and internal operations. Finally, the sections at the end of this chapter provide maintenance information such as inspections, replacement parts, etc. Review the section titles shown in the "In This Section" table above, then proceed to the appropriate section to troubleshoot or maintain your drive as appropriate.

Note: Refer to Chapter 2: Hardware Components for locations and details of major hardware components of the Perfect Harmony system.

\subsection*{7.2 Faults and Alarms}

If a fault or alarm condition exists, it will be annunciated on the keypad. The Master Control software and hardware sense faults and alarms and store them within the fault logger and the event logger. Faults are either detected via direct hardware sensing or by software algorithm.

Cell faults are sensed by the cell control system logic located on the Cell Control Board (see Figure 7-2) in each output power cell. Each power cell has its own sense circuitry (Refer to Chapter 6: Theory). The Master Control software interprets the cell faults and displays them and logs them based on the faulted cell and the specific fault within the cell.

Generally, all faults will immediately remove power from the motor and inhibit the drive from running. Some faults that are user defined can control the drive response via the system program. Alarms are annunciated and logged but usually do not inhibit the drive from operation.

Refer to Table 7-1 for a determination of the drive response for the various fault and alarm conditions.

Table 7-1. Fault/Alarm Type and Drive Responses
\begin{tabular}{|c|c|}
\hline Type & Drive Responses \\
\hline Fault & \begin{tabular}{l}
- All IGBT gate drivers are inhibited. \\
- Motor coasts to stop. \\
- The fault is logged. Refer to the Fault Log Menu (6210). \\
- The fault is displayed on the front panel. \\
- The Keypad Fault LED is ON.Refer to Section 3.2.1 for information about the LED. \\
- Most faults are logged to the event log.
\end{tabular} \\
\hline User Faults & \begin{tabular}{l}
- The motor either ramp stops or coast stops depending on the content of the System Program. \\
- The fault is logged. Refer to the Fault Log Menu (6210). \\
- The fault is displayed on the front panel. \\
- The Keypad Fault LED is ON. Refer to Section 3.2.1 for information about the LED. \\
- User defined faults are logged to the event log.
\end{tabular} \\
\hline Alarm & \begin{tabular}{l}
- Drive does not necessarily revert to the idle state via a coast or ramp stop unless specifically required to by the system program. \\
- The alarm is logged. Refer to the Fault Log Menu (6210). \\
- The alarm is displayed on the front panel. \\
- The Keypad Fault LED flashes. Refer to Section 3.2.1 for information about the LED.
\end{tabular} \\
\hline
\end{tabular}

The [FAULT RESET] key on the Keypad can be used to manually reset a fault. The drive must be returned to the run condition by manual start or by forcing the RunRequest_I equal to "true" (refer to Chapter 8: System Programming).

Certain faults can be reset automatically if enabled by the auto fault reset enable (7120). Refer to Table 7-2 for a list of auto re-settable faults. These are fixed and not adjustable. If reset is successful, then drive will return to the run state automatically only if the RunRequest_I is maintained at the value "true" (refer to Chapter 8: System Programming). The [FAULT RESET] key of the Keypad can acknowledge alarms.

Table 7-2. Auto Re-settable faults
\begin{tabular}{|l|l|}
\hline Back EMF Timeout & Over speed fault \\
\hline Encoder Loss & Under load fault \\
\hline Failed to magnetize & Loss of Signal 1-24 \\
\hline IOC & Loss of Signal Internal \\
\hline Keypad communication & Loss of Drive Enable \\
\hline Line over voltage & Loss of Field Format (SM) \\
\hline Medium voltage low & \\
\hline Menu initialization & \\
\hline Motor over voltage & \\
\hline Output ground fault & \\
\hline Network 1 communication fault & \\
\hline Network 2 communication fault & \\
\hline
\end{tabular}

\subsection*{7.3 Drive Faults and Alarms}

The master control senses all drive faults and alarms, either from direct hardware or via software algorithms. Use Table 7-3 to quickly locate major causes of fault conditions. The table also lists the type of drive response, if it is a fault ( \(\mathbf{F}\) ), alarm (A), or both (F/A), and whether it can be enabled or disabled using the SOP program (SOP), or if it is permanently enabled (Fixed in software).

Table 7-3. Drive Faults
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline \multicolumn{4}{|c|}{Input Line Disturbance} \\
\hline Input Phase Loss & A & Fixed & \begin{tabular}{l}
Cause \\
Loss of input phase. \\
Action \\
1. Check the input fuses and connection to verify that the input phases are connected properly. \\
2. Using an Oscilloscope verify the presence of all 3 input voltages on test points VIA/TP1, VIB/ TP2, VIC/TP3 of the System Interface board.
\end{tabular} \\
\hline Input Ground & A & Fixed & \begin{tabular}{l}
Cause \\
Estimated input ground voltage is greater than limit set by the Ground Fault Limit (in the Drive Protection Menu). \\
Action \\
1. Using an Oscilloscope, verify the symmetry (L-L and L-N) of the 3 input voltages on test points (VIA/TP1, VIB/TP2, VIC/TP3) of the System Interface board. \\
2. Use a voltmeter to check for common mode DC to neutral.
\end{tabular} \\
\hline Line Over Voltage 1 & A & SOP & \begin{tabular}{l}
Cause \\
The drive-input RMS voltage is greater than \(110 \%\) of the drive rated input voltage. \\
Action \\
Using a voltmeter verify the input voltages on test points (VIA/TP1, VIB/TP2, VIC/TP3) of the System Interface board are \(\sim 3.8\) VRMS. This is the expected value for rated input voltage. Values greater than \(\sim 4.2\) VRMS will trigger over voltage conditions. Note: This alarm can be caused by a transient condition, and may not be present when making the measurements.
\end{tabular} \\
\hline Line over voltage 2 & A & SOP & \begin{tabular}{l}
Cause \\
The drive-input RMS voltage is greater than \(115 \%\) of the drive rated input voltage. \\
Action \\
Refer to Line over voltage 1 section above. Values \(>4.37\) VRMS will trigger this alarm.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline Line over voltage fault & F & SOP & \begin{tabular}{l}
Cause \\
The drive-input RMS voltage is greater than \(120 \%\) of the drive rated input voltage. \\
Action \\
Refer to Line over voltage 1 section above. Values >4.56 VRMS will trigger an alarm or trip, depending on the SOP.
\end{tabular} \\
\hline Medium voltage low 1 & A & SOP & \begin{tabular}{l}
Cause \\
The drive-input RMS voltage is less than \(90 \%\) of the drive rated input voltage. \\
Action \\
Using a voltmeter, verify the input voltages on test points (VIA/TP1, VIB/TP2, VIC/TP3) of the System Interface board are \(\sim 3.8 \mathrm{~V}\) RMS. This is the expected value for rated input voltage. Values less than \(\sim 3.4 v\) RMS ( \(90 \%\) of rated) will trigger Medium voltage low conditions. Note: This alarm can be caused by a transient condition, and may not be present when making the measurements.
\end{tabular} \\
\hline Medium voltage low 2 & A & Fixed & \begin{tabular}{l}
Cause \\
The drive-input RMS voltage is less than \(70 \%\) of the drive rated input voltage. \\
Action \\
Refer to Medium voltage low 1 section above. The threshold is 2.66 V .
\end{tabular} \\
\hline Medium voltage low Flt & F & Fixed & \begin{tabular}{l}
Cause \\
The drive-input RMS voltage is less than \(55 \%\) of the drive rated input voltage. \\
The fault will not occur, even after the threshold condition is met, until the first cell fault occurs. \\
This fault is then logged and associated cell faults ignored. \\
Action \\
Refer to Medium voltage low 1 section above. The threshold is 2.09 V .
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline Input One Cycle (or excessive input reactive current) & F/A & Fixed & \begin{tabular}{l}
Cause \\
(1) Possible fault on the secondary side of the transformer, or (2) inrush current is too high and creating a nuisance fault. \\
Action \\
(1) Remove medium voltage and visually inspect all the cells and their connections to the transformer secondary; contact Siemens for field support. \\
(2) Reduce the 1 Cyc Protect integ gain (7080) and the 1 Cycle Protect Limit (7081) to avoid nuisance trips.
\end{tabular} \\
\hline Input Phase Imbal & SOP & Fixed & \begin{tabular}{l}
Cause \\
Drive input (line) current imbalance is greater than the setting in the Phase Imbalance Limit parameter (in Drive Protection Menu). \\
Action \\
1. Verify proper symmetry of the input voltages and currents on test points VIA/TP1, VIB/TP2, VIC/TP3, IIB/TP12 and IIC/TP13. \\
2. Check the values of the input attenuators.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{Motor/Output Related} \\
\hline Over Speed Alarm & A & SOP & \begin{tabular}{l}
Cause \\
The motor speed is greater than \(95 \%\) of the Overspeed parameter setting (1170) in the Limits Menu (1120). An improperly set-up or mistuned drive usually causes this fault. \\
Action \\
Verify that the motor and drive nameplate settings match the corresponding parameters in Motor Parameter Menu (1000) and Drive Parameter Menu (2000).
\end{tabular} \\
\hline Over Speed Fault & F & Fixed & \begin{tabular}{l}
Cause \\
The motor speed exceeds the Overspeed setting (1170) parameter in the Limits Menu (1120). An improperly set-up or mistuned drive usually causes this fault. \\
Action \\
Verify that the motor and drive nameplate settings match the corresponding parameters in Motor Parameter Menu (1000) and Drive Parameter Menu (2000).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline Output Ground Fault & A & Fixed & \begin{tabular}{l}
Cause \\
This fault is caused (due to an output ground fault condition) when the estimated ground voltage exceeds the Ground Fault Limit parameter (1245) in the Motor Limits Menu. \\
Action \\
1. Verify proper symmetry of voltages on test points VMA/TP5, VMB/TP6, and VMC/TP7. If voltages are not a problem, check the divider resistors in the Motor Sense Unit or replace the System Interface Board. \\
2. Disconnect the motor from the VFD. Use a Meger to verify motor and cable insulation.
\end{tabular} \\
\hline Encoder loss & Menu & Menu & \begin{tabular}{l}
Cause \\
The software has detected an encoder signal loss due to a faulty encoder or faulty encoder interface. \\
Action \\
1. Verify that the information in the Encoder menu (1280) is correct for the encoder being used. \\
2. Run the drive in Open Loop Vector Control mode (select OLVC in the Control loop type, ID 2050) of the Drive parameter menu (2000). \\
3. Go to Meter Menu (8); select Display Parameters Menu (8000) and set one of the display parameters (8001-8004) to ERPM or \%ESP and observe if ERPM follows motor speed.
\end{tabular} \\
\hline Mtr Therm Over Load 1 & A & SOP & \begin{tabular}{l}
Cause \\
Motor temperature (or motor current, depending on choice of overload method) above Overload pending setting. \\
Action \\
1. Verify if the Overload pending parameter (1139) is set correctly. \\
2. Check load conditions and, if applicable, verify that the speed derate curve (submenu 1151) matches the load conditions.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline Mtr Therm Over Load 2 & A & SOP & \begin{tabular}{l}
Cause \\
Motor temperature (or motor current, depending on choice of overload method) above Overload setting. \\
Action \\
Check if the Overload parameter (1140) is set correctly. Refer to Mtr Therm Over Load 1 section above.
\end{tabular} \\
\hline Mtr Therm Over Ld Fault & F & Fixed & \begin{tabular}{l}
Cause \\
Motor temperature (or motor current, depending on choice of overload method) has exceeded the Overload setting for the time specified by the Overload timeout parameter. \\
Action \\
Check if the Overload timeout parameter (1150) is set correctly. Refer to Mtr Therm Over Load 1 section above.
\end{tabular} \\
\hline Motor Over Volt Alarm & A & SOP & \begin{tabular}{l}
Cause \\
If motor voltage exceeds \(90 \%\) of the Motor over voltage limit in the Motor limit menu. \\
Action \\
Check menu settings for correct motor rating, and limit setting.
\end{tabular} \\
\hline Motor Over Volt Fault & F & SOP & \begin{tabular}{l}
Cause \\
The measured motor voltage exceeds the threshold set by the Motor trip volts (1160) parameter in the Limits Menu (1120). An improperly set-up or tuned drive usually causes this fault. This could include the secondary tap setting. A high line condition can also cause this. \\
Actions \\
1. Verify that the motor and drive nameplate settings match the corresponding parameters in Motor Parameter Menu (1000) and Drive Parameter Menu (2000). \\
2. Verify that the signals on the VMA/TP5, VMB/ TP6, and VMC/TP7 test points on the System Interface Board are operating properly with in \(+/-6 \mathrm{~V}\). If an incorrect voltage is noted, check the voltage divider in the Motor Sense Unit or replace the System Interface Board. \\
3. Also check the tap settings on the transformer. The tap setting may have to be changed to accommodate a high input line.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline IOC & F & Fixed & \begin{tabular}{l}
Cause \\
Drive instantaneous over-current (IOC) faults usually result when the signal from test point IOC on the System Interface Board exceeds the level set by the Drive IOC setpoint (7110) parameter in the Input Protect Menu (7000). \\
Actions \\
1. Verify that the motor current rating (1050) is below the Drive IOC setpoint (7110) in the Drive Protect Menu (7). \\
2. Check if the output current scaler (3440) is set to a number that is close to 1.0 . \\
3. Verify that the signals on test points IMB and IMC on the System Interface Board match the percentage of full-scale signals. \\
4. Perform the tests listed in Section 6.4.2 to verify the operation of hall effect transducers.
\end{tabular} \\
\hline Under Load Alarm & A & SOP & \begin{tabular}{l}
Cause \\
The torque producing current of the drive has dropped below a preset value set by the user. \\
Actions \\
This alarm usually indicates a loss of load condition. If this not the case verify the settings in I underload menu (1182) within the Limits menu (1120).
\end{tabular} \\
\hline Under Load Fault & F & Menu & \begin{tabular}{l}
Cause \\
This fault usually indicates a loss of load condition when the torque producing current of the drive has dropped below a preset value set by the user for the specified amount of time. \\
Actions \\
If this is not an unexpected condition then verify the setting of the I underload (1182) and the Under Load Timeout (1186) parameters within the Limits Menu (1120).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|l|}
\hline \multicolumn{1}{|c|}{ Fault Display } & Type & Enable & \multicolumn{1}{c|}{ Potential Causes and Corrective Actions } \\
Output Phase Imbal & A & Fixed & \begin{tabular}{l} 
Cause \\
The software has detected an imbalance in the \\
motor currents. \\
Action \\
Verify proper symmetry of the motor currents on \\
test points VMA/TP5, VMB/TP6, VMC/TP7, IMA/TP21, \\
IMB/TP22, and IMC/TP23. If the currents are \\
unsymmetrical, verify if the burden resistors for the \\
Hall Effect Transducers are connected correctly on \\
the Signal Conditioning board.
\end{tabular} \\
\hline Output Phase Open & & A & SOP \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|l|}
\hline \multicolumn{1}{|c|}{ Fault Display } & Type & Enable & \multicolumn{1}{c|}{ Potential Causes and Corrective Actions } \\
\hline Minimum Speed Trip & F/A & SOP & \begin{tabular}{l} 
Cause \\
Motor speed is below the Zero speed setting \\
(2200). This is either due to a motor stall condition \\
(if speed demand is higher than the Zero speed \\
setting) or a low speed demand condition (where \\
speed demand is lower than the Zero speed setting). \\
Action \\
Increase motor torque limit (ID 1190, 1210 or \\
1230) if it is a stall condition or adjust the Zero \\
speed setting to avoid the desired low speed \\
operating region.
\end{tabular} \\
\hline Loss of Field Current & F/A & SOP & \begin{tabular}{l} 
Cause \\
Chis occurs only with synchronous motor control \\
due to field exciter failure or loss of power to the \\
exciter. \\
Action \\
Check if the power supply to the exciter is \\
energized To determine if the field exciter is \\
operating correctly, reduce Flux demand (3150) to \\
0.40, increase Accel time 1 (2260) to a larger value \\
and run the motor with 5\% speed demand. If the \\
drive magnetizing current reference (Idsref) does \\
not go to zero, then the field exciter is not working \\
(or is not adjusted) properly.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline Failed to magnetize & F/A & SOP & \begin{tabular}{l}
Cause \\
This occurs only with induction motors due to high magnetizing current (or poor power factor). The trip occurs when \(\mathrm{I}_{\mathrm{ds}}\) (or magnetizing current) is greater than \(80 \%\) of rated current for a duration greater than 5 times the flux Ramp Rate parameter setting. With induction motors, this trip should normally occur only when starting, either due to incorrect stator resistance (ID 1080) and cable resistance (ID 2940) settings (settings that are higher than actual value are not good) or due to the incorrect setup of of the Spinning Load. Once the motor is magnetized and running, such an event is unlikely to occur. \\
Action \\
1. Increase the flux ramp time to give more time for magnetizing current to settle down at startup. \\
2. Verify if the motor stator resistance parameter (1060) is not set too high for the application; reduce it if continuous operation at very low speed is not desired. Check that Spinning Load is set correctly. \\
3. Review procedure for adjusting the Spinning Load routine if necessary.
\end{tabular} \\
\hline Back EMF Timeout & F & Fixed & The software timed out waiting for the Motor Back EMF Voltage to decay to a safe level for bypass or turn-on (drive enable). The safe voltage is the amount of voltage that the drive can support. The back EMF is the motor voltage when the drive is not active. If an induction machine has a long time constant, or if a synchronous machine has not disabled its field, and in either case the machine is spinning, the timeout threshold will cause a fault. This is also possible for parallel drives on the motor. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline \multicolumn{4}{|c|}{System Related} \\
\hline Excessive Drive Losses & SOP & Fixed & \begin{tabular}{l}
Cause \\
Estimated drive losses are too high, due to (1) internal problem in the cells, or (2) scaling error in voltage and current measurement on input and output side. \\
Action \\
1. Remove medium voltage and visually inspect all the cells and their connections to the transformer secondary. Contact Siemens for support. \\
2. With the drive operating above a \(25 \%\) power rating, verify if estimated drive efficiency is above \(95 \%\). If this is not the case, then voltage and current scaling needs to be checked.
\end{tabular} \\
\hline Carrier Frq Set Too Low & A & Fixed & \begin{tabular}{l}
Cause \\
The software detected a menu entry for Carrier Frequency Menu (3580) was below the lowest possible setting based on the system information. \\
Action \\
1. Change the value entered in Carrier Frequency Menu (3580). \\
2. Check the value of the Installed Cells/phase Menu (2530). \\
3. Consult factory.
\end{tabular} \\
\hline System Program & F & Fixed & \begin{tabular}{l}
Cause \\
The software detected an error in the system program file. \\
Actions \\
1. Reload system program. \\
2. Consult factory.
\end{tabular} \\
\hline Menu Initialization & F & Fixed & \begin{tabular}{l}
Cause \\
The software detected an error in one of the files stored on the CPU board Compact FLASH disk. \\
Action \\
Consult factory.
\end{tabular} \\
\hline Config File Write Alarm & A & Fixed & \begin{tabular}{l}
Cause \\
Occurs if system not able to write a master or slave config file. \\
Action \\
Consult factory.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline Config File Read Error & F & Fixed & \begin{tabular}{l}
Cause \\
Occurs if system not able to read data from a master of slave config file. \\
Action \\
Consult factory.
\end{tabular} \\
\hline CPU Temperature Alarm & A & Fixed & \begin{tabular}{l}
Cause \\
CPU Temperature is \(>70 \mathrm{C}\). \\
Action \\
1. Check air flow and chassis fans. \\
2. Check CPU heatsink.
\end{tabular} \\
\hline CPU Temperature Fault & F & Fixed & \begin{tabular}{l}
Cause \\
CPU Temperature is \(>85 \mathrm{C}\). \\
Action \\
1. Check air flow and chassis fans. \\
2. Check CPU heatsink.
\end{tabular} \\
\hline A/D Hardware Alarm & A & Fixed & \begin{tabular}{l}
Cause \\
A/D board indicated a hardware error. \\
Action \\
Replace A/D board.
\end{tabular} \\
\hline A/D Hardware Fault & F & Fixed & \begin{tabular}{l}
Cause \\
A/D board hardware error persists for more than 10 samples. \\
Action \\
Replace A/D board.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{Modulator related} \\
\hline Modulator Configuration & F & Fixed & \begin{tabular}{l}
Cause \\
The software detected a problem when attempting to initialize the Modulator. \\
Action \\
Replace Modulator board.
\end{tabular} \\
\hline Modulator Board Fault & F & Fixed & \begin{tabular}{l}
Cause \\
The software detected a Modulator board fault. \\
Action \\
Replace Modulator board.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|l|}
\hline \multicolumn{1}{|c|}{ Fault Display } & Type & Enable & \multicolumn{1}{c|}{ Potential Causes and Corrective Actions } \\
\hline Cell Fault/Modulator & F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline \multicolumn{4}{|c|}{Low Voltage Power Supply Related} \\
\hline Hall Effect Pwr Supply & F & Fixed & \begin{tabular}{l}
Cause \\
One or both of the supplies that power the Hall Effects on the drive output has failed. \\
Actions \\
1. Verify \(+/-15 \mathrm{~V}\) on the Hall Effect Power supplies. \\
2. Verify \(+/-15 \mathrm{~V}\) on the System Interface Board Connector P4 pins 31 and 32 . If \(+/-15 \mathrm{~V}\) is not present, check wiring from Hall Effect Power Supplies to the System Interface Board. If these signals are incorrect, replace the System Interface Board.
\end{tabular} \\
\hline Power Supply & F & Fixed & \begin{tabular}{l}
Cause \\
The chassis power supply has indicated a loss of power. This can either be due to loss of AC or a failed power supply. \\
Action \\
Verify control power outputs.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{System I/O Related} \\
\hline Loss of Signal (1-24) & A & \[
\begin{aligned}
& \text { Menu/ } \\
& \text { SOP }
\end{aligned}
\] & \begin{tabular}{l}
Cause \\
The software detected a Loss of Signal on one of the \(0-20 \mathrm{~mA}\) inputs (1 through 24). This is usually a result of an open circuit or defective driver on the current loop. \\
Actions \\
1. Check connection to the Wago \(0-20 \mathrm{~mA}\) input corresponding to the Loss of signal message and associated wiring. \\
2. Replace affected Wago module. Consult factory.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline Wago Communication Alarm & A & Fixed & \begin{tabular}{l}
Cause \\
The software was unable to establish or maintain communication with the Wago I/O system. The fault is triggered when the lack of communication exceeds timeout. \\
Actions \\
1. Verify that the cable between the CPU board and Wago Communication alarm module is connected properly. \\
2. Replace Wago Communication Alarm module. \\
3. Replace the CPU board. \\
Consult factory.
\end{tabular} \\
\hline Wago Communication Fault & F & SOP & \begin{tabular}{l}
Cause \\
The software was unable to establish or maintain communication with the Wago I/O system. The alarm is triggered when the lack of communication exceeds timeout. \\
Actions \\
1. Verify that the cable between the CPU board and Wago Communication alarm module is connected properly. \\
2. Replace Wago Communication Alarm module. \\
3. Replace the CPU board. \\
4. Consult factory.
\end{tabular} \\
\hline Wago configuration & F & Fixed & \begin{tabular}{l}
Cause \\
Number of Wago modules does not equal number set in menu. \\
Action \\
1. Ensure correct number of Wago modules are set in the menu. \\
2. Check Wago modules and placement on the DIN rail.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{External Serial Communications Related} \\
\hline Tool communication & SOP & SOP & \begin{tabular}{l}
Cause \\
Tool is not communicating to drive \\
Action \\
Check PC connecting cable, CPU BIOS settings, and correct TCP/IP address agrees in Tool and Drive.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline Keypad Communication & SOP & SOP & \begin{tabular}{l}
Cause \\
Drive is not communicating to keypad. \\
Action \\
1. Check keypad cable, connections. \\
2. Check for CPU crash.
\end{tabular} \\
\hline Network 1 Communication & SOP & SOP & \begin{tabular}{l}
Cause \\
The drive is not communicating with the active external network. \\
Actions \\
1. Verify all network connections are secure. \\
2. Verify that the UCS board \#1 and Communications board are properly seated. \\
3. If the source of the problem is not found, then replace the UCS board \#1 and then the Communications board.
\end{tabular} \\
\hline Network 2 Communication & SOP & SOP & \begin{tabular}{l}
Cause \\
The drive is not communicating with the active external network 2 \\
Actions \\
1. Verify all network connections are secure. \\
2. Verify that the UCS board \#2 and Communications board are properly seated. \\
3. If the source of the problem is not found, then replace the UCS board \#2 and then the Communications board.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{Synch Transfer Related} \\
\hline Up Transfer Failed & A & SOP & \begin{tabular}{l}
Cause \\
Time-out has occurred from request to up synch transfer complete. \\
Action \\
1. Check input line for voltage and distortion. \\
2. Check status of InsufficientOutputVolts_O flag or the output voltage versus safe voltage to see if transfer is prohibited. \\
3. Increase menu setting, or set to zero to disable time out.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline Down Transfer Failed & A & SOP & \begin{tabular}{l}
Cause \\
Time-out has occurred from request to down synch transfer. \\
Action \\
1. Check feedback voltage waveform. \\
2. Check status of InsufficientOutputVolts_O flag or the output voltage versus safe voltage to see if transfer is prohibited. \\
3. Increase menu setting, or set to zero to disable time out.
\end{tabular} \\
\hline Phase Sequence & F/A & SOP & \begin{tabular}{l}
Cause \\
Sign of input frequency and operating frequency are opposite. This will prohibit a transfer but is not fatal for normal operation. This fault needs to be enabled via the system program flags for transfer operations.. \\
Action \\
Swap one pair of motor leads and change sign of speed command if needed.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{User Defined Faults} \\
\hline User Defined Fault (64) & F/A & SOP & \begin{tabular}{l}
Cause \\
The UserFault_1 through UserFault_64 flags in the system program have been set to the value "true". Refer to Chapter 8: System \\
Programming. These can be set up as either faults or alarms, and the message can be defined via the SOP. \\
Action \\
Refer to the section on User Faults (Section 7.5).
\end{tabular} \\
\hline \multicolumn{4}{|c|}{Cooling Related} \\
\hline One Blower Not Avail & A & SOP & \begin{tabular}{l}
Cause \\
Drive initiated alarm set when the OneBlowerLost_O SOP flag is set true and the elarm is enabled by setting OneBlowerLost_EN_O true. On an air cooled drive, when one of either of the cell blowers or transformer blowers is not functioning, this is triggered via the SOP. This is part of the Standard SOP for air cooled drives. \\
Action \\
1. Check physical input connected to SOP flag. \\
2. Check for faulty blowers or obstruction.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|l|}
\hline \multicolumn{1}{|c|}{ Fault Display } & Type & Enable & \multicolumn{1}{c|}{ Potential Causes and Corrective Actions } \\
All Blowers Not Avail & & & & \begin{tabular}{l} 
FOP \\
Cause \\
Drive initiated alarm or fault when \\
AllBlowerLost_O SOP flag is set true and the \\
alarm/fault is enabled by setting the \\
AllBlowerLostEn_O flag true. This defaults to a \\
fault with no way to change to a warning with this \\
release. If an alarm is desired, then the flag \\
AllBlowersLostWn_O must also be set true. This is \\
triggered by the SOP when 2 of 3 cell banks or both \\
transformer banks of blowers is not functioning. \\
This is primarily used as a trip alarm preceding an \\
over temperature trip, used on air cooled drives as \\
part of the Standard SOP. \\
Action
\end{tabular} \\
\hline Clogged Filters & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline Both Pumps Not Available & F/A & SOP & \begin{tabular}{l}
Cause \\
Drive initiated fault/alarm when the AllPumpsFailure_O SOP flag is set true and the AllPumpsFailureEn_O flag is true to enable it. The default is a fault, but it can be changed to an alarm by setting the AllPumpsFailureWn_O flag true. This is used in the Standard SOP for liquid cooled drives as a trip alarm. \\
Action \\
1. Check physical input connected to SOP flag. \\
2. Check for faulty pumps tripped CBs, or obstruction.
\end{tabular} \\
\hline Coolant Cond > 3 uS & A & SOP & \begin{tabular}{l}
Cause \\
Drive initiated alarm when the CoolantConductivityAlarm_O SOP flag is set true and the CoolantConductivityAlarmEn_O flag is true to enable it. The default is an alarm and it cannot be changed. This is used in the Standard SOP for liquid cooled drives as an alarm. \\
Action \\
1. Check physical input connected to SOP flag. \\
2. Check conductivity level. \\
3. Check ionizer.
\end{tabular} \\
\hline Coolant Cond > 5 uS & F/A & SOP & \begin{tabular}{l}
Cause \\
Drive initiated fault/alarm when the CoolantConductivityAlarm_O SOP flag is set true and the CoolantConductivityAlarmEn_O flag is true to enable it. The default is a fault, but it can be changed to an alarm by setting the CoolantConductivityAlarmWn_O flag true. This is used in the Standard SOP for liquid cooled drives as a trip alarm. \\
Action \\
1. Check physical input connected to SOP flag. \\
2. Check conductivity level. \\
3. Check ionizer.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline Coolant Inlet Temp \(>60^{\circ} \mathrm{C}\) & F/A & SOP & \begin{tabular}{l}
Cause \\
Drive initiated alarm when the InletWaterTempHigh_O SOP flag is set true and the InletWaterTempHighEn_O flag is true to enable it. The default is an alarm but it can be changed to a fault by setting the InletWaterTempHighWn_O flag to False (true is an alarm). This is used in the Standard SOP for liquid cooled drives as an alarm. \\
Action \\
1. Check physical input connected to SOP flag. \\
2. Check coolant temperature. \\
3. Check for flow.
\end{tabular} \\
\hline Coolant Inlet Temp \(<22^{\circ} \mathrm{C}\) & F/A & SOP & \begin{tabular}{l}
Cause \\
Drive initiated alarm when the InletWaterTempLow_O SOP flag is set true and the InletWaterTempLowEn_O flag is true to enable it. The default is an alarm but it can be changed to a fault by setting the InletWaterTempLowWn_O flag to False (true is an alarm). This is used in the Standard SOP for liquid cooled drives as an alarm. \\
Action \\
1. Check physical input connected to SOP flag. \\
2. Check coolant temperature. \\
3. Check for flow.
\end{tabular} \\
\hline Cell Water Temp High & F/A & SOP & \begin{tabular}{l}
Cause \\
Drive initiated alarm when the CellWaterTempHigh_O SOP flag is set true and the CellWaterTempHighEn_O flag is true to enable it. The default is an alarm but it can be changed to a fault by setting the CellWaterTempHighWn_O flag to False (true is an alarm). This is used in the Standard SOP for liquid cooled drives as an alarm. \\
Action \\
1. Check physical input connected to SOP flag. \\
2. Check coolant temperature. \\
3. Check for flow.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|l|}
\hline \multicolumn{1}{|c|}{ Fault Display } & Type & Enable & \multicolumn{1}{|c|}{ Potential Causes and Corrective Actions } \\
\hline Coolant Tank Level < 30 inches & A & SOP & \begin{tabular}{l} 
Cause \\
Drive initiated alarm when the \\
LowWaterLevelAlarm_O SOP flag is set true and \\
the LowWaterLevelAlarmEn_O flag is true to \\
enable it. The default is an alarm and it cannot be \\
changed. This is used in the Standard SOP for \\
liquid cooled drives as an alarm. \\
Action
\end{tabular} \\
\hline Coolant Tank Level < 20 inches & & & \\
& & & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Fault Display } & Type & Enable & \multicolumn{1}{c|}{ Potential Causes and Corrective Actions } \\
Low Coolant Flow \(<20 \%\) & F/A & SOP & \begin{tabular}{l} 
Cause \\
Drive initiated fault/alarm when the \\
LowWaterFlowFault_O SOP flag is set true and the \\
LowWaterFlowFaultEn_O flag is true to enable it. \\
The default is a fault, but it can be changed to an \\
alarm by setting the LowWaterFlowFaultWn_O \\
flag true. This is used in the Standard SOP for \\
liquid cooled drives as a trip alarm. \\
Action
\end{tabular} \\
\hline Loss One HEX Fan & & A & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|l|}
\hline \multicolumn{1}{|c|}{ Fault Display } & Type & Enable & \multicolumn{1}{c|}{ Potential Causes and Corrective Actions } \\
\hline All HEX Fans On & & A & SOP & \begin{tabular}{l} 
Cause \\
Irive initiated alarm when the AllHexFansOn_O \\
SOP flag is set true and the AllHexFansOnEn_O \\
flag is true to enable it. The default is an alarm and \\
it cannot be changed. This is used in the Standard \\
SOP for liquid cooled drives as an alarm. \\
Action
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline Xformer OT Fault & F/A & SOP & \begin{tabular}{l}
Cause \\
Drive initiated fault/alarm when the XformerOverTempFault_O SOP flag is set true and the XformerOverTempFaultEn_O flag is true to enable it. The default is a fault, but it can be changed to an alarm by setting the XformerOverTempFaultWn_O flag true. This is used in the Standard SOP for liquid cooled drives as a trip alarm. \\
Action \\
1. Check physical input connected to SOP flag. \\
2. Check sensors. \\
3. Check blowers if air cooled - flow and water temperature if liquid cooled.
\end{tabular} \\
\hline Xfrm Cool OT Trip Alarm & A & SOP & \begin{tabular}{l}
Cause \\
Drive initiated alarm/fault when the XformerWaterTempHigh_O SOP flag is set true and the XformerWaterTempHighEn_O flag is true to enable it. The default is an alarm and it cannot be changed. This is used in the Standard SOP for liquid cooled drive as an alarm. \\
Action \\
1. Check physical input connected to SOP flag. \\
2. Check flow and water temperature.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{Input Reactor Temperature Related} \\
\hline Reactor OT Alarm & A & SOP & \begin{tabular}{l}
Cause \\
Drive initiated alarm when the \\
ReactorTemperature1_O SOP flag is set true and the ReactorTemperature1En_O flag is true to enable it. The default is an alarm and it cannot be changed. This is used in the Standard SOP for liquid cooled drives as an alarm. \\
Action \\
1. Check output current waveform for sinusoidal shape. \\
2. Check sensor. \\
3. Check physical input connected to SOP flag.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline Reactor OT Trip Alarm & A & SOP & \begin{tabular}{l}
Cause \\
Drive initiated alarm when the \\
ReactorTemperature2_O SOP flag is set true and the ReactorTemperature2En_O flag is true to enable it. The default is an alarm and it cannot be changed. This is used in the Standard SOP for liquid cooled drives as an alarm. \\
Action \\
1. Check output current waveform for sinusoidal shape. \\
2. Check sensor. \\
3. Check physical input connected to SOP flag.
\end{tabular} \\
\hline Reactor OT Fault & F/A & SOP & \begin{tabular}{l}
Cause \\
Drive initiated fault/alarm when the ReactorTemperatureFault_O SOP flag is set true and the ReactorTemperatureFaultEn_O flag is true to enable it. The default is a fault, but it can be changed to an alarm by setting the ReactorTemperatureFaultWn_O flag true. This is used in the Standard SOP for liquid cooled drives as a trip alarm. \\
Action \\
Verify the Fiber Optic connection bw
\end{tabular} \\
\hline \multicolumn{4}{|c|}{Cell Bypass Related} \\
\hline Cell Bypass Com Fail & F & Fixed & \begin{tabular}{l}
Cause \\
The Master Control system is not communicating with the MV Bypass board.. \\
Action \\
1. Verify the Fiber Optic connection between the Modulator board and MV Bypass board is intact. \\
2. Replace Modulator board \\
3. Replace MV Bypass board
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Corrective Actions \\
\hline Cell Bypass Acknowledge & F & Fixed & \begin{tabular}{l}
Cause \\
The Master Control issued a command to bypass a cell, but the MV bypass board did not return an acknowledgement. \\
Action \\
1. Verify that the bypass contactor is working properly. \\
2. Check wiring between MV bypass board an contactor. \\
3. Replace MV bypass board or Contactor.
\end{tabular} \\
\hline Cell Bypass Link & F & Fixed & \begin{tabular}{l}
Cause \\
The Master Control system is not communicating with the MV Bypass board-i.e., the MV Bypass board is either not receiving commands, or is getting parity errors in the messages from the modulator boards. \\
Action \\
Refer to "Cell Bypass COM Fail" above.
\end{tabular} \\
\hline Cell Bypass COM Alarm & A & Fixed & \begin{tabular}{l}
Cause \\
The Master Control system is not communicating with the MV Bypass board, but the bypass system is not in use. \\
Action \\
Refer to "Cell Bypass COM Fail" above.
\end{tabular} \\
\hline Cell Bypass Link Alarm & A & Fixed & \begin{tabular}{l}
Cause \\
The Modulator board is not communicating with the MV Bypass board, but the bypass system is not in use. \\
Action \\
Refer to "Cell Bypass COM Fail" above.
\end{tabular} \\
\hline Cell Bypass Fault & F & Fixed & \begin{tabular}{l}
Cause \\
The cell failed to go into bypass when commanded to do so. \\
Action
\end{tabular} \\
\hline xx Bypass Verify Failed xx=cell that is faulted & F & Fixed & \begin{tabular}{l}
Cause \\
Bypass contactor closure verify failed \\
Action \\
Check bypass system, contactor MV Bypass board, and Modulator board.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|l|}
\hline \multicolumn{1}{|c|}{ Fault Display } & Type & Enable & \multicolumn{1}{c|}{ Potential Causes and Corrective Actions } \\
\hline \begin{tabular}{l} 
xx Bypass Ack Failed xx=cell that is \\
faulted
\end{tabular} & F & Fixed & \begin{tabular}{l} 
Cause \\
Bypass contactor closure acknowledge failed \\
Action \\
Check bypass system, contactor MV Bypass board, \\
and Modulator board.
\end{tabular} \\
\hline \begin{tabular}{l} 
xx Bypass Avail Warning \(x x=\) cell that \\
is faulted
\end{tabular} & A & Fixed & \begin{tabular}{l} 
Cause \\
Cell level bypass available alarm. Only if bypass is \\
not used \\
Action \\
Check bypass system, fiber optic cable, MV \\
Bypass board, and supply.
\end{tabular} \\
\hline Cell Count Mismatch & & F Cell Related
\end{tabular}


Figure 7-1. Connections and Test Points on the System Interface Board

\subsection*{7.4 Cell Faults/Alarms}

Cell faults/alarms are logged by the Microprocessor Board following a power cell fault indication. These faults are available for inspection through the keypad display or can be uploaded to a PC via the serial port. All active cell faults/Alarms are displayed on the keypad display. Use the arrow keys to scroll up and down through the faults. The Alarm/Fault log upload function (Parameter ID 6230) in the Alarm/Fault Log Menu (6210) can be used to upload the log to a PC for analysis and for sending to the appropriate Siemens or plant personnel.

All cell faults are generated by circuitry located on the Cell Control Board (CCB) of each power cell and are received by the Microprocessor Board through circuitry on the Digital Modulator Board. Table 7-4 can be used as a quick
troubleshooting guide to locate the cause of the fault condition. This table lists faults that may occur in multiplecabinet and GEN III styles of Perfect Harmony drives unless otherwise noted. All cell faults are initiated by the Cell Control Board or CCB (see Figure 7-2) located in each power cell.


Figure 7-2. Connectors and Diagnostic Components of a Model 430 Cell Control Board

\section*{Note:}
- Model 430 Cell Control Boards are only used in the multiple-cabinet versions of Perfect Harmony drives (not GEN III). Cell Control Boards for GEN III drives use a model N15 board which is different from the board depicted in 7-2.
- If a spare Cell Control Board is ordered for a drive that contains a model 430 board, a model N15 board will be shipped with an adapter harness for proper connection.

Table 7-4. Cell Faults
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Fault Display } & \multicolumn{1}{c|}{ Type } & \multicolumn{1}{c|}{ Enable } & \multicolumn{1}{c|}{ Potential Causes and Possible Corrective Actions } \\
\hline Power Fuse Blown & F & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline xx Cap Share & F & & Fixed \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Cell DC Bus Low & A & Fixed & \begin{tabular}{l} 
Cause \\
Cell DC bus below alarm level. This is set by the cell \\
control board and comes back from the cell as /Vavail_ok \\
flag. \\
Action \\
Check for single phase input, low input line conditions, \\
blown input fuses. Check for a cell control board failure.
\end{tabular} \\
\hline xx DC Bus Over Volt & F & Fixed & \begin{tabular}{l} 
Cause \\
The bus voltage in a cell has been detected over 800 \\
VDC (for 460VAC cells) or 1200VDC (for 690VAC \\
cells) (i.e., the signal on the vDC test point is >8.0 VDC). \\
This is usually caused by a regeneration limit that is too \\
high, or improper tuning of the drive.
\end{tabular} \\
\hline
\end{tabular}

\section*{Action}

Refer to Section 7.4.3.
\begin{tabular}{|l|l|l|l}
\hline xx DC Bus Under Volt & F & Fixed & Cause \\
& & The DC bus voltage detected in a cell is abnormally low
\end{tabular} (the signal on test point VDC on the Cell Control Board is \(<3.5 \mathrm{VDC}\) ). Refer to 7-2. If this symptom is reported by more than one cell, it is usually caused by a low primary voltage on the main transformer \(\mathbf{T 1}\).

\section*{Action}
1. Check input line voltage.
2. Check for faults on other cells.

Note: Fault class designations in the previous table are shown in parentheses and are explained in Figure 7-2.

The following cell faults will occur only during the cell diagnostic mode (immediately following initialization or reset). All IGBTs in each cell are sequentially gated and checked for proper operation (blocking/not blocking). See Table 7-5.

Table 7-5. Diagnostic Cell Faults
\begin{tabular}{|c|c|c|c|}
\hline Fault Display & Type & Enable & Potential Causes and Possible Corrective Actions \\
\hline xx Blocking Qn
\[
(n=1,2,3,4)
\] & F & Fixed & \begin{tabular}{l}
Cause \\
During cell diagnostic mode, the Perfect Harmony checks the voltage across each IGBT under "gate off" conditions. A blocking failure is reported if insufficient voltage is detected, i.e., voltages on test points VT1 and VT2 on the Cell Control Board (see Figure 7-2) are \(< \pm 0.5\) VDC when power transistors Q1-Q4 are gated. This may indicate a damaged IGBT, or a malfunctioning gate driver board or cell control board. \\
Action \\
Refer to Section 7.4.1.
\end{tabular} \\
\hline xx Switching Qn
\[
(n=1,2,3,4)
\] & F & Fixed & \begin{tabular}{l}
Cause \\
During cell diagnostic mode, the Perfect Harmony turns each IGBT on one-by-one, and verifies the collapse of voltage across the devices. A switching failure is reported if a device is supporting voltage while it is gated on (i.e., voltages on test points VT1 and VT2 on the Cell Control Board are > \(\pm 0.5\) VDC when power transistors Q1-Q4 are gated). Usually, this fault is caused by a malfunctioning gate driver board, IGBT, or cell control board. \\
Action \\
Refer to Section 7.4.1.
\end{tabular} \\
\hline xx Blocking Timeout \(x x=\) cell that is faulted & F & Fixed & \begin{tabular}{l}
Cause \\
Blocking Test timeout. A cell failed the blocking test. \\
Action \\
Check cell, or back EMF too high
\end{tabular} \\
\hline xx Switching Timeout \(x x=\) cell that is faulted & F & Fixed & \begin{tabular}{l}
Cause \\
Switching Test timeout. A device failed the switching test after successfully passing blocking. \\
Action \\
Check cell, or back EMF too high to run the test.
\end{tabular} \\
\hline
\end{tabular}

Note: Fault class designations in the previous table are shown in parentheses and are explained in Figure 7-2.


Figure 7-3. Typical Power Cell with Optional Mechanical Bypass


Figure 7-4. Typical Power Cell Schematic (GEN III Design)


Figure 7-5. Typical Fiber Optic Interface Boards Connection Diagram

\subsection*{7.4.1 Troubleshooting General Cell and Power Circuitry Faults}

The types of faults addressed in this section include the following:
- AC fuse(s) blown faults
- control power faults
- device out of saturation (OOS) faults
- capacitor sharing faults
- bypass failed faults
- VDC undervoltage faults
- blocking failure faults
- switching failure faults.

\section*{AC Fuse(s) Blown Faults}

These faults are caused by the blowing of the power fuses on the front end of the cell. Check the fuses and replace any that are blown-more than one could be out. Replace defective or damaged parts.

\section*{Control Power Faults}

This fault is caused when one or more of the control fuses that supply power to the CCB (Cell Control Board) are blown. This is rarely seen because the CCB is supplied by two circuits: the control power supply bridge and the DC link. If Control Power Fault is observed, the AC fuses might also be blown. Replace the defective or damaged parts.

\section*{Capacitor Sharing Faults}

The Cell Capacitor bank is made up of from two to three series capacitor banks. Circuitry on the CCB measures the voltage on each section and if the voltages are off by any amount, the fault is set. This indicates that under load the capacitors are not sharing load evenly and could be the result of faulty capacitors or loose connections. Fix or replace damaged or defective components.

\section*{Q1-Q4 OOS (Out Of Saturation) Faults}

Out of Saturation faults occur when the transitor junction is depleted of charge carriers resulting in a higher junction resistance. This in turn created a larger voltage drop and more losses in the transistor which can lead to premature failure. The cause of the OOS can be a defective gate driver board or a high di/dt transition on the device. The gate board is designed with circuitry to detect the larger voltage drop when the device should be on, shutting down the device in a fault condition. The fault can also be caused by a defective CCB or noise on the CCB. The exact cause needs to be determined before pulling a power cell out of service.

\section*{Bypass Failed Faults}

This fault results from the failure of a cell to go into bypass when faulted. The cause can be from a defective modulator board, bad link between the modulator and the MV bypass board, a defective MV bypass board or supply, or a defective bypass contactor. Find and replace the faulty components.

\section*{VDC Undervoltage Faults}

The undervoltage fault occurs when the voltage drops below the threshold of the detection circuitry on the CCB. This can be the result of a low MV level coupled with a high current drainage by the load, or simply as an excessive load that may give a momentary dip in current. It can also occur if one of the AC power fuses fails under load. Check the cell fuses and check the historic log for line dips. Correect the problem before continuing operation. A faulty CCB couldgive a false indication as well. Replace defective or faulty parts.

\section*{Blocking Failure Faults}

Blocking failures occur when IGBTs short due to perforation of their junction caused by excessive current (high current density). This may be a result of out of saturation conditions and fequent trips. The device will need to be replaced when the cell is removed for service. A defective gate driver may be the root cause. A faulty CCB or bad data from the CCB could give a faulty indication of this fault. Replace damaged or defective parts.

\section*{Switching Failure Faults}

Switching failures occur when a device opens or fails to turn on. It could also be caused by a defective gate drive or a damaged device. Also, a defective CCB or modulator board could give a faulty indication. Replace defective parts.

\subsection*{7.4.2 Troubleshooting Cell Over Temperature Faults}

\section*{Water Cooled}

Cell Over Temperature faults are typically caused by problems in the cooling system. Use the following steps to troubleshoot this type of fault:
1. Check the cooling system for proper flows and temperatures.
2. Inspect cell cooling paths for kinked hoses or major leaks.
3. Be sure all Cell Cabinet manifold valves are fully open.

\section*{Water Cooled}
1. Check that the blowers are working properly.
2. Check ambient temperature. Verify that all cabinet doors are shut to ensure proper air flow.
3. Check for faulty RTD on cell or bad cell control board.

\subsection*{7.4.3 Troubleshooting Overvoltage Faults}

This fault is usually caused by an improperly set-up or tuned drive. Use the following steps to troubleshoot this type of fault.
1. Verify that the motor and drive nameplate settings match parameters in the Motor Parameter Menu (1000) and Drive Parameter Menu (2000).
2. Reduce the regen torque limit parameters (1200, 1220, 1240) in the Limits Menu (1120).
3. Reduce Flux Regulator Proportional Gain (3110) and Flux Regulator Integral Gain (3120) parameters in the Flux Control Menu (3100).
4. If the failure is occurring in bypass mode, increase the Energy Saver Minimum Flux (3170) parameter in the Flux Control Menu (3100) to at least 50\%.
5. If the measured signals (from the previous section) seem to be correct, change the Modulator board.

\subsection*{7.4.4 Troubleshooting Cell Communications and Link Faults}

Faults of this variety can be the result of circuit failures on either the Digital Modulator Board or Cell Control Board (see Figure 7-2).
1. Check fiber optic links-replace if defective.
2. Check or replace cell control board.
3. Reseat fiber optic board and modulator board. Replace if necessary.
4. If the fault indication persists after replacing the Digital Modulator Board, call the factory.

\subsection*{7.4.5 Status Indicator Summaries for MV Mechanical Bypass Boards}

The MV Mechanical Bypass Board includes 3 LEDs that provide complete status of the MV board. These LEDs are summarized in the following table.

Table 7-6. LED Status Indicators for MV Mechanical Bypass Boards
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ LED Function } & \multicolumn{1}{c|}{ Color } & \multicolumn{1}{c|}{ Description } \\
\hline CommOK & green & Indicates active communication link established with Modulator board. \\
\hline Fault & red & Indicates that a bypass fault is active. \\
\hline PwrOK & green & \begin{tabular}{l} 
This LED is hardware controlled and indicates that the 5/15VDC supplies \\
are in tolerance.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{7.5 User Faults and Alarms}

Attention! User faults and alarms are closely tied to the system program configuration and will be designated here generically as faults although they can be programmed as alarms only. Refer to Chapter 8: System Programming for more information.

MUser faults occur due to conditions defined in the system program. User faults are displayed on the keypad in the form of user defined fault \(\# n\), where \(n\) equals 1 to 64 . The faults can also be displayed using user-defined text strings. Most user-defined faults are written to respond to various signals from the Wago I/O such as the analog input modules (through the use of comparators) as well as the digital input modules.

A copy of the system program is required to specifically define the origin of the fault. In the example program found in the Chapter 8: System Programming, the UserFault_1 flag is used to display the event of a blower fault. Note that the UserText1 string pointer is used to display the specific fault message. If this string pointer is not used, then the fault displayed would be "user defined fault \#1."

\subsection*{7.6 Unexpected Output Conditions}

In some cases, the Perfect Harmony VFD will revert to operating conditions which limit the amount of output current, output speed, or output voltage, but with no apparent fault condition displayed. The most usual causes of these conditions are described in the subsections that follow.
The keypad mode displays can sometimes be used to troubleshoot the cause of the output limitation. The modes are displayed in two lines at the left of the keypad display:


Figure 7-6. Keypad Mode Display

Tables 7-7 and 7-7 list the mode displays for the first and second lines, respectively. The first column of the tables lists the abbreviated message that is shown on the display of the drive. The second column lists descriptions of the operating modes. Further descriptions of possible limit situations and troubleshooting tips are listed in the subsections that follow.

Table 7-7. Summary of Operation Mode Displays, Line 1
\begin{tabular}{|l|l|}
\hline Display & \multicolumn{1}{c|}{ Description } \\
\hline FRST & Fault reset is active. \\
\hline TLIM & Menu torque limit is active. \\
\hline SPHS & A single phase on the MV input has occurred, drive limited. \\
\hline UVLT & The drive is experiencing an input under-voltage torque limit. \\
\hline T OL & The thermal overload is active, limiting drive torque. \\
\hline F WK & \begin{tabular}{l} 
Motor is operating in a field-weakened condition. Torque is limited but \\
current is not.
\end{tabular} \\
\hline C OL & A cell overload limit has been reached. \\
\hline NET1 & A torque limit from Network1 is active. \\
\hline NET2 & A torque limit from Network2 is active. \\
\hline ALIM & A torque limit from analog input is active. \\
\hline RLBK & \begin{tabular}{l} 
A torque limit is active and the speed demand input from the ramp has been \\
rolled back.
\end{tabular} \\
\hline RGEN & A motor is in regen mode-power dissipated in motor losses. \\
\hline F WK & The motor is operating in a field-power dissipated in motor losses. \\
\hline BRKG & The motor is in dual frequency braking mode. \\
\hline BYPS & At least one cell is in bypass. \\
\hline OLTM & Open loop test mode control algorithm used. \\
\hline MODE & Default for display line 1 if no other conditions exist. \\
\hline
\end{tabular}

Table 7-8. Summary of Operation Mode Displays, Line 2
\begin{tabular}{|l|l|}
\hline Display & \multicolumn{1}{c|}{ Description } \\
\hline NOMV & Medium voltage is off or there is no feedback. \\
\hline INH & The drive is in an inhibit mode (CR3 signal is missing). \\
\hline OFF & The drive is in the idle state—ready to run. \\
\hline MAGN & The motor is being magnetized-no torque output. \\
\hline SPIN & \begin{tabular}{l} 
The drive is performing a spinning load catch of the motor (startup with motor \\
turning).
\end{tabular} \\
\hline UXFR & The drive is performing a synchronous transfer of the motor to the line. \\
\hline DXFR & The drive is performing a synchronous transfer of the motor from the line. \\
\hline KYPD & The drive is in the run state with speed command from the keypad. \\
\hline TEST & The drive is in the speed test mode. \\
\hline LOS & The drive is running with the primary speed reference signal lost. \\
\hline NET1 & The drive is running with the speed signal from Network1. \\
\hline NET2 & The drive is running with the speed signal from Network2. \\
\hline AUTO & \begin{tabular}{l} 
The SOP "AutoDisplayMode_0" flag is set to true-speed reference is usually \\
from an analog signal selected by the SOP.
\end{tabular} \\
\hline HAND & \begin{tabular}{l} 
Default running mode—speed reference is selected by the SOP and \\
"AutoDisplayMode_0" is set to false.
\end{tabular} \\
\hline BRAK & The drive is in the stop state with dual frequency braking active. \\
\hline DECL & The drive is in the ramp stop state-speed is ramping down.. \\
\hline COAS & The drive is in the coast stop state-drive output is forced off. \\
\hline TUNE & The drive is in the auto tune state—auto tuning is active. \\
\hline
\end{tabular}

If the mode display shows RLBK (rollback mode), then the Perfect Harmony VFD is attempting to reduce the output speed due to a torque limit condition. Use the following steps to troubleshoot this type of fault:
1. Check the motor torque limit \((1190,1210,1230)\) parameters in the Limits Menu (1120).
2. Check all motor and drive nameplate ratings against parameters set in the Motor Parameter Menu (1000) and the Drive Parameter Menu (2000).

Note: Spare parts are available through our Customer Service Center by calling (724) 339-9501.

\subsection*{7.7 Drive Input Protection}

This section describes the routines used to detect abnormal conditions due to an internal drive failure and thus provide protection to the drive. The faults generated by the routines may be used with suitable interlocking, via a relay output and/or serial communication, to disconnect medium voltage from the drive input.

\subsection*{7.7.1 One Cycle Protection (or Excessive Input Reactive Current Detection)}

NXG Control utilizes input reactive current to determine whether a 'hard' fault on the secondary side of the transformer has occurred. For example, a short-circuit in one of the secondary windings will result in poor power factor on the high-voltage side of the transformer. A model of the transformer based on the power factor at rated load (typically 0.95 ) is implemented in the control processor. The drive input reactive current is continuously checked with the predicted value from the model. An alarm/trip is generated if the actual reactive current exceeds the
prediction by more than \(10 \%\). This check is avoided during the first 0.25 seconds after medium voltage power-up to avoid the inrush current from causing nuisance trips. See Section 6.7 for the theory and implementation of one cycle protection.

\subsection*{7.7.2 Excessive Drive Losses}

The Excessive Drive Loss protection guards against low-level fault currents. Drive losses are calculated as the difference between the measured input and output powers, and compared against reference losses. The reference losses are fixed at \(5.0 \%\) during "Idle" State and at \(7.0 \%\) during "Run" State. When the calculated losses exceed the reference losses, a drive trip is issued and this condition is annunciated as an "Excessive Drive Loss Alarm". In addition to this response, a digital output is set low in the System Operating Program (SOP), which in the default drive configuration is used to open the input disconnect device. The fixed reference limit is low enough to detect a fault in one set of transformer windings, and at the same time is large enough to avoid nuisance trips. When the drive is not supplying power to the motor, the losses in the system are primarily due to the transformer; the fixed limit is then lowered to increase the sensitivity of the protection routine.

In earlier software versions up to version 2.22, the protection was such that when the calculated losses exceeded the reference losses for more than one second, a trip was generated. For software versions 2.30 and higher, an inverse power loss function is implemented for Excessive Drive Loss protection. The plot in Figure 7-7 shows the time to trip as a function of calculated losses for Liquid and Air Cooled Drives. The plot contains two curves, one of which is used when the Drive is in "Idle" State (i.e. medium voltage is applied, but the motor is not being operated) while the second curve (slightly longer time to trip) is used during the "Run" State.


Figure 7-7. Excessive Drive Loss Protection

See Section 6.8 for the theory and implementation of excessive drive loss protection.

\subsection*{7.7.3 Transformer Over-Temperature and Loss of Cooling}

The temperatures of all the secondary windings are monitored using two (series-connected) sets of (normally closed) thermal switches. The first set opens when the temperature exceeds \(150^{\circ} \mathrm{F}\) (or \(65^{\circ} \mathrm{C}\) ) while and the second set opens above \(180^{\circ} \mathrm{F}\) (or \(82^{\circ} \mathrm{C}\) ). Two outputs, one output corresponding to each set, are read through the WAGO by the control logic. A Xfrmr Temperature Alarm 1 is issued when one or more \(150^{\circ} \mathrm{F}\) switches open, and a Xfrmr Temperature Alarm 2 is issued when one or more \(180^{\circ} \mathrm{F}\) switches open. When both these conditions exist for 30 seconds, a Xfrmr Over Temp Fault is generated that causes the drive to trip.

A vortex flow sensor monitors liquid coolant flow through the Liquid Cooled Drive. This sensor is connected to a display unit on the door of the Coolant Section, which displays flow rate, among other parameters, and outputs a \(4-20 \mathrm{~mA}\) signal to the WAGO. A software comparator, interacting with the control logic, monitors this 4-20 mA
signal. As a standard default, the alarm "Loss of Coolant Flow" is issued whenever the detected flow rate is below 40 percent of rated for 7 seconds.

The SOP program can be used to trip the input Medium Voltage Breaker when the conditions of Xfrmr Temperature Alarm 1, Xfrmr Temperature Alarm 2, and Loss of Coolant Flow exist simultaneously.

\subsection*{7.8 Flash Disk Corruption}

While copying files to the flash disk from Windows 2000, an incomplete write function can corrupt the flash disk contents without any visible warnings.

To avoid this corruption:
1. When the copy function is complete, right-click on the drive letter representing the flash disk.
2. Select the Eject option from the pop-up menu.

This forces Windows 2000 to flush the write cache and complete the write to the flash disk.
If you are going to disconnect the flash disk, wait a few seconds after selecting the Eject command before you disconnect the flash disk.

\subsection*{7.9 Portable Harmony Cell Tester}

Siemens can supply the necessary equipment to perform on-site cell testing at a customer's site. This test is essentially a duplication of the cell test done at the factory prior to installation into the Cell Cabinet. Since each cell operates independently within the Perfect Harmony system, it is possible to fully test the performance of each cell and thus verify the proper performance of the cell system without having to actually apply rated voltage to the motor.
The following equipment is required for on-site cell testing:
- Portable Harmony Cell Tester (PCT) (P/N 469939.00)
- IBM compatible computer (286 or greater with Centronics port and EGA capability)
- \(480 \mathrm{VAC}, 30 \mathrm{~A}\) variable auto transformer variable voltage source (STACO type 6020-3 or equivalent)
- Load reactor (refer to Table 7-9).
- DVM capable of measuring 500 VAC (Beckman 3030A or equal).
- Clamp on ammeter (Beckman CT-232 or equal).

Table 7-9. Load Reactor Information
\begin{tabular}{|c|c|l|}
\hline Cell Size & Reactor P/N & \multicolumn{1}{|c|}{ Reactor Configuration } \\
\hline NBH 70 & 161661.13 & 1 Unit with Series windings L=8mH \\
\hline NBH100 & 161661.13 & 1 Unit with Series windings L=8mH \\
\hline NBH 140 & 161661.13 & 1 Unit with Series windings L=8mH \\
\hline NBH 200 & 161661.13 & 1 Unit with single windings L=4mH \\
\hline NBH 260 & \(161661.13^{*}\) & 1 Unit with parallel windings L=2mH \\
\hline 3I & \(161661.13^{*}\) & 1 Unit with single winding L=4mH \\
\hline 360H & \(161661.13^{*}\) & 1 Unit with parallel windings L=2mH \\
\hline 4I (300H) & \(161661.13^{*}\) & 1 Unit with parallel windings L \(=2 \mathrm{mH}\) \\
\hline 4B & \(161661.13^{*}\) & 1 Unit with parallel windings L=2mH \\
\hline 5C & \(161661.13^{*}\) & 1 Unit with parallel windings L=2mH \\
\hline 5B & \(161661.13^{*}\) & 2 Units in parallel with series windings L=1mH \\
\hline
\end{tabular}
* Requires small cooling fans that are not included.

The portable cell tester (PCT) comes equipped with cables and software required to interface the PCT with the cell's optical communications port and the PC. The individual tests are menu driven with go and no go features.

The load reactors will allow each cell to attain full rated current with a minimal input service requirement to the variable voltage source.

The clamp-on ammeters and voltmeters will allow evaluation of the proper output voltages and cell currents during the test.

To test an installed cell:
1. If possible, switch off the source of the medium voltage power at the switchgear. Make sure the drive's medium voltage input switch is open, and lock it out. Rack out any output contactors in the system and lock them out. Take any other necessary steps to release the interlock key that allows access to the cell cabinet. Keep the transformer cabinet and power input cabinet closed and locked. Be sure the cooling system pump is operational.
2. Isolate the cell to be tested by removing the series links from the output at \(\mathbf{T 1}\) and \(\mathbf{T 2}\).
3. Unplug the fiber optic cable from this cell at the Fiber Optic Interface Board and plug it into the PCT. Connect the PCT to the parallel printer port of the computer. Turn on the power to the portable cell tester.
4. Disconnect the 3-phase input from the cell and connect the 3-phase output of the variable voltage source to the input of the cell. Connect the input of the variable voltage source to the load side of the 460 VAC control breaker (CB1).
5. Execute the 1CELL.EXE program on the computer. From the Main Menu (5) choose \#1. The preliminary test will go through a step-by-step go/no go procedure. This will verify that the communications are working and the transistors are blocking (not shorted).

Attention! At this point of the test, the functionality of the IGBTs has been determined. When prompted to use a resistor, the operator should cancel the program by following the instructions on the screen.
6. Turn off the variable voltage source. Connect the load reactor to output connections \(\mathbf{T} 1\) and \(\mathbf{T} 2\) of the cell. If the cell is operated externally from the cabinet, a separate water supply is required.
7. From the Main Menu [5] choose \#2 Burn-in Test Menu. Make sure that the pot on the tester is turned fully in the counter-clockwise direction. From the Burn-in Test Menu start the burn-in. The bottom of the screen will indicate that the cell is running. LED's Q1-Q4 on the cell should be illuminated. This verifies that all four transistors are firing. Connect an ammeter to \(\mathbf{T 1}\) or \(\mathbf{T 2}\). Turn the pot on the tester clockwise and note that the output current increases. Continue until output current reaches the rated current of the cell. Run the cell for 1 hour. Turn the pot fully in the counter-clockwise direction. Stop the burn-in test and exit to the Main Menu.
8. If faults occur while the cell is running, the PC will display all faults detected.
9. Install the cell in the Cell Cabinet and reconnect all power cables, hoses and fiber optic cables.

\subsection*{7.10 Removing Power Cells}

Lethal Voltages-DANGER!! Verify that the input power is fully locked in the off position and that the bus LED on each cell is off.

To remove a single power cell from a drive that is filled with coolant:
1. 1.Disconnect input and control power to the drive. Allow the cell capacitor bank to bleed down. This usually takes 5 to 10 minutes after removal of input power.
2. 2.Close valves BV4A and BV4B AND 16A to isolate the cell cooling liquid from the rest of the system. Disconnect the fiber optic cable from the cell.
3. 3.Using two temporary clamps (Siemens P/N 088145.00), clamp off the two hoses to the cell to minimize spillage when the hose quick disconnect fittings are uncoupled.
4. 4.Disconnect the two cooling liquid lines from the cell using the quick disconnects. The fittings are disconnected by pushing the hose side of the fitting inward and pulling the ring around the cell side fitting from the hose side. When the ring is moved, the hose side of the fitting can be pulled out.
5. 5.Protect the two open hose connectors and the two open cell connectors to prevent entry of dirt or debris. Dummy connectors or a plastic sheet and tape can be used. See Figure 7-8
6. 6.Disconnect the three phase input connections by removing the links at the bottom of the cell power fuses F11, F12 and F13 (shown in Figure 7-10). Disconnect the output link to each adjacent cell.
7. 7.Position the cell lift device (e.g., a fork lift truck or Siemens P/N163469.01) in front of the cell with the lifting rails aligned both horizontally and vertically with the cell mounting frame rails. Lock the cell lift device in position on the floor.
8. 8.Remove the cell retaining angle brackets at the front bottom of the cell (seeFigure 7-10). Roll the cell onto the lift device rails and lock it in place prior to moving the lifting device. Refer to 7-9.


Figure 7-8. Protecting an Open Cell Connector Using Plastic and a Wire Tie


Figure 7-9. Installation/Removal of a Cell Using a Fork-style Lifting Device


Figure 7-10. Front View of a Cell in Cabinet


Attention! When placing power cells into service which have been stored for more than two (2) years without application of rated input voltage, it is advisable to use the following procedure to reform the cell’s electrolytic capacitor bank: follow the procedure in Section 7.8, then apply rated voltage from the variable 690VAC voltage source for at least one hour prior to installation of the cell into the cell cabinet.

\subsection*{7.11 Six Month Inspection}
1. Check operation of fans in the top rear portion of the Cell Cabinet. Clean or replace them if necessary.
1. Inspect cooling system for leaks. Repair or replace components as necessary.
2. Use touch-up paint as required on any rusty or exposed parts.
3. Test coolant for presence of required glycol concentration. Refer to Table 9-4 in Section 9.12 of this manual. Note: a minimum of \(5 \%\) concentration by weight is recommended to control bacteria.

\subsection*{7.12 Replacement of Parts}

Replacement of component parts may be the best method of troubleshooting when spare parts are available. Use troubleshooting guidelines found elsewhere in this chapter when attempting to locate a failed sub-assembly. When any sub-assembly is to be replaced, always check that the part number of the new unit matches that of the old unit (including the dash number).
- Failures traced to individual PC boards within the Control Cabinet are best serviced by replacement of the entire board.
- Failures traced to individual power cells are best serviced by replacement of the entire cell.

Note: For spare parts lists for customized drives, refer to the custom documentation package shipped with the drive or call Siemens Customer Service Department at (724) 339-9501. When calling for spare parts information, please have your sales order number.

Attention! The disposal of any failed components (for example, CPU battery, capacitors, etc.) must be done in accordance with local codes and requirements.
\[
\nabla \nabla \nabla
\]

\section*{CHAPTER}

\section*{8 System Programming}

\subsection*{8.1 Introduction}

Siemens 's ID Series of digital drives contain customized programmable logic functions that define many features and capabilities of the drives. These logic functions are combined into a system program (SOP) that can be edited either at the factory or in the field. Examples of logic functions include start/stop control logic, input and output control logic (e.g., annunciators, interlocks, etc.), drive-to-machinery coordination and more). The system program is stored on the drive's flash disk. Upon power-up it is executed continuously by the drive's run-time software in a repetitive fashion causing the intended logic statements to perform their functionality.

To fully understand the system program operation it is necessary to look at how data is structured, how the compiler puts the data together, how the drive's software performs its evaluation, and timing related issues. To begin, an understanding of system program terminology is required.

\subsection*{8.2 System Program Terminology}

To understand system programs, it is helpful to understand the process by which these programs are created, edited, translated, and transferred to the drive. These processes use certain terms which are summarized in Table 8-1.

Table 8-1. System Program Terminology
\begin{tabular}{|c|c|}
\hline Name & Function \\
\hline PC & All of the software programs (the ASCII text editor, compiler program, reverse compiler program, communications software package, etc.) are found on the PC. The PC is also used to send/receive the compiled system program (the hex file) to/from the drive (via the communications cable). \\
\hline Source File & The source file is an ASCII text file containing simple Boolean statements and operators. This is the "human" version of the system program. The source file is edited on a PC using any standard ASCII text editor. This file is used as the input to the compiler program and is unreadable by the drive. The source file uses the .SOP file extension. \\
\hline Hex File & The hex file is a compiled version of the source file (in an Intel hex format). This is the "machine" version of the system program. The hex file is a result (or output) of the compile process. This file is the compiled version of the system program source file that is used by the drive. It is sent from the PC to the drive over the communications cable using communications software located in the PC and software functions chosen from the drive menus. The hex file is unreadable by the user. It must be reverse compiled in order to be viewed by the user. \\
\hline ASCII Text Editor & The ASCII text editor is a software program used on the PC to edit the source file of the system program. \\
\hline Compiler Program & The compiler program is an off-line (i.e., separate from the drive) software program that resides and runs on an IBM-compatible PC. It is used to translate the ASCII text source file (.SOP) into the hex version system program file (.HEX). This program reads the input source file (.SOP), validates the statements for proper syntax and symbolic content, generates primitive logic functions that implement the higher level logic statements, and stores this information into an output file using Intel hex file format. The resulting .HEX file can be downloaded to the drive. With Version 2.4 drive software, the source file is appended to the hex file for retrieval by the reverse compiler. \\
\hline Reverse Compiler Program & The reverse compiler program does the opposite of the compiler program. It uses the compiled hex file (with a .HEX extension) as the input and produces an ASCII text output file (with a .DIS [for disassembly] extension) that can be read by the user via any standard text editor software. This program is useful if the original source file is lost, damaged or unavailable. Note that any comments in the original source file will not be reverse compiled since they are ignored by the compiler program when the hex file is created. (See Section 8.12 on combined source and Hex files). With Version 2.4 drive software, if the source file is appended to the hex file, a reverse compile will retrieve the source complete with comments. \\
\hline Communications Software & The communications software is used to send the compiled version of the system program from the PC to the drive. The communications software must be configured for proper communications to occur (i.e., baud rate, number of data bits, number of stop bits, and parity settings). Siemens recommends using the Siemens SOP Utilities program (requires Windows \(95^{\text {TM }}\) or later); however an appropriate third-party serial communications program is acceptable, as long as it was designed for the platform on which it is run. (It is not recommended to run DOS-based programs from Windows 95 \({ }^{\text {TM }}\) or later.) \\
\hline Communications Cable & This is a serial communications cable over which data (e.g., the system program) is transmitted between the drive and the PC. The exact specifications of this cable vary based on the drive being used and the type of connector available on the serial communications port of the PC. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Function } \\
\hline Drive & \begin{tabular}{l} 
The drive is an Siemens ID-Series motor drive. It contains a system program that \\
is stored in a non-volatile portion of memory on the drive and is executed \\
continuously by the drive in a repetitive fashion causing intended logic statements to \\
perform their functionality. Within its menu structure, the drive contains software \\
functions used to enable uploading and downloading between the drive and the PC. \\
The settings of communications parameters in the drive must match the settings in the \\
communications software on the PC for proper communications during system \\
program transfers.
\end{tabular} \\
\hline
\end{tabular}

Note: Intel hex format is an ASCII representation of binary data. The hex file mentioned in the previous table uses various record types to set the download location and for error detection.

\subsection*{8.3 SOP Development Process}

The Siemens SOP Development Process is detailed in document EPI-001. You can locate this document by going to http://powernet, then selecting Processes>ISO9000 Manual>EPI-Engineering Process>EPI-001SOP Development.
The general process consists of:
- Obtaining customer requirements
- Creating a textual description of the process logic
- Converting the textual description to a logic diagram
- Writing the SOP from the logic diagram
- Testing the SOP

The textual description is created in the SOP text templates (available at: \INtrob09\FORMSITemplates\SOP). The templates are a series of spreadsheets that textually define the TB2 designation, the WAGO assignment, the sequence of operation, etc. Templates are available for both air-cooled and water-cooled systems.
The standard logic diagrams and accompanying SOP function blocks are defined in Engineering Reports (available at: \INtrob14lctl-plt_read\Software_ReleaselStandard_SOP_Templates). The Engineering Report provides a standard means to produce customer SOPs. The function blocks can be used as presented, or can serve as a template for customer requests not specifically addressed by the blocks.

The SOP input source file is composed in an ASCII text editor and compiled by an Siemens compiler. SOP testing is performed at the Siemens facility. The remainder of this chapter details the process of creating and compiling the SOP.

\subsection*{8.4 Overview of the Compile Process}

To be practical, the "logic" that is represented by the system program must be understood by both man and machine. For the system program to be an effective mechanism through which human operators define (and even change) the logic functions of the drive (in the field, especially), the representation of the logic functions in the system program must be easily understood by the operator. However, the defined logic functions ultimately must be interpreted by the drive itself. In ID Series drives, a compiler is used to convert user-friendly logic statements (in English text) into a downloadable, ASCII representative format of binary data which is run (interpreted) by the drive, increasing its flexibility of configuration and system integration. The logic statements can be written directly from a ladder logic
representation of the system logic. It is recommended that the logic be worked out in this form before committing it to text logic statements.

The compile process is accomplished off-line on a PC. The term off-line means that the process is separate from the drive and does not require a physical or electrical connection to the PC. The chief advantage of off-line editing is that the source code of the system program can be changed anywhere (not just near the drive) using any standard ASCII text editor on any IBM compatible PC. With the system program compiler software installed on the PC, the source code can even be remotely compiled into its machine-friendly hex format. Then, all that remains is to serially connect the PC and the drive and download the hex file to the non-volatile RAM portion of the drive. The run-time software of the drive then executes the system program logic statements sequentially and repetitively, causing the drive to function as intended. After downloading to the drive volatile RAM, the program is stored permanently in the flash disk.

The compiler reads the source input file, validates the statements for proper syntax and symbolic content, generates primitive logic functions and stores this information into an output file using the Intel hex file format. Refer to Figure 8-1.

Note:
- After off-line creation and compilation, the system program (in hex file format) can be downloaded to the ID Series drive. The downloading process requires a PC, a communications cable (appropriate for the PC and the drive) and either (1) appropriately configured communications software in the PC, or (2) the upload/download component of the Siemens SOP Utilities software (requires Windows \(95^{\text {™ }}\) or later).
- In this context, the term "operator" refers to the individual in charge of customizing the system program, and not necessarily any user of the drive.


Figure 8-1. Block Diagram of the Compile Process

Note:
- It is a good programming practice to save an electronic copy of the original SOP file before making any changes. This gives you the opportunity to refer back to the original SOP if the need ever arises.
- A copy of the symbol directory file (e.g., DRCTRY.NGN) must exist within the same directory as the compiler and reverse compiler, or on a pre-determined path on the PC.

\subsection*{8.5 Software Tools}

Siemens offers a Windows \({ }^{\text {TM }}\)-based program that contains an integrated compiler, reverse compiler and upload/ download utility. The program is compatible with Windows \(95^{\text {TM }}\) and later. For additional information, contact the Siemens 's Customer Service Center at (724) 339-9501.

\subsection*{8.6 Input Source File}

The input source file is the ASCII text version of the system program that is edited by the user. Editing can be performed using any standard ASCII text editor on an IBM (or compatible) PC. The file can contain both logic statements and explanatory comments to aid in documenting the content and intent of the logic statements. With the exception of simple true and false logic assignments, the order of the statements in the source file is the order that the statements will be executed by the drive's run time software. True and false statements are placed first in the hex file and are executed only once.

Note: In the case of logic assignments where the source state is a simple "true" or "false", the assignment is made only once at runtime software initiation.

The execution flow of the run time software is as follows:
1. Comparator evaluations are performed and the resulting system flags are updated.
2. Input flags are scanned and their present state(s) are recorded .
3. Logic equations are executed based on the recorded input states.
4. The results of the logic statement(s) are output.

A sample input source file is illustrated at the end of this section. Although this sample source file may appear to be very complex, it contains only two basic types of statements:
- source lines
- comment lines.

Comment lines are distinguished by a semi-colon (;) followed by descriptive text for the rest of the line. All lines that begin with text instead of a semi-colon are program source lines. Program source lines may continue to other lines and are finally terminated with a semi-colon. This makes the logic more readable.

Comment lines provide additional information to the reader. This information includes the program name, the date it was written, the author's name, an edit history, etc. Comments can also be placed strategically throughout the code to separate source lines into logical groups and to improve readability. In addition, comment lines can be used to explain the functionality of complex program statements. It is good programming practice to use comments to thoroughly document source code, especially if more than one person may be editing or reviewing it. Note, however, that comments should add useful information to the source code (e.g., make the code more readable, describe the purpose of a particular logic statement, define the goal of the program segment, etc.) and not just restate the obvious.

\section*{Note:}
- All source code comment lines are ignored by the system program compiler. Only the program statements (with any optional comment suffixes omitted) are compiled into the binary (hex formatted) system program that is downloaded to the drive. For this reason, the process of reverse compiling the system program yields source code without comments. For more information on the process of reverse compilation, refer to Section 8.12.
- Comment text can be included in source lines if it appears after the program statement (i.e., after the statement terminator [;]). Never embed a comment within a program statement. For examples, Refer to the sample input source file that follows.

Source lines contain logic statements that define inputs, outputs, control logic and operations of the drive. Logic statements contain statements, flags and operators that must follow precise spelling and syntax rules in order for them to be interpreted correctly by the compiler. An example of one such syntax rule is the fact that all program statements within a system program are terminated with a semi-colon character. Program statements may, however, continue on multiple lines to aid in readability. Syntax rules for all source code components are discussed later in this chapter.

\section*{Note:}
- Single source lines of code must not exceed 132 characters in length, and must be terminated with a semi-colon.
- The name and source file date/time stamp of the system program can be recalled and displayed in the keypad display using the Display System Program Name function. This can be useful in determining the exact system program that is being executed in the drive.

\subsection*{8.6.1 System Type Identification}

Because the compiler and reverse compiler support a number of different end products, the compiler needs to know what the target system is so that it can generate the proper code for that target system.

To identify the system type, include the system type identifier command as the first line in the system program SOP file. The syntax of this command is shown below.
\#system_type;(begins with "\#" in column 1, ends with ";")
The statement must be on the first line of the file, the "\#" character must appear in column 1, and the program line must end with a semicolon. For Perfect Harmony drives, the proper format of this command is shown below.
\#NEXTGEN;

Note: A comment can follow the semicolon with the system type identification command.

The compiler also recognizes other system types. These are listed in 8-2. 8-2 shows the interface for the pull-down product type selector.

Table 8-2. Product Types Recognized by the System Program Compiler
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Target Product Type } & \multicolumn{1}{c|}{ Identification Command } \\
\hline Perfect Harmony & \#HARMONY; \\
\hline 454 GT & \#ID_454GT; \\
\hline ID-CSI & \#ID_CSI; \\
\hline DC Harmony & \#HARMONY_DC; \\
\hline ID-2010 & \#ID_2010; \\
\hline NXG Control & \#NEXTGEN \\
\hline Silcovert H & \#SILCOVERT_H \\
\hline
\end{tabular}


Figure 8-2. Windows-based Compiler Showing Product Type Pull-Down
Note: If you use the Siemens SOP Utilities program to compile an SOP file that does not include the \#system_type; identifier, then the Product Type selector pull-down (see Figure 8-2) will become enabled and the user must select the appropriate product type.

Based on the system type, the compiler will search for a unique directory file. Because each system type uses its own directory file, it is convenient for the compiler (and reverse compiler) to automatically use the correct file. The directory file that the compiler uses is based on the target system type. These are summarized in Table 8-3.

Table 8-3. Directory Filename Associations
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Target System Type } & \multicolumn{1}{c|}{ Directory File Name } \\
\hline Perfect Harmony & DRCTRY.PWM \\
\hline 454 GT & DRCTRY.IGB \\
\hline ID-CSI & DRCTRY.CSI \\
\hline DC Harmony (e.g., torch supply) & DRCTRY.HDC \\
\hline ID-2010 & DRCTRY.DC \\
\hline NXG Control & DRCTRY.NXG \\
\hline Silcovert H & DRCTRY.SIH \\
\hline
\end{tabular}

\subsection*{8.6.2 Operators and Precedence}

There are two forms of operators that can be used in a source line of the system program. These forms are unary operators (requiring only a single operand) and binary operators.

There is a single unary operator-the negate operator. This operator takes the form of a slash character ("/") which precedes a single input symbol. This operator forms the inverse logic equivalent of the symbol immediately following it for incorporation into the statement evaluation. It has higher precedence than the binary operators, which means it is evaluated before the evaluation of any binary operations.

Note: The "/" symbol must be followed by an input symbol.

For example, the expression
/Zero_O
equates to
NOT Zero_O.
If the input variable "Zero_O" were FALSE, then "/Zero_O" would equate to TRUE.
There are two binary operators-AND and OR. These operators take the form of an asterisk ("*") and a plus sign ("+"), respectively. These operators correspond to the Boolean AND and OR functions. Unlike the unary NOT operator (which requires only a single variable), each of these operators requires two variables which surround the operator.

The binary operators " + " and "**" serve to form the simple Boolean combination of the combined expression preceding the operator and the symbol (possibly negated) immediately following the operator. Parentheses are not allowed to force expression evaluation. The expression must be formed with left to right precedence and must be expanded to simple form.

Refer to the Boolean truth tables in Table 8-4 for functional descriptions of the operators.Table 8-5 shows the precedence of operations. shows syntax examples.

Table 8-4. Boolean Truth Table for the NOT, AND and OR Functions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ NOT Function } & \multicolumn{3}{|c|}{ AND Function } & \multicolumn{4}{c|}{ OR Function } \\
\hline \(\mathbf{A}\) & /A & & \(\mathbf{A}\) & \(\mathbf{B}\) & \(\mathbf{A * B}\) & & \(\mathbf{A}\) & \(\mathbf{B}\) & \(\mathbf{A + B}\) \\
\hline False & True \\
\hline True & False & & False & False & False & & False & False & False \\
\hline & False & True & False & & False & True & True \\
\hline & True & False & False & & True & False & True \\
\hline & True & True & True & & True & True & True \\
\hline
\end{tabular}

Table 8-5. Precedence of Operations
\begin{tabular}{|c|c|c|c|}
\hline Type of Operation & Symbol & Meaning & Precedence \\
\hline Unary Operation & \(/\) & Not & High (performed first) \\
\hline Binary Operation & \(*\) & And & \(:\) \\
\hline Binary Operation & + & Or & Low (performed last) \\
\hline
\end{tabular}

Table 8-6. Syntax Examples
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Example } & \\
\hline \(\mathrm{C}=\mathrm{A}+\mathrm{B} ;\) & Correct, C equals A OR B \\
\hline \(\mathrm{C}=\mathrm{A} * \mathrm{~B}+\mathrm{D} ;\) & Correct, C equals (A AND B) OR D \\
\hline \(\mathrm{C}=\mathrm{A}+\mathrm{B} * \mathrm{D} ;\) & Correct, C equals A OR (B AND D) \\
\hline \(\mathrm{C}=\mathrm{A} * \mathrm{~B}+\mathrm{A} * \mathrm{D} ;\) & Correct, C equals (A AND B) OR (A AND D) \\
\hline \(\mathrm{C}=\mathrm{A} *(\mathrm{~B}+\mathrm{D}) ;\) & Incorrect, parentheses not allowed. \\
\hline \(\mathrm{C}=\mathrm{A}+/ \mathrm{B} ;\) & Correct, C equals A OR (NOT B) \\
\hline\(/ \mathrm{C}=\mathrm{A} * \mathrm{~B} ;\) & Incorrect, negation not permitted on output side \\
\hline
\end{tabular}

\subsection*{8.6.3 Statement (SOP) Format}

The format for a system program source statement is as follows:
output_symbol = \{unary_operator\} input_symbol \{ [ binary_operator \{unary_operator\} input_symbol ] ... \};
where:
output_symbolrepresents an output symbol defined in the symbol directory file
\(=\) the assignment operator (only one per source statement)
input_symbolrepresents an input symbol defined in the symbol directory file
unary_operatorBoolean NOT operator (/ character)
binary_operatorBoolean operators OR and AND (+ and *, respectively)
\{ \}represents optional syntax
[ ]represents required syntax
...the previous operation may be repeated
;statement terminator
The statement can span multiple lines and can contain spaces as needed for readability. The output_symbol is a required field and can be any symbol that would be valid as an output variable. The output_symbol is followed by one or more optional spaces and then the required assignment operator "=". A source statement can contain only a single assignment operator.

Note: Program statements may span multiple lines by breaking the line at a convenient operator. The single line length of 132 characters should not be exceeded.

The input side of the equation must equate to a simple Boolean form (either true or false) after evaluation. It is formed from either a simple input symbol (possibly negated with a NOT unary operator) or a combination of input symbols operated on with binary operators.

Input symbols and binary operators are evaluated left to right by the run time software. The precedence of operations is summarized in the next section.

\section*{Note:}

Each statement must be terminated with a semicolon.
Symbol names are case insensitive to the compiler. The symbols symbol_1, Symbol_1 and SYMBOL_1 are all treated identically.

The term "sum-of-products" comes from the application of Boolean algebraic rules to produce a set of terms or conditions that are grouped in a fashion that represents parallel paths (ORing) of required conditions that all must be met (ANDing). This would be equivalent to branches of connected contacts on a relay logic ladder that connect to a common relay coil. In fact the notation can be used as a shortcut to describe the ladder logic.

First let us examine the rules of Boolean algebra. The set of rules that apply in this logical math are broken into 3 sets of laws: commutative, associative, and distributive. The operators are "AND" (abbreviated with the "•" character [or "*" character from a keyboard]), "OR" (abbreviated with the "+" character) and "NOT" (abbreviated with a line above the operand, e.g., -A [or a preceding "/" character from a keyboard]). The commutative, associative, and distributive rules are shown as follows.

Table 8-7. Boolean Laws
\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ Commutative \(^{\mathbf{1}}\)} & \multicolumn{1}{c|}{ Associative \(^{\mathbf{1}}\)} & Distributive \(^{\mathbf{1}}\) \\
\hline \(\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}\) & \(\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}\) & \(\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}\) \\
\hline \(\mathrm{AB}=\mathrm{BA}\) & \(\mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}\) & \\
\hline
\end{tabular}

1 - The syntax " \(A B\) " implies ( \(A \cdot B\) ).
Table 8-8. General Rules of Boolean Math
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ General Rules } & \multicolumn{1}{|c|}{ General Rules } & \multicolumn{1}{|c|}{ General Rules \(^{\mathbf{1}}\)} \\
\hline \(\mathrm{A} \cdot 0=0\) & \(\mathrm{~A}+0=\mathrm{A}\) & \(\mathrm{A}+\mathrm{AB}=\mathrm{A}\) \\
\hline \(\mathrm{A} \cdot 1=\mathrm{A}\) & \(\mathrm{A}+1=1\) & \(\mathrm{~A}(\mathrm{~A}+\mathrm{B})=\mathrm{A}\) \\
\hline \(\mathrm{A} \cdot \mathrm{A}=\mathrm{A}\) & \(\mathrm{A}+\mathrm{A}=\mathrm{A}\) & \((\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})=\mathrm{A}+\mathrm{BC}\) \\
\hline \(\mathrm{A} \cdot \overline{\mathrm{A}}=0\) & \(\mathrm{~A}+\overline{\mathrm{A}}=1\) & \(\mathrm{~A}+\overline{\mathrm{AB}}=\mathrm{A}+\mathrm{B}\) \\
\hline\(=\mathrm{A}=\mathrm{A}\) & & \\
\hline
\end{tabular}

1 - The syntax " \(A B\) " implies \((A \cdot B)\).
Add to this DeMorgan's Theorem which states "the complement of the intersection (AND) of any number of sets equals the union (OR) of their complements" which, simply stated, means that if you invert a grouping of elements, you invert the individual elements and also change the logical relationship between them. So you can change from an OR to an AND function, for example
\[
(\overline{\mathrm{A}+\mathrm{B}})=(\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}})
\]
or from an AND to an OR function, for example
\[
(\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}})=(\overline{\mathrm{A}}+\overline{\mathrm{B}}) .
\]

By using these rules, any logical statement can be reduced to the sum (+) of products ( \(\cdot\) ) or the ORing of ANDed terms as illustrated in the following example.
\[
\mathrm{O}=\mathrm{AB}+\mathrm{B} \overline{\mathrm{C}} \mathrm{D}+\mathrm{CD} \overline{\mathrm{~F}}
\]

The SOP file, as mentioned above is written with a text editor or a word processor set for pure ASCII text (having a .TXT file extension) with no control or formatting codes with the exception of horizontal tabs (ASCII code 09h) and carriage returns (0Dh). Only printable characters and spaces (20h) can be used. The file consists of the following format:

Table 8-9. SOP Text File Format
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Description } \\
\hline Drive type specifier & \(\begin{array}{l}\text { This must reside on the first line of the file prefixed with the pound sign (\#) and } \\
\text { followed with the name of the drive (in the case of Perfect Harmony this would be } \\
\text { \#Harmony;). }\end{array}\) \\
\hline Header & \(\begin{array}{l}\text { A comment field containing the following information: } \\
\text { Title - Siemens Perfect Harmony drive } \\
\text { Program part number } \\
\text { Customer name }\end{array}\) \\
Sales order number and Siemens drive part number \\
Drive description \\
Original sop date \\
File name \\
Engineer name (Originator) \\
Revision history (date and change description).
\end{tabular}\(\}\)

\subsection*{8.6.4 Input Flags}

Input flags are identified by variable_I. Input flags are symbols that are encountered on the right hand side of a source statement (to the right of the equals sign) that express the state of an input to the system. They may reflect the state of a digital input (e.g., ExternalDigitalInput01a_O, ExternalDigitalInput01b_O) or switch (e.g., KeypadManualStart_O), the state of a system process (e.g., Cells_I, OverloadFault_I, OutputPhaseOpen_I), internal variable, Comparator flag (e.g., Comparator_1), or a simple literal (TRUE, FALSE). These input flags are combined using the unary and binary operators to form logic expressions.
Digital input flags generally represent the state of a discrete digital input signal into the system. These may be a \(24-\) volt logic input, a key switch or push-button in the system or some form of a binary input. The inputs are scanned at the beginning of each execution cycle, but may reflect older information in some cases.
System constants TRUE and FALSE are predefined and can be used as input terms to an expression.

\section*{Note:}
- Note that any expression that uses a TRUE or FALSE constant by the compiler will be placed in a section of run time system program statements that are executed only once during system program initialization. The one time execution of invariant expressions improves the execution speed of the remaining conditional expressions.
- Constant expressions are not updated at the completion of each system program execution loop. They are only set during system program initiation

There exists the capability to compare at the value of certain system variables against preset thresholds in real time and then use the results of the comparisons (TRUE or FALSE) in the system program to control actions on the drive. The variable(s) to be compared and the thresholds are entered into the system using the keypad. The output of the comparisons (Comparator1_I ... Comparator16_I) are available for use in the system program as input symbols.

\subsection*{8.6.5 Output Flags}

The output flags all have "_O", tagged onto the end of the variable name (variable_O). The output flags (the symbol placed on the left-hand side of the assignment "=" operator) direct the result of the input expression towards an output purpose. Output flags represent items such as digital outputs and system control switches.

Table 8-10. Types of Output Flags
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Types } & \multicolumn{1}{c|}{ Examples } \\
\hline \hline digital outputs & ExternalDigitalOuptput01a_O, ExernalDigitalOutput01b_O, ... \\
\hline system control switches & AutoDisplayMode_O, RampStop_O, , RunRequest_O \\
\hline
\end{tabular}

Digital output flags generally represent some form of discrete digital output bit(s) from the system. These may be a relay coil driving contacts (NO or NC), direct digital outputs or lamp controls. The digital output signals are updated at the completion of each system program execution loop.

The Perfect Harmony series of drives (as well as all other ID series drives) has a set of pre-defined symbols that describe control outputs or "switches" that can be controlled by the system program. These switches can control functions such as the source of the speed reference, a selection for the system acceleration rate and a multitude of others. In most cases, to cause the system to perform in the intended manner, the proper control switches must be set (and others cleared) by the system program. The default state for all control switches is FALSE. Unless the system program sets the switch to TRUE, it will be inactive (FALSE).

\footnotetext{
Note: No variable_1, Input variable can appear on the left side of the "=" sign. Both variable_1 and variable_0 can appear on the right side of the "=" sign.

Note: Only one switch should be set at any one time from any functional grouping of switches (e.g., command generator input grouping).
}

There is a set of Boolean temporary flags available to hold temporary or common expressions in the system program. By using these temporary flags to hold common expressions, system program execution times can be improved. The system program compiler does not perform any optimization, it generates code closely matching the equations as written. If there are expressions that are repeatedly evaluated, set a temporary flag to the intermediate results and then use the flag instead of the longer expression.

For example:
```

ExternalDigitalOutput01a_0 = ExternalDigitalInput01_a +
ExternalDigitalInput01_b + RunRequest_0;
SetPoint1_0 = ExternalDigitalInput01_a + ExternalDigitalInput01_b +
RunRequest_0;

```
```

SetPoint2_0 = ExternalDigitalInput01_a + ExternalDigitalInput01_b +

```
RunRequest_0 ;
could be replaced with:
```

TempFlag01 = ExternalDigitalInput01_a + ExternalDigitalInput01_b +
RunRequest_0;

```
ExternalDigital0utput01a_0 = TempFlag01;
SetPoint1_0 = TempFlag01;
SetPoint2_0 = TempFlag01;

A time-out function may be implemented with system program timers. These timers are enabled using logic statements and the output (based on the timer expiring) is available as an input to logic statements. The time period is set in seconds with the resolution. The unit specified in the logic statement is seconds (with a decimal fraction rounded to the nearest internal resolution). Time intervals are up to \(16,383.5\) seconds for the Next Gen version of Perfect Harmony.

The statement
Timer01(20.0) = symbol_a;
enables timer 1 if symbol_ \(a\) is true. The statement
```

output_1 = Timer01;

```
sets the symbol output_1 true if the timer has expired (timed out). In the example above, if symbol_a is false, output_1 will be false. If symbol_a is set true, then 20 seconds later, output_1 will be set true (assuming symbol_a remains true).

Once the enabling logic goes FALSE, the entire time-out period must pass before the timer will time-out. Should it go FALSE before the time-out period, the timer count is reset to zero and the timer must go the entire period before timing out.

Counters in a system program can be used to count the number of FALSE to TRUE transitions of the counter input. A corresponding counter reset input is used to reset the counter value to zero. For example:
```

Counter01(13) = input_a;
CounterReset01 = input_b;
output_a = Counter01;

```

If input_b is set TRUE, Counter01 is set and held to zero. If input_b is FALSE, after 13 FALSE to TRUE transitions of input_a, the symbol Counter01 (and output_a) will be set TRUE. After 13 transitions, Counter01 will remain

TRUE until Counter01 is cleared by CounterReset01. The maximum count value is 32767 . The count value must be an integer.

\subsection*{8.6.6 Redefining Flag Names}

To make flag names more intuitive, you can redefine flag names so that your names may be substituted for the generic flag names thereafter. The definitions are made near the start of the program to ensure that they are defined when needed. The format for the definitions is:

\section*{\$NewFlagName=nameInDirectoryFile}
where NewFlagName is your new definition, and nameInDirectoryFile is the flag name found in the drty.ngn file.

For example, a typical SOP program might define flags as follows:
```

Counter01(30) = /ExternalDigitalInput01f_I*/
ExternalDigitalInpout01e_I*Timer00;
CounterReset01 = ExternalDigitalInpout01e_I;

```

If you include the following at the start of the program:
```

\$FireAlarmCircuitTimer = Counter01;
\$FireAlarm_I = ExternalDigitalInput01f_I;
\$FireAlarmPumpHasOverheated = ExternalDigitalInput01e_I;
\$FireAlarmWarningTimer = Timer00;
\$ResestFireAlarmCircuitTimer01 = CounterReset01;

```
then the lines in the program become:
```

FireAlarmCircuitTimer(30) = /FireAlarm_I*/
FireAlarmPumpHasOverheated_I*FireAlarmWarningTimer;
ResetFireAlarmCircuitTimer01 = FireAlarmPumpHasOverheated_I;

```

\subsection*{8.6.7 SOP Interpretation}

System configuration and operational logic is depicted in the command generator diagram (Siemens drawing 459713) which displays (in a diagram format) the various input options, parameter sets, and modes of operation of the drive. All logic flags controlling the configuration and control flags used in the state transitions are shown along with many internal variable names.
The system program consists of the hex program output file (created with an external compiler, the source ASCII text sum-of-products [SOP] file, and the DRCTRY.xxx directory file [used for mapping flag names to internal variable addresses]) and the system interpreter in the drive itself.

The SOP file is written by application engineering (and can be modified by field service personnel), compiled to a tokenized, Intel hex formatted file, and then downloaded via an RS-232-C serial channel to the drive. The drive initializes the file and then begins to interpret the token codes and data structures. This is detailed in the next section.

\subsection*{8.6.8 SOP Timing}

The scan time for running the compiled program is dependent on the length and complexity of the program and the available time left over from the control software. The control software timing includes any features that are running (based on the configuration information flags in the system program itself). The typical scan time is between 20 and 50 msec , but can become longer for a synchronous transfer program.

\subsection*{8.6.9 Ladder Logic Translation}

It was mentioned above that the sum-of-products notation can represent ladder logic. In actuality, it is very easy to directly translate between the two. For example, consider the equation or statement
\(\mathrm{Z}=\overline{\mathrm{A}} \mathrm{BC}+\mathrm{D} \overline{\mathrm{E}} \mathrm{F}+\mathrm{FGH} ;\)
Translated into the notation of the limited ASCII characters available in a common text editor, the statement would read as follows (note that the components are separated at "ORs" and stacked for clarity).

Z \(=/ A^{*} B^{*} \mathbf{C}\)
+ D*/E*F
\(+\mathrm{F}^{*}\) G H ;
This statement can be pictorially represented by breaking each statement down in the following manner.
1. First, the output variable (in this case Z ) is represented by a coil to the right of the ladder.
2. Second, each product term (the variables separated by the asterisk) is represented by a single line of contacts connecting to the coil.
3. All the product terms that are summed (separated by the plus sign) are represented by parallel paths to the same coil.
4. All non-inverted contacts are represented by normally open (NO) contacts while the inverted terms are represented by normally closed (NC) contacts.

The resulting ladder logic is illustrated in Figure 8-3.


Figure 8-3. Ladder Logic Representation of a Boolean Expression - Example 1
Conversely, if the ladder logic shown in Figure 8-4 was desired, it could be converted into a sum-of-products statement. The procedure would be the inverse of the previous and is enumerated below.
1. First place the label of the output relay coil to the left, with an equals sign following.
2. Next, start in each path from left to the connection to the coil on the right, writing the label for each contact with the asterisk representing the AND or product operator in between.
3. In front of each NC contact, place a forward slash representing the inversion or NOT operator (shown in the equations as a bar over the variable name).
4. Repeat this for each parallel path using the OR (sum) operator ( + ) in between each grouping of product terms.
5. Finally the statement is terminated by a semicolon to represent the end of the statement.


Figure 8-4. Ladder Logic Representation of a Boolean Expression - Example 2
The resultant statement written for the ladder logic in 8-4 is shown below.
```

J = /R*G*N

+ A*C*/F
+/P*/Q*M;

```

Note: For all program statements that span multiple lines, only the last line has the semi-colon end-of-line character (;).

\subsection*{8.6.10 Comparators}

Sometimes a simple digital input is not enough to adequately control a system function or establish a warning or protection scheme. Analog signals from various transducers may need to be monitored and compared to set thresholds to allow conditions to change. This is the purpose of the comparator functions. Any signal fed into the drive through an analog input externally or internally can be mapped to a system flag to use in any logic statement.

These comparators exist in Comparator \(n\) Setup Submenus (4810-4965) under the Comparator Setup Submenu (4800) in the Auto Menu (4). There are 32 comparators with individual setup menus. Each comparator has an 'A' and a ' \(B\) ' input and a control setting. These are set up by selecting from a pick list - a scrollable listing that allows the selection of predetermined variables, or entry of variable addresses (only in RAM) or a fixed percentage of rated value or a fixed number entered in hexadecimal (the base 16 numbering system as opposed to decimal which is base 10).

The comparators have a system program flag associated with each (Comparator01_I through Comparator32_I) that are controlled by the comparator functions. In essence, the logical state of the comparator flags (TRUE or FALSE) is determined by the equation: Comparatorxx_I \(=(\mathrm{A}>\mathrm{B})\), which means that if input A is greater than input B , the flag is set true, and if A is less than or equal to B the flag is set false.
The rest of the setup is accomplished by setting the control variable. This also is a pick list but consists of the selections: signed, magnitude, and off or disabled. When the comparator is switched off, no further processing is done and the system flag retains its last value indefinitely. The flags (as are all system flags) are initialized to false on power-up, system program re-initialization, or hard reset.

\subsection*{8.6.11 Analog Inputs}

Sometimes you may want to use an external analog signal as an input to a comparator. This can be accomplished by selecting an analog input source in the pick list. However, the analog input needs to be setup properly before it has any meaning to the system program comparator functions.

When the system program scans the comparators, the last analog sample is used. The analog inputs have a 12 bit resolution, which means that 12 bits are used to determine the sign and magnitude of the signal. Therefore the voltage resolution for each step is approximately 5 mV .

When the analog user modules are enabled (when their type is set to something other than off or disabled) they are only read at the system program scan rate. They are, however, converted constantly inside the external module itself so that the drive processor does not have to interface to an analog signal or spend time converting it to a digital number.

To use the external or internal analog input modules as a reference to the drive they need to be set up using the Analog inputs menu (4090). The sequential number used in Analog input \#1 source (4105), or Analog input \#2 source (4175) menu of the external analog inputs is determined by left to right orientation arrangement of the modules as they are placed on the DIN rail. The leftmost analog input module is the first input. It contains two ports so analog inputs one and two are within this module. Reading left to right the second module contains the next two analog inputs. This module also contains two ports so they are numbered three and four and so on. The remaining menus are filled in as required.

\subsection*{8.7 Compiler Invocation}


Note: The Windows-based utilities program is compatible with Windows \(95^{\text {TM }}\) and later versions.

To invoke the Windows \({ }^{\text {TM }}\)-based SOP utilities program, double-click on the COMPILER.EXE icon. This causes the Siemens SOP Utilities pop-up to be displayed. Alternatively, you can launch the SOP Utilities with the Tool Suite application interface shown in Figure 8-6.


Figure 8-5. Siemens SOP Utilities Icon and Pop-up Box


Figure 8-6. Tool Suite Application Interface

\subsection*{8.8 Compiler Operation}

As discussed earlier in this chapter, three files are accessed during the compilation process: the source (or SOP) file, the DRCTRY.NGN (directory) file, and the output hex file. When the compiler is invoked, it first opens the SOP file to determine if it contains a system_id definition line as the first line in the file. This line defines the target system type to the compiler. If the necessary files are not found in the default directory, you may search elsewhere using the standard Browse button.


The system type information is used to search for a proper directory file to use during compilation. The type information is placed into the hex file so that the system program cannot be used in the wrong type of system (e.g., loading a Harmony system program into a 454 GT drive).

Note: If you use the Siemens SOP Utilities program to compile an SOP file that does not include the \#system_type; identifier, then the Product Type drop-down list (see 8-7) is enabled, and you must select the appropriate product type. This selection will then be compiled into the resulting hex file.

The compiler searches for the directory file in the current directory first. If it is not found there, the compiler looks in "C:\program files\Siemens \soputilities" for the files. If the directory file is not found, the compiler provides a browse function for finding an appropriate file. In all cases, the full search path of the "found" file is displayed so the operator can verify that the intended file was used.

Note: The DRCTRY.NGN file must adhere to certain syntax and format rules. Refer to Appendix D.

\subsection*{8.9 Output Hex File}

Any inconsistencies that occur during the compilation process are flagged and error messages are displayed in a popup window. These error messages indicate the problem and lead the user towards problem resolution. Error messages are listed in Table 8-11.

After successful processing, the third and final file is created. This is the hex file and it is named the same as the source file with the extension changed to ".HEX". The entire compiled system program is summed up in a modulo 256 result that is inverted ( 2 s complement) and placed in the header of the compiled system program. This is the system program checksum. The output is formatted in Intel 8086/8088 record format with a starting load offset of 0000. Each record consists of 16 bytes of data. Zeroes are appended to the final record for padding.

When interpreted as an Intel hex file by the drive during the download process, a binary image of the logic functions results. These logic functions are stored and later executed by the drive. Each line of the hex file contains its own checksum. In addition, the compiler generates an overall system program checksum. All of these checksums are validated during system program downloading and restart to ensure correctness prior to storing the statements inside the drive.

When downloaded into the drive, the system program is structured into sections. The first section is called the header and contains system program location pointers as well as the version number and the system program checksum.

The other sections concern the functionality of the system program and are not covered here.

\subsection*{8.10 Downloading a System Program (Hex File)}

When the text for a system program has been created, and the text file has been compiled into a hex file using the system program compiler, the resulting hex file must be downloaded into the drive to become functional. Software embedded in the drive can be invoked to accept the properly formatted hex file into the drive using the RS-232 serial port as the transfer medium. The program can be downloaded in one of two methods:
1. Using the Upload/Download component of the Siemens SOP Utilities software. This method can be used by PCs that have at least Windows \(95^{\text {TM }}\) or later installed.
2. Using a terminal emulation program on the PC set up in ASCII file mode. This method can be used by PCs that do not run Windows or have a Windows version before Windows 95 (using a DOS \({ }^{\text {TM }}\) window). A native Windows terminal emulator can also be used.

\subsection*{8.10.1 Siemens SOP Upload/Download Utility Method}

The .HEX file must be downloaded using the Upload/Download component of the Siemens SOP Utilities program.


Figure 8-8. Upload/Download SOP Utility Screen
1. Invoke the Siemens SOP Utilities program.
2. Select the Upload/Download tab.
3. Enter the HEX file to be downloaded.
4. Select the Download radio button.
5. Set the baud rate from the drop down box to 9600 baud.
6. Connect the appropriate serial port of the host PC to the DB9 port of the drive using an appropriate serial cable (9-pin with appropriate connectors).
7. Select the "System Program Download" function menu (9120) of the drive. The drive will display download status information on the front panel (e.g., "Downloading from RS232"). The drive will indicate when it starts to receive data.

At the end of each hex line received, the drive will cause a bar in the last column of the keypad display to rotate to indicate that data is being received. Each data record that follows is then checked against its own checksum and loaded at the appropriate address in RAM. Errors in a data record result in a displayed error message and termination of the download process.

Note: The drive's software checks the downloaded system program file for the proper version number. If the user tries to download a system program that was compiled with the wrong DRCTRY.NGN file (for example, an obsolete DRCTRY.DAT file), an error message will be displayed and the downloaded system program will not be transferred to FLASH. Further, the system will not run a motor if, on power-up, the software detects a system program checksum error or an out of range system program version stored in the FLASH. In order to use an older system program in a drive with newer software, the system program must be recompiled with the newer DRCTRY.NGN file before it is downloaded.

\subsection*{8.10.2 Terminal Emulation Method}

The .HEX file must be downloaded with a terminal emulation program on the PC set up in ASCII file mode.
1. Set the baud rate (the same as drive's baud rate parameter), parity (none), data bits (8) and stop bits (1) of the communications software on the host PC, notebook or laptop computer.
2. Connect the appropriate serial port of the host PC to the DB9 port of the drive using an appropriate serial cable (9-pin with appropriate connectors).
3. "Enable" the communications software (i.e., prepare the software to either send information to the drive or receive information from the drive). This basically puts the PC and communications software into a ready state. Typical communications software packages include Microsoft Windows Terminal and Procomm-Plus (only Windows \(95^{\text {™ }}\)-compatible if running this operating system).
4. Use the "System Program Upload" or "System Program Download" function from the Serial Functions Menu (9110) of the drive to perform the desired function. The drive will display download status information on the front panel (e.g., "Downloading from RS232").

The drive will indicate when it starts to receive data. At the end of each hex line received, the drive will cause a bar in the last column of the keypad display to rotate to indicate that data is being received. Each data record that follows is then checked against its own checksum and loaded at the appropriate address in RAM. Errors in a data record result in a displayed error message and termination of the download process.

Note: The drive's software checks the downloaded system program file for the proper version number. If the user tries to download a system program which was compiled with the wrong DRCTRY.NGN file (for example, an obsolete DRCTRY.DAT file), an error message will be displayed and the downloaded system program will not be transferred to FLASH. Further, the system will not run a motor if, on power-up, the software detects a system program checksum error or an out of range (wrong) system program version stored in the FLASH.

\subsection*{8.10.3 Termination}

Termination occurs when a valid "End Record" is received. If any error in transmission occurs, or if the user manually "CANCELs" the transmission, the original system program will be copied back down from FLASH. If the new program is accepted and reaches normal termination, it is then transferred from temporary RAM into nonvolatile FLASH storage, overwriting the original. The system program is then re-initialized with the new information, and the system program is restarted, executing the new statements.
```

Note:
During the system program download process, if it is desired to cancel the download process, a [SHIFT]+[CANCEL] key sequence can be entered from the drive's keypad to terminate the download process and restore the system to its original state.

```

Since the system program execution must be stopped while downloading a new system program, the drive cannot be running during the download process.

Table 8-11. Compiler Error Messages
\begin{tabular}{|c|c|}
\hline Error Message & Description \\
\hline \begin{tabular}{l}
DRCTRY Error \\
ERROR in line nnnn - << flag name >> is longer than 43 characters. \\
The error occurred in the Directory file.
\end{tabular} & While loading, the system program flag found that the directory file is too long. The offending flag and its line number in the directory file are listed. The directory file is probably corrupted. Get the latest version and try again. \\
\hline \begin{tabular}{l}
DRCTRY Error \\
ERROR in line nnnn - << flag name >> can't find system address.
\end{tabular} & While loading the directory file, the compiler can't determine the system address. The flag name and error line number points to the source of the error. The directory is probably corrupted. Get the latest and try again. \\
\hline \begin{tabular}{l}
DRCTRY Error \\
ERROR in line nnnn!! << flag name >> can't find bit address.
\end{tabular} & While loading the directory file, the bit address cannot be determined. The file is probably corrupted. The flag name and line number should show where the corruption occurs. Replace the directory file and try again. \\
\hline \begin{tabular}{l}
DRCTRY Error \\
ERROR in line nnnn!! << flag name >> can't find type code.
\end{tabular} & While loading the directory file, the flag type cannot be determined. The file is probably corrupted. The flag name and line number should show where the corruption occurs. Replace the directory file and try again. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! User Text text flag defined multiple times.
\end{tabular} & The user text assignment flag displayed has been used multiple times in the system program. Find the occurrences and correct them, then recompile. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! Expecting 'l' found >> CR or LF <<
\end{tabular} & The compiler was expecting an end quotation mark and found an end of line instead. The error location will show in another popup window at the end. Edit the source program and try again. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! User Text flag ID is longer than 24 characters.
\end{tabular} & User Text must not exceed 24 characters - the limit on the keypad display. Edit the source file and try again. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! Expecting 'l' found >> character <<.
\end{tabular} & The compiler was expecting an end quotation mark but found another character instead. Locate the error by the line number shown in an error popup window, edit the file, and try again. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! Expecting '=' found >> flag name <<.
\end{tabular} & The compiler is looking for the assignment operator and found another flag. This is usually caused by improper use of the statement terminator, the semicolon, or the comment indicator - also a semi-colon. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! opcode >> token name << not supported.
\end{tabular} & The compiler has parsed the source code and found a 'token' it interprets as an opcode, but is not an acceptable operator (‘=’, ‘+', ‘*', ‘/’, or ';'). This can be caused by an improper logic statement. Check the file and try again. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR! Timer enable flag name cannot be set false.
\end{tabular} & The timer flag shown was set to false. This will never do anything and is therefore displayed as an error. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error Message & Description \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR! Counter reset flag name cannot be set true or false.
\end{tabular} & Setting the counter reset flag that is named prevents proper operation of the counter. The name of the reset flag is displayed to help find the error. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR! Counter enable flag name cannot be set true or false.
\end{tabular} & Counters count transitions from low to high. Setting the counter to true or false renders the counter useless and is thus displayed as an error. The offending flag name is displayed. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! input >> flag name << is not an input type.
\end{tabular} & The flag named is not defined as an input only flag and cannot be used as an input (on the right side of the equals sign). \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! Expecting ';' found >> flag name <<.
\end{tabular} & This error is usually displayed when the preceding logic statement is not properly terminated by a semicolon. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! input \(\gg\) flag name \(\ll\) not in directory.
\end{tabular} & The input flag named is not found in the directory file. Check the spelling and try again. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! Expecti
\end{tabular} & The compiler is expecting the assignment operator as it is parsing what it thinks is a new logic statement. Check the syntax in the preceding statement, edit the file, and try again. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! attempt to redefine output >> flag name <<.
\end{tabular} & An output flag has a logic statement assigned to it (it is used on the left side of the assignment operator) more than once. Find and change the offending line and recompile. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! output >> flag name << is not an output type.
\end{tabular} & The flag named is not defined as an output only flag and cannot be used as an output (on the left side of the equals sign). \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! output name >> flag name \(\ll\) not in directory.
\end{tabular} & The output flag on the left of the equals sign is not found. Check the spelling of the flag name shown and try again. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! Too Many Timers and Counters (Max 128 combined).
\end{tabular} & There is a fixed number of timers and counters that can be used in any system program. The limit is 128 for the total of both timers and counters. Try to reduce the number of either timers or counters and compiler again. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! Drty name << flag name >> used in alias not found in drty file
\end{tabular} & The flag named as an alias is not found in the directory file. This is an advanced feature of the new compiler being released with the version 2.5 drive software, but will work with version 2.4 software. Define statements can be used for more user friendly names of functions and substituted for fixed names. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! << flag name >> is longer than 43 characters.
\end{tabular} & System program flag names are limited to 43 characters, and are truncated to that number. A flag longer than this is probably caused by a typo. Find and fix the error and recompile. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error Message & Description \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR! A timer or counter (flag name) must be defined as an output before being used as an input!
\end{tabular} & Timers and Counters are unique system flags. They require storage space for intermediate values for time or count, and additional space for storing their preset, enable logic state, reset, and output status flag. Therefore, the Timer or Counter must logically be assigned (on the left of the equals sign) before the status flag (the timer or counter name without the value) can be used as an input flag (to the left of the equals sign). \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! input scan table is full
\end{tabular} & The storage space for the number of inputs is limited to the assignment of unique inputs. The limit for NXG is 800 entries. A flag is assigned only once even if used multiple times (as an input). \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! Counter reset (<flag name>) used without a defined counter. \\
A counter must be defined as an output first!
\end{tabular} & A reset flag is a unique flag used for resetting counters, but due to the storage situation as described above, a reset flag cannot appear in a system program before the counter is defined as an output (to the left of the equals sign). If the logic for the reset must appear before the definition, the use of a temporary flag to define the logic state, can appear before the Counter, with the reset flag assigned to the temporary flag. Rewrite the logic and recompile. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! output scan table is full
\end{tabular} & The output scan table can contain a maximum of 800 unique entries. Timers and counters are created in the output scan table even if they are used as an input. These are the entries that map an I/O table location to the real world source (memory location, hardware output, etc.). And only one is required for each flag used. Bit flags take up 8 spaces even if only one is used. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! input scan table is full
\end{tabular} & The input scan table can contain a maximum of 800 unique entries. These are the entries that map an input flag from the real world source to the I/O table. Only one entry is required for each flag used. Bit flags take up 8 spaces even if only one is used. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! logic table is full.
\end{tabular} & The logic table can contain a maximum of 5000 total entries. The entries are created by logic statements as strings of inputs and outputs in sequential order separated by their operators. Each input, output, and operator used counts as an entry. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! The maximum time for a single timer is 16383.5 secs! ( 4.55 hours)
\end{tabular} & The amount of time assigned to a timer exceeded the max value allowed. This value applies for NXG software only. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! The maximum count for a counter is 32767 !
\end{tabular} & The number of low to high transitions required to activate the output of a counter has been exceeded. Reduce the number in the parentheses and recompile. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! expecting ) got >> name <<
\end{tabular} & For timers and counters, when they are defined, must have the flag name followed by a value enclosed in parentheses. The trailing parenthesis is missing. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error Message & Description \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! expecting ( got >> name <<
\end{tabular} & For timers and counters, when they are defined, must have the flag name followed by a value enclosed in parentheses. The compiler expected a left parenthesis as the next character. \\
\hline \begin{tabular}{l}
SOP Error \\
ERROR!! System Program size (nnnn bytes) is greater than allowed ( 8192 bytes)
\end{tabular} & The total storage size of the system program, listed in bytes, exceeds the max allowed space. This is the actual bytes used and not the size of the Intel Hex file, which is an ASCII representation of the data within a header, load information, and checksum error checking. \\
\hline \begin{tabular}{l}
SOP Error \\
WARNING...Unable to load complete directory! \\
Too many flags in directory (nnnn)
\end{tabular} & The size of the directory file has exceeded the allocated memory for storing that file. Check the version of the compiler to ensure you are using the latest. Also check the directory file to ensure it isn't corrupted. \\
\hline \begin{tabular}{l}
SOP Error \\
WARNING!! flag name has been redefined as an output on statement:nnnn line:nnnn.
\end{tabular} & An output flag has a logic statement assigned to it (it is used on the left side of the assignment operator) more than once. Find and change the offending line and recompile. The second usage of the flag is located by the statement or line number. \\
\hline \begin{tabular}{l}
SOP Error \\
WARNING!! Timer/counter \(\gg\) flag name \(\ll\) logic is redefined in line nnnn.
\end{tabular} & This is the same as redefining output flags, but is specific to timers or counters. The line number shows the attempted redefinition. \\
\hline \begin{tabular}{l}
No output file created. There is a warning message in the file. \\
It needs to be commented out or removed before recompiling. \\
Edit <source file name> and try again. \\
The error occurred in logic statement: nnn, line: nnnn.
\end{tabular} & This is a special error that only occurs after a reverse compiled file is recompiled. The reverse compilation process inserted a warning message. This message needs to be reviewed before proceeding. Based on the message, it may be simply a matter of deleting the warning, or it could require rewriting portions of the system program. \\
\hline \begin{tabular}{l}
This file was created by the reverse compiler from a corrupt HEX file or utilizing the wrong DRCTRY file. No output file created. Edit source file name and try again. \\
The error occurred in logic statement: nnnn, line: nnnn.
\end{tabular} & If a corrupted hex file is reverse compiled, or if the wrong directory file was used in that process, there is usually "UNDEFINED" flags in the source file. If this is the case the program will have to be rewritten. It is ALWAYS advisable to use source files instead of reverse compiled files so that changes can be documented, and the logic is described via the comments in the original file. The location of the compiler error is shown as both the statement and line number. \\
\hline
\end{tabular}

\subsection*{8.11 Uploading a System Program (Hex File)}

In a manner similar to downloading a system program, the drive's current system program can be uploaded from the drive to a receiving computer (binary format in the drive, hex format from the drive or compiler). This can permit archival of a functioning system program. Also, the text statements in a system program can be re-created (by using the system program's reverse compiler) so that the program can be examined or modified as needed.

Using a similar method as described in the download section, invoke the serial communications upload function on the drive. If using the DOS-based upload utility, invoke the data capture process of the communications software
prior to starting the data upload function in the drive. If using the Windows-based SOP Utilities program, press the "Start" button prior to starting the data upload function in the drive.

From the drive keypad, enter the "System Program Upload" function menu (9130). Once this function has been invoked, the keypad will indicate that the drive is uploading data. Most serial communications packages will display the ASCII hex data while it is being uploaded so that the upload process can be monitored. Once complete, the drive will indicate that it has finished and will return to the System program upload menu (9130). At this point, the data capture process in the PC is stopped and the resulting file is saved.


Note: As with the download, the upload process can be terminated from the drive side by entering a [SHIFT]+[CANCEL] key sequence.

\subsection*{8.12 Reverse Compiler}

Because the system program embedded in the drive is in a non-readable form, a program to reverse compile the hex records of a system program back into readable statements was created. A reverse compiled program can be examined for logic functions and even edited, recompiled, and re-downloaded into the drive to alter the system program functionality as needed. Since the embedded hex file does not contain any symbolic information, a directory file within range is needed during the reverse compile process to convert from the binary address information back into symbolic readable form. (See Section 8.13 on combined source and Hex files)

The Siemens SOP Utilities program contains an integrated Reverse Compiler program. This component is similar to the compile component. A HEX file and DRCTRY file must be specified. If they do not exist in the default directory, you must use the "Browse" buttons to locate the necessary files. When the appropriate files are specified, press the "Rev Compile" button to perform the reverse compilation. See Figure 8-9. Reverse Compiler errors are listed in Table 8-12.


Figure 8-9. Reverse Compiler Options Window

Table 8-12. Reverse Compiler Error Messages
\begin{tabular}{|c|c|}
\hline Error Message & Description \\
\hline \begin{tabular}{l}
Hex File Error \\
Too many input table entries (> 800)
\end{tabular} & Then number of distinct inputs in the scan table exceeds the maximum allowable 800 entries. The hex file is possibly corrupted or is of the wrong drive type. \\
\hline \begin{tabular}{l}
Hex File Error \\
Too many output table entries (> 800)
\end{tabular} & Then number of distinct outputs in the scan table exceeds the maximum allowable 800 entries. The hex file is possibly corrupted or is of the wrong drive type. \\
\hline \begin{tabular}{l}
Hex File Error \\
Too many logic table entries (> 5000)
\end{tabular} & Then number of entries in the logic table exceeds the maximum allowable 5000 entries. The hex file is possibly corrupted or is of the wrong drive type. \\
\hline \begin{tabular}{l}
Hex File Error \\
Too many counter/timer entries ( \(>128\) )
\end{tabular} & The hex file contains too many timers and counters (total sum of both) which cannot exceed 128 for NXG. The hex file is possibly corrupted or is of the wrong drive type. \\
\hline \begin{tabular}{l}
DRCTRY Error \\
ERROR in line nnnn \(-\ll\) flag name \(\gg\) is longer than 43 characters. \\
The error occurred in directory file name.
\end{tabular} & The flag name shown is longer than the max allowable 43 characters. Check the indicated flag indicated and check for a corrupted hex file. \\
\hline \begin{tabular}{l}
!!!!!!!!!!!!!!!!!!!! Warning !!!!!!!!!!!!!!!!!!!!!!! \\
This file is corrupted (bad system program checksum). Carefully check all logic equations for invalid or undefined flags, erroneous timer or counter values, wrong use of flags, erroneous logic, etc. Edit these lines (and comment these warning lines), compile and use at your own risk. \\
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\end{tabular} & This error message is added to the top of a reverse compiled program when the stored system program checksum does not compare with the calculated one. The file must be check for integrity, any errors corrected, and this comment removed before re-compiling. Since the checksum is invalid, the file may or may not work properly. \\
\hline \begin{tabular}{l}
DRCTRY Version Error \\
The version of directory file name used is DIFFERENT from the original DRCTRY. Probable errors will occur, check the output files. (You must comment out the warning lines out in the '.DIS' file before recompiling).
\end{tabular} & This message will display if the version the system program is reverse compiled with is different than the version used to create the original hex file. A warning will be added to the file along with the statistics of the compiler version and directory version, along with other information on the file. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error Message & Description \\
\hline \begin{tabular}{l}
!!!!!!!!!!!!!!!!!!!!!!! Warning !!!!!!!!!!!!!!!!!!!!!!!!! \\
The version of directory file name used is DIFFERENT from the original DRCTRY \\
Probable errors will occur, check the output files \\
(You must comment these lines out before recompiling) \\
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! \\
; Siemens Group \\
; ID Series System Program Reverse Compiler version Number \\
; REVCMP Directory File Name : directory file name \\
; REVCMP used directory file name ver : n.nn \\
; Hex File Name : hex file name \\
; System Program Name : system program name \\
; System Program Date/Time : time/date \\
; System Type : drive type \\
; Hex file used DRCTRY version : n.nn
\end{tabular} & \begin{tabular}{l}
This header is added to the top of the reverse compiler output file When the directory version error above displays. \\
The comments must be removed before the file can be recompiled successfully.
\end{tabular} \\
\hline \begin{tabular}{l}
The file was reverse compiled successfully. \\
Original DRCTRY file version: n.nn. \\
Current DRCTRY file version: \(\underline{n . n n}\). \\
Number of counters and timers: nnn. \\
Number of in items: nnn. \\
Number of out items: nnn. \\
Number of logic items: nnnn. \\
Checksum: 0xNNNN.
\end{tabular} & Header continuation. \\
\hline \begin{tabular}{l}
Hex File Error \\
The hex file is corrupted. \(n n\) UNDEFINED label(s) found. \\
Output file created anyway. \\
Check file for error(s).
\end{tabular} & The hex file used as the input to the reverse compiler was corrupted in some manner, creating UNDEFINED labels - labels that could not be found in the directory file. It may simply be that the directory file used to reverse compile did not contain the flags found. This error occurs anytime there is one or more "UNDEFINED" labels found. \\
\hline \begin{tabular}{l}
Source Corrupt \\
This file is a dual source/hex file, but the source is corrupt. \\
Do you want to try to reverse compile using the older method?
\end{tabular} & This message occurs only with embedded source file information in the hex file. If the source file exists, the reverse compiler simply extracts the source text directly. If the end of file is not found within the source text, it is assumed corrupted and prompts the user to do an actual reverse compiler of the compiled code. All comments are lost. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Error Message } & \multicolumn{1}{c|}{ Description } \\
\hline No Errors & \begin{tabular}{l} 
This message displays if the source text exists within the \\
hex file and is successfully extracted.
\end{tabular} \\
\begin{tabular}{l} 
The SOP source has been successfully extracted from \\
the hex file
\end{tabular} & \\
\hline
\end{tabular}

The output file will contain a source statement for each original statement in the system program. The statements will be ordered with the invariant statements first, followed by the dependent statements. All of the statements in a section will be in the same order as the original file, with the exception of any true/false type statements which are moved to the front of the file.

\section*{Note:}

Comments from the original source file are not included in a compiled hex file and therefore cannot be reverse compiled. (See Section 8.12 on combined source and Hex files)
A copy of the symbol directory file (e.g., DRCTRY.NGN) must exist within the working directory of the compiler and reverse compiler, or in the directory of the invoked executable program.

\subsection*{8.13 Combined Source / Hex File}

Beginning with NXG software version 2.4 the system is capable of accepting a combined source/hex file format. The file extension of these files is ".hex", the same as the older style compiled sop files. However, when reverse compiling, this new file format undergoes a pseudo reverse compiling process rather than the traditional reverse compiling process. In this pseudo reverse compiling process all the original source comments and formatting is extracted from the ".hex" file and is presented to the user as the reverse compiled output. This combined file type must be created or reverse compiled with SOP Utilities version 5.0 or later. In all other respects this type of compiled sop is the same as the older file version.

For example:

\section*{Original Sop File}
```

\#NEXTGEN;
;--
Program Number: NoWago.sop
Customer:Siemens
Siemens Sales Order: Xxxx
Siemens Part Numbers: xxxx
Description: none
Engineer: JAB
; Original Version Date: 10/31/00
;-------------------------------
;--
; ; comment line
;
;INITIALIZED FLAGS

```
```

; Keypad Speed reference
RawDemandKeypad_O = TRUE;
; Speed profile
SpeedProfile_O = FALSE;
RunRequest_O = TempFlag01_O * TempFlag02_O ;
RampStop_O = TempFlag02_O;
; Fault Reset
;
DriveFaultReset_O = KeypadFaultReset_I + ToolFaultReset_I;

```
;=====================================================================================1
;================================ END OF FILE ======================================1
;===================================================================================1

\section*{Old Style .hex file data}
```

:020000020000FC
:1000000046005F00800065008A000104AC009B464A
:100010004E4F5741474F2E534F50000000000000F5
:1000200000000000000000002044656320313920FA
:1000300030393A34333A3130203230303200000037
:10004000A20006009E002402030001250204000114
:10005000410007000F450008000F000000000000ED
:100060000008010009030004040006020001040066
:100070000605000107000208000606000100000056
:1000800013000000012E0001000140000200015495
:10009000000500014900060001000000000000000A
:0C00A0009E0000000000000000009E0018
:00000001FF

```

\section*{Old Style reverse compiled output}
\#NEXTGEN;
```

; Siemens Group
; ID Series System Program Reverse Compiler Windows Ver. 5.0.0 12/3/02
;
REVCMP Directory File Name : C:IPROGRAM FILESISiemens \FLASH FILESIDRCTRY.NGN
; REVCMP used DRCTRY.NGN ver : 0401
Hex File Name : nowago.hex
System Program Name : NOWAGO.SOP
System Program Date/Time : Dec 19 09:43:10 }200
System Type : NEXTGEN
Hex file used DRCTRY version : 0401

```
RawDemandKeypad_O = TRUE;
SpeedProfile_O = FALSE;
RunRequest_O = TempFlag01_O * TempFlag02_O;
RampStop_O = TempFlag02_O;
DriveFaultReset_O = KeypadFaultReset_I + ToolFaultReset_I;

\section*{New Style .hex file}
```

:020000020000FC
:1000000046005F00800065008A000104AC009B464A
:100010004E4F5741474F2E534F50000000000000F5
:1000200000000000000000002044656320313920FA
:1000300030393A34333A3130203230303200000037
:10004000A20006009E002402030001250204000114
:10005000410007000F450008000F000000000000ED
:100060000008010009030004040006020001040066
:100070000605000107000208000606000100000056
:1000800013000000012E0001000140000200015495
:10009000000500014900060001000000000000000A
:0C00A0009E0000000000000000009E0018
:00000001FF
<1><216>Start-of-source
<2><129>\#NEXTGEN;
<3><161>
<4><23>; Siemens NEXT GEN HARMONY AC MOTOR DRIVE
<5><130>; SYSTEM OPERATING PROGRAM (TEST VERSION)
<6><74>
<7><235>; Program Number: NoWago.sop
<8><157>; Customer: Siemens
<9><255>; Siemens Sales Order: xxxx
<10><94>; Siemens Part Numbers: xxxx
<11><115>; Description: none
<12><121>; Engineer: JAB
<13><69>;
<14><59>; Original Version Date: 10/31/00
<15><206>;
<16><36>;SYMBOL DEFINITION
<17><206>;--
<18><69>;
<19><71>; = equals * logical AND + logical OR / logical NOT
<20><251>; ; comment line
<21><69>;
<22><14>;
<23><8>;INITIALIZED FLAGS
<24><206>
<25><101>
<26><163>; Keypad Speed reference
<27><65>RawDemandKeypad_O = TRUE;
<28><10>
<29><103>; Speed profile
<30><157>SpeedProfile_O = FALSE;
<31><10>
<32><87>RunRequest_O = TempFlag01_O * TempFlag02_O ;
<33><198>RampStop_O = TempFlag02_O;
<34><69>;
<35><132>; Fault Reset
<36><69>;
<37><30>DriveFaultReset_O = KeypadFaultReset_I + ToolFaultReset_I;
<38><10>
<39><219>;==
<40><206>;================================= END OF FILE =====================================
<41><219>;==
<42><10>
<43><240>End-of-file

```

\section*{New Style reverse Compiled Output}
```

\#NEXTGEN;
; Siemens NEXT GEN HARMONY AC MOTOR DRIVE
Program Number: NoWago.sop
Customer: Siemens
Siemens Sales Order: xxxx
Siemens Part Numbers: xxxx
Description: none
Engineer: JAB
Original Version Date: 10/31/00
;SYMBOL DEFINITION

= equals * logical AND + logical OR / logical NOT
; ; comment line
;
;INITIALIZED FLAGS
;---
;
; Keypad Speed reference
RawDemandKeypad_O = TRUE;
; Speed profile
SpeedProfile_O = FALSE;
RunRequest_O = TempFlag01_O * TempFlag02_O ;
RampStop_O = TempFlag02_O;
;
; Fault Reset
;
DriveFaultReset_O = KeypadFaultReset_I + ToolFaultReset_|;

```

```

;================================ END OF FILE ====================================
;===

```

\section*{8}
\(\nabla \nabla \nabla\)

\section*{APPENDIX}

\section*{A Performance Capabilities}

\section*{A. 1 General Features}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Feature } & \multicolumn{1}{c|}{\begin{tabular}{c} 
V/Hz \\
Control
\end{tabular}} & \begin{tabular}{c} 
Open Loop \\
Vector Control
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Closed Loop \\
Vector Control
\end{tabular}} \\
\hline Cell Bypass & Manual \({ }^{1}\) & Fast & Fast \\
\hline Output filter compatibility & Yes & Yes & Yes \\
\hline Spinning Load & No & Yes & Yes \\
\hline
\end{tabular}
1. Manual Bypass is obtained when Fast Bypass is disabled but Mechanical Bypass is still selected. When a cell fault occurs, the drive will trip on the cell fault, but the user can reset the fault (manually), which triggers a cell bypass and can then proceed to restart the drive.

\section*{A. 2 Speed and Torque Control}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Feature } & \multicolumn{1}{|c|}{ V/Hz Control } & \multicolumn{1}{c|}{\begin{tabular}{c} 
Open Loop \\
Vector Control
\end{tabular}} & \begin{tabular}{c}
\multicolumn{1}{c|}{\begin{tabular}{c} 
Closed Loop \\
Vector Control
\end{tabular}} \\
\hline \begin{tabular}{l} 
Speed Range for 100\% holding \\
torque and 150\% starting torque
\end{tabular} \\
\hline Torque Regulation (\% of rated)
\end{tabular} \\
\hline N/A & \(100: 1\) & \(200: 1\) \\
\hline Torque Linearity (\% of rated) & N/A & \(\pm 2 \%\) & \(\pm 2 \%\) \\
\hline Torque Response \(^{1}\) & N/A & \(\pm 5 \%\) & \(< \pm 5 \%\) \\
\hline Speed Regulation (\% of rated) & Motor Slip & \(\pm 0.5 \%^{2}\) & \(\pm 0.1 \%^{3}\) \\
\hline Speed Response \(^{4}\) & \(20 \mathrm{rad} / \mathrm{s}\) & \(20 \mathrm{rad} / \mathrm{s}\) & \(>20 \mathrm{rad} / \mathrm{s}^{5}\) \\
\hline Torque Pulsation (\% of rated) & \(<1.0 \%\) & \(<1.0 \%\) & \(<1.0 \%\) \\
\hline
\end{tabular}
1. Torque response values are valid for a drive without an output filter. Tuning may be required to achieve these values.
2. \(\sim 0.3 \%\) speed error is typical. Worst-case speed error is equal to \(\sim 30 \%\) of rated motor slip.
3. \(0.1 \%\) can be achieved with a 1024 PPR encoder. Speed accuracy depends on the encoder PPR.
4. Speed response numbers apply as long as torque limit is not reached.
5. Testing is required to determine exact value.

Applications that require lower than \(1 \%\) speed operation under high load torque should use the CLVC option. In such cases, it is preferable to select a motor that has high full-load slip (>1.0\%) and high breakdown torque.

\section*{A. 3 Starting Torque}

Starting torque capability in both OLVC and CLVC modes, with NXG control versions 2.2 and higher, is such that \(85-90 \%\) torque can be achieved with \(100 \%\) current as long as stated motor slip is greater than \(1 \%\) of rated speed.

The following should be considered for high starting torque applications:
- The motor should be sized such that its breakdown torque is \(50 \%\) (of rated) higher than the starting torque requirement for the application. For example, if an application requires \(150 \%\) starting torque, then the motor should have \(200 \%\) (i.e., \(150 \%+50 \%\) ) breakdown torque.
- The motor full slip should be higher than \(1.0 \%\).
- The drive should be sized such that its current rating is \(20 \%\) higher than the ideal motor current required for producing the desired starting torque.
- Low speed inverter derating should also be taken into account if the drive is going to be operating at low frequencies for extended periods of time.

V/Hz control has a special mode of operation (that can be set up via the menus) where 95-100\% starting torque can be achieved with \(100 \%\) current. This is useful in high starting torque application with (or without) long cable and/or high efficiency/low-slip motors. However, low speed control is not possible in this mode, i.e., speed control is possible only above a minimum speed that is typically five times the rated motor slip. If this mode is applied to parallel motors, then current sharing between motors (due to motor mismatch) must be considered while sizing the drive for a high starting torque application. Note that only Manual Bypass is available with V/Hz control.

\section*{A. 4 Output Voltage and Current Characteristics}

\section*{A.4.1 Output Voltage}
\begin{tabular}{|l|l|}
\hline Distortion at rated voltage & \(2 \%\) of drive rated output voltage (for the first 20 harmonics) \\
\hline Unbalance & \(1 \%\) of drive rated output voltage \\
\hline\({\mathrm{dV} / \mathrm{dt}^{1}}^{\text {Harmonic Voltage Factor (HVF) }}{ }^{2}\) & \begin{tabular}{l}
\(<1000\) V/us for water-cooled cells \\
\(<4000\) V/us for air-cooled cells
\end{tabular} \\
\hline \begin{tabular}{l}
\(<0.02\) (see tables below for HVF values as a function of ranks and cell \\
voltages)
\end{tabular} \\
\hline
\end{tabular}
1. Although output dV/dt values are high with air-cooled drives, the control ensures that only one cell switches at a particular instant. The magnitude of voltage steps applied to the motor are thus smaller than the rated voltage (and equal to the dc-bus voltage of a single cell), which limits the stress on the insulation of the first few turns (of the motor winding).
2. MG-1, Part 30, suggests that no motor derating is required when the inverter voltage waveform has a HVF value that is less than 0.03 . HVF is defined as:
\[
H V F=\sqrt{\sum_{n \geq 5}^{\infty} \frac{V_{n}^{2}}{n}}
\]
where \(V_{n}\) is the harmonic amplitude in per-unit, and \(n\) is the harmonic order (equal ratio of harmonic frequency to fundamental frequency). All Harmony drive configurations (with more than nine cells) meet this requirement. Therefore, heating due to switching harmonics is negligible and no motor derating is needed.

Table A-1. Table Harmonic Voltage Factor as a function of ranks with 690 V cells
\begin{tabular}{|c|c|c|}
\hline Number of Cells & Drive Output Voltage (kV) & HVF \\
\hline 9 & 2.40 & 0.019 \\
\hline 9 & 3.30 & 0.017 \\
\hline 12 & 4.16 & 0.009 \\
\hline 12 & 4.80 & 0.010 \\
\hline 15 & 5.50 & 0.007 \\
\hline 18 & 6.90 & 0.005 \\
\hline
\end{tabular}

Table A-2. Table Harmonic Voltage as a function of ranks with 630 V cells
\begin{tabular}{|c|c|c|}
\hline Number of Cells & Drive Output Voltage (kV) & HVF \\
\hline 9 & 2.40 & 0.014 \\
\hline 9 & 3.30 & 0.014 \\
\hline 12 & 4.16 & 0.010 \\
\hline 15 & 5.50 & 0.007 \\
\hline 18 & 6.60 & 0.005 \\
\hline
\end{tabular}

\section*{A.4.2 Output Current}
\begin{tabular}{|l|l|}
\hline DC component & \(1 \%\) of drive rated output current \\
\hline Distortion (or THD) \({ }^{1}\) & \begin{tabular}{l}
\(3 \%\) of drive rated output current when the motor rating is equal to drive \\
rating and the typical motor leakage reactance of \(16 \% .{ }^{2}\)
\end{tabular} \\
\hline
\end{tabular}
1. The output current distortion limit of \(3 \%\) is valid for all ranks of cells (3 to 6). As the number of ranks increases, the current distortion decreases to below \(2 \%\) for 6 ranks of cells with a typical motor.
2. Most motors have a leakage reactance that is greater than \(16 \%\). Output current distortion is inversely proportional to motor leakage reactance; i.e., as motor leakage reactance decreases, output current distortion increases.

\section*{A. 5 Drive Output Transformer Considerations}

A drive output transformer needs to be sized carefully. The following procedure provides a method to determine if transformer over-sizing is required based on the starting torque requirement for the application. In addition, and air gap should be provided such that the transformer can handle up to \(1 \%\) of DC current from the drive.

At startup, the drive typically goes through a magnetization state during which motor flux is established. The time spend during this state is adjustable between 0.25 and 5.0 seconds, with the default setting at 0.5 seconds. During this state, the output voltage is increased from zero to the normal value (equal to IR drop in the motor and cable) required to establish motor flux. If an output transformer is connected to the drive, then the drive voltage during this state is equivalent to a low frequency AC voltage (with frequency \(=1 /(4 *\) FluxRampTime)) applied to the primary winding.

When an output transformer is used, take care to rate the transformer for the additional flux that is required to be supported during high starting torque conditions. This additional flux can be estimated as:
\[
\begin{aligned}
\text { Additional Transformer Flux } & =\text { Istart * (Rmotor + Rxfmrsec + Rcable)/Starting Frequency } \\
& =\text { Oversize Factor (when all variables are in per-unit) }
\end{aligned}
\]
where:
- Istart is the starting current into the motor
- Rmotor, Rxfmrsec, Rcable are the motor stator resistance, transformer secondary resistance, and cable resistance, respectively
- Starting Frequency is the drive output frequency at which substantial torque is required.

If all values are in per-unit, then this formula provides the extra volt-second capability (in per-unit) required for the transformer core. The above expression shows that even nominal starting with a long cable or high stator resistance will require an oversized transformer.

Hence, if the original transformer is rated only for the rated volts-per-hertz (or flux) of the motor, then the transformer for a long cable or high starting torque application must have a core size that is ( \(1+\) Oversize Factor) times larger than the original value.

\section*{A. 6 Voltage Capability}

\section*{A.6.1 With All Cells Operating}

The maximum output voltage of the drive in terms of the number of ranks and the secondary-side cell voltage is given as:
\[
\text { Vout }=1.78 \text { * N * Vcell_rating * Tap_Setting * Input_Voltage / Rated_Input_Voltage }
\]

Where:
- \(\quad \mathrm{N}=\) number of ranks in the drive (or the total number of cell \(=3 * \mathrm{~N}\) )
- \(\quad\) Vcell_rating \(=460,630\), or 690 V (depending on its design)
- Input_Voltage = actual input line voltage
- Rated_Input_Voltage = rated drive input voltage
- Tap_Setting \(=1.00\) (for \(0 \%\) tap), 0.95 (for \(+5 \%\) tap), or 1.05 (for \(-5 \%\) tap)

Note:
- The above formula is valid for all air-cooled drives and only those water-cooled drives with the newer transformer design (i.e., those units produced after summer of 2002). The older versions of watercooled transformers above 5000 hp had higher than normal leakage impedance, which lowered the effective drive voltage capability.
- Drive voltage capability must be calculated based on worst-case line voltage (minimum value).

\section*{A.6.2 After Cell Bypass}

If X is the largest number of cells in bypass in two of the phases, then the maximum voltage at the drive output will be:
\[
\text { Vout_bypass = Vout * }(2 \mathrm{~N}-\mathrm{X}) / 2 \mathrm{~N}
\]

Where:
Vout is the maximum output voltage with all cells operating and can be calculated as shown above.

\section*{A.6.3 During Synchronous Transfer with Cell Bypass}

When deciding on the feasibility of Up/Down Transfer with cell-bypass, first calculate the maximum output voltage of the drive with all cells in operation (Vout) as given above.

If X is the largest number of cells in bypass in two of the phases, then calculate the drive output after bypass (Vout_bypass) as given above. Assuming that Vin is the input voltage to which the drive has to synchronize, NXG software will allow Up or Down Transfer only if Vout_bypass > Vin.

\section*{A.6.4 Example of Calculating Drive Output Voltage Capability}

Consider a drive with 18 cells, each rated for 690 Volts. The maximum output voltage that this drive can deliver on the \(+5 \%\) tap with rated line voltage is (with \(\mathrm{N}=6\) and Vcell \(=690\) ):
\[
\text { Vout }=1.78 * 6 * 690 * 0.95 * 1.0=7.00 \mathrm{kV}
\]

If, after cell bypass, the drive has 6 cells operational in phase \(A, 5\) cells in phase \(B\), and 4 cells in phase \(C\), then the maximum voltage that the drive can produce with neutral shift from the above formula is (with \(X=1+2=3\), because 2 cells in phase C and 1 cell in phase \(B\) are bypassed):
\[
\text { Vout_bypass }=7000 *(2 * 6-3) /(2 * 6)=5.25 \mathrm{kV}
\]

\section*{Suggested Spare Parts List}

\section*{SPARE PARTS LIST}
\begin{tabular}{|c|c|c|c|}
\hline Item & P/N & Description & Qty. \\
\hline 1 & 10501420 & FUSE,6A,600V,ATQR6 & 1 \\
\hline 2 & 10501422 & FUSE,2A,600V,ATQR2 & 1 \\
\hline 3 & 10501425 & FUSE,10A,600V,ATQR10 & 1 \\
\hline 4 & 10506501 & FUSE,3A,600V,ATQR3 & 2 \\
\hline 5 & 10506502 & FUSE,2.25A,600V,AJT2-1/4 & 3 \\
\hline 6 & 10506503 & FUSE,0.5A,600V,ATQR1/2 & 3 \\
\hline
\end{tabular}

\section*{APPENDIX}

\section*{C System Control Drawings}

This appendix contains the system control diagrams for a Perfect Harmony drive with Next Gen Control.
- Harmony Control Diagram drawing number 459712
- Command Generator Diagram drawing number 459713
- Input/Output Process Diagram drawing number 459717





\section*{D Flags and Switches}

\section*{D. 1 Introduction}

System program flags and switches are described in this appendix. The bulk of this appendix consists of a sample copy of the latest DRCTRY.NGN file. This file contains memory locations of software flags and switches that are referenced by the system program (.SOP file).


IMPORTANT!! This sample may not be compatible with your installed software. The information that this appendix refers to may change because of software updates and new releases. Refer to the file DRCTRY. NGN (located on the diskette that is shipped with the Perfect Harmony system) for the most recent information.

\section*{D. 2 Sample DRCTRY. NGN File}

The following information is a sample DRCTRY. NGN file for a Perfect Harmony drive and not a complete representation of the SOP File.
\(\square\)
```

!*START_SYPHDR
\$Workfile: Drctry.ngn \$
\$Revision: 108 \$
\$Date: 11/04/03 12:03p \$
\$Author: Ron Gaillot \$
Description: NXG Standard System Program variable definition file
! *END_SYPHDR**
! Data type definitions
1= byte flag - bi-directional
2= bit flag - bi-directional (general purpose)
3= bit flag - bi-directional (user module - old - for backward compatibility)
4= bit flag - bi-directional (hardware generally)
5= Timer flag - special handling
6= Counter flag - special handling
7= counter reset flag - output only
8= Bit flag - special handling (16 bit flags in interpolator - not in compiler)
9= bit flag - input only (generally hardware)
10= bit flag - input only (intended for XCL input flags - never used)
11= bit flag - input only (system I/O board or Wago)
12= bit flag - output only (system I/O board or Wago)
13= bit flag - input only (generally hardware)
14= bit flag - output only (generally hardware)
15= byte flag - input only
16= byte flag - output only
250= special for text handling
254= True case handling
253= False case handling
FALSE
true
false

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{00000102} \\
\hline \multicolumn{3}{|c|}{00000104} \\
\hline \multicolumn{3}{|c|}{00000106} \\
\hline \multicolumn{3}{|l|}{! struct CommandGeneratorSwitchesType CmdGenSwTyp} \\
\hline ! first variable is pla & in drive soft & \\
\hline Analog1_0 & 000101 & Selects analog input \#1 if true, else analog input \#2 if false \\
\hline \multicolumn{3}{|l|}{(id=4105, 4175)} \\
\hline RatioMenu_0 & 000301 & Selects the ratio data from the menu source (id=2070) when \\
\hline \multicolumn{3}{|l|}{set true} \\
\hline RatioNetwork1_0 & 000401 & Selects the ratio data from the network \#1 source when set true \\
\hline RatioNetwork2_0 & 000501 & Selects the ratio data from the network \#2 source when set true \\
\hline RawDemandMenu_0 & 000701 & Selects the speed demand data from one of the menu sources \\
\hline \multicolumn{3}{|l|}{when set true} \\
\hline SetPoint1_0 & 000801 & Selects setpoint \#1 (id=4250) as the speed demand \\
\hline SetPoint2_0 & 000901 & Selects setpoint \#2 (id=4260) as the speed demand \\
\hline SetPoint3_0 & 000A 01 & Selects setpoint \#3 (id=4270) as the speed demand \\
\hline SetPoint4_0 & 000B 01 & Selects setpoint \#4 (id=4280) as the speed demand \\
\hline SetPoint5_0 & 000C 01 & Selects setpoint \#5 (id=4290) as the speed demand \\
\hline SetPoint6_0 & 000D 01 & Selects setpoint \#6 (id=4300) as the speed demand \\
\hline SetPoint7_0 & 000E 01 & Selects setpoint \#7 (id=4310) as the speed demand \\
\hline SetPoint8_0 & 000F 01 & Selects setpoint \#8 (id=4320) as the speed demand \\
\hline RawDemandNetwork1_0 & 001001 & Selects network \#1 as the raw speed demand \\
\hline RawDemandNetwork2_0 & 001101 & Selects network \#2 as the raw speed demand \\
\hline \multicolumn{3}{|l|}{speed demand} \\
\hline RawDemandKeypad_0 & 001301 & Selects keypad as the raw speed demand \\
\hline RawDemandPid_0 & 001401 & Selects pid output as the raw speed demand \\
\hline AutoTune_I & 0015015 & Flag is set true while drive is in the auto tune mode \\
\hline SpeedRampMenu1_0 menu 1 & 001601 & Selects the use of the accel/decel (id=2270,2280) rates from \\
\hline SpeedRampMenu2_0 menu 2 & 001701 & Selects the use of the accel/decel (id=2290,2300) rates from \\
\hline SpeedRampMenu3_0 menu 3 & 001801 & Selects the use of the accel/decel (id=2310,2320) rates from \\
\hline SpeedRampNetwork1_0 & 001901 & Selects the use of the accel/decel rates from network 1 \\
\hline SpeedRampNetwork2_0 & 001A 01 & Selects the use of the accel/decel rates from network 2 \\
\hline SpeedLimitMenu1_0 & 001B 01 & Selects the use of the speed limits (id=2080,2090,2140,2150) \\
\hline \multicolumn{3}{|l|}{from menu 1} \\
\hline SpeedLimitMenu2_0 & 001C 01 & Selects the use of the speed limits (id=2100,2110,2160,2170) \\
\hline from menu 2 & & \\
\hline SpeedLimitMenu3_0 & 001D 01 & Selects the use of the speed limits (id=2120,2130,2180,2190) \\
\hline \multicolumn{3}{|l|}{from menu 3} \\
\hline PidMenu_0 & 001E 01 & Selects the PID setpoint menu ( \(1 \mathrm{D}=4410\) ) as the PID command \\
\hline AutoOnOffRunRequest_0 & 002001 & Selects the auto on/off module to generate a run request \\
\hline AuxAnalogSource_0 & 002101 & Selects the analog inputs \#1 or \#2 for the auxiliary demand \\
\hline \multicolumn{3}{|l|}{auxiliary demand} \\
\hline AuxDemandNetwork1_0 & 002301 & Selects network \#1 as the source for the auxiliary demand \\
\hline AuxDemandNetwork2_0 & 002401 & Selects network \#2 as the source for the auxiliary demand \\
\hline Spare3 & 002501 & \\
\hline Jog_0 & 002601 & Selects the jog speed (id=4330) as the speed demand \\
\hline Zero_0 & 002701 & Selects the zero speed as the speed demand \\
\hline KeySwitchLockOut_0 & 0028010 v & ides all security to prevent parameter edit if true \\
\hline Safety_0 & 002901 & Selects the safety setpoint speed (id=4340) as the speed demand \\
\hline RefIncr_0 when set true & 002A 01 & Increments the speed demand by the select accel/decel rate \\
\hline RefDecr_0 when set true & 002B 01 & Decrements the speed demand by the select accel/decel rate \\
\hline RawDemandSampleHold_0 & 002C 01 & Selects the sample and hold output as the speed demand \\
\hline SpeedProfile_0 & 002E 01 & Enable the use of speed profile function if true \\
\hline PolarityChange_0 & 003001 & Enable the polarity change feature if true \\
\hline Spare5 & 003101 & \\
\hline RawDemandAutoOnOff_0 module & 003201 & Selects the raw speed demand as the input to the auto on/off \\
\hline AutoOnOffPidFeedback_0 & 003301 & Selects the pid feedback as the input to the auto on/off module \\
\hline
\end{tabular}

AutoOnOffPidCommand_0
SpeedLimitNetwork1_0
SpeedLimitNetwork2_0
CriticalSpeedAvoidance_0
true
UnacknowledgedAlarms_I
DisableThermalRollback_0
DisableVoltageRollback_0
TorqueLimit_I
RollBack_I
RunRequest_0
KeypadFaultReset_I
KeypadManualStart_I
KeypadManualStop_I
KeypadAuto_I
ToolFaultReset_I
ToolManualStart_I
ToolManualStop_I
ToolAuto_I
DriveFaultReset_0
CelldiagnosticActive_I
AutoDisplayMode_0
!
ActiveAlarms_I
FatalFault_I
Cr3_I
QuickStop_0
RampStop_0
CellBypassInProgress_I
ReadyToRun_I
DriveRunning_I
DisableSinglePhaseRollback_0
DownTransferRequest_0
DownTransferPermit_I
VFDContactorAcknowledge_0
DownTransferComplete_I
transfer
UpTransferRequest_0
UpTransferPermit_I
LineContactorAcknowledge_0
UpTransferComplete_I
transfer
TorqueLimitMenu1_0 006101
(id=1200)
TorqueLimitMenu2_0 006201
(id=1220)
TorqueLimitMenu3_0 006301
(id=1240)
BrakingEnable_0

003401
003501
003601 003801

003901
003C 01 003D 01 003E 015 003F 015 004001 0041015 0042015 0043015 0044015 0045015 0046015 0047015 0048015 004901 004A 015 004D 01

004E 015
0050015
0052015
005301
005401
0055015
0056015
0057015
005801
005901
005A 015
005B 01
005C 015

005D 01
005E 015 005F 01
0060015

006401

Selects the pid command as the input to the auto on/off module Selects the network \#1 speed limits when true Selects the network \#2 speed limits when true Selects the use of the criical speed avoidance module when

Indicates that there are unacknowledged alarms present
Disables the controls use the thermal rollback Disables the controls use of voltage rollback Set TRUE when drive is in rollback and enabled Indicates drive is in rollback when set true Enables drive to run when set true
Keypad fault reset button status
Keypad manual start button status
Keypad manual stop button status
Keypad auto button status
Tool fault reset button status
Tool manual start button status
Tool manual stop button status
Tool auto button status
Issues a drive fault reset when set true
Indicates cell diagnostics is in progress
Keypad and Tool will indicate "AUTO" if set true while drive is running and raw demand is not from the keypad or networks Indicates that there are active alarms present
Indicates a fatal drive fault has occurred (any fault)
Indicates state of CR3 input true is OK
Inserts a zero speed reference command when set true
Inserts a zero speed demand into speed ramp when set true Indicates a cell bypass operation is in progress when true Indicates the drive is ready for a run request when true Indicates drive is running when true
Disables the speed rollback during single phasing Issues a down transfer request to the drive when true Command to close the VFD contactor for synch transfer Set true when the VFD contactor is closed for synch transfer Indicates when true that the drive has completed the down

Issues a up transfer request to the drive when true Indicates the drive is ready to up transfer
Set true when the line contactor is closed for synch transfer Indicates when true that the drive has completed the up

Selects the use of torque limits from menu (id=1190) and Selects the use of torque limits from menu (id=1210) and Selects the use of torque limits from menu (id=1230) and

Enable the use of dual frequency braking during decel
! Dedicated Network flags, original names maintained for backwards compatability
! -- new names in 'dedicated' section of this file
! -- Indicates the status of Network \#1 fixed register bits (0-15)
Network1FixedRegBit0_I 006502 Run Forward command
Network1FixedRegBit1_I
Network1FixedRegBit2_I
Network1FixedRegBit3_I
Network1FixedRegBit4_I
Network1FixedRegBit5_I
006512 Run Reverse command
006522 Fault Reset
006532 Stop command

Network1FixedRegBit6_I
006542 Start/Stop toggle
Network1FixedRegBit7_I
006562

Network1FixedRegBit8_I
006572
006602
006612
006622
006632
006642
006652
006662
006672
Network1FixedRegBit10_I
Network1FixedRegBit11_I
Network1FixedRegBit12_I
Network1FixedRegBit13_I
Network1FixedRegBit14_I

Network2FixedRegBit0_I
006702
Indicates the status of Network \#2 fixed register bits (0-15)
\begin{tabular}{lllll} 
Network2FixedRegBit1_I & 0067 & 1 & 2 \\
Network2FixedRegBit2_I & 0067 & 2 & 2 \\
Network2FixedRegBit3_I & 0067 & 3 & 2 \\
Network2FixedRegBit4_I & 0067 & 4 & 2 \\
Network2FixedRegBit5_I & 0067 & 5 & 2 \\
Network2FixedRegBit6_I & 0067 & 6 & 2 \\
Network2FixedRegBit7_I & 0067 & 7 & 2 \\
Network2FixedRegBit8_I & 0068 & 0 & 2 \\
Network2FixedRegBit9_I & 0068 & 1 & 2 \\
Network2FixedRegBit10_I & 0068 & 2 & 2 \\
Network2FixedRegBit11_I & 0068 & 3 & 2 \\
Network2FixedRegBit12_I & 0068 & 4 & 2 \\
Network2FixedRegBit13_I & 0068 & 5 & 2 \\
Network2FixedRegBit14_I & 0068 & 6 & 2 \\
Network2FixedRegBit15_I & 0068 & 7 & 2
\end{tabular}
! Network Run Enable
Network1RunEnable_0
Network2RunEnable_0
! Network health variables
Network1CommOk_I
Network2CommOk_I

ACellIsBypassed_I
CounterFlag_24Hours_I
ResetCntFlag_24Hours_0
\begin{tabular}{ll}
0069 & 01 \\
\(006 A\) & 0
\end{tabular}\(\quad\) Set true to run from network \#1
\begin{tabular}{ll} 
006B 015 & Indicates whether network \#1 is active \\
\(006 C-15\) & Indicates whether network \#2 is active
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{! Speed increment variables} \\
\hline SpeedIncrement1_0 & 0070 & 02 & Invokes speed increment 1 \\
\hline SpeedDecrement1_0 & 0070 & 12 & Invokes speed decrement 1 \\
\hline SpeedIncrement2_0 & 0070 & 22 & Invokes speed increment 2 \\
\hline SpeedDecrement2_0 & 0070 & 32 & Invokes speed decrement 2 \\
\hline SpeedIncrement3_0 & 0070 & 42 & Invokes speed increment 3 \\
\hline SpeedDecrement3_0 & 0070 & 52 & Invokes speed decrement 3 \\
\hline \multicolumn{3}{|l|}{RawDemandIncrementalSpeed_0 0071 01} & Enables use of incremental speed function \\
\hline \multicolumn{3}{|l|}{DisableWagoCommunicationFault_0 007201} & Set true to disable Wago Comm Fault \\
\hline TorqueLimitNetwork1_0 & & 07301 & Set true to enable torque limit commands from network 1 \\
\hline TorqueLimitNetwork2_0 & & 007401 & Set true to enable torque limit commands from network 2 \\
\hline TorqueLimitAnalog_0 & & 007501 & Set true to enable torque limit from Analog Input \#3 \\
\hline CounterFlag_1Second_I & & 0076015 & Flag that toggles every Second \\
\hline ResetCntFlag_1Second_0 & & 007701 & Reset for 1 Second counter flag \\
\hline CounterFlag_1Minute_I & & 0078015 & Flag that toggles every Minute \\
\hline ResetCntFlag_1Minute_0 & & 007901 & Reset for 1 Minute counter flag \\
\hline CounterFlag_1Hour_I & & 007A 015 & Flag that toggles every Hour \\
\hline ResetCntFlag_1Hour_0 & & 007B 01 & Reset for 1 Hour counter flag \\
\hline SpeedAtSetPoint_I & & 007C 01 & Set when motor speed matches demand \\
\hline SopConfigFile1_0 & & 007D 012 & Makes the config file \#1 active as set by menus \\
\hline SopConfigFile2_0 & & 007D 112 & Makes the config file \#2 active as set by menus \\
\hline SopConfigFile3_0 & & 007D 212 & Makes the config file \#3 active as set by menus \\
\hline SopConfigFile4_0 & & 007D 312 & Makes the config file \#4 active as set by menus \\
\hline SopConfigFile5_0 & & 007D 412 & Makes the config file \#5 active as set by menus \\
\hline SopConfigFile6_0 & & 007D 512 & Makes the config file \#6 active as set by menus \\
\hline SopConfigFile7_0 & & 007D 612 & Makes the config file \#7 active as set by menus \\
\hline SopConfigFile8_0 & & 007D 712 & Makes the config file \#8 active as set by menus \\
\hline LineContactorUnlatch_I & & 007E 015 & Command to open the line contactor for down transfers \\
\hline InsufficientOutputVolts_I transfer & & 007F 015 & Indicates drive cannot support voltage to perform sync \\
\hline MenuTimer1Enable_0 & & 008001 & Enables and starts Menu based timers 1-16 \\
\hline MenuTimer2Enable_0 & & 008101 & \\
\hline MenuTimer3Enable_0 & & 008201 & \\
\hline MenuTimer4Enable_0 & & 008301 & \\
\hline MenuTimer5Enable_0 & & 008401 & \\
\hline
\end{tabular}
\(\left.\begin{array}{lllll}\text { MenuTimer6Enable_0 } & 0085 & 0 & 1 \\ \text { MenuTimer7Enable_0 } & 0086 & 0 & 1 \\ \text { MenuTimer8Enable_0 } & 0087 & 0 & 1 \\ \text { MenuTimer9Enable_0 } & 0088 & 0 & 1 \\ \text { MenuTimer10Enable_0 } & 0089 & 0 & 1 \\ \text { MenuTimer11Enable_0 } & 008 A & 0 & 1 \\ \text { MenuTimer12Enable_0 } & 008 B & 0 & 1 \\ \text { MenuTimer13Enable_0 } & 008 C & 0 & 1 \\ \text { MenuTimer14Enable_0 } & 008 D & 0 & 1 \\ \text { MenuTimer15Enable_0 } & 008 E & 0 & 1 \\ \text { MenuTimer16Enable_0 } & 008 F & 0 & 1\end{array}\right] \quad\) Outputs of Menu based timers 1 1-16
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{! unused []} & Empty space reserved, 00A0-01FF \\
\hline ! & & Digital inputs start at 0x200h \\
\hline \multicolumn{3}{|l|}{!} \\
\hline !struct digInCh DigIn1[12] & & External digital inputs 96 are possible in directory file \\
\hline ! & 0200 & Assigments depend on the module type and location \\
\hline ! & 020B & \\
\hline \multicolumn{3}{|l|}{! Dedicated Discrete Input for 'standard drive configuration} \\
\hline \multicolumn{3}{|l|}{! -- orig names used for backward compatibility} \\
\hline ExternalDigitalInput01a_I & 0200011 & RemoteStart \\
\hline ExternalDigitalInput01b_I & 0200111 & RemoteStop \\
\hline ExternalDigitalInput01c_I & 0200211 & Remote Fault Reset \\
\hline ExternalDigitalInput01d_I & 0200311 & Local Select \\
\hline ExternalDigitalInput01e_I & 0200411 & Local Mode \\
\hline ExternalDigitalInput01f_I & 0200511 & Remote Mode \\
\hline ExternalDigitalInput01g_I & 0200611 & XFMR OT Trip [90 deg / LC][190 deg / AC] \\
\hline ExternalDigitalInput01h_I & 0200711 & XFMR OT Alarm [80 deg / LC][170 deg / AC] \\
\hline ExternalDigitalInput02a_I & 0201011 & Coolant Tank Low Level \\
\hline ExternalDigitalInput02b_I & 0201111 & Coolant Tank Low Low Level \\
\hline ExternalDigitalInput02c_I & 0201211 & Loss of Pump 1 \\
\hline ExternalDigitalInput02d_I & 0201311 & Loss of Pump 2 \\
\hline ExternalDigitalInput02e_I & 0201411 & CB3 Aux Sw Pump 1 \\
\hline ExternalDigitalInput02f_I & 0201511 & CB4 Aux Sw Pump 2 \\
\hline ExternalDigitalInput02g_I & 0201611 & Cell Cab Col 2 Amb > 50 \\
\hline ExternalDigitalInput02h_I & 0201711 & Cell Cab Col 2 Amb > 60 \\
\hline ExternalDigitalInput03a_I & 0202011 & Cell Cab Col 4 amb > 50 \\
\hline ExternalDigitalInput03b_I & 0202111 & Cell Cab Col 4 amb > 60 \\
\hline ExternalDigitalInput03c_I & 0202211 & Xfmr Cab Left Side amb > 60 \\
\hline ExternalDigitalInput03d_I & 0202311 & Xfmr Cab Left Side amb > 70 \\
\hline ExternalDigitalInput03e_I & 0202411 & Xfmr Cab Right Side amb > 60 \\
\hline ExternalDigitalInput03f_I & 0202511 & Xfmr Cab Right Side amb > 70 \\
\hline ExternalDigitalInput03g_I & 0202611 & Sw 2 Pump 1 Hand position \\
\hline ExternalDigitalInput03h_I & 0202711 & Sw 2 Pump 1 Off position \\
\hline ExternalDigitalInput04a_I & 0203011 & Sw 2 Pump 1 Auto position \\
\hline ExternalDigitalInput04b_I & 0203111 & MV IP Latch Relay Feedback \\
\hline ExternalDigitalInput04c_I & 0203211 & Sw 3 Pump 2 Hand position \\
\hline ExternalDigitalInput04d_I & 0203311 & Sw 3 Pump 2 Off position \\
\hline ExternalDigitalInput04e_I & 0203411 & Sw 3 Pump 2 Auto position \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ExternalDigitalInput04f_I & 0203511 & MV IP Key Reset PB \\
\hline ExternalDigitalInput04g_I & 0203611 & DownXferRequest \\
\hline ExternalDigitalInput04h_I & 0203711 & VfdContactorAck \\
\hline ExternalDigitalInput05a_I & 0204011 & Up Transfer Request \\
\hline ExternalDigitalInput05b_I & 0204111 & Line Contactor Ack \\
\hline ExternalDigitalInput05c_I & 0204211 & EDi05-c, TB2-35/36 (spare) \\
\hline ExternalDigitalInput05d_I & 0204311 & Multilin Fault input \\
\hline ExternalDigitalInput05e_I & 0204411 & SM AC Excitor CB5 Aux contactor (Reactor Temp > 165 C ) \\
\hline ExternalDigitalInput05f_I & 0204511 & SM AC Exciter Heatsink Thermal Switch (Reactor Temp > 190 C) \\
\hline ExternalDigitalInput05g_I & 0204611 & Drive Internal Heat Exchanger Fan 120VAC Power \\
\hline ExternalDigitalInput05h_I & 0204711 & (spare), No terminals \\
\hline ExternalDigitalInput06a_I & 0205011 & \\
\hline ExternalDigitalInput06b_I & 0205111 & \\
\hline ExternalDigitalInput06c_I & 0205211 & \\
\hline ExternalDigitalInput06d_I & 0205311 & \\
\hline ExternalDigitalInput06e_I & 0205411 & \\
\hline ExternalDigitalInput06f_I & 0205511 & \\
\hline ExternalDigitalInput06g_I & 0205611 & \\
\hline ExternalDigitalInput06h_I & 0205711 & \\
\hline ExternalDigitalInput07a_I & 0206011 & \\
\hline ExternalDigitalInput07b_I & 0206111 & \\
\hline ExternalDigitalInput07c_I & 0206211 & \\
\hline ExternalDigitalInput07d_I & 0206311 & \\
\hline ExternalDigitalInput07e_I & 0206411 & \\
\hline ExternalDigitalInput07f_I & 0206511 & \\
\hline ExternalDigitalInput07g_I & 0206611 & \\
\hline ExternalDigitalInput07h_I & 0206711 & \\
\hline ExternalDigitalInput08a_I & 0207011 & \\
\hline ExternalDigitalInput08b_I & 0207111 & \\
\hline ExternalDigitalInput08c_I & 0207211 & \\
\hline ExternalDigitalInput08d_I & 0207311 & \\
\hline ExternalDigitalInput08e_I & 0207411 & \\
\hline ExternalDigitalInput08f_I & 0207511 & \\
\hline ExternalDigitalInput08g_I & 0207611 & \\
\hline ExternalDigitalInput08h_I & 0207711 & \\
\hline ExternalDigitalInput09a_I & 0208011 & \\
\hline ExternalDigitalInput09b_I & 0208111 & \\
\hline ExternalDigitalInput09c_I & 0208211 & \\
\hline ExternalDigitalInput09d_I & 0208311 & \\
\hline ExternalDigitalInput09e_I & 0208411 & \\
\hline ExternalDigitalInput09f_I & 0208511 & \\
\hline ExternalDigitalInput09g_I & 0208611 & \\
\hline ExternalDigitalInput09h_I & 0208711 & \\
\hline ExternalDigitalInput10a_I & 0209011 & \\
\hline ExternalDigitalInput10b_I & 0209111 & \\
\hline ExternalDigitalInput10c_I & 0209211 & \\
\hline ExternalDigitalInput10d_I & 0209311 & \\
\hline ExternalDigitalInput10e_I & 0209411 & \\
\hline ExternalDigitalInput10f_I & 0209511 & \\
\hline ExternalDigitalInput10g_I & 0209611 & \\
\hline ExternalDigitalInput10h_I & 0209711 & \\
\hline ExternalDigitalInput11a_I & 020A 011 & \\
\hline ExternalDigitalInput11b_I & 020A 111 & \\
\hline ExternalDigitalInput11c_I & 020A 211 & \\
\hline ExternalDigitalInput11d_I & 020A 311 & \\
\hline ExternalDigitalInput11e_I & 020A 411 & \\
\hline ExternalDigitalInput11f_I & 020A 511 & \\
\hline ExternalDigitalInput11g_I & 020A 611 & \\
\hline ExternalDigitalInput11h_I & 020A 711 & \\
\hline ExternalDigitalInput12a_I & 020B 011 & \\
\hline ExternalDigitalInput12b_I & 020B 111 & \\
\hline ExternalDigitalInput12c_I & 020B 211 & \\
\hline ExternalDigitalInput12d_I & 020B 311 & \\
\hline ExternalDigitalInput12e_I & 020B 411 & \\
\hline
\end{tabular}



TempFlag39_0
024A 01
(39)

TempFlag40_0
(40)

TempFlag41_0
(41)

TempFlag42_0
active (42)
TempFlag43_0
TempFlag44_0
TempFlag45_0
TempFlag46_0
TempFlag47_0
TempFlag48_0
TempFlag49_0
TempFlag50_0
TempFlag51_0
TempFlag52_0
TempFlag53_0
TempFlag54_0
TempFlag55_0
fault reset (55)
TempFlag56_0
TempFlag57_0
TempFlag58_0
TempFlag59_0
TempFlag60_0
!********** fault1Word1a
OverSpeedAlarm_I
than \(90 \%\) of trip point (id=1170)
OverSpeedFault_I
than trip point (id=1170)
UnderLoadAlarm_I
underload trip point (id=1182)
UnderLoadFault_I
underload trip point (id=1182,1186)
MotorThermalOverload1_I
MotorThermalOverload2_I
MotorThermalOverloadFault_I
OutputPhaseImbalance_I
026059
026069
026079
!********** fault1Word1b
OutputGroundFault_I
026119
IOC_I
026129
MenuInit_I 026139
Cells_I
026149
InTorqueLimit_I
InTorqueLimitRollback_I
026159
026169
026179
InputPhaseLoss_I

Indication that an Ambient Temperature warning Switch is active
Indication that an Ambient Temperature fault Switch is active
Slow leak detection (1 hour between low and low - low levels)
Sync Transfer Mode Active - either Up or Down Transfer is
Up Transfer Reset Flag (43)
Down Transfer Reset Flag (44)
Analog Speed Mode (45)
Network \# 1 Run Request (46)
Network \# 1 Speed Control (47)
Pump \#1 is Available (48)
Pump \#1 Run Command (49)
Pump \#2 is Available (50)
Pump \#2 Run Command (51)
Cooling System OT Hysteresis (52)
Cooling System OT (53)
Cooling System Malfunction (54)
Forward reference of latching pulse memory to enable drive
Input Contactor Trip Command (56)
Falling edge detection for key reset switch push button (57)
Cooling days Cycle Flag for pumps \& redundant fans (58)
Resets the One Minute Timer (toggle) (59)
Resets the One Second Timer (toggle) (60)

Over speed alarm indicator, set true when speed is greater
Over speed fault indicator, set true when speed is greater
Under load alarm indicator, set true when less than the
Under load fault indicator, set true when less than the
Indicates motor thermal over load alarm point 1
Indicates motor thermal over load alarm point 2
Indicates motor thermal over load fault
Indicates ouput phase imbalance is greater than menu setting

Indicates a ground fault at the drive output
Indicates an IOC trip
Indicates that the menu system failed to initialize
Indicates a cell fault
Indicates the drive in torque limit for more than 1 minute Indicates the drive in torque limit for more than 20 minutes Indicates the drive has lost an input phase

Indicates that the phase sequence of the drive input and output
Indicates that the Cpu temperature is above the alarm level Indicates that the Cpu temperature is above the fault level

Indicates that a cell temperature has reached the alarm level Indicates that a cell temperature has reached the trip level Indicates that the modulator failed to initialize properly Indicates that the cell count detected is different than the

Indicates that the control power supply has fialed

Indicates the drive has lost communication with the Wago I/O Indicates the drive has I/O configuration is different than

CellBypassComFailure_I
026329
modulator to the MV bypass board
CellBypassAckFailure_I
board
CellBypassLinkFail_I
bypass board
WeakBattery_I
SystemProgram_I
MediumVoltageLowAlarm1_I
voltage
!********** fault1Word3a
MediumVoltageLowAlarm2_I
voltage
MediumVoltageLowFault_I
voltage
CellAlarm_I
LineOverVoltage1_I
voltage
LineOverVoltage2_I
voltage
LineOverVoltageFault_I
voltage
InputPhaseImbalance_I
input
InputOneCycle_I
!********** fault1Word3b
InputGroundFault_I
EncoderLoss_I
026509
026519
not working properly
KeypadCommunication_I
keypad
Network1Communication_I
\#1
Network2Communication_I \#2
MotorOverVoltageAlarm_I
point (id=1040)
MotorOverVoltageFault_I
point (id=1040)
CellBypassComWarning_I 026579
modulator (Bypass not active)
!********** fault1Word4a
CellBypassLinkWarning_I
026609
(Bypass not active)
CellBypassFault_I
CellConfigurationFault_I
detected versus the menu entry for \# of cells EffectiveSwitchFreqAlarm_I 026639
desired range
BackEmfTimeout_I
026649
the motor to decay to a safe level
HallEffectPowerSupplyFault_I 026659
has failed
UnknownModulatorFault_I 02666
!********** fault1Word4B
ModulatorWatchdogTimeout_I
026709
3 sample periods
CellDcBusLowWarning_I
ToolCommunication_I
software
FailedToMagnetizeFault_I 026739
a flux ramp rate (id=3160)
LossOfFieldFault_I
026749
LowMotorSpeedFault_I
(id=2200) for 15 seconds
ExcessiveDriveLosses_I 026769 acceptable range

026719
026729

\begin{abstract}
Indicates a problem with the communication link from the Indicates a problem with the bypass relay or the MV bypass Indicates a problem with the communication link from the MV

Indicates a weak battery on the modulator board
Indicates a bad system program or that none exist
Indicates that the medium voltage is \(<90 \%\) of the rated input
\end{abstract}

Indicates that the medium voltage is \(<70 \%\) of the rated input Indicates that the medium voltage is \(<55 \%\) of the rated input

Indication that one or more cells has an alarm condition Indicates that the line voltage is greater than \(110 \%\) of rated Indicates that the line voltage is greater than \(115 \%\) of rated Indicates that the line voltage is greater than \(120 \%\) of rated Indicates that there is a phase current imbalance at the drive Indicates a one cycle transformer fault (secondary short)

Indicates a ground fault on the drive input line Indicates that the encoder in closed loop vector control is Indicates a communication loss betwee the control and the Indicates a communication loss betwee the control and network Indicates a communication loss betwee the control and network Indicates that the motor voltage is within \(90 \%\) of the trip Indicates that the motor voltage is greater than the trip Indicated that the MV board is not communicating with the

Indicates a communication problem from the MV bypass board

Indicates that the cell bypass operation failed Indicates that there is a mismatch in the number of cells

Indicates that the switching frequency is outside of the Indicates that the drive time out waiting for the back emf of Indicates that one of the hall effect sensor power suppies Indicates an internal modulator fault

Indicates that the CPU has not updated the modulator within

026739 Indicates that the drive failed to magnetize the motor within

Indicates that the field control of a synch motor has failed Indicates that motor speed is below zero speed parameter

WagoCommunicationAlarm_I with the wago i/o system
!********** fault2Word1A
OneBlowerLost_I
AllBlowersLost_I
CloggedFilters_I
ReactorTemperature1_I
ReactorTemperature2_I
ReactorTemperatureFault_I
XformerOverTempAlarm1_I
XformerOverTempAlarm2_I
!********** fault2Word1B
XformeroverTempFault_I OnePumpFailure_I
AllPumpsFailure_I
CoolantConductivityAlarm_I
CoolantConductivityFault_I
InletWaterTempHigh_I
InletWaterTempLow_I
CellWaterTempHigh_I
!********** fault2Word2A
XformerWaterTempHigh_I
high level
LowWaterLevelAlarm_I
LowWaterLevelFault_I
LowWaterFlowAlarm_I
LowWaterFlowFault_I
LossOneHexFan_I
LossAllHexFan_I
AllHexFansOn_I
!********** fault2Word2B
LossOfDriveEnable_I
UpTransferFault_I
DownTransferFault_I
AdcHardwareErrorAlarm_I AdcHardwareErrorFault_I ConfigFileWriteAlarm_I ConfigFileReadFault_I WagoInternalErrorFault_I
!********** fault2Word3A WagoCouplerErrorFault_I WagoErrorAfterModuleFault_I WagoErrorAtModuleFault_I WagoInternalErrorAlarm_I WagoCouplerErrorAlarm_I WagoErrorAfterModuleAlarm_I WagoErrorAtModuleAlarm_I
```

!********** fault2Word3B

```
LossOfSignal1_I
LossOfSignal2_I
LossOfSignal3_I
LossOfSignal4_I
LossOfSignal5_I
LossOfSignal6_I
LossOfSignal7_I
LossOfSignal8_I
!********** fault2Word4A
LossOfSignal9_I
LossOfSignal10_I
LossOfSignal11_I
LossOfSignal12_I
LossOfSignal13_I
LossOfSignal14_I
LossOfSignal15_I

026779

026809
026819
026829
026839
026849
026859
026869
026879

026909
026919
026929
026939
026949
026959
026969
026979

026A 09

026A 19
026A 29
026A 39
026A 49
026A 59
026A 69
026A 79

026B 09
026B 19
026B 29
026B 39
026B 49
026B 59
026B 69
026B 79

026C 09
026C 19
026C 29
026C 39
026C 49
026C 59
026C 69

026D 09
026D 19
026D 29
026D 39
026D 49
026D 59
026D 69
026D 79

026E 09
026E 19
026E 29
026E 39
026E 49
026E 59
026E 69

Indicates that the control temporarily lost communications

Indicates that a single blower is not functioning
Indicates that all of the blowers are not functioning
Indicates that a filter is clogged (blocked)
Indicates that reactor temperature \#1 flag is set
Indicates that reactor temperature \#2 flag is set
Indicates that reactor temperature fault flag is set
Indicates that transformer over temperature \#1 flag is set
Indicates that transformer over temperature \#2 flag is set

Indicates that transformer over temperature fault flag is set Indicates that a single pump is not functioning Indicates that all of the pumps are not functioning Indicates that the coolant conductivity at an alarm level Indicates that the coolant conductivity at an fault level Indicates that the inlet water temperature is at a high level Indicates that the inlet water temperature is at a low level
Indicates that the cell water temperature is at a high level

Indicates that the transformer water temperature is at the
Indicates a low water level alarm
Indicates a low water level fault
Indicates a low water flow alarm
Indicates a low water flow fault
Indicates that one hex fan is not functioning
Indicates that all hex fan are not functioning
Indicates that all hex fan are on

Indicates that the drive enable was lost
Indicates that a up transfer fault occurred
Indicates that a down transfer fault occurred
Indicates that a ADC hardware alarm occurred
Indicates that a ADC hardware fault occurred
Indicates config file write alarm occured
Indicates config file read fault occured
Indicates an internal Wago Error Fault condition

Indicates an Wago Coupler Error Fault condition
Indicates an Wago Error After Module \(X\) Fault condition
Indicates an Wago Error At Module \(X\) Fault condition
Indicates an internal Wago Error Alarm condition
Indicates an Wago Coupler Error Alarm condition
Indicates an Wago Error After Module X Alarm condition
Indicates an Wago Error At Module X Alarm condition

Indicates loss of signal from analog input 1 - 24

LossOfSignal16_I
!********** fault2Word3B
LossOfSignal17_I
LossOfSignal18_I
LossOfSignal19_I
LossOfSignal20_I
LossOfSignal21_I
LossOfSignal22_I
LossOfSignal23_I
LossOfSignal24_I
!********** fault3Word1A
UserFault1_I
UserFault2_I
UserFault3_I
UserFault4_I
UserFault5_I
UserFault6_I
UserFault7_I
UserFault8_I

UserFault9_I
UserFault10_I
UserFault11_I
UserFault12_I
UserFault13_I
UserFault14_I
UserFault15_I
UserFault16_I

UserFault17_I
UserFault18_I
UserFault19_I
UserFault20_I
UserFault21_I
UserFault22_I
UserFault23_I
UserFault24_I
UserFault25_I
UserFault26_I
UserFault27_I
UserFault28_I
UserFault29_I
UserFault30_I
UserFault31_I
UserFault32_I
UserFault33_I
UserFault34_I
UserFault35_I UserFault36_I
UserFault37_I
UserFault38_I
UserFault39_I
UserFault40_I
UserFault41_I UserFault42_I UserFault43_I UserFault44_I UserFault45_I UserFault46_I UserFault47_I UserFault48_I

UserFault49_I
UserFault50_I
UserFault51_I
UserFault52_I
UserFault53_I

026E 79

026F 09
026F 19
026F 29
026F 39
026F 49
026F 59
026F 69 026F 79
\begin{tabular}{llll}
0270 & 0 & 9 \\
0270 & 1 & 9 \\
0270 & 2 & 9 \\
0270 & 3 & 9 \\
0270 & 4 & 9 \\
0270 & 5 & 9 \\
0270 & 6 & 9 \\
0270 & 7 & 9 \\
& & & \\
0271 & 0 & 9 \\
0271 & 1 & 9 \\
0271 & 2 & 9 \\
0271 & 3 & 9 \\
0271 & 4 & 9 \\
0271 & 5 & 9 \\
0271 & 6 & 9 \\
0271 & 7 & 9 \\
& & & \\
0272 & 0 & 9 \\
0272 & 1 & 9 \\
0272 & 2 & 9 \\
0272 & 3 & 9 \\
0272 & 4 & 9 \\
0272 & 5 & 9 \\
0272 & 6 & 9 \\
0272 & 7 & 9
\end{tabular}

027309
027319
027329
027339
027349
027359
027369
027379

027409
027419
027429
027439
027449
027459
027469
027479
027509
027519
027529
027539
027549
027559
027569
027579
027609
027619
027629
027639 027649

Indicates the status of user fault 1 through 64


Asco Switch on Alternate (28)
UPS is on inverter (29)
UPS Alarm (30)
Sync Motor Exciter OT fault (31)
Sync Motor Loss of Exciter (32)
Sync Motor Exciter Fault (33)
Pump One Loss of power alarm (34)
Pump One TOL alarm (35)
Pump Two Loss of power alarm (36)
Pump One TOL alarm (37)
Estop Alarm for logging (38)
Multilin Fault of Drive (39)
Avail Volts below rated alarm (40)
Cell Cabinet Column 2 Ambient alarm (50 Deg) (41)
Cell Cabinet Column 2 Ambient fault (60 Deg) (42)
Cell Cabinet Column 4 Ambient alarm (50 Deg) (43)
Cell Cabinet Column 4 Ambient fault (60 Deg) (44)
Transformer Left side Ambient alarm (60 Deg) (45)
Transformer Left side Ambient fault (70 Deg) (46)
Transformer Right side Ambient alarm (60 Deg) (47)
Transformer Right side Ambient fault (70 Deg) (48)
Hex Fans Power Failed (49)
Transformer OT Alarm (> 65 deg) (50)
Coolant Outlet OT Fault (> 70 deg) (51)
Low, Low Coolant Level (> 20") (52)
High Conductivity Fault (> 5uS) (53)
\begin{tabular}{|c|c|c|}
\hline UserFault54_I & 027659 & Coolant Inlet Temp above 52 deg C (54) \\
\hline UserFault55_I & 027669 & Pump \#1 Failed (55) \\
\hline UserFault56_I & 027679 & Pump \#2 Failed (56) \\
\hline UserFault57_I & 027709 & Both Cooling Pumps Failed (57) \\
\hline UserFault58_I & 027719 & Cooling Ot Mv Trip (58) \\
\hline UserFault59_I & 027729 & Cooling Ot Vfd Trip (59) \\
\hline UserFault60_I & 027739 & Cooling Ot Trip Alarm (60) \\
\hline UserFault61_I & 027749 & Coolant Outlet Temperature Alarm (65 Deg C) (61) \\
\hline UserFault62_I & 027759 & Cooling Sys Vfd Trip (62) \\
\hline UserFault63_I & 027769 & Cooling Sys Mv Trip (63) \\
\hline UserFault64_I & 027779 & MV Input Protection Latched Fault (64) \\
\hline ! ************************* & \multicolumn{2}{|l|}{} \\
\hline OverSpeedAlarmEn_0 & 027802 & Enables the overspeed alarm \\
\hline UnderLoadAlarmEn_0 & 027822 & Enables the underload alarm \\
\hline MotorThermalOverload1En_0 & 027842 & Enables the motor overload alarm \#1 \\
\hline MotorThermalOverload2En_0 & 027852 & Enables the motor overload alarm \#2 \\
\hline InTorqueLimitEn_0 & 027952 & Enables the in torque limit alarm \\
\hline InTorqueLimitRollbackEn_0 & 027962 & Enables the in torque limit rollback alarm or fault \\
\hline PhaseSequenceEn_0 & 027A 02 & Enables the phase sequence alarm or fault \\
\hline CpuTempFaultEn_0 & 027A 22 & Enables the Cpu temperature fault \\
\hline MediumVoltageLowAlarm1En_0 & 027B 72 & Enables the medium voltage low alarm \#1 \\
\hline LineOverVoltage1En_0 & 027C 32 & Enables the line over voltage alarm \#1 \\
\hline LineOverVoltage2En_0 & 027C 42 & Enables the line over voltage alarm \#2 \\
\hline KeypadCommunicationEn_0 & 027D 22 & Enables the keypad communications loss alarm or fault \\
\hline Network1CommunicationEn_0 & 027D 32 & Enables the network \#1 communications loss alarm or fault \\
\hline Network2CommunicationEn_0 & 027D 42 & Enables the network \#2 communications loss alarm or fault \\
\hline MotorOverVoltageAlarmEn_0 & 027D 52 & Enables the motor over voltage alarm \\
\hline ToolCommunicationEn_0 & 027F 22 & Enables the tool communications loss alarm or fault \\
\hline unused1Fault4A3En_0 & 027F 32 & \\
\hline LowMotorSpeedFaultEn_0 & 027F 59 & Enables the Low Motor Speed Fault or Alarm \\
\hline unused1Fault4A6En_0 & 027F 62 & \\
\hline unused1Fault4A7En_0 & 027F 72 & \\
\hline OneBlowerLostEn_0 & 028002 & Enables the one blower loss alarm \\
\hline AllBlowerLostEn_0 & 028012 & Enables the all of the blowers loss fault \\
\hline CloggedFiltersEn_0 & 028022 & Enables the filter is clogged (blocked) alarm or fault \\
\hline ReactorTemperature1En_0 & 028032 & Enables the reactor temperature \#1 alarm \\
\hline ReactorTemperature2En_0 & 028042 & Enables the reactor temperature \#2 alarm \\
\hline ReactorTemperatureFaultEn_0 & 028052 & Enables the reactor temperature fault \\
\hline XformerOverTempAlarm1En_0 & 028062 & Enables the transformer over temperature \#1 alarm \\
\hline XformerOverTempAlarm2En_0 & 028072 & Enables the transformer over temperature \#2 alarm \\
\hline XformerOverTempFaultEn_0 & 028102 & Enables the transformer over temperature fault \\
\hline OnePumpFailureEn_0 & 028112 & Enables the one pump failure alarm \\
\hline AllPumpsFailureEn_0 & 028122 & Enables the all pumps failure fault \\
\hline CoolantConductivityAlarmEn_0 & 028132 & Enables the coolant conductivity alarm \\
\hline CoolantConductivityFaultEn_0 & 028142 & Enables the coolant conductivity fault \\
\hline InletWaterTempHighEn_0 & 028152 & Enables the inlet water temperature high alarm or fault \\
\hline InletWaterTempLowEn_0 & 028162 & Enables the inlet water temperature low alarm or fault \\
\hline CellWaterTempHighEn_0 & 028172 & Enables the cell water temperature high alarm or fault \\
\hline XformerWaterTempHighEn_0 & 028202 & Enables the transformer water temperature high alarm or fault \\
\hline LowWaterLevelAlarmEn_0 & 028212 & Enables low water level alarm \\
\hline LowWaterLevelFaultEn_0 & 028222 & Enables low water level fault \\
\hline LowWaterFlowAlarmEn_0 & 028232 & Enables low water flow alarm \\
\hline LowWaterFlowFaultEn_0 & 028242 & Enables low water flow fault \\
\hline LossOneHexFanEn_0 & 028252 & Enables the one hex fan alarm \\
\hline LossAllHexFanEn_0 & 028262 & Enables the all hex fan alarm or fault \\
\hline AllHexFansOnEn_0 & 028272 & Enables the all hex fan alarm \\
\hline LossOfDriveEnableEn_0 & 028302 & Enables the loss of drive enable fault \\
\hline UpTransferFaultEn_0 & 028312 & Enables the up transfer fault \\
\hline DownTransferFaultEn_0 & 028322 & Enables the down transfer fault \\
\hline
\end{tabular}
\(\left.\begin{array}{lrllll} \\ \text { unused2Fault2B3En_0 } & 0283 & 3 & 2 & \\ \text { unused2Fault2B4En_0 } & 0283 & 4 & 2\end{array}\right]\)
\begin{tabular}{lllll} 
& 0292 & 6 & 2
\end{tabular}\(\quad\) Sets loss all hex fans an an an

UserFault24Wn_0
UserFault25Wn_0 UserFault26Wn_0 UserFault27Wn_0 UserFault28Wn_0 UserFault29Wn_0 UserFault30Wn_0 UserFault31Wn_0 UserFault32Wn_0

UserFault33Wn_0 UserFault34Wn_0 UserFault35Wn_0

UserFault36Wn_0 UserFault37Wn_0 UserFault38Wn_0 UserFault39Wn_0 UserFault40Wn_0

UserFault41Wn_0 UserFault42Wn_0 UserFault43Wn_0 UserFault44Wn_0 UserFault45Wn_0 UserFault46Wn_0 UserFault47Wn_0 UserFault48Wn_0

UserFault49Wn_0 UserFault50Wn_0 UserFault51Wn_0 UserFault52Wn_0 UserFault53Wn_0 UserFault54Wn_0 UserFault55Wn_0 UserFault56Wn_0

UserFault57Wn_0 UserFault58Wn_0 UserFault59Wn_0 UserFault60Wn_0 UserFault61Wn_0 UserFault62Wn_0 UserFault63Wn_0 UserFault64Wn_0

OneBlowerLost_0
AllBlowerLost_0
CloggedFilters_0
ReactorTemperature1_0
ReactorTemperature2_0 ReactorTemperatureFault_0
XformerOverTempAlarm1_0
XformerOverTempAlarm2_0
XformerOverTempFault_0
OnePumpFailure_0
AllPumpsFailure_0
CoolantConductivityAlarm_0
CoolantConductivityFault_0
InletWaterTempHigh_0
InletWaterTempLow_0
CellWaterTempHigh_0

XformerWaterTempHigh_0
condition
LowWaterLevelAlarm_0
LowWaterLevelFault_0
LowWaterFlowAlarm_0
LowWaterFlowFault_0

029A 72
029B 02
029B 12
029B 22
029B 32
029B 42
029B 52
029B 62
029B 72
029C 02
029C 12
029C 22
029C 32
029C 42
029C 52
029C 62
029C 72
029D 02
029D 12
029D 22
029D 32
029D 42
029D 52
029D 62
029D 72
029E 02
029E 12
029E 22
029E 32
029E 42
029E 52
029E 62
029E 72
029F 02
029F 12
029F 22
029F 32
029F 42
029F 52
029F 62
029F 72
02A0 02
02A0 12
02A0 22
02A0 32
02A0 42
02A0 52
02A0 62
02A0 72
02A1 02
02A1 12
02A1 22
02A1 32
02A1 42
02A1 52
02A1 62
02A1 72

02A2 02
02A2 12
02A2 22
02A2 32
02A2 42

Asco Switch on Alternate (28)
UPS is on inverter (29)
UPS Alarm (30)
Sync Motor Exciter OT fault (31)
Sync Motor Loss of Exciter (32)
Sync Motor Exciter Fault (33)
Pump One Loss of power alarm (34)
Pump One TOL alarm (35)
Pump Two Loss of power alarm (36)
Pump One TOL alarm (37)
Estop Alarm for logging (38)
Multilin Fault of Drive (39)
Avail Volts below rated alarm (40)
Cell Cabinet Column 2 Ambient alarm (50 Deg) (41)
Cell Cabinet Column 2 Ambient fault (60 Deg) (42)
Cell Cabinet Column 4 Ambient alarm (50 Deg) (43)
Cell Cabinet Column 4 Ambient fault (60 Deg) (44)
Transformer Left side Ambient alarm (60 Deg) (45)
Transformer Left side Ambient fault (70 Deg) (46)
Transformer Right side Ambient alarm (60 Deg) (47)
Transformer Right side Ambient fault (70 Deg) (48)
Hex Fans Power Failed (49)
Transformer OT Alarm (> 65 deg ) (50)
Coolant Outlet OT Fault (> 70 deg) (51)
Low, Low Coolant Level (> 20") (52)
High Conductivity Trip (> 5uS) (53)
Coolant Inlet Temp above 55 deg \(C\) (54)
Pump \#1 Failed (55)
Pump \#2 Failed (56)
Both Cooling Pumps Failed (57)
Cooling Ot Trip Alarm (set true) (58)
Cooling Ot Vfd Trip (set false - default) (59)
Cooling Ot Mv Trip (set false - default) (60)
Coolant Outlet Temperature Alarm (65 Deg C) (61)
Cooling Sys Vfd Trip (set false - default) (62)
Cooling Sys Mv Trip (set false - default) (63)
MV Input Protection Latched Fault (set false - default) (64)
Set to trigger a single blower loss condition
Set to trigger all of the blowers loss condition
Set to trigger a filter is clogged (blocked) condition
Set to trigger reactor temperature \#1 condition
Set to trigger reactor temperature \#2 condition
Set to trigger reactor temperature fault condition
Set to trigger transformer over temperature \#1 condition
Set to trigger transformer over temperature \#2 condition
Set to trigger transformer over temperature fault condition
Set to trigger a single pump failure condition
Set to trigger all of the pumps failure condition
Set to trigger the coolant conductivity alarm condition
Set to trigger the coolant conductivity fault condition
Set to trigger the inlet water temperature high condition
Set to trigger the inlet water temperature low condition
Set to trigger the cell water temperature high condition
Set to trigger the transformer water temperature high
Set to trigger a low water level alarm condition
Set to trigger a low water level fault condition
Set to trigger a low water flow alarm condition
Set to trigger a low water flow fault condition
\begin{tabular}{|c|c|c|}
\hline LossOneHexFan_0 & 02A2 52 & Set to trigger that one hex fan loss condition \\
\hline LossAllHexFan_0 & 02A2 62 & Set to trigger that all hex fan loss condition \\
\hline AllHexFansOn_0 & 02A2 72 & Set to trigger that all hex fan are on condition \\
\hline unused2Fault2B0_0 & 02A3 02 & \\
\hline unused2Fault2B1_0 & 02A3 12 & \\
\hline unused2Fault2B2_0 & 02A3 22 & \\
\hline unused2Fault2B3_0 & 02A3 32 & \\
\hline unused2Fault2B4_0 & 02A3 42 & \\
\hline unused2Fault2B5_0 & 02A3 52 & \\
\hline unused2Fault2B6_0 & 02A3 62 & \\
\hline unused2Fault2B7_0 & 02A3 72 & \\
\hline unused2Fault3A0_0 & 02A4 02 & \\
\hline unused2Fault3A1_0 & 02A4 12 & \\
\hline unused2Fault3A2_0 & 02A4 22 & \\
\hline unused2Fault3A3_0 & 02A4 32 & \\
\hline unused2Fault3A4_0 & 02A4 42 & \\
\hline unused2Fault3A5_0 & 02A4 52 & \\
\hline unused2Fault3A6_0 & 02A4 62 & \\
\hline UserFault1_0 & 02A8 02 & User fault flags 1-64, set true to generate a fault \\
\hline UserFault2_0 & 02A8 12 & \\
\hline UserFault3_0 & 02A8 22 & \\
\hline UserFault4_0 & 02A8 32 & \\
\hline UserFault5_0 & 02A8 42 & \\
\hline UserFault6_0 & 02A8 52 & \\
\hline UserFault7_0 & 02A8 62 & \\
\hline UserFault8_0 & 02A8 72 & \\
\hline UserFault9_0 & 02A9 02 & \\
\hline UserFault10_0 & 02A9 12 & \\
\hline UserFault11_0 & 02A9 22 & \\
\hline UserFault12_0 & 02A9 32 & \\
\hline UserFault13_0 & 02A9 42 & \\
\hline UserFault14_0 & 02A9 52 & \\
\hline UserFault15_0 & 02A9 62 & \\
\hline UserFault16_0 & 02A9 72 & \\
\hline UserFault17_0 & 02AA 02 & \\
\hline UserFault18_0 & 02AA 12 & \\
\hline UserFault19_0 & 02AA 22 & \\
\hline UserFault20_0 & 02AA 32 & \\
\hline UserFault21_0 & 02AA 42 & \\
\hline UserFault22_0 & 02AA 52 & \\
\hline UserFault23_0 & 02AA 62 & \\
\hline UserFault24_0 & 02AA 72 & \\
\hline UserFault25_0 & 02AB 02 & \\
\hline UserFault26_0 & \(02 A B 12\) & \\
\hline UserFault27_0 & 02AB 22 & \\
\hline UserFault28_0 & \(02 A B 32\) & Asco Switch on Alternate (28) \\
\hline UserFault29_0 & 02 AB 42 & UPS is on inverter (29) \\
\hline UserFault30_0 & \(02 A B 52\) & UPS Alarm (30) \\
\hline UserFault31_0 & 02AB 62 & Sync Motor Exciter OT fault (31) \\
\hline UserFault32_0 & 02AB 72 & Sync Motor Loss of Exciter (32) \\
\hline UserFault33_0 & 02AC 02 & Sync Motor Exciter Fault (33) \\
\hline UserFault34_0 & 02AC 12 & Pump One Loss of power alarm (34) \\
\hline UserFault35_0 & 02AC 22 & Pump One TOL alarm (35) \\
\hline UserFault36_0 & 02AC 32 & Pump Two Loss of power alarm (36) \\
\hline UserFault37_0 & 02AC 42 & Pump One TOL alarm (37) \\
\hline UserFault38_0 & 02AC 52 & Estop Alarm for logging (38) \\
\hline UserFault39_0 & 02AC 62 & Multilin Fault of Drive (39) \\
\hline UserFault40_0 & 02AC 72 & Avail Volts below rated alarm (40) \\
\hline UserFault41_0 & 02AD 02 & Cell Cabinet Column 2 Ambient alarm (50 Deg) (41) \\
\hline UserFault42_0 & 02AD 12 & Cell Cabinet Column 2 Ambient fault (60 Deg) (42) \\
\hline UserFault43_0 & 02AD 22 & Cell Cabinet Column 4 Ambient alarm (50 Deg) (43) \\
\hline UserFault44_0 & 02AD 32 & Cell Cabinet Column 4 Ambient fault (60 Deg) (44) \\
\hline UserFault45_0 & 02AD 42 & Transformer Left side Ambient alarm (60 Deg) (45) \\
\hline UserFault46_0 & 02AD 52 & Transformer Left side Ambient fault (70 Deg) (46) \\
\hline
\end{tabular}
UserFault47_0
UserFault48_0
UserFault49_0
UserFault50_0
UserFault51_0
UserFault52_0
UserFault53_0
UserFault54_0
UserFault55_0
UserFault56_0

UserFault57_0
UserFault58_0
UserFault59_0
UserFault60_0
UserFault61_0
UserFault62_0
UserFault63_0
UserFault64_0
! ********* end 64 bit fault words *******

\begin{tabular}{|c|c|}
\hline SerialFlag0_0 & 02B0 02 \\
\hline networks 0-63 & \\
\hline SerialFlag1_0 & 02B0 12 \\
\hline SerialFlag2_0 & 02B0 22 \\
\hline SerialFlag3_0 & 02B0 32 \\
\hline SerialFlag4_0 & 02B0 42 \\
\hline SerialFlag5_0 & 02B0 52 \\
\hline SerialFlag6_0 & 02B0 62 \\
\hline SerialFlag7_0 & 02B0 72 \\
\hline SerialFlag8_0 & 02B1 02 \\
\hline SerialFlag9_0 & 02B1 12 \\
\hline SerialFlag10_0 & 02B1 22 \\
\hline SerialFlag11_0 & 02B1 32 \\
\hline SerialFlag12_0 & 02B1 42 \\
\hline SerialFlag13_0 & \(02 \mathrm{B1} 52\) \\
\hline SerialFlag14_0 & 02B1 62 \\
\hline SerialFlag15_0 & 02B1 72 \\
\hline SerialFlag16_0 & 02B2 02 \\
\hline SerialFlag17_0 & 02B2 12 \\
\hline SerialFlag18_0 & 02B2 22 \\
\hline SerialFlag19_0 & 02B2 32 \\
\hline SerialFlag20_0 & 02B2 42 \\
\hline SerialFlag21_0 & 02B2 52 \\
\hline SerialFlag22_0 & 02B2 62 \\
\hline SerialFlag23_0 & 02B2 72 \\
\hline SerialFlag24_0 & 02B3 02 \\
\hline SerialFlag25_0 & 02B3 12 \\
\hline SerialFlag26_0 & 02B3 22 \\
\hline SerialFlag27_0 & 02B3 32 \\
\hline SerialFlag28_0 & 02B3 42 \\
\hline SerialFlag29_0 & 02B3 52 \\
\hline SerialFlag30_0 & 02B3 62 \\
\hline SerialFlag31_0 & 02B3 72 \\
\hline SerialFlag32_0 & 02B4 02 \\
\hline SerialFlag33_0 & 02B4 12 \\
\hline SerialFlag34_0 & 02B4 22 \\
\hline SerialFlag35_0 & 02B4 32 \\
\hline SerialFlag36_0 & 02B4 42 \\
\hline SerialFlag37_0 & 02B4 52 \\
\hline SerialFlag38_0 & 02B4 62 \\
\hline SerialFlag39_0 & 02B4 72 \\
\hline SerialFlag40_0 & \(02 \mathrm{B5} 02\) \\
\hline SerialFlag41_0 & 02B5 12 \\
\hline SerialFlag42_0 & 02B5 22 \\
\hline SerialFlag43_0 & 02B5 32 \\
\hline SerialFlag44_0 & 02B5 42 \\
\hline
\end{tabular}

02AD 62 02AD 72

02AE 02
02AE 12
02AE 22
02AE 32
02AE 42
02AE 52
02AE 62
02AE 72
02AF 02
02AF 12
02AF 22
02AF 32
02AF 42
02AF 52
02AF 62
02AF 72

02B0 12
2B0 22
02B0 32
-
2B0 52

02B0 72
02B1 02
B1 12
02B1 22
\(02 \mathrm{B1} 42\)
02B1 52
B1 62

02B2 02
1
2B2 2

02B2 42
02B2 52
B2 6
2B2 72
02 B 312
02B3 22
2B3 3
02 B3 4
02 B 3
2B3 62

02B4 02
2B4 12

02B4

02B4
\(02 \mathrm{~B}, 5\)
\(02 B 4\)

2B5 0

02B5 22
02B5 42
02B5 52
Transformer Right side Ambient alarm (60 Deg) (47)
Transformer Right side Ambient fault (70 Deg) (48)
Hex Fans Power Failed (49)
Transformer OT Alarm (> 65 deg\()(50)\)
Coolant Outlet OT Fault (> 70 deg) (51)
Low, Low Coolant Level (> 20") (52)
High Conductivity Fault ( \(>5 \mathrm{~s}\) ) (53)
Coolant Inlet Temp above 55 deg C (54)
Pump \#1 Failed (55)
Pump \#2 Failed (56)
Both Cooling Pumps Failed (57)
Cooling Ot Trip Alarm (58)
Cooling Ot Vfd Trip (59)
Cooling Ot Mv Trip (60)
Coolant Outlet Temperature Alarm (65 Deg C) (61)
Cooling Sys Vfd Trip (62)
Cooling Sys Mv Trip (63)
MV Input Protection latched fault (64)

Serial flags that can be used to indicate condition too


\begin{tabular}{llll} 
Network2Flag45_I & \(02 C 5\) & 5 & 9 \\
Network2Flag46_I & \(02 C 5\) & 6 & 9 \\
Network2Flag47_I & \(02 C 5\) & 7 & 9
\end{tabular}\(|\)


Drive producing torque - Ok to drop line contactor (58)
Initiate Up Transfer (59)
Up Transfer Complete (60)
Initiate Down Transfer (61)
Down Transfer Complete (62)
Command to remove MV Input power (63)

Network 2 output flags 0-63 to an external network
\begin{tabular}{|c|c|c|}
\hline Network2Flag42_0 & 02D5 212 & \\
\hline Network2Flag43_0 & 02D5 312 & \\
\hline Network2Flag44_0 & 02D5 412 & \\
\hline Network2Flag45_0 & 02D5 512 & \\
\hline Network2Flag46_0 & 02D5 612 & \\
\hline Network2Flag47_0 & 02D5 712 & \\
\hline Network2Flag48_0 & 02D6 012 & \\
\hline Network2Flag49_0 & 02D6 112 & \\
\hline Network2Flag50_0 & 02D6 212 & \\
\hline Network2Flag51_0 & 02D6 312 & \\
\hline Network2Flag52_0 & 02D6 412 & \\
\hline Network2Flag53_0 & 02D6 512 & \\
\hline Network2Flag54_0 & 02D6 612 & \\
\hline Network2Flag55_0 & 02D6 712 & \\
\hline Network2Flag56_0 & 02D7 012 & \\
\hline Network2Flag57_0 & 02D7 112 & \\
\hline Network2Flag58_0 & 02D7 212 & \\
\hline Network2Flag59_0 & 02D7 312 & \\
\hline Network2Flag60_0 & 02D7 412 & \\
\hline Network2Flag61_0 & 02D7 512 & \\
\hline Network2Flag62_0 & 02D7 612 & \\
\hline Network2Flag63_0 & 02D7 712 & \\
\hline StaticFlag01_0 & 02D8 01 & Static Flags stored in battery backed RAM (16 total) \\
\hline StaticFlag02_0 & 02D9 01 & \\
\hline StaticFlag03_0 & 02DA 01 & \\
\hline StaticFlag04_0 & 02DB 01 & \\
\hline StaticFlag05_0 & 02DC 01 & \\
\hline StaticFlag06_0 & 02DD 01 & \\
\hline StaticFlag07_0 & 02DE 01 & \\
\hline StaticFlag08_0 & 02DF 01 & \\
\hline StaticFlag09_0 & 02E0 01 & \\
\hline StaticFlag10_0 & 02E1 01 & \\
\hline StaticFlag11_0 & 02E2 01 & \\
\hline StaticFlag12_0 & 02E3 01 & \\
\hline StaticFlag13_0 & 02E4 01 & \\
\hline StaticFlag14_0 & 02E5 01 & \\
\hline StaticFlag15_0 & 02E6 01 & \\
\hline StaticFlag16_0 & 02 E 701 & \\
\hline MediumVoltageAvailable_I & 02E8 015 & Indicates medium voltage is available \\
\hline AutoFaultResetInProgress_I & 02E9 015 & Indicates an Auto Fault Reset is in progress \\
\hline LossOfSignalFlag1_I & 02EA 015 & Loss of signal indicator flags 28 \\
\hline LossOfSignalFlag2_I & 02EB 015 & \\
\hline LossOfSignalFlag3_I & 02EC 015 & \\
\hline LossOfSignalFlag4_I & 02ED 015 & \\
\hline LossOfSignalFlag5_I & 02EE 015 & \\
\hline LossOfSignalFlag6_I & 02EF 015 & \\
\hline LossOfSignalFlag7_I & 02F0 015 & \\
\hline LossOfSignalFlag8_I & 02F1 015 & \\
\hline LossOfSignalFlag9_I & 02F2 015 & \\
\hline LossOfSignalFlag10_I & 02F3 015 & \\
\hline LossOfSignalFlag11_I & 02F4 015 & \\
\hline LossOfSignalFlag12_I & 02F5 015 & \\
\hline LossOfSignalFlag13_I & 02F6 015 & \\
\hline LossOfSignalFlag14_I & 02F7 015 & \\
\hline LossOfSignalFlag15_I & 02F8 015 & \\
\hline LossOfSignalFlag16_I & 02F9 015 & \\
\hline LossOfSignalFlag17_I & 02FA 015 & \\
\hline LossOfSignalFlag18_I & 02FB 015 & \\
\hline LossOfSignalFlag19_I & 02FC 015 & \\
\hline LossOfSignalFlag20_I & 02FD 015 & \\
\hline LossOfSignalFlag21_I & 02FE 015 & \\
\hline LossOfSignalFlag22_I & 02FF 015 & \\
\hline LossOfSignalFlag23_I & 0300015 & \\
\hline LossOfSignalFlag24_I & 0301015 & \\
\hline Comparator17_I & 0302015 & Comparators 17 - 32 \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Comparator18_I & 0303 & 0 & 15 \\
Comparator19_I & 0304 & 0 & 15 \\
Comparator20_I & 0305 & 0 & 15 \\
Comparator21_I & 0306 & 0 & 15 \\
Comparator22_I & 0307 & 0 & 15 \\
Comparator23_I & 0308 & 0 & 15 \\
Comparator24_I & 0309 & 0 & 15 \\
Comparator25_I & \(030 A\) & 0 & 15 \\
Comparator26_I & \(030 B\) & 0 & 15 \\
Comparator27_I & \(030 C\) & 0 & 15 \\
Comparator28_I & \(030 D\) & 0 & 15 \\
Comparator29_I & \(030 E\) & 0 & 15 \\
Comparator30_I & \(030 F\) & 0 & 15 \\
Comparator31_I & 0310 & 0 & 15 \\
Comparator32_I & 0311 & 0 & 15 \\
& & & \\
ConfigFilexfercomplete_I & 0312 & 0 & 15
\end{tabular}

\section*{!Spare0313}

InternalDigitalInput1_I InternalDigitalInput2_I InternalDigitalInput3_I InternalDigitalInput4_I InternalDigitalInput5_I InternalDigitalInput6_I InternalDigitalInput7_I InternalDigitalInput8_I InternalDigitalInput9_I InternalDigitalInput10_I InternalDigitalInput11_I InternalDigitalInput12_I InternalDigitalInput13_I InternalDigitalInput14_I InternalDigitalInput15_I InternalDigitalInput16_I InternalDigitalInput17_I InternalDigitalInput18_I InternalDigitalInput19_I InternalDigitalInput20_I

InternalDigitalOutput1_0 InternalDigitalOutput2_0 InternalDigitalOutput3_0 InternalDigitalOutput4_0 InternalDigitalOutput5_0 InternalDigitalOutput6_0 InternalDigitalOutput7_0 InternalDigitalOutput8_0 InternalDigitalOutput9_0 InternalDigitaloutput10_0 InternalDigitalOutput11_0 InternalDigitaloutput12_0 InternalDigitalOutput13_0 InternalDigitalOutput14_0 Internaldigitaloutput15_0 InternalDigitalOutput16_0
!********** Fault4 Word1a InternalLossOfSignal1_I InternalLossOfSignal2_I InternalLossOfSignal3_I
!********** Fault4 Enable InternalLossOfSignal1En_0 inputs 1
InternalLossOfSignal2En_0 inputs 1
InternalLossOfSignal3En_0 inputs 1

0314111
0314211
0314311
0314411
0314511
0314611
0314711
0315011
0315111
0315211
0315311
0315411
0315511
0315611
0315711
0318011
0318111
0318211
0318311

0316112
0316212
0316312
0316412
0316512
0316612
0316712
0317012
0317112
0317212
0317312
0317412
0317512
0317612
0317712

03140 11Internal Digital Inputs on System I/O board (20)

03160 12Internal Digital Outputs on System I/O board (16)

031A 09 System I/O board loss of analog input 1
031A 1 9System I/O board loss of analog input 2
031A 2 9System I/O board loss of analog input 3

032202 Enables system I/O board loss of signal alarm/fault for analog
032212 Enables system I/O board loss of signal alarm/fault for analog
032222 Enables system I/O board loss of signal alarm/fault for analog
!********** Fault4 Alarms InternalLossOfSignal1Wn_0 InternalLossOfSignal2Wn_0 InternalLossOfSignal3Wn_0
!********** Fault4 Outputs
unused4Fault1A0_0
unused4Fault1A1_0
unused4Fault1A2_0
! User Text
UserText1
UserText2
UserText3
UserText4
UserText5
UserText6
UserText7
UserText8
UserText9
UserText10
UserText11
UserText12
UserText13
UserText14
UserText15
UserText16
UserText17
UserText18
UserText19
UserText20
UserText21
UserText22
UserText23
UserText24
UserText25
UserText26
UserText27
UserText28
UserText29
UserText30
UserText31
UserText32

UserText33
UserText34
UserText35
UserText36
UserText37
UserText38
UserText39
UserText40
UserText41
UserText42
UserText43
UserText44
UserText45
UserText46
UserText47
UserText48

UserText49
UserText50
UserText51
UserText52
UserText53
UserText54
UserText55
UserText56
UserText57
UserText58

032A 0 2Sets system I/O board loss of signal analog input 1 as an alarm 032A 1 2Sets system I/O board loss of signal analog input 1 as an alarm 032A 2 2Sets system I/O board loss of signal analog input 1 as an alarm

033202
033212
033212

D000 0250
User text messages strings 1-64 (maximum string length is 24)
D000 1250
D000 250
D000 3250
D000 4250
D000 5250
D000 6250
D000 7250
D000 8250
D000 9250
D000 10250
D000 11250
D000 12250
D000 13250
D000 14250
D000 15250
D002 0250
D002 1250
D002 250
D002 3250
D002 4250
D002 5250
D002 6250
D002 7250
D002 8250
D002 9250
D002 10250
D002 11250 Asco Switch on Alternate (28)
D002 12250 UPS is on inverter (29)
D002 13250 UPS Alarm (30)
D002 14250 Sync Motor Exciter OT fault (31)
D002 15250 Sync Motor Loss of Exciter (32)
D004 0250
D004 1250
D004 250
D004 3250
D004 4250
D004 5250
D004 6250
D004 7250
D004 8250
D004 9250
D004 10250
D004 11250
D004 12250
D004 13250
D004 14250
D004 15250
D006 0250
D006 1250 Transformer OT Alarm (> 65 deg) (50)
D006 2250 Coolant Outlet OT Fault (> 70 deg) (51)
D006 3250 Low, Low Coolant Level (> 20") (52)
D006 4250 High Conductivity Fault (> 5uS) (53)
D006 5250 Coolant Flow is below 20\% (54)
D006 6250 Pump \#1 Failed (55)
D006 \(7250 \quad\) Pump \#2 Failed (56)
D006 8250 Both Cooling Pumps Failed (57)
D006 \(9250 \quad\) Cooling Ot Trip Alarm (58)
\begin{tabular}{|c|c|c|}
\hline UserText59 & D006 10250 & Cooling Ot Vfd Trip (59) \\
\hline UserText60 & D006 11250 & Cooling Ot Mv Trip (60) \\
\hline UserText61 & D006 12250 & Coolant Outlet Temperature Alarm (65 Deg C) (61) \\
\hline UserText62 & D006 13250 & Cooling Sys Vfd Trip (62) \\
\hline UserText63 & D006 14250 & Cooling Sys Mv Trip (63) \\
\hline UserText64 & D006 15250 & Input Protection Fault (64) \\
\hline Timer00 & E000 05 & Timers 0-31 \\
\hline Timer01 & E001 05 & \\
\hline Timer02 & E002 05 & \\
\hline Timer03 & E003 05 & \\
\hline Timer04 & E004 05 & \\
\hline Timer05 & E005 05 & \\
\hline Timer06 & E006 05 & \\
\hline Timer07 & E007 05 & \\
\hline Timer08 & E008 05 & \\
\hline Timer09 & E009 05 & \\
\hline Timer10 & E00A 05 & \\
\hline Timer11 & E00B 05 & \\
\hline Timer12 & E00C 05 & \\
\hline Timer13 & E00D 05 & \\
\hline Timer14 & E00E 05 & \\
\hline Timer15 & E00F 05 & \\
\hline Timer16 & E010 05 & \\
\hline Timer17 & E011 05 & \\
\hline Timer18 & E012 05 & \\
\hline Timer19 & E013 05 & \\
\hline Timer20 & E014 05 & Debounces the pump one hand position (20) \\
\hline Timer21 & E015 05 & Debounces the pump one off position (21) \\
\hline Timer22 & E016 05 & Debounces the pump two hand position (22) \\
\hline Timer23 & E017 05 & Debounces the pump two off position (23) \\
\hline Timer24 & E018 05 & Debounces the comparitor setting for Analog Outlet Temp (65 \\
\hline deg C)(24) & & \\
\hline Timer25 & E019 05 & Inlet temperature comparitor debounce (55 deg C) (25) \\
\hline Timer26 & E01A 05 & Pump 1 Flow Mask Timer (26) \\
\hline Timer27 & E01B 05 & Pump 2 Flow Mask Timer (27) \\
\hline Timer28 & E01C 05 & Coolant Low Level Debounce (28) \\
\hline Timer29 & E01D 05 & Coolant Low Low Level Debounce (29) \\
\hline Timer30 & E01E 05 & 1 minute conductivity change rate timer (30) \\
\hline Timer31 & E01F 05 & Resets the IOC auto reset permissive after this window (31) \\
\hline Timer32 & E020 05 & Delay on drop-out of Pump 1 run command (32) \\
\hline Timer33 & E021 05 & Delay on drop-out of Pump 2 run command (33) \\
\hline Timer34 & E022 05 & Debounce for Pump 1 Loss of Power (34) \\
\hline Timer35 & E023 05 & Debounce for Pump 1 TOL (35) \\
\hline Timer36 & E024 05 & Debounce for Pump 2 Loss of Power (36) \\
\hline Timer37 & E025 05 & Debounce for Pump 1 TOL (37) \\
\hline Timer38 & E026 05 & Time Delay before OT VFD trip (38) \\
\hline Timer39 & E027 05 & Time Delay before OT MV trip (39) \\
\hline Timer40 & E028 05 & One Hour timer for extended time base (40) \\
\hline Timer41 & E029 05 & Timer for drive in torque limit (41) \\
\hline Timer42 & E02A 05 & Debounces the Cell Cabinet Ambient Over Temperature Alarm \\
\hline Switches (42) & & \\
\hline Timer43 & E02B 05 & Debounces the Cell Cabinet Ambient Over Temperature Fault \\
\hline Switches (43) & & \\
\hline Timer44 & E02C 05 & Debounces the Xfmr Cabinet Ambient Over Temperature Alarm \\
\hline Switches (44) & & \\
\hline Timer45 & E02D 05 & Debounces the Xfmr Cabinet Ambient Over Temperature Trip \\
\hline Switches (45) & & \\
\hline Timer46 & E02E 05 & Debounces the comparitor input for low temperature (22 deg) (46) \\
\hline \[
\begin{aligned}
& \text { Timer47 } \\
& (47)
\end{aligned}
\] & E02F 05 & Debounces the comparitor setting for Conductivity Alarm level \\
\hline \[
\begin{aligned}
& \text { Timer } 48 \\
& (48)
\end{aligned}
\] & E030 05 & Debounces the comparitor for Drive available volts above rated \\
\hline Timer49
(5 uS)(49) & E031 05 & Debounces the comparitor setting for Conductivity Fault level \\
\hline Timer50 & E032 05 & Debounces the comparitor setting for Analog Inlet Temp (50) \\
\hline Timer51 & E033 05 & Debounces the comparitor setting for Analog Coolant Flow \\
\hline (60\%)(51) & & \\
\hline Timer52 & E034 05 & Debounces the comparitor setting for Analog Outlet Temp (82 \\
\hline
\end{tabular}
Timer53
Timer54
Timer55
Timer56
(20\%)(56)
Timer57
Timer58
Timer59
Timer60
Timer61
Timer62
Timer63
! Counters 0-63
Counter00 F000 06
Counter01 F001 06
Counter02
Counter03
Counter04
Counter05
Counter06
Counter07
Counter08
Counter09
Counter10
Counter11
Counter12
Counter13
Counter14
Counter15
Counter16
Counter17
Counter18
Counter19
Counter20
Counter21
Counter22
Counter23
Counter24
Counter25
Counter26
Counter27
Counter28
Counter29
Counter30
Counter31

Counter32
Counter33
Counter34
Counter 35
Counter36
Counter37
Counter38
Counter39
Counter40
Counter41
Counter 42
Counter43
Counter 44
Counter45
Counter46
Counter 47
Counter48
Counter 49
Counter50
Counter51
Counter52
Counter53
Counter54
Counter55

E035 05 E036 05 E037 05 E038 05

E039 05
E03A 05
E03B 05
E03C 05
E03D 05
E03E 05 Intended for use as a 1 minute timer (toggles) (62)
E03F 05 Intended for use as 1 second timer (toggles) (63)

First Cell Cabinet Blower cycle period (41)
Second Cell Cabinet Blower cycle period (42)
Third Cell Cabinet Blower cycle period (43)
Sync Motor Excitor power fault Counter (44)
Sync Motor Excitor field loss fault counter (45)
Synch Motor Exciter Enable (46)
Run Request (47)
Latches input for increment or decrement (48)
Local Speed Command Select (49)
Cooling System OT MV Trip Latch (50)
Permits one IOC reset within a window (51)
Cooling System OT VFD Trip Latch (52)
Pump \#1 Failure latch (53)
Pump \#2 Failure latch (54)
IP LFR Reset pulse End (55)

Counter56
Counter57
Counter58
Counter59
Counter60
Counter61
Counter62
Counter63

F038 06
F039 06
F03A 06
F03B 06
F03C 06
F03D 06
F03E 06
F03F 06

IP LFR Latch pulse enable (56)
IP LFR latch pulse End (57)
Input Protection latching pulse memory (58)
Key Reset Push Button Release detector (59)
MV Input Protection Key Reset Push Button Latch (60)
cooling system days cycle counter (61)
24 Hour half cycle counter (62)
used to create a square wave for cycling the cooling system (63)
\(!\quad\) Counter resets 0-63
CounterReset00
CounterReset01
CounterReset02
CounterReset03
CounterReset04
CounterReset05 CounterReset06
CounterReset07
CounterReset08
CounterReset09
CounterReset10
CounterReset11
CounterReset12
CounterReset13
CounterReset14
CounterReset15
CounterReset16
CounterReset17
CounterReset18
CounterReset19
CounterReset20
CounterReset21
CounterReset22
CounterReset23
CounterReset24
CounterReset25
CounterReset26
CounterReset27
CounterReset28
CounterReset29
CounterReset30
CounterReset31
CounterReset32
CounterReset33
CounterReset34
CounterReset35
CounterReset36
CounterReset37
CounterReset38
CounterReset39
CounterReset40
CounterReset41
CounterReset42
CounterReset43
CounterReset44
CounterReset45
CounterReset46
CounterReset47
CounterReset48
CounterReset49
CounterReset50
CounterReset51
CounterReset52
CounterReset53
CounterReset54
CounterReset55
CounterReset56
CounterReset57
CounterReset58
CounterReset59
F000 07
F001 07
F002 07
F003 07
F004 07
F005 07
F006 07
F007 07
F008 07
F009 07
F00A 07
F00B 07
F00C 07
FOOD 07
FOOE 07
F00F 07
F010 07
F011 07
F012 07
F013 07
F014 07
F015 07
F016 07
F017 07
F018 07
F019 07
F01A 07
F01B 07
F01C 07
F01D 07
F01E 07
F01F 07
F020 07
F021 07
F022 07
F023 07
F024 07
F025 07
F026 07
F027 07
F028 07
F029 07
F02A 07
F02B 07
F02C 07
F02D 07
F02E 07
F02F 07
F030 07
F031 07
F032 07
F033 07
F034 07
F035 07
F036 07
F037 07
F038 07
F039 07
F03A 07
F03B 07
First Cell Cabinet Blower cycle period (41)
Second Cell Cabinet Blower cycle period (42)
Third Cell Cabinet Blower cycle period (43)
Sync Motor Excitor power fault reset (44)
Sync Motor Excitor field loss reset (45)
Synch Motor Exciter Enable reset (46)
Run Request Reset (47)
Increment Decrement input latch Reset (48)
Local Speed Command Select Reset (49)
Cooling System OT MV Trip latch Reset (50)
Resets the IOC reset permissive counter (51)
Cooling System OT VFD Trip latch Reset (52)
Pump \#1 Failure latch reset (53)
Pump \#2 Failure latch reset (54)
IP LFR Reset pulse End (55)
IP LFR Latch pulse enable reset (56)
IP LFR latch pulse End reset (57)
Input Protection latching pulse memory reset (58)
Key Reset Push Button Release detector Reset (59)
\begin{tabular}{lll} 
CounterReset60 & F03C 07 & MV Input Protection KeyReset Push Button Latch Reset (60) \\
CounterReset61 & F03D 07 & Pump day cycle counter reset (61) \\
CounterReset62 & F03E 07 & Pump half cycle counter reset (62) \\
CounterReset63 & F03F 07 & Resets the cooling cycle counter (63)
\end{tabular}

line side of the drive
ExcessiveDriveLossesAlarm_I 026769
LossOfSignalInternal_I 026C 79
OutputPhaseOpenEn_0 027902
ExcessivePhaseErrorEn_0 027A 12
LossOfSignalInternalEn_0 028472
InTorqueLimitWn_0 028952
ExcessivePhaseErrorWn_0 028A 12
LossOfSignalInternalWn_0 029472
LossOfSignalInternal_0 02A4 72
XfmrCoolant82DegTS_I
XfmrCoolant65DegTS_I
UpTransferReset
Net1XferEnable_0
Net1UpXferStartCmd_0
Net1DnXferEnableVfd_0
Net1XferEnable_0
DownTransferPermit_0
DownTransferComplete_0
UpTransferPermit_0
UpTransferComplete_0
RemoteStart_I
RemoteStop_I
RemoteFaultReset_I
LocalSelect_I
HandSelect_I
LocalModeSw1_I
RemoteModeSw1_I
HandModeSw1_I
AutoModeSw1_I
XfmrotFaultTS_I
XfmrOtAlarmTS_I
CoolantLowLevel_I
CoolantLowLowLevel_I
Pump1Tol_I
Pump2Tol_I
Pump1PwrSense_I
Pump2PwrSense_I
CellCabCol2Amb50Deg_I
CellCabCol2Amb60Deg_I
CellCabCol4Amb50Deg_I
CellCabCol4Amb60Deg_I
XfmrLeftSideAmb70Deg_I
XfmrLeftSideAmb75Deg_I
\begin{tabular}{l} 
XfmrRightSideAmb70Deg_I \\
XfmrRightSideAmb75Deg_I \\
Pump1Sw2Hand_I \\
Pump1Sw2Off_I \\
Pump1Sw2Auto_I \\
MvIpLatchFeedback_I \\
Pump2SW3Hand_I \\
Pump2Sw30ff_I \\
Pump2Sw3Auto_I \\
MvIpKeyResetPb_I \\
DownXferRequest_I \\
VfdContactorAck_I \\
UpXferRequest_I \\
LineContactorAck_I \\
MultilinInput_I \\
SmExciterPowerOn_I \\
SmExciterHeatsinkTS_I \\
ReactorotAlarm_I \\
Reactor0tFault_I \\
HexFanPwrOk_I \\
LocalSpeedDemand_0 \\
DriveReady_0 \\
DriveRunning_0 \\
DriveAlarm_0 \\
ProcessAlarm_0 \\
DriveTripAlarm_0 \\
DriveTripped_0 \\
MvInputEnable_0 \\
SpeedDemandSignalLoss_0 \\
LnContactUnlatch_0 \\
DownXferPermit_0 \\
DownXferComplete_0 \\
UpxferPermit_0 \\
UpXferComplete_0 \\
Pump1MotorStarter_0 \\
Pump2MotorStarter_0 \\
MvLfrTripLatch_0 \\
MvLfrReset_0 \\
SmExciterEnable_0 \\
\hline
\end{tabular}


CoolantLowLevel_DI
CoolantLowLowLevel_DI
Pump1Tol_DI
Pump2Tol_DI
Pump1PwrSense_DI
Pump2PwrSense_DI
CellCabCol2Amb50Deg_DI
CellCabCol2Amb60Deg_DI
CellCabCol4Amb50Deg_DI
CellCabCol4Amb60Deg_DI
XfmrLeftSideAmb70Deg_DI
XfmrLeftSideAmb75Deg_DI
XfmrRightSideAmb70Deg_DI
XfmrRightSideAmb75Deg_DI
Pump1Sw2Hand_DI
Pump1Sw2Off_DI
Pump1Sw2Auto_DI
MvIpLatchFeedback_DI
Pump2Sw3Hand_DI
Pump2Sw3Off_DI
Pump2Sw3Auto_DI
MvIpKeyResetPb_DI
DownXferRequest_DI
VfdContactorAck_DI
UpXferRequest_DI
LineContactorAck_DI
!ExternalDigitalInput05c_I
MultilinInput_DI
SmExciterPowerOn_DI
SmExciterHeatsinkTS_DI
Reactor0tAlarm_DI
Reactor0tFault_DI
HexFanPwrok_DI
!ExternalDigitalInput05h_I
! Air Cooled only
! --------- (Duplicates commented out

BlowerMotorTol1 DI
BlowerMotorTol2_DI BlowerMotorTol3_DI BlowerMotorTol4_DI BlowerMotorTol5_DI AcMultilinInput_DI LowVoltagePwrAvail_DI AcDownXferRequest_DI

AcVfdContactorAck_DI AcUpXferRequest_DI AcLineContactorAck_DI BlowerMotorTol6_DI BlowerMotorTol7_DI BlowerMotorTol8_DI BlowerMotorTol9_DI BlowerMotorTol10_DI

AcMvIpKeyResetPb_DI MvIpLatchFeedback_DI AcUPSOnInverter_DI AcUPSAlarm_DI
AcSmExciterPowerOn_DI
AcSmExciterHeatsinkTS_DI
AcReactorotAlarm_DI
AcReactorOtFault_DI
TransferSwitch_DI
FrontPanelRun_DI
FrontPanelStop_DI
FrontPanelFltReset_DI

0201011
0201111
0201211
0201311
0201411
0201511
0201611
0201711
0202011
0202111
0202211
0202311
0202411
0202511
0202611
0202711
0203011 EDi04-a, No terminals
0203111 EDi04-b, No terminals
0203211 EDi04-c, No terminals
0203311 EDi04-d, No terminals
0203411 EDi04-e, No terminals
0203511 EDi04-f, No terminals
0203611 EDi04-g, TB2-37/38
0203711 EDi04-h, TB2-39/40
0204011 EDi05-a, TB2-45/46
0204111 EDi05-b, TB2-47/48
0204211 EDi05-c, TB2-35/36 (spare) Do not unComment
0204311 EDi05-d, No terminals
0204411
0204511
0204411
0204511
0204611
0204711
EDi02-a, TB1-10/11
EDi02-b, TB1-12/13
EDi02-c, TB1-15/16
EDi02-d, TB1-17/18
EDi02-e, TB1-20/21
EDi02-f, TB1-22/23
EDi02-g, TB1-25/26
EDi02-h, TB1-27/28
EDi03-a, TB1-29/30
EDi03-b, TB1-31/32
EDi03-c, TB1-33/34
EDi03-d, TB1-35/36
EDi03-e, TB1-37/38
EDi03-f, TB1-39/40
EDi03-g, No terminals
EDi03-h, No terminals

EDi04-c, No terminals
EDi04-e, No terminals
EDi04-f, No termin

EDi05-e, CB5 AC Exciter Cabinet
EDi05-f, AC Exciter Cabinet OT switch 93 C deg
EDi05-e, Reactor Temp > 165 C
EDi05-f, Reactor Temp > 190 C
EDi05-g, No terminals
EDi05-h, No terminals Do not unComment

EDi02-a, Blower 1 on feedback
EDi02-b, Blower 2 on feedback
EDi02-c, Blower 3 on feedback
EDi02-d, Blower 4 on feedback
EDi02-e, Blower 5 on feedback
EDi02-f, Motor Protection Relay Trip
EDi02-g, Low Voltage Power is available permissive (CB-LV)
EDi02-h, Down Sync Transfer Request
EDi03-a, VFD contactor acknowledge feedback
EDi03-b, Up Sync Transfer Request
EDi03-c, Line contactor acknowledge feedback
EDi03-d, Blower 6 on feedback
EDi03-e, Blower 7 on feedback
EDi03-f, Blower 8 on feedback
EDi03-g, Blower 9 on feedback
EDi03-h, Blower 10 on feedback

EDi04-a, MV Input Protection Key Reset Pushbutton EDi04-b, MV Input Protection latching relay feedback
EDi04-c, UPS on Inverter
EDi04-d, UPS ALarm
EDi04-e, AC Exciter CB5 Aux Contact
EDi04-f, AC Exciter Heatsink OT switch
EDi04-e, Reactor Temperature > 165 C
EDi04-f, Reactor Temperature > 190 C
EDi04-g, ASCO transfer switch on NORMAL Source
EDi04-h, Front panel control PB2 - Run
EDi05-a, Front panel control PB3 - Stop
EDi05-b, Front panel control PB1 - Fault Reset
```

! Dedicated Discrete Outputs for 'standard drive configuration
!--

```

```

DriveReady_DO
DriveRunning_Do
020C 1 12EDo01-b, TB2-13/14
020C 2 12EDo01-c, TB2-15/16
DriveAlarm_DO
ProcessAlarm_DO
DriveTripAlarm_DO
020C 4 12EDO01-e, TB2-19/20
DriveTripped_DO
020C 6 12EDo01-g, TB2-23/24
MvInputEnable_DO 020C 7 12EDo01-h, TB2-25 LFR-3 (LFR-5 to TB2-26 NC contact)
! Liquid Cooled
|
SpeedDemandSignalLoss_DO 020D 0 12
!ExternalDigitalOutput02b_0
ExternalDigitalOutput02c_0
020D 3 12
DownXferPermit_DO
DownXferComplete_DO
UpXferPermit_DO
UpXferComplete_DO
020D 4 12
020D 5 12
020D 6 12
020D 7 12
020E 0 12
Pump1MotorStarter_D0
Pump2MotorStarter_DO
020E 1 12
EDo03-b, MS2-A
MvLfrTripLatch_DO
020E 2 12
MvLfrReset DO
020E 3 12
SmExciterEnable_DO
!ExternalDigitalOutput03f_0
020E 4 12
020E 5 12
!ExternalDigitalOutput03g_0
020E 6 12
020E 7 12
EDo02-a, TB2-27/28 Loss of 4-20ma Speed Command
EDo02-b, TB2-29/30 (Spare)
EDo02-c, TB2-31/32 (Spare)
EDo02-d, TB2-33/34 (Spare)
LnContactUnlatch DO
EDo02-e, TB2-41/42
EDo02-f, TB2-43/44
EDo02-g, TB2-49/50
EDo02-h, TB2-51/52
EDo03-a, MS1-A
EDo03-c, LFR-1
EDo03-d, LFR-2
EDo03-e, SM Exciter
EDo03-f, (Spare)
Not Assigned
!ExternalDigitalOutput03h_0
Not Assigned
! Air Cooled
! --------- (Duplicates commented out)
ISpeedDemandSignalLoss Do
!SpeedDemandSignalLoss_DO
BlowerMotorControl1_DO BlowerMotorControl2_DO BlowerMotorControl3_DO BlowerMotorControl4_DO BlowerMotorControl5_DO AcDownXferPermit_DO AcDownXferComplete_DO
BlowerMotorControl6_DO BlowerMotorControl7_DO !MvLfrTripLatch_DO !MvLfrReset_DO !SmExciterEnable_DO AcUpXferPermit_DO AcUpXferComplete_DO AcUPSOnInverterAck_DO
AcUPSAlarmAck_DO
020D 0 12
020D 1 12
020D
020D 2 12
020D 3 12
020D 4 12
020D 5 12
020D 6 12
020D 7 12
020E 0 12
020E 1 12
020E 2 12
020E 3 12
020E 4 12
020E 5 12
020E 6 12
020E 7 12
020F 0 12
020F 1 12
020F 2 12
BlowerMotorControl8_DO
BlowerMotorControl9_DO
BlowerMotorControl10_DO
020F }31
SpeedDemandSignalLoss_D
EDo02-a, Loss of 4-20ma Speed Command
EDo02-b, Blower 1 command
EDo02-c, Blower 2 command
EDo02-d, Blower 3 command
EDo02-e, Blower 4 command
EDo02-f, Blower 5 command
EDo02-g, TB2-41/42 Down Transfer Permit
EDo02-h, TB2-43/44 Down Transfer Complete
EDo03-a, Blower 6 command
EDo03-b, Blower }7\mathrm{ command
EDo03-c, Input MV Contactor Trip and Latch
EDo03-d, Input MV Contactor un-latch (Reset)
EDo03-e, SM Exciter
EDo03-f, TB2-49/50 Up Transfer Permit
EDo03-g, TB2-51/52 Up Transfer Complete
EDo03-h, UPS On Inverter
EDo04-a - UPS Alarm
EDo04-b - Blower 8 command
EDo04-c - Blower 9 command
EDo04-d - Blower 10 command
! Timers

```

Pump1HandDebounce
E014 05
Pump10ffDebounce E015 05
Pump2HandDebounce E016 05 E017 05
Pump20ffDebounce E018 05
OutletTempAlarmDebounce
deg C)(24)
InletTempAlarmDebounce
E019 05
E01A 05 E01B 05

Debounces the pump one hand position (20) Debounces the pump one off position (21)
Debounces the pump two hand position (22)
Debounces the pump two off position (23)
Debounces the comparitor setting for Analog Outlet Temp (65
Inlet temperature comparitor debounce (55 deg C) (25)
Pump 1 Flow Mask Timer (26)
Pump 2 Flow Mask Timer (27)

CoolantLowLevelDebounce
CoolantLowLowLevelDebounce
CondChangeTimer
IocResetPermitTimer
Pump1DelayOnDropOut
Pump2DelayOnDropOut
Pump1PwrLossDebounce
Pump1TolDebounce
Pump2PwrLossDebounce
Pump2TolDebounce
CoolSysOTVfdTripTimer
CoolSysOTMvTripTimer
OneHourTimer
InTorqLimitTimer
CellCabAmbTempAlarmDebounce Switches (42)
CellCabAmbTempFaultDebounce
Switches (43)
XfmrCabAmbTempAlarmDebounce
Switches (44)
XfmrCabAmbTempFaultDebounce
Switches (45)
InletLowTempDebounce
(46)

ConductivityAlarmDebounce
(47)

AvailVoltsDebounce
(48)

ConductivityFaultDebounce
(5 uS)(49)
InletTempFaultDebounce
LowFlowAlarmDebounce
(60\%)(51)
OutletTempFaultDebounce
deg)(52)
SlowLeakTimer
LowWaterFlowAlarmTimer
IpTripDelayTimer
LowFlowFaultDebounce
(20\%)(56)
IpLfrResetPulseTimer
IpPowerOnDelayTimer
IpLfrLatchPulseTimer
Pump1FlowTimer
Pump2FlowTimer
OneMinuteTimer
OneSecondTimer
! Dedicated Counters
! ---------------
FirstPeriodCounter SecondPeriodCounter ThirdPeriodCounter

SmPowerFailCount
SmExciterLossCount SmExciterEnableLatch RunRequestLatch IncrementDecrementLatch LocalSpdCommandLatch CoolSysOTMvTripLatch IocResetCounter CoolSysOTVfdTripLatch Pump1FailedLatch Pump2FailedLatch IpLfrResetPulseEnd IpLfrLatchPulseEnable IpLfrLatchPulseEnd IpLatchPulseMemory IpKeyResetPBReleaseDetect IpKeyResetPBLatch

E01C 05
E01D 05 E01E 05 E01F 05

E020 05
E021 05
E022 05
E023 05
E024 05
E025 05
E026 05
E027 05
E028 05
E029 05
E02A 05
E02B 05

E02C 05
E02D 05
E02E 05
E02F 05
E030 05

E031 05
E032 05
E033 05
E034 05

E035 05
E036 05
E037 05
E038 05
E039 05
E03A 05
E03B 05
E03C 05
E03D 05
E03E 05
E03F 05

Coolant Low Level Debounce (28)
Coolant Low Low Level Debounce (29)
1 minute conductivity change rate timer (30)
Resets the IOC auto reset permissive after this window (31)
Delay on drop-out of Pump 1 run command (32)
Delay on drop-out of Pump 2 run command (33)
Debounce for Pump 1 Loss of Power (34)
Debounce for Pump 1 TOL (35)
Debounce for Pump 2 Loss of Power (36)
Debounce for Pump 1 TOL (37)
Time Delay before OT VFD trip (38) Time Delay before OT MV trip (39)
One Hour timer for extended time base (40)
Timer for drive in torque limit (41) Debounces the Cell Cabinet Ambient Over Temperature Alarm Debounces the Cell Cabinet Ambient Over Temperature Fault Debounces the Xfmr Cabinet Ambient Over Temperature Alarm Debounces the Xfmr Cabinet Ambient Over Temperature Trip Debounces the comparitor input for low temperature (22 deg) Debounces the comparitor setting for Conductivity Alarm level Debounces the comparitor for Drive available volts above rated

Debounces the comparitor setting for Conductivity Fault level
Debounces the comparitor setting for Analog Inlet Temp (50)
Debounces the comparitor setting for Analog Coolant Flow
Debounces the comparitor setting for Analog Outlet Temp (82
Slow Leak timer (1 Hour) (53)
Low Water Flow Alarm Delay Timer (54)
Input Protection Delay timer (2 minutes) (55)
Debounces the comparitor setting for Analog Coolant Flow
Input Protection LFR Reset pulse duration timer (57)
Input Protection Power On Debounce delay (58)
Input Protection LFR Latch pulse duration timer (59)
Pump One Flow Timeout Timer (60)
Pump Two Flow Timeout Timer (61)
Intended for use as a 1 minute timer (toggles) (62)
Intended for use as 1 second timer (toggles) (63)

First Cell Cabinet Blower cycle period (41)
Second Cell Cabinet Blower cycle period (42)
Third Cell Cabinet Blower cycle period (43)
Sync Motor Excitor power fault Counter (44)
Sync Motor Excitor field loss fault counter (45)
Synch Motor Exciter Enable (46)
Run Request (47)
Latches input for increment or decrement (48)
Local Speed Command Select (49)
Cooling System OT MV Trip Latch (50)
Permits one IOC reset within a window (51)
Cooling System OT VFD Trip Latch (52)
Pump \#1 Failure latch (53)
Pump \#2 Failure latch (54)
IP LFR Reset pulse End (55)
IP LFR Latch pulse enable (56)
IP LFR latch pulse End (57)
Input Protection latching pulse memory (58)
Key Reset Push Button Release detector (59)

MV Input Protection Key Reset Push Button Latch (60)

F029 06
F02A 06
F02B 06
F02C 06
F02D 06
F02E 06
F02F 06
F030 06
F031 06
F032 06
F033 06
F034 06
F035 06
F036 06
F037 06
F038 06
F039 06
F03A 06
F03B 06
F03C 06

\section*{DayCounter}

24HourCounter
CyclePeriodCounter
(63)
! Dedicated Counter Resets
! ---------------------
FirstPeriodCounterReset SecondPeriodCounterReset ThirdPeriodCounterReset

SmPowerFailCountReset
SmExciterLossCountReset SmExciterEnableLatchReset
RunRequestLatchReset IncrementDecrementLatchReset LocalSpdCommandLatchReset CoolSysOTMvTripLatchReset IocResetCounterReset CoolSysOTVfdTripLatchReset Pump1FailedLatchReset
Pump2FailedLatchReset IpLfrResetPulseEndReset IpLfrLatchPulseEnableReset IpLfrLatchPulseEndReset IpLatchPulseMemoryReset IpKeyResetPBReleaseDetectReset IpKeyResetPBLatchReset
DayCounterReset
24HourReset
CyclePeriodReset
! Dedicated Temp Flags
! -------------------
Pump1InHandMode
Pump2InHandMode
NextCellToBypass
SlowCondChangeDetect
FastCondChangeDetect
CoolantLevelFault
IocResetPermit
window (32)
CoolingInitComplete
CriticalAlarmCondition
PumpPwrok
OneHourReset
CellCabinetAmbOTAlarm
active (37)
CellCabinetAmbOTFault
(38)

XfmrCabinetAmbOTAlarm
active (39)
XfmrCabinetAmbOTFault
(40)

SlowLeakDetector
(41)

SyncTransferActive
active (42)
;;;UpTransferReset
DownTransferReset
AnalogSpeedMode
Network1RunRequest
Network1Speedcontrol
Pump1Available
Pump1RunCommand
Pump2Available
Pump2RunCommand
CoolSysOTHysteresis
CoolingSysOT
CoolingSysFail
LfrDriveResetEnable
fault reset (55)

F03D 06
F03E 06
F03F 06

F029 07
F02A 07
F02B 07
F02C 07
F02D 07
F02E 07
F02F 07
F030 07
F031 07
F032 07
F033 07
F034 07
F035 07
F036 07
F037 07
F038 07
F039 07
F03A 07
F03B 07
F03C 07
F03D 07
F03E 07
F03F 07

023D 01
023E 01
023F 01
024001
024101
024201
024301
024401
024501
024601
024701
024801

024901
024A 01

024B 01

024D 01
024E 01
024F 01
025001
025101
025201
025301
025401
025501
025601
025701
025801
025901
025A 01

024C 01 Slow leak detection (1 hour between low and low - low levels)
cooling system days cycle counter (61)
24 Hour half cycle counter (62)
used to create a square wave for cycling the cooling system
```

First Cell Cabinet Blower cycle period (41)
Second Cell Cabinet Blower cycle period (42)
Third Cell Cabinet Blower cycle period (43)
Sync Motor Excitor power fault Counter (44)
Sync Motor Excitor field loss fault counter (45)
Synch Motor Exciter Enable reset (46)
Run Request Reset (47)
Increment Decrement input latch Reset (48)
Local Speed Command Select Reset (49)
Cooling System OT MV Trip latch Reset (50)
Resets the IOC reset permissive counter (51)
Cooling System OT VFD Trip latch Reset (52)
Pump \#1 Failure latch reset (53)
Pump \#2 Failure latch reset (54)
IP LFR Reset pulse End (55)
IP LFR Latch pulse enable reset (56)
IP LFR latch pulse End reset (57)
Input Protection latching pulse memory reset (58)
Key Reset Push Button Release detector Reset (59)
MV Input Protection KeyReset Push Button Latch Reset (60)
Pump day cycle counter reset (61)
Pump half cycle counter reset (62)
Resets the cooling cycle counter (63)

```

Pump 1 in Hand mode (26)
Pump 2 in Hand mode (27)
Next Cell to bypass (28)
Slow Conductivity Change Detector (29)
Fast Conductivity Change Detector (30)
Coolant Level Fault Condition (< 20 inches) (31)
Allows an IOC reset for \(X\) counts and is re-enabled after a
Used for cooling system drop-out timer initialization (33)
Critical Cooling System Alarm Condition (34)
One of the pumps has power (35)
Resets the One Hour Timer (toggle) (36)
Indication that an Ambient Temperature warning Switch is
Indication that an Ambient Temperature fault Switch is active
Indication that an Ambient Temperature warning Switch is

Indication that an Ambient Temperature fault Switch is active

Sync Transfer Mode Active - either Up or Down Transfer is
Up Transfer Reset Flag (43)
Down Transfer Reset Flag (44)
Analog Speed Mode (45)
Network \# 1 Run Request (46)
Network \# 1 Speed Control (47)
Pump \#1 is Available (48)
Pump \#1 Run Command (49)
Pump \#2 is Available (50)
Pump \#2 Run Command (51)
Cooling System OT Hysteresis (52)
Cooling System OT (53)
Cooling System Malfunction (54)
Forward reference of latching pulse memory to enable drive
\begin{tabular}{lllll} 
MvContactorTripCommand & \(025 B\) & 0 & 1 \\
LfrKeyResetPBEnable & \(025 C\) & 0 & 1 \\
CoolingCycleFlag & \(025 D\) & 0 & 1 \\
OneMinuteReset & \(025 E\) & 0 & 1 \\
OneSecondReset & \(025 F\) & 0 & 1 \\
& & & & \\
! Air Cooled Temp Flags & & & \\
\(!--------\) & & \\
AllXfrmBlowersTol & 0248 & 0 & 1 \\
BlowerGroup1Tol & 0249 & 0 & 1 \\
BlowerGroup2Tol & \(024 A\) & 0 & 1 \\
BlowerGroup3Tol & \(024 B\) & 0 & 1 \\
& & & & \\
AnyBlowerTol & 0253 & 0 & 1 \\
CellBlowerGrp1 & 0254 & 0 & 1 \\
CellBlowerGrp2 & 0255 & 0 & 1 \\
CellBlowerGrp3 & 0256 & 0 & 1
\end{tabular}
! Dedicated User Fault Inputs
! ---------------------------
TransferSwitchActive_I
UpsOnInverter_I
UpsAlarm_I
SmExciterOtAlarm_I
SmExciterLoss_I
SmExciterPowerFault_I
Pump1LossOfPwr_I
Pump1Tol_I
Pump2LossOfPwr_I
Pump2Tol_I
EstopAlarm_I
MultilinFault_I
AvailVoltsAlarm_I
CabCol2AmbAlarm_I
CabCol2AmbFault_I
CabCol4AmbAlarm_I
CabCol4AmbFault_I
XfmrLeftAmbAlarm_I
XfmrLeftAmbFault_I
XfmrRightAmbAlarm_I
XfmrRightAmbFault_I
HexFansPowerFailed_I
TransformerOtAlarm_I
CoolantOutletOtFault_I
LowLowCoolantFault_I
HighConductivityFault_I
CoolantInletOtAlarm_I
Pump1Failed_I
Pump2Failed_I
BothPumpsFailed_I
CoolingOtTripAlarm_I
CoolingOtVfdTrip_I
CoolingOtMvTrip_I
CoolantOutletOtAlarm_I
CoolingSysVfdTrip_I
CoolingSysMvTrip_I
MvIpLatchedFault_I

027339 027349 027359 027369 027379

027409 027419 027429 027439 027449 027459 027469 027479

027509 027519 027529 027539 027549 027559 027569 027579

027609
027619
027629
027639 027649 027659 027669 027679

027709
027719
027729
027739
027749 027759 027769 027779
! Dedicated User Fault Warning Enables
! ------------------------------------
TransferSwitchActiveWn_0 029B 32
UpsOnInverterWn_0 029B 42
UpsAlarmWn_0
029B 52
SmExciterOtAlarmWn_0
029B 62
SmExciterLossWn_0

Asco Switch on Alternate (28)
UPS is on inverter (29)
UPS alarm (30)
Sync Motor Exciter OT fault (31)
Sync Motor Loss of Exciter (32)
Sync Motor Exciter Fault (33)
Pump One Loss of power alarm (34)
Pump One TOL alarm (35)
Pump Two Loss of power alarm (36)
Pump One TOL alarm (37)
Estop Alarm for logging (38)
Multilin Fault of Drive (39)
Avail Volts below rated alarm (40)
Cell Cabinet Column 2 Ambient alarm (50 Deg) (41)
Cell Cabinet Column 2 Ambient fault (60 Deg) (42)
Cell Cabinet Column 4 Ambient alarm (50 Deg) (43)
Cell Cabinet Column 4 Ambient fault (60 Deg) (44)
Transformer Left side Ambient alarm (60 Deg) (45)
Transformer Left side Ambient fault (70 Deg) (46)
Transformer Right side Ambient alarm (60 Deg) (47)
Transformer Right side Ambient fault (70 Deg) (48)
Hex Fans Power Failed (49)
Transformer OT Alarm (> 65 deg) (50)
Coolant Outlet OT Fault (> 70 deg) (51)
Low, Low Coolant Level (> 20") (52)
High Conductivity Fault (> 5uS) (53)
Coolant Inlet Temp above 55 deg C (54)
Pump \#1 Failed (55)
Pump \#2 Failed (56)
Both Cooling Pumps Failed (57)
Cooling Ot Mv Trip (58)
Cooling Ot Vfd Trip (59)
Cooling Ot Trip Alarm (60)
Coolant Outlet Temperature Alarm (65 Deg C) (61)
Cooling Sys Vfd Trip (62)
Cooling Sys Mv Trip (63)
MV Input Protection Latched Fault (64)
Input Contactor Trip Command (56)
Falling edge detection for key reset switch push button (57)
Cooling days Cycle Flag for pumps \& redundant fans (58)
Resets the One Minute Timer (toggle) (59)
Resets the One Second Timer (toggle) (60)

All Transformer blowers failed (37)
1st group of blowers failed (38)
2nd group of blowers failed (39)
3rd group of blowers failed (40)
any blower TOL's tripped (48)
control for 1st set of cell blowers (49)
control for 2nd set of cell blowers (50)
control for 3rd set of cell blowers (51)

Asco Switch on Alternate (28)
UPS is on inverter (29)
UPS alarm (30)
Sync Motor Exciter OT fault (31)
Sync Motor Loss of Exciter (32)
SmExciterPowerFaultWn_0
Pump1Loss0fPWrWn_0
Pump1TolWn_0
Pump2LossOffwrWn_0
Pump2TolWn_0
EstopAlarmWn_0
MultilinFaultWn_0
AvailVoltsAlarmWn_0
CabCol2AmbAlarmWn_0
CabCol2AmbFaultWn_0
CabCol4AmbAlarmWn_0
CabCol4AmbFaultWn_0
XfmrLeftAmbAlarmWn_0
XfmrLeftAmbFaultWn_0
XfmrRightAmbAlarmWn_0
XfmrRightAmbFaultWn_0
HexFansPowerFailedWn_0
TransformerOtAlarmWn_0
CoolantOutletotFaultWn_0
LowLowCoolantFaultWn_0
HighConductivityFaultWn_0
CoolantInletOtAlarmWn_0
Pump1FailedWn_0
Pump2FailedWn_0
BothPumpsFailedWn_0
CoolingOtTripAlarmWn_0
CoolingOtVfdTripWn_0
CoolingOtMVTripWn_0
CoolantOutletOtAlarmWn_0
CoolingSysVfdTripWn_0
CoolingSysMvTripWn_0
MvIpLatchedFaultWn_0

029C 02 029C 12 029C 22 029C 32 029C 42
029C 52
029C 62
029C 72
029D 02
029D 12
029D 22
029D 32
029D 42
029D 52
029D 62
029D 72
029E 02
029E 12
029E 22
029E 32
029E 42
029E 52
029E 62
029E 72
029F 02
029F 12
029F 22
029F 32
029F 42
029F 52
029F 62
029F 72

02AB 32
02AB 42
02AB 52
02AB 62
02AB 72
02AC 02
02AC 12
02AC 22
02AC 32
02AC 42
02AC 52
02AC 62
02AC 72
02AD 02
02AD 12
02AD 22
02AD 32
02AD 42
02AD 52
02AD 62
02AD 72

02AE 02
02AE 12
02AE 22
02AE 32
02AE 42
02AE 52
02AE 62
02AE 72

02AF 02
```

Sync Motor Exciter Fault (33)
Pump One Loss of power alarm (34)
Pump One TOL alarm (35)
Pump Two Loss of power alarm (36)
Pump One TOL alarm (37)
Estop Alarm for logging (38)
Multilin Fault of Drive (39)
Avail Volts below rated alarm (40)
Cell Cabinet Column 2 Ambient alarm (50 Deg) (41)
Cell Cabinet Column 2 Ambient fault (60 Deg) (42)
Cell Cabinet Column 4 Ambient alarm (50 Deg) (43)
Cell Cabinet Column 4 Ambient fault (60 Deg) (44)
Transformer Left side Ambient alarm (70 Deg) (45)
Transformer Left side Ambient fault (75 Deg) (46)
Transformer Right side Ambient alarm (70 Deg) (47)
Transformer Right side Ambient fault (75 Deg) (48)
Hex Fans Power Failed (49)
Transformer OT Alarm (> 65 deg) (50)
Coolant Outlet OT Fault (> 70 deg) (51)
Low, Low Coolant Level (> 20") (52)
High Conductivity Trip (> 5uS) (53)
Coolant Inlet Temp above 55 deg C (54)
Pump \#1 Failed (55)
Pump \#2 Failed (56)
Both Cooling Pumps Failed (57)
Cooling Ot Trip Alarm (set true) (58)
Cooling Ot Vfd Trip (set false - default) (59)
Cooling Ot Mv Trip (set false - default) (60)
Coolant Outlet Temperature Alarm (65 Deg C) (61)
Cooling Sys Vfd Trip (set false - default) (62)
Cooling Sys Mv Trip (set false - default) (63)
MV Input Protection Latched Fault (set false - default) (64)

```

Asco Switch on Alternate (28)
UPS is on inverter (29)
UPS alarm (30)
Sync Motor Exciter OT fault (31)
Sync Motor Loss of Exciter (32)
Sync Motor Exciter Fault (33)
Pump One Loss of power alarm (34)
Pump One TOL alarm (35)
Pump Two Loss of power alarm (36)
Pump One TOL alarm (37)
Estop Alarm for logging (38)
Multilin Fault of Drive (39)
Avail Volts below rated alarm (40)
Cell Cabinet Column 2 Ambient alarm (50 Deg) (41)
Cell Cabinet Column 2 Ambient fault (60 Deg) (42)
Cell Cabinet Column 4 Ambient alarm (50 Deg) (43)
Cell Cabinet Column 4 Ambient fault (60 Deg) (44)
Transformer Left side Ambient alarm (60 Deg) (45)
Transformer Left side Ambient fault (70 Deg) (46)
Transformer Right side Ambient alarm (60 Deg) (47)
Transformer Right side Ambient fault (70 Deg) (48)
Hex Fans Power Failed (49)
Transformer OT Alarm (> 65 deg) (50)
Coolant Outlet OT Fault (> 70 deg) (51)
Low, Low Coolant Level (> 20") (52)
High Conductivity Fault (> 5uS) (53)
Coolant Inlet Temp above 55 deg C (54)
Pump \#1 Failed (55)
Pump \#2 Failed (56)
Both Cooling Pumps Failed (57)

CoolingOtTripAlarm_0
CoolingOtVfdTrip_0
CoolingOtMvTrip_0
CoolantOutletOtAlarm_0
CoolingSysVfdTrip_0
CoolingSysMvTrip_0
MvIpLatchedFault_0
! Dedicated User Fault Text
! -----------------------
TransferSwitchActiveText
UpsOnInverterText
UpsAlarmText
SmExciterOtAlarmText
SmExciterLossText
SmExciterPowerFaultText
Pump1LossOfPwrText
Pump1TolText
Pump2LossOfPwrText
Pump2TolText
EstopAlarmText
MultilinFaultText
AvailVoltsAlarmText
CabCol2AmbAlarmText
CabCol2AmbFaultText
CabCol4AmbAlarmText
CabCol4AmbFaultText
XfmrLeftAmbAlarmText
XfmrLeftAmbFaultText
XfmrRightAmbAlarmText
XfmrRightAmbFaultText

HexFansPowerFailedText
TransformerOtAlarmText CoolantOutletOtFaultText LowLowCoolantFaultText HighConductivityFaultText CoolantInletOtAlarmText Pump1FailedText
Pump2FailedText BothPumpsFailedText CoolingOtTripAlarmText CoolingOtVfdTripText CoolingOtMvTripText CoolantOutletOtAlarmText CoolingSysVfdTripText CoolingSysMvTripText MvIpLatchedFaultText

02AF 12
02AF 22
02AF 32
02AF 42
02AF 52
02AF 62
02AF 72

D002 11250
D002 12250
D002 13250
D002 14250
D002 15250
D004 0250
D004 1250
D004 250
D004 3250
D004 4250
D004 5250
D004 6250
D004 7250
D004 8250
D004 9250
D004 10250
D004 11250
D004 12250
D004 13250
D004 14250
D004 15250

D006 0250
D006 1250
D006 2250
D006 3250
D006 4250
D006 5250
D006 6250
D006 7250
D006 8250
D006 9250
D006 10250
D006 11250
D006 12250
D006 13250
D006 14250
D006 15250

Cooling Ot Trip Alarm (58)
Cooling Ot Vfd Trip (59)
Cooling Ot Mv Trip (60)
Coolant Outlet Temperature Alarm (65 Deg C) (61)
Cooling Sys Vfd Trip (62)
Cooling Sys Mv Trip (63)
MV Input Protection latched fault (64)

Asco Switch on Alternate (28)
UPS is on inverter (29)
UPS alarm (30)
Sync Motor Exciter OT fault (31)
Sync Motor Loss of Exciter (32)
Sync Motor Exciter Fault (33)
Pump One Loss of power alarm (34)
Pump One TOL alarm (35)
Pump Two Loss of power alarm (36)
Pump One TOL alarm (37)
Estop Alarm for logging (38)
Multilin Fault of Drive (39)
Avail Volts below rated alarm (40)
Cell Cabinet Column 2 Ambient alarm (50 Deg) (41)
Cell Cabinet Column 2 Ambient fault (60 Deg) (42)
Cell Cabinet Column 4 Ambient alarm (50 Deg) (43)
Cell Cabinet Column 4 Ambient fault (60 Deg) (44)
Transformer Left side Ambient alarm (60 Deg) (45)
Transformer Left side Ambient fault (70 Deg) (46)
Transformer Right side Ambient alarm (60 Deg) (47)
Transformer Right side Ambient fault (70 Deg) (48)
Hex Fans Power Failed (49)
Transformer OT Alarm (> 65 deg) (50)
Coolant Outlet OT Fault (> 70 deg) (51)
Low, Low Coolant Level (> 20") (52)
High Conductivity Fault (> 5uS) (53)
Coolant Inlet Temp above 55 deg C (54)
Pump \#1 Failed (55)
Pump \#2 Failed (56)
Both Cooling Pumps Failed (57)
Cooling Ot Trip Alarm (58)
Cooling Ot Vfd Trip (59)
Cooling Ot Mv Trip (60)
Coolant Outlet Temperature Alarm (65 Deg C) (61)
Cooling Sys Vfd Trip (62)
Cooling Sys Mv Trip (63)
Input Protection Fault (64)

VFD Contactor Closed Acknowledge (59)
Line Contactor Closed Acknowledge (60)
Up Transfer Request (61)
Down Transfer Request (62)
Transfer Fault Reset (63)

Drive producing torque - Ok to drop line contactor (58)
Initiate Up Transfer (59)
Up Transfer Complete (60)
Initiate Down Transfer (61)
Down Transfer Complete (62)
Command to remove MV Input power (63)
Indicates a cell fault

\section*{APPENDIX}

\section*{E Historical Logger}

\section*{E. 1 Historical Logger}

The NXG Control has a Historical log for continuously logging a series of records consisting of 10 entries. The entries consist of the drive state, seven user programmable variables, and two fault data words. This information is sampled every speed loop update cycle, and is stored in a circular buffer. When a fault condition occurs, 57 pre-fault samples and 20 post-fault samples are recorded along with the current sample (for a total of 78 samples) in nonvolatile memory along with the time/date stamp. This information stays in nonvolatile memory until the next fault occurs, at which time the old information is overwritten. To preserve multiple records of Historical logs, the user can enable (default is enabled) saving the historical logs into the Event log file. This data is preserved on the CompactFLASH. The user-defined variables are to be selected from a predefined list defined in Chapter \#3. The fault information is stored in the two fault data words. The following serves as a reference for the individual meaning of each fault bit.

Fault Word 1
\begin{tabular}{|lr|}
\hline CellBypassLinkFailure & bit28 \\
WeakBattery & bit29 \\
SystemProgram & bit30 \\
MediumVoltageLowAlarm1 & bit31 \\
\hline
\end{tabular}

Fault Word 2


Fault Word 3
\begin{tabular}{|ll|}
\hline UserFault29 & bit28 \\
UserFault30 & bit29 \\
UserFault31 & bit30 \\
UserFault32 & bit31 \\
\hline
\end{tabular}

Fault Word 4


\section*{Index}

\section*{Symbols}
) key combination 3-15
\(+5 \%\) taps 4-2
+DC bus L2 2-8
.HEX file 8-20

\section*{Numerics}
\(+3-19\)
12-pulse wave form 1-1
18 cell 6.6 KV system 2-20
3-15
2,080 VAC linetoneutral 6-2
2,400 or 3,300 volt Harmony series drive 6-2
2,780 VAC linetoneutral 6-2
2400 VAC system 2-24
3,470 VAC linetoneutral 6-2
3300 VAC system 2-24
3PCI controller 6-13
3phase diode rectifier 6-2
3phase secondary connections 2-5, 2-17
4,160 VAC linetoneutral 6-2
4160 VAC 2-25
4160 VAC system 2-24
4-20 mA input
speed setting source 3-4
4800 VAC system 2-24
4-digit security access code 3-5
5 KV class service 6-2
\(50 \mathrm{~Hz} 2-5,2-17\)
6-pulse wave form 1-1
9 common system menus 3-1

\section*{A}

A/D Converter Board 6-8
AC induction motors 6-1
AC voltmeter 4-1
acceleration
time range 1-5
acceleration rate 8-13
accepting new parameter values 3-8
access code 3-5, 3-8
access codes 3-1
proprietary 3-53
accessing menus 3-14
accessing menus by menu number 3-11
acknowledging fault conditions 3-3
acoustic noise 6-1
active digit 3-7, 3-13
advanced diagnostics 1-4
air duct covers 1-3, 2-1
air filters 2-8, 2-11
air intakes 2-12
alarm/fault \(\log\) 3-21
Alarm/Fault Log Menu (6210) 3-21, 3-54
altitude 1-5
ambient temperature 1-5
Analog Input \#1 Menu (4100) 3-43, 5-18
Analog Input \#2 Menu (4170) 3-44
Analog Input \#3 Menu (4232) 3-45
Analog Input Menu (4090) 3-20, 3-41, 3-43
analog input setup 5-18
analog inputs 8-17
analog output setup 5-16, 5-17
Analog Outputs Menu (4660) 3-20, 3-41, 3-47
analog to digital board 2-22
analog variables pick list 3-48
AND 8-11, 8-16
AND (*) operator 8-8
application issues 5-1
arrow key sequences, summary of 3-13
arrow keys 3-1, 3-7, 3-9, 3-12, 3-15
common uses 3-9
right and left 3-9
summary of key sequences 3-13
up and down 3-9
ASCII text 8-2, 8-4, 8-5
ASCII text editor 8-2, 8-4, 8-5
assignment operator 8-10
asterisk character (*)
security edit mode indicator 3-53
attenuator circuit 5-40
attenuator resistors 2-9, 5-40
attenuator system 2-25
audible motor noise 1-3
Auto Menu (4) 3-20, 3-41, 3-51, 3-52, 8-17
Auto Menu (4) 3-10
auto mode 3-1
auto tuning 1-4, 3-18, 4-25
auto/hand/off mode 3-1
3-4
Automatic KEY 3-3
automatic mode 3-1, 3-3, 3-18
customizing 3-4
Autotune Menu (1250) 3-20, 3-22, 3-25
Auxiliary Input \#1 Menu (4500) 3-46
Auxiliary Input \#2 Menu (4580) 3-47

\section*{B}
base 10 format of numbers 3-5
base 16 format of numbers 3-5
basic power schematic 2-25
baud rate 8-2, 8-22
binary operators 8-8, 8-10, 8-12
blower cabinet 1-3, 2-1
blower fuses 2-13
blower motor starters 2-13
blower section 2-2
blowers 2-12, 2-16
Boolean algebra 8-11
Boolean AND and OR functions 8-8
Boolean laws 8-11
Boolean operators 8-10
Boolean statements 8-2
Boolean syntax examples 8-10
Boolean Truth Table for the NOT, AND and OR Functions 8-9
Boolean truth tables 8-8
boot-up test failure 3-13
braking
dual frequency 5-27
Braking Menu (3350) 3-40
BTU/hr losses 2-7, 2-19
burden resistor values 2-25
burden resistors 2-9
bus voltage monitor 2-8
bus voltage monitor (not safe) light 2-8
bypass 2-19
bypass circuit 2-27
bypass LED 2-8
by-products of the conversion process 6-1

\section*{C}
cabinet -xi, 2-4
line-up 2-10
cabinet cutouts for wiring 2-9
cabinet illustration 2-12
cabinets 1-3, 2-1
points of separation 2-1
cable access 2-1
cable tie bracket 2-9
calculating voltage attenuator resistors 5-40
calculation
rated input current 3-26
3-1, 3-8
CANCEL function 3-8
cancel key
exiting security edit mode 3-53
canceling/aborting the current action 3-11
capacitor bank 6-2
carrier signals 6-2
cell A1 6-3
cell boards
control power 2-19
cell bus 6-17
cell bypass option 2-19
cell cabinet 1-3, 2-1, 2-4
cell control board 2-5, 2-8, 2-25
diagnostic LEDs 2-8
model N15 7-31
spare 7-31
cell control system 2-19
cell control/gate driver board 2-17, 2-27
switch mode power supply 2-19
cell current 2-7, 2-19
cell fault LED 2-8
cell input cables 2-3
cell malfunctions 2-19
Cell Menu (2520) 3-20, 3-25, 3-31
cell overload rollback 3-17
cell section 2-10, 2-17
cell specifications 2-5, 2-18
cells 2-5
control 2-17
control boards 2-16
control fuses 2-8
current ratings 2-5
damage due to overheating -xii
detent locks 2-8
fault LED 2-8
fiber optic control link 2-17
galvanic isolation 2-16
high voltage 2-5
illustration 2-16
input fuses 2-8
input power 2-8
isolation 2-5
mechanical and electrical comparisons of sizes 2-16
number of in a series 2-16
output 2-16
output cells per phase 2-16
output current as a function of size 2-16
output current ratings 2-5
output operating voltages 2-5
overload capability 6-19
size 2 2-25
sizes 2-5
sizes for GEN III 2-16
specification details 2-16
stored energy 4-1
T1 output bus connector \(2-8\)
T2 output bus connector 2-8
thermal switches 2-8
views 2-8
central controller 6-2
change security code 3-12

Change Security Codes Function 3-52
change security level function 3-53
changing the velocity demand 3-9
checksum 8-20, 8-21, 8-22
circuit, attenuator 5-40
clean power input 1-1
clearing fault conditions 3-14
closed transfer 5-1
synchronous transfer state diagram 5-2, 5-3
coasting 3-18
coffin 2-16, 2-17
commanded speed reference 3-15
comment lines 8-5, 8-6
comments 8-5, 8-6
common functions of the Shift key 3-8
common mode voltage stress 1-3
common uses of the arrow keys 3-9
communication circuits 6-9
communications
outline drawing 5-8
RS485 network 5-7
communications board 2-21, 2-22
communications cable 8-2, 8-4
communications flags 4-28
Communications Menu (9) 3-10, 3-21, 3-52, 3-63, 8-28
communications software 8-2, 8-3, 8-4, 8-27
communications software package \(8-2\)
compar_b_f flag 3-51
comparator
B variable 3-51
comparison types 3-51
comparator flag 3-51
Comparator n Setup Submenus (4810-4965) 8-17
comparator setup
pick list 3-51
Comparator Setup Menu (4800) 3-20, 3-41, 3-51
Comparator Setup Submenu (4800) 8-17
comparators 3-51, 8-17
compare n setup N 3-51
compare \(n\) type 3-51
comparisons 8-13
compilation process 3-4
compile process 8-2, 8-3, 8-4, 8-28
compiler 8-1, 8-2, 8-3, 8-4, 8-5, 8-6, 8-7, 8-12, 8-14, 8-
15, 8-19, 8-20, 8-27, 8-31
invocation 8-18
operation 8-19
product types 8-7
true and false constants 8-13
compiler and reverse compiler 8-18
compiler program 8-2
COMPILER.EXE 8-18
computer 3-65
conditional expressions 8-13

Conditional Time Setup Menu (2490) 3-20
Conditional Timer Setup Menu (2490) 3-30
configuring the I/O interfaces 3-21
connection diagram for an 18 cell 6.6 KV system 2-20
constant voltage transformer T6 2-9
constants 8-12
context sensitive Help menu 3-11
context-sensitive help 3-19
control "coffin" 2-16
control boards 2-4, 2-5, 2-16
control cabinet 1-3, 2-1, 2-5, 2-9, 2-19, 3-1
control chassis 2-9
control diagram 8-15
control disconnect switch CDS1 2-9
control fuses 2-13
Control Loop Test Menu (3460) 3-20, 3-34, 3-41
control modes 6-11
control outputs 8-13
control panel 2-17
control power 2-17, 2-19, 4-1
warning on disconnecting -xii
control power cable access 2-1
control power connections 2-15
control power disconnect switch 2-13
control range 3-42
control section 2-10, 2-16, 2-17
isolation from medium voltage 2-17
control states 5-7
control structure 6-10
control switches 8-13
default state 8-13
control system 2-17, 6-8
control transformer 2-13, 2-24
control transformer T5 2-9
controlled stop 3-4
counters 8-14
cr3_f 8-13
Critical Frequency Menu (2340) 3-20, 3-28
critical speed 3-20, 3-30
critical speed parameters 3-30
cross talk, preventing 1-1
crystal oscillator 6-8
CTB 2-9
СТС 2-9
current 2-25
current distortion 2-25
current harmonic distortion 1-1
Current Loop Menu (3250) 3-39
current ratings of cells 2-5
current transformers 2-13
cursor 3-15
customer connection cabinet 4-2
customer I/O section 2-10, 2-15
customer inputs 2-9
customer power inputs
L1 2-14
L2 2-14
L3 2-14
Customer Service Department 7-50
customer wiring terminal strip 2-13
customized programmable logic functions 8-1

\section*{D}
data bits 8-2, 8-22
data capture process 8-27, 8-28
DC bus connector L1 2-8
DC bus connector L2 2-8
-DC bus L1 2-8
DC capacitor bank 6-2
DC voltmeter 4-1
decelerating 3-18
deceleration 3-17
time range 1-5
decompiler 8-2
default access codes
proprietary 3-53
default, factory 3-13
DEMD 3-14
display 3-15
field 3-9
DEMD field 3-14
DeMorgan's theorem 8-11
derating motors 1-3
derating of the motor 6-1
desired velocity 3-9
detent locks 2-8
diagnostic LEDs 2-8
diagnostics 1-4, 6-1, 6-8
digit, changing values of 3-15
digital display module 1-4
digital meters pick list variables 3-56
Digital Modulator 6-8
digital output signals 8-13
digital outputs 8-13
auto function 3-10
fault function 3-13
power on function 3-13
run function 3-13
directory file 8-7, 8-10, 8-19, 8-20, 8-28
directory filename associations 8-8
disconnect switch -xi, 4-1
disconnect switch CDS1 2-9
disconnect switch for control power 2-13
display 3-2, 3-3, 3-4, 3-7, 3-8, 3-9, 3-13, 3-14
DEMD field 3-15
description 3-14
display interface 3-1, 3-4, 3-13
use with menu system 3-1

Display Parameters Menu (8000) 3-21, 3-59, 3-60
Display System Program Name function 8-6
Display Variable Menu
pick list variables 3-60
distortion wave form comparisons 1-1
do_up_xfer_f flag 5-11
down arrow key 3-9, 3-13, 3-15
pressed three times 3-15
down arrow keystrokes 3-15
down transfer 4-28, 5-1, 5-3, 5-5, 5-7, 5-9, 5-10
synchronous transfer state diagram 5-3
download 8-4, 8-20, 8-21, 8-22, 8-23, 8-27, 8-28
download files 3-65
downloading 8-3, 8-4, 8-20, 8-23
sections 8-20
downloading hex files 8-20
downloading the system program 3-4
DRCTRY.DAT file 8-21, 8-22
DRCTRY.IGB 8-4, 8-8, 8-21, 8-31
DRCTRY.IGB file 8-19, 8-20, 8-21, 8-22
DRCTRY.PWM 8-8
DRCTRY.xxx directory file 8-15
( 3-15
drive fault status 3-2
Drive Menu (2) 3-5, 3-10, 3-20, 3-21, 3-25, 3-51, 3-52
drive output torque limiting 6-17
Drive Parameter Menu (2000) 3-20, 3-26
Drive Protect Menu (7) 3-10, 3-21, 3-52, 3-56
drive running inhibit function 3-53
drive state "A" 5-3
drive state "U" 5-1, 5-2, 5-3
drive test
open loop test mode with motor 4-8
open loop test mode without motor 4-5
open loop vector control mode with motor connected 4-10
synchronous motor control mode 4-17
drive tuning
auto tuning 4-25
spinning load 4-26
drive type specifier 8-12
droop 5-36
dual frequency braking 1-4, 5-27
limitations 5-30
operation 5-28
parameters 5-30
dual performance operation modes 1-4
dual-trace oscilloscope 4-1
dust contamination 1-5
dV/dt stress 1-3
dynamic programmable meter display 3-14
E
echo files 3-65
edit mode 3-8, 3-9, 3-12, 3-13
editing a parameter value 3-12
editing parameters 3-1
EEPROM
storage of parameter values 3-2
efficiency 1-4, 2-7, 2-19
electrical components 2-19
electrical connections 4-3
electrical hazards -xi
electrical specifications 1-5
electronic power conversion 6-1
electrostatic discharge precautions -xii
ELV -xi
EMC compliance 4-3
emergency stop 8-13
enclosure
specifications 1-5
Encoder Menu (1280) 3-20, 3-22, 3-25
energy saver 5-31
\(3-1,3-7,3-8,3-12,3-15,3-16\)
Enter Fixed Value 3-51
enter key
common functions 3-7
Enter Security Code Function 3-52
enter security level 3-53
entering a value beyond the range of the system 3-16
entering data
using numerical keys 3-1
Erasable Programmable Logic Devices 6-8
error 8-21, 8-22, 8-23
compiler 8-20
error message
out of range 3-16
range error 3-16
error messages, reverse compiler 8-29
errors
link faults 6-8
event \(\log\) 3-21
Event Log Menu (6180) 3-21, 3-54
excessive drive losses 6-21
implementation 6-21
internal threshold 6-22
inverse time curve 6-21
summary 6-21
execution flow of the run time software 8-5
execution speed 8-13
exposed connections -xi
expression evaluation 8-8
External I/O Menu (2800) 3-20, 3-33
external power factor correction capacitors 1-2
extra low voltage -xi
F
fan hood 4-3
fault condition 3-3
fault indicator 3-3
fault LED 3-2, 3-13
fault LED for cells 2-8
fault logger table 3-3
3-2, 3-3, 3-14
fault reset 3-17
fault reset, 3-1
faults
clearing 3-2
hardware 3-2
overvoltage 3-13
resetting system after 3-1
software 3-2
status 3-2
features 1-4
feedback resistors 2-13
fiber optic cable to bypass board 2-22
fiber optic cables 2-4, 6-2
5 Megabaud communication 6-8
fiber optic cables to cells 2-22
fiber optic communications link 2-5, 2-17
fiber optic control circuitry 1-4
fiber optic data link 2-27
fiber optic hub board 2-19
connectors 2-24
Fiber Optic Interface Board 6-8
fiber optic interface boards 2-22
fiber optic link 2-5, 2-16
fiber optic link connection 2-8
fiber optic links 2-19
fiber optic system 2-25
field exciter 6-13
field weakening rollback 3-17
filter capacitors 2-25
filters 2-8, 2-11
flags \(8-5,8-6,8-12,8-13,8-14\)
flash disk 2-23
flash memory card 2-23
floating neutral 6-2, 6-5
flow of the run time software 8-5
Flux Control Menu (3100) 3-38
fork truck tines -xii
formulas
frequency 3-30
RPM 3-30
four quadrant operation of a motor 5-19
frequency 6-1, 6-2, 6-5
front panel 8-21, 8-22
front panel display 3-9
front panel keypad 3-1
full load 6-2, 6-7
fullload operation 6-6
functions
manual start 3-1
manual stop 3-1
fuse 2-24
fuses 2-13
cell control 2-8
cell input 2-8
F1 2-8
F11 2-8
F12 2-8
F13 2-8
F2 2-8
F21 2-9
F22 2-9
F24 2-9
F25 2-9
F26 2-9
F3 2-8
F4 2-9
F5 2-9

\section*{G}
galvanic isolation of cells 2-16
gas contamination 1-5
gate driver board 2-8
GEN II
hardware configuration 2-1
hardware overview 1-3
GEN III 2-10, 2-11, 2-12, 2-15, 2-16, 7-31
cells 2-16
hardware overview 1-3
lineup 1-3
general rules of Boolean math 8-11
Generation 4 control 5-27
green keys 3-8
ground 2-9
ground connection 2-2
grounding 4-3
grounding points 4-3
grounds 4-3

\section*{H}
hardware faults 3-2
hardware overview 1-3
harmonic cancellation 6-6
harmonic currents 6-2
harmonic distortion 1-1, 6-1
sources 1-1
harmonic distortion wave forms 1-1
harmonic filters 1-1
harmonics 1-2, 1-3
hazardous voltages -xi, 4-1
hazards
electrical -xi
mechanical -xii
header 8-12
heating of motor 1-3
3-19
help display function 3-1
help feature 3-19
hex file 8-2, 8-4, 8-19, 8-20, 8-27, 8-28
hex files
downloading 8-20
uploading 8-27
hex format 8-4
hexadecimal digit assignments on the keypad 3-3, 3-6
hexadecimal digits
use in security code 3-5
hexadecimal digits A-F 3-5
hexadecimal format of numbers 3-5
hexadecimal number system 3-3, 3-6
hiding menu items 3-54
high efficiency 1-4
high voltage cells 2-5
historic log 3-21
Historic Log Menu
pick list variables 3-60
Historic Log Menu (6250) 3-21, 3-54, 3-55
historic log pick list variables 3-56
horizontal cell voltages 2-4
horsepower specifications 2-17
Hour Meter Setup Menu (8010) 3-21, 3-59, 3-62
hp range 1-5
humidity 1-5

I/O section 2-15
I/O specifier 8-12
IBM-compatible PC 8-2
idle state 5-5
IEEE 5191992 requirements 1-1
IGBT gate driver board 2-25, 2-27
IGBTs 6-2
induction motors 1-2, 6-1
industry standard communication 1-4
Inhibit 3-53
input and output control logic 8-1
input control power cable access 2-1
input current 2-7, 2-19, 6-7
input current ratings 2-5, 2-16
input diodes 2-25
input flags 8-5, 8-12
input frequency specifications 2-17
Input Harmonics Menu (8140) 3-21, 3-59, 3-62
input line voltages 1-5
input monitoring 1-4
input motor currents 2-25
input phase shifting transformer 2-3
input power 2-2, 2-4, 2-27
cable access 2-1
Input power factor 2-25
input power factor 1-5
input power specifications 2-17
input power terminals 2-13
input power transformer
T1 2-14
Input Processing Menu (3000) 3-20, 3-34, 3-36
Input Protect Menu (7000) 3-56, 3-57, 3-58
Input Protection Menu (7000) 3-21
input source file 8-5
input transformer 6-6
input voltage 2-25, 4-2, 6-6, 6-7
tolerance 1-5
input voltage unbalance 6-17
input waveforms 6-7
inputs 3-51
integral isolation transformer 6-2
integral timer 6-21
Intel 8086/8088 record format 8-20
Intel hex file format 8-2, 8-4
Intel hex format 8-2, 8-3
Intel hex formatted file 8-15
internal threshold 6-22
introduction 1-1
invariant expressions 8-13
inverse time curve 6-21
isolation
between control and medium voltage sections 2-17
isolation of cells 2-16
isolation transformer 6-2
ITOT 3-14
field 3-14
ITOT field 3-14

\section*{K}
key 3-1, \(3-2,3-3,3-4,3-5,3-7,3-8,3-12,3-14,3-15,3-\) 16, 3-19
common functions 3-8
key lockout parameter 3-1
key sequence 3-19
key sequences 3-1
key sequences, summary of 3-10
key switch lockout 3-18
keypad 1-4, 2-9, 2-12, 3-1, 3-3, 3-4, 3-5, 3-6, 3-8, 3-12, 3-13
arrow keys 3-9
automatic key 3-3
cancel key 3-53
enter key 3-7
fault reset key 3-2
functions 3-1
green keys 3-5
green text 3-4
hexadecimal digit assignments 3-3, 3-6
key functions 3-2
numeric keys 3-1, 3-5, 3-7
parameter modification 3-4
shift key 3-8
standard 3-1
use with menu system 3-1
keypad and display interface 3-1, 3-2
keypad/display interface 3-1
keypad/display module 3-1

L1 2-8
L1 (R) input power connector 2-2
L2 2-8
L2 (S) input power connector 2-2
L3 (T) input power connector 2-2
ladder logic representation of a Boolean expression 8-16, 8-17
ladder logic translation 8-16
LCD 3-1, 3-6, 3-8, 3-9
changing variable assignments 3-9
parameters displayed on 3-12
LCD interface 3-1
LEDs
cell control board 2-8
fault 3-2
left arrow key 3-9, 3-12, 3-13, 3-15
length 2-7, 2-19
length specifications 2-17
lethal voltages -xi
lifting lugs 2-1
lifting precautions -xii
lifting tubes 1-3, 2-1
Limit Protection Menu (1120) 3-22
limits 3-21
Limits Menu (1120) 3-20, 3-23
line frequency 5-1, 5-2, 5-8, 5-10
line reactors 4-28, 5-5
line voltage 5-6
linetoneutral voltage levels 6-2
link fault 6-8
liquidcooled 6-1
Lnk On LED 2-8
load conditions 3-20
local manual mode 3-4, 3-9
lock out and tag out procedures 4-1
lockout parameters 3-18
lock-out/tag-out procedures -xi
Log Control Menu (6) 3-21, 3-52, 3-54
log variable pick list 3-56
logic assignments 8-5
logic equations \(8-5\)
logic functions 8-1, 8-2, 8-3, 8-4, 8-20, 8-28
logic section 8-12
logic statements 8-1, 8-2, 8-3, 8-4, 8-5, 8-6, 8-14
Logs Menu (6) 3-10
loss of field fault 6-13
loss of signal 3-18
Low Frequency Compensation Menu (3060) 3-37
low speed applications 1-2
low voltage terminal strip 2-13
low-voltage power cell 2-27

\section*{M}
main display 3-9, 3-12
availablility of speed menu feature 3-6
Main Menu (5) 3-9, 3-10, 3-12, 3-21, 3-51
default access to 3-53
Main Menu (5) Options 3-52
main meter display
availability of speed menu feature 3-6
maintainance
qualified individuals -xi
maintenance -xi
maneuvering between menus 3-14
manual control mode 3-4
manual mode 3-1
flow diagram 3-4
local 3-9
3-4
manual start 3-1
3-4
manual stop 3-1
master control 2-16
system module 2-21
master control components 2-16
master control system 2-5, 2-17
master EPLD 6-8
maximum cell current 2-7, 2-19
mechanical specifications 1-5
medium voltage
isolation from control section 2-17
warning about control power -xii
medium voltage input 4-2
medium voltage motor test 4-1
medium voltage tap cables 4-2
medium voltage tap connections 4-2
menu
going to bottom 3-13
returning to the top 3-13
menu access 3-9, 3-11, 3-13
numeric 3-6
security 3-1
menu access feature 3-12
menu descriptions 3-18
menu items
hiding 3-54
prohibiting access to 3-53
prohibiting changes 3-53
menu number 3-6, 3-7, 3-12
menu numbers 3-5, 3-6, 3-8
menu setting rollback 3-17
menu structure 3-1, 3-9, 3-13
navigating through 3-9, 3-12
menu system 3-1, 3-9
changing variable assignments on LCD 3-9
navigation through 3-1
menuing system 3-14
menus
accessing 3-11, 3-14
accessing based on menu numbers 3-5
accessing using numeric menu codes 3-6
accessing using speed menu 3-4
maneuvering in 3-14
navigating to the bottom 3-11
navigating to the top 3-11
Meter (8) General Drive Parameters 3-59
meter display 3-8, 3-9, 3-10, 3-11, 3-12, 3-13, 3-14
meter display screen 3-14
DEMD field 3-14
ITOT field 3-14
MODE field 3-14
RPM field 3-14
VLTS field 3-14
Meter Menu (8) 3-10, 3-21, 3-52, 3-56, 3-59
metering terminal strip 2-13
microprocessor 6-1, 6-8
microprocessor board 2-21, 2-22
replacing without reprogramming parameters or system program 2-21
MODBUS coupler 5-15
Modbus RTU Setup Menu (9050) 3-21
mode display, normal 3-17
mode displays summary 3-17, 3-18
MODE field 3-14
modification capabilities 3-1
modular construction 1-4, 6-1
modulator board 2-22
motor
four quadrant operation 5-19
signal polarities 5-20
motor control center 4-28
motor control centers 5-6
motor heating 1-3, 6-1
motor insulation 6-1
motor losses
reduction 5-31
Motor Menu (1) 3-5, 3-10, 3-20, 3-21, 3-51, 3-52
motor monitors 2-15
motor nameplate 2-7, 2-19
motor neutral 6-5, 6-6
motor noise 1-3
Motor Parameter Menu (1000) 3-20, 3-21, 3-22, 3-69
motor phase 6-2
motor speed
adjusting 3-42
motor speed in RPM 3-14
motor test 4-1
motor thermal overload protection 5-32
motor voltage and current waveforms 6-6
multi-motor operation 1-4
multiple motors
controlling 4-27, 5-5
multi-secondary phase-shifting power transformer 2-12

\section*{N}
navigating through the menu structure 3-9
negate operator 8-8
NEMA 1
enclosure specifications 1-5
neutral 6-2, 6-5, 6-6
non-volatile 8-3, 8-23
non-volatile memory area 3-2
non-volatile RAM 8-4
normal mode 3-17, 3-53
normal operation 3-1, 3-14
NOT 8-11, 8-16
NOT operator 8-8, 8-10
not safe bus voltage monitor light 2-8
number systems 3-5
numeric keys 3-1, 3-4, 3-5, 3-7, 3-12
numeric menu access 3-6
numerical keys
functions 3-1
numerical menu access 3-11
numerical menu access mode 3-13
0
off-line editing 8-4
one cycle protection 5-38, 6-19
implementation 6-19
integral timer 6-21
summary 6-19
transformer model 6-20
on-line diagnostics 1-4
on-line operation while tuning 1-4
open loop test mode 6-13
open loop vector control 6-12
operating voltages 2-19, 2-24
operation issues 5-1
operation mode displays 3-17, 3-18
operation while tuning 1-4
operators 8-8, 8-12
optional syntax 8-10
OR 8-11, 8-16

OR (+) operator 8-8
oscilloscope 4-1
output bus connector T1 2-8
output bus connector T2 2-8
output bypass circuit 2-27
output cell 2-5, 2-19
output cells 2-3, 2-5, 2-16, 2-19, 2-24
Output Connection Menu (2900) 3-34
output connections to the motor 2-9
output current 2-7, 2-19, 3-14
output current ratings 2-5, 2-16
output current wave form 1-3
output file 8-2, 8-4, 8-31
output flags 8-13
output frequency drift 1-5
output harmonics 6-1
output hex file 8-20
output line voltages 1-5
output link connections 2-4
output motor current 2-25
output operating voltage 2-19
output operating voltages 2-16
output phase 2-4, 6-2
small difference in phase angle 6-2
output phase voltage 2-4
output phases 2-25
output power cabinet 1-3, 2-1, 2-9
output power terminals 2-13
Output Processing Menu (3050) 3-20, 3-34, 3-37
output torque 1-5
output voltage 2-25
output voltages 6-2, 6-5
output waveform 6-3, 6-4
overheating -xii
overload capability 1-5
overvoltage faults 3-13

\section*{P}
padding zeroes in parameter values 3-7
parameter is selected into memory 3-15
parameter lockout 3-18
parameter security 3-1
parameters
accepting new values 3-8
accessing 3-1
changing values 3-5
changing values of 3-7
edit mode 3-8, 3-9, 3-13
editing 3-12
editing values 3-1
entering a value beyond the range of the system 3-16
entering hex values 3-5
incrementing/decrementing values of 3-9
inputs 3-4
organization 3-1
outputs 3-4
padding with zeroes 3-7
preventing changes to 3-54
prohibiting changes to 3-53
rejecting modifications 3-8
storage in system module 2-21
viewing and editing 3-1
parameters for dual frequency braking 5-30
parity 6-8, 8-2, 8-22
PB4 2-12
PC
editing the system program 8-2
PC tool interface 1-4
PCplus 3-65
Pentium processor 6-8
phase angle 6-2
phase angle setpoint 5-12
phase error 5-2
phase error threshold 4-27
phase lock loop 5-2, 5-3
phase offset 4-27
phase shift from transformer T1 2-25
phase shifting transformer 2-3, 2-5, 2-17
phase-shifting power transformer 2-12
PIB 8-17
pick list 3-15
analog variables 3-48
comparator setup submenus 3-51
pick list variables 3-56, 3-60
pick lists 3-1, 3-9
PID controller 5-36
PID Select Menu (4350) 3-20, 3-41, 3-50
PLC
communications 4-28
hardware 4-28
PLC capabilities 1-4
PLC interface 5-7
polarity 2-25
position the cursor 3-15
power cable access 2-2
power cell 6-2, 6-9
power cell check 1-4
power cell with optional bypass 2-27
power cells 6-2, 6-8
power circuit topology 6-2
power circuit, modulation, and bypass contactor test 4-4
power circuitry theory 6-1
power device DDA 2-8
power device DDB 2-8
power device DDC 2-8
power device DDD 2-8
power device DDE 2-8
power devices 2-8
power factor 1-1, 1-2, 2-7, 2-19, 6-1, 6-2, 6-7
definition 1-2
units 1-2
power factor capacitors 6-1
power factor correction 6-1
power failure 3-2
power filters 6-1
power input cabinet 1-3, 2-1, 2-2, 2-10
power monitoring 5-27
power on indicator 3-13
power quality meters 2-15, 5-27
power supply connection 2-22
power transformer 2-13
power up 3-15
power up display 3-14
power wires 2-12
power wiring 2-12
PQM 4-32
precedence 8-8
precedence of operations 8-9
pre-power visual inspection 4-1
primary currents 6-2
primitive logic functions 8-2, 8-4
printed circuit (PC) boards 2-5, 2-17
printer 3-65
process availability 5-34
Procomm 3-65
profile 3-20
program lines spanning multiple lines 8-10
program statement format 8-10
program statements that span multiple lines 8-17
programmable meter display 3-14
prohibiting changes to parameters 3-53
proprietary security code levels 3-53
protective covers 4-3
protective earth symbol 4-3
pulsations 6-1

\section*{Q}

Q1 6-2, 6-3
Q1 LED 2-8
Q2 6-2, 6-3
Q2 LED 2-8
Q3 6-2, 6-3
Q3 LED 2-8
Q4 6-2, 6-3
Q4 LED 2-8
qualified individual (for troubleshooting and mainte-
nance) -xi
R
R3A 2-9
R3B 2-9
RA3 2-14

RA4 2-14
range
errors 3-16
rated hp 2-7, 2-19
rated input current calculation 3-26
RB3 2-14
RB4 2-14
RC3 2-14
RC4 2-14
reactive halide contamination 1-5
redundant cell operation 2-24
redundant cell option 2-4
reference signal 6-2, 6-4
regeneration 3-17
rejecting modifications 3-8
reliability 1-4
remote manual mode 3-4
required syntax 8-10
reset 3-3, 3-15
resetting the current security level to \(03-12\)
resetting the system 3-1
resistor calculation 5-40
resistors
voltage attenuator 5-40
resonance 6-1
resonance avoidance parameters 3-30
resonance problems 1-2
restore default value 3-13
restore factory default 3-13
restore the security level back to \(03-13\)
returning to the previous menu 3-8, 3-11
reverse compiler 8-2, 8-4, 8-5, 8-6, 8-7, 8-27, 8-28, 8-31
reverse compiler error messages 8-29
reverse compiler program 8-2
right arrow key 3-7, 3-9, 3-12, 3-13, 3-15
rollback conditions 6-17
RPM 3-14
RS232 connector 2-9, 2-12
RS232 download functions 3-65
RS232 port 3-65
baud rate setting 3-65
parity setting 3-65
stop bit setting 3-65
RS-232 serial port 8-20
RS232 upload functions 3-65
RS485 serial communications network 5-7
rstop_f 8-13
run indicator 3-13
run state (D)
prohibiting parameter changes during 3-53
run state "D" 5-3
run time software 8-5, 8-10
run time system program 8-13
run_req_f 8-13, 8-14
run-time software 8-1, 8-4

\section*{S}
safety -xi
scaler adjustments 4-32
schematic of a typical power cell 6-2, 6-4
scrolling 3-9
using arrow keys 3-1
scrolling through parameter lists 3-19
SCRs 1-2
secondary of the power transformer 2-25
secondary winding, isolated 6-2
secondary windings 2-3
security 3-1, 3-4, 3-5, 3-7, 3-8, 3-10, 3-11, 3-12
approved menus 3-12
entering access codes 3-1
pluggable keypad/display module 3-1
security access code 3-5, 3-8
security access codes \(3-1\), 3-4
security access levels and default codes 3-53
proprietary 3-53
security code 3-5, 3-6
changing 3-12
prompting user after menu requests 3-7
security codes 3-53
prompts for new level 3-7
proprietary 3-53
Security Edit Functions Menu (5000) 3-52, 3-53, 3-54
Security Edit Menu (5000) 3-21
security edit mode
asterisk character (*) 3-53
exiting 3-53
security features 3-21
security level 3-13
changing 3-53
clearing 3-9
restoring back to zero 3-13
restoring to zero 3-11
security level cleared message 3-12
security level, resetting to \(03-12\)
security levels 3-54
setting 3-54
Select Language Function 3-52
selecting a submenu 3-8
semi-colon 8-5
semi-colon end-of-line character 8-17
separation points 2-1
serial communications 5-5
serial communications port 8-2
Serial Functions Menu (9110) 3-21, 3-65, 3-68, 3-69, 822
serial port 1-4
Serial Port Setup Menu (9010) 3-21, 3-63, 3-64
setpoint 3-20
setpoint limits 3-21
shielded cables 4-3
\(3-1,3-5,3-7,3-8,3-10,3-12,3-15,3-19\)
shipping splits 1-3
sign, changing value of 3-15
signal frame of reference for motor control 5-19
Signal Interface Board 6-8
sine wave 6-6
single induction motors 6-12
Single Phasing Menu (7010) 3-56, 3-59
single phasing rollback 3-17
singlephase Hbridge of IGBTs 6-2
sinusoidal 6-2
sinusoidal input currents 1-2
sinusoidal output 1-1, 1-3
sinusoidal output voltages 1-3
slash character 8-8
slaves 6-9
slip 5-20
slip compensation 5-38
Smart Term 3-65
soft start protection 1-4
software faults 3-2
software supported voltages 5-41
software switches
closing and opening 3-51
software tools 8-5
software version number 3-14
SOP file 8-11, 8-15
SOP interpretation 8-15
SOP text file format 8-12
SOP timing 8-15
SOP utilities 8-7
SOP Utilities program 8-2, 8-7, 8-20, 8-21, 8-28
SOP utilities program 8-20
sound pressure 1-3
source code 8-4, 8-5, 8-6
source file 8-2, 8-5, 8-6, 8-19, 8-20, 8-31
source impedances 1-1
source lines 8-5, 8-6
spanning multiple lines 8-17
spd fwd lim parameter 3-16
specifications 1-5
change notice 2-5
speed demand 3-14
Speed Derate Curve Menu (1151) 3-24
speed droop 5-36
speed forward limit parameter 3-16
Speed Loop Menu (3200) 3-38
speed menu 3-5, 3-10
speed menu feature 3-4, 3-6
speed menus 3-8
Speed Profile Menu (4000) 3-4, 3-20, 3-41, 3-42
speed profiling 3-4
speed profiling control
using 3-42
Speed Ramp Setup Menu (2260) 3-20, 3-28
speed range 1-5
speed reference source 8-13
Speed Setpoint Menu (4240) 3-20, 3-41, 3-49, 3-50
speed setting
source in auto mode 3-4
Speed Setup Menu (2060) 3-15, 3-20, 3-27
Spinning Load 5-12
spinning load 4-26
Spinning Load Menu (2420) 3-20, 3-30, 5-13
spinning load restart 1-4
ST220.EXE 3-65
Stability Menu (3) 3-10, 3-20, 3-34, 3-35, 3-51, 3-52
standard menus 3-15
standard PWM motor drives 6-2
start/stop control logic 8-1
starters for blower motors 2-13
startup procedure 4-1
state machine 8-15
state machine diagram 8-15
statement format 8-10
statement terminator 8-6, 8-10
static drives 6-6
static power converter 6-2
Stator Resistance Estimator Menu (3300) 3-39
stop 3-65
stop bits 8-2, 8-22
stop mode 3-1
effects of 3-4
storage
safety precautions -xii
stored energy found in cells 4-1
submenu
going to bottom 3-13
returning to the top 3-13
submenus 3-1, 3-5, 3-9, 3-25
sulfide contamination 1-5
summary of operation mode displays 3-17, 3-18
sum-of-products 8-11, 8-15, 8-16
sum-of-products (SOP) file 8-15
surge arrestors 1-4
surge suppression 2-3
switch mode power supply 2-5, 2-17, 2-19
operational range 2-5
symbol 8-8, 8-10, 8-13, 8-14
symbolic content 8-2, 8-4
Sync Transfer Menu (2700) 3-20, 3-33, 5-11
synchronous transfer 8-15
example 5-5
multiple motors and a PLC 5-5
Synchronous Transfer Menu (2700) 4-27
synchronous transfer operation 5-1, 5-11
synchronous transfer procedure 4-27
synchronous transfer state diagram for closed "down transfer" 5-3
synchronous transfer state diagram for closed "up transfer" 5-2
syntax 8-2, 8-4, 8-6, 8-8, 8-10, 8-20
system constants 8-12
system control switches 8-13
system errors 3-13
system ground 4-3
system interface board 2-22
system menus 3-1
system module 2-21
system program 2-21, 3-4, 3-51, 3-60, 7-41, 8-1
closing and opening software switches 3-51
comments 8-2
compar_b_f flag 3-51
comparators 3-51
compilation process 3-4
do_up_xfer_f flag 5-11
downloading 3-4
editing 8-2
modification 3-4
modifications 3-4
statement format 8-10
storage 8-1
storage in the system module 2-21
terminology 8-1
types of statements 8-5
use of spaces 8-10
System Program Download Function (9120) 8-21
system program transfers 8-3
system program upload function 8-28
System Program Upload Function (9130) 8-28
system programming 8-1
system reset 3-1, 3-15
system type identification 8-6
system types recognized by the system program compiler 8-7

\section*{T}

T1 2-25, 6-2
T1 (U) connector 2-9, 2-14
T1 output bus connector 2-8
T2 6-2
T2 (V) connector 2-9, 2-14
T2 output bus connector 2-8
T3 (W) connector 2-9, 2-14
tap cables 4-2
tap connections 4-2
TBR 2-9
TCP/IP Setup Menu (9300) 3-21, 3-66
temporary flags 8-14
terminal block TBR for burden resistors 2-9
terminal blocks 2-15
terminal emulation program 8-20, 8-22
terminal emulator 3-65
terminal protocol settings for the RS232 port 3-65
terminal strip for customer wiring 2-13
terminal strip for low voltage 2-13
terminal strip for metering 2-13
THD 6-6
thermal limitations of the motor 6-1
thermal overload 3-17
thermal overload protection 5-32
thermal overload rollback 3-17
thermal switches 2-8
thermally hot components -xi
three possible output voltages 6-2
time-out fault 5-3
timers 8-14
toggling power to the drive 3-12
token 8-15
topology of Perfect Harmony VFD 6-3
torque 4-2, 4-3, 5-19, 5-20
torque and velocity loop gains 3-20
torque markings 4-3
torque pulsations 6-1
torque pulsations (VFD-induced) 1-3
total harmonic distortion 6-6
total harmonic distortion of the source current 1-1
transfer application 5-6
transfer fault 5-1
transfer of drive control 5-5
transfer state "A" 5-1, 5-2
transfer state "B" 5-2
transfer state "C" 5-2
transfer state "D" 5-3
transfer state "E" 5-3
transformer 2-3, 2-5, 2-7, 2-13, 2-17, 2-19
sizing and CFM/BTU effects 2-17
transformer cabinet 1-3, 2-1, 2-2, 2-3
transformer model
one cycle protection 6-20
transformer secondaries 6-2
transformer section 2-12
major components 2-13
transformer size 2-16
transformer T1 2-25
input current ratings 2-5
transformer T5 2-9
transformer T6 2-9
transformer taps 4-2
transmit data 3-65
transparent cell bypass 1-4
transporting precautions -xii
trip-free operation 1-4
troubleshooting -xi
qualified individuals -xi
TRUE and FALSE 8-12
true and false logic assignments 8-5
TRUE or FALSE 8-13

\section*{U}
unary operators 8-8
under voltage rollback 3-17
underscore 3-12
undervoltage ride-through 1-4
up and down arrow keys 3-7, 3-12
scrolling through parameter lists 3-19
up arrow key 3-9, 3-13, 3-15
up transfer 4-28, 5-1, 5-5, 5-6, 5-7, 5-8
synchronous transfer state diagram 5-2
up/down arrow keys 3-15
upload files 3-65
upload/download utility 8-5
uploading 8-3, 8-28
uploading a system program 8-27
uploading hex files 8-27
user fault messages 8-12
user modules 5-13, 5-18

\section*{V}
values beyond the range of the system, entering 3-16
variable 3-15
variable displays 3-15
variable pick list for Compare Setup Submenus (48104960) 3-51
variable speed operation 6-1
variables 8-8, 8-13
various speed 3-20
vector control 3-25, 6-11
current regulators 6-11
dead-time compensation 6-12
feed-forward compensation 6-11
flux angle 6-12
flux regulators 6-11
motor model 6-11
peak reduction 6-12
speed regulators 6-11
velocity and torque loop gains 3-20
velocity demand 3-9, 3-14
changing 3-9, 3-13
sources for manual modes 3-4
velocity demand field 3-9
velocity reference 5-1, 5-2
version number 3-14
VFD output 5-6
viewing parameters 3-1
visual inspection 4-1
VLTS 3-14
voltage attenuator resistors 5-40
voltage clamps 2-25
voltage divider 2-25
voltage harmonic distortion 1-1
voltage regulation
improved 1-2
voltage stress 2-25
volts/hertz control mode 6-14

\section*{w}

WAGO fieldbus coupler
DIP switch settings 5-16
WAGO I/O module color codes 5-15
wave form of output current 1-3
wave forms
distortion comparisons 1-1
waveforms for linetoline voltage 6-5
waveforms for phase B 6-5
weight of lineup 2-7, 2-19
weight specifications 2-17
Windows 95 8-2, 8-4, 8-5, 8-18, 8-20, 8-22
Windows-based SOP utilities program 8-18
Windows-based utilities program 8-18
wire way 2-9
wiring 4-28
wiring cutouts 2-9
wye connected power cells 6-2
wyeconnected primary 6-6

\section*{Z}
zero security level 3-13
zeroes
padding during parameter editing 3-7```


[^0]:    © 2004 by SIEMENS. No portion of this document may be reproduced either mechanically orelectronically without the prior consent of SIEMENS.

