

MATNARTNANETEND TNETEUCTTON MANTAI

CASWELL STREET PUMP STATION MAINTENANCE AND INSTRUOTION MANUAL

INDEX

MAINTENANCE PROGRAM

 TEST REPORTSVARIABLE FREQUENCY DRIVE-FUSI ERN P7. FAUET TRIP UNIT - FUJI MCA11-GFD-2 SERIES LEVEL DISPLAY TRANSMITTER - LIT 500 SERIES LOAD BREAK SWITCHES - SPRECHER \& SCHUH LK SERIES CIRCUIT BREAKERS - TERASAKI XS \& XH SERIES MINIATURE CIRCUIT BREAKERS - TERASAKI DIN.T SERIES CURRENT TRANSFORMERS - CROMPTON 780 SERIES CONTACTORS - SPRECHER \& SCHUH CAI \& CA3 SERIES PHASE FAILURE RELAY - CROMPTON PSGW SERFES AMMETERS \& VOLTMETERS - CROMPTON 244 SEREES SELECTOR SWITCHES - KRAUUS \& NAIMIER CG8 SERIES CONTROL RELAYS - EMAIL RH2B-U SERIES CONTROL FUSES - GEC RS SERIES FUSE CARTRIDGES - GEC TYPE T SERIES CONTROL TERMINALS - KLIPPON SAK 4 SERIES INDICATING LIGHTS \& PUSHBUTTONS - NHP DT3. SERIES INDICATING LIGHTS \& PUSHBUTTONS - ALAN BRADLEY 800T SERIES CONTROL \& STATUS MONITORING UNIT - ITT FLYGT CAS SERIES PROXIMITY SWITCHES - SCHMERSAL EN SERIES LEVEL INDICATING SYSTEM - VEGA MYPE D37
LEVEL DETECTION SYSTEM - MULTIRODE
KENNEDY TAYLOR (QLD) AS CONSTRUCTED DRAWINGS

ELECTRICAL CONTRACTOR

KENNEDY TAYLOR (QLD) PTY LTD
562 CURTIN AVENUE
EAGLE FARM QLD 4001
TELEPHONE: (07) 2681082 (All Hours)
FAX: (07) 2684121

SECTION A

SECTION B

MAINTENANCE PROGRAM

Q.FÜlse Ia TMड $\overline{8} 88$

MAINTENANCE PROGRAM

The Main Switchboard will be subject to many varying conditions during their service. life. For this reason it will be necessary to conduct maintenance procedures to ensure the reliability of this equipment.

Listed below is a brief list of major items that require regular maintenance to ensure the correct operation.

1. FUJI FRN 200 P7-4 210KW VARIABLE FREQUENCY DRIVE
2. FUSE SWITCHES
3. CIRCUIT BREAKER
4. CONTACTORS
5. CONTROL SELECTORS
6. FUSES
7. INDICATOR LIGHTS
8. MONITQRING \& STATUS UNIT

Other items such as control relays, timers, transducers do not have recommended regular maintenance programme by the suppliers. To ensure that these items function correctly, it is recommended that the whole electrical system be put into full functional test every 12 months and this will ensure that these items will function correctly.

SECTION 1 FUJI FRN 200P7-4 210 KW VARIABLE FREQUENCY DRIVE Please refer to section D Chapter 9 of this manual for Manufactures recommended Maintenance Program.

SECTION 2 FUSE SWITCHES
These items of equipment also require minimal maintenance after the initial connection and cleaning. Once again it is recommended that a functional switching operation be performed once every 12 months. The unit should be opened to check if the correct fuse cartridges are fitted.

SECTION 3 CIRCUIT BREAKER
This item of equipment also requires minimal maintenance after the initial connection and cleaning. Once again it is recommended that a functional switching operation be performed once every 12 months.

SECTION 4 CONTACTORS

The contactors fitted to this board are of high robust design for a reliable operation. It is recommended that every 12 months the coil be removed and magnet surfaces be inspected and cleaned if necessary.

SECTION 5 CONTROL SELECTORS
The control selectors fitted to this board are of high quality and are extremely reliable. However to ensure proper operation of these items it is recommended a functional switching test be performed every 12 months.

SECTION 6 FUSES

It should be verified that fuse connections are tight and that the rating of fuses is correct.

SECTION 7 INDICATING LIGHTS
Indicating light s fitted to these control panels are of high quality manufacture and maintain a long lamp life out put under normal service conditions. To ensure a prolonged lamp life, it is necessary that the control voltage does not exceed 6% it's normal voltage. Any excessive overvoltage shall rapidly diminish the lamp life of the indicators.

SECTION 8 CONTROL \& STATUS MONITORING UNIT
Please refer to Section U Chapter 8 of this manual for Manufactures recommended maintenance program.

BUSBAR SECTION AND JOINTS

Busbars and busbar chambers and busbar supports should be examined as is necessary practicable as noted in the following comments.
-The examination should include any dismantling required to enable connections to be inspected and any chambers cleaned.
-The examination should include a visual verification of all joints for signs of overheating or loose fixing bolts.

- All fixing bolts should be retorqued to ensure maximum efficiency of the busbar joint. Listed below are recommended torque settings for the fixing bolts used in the switchboard.

M8 - 22 Nm
M10 - 44 Nm
M12 - 77Nm
Cable terminations should be inspected for loose or overheated joints and remedied as necessary.

SWITCHBOARDS \& DISTRIBUTION BOARDS

Switchboards should be examined internally \& externally every 12 months.

- The internal examination should include removal of any internal covers to enable all connections to be inspected \& chambers cleaned. All connections should be checked to ensure they are tightened to recommended torque settings.
- The external examination should include.
-Corrosion.
-Check seem welds.
-Chipped paint.
-Build up of dust \& grime.
-Clean \& polish as required.

SECTION C

TEST REPORTS

List or Loose courzuedt hitit s/30nio
MASH COMA ROR OPFRiniGS COPO

KGonkoy - TAHEOR (GERVICS) SHEST/ DAH2.

CHESINALL ST MAIN S/BOARD
MICRO OAM TEST TAKEN AT SITE 7/10/93.

CASILGLK $5 T$ MAIN $5 / B O A R D$ SHEAT ROAF 2
MICRO OHM TEST TAKGM AT SME $7 / 10 / 93$ (CowTINUED)

ALN ABOVK RHEDIAGS IM MICRO OAM'S.

3 BLOCK LETTERS and indicate in appropriate boxes
UETAILS OF ELECTRICAL CONTRACTOR Responsible for the Actual Performance of the Electrical Installation Work Name: KENNEDY - TRY 1 Licence No: 263
NAME OF CONSUMER: BRISBANE CITY COUNCIL

| Postal Address of Consumer: | Address where Electrical Work was Carried Out and Connected |
| :--- | :--- | CASWELK ST SEWAGE pumping station.

OTIFICATION OF METERING CHANGES NEEDED OR OF ELECTRICAL INSTALLATION WORK READY FOR INSPECTION

 3 LOCK LETTERS and indicate in appropriate boxes.

inspection report FORM 2A

Electricity Act 1976.1989 (Queensland) (S. 175)

Results of Inspection. This form can only be completed by an Installation Inspector.

Strike out sections not applicable.

Section II - Inspection of the electrical work revealed the following defects in the installation that has been connected to the source of supply. These defects are unlikely to cause fire or a person to sustain and electric shock and your Electrical Contractor has been advised that the installation does not comply in every respect with the Act and it is his responsibility to remedy such defects
(3)
MEN Locrtuin to lis
mohur at th
main suruldienol C $2.23 .5^{1 L} T_{5}$ Safong engin to bo erected avon ane below the cackle $2 B C$
 The combined earthing.

$i)$
i. 3 an
bequest to \qquad wash 68.

Competency: 4
Signature of Electrical Mechanic: ectricat Contractor

Earth Electrode Resistance Test

Methocl.

Western Electrode Test
Meter type $D E T 3 / 2$ Earth mugger Result 4.08Ω to earth.

Eastern Electrode Test
Theater type $D e r 3 / 2$. Forth nagger. Result 3.94 s to earth.

Combined Electrode Test
meter type Der 3/2. Earth nigger.
Result. 0.25 s to earth.

Rob killick.
B.C.C.

Eagle Farm M. + E.

CASWELL ST. PUMP STATION
TEST SHEET 26-10.93
INSULATION RESISTANCE
Noil. Pump.

$$
\begin{aligned}
R-E & =100 \mathrm{morm} \\
W-E & =100 \mathrm{morm} \\
B-E & =100 \mathrm{morr}
\end{aligned}
$$

NO 2 pump

$$
\begin{aligned}
& R \cdot E=100 \mathrm{MOHM} \\
& W-E=100 \mathrm{M} 0 \mathrm{Hr} \\
& B-E=100 \mathrm{MOHN}
\end{aligned}
$$

n-3 pump

$$
\begin{aligned}
& R-E=100 \mathrm{MOHM} \\
& W-E=100 \mathrm{MOH} \\
& B-E=100 \mathrm{MOHM}
\end{aligned}
$$

CASWELL ST PUMP STATION ELECTRICAL INSTALLATION
ELECTRICAL CABLING TEST SHEET

Origin	Inspection	Tests	Date	Cable Type	Cable No	Test Results	Destination	Tests	Name Plate Details	FLC	O/L Setting	Sign
							Field Device		.			
		.										
TX-1	Visual	I.R.	4/10	S1	T1-P1	R-W $=>100 \mathrm{M.Ohm}$	MCC					
		Cont.				$\mathrm{R}-\mathrm{B}=>100 \mathrm{M} .0 \mathrm{hm}$	INCOMER					
						$\mathrm{W}-\mathrm{B}=>100 \mathrm{~m} .0 \mathrm{hm}$	No. 1					
						$\mathrm{R}-\mathrm{N}=>100 \mathrm{M} .0 \mathrm{hm}$						
				.		$\mathrm{W}-\mathrm{N}=>100 \mathrm{M} .0 \mathrm{hm}$						
					.	$\mathrm{B}-\mathrm{N}=>100 \mathrm{M}$.Ohm						
					.	$\mathrm{R}-\mathrm{E}=>100 \mathrm{M} .0 \mathrm{hm}$						
						$\mathrm{W}-\mathrm{E}=>100 \mathrm{M} . \mathrm{Ohm}$						
						$\overline{\mathrm{B}-\mathrm{E}}=\gg 100 \mathrm{M} .0 \mathrm{hm}$						
						$\mathrm{N}-\mathrm{E}=>100 \mathrm{M} . \mathrm{Ohm}$						
					-							
TX-2	Visual	I.R.	4/10	S1	T2-P1	$\mathrm{R}-\mathrm{W}=>100 \mathrm{M.Ohm}$	MCC					
		Cont.				$\mathrm{R-B}=>100 \mathrm{M.Ohm}$	INCOMER					
						$\mathrm{W}-\mathrm{B}=>100 \mathrm{~m} . \mathrm{Ohm}$	No. 2					
						$\mathrm{R}-\mathrm{N}=>100 \mathrm{M} . \mathrm{Ohm}$						
						$\mathrm{W}-\mathrm{N}=>100 \mathrm{M}$. Ohm						
						$\mathrm{B}-\mathrm{N}=>100 \mathrm{M} . \mathrm{Ohm}$						
						$\mathrm{R}-\mathrm{E}=>100 \mathrm{M} . \mathrm{Ohm}$						
						W-E $=>100 \mathrm{M} . \mathrm{Ohm}$						
						$\mathrm{B}-\mathrm{E}=>100 \mathrm{M.Ohm}$						
						$\mathrm{N}-\mathrm{E}=>100 \mathrm{M} . \mathrm{Ohm}$						
TX-3	Visual	I.R.	4/10	S1	T3-P1	R-W $=>100 \mathrm{M} .0 \mathrm{Om}$	MCC					
		Cont.				$\mathrm{R}-\mathrm{B}=>100 \mathrm{M} .0 \mathrm{hm}$	INCOMER					
						$W-\mathrm{B}=>100 \mathrm{~m} .0 \mathrm{hm}$	No. 3					
						$\mathrm{R}-\mathrm{N}=>100 \mathrm{M} . \mathrm{Ohm}$						
						$\mathrm{W}-\mathrm{N}=>100 \mathrm{M} .0 \mathrm{hm}$						
						$\overline{B-N}=>100 \mathrm{M} . \mathrm{Ohm}$.	
						$\overline{\mathrm{R}-\mathrm{E}}=>100 \mathrm{M} .0 \mathrm{hm}$						
						W-E $=>100 \mathrm{M}$. Ohm						
						$\overline{B-E}=>100 \mathrm{M} .0 \mathrm{hm}$						
						$\mathrm{N}-\mathrm{E}=>100 \mathrm{M} . \mathrm{Ohm}$						

SECTION D

VARIABLE FREQUENCY DRIVE

FUJI FRN 200 P7-4 210 KW

SUPPLIED BY: EMSBY EQUIPMENT PTY LTD 33 ACHIEVEMENT CRESENT ACACIA RIDGE QLD 4110
TEL: (07) 2742566
FAX: (07) 2742387

FUJI INVERTER

FRENIC5000G7•FRENIC5000P7 INSTRUCTION MANUAL
$200 \mathrm{~V} 30 \sim 90 \mathrm{~kW}$ (G7 EXPORT SERIES)
$30 \sim 110 \mathrm{~kW}$ (P7 EXPORT SERIES)
$400 \mathrm{~V} 30 \sim 220 \mathrm{~kW}$ (G7 EXPORT SERIES)
$30 \sim 280 \mathrm{~kW}$ (P7 EXPORT SERIES)

Preface

Thank you for your purchase of Fuji inverter FRENIC 5000G7/P7.
Please note that the proper use in accordance with this manual can ensure your expectation on performance, the incorrect handing will result in improper operation causing the reduced service life and damages. Therefore, be sure to read through this manual before the actual use. On the other hand. when the equipment incorporating this inverter is due to be shipped. you are requested to promptly supply this manual to your customers without fail.

Table of Contents

Precautions 2

1. Check after Delivery 3
2. Carriage and Storage 3
2-1. C̣arriage 3
2-2 Storage 3
2-3 Neglect after Installation 3
3. Construction 4
4. Installation 6
4-1 Environment for Use 6
4-2 Direction and Space 6
4-3 Caution on Installing inside a Switchboard 6
5. Connection and Wiring 7
5-1 Terminal position and Connections at Shipment 7
5-2 Main circuit 7
5-3 Control circuit 9
5-4 Bracking circuit 12
6. Touch panel 13
6-1 Function ánd Configuration of Touch panel 13
6-2 Bacic operational procedure of Touch panel 15
6-3 Function selection and displayed data retrieval 16
6-4 Parameter setting 17
6-5 Fault display and Retrieval 19
7. Trial operation 21.
7-1 Preparation for operation 21
7-2 Trial operation 21
8. Operation 22
9. Maintenance and inspection 22
9-1 Cautions in case of maintenance and inspection 22
9-2 Daily inspection 22
9-3 Periodic inspection 22
9-4 Periodic exchange of parts 22
9-5 Measurement of main circuit electric capacity 23
9-6 Confirmation of insulation 23
10. Trouble shooting 24
10-1 Diagnosis and remedy in case protection function made action indication 24
10-2 Diagnosis and remedy for abnormal phenomena 27
11. Inverter specification 29
11-1 Standard specification 29
11-2 Outline dimensions 31
11-3 Functions 33
11-4 Terminals 55
12. Options 59
13. Distribution \& Control equipment 65
14. Inspection list 66

PRECAUTIONS

WARNING-HAZARD OF ELECTRICAL SHOCK:

Disconnect incoming power before working on this control.
All motor bases and inverter enclosure housings should be grounded in accordance with the electrical standard.

WARNING-HAZARD OF MOTOR OVERSPEED:
The maximum frequency is 400 Hz , which is equivalent to $12000 \mathrm{r} / \mathrm{min}$ of high speed rotation in 4 -pole motor. The incorrect setting may result in a catastrophic failure for the machine.

CAUTION: Do not connect power supply voltage that exceeds the standard specification voltage permissible fluctuation. If excessive voltage is applied to the inverter, damage to the internal elements will result.

CAUTION: Do not connect power source to the output terminals (U, V, W).
CAUTION: If the $(+)-(-)$ terminals are short-circuited or connected a braking resistor directly without a bracking unit, damage to the inverter will result. Do not fail to match the terminal symbols (+) and (-) between inverter and braking unit.
CAUTION: DO not connect AC power source voltage to the control circuit terminals (except for 30A, 30B, 30C, AX1, AX2).

CAUTION: Connect the inverter to a power source which capacity is less than 10 times of inverter capacity or 500 kVA . If the power sourse capacity is larger than these, install a Line side AC reactor (ACR - option) on the line side of the inverter.
CAUTION: Do not connect a power factor correcting capacitor to the output side of the inverter.
CAUTION: If the inverter protective function is activated, consult Section 10 "Troubleshooting", and after correcting the problem, resume operation. Do not reset the alarm automatically by external sequence, etc.
CAUTION: Do not conduct megger tests between the inverter terminals or control circuit terminals.

NOTE: This manual is described by using "SI unit". It might happen that the unit symbols of the product are different from the ones of this manual.
NOTE: The terminal symbols of DC intermediate circuit of product are reviced as follows.

$$
P \leftrightharpoons(+), N \leftrightharpoons(-)
$$

So, if the product's symbols are P or N, please connect the wiring so that " P " is for " $(-)$ " and " N " is for " $(-)$ ".

1. Check after Delivery

After unpacking, perform the checking described as follows.
(1) Check the name plate on the cover to confirm that the product delivered is what you have ordered.

Fig. 1-1 Name plate

Inverter type

Fig. 1-2 Name plate position
(2) Check that there should be no faults such as damages and detachment in the parts and concaves on the cover If some have been found, the user is requested to promptly contact the supplier or the nearest Fuji sale office.

2. Carriage and Storage

In the case of carrying and temporary storing after the delivery, the following cautions should be taken.

2-1 Carriage

(1) For carrying, careful handing is required to avoid dropping, etc.
(2) Since carrying by means of holding the terminals or the top cover may result in damages and dropping, be sure to hold the body.
(3) The ambient temperature range at carrying (during transportation) should be within $-25^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}$.

2-2 Storage

(1) Ambient temperàture

The ambient temp. range in storage is within $-25^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}$.
(2) Packing

No packing condition in storage, where the inverter is exposed to rust. dust and damage, is undersirable.
Packing is necessary in storage.
(3) Place

Avoid leaving the inverter directly on such as the concrete floor and put it on a rack. Avoid also the place which gets the sun light.
(4) Humidity

Don't storage in humid environments.
(5) Corrosive gases

Don't storage in the atomosphere which contains corrosive gases such as sulfurized gas, ammonia gas, and chlorine gas.

2-3 Neglect after Installation

In some cases, the inverter is left intact for a long time after completing the installation. Particulary when it is delivered in the conditions where the construction work is going on, it will be subject to the exposure of water and dust. In such case, take temporary protective measures until the operation starts.

3. Construction

(1) 200V series: Inverters up to FRN055G7/P7-2EX, 400V series: Inverters up to FRN110G7/P7-4EX There are two types of cooling methods depending on the installation method, "inverter cooled inside switchboard" and "inverter cooled outside switchboard". Fig. 3-2 shows a installation method for "inverter cooled inside switchboard", and Fig. 3-3 shows that for "inverter cooled outside switchboard" where a cooling fan is installed outside the unit. In the external cooling method, approx. 60% of the total amount of heat generated in the inverter is discharged outside the unit, facilitating cooling in the unit to achieve an economical unit design. However, because the cooling fan is installed outside the unit, take care to keep it clean in a dusty environment due to thread wastes.
The unit has a two method applicable structure to meet each case by switching an attachment leg position, as shown in Fig. 3-1. If you require "inverter cooled outside switchboard", please move the mounting adapters to the specified positions.

Fig. 3-1 Construction of FRENIC 5000G7/P7 series (1)

(2) 200Vseries: Inverters more than FRN055G7/ P7-2EX, 400V series: Inverters more than FRN110 G7/P7-4EX

Fig. 3.4 Construction of FRENIC 5000 G7/P7 series (2)

4. Installation

4-1 Environment for Use

The environments where the inverer is used are extensively various, and can affect greatly its performance and service life.
FRENIC 5000G7/P7 series are designed for the use in the environment conditions described in Table 4-1
Particulary, in the case of being incorporated into machines, etc., provide sufficient vibration proofing measures.
Table 4-1 Environmental conditions for the use

Ambient temp.	$-10 \sim 50^{\circ} \mathrm{C}$	Nocondensing and nonicing due to a sharpe change in temperature
Relative humidity	20~90\%RH	
Altitude	Not more than 1000 m	
Atomosphere	The amount of dust and oily dust contained is small. There should be no corrosive gases, no inflammable gases. no oilmist, no vapor, no water drops, and no sun light contained much salt.	
Vibration	-Not more than 0.5G	,

4-2 Direction and Space

(1) Installation direction

NOTE: Install the inverter in the perpendicular direction against the ground. If the inverter is installed opposite, it should be over-heated.
(2) Space

NOTE: The inverter generates heat with the generating of loss. In order to discharge the heat, a cooling fan is built in to cool by means of forced feed cooling. Sufficient spacing should be provided to reduce obstacles to ventitation and effects on the surrounding, as shown in Fig. 4-2.

4-3 Caution on Installing inside a Switchboad
CAUTION: Because the ambient temperature greatly affects inverter life and reliability, do not install the inverter in any location that exceeds the allowable temperatures.

Fig. 4-2 Space around Inverter
(1) The temperature inside the switchboard should be kept at not more than $50^{\circ} \mathrm{C}$.
(2) Considering an increase in temperature inside switchboard, do not store in a small sealed box nor fill the space surrounding the inverter with parts, heat generators, etc.
NOTE: When installing a cooling (ventilation) fan to the switchboard, make a design so that the air for cooling can pass through the heat generating part.

The improper installation positions of Inverter and Fan may result in preventing the temperature surrounding the inverter from reducing to the specified value, even if the fan which has the required cooling capability has been installed.

NOTE: In the case of installing more than one inverters in the switchboard, arrange them horizontally, as shown in Fig. 4-3 (a).
When the vertical arrangement (upper and lower) is inevitable, provide a partition board between inverters to give no effect at all of the heat from the lower inverter to the upper one.
(a) Horizontal arrangement

Fig. 4-3 Inverter arrangements in a switchboad
(b) Vertical arrangement

5. Connection and Wiring

Connections should be carefully implemented in accordance with the following procedures. After completing the connections, be sure to confirm that each wiring has been properly provided. Note that the incorrect connections may cause damages the inverter as well as its improper operation.

5-1 Terminal position and Connections at Shipment.

Under the top cover, the main circuit terminals and control circuit terminals are arranged at the bottom part of the Inverter. At the time of shipment, $\mathrm{P} 1-(+)$ (except (1) to (3) shown as below) and CM-THR are connected with short-circuit conductors.

NOTE: In the following inverters connect the DC reactor to P1-(+), otherwise inverter does not operate.
(1) Inverters of 75 kW and above [G7 series $200 \mathrm{~V} / 400 \mathrm{~V}$]
(2) Inverters of 75 kW and above [$P 7$ series 200V]
(3) Inverters of 90 kW and above [P 7 series 400 V]

Fig. 5-1 Terminal positions and connections at Shipment

5-2 Main circuit

CAUTION: Be sure that the power supply is never connected to the U, V, W terminals or the $(+), \mathrm{P} 1,(-)$ terminals.
(1) Connection for Power supply

Do not fail to connect a breaker for wiring (MCCB) between the three-phase circuit power supply and the main circuit terminals ($L 1, L 2, L 3$). The phase order matching is not required for the connection. Also, connect Magnetic contactor (MC) to cut off the power supply when the inverter protective function actuates, to prevent faults from expanding. If the $M C$ is turned on and off by a run and stop command, the interval of switching should be less than once an hour. Otherwise, the inrush currents will reduce the service life of the internal components. When the inverter is turned on and off more than once, keep the MC on, run and stop by FWD or REV.
(2) Connection for the Output side
(1) Cut off the power supply before connectig the output wire. When the connection has been made while the power supply is ON, a voltage may be impressed between the output terminals, even though the inverter is in a stopping state.
NOTE: When the inverter output terminals (U, V, W) have been connected as shown in Fig. 5-2-2. Forward command will bring the motor in the counterclockwise rotation viewed from the drive side (at Japanese standard motor). When the rotation is reverse, switch two phases among phases U, V, w.

-Three-phse power supply
Fig. 5-2-1 connection for Power supply

Fig. 5-2-2 connection for Electric motor
(2) Do not connect the power supply to terminais U, V, W

A voltage externally impressed will damage the inverter. For this reason, when the commercial switching operation is performed, as shown in Fig. 5-2-3. be sure to install Magnetic contactor (MC-2) and to provide electrical or mechanicat interlock to prevent turning on MC-2 in the operation using the commercial power supply.
(3) The connection for capacitor is not allowed: otherwise, an inverter and a capacitor will be overhealed due to harmonics resulting damaging them.

Fig. 5-2-3 Interlock for Commercial switching operation
(3) Connection for $D C$ reactor for Power factor improvement In the case of connecting DC reactor to Inverter which is not equipped as the standard (supplied outside the unit), detach a short-circuit conductor beiween terminais P1-(+) connected at shipment, and then connect to those terminals. As to find the location of a short-circuit conductor, look round a port for conductor-connection in the unit (inside) where the conductor is connected.

Fig. 5-2-4 Prohibited connection for Capcitor

Detach a short-circuit conductor connected at shipment

Fig. 5-2-5 Connection for DC reactor
(4) Connection for Grounding terminal

WARNING-HAZARD OF ELECTRICAL SHOCK: All motor bases and inverter enclosure housings should be grounded in accordance with the electrical standard.

It is necessary to provide the grounding in order to be protected against an electric shock due to an electric leakage and to reduce effects of a noise. Preferably, the grounding should be provided for its exclusive use.
If it is not possible to have an exclusive grounding, then the alternative one is a common grounding to connect to a ground wire for other equipment at the ground point.
Avoid the grounding where the ground wire is used in common with other equipment. The size of a wire needs to be thick, and the distance should be short.

Fig. 5-2-6 Possible connections of the ground wire
(5) Tap change for Auxiliary transformer

When the supply voltage is $400-440 \mathrm{~V} / 400-460 \mathrm{~V} 50 / 60 \mathrm{~Hz}$, change the tap. U1.
When the supply voltage is $380 \mathrm{~V} 50 / 60 \mathrm{~Hz}$, change the tap, U2.

Fig. 5-2-7 Connection for Aux. Transformer

5-3 Control circuit

Provide the wiring in accordance with the following diagram and description. The function of each terminal should be referred to "Terminal, 11-4"

Fig. 5-3-1 Connection for Control circuit terminals
(1) Wiring for Controi circuit terminals

NOTE: For the wiring control circuit terminals, use a shielded or twisted vinylwire, and keep the distance not less than 100 mm away from the main circuit. However, if wire-crossing is inevitable, wire each to cross at the right angle. For the longer wiring route, a twistedshielded wire is recommended.

(2) Connection for Control power supply auxiliary input terminal The control power within the inverter is usually supplied from DC intermediate circuit.
When the protective circuit actuates, if a magnetic contactor of the power supply side is turned off, that will result in cutting off the control power of the inverter, and therefore the fault display and the collective alarm output signal cannot be held. When a continuous actuation of the protective circuit is required, connect with Aux.
Control power supply terminal R0 and T0 as Fig. 5-3-4.

Fig. 5-3-2 Wiring for inverter control circuit

Fig. 5-3-4 Connection for Control power supply
(3) Connection for Frequency setting/Monitoring terminals

For the input voltage polarity of each of Frequency setter connecting terminal (12) and Voltage input auxiliary terminal (V1), both (+) and (-) are applicable. When a frequency setter is used, the polarity can be switched by means of switch SW1 on the printed board (See Fig. 5-3-6 for the installed location).
Note that the polarity at shipment is set at $(+)$.
Control printed board

Fig. 5-3-5 Connection for Frequency setting terminal and for Monitoring terminal

Fig. 5-3-6 Position of switch SW1 and SW2

Fig. 5-3-7 Switching of SW1
(4) Connection for Current input selection terminal

NOTE: Without switching of external frequency signals, it is possible by switching ON-OFF between AUT-CM that switching Voltage signals from Frequency setter and Voltage auxiliary input terminal with Current signals.

Fig. 5-3-8 Switching of Frequency set signals
(5) Connection for Frequency meter terminal

Although output frequency is digital-displayed, when the external display such as a display on the inverter panel is required, connect a meter to terminals for the frequency meter (FM1, FM2). Instruments, either analog or digital types, can be connected. Set SW2 in accordance with the instrument used, as shown in Fig.5-3-9. The setting at shipment is for analog instrument.
NOTE: The frequency meter (FM1, FM2) circuits are designed for meter. Because this circuit has filter, the response time of output is approximately 3 sec .
(a) Analog output

(b) Digital output

Fig. 5-3-9 Switching of SW2
(6) Connection for Output interlock terminal When the magnetic contactor (MC) is used on the ' inverter output side. Connect NC (Normally closed) contacts of MC belween IL-CM.
For using this terminal, the inverter is able 10 restart after Power failure. When the power failure occurs and IL-CM is closed, the output frequency is memorized and the inverter stops. When the power is reapplied (IL-CM is opened), the first inverter output frequency is the memorized frequency at the power failure. The frequency is reduced at the predetermined rate until catching the motor speed. After catching the motor, the inverter accelerates or decelerates to the reference frequency at this time.
(7) Connection for Alarm reset switch

To operate alarm reset from the other place than the inverter (the inverter panel, etc.), connect a self-reset switch to RST terminal, as shown in Fig.5-3-11. Note that the application of this terminal allows a parallel operation to be performed with the reset key of Touch panel. Therefore, careless operations at setting parameters and retrieving faults may result in inputting a reset signal, careful operations are required.
(8) Contacts to be connected to Frequency selting/ Contact input terminals
In this circuit, voltage and current such as those shown in Fig. 5-3-11 are impressed.
Due to micro current, the contacts to connected should be highly reliable contacts for micro signals, e.g.: Fuji control relay: HH54PW, etc.
(9) Contact capacity for Contact output

The capacity is: $\mathrm{AC} 250 \mathrm{~V} 0.3 \mathrm{~A}(\operatorname{COS} \phi=0 / 3)$
In case of switching a large capacity magnetic switch, use a relay which has a large capacity of contact as shown in Fig. 5-3-12.
(10) Connection of Open collectorer output terminals For the use of these output signals, it is recommended to use a relay output unit (MCA II-RY). If not, the electrical specifications for open collector are: DC27V max. 50 mA max.

CAUTION: Be careful to protect it from damage due to

 surge voltage and not to mistake power supply polarity.

ON between IL-CM: Inverter stops
OFF between IL-CM: Inverter restarts
Fig. 5-3-10 Connection for Output interlock terminal

Fig. 5-3-11 Voltage and Current of Contact input terminal ${ }^{\text {' }}$

Fig. 5-3-12 Amplification of Contact capacity

Fig. 5-3-13 Connection for Open collector output terminals
(11) Connection for Surge absorber

CAUTION: Connect a surge absorber directly to the both ends of the coil which is a the causing source. The wiring should be as short as possible, 20 cm at longest.

When a magnetic coil circuit such as a magnetic contactor, control relay, and solenoid valve, opens and closes, the current will sharply fluctuate resulting in generating a surge voltage (noise). In some cases, this surge voltage may cause to misoperate the electric circuits of inverter and the peripheral equipment.

Table 5-3-1 Application of Surge absober (Circuit voltage: Not more than 250V)

Equipment		CR filter or Diode
Magnetic contactor	DC	S2-A-O or the equivalent
(Main circuit)	AC	Diode or S2-A-O
Auxiliary relay	DC	Si-B-O or the equivalent
	AC	Diode or S2-B-O
	DC	S2-A-O
Braking clutch	AC	Dode

Fig. 5-3-14 Connection for surge voltage

- Specifications of S1-B-O and S2-A-O
: Refer to "12. OPTION" (Page.64)
- Capacity of Diode (when the current of the operating coil is no more than 1A)

ERB44-06C 600A 1A (Surge 30A/10ms) (Product of Fuji Electric)

5-4 Braking circuit

CAUTION: If the (+)-(-) terminals are short-circuited or connected a braking resistor directly without a braking unit, damage to the inverter will result. Do not fail to match terminal symbols (+) and (-) between inverter and braking unit.
(1) As shown in Fig. 5-4-1 the number of braking units and braking resistors in the combination differs in the type of unit. Connect them as the instruction of the Table 12 (2) Braking unit and Braking resistor specifications (Page 63, 64).
NOTE: Detach the short-circuit conductors connected between THR-CM at shipment, and connect thermal contacts in series so that both the braking unit and the braking resistor will be OFF at overheating. If not connect, the braking circuit will not operate.

Fig. 5-4-1 Connection for Braking unit and for Braking resistor
(2) When 2 braking units are used, set Switch SW1 on the printed board of a braking unit as shown in Fig. 5-4-2 (a). The setting at shipment is (b) in the figure.
(a) Braking unit where terminals 11,12 are connected
(b) Braking unit where terminals. $\mathrm{O} 1, \mathrm{O} 2$ are connected

Short circuit piece

Fig. 5-4-2 Switching of SW1

6. Touch panel

6-1 Function and Configuration of Touch panel

i 'The setting/ display apparatus installed on the front panel of Inverter is called Touch panel, which is used for the data display and the parameter setting and modification. Inverter is operated with the parameters set by this touch panel and with the external operation/ control commands. The flow of this actuation is shown in Fig. 6-1-1.

Fig.6-1-1 Basic actuation of FRENIC 5000 G7/ P7 series

Table 6-1-1 Functions of Keypad

Function	Description	
Operation monitoring		Monitor the operation states of Inverter
Parameter setting	Basic parameter	Set data required for operation
	Auxiliary parameter Correcting parameter	Set data required for control adjust output signals to match with instruments externally installed
	Protect set data against careless operations	
Fault display and retrieval	Display and Retrieval the class of Fault and the operation state at fault	
Reset	Data reset at parameter setting, Set error display reset, reset to return to operation monitoring mode atter completing the setting, and fault reset	

Table 6-1-2 Display characters

Number	Displayed character	Number	Displayed character	Letter	Displayed character	Letter	Displayed character	Letter	Displayed character
0	0	5	5	A	A	F	F	U	U'
1	;	6	5	B	b	H	H'	\checkmark	U'
2	2	7	7	C	L	L	i	active	\square
3	3	8	8	0	$\underbrace{\prime}$	0	8	INACTIVE	-
4	4	9	3	E	E	R	,-		

Function selection indicator
Display the selected digits at function selection. But, in the data display retrieval mode and the parameter setting mode (when shifted the sellected function to the data display). the both two digits will go out.

Shift key

Used to set and retrieve of functions and data. And select Parameter setting mode.

- Selection order

BQ to 8 B
F: to: -5.5 to: 7
FUNCTION DATA

- Other functions

FUNCTION
DATA

When the data on the data display is flickering, you can not change the selection by pressing
SHIFT.
Try the operation after stopping the flicker by pressing SET or RESET.

The digit selected with the SHIFT key changes as indicated by the arrow in the figure below.

- Values which do not represent an inverter function are skipped
- When parameter data setting, values are set limits of upper.

Fast key
The speed at parameter setting can be increased with combinations of $\leadsto \backsim$

- Moderate speed can be achieved by pressing FAST one time, and high speed by pressing it two times, while pressing
 or V. Release \qquad or \checkmark to to clear the moderate and high speed settings.

Unit indicator

THE LED on the left of each unit symbol corresponding to the contents of a data display.

Set key

Used to enter set data into the memory at parameter selting.

- When a new data has been set. the data will flicker. Pressing SET will enter the data into the memory, and then the flicker will stop.
- Note that the data which once have been entered (stored) in the inverter do not disapper even after turning off the power supply.

Reset key

Used as follows:

- Parameter setting mode
- Reset of Set data Press RESET prior to SET in parameter setting mode, and the set data will be cleared so that you can return to the original data.
- Reset of Set error display Press it after inverter stopping when "Err" has been displayed due to the incorrect setting, and the set data will be cleared so that you can return to the data preceding the setting.
- Return to operation monitoring mode after completing the setting You can return to the function for operation monitoring which had been selected and displayed before setting parameter.
1 Fault monitoring mode
- Fault reset

Turn off the run command and press RESET after solving the problems, and the pretective function actuating will be cleared so that you can return to the function mode selected before the fault occurred.

6-2 Basic operational procedure of Touch Panel

After few seconds from applying power, touch panel indicates the monitor function which was monitoring before power being turned off, and it is able to select the function and set the data

6－3 Function selection and displayed data retrieval
（1）Function selection

procedure	Examples of Operation and display Case to swich a mode from Set value display mode for the number of poles of motor（Function： 30^{\prime} ）to monitoring mode for Synchronous speed（Function：12？）		
	Operation	Display	Description
	－	FUNCTION DATA	Display Function and Data for the number of poles of motor．（Display ex．：in case of 4 －pole motor）
Press SHIFT and confirm the light of the function selection indicator（1）．Then，the 2nd digit of Function will be selected．	Press SHIFT two times		Switch the lighting position of Function selection indicator to select the 2nd digit of Function．
Press \square or \square to set the code of the 2nd digit of Function required．At this time，the code of the 1st digit of Function will be set at O ．	Press V three times		Change the display at the 1 st digit of Function to as well as that at the 2 nd to to display an output frequency at the data display．（Display ex．：When output frequency is 60 Hz ）
Pressing SHIFT one time will put out the function selection indicator（1）and light （2），and then the 1st digit of Function will be selected．	Press SHIFT one time		Switch the lighting position of Function selection indicator，allowing the selting of the 1st digit of Function．
Press \square or \square to set the code of the 1st digit of Function． The function data set will be displayed in the data display，and its unit indicator．			Change the display at the 1 st digit of Function to 2 to display a synchorous speed．

（Note 1）Marks mind indicate lighting at Function selection indicators and Unit indicator
（Note 2）Without the following cases，these displays will continue until a new function data is set．
（1）RESET operation after completing the parameter setting or changing．
（2）After completing the setting or release operating of＂Function 99 setting data protection＂
（3）RESET operation at occuring an fault and after retrieving of contents of fault，operating conditions at the fault，and contents of Past failures．
Details should be referred to＂6－4＂，＂6－5＂，（Page 17 ～21）

（2）Display examples

Display item	FUNCTION		DATA				Unit display
	2nd digit	1st digit	4th digit	3rd digit	2nd digit	1st digit	
Frequency（When output frequency is 60 Hz ）	\square	G		E	θ ．	0	Cal Hz
Current（When output current is 100A）	17	7		；	\square	0.	EA
Voltage（When output voltage is 400 V ）	8	4		4	17	0.	EV
Speed（When machine speed is $1750 \mathrm{r} / \mathrm{min}$ ）	0	5	i	7	5	17.	－r／min
Time（When acceleration time is set at 10s．）	；	6		i	17.	17	E
Percentage（When torque limit is set at 120\％）	3	3		；	17	17.	显\％
Code（When torque boost is set at＂ 3 ＂）	i	9	！	－	－	3	
Selection（When automatic and energy conservation operations are set＂to be specified＂）	i	9				0	
Factor（When frequency monitoring factor is set at＂50＂）	\because	B			5	17	
No．of poles（When the number of poles of motor is set at＂4＂）	3	－				4	
State（When the state of input terminal is＂In forward operation＂）	0	5	9	9	－	－	
Fault（When the 4th digit ；indicates the first fault in overcurrent at deceralating）	F	17	i．	17	E	2	
Setting error（When the setting of the lower limit of frequency exceeds that of the upper limit frequency）			E	，－	－－	i	
Setting error（When a parameter which can not be set during operation has been set）			E	，－	，	2	

（Note）Mark indicates lighting on Unit indicator．
(2) Monitoring for display data (input and output signal)

Procedure

6-4 Parameter setting

Procedure

WARNING - HAZARD OF MOTOR OVERSPEED:

The maximum frequency is 400 Hz , which is equivalent to $12000 \mathrm{r} / \mathrm{min}$ of high speed rotation in 4 -pole motor. In such condition, the incorrenct setting may result in a catastrophic failure for the machine. In order to prevent this, i' \because : High limiter of output frequency upper limit is provided. Set the upper value with this function to carry out safety operation.

CAUTION: When the DC braking function is used, large value setting for $2:$: DC braking voltage and $23:-D C$ braking time will cause heating of motor. The setting appropriate for the capability of motor is required.

NOTE: Set the parameter during inverter stopping.
If you set the parameter during inverter operation, the data display will display the error code.
Few parameter can be set during inverter operation. Details should be referred to "Functions table 11-3" (Page 33, 34)
"Inverter stopping" means to the states as follows.
(a) State changed function display of operation mode from LGA display after power has supplied.
(b) Stop state after providing stop commands. (FWD, REV-CM: OFF)
(C) State provided free run command.
(d) After turning off fault display.

NOTE: Press SET (data memorying) certainly, after parameter setting. Otherwise, this setting will get to invalidity.
NOTE: The priority order in the case where the inter-harmony among parameters on output frequency: $10, i J$, i4, i5, 18 , and $23 \sim 29$ can not be made is shown as follow:

1st order : 4 : Output frequency high limiter
2nd order 15 : Output frequency low limiter
3rd order $2 \exists \sim$ 帚: Multistep frequency selection
4th order iS: Max. frequency $i=3:$ Bias frequency, i B : Frequency setting gain
NOTE: For the use of the following parameters, note that $: \%$ Output frequency high limiter and $: 5:$ Output frequency low limiter are not applicable to them.

근 DC braking start frequency 37 : Starting frequency
NOTE: When torque limit acceleration and deceleration are extermely frequency performed, depending on the repeating frequency, the limit may exceed the capabilites of motor and of Inverter. Therefore, some measures, such as to reduce the setting level of torque limit, need to be taken. In such cases, if there is any unclear matter, please consult us.

NOTE: For setting 4 : Digital frequency monitor coefficient and 50 : Analog frequency meter calibration, switch, in advance, the output selector switch for frequency meter (SW2), as shown in Fig. 5-3-9.

NOTE: The functions having Active (0) or Inactive (-) are also set by using Ω or \square.
\square : Active (0),,$~$: Inactive (-)
NOTE: If the following operations are done, the data indicator displays setting error. But, the inverter continues to run by the data before setting. In these cases, after stopping the inverter and pushing the RESET; set the data once more.

6-5 Fault display and retrieval

(1) Display and retrieval of fault contents

Procedures	Example of operation and display Case, at braking using braking unit and braking resistor in the option, where the protective func. tion has actuated by detecting overvoltage and heating of the braking resistor at braking:		
	Operation	Display	Description
When a fault has occurred. the mode will be switched from other monitoring mode to fault monitoring mode, F C , the fault order 1 , and its class will be displayed in code, and then the function selection indicator (2) will light.			Switch automatically to fault monitoring mode. The class of the first fault is displayed, and the code will flicker. (Display ex.: When the first detected fault was overvoltage)
The details of the fault need to be reirieved since it may be complex. First, press SHIFT to switch to faultdetail retrieval mode. At this time, the function selection indicator (2) will turn off.	Press \square SHIFT one time	FUNCTION DATA.	Put out the function selection indicator to switch fault cetrieval mode. No changes in other displays.
Press \square and the 2 nd fault details (order and class in code) will be displayed.	Press \square one time		Display 2 at the first digit on the data display. and the class of the 2nd fault in code, which will start flickering. (Display ex.: When the second fault was overheating of a braking resistor)
Press \square again, and similarly the 3 rd fault details will be displayed. For the rest, repeat this operation until no class of fault appears.	Press \square one time		No display on the data indicator since there is no 3rd fault.

The confirmation of fault has been completed at this stage.
When the confirmation on the operation data at fault and the fault history are not required, press RESET after solving the problems. By doing so, the protective function actuating will be cleared, and the monitoring operation mode on the indicator will switch to that preceding the occurrence of the fault to get the operation ready.
When you confirm on the operation data at fault and fault-history, operate as following.
（2）Retrieval of operation data at fault

Procedures	Example of operation and display		
	Operation	Display	Description
Press SHIFT \square to select the 1st digit of Function．	Press \square two times		Example continued from（1） Select the first digit of Function
Press \square to select $:=i$ ，and output frequency will be displayed． Similary，press \square in turn，and：$F \mathbb{E}$ ： Set frequency， 53 ：Output current，and F＇ F ：Operation state will be displayed．	Press \square one time		Display Output frequency at fault（Display ex．： When output frequency was 25.5 Hz ）
	Press \square one time		Display set frequency at fault（Display ex．：When set frequency was 60 Hz ）
	Press \square one time		Display output current at fault（Display ex．： When output current was 123A）
	Press \square one time		Display，in code，operation state at fault（Dis－ play ex．：When the rotation was reverse）
When F 4 has been displayed，press SHIFT to switch to operation state re－ trieval mode．	Press \qquad one time		Switch to operation state retrieval mode．The function selection indicator will go out．No changes in other displays．
Press \square and the state at operation will be displayed in code．Press \square in turn until no display will appear．	Press \square one time		Change the contents of the display（Display ex．：When voltage limit was actuating）
	Press \square one time		No displays．The operation state retrieval has been completed．

When the retrieval on the fault history is not required，press RESET．By doing so，the protective function actuating will be cleared，and the monitoring o．peration mode on the indicator will switch to that preceding the occurrence of fault to get the operation ready．
When you retrieve the fault history，operate as following．
（3）Fault history retrieval

Procedures	Example of operation and display		
	Operation	Display	Description
Press SHIFT to select the 1 st digit of Function．	Press SHIFT two times		Example continued from（1） Select the first digit of Function．
When, 5 is selected by press \square ．only the faut which was the first display at the last occurrence of fault will be dis－ played in code．The 2nd and following faults retrieved will not be displayed．		FUNCTION DATA	Display the class of the fault which was the first display when the last fault occurred（Display ex．：When electronic thermal was actuating）
When $F=$ and $F ?$ are selected by Press \wedge ，the fault at the time back one time and two times respectively．	$\widehat{\text { Press }}_{\underline{\text { one time }}}$		Display the class of the fault which was the first display at the time preceding the last occurr－ ence（Display ex．：When overcurrent protective function was actuating at accelerating）
At this stage，the retrieval for fault mode has been completed． Press RESET after solving the problems and turning oft the run command．By doing so，the protective function actuat－ ing will be cleared，and the monitoring mode on the indicator will switch to that preceding the occurrence of the fault to get the operation ready．			Display the class of the fault which was the fast display at the time back two times since the last occurrence（Display ex．：When fautt data has not been input．）
	$\begin{aligned} & \text { Press } \\ & \text { RESET } \end{aligned}$		Complete fault monitoring operation，and dis－ play the parameters which had been moni－ torerd before the fault occurred．（Display ex：： When monitoring out put frequency）

NOTE:

(1) The 2nd digit of Function cannot be modified during fault display. On the other hand, the 1 st digit can be selected for fault-detail retrieval.
(2) Reset command can be input by using RESET or alarm reset input terminal.
(3) When reset command is input, the erasing of the data display at fault and the moving-up of a fault history will be executed.
Note that the second and following faults have not been stored in the memory.
It is recommended to record these datas in view of the future operation and maintenance.
(4) Retrieval when no fault has occurred

Set the code (number) of an item to be retrieved with SHIFT, \wedge and \square. For Functions F F - 4 , however,
 lighting on the unit indicator, while $F=-7$ and will be displayed on the data display.
(5) When fault mode has been selected in the state of no faults to retrieve such as a fault history and then RESET is pressed, the mode will not execute the moving-up of the fault history.
When the control power supply is turned off during fault display, fault output signal will not be held.
Furthermore, note that, after the control power supply has been turned off, if it is turned on again without eliminating the cause of the fault, that will be detected as a new fault.
(6) To reset inverter turn off all start signals (FWD, REV), and press RESET key.

7. Trial operation

7-1 Preparation for operation

Don't fail to check the following items before trial operation.
(1) Is the input $A C$ power supply complied with the ratings?

200 V series: 3 -phase 3 -line, 220 to $230 \mathrm{~V} / 50 \mathrm{~Hz}, 230 \mathrm{~V} / 60 \mathrm{~Hz}$
400 V series: 3 -phase 3 -line, 400 to $420 \mathrm{~V} / 50 \mathrm{~Hz}, 380$ to $400 \mathrm{~V} / 50 \mathrm{~Hz}, 400$ to $460 / 60 \mathrm{~Hz}$
(2) Are the input and output of the main circuit connected in good order?
(Input source faling under L1, L2 and L3, Electric motor, U, V, and W)
(3) Is the wiring of the main circuit and control circuit not in contact with the earthing or other terminals or not shortcircuitted?
(4) Is the panel mixed or attached with such foreign matters as metals and electric wire chips?
(5) Are screws, connectors, terminals, etc. not loose?
(6) Confirmation of the operation of the external sequence circuit

7-2 Trial operation

For'safety's sake, disconnect the couplings and belts with which motors and machinery are connected to allow independent operation by motors. When operating with it directly connected with the machine, be careful not to cause danger.
(1) Set all operating switches to OFF
(2) Set the frequency setter to the minimum value
(3) Put the wiring breaker (MCCB) to work
(control circuits and sequence circuits will be turned active), size up the situation for a while, and check to see if
cooling fan is rotating normally and if nothing is found in the control circuit, sequence circuit, etc. (heating, fume, abnormal smell, etc.)
In this case, make sure that the "CHARGE" lamp of the front panel is on
(4) When (MCCB) is put to work, the data display part of the touch panel will display LDBD and flicker for a while. This is because CPU is doing the reading action of the internal data.
After $\mathcal{L} \mathrm{L}_{\mathrm{g}} \mathrm{d}$ disappeared, it will set the parameter to check to see if the set data meet the specification.
How to check it is referred to in " 6 . Touch Panel. (Page $13 \sim 21$)"
(5) Give a forward or reverse command.

Check to see if the motor begins to rotate with the frequency setter turned righward a little.
Make sure that the rotating direction is correct in such condition.
The turning direction of the motor is counterclockwise looking from the driving side (shaft end) of the motor by the forward turning command.
When reversing the turning direction, set the operation signal to the reversing turning command. If forward and reverse turning commands should be put at the same time, the motor will come to a stop, for which care should be exercised.
(6) Rise the frequency setter gradually and check to see if the inverter output frequency reaches the maximum frequency of the motor.
The maximum frequency of the inverter has been set to 60 Hz at shipment.
(7) After confirmation has been finished, stop it once, set the frequency setter a little higher, and check to see if acceleration and deceleration is made smoothly.
With this, the trial operation comes to an end
Make operation with the load combined.
If the setting should be changed as a result of the trial operation, follow the procedures described in " 6 . Touch Panel."
NOTE: When FWD-CM or REV-CM terminals are connected, inverter does not start at power up, causing "OH2" trip. To start the inverter disconnect all the FWD-CM, and REV-CM connections, press RESET key, and make FWD-CM or REV-CM connection.

8. Operation

Make operation in accordance with the following procedures.
For the items not inctuded absent in the following procedures though it is carried in the procedures of the trial operation, it is allowed to add procedures depending upon the circumstances.
(1) Put the power (MCCB) to work.
(2) Confirmation of "CHARGE" lamp of the front panel going on.
(3) When data are required to be changed, follow the procedures described in " 6 . Touch Panel"
(4) When a forward or reverse turning command is inputted, the motor will be operated at the setting frequency: provided. It will not be operated when the set frequency has been set below the starting frequency.
(5) When changing the contents of the display or data changeable of the setting in course of operation, follow the procedures described in "6. Touch Panel"
(6) Set the forward or reverse turning command terminal to "OFF", and the motor will be decelerated to stop. Unless re-operation takes place immediately, stop the motor for safety and set the power to "OFF"

9. Maintenance and inspection

The inverter is composed of many parts.
Unless those parts operate properly, they will not develop their performance fully
It is necessary to make good maintenance and inspection to prevent failure in the inverter beforehand and to keep on operation of good reliability.
Inspection methods should be refferred to "Inspection List 14" (page 66).

9-1 Cautions in course of maintenance and inspection

CAUTION: Do not conduct any inspections until disconnecting the power supply and the "CHARGE" lamp on the inverter has gone out.

9-2 Daily inspection

(1) Don't remove the cover, and check to see from outside if abnormal sound, smell, and damage are not perceived in accordance with the inspection items.
(2) Whenever abnormal phenomenon should be found, make sure of its place and extent without delay.
(3) Check the contents of the abnormality. If the operation is allowed to be kept on, record the abnormal details for referential data in case of a periodic inspection.

9-3 Periodic inspection

Remove the covers and check to see if nothing is found abnormal visually or by touch from the outside in accordance with the inspection list items. Don't fail to observe "Item No. 9-1 Cautions for Maintenance and Inspection." "inspection list 14." (page 66)

9-4 Periodic exchange of parts

Usually the life time of electrolytic capacitors are approximately five years and that of cooling fans are approximately three years, but the life times is different from this number of years in according to environment and working time per one day.
Please exchange these parts before occuring the troubles.

9-5 Measurement of main circuit electric capacity

Since the voltage and current of the input and output circuits of the inverter include harmonic wave, it is necessary io select the measuring instrument type.
When a measuring instrument for commercial frequency, measure it with the measuring instrument shown in Fig. 9-5.
For reference, the power factor will cause big errors by measuring a power factor meter because it will be subjected io change in the harmonic wave current and output frequency.
When the power factor is required, measure the voltage, current, and electric power and calculate it from the following equation.

$$
\text { Power factor }=\frac{\operatorname{Power}(\mathrm{kW})}{\sqrt{3} \times \operatorname{Voltage}(\mathrm{V}) \times \operatorname{Current}(\mathrm{A})} \times 100 \%
$$

item	Input side measuring instrument (power side)			Output side measuring instrument (motor side)			Output frequency (Terminal FM1. FM2)
	Voltage wave form Current wave form			Voltage wave form Current wave form			
Name of measuring instrument	Amperemeter $A_{R, S, T}$	Voltmeter $V_{\text {R,S.T }}$	Watmeter $W_{\text {R.S.T }}$	Amperemeter Au,viw	Voltmeter Vu,viw	Wattmeter Wu.viw	DC Voltmeter V.
Kind of measuring instrument	Moving-iron type	Rectifier type or movingiron type	Electrodynamometer type	Moving-iron type	Rectifier type	Electrodynamometer type	Movable coil type
Symbol of measuring instrument	$\frac{1}{1}$		$\stackrel{\square}{\square}$	表	-		(n)

Fig. 9-5 Measurement of main circuit and measuring instrument

9-6 Confirmation of insulation

Insulation test has been made before delivery from the works. It shall not be made as much as possible.
In an unavoidable case, follow the instructions below.
Wrong testing may damage the inverter, for which full attention
must be paid.
CAUTION: Do not conduct megger tests between the inverter terminals or control circuit terminals.
(1) Main circuit

Make megger test (insulation resistance test) by using the
following megger tester. 400 V series: DC 500 V megger 200 V series: DC 250 V megger

Fig. 9-6 How to megger test
(1) Remove the external connections of all terminals (including control circuit terminals) of the inverter, clean each component, and connect all main circuit terminals with common wires as shown in Fig. 9-6.
(2) Make megger test only between main circuit common line and ground (grounding terminal GND (PE)).
(3) If the megger pointer indicates $5 \mathrm{M} \Omega$ and over, it proves normal.
(2) Control circuit

Remove the external connection of the control circuit terminal for earth conductivity test.
Use a high resistance range tester for the tester. Neither megger nor buzzer shall be used.
(3) Cautions for testing of external main circuits and sequence control circuits

When making a pressure test and megger test of external circuits, remove all terminals of the inverter so that the inverter may not be applied with the test voltage.

10. Troubleshooting

If the function of the inverter is lost by a failure or if an abnormal phenomenon occurred, refer to the following diagnosis and its cause must be pursued for remedy.
If it will not fall under the following explanation, if the inverter is damaged, and if its part was broken, or in case of trouble. please communicate the matter to the agent you bought it or your nearest Fuji sales office.

10-1 Diagnosis and remedy in case protection function made action indication
(1) Overcurrent

(3) Under-voltage

(Note 1) When the DC bus capacitor is discharged by power failure and the control power of the inverter is reduced, automatic resetting will take place.
When the function 43 is selected, no resetting is required. After the power is restored, automatic restart will begin.
(Note 2) Undervoltage will detect the main circuit DC voitage of the inverter, and display and alarm will take place.
When the voltage comes over the following range, display and alarm will take place.
*200 veries: DC 200 V

* 400 veries: DC 400V

5) Inverter overheat

(7) CPU abnorma

(6) External failure and miss operation

10-2 Diagnosis and remedy for abnormal phenomena
(1) Motor will not run.

(Note)
Presence of forward and reverse commands and frequency set signal can be checked easily with the operation monitor function of $D E D$ selected. (Refer to Item No. 11-3. Operation Monitor page36)
(2) Motor will run but speed will not change.

(3) Motor will stall in course of acceleration.

(4) Motor will heat abnormally

11. Inverter specification

11-1 Standard specification

(1) Individual specification
(1) FRENIC S000G7 series

	Voltage	200 V series				400 V series			
Applica	e motor output [kW]	Inverter type	Rated capacity [kVA]	Rated output current [A]	Outbreak loss [kW]	Inverter type	Rated capacity [kVA]	Rated output current [A]	Outbreak loss [kW]
	30	FRN030G7-2EX	44	115	1.3	FRN030G7-4EX	46	60	1.2
	37	FRN037G7-2EX	55	145	1.6	FRN037G7-4EX	57	75	1.4
	45	FRN045G7-2EX	69	180	2.0	FRN045G7-4EX	69	91	1.7
	55	FRN055G7-2EX	82	215	2.3	FRN055G7-4EX	85	112	1.9
	75	FRN075G7-2EX	108	283	3.1	FRN075G7-4EX	114	150	2.6
	90	FRN090G7-2EX	132	346	3.7	FRN090G7-4EX	134	176	3.0
	110	-	-	-	-	FRN1 10G7-4EX	160	210	3.3
	132	-	-	-	-	FRN132G7-4EX	193	253	4.1
	160	-	-	-	-	FRN160G7-4EX	232	304	5.0
	200	-	-	-	-	FRN200G7-4EX	287	377	6.0
	220	-	-	-	-	FRN220G7-4EX	316	415	6.8
Output Ratings	Rated output voltage (Note 1)	3-phase 3-wire system, 200 to.230V				3-phase 3-wire system, 380 to 460 V			
	Rated output frequency (Note 2)	50 to 400 Hz							
	Overload current rating	150\%, for one minute (inverse time characteristics)							
Power	Rated input AC voltage	3-phase 3-wire system $220-230 \mathrm{~V} / 50 \mathrm{~Hz}, 230 \mathrm{~V} / 60 \mathrm{~Hz}$				3-phase 3-wire $380-400 \mathrm{~V} / 50 \mathrm{~Hz}$ (Note 3) $400-420 \mathrm{~V} / 50 \mathrm{~Hz} 400-460 \mathrm{~V} / 60 \mathrm{~Hz}$			
	Allowable variation	Voltage: +10 to -15%, Imbalance: less than 3\% (Note 4), Frequency: $\pm 5 \%$							

(2) FRENIC 5000 P 7 series

	Voltage	200V series				400 V series			
Applica	motor output [kW]	Inverter type	Rated capacity [kVA]	Rated output current [A]	Outbreak loss [kW]	Inverter type	Rated capacity [KVA]	Rated output current [A]	Outbreak loss [kW]
	30	FRNO30P7-2EX	44	115	1.3	FRN030P7-4EX	46	60	1.2
	37	FRN037P7-2EX	55	145	1.6	FRN037P7-4EX	57	75	1.4
	45	FRN045P7-2EX	69	180	2.0	FRN045P7-4EX	69	91	1.7
	55	FRN055P7-2EX	82	215	2.3	FRN055P7-4EX	85	112	1.9
	75	FRN075P7-2EX	108	283	3.1	FRN075P7-4EX	114	150	2.6
	90	FRN090P7-2EX	132	346	3.7	FRN090P7-4EX	134	176	3.0
	110	FRN1 10P7-2EX	158	415	4.4	FRN110P7-4EX	160	210	3.3
	132	-	-	-	-	FRN132P7-4EX	193	253	4.1
	160	-	-	-	-	FRN160P7-4EX	232	304	5.0
	200	-	-	-	-	FRN200P7-4EX	287	377	6.0
	220	-		-	-	FRN220P7-4EX	316	415	6.8
	280	-	-	-	-	FRN280P7-4EX	400	520	8.2
Output Ratings	Rated output voltage (Note 1)	3-phase 3-wire system, 200 to 230V				3 -phase 3-wire system, 380 to 460 V			
	Rated output frequency (Note 2)	50 to 400 Hz							
	Overload current rating.	120\%, for one minute (inverse time characteristics)							
Power	Rated input AC voltage	3-phase 3-wire system $220-230 \mathrm{~V} / 50 \mathrm{~Hz}, 230 \mathrm{~V} / 60 \mathrm{~Hz}$				3-phase 3 -wire $380-400 \mathrm{~V} / 50 \mathrm{~Hz}$ (Note 3) $400-420 \mathrm{~V} / 50 \mathrm{~Hz} 400-460 \mathrm{~V} / 60 \mathrm{~Hz}$			
	Allowable variation	Voltage: +10 to -15%, Imbalance: less than 3\% (Note 4). Frequency: $\pm 5 \%$							

(2) Common specification

Item			Specification		
Control	Control system		Sinusoidal PWM with fiux control		
	Output Irequency		0.510400 Hz (slarling frequency 0.5 to 5.0 Hz adjustable)		
	Frequency stability		Analog setting	$\pm 0.2 \%$ of maximum frequency ($25 \pm 10^{\circ} \mathrm{C}$)	
			Digital setting	$\pm 0.01 \%$ of maximum frequency ($-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$)	
	Frequency resolution		Analog setting	$\pm 0.1 \%$ of maximum frequency	
			Digital setting	$\pm 0.1 \mathrm{~Hz}$ (Option: 0.01 Hz)	
	Voltage/ frequency characteristics (V/f)		200 V series	Voltage: 160 to 230V. Frequency: 50 to 400 Hz	Available for continuous adjusiment independently tor both voltage and frequency
			400 V series	Voltage: 320 to 460 V , Frequency: 50 to 400 Hz	
	Torque boost		21 selectable patterns and autornatic energy saving mode		
	Acc/ Dec. time		Acceleration and deceleration time: 0.2 to 3600 sec : linear: 4 patterns setting available: Nor-linear acceleration and deceleration: 2 patterns setting avilable		
	Braking torque		Standard	Regenerative brake: 10 to 15%, DC braking: Starting frequency 0.01060 Hz . Time: 0 to 10 seconds. Voitage: 0 to 10%	
			Option	Dynamic brake: 100% (duty cycle 5\%ED)	
	Standard functions		Torque limit control. automatic acceleration and deceleration. slip compensation control. current limiting, multistep frequency, up-down control, restart after instantaneous power failure, back up sequence from tine to inverter. reversing aperation with signal polarity, high or low limiter. bias frequency, and jump frequency		
Protection			Stall prevention. overcurrent. overvoltage. undervoitage (Note 6), instantaneous power lailure, inverter overheat. inverter overload. motor overload (electronic thermal action), external failure (external thermal action etc.). CPU error. output shor circuit. ground fauit for inverter protection (Option). and incoming surge		
Operation	Frequency setting input		Potentionmeter or voltage input: $D C 010 \pm 10 \mathrm{~V}(\mathrm{DC} 0$ 10 $\pm 5 \mathrm{~V}$). Current input: $D C 4$ to 20 mA		
	Input signal		Forward and stop command, reverse and stop command. 3-wire control, current signal input selection. mutistep frequency selection. up-down control, acc/dec time selection. coast-to-stop command, switching operation from line to inverter, interlock for load side swith. external alarm input, alarm reset input, and ground fault input		
	External output signal		Helay output:	Power-side electromagnetic contactor command (NO), alarm (SPDT)	
			Open collector output:	Refer to "Auxiliary parameler setting. Function 45 (Page 49)"	
Indication	Frequency meter output signal :		Analog: OC 0 to + tov. Puise frequency: (6 to 100) × output frequency		
	Touch panel LED indication	Running	Output frequency, reterence frequency, motor synchronous speed. output current. output voltage, machine speed. and input and output signal check		
		Setting	Function codes and data code indication (Refer to Function List.)		
		Fault	OT: Overcurrent during Acc.. $\overline{\mathrm{BL}} \mathrm{Z}$: Overcurrent during dec. ic $\overline{3}$: Overcurrent during running at constant overioad. SH_{6} : External fallure. Err $\mathrm{B}: \mathrm{CP}$ U error and failure (8 points such as output frequency, etc.). failure history (three failure indications in past). etc.		
	Charge lamp (LEO indication)		DC intermediate circuit voltage		
Environment	Installation location		indoors, altitude of 1000 m and less, Do not install in a dusty location or expose to corrosive gases or direct sunlight.		
	Ambient temperature		$-101050^{\circ} \mathrm{C}$		
	Humidity		201090% AH (Non-condensing)		
	Vibration		0.5 G and less (contorming to JIS c 0911)		
	Temperature during transportation		$-25 \sim+65^{\circ} \mathrm{C}$		
	Mounting		Panel mounting, external cooting type		
Prolection system			Protection case attached unit (IP00: JEM1030, provided that if the applicable electric motor lalls under 200 series. the unit of 75 kW and less will be held optional and if the motor does under 400 V series, the unit of 132 kW and less wili be held optional too, thus available for 1 P 20 .).		
Cooling system			Forced air-cooling		
Option			Ground fault delection unit for inverter protection (Nole 7). relay output unit, louch panel extension cable set,Braking unit. Braking resistor, radio noise reducing zero-phase reaclor, line side $A C$ reactor, power factorimprovement $O C$ reactor, noise reducing $A C$ reactor. frequency setter, frequency meter. and surge absorver		

(Nole 1) The rated capacity falls under 220 V for the 200 V series and 440 V for 400 V ones in the rated output voltage.
(Note 2) Output voltage cannot exceed the power supply voltage.
(Note 3) Change the tap of auxiliary transformer when changing the power supply voltage from 380 V to other voltages, and vice versa.
(Note 4) Use a line side $A C$ reactor when imbalance in power supply voitage exceeds 3%
Power supply voltage imbalance rate (\%) =\{Maximum voltage (V)] 3 -phase mean voltage (V) $\times 100$
(Note 5) Following units are provided with OC reactors for power factor improvement as the standard ouffitting (supplied other than units).
(1) G7 series: Inverter of 75 kW and over (2) P7 series 200 V series: Inverter of 75 kW and over (3) P7 series 400 V series: Inverter oi 90 kW and over
(Note 6) Even if the power is put out. operation can be kept on at 15 ms or so at futt load condition. (in case of light load operation, the operating time will be extended much more.) When the main circuit $D C$ voltage comes below the under-voltage level, the inverter will stop the output wilhout delay to hold tripped condition. However, when the control power of the inverter should come down. automatic resetting will take place.
(Note 7) The ground fault detection unit as an option is protect the inverter itself. Protection for human accident, fire, external equipment. etc. shall be provided with the leakage protecting device described separately.

11-2 Outline dimentions

Fig. A Inverter cooled inside switchboard

Panel drilling

Fig. B Inverter cooled outside switchboard

Panel cutting

Fig.C Commen-use type

200 V series

400 V series

11-3 Functions

FUNCTION TABLE

Function				Data			
,	Code	Name of function	Symbol	Setting range	Display	Minimum unit	Factory setiong
Display	80 81 0. 03 84 85 06 07 88 33 08 06	Output frequency Reference frequency (Preset frequency) Motor synchronus speed Output current Output voltage Machine speed Input-signal status (checking) Output-signal status (checking) Torque limiting level for driving Torque limiting level for braking Torque calculation value For option PC board		Indicate operating condition	Hz Hz r/min A V r/min — \% \% \%	$\begin{array}{ll} 0.1 \mathrm{~Hz} & \\ 0.1 \mathrm{~Hz} & \\ 1 \mathrm{r} / \mathrm{min} & \cdot 1 \\ 1 \mathrm{~A} & \cdot \\ 2 \mathrm{~V}(1 \mathrm{~V}) & \cdot 2 \\ 1 \mathrm{r} / \mathrm{min} & \\ - & \\ - & \\ 1 \% & \\ 1 \% & \\ 1 \% & \end{array}$	
Fundamental parameter	$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 13 \\ & 18 \\ & 10 \\ & \hline \end{aligned}$	Maximum frequency Base frequency Maximum output voltage Bias frequency High limiter Low limiter Acceleration time 1 Deceleration time 1 Gain for frequency setting signal Torque boost Autmatic energy-saving operation Electronic thermal overload relay	F1,+ax $F_{\text {Br SE }}$ $V_{\text {max }}$ F_{H} F_{u} ACC1 DEC1 GAIN	$50.0-400.0$ $50-400$ $320-460(160-230)$ $0-400$ $0-400$ $0-400$ $0.2-3.600$ $0.2-3,600$ $0-200.0$ C-0 to C-20 Active/ inactive 0 (not in use), 50-105	Hz Hz V Hz Hz Hz s s \% - - \%	0.1 Hz 1 Hz 1 V 1 Hz 1 Hz 1 Hz 0.1 s -3 0.1 s -3 0.1% - - 1%	50.0 Hz 50 Hz $380(220) \mathrm{V}$ $\cdot 2$ 0 Hz 50 Hz 0 Hz 20.0 s 20.0 s 105.0% ...- $\mathrm{C}-3$ Inactive 105%
Auxiliary parameter		DC brake starting frequency DC brake voltage DC braking time Multistep frequency setting 1 Múltistep frequency setting 2 Multistep frequency setting 3 Multistep frequency setting 4.: Multistep frequency setting 5 Multistep frequency setting 6. Multistep frequency setting 7°. Acceleration time 2 Deceleration time 2 Acceleration time 3 Deceleration time 3 Acceleration time 4 Deceleration time 4 Accel./decel.pattern Motor noise reduction Overload early warning signal Torque limiter (Driving mode) Torque limiter (Braking mode) Frequency level. detection. Frequency equivalence detection range Starting frequency Starting frequency holding time Jump frequency 1 Jump frequency 2 Jump frequency 3 Jump frequency range Number of motor poles Machine speed conversion coefficient	Foce Voce Tocb MSS 1 MSS2 MSS3 MSS4 MSS5 MSS6 MSS7 ACC2 DEC2 ACC3 DEC3 ACC4 DEC4 OL Ta Ta FDT FAR Fsia. Thow JUMP1 JUMP2 JUMP3 POLE	$0.0-60.0$ $0.0-10.0$ $0.0-10.0$ $0.0,0.5-400.0$ $0.0,0.5-400.0$ $0.0,0.5-400.0$, $0.0,0.5-400.0$ $0.0,0.5-400.0$ $0.0,0.5-400.0$ $0.0,0.5-400.0$ $0.2-3,600$ $0.2-3,600$ $0.2-3,600$ $0.2-3,600$ $0.2-3,600$ $0.2-3,600$ $C--0, C-1, C--2$ $C-1, C-2, C--3, C-4$ $50-105$,$- 20-180(20-150)$ $0,20-180(20-150)$ $1-400$ $0.5-5.0$ $0.5-5.0$ $0.0-10.0$ $0.0,0.5-400$ $0.0,0.5-400$ $0.0,0.5-400$ $(\pm) 0.0-5.0$ $2,4,6,8,10,12$ $0.1-10.0$	Hz $\%$ S Hz Hz Hz_{a}. Hz Hz Hz Hz s s s s. s s \% Hz . Hz Hz s Hz Hz Hz Hz pole	0.1 Hz 0.1% 0.1 s 0.1 Hz \cdots 0.1 Hz \cdots 0.1 Hz \cdots 0.1 Hz 0.1 Hz \cdots 0.1 Hz \because 0.1 Hz \because 0.1 s 3 - 1% 1% 1% 1 Hz 0.1 Hz 0.1 Hz 0.1 s 0.1 Hz 0.1 Hz 0.1 Hz 0.1 Hz 2 0.1	 0.0 Hz 10.0% 0.5 s 0.0 Hz 0.0 Hz 0.0 Hz 0.0 Hz 0.0 Hz \ddots 0.0 Hz 0.0 Hz \cdots 100 s $\mathrm{C}-\mathrm{-0}$ $\mathrm{C}-1$ 105% $150(120) \%$ 100% 30 Hz 2.5 Hz 0.5 Hz 0.0 s 0.0 Hz 0.0 Hz 0.0 Hz 2.0 Hz 4 1.0

REMARKS
${ }^{*}$ 1: When the displayed value exceeds 9999 rpm , the minimum unit becomes $10 \mathrm{rpm} .(12000 \rightarrow 1200)$
${ }^{\circ}$ 2: The values in brakets indicate 200 V series.
NOTE: There is some possiblity that this Function set data is not 380 V according to the country where this inverter is delivered. Please check this Function whether the motor specification is matched.
$\cdot 3$. When the setting values exceed 100 sec , the minimum setting unit becomes 1 sec .
-4: 20-180\% for G7, 20-150\% for P7.
"5: When a function is active or inactive, "ט" or " - " is displayed respectively.
'6: The functions marked can be set during inverter operation.
-7: Option PC board is necessary.

OPERATION DATA (MONITOR)

Output frequency

This function displays an inverter output frequency $[\mathrm{Hz}]$.

Reference frequency (Preset frequency)
This function displays the reference frequncy set by a frequency setting potentiometer, a voltage signal input from V_{1} terminal, a current signal input from C1 terminal, multistep frequency setting 1 to 7 or Up-down control.

Motor synchronous speed.

This function displays the motor synchronous speed [r/min]calculated by the following formula.
Motor synchronous speed $=\frac{120 \times \text { output frequency }}{\text { number of motor poles }}[r / \mathrm{min}]$

- For displaying the motor synchronous speed correctly, set (number of motor poles) correctly.
- Because the inverter display is only 4 -digit, when the speed is higher than $9999 \mathrm{r} / \mathrm{min}$, the display range is autmatically switched to $1 / 10$ mode, and the decimal point disappears.
Example: $1200 \mathrm{r} / \mathrm{min} \rightarrow: 200.12000 \mathrm{r} / \mathrm{min} \rightarrow: 200$

This function displays an effective value of inverter output current. Its accuracy is $\pm 10 \%$. When a correct output current is needed, use an ammeter.

This function displays an effective value of inverter output voltage. The display indicates a reference value.

\section*{| 17 | 5 | Machine speed |
| :--- | :--- | :--- |}

This function displays the rotating speed of driven machine, The indicated value is calculated by the following formula,

Machine speed [r/min] = Motor synchronous speed [r/min] \times machine speed conversion coefficient

- The setting of Function $3 E$ (auxiliary parameter), machine speed conversion coefficient (gear ratio, etc.), is required.
- Because the inverter display is only 4 -digit, when the speed is higher than $9999 \mathrm{r} / \mathrm{min}$, the display range is autmatically switched to $1 / 10$ mode, and the decimal point disappears.
Example: $1200 \mathrm{r} / \mathrm{min} \rightarrow: 200.12000 \mathrm{r} / \mathrm{min} \rightarrow 200$

\section*{| 1.7 | 7 | Output signal status |
| :---: | :---: | :---: |}

For an input/output signal check, use the UP/DOWN key to select function code 06 or 07 and press the SHIFT key.
The two LED lamps go out and data setting mode is set.
The input/output signal can be checked in this mode.
Check the signal by referring to the table and example.
The symbol " \square " represents signal presence, and "-" signal absence.
Sequence checks can be made easily during operation.
FUNCTION DATA

		Digit	Digit Oigit 3 2	Digit	
Function code	Function	Data display			
		4.digit	3-digit	2-digit	i.digit
36	input signal check	R	FWD	REV	BX
		6		THR	RST
		[$\times 1$	$\times 2$	$\times 3$
		0^{\prime}	RT1	AT2	AUT
		E		1 L	PU
07	Output signal check	8	AX	OL	LV
		b	RUN	FAR	FOT

$\square \square$
. Lights up

\downarrow

\downarrow

\square
Torque limiting level for driving
This function displays torque limiting level for driving [\%] which is set on function 33.

日	G	Torque limiting level for braking

This function displays torque limiting level for braking [\%] which is set on function $3^{4} 4$.

This function displays torque calculation value [\%] of operating motor which is calculated from the inverter output voltage, current and the motor primary resistance.

BASIC PARAMETER DATA SETTING

图 V/F Pattern selting

These functions allow V/F pattern adjustment in order to tailor the maximum frequency, base frequency, and rated output voltage according to the rating of the motor and the application. Select a function code using the SHIFT and UPIDOWN keys. Shift the pointer to DATA SETTING MODE.
Data has been set previously at the factory.
Change it with the UPIDOWN keys only when necessary and press the SET keys to store it.

Note: Data value blinks when changed using the UP/DOWN keys. Press the SET key to stop blinking. New value is now set.

FUNCTION		data				$F_{\text {max }}$$50.0-400.0 \mathrm{~Hz}$
i	17		I	Ti.	19	
FUNCTION		DATA				
i	1		\underline{E}	1.	17	$50-400 \mathrm{~Hz}$
FUNCTION		DATA				
1	E	4	17	1.	17	$\begin{aligned} & 320-460 \mathrm{~V} \\ & (160-230 \mathrm{~V}) \end{aligned}$

Bias setting

This function provides speed control using a process control
Function
Code No. signal (0 to $10 \mathrm{VDC}, 4$ to 20 mA) or a frequency setting POT. The adjustable range is from 0 to 100% ($F_{\text {max }}$). When set at 100% an output frequency of 100% results even if the input signal is zero. However, when starting it begins with 0.5 Hz irrespective of the setting.
Fine adjustment is possible if the bias is set at a high value.

Note: The starting frequency is adjustable between OHz and 5 Hz by setting the function code 37 (page 46).

Output frequency \ldots...

High or llow limiter

These functions limit the output frequency to prevent the overspeed and underspeed operation of the motor.

Function Code No. For instance, the low limiter is used for control of the cooling water pump. This function is suitable for control in which the cooling water level is kept at the lowest aliowable level even when the process signal is zero volt.

fu		DATA				
1	4	i	\square	In.	\square	$\mathrm{O}-400 \mathrm{~Hz}$
FUNC	TIon	dat				
'	5			11.	I	$0-400 \mathrm{~Hz}$

Note: When the setting value for HL is smaller than that for LL, the low limit value is ignored. At this time, "Err1" is displayed.

Acceleration and deceleration time

These functions set the acceleration and deceleration times. The acceleration time is the time it takes for the output frequency to incease from zero to Fmax, and the deceleration time is the time it takes for the output frequency to decrease from $F_{\text {max }}$ to zero. The time setting range is from 0.2 to 3600 sec .

ACC1
0.2-3600sec.

DEC1
$0.2-3600 \mathrm{sec}$
Note: When the setting values exceed 100 sec , the minimum setting
HIGH LIMITER < $F_{\text {max }}$

This gain adjustment function is used for compensation when the input signal voltage is below 10 V The adjustable

Function Code No.

18 range of the gain is from 0 to 200%. For example, if the frequency setting gain is set at 200%, the range from 0 to Fuax can be controlled by compensation even when the input signal level is 5 V DC

Torque boost

This function boosts torque during low-speed operation. A torque boost pattern can be selected from 21 types according to the load and/or motor requirements. Patterns (1) and (1) are suitable for variable torque loads such as a fan or a pump. When the pattern is (4) or higher. the voltage is increased and the torque is boosted in the range up to Fesse/3.

Automatic energy-saving operation

This function is for energy-saving operation. Energy is saved by reducing the voltage according to the load current.

Active: :
Inactive: -

Electronic thermal overload relay

The inverter has a built-in electronic thermal overload relay. No external overload relay is necessary when a single motor (4 -pole) is connected to a single inverter and the function is set according to the motor characteristics. Generally, the cooling effect of a motor is not sufficient during low-speed operation. The electronic thermal overload relay provides corrected characteristics.
For several motors connected to a single inverter, external thermal overload relays are needed for each motor feeder for individual protection.
For multiple motor applications, data code should be set to In (zero).

Fig. 1 Minimum operating current characteristics

- Seuting the electronic thermal overload relay

The selting current is obtained by using the following formula.
$\mathrm{I}_{100}(\%) \leq \frac{\text { Motor rated current }}{\text { inverter rated current }} \times 100 \%$
Example: Motor full load current: 56A
Inverter rated current: 91A
(FFINO45G7-4EX)
$h 00(\%)=\frac{56}{91} \times 100(\%)=61(\%)$
Data code should be set 61 .

- Line operation \Leftrightarrow inverter operation

- Group operation

3-element healer

Fig. 2 Inverter current characteristics

Fig. 3 inverter overioad

Note.
These electronic thermal overioad reiays meet the requirements of 4 -pole standard motors.
Therefore, under the following conditions, use a conventional overload relay in place of the electronic type.

1. When used with motors other than 4 -pole type.
2. When used with special motors (non-standard motors).
3. When used ior a group operation (in which two or more motors are run by using a single inverter).
4. When frequent starting can be expected.

(4) AUXILIARY PARAMETER SETTING FUNCTION

DC braking

These functions are used for DC braking to stop the motor. If the braking time exceeds 10 sec ., the motor enters the coast-to-stop state

DC braking start frequency	Focs $: 0.0$ to 60 Hz	
DC braking voltage frequency	$V_{\text {OCB }}$	$: 0$ to 10%
DC braking time	$T_{\text {Pcs }}$	$: 0$ to 10sec

Foce 0.0 to 60 Hz

Multistep frequency setting

Seven different frequencies can be sel by turning on and off the external contact signals (at $\times 1-\mathrm{CM}, \times 2-\mathrm{CM}, \times 3-\mathrm{CM}$ terminal groups). The frequency setting range for each step is from 0.5 to 400 Hz . The ramp time for each step is determined by the acceleration and deceleration time settings.

图 Multi-frequency setting

圆 Acceleration/deceleration time setting

The lime of acceleration from 0 to Fmax and the time of deceleration from Fuax to 0 can be set from 0.2 to 3600 sec . Four different acceleration and deceleration times (including acceleration time 1 and deceleration time 1) can be set by combinations of external control signals (at RT1-CM and RT2-CM terminal groups).

FUNCTION	data	
E 7	1 1.7 1	$0.0,0.5$ to 400.0 Hz
function	data	
I 9		$0.0,0.5$ to 400.0 Hz
FUNCTION	DATA	
$\square \square$	E18.E1	$0.0,0.5 \text { to } 400.0 \mathrm{~Hz}$

Muitistep Irequency control (example)

- Accelereation and deceleration pattern

This function allows selection of non-linear acceleration and deceleration. Pattern A is suitable for machine loads where quick changes in acčelertion and deceleration are undesirable. Patteren B is more suitabe for fan and blower.

- Further information: see next page

Note: 1) Linear pattern will override pattern B if $F_{\text {max }}$ is greater than 60 Hz .
2) This function cannot be used in the event the multistep frequency selection is made

Pattern	Setting
Linear ACCIDEC.	C--0
Non-Linear A	C-1
Non-Linear 8	C--2

Function
Code No.

The gradient of non-linear acceleration and deceleration is obtained with following methods.

Non-linear pattern A

- Tacc: Preset acceleration time
- Toec : Preset deceleration time
- The actual time from the start of acceleration / deceleration to the time when the reference frequency is reached is 1.2 times the preset acceleration/ deceleration time.
- If the change width of the frequency setting is less than 20% of the maximum frequency ($\mathrm{F}_{\text {max }}$), the acceleration/deceleration pattern may be linear

Non-linear pattern B

- Non-linear pattern 8 consists of four line segments each for acceleration and deceleration.
$T_{1}=T_{\text {acc }} \times \frac{29}{109+\alpha}$
$T_{5}=T_{\text {DEC }} \times \frac{\beta}{335+\beta}$
$T_{2}=T_{\text {AcC }} \times \frac{33}{109+\alpha}$
$T_{6}=T_{\text {dec }} \times \frac{33}{335+\beta}$
$T_{3}=T_{\text {ACC }} \times \frac{47}{109+\alpha}$
$T_{7}=T_{\text {DEC }} \times \frac{47}{335+\beta}$
$T_{4}=T_{\text {ACC }} \times \frac{\alpha}{109+\alpha}$
$T_{B}=T_{\text {DEC }} \times \frac{255}{335+\beta}$
Where
$\alpha=255 \times \frac{F_{\text {max }}-42}{18} \quad \beta=29 \times \frac{F_{\text {max }}-42}{18}$

Motor noise reduction

Noise is reduced by changing the modulation degree of the sawtootn carrier frequency modulation control system.

Function
Code No.

$1,2,3,4$

Overload early warning signal

Early warning signals are given if the inverter output current exceeds the overload alarm level for a certain period of time. This is an open-collector output. If the optional relay unit is used, this signal can be used as a contact output. If 0 is set, this function is inactive.

0, 50 to 105%

Torque Limiter(driving and braking)

Torque limiting operation is based on calculations derived from the output voltage and current detection. This function enables automatic acceleration and deceleration, excellent recovery characteristics during impact load at constant speed running, and smooth inverter recovery after an instantaneous power failure.

Automatic acceleration and deceleration control
Even if acceleration and deceleration times shorter than those required by the load inertia, G7/P7 inverters will automatically extend proper acceleration and deceleration times, while maintaining the torque limiting level.

Torque limiting level setting range
Driving: - and 20 to 180% (150% for P7 series)
Braking: 0 and 20 to 180% (150% for $P 7$ series)
Note: If " - " is set during driving mode, this function is not active.

Automatic deceleration control
Even if a braking resistor is not used, the function provides faster deceleration and stopping than the normal set time without overvoltage trip.

Note: The data setting for function code $3^{\prime} t$ is 100%, assuming that a braking resistor is connected. If no braking resistor is connected, setting should be changed to 0 or 20%. If left at 100%, an overvoltage trip will occur during deceleration.

웅 Frequency level detection (FDT)

This signal is active (on) when the output frequency exceeds

Function Code No

Frequency equivalence detection range (FAR)
This signal is active (on) when the output frequency reaches the reference frequency.

Function Code No.

Starting frequency holding time

The starting frequency Fsra suitable for the starting torque characteristics of the load and the start frequency's holding

Function Code No.

T Jump frequency jump1 jump2 jump3
 圈 Jump frequency range

These functions are used to avoid continuous operation at mechanical resonance points.
Three jump frequencies can be set. Jump frequencies are not active during acceleration and deceleration or if the multistep frequency settings are used.
The jump frequency range is adjustable between 0.0 to 5.0 Hz .

Number of motor poles
Machine speed conversion coefficient
These parameter functions are set to monitor the synchronous speed of the motor and the machine speed.

Machine speed $=($ Motor synchronous speed of motor $) \times$
(Machine speed conversion coefficient)

Frequency monitors

The external output frequency meter can be calibrated. Pulse output or analog output can be selected with the internal switch (SW2) of the inverter.

FUNCTION	data				Digital frequency monitor coefficien 6 to 100
417			3	17	
FUNCTION	data				Analog frequency meter calibration 70.0 to 105.0%
\square	i	\square	17.	\square	

Function Code No.

- Puise output

- Analog output

FWD/REV Command hold (3-wire control)

This function enables control by a momentary (50 ms minimum) RUN/STOP command (FWD and REV command) The self-hold circuit can be omitted to simplify the circuit. When the function is selected, multistep frequency settings from 1 to 3 can be used, but those from 4 to 7 cannot.

Active: o
Inactive: -

图 Up-down contro

The frequency setting can be increased and decreased using the $\mathrm{X} 1-\mathrm{CM}$ and $\mathrm{X} 2-\mathrm{CM}$ terminal groups. This function is similar in operation to that of a motor driven potentiometer The setting is retained even if the power supply is turned off. When operation is restarted, the frequency automatically increases to the set value.

FUNCTION

Active: a Inactive: -

Function Code No

Note: 1) When this control function is selected, multistep, frequency setting 4 can de used. but the other 6 settings cannot.
2) Multistep frequency setting, FWD/REV command hold, and up-down control cannot be used simultaneously because the same terminals are used for these functions.
3) If up-down control is selected, operarion by the external voltage or current signal for frequency setting cannot be used.
4) If the Up and Down commands are input together, the Down command has priority.

Function Code							
23 to 25	26	27 to 29	41	42	Teminal $\times 1$	Teminal $\times 2$	Teminal $\times 3$
0	0	0	-	-	Multistep frequency setting		
-	0	-	-	0	UP-DOWN control	Multistep frequency setting 4	
0	-	-	0	-	Multistep frequency setting 0 to 3	FWD/REV command hold	
-	-	-	0	0	UP-DOWN control	FWD/REV command hold	

[^0]
Restart after instantaneous power failure

This function specifies whether the inverter is to be restarted automatically when power is restored after an instantaneous power failure. If automatic restart is selected, the inverter is restarted afteripower recovery under the following
conditions:

1) The power failure duration is within the allowable time.
(3-wire control)
2) The RUN command is input
FUNCTION DATA

| | \exists |
| :---: | :---: | | | | | \square |
| :--- | :--- | :--- | :--- |

Undervoltage alarm

If the $D C$ intermediate circuit voltage drops to the undervoltage level, the inverter output is lurned off. This function specifies whether an alarm signal is to be transmitted when this voltage drop occurs
Selecting this function locks the inverter in a fault monitoring mode when an undervoltage occurs. The restart function(43) has priority over this function.

FUNCTION		DATA		Active: -	Setting	Inventer	Self-hold	Alarm display	Alarm signal
1	4		\square	Inactive: -	\square	Stopped	on	on	on
					-	Stopped	off	on	- off

Output signal code selection (Open-collector)

The RUN, FAR, FDT, OL, and LV terminals are used to output faults and operation monitoring signals. The output mode can be selected with this function. Three modes, 0,1 , and 2. can be selected. If mode 1 or 2 is selected, signals are output in a bit pattern.

Table(a) Output signal selection

Terminals	Setting		
	8	;	2
RUN	Inverter running	Individual fault output	Combinations of operation monitor and individual fault signals
FAR	Frequency equivalence detection		
FOT	Frequency level detection		
OL	Overload early warning	Overload early warning	
LV	Undervoltage alarm	Undervoltage alarm	

Individual fault output when " \mid " is set at Table (a).

Individual fault Terminal symbol	$0 C$ Overcurrent	Ou Overvoltage	- iú Undervoltage		$\begin{gathered} 0.2 \\ \text { Motor } \end{gathered}$ overload	201 Inverter overheat	042 External alarm	No fault
RUN	\bigcirc	\bigcirc	0	-	-	-	\bullet	\bigcirc
FAR	\bigcirc	\bullet	-	\bigcirc	\bigcirc	-	-	\bigcirc
FDT	-	\bigcirc	-	\bigcirc	-	\bigcirc	\bullet	\bigcirc

Note: : ON; O: OFF

Operation monitor output when"?" is set at Table (a) (while inverter is running)

Operation monitor				Terminal symbol				
Operating	Frequency equivalence detection (FAR)	Frequency level detection (FDT)	Overload early warning	LV	OL	FDT	FAR	RUN
\square	\square	\square	\square	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
-	\square	\square	\square	\bigcirc	-	\bigcirc	-	\bigcirc
-	\square	■	\square	\bullet	\bullet	\bigcirc	\bullet	\bigcirc
-	\square	\square	\square	\bigcirc	\bigcirc	-	-	\bigcirc
■	\square	-	\square	\bullet	\bigcirc	\cdots	- -	\bigcirc
\square	\square	\square	\square	0	\bullet	-	\bullet	\bigcirc
-	\square	\square	\square	\bullet	\bullet	-	\bullet	\bigcirc
T	\square	\square	-	\bigcirc	\bigcirc	0	0	-
■	틀	\square	\square	\bullet	\bigcirc	\bigcirc	\bigcirc	\bullet

Note: monitor signal available; \square : no monitor signal; ON: O: OFF

Individual fault output when " 2 " is set at Table (a). (when inverter is tripped)

Individual fault	Terminal symbol				
	LV	OL	FDT	FAR	RUN
No falt	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
IT: Acceieration overcurrent	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Ore Deceleration overcurrent	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc
Uf3 Constant-speed overcurrent	\bullet	\bullet	\bigcirc	0	\bigcirc
OU' Overvoltage	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc
iii Undervoltage	-	\bigcirc	-	\bigcirc	0
Oi: inverter overioad	0	\bullet	-	\bigcirc	\bigcirc
Di, M Motor overioad	\bullet	\bullet	-	0	\bigcirc
Cit: Inverter overheat	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
Site External alarm	-	\bigcirc	0	\bullet	0

Note: 포 ON; 표 OFF

Slip compensation control

This function compensates for variations in speed caused by

FUNCTION	ta	
$\because 5$	17. 17	$0.0 \text { to } 2.5 \mathrm{~Hz}$

Reversing operation with signal polarity

This function enables the direction of motor rotation to be changed according to the polarity $(+,-)$ of the frequency setting voltage.
To operate the inverter with an external frequency setting potentiometer, turn on the switch between terminals FWO and CM . Apply a positive voltage (+10 V DC) to terminal V 1 to turn the motor in the forward direction, or apply negative voltage to the terminal to turn it in the reverse direction. It the switch between terminals REV and CM is on, a positive voltage applied to terminal V1 turns the motor in the reverse direction and a negative voltage to the terminal turns it in the forward direction.
This means that the motor rotation direction can be changed only by changing the polarity of the setting voltage.

Note: When the multistep frequency setting function is used, Function code 47 is invalid.

AUXILIARY PARAMETER SETTING (Appendix)

Analog ammeter calibration (option)

Nhen an analog $/ / O$ card (OPC II-AiO) is used, an analog ammeter can be connected and output current measured.
 Function code 51 is used for ammeter calibration (10VDC) Adjustment can be made from 50.0% to 200.0%.
$\mathrm{OPC} \Pi-\mathrm{AlO}$ is mounted inside the inverter.
:

Analog ammeter
calibration 50-200\%

Correction of motor primary resistance

Function code 52 data need not to be changed when FUJI's standard motors are used

The use of low-frequency operation of motors made by other manufactures requires that the function code 52 data be modified. The acceptable error range for torque calculation will be shortened and trip-free control enabled. Calculate the setting value as it follows:

$$
\begin{aligned}
\text { Setting value }= & \frac{\text { Primary coil resistance of motor used }}{\text { Primary coil resistance of FUJI's }} \times 100(\%) \\
& \text { standard 3-phase motor. } \\
& \text { (See the table) }
\end{aligned}
$$

Adjustment range: 50 to 200\%

The table on the right shows primary resistances for FUJl's standard motors. FRENIC5000G7/P7 is designed based on these data.

Primary resistance for FUJl's standard motor

Motor capacity (kW)	200 V series		400 V series	
	Type *	R1(Ω)	Type *	R1(Ω)
30	30P7/30G7	0.0285	30P7/30G7	0.1141
37	37P7/37G7	0.0245	37P7/37G7	0.0979
45	45P7/45G7	0.0187	45P7/45G7	0.0748
55	55P7/55G7	0.0145	55P7/55G7	0.0579
75	75P7/75G7	0.0098	75P7/75G7	0.0391
90	90P7/90G7	0.0078	90P7/90G7	0.0311
110	110 P 7	0.0060	110P7/110G7	0.0241
132			132P7/132G7	0.0191
160			160P7/160G7	0.0150
200			200P7/200G7	0.0113
220			220P7/220G7	0.0100
280			28097	0.0074

- Abbreviation

Manufacturer use function

Function code: 99
Function code 99 is used for manufactures of machines in
 which FUJl's inverters are used. This code is not used for ordinary users.

FAILURE MESSAGE

Fault display

The fault display function performs three functions.

1) Displays present faults
2) Displays the operation status when the fault occurs.
3) Displays a record of immediately previous 3 faults.

If a fault occurs, the fault monitoring mode is set automatically.

F-0 Faults display *
F: Output frequency *
$F \cdot F$ Reference frequency

- 53 Output current ${ }^{*}$

FH Operatiorı mode.

F5 Fault memory 1
Fs Fault memory 2
F 7 Fault memory 3

- mark: when the first fault occured

(Notes: 1) Function code FO is not displayed at cpu error or memory error.

2) Data of $F 1$ to $F 3$ shown here is examples.

－Protection functions

Display	Function	Description
－	Stall prevention	The accieleration time is automatically extended to avoid an overcurrent trip due to quick acceleration． The deceleration time is also automatically extended to avoid an overcurrent or an overvoltage trip due to quick deceleration．
E	Current limiting	Inverter output current is automatically limited if it reaches the limit level．
，－	instantaneous power failure	When the power failure occurs，the motor is driven fifteen milliseconds at full load． （Running time will be longer on light load）．
1岕	Undervoltage protection	－When the DC intermediate circuit voltage drops to the undervoltage level，the inverter immediately shuts down and holds the trip status． －If power failure continues and the control voltage in the inverter is lost，and the inverter will de reset automatically．
踪： 0 碞 3	Overcurrent protection （Short－circuit and Ground fault）	If the inverter output current reaches the overcurrent protection level，the inverter immediately shuts down．and holds the trip status． The overcurrent trip indication is divided into 3 types． OC1：Overcurrent detection during acceleration OC2 ：Overcurrent detection during deceleration OC3：Overcurrent detection during running at constant－speed The inverter can de prolected from ground fault by adding an optional ground fault detection unit． Since the ground fault detection unit protects the inverter．an earth leakage circuit breaker （ELCB）must be used to prevent injury or accident．
3	Overvoltage protection	If the DC intermediate circuit voltage reaches the overvoltage protection level，the inverter immediately shuts down．
－	Input surge protection	The inverter can be protected from SkV standard impact wave voltage which will invade from the main circuit power．
Sti	Inverter overload protection	If the load exceeds the overload capacity（inverse－time characterisic）of the inverter，the inverter immediately shuts down．
BH	Inverter overheating protection	If the heat sink of the inverter overheats or the temperature inside the inverter exceeds the limit，the inverter immediately shuts down．
U2	Motor overload protection （Electronic thermal overload relay）	When only one motor is driven，the motor can be protected from an overload without an external thermal overload relay． Since the electronic thermal overload relay is designed with consideration also given to the low cooling effect in the low－speed range，this protection works over a wide range． When driving several motors，attach a thermal overload relay to each motor for protection．
BH^{2}	External fault protection	If the thermostat of the braking unit or braking resistor（options）or the external thermal overload relay for motor protection is active，the inverter immediately shuts down． If FWD－CM or REV－CM is on state when applying the power，the inverter will not run and indicate＂OH2＂．
Er－i	CPU error protection	If a CPU error occurs inside the inverter，the inverter shuts down．
Erro	Memory error protection	If a memory error occurs inside the inverter，the inverter shuts down．

11-4 Terminals

(1) Composition of main circuit and terminals

(2) Terminal Function
(1) Main circut

Symbol	Terminal	Description
L1, L2 L3	Main circuit (Input)	Connect a three-phase power supply.
U.V,W	Inverter output	Connect a three-phase motor
$(+),(-)$	Braking unit connection	Connect the braking unit (option). The braking resistor must be connected via the breaking unit.
$(+)$, P1	DC reactor connection	Connect a DC reactor for power-factor correcting (option). (See page 30)
GND (PE)	Ground terminal	Ground terminal for the inventer chassis (housing) (Be sure to ground the chassis to prevent electrical shock and to reduce radio interference noise.)

2) Control circuit

Type	Symbol	Terminal	Description	
Control power supply	RO, TO	Auxiliary control power supply	Connect a single-phase AC power supply to back up the control circuit power supply	
$\begin{aligned} & \text { Frequency } \\ & \text { isetting } \end{aligned}$	11	Frequency control common	Frequency setting signal terminal (common reterence voltage for terminals $12,13, \mathrm{~V} 1$, and C 1)	
and ${ }^{\text {monitoring }}$	13	Frequency control power supply	Use this terminal for the frequency setting POT: $+10 \mathrm{~V} D, 1 \mathrm{k} \Omega-10 \mathrm{~V} \mathrm{DC}$ can also be output by changing the internal pin connection. (The output is set to +10 VDC at the factory.)	
	12	Frequency control input terminal	OV to $\pm 10 \mathrm{VDC}$, input resistance: $22 \mathrm{k} \Omega$ Maximum output frequency at $\pm 10 \mathrm{~V} D C$	The frequency based on the sum of setting signals 12 and $V 1$ is output. When the input voltage is $0 V$ to $\pm 5 \mathrm{VDC}$. select and set Function code 18.
	V1	Voltage process signal	OV $10 \equiv 10 \mathrm{VDC}$, input resistance: $22 \mathrm{k} \Omega$ Minimum output frequency at $\pm 10 \mathrm{~V}$ DC	
$/$	C1	Current process signal	4 mA to $20 \mathrm{~mA} D C$, input resistance: 250Ω Minimum output frequency at 4 mA and maximum output frequency at 20 mA C1: +, 11: -	
	FM1, FM2	Frequency meter connection	$0 \vee$ to 10 V DC (maximum frequency at 10 V) Two voltmeters each having an internal resistance of $10 \mathrm{k} \Omega$, can be connected. Pulse signals can be output by changing the internal setting pins (SW2). FM1: + FM2: -	
Contact	CM	Contact input common	Common terminal for contact input signals	
input	AUT	Current input selection	Specify an input signal when both voltage and current signals are available for frequency setting. AUT-CM ON: current input, OFF: voltage and frequency setting POT inputs	
	FWD	Forward operation or stop command	FWD-CM ON: forward, OFF: stop	The motor stops when both FWD and REV are on or off together.
	REV	Reverse operation or stop command	REV-CM ON: reverse, OFF: stop	
	$\begin{aligned} & \text { X1, X2, } \\ & \times 3 \end{aligned}$	Multistep frequency selection	Up to 8 frequencies can be set by turning on and off the external contact signals.	
	X1. x 2	Up-down control	Function of terminals $X 1$ and $X 2$ changes by making Function code 42 active. X1-CM ON: UP (frequency increase), X2-CM ON: DOWN (frequency decrease)	
	X3	FWD/REV command hold	Function of terminal $\times 3$ changes by making Function code 41 active. X3-CM ON: Self-holds FWD or REV momentary signals input (pulse width: 50 ms or more)	
	RT1, RT2	Acc./dec. time selection 2.3, or 4	The 4 acceleration or deceleration times can be selected by turning on and off the external contact signals.	
	$B X$	Coast-to-stop command	BX-CM ON: Instantaneous stop of inverter output with no alarm signals. Since the self-hold function does not work, turning off $B X$ will restore the inverter if FWD or REV are still on.	
	PU	Switching operation from line to inverter	The inverter is ready when the terminals PU and CM are shorted. Turning off the switch after the specified time changes over from line to inverter operation.	
	IL	Interlock for load side switch	If a switch is installed between the inverter and the motor, the auxiliary contact (NC contact) is connected.	
	THR	External fault input	If the connection between terminals THR and CM is opened, the inverter output is turned off and a motor coast-to-stop results. (OH 2 trip) This input signal is seff-held internally.	
	RST	Alarm reset	If the terminals RST and CM are shorted while the inverter is tripped, the protection function is cancelled.	

Control circuit (Cont'd)

Type	Symbol	Terminal	Description	
Opencollector output	CME	Open-collector output common	This is the common terminal for open-collector outputs.	Open-collector output 50mA max. 27V max. These terminals can also output individuai faults. For details. refer to page 49 and 50.
	RUN	inverter running	An on signal is output between RUN and CME at and above the starting frequency. This signal is turned off when the inverter is not operating, the motor coasts-to-stop or during DC braking.	
	FAR	Frequency equivalence detection	When the output frequency is in the range of the reference frequency $\pm \triangle \mathrm{fHz}$, an on signal is output between FAR and CME. ($\Delta \mathrm{f}: 0.5$ to 5 Hz variable)	
	FDT	Frequency level detection	An on signal is output between FDT and CME when the output frequency is higher than the preset detection level. The signal is turned off when the output frequency is below the detection level.	
	OL .	Overload early warning	An on signal is output between OL and CME when the output current is larger than the presel overload alarm level. The signal is turned off when it is smaller. (Adjustment range: 50\% to 105\%)	
	LV	Undervoltage	An on signal is output between LV and CME when the inverter output is turned off due to undervoltage. This signal is not output for about 1.5 sec . after power-up in order for power supplies to stabilize.	
Contact output	AX1, AX2	Run command or inverter running	This signal is used to open or close the contactor on the power supply side. Aux. power supply (RO-TO) required.	Contact capacity: 250V AC, 0.3A
	$\begin{aligned} & 30 \mathrm{~A}, 30 \mathrm{~B} \\ & 30 \mathrm{C} \end{aligned}$	Alarm output (Any fault)	An signal is output when the protection functions of the inverter are active and when the inverter tripps. (Contact: 1SPDT, 30A-30C: on the inverter trips)	$(\cos \phi=0.3)$
Protection	GF1,GF2	Ground fault detection input	This is the input terminal for the ground fault detection unit (op inverter.	ion) to protect the

(3) Terminai arrangement and size of terminal screw
(1) Terminal arrangement figures

(2) Arrangement figure of control circuit terminals

(3) Table of terminal arrangements and terminal screw sizes

Voltage	Applicable motor output [kW]	Inverter type	Figure	Screw size							
				Main circuit terminals					Controi circuit terminals		
				L1. L2. L3	U, V, W	(+). P1. (-)	GND (PE)	U1, U2	TBA	TB5	TB6
200 V Series	30	FRN030G7/P7-2EX	A	M8	M8	M8	$\frac{\text { M6 }}{\text { M8 }}$		M4	M3	M3
	37	FRN037G7/P7-2EX					M8				
	45	FRNO45G7/P7-2EX	A	M10	M10	M10					
	55	FRN055G7/P7-2EX									
	75	FRN075G7/P7.2EX	C			¢ 11					
	90	FRN090G7/P7-2EX	D	\$ 13	\$ 13	\$13	M10				
	110	FRN110P7-2EX									
400 V Series	30	FRN030G7/P7-4EX	A	M6	M6	M6	M6	M3			
	37	FRN037P7-4EX	A	M8	M8	M8					
		FRN037G7-4EX	A				- M8				
	45	FRN045G7/P7-4EX									
	55	FRN055G7/P7-4EX									
	75	FRN075P7-4EX	A								
		FRN075G7-4EX	B	M10	M10	M10					
	90	FRN090G7/P7-4EX									
	110	FRN110G7/P7-4EX									
	132	FRN132G7/P7-4EX	C			\$11					
	160	FRN160G7/P7-4EX	D	\$13	\$13	\$13	M10	M3. 5			
	200	FRN200P7-4EX									
		FRN200G7-4EX	-								
	220	FRN220G7/P7-4EX									
	280	FRN280P7.4EX									

12. Options

(1) Reactors

1. Line side AC reactors

Fig. A

Fig. 8

Voltage	Applicable motor output [kW]	Reactor type	Figure	Dimensions [mm]								Power loss [W]	Weight (kg)
				A	8	C	Γ	E	G	H	Terminal hole diameter		
$200 \mathrm{~V}$ Series	30	ACR2-37	A	190	60	90	120	170	7×11	190	8.4	60	11
	37												
	45	ACR2-55	B	190	60	90	120	200	7×10	190	13	82	12
	55												
	75	ACR2-75	8	250	100	90	120	200	9×14	250	13	114	25
	90	ACR2-90	8	285	190	120	158	190	12×20	210	13	- 120	26
	110	ACR2-110	8	280	150	110	138	200	10×20	270	13	135	30
400 V	30	ACR4-37	A	190	60	90	120	170	7×10	190	8.4	82	11
Series	37												
	45	ACR4-55	B	190	60	90	120	200	7×10	190	10.5	88	12
	55												
	75	ACR4-75	B	190	60	90	126	197	7×10	190	11	89	12
	90	ACR4-110	B	250	100	105	. 136	202	9.5×18	245	13	98	24
	110												
	132	ACR4-132	B	250	100	115	146	210	9.5×18	250	13	162	32
	160	ACR4-220	B	320	120	110	150	240	12×20	300	13	223	40
	200												
	220												
	280	ACR4-280	8	380	130	110	150	260	12×20	300	13	295	52

(2) Power factor correcting DC reactors

The power factor can be improved to approx. 0.9 by using this reactor.

Note: The following inverters are provided as standaro with separately supplied a power factor correcting $D C$ reactor
(1) Inverter of 75 kW and above (G 7 series 200400 V class)
(2) Inverter of 75 kW and above (P 7 series 200 V class)
(3) Inverter of 90 kW and above (PT series 400 V class) When installing inverters. oe sure 10 connect this reactor.

Fig. A

Fig. B

Fig. C

Fig. O

Voltage	Applicable motor output [kW]	Reactor type	Figure	Dimensions [mm]									Power loss [W]	Weight [kg]
				D	8	C	D	E	F	G	H	Terminal hole diameter		
$200 \mathrm{~V}$ Series	30	DCR2-30	A	146	75	100	126	130	70	9×15	210	10.5	61	16
	37	DCR2-37	B	156	80	100	126	110	70	9×15	260	10	72	19
	45	DCR2-45	B	156	80	110	136	130	75	9×15	260	10	82	23
	55	DCR2-55	B	170	85	110	136	130	75	9×15	300	10	98	28
	75	DCR2-75	C	200	80	95	126	180	75	10×16	240	12	100	19
	90	DCR2-90	D	180	100	100	131	150	75	10×15	275	15	140	22
	110	DCR2:110	D	200	100	120	141	150	80	10×15	290	15	210	25
$400 \mathrm{~V}$ Series	30	DCR4-30	A	150	75	85	111	155	70	9×15	210	8.4	63	14
	37	DCR4-37	A	146	75	100	126	155	70	9×15	210	8.4	56	17
	45	DCR4-45	A	146	75	115	141	180	75	9×15	210	10.5	58	21
	55	DCR4-55	A	146	75	130	156	190	85	9×15	210	10.5	66	25
	75	\| DCR4-75	D	200	70	120	151	160	30	10×16	250	10.5	95	25
	90	DCR4-90	D	220	70	140	171	165	85	10×16	280	13	94	32
	110	DCR4-110	D	220	70	150	181	170	95	10:16	290	13	115	36
	132	DCR4-132	D	190	80	146	177	180	90	11	360	13	100	40
	160	DCR4-160	D	220	90	140	171	200	90	12×20	350	12	115	45
	200	DCR4-200	D	230	100	140	181	180	110	12×20	310	15	140	50
	220	DCR4-220	D	230	100	150	201	180	110	12×20	320	15	160	50
	280	DCR4-280	D	230	100	160	211	180	110	12×20	340	15	170	58

(3) Radio frequency interference (RFI) suppressing reactor Type: ACL-10A
These reactors are used to suppress radio interference.
Note that the method of connection differs depending on inverter capacity as shown in the figures on the right.

Dimensions
(4) Noise suppressing AC reactor

Fig. 8

Voltage	Applicable motor output $\{\mathrm{kW}\}$	Reactor type	Figure	Dimensions [mm)								Power loss [W]	Weight [kg]
				A	B	C	D	E	G	H	Terminal hole diameter		
$200 \mathrm{~V}$ Series	30	NR2-55	A	320	120	110	150	230	12×20	300	10.5	182	55
	37												
	45												
	55												
	75	NR2-75	A	300	150	115	156	200	12×20	310	13	215	53
	90	NR2-90	A	360	180	140	188	220	12×20	350	10.5	270	85
	110	NR2-110	A	390	200	150	198	200	12×24	360	13	350	95
400 V	30	NR4-30	A	240	160	120	156	150	12×20	280	8.4	129	32
Series	37	NR4-37	A	250	160	120	156	150	12×20	290	8.4	142	38
	45	NR4-45	A	270	180	120	156	160	12×20	300	8.4	163	42
	55	NR4-55	A	300	180	130	156	182	12×20	300	8.4	178	53
	75	NR4.75	A	350	180	130	178	190	12×20	340	10.5	220	68
	90	NR4-90	A	360	180	140	188	200	12×20	350	10.5	240	80
	110	NR4-110	A	380	200	150	198	200	12×20	360	13	270	95
	132	NR4-132	B	380	200	180	233	180	15×24	430	15	370	120
	160	NR4-160	B	400	200	200	256	170	15×24	460	15	360	150
	200	NR4-200	B	400	200	210	273	190	15×24	500	15	470	180
	220	NR4-220	B	350	200	225	288	200	15×24	550	15	500	200
	280	NR4-280	B	450	300	200	268	275	15×20	470	13	700	165

Caution: When you connect the noise suppressing reactor, a derating (approx. 15 to 20%) of motor output will result due to voltage drop, since the impedance of these reactors is large.

Please refer to page 12 for connection

Hem			Specification											
200 V Serres	Applicable motor output (kW)		$30 \times$		37	45		55		75		90	110	
	Inverter type		FRNO3O G71P7.2EX		$\begin{aligned} & \text { FRNO37 } \\ & \text { G7/P7-2EX } \end{aligned}$		FRNOA5 G7 P7-2EX	FRN055 G71P7-2EX		FRNOT5 G7 P7-2EX		$\begin{aligned} & \text { FRNO90 } \\ & \text { G7.P7.2EX } \end{aligned}$	$\begin{aligned} & \text { FRN } 110 \\ & \text { P7-2EX } \end{aligned}$	
	Braking	Type	BU030-2AEX		BU0S5-2AEX					BU075-2AEX B		Bu055-2AEX		
	unit	Required quantity	$1{ }^{1}$		1					1 2		2		
	Braking	Type	DBH030-2A		DBH037-2A	DBH045-2A		DBH055-2A		DEH037-2A		DBH045-2A	DEH0S5-2A	
	resistor	Required quantity	$1{ }^{1}$		1	1		1		2		2	2	
		Capacity (kW] *	 3.6 4		4.8	6.0		7.2		9.6		12.0	14.4	
		Resistance $[\mathrm{Q}]^{-1}$	4003		3.0	2.5		20		1.5		125	1.0	
400 V Series	Applicabie motor output [kW]		30	37	45	55	75	90	110	132	160	200	220	280
	Inverter type		$\begin{aligned} & \text { FRN030 } \\ & \text { G7.P7-4EX } \end{aligned}$	FRN037. G7.P7-4EX	$\begin{aligned} & \text { 7. FRNO45 } \\ & \text { Ex G7.P7-4EX } \end{aligned}$	FRNOS5 G7 P7.4EX	FRNO7S G7.P7.4EX	FRNOgO G7 P7-4EX	FRN110 G7 P7-4EX	FRN132 G7 P7-4EX	FRN160 G7P7.4EX	$\begin{aligned} & \text { FRN200 } \\ & \text { G7.P7.4Ex } \end{aligned}$	$\begin{aligned} & \text { FRN220 } \\ & \text { G7P7-4EX } \end{aligned}$	$\begin{aligned} & \text { FRN280 } \\ & \text { P7JEX } \end{aligned}$
	Braking unit	Type	BU037-4AEX		BU055-4AEX		BU110-4AEX			$\begin{aligned} & \text { BUI } 32 \\ & -4 \mathrm{AEX} \end{aligned}$	BU110-4AEX			BU132 -4AEX
		Required quantity	1		1		1			1	2			2
	Braking resistor	Type	$\begin{aligned} & \mathrm{DBH} H 030 \\ & -4 A \end{aligned}$	$\begin{aligned} & \mathrm{DBH} 037 \\ & -4 \mathrm{~A} \end{aligned}$	$\begin{array}{l\|l} \hline 7 & \mathrm{DBH} 045 \\ 4 \mathrm{~A} \end{array}$	$\begin{aligned} & \text { DBHO55 } \\ & -4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { DBHO37 } \\ & -4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { OBHO45 } \\ & .4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { DBH055 } \\ & .4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { OBHO45 } \\ & -4 A \end{aligned}$	$\begin{aligned} & \text { DBH037 } \\ & -4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{DBH} \mathrm{HO45} \\ & -4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { OBHOSS } \\ & -4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{DBH} 045 \\ & -4 \mathrm{~A} \end{aligned}$
		Required quantity	1	1	1	1	2	2	2	3	4	4	4	6
	-	Capacity [kW] '1	3.6	4.8	6.0	72	9.6	12.0	14.4	18.0	192	24.0	28.8	36.0
		Resistance $\{0\}^{\circ}{ }^{\prime}$	15	12	10	7.5	6.0	5.0	3.75	3.33	3.0	2.5	1.88	1.67

Common specification

Braking torque [\%]	100
Braking duty [\%ED]	5 (ailowable duration: 5 sec.) "2
Protective function	If the braking unit or resistor overheats, braking unit transistors are shut down and the inverter protective function is active.
Ambient temperature	-10 to $+50^{\circ} \mathrm{C}$
Painted color	Braking mat: Munsell $5 \mathrm{Y} 3 / 0.5$ half-polish Braking resistor: Munsell $\mathrm{N} 1,2$ half-polish

*1 Total value, not for one resistor. $\quad 2$ Continuous durable time of braking unit: 60 sec .
(1) Braking unit

Fig. B

Voitage	Type	Figure	Dimensions [mm]						Terminal arrangement screw size			Weight [kg]
			W	W1	H	H1	H2	0	Figure	(+), (-), D8, GNO (PE)	1, 2, (11, 12, 01, 02)	
200 V Senes	BU030-2AEX	A	150	100	240	225	200	150	C	M5	M4	5
	BU055-2AEX	B	230	130	240	225	200	170	D	M6		7
	BU075-2AEX		250	150	370	355	330	170	C	M8		11
400 V Senes	BU037-4AEX	8	180	100	280	265	240	160	C	M5	M4	6
	BU055-4AEX		230	130	280	265	240	160				6
	BUI 10-4AEX		250	150	400	385	360	170	0	M6		12
	BU132-4AEX								E	M8		

2. Braking resistor

200 V Series

Type	Dimensions (mm]						Terminal arrangement and 5crew size			Weight kgl
			w2	H	H1	0	Figure	P. 08	1.2.E	
DB.4030-2.		380	400	660	628	140	8	M5		11
DBH037-2A						240				15
DBH045-2A								M6		20
DBH055-2A			405	750	718					25

400 V Series

Type	Dimensions [mm]						Terminal arrançement and screw size			Weight (kg)
	w	W1	W2	H	H1	D	Figure	P. DB	1.2.E	
08H030-4A	420	388	$420 ; 660$		$\begin{array}{l:l} 140 \\ \hline 628 \\ \hline 718 & 240 \\ \end{array}$		A	M4	M4	i
O8H037-4A					15					
DBH045-4.A							20			
DBH055-4.			425	750						25

Fig. A

Fig. B

(3) Parts of control circuit
(1) Potentiometer for Irequency control

Type: WAR $3 W$ - $1 \mathrm{k} \Omega(3 W)$ B-characteristics

Knob Type: 40 N
 from POT itseif.
(2) Surge absorber (Noise suppressor)

S1-8-0. S2-A-0

Type	Use with	Capacitance (F)	Resistance (Ω)	Dimensions. mm			
				w	H	「	A
S.1-B.0	Conirol relay or imer	0.1	200 (1/2W)	17.5	40	9.1	20.0
S-2-A.0	inagreitc contactor	0.2	(500 (1.2W)	27.5	40	10.4	30.0

[^1]
13. Distribution \& Control equipment

Vollage	Applicable motor output [kW]	Inverter type	MCCB (): Interrupling capacity	ELCB ():Interrupting capacity	Magnetic contactor	Main circuit wire U, V, W L1, L2 L3 $\left(\mathrm{mm}^{2}\right)$	DC intermediate circuit wire (mm^{2}		
							P1, (+)	(+) (-	
200 V Series	30	FRN030G7/P7-2EX	SA203B/150 (50KA)	EGa203B/150 (18KA)	SC-6N	60	38×2	8	
	37	FRN037G7/P7-2EX	SA203B/200 (50KA)	EGa203B/200 (18KA)	SC-7N	38×2	38×2	14	
	45	FRN045G7/P7-2EX	SA203B/225 (50KA)	EGa203B/225 (18KA)	SC-8N	60×2	60×2	22	
	55	FRN055G7/P7-2EX	SA403K/300 (42KA)	EGa403A/300 (35KA)	SC-10N	60×2	100×2	22	
	75	FRN075G7/P7-2EX	SA403K/350 (42KA)	EGa403A/350 (35KA)	SC-12N	100×2	150×2	38	
	90	\|FRN090G7/P7-2EX		SA403K/400 (42KA)	EGa403A/400 (35KA)		150×2	150×2	22×2
	110	FRN110P7-2EX	\| SA603H/500 (85KA)	EGa603A500 (42KA)	SC-14N	200×2	200×2	22×2	
400 V Series	30	FRN030G7/P7-4EX	SA103B/75 (25KA)	EG103B/75 (5KA)	SC-3N	22	22	3.5	
	37	FRN037G7/P7-4EX	SA 103B/100 (25K)	EG103B/100 (5KA)	SC-4N	38	38	5.5	
	45	FRN045G7/P7-4EX	SA203B/125 (25KA)	EGa203B/125 (10KA)	SC-5N	38	60	8	
	55	FRN055G7/P7-4EX			SC-6N	60	38×2	14	
	75	FRN075G7/P7-4EX	SA203B/200 (25KA)	EGa203B/200 (10KA)	SC-7N	138\%2	38×2	14	
	90	FRN090G7/P7-4EX	SA203B/225 (25KA)	EGa2038/225 (10KA)	SC-8N	60×2	60×2	22	
	110	FRN110G7/P7-4EX	SA403K/250 (30KA)	EGa403A/250 (22KA)	SC-10N	160×2	100×2	22	
	132	FRN132G7/P7-4EX	SA403K/300 (30KA)	EGa403A/300 (22KA)	SC-11N	100×2	150×2	38	
	160	FRN160G7/P7-4EX	SA403K/400 (30KA)	EGa403A/400 (22KA)	SC-12N	100×2	150×2	22×2	
	200	FRN200G7/P7-4EX	SA603H/500 (42KA)	SG603A/500 (42KA)		150×2.	200×2	22×2	
	220	FRN220G7/P7-4EX			SC-14N	200×2	200×2	22×2	
	280	FRN280P7-4EX	SA603H/600 (42KA)	SG603AV00 (42KA)		200×2	200×2	38×2	

Note: 1. The above data is based on Fuji Electric's general-purpose motors. (4-Pole)
2. When using an E series molded case circuit breaker or an SG series earth leakage circuit breaker, match the rated currents
3. Wire sizes are based on 600V PVC

Numerals in () fall under WL1 electric wire, i.e.
Furukawa Denko-made 600 V leading wire or FSLC, i.e. Furukawa Denko-made panel wiring electric wire.
4. Wire sizes for $(+),(-)$ (Braking) circuit are based on that braking duty is 5% ED.

14. Inspection list

Inspection spol	Inspection item	Description	Inspection frequency or circle			Inspection method	Criteria
			Daily	Periodicaily			
				Annually	Every Iwo years		
General	Ambient situation	Confirmation of ambient temperature, humidity, dust, harmful gas, oil mist, elc)			Reter to "ItemNo. 4 Installation".	Table 4-1 of liem No. 4-1 shall be satisfied.
	Equipment in general	Any abnormal vibration and noise	0			Visually and auditorily	Nothing shall be lound abnormal.
	Power voltage	Are main circuit and control vollages normal?	O			Measurement of voltages between phases L1, L2, L3 of main power input terminal	200 V series: $200 \mathrm{~V} / 50 \mathrm{~Hz}, 200 \sim 230 \mathrm{~V} / 60 \mathrm{~Hz}$ 400 V series: $400 \sim 420 \mathrm{~V} / 50 \mathrm{~Hz}$. $380 \sim 400 / 50 \mathrm{~Hz}, \quad 400 \sim 460 / 60 \mathrm{~Hz}$
Main circuit	General	(1) Megger check (between main circuit terminal and grounding terminal) (2) Is tightened part not lose? (3) Is each part not overheated? (4) Cleaning		())	(1) Refer to "Item No. 9-6. Confirmation of Insulation." (2) Make tightening. (3) Visually (4) If dust is found, absorb it by means of an electric cleaner.	(1) Be al $5 \mathrm{M} \Omega$ and over. (2) \& (3) Nothing shall be found abnormal
	Connecting conductor	(1) Is conductor not deformed? (2) Are electric wires and covers not damaged and deteriorated (crack discoloralion, etc.)?		$\begin{aligned} & 0 \\ & 6 \end{aligned}$		(1) \& (2) Visually	(1) \& (2) Nolhing shall be found abmormal.
	Translormer reactor	Are no abnormal smell and noises perceived?	ठ			Visually, auditorily, and by smelling.	Nothing shall be lound abnornal.
	Terminal board	Nol damaged?		O		Visually	Nothing shall be found abnormal. ---
	Plain condenser	(1) Is no liquid leaking? (2) Is sately valve not projecting and not swelling? (3) Measurement of electrostatic capacity	0	0		(1) \& (2) Visually (3) By means of electrostalic capacity measuring instrument	(1) \& (2) Noilhing shall be found abnormal. (3) 85% and over ol rated capacity.
	Relay contactor	(1) Is no chatrering preceived in couse of operation? (2) Is contacl not lound rough?		\%		(1) Aucititorily (2) Visually	(1) \& (2) Nothing shall be found abnormal
	Resistor	(1) 1:; resisikn insulation nol cracked? (2) Conlimation ol presence of disconnection		((1) Visually (2) Measurement with a tester with one-side connection removed	(1) Nollhing shall be found abinormal. (2) Be within an error of not over about i: 10% of the indicated resistance.
Coriliol circuil and Prolection circuit	Action check	(1) Confirmation of balance of output voltages in each phase in inverter unit operation. (2) After sequence protection test, nothing abnornal shall be found in protection and display circuils		()		(1) Measure voltages belween phases U, V, and W of inverter output terminals. (2) Short-circuil simulatedly between input terminal and common one of inverter control contact.	(1) Variation of voltages between terminals shall be less than 2% of the output voltage. (2) Check the action of the external sequence. It shall be found nothing abnormal.
	Parls check General	11) Are no abnormal smell and discoloration found? (2) Is no striking rust found?		O		(1) \& (2) Visually	(1) \& (2) Nothing shall be lound abnormal.
	check Condenser	Are no liquid leakage and deformation left alone?	O			Visually	Nothing shall be found abnormal.
Cooling system	Cooliig fan	(1) Are no abnormal vibration and noise perceived? i2) Is there no looseness in connections?	0	()		(1) Visually and auditorily. Set the power to OFF and lum it by hand. (2) Tighten it	(i) Smooth rotation and no abnormal noise shall be observed. (2) Nothing abnormal shall be lound.
Display	Display	(1) Is the lamp not burnt? (2) Cleaning	()	\bigcirc		(1) Check to see if the panel lamp is on with the panel-fitted tamp test switch operated. (2) Clean it with wasle cloths, etc.	(1) Check for its lighting.
	Meter	Is the indicaled value normal?	0			Record the meter-indicated value of the panel.	Control values and prescribed values shall be salislied.

SECTION E

FAULT TRIP UNIT

FUJI MCA11-GFD-2 SERIES

| SUPPLIED BY: EMSBY EQUIPMENT PTY LTD | | |
| ---: | ---: | ---: | ---: |
| | 33 ACHIEVEMENT CRESENT | |
| ACACIA RIDGE | QLD 4110 | |
| TEL: (07) | 2742566 | |
| FAX: (07) 2742387 | | |

FUJI INVERTERS

MCA series

Auxiliary control equipment

Auxiliary control equipment MCA series

These MCA series equipment are used to carry out an automatic control of systems comprising inverter.
They facilitate system control including conveyer synchronized operations, interlocking control, automatic
operations using a sensor and winding control.
In addition, when the programmable controller is incorporated, the control circuit can be simplified. For further information on MCA series, please contact FUJI.

Sensor automatic controller	Frequency setter	Frequency jump unit	Signal controller
MCA II-U	MCA II-H	MCAII-J	MCA-SA
- Current/voltage conversion during automatic operation by sensor - PI control - Signal conversion for sensor - Output frequèncy limit - Sensor signal monitor - Power supply for sensor	- Potentiometer for frequency setting ($1 \mathrm{k} \Omega$) - Frequency meter flush mounting type is available. Exclusive use: FRENIC5000 series	- Two jump frequencies can be set to prevent resonance. Exclusive use: FRENIC5000 series	- Main speed setting when running several inverters - Ratio setting - DC amplification - Current/voltage conversion - Sensor signal conversion

圂 Dimensions, mm

MCA II-U

2.96

MCA II-H

MCA-SA

SECTION F

LEVEL DISPLAY TRANSMITTER

LIT 500

Description

The Mann Industries LPD350 loop powered display provides a local process indication from any 4.20 mA signal.
The input measurement is shown on a large, $3+1 / 2$ digit, high contrast ICD display and can be easily scaled to read in percentage or directly in engineering units:

Power for the unit is drawn from the input loop current with a 2.5 V voltage drop across the unit (at 20 mA current) which results in a maximum increase in loop load of 125Ω :

Mann Industries also manufacture a range of powered displays with analogue, RTD, thermocouple and frequency inputs (see catalogue section 6, PM350 series data sheets for details).

The LPD350 and the entire Mann Industries product range are designed and manufactured in Australia and carry a full 2 -year warranty.

For more information or application assistance please contact your Mann Industries representative or Mann Industries manufacturing headquarters.

FIG 1: Use of LPD 350 with 4 -wite transmitter and process alarm module (Fowe: ior losp comes from 4 wite transmittrat)

FIG 2; Use of LPD350 with 2-wire transmiker (note that if may be possible to power the loop trom the PLC in which case the power supply will not be required).

Features

- Large $12.7 \mathrm{~mm}\left(0.5^{\prime \prime}\right)$ high contrast LCD display
- Accepts $4-20 \mathrm{~mA}$ and $10-50 \mathrm{~mA}$ inputs
- Loop powered (125Ω loop load)
- Lineatity $+1-0.1 \%$ of span
- Easily scaled to display in any engineering unit
- Reverse action display internally selectable
- Screw connections via rear mounted unpluggable terminal block
- Rugged anodised aluminium case in standard $48 \times 96 \mathrm{~mm}$ DIN format
- Two year warranty
- Australian designed and manufactured

For assistance and advice on recent additions to our range of products please contact our marketing department.

See over for full specifications

ISSUE NO: LPD350 0390-A

SPECIFICATIONS

FIG 3: LPO350 connection diagram.

The thorough, seving and quality eantrol incposed by MANN INDUSTRIES PTY LTD on all ineir products minimise the fit of Instrumetst failure all items se fuly wamanted for cao yeark
 you in proviliog tolutions io yout process mearurtationt and control problems.

FRONT VIEW ($48 \mathrm{~mm} \times 96 \mathrm{~mm}$)

Designed and manufactured by

SIDE VEW $(48 \mathrm{~mm} \times 75 \mathrm{~mm}$ excluding bevel)

MANN INDUSTRIES PTY LTD aH an onjoing trasaten add diveloparnt protzan Delpa

MANN INDUSTRIES PTY LTD
4/26 LEIGHTON PLACE, HORNSBY,
NSW, AUSTRALIA
TEL: 612 477-5822 FAX: 612 477-5819

Distributed by

QECTION Q

LOAD BREAK SWITCHES

SPRECHER \& SCHUH LK SERIES

LK LKP3-2500WT LOAD BREAK SWITCH
LK QSA200N BS FUSE SWITCH UNITS MECHANICAL INTERLOCK

LKA - Fault make, motor load-break switches 125 amp - 1000 amp

For motor switching and general purpose loads
This style of switch is designed primarily for motor circuit applications, as it has a similar contact design to fuse-switches. It therefore has excellent motor/load (AC 23) characteristics due to the 4 series breaks per pole. The thermal ratings differ from those of the fuse-switches, as the LKA does not have to dissipate the watts loss of a fuse cartridge. This same contact arrangement makes it very suitable for special applications like capacitor or D.C. switching.
Fitted with IP65 handle as standard.

LKP - Fault make load-break switches 250 amp - 3150 amp

For general purpose loads
Arranging the contact pairs in parallel gives the LKP range significantly higher current capacity and short time withstand. For example, the largest rated switch is the LKP 3150 which can carry 3150 amps (enclosed) and has a short circuit withstand of 80 kA for 1 second and 50kA for 3 seconds.

Most of the LKP range have ratings for AC 22 (mixed loads) and AC 21 (mostly static loads).

This range is the most popular for general light and power duties and main switch / isolator application.

Fitted with IP65 handle as standard.

LKV - Fault make, motor load-break switches 40 amp - 3600 amp

For motor switching and general purpose loads

This new series of load-break switches has recently joined the NHP-LK series of switches. This 'V' series of switches, by the use of conventional wiping contacts offer a very shallow depth suited to circuit breaker panelboards.
Another strong advantage of these switches is their visible contacts (125 to 1600 amp) which are required by many customers.

Supplied with IP65 handie as an option.

Cat. No. LKS2-200

Cat. No. LKS2-315-PI

Cat. No. LKS2-400

Standard fixed type	LKS2-160	LKS2-200	LKS2-250	LKS2-315	LKS2-400
fuse-switches	$\$ 520.00$	$\$ 620.00$	$\$ 720.00$	$\$ 820.00$	$\$ 890.00$
	LKS2-160-DIN	-	LKS2-250-DIN	-	LKS2-400-DIN
	$\$ 540.00$	-	$\$ 740.00$	-	$\$ 900.00$
Plug in fuse-Switches for MCC	-	LKS2-200-PI	LKS2-250-PI	LKS2-315-PI	LKS2-400-PI
3pplications suitable for IP20 cut-out	-	$\$ 770.00$	$\$ 820.00$	$\$ 1010.00$	$\$ 1130.00$

Rated thermai current (ith)	160 amps	200 amps	400 amps	400 amps	400 amps
Rated enclosed thermal (ithe)	160 amps	200 amps	250 amps	315 amps	400 amps
Rated operationai current and typical motor loads to AS1775 $415 \mathrm{~V}, \mathrm{AC} 23$	160A 90kW	200A 116kW	250A 145kW	315A 185kW	400A 235 kW
Fuse types to A.S., B.S.	B1. B2	B1, B2	B1-B4	B1-B4	B1-B4
AS2005 ${ }^{\text {1) }}$ DIN	00	-	1,2	-	1,2
Rated fused short circuit current - 500V AC kA RMS Maximum fuse size amps	100kA 160A	100kA 200A	100kA 250A	100kA 400A	100kA 400A
$\begin{array}{ll} \overline{D C} \text { operation }- & 2 \text { poles in series } \\ & 220 \mathrm{~V} \text { DC, } D C 23 \end{array}$	160A	200A	250A	315A	400A
3 poles in series 440 V DC, DC 23	160A	200A	250A	315A	400A
Outline dims. - Hmm	146	146	160	160	160
W mm	240	240	240	240	240
$D(\min) \mathrm{mm}$	220	220	220	220	220
0 (max) mm	270	270	270	270	270
Max. with longer shaft D mm	390	390	390	390	390

Enclosed (stee) surface	\cdot	LKS2-200-SE	LKS2-250-SE	LKS2-315-SE	LKS2-400-SE
mounted fuse-switches	-	$\$ 1080.00$	$\mathbf{S 1 1 9 0 . 0 0}$	$\$ 1290.00$	$\$ 1350.00$
Enclosure type: Sarel Cat. No.	-	53025	53025	53025	53025

Notes: Prices for ail switches include standard handle (IP65) and shath.
Price excludes fuses.
For 'add on' neutral links and switched neutral blocks - Refer page 1-15.
?) Refer page 1-18 for fuse types by manufacturer.

Cat. No. LKP4-2500WT

Cat. No. LKP4-3150

Cat. No. Price S	$\begin{aligned} & \text { LKP4-1600 } \\ & \text { S4750.00 } \end{aligned}$	$\begin{gathered} \text { LKP4-2000 } \\ \text { S4950.00 } \end{gathered}$	$\begin{gathered} \text { LKP3-2500WT } \\ \$ 4500.00 \end{gathered}$	$\begin{aligned} & \text { LKP4-2500 } \\ & \$ 5320.00 \end{aligned}$	$\begin{aligned} & \text { LKP4-3150 } \\ & \$ 6900.00 \end{aligned}$
Rated thermal current (1th)	1600 amps	2000 amps	2500 amps	2500 amps	3150 amps
Rated enclosed thermal (lthe)	1600 amps	2000 amps	2500 amps	2500 amps	$\left.3150 \mathrm{amps}^{2}\right)$
Rated operational current and typical loadings to AS1775 500 V AC, AC 22 660 V AC, AC 21	$\begin{gathered} 800 \mathrm{~A} \\ 1600 \mathrm{~A} \end{gathered}$	$2000 \mathrm{~A}$	$2500 \mathrm{~A}$	$2500 \mathrm{~A}$	$3150 \mathrm{~A}$
Rated protected short circuit current - 500V AC KA RMS Maximum breaker size amps	$\begin{aligned} & 100 \mathrm{kA} \\ & 1600 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 100 \mathrm{kA} \\ & 2000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 100 \mathrm{kA} \\ & 2500 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 100 \mathrm{kA} \\ & 2500 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 100 \mathrm{kA} \\ & 3150 \mathrm{~A} \end{aligned}$
Short-time withstand current [1 sec. kA RMS] [3 sec. kA RMS]	63kA	80kA 50kA	$\begin{aligned} & 80 \mathrm{kA} \\ & 50 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 80 \mathrm{kA} \\ & 50 \mathrm{kA} \end{aligned}$	80kA 50kA
Outline dims. - $H \mathrm{~mm}$ $W \mathrm{~mm}$ $D(\min) \mathrm{mm}$ $D(\max) \mathrm{mm}$	$\begin{aligned} & 463 \\ & 500 \\ & 245 \end{aligned}$	$\begin{aligned} & \hline 463 \\ & 526 \\ & 245 \end{aligned}$	$\begin{aligned} & 225 \\ & 389 \\ & 374 \\ & 399 \\ & \hline \end{aligned}$	$\begin{aligned} & 463 \\ & 526 \\ & 245 \end{aligned}$	$\begin{aligned} & 463 \\ & 596 \\ & 245 \end{aligned}$
Max. with longer shaft D mm	550	550	699	550	550

Notes: Price for all switches include standard handle (IP65) and shaft.
${ }^{1}$) Without terminal.
${ }^{2}$) $I_{\text {une }}-3150 \mathrm{~A}$ in a ventilated enclosure $/ I_{\mathrm{the}} \cdot 2800 \mathrm{~A}$ when totally enclosed.

LKP4-3150-4P
All multi-box switches are available
Price Schedule 'B2' in 4 pole format on indent.

Arc fault protection of switchboards

The arc detecting relay system is designed to reduce the effects of arcing faults in high and lowvoltage switchboards. These faults are serious especially in switchboards with high short circuit currents and long overload tripping times. The system can be used in enclosed as well as in open installations.

By means of light sensitive detectors suitably placed inside the switchboard, the relay almost instantaneously upon the ignition of an arc generates a tripping pulse to the circuit breakers supplying the busbars.
Laboratory tests have proved that the tripping pulse is generated less than 1 mSec . after ignition of the arc. The arcing time is thus reduced to the operating time of the circuit breaker which is normally in the range of $20-70 \mathrm{msec}$. This should be compared to typical overload tripping times of $0.5-1.5$ Secs. (A reduction to as low as 0.4% to 14%).

The use of the system has several advantages:

1. Danger to personnel is avoided. Due to the short arcing time, excessive pressure does not develop inside the switchboard and doors etc. stay in place.
2. Personal injury and eye damage from hot gas blasts are unlikely, since pressure build-up is minimal and the time of intensive light is short.
3. Switchboard damages, both thermal and mechanical, are greatly reduced. Normally the installation can be operated again after cleaning and minor repairs.

ARC Detecting relay

The Arc D-Tect relay is designed to operate all commercially available trip coils. Inside the relay, input and output circuits are electrically separated by means of an opto-coupler. The relay is completely solid state and contains no moving parts. It is resistant to mechanical shock as a result of the operation of the switchboard.
Technical details are available on a separate technical catalogue. Refer Catalogue LKC.

Detector cells

The detectors consist of two silicon photo-voltaic cells.
The cells generate an open circuit voltage of approx. 400 mV when exposed to light and the resultant current is directly proportional to light intensity.
The detector is encapsulated in transparent polyester which is self-extinguishing. The detector is supplied in two types both with the same dimensions.

Mode of operation

When one or more of the detectors connected in parallet is exposed to light, an output current is generated from each detector illuminated. If the sum of these currents exceeds the input bias current of the relay, the output thyristor is fired via the opto-coupler and the trip coil is energised.

System choices

Description	Cat No.	Price S
Arc D-Tect relay 240V AC capacitor discharge trip	ADR-1	1200.00
Arc D-Tect relay 48-220V DC voltage control type	ADR-2	830.00
Arc D-Tect relay 24V DC voltage control type	i] ADR-3	830.00
Arc D-Tect relay 32V DC voltage control type	ADR-4	830.00
Type V encapsulated detector	ADR-V	350.00
Type H encapsulated detector	ADR-H	350.00
Optional accessories		
Junction box per 6 detectors	i] ADR-JB	160.00
Indicating junction box (6 detectors)	i ADR-IB	$\mathbf{4 5 0 . 0 0}$
Diode logic box (multiple relays)	i ADR-LB	280.00

Note: i Available on indent only.

NETT

SECTION H

CIRCUIT BREAKERS
terasaki
XS~400CJ/400-AX CIRCUIT BREAKER XS-800NE/800-AX-LSI CIRCUIT BREAKER

```
SUPPLIED BY: NHP PTY LTD
    25 TURBO DRIVE
    COORPAROO QLD 4151
TELEPHONE (07) 891 6008
FAX (07) 891 6139
```


(4) TERASAKI
 Ensuring Sevice Maintaining Ouality

Catalogue 120A

PanBreal Total Protection,Complete Control

NOTES: \odot Standard. This corfiguraion is used unless anerwise specifed.
\bigcirc Octional sandard. Specity when ordering.

- "yes" α "avatable"
- "no" α "na available
(2) Special Specification

NUMBER OF POLES
RATING: RATED CURRENT (In) Calibrated at $\quad 40^{\circ} \mathrm{C}$ for General use

Rated Insulation	$-\frac{A C}{D C}$
voltage (Ui)	

AC Rated Breaking capacity sym. r.m.s. |kA| lEC 947-2 [ICu] / IEC 947-2 [lCs] AC 690 8S $4752[\mathrm{P}-1]$
CE1 $17-5[\mathrm{P}-1]$

CE1 \%-S (P.1)	
-	415 V
	400 V
	380 V
	240 V
AS 2184	440 V
	415 V
NEMA AB-1	AC 600 V
	480 V
	240 N
DC Rated Breaxing	250 N
Capacity (kA)	125 V

3	4
NCR	ASR
	min max
250	150250
400	$250 \quad 400$
690	
250 (2)	
$16 / 8$	
$16 / 8$	
22/1i	
30/15	
30/15	
$35 / 18$	
35/18	
$50 / 25$	
36	
36	
22	
30	
50	
40	
40	
4.7	6.1
\bigcirc	
O(BAF)	
\bigcirc	
-	
\bigcirc	
Q	
-	
O	
-	
-	
-	
-	
-	
0	
\bullet	
-	
\bullet	
-	
-	
-	
\bigcirc	
-	
-	
-	
-	
-	
-	

Time/Current characteristic curves

Ambient compensating curves

Magnetic tric current (adjustable)

Pated Current	Magne	curte			
(A) $\operatorname{In} \times$	10	8.5	71	6	5
250	2500	2125	1775	1500	1250
400	4000	3400	2840	2400	2000

NOTE: Setting Iderance $\pm 10 \%$ in $(x 10)$ serting and $\pm 25 \%$ in $(x 5)$ setting

(Reter io Notes opposite page)

ASL: Arrangement Standard Line ri: Handle Frame Centre Line

Front-Connected

Plug-in

Mounting block

Drilling Plan

Delails of connection

NOIES: \bigcirc Saratard. This configuraion is used uness aherwise spocifed.

[^2]Otional standard. Specity when andering.

Over-current tripping characteristics , , , , , , +,

CT rated curfens (A): (I n)	800
Base current setting (A): [Io]	(In) $\times(0.63 \cdot 0.8-1.0)$
Long time dalay pickup current (A) : 11,$\}$	(I o) $\times(0.8 \cdot 0.85 \cdot 0.9 \cdot 0.95 \cdot 1.0)$ Non tripping at [[] setting $\times 105 \%$ and below. Tripping at 125% and above.
Long time delay time selting (S): [T,	$\begin{aligned} & (5 \cdot 10 \cdot 15 \cdot 20-30) \text { at }[\mathrm{I},] \times 600 \% \text { current } \\ & \text { Setting lolerance: } \pm 20 \% \end{aligned}$
Short time delay pickup curren! (A): [I ,]	(10$] \times(2-4-6-8-10)$ Seting tolerance: $\pm 15 \%$
Short time delay time setting (S). $\left\{\mathrm{T}_{2}\right\}$	Opening time ($0.1 \cdot 0.15 \cdot 0.2 \cdot 0.25-0.3$) in the definite time-delay. Total clearing time is +50 ms and reseltable time is -20 ms for the time delay setting
Instantaneaus tip pickuo current (A): 〔I s)	Continuously adjustable from (I a] $\times(3$ to $\underline{12)}$ Setting toletance: $\pm 20 \%$
险Pre-trip alarm pickup current (A): [I P]	(I ,) $\times(0.7 \times 0.8 \cdot 0.9 \cdot 1.0$) Setting tolerance: $\pm 10 \%$
\%Pre trip diarm time selting (S): (Tp)	40 fixed definite time delay Selting tolarance: $\pm 10 \%$
\% Ground fault uip pickup curent (A): (I G)	Continuousk adjustable from [In_{n}) $\times(0.1$ to 0.4$)$ Selting tolerance: $\pm 15 \%$
WGround fault trip time setting (S): [TG	Opening time ($0.1 \cdot 0.2 \cdot 0.3 \cdot 0.4 \cdot 0.8$) in the definite time-delay. Total clearing time is +50 ms and resettable time is -20 ms for the time-delay setting
\% Option - The undertined values will be applied when ordering.	slandard rating unless otherwise specified

Combination of internally mounted accessories

Rear-connected

Drilling plan

Plug-in

Details for connection
*

Drilling plan

NOTES: \odot Standard. This configuration is used unless otherwise specified.
Optional standard. Specily when ordering.

- 'yes" or "availabie:
- "no or not availatle:

SECTION I

MINIATURE CIRCUIT BREAKERS

TERASAKI
DIN - T6 SERIES CIRCUIT BREAKERS

```
SUPPLIED BY: NHP PTY LTD
    25 TURBO DRIVE
    COORPAROO QLD - 4151
TELEPHONE (07) 891 6008
FAX (07) 891 6139
```


TSRASAKI DIn-T

Advantages of the new Miniature Circuit Breakers Din-T Series

- Short-circuit breaking capacity of up to 14 kA at 415 V AC. - Increased rating to 50 kA when backed up with a 200A HRC fuse. (N.B. Max. fuse I ${ }^{2 t}$ let through must be $1 \times 10^{5} A^{2} S$ pre arcing).
- Rated current range trom 0.5A up to 63A.
- Silver graphite (AgC) contacts.
- Input connection by lifting terminal with capacity of up to $35 \mathrm{~mm}^{2}$ giving fast and practical connection.
- Output terminals offer finger and hand protection with a capacity of up to $25 \mathrm{~mm}^{2}$.
- Mounting by a new design of snap fixing with two stop locations, for normal Din rail.
- Approval number V87382-11/1987.
- Complies to AS 3111 and AS 2184.

1. Brief Description

The Din-T series miniature circuit breakers have delayed thermal and instantaneous magnetic trips, with sealed adjustment; suitable for mounting in distribution boards or in switchgear panels.

2. Task

Protection against overheating of electrical conductors against excess currents due to overload, short-circuit or earth fault (if combined with earth-leakage module).

3. Application

In switching, control, distribution and measurement systems for buildings, commercial and industrial installations.

4. Tripping characteristic

Characteristics as required by Australian standards, (following European type U) tripping curves for cable and equipment protection in commercial and industrial applications. See Technical Data page.

Handle:

Sealable and padtockable with quick-make and quick-break type mechanism for 14kA model. Handle sealable in ON and OFF position. Due to the free tripping mechanism, the MCB contacts open through overload or short-circuit even when the handle is sealed in the ON position on all types.

Input ferminal:

Box type termina! with lifting screw for copper and aluminium conductors: min . capacity $1 \mathrm{~mm}^{2}$
max. capacity $1 \times 35 \mathrm{~mm}^{2}$ or $2 \times 16 \mathrm{~mm}^{2}$.
When unscrewing the screw, the head lifts; however, on pushing the screw head, the box terminal and the screw sink. This system enables the MCB's to be linked with a non-insulated wire or a connection strip very easily.
The MCB is delivered with a half open box terminal and a lifted screw head. A protection cap is fixed onto the MCB in order to obtain IP-20 protection against finger contact.

Output terminal

Box type terminal with captive terminal screw for copper and aluminium conductors:
min. $1 \mathrm{~mm}^{2}$ max. $1 \times 25 \mathrm{~mm}^{2}$ or $2 \times 10 \mathrm{~mm}^{2}$.
The box terminals are always delivered in the open position. Output terminals are always supplied with IP-20 protection against direct finger contact by means of an insulating cover.

Arc chamber:

Contains arc extiriction plates, de-ionising type, designed to break up and dissipate the arc which is generated during interruption of all types of fault.

Arc magnetic blowout system.

Short-circuit currents do not flow through the bimetal but are directed by the blowout magnet, in such a way that the arc is transferred to a special arc runner, therefore taking the bimetal out of the circuit which ensures the trip characteristics remain unchanged.

Electromagnet:

Operating the plunger which opens the contacts instantaneously.

- The combination of the electromagnet (with a plunger rapidly opening the contacts), the blowout magnet and the arc chamber, results in an extremely high short-circuit breaking capacity, and very low let through energy.

Snap-on clip for DIN-type rail mounting

This special flexible system gives ease of mounting and positioning of the MCB on Din rail.

Din - T SERIES -

Some of the advantages in detail

Input terminal

The newly developed input box terminal which is designed as a "Lift terminal" is suitable for busbar as well as conductor connection. It is delivered already opened so that loosening of the terminal screws is not necessary. The screw heads are held in the upper position so that busbars can be located directly and without any problems. However it is first necessary to remove the standard IP-20 protection cap. For the connection of single or multiple-wire conductors the terminal box is moved down by pressing the screw head and is opened approx. 5 mm . This means conductors up to $10 \mathrm{~mm}^{2}$ can be inserted without further opening. For thicker conductors up to max. $1 \times 35 \mathrm{~mm}^{2}$ or $2 \times 16 \mathrm{~mm}^{2}$ the terminal box needs only to be unscrewed a little. In the same way, a combined connection of busbar and feeding line is possible without additional terminals.

Protection Cap

Simple snap-on cap for the "Lift terminal" can be fixed on to the MCB in order to obtain the IP-20 protection against finger contact. For the Australian market. these are supplied as standard.

Sealing

In both switching positions the handles can be protected against manual switching by means of sealing. Interruption in case of faults is guaranteed by. means of a trip free mechanism.

Snap-on fixing

The newly developed snap-on fixing has an additional stop location which permits slight movement and alignment of the MCB during assembly on the rail. A further advantage is the easy changing of the MCB in this stop location, as the spring device is disengaged when it is taken off the sectional rail.

For fixing of the MCB on the sectional rail the spring device is engaged by simply pressing the projecting spring clip

Din - T SERIES - 6kA

Note 1 Din-T MCB's can be backed up by a 125 amp GEC Type-T or equivalent HRC fuse to 50 kA fault level.

AUXILIARY CONTACTS FOR MCB's

	Part No.	Description	Price
	Din-T H	Auxiliary contact (H) only. Half a module (9 mm) with a changeover contact (1NC + 1 NO) Contacts are operated when the MCB is operated manually as well as electrically (i.e. due to overload or short-circuits). Thus this contact indicates the exact position of the contacts of the MCB.	\$19.00
	Din-T S	Alarm contact (S) only. Half a module (9 mm) with a change over contact ($1 \mathrm{NC}+1 \mathrm{NO}$). Manually operated, this contact only follows the closing movement, not the opening movement. When the MCB had tripped electrically (through overload or short-circuit), the signal follows. Thus this contact indicated manual closing and electrical opening of the MCB.	\$25.00
	Din-T H/S	Changeable alarm/auxiliary contact (H/S). Half a module with a changeover contact ($1 \mathrm{NC}+1 \mathrm{NO}$). A small screw can be put in two positions (with a screwdriver). Each of the two positions corresponds for this special contact to have the function of an auxiliary or of a signal contact as explained above. A small screen indicates H (auxiliary) or S (signal) function. Once the auxiliary element is coupled to the MCB the little screw is hidden and thus the function can not be changed.	\$26.00
	$\begin{aligned} & \text { Din-T } \\ & H+H / S \end{aligned}$	Auxiliary contact and changeable alarm/ auxiliary ($\mathrm{HH} / \mathrm{HS}$). Half a module (9 mm) contains two changeover contacts. The first one is an auxiliary contact (H). The second one is a changeable signal/ auxiliary contact (H / S). For the function of both changeover contacts. see above. - Refer P. 15 for explanation of contact types.	\$33.00

When coupling an auxiliary element to the side of an MCB both handles must be in identical position.

Bring the MCB and auxiliary function side by side carefully.
Fix together by means of the two specified springs.
Note. When opening the spring again, the auxiliary element can be removed. Attention: Always open spring on MCB-side.

MCB's - GENERAL FEATURES

Characteristics		$1 P$	$2 P$	3 P	4 P
No. of protected poles		1	2	3	4
Width	mm	18	36	54	72
Depth	mm	68	68	68	68
Rated voltage (Un)	V	240/415	415	415	415
Highest rated current	A	63	63	63	63
No. of operations					
- at 220V. In. $\cos 4=0.7$		10000	10000	10000	10000
$\underline{-a t 415 V}$ in. cos $1=0.9$		10000	10000	10000	10000
Insuiation resistance	M	$=10^{\text {B }}$	$\geq 10^{5}$	$>10^{\circ}$	$>10^{\circ}$
Dielectric rigidity	kV	$\div 4$	≥ 4	≥ 4	≥ 4
Capacity - output terminal - input terminal	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm}^{3} \\ & \mathrm{~m} \end{aligned}$	$\begin{array}{r} 25 \\ 35 \\ \hline \end{array}$	$\begin{aligned} & 25 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \\ & \hline \end{aligned}$	$\begin{array}{r} 25 \\ 35 \\ \hline \end{array}$
Insulation group acco:ding to IEC 112. NBN C20-002. VDE 0110					
- group B - grouo C	$\begin{aligned} & V \\ & v \end{aligned}$	$\begin{aligned} & 500 \\ & 380 / 415 \end{aligned}$	$\begin{aligned} & 500 \\ & 380 / 4 i 5 \end{aligned}$	$\begin{aligned} & 500 \\ & 380 / 415 \end{aligned}$	$\begin{aligned} & 500 \\ & 380 / 415 \end{aligned}$
Use in DC	Max. DC tension		No. of operations at $\mathrm{In} / \mathrm{time}$ constant $T \leqq m s$	Short-cir capacity $\mathrm{T} \leqq \mathrm{~ms}$	
1 P up to 20A	48 V		4000/15	10/15	
2 P up to 20A	110 V		4000/15	15/15	
1 P 25A to 63A	48 V		3000/15	10/15	
?P 25A to 63A	110 V		3000/15	15/15	

In DC the magnetic tripping current is approximately 40% higher than in $A C 50 / 60 \mathrm{~Hz}$.
Voltage drop and energy loss

In (A)	Size No.	Orop in voltage (V)	Energy loss (W)
0.5	0.5	3	1.5
1	1	2	2
2	2	1.5	3
4	4	0.6	2.4
6	6	0.4	2.4
10	12	0.13	1.3
16	17	0.16	2.56
20	22	0.15	3
25	28	0.13	3.25
32	35	0.11	3.52
40	42	0.11	4.4
50	52	0.085	4.25
63	65		6.9

Use at 400 Hz .
At 400 Hz the magnetic tripping current is $\ddagger 40 \%$ higher than at $A C 50 / 60 \mathrm{~Hz}$.

NDETETERASAKI Din -T

temperature oerating chart 40-63 amp

12 t

($A^{2} s$)

Co-ordination is achieved between the HRC fuses and Din-T Minialure Circuit Breakers when the $12 t$ let-through value of the back-up fuse is greater than the ${ }^{2} t$ let-through value of the MCB.
To check co-ordination, select a prospective fault level, project it to a selected MCB line (shown by vertical lines) and any fuse line (shown by horizontal curves). Above this projected point will offer back-up protection and coordination between fuses and MCB's.

Din - T CO-ORDINATION MCB and FUSES

Selection Chart

MAKE OF EOUIPMENT	CLASS OF GE'AR	TYPE 0F EQUIPMENT	MAX CONTACT RATING AMPS	LIST NUMBER PREFIX LETTERS \& CURRENT RANGE																				
				$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{z}{2} \end{aligned}$		$\begin{gathered} \stackrel{\sim}{\sim} \\ \stackrel{\sim}{z} \end{gathered}$	$\mid \stackrel{\cong}{\stackrel{\sim}{\sim}}$	$\begin{aligned} & \text { n} \\ & \stackrel{0}{n} \\ & \varrho \\ & \underline{n} \end{aligned}$	$\begin{aligned} & \stackrel{\oplus}{\sim} \\ & \infty \end{aligned}$		$\begin{aligned} & 8 \\ & \hline 0 \\ & \infty \\ & \infty \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & \infty \\ & \hline- \\ & \stackrel{0}{6} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \infty \\ & \infty \\ & \ldots \\ & \ldots \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \stackrel{\text { N}}{\mathrm{M}} \\ & \stackrel{3}{2} \end{aligned}$	$\begin{aligned} & \stackrel{n}{2} \\ & \infty \\ & \infty \\ & \cdots \\ & \stackrel{n}{n} \\ & \stackrel{y}{x} \end{aligned}$				$\begin{aligned} & \text { 은 } \\ & \dot{i} \\ & \underset{y}{i} \\ & =1 \end{aligned}$		$\begin{aligned} & \text { O} \\ & 0 \\ & \dot{8} \\ & \underset{0}{2} \\ & \vdots \end{aligned}$			O-8
$\mathrm{NHP}_{\text {TERASAKI }}$	MC8	$\begin{gathered} \text { DIN-T } \\ \text { 9KA } \end{gathered}$	6	20		20	20		20	20				200										
			10	25			25		25	25				200										
			16					35	35	35				200										
			20		63			63	63	63				200										
			25		63			63	63	63				200										
			32		63			63	63	63				200										
			40								100	100	100	200										
		$\begin{aligned} & \text { DIN•T } \\ & 14 \mathrm{KA} \end{aligned}$	6	20		20	20		20	20				200										
			10	25			25		25	25				200										
			16					35	35	35				200										
			20		63			63	63	63				200										
			25		63			63	63	63				200										
			32		63			63	63	63				200										
			40								100	100	100	200										
			50								100	100	100	200										
			63								100	100	100	200										

Din-T Cascade Co-ordination Chart

		$\begin{gathered} \text { TO } \\ 100 \mathrm{BA} \end{gathered}$	$\begin{gathered} \mathrm{TL} \\ 225 \mathrm{~B} \end{gathered}$	$\begin{gathered} \text { TO } \\ 225 \text { BA } \end{gathered}$	$\begin{gathered} \mathrm{TG} \\ 225 \mathrm{~B} \end{gathered}$	$\begin{gathered} \text { TO } \\ 400 \mathrm{BA} \end{gathered}$	$\begin{gathered} T G \\ 400 \mathrm{~B} \end{gathered}$
		22	180	35	50	36	50
DIN-T .5-16	9kA		130				
.5-25	9 kA	-		35	50	35	50
.5-63	9 kA			20	25	20	25

Cascade Co-ordination Ápplication Notes

The Back-up or Upstream Terasaki Moulded Case Circuit Breakers are listed across the top line together with their prospective short circuit interrupting capacity.
The Loadside or Downstream Din-T Miniature Circuit Breakers are listed in the left hand vertical column.
The prospective short circuit interrupting capacity of circuit breaker in Cascade can be read from the chart by running Jown the vertical column under the selected back-up breaker (eg. To 225 8A) and across the horizontal column of any load size circuit breaker (eg. Din-T 9.5-25).

The figure shown at the intersecting columns is the prospective short circuit interrupting capacity at which the load side miniature circuit breaker will operate safely (eg. 35kA).

Note 1 Cascading is not suitable for special circuits such as fire pumps and lifts.

SECTION J

CURRENT TRANSFORMERS

CROMPTON

789-944T 400/5 A CURRENT TRANSFORMERS 788-944T 500/5 A CURRENT TRANSFORMERS 781-943T 40/5 CURRENT TRANSFORMER (4 PRIMARY TURNS)

```
SUPPLIED.BY: CROMPTON INDUSTRIES
                        20 CHATFORD STREET
                        MACGREGOR QLD 4109
```

TELEPHONE: (07) 8411586
(4)

CURRENT TRANSFORMERS

Current Transformers

Contents Guide

CASE STYLE:	MODEL REFERENCE-	PRIMARY CURRENT.	SECONDARY CURRENT:	SERVICE: DUTY.	\therefore PAGE
$\begin{array}{ll} a \\ \square & 0 \end{array}$	Series 780 Moulded Case	$1 A \cdot-\vec{Z} 2500 \mathrm{~A} .$	$1 A: \& 5$	Metering Protection	$4-7$
	Series 770 Tape: Insulated	$1 A-100 A$	$10 \mathrm{~mA}-100 \mathrm{~mA}$	Distance Metering Galvanic ssolation	8
	Single Phase Módel:252:94 Three: Phiase Model 253-94 DIN:Case	$A B-5 A$	10 mA $A A-5 A$	Distance Metering Galvanic: lsolation	
8		$\begin{aligned} & 40 \mathrm{~A}-3000 \mathrm{~A} \\ & \text { SOAA } \\ & \text { Specials } \end{aligned}$	$1 \mathrm{~A} 8: 5 \mathrm{~A}$ 5A \& 1 A Specialls	Metering Protection: Specials	$10-14$
	F Model $80{ }^{\circ}$ Waíuded: Case	$500 \mathrm{~A}=4000 \mathrm{~A}$			

Multi-Ratio, Summation, Interposing, Core-Balance and Earth Leakage Current Transformers

These special duty current transformers can be supplied to customers' requirements. Please supply details of primary and secondary current ratios required, VA output and accuracy class.

C.T's with alternative specifications

Customers special requirements can usually be met. Please supply full details.

Low Current Ratios

Lower ratios than those listed can be obtained by passing the primary conductor through the ring more than once as specified below.

STANDARD: CT RATIO	Y Y PRIMARY INSERTED TURNS TO OBTAINRREQURED RATIO
$\begin{array}{r} \because 40 / 55^{\circ} \\ -5015 \end{array}$	
6015	$12 \because 6 \begin{array}{cccccc} \\ 6 & \ddots & 4 & \\ 3\end{array}$
75/5	15
$80 / 5$	$16 \div 8$
10015 12015	

Current Transformers

Measuring Duty Current Transfomers

Accuracy selection

Class 0.2
Available on request.
Designed to individual customer: requirements, energy metering, micro control:systems:.
Transducers, pay,integration meters; test equipment, control systems: Wat/NAr/Phase Angle meters,:recording meters, protection devices, : instrument transducers:
Industrial ammeters, maximum demand indicators:

VA Burden Guide

0.5
$0.75-1.5$
$0.2-1$
1-1:25
2-4
$2-3.5$
3-3.5:
$0.5-4$
$0.5-4$
$5-10$ y

Short scale moving iron ammeters 240° "scale moving iron ammeters. Rectified moving coil ammeters WattNAr/Phase Angle meters. Recording ammeters Maximum: Demand Indicators Combined MDI: \&: MI Paladin transducers Protector modules Electronic control systems:

Protection Duty Current Transformers

Protection duty current transformers are supplied to accuracy classes 5 P or 10 P . The figures 5 or 10 define the maximum composite errors in percentage permitted at the specified overload value. Letter ' P ' indicates a protection duty.

The rated accuracy limit factor (or overload multiple) is specified by a further figure added to the code. 5,10 and 15 satisfy most applications and indicate overload values $\times 5, \times 10$ and $\times 15$. For more detailed information, see BS3938: 1973.

Rated outputs available in VA are $2.5,5,7.5,10,15$.

Waccuracy:	Errorat	Phase-	Comp
CClass:	rated	displacement	errofat
$5+5 \mathrm{ta}$	Primary	atrated	ratedst
xacta	Currento	EPrimary	accuracytc
, S -	Wers	Currenter	limittat,
$\|1+5+2\|$	W-6,		Primary 3 ¢
Ex+e.	Frn	Nins R Rädians	currentry?
	\% max 1%	$\pm 60 .+\cdots+1.8$	\% $\times 5.5$
10			

Correct selection requires reference to relay manufacturers recommendations.

The secondary circuit must not be open-circuited when primary is energised since a dangerously high voltage can build up in certain conditions. Terminals are not insulated against physical contact.

Secondary Lead Burden

The resistance of the secondary lead circuit can be significant and must be taken into account when the current transformer burden is chosen. Where the current transformer is mounted remotely a 1 amp secondary should be used.

VA Burden for 5A C.Ts.

VA Burden for 1A C.Ts.

780 Series

The Crompton 780 Series offers current ratios, VA outputs and accuracy classes to suit the requirements of modern: electrical. and electronic installations.
The tough moulded cases are designed for appropriate busbar or cable sizes and incorporate alternative foot or busbar fixing: options.
They comply with most international standards for ring current transformers.:
A major feature is-the ease of installation with several base and busbar:mounting arrangements::

Features

* high impact, flame-retardant moulded:cases (classification UL94V-1)
\star secondary currents for 1 A or 5 A
© primary currents: AAto:2500A
* cabbe or busbarstyles.
\star simple busbarscamporpush-in fixing teet
\star alternative DIN rail mounting adaptor
\star single or twin screw terminalstert
- alternative temnations with integral 600 mm
cleads

Standards Compliance

Designed tóntemationall standads the 780
Series complies: withithéfollowing specifications BS 39381973 (1982), IEC 18501966

Secondary Terminals

All:models can beisupplied withisingle or double M4 screw shelliclamp terminals eliminating the use? of cablezshoes oritags.
When specifiédinsúlated jflexible leads (600 mm) can be provided in' place of screwsterminals

Performance

System voltage	660 V max
Test voltage	3 kV for 1m
System frequency	$50 / 60 \mathrm{~Hz}(400 \mathrm{~Hz}$ available on request)
Short circuit thermal current (Ith)	$=60 \times$ rated primary current for 1 second
Rated dynamic current (Idyn)	$=2.55 \times \mathrm{th}$
Saturation co-efficient	$=<5$ for plain ring <10 for wound primary
Service temperature	$=20^{\circ} \mathrm{C}^{-10^{-} 855^{\circ} \mathrm{C}}$
Insulation class BS2757	Class A (max $105^{\circ} \mathrm{C}$)
Enclosure code	IP40

 . Installation
 Tnecessangarésupplied, witheach CT, sholine pimary busbarinserts sand centrenonsert are tavailablextorsome models

A 35 mm din inalimounthg adaptorits available for Sal model sexcept 88

Terminal cover

A wire sealable cover is available to insulate the secondary terminals.

Type	DIMENSIONS mm		
No.	A	8	C
780	56	31	14
All other Types	71	38	14

For use:with Model 780

QIN Rail Adaptor

780 Series

Accuracies comply with BS3938: and IEC 185:
All measurements in millimetres
Type 780-943

Supplled with: 2 fixing feet
Maxcable $\varnothing^{\prime \prime}=15 \mathrm{~mm}$.
1A secondaries are available for all ratings:-
Type 781-943

CT	VA at Class		VA at Class		VA at Class		
Ratio	3	1	3	1	3	1	0.5
$40 / 5$	2.5	-	-	-	-	-	-
5015	2.5	-	-	-	-	-	-
6015	2.5	-	-	-	-	-	-
$75 / 5$	2.5	-	5	2.5	-	-	-
8015	2.5	-	5	2.5	-	-	-
10015	5	-	7.5	5	-	-	-
12015	5	-	7.5	5	-	-	-
12515	5	-	7.5	5	-	-	-
15015	5	-	7.5	5	15	10	5
20015	5	-	7.5	5	15	10	7.5
25015	5	2.5	7.5	5	20	15	10
30015	5	2.5	7.5	5	20	15	10
40015	5	2.5	10	5	30	15	15
50015	5	2.5	10	5	30	15	15

$\begin{gathered} \text { CT } \\ \text { Ratio } \end{gathered}$	VA at Class 3	VA at Class		VA at Class		
		3	1	3	1	0.5
10015	2.5	-	-	-	-	-
120/5	2.5	5	2.5	-	-	-
125/5	2.5	5	2.5	-	-	-
15015	2.5	7.5	4.5	-	5	
$200 / 5$	2.5	7.5	5	10	6	2.5
25015	5	7.5	5	10	7.5	5
30015	5	7.5	5	10	7.5	5
400/5	5	7.5	5	15	7.5	5
$500 / 5$	-	-	-	10	7.5	5
60015	-	-	-	12	10	7.5
750/5	-	-	-	15	10	10
80045	-	-	-	15	10	10
1000/5	-	-	-	20	15	15
120015	-	-	-	20	15	15

Type $783-944$

Supplied with busbar clamp.
For busbar 30. $10 ; 20 \times 20 \mathrm{~mm}$ and cable: \varnothing 25 mm :
1A secondaries are available for all ratings:

CT	VA at Class		
Ratio	5	3	1
$30 / 5$	1.5	-	-
$40 / 5$	2	1.5	-
5015	$2 . B$	2.5	-
$60 / 5$	3.5	3	-
$75 / 5$	5	4	-
$80 / 5$	5	4	-
$100 / 5$	-	5	2.5
$120 / 5$	-	5	2.5
$125 / 5$	-	5	2.5
$150 / 5$	-	5	2.5
$200 / 5$	-	6	3
$250 / 5$	-	7.5	4

$\begin{gathered} \hline C T \\ \text { Ratio } \end{gathered}$	VA at Class		VA at Class		VA at Class			
	3	1	3	1	3	1	0.5	
75/5	2.5	-	-	-	-	-	-	
8015	2.5	-	-	-	-	-	-	+6-
10015	2.5	-	5	2.5	-	-	-	- m^{2}
12045	2.5	-	5	5	-	-	-	$5 \times$
12515	2.5	-	5	5	-	-	-	\%
15015	2.5	-	5	5	10	7.5	2.5	\cdots
$200 / 5$	5	-	7.5	5	15	10	5	\therefore
25015	5	2.5	10	7.5	20	15	10	3
30015	5	2.5	15	10	20	15	10	9
40015	5	2.5	15	10	20	15	10	
50015	-	-	-	-	30	15	10	
50015	-	-	-	-	30.	15	15	
75015	-	-	-	-	30	15	15	
800/5	-	-	-	-	30	15	15	

780 Series

Accuracies comply with BS3938: and IEC 185: Type 784-944

Supplied with busbariclamp
Eor busbar $40 \times 10,30 \times 20 \mathrm{~mm}$ and cable $\varnothing 32 \mathrm{~mm}$
IA secondaries are available for:all'ratings except 1200A:

CT	VA at Class 3	VA at Class		VA at Class		
Ratio		3	1	3	1	0.5
$100 / 5$	2.5	-	-	-	-	-
$120 / 5$	2.5	5	2.5	-	-	-
$125 / 5$	2.5	5	2.5	-	-	-
$150 / 5$	2.5	6	4.5	6	4.5	2.5
$200 / 5$	2.5	7.5	5	10	6	2.5
$250 / 5$	5	7.5	5	10	7.5	5
$300 / 5$	5	7.5	5	10	7.5	5
40015	5	-5	5	15	7.5	5
$500 / 5$	-	-	-	10	7.5	5
$600 / 5$	-	-	-	12	10	7.5
$750 / 5$	-	-	-	15	10	10
$800 / 5$	-	-	-	20	10	10
$1000 / 5$	-	-	20	15	15	
$1200 / 5$	-	-	-		15	

CT	VA at Class	VA at Class		VA at Class		
Ratio	3	3	1	3	1	0.5
$1 / 5$	5	7.5	5	18	15	7.5
$5 / 5$	5	7.5	5	18	15	7.5
$7.5 / 5$	5	7.5	5	18	15	7.5
$10 / 5$	5	7.5	5	18	15	7.5
$15 / 5$	5	7.5	5	18	15	7.5
$20 / 5$	5	7.5	5	18	15	7.5
$25 / 5$	5	7.5	5	18	15	10
$30 / 5$	5	7.5	5	18	15	10
$40 / 5$	5	7.5	5	18	15	10
$50 / 5$	5	7.5	5	18	15	10
$60 / 5$	5	7.5	5	15	15	10
7515	5	7.5	5	18	15	10
$80 / 5$	5	5	18	15	10	
$100 / 5$	5	7.5	5	18	15	10
$120 / 5$	5	7.5	5	20	15	10
$125 / 5$	5	7.5	5	20	15	10
$150 / 5$	5	7.5	5	20	15	10
$200 / 5$	5	7.5	5	20	15	10
$250 / 5$	5	7.5	5	20	15	10

 For busbar \(80 \times 30,64 \times 35,50: \times 50 \mathrm{~mm}\) and cable
 \(\varnothing 63 \mathrm{~mm}\)
 - 1 A secondaries are available forfall ratings
 except 2500A
 Type \(788=944\)

$\begin{gathered} \mathrm{CT} \\ \text { Ratio } \end{gathered}$	VA at Class			VA at Class			$\begin{gathered} 10 P 10 \\ V A \end{gathered}$
	3	1	0.5	3	1	0.5	
20015	7.5	2.5	-	10	5	-	-
25015	10	5	-	15	10	5	-
30015	15	10	5	20	15	10	-
40015	15	10	7.5	25	15	10	-
$500 / 5$	20	15	10	30	20	15	5
60015	15	10	5	30	20	15	5
75015	15	10	5	40	25	15	5
80015	20	15	7.5	40	30	20	5
100015	25	20	10	50	40	30	5
-120015	. 30	20	15	50	40	30	5
$1500 / 5$	30	20	15	50	40	30	5
$1600 / 5$	40	30	20	-	-	-	5
200015	50	40	30	-	-	-	5
250015	50	40	30	-	-	-	-

Type $786=946$

SECTION K

CONTACTORS

SPRECHER \& SCHUH CA1 \& CA3 SERIES
CA3-9-10 110V AC CONTACTOR WITH CT3-12 O/LOAD UNIT CA1-480 110C AC CONTACTOR

SUPPLIED BY: NHP PTY LTD 25 TURBO DRIVE COORPAROO QLD

4151
TELEPHONE (07) 8916008
FAX (07) 8916139

Notes: ') CT 3K-12/17 are manual reset only. For automatic reset use CT 3-12/17. Refer page 1-9. ${ }^{2}$) Late break - to be used with DC coil.
${ }^{\text {J }}$) Can be increased by using CA 3-P-GE side mounting auxiliary contact block.
Price Schedule ' $A A^{\prime}$

1-2

Refer catalogue 2202 \& 2210

Standard modular contactors 4 to 37 kW

Quality, design and reliability
Sprecher + Schuh quality and design is renowned throughout the world in applications where contactors and motor starters are used. The Sprecher + Schuh standard range of contactors provide complete reliability and long life, not equalled by most. The success of these products in Australia and elsewhere has been extraordinary, providing the user with a reliable product for all conditions.
Swiss precision and excellent design are the basis for the success of these products. Not only are the contactors dependable but they are supported by a range of thermal overload relays that offer outstanding motor protection under all conditions. Each thermal overload relay is individually calibrated at manufacture and thus provides a consistency of performance which is not matched by competitors.

The Sprecher + Schuh equipment is compact providing an exiensive range of auxiliary contacts, many options and accessories resulting in flexibility and versatility.

The range

Sprecher + Schuh offer a range of contactors totalling 24 different sizes which are designed to match standard motors giving the customer an optimum choice. The smallest units comprise the CA 4 range, designed for OEM use and are suitable for interfacing with PLC's. The specification provides for very low pull-in and holding currents and high frequency of operation.
The CA 3 programme illustrated above, is the most used range and provides 9 sizes from 4 to 37 kW . For ratings above 37 kW , Sprecher + Schuh provide further sizes up to 710 kW .

When you specify Sprecher + Schuh you get additional quality at minimal extra cost. This quality results in reliability, as after all, there is no substitute for reliability!

Sprecher + Schuh provide that extra quality which means so much in service!

Features of the CA 3 contactor

Rated to $60^{\circ} \mathrm{C}$. O Identification labelling: Provision for snap-on mechanical
つ Very compact.
J Mechanical life $10-15$ million operations.
\supset Coil replacement in seconds from the front and without tools.
ว Can be mounted: On_conventional_base_plates On $\mathrm{S}+\mathrm{S}$ rapid mounting gear tray On DIN 35 mm snap-on rail up to CA 3-30.

- Self adhesive labels
- Strip lainels with clear covers
- S+S marking tags.

O Open type terminals.
O Captive pozi-drive screws.
O Self-lifting terminal washers.
O_-Tropic-proof_coils_are.standard
O Provision for snap-on auxiliary contact blocks.
O Provision for snap-on pneumatic time delay relay.
latch.
O Compatible dimensions:

- CA 3-12/16 similar size
- CA 3-23/30 similar size
- CA 3-37N/72N similar size.

O Guaranteed voltage pick-up.
O High operating_frequency.
O Control voltages 50 Hz between 12 V and 440 V .
O Complies with AS 1029, IEC 947 and 587 SEV, VDE, IEC 158.

Contactor CA 3-16

Contactor CA 3-30

Contactor CA 6-170-E

Contactor CA 1-250

Contactor CA 1-480
Price Schedule
up to CA 1-480-'AA' CA 5-370 and up-'A2'

Notes: ') $55^{\circ} \mathrm{C}$ enclosed.
${ }^{2}$) 1000 volt ratings ()
${ }^{3}$) Price with standard coil.
${ }^{4}$) Auxiliary contacts for CA $1-60$ to CA 1.480 are conventible N/O, N/C
${ }^{5}$) Figures in brackets are max. auxiliary contacts with $2 \times$ side mount auxiliary fitted
${ }^{6}$) With electronically controiled mechanism (ECM). Available early' 1994 for CA 6-85/105.
Please specify coil voitage: Std. $24,32,110,240,415,440 \mathrm{~V} 50 \mathrm{~Hz}$ CA $1-480 \&$ above min. volt. 32 V .
ECM versions coil voltage: $24,110,240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$

Contactor CA 5-550

Contactor CA 5-860

Contactor CA 5-1000

Contactor CA 5-1200

Features:

O Reliable operation in any desired position
0 Operationally reliable under vibration and shock conditions, suitable for use in vehicles and ships
O Unaffected by climate, encapsulated standard design under tropical conditions
O Unaffected by pollution, suitably encapsulated
O On and off switching operation in one movement (tumbler characteristics)
0 High in-rush current permissible due to bounce-free contact system and high contact pressure
O High permissible operating frequency

CS 3 Relay with 2 pole auxiliary block

CS 3 Relay with snap-on mechanical latch

Technical data

Rated thermal current

(AC 1) main contacts	$60^{\circ} \mathrm{C}$	16 A
Auxiliary contacts Ith	$60^{\circ} \mathrm{C}$	12 A
Ambient temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	

Max. permissible
operations per hour 6000

Coil consumption	Pick-up Hold in
basic relay 4 pole	59 VA 7.2 VA 2.2 W
Mechanical life	15 million operations

| Nominal voltage | V | 240 | 415 |
| :--- | :--- | :--- | :--- | :--- |
| Thermal rated current | A | 16 | 16 |
| open and AC 1 (3 phase) | kW | 6.7 | 11.5 |
| Switching, contactor (AC 15) | A | 10 | 4 |
| Auxiliary contact block A 5.5 2.5
 Life @ 415 V mill ops 1.2 (AC 15) \mathbf{l} | | | |

Complete relays (Additional types) 5 \& 8 pole refer next page for standard arrangements.

Standard voltages 24, 32, 110, 240, 415, 440, 480V 50 Hz

Dimensions (mm)

Notes:

${ }^{\text {1 }}$) Time delayed aux. contact
${ }^{2}$) With aux. contact block
${ }^{3}$) Basic device without adder elements
${ }^{\text {a }}$) Fixing possibility onto
mounting-rail-EN-50-022-35-C
for CS 3
${ }^{\text {s) }}$ With marking tag carrier

Complete relays - standard types

Preferred
arrang. to
EN 50 011
diagram
When ordering please specify voltage required
For non-standard coils Add 10.00
Spare coils, standard voltages 25.00
Spare coils, non-standard voltages 35.00

Note: Standard voltages - $24,32,110,240,415,440,480 \mathrm{~V}, 50 \mathrm{~Hz}$
Control relays

Example:
Control relay CS 3-62-E
Reference numbers
Reference letters

On control relays complying with the European Standard EN 50011 , the reference can be extended by a reference letter. The reference letters E and Y refer to preferred arrangements through which the location of the contacts and terminal markings are clearly specified. The arrangement digit is also the location digit. The CS 3 control relay arrangements shown in this catalogue at the present time having references with no reference letters, correspond to the contact arrangement most often used. The terminal markings comply with EN 50005 .

SECTION L

PHASE FAILURE RELAY

CROMPTON PSGW SERIES

PSGW 415V AC PHASE FAILURE RELAY

```
SUPPLIED BY: CROMPTON INDUSTRIES
    20 CHATFORD STREET
    MACGREGOR QLD 4109
TELEPHONE: (07) 841 1586
```


Phase Balance Relay

The Crompton Protector Phase Balance module provides continuous surveillance of a 3-phase, 3 or 4 wire system and protects against:
\star Phase Loss

* Phase Reversal
\star Sequence
* Phase Unbalance
* System Under Voltage

The module de-energises a relay shouid any one of the above faults occur. It is fitted with an adjustable time delay to eliminate premature operation on short duration supply fluctuations.

A red LED indicates that the supply is within limits and that the output relay is energised. N.B. the relay will not energise if the supply is connected in the wrong sequence.

The phase unbalance feature protects motors of any size, from full-load to no-load, against excessive temperature rise due to unbalanced supplies, e.g. a 10% unbalanced supply can increase the temperature rise by 150%. In addition, this also protects against the phantom voltage generated during a single phase failure when running at low load.

Principle of Operation

The module comprises monitoring circuits for voltage phase reversal and phase unbalance. Outputs from these circuits are fed to a comparator which changes state under fault conditions.

When the comparator switches, the output relay will de-energise after a pre-set time delay and the red LED will also de-energise in series.

The relay and LED will automatically energise again when all the supply parameters have returned to safe and acceptable limits.

Connection Diagram

\%

Specification

Type No:	252-PSFW. Phase loss and unbalance only 252.PSGW. Phase loss, unbalance and undervoltage.
Input	
System:	3 phase, 3 or 4 wire, 50 or 60 Hz (specify)
Voltage Ratings:	$100-125 \mathrm{~V}, 200-250 \mathrm{~V}$ or $380-450 \mathrm{~V}$ (nominal voltage to be specified when ordering)
Burden:	3VA
Voltage Withstand:	1.2 times continuous 1.5 times for $10 \times 10 \mathrm{~s}$ To B.S. 6253
Set Points	
Unbalance:	Adjustable 5\% to 15\%
Time Delay:	200 ms to 10 s adjustable (not operative if voltage falls below 70% of nominal or set point or type 252-PSGW
Under Voltage: (Type 252.PSGW only):	Internally reset at - 15% nominal voltage (other values between - 10\% and - 30% available on request)
Output Relay	
Type:	DP changeover
Rating ac:	$240 \mathrm{~V}, 5 \mathrm{~A}$ non-inductive
Operations:	2×10^{5} at above load
Reset:	Automatic
Weight:	Approx. 0.3kg

SECTION M

AMMETERS \& VOLTMETERS

CROMPTON 244 SERIES

```
244-026G 0-400A AMMETER
244-02AG 0-500A 5A C/T AMMETERS
244-02VG 0-500V VOLTMETER
244-026G 0-10A AMMETER
```


Quadratic 240 Series

Quadratic 240 Series

Lloyds Marine

National Area Boards
Spec ES141-26: 50 + 8

Hi-Q Taut Band Suspension

Enclosure

The cases comply with enclosure code IP54 to IEC 529. They are suitable for use in tropical conditions.

Specification

Performance
Instruments comply with IEC51..
Accuracy
Class 1.5: is: standard: Frequency meters offer Class $0: 5$ or 0.2 . Maximum: demand indicators are Class: 3.- Synchroscopes and 360° power factor meters are Class 2.512° electrical)

In the $=$ Crompton world patented Hi Q O - tautband suspension (see diagramlall the delicate partst of the ctraditionalinstru ments are elminated Therearenopivots. no jewel bearings no hair springs, no air damping vane Instead a tough metal ribbon*suspends the movinge element between front and reartension springs

Specially contoured padstarefitted to they ends of the spind le and the working gap at each end is filled: with ahigh quality siliconta flưid The pads resenoir, form asystem whichacts as resilientrouiltint shock absorbers this
provides both rotationaliand longitudinal damping as the moving element floatson oif with no bearing friction and is effec tivelyocushioned against shockr and

360 synchroscopes and powerfactor
x meters have robust puot ond ewel bearings:

All movements aresselfohielded agans
externat magnetić fiéd t , as defined ins BS89, IEC51 and DIN 43780 "

Construction

Models $242 \%, 243$ and 244 have cases; bez els and"terminal plates:ïnjection mouldèd:in flame retardent engineering thermoplastic recognised by Underwriters Läboratory (UL).

Model 244 Meter Relay and all model 246 have pressed steel cases:

All instruments have glass: windows; with: zero adjusters where necessary. Non-reflecting glass or polycarbonate shatterproof windows are available

Overloadwithstand

2 times ratedcurrentorvoltagefor 2 hours. Ammeters 10 times rated current, voltmeters and frequencymeters: 2 times ratedivoltage, fors seconds: Power instrumentsaccept similaroverloads:
Dielectrictos
2 kVaconominut
Ambientyómperature
Instrumentshave aworkingambentrange $0620^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}^{\circ}\left(70^{\circ} \mathrm{C}\right.$ Lloyds) with relatives humidy upto 90% They arecalibrated for othertemperatures within the working ranges can be specified.
(Loyds Stippingat $35^{\circ} \mathrm{C}$)

Dampingetime

35 second is usual More heavily damped movements areavailableonrequest
Illumination
Intêmally illuminated dials are àvailable for Módels 243 244 and 246; 240° moving coil.
The replaceable rear mounted lamps are supplied for 6 12 or 24 V
Mounting Clamps

Models 242; 243 and 244 are provided with two corner: fixing clamps and tensioning thumb screws..

Dials and Scales

Standard dials are acrylic matt white with black printed scales and bar pointers.

They are scaled in accordance to DIN 43802. Interchangeable slide-in dials are used on models 243 and 244 short śċale moving iron andimoving coil.
360° Instruments have, platform dials.
Black dials with white or yellow scales and pointers are availables.

General options include , red supple mentary pointers, red indexes (quadrant scales); red, green or blue lines; bands or segments, finely spaced divisions, multiscales and special; scales and captions. to customers'. requirements:

All 243 and 24490° scalevoltmeters, ammetèrs;andifrequency:meters have slide in dial; offering the benefit of low stock costs as only the basicinstrumentstypes need to be stocked together with ranges of dials: Other dials can be obtained rapidly from oúr local sales and service centres or agents:

Mounting Angle

Standards instruments, care calibrated: for mounting: on a verticalpanely
Specialicalibration formother mounting positions can berprovided on request. Specify the angle of inclinations required in degrees: a° from the horizontal:

World Patents

Crompton indicators incorpörate features. covered by one or: more ofthe; following patents:-

1212.245, 29.466\%7,

AUSTRALIA: 415.321.
CANADA: 792;902: 846,338
GERMANY: 1.591864 P1.591864.6
P $2747965.8 ;$ G 7.732975 .0
U:S 3.439 .273 3590,375, 845032

Model 246 and Meter Relay model 244-30, have two side fixing spring clips.

EA\&V~

Moving Iron

Designed to measure a.c. current or voltage, these rugged movements in.dicate true r.m.s. values substantially independent of system wave form. Scales are calibrated down to 20%. Ammeters can have overload scales $\times 2$ or $\times 6$ - for motor start duty. Heavy damping is available..
Ammeters are scaled for use with $-/ 1 \mathrm{~A}^{-}$ or $-/ 5 \mathrm{~A}$ current transformers for high. ratings or remote indication.
Calibration for d.c.. can be arranged on 90° ratings.:

Moving: Coil

Theseself-shieldedhigh-torque movementsare suitable for all dic systems: The linear scale is calibrated down to zero and accuracy-maintained down to:
10\%
High current ratings are measured with
separate, shunts and suitably scaled indicators
Suppressed, centre or off-set zero
modelsare availableandindicators can 60,75150 ver for use with shunts be caliorated fore withtachogener wimpedance
ators transduceroutputs processignals
and similarelectrical sensors:
Model 242 , 90° scale has a piotted

Maximum Demand Indicator

Thethermal/rimesharacteristic of MDIs: monitors the mostreconomic use: of cable fúsegear and transformers The difectlyheated bimetal element indicatesmean simurrent over 8,15 or 20 mins Atredslave polnter shows: highest valuereached andxhas wire sealablerreset knoble
Theroptionalysurating G. limits the powerintorthe:MDF and is.used where: a protection relay: is connected in series fromithe sameC.T. Scales:are calibrated to match the $\mathrm{C} \mathrm{T}_{\mathrm{t}}$. plus: 20% overload (e.g. $0-5-6 A$)

Moving lron + MDI

Where the instantaneous and maximum. demand currents are-required, this instrument. combines both movements in one case: It can - replace an existing M.I. ammeter.

The scales are calibrated to match the C.T: primary plús 20%-overload. End values are selècted from:1.2 1.82.433.64.86 7.2.9 and their multiples of. 10 and 100.

Accuracy

Class 1.5 (Class 2 model 24290° scale) Ratings
Ammeters:
0.5A to 100A direct connected (25A for 242-90 \& 240° scales)
Ratings tor use-with C.T.s.
Scales with $\times 2$ or $\times 6$ overload.
Lów load scales (max 10A).
Voltmeters:
6 V to 600 V direct connected.
100. 133;140.:150V for use with V.T.s. Frequency 50% or $60 . \mathrm{Hz} .400 \mathrm{~Hz}$ on request.
Burden at 50 Hz .
Ammeters: $90^{\circ}-0.5 \mathrm{VA}, 240^{\circ}-1.5 \mathrm{VA}$.
Voltmeters: 4:5VA max.
Accuracy
Class..1.5
Ratings.
Ammeters
100 A to $25 A$ direct connected. 4/20mA:suppréssedzero:
Voltmeters:
$60 \mathrm{~m}, ~ \mathrm{~V}$ to 600 V direct connected
1% V. suppressed zero.....

Aneters $1000 \Omega / \mathrm{V}$ above 1 V
Ammeters 75 mV internalstiunt above
$60 \mathrm{~m}^{4}{ }^{2}$
rivalues seepublication T1.18 8 ,

Accuracy Class 3

Ratings:
5Afor ưe with separate C Th,
5/5A saturating CT (dimt C^{n} page $1: 2$)
becomes 83 mm$)^{2}$
Burdens $\approx 50 / 60 \mathrm{~Hz}$
MDI:-2.5VA, CT $22 \mathrm{~V}: \mathrm{A}$
Overload withstand to
Standard: 5: x FL for 5 sec
$10 \times F$ for $1 \mathrm{sec}_{2}$
With saturating $C \mathrm{~F}, 10 \times F \mathrm{~F}$ for 3 sec
$20^{\circ} \times$ FL for 1 sec
Fiequency 50/60 Hz -
Models 243,24490 scale 9

Accuracy

Bimetal element
Class 3
Class 1.5
Moving iron ammeter.
Ratings
5A for use with separate C.T.
5/5A saturating C.T. (dim: 'C' page' 12 becomes 83 mm).
Burdens $50 / 60 \mathrm{~Hz}$
$\mathrm{MDI}^{\circ}-2.5 \mathrm{VA}, \mathrm{CT}-2 \mathrm{VA}, \mathrm{MI}-0.5 \mathrm{VA}$.
Overload withstand
Standard: $5 \times \mathrm{FL}$ for 5 sec
$10 \times \mathrm{FL}$ for 1 sec
With saturating C.T. $\because 10 \times$ FL for 3 sec $20 \times \mathrm{FL}$ for 1 sec
Frequency $50 / 60 \mathrm{~Hz}$
Model $244,90^{\circ}$ scale only:

Quadratic

- 240 Series

Symbols based on DIN43 807. Transformer terminal markings to BS3938/3941.

Dimensions Case sizes to DIN43700. Narrow bezels to DIN43718.

Model	242	243	244	246
Bezel 'A'	48×48	72×72	96×96	144×144
Panel cut-out 'B'	45×45	68×68	92×92	138×138
Scale length: 90°	42	65	94	145
" " $240{ }^{\circ} \mathrm{C}$	72	112	150	230
Maximum overall depth ' C '	242	243	244	246
Ammeter and Voltmeter	75	78	78	95
Maximum Demand Indicator		78	78	95
Watmeter, VArmeter - 90°	\star	*	87	145
- 240°	*	*	145	145
Phase Angle, Power Factor Meter - 90°	*	*	65	*
- 240°	*	*	126	-
Frequency Meter -- 90°	*	78	78	95
-240	*	-	140	131
*M.C. Indicator with separate transducer	75	78	78	95
Reed Frequency Meter	-	78	78	-
Synchronising Voltmeter	-	-	78	-
Synchroscope, 360° Power Factor Meter	-	-	140	131
Phase Sequence Indicator	-	-	78	-
Position Indicator	*	*	140	131
Speed Indicator	75	78	78	95
Temperature Indicators	-	-	140	131
Elapsed Time Meter	-	78	78	-
Meter Relay	-	-	120	-

Terminals: Voltage and current up to 30A - M5 screw clamps. Current above 30A - M8 studs with nuts.

* Dimensions of external transducers for use with moving coil indicators are given in publication SW250IT or SW250T.

The information contained in this specification is correct at the time of publication, but the right is reserved to supply instruments differing in construction and appearance from those illustrated and described.

SECTION N

SELECTOR SWITCHES
 KRAUS \& NAIMIER CG8 SERIES

```
CG8-A007-621-FT2 VOLTMETER SELECTOR SWITCH CG8-A223-600-FT2 START MODE SELECTOR SWITCH CG8-A221-600-FT2 START MODE SELECTOR SWITCH CG8-A369-600-FT2 EMERGENCY MODE SELECTOR SWITCH CG8-A200-621-FT2 LIGHTING SELECTOR SWITCH
```

SUPPLIED BY: AUSTRALIAN SOLONOID PTY LTD 22 BROOKES STREET BOWEN HILLS QLD 4006
TELEPHONE: (07) 2528344

catalog f20 CG-SWITCHES

- 10 A - 25 A

CONSTRUCTION DATA

Cam switches of the CG series are designed for universal application and may ideally be used for control switches, instrumentation switches and motor control switches with high AC $11-$, AC3- and/or AC23 switching capability. All switches of the CG 4-1 type are particularly suitable for low voltage switching. This facilitates the use of the CG4 series even in electronic circuitry as well as in aggressive environments.

All switches of this series are supplied with open terminals which are accessible while the switch is installed. The terminals as well as any terminal connection are protected against accidental finger contact in accordance with VDE 0660, section 100 (VGB 4). Captive plus-minus terminal screws and integrated screwdriver guides facilitate wiring. Due to the particular axial arrangement of the terminals, it is possible to install the switches closely, side by side, or to mount them directly at the cable trays. The contact terminal numbers are easy to read, even if the switch is installed.

Switch types CG4, CG4-1, CG6 and CG7 are equipped with the escutcheon plate size $30 \times 30 \mathrm{~mm}$ ($1.181^{\prime \prime} \times 1.181$ "). These switches offer maximum space saving benefits. The escutcheon plate is designed to match push-button and indicator units. A single hole mounting with protection grade IP65 is suitable for either 16 or 22 mm and 22 or 30 mm mounting dimensions and is available with key operator, if required.

CG4 and CG4-1 contacts are supplied standard with gold plating 0,3 or 35μ. Hereby a higher contact security is guaranteed.

Switching angle of CG switches may be $30^{\circ}, 45^{\circ}, 60^{\circ}$ or 90°. The maximum number of contacts differs and depends on the particular type of switch.

```
CG4 and CG4-1. = 16 contacts
CG6 and CG7 = 8 contacts
CG8, CG9, CG16, CG17,
CG16B and CG17B = 24 contacts
```


ON/OFF SWITCHES WITH 60° SWITCHING

type/handle								
FUNCTION	ESCUTCH, PLATE	$\begin{aligned} & \text { CG4 } \\ & \text { CG4-1 } \end{aligned}$	$\begin{aligned} & \text { CG6 } \\ & \text { CG7 } \end{aligned}$	$\begin{aligned} & \text { CG8- } \\ & \text { CG17 } \end{aligned}$	$\begin{aligned} & \text { CG16B } \\ & \text { CG17B: } \end{aligned}$	CODE. NO.	STAGES	CONNECTING DIAGRAM

DOUBLE-THROW SWITCHES WITHOUT 'OFF' 60° SWITCHING

DOUBLE-THROW SWITCHES WIT,HOUT 'OFF' with electrically isolated contacts

DOUBLE-THROW SWITCHES with spring return

8

VOLTMETER SWITCHES WITH 'OFF'

SELECTION DATA			CG6	CG7	CG16	CG17	
		CG4	CG4-1	CG8	CG9	CG16B	CG178

MOTOR RATING		IEC/VDE/BS									
AC 2	Slip ring motor starting,		220 V		2,5	2,5	4	4	5,5	5.5	
	reversing and plugging,		380 V		4,5	4,5	7,5	7,5	11	11	
	star-delta starting	3 phase 3 pole	415 V	kW	4.5	4,5	7,5	7,5	11	11	
			440 V		4,5	4,5	7,5	7,5	11	11	
			500 V		5,5	5,5	10	10	15	15	
			660 V		-	-	-	10	-	13	
AC 3	Direct-on-line starting		220 V		1,5	1,5	3	3	4	4	
		3 phase 3 pole	380/440 V	kW	2,2	2,2	5,5	5,5	7.5	7,5	
			500 V		3	3	5,5	5.5	7,5	7,5	
			660 V		-	-	-	5,5	-	7,5	
		1 phase 2 pole	110 V	kW	0,3	0,3	0,6	0,6	1,5	1,5	
			220 V		0,55	0,55	2,2	2,2	3	3	
			380/440 V		0,75	0,75	3	3	3,7	3,7	
AC 4	Direct-on-line starting, reversing, plugging and inching		220 V		0,37	0,37	0,55	0,55	1,5	1,5	
		3 phase	$380 / 415 \mathrm{~V}$	kW	0,55	0,55	1,5	1,5	3	3	
		3 pole	440/500 V		0,55	0,55	1,5	1,5	3	3	
			660 V		-	-	-	1,5	-	3	
			110 V		0,15	0,15	0,3	0,3	0,45	0,45	
		1 phase	220 V	kW	0,25	0,25	0,75	0,75	1,1	. 1,1	
		2 pole	380 V	kW	0,5	0,5	1,5	1,5	2,2	2,2	
			440 V		0,5	0,5	1,5	1,5	2,2	2,2	
AC 23	Occasional switching of motors or other high inductive loads (selection criterion for main switches)		220 V		1,8	1,8	3,7	3,7	5,5	5,5	
		3 phase	380/440 V	kW	3	3	7,5	7,5	11	11	
		3 pole	500 V	kW	3,7	3,7	7.5	7,5	11	11	
			660 V		-	-	-	7,5	-	11	
			110 V		0,37	0,37	0,75	0,75	1,5	1,5	
		1 phase	220 V	kW	0,75	0,75	2,5	2,5	3	3	
			380/440 V		1,1	1,1	3,7	3,7	5,5	5,5	
RATINGS		UL/CSA ${ }^{1 \prime}$									
Standard motor load DOL-Rating (similar AC 3)			120 V	HP	1	1	1,5	1,5	2	2	
		3 phase 3 pole	240 V		1	1	3	3	5	5	
		480 V	-		.	-	5	-	10		
		600 V	-		-		5		10		
		1 phase 2 pole	120 V	HP	0,33	0,33	0,5	0,5	1	1	
		240 V	0,75		0,75	1	1	2	2		
		277 V	0,75		0,75	1	1	3	3		
Heavy motor load-reversing (similar AC 4)				120 V		0,33	0,33	0,5	0,5	1	1
		3 phase	240 V	HP	0,75	0,75	1	1	2	2	
		3 pole	480 V		-	-	-	2	-	5	
			600 V		-	-	-	2	-	5	
MAX. PERMISSIBLE WIRE GAGE											
stranded wire 2 x					imm ${ }^{\text {' }}$	1,5	1,5	2,5	2,5	4	4
				AWG:	14	14	12	12	10	10	
flexible (with sleeve)				mm^{2}	1,5	1,5	2,5	2,5	4	4	
					$(-)$	$(-)$	$(2,5)$	$(2,5)$	$(2,5)$	$(2,5)$	
				:AWG	16	16	14	14	12	12	

DRY CIRCUIT RATINGS CG4-1		Rated voltage						110 V	220 V
		1 V	6 V	12 V	24 V	48 V	60 V	120 V	240 V
	$A C 1$ A	1	0,6	0,45	0,3	0,22	0,2	0,15	0,1
Rated operational currents	DC 1 A	0,75	0,45	0,35	0,22	0,13	0,1	0,05	0,025

1) CG6, CG8, CG16 and CG16B acc. to CSA max. 150 V

SECTION 0

CONTROL RELAYS

EMAIL RH2B-U SERIES

RH2B-U 110V AC RELAY

SUPPLIĖD BY EMAIL ELECTRONICS
937 KINGSFORD SMITH DRIVE
EAGLE FARM QLD 4007
TELEPHONE (07) 8681055
FAX (07) $868 \quad 1525$

GENERAL

The IZUMI Yellow Reiay RH Series are general purpose power relays with 10A contact capacity, equivalent to RR series relays. As small as IZUMI Miniature Relays, they permit very compact system design and are ideal for installation in small control equipment.
Two types of terminal styles are available: Blade and printed circuit board (2 mm wide) types, with $1,2,3$ or 4 poles. Also available is a top bracket mounting type with blade terminals and 1,2 , or 4 poles.

FEATURES

- Midget Type Large Capacity Power Relay

They have the same capacity as IZUMI Power Relays, with 10A contact rating, $2,000 \mathrm{~V}$ dielectric strength, but are enclosed in a miniature size relay case.

- Power Saving

Power consumption is as small as IZUMI miniature relays.

- Simple Construction and High Reliability With simple construction comprising the least number of components possible, these relays are rugged and have high impact resistance.
- UL Recongized and CSA Certified
- Complete with Accessories

In addition to three different types of sockets, various accessories such as hold-down springs and relay holders are available for convenient relay application.

TYPE LIST

Terminal style	Contact configuration	Basic type	With indicator light	With check button	Top bracket mounting type	With indicator light and check button
B \{Blade)	SPDT	RH1B-U	--	--	RHIB-UT	--
	DPDT	RH2B.U	RH2B-UL	RH2B-UC	RH2B-UT	RH2B-ULC
	$3 P 01$	RH3B-U	RH3B-UL	RH3B-UC	--	RH3B-ULC
	4 POT	RH4B-U	RH4B-UL	AH48.UC	RH4B-UT	RH4B-ULC
V2 (PCE 2-mm wide)	SPOT	RH1V2-U	--	--	--	--
	DPOT	RH2V2U	RH2V2-UL	- RH2V2.UC	--	RH2V2-ULC
	3POT	RH3V2-U	RH3V2.UL	RH3V2.UC	--	RH3V2.ULC
	4 PDT	RH4V2-U	RH4V2-UL	RH4V2-UC	--	RH4V2.ULC

COIL RATINGS

NOTE: Aared voltages marked with • are not available for SPDT models.

CONTACT RATING

Nominal Rating

Voltage	Resistive			Inductive			
	SPDT	OPDT	$3 P O T$	$4 P D T$	SPDT	DPDT	$3 P D T$
$20 \vee \mathrm{APOT}$	7 A	7.5 A	7.5 A	7.5 A	4.5 A	5 A	5 A

inductive load: $\cos \phi=0.3, \bar{L} / \mathrm{R}=7 \mathrm{msec}$

CSA Rating

Voltage	Aesistive				General use			
	SPDT	DPDT	3 POT	4PDT	SPDT	DPDT	3PDT	4PDT
240 V AC	10A	10A	-	7.5A	7A	7A	7A	5A
120 VAC	10A	10A	10A	10 A	7.5A	7.5A	-	7.5 A
30 V DC	10A	10 A	10 A	10A	7A	7.5 A	-	-

Note: Motor Load
$1 / 3 \mathrm{HP}$ for SPDT, DPDT and 3PDT (240 V AC) $1 / 6 \mathrm{HP}$ for SPDT, DPDT and 3PDT (120 V AC)

UL Rating

Voltage	Resistive				General use				Motor Load	
	SPDT	DPDT	3PDT	4PDT	SPDT	DPDT	3PDT	4POT	SPDT	DPDT 3 PDT
240, V AC	10 A	10A	-	7.5A	7 A .	7A	*	5A	1/31P	1/3 +1/31P
120 V AC	-	-	10A	10A	-	-	-	7.5 A	1/6 P	1/6ト
30 VDC	10A	10A	10A	-	7 A	7 A	-	-	-	- -
28 V DC	-	-	-	10A	-	-	-	-	-	\cdots

[^3]YELLOW RELAYS

RH SERIES

SPECIFICATIONS

	Contact material	Silver cadmium oxide (Ag -CdO)
	Contact resistance	$50 \mathrm{~m} \Omega$ max. (initial value)
	Operate time	SPDT. DPDT (RH1, RH2) 20 msec max. 3PDT, 4 PDT (RH3, RH4) . . . 25 msec max.
	Release time	SPDT, DPDT (RH1, RH2) 20 msec max. 3PDT, 4 PDT ($\mathrm{RH} 3, \mathrm{RH} 4$) 25 msec max.
1	Power consumption (Approx.)	
	Insulation resistance	$100 \mathrm{M} \Omega \mathrm{min}$. (measured with 500 V DC megger)
	Dielectric strength	SPDT (RH1) Between live and dead parts: 2000 V AC. 1 min Between contact circuit and operating coil: 2000 V AC. 1 min Between contacts of the same pole 1000 V AC. 1 min DPDT, 3PDT, $4 P D T$ (RH2, RH3, RH4) Between live and dead parts: 2000 V AC, 1 min Between contact circuit and operating coil: 2000V AC. 1 min Between contact circuits: 1500 V AC. 1 min - Berween contacts of the same pole: 1000 V AC. 1 min
	Frequency response	1800 operations/hour
	Temperature rise	Coil: 85 deg max., Contact: 65 deg max.
	Vibration resistance	0 to 6 g (55 Hz max.)
	Shock resistance	SPDT, DPDT (RH1. RH2) 20 g 3PDT, 4 PDT (RH3, RH4) 10 g
	Life expectancy	Electrical: Over 500.000 operations (110 V AC, 10A) ${ }^{\text {• }}$ Mechanical: Over 50,000,000 operations
	Ambient temperature	-5 to $+40^{\circ} \mathrm{C}$
	Weight (Approx.)	RH1: $24 \mathrm{~g}, \mathrm{RH} 2: 37 \mathrm{~g}, \mathrm{RH} 3: 50 \mathrm{~g}, \mathrm{RH} 4: 74 \mathrm{~g}$

NOTE*: Over 200,000 operations (110V AC, 10A) in SPDT (RH1). 3PDT (RH3) and 4PDT (RH4) types.

CIRCUIT DIAGRAM (BOTTOM VIEW)

RH1
RH2
RH3 RH4

SOCKET

DIN Rail Mount Socket

Type SH1B.05U
For RH1B
Weight Approx. 26.5 g

Type SH2B-05U
For RH2B
Weight Approx. 42.5 g

Type SH3B-05U
For RH3B
Weight Approx 59 g

Type SH4B-05U
For RH4B
Weight Approx. 74.5 g

Panel Mount Socket

디 (1)

Type SH1B-51
For RH1B
Weight Approx. 6.4 g

Type SH2B-51
For RH2B
Weight Approx. 9.7 g

Type SH3B-51
For RH3B
Weight Aporox. 14 g

Type SH3B-62
For RH3B
Weight Approx. 11 g

Type SH4B-51
For RH4B
Weight Approx. 17 g

Type SH4B-62
For RH4B
Weight Approx. 16 g

NOTE: DIN Rail Mount Sockets can securely snap on $35-\mathrm{mm}$-wide IZUMI Types BAA,BAP, and BADA OIN Rails, and can also mount on panel surfaces with screws.
HOLD-DOWN SPRING

Type No.	Compatible socket	Compatible relay
SFA-202, SFA-101	SH1B-05U	RH1B
SFA-202, SFA-101	SH2B-05U	RH2B
SFA-101	SH3BB-05U	RH3B
SFA-101	SH4B-05U	RH4B
SFA-302, SFA-301	SH1B-51	RH1B
SY4S-51F1	SH1B-62	
SFA-302, SFA-301	SH2B-51	
SY4S-51F1	SH2B-5	RH2B
(SY4S-02F1)	SH2B-62	
SY4S-51F1	SH3B-51	RH3B
(SH3B-05F1)	SH3B-62	
SY4S-51F1	SH4B-51	RH4B
(SH4B-02F1)	SH4B-62	

NOTE: 1 For relays with check button (C type), springs marked with • can not be used, instead springs for DIN rail mount sockets shown in (, are applicable, but close mounting is impossible.
2. When an RH4B relay marked with e is mounted on a panel mount socket, use two SY4S-51F1 hold-down springs for each unit.

SECTION PQ

CONTROL FUSES

GEC RS SERIES
RS20H BLACK FUSE CARRIERS
RS20H WHITE FUSE CARRIES

FUSE CARTRIDGES

GEC TYPE T SERIES

NIT 2

SUPPLIED BY G.E.C. AUSTRALIA PTY LTD 663 KINGSFORD SMITH DRIVE EAGLE FARM QLD 4007

TELEPHONE: (O7) 8681000

Fuse fittings to AS2005.21.2-1990 BS88: Part 2: 1988660 volts A.C./D.C. Approved by leading Authorities and used in equipment approved by Lloyds.

SAFETY FEATURES

Full Shrouding for personnel safety and complete compliance with the direct contact electric shock.

Insulating sleeves are fitted to front connected fuse bases to provide increased protection at the cable entry point.

Separate base contact insulating shrouds of great. strength and flexibility ensure that no 'live' metal is dangerously exposed when the fuse carrier is removed - this enables an outgoing circuit to be cabled with complete safety to personnel and with continuity of supply to other circuits.

Anti-vibration features protect against release of a fuse-carrier due to vibration in service. In the 400 amp size this includes a safety catch which automatically locks on the insertion of the fuse carrier.

RED SPOT SPECIAL FEATURES

20, 32, $63 \& 100 \mathrm{amp}$ fuse fittings
Perfect alignment of contacts with single-screw fixing achieved by registration on facets in moulding.
Large contact area and anti-vibration feature incorporated in brass contacts of accurate dimensions.

Tapered shank of fuse link fixing screw ensures easy re-entry.
Safety shroud (cut-away to show base contact) made from moulded red nylon of great strength and flexibility.

Patented non-twist cable clamping screw of large diameter.
Lasting contact pressure ensured by backing stirrups which are located by the shape of the base contact and the moulding.
Carrier and base moulded from flame retardant, non-hygroscopic phenolic.

RED SPOT

200 \& 400 amp fuse fittings

High quality mouldings, safety shrouds and precision made copper contacts ensure reliable operation.

Additional special features

Through grip handle for maximum control.

Silver plated contacts with generous cross section.

Guides to ensure parallel action on insertion or withdrawal of fuse carrier.

Patented non-twist cable clamping screws of large diameter on the 200 amp and cable clamping plate on the 400 amp fuse holders prevent damage to cables.

Terminal screw locking device, incorporating the principle used in the twelve sided spanner, can be fitted to the hexagon head of the terminal screw, whatever its position when fully tightened, by using one of the two positions provided for locating the captive screw (arrowed in FIG. 3)

FIG. 3 Front connected 200 amp RED SPOT fuse base with shroud removed and with moulding partly cut-away to show silver:plated base contact and terminal screw locking device.
FIG. 4 Front coinnected 400 amp RED SPOT fuse fitting with moulding partly cut-away to show silver-plated contact, red nylon shroud and cable clamping device.

LIST NUMBERS

for ordering purposes

Standard Colours: Black \& White (RS20 - RS100)

Rating amp	Alternative type of connection			
	FRONT	BACK	FRONTIBACK	BACK WIRED
20	RS20H*	RS20P	RS20PH	RS208W
32	RS32H	RS32P	RS32PH	RS328W
63	RS63H	RS63P	RS63PH	RS638W
100	RS $100 \mathrm{H}+$	RS100P	RS100PH	RS100BW \dot{j}
200	RS200H	RS200P	RS200PH	
400	RS400H	RS400P	RS400PH	

[^4]

H.R.C. FUSE LINKS ACCOMMODATED				
Fuse fitting rating amp	Type ' T ' to BS.88:Part 2 \& AS2005.21.2	Extended range of Type ' T ' to BS.88:Part 2: \& AS2005.21.2 for motor circuit protection. (660 volts a.c.)		
		List No.	Current rating amp	Rating for motor starting amp
20	NIT2-20A (550 volts a.c.)	NIT20M25 NIT20M32 (415 volis a.c)	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 25 \\ & 32 \end{aligned}$
32	TIA2.32A	TIA32M35 TIA32M40 TIA32M50 TIA32M63	$\begin{aligned} & 32 \\ & 32 \\ & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \\ & 50 \\ & 63 \\ & \hline \end{aligned}$
63	$\begin{aligned} & \text { TIA2-32A } \\ & \text { TIS35-63A } \end{aligned}$	$\begin{aligned} & \text { TIS63M80 } \\ & \text { TIS63M100 } \end{aligned}$	$\begin{aligned} & 63 \\ & 63 \end{aligned}$	$\begin{array}{r} 80 \\ 100 \end{array}$
100	$\begin{aligned} & \text { TIA2-32A } \dagger \\ & \text { TIS35-63A } \dagger \\ & \text { TCP80 \& 100A } \end{aligned}$	$\begin{aligned} & \text { TCP100M125 } \\ & \text { TCP100M160 } \\ & \text { TCP100M200 } \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 125 \\ & 160 \\ & 200 \end{aligned}$
200	TBC2-63A TC80 \& 100A TF125-200A	$\begin{aligned} & \text { TF200M250 } \\ & \text { TF200M315 } \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{array}{r} 250 \\ .315 \end{array}$
400	TBC2-63AS TC80 \& 100 § TF125-200 § TKF250 \& 315 § TKM250 \& 315A TM355 \& 400A	TM400M450	400	450
+ Adaptor plate required Type 'A' 5889306-010 § Adaptor olate required Type ' 8 ' 5BB9307.010 * 550 volts a.c.		Note: For full details on Type 'T' fuse links, including D.C. performance, please refer to Publication IEF/401 or PSP0000		

FIG. 5 Front connecied 63 amp fuse fitting

METHOD OF CABLING

Front connected fuse fittings

1) Remove red nylon insulating shroud to release cable sleeve.
2) Remove cable sleeve.
3). Fit cable sleeve over cable.
3) Fit conductor into fuşe base terminal and tighten cable clamping screw to secure. If flexible cables are used, their relatively fine strands may be given increased protection by the use of thin wall copper ferrules over the conductor ends. The following should be taken into account:
a) The inside diameter of the thin wall copper ferrule should match that of the bared conductor end as closely as possible.
b) The length of the thin wall copper ferrule should match that of the tunnel in the fuse base terminal.
c) The wall thickness of the ferrule should be thin enough for the ferrule to be compressed by the tightening of the cable clamping screw. The flexible conductors will then be consolidated within the deformed ferrule.
4) Replace red nylon shroud taking care that it holds the cable sleeve in position by locating the shroud in the groove provided in the sleeves.

RS $100 \mathrm{H}-\mathrm{S}$ \& RS 100 BW-S (COUNCIL SEALABLE)

6) Fit-nylon-serew-through-the-red nylon shroud-with-theheads of the screws against the shrouds. Fasten the wingnuts on to the fuse fitting base.

20 amp RED SPOT Fuse Fittings

FRONT CONNECTED

FRONT/BACK CONNECTED

BACK CONNECTED - SURFACE

	A	B	C_{1}	C_{2}	D	E	F	G	H	J	K	L	X	Y	Y_{2}	Z
mm	27.0	79.0	54.0	55.0	63	35	M 6	13.5	15.0	16	22.0	29	6.0	5.6	6.6	37

PANEL DRILLING DIMENSIONS

Viewed From Front Of Panel

 IEFL 4011 N DEGEMBETRTI88 Winersed

$$
\begin{aligned}
& \text { 4 } 13 \\
& 4 y^{2} 1^{2} x^{2}
\end{aligned}
$$

Type	Ratings Amp	Utilisation category*	BS88-2 Dimension reference	Maximum voltage rating	
				AC	DC
NIT	2.20	gG	A1	550	250
NIT	20M25.20M32	gM	A1	415	-
TIA	2-32	gG	A2	ô60	460
TIA	32M35-32M63	gM	A2	660	460
TIS	35.63	gG	A3	660	460
Tis	3M80, 63M100	gM	A3	660	-
TCP	80.100	gG	A4	660	480
TCP	100M125-100M200	gM	A4	660	350
TFP	($125-200$	gG	-	660	350
TB	$2 \cdot 63$	gG	-	660	460
TBC	2.63	gG	-	660	460
TC	80, 100	gG	81	660	460
TC	100M125-100M200	gM	B1	660	350
TF \ddagger	125-200	gG	B2	660	350
TF	200M250	gM	B2	660	460
TF	200M315	gM	B2	550	-
TKF	250,315	gG	B3	660	460
TKF	315 M 355	gM	B3	660	460
TKM	250,315	gG	-	660	460
TMF	355.400	gG	B4	660	460
TMF	400M450	gM	84	660	460
TM	355.400	gG	C1	660	460
TM	400 M 450	gM	Cl	660	460
TMT	355.400	gG	-	660	460
TTM	450-630	gG	C2	660	450
TM	630M670	gM	C2	660	450
π	450-630	gG	-	660	450
TLM \ddagger	670-800	gG	C3	660	350
TLT	670-800	gG	-	660	350
TLU	560-800	gG	-	660	350
TXU	1000.1250	gG	01	660	300

* See page 8
\ddagger Type TZF and TZLM luse links proved at 460 V DC are available for users who need superior DC performance in these dimensional references

Notes

1) Non-standard lag
arrangements available Details on request.
2) A 1600 Amp Type TUV 1600
fuse link is also available.
This is outside the scope of the
specification. Details on
request.
'ASTA20 Certified' endorsement on a low vollage fuse link indicates that the design has been proved and Centified by ASTA to the relevant B. S. and that the fuse links are examined periodically under the ASTA surveillance scheme.

[^5]

The HRC fuse link selected for any circuit should have a continuous current rating not less than the full load current of the circuit.

A standard rating of type $\cdot T$ ' use link (classified as type ' gG ' to BS88:Part 1:1988, and marked accoroingly) will protect an associated pve insulated cable against both overload and short
circuit if its current rating (I_{n}) is equal to, or less than, the current rating of the cable $\left(\mathrm{I}_{2}\right)$. This is in accordance with rule 433-2 of 15th Edition. IEE Wiring Regulations for Electrical Installations.

In some circuits (eg. motor circuits) it is not economical practice to match fuse link and cable ratings to provide complete cable protection in the manner described above. oecause the circuits produce significant overcurrents during switching. In such
cases the fuse links are chosen to withstand the transient conditions, and provide only shor circuit protection to the associated cables and other circuit components, the necessary overload protection then oeing provided by other means. In a motor circuit, for example.

Conductor cross sectional area mm^{2}	Maximum curr capacity 'Open' conditions Ratings as Column 7 of IEE Table 90I Method 1 - 3 or 4 single core cables in 'clipped direct' conditions Amp	carrying 'Enclosed' conditions Ratings as Column 5 of IEE Table 9DI Method 3 - 3 or 4 single core cables in 'enclosed' conditions Amp	Maximum current rating of Type 'T' fuse link that can be used with this conductor Amp
1	14	12	20°
1.5	18	15.5	25
$2 \cdot 5$	25	21	35
4	33	28	50
6	43	36	63
10	59	50	100
16	79	68	160
25	104	89	200
35	129.	110	315
50	167	134	355
70	214	171	500
95	261	207	630
120	303	239	750

the contactor and its overload relays afford overload protection to motor windings and caole, and the fuse links are chosen to protect all the circuit components against damage when a shori circuit íault occurs (see section on motor circuit protection on page 12).

The short circuit protection of cables is covered by rule 434-6 of the IEE Wiring Regulations, and the table shows how type ' T ' fuse links relate to this rule in protecting pve insulated copper conductors.

Notes

The formula given in rule 4.34.6
is: $I^{2} t=k^{2} S^{2}$
Where
$I=$ current which causes iuseto
operate in 5 seconds
$1=5$ seconds
$k=115$, the constant for pvo insulated copper
conductors, when cables run at maximum current carying capacity
$S=$ conductor cross sectional area in mm^{2}

- $1 \mathrm{~mm}^{2}$ cable to be run continuously at nol more than 6.5A when used with 20A fuse link rating.
\dagger Where a fuse link from the extended range of moior circuit fuse links is used (ie. one classified and marked ' $g M^{\prime}$ ') the larger of its dual current ratings is applicable. eg. a TCP100M160 can be used with a $16 \mathrm{~mm}^{2}$ conductor.

Type 'T' fuse links limit the peak current and energy let through to circuits which experience major short circuit faults. This limitation is so great that equipment manufacturers exploit it to produce economic designs which, when used in combination with type ' T ' fuse links. can withstand very high faultlevels.
Such users have to prove their equipment under the worst possible
conoitions (ie. at maximum oreaking capacity. al 110% rated voltage, very low power factor, and with faults initiated at the most onerous points on the voltage wave), and they require relevant data from the itse link manufacturer. For type ' T ' fuse links this -is given-in the-formofthe cut=of current and $\mathrm{I}^{2} \mathrm{t}$ characteristics shown on pages 14 to 19 inclusive.

In service, the short circuit fault conditions encountered are usually less exacting than those produced in proving tests on fuse links and associated equipment. BS88:Part 1: 1988 states that fuse links experience fault currents which produce pre-arcing times longer than 0.01 second in most cases, and on that basis fuse links complying with the standard are deemed to discriminate with each other when the ratio between the current ratings of 'major' and 'minor' fuse links is $1 \cdot 6: 1$ (see Figure 1).

Whilst the BS88 statement is reasonable in relation to 240 V applications fault currents in major installations can be much greater. However, even in the latter cases conditions are less onerous than those encountered in test stations (in particular, the circuits are usually three phase with relatively high power factors).
In practice therefore, the $I^{2} t$ values of type ' T ' fuse links are significantly less than the ones listed on pages 14-17, and they will discriminate with each other at fault levels up to 80kA, 415V, if the relationship between 'major' and 'minor' ratings is as given in the table. In most cases the discrimination ratio is $1 \cdot 6: 1$, or less, and this provides economic benefits in modern installations. Tests have been tapken to prove this level of performance.
The table also gives details of combinations which will discriminate at 550 V and 660 V .

'Minor' fuse link rating	Minimum rating (Amp) of 'Major' fuse link that will discriminate with the 'minor' fuse link at the voltage shown at prospective currents up to 80kA		
Amp	415 V	550 V	660 V
800	1250	-	-
750	1250	1250	-
710	1250	1250	1250
670	1250	1250	1250
630	1000	1250	1250
560	800	800	1000
500	750	800	1000
450	670	750	800
400	630	670	750
355	630	630	670
315	500	500	630
250	400	450	500
200	315	400	400
160	250	315	315
125	200	200	250
100	160	200	200
80	125	160	160
63	100	160	160
50	80	100	125
40	63	63	100
35	50	63	80
32	40	50	63
25	40	40	40
20	32	32	35
16	25	25	32

Fig 1

To provide an adequate degree of protection against electric shock in a final circuit. Section 413 of the 15th Edition of the IEE Wiring Regulations for Electrical Installations requires a circuit protective device in a fixed installation to interrupt an earth fault current within 5 seconds. Maximum permitted earth loop impedance values $\left(Z_{s}\right)$ are specified for each circuit, the values being dependent on the type of protective device used. Table 41A2(a) of the Regulations specifies values of Z_{s} when fuse links to BS88:Part 2:1988 are used. These are generally higher than those specified for mob's, and the superior performance of fuse links in this respect enables economies to be made in the sizes of protective conductor instailed.
$Z_{s}=$ Circuit maximum earth loop impedance.

Type ' T ' rating	Earth loop impedance maximum value $\left(Z_{s}\right)$ for circuits supplying fixed equipment
Amp	Ohm
10	7.7
20	3.0
32	1.8
40	1.4
50	1.1
63	0.86
100	0.45
200	0.19
400	0.096
630	0.054
800	0.034

In accordance with BS88:Part 1:1988, type ' T ' fuse links are suitable for use in ambient air temperatures not exceeding $40^{\circ} \mathrm{C}$ with a mean value measured over 24 hours of not more than $35^{\circ} \mathrm{C}$. At higher temperatures derating may be necessary in some cases.
Type 'T' fuse links rated up to 25A do not need to be derated in ambient * air temperatures up to $65^{\circ} \mathrm{C}$, and ratings from 32A to 63A may be used in ambient " air temperatures up to $60^{\circ} \mathrm{C}$ without derating.
Larger current ratings can also be used in ambient " air temperatures greater than those specified in 8S88:Part 1:1988, and the table opposite gives maximum permitted load currents for such ambients.

Note

- In service. fuse links are almost invariably mounted in enclosures, and the latter are assumed to have inside temperatures $15^{\circ} \mathrm{C}$ higher than the outside ambient temoerature it they comply with relevant British Standards. Such equipment will be deraled in accordance with the known outside ambient air temperature (row A of the table). If the enclosure is non standard and/or mounted in a particularly harsh environment, it is necessany to de-rate the fuse link in accordance with the expected temperature inside the enclosure (row 8 of the table).

Nominal fuse rating	Maximum load current at these * ambient air temperatures $\left({ }^{\circ} \mathrm{C}\right)$				
	A				
	40°	45°	50°	55°	60°
	B				
Amp	55°	60°	65°	70°	75°
80	Fuse links can be fully rated			75	70
100				95	90
125				120	110
160				145	135
200			190	180	170
250			235	225	210
315		300	285	270	255
355		350	330	315	295
400		400	380	360	340
450		425	405	380	360
500	475	450	425	400	380
560	540	520	495	465	440
630	600	570	540	510	480
670	650	615	585	550	520
710	700	665	630	595	560
750	750	710	670	630	590
800	760	720	680	640	600
1000	950	900	850	800	750
1250	1140	1070	1020	960	900

Three phase power factor correction capacitors can be protected against case rupture, and their associated cables and equipment protected against damage, by Type ' T ' fuse links in the event of a capacitor failure. A fuse link with a current rating not less than 1.5 times rated capacitor current will be needed to withstand the associated switching transient currents and circuit harmonics.

Please consult GEC Installation Equipment Ltd, for advice on applications not covered in this publication.

All type 'T' fuse links have excellent ability to protect motor circuits. When selected in the manner shown below, they not only withstand motor starting surges and full load currents without deteriorating, but also provide superior short circuit protection to associated motor starter components.
Leading manufacturers of motor starters can offer ASTA certified type ' c ' co-ordination to Appendix C of BS4941:1979 (IEC292-1) by using type 'T' fuse links in combination with their chosen contactors and overload relays. Please consult GEC Installation Equipment for further information on this subject.

1 Table 1 opposite, gives motor full load currents at various system voltages. In the absence of specific information obtain the motor FLC from this table. 2 The motors are assumed to produce the starting conditions shown in Table 2. 3 Choose the recommended fuse link for the motor FLC and starting condition from Table 3 (D.O.L. start) or Table 4 (assisted start).

Table 1 Full load currents of typical 3-phase induction motors at voltages shown

Motor rating		220 V	380 V	415 V	440 V	550 V	660 V
kW	HP						
0.37	0.5	2.0	1.15	1.05	1.0	0.8	0.7
0.55	0.75	$2 \cdot 7$	1.6	1.5	1.4	1.1	0.9
0.75	1	3.9	$2 \cdot 3$	2.0	1.9	1.5	$1 \cdot 3$
1.1	1.5	4.7	2.8	2.5	$2 \cdot 4$	1.9	1.6
1.5	2	6.5	$3 \cdot 8$	$3 \cdot 5$	$3 \cdot 3$	26	$2 \cdot 2$
2.2	3	$9 \cdot 3$	$5 \cdot 4$	5.0	$4 \cdot 7$	3.8	3.2
3	4	12	7.1	$6 \cdot 5$	$6 \cdot 1$	4.9	4.1
4	$5 \cdot 5$	15.4	9.0	8.4	7.9	6.4	5.3
$5 \cdot 5$	7.5	$20 \cdot 7$	11.9	11	$10 \cdot 3$	8.2	6.9
75	10	28	$16 \cdot 1$	14.4	14	11.2	9.3
11	15	$39 \cdot 1$	23	21	19.8	15.8	$13 \cdot 2$
15	20	52.8	$30 \cdot 5$	28	26.4	21.1	$17 \cdot 6$
18.5	25	66	38	35	33	26.4	22
22	30	77	45	41	39	31	26
30	40	103	60	55	52	42	35
37	50	128	75	69	65	52	$43 \cdot 3$
45	60	151	87	80	75	60	50
55	75	185	107	98	92	74	62
75	100	257	148	136	128	102	85
90	120	308	180	164	154	123	102
110	150	370	214	196	185	148	123
132	175	426	247	226	213	170	142
150	200	500	292	268	252	202	168
160	215	-	300	275	260	207	173
200	270	-	391	358	338	270	225
240	320	-	467	428	404	323	269
280	375	-	533	488	460	368	307
300	400	-	573	525	495	396	330
320	425	-	587	538	507	406	338

Table 2 Assumed starting conditions

Motor rating	Direct-on-line starting conditions	Assisted start conditions
Up 10 1kW	$5 \times$ FLC for 5 secs	$2.5 \times$ FLC for 20 secs
1.1107 .5 kW	$6 \times$ FLC for 10 secs	$3.5 \times$ FLC for 20 secs
761075 kW	$7 \times$ FLC ior 10 secs	
Greater than 75 kW	$6 \times$ FLC ior 15 secs	

R.M.S. SYMMETRICAL PROSPECTIVE CURRENT IN AMPERES

Current rating	PreArcing	Total $\mathrm{I}^{2} \mathrm{t}$ ($\left.A^{2} \sec \right)$ at:	
Amp		415 V	550 V
2	$2 \cdot 2$	5.4	31
4	$7 \cdot 2$	18	70
6	21	60	400
10	100	280	1000
16	300	850	2000
20	540	1000	2500
20M25	900	3000	-
20 M 32	1100	4000	-

SECTION R

CONTROL TERMINALS

KLIPPON SAK 4 SERIES

1

SUPPLIED BY: QED PTY LTD
 9 HARVETON STREET
 STAFFORD QLD 4053

TELEPHONE: (O7) 3525399

Feed-through Terminals Type SAK

The SAK Series of feed-through terminal blocks are employed for the connection of various conductor sizes. The bare conductor is inserted directly into the yoke with no further preparation, and the tightening of the screw effects a vibration proof connection.

Most terminal types are available in either melamine moulding material or polyamide 6.6 and are designed to be mounted directly on assembly rail TS32 to EN50035. (BS5825)

Cross connection can be achieved using standard QL2-QL 10 jumper bars fitted in the centre of each terminal block.
Switchable connections can be achieved using the switchable link VL2.

For additional safety covers type AD may be fitted with a plastic screw on top of the ninal block

Screw Clamp
Connections
SAKD 2.5N
500V 20A

Technical Data
Conductor size

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Insulation stripping length | | (mm) | 9 | |
| Ordering Data | | | Cat. No. | |
| Moulding material | Polyamide | | 021556 | |
| When ordering EEx'e' and ExN | Polyamide | | 021558 | |

Ap
All
in
Te
Lo
End

SAK 2.5
 750V 27A

Thickness 6 mm	
$0.5-4$	
$0.5-4$	Cat. No.
9	027966
	027968
	027962
	027967

- BASEEFA-EX CEGB (B) M1 (V) (D) (S) क1

SECTION S

INDICATING LIGHTS

NHP DT3 SERIES

DT3P-GRB PUSH BUTTONS
DN3-40-01 EMERGENCY STOP PUSH BUTTON

SUPPLIEDBY:	NHP PTY LTD		
	25 TURBO DRIVE		
	COORPAROO QLD	4151	
TELEPHONE	$(07) 891$	6008	
FAX	$(07) 891$	6139	

Refer catalogue 1803

Pushbuttons

Design

Cat. No

Pushbutton	DT 3
Raised pushbutton ')	DTH 3
Latched pushbutton	DTV 3
Raised latched pushbutton ')	DTVH 3
Mushroom pushbutton ' $42 \mathrm{~mm} \varnothing$	DP 3
Latched mushroom pushbutton $42 \mathrm{~mm} \varnothing$	DPV 3
Mushroom pushbutton $68 \mathrm{~mm} \varnothing$	DPG 3
Latched mushroom pushbutton ${ }^{\prime}$) $68 \mathrm{~mm} \varnothing$	DPGV 3
Order number suffix	-

$\begin{array}{ll}\text { other text and } & 0 \\ \text { symbols }{ }^{2} \text {) } & \text { STAR } \\ & \text { STOP } \\ \text { black } & \text { blank }\end{array}$

DE 3 Contact blocks ${ }^{3}$) none
1 contact block
2 contact blocks

Notes: ') Legend caps cannot be used.
${ }^{2}$) Legend carriers and legend inserts, refer pages 10-23 \& 10-24.
${ }^{3}$) Further contact blocks can be fitted at the second level.
Contact blocks for base mounting (separate mounting) reter page 10-22.
For operating contact biock in centre position, use of operating bridge DT 3-OB is required refer page $10 \cdot 21$.

Standards

IEC 204-1, 337; SEV 1005, 1093; VDE 0113,
0660 PART 201; BS 4794; CEE 24; CSA 22.2,
Number 0, Number 14; UL 508, 486 E

Approvals

SEV, CSA, UL, CEBEC, Germ. Lloyd, DEMKO, NEMKO, SEMKO, Finland,
Buro Veritas, USSR Reg. in preparation

Rated insulation voltage U_{1}					
IEC 337, VDE 0110, insulation group C		660 V			
CSA, UL	600 V				
Test voltage					
phase-phase	$3 \mathrm{kV}, 1 \mathrm{~s}$				
phase-earth	$4 \mathrm{kV}, 1 \mathrm{~s}$				
Life	DT/DP	DS	DTV/DPV	DSS/DN/DNS	
mechanical	million operations	10	0.5	0.5	.0 .05
UL Utilisation category					
heavy pilot duty	AC	A 600			
light pilot duty	DC	Q 600			

Ambient temperature

Shock withstand
to IEC 68-2-27 $\quad 30 \mathrm{~g}$

Mounting orientation as required

Note: Example of central lamp test. For lamp element details refer page 10-26.

Refer catalogue 1803

Contact blocks

Fefer cataiogue 1803
Single person mounting
Front 1... 4
Rear 5... 7

1

Front element
ound or square, push, with the ;narkings at the top, into the 22.5 mm hole in the mounting plate.

2 Locking tabs
for securing the front section against unauthorised removal. From the rear, insert 2 of these 90° apart into the front element.

3 Eridge
for operating contacts at position 3 (centre position).
mit to front element from the rear. Secommended with contact blocks on second level (2 bridges required).
 with securing clip to snap onto front element. Not required for base mounting.
7 Contact blocks and lamp holders flush mounting snap onto coupling plate, or the rear of an existing contact block (2 levels of contacts).
Base mounting
snap onto the inside of the enclosure base or onto a hat rail, or secure with two screwed tixing straps.
8 Enclosures
available in plastic and aluminium die cast and supplied in 4 sizes with up to 5 control points.

Permissible combinations of contact blocks and lamp elements
Pushbuttons DT 3, DTH 3, DTV 3, DTVH 3, DP 3, DPV 3, DPG 3, DPGV 3 rotary switches DSH 3, DSK 3, DSS 3

Illuminated pushbuttons DTL 3, DTLV 3 illuminated rotary switches DSHL 3, DSKL 3
For filament lamps $6 \ldots 110 \mathrm{~V}$ for filament lamps with series diode $130 \mathrm{~V}, 2.6 \mathrm{~W}$

For filament lamps with central lamp test $6 \ldots 110 \mathrm{~V}$
for filament lamps with series diode and resistor and central lamp test 130V, 2.6W

With transformer element

SECTION T

INDICATING LIGHTS

ALAN BRADLEY 800T SERIES

800T/PL SERIES $110 / 6 \mathrm{~V}$ INDICATING LIGHTS 800T/PL SERIES 24V INDICATING LIGHTS

```
SUPPLIED BY: ASEA BROWN BOVERI DISTRIBUTION
                                    6 EDMONDSTON ROAD
                            MAYNE QLD
TELEPHONE (07) 858 2417
FAX (07) 369 5125
```

㨞ulletim Buat Olinight push butcons

- Bulletin 8007 oiltight devices provide a tight seal against most coolants, oils, and other non-corrosive industrial fluids.
- Ideal for demanding applications where controls must operate efficiently and dependably.
- Designed Oiltight and dust-tight to meet NEMA Type 13 standards.
- Offers a wide variety of oiltight control units to meet most industrial requirements.
- Listed by Underwriters' Laboratories, Inc.

Detamona TMOMnting ring 5

Key features of the octagonal mounting ring system:

- Allows higher tightening torque for improved oiltight integrity.
- Easier legend plate alignment to enhance control station appearance.

IP Tight and viltight

Sealing Gaskets

Legend Plate available in gray or red. with black lettering on anodized aluminum band.

Trim Washer provided for use when a legend plate is not required.

Basic Shallow. Five basic contact arrangements available.

Mini. Ideal for additional contacts where depth is limited. Block $7 / 8^{\prime \prime}$ deep.

Logic Reed. Five basic arrangements available High reliability for low power circuits.

Contere block
 Versatile, modular

Here's the planning and installation flexibility that modular contact blocks offer. A family of modular contact blocks is used throughout the Bulletin 800T line. Double break, fine silver contacts are enclosed to offer additional protection against contaminants and yet allow visual contact inspection.

A wide variety of contact arrangements in basic shallow, mini, logic reed, and sealed switch contact blocks...flexible and modular. Special time delayed and snap action contact blocks also available. Separate blocks are available with mounting hardware for tield installation.
contact ratings

	AC						OC	
	Maximum Contact Rating Per Pole NEMA Rating Designation A600						Maximum Rating NEMA P600	
	Max. AC Voltage 60 or 50 Hz .	Amperes		Continuous Carrying Curreni	Voitamperes		Voltage Range	Ampere Rating
		Make	8reak		Make	Break		
	120	60	6	10	7200	720	115-125	1.1
	240	30	3	10	7200	720	230-250	0.55
	480	15	1.5	10	7200	720	550.600	0.20
	600	12	1.2	10	7200	720		
[Maximum: 150 VAC. 15 AMPS .8 VA and 30 VDC .06 AMPS .1 .8 VA. should only be used with resistive loads.							

Class 1, Division 2, Hazardous Locations and other Harmful Environments
 Contact Block

Hidt lights anc Niurnineted dxyices

Allen-Bradley offers a wide variety to fit virtually any application. Mounting is identical to the Bulletin 800T push buttons and selector switches.

Wide Variety of Colors... color caps are available in red, green, amber, blue, white, or clear for all devices except the neon type pilot light which is only available in amber and clear color caps.

Transformer Type where controls are subject to normal machine shock and vibration. Transformer allows use of low voltage lamp for long life. Optional glass color caps are available.

Full Voltage Type. Across the line up to 240 volts. Use where pilot light will not be subjected to appreciable shock or vibration.

Small Pilot Light is ideal where soace is of the essence.

Available in transformer construction at 120 volts: full voltage from 6 to 24 volts: or 120 volt neon bulb type.

Small Push-to-Test with the same features as standard pilot light plus contacts for push-to-test function.

Small pilat lights

Small Dual Input has a unique construction which permits testing a number of pilot lights from a single push button. Applications include flow diagrams of a control panel, pilot lights on a test panel, and any other process where a muitiple number of push-to-test type pilot lights are needed. See Application diagram for typical circuit.
The internal design of the Bulletin 800T dual Inout device contains a diode circuit which isolates the test supply from the normal supply. Since the input circuits are internally isolated, this pilot light may be energized from either or both of two separate inputs having the same polarity. The internal diodes are protected against damage by transients normally present in relay and solenoid circuits.

Pushapull deyices

1"'יminated and Non-Hluminated. Combine t-stop and pilot light functions in one button. silhouette construction, modular contact blocks, and modular constructed transformer in illuminated and non-illuminated push-pull Ideal where space is at a premium.
Two position with maintained contacts. When operator is pushed in, it will maintain position until manually pulled out.

Three position with center as normal position. In and out are momentary. Ideal for three wire motor starting control circuits with "push to stop" and "pull to start" legends.
Three position with button maintained in the depressed position which keeps stop circuit open until manually returning button to the center position.

Types available include: transformer type, full-voltage type, neon bulb type. Both illuminated and non-illuminated can be furnished with a variety of contact blocks.

Color caps. Illuminated available in amber, blue, clear, green, red and white. Non-illuminated available in red, green, blue, yellow, orange, gray or black.

Non-llluminated
2 Position

 featuring handy joy stick operator for convenience in multi-purpose control operations.

Potentiometers consist of Allen-Bradley Type J potentiometer and suitable oiltight mounting. Available up to 10 megohms.
Available in a wide variety to complement the Bulletin 800T line. In addition to those illustrated, a number of other devices and contact arrangements are available.

Selector Jog. A 2 position device combining a momentary contact push button with a selector switch. Ideal for run-jog applications.

Wobble Stick with operator that can be moved in any direction to actuate the contact blocks. Spring action lever return to
-Class I Division 2 for Hazardous Locations
Typical devices shown below are suitable for
Class I. Division 2 locations provided they are suitably mounted by the customer in an enclosure as required for the application and by applicable
codes and laws. Refer to page 5 for Sealed

Push Button

utilizing the hermetically sealed switch contact (Also
available in Bulletin 800H NEMA Type 4X Rosite units).

Selector Switch utilizing the hermetically sealed switch contact (Also available in Bulletin 800 H NEMA Type 4X Rosite units). the center position.

Accesw

Popular modifications and accessories readily available for the Allen-Bradley Bulletin 800T line.

Locking attachment for
extended head push buttons.
This field installable kit enables
the button to be locked in the depressed position.

Padlocking attachment for
flush head push button units to permit locking in depressed position

Locking Cover featuring a stainless steel mounting bracket with a clear plastic cover. Guards against unauthorized operation. Available for push buttons and seiector switches.

Extra Long Guard with
Padlocking Attachment which permits extended head to be locked in the depressed position.

Push Button Guard is 1" deep for additional protection against accidental operation.

Mushroom Head Pad!ocking
Kit consists of mushroom nead operator with locking attachment.

Jumbo Mushroom Head is
available in plastic or aluminum

Mushroom Head Guard available for standard mushroom head operators. Useful when mushroom head is used to initiate a function.

Jumbo Mushroom Head Guard

Rubber Boot suitable for flush or extended push buttons, provides additional protection from contaminants Available in black, red or green.

Mounting Ring Wrench will simplify tightening and loosening the octagonal mounting ring. This wrench is double ended and can be used for the small size pilot light mounting rings in addition to the standard size.

Mechanical Interlock Assembly guards against operation of 2 interlocked buttons at the same time.

Rocker Arm Operating Lever is useful where attendant must wear heavy gloves and still operate 2 push buttons repeatedly. When lever is released it returns to center position. Kits available for field installation

Standard

Jumbo

Large

Legend platas

Legend plates are available in standard, jumbo and large sizes. These legend plates are gray or red in color and feature a natural aluminum engraving area across the top.

Standard size legend plates will accommodate 2 lines with 14 characters per line. Jumbo legend plates will accommodate 14 characters in one line with provisions for a total of 5 lines. Large size legend plates (2.4 inches square) provide 4 lines with 20 characters per line. Large and Jumbo legend plates require greater center to center spacing.
These legend plates can be field engraved with a 020 inch carbide cutter. Black letters are then obtaineत by treating the freshly engraved plate with a blackenin! fluid which is used to darken the letters engraves. in the new legend plate
Standard size legend plates with standard markings are factory stocked. Special engraving and custom markings are also available.

SECTION U

CONTROL \& STATUS MONITORING UNIT

ITT FLYGT CAS SERIES

```
SUPPLIED BY: ITT FLYGT LIMITED
    14A DEVLON STREET
    MANSFIELD QLD 4122
TELEPHONE (07) 849 7477
FAX (07) 849 7633
```


MONITORI" ${ }^{\text {"G UNIT }}$ 835840 CAS

installation and SERVICE

C

Flygt undertakes to remedy faults in products sold by Flygt provided:

- that the fault is due to defects in design, materials or workmanship;
- that the fault is reported to Flygt or Flygt's representative during the guarantee period;
- that the product is used only under conditions described in the care and maintenance instructions and in applications for which it is intended;
- that the monitoring equipment incorporated in the pump/turbine is correctly connected;
- that all service and repair work is done by a workshop authorized by Flygt. Hence, the guarantee does not cover faults caused by deficient maintenance, im proper installation, incorrectly executed repair work or normal wear and tear.
Flygt assumes no liability for either bodily injuries, material damages or economic losses beyond what is stated above.

CONTENTS

General 2
Functions 3
Electrical connections 4
Technical data8

The manufacturer reserves the right to alter performance, specifications or design without notice.

Flygt's monitorit lit, 835840 , is designed for use i imps from model 3230 and larger models equipped with drive units 680-940. Turbines equipped with generators 760-930 are also cove. red by the monitoring system.
The monitoring unit is connected to the standardized range of sensors incorpo. rated in all the products covered.

These insil chaswellions street East fisbane delivered with article number 835841 , which are programmed for other functions. The fault tracing scheme applies to the standard version 835840 only.

The figures in the text refer to the numbers on the front cover ($1-32$) and also to the picture below (51-61).

FUNCTIONS

Channel A, liquid level
This channel is used, for example, for monitoring of possible liquid leakage into the stator casing. A sensor is incorporated in the lower part of the stator casing. The sensor changes resistance ?
from about $1.5 \mathrm{k} \Omega$ to about 300Ω if liquid enters.

Input indication
The pilot lamp 51 is lit to indicate interruption or shortcircuit.

After alarm for about 5 seconds, the alarm function A is activated, the red pilot lamp 53 is lit, the Σ alarm function is activated (the pilot lamp is lit) and the interlock ($11-12$) drops, whereby the pump/turbine is disconnected and the pilot lamp 59 will go out.

Reset

Resetting can only be done manually.

Channel B, oil pressure

 (or liquid level).This channel with RUN connected to a normally open contact is to be used to monitor the oil pressure in machines equipped with a gear unit. On machines without a gear unit, the channel can be used in the same manner as channel A, provided that RUN is not connected.

Input indication

The pilot lamp 52 is lit to indicate interruption or shortcircuit. If the channel is not used (machines without a gear unit) the pilot lamp will always light.

Alarm

After alarm for about 5 seconds, the alarm function B is activated, the pilot lamp 54 is lit, the \sum alarm function is activated; the pilot lamp 57 is lit and the interlock (terminals 11 and 12) drops, whereby the pump/turbine is disconnected and the pilot lamp 59 will go out.

Channel C, temperature

monitoring

This channel is intended to monitor the stator's temperature with thermal switches or up to 3 PTC thermistors. The thermal switches are normally closed but they open at $155^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(311^{\circ} \mathrm{F}\right)$.

Alarm

When the resistance exceeds $3 \mathrm{k} \Omega$, the alarm function C is activated, the pilot lamp 55 is lit, the Σ alarm function is activated, the pilot 57 is lit and the interlock (terminals 11 and 12) drops, whereby the pump/turbine is disconnected and the pilot lamp 59 is extinguished. and only when tl sistance has fallen to about 900Ω, ie the stator has cooled.

Channel D, Pt 100 sensor

This channel is used for monitoring and analog indication of the temperature of the lower bearing. The channel can only be connected to a temperature sensor of type Pt- 100 (DIN 43760). The alarm value can be set by potentiometer 60 (see fault tracing).

Indicator instrument

(extra equipment)

The channel has an output for analog reading of the bearing temperature. An indicator instrument can be connected to terminals 31 and 32 (NOTE! Correct polarity \pm). The instrument shows the $\mathrm{Pt}-100$ sensor's temperature. If switch 58 is depressed, the instrument shows the set alarm value.

Alarm

When the alarm value is reached, the alarm function is activated, the pilot lamp 56 is lit and the Σ alarm function is activated. The pilot lamp 57 is lit and the interlock (terminals 11 and 12) drops, whereby the pump/turbine is disconnected and the pilot lamp 59 will go out.
Adjustment of alarm value
The unit is delivered set to an alarm value of $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$. As most bearings are running at lower temperatures it is recommended to set the alarm value individually for each machine.
Let the machine run for one or two hours so that the bearing reaches running temperature. If the temperature is stable during.a period of time put the alarm value at $15-20^{\circ} \mathrm{C}\left(25-35^{\circ} \mathrm{F}\right)$ above the measured temperature. The margin will normally cover the changes in water temperature and variation in load.

Reset

Resetting can only be done manually.

ELECTRICAI CONNECTIONS

The monitoring is designed to be installed in a control panel. The unit can be mounted either on a 35 mm symetric DIN rail, or directly on a mounting plate. The drawing on page 5 shows the positioning of the drill holes for mounting on a flat surface.
The electrical connections shall be made in accordance with the electrical diagram (see also the top of the unit). Connect a 24 VAC power source to terminals 14 and 16 . Connect a normally open spring switch for reset after alarm between terminals 22 and 23 .

SP. 011 Caswell Street East Brisbane SPS Maintenance and InstruדGOMALCAMMDATA
Connect the starter's interlock circuit between terminals 11 and 12 so that the pump/turbine is shut off when an alarm is issued.
Connect 29 and 30 with a jumper, ex cept when a 3-lead system for compensation for the resistance of the sensor leads is used.
Check before start that all leads are connected to the right terminals and that the screws are tightened.
Disconnect all connections with voltages higher than 24 V before working on the unit.

Supply voltage
Power consumption Dimensions mm (in) Temperature range

Channel A

Voltage to detector
Alarm
Output alarm

Channel B

Voltage to detector Alarm
Output alarm
Channel C

Alarm

Output alarm
Reset
Channel D
Alarm
Output alarm
Output
Σ-alarm
Alarm
Output alarm

Interlock

Alarm
Function
Breaking capacity

Drilling instruction
$24 \mathrm{~V} \pm 10 \% 50-60 \mathrm{~Hz}$
Ca 5 VA
$(\mathrm{W} \times \mathrm{H} \times \mathrm{D}) 150 \times 70 \times 112(5.9 \times 2.8 \times 4.4)$
$0^{\circ} \mathrm{C}-+50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}-122^{\circ} \mathrm{F}\right) . \operatorname{Max} 80 \% \mathrm{RH}$

12 V
$1>20 \mathrm{~mA}$
Solid state relay 24 VAC 100 mA

12 V
$>20 \mathrm{~mA}(1<20 \mathrm{~mA}$ if RUN is activated $)$ Solid state relay 24 VAC 100 mA
$R \geq 3 \mathrm{k} \Omega$
Solid state relay 24 VAC 100 mA
Manual when $R<900 \Omega$
$R>R_{\text {sat }}$
Solid state relay 24 VAC 100 mA $0-20 \mathrm{~mA}$ range $50^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}-302^{\circ} \mathrm{F}\right)$ $\left(0.2 \mathrm{~mA}{ }^{\circ} \mathrm{C} \pm 2,5 \%\right)$

Activated by alarm from each individual channel Solid state relay 24 VAC 100 mA .

Activated by alarm and supply failures Normally closed
240 V 4 A at $\cos \varphi=1$

With the aid of a muitimeter and a couple of resistors, it is possible to check from the outside whether the unit is functioning properly. The multimeter shall have an internal resistance of at least $20 \mathrm{k} \Omega /$ volt.
In order for the monitoring unit to function properly, the supply voltage must lie within the specified limits, ie 24 V $\pm 10 \%$.

It is important to check the accurancy of the resistors resistance before using them to check the D-channel.
All functions shall be tested during fault tracing. If any function is not right contact your Flygt service shop.

Supply voltage

Disconnect the resistor (or reference sensor). Reset S alarm. Activate the RUN function by jumpering 24 and 25. Is B alarm activated after about 30 seconds?

Yes

Channel C

Σ-alarm

SECTION V

PROXIMITY SWITCHES SCHMERSAL EN SERIES

SUPPLIED BY NHP AUSTRALIA PTY LTD
25 TURBO STREET
COOPOOROO QLD 4151
TEEEPHONE (07) 8916008
FAX (07) 8916139

Inductive Proximity Switches • Series IFL 10-30

10 mm operating distance \cdot shielded

Technical Data:

Series:

Voltage range, U_{b} :
Sensing principle inductive:
Rated operating distance, s_{n} :
Output function:
Supply frequency:
Residual ripple:
Output current, I_{a} :
Inrush-current:
No-load current:
Voltage drop,
loaded, U_{a} :
Minimum load:
Protecteve circuit:

Voltage peaks:

Operating frequency, f :
Response time, t_{ε} :
Attenuation range, s_{1} :
Test target size:
Effective operating distance, s_{r} :
Ultimate operating distance, s :
Switching hysteresis, H :
Repeatability, R:
Temperature range:
Enclosure sealing:
Housing:
Active surface symbol coleur:
Connections:
Corresponds to standard EN 50036-A 34
IFL 10-30-10.. IFL 10-30-01..
Corresponds to standard EN 50008 - A 14
IFL 10-30-11. P.
IFL 10-30-11.N. IFL 10-30-012TG ! IFL 10-30-01zTG ') (FL 10-30-112TPG') IFL $10-30 \cdot 112$ TNG $^{\prime}$)

IFL 10-30-10ySt ${ }^{1}$) IFL $10.30 .01 \mathrm{ySt}^{\text {' }}$) (FL 10-30-11 yStP') IFL 10-30-11yStN')
$90 \ldots 250$ VAC
10... 30 VDC-P-type
$10 \ldots 30$ VDC-N-type
4 -wire
$\mathrm{N}: \mathrm{O}$.
10 mm , flush mountable
N.C.
$45-65 \mathrm{~Hz}$
N.O. or N.C. (complementary) $\leq 10 \%$ as per DIN 41755
$\max .200 \mathrm{~mA}$
$\max .1 .25 \mathrm{~A}(10 \mathrm{~ms})$
approx. $1.2 \mathrm{~mA}(110 \mathrm{VAC})$
approx. $28 \mathrm{~mA}(24 \mathrm{VDC})$
approx. $8 V_{\text {eff }}$
$<2 \mathrm{~V}$
$\geq 3 \mathrm{VA}$
induction protection ${ }^{4}$)
$\max .5 \mathrm{kV}$ at $\mathrm{Ri}=10 \mathrm{Kup}$ to 10 ms
approx. 10 Hz
approx. 300 Hz as per EN 50010
$<18 \mathrm{~ms}(220 \mathrm{VAC}) \quad<15 \mathrm{~ms}(220 \mathrm{VAC}) \quad 1.4 \mathrm{~ms}(24 \mathrm{VDC}) \quad 1.4 \mathrm{~ms}(24 \mathrm{VDC})$
11 mm
$30 \times 30 \times 1 \mathrm{~mm} \mathrm{St} 37$ (mild steel)
$\mathrm{s}_{\mathrm{n}} \pm 10 \%$ at nominal voltage and nominal temperature
$\mathrm{s}_{\mathrm{r}} \pm 10 \%$ over tot, temperature and voltage range

$$
\begin{gathered}
3-15 \% \mathrm{~s} \\
\leq 5 \% \mathrm{~s} \\
-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
\end{gathered}
$$

IP 67 as per DIN 40050 (IP 65 for plug)
brass sleeve +2 nuts ${ }^{2}$), zinc plated and cromated tightening torque for nuts max. 3000 Ncm (270 in . Ibs.)
green yellow red blue
cable HO3W-F 2×0.5
cable LiYY $4 \times 0.25 \mathrm{~mm}^{2}$
2 m long, permanently embedded with cable protector or plug connector type GDM ... ${ }^{3}$)

Connection diagram:

${ }^{1}$) With LED function indicator as standard.
${ }^{2}$) Instead of nuts, mounting clamp H 30 can be supplied (see page I-56).
${ }^{3}$) Accessories see page 1.56.
${ }^{4}$) Upon request: short circuit and overload protected (index K) $\mathrm{I}_{\mathrm{A}}=\max .100 \mathrm{~mA}$,
$\mathrm{U}_{\mathrm{d}}=$ approx. $15 \mathrm{~V}(100 \mathrm{~mA})$.

Mating connector can be supplied on request at additional cost^{3}).

SECTION W
 LEVEL INDICATING SYSTEM VEGA TYPE D37

Application

VEGA-pressure sensors are used in conjunction with remote evaluation instruments and are suitable for continuous level measurement or level detection.

All pressure sensors are available with special measuring ranges.

For the use in hostile environments types D 33 and D 34 are especially suitable. The series D 34 is designed for increased material temperatures:

Special versions are available for the measurement of aggressive products.

Configuration

Pressure sensor D33... consists of:

- mounting boss, bolting, flange, conus or TRIclamp connection
- special steel housing with fixed special cable
- integrated oscillator type E25 or E25 B with integrated overvoltage arrester with adjustment facility in separate housing with pressure compensation facility, protection IP 65

Pressure sensor D34... consists of:

- mounting boss, bolting, flange, conus or TRIclamp connection
- special steel housing with fixed special cable
- heat sink
- . integrated oscillator type E25 with adjustment facility in separate housing with pressure compensation facility, protection IP 65°

Pressure sensor D35... consists of:

- mounting boss, bolting, flange, conus or TRIclamp connection
- Al-housing with pressure compensation facility
- integrated oscillator type E24 with adjustment facility

Pressure sensor D36... consists of:

- Al-housing with pressure compensation facility and mounting boss
- . PTFE-suspension hose and transducer
- integrated oscillator type E24 with adjustment facility

Pressure sensor D37... consists of:

- transducer
- cable with straining clamp
- integrated oscillator type E25 or E25 B (only for D 37 H) with integrated overvoltage arrester with adjustment facility in separate housing with pressure compensation facility, protection IP 65

Pressure sensor D38... consists of:

- Al-housing with pressure compensation facility and mounting boss
- extension tube and transducer made of material no. 1.4571 (stainless steel)
: integrated oscillator type E24 with adjustment facility

A measuring system with pressure sensor D33...,
D34..., D35... or D37... consists ot:

- pressure sensor with oscillator
- power supply, not included in this system

Function

The diaphragm transforms the hydrostatic pressure of the product into a mechanical movement (max $0,3 \mathrm{~mm}$).

This movement is transmitted via a plunger-type capacitor, the capacitance of which changes proportional to the pressure (level).

The incorporated oscillator with adjustment facility converts this capacitance change into a DC-signal 4 ... 20 mA .

Technical data
Output: adjustable
Supply voltage:
Floating voltage stability
between housing and current output:
Protection
Protection class:
Permissible product temperature: D33..., D35..
Permissible product temperature D 34.

Permissible product temperature: D36.., D37., D38.
Permissible ambient temperature on the housing or on the adjustment facility:
Storage and transport temperature:
Characteristics:
Faut in characteristics incl.
hysteresis and reproducibility:

Longterm drift:

Average temperature influence over the whole temperature range related to $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$

Max. pressure load:

Wetted parts:
Diaphragm material:
max. cable length: D33..., D34..., D37...
$4 . .20 \mathrm{~mA}$
$\min 12 \ldots \max 36 \vee D C$
$\max : 500 \mathrm{VDC}$
see schedule page 4
111
$-20 \%+100^{\circ} \mathrm{C} /-4,212^{\circ} \mathrm{F}$
$-20 .+150^{\circ} \mathrm{C} /+200^{\circ} \mathrm{C} /-4$, $302^{\circ} \mathrm{F} / 392^{\circ} \mathrm{F}$
$1>150, .200^{\circ} \mathrm{C} / 302^{\circ} \mathrm{F} .392^{\circ} \mathrm{F}$ only with add.
screening)
$-20,+80^{\circ} \mathrm{C} /-4,176 \circ^{\circ} \mathrm{F}$
$-20 .,+60^{\circ} \mathrm{C} /-4, .140^{\circ} \mathrm{F}$
$-20 . .+70^{\circ} \mathrm{C} 1-4 \ldots 158^{\circ} \mathrm{F}$
linear
$\leq 0,35 \%$ related to the used measuring distance
$\leq 0,5 \% / 3$ months related to the used measuring distance
$\leq 2.5 \% / 100 \mathrm{~K}$ related to the used measuring distance
15 times related to the max, measuring distance however max 25 bar (355 psi)
material-no. 1.4571 (stainless steel)
and Duratherm 600
Duratherm 600 (special steel)
$150 \mathrm{~m} / 492 \mathrm{ft}$.

Only screened cable should be used from the pressure sensor to the adjustment unit of the oscillator type E25.

Connection of pressure sensors see page 13.
All pressure sensors are available in the following measuring ranges.

Schedule of measuring range					
Standard measuring ranges , , , ,			Special measuring ranges		
Measuring range in bar/psi	max. measuring distance in bar/psi	min measuring distance in bar $/ \mathrm{psi}$	Measuring range in bar/psi	max. measuring distance in bar/psi	min. measuring distance in bar/psi
0,1\%1,42	0,1\%1,42	0,025 / 0,355	-0,5..+0;5	1,0/14,2	0,25/3,55
0,2/2,84	$0,212,84$	0,0570,71.	-1,0...0,0	1,0٪14,2	0,25/3,55
0,4/5,68	0,4/5,68	$0,111.42$,	$-1,0 \ldots+1,5$	2,5/35,5	0,625 / 8,9
1,0/14,2	1,0/14,2	0,25/3,55	$-1,0 \ldots+4,0$	5,0/71,0	1,25/17,8
2,5/35.5	2,5/35,5	0,625 / 8,87	-1,0... 10	11/156,2\%	2,75/39,1
5,0/71	5,0\%71	1,25/17.75	$-1,0 \ldots+16$	171241.4	4,25/60,4
10/142	10/142	2,5\%35,5	Attention:	In closed pressu	re systems
16/227,2	16/227,2	4,0156,8	fluctuations	the atmospheric	pressure are
.			received as	asuring tauts (ap	prox. 20 mbar)

Accessories and mounting material not included

Dimensional drawing D33 G (1)

Lateral cable outlet

Lateral cable outlet

Lateral cable outiet

- This dimension is only valid in conjunction with oscillator type E25 B.

Lateral cable outlet

- This dimension is only valid in conjunction with oscillator type E25 B.

Lateral cable outlet

- This dimension is only valid in conjunction with oscillator type E25 B.

Mounting instructions

Attention:

All pressure sensors include a breather to allow an atmospheric pressure onto the backside of the diaphragm.

The following items should be observed when using pressure sensors with fixed connection cable:

- dismantle the cable (see drawing)
- the breather capillaries should be clean cut
- the connection housing should be allowed to breath to atmosphere
- insert the cable into the connection housing acc. to drawing
- on pressure serisors without fixed connection cable the breather is tacated in the cover of the housing
- it should be observed that this opening is free
- Attention:
it is essential that the screening of the pressure sensor is earthed
The connection housing shauld only be mounted in the positions indicated on the drawing, to avoid water ingress.

With types:D35 ... the housing can be turned manualiy atter mounting. Therefore the cable entry can be adjusted to the required position.

Potentiometer
for full adjustment

For pressure sensor type D35..., D36... and D38... in protection IP 67, with oscillator type E24 and fixed special connection cable only the connection housing with pressure compensation facility (protection IP 64) should be used. The connection housing is not included (ret. no. 101009).

For pressure sensor type D33..., D34... und D37... screened cable should be used to lengthen the fixed special connection cable to the adjustment facility.

The housing with breather should be mounted to the connection position.

Pressure sensor with oscillator type E24 without breather protection IP $6 ;$

Pressure sensor with oscillator type E25

Cable from pressure sensor

Connection housing

AAdjustment unit oscillator type E25 and E25 B

H oscillator type E25 B is used as overvoltage protection, the oscillator in the pressure sensor as well as the adjustment unit (up to terminals 1,2 and 3) are protected.

The 4-20 mA output can be additionally protected by overvohage arresters type B $62-36$, see TIB overvoltage arresters.

Voltage and current values

Start-up

For the start-up a meter (measuring range $0 . . .20$ / 30 mA) can be connected locally to the measuring sockets, $\mathrm{Ri}=$ max. 20 Ohms.

Empty adjustment

Lower the product to min. level. Connect the meter to the-measuring sockets and adjust a current of 6 mA by means of the potentiometer for empty adjustment. Turn the potentiometer for full adjustment to the right until the current does not increase anymore. Then adjust a current of 4 mA by means of the potentiometer for empty adjustment.

Full adjustment

Fill product to max. level. Adjust the potentiometar for full adjustment such that the meter indicates a current of 20 mA .

Adjustment of the measuring range

The measuring distance of the pressure sensor is adjusted on the oscillator by means of potentiometer for empty and full adjustment. It can be adjusted in a ratio from $1: 1$ to $4: 1$. The empty adjustment can be shitted by max. 30% to the top.

Example: Measuring range of the pressure sensor 0 ... 1 bar / 0 ... 14,2 psi

Pressure at empty adjustment	Indication on the evaluation instrument	Current at the output of the pressure sensor	Pressure at full adjustment	Indication on the evaluation instrument	Current at the output of the pressure sensor
0 bar, \%,	0\%	4 mA , , ,	1 bar	100\%	$20 \mathrm{~mA}$
0 bar	0\%	4 mA	0.25 bar	100\%	20 mA
$0,25 \mathrm{bar}$.	0\%	$4 \mathrm{~mA}$	0.75 bar , \%,	100\%	$20 \mathrm{~mA} \%$ \%
$0,30 \mathrm{bar}$	0\%	4 mA	1 bar	100\%	20 mA

0,25 bar / 3,55 psi; 0,30 bar / 4,26 psi; 1 bar / 14,2 psi; 0,75 bar / 10,65 psi

Fault finding

General test of the measuring system

In case of faulty indication, first check that the sensor is breathing to atmosphere.

- Check that the breather is clear on sensor housing
- On pressure sensors with extension cables ensure capillaries and junction boxed are clear of obstruction
- The reading on the remote amplifier should not change when the junction box or sensor housing is opened

Electrical test of the measuring system

4 ... 20 mA two-wire system

- The initial current should be approx. 4 mA when the diaphragm is covered
$4 \ldots 20 \mathrm{~mA}$. measurement is o.k. (current depends on the level)
$<3 \mathrm{~mA} \quad$ oscillator defect
0 mA : line break > 25 mA . oscillator, pressure sensor defect or short-circuit
- The supply voltage for the electronics should be min. 12 VDC at max. measuring current on terminals 1 and 2

Exainples

VEEA

Prüfzertifikat für Druckaufnehmer

Test certificate for pressure sensors Certificat de contrôle pour capteurs de pression

Adresse - Addrass - Adresse	Autirags-Nummer Order na. No. de commande	561639/313
VEGA Australia P/L 17 Clearview Place	Ihre Kom. Nr. Your com. no. Votre No de Cde.	VS-905
BROOKVALE N.S.W. 2100	Kannzeichnungs-Nr. Identification no No. didentrication	

Druckaufnehmer Typ Pressure sensor type Capteur de pression type	037 I	Ident-Nr. Ident no. No. de code	1428.40	$\left.\begin{array}{l} \text { Serien Nr. } \\ \text { Series no. } \\ \text { No. de seina } \end{array}\right) ~ 52745$
Zulassungen Approvals Agrements				

Elektronik-Einsatz Typ Oscillator type Préamplificateur type	2 25	Serien Nr. Series no. No. de serie

Kennlinien Fault in charact Erreur de carac	hler tics istique			12	96		zul. F Perm. Emeur a			Meßbereich Measuring range Plage de mesure
Ref.-Druck bar Ref. pressure bar Pression de ref. bar	0.000	0.125	0250	0.975	0.500	0.625	0.550	0.875	1.000	$0-1 \mathrm{bar}$
Ausgang mA Oulpu mA Sortie mA	4013	6029	8.036	10.037	12.096	14.029	16.018	18.002	19881	$\triangle \quad 15.968 \mathrm{~mA}$
Fehler \%	-0.12	+0.00	+0.07	10.10	+0.12	+0.10	+0.06	-00	012	
Meßschritt mA	$2016 \quad 2007$			2001	1.989	1.293	928			

SECTION X
 LEVEL DETECTION SYSTEM MULTIRODE TYPE

```
SUPPLIED BY: BEP ENGINEERING PRODUCTS
    123 BOUNDARY STREET
    WEST END QLD 4101
TELEPHONE: (07) 844 1711
FAX: (07) 844 8878
```

- Safe extra low voltage sensing
- Charging or Discharging
- 4 Sensitivities
- 8 Activation delays
- Dip switch programmable
- Proven reliability
- Power and activation LEDs

MEITOD OF OPERATION

The Multi Trode MTR Liquid Level Relay is a cogduetive liquid level control devicr which when used with the Multi Trode muli-sensored of single-sensored probe, enables dual point wetivationd' deactivation of pumps, alarms and other monitoring and control equipment.

The relay sctsees the liquid via a safe extaz low voltage signal and latiches. This state is mairtaized untid the cirnit is broken when the liquid passes the selected stop seasor. The relay then resets for the aext operation.

Operation of the MTR Ligaid Level Relay set for CEARGING
With the relay finction switch set for charging the relay is activated when the liquid Eats below the selected low sensor. Contact \#15 \#16 changes over to \#15 \#18, the electrically separite open contact in25 123 closes and the yellow LED is Illuminated

The relay is mantained in this state until the liquid reaches the seifeced high sensor and then is deactivated. It is now reset and ready for the nexi operation.

Operation of the MTR Liquid Level Relay set for DISCHARGING
With the relay function switch set for discharging, the reiay is acciveted when the liquic reaches the seicated high sedsor. Contant 115 F16 changes over to $\# 15 \# 18$, the electrically separate open contact $\ddot{\pi} 25$ \#2s closes and the yeIow LED is Illuminated

The relay is majntrined in: this state undil the liquid falls below the selecied low secsos and then is deactivated. It is now resel and reany for the nest operation.

SP011 Caswell Street East Brisbane SPS Maintenance and Instruction Manual OM Manual

SECTION Y

SECTION Z

KENNEDY TAYLOR (QLD) AS CONSTRUCTED DRAWINGS
Q3B02-B1-1 MCC REAR VIEW
Q3B02-B1-2 MCC FRONT VIEW Q3B02-A3-3
Q3B02-A1-4 GENERAL NOTES JUNCTION BOXES

PLAN VIEW

3 OFF POWER JUNCTION BOXES

note- GASKET TO BE MANUFACTURED FROM SHEET NEOPRENE
IN ONE PIEEE AND SUPPLIED LOOSE. INSTALLATION OF GASKET TO BE CARRIED OUT WHEN
CABLES ARE NSTALLED. CABLES ARE INSTALLEE.
uSE WATER TIIGHT SEALANT on both surfaces of gasket.

3 OFF CONTROL JUNCTION BOXES
note: s boxes to be manufactured from 316 stainless steel be gradel

AS fONSTRUCTED

CASWELL STREET
PUMPING STATION
JUNCTION BOX DETAILS

[^0]: O: Active

 - : Inactive

[^1]: Circuil voltage: less inan 250V (Products of Okatani electric Industries)

[^2]: - "Yes" a "avalable"
 - "no" a "na avaiable"
 (2) Special Spocification

[^3]: Note: *6.5A/POLE 20A/TOTAL

[^4]: - , Illustrations \& dimensions shown on pages $5,6,7 \& 8$

[^5]: \dagger Fuse links from the Extended Range for Molor Circuits - See Pages $8 \& 13$

