QUEENSLAND URBAN UTILITIES

SEWERAGE PUMP STATIONS RELIABILITY IMPROVEMENTS PROJECT (SPRIO9bc)

SP162 JILBA ST
SUBMERSIBLE SEWERAGE PUMP STATION UPGRADE

SWITCHBOARD OPERATION AND MAINTENANCE MANUAL

ABN 50115075048
379 THYNNE ROAD, MORNINGSIDE

TEL: (07) 38998866
FAX: (07) 38998766

REVISION CONTROL

Revision	Date	Revision Details	Responsible Officer
Issue 1	Feb 2013	Final Revision Issued to QUU	
	\vdots		

Contents

REVISION CONTROL 1
1 INTRODUCTION 3
1.1 DESCRIPTION OF WORKS 4
1.1.1 PART A DESIGN AND CONSTRUCT 4
1.1.2 PART B INSTALLATION AND COMMISSIONING 5
1.2 FACILITY LOCATION AND MAP 7
2 SWITCHBOARD INFORMATION AND TECHNICAL DATA 8
2.1 SWITCHBOARD DESIGNATION AND MANUFACTURER INFORMATION 9
2.2 SWITCHBOARD EQUIPMENT SCHEDULE 9
2.3 MAINTENANCE INFORMATION 16
2.4 RECOMMENDED TEGG SERVICES 22
2.5 SWITCHBOARD COMPONENT MANUFACTURERS TECHNICAL DATA 25
2.6. SITE WIDE EQUIPMENT TECHNICAL DATA 235
3 AS CONSTRUCTED DRAWINGS 283
3.1 DRAWING REGISTER 284
3.2 AS CONSTRUCTED DRAWINGS 286
3.3 UNDERGROUND CABLE ROUTING DETAILS 315
4 COMMISIONING, CERTIFICATES AND TESTING INFORMATION 316
4.1 • FORM 16 317
4.2 SWITCHBOARD MANUFACTURER TEST INFORMATION 322
4.3 QUU COMMISSIONING PLAN 333
4.4 QUU FACTORY ACCEPTANCE TESTS (FAT) 349
4.5. ENGINEER DESIGN CERTIFICATION 349
4.6 LEVEL PROBE COMMISSIONING INFORMATION 356
4.7: CONTRACTORS CERTIFICATE OF TESTING AND SAFETY 360

SECTION 1: INTRODUCTION - CONTENTS PAGE

1.1 DESCRIPTION OF WORKS 4
1.1.1 PART A DESIGN AND CONSTRUCT 4
1.1.2 PART B INSTALLATION AND COMMISSIONING 5
1.2 FACILITY LOCATION AND MAP 7

1 INTRODUCTION

1.1 DESCRIPTION OF WORKS

The description of works is broken up into two sections; section A contains information relating to switchboard design and manufacture. Part B contains information relating to the installation work, civil work, testing and commissioning of the switchboard upgrade.

The following sections are exerts from the original "Scope of works and project specification" document.

1.1.1 PART A DESIGN AND CONSTRUCT

The Contractor and its nominated Designers shall be responsible (but not limited) to the following scope of works under Part A:
a) Design site specific detail drawings and documentation for the new switchboards using QUU's template designs attached in Appendix 3 of this specification for all Switchboards and ancillaries, including cabling and cable management systems (note: AutoCAD files of template drawings will be made available to the Designers for preparation of each site specific̣ design);
b) Assessment of the existing supply capacity (transformer and main feeder cabling) relative to the site demand, particularly where new pumps/ motors are to be used;
c) Assessment of the existing pump/ motor details to aid correct sizing:and selection of the drive (DOL, SS or VSD) and associated power/ control equipment;
d) Carry out power system analysis and design for the new switchiboard's protection devices coordination with the Supply. Authority's mains supply fuse switches and liaise with the Supply Authority to resolve, if any abnormalities are found in the rating and fault discrimination of the protection devices;
e) Carry out earthing system design in accord with AS3000 requirements. Implement in the electrical and civil detail designs for construction as part of site installation works.
f) Assessment of the existing support structure and potential radio path obstacles (power lines, trees, buildings, etc.) associated with the telemetry radio commuñications (this is relative to any new location of the switchboard relative to the existing switchboard position - change to the radio path);
g) Design new Switchboard position so that there is 2000 clearance between switchboard doorfaces and sewer access openings If switchboard is more than 2 m from wet well, fit a pump disconnect box adjacent to the wet well. Carry out detail design of new or extended concrete slabs; cable pits and conduits if required for any of the sites for the installation of new switchboards;
h) Submit detail design drawings for each site to QUU for approval before proceeding with manufacture (Refer 2.2.4);
i). Material procurement; fabrication and assembly of Switchboard(s) in compliance with the detail design prepared for each site. Note: procurement lead times äre the responsibility of the Contractor and delays and/or alternatives shall not be considered a variation to the Works (Refer 2.2.4);
j). Contractor's internal testing of switchboards to Contractor's quality standards;
k) Preparation of Contractor's internal test results for QUU review prior to Factory Acceptance Test (FAT) to be witnessed by QUÜ;
I) Preparation of FAT documentation, schedules and test sheets for QUU approval based upon current QUU standards / templates;
m) Factory acceptance testing of new Switchboards witnessed by QUU and in the presence of the Part B Contractor (if different from Part A Contractor);
n) Preparation of the final Switchboard assembly in readiness for transportation (by the Part-B Contractor).
o) Switchboard loading onto Part B Contractor vehicle. The Contractor will be required to coordinate site delivery with the Part B Contractor and other third parties as required. The Contractor shall not seek compensation for any delays experienced by Part B works and site readiness to accept the Part A Switchboard;
p) Inspection of the Switchboard installation prior to energisation onsite;
q) Defect rectification;
r) 12 Months unlimited and unconditional warranty from Practical Completion;
s) Provision of spare parts as recommended by the switchboard manufacturer to support the installed fleet.

1.1.2 INSTALLATION AND COMMISSIONING

Note: the exact details of Part B: Site Works for each site shall be determined and documented
during detail design. The following listed work items are generic requirements which are expected to apply for each site:
a) Verification of field scope of works prior to submittal of quotation;
b) Site safety management and taking all site responsibilities as the Principal Contractor on site;
c) Preparation of all documentation required for site installation works including Contract Management Plan, Switchboard Changeover Commissioning Plan, etc as listed in this specification.
d) Complete a QUU Site Induction Training course to all site staff prior to site access to obtain a Class A key (2 day course);
e) Seek and obtain any approvals and permits needed to carry out the works from state, federal and local authorities as required;
f) Site mobilisation and establishment of all temporary works;
g): Carry out site surveys if required under detail design for construction of new switchboards slabs;
h) Apply for QUU's Permit To Work at all sites within this Scope of Works;
i) Design verification and installation of all civil works established during detail design for each site including earthing system as per the Part A Contractor's detail design.
j) Design verification, supply and installation of all new electrical cabling works (if determined by the detail design that require replacement), together with all necessary supports, fixtures and fittings, required to complete the Contract Works.
k) Materials and equipment procurement, transport, storage, protection and handling as specified for each site in the following sections;
I) Switchboard delivery, off-loading and placing / securing into position;
m) Provision of all field equipment and devices as listed in Section 3.3.1 Field Equipment;
n) Supply, installation, termination and continuous operation of a temporary Switchboard suitable for the control and operation of wet well Duty pump(s). This shall be used to ensure the automatic flow control of the site during the transfer of power and control of the existing pumps from the existing Switchboard to the new Switchboard. No less than the number of existing Duty pumps shall be connected to this temporary Switchboard;
o) Provide independent battery backed audible \& visual level alarming for the site changeover and switchboard commissioning;
p) On-site and:off-site co-ordination with the Supply Authority for connection/disconnection of new/old Switchboard source of supply and all works associated with the provision, final connection, testing and certification of the new service as required;
q) Modifications, as required, to the existing electrode box to house all new level probes as per Contractor's detail design;
r) Replacement of any conduits and cable pits and detail design;
s) Pre-commissioning and commissioning of the new Switchboards and all field connected equipment and systems, in conjunction with QUU. (Note: the Contractor shall provide assistance for full and complete on-site testing and commissioning of the RTU Code in conjunction with Queensland Urban Utilities);
t) Development of a Site Acceptance Test (SAT) document for QUU approval (test plan/strategy and full complement of test sheets) that clearly defines the logical sequence and structured testing of the complete installation (Switchboard and all field devices) in accordance with the Contractor's detail drawings/documentation and QUU's standard templates. This includes preparation of a Switchboard changeover commissioning plan for the site installation works;
u) Carry out SAT in conjunction with the QUU Commissioning Engineer and RTU Programmer;
v) Onsite training for QUU field staff following successful completion of the SAT (date/time to be agreed by QUU);
w) Complete removal and off-site disposal of the existing Switchboard, and all waste plant / equipment in accordance with current legislation, local regional and national statutory instruments. The existing Switchboagrd and all equipment contained within shall remain the property of Queensland Urban Utilities and shall be packaged, labelled and delivered to the QUU's Brisbane Depot at Eagle Farm.
x) Restoration of site on completion;
y) As Constructed drawings and documentation as detailed within this specification;
z) Provide full compliance certificaltion of all new electrical works;
aa) Defect rectification based upon priority levels;
bb) 12 Months unlimited and unconditionial warranty from Practical Completion;

SP162 - Jilba St, Indooroopilly

1.2 FACILITY LOCATION AND MAP

The Jilba St sewerage pump facility is located in Indooroopilly QLD 4068. See map below for details.

Map showing location of Jilba St switchboard

SECTION 2: SWITCHBOARD INFORMATION AND TECHNICAL DATA - CONTENTS PAGE

2.1 SWITCHBOARD DESIGNATION AND MANUFACTURER INFORMATION
 9

2.2 SWITCHBOARD EQUIPMENT SCHEDULE. 9
2.3 MAINTENANCE INFORMATION 16
2.4 RECOMMENDED TEGG SERVICES 22
2.5 SWITCHBOARD COMPONENT MANUFACTURERS TECHNICAL DATA 25
2.6 SITE WIDE EQUIPMENT TECHNICAL DATA 93

2. SWITCHBOARD INFORMATION AND TECHNICAL DATA

2.1 SWITCHBOARD DESIGNATION AND MANUFACTURER INFORMATION

SP162 - JILBA ST
Sunline Contract Number - Q12B04
Sunline Switchboard Number - Q12B04B
Contact Details:
Email - admin@sunline.net.au
Phone - (07)38813433
Fax - (07) 38813611
Address - 7 Duntroon Street, Brendale QLD 4500
2.2 SWITCHBOARD EQUIPMENT SCHEDULE

The following pages list all internal components within the Jilba St Switchboard.

ITEM	QTY	DESCRIPTION	MANUFACTURER	Catalogue no	OPT	REMARKS
1					N	
2	1	MANUAL TRANSFER SWITCH	TERASAKI	MTSS2PE12533	F	$\begin{gathered} \text { Set Ir. } 0.8(100 \mathrm{~A}) \\ \text { Char }=6 \end{gathered}$
3		- TO SUIT MAIN SWITCHES 02 \& 03 S25PE/125	TERASAIU	Q2 FITTED WTH N/O AUX CONTACT	F	
4	1	Q4 PUMP1 CIRCUIT BREAKER + T2HS Handle	TERASAIU	S125G]/50 + T2HS12R5GM	-	$\begin{gathered} \text { Set Ir }=0.8(40 \mathrm{~A}) \\ \mathrm{Im}=6(300 \mathrm{~A}) \end{gathered}$
5	1	Q5 PUMP2 CIRCUT BREAKER + T2HS Handle	TERASAKI	S125GJ/50 + T2HS12R5GM	-	$\begin{gathered} \text { Set Ir }=0.8(40 \mathrm{~A}) \\ \operatorname{Im}=6(300 \mathrm{~A}) \end{gathered}$
6					E	
7	1	Q7 ENERBEX PHASE: FAILURE CIRCUIT BREAKER	TERASAKI	DTCB15306C	-	
8						
9	1	Q9 SUB-DISTRIBUTION BOARD CIRCUIT BREAKER	TERASAKI	E125NJ/50	-	Set Ir. 0.8 (40A) Itn $=6$ (300A)
10	1	Q10 STATION MAINS PHASE FAILURE CIRCUIT BREAKER	TERASAKI	DTCB6306C	-	
11. $:$	1	Q11 SA GPO CIRCUİ BREAKER :	TERASAKI	DSRCBH-16-30A	.	
12	1	Q12 RTU LAPTOP GPO CIRCUITT BREAKER	TERASAKI	DSRCBH-10-30A	-	
13	1	Q13 SPARE	TERASAKI	DTCB6106C	E	
14	1	Q14 SPARE	TERASAKI	DTCB6110C	E.	
15	1	Q15 GENERATOR AUXILIARY SUPPLY CIRCUIT BREAKER	TERASAKI	DSRCBH-10-30A	-	
16	1	Q16 SPARE CIRCUTT BREAKER	TERASAKI	DSRCBH-6-30A		
17 :	1	Q17 SURGE FILTER CIRCUT BREAKĖR	TERASAKI	DTCB6110C	-	
$\therefore 18$	1	Q18 EM PUMP CNTRL \& SURCHARGE IMMINENT CB	TERASAKI	- DTCB6106C	-	
19	1	Q19 SPARE CIRCUT: BREAKER	TERASAKI	DTCB6106C :	K	.
20	1	Q20 3 PHASE OUTLET CIRCUTT BREAKER	TERASAKI	\therefore DTCB6310C $\quad \therefore$	$\therefore:$	$\begin{gathered} \text { PLUS DSRCM-32-30- } \\ \text { 3PN } \end{gathered}$
21	1	Q21 SPARE	TERASAKI	DTCB6106C	Q	\therefore
22	.	\therefore : $\therefore \therefore$:		\cdots. : \cdot	M:	\cdots
23	!		. ${ }^{\text {a }}$	$\therefore \because$	v	
24		NOT USED			:	
$25:$: :	NOT USED ${ }^{\text {a }}$:		$\because \because$...
26	1	Q30 RTU POWER SUPPLY CIRCUTT BREAKER	TERASAKI	DTCB6104C	-	\because
27	1	Q31 5URGE FILTER ALARM•RELAY CIRCUIT BREAKER	TERASAKI	DTCB6104C	-	.
$\because 28$	1	Q32 SPARE .	\therefore TERASAKI	DTCB6104C :	H	\therefore. ${ }^{\text {a }}$
29	1	Q33 SPARE	TERASAKI	DTCB6104C	-	
30		NOTT USED $\because \because \cdot$.		
31	2	PUMP 240VAC CONTROL CIRCUIT BREAKER.	T取ASAK 110	3 DTCB6104C	-	04-1; 05-1

32	2	PUMP 24VDC CONTROL CIRCUIT BREAKER	TERASAKI	DTCB6110C	-	QD4, 005
33	1	BATTERY SHORT CCT PROTECTION CIRCUIT BREAKER	TERASAKI	DTCB6210C	-	QD6
34	2	PUMP 240VAC-24VDC POWER SUPPLY	WEIDMULLER	8951340000	-	120W 5A/24VDC
35						
36	1	DISTRIBUTION BOARD CHASSIS	TERASAKI	CD-2-24/18-3U	-	
37	3	F1 - SURGE DIVERTER CIRCUIT FUSES	NHP	63AMP 63MS	-	FUSES \& HOLDERS
38	3	SURE DIVERTER	CRITEC	TDS1100-2SR-277	-	
39	1	SURE FILTER ALARM RELAY - SFAR	CRITEC	DAR-275V	-	:
40	1	SURE REDUCTION FLIER - SRF	CRITEC	TDF-10A-240V	-	
41	1	ENEREX MAINS PHASE FAILURE RELAY PFRE	CARLO GAVAZZI	DPB01CM48W4	-	
42						
43	1	STATION MAINS PHASE FAILURE RELAY - PFRS	CARLO GAVAZZI	DPB01CM48W4	-	\therefore
44		NOT USED	.			
45	1	MAIN NEUTRAL LINK	TBA	TBA	-	INSULATED
46	1	MAIN EARTH LINK	TBA	TBA	-	
47	1	DIST. BD NEUTRAL LINK - 24 WAY	TBA	TBA	-	INSULATED
48	1	DIST. BD EARTH LINK - 24 WAY	TBA	TBA	-	
49	1	SURGE DIVERTER NEUTRAL LINK	CUPSSAL	L5A	-	INSULATED
50	1	INSTRUMENT: EARTH LIM (TBA	TBA	-	INSULATED
51	1	FLTERED SUPPLY NẸUTRAL LINK	CUPSAL	- L7	-	INSULATED
52	1	3 PHASE SWITCHED OUTLE:T	' CLIPSAL'	$\because 56 C 410 .$.	-	$\begin{aligned} & \text { USE ENCLOSURE AS } \\ & \text { SHROUD } \end{aligned}$
53	1	1 PHASE OUTLET 15A	CLİIPSAL	15/15-90B (SHROUD)	-	
54	1	LAPTOP GPO - TWIN 10A	CLIPSAL	$25+449 A+449 A P$	\because	
55	1	1 PHASE OUTLET - GENERATOR ANCILLARY POWER	CLIPSAL	56SO310	F	IP56
56	1	3 PHASE N\&E APPLIANCE INLET GENERATOR POWER	MENNEKES	MEN361 125A	F:	$\begin{gathered} \text { C/W PROTECTIVE CAP } \\ 40787 \end{gathered}$
57		NOT USED		\therefore. .		\ldots :
. $98{ }^{\circ}$		-. . .		\therefore		. .
59	2	PUMP SOFT STARTER:	DANFOSS MCD 500	$\text { CD5-0037B }=\text { MODBUS }$ СОMMS		:
60	2	EXTERNAL KEYPAD KIT	DANFOSS LCP501	175G0096. .	-	\cdots
61						
62	2	PUMP LINE CONTACTOR - K1 (24VDC COIL)	SPRECHER \& SCHUH	CA7-37		24VDC COIL
63			Page 12 of		-	.

64					c	
65	2	PUMP FAULT RELAY - K3	IDEC	RH2B-ULD-DC24V	-	+ SH2B-05
66	1	PUMP1 RUN RELAY - 1K6	IDEC	RH2B-ULD-DC24V	-	+ SH2B-05
67	1	PUMP2 RUN RELAY - 2K6	IDEC	RH2B-ULD-DC24V	0	+ SH2B-05
68	2	PUMP CONTROL CCT POWER ON reLay - k5	DEC	RH2B-ULD-DC24V	-	+ 5H2B-05
69	2	PUMP1 E/STOP RELAY - 1K4/2K4	IDEC	RH2B-ULD-DC24V	-	+ SH2B-06
70	2	POWER ON RESET TIMER - 1 KTT / 2KTT	SPRECHER \& SCHUH	RZ7-FSA 3E U23	-	ON DELAY
71		: :			B	
72					B	
73	2	PUMP RUN COMMAND RELAY - K20	IDEC	RH2B-ULD-DC24V	-	-SH28-05
74	2	PUMP FAULT RESET RELAY - K21	IDEC	RH2B-ULD-DC24V	-	$+5 \mathrm{H} 2 \mathrm{~B}-05$
75	2	PUMP EMERGENCY MODE INTERRUPT RELAY - K22	IDEC	RH2B-ULD-DC24V	-	-5H2B-05
76	2	PUMP START PUSHBUTTON - S1	SPRECHER \& SCHUH	D7P-F3-PX10	-	
77	2	PUMP STOP PUSHBUTTON - 52	SPRECHER \& SCHUH	D7P-F4-PX10	-	
78	2	PUMP EM/STOP PUSHBUTTON - S3	SPRECHER \& SCHUH	D7P-MT34-PX01S	-	$\begin{gathered} \text { C/W D7-15YE112• } \\ \text { PXOIS } \end{gathered}$
79	2	PUMP RESET PUSHBUTTON - 54	SPRECHER \& SCHUH	D7P-F6-PX10	-	-D7P-PX10
80	2	PUMP HOUR RUN METER - HRM	NHP	RQ4801080VDC	-	24VDC
81	2	PUMP POWER SOCKET OUTLET + incline sleeve	MARECHAL	$\begin{gathered} \text { DS3 } 3134013972+ \\ 51 \text { CA058 } \\ \hline \end{gathered}$	J	
82	2	PUMP POWER INLET PLUG + HANDLE	MARECHAL	$\begin{gathered} . \\ \quad \text { SS } 3138013972+ \\ 313 A 013 \\ \hline \end{gathered}$	J	-NILSEN SUPPLY-
83		- .				
84		- .	\cdots			
85			\cdots		E	
86					E	
87					'E	:
88		. ${ }^{\text {- }}$	\cdots	.	E	
89	\because	. . . ${ }^{\text {. }}$.		E	
90	1	PUMP 240VAC-24VDC POWER.SUPPLY	WEIDMULLER.	8951340000:	-	$120 \mathrm{~W} 5 \mathrm{~A} / 24 \mathrm{VDC}$
91	1	EMERGENCY PUMP MODE 24VDC CIRCUIT BREAKER	TERASAKI	DTCB6110C	:	QD18
92	1	LR3- WET WELL HIGH LEVEL RELAY	MULTITRODE	MTR-5	-	24VDC
93	1	WWR - WET WELL WASHER RELAY .	IDEC	RH2B-ULD-DC24V		
94		- . ${ }^{\text {a }}$	$\therefore \cdot \cdot$		0	
95	1	SIR - SURCHARGE IMMINENT LEVEL RELAY	MU4Tgimpg of 363	MTR-5	-	24VDC

96	2	SINGLE POINT PROBES	MULTITRODE	2 off -020130FSP-Shield	-	-NILSEN SUPPLY-
97	1	EMERGENCY PUMPING MODE RELAY PUMP1 - EMG1	IDEC	RH2B-ULD-DC24V	-	+SH2B-05
98	1	SURCHARGE IMMINENT DELAY TIMER - SIDT	SPRECHER \& SCHUH	RZ7-FSA 3E U23	-	ON DELAY
99	1	EMERGENCY PUMPING MODE TIMER EMGDT	OMRON	H3CA-A	-	DIGITAL MULTIFUNCTION TIMER
100	1	EMERGENCY PUMPING MODE TIMER PUIP2- EMG2	SPRECHER \& SCHUH	RZ7-FSA 3E U23	-	ON DELAY
101	2	EMERGENCY PUMPING MODE SWITCH S5	SPRECHER \& SCHUH	D7P-LSM25 + D7PX10	-	+ D7PN3Y + D7PX10
102	1	EM PUMP RTU RELAY - EMG3	IDEC	RH2B-ULD-DC24V	-	+SH2B-05
103					F	
104					F	
105^{\prime}					F	
106					F	
107					F	
108					F	
109					F	
110					F	
111					F	
112					F	
113					'F	
114		\because	-		F:	\because.
115	1	GRAPHIC DISPLAY - FREE ISSUE	REDLION	G306A000	-	FREE ISSUE
116		NOT USED		:	\therefore	\therefore.
117			\because			:
118	1	STATION LOCAL/REMOTE SWITCH S10	KRAUS \& NAIMĖR	CADI1-A720-600-FT2-F758	-	ENGRAVE 'LOCAL REMOTE'
119	1	ELECTRODES TEST RELAY - ETR	: IDEC	RH4B-ULD-24VDC	-	+SH4B-05
120		. .	- .	. .	P	$\therefore \quad$.
121	1	WET WELL:LEVEL INDICATOR :	CROMPTON INSTRUMENTS	$\begin{gathered} 244-01 K G-H G-I P-S R ~ 4- \\ 20 \mathrm{~mA} \end{gathered}$	-	0-100\% ADJ RED POINTER
122		:	: \cdot. $:$	J	
123	6	SW/BD DOOR MICRO SẆITCHES	OMRON	DZ-10GW2-1B	-	8 OFF N/O
124	1	SW/BD DISCONNECT COMPART. DOOR PROXIMITY SWITCH	PEPPERL \& FUCHC	NCB5-18GM40-Z0	-	LOCATION TBA
125	4	SW/BD INTERNAL LED LIGHTS	LUMIFA	\because LF1B-C3S-2THWW4	\because	. ${ }^{\text {b }}$.
. 126					E	\cdots
127		. ${ }^{\text {. }}$	Page 14 of	3	S	

128					S	
129					K	
130					K	
131.		NOT USED				
132					H	
133.	1	WET WELL LEVEL PROBE - FREE ISSUE -	VEGA - VEGAWELL5?	WL52XXA4AMD1DD1X	-	SET RANGE TO = 4m
134	1	WET WELL LEVEL ADJUSTMENT UNIT -FREE ISSUE-	VEGA - VEGADIS62	DIS62XXKMAXX	\because	
135					G	
136	1	DELIVERY PRESSURE ADJUSTMENT UNIT	TBA	TBA	-	
137:	1	DELIVERY PRESSURE TRANSMITER	VEGA VEGABAR52	BR52XXCA1EHPMAS L=??	U	RANGE $=25 \mathrm{~m}$
138	1	TRICLOVE FITTING FOR VEGABAR52	VEGA	ADAPTOR 4	U	
139	1	RTU POWER SUPPLY 24VDC	POWERBOX	PB251-24CM-CC-T	-	
140	1	RADIO 24V/13.8VDC CONVERTER	POWERBOX	PBIH-2412J-CC	R	
141:					I	
142	2	BATTERIES - INCLUDING SPILL TRAYS	YUASA	UXH50-12	-	
143.	1	RADIO - FREE ISSUE -	TRIO	<<DR900-0?A02-D>>	R	FREE ISSUE
144	1	RADIO ANTENNA - NILSEN SUPPLY-	TRIO	YAGI ANT13AL	R	15 ELEMENT 13dB ALUM
145	1	RADIO COAX SURGE PROTECTION UNIT:	POLYPHASER CORPORATION	.IS-50NX-C2	R	Mounted on Din Rail
146	1	TELEMETRY UNIT - FREE ISSUE	LOGICA CMG	MD3311EAL/271D-0-7	-	FREE ISSUE
147			.		I	
148			-		I:	
	\cdots	$\therefore \therefore$.			\because
153		\therefore	-			
156	1	ANTENNA MAST c/w 20 mm NYLON CABLE GLAND	CT STHEETMETAL	SHEET 22	R	LENGTH = 6 MTRS
157	1	INTERNAL COAX CABLE (Radio to Lightning Arrester)	TRIO:	TRIO - SMAM/NM/TL23	R	Cable No X01
158	1	EXTERNAL COAX CABLE (Lightning Arrester to Aerial)	R.F. INDUSTRIES	ANDREW - CNT400	R	Cable No X02 - NILSEN SUPPLY-
159	2	COAX PLUG (For CNT400 cable)	PULSE	$\mathrm{N}-203 \mathrm{HS}$	R	Straight cable plug crimp
160	1	U CLAMPS	R.F. INDUSTRIES	UNV	R	$\because \cdot \cdot$
		SWITCHBOARD TERMINALS				
164	Lot	MINIATURE.THERMAL CIRCUIT BREAKER	PHOENIX CONTACT	TCP 'x'A + UK6FSI/C	-	" x " = Current Rating
. 164	Lot	THROUGH TERMINALS (Grey \& Blue as Required)	PHOENIX CONTACT	PIT 2.5 .		PIT 2.5-BU (for -VE)
164	Lot	DISCONNECT TERMINALS (Grey \& Blue as Required)	PHOENP自GENTAGT 363	3 PIT 2.5-MT	-	PIT 2.5-MT-BU (for VE)

1643	Lot	COMBI PLUG TERMINALS (Grey \& Blue as Required)	PHOENIX CONTACT	PПT 2.5/1P	-	PIT 2.5/1P-BU (for VE)
164	Lot	COMBINATION PLUG/FUSE TERMINALS	PHOENIX CONTACT	ST 2.5-TWIN-TG/1P	-	$\begin{gathered} \text { +FUSE P-FU } 5 \times 20 \\ \text { led } 24 \end{gathered}$
1645	Lot	COMBINATION PLUG/LINK TERMINALS	PHOENIX CONTACT	ST 2.5-TWIN-MT/1P	-	
165	Lot	COMBI PLUGS (Grey, Blue \& Green as Required)	PHOENIX CONTACT	PP-H 2.5/1 (R, M \& L)	-	Combinations to Suit
165	Lot	COMBI PLUGS Housing \& Sleeve)	PHOENIX CONTACT	Housing $=$ PH 25/x	-	Sleeve $=\mathbf{C P H} \times$
165	Lot	GROUP MARKER CARRIER	PhOENIX CONTACT	UBE	-	
165	Lot.	PLUG-IN BRIDGE	PHOENIX CONTACT	FBS	-	AS REQUIRED
164	2	TEST PLUG	PHOENIX CONTACT:	- PS-5		
164	Lot	COVER PROFILE (SHROUDING) + CARRIER PLATE	PHOENIX CONTACT	AP-2 + AP2-TU	-	AS REQUIRED
165		\therefore.			-	
166					-	
		MISCELLANEOUS	.			
167						
168	1	ENERGEX PADLOCK - 45mm brass pin tumbler	H.A. REED LOCKSMITHS	KEY No 325 \& S/S Shackle	-	c/w 2 KEYS
169	Lot	WET WELL CONOUIT SEALING BUNGS	RUBBER	TO SUIT CONOUTTS	-	Detail "W"
170	Lot	S/STEEL FITTINGS AS DETAILED FOR PRESSURE TX	FITIINGS	STAINLESS STEEL	U	Sheet 19
171	1	EARTH ROD CONNECTION BOX	NESCO	PIT-03	-	
172.	1	LINE TAP - BONDING TO EARTHING ROD.	CLPSAL	BP26	-	
173	1	EARTHING ROD	COPPER ROD	. 13 mm Diameter	-	- :
174:			-		E	\therefore
175			: - . . .	:	$\mathrm{a}_{\text {: }}$	- -
176			\therefore		E	
177		,			E	:
178				:	E	\cdot
179		. $\quad . \quad$.		: .	E.	- .
180	:	$\therefore{ }^{\prime}$.. ${ }^{\text {a }}$		E	\ldots. ${ }^{\text {a }}$
181	2	CORROSION INHIBITOR . .	- CORTEC	VPCI-110 OR.111:	-	FROM AP CONTROLS
182	:	$\therefore \cdots$	-	\therefore :	$\therefore \dot{E}$	$\therefore:$

Page 16 of 363

2.3 SWITCHBOARD MAINTENANCE INFORMATION

This operation and Maintenance Manual has been prepared after perusal of the documents listed hereunder AS/NZS 3439. 1-2002 Low Voltage Switchgear \& Control gear Assemblies AS 2467 981 Maintenance of Electrical Switchgear.

The recommendations contained herein are offered as a guideline for the preparation of maintenance programmes by Engineers and/or Maintenance Personnel.

Alternative programmes may be devised by the end user to suit his specific requirements, in event, it is recommended detailed reference be made to the above mentioned Standards.

The following Boards are covered by these instructions:-

- Pump Panel SP162

MAINTENANCE PROGRAMME

A recommended Maintenance Program for the switchgear is detailed below.
A. Commissioning

The switchgear should be transported to site, located and leveled and the shipping sections bolted together.

Upon completion of this exercise the switchgear should be subjected to commissioning tests as outlined in attached Maintenance Data sheet ' A ' prior to connection of mains and submains cables.

B. Inspections

An initial inspection of the switchboard should be performed within 12 months of commissioning and repeated at yearly intervals throughout the life of the switchgear. This may be programmed to coincide with a 'shut down' in the event of other works being carried out within the installation. For recommendation as to operations to be carried out during these inspections refer to attached Maintenance Data Sheet ' B '.

C. Examinations

The switchgear should be carefully examined at five (5) yearly intervals. For recommendations as to operations to be carried out during these periodic examinations refer to attached Maintenance Data Sheet ' C '.
D. Overhaul

The switchgear should be shut down' for a complete overhaul every fifteen (15) years. Depending on the size and complexity of the switchgear it may be necessary to program a total 'shut down' over a period of several days (week-end or holiday week-end). For recommendations as to operations to be carried out during this major overhaul exercise refer to attached Maintenance Data Sheet ' D '

MAINTENANCE DATA SHEET - A

Commissioning Tests
Prior to placing the switchgear into service, examinations and testing, as detail hereunder, should be performed.

- Ensure correct tension of busbar joints.
- Ensure cubicle joining hardware is securely tightened.
- Ensure all control cables are joined at terminals adjacent to 'transport splits'. Particular attention should be given to cables associated with current transformer secondary windings.
- Ensure all Terminations (power, control and metering) are tightened correctly.
- Carry out Insulation Resistance Test and Dielectric Test as desçibed below.

Insulation Resistance Test (AS/NZS.3000-2000, Clause 6.3.3.3.) Apply a D.C. Voltage (500 V min.) between all conductors ($A, B, C \& N$) and earth.

Should ohmic readings be recorded below 10 megohms contact our Engineering Department.
Note: It is advisable that these tests be performed on the switchboard prior to the connection of mains and sub-mains cables. Remove all potential fuses to eliminate the possibility of 'back feed' through protection equipment. Close all mains and sub-mains switching devices during the tests.

- Clean interior of switchboard and wipe over exterior surfaces (covers etc.).
- Polish exterior panels (Kitten Cream Polish No. 1).

MAINTENANCE DATA SHEET - B

Inspections

It is recommended that the switchgear be inspected within one year (12 months) from the date of commissioning and at annual intervals. This exercise should include the inspections detailed hereunder.

- Check for foreign matter such as dust, magnesium oxide, swarf, cable insulation, conductor stands etc. dislodged during operation and remove from enclosure.
- Visual inspection of heavy current busbar joints for signs of discoloration due to loose jointing hardware.
- Random check of tension of busbar jointing hardware.
- Touch Test to exterior and interior panels/shrouds etc. to establish that no abnormal temperature rises are present within the switchgear enclosure (particularly within the vicinity of heavy current busbars and switching devices).
- Visual internal examination and replacement of damaged parts of heavy current interruption devices which have been subjected to a fault current. Such devices include air circuit breakers and moulded case circuit breakers. Particular attention should be given to main and arcing contact wear and condition and correct fit and condition of arc control devices.
- Check all control and meter wiring for loose connections.
- Check to ensure all seals are in order.
- Check all cover fastening hardware is tight and that cover sealing strips are not damaged.
- Visually check all Spare Parts Cabinets to ensure any used items have been replaced. Replace.
- Visual inspection of paintwork for damage. Touch up if required.
- Thermographic scan of Busbar System.

MAINTENANCE DATA SHEET - C

Examinations

It is recommended that the switchgear be examined at five (5) yearly intervals commencing from the date of commissioning. This exercise should include the examinations detailed hereunder.

- Check for foreign matter such as dust, swarf, cable insulation, conductor strands etc. dislodged during operation and remove from enclosure.
- Check condition of insulation and barriers for signs of splitting or deterioration. Replace or repair as necessary.
- Examine busbar system for any indication of abnormal temperatures. Infra-red scanning may be utilized if desired.
- Random check of tension of busbar jointing hardware.
- Touch Test to exterior and interior panels/shrouds etc. to establish that no abnormal temperature rises are present within the switchgear enclosure (particular within the vicinity of heavy current busbars and switching devices).
- Visual internal examinations and replacement of damaged parts of all heavy current interruption devices. Such devices include air circuit breakers and moulded case circuit breakers. Particular attention should be given to main and arcing contact wear and condition and correct fit and condition of arc control devices.
- Check all control and meter wiring for loose connections.
- Check to ensure all seals are in order.
- Check all cover fastening hardware is tight and that cover sealing strips are not damaged.
- Visual inspection of paintwork for damage. Touch up if required.
- Check labels to ensure that any changes to equipment functions have been correctly documented.

MAINTENANCE DATA SHEET - D

Overhaul

It is recommended that the switchgear be shut-down and subjected to a complete overhaul at intervals not exceeding fifteen (15) years. This exercise will involve very careful planining as, if carried out correctly it may take several days to complete. Should temperature checks be required, these should be carried out prior to the overhaul with the switchboard operating under normal 'load' conditions.

The following aspects should be addressed during this operation.

- Remove all covers and segregation shrouds over busbars and examine the busbar system for:a) Split or 'holed' insulation. b) Discoloration of annealing of busbars due to abnormal temperature. c) Oxidization of conductors (not normal).
- Tighten all busbar hardware to recommended tensions.
- Strip down, lubricate and generally service all switching devices in accordance with manufacturer's recommendations. Replace any faulty equipment.
- Check for foreign matter such as dust, swarf, cable insulation, conductor strands etc. dislodged during operation and remove from enclosure.
- Check all wiring for loose connections.
- Carry out insulation Resistance Test and Dielectric Test as described below, with main switches and sub-mains switches closed.
- Insulation Resistance Test (AS/NZS.3000-2000, clause 6.3.3.3.) Apply a D.C Voltage (500 V min.) between all conductors ($\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{~N}$) and earth.
- Check to ensure all seals are in order.
- Check all cover fastening hardware is tight and that cover sealing strips are not damaged.
- Visual inspection of paintwork for damage. Touch up if required.
- Check operation of protective equipment (if deemed necessary).

2.4 RECOMMENDED TEGG SERVICES

In order to improve reliability of the switchboard installation, Nilsen recommends TEGG services after the defects liability period. TEGG servicing is an international standard of maintenance and testing and provides a guarantee for switchboard components backed by a $24 / 7$ emergency call out service.

Please see the following pages for a summary of the services Nilsen Electrical - Engineering Services Division can provide.

For further information please see the contact details below.

GUARANTEED PROGRAMS

TEGG PRIME
TEGG PREMIUM
TEGG BASIC
TEGG BUILDERS

rece BilloERS

TEGG PRIME

- Energised and de-energised testing
- De-energised preventative maintenance
- Guaranteed repair or replacement on components that suffer a sudden and accidental breakdown
- Provides overtime for guaranteed repairs
- Includes extra expediting service (express freight)
- Includes downstream resultant damage protection for EDS
- Includes temporary power
- Includes emergency generator if required

TEGG PROGRAM COMPARISON

Features	TEGG Prime	TEGG Premium	TEGG Basic
Visual Inspection	Yes	Yes	Yes
Infared Thermographic Inspection	Yes	Yes	Yes
Ulitrasonic Inspection	Yes	Yes	Yes
Somprehensive IR Report	Yes	Yes	Yes
TEGG Task View	Yes	Yes	Yes
Predictive \& Proactive Service	Yes	Yes	No
Electronic Equipment Inventory	Yes	Yes	No
Energized Testing \& Analysis	Yes	Yes	No
De-Energized Testing \& Analysis	Yes	Optional	No
De-Energized Preventve Maintenance	Yes	Optional	No
Guaranteed Servvice	Yes	Yes	Yes
Guaranteed Repair \& Replacement	Life	Life	90 Days
$24 / 7$ Exergency Call Out	Yes	Yes	Yes
Overtime for Repairs on Guarantee	Yes	Yes	No
Downstream Resultant Damage Repairs	Yes	No	No
Express Shipments for Repairs	Yes	No	No
Temporary Power (Wiring)	Yes	No	No
Emergency Power (Generator)	Yes	No	No

2.5 SWITCHBOARD COMPONENT MANUFACTURERS TECHNICAL DATA

The following pages contain manufacturer's technical data for the components within the switchboard. The list below breaks the technical data down by page to assist with navigation.

SWITCHBOARD COMPONENT TECHNICAL DATA LIST

ANDREW CNT-400 COAX CABLE 26
CARLO GAVAZZI MONITORING RELAYS DPBO1CM 28
CLIPSAL 3PH \& 1PH SWITCHED OUTLETS 33
CLIPSAL NUETRAL \& EARTH LINKS ETC 43
CORTEC - CORROSION INHIBITOR VPCI-110 52
CRITEC SURGE DIVERTER 54
CRITEC SURGE REDUCTION FILTER TDF 59
DANFOSS SOFT START VLT 61
DANFOSS CONTROL PANEL VLT LCP501 73
DINLINE ALARM RELAY DAR-275V 75
IDEC INTERNAL LED LIGHTS 77
IDEC RH SERIES RELAY 80
MARECHAL DSN PLUGS 82
MULTITRODE MTR RELAY 94
multitrode probe 95
NHP DINT CHASSIS 99
NHP MCB DSRCBH 101
NHP MCB DTCB6116C 111
OMRON - HC3A TIMER 121
OMRON DZ LIMIT SWITCH 136
PEPPER \& FUCHS PROXIMITY SWITCH NCB5-18GM40-Z0 141
PHEONIX THERMAL CIRCUIT BREAKER 143
POLYPHASER SURGE PROTECTION UNIT IS-50NX-C2 148
POWERBOX CM SERIES 149
POWERBOX DC-DC CONVERTER 151
PULSE COAX CONNECTOR 154
RED LION DISPLAY 155
SPREECHER \& SCHUH ELECTRONIC TIMING RELAY F-RZ7 163
SPREECHER \& SCHUH CA7 CONTACTORS 165
SPREECHER \& SCHUH PUSH BUTTONS \& SWITCHES 194
TERASAKI 3 POLE MCCB 199
TRIO RADIO MODEM 207
VEGABAR 52 PRESSURE TRANSMITTER 209
VEGADIS 62 ADJUSTMENT UNIT 211
VEGAWELL 52 PROBE 213
WEIDMULLER POWER SUPPLY 8951340000 229
YUASA BATTERY UXH50-12 233
SP162 - Jilba St Issue: 1

Product Specifications

A CommScope Company

CNT-400
CNT-400, Cinta ${ }^{\text {TM }} 50$ Ohm Braided Coaxial Cable, variable, black PE jacket

CHARACTERISTICS

Construction Materials

Jacket Color	Black
Jacket Material	Non-halogenated PE
Braid Material	Tinned copper
Shield Tape Material	Aluminum
Dielectric Material	Foam PE
Inner Conductor Material	Copper-clad aluminum wire

Dimensions

Cable Weight	$0.10 \mathrm{~kg} / \mathrm{m}$
Diameter Over Dielectric	7.240 mm \| 0.285 in
Diameter Over Jacket	10.290 mm \| 0.405 in
Inner Conductor OD	$2.740 \mathrm{~mm} \mathrm{\mid} 0.108 \mathrm{in}$
Nominal Size	0.400 in
Outer Conductor OD	8.080 mm \| 0.318 in

Electrical Specifications

Cable Impedance	50 ohm
Capacitance	$78 \mathrm{pF} / \mathrm{m} \mathrm{\mid} 24 \mathrm{pF} / \mathrm{ft}$
dc Resistance, Inner Conductor	$4.490 \mathrm{ohms} / \mathrm{km} \mathrm{\mid} 1.370 \mathrm{ohms} / \mathrm{kft}$
dc Resistance, Outer Conductor	$5.610 \mathrm{ohms} / \mathrm{km} \mathrm{\mid l} 1.710 \mathrm{ohms} / \mathrm{kft}$
dc Test Voltage	2500 V
Jacket Spark Test Voltage (rms)	8000 V
Maximum Frequency	16.20 GHz
Operating Frequency Band	$30-6000 \mathrm{MHz}$
Peak Power	16.0 kW

\section*{Product Specifications
 | Shielding Effectiveness | $>90 \mathrm{~dB}$ |
| :--- | :--- |
| Velocity | 85% |}

Environmental Specifications

Installation Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Storage Temperature	$-70^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-94^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$

General Specifications

Cable Type	CNT-400
Braid Coverage	86% braid
3rand	Cinta $^{T M}$

Mechanical Specifications

| Bending Moment | $0.7 \mathrm{~N}-\mathrm{m}$ | 0.5 ft lb |
| :--- | :--- | :--- | :--- |
| Flat Plate Crush Strength | $0.7 \mathrm{~kg} / \mathrm{mm}$ | \| $40.0 \mathrm{lb} / \mathrm{in}$ |
| Minimum Bend Radius, Single Bend | 25.40 mm \| 1.00 in | |
| Tensile Strength | $73 \mathrm{~kg} \mathrm{\mid} 160 \mathrm{lb}$ | |

Performance

Frequency	Attenuation (dB/100 m)	Attenuation (dB/100 ft)
$\mathbf{3 0 ~ M H z}$	2.49	0.76
50 MHz	3.18	0.97
150 MHz	4.92	1.50
220 MHz	6.23	1.90
450 MHz	8.86	2.70
$\mathbf{9 0 0 ~ M H z}$	12.80	3.90
1500 MHz	16.70	5.10
1800 MHz	18.40	5.60
2000 MHz	19.40	5.90
2400 MHz	21.65	6.60
$\mathbf{5 0 0 ~ M H z}$	22.00	6.70
3000 MHz	24.60	7.50
4000 MHz	28.87	8.80
4500 MHz	30.84	9.40
5000 MHz	32.81	10.00
5200 MHz	33.46	10.20
5500 MHz	34.78	10.60
5800 MHz	35.76	10.90
6000 MHz	36.42	11.10

Regulatory Compliance/Certifications

Agency	Classification
RoHS 2002/95/EC Compliant	

Monitoring Relays True RMS 3-Phase, 3-Phase+N, Multi-function Types DPBO1, PPBO1

Product Description

3-phase or 3-phase+neutral line voltage monitoring relay for phase sequence, phase loss, over and under voltage (separately adjustable set
points) with built-in time delay function.
Supply ranges from 208 to 480 VAC covered by two multivoltage relays.

- TRMS 3-phase over and under voltage, phase sequence and phase loss monitoring relays
- Detect when all 3 phases are present and have the correct phase sequence (except for \mathbf{N} versions)
- Available versions (W4) supplied between phase and neutral
- Detect if all the 3-phase-phase or phase-neutral voltages are within the set limits
- Upper and lower limits separately adjustable
- Measure their own power supply
- Selection of measuring range by DIP-switches
- Adjustable voltage on relative scale
- Adjustable delay function (0.1 to 30 s)
- Output: 8 A SPDT relay N.E.
- For mounting on DIN-rail in accordance with DIN/EN 50022 (DPB01) or plug-in module (PPB01)
- 22.5 mm Euronorm housing (DPB01) or 36 mm plug-in module (PPB01)
- LED indication for relay, alarm and power supply ON

Type Selection

Mounting	Phase sequence detection	Output	Supply: 208 to 240 VAC	Supply: 380 to 415 VAC	Supply: 380 to 480 VAC
DIN-rail	yes	SPDT	DPB 01 C M23	DPPB 01 C M48 W4	DPB $01 . \mathrm{C}$ M48
Plug-in	yes	SPDT	PPB 01 C M23	PPB 01 C M48 W4	
Plug-in	yes	SPPT	- ...	PPB 01 CM48	
DIN-rail	no	SPDT	DPB 01 C•M23 N	DPB 01 C M48 N W4	DPB 01 C M48 N
Plug-in	no	SPDT	PPB 01 C M23 N	PPB 01 C M48 N W4	.. .
Plug-in	no	SPDT	-	PPB 01 C M48 ${ }^{\text {N }}$	

Input Specifications

Output Specifications

Output Rated insulation voltage	SPDT relay 250 VAC
Contact ratings (AgSnO_{2})	μ
Resistive loads AC 1	8 A @ 250 VAC
DC 12	5 A @ 24 VDC :
Small inductive loads AC 15	2:5 A @ 250 VAC
DC 13	2.5 A @ 24 VDC
Mechanical life	$\geq 30 \times 10^{6}$ operations'
Electrical life	$\geq 10^{5}$ operations (at $8 \mathrm{~A}, 250 \mathrm{~V}, \cos \varphi=1$)
Operating frequency	≤ 7200 operations/h
Dielectric strength	
. Dielectric voltage	2 kVAC (rms)
Rated impulse withstand volt.	4. kV (19.2/50 $\mu \mathrm{s}$)

Supply Specifications

General Specifications

Power ON delay	$1 \mathrm{~s} \pm 0.5 \mathrm{~s}$ or $6 \mathrm{~s} \pm 0.5 \mathrm{~s}$
Reaction time	
Incorrect phase sequence or total phase loss	
	<200ms
Voltage level	(input signal variation from
	-20% to $+20 \%$ or from
	+20\% to -20\% of set value)
Alarm ON delay	$<200 \mathrm{~ms}$ (delay < 0.1 s)
Alarm OFF delay	$<200 \mathrm{~ms}$ (dèlay < 0.1 s)
Accuracy	(15 min warm-up time)
Temperature drift	$\pm 1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Delay ON alarm	$\pm 10 \%$ on set value $\pm 50 \mathrm{~ms}$
Repeatability	$\pm 0.5 \%$ on full-scale
Indication for	
P.ower supply ON	LED; green
Alarm ON	LED, red flilashing 2 Hz
	during delay time)
Output relay ON	LED, yellow
Environment	
Degree of protection	IP'20.
Pollution degree	3 (DPB01); 2 (PPB01)
Operating temperature	
(1) Max. voltage, 50 Hz	-20 to $60^{\circ} \mathrm{C}, \mathrm{R}: \mathrm{H} .<95 \%$
(3) Max. voltage, 60 Hz	-20 to $50^{\circ} \mathrm{C}, \mathrm{R}$.H. < 95%
Storage temperature	-30 to $80^{\circ} \mathrm{C}, \mathrm{R}$ H. $<95 \%$
Housing	
Dimensions DPB01	$22.5 \times 80 \times 99.5 \mathrm{~mm}$
PPB01	$36 \times 80 \times 94 \mathrm{~mm}$
Material	PA66 or Noryl
Weight	Approx. 120 g
Screw terminals	
Tightening torque	Max. 0:5 Nm according to IEC 60947
Product standard	EN 60947-5-1
Approvals	UL, CSA
	(except for W4 versions) CCC (GB14048.5) only DPB
CE Marking	L.V. Directive 2006/95/EC
	EMC Directive 2004/108/EC
EMC	
Immunity	According: to EN 61000-6-2
Emissions	According to EN 61000:6-3

Mode of Operation

Connected to the 3 phases (and neutral) DPB01 and PPB01 operate when all 3 phases are present at the same time, the phase sequence is correct (not N versions) and the phasephase (or : phase-neutral) voltage levels are within set limits.

If one or more phase-phase or phase-neutral voltages exceeds the upper set level or drops below the lower set :vel, the red LED starts
flashing 2 Hz and the output relay releases after the set time period. In any case if phase-neutral measurement is selected both phasephase and.. phase-neutral voltages :are monitored. If the phase sequence is wrong or one phase is lost, the output relay releases immediately.
Only 200 ms delay occurs. The failure is indicated by the red LED flashing 5 Hz during the alarm condition.

Example 1
(mains network monitoring)
The relay monitors over and under voltage, phase loss and correct phase sequence.
In case of N versions, the relay monitors over and under voltage.

Example 2
(load monitoring)
The relay releases in case of interruption of one or more phases, when one or more voltages drop below the lower set level or exceed the upper set level.

Page 30 of 363

Function/Range/Level and Time Delay Setting

Adjust the input range setting the DIP switches 3 and 4 as shown below.

Select the desired function setting the DIP switches 1 and 2 as shown below.

To access the DIP swiches Selection of level and time open the grey plastic cover as shown below

delay:

Upper knob:
Setting of lower level on relative scale.

Centre knob:
Setting of upper level on relative scale.

Lower knob:
Setting of delay on alarm time on absolute scale (0.1 to 30 s).

		$\begin{aligned} & \text { Power ON } \\ & \text { ON: } 6 \mathrm{~s} \pm \\ & \text { OFF: } 1 \mathrm{~s} \pm 0 \end{aligned}$	$\begin{aligned} & \text { delay } \\ & 0.5 \mathrm{~s} \\ & 0.5 \mathrm{~s} \end{aligned}$			
		Monitored ON: Phase OFF: Phase	voltage -Neutral -Phase			
$\therefore \because \quad$ 星		Measuring	range			
$\because \because \%$		SW3	ON	ON	OFF	OFF
		SW4	ON	OFF	ON	OFF
		$\begin{aligned} & \text { M23 Ph-Ph } \\ & \text { Voltage } \end{aligned}$	208 VAC	220 VAC	230 VAC	240 VAC
		$\begin{aligned} & \text { M48 Ph-Ph } \\ & \text { Voltage } \end{aligned}$	380 VAC	400 VAC	415 VAC	480 VAC DPB01CM 48, DPB01CM 48 N only.
	\square	$\overline{\mathrm{M} 48 \mathrm{Ph}-\mathrm{N}}$ Voltage	220 VAC	230 VAC	240.VAC	

Operation Diagrams

Operation Diagrams (cont.)

CARLO GAVAZZI

Relay ON \qquad $\because \quad \square$
 $\stackrel{\square}{\square}$

Red LED. ON ${ }^{\text {fer } 6 \%_{1}}$
 \qquad

${ }^{\prime *}$) N versions don't detect incorrect phase sequence.

Wiring Diagrams

Example 1

Example 2

DPB01

Example 1

Example 2

PPBO1

Note

When DPB01 or PPB01 is used with phase indicator lamps (see examples in the following diagrams), the lamp H 1 or H 2 might be dimly lit when there is a phase loss in L1 or L2. This might happen if the lamps used are the typical low power indicator lamps, and there are no other loads present.
This fact can be avoided by using W4 models. Note that the neutral must be always connected to the device.

Dimensions

Providing the strength, reliability and durability demanded of today's industry

Combination Switched Socket Outlets

56C310,GY
e Clipsal range of three phase combinations includes two module units and one-piece cover models. All internal phase connections between switches and sockets are factory wired.

The 4 and 5 pin, 10 and 20A one-piece cover models have integral wiring between the switch and socket outlet. Installation time is reduced by not having to check factory wire terminations. There is also no likelihood of wires falling out during installation.

56CV315,R0

Combination sockets feature a clear dustproof and hoseproof flap with a snap catch latch. Both the superseded non IP56 plain plugs and the current IP66 retention ring plugs can be accommodated. $250 \mathrm{~V}, 110 \mathrm{~V}$ and extra low voltage two module combinations are also available.

Earth and neutral connectors accommodating $3 \times 6 \mathrm{~mm}^{2}$ cables are supplied with 500 V models.

Options available

- Less Enclosure - add LE to Catalogue Number e.g. 56C410 becomes 56C410LE.
- Versions with key operated switches available to special order.

Catalogue Number	No. of switch poles	$\underset{(\operatorname{Amp})}{\substack{\text { min }}}$	$\begin{aligned} & \mathrm{U}_{1} / \mathrm{U}_{8} \\ & \text { (Volt) } \end{aligned}$
56 C 210	1 Pole	10A	110 V
56C215/32	1 Pole	15A	32 V
56C3/110	1 Pole	10A	110 V
56C310RP	1 Pole	10A	250 V
$56 \mathrm{C310}$	1 Pole	10A	250 V
56 C 310 HD	1 Pole	10A	250 V
56C310L	1 Pole	10A	250 V
$56 \mathrm{C315}$	1 Pole	15A	250 V
56C315HD	1 Pole	15A	250 V
56 C 320	1 Pole	20A	250 V
56C320F	1 Pole	20A	250 V
56 C 332	1 Pole	32A	250 V
56C310D	2 Pole	10A	250 V
56C315D	2 Pole	15A	250 V
56 C 410	3 Pole	10A	500 V
$56 \mathrm{C416K}$	3 Pole	16A	500 V
$56 \mathrm{C420}$	3 Pole	20A	500 V
56 C 432	3 Pole	32 A	500 V
56 C 440	3 Pole	40 A	500 V
$56 \mathrm{C450}$	3 Pole	50A	500 V
56 C 510	3 Pole	10A	500 V
56 C 520	3 Pole	20A	500 V
56 C 532	3 Pole	32 A	500 V
56 C 540	3 Pole	40 A	500 V
56 C 550	3 Pole	50A	500 V
$56 \mathrm{C610}$	3 Pole	10 A	500 V
56 C 710	3 Pole	10A	500 V
$56 \mathrm{C720}$	3 Pole	20 A	500 V

Catalogue Number	No . of switch poles	$\underset{(\operatorname{Amp})}{\mathrm{I}_{\mathrm{meq}}}$	$\begin{aligned} & U_{i} / U_{a}, \\ & \text { (Volt) } \end{aligned}$
56CV310	1 Pole	10A	250 V
56CV310HD	1 Pole	10A	250 V
56CV315	1 Pole	15A	250 V
56CV315HD	1 Pole	15A	250 V
56CV320	1 Pole	20A	250 V
56CV332	1 Pole	32A	250 V
56CV410	3 Pole	10A	500 V
56 CV 416 K	3 Pole	16A	500 V
56CV420	3 Pole	20A	500 V
56 CV 432	3 Pole	32A	500 V
56CV440	3 Pole	40A	500 V
56 CV 450	3 Pole	50A	500 V
56CV510	3 Pole	10A	500 V
56CV520	3 Pole	20A	500 V
56CV532	3 Pole	32A	500 V
56 CV 540	3 Pole	40A	500 V
56CV550	3 Pole	50A	500 V
56 CV 610	3 Pole	10A	500 V
56 CV 710	3 Pole	10A	500 V
56CV720	3 Pole	20A	500 V

Reler to page 57 Ior explanation of sodet conligurations.

Combination Switched Socket Outlets

- Internal interlock facility available on three phase, one piece cover combinations - add I to Catalogue Number e.g. 56CV410 becomes 56CVI410.
- Resistant Orange - add RO to Catalogue Number e.g. 56CV410 becomes 56CV410,RO.
- Resistant White - add RW to Catalogue Number e.g. 56C410 becomes 56C410,RW.
- Two piece versions available in Chemical Grey. Chemical Grey - add CG to Catalogue
Number e.g. 56C410 becomes 56C410,CG.

TWO PIECE											
le (A) Utilisation Category			M Rating	Number of Sockets	Cond. Term Size in mm^{2}		IP Rating	0/A Dims. (H) $\times(W) \times(\mathrm{D})$	Matching Plug Straight	Matching Plug Angle	Socket Contig
AC21A	AC22A	AC23A			Min.	Max/Cond.					
10	8	8	M80	2 Parallel Flat	1.5	6	66	204×101×83	56P210	-	D
15	10	8	M80	2 Polarised	1.5	6	66	$204 \times 101 \times 83$	56P215/32		E
10	8	8	M80	2 Round \& Flat Earth	1.5	6	66	204×101×83	$56 \mathrm{P} 3 / 110$?-	J
10	8	8	M80	3 Round	1.5	6	66	$204 \times 101 \times 83$	56P310RP		G
10	8	8	M80	3 Flat	1.5	6	66	204x101×83	56P310	-	A
10	10	11	M100	3 Flat w/heawy duty switch	1.5	6	66	$204 \times 101 \times 108$	56 P 310		A
10	8	8	M80	2 Flat \& Round Earth	1.5	6	66	$204 \times 101 \times 83$	56P310SL	- -	C
-	10	8	M80	3 Flat	1.5	6	66	$204 \times 101 \times 83$	56P315		B
	15	15	M120	3 Flat w/heavy duty switch	1.5	6	66	$204 \times 101 \times 108$	56P315	-	B
20	20	21	M150	3 Round	2.5	6	66	$204 \times 101 \times 108$	56P320	56PA320	H
20	20	20	M150	3 Flat	2.5	6	66	$204 \times 101 \times 108$	56P320F	$\xrightarrow{\text { C- }}$	F
32	32	28	M180	3 Round	6	16	66	$204 \times 101 \times 108$	56P332	56PA332	1
10	10	11	M100	3 Flat double pole	1.5	6	66	$204 \times 101 \times 108$	56P310	-	A
15	15	15	M120	3 Flat double pole	1.5	6	66	$204 \times 101 \times 108$	56P315		B
10	10	11	M100	4 Round	1.5	6	66	$204 \times 101 \times 108$	56 P 410	56PA410	K
16	16	15	M120	Unique key config.	1.5	6	66	$204 \times 101 \times 108$	56 P 416 K	56PA416K	M
20	20	21	M150	4 Round	2.5	6	66	$204 \times 101 \times 108$	56 P 420	56PA420	L
32	32	28	M180	4 Round	4	16	66	$204 \times 101 \times 108$	56 P 432	56 PA 432	N
40	40	35	M200	4 Round	10	16	66	$204 \times 101 \times 108$	56 P 440	56 PA440	0
50	50	35	M250	4 Round	10	16	66	$204 \times 101 \times 108$	56 P 450	56PA450	P
10	10	11	M100	5 Round	1.5	6	66	$204 \times 101 \times 108$	56P510	$56 \mathrm{PA510}$	Q
20	20	21	M150	5 Round	2.5	6	66	$204 \times 101 \times 108$	56P520	$56 \mathrm{PA520}$	R
32	32	28	M180	5 Round	4	16	66	$204 \times 101 \times 108$	56P532	56PA532	S
40	40	35	M200	5 Round	10	16	66	$204 \times 101 \times 108$	56P540	56 PA540	T
50	50	35	M250	5 Round	10	16	66	$204 \times 101 \times 108$	56P550	56PA550	U
10	10	11	M100	6 Round	1.5	6/2.5	66	$204 \times 101 \times 108$	56P610	56PA610	V
10	10	11	M100	7 Round	1.5	6/2.5	66	$204 \times 101 \times 108$	56P710	56 PA710	W
	20	21	M150	7 Round	2.5	6/2.5	66	$204 \times 101 \times 108$	56P720	56PA720	X

ONE PIECE											
le (A) Utilisation Category			M Rating	Number of Sockels	Cond. Term Size in mm		IP Rating	0/A Dims. (H) $x(W) \times(D)$	Matching Plug Straight	Matching Plug Angle	Socket Config
AC21A	AC22A	AC23A			Min.	MaxCond.					
10	8	8	M80	3 Flat	1.5	6	66	$204 \times 101 \times 83$	56P310	-	A
10	10	11	M100	3 Flat w/heawy duty switch	1.5	6	66	$204 \times 101 \times 83$	56P310		A
15	10	8	M80	3 Flat	1.5	6	66	$204 \times 101 \times 83$	56P315		B
15	15	15	M120	3 Flat w/heaw duty switch	1.5	6	66	$204 \times 101 \times 108$	56P315		B
20	20	21	M150	3 Round	2.5	6	66	$204 \times 101 \times 108$	56P320	56PA320	H
32	32	28	M180	3 Round	6	16	66	$204 \times 101 \times 108$	56P332	56 PA 332	I
10	10	11	M100	4 Round	1.5	10	66	$204 \times 101 \times 108$	56 P 410	56 PA410	K
16	16	15	M120	Unique key contig.	1.5	6	66	$204 \times 101 \times 108$	56 P 416 K	56PA416K	M
20	20	21	M150	4 Round	2.5	10	66	$204 \times 101 \times 108$	56P420	56PA420	L
32	32	28	M180	4 Round	4	16	66	$204 \times 101 \times 108$	56 P 432	56PA432	N
40	40	35	M200	4 Round	6	16	66	$204 \times 101 \times 108$	56 P 440	$56 \mathrm{PA440}$	0
50	50	35	M250	4 Round	10	16	66	$204 \times 101 \times 108$	56 P 450	56PA450	P
10	10	11	M100	5 Round	1.5	10	66	$204 \times 101 \times 108$	56P510	56PA510	Q
20	20	21	M150	5 Round	2.5	10	66	$204 \times 101 \times 108$	56P520	56PA520	R
32	32	28	M180	5 Round	4	16	66	$204 \times 101 \times 108$	56P532	56PA532	S
in	40	35	M200	5 Round	6	16	66	$204 \times 101 \times 108$	56P540	56PA540	T
	50	35	M250	5 Round	10	16	66	$204 \times 101 \times 108$	56P550	56PA550	U
10	10	11	M100	6 Round	1.5 Page 6 6, 6.50 f 36366			$204 \times 101 \times 108$	56P610	56PA610	V
10	10	11	M100	7 Round	1.5	6/2.5	66	$204 \times 101 \times 108$	56P710	56PA710	W
20	20	21	M150	7 Round	2.5	6/2.5	66	$204 \times 101 \times 108$	56P720	56PA720	X

Note: AC utilisation categories to ASNZSS3947.3 $I_{n m}$-Conventional Enclosed Themal Current U_{i}-lnsulation Vollage U_{s}-Operalional Voltage

Surface Socket Outlets

56S0310,GY

56S0520,RO

56S0710,RW

Extra Low Voltage and 3 Phase sockets

Clipsal Surface Socket Outlets range in size from 32 V 10 A to 500 V 50 A .

All sockets feature hoseproof and dust resistant flaps with automatic snap catch latches. The transparent flap enables instant visual inspection of socket condition and pin configuration.

The full range of sockets accommodate both the superseded IP56 plain plugs and the current IP66 retention ring plugs in order to rationalise the number of variations required.

Earth and neutral connectors accommodating $3 \times 6 \mathrm{~mm}^{2}$ cable are supplied with all 500 V models.

Terminal housings are moulded in tough polyester to minimise damage.

Catalogue Number	$\underset{\text { (Amp) }}{1}$	$\begin{aligned} & \mathrm{U}_{\mathrm{J}} / \mathrm{U}, \\ & \text { (Volit) } \end{aligned}$	Number of Sockels	Cond. Term Size in mm		$\stackrel{\text { IP }}{\text { Rating }}$	0/A Dims.$\text { (H) } \times \text { (V) } \times \text { (D) }$	Matching Plug Straight	Matching Plug Straight	Sockel Config.
				Min.	Max Cond.					
56S0210	10A	110 V	2 Parallel Flat	1.5	16	66	107x101×77	56 P 210		D
56S0215/32	15A	32 V	2 Pin Polarised	1.5	6	66	$107 \times 101 \times 77$	56P215/32	-	E
56S03/110	10A	110 V	2 Round Live \& Flat Earth	1.5	6	66	107×101x77	56P3/110	-	J
${ }^{56 S 0310 R P}$	10A	250 V	3 Round	1.5	6	66	107x101×77	56P310RP		G
56S0310	10A	250 V	3 Flat	1.5	6	66	107x101x77	56P310	,	A
5650315	15A	250 V	3 Flat	1.5	6	66	107x101x77	56P315		B
56S0310A	10A	250V	3 Flat auto-swithed D/P	1.5	10	66	107x101×77	56P310	-	A
56S0315A	15 A	250 V	3 Flat auto-switched D/P	1.5	10	66	107x101×77	56 P 315		B
56S0310L	10A	250V	2 Flat \& Round Earth	1.5	6	66	107×101×77	56P310SL		C
5650320	20 A	250 V	3 Round	2.5	6	66	107×101 $\times 102$	56 P 320	56PA320	H
56S0320F	20A	250V	3 Flat Pins	2.5	6	66	107x101×77	56P320F		F
5650332	32 A	250 V	3 Round	6	16	66	$107 \times 101 \times 102$	56 P 332	56PA332	1
5650410	10A	500V	4 Round	1.5	6	66	107×101×102	56P410	56PA410	K
56S0416K	16 A	500 V	Unique key configuration	1.5	6	66	107×101 102	56P416K	56PA416K	M
5650420	20A	500V	4 Round	2.5	6	66	107×101×102	56 P 420	56PA420	L
5650432	32A	500 V	4 Round	4	16	66	$107 \times 101 \times 102$	56P432	56PA432	N
56S0440	40A	500V	4 Round	6	16	66	107×101×102	56P440	56PA440	0
5680450	50A	500 V	4 Round	10	$16^{\prime \prime}$	66	107×101 102	56P450	56PA450	P
56S0510	10A	500 V	5 Round	1.5	6	66	107×101×102	56P510	56PA510	0
56S0520	20A	500 V	5 Round	2.5	6	66	107x101x102	56 P 520	56PA520	R
5650532	32A	500 V	5 Round	4	16	66	107×101×102	56 P 332	56PA532	S
5650540	40A	500 V	5 Round	6	16	66	107×101 102	56 P 540	56PA540	T
5650550	50A	500 V	5 Round	10	16^{*}	66	107×101×102	56P550	56PA550	U
5650610	10A	500 V	6 Round	1.5	$6 / 2.5$	66	107×101x102	56P610	56PA610	v
5650710	10A	500 V	7 Round	1.5	$\text { Page } \frac{6 / 2.5}{672.5} \text { of } 363 \frac{66}{66}$		107×101×102	$56 P 710$	56PA710	W
5680720	20A	500 V	7 Round	2.5			$107 \times 101 \times 102$	$56 P 720$	56PA720	X

Note: 5650320 and 5650320 F come with the facility to fit auxiliary switch $5650 A U X 15$.
$\cdots-L 1, L 2,13$ Cable size max $25 \mathrm{~mm}^{2} I_{3 n}$-Conventional Enclosed Themal Curent $U_{\text {, }}$ - Insulation Voltage

14 Clipsal 56 and 66 Series

Surface Socket Outlets

Spare Parts Internal Socket Housings

A full range of replacement internal socket housings is available for 3 phase 56 SO models. They eliminate the need to replace an entire unit if only the internal socket housing is damaged. Socket terminal housings are moulded in durable polyester.

Options available

- Less Enclosure - add LE to catalogue number e.g. 56 SO 410 becomes 56SO410LE.
- Resistant Orange - add RO to catalogue number e.g. 56SO410 becomes 56SO410,RO.
- Resistant White - add RW to catalogue Number e.g. 56SO310 becomes 56SO310RW.

56S0410G Series

Catalogue Number	$\underset{(\mathrm{Amp})}{\mathrm{l}}$	$\begin{gathered} \text { U } \\ \text { (Voii) } \end{gathered}$	Number of Sockels	Cond. Term Size in mm²		Socket Configuration
				Min.	Max/Cond.	
56S0320G	20A	250 V	3 Round	2.5	6	H
56S0332G	32 A	250 V	3 Round	6	16	1
56S0410G	10A	500 V	4 Round	1.5	6	K
56S0416KG	16A	500 V	Unique key configuration	1.5	6	M
56S0420G	20A	500 V	4 Round	2.5	6	L
56S0432G	32A	500 V	4 Round	6	16	N
56S0440G	40A	500 V	4 Round	10	16	0
56S0450G	50 A	500 V	4 Round	10	16	P
56S0510G	10A	500 V	5 Round	1.5	6	Q
56S0520G	20A	500 V	5 Round	2.5	6	R
56S0532G	32 A	500 V	5 Round	6	16	S
56S0540G	40 A	500 V	5 Round	10	16	T
56S0550G	50A	500 V	5 Round	10	16	U
56S0610G	10A	500 V	6 Round	1.5	6/2.5	V
56S0710G	Page	3630 V	7 Round	1.5	6/2.5	W
56S0720G	20A	500 V	7 Round	2.5	6/2.5	X

I_{m}-Corventional Enclosed Thernal Current U_{1}-Insulation Voltage

Cable Size - Nominal Area of Conductor mm	No. and Diameter of Wires for Standard Conductor No./min	Overall Diameter of ASNZS300U Table E7 mm
0.5	$1 / 0.80$	2.5
1	$1 / 1 / 13$	2.9
1.5	$1 / 1.38$	3.2
2.5	$7 / 0.50$	3.3
4	$1 / 1.78$	3.6
6	$7 / 0.67$	3.8
10	$7 / 0.85$	4.8
16	$7 / 1.04$	5.3
25	$7 / 1.35$	6.3
35	$7 / 1.70$	7.3
50	$19 / 1.35$	9.4
70	$19 / 1.53$	10.4
95	$19 / 1.78$	12.0
120	$37 / 1.14$	13.8
150	$37 / 2.20$	16
185	$37 / 2.25$	17.7
240	$37 / 2.25$	19.7
300	$61 / 2.25$	22
400	$61 / 2.52$	25.1
500	$61 / 2.85$	27.9
630	$61 / 3.20$	31.4
	$127 / 2.52$	34.9
		38.9

Dimensions, standard copper and aluminium conductors 1 core $0.6 / 1 \mathrm{kV} \mathrm{PVC}$ insulated cable to AS/NZS5000, $75^{\circ} \mathrm{C}$
Note: For exact dimensions refer to manufacturers' details.

> Useful 3-Phase Formulae
> kW $=$ Line Amps \times Line Volts $\times 1.732 \times$ P.E 1000
> kVA $=$ Line Amos \times Line Volts $\times 1.732$
> 1000
> \ldots... $=$ kV.A \times P.F.

Electric Motors

Power Output $=$	Power Input \times Efficiency
kW Output	$=\mathrm{kW}$ Input \times Efficiency
kW Output	$=\frac{1.732 \times \text { Line Volts } \times \text { Line Amps } \times \text { P.F. } \times \text { Efficiency }}{1000}$
kV.A Input	$=\frac{1.732 \times \text { Line Volts } \times \text { Line Amps }}{1000}$
Line Amperes $=$	$\frac{1000 \times \mathrm{kW} \text { Output }}{\text { Line Volts } \times 1.732 \times \text { P.F. } \times \text { Efficiency }}$
Line Amperes $=$	$\frac{1000 \times \mathrm{kV} . \mathrm{A} \text { Input }}{\text { Line Volts } \times 1.732}$

The power factor is usually taken as 0.8 (as an all-round figure) but this varies with the speed and size of the motor. The efficiency varies from 85% in small motors to 90% and over for large motors.

Measure	Symbol	Unit
Length	S	m
Area	A	m^{2}
Volume	V	m^{3}
Weight	m	kg
Density	P	$\mathrm{kg} / \mathrm{m}^{3}$
Time	t	S
Frequency	F	Hz
Rotary Speed	n	s^{-1}
Linear Speed	v	ms^{-1}
Acceleration	a	ms^{2}
Power	F	N (Newton)
Pressure	P	Pa (Pascal)
Torque	M	Nm
Work	W	J (Joule)
Power	P	W (Watt)
Reactive Voltampere		Var
Voltampere		V.A
Current	1	A (Ampere)
Operational Current	1th	A
Conventional Enclosed	the	A
Thermal Current	61/2.85	31.4
Voltage	U	V (Volts)
Insulated Voltage	Ui	V
Operational Voltage	Ue	V
Resistance	R	(0hm)
Impedance	Z	
Reactance	X	
Reluctance	S	AWb
Capacitance	C	F (Farad)
Quantity of Electricity	Q	C (Coulomb)
Magnetic Field Strength	H	A/m
Magnetic Flux	\emptyset	Wb (Weber)
Inductance	L	H (Henry)
Magnetic Flux Density	B	T (Tesca)
Temperature	t	${ }^{\circ} \mathrm{C}$ (Centigrade)
Illuminance	E	1 x (Lux)
Luminance	L	$\mathrm{cd} / \mathrm{m}^{2}$
Luminous Flux	0	Im (Lumen)
Luminous Intensity	1	cd (Candela)

Abbreviations tor Multiples and Sub Muliples

Common Conversion Factors

Quality	Non-SI Unit	Metric	Conversion Factors (approx.) Non-SI to Metric (SI) Units	Metric (SI) to Non-SI Units
Length	Inch (in)	Millimetre (mm) or Centimetre (cm)	$1 \mathrm{in}=25.4 \mathrm{~mm}$	$1 \mathrm{~cm}=0.39 \mathrm{in}$
	Foot (tt)	Centimetre (cm) or Metre (m)	$1 \mathrm{ft}=30.5 \mathrm{~cm}$	$1 \mathrm{~m}=3.28 \mathrm{ft}$
	Yard (yd)	Metre (m)	$1 \mathrm{yd}=0.914 \mathrm{~m}$	$1 \mathrm{~m}=1.09 \mathrm{yd}$
	Mile	Kilometre (km)	1 mile $=1.61 \mathrm{~km}$	$1 \mathrm{~km}=0.62$ mile
Area	Square Inch (in^{2})	Square Millimetre (mm^{2})	$1 \mathrm{in}^{2}=645 \mathrm{~mm}^{2}$	$1 \mathrm{~mm}^{2}=0.002 \mathrm{in}^{2}$
	Square Inch (in^{2})	Square Centimetre (cm^{2})	$1 \mathrm{in}^{2}=6.45 \mathrm{~cm}^{2}$	$1 \mathrm{~cm}^{2}=0.155 \mathrm{in}^{2}$
	Square Foot ((2) 2)	Square Centimetre $\left(\mathrm{cm}^{2}\right)$ or Square Metre (m^{2})	$1 \mathrm{ft}^{2}=929 \mathrm{~cm}^{2}$	$1 \mathrm{~m}^{2}=10.76 \mathrm{tt}^{2}$
	Square Yard (ydx)	Square Metre (m^{2})	$1 \mathrm{yd}^{2}=0.836 \mathrm{~m}^{2}$	$1 \mathrm{~m}^{2}=1.20 \mathrm{yd}^{2}$
	Acre	Hectare (ha)	1 acre $=0.405$ ha	1 ha $=2.47$ acres
	Square Mile	Square Kilometre (km²)	1 Square Mile $=2.59 \mathrm{~km}^{2}$	$1 \mathrm{~km}^{2}=0.387$ sq. mile
Volume	Cubic Inch (in^{3})	Cubic Centimetre (cm^{3})	$1 \mathrm{in}^{3}=16.4 \mathrm{~cm}^{3}$	$1 \mathrm{~cm}^{3}=0.06 \mathrm{in}^{3}$
	Cubic Inch (ft^{3})	Cubic Decimetre (dm^{3}) or	$1 \mathrm{ft}^{3}=28.3 \mathrm{dm}^{3}$	$1 \mathrm{~m}^{3+}=35.3 \mathrm{ft}^{3}$
	Cubic Yard (yd ${ }^{\text {3 }}$)	Cubic Metre (m^{3})	$1 \mathrm{yd}^{3}=0.765 \mathrm{~m}^{3}$	$1 \mathrm{~m}^{3}=1.31 \mathrm{yd}^{3}$
Volume (Fluids)	Fluid Ounce UK (fl. oz UK)	Millilitre (ml)	$1 \mathrm{fl} .02(\mathrm{UK})=28.4 \mathrm{ml}$	$1 \mathrm{ml}=0.035 \mathrm{fl} .02$ (UK)
	Pint UK (pt UK)	Millilitre (ml) or Litre (l)	1 pint UK=568 ml	$11=1.76$ pint (UK)
	Gallon UK (gal UK)	Litre (1) or Cubic Metre (m^{3})	1 gal UK $=4.551$	$1 \mathrm{~m}^{3}=220$ gallons (UK)
	Fluid Ounce US (FI. oz US)	Millilitre (ml)	1fl. 02 (US) $=29.6 \mathrm{ml}$	$1 \mathrm{ml}=0.034 \mathrm{fl}$. . oz (US)
	Pint US (gal US)	Litre (I) or Millilitre	1 pint (US) $=473 \mathrm{ml}$	$11=2.11$ pint (US)
	Gallon US (gal US)	Litre	1 gallon (US) $=3.791$	$11=0.264$ gallon (US)
Mass	Ounce (0z)	Gram (g)	$10 \mathrm{z}=28.3 \mathrm{~g}$	$1 \mathrm{~g}=0.03502$
	Pound (lb)	Gram (g) or kilogram (kg)	$1 \mathrm{lb}=454 \mathrm{~g}$	$1 \mathrm{~kg}=2.20 \mathrm{lb}$
	Ton	Tonne (t)	1 ton $=1.02$ tonne	1 tonne $=0.984$ ton
	tael	Gram (g)	1 tael $=37.8 \mathrm{~g}$	$1 \mathrm{~g}=0.026$ tael
	Catty	Kilogram (kg)	1 catty $=0.605 \mathrm{~kg}$	$1 \mathrm{~kg}=1.65$ cattoes
	Picul	Kilogram (kg)	1 picul $=60.50 \mathrm{~kg}$	$1 \mathrm{~kg}=0.017$ picul
Force	Pound Force (lbf)	Newton (N)	$1 \mathrm{lbt}=4.45 \mathrm{~N}$	$1 \mathrm{~N}=0.225 \mathrm{lbf}$
	Kilogram Force (kgi)	Newton (N)	$1 \mathrm{kgf}=9.81 \mathrm{~N}$	$1 \mathrm{~N}=0.102 \mathrm{kgf}$
Pressure	Pound Force per square inch (psi)	kilopascal (kPa)	$1 \mathrm{psi}=6.86 \mathrm{kPa}$	$1 \mathrm{kPa}=0.145 \mathrm{psi}$
	Kilogram force per square centimetre ($\mathrm{kgt} / \mathrm{cm}^{2}$)	kilopascal (kpa)	$1 \mathrm{~kg} / \mathrm{cm}^{2}=98 \mathrm{kPa}$	$1 \mathrm{kPa}=0.01 \mathrm{kgf} / \mathrm{cm}^{2}$
	Inch of water (in $\mathrm{H}_{2} \mathrm{O}$)	Pascal (Pa)	1 in $\mathrm{H}_{2} \mathrm{O}=249 \mathrm{~Pa}$	$1 \mathrm{~Pa}=0.004$ in $\mathrm{H}_{2} \mathrm{O}$
	Bar	kilopascal (kPa)	$1 \mathrm{Bar}=100 \mathrm{kPa}$	$1 \mathrm{kPA}=0.01$ bar
Velocity	Mile per hour (mph)	Kilometre per hour (km/h)	1 mile $=1.61 \mathrm{~km} / \mathrm{h}$	$1 \mathrm{~km} / \mathrm{h}=0.62 \mathrm{mph}$
Temperature	Fahrenheit temp. (F)	Celsius temp. (C)	$\frac{{ }^{\circ} \mathrm{C}=5(\mathrm{OF}-32)}{9}$	$\frac{{ }^{\circ} \mathrm{F}=\left(9 \times{ }^{\circ} \mathrm{C}\right)+32}{5}$
Density	Pound per cubic inch ($\mathrm{lb} / \mathrm{in}^{3}$)	$\begin{gathered} \text { Gram per cubic } \\ \text { centimetre }\left(\mathrm{g} / \mathrm{cm}^{3}\right) \\ =\text { tonne per cubic metre }\left(\mathrm{V} \mathrm{~m}^{3}\right) \end{gathered}$	$1 \mathrm{lb} / \mathrm{in}^{3}=27.7 \mathrm{tm}^{3}$	$1 \mathrm{t} / \mathrm{m}^{3}=0.036 \mathrm{lb} / \mathrm{in}^{3}$
	Pound per cubic foot ($\mathrm{lb} / \mathrm{t}^{3+}$)	Kilogram per cubic metre ($\mathrm{kg} / \mathrm{m}^{3}$)	$1 \mathrm{lb} / \mathrm{tt}^{3}=16.02 \mathrm{~kg} / \mathrm{m}^{3}$	$1 \mathrm{~kg} / \mathrm{m}^{3}=0.06 \mathrm{lb} / \mathrm{t}^{3}$
	Ton per cubic yard (ton/yd ${ }^{3}$)	Tonne per cubic metre ($\mathrm{t} / \mathrm{m}^{3}$)	$1 \mathrm{ton} / \mathrm{yd}=1.33 \mathrm{t} \mathrm{m}^{3}$	$1 \mathrm{t} / \mathrm{m}^{3}=0.752$ ton/ $/ \mathrm{dd}^{3}$
Energy	British thermal unit (Btu)	Kilojoule (kJ)	$1 \mathrm{Btu}=1.06 \mathrm{~kJ}$	$1 \mathrm{~kJ}=0.948 \mathrm{Btu}$
	Therm	Megajoule (MJ)	1 Therm = 106 MJ	$1 \mathrm{MJ}=9.48 \times 10^{-3}$ therm
	Calorie (dietician)	Kilojoule (kJ)	$1 \mathrm{Cal}($ dietician $)=4 \mathrm{~kJ}$	$1 \mathrm{~kJ}=0.23 \mathrm{CaI}$ (dietician)
Power	Horsepower (hp)	Kilowat (kW) Page 40 of 363	$1 \mathrm{hp}=0.746 \mathrm{~kW}$	$1 \mathrm{~kW}=1.34 \mathrm{hp}$
Fuel Consumption	Mile per gallon (mpg)	Littes per 100 m	$\frac{(n) \times \mathrm{mpg}=2821 / 100 \mathrm{~km}}{\mathrm{n}}$	$\frac{(\mathrm{n}) \times 1 / 100 \mathrm{~km}=282}{\mathrm{n}}$

Switch Wiring Diagram Types

$\xrightarrow{1}$ + ${ }_{\text {- }}^{\text {- }}$	Switch is 30 Series mech.		
	56C215/32	$56 \mathrm{C310C}$	56SW 110
	56C210	56C3/110	56SW115
	56C310	56C310RP	
	56C315	56CV310	
		56CV315	

Switch terminals are not identified
Switch is backwired
Conductor termination is pressure plate type
56 C 320 56SW110HD
56CV310HD 56SW115H
56CV310HD 56SW120
56SW132
56SW 150
56SW163

Switch terminals are not identified
Switch is backwired
Conductor termination is pressure plate type
56C310D
-56C315D

Switch terminats are not identified
Switch is backwired
Conductor termination is pressure plate type

56 C 410	56 CV 410	56 CV 710	56 K 1 SW 310
56 C 420	56 CV 420	56 CV 720	56 K 1 SW 320
56 C 416 K	56 CV 510	56 CV 432	56 K 2 SW 310
56 C 510	56 CV 520	56 CV 532	56 K 2 SW 320
56 C 520	56 CV 416 K	56 CV 440	Pag
	56 CV 610	56 CV450	

.56CV610 56CV450

56SWH	66CV450	56SW363/2	56C610	56C432	56C550
56SWH 325	66CV463	56SW363	56C710	56C532	56CV540
56SWH 363		56SW350	56C720	56C450	56CV550
56SWH 340		56SW332	56 C 440	56C540	56SW310
56SWH 380					56SW320

Switch Wiring Diagram Types

Switch is 30 Series mech.
56SW110/2
56SW115/2
56SSW10
56SSW15

If neutral potential is applied to remote terminal timer function is overridden

56SW420
56SWH425
56SWH440
56SWH463
66CV550
66CV563
66CV750
66CV763

56PB (No Marking, Colour Green, Non Latching)
56PBS (Stop, Colour Red, Non Latching)
${ }^{3} \mathrm{BS} 1$ (Emergency Stop, Marked on Switch and Plate, Colour Red Mushroom, Latching
BS2 (Stop, Colour Red Mushroom, Latching)
56/2PB (Stop/Start, Colour Red/Green, Non Latching)
56/2PBS1 (Stop, Colour Red Mushroom, Latching)(Start, Colour Green, Non Latching)

Switch is 30 Series mech.
Conductor termination is pressure plate type
56CTC
56CTC15
56CTC2SO
56 CTC 2 SO 15
56TC
56 TC7
$56 T C D B$

Wiring Diagram Types

56CTC Series wiring identification
Switches are 30 series mech

HEAVY DUTY LINKS

BP165/7

500V 165A 7 Hole Link.

BP165/7ETP

500V 165A 7 Hole Link with tin-plate link and screws. Two screws per tunnel. Black unbreakable, transparent polycarbonate base and cover.
Dimensions: $100 \times 43 \times 40 \mathrm{~mm}$. Terminal bar: $16 \times 16 \times 76 \mathrm{~mm}$. 2 tunnels: 9.5 mm diameter accommodate $50 \mathrm{~mm}^{2}$ cables.
1 tunnel: 8.0 mm diameter accommodates $35 \mathrm{~mm}^{2}$ cable.
2 tunnels: 7.1 mm diameter accommodate $25 \mathrm{~mm}^{2}$ cables. 2 tunnels: 5.5 mm diameter accommodate $16 \mathrm{~mm}^{2}$ cables. Mounting centres: $71 \times 29 \mathrm{~mm}$. Available in red.

BP165/7BW

500V 165A 7 Hole Back Wiring Link.
2 terminal tunnels: 9.5 mm diameter accommodate $50 \mathrm{~mm}^{2}$ cable, have single screw connection.
5 remaining terminals have 2 screws per tunnel. See BP165/7 above.
Temperature rating: $120^{\circ} \mathrm{C}$ maximum.

BP165/13

500V 165 A 13 Hole Link. Two screws per tunnel. Black unbreakable, transparent polycarbonate base and cover.
Dimensions: $120 \times 47 \times 52 \mathrm{~mm}$. Terminal Bar: $19 \times 16 \times 95.3 \mathrm{~mm}$. 2 tunnels: 9.5 mm diameter accommodate $50 \mathrm{~mm}^{2}$ cable. 5 tunnels: 6.4 mm diameter accommodate $16 \mathrm{~mm}^{2}$ cable. 6 tunnels: 4.8 mm diameter accommodate $10 \mathrm{~mm}^{2}$ cable. Mounting centres: $90 \times 34 \mathrm{~mm}$. Available in red.
Temperature rating: $125^{\circ} \mathrm{C}$ maximum.

BP165/13ETP

Same as BP165/13 with electro tinplate link and screws.

BP350/7

500 V 7 Hole Link. Incoming cables clamped with single grub screw. Supplied with Allen key. Two screws per take off tunnel. Black base and cover.
Dimensions: $120 \times 47 \times 52 \mathrm{~mm}$. Terminal bar: $25.4 \times 19 \times 95.3 \mathrm{~mm}$. 2 tunnels: 15.0 mm diameter accommodate $120 \mathrm{~mm}^{2}$ cables.
2 tunnels: 9.5 mm diameter accommodate $50 \mathrm{~mm}^{2}$ cables.
2 tunnels: 8.0 mm diameter accommodate $35 \mathrm{~mm}^{2}$ cables.
1 tunnel: 5.5 mm diameter accommodates $16 \mathrm{~mm}^{2}$ cables.
Mounting centres: $90 \times 34 \mathrm{~mm}$.
Available in red.
Temperature rating $125^{\circ} \mathrm{C}$ maximum.

Page 45 of 363

BP350/7ETP

Same as BP350/7 with electro tinplate link and screws.

BP350/13

500 V 13 Hole Link. Incoming cables clamped with single grub screw. Supplied with Allen key. Two screws per take off tunnel. Black unbreakable, transparent polycarbonate base and cover.
Dimensions: $120 \times 47 \times 52 \mathrm{~mm}$. Terminal bar: $25.4 \times 19 \times 95.3 \mathrm{~mm}$. 2 tunnels: 15.0 mm diameter accommodate $120 \mathrm{~mm}^{2}$ cables.
1 tunnel: 8.0 mm diameter accommodates $35 \mathrm{~mm}^{2}$ cable. 8 tunnels: 5.5 mm diameter accommodate $16 \mathrm{~mm}^{2}$ cable. 2 tunnels: 4.8 mm diameter accommodate $10 \mathrm{~mm}^{2}$.
Mounting centres: $90 \times 34 \mathrm{~mm}$. Available in red.
Temperature rating: $125^{\circ} \mathrm{C}$ maximum.

BP350/13ETP

Same as BP350/13 with electro tin-plate link and screws.

LINK BARS

BP90A Series 90A Link Bars.

Bar Section: $13 \times 9.5 \mathrm{~mm}$.
Bars have two 5.5 mm diameter tunnels with two screws, for up to $16 \mathrm{~mm}^{2}$ cables.
One 5.2 mm diameter tunnel with two screws for M.E.N.
All other tunnels 5.2 mm diameter with one screw to accommodate up to $16 \mathrm{~mm}^{2}$ cables.
Single screw tunnels are numbered.

BP165A Series 165A Link Bars

 Bar Section: $19 \times 9.5 \mathrm{~mm}$.Bars have two $3 / 8^{\prime \prime}$ hexagon head bolts, for up to 165 amp. cable lugs.
One 5.8 mm diameter tunnel with two screws for M.E.N.
All other tunnels 5.8 mm diameter with one screw to accommodate up to $16 \mathrm{~mm}^{2}$ cables.
Single screw tunnels are numbered.
Available electro tin-plated.

BP165B Series 165A Link Bars Bar Section: $19 \times 9.5 \mathrm{~mm}$.
Bars have one $3 / 8^{\prime \prime}$ hexagon head bolt for up to 165 amp cable lug. One tunnel 5.8 mm diameter, with two screws for M.E.N.
All other tunnels 5.8 mm diameter with one screw to accommodate up to $16 \mathrm{~mm}^{2}$ cables.
Single screw tunnels are numbered.
 Available electro tin-plated.
Un-numbered bars available on request.

Catalogue Number	Single Screw Tunnels	Overall Length $(\mathbf{m m})$
BP90A6	6	72
BP90A12	12	110
BP90A18	18	148
BP90A24	24	186
BP90A30	30	224
BP90A36	36	262

Catalogue Number	Single Screw Tunnels	Overall Length (mm)
BP165A12	12	145
BP165A18	18	188
BP165A24	24	230
BP165A30	30	273
BP165A36	36	315
BP165A42	42	358
BP165A48	48	401
BP165A54	54	443
BP165A60	60	486
BP165A72	72	571
BP165A80	80	628
BP165A84	84	656

Catalogue Number	Single Screw Tunnels	Overall Length $(\mathbf{m m})$
BP165B12	12	123
BP165B18	18	165
BP165B24	24	208
BP165B30	30	250
BP165B36	36	293
BP165B42	42	336
BP165B48	48	378
BP165B54	54	421
BP165B60	60	463
BP165B72	72	549
BP165B80	80	605
BP165B84	84	633

BP165C Series 165A Link Bars Bar Section: $19 \times 9.5 \mathrm{~mm}$.
Bars have one $3 / 8^{\prime \prime}$ hexagon head bolt for up to 165 amp cable lug. All tunnels 5.8 mm diameter with two screws to accommodate up to $16 \mathrm{~mm}^{2}$ cables.
Tunnels are numbered.
Available electro tin-plated.

BP165D Series 165A Link Bars Bar Section: $19 \times 9.5 \mathrm{~mm}$.
Bars have two $3 / 8^{\text {n }}$ hexagon head bolts, for up to 165 amp . cable lugs. All tunnels 5.8 mm diameter with two screws accommodating up to $16 \mathrm{~mm}^{2}$ cables.
Tunnels all numbered.
Electro bars available on request.

Catalogue Number	Double Screw Tunnels	Overall Length $(\mathbf{m m})$
BP165C6	6	95
BP165C12	12	116
BP165C18	18	158
BP165C24	24	201
BP165C30	30	243
BP165C36	36	286
BP165C42	42	329
BP165C48	48	371
BP165C54	54	414
BP165C60	60	456
BP165C72	72	542
BP165C80	80	598
BP165C84	84	627

Catalogue Number	Double Screw Tunnels	Overall Length $(\mathbf{m m})$
BP165D6	6	95
BP165D12	12	138
BP165D18	18	180
BP165D24	24	223
BP165D30	30	266
BP165D36	36	308
BP165D42	42	351
BP165D48	48	393
BP165D54	54	436
BP165D60	60	478
BP165D72	72	564
BP165D80	80	621
BP165D84	84	650

Un-numbered bars on request.

BP165D18 Series 165A Link Bars

Bar Section: $19 \times 9.5 \mathrm{~mm}$.
Bars have two $3 / 8^{\prime \prime}$ hexagon head bolts, for up to 165 amp cable lugs. All tunnels 5.8 mm diameter with two screws, accommodate up to $16 \mathrm{~mm}^{2}$ cables.
Tunnels all numbered.
Available on request.

Alternative Connections for

Link
Most Link Bars in the BP165A, BP165B, BP165C, BP165D and BPN Series are available with various types of connections if required.

Stud Connection

8 mm and 9.5 mm Threaded Studs soldered in bars with hexagonal lock nuts.

Line Taps

Blue Point No. BP22, BP24, BP25, BP26 and BP28 Line Taps may also be incorporated if required.

Medium Duty Neutral Bars With $2 \times$ BP22 Line Taps Front Wiring

BPMD2/10 Series

Complete with $2 \times$ BP22 Line Taps. $13 \times 9.5 \mathrm{~mm}$ brass.

All bars have 1-1/4 Whitworth screw with flat brass washer and 2 number BPMD2 Line Taps provided for incoming cables ($16 \mathrm{~mm}^{2}$).
All 4 mm diameter tunnels with single screw per tunnel for up to $6 \mathrm{~mm}^{2}$ cable.
All tunnels are numbered. Two 4 mm diameter countersunk recessed fixing holes.
Back wired neutral bar.

Bare Links with Mounting Blocks

BPQL Series

90A Link Bars with moulded mounting blocks. (BP165FD) Bar section $13 \times 13 \mathrm{~mm}$.
Temperature rating: $190^{\circ} \mathrm{C}$ maximum. Two $1 / 4^{\prime \prime}$ hexagon head studs for 90 ampere cable lugs.
All 5.5 diameter tunnels with single screw to accommodate up to $16 \mathrm{~mm}^{2}$ cables.
All tunnels are numbered.

Catalogue Number	Single Screw Tunnels	Overall Length (mm)
BPMD2/3	3	105
BPMD2/4	4	111
BPMD2/5	5	121
BPMD2/7	7	135
BPMD2/9	9	150
BPMD2/0	10	157
BPMD2/12	12	174
BPMD2/5	15	195
BPMD2/18	18	219
BPMD2/20	20	235
BPMD2/24	24	268
BPMD2/25	25	275
BPMD2/30	30	313
BPMD2/36	36	357

Catalogue Number	Single Screw Tunnels	Overall Length $(\mathbf{m m})$
BPQL12	12	143
BPQLL8	18	182
BPQLL4	24	219
BPQLL30	30	257
BPQL26	36	295
BPQL48	48	363
BPQL50	50	383
BPQL60	60	447

Line Taps

Line Taps can be drilled, tapped and
fitted with screws on request.

BP22

Line Tap for $16 \mathrm{~mm}^{2}$ cables.
Overall length 30 mm .

BP22ETP

As above but electro tin-plated.

BP24

Line Tap for $35 \mathrm{~mm}^{2}$ cables.
Overall length 35 mm .
BP24ETge 48 of 363
As above but electro tin-plated.

BP25

Line Tap for $50 \mathrm{~mm}^{2}$ cables.
Overall length 44 mm .

BP25ETP

As above but electro tin-plated.

BP26

Line Tap for $95 \mathrm{~mm}^{2}$ cables.
Overall length 50 mm .

BP26ETP

As above but electro tin-plated.

BP28
Line Tap for $185 \mathrm{~mm}^{2}$ cables.
Overall length 67 mm .
BP28ETP
As above but electro tin-plated.

CLIPSAL

NEUTRAL / ACTIVE / METER
LINKS
Clipsal Links are produced from Impact Resistant materials to prevent cracking in transit or during installation.

The transparent covers enable you to check wiring and locate the sealing screw at a glance. The sealing screw (nylon with brass insert) resists stripping. Voltage and amperage ratings are clearly marked on both the cover and brass bar.

All links are available with black or red covers and bases for neutral, active or meter applications as required by local authorities.

-Type - 500 Volt 140 Ampere

L4T35

500V 140A 4 Hole Neutral Link with two screws per tunnel. Black base and cover.

L4T35R

500V 140A 4 Hole Active Link. Red base and cover.

Dimensions: $65 \times 46 \times 43 \mathrm{~mm}$. Mounting centres: 28 mm . 1 tunnel 8.7 mm diameter accommodate $1 \times 25 \mathrm{~mm}^{2}$ cable.
3 tunnels 7.7 mm diameter accommodate $1 \times 25 \mathrm{~mm}^{2}$ cable. Certificate of Suitability No. CS2252N.

Mini Links with Cover

500V 100A
2 screws per tunnel.

L5

500 V 100A 5 Hole Neutral Link with two screws per tunnel. Black base and cover.

L5R

500 V 100A 5 Hole Active Link. Red base and cover.
Dimensions: $65 \times 46 \times 43 \mathrm{~mm}$. Mounting centres: 46 mm . 3 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$. 2 tunnels, 5.8 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$.

L5BW

500 V 110A 5 Hole Back Wiring Neutral Link with two screws per tunnel. Black base and cover.

L5BWR

500V 110A 5 Hole Back Wiring Active Link. Red base and cover.
Dimensions: $65 \times 46 \times 43 \mathrm{~mm}$. Mounting centres: 46 mm . 5 tunnels, 7 mm diameter accommodate $1 \times 25 \mathrm{~mm}^{2}$. Transparent black cover, with cut outs.

L6

500 V 100A 6 Hole Neutral Link with two screws per tunnel. Black base and cover.

L6R

500 V 100A 6 Hole Active Link. Red base and cover.
Dimensions: $65 \times 46 \times 43 \mathrm{~mm}$. Mounting centres: 46 mm . 3 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 3 tunnels, 5.8 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable.

L6/25

500 V 110A 6 Hole Neutral Link with 2 screws per tunnel. Black base and cover.

L6/25R

500 V 110A 6 Hole Active Link. Red base and cover.
Dimensions: $65 \times 46 \times 43 \mathrm{~mm}$. Mounting centres: 46 mm . 2 tunnels, 7.5 mm diameter accommodate $2 \times 25 \mathrm{~mm}^{2}$ cable. 1 tunnel, 5.5 mm diameter accommodates $1 \times 16 \mathrm{~mm}^{2}$ cable. 3 tunnels, 4.7 mm diameter accommodate $3 \times 10 \mathrm{~mm}^{2}$ cable. Transparent black cover with cut-outs.

L7
500 V 100A 7 Hole Neutral Link with two screws per tunnel. Black base and cover.

L7R

500 V 100A 7 Hole Active Link. Red base and cover.
Dimensions: $65 \times 46 \times 43 \mathrm{~mm}$. Mounting centres: 46 mm . 3 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 4 tunnels, 5.8 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable.

L7BW

500V 100A 7 Hole Back Wiring Neutral Link with two screws per tunnel. Black base and cover.

L7BWR

500V 100A 7 Hole Active Link. Red base and cover.
Dimensions: $65 \times 46 \times 43 \mathrm{~mm}$. Mounting centres: 46 mm . 2 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cables. 5 tunnels, 5.8 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cables. Transparent black cover, with cut-outs.

L8

500V 100A 8 Hole Neutral Link with two screws per tunnel. Black base and cover.
Dimensions: $86 \times 57 \times 40 \mathrm{~mm}$. Mounting centres: $59 \times 67 \mathrm{~mm}$. 3 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 5 tunnels, 5.8 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. Transparent black cover with cut-outs.

$L 10$

500V 100A 10 Hole Neutral Link with two screws per tunnel.
3 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 7 tunnels, 5.8 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. Dimensions: $86 \times 57 \times 40 \mathrm{~mm}$.

L10BW

500V 100A 10 Hole Back Wiring Neutral Link with two screws per tunnel.
Dimensions: $86 \times 57 \times 40 \mathrm{~mm}$.

$L 12$

500 V 100A 12 Hole Neutral Link with two screws per tunnel.
2 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 4 tunnels, 5.5 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 6 tunnels, 4.5 mm diameter accommodate $1 \times 10 \mathrm{~mm}^{2}$ cable. Dimensions: $86 \times 57 \times 40 \mathrm{~mm}$.

L14

500V 100A 14 Hole Neutral Link with two screws in 8 tunnels and one screw in 6 tunnels.
2 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 6 tunnels, 5.5 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 6 tunnels, 4.5 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. Dimensions: $86 \times 57 \times 40 \mathrm{~mm}$.

$L 16$

500V 100A 16 Hole Neutral Link with two screws in 6 tunnels and one screw in 10 tunnels.
2 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 4 tunnels, 5.5 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 10 tunnels, 4.5 mm diameter accommodate $1 \times 10 \mathrm{~mm}^{2}$ cable. Dimensions: $86 \times 57 \times 40 \mathrm{~mm}$.

L18

500V 100A 18 Hole Neutral Link with two screws in 6 tunnels and one screw in 12 tunnels.
2 tunnels, 6.3 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 4 tunnels, 5.5 mm diameter accommodate $1 \times 16 \mathrm{~mm}^{2}$ cable. 12 tunnels, 4.5 mm diameter accommodate $1 \times 10 \mathrm{~mm}^{2}$ cable. Dimensions: $86 \times 57 \times 40 \mathrm{~mm}$.

Tunnel Diameters					
Catalogue Number	$4.7 \mathrm{~mm}^{2}$ for $10 \mathrm{~mm}^{2}$ cable	6.3 mm for $16 \mathrm{~mm}^{2}$ cable	5.7 mm for $16 \mathrm{~mm}^{2}$ cable	7 mm for $25 \mathrm{~mm}^{2}$ cable	
L5	-	3	2	-	
L5BW	-	-	-	5	
L6	-	3	3	-	
L6/25	3	-	1	2	
L7	-	3	4	-	
L7BW	-	2	5	-	

Tunnel Diameters			
Catalogue Number	6.3 mm for $16 \mathrm{~mm}^{2}$ cable	5.5 mm for $16 \mathrm{~mm}^{2}$ cable	4.5 mm for $10 \mathrm{~mm}^{2}$ cable
L8	3	5	-
L10	3	7	-
L10BW	2	8	-
L12	2	4	6
L14	2	6	6
L16	2	4	10
L18	2	4	12

Mini Links Less Cover

500 V 100A
Mounting centres: 46 mm .

L5A

5 Hole - two screws per tunnel.
Black base.

L6A

6 Hole - two screws per tunnel.
Black base.

L6RA

6 Hole - two screws per tunnel.
Red base.

L7A

7 Hole - two screws per tunnel.
Black base.
Overall dimensions: $57 \times 30 \times 26 \mathrm{~mm}$. Mounting centres: 46 mm .
Tunnel and cable detail same as L5 to L7 Series Covered Links.

Standard Links Less Cover

500 V 100A
Mounting centres: $59-67 \mathrm{~mm}$.

L8A

8 Hole - two screws per tunnel.

L10A
10 Hole - two screws per tunnel.

L12A

12 Hole - two screws per tunnel.

L14A

14 Hole - two screws per tunnel.

L16A

16 Hole - two screws in 6 tunnels, and one screw in 10 tunnels.

L18A

18 Hole - two screws per tunnel in 6 tunnels, and one screw in 12 tunnels.
Overall dimensions: $80 \times 32 \times 22 \mathrm{~mm}$.
Mounting centres: $59-67 \mathrm{~mm}$.
Tunnel and cable detail same as L8 to L18 Series Covered Links.
All link bases are black.

Brass Link Bars

500 V 100A

L5P

5 Hole - two screws per tunnel. Length 41 mm .

L6P

6 Hole - two screws per tunnel. Length 48 mm .
L7P
7 Hole - two screws per tunnel.
Length 54 mm .

L8P

8 Hole - two screws per tunnel. Length 61 mm .

L10P

10 Hole - two screws per tunnel. Length 75 mm .

L12P

12 Hole - two screws per tunnel. Length 80 mm .
Brass bar section: $13 \times 10 \mathrm{~mm}$.
Tunnel and cable detail same as L5 to L12 Series Covered Links.

L14P

14 Hole - two screws in 8 tunnels and one screw in 6 tunnels.

L16P

16 Hole - two screws in 6 tunnels and one screw in 10 tunnels.

L18P

18 Hole - fwo screws in 6 tunnels and one screw in 12 tunnels.
Brass bar section: $19 \times 10 \mathrm{~mm}$ tunnel.
Cable detail same as L14 and L18
Series Covered Links.
'roducts of Gerard Industries Pty Ltd ABN 27007873529

Head Office

12 Park Terrace, Bowden
South Australia 5007
Telephone (08) 82690511
Facsimile (08) 83401724
Internet clipsal.com
E-Mail plugin@clipsal.com.au
Blue Point Products Pty Ltd
ABN 27000275632
A subsidiary of Gerard Industries Pty Ltd 122 Canterbury Road, Padstow New South Wales 2211
Telephone (02) 97081411
Facsimile (02) 97086585
Internet www.bluepointproducts.com.au
E-Mail sales@bluepointproducts.com.au

Offices in all States		
NISW		
	Sydney	
Albury	(02) 97949200	
VIC	Melbourne	(02) 60412377
	(03) 92073200	
Country Areas	1800653893	
QLD	Brisbane	(07) 32447444
	Townsville	(07) 47293333
SA	Adelaide	(08) 82680400
WA	Perth	(08) 94424444
TAS	Launceston	(03) 63435900
NT	Darwin	(08) 89470278

Area Representatives
NSW Albury
Central Coast
Coffs Harbour Dubbo Newcastle

South West Sydney Tamworth Wagga Wagga Wollongong

ACT Canberra Canberra/Goulburn Canberra/Yass

VIC Bendigo Geelong Gippsland Western Victoria

QLD Cairns Gold Coast Mackay Maryborough Northern Rivers Rockhampton Sunshine Coast Toowoomba Townsville

WA Bunbury Kalgoorlie \& Eastern Gold Fields Karratha

SA Riverland/Mildura/ Broken Hill
(02) 60412377 0418430361 0418653183 0418822564 0407298792 0418434169 0418686040 0419868353 0417714339 0418578903 0418423581 0419238824 0418164070 0419847732

0418570213
0418527233
0418512680 0419380444

0418773254
0418765459
0418752134
0418664338
0418768902
0418794711
0418711786
0418726394
0418180372
0418931684
0417928981
0418937249
0418596145

International Enquiries Head Office Export Department Telephone + 61882690587 Facsimile + 61883407350
E-Mail export@clipsal.com.au

New Zealand

Clipsal Industries (NZ) Ltd (Auckland)
Telephone (09) 5763403
Facsimile (09) 5761015
E-Mail headoffice @clipsal.co.nz
Customer Service
Free Fax (0508) 250305
Auckland/Mobile Phone (09) 5720014
Free Phone (0508) CLIPSAL
2547725

You can find this brochure and many others online in PDF format at:

clipsal.com

Follow the links off the home page or access the following page directly: clipsal.com/wat_lib_pdf.cfm

Page 52 of 363
clipsal.com

Gerard Industries Pty Ltd reserves the right to change specifications, modify designs and discontinue items without incurring obligation and whilst every effort is made to ensure that descriptions, specifications and other information in this catalogue are correct, no warranty is given in respect thereof and the company shall not be liable for any error therein.
${ }^{\circ}$ Copyright Gerard Industries Pty Ltd Printed by Custom Press Pty Ltd (08) 83467999

VPCIM EMITTING SYSTEMS \& ELECTRONIC PRODUCTS

$\mathrm{VpCl}^{\otimes}-110$ Emitter, Patented

PRODUCT DESCRIPTION

Cortec ${ }^{*} \mathrm{VpCl}-110$ emitters are designed to provide corrosion protection for metal components and parts enclosed in non-ventilated control boxes, cabinets, or tool boxes up to 10 cubic feet (283 liters) in volume. The Vapor phase Corrosion Inhibitor (VpCl) emits vapors which form a molecular layer on internal metal surfaces to protect critical, complex, and expensive electronic equipment and other metal components during operation, shipping, or storage. $\mathrm{VpCl}_{\mathrm{p}}-110$ is a small foam emitter through which corrosion inhibitors are slowly released, and moisture and air pollutants can enter to be absorbed. It provides long-term protection against corrosion even in the presence of adverse conditions including salt, moisture, airborne contaminants, $\mathrm{H}_{2} \mathrm{~S}$, $\mathrm{SO}_{2}, \mathrm{NH}_{3}$, and others.

TYPICAL APPLICATIONS

$\mathrm{VpCl}-110$ can be effectively used for:

- Operations, packaging, and storage electrical equipment
- Marine navigation and communication electronic equipment
- Aerospace electrical controls
- Electric motors

Page 53 of 363

- Switching equipment
- Fuse boxes and power boxes
- Medical equipment
- Electrical wireways and terminal boxes
- Scientific and measuring instruments
- Telecommunications equipment
- Remote electronics devices
- Tool-boxes, parts-storage, and other containers holding metals

FEATURES

- Economical to use
- Provides continuous protection for up to 24 months during operation and/or shutdown
- Effective in polluted and humid environments
- Does not interfere with electrical, optical, or mechanical performance
- Multimetal protection
- Quick and easy installation
- Non-toxic and safe to handle
- Compact and space-saving
- Free of nitrites, halogens, and phosphates
- No spraying, wiping, or dipping required
- Low VOC values
- Meets Southern California Clean Air Act and other National and local regulations
- Self-stick back
- Self-stick date label
- Accepted by FDA for corrosion protection of electrical and electronic equipment within food processing plants
- Canadian Food Inspection Agency acceptance for indirect food contact
- NSN 6850-01-456-2971
- Conforms to MIL I-22110C
- Federal Standard 101, Ardec Technical Report 99. 05, Picatinny Arsenal, New Jersey, USA

METHOD OF APPLICATION

$\mathrm{VpCl}-110$ is extremely simple and convenient to install. The device should be installed at the earliest possible time. Simply select a space within enclosure where corrosion protection would be useful. Verify the surface is clean and free of debris. Peel off the protective peel strip from the bottom of the device and attach it to the clean surface.
$\mathrm{VpCl}-110$ emitters can be installed in any position. For volumes greater than 10 cubic feet (283 liters), use more than one device. If the enclosure is not totally airtight, or if the access doors are opened frequently, replace the $\mathrm{VpCl}-110$ device more often than every 2 years. After periods of heavy maintenance replace the device. For additional protection spray the enclosure very lightly with ElectriCorr ${ }^{\otimes} \mathrm{VpCl}-238$ or $\mathrm{VpCl}-239$.

SPECIFICATIONS

Packaging
Protection

Standard Size

12 individually wrapped emitters per carton emitters per carton
up to $10 \mathrm{ft}^{3}$ (283 liters) per device
Foam device with adhesive backing $2.5^{\prime \prime} \mathrm{D} \times 2^{\prime \prime} \mathrm{H}$ $(6.4 \mathrm{~cm} \mathrm{D} \times 5 \mathrm{~cm} \mathrm{H}$)

FOR INDUSTRIAL USE ONLY
KEEP OUT OF REACH OF CHILDREN
KEEP CONTAINER TIGHTLY SEALED
NOT FOR INTERNAL CONSUMPTION
CONSULT MATERIAL SAFETY DATA SHEET FOR MORE INFORMATION

LIMITED WARRANTY	
All stotementis, technicol information and recommendations contained herrain are based on tests Cortac Corporation believes to be rotioble, but the occurraç or complationess thereof is not gueronteed.	BEFORE USING, USER SHALL DETERMINE THE SUITABILITY OF THE PRODUCT FOR ITS INTENDED USE, AND USER ASSUMES ALL RISK AND UABIUTY WHATSOEVER IN CONNECTION THEREWITH. No representation or
Corrice Corporation worronis Conec' producs will be froe from defoets when shipped to customar. Corrioc	dherein shall have any force or effect unless in o wriften idocument signed by officer of Cortec Corporation.
To obtain replocement product under this warranty, the customer must notify Cortec Corporction of the daimed defect within six months offer shipment of product to cuetomer. All froight chorges for replacemert products thal be poid by customer.	THE FOREGOING WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTES, EXPRESS, IMPLIED OR STAIUTORY, INCLUDING WTHOUTUMITAION ANY IMRLIED WARRANTY OF MERCHANTABIUTY OR OF FITNESS FOR A PARTCULAR PURPOSE. IN NO CASE SHALL CORTEC CORPORATION BE LIABLE FOR INCIDENTAL OR
Cortec Corporertion sholl have no liobility for ory injury, loss or damege orising out of the use of or the inebility to use the produdt.	OnSEQuENTIA DAMAGES.

Distributed by:

CORTBC
 CORPORATION

4119. White Bear Parkway, St. Paul, MN 55110 USA

Phone (651) 429-1100, Fax (651) 429-1122
Toll Free (800) 4-CORTEC, E-mail info@cortecvci.com
Internet http://www.CortecVCI.com

BतITECH

CRITEC ${ }^{\text {® }}$ Transient Discriminating
 Surge Diverters

urge Protection And Surge Ratings

The stress, which an SPD will experience under surge conditions, is a function of many complex and interrelated parameters. These include:

- Location of the SPD(s) within the structure - are they located at the main distribution board or within the facility at secondary board, or even in front of the end-user equipment?
- Method of coupling the lightning strike to the facility for example, is this via a direct strike to the structures LPS, or via induction onto building wiring due to a nearby strike?
- Distribution of lightning currents within the structure for example, what portion of the lightning current enters the earthing system and what remaining portion seeks a path to remote grounds via the power distribution " "stem and equipotential bonding SPDs?
.,'pe of power distribution system - the distribution of lightning current on a power distribution system is strongly influenced by the grounding practice for the neutral conductor. For example, in the TN-C system with its multiple earthed neutral, a more direct and lower impedance path to ground is provided for lightning currents than in a ΠT system.
- Additional conductive services connected to the facility - these will carry a portion of the direct lightning current and therefore reduce the portion which flows through the power distribution system via the lightning equipotential bonding SPD.
- Type of waveshape - it is not possible to simply consider the peak current which the SPD will have to conduct, one also has to consider the waveshape of this surge. It is also not possible to simply equate the areas under the current-time curves (also referred to as the action integral) for SPDs under different waveshapes.
ly attempts have been made to quantify the electrical ronment and "threat level" which an SPD will experience at different locations within a facility. The new IEC ${ }^{\text {sM }}$ standard on lightning protection, IEC 62305-4 "Protection against lightning - Part 4: Electrical and electronic systems within structures" has sought to address this issue by considering the highest surge magnitude which may be presented to an SPD based on the lightning protection level (LPL) being considered. For example, this standard postulates that under a LPLI the magnitude of a direct strike to the structure's LPS may be as high as 200kA $10 / 350$. While this level is possible, its statistical probability of occurrence is approximately 1%. In other words, 99% of discharges will be less than this postulated 200 kA peak current level.

An assumption is made that 50% of this current is conducted via the building's earthing system, and 50% returns via the equipotential bonding SPDs connected to
a three wire plus neutral power distribution system. It is also assumed that no additional conductive service exists. This implies that the portion of the initial 200 kA discharge experienced by each SPD is 25 kA .

Simplified assumptions of current dispersion are useful in considering the possible threat level, which the SPD(s) may experience, but it is important to keep in context the assumptions being made. In the example above, a lightning discharge of 200kA has been considered. It follows that the threat level to the equipotential bonding SPDs will be less than 25 kA for 99% of the time. In addition, it has been assumed that the waveshape of this current component through the SPD(s) will be of the same waveshape as the initial discharge, namely $10 / 350$, while in reality the waveshape have been altered by the impedance of building wiring, etc.
Many standards have sought to base their considerations on field experience collected overtime. For example, the $\operatorname{IEEE}{ }^{\circ}$ guide to the environment C62.41.1 and the recommended practice C62.41.2 present two scenarios of lightning discharge and different exposure levels under each of these depending on the location where the SPD is installed. In this standard, Scenario II depicts a direct strike to the structure, while Scenario I depicts a nearby strike and the subsequent conducted current into a structure via power and data lines. The highest surge exposure considered feasible to an SPD installed at the service entrance to a facility under Scenario I is $10 \mathrm{kA} 8 / 20$, while under Scenario II it is considered to be 10kA 10/350 (exposure Level 3).

From the above, it is apparent that the selection of the appropriate surge rating for an SPD depends on many complex and interconnected parameters. When addressing such complexities, one needs to keep in mind that one of the more important parameters in selecting an SPD is its limiting voltage performance during the expected surge event, and not the energy withstand which it can handle.

Page 56 of 363

Advanced Technologies - The ERICO ${ }^{\circledR}$ Advantage

Transient Discriminating Technology

To meet the fundamental requirements of performance, longer service life and greater safety under real world conditions, ERICO has developed Transient Discriminating (TD) Technology.

This quantum leap in technology adds a level of "intelligence" to the Surge Protection Device enabling it to discriminate between sustained abnormal over-voltage conditions and true transient or surge events. Not only does this help ensure safe operation under practical application, but it also prolongs the life of the protector since permanent disconnects are not required as a means of achieving internal over-voltage protection.

Traditional Technologies

Conventional SPD technologies utilize metal oxide varistors and/ or silicon avalanche diodes to clamp or limit transient events. However, these devices are susceptible to sustained $50 / 60 \mathrm{~Hz}$ mains over-voltage conditions which often occur during faults to the utility system. Such occurrences present a significant safety hazard when the suppression device attempts to clamp the peak of each half cycle on the mains over-voltage. This condition can cause the device to rapidly accumulate heat and in turn fail with the possibility of inducing a fire hazard.

The Core of TD Technology

The secret to ERICO's Transient Discriminating Technology is its active frequency discrimination circuit. This patented device can discriminate between a temporary over-voltage (TOV) condition

and a very fast transient, which is associated with lightning or switching-induced surges. When the transient frequencies are detected, the patented Quick-Switch within TD activates to allow the robust protection to limit the incoming transient. The frequency discriminating circuit that controls the Quick-Switch helps ensure that the SPD device is immune to the effects of a sustained 50 or 60 Hz TOV. This allows the device to keep operating, in order to help provide safe and reliable transient protection, even after an abnormal over-voltage condition has occurred.

Meeting \& Exceeding UL® Standards

The CRITEC* range of surge protection devices from ERICO* employing TD Technology has been specifically designed to meet and exceed the new safety requirements of UL 1449 Edition 3. To meet the abnormal over-voltage testing of UL 1449 Edition 3, many manufacturers of SPD devices have incorporated fuse or thermal disconnect devices which permanently disconnect all protection from the circuit during an over-voltage event. Transient Discriminating Technology on the other hand will allow the SPD device to experience an abnormal overvoltage up to twice its nominal operating voltage and still remain operational even after this event! This allows the device to help provide safe, reliable and continuous protection to your sensitive electronic equipment. TD Technology is especially recommended for any site where sustained over-voltages are known to occur, and where failure of traditional SPD technologies cannot be tolerated.

The UL 1449 testing standard addresses the safety of an SPD device under temporary and abnormal overvoltage conditions, but does not specifically mandate a design that will give a reliable, long length of service in the real world. Specifically, UL 1449 tests that the SPD remains operational at 10% above nominal supply voltage, allowing SPD manufacturers to design products that permanently disconnect just above that. Most reputable manufacturer's designs allow for up to a 25% overvoltage, while ERICO's TD Technology gives even greater overhead.

TDS 1100

CRITEC ${ }^{\oplus}$ TDS Surge Diverter - TDS 1100 Series

Features

- CRITEC TD Technology with thermal disconnect protection
- Compact design fits into DIN distribution panel boards and motor control centers
- 35 mm DIN rail mount - DIN 43880 profile matches mmmon circuit oreakers
- Indication flags and voltage-free contacts provide remote status monitoring
- Separate plug and base design facilitates replacement of a failed surge module
- 100kA $8 / 20 \mu \mathrm{~s}$ maximum surge rating provides rotection suitable - or sub-distribution panels and a long operational life
- Available in various operating voltages to suit most common power distribution systems
- CE, UL ${ }^{\circ} 1449$ Edition 3 Listed

Surges and voltage transients are a major cause of expensive electronic equipment failure and business disruption. Damage may result in the loss of capital outlays, such as computers and communications equipment, as well as consequential loss of revenue and profits due to unscheduled system down-time.
The TDS1100 series of surge suppressors provide economical and reliable protection from voltage transients on power distribution systems. They are conveniently packaged for easy installation on 35 mm DIN rail within main distribution panelboards.
CRITEC ${ }^{\text { }}$ TD technology helps ensure reliable and continued operation during sustained and abnormal over-voltage events. Internal thermal disconnect devices help ensure safe behavior
 at end-of-life. A visual indicator flag provides user-feedback in the event of such operation. As standard, the TDS1100 provides a set of voltage-free contacts for remote signaling that maintenance is due.
The convenient plug-in module and separate base design facilitates replacement of a failed surge module without needing to undo installation wiring.

Model	TDS 1002 SR150	ITDS11002SR240	[TDS11002SR277	\|TDS11002SR560
ItemNumber for Europe	702409	702411	702412	702413
Nominal Voltage, U_{2}	120-150 VAC	220-240VAC	240-277VAC	480-560 VAC
Max Cont. Operating Voltage, U_{5}	170 VAC	275 VAC	32.0 VAC	610VAC
Stand-off Voltage	240VAC	1440VAC	480VAC	700VAC
Frequency	O-100Hz			
Short Circuit Current Rating, le				
Back-up Overcurremt Protection	125AgL, if supply $>100 \mathrm{~A}$			
Technology	TD with thermal disconnect			
Max Discharge Current, Lex	100kA8/20]s			
Impulse Current, ino	12.5kA 10/350]s			
Nominal Discharge Current, ${ }_{\text {L }}$	50kA8/20]s 140kA $8 / 20 \mathrm{Js}$			
Protection Modes	Single mode ($\mathrm{L}-\mathrm{G}, \mathrm{L}-\mathrm{N}$ or $\mathrm{N}-\mathrm{G}$)			
Voltage Protection Level, $\mathrm{U}_{\text {\% }}$	$\begin{aligned} & 400 \mathrm{~V} \text { e } 3 \mathrm{kA} \\ & 1.0 \mathrm{kV} 20 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 700 \mathrm{~V} \otimes 3 \mathrm{kA} \\ & 1,2 \mathrm{kV}=20 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 800 \mathrm{~V} \beta 3 \mathrm{kA} \\ & 1.6 \mathrm{kV}=20 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 1.8 \mathrm{kV} e 3 \mathrm{kA} \\ & 2.4 \mathrm{kV} \text { 20kA } \end{aligned}$
Status	N/O, N/C Change-over contact, $250 \mathrm{~V} \sim 10.5 \mathrm{~A}, \max 1.5 \mathrm{~mm}^{2}$ (i14AWG) terminals Mechanical flag / remote contacts (R model only)			
Dimensions $\mathrm{H} \times \mathrm{D} \times \mathrm{W}: \mathrm{mm}$ (in)	$90 \times 68 \times 35(3.54 \times 2.68 \times 1.38)$			
Module Width	2 M			
Welght kg (bs)	0.24(0.53)			
Endosure	OIN 43890, Ul94V-0 thermoplastic, ip 20 (NEMA-1)			
Connection	$525 \mathrm{~mm}^{2}$ (i4AWG) stranded$535 \mathrm{~mm}^{2}$ (42 AWG) solid			
Mounting	35 mmtoghat DiN rail			
Temperature	-40 ${ }^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to 176\%			
Humidity	$0 \% \text { to } 90 \%$			
Approvals				
Surge Rated to Meet				
Replacement MOV Module	T05150M150	ITOS150M240	ITDS150M27	TT0S150M560

ANSI is a registered trademark of the American National Standards Institute. IEC is a registered trademark of the International Electrotechnical Commission. IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Incorporated. NEMA is a registered trademark of the National Electrical Manufacturers Association. UL is a registered trademark of Underwriters Laboratories, Inc.

WARNING

ERiCO products shall be installed and used only as indicated in ERiCO's product instruction spety and training.materials. Instruction aheets are available at wwwerico.com and from
 retion, property damage, serious hodily injury and death.

Features

- CRITEC ${ }^{\text {T }}$ Transient Discriminating (TD) Technology provides increased service life
- In-line series protection
- High efficiency low pass sine wave filtering - ideal for the protection of switched mode power supplies
- Three modes of protection: L-N, L-PE \& N-PE
- 35 mm DIN rail mount - simple installation
- LED status indication and opto-isolated output - for remote status monitoring
- CE, UL 1449

Ed. 3 Listed

CRITEC ${ }^{\circledR}$ Transient Discriminating Filter

The TDF series has been specifically designed for process control applications to protect the switched mode power supply units on devices such as PLC controllers, SCADA systems and motor controllers. Units are UL' Recognized and available for 3A, 10A and 20A loads and suitable for $110-120 \mathrm{~V}$ ac/dc and $220-240 \mathrm{Vac}$ circuits.
The TDF is a series connected, single phase surge filter providing an aggregate surge capacity of $50 \mathrm{kA}(8 / 20 \mu \mathrm{~s})$ across L-N, L-PE, and N-PE. The low pass filter provides up to 65 dB of attenuation to voltage transients. Not only does this reduce the residual let-through voltage, but it also helps further reduce the steep voltage rate-of-rise providing superior protection for sensitive electronic equipment.

Model	TDF3AI20V	TDF3A240V	TDFIOAI20V	TTDFIOA240V	[TDF20A120V	TDF20A240V				
tem Number for Europe	700001	700002	700003	700004	700005	700006				
Nominal Voltage, U_{n}	110-120V	220-240 V	$110-120 \mathrm{~V}$	220-240 V	110.120 V	220-240 V				
pistribution System	TN-C.S, TN-S									
Max Cont. Operating	170VAC	340 VAC	170VAC	340VAC	170VAC	340 VAC				
Stand-off Voltage	240 V	400 V	240 V	4000	240 V	400V				
Frequency	O-60Hz	50/60Hz	0-60Hz			50/60Hz				
Max LIne Current,	3A		10A		20 A					
Operating Current FO_{0}	135 mA	250 mA	240 mA	480 mA	240 mA	480 mA				
Max Discharge Current, san	$\begin{aligned} & 10 \mathrm{kA} 8 / 20 \mathrm{ps} \mathrm{~N} \cdot \mathrm{PE} \\ & 20 \mathrm{kA} 820 \mathrm{ps} \text { L-N } \\ & 20 \mathrm{kA} 820 \mathrm{ps} \text { L.PE } \end{aligned}$									
Protection Modes	All modes protected									
rechnology	In-line series low pass sine wave filter TD Technology									
Voltage Protection Level, U_{p}	$\begin{aligned} & 500 \mathrm{~V} \text { e } 500 \mathrm{~A} \\ & 250 \mathrm{~V} \text { e } 3 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 700 \mathrm{~V} \text { e 500A } \\ & 600 \mathrm{~V} \text { e 3kA } \end{aligned}$	$\begin{aligned} & 500 \mathrm{~V}-500 \mathrm{~A} \\ & 250 \mathrm{~V} \text { - } 3 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 700 \mathrm{~V} \text { e } 500 \mathrm{~A} \\ & 600 \mathrm{~V} \text { e } 3 \mathrm{kA} \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \mathrm{~V} \because 500 \mathrm{~A} \\ & 250 \mathrm{~V} \text { \& } 3 \mathrm{kA} \\ & \hline \end{aligned}$	$\begin{aligned} & 700 \mathrm{~V} \text { e } 500 \mathrm{~A} \\ & 600 \mathrm{~V} \text { e } 3 \mathrm{kA} \\ & \hline \end{aligned}$				
Plitering	-62d8 e 100kHz $\quad 1-65 d 88100 \mathrm{kHz}$									
Status	Green LED. On=0k. Isolated opto-coupler output									
Dimensions $\mathrm{H} \times \mathrm{D} \times \mathrm{W}$: mm (in)	$90 \times 68 \times 72$ $90 \times 68 \times 144$ $(3.54 \times 2.68 \times 2.83)$ $(3.54 \times 2.68 \times 5.67)$									
Module Width	4 M		8M							
Weight: kg (bs)	0.7 (1.54)		1.18 (3.25)		11.57(3.46)					
Enclosure	OIN 43880, UL94V-0 thermoplastic, IP 20 (NEMA ${ }^{\text {a }}$-1)									
Connection	$1 \mathrm{~mm}^{2}$ to $6 \mathrm{~mm}^{2}(18 \mathrm{AWG}$ to $\$ 10)$									
Mounting	35 mm top hat DIN rail									
eack-up Overcurrent	3A		10A		20A					
Protection										
temperature	-35 ${ }^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-31^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$									
Humidity	0\% to 90\%									
Approvals	C-IICk, CE (NOM 3A, 120V), CSA 22.2, UL' 1283. UL* 1449 Ed 3 Recoanized Component Trpe 2									
Surge Rated to Meet										

(1) Opto-coupler output can be connected to DINLINE Alarm Relay (DAR275V) to provide Form C dry contacts.

[^0]
Features

- In-line series protection
- EMI/RFI noise filtering - protects against industrial electrical noise
- Compact design - fits into motor control and equipment panels
- Three modes of protection: L-N, L-PE \& N-PE
- 35 mm DIN rail mount - simple installation
- LED power indicator

CRITEC ${ }^{\circledR}$ Dinline Surge Filter

The "two port" DSF series has been specifically designed for process control applications to protect the switched mode power supply units on devices such as PLC controllers, SCADA systems and motor controllers. The 30 V unit is suitable for 12 V and $24 \mathrm{Vac} / \mathrm{dc}$ signaling and control systems.
The 6A DSF series incorporates a space efficient, low pass, series filter which provides attenuation to high frequency interference. The larger 20A model provides status indication and a higher surge rating, making this ideal for the protection of higher risk equipment.

Moder	[DSF6R 300	[DSFE6AI50V	[DSF6A275V	[DS520.275V		
tem Number for Europe	702090	701000	701030	701020		
Nominal Voltage, U,	24	$1110-120 \mathrm{~V}$	120.240			
Distribution System	$1 \mathrm{i}^{2} 2 \mathrm{~W}+\mathrm{G}$					
System Compatibility	TINS, TiNC.S					
Max Cont. Operating Volv-	3 3VVAC 38VVC	150 VAC	${ }^{27} 7$ VAC			
ye,		50060 Hz				
Trequency	0.60 Hz					
Max Line Current.	6A			204		
Operating Current © $\mathrm{U}_{\text {, }}$	7 mA					
Max Discharge Current, Lum	4 kA 820 ps	${ }^{16 \mathrm{kA}} \mathrm{E} / 20 \mathrm{ps}$				
Protection Modes	All modes protected					
Fiechnology	In-line series filter MOV					
Voltage Protection teve, $\mathrm{U}_{\text {U }}$	110V0 3 kA	[400VO3kA [750V ${ }^{\text {a }}$ kA		7rove ska		
Filtering	-3088 300 kHz			-308062xhz		
status	LED power indicator			Status indicator		
pimensions $\mathrm{H} \times \mathrm{D} \times \mathrm{W}$: mm (in)	$\begin{aligned} & 90 \times 68 \times 36 \\ & (3.54 \times 2.68 \times 1.42) \end{aligned}$			$\begin{aligned} & 90 \times 68 \times 72 \\ & (3.54 \times 2.68 \times 2.83) \end{aligned}$		
Module Width	2 M			4 M		
Weight kg (10)	$0.2(0.441)$			0.7 (1.543)		
Endosure						
Connection	$1 \mathrm{~mm}^{2}$ to $6 \mathrm{~mm}^{2}$ (18)WG to (10AWG)					
Mounting	35 mm top hat DIN					
Back-up Overcurrent	${ }^{68}$			${ }^{20 A}$		
Protection						
temperature	-35 $3^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}(3.31 \%$ to 131\%)					
Humidity	0\% to 90\%					
Approvals						
Surge Rated to Meet	ANSIDEEE ${ }^{\circ} \mathrm{C}$ (62.41.2 $\mathrm{Cot} A \operatorname{CatB}$					

ANSI is a registered trademark of the American National Standards Institute. IEEE is a registered trademark the Institute of Electrical and Electronics Engineers, Incorporated. NEMA is a registered trademark the National Electrical Manufacturers Association, UL is a registered trademark Underwriters Laboratories, Inc.

WARNING

EBCO products shall be installed and used only as indicated in ERICO's product instruction sheats and training materials. Instruction sheets are avallable at wuwiericocom and from your ERICO customer service representative. Improper installation, misuse, misapplication or other failure to completely follow IRICOS instructions and warnings may cause product mallunction, property damage, werious bodily injury and death.

Coppright 02008 Enco interationat Soppartipa, Al inghts reserved.

www.erico.com

Danfoss VLT ${ }^{\otimes}$ Soft Starter The single speed drive

Soft starts:

Protects processes, products and equipment with smooth motor control

An AC motor switched directly on to the mains power supply will struggle to reach its nominal speed as quickly as possible.

This draws maximum current from the power supply and accelerates the application with its maximum torque. Depending on the application, this can cause different problems.

Applications like pumps, conveyers, centrifuges and bandsaws must be started slowly, and sometimes stopped slowly, to prevent mechanical shocks such as water hammer, and strains on bands, couplings and shafts.

Principle of Phase Angle Control

A soft starter is an electronic device that regulates the voltage to the motor and this provides a smooth transition from standstill to full speed operation of the application.

VLT ${ }^{\circ}$ Soft Starters all use the principle of phase angle control: Back-to-back coupled thyristors ramp up the motor voltage.

In some VLT ${ }^{\circ}$ Soft Starters, current transformers measure the motor current, providing feedback for starting current control but also for numerous motor and application protection functions.

VLT ${ }^{\text {S }}$ Soft Starter MCD 500	VLT ${ }^{\text {® }}$ Compact Starter MCD 200	VLT ${ }^{\text {P }}$ Soft Starter MCD 100
- Fully featured Soft Starter for motors up to 1100 HP - Total motor starting solution - Advanced protection features - Adaptive Acceleration Control - Inside Delta connection - 4 line graphical display - Multiple programming setup menus	Compact Soft Starter for motors up to 150 HP Voltage ramps, current limit start and intregrated motor protection Integral bypass design reduces heat dissipation Wide power range with advanced accessory modules	- Micro Soft Start controller for motors up to 15 HP - Extremely robust SCR design with heavy ratings as standard - Unlimited number of starts per hour Contactor style design for easy selection, installation and commissioning

VLT ${ }^{\ominus}$ Soft Starter MCD 500

VLT ${ }^{\circ}$ Soft Starter MCD 500 is a total motor starting solution. Current transformers measure motor current and provide feedback for controlled motor ramp profiles.

AAC, the Adaptive Acceleration Control, automatically employs the best starting and stopping profile for the application. Adaptive Acceleration Control means that for each start and stop, the soft starter compares and adapts the process to the chosen profile best suited to the application.

The VLT* Soft Starter MCD 500 has a four-line graphical display and a logic keypad making programming easy. Advanced setup is possible displaying operational status.

Three menu systems: Quick Menu, Application Setup and Main Menu provide optimum programming approach.

The perfect solution, also for more severe applications:

- Pumps
- Conveyors
- Fans
- Mixers
- Compressors
- Centrifuges
- Mills
- Saws
- And many more

Power range

$21-1600 \mathrm{~A}, 10-1100 \mathrm{HP}$ (1.2 MW inside Delta Connection) Versions for 200-690 VAC

Features	Benefits
User friendly	
AAC Adaptive Acceleration Control	- Automatically adapts to the chosen starting and stopping profile
Adjustable bus bars allow for both top and bottom entry on 360-1600 amp models ($200-1100 \mathrm{HP}$)	- Space saving, less cable cost and easy retrofitting
DC injection braking distributed evenly over three phases	- Less installation cost and less stress on the motor
Inside Delta (6-wire connection)	- Smaller soft starter can be selected for the application
Log menus, 99 events and trip \log provide information on events, trips and performance	- Eases analysis of the application
Auto Reset	- Less down-time
Jog (slow-speed operation)	- Application flexibility
Second-order thermal model	- Allows motors to be used to their full potential without damage from overloading
Internal bypass contactors ($21-215 \mathrm{~A}, 10-150 \mathrm{HP}$)	- Save space and wiring compared to external bypass - Very little heat dissipates when running. Eliminates costly external fans, wiring or bypass contactors
Auto-start/stop clock	- Application flexibility
Compact size - amongst the smallest in their class	- Saves space in cabinets and other application setups
4-line graphical display	- Optimum programming approach and setup for viewing operational status
Multiple programming setup (Standard Menu, Extended Menu, Quick Set)	- Simplifies the programming, allowing maximum flexibility
8 language display options	- Serving the whole world

Dimensions

Current rating [A]	Weight [lbs]	Height [inches]	Width [inches]	Depth [inches]	Frame size
21, 37, 43 and 53	9.25	11.61	5.90	7.20	G1
68	9.92			8.38	
84,89 and 105	10.8				
131, 141, 195 and 215	32.8	17.24	10.82	9.84	G2
245	52.6	18.11	15.35	10.98	G3
360,380 and 428	77	27.12	16.92	11.82	G4
595, 619,790 and 927	100				
1200,1410 and 1600	264	33.70	23.03	14.33	G5

MCD 500 operation options

Starting:

- AAC Adaptive Acceleration
- Control
- Current Ramp
- Constant Current
- Kickstart

Stopping:

- Coast to stop
- TVR soft Stop
- AAC Adaptive deceleration Control
- Brake

Three Adaptive Acceleration Control (AAC) start profiles; early, constant and late acceleration

Constant current/ current ramp - here shown with kickstart

Control Panel VLT ${ }^{\oplus}$ LCP 501

With the Control Panel VLT* LCP 501 being a full function interface, everything you can do on the VLT ${ }^{\text {e }}$ Soft Starter MCD 500 is possible via the LCP 501.

The screen view set-up is selected from 8 views. Options include 7 standard and 1 user programmable view.

Language selection:

English, Chinese, German, Spanish, Portuguese, French, Italian, Russian.

The VLT ${ }^{\circ}$ LCP 501 is connected to the MCD 500 by using a 10 ft cable using 9 pin (D-sub) plug and 10 ft cable provided with the IP 65 (NEMA 12) door-mount kit.
Once connected, the soft starter asks whether you want to copy parameters from LCP to starter or starter to LCP (if different).

100\% easy connection

- The Modbus, Profibus and Device net modules use another port on the MCD 500 (at the side of the soft starter)
- Separate LCP 501 output at the bottom for 9 pin plug and 10 ft cable
- One ordering number (LCP with door-mount kit and cable)
- Plug \& play connection (also if soft starter is powered up)
- One cable for power and communication
- Powered up by soft starter
- Copy of parameter set-up

VLT ${ }^{\oplus}$ Compact Soft Starter MCD 200

Danfoss VLT ${ }^{\text {® }}$ Compact Soft Starter series MCD 200 includes two families of soft starters in the power range from 10-150 HP.

The series offers easy DIN rail mounting for sizes up to $40 \mathrm{HP}, 2$-wire or 3-wire start/stop control and excellent starting duty ($4 \times \mathrm{l}$ e for 6 seconds).

Heavy starting ratings at $4 \mathrm{xI}_{\mathrm{e}}$ for 20 seconds.

Compatible with grounded delta power systems.

The perfect match for:

- Pumps
- Fans
- Compressors
- Mixers
- Conveyors
- And many more

Power range:

■ $10-150 \mathrm{HP}$

MCD 201

MCD 202
MCD 202 provides enhanced soft start functionality and various motor protection features

Features	Benefits
Small footprint and compact size	- Saves panel space
Built-in bypass	- Minimizes installation cost and eliminates power loss Reduces heat build up. Savings in components, cooling, wiring and labor
Advanced accessories	- Allows enhanced functionality
Advanced SCR control algorithms balance output waveform	- Allowing more starts per hour, accepting higher load
Reliable	Maximum up-time
Essential motor protection (MCD 202)	- Reduces overall project investment
Max. ambient temperature $50^{\circ} \mathrm{C}$ without derating	- No external cooling or oversizing necessary
User friendly	Save commissioning
Easy to install and use	
Easy DIN rail mounting for sizes up to 40 HP	- Saves time and space

Remote operation

 Remote operation of MCD 201 and MCD 202 is facilitated by the dedicated remote operator kit.The operator (IP 54/NEMA 12) is mounted on the cabinet front and allows remote control, status indication and motor monitoring of an individual VLT* Soft Starter using RS485 serial communication.

Dimensions

Power range (575 V)	$10-\mathbf{4 0} \mathrm{HP}$	$\mathbf{5 0 - 7 5} \mathrm{HP}$	$100-\mathbf{1 5 0} \mathrm{HP}$
Height [inches]	7.99	8.46	9.44
Width [inches]	3.85	5.70	7.9
Depth [inches]	6.49	7.59	8.42

VLT ${ }^{\oplus}$ Soft Starter MCD 100

Danfoss VLT* ${ }^{\text {S }}$ Soft Start Controller MCD 100 is a cost effective and extremely compact soft starter for AC motors up to 15 HP , due to a unique semiconductor design.

MCD 100 is a true "fit and forget" product. Selection can be made on the basis of the motor power - exactly as with traditional contactors.

MCD 100 products provide timed voltage ramp up and down. Ramp time can be individually adjusted with rotary switches from 0.4 to 10 seconds.

The start torque can be adjusted from 0 to 85% of the direct on-line torque.

All sizes are rated for line voltage up to 600 V AC.

The perfect match for:

- Pumps
- Fans
- Compressors
- Mixers
- Conveyors
- and many more

Features	Benefits
Small footprint and compact size	- Saves panel space
Selection can be based on motor power	- Easy selection
Universal control voltage	- Simplifies selection
- Keeps stock at a minimum	
"Fit and forget" contactor design	- Simplifies installation
Reliable	Reduces required panel space
Robust semiconductor design	- Reliable operation
Almost unlimited number of starts per hour without derating	- Prevents unauthorized changes
Max. ambient temperature $50^{\circ} \mathrm{C}$ without derating	- No external cooling or oversizing necessary
User-friendly	Save commissioning and operating cost
Easy to install and use	- Saves times
Digitally controlled rotary switches	- Secures precise settings and
Easy DIN rail mounting for sizes up to 40 HP	- Simplifies installation

Dimensions

Model	Power size (HP)	Rated current (Amps)	Dimensions (inches) $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$	Approvals
MCD 100	2	$\begin{gathered} 3 \mathrm{~A} \\ \mathrm{AC}-53 \mathrm{~b}: 4-10: 110 \end{gathered}$	$4.01 \times 0.88 \times 4.88$	UL, CSA, CE
	10	15 A AC-53a: 8-3: 100-3000 AC-58a: 6-6: $100-3000$	$4.33 \times 1.77 \times 5.03$	
	15	$\begin{gathered} 25 \text { A } \\ \text { AC-53a: 8-3: } 100-3000 \\ \text { AC-58a: 6-6: } 100-3000 \end{gathered}$	$4.33 \times 3.54 \times 5.03$	

Serial communication

MCD 201, MCD 202 and MCD 500 come with optional plug-in modules for serial communication.

	MCD 100	MCD 201	MCD 202	MCD 500
Start/stop, reset	-	-	.	-
LED for start, run, trip	\square	\square	-	■
Trip codes	-	-	!	m
Current display			-	\square
Motor temp. display			.	-
4-20 mA output			-	\square
Programming keypad, graphical display				-

Ordering type codes

VLT ${ }^{\text {© }}$ Compact Starter MCD 200

VLT ${ }^{\circ}$ Soft Starter MCD 500

Size indications

Size indication for
VLT ${ }^{\text {® }}$ Compact Starter MCD 200

Model	Power size (HP)	$\begin{aligned} & \text { Rated current } \\ & \text { AC- } \left.53 b^{*} \text { (Amps }\right) \end{aligned}$	Dimensions (inches) HxW×D	Approvals
MCD 201/ MCD 202	10	18 A: 4-6:354	$7.99 \times 3.85 \times 6.49$	$\begin{aligned} & \text { UL } \\ & \mathrm{C}-\mathrm{UL} \\ & \mathrm{CE} \\ & \text { CCC } \\ & \text { C-tick } \\ & \text { Lloyds } \end{aligned}$
	20	34 A: 4-6:354		
	25	$42 \mathrm{~A}: 4-6: 354$		
	30	$48 \mathrm{~A}: 4-6: 354$		
	40	60 A: 4-6:354		
	50	$75 \mathrm{~A}: 4-6: 594$	$8.46 \times 5.70 \times 7.59$	
	60	85 A: 4-6:594		
	75	$100 \mathrm{~A}: 4-6: 594$		
	100	$140 \mathrm{~A}: 4-6: 594$	$9.44 \times 7.95 \times 8.42$	
	125	170 A: 4-6:594		
	150	200 A: 4-6:594		

- Example: AC 53b: 42 A: 4-6: 354 starting current max. 4 times FLC (42 A)
in 6 seconds. 354 seconds minimum between starts.

Size indication for
VLT ${ }^{\text {© }}$ Soft Starter MCD 100

Model	Power size (HP)	Rated current (Amps)	Dimensions (inches) $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$	Approvals
MCD 100	10	$3 \mathrm{~A}: 5-5: 10$ (AC 53b)	$4.01 \times 0.88 \times 4.88$	

Size indication for VLT ${ }^{*}$ Soft Starter MCD 500

$\begin{aligned} & \text { Motor size } \\ & \text { (HP) } \\ & \text { @ } 400 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Frame size } \\ & \text { code } \end{aligned}$	Starts per hour	Max. FLC	Rated FLC (104 F, 3,280 ft), outside delta motor connection					
				Light 300\%, 30s, Internal bypass		Medium $\mathbf{4 0 0 \%}$, 20s, Internal bypass		Heavy 450\%, 30s, Internal bypass	
15	$\begin{gathered} \text { G1 } \\ \text { (no fan) } \end{gathered}$	10	23	21		17		15	
25		10	43	37		31		26	
30		10	50	43		37		30	
35		10	53	53		46		37	
40	G1	6	76	68		55		47	
50		6	97	84		69		58	
60		6	100	89		74		61	
75		6	105	105		95		78	
80	G2	6	145	131		106		90	
100		6	170	141		121		97	
125		6	200	195		160		134	
150		6	220	215		178		149	
Motor size (HP) @ 400 V	Frame size code	Starts per hour	Max. FLC	Not bypassed	External bypass	Not bypassed	External bypass	Not bypassed	External bypass
175	G3x	6	255	245	255	195	201	171	176
250		6	360	360	360	303	310	259	263
275		6	380	380	380	348	359	292	299
300		6	430	428	430	355	368	301	309
400	G4x	6	620	595	620	515	540	419	434
500		6	650	619	650	532	561	437	455
600		6	790	790	790	694	714	567	579
700		6	930	927	930	800	829	644	661
800		6	1200	1200	1200	1135	1200	983	1071
900	G5x	6	1410	1410	1410	1187	1319	1023	1114
1000		6	1600	1600	1600	1433	1600	1227	1353

[^1]
Specifications

Type	VLT Soft Starter MCD 500	VLT ${ }^{\text {S }}$ Soft Starter MCD 100
	The total motor starter solution. Provides advanced control methods for starting and stopping and protection of motor and application	A true "fit and forget" soft starter for DIN rail mount, MCD 100 provides basic soft start and stop function
Concept		
	Enhanced soft start and soft stop Motor and system protection $10-1100 \mathrm{HP} @ 400 \mathrm{~V}(21-1600 \mathrm{~A})$ $200-690 \mathrm{~V}$ mains voltage $110-220 \mathrm{~V}$ AC or 24V AC/DC control supply 3-phase SCR control	Soft start Soft stop $1 / 3-15 \mathrm{HP} @ 400 \mathrm{~V}$ 208-600 V mains voltage 24-480 V AC/DC control voltage 2-phase SCR control
Start/stop		
	Adaptive Acceleration Control (AAC) Current limit start Current ramp start Dual parameter function Kick-start Jog	Timed voltage ramp-up Adjustable start torque Selectable kick-start function
	Adaptive Deceleration Control (AAC) TVR soft stop (Timed Voltage Ramp) Coast to stop DC brake function - three phase Soft brake function	Timed voltage ramp-down
Protection		
	Same as MCD 202 and: Under current Current imbalance Starter overtemperature Restart delay Warning before trips Adjustable phase imbalance sensitivity - Programmable input trip - Individual phase loss trips - Individual shorted SCR trips - Int. bypass relay overload - Int. bypass relay fail Fully adjustable protections Network communication timeout Heatsink overtemperature Battery/clock failure Supply frequency External trip	
Outputs		
	Three programmable output relays: Programmable analogue output Motor thermistor	
Control		
	8 language graphical display and keypad Quick menu and appplication menu Buttons for start, stop, reset and remote control Inputs for two- or three-wire control Optional: Modules for serial communication Control Panel VLT* LCP 501 PC software	Universal two-wire control Programmable via 3 rotary switches
Other features		
	Bypass up to 150 HP Configurable bus bars from 360 A and up Operation timers jog-slow speed operation Auto reset of fault situations Emergency run 99 event \log Trip \log User programmable metering and monitoring Simulation before connecting line voltage	Extremely robust SCR design for unlimited number of starts per hour, LED indication, IP 20

Page 71 of 363

Type	VLT Compact Starter MCD 201	VLT Compact Starter MCD 202
	A physically compact starter providing basic soft start and stop functionality	Physically similar to MCD 201 but providing enhanced soft start functionality and various motor protection functions
Concept		
	Soft start Soft stop $10-150 \mathrm{HP} @ 400 \mathrm{~V}$ $3 \times 200-480$ VAC (T6 model) CV1 - 24 VAC / VDC CV3 - $110-240$ VAC \& 380-440 VAC 2-phase SCR control	Current limit start Soft stop Motor protection $10-150 \mathrm{HP} @ 400 \mathrm{~V}$ $3 \times 200-480$ VAC (T6 model) CV1 - 24 VAC /VDC CV3 $-110-240$ VAC \& $380-440 \mathrm{VAC}$ 2-phase SCR control
Start/stop		
	Timed voltage ramp-up Adjustable initial torque	Current limit start Initial current ramp-up
	Timed voltage ramp-down	Timed voltage ramp-down
Protection		
		Motor overload (adjustable trip class) Excess start time Reverse phase rotation Motor thermistor input Shorted SCR - no start Supply fault - no start Instantaneous overload
Outputs		
	One output relay: Line contactor control	Two output relays: Line contactor control Run contactor or trip function
Control		
	Two- or three-wire control Programmable via 3 rotary switches Reset push button Optional: Modules for serial communication Remote operator kit PC software	Two- or three-wire control Programmable via 8 rotary switches Reset push button Optional: Modules for serial communication Remote operator kit PC software
Other features		
	Integral SCR bypass for minimum physical size and heat dissipation during nominal operation LED status indication IP 20 ($10-75 \mathrm{HP} @ 400 \mathrm{~V}$) $\mathbb{P} 00$ ($100-150 \mathrm{HP} @ 400 \mathrm{~V}$) Protection kit available	Integral SCR bypass for minimum physical size and heat dissipation during nominal operation LED status indication IP 20 ($10-75 \mathrm{HP} @ 400 \mathrm{~V}$) IP 00 ($100-150 \mathrm{HP} @ 400 \mathrm{~V}$) Protection kit available

Page 72 of 363

What VLT^{\circledR} is all about

Danfoss VLT Drives is the world leader among dedicated drives providers - and still gaining market share.

Environmentally responsible

VLT ${ }^{\bullet}$ products are manufactured with respect for the safety and well-being of people and the environment.

All activities are planned and performed taking into account the individual employee, the work environment and the external environment. Production takes place with a minimum of noise, smoke or other pollution and environmentally safe disposal of the products is preprepared.

UN Global Compact

Danfoss has signed the UN Global Compact on social and environmental responsibility and our companies act responsibly towards local societies.

EU Directives

All factories are certified according to ISO 14001 standard. All products fulfil the EU Directives for General Product Safety and the Machinery directive. Danfoss VLT Drives is, in all product series, implementing the EU Directive concerning Hazardous Substances in Electrical and Electrical Equipment (RoHS) and is designing all new product series according to the EU Directive on Waste Electrical and Electronic Equipment (WEEE).

Impact on energy savings

One year's energy savings from our annual production of VLT ${ }^{\circ}$ drives will save the energy equivalent to the energy production from a major power plant. Better process control at the same time improves product quality and reduces waste and wear on equipment.

Dedicated to drives

Dedication has been a key word since 1968, when Danfoss introduced the world's first mass produced variable speed drive for AC motors - and named it VLT ${ }^{\circ}$.

Twenty five hundred employees

 develop, manufacture, sell and service drives and soft starters in more than one hundred countries, focused only on drives and soft starters.
Intelligent and innovative

Developers at Danfoss VLT Drives have fully adopted modular principles in development as well as design, production and configuration.

Tomorrow's features are developed in parallel using dedicated technology platforms. This allows the development of all elements to take place in parallel, at the same time reducing time to market and ensuring that customers always enjoy the benefits of the latest features.

MAKING MODERN LIVING POSSIBLE

Control Panel VLT ${ }^{\oplus}$ LP 501

The VLT ${ }^{*}$ LP 501 ensures seamless plug and play communication and control of VLT* Soft Starter MCD 500.

With the Control Panel VLT ${ }^{*}$ LOP 501 being a full function interface, everything you can do on the VLT* Soft Starter MCD 500 is possible via the LCP 501.

Full control and monitoring The screen view set-up is selected from 7 standard views and one user programmable.

Language selection:

English, Chinese, German, Spanish, Portuguese, French, Italian, Russian.

The VLT* LCP 501 is connected to the MCD 500 by using a 3 m cable using 9 pin (D-sub) plug and 3 m cable provided with the IP 65 (NEMA 12) door-mount kit.

Once connected, the soft starter asks whether you want to copy parameters from LCP to starter or starter to LCP (if different).

Control Panel VLT* LCP 501

- Same user interface as VLT* Soft Starter MCD 500
- Plug \& play with MCD 500
- Copy/ paste of parameters
- Multiple monitoring setup
- Door-mount kit - 3m cable
- IP 65 (NEMA 12)

Feature	Benefit
Danfoss ${ }^{*}$ FC" menu structure and button interface concept	- Proven logical access ensuring easy set-up
Parameter upload/ download	- Saves time, simplifies set-up
Same user interface as	
VLf* Soft Starter MCD 500	- Effective, simple and flexible
Adjustable multiple monitoring views	- You see what you want to see
Door mount IP 65 (NEMA 12)	- Reliable in harsh environment
Speaks your language	- Comfortable set-up
$\mathbf{3}$ metre cable	- Remote Operation
New output on MCD 500	- Simple to connect

100\% easy connection

- The Modbus, Profibus and Device net modules use another port on the MCD 500 (at the side of the soft starter)
- Separate LCP 501 output at the bottom for 9 pin plug and 3 m cable
- One ordering number (LCP with door-mount kit and cable)
- Plug \& play connection (also if soft starter is powered up)
- One cable for power and communication
- Powered up by soft starter
- Copy of parameter set- up

> Modified MCD S00, new interface G2-GS

VIT* Soft Starter MCD 500 range - fully featured soft starters for motors up to 850 kW including total motor starting solution; advanced start, stop ond protection features; Adaptive Accelerotion Controf; Inside Delta connection; 4 line graphical display; multiple programming ser-up menues.

Power range: $21-1600 \mathrm{~A}, 7.5-850 \mathrm{~kW}$ (1.2 MW inside delta connection) Versions for 200-690 VAC.

Phone: 800.894 .0412 - Fax: 888.723 .4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net Page 75 of 363
Dantoss can accept no responsiblity for possible errors in catalogues, brochures and ofher pirited material. Danfoss reserves the right to alter its products without notice. This also applies to roducts aiready on order prov.
All trademarks in this moterial are property of the respective companiot. Darfoss and the Danloss logolype are tradernarks of Dantoss ANs, AI rlofts reserved.

INSTALLATION INSTRUCTIONS

MODEL NUMBER

 DAR 275V
1. PREPARATION

4
DANGER: Electrical shock or burn hazard. Installation of this device should only be made by qualified personnel. Failure to lockout electrical power during installation or maintenance can result in fatal electrocution or severe burns. Before making any connections be sure that power has been removed from all associated wiring, electrical panels, and other electrical equipment.

CAUTION NOTES:

1. The installation of this device should follow all applicable electrical codes, such as the National Electrical Code.
2. Check to make sure line voltage does not exceed DAR275V voltage ratings.
3. Follow all instructions to ensure correct and safe operation.
4. Do not attempt to open or tamper with the DAR in any way as this may compromise performance and will void warranty. No user serviceable parts are contained.

2. INTRODUCTION

Selected DSD, TDS \& TDF DINLINE Surge Protection Devices include status monitoring circuits which provide visual status display of device capacity. They may also provide a low voltage opto-coupler alarm output circuit that can be connect to the DAR to provide potential free (Form C) change-over contacts. The DAR alarm contacts may be used to provide output to external alarm systems or remote monitoring circuits.
One DAR can be used per DSD/TDS/TDF opto-coupler alarm or up to 16 DSD opto-coupler alarms can be connected in series to the one DAR to provide a common output. It is recommended that the DAR be powered from the same power circuit that feeds the device(s) being monitored, however the DAR can be powered from other circuits. This allows for example, one DAR unit to be connected to separate SPDs that are protecting a three phase circuit.

Note. Depending upon the usage of the DAR output contacts, failure of power to the DAR may be interpreted as a failure of one or more of the SPDs being monitored. Visual inspection of the DAR and SPDs status displays would determine this.

3. MOUNTING

The DAR is designed to clip to 35 mm (top hat) DIN rails (standard EN50022). Unless otherwise mechanically restrained, use horizontal DIN rails with the DAR module spring clips to the bottom and the label text the correct way up.
NOTE: The DAR must be installed in an enclosure or panel that:

- prevents the DAR temperature from exceeding $131^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$
- provides adequate electrical and safety protection
- prevents the ingress of moisture and water
- allows DAR status indicators to be inspected

4. ELECTRICAL CONNECTION

The interconnecting wiring should:

- be of size \#10 to \#14 AWG ($2.5 \mathrm{~mm}^{2}$ to $6 \mathrm{~mm}^{2}$) solid or stranded conductor.
- The wire insulation should be stripped back $5 / 16^{\prime \prime}(8 \mathrm{~mm})$.
- NOTE: Do not use greater than 9inlbs (1 Nm) of torque when tightening the terminals.

CONNECTION TO TELECOMMUNICATIONS NETWORKS

The DAR is approved for use in Australia where the alarm contacts may be connected to private lines or building cabling associated with the telecommunications network. NO direct connection to the public switched network should be made.

INSTALLATION INSTRUCTIONS

5. INTERCONNECTION

When connecting the DAR to a single opto-coupler output the + terminal of the SPD should connect to the + terminal on the DAR. The - terminal should connect to the - terminal.

When connecting the DAR to multiple opto-couplers the optocouplers should be connected in series with + terminal of one connected to the - terminal of the next. The DAR + terminal should connect to + SPD terminal at one end of the series connection and the - DAR terminal connect to the - SPD terminal at the other end of the series connection.

5. STATUS INDICATION

6. FUSING AND ISOLATION

Overcurrent protection must be installed in the upstream circuit of the power supply to the DAR to provide protection to the unit itself and the wiring in case of fault conditions.

The fuse rating should be based on the wiring size used to connect to the DAR Ph \& N terminals. Australian regulations AS3000-1991, Table B2 specifies the following upstream protection for single phase circuits, unenclosed in air.

Cable Size	HRC Fuse or	CB Rewirable Fuse
$1.5 \mathrm{~mm}^{2}$	16 A	12 A
$2.5 \mathrm{~mm}^{2}$	20 A	16 A
$4 \mathrm{~mm}^{2}$	25 A	20 A
$6 \mathrm{~mm}^{2}$	32 A	25 A

Where overcurrent protection of the appropriate rating or smaller is already fitted in the upstream circuit, overcurrent protection at the DAR will not be required

6. MAINTENANCE \& TESTING

Before removing a DAR unit from service, ensure that the power has been removed. Maintenance, testing and replacement should only be undertaken by qualified personnel.

Testing of a DAR unit which is connected to a fully functional DSD unit can be accomplished by removing power to the DSD only. The DAR Status indication and output contacts should alter from the Normal to Fault condition.

Testing of the DAR unit alone may be accomplished by disconnecting the $+/$-connections to the unit. When power is applied the DAR "Fault" Status Indicator should be illuminated. By connecting the $+/-$ terminals together, the "Normal" Status Indicator should be illuminated. The output contacts should alter to the appropriate state.

7. USE OF OTHER INTERFACES

Only DAR units are recommended for the interfacing of equipment to the DSD, TDS \& TDF opto-coupler alarm output circuit(s). The direct connection of other equipment to these opto-coupler alarm outputs may not provide sufficient isolation or exceed the opto-coupler specifications. This may damage the SPD and/or the connected equipment. Warranty may be voided under such circumstances.
NOTE: In connecting to the SPD opto-coupler alarm output(s), do not reverse the +/- connections as damage may occur

Page 77 of 363

Think Automation and beyond...

IIDEC

LF1B series

 LED Illumination Units LUMMFR

Page 78 of 363
IDEC CORPORATION

Features

- Brightness: 62.5 Lumens/Watt
- Low heat generation.
- Less energy usage, longer operation life, smaller mounting space, and no electrical noise.
$.71 \%$ reduction of power and CO_{2} emission when compared to 20 W fluorescent lamps (LF1B-C/D)
- Thin and slim style fits into compact spaces.
- Two cover colors: clear and white (diffused light)
- Cool white, warm white, yellow and red illumination colors available.
- UL Listed \& IP54 protection against dust and water splash (IEC 60529)

Part No. Development

LF1B- C 3 S -2 THWW4

LED Module Arrangement
A: 3 LEDs $\times 1$ row
B: 6 LEDs $\times 1$ row
C: 12 LEDs $\times 1$ row
D: 24 LEDs $\times 1$ row
 2: 24V DC
Degree of Protection S: IP54

LED Illumination Color
THWW4: Cool white
TLWW4: Warm white
SHY6: Yellow
SHR6: Red

Cover
3: Clear plastic
4: White plastic

LED Optics Specifications

Illumination Color		Cool White	Warm White	Yellow	Red
Luminous Intensity (typ.) (Single LED module)		5000 mcd	4500 mod	2300 mod	1800 mod
Color Temperature (typ.)/Dominant Wavelength (typ.)		5500 K	2800 K	590 nm	625 nm
Reference lluminance (typ.) at 500 mm (clear cover)	3 LEDs $\times 1$ row	901 x	601 x	201 x	20 lx
	6LED $\times 1$ row	1701 x	110 lx	401 x	401 x
	12 LEDs $\times 1$ row	3301 x	200 lx	75 lx	75 lx
	24. LED $\times 1$ row	560 lx	350 lx	125 lx	125 tx

Note: Illumination colors and illuminance may vary. Specifications shonage tri8abp868ble are typical values and may vary depending upon actual environment.

LF1B Series Illumination Units

Performance Specifications

Rated Voltage		24V DC (non-polarized)
Input Current (hy) (at the rated voltage)	LFIB-A	30 mA
	LF1B-B	60ma
	LFFIB-C	120 mA
	LFIB-D	240 mA
Power Consumpton (typ.) (at the rated voltuga)	LFIB-A	0.6 W
	LFIB-B	1.5W
	LF1B-C	2.9W
	LF1B-D	5.0W
Invuiaton Rosistance		100ma minimum (500 V DC megger)
Diplectric Strength		1000 V AC, 1 minute (between live and dead parts)
Vibration Resistance (darnage limith)		Frequency: 5 to 55 Hz Amplitude: 0.5 mm
Shock Resistance (damage limits)		$1000 \mathrm{~m} / \mathrm{s}^{2}$
Operasing Temperature		-30 to +55 ${ }^{\circ} \mathrm{C}$ (no freazing)
Operasing Humidity		45 to 85\% RH (no condensation)
Storape Temperature		-35 to $+70^{\circ} \mathrm{C}$ (no freezing)
Operating Atrnosphere		No corrosive gas
Life		40000 hours (The total illumination duration in which the luminance maintains a minimum of 70% of the initial value)
Degree of Protection		IP54
Material		End cover, conduit polyamide Cover: polycarbonate Wire: US20276T AW324 $\times 2 \mathrm{C}$
Weight (approx)	LFIB-A	959
	LF1B-B	1259
	LFIB-C	1650
	LFIB-D	2559

- Do not use the LF1B illumination units in environments subject to corrosive gases, otherwise illuminance may deteriorate.

Dimensions

Type No.	A	B	C
LF1B-A	134	64	123
LF1B-B	210	140	199
LF1B-C	330	260	319
LF1B-D	580	510	589

All dimensions in mm.

Internal Circuit

IIDEC

 C200s IDEC Corporation. All Riglas Reserved. PDF only. Updated 07/09

Relay Selection Guide

Call (800) 262.IDEC

RH Series - Compact Power Relays

- Small industrial 10A GP relay
- SPDT, DPDT, 3PDT, 4PDT contacts
- Options: indicator LED, check-button and surge suppression diode
- DIN rail, through panel, and PCB type sockets available
- SPDT and DPDT 500K cycle UL tested for maximum life expectancy

				RH1		RH2		RH3	RH4
	Contact Material			Silver cadmium oxide (AgCd 0$)$					
	Contact Rating			10A					
	Minimum Load (reference values)			$30 \mathrm{mA@24VDC}, 100 \mathrm{mA@5VDC}$					
	Dimensions ($\mathrm{w} \times \mathrm{d} \times \mathrm{h}$) mm			$14 \times 27.5 \times 42$		$21 \times 27.5 \times 42$		$31 \times 27.5 \times 42$	$41 \times 27.5 \times 42$
	Relays		Standard DIN	il Mount	Finger-safe DIN Rail Mount		Through Panel Mount		PCB Mount
	RH1B		SH1B-05	SHIB-05C			SH1B-51		SH1B-62
	RH2B		SH2B-05	SH2B-05C			SH2B-51		SH2B-62
	RH3B		SH3B-05	SH3B-05C			SH3B-51		SH3B-62
	RH4B		SH4B-05	SH4B-05C			SH4B-51		SH4B-62
	Relays / Sockets			Description		For DIN Mount Socket		For Through Panel \& PCB Mount Socket	
		RH1B		Pullover Wire Spring		SY2S-02F1		SY4S-51F1	
		RH2B				SY4S-02F1			
		RH3B				SH3B-05F1			
		RH4B				SH4B-02F1			
		RH1B	2B, RH3B, RH4B	Leaf Spring (side latch)		SFA-202		SFA-302	
		RH1B	2B, RH3B, RH4B	Leaf Spring (top latch)		SFA-101		SFA-301	
		all DIN mount sockets		Aluminum DIN Rail (1 meter length)		BNDN1000		-	
				DIN Rail End Stop Page ${ }^{\text {Bry }} \mathbf{5}$ 2 of 363				-	

With the DSN range, MARECHAL ELECTRIC provides the only plug and socket-outlet that remains watertight in every situation. Such watertightness is provided just by inserting the
plug and is maintained when you remove the plug from the socket-outlet and close the lid. There is no need to turn any sealing ring!

Electrical features

- From 20 to 63 Amps - Voltage up to 1000 Volts AC and up to 250 Volts DC
- Integral switching device as del.
- Equipped w and lifetime
- Socket-outlet safely shutter provides $I \mathrm{P} 4 \times$ protection
- Unique keying system allows discrimina
(voltage, frequency, $A C$ and $D C$ cur.
- Number of cycles under normal open than those required by IEC/EN 60309-1 standard (depending on rated current an $(32 \mathrm{~A})$ and 4 auxiliary contacts $(63 \mathrm{~A})$
- Versions with 2 auxiliary contacts $(32$ A) and 4 auaiary

Mechanical features

- IP66 and IP67 automatic watertightness as standard

Remove the plug from the socket-outet and close the lid: the same "click"
Indicates that IP66/67 has been achieved.

- Resistance to high pressure washing
- Casings made of glass fibre reinforced polyester providing excellent resistance:
- to most chemicals and environmental conditions (including UV and Gamma rays)
- to shocks (OKoB) in a broad range of temperatures
- Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
(for temperatures outside this range, please contact us)
- Spring -assisted terminals unafiecied by vibra
- Self-opening lid; self-returning lid on request

Regulatory features

DSN decontartors comply with:

- The IEC $60309-1$ international standard and EN $60309-1$ European standard
(plugs and socket-outlets for industrial purposes),
- The European Low Voltage Directive (decree $\mathrm{N}^{\circ} 95-1081$ dated
3^{2} October 1995),
- The french decree $\mathbb{N}^{\circ} 88-1056$ dated 14^{\dagger} November 1988
relating to workers' protection,
- The decrees relating to workers' protection in Belgium, Spain and Italy,
- The load breaking capacity according to utilisation categories AC 22 and AC. 23 of IEC/ EN 60947-3 (switch standard). Also certified by VERITAS LCIE, UL, AS and CSA (French, American, Australian and Canadian inspection laboratories).
* STANDARDS
(1) underwriters

Marechal's modular system

Example : a woll mounting socket-outlet includes an active part, the socket-outlet (female) and an installation accessory,

(B)

the wall box. Each part has its own part number. Therefore, the order should have two part numbers.

DSN part number system

- Standard DSN part numbers are made up of 7 characters. All part numbers start with a ' 6 '.
- The choice of an option or a version with auxiliary contacts results in adding a suffix (from 1 to 3 characters).

$1{ }^{10}$ character	$2{ }^{2}$ character	3^{46} character	4^{*} character	Charac	ters from 5 to 7		
Range	Casing	Rated current	Usage		Supply voltage**	Frequency	Polarity
$6=$ DSN	1 = Blue poly	1=DSNi (20A)	$4=$ Socket-outlet	08A $=$	20-24V	50 Hz	2 P
	4 $=$ Grey poly	$3=$ DSN3 $\left.^{\text {(} 32 \mathrm{~A}}\right)$	8 = Inlet	035 =	110-130V	50 Hz	$1 \mathrm{P}+\mathrm{N}+\mathrm{E}$
	5 = Black poly	6 = DSN6 (63A)		$033=$	190-230V	50 Hz	$3 \mathrm{P}+\mathrm{E}$
				$015=$	$220-250 \mathrm{~V}$	50 Hz	$1 \mathrm{P}+\mathrm{N}+\mathrm{E}$
				$013=$	380-440V	50 Hz	$3 \mathrm{P}+\mathrm{E}$
				017 =	380-440V	50 Hz	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$
			$A=$ Installation accessory	$013=$	Handle		
				$027=$	Indined sleeve		
				$053=$	Wall box		

*2 24 different power supplies (voltage, frequency) and 12 polarities are avallabler see international standard and colour-code on page 8

Check that the DSN part number meets the need

Example : the need is for a $20 \mathrm{~A}, 400 \mathrm{~V}, 3^{P}+E$ blue poly wall mounting socket.

- The DSN with a 20A rated current is DSNa (see pages 22 and 23).
- Order a 20A socket-outlet (S) and a wall box (B).
- In the standard socket-outlet part number table, select the part number for a $400 \mathrm{~V}, 3^{\mathrm{P}+E}$ socket-outlet: 6114013
- In the standard wall box part number table, choose the accessory that suits you e.g. a 30° blue poly wall box with a M20 threaded entry: 61 1A 053

You can check the two part numbers found:

Advantages
Core range
DSN1-20A
DSN3 32 A
DSN6.63A
Dimensions

The DSN core range

The following table describes the most frequent configurations. Take a look:
If the required configuration is there, do not look further in the 'part number' pages.
Each configuration includes two part numbers: one for the active part (socket-outlet or inlet) and one other for the installation accessory (wall box, inclined sleeve or handle).

Wall mounting socket	Inclined socket	Coupler socket	Plug	Wall mounting appliance inlet	Inclined appliance inlet
Socket-outlet	Socket-outlet	Socket-outlet	Inlet	Inlet	
B Wall box	Si Inclined sleeve	H Handle	H Handle	B Wall box	Si Inclined sleeve

DSN1 20 A

Voltage Polarity	Part Number					
$230 \mathrm{~V} \quad 1 \mathrm{P}+\mathrm{N}+\mathrm{E}$	6114015	6114015	6114015	6118015	6118015	6118015
+ installation accessory:	61 1A 053	61 1A 027	61 1A 013	61 1A 013	611 1 053	61 1A 027
400 V 3P+E	6114013	6114013	6114013	6118013	6118013	6118013
+ installation accessory:	61 1A 053	61 1A 027	611 A 013	611 A 013	61 1A 053	61 1A 027
400V* $3 \mathrm{P}+\mathrm{N}+\mathrm{E}$	6114017^{*}	6114017 *	6114017 *	6118017	6118017	6118017
+ installation accessory:	61 1A 053	61 1A 027	61 1A 013	611 A 013	611 1 053	61 1A 027
Example described at bottom of previous page						

DSN3 32A

Voltage Polarity	Part Number					
$230 \mathrm{~V} \quad 1 \mathrm{P}+\mathrm{N}+\mathrm{E}$	6134015	6134015	6134015	6138015	6138015	6138015
+ installation accessory:	613 A 053	613 A 027	613 A 013	613 A 013	613 053	61 3A 027
$400 \mathrm{~V} \quad 3 \mathrm{P}+\mathrm{E}$	6134013	6134013	6134013	6138013	6138013	6138013
+ installation accessory:	61 3A 053	613 A 027	613 A 013	613 A 013	6134053	613 A 027
400 V * $\quad 3 \mathrm{P}+\mathrm{N}+\mathrm{E}$	6134017 *	6134017 *	6134017 *	6138017	6138017	6138017
+ installation accessory:	613 A 053	613 A 027	613 A 013	61 3A 013	613 A 053	61 3A 027

DSN6 63A

Voltage Polarity	Part Number					
$230 \mathrm{~V} \quad 1 \mathrm{P}+\mathrm{N}+\mathrm{E}$	6164015	6164015	6164015	6168015	6168015	6168015
+ installation accessory:	6164053	6164027	616 A 013	6164013	616 A 053	61 6A 027
400 V - 3P+E	6164013	6164013	6164013	6168013	6168013	6168013
+ installation accessory:	6164053	6164027	6164013	6164013	61 6A 053	61 6A 027
400 V * $3 \mathrm{P}+\mathrm{N}+\mathrm{E}$	6164017 *	6164017^{*}	6164017 *	6168017	6168017	6168017
+ installation accessory:	616 A 053	6164027	616 A 013	6164013	616 053	61 6A 027

[^2]

Main features:			
- (socket-outlet) IP	66/67	- Wiring (min - max) flexible	$1 / 2.5 \mathrm{~mm}^{2}$
- (socket-outlet + inlet) IP	66/67	-Wiring (min - max) stranded	$1.5 / 4 \mathrm{~mm}^{2}$
- IK	08	- Other wiring on request	
- Umax	$500 \mathrm{VAC}-250 \mathrm{~V}$ DC	max flexible / stranded	$10 / 16 \mathrm{~mm}^{2}$
- Rated currents (IEC / EN 60309-1)		20A/400V	20A/500V
- Rated currents and operating voltages		20A/400V	20A/500V
(load breaking capacity according to IEC/ EN 60947-3)		(AC23)	(AC22)

(S) Socket-outlet (female)

(I) Inlet (male)

Voltage	Polarity	Material	Part \#
$\mathbf{2 0 - 2 4 V}$	2 P	Polyester	611408 A
$\mathbf{1 1 0 - 1 3 0 V}$	$1 \mathrm{P}+\mathrm{N}+\mathrm{E}$	Polyester	6114035
$\mathbf{1 9 0 - 2 3 0 V}$	$3 \mathrm{P}+\mathrm{E}$	Polyester	6114033
$\mathbf{2 2 0 - 2 5 0 V}$	$1 \mathrm{P}+\mathrm{N}+\mathrm{E}$	Polyester	6114015
$\mathbf{3 8 0 - 4 4 0 V}$	$3 \mathrm{P}+\mathrm{E}$	Polyester	6114013
Dual voltage*	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$	Polyester	6114017

Voltage	Polarity	Material	Part \#
$20-24 \mathrm{~V}$	2 P	Polyester	611808 A
$\mathbf{1 1 0 - 1 3 0 \mathrm { V }}$	$1 \mathrm{P}+\mathrm{N}+\mathrm{E}$	Polyester	6118035
$\mathbf{1 9 0 - 2 3 0 \mathrm { V }}$	$3 \mathrm{P}+\mathrm{E}$	Polyester	6118033
$220-250 \mathrm{~V}$	$1 \mathrm{P}+\mathrm{N}+\mathrm{E}$	Polyester	6118015
$380-440 \mathrm{~V}$	$3 \mathrm{P}+\mathrm{E}$	Polyester	6118013
$\mathbf{3 8 0 - 4 4 0 \mathrm { V }}$	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$	Polyester	6118017

*See front cover flap
Other voltages, polarities: see page 8

Version with self-closing lid (IP54):
Please consult us

Inlet accessories	
PP67 cap	61 1A 126
Ejecling mechanism (shark fin)	61 1A 338
Tension cord	31 1A 336

Installation accessories

The boxes are supplied without any cable gland.
The 70° boxes are not dililed (dililed at extra cosp).

(A)

Industrial - Domestic adapters

Domestic socket-outtet 10/16A 230V

+ Wrucsaraindustrial inet $1 \mathrm{P}+\mathrm{N}+\mathrm{E}$

Type	Material	Part number
UK	Poly	6118015 D40*
FR with satety shutter	Poly	61 18 015 D16

*AII these domestic socket-outtets are available to forelgn standards : reptace D4O by D11 for France, D30 for Germany,

See description on page 137
Page 88 of 363

Padlocking shaft
(Padlock not supplied)

Stop button

IP67 Inlet cap

Sell-closing lid for inlet

Closing mechanlsm (finger draw plates sold per unit)

Tension cord

Socket-outlet (female)

Voltage	Polarity	Material	Part \#
$\mathbf{2 0 - 2 4 V}$	$2 P$	Polyester	613408 A
$110-130 \mathrm{~V}$	$1 \mathrm{P}+\mathrm{N}+\mathrm{E}$	Polyester	6134035
$\mathbf{1 9 0 - 2 3 0 V}$	$3 \mathrm{P}+\mathrm{E}$	Polyester	6134033
$\mathbf{2 2 0 - 2 5 0 V}$	$1 \mathrm{P}+\mathrm{N}+\mathrm{E}$	Polyester	6134015
$380-440 \mathrm{~V}$	$3 \mathrm{P}+\mathrm{E}$	Polyester	6134013
Dual voltage*	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$	Polyester	6134017

*See front cover flap
Other voltages, polarities: see page 8

Socket-outlet (Umax 400 V) with auxiliary contacts With 2 auxiliay contacts (30A) Socket \# +972
If you want to add an option to this kind of socket-outlet: call us at +33 (0) 145116000 .

Socket-outlet options

Device for sell-ejecting coupler socket	Socket \# + 354
Device for sell-ejecting plug	Socket \# + 352
Sell-returning lid	Sockel \# + R
$180^{\circ}-$ opening lid	Socket \# + 10
180°-opening and sell-reluming lid	Socket \# + 18
Padlocking shatt for 1 padlock 3 mm 0	Socket \# + 840
Padlocking shaft up to 3 padlocks 3 mm @	Socket \# + 844
Stop button	Socket \# + 453

If you want to equip a socket-outtet with two or more options: call us at $+33(0) 145116000$.

Socket-outlet accessories
Closing mechanism (finger draw plate)
$613 A 346$
Page 89 of 363

Installation accessories

Industrial - Domestic adapters

Domestic socket-outlet 10/16A 230V + Mrechar industrial inlet $1 \mathrm{P}+\mathrm{N}+\mathrm{E}, 10 \mathrm{~A} 230 \mathrm{~V}$ fuse protection

Type	Material	Part number
UK	Poly	6138015 D40*
FR with safety shutter	Poly	6138015 D16

> *All these domestic socket-outets are available to foreign standards : replace D4O by D11 for france, D30 for Germany, D06 for Ilay, DO8 for Switzerland, D67 for Australia, D8O for USA etc

Supply boxes with self-ejecting coupler socket for emergency vehicles
See description on page 137

These wall boxes are designed for:

- easy wiring, recommended for large conductor cross-sections (up to $5 \times 35 \mathrm{~mm}^{2}$)
- entries and exits either at top, bottom or sides
- stock reduction, as the same wall box is common to several products
The sleeves are angled $\left(70^{\circ}\right)$ to reduce the socket-outlet protrusion and impact risk (fork lifts ...).

See full range of boxes on page 86

Page 90 of 363

- See Operating Instuction on page 168

Padlocking shaft
(Padlock not supplied)

Stop button

Accessories

IP67 Inlet cap

Self-closing lid for inlet

Tension cord
DECONTACTOR ${ }^{\text {TM }}$
Certificate no. FR 60037180-537184N

Main features:

- (socket-outiet) IP	66/67	- Umax		$1000 \mathrm{VAC}-250 \mathrm{~V}$ DC
-(socket-outlet + inlet) IP	66/67	- Wiring (min - max) flexible		$6 / 16 \mathrm{~mm}^{2}$
- IK	08	-Wiring (min - max) stranded		$6 / 25 \mathrm{~mm}^{2}$
- Rated currents (IEC/EN		$63 \mathrm{~A} / 400 \mathrm{~V}$	63A/690V	$45 \mathrm{~A} / 1000 \mathrm{~V}$
- Rated currents and opera		$63 \mathrm{~A} / 400 \mathrm{~V}$	63A/690V	
(load breaking capacity a	947-3)	(AC23)	(AC22))

(S) Socket-outlet (female)

Voltage	Polarity	Material	Part \#
$\mathbf{2 0 - 2 4 V}$	$2 P$	Polyester	616408 A
$\mathbf{1 1 0 - 1 3 0 V}$	$1 \mathrm{P}+\mathrm{N}+\mathrm{E}$	Polyester	6164035
$\mathbf{1 9 0 - 2 3 0 V}$	$3 P+E$	Polyester	6164033
$\mathbf{2 2 0 - 2 5 0 V}$	$1 \mathrm{P}+\mathrm{N}+\mathrm{E}$	Polyester	6164015
$380-\mathbf{4 4 0 V}$	$3 P+\mathrm{E}$	Polyester	6164013
Dual voltage*	$3 \mathrm{P}+\mathrm{N}+\mathrm{E}$	Polyester	6164017

Voltage	Polarity	Material	Part \#
$\mathbf{2 0 - 2 4 V}$	2 P	Polyester	$6168 \mathbf{0 8 A}$
$\mathbf{1 1 0 - 1 3 0 V}$	$1 \mathrm{P}+\mathrm{N}+\mathrm{E}$	Polyester	6168035
$\mathbf{1 9 0 - 2 3 0 V}$	$3 P+E$	Polyester	6168033
$\mathbf{2 2 0 - 2 5 0 V}$	$1 \mathrm{P}+\mathrm{N}+\mathrm{E}$	Polyester	6168015
$\mathbf{3 8 0 - 4 4 0 V}$	$3 \mathrm{P}+\mathrm{E}$	Polyester	6168013
$\mathbf{3 8 0 - 4 4 0 V}$	$3 P+N+E$	Polyester	6168017

- See front cover flap
Other voltages, polarities: see page 8
Socket-outlet (Umax 400 V) with auxiliary contacts

With 2 a uxiliary contacts (16A)	Sockel \# +972
With 4 aucilary contacts $(16 \mathrm{~A})$	Socket \# +264

If you want to add an option to this kind of socket-outtet: call us at +33 (0) 145116000.

Socket-outlet options	
Device for sell-ejecling coupler socket	Socket I + 354
Device for sell-ejecting plug	Socket \# + 352
Sell-returning lid	Socket I + R
180°-opening lid	Socket I + 10
180°-opening and sell-retuming lid	Socket \#+ 18
Pedlocking shat for 1 padlock 3 mm 0	Socket \# + 840
Padlocking shat up to 3 padlocks 3 mm 0	Socket \# + 844
Stop button	Socket \# + 453

Inlet accessories	
P67 cap	61 6A 126
Sell-dosing lid	31 3A 226
Ejecting mechanism (shark fin)	61 6A 338
Tension cord	31 1A 336

Page 91 of 363

Also see:

Full range of boumar pyge io Dimuntionsis page 29 Technicof Manual page 160

Advantuges
Core ranige
DSN $\quad 20 \mathrm{~A}$
DSN3-32A
DSN6-63A
Dimensions

Installation accessories

The boxes ane supplied without any cable gland. The 70° boxes are not driled (otilled at extra cost).

Perfect cable fit and broad tightening range

A special anchoring system provides a perfect cable fit and a broad tightening range (multi-layer bush to choose best

DSN
Advantages
Core range
DSNT - 20 A
DSN3-32A
DSN6 - 63 A
Dimensions

DSNI $\begin{array}{lllllllll}\text { DSNMDSN24C } & 50 & 32 & 36 & 67 & 58 & 48 & 13 & 4.5\end{array}$ DSNBDDSN37C

A	B8	B4	C	D	E	H	Bd
50	24	27	57	37	42	14	4.5
50	32	38	57	58	48	13	4.5
54	39	44	78	68	55	15	5

 A B CA CAD CP D E1 E1D E2 H Od

	A	B	CA	CAB	CP	D	E1	E1D	E2	H	Od
DSN1	115	113	45	68	57	90	36	56	78	38	4.5
DSHMDSN24C	112	105	84	84	87	107	70	70	70	18	6
DSHOSMBTC	132	128	89	89	78	12	77	77	88	24	55

DSUGDSN37C

Coupler socket connected (Ai)/ disconnected (Ao) in a 30° wall mounting appliance intet

B8: 180° OPENMG LD

70° wall mounting appllance Intet

A	B	CA	D	E1	E2	H2	Bd
179	154	127	127	116	96	39	6.5
184	160	127	127	116	96	39	6.5
209	203	170	170	159	139	39	6.5

\longrightarrow Coupler socket connected (As)/ disconnected (Ao) in a 70° wall mounting appliance inlet

DSNI
DSN3MSN2AC
DSNEDSN37C
$\begin{array}{llllll}\text { A1 } & \text { AO } & 8 & B 1 & 80 & \text { Be }\end{array}$ $\begin{array}{llllll}195 & 201 & 188 & 235 & 250 & 141\end{array}$ $\begin{array}{llllll}228 & 234 & 228 & 253 & 280 & 164\end{array}$ $\begin{array}{lllllll}262 & 209 & 259 & 322 & 341 & 180\end{array}$
30° Inclined appliance intet

D1: driling 6

	A	目	CA	CAb	0	01	E1	E1b	E2	Qd
DSNI	96	102	45	68	90	75	36	56	78	4.5
DSNMOSN24C	93	114	75	78	107	65	63	83	95	5.5

DSNEMSN37C $\begin{array}{llllllllll}103 & 122 & 76 & 76 & 107 & 65 & 63 & 63 & 95 & 5.5\end{array}$

	A	B	CA	D	E1	E2	@d
DSNI	101	154	127	127	116	96	4.5
DSNBMOSN24C	106	160	127	127	116	96	4.5
DSNG/DSN37C	131	203	170	170	159	139	4.5

Page 94 of 363

DSNI
OSN3MDSN24C
DSNBDSNB7C

Coupler socket connected (A.1)/ disconnected (A 0) in a 30° inclined appliance inlet

Be: 100 Openng lo

	A1	A0	B	B1	B0	B8
DSN1	185	196	162	151	157	
DSN3DSN24C	195	210	209	171	180	
DSNGOSN37C	204	230	235	176	193	213

A1 AO B B1 B0 B8
$\begin{array}{llllll}117 & 123 & 188 & 235 & 250 & 141\end{array}$ $\begin{array}{lllllll}150 & 156 & 226 & 263 & 200 & 164\end{array}$ $\begin{array}{lllllll}184 & 191 & 259 & 322 & 341 & 185\end{array}$

MTR Level Relay

The MTR level relay has proven itself to be simple and extremely reliable in pump stations everywhere. The MTR controls one pump or one alarm. The MTRA controls one pump and one alarm.

- Safe

The extra low sensing voltage ensures maintenance staff and operators are protected at all times.

- Four sensitivities

Allows the relay to operate effectively in a wide range of conductive liquids.

- Activation delays

Each output can have a different time delay to overcome wave action and turbulence.

- LED indication

High intensity LED indicators ensure clear signals.
Power On (green). Alarm On (red). Pump On (yellow).

- Dipswitch programmable

All settings are easily selectable from the front panel.

- Proven reliability

The proven design and performance of the relay ensures long-term reliability of the MultiTrode system.

- I.S application

Perfect for $1 . S$ application when used with an MTISB.

- Unique two-sensor operation (MTRA only) Pump and alarm can be controlled using two or three sensors. Two-sensor operation is ideal for budget applications or where space is limited.
- DIN rail or screw mounting
- Low installed cost

Specifications

Power Supply:	
Supply Voltage AC	24, 110, 240, 415VAC* - 50/60Hz
Power Consumption	3.5 Watts max *(MTR only)
Supply Voltage DC	12 or 24VDC,
Power Consumption	3 Watts max
Environmental Range:	
Centigrade	-10° to $+60^{\circ} \mathrm{C}$
Fahrenheit	$+14^{\circ}$ to $+140^{\circ} \mathrm{F}$

Avallable Models \& Ordering Information		
415VAC	MTR-1	n/a
240VAC	MTR-2	MTRA-2
110VAC	MTR-3	MTRA-3
24VAC	MTR-4	MTRA-4
24VDC	MTR-5	MTRA-5
12VDC	MTR-6	MTRA-6

Multitrode

> MultiTrode Pty Ltd - Australia Brisbane Technology Park 18 Brandl Street PO Box 4633 Eight Mile Plains Qld 4113 Tel: +61733407000 Fax: +61733407077 sales@multitrode.com.au

MultiTrode Inc • USA
6560 East Rogers Circle
Boca Raton Florida 33487
Tel: +15619948090 Fax: +15619946282
sales@multitrode.net

Page 96 of 363 WATER • WASTEWATER • PUMP STATION • TECHNOLOGY

The Probe... Dip it. Set it. Leave it.

Why is it easier to install than other level devices?

All you do is hang the Probe on its own cable into your wet well, using the bracket we supply. Installation is simple - any one of your technicians could do it in an hour or so. What's more, you install the Probe relatively low down in the wet well, so compared to ball floats it allows the well to be cleaned out more thoroughly. That means less debris build-up, odors and pump clogs.

MTISB Intrinsically Safe Barrier

The MTISB is used between Multirode Probes and control equipment. It eliminates the risk of dangerous energy entering the potentially explosive environment where the Probe is located. 5 -chamel (MTISB5) and 10-channel (MTSB10) bariers avalable.

MultiTrode's Probe is the most reliable and cost-effective level sensor available in the water and wastewater industry today.

- 10+ year lifetime
- Cost effective and virtually maintenance free
- Very low and reliable pump cut-out
- Unaffected by build up (fat, grease, sludge and foam)
- Reduces maintenance cost
- Intrinsically safe when installed with MTISB barrier
- Eliminates false readings
- Simple to install and maintain
- Cuts the risk of spills
- UL, ULC, CTick, and CE Approved

Why is it so Reliable?

There are no electronics and no moving parts - which results in a long lifetime. That's why it gets a 10-year warranty!

How would your Ultrasonic hold up to this application?

The MultiTrode Probe is unaffected by fat, foam, grease and sludge.

Ordering Information and Examples

Model Code	Probe Length	Number al Sensars	Sensor Seperation
0.2/1-xx	$8 \mathrm{in} / 0.2 \mathrm{~m}$	1	N/A
0.5/3- α	$16 \mathrm{n} / 0.5 \mathrm{~m}$	3	$6 \mathrm{n} / 150 \mathrm{~mm}$
1.0/10- α	$40 \mathrm{n} / 1.0 \mathrm{~m}$	10	$4 \mathrm{~h} / 100 \mathrm{~mm}$
1.5/10-x x	$60 \mathrm{in} / 1.5 \mathrm{~m}$	10	$6 \mathrm{in} / 150 \mathrm{~mm}$
2.0/10-x	$80 \mathrm{in} / 2.0 \mathrm{~m}$	10	$8 \mathrm{in} / 200 \mathrm{~mm}$
2.5/10-xx	$96 \mathrm{in} / 2.5 \mathrm{~m}$	10	$10 \mathrm{n} / 250 \mathrm{~mm}$
3.0/10- α	$115 \mathrm{n} / 3.0 \mathrm{~m}$	10	$12 \mathrm{in} / 300 \mathrm{~mm}$
6.0/10-xx	$224 \mathrm{in} / 6.0 \mathrm{~m}$	10	$24 \mathrm{in} / 600 \mathrm{~mm}$
9.0/10-xx	$368 \mathrm{in} / 9.0 \mathrm{~m}$	10	$35 \mathrm{in} / 900 \mathrm{~mm}$

[^3]

In the complicated world of water and wasterwater management, there is good reason why MultTrode stands unrivalled amongst its peers: We are committed to a singular vision of developing the latest technological advancements to provide sophisticated solutions to every day challenges in the water and wastewater industries.

Key to our success is the importance we place on customer satisfaction and solution-based products to save you time and money. From pump station management systems to engineering support, Multitrode encompasses it all. By investing heavily in R\&D, we remain on the cutting edge of technology and always ahead of our competitors.

Our products are proven. Our results are tangible. MultiTrode is unrivalled.

MultiTrode, Inc - USA

990 South Rogers Circle, Suite 3
Boca Ralon, Florida 33487
Tel: 561.994.8090 Fax: 561.994.6282
USsalesGmubtrode com

Multitrode - UK

Unit 5 Kingswood Court
Longmeadow
South Brent
Devon TQ10 9YS
Tel: +44 1752547355 Fax: +441752894615
UKsalesGmulttode.com

Mutititrode Pty Ltd - Australla
Brisbane Technology Park
18 Brand Street
Eght Mie Plains
Queensland 4113
Tel: +61733407000 Fax: +61733407077
Allsales(0)mulitiodacom

MUITIROOEB and MUISMAFTE are regitered radenaks of Multiode Pyy Lti in Austala, USA, and Europe Desigrs regestered for the MiSimst Pump Controler Pemote and Base Modies in Austala, USA Europe and Crina. Patens pending in Austrata, USA and Eurcue

C2012 MirTrode, hc
This puticason is protected by copyight No pat of this publication mas be reprodiced by any process, electrovic or othemise, withot he expess writien permission of Mutirode pyld

Panelboards, loadcentres and accessories

12	CD-2-12/18-3U	
18	CD-2-18/18-3U	
24	CD-2-24/18-3U	
30	CD-2-30/18-3U	
36	CD-2-36/18-3U	
42	CD-2-42/18-3U	
48	CD-2-48/18-3U	
54	CD-2-54/18-3U	:
60	CD-2-60/18-3U	,
72	CD-2-72/18-3U	
78	CD-2-78/18-3U	
84	CD-2-84/18-3U	
96	CD-2-96/18-3U	
Accessories		
Description		Cat. No.
Split tariff kit 250/355 A (supplied loose)		STKCD
Split tariff kit (fitted)		REFER NHP
Plastic tee-off cap 250 / 355 A		CD250T0PC

Technical data - CD/CT busbar chassis Description		
Busbar rating	(Amp)	250
Voltage rating	(V)	415
Short circuit rating	(kA)	20
Short circuit time	(sec)	0.2
Insulation material		Polyolefin
		PPA-441

Catalogue number structure - CD/CT busbar chassis

Page 100 of 363

Panelboards, loadcentres and accessories

Dimensions (mm)

CD chassis 250 to suit Din-T6, 10 and 15

Miniature circuit breakers

Din-Safe single pole width residual current circuit breaker (RCBO)

- Standards AS/NZS 61009
- Approval N17482
- One modute wide (18 mm)
- Short circuit, overcurrent and earth leakage protection
- Short circuit protection 10 kA
- Sensitivity 10 and 30 mA
- Din rail mount
- Suits CD chassis
- Type " A " residual current device ($A C / D C$)

Amp rating (A)	Modules $(18 \mathrm{~mm})$	Voltage (AC)	Short circuit (kA)	Trip Sensitivity (mA)	(at. No ${ }^{1}$) ${ }^{2}$)
6	1	240	10	30	DSRCBH0630A
10	1	240	10	30	DSRCBH1030A
16	1	240	10	30	DSRCBH1630A
20	1	240	10	30	DSRCBH2030A
25	1	240	10	30	DSRCBH2530A
32	1	240	10	30	DSRCBH3230A
40	1	240	10	30	DSRCBH4030A
6	1	240	10	10	1 DSRCBH0610A
10	1	240	10	10	DSRCBH1010A
16	1	240	10	10	DSRCBH1610A
20	1	240	10	10	DSRCBH2010A
25	1	240	10	10	1] DSRCBH2510A
32	1	240	10	10	[i] DSRCBH3210A
40	1	240	10	10	1] DSRCBH4010A

Note: ${ }^{\text {i }}$) Neutral not switched.
${ }^{2}$ Will not accept side mounting accessories.

Operation

This unit combines the overload and short circuit protection of an MCB with earth leakage protection of an RCD. The unit occupies one, sub- circuit (one pole) of the distribution board and provides single phase protection against overload, short circuit and earth leakage current.

- The MCB element provides thermal and magnetic tripping protection which is rated to 10 kA prospective fault current.
- The RCD element of the device provides core-balance detection of the difference between the active and neutral currents and amplification to provide high sensitivity. The rated residual operating current ($I \Delta n$) is 10 mA or 30 mA .
- The green/yellow earth reference cable, in case of loss of supply neutral, ensures the device will continue to provide earth leakage protection and will operate normally upon detection of an earth leakage current.

Dimensions (mm)

Note: A 1.2 m long pigtail lead is included as standard.

Page 102 of 363

Application

The Din-Safe single pole width residual current circuit breaker will fit the standard Din-T chassis for use in NHP panelboards. The design makes it possible to provide an MCB complete with earth leakage protection in an 18 mm wide module, which allows a greater number of devices to be fitted into a distribution board.

Connection diagram

Note: Nuisance tripping may be experienced in VFD and motor starting applications refer NHP.

Din-T MCBs + RCDs Technical data

Tripping curves according to EN 60898

The following tables show the average tripping curves of the Terasaki Din-T MCBs based on the thermal and magnetic characteristics.

Curve C

Din-T MCBs + RCDs Technical data

What is an RCD?

The RCD (Residual Current Device) is a device intended to protect people against indirect contact, the exposed conductive parts of the installation being connected to an appropriate earth electrode. It may be used to provide protection against fire hazards due to a persistent earth fault current, without operation of the overcurrent protective device.
RCDs having a rated residual operating current not exceeding 30 mA are also used as a means for additional protection in case of failure of the protective means against electric shock (direct contact).

Working Principle

The main components of an RCD are the following:

- The core transformer: which detects the earth fault current.
- The relay: when an earth fault current is detected, the relay reacts by tripping and opening the contacts.
- The mechanism: element to open and close the contacts either manually or automatically.
- The contacts: to open or close the main circuit.

The RCD constantly monitors the vectorial sum of the current passing through all the conductors. In normal conditions the vectorial sum is zero ($11+12-0$) but in case of an earth fault, the vectorial sum differs from zero (I1+I2-Id), this causes the actuation of the relay and therefore the release of the main contacts.

Definitions related to RCDs

RCCB $=$ Residual Current Circuit Breaker without overcurrent protection.
RCBO $=$ Residual Current Círcuit Breaker
with overcurrent protection.

Breaking capacity

A value of $A C$ component of a prospective current that an $R C C B$ is capable of breaking at a stated voltage under prescribed conditions of use and behaviour.

Residual making and breaking capacity ($\mathrm{I} \Delta \mathrm{m}$)

A value of the $A C$ component of a residual prospective current A value of the AC component of a residual prospective current (Only applicable to RCB0)
which an RCCB can make, carry for its opening time and breaPage 104 of 363 under specified conditions of use and behaviour.

Conditional residual short-circuit current (I $\Delta \mathrm{C}$)

A value of the $A C$ component of a prospective current which an RCCB protected by a suitable SCPD (short-circuit protective device) in series, can withstand, under specific conditions of use and behaviour.

Conditional short-circuit current (Inc)

A value of the $A C$ component of a residual prospective current which an RCCB protected by a suitable SCPD in series, can withstand, under specific conditions of use and behaviour.

Residual short-circuit withstand current

Maximum value of the residual current for which the operation of the RCCB is ensured under specified conditions, and above which the device can undergo irreversible alterations.

Prospective current

The current that would flow in the circuit, if each main current path of the RCCB and the overcurrent protective device (if any) were replaced by a conductor of negligible impedance.

Making capacity

A value of AC component of a prospective current that an RCCB is capable to make at a stated voltage under prescribed conditions of use and behaviour.

Open position

The position in which the predetermined clearance between open contacts in the main circuit of the RCCB is secured.

Closed position

The position in which the predetermined continuity of the main circuit of the RCCB is secured.

Tripping time

The time which elapses between the instant when the residual operating current is suddenly attained and the instant of arc extinction in all poles.

Residual current ($\mathrm{I} \Delta \mathrm{n}$)

Vector sum of the instantaneous values of the current flowing in the main circuit of the RCCB.

Residual operating current

Value of residual current which causes the RCCB to operate under specified conditions.

Rated short-circuit capacity (Icn)

Is the value of the ultimate short-circuit breaking capacity assigned to the circuit breaker. (Only applicable to RCBO)

Conventional non-tripping current (Int)

A specified value of current which the circuit breaker is capable of carrying for a specified time without tripping. (Only applicable to RCBO)

Conventional tripping current (It)

A specified value of current which causes the circuit breaker to trip within a specified time.

Din-T MCBs + RCDs Technical data
 RCDs classification according to EN 61008/61009

RCDs may be classified according to: The behaviour in the presence of DC current
(types for general use).

- Type AC
- Type A

The time-delay (in the presence of residual current)

- RCDs without time delay: type for general use
- RCDs with time delay: type S for selectivity

Type AC $\left.\sim{ }^{1}\right)^{2}$)
The type AC RCDs are designed to release with sinusoidal residual currents which occur suddenly or slowly rise in magnitude.

Residual current	Tripping time
$0.5 \times \mathrm{I} \Delta \mathrm{n}$	$\mathrm{t}=\infty$
$1 \times \mathrm{I} \Delta \mathrm{n}$	$\mathrm{t}=<300 \mathrm{~ms}$
$2 \times \mathrm{I} \Delta \mathrm{n}$	$\mathrm{t}=<150 \mathrm{~ms}$
$5 \times \mathrm{I} \Delta \mathrm{n}$	$\mathrm{t}=\leq 40 \mathrm{~ms}$

Tripping curve type $A C$
${ }^{1}$) Standard in Australia
${ }^{2}$) Type A acceptable in Australia

$\begin{array}{llll}\text { Type } A & \cong & 3 \\ \text {) }\end{array}{ }^{4}$)

Certain devices during faults can be the source of nonsinusoidal earth leakage currents (DC components) due to the electronic components e.g. diodes, thyristors etc.
Type A RCDs are designed to ensure that under these conditions the residual current devices operate on sinusoidal residual current and also with pulsating direct current(*) which occur suddenly or slowly rise in magnitude.
(*) Pulsating direct current: current of pulsating wave form which assumes, in each period of the rated power frequency, the value 0 or a value not exceeding $0.006 \mathrm{~A} D C$ during one single interval of time, expressed in angular measure of at least 150°.

Residual current Tripping time

1. For sinusoidal residual current

$0.5 \times I \Delta n$	$t=\infty$
$1 \times I \Delta n$	$t=<300 \mathrm{~ms}$
$2 \times I \Delta n$	$t=<150 \mathrm{~ms}$
$5 \times I \Delta n$	$t=\leq 40 \mathrm{~ms}$

2. For residual pulsating direct current

	At point of wave 0°	
	$0.35 \times \mathrm{I} \Delta \mathrm{n}$	$t=\infty$
	$1.4 \times \mathrm{I} \Delta \mathrm{n}$	$\mathrm{t}=<300 \mathrm{~ms}$
	$2.8 \times I \Delta n$	$\mathrm{t}=<150 \mathrm{~ms}$
	$7 \times I \Delta n$	$\mathrm{t}=\leq 40 \mathrm{~ms}$
	At point of wave 90°	
	$0.25 \times \mathrm{I} \Delta \mathrm{n}$	$\mathrm{t}=\infty$
	$1.4 \times \mathrm{I} \Delta \mathrm{n}$	$\mathrm{t}=<300 \mathrm{~ms}$
	$2.8 \times \mathrm{I} \Delta \mathrm{n}$	$\mathrm{t}=<150 \mathrm{~ms}$
	$7 \times I \Delta n$	$\mathrm{t}=\leq 40 \mathrm{~ms}$
At point of wave 135°		
$\xrightarrow[\sim]{\Omega}$	$0.11 \times \mathrm{I} \Delta \mathrm{n}$	$t=\infty$
	$1.4 \times \mathrm{I} \Delta \mathrm{n}$	$\mathrm{t}=<300 \mathrm{~ms}$
	$2.8 \times I \Delta n$	$\mathrm{t}=<150 \mathrm{~ms}$
	$7 \times \mathrm{I} \Delta \mathrm{n}$	$\mathrm{t}=\leq 40 \mathrm{~ms}$

Tripping curve type A Page 105 of 363

[^4]${ }^{4}$) DSRCBH is type A.

Din-T MCBs + RCDs Technical data

Nuisance tripping

All DinSafe RCDs have a high level of immunity to transient currents, against current impulses of $8 / 20 \mu$ s according to EN $61008 / 61009$ and VDE 0664.T1.

RCDs have a high level of immunity against alternating currents of high frequency according to EN 61008/61009.

Din-T MCBs + RCDs Technical data
Use of an RCBO (DSRCBH)

TEST-BUTTON

To ensure the correct functioning of the RCBO, the test-button T shall be pressed frequently. The device must trip when the test-button is pressed.

CONTACT POSITION INDICATOR

Printing on the toggle to provide information of the real contact position.

O-OFF
Contacts in open position. Ensure a distance between contacts $>4 \mathrm{~mm}$.

I-ON
Contacts in closed position. Ensure continuity in the main circuit.

CABLE CONNECTION

The power supply (L) must be done at the bottom terminal, and the supply neutral flying cable (black) shall be connected to the neutral bar.
Load connection shall be done in both terminals at the top side (L out / N out).
The earth reference cable (FE white) ensures protection against earth leakage in case of loss of supply neutral.

Page 107 of 363

TOGGLE
To manually switch the RCBO ON or OFF

Din-T MCBs + RCDs Technical data

Product related information

Influence of temperature on RCBOs (DinSafe DSRCB)
The thermal calibration of the RCBO was carried out at an ambient temperature of $30^{\circ} \mathrm{C}$. Ambient temperatures different from $30^{\circ} \mathrm{C}$ influence the bimetal and this results in earlier or later thermal tripping.

0.5-6 A

Din-T MCBs + RCDs Technical data

Tripping current as a function of the frequency

All RCDs are designed to work at frequencies of $50-60 \mathrm{~Hz}$, therefore to work at different values, we must consider the variation of the tripping sensitivity according to the tables below. It should be taken into consideration that there is a no tripping risk when pushing the test-button, due to the fact that such action is made by means of an internal resistor with a fixed value.
RCBO DSRCBH ${ }^{3}$)

Type AC ${ }^{1}$)	10 Hz	30 Hz	50 Hz	100 Hz	200 Hz	300 Hz	400 Hz
30 mA	0.62	0.65	0.80	0.91	1.24	1.55	1.88
100 mA	0.74	0.71	0.80	0.95	1.16	1.38	1.59
300 mA	0.80	0.74	0.80	0.97	1.19	1.44	1.64
500 mA	1.10	0.81	0.80	0.89	1.18	1.38	1.68
Type A 2)							
30 mA	8.17	3.13	0.75	1.70	3.10	3.52	3.67
100 mA	6.81	2.71	0.75	1.43	2.35	2.58	2.71
300 mA	6.20	2.16	0.75	0.49	0.87	0.74	0.95
500 mA	4.34	1.53	0.75	0.39	0.59	0.62	0.64

Notes: ${ }^{1}$) The standard NHP/Terasaki type is the "type $A C$ " in Australia, Type " A " in New Zealand.
${ }^{2}$) The standard NHP/Terasaki DSRCBH single pole RCBO is "type $A^{\prime \prime}$ in Australia and New Zealand.
${ }^{3}$) The numbers in the table above are multipliers, e.g. A "DSRCD" at 50 hz has an 0.8 multiplier. Therefore a 30 mA , "type $A C^{\prime \prime}$ RCD will trip at $(0.8 \times 30 \mathrm{~mA}) 24 \mathrm{~mA}$.

Power losses

The power losses are calculated by means of measuring the voltage drop between the incoming and the outgoing terminal of the device at rated current. Power loss per pole:
RCB0-Single pole DSRCBH

In (A)	6	10	13	16	20	25	32	40	50	63
Z (mOhm)	45.8	16.4	12.5	10.6	7.3	5.4	3.2	2.6	1.9	1.4
Pw (W)	1.65	1.7	2.1	2.7	2.9	3.3	3.4	4.2	4.8	5.6

Din-T MCBs + RCDs Technical data RCBO (DSRCB) let-through energy I't

The benefit of an RCBO in short-circuit conditions, is its ability to reduce the value of the let-through energy that the short-circuit would be generating.

Din-T single pole width RCD (DSRCBH)
Curve C

Let-through energy at 230 V

RCCB - Din-Safe safety switch (DSRCD)
RCBO - Din-Safe (DSRCBH)

Dimensions in mm

Din-T MCBs + RCDs Technical data

Miniature circuit breakers

Din-T6 series 6 kA MCB
 E Standards AS/NZS 4898
 - Approval No. N17481
 - Current range 2-63 Amps 1, 2 and 3 pole
 - Sealable and lockable handle
 - Available in curve type C and D
 - Mounts on CD chassis (250 A and 355 A)

1 pole 1 module

$\ln ($ A $)$	C - Curve 5-10 In
2	DTCB6102C
4	DTCB6104C
6	DTCB6106C
10	DTCB6110C
13	DTCB6113C
16	DTCB6116C
20	DTCB6120C
25	DTCB6125C
32	DTCB6132C
40	DTCB6140C
50	DTCB6150C
63	DTCB6163C

2 pole 2 modules

2	DTCB6202C
4	DTCB6204C
6	DTC86206C
10	DTCB6210C
13	DDTCB6213C
16	DTCB6216C
20	DTCB6220C
25	DTCB6225C
32	DTCB6232C
40	DTCB6240C
50	DTCB6250C
63	DTCB6263C

3 pole 3 modules

2	DTCB6302C
4	DTCB6304C
6	DTCB6306C
10	DTCB6310C
13	DTCB6313C
16	DTCB6316C
20	DTCB6320C
25	DTCB6325C
32	DTCB6332C
40	DTCB6340C
50	DTCB6350C
63	DTCB6363C

Short circuit capacity 6 kA

In (A)	$2-63$	
$1 P$	240 V AC	
$2 P$	$240-415 \mathrm{~V} \mathrm{AC}$	
3 P	$240-415 \mathrm{~V} \mathrm{AC}$	
DC use	1 P	$\left.2 \mathrm{P}^{\mathrm{I}}\right)$
Short circuit	20 kA	25 kA
Max.voltage (DC)	48 V	110 V

Use at DC
When using Din-T6 in a DC application the magnetic tripping current is approximately 40% higher than in AC $50 / 60 \mathrm{~Hz}$.

Shock resistance (In X, Y, Z directions). 20 g with shock duration 10 ms (minimum 18 shocks). 40 g with shock duration 5 ms (minimum 18 shocks).

Vibration resistance (In $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions). 3 g in frequency range 10 to 55 Hz
(operating time at least 30 min).
According to IEC 60068-2-6.
Storage temperature
From $-55^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$, according to IEC 88 part $2-1$ (duration 96 hours).

Operating temperature
From $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$, according to VDE 0664 parts 1 and 2.

Use at 400 Hz
At 400 Hz the magnetic trip current is approximately 50% higher than in $\mathrm{AC} 50 / 60 \mathrm{~Hz}$.

Notes: ${ }^{3}$) 2 pole MCB connected in series. The tine side is the "OFF" (bottom) side of the MCB, and connects to CD chassis tee-offs. i] Available on indent only.

Din-T MCBs Technical data

Characteristics according to BS EN 60898

Miniature Circuit Breakers are intended for the protection of wiring installations against both overloads and short-circuits in domestic or commercial wiring installations where operation is possible by uninstructed people

Tripping characteristic curves

Magnetic release

An electromagnet with plunger ensures instantaneous tripping in the event of short-circuit. The NHP Din-T range has 3 different types, following the current for instantaneous release: types B, C and D curve.

Icn (A)	Test current	Tripping time	Applications
B	$\begin{aligned} & 3 \times \text { In } \\ & 5 \times \text { In } \end{aligned}$	$\begin{gathered} 0.1<\mathrm{t}<45 \mathrm{~s}(\mathrm{In} \leq 32 \mathrm{~A}) \\ 0.1<\mathrm{t}<90 \mathrm{~s}(\mathrm{In}>32 \mathrm{~A}) \\ \mathrm{t}<0.1 \mathrm{~s} \end{gathered}$	Only for resistive loads eg: - electrical heating - water heater - stoves.
C	$\begin{aligned} & 5 \times \mathrm{In} \\ & 10 \times \mathrm{In} \end{aligned}$	$\begin{gathered} 0.1<\mathrm{t}<15 \mathrm{~s}(\mathrm{In} \leq 32 \mathrm{~A}) \\ 0.1<\mathrm{t}<30 \mathrm{~s}(\mathrm{In}>32 \mathrm{~A}) \\ \mathrm{t}<0.1 \mathrm{~s} \end{gathered}$	Usual loads such as: - lighting - socket outlets - small motors
D	$\begin{aligned} & 10 \times \text { In } \\ & 20 \times \mathrm{In} \end{aligned}$	$\begin{gathered} 0.1<t<4 \mathrm{~s}\left({ }^{* \star}\right)(\mathrm{In} \leq 32 \mathrm{~A}) \\ 0.1<\mathrm{t}<8 \mathrm{~s}(\mathrm{In}>32 \mathrm{~A}) \\ \mathrm{t}<0.1 \mathrm{~s} \end{gathered}$	Control and protection of circuits having important transient inrush currents (large motors)

Thermal release

The release is initiated by a bimetal strip in the event of overload. The standard defines the range of releases for specific overload values. Reference ambient temperature is $30^{\circ} \mathrm{C}$.

Test current	Tripping time
$1.13 \times \operatorname{In}$	$\mathrm{t} \geq 1 \mathrm{~h}(\operatorname{In} \leq 63 \mathrm{~A})$
	$\mathrm{t} \geq 2 \mathrm{~h}(\mathrm{In}>63 \mathrm{~A})$
$1.45 \times \operatorname{In}$	$\mathrm{t}<1 \mathrm{~h}(\operatorname{In} \leq 63 \mathrm{~A})$
	$\mathrm{t}<2 \mathrm{~h}(\mathrm{In}>63 \mathrm{~A})$
$2.55 \times \operatorname{In}$	$1 \mathrm{~s}<\mathrm{t}<60 \mathrm{~s}(\operatorname{In} \leq 32 \mathrm{~A})$
	$1 \mathrm{~s}<\mathrm{t}<120 \mathrm{~s}(\operatorname{In}>32 \mathrm{~A})$

Rated short-circuit breaking capacity (Icn)
Is the value of the short-circuit that the MCB is capable of withstanding in the following test of sequence of operations: $0-\mathrm{t}-\mathrm{CO}$.
After the test the MCB is capable, without maintenance, to withstand a dielectric strength test at a test voltage of 900 V . Moreover, the MCB shall be capable of tripping when loaded with 2.8 In within the time corresponding to 2.55 In but greater than 0.1 s .
Service short-circuit breaking capacity (Ics)
Is the value of the short-circuit that the MCB is capable of withstanding in the following test of sequence of operations: 0-t-CO-t-CO.
After the test the MCB is capable, without maintenance, to withstand a dielectric strength test at a test voltage of 1500 V . Moreover, the MCB shall not trip at a current of 0.96 In . The MCB shall trip within 1 h when current is 1.6 In .

0 - Represents an opening operation
C - Represents a closing operation followed by an automatic opening.
t - Represents the time interval between two successive short-circuit operations: 3 minutes.

The relation between the rated short-circuit capacity (Icn) and the rated service short-circuit breaking capacity (Ics) shall be as follows:

Inn (A)	Ics (A)
≤ 6000	6000
>6000	0.75 Icn min. 6000
≤ 10000	0.75 Icn min. 7500
>10000	

In both sequences all MCBs are tested for emission of ionized gases during short-circuit (grid distance), in a safety distance between two MCBs of 35 mm when devices are installed in two different rows in the enclosure. This performance allows the use of any NHP/Terasaki enclosure.

Din-T MCBs Technical data

Tripping curves according to EN 60898

The following tables show the average tripping curves of the Terasaki Din-T MCBs based on the thermal and magnetic characteristics.

Curve C

Din-T MCBs Technical data

Influence of ambient air temperature on the rated current

The maximum value of the current which can flow through an MCB depends on the nominal current of the MCB, the conductor cross-section and the ambient air temperature.

The values shown in the table below are for devices in free air. For devices installed with other modular devices in the same switchboard, a correction factor (K) shall be applied relative to the mounting situation of the MCB, the ambient temperature and the number of main circuits in the installation.

No of devices	K 1)
2 or 3	0.9
4 or 5	0.8
6 or 9	0.7
>10	0.6

Calculation example

Within a distribution board consisting of eight 2 Pole, $16 \mathrm{~A},{ }^{\prime} \mathrm{C}$ ' curve type MCBs, with an operating ambient temperature of $45^{\circ} \mathrm{C}$, which is the highest temperature the MCB can operate at without unwanted tripping?

Calculation

The correction factor $\mathrm{K}=0.7$, for use in an eight circuit installation: $16 \mathrm{~A} \times 0.7=11.2 \mathrm{~A}$
As the MCB is working at $45^{\circ} \mathrm{C}$ it shall be given another factor ($90 \%=0.9$):
In at $45^{\circ} \mathrm{C}=$ In at $30^{\circ} \mathrm{C} \times 0.9=11.2 \mathrm{~A} \times 0.9=10.1 \mathrm{~A}$.

Note: ${ }^{1}$) Applicable for MCBs working at maximum rated currents.

The thermal calibration of the MCBs was carried out at an ambient temperature of $30^{\circ} \mathrm{C}$. Ambient temperatures different from $30^{\circ} \mathrm{C}$ influence the bimetal and this results in earlier or later thermal tripping.

10 A

16-40 A

50-63 A

Page 115 of $363: 1 \mathrm{P}$ (single pole)

Din-T MCBs Technical data

Effects of frequency on the tripping characteristic

All the MCBs are designed to work at frequencies of $50-60 \mathrm{~Hz}$. therefore to work at different values, consideration must be given to the variation of the tripping characteristics. The thermal tripping does not change with variation of the frequency but the magnetic tripping values can be up to 50% higher than the ones at $50-60 \mathrm{~Hz}$.

Tripping current variation

60 Hz	100 Hz	200 Hz	300 Hz	400 Hz
1	1.1	1.2	1.4	1.5

Power losses

The power losses are calculated by measuring the voltage drop between the incoming and the outgoing terminals of the device at rated current.

Power loss per pole

In (A)	Voltage drop (V)	Energy loss (W)	Resistance (m0hm)
0.5	2.230	1.115	4458.00
1	1.270	1.272	1272.00
2	0.620	1.240	310.00
3	0.520	1.557	173.00
4	0.370	1.488	93.00
6	0.260	1.570	43.60
8	0.160	1.242	19.40
10	0.160	1.560	15.60
13	0.155	2.011	11.90
16	0.162	2.586	10.10
20	0.138	2.760	6.90
25	0.128	3.188	5.10
32	0.096	3.072	3.00
40	0.100	4.000	2.50
50	0.090	4.500	1.80
63	0.082	5.160	1.30
80	0.075	6.000	0.90
100	0.075	7.500	0.75
125	0.076	9.500	0.60

Limitation curves

Let-through energy I't

The limitation capacity of an MCB in short-circuit conditions, is its capacity to reduce the value of the let-through energy that the short-circuit would be generating.
Peak current Ip
Is the value of the maximum peak of the short-circuit current limited by the MCB.

See following pages

Din-T MCBs Technical data
Din-T 6
6 kA
C curve
$\mathbf{I}^{2} \mathrm{t}$ Let-through energy at $\mathbf{2 4 0 / 4 1 5} \mathrm{V}$

Id Limited peak current at $230 / 400 \mathrm{~V}$

Din-T MCBs Technical data

Use of standard MCB for DC use

For MCBs designed to be used in alternating current but used in installations in direct current, the following should be taken into consideration:

- For protection against overloads it is necessary to connect the two poles to the MCB. In these conditions the tripping characteristic of the MCB in direct current is similar to alternating current.

E For protection against short-circuits it is necessary to connect the two poles to the MCB. In these conditions the tripping characteristic of the MCB in direct current is 40% higher than the one in alternating current.

Use in DC selection table

| | Rated
 current (A) | 48 V 1 pole
 Series | Icu (kA) | 110 V 2 poles in series | 250 V 1 pole |
| :--- | :--- | :---: | :---: | :---: | :---: | | 440 V 2 poles in series |
| :---: |
| Icu (kA) |

Din-T MCBs Technical data

Text for specifiers

MCB Series Din-T 6

- According to EN 60898 standard
- For DIN rail mounting according to DIN EN 50022; EN 50022; future $\mathbb{E N} 60715$; IEC 60715 (top hat rail 35 mm)
- Grid distance 35 mm
- Working ambient temperature from $-25^{\circ} \mathrm{C}$ up to $+50^{\circ} \mathrm{C}$
- Approved by CEBEC, VDE, KEMA, IMQ.
- 1 pole is a module of 18 mm wide
- Nominal rated currents are: 0.5/1/2/3/4/6/10/13/16/20/25/32/40/50/63 A
- Tripping characteristics: B, C, D (B curve Din-T 10 only).
- Number of poles: $1 \mathrm{P}, 1 \mathrm{P}+\mathrm{N}, 2 \mathrm{P}, 3 \mathrm{P}, 3 \mathrm{P}+\mathrm{N}, 4 \mathrm{P}$
- The short-circuit breaking capacity is: $6 / 10 \mathrm{k} A$, energy limiting class 3
- Terminal capacity from 1 up to $35 \mathrm{~mm}^{2}$ rigid wire or 1.5 up to $25 \mathrm{~mm}^{2}$ flexible wire.
- Screw head suitable for flat or Pozidrive screwdriver
- Can be connected by means of both pin or fork busbars
- The toggle can be sealed in the ON or OFF position
- Rapid closing
- Both incoming and outgoing terminals have a protection degree of IP 20 and they are sealable
- Isolator function thanks to Red/Green printing on the toggle.
- Maximum voltage between two phases; $440 \mathrm{~V} \sim$
- Maximum voltage for utilisation in DC current: 48 V 1 P and 110 V 2 P
- Two position rail clip
- Mechanical shock resistance 40 g (direction $\mathrm{x}, \mathrm{y}, \mathrm{z}$) minimum 18 shocks 5 ms half-sinusoidal acc. to IEC 60068-2-27
- Vibration resistance: 3 g (direction $\mathrm{x}, \mathrm{y}, \mathrm{z}$) minimum 30 min . according to IEC 60068-2-6
Extensions can be added on both left or right hand side
- Auxiliary contact
- Shunt trip
- Undervoltage release
- Motor operator
- Panelboard switch
- Add-on RCD can be coupled.

Din-T MCBs Technical data

Notes Refer pages 3-23, 24 for information on SAFE-T MCBs.
Page 120 of $\left.363^{*}\right) 0.5-4 \mathrm{~A} / 6-25 \mathrm{~A} / 32-40 \mathrm{~A} / 50-63 \mathrm{~A}$ ${ }^{1}{ }^{1}$) Prefered values of rated control supply voltage (IEC $60947-2$): $24 \mathrm{~V}, 48 \mathrm{~V}, 110 \mathrm{~V}, 125 \mathrm{~V}, 250 \mathrm{~V}$) 10 (125 V DC)
${ }^{\text {f }} 10$ (250 VDC)
${ }^{\text {y }}$) On request.

Din-T MCBs Technical data
Miniature circuit breakers - Din-T 6

Dimensions in mm.

Solid-state Timer

DIN-sized (48×48, $45 \times 75 \mathrm{~mm}$) Timer with
 Digital Setting and LCD Display

- Dual power supplies for free AC/DC.
- Eight operation modes selectable with one unit.
- Any desired time can be set digitally within a range from 0.1 seconds to $9,990 \mathrm{hrs}$.
- Four external signal inputs.
- ON/OFF indicator for control output and bar indicator for remaining time.
- Conforms to UL, CSA, and CE marking.

Ordering Information

Operation/resetting system	Operation mode	Terminal	Time-limit contact	Instantaneous contact	Mounting	
					Surface mounting/ track mounting	Flush mounting
Time-limit operation/selfresetting/external resetting (see note 2)	8 operation modes (selectable) (see note 3)	11-pin round socket	SPDT	---	H3CA-A	H3CA-A
		Front screw			H3CA-FA	---
Time-limit operation/ self-resetting	ON-delay operation	8-pin round socket	DPDT	---	H3CA-8	H3CA-8
			SPDT	SPDT	H3CA-8H	H3CA-8H

Note: 1. Specify both the model number and supply voltage when ordering for the H3CA-8H and H3CA-8.
2. The operation/resetting system depends on the selected operation mode. For details, see "Timing Chart".
3. The 8 operation modes are as follows:
A: ON-delay operation
E: Interval operation

B: Repeat cycle operation
F: One-shot and flicker operation
C: Signal ON/OFF-delay operation (1)
G: Signal ON/OFF-delay operation (2)
D: Signal OFF-delay operation (1)
H: Signal OFF-delay operation (2)

Accessories (Order Separately)

| Timer | Track mounted socket |
| :--- | :--- | :--- | :--- |
| (See note.) | |

Note: Track mounted socket can be used as a front connecting socket.

Specifications

Time Ranges

A desired time can be set within a range of 0.1 s to $9,990 \mathrm{hrs}$ by combining the three thumbwheel switch modules for time setting and one module for time unit selection.

Ratings

Item	H3CA-A/H3CA-FA	H3CA-8	H3CA-8H
Rated supply voltage (See note 2.)	24 to $240 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$, 12 to 240 VDC (permissible ripple: 20\% max.)	$100 / 110 / 120,200 / 220 / 240 \mathrm{VAC},(50 / 60 \mathrm{~Hz})$, 24 VDC, 110 VDC (permissible ripple: 20% max.) (See note 1.)	
Operating voltage range	90\% to 110% of rated supply voltage	85\% to 110% of rated supply voltage	
Power consumption	AC: approx. 4 VA DC: approx. 2 W	AC: approx. $10 \mathrm{VA} / 1 \mathrm{~W}$ DC: approx. 1 W	AC: approx. $10 \mathrm{VA} / 1.5 \mathrm{~W}$ DC: approx. 2 W
Control outputs	3 A at 250 VAC, resistive load (cos ϕ Minimum applicable load	= 1) A-8, H3CA-A and H3CA-FA: A-8H:	10 mA at 5 VDC (failure level: Preference value) 100 mA at 5 VDC (failure level: Preference value)

Note:1. Single-phase, full-wave rectified power sources may be used for 24 to 240 VDC.
2. Refer to Safety Precautions for All Times when combining the Timer with an AC 2-wire proximity sensor.

- Characteristics

Engineering Data

Life-test Curve

Reference: A maximum current of 0.15 A can be switched at $125 \mathrm{VDC}(\cos \phi=1)$. Maximum current of 0.1 A can be switched if L/R is 7 ms . In both cases, a life of 100,000 operations can be expected.
Note: 1. The H3CA Series has been tested for the following: impulse voltages, noise (via noise simulator, for Lloads, and for relay oscillation), and resistance to static electricity.
2. Minimum applicable load (P reference values):

H3CA-A(FA), H3CA-8H: 100 mA at 5 VDC
H3CA-8: 10 mA at 5 VDC

Nomenclature

H3CA-A/H3CA-8H

Operation Mode Selector (Fixed to "A" in H3CA-8H)
A: ON-delay operation
A: ON-delay operal
C: Signal ON/OFF-delay operation (1)
Signal OFF-delay operation (1) Interval operation
One-shot and ficker operation
Signal ON/OFF-delay operation (2)
Signal OFF-delay operation (2)

H3CA-FA

Jperation

\square Timing Chart

H3CA-A (FA)

ON-delay Operation (A Mode)

Note: The minimum signal input time is 0.05 s .
Flicker Operation (B Mode)
Signal Start

Note: The minimum signal input time is $0: 05 \ddot{\mathrm{~s}}$

Power-ON Start/Power-OFF Reset

Power-ON Start/Power-OFF:Reset

Signal ON/OFF-delay Operation 1 (C Mode)

Signal OFF-delay Operation 1 (D Mode)

Note: 1: The minimum signal input time is 0.05 s .
2. Operation 1 refers to the version in which the output relay operates when the Start signal is ON.

Interval Operation (E Mode)

Note: The minimum signal input time is 0.05 s .

One-shot and Flicker Operation (F Mode)

Signal Start

Note: The minimum signal input time is 0.05 s .
Signal ON/OFF-delay Operation 2 (G Mode)

Note: The minimum signal input time is 0.05 s .
Signal ON/OFF-delay Operation 2 (H Mode)

Note: 1. The minimum signal input time is 0.05 s .
2. Operation 2 refers to the version in which the output relay does not operate when the Start signal is ON.

tow to Use Gate Signal Input

Note: 1: This timing chart indicates the gate input in operation mode A (ON-delay operation).
2. The set time is the sum of t_{1} and t_{2}.

How to Use Check Signal Input

If a check signal is input to the timer during the lapse of a set time, the remaining set time will become 0 and the timer will enter the next control state. Also, while a check signal is being input, the elapsed time measurement of the set time is not performed. ON-delay Operation

Repeat Cycle Operation

H3CA-8H

Dimensions

Note: All units are in millimeters unless otherwise indicated.

- Timers

H3CA-Al-8H

Panel Cutouts
When mounting a single unit $\mathrm{t}=1$ to 3.2 mm

Horizontally connecting n units No front cover:
$N=(48 n-2.5)+1 /-0$
With front cover:
$N=\{48 n-2.5+(n-1) \times 3\}^{+1 /}-0$

H3CA-FA

Mounting Holes
 between two adjacent timers should be 10 mm min .

Accessories (Order Separately)

Track Mounted Front Connecting Socket

P2CF-11

Back Connecting Socket

P3GA-11

Terminal Arrangement (Bottom View)

P3G-08
Terminal Arrangement (Bottom View)

Mounting Height of Timer with Socket

H3CA

Mounting Track (Meets DIN EN50022)

Note: This dimension applied to-PFP-50N.

End Plate

PFP-M

PFP-100N2

Note: A total of $12-25 \times 4.5$ elliptic holes are provided with 6 holes cut from each rail end at a pitch of 10 mm between holes.

PFP-S

Adapter for Flush Mounting

Y92F-30

Note: Pay attention to the orientation of the adapter when mounting two or more timers in a vertical or horizontal line.

Protective Cover

Y92A-48B/Y92A-48D

The protective cover protects the front panel, particularly the time setting section, against dust, dir and water drip, as well as prevents the set value from being altered due to accidental contact with the time setting knob.

Note: The Y92A-48B Protective Cover is made of a hard plastic and therefore, must be removed to change the timer set value. However, since the Y92A-48D Protective Cover is made of PVC, the set value can be altered by pressing on the surface of the cover. It may be, however, difficult to make setting changes of the Timer with the Y92A-48B Protective Cover attached, which must be taken into consideration before using the Y92A-48B Protective Cover. When attaching the Y92A-48A to the Timer to be panel-mounted, use the Y92F-30 Mounting Adapter along with the Timer. The Protective Cover cannot be; however, used for the H3CA-FA Series.

Terminal Arrangement

Note:

1. *C: Check: 3-4
*G: Gate: 3-5
*S: Start: 3-6
*R: Reset: 3-7
2. Conventional time-limit contacts are symbolized as ${ }_{9}^{\circ} \mathrm{t}$ However, the contacts of H3CA-A are symbolized as $/ \mathrm{f}$ because timer has 8 operation modes.

H3CA-FA

Note: 1. *C: Check: X-E1
*G: Gate: X-D1
*S: Start: X-C1
*R: Reset: X-B1
2. Conventional time-limit contacts are symbolized as: 5 However, the contacts of H3CA-FA are symbolized as " δ because timer has 8 operation modes.

Input Connections

Signal Inputs

Connect the start input contact between terminals (3) and (6) the reset input contact between terminals (3) and (7), the gate input contact between terminals (3) and (5), and the check input contact between terminals (3) and (4).

For each signal input contact, use a gold-plated contacts with high reliability: Be sure that these input signals satisfy the following requirements: a resistance of $1 \mathrm{k} \Omega$ (max.) and a residual voltage of 1 V (max.) when the contact is made.

Solid-state Signal Inputs

Connect the start input transistor between terminals (3) and (6), the reset input transistor between terminals (3) and (7), the gate input transistor between terminals (3) and (5), and the check input transistor between terminals (3) and (4).

For signal input, use an open collector type transistor with characteristics: $\mathrm{V}_{\mathrm{CEO}}=20 \mathrm{~V}$ min., $\mathrm{V}_{\mathrm{CE}(\mathrm{S})}=.1 \mathrm{~V}$ max., $\mathrm{IC}=50 \mathrm{~mA}$ min. and $\mathrm{I}_{\text {CBO }}=0.5 \mu \mathrm{~A}$ max. In addition, be sure that the input signals satisfy the following requirements: a resistance of $1 \mathrm{k} \Omega$ (max.) and a residual voltage of 1 V (max.) when the transistor is ON , and a resistance of $200 \mathrm{k} \Omega$ (min.) when the transistor is OFF.

From a solid-state circuit (proximity sensor, photoelectric sensor, or the like) with rated power supply voltage ranging from 6 to 30 VDC, input signals can also be applied by other than an open collector type transistor as shown in the following diagram. The input signal from a solid-state circuit is applied when output transistor Tr turns ON. In terms of signal voltage, the signal is input when it goes from a high to low level. Again, the residual voltage should be 1 V (max.) when the transistor is ON. As the current output from the timer to Tr is approximately 0.1 mA , this connection is possible provided the residual voltage is kept to a maximum of 1 V .

Note: Except for the power supply circuitry, avoid the laying of input signal wires in parallel or in the same conduit with high-tension or power lines. It is recommended to use shielded wires or wiring with independent metal conduits for the shortest possible distance.

H3CA-8H

H3CA-8.

EApplication Examples

Standard type H3CA is used for the following application examples. In the schematic diagrams, each thick the indicates the wiring necessary for selecting the desired operation mode.

ON-delay Operation (A Mode)

Power-ON Start/Power-OFF Reset

Flicker Operation (B Mode)
Power-ON Start/Power-OFF Reset

Signal ON/OFF-delay Operation 1 (C Mode)
Signal ON/OFF-start/Instantaneous Operation/ Time-limit Reset

Signal StarUSignal Reset

Signal.OFF-delay Operation 1 (D Mode)
Signal Start/Instantaneous Operation/Time-limit Reset

Signal ON/OFF-delay Operation 2 (G Mode)

Signal ON/OFF-start/Instantaneous Operation/ Time-limit Reset

Signal Start/Signal Reset

Signal Start/Signal Reset

Signal OFF-delay Operation 2 (H Mode)
Signal/nstantaneous Operation/Time-limit Reset

Safety Precautions

How to Change Operation Mode

Operate the pushbuttons of the thumbwheel switch, located at the leftmost position on the front panel to set the operation mode. Eight operation modes (A, B, C, D, E, F, G, and H) are selectable and the selected operation mode is displayed in the operation mode display window.

Note: The operation mode is fixed to " A " for H3CA-8H. The characters are yellow.

How to Change Time Unit and Rated Time

Operate the pushbuttons of the rightmost thumbwheel switch to select the desired time unit. Seven time units $(0.1 \mathrm{~s}, \mathrm{~s}, 0.1 \mathrm{~m}, \mathrm{~m}$, $0.1 \mathrm{~h}, \mathrm{~h}$, or 10 h) are selectable and the selected time unit is displayed in the time unit display window. The desired rated time is specified by operating the three thumbwheel switches in the middle of the front panel. The range of rated time is 001 to 999 for each unit.

Note: The characters are yellow.
Time Unit and Rated Time

Time unit	Rated time
0.1 s	0.1 to 99.9 s
s	1 to 999 s
0.1 m	0.1 to 99.9 m
m	1 to 999 m
0.1 h	0.1 to 99.9 h
h	1 to 999 h
10 h	10 to $9,990 \mathrm{~h}$

- CAUTION

1. Do not change the time unit, rated time, or operation mode while the timer is in operation. Otherwise, the timer may malfunction or be damaged. Be sure to turn off the power supply to the timer before changing the timer unit, rated time or operation mode.
?. Note that output will be generated in C, D, E, G, or H mode even if the rated time is set to 000 . No output will be generated in A, B, or F mode.

Connecting the Operating Power Supply

The H3CA-8 \square contains a capacitor-drop power circuit. Use a sinusoidal power supply with a commercial frequency. Do not use power supplies with a high frequency component (such as inverter power supplies) for Timers with 100 to 240-VAC specifications. Using these power supplies can damage internal circuits.
The power supply connections to the H3CA-A and H3CA-FA can be made without regard to polarity for both AC and DC power supplies; just connect to the specified terminals (2 and 10, or A1 and A2). When connecting a DC power supply to the H3CA-8 or H3CA-8H, however, the polarity must be connected as indicated.
Although there is a wide range of power connectable to the H3CA-A and H3CA-FA, be sure that there is no inductive voltage or residual voltage applied to the timer power supply terminals (2 and 10, or A1 and A2) when the power switch is turned OFF. (Inductive voltage can be generated in the power supply line if it is placed in parallel with high-voltage or power lines.)
A DC power supply can be connected if its ripple factor is 20% or less and the mean voltage is within the rated operating voltage range of the Timer.

Connect the power supply voltage through a relay or switch in such a way that the voltage reaches a fixed value at once or the Timer may not be reset or a timer error could result.
H3CA-8 and H3CA-8H Timers with AC specifications are equivalent to capacitor loads. When switching the Timer power supply with an SSR, use an SSR with a withstand voltage of twice the power supply voltage.
Since the H3CA-8 and H3CA-8H Timers of AC specifications externally discharges a part of internal energy when the power is turned OFF, it may malfunction if an extremely sensitive relay is used with the following sequence circuit.
If such a malfunction occurs, change the circuit configuration as shown below on the right side.

Input/Output

The operation of the output contacts varies with the operation specifications. Before making connections, check the operation specifications and operating conditions using the application examples provided.
The H3CA-A and H3CA-FA do not use transformers. Simultaneous inputting power from iwo or more power supplies to separate timers or counters from a single input contact or transistor is not possible.

For the power supply of an input device, use an isolating transformer, of which the primary and secondary windings are mutually isolated and the secondary winding is not grounded.

A transformer is not used in the power supplies for the H3CA-A and H3CA-FA. You can therefore receive: an electrical shock by touching the input terminals when the power supply voltage is being applied. Take adequate precautions to protect against electrical shock.
Inputs to input signal terminals are made by shorting the individual input terminals to the common terminal (terminal 3 for the H3CA-A or terminal (X) for the H3CA-FA). Internal circuits may be damaged if connections are made to any other terminals or if voltages are applied.
If contacts are used to short the terminals, they will be switching a low voltage (approximately 5 VDC) and current (approximately $100 \mu \mathrm{~A})$. You must therefore use high-reliability contacts with a contact resistance of $1 \mathrm{k} \Omega$ or less when shorted and residual voltage of 1 V maximum when shorted.
The reset input will take priority if both the set and reset inputs are turned ON simultaneously.

Others

Holding relays are used for outputs on the H3CA-A Series. Dropping the Unit or otherwise subjecting it to shock can cause the relay to reverse or to move to the center position.

How to Mount the Timer on Mounting Track

When mounting a H3CA-FA Timer on a socket mounting track, observe the following procedures:

Mounting

First hook portion A of the timer to an edge of the track and then depress the timer in direction B.

Dismounting

Pull out portion C with a round-blade screwdriver and remove the timer from the mounting track.

Special-purpose Basic Switch

DZ

DPDT Basic Switch for Two Independent Circuit Control

- Ideal for switching the circuits operating on two different voltages, and for controlling two independent circuits.
- Interchangeable with OMRON Z Basic Switches, as both switches are identical in mounting hole dimensions, mounting pitch and pin plunger position.

Be sure to read Safety Precautions on page 4 and Safery Precautions for All Basic Switches.

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

Model Number Structure

Model Number Legend

DZ-10G $\square-1 \square$
(1) (2)(3) ${ }^{(4) / 5)}$
(1) Ratings
$10: 10 \mathrm{~A}$ (250 VAC)
(2) Contact Gap

G $: 0.5 \mathrm{~mm}$

(3) Actuator

None: Pin plunger
V : Hinge lever
V22 : Short hinge roller lever
V2 : Hinge roller lever
W : Hinge lever
W22 : Short hinge roller lever
W2 : Hinge roller lever
(4) Contact Form

1 : DPDT
(5) Terminals

A : Solder terminal
B : Screw terminal

Ordering Information

Actuator	Terminal		Solder terminal (-1A)	Screw terminal (-B) ${ }^{\text {S }}$
			Model	Model
Pin plunger	-		DZ-10G-1A	DZ-10G-1B
Hinge lever		High or	DZ-10GW-1A	DZ-10GW-18
		Low OT	DZ-10GV-1A	DZ-10GV-18
Short hinge roller lever		High OT	DZ-10GW22-1A	DZ-10GW22-18
		Low OT	DZ-10GV22-1A	DZ-10GV22-1B
Hinge roller lever		High OT	DZ-10GW2-1A	DZ-10GW2-18
		Low OT	DZ-10GV2-1A	DZ-10GV2-1B

Specifications

Ratings

Rated voltage	Non-Inductive load (A)				Inductive load (A)			
	Resistive load		Lamp load		Inductive load		Motor load	
	NC	NO	NC	NO	NC	NO	NC	NO
125 VAC	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		2	1	$\begin{aligned} & 6 \\ & 4 \end{aligned}$		3	1.5
250 VAC			1.5	0.7			2	1
8 VDC	10		3	1.5			5	2.5
14 VDC	10		3	1.5			5	2.5
30 VDC	10		3	1.5			3	1.5
125 VAC	$\begin{gathered} 0.5 \\ 0.25 \\ \hline \end{gathered}$		$\begin{aligned} & 0.5 \\ & 0.25 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.03 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.03 \\ & \hline \end{aligned}$	
250 VDC								

Certified Standard Ratings
Ask your OMRON representative for information on certified models. UL/CSA

Rated voltage	DZ-10G
125 VAC	$10 \mathrm{~A} 1 / 8 \mathrm{HP}$
$\mathbf{2 5 0 ~ \mathrm { VAC }}$	$10 \mathrm{~A} 1 / 4 \mathrm{HP}$
480 VAC	2 A
$\mathbf{1 2 5 ~ V D C}$	0.5 A
250 VDC	0.25 A

Note: 1. The above values are for steady-state current.
2. Inductive load has a power factor of 0.4 min . (AC) and a time constant of 7 ms max. (DC).
3. Lamp load has an inrush current of 10 times the steady-state current.
4. Motor load has an inrush current of 6 times the steady-state current.
5. The ratings values apply under the following test conditions:
(1) Ambient temperature: $20 \pm 2^{\circ} \mathrm{C}$
(2) Ambient humidity: $65 \pm 5 \% \mathrm{RH}$
(3) Operating frequency: 20 operations/min

Characteristics

Operating speed		0.1 mm to $1 \mathrm{~m} / \mathrm{s}$ *1
Operating frequency	Mechanical	240 operations/min
	Electrical	20 operations/min
Insulation resistance		$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC$)$
Contact resistance		$15 \mathrm{~m} \Omega$ max. (initial value)
Dielectric strength		1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between non-continuous terminals 1,500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between current-carrying metal parts and non-current-carrying metal part, and between current-carrying metal part and ground and between switches
Vibration resistance	Malfunction	10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude *2
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max}$.
	Malfunction	$300 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max} .{ }^{* 1}{ }^{\text {*2 }}$
Durability	Mechanical	1,000,000 operations min.
	Electrical	500,000 operations min.
Degree of protection		IP00
Degree of protection against electric shock		Class I
Drgof tracking index (PTI)		175
bient operating temperature		$-25^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ (with no icing)
Ambient operating humidity		35\% to 85\%RH
Weight		Approx. 30 to 50 g

${ }^{*}$ 1. The values are for pin plunger models. (Contact your OMRON representative for other models.)
*2. Malfunction: 1 ms max.

Contact Specifications

Contacts	Material	Silver alloy
	Gap(standard value)	0.5 mm
Inrush current	NC	30 A max.
	NO	15 A max.

Engineering Data

Mechanical Durability (DZ-10G-1B)

Electrical Durability (DZ-10G-1B)

Structure

Contact Form (DPDT)

Dimensions
(Unit: mm)
Tarminals

Ider Terminals (-1A)

Screw Terminals (-1B)

Six M3 pan head screws (with toothed washer)

Dimensions and Operating Characteristics
The solder terminal model has a suffix "-1 A " in its model number and its omitted dimensions are the same as the corresponding dimensions of the pin plunger model.

Pin Plunger

DZ-10G-1B

Operating force	OF \max.	5.59 N
Release force	RF \min.	0.56 N
Pretravel	PT \max.	1.7 mm
Overtravel	OT \min.	0.13 mm
Movement Differential	MD \max.	0.4 mm
Operating Position	OP	$15.6 \pm 0.4 \mathrm{~mm}$

Hinge Lever
DZ-10GW-1B

OF	\max	1.67 N
RF	\min.	0.27 N
OT	\min.	1.6 mm
MD	\max.	4 mm
FP	\max.	46.3 mm
OP		$21.8 \pm 1 \mathrm{~mm}$

OF	max.	1.96 N
RF	\min.	0.13 N
PT	\max.	6 mm
OT	\min.	0.4 mm
MD	\max.	1.7 mm
OP		$18.3 \pm 1 \mathrm{~mm}$

Short Hinge Roller Lever DZ-10GW22-1B

Hinge Roller Lever DZ-10GW2-1B

DZ-10GV2-1B

OF	max.	2.65 N
RF	\min.	0.33 N
PT	\max.	4 mm
OT	\min.	0.26 mm
MD	\max.	1.1 mm
OP		$29.4 \pm 0.8 \mathrm{~mm}$

[^5]
nafety Precautions

Refer to Safety Precautions for All Basic Switches.

Precautions for Safe Use

Terminal Conrection

When soldering lead wires to the Switch, make sure that the capacity of the soldering iron is 60 W maximum. Do not take more than 5 s to solder any part of the Switch. The characteristics of the Switch will deteriorate if a soldering iron with a capacity of more than 60 W is applied to any part of the Switch for 5 s or more.

Operation

- Make:sure that the switching frequency or speed is within the specified range.

1. If the switching speed is extremely slow, the contact may not be switched smoothly, which may result in a contact failure or contact welding.
2. If the switching speed is extremely fast; switching shock may damage the Switch soon. If the switching frequency is too high, the contact may not catch up with the speed.
The rated permissible switching speed and frequency indicate the switching reliability of the Switch:
The life of a Switch is determined at the specified switching speed. The life varies with the switching speed and frequency even when they are within the permissible ranges: In order to determine the life of a Switch model to be applied to a particular use, it is best to conduct an appropriate durability test on some samples of the model under actual conditions.

- Make sure that the actuator travel does not exceed the permissible OT position. The operating stroke must be set to 70% to 100% of the rated OT.

Precautions for Correct Use

Mounting Location

- Do not use the switch alone in atmospheres such as flammable or explosive gases. Arcing and heat generation associated with switching may cause fires or explosions.
- Switches are generally not constructed with resistance against water. Úse a protective cover to prevent direct spraying if the switch is used in locations subject to splashing or spurting oil or water; dust adhering.

- Install the switch in a location that is not directly subject to debris and dust from cutting. The actuator and the switch body muist be protected from accumulated cutting debris and dirt.

- Do not use the switch in locations subject to hot water (greater than $60^{\circ} \mathrm{C}$) or in water vapor.
- Do nol use the switch outside the specified temperature and atmospheric conditions.
The permissible ambient temperature depends on the model. (Refer to the specifications in this catalog.) Sudden thermal changes may cause thermal shock to distort the switch and result in faults.

- Mount a cover if the switch is to be installed in a location where worker inattention could result in incorrect operation or accidents.

- Subjecting the switch to continuous vibration or shock may result in contact failure or faulty operation due to abrasion powder and in reduced durability. Excessive vibration or shock will cause the contacts to operate malfunction or become damaged. Mount the switch in a location that is not subject to vibration or shock-and in a direction that does not subject the switch to resonance.
- If silver contacts are used with relatively low frequency for a long time or are used with microloads, the sulfide coating produced on the contact surface will not be broken down and contact faults will result. Use a microload switch that uses gold contacts.
- Do not use the switch in atmospheres with high humidity or heat or in harmful gases, such as sulfide gas ($\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$), ammonia gas $\left(\mathrm{NH}_{3}\right)$, nitric acid gas $\left(\mathrm{HNO}_{3}\right)$, or chiorine gas (Cli_{2}). Doing so may impair functionality, such as with damage due to contacting faults or corrosion.
- The switch includes contacts. If the switch is used in an atmosphere with silicon gas, arc energy may cause silicon oxide $\left(\mathrm{SiO}_{2}\right)$ to : accumulate on the contacts and result in contact failure. If there is silicon oil, silicon filling, silicon wiring, or other silicon products in the vicinity of the switch, use a contact protection circuit to limit arcing and remove the soüree of the silicon gas.

Mounting

Use M4 mounting scirews with plane washers or spring washers to securely mount the Switch. Tighten the screws to a torque of 1.18 to $1.47 \mathrm{~N} \cdot \mathrm{~m}$.
Mounting Holes
Two, 4.2 dia. mounting holes or
M4 screw hotes

Accessories (Order separately)
Refer to $Z / A / X / D Z$ Common Accessories for details about Terminal Covers, Separators, and Actuators.

Read and Understand This Catalog
 Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

g. -

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMSALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMTATIONS OF UABILTY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WTH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE. PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILTYY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself: is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or:conditions or uses not described in this catalog
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.
NEVER USE THE PRODUCTS FOR AN.APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WTHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE:PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WTHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons
It is our:practice to change model numbers when published ratings or features are changed, or when significant construction changes are made However, some specifications of the products, may be changed without any notice.: When in doubt, special model numbers may be assigned to fix or eștạblish key specifications for yọur:application on your request. ' . Please consult with your OMRON representative at any time to confirm actual specifications of purchased products.

DIMENSIÖNS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.
PERFORMANCE DATA
Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

Comfort series
5 mm embeddable

C

General specifications ${ }^{\text {a }}$: \quad :	$\cdots \cdots$
Switching element function	DC Make function
Rated operating distance $s_{n} \ldots . . \therefore$	$5 \mathrm{~mm} \quad \ldots \quad \therefore$
Installation $\cdot \cdots:$: \because :	embeddable :
Assured operating distance $\mathrm{s}_{\mathrm{a}} \ldots$	0 ... $4.05 \mathrm{~mm}{ }^{\text {* }}$
Reduction factor r_{Al}	0.37
	0.33 : . . .
Reduction factor-rveA	0.7
Nominal ratings	
Operating voltage U_{B}	$5 \ldots 60 \mathrm{~V}$:
Switching frequency f - .	$0 \ldots 350 \mathrm{~Hz}$
Hysteresis H	1 ... 10 typ. 5%
Reverse polarity protection $\quad \therefore$:	tolerant \because
Short-circuit protection	pulsing
Voltage drop U_{i}, ${ }^{\text {a }}$	$55 \mathrm{~V} \therefore \quad \therefore \quad$
Operating current I_{L}	$2 \ldots 100 \mathrm{~mA}$
Of-state curient !	$0 \ldots 0.5$ mia typ.
Indication of the switching state	alí direction:LED, yellow
Standard conformity $\quad \because \cdot \cdot$	- . . \cdot
Standards	EN 60947-5-2:2004
Ambient conditions . . : \cdots.. \because
Ambient temperature	$-25 \ldots 70^{\circ} \mathrm{C}$ (248 $\left.\ldots 343 \mathrm{~K}\right)$
Mechanical specifications $\quad \therefore \quad . \quad$.	$\therefore \quad \cdots \quad \therefore \quad \therefore \quad:$
Connection type	2 m, PUR cable
Cable version	PA.
Core cross-section	$0.34 \mathrm{~mm}^{2}$.
Housing material	Stainless steel
Sensing face	PBT
Protection degree . $\quad . \quad$:	IP67 :

Connection type:

20

Comfort series
5 mm embeddable

C

Connection_type:

Z1

Thermal device circuit breaker - TCP 0.25A - 0712123

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://download.phoenixcontact.com)

Thermal miniature circuit breaker, pluggable in screw-type fuse terminal block UK 6-FSI/C and spring-cage fuse terminal block ST 4-FSI/C

The illustration shows version TCP 2A

Why buy this product
I. A version with screw or spring-cage connection is used as a basic terminal block
[The reclosable thermal circuit breaker is available in ten nominal current levels ranging from 0.1 to 10 A
Compact design
[r The integrated switching function enables immediate reclosure and therefore ensures the availability of the system

Key commercial data

Packing unit	1
Minimum order quantity	20
Catalog page	Page 197 (TT-2011)
GTIN	
Custom tariff number	85362010
Country of origin	INDONESIA

Technical data

General

Installation instructions	When mounted in rows, the nominal device current can be limited to just 80% or must be overdimensioned accordingly.
Degree of protection	IP40 (Actuation area)
Mounting type	On base element
Color	black
Number of positions	1
Surge voltage category	II
Insulating material	PPS
Inflammability class according to UL 94	Vo

Dimensions

Thermal device circuit breaker - TCP 0.25A - 0712123

Technical data

Dimensions

Technical data

Fuse \because, \ldots,	Slow-blow :	.
	Automatic device:	
	2.5 kV .	
Rated voltage $\quad . .$.	250 VAC	
Rated voltage $\quad \begin{array}{lllllll} & \ldots & \ldots & \ddots & \ddots & \ddots\end{array}$	65 V :DC	
	$250 \cdot 10$	
Rated voltage ${ }^{\text {Ra }}$,	72 V 0)	
	0.25 A	
	$\geq 100 \mathrm{M} \Omega(500 \mathrm{VDC})$	
Rated short-circuit switching capacity lon	$1.5 \mathrm{~A}(250 \mathrm{~V}$ AC / 65 V DC$)$	
Rated short-circuit switching capacity $l_{0 n} . \quad \because$	$6.25 \mathrm{~A}(30 \mathrm{VDC})$	
Short-circuit switching capacity $l_{k} \quad \therefore \quad: \%$	2000 A 250 V AC / UL 1077	
Shopt-circuit switching capacity $\mathrm{l}_{\mathrm{k} \cdot}$	2000 A 72 V DC / UL 1077	
Dielectric strength \cdots $\because \sim$ \cdots	$3000 \mathrm{~V} \cdot \mathrm{AC}$ (Actuation area)	
	1500 V AC (Installation area)	
Cycles, max. ${ }_{\text {, }}$	6000 (At $1 \times \mathrm{I}_{\mathrm{n}}$, low-induction)	:
	3000 (At $1 \times \mathrm{x} \mathrm{I}_{\mathrm{n}}$, inductive)	
Cycles, max $\because \because \because \square$	500 (At $2 \times \mathrm{I}_{\mathrm{n}}$, inductive)	
Pollution degree $\%$, $\because \cdots$	2.:	\cdots. \cdot
Surge voltage category \because \ddots \ddots \cdots \because	11	
Insulating material group . $\because \cdots$,	IIIL	:
Ambient temperature (operation)	$-20^{\circ} \mathrm{C} \ldots 60^{\circ} \mathrm{C}$	\cdots

Standards

Standard - Electrical safety $\because \because, \quad$ EN 60934

Classifications

ETIM

Thermal device circuit breaker - TCP 0.25A - 0712123

Classifications

UNSPSC

eCl@ss

Approvals
Approvals

Approvals

CSA / UL Recognized / VDE Zeichengenehmigung / cUL Recognized / GOST / cULus Recognized

Ex Approvals
\qquad

Approvals submitted

Approval details

UL Recognized

Thermal device circuit breaker - TCP 0.25A - 0712123

Approvals

```
VDE Zeichengenèhmigung
```

\square
cUL Recognized 6
\square
$\operatorname{cost} 6$

Accessories

Accessories

Marking
Flat zack marker sheet - ZBFM 5NWH:UNBEDRUCKT - 0803595

Flat zack marker sheet, Sheet, white, Unlabeled, Can be labeled with: Plotter, Mounting type: Snap into flat marker groove, For terminal block width: 5.2 mm , Lettering field: $5 \times 4.5 \mathrm{~mm}$

Flat zack marker sheet - ZBFM 5/OG:UNBEDRUCKT - 0807180

Flat zack marker sheet, Sheet; orange, Unlabeled, Can be labeled with: Plotter, Mounting type: Snap into flat marker groove, For terminal block width: 5.2 mm , Lettering field: $5 \times 4.5 \mathrm{~mm}$

Additional products

Fuse:modular terminal block:- UK 6-FSI/C - 3118203

Flat-type fuse terminal block, cross section: 0.2-6 mm^{2}, AWG: $26-8$, width: 8.2 mm , color: black

Thermal device circuit breaker - TCP 0.25A - 0712123

Diagram

Trigger characteristic.

Application drawing

Fuse terminal block in single arrangement,
block consisting of one fuse terminal block and 4 feed-through terminal
blocks

IS-50NX-C2

dc blocked protector

Flange mounted, dc block, single transmitter coaxial lightning protection for 125 MHz to 1 GHz with N female connectors

Specifications for PolyPhaser IS-50NX-C2

Mount Type
Flange
Frequency Range
125 MHz to 1 GHz
Protected Side Connector
N Female
Surge Side Connector
N Female:
Turn On Voltage
$600 \mathrm{Vdc} \pm 20 \%$
VSWR
$\leq 1.1: 1,125 \mathrm{MHz}$ to 1 GHz
Insertion Loss
$\leq 0.1 \mathrm{~dB}$
RF Power
125 to 220 MHz @ $375 \mathrm{~W}, 220$ to $700 \mathrm{MHz} @ 125 \mathrm{~W}, 700$ to $1000 \mathrm{MHz} @ 50 \mathrm{~W}$

PB251-CM Series

220-330 WATTS DC UPS

FEATURES

- Chassis Mount
- Ultra-low noise output
- Independent battery charging output
- DC output OK \& battery OK alarms \& LEDs
- Battery-LVD and alarm
- Over-temperature protection
- Battery fuse fail LED

SPECIFICATIONS

INPUT	
Voltage:	190 to 264 vac, or 225 to 400Vdc
Line regulation:	0.2\%typical
Current	1.4A maximum
Inrush current	10A maximum
Frequency:	45 to 65 Hz
OUTPUT	
Voltage	See table
Current	See table
Load regulation	0.5 typical
Current limit type - load cet	Constant current
Current limit type - batt. cet	Constant current
Short circuit protection	Indeffinite, auto-resetting
Over-voltage protection	17.5 to 20 OV latching (13.8 Vdc output)
Ripple \& nolse 100 MHz bandwidth	$28 \mathrm{mVp}-\mathrm{p}$ ($\mathbf{1 3 . 8 V d c}$ output) $55 \mathrm{mVp}-\mathrm{p}$ (27.6Vdc output)
ENVIRONMENTAL	
Operating temperature	0 to $70^{\circ} \mathrm{C}$ amblent with derating. 5 to 90% relative humidity (non-condensing)
Over-temperature protection	Automatic \& auto-resetting
Cooling requirement	Natural convection
Efficiency	80\% minimum

STANDARDS \& APPROVALS	
Safety	Complies with AS/NZS 60950, class 1, NSW Office of Fair Trading Approval N20602
EMC	Emissions comply with AS/NZS CISPR11, Group 1, Class B. Complies with ACA EMC Scheme, Safety \& EMC Regulatory Compllance Marked
Isolation V p-o/p $\mathrm{V} p$-ground o/p-ground	4242 VDC for 1 minute 2121VDC for 1 minute 707VDC for 1 minute
ALAPMS \& BATTERY FUNGTIONS	
Converter 0N/OK alarm	Indicated by voltage-free changeover relay contacts \& green LED: $O N=O K$
green LED	ON=PSU OK
Battery low (\& fuse) alarm	Alarm voltage 11V. Adjustable 10.2-12.6V contact Sales Office. Indicated by voltagefree changeover relay contacts \& green LED: ON=BATT OK
Low voltage disconnect	9.6 to 12 V adjustable Contact Sales office.
Charger over-load protection	Auto-resetting electronic circuit breaker
Reverse polarity protection	Internal battery fuse
Battery to load voltage drop	0.2 to. 0.25V typical
MECHANCAL	
Case size	$264 \mathrm{~L} \times 172 \mathrm{~W} \times 67 \mathrm{Hmm}$
Case size with heatsink	$264 \mathrm{~L} \times 186 \mathrm{~W} \times 67 \mathrm{Hmm}$
Rack mount option	Refer to PB251-RM Series

SELECTION TABLE

MODEL				
NUMBER	VDC	OUTPUT	ILOAD	IBATT

NOTE: Non standard battery charging current available on request le PB251-12CM-H-10 for 10A.

PB251-CM Series

220-330 WATTS DC UPS

TECHNICAL ILLUSTRATIONS

PBIH Series

15-150 WATTS DC/DC SINGLE OUTPUT

FEATURES

- Wide selection of models
- 4 input voltage ranges
- High efficiency
- Low output ripple
- Proven reliability
- Good thermal margins

SPECIFICATIONS

InPUT		OPERATING	
Input voltage	12VDC (9.2-16)	Efficiency	70\%-89\%
	24 VDC (19-32) 48VDC (38-63)	Satety Isolation (1 minute)	Type - 12, 24, 48V input Input-Case: 1500VAC Output-Case: 500VAC Type- 110 V input Input-Output: 2000VAC Input-Case: 2000VAC Output- Case: 500VAC
	$\begin{aligned} & \text { 48VDC (38-63) } \\ & 10 \mathrm{VDC}(85-140) \end{aligned}$		
Inrush current	20A max, for 110V only		
OUIPUT			
Output voltage	See table		
Voltage adjustment	$\pm 10 \%, \pm 5 \%$ for PBIH-F		
Output current	See table	Insulation resistance	50Mż (500VDC) Input - Case
Ripple \& noise	Output Volts $\times 1 \%+50 \mathrm{mV}$ to - 100 mV pk-pk	Parallel operation	Consult sales office for details
Line regulation	0.8\% over input range	Remote control	PBIH-R Series: Open link: output normal Short link: output oft
Load regulation	0.9\%, 0\%-100\% load		
Temperature coefficient	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 0.03 \%$ per ${ }^{\circ} \mathrm{C}$		
Overvoltage protection	O.V. clamp, PBIH-F Output shutdown, PBIH-G, J, M, R - Input must be switched off for at least 30 S to reactivate	ENVIRONMENTAL	
		Operating temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
		Temperature derating	Derate 100% load from $50^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ at 1.5% per ${ }^{\circ} \mathrm{C}$ to 30% load.
Overcurrent protection	Fold back - PBIH-F Current limiting. PBIH-G, J, M, R (PBIH-R series is adjustable); PBIH110xxR models are not adjustable	Cooling	Convection cooled
		Storage temperature	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
		Humidity	85\%
Drift	Output V $\times 0.5 \%+15(\mathrm{mV})$ per 8 hrs atter 1 hr warm-up	Shock	30G, PBIH-F, G and J
Rise Time	$\begin{aligned} & 200 \mathrm{~ms} \text { max. }- \text { PBIH-F, M, R } \\ & 100 \mathrm{~ms} \text { max. }- \text { PBIH-G, } \mathrm{J}\left(\text { at } 25^{\circ} \mathrm{C}\right) \end{aligned}$	Vibration	(5 Hz - $10 \mathrm{~Hz}, 10 \mathrm{~mm}$), ($10 \mathrm{~Hz}-50 \mathrm{~Hz}$) 2G, PBIH-F, G and J
Holdup time	10 ms (only 110 V input)	STANDARDS AND APPRO	Als
Remote sense	PBIH-R Series only	Safety	Designed to UL1950
		C-Tick	AS/NZS CISPR11 Group 1, Class A
		MECHANICAL	
		Weight	PBIH-F: 250g PBIH-6: 380g PBIH-J: 410 g PBIH-M : 800g PBIH-R: 1.4 kg

PBIH Series

15-150 WATTS DC/DC SINGLE OUTPUT

SELECTION TABLE

MODEL NUMBER PBIH-1205F	INPUT 9.2-16V	OUTPUT		
		5 V	3A	
PBIH-1212F	9.2-16V	12 V	1.2 A	15W
PBIH-1215F	9.2-16V	15V	1A	15W
PBIH-1224F	9.2-16V	24 V	0.62A	15W
PBIH-2405F	19-32V	5 V	3A	15W
PBIH-2412F	19-32V	12 V	1.2A	15W
PBIH-2415F	19-32V	15V	1A	15W
PBIH-2424F	19-32V	24 V	0.62A	15W
PBIH-4805F	38-63V	5 V	3A	15W
PBIH-4812F	38-63V	12V	1.2A	15W
PBIH-4815F	38-63V	15V	1A	15W
PBIH-4824F	38-63V	24 V	0.62A	15W
PBIH-11005F	85-140V	5 V	3A	15W
PBIH-11012F	85-140V	12 V	1.2A	15W
PBIH-11015F	$85-140 \mathrm{~V}$	15 V	1A	15W
PBIH-11024F	$85-140 \mathrm{~V}$	24 V	0.62A	15W
PBIH-1205G	9.2-16V	5 V	5A	25W
PBIH-1212G	9.2-16V	12 V	2.1A	25W
PBIH-1215G	9.2-16V	15V	1.7A	25W
PBIH-1224G	9.2-16V	24 V	1.1A	25W
PBIH-1248G	9.2-16V	48 V	0.5A	25W
PBIH-2405G	19-32V	5 V	5A	25W
PBIH-2412G	19-32V	12 V	2.1 A	25W
PBIH-2415G	19-32V	15V	1.7A	25W
PBIH-2424G	19-32V	24 V	1.1A	25W
PBIH-2448G	19-32V	48 V	0.5A	25W
PBIH-4805G	38-63V	5 V	5A	25W
PBIH-4812G	38-63V	12V	2.1A	25W
PBIH-4815G	$38-63 \mathrm{~V}$	15 V	1.7A	25W
PBIH-4824G	38-63V	24 V	1.1A	25W
PBIH-4848G	38-63V	48 V	0.5A	25W
PBIH-110056	85-140	5 V	5 A	25W

MODEL NUMBER PBIH-11012G	INPUT 85-140V	OUTPUT		OUTPUT POWER
		12V	2.1A	
PBIH-11015G	85-140V	15 V	1.7A	25 W
PBIH-11024G	85-140V	24 V	1.1A	25 W
PBIH-11048G	$85-140 \mathrm{~V}$	48 V	0.5A	25 W
PBIH-1205J	9.2-16V	5 V	8A	40W
PBIH-1212J	9.2-16V	12 V	3.3A	40W
PBIH-1215J	9.2-16V	15 V	2.7A	40w
PBIH-1224J	$9.2-16 \mathrm{~V}$	24 V	1.7A	40W
PBIH-1248J	9.2-16V	48 V	0.8A	40W
PBIH-2405J	19-32V	5 V	10A	50W
PBIH-2412J	19-32V	12 V	4.3A	50W
P8iH-2415J	19-32V	15 V	3.4A	50W
PBIH-2424J	19-32V	24 V	2.5 A	50W
PBIH-2448J	19-32V	48 V	1A	50W
PBIH-4805J	38-63V	5 V	10A	50W
PBIH-4812J	38-63V	12 V	4.3A	50W
PBIH-4815J	38.63 V	15 V	3.4A	50W
PBIH-4824J	38-63V	24 V	2.5 A	50W
PBH-4848J	38-63V	48 V	1A	50W
PBIH-11005J	85-140V	5 V	10A	50W
PBIH-11012J	85-140V	12 V	4.3A	50W
PBIH-11015J	85-140V	15 V	3.4A	50W
PBIH-11024J	85-140V	24 V	2.5A	50W
PBIH-11048J	85-140 V	48 V	1A	50W
PBIH-1205M	9.2-16V	5 V	18A	100W
PBIH-1212M	9.2-16V	12 V	9A	100W
PBIH-1215M	9.2-16V	15 V	7 A	100W
PBIH-1224M	9.2-16V	24 V	4.5 A	100W
PBIH-1248M	9.2-16V	48 V	2A	100W
PBIH-2405M	19-32V	5 V	20A	100W
PBIH-2412M	19-32V	12 V	9 A	100W
PBIH-2415M	19-32V	15V	7A	100W

MODEL NUMBER PBIIK-2424M	INPUT 19-32V	OUTPUT		OUTPUT POWER 100W
		24 V	5A	
PBIH-2448M	19-32V	48 V	2A	100W
PBIH-4805M	38-63V	5 V	20A	100W
PBIH-4812M	38-63V	12 V	9A	100W
PBIH-4815M	38-63V	15 V	7A	100W
PBIH-4824M	38-63V	24 V	5A	100W
PBII-4848M	38-63V	48 V	2A	100W
PBIH-11005M	85-140V	5 V	20A	100W
PBIH-11012M	85-140V	12 V	9A	100W
PBIH-11015M	85-140V	15V	7A	100W
PBIH-11024M	85-140V	24 V	5A	100W
PBIH-11048M	85-140V	48 V	2A	100W
PBIH-1205R	9.2-16V	5 V	27A	150W
PBIH-1212R	9.2-16V	12 V	13A	150W
PBIH-1215R	9.2-16V	15 V	10A	150W
PBIH-1224R	$9.2-16 \mathrm{~V}$	24 V	6.5 A	150W
PBIH-1248R	9.2-16V	48 V	3.3A	150W
PBIH-2405R	19-32V	5 V	30A	150W
PBIH-2412R	19-32V	12 V	14 A	150W
PBIH-2415R	19-32V	15 V	11A	150W
PBIH-2424R	19-32V	24 V	7A	150W
PBIH-2448R	19-32V	48 V	3.5A	150W
PBIH-4805R	$38-63 \mathrm{~V}$	5 V	30A	150W
PBIH-4812R	$38-63 \mathrm{~V}$	12 V	14A	150W
PBIH-4815R	$38-63 \mathrm{~V}$	15 V	11A	150W
PBIH-4824R	$38-63 \mathrm{~V}$	24 V	7 A	150W
PBIH-4848R	38-63V	48 V	3.5A	150W
PBIH-11005R	85-140V	5 V	30A	150W
PBIH-11012R	85-140V	12 V	14 A	150W
PBIH-11015R	$85-140 \mathrm{~V}$	15 V	11A	150W
PBIH-11024R	85-140V	24 V	7A	150W
PBIH-11048R	85-140	48 V	3.5A	150W

PBIH-F

PBIH Series

15-150 WATTS SINGLE OUTPUT

PBIH-G

PBIH-J

PBIH-R

DATA SHEET

Coax Cable Connector

$\mathrm{N}-203 \mathrm{HS}$
N -201

Description

Straight Cable Plug Crimp
Suits Cables: LMR400 CNT400 BELDEN 9913

Technical Data	
Electrical	
Impedance	50 Ohm
Max Frequency	11 GHz

Mechanical \& Environmental Data

Centre contact	Crimp		
Outer Contact	$5 / 8^{\prime \prime}-24$ threaded coupling		
Mating			
Durability	500 matings		
Coupling nut retention	100 lbs Max		
Cable Retention	40 lbs min		
Tempreture Range	-65° to $165^{\circ} \mathrm{C}$		
Vibration	MIL-STD-202 Test Cond B		
Salt Spray	MIL-STD-101 Test Cond B		
Thermal Shock	MIL-STD-107 Test Cond B		
Material Data			
Parts	Material	Plating	
		$\mathrm{N}-203 \mathrm{HS}$	$\mathrm{N}-201$
Connector Body	Brass	Silver	White Bronze
Centre contact	Brass	Gold	Gold
Insulation	Teflon	-	-
Gasket	Silicone Rubber	-	-
Crimp Ferrule	Anneald Copper	Silver	White Bronze

redion
 Tel +1 (717) $767-6511$
 Fax +1 (717) 764-0839

 Bulletin No. G306A-F Drawing No. LP0666 Released 05/12www:redlion.net

MODEL G306A - GRAPHIC COLOR LCD OPERATOR INTERFACE TERMINAL WITH TFT QVGA DISPLAY AND TOUCHSCREEN

FOR USE IN HAZARDOÜS LOCATIONS:
Class I, Division 2, Groups A, B, C, and D
PROCESS CONTROL EOUIPMENT

- CONFIGURED USING CRIMSON SOFTWARE (BUILD 424 OR NEWER)
- UP.TO 5 RS-232/422/485 COMMUNICATIONS PORTS (2. RS-232 AND 1 RS-422/485. ON BOARD. 1 RS-232 AND 1 RS422/485 ÓN OPTIONAL COMMUNICATIONS CARDI
- 10 BASE T/100 BASE-TX ETHERNET PORT TO NETWORK UNITS AND HOST WEB PAGES
- usb port to dównloád tïe unit's cóonfiguration from A PC OR FOR DATA TRANSFERS TO A PC
- UNIT'S CONFIGURATION IS STORED IN NON-VOLATILE MEMORY (B MBYTE FLASH).
- COMPACTFLASH SOCKEIT TO INCREASE MEMORY CAPACITY
- 5.7-INCH TFT ACTIVE MATRIX 256 COLOR QVGA 320×240 PIXEL LCD WILED BACKLIGHT
- 5-BUTTON KEYPAD FOR ON-SCREEN MENUS
- thitee front panel led indicators
- POWER UNIT FROM 24 VIDC $\pm 20 \%$ SUUPPLY
- resistive analog toulhscreen

GENERAL DESCRIPTION

The G306A Operator Interface Terminal combines unique capabilities normally expected from high-end units with a very affordable price It is built around a high performance core with integrated functionality. This core allows the G306A to perform many of the normal features of the Paradigm range of Operator Interfaces while improving and adding new features.
The G306A is able to communicate with many different types of hardware using high-speed RS $232 / 422 / 485$ communications ports : and Elhemet 10 Base T/100 Base-TX commuinications. In addition, the G306A features USB for fast. downloads of configuration files and access to trending and data logging A CompactFlash socket is provided so that Flash cards can be used to collect your trending and data logging information as well as to store larger configuration files.

In addition to accessing and controlling of external resources, the G306A allows a user to easily view and enter information. Users can enter data through the touchscreen and/or front panel 5-button keypad.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the manual or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment. connected to it If cquipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
Do not use the controller to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the controller.

The protective conductor terminial is bonded to conductive parts of the equipment: for safety purposes and must be connected to an extermal protective earthing system.:

WARNING - EXPLOSION HAZARD SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION 2

CompactFlash is a registered trademark of CompactFlash Association.

CONTENTS OF PACKAGE

- G306A Operator Interface.
- Panel gasket.
- Template for panel cutout.
- Hardware packet for mounting unit into panel.
- Terminal block for connecting power.

ORDERING INFORMATION

MODEL NO.	DESCRIPTION	PART NUMBER
G306A	Operator Interface for indoor applications: textured finish with.embossed keys	G306A000
G3CF	CompactFlash Card 5	G3CFxixx
G3RS	RS232/485 Optional Communication Card.	G3RS0000
G3CN	CANopen Optional Comminication Card:	\therefore G3CN0000
G3DN	DeviceNet option card for G 3 operatór intérfaces with isolated high speed communications poits	G3DN0000
G3PBDP	Profibus DP Optional Communication Card	G3PEDP00
PSDR7	DIN Rail Power Supply	PSDR 7000
SFCRM2	Crimson $2.0^{2} \quad \because \ldots$	SFCRM200
CBL	RS-232 Programming Cable	CBLPROGO
	USB Cable	CBLUSBOO
	Communications Cables ${ }^{1}$	CBLxxaxx
DR	DIN Rail Mountable Adapter Products ${ }^{3} \cdot$.	DRxxxucx
	Replacement Battery ${ }^{4}$	BNL20000
G3FILM	Protective Films $\because \quad \because \because \because$	G3FILMO6

l Contact your Red Lion distitributor or .visit ouṛ: webesite for: complete selection.
${ }^{2}$ Use this part number to purchase the Crimsons software on CD with a printed manual, USB cable, and RS-232 cable. Otherwiṣe, download for free from www.redlion net:
${ }^{3}$ Red Lion offers RJ modular jack adapters. Refer to the DR literature for complete details..
${ }^{4}$ Battery type is lithium coin ty pe CR2025. 156 of 3 hanustrial grade two million write cycles.

SPECIFICATIONS

1. POVER REQUIIREMENTS:

- Must use a Class 2 circuit according to National Electrical Code (NEC), NFPA-70 or Canadian Electrical Code (CEC), Par I, C22. 1 or a Limited Power Supply (LPS) according to IEC 60950-I or Limited-energy circuit according to IEC 61010-1.
Power connection via removable three position terminal block:
Sụpply Voltage: $\because \quad+24$ VDC $+20 \%$
Typical Poweril: 8.W.
Maximum Power ${ }^{2}$: 10 W
Notes:

1. Typical power with $+24 \cdot$ VDC, RS232/485 commimications, Ethernet. commumications, CompactFlash card installed, and disploy at full brightress.
2. Maximuin power indicaites the most power that can be dran'mfrom the G306A. Refer to "Power Supply Requirements" under "Installing and Powering the G306A:"
3. The G306A's circuil common is not connected to the enclosure of the unit. See "Conmecting to Earth Ground" in the section "Installing and Powering the G306A."
4. Read "Power Supply, Requirementṣ" in the section "Installing and 'Powiering the G306A'" for additional power supply information.
5. BATTERY: Lithium coin cell. Typical lifetime of 10 years.
6. LCD DISPLAY:

SIZE	5.7-nich
TYPE:	\therefore TFT
COLORS	256.
PIXELS.	320×240
BRIGHTNESS :	$380 \mathrm{~cd} / \mathrm{m}^{2}$
BACKLIGHT.	50,000 HR TYP.

*Lifetime at room temperature. Refer to "Display" in "Sofiware/Unit Operation"
4. 5-KEY KEYPAD: for on-screen menus.
5. TOUCHSCREEN: Resistive analog
6. MEMORY:

On Boand User Memory: 8 . Mbyte of non-volatile Flash memory.
Memory Card: CompactFlash. Type II slot for Type 1 and Type 11 CompactFlash cards.
7. COMMUNICATIONS:

USB Port: Adheres to USB specification 1.1. Device only using Type B connection.

WARNING. DO NOT CONNECT OR DISCONNECT CABLES WHILE POWER IS APPLIED UNLESS AREA IS KNOWN TO BE NON-HAZARDOUS. USB PORT.IS FOR SYSTEM SET-UP.AND DIAGNOSTICS AND IS NOT INTENDED' FOR PERMANENT CONNECTION.	

Serial Ports: Format and Baud Rates for each port are individually software programmable up to 115,200 baud
PGM Port: RS232 port via RJ12.
COMMS Ports: RS422/485 port via RJ45, and RS232 poort via RJI2.
DH485 TXEN: Transmit enable; open collector, $\mathrm{V}_{\mathrm{OH}}=15 \mathrm{VDC}$, $\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V} @ 25 \mathrm{~mA}$ max.
Note:- For additional information: on the conmunications or :signal conimon and connections to earith ground please see the "Conizecting to Earth Groind" in the section "Installing and Powering the.G3064. "
Ethernet Port: 10 BASE-T $\% 100$ BASE-TX
RJ45 jack is wired as a NIC (Network Interface Card)
Isolation from Ethernet network to G 3 operator interface: 1500 Vrms
8. ENVIRONMENTAL CONDITIONS

Operating Temperature Range: $0.1050^{\circ} \mathrm{C}$
Storage Temperature Range: - 20 to $70^{\circ} \mathrm{C}$
Operating and Storage Humidity: 80% maximum relative humidity (noncondensing) from 0 to $50^{\circ} \mathrm{C}$:
Vibration according to IEC 68-2-6 Operational 5 to $8 \mathrm{~Hz}, 0.8^{\prime \prime}(p-p) ; 8$ to 500 Hz , in X, Y,Z dirẹction, duration 1 hour, 3 g :
Shock according to IEC 68-2-27: Operational $40 \mathrm{~g}, 9 \mathrm{msec}$ in 3 directions. Altitude: Up to 2000 meters.
9. CERTIFICATIONS AND COMPLIANCES:

SAFETY

UL Listed, File \#E245515, UL61010-1,ANSI/ISA 12 12.01-2007; CAN/CSA 22.2 No. 61010.1, CSA 22.2 No 213-Mi987 and File \#Eil9259, UL61010-1, CAN/CSA 22.2 No. $61010-1$
LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards
Type 4X Indoor Enclosure rating (Face only), UL50
IECEE CB Scheme Test Report \#E179259-A 1-CB-3.

- Isscuèd by Underwriters Laboratoriẹs Inc.

IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment
for measurement, control, and laboratory use, Part 1 :
:IP66 Enclosure rating (Face only), IEC 529
ELECTROMAGNETIC COMPATIBILITY
Emissions and Immunity to EN: 61326: 2006: Electrical Equipment for Measurement, Control and Laboratory use.
Immunity to Industrial Locations:
Electrostatic discharge EN61000-4-2 Criterion A. 4 kV contact discharge 8 kV air discharge
Electromagnetic RF. fields EN61000-4-3 Criterion A $10 \mathrm{~V} / \mathrm{m}(80 \mathrm{MHz}$ to 1 GHz$)$ $3 . \mathrm{V} / \mathrm{m}(1.4 \mathrm{GHz}$ to 2 GHz$)$

Faṣt transients (burst)

Surge
IkV I/O sign IkV I/O signal
.

RF conducted interference
Power frequency:magnetic fields
Émissions:
Emissions
Note:

1. Criterion A Normal operation within specified limits.
2. CONNECTIONS: Compression cage-clamp terminal block.

Wire Gage: 12-30 AWG copper wire
Toŕque: 5:7 inch-póunds (56-79 N-cm)
11. CONSTRUCTION: Steel rear metal enclosure with NEMA 4XXIP66 aluminum front plate for indoor use only when correctly fitted with the gasket . provided. Installation Category II, Pollution Degree 2.
12: MOUNTING REQUIREMENTS: Maximum panel thickness is 0.25 " 6.3 mm). For NEMA 4X/IP66́ sealing, a steel panel with a minimum thickness of $0.125^{\prime \prime}$ ($3: 17 \mathrm{~mm}$) is recommended.
Maximum Mounting Stud Torque: 17 inch-pounds ($1.92 \mathrm{~N}-\mathrm{m}$)
: 13. WEIGHT: $3.0 \mathrm{lbs}(1.36 \mathrm{~kg})$

DIMENSIONS In inches (mm)

Installing and Powering the G306A

MOUNTING INSTRUCTIONS

This operator interface is designed for through-panel mounting. A panel cutout diagram and a template are provided Care should be caken to remove any loose material from the mounting cut-out to prevent that material from falling into the operator interface during installation. A' gasket is provided to enable sealing to NEMA 4X/IP66 specification. Install the ten kep nutis provided and tighten evenly for uniform gásket compression.

Note: Tightening the kep nuts beyond a maximum of 17 inchi-pounds (1.92 $N-m$) may cause damage to the front pariel.

ALL NONINCENDIVE CIRCUITS MUST BE WRED USING DIVISION 2 WRING METHODS AS SPECIFIED IN ARTICLE 501-4 (b): 502-4 (b), AND 503-3 (b) OF THE NATIONAL ELECTRICAL (b): 502-4 (b), AND 503-3 (b) OF THE NATIONAL ELECTRICAL
CODE, NFPA 7O FOR INSTALLATION WTHIN THE UNITED CODE, NFPA 7Ó FOR INSTALLATION WITHIN THE UNITED
STATES, OR-AS SPECIFIED IN SECTION $19-152$ OF CANADIAN ELECTRICAL CODE FOR INSTALLATION IN CANADA:

CONNECTING TO EARTH GROUND

The protective conductor terminal is bonded to conductive parts of the equipment for safety purposes and must be connected to an external protective earthing sysiem

Each G306A has a chassis ground tenminal on the back of the unit. Your unit should be connecied to earth ground (protective earth).

The chassis ground is not connected to signal common of the unit. Maintaining isolation between earth ground and signal common is not required to operate your unit. But, other equipment connected to this unit may require isolation between signal common and earth ground. To maintain isolation berveen signial comnon and earth ground care must be taken when connections are: made to the umin. Fọr example, a power supply with isolation between its signal common and earth ground must be used. Also, plugging in a USB cable may connect sigṇal common and earth ground!
' USB's shield may be connected to earth ground at the host. USB's shield in turn may also be connected to signal common.

POWER SUPPLY REQUIREMENTS

The G306A requires a 24 : VDC power supply. Your unit may draw considerably less than the maximum rated power depending upon the options being used. As additional features are used your unit will draw increasing amounts of power. Items that could cause increases in current are additional communications, optional communications card, CompactFlash card, and other features programmed through Crimson.
In any case, it is very important that the power supply is mounted correctly if the unit is to operate reliably. Please take care to observe the following points:

- The power supply must be mounted close to the unit, with usually not more than 6 feet (1.8 m) of cable between the supply and the operator interface. Ideally, the shortest length possible should be used
- The wire used to connect the operator interface's power supply should be at least 22 -gage wire. If a longer cable run is used, a heavier gage wire should be used. The routing of the cable should be kept away from large contaciors, inverters, and other devices which may generate significant electrical noise.
- A power supply with an NEC Class 2 or Limited Power Source (LPS) and SELV rating is to be used. This type of power supply provides iṣolation to acceṣsible circuits from hazardous voltage levels generated by a mains poiver supply due to single faults. SELV is ạn actronym for "safety exträ-löiv voltage." Safery extra-low voltage circuits shall exhibit voltages sạfe tọ touch both unḍder normal operating conditions and after a single fauilt, such as a breakdown of a layer of basic insulation or after the failure of a single component has occurred.

Installing An Option Card

WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN OISCONNECTED ANO THE AREA IS KNOWN TO BE NON-HAZARDOUS.

Each option card comeṣ with a cable for communications and three screws for ataching the option card to the G306's rear coveri. To install the option card, remove all power and VO cominunications cables from the unit: Use the three screws provided to mount the option card to the rear cover of the G306 as shown in Figure 1.

Figure 1

Connect the cable froin the option card to CN11 on the main board of the G306 as shown in Figure 2. Be sure both ends of the cable are firmly seated into their appropriate connector housing: Carefully replace the rear cover by reversing the instructions for removing the rear cover.

Page 158 of 363

Communicating With the G306A

CONFIGURING A G306A

The G306A is configured using Crimsons software Crimson is available as a free download from Red Lion's website, or it can be purchased on CD. Updates to Crimson for new features and drivers are posted on the website as they become available. By configuring the G306A using the latest version of Crimson, you are assured that your unit has the most up to date feature set. Crimson software can configure the G306A through the RS232 PGM port, USB port, or CompactFlash.
The USB port is connected using a standard USB cable with a Type B connector. The driver needed to use the USB port will be installed with Crinison.

The RS232 PGM pôrt uses a programming cable made by Red Lion to connect to the DB9 COM port of your computer. If you choose to make your own cable, use the "G306A Port Pin Out Diagram" for wiring information.

The CompactFlash can be used to prograri a G3 by placing a configuration file and firmware on the CompactFlash card: The card is then insented into the target G3 and powered. Refer to the Crimson literature for more information on the proper names and locations of the files.

USB; DATA TRANSFERS FROM THE COMPACTFLASH CARD

WARNING - DO NOT CONNECT OR DISCONNECT CABLES WHILE POWER IS APPLIED UNLESS AREA IS KNOWN TO BE NON-HAZARDOUS. USB PORT IS FOR SYSTEM SET-UP AND DIAGNOSTICS AND IS NOT INTENDED FOR PERMANENT CONNECTION.

In order to transfer data from the CompactFlash card via the USB port, a driver must be installed on your computer. Thẹs driver is installed with Crimson and is located in the folder C:UProgramin Files\Red Lion ControlsiCrimson 2.0Devicel after Crimson is installed. This may have already been accomplished if your G306A was configured using the USB port.

Orice the driver is installed, connect the G306A to your PC with a USB cable, and follow "Moumting the CompactFlash" instructions in the Crimson 2 user manual.

CABLES AND DRIVERS

Red Lion has a wide range of cables and drivers for use with many different communication types. A list of these drivers and cables along with pin outs is available from Red Lion's website. New cables and drivers are added on a regular basis. If making your own cable, refer to the "G306A Port Pin Outs" for wiring information.

ETHERNET COMMUNICATIONS

Ethermet communications can be established at either 10 BASE-T or 100 BASE-TX. The G306A uniti's RJ45 jack is wired as a NIC (Network Interface Card). For example, when wiring to a hub or switch use a straight-through cable, but when connecting to another NIC use a crossover cable.

The Ethermet connector contains two LEDs. A yellow LED in the upper right, and a bi-color green/amber LED in the upper left. The LEDs represent the following statuses:

LED COLOR	DESCRIPTION
YELLOW. solid	Link established. \cdots
YELLOW flashing	Data being.tranisferred. \quad.
GREEN	10 BASE-T Communications
AMBER	100 BASE-TX Communications

On the rear of each unit is a unique 12-digit MAC address and a block for marking the unit with an IP address. Refer to the Crimson manual and Red Lion's website for additional information on Ethernet communications.

G306A PORT PIN OUTS

Page 159 of 363

RS232 PORTS

The G306A has tivo RS232 ports. Țeere is the PGM port and the COMMS port. Although only one of these poris can be used for programming, both ports can be used for communications with a PLC.

The RS232 ports can be used for either master or slave protocols with any G306A configuration.

Examples of RS232 communications could involve another Red Lion product or a PC. By using a cable.with RJ12.ends on it, and a twist in the cable, RS232 communications with another G 3 product or the Modular. Controller can be established. Red Lion part numbers for cables with a twist in them are CBLPROG 0^{1}, CBLRLCO $^{1}{ }^{2}$, or CBLRC02 ${ }^{3}$.

G3 RS232 to a PC

!	Connections		
G3: RJ12	Name	PC: DB9	Name:
¢ 4	COMM	1 i	${ }^{\circ} \mathrm{C}$ CD
5	Tx	2	Rx
2	Rx	- 3	Tx
	N/C	4	DTR.
3	COM	5:	GND
	N / C	6	DSR
1	CTS ${ }^{\text { }}$	7	RTS
6	RTS	8	CTS
	N/C	9	R!

CONNECTING A G3OGA OPERATOR

${ }^{1}$ CBLPROG0 can also be used to communicate with either a PC or an ICM5
${ }^{2}$ DB9 adapter not included, I foot long.
${ }^{3}$ DB9 adapter not included, 10 feet long

G3 to Modular Controller (CBLRLC05)

RS422/485 COMMS PORT

The G306A has one RS422/485 pori. This port can be configured to act as either RS422 or RS485.

Note: All Red Lion devices connect A to A and B to B, except for Paradign devices. Refer to www redlion. net for additional information.

DH485 COMMUNICATIONS

The G306A's RS422/485 COMMS port can also be used for Allen Bradley DH485 communications.

WARNING: DO NOT use a standard DH485 cable to connect this port to Allen Bradley equipment. A cable and wiring diagram are available from Red Lion.

Examples of RS485 2-Wire Connections G3 to Red Lion RJ11 (CBLRLC00) DLC, IAMS, ITMS, PAXCDC4C

	Connections : $:$:		: :
G3: RJ45	Name	\therefore RLC: RJ11	Name:
$\because 5$	\cdots TxEN $\because \cdot$	$\because \quad \mathbf{2} \cdot \square$	TxEN
$\therefore \quad 6 \ldots$.	COM.:	.. . 3	\therefore COM
$\cdots \quad 1 \cdots$	TxB:	$\cdots \because 5$	\because $B-$ \cdots \cdots
.. 2	\therefore TxA \because	$\therefore \quad 4$	A+ :'Pagd

Connections			
RJ45: RLC	Name	RJ45: A-B .	\therefore Name $\cdot \therefore$
1.	TXXB	$\because 1 \quad \because$	$\because \quad A \quad \because \quad \because$
$\because 2$	TxA	2 $\quad \vdots$	$\because B$
$\ldots 3,8$	RxA	$=: .$.	24 V
4,7	RxB	$\because-\quad$.	COMM
5 \ldots.	TXEN	$\because 5$	$\cdots \quad$ TxEN $\cdot . . .$.
. 66	COMM :	4 . ${ }^{\text {. }}$	$\because S H I E L D$
4,7	TxB	$:^{-\cdots \cdots}$	$\bigcirc \mathrm{COMM}$
of 363 3. 8	\therefore TxA	\ldots. - :	

Software/Unit Operation

CRIMSON® SOFTWARE

Crimson software is available as a free download from Red Lion's website or it can be purchased on a CD, see "Ordering Information" for part number. The latest version of the software is always available from the website, and updating your copy is free.

DISPLAY

This operator interface uses a liquid crystal display (LCD) for displaying text and graphics. The display utilizes aa LED backlight for lighting the display. The backlight can be dimmed for low light conditions:

The LED backlight has a limited lifelime, Backlight lifetime is based upon the amount of time the display is turned on at full intensity. Tuming the backlight. of ivhen the display is not in use can extend the lifetime of your backlight. This can be accoinplished through the Crimson ${ }^{3}$ software when configuring your unit.

FRONT PANEL LEDS

There are three from panel LEDs. Shown below is the defaut status of the LEDs

| RED. |
| :--- | :--- | :--- | :--- |
| RED (TOP, LABELED "PWR') |

${ }^{1}$ The operaior interface is shipped without in conliguration. Alter downlozding a configuration, if the light semains in the flashing stite continuously, try cycling power. If the LED still continues to fash, iry downtoading a configuration again.
? Do not turn off power to the unit while this light is flickering. The unit writes dala in two minute intervals. Later Microsolt operating systems will not lock the drive unless they need to write data; Windows 98 may lock the drive any time it is mounted, thereby interfering with logging Refer to "Mounting the CompactFlash". in the Crimion? ? User Manual:

TOUCHSCREEN

This operator interface utilizes a resistive analog touchscreen for user inpul. The unit will only produce an audible tone (beep) when a touch: on an active touchscreen cell is sensed. The touchscreen is fully functional as soon as the operator interface is initialized, and can be operated with gloved hands.

KEYPAD

The G306A keypad consists of five keys that can be used for on-screen menus

TROUBLESHOOTING YOUR G306A

If for any reason you have trouble operating, connecting, or simply have questions concerning your new G306A, contact Red Lion's technical support. For contact information, refer to the back page of this bulletin for phone and fax numbers.

EMAIL: techsuppongredlionnet
Web Site: hta:/hwiviredlioninet

BATTERY \& TIME KEEPING

WARNING - EXPLOSION HAZARD - THE AREA MUST BE KNOWN TO BE NON-HAZARDOUS BEFORE SERVICING/. REPLACING THE UNIT AND BEFORE INSTALLING OR REMOVING I/O WIRING AND BATTERY.

WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HȦS BEEN DISCONNECTED AND THE AREA IS KNOWN TO BE NON-HAZARDOUS.

A battery is used to keep time when the unit is without power. Typical accuracy of the G306A time keeping is less than one miniute per month drift. The battery of a G306A'unit does not affect the unit's memory, all configurations and data is stored in non-volatile memiory.

CAUTION: The circuit board contains static sensitive components. Before handling the operator interface without the rear cover attached, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the operator interface at a static controlled clean workstation. Also, do not touch the surface areas of the circuit board. Dit, oil, or other contaminants may adversely affect circuit operation.

To change the battery of a G306A, remove poiver, cabling, and then the rear cover of the unit. To remove the cover, remove the four screws designated by the arrows on the rear of the unit. Then, by lifting the top side, hinge the cover, thus providing clearance for the connectors on the bottom side of the PCB as shown in the illustration below. Install in the reverse manner.

Remove the old battery* from the holder and replace with the new battery. Replace the rear cover, cables, and re-apply power. Using Crimson or the unit's keypad, enter the correct time and date.

- Please nore that the old battery must be disposed of in a manner that complies will your local waste regulations. Also, the battery must not be disposed of in fire, or in a mauner whereby it may be damaged and its contents come into contact with human skin.

The battery used by the G306A is a lithium tope CR2025.

Page 162 of 363

Optional Features and Accessories

OPTIONAL COMMUNICATION CARD

Red Lion offers optional communication ceards for fieldbus communications. These communication cards will allow your G306A to communcate with many of the popular fieldbus protocols.

Red Lion is also offering a communications card for additional RS232 and RS422/485 communications. Visit Red Lion's ivebsite for information and availability of these cards.

CUSTOM LOGO

Each G3 operator interface has an embossed area containing the Red Lion logo. Red Lion can provide custom logos to apply to this area: Contact your distributor for additional information and pricing.

COMPACTFLASH SOCKET

CompactFlash socket is a Type !l socket that cạn accept eithei Type I or II cards. Use cards with a minimumim of 4 Mbytes aṇd formatted to a maximum of 2 Gbytes (See Note box below) with the G306A's CompactFlash socket. Cards are available at most computer and office supply retailers.
CompaciFlash can be used for configuration transfers, larger configurations, data logging, and trending.
 CompactFlash card while power is applied. Refer to "Front Panel LEDs."

Information stored on a CompactFlash card by a G306A can be read by a card reader attached to a PC. This information is stored in IBM (Windows ${ }^{(6)}$) PC compatible FATI6 file format.

NOTE

For reliable operation of this and other Red Lion products, one of the following brands of CompactFlaslı card must be used

SimpleTech	SMART象 ${ }^{\text {s/ }}$ Modular
SanDisk	Silicon Systems

Not all of the above manufacturers offer CompactFlash cards recognized to UL standards, which may be required for your application.
Although RLC products limit use of CompactFlash card memory to 2 GB. cards with a laiger capacioy can be used. They MUST be formatted to 2 $G B$ and use the FAT 16 file system it is recommended to format the $C F$ card ising the format utility from within Crimson.

Red Lion Controls
Headqụarters
20. Willow Springés Circle

York PA 17406
Tel +1 (717) $767-6511$ Fax-1:(717) 764-0839

Red Lion Controls
Europe
Printerweg 10 NL -:3821 AD Amersfoort Tel +31 (0) 334723225 Fax +31 (0) 334893793

LIMITED WARRANTY

The Company:warrants the products it manufactures against defects in materials and workmanship for a period limited to two years from the date of shipment, provided the prodicts have been stored, handled, installed, and used under proper conditions. The Company's liability wider this limited warranty shall extend only to the repair or replacennent of a defective product, at The Company's option. The Company disclaims all liability for any affimation, promise or representation with respect to the products.
The customer agrees to hold Red Lion Controls hamuless from, defend, and indeunify RLC against danages, claims, and expenses arising out of subsequent sales of RLC products or products containing components manufactured by RLC and based upon personal injuries, deaths, property damage, lost profits, and other matters which Buyer; its enoployees, or sub-contractors are or may be to any extent liable, including without limitation peralties ionposed by the Cousumer Product Safety Act (P.L. 92-573) and liability imposed upon any person pursuant to the Magnuson-Moss Warranty Act (P.L. 93-637), as now in effect or as amended hereafter.
No warranties expressed or implied are created with respect to The Company's products except those expressly contmined herein. The Customer acknowledges the disclaimers and limitations contained herein and relies on no other warranties or affirmations:

RZ7 Standard, Economy and EX

Full Featured
Functionality

Easy to Use \& Install

DIN Rail or Panel Mountable

Hazardous Location Models

RZ7-FS High-Performance Model

Multiple Voltage Ranges

Standard supply voltage ranges from 24...48V DC \& 24...240V AC.

Functional Choices

Single, Multi- or Special Function models address most industrial timing needs.

Adjustable Timing Ranges from 0.5 s up to 60 hours

Adjustment dial for 0 to 100% of timing adjustment range on both models means less inventory to stock.

LED Output indicator

Both FS and FE models have LED indicators for output status conditions.

Multiple Mounting Options

The RZ7 are surface or DIN -Rail mountable for easy installation.

Special Hazardous Location Models Available

The RZ7-FS_EX models are approved for use in hazardous location areas such as in the oil \& gas industries.

- UL Class 1, Div. 2, Groups A,B,C,D

UL. Class $1, \mathrm{Zn} 2$, Group IIC

- Ex\| $\|$ G, Ex nL IIC T4 2A 32VDC max. Ta $70^{\circ} \mathrm{C}$
- cUlls E317176

Solid State Accuracy \& Reliability
Solid state electronics and microprocessor control means accuracy within 0.2% for FS , and 0.1% for FE models.

One Tool Installation
Same size screw driver installs and adjusts functions and timing ranges. No need for multiple tools.

Safety \& Convenience Features

- IP40 finger \& hand protection
- Open, captive terminals for fast connections
- All functions accessible from front of unit
- Open screw terminals with dual chamber system for control wires

Standard Model Approvals

- cULLs E14840
- CE Marked

RZ7-FE Economy Model

Page 164 of 363

RZ7 Adjustable Electronic Timing Relays

Dims／Mounting $78.8 \times 22.5 \times 101 \mathrm{~mm}$ DIN or Panel

Outputs
2 normally open contacts（1 side common）
1 single pole double contacts
2 2 single pole double contacts
Functions
ON－DELAY

RZ7－FS															R27－FE							
$\begin{aligned} & \stackrel{5}{4} \\ & \frac{1}{4} \\ & \underset{y}{4} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{y}{4} \\ & \underset{y}{4} \end{aligned}$	$\begin{array}{\|l} \text { 山 } \\ \text { u } \\ \stackrel{y}{*} \\ \underset{\sim}{2} \\ \hline \end{array}$	$\begin{aligned} & \frac{u}{w} \\ & \frac{1}{4} \\ & \stackrel{y}{c} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{4} \\ & \stackrel{y}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{m} \\ & \stackrel{y}{c} \\ & \underset{y}{c} \end{aligned}$	产		$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{y}{4} \\ & \hline \end{aligned}$				$$	葉				崔	$\begin{array}{\|l} \frac{u}{u} \\ \text { N } \\ \hline \mathbf{y y} \\ \hline \end{array}$	空	㐫
－	－	－	－	－	－	－	－	－	－	－	－	－	－	－								
															－	\bullet	－	－	－	－	－	－
															－	－	－	－				
													\bullet	－								\bullet
－	－	－	－	－	－	－	－	－	－	－	－	－	－		－	－	－	－	\bullet	－		
－	－	－	－	\bullet	\bullet	－	\bullet	\bullet	－	－	－	－										
－															－							
	\bullet															－						
		－																				
			－														－					
				－														－				
					－														－			
						\bullet																
													－									
							－															
								\bullet														
									－													
										－										－		
												\bullet									0	
											－											
														－								\bullet
											－											\bullet
														－	－	\bullet	－	－	－	－	\bullet	
												－	－									
－	－	－	－	－	－	\bullet	－	－	\bullet	－												
－	＊	－	－	－	－	＊	－	－	－	－		－	－	－	－	－	－	－	－	－	－	－
															－	－	－	－			－	
											－											
									－			－										

Functional，Reliable Timing Relays

Sprecher＋Schuh＇s RZ7 Series of electronic timing relays offer a multitude popular output functions in a versatile，compact package．This series is especially designed for applications where a high quality timing relay is required．Timing formats include ON－delay，OFF－delay，Wye－Delta and many other choices．All models are easily installed and adjusted for set and forget it usability．

Contact your local Sprecher＋Schuh representative for more details．

[^6]－Multi－functiqs age $\boldsymbol{B}_{1}(65)$ off） 363

sprecher+

$\begin{array}{r}\text { Technical Information } \\ \hline \text { CA7 3-Pole Contactors }\end{array}$

Electrical Data

Switching Motor Loads

Standard IEC Ratings												
AG-2, AG-3, AG-4	230 V	[A]	12	15	20	26.5	35	38	44	62	72	85
DOL Reversing	240 V	[${ }^{\text {] }}$	12	15	20	26.5	35	38	44	62	72	85
$50 \mathrm{~Hz} / 60^{\circ} \mathrm{C}$	400 V	[A$]$	9	12	16	23	30	37	43	60	72	85
	415 V	[A]	9	12	16	23	30	37	43	60	72	85
	500 V	[A]	7	10	14	20	25	30	38	55	67	80
	690 V	[A]	5	7	9	12	18	21	25	34	42	49
	230 V	[kW]	3	4	5.5	7.5	10	11	13	18.5	22	25
	240 V	[kW]	3	4	5.5	7.5	10	11	13	18.5	22	25
	400 V	[KW]	4	5.5	7.5	11	15	18.5	22	32	40	45
	415 V	[KW]	4	5.5	7.5	11	15	20	22	32	40	45
	500 V	[kW]	4	5.5	7.5	13	15	20	25	37	45	55
	690 V	[KW]	4	5.5	7.5	10	15	18.5	22	32	40	45
UL/CSA/IEC												
DOL Reversing	115V	[A]	9.8	9.8	16	24	24	34	34	56	56	80
$60 \mathrm{~Hz} / 60^{\circ} \mathrm{C}$	230 V	[A]	10	12	17	17	28	28	40	50	68	68
	115 V	[HP]	1/2	1/2	1	2	2	3	3	5	5	7-1/2
	230 V	[HP]	$11 / 2$	2	3	3	5	5	7-1/2	10	15	15
	200 V	[A]	7.8	11	17.5	17.5	25.3	32.2	32.2	48.3	62.1	78.2
	230 V	[A]	6.8	9.6	15.2	22	28	28	42	54	68	80
	460 V	[A]	7.6	11	14	21	27	34	40	52	65	77
	575 V	[A]	9	11	17	17	27	32	32	52	62	62
	200 V	[$\mathrm{HP]}$	2	3	5	5	7-1/2	10	10	15	20	25
	230 V	[HP]	2	3	5	7-1/2	10	10	15	20	25	30
	460 V	[MP]	5	7-1/2	10	15	20	25	30	40	50	60
	575 V	[HP]	7-1/2	10	15	15	25	30	30	50	60	60
Maximum Operating Rate (at max. amps)	AC2	[0ps/hr]	450	450	450	400	400	400	400	300	250	200
	AC3	[$\mathrm{ops} / \mathrm{hr}$]	700	700	700	600	600	600	600	500	500	500
	AC4	[$\mathrm{ops} / \mathrm{hr}$]	200	150	120	80	80	70	70	70	60	50

Technical Information

Electrical Data

CA7-9 CA7-12 CA7-16 CA7-23 CA7-30 CA7-37 CA7-43 CA7-60 CA7-72 CA7-85

Switching Motor Loads (continued)

AC-4	230 V	(N)	4.3	6.6	9	10	12	14	16.5	25.5	31	38
200,000 Op. Cycles	240 V	[${ }^{(1)}$	4.3	6.6	9	10	12	14	16.5	25.5	31	38
50 Hz	400 V	[${ }^{\text {d }}$	4.3	6.6	9	10	12	14	16.5	25.5	31	38
	415 V	[A]	4.3	6.6	9	10	12	14	16.5	25.5	31	38
	500 V	[1	4.3	6.6	9	10	12	14	16.5	25.5	31	38
	690 V	(A)	4.3	6.6	9	10	12	14	16.5	25.5	31	38
	230 V	[W W]	0.75	1.5	2.2	2.2	3	3.7	4	6.3	7.5	11
	240 V	[NW]	0.75	1.5	2.2	2.2	3	4	4	7.5	7.5	11
	400 V	[WW]	1.8	3	4	4	5.5	6.3	7.5	13	15	20
	415 V	[WW]	1.8	3	4	4	5.5	6.3	7.5	13	17	20
	500 V	[WW$]$	2.2	3.7	5.5	5.5	7.5	7.5	10	15	20	25
	690 V	[WW$]$	3	5.5	7.5	7.5	10	11	15	22	25	32
60 Hz	115 V	(A)	4.3	6.6	9	10	12	14	16.5	25.5	31	38
	230 V	[${ }^{1}$	4.3	6.6	9	10	12	14	16.5	25.5	31	38
	115 V	MP]	1/8	1/4	1/3	1/2	1/2	$3 / 4$	1	2	2	3
	230 V	[MP]	$1 / 3$	1/2	1	1-1/2	2	2	2	3	5	5
	200 V	(A)	4.3	6.6	9	10	12	14	16.5	25.5	31	38
	230 V	(N)	4.3	6.6	9	10	12	14	16.5	25.5	31	38
	460 N	[4	4.3	6.6	9	10	12	14	16.5	25.5	31	38
	575 V	[1]	4.3	6.6	9	10	12	14	16.5	25.5	31	38
	200 V	[MP]	$3 / 4$	1	2	2	3	3	3	7-1/2	7-1/2	10
	230 V	[P P]	1	1-1/2	2	3	3	3	5	7-1/2	10	10
	460 V	MPI	2	3	5	5	7-1/2	10	10	15	20	25
	575 V	MP]	3	5	7-1/2	7-1/2	10	10	10	20	25	30
Maximum Operating Pate			250	250	220	200	200	200	200	120	120	120
Wye-Delta (Star Delta)	230 V	[WW]	5.5	7.5	10	13	17	20	22	32	37	45
50 Hz	240 V	[0W]	5.5	7.5	10	13	18.5	20	22	32	40	50
	400 V	[$\mathrm{W} \mid$	7.5	10	13	20	25	32	40	55	63	80
	415 V	[WM	7.5	11	15	22	25	37	40	55	63	80
	500 V	[WW	7.5	11	15	22	25	32	45	63	80	90
	690V	[WW]	7.5	10	13	18.5	25	32	40	55	63	80
	200 V	MPI	5	5	7-1/2	7-1/2	10	15	20	30	40	50
60 Hz	230 V	MP]	5	7-1/2	10	10	15	20	25	40	50	60
	460 V	MP1	10	15	20	25	30	40	50	75	100	125
	575V	MP]	10	15	20	25	30	40	50	75	100	125

AC Elevator Control Ratings

UL/ CSA	Max FLC	$[A]$	8.0	11.0	16.0	21.0	27.0	31.0	37.0	43.0	54.0
500,000 operations	200N	$[A]$	7.8	11.0	11.0	17.5	25.3	25.3	32.2	32.2	48.3
	230 V	$[\mathcal{A}]$	6.8	9.6	15.2	15.2	22.0	28.0	28.0	42.0	54.0
	460 V	$[\mathcal{A}]$	7.6	11.0	14.0	21.0	27.0	27.0	34.0	40.0	52.0
	575 V	$[A]$	6.1	9.0	11.0	17.0	22.0	27.0	32.0	41.0	52.0
	200 V	$[\mathrm{MP}]$	2	3	3	5	$7-1 / 2$	$7-1 / 2$	10	10	15

Page 167 of 363
sprecher +
Technical Information
CA7 3-Pole Contactors

Electrical Data

			CA7-9	CA7-12	CA7-16	CA7-23	CA7-30	CA7-37	CA7-43	CA7-60	CA7-72	CA7-85
AC-1 Load, 30 switching Amblent Temperature $40^{\circ} \mathrm{C}$	b	[A]	32	32	32	32	65	65	85	100	100	100
	230 N	[WW]	13	13	13	13	26	26	34	40	40	40
	240 V	[1W]	13	13	13	13	27	27	35	42	42	42
	400 V	(1)W	22	22	22	22	45	45	59	69	69	69
	415 V	[1W]	23	23	23	23	47	47	61	72	72	72
	500 V	[WW]	28	28	28	28	56	56	74	87	87	87
	690 V	(1)W	38	38	38	38	78	78	102	120	120	120
Anblent Temperature $60^{\circ} \mathrm{C}$	6	[${ }^{\text {] }}$	32	32	32	32	65	65	80	100	100	100
	$230 \mathrm{~V}$	$[\mathrm{WW}]$	13	13	13	13	26	26	32	40	40	40
	240 V	[1W]	13	13	13	13	27	27	33	42	42	42
	400 V	[1W]	22	22	22	22	45	45	55	69	69	69
	415 V	[WW$]$	23	23	23	23	47	47	57	72	72	72
	500 V	[WW]	28	28	28	28	56	56	69	87	87	87
	690 V	(WW]	38	38	38	38	78	78	95	120	120	120
Maximum Operating Rate			1,000	1,000	1,000	1,000	1,000	1,000	300	600	600	600
Continuous Current (UL/CSA)												
General Purpose Rating (40°)	Open	(1)	25	25	30	30	45	55	60	90	90	100
	Enclosed	(A)	25	25	30	30	55	60	75	90	90	100
Maximum Operating Aate			1,400	1,400	1,200	1,200	1,200	1,000	1000	700	700	600
Lighting Loads 0 mill												
Elec.Dischrg.Lamps-AC-5a, single compensated	Open Enclosed	$[\mathrm{A}]$ $\text { [} A$	$\begin{aligned} & 22.5 \\ & 22.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 29 \\ & 29 \\ & \hline \end{aligned}$	40.5	$\begin{array}{r} 45 \\ 41 \\ \hline \end{array}$	$\begin{aligned} & 77 \\ & 57 \end{aligned}$	$\begin{aligned} & 81 \\ & 57 \end{aligned}$	$\begin{aligned} & 85 \\ & 81 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$
Max. capacitance at prospective short circult current available at the contactor Incandescent Lamps - AC -5b	10 kA 20 kA 50 kA		1,000 500 200	$\begin{gathered} 1,000 \\ 500 \\ 200 \\ \hline \end{gathered}$	$\begin{gathered} 1,000 \\ 500 \\ 200 \\ \hline \end{gathered}$	$\begin{gathered} 1,000 \\ 500 \\ 200 \\ \hline \end{gathered}$	$\begin{aligned} & 2,700 \\ & 1,350 \\ & 540 \\ & \hline \end{aligned}$	$\begin{gathered} 2,700 \\ 1,350 \\ 540 \\ \hline \end{gathered}$	$\begin{aligned} & 3,200 \\ & 1,600 \\ & 640 \\ & \hline \end{aligned}$	$\begin{gathered} 4,000 \\ 2,000 \\ 800 \\ \hline \end{gathered}$	$\begin{gathered} 4,000 \\ 2,000 \\ 800 \end{gathered}$	$\begin{gathered} 4,700 \\ 2,350 \\ 940 \end{gathered}$
Electrical endurance - 100,000 operations		[4	12	16	18	22	30	37	43	60	70	76
8witching power transformers AC-6a 50Hz												
Rated transformer current												
		(A)	10.9	10.9	10.9	10.9	20	20	23	40.8	40.8	40.8
$n=30$	230 VAC	[(NW]	4.3	4.3	4.3	4.3	8	8	8.2	16	16	16
	240 VAC	[NWN	4.5	4.5	4.5	4.5	8.3	8.3	10	17	17	17
	400 VAC	[(NA]	7.5	7.5	7.5	7.5	14	14	16	28	28	28
	415 VAC	[NW]	7.8	7.8	7.8	7.8	14	14	17	29	29	29
	500 VAC	[NWN	9.4	9.4	9.4	9.4	17	17	20	35	35	35
	690 VAC	[10A]	13	13	13	13	24	24	27	49	49	49
$n=20$		(A)	16.3	16.3	16.3	16.3	30	30	34.5	61.3	61.3	61.3
	230 VAC	[[VN]	6.5	6.5	6.5	6.5	12	12	13.7	24.4	24.4	24.4
	240 VAC	[NA	6.8	6.8	6.8	6.8	12.5	12.5	14.3	25.5	25.5	25.5
	400 VAC	(INA)	11.3	11.3	11.3	11.3	20.8	20.8	23.9	42.5	42.5	42.5
	415 VAC	[WNA]	11.7	11.7	11.7	11.7	21.6	21.6	24.8	44.1	44.1	44.1
	500 VAC	[WN	14.1	14.1	14.1	14.1	26	26	29.9	53.1	53.1	53.1
	690 VAC	(1VA)	19.5	19.5	19.5	19.5	35.9	35.9	41.2	73.3	73.3	73.3
$\mathrm{n}=15$		[A]	22	22	22	22	40	40	46	82	82	82
	230 VAC	[NW	2.3	2.3	2.3	2.3	4.3	4.3	5.0	8.8	8.8	8.8
	240 VAC	[[VNA]	2.4	2.4	2.4	2.4	4.5	4.5	5.2	9.2	9.2	9.2
	400 VAC	[WNW]	4.1	4.1	4.1	4.1	7.5	7.5	8.6	15.3	15.3	15.3
	415 VAC	[1NA	4.2	4.2	4.2	4.2	7.8	7.8	8.9	15.9	15.9	15.9
	500 VAC	[1 N/ ${ }^{\text {a }}$	5.1	5.1	5.1	5.1	9.4	9.4	10.8	18.1	19.1	19.1
	690 VAC	[1VA	7.0	7.0	7.0	7.0	12.9	12.9	14.9	26.4	26.4	26.4

- CA7 ratings for lighting loads are provided for technical reference. For dulRatge 168 of 363
and labeled devices, see CAL7 contactors listed in this section.

Technical Information

Electrical Data

CA7-9 CA7-12 CA7-16 CA7-23 CA7-30 CA7-37 CA7-43 CA7-60 CA7-72 CA7-85

Switching power transformers AC-6a												
Inrush	= n											
Rated transtormer current												
		[A]	10.9	10.9	10.9	10.9	20	20	23	40.8	40.8	40.8
$n=30$	200 VAC	[KVA]	3.8	3.8	3.8	3.8	6.9	6.9	8.0	14.1	14.1	14.1
	208 VAC	[KVA]	3.9	3.9	3.9	3.9	7.2	7.2	8.3	14.7	14.7	14.7
	240 VAC	[kVA]	4.5	4.5	4.5	4.5	8.3	8.3	9.6	17	17	17
	480 VAC	[[KVA]	9.1	9.1	9.1	9.1	16.6	16.6	19.1	33.9	33.9	33.9
	600 VAC	[KVA]	11.3	11.3	11.3	11.3	20.8	20.8	23.9	42.4	42.4	42.4
	660 VAC	[KVA]	12.5	12.5	12.5	12.5	22.9	22.9	26.3	46.6	46.6	46.6
		[A]	16.3	16.3	16.3	16.3	30	30	34.5	61.3	61.3	61.3
$\mathrm{n}=20$	200 VAC	[kVA]	5.6	5.6	5.6	5.6	10.4	10.4	12	21.2	21.2	21.2
	208 VAC	[KVA]	5.9	5.9	5.9	5.9	10.8	10.8	12.4	22.1	22.1	22.1
	240 VAC	[KVA]	6.8	6.8	6.8	6.8	12.5	12.5	14.3	25.5	25.5	25.5
	480 VAC	[kVA]	13.6	13.6	13.6	13.6	24.9	24.9	28.7	51	51	51
	600 VAC	[KVA]	16.9	16.9	16.9	16.9	31.2	31.2	35.9	63.7	63.7	63.7
	660 VAC	[WVA	18.6	18.6	18.6	18.6	34.3	34.3	39.4	70.1	70.1	70.1
		[A$]$	22	22	22	22	40	40	46	82	82	82
$\mathrm{n}=15$	200 VAC	[NVA]	7.5	7.5	7.5	7.5	13.9	13.9	15.9	28.4	28.4	28.4
	208 VAC	[[VVA]	7.8	7.8	7.8	7.8	14.4	14.4	16.6	29.5	29.5	29.5
	240 VAC	[KVA]	9	9	9	9	16.6	16.6	19.1	34.1	34.1	34.1
	480 VAC	[KVA]	18.1	18.1	18.1	18.1	33.3	33.3	38.2	68.2	68.2	68.2
	600 VAC	[KVA]	22.6	22.6	22.6	22.6	41.6	41.6	47.8	85.2	85.2	85.2
	660 VAC	[KVA]	24.9	24.9	24.9	24.9	45.7	45.7	52.6	93.7	93.7	93.7
DC-1 Switching - $60{ }^{\circ} \mathrm{C}$												
	24VDC	[A]	25	25	32	32	45	45	50	70	80	80
	48VDC	(A]	20	20	20	20	25	25	30	40	40	40
1 Pole	60VDC	[A]	20	20	20	20	25	25	30	40	40	40
	110VDC	[A]	6	6	6	6	8	8	9	11	11	11
	220VDC	[${ }^{\text {a }}$	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2	2	2
	440VDC	[A$]$	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5
	24VDC	[A]	25	25	32	32	45	45	50	70	80	80
	48VDC	[A]	25	25	32	32	45	45	50	70	80	80
2 Poles in Series	60VDC	[A]	25	25	32	32	45	45	50	70	80	80
	110VDC	[A]	25	25	32	32	45	45	50	70	80	80
	220VDC	[A]	8	8	8	8	10	10	10	15	15	15
	440VDC	[A]	1	1	1	1	1	1	1	1.5	1.5	1.5
	24VDC	[${ }^{\text {a }}$	25	25	32	32	45	45	63	90	90	100
	48VDC	[A]	25	25	32	32	45	45	63	90	90	100
3 Poles in Series	60VDC	[${ }^{\text {] }}$	25	25	32	32	45	45	63	90	90	100
	110VDC	[A]	25	25	32	32	45	45	63	90	90	100
	220VDC	[A]	25	25	32	32	45	45	50	70	80	80
	440VDC	[A]	3	3	3	3	3.5	3.5	4	5	5	5
DC-2, 3, 5 Switching - $60{ }^{\circ} \mathrm{C}$												
Starting, reverse current braking, reversing, DC-5, $60^{\circ} \mathrm{C}$	24VDC	[A]	25	25	32	32	45	45	63	90	90	100
	48VDC	[A]	25	25	32	32	45	45	50	70	70	80
	60VDC	[A]	25	25	32	32	45	45	50	70	70	80
Shunt Wound	110VDC	[A]	20	20	25	25	30	30	35	70	70	80
3 Poles in Series	220VDC	[${ }^{\text {a }}$	6	6	6	10	15	15	20	25	25	30
				0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
3 Poles in Series	24VDC	[A]	25	25	32	32	45	45	63	90	90	100
	48VDC	[A]	25	25	32	32	45	45	50	70	70	80
	60VDC	[A]	25	25	32	32	45	45	50	70	70	80
	110VDC	[${ }^{\text {a }}$	20	20	25	25	30	30	35	70	70	80
	220VDC	[A]	6	6		e1689	$3{ }^{6} 3$	15	20	25	25	30
	440VDC	[A]	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6

Electrical Data

			CA7-9	CA7-12	CA7-16	CA7-23	CA7-30	CA7-37	CA7-43	CA7-60	CA7-72	CA7-85
Capacitor Ratings (1)												
Capacitor Switching AG-6b-50 Hz												
Single Capacitor - $40^{\circ} \mathrm{C}$	230 V	[WVar]	8	8	8.5	9	14	14	24	28	28	28
	240 V	[[-Var]	8	8	8.5	9	14	14	25	29	29	29
	400 V	[KVar]	8	8	10	12.5	20	24	35	48	48	48
	415 V	[$\mathrm{WVar]}$	8	8	10	12.5	20	25	35	50	50	50
	500 V	[KVar]	8	8	10	12.5	20	25	35	50	55	60
	690 V	[War$]$	8	8	10	12.5	20	25	35	50	55	60
Single Capacitor - $60^{\circ} \mathrm{C}$	230 V	[WVar]	8	8	8.5	9	12.5	12.5	18	28	28	28
	240 V	[kVar]	8	8	8.5	9	12.5	12.5	18	29	29	29
	400 V	[$\mathrm{WVar]}$	8	8	10	12.5	20	21.5	30	42	48	48
	415 V	[$\mathrm{kVar]}$	8	8	10	12.5	20	22	30	42	50	50
	500 V	[[-Var]	8	8	10	12.5	20	25	30	42	50	55
	690 V	[$\mathrm{KVar]}$	8	8	10	12.5	20	25	30	42	50	55
Capacitor Bank $-40^{\circ} \mathrm{C}$ (2)	230 V	[$\mathrm{KVar]}$	5	5	8	9	12.5	14	20	28	28	28
	240 V	[WVar]	5	5	8	9	12.5	14	20	29	29	29
	400 V	[[-Var]	5	5	8	10	15	20	25	40	48	48
	415 V	[W Var]	5	5	8	10	15	20	25	40	50	50
	500 V	[$\mathrm{WVar]}$	5	5	8	10	15	20	25	40	50	50
	690 V	[120ar	5	5	8	10	15	20	25	40	50	50
Capacitor Bank $-60^{\circ} \mathrm{C}$ (230 V	[WVar]	5	5	8	9	12.5	12.5	18	28	28	28
	240 V	[$\mathrm{WVar]}$	5	5	8	9	12.5	12.5	18	29	29	29
	400 V	[WVar]	5	5	8	10	15	20	25	40	48	48
	415 V	[WVar]	5	5	8	10	15	20	25	40	50	50
	500 V	[Wara]	5	5	8	10	15	20	25	40	50	50
	690 V	[VNar$]^{\text {a }}$	5	5	8	10	15	20	25	40	50	50
Capacitor Switching - 60Hz												
Single Capacitor - $40^{\circ} \mathrm{C}$	200 V	[$\mathrm{KVar]}$	5	5	8	9	12.5	14	20	28	28	28
	230 V	[[Var]	5	5	8	9	12.5	14	20	29	29	29
	460 V	[KVar]	5	5	8	10	15	20	25	40	50	50
	600 V	[$\mathrm{WVar]}$	5	5	8	10	15	20	25	40	50	60
Capacitor Bank $-40^{\circ} \mathrm{C}$ (2)	200 V	[KVar]	5	5	8	9	12.5	12.5	18	28	28	28
	230 V	[[1/ar]	5	5	8	9	12.5	12.5	18	29	29	29
	460 V	[WVar]	5	5	8	10	15	20	25	40	50	50
	600 V	[KVar]	5	5	8	10	15	20	25	40	50	50

Electrical Data

		CA7-9		CA7-12	CA7-16	CA7-23	CA7-30	CA7-37	CA7-43	CA7-60	CA7-72	CA7-85
Resistance and Watt Loss /, AC3												
Resistance per power pole		[m]	2.7	2.7	2.7	2.0	2.0	2.0	1.5	0.9	0.9	0.9
Watt Loss - 3 power poles		(1)	0.66	1.2	2.1	3.2	5.4	8.2	8.3	0.7	14.0	19.5
Coll and 3 power poles	AC	(M)	3.3	3.8	4.7	6.2	8.4	11.2	11.5	11	13.8	17.5
	DC	[1]	6.7	7.2	8.1	12.4	14.6	17.4	18.4	11	13.8	17.5
Coll only	AC	(M)	2.6	2.6	2.6	3.0	3.0	3.0	3.2	4.5	4.5	4.5
	DC	(M)	6.0	6.0	6.0	9.2	9.2	9.2	10.0	4.9	4.9	4.8

Short-Circuit Coordination
Max. Fuse or clrcult breaker ratings

DIN Fuses -96, gl											
Available Fauth Current	(N)	100 KA	100 KA	100 KA	100 KA	100 KA	100 KA	100 KA	100 KA	100 KA	100 kA
Type ${ }^{-1 "(6900) ~-~}$	(A)	50	50	50	80	125	125	160	250	250	250
Type *2" 6900)	(${ }^{1}$	25	35	35	40	80	80	100	160	160	160
BS 83 Fuses											
Available Fault Current	(A)	80 KA	80 KA	80 KA	80 KA	80 KA	80 KA	80 KA	80 KA	80 KA	80 KA
Type "1" (690V) -	(A)	25	32	35	50	63	80	100	100	125	160
Type -2" $^{\prime \prime}$ (6900) 0	(A)	25	32	35	50	63	80	100	100	125	160
Class K1, RK1 Fuses											
Avallable Fault Current	[A	100 KA									
Type 2^{2} (600V) 0	[A]	15	20	20	30	40	50	50	80	100	100
cill Short-Circult Ratings											
Class 161, RK1, K5, and RKS Fuses											
Avallable Fautl Current	(1)	5 KA	5 KA	5 KA	5 KA	5 KA	5 KA	5 KA	5 KA	5 KA	5 KA
CuL Max. Aating (600M) Type 1	(A)	35	40	70	90	110	125	150	200	250	300
Class CC \& CSA HRCI Fuses											
Available Faut Current	[1	100 KA	100 KA	100 KA	100 KA	\sim	-	-	-	-	-
cul Max. Aating (600V) 0 Type 2	[A	15	20	30	30	-	-	-	-	-	-
Class J CSA \& HRCI-J Fuses											
Avallable Fault Current	(A]	100 KA	100 KA	100 KA	100 KA	100 KA	100 KA	100 KA	100 Ka	100 KA	100 kA
cll Max. Rating (600V) © Type 2	[${ }^{\text {a }}$	15	20	30	30	50	50	70	80	100	150
Inverse-Time Circult Breaker 0											
Avaliable Faull Current	(A]	5 KA	5 KA	5 KA	5 KA	5 KA	5 KA	5 KA	5 KA	10 KA	10 KA
cll Max, Rating 480V e Type 1	(A)	30	30	50	50	125	125	125	250	250	250
ctl Max, Rating 600V O Type 1	(A]	\sim	\sim	\sim	-	125	125	125	250	250	250
Short Time Current Withstand Ratings											
$\mathrm{ta} 60^{\circ} \mathrm{C}$	(A)	170	170	170	215	300	304	375	700	700	700
Off Time Between Operations	Min.]	20	20	20	20	20	20	20	20	20	20

[^7]Technical Information

Electrical Data

Short Circuit Coordination I, AC3
Type 2 Coordination Comblnations (contactor, overload and fuses) - Per UL 508 and IEC 60947-4-1

Contactor	Overload Relay	Withstand Rating	Maximum Voltage	Max. Amp Rating (UL. Class CC or J Fuses)
CA7-9	CEP7-M/NB32-0.32...	100 kA	600 V	1
	CEP7-M/MB32-1.0...	100 kA	600 V	2
	CEP7-M/NB32-2.9...	100kA	600 V	6
	CEP7-M/MB32-5...	100kA	600 V	10
	CEP7-M/M832-12...	100 kA	600V	15
CA7-12...	CEP7-M/MB32-12...	100 kA	600V	20
CA7-16...	CEP7-M/NB32-32...	100 kA	600 V	20
CA7-23...	CEP7-M/AB32-32...	100kA	600V	30
CA7-30..	CEP7-M/N837-37...	100 kA	600y	40
CA7-37...	CEP7-M/NB37-37...	100 kA	600 V	50
CA7-43...	CEP7-M/NB45-45...	100kA	600V	50
CA7-60...	CEP7-M/NB85-85...	100kA	600 V	80
CA7-72...	CEP7-M/M885-85...	100 kA	600 V	100
CA7-85...	CEP7-M/NB85-85...	100kA	600 V	100

CEP7 First Generation Scheduled for Obsolesence 2006

UL Listed Combinations (contactor, overload and circult breaker) - Per UL 508

Contactor	Overload Relay	Withstand Rating	Maximum Voltage	Max. Amp Rating (UL Listed Circuit Breaker)
CA7-9... 12	CEP7-M/E32-2.9... 12	5kA	480V	30
	CT7-24-0.16... 10			
CA7-12	CT7-24-16			
CA7-16... 23	CEP7-M/A32-2.9.. 32	5kA	480 V	50
	CT7-24-0.16... 16			
CA7-23	CT7-24-24			
CA7-30... 37	CEP7-M/A37-12. 37	5kA	600V	125
	CT7-24-16...CT7-45-30			
CA7-37	C77-45-45			
CA7-43	CEP7-M/A45..45	5kA	600 V	125
	C77-45-30..45			
CA7-60	CEP7-M/AE5 .. 85	SikA	600 V	250
	C77-75-30..60			
CA7-72	CEP7-M/A85...85	10kA	600 V	250
	C77-75-30...75			
CA7-85	CEP7-M/A85... 85	10kA	600 V	250
	CT7-75-30..CT7-100-90			

Short Circuit Ratings

Standard Fault Short Circult Ratings per UL508 and CSA 22.2 No. 14

CEP7 Second Generation Cat. No.		Max, avallable fault current (kA)	Conditional S.C. current, la (kA)	S.C.RD.
CEP7	ED1AB, EEAB EDIB8, EEB8	1	600	Sultabla for use with fuses only
	EDIC8, ED1DB, ED1EB, EECB, EEDB, EEEB, EEED, EEFD, EEPB, EERB, EESB, EETD	5		Not restricted to
	EEEE, EEFE, EEGE, EEUE	10		

IEC Short Circuit Ratings per EN60947-4-1

CEP7 Second Generation Cat No.		Prospective S.C. current, Ir (kA)	Conditiona! s.c. current, Iq (kA)	$\begin{array}{\|c} \text { Max voll- } \\ \text { age (M) } \end{array}$	S.C.P.D.
CEP7	EDIAB, EEAB ED1BE, EEAB	1	100	690	Suitable for use with tuses only
	$\begin{aligned} & \text { EDDCBEDED10B, } \\ & \text { EECB, EEDB, } \\ & \text { EEPS, EERB } \\ & \hline \end{aligned}$	1			Not restricted to
	EDIEB, EEEB, EEED, EEFD, EEEE, EEFE, EESB, EETD	3			
	EEOE, EEVE	5			

High Fault Short Circuit Ratings per UL508 and CSA 22.2 No. 14

CEP7 Second Generation Cat. No.		Contactor Cat No.	Max, starter FLC (A)	$\begin{array}{\|c\|} \hline \text { Max, avail } \\ \text { sble fault } \\ \text { current (kA) } \end{array}$	Max voltage M	UL Class J and CSA HRCI-J fuse (A)
CEP7	ED1AB, EEAB	CA7-09	0.5	100	600	3
	ED1发, EEB8		1			6
	ED1C8, ED108, EDIEB, EEEB, EECB, EEDB	CA7-09	09			20
		CA7-12	12			20
		CA7-16	16			30
		CA7-23	23			30
	EEED, EEFO	CA7-30	30			50
		CA7-37	37			50
		CA7-43	43			70
	EEEE, EEFE EEGE	CA7-60	60			80
		CA7-72	72			100
		CA7-85	85			150

IEC Type 1 and Type II Fuse Coordination with CA7 Series contactors per EN60947-4-1

cEP7 Second Generation Cat No.		Contactor Cat. No.	Max. starter FLC (A)	Prospective S.C. current, Ir (kA)	Conditional S.C. current, lq (kA)	$\begin{gathered} \text { Max. voltage } \\ M \end{gathered}$	Typel with Class J fuse (A)	Type II with Class Jfuse (A)
CEP7	EOTAB, EEAB	CA7-09	0.5	1	100	600	3	3
	ED188, EEB8		1				6	6
	ED1CB, ED1DB, EECB, EEDB	CA7-09	09	1			20	15
		CA7-12	12				20	20
		CA7-16	16				30	30
		CA7-23	23				30	30
	E01E8, EEE8	CA7-09	09	3			20	15
		C $47-12$	12				20	20
		CA7-16	16				30	30
		CA7-23	23				30	30
	EEED, EEFD	CA7-30	30	3			50	50
		CA7-37	37				50	50
		CA7-43	43				70	70
	EEEE, EEfE	CA7-60	60	3			80	80
		CA7-72	72				100	100
		CA7-85	85				150	150
	EEGE	C $77-60$	60	5			80	80
		CA7-72	72				100	100
		CA7-85	85				150	150

Electro－Mechanical Data

			CA7－9	CA7－12	CA7－16	CA7－23	CA7－30	CA7－37	CA7－43	CA7－60	CA7－72	CA7－85
Service Life												
Mechanical	AC	［Mil．］	13	13	13	13	13	13	12	10	10	10
	DC	［Mil．］	13	13	13	13	13	13	13	10	10	10
Electrical AC－3（400V）	AC	［Mil．］	1.3	1.3	1.3	1.3	1.3	1.3	1.0	1.0	1.0	1.0
Shipping Weights												
AC－CA7		［kg］	0.39	0.39	0.39	0.39	0.48	0.49	0.51	1.45	1.45	1.45
		［Lbs．］	0.86	0.86	0.86	0.86	1.06	1.08	1.12	3.20	3.20	3.20
AC－CAU7		［kg］	0.85	0.85	0.85	0.85	1.08	1.08	1.15	3.14	3.14	3.14
		［Lbs．］	1.89	1.89	1.89	1.89	2.39	2.39	2.54	6.92	6.92	6.92
DC－CA7		［kg］	0.60	0.60	0.60	0.73	0.85	0.85	1.00	1.47	1.47	1.47
		［Lbs．］	1.32	1.32	1.32	1.61	1.87	1.87	2.20	3.24	3.24	3.24
DC－CAU7		［kg］	1.27	1.27	1.27	1.53	1.81	1.81	2.13	3.22	3.22	3.22
		［Lbs．］	2.81	2.81	2.81	3.39	4.00	4.00	4.70	7.10	7.10	7.10
Terminations－Power Description												
			$\xrightarrow[4]{\text { 案 }}$	劳	$\underset{\substack{\text { 劳 }}}{ }$	莺	－	$\frac{\square}{\square}$	退	回	囫	圂
			One saddleclamp per pole： cross，slotted or Pozidrive No．2／blade No． 3 screw				Dual connection；one saddleclamp and one box lug per pole；cross， slotted or Pozidrive №．2／blade №． 4 screw			Dual connection； two box lugs per pole Allen Head： $\mathbf{4 m m}, 5 / 32$		
2coser	$1 \text { Wire }$	$\left[\mathrm{mm}^{2}\right]$	1．．． 4	1．．． 4	$1 . .4$	1．．． 4	2．5．．．10	2．5．．．10	2．5．．．16	2．5．．． 35	2．5．．． 35	2．5．．．35
	$2 \text { Wires }$	$\left[\mathrm{mm}^{2}\right]$	1．．． 4	1．．． 4	1．．． 4	1．．． 4	2．5．．． 10	2．5．．． 10	2．5．．． 10	2．5．．． 25	2．5．．． 25	2．5．．． 25
C6O E	1 Wire	［ mm^{2} ］	1．5．．．6	1．5．．．6	1．5．．．6	1．5．．．6	2．5．．． 16	2．5．．．16	2．5．．．25	2．5．．．50	2．5．．．50	2．5．．． 50
	2 Wires	$\left[\mathrm{mm}^{2}\right]$	1．5．．． 6	1．5．．．6	1．5．．． 6	1．5．．． 6	2．5．．．16	2．5．．．16	2．5．．．16	2．5．．． 35	2．5．．． 35	2．5．．． 35
$\triangle 50$	1 Wire	［AWG］	16．．． 10	16．．． 10	16．．．10	16．．． 10	14．．． 4	14.4	14．．． 4	14．．． 1	14．．．1	14．．． 1
	2 Wires	［AWG］	16．．． 10	16．．． 10	16．．． 10	16．．． 10	14．．． 4	14.4	14．．． 4	14．．．1	14．．．1	14．．． 1
Torque Requirement		［ Nm ］	1．0．．． 2.5	1．0．．．2．5	1．0．．．2．5	1．0．．．2．5	2．5．．．3．5	2．5．．． 4	2．5．．．4	3．5．．． 6	3．5．．． 6	3．5．．． 6
		［Lb－in］	9．．． 22	9．．． 22	9．．． 22	$9 . . .22$	22．．． 31	22．．． 35	22．．． 35	31．．． 53	31．．． 53	31．．． 53
Terminations－Control Description												
			$\stackrel{\text { 穿 }}{2}$	$\stackrel{\text { 荤 }}{ }$		$\stackrel{\text { 企 }}{ }$	$\stackrel{\text { 跑 }}{4}$	$\underset{\mathbb{4}}{\text { 案 }}$		$\stackrel{\text { 第 }}{ }$	$\stackrel{\text { 等 }}{ }$	$\xrightarrow[4]{\text { 点 }}$
			Combination Screw Head：Cross，Slotted，Pozidrive									
Coils	1 or 2	［ mm^{7} ］	1．5．．．6									
Wires		［AWG］	16．．12									
Control Modules	1or 2	$\left[\mathrm{mm}^{2}\right]$	1．5．．． 6									
Torque Requirement		［AWG］	16．．． 12									
		［ Nm ］	1．．．2．5									
		［ Lb －in］					13					
Degree of Protection－contactor			IP 2LX per IEC 529 and DIN 40050 （with wires installed）									
Protection Against Accidental Contact			Safe from touch by fingers and back－of－hand per VDE 0106；Part 100									


```Ambient Temperature Storage Operation Conditioned 15% current reduction after AC-1 at >60' C```	$-55 . . .+80^{\circ} \mathrm{C}\left(-67 . . .176^{\circ} \mathrm{F}\right)$－ （CRI7E Electronic Interface $-50 . . .+80^{\circ} \mathrm{C}\left(-58 . . .176^{\circ}\right)$ ）］ $-25 . .+60^{\circ} \mathrm{C}\left(-13 . .140^{\circ} \mathrm{A}\right)$ $-25 \ldots+70^{\circ} \mathrm{C}\left(-13 \ldots, .158^{\circ}\right. \text { ค }$
Altitude at installed site	2000 meters above sea level per IEC 947－4
Resistance to Corrosion／Humidity	Damp－altemating dimate：cyclic to IEC $68-2,56$ cycles   Dry heat．IEC $68-2,+100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right.$ ），relative humidity $<50 \%, 7$ days．   Damp tropical：IEC $68-2,+40^{\circ} \mathrm{C}\left(104^{\circ}\right.$ ），relative humidity $<92 \%, 56$ days．
Shock Resistance	IEC 68－2：Half sinusoidal shock $11 \mathrm{~ms}, 30 \mathrm{~g}$（in all three directions）
Vibration Resistance	IEC 68－2：Static＞2g，in normal position no malfunction $<59$
Pollution Degree	3
Operating Position	Refer to Dimension Pages
Standards	Page 174E69843a84，EN 60947；UL 508；CSA 22．2，No． 14
Approvals	CE，UL，CSA

Technical Information
CA7 3-Pole Contactors


Coil Data

			CA7-9	CA7-12	CA7-16	CA7-23	CA7-30	CA7-37	CA7-43	CA7-60	CA7-72	CA7-85		
Voltage Range														
AC: $50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 50 / 60 \mathrm{~Hz}$	Pickup	$[x \\| y]$			$0.85 . .1 .1$									
	Dropout	[ $\mathrm{x} \\| \mathrm{l}$ ]		0.3..0.6										
DC	Pickup	[ $x$ U1]		$0.8 \ldots 1.1$ (9V coils $=0.65 . .1 .3 ; 24 \mathrm{~V}$ coils $=0.7 . .1 .25)$										
	Dropout	[xty]		$0.1 . .0 .6$										
Coil Consumption														
AC: $50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 50 / 60 \mathrm{~Hz}$	Pickup	NAM	70/50	70/50	70/50	70/50	80/60	80/50	130/90	200/110	200/110	200/110		
	Hold-in	NAW	8/2.6	$8 / 2.6$	$8 / 2.6$	$9 / 3$	$9 / 3$	$9 / 3$	10/3.2	16/4.5	16/4.5	16/4.5		
True DC Coils (CA7C)	Pickup	(M)	6.5	6.5	6.5	9.2	9.2	9.2	10.1	~	~	~		
	Hold-ln	(M]	6.5	6.5	6.5	9.2	9.2	9.2	10.1	$\sim$	-	*		
Two Whding DC Colls	Pickup	[W]	120	120	120	200	200	200	200	200	200	200		
CATY \& Ca70	Holde-ln	(1)	1.1	1.1	1.1	1.2	1.2	1.2	1.3	4.5	4.5	4.5		
Operating Times														
AC: $50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 50 / 60 \mathrm{~Hz}$	Pickup	[ms]	15... 30	15... 30	15.. 30	15... 30	15... 30	15... 30	15... 30	20... 40	20.. 40	20...40		
	Dropout	[ms]	10...60	10.. 60	10..60	10.. 60	10...60	10.. 60	10.. 60	10... 60	10.. 60	10.. 60		
with RC Suppressor	Dropout	[ms]	10.. 60	$10 . .60$	10.. 60	10.. 60	10... 60	10.. 60	10.. 60	$10 . .60$	10.. 60	$10 . .60$		
True DC Colls (CA7C)	Pickup	[ms]	40.. 70	40.. 70	$40 . .70$	40... 70	50...80	50...80	$50 . .80$	$\sim$	$\sim$	-		
without Suppression	Dropout	[ms]	7..15	7..15	7..15	7... 15	7... 15	7... 15	7... 15	$\sim$	$\sim$	$\sim$		
with integrated Suppression	Dropout	[ms]	14...20	14... 20	14. 20	17... 23	17...23	17... 23	17... 23	-	*	$\sim$		
with External Suppression	Dropout	(ms)	70... 85	70...95	70...95	80...125	80...125	80...125	80...125		$\sim$	$\sim$		
Two Winding DC Colls (CATYD)	Pickup	[ms]	17... 26	17... 26	15... 27	15... 27	15... 27	15... 27	15... 27	20... 40	20... 40	$20 . .40$		
with internal Suppression	Dropout	[ms]	9... 20	$9 . . .20$	14... 24	14...24	14... 24	14... 24	14... 24	20... 350	$20 . .350$	$20 . .350$		

Electrical Data


Page 176 of 363

## Electrical Data

AC-1 Load, 30 Switching Amblent Temperature $40^{\circ} \mathrm{C}$	[A]		$\begin{gathered} \text { CA7-9- } \\ \text { M40(31; 22) } \end{gathered}$	$\begin{gathered} \text { CA7-12- } \\ \text { M4O(31; 22) } \end{gathered}$	$\begin{aligned} & \text { CA7-16- } \\ & \text { M40(31; 22) } \end{aligned}$	$\begin{gathered} \text { CA7-23- } \\ \mathrm{M} 40(31 ; 22) \end{gathered}$	CA7-40-M22	CA7-40-M40	CA7-90-M22	CA7-90-M40
	6	[WW]	32	32	32	32	75	75	130	130
Ambient Temperature $60^{\circ}$	230 V	[ WW]	13	13	13	13	30	30	52	52
	240 V	[WW]	13	13	13	13	31	31	54	54
	400 V	[ WW]	22	22	22	22	52	52	90	90
	415 V	[6W]	23	23	23	23	54	54	83	93
	500 V	[ WW ]	28	28	28	28	65	65	113	113
	690 V	[WW]	38	38	38	38	90	90	155	155
	4	[WW]	32	32	32	32	60	60	110	110
	230 V	[KW]	13	13	13	13	24	24	44	44
	240 V	[WW]	13	13	13	13	25	25	46	46
	400 V	[WW]	22	22	22	22	42	42	76	76
	415 V	[ WW]	23	23	23	23	43	43	79	79
	500 V	[6W]	28	28	28	28	52	52	95	95
	690 V	[ $6 W$ ]	38	38	38	38	72	72	131	131
Max Operating Rate	lops	hour)	1,000	1,000,	1,000,	1,000	300	300	600	600
Continuous Current (UL/CSA)										
General Purpose Rating (409)	Open	[ ${ }_{\text {] }}$	25	25	30	30	60	60	125	130
	Enclosed	(A)	25	25	30	30	60	60	125	130
Max. Operating Rate	lops	hour]	1,400	1,400	1,200	1,200	1,000	1,000	600	600
Lighting Loads 0										
Elec. Dischrg.Lamps-AC-5a,	Open	(A)	22.5	25	28	29	65	65	115	115
slingle compensated	Enclosed	(A)	22.5	25	28	29	54	54	95	95

Incandescent Lamps AC-5b,

Electrical endurance $-100,000$ operations			12	16	18	22	18	25	60	75
DC-1 Switching - $60^{\circ} \mathrm{C}$	24VDC	(A)	25	25	32	32	45	45	80	80
	48VDC	(A)	20	20	20	20	25	25	40	40
1 Pole	60VDC	( ${ }^{\text {N }}$	20	20	20	20	25	30	40	40
	110VDC	(A)	6	6	6	6	10	10	11	11
	220 VOC	(N)	1.5	1.5	1.5	1.5	1.5	1.5	1.8	1.8
	$440 V D C$	[ 1 ]	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5
	24VDC	[ 1 ]	25	25	32	32	45	45	80	80
	48VDC	( ${ }^{\text {N }}$	25	25	32	32	45	45	80	80
2 Pole in Series	60VDC	W	25	25	32	32	45	45	80	80
	110VDC	(A)	25	25	32	32	45	45	80	80
	220 VOC	(N)	8	8	8	8	10	10	15	15
	440VDC	[ ${ }^{\text {a }}$	1	1	1	1	1	1	1.5	1.5
	24VDC	(A)	25	25	32	32	-	48	-	100
	48VDC	(A)	25	25	32	32	-	48	-	100
3 Poles in Series	60VDC	(A)	25	25	32	32	$\sim$	48	-	100
	110VDC	(N)	25	25	32	32	-	48	-	100
	220NDC	( ${ }^{1}$	$25$	$25$	32	$32$	$\sim$	$48$	$\sim$	80
	440VDC	(A)	3	3	3	3	-	3.5	-	5
	24VOC	(A)	25	25	32	32	-	60	-	110
	48 VDC	[ N	25	25	32	32	-	60	-	110
4 Poles in Series	60VDC	(A)	25	25	32	32	$\sim$	60	-	110
	110VDC	( N	25	25	32	32	$\sim$	60	$\sim$	110
	220 VOC	W	25	25	32	32	-	60	-	100
	440 VDC	( ${ }^{(1)}$	8	8	8	8	$\sim$	10	$\sim$	15

- CAT ratings for lighting loads are provided for technical reference. For cull ratedPage 177 of 363
and labeled devices, see CAL7 contactors listed in this section.


## sprecher +

Technical Information
CA7 4-pole Contactors

Electrical Data

		$\begin{gathered} \text { CA7-9- } \\ \text { M40(31; 22) } \end{gathered}$	$\begin{gathered} \text { CA7-12- } \\ \text { M40(31; 22) } \end{gathered}$	$\begin{gathered} \text { CA7-16- } \\ \text { M4O(31; 22) } \end{gathered}$	$\begin{gathered} \text { CA7-23- } \\ \text { M40(31;22) } \end{gathered}$	CA7-40-M22	CA7-40-M40	CA7-90-M22	CA7-90-M40	
Resistance per power pole	[ m S]	2.7	2.7	2.7	2.0	2.0	1.5	0.8	0.7	
Watt Loss - 4 power poles	[/]	2.8	2.8	2.8	2.0	11.3	8.4	13.5	11.8	
Coil and 4 power poles AC	[W]	13.7	13.7	13.7	10.8	26.1	37.4	36.0	56.3	
DC (eve)	[W]	17.6	17.6	17.6	17.4	32.6	43.9	$\sim$	$\sim$	
DC (2 winding)	[W]	$\sim$	~	~	~	$\sim$	$\sim$	32.5	52.8	CA7
Short Circuit Coordination										
DIN Fuses -g6, gl										
Available Fault Current	[ A ]	100 KA	100 KA	100 KA	100 KA	50 KA	50 KA	50 KA	50 KA	
Type "1" (690V) 0	[ A ]	50	50	50	80	160	160	250	250	
Type "2" (690才) ${ }^{\text {P }}$	[ A ]	25	35	35	40	100	100	160	160	
BS 88 Fuses										
Available Fault Current	[A]	80 KA	80 KA	80 KA	80 KA	$\sim$	$\sim$	$\sim$	$\sim$	
Type "1" (690V) ${ }^{\text {(3) }}$	[A]	25	32	35	50	$\sim$	$\sim$	$\sim$	$\sim$	
Type "2" 690V) ${ }^{\text {a }}$	[ $A$ ]	25	32	35	50	$\sim$	$\sim$	$\sim$	$\sim$	
Class K1, RK1 Fuses										
Available Fault Current	[ A ]	100 KA	100 KA	100 KA	100 KA	100 KA	100 KA	100 KA	100 KA	
Type "2" (600V) 3	[A]	15	20	20	30	70	70	100	100	
cUl Short-Circuit Ratings										
Class K1, RK1, K5, and RK5 Fuses										
Available Fault Current	[A]	5 KA	5 KA	5 KA	5 KA	5 KA	5 KA	10 KA	10 KA	
cUL. Max. Rating (600V) Type 1	[ A ]	35	40	70	90	125	125	300	300	
Class CC \& CSA HRCI Fuses										
Available Fault Current	[ A ]	100 KA	100 KA	100 KA	100 KA	$\sim$	$\sim$	$\sim$	$\sim$	
cUL. Max. Rating (600V) 3 Type 2	[ A ]	15	20	30	30	$\sim$	$\sim$	$\sim$	$\sim$	
Class J CSA \& HRCI-J Fuses										
Available Fault Current	[ A ]	100 KA	100 KA	100 KA	100 KA	100 KA	100 KA	100 KA	100 KA	
cUL. Max. Rating (600V) 3 Type 2	[A]	15	20	30	30	700	70 0	150 ©	150 ©	
Inverse-Time Circuit Breaker ©										
Available Fault Current	[A]	5 KA	5 KA	5 KA	5 KA	5 KA	5 KA	10 KA	10 KA	
cUL Max. Rating 480V 0 Type 1	[ ${ }^{\text {] }}$	30	30	50	50	125	125	250	250	
cUL Max. Rating 600V 3 Type 1	[A]	$\sim$	~	$\sim$	$\sim$	125	125	250	250	

Short Time Current Withstand
Ratings

Ratings	[A]	170	170	170	215	304	304	700	700
$l_{\text {enf }} 60^{\circ} \mathrm{C}$	Mime								
Off Time Between Operations	Min. $]$	20	20	20	20	5	5	5	5

(1) When used as a Branch Circuit Protection device, NEC 430-152 defines the maximum rating of an Inverse-time circuit breaker to be sized at $250 \%$ of the motor nameplate FLA for most applications.
(2) UL. Listed Combination. (UL. File E41850) Per UL508A, NEC409 abd CSA 22.2 No. 14
for contactor and fuses or circuit breaker only.
3 Per IEC 60947-1 for contactor and fuses only.

- UL Testing not complete a the time of printing this catalog.


## Mechanical Data

			CA7-9M40(31; 22)	CA7-12-   M40(31; 22)	CA7-16M40(31; 22)	CA7-23- $M 40(31 ; 22)$	CA7-40-M22	CA7-40-M40	$\begin{gathered} \text { CA7-90- } \\ \text { M222 } \end{gathered}$	$\begin{gathered} \text { CA7-90- } \\ \text { M40 } \end{gathered}$
Service Life										
Mechanical	AC	[Mil] ]	13	13	13	13	10	10	10	10
	DC	[Mil.]	13	13	13	13	10	10	10	10
Shipping Weights										
AC - CA7		[kg]	0.39	0.39	0.39	0.39	0.51	0.51	1.45	1.45
		[Lbs.]	0.86	0.86	0.86	0.86	1.12	1.12	3.20	3.20
DC- CA7		[kg]	0.60	0.60	0.60	0.73	1.00	1.00	1.47	1.47
		[Lbs.]	1.32	1.32	1.32	1.61	2.20	2.20	3.24	3.24

Terminations - Power
Description


## Environmental and General Specifications

Ambient Temperature   Storage   Operation	$-55 \ldots+80^{\circ} \mathrm{C}\left(-67 \ldots . .176^{\circ} \mathrm{F}\right)-\left[\mathrm{CRI7E}\right.$ Electronic Interface $\left.-50 \ldots+80^{\circ} \mathrm{C}\left(-58 \ldots . .176^{\circ} \mathrm{F}\right)\right]$
Conditioned $15 \%$ current reduction after AC-1 at $>60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}\left(-13 \ldots 140^{\circ} \mathrm{F}\right)$
Altitude at installed site	$-25 \ldots+70^{\circ} \mathrm{C}\left(-13 \ldots 158^{\circ} \mathrm{F}\right)$
Resistance to Corrosion/Humidity	2000 meters above sea level per IEC $947-4$

Coil Data (CA7 4-Pole)

			CA7-9M40(31; 22)	CA7-12-$M 40(31 ; 2)^{2}$	CA7-16-MAO(31; 22)	CA7-23Mo(31; 22)	CA7-40- M22	$\begin{gathered} \text { CA7-40- } \\ \text { M40 } \end{gathered}$	CA7-90M22	$\begin{gathered} \hline \text { CA7-90- } \\ \text { M40 } \end{gathered}$		
Voltage Range												
AC: $50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 50 / 60 \mathrm{~Hz}$	Pickup	[xy]					0.85...1.1					
	Dropout	[ $x 11]$			0.3..0.6							
DC	Piclup	[x\|]			$0.8 \ldots 1.1$ (9V coils $=0.65 \ldots 1.3 ; 24 \mathrm{~V}$ colls $=0.7 \ldots 1.25)$							
	Dropout	[ $\times 12$			0.1..0.6							
Coil Consumption												
AC: $50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 50 / 60 \mathrm{~Hz}$	Pickup	[NAW]	70/50	70/50	70/50	70/50	130/90	130/90	400/240	400/240		
	Hold-in	[NAW]	$8 / 2.6$	8/2.6	$8 / 2.6$	$9 / 3$	12/3.6	12/3.6	24/9	24/9		
True DC Coils (CATC)	Pickop	[ 3 ]	6.5	6.5	6.5	9.2	10.1	10.1	$\sim$	$\sim$		
	Hold-in	[M]	6.5	6.5	6.5	9.2	10.1	10.1	-	-		
Two Winding DC Colls	Pickup	[W]	-	-	-	-	-	-	325	325		
CATY \& CATD	Hold-in	[W]	$\sim$	$\sim$	-	-	-	-	5.5	5.5		
Operating Times												
AC. $50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 50 / 60 \mathrm{~Hz}$	Picluyp	[ms]	15... 30	15... 30	15.. 30	15... 30	15... 30	15.. 30	20...30	20... 30		
	Dropout	[ms]	10... 60	10... 60	10.. 60	10...60	10...60	10... 60	20...40	20... 40		
with RC Suppressor	Dropout	[ms]	$10 . . .80$	$10 . .60$	$10 . .60$	$10 . .60$	10... 60	10... 60	20... 40	$20 . .40$		
True DC Coils (CA7C)	Piclup	[ms]	40... 70	40... 70	40... 70	40...70	50,..80	$50 . .80$	$\sim$	$\sim$		
without Suppression	Dropout	(ms)	7...15	7... 15	$7 . .15$	7...15	7... 15	7... 15	-	-		
with integrated Suppression	Dropout	[ms]	14... 20	14... 20	14... 20	17... 23	~	-	$\sim$	$\sim$		
with Extermal Suppression	Dropout	(ms)	70.. 95	70,..95	70.. 85	$80 . .125$	$\sim$	$\sim$	$\sim$	$\sim$		
Two Winding DC Colls	Pickup	[ms]	-	-	-	-	-	-	15... 20	20... 25		
with Internal Suppression	Dropout	[ms)	$\sim$	-	-	-	$\sim$	-	20... 25	20,..25		

Technical Information - Auxiliary Contact Data

	Mounted   Standard   Auxiliary	Bullt-In Auxiliary Contacts in Contactor CA7-9..CA7-23	Front Mounted Auxiliary Contacts CA7-PK, CS7-PV, CZE/A7, CV7	Front Mounted Bifurcated Auxilliary Contacts	Side Mounted Auxiliary Contacts CA-PA, CMI
Electrical Contact Aatings - NEMA		A600, P600	A800, 0600		A800, 0600
Min. Contact Rating		$17 \mathrm{c}, 10 \mathrm{~mA}$	174. 5 mA	$5 \mathrm{~V}, 3 \mathrm{~mA}$	$17 \mathrm{~V}, 10 \mathrm{~mA}$
Contact Ratings - IEC AC-15 (solenoids, contactors) rated woltage IEC 60947-5-1	24 V	10 A	6 A	3 A	6 A
	48 V	10A	6 A	3 A	6 A
	120 V	10A	6 A	3 A	6 A
	240 V	10A	5 A	3 A	5A
	400 V	6A	3 A	2A	3 A
	480V/500V	2.5 A	1.6A	1.2A	1.6 A
	600 V	1A	1 A	0.7 A	1A
	690 V	1A	1 A	0.7 A	1A
AC-12 (Control of resistive loads) IEC 60947-5-1	$b$	20 A	10A	10A	10A
	230 V	8 kW			
	400 N	14 KW			
	690 V	24 kW			
	6	20 A	6 A	6 A	6 A
	230 V	8 kW			
	400 V	14 kW			
	690V	24 kW			
DC-12 Switching DC Loads $4 / \mathrm{n}<1 \mathrm{~ms}$, Resistive Loads IEC 60947-5-1	24 V	12A	12A	6 A	6 A
	48 V	9A	9A	3.2 A	3.2A
	110 V	3.5 A	3.5A	0.45 A	0.45 A
	220 V	0.55 A	0.55 A	0.18 A	0.18 A
	440 V	0.2 A	0.2A	0.1 A	0.1 A
DC-13 IEC 60947-5-1, Solenoids and contactors	24 V	5 A	5 A	2.5 A	5 A
	48 V	3 A	3 A	1.5A	3 A
	110 V	1.2A	1.2A	0.6 A	1.2A
	220 V	0.6A	0.6 A	0.3A	0.6 A
	440 V	0.3 A	0.15 A	0.15 A	0.15A

Page 180 of 363

Technical Information
CA7 Contactors

Auxiliary Contacts


Terminals

Terminal Type				器	器	带
Maximum Wire Size per IEC 947－1				2×M4	$2 \times 14$	$2 \times 44$
E－	Flexible	1 conductor	$\left[\mathrm{mm}^{\prime}\right]$	1．．． 4	0．5．．2．5	0．5．．．2．5
	Fermule	2 conductor	［mm＇］	1．．． 4	0．75．．．2．6	0．75．．．2．6
$\square 7$	Solld／Stranded－	1 conductor	［ $\left.\mathrm{mm} \mathrm{m}^{\prime}\right]$	1．5．．． 6	0．5．．．2．5	0．5．．．2．5
	Conductor	2 conductor	［ $\mathrm{mm}^{\prime}$ ］	1．5．．． 6	0．75．．．2．6	0．75．．．2．6
Recommended Tightening Torque			（Nm）	1．．． 2.5	1．．． 15	$1 . .15$
Max．Wire Size per UUCSA			［AWG］	16．．． 10	18．．． 14	18．．．14
Fecommended Tightening Torque			$[$［ $b-\|n\|$	9． 22	9．．． 13	$9 . . .13$

Accessories

Latch Attachment Release，CVI－11		
Coll Consumption	NMWI （M）   fininlmex	AC 45／40   DC 25W
Time Attachment		
Reset Time at min．time setting	［ms］	10
at max．time setting	［ms］	70
Repeat Accuracy		$\pm 10 \%$

Contact Ratings（Per NEMAULL A600 \＆Q600）

Standard	Circuit Voltage	Make （Amps／VA）	Break （Amps／NA	Continueus Amps
A600	$\begin{aligned} & 120 A C \\ & 240 A C \\ & 480 \mathrm{AC} \\ & 600 A C \end{aligned}$	60NT200VA   30N7200VA   15N7200VA   12NTT200VA	$\begin{aligned} & \hline \text { 6AN720VA } \\ & 3 \mathrm{~N} 720 \mathrm{NA} \\ & 1.5 \mathrm{~N} 720 \mathrm{VA} \\ & 1.2 \mathrm{~N} 720 \mathrm{VA} \\ & \hline \end{aligned}$	10
0800	$\begin{gathered} 1250 \mathrm{C} \\ 2500 \mathrm{C} \\ 301-600 \mathrm{C} \end{gathered}$	0．55N69VA   0．27M69VA   0．1N69VA	0．55N69NA   0．27 N69VA   0．1N69VA	25

> Positively-Guided Contacts (Mechanically-linked) SUNA Certified
> - Ressticted guidance guarantees without restrictions from contactor to auxiliary contact and auxiliary contact to contactor.e

## sprecher+

## Determining Contact Life

To determine the contactor's estimated electrical life, follow these guidelines:

1. Identify the appropriate Utilization Category from Table A.
2. On the following pages, choose the graph for the Utilization Category selected.

Table A - IEC Special Utilization Categories, AC Ratings (1)

	Category	Typical Applications	Rated Current	Conditions for testing electrical life					Ops.	Conditions for lesting making and breaking capacily						Ops.
					Make		Braak				Make			Braak		
				W/e	Whe cos	te/le	Urive	c0s		//le	Whe	$\cos$	the	Whe	cos	
	AC-1	Non-Inductive or slightly inductive loads; resistance fumaces	All values	1	10.95	1	1	0.95	6000	1.5	1.05	0.8	1.5	1.05	0.8	50
	AG-2	Slip-ring motors: Starting, plugging	All values	2	1.050 .65	21	1.05	0.65	6000	4	1.05	0.65	4	1.05	0.65	50
	AC-3	Slip-ring motors: Starting, switching off motors during running	b 17Amp   17Amp <le 100 Amp los 100 Amp	$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{array}{ll} 1 & 0.65 \\ 1 & 0.35 \\ 1 & 0.35 \end{array}$		$\begin{aligned} & 0.17 \\ & 0.17 \\ & 0.17 \end{aligned}$	0.65 0.35 0.35	6000	10   10   80	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.35 \\ & 0.35 \end{aligned}$	$\begin{array}{\|c\|} \hline 8 \\ 8 \\ \hline 60 \\ \hline \end{array}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.35 \\ & 0.35 \end{aligned}$	50
	AC-4	Squirrel-cage motors: Starting, plugging, inching ©	le 17 Amp 17Amp <lo 100 Amp les 100 Amp		$\begin{array}{ll} 1 & 0.65 \\ 1 & 0.35 \\ 1 & 0.35 \end{array}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.35 \\ & 0.35 \\ & \hline \end{aligned}$	6000	$\begin{array}{\|c\|} \hline 12 \\ 12 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.35 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.35 \\ & 0.35 \end{aligned}$	50
$\begin{aligned} & 5 \\ & 3 \\ & \hline \end{aligned}$	AC-5a	Switching of electric discharge lamp control		2	1.050 .45	2	1.05	0.45	6000	3	1.05	0.45	3	1.05	0.45	50
	AC-5b	Switching of incandescent lamps		1	1.05	1	1.05		6000	1.5	1.05		1.5	1.05		50
	AC-6a	Switching of transformers								Rating derrved from AC-3 rating ( $\times 0.45$ )						
	AG-6b	Switching of capacily banks								Depends on circuit conditions of application						
	AC-12	Control of resistive loads and sold state loads with lsolation by opto couplers	All values	1	10.8	1	1	0.8	6050							
	AC-13	Control of solid state losds with transformer isolation			10.65	1	1	0.65	6050	10	1.1	0.65	1.1	1.1	0.65	10
咅	AC-14	$\begin{aligned} & \begin{array}{l} \text { Control of small electromagnetic } \\ \text { loads } \end{array} \\ & \hline \end{aligned}$	72VA	6	10.3	1	1	0.3	6050	6	1.1	0.7	6	1.1	0.7	10
-	AC-15	Control of electromagnetic logds	72VA	10	1.0 .3	1	1	0.3	6050	10.	1.1	0.3	10	1.1	0.3	10
$\frac{8}{5}$	AC-20	Connecting and disconnecting under no loed conditions		No testing required												
$\bigcirc$	AG-21	Switching of resistive loads, including moderate overloads	All values	1	10.95	1	1	0.95	10000	1.5	1.05	0.95	1.5	1.05	0.95	5
$\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{\pi}{3} \end{aligned}$	AC-22	  inductive loeds, including moder-   ate overloads	All values	1	10.8	1	1	0.8	10000	3	1.05	0.65	3	1.05	0.65	5
\%	AC-23	Switching of motor loads or other highly infuclive loads	All values	1	10.65	1	1	0.65	10000	10	1.05	0.45	8	1.05	0.45	5

## Legend

Uo Rated operational voltage
$\boldsymbol{U}$ Voltage before make
Ur Recovery voltage
le Rated aperational current
l Making current
Ic
Brealding current
I
Inductance of test circuit
i Resistance of test circuit
3. Locate the Rated Operational Current (l) along the bottom of the chart and follow the graph lines up to the intersection of the appropriate contactor's life-load curve.
4. Read the estimated contact life along the vertical axis.

## Determining Contact Life

To determine the contactor's estimated electrical life, follow these guidelines:

1. Identify the appropriate Utilization Category from Table A .
2. On the following pages, choose the graph for the Utilization Category selected.
3. Locate the Rated Operational Current $\left(l_{l}\right)$ along the bottom of the chart and follow the graph lines up to the intersection of the appropriate contactor's life-load curve.
4. Read the estimated contact life along the vertical axis.

Table A - IEC Special Utilization Categories, DC Ratings ©

Category	Typical Applications	Rated Current	Conditions for testing electrical life						Ops.	Conditions for testing making and breaking capacity						0ps.
			Make			Break				Make			Break			
			Mle	U/ue	cos	$\mathrm{lc} / \mathrm{ll}$	Ur/Ve	cos		the	U/ue	cos	V/e	U/ue	cos	
DC-1	Non-inductive or slightly inductive loads, resistance furnaces	All Values	1	1	1	1	1	1		1.5 ( 3	1.10	13	1.5 (3)	1.1 앙	10	
DC-2	Shunt-motors: Starting, switching off motors during running	All Values	2.5	1	2	1	0.1	7.5		4	1.1	2.5	4	1.1	2.5	
DC-3	Shunt motors: Starting, plugging, inching	All Values	2.5	1	2	2.5	1	2		4	1.1	2.5	4	1.1	2.5	
DC-4	Series-motors: Starting, switching off motors during running	All Values	2.5	1	7.5	1	0.3	10		4	1.1	15	4	1.1	15	
DC-5	Series-motors: Starting, plugging, inching	All Values	2.5	1	7.5	2.5	1	7.5		4	1.1	15	4	1.1	15	
DC-15	Electromagnets for contactors, valves, solenoid actuators	All Values	1	1	$6 \times \mathrm{P}$ ©	1	1	$6 \times \mathrm{P}$ (3)		1.1	1.1	$6 \times P 0$	1.1	1.1	$6 \times P 0$	

```
Legend
Ue Rated operational voltage
U}\mathrm{ Voltage before make
Ur}\mathrm{ Recovery voltage
to Rated operational current
l Making current
Ic Breaking current
L Inductance of test circuit
R Resistance of test circuit
```

- Utilization categories and test conditions for AC \& DC. For contactors according to IEC 158-1, starters according to IEC 292-1 ... 4 and control switches according to IEC 337-1 and IEC 337-1A.
(2) Only according to VDE.
(3) $P=$ Ve $\times$ le rated power (W). The value " $6 \times P$ " has been derived from an empiricPage 183 of 363 relationship which covers most magnetic loads for $D C$ up to an upper limit of $\mathrm{P}=50 \mathrm{~W}$.


## Predicting Electrical Life

Sprecher + Schuh contactors are designed for superior performance in a wide variety of applications, by giving consideration to the specific load, utilization category and required electrical life, you can purchase exactly the type
and size of contactor required. This assures reliable operation and high value the ability to very closely match the contactor to the application.

Identify they appropriate utilization category. For this example, we will determine CA7 contact life for Inching and plugging squirrel-cage motors. ©

Uutilization Category	Definition	
AG-1	Resistance Furneces	Non inductive or slighly inductive loads, Resistive Furnaces
AC-2	Slip-ring motors	Starting and stopping of running motors
AC-3	Squirrel-cage motors	Starting and stopping of running motors
AC-4 (1)	Squirrel-cage motors	Starting, plugging, and inching   (Plugging is understood as stopping or reversing the motor rapidly by reversing the motor primary connections while the motor is running. Inching [or jogging] is understood as energizing a motor once or repeatedly for shor periods to obtain small movements of the driven mechanism.)
AC-15	Electromagnets	Electromapnets for contactors, valves, solenold actuators

Choose the graph for the utilization category selected. (a graph pertaining to most Utilization Categories can be found in each contactor section.)
(3)

Locate the Rated Operational Current (le) along the bottom of the chart and follow the graph lines up to the intersection of the appropriate contactor's life-load curve.


Read the estimated contact life along the vertical axis.


- A comprehensive list of Utilization Categories can be found in each contactor section,
however, these are the primary categories used in most industrial motor applications.
- The life-load curves shown here are based on Sprecher+Schuh tests according to the requirements defined in IEC 60947-4-1. Since contact life in a given application is
dependent on environmental conditions and duty cycle, actual applicationRagettie4 of 363
may vary from that indicated by the curves shown here.


## Life-Load Curves

- Locate the Rated Operational Current (i) along the bottom of the chart and follow the graph lines up to the intersection of the appropriate contactor's life-load curve.
- Read the estimated contact Ilfe along the vertical axis.

NOTE: The life-load curves shown here are based on Sprecher+Schuh tests according to the requirements defined in IEC 60947-4-1. Since contact Iffe in any given application is dependent on environmental conditions and duty cycle, actual application contact life may vary from that indicated by the curves shown here.



## sprechert sthuh

## Life-Load Curves

- Locate the Rated Operational Current (y) along the bottom of the chart and follow the graph lines up to the intersection of the appropriate contactor's life-load curve.
- Read the estimated contact life along the vertical axis.


## AC-3

 (tio 575)
## NOTE: The life-load curves shown here are

 based on Sprecher+Schuh tests according to the requirements deflined in IEC 60947-4-1. Since contact life in any given application is dependent on environmental conditions and duty cycle, actual application contact life may vary from that indicated by the curves shown here.Technical Information CA7 Contactors - Life Load Curves

## Life-Load Curves



## Contact Life for Mixed Utilization Categories

## AC-3 and AC-4

In many applications, the utilization category cannot be defined as elther purely $\mathrm{AC}-3$ or AC-4. In those applications, the electrical life of the contactor can be estimated with the following equation:

$$
L_{\text {mined }}=L_{\text {sas }} /\left[1+P_{\text {sec }} X\left(L_{\text {sac }} / L_{\text {sec }}-1\right)\right] \text {, where: }
$$

$L_{\text {mieed }}$ Approximate contact life in operations for a mixed AC-3/AC-4 utilization category application.
$L_{a c}$
Approximate contact life in operations for a pure AC-3 utilization category (from the AC-3 life-load curve).
$L_{\text {act }}$
Approximate contact life in operations for a pure AC-4 utilization category (from the AC-4 life-load curve).
$P_{s c t} \quad$ Percentage of $A C-4$ operations


[^8]
## sprecher+

 Technical Information
## Operating Rates

The estimated contact life shown in the life-load curves is based on the standard operating rates shown in Table B below. For applications requiring a higher operating frequency, the maximum operating power ( $P_{n}$ in KW or HP) for a given contactor must be reduced to maintain the same contact life.
To find a contactor's maximum operating power, for an operating rate greater than shown in Table B, follow these guidelines:

1. Identify the appropriate curve for the contactor and utilization category from Table B.
2. Locate the appropriate Maximum Operating Rate curve on the following pages.
3. Locate the intersection of the curve with the application's operating rate ( $\mathrm{ops} / \mathrm{hr}$.) found on the vertical axis.
4. Read the percent of maximum operating power ( Pn ) of the contactor from the horizontal axis.
5. Multiply the \% maximum power by the standard power rating. Example: The contactor selected for an AC-4 utilization category application is a CA7-16 (10HP at 460V), however, the application requires an operating rate of $200 \mathrm{ops} / \mathrm{hr}$., compared to the standard operating rate of $120 \mathrm{ops} / \mathrm{hr}$. as shown in Table B.
6. Locate the $A C-4$ Maximum Operating Rate curve on the following pages.
7. Locate the intersection of $200 \mathrm{ops} / \mathrm{hr}$ on the CA7-16 curve. The data shows that the maximum operating power of the CA7-16 contactor in this application is $60 \%$.
8. Therefore, the maximum horsepower that can be switched by the CA7-16 contactor in this application is $6 \mathrm{HP}(0.60 \times 10 \mathrm{HP})$.

Table B - Standard Operating Rates by Contactor and Utilization Category

Contactor	AC-1 Max, ops/hr.	AC-2   Max, ops/hr.	AC-3 Max. ops/hr.	AC-4 Max. ops/hr.	AC-4 $\mathrm{E}_{4}$ for 200K ops. Max. ops/hr.
	Operating Parameters and Start Time				
			40\% Duty Cycle 250 ms 0	250 ms	250 ms
CA-9	1000	500	700	200	400
CA-12	1000	500	700	150	300
CA-16	1000	500	700	120	240
CA-23	1000	400	600	80	160
CA-30	1000	400	600	80	160
CA-37	1000	400	600	70	140
CA-43	1000	400	600	70	140
CA-60	800	300	500	70	140
CA-72	800	250	500	60	120
CA-25	600	200	500	50	140

[^9]Technical Information
CA7 Contactors - Operating Rates

## $\square 1$ Operating Rate Curves




Page 189 of 363

## sprecher +

Operating Rate Curves

AC-3
Squirrel-cage motors: starting, switching off motors during running; $\boldsymbol{u}_{\mathrm{e}}=\mathbf{2 3 0} \ldots . .460 \mathrm{VAC}$ Relative operating time $40 \%$, Starting time $t_{A}=0.25 \mathrm{~s}$


AC-4


Page 190 of 363

## Series CA7, GAU7, CAQ7, CNX, CAN7 and CAL7 (Contactors, Reversing Contactors \& Special Use Contactors)



Reversing Contactors, Capacitor Contactors \& Accessories (+...)

Contactors with...		Dim. [mm]	Dim. [inches]
auxiliary contact block-front mounting	2-, or 4-pole	$\mathrm{c} / \mathrm{c} 1+39$	$\mathrm{c} / \mathrm{c} 1+1-37 / 64$
(CAQ7) capacitor switching deck -front mounting	$\mathrm{c} / \mathrm{c} 1+39$	$\mathrm{c} / \mathrm{c} 1+1-37 / 64$	
auxiliary contact block-side mounting	1 -, or 2 pole	$\mathrm{a}+9$	$\mathrm{a}+23 / 64$
pneumatic timing module		$\mathrm{c} / \mathrm{c} 1+58$	$\mathrm{c} / \mathrm{c} 1+2-23 / 64$
electronic timing module	on coil terminal side	$\mathrm{b}+24$	$\mathrm{~b}+15 / 16$
reversing contactor w-mech.interlock	on side of contactor	$\mathrm{a}+9+\mathrm{a}$	$\mathrm{a}+23 / 64+\mathrm{a}$
mechanical latch	on coil terminal side	$\mathrm{c} / \mathrm{c} 1+61$	$\mathrm{c} / \mathrm{c} 1+2-31 / 64$
interface module	on coil terminal side	$\mathrm{b}+9$	$\mathrm{~b}+23 / 64$
surge suppressor	label sheet		
	marking tag sheet with clear cover		
marking tag adapter for V7 Terminals	$+5 . \mathrm{Page} 191+0 / 3863$		



## Series CA7 with Two Winding DC Coil





Page 194 of 363

## Series D7 Pilot Devices

22mm Design Saves Panel Space

Heavy Duty<br>Ratings

Modular Design Reduces Inventory

Order Assembled
or by Component

## Features

## TWO OPERATOR TYPES

- Plastic operator with captive front bezel
- Metal operator with die-cast zinc housing and captive shiny metal bezel


## LESS INVENTORY, MORE CHOICES

- Wide range of style choices
- Modular design for mix and match flexibility
- Endless configurations from core components


## QUICK, EASY INSTALLATION

- Tool-less mounting latch for quick assembly
- Anti-rotation tab for one person installation
- Snap-on back panel components

LONG ELECTRICAL \& MECHANICAL LIFE

- 10 million mechanical operations
- 10 million electrical cycles


## ENVIRONMENTAL RATINGS

- UL Type 4/4X/13, IP66 Sealing
- Chemical resistant industrial grade thermoplastic body
- Corrosion and UV resistant

Sprecher + Schuh's rugged D7 pilot devices offer maximum flexibility and a wide choice for all applications. This 22 mm line is aesthetically appealing and modularly designed to make assembly and interchangeability easy. The D7 operators are available in two different body styles to meet every industrial application need. Both operators exhibit a new lower profile stylish appearance while maintaining the rugged performance necessary for demanding environments.


## Fast Momilig



Complete Accessorfes
Supertor Design




Diaphragm Seal

- Flexes with operation - Dependent on lubrication






Dimensions* Apporximatey im milimeters)

## Non-lluminated and lluminated <br> Flush Push Button Operators (D7x-F) <br> 

Non-llluminated Guarded and Non-lliuminated Maintained Push Button Operators (07x-6 and D7x-FA)

lluminated and Non-lluminated Knob Selector Switch Operators (D7x-LS \& D7x-S)


Wlluminated and Man- Hemiminated
Momentary Mushroom Operators
40 mm and s.men ( $\mathrm{D7x} \mathrm{x}$-LMM \& D7x-MM)


\section*{| Operator | A |
| :---: | :---: |
| 40 mm | 39.8 |
| 60 mm | 59.8 |}

Wluminated and Non-Thuminated Twist-to-Release Operators $30 \mathrm{~mm}, 40 \mathrm{~mm}$, and 60 mm ( $07 \mathrm{x}-\mathrm{MT}$ )


Mushroom Key Release Operator 40 mm ( $07 x$-M0X)


Noc-lluminated 3-Position Mutr-function Operators (D7x-U3)

lluminated and Non-lluminated 2-Position Mutt-function Operators (07x-U2 8 07x-U2)


Togple Switch Operators (D7M-MM)


Reset Operators (D7x-R)


Selector Jog Operators (D7x-S.)


Potentiometer with Resstive Element (DTP- POT)


* For Monolithic Devices see the D7D Monolithic Fiyer
[CATALOGUE TB2-CAT]


# TEMBREAK 2 MOULDED CASE CIRCUIT BREAKERS 

TemBreak

INDUSTRIAL SWITCHGEAR \& AUTOMATION SPECIALISTS

Beyond the Standard ${ }^{\text {TM }}$

## (-) TERASAKI

## TemBreak

Simply....

## Beyond the Standard ${ }^{\text {TM }}$

## - Easy accessory fitting

- Double insulated MCCB
- 125 / 250 A adjustment flexibility
- Clear contact status
- Symmetrical design
- Elec / Mech endurance
- Low temperature rise
- Higher harmonic immunity

High insulation voltage

## TemBreak

MOULDED CASE CIRCUIT BREAKERS

MAIN CONTACT / TOGGLE STATUS VISIBILITY


TemBreak 2 MCCBs are marked with the IEC symbol indicating Direct Opening Action. The robust mechanism ensures that the force applied to the toggle is transmitted directly to the contacts.

Isolation and Machine Safety
Complies with direct action contact status requirements.


[^10]
## (-) TERASAKI <br> TemBreak

MOULDED CASE CIRCUIT BREAKERS

TEMBREAK 2

Positive OFF/ON operation.
The toggle mechanism is directly driven by the MCCB main contacts. The label logo below indicates this fact.


## Thermal Magnetic

125 A, 250 A and 400 A MCCBs

- MCCBs are fitted with adjustable thermal AND adjustable magnetic current adjustment dials


## Electronic MCCB range

- From 50 A to 630 A
- 2 frame sizes: 250 A and $400 / 630 \mathrm{~A}$



## TemBreak

MOULDED CASE CIRCUIT BREAKERS

## ELECTRICAL CHARACTERISTICS

According to IEC 60947-2, EN 60947-2, JIS C 8201-2, AS/NZS 3947-2, NEMA


Page 203 of 363
TemBreak 2 switch-disconnectors are available with the same frame dimensions as the MCCBs.

## TemBreak

## MOULDED CASE CIRCUIT BREAKERS

220						400										630		
E250	S250			H250	L250	E400	S400					H400		1400		E630	S630	
3,4	3,4			$\begin{array}{\|l\|} \hline 3,4 \\ \hline N J \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3,4 \\ \hline \mathrm{NJ} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3,4 \\ \hline \text { NJ } \end{array}$	3,4					3,4		3,4		$\begin{array}{\|l\|} \hline 3,4 \\ \hline \mathrm{NE} \\ \hline \end{array}$	3,4	
NJ	NJ	GJ	PE				CJ	NJ	NE	GJ	GE	NJ	NE	NJ	NE		CE	GE
-	7.5	7.5	20	20	25	-	15	20	20	20	20	35	35	50	50	10	20	20
15	25	50	50	85	125	22	30	45	30	50	50	85	85	125	125	25	45	50
25	36	65	70	125	200	25	36	50	50	70	70	125	125	200	200	36	50	70
35	65	85	125	150	200	35	50	85	85	100	100	150	150	200	200	50	85	100
25	40	40	-	40	40	25	40	40	-	40	$\checkmark$	40	-	40	-	-	-	-
-	7.5	7.5	15	15	20	-	15	15	15	15	15	35	35	50	50	10	15	15
12	25	25	50	65	100	22	30	45	45	45	45	65	65	100	100	25	45	45
19	36	36	70	85	150	25	36	50	50	50	50	85	85	150	150	36	50	50
27	65	85	125	150	150	35	50	85	85	85	85	150	150	150	150	50	85	85
19	40	40	-	40	40	19	40	40	-	40	-	40	-	40	-	-	-	-
10	22	25	35	45	65	15	22	25	25	30	30	45	45	65	65	15	25	30
35	65	85	125	150	200	35	50	85	85	100	100	150	150	200	200	50	85	100



Page 204 of 363

## INTERNAL ACCESSORIES

One size fits all!


## Smart Accessories



## SIMPLY SAFE

- Common accessory range from 125AF to 630AF
- Double insulated MCCB allowing accessory fitting while "live"
- TemBreak 2 accessory types reduce part numbers, stock, make supply more customer friendly, reduce lead times
- All accessories meet IEC 60 947-5, AS/NZS 3947-5
- Endurance tested accessories - not normally done by many manufacturers

Page 205 of 363

## (9) TERASAK <br> TemBreak

## IIOULDED CASE CIRCUIT BREAKERS



EXTERNAL ACCESSORIES

ransfer switch ink interlock

Allows for handles and motors to be mounted


Transfer switch Wire interlock

Horizontal, vertical or diagonal MCCB mounting allows for handles and motors to be mounted

Simple to fit


TemPlug
A simple plug in method for MCCBs 125 A to 630 A


## Motor fitting

Simple, quick installation in seconds requiring no tools on 125 A / 250 A MCCBs. Larger MCCBs only require a screwdriver


## Variable and fixed depth

 handlesimple, quick installation in seconds requiring no tools on 125 A / 250 A MCCBs, Larger MCCBs only require a screwdriver. IP 54 or IP 65 handles


Terminal covers
Slide-on ariagelich place, no tools required


Plug in MCCB
Safety interlock standard to maximise safety


## AUSTRALIA <br> www.nhp.com.au

## VICTORIA

MELBOURNE HEADQUARTERS
43-67 River Street
Richmond Victoria 3121
Telephone +61 394292999
Fax +61 394291075
Email mel-sales@nhp.com.au

## NATIONAL DISTRIBUTION AND

 MANUFACTURING CENTRE104-106 William Angliss Drive Laverton North Victoria 3026
Telephone +61 394292999
Fax +61393682997
Email mel-sales@nhp.com.au

## TASMANIA

HOBART
2/65 Albert Road
Moonah Tasmania 7009
Telephone +61 362289575
Fax +61 362289757
Email tas-sales@nhp.com.au

## QUEENSLAND

BRISBANE
16 Riverview Place
Murarrie Queensland 4172
Telephone +6173909 4999
Fax +61733999712
Email bris-branch@nhp.com.au
TOWNSVILLE
62 Leyland Street Garbutt Queensland 4814 Telephone +61747790700 Fax +61747751457
Email tsv-branch@nhp.com.au

## ROCKHAMPTON

14 Robison Street Rockhampton Queensland 4701
Telephone +6174927 2277
Fax +61749222947
Email rkh-branch@nhp.com.au
TOOWOOMBA
Cnr Carroll St \& Struan Crt
Toowoomba Queensland 4350
Telephone +61 746344799
Fax +61746331796
Email too-branch@nhp.com.au

## CAIRNS

2/1 Bramp Close
Portsmith Queensland 4870
Telephone +61740356888
Fax +61740356999
Email cns-branch@nhp.com.au

## NEW SOUTH WALES

SYDNEY
30-34 Day Street North
Silverwater New South Wales 2128
Telephone +61 297483444
Fax +61 296484353
Email syd-branch@nhp.com.au
NEWCASTLE
575 Maitland Road
Mayfield West New South Wales 230
Telephone +6124960 2220
Fax +61 249602203
Email ncl-branch@nhp.com.au

## SOUTH AUSTRALIA

ADELAIDE
36-38 Croydon Road
Keswick South Australia 5035
Telephone +61882979055
Fax +61883710962
Email adl-branch@nhp.com.au
WESTERN AUSTRALIA
PERTH
38 Belmont Ave
Rivervale Western Australia 6103
Telephone +6189277 1777
Fax +61892771700
Email per-branch@nhp.com.au

## NORTHERN TERRITORY

DARWIN
3 Steele Street
Winnellie Northern Territory 0820
Telephone +61 889472666
Fax +61 889472049
Email dar-branch@nhp.com.au

## NEW ZEALAND

 www.nhp-nz.comAUCKLAND
7 Lockhart Place
Mt Wellington Auckland
Telephone +6492761967
Fax +64 92761992
Email sales@nhp-nz.com
CHRISTCHURCH
85 Gasson Street
Sydenham Christchurch
Telephone +64 33774407
Fax +64 33774405
Email sales@nhp-nz.com

## D Series

## Data Radio Modem

## DR900 - Digital Radios

Trio DataCom's D Series are high performance cost effective data radio modems designed as an alternative to hard wired data transport. Transmit your data over radio with a fully integrated data radio modem designed for fixed point-to-point and point-to-multipoint applications.

The D Series is available as either a half duplex or a full duplex* $853-929 \mathrm{MHz}+/-5 \mathrm{MHz}$ radio, including a fully integrated $4800 / 9600 \mathrm{bps}$ data modem. These units operate equally well in either a stand-alone configuration, or as part of a large communication system.


This complete package forms an attractively priced product for the transmission of data over radio in fixed applications thus providing a viable alternative to costly networks of buried media.

## Features:

* Fully integrated half and full duplex ${ }^{\star}$ radio and modem
* Transparent and non-intrusive remote diagnostic facilities (Optional)
* Inbuilt data routing and multiplexing capabilties, multi-port operation
* Simultaneous delivery of multiple protocols using Trio DataCom's unique MultiStream ${ }^{T M}$ technology
* Digital Signal Processing (DSP) modem
* Selectable 300-19,200 bps asynchronous RS232 user interface
* Built-in antenna diplexer*
* Integrated supervisory data channel
* Unique collision avoidance facility, for unsolicited report-byexception
* Software selectable configuration parameters
* Internal repeater operation
* Housed in an attractive yet robust metal enclosure
* Range of ancillary equipment - full duplex base / repeater stations and hot-standby base station


## Radio

The D Series radio has been designed to meet worldwide regulatory guidelines, including FCC, and has adjustable power output up to 5 Watts. This fully synthesised radio is programmable in $6.25 / 7.5 \mathrm{kHz}$ increments to accommodate various worldwide channel spacings. The receiver section has a wide tuning range with an excellent signal-to-noise ratio. Exceptional frequency stability is achieved by intelligent microprocessor controlled temperature compensation. An extended operating temperature range of -30 to $60^{\circ} \mathrm{C}$ makes the unit ideal for commercial and industrial applications.

## Modem

The in-built modem includes a custom DSP developed for data communications over narrow band radio systems.

This system offers minimum occupied bandwidth and optimal data integrity (using the standard HDLC protocol with CCITT CRC error detection) inhibiting the transfer of any rogue unwanted data caused by interference or squelch headers / tails.
The Trio DataCom DSP provides:

- the interface between the asynchronous RS232 user communication and the synchronous radio link layer.
- an inbuilt multipexer / router which allows for simultaneous transportation of multiple protocols over the one radio network. Page 208 of 363


## Applications

The D Series is ideal for use in a variety of sophisticated and critical SCADA and Distributed Information Systems, where complex routing of multiple data protocols and remote diagnostics and wireless network management are important factors.
Remote units and a number of full duplex base station / repeater models, suitable for a variety of requirements, make up the D Series. At the top of the range, the DH model is a genuine, duplicated hot standby base for systems where nothing short of ultra reliability is acceptable.
Telemetry Systems - Utilities (Gas, Water, Electricity), Railways, Mining, Telecommunications, Industry. Where network status, system control, data collection and fault conditions are required.

Transaction Processing - Point of Sale Credit Terminals, Stock Control, Direct Order, Banks, Building Societies, Stock Brokers, Gambling Organizations, etc, where Point of Sale, inventory, credit, or transaction data requires collection and distribution.

Common Carrier Data Services - The high speed, low cost and spectrum efficiency of this device make it well suited to all forms of common carrier data networking.
Alarm Monitoring - Fire, Power, Intrusion \& Essential Services Alarm Reporting.

## designs products \& Solutions

## D Series - Data Radio Modem 1900 - Digital Radios

## Configuration

Configuration using Trio's D Series programming software (DRProg) is completely Windows ${ }^{\circ}$ based for all parameters, such as; frequency, transmitter power, digital mute level, PTT timer, system configurations, port settings.

## Network Management \& Diagnostic (Optional)

A large distributed network, or even a simple point-to-point link, requires comprehensive fault reporting and diagnostics to ensure a high level of availability. Trio D Series data radio modem products offer sophisticated in-built diagnostics using the optional TView ${ }^{\text {TM }}$ software. This capability allows the customer to remotely monitor and maintain their system, minimising the likelihood of failures, by pointing out component degradation and decreasing the time to diagnose and repair. There is no necessity to visit the master tion or interfere with the host data integrity, other than additional a transfer. For further details, consult the TView data sheet.

## Specifications:

RADIO	
Frequency Range**	$853-929 \mathrm{MHz}+/-5 \mathrm{MHz}$
Channel Selection	Fully programmable
Frequency Splits	$76 \mathrm{MHz} \mathrm{Tx/Rx}$ frequency split available including simplex
Frequency Stability	土1ppm ( -10 to $60^{\circ} \mathrm{C}$ ambient, opt. -30 to $70^{\circ} \mathrm{C}$ ) Higher frequency stability options are available due to intelligent processor controlled temperature compensation
Aging	<=1ppm/annum
Half / Full Duplex	half duplex or full duplex*
Data Rate (ri)	4800 / 9600 bps
Configuration	All configuration via Windows software
TRANSMITTER	
Tx Power	$5 \mathrm{~W}(+37 \mathrm{dBm})$ or $1 \mathrm{~W}^{*}(+30 \mathrm{dBm})$ (software programmable)
odulation	Narrow band digital filtering binary GMSK
ccupied Bandwidth	Meets various international regulatory guidelines for point-to-point and point-to-multipoint
Tx Attach Time	$<1 \text { mSecond }$
Timeout Timer	Programmable 1-255 seconds
Tx Spurious	$<=-65 \mathrm{dBm}$
RECEIVER	
Sensitivity	-115 dBm for 12 dB SINAB
Blocking	$>75 \mathrm{~dB}$ (EIA)
Intermodulation	$<=70 \mathrm{~dB}(\mathrm{EIA})$
Spurious Response	$<=70 \mathrm{~dB}$ (EIA)
Select. and Desense	70 dB (EIA)
AFC Tracking	$\pm 3 \mathrm{kHz}$ tracking @ -90 dBm/attack time $<10 \mathrm{mS}$
Mute	Programmable digital mute

## Collision Avoidance

A unique fully integrated, yet independent, low speed supervisory data channel embedded within the primary bit-stream provides collision avoidance facilities which are transparent to the user. The use of this feature makes this product ideally suited for reliable, error free data transmissions between stations in high density point-to-multipoint data networks.

The benefits include:

- Multiple asynchronous applications operating on the one radio channel.
- Enhanced performance of report-by-exception networks.


## Related Products

* Base Stations (DB900)
* Hot Standby Base Station (DH900)
* 9 Port Stream Router Multiplexer (MSR)
* Network Management and Diagnostic Software (TView ${ }^{\text {TM }}$ )
* D Series Programming Software (DRProg ${ }^{\text {M }}$ )

CONNECTIONS				
User Data Port	$2 \times$ DB9 RS232 female ports   SMA female bulkhead (optional N)   2 pin locking. Mating connector supplied			
Antenna				
Power		$\quad$	MODEM	Full duplex, DB9 RS232, DCE (modem), 300-   19,200   handshaking asynchronous, hardware/software   Full duplex, DB9 RS232, 300-9600 bps   asynchronous, software handshaking
:---	:---			
Data Serial Port\#1				

- Avallable for DR900 full duplex 1 W version ( $853 \pm 5 \mathrm{MHz} / 929 \pm 5 \mathrm{MHz}$ )

Local regulatory conditions may determine the suitablity of indvidual versions in different countries. It is the responsibility of the buyer to conflrm these regulatory condilions. Performance data indicates typical values related to the described unit. - Copyright 2004 Trio DataCom Pty led All right resened lout 1100

## VEGABAR 52

## Profibus PA

## Pressure transmitter with CERTEC ${ }^{\circledR}$ measuring cell



## Area of application

The VEGABAR 52 pressure transmitter can be used universally for measurement of gases, vapours and liquids. Also substances such as sand are not problem for the abrasion-resistant ceramic measuring cell. The VEGABAR 52 is an economical solution for a multitude of applications in all areas of industry.

## Advantages

- High plant availability through maximum overload and vacuum resistance of the ceramic measuring cell
- Measurement down to the last drop through extremely small measuring ranges with high accuracy.
- Low costs for maintenance thanks to wear-free ceramic measuring cell


## unction

The heart of the pressure transmitter is the pressure measuring cell that transforms pressure into an electrical signal. This pressure-dependent signal is converted into a standard output signal by the integrated electronics.
The sensor element is the CERTEC ${ }^{\oplus}$ measuring cell with excellent longterm stability and high overload resistance. The CERTEC ${ }^{\text {® }}$ measuring cell is also equipped with a temperature sensor. The temperature value can be displayed via the indicating and adjustment module or processed via the signal output.

Measuring ranges	$\begin{aligned} & -1 \ldots+72 \mathrm{bar} /-100 \mathrm{kPa} \ldots+7200 \mathrm{kPa} \\ & (-14.5 \ldots+1044 \mathrm{psig}) \end{aligned}$
Smallest measuring range	+0.1 bar/+10 kPa (+1.45 psig)
Deviation	$<0.075 \%$, optionally up to $<0.05 \%$
Process fitting	Thread G1⁄2 (EN 837), thread from G1 $1 / 2$ (DIN 3852-A), flanges from DN 25 or ANSI $1^{\prime \prime}$, fittings for the food processing and paper industry
Process temperature	$-40 \ldots+150^{\circ} \mathrm{C}\left(-40 \ldots+302{ }^{\circ} \mathrm{F}\right)$
Ambient, storage and transport temperature	$-40 \ldots+80^{\circ} \mathrm{C}\left(-40 \ldots+176{ }^{\circ} \mathrm{F}\right)$
Betriebsspannung	$9 \ldots 32 \mathrm{~V}$ DC


#### Abstract

Materlals The wetted parts of the instrument are made of 316L, PVDF, Hastelloy, C4-plated or Sapphire-ceramic ${ }^{\oplus}$. The process seal is available in FKM, FFKM as well as EPDM. You will find a complete overview of the available materials and seals in the "configurator" on our homepage under www.vega.com/configurator.


## Housing versions

The housings are available as single chamber or double chamber version in plastic, stainless steel or aluminium.
They are available in protection ratings up to IP 68 ( 25 bar) with external electronics.

## Electronics versions

The instruments are available in different electronics versions. Apart from the two-wire electronics with $4 \ldots 20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA} / \mathrm{HART}$, two purely digital versions with Profibus PA and Foundation Fieldbus are available.

## Approvals

The instruments are suitable for use in hazardous areas and are approved e.g. according to ATEX and IEC. The instruments have also different ship approvals such as e.g. GL, LRS or ABS.
You can find detailed information on the existing approvals in the "configurator" on our homepage under www.vega.com/configurator.

Page 210 of 363

## Bedienung

Die Bedienung des Gerätes erfolgt über das optional einsetzbare Anzeige- und Bedienmodul PLICSCOM oder über einen PC mit der Bediensoftware PACTware und entsprechendem DTM. Eine alternative Bedienmöglichkeit ist das herstellerspezifische Bedienprogramm PDM.


Elektrischer Anschluss

lektronik- und Anschlussraum Einkammergehãuse

[^11]Details zum elektrischen Anschluss finden Sie in der Betriebsanleitung des Gerätes auf unserer Homepage unter www.vega.com/downloads.

## Dimensions


imensions VEGABAR 52
1 Threaded version G1⁄2 A (manometer connection EN 837)

2 Threaded version G1 $1 / 2$ A
3 Flange version DN 50

## Information

You can find further information about the VEGA product line on our homepage www.vega.com.
In the download section under www.vega.com/downloads you'll find free operating instructions, product information, brochures, approval documents, instrument drawings and much, much more.
There, you will also find GSD and EDD files for Profibus PA systems as well as DD and CFF files for Foundation Fieldbus systems.

## Instrument selection

With the "finder" you can select the most suitable measuring principle for your application: www.vega.com/finder.
You can find detailed information on the instrument versions in the "configurator" on our homepage under www.vega.com/configurator.

## Contact

You can find the VEGA agency serving your area on our homepage www.vega.com.

## VEGADIS 62

External indicating and adjustment unit without additional external energy


## Application area

VEGADIS 62 is suitable for measured value indication and adjustment of standard sensors with HART protocol. The instrument is looped directly into the $4 \ldots 20 \mathrm{~mA}$ signal line at any location. A separate external power supply is not required. VEGADIS 62 also operates exclusivaly as an indicating instrument in a 4 ... 20 mA current loop.

## Your benefit

- Minimum time and cost expenditure for on-site parameter adjustment via clearly arranged display with simple 4-key adjustment
- Reliable and easy adjustment of the HART sensors through clear text indication with graphic support


## Function

VEGADIS 62 measures the current in the current loop and indicates the measured value in digital and quasianalogue format. The instrument operates in different modes. In basic mode at $4 \ldots 20 \mathrm{~mA}$, the instrument can be scaled individually via the adjustment keys. In HART standard and HART multidrop mode, the instrument listens continuously to the HART communication between control system and sensor. It adapts itself automatically to modifications of unit and/or measuring range.

Technical data	
General data	
Materials	
- Housing	plastic PBT, Alu die-casting, 316L
- Inspection window in housing cover for indicating and adjustment module	Polycarbonate (UL-746-C listed)
- Ground terminal	316TV/316L
Weight approx.	0.35 kg ( 0.772 lbs )
Supply circuit	
Voltage supply and data transmission	via the signal circuit
Current range	$3.5 \ldots 22.5 \mathrm{~mA}$
Indicating and adjustment module	
Display	
- Principle	LCD
- Measured value presentation	7 segments, 5 -digit, height of digits $9 \mathrm{~mm}(0.354 \mathrm{in})$, indication range -99999 ... 99999
- Bar graph	20 segments
- Info line	14 segments, 6 -digit, height of digits 5.5 mm ( 0.217 in )
Adjustment elements	4 keys
Materials	
- Housing	ABS
- Inspection window	Polyester foil
Ambient conditions	
Amblent temperature	$-20 \ldots+70^{\circ} \mathrm{C}\left(-4 \ldots+158^{\circ} \mathrm{F}\right)$
Storage and transport temperature	$-40 \ldots+80^{\circ} \mathrm{C}\left(-40 \ldots+176{ }^{\circ} \mathrm{F}\right)$
Electromechanical data	
Cable gland	$2 \times$ cable entry M20 $\times 1.5$ (cable: © $5 \ldots 9 \mathrm{~mm}$ )
Spring-loaded terminals for wire cross-section	
- Massive wire, cord	$0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (AWG $24 . . .14$ )
- Stranded wire with end sleeve	$0.2 \ldots 1.5 \mathrm{~mm}^{2}$ (AWG $24 . . .16$ )
Electrical protective measures	
Protection rating	
- Housing plastic	IP 66/1P 67
- Housing Aluminium, stainless steel	IP 66/IP 68 (0.2 bar)

## Approvals

You can find detailed information on the existing approvals in the "configurator' on our homepage under wowwega.com/configurator.

Page 212 of 363

## Adjustment

The adjustment of VEGADIS 62 is menu-controlled via four keys on the front and one LC display.


Indicating and adjustment elements
1 Status information (HART mode, unit lock, warning or error information) 2 Unit and information line
3 Digital measured value indication
3 Bar graph for quasianalogue measured value indication
3 Adjustment keys

## Electrical connection



## Wiring plan VEGADIS 62

1 To the sensor
2 For power supply
3 For connection cable to indicating and adjustment module


Installation example VEGADIS 62 in conjunction with an individual sensor

## 1 Sensor

2 VEGADIS 62
3 HART resistance $>150 \Omega$ (necessary with low impedance power supply)
4 Voltage supply/Processing
You can find details of the electrical connection in the operating instruction of the instrument on www.vega.com/downloads.

## Dimensions



## Info

You can find further information about the VEGA product line on our homepage www.vega.com.
In the download section under www.vega.com/downloads you'll find dage 213 of 363

## Pressure measurement

## -ocess pressure/Hydrostatic

VEGAWELL 52


## Product Information

Page 214 of 363


## Contents

1 Description of the measuring principle ..... 3
2 Type overview ..... 4
3 Mounting instructions ..... 5
4 Electrical connection
4.1 General requirements ..... 7.
4.2 Power supply ..... 7
4.3 Connection cable. ..... 7
4.4 Cable screening and grounding ..... 7
4.5 Wiring plan VEGAWELL 52-4... 20 mA ..... 7
4.6 Wiring plan VEGAWELL $52-4 \ldots 20 \mathrm{~mA} / \mathrm{HART}$ - Pt 100 ..... 8
5 Operation
5.1 Overview ..... 9
5.2 Adjustment with PACTware ..... 9
6 Technical data ..... 10
7 Dimensions. ..... 14
8 Product code ..... 15

## Take note of safety instructions for Ex applications

Please note the Ex specific safety information which you can find oñour homepage www.vega.comlservicesidownloads and which comes with every instrument. In hazardous areas you should take note of the appropriate regulations, conformity and type approval certificates of the sensors and power supply units. The sensors must only be operated on intrinsically safe circuits. The permissible electrical values are stated in the certificate.

## 1 Description of the measuring principle

## Measuring principle

VEGAWELL 52 pressure transmitters work according to the hydrostatic measuring principle, which functions independently of the dielectric properties of the product and is not influenced by foam generation.

The sensor element of VEGAWELL 52 is the dry ceramic-capacitive CERTEC ${ }^{\oplus}$ measuring cell in two sizes. Base element and diaphragm consist of high purity sapphire-ceramic ${ }^{\oplus}$.

The hydrostatic pressure of the product causes via the diaphragm a capacitance change in the measuring cell. This capacitance change is converted into an appropriate output signal.


Fig. 1: Configuration of the CERTEC ${ }^{\text {® }}$ measuring cell with VEGAWELL 52
1 Diaphragm
2 Soldered glass bond
3 Base element
The advantages of the CERTEC ${ }^{(8}$ measuring cell are:

- Very high overload resistance
- No hysteresis
- Excellent long-term stability
- Completely front flush installation
- Good corrosion resistance
- Very high abrasion resistance


## Wide application range

VEGAWELL 52 is suitable for level measurement in deep wells and ballast tanks as well as for gauge measurement in open flumes. Typical media are drinking water and waste water as well as water containing abrasive substances. All signal outputs are available in $4 \ldots 20 \mathrm{~mA}$ and $4 \ldots 20 \mathrm{~mA} / \mathrm{HART}$ - Pt 100.

In the 4 ... $20 \mathrm{~mA} / \mathrm{HART}$ - Pt 100 version, a temperature sensor Pt :100 in four-wire technology is integrated in the transducer. Power supply or processing are carried out via an external temperature transducer.

Type overview

## 2 Type overview

VEGAWELL 52
is

Measuring cell:	CERTEC ${ }^{\oplus}$
Media:	drinking water and waste water
Process fitting:	Straining clamp, screw connection, thread
Material process fitting:	
Material, suspension cable: PE, PUR, FEP	

Material transmitter:
316L, 1.4462 (Duplex), each also with PE coating, PVDF, Titanium
Diameter transmitter:
depending on material and version at least 22 mm
Measuring range:
Process temperature:
$0 \ldots 0.1$ bar up to $0 \ldots 25$ bar

Deviation:
Signal output:
$2 \ldots+80^{\circ} \mathrm{C}\left(-4 \ldots+176^{\circ} \mathrm{F}\right)$

Operation:
$4 \ldots 20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA} / \mathrm{HART}$
depending on the version via PACTware/PC

## 3 Mounting instructions

## Mounting position

The following illustration shows a mounting example for VEGAWELL 52. The VEGA price list contains suitable mounting brackets under the section Accessories. With these parts, standard mounting arrangements can be realised quickly and reliably.


Fig. 3: VEGAWELL 52 in a pump shaft with VEGABOX 02
VEGAWELL 52 must be mounted in a calm area or in a suitable protective tube. This avoids lateral movements of the transmitter and the resulting corruption of measurement data.

## Note:

As an alternative to fixing the transmitter; the use of a measuring instrumentholder from VEGA's line of mounting accessories is recommended:

Beside the connection and suspension cables, the suspension. cable also contains a capillary for atmospheric pressure compensation. All versions can be shortened on site.

With VEGAWELL 52 , the electronics is completely integrated in the transmitter. The cable end can be lead directly to a dry connection compartment: Pressure compensation is then carried out via the filter element of the capillaries.

## ?

## Note:

The pressure compensation housing VEGABOX 02 is recommended for connecting VEGAWELL 52.

It contains a high-quality ventilation filter and terminals. A protective cover is optionally available for use outdoors.

## Mounting versions

The following illustrations show the different mounting versions depending on the instrument type.

Mounting with straining clamp


Fig. 5: Straining clamp
1 Suspension cable
2 Suspension opening
3 Clamping jaws

Mounting with screw connection


Fig. 6: Screw connection
1 Suspension cable
2 Seal screw
3 Cone bushing
4 Sealcone
5 Screw connection
6 Seal

Page 218 of 363

## Mounting with housing and thread



Fig．7：Housing with thread G11／2 A

## 4 Electrical connection

### 4.1 General requirements

The supply voltage range can differ depending on the instrument version. You can find exact specifications in chapter "Technical data".

The national installation standards as well as the valid: safety regulations and accident prevention rules must be observed.

In hazardous areas you should take note of the appropriate regulations, conformity and type approval certificates of the sensors and power supply units.

### 4.2 Power supply

Supply voltage and current signal are carried on the same twowire cable. The requirements on the power supply are specified in chapter "Technical data".

The VEGA power supply units VEGATRENN 149AEx, VEGASTAB 690; VEGADIS 371 as well as VEGAMET signal conditioning instruments are suitable for power supply. When one of these instruments is used, a reliable separation of the supply circuits from the mains circuits according to DIN VDE 0106 part 101 is ensured.

### 4.3 Connection cable

## In general

An outer diameter of $5 \ldots 9$ mmensures the seal effect of the cable entry. If electromagnetic interference is expected, screened cable should be used for the signal lines.

The sensors are connected with standard two-wire cable without screen.


In Ex applications, the corresponding installation regulations must be noted for the connection cable.

### 4.4 Cable screening and grounding

If screened cable is necessary, the cable screen must be connected on both ends to ground potential. If potential equalisation currents are expected, the connection on the evaluation side must be made via a ceramic capacitor (e.g. $1 \mathrm{nF}, 1500 \mathrm{~V}$ ).

### 4.5 Wiring plan VEGAWELL 52-4... 20 mA <br> Direct connection



Fig. 8: Wire assignment, suspension cable
1 blue (-): to power supply or to the processing system
2 brown (+): to power supply or to the processing system
3 Shielding
4 Breather capillaries with filter element

## Connection via VEGABOX 02



Fig. 9: Terminal assignment VEGABOX 02
1 To power supply or the processing system
2 Shielding

Connection via housing


Fig. 10: Terminal assignment of the housing

1. To power supply or the processing system.

2 Shielding ${ }^{2}$

[^12]Page 220 of 363

### 4.6 Wiring plan VEGAWELL 52-4... $20 \mathrm{~mA} /$ HART - Pt 100

## Direct connection


Fig. 11: Wire assignment, connection cable
1 blue (-): to power supply or to the processing system
Brown (+): to power sujply or to the processing system White: for processing of the integrated Pt 100 (power supply)
Yellow: for processing of the integrated Pt 100 (measurement)
5 Red: for processing of the integrated Pt 100 (measurement)
6 Black: for processing of the integrated Pt 100 (power supply)
7 Shielding
8 Breather capillaries with filter element

## Connection via VEGABOX 02



Fig. 12: Terminal assignment VEGABOX 02
1 To power supply or the processing sysiem (signal pressure transmitter)
2 To power supply or the processing system (connection cables resistance thermometer Pt 100
3 . Shielding ${ }^{3)}$

Connection via VEGABOX 02 with integrated temperature sensor


Fig. 13: Terminal assignment VEGABOX 02
1 To power supply or the processing system (signal pressure tranșmitter)
2 For voltage supply or to processing system (resistance thermometer Pt 100)
3 Shielding ${ }^{4}$

Connection via housing


Fig. 14: Terminal assignment of the housing
1 Topower supply or the processing system (signal pressure transmitter)
2 For voltage supply or to processing system (resistance thermometer Pt 100) 3 Shielding ${ }^{51}$

[^13]Page 221 of 363

## 5 Operation

### 5.1 Overview

VEGAWELL 524 ... 20 mA
VEGAWELL 52-4 ... 20 mA has no adjustment options.

VEGAWELL 524 ... $20 \mathrm{~mA} /$ HART - Pt 100

- Adjustment software according to FDT/DTM standard, e.g. PACTware and PC
- HART handheld


### 5.2 Adjustment with PACTware

Connecting the PC to the signal cable


Fig. 15: Connection of the PC to VEGABOX 02 or communication resistor
1 PC with PACTware
2 RS232 interface (with VEGACONNECT 3), USB interface (with VEGACONNECT 4)
3 VEGACONNECT 3 or 4
4 Communication resistor $250 \Omega$
5. Power supply unit

## Necessary components:

- VEGAWELL 52
- PC with PACTware and suitable VEGA DTM
- VEGACONNECT with HART adapter cable
- HART resistor approx. $250 \Omega$
- Power supply unit


## Note:

W With power supply units with integrated HART resistance (internal resistance approx. $250 \Omega$ ), an additional external resistance is not necessary (e. g. VEGATRENN 149A, :VEGAMET 381/624/625, VEGASCAN 693). In such cases, VEGACONNECT can be connected parallel to the $4 \ldots 20 \mathrm{~mA}$ cable:

## 6 Technical data

```
Materials and weights
 Materials, wetted parts
 - Transmitter 316L,316L with PE coating, 1.4462 (Duplex), 1.4462 with PE coating,
 PVDF,Titanium
 - Diaphragm sapphire ceramic }\mp@subsup{}{}{1010
 - Measuring cell seal
 - Suspension cable
 - Cable gland on the transmitter
 - Process fitting
 - Straining clamp
 - Unassembled screw connection
 - Threaded connection on the housing
 Materials, non-wetted parts
 - Housing plastic PBT (Polyester), 316L
 Weight approx.
 - Basic weight 0.8 kg (1.764 fbs)
 - Suspension cable . . 0.1 kg/m (0.07 lbs/ft)
 - Straining clamp
 - Screw connection
 - Plastic housing
 - Stainless steel housing
 0.2 kg (0.441 lbs)
 0.4 kg (0.882 lbs)
 0.8 kg (1.764 lbs)
 1.6 kg (3.528 lbs)
Input variable
\begin{tabular}{ll}
Measured value & Level \\
Measuring range & see product code \\
Recommended max. turn down & \(10: 1\)
\end{tabular}
```


## Output variable

```
\(4 \ldots 20 \mathrm{~mA}\)
Output signal \(4 \ldots 20 \mathrm{~mA}\)
Signal resolution
Failure signal
\(2 \mu \mathrm{~A}\)
Max. output current
\(<3.6 \mathrm{~mA}\)
Run-up time
Step response time
22 m
2 s
Fulfilled NAMUR recommendations
100 ms (ti: 0 s, \(0 . \mathrm{i} .63 \%\))
4 ... 20 mA/HART - Pt 100
NE 43
Output signal
Signal resolution
Failure signal
Max. output current
Run-up time
Step response time
Fulfilled NAMUR recommendations
\(4 . . .20 \mathrm{~mA} H\) HART
```

$2 \mu A$
< $3.6 \mathrm{~mA} ; 20: 5 \mathrm{~mA} ; 22 \mathrm{~mA}$ i unchanged (adjustable via PACTware)
22 mA
15 s
200 ms (ti: $0 \mathrm{~s}, 0 \therefore 63 \%$ )
NE 43

Additional output parameter - temperature
integrated resistance thermometer
Pt 100 according to DIN EN 60751
Range
Resolution

## Deviation for 4 ... 20 mA version ${ }^{5)}$

Specifications refer to the set span. Turn down (TD) = nominal measuring range/set span.
Deviation with version $<0.2 \%$

- Turn down $1: 1$ up to $5: 1$
$<0.2 \%$
- Turn down > 10: 1 $<0.04 \% \times$ TD

5) Determined according to the limit point method according to IEC 60770, incl. non-linearity, hysteresis and non-repeatability.

Page 223 of 363

Deviation with version < 0.1 \%

- Turn down 1:1 up to $5: 1<0.1 \%$
- Turn down > $10: 1$

$$
<0.02 \% \times \text { TD }
$$

## Deviation for version 4 ... 20 mA/HART - Pt 100 ${ }^{\text {¹ }}$

Applies to digital HART interface as well as to analogue current output $4 \ldots 20 \mathrm{~mA}$. Specifications refer to the set span. Turn down (TD) is the relation nominal measuring range/set span.

Deviation with version < 0.2 \%

- Turn down 1 : 1 up to 5 : 1

$$
\begin{aligned}
& <0.2 \% \\
& <0.04 \% \times \text { TD }
\end{aligned}
$$

- Turn down > 10 :

Deviation with version < $0.1 \%$

- Turn down 1 : 1 up to $5: 1<0.1 \%$
- Turn down $>10: 1 \quad<0.02 \% \times$ TD

Influence of the product or ambient temperature
Applies to digital HART interface as well as to analogue current output $4 \ldots 20 \mathrm{~mA}$. Specifications refer to the set span. Turn down (TD) is the relation nominal measuring range/set span.

Average temperature coefficlent of the zero signal
In the compensated temperature range of $0 \ldots+80^{\circ} \mathrm{C}\left(+32 \ldots+176^{\circ} \mathrm{F}\right)$, reference temperature $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.
Average temperature coefficient of the zero signal

- Turn down 1: 1
$<0.05 \% / 10 \mathrm{~K}$
- Turn down 1: 1 up tọ 5 : 1
< $0.1 \% / 10$ K
- Turn down > 10:1 $<0.15 \% / 10 \mathrm{~K}$

Outside the compensated temperature range
Average temperature coefficient of thee zero signal

- Turn down 1 : 1
typ. $<0.05 \% / 10 \mathrm{~K}$


## Long-term stability (similar to DIN 16086, DINV 19259-1 and IEC 60770-1)

Applies to digital HART interface as well as to analogue current output $4 \ldots 20 \mathrm{~mA}$. Specifications refer to the set span. Turn down (TD) is the relation nominal measüring range/set span.
Long-term drift of the zero signal
$<(0.1 \% \times$ TD)/year

## Ambient conditions

Ambient temperature

- Connection cable PE
$-40 \ldots+60^{\circ} \mathrm{C}\left(-40^{\circ} \ldots+140^{\circ} \mathrm{F}\right)$
$-40 \ldots+85^{\circ} \mathrm{C}\left(-40 \ldots+185^{\circ} \mathrm{F}\right)$
$-20 \ldots+80^{\circ} \mathrm{C}\left(-4 \ldots+176^{\circ} \mathrm{F}\right)$


## Process conditions

## Process pressure

Max. process pressure, , transmitter ${ }^{8)}$

- Measúring range 0.1 bar ( 1.45 psig )
- Measuring range 0.2 bar (2.9 psig)

15 bar (218 psig)

- Measuring range $\leq 0.4$ bar ( 5.8 psig ) 20 bar (290 psig)

Pressure stage, process fitting

- Unassembled screw connection

16L: PN 3, PVDF: unpressurized

- Thread on the housing

PN 3
Product temperature, depending on the version

[^14]${ }^{8)}$. Limited by the overpressure resistance of the measuring cell.
Page 224 of 363

Suspenslon cable	Transmitter	Product temperature
PE	All	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right)$
PUR	All	$-20 \ldots+80^{\circ} \mathrm{C}\left(-4 \ldots+176{ }^{\circ} \mathrm{F}\right)$
PUR	PE coating	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right)$
FEP	All	$-20 \ldots+80^{\circ} \mathrm{C}\left(-4 \ldots+176{ }^{\circ} \mathrm{F}\right)$
FEP	PE coating	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right)$

Vibration resistance mechanical vibrations with 4 g and $5 \ldots 100 \mathrm{~Hz}^{99}$

## Electromechanical data

Suspension cable

- Configuration
- Tensile strength
- Max. length
- Min. bending radius
- Diameter approx.
- colour (non-Ex/Ex) - PE
- colour (non-Ex/Ex) - PUR, FEP

Cable entry housing or VEGABOX 02
Screw terminals
six wires, one suspension cable, one breather capillary, screen braiding, foil, mantle
$\geq 1200 \mathrm{~N}$ (270 pound force)
1000 m ( 3280 ft )
25 mm (with $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$ )
8 mm ( 0.315 in )
black/blue
blue/blue
$1 \times$ cable gland $\mathrm{M} 20 \times 1.5$ (cable: $\varnothing 5 \ldots 9 \mathrm{~mm}$ ), $1 \times$ blind stopper M20×1.5 for wire cross section $1.5 \mathrm{~mm}^{2}$ (AWG 16), screen up to $4 \mathrm{~mm}^{2}$ (AWG 12)

## Supply voltage - $4 \ldots 20 \mathrm{~mA}$

Operating voltage
8... $36 \vee D C$

Permissible residual ripple

$-<100 \mathrm{~Hz}:$	$\mathrm{U}_{\text {ss }}<1 \mathrm{~V}$
$-100 \mathrm{~Hz} \ldots 10 \mathrm{kHz}$	$\mathrm{U}_{\mathrm{ss}}<10 \mathrm{mV}$
Load	see diagram



Fig. 16: Voltage diagram
$i$ Voltage limit
2 Operating voltage

## Supply voltage - $4 \ldots 20 \mathrm{~mA} / \mathrm{HART}$ - Pt 100

Operating voltage
Permissible residual ripple

- $<100 \mathrm{~Hz}$
$9.6 \ldots 36 \vee D C$
- 100 Hz ... 10 kHz

Load
$\qquad$
Tested according to the regulations of German Lloyd, GL directive 2.
Page 225 of 363


Fig. 17: Voltage diagram
1 HART load
2 Voltage limit
3 Operating voltage

## Electrical protective measures

Protection

- Transmitter	IP 68 (30 bar)
- Housing	IP $66 /$ IP 67
- VEGABOX 02	IP 65
Overvoltage category	III
Protection class	III

## Existing approvals or approvals applied for

Gas explosion protection
e.g. according to ATEX and IEC

Fire-damp protection
e.g. according to ATEX

Overfill protection
e.g. according to WHG

Ship approval
e.g. according to GL, LRS, ABS, RINA

The available approvals can be selected via the configurator on www.vega.com.

Depending on the version, instruments with approvals can have different technical data. For these instruments, please note the corresponding approval documents. They can be downloaded in the download section on www.vega.com.

## CE conformity

EMC (2004/108/EG)

LVD (2006/95/EG) $\quad$| EN 61326-1: 2006 |
| :--- |
| EN 61010-1:2001 |

## Environmental instructions

VEGA environment management system. certified according to DIN EN ISO 14001
You can find detailed information under www.vega.com.

## 7 Dimensions

## VEGAWELL 52 - suspension cable 1



Fig. 18: VEGAWELL 52 - suspension cable
1 Transmitter Duplex, with straining clamp
2 Transmitter Duplex for deep wells, with unassembled screw connection G1/12 A (1th NPT) and closing cap
3 Transmitter Duplex, with PE coating
4 Transmitter with screwed connection of PVDF
5 Transmitter Titanium Titanium with glass leadthrough, with thread G1 A (1 NPT) and plastic housing

VEGAWELL 52 - suspension cable 2


Fig. 20: VEGAWELL 52 - suspension cable
1 Transmitter 316L, with straining clamp
2 Transmitter Titanium, with unassembled scraw connection G1 A (1 NPT)

## 8 Product code

VEGAWELL 52

Approval   $X X$ withoul   XM Ship approval   AX ATEX II 2G EEx ia IIC T6   AM ATEXII 2G EEx ia IIC T6 + Ship approval   AI IEC Ex ia HC T6   Fastening/Material   X4 without   A4 Straining clamp / 1.4301(304)   GA Threaded fitting, unassembled G11/2A PN3 / 316L   NP Threaded fitting, unassembled G11/2A PNO, 2 / PVDF   GC Threaded fitting, unassembled G1A PN3/316L   GK Thread G11/2A PN3 / 316L with plastic housing   GV Thread G1/2A PN3/316L w hous. StSt (precision casting)   Version / Process temperaturo   A Suspension cable PE $/ 20 \ldots 60^{\circ} \mathrm{C}$   D Suspension cable PUR $/=20 \ldots 80^{\circ} \mathrm{C}$   B Suspension cable FEP / -20... $80^{\circ} \mathrm{C}$   Length   K 6 m suspension cable PE   L 12 m suspension cable PE   M 27 m suspension cable PE   individually selectable length (PE/PUR/FEP)   Transmitter material/Diameter   D Duplex $1.4462 / 32 \mathrm{~mm}$   V 316L/22mm   K Duplex 1.4462 with PE coating / 35 mm   P PVDF / 44 mm   Seal measuring cell   1 FKM (VP2/A)   3 EPDM (A+P 75.5KK75F)   P FFKM (Perlast G75S)   Measuring rango   A rel. $/ 0 . .0 .1 \mathrm{bar}(0 . .10 \mathrm{kPa}$ )   B rel. $/ 0 . .0 .2$ bar ( $0 . . .20 \mathrm{kPa}$ )   C rel. $10 \ldots 0.4$ bar ( $0 . .40 \mathrm{kPa}$ )   D rel. / $0 . .1$ bar ( $0 . . .100 \mathrm{kPa}$ )   E rel. $/ 0 \ldots 2.5$ bar ( $0 . . .250 \mathrm{kPa}$ )   F rel. $/ 0 . . .5$ bar ( $0 . .500 \mathrm{kPa}$ )   G rel. $10 . . .10$ bar ( $0 . . .1000 \mathrm{kPa}$ )   2 abs. $0 . .2 .5$ bar ( $0 . . .250 \mathrm{kPa}$ )   3 abs. $0 . . .5 .0$ bar ( $0 . .500 \mathrm{kPa}$ )   Electronics   C $4 \ldots 20 \mathrm{~mA}$   D 4...20mA/HART(0) + PT 100.4-wire   Deviation in characteristic   10.20   20.10   Transmitter options   $X$ without   $V$ for deep wells						




VEGA Grieshaber KG
Am Hohenstein 113
77761 Schiltach
Germany
Phone +49 7836 50-0
Fax +49 7836 50-201
E-Mail: info@de.vega.com www.vega.com


You can find at www.vega.com downloads of the following<br>- operating instructions manuals<br>- menu schematics<br>- software<br>- certificates<br>- approvals<br>and much, much more

## Datasheet

## CP M SNT 120W 24V 5A

Weidmuller Interface GmbH \& Co. KG
Klingenbergstraße 16
D-32758 Detmold
Germany
Fon: +495231 14-0
Fax +495231 14-2003
www.weidmueller.com


PRO-M = Power-Reliable-Optimized
The optimal and reliable power supply in automation technology. The solid, very narrow metal housing of the 10 different versions of the 24 V DC supply enable installation without lateral spacing, thereby saving space on the DIN rail. $A C$ and $D C$ wide-range inputs and a broad temperature range allow universal use. Thanks to its high efficiency, overload resistance and high performance reserves, the PRO-M is the reliable power supply in all applications. The 3-phase PROM power supply modules continue to work reliable even if one phase fail, i.e. in two-phase operation.

## General ordering data

Order No.	8951340000
Part designation	CP M SNT 120W 24V 5A
Version	Power supply, switch-mode power supply unit
GTIN (EAN)	4032248742554
Qty.	$1 \mathrm{pc}(\mathrm{s})$.

Page 230 of 363
Creation date September 3, 2010 10:26:49 PM CEST

Last update 28.06 .2010 / We reserve the right to make technical changes.

CP M SNT 120W 24V 5A

Technical data

Weidmüller Interface $\mathrm{GmbH} \&$ Co. KG
Klingenbergstraße 16
D-32758 Detmold
Germany
Fon: +495231 14-0
Fax: +495231 14-2083
wuw.weidmueller:com

## Dimensions (1)

Weight	0.7 kg	Length	125 mm
Width	40 mm	Height	130 mm
temperature			
Ambient temperature (operational)	$-25^{\circ} \mathrm{C} . . .40^{\circ} \mathrm{C}$	Storage temperature	$-40^{\circ} \mathrm{C} . . .485^{\circ} \mathrm{C}$
Input			
AC current consumption	$\begin{aligned} & 1.1 \mathrm{~A} \text { @ } 230 \mathrm{VAC} / 2.0 \mathrm{~A} \text { © } \\ & 115 \mathrm{VAC} \end{aligned}$	Conductor connection system	Screw connection
DC current consumption	0.4 A @ 370 VDC / 1.2A@ 120 V DC	DC input voltage range	80... 370 V DC (Derating © ${ }^{\text {a }}$ 120 VDC )
Frequency range $A C$	$47 . .63 \mathrm{~Hz}$	Input fuse	Yes
Input fuse (internal)	Yes	Input voltage AC, max.	264 V
Input voltage AC, min.	85 V	Input voltage DC, max.	370 V
Input voltage $\mathrm{DC}, \mathrm{min}$.	80 V	Input voltage range AC	85... 264 V AC (Derating (1) 100 VAC )
Recommended back-up fuse	$4 \mathrm{~A} / \mathrm{DI}$, safety fuse 6 A. Char, B, circuit breaker 3...5 A. Char, C, circuit breaker	making current	max. 40 A
rated input voltage	$100 . .240 \mathrm{~V} \mathrm{AC}$ (wide-range input)		
output			
Conductor connection systern	Screw connection	Output current	5 A
Output voltage	(adjustable via potentiometer on front)	Output voltage type	DC
Output voltage, max.	29.5 V	Output voltage, min.	22.5 V
Parallel connection option	yes, max. 5	Powerboost 94 V DC, $60{ }^{\circ} \mathrm{C}$	6 A for $1 \mathrm{~min}, \mathrm{ED}=5 \%$
Rated (nominal) output current © U U Nom	5 A @ $60{ }^{\circ} \mathrm{C}$	continous output current @ 24 V DC	$\begin{aligned} & 6.0 \mathrm{~A} @ 45^{\circ} \mathrm{C} 5.3 \mathrm{~A} @ 55^{\circ} \mathrm{C} \\ & 3.8 \mathrm{~A} @ 70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
rated output voltage	$24 \mathrm{VDC} \pm 1 \%$	residual ripple, breaking spikes	$<50 \mathrm{mV}$ pp \& $^{2} 24 \mathrm{VDC}, \mathrm{l}_{\mathrm{N}}$
General data			
AC failure bridging time @al $\mathrm{I}_{\text {Nom }}$	$\begin{aligned} & >100 \mathrm{~ms} \text { @ } 230 \mathrm{VAC} />20 \\ & \mathrm{~ms} \text { (@) } 115 \mathrm{VAC} \end{aligned}$	Ambient temperature (operational)	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Current limiting	$>120 \% \mathrm{I}_{\mathrm{N}}$	DIN Rail compatibility	TS 35
Degree of efficiency	$\begin{aligned} & 90 \% \text { © } 230 \mathrm{VAC} / 88 \% @ \\ & 115 \mathrm{VAC} \end{aligned}$	Housing version	Metal, corrosion resistant
Indication	Operation, green LED	MTBF	$\begin{aligned} & >500,000 \mathrm{~h} \text { ace. to IEC } 1709 \\ & \text { (SN29500 } \end{aligned}$
Mounting position, installation notice	Horizontal on TS35 mounting rail, with 50 mm of clearance at top and bottom for air circulation. Can be mounted side by side with no space in between.	Power factor (approx.)	$\begin{aligned} & >0.5 \text { @ } 230 \mathrm{~V} \mathrm{AC} 1>0.6 \text { (4) } \\ & 115 \mathrm{VAC} \end{aligned}$
Protection against reverse voltages from load	$30 . .35 \mathrm{~V}$ DC		

Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 16
D-32758 Detmold
Germany
Fon: +49 5231 14-0
Fax: +49 5231 14-2083
www.weidmueller.com


CP M SNT 120W 24V 5A
Weidmüller Interface GmbH \& Co. KG Klingenbergstraße 16
D-32758 Detmold
Germany
Fon: +49 5231 14-0
Fax: +49 5231 14-2083
Drawings

## Electric symbol



With DC connection, note polarity

## Product Specification UXH50-12

## Yuasa UXH Series VRLA Battery, 10 Years Design Life

Yuasa UXH batteries are constructed to yield even greater capacity than comparable batteries. The UXH uses AGM technology which ensures that there is no "free acid' In the battery. This allows the battery to be mounted either vertically or horizontally. An additional feature of this product is Yuasa's heavy duty lead calcium-lin alloy, providing the UXH battery the abllity to remain in float service for 10 years.

General Performance		
Battery	UXH50-12	
Application	Floating	
Deslgn Life	10 Years	
Nominal Capacity	50 Ah	
Actual Capacity at $25^{\circ} \mathrm{C}$	1 hour rate to 1.70 VpC	29.0 Ah
	3 hour rate to 1.70 Vpc	39.0 Ah
	10 hour rate to 1.80 Vpc	46.0 Ah


Electrolyte	
Fully charge density at $20^{\circ} \mathrm{C}$	1.300
Density Range	$1.290-1.310$
Gelled/Absorbed	Absorbed
Mounting Orientation	Vertical/Horizontal


Plates	
Positive Plates:	
Number/cell	4
Type	Flat Pasted
Material of grid	Lead-Calcium-Tin Alloy
Thickness	4.0 mm
Negative Plates:	
Number/cell	5
Type	Flat Pasted
Material of grid	Lead-Calcium-Tin Alloy
Thickness	2.3 mm



- 10 Year Design Life
- High Energy Density
- Gas Pressure Venting System
- No Equalising Charge Required


Century Yuasa believes that the data presented is generally accurate for theppraesedgavijifribispresented, however expressly disclaims any representation of warranty expressed or implied, concerning the data or recommendations and in no event shall be liable for any loss or damage claimed to have arisen as a result of the use of this brochure.

## $\sqrt{v / 2}$ <br> YUASA

## Product Specification UXH50-12

Yuasa UXH Series VRLA Battery, 10 Years Design Life

Physical Properties	
Separators	
Type	Glass Mat
Is glass fibre included?	Yes
Thickness	1.5 mm
Lid \& Container Materials	
Lid Material, Colour	Acrylonitrile Butadiene Styrene ABS/Dark Grey
Container Material, Colour	Acrylonitrile Butadiene Styrene ABS/Dark Grey
Flame Retardant	No
- fety Vent Operational Pressure	20 kPA
me Arrestor Filter Fitted	Yes
Dimensions:	
Overall Width	$299 \mathrm{~mm} \pm 3$
Depth	$128 \mathrm{~mm} \pm 3$
Height	$190 \mathrm{~mm} \pm 3$
Overall Height	$217 \mathrm{~mm} \pm 3$
Battery Welght (kg) Total (wet)	21kg



- Charging Characteristics


Electrical Properties			
Self Discharge Rate © $25^{\circ} \mathrm{C}$	<3\% per month		
Internal Resistance (mOHMS)	$6.0 \mathrm{~m} \Omega$		
Normal Charge (Amperes)	5A		
Max. Charge (Amperes)	10A		
Max. Sustained Current without damage (discharging 5 sec )	230A		
Volts End of Charge	2.275 Vpc		
	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$
float Voltage (Vpc) pure lloating applications	2.290 Vpc	2.275 Vpc	2.260 Vpc
Float Current (mA)	$\sim 50 \mathrm{~mA}$	$\sim 50 \mathrm{~mA}$	$\sim 50 \mathrm{~mA}$
Initial Short circuit current (A)	$\sim 2275$ A		
Efficiency at 10 hour rate (\%):			
Ampere-Hour	>90\%		
Watt-Hour	>78\%		


Torque Setting	
Terminal Torque Setting	$\mathbf{3 . 9 - 5 . 4}$ N.m.


Compliant Standard	
Battery Standard	JIS C8704-2: 1999

### 2.6 SITE WIDE EQUIPMENT TECHNICAL DATA

The following pages contain technical data for the material used outside of the switchboard. The list below has been added to assist in navigation of the supplied technical data.
SITE WIDE TECHNICAL DATA LIST - JILBA ST
CHEMSET BOLT ANCHOR - RAMSET ....................................................................................... 236
EARTH ROD CONNECTION BOX - DULMISON ......................................................................... 238
HYDROTITE PIT SEALANT - PARCHEM .................................................................................... 242
NITOBOND EP - PARCHEM ..................................................................................................... 246
RENDEROC HB40 - PARCHEM ................................................................................................. 250
RENDEROC HB70 - PARCHEM .................................................................................................. 255
VEGA EXTERNAL HOUSING - VEGA ......................................................................................... 259

## (2) Ramset| Chemset" Maxima Spin Capsules

Solid Concrete Anchoring

## MAXVMA <br> $\varnothing 18 \times 125 \mathrm{~mm}$

## Function

Chemset Maxima Spin Capsules are a chemical anchor system based on epoxy acrylate. The capsule is placed into the hole and the mortar is mixed during the anchor installation.

## Features and Benefits

## No measuring, no mess, no waste

- Adhesive is contained in pre-measured capsules.


## Versatile

- Use in damp holes.

Fast installation

- Cures in minutes and can be loaded in $20 \mathrm{~min}\left(a t 20^{\circ} \mathrm{C}\right.$ ).

High bond strength

- Acrylic adhesive.

High corrosion resistance

## Principal Applications

- Structural beams and columns
- Batten fixing
- Installing signs, handrails, balustrades and gates
- Racking
- Safety barriers
- Stadium seating
- Machinery hold down


## - Mor



Installation


1. Drill recommended diameter and depth hole.
2. Clean hole with hole cleaning brush. Remove all debris using hole blower.
3. Insert correct size Spin capsule into the hole.
4. Using appropriate driver accessories, drive the Chemset Anchor Stud into the hole using a hammer drill (on rotation).
5. Cure as per setting times.
6. Attach fixture and tighten nut in accordance with recommended tightening torque.

Installation temperature limits:
Substrate: $-5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$. Load should not be applied to anchor until the chemical has sufficiently cured as specified.

Service temperature limits:
$-23^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$

## Setting Times

Spin Capsules	
Gel Iime   (mins)	Loading   Time

## ©(2) Ramset | Chemset" Maxima Spin Capsules

Solid Concrete Anchoring
Installation and Performance Details: Using Chemset Anchor Studs (p20)

Anchor slize, d. (mm)	Installation details				Minimum đimension*			Reduced Characteristic Capacity			
	Drilled hole B , d. (mm)	Fixture hole $\mathrm{g}_{\text {, }}$ $d_{1}(\mathrm{~mm})$	Anchor effective depth, h (mm)	Tightening torque, T, ( Nm )	Edge dilstance, © $\mathrm{B}_{1}(\mathrm{~mm})$	Anchor spacing, $3_{8}(\mathrm{~mm})$	Substrate thickness, $b_{m}$ (mm)	$\begin{aligned} & \text { Shear } \\ & V_{\mathbf{a}}(\mathrm{kN}) \end{aligned}$		Tension $N_{0}(\mathrm{kN})$	
								Concrete strength MPa			
								20 MPa	20 MPa	32 MPa	40 MPa
M10	12	12	90	20	40	60	120	14.1	15.7	19.2	20.6
M12	14	15	110	40	50	70	140	21.0	23.8	27.4	29.3
M16	18	19	125	95	65	100	160	39.7	34.8	40.1	42.9
M20	24	24	150	180	80	120	190	59.9	55.7	84.1	68.5
			170**				220	59.9	63.1	72.7	77.7
M24	26	28	160	315	95	145	200	86.8	54.4	74.1	79.3
			210**				270	86.8	84.5	97.3	104.0
For shear loads acting towards an edge or where these minimum dimensions are not achievable, please use the simplified strength limit state design process to verily capacily.								Reduced Characteristic			

- For details on Reduced Characteristic capacities reter page 3.
**Note: To achieve these non standard effective depths, use an additional CHEM10 Maxima spin capsule per hole.

Description and Part Numbers - Chemset Maxima Spin Capsules

Capsule dimensions		To suit Chemset Anchor Stud	Capsule Part Mo.
Nominal E, d (mm)	Capsule Length, L (mm)	Anchor size, d,	
11	80	M10	CHEM10
13	95	M12	CHEM12
17	95	M16	CHEM16
21.5	115	M20	CHEM2024
21.5	115	M24	CHEM2024

## Description and Part Numbers - Accessories

Cleaning Brush	$10-14 \mathrm{~mm}$ Hole	HCBT13	
Cleaning Brush	$18-22 \mathrm{~mm}$ Hole	HCBT20	
Cleaning Brush	$22-26 \mathrm{~mm}$ Hole	HCBT26	
Hole Cleaning Pump/Blower			S065990



## EARTHING RODS \& ACCESSORIES

- Extendable Earth Rods - Tapered
- Extendable Earth Rods - Flush

Non Extendable Rods
Airport Earthing Terminals
Survey and Mapping Data Marks
Earthing Bond
Earthing Connectors
Earth Rods Clamps
Earthing Enhancement Compounds
Connection Boxes

- Exothermic Welded Connections
- Pole Earthing Terminals
- Earth Mats


## DULMISON EARTHING RODS \& ACCESSORIES

## Non-Extendable Rods - Heavy Duty Series Earth Rod Clamps

## Type LGR - Copper Clad

Recommended Clamps: Clamp Types EP, ET, GB and FSC provide a copper to copper connection, either in parallel or right angle mode, accommodating single, two and three conductors.

LGR 19mm	
Rods	
Length (metres)	Catalogue No.
1.8	LGR1918
2.4	LGR1924
3.0	LGR1930

## Ion-Extendable Rods - Domestic CNE1314T $1400 \mathrm{~mm} \times 13 \mathrm{~mm}$ diameter

Dulmison Manufacture a broad range of non-extenable earth rods. Each rod incorporates an integral driving point, machined
(not ground) to preserve the strength and rigidity of cold drawn steel. The flat tip was developed for penetrating all types or soil.


## Extendable Earth Rods - Taperlock Coupled Types CTE and STE

Types CTE and STE earth rods are among the simplest to use They have identical taper ends and are joined by a one-piece tapered coupling which locks upon driving. These rods may be driven by hand or machine.
Taper lock rods available with driving point (add suffix ' P ').

Copper Clad Rods			Stainless Steel Clad Rods		
Diameter	13 mm	15 mm	$\mathbf{1 9 m m}$	13 mm	14 mm
Length	Standard	Standard   Taperlock	Standard   Taperlock	Standard   Taperlock	Standard   Taperlock
1200	CTE1312	CTE1512	-	STE1312	STE1412
1440	CTE1314	CTE1514	-	STE1314	STE1415
1800	CTE1318	CTE1518	-	STE1318	STE1418
2000	-	-	CTE1920	-	
2400	CTE1324	CTE1524	-	STE1324	STE1424
3000	CTE1330	CTE1530	Page_240 of 363	STE1330	STE1430

## DULMISON EARTHING RODS \& ACCESSORIES

Tapered Couplings,   Driving Points, Tools	Copper		Stainless Steel		
	CTE13	CTE15	STE13	STE14	
$\square$	Couplings	CCT13	CCT15	SCT13	SCT15
$\square$	Driving Points				
	Average Driving	DPT13	DPT15	DPT12	DPT15

Hard Driving - Points and Tools avalable

	Hand Driving   Tools				
	Average Driving	DHT15	DHT15	DHT15	DHT15
$\square$	Machine Driving   Tools				
	Kango 900/950	MDH15K	MDH15K	MDH15K	MDH15K

Tools available for Atlas Copco / Stanley Cbrromwade

## Earthing Enhancement Compound - Earthrite

Composition: Bentonite, Gypsum, Sodium Sulphate
Features: Earthrite provides long term low ground resistance, high expension and low. shrink characteristics. Non toxic, Non corrosive.

20 kg Bag yields $0.03 \mathrm{~m}^{3}$
Application: As a dry mix or as pourable slurry.


## Earth Rod Connection Boxes

Boxes ERB1 and ERB3 feature hinged inspection lids and cable entry holes on the sides.



Cat. No. ERB3 Pólymer Concrote

## DULMISON EARTHING RODS \& ACCESSORIES

## EARTH ROD CLAMPS

- Single Conductor - Parallel

Materials - Body: High copper content alloy casting Hardware: Stainless Steel

Part No.	Rod Size	Conductor	
		Size	
$\cdot$		mm 2	diameter mm
GRC5	$13-15$	$10-35$	$4.05-7.65$
CLAMP210	$13-15$	$16-120$	$5.10-14.21$
EP1	$17-19$	$16-120$	$5.10-14.21$



GRC5


CLAMP210 EP1

## " Iulti-Conductor Earthing

For two earth conductors parallel to rod, or two or three earth conductors at right angles to rod.

Materials - Body: High copper content alloy casting Hardware: Stainless Steel


## 'he CADWELD Connection

Simple - Fast - No Gas or Arc Welding. Cadweld is ideal for on-site welding of connections to a wide range of metals as follows:

Copper to:Mild Steel Copper Brass

Stainless Steel Copper Clad Steel
Monel Metal

Galvanised Steel
Some typical exothermic welded connections applicable to earthing


## Technical Data Sheet

## Hydrotite

Premium grade, water swellable, waterstop range for use in cast in-situ concrete

## DESCRIPTION

Hydrotite is a hydrophilic waterstop which exibits excellent durability and water sealing capacity. It expands as it absorbs water and fills up concrete joint gaps conforming to the gap variation, ensuring excellent sealing. Hydrotite is based on the technology of hydrophilics, a material which expands in a controlled fashion by approximately eight times by volume in the presence of moisture to create a pressure seal within the joint.

When properly installed Hydrotite is capable of sealing heads of water up to 50 m and is used throughout the construction industry to seal horizontal and vertical construction joints for poured in-situ concrete.
Hydrotite offers various profiles for in-situ concrete construction joints such as DSS0220, CJ0725-3K, CJ1020$2 \mathrm{~K}, \mathrm{CJ} 1030-4 \mathrm{M}$. It consists of a unique combination of expanding hydrophilic materials and non-expanding chloroprene rubber co-extruded together to form a single strip. The expanding section is blue with the nonexpanding section being black. The co-extruded design means that the expansion is directed across the joint for maximum sealing performance.

This expansion creates an effective compression seal within joints which shuts out the water path. Upon expansion Hydrotite turns from a dark blue colour to a light blue colour so that a visual inspection of the Hydrotite can be made and the contractor can check if the Hydrotite has pre-expanded.

Fig 1 Hydrotite CJ-0725-3K

an + alesco company

Hydrotite is treated with a delay coating to prevent it from absorbing water from the moist green concrete, to help stop any premature expansion should the joint become ponded with water prior to the second pour and to stop any premature expansion taking place before curing of the concrete. For areas where ponding or running water may be a problem, please contact Parchem or your local distributor for advice.

Some Hydrotite profiles are available with a self-adhesive backing which makes installation easier and lowers construction time and costs. The self-adhesive backing means that the purchase of other construction adhesives is not required and also saves the contractor the installation costs of applying the adhesive to the concrete.

Hydrotite, as with any hydrophilic waterstop will return to its original size if there is no more water or moisture present. Hydrotite will then re-expand when water or moisture is again introduced to the joint. Some leakage may occur before Hydrotite re-expands fully. Repeated wet and dry cycling of this nature does not effect the functioning of Hydrotite.

The standard dimension and shape of CJ-0725-3K is as per Fig. 1.


Before expansion


After expansion

PARCHEM	CONCRETE REPAIR	FLagning 23 of 363	JOINTING SYSTEMS	WATERPROOFING	
TECHNICAL DATA SHEET	MARCH 08				
www.parchem.com.au	7 Lucca Road, Wyong NSW 2259	Sales 1800624322	Technical 1800812864	ABN 80069961968	1



## AREAS OF APPLICATION

Hydrotite is to be used where watertight integrity is the prime issue. Typical applications where there is a need to achieve a water seal include:-

- Sewerage treatment plants
- Pipe penetrations
- Subway stations
- Water treatment plants
- Swimming pools
- Basements
- Reservoirs
- Tunnels
- Pits


## GUIDE TO PROFILE SELECTION

Shown below is a guideline of where Hydrotite profiles have been specified and used in construction joints in various projects. Joint details should be verified by the Consulting Engineer who should determine the suitability of the products for its intended use.


Vertical Construction   Joints:	CJ0725-3K, CJ1020-2K,   CJ1030-4M, CJ2020-M			
Horizontal Construction	DSS0220, CJ0725-3K,			
Joints:	CJ1020-2K, Leakmaster	,	Joint and Leak Repairs:	RSS rods various sizes
:---	:---			
Pipe Penetrations:	DSS0220, CJ0725-3K,   Leakmaster			
ThruTie Holes:	RSS rods, RSS2519D,			

Typical Application of Hydrotite


## ADVANTAGES

- Self-adhesive properties makes installation much easier and reduces construction costs
- Co-extruded design means expansion is directed across the joint for maximum seal
- Unaffected by repeated wet and dry cycles
- No site welding as is required for traditional PVC waterstops
- Has a delay coating to help prevent premature expansion
- Extra cans of delay coating are available if required
- Changes colour as a visual alert to let you know it has expanded
- No need for special intersections, joining is by simple butt joins
- Can be applied to rough surfaces using Leakmaster gun grade waterstop
- Easy to handle and install
- Can be joined to traditional PVC waterstop
- No compaction or displacement problems
- Non toxic and non hazardous
- No need for split forming


## DESIGN CRITERIA

Hydrotite should be used to prevent the passage of water through low movement joints in both new in-situ concrete and between new and existing concrete. Hydrotite can also be used around penetrating pipe entries prior to concrete placement. Hydrotite increases in volume in the range of up to $800 \%$ and gives a resistance to hydraulic heads of up to 50 metres.

Hydrotite waterstops should be positioned to ensure that a minimum of 50 mm cover of concrete is present to accommodate pressure developed during the swelling process.

Hydrotite is suitable for applications between existing and newly placed concrete where there is little or no steel continuity and therefore some small movement may occur.

Hydrotite is generally not suitable for use in expansion joints

TABLE 1: BASIC PHYSICAL PROPERTIES OF HYDROTITE

Item	Unit	Hydrophilic   Rubber		Chloroprene   Rubber	
		Standard	Typical	Standard	Typical
Specific   Gravity		$1.40 \pm$   0.10	1.35	$1.40 \pm$   0.10	1.41
Hardness	(JIS-   A)	$50 \pm 5$	52	$50 \pm 5$	51
Tensile   Strength	$\mathrm{N} /$   $\mathrm{mm}^{2}$	min. 2.94	3.63	min. 8.82	12.25
Elongation	$\%$	min. 600	760	min. 400	435

## CHEMICAL RESISTANCE

The influence of pH values of concrete, grouting material and ground water upon the expansion of Hydrotite was tested using hydrophilic rubber as follows.

The specimen was immersed in each solution for seven days and the retention value of tensile strength and elongation were measured. Then, the specimen was removed from each solution and placed in tap water for seven days. The specimen was then compared with specimens that had been expanded in tap water only.

The retention value of both physical properties and expansion was compared with that of specimens tested in tap water.

## TABLE 2: BEHAVIOUR IN CHEMICAL SOLUTION

Hydrotite exhibited retention values $90 \%$ or more in the following solutions:

- pH 3 aqueous solution
- pH 5 aqueous solution
- pH 7 (tap water)
- pH 9 aqueous solution
- pH 11 aqueous solution
- Ferrous aqueous solution
- Bentonite aqueous solution
- Grout aqueous solution


## PACKAGING

PROFILE	DIMENSIONS	METRES   PER   ROLL	METRES   PER   CARTON
DSS0220 *	$20 \mathrm{MM} \times 2 \mathrm{MM}$	25	100
CJ0725-3K *	$25 \mathrm{MM} \times 7 \mathrm{MM}$	10	40
CJ1020-2K *	$20 \mathrm{MM} \times 10 \mathrm{MM}$	10	50
CJ1030-4M	$30 \mathrm{MM} \times 10 \mathrm{MM}$	10	40
CJ2020-M	$20 \mathrm{MM} \times 20 \mathrm{MM}$	10	30
RSS 1208D	12 MM DIAMETER	20	40
RSS161OD	16 MM DIAMETER	10	20
RSS2014D	20 MM DIAMETER	10	20
RSS2519D	25 MM DIAMETER	5	10

* these profiles available with self adhesive backing


## LIMITATIONS

- Not recommended for use in suspended slabs or expansion joints
- Minimum of 50 mm cover of concrete over Hydrotite for reinforced concrete and 100 mm cover of concrete or unreinforced concrete based on concrete strength of $22.5 \mathrm{~N} \mathrm{~mm}^{2}$
- Expansion rate can vary in salt or contaminated water
- Not for use where excessive shrinkage may occur


## SPECIFICATION CLAUSE

Hydrophilic expanding waterstops shall be placed at the joints in the concrete at the locations shown on the drawings in accordance with the requirement of this specification.

Waterstops where shown on drawings shall be Hydrotite (fill in profile number) Hydrophilic Waterstops as supplied by Parchem.

The waterstop shall consist of a non-expansive chloroprene rubber, co-extruded with a blue hydrophilic rubber which is capable of swelling by approx. eight times by volume.

The waterstop shall be treated with a delay coating to prevent premature expansion and be able to change colour upon expansion which acts as a visial alert that the waterstop has started to expand.

The waterstop is to be installed strictly in accordance with the manufacturers recommendations.

## ADDITIONAL INFORMATION

Parchem provides a wide range of complementary products which include:

- concrete repair - cementitious and epoxy
- grouts and anchors - cementitious and epoxy
- waterproofing membranes - liquid applied, cementitious and bituminous sheet membranes
- waterstops - pvc and swellable
- joint sealants - building, civil and chemical resistant
- industrial flooring systems - cementitious and epoxy
- architectural coatings
- filler boards - swellable cork, bituminous and backing rod
- ancillary products

For further information on any of the above, please consult with your local distributor or Parchem sales office.

## IMPORTANT NOTICE

A Material Safety Data Sheet (MSDS) and Technical Data Sheet (TDS) are available from the Parchem website or upon request from the nearest Parchem sales office. Read the MSDS andTDS carefully prior to use as application or performance data may change from time to time. In emergency, contact the Poisons Information Centre (phone 13 1126 within Australia or 0800764766 in New Zealand) or see a doctor for advice.

## PRODUCT DISCLAIMER

This Technical Data Sheet (TDS) summarises our best knowledge of the product, including how to use and apply the product based on the information available at the time. You should read thisTDS carefully and consider the information in the context of how the product will be used, including in conjunction with any other product and the type of surfaces to, and the manner in which, the product will be applied. Our responsibility for products sold is subject to our standard terms and conditions of sale. Parchem does not accept any liability either directly or indirectly for any losses suffered in connection with the use or application of the product whether or not in accordance with any advice, specification, recommendation or information given by it.

PARCHEM	CONCRETE REPAIR	flooring Page 246 of $36 \beta$ jointing systems		WATERPROOFING	
TECHNICAL DATA SHEET	MARCH 08				
www.parchem.com.au	7 Lucca Road, Wyong NSW 2259	Sales 1800624322	Technical 1800812864	ABN 80069961968	4
www.parchem.co.nz	Distributed in New Zealand by: Con	crete Plus 23 Watts Road, So	kbum Ph: (03) 3430090		

# Nitobond EP 

Epoxy resin primer, high strength bonding agent to bond concrete substrate to repair mortars

## USES

For bonding fresh wet cementitious materials to existing cementitious surfaces. For use on horizontal or vertical surfaces where mortar or concrete can be supported by formwork. The long 'open' life makes it suitable for use with formwork or where additional steel reinforcement has to be fitted. The product is ideal for roads, bridges, pavements, loading bays and factories, and for bonded or granolithic floor toppings. Nitobond EP is equally suited to internal and external applications.
Nitobond EP may also be used as part of a repair system where a substrate/repair barrier is required or where the substrate is likely to remain permanently damp or wet.

## ADVANTAGES

- Positive adhesion - exceeds that of the tensile strength of the host concrete
- Exhibits high mechanical strength
- Can be applied on to dry or damp substrates

E Solvent-free - can be used in enclosed locations

## DESCRIPTION

Nitobond EP is based on solvent-free epoxy resins containing pigments and fine fillers. It is supplied as a two-component material in pre-weighed quantities ready for on-site mixing and use. The 'base' component is white and the 'hardener' component is black, providing visual evidence (uniform grey colour) that adequate mixing has been achieved.

## TECHNICAL SUPPORT

Parchem offers a comprehensive range of high performance, high quality concrete repair and construction products. In addition, Parchem offers a technical support package to specifiers, end-users and contractors, as well as on-site technical assistance.

## DESIGN CRITERIA

Nitobond EP is designed to have an overlay time of 90 minutes at $20^{\circ} \mathrm{C}$. The minimum application temperature for Nitobond EP is $5^{\circ} \mathrm{C}$. Consult your local Parchem sales office for further information.

## PROPERTIES

Test method	Typical result
Compressive strength:	50 MPa
Tensile strength:	20 MPa
Flexural strength:	35 MPa
Shear strength:	25 MPa
Adhesive bond   to concrete:	In general, the bond will   always exceed the tensile   strength of the host concrete

THE FOLLOWING PROPERTIES WERE MEASURED AT $20^{\circ} \mathrm{C}$ :
Pot life: $\quad 35-45$ minutes

Initial hardness:	24 hours
Full cure:	$\mathbf{7}$ days
Max. overlay time:	90 minutes

Note: at temperatures below $20^{\circ} \mathrm{C}$, the cure rate will be slower. Conversely, at temperatures above $20^{\circ} \mathrm{C}$, the cure rate will be faster.

## SPECIFICATION CLAUSES

## EPOXY BONDING AGENT

The bonding agent shall be Nitobond ER, a two-component solvent-free epoxy resin. The 2 components shall be differentially pigmented in order to ensure visually that correct mixing has taken place prior to the application. The product shall achieve 50 MPa compressive strength, 20 MPa tensile strength, 35 MPa flexural strength and $\mathbf{2 5} \mathrm{MPa}$ shear strength. The adhesive bond to the concrete substrate shall exceed the tensile strength of the host concrete.

PARCHEM	CONCRETE REPAII	flopang 247 of 363	- JOINTING SYSTEMS	WATERPROOFING	
TEGHNICAL DATASHEET	EEBFUABYO9				
www.parchem.eom.au	7 Lucen Road, Wyong NSW 2259	Salos 1800624322	Technical 1800812864	ABN 80069961968	1

## APPLICATION INSTRUCTIONS

## PREPARATION

Clean the surface and remove any dust, unsound material, plaster, oil, paint, grease, corrosion deposits or algae. Roughen the surface and remove any laitance and expose aggregate by light scabbling or grit-blasting.

Oil and grease deposits should be removed by steam cleaning, detergent scrubbing or the use of a proprietary degreaser. The effectiveness of decontamination and soundness of the substrate should then be assessed by a pull-off test.

## MIXING

Any steel reinforcement and formwork should be prepared, cut to size and shape, and made ready for assembly before mixing commences.

Care should be taken to ensure that Nitobond EP is thoroughly mixed. The 'hardener' and 'base' components should be stirred separately before mixing to disperse any settlement. The entire contents of the 'hardener' tin should then be poured into the 'base' tin and the two materials thoroughly mixed using a suitable slow-speed drill and mixing paddle for 2 minutes until a fully uniform colour is obtained. The sides of the tin should then be scraped and mixing should continue for a further 2 minutes.

To facilitate mixing and application at temperatures below $20^{\circ} \mathrm{C}$, the separate components should be warmed in hot water up to a maximum temperature of $25^{\circ} \mathrm{C}$ before beginning to mix. If heated to $25^{\circ} \mathrm{C}$, the subsequently mixed material will need to be used more speedily as the pot-life will be reduced to 20 minutes. Alternatively, the material should be stored in an environment heated to $20^{\circ} \mathrm{C}$ and only removed immediately before use.

## APPLICATION

Nitobond EP should be applied as soon as the mixing process has been completed. It should be brush or sprayapplied to the prepared surfaces.

The new concrete or screed should be applied to the coated substrate after the Nitobond EP has become tacky and within 90 minutes at $20^{\circ} \mathrm{C}$, ie. while the Nitobond EP is still tacky. If the Nitobond EP is allowed to become tackfree, a second coat will be required.
Where Nitobond EP is to be used as part of a repair system to form a substrate/repair barrier, care should be taken to achieve an unbroken coating. One coat should be applied and allowed to become tack-free. A second coat should be applied and used as the bonding coat.

As soon as the Nitobond EP has been applied, any required steel reinforcement and/or formwork should be erected and fixed securely in place.

## LOWTEMPERATURE WORIKING

The minimum application temperature is $5^{\circ} \mathrm{C}$. In temperatures below $15^{\circ} \mathrm{C}$, the separate components should be heated in warm water (up to $25^{\circ} \mathrm{C}$ ) or stored in a heated environment for 12 hours before use. These measures will facilitate mixing and application. Normal precautions for winter working with cementitious materials should then be adopted.

## HIGH TEMPERATURE WORKING

At ambient temperatures above $30^{\circ} \mathrm{C}$, the material should be stored in the shade or in an air-conditioned environment for $\mathbf{1 2}$ hours before use.

## CLEANING

Nitobond EP should be removed from tools, equipment and mixers with Parchem Solvent immediately after use. Hardened material can only be removed mechanically.

## LINIITATIONS

Nitobond EP should not be applied when the temperature is below $5^{\circ} \mathrm{C}$ or is $5^{\circ} \mathrm{C}$ and falling. If any doubts arise concerning temperature or substrate conditions, consult your local Parchem sales office. Before the application of any repair material or topping, Nitobond EP should be allowed to become tacky after its application to the host substrate. Due to the relatively slow setting time of Nitobond EP, care should be taken when the product is used in cold conditions and or when the material being subsequently applied to the Nitobond EP is rapid setting. In cold conditions ( $<15^{\circ} \mathrm{C}$ ) the Nitobond may not set quick enough to bond to a rapidly setting topping which may then "curl" due to shrinkage tension. This would result in delamination of the topping away from the host substrate. If there is a possibility of these conditions on site, users are advised to contact ParchemTechnical Helpline for specific guidance.

## Nitobond EP

Estimating
SUPPLY
Nitobond EP: $\quad 1.5$ and 6.0 litre packs
Parchem Solvent: $\quad 4$ and 20 litre cans
coverage
Nitobond EP: $\quad 4.5 \mathrm{~m}$ hitre
Note: the coverage figures for Nitobond EP is theoretical due to wastage factors and the variety and nature of possible substrates, practical coverage figures will be reduced.

STORAGE
SHELF LIFE
Nitobond EP has a shelf life of 12 months if kept in a dry store in the original unopened packs.

STORAGE CONDITIONS
Store in dry conditions in the original unopened packs. If stored at high temperatures, the shelf life may be reduced.

## ADDITIONAL INFORMATION

Parchem provides a wide range of complementary products which include：

E concrete repair－cementitious and epoxy
日 grouts and anchors－cementitious and epoxy
－waterproofing membranes－liquid applied， cementitious and bituminous sheet membranes

且 waterstops－pvc and swellable
回 joint sealants－building，civil and chemical resistant
－industrial flooring systems－cementitious and epoxy
－architectural coatings
E filler boards－swellable cork，bituminous and backing rod
ancillary products
For further information on any of the above，please consult with your local Parchem sales office．

## IMPORTANT NOTICE

A Material Safety Data Sheet（MSDS）and Technical Data Sheet （TDS）are avallable from the Parchem website or upon request from the nearest Parchem sales office．Read the MSDS and TDS carefully prior to use as application or performance data may change from time to time．In emergency，contact any Poisons information Centre（phone 131126 within Australia） or a doctor for advice．

## PRODUCT DISCLAINIER

This Technical Data Sheet（TDS）summarises our best knowledge of the product，including how to use and apply the product based on the information available at the time．You should read this TDS carefully and consider the information in the context of how the product will be used，including in conjunction with any other product and the type of surfaces to，and the manner in which，the product will be applied．Our responsibility for products sold is subject to our standard terms and conditions of sale．Parchem does not accept any liability either directly or indirectly for any losses suffered in connection with the use or application of the product whether or not in accordance with any advice，specification，recommendation or information given by it．
＊Manufactured and sold under license from Fosroc International Limited．Fosroc and the Fosroc logo are trade marks of Fosroc International Limited，used under license．＊Denotes a trade mark of Fosroc International Limited．

PARCHEM	CONCRETE REPAIR	FLOORING	JOINTING SYSTEMS	WATERPROOFING
TECHRICAL DATA SHEET	FEBRUABYOO			
www．parchem．com．au	7 Lueea Rond，Wyo	Sales 1	at 1800812884	A8N 80069861868

## Renderoc HB40

High performance, medium weight, very low shrinkage, patch repair mortar, compatible with concrete $\mathbf{3 0 - 4 5} \mathbf{~ M P a}$

## SECTION A: GENERAL COMMENTS

## HIGH AND LOWTEMPERATURE WORKING

It is suggested that, for temperatures above $35^{\circ} \mathrm{C}$ or below $5^{\circ} \mathrm{C}$, the following guidelines are adopted as good working practise:
I. Store unmixed materials in cool, dry conditions, in original unopened bags, avoiding exposure to direct sunlight.
II. In high temperature environments, keep equipment cool, arranging shade protection if necessary. It is especially important to keep cool those surfaces of the equipment that come into direct contact with the material itself.
III. Try to avoid application during the hottest times of the day, arrange temporary shading as necessary.
IV. At lower temperatures, Renderoc HB40 should be applied only when the substrate temperature and the ambient temperature is above $5^{\circ} \mathrm{C}$ or $5^{\circ} \mathrm{C}$ and rising.
V. Make sufficient material, plant and labour available to ensure that application is a continuous process.

## EQUIPMENT

It is suggested that the following list of equipment is adopted as a minimum requirement for the correct application of this material:

Protective clothing:	- Protective overalls, safety helmet and safety shoes
Preparation equipment:	- Good quality gloves, goggles and face-mask
	- Marker chalk or pen
	- Disc saw
	- Electric or pneumatic concrete breaker
	- Wire brush
	- Proprietary grit blasting equipment or high pressure washer
	- Measuring jug
Mixing equipment:	- Festo slow speed drill, $400-500$ rpm
	+ Parchem mortar mixing paddle
	+ Parchem 20 litre mixing pail, or proprietary forced-action mixer for multiple bag mixing


#### Abstract

APPLICATION - POINTS OF NOTE Parchern operates a policy to encourage the use, where possible, of experienced applicators, since the long-term performance of the materials is dependant upon proper application. For contractors who wish to apply the materials themselves, Parchem is also able to offer technical assistance.


## SECTION B: APPLICATION METHOD

### 1.0 REPAIR AREAS

1.1 The areas to be repaired are to be as shown on the drawings or as indicated by the Contract Administrator. The areas are to be clearly marked out on site and agreed with the Contract Administrator before proceeding.
1.2 As the work proceeds, repair areas may be adjusted by the Contract Administrator, according to the conditions found.
1.3 Propping shall be provided as noted on the drawings or as agreed by the Contract Administrator.
1.4 The surfaces adjacent to and of areas for repair shall be cleaned to remove any dust, unsound material, plaster, oil, paint, grease, corrosion deposits, organic growth, etc.
1.5 Within the repair area, the concrete cover to reinforcement links or main bars shall be determined using a cover meter. A small area shall be chiselled out and the concrete cover and the depth of deteriorated concrete confirmed by measurement.

### 2.0 CONCRETE PREPARATION

Attention to full and proper preparation of the substrate is essential for complete repair adhesion.
2.1 Break out unsound concrete as defined within the repair zone. Using a saw, disc cutter, or other suitable tool, the perimeter of the area to be repaired shall be incised to a depth of at least 10 mm causing good arises to be formed at the outer edges all to preclude feather edging of the repair mortar.
2.2 Where the depth of breaking out corresponds to the depth of concrete cover and thereby exposes reinforcement, breaking out shall continue to expose the full circumference of the steel and to a further depth of $\mathbf{2 5 ~ m m}$ or as directed by the Contract Administrator. Breaking out shall continue along the reinforcement until non-corroded steel is reached and shall continue 50 mm beyond this point or as directed by the Contract Administrator. Special care shall be exercised to ensure that any reinforcement exposed is not cut or damaged.
2.3 All concrete surfaces to receive repair mortar shall be of a rough scabbled nature. Saw/disc cut edges shall be grit blasted to lightly roughen.
2.4 This preparation shall be such as to leave a sound exposed concrete substrate free from dust, loose particles and any deleterious matter.

## Additional considerations where concrete is affected by carbonation

2.5 After breaking out as specified the exposed surface of concrete shall be tested for carbonation by the use of a semiaqueous solution of phenolphthalein. The test shall be carried out on the freshly exposed concrete or at least within 30 minutes of being exposed. The test shall be carried out on sound, dry and clean air-blown dust free surfaces. If the concrete substrate still exhibits carbonation in the vicinity of the steel reinforcement, breaking out to remove a further 20 mm shall be carried out and the test repeated. If carbonation is still present the Contract Administrator shall be notified before proceeding further.
2.6 It is essential that no carbonated concrete substrate shall be in contact with, or within 5 mm of, the reinforcing bars. In cases where carbonation has reached within 5 mm of the reinforcing bars, the concrete shall be broken out to expose the full circumference of the steel and a further depth of $\mathbf{2 0 - 3 0} \mathbf{~ m m}$ or as directed by the Contract Administrator.

Page 252 of 363

## Additional considerations where concrete is affected by chlorides

2.7 Where it is determined that chlorides are present in the concrete the agreed area(s) shall be broken out to remove all contaminated concrete, or, having regard to the steel reinforcement, to a depth as directed by the Contract Administrator.

NOTE: Chloride values are generally expressed in percentage terms of weight of chlorides by weight of concrete: $0.05 \%$ $-0.15 \%$ medium risk; above $0.15 \%$ high risk, though where chloride penetration from external sources is involved, the risk of corrosion in the medium risk range is much greater, and corrosion has been found to occur at levels below 0.05\%.

## Reinforcing steel / concrete not affected by carbonation or chlorides

2.8 Where exposed reinforcement is sound and there are no signs of corrosion other than typical of its original condition it shall be mechanically cleaned of rust and loose mill scale. Where there are signs of corrosion deterioration it shall be cleaned of corrosion products by wet grit blasting or other approved means to achieve a surface finish to comply with a standard of steel cleanliness such as SA 2 ${ }^{1 / 2}$ (BS7079: Part A1 / ISO8501) or as directed by the Contract Administrator.
2.9 Reinforcement damaged during the removal of concrete or the preparation process shall be brought to the attention of the Contract Administrator and if required, shall be repaired or replaced.

## Concrete affected by carbonation and / or chlorides

2.10 All exposed reinforcement shall be cleaned of corrosion products by wet grit blasting or other approved means to achieve a surface finish to comply with a standard of steel cleanliness such as SA 21/2 (BS7079: Part A1 / ISO8501) or as directed by the Contract Administrator. Special care shall be taken to clean out properly any pitting that may have occurred in the steel bar.

### 3.0 REINFORCEMENT PREPARATION

3.1 When the corrosion products have been removed and if directed by the Contract Administrator, the diameter of the reinforcing bar(s) shall be measured. If considered necessary by the Contract Administrator the existing reinforcement shall be cut out and replaced and/or additional bars added in accordance with instructions. Any deep pitting of the reinforcing bars shall be brought to the attention of the Contract Administrator.
3.2 Reinforcement damaged during the removal of concrete or the preparation process shall be brought to the attention of the Contract Administrator and if required, shall be repaired or replaced.

### 4.0 ANODE INSTALLATION

4.1 Where required by specification, Galvashield $X P$ anodes shall be installed in accordance with the current Technical Data Sheet and Method Statement. Renderoc HB40 is suitable for the installation of Galvashield XP as it has a Resistivity < 15,000 ohm cm @ 28 days.

### 5.0 REINFORCEMENT PRIMER

5.1 Immediately following preparation and cleaning, the reinforcing steel shall be primed with Nitoprime Zincrich, a single component epoxy primer complying with the relevant parts of BS4652, 1971 (1979) Specification For Metallic Zinc Rich Priming Paint Type 2.
5.2 The Nitoprime Zincrich shall be brush applied to the cleaned reinforcement ensuring that all exposed steel is fully coated. Special attention shall be paid to the backs of the steel bars and where steel bars are tied together. It is essential that this coat is continuous with that of any adjacent repaired area where zinc-rich primer has been used. Avoid excessive over-painting onto the concrete and allow to dry.

### 6.0 SUBSTRATE PRIMING

6.1 For two hours prior to application of the repair mortar the prepared substrate shall be thoroughly wetted with clean water to totally satisfy absorption. Any standing or excess water shall be removed.
6.2 The concrete primer shall be Nitobond HAR acrylic emulsion that shall be worked firmly into the damp substrate with a short-bristle brush to achieve a film intimate with the contact area for immediate repair.
6.3 Single repair areas larger than $0.5 \mathrm{~m}^{2}$ shall be part primed to commence and thereafter progressively in maximum $0.5 \mathrm{~m}^{2}$ adjacent bays as application of the repair mortar proceeds.
6.4 The repair mortar shall be applied whilst the Nitobond HAR is tacky. If the primer dries before the mortar is applied, the area shall be re-primed once again.
Note: Where Renderoc HB40 is spray applied, no concrete primer shall be used. However thorough wetting of the surface must take place prior to spraying.

### 7.0 MIXING REPAIR MORTAR

7.1 Before mixing the repair mortar the contractor shall ensure that sufficient and correct areas for reinstatement are prepared and ready to receive repair mortar.
7.2 Only mixes using complete bags of Renderoc HB4O shall be allowed and part bag mixes not permitted.
7.3 The mixing shall be carried out strictly in accordance with current product instructions for use and only with appropriate mixing equipment.
7.4 The mixing water shall be potable quality and the carefully measured quantity of water $3.0-3.2$ litres for the required mix shall be placed into the mixing container before the Renderoc HB40. The quantity of water used when wet spraying Renderoc HB40 may be increased to a maximum of 3.4 litres. Consult the local Parchem representative.
7.5 The Renderoc HB40 shall be added to the mixing water and in no circumstances shall more water be added than the maximum volume stated for each bag when using the hand application method.

The mixing time shall be minimum 3-5 minutes to allow for full integration of component parts.

### 8.0 APPLICATION OF REPAIR MORTAR

8.1 Only fully integrated mixes of Renderoc HB40 at the required consistency and workability shall be used.
8.2 Trowel the mixed mortar to the prepared and primed surface of the substrate paying particular attention to packing behind and between the reinforcement, and thorough compaction overall.
8.3 Renderoc HB40 shall be applied in accordance with current instructions for use. It may be applied in one operation by building up to the required profile in wet-on-wet layers between $10-40 \mathrm{~mm}$ vertically and $10-30 \mathrm{~mm}$ overhead. Thicker sections may be achieved by building up in wet-on-dry layers, where each layer shall be wavy-line scratch keyed with a comb, cured with Nitobond AR, allowed to dry throughout and reprimed at the time of application of subsequent layers.
8.4 Sagging of the repair mortar is not acceptable and if occurring all the material of the affected repair shall be completely removed prior to repriming and refilling in two or more applications of mortar supported by formwork if required.
8.5 If formwork is used it shall be pre-treated with a varnish to prevent moisture absorption from the repair mortar. Special care shall be taken to ensure that the positioning of the formwork allows for compaction of and does not result in voids within the repair mortar.
8.6 After applying sufficient mortar to achieve a level flush with or slightly proud of the surrounding surface the Renderoc HB4O shall be finished by striking off with a straight edge and trowelled/floated depending upon circumstances.
8.7 Renderoc HB40 can also be applied by a dry spray, and a wet spray process. In spray applications where the Galvashield XP is to be incorporated into the patch repairs, allow to protect the installed Galvashield XP with a hand applied, set encasement mortar of Renderoc HB40 prior to commencing the spray application.
8.8 The repair mortar shall not be applied when the ambient or substrate temperature is below $5^{\circ} \mathrm{C}$ or above $35^{\circ} \mathrm{C}$ nor at an ambient temperature of $5^{\circ} \mathrm{C}$ on a falling thermometer. The applied repair mortar shall always be protected from freezing whilst drying.

Page 254 of 363

## Renderoc HB40

### 9.0 CURING

9.1 Details of the methods of curing shall be submitted to the Contract Administrator for approval.
9.2 Curing techniques shall be instigated immediately following application of repair mortar to any given area. Large areas $\left(0.5 \mathrm{~m}^{2}\right.$ at a time) shall be cured as trowelling progresses without waiting for completion of the whole area.
9.3 NitobondAR may be low-pressure, spray applied as a curing membrane. In fast drying conditions it will be necessary to supplement this with polyethylene sheet taped around its edges. Where a Dekguard or Emer-Clad protective coating is to be applied over the repair area then Nitobond AR shall be used as the curing membrane.
9.4 During application and curing, all work shall be protected against direct strong sunlight.

### 10.0 CLEANING

10.1 All equipment should be washed with clean water immediately after use. Cured material can only be removed by mechanical means.

## SECTION C: IMPORTANT NOTE

This method statement is offered by Parchem as a 'standard proposal' for the application of Renderoc HB40. It remains the responsibility of the Engineer to determine the correct method for any given application.

Parchem does not accept any liability either directly or indirectly for any losses suffered in connection with the use or application of the product whether or not in accordance with any advice, specification, recommendation or information given by it.

${ }_{\text {an }}^{+1}$ alesco company					
PARCHEM	CONCRETE REPAIA	Flooning Page 255	of 36ßuOnTING STSTEMS	WATERPROOFNG	
method statement	April os				
www.parchem.com.au	7 Lueca Road, Wyong	Sales 1800684322	Technical 1800812864	AEN 80 069961968	5

## Renderoc HB70

## High build, high strength, very low shrinkage, patch repair mortar, compatible with concrete $\mathbf{> 4 5} \mathbf{~ M P a}$

## USES

For the reinstatement of localised patch repairs and larger areas where suitable reinforcement is incorporated. Renderoc HB70 is alkaline in nature and will protect embedded steel reinforcement. It is specifically designed for locations where high build and high compressive strengths are required or in locations where good abrasion resistance is necessary. The mortar is suitable where resistance is required to chlorides and carbon dioxide.


Important Note 1: When Renderoc HB70 is used in conjunction with Impressed Current Cathodic Protection or Norcure Realkalisation and Desalination methods, the substrate bonding primer should be an OPC: Water slurry mixed at a $2: 1$ ratio.

Polymer bonding agents should not be used. No steel primer should be applied. Please refer to Parchem for further advice.
Important note 2: Reneroc HB70 is suitable for use with the Fosroc Galvashield XP incipient anode protection, with a resistivity $<15,000$ $\Omega \mathrm{cm} @ 28$ days.

## ADVANTAGES

- High strength and high abrasion resistance
- High build repairs
- Exceptional system of shrinkage compensation, provides long-term dimensional stability
- Low permeability provides sound protection against carbon dioxide and chlorides
- Can be applied by the wet or dry spray process for fast, exceptionally high build repairs with enhanced characteristics
- Suitable for internal and external use

日 Pre-bagged to overcome site-batched variations - only the site-addition of clean water required

- Contains no chloride admixtures


## DESCRIPTION

Renderoc HB 70 is supplied as a ready to use blend of dry powders which requires only the site addition of clean water to produce a highly consistent, high strength repair mortar. The material is based on Portland cement, graded aggregates, special fillers and chemical additives and is polymer modified to provide a mortar with good handling characteristics, while minimising water demand. The hardened product exhibits excellent thermal compatibility with concrete and outstanding water repellent properties. The low water requirement ensures fast strength gain and long-term durability.

## DESIGN CRITERIA

Renderoc HB70 is designed for vertical or horizontal use. It can be applied up to 40 mm thickness in vertical sections. Greater thickness can be achieved in small pockets or by the use of formwork. In horizontal locations, Renderoc HB70 can be applied up to 150 mm thickness. Thicker sections can be built up in layers. The material should not be applied at less than 5 mm thickness. Thicknesses greater than those nominated in large areas can be achieved by spray application.

## SPECIFICATION CLAUSE

## Steel reinforcement primer

The steel reinforcement primer should be Nitoprime Zincrich, a single component zinc epoxy primer. The primer is capable of providing a protective barrier to further corrosive elements attacking the steel. It shall be fully compatible with the Renderoc concrete
repair system.

## REPAIR MORTAR

The polymer modified shrinkage-compensated reinstatement mortar shall be Renderoc $\mathrm{HB70}$ a singlecomponent cement-based blend of powders to which only the site-addition of clean water shall be permitted. The cured mortar shall achieve 70 MPa compressive strength and 10 MPa flexural strength at 28 days.

## PROPERTIES

The following sesults were obtained at a water:powder ratio of 0.14 and temperature of $20^{\circ} \mathrm{C}$.

Test method	Typleal result
Compressive strength	
(AS 1478.2-2006 - cured in a sealed plastic bag)	
	20 MPa 1 day
- dry cura):	70 MPa 28 days
Modulus of Rupture	5.2 MPa e 1 day
(Flexural Strength)	6.3 MPa © 7 days
(AS 1012.11-2000):	6.4 MPa e 28 days

Indirect Tonsille Strength

(AS 1012.10-2000):	2.9 MPa 1 day
	4.3 MPa e 7 days
	4.7 MPa © 28 days

Chloride Diffusion Nordtest NT Build 443
(BS 1881: Part 124: 1998)

	$\left(2.4 \times 10^{-12} \mathrm{~m}^{2} / \mathrm{sec}\right)$
Coefficient of thermal   expansion:	$7.12 \times 10^{-4} \% \mathrm{C}$

Setting time (AS 1012.10-2005):

Initial set:	3 hours, 15 minutes
Final set:	4 hours, 30 minutes

Fresh wet density: $\quad$ Approx. $2200 \mathrm{~kg} / \mathrm{m}^{3}$ dependent on actual consistency used

## TECHNICAL SUPPORT

Parchem offers a technical support service to specifiers, end-users and contractors, as well as on-site technical assistance.

## APPLICATION INSTRUCTIONS

## PREPARATION

Saw cut or cut back the extremities of the repair locations to a minimum depth of at least 5 mm to avoid featheredging and to provide a square edge. Break out the repair area to a minimum depth of 5 mm up to the sawn edge.
Clean the surface and remove any dust, unsound or contaminated material, plaster, oll, paint, grease, corrosion deposits or algae. Where breaking out is not required, roughen the surface and remove any laitance by light scabbling or grit-blasting.

Oil and grease deposits should be removed by steam cleaning, detergent scrubbing or the use of a proprietary degresser. The effectiveness of decontamination should then be assessed by a pull-off test.

Expose fully any corroded steel in the repair area and remove all loose scale and corrosion deposits. Steel
should be cleaned to a bright condition paying particular attention to the back of exposed steel bars. Grit-blasting is recommended for this process.

Where corrosion has occurred due to the presence of chlorides, the steel should be high-pressure washed with clean water immediately after grit-blasting to remove corrosion products from pits and imperfections within its surface.

## REINFORCING STEEL PRIMING

Apply one full coat of Nitoprime Zincrich and allow to dry before continuing. If any doubt exists about having achieved an unbroken coating, a second application should be made and, again, allowed to dry before continuing.
(If Galvashield XP are to be embedded into the Renderoc HB70 patch repair, refer to the current Galvashield XP Technical Data Sheet for priming instructions).

## SUBSTRATE PRIMING

The substrate should be thoroughly sosked with clean water and any excess removed prior to applying one coat of Nitobond HAR primer and scrubbing it well into the surlace. Renderoc HB70 is to be applied as soon as the primer becomes tacky. If the Nitobond HAR dries prior to the application of the Renderoc H870, then the Nitobond HAR is to be reprimed and the repair mortar applied when primer is tacky. If the Nitobond HAR is too wet, vertical build up of the Renderoc HB70 mortar may be difficult.
In exceptional circumstances, e.g. where a substrate/repair barrier is required or where the substrate is wet or likely to remain permanently damp, Nitobond EP bonding aid should be used. Contact your local Parchern sales office for further information.

## MIXING

Cere should be taken to ensure that Renderoc HB70 is thoroughly mixed. A forced-action mixer is essential. Mixing in a sultably sized drum using an approved spiral paddle in a slow speed ( $400 / 500 \mathrm{rpm}$ ) heavy-duty drill is acceptable for the occasional one-bag mix. Free-fall mixers must not be used. Mixing of part bags should never be attempted.

For normal applications, place 2.8-3.0 litres of drinking quality water into the mixer and, with the machine in operation, add 1 full 20 kg bag of Renderoc HB70 and mix for 3-5 minutes until fully homogeneous. Note that powder must always be added to water, Dependent on the ambient temperature and the desired consistency, the amount of water required may vary slightly but should not exceed 3.0 litres / 20 kg bag of Renderoc H870.

## APPLICATION

Exposed steel reinforcing bars should be firmly secured to avoid movement during the application process as this will affect mortar compaction, build and bond.

Apply the mixed Renderoc HB70 to the prepared substrate by gloved hand or trowel. Thoroughly compact the mortar on to the primed substrate and around the exposed reinforcement. Renderoc HB70 can be applied up to 40 mm thickness in vertical sections but greater thickness in smaller pockets or with the use of formwork. If formwork is used, it should have properly sealed faces to ensure that no water is absorbed from the repair material. In horizontal locations, Renderoc HB70 can be applied up to 150 mm thickness.

If sagging occurs during application to vertical surfaces, the Renderoc HB70 should be completely removed and reapplied at a reduced thickness on to the correctly reprimed substrate.

Note: the minimum applied thickness of Renderoc HB70 is 5 mm .

## SPRAY APPLICATION

Renderoc HB70 can be applied by the wet spray technique. In circumstances where large areas of repair are required, the rapid placement and higher build attainable by these methods offer economic advantages over hand-trowelling. The resultant repair also offers a generally more dense compound with greatly enhanced mortar/substrate bond characteristics. For further details on the wet and dry spray techniques, including selection of spraying machines and nozzles, consult Wet or Dry Spray Application Guides or your local Parchem sales office.

## FINISHING

Renderoc HB70 is finished by striking off with a straight edge and closing with a steel float. Wooden or plastic floats, or damp sponges may be used to achieve the desired surface texture. The completed surface should not be overworked.

## L.OW TEMPERATURE WORIKING

In cold conditions down to $5^{\circ} \mathrm{C}$, the use of warm water (up to $30^{\circ} \mathrm{C}$ ) is advisable to accelerate strength development. Normal precautions for winter working with cementitious materials should then be adopted. The material should not be applied when the substrate and/or air temperature is $5^{\circ} \mathrm{C}$ and falling. At $5^{\circ} \mathrm{C}$ static temperature or at $5^{\circ} \mathrm{C}$ and rising, the application may proceed.

## CURING

Renderoc HB70 is a cement-based repair mortar. In common with all cementitious materials, Renderoc HB70 must be cured immediately after finishing in accordance with good concrete practice. The use of Nitobond AR, sprayed on to the surface of the finished Renderoc in a continuous film, is recommended. Large areas should be cured as trowelling progresses $\left(0.5 \mathrm{~m}^{2}\right.$ at a time) without waiting for completion of the entire area. In fast drying conditions, supplementary curing with polythene sheeting taped down at the edges must be used. In cold conditions, the finished repair must be protected from freezing.

## OVERCOATING WITH PROTECTIVE DECORATIVE FINISHES

Renderoc HB70 is extremely durable and will provide excellent protection to the embedded steel reinforcement within the repaired locations. The surrounding parts of the structure will generally benefit from the application of a protective barrier/decorative coating to limit the advance of chlorides and carbon dioxide, thus bringing them up to the same protective standard as the repair itself. Parchem recommend the use of the Dekguard or Emer-Clad range of protective, anti-carbonation coatings. These products provide a decorative and uniform appearance as well as protecting areas of the structure which might otherwise be at risk from the environment. Dekguard or Emer-Clad products may be applied over the repair area without prior removal of the Nitobond AR curing membrane. Other curing membranes must be removed prior to the application of Dekguard or Emer-Clad products.

## Cleaning

Nitobond AR and Renderoc HB70 should be removed from tools, equipment and mixers with clean water immediately after use. Cured material can only be removed mechanically.

Equipment used with Nitoprime Zincrich and Nitobond EP should be cleaned with Parhem Solvent.

## LIMITATIONS

Renderoc HB70 should not be used when the temperature is below $5^{\circ} \mathrm{C}$ and falling. Do not mix part bags. The product should not be exposed to moving water during application. Exposure to heavy rainfall prior to the final set may result in surface scour. If any doubts arise concerning temperature or substrate conditions, consult your local Parchem office.

## HIGHTEMPERATURE WORKING

At ambient temperatures above $35^{\circ} \mathrm{C}$, the material should not be used as this will cause premature setting.

## Renderoc HB70

ESTIMATING	
SUPPLY	
Renderoc HB70:	$\mathbf{2 0 ~ k g}$ bag
Nitoprime Zincrich:	$\mathbf{1}$ litre can
Nitobond AR:	$\mathbf{1 , 5}$ and 20 litre container
Nitobond HAR:	$\mathbf{1 , 5}$ and 20 litre container
Nitobond EP:	$\mathbf{1 . 5}$ and 6 litre pack
Parhem Solvent:	$\mathbf{4}$ and 20 litre can

COVERAGE ANDYIELD

Renderoc HB70:	Approx. 10.2 litres / 20 kg bag   $\left(1.0 \mathrm{~m}^{2}\right.$ © 10 mm thickness)
Nitoprime Zincrich:	$7 \mathrm{~m}^{2} /$ litre (approx.)
Nitobond AR:	$6.8 \mathrm{~m}^{2} / \mathrm{litre}$
Nitobond EP:	$4-5 \mathrm{~m}^{2} / \mathrm{litre}$

Notes: the actual yield per bag of Renderoc HB70 will depend on the consistency used. The yield will be reduced if the material is applied by a spray technique. The coverage figures for liquid products are theoretical - due to wastage factors and the variety and nature of possible substrates, practical coverage figures will be reduced.

## STORAGE

## SHELF LIFE

All products have a shelf life of 12 months if kept in a dry store in the original, unopened bags or packs.

## STORAGE CONDITIONS

Store in dry conditions in the original, unopened bags or packs. If stored at high temperatures and/or high humidity conditions the shelf life may be reduced to 4-6 months. Nitobond AR should be protected from frost.

## ADDITIONAL INFORMATION

Parchem provides a wide range of complementary products which include:

- concrete repair - cementitious and epoxy
- grouts and anchors - cementitious and epoxy
tit waterproofing membranes - liquid applied, cementitious and bituminous sheet membranes

E waterstops - pve and swellable

- joint sealants - building, civil and chemical resistant

E industrial flooring systems - cementitious and epoxy

- architectural coatings

Ef filler boards - swellable cork, bituminous and backing rod

- ancillary products

For further information on any of the above, please consult with your local Parchem sales office.

## INIPORTANT NOTICE

A Material Safety Data Sheet (MSDS) andTechnical Data Sheet (TDS) are avallable from the Parchom website or upon request from the nearest Parchem sales office. Reed the MSOS and TDS carefully prior to use as application or performance data may change from time to time. In emergency, contact any Poisons Information Centre (phone 131126 within Australla) or a đoctor for advice.

## PRODUCT DISCLAIMER

This Technical Data Sheet (TDS) summarises our best knowledge of the product, including how to use and apply the product based on the information available at the time. You should read this TDS carefully and consilder the information in the context of how the produet will be used, including in conjunction with any other product and the type of surfaces to, and the manner in which, the product will be applied. Our responsibility for products sold is subject to our standard terms and conditions of sale. Parchom does not accept any Hablility elither directly or indirectly for any losses suffered In connection with the use or application of the product whether or not in accordance with any advice, specification, recommendation or Information given by it.
*Manufactured and sold under license from Fosroc International Limited. Fosroc and the Fosroc logo are trade marks of Fosroc International Limiled, used under license. "Denotes a trade mark of Fosroc International Limited.

an + ${ }^{\text {alesco enmeny }}$					
PARCMEM	CONCRETE REPAIM	RLOORMG	Jonima ssiems	WatERPAOOFIGG	
	AUCUETCO	Page	383		
www.parchemieen.an	7 Leeen llond, WYang NSW 22s9	Sales 1800 624 322	Technteal ta00 812854	ABN 80.069 951 06e	4

## Supplementary instructions VEGABAR - External housing



Document ID: 31087


## Contents

1 About this document
1.1 Function. ..... 3
1.2 Target group ..... 3
1.3 Symbolism used ..... 3
2 For your safety
2.1 Authorised personnel ..... 4
2.2 Appropriate use ..... 4
2.3 Safety instructions for Ex areas ..... 4
2.4 Environmental instructions ..... 4
3 Product description
3.1 Structure ..... 5
3.2 Principle of operation ..... 5
3.3 Storage and transport ..... 6
4 Mounting
4.1 General instructions ..... 7
4.2 Mounting preparations ..... 7
4.3 Exchange of the electronics module ..... 7
4.4 Mounting steps, external housing ..... 9
5 Connect the sensor to the external housing
5.1 Preparing the connection ..... 10
5.2 Connection procedure ..... 10
5.3 Wiring plan. ..... 11
6 Setup
6.1 Setup ..... 15
7 Maintenance
7.1 Instrument repair ..... 16
8 Dismounting
8.1 Dismounting steps ..... 17
8.2 Disposal ..... 17
9 Supplement
9.1 Technical data ..... 18
9.2 Dimensions ..... 20

## 1 About this document

### 1.1 Function

This supplementary manual, together with the attached operating instructions manual, has all the information you need for quick setup and safe operation. Please read this manual before you start setup.

### 1.2 Target group

This operating instructions manual is directed to trained qualified personnel. The contents of this manual should be made available to these personnel and put into practice by them.

### 1.3 Symbolism used



Information, tip, note
This symbol indicates helpful additional information.
Caution: If this warning is ignored, faults or malfunctions can result.
Warning: If this warning is ignored, injury to persons and/or serious damage to the instrument can result.
Danger: If this warning is ignored, serious injury to persons and/or destruction of the instrument can result.


## Ex applications

This symbol indicates special instructions for Ex applications.

- List

The dot set in front indicates a list with no implied sequence.
$\rightarrow \quad$ Action
This arrow indicates a single action.
1 Sequence
Numbers set in front indicate successive steps in a procedure.

## 2 For your safety

### 2.1 Authorised personnel

All operations described in this operating instructions manual must be carried out only by trained specialist personnel authorised by the plant operator.

During work on and with the device the required personal protective equipment must always be worn.

### 2.2 Appropriate use

The external housing is a replacement part for a VEGABAR series 50 or 60 pressure transmitter.

### 2.3 Safety instructions for Ex areas

Please note the Ex-specific safety information for installation and operation in Ex areas. These safety instructions are part of the operating instructions manual and come with the Ex-approved instruments.

Use in dust-Ex applications is not permitted.

### 2.4 Environmental instructions

Protection of the environment is one of our most important duties. That is why we have introduced an environment management system with the goal of continuously improving company environmental protection. The environment management system is certified according to DIN EN ISO 14001.

Please help us fulfil this obligation by observing the environmental instructions in this manual:

- Chapter "Storage and transport"
- Chapter "Disposal"


## 3 Product description

### 3.1 Structure

## Scope of delivery

Constituent parts

## Application area

The scope of delivery encompasses:

- External housing
- Line bridge
- Documentation
- this operating instructions manual

The external housing consists of the following components:

- Housing
- Screwed cover for electronics or connection compartment
- Socket

Depending on the order, the screwed cover is available with or without inspection window for the indicating and adjustment module.


Fig. 1: Components of the external housing for VEGABAR
1 Screwed cover
2 Housing
3 Socket
4 Wall mounting plate

### 3.2 Principle of operation

The external housing is suitable for the following pressure transmitters in IP 68 (25 bar) version:

- VEGABAR 51, 52, 53, 54, 55, 66, 67

Page 264 of 363

3 Product description

### 3.3 Storage and transport

Packaging	Your instrument was protected by packaging during transport. Its   capacity to handle normal loads during transport is assured by a test   according to DIN EN 24180.
	The packaging of standard instruments consists of environment-   friendly, recyclable cardboard. For special versions, PE foam or PE foi   is also used. Dispose of the packaging material via specialised   recycling companies.
Storage and transport   temperature	- Storage and transport temperature see chapter "Supplement -
Technical data - Ambient conditions"	

- Relative humidity 20 ... $85 \%$


## 4 Mounting

### 4.1 General instructions



In Ex applications, only a housing with appropriate Ex approval must be used.

## Tools

### 4.2 Mounting preparations

The following tools are required for mounting:

- Allen key, size 4
- Fork wrench, wrench size 19


### 4.3 Exchange of the electronics module

The electronics module is located in the electronics compartment. The below illustration shows the position of the electronics compartment in an external housing.


Fig. 2: Single chamber housing
1 Position of the electronics compartment

Remove the electronics module from the existing housing

Proceed as follows:
1 Switch off power supply
2 Unscrew housing cover of the electronics compartment
3 Disconnect the connection cables according to the operating instructions manual of the respective sensor
4 Loosen the two holding screws of the electronics module with a Phillips screwdriver

Page 266 of 363

## Mount the electronics module into the new housing



Fig. 3: Loosening the holding screws
1 Electronics module
2 Screws (2 pcs.)
5 Pull the electronics out by holding the opening levers.
Proceed as follows:
1 Insert the electronics module carefully into the new housing.
Information:
i
The electronics module is connected via a plug. Make sure that the plug is in the correct position. The notch must be in position "18.00 h".


Fig. 4: Plug position
1 Notch
2 Screw in and tighten the two screws with a Phillips screwdriver.
3 Screw the housing cover on
The exchange of the electronics module is finished.
As a rule, an exchange of electronics must be documented internally when Ex applicatfgns aie proulped.

### 4.4 Mounting steps, external housing

## Wall mounting

1 Mark the holes according to the following drilling template
2 Depending on the mounting surface, fasten the wall mounting plate with 4 screws


Fig. 5: Drilling template - wall mounting plate

## Tip:

1
Mount the wall mounting plate so that the cable entry of the socket housing points downward. Rain and condensation water can thus drain off. The socket housing can be displaced by $180^{\circ}$ to the wall mounting plate.

Turn the cable gland of the instrument housing downward. The basic body of the instrument housing can be turned by $330^{\circ}$ without any tools.

## Warning:

The four screws of the socket housing must only be hand-screwed. A torque $>5 \mathrm{Nm}$ ( 3.688 lbf ft ) can damage the wall mounting plate.

## 5 Connect the sensor to the external housing

### 5.1 Preparing the connection

Follow the instructions in the operating instructions manual of the sensor.

### 5.2 Connection procedure

Proceed as follows:
1 Loosen the four screws on the housing socket with an Allen key
2 Remove the housing socket from the mounting plate


Fig. 6: Remove the mounting plate from the housing socket

1	Screws
2	Wall mounting plate
3	Cable gland

3 Lead the connection cable through the cable gland on the housing socket ${ }^{1)}$

## Tip:

The cable gland can be mounted in three positions each displaced by $90^{\circ}$. Simply exchange the cable gland against the blind plug in the suitable thread opening.

4 With four-wire sensor, remove the bridge between terminal 4 and the ground terminal, see "Wiring plan".

1) The connection cable is already preconfectioned. If necessary, shorten it to the requested length, cut the breather capillaries clean. Remove approx. 5 cm of the Bagenalie, Qfrigeapprox. 1 cm insulation from the ends of the individual wires. After shortening the cable, fasten the type plate with support back onto the cable.

5 Connect the wire ends as described in chapter "Connection plan". Take note of the numbering.

Depending on the delivery date of the sensor, the connection cable is equipped with three or four wires. Take note of the different terminal assignment in the housing socket under "Wiring plan".

6 Connect the screen to the internal ground terminal and the external ground terminal on top of the housing to potential equalisation
7 Tighten the compression nut of the cable entry. The seal ring must completely encircle the cable
8 Attach the mounting plate again and tighten the screws
The electrical connection of the sensor to the external housing is finished.

You find the electrical connection of the electronics module in chapter "Wiring plan" or in the operating instructions manual of the respetive sensor.

### 5.3 Wiring plan

Overview VEGABAR 51, 52, 53, 54, 55


Fig. 7: External housing in conjunction with VEGABAR 51, 52, 53, 54, 55

5 Connect the sensor to the external housing

## Overview VEGABAR 66,

 67

Fig. 8: External housing in conjunction with VEGABAR 66, 67

Page 271 of 363

## Terminal compartment, housing socket threewire



Fig. 9: Connection of the sensor in the housing socket, three-wire
1 Brown
2 Blue
3 Yellow
4 Green/yellow (line bridge from supply)
5 Shielding
6 Breather capillaries

5 Connect the sensor to the external housing

Terminal compartment, housing socket fourwire


Fig. 10: Connection of the sensor in the housing socket, four-wire
1 Brown
2 Blue
3 Yellow
4 White
5 Shielding
6 Breather capillaries

Wiring plan external electronics


Fig. 11: Wiring plan, electronics
1 Voltage supply

## 6 Setup

### 6.1 Setup

Setup is carried out according to the operating instructions manual of the respective sensor.

## 7 Maintenance

### 7.1 Instrument repair

If a repair of the instrument is necessary, please proceed as follows:
You can download a return form ( 23 KB ) from our Internet homepage www.vega.com under: "Downloads - Forms and certificates - Repair form".

By doing this you help us carry out the repair quickly and without having to call back for needed information.

- Print and fill out one form per instrument
- Clean the instrument and pack it damage-proof
- Attach the completed form and probably a safety data sheet to the instrument
- Send the instrument to the address of the agency serving you. In Germany, send it to the company headquarters in Schiltach.


## 8 Dismounting

### 8.1 Dismounting steps

Take note of chapters "Mounting" and "Connect sensor to the external housing" and carry out the listed steps in reverse order.

### 8.2 Disposal

The instrument consists of materials which can be recycled by specialised recycling companies. We have purposely designed the electronic modules to be easily separable. Mark the instrument as scrap and dispose of it according to national government regulations (e.g. in Germany according to electronic scrap ordinance).

Materials: see chapter "Technical data"
If you have no way to dispose of the old instrument properly, please contact us concerning return and disposal.

## 9 Supplement

### 9.1 Technical data

## Technical data

Following you find all data deviating from the standard instrument. All other technical data are specified in the operating instruction of the respective sensor.

## General data

Material 316L corresponds to 1.4404 or 1.4435
Materials, non-wetted parts

- Housing
- Housing socket
- Wall mounting plate
- Seal between housing socket and wall mounting plate
- Seal between housing and housing cover
- Ground terminal

Weight

Plastic PBT (polyester), Alu die-casting pow-der-coated, 316L
plastic PBT (Polyester)
plastic PBT (Polyester)
TPE (fixed connected)
NBR (stainless steel housing), silicone (Alu/ plastic housing)
316L
$0.7 \ldots 1.5 \mathrm{~kg}$ ( $1.543 \ldots 3.307 \mathrm{lbs}$ ), depending on housing material

## Process conditions

Ambient, storage and transport temperature

- without indicating and adjustment module
- With indicating and adjustment module


## Electromechanical data

## Cable entry/plug2)

- Socket
- Housing
- $1 \times$ cable entry M20 $\times 1.5$ (cable: $ø 6 . . .12 \mathrm{~mm})$
- $1 \times$ cable gland M20 $\times 1.5$ (cable: $\varnothing 5 \ldots 9 \mathrm{~mm}$ ), $1 \times$ blind stopper M20 $\times 1.5$
or:
- $1 \times$ closing cap $1 / 2$ NPT, $1 \times$ blind plug $1 / 2$ NPT
or:
- $1 \times$ plug (depending on the version), 1 x blind stopper M20 $\times 1.5$
Page 277 of 363
${ }^{2}$ ) Depending on the version M12 $\times 1$, according to ISO 4400, Harting, 7/8" FF.


## Electrical protective measures

Protection rating

- Housing

IP 65

- Socket

IP 68 (1 bar)

### 9.2 Dimensions

## Basic body external housing



Fig. 12: Basic element, external housing (with integrated PLICSCOM, the height of the housing increases by $9 \mathrm{~mm} /$ 0.35 in )

1 Plastic housing
2 Stainless steel housing
3 Aluminium housing

## Sensor housing and external housing



Fig. 13: External housing and sensor housing
1 Lateral cable outlet
2 Axial cable outlet
Page 279 of 363

Printing date:

VEGA Grieshaber KG
Am Hohenstein 113
77761 Schiltach
Germany
Phone +49 7836 50-0
Fax +49 7836 50-201
E-mail: info@de.vega.com
www.vega.com

## $C \in$

All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing.
© VEGA Grieshaber KG, Schiltach/Germany 2010
Page 283 of 363

## SECTION 3: AS CONSTRUCTED DRAWINGS - CONTENTS PAGE

3.1 DRAWING REGISTER ..... 284
3.2 AS CONSTRUCTED DRAWINGS ..... 286
3.3 UNDERGROUND CABLE ROUTING DETAILS ..... 315

## 3 AS CONSTRUCTED DRAWINGS

### 3.1 DRAWING REGISTER

The following page contains the drawing register for the switchboard and civil works that make up the switchboard upgrade for the sewerage pump station reliability improvement project at Jilba St

# N NiLSEN 

ABN 50115075048
379 Thynne Road, Morningside Brisbane QLD 4170
E-mail: nilsenq@nilsen.com.au

ELECTRICAL SERVICES DRAWING REGISTER
Job \#: 32887
Job Name: SP162 - Jilba St, Submersible Sewerage Pump Station Upgrade
Tel: (07) 38998866
Fax: (07) 38998766 Head Contractor/Client: Queensland Urban Utilites


### 3.2 AS CONSTRUCTED DRAWINGS

The following pages contain the as constructed drawings listed in the drawing register. For CAD and associated files please refer to the CD containing the soft copy that accompanies this manual

## Urbañutilities

## SP162 JILBA STREET SEWAGE PUMPING STATION

## SITE COVER SHEET


ENERGEX SUPPLY 3 PHASE
FEED FROM PILLAR $16 \mathrm{~mm}^{2}{ }^{2}$ (NOTE 4)

NOTES

1. INCOMING GENSET, MAIN, PUMP \& DIST. BOARD
CIRCUIT BREAKERS LINE SIDE SHRO . incut breaker rating sut faut
2. CIRCUIT BREAKER RATINGS SUIT FAULT WITH CONTACTORS \& OVERLOADS TO IEC 947-4-1.
3. ALL WIRES \& CABLE CORES ARE FERRULED
WITH GRAFOPLAST SI2O00 COMPATIBLE LABELLING.
4. POINT OF SUPPLY. DISCRIMINATION BETWEEN
TO AS 3000 OES AND PUMP CIRCUIT BREAKERS
TO
5. CABLING TO GENERATOR CONNECTION SOCKET AND CABLING FULLY SEALED TO OTHER COMPARTMENTS



SP162 Jilba Street Indoorooopilly SPS Electrical Switchboard OM Manual






SP162 Jilba Street Indooroopilly SPS Electrical Switchboard OM Manual


SP1 62 Jilba Street Indooroopilly SPS Electrical Switchboard OM Manual



SP162 Jilba Street Indooroopilly SPS Electrical Switchboard OM Manual


SP162 Jilba Street Indooroopilly SPS Electrical Switchboard OM Manual















SP162 Jilba Street Indooroopilly SPS Electrical Switchboard OM Manua


SP162 Jilba Street Indooroopilly SPS Electrical Switchboard OM Manual



### 3.3 UNDERGROUND CABLE ROUTING DETAILS

Please refer to the civil as constructed drawings contained in section 3.2

## SECTION 4: COMMISIONING, CERTIFICATES AND TESTING INFORMATION - CONTENTS PAGE

4.1 FORM 16 ..... 317
4.2 SWITCHBOARD MANUFACTURER TEST INFORMATION ..... 322
4.3 QUU COMMISSIONING PLAN ..... 333
4.4 QUU FACTORY ACCEPTANCE TESTS (FAT) ..... 349
4.5 ENGINEER DESIGN CERTIFICATION ..... 349
4.6 LEVEL PROBE COMMISSIONING INFORMATION ..... 356
4.7 CONTRACTORS CERTIFICATE OF TESTING AND SAFETY ..... 360

## 4 COMMISIONING, CERTIFICATES AND TESTING INFORMATION

4.1 FORM 16

The following pages contain the Form 16 for the Jilba St switchboard upgrade certifying that the installation has been carried out to Australian Standards.

# Inspection Certificate / Aspect Certificate / QBSA Licensee Aspect Certificate 

NOTE	This form is to be used for the purposes of section 10(c) and 239 of the Building Act 1975 and/or sections 32, 35B, 43, 44 and 47 of the Building Regulation 2006.
1. Indicate the type of certificate	( Inspection Cortificate for
The slages of assessable bullding work are listed in section 24 of the Buididing Rogulation 2006 or as condilioned by the building certifier.   An aspect of building work is part of a stage (e.g. waterprooling).	Stage of building work (lor single delached class 1 a or class 10 building or stuccure)   (indicate the stage) $\qquad$   Aspect of building work   (indicate the aspect)   Electrical Services
An aspect of building work is part of a stage (e.g. waterprooling).	QBSA Licensee Aspect Certificate   Scope of the work   Scope of the work covered by the licence class under the Queensland Building Services Authority Regulation 2003 for the aspect being certified, e.g. scope of work for a waterproofing licence is "instaling waterproofing materials or systems for preventing moisture penetration". An aspect being certified may include "wet area sealing to showers".
	Supply and installation of replacement Electrical switchboards as part of the SQUV - Sewerage Pump Stations Reliability Improvement Project,
2. Property description   The desciption must idenely all land the subject of the application.   The lot \& plan detals (eg. SP / RP) are shown on tje documents or a rates nolice. If the plan is not registered by $\begin{aligned} & \text { ille, provide }\end{aligned}$ nomious lot and plan details.	Street address (ndude na, street, suburb/locally \& postcode)
	Queensland Urban Utilities Submersible Sewerage Pump Station - Jiliba St
	Indooroopilly QLD Postcode 4068
	Lot \& plan details (Attech list I necessary)
	n/a
	In which local government area is the land siluated?
	Brisbane City Council
3. Bullding/structure description	Building/structure descriplion Class of building/structure
	External concrete pads/andscaped areas.
	New Pump Station Control and Swilchboard
4. Description of component/s certified Clearty describe the extent of woik covered by this corfificato, e.g. all structural aspects of the steel rool beams.	All Electrical works have been installed in accordance with ASINZ 3000-2007 wiring rules.
	Page 319 of 363



Form 16 continuod
3asis of certification Detail the basis for giving the certificale and the extent to which tests, speciicalions, nles, slandards, codes of praclice and other publicalions, were relied upon.

ASNZS 3000:2007 Amendment 1 2009
BCA codes Seclion J




Form 16 continued


### 4.2 SWITCHBOARD MANUFACTURER TEST INFORMATION

The following pages contain the switchboard manufacturer's internal inspection and test sheets.

SUNLINE	Form No.	ISSUE	Revision	Date
QA TEST BOOKLET	8	B	11	$24 / 06 / 11$

## Q.A. TEST SHEET BOOKLET

## PROJECT: QUU Pump Panels

## SWITCHBOARD

TUTLE: $\quad \mathrm{SP} 162$
JOB NO:

```
Q12B04
```

LIIENT:
Nilsens

DRAWING
\& REVISION NO. :

LEGEND
$P=$ Pass
$F=$ Fail
R=Reinspect
$\mathrm{N}=$ Refer notes/comments
$>=$ greater than
$<=$ less than
$\mu \mathrm{m}=\mathrm{m} \times 10^{-6}=$ micron
ITEM 1. - SHEETMETAL
ITEMI 2. -PAINTING/POWDER COATING
ITEM 3. - ELECTRICAL INSPECTION
ITEM 4. - ELECTRICAL TEST
ITEN 5. - ELECTRICAL TEST CONT.
ITEM 6. - PRE DELIVERY CHECK SHEET
EM 7. - PRE DELIVERY CHECK SHEET CONT.
ITEM 8. - GENERAL COMMENTS

SUNLINE	Form No.	ISSUE	Revision	Date
QA TEST BOOKLET	8	$B$	10	$15 / 12 / 08$

## 1-SHEETMETAL.

## JOB NUMBER:



Fabrication by: $\square$ Enclosures (name) (name)

## COMMENTS:

## HOLD POINT No. 1

Enclosure has been inspected and is approved for powder coating.
Signed
 Date ....12-11-12

SUNLINE	Form No.	ISSUE	Revision	Date
QATEST BOOKLET	8	$B$	10	$15 / 12 / 08$

2-PAINTINGI POWDER COATING.


Powder-coat by: $C$ [nd $\quad$ (companyname)

COMMENTS :

## HOLD POINT NO. 2

Paint finish has been inspected and is approved for electrical fit-out.
signed Turlles's
Date
$12-11-12$

SUNLINE	Form No.	ISSUE	Revision	Date
QA TEST BOOKLET	8	B	10	$15 / 12 / 08$

## 3 - ELECTRICAL INSPECTION.


$\qquad$
COMMENTS:
$\qquad$
$\qquad$
$\qquad$
HOLD POINT No. 3

- vitchboard assembly has been inspected and is approved for electrical testing.

| SUNLINE | Form No. | ISSUE | Revision | Date |
| :---: | :---: | :---: | :---: | :---: | :---: |
| QA TEST BOOKLET | 8 | $B$ | 10 | $15 / 12 / 08$ |

## A-ELECTRUALTESTS.

## JOB NUMBER:



## OTE: * Caution - Do not Megger when electronic equipment is connected.

Note 1. Insulation is satisfactory when 2 kV voltmeter readegexp8bto 88000 V and lamp brightness is normal.
Note 2. Insulation is unsatisfactory when $2 k V$ voltmeter reads below 1800 V and lamp brightness falls.

SUNLINE	Form No.	ISSUE	Revision	Date
QA TEST BOOKLET	8	B	10	15/12/08



## COMMENTS:

## HOLD POINT No. 4

:sting has been completed successfully and switchboard assembly is approved for pre delivery inspection
Signed ........ferf1م

SUNLINE	Form No.	ISSUE	Revision	Date
QA TEST BOOKLET	8	B	10	$15 / 12 / 08$

## 6 - PRE DELIVERY CHECK SHEET.

JOB NUMBER:				
$\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$	I\& T.P. DESCRIPTION	PASS	FAlL	$\begin{gathered} \text { RE-INSPECT } \\ \text { P=PASS } F=F A I L \end{gathered}$
100	Is paintwork in satisfactory condition.			
101	Doors and panels align correctly.	7		
102	Panel fixings and bolts secured.	7		
103	Circuit schedule card supplied if required.	7		
104	Internal panel fixings fitted with star washers.	,		
105	Control wiring fitted with pre-insulated type lugs (If required).	$\checkmark$		
106	Main power connections fitted with heat shrink sleeving where applicable.			
107	CT's fitted with bus bar links where required.	$N / B$		
78	Bus bars P.V.C. insulated in exposed areas (ff required).	J		
109	Spare fuse clips or racks fitted (If required).	N/A		
110	Schematic drawing supplied (If required).	1		
111	Wires and terminals numbered (As required).	7		
112	Equipment fitted as shown on as built drawings.	$\checkmark$		
113	Equipment neat, complete and straight.			
114	Are bolts provided to terminations.	$\checkmark$		
115	Are shrouds fitted over live components in accessible areas (If required).	$\sqrt{ }$		
116	Earth bar has paint removed from contact surface with gear tray.	$1 /$		
117	Is name plate fitted, stating fault level, rating etc.			
	ARE LABELS:	<		
118	Straight and clearly visible.			
119	Correct spelling.			
120	Fixed with double sided tape or fixed with screws.	7		
121	As per drawing.			
122	Fixing screws have protruding sharp points removed (If required).	100		
	IS WIRING INSTALLED IN P.V.C. DUCTS AND:			
3	Duct lids neat and edges cleaned and a good fit.	7		
124	Wiring leaving duct neat and regularly fixed with cable ties.	/		
125	Ducts correctly fitted.	J		
	IS NEUTRAL BAR FITTED AND,			
128	Correct number \& sizes in relation to terminations (watch submains)			
127	Correctly identified and numbered.	7		

## Continued on page 8

## COMMENTS:

SUNLINE	Form No.	ISSUE	Revision	Date
QA TEST BOOKLET	8	B	10	$15 / 12 / 08$

## 7 - PRE DELIVERY CHECK SHEET.

JOB NUMBER:					
$\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$	I \& T.P. DESCRIPTION		PASS	FAIL	RE-INSPECT $P=P A S S ~ F=F A I L$
128	Check connections for firmness and correct termination procedure.				
129	Are C.F.S. units fitted with cartridges and if so is size installed correct and size indicated on door of C.F.S.		N/L		
130	Check door to ensure firm compression of seals.		$\mathcal{J}$		
131	Are door hinges securely fixed.		1		
132	Are insect screens fitted over louvres (If required).		J		
133	Is cable tray fitted over louvres (If required).		J		
134	Are circuit breaker "Blanks" fitted and secure (Where required).		J/		
135	Have wiring diagrams and equipment instructions been packed		$\sqrt{ }$		
136	Has switchboard been thoroughly cleaned out.		,		
$\cdot 37$	Have photo's been taken of switchboard. Photo's are stored electronically for each project, camera to be given to the receptionist for downloading on completion of each project.		$y_{i s}$		
138	Have delivery details been arranged.	A. Site notification/address.	Yes		
		B. Freight company notified.	yes		
	HAS SWITCHBOARD BEEN SECURELY PACKED.				
140	A. Bubble plastic wrapping (1 layer on face).		7		
141	B. Corrugated cardboard over wrapping (1 layer).				
142	C. Timber casing (Where required).		W0		
143	Is switchboard insured for transit.		Yes		
	NON-CONFORMANCE CHECKS				
144	Have there been any non conformances raised for this project?		Wor		
145	If the answer is "Yes" documentation must be completed?				

COMMENTS:

## HOLD POINT No. 5

Pre deliveryinspection has been completed successfully and s

SUNLINE	Form No.	ISSUE	Revision	Date
QA TEST BOOKLET	8	$B$	10	$15 / 12 / 08$

8-GENERAL COMMENTS

JOB NUMBER :

ITEM NO.	COMMENT
.	
	$\because$
- $\ldots$	
$\because$	$\therefore$



### 4.3 QUU COMMISSIONING PLAN

The following pages contain the approved QUU commissioning plan for Jilba St. This plan details the checks required by QUU before during and after the switchboard upgrade process.

These sheets were filled out by on-site electricians and are signed off by the site supervisor.

## 1 INTRODUCTION

## !! IMPORTANT !!

## This commissioning Procedure is not to replace the electrical contractors own internal quality control and statutory documentation.

At all times during the switchboard upgrade, the pump station must be capable of running at least 1 of the 2 puinps. To achieve this during the switchboard changeoveri, ä temporary Switchbord system will be used.

The attached document will be used by Nilsen staff in conjunction with Standäd SWMS üsed for eapch task. Refer to the list of approved SWMS procedures that will be available on site

The Project Manager is to ensure that 2 sets of For Construction Documents are available on Site during the cutover. Both sets are to be marked up with all changes
Set 1 is to stay on site after commissioning
Set 2 is to be taken off site for AutoCad conversion to As constructed Drawings

### 1.1. SEQUENCE OF WORKS

The sequence of works shall be:

1. Station Preliminaiy Works
2. Switchboard Cliangeover
a. DAY 1 -Temporary Switchboatd and preliminary's
b. DAY 2:- Commission New Switchboard (Pumps 1 \& 2)
c. DAY 3 - Remove old equipment
3. Post Chángeover

### 1.2 MAINTENANCECHECK OF EXISTING INSTALLATION

Before the works on site can commence, QUU staff to ensuire that all 2 pumps are fully operational shall perform a thorough maintenance inspection of the site. QUU to ensure that well access lids are free moving prior to works on Day 1

Notc: Printè copics of this document should be verificid for éur̃ency against the published electronic copy.

### 1.3 PRE COMMISSIONING CHECKLIST

The following checklist is to be completed and signed by the electrical contractor:

### 1.3.1 Switchboard Factory Acceptance Test

Contrnctor Task	Complaged
FAT has been completed as per QUU FAT Document and all defects that were   identified bave been rectified	OKD Date: $1 / 1$

### 1.3.2 Civil Works Complete

Contrnctor Task	Completán
Ensure all civil wöks are installed as per the For construction drawings	OKyf Date: $1 / 21 / 2$

### 1.3.3 New Switchboard Installed in Location

Contractor Task.	Outcome
Install new Switchboard and all accessories in the location on the new concrete slab as per the For Construction Brawings has been completed. Install all required seals between the switchiboard and the well	OKP
Ensure draw wires are intact in all conduits	OKD
Check the board to ensure that all components have not been damaged or loosened in transit	OKL
Install Main earth to Earth rod and Test Record results here : 0.1	OKV
Install Antenna, cabling añd pole ând align anteña to same compass setting as the existing antenna and lock into position	OK丁

### 1.3.4 New Radio Antenna Mast Location

| QUU Trisk | Result |
| :--- | :--- | :--- |
| Check the location of the antenna mast and ensure that the new position will not |  |
| be directly below electrical transmission lines. Install antenna pole, anterna and |  |
| wiring to the new switchboard. | Location okUV |

### 1.3.5 Generator Check

QUUTask	Checlied
- The stand bye generator can start run at full load for one hour and has sufficient fuel (full tank). This test is mandatory in assuring the generator is fully operational   - Confirm the generator has a current inspection certificate   - Ensure you are inştructed on Operation   - Ensure cable length is sufficient to complete the works	

### 1.3.6 Pump Station preliminary operational checks

QUU Task.	
These are checks will ensúre the pump station is fully operational and that no	Clicked
delays will be incurred due to any pump station problem out side of the contract.	
These task are desirable to have completed before the SAT but are not essential	
The job can proceed if they are not done.	
Commissioning Manager to request networks maintenance to inspect and rectify if	
necessary	



Note: Printed copies of this document should be verified for currency aganst the püblished electronic copy.

The existing reflux valves and assoçiated limit switches are working correctly.	Narok-
The discharge pressure connection point is available and that the isolation valve is functioning correctly.	NA気
The dry well extiaust fan is working correctly and quietly.	NA OK:
The wet well does not need pumping out.	NA ¢OK
The flow meters are functioning correctly.	NA LOKロ
Ensure that the station is fully fưnctional (all pumps can run) and fuel is full tank is filled after test.	NATO OK

Electrical Contractor's Supervisor


QUU Comunissioning Manager
Name: John Clayton Date: $6 / 212012$
Signature:

Docild:
Printed: $26 / 062012 \quad \because \quad$ Owncflage 337 of 363
Note: Printed copies of thits document shouild be verified for currency against the published electronic copy.

## 2 SWITCHBOARD CHANGEOVER PROCEDURE

The following sequence of chatige over works is the order tin which they must be followed. Two pumps must be operational at all times. After each phase has been completed, the commissioning manager will record the results and instruct the commissioning tean to commence work on the next phase.


### 2.1. DAY 1 - TEMPORARY SWITCHBOARD

### 2.1.1 Register with Control Room

Contractor Task	Outcome
Call the QUU ControlR Rom Operator (CRO) and inform him that you are on site.	
Record the CRO's Name and Officer Code and record the time of the call.	
Advise CRO that you are performing a switchboard changeover and that you will	
initially be taking one pump off line.	Name
Complete the on site Log Book	CRO:
Permit to Work Number and validity date	
Give the operator your contact name and number and advise the operator that	
communications will be lost to the pump station until the job is finished.	

### 2.1.2 Secure the Work Zone

Contractor Task	Outcome
Ensure sufficient work areas are established and fenced off to stop unauthorized	
entry. Ensure entry to properties is not hindered or access to the well.	NA Q OK ロ
Ensure QUU has notified resident of access requirements.	

### 2.1.3 Existing Switchboard Parameters

Contractor Task	Outcome
Ensure that the station is füly functional (all 2 pumps can run)	P17 P3才
HiSTSAHOLEONH   Do not proceed until the ALL 2 PUMPS are confirmed to be fully operational	Signature $\qquad$ 10630
Record 3 phase motor currents from display panel (At 50 Hz ) and on a hand heid tester to verify display   Pump \# 1   Pump \# 2   Verify motor phase rotation at motor leads	U. $\qquad$ $\qquad$ W: $\qquad$   U.   v $\qquad$ W. $\qquad$ $\square$



## 2．1．4 Generator Checks

Contractor Task	Outcome
Ensure that the generator has a full fuel tank．	OK－
Start the generator and measure the 3 phase volts and run one pump on load Check Phase and Pump Rotation	U． $\qquad$ $V$ $\qquad$ W． $\qquad$ 0   $\sigma$

## 2．15 Installation of temporary pumping board and field wiring

Contractor Task	Outcome
Install and test independent battery backed high alarm system（with Multitrode level sensor）in the wet well to provide audible and Visual alarm if the wet well level exceeds 200 mm above the current start level．	OK6
Mount the temporary punping board in a secure location．	OK】
Connect the temporary level probes and electrodes and temporary pumping contróls circuits	$0 \mathrm{~K} 5$

## 2．1．6 Test of temporary pumping board and field wiring

Contractor Task	Oütcome
Isolate and tag and lock out Pump No． 2 and remove motor control cable from the wet well	OKJ
Install Pump 2 Motor control cable to Temporary Switchboard	OKV
Turin existing switchboard to Manual setting	OKE
Start Generator and turn the connected Pump 2 to manual and ensure that the well pumps down．Confirm motor currents are correct as per previous readings	OKת
Set the Temporaty switchboard to Auto and observe a full cycle of pumping to ensure Auto operation and checking the operation of all alarms．	OK
Tün Off Temporany switchboard and lock and tag out	OK】
Turn Existing station back to Auto	OK／
Disconnect Pump 2 from Temp switchboaid	OKV
Reconnect Pump 2 to existing switchboard	OK】
De－isolate pump 2 on existing board and remove tag and lock	
Confirm station operates corectly by watching a complete cycle of the pump． station to ensure the station stops and starts at the correct levels	$\text { OK } \mathrm{K}$
Confirm all materials and site is securfe and ready for cutover Ensure Generator is Re－fuled and topped up：Generator cables are to be secưred．	OK才：

Electical Contractor＇s Supervisor


QUU Commissioning Mănager
Name：Jo
Signature： Active Dale：

Owichege 339 of 363
Printed： $26 / 06 / 2012$
Note：Printed copics of this document should be verified for currency naginst the pubtistied electronic copy：

### 2.1.7 Existing Switchboard Settings.

Runt each pump in local mode and record;

Pump Number	Hz	Total   Amps	$\begin{aligned} & \text { Total } \\ & \text { LW } \\ & \hline \end{aligned}$	Total	$\begin{aligned} & \text { Total } \\ & \text { PF }: ~ \end{aligned}$	Voltage THD Shase	Flow L/s	Discharge Pressure (mAHD)	Wet well Level (mAHD)
1	50		NA:	NA	NA	NA	NA'		
2	50		NA	NA	NA	NA:	NA		
1 \& 2	50		NA	NA	NA	NA	NA		


Contractor Task	

Electrical Contractor's Supervisor
Name: $\qquad$ Date: $\qquad$

Signature:


Doc Id:
Printed: 26/06/2012 Ownêfage 340 of 363
Note: Prinicd copics of this document stouild be verified for currency against the published electronic copy.
The contractor is to record äll settings on the existing switchboard, including but not
limited to.
Probe as foiund hanging lengths;
Starter setting
Antenna direction;
Condition of exlsting consumer malns to be reused;

### 2.1.8 Preparation for the Existing Energex consumer Mains Cutover

ContractorTask	Outcome
Use a "wand" to determine the location of the underground services, This may have   been undertaken prior to this day and is acceptable as long as the markings are still   present	OK-
Expose the mains in the location where the new conduits will join together and	
fence off this area	
Ensure that correct materials are available to join the conduits	
NOTE CABLE JOINTS ARE NOT PERMITTED	
ENSURE SUFFICENT CABLE IS AVALIABLE TO INSTALL NEW MAINS	
CABLES IFREQUIRED	
existing cable will require insulation testing before reusing.	



QUU Comimissioning Manager
: : Active Date:

Notc: Printed copics of this document should be verificd for currency against the published electronic copy.

Contracto Task	Outcome
Call the QUU Control Room Operator (CRO) and inform him that you are leaving   site. Record the CRO's Name and Officer Code and record the time of the call.   Complete the log book and ensure station is secured	OKD

## NOTICE

## THE STATION CAN NOW BE LEFT UNATTENDED AT THIS STAGE




## !!! WARNING !!!

The following works shall be continuous and the station can NOT be left unattended during this work, Multiple shifts shall be used if required and each employee can only working a maximum hours as per their WH\&S regulations.

### 2.2.1 Run Station on Temporary Switchboard (Pump 2)



Electrical Contractor's Supervisor


QUU Commissioning Manager


Doc Id:
Printed: $\quad 26 / 06 / 2012$
OwncPage 343 of 363
Note: printed copies of this document should be verified for currency against the published electronicicupy.

Remove Pole fuse and lock fuses in a lockout box and Tag;	OKD
TEST the existing Switchboard for DEAD using approved SWMS	OK
HOLD Point	

### 2.3 REMOVE EXISTING SWITCHBOARD WIRING

| Contractor Task | Completed |
| :--- | :--- | :--- |
| Disconnect all external equipment from the switchboard DO NOT remove from the <br> wet well until it is proved that the station has passed as SAT works. Draw ropes <br> are to be installed in all conduits | OK: |

### 2.4 REMOVE EXISTING PROBES

| Contractor Tasto |  |
| :--- | :--- | :--- |
| Remove all existing wet well level probes and Vega level sensor and their |  |
| associated cabling and conduits. Take note of existing heights of all sensors |  |
| Record Results Here |  |

### 2.5 WET WELL INSTRUMENTATION JUNCTION BOX

Contractor Task	Completed
Remove existing Probes. Ensure that all materials that are removed from the box   are not permitted to fall into the wet well.	OK

### 2.6 WET WELL SENSORS

| Contractor Task |
| :--- | :--- |
| Install all new well level probes and Vega sensor to correct heights and connect to |
| the new Switcliboard and re test each component as it is installed The switcliboard |
| $24 V D C$ can be energised to do these checks. |



### 2.7 CONNECT WET WELL AND DISCHARGE SENSORS TO NEW SWITCHBOARD

Contractor Task	Completed
Place all new reguired wet well and discharge sensors in the correct positions and   wire to the new Switchboard, Test each component as it is installed +	OK

### 2.8 CONNECT PUMP 1 TO NEW SWITCHBOARD

Cointractor Tasik $\quad$ Comimeleted	
Remove the montor cable for Pump 1 and install in the new switcliboard	Ok

### 2.9 CONNECT MAINS TO NEW SWITCHBOARD

Contractor Task	Completed
Re run the mains from the Old Switchboard to the new sivitchboard, The join point	
for the conduits was uncovered previously and all materials are on site to complete.	
Once new mains are installed test each leg	

### 2.10 CONNECT METERING

Contractor Taisk	Completed
Energex has been arranged to be on site at .......am. Follow Energex direction to   complete meter installation. HOLD POINT	
Energex Contact Number   Energex Booking Number	

### 2.11 POWER UP NEW SWITCHBOARD

Contractor Task	Completcd
Once the new Meters are installed, pole fuises aie installed and mains connected.   Turn on Main switch and test each subsequent down streàm breaker for correct   operation. Conduct mandatory tests and record results before cnergising	OKQ



### 2.12 TEST PUMP 1 IN MAÜNAL

Contractor Task	Completed
Connect Pump 1 Motor leads from Old Switchboad to the New Switchboard.	
Test Pump 1 in Manual ENSURE WELL PUMPS DOWN	OKV
Motor cable has already been disconnected in previous 2.8 and connected into the	OQ
new switchboard	
Check Phase Rotation and motor ciurrent	

### 2.13 CONNECT AND TEST PUMP 2 IN MANUAL

| Contractor Task |
| :--- | :--- | :--- |
| Isolate and tag out pump 2 from the Temporary board, remove the pump 2 power |
| and control cable what control cable Pump No. 1 does not have one and reinstall in |
| the new conduit to the new switcliboard why is this procedure different from |
| Pump No. 1 |

## NOTE:

The new switchboard should now be fully function tested in all ojeirating modes, Renote, Local, Emergency override. Check interlocking, E-stops and all other functions. The pump station can be placed in remote and will operated in this mode until and during the SAT, the back up audible alarm can stay in place.

### 2.14 CLEAN UP

Contractor Task	Completed
Turn Off geneirator auld remove generator cables.	
Prepale site for removal of Redundant Equipment	OK ©
Site Clean and tidy and secure	

### 2.15 COMMENGE SAT

Commissioning of Pump No. 1, No. 2

QUU Programmer \& Contractor Task	Outcome
Before beginning the next step ensure that the well level is below the Duty A/B	
Start Eevel (Station under the control of the new board)	




## SCADA Testing

QUU Programmer \& Contractor Task
The QUU Programmer must complete the following procedưres with the assistance from the Commissioning Engineer:and SCADA Commissioning Engineer in the Control Room.
SP122.The Esplannade S.A.I
Section 3: SCADA Commissioning Procedure

QUU Programmer \& Contractor Task
The QUU Programmer must complete the following procedures with the assistance from the Commissioning Engineer and SCADA Commissioning Engineer in the Control Room.
SP. 122 The Esplanade S.A.T
Section5: Site Migration to the Operational Area

Contractor Task	Outcome
Call the QUU Control Room Operator (CRO) and inform him that you are leaving	
site. Record the CRO's Name'and Officer Code and record the time of the call.	
Complete the log book and ensure station is secured	OK ax

## NOTICE <br> THE STATION CAN NOVY BE LEFT UNATTENDED AT THIS STAGE

Electrical Conftactor's Supervisor


## DAY 3 REMOVE TEMPORARY BOARD

## Remove Temporary Switchboard

## !!! WARNING !!!

The following works shall be continuous and the station can NOT be left unattended during this work, Multiple shifts shall be used if required and each employee can only working a maximum hours as per their WH\&S regulations.

### 2.15.1 Remove Switchboard

Contractor Task	Outcome
Remove Temp Switchboard, Old QUU Switchboard, Old cables and probes	OK $\square$
and Generato for Site	
Ensure Site Clean and tidy, Remove temp fencing	OK $\square$

## 3 POST CHANGE OVER CHECKLIST

### 3.1. DELIVERABLES FROM RTU PROGRAMMER

QUU Programmer	Date Completed
Within 7 days of the change over the following must be completed and signed off by	
the QUU Programmer	
Complete Section 4: Post Commissioning	1
The QUU Programmer will ensure that the Control Room Acceptance (CRA) form is	
signed by the Manager of the Control Room officers. The form is to be handed to	
the Contracts Manager (CM):	

### 3.2 DELIVERABLES FROM ELECTRICAL CONTRACTOR

| Contractor Task..... | Date Completed |
| :--- | :---: | :---: |
| All documentation required under the contract is to be provided with the time | $/$, |
| specified (AS BUULT's, Electrical Certificates and dócumentation ètc). |  |

### 3.3 DELIVERABLES FROM COMMISSIONING MANAGER

| Commissioning Manager $\quad$ Date Complcted |  |
| :--- | :--- | :--- |
| All documentation is handed to the Project Manager to that the new switchboard |  |
| asset can be capitalised and handed over to the customer: |  |
| Factory Acceptance Test Sheet - Completed \& signed off. | 0 |

Contactoris Supervisor
Näme:
Date $\qquad$
๑บั๋ Commissioning Manager

Name:
Date:
Signature

Signature:

Note: Printed copies of this docunent should be vẹrificd fór curricricy against the published electroniçeopy.

Electrical Inspection Sheet - Completed \& signed off.	OKQ
Site Acceptance Test Sheet - Completed \& signed off;	OKD
Commissioning Plan - Completed \& signed off.	OKD
As built Brawings have been updated, drafted and taken to site along with the Site   Specific Functional Specification.	1

### 3.4 SUGGESTIONS FOR IMPROVEMENT

Suggestion	$\cdots$	Recommended By,

Contactor's Supervisor QÚU Commissioning Manager

Name: $\qquad$ Date $\qquad$

Signature:

Name:
Date:

Signaturue:

Notc: Printed copies or this docuncm should be verified for currency against the published electronic copy:

### 4.4 QUU FACTORY ACCEPTANCE TESTS (FAT)

Factory acceptance tests were carried out on-site in collaboration with representatives from QUU as per the scope of the contract.

QUU retained these tests and therefore these tests are not part of this manual.

### 4.5 ENGINEER DESIGN CERTIFICATION

The following pages contain the report completed by an RPEQ certified electrical engineer certifying that the design of the replacement switchboard and associated connections comply with Australian standards.

Memo			
Project	: Jilba Street (SP162)		No.: 12109
To	: Bob Pritchard	Company : Nilsen	
CC	$:$ a		
	:		
From	: Lionel Ferris	Date	: 10 September 2012
Subject	: Electrical Review		
Attachments : Cable Selection, CB Curves			

We have reviewed the electrical design for the above site and confirm that compliance with the requirements of AS3000 have been met.

Voltage drop to the furthest load (pumps) is $1.40 \%$ from the point of Energex connection, well within the 5\% permitted by AS3000.

Current carrying capacities of the selected cables exceed the connected loads and the rating of the protective devices.

Automatic disconnection is required in order to satisfy touch voltage, short circuit energy withstand and fault loop impedance requires. Inspection of the circuit breaker curves indicate that the disconnection times are achieved within the permitted durations as required by AS3000 (appendix B).

Attached find cable selection data and circuit breaker curves.

## Regards

Lionel Ferris
Electrical Engineer
RPEQ5938



## Building

 ServicesDesign
Pty Ltd
Consulting Engineers

- Electrical

ABH 48139403848

## P.O. Box 296 <br> Arana Hills 4054 <br> 0730560230 <br> 员 0730410249

## Cable Size Calculation

Job Number	12109	Company Name	Building Services Design
Job Name	Jilba Street	ABN	
Author		License Number	
User Name			
Client		Date Printed	10 Sep 2012
Job Description			
Load Description	MSB		
Inputs			
Run Length	25.00 m	Voltage	$400 \mathrm{~V} / 3 \varnothing$
Conductor	Copper	Max Volt Drop	3.00 \%
Load	73.71 A	Allowed Expansion	0.00 \%
Efficiency	100 \%	Power Factor	1.00
Cable Reference		Device Fault Limit	0.00 kA
Protective Device	Custom Circuit Breaker	Protection Rating	100.0 A
Cable	$1 \times 4$ core flat X-90 (XLPE) cable In underground ducts		
Calculated to	AS3000:2007 \& AS3008.1.1:2009		
Additional derating factor		1.00	
Ambient Temperature		$25.0^{\circ} \mathrm{C}$	
Depth of laying		0.5 m	
Number of other circuits in enclosure		0	
Number of other enclosures in group		0	
Parallel sets of cables in the same pipe		No	
Spacing between enclosures		0.3	
Thermal Resistivity		$1.2{ }^{\circ} \mathrm{C} . \mathrm{m} / \mathrm{W}$	


Solution			
Active	$1 \times 25 \mathrm{~mm}^{2}$		
Neutral	$1 \times 25 \mathrm{~mm}^{2}$		
Earth	N/A		
Load On Cable	73.71 A	Operating Temperature	55.85 degrees
Capacity	107.00 A	Spare Capacity	33.29 A
Phase Resistance	0.0208 ohms	Phase Reactance	0.0020 ohms
Earth Resistance	0.0208 ohms	Earth Reactance	0.0020 ohms
Volt Drop on Cable	$2.65 \mathrm{~V} / 0.66$ \%	Total Volt Drop	$2.65 \mathrm{~V} / 0.66 \%$
Cable Fault Loop Imp.	0.0465 ohms	Total Fault Loop Imp.	0.0708 ohms
Max Fault Loop Imp.	0.1392 ohms		
Fault kA at Source	6.00 kA	Fault kA at Destination	4.44 kA
Max. Run Length	74.77 m	Touch Potential	75.88 V
Derating Factors		Total Derating	1.00
Cable Configuration	1.00	Ambient Temperature	1.00
Depth of Laying	1.00	Thermal Resistivity	1.00
Other Circuits	1.00	Cable Drum / Reel	1.00

## Cable Size Calculation

Job Number	12109	Company Name	Building Services Design
Job Name	Jilba Street	ABN	
Author		License Numbe	
User Name			
Client		Date Printed	10 Sep 2012
Job Description			
Load Description	Pump Subcircuit		
Inputs			
Run Length	30.00 m	Voltage	$400 \mathrm{~V} / 3 \varnothing$
Conductor	Copper	Max Volt Drop	3.00\%
Load	17.00 kW	Allowed Expansion	$0.00 \%$
Efficiency	$90.00 \%$	Power Factor	0.80
Cable Reference		Device Fault Limit	0.00 kA
Protective Device		Protection Rating	50.0 A
Cable	$1 \times 4$ core circular V-90 Thermoplastic cable In underground ducts		
Calculated to	AS3000:2007 \& AS3008.1.1:2009		
Additional derating factor		1.00	
Ambient Temperature		$25.0^{\circ} \mathrm{C}$	
Depth of laying		0.5 m	
Number of other circuits in enclosure		0	
Number of other enclosures in group		0	
Parallel sets of cables in the same pipe		No	
Spacing between enclosures		0.3	
Thermal Resistivity		$1.2{ }^{\circ} \mathrm{C} \mathrm{m} \mathrm{N}$	


Solution			
Active	$1 \times 10 \mathrm{~mm}^{2}$		
Neutral	$1 \times 10 \mathrm{~mm}^{2}$		
Earth	$1 \times 4 \mathrm{~mm}^{2}$		
Load On Cable	34.08 A	Operating Temperature	44.20 degrees
Capacity	55.00 A	Spare Capacity	20.92 A
Phase Resistance	0.0603 ohms	Phase Reactance	0.0027 ohms
Earth Resistance	0.1518 ohms	Earth Reactance	0.0031 ohms
Volt Drop on Cable	$2.94 \mathrm{~V} / 0.74$ \%	Total Volt Drop	$5.59 \mathrm{~V} / 1.40$ \%
Cable Fault Loop Imp.	0.2353 ohms	Total Fault Loop Imp.	0.2968 ohms
Max Fault Loop Imp.	0.6990 ohms		
Fault kA at Source	4.44. kA	Fault kA at Destination	2.10 kA
Max. Run Length	89.13 m	Touch Potential	149.06 V
Derating Factors		Total Derating	1.00
Cable Configuration	1.00	Ambient Temperature	1.00
Depth of Laying	1.00	Thermal Resistivity	1.00
Other Circuits	1.00	Cable Drum / Reel	1.00



Inputs					
Group	Qty	Description	Phase 1	Phase 2	Phase 3
$\mathrm{B}(\mathrm{i})$	2	Laptop GPO			
$\mathrm{B}(\mathrm{i})$	1	Aux Controls			
$\mathrm{B}(\mathrm{i})$	1	3 Phase Outlet			
$\mathrm{B}(\mathrm{i})$	1	Emergency Relay			
D	2	Pump	34.08	34.08	34.08


Result					
Group	Qty	Description	Phase 1	Phase 2	Phase 3
B(i)	5	Total 10A socket outlets	14.07	7.58	4.33
$D$	1	Pump	34.08	34.08	34.08
$D$	1	Pump	25.56	25.56	25.56

## Building Services Design

PO Box 296
Arana Hills 4054

Selectivity Analysis Program

Project : Jilba Street

File : Jilba Street
Printed : 10 Sep 2012
10:35 pm

## TIME/CURRENT CURVE


(1)

Up Stream - MSB (3ø) :
Model : S250PE
OCR : 125
Trip Setting : 100 A Breaking Capacity:

Catalogue \# : S250PE 3125
Current (A)

\section*{Adjustable Settings: <br> | IR | Characteristics |
| :---: | :---: |
| 0.8 | 6 |
| 100 A |  |}



MSB (3ø)

Page 355 of 363

Building Services Design
PO Box 296
TERASAK
Arana Hills 4054
Selectivity Analysis Program
Ph No. : 0730560230

Mobile No.
Fax No. :
Email :
Project : Jilba Street
File : Jilba Street
Printed : 10 Sep 2012
10:35 pm
SUPPLY
Circuit:MSB - C (3ø)

## TIME/CURRENT CURVE

(2) Down Stream - MSB (3ø) :

Circuit I.D. : C2 (3ø)
Circuit Breaker (MCCB) Model : E125NJ
Trip Unit : 50
Trip Setting : 40 A
Breaking Capacity : 25 kA

Catalogue \#: E125NJ 350


Adjustable Settings:

Ir	Im
0.8	6
40 A	300 A

### 4.6 LEVEL PROBE COMMISSIONING INFORMATION

As part of the commissioning process the level probes within the wet well were commissioned to ensure the operation of the pumping station.

The following pages contain the commissioning data for the probes within the wet well.

Range	3 M		Level	Units	Percent	ma	RTU Units
		Max VEGA Level	3.732	MAHD	100	20	4000
		Surcharge Occuring	3.486	MAHD	91.80\%	18.7	3738
		Surcharge Imminent + 100 mm	3.286	MAHD	85.13\%	17.6	3524
		Surcharge Imminent	3.186	MAHD	81.80\%	17.1	3418
		Inhibit start level	2.986	MAHD	75.13\%	16.0	3204
		Inhibit stop level	2.786	MAHD	68.47\%	15.0	2991
		High Alarm + 100 mm	2.032	MAHD	43.33\%	10.9	2187
		High Alarm	1.932	MAHD	40.00\%	10.4	2080
		Duty B Start Level	1.582	MAHD	28.33\%	8.5	1707
		Duty A Start Level	1.532	MAHD	26.67\%	8.3	1653
		Duty B Stop Level	1.082	MAHD	11.67\%	5.9	1173
		Duty A Stop Level	1.032	MAHD	10.00\%	5.6	1120
		Low Level alarm	0.832	MAHD	3.33\%	4.5	907
		Wet Well Probe elevation	0.732	MAHD	0.00\%	4.0	800
Range	25 M	DELIVERY PRESSURE PROBE	Pressure	Units	Percent.	ma	RTU Units
		20 mA Value	29.828	MAHD	100.00\%	20.0	4000
		High Alarm	29.828	MAHD	100.00\%	20.0	4000
		Low Level alarm	4.828	MAHD	0.00\%	4.0	800
		Pressure Probe 1 Elevation	4.828	MAHD	0.00\%	4.0	800



Hanging Depths (from electrode box clamp)		
Surch Imm Probe	1.946	
M		
High Level Probe	3.200	

[^15]| Elevation     <br> Water Height Location Water <br> Height Volume <br> in Remaining <br> Storage mmMD3311 <br> Staged Volume |  |  |  |  |  |  |  | Existing <br> Vol in LUT |
| ---: | ---: | :---: | :---: | ---: | ---: | ---: | :---: | :---: |
| BWL of PS | 0.932 | 0.000 | 17.354 | 0 | 0.000 | 0.000 |  |  |
|  | 1.066 | 0.608 | 16.746 | 134 | 0.608 | 0.608 |  |  |
|  | 1.201 | 1.216 | 16.137 | 269 | 0.608 | 1.216 |  |  |
|  | 1.335 | 1.824 | 15.529 | 403 | 0.608 | 1.824 |  |  |
|  | 1.532 | 2.714 | 14.639 | 600 | 0.890 | 2.714 |  |  |
| TWL of PS | 1.604 | 3.041 | 14.313 | 672 | 0.326 | 3.041 |  |  |
|  | 1.739 | 3.649 | 13.705 | 807 | 0.608 | 3.649 |  |  |
|  | 1.932 | 4.601 | 12.753 | 1000 | 0.952 | 4.601 |  |  |
|  | 2.007 | 5.103 | 12.251 | 1075 | 0.502 | 5.103 |  |  |
|  | 2.142 | 6.241 | 11.113 | 1210 | 1.138 | 6.241 |  |  |
|  | 2.276 | 7.337 | 10.017 | 1344 | 1.096 | 7.337 |  |  |
|  | 2.411 | 8.256 | 9.097 | 1479 | 0.920 | 8.256 |  |  |
|  | 2.545 | 9.346 | 8.008 | 1613 | 1.089 | 9.346 |  |  |
|  | 2.679 | 10.638 | 6.716 | 1747 | 1.292 | 10.638 |  |  |
|  | 2.814 | 11.634 | 5.720 | 1882 | 0.996 | 11.634 |  |  |
|  | 2.948 | 12.660 | 4.694 | 2016 | 1.026 | 12.660 |  |  |
|  | 3.083 | 13.676 | 3.678 | 2151 | 1.016 | 13.676 |  |  |
|  | 3.217 | 14.674 | 2.680 | 2285 | 0.998 | 14.674 |  |  |
|  | 3.352 | 15.849 | 1.505 | 2420 | 1.175 | 15.849 |  |  |
|  | 3.486 | 17.354 | 0.000 | 2554 | 1.505 | 17.354 |  |  |

Page 360 of 363

### 4.7 CONTRACTORS CERTIFICATE OF TESTING AND SAFETY

The following document certifies that the installed electrical equipment has been tested to ensure it is electrically safe and in accordance with wiring rules and AS3000.

Contractors License Number: 66226
Nelsen Project Number: ...32887......

## Certificate of Testing and Safety

This certificate is issued in accordance with Clause S15 of the Electrical Safety Regulations 2002, to certify the electrical equipment below, to the extent it is affected by the electrical work performed, has been tested to ensure it is lectrically safe and is in accordance with the requirements of the wiring rules and any other standard applying under this regulation to the electrical installation.

Customer:
Contact:

Address:
Date of Testing:
Quegnucans...................................
BEGAN K KAKI
SPI62 JILBA STREET. $6 / 12 / 12$
Electrical Equipment Tested: SUB MANS BART FAUST LOOP I. ... Continuity + RCD Push Button test Limitations of the Work:

Reference Documents:
Exclusions:

Signed:
Date:
Position:

The work was limited to the installation / testing of the above equipment by Nilsen personnel only.

Refer to Nilsen Engineering Services Test Report.

Any work not included within Nilsen Engineering Services Test Report.


Page 362 of 363

# Sunline Switchboards Pty. Ltd. 

A.B.N. 13010342622

7 Duntroon Street, Brendale, Qld, 4500 Australia
P.O. Box 5274, Brendale MDC, Qlḍ. 4500

International Telephone: +61738813433
International Facsimile: +61738813611
Telephone: (07) 38813433 Facsimile: (07) 38813611
Email: admin@sunline.net.au
Website: www.sunline.net.au

## CERTIFICATE OF:

(Please mark relevant check-box)

Electrioal equipment

* Work performed for:
*Name Quu
Tille

> Given name/s

Surname

* Address Queensland Urban Utilities Western Tower Level 7171 Roma St Stroot

Brisbane	
Suturblhown	4000
Posticodo	

* Electrical installation / equipment tested (detailed list of all work done):

Manufacture of replacement switchboard for SP162 Jilba Street Pumping Station.
Refer to drawings: 486/5/7-0273-001 to 486/5/7-0273-025


For electrical installations, this certifies that the electrical installation, to the extent it is affected by the electrical work, has been tested to ensure that it is electrically safe and is in accordance with the requirements of the wiring rules and any other standard applying under the Electrical Safety Regulation 2002 to the electrical installation.
For electrical equipment, this certifies that the electrical equipment, to the extent it is affected by the electrical work, is electrically safe.



[^0]:    ANSi a a regitered trademak of the Anerican National suandarts hattute. EEE is a regittered vadenark of the Motitute of Eliectical and Electronia Engineer, incorpervted. Nitha is a regitered trademark of the liational Electrical Manufacturen Anocistion Ut is a regitered vademark of Underwilters Iaboratorlex. inc. WARNMNG
    SRICO products shall be installed and used only as indicated in ERICO's product instruction sheets and training materialh. Instruction sheets are avaitatle at wwwerico.com and from your Enco curtomer service representative. Improper installation, miluse, misapplication or other fallure to completely follow ERICOs instructions and waminge may cause product malfunction property damage, serious bodily infury and death.
    
    CADOY, CAOWELD, CRIEC, ENCO, ERAFEX, ERIECM, and LENTON are registered trademark of EkICO International Corporation.
    www.erico.com

[^1]:    Note: Optimise your selection with WinStart Soft Starter PC tool.

[^2]:    *A dual voltage $230 / 400 \mathrm{~V}$ socket-outlet with $3 P+N+E$ accepts a 400 V plug with $3 P+N+E$ or $3 P+E$ as well as a 230 V plug with $1 P+N+E$ (see front cover flap).
    Page 86 of 363

[^3]:    $\mathbf{x x}=10$ (for 33 ft or 10 m of cable); or 30 (for 100 ft or 30 m of cable)
    Probes are supplied with a standard length of cable in either $33 \mathrm{ft} / 10 \mathrm{~m}$ or in $100 \mathrm{ft} / 30 \mathrm{~m}$ lengths. The Probe comes in sizes ranging from 8 inches to 30 feet. It is available with 1 -sensor, 3 -sensors or 10 -sensors.
    

[^4]:    ${ }^{3}$ ) Standard in New Zealand

[^5]:    Note: Unless otherwise specified, a tolerance of $\pm 0.4$ mm applies to all dimensions 36

[^6]:    Sprecher＋Schuh US Division Headquarters
    15910 Intemational Plaza Dr，，Houston，TX 77032
    Tet：（281）442－9000；Fax（800）739－7370
    oww．sprecherschuhcom
    thlation Ne F－Rz7＿111 Mer 2011

[^7]:    - When used as a Branch Circuit Protection device, NEC 430-152 defines the maxmum rating of an Inverse-time circuit breaker to be sized at $250 \%$ of the motor nameplate FLA for most applications.
    - ULListed Combination. (UL. File E41850) Per UL508A. NEC409 abd CSA 22.2 No. 14
    for contactor and fuses or clrcuil breaker only.
    - Per IEC 60947-1 for contactor and fuses only.

[^8]:    NOTET The life-load curves shown here are based on Sprecher + Schuh tests according to the requirements defined in IEC 60947-4-1. Since contact life in any piven application is dependent on anvironmental condilitions and duty cycle, actual
    

[^9]:    - Duty Cycle or Load Factor - Defined as the "on" time for a given operating
    cyde per hour including the "start time." A 40\% Duty Cycle is calculated in
    the following manner:
    Contactor switches slx (6) times por minuta ( 1 pm ), 250 ms start time;
    40\% duty cycle.
    To determine the "on" time and "off" time:
    - Operations per hour $=360 ;[60 \mathrm{~min} \times 6 \mathrm{tpm}=360]$
    - One operating cycle $=10 \mathrm{sec} ;[60 \mathrm{~min}+6 \mathrm{tpm}=10 \mathrm{sec}]$
    - "On" time at $40 \%$ duty cycle $=4$ sec; $[10 \sec \times 0.4(40 \%)=4 \mathrm{sec}]$
    - 4 sec "on" time includes the start time of 250 ms
    -"Off" time at $40 \%$ duty cycle $=6$ sec; $[10$ sec -4 sec $=6$ sec]

[^10]:    Page 201 of 363

[^11]:    Steckverbinder für VEGACONNECT ( $1^{2} C$-Schnittstelle) Federkraftklemmen zum Anschluss der externen Anzeige VEGADIS 61 Erdungsklemme zum Anschluss des Kabelschirms
    4 Federkraftklemmen für Spannungsversorgung und Signalausgang

[^12]:    1) Connect screen to ground terminal. Connect ground terminal on the outside of the housing as prescribed. The two terminals are galvanically connected.
    2) Connect screen to ground terminal. Connect ground terminal on the outside of the housing as prescribed. The two terminals are galvanically connected
[^13]:    ${ }^{3)}$. Connect screen to ground terminal. Connect ground terminal on the outside of the housing as prescribed. The two terminals are galvanically connected.
    ${ }^{4}$ Connect screen to ground terminal. Connect ground terminal on the outside of the housing as prescribed. The two terminals are galvanically connected.
    5) Connect screen to ground terminal. Connect ground terminal on the outside of the housing as prescribed. The two terminals are galvanically connected.

[^14]:    7 Determined according to the limit point method according to IEC 60770, incl. non-linearity, hysteresis and non-repeatability

[^15]:    Existing RTU LUT in Main file
    ${ }^{*}$ * wet well level to volume lookup table - based on vega probe 0 level */ record 1

