BRISBANE CITY

COUNCIL

CONTRACT BW70107-06/07 PUMP STATION SWITCHBOARD
 REPLACEMENT

SP 152 NUDGEE ROAD

OPERATION AND MAINTENANCE MANUALS

BRISBANE CITY COUNCIL

CONTRACT BW70107-06/07 PUMP STATION SWITCHBOARD
REPLACEMENT
SP152 NUDGEE ROAD
Supply and Installation of Switchboard

Our Job No. 0720

INDEX

1. SOFT STARTERS

2. GRAPHIC DISPLAY
3. RADIO
4. LEVEL TRANSDUCER
5. PRESSURE TRANSDUCER
6. MISCELLANEOUS
7. DRAWINGS

By - Whelan Electrical Services Pty Ltd
1 Harvest Street
YANDINA QLD 4561
Phone No. 54467133
Fax No. 54468118

SERIAL
 COMMUNICATION OPTION

INSTRUCTION MANUAL
 - ENGLISH

Valid for the following models: EMOTRON Modbus RTU

Document number: 01-1989-01
Edition: rl
Date of release: 1999-10-07
(c) Copyright Emotron AB 1999

Emotron retain the right to change specifications and illustrations in the text, without prior notification. The contents of this document may not be copied without the explicit permission of Entorron AB.

SAFETY INSTRUCTIONS

Instruction manual

It is important to be familiar with the main product (softstarter/ inverter) to fully understand this instruction manual.

Technically qualified personnel

Installation, commissioning, demounting, making measurements, etc. of or on the Emotron products may only be carried out by personnel technically qualified for the task.

Installation

The installation must be made by authorised personnel and must be made according to the local standards.

Opening the frequency inverter or softstarter

DANGERI ALWAYS SWITCH OFF THE MAINS VOLTAGE BEFORE OPENING THE UNIT AND WAIT AT LEAST 5 MINUTES TO ALLOW THE BUFFER CAPACITORS TO DISCHARGE.

Always take adequate precautions before opening the frequency inverter or softstarter. Although the connections for the control signals and the jumpers are isolated from the main voltage. Always take adequate precautions before opening the inverter or softstarter.

EMC Regulations

EMC regulations must be followed to fulfill the EMC standards.

CONTENT

1. GENERAL INFORMATION 7
1.1 Introduction 7
1.2 Description. 7
1.3 Users 8
1.4 Safety 8
1.5 Delivery and unpacking 9
2. MODBUS RTU 10
2.1 General 10
2.2 Framing 13
2.2.1 Address field 14
2.2.2 Function field 14
2.2.3 Data field 15
2.2.4 CRC Error checking field 15
2.3 Functions 16
2.3.1 Read Coil Status 16
2.3.2 Read Input Status 17
2.3.3 Read Holding Registers 18
2.3.4 Read Input Registers 20
2.3.5 Force Single Coil 21
2.3.6 Force Single Register 22
2.3.7 Force Multiple Coil 23
2.3.8 Force Multiple Register 24
2.3.9 Force/Read Multiple Register 26
2.4 Errors, exception codes 27
2.4.1 Transmission errors 27
2.4.2 Operation errors 28
3. SOFTSTARTER MSF DATA 29
3.1 Installation bookshelf types 29
3.2 Installation of MSF-170 to MSF-1400 31
3.3 RS485 Multipoint network 31
3.3.1 RS485 connection 31
3.3.2 RS 485 termination. 32
3.4 RS232 point to point network 33
SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual
3.4.1 RS232 connection 33
3.4.2 RS232 wiring 33
3.5 Set-up Communication Parameters for Softstarter MSF 34
3.6 Softstarter MSF in serial comm. control mode 37
3.6.1 Selection of control mode [006] 38
3.7 Parameter List 39
3.8 Coil status list 40
3.9 Input status list 41
3.10 Input register list 42
3.11 Holding register list 45
3.12 Parameter description MSF 48
3.12.1 Softstarter type (30028). 48
3.12.2 Serial comm. contact broken (30034). 48
3.12.3 Operation mode (30041). 49
3.12.4 Operation status (30042). 49
3.12.5 Alarm (30103). 50
3.12.6 Relay indication K1 (40023). 50
3.12.7 Relay indication K2 (40024). 51
3.12.8 Analogue output value (40037). 51
3.12.9 Reset to factory setings (42032) 51
3.13 Performance 52
3.13.1 MSF response delay 52
4. INVERTER VFB/VFX DATA 53
4.1 Installation bookshelf types 53
4.1.1 Mounting option card 54
4.2 Installation of VFX types 55
4.3 RS485 Multipoint network 55
4.3.1 RS485 connection 55
4.3.2 RS485 termination. 56
4.4 RS232 point to point network 57
4.4.1 RS232 connection 57
4.4.2 RS232 wiring 57
4.5 Set-up Communication Parameters for frequency inverter VFB/VFX 58
4.6 Frequency inverter VFB/VFX in serial comm Control Mode 59
4.7 Parameter List 60
4.8 Coil status list 61
4.9 Input register list 62
4.10 Holding register list 65
4.11 Parameter description VFB/VFX 73
4.11.1 Inverter software version (30017). 73
4.11.2 Inverter type (30028). 74
4.11.3 Warning, Tripmessage 1-10 (30040, 30103, 30106, 30109, 30112, 30115, 30118, 30121, 30124, 30127,30130). 75
4.11.4 Relay, Digout and CRIO relay $(40023,40024,41014$, 41015,41020, 41021) 75
4.11.5 5.x.x Auto restart mask (41006) 76
4.11.6 Digln $(41008,41009)$. 76
4.11.7 Representation of speed. 76
4.12 Performance 77
4.12.1 VFB/VFX response delay 77
5. CRC GENERATION 78
List of tables
Table 1 Character frame with no parity. 11
Table 2 Character frame with parity. 11
Table 3 Exception codes. 28
Table 4 RS485 pinning 31
Table 5 RS232 pinning 33
Table 6 Parameter types 39
Table 7 Coil status list 40
Table 8 Input status list 41
Table 9 Input register list 42
Table 10 Holding register list 45
Table 11 Softstarter type 48
Table 12 Serial comm. contact broken 48
Table 13 Response delay table for setting (forcing) registers 52
Table 14 RS485 pinning 55
Table 15 RS232 pinning 57
Table 16 Parameter type 60
Table 17 Coil status list 61
Table 18 Input register list 62
Table 19 Holding register list 65
Table 20 Parameter set A 70
Table 21 Parameter set B, C and D 72

List of figures

Fig. 1 Network configuration. 10
Fig. 2 Shows the MODBUS RTU data exchange. 11
Fig. 3 Timing diagram for a transaction (query and response messages) (bottom in figure), a message frame (middle in figure) and a character frame (top in figure) 12
Fig. 4 MODBUS RTU option card. 29
Fig. 5 Installation of the option card. 30
Fig. 6 Mounting of the option card seen from the top. 30
Fig. 7 RS 485 mulitpoint network 31
Fig. 8 RS485 wiring 32
Fig. 9 Termination is OFF. 32
Fig. 10 Termination is ON. 32
Fig. 11 RS232 point to point network 33
Fig. 12 RS232 wiring. 34
Fig. 13 MODBUS RTU option card. 53
Fig. 14 Installation of the option card in VFB. 54
Fig. 15 Mounting of option card from above in VFB. 54
Fig. 16 RS 485 multipoint network 55
Fig. 17 RS485 wiring 56
Fig. 18 Termination is OFF 56
Fig. 19 Termination is ON 56
Fig. 20 RS232 point to point network 57
Fig. 21 RS232 wiring 57
Fig. 22 CRC example. 80

1. GENERAL INFORMATION

1.1 Introduction

The MODBUS RTU optional card is an asynchronous serial interface for the frequency inverters of the VFB/VFX series and the softstarters of the MSF series to exchange data asynchronously with external equipment.

The protocol used for data exchange is hased on the Modbus RTU protocol, originally developed by Modicon.

Physical connection can be either RS232 or RS485.
It acts as a slave with address $1-247$ in a master-slave configuration. The communication is half duplex. It has a standard non return to zero (NRZ) format.
Baudrates are possible from 2400 up to 38400 bits per sec.
The character frame format (always 11 bits) has:
one start bit
eight data bits
one or two stop bits
even or no parity bit
(The frequency inverters VFB/VFX have no parity).
A Cyclic Redundancy Check is included.

1.2 Description.

This instruction manual describes the installation and operation of the MODBUS RTU option card, which can be built into the following products.:

- VFB/VFX Frequency inverters:

VFB40-004 to VFB40-046
VFB40-018 to VFX40-1k2
VFX50-018 to VFX50-1k2
specific information about the frequency inverters is in chapter 4. page 53.
-MSF softstarters:
MSF-017 - MSF-1400
specific information about the sofstarters is in chapter 3. page 29.

1.3 Users

This instruction manual is intended for:

- installation engineers
- designers
- maintenance engineers
- service engineers

1.4 Safety

Because this option is a supplementary part of the frequency inverter or sofstarter, the user must be aquainted with the original instruction manual of the VFB/VFX frequency inverter and the MSF sofstarter. All safety instructions, warnings etc. as mentioned in these instruction manuals are to be known to the user. The following indications can appear in this manual. Always read these first and be aware of their content before continuing.

NOTE! Additional information as an aid to avoiding problems.

CAUTION	Failure to follow these instructions can result in malfunction or damage to the softstarter or the frequency inverter.

WARNING	Failure to follow these instructions can result in serious injury to the user in addition to serious damage to the soft- starter or the frequency inverter.

1.5 Delivery and unpacking.

Check for any visible signs of damage. Inform your supplier immediately of any damage found. Do not install the option card if damage is found.

If the option card is moved from a cold storage room to the room where it is to be installed, condensation can form on it. Allow the option card to become fully acclimatised and wait until any visible condensation has evaporated before installing it in the inverter or softstarter.

2. MODBUS RTU

2.1 General

Devices communicate using a master-slave technique, in which only one device (the master) can initiate transactions (called 'queries'). The other devices (the slaves) respond by supplying the requested data to the master, or by taking the action requested in the query. Typical master devices include host processors and programming panels. Typical slaves include programmable controllers, motor controllers, load monitors etc, see Fig. 1.

Fig. 1 Network configuration.
The master can address individual slaves. Slaves return a message (called a 'response') to queries that are addressed to them individually.

The Modbus protocol establishes the format for the master's query by placing into it the device address, a function code defining the requested action, any data to be sent, and an error checking field. The slave's response message is also constructed using Modbus protocol. It contains fields confirming the action taken, any data to be returned and an error-checking field. If an error occurred in receiving the message, or if the slave is unable to perform the requested action, the slave will construct an error message and send this as its response, see Fig. 2.

Fig. 2 Shows the MODBUS RTU data exchangc.

Modbus RTU uses a binary transmission protocol.
If even parity is used, each character (8 bit data) is sent as:
Table 22 Character frame with no parity.

$\mathbf{1}$	Start bit.
$\mathbf{8}$	Data bits, hexadecimal 0-9,A-F, least signifi- cant bit sent first.
$\mathbf{1}$	Even parity bit.
$\mathbf{1}$	Stop bit.

If no parity is used each character (8 bit data) is sent as:
Table 23 Character frame uith parity.

$\mathbf{1}$	Start bit.
$\mathbf{8}$	Data bits, hexadecimal 0-9,A-F, least signifi- cant bit sent first.
$\mathbf{2}$	Stop bit.

Fig. 3 Timing diagram for a transaction (query and response messages) (bottom in figure), a message frame (middle in figure) and a character frame (top in figure).

2.2 Framing

Messages start with a silent interval of at least 3.5 character times. This is easily implemented as a multiple of character times at the baud rate used on the network (shown as T1-T2-T3-T4 in the table below). The first field then transmitted is the device address.

The allowed characters transmitred for all fields are hexadecimal 0-9,A-F. Network devices monitor the network bus continuously, including during the 'silent' intervals. When the first field (the address field) is received, each device decodes it to find out if it is the addressed device.

Following the last transmitted character, a similar interval of at least 3.5 character times marks the end of the message. A new message can begin after this interval.

The entire message frame must be transmitted as a continuous stream. If a silent interval of more than 3.5 character times occurs before completion of the frame, the receiving device flushes the incomplete message and assumes that the next byte will be the address field of a new message.

Similarly, if a new message begins earlier than 3.5 character times following a previous message, the receiving device will consider it a continuation of the previous message. This will set an error, as the value in the final CRC field will not be valid for the combined messages. A typical message frame is shown below.

Header	START	T1-T2-T3-T4
	ADDRESS	8 bits
	FUNCTION	8 bits
Data	DATA	$\mathrm{n} \times 8$ bits
	CRC CHECK	16 bits
	END	T1-T2-T3-T4

2.2.1 Address field

The address field of a message frame contains eight bits. The individual slave devices are assigned addresses in the range of 1-247. A master addresses a slave by placing the slave address in the address field of the message.

When the slave sends its response, it places its own address in this address field of the response to let the master know which slave is responding.

2.2.2 Function field

The function code field of a message frame contains eight bits. Valid codes are in the range of $1-6,15,16$ and 23 . See 2.2, page 13.

When a message is sent from a master to a slave device, the function code field tells the slave what kind of action to perform.

Examples are:

- to read the ON/OFF states of a group of inputs;
- to read the data contents of a group of parameters;
- to read the diagnostic status of the slave;
-to write to designated coils or registers within the slave.
When the slave responds to the master, it uses the function code field to indicate either a normal (error-free) response or that some kind of error occurred (called an exception response). For a normal response, the slave simply echoes the original function code. For an exception response, the slave returns a code that is equivalent to the original function code with its most significant bit set to a logic 1 .

In addition to its modification of the function code for an exception response, the slave places an unique code into the data field of the response message. This tells the master what kind of error occurred, or the reason for the exception, see 2.4.2, page 28.

The master device's application program has the responsibility of handling exception responses. Typical processes are to post subsequent retries of the message, to try diagnostic messages to the slave and to notify operators.

Additional information about function codes and exceptions comes later in this chapter.

2.2.3 Data field

The data field is constructed using sets of two hexadecimal digits (8 bits), in the range of 00 to FF hexadecimal.

The data field of messages sent from a master to slave devices contains additional information which the slave must use to take the action defined by the function code. This can include items like discrete and register addresses, the quantity of items to be handled and the count of actual data bytes in the field.

For example, if the master requests a slave to read a group of holding registers (function code 03), the data field specifies the starting register and how many registers are to be read. If the master writes to a group of registers in the slave (function code 10 hexadecimal), the data field specifies the starting register, how many registers to write, the count of data bytes to follow in the data field, and the data to be written into the registers.

If no error occurs, the data field of a response from a slave to a master contains the data requested. If an error occurs, the field contains an exception code that the master application can use to determine the next action to be taken.

2.2.4 CRC Error checking field

The error checking field contains a 16 bit value implemented as 2 bytes. The error check value is the result of a Cyclical Redundancy Check (CRC) calculation performed on the message contents.

The CRC field is appended to the message as the last field in the message. When this is done, the low-order byte of the field is appended first, followed by the high-order byte. The CRC high-order byte is the last byte to be sent in the message.

Additional information about CRC calculation, see chapter 5. page 78.

2.3 Functions

Emotron supports the following MODBUS function codes.

Function name	Function code
Read Coil Status	$1(01 \mathrm{~h})$
Read Input Status	$2(02 \mathrm{~h})$
Read Holding Registers	$3(03 \mathrm{~h})$
Read Input Registers	$4(04 \mathrm{~h})$
Force Single Coil	$5(05 \mathrm{~h})$
Force Single Register	$6(06 \mathrm{~h})$
Force Multiple Coils	$15(0 \mathrm{Fh})$
Force Multiple Registers	$16(10 \mathrm{~h})$
Force/Read Multiple Holding Registers	$23(17 \mathrm{~h})$

2.3.1 Read Coil Status

Read the status of digital changeable parameters.

EXAMPLE

Requesting the motor PTC input ON/OFF-state. It is ON.
PTC input: \quad Modbus no $=29$ (1Dh)
On: \quad Yes $=1$ coil $=0001$
1 byte of data: Byte count $=01$

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual

Request message.

Field name	Hex value
Slave address	01
Function	01
Start address HI	00
Start address LO	10
Number of Coils HI	00
Number of Coils LO	01
CRC LO	60
CRC HI	CC

Response message.

Field name	Hex value
Slave address	01
Function	01
Byte count	01
Coil no.29 (1Dh) status	01
CRC LO	90
CRC HI	48

See 3.8, page 40 and 4.8 , page 61 for all parameters readable with this function code.

2.3.2 Read Input Status

Read the status of digital read-only information.

EXAMPLE

Request the Pre-alarm status. It is no Pre-alarm. Pre-alarm status: Modbus no $=2$.

Request message.

Field name	Hex value
Slave address	01
Function	02
Start address HI	00
Start address LO	02
Number of Inputs HI	00
Number of Inputs LO	01
CRC LO	18
CRC HI	OA

Response message.

Field name	Hex value
Slave address	01
Function	02
Byte count	01
Input no.2 (02h)status	00
CRC LO	A1
CRC HI	88

See 3.9, page 41 for all digital status readable with this function code.

2.3.3 Read Holding Registers

Read the value of analogue changeable information.
Example, requesting the Nominal Motor Voltage, Nominal Motor Frequency and the Nominal Motor Current. Their values are $400.0 \mathrm{~V}, 60 \mathrm{~Hz}$ and 15.5 A .
400.0 V , unit $0.1 \mathrm{~V}-4000$ (0FA0h)

60 Hz unit $1 \mathrm{~Hz}-60$ (003 Ch)
15.5 A , unit $0.1 \mathrm{~A}-155$ (009 Bh)

Request message.

Field name	Hex value
Slave address	01
Function	03
Start address HI	00
Start address LO	00
Number of Registers HI	00
Number of Registers LO	03
CRC LO	
CRC HI	05

Response message.

Field name	Hex value
Slave address	01
Function	03
Byte count	06
Reg no. O, (0h) data HI	OF
Reg no. 0, (0h) data LO	AO
Reg no. 1, (1h) data HI	00
Reg no. 1, (1h) data LO	3 C
Reg no. 2, (2h) data HI	00
Reg no. 2, (2h) data LO	$9 B$
CRC LO	20
CRC HI	34

See 3.11 , page 45 and 4.10 , page 65 for all analogue changeable parameters readable with this function code.

2.3.4 Read Input Registers

Read the contents of analogue read-only information.

EXAMPLE

Request the Shaft Torque. It is 452.0 Nm . It has a long representation, 2 registers are used.
452.0 Nm, unit $0.1 \mathrm{Nm}-4520$ (000011A8h).

Request message.

Field name	Hex value
Slave address	01
Function	04
Start address HI	00
Start address LO	OA
Number of Registers HI	00
Number of Registers LO	02
CRC LO	51
CRC HI	C9

Response message.

Field name	Hex value
Slave address	01
Function	04
Byte count	04
Reg no. 10 (OAh) data HI	00
Reg no. 10 (OAh) data LO	00
Reg no. 11 (OBh) data HI	11
Reg no. 11 (OBh) data LO	A8
CRC LO	F6
CRC HI	6 A

See 3.10 , page 42 and 4.9 , page 62 for all analogue read-only information readable with this function code.

2.3.5 Force Single Coil

Set the status of one changeable digital parameter.

EXAMPLE

Set the Start Command to ON. This will cause the motor to start.

Modbus no $=1$ - adress LO 1 (01 h)
Run = 1 - 0 Data HI 255 (0FFh), Data LO 00 (00h)

Request message.

Field name	Hex value
Slave address	01
Function	05
Start address HI	00
Start address LO	01
Data HI	FF
Data LO	00
CRC LO	DD
CRC HI	FA

Response message.

Field name	Hex value
Slave address	01
Function	05
Start address HI	00
Start address LO	01
Data HI	FF
Data LO	00
CRC LO	DD
CRC HI	FA

See 3.8, page 40 and 4.8 , page 61 for all parameters changeable with this function code.

2.3.6 Force Single Register

Set the value of one analogue changeable parameter.

EXAMPLE

Set the Response Delay Max Alarm to 12.5 sec.
Modbus no 13 -> address LO (0 Dh)
12.5 s , unit $0.1 \mathrm{~s}-125$ (7Dh)

Request message.

Field name	Hex value
Slave address	01
Function	06
Start address HI	00
Start address LO	$0 D$
Data HI	00
Data LO	7 D
CRC LO	D8
CRC HI	28

Response message.

Field name	Hex value
Slave address	01
Function	06
Start address HI	00
Start address LO	$0 D$
Data HI	00
Data LO	$7 D$
CRC LO	D8
CRC HI	28

See 3.11, page 45 and 4.10 , page 65 for all parameters changeable with this function code.

2.3.7 Force Multiple Coil

Set the status of multiple digital changeable parameters.

EXAMPLE

Set the Alarm Reset ON and Start Command to ON. This will cause an alarm reset before the motor starts.

$$
\begin{array}{ll}
\text { Coil no. }= & 0-1 \text { Reset }->1 \\
& \text { Run }=1
\end{array}
$$

->- 00000011 (03h)
Request message.

Field name	Hex value
Slave address	01
Function	0 F
Start address HI	00
Start address LO	00
Number of Coils HI	00
Number of Coils LO	02
Byte count	01
Coil no. O-1 status (0000 0011B)	03
CRC LO	$9 E$
CRC HI	96

Response message.

Fleld name	Hex value
Slave address	01
Function	OF
Start address HI	00
Start address LO	00
Number of Coils HI	00
Number of Coils LO	02
CRC LO	D4
CRC HI	OA

See 3.8 , page 40 and 4.8 , page 61 for all parameters changeable with this function code.

2.3.8 Force Multiple Register

Set the contents of multiple changeable analogue parameters.

EXAMPLE

Set the Response Delay Min Alarm to 25.0 sec and the Min Alarm Level to 55\%.
25.0 sec , unit $0.1 \mathrm{sec}->-250$ (00FAh)
55%, unit $1 \%->55$ (0037h)

Request message.

Field name	Hex value
Slave address	01
Function	10
Start address HI	00
Start address LO	11
Number of Registers HI	00
Number of Registers LO	02
Byte count	04
Data HI reg $17(11 \mathrm{~h})$	00
Data LO reg $17(11 \mathrm{~h})$	FA
Data HI reg $18(12 \mathrm{~h})$	00
Data LO reg $18(12 \mathrm{~h})$	37
CRC LO	52
CRC HI	88

Response message.

Field name	Hex value
Slave address	01
Function	10
Start address HI	00
Start address LO	11
Number of Registers HI	00
Number of Registers LO	02
CRC LO	11
CRC HI	CD

See 3.11 , page 45 and 4.10 , page 65 for all parameters changeable with this function code.

2.3.9 Force/Read Multiple Register

Set and read the contents of multiple analogue changeable parameters in the same message.

EXAMPLE

Set the Parameter Set parameter to 2 and Relay 1 function to 1 and read the Nominal Motor Speed and the Nominal Motor Power. They are 1450 rpm and 17000 W .

1450 rpm , unit $1 \mathrm{rpm}->1450$ (05AAh)
17000 W , unit $1 \mathrm{~W} \rightarrow 17000(4268 \mathrm{~h})$

Request message.

Field name	Hex value
Slave address	01
Function	17
Start read address HI	00
Start read address LO	03
Number of read Regs HI	00
Number of read Regs LO	02
Start write address HI	00
Start write address LO	15
Number of write Regs HI	00
Number of write Regs LO	02
Byte count	04
Data HI Reg 21 (15h)	00
Data LO Reg 21 (15h)	02
Data HI Reg 22 (16h)	00
Data LO Reg 22 (16h)	01
CRC LO	62
CRC HI	77

Response message.

Field name	Hex value
Slave address	01
Function	17
Byte count	04
Reg no. 3, (3h) data HI	05
Reg no. 3, (3h) data LO	AA
Reg no. 4, (4h) data HI	42
Reg no. 4, (4h) data LO	68
CRC LO	E8
CRC HI	85

See 3.11 , page 45 and 4.10 , page 65 for all parameters changeable with this function code.

2.4 Errors, exception codes

Two kinds of errors are possible:

- Transmission errors.
- Operation errors.

2.4.1 Transmission errors

Transmission errors are:

- Frame error (stop bit error).
- Parity error (if parity is used).
- CRC error.
- No message at all.

These errors are caused by i.e. electrical interference from machinery or damage to the communication channel (cables, contact, I/O ports etc.). This unit will not act on or answer the master when a transmission error occurs. (Same result as if a non-existing slave is addressed). The master will eventually cause a time-out condition.

2.4.2 Operation errors

If no transmission error is detected in the master query, the message is examined. If an illegal function code, data address or data value is detected, the message is not acted upon but an answer with an exception code is sent back to the master. This unit can also send back an exception code when a set (force) function message is received during some busy operation states.

Bit 8 (most significant bit) in the function code byte is set to a ' 1 ' in the exception response message. Example with an illegal data address when reading an input register.

Exception response message.

Field name	Hex value
Slave address	01
Function	84
Exception code	02
CRC LO	C 2
CRC HI	C 1

Table 24 Exception codes.

Exc. code	Name	Description
01	Illegal function	This unit doesn't support the function code.
02	Illegal data address	The data address is not within its boundaries.
03	lllegal data value	The data value is not within it's boundaries.
06	Busy	The unit is unable to perform the request at this time. Retry later.

3. SOFTSTARTER MSF DATA

3.1 Installation bookshelf types

Fig. 4 shows the parts of the MODBUS RTU option.

Fig. 4 MODBUS RTU option card.

WARNING! Opening the softstarter. Always switch off the mains voltage before opening the softstarter and wait at least 5 minutes to allow the buffer capacitors to discharge.

Remove first the lid on the top side of the softstarter. Mount the option card according to the sequence in Fig. 4.

Fig. 5 Installation of the option card.

Fig. 6 Mounting of the option card seen from the top.

3.2 Installation of MSF-170 to MSF-1400

NOTEI Under construction, to be defined.

3.3 RS485 Multipoint network

The RS485 port (see Fig. 4) is used for multi point communication. A host computer (PC/PLC) can address (master) maximum 247 slave stations (nodes). See Fig. 7.

Fig. 7 RS 485 mulitpoint network

3.3.1 RS485 connection

Table 25 RS485 pinning

RS485 pin	Function
1	Ground
2	A-line
3	B-line
4	PE

The connector is a 4 -pole male connector. The wiring should be done according to Fig. 8.

Fig. 8 RS485 wiring

3.3.2 RS485 termination.

The RS485 network must always be terminated, to avoid transmission problem. The termination must take place at the end of the network. In Fig. 8 this means that the termination must take place at the slave 2 unit.

Switch S1 (see Fig. 4) sets the termination ON or OFF as indicated in the Fig. 9 and Fig. 10.

NOTEI Physical connection can be either RS232 or RS485, not both on the same time.

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual

3.4 RS232 point to point network

The RS232 port is used for point to point communication as a master slave. See fig Fig. 11.

Fig. 11 RS232 point to point network

3.4.1 RS232 connection

Table 26 RS232 pinning

RS232 pin	Function
2	TX from module
3	RX to module
5	Ground

3.4.2 RS232 wiring

The RS232 port consists of a sub-D 9 pole female connector. The wiring should be done according to Fig. 11.

NOTE! Use an 1:1 cable WITHOUT a pin 2-3 crossing.

Fig. 12 RS232 wiring.

NOTE! Physical connection can be either RS232 or RS485, not both on the same time.

3.5 Set-up Communication Parameters for Softstarter MSF

The following parameters have to be set-up:

- Unit address.
- Baud rate.
- Parity
- Behaviour when contact broken.

Setting up the communication parameter must be made in local 'Keyboard control' mode. See 3.6.1, page 38.

Serial comm. unit address[111]

1 1 1		

Serial comm. baudrate[112]

Serial comm. parity[113]

1	1	3	
		Serial comm parity	
			0

Serial comm. broken alarm[114]

If control mode is 'Serial comm. control' and no contact is established or contact is broken the Soft starter consider the contact to be broken after 15 sec , the softstarter can act in three different ways:

1 Continue without any action at all.
2 Stop and alarm after 15 sec .
3 Continue and alarm after 15 sec .
If an alarm occurs, it is automatically reset if the communication is re-established. It is also possible to reset the alarm from the soft starter keyboard.

	1 1 4 0		
			1

3.6 Softstarter MSF in serial comm. control mode

The source from where operation and parameter settings are made is selected in the Control Mode para-meter menu 006.
When serial communication control mode (3) is selected, it is possible to:

- Operate the soft starter only via serial comm.
- Set up parameters only via serial comm. Exceptions for the serial comm. parameters described above.
- Readout all view information and all parameters.
- Set up the control mode parameter from local MSF keyboard, but not via serial comm.
- Inspect all parameters and open the menu expansions from local MSF keyboard.

3.6.1 Selection of control mode [006]

Setting up the control mode has to be done from the local MSF keyboard.

$0 \mid 06$	0	

In all control modes it is possible to read out all the information in the soft starter via serial communication, both parameters and view information.

NOTEI When Reset to factory settings is made via serial comm., the control mode will remain in serial comm. control.

See also 6.1.7 'Overview of soft starter operation and parameter set-up' in MSF instruction manual.

3.7 Parameter List

Logical number is often used to give a parameter a unique number. But it is not the logical number inside the actual MODBUS message.

The following table explains the relations between logical numbers and actual numbers inside MODBUS messages.

Table 27 Parameter types

Parameter type	Modbus logical numbers	Modbus actual numbers
Coil Status	$1-10000$	$0-9999$ (Logical-1)
Input Status	$10001-20000$	$0-9999$ (Logical-10001)
Input Registers	$30001-40000$	$0-9999$ (Logical-30001)
Holding Registers	$40001-50000$	$0-9999$ (Logical-40001)

The product MSF menu column show the menu number on the PPU (Parameter Presentation Unit) for the parameter.

For more information on any parameter/function, see Instruction Manual MasterStart MSF Softstarter.

3.8 Coil status list

Table 28 Coil status list

Modbus logical no	Modbus no	Function/Name	Range/Unit	Product MSF menu
1	0	Alarm reset	$0->1$ = Reset	
2	1	Run /-Stop	Stop=0, Run=1	
5	4	Auto-set monitor	$0->1$ = Auto-set	089
6	5	Reset power con- sumption	$0->1=$ Reset	206
26	25	Pump control	Off, on; off=0, on=1	022
27	26	Full voltage start D.O.L.	Off, on; off=0, on=1	024
28	27	By pass	Off, on; off=0, on=1	032
29	28	Power factor control PFC	Off, on; off=0, on=1	033
30	29	Motor PTC input	No, yes; no=0, yes=1	071
31	30	Run at single phase input failure	No, yes; no=0, yes=1	101
32	31	Run at current limit time-out	No, yes; no=0, yes=1	102
33	32	Jog forward from keyb. enable	No, yes; no=0, yes=1	103
34	33	Jog reverse from keyb. enable	No, yes; no=0, yes=1	104
35	34	Phase reversal alarm	Off, on; off=0, on=1	088

3.9 Input status list

Table 29 Input status list

Modbus logical no	Modbus no	Function/Name	Range/Unit	Product MSF menu
10001	0	Locked keyboard info	O=Unlocked, 1=Locked	221
10002	1	Extended start ramp time	No, yes; no=0, yes=1	505
10003	2	Pre-Alarm status	O=No Pre-Alarm, 1=Pre-Alarm	
10004	3	Max Pre-Alarm status	O=No Pre-Alarm, 1=Pre-Alarm	
10005	4	Min Pre-Alarm status	O=No Pre-Alarm, $1=$ Pre-alarm	

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual

3.10 Input register list

Table 30 Input register list

Modbus logial no	Modbus no	Function/Name	Range/Unit	Product MSF menu
30001	0	Power consumption high word	0-2E9 Wh,1 Wh<->1	205
30002	1	Power consumption low word		205
30003	2	Electrical power high word	$0-2$ E9 W, 1 W $<->1$	S51
30004	3	Electrical power low word		S51
30005	4	Output shaft power high word	$0-2 \mathrm{E} 9 \mathrm{~W}, 1 \mathrm{~W}<->1$	203
30006	5	Output shaft power low word		203
30007	6	Operation time high word	0.1 days <->1	208
30008	7	Operation time low word	0.1 days <->1	208
30011	10	Shaft torque high word	$\begin{aligned} & 0-2 \mathrm{E} 8 \mathrm{Nm}, 0.1 \mathrm{Nm} \\ & <->1 \end{aligned}$	207
30012	11	Shaft torque low word	"	207
30017	16	Software version	$\begin{aligned} & r 23 \cdot>r=\text { release, } \\ & \text { Bit } 15-14=0,0 \\ & \operatorname{LB}=23 \end{aligned}$	
30018	17	Software variant	v001 -> HB=0, LB=01	
30019	18	Current	$0-6553.5 \mathrm{~A}, 0.1 \mathrm{~A}<->1$	005
30020	19	Phase 1 current	"	211
30021	20	Phase 2 current	"	212
30022	21	Phase 3 current	"	213
30024	23	Line main voltage	"	202
30025	24	Line main voltage 1	"	214
30026	25	Line main voltage 2	"	215
30027	26	Line main voltage 3	"	216
30028	27	Product type number	1-19 See description in 3.12.1.	
30029	28	Control start by / Control mode	$\begin{aligned} & 1=\text { Keyboard } \\ & 2=\text { Remote } \\ & 3=\text { Serial comm. } \end{aligned}$	006
30031	30	Serial comm. unit address	1-247	111

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual Table 30 Input register list (contimuing)

Modbus logial no	Modbus no	Function/Name	Range/Unit	Product MSF menu
30032	31	Serial comm. baudrate	$\begin{aligned} & 2400-38400 \text { Baud, } \\ & 100 \text { Baud <-> } 1 \end{aligned}$	112
30033	32	Serial comm. parity	$\begin{aligned} & 0=\text { No parity } \\ & 1=\text { Even parity } \end{aligned}$	113
30034	33	Serial comm. contact broken	0-2 See description in 3.12.2.	114
30035	34	Actual parameter set	1-4	
30036	35	Shaft power \%	$\begin{aligned} & -200 \%+200 \% \\ & 1 \%<->1 \end{aligned}$	090
30037	36	Cooler temperature	$\begin{gathered} 30.0-100.0^{\circ} \mathrm{C} \\ 0.1^{\circ} \mathrm{C}<->1 \end{gathered}$	
30041	40	Operation mode	1-7 See description in 3.12.3.	
30042	41	Operation status	$\begin{aligned} & \text { 1-11 See description } \\ & \text { in 3.12.4. } \end{aligned}$	
30047	46	Used thermal capacity	0-150 \%, 1\%<->1	073
30048	47	Power factor	0.00-1.00,0.01 <>1	204
30049	48	Current ratio	$80-150 \%, 1 \%<->1$	
30050	49	Voltage ratio	$50-150 \%, 1 \%<->1$	F12
30051	50	Phase sequence	$\begin{aligned} & 0-2 \\ & 0=\text { None, } \\ & 1=\text { RST, } \\ & 2=\text { RTS } \end{aligned}$	087
30052	51	Emotron product	1=VFB/VFX, 2=MSF	
30103	102	Trip message 1	0-16 See description in 3.12.5.	901
30106	105	Trip message 2	See trip message 1.	902
30109	108	Trip message 3	See trip message 1.	903
30112	111	Trip message 4	See trip message 1.	904

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual
Table 30 Input register list (continuing)

Modbus logial no	Modbus no	Function/Name	Range/Unit	Product MSF menu
30115	114	Trip message 5	See trip message 1.	905
30118	117	Trip message 6	See trip message 1.	906
30121	120	Trip message 7	See trip message 1.	907
30124	123	Trip message 8	See trip message 1.	908
30127	126	Trip message 9	See trip message 1.	909
30130	129	Trip message 10	See trip message 1.	910

3.11 Holding register list

Table 31 Holding register list

Modbus logical no	Modbus no	Function/Name	Range/Unit	Product MSF menu
40001	0	Nominal motor voltage	$\begin{aligned} & 200.0-700.0 \mathrm{~V} \\ & 0.1 \mathrm{~V}<->1 \end{aligned}$	041
40002	1	Nominal motor frequency	$50-60 \mathrm{~Hz} \mathrm{1Hz}<->1$	046
40003	2	Nominal motor current	$\begin{aligned} & 25 \text { \%-150\% Insoft in } \\ & \text { Amp.0.1A <->1 } \end{aligned}$	042
40004	3	Nominal motor speed	$\begin{aligned} & 500-3600 \mathrm{Rpm} \\ & \text { Bit15 }=0->1 \mathrm{rpm}<->1 \end{aligned}$	044
40005	4	Nominal motor power	$\begin{aligned} & 25 \%-150 \% \text { Pnsoft in } \\ & \text { W; } \\ & \text { Bit15=0->1W<->1 } \\ & \text { Bit15=1->100W }<->1 \end{aligned}$	043
40006	5	Nominal motor cos phi	$\begin{aligned} & 50-100, \operatorname{Cos} \text { phi = } \\ & 1.00<->100 \end{aligned}$	045
40013	12	Start delay monitor	1-250sec,1sec<->1	091
40014	13	Max alarm response delay	0.1-25.0sec $0.1 \mathrm{~s}->1$	093
40015	14	Max alarm limit	5-200\% Pn 1\%<->1	092
40017	16	Max pre-alarm	5-200\% Pn 1\%<->1	094
40018	17	Min alarm response delay	0.1-25.0sec 0.1s<->1	099
40019	18	Min alarm limit	5-200\% Pn 1\%<->1	098
40020	19	Min pre-alarm response delay	$0.1-25.0 \mathrm{sec} 0.1 \mathrm{~s}<->1$	097
40021	20	Min pre-alarm	5-200\% Pn 1\%<->1	096
40022	21	Parameter set	$\left\{\begin{array}{l} 0=\text { External input } \\ \text { selection } \\ 1-4=\text { Par. set 1-4. } \end{array}\right.$	061
40023	22	Relay 1	$\begin{aligned} & \text { 1-3 See description in } \\ & 3.12 .6 \text {. } \end{aligned}$	051
40024	23	Relay 2	1-4 See description in 3.12.7.	052
40028	27	Anln 1, setup	$\mathrm{O}=\mathrm{OFF}$, No remote analogue control. $1=0-10 \mathrm{~V} / 0-20 \mathrm{~mA}$ $2=2-10 \mathrm{~V} / 4-20 \mathrm{~mA}$	023

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual Table 31 Holding register list (contimuing)

$\begin{array}{\|c} \hline \text { Modbus } \\ \text { logical } \\ \text { no } \end{array}$	Modbus no	Function/Name	Range/Unit	Product MSF menu
40037	36	AnOut 1, function	1-3 See description in 3.12.8.	055
40038	37	AnOut 1, setup	$0=0 F F$, No analogue output. $\begin{aligned} & 1=0-10 \mathrm{~V} / 0-20 \mathrm{~mA} \\ & 2=2-10 \mathrm{~V} / 4-20 \mathrm{~mA} \end{aligned}$	054
40040	39	AnOut 1, scaling	5-150\% 1\% <-> 1	056
42001	2000	Initial voltage at start	25-90\% U, 1\% Un<->1	001
42002	2001	Start time ramp 1	$1-60 \mathrm{sec}, 1 \mathrm{sec}<->1$	002
42003	2002	Step down voltage at stop	100-40\% U,1\% Un<->1	003
42004	2003	Stop time ramp 1	Off,1-120sec, 1s<->1	004
42005	2004	Initial voltage start ramp 2	30-90\% U, 1\% Un<->1	011
42006	2005	Start time ramp 2	Off,1-60sec, 1sec<->1	012
42007	2006	Step down voltage stop ramp 2	$\begin{aligned} & 100-40 \% \text { U, } \\ & 1 \% \text { Un<->1 } \end{aligned}$	013
42008	2007	Stop time ramp 2	Off,1-120sec, 1s<->1	014
42009	2008	Initial torque at start	0-200\% Tn,1\% Tn<->1	016
42010	2009	End torque at start	$\begin{aligned} & 50-200 \% \text { Tn, } \\ & 1 \% \text { Tn<->1 } \end{aligned}$	017
42011	2010	Torque control	```Off = Torque control OFF 1 = Linear characteristic. 2 = Square characteristic.```	025
42012	2011	Voltage ramp with current limit	Off, 150-500\% In 1\% $\ln <->1$	020
42013	2012	Current limit at start	Off, 150-500\% In 1\% in<->1	021
42014	2013	DC-Brake current limit	$\begin{aligned} & 100-300 \% \operatorname{In} \\ & 1 \% \ln <->1 \end{aligned}$	035
42015	2014	DC-Brake active time	Off, 1-120sec, 1s <->1	034
42016	2015	Torque boost current limit	$\begin{aligned} & 300-500 \% \ln \\ & 1 \% \ln <->1 \end{aligned}$	031
42017	2016	Torque boost active time	Off, 0.1-2.Osec $0.1 \mathrm{sec}<->1$	030

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual
Table 31 Holding register list (continuing)

Modbus logical no	Modbus no	Function/Name	Range/Unit	Product MSF menu
42018	2017	Slow speed digital input	Off, 1-100 edges, 1 edge<->1	036
42019	2018	Slow speed torque	$10-100,10$ <->10	037
42020	2019	Slow speed time at start	Off, 1-60sec, 1s<->1	038
42021	2020	Slow speed time at stop	Off, 1-60sec, 1s<->1	039
42022	2021	Slow speed DC-Brake time	Off, 1-60sec, 1s<->1	040
42023	2022	Motor thermal protection class	Off, 2-40sec, 1s<->1	072
42024	2023	Starts per hour limitation	Off, 1-90/hour, 1<->1	074
42025	2024	Locked rotor alarm	Off, 0.1-10.0sec 0.1 sec<->1	075
42026	2025	Voltage unbalance alarm	$5-25 \%$ Un, 1\% Un<->1	081
42027	2026	Response delay voltage unbal.	Off,1-60sec, 1sec<->1	082
42028	2027	Over voltage alarm	$100-150 \%$ Un 1% Un<->1	083
42029	2028	Response delay over voltage	Off, 1-60sec, 1s<->1	084
42030	2029	Under voltage alarm	$75-100 \%$ Un 1% Un<->1	085
42031	2030	Response delay under volt- age	Off, 1-60sec, 1 sec<->1	086
42032	2031	Reset to factory settings	No, yes; no=0, yes=1	199

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual

3.12 Parameter description MSF

The MODBUS logical number inside brackets.
For more information on any parameter/function, see Instruction Manual MasterStart MSF Softstarter.

3.12.1 Softstarter type (30028).

Table 32 Sofistarter type

1 MSF-017	2 MSF-030	3 MSF-045	4 MSF-060	5 MSF-075	6 MSF-085
7 MSF-110	8 MSF-145	9 MSF-170	10 MSF-210	11 MSF-250	12 MSF-310
13 MSF-370	14 MSF-450	15 MSF-570	16 MSF-710	17 MSF-835	18 MSF-1000
19 MSF-1400					

3.12.2 Serial comm. contact broken (30034).

Table 33 Serial comm. contact broken

$\mathbf{0}$	No action when communication is lost.
$\mathbf{1}$	Stop and alarm after 15 sec. when communication is lost.
$\mathbf{2}$	Continue and alarm after 15 sec. when communication is lost.

Communication is considered lost if no request is made to this unit within 15 sec .

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual

3.12.3 Operation mode (30041).

$\mathbf{1}$	Voltage control.
$\mathbf{2}$	Torque control.
$\mathbf{3}$	Current limit control.
$\mathbf{4}$	Ramp with current limit control.
$\mathbf{5}$	Pump application.
$\mathbf{6}$	Analogue input voltage control.
$\mathbf{7}$	Direct On Line start.

3.12.4 Operation status (30042).

$\mathbf{1}$	Stopped.
$\mathbf{2}$	Stopped with alarm condition.
$\mathbf{3}$	Run with alarm condition.
$\mathbf{4}$	Run acceleration.
$\mathbf{5}$	Run full voltage.
$\mathbf{6}$	Run deceleration.
$\mathbf{7}$	Run by passed.
$\mathbf{8}$	Run power factor control.
$\mathbf{9}$	Run DC brake.
$\mathbf{1 0}$	Run at slow speed forward.
$\mathbf{1 1}$	Run at slow speed reverse.

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual
3.12.5 Alarm (30103).

1	Phase input failure	F1
2	Motor protection, overload	F2
3	Soft start overheated	F3
4	Current limit timeout	F4
5	Locked rotor	F5
6	Above max power limit	F6
$\mathbf{7}$	Below min power limit	F7
$\mathbf{8}$	Voltage unbalance	F8
$\mathbf{9}$	Over voltage	F9
10	Under voltage	F10
11	Starts/hour exceeded	F11
12	Shorted thyristor	F12
13	Open thyristor	F13
14	Motor terminal open	F14
15	Serial comm. broken	F15
16	Phase reversal alarm	F16

3.12.6 Relay indication K1 (40023).

$\mathbf{1}$	Indicates 'Operation'.
$\mathbf{2}$	Indicates 'Full voltage'.
$\mathbf{3}$	Indicates 'Pre alarm'.

3.12.7 Relay indication K2 (40024).

$\mathbf{1}$	Indicates 'Operation'.
$\mathbf{2}$	Indicates 'Full voltage'.
$\mathbf{3}$	Indicates 'Pre alarm'.
$\mathbf{4}$	Indicates 'DC-brake function is chosen'.

3.12.8 Analogue output value (40037).

$\mathbf{1}$	RMS current (range 0-5(ln).
$\mathbf{2}$	Main input RMS voltage (range 0-532V).
$\mathbf{3}$	Output shaft power (range 0-2(Pn).

3.12.9 Reset to factory setings (42032)

Reset to factory settings from serial communication will have the same effect as if it was done from the PPU keyboard, except for one parameter. The control mode (menu 006) will remain in 3 (serial comm. control) instead of being set to the default value 2 (remote control).

3.13 Performance

It is important to configure the communication master according to the slave performance/restrictions. The total message size must not exceed 64 bytes.
Max number of registers at a time is limited to 25 (both for read and write).

Max 2 requests per sec. to reduce system disturbance.
Min 1 request per 15 sec . to avoid serial comm. contact broken alarm.

3.13.1 MSF response delay

The read function codes ($1-4$), will have a maximum delay of 250 ms .

Table 34 Response delay table for setting (forcing) registers

Modbus logical nr	Parameter	Response delay/ recommended time out
$40001-40006$	Nominal motor data	$500 \mathrm{~ms} /$ data
42032	Reset to factory set- tings	3.5 sec
	Other registers	250 ms

4.1 Installation bookshelf types

Fig. 13 shows the parts of the MODBUS RTU option.

Fig. 13 MODBUS RTU option card.

WARNING! Opening the Inverter. Always switch off the mains voltage before opening the inverter and wait at least 5 minutes to allow the buffer capacitors to discharge.

Remove first the lid on the top side of the inverter. Mount the option card according to the sequence in Fig. 14.

4.1.1 Mounting option card

Fig. 14 Installation of the option card in VFB.

Fig. 15 Mounting of option card from above in VFB.

4.2 Installation of VFX types

NOTE! Pictures are under construction, to be defined.

4.3 RS485 Multipoint network

The RS485 port (see Fig. 13) is used for multi point communication. A host computer (PC/PLC) can address (master) maximum 247 slave stations (nodes). See Fig. 16.

Fig. 16 RS 485 multipoint network

4.3.1 RS485 connection

Table 35 RS485 pinning

RS485 pin	Function
1	Ground
2	A-line
3	B-line
4	PE

The connector is a 4-pole male connector. The wiring should be done according to Fig. 17.

Fig. 17 RS485 wiring

4.3.2 RS485 termination.

The RS485 network must always be terminated, to avoid transmission problem. The termination must take place at the end of the network. In finure 5 this means that the termination must take place at the slave 2 unit.

Switch S1 (see Fig. 4) sets the termination ON or OFF as indicated in the Fig. 18 and Fig. 19.

NOTE! Physical connection can be either RS232 or RS485, not both on the same time.

4.4 RS232 point to point network

The RS232 port is used for point to point communication as a master slave. See fig Fig. 20.

Fig. 20 RS232 point to point network

4.4.1 RS232 connection

Table 36 RS232 pinning

RS232 pin	Function
2	TX from module
3	RX to module
5	Ground

4.4.2 RS232 wiring

The RS232 port consists of a sub-D 9 pole female connector. The wiring should be done acc. to Fig. 20.

NOTE! Use an 1:1 cable WITHOUT a pin 2-3 crossing.

Fig. 21 RS232 wiring

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual NOTEI Physical connection can be either RS232 or RS485, not both on the same time.

4.5 Set-up Communication Parameters for frequency inverter VFB/VFX

The following parameters have to be set-up:

- Unit address.
- Baud rate.

Serial comm. unit address[262]

	262 Address Stp
Default:	1
Range	$1-247$
This parameter will select the unit address.	

Serial comm. baud rate[261]

	261 Stp
Default:	9600
Range	$2400,4800,9600,19200,38400$
This parameter will select the baudrate.	

4.6 Frequency inverter VFB/VFX in serial comm Control Mode

The serial comm link will have access to all parameters in the VFB/VFX inverter. If a valid setting for a parameter is received over the serial link that parameter will be accepted and changed. This means that the control panel and serial comm can be used in parallel. There are some limitations of writing data when the inverter is started, see manual for further information. The only parameters that can't be used in parallell is start/stop and reference values, see 4.5 .

Ref control

To be able to use the serial comm as a source for the speed or torque reference menu 212 has to be set to Comm or Comm/ DigIn1. See Instruction Manual VFB/VFX for further description.

	212 Stp
Refault:	Remote Romm
Range	Remote, keyboard, Comm, Rem/ Digln1,or Comm/Digln1
This parameter will select reference source	

Run/Stp ctrl

To be able to use the serial comm as a source for starting and stopping the inverter menu 213 has to be set to Comm or Comm/DigIn1. See Instruction Manual VFB/VFX for further description.

	213 Run/Stp Stp
Default:	Comm
Remote	
Range	Remote, keyboard, Comm, Rem/ Digln1, or Comm/Digln1
This parameter will select run/stop source	

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual

4.7 Parameter List

Logical number is often used to give a parameter a unique number. But it is not the logical number inside the actual MODBUS message.

The following table explains the relations between logical numbers and actual numbers inside MODBUS messages.

Table 37 Parameter type

Parameter type	Modbus logical numbers	Modbus actual numbers
Coil Status	$1-10000$	$0-9999$ (Logical-1)
Input Registers	$30001-$ 40000	$0-9999$ (Logical-30001)
Holding Registers	$40001-$ 50000	$0-9999$ (Logical-40001)

The product VFB/VFX menu column show the menu number on the control panel for the parameters.

For more information on any parameter/function, see Instruction Manual VFB/VFX.

4.8 Coil status list

Table 38 Coil status list

Modbus logical no	Modbus no	Function/Name	Range/Unit	Product VFB/VFX menu
1	0	Alarm reset	0->1 = Reset	
2	1	Run /-Stop	Stop=0, Run=1	
3	2	Run Right	1=Run R	
4	3	Run Left	1=Run L	
5	4	Auto-set monitor	$0 \rightarrow 1$ = Auto-set	815
6	5	Reset power consumption	$0->1=$ Reset	6F1
7	6	Reset Run-Time	$0->1=$ Reset	6D1
8	7	Reset Trip Log	0->1 = Reset	780
10	9	Auto-restart, Overtemp trip	$\begin{aligned} & \text { Off, on; off=0, } \\ & \text { on=1 } \end{aligned}$	242
11	10	Auto-restart, $1^{2} \mathrm{t}$	$\begin{aligned} & \text { Off, on; of } f=0, \\ & \text { on=1 } \end{aligned}$	243
12	11	Auto-restart, Overvolt D	$\begin{aligned} & \text { Off, on; off }=0, \\ & \text { on=1 } \end{aligned}$	244
13	12	Auto-restart, Overvolt G	$\begin{aligned} & \text { Off, on; off=0, } \\ & \text { on=1 } \end{aligned}$	245
14	13	Auto-restart, Overvolt L	$\begin{aligned} & \text { Off, on; off=0, } \\ & \text { on=1 } \end{aligned}$	246
15	14	Auto-restart, PTC	$\begin{aligned} & \text { Off, on; of } f=0 \text {, } \\ & \text { on=1 } \end{aligned}$	247
16	15	Auto-restart, External trip	$\begin{aligned} & \text { Off, on; of } f=0, \\ & \text { on=1 } \end{aligned}$	248
17	16	Auto-restart, Phase loss motor	$\begin{aligned} & \text { Off, on; of } f=0 \text {, } \\ & \text { on=1 } \end{aligned}$	249
18	17	Auto-restart, Alarm	$\begin{aligned} & \text { Off, on; off=0, } \\ & \text { on=1 } \end{aligned}$	24A
19	18	Auto-restart, Locked rotor	$\begin{aligned} & \text { Off, on; of } f=0, \\ & \text { on=1 } \end{aligned}$	24B
20	19	Auto-restart, Power fault	$\begin{aligned} & \text { Off, on; off=0, } \\ & \text { on=1 } \end{aligned}$	24C
30	29	Motor PTC input	$\begin{aligned} & \text { no, yes; no=0, } \\ & \text { yes=1 } \end{aligned}$	271

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual

4.9 Input register list

Table 39 Input register list

Modbus logical no	Modbus no no	Function/Name	Range/Unit	Product VFB/VFX menu
30001	0	Power consumption high word	0-2E9 Wh, 1 Wh<->1	6FO
30002	1	Power consumption low word		6FO
30003	2	Electrical power high word	$0+-2 \mathrm{E}$ W W, $1 \mathrm{~W}<->1$	640
30004	3	Electrical power low word		640
30005	4	Output shaft power high word	$\begin{aligned} & 0 \cdot+\cdot 2 E 9 W, \\ & 1 \text { W<->1 } \end{aligned}$	630
30006	5	Output shaft power low word		630
30007	6	Operation time high word	0-65535 h, $1 \mathrm{~h}<->1$	6D0
30008	7	Operation time low word	0-59 Min, 1 min $<->1$	6D0
30009	8	Mains time hour	0-65535 h, $1 \mathrm{~h}<>1$	6E0
30010	9	Mains time min	0-59 Min, 1 min<->1	6E0
30011	10	Shaft torque high word	$\begin{aligned} & 0-+2 \mathrm{E} 8 \mathrm{Nm}, \\ & 0.1 \mathrm{Nm}<->1 \end{aligned}$	620
30012	11	Shaft torque low word	n	620
30013	12	Process speed high word	$1-+-2 E 8 \text { Rpm, }$ $1 \mathrm{rpm}<->1000$	6G0
30014	13	Process speed low word	"	6GO
30015	14	Shaft speed high word	0-2E8 rpm,1 rpm<->1	610
30016	15	Shaft speed low word	"	610
30017	16	Software version	$\begin{aligned} & \text { V1.23-> Release } \\ & \text { Bit } 15-14=0,0 \\ & \text { Bit } 13-8=1, \\ & \text { LB }=23 \text { See } 4.11 . \end{aligned}$	920
30018	17	Option/variant version	$\begin{aligned} & \mathrm{OPT} \text { V2.34 -> } \\ & \mathrm{HB}=2, \\ & \mathrm{LB}=34 \end{aligned}$	920
30019	18	Current	0-6553.5 A, 0.1A <-> 1	650
30023	22	Output voltage	0-6553.5 V, $0.1 \mathrm{~V}<->1$	660
30028	27	Product type number	See description in 4.11.	910

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual Table 39 Input register list (continuing)

Modbus logical no	Modbus no	Function/Name	Range/Unit	Product VFB/VFX menu
30029	28	Control start by / Control mode	$\begin{aligned} & 0=\text { Remote }, \\ & 1=\text { Keyboard, } \\ & 2=\text { Serial comm } \end{aligned}$	
30030	29	Control ref by	$\begin{aligned} & 0=\text { Remote } \\ & 1=\text { Keyboard } \\ & 2=\text { Serial comm } \end{aligned}$	
30031	30	Serial comm. unit address	1-247	262
30032	31	Serial comm. baudrate	$\begin{aligned} & 1=2400, \quad 4=19200, \\ & 2=4800 \quad 5=38400 \\ & 3=9600, \end{aligned}$	261
30035	34	Actual parameter set	$\left[\begin{array}{ll} 0-3 ; & \\ 0=A, & 2=C, \\ 1=B & 3=D \end{array}\right.$	$3 X X$
30036	35	Shaft torque \%	-400\%+400\% 1\%<->1	620
30037	36	Cooler temperature	$\begin{aligned} & -40.0+100.0^{\circ} \mathrm{C}, \\ & 0.1^{\circ} \mathrm{C}<->1 \end{aligned}$	690
30038	37	Frequency	$\begin{aligned} & 0-2000.0 \mathrm{~Hz}, \\ & 0.1 \mathrm{~Hz}<>1 \end{aligned}$	670
30039	38	DC-link voltage	0-1000V, 0.1V<->1	680
30040	39	Warning	0-31 See description in 4.11.3.	6 HO
30043	42	Digital input status	See description in 4.11.6.	680
30044	43	Analog input status 1	$-100-+100 \%, 1 \%<->1$	6C0
30045	44	Analog input status 2	$-100-+100 \%, 1 \%<->1$	6C0
30046	45	Param_version	For internal use	
30052	51	Emotron product	1=VFB/VFX, 2=MSF	
30101	100	Trip time 1 h	$0-65535 \mathrm{~h}, 1 \mathrm{~h}<->1$	710
30102	101	Trip time 1 min	0-59 Min, 1 min<->1	710
30103	102	Trip message 1	0-31 See description in 4.11.3.	710
30104	103	Trip time 2 h	$0-65535 \mathrm{~h}, 1 \mathrm{~h}<\gg 1$	720
30105	104	Trip time 2 min	0-59 Min, 1 min<->1	720

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual
Table 39 Input register list (cominuing)

Modbus logical no	Modbus no	Function/Name	Range/Unit	$\begin{gathered} \text { Product } \\ \text { VFB/VFX } \\ \text { menu } \end{gathered}$
30106	105	Trip message 2	See trip message 1.	720
30107	106	Trip time 3 h	0-65535 h, 1h<->1	730
30108	107	Trip time 3 min	0-59 Min, 1 min<->1	730
30109	108	Trip message 3	See trip message 1.	730
30110	109	Trip time 4 h	$0-65535 \mathrm{~h}, 1 \mathrm{~h}<->1$	740
30111	110	Trip time 4 min	0-59 Min, 1 min<->1	740
30112	111	Trip message 4	See trip message 1.	740
30113	112	Trip time 5 h	0-65535 h, 1h<->1	750
30114	113	Trip time 5 min	0-59 Min, 1 min<->1	750
30115	114	Trip message 5	See trip message 1.	750
30116	115	Trip time 6 h	0-65535 h, 1h<->1	760
30117	116	Trip time 6 min	0-59 Min, 1 min<->1	760
30118	117	Trip message 6	See trip message 1.	760
30119	118	Trip time 7 h	O-65535 h, 1h<->1	770
30120	119	Trip time 7 min	O-59 Min, 1 min<->1	770
30121	120	Trip message 7	See trip message 1.	770
30122	121	Trip time 8 h	O-65535 h, 1h<->1	780
30123	122	Trip time 8 min	0-59 Min, 1 min<->1	780
30124	123	Trip message 8	See trip message 1.	780
30125	124	Trip time 9 h	$0-65535 \mathrm{~h}, 1 \mathrm{~h}<->1$	790
30126	125	Trip time 9 min	$0-59 \mathrm{Min}, 1 \mathrm{~min}<->1$	790
30127	126	Trip message 9	See trip message 1.	790
30128	127	Trip time 10 h	O-65535 h, 1h<->1	7A0
30129	128	Trip time 10 min	0-59 Min, 1 min<->1	7A0
30130	129	Trip message 10	See trip message 1.	7A0

4.10 Holding register list

Table 40 Holding register list

Modbus logical no	Modbus no	Function/Name	Range/Unit	Product VFB/VFX menu
40001	0	Nominal motor voltage	100.0-700.0V	222
40002	1	Nominal motor frequency	$50-300 \mathrm{~Hz}$	223
40003	2	Nominal motor current	25\% I_nom-3200.0A	224
40004	3	Nominal motor speed	$\begin{array}{\|l} 100-18000 \mathrm{rpm} \\ \text { Bit15 }=0->1 \mathrm{rpm}<->1 \\ \text { Bit15=1->100 } \end{array}$	225
40005	4	Nominal motor power	$\begin{aligned} & 1-3276700 \mathrm{~W} \\ & \text { Bit15 }=0->1 \mathrm{~W}<->1 \\ & \text { Bit15=1->100W }<->1 \end{aligned}$	221
40006	5	Nominal motor cos phi	$50-100$, cos phi $=1.00<->100$	226
40007	6	Motor ventilation	$\begin{aligned} & 0=0 f f, \\ & 1=\text { Self, } \\ & 2=\text { Forced } \end{aligned}$	227
40008	7	Remote input level edge	$\begin{aligned} & 0=\text { Level, } \\ & 1=\text { Edge } \end{aligned}$	215
40009	8	Encoder pulses	5-32767 pulses/rev	252
40010	9	Encoder enable	$\begin{aligned} & 0=0 f f \\ & 1=0 n \end{aligned}$	251
40011	10	Aarm select	$\begin{aligned} & 0=\text { Off, } \\ & 1=\text { Max, } \\ & 2=\text { Min, } \\ & 3=\text { Min+max } \end{aligned}$	811
40012	11	Ramp enable	$\begin{aligned} & 0=0 f f, \\ & 1=0 n \end{aligned}$	812
40013	12	Start delay monitor	0-3600sec	813
40014	13	Max alarm response delay	0.1-90.Osec	814
40015	14	Max alarm limit	0-400\% Tn	816
40017	16	Max pre-alarm	0-400\% Tn	817
40018	17	Min alarm response delay	40014 is used for all delays	
40019	18	Min alarm limit	0-400\% Tn	818
40020	19	Min pre-alarm response delay	40014 is used for all delays	
40021	20	Min pre-alarm	0-400\% Tn	819

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual Table 40 Holding register list (continuing)

Modbus logical no	Modbus no	Function/Name	Range/Unit	Product VFB/VFX menu
40022	21	Parameter set	$\begin{array}{ll} \hline 0=\mathrm{A}, & 4=\mathrm{D} 13, \\ 1=\mathrm{B}, & 5=\mathrm{Di3}+4, \\ 2=\mathrm{C}, & 6=\mathrm{Comm} \\ 3=\mathrm{D}, & \end{array}$	234
40023	22	Relay 1	0-21 See description in 4.11.4.	451
40024	23	Relay 2	0-21 See description in 4.11.4.	452
40025	24	Relay 3	Not defined yet.	
40026	25	Relay 4	Not defined yet.	
40027	26	Anln 1, function	$\begin{aligned} & 0=\text { Off, } \\ & 1=\text { Speed, } \\ & 2=\text { Torque } \end{aligned}$	411
40028	27	Anln 1, setup	$\begin{aligned} & 0=0-10 \mathrm{~V} / 0-20 \mathrm{~mA} \\ & 1=2-10 \mathrm{~V} / 4-20 \mathrm{~mA} \\ & 2=\text { User defined } \end{aligned}$	412
40029	28	Anln 1, offset	-100\% - +100\% 1\% <-> 1	413
40030	29	Anln 1, gain	$-4.00-+4.00,0.01<->1$	414
40031	30	AnIn 1, bipolar	$\begin{aligned} & 0=0 \mathrm{ff}, \\ & 1=0 \mathrm{n} \end{aligned}$	415
40032	31	Anln 2, function	$\begin{aligned} & 0=\text { Off, } \\ & 1=\text { Speed, } \\ & 2=\text { Torque } \end{aligned}$	416
40033	32	AnIn 2, setup	$\begin{aligned} & 0=0-10 \mathrm{~V} / 0-20 \mathrm{~mA}, \\ & 1=2-10 \mathrm{~V} / 4-20 \mathrm{~mA}, \\ & 2=\text { User defined } \end{aligned}$	417
40034	33	Anln 2, offset	-100\% - +100\% 1\% <-> 1	418
40036	35	Anln 2, bipolar	$\begin{aligned} & 0=\text { Off }, \\ & 1=O n \end{aligned}$	41A
40037	36	AnOut 1, function	$\begin{aligned} & 0=\text { Torque, } \\ & 1=\text { Speed, } \quad 4=\text { Current, } \\ & 2=\text { Shaft power, } 5=\text { El.power, } \\ & 3=\text { Frequency, } 6=\text { Outp.voltage } \end{aligned}$	431
40038	37	AnOut 1, setup	$\begin{aligned} & 0=0-10 \mathrm{~V} / 0-20 \mathrm{~mA} \\ & 1=2-10 \mathrm{~V} / 4-20 \mathrm{~mA} \\ & 2=\text { User defined } \end{aligned}$	432
40039	38	AnOut 1, offset	-100\% - +100\% 1\% <-> 1	433
40040	39	AnOut 1, gain	-4.00-+4.00 $0.01<->1$	434

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual Table 40 Holding register list (continuing)

Modbus logical no	Modbus no	Function/Name	Range/Unit	Product VFB/VFX menu
40041	40	AnOut 1, bipolar	$\begin{aligned} & 0=\text { Off, } \\ & 1=O n \end{aligned}$	435
40042	41	AnOut 2, function	$0=$ Torque, 4=Current, $1=$ Speed, 5=El.power, $2=$ Shaft power, 6=Outp. $3=$ Frequency, voltage	436
40043	42	AnOut 2, setup	$\begin{aligned} & 0=0-10 \mathrm{~V} / 0-20 \mathrm{~mA}, \\ & 1=2-10 \mathrm{~V} / 4-20 \mathrm{~mA}, \\ & 2=U \text { ser defined } \end{aligned}$	437
40044	43	AnOut 2, offset	-100\% - +100\% 1\% <-> 1	438
40045	44	AnOut 2, gain	-4.00-+4.00, 0.01 <-> 1	439
40046	45	AnOut 2, bipolar	$\begin{aligned} & 0=O f f, \\ & 1=O n \end{aligned}$	43A
40047	46	AnOut 3, function	$0=$ Torque, $4=$ Current, $1=$ Speed, $5=$ El.power, $2=$ Shaft power, $6=0 u t p$ $3=$ Frequency, voltage	
40048	47	AnOut 3, setup	$\begin{aligned} & 0=0-10 \mathrm{~V} / 0-20 \mathrm{~mA}, \\ & 1=2-10 \mathrm{~V} / 4-20 \mathrm{~mA}, \\ & 2=U s e r \text { defined } \end{aligned}$	
40049	48	AnOut 3,offset	$-100 \%-+100 \% 1 \%<->1$	
40050	49	AnOut 3, gain	$-4.00-+4.00,0.01<->1$	
40051	50	AnOut 3, bipolar	$\begin{aligned} & 0=\text { Off }, \\ & 1=O n \end{aligned}$	
40052	51	AnOut 4, function	0=Torque, 4=Current, $1=$ Speed, 5=El.power, $2=$ Shaft power, $6=0$ outp $3=$ Frequency, voltage	
40053	52	AnOut 4, setup	$\begin{aligned} & 0=0-10 \mathrm{~V} / 0-20 \mathrm{~mA}, \\ & 1=2-10 \mathrm{~V} / 4-20 \mathrm{~mA}, \\ & 2=\text { User defined } \end{aligned}$	
40054	53	AnOut 4, offset	$-100 \%-+100 \% 1 \%<->1$	
40055	54	AnOut 4, gain	$-4.00-+4.00,0.01<>1$	
40057	56	AnOut 5, function	$0=$ Torque, $4=$ Current, $1=$ Speed, $5=$ El.power, $2=$ Shaft power, $6=0 u t p$ $3=$ Frequency, voltage	
40058	57	AnOut 5, setup	$\begin{aligned} & 0=0-10 \mathrm{~V} / 0-20 \mathrm{~mA}, \\ & 1=2-10 \mathrm{~V} / 4-20 \mathrm{~mA}, \\ & 2=U \text { User defined } \end{aligned}$	

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual
Table 40 Holding register list (continuing)

Modbus logical no	Modbus no	Function/Name	Range/Unit	Product VFB/VFX menu
40059	58	AnOut 5, offset	-100\% - +100\% 1\% <-> 1	
40060	59	AnOut 5, gain	-4.00-+4.00, $0.01<->1$	
40061	60	AnOut 5, bipolar	$\begin{aligned} & 0=0 f f, \\ & 1=0 n \end{aligned}$	
41001	1000	Comm, ref	100\% <-> 0x2000	
41002	1001	Operation.drive mode	$\begin{aligned} & 0=\text { Speed, } \\ & 1=\text { Torque, } \\ & 2=\mathrm{V} / \mathrm{Hz} \end{aligned}$	211
41003	1002	Operation.ref ctrl	$\begin{aligned} & 0=\text { Remote, } \\ & 1=\text { Keyboard, } \\ & 2=\text { Comm } \end{aligned}$	212
41004	1003	Operation.run stop ctrl	$\begin{aligned} & \text { 0=Remote, } \quad \text { 3=Rem/digin1, } \\ & 1=\text { Keyboard, } \\ & \text { 4=Comm/ } \\ & \text { digin1 } \\ & 2=\text { Comm, } \end{aligned}$	213
41005	1004	Operation.rotation	$0=R+L, 1=R, 2=L$	214
41006	1005	Utility.auto restart mask	16-bit mask	
41007	1006	Utility.auto restart	0-10	241
41008	1007	Digln 1	0-11 See description in 4.11.6.	421
41009	1008	Digln 2	0-11 See description in 4.11.6.	422
41010	1009	Digln 3	0-11 See description in 4.11.6.	423
41011	1010	Digln 4	0-11 See description in 4.11.6.	424
41014	1013	DigOut 1	0-21 See description in 4.11.4.	441
41015	1014	DigOut 2	0-21 See description in 4.11.4.	442
41018	1017	Crio enable	$\begin{aligned} & 0=0 \mathrm{ff}, \\ & 1=0 n \end{aligned}$	281
41019	1018	Crio control	$\begin{aligned} & 0=4 \text {-Speed, } \\ & 1=3 \text {-pos, } \\ & 2=\text { Analogue } \end{aligned}$	282

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual
Table 40 Holding register list (continuing)

Modbus logical no	Modbus no	Function/Name	Range/Unit	Product VFB/VFX menu
41020	1019	Crio relay 1	0-21 See description in 4.11.4.	283
41021	1020	Crio relay 2	$0-21$ See description in 4.11.4.	284
41022	1021	Process unit	$0=$ None, $3=\mathrm{m} / \mathrm{s}$, $1=r p m$, $4=/ \mathrm{min}$, $2=\%$, $5=/ \mathrm{hr}$	6G1
41023	1022	Process scale	0-10.000, $0.0001 \ll 1$	6G2
41024	1023	Multiple display 1	$\begin{array}{ll} 0=\text { Speed, } & 6=\text { Frequency, } \\ 1=\text { Torque, } & 7=\text { DC voltage, } \\ 2=\text { Shaft power, } 8=\text { Temp, } \\ 3=\text { El power, } & 9=\text { Drive } \\ 4=\text { Current, } & \text { status, } \\ 5=\text { Voltage, } & 10=\text { Process } \\ & \text { speed } \end{array}$	110
41025	1024	Multiple display 2	See 41024	120
41026	1025	Utility language	0=English, $3=$ Dutch, $1=$ German, $4=F r e n c h ~$ $2=$ Swedish,	231
41027	1026	Utility keyboard locked	0=Unlocked, 1=Locked	232
41028	1027	Serial com. address	1-247	262
41029	1028	Serial com. Baud-rate	$\begin{array}{ll} 1=2400, & 4=19200, \\ 2=4800 & 5=38400 \\ 3=9600, & \end{array}$	261
41030	1029	Serial com. parity	$0=$ None	
41032	1031	MVB card on/off	$\begin{aligned} & 0=0 \mathrm{ff}, \\ & 1=0 \mathrm{n} \end{aligned}$	291

Table 41 Parameter set A

***	***	VFB/VFX Parameter set A	***	***
41101	1100	Acceleration time	0.00-3600.00 See description in 4.11.7	311
41102	1101	Deceleration time	$0.00-3600.00$ See description in 4.11.7	313
41103	1102	Q-stop time	0.00-3600.00 See description in 4.11.7	31B
41104	1103	Acceleration shape	$\begin{aligned} & 0=\text { Linear, } \\ & 1=\text { S-curve } \end{aligned}$	312
41105	1104	Deceleration shape	$\begin{aligned} & 0=\text { Linear, } \\ & 1=\text { S-curve } \end{aligned}$	314
41106	1105	Q-stop shape	0=Linear	
41111	1110	Wait before brake time	0.00-3.00, 0.01s <->1	319
41112	1111	Vector brake	$\begin{aligned} & 0=\text { Off }, \\ & 1=O n \end{aligned}$	31A
41113	1112	Spinstart	$\begin{aligned} & 0=\text { Off }, \\ & 1=O n \end{aligned}$	31C
41114	1113	Motor pot function	$\mathrm{O}=$ Volatile, 1=Non-volatile	325
41115	1114	Minspeed mode	$\begin{aligned} & 0=\text { Scale, } \\ & 1=\text { Limit, } \\ & 2=\text { Stop } \end{aligned}$	323
41116	1115	Minimum speed	O- Maximum speed, see description in 4.11.7	321
41117	1116	Maximum speed	Minimum speed-2*motor sync speed, see description in 4.11.7	322
41118	1117	Preset speed 1	0-2*Motor sync speed, see description in 4.11.7	326
41119	1118	Preset speed 2	0-2*Motor sync speed, see description in 4.11.7	327
41120	1119	Preset speed 3	$0-2^{*}$ Motor sync speed, see description in 4.11.7	328
41121	1120	Preset speed 4	$0-2 *$ Motor sync speed, see description in 4.11.7	329
41122	1121	Preset speed 5	0-2*Motor sync speed, see description in 4.11.7	32A
41123	1122	Preset speed 6	0-2*Motor sync speed, see description in 4.11.7	32B
41124	1123	Preset speed 7	0-2*Motor sync speed, see description in 4.11.7	32C

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual
Table 41 Parameter set A (continuing)

***	***	VFB/VFX Parameter set A	***	***
41125	1124	Skip speed 1 Low	0-2*Motor sync speed, see description in 4.11.7	32D
41126	1125	Skip speed 1 High	0-2* Motor sync speed, see description in 4.11 .7	32E
41127	1126	Skip speed 2 Low	0-2*Motor sync speed, see description in 4.11.7	32 F
41128	1127	Skip speed 2 High	0-2*Motor sync speed, see description in 4.11.7	32G
41129	1128	Jog speed	$0- \pm 2 *$ Motor sync speed, see description in 4.11.7	32F
41130	1129	Maximum torque	0-400\%, 1\%<-> 1 or I_max/motor in	331
41131	1130	Speed P gain	0.1-30.0, 0.1->1	342
41132	1131	Speed I time	0.01-10.00s, $0.01 \mathrm{~s}<->1$	343
41133	1132	Flux optimization	$\begin{aligned} & 0=\text { Off, } \\ & 1=\text { On } \end{aligned}$	344
41134	1133	PID-controller	$\begin{aligned} & 0=\text { Off, } \\ & 1=\text { On }, \\ & 2=\text { Invert } \end{aligned}$	345
41135	1134	PID-controller P gain	0.1-30.0, $0.1<>1$	346
41136	1135	PID-controller I time	0.01-300.00s, 0.01s<->1	347
41137	1136	PID-controller D time	0.01-30.00s, $0.01 \mathrm{~s}<->1$	348
41138	1137	Low voltage overrride	$0=0 \mathrm{ff}, 1=0 \mathrm{n}$	351
41139	1138	Rotor locked	$0=O f f, 1=0 n$	352
41140	1139	Motor lost	$\begin{aligned} & 0=\text { Off, } \\ & 1=\text { Resume, } \\ & 2=\text { Trip } \end{aligned}$	353
41141	1140	Motor 12t type	$\begin{aligned} & 0=\text { Off, } \\ & 1=\text { Trip, } \\ & 2=\text { Limit } \end{aligned}$	354
41142	1141	Motor l2t current	0-150\% inverter i_nom, 0.1A<->1	355
41143	1142	Speed direction	$\begin{aligned} & 0=R, \\ & 1=L, \\ & 2=R+L \end{aligned}$	324
41144	1143	Start speed	$0 \cdot+\cdot 2 *$ Motor sync speed, see description i 4.11.7, page 76 .	321

Table 42 Paraneter set B, C and D

***	* **	VFB/VFX Parameter set B	***	***
41201-41299	1200-1298	/* Parameter set B */		
***	***	VFB/VFX Parameter set C	***	**
41301-41399	1300-1398	/* Parameter set C */		
***	***	VFB/VFX Parameter set 0	***	***
41401-41499	1400-1498	/* Parameter set D */		

4.11 Parameter description VFB/VFX

The MODBUS logical number inside brackets.
For more information on any parameter/function, see Instruction Manual Vectorflux VFB/VFX.

4.11.1 Inverter software version (30017).

MSB	F	E	D	C	B	A	9	8	7	6	5	4	3	2	1	0	LSB

Bit F,E	Release Type:	00	Release (V)
		01	Pre release (P)
		10	Beta (B)
		11	Alpha (A)
Bit D-8	Major version	000000	0
		000001	1
		111110	62
Bit 7-0	Minor version	00000000	0
		00000001	1
		11111110	254
		11111111	255
		$3508 \mathrm{~h}->$	

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual
4.11.2 Inverter type (30028).

Bit F,E,D,C,B	Reserved for future use		
Bit A	Option:	0	w/o Brake chopper
		1	with Brake chopper
Bit 9,8	Type:	10	FDB
		11	FDX
Bit 7,6,5	Size:	000	Reserved
		001	Size 1
		010	Size 2
		011	Size 3
		100	Size 4 and 8
		101	Size 5 and 10
		110	Reserved
		111	Size 15 and 20
Bit 4,3,2	Power:	000	Reserved
		001	1st Power in size
		010	2nd Power in size
		011	3rd Power in size
		100	4th Power in size
		101	5th Power in size
		110	6th Power in size
		111	7th Power in size
Bit 1,0	Voltage class:	00	230 V
		01	400 V
		10	500 V
		11	690 V

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual
4.11.3 Warning, Tripmessage 1-10 (30040, 30103, 30106, 30109, 30112, 30115, 30118, 30121, 30124, 30127,30130).

$0=$ No warning	$1=$ Overtemp	$2=$ Overcurrent	$3=$ Overvolt D
$4=$ Overvolt G	$5=$ Overvolt L	$6=$ Motor Temp	$7=$ Ext Trip
$8=$ Spare	$9=$ Max Alarm	$10=$ Locked Rotor	$11=$ Power Fault
$12=$ Int Error	$13=$ Spare	$14=$ Spare	$15=$ Spare
$16=$ Overvoltage	$17=$ Low Voltage	$18=$ Overtemp	$19=$ Motor lost
$20=$ Max Pre-Alrm	$21=$ Min Pre-Alrm	$22=$ Overcurrent	$23=$ Spare
$24=$ Spare	$25=$ Spare	$26=$ Spare	$27=$ Overvolt L
$28=$ Min Alarm	$29=$ Spare	$30=$ Spare	$31=$ Spare

4.11.4 Relay, Digout and CRIO relay (40023,40024,41014,41015,41020, 41021).

$0=$ Run	$1=$ Stop	$2=$ Acc/Dec	$3=$ At speed
$4=$ At max speed	$5=$ No Trip	$6=$ Trip	$7=$ Autorst Trip
$8=$ Limit	$9=$ Warning	$10=$ Ready	$11=$ T=Tlim
$12=$ =Inom	$13=$ Brake	$14=$ Sgnl<Offset	$15=$ Alarm
$16=$ Pre Alarm	$17=$ Max Alarm	$18=$ Max Pre-Alrm	$19=$ Min Alrm
$20=$ Min Pre-Alrm	$21=$ Deviation		

4.11.5 5.x.x Auto restart mask (41006)

MSB	F	E	D	C	8	A	9	8	7	6	5	4	3	2	1	0	LSB

Bit 12-15	Spare	
Bit 11	INT_ERROR	0×0800
Bit 10	POWER_FAULT	0×0400
Bit 9	LOCKED_ROTOR	0×0200
Bit 8	MON_ALARM	0×0100
Bit 7	MOTOR_LOST	0×0080
Bit 6	EXT_TRIP	0×0040
Bit 5	MOTOR_TEMP	0×0020
Bit 4	OVER_VOLT_L	0×0010
Bit 3	OVER_VOLT_G	0×0008
Bit 2	OVER_VOLT_D	0×0004
Bit 1	IIT	0×0002
Bit 0	OVER_TEMP	0×0001

The corresponding bits should be set to activate the autoreset function. To enable auto reset for Int error (bit 11) and locked rotor (Bit 9) the value $0 \times 0 \mathrm{~A} 00$ should be written to the register.

If the value $0 x 0123$ was read, it indicates that MON_ALARM, MOTOR_TEMP, IIT and OVER_TEMP are in auto reset mode and all other functions are swithced off.

4.11.6 Digin (41008,41009).

0=Off	1=Lim Switch+	2=Lim Switch *	3=Ext. Trip
4=AnIn Select	5=Preset Ref 1	6=Preset Ref 2	7=Preset Ref 4
8=Quick Stop	9=Jog	10=MotPot Up	11=MotPot Down
12=PS selected!			

4.11.7 Representation of speed.

Bit15=0<->1rpm<->1
Bit15=1<->100rpm<<>1

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual

4.12 Performance

It is important to configure the communication master according to the slave performance/restrictions.

The cotal message size must not exceed 64 bytes.
Max number of registers at a time is limited to 25 (both for read and write).

4.12.1 VFB/VFX response delay

The response delay for the VFB/VFX will be maximum 8 ms .

5. CRC GENERATION

The CRC is started by first pre-loading a 16 -bit register to all 1 's. Then a process begins of applying successive eight-bit bytes of the message to the current contents of the register. Only the eight bits of data in each character are used for generating the CRC. Start and stop bits, and the parity bit, do not apply to the CRC.

During generation of the CRC, each eight-bit character is exclusive ORed with the register contents. The result is shifted in the direction of the least significant bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is extracted and examined. If the LSB was a 1 , the register is then exclusive OR-ed with a preset, fixed value. If the LSB was a 0 , no exclusive OR takes place.

This process is repeated until eight shifts have been performed. After the last (eighth) shift, the next eight-bit character is exclusive OR-ed with the register's current value, and the process repeats for eight more shifts as described above. The final contents of the register, after all the characters of the message have been applied, is the CRC value.

Generation in steps:

- Step 1 Load a 16 -bit register with $0 x F F F F$ (all 1's). Call this the CRC register.
- Step 2 Exclusive OR the first eight-bit byte of the message with the low order byte of the 16 -bit CRC register, putting the result in the CRC register.
- Step 3 Shift the CRC register one bit to the right (toward the LSB), zero-filling the MSB. Extract and examine the LSB.
- Step 4 If the LSB is 0 , repeat Step 3 (another shift). If the LSB is 1, Exclusive OR the CRC register with the polynomial value 0xA001 (1010 00000000 0001) .
- Step 5 Repeat Steps 3 and 4 until eight shifts have been performed. When this is done, a complete eight-bit byte will have been processed.
- Step 6 Repeat Steps 2 ... 5 for the next eight-bit byte of the message. Continue doing this until all bytes have been processed.
Result The final contents of the CRC register is the CRC value.
- Step 7 When the CRC is placed into the message, its upper and lower bytes must be swapped as described below.
- Placing the CRC into the Message When the 16-bit CRC (two eight-bit bytes) is transmitted in the message, the low order byte will be transmitted first, followed by the high order byte - e.g., if the CRC value is 0×1241.

Message	
CRC LO	41
CRC HI	12

Example of CRC Generation Function

An example of a C language function performing $C R C$ generation is shown on this page.
The function takes two arguments:

- Unsigned char ${ }^{*}$ puchMsg; A pointer to the message buffer containing binary data to be used for generating the CRC.
- Unsigned int usDataLen; The quantity of bytes in the message buffer.

The function returns the CRC as a type unsigned int.

- Unsigned int CRC16 (unsigned int usDataLen, unsigned char *puchMsg)

```
\#define CRC_POLYNOMIAL 0xA001
    unsigned int crc_reg;
    unsigned char i,k;
    crc_reg \(=0 x F F F F\);
    for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{usDataLen} ; \mathrm{i}++\) )
    \{
        crc_reg \({ }^{\wedge}=\star\) puchMsg \({ }^{+}+\);
        for ( \(k=0 ; k<8 ; k++\) )
        \{
        if (crc_reg \& \(0 \times 0001\) )
        \{
            crc_reg \(\gg=1\);
            crc_reg \({ }^{\wedge}=\) CRC_POLYNOMIAL;
        \}
        else
            crc_reg \(\gg=1\);
        \}
    \}
    return crc_reg;
```

Fig. $22 C R C$ example.

SP152 Nudgde Jad Nudgee SPS Pump Station Switchboard Replacemadom Manual

Emotron AB

Mursaregatan 12

Box 22225

SE. 25024 Helsingborg
Smeden
Tel.: +46 42169900
Fax: +46 42169949
Email: Inföemotron.com
Internat: www.emotron.com

Ref: filofficel2007word070917.doc

17 September 2007

Brisbane City Council
GPO Box 2567
BRISBANE QLD 4000
ATTENTION: Mike Tomlinson

Dear Mike,

RE: CONTRACT NO. BW70107-06/07

SEWAGE PUMP STATION 152 - NUDGEE ROAD

Please find attached one (1) copy of the operation and maintenance manual for the above contract.

If you have any queries please contact me.

Yours faithfully

Vince Whelan

WHELAN ELECTRICAL SERVICES 1 HARVEST STREET, YANDINA QLD 4561

MASTERSTART ${ }^{\text {TM }}$ MSF SOFTSTARTERS

INSTRUCTION MANUAL

Valid for the following Soft starter Models: MSF-017 to MSF-1400

MSF
 SOFT STARTER

INSTRUCTION MANUAL

Document number: 01-1363-01
Edition: r3
Date of release: 2003-02-03
(C) Copyright Emotron AB 2000

Emotron retain the right to change specifications and illustrations in the text, without prior notification. The contents of this document may not be copied without the explicit permission of Emotron AB.

Safety

The soft starter should be installed in a cabinet or in an electrical control room.

- The device must be installed by trained personnel.
- Disconnect all power sources before servicing.
- Always use standard commercial fuses, slow blow e.g. type gl, gG, to protect the wiring and prevent short circuiting. To protect the thyristors against short-circuit currents, superfast semiconductor fuses can be used if preferred. The normal guarantee is valid even if superfast semiconductor fuses are not used.

Operating and maintenance personnel

1. Read the whole Instruction Manual before installing and putting the equipment into operation.
2. During all work (operation, maintenance, repairs, etc.) observe the switch-off procedures given in this instruction as well as any other operating instruction for the driven machine or system. See Emergency below.
3. The operator must avoid any working methods which reduce the safety of the device.
4. The operator must do what he can to ensure that no unauthorised person is working on the device.
5. The operator must immediately report any changes to the device which reduce its safety to the user.
6. The user must undertake all necessary measures to operate the device in perfect condition only.

Installation of spare parts

We expressly point out that any spare parts and accessories not supplied by us have also not been tested or approved by us.

Installing and/or using such products can have a negative effect on the characteristics designed for your device. The manufacturer is not liable for damage arising as a result of using non-original parts and accessories.

Emergency

You can switch the device off at any time with the mains switch connected in front of the soft starter (both motor and control voltage must be switched off).

Dismantling and scrapping

The enclosure of the soft starter is made of recyclable material as aluminium, iron and plastic. Legal requirements for disposal and recycling of these materials must be complied with.

The soft starter contains a number of components demanding special treatment, as for example thyristors. The circuit board contain small amounts of tin and lead. Legal requirements for disposal and recycling of these materials must be complied with.

1. GENERAL INFORMATION 6
1.1 Integrated safety systems 6
1.2 Safety measures
1.3 Notes to the Instruction Manual 6
1.4 How to use the Instruction Manual 6
1.5 Standards 6
1.6 Tests in accordance with norm EN60204 6
1.7 Inspection at delivery 7
1.7.1 Transport and packing7
1.8 Unpacking of MSF-310 and larger types 7
2. DESCRIPTION 8
2.1 General 8
2.2 MSF control methods 9
2.2.1 General features 9
3. HOW TOGETSTARTED 10
3.1 Checklist 10
3.2 Main functions/Applications 10
3.3 Motor Data 10
3.4 Setting of the start and stop ramps 11
3.5 Setting the start command 12
3.6 Viewing the motor current 12
3.7 Starting 12
4. APPLICATIONS AND FUNCTIONS SELECTION 13
4.1 Soft starter rating according to AC53a 13
4.2 Soft starter rating according to AC53b 13
4.3 MSF Soft starter ratings 14
4.4 The Application Ratings List 14
4.5 The Application Functions List 16
4.6 Function and combination matrix 19
4.7 Special condition 20
4.7.1 Small motor or low load 20
4.7.2 Ambient temperature below $0 \times C$ 20
4.7.3 Phase compensation capacitor 20
4.7.4 Pole-changing contactor and two speed motor 20 20
4.7.5 Shielded motor cable 20
4.7.6 Slip ring motors 20
4.7.7 Pump control with soft starter and frequency inverter together 20
4.7.8 Starting with counter clockwise rotating loads20
4.7.9 Running motors in parallel 20
4.7.10 How to calculate heat dissipation in cabinets .20 20
4.7.11 Insulation test on motor 20
4.7.12 Operation above 1000 m 20
4.7.13 Reversing 20
5. OPERATION OF THE SOFT STARTER 21
5.1 General description of user interface 21
5.2 PPU unit 21
5.3 LED display 22
5.4 The Menu Structure 22
5.5 The keys 23
5.6 Keyboard lock 23
5.7 Overview of soft starter operation and parameter set-up. 23
6. INSTALLATION AND CONNECTION 24
6.1 Installation of the soft starter in a cabinet 24
6.2 Connections 28
6.3 Connection and setting on the PCB control card 32
6.4 Minimum wiring 33
6.5 Wiring examples 34
7. FUNCTIONAL DESCRIPTION SET-UP MENU 35
7.1 Ramp up/down parameters 36
7.1.1 RMS current [005] 36
7.2 Start/stop/reset command 37
7.2.1 2 -wire start/stop with automatic reset at start 37
7.2.2 2-wire start/stop with separate reset 37
7.2.3 3 -wire start/stop with automatic reset at start 37
7.3 Menu expansion setting. 38
7.4 Voltage control dual ramp 38
7.5 Torque control parameters 39
7.6 Current limit (Main Function) 39
7.6.1 Voltage ramp with current limit 39
7.6.2 Current limit 40
7.7 Pump control (Main Function) 40
7.8 Analogue Input Control (Main Function) 41
7.9 Full voltage start, D.O.L. (Main Function) 41
7.10 Torque control (Main function) 42
7.11 Torque boost 43
7.12 Bypass 43
7.13 Power Factor Control 46
7.14 Brake functions 46
7.15 Slow speed and Jog functions 48
7.15.1 Slow speed controlled by an external signal. 48
7.15.2 Slow speed during a selected time 49
7.15.3 Jog Functions 49
7.15.4 DC-brake after slow speed at stop [040] 49
7.16 Motor data setting 50
7.17 Programmable relay K1 and K2 51
7.18 Analogue output 52
7.19 Digital input selection 53
7.20 Parameter Set 54
7.21 Motor protection, overload (F2 alarm) 55
7.22 Mains protection 56
7.23 Application protection (load monitor) 57
7.23.1 Load monitor max and min/protection (F6 and F7 alarms) 57
7.23.2 Pre-alarm 58
7.24 Resume alarms 61
7.24.1 Phase input failure F1 61
7.24.2 Run at current limit time-out F4 61
7.25 Slow speed with JOG 61
7.26 Automatic return menu 62
7.27 Communication option, related Parameters 62
7.28 Reset to factory setting [199] 63
7.29 View operation 63
7.30 Keyboard lock 65
7.31 Alarm list 65
8. PROTECTION AND ALARM 66
8.1 Alarm description 66
8.1.1 Alarm with stop and requiring a separate reset 66
8.1.2 Alarm with stop and requiring only a new start command 66
8.1.3 Alarm with continue run 66
8.2 Alarm overview 67
9. TROUBLESHOOTING 68
9.1 Fault, cause and solution 68
10. MAINTENANCE 71
11. OPTIONS 72
11.1 Serial communication 72
11.2 Field bus systems 72
11.3 External PPU 72
11.3.1 Cable kit for external current transformers 72
11.4 Terminal clamp 73
12. TECHNICAL DATA 74
13. SET-UP MENU LIST 79
14. INDEX 82
REPRESENTATION 85

List of tables

Table 1 Applications Rating List 15
Table 2 Application Function List 17
Table 3 Combination matrix 19
Table 4 Start/stop combination. 19
Table 5 The keys 23
Table 6 Control modes 23
Table 7 MSF-017 to MSF-250. 25
Table 8 MSF-017 to MSF-250 25
Table 9 MSF-310 to MSF-1400 25
Table 10 MSF-310 to MSF-1400 25
Table 11 Busbar distances 26
Table 12 PCB Terminals 32
Table 13 Set-up Menu overview 35
List of figures
Fig. 1 Scope of delivery. 7
Fig. 2 Unpacking of MSF-310 and larger models. 7
Fig. 3 Voltage control 8
Fig. 4 Current control 8
Fig. 5 Torque control 8
Fig. 6 Standard wiring 10
Fig. 7 Example of start ramp with main function voltage ramp 12
Fig. 8 Rating example AC53a 13
Fig. 9 Duty cycle, non bypass. 13
Fig. 10 Rating example AC53b. 13
Fig. 11 Duty cycle, bypassed 13
Fig. 12 MSF soft starter models. 21
Fig. 13 PPU unit 21
Fig. 14 LED indication at different operation situation. 22
Fig. 15 Menu structure. 22
Fig. 16 MSF-017 to MSF-250 dimensions 24
Fig. 17 Hole pattern for MSF-017 to MSF-250 24
Fig. 18 Hole pattern for MSF-170 to MSF-250 with upper mounting bracket instead of DIN-rail 24
Fig. 19 MSF - 310 to MSF -835 26
Fig. 20 Hole pattern for screw attachment, MSF-310 to MSF-835. Hole distance (mm) 26
Fig. 21 Busbar distances MSF - 310 to MSF 835. 26
Fig. 22 MSF - 1000 to -1400 27
Fig. 23 Hole pattern busbar MSF -1000 to -1400 27
Fig. 24 Connection of MSF-017 to MSF -085. 28
Fig. 25 Connection of MSF-110 to MSF-145. 29
Fig. 26 Connection of MSF-170 to MSF-250 30
Fig. 27 Connection of MSF-170 to MSF-1400. 31
Fig. 28 Connections on the PCB, control card. 32
Fig. 29 Wiring circuit, "Minimum wiring" 33
Fig. 30 Analogue input control, parameter set, analogue output and PTC input 34
Fig. 31 Forward/reverse wiring circuit 34
Fig. 32 Menu numbers for start/stop ramps, initial voltage at-st art and step down voltage at stop 36
Fig. 33 Menu numbers for dual voltage ramp at start/stop, initial voltage at start and step down-voltage at stop. 38
Fig. 34 Current limit 39
Fig. 35 Current limit 40
Fig. 36 Pump control 40
Fig. 37 Wiring for analogue input. 41
Fig. 38 Setting voltage or current for analogue input. 41
Fig. 39 Full voltage start. 41
Fig. 40 Torque control at start/stop 42
Fig. 41 Current and speed in torque control. 42
Fig. 42 The principle of the Torque Booster when starting the motor in voltage ramp mode. 43
Fig. 43 Bypass wiring example MSF 310-1400. 44
Fig. 44 Current transformer position when Bypass MSF-017 to MSF-250 45
Fig. 45 Current transformer position when Bypass MSF-310 to MSF-1400. 45
Fig. 46 Braking time 46
Fig. 47 Soft brake wiring example. 47
Fig. 48 Slow speed controlled by an external signal. 48
Fig. 49 Slow speed at start/stop during a selected time 49
Fig. 50 Start/stop sequence and relay function "Operation" and "Full voltage". 51
Fig. 51 Wiring for analogue output. 52
Fig. 52 Setting of current or voltage output. 52
Fig. 53 Setting of J1 for current or voltage control. 53
Fig. 54 Wiring for slow speed external input 53
Fig. 55 Parameter overview 54
Fig. 56 Connection of external control inputs. 54
Fig. 57 The thermal curve 55
Fig. 58 Load monitor alarm functions. 60
Fig. 59 The 2 Jog keys 61
Fig. 60 Option RS232/485 72
Fig. 61 Option Profibus 72
Fig. 62 Shows an example of the External PPU after it has been built in. 72
Fig. 63 Cable kit 72
Fig. 64 The terminal clamp. 73

1.1 Integrated safety systems

The device is fitted with a protection system which reacts to:

- Over temperature.
- Voltage unbalance.
- Over- and under voltage.
- Phase reversal
- Phase loss
- Motor overload protection thermal and PTC.
- Motor load monitor, protecting machine or process max or min alarm
- Starts per hour limitation

The soft starter is fitted with a connection for protective earth $\stackrel{\perp}{=}$ (PE).

MSF soft starters are all enclosed IP 20 , except MSF-1000 and MSF-1400 which are delivered as open chassi IP00.

1.2 Safety measures

These instructions are a constituent part of the device and must be:

- Available to competent personnel at all times.
- Read prior to installation of the device.
- Observed with regard to safery, warnings and information given.

The tasks in these instructions are described so that they can be understood by people rrained in electrical engineering. Such personnel must have appropriate tools and resting instruments available. Such personnel must have been trained in safe working methods.

The safery measures laid down in DIN norm VDE 0100 must be guaranteed.

The user must obtain any general and local operating permits and meet any requirements regarding:

- Safery of personnel.
- Product disposal.
- Environmental protection.

NOTE! The safety measures must remain in force at all times. Should questlons or uncertalnties arise, please contact your local sales outlet.

1.3 Notes to the Instruction Manual

WARNING! Warnings are marked with a warning trlangle.

Serial number

The information given in these instructions only applies to the device with the serial number given on the label on the front page. A plate with the serial number is fixed to the device.

Important

For all enquiries and spare parts orders, please quote the correct name of the device and serial number to ensure that your inquiry or order is dealt with correctly and swiftly.

NOTE! These Instructlons only apply to the soft starters having the serial number glven on the front page, and not for all models.

1.4 How to use the Instruction Manual

This instruction manual tells you how to install and operate the MSF soft starter. Read the whole Instruction Manual before installing and putting the unit into operation. For simple start-up, read chapter 2. page 8 to chapter 3 . page 10.

Once you are familiar with the soft starter, you can operate it from the keyboard by referring to the chapter 13. page 79. This chapter describes all the functions and possible setting.

1.5 Standards

The device is manufactured in accordance with these regulations.

- IEC 947-4-2
- EN 60204-1 Electrical equipment of machines, part 1, General requirements and VDE 0113.
- EN 50081-2, EMC Emission
- EN 50081-1, EMC Emission with bypass
- EN 50082-2, EMC Immunity
- GOST
- UL508

1.6 Tests in accordance with norm EN60204

Before leaving the factory, the device was subjected to the following tests:

- Through connection of earthing system;
a) visual inspection.
b) check that earthing wire is firmly connected.
- Insulation
- Voltage
- Function

1.7 Inspection at delivery

Fig. 1 Scope of delivery.

1.7.1 Transport and packing

The device is packed in a carton or plywood box for delivery. The outer packaging can be returned. The devices are carefully checked and packed before dispatch, but transport damage cannot be ruled out.

Check on receipt:

- Check that the goods are complete as listed on the delivery note, see type no. etc. on the rating plate.

Is the packaging damaged?

- Check the goods for damage (visual check).

If you have cause for complaint

If the goods have been damaged in transport:

- Contact the transport company or the supplier immediately.
- Keep the packaging (for inspection by the transport company or for returning the device).

Packaging for returning the device

- Pack the device so that it is shock-resistant.

Intermediate storage

After delivery or after it has been dismounted, the device can be stored before further use in a dry room.

1.8 Unpacking of MSF-310 and larger types

The soft starter is attached to the plywood box/loading stool by screws, and the soft starter must be unpacked as follows:

1. Open only the securing plates at the bottom of the box (bend downwards). Then lift up the box from the loading stool, both top and sides in one piece.
2. Loosen the three (3 pcs) screws on the front cover of the soft starter, down by the lower logo.
3. Push up the front cover about 20 mm so that the front cover can be removed.
4. Remove the two (2 pcs) mounting screws at the bottom of the soft starter.
5. Lift up the soft starter at the bottom about 10 mm and then push backwards about 20 mm so that the soft starter can be removed from the mounting hooks* at the top. The hooks are placed under the bottom plate and cannot be removed until the soft starter is pulled out.
6. Loosen the screws (2 pcs) for the mounting hooks and remove the hooks.
7. The hooks are used as an upper support for mounting the soft starter.

Fig. 2 Unpacking of MSF-310 and larger models.

2. DESCRIPTION

2.1 General

The MSF is installed directly between the mains and the supply cable to the motor. If a mains contactor is used it can be activated by the integrated K1 relay.

The MSF is developed for soft starting, stopping and braking three-phase motors.

There are 3 different kinds of soft starting control methods:

- Control method 1-Phase

The single phase controlled soft starters provide only a reduction in starting torque no control of current or torque. These starters need a main and bypass contactor as well as external motor protections. This is a open loop voltage controller. These starters are mainly in the power up to 7.5 kW .

- Control method 2-Phase

The two phase starters can start a motor without a mains contactor, but in that case voltage still is present at the motor when it's stopped. These starters are mainly in the power up to 22 kW .

- Control method 3-Phase

In the three phase Soft Starters there are different technologies:

- Voltage control
- Current control
- Torque control

Voltage control

This method is the most used control method. The starter gives a smooth start but doesn't get any feedback on current or torque. The typical settings to optimize a voltage ramp are: Initial voltage, ramp time, dual ramp time.

Fig. 3 Voltage control

Current control

The voltage ramp can be used with a current limit which stops the voltage ramp when the set maximum current level is reached. The maximum current level is the main setting and must be set by the user depending the maximum current allowed for the application.

Fig. 4 Current control

Torque control

Is the most sufficient way of starting motors. Unlike voltage and current based systems the soft starter monitors the torque need and allows to start with the lowest possible current. Using a closed loop torque controller also linear ramps are possible. The voltage ramp can not hold back the motor starting torque this results in a current peak and unlinear ramps. In the current ramp there will be no peak current, but a higher current for a longer period of time during the start compared to torque control. Current starting doesn't give linear ramps. The linear ramps are very important in many applications. For an example, to stop a pump with an unlinear ramp will give water hammer. Soft starters which doesn't monitor the torque, will start and stop to fast if the load is lighter than the setting of current or ramp time.

Fig. 5 Torque control

2.2 MSF control methods

MSF Soft Starters control all three phases supplied to the motor. It manages all the 3 possible starting methods where the closed loop Torque control is the most efficient way of starting and stopping motors.

2.2.1 General features

As mentioned above soft statters offer you several features and the following functions are available:

- Torque controlled start and stop
- Current limit control at start
- Application "Pump"
- External analogue input control
- Torque booster at start
- Full voltage start (D.O.L)
- Dual voltage ramp at start and stop
- Bypass
- Dynamic DC-brake or Softbrake
- Slow speed at start and stop
- Jogging forward and reverse
- Four parameter sets
- Analogue output indicating current, power or voltage
- Viewing of current, voltage, power, torque, power consumption, elapsed time etc.
- Integrated safety system acc. to $\$ 1.1$, page 6 , with an alarm list.

Fig. 6 Standard wiring.
This chapter describes briefly the set-up for basic soft start and soft stop by using the default "Voltage Ramp" function.

WARNINGl Mounting, wring and setting the device Into operation must be carried out by property tralned personnel. Before set-up, make sure that the Instaltation Is according to chapter 6. page 24 and the Checkllst below.

3.1 Checklist

- Mount the soft starter in accordance with chapter 6 . page 24.
- Consider the power loss at rated current when dimensioning a cabinet, max. ambient temperature is $40^{\circ} \mathrm{C}$ (see chapter 12. page 74).
- Connect the motor circuit according to Fig. 6.
- Connect the protective earth.
- Connect the control voltage to terminals 01 and 02 ($100-240 \mathrm{VAC}$ or $380-500 \mathrm{VAC}$).
- Connect relay K1 (PCB terminals 21 and 22) to the contactor - the soft starter then controls the contactor.
- Connect PCB terminals 12 and 13 to, e.g., a 2-way switch (closing non-return) or a PLC, etc., to obtain control of soft start/soft stop. ${ }^{1}$)
- Check that the motor and supply voltage corresponds to values on the soft starter's rating plate.
- Ensure the installation complies with the appropriate local regulations.

1) The menu 006 must be put to 01 for start/stop command from keyboard.

3.2 Main functions/Applications

WARNING! Make sure that all safety measures have been taken before switching on the supply.

Switch on the control voltage (normally $1 \times 230 \mathrm{~V}$), all segments in the display and the two LED's will be illuminated for a few seconds. Then the display will show menu 001. An illuminated display indicates there is supply voltage on the PCB. Check that you have mains voltage on the mains contactor or on the thyristors. The settings are carried out according to following:

The first step in the settings is to set menu 007 and 008 to "ON" to reach the main functions 020-025 and motor data 041-046.

NOTE! The maln function is chosen according to the application. The tables In the applications and functions selection (table 1, page 15), glves the Information to choose the proper maln function.

3.3 Motor Data

Set the data, according to the motor type plate to obtain optimal settings for starting, stopping and motor protection.

NOTE! The default settings are for a standard 4-pole motor acc. to the nominal power of the soft-starter. The soft starter will run even if no specific motor data is selected, but the performance will not be optimal.

NOTE! Now go back to menu 007 and set It to "oFF" and then to menu 001.

3.4 Setting of the start and stop ramps

The menu's 002 and 003 can now be set to adjust the start ramp up time and the stop ramp down time.

Estimate the starting-time for the motor/machine. Set "ramp up time" at start ($1-60 \mathrm{sec}$).
Key "ENTER - " to confirm new value.
Key "NEXT \rightarrow ", "PREV \leftarrow " to change menu.

Set "ramp down time" at stop (2-120 s).
"oFF" if only soft start requires.

3.5 Setting the start command

As default the start command is set for remote operation via terminal 11, 12 and 13. For easy commissioning it is possible to set the start command on the start key on the keyboards. This is set with menu 006.

Menu 006 must be set to 1 to be able to operate from keyboard.

NOTE! Factory default setting is remote control (2).
To start and stop from the keyboard, the "START/ STOP" key is used.

To reset from the keyboard, the "ENTER $\leftarrow /$ RESET" key is used. A reset can be given both when the motor is running and when the motor is stopped. A reset by the keyboard will not start or stop the motor.

3.6 Viewing the motor current

Set the display to menu 005. Now the Motor current can be viewed on the display.

NOTE! The menu 005 can be selected at any time when the motor Is running.

3.7 Starting

WARNING! Make sure that all safety measures have been taken before starting the motor in order to avold personal Injury.

Start the motor by pressing the "START/STOP" key on the keyboard or through the remote control, PCB terminal 11, 12 and 13 . When the start command is given, the mains contactor will be activated by relay K1 (PCB terminal 21 and 22), and the motor then starts softly.

Fig. 7 Example of start ramp with main function voltage ramp.

This chapter is a guide to select the correct soft starter rating and the selection of the Main function and additional functions for each different application.

To make the right choice the following tools are used:

- The norm AC53a.

This norm helps selecting the soft starter rating with regard to duty cycle, starts per hour and maximum starting current.

- The Application Rating List.

With this list the soft starter rating can be selected depending on the kind of application used. The list use 2 levels of the AC53a norm. See table 1, page 15.

- The Application Function List.

This table gives an complete overview of most common applications and duties. For each applications the menu's that can be used are given. See table 2, page 17.

- Function and Combination matrix.

With these tables it is easy to see which combinations of Main and additional functions are possible, see table 3, page 19 and table 4 , page 19.

4.1 Soft starter rating according to AC53a

The IEC947-4-2 standard for electronic starters defines AC53a as a norm for dimensioning of a soft starter.

The MSF soft starter is designed for continuous running. In the Applications table (table 1, page 15) two levels of AC53a are given. This is also given in the technical data tables (see chapter 12. page 74).

Fig. 8 Rating example AC53a.
The above example indicates a current rating of 210 Amps with a start current ratio of $5.0 \times$ FLC (1050A) for 30 seconds with a 50% duty cycle and 10 starts per hour.

NOTEI If more than $\mathbf{1 0}$ starts/hour or other duty cycles are needed, please contact your suppller.

Fig. 9 Duty cycle, non bypass.

4.2 Soft starter rating according to AC53b

This norm is made for Bypass operation. Because the MSF soft starter is designed for continuous operation this norm is not used in the selection tables in this chapter.

Fig. 10 Rating example AC53b.

Fig. 11 Duty cycle, bypassed
The above example indicates a current rating of 210 Amps with a start current ratio of $5.0 \times$ FLC (1050A) for 30 seconds with a 24 -minute period between starts.

4.3 MSF Soft starter ratings

According to the norms AC53a and AC53b a soft starter can have many current ratings.

NOTE! Because the MSF soft starter is designed for continuous operation the norm AC53b is not used in the application rating list.

With help of the Application Rating List with typical starting currents and categories in the AC53a level (see table 1 , page 15 and table 2 , page 17) it is easy to select the proper soft starter rating with the application.

The Application Rating List uses two levels for the AC53a norm:

- AC53a 5.0-30:50-10 (heavy duty)

This level will be able to start all applications and follows directly the type number of the soft starter. Example: MSF 370 is 370 Amps FLC and then 5 time this current in starting.

- AC 53a 3.0-30:50-10 (normal/light duty)

This level is for a bit lighter applications and here the MSF can manage a higher FLC.
Example: MSF 370 in this norm manage 450 Amps FLC and the 3 times this current in starting

NOTE! To compare Soft Starters It's Important to ensure that not only FLC (Full Load Current) is compared but also that the operating parameters are identical.

4.4 The Application Ratings List

Table 1 gives the Application Ratings List. With this list the rating for the soft starter and Main Function menu can be selected.

Description and use of the table:

- Applications.

This column gives the various applications. If the machine or application is not in this list, try to identify a similar machine or application. If in doubt pleas contact your supplier.

- AC53a ratings.

The rating according to AC53a norm is here classified in 2 ratings. The first for normal/light duty (3.0-30:50-10) and the second for heavy duty (5.0-30:50-10)

- Typical Starting current. Gives the typical starting current for each application
- Main Function menu.

The Main Function menu is advised here. " $25 ;=1$ ", means: program selection 1 in menu 25.

- Stop function.

Gives a possible Stop function if applicable.
"36;=1/38-40", means: program selection 1 in menu 36 , also menus 38 to 40 can be selected.

EXAMPLE:

Roller Mill:

- This is an application for heavy duty,
- Typical starting current of 450%.
- Main function Torque ramp start (menu 25) will give the best results.
- Stop function Dynamic Brake (menu 36, selection 1) can be used.
- As well as the Slow Speed at start and stop (menu 38-40) can be used for better start and stop performance.

Table I Applications Rating List

Applications	$\begin{gathered} \text { AC53a } \\ \text { 3.0-30:50-10 } \\ \text { (normal/Ilght) } \end{gathered}$	$\begin{gathered} \text { AC 53a } \\ 5.0-30: 50-10 \\ \text { (heavy) } \end{gathered}$	Typical starting current \%	Main function Menu nr.	Stop function Menu nr.
General \& Water					
Centrifugal Pump	x		300	22	22
Submersible Pump Conveyor	\times		300	22	22
		x	300.400	25;=1	36; $=1 / 38-40$
Conveyor	x		300	25	
Compressor: Screw Compressor, Reciprocating	x		400	25:=1	
F	x		300	25; $=2$	
Mixer Agitator		x	400-450	25;=1	
		x	400	25; $=1$	
Metats \& Mining					
		x	400	25; $=1$	36;=1/38-40
Dust Collector	x		350	25; $=1$	
Grinder	x		300	25;=1	36;=1
Hammer Mill		x	450	25;=1	36;=2
Rock Crusher		x	400	25;=1	
Roller Conveyor	x	x	350	25; $=1$	36; $=1 / 38-40$
Roller Mill		x	450	25; $=1$	$36 ;=1$ or 2
Tumbler		x	400	25; $=1$	
Wire Draw Machine		x	450	25; $=1$	$36:=1$ or 2
Food Processing					
Bottle Washer	x		300	25;=2	
Centrifuge		x	400	25;=1	$36 ;=1$ or 2
Dryer		x	400	25;=2	
Mill		x	450	25;=1	$36:=1$ or 2
Palletiser		x	450	25;=1	
, Separator		x	450	25:=1	$36 ;=1$ or 2
	x		300	25; $=1$	
Pulp and Paper					
Re-Pulper		x	450	25;=1	
Shredder		x	450	25; $=1$	
		x	450	25;=1	
Petrochemical Ball Mill Centrifuge Extruder Screw Conveyor					
		x	450	25; $=1$	
		x	400	25; $=1$	36;=1 or 2
		x	500	25; $=1$	
		x	400	25;=1	
Transport \& Machine Tool	- $x^{\text {a }}$				
Ball Mill		x	450	25; $=1$	
Grinder		x	350	25:=1	36;=1
Materiat Conveyor		x	400	25; $=1$	36; $=1 / 38-40$
Palletiser		x	450	25;=1	
Press		x	350	25;=1	
Roller Mill		x	450	25; $=1$	
Rotary Table		x	400	25:=1	36; $=1 / 38-40$
Trolley		x	450	25:=1	
		x	300-400	25; $=1$	
Lumber \& Wood Products					
Bandsaw		x	450	25; $=1$	36;=1 or 2
Chipper		x	450	25:=1	$36 ;=1$ or 2
Circular Saw		x	350	25; $=1$	$36 ;=1$ or 2
Debarker		x	350	25;=1	$36 ;=1$ or 2
PlanerSander		x	350	25; $=1$	$36 ;=1$ or 2
		x	400	25;=1	$36 ;=1$ or 2

4.5 The Application Functions List

This list gives an overview of many different applications/duties and a possible solution with one of the many MSF functions.

Description and use of the table:

- Application/Duty.

This column gives the various applications and level of duty. If the machine or application is not in this list, try to identify a similar machine or application. If in doubt pleas contact your supplier.

- Problem.

This column describes possible problems that are familiar for this kind of application.

- Solution MSF.

Gives the possible solution for the problem using one the MSF function.

- Menus.

Gives the menu numbers and selection for the MSF function.
"25;=1", means: program selection 1 in menu 25.
" 36 ; $=1 / 34,35$ ", means: program selection 1 in menu 36 , menus 34 and 35 are related to this function.

Table 2 Application Function List

Application/ Duty	Problem	Solution MSF	Menus
PUMP Normal	Too fast start and stops	MSF Pump application with following start/stop features:	22
	Non linear ramps	Linear ramps without tacho.	
	Water hammer	Torque ramps for quadratic load	
	High current and peaks during starts.		
	Pump is going in wrong direction	Phase reversal alarm	88
	Dry running	Shaft power underload	96-99
	High load due to dirt in pump	Shaft power overload	92-95
COMPRESSOR Normal	Mechanical shock for compressor, motor and transmissions	Linear Torque ramp or current limit start.	$\left\lvert\, \begin{aligned} & 25 ;=1 \text { or } \\ & 20,21 \end{aligned}\right.$
	Small fuses and low current available.		
	Screw compressor going in wrong direction	Phase sequence alarm	88
	Damaged compressor if liquid ammonia enters the compressor screw.	Shaft power overload	92-95
	Energy consumption due to compressor is running unloaded	Shaft power underload	96-99
CONVEYOR Normal/Heavy	Mechanical shocks for transmissions and transported goods.	Linear Torque ramp	25;=1
	Filling or unloading conveyors	Slow speed and accurate position control.	37-40,57,58
	Conveyor jammed	Shaft power overload	92-95
	Conveyor belt or chain is off but the motor is still running	Shaft power underload	96-99
	Starting after screw conveyor have stopped due to overload.	Jogging in reverse direction and then starting in forward.	
	Conveyor blocked when starting	Locked rotor function	75
FAN Normal	High starting current in end of ramps	Torque ramp for quadratic need	25: $=2$
	Slivering belts.		
	Fan is going in wrong direction when starting.	Catches the motor and going easy to zero speed and then starting in right direction.	
	Belt or coupling broken	Shaft power underload	96-99
	Blocked filter or closed damper.		
PLANER Heavy	High inertia load with high demands on torque and current control.	Linear Torque ramp gives linear acceleration and lowest possible starting current.	25;=1
	Need to stop quick both by emergency and production efficiency reasons.	Dynamic DC brake without Contactor for medium loads and controlled sensor less soft brake with reversing contactor for heavy loads.	$\begin{aligned} & 36 ;=1,34,35 \\ & 36 ;=2,34,35 \end{aligned}$
	High speed lines	Conveyor speed set from planer shaft power analog output.	54-56
	Worn out tool	Shaft power overload	92-95
	Broken coupling	Shaft power underload	96-99
ROCK CRUSHER Heavy	High enertia	Linear Torque ramp gives linear acceleration and lowest possible starting current.	$25 ;=1$
	Heavy load when starting with material	Torque boost	30,31
	Low power if a diesel powered generator is used.		
	Wrong material in crusher	Shaft power overload	92-95
	Vibrations during stop	Dynamic DC brake without Contactor	36;=1,34,35
BANDSAW Heavy	High inertia load with high demands on torque and current control.	Linear Torque ramp gives linear acceleration and lowest possible starting current.	$25 ;=1$
	Need to stop quick both by emergency and production efficiency reasons.	Dynamic DC brake without Contactor for medium loads and controlled sensor less soft brake with reversing contactor for heavy loads.	$\begin{aligned} & 36 ;=1,34,35 \\ & 36 ;=2,34,35 \end{aligned}$
	High speed lines	Conveyor speed set from band saw shaft power analog output.	54-56
	Worn out saw blade	Shaft power overload	
	Broken coupling, saw blade or belt	Shaft power underload	
CENTRIFUGE Heavy	High inertia load	Linear Torque ramp gives linear acceleration and lowest possible starting current.	25; $=1$
	To high load or unbalanced centrifuge	Shaft power overload	
	Controlled stop	Dynamic DC brake without Contactor for medium loads and controlied sensor less soft brake with reversing contactor for heavy loads.	$\begin{aligned} & 36 ;=1,34,35 \\ & 36 ;=2,34,35 \end{aligned}$
	Need to open centrifuge in a certain position.	Braking down to slow speed and then positioning control.	37-40,57,58

Table 2 Application Function List

Application/ Duty	Problem	Solution MSF	Menus
MIXER Heavy	Different materials	Linear Torque ramp gives linear acceleration and lowest possible starting current.	25;=1
	Need to control material viscosity	Shaft power analog output	54-56
	Broken or damaged blades	Shaft power overload	92-95
		Shaft power underioad	96-99
HAMMER MILL Heavy	Heavy load with high breakaway torque	Linear Torque ramp gives linear acceleration and lowest possible starting current.	25;=1
		Torque boost in beginning of ramp.	30,31
	Jamming	Shaft power overload	92-95
	Fast stop	Controlled sensor less soft brake with reversing contactor for heavy loads.	$36 ;=2,34,35$
	Motor blocked	Locked rotor function	75

EXAMPLE:

Hammer Mill:

- This is an application for heavy duty,
- Main function Torque ramp start (menu 25) will give the best results.
- Torque boost to overcome high breakaway torque (menu 30 and 31)
- Overload alarm function for jamming protection (menu 92 and 95)
- Stop function Soft Brake (menu 36, selection 2) can be used. Menu 34 and 35 to set the brake time and strength.

4.6 Function and combination matrix

Table 3 gives an overview of all possible functions and combination of functions.

1. Select function in the horizontal "Main Function" column. Only one function can be selected in this column, at a time.
2. In the vertical column "Additional Functions" you will find all possible function that can be used together with your selected main function.

Table 3 Combination matrix

		$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { in } \\ & \stackrel{0}{E} \\ & \stackrel{0}{0} \\ & \frac{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{\sim} \\ & \underset{\sim}{0} \\ & \underset{\sim}{n} \\ & \tilde{0} \\ & \underset{\sim}{2} \end{aligned}$									
Volt age ramp start/stop (default).	X	X	X	X	X	X	X	X	X	X	X	
Torque control start/stop (menu 025)			x	X	X	X	X	X	X	X	x	
Voltage ramp with current limit (menu 020)		X	X	X	X	X	X	X	x	X	X	x
Current limit start (menu 021)		X	X	X	X	X	X	X	X	X	X	X
Pump control (menu 022)			x						X	X		
Analog input (menu 023)									X	X		
Direct on line start (menu 024)			X						X	X		

By using one parameter set, the following start/stop table is given.

NOTE! Voltage and torque ramp for starting only with softbrake.

Table 4 Starl/stop combination.

START FUNCTION							$\begin{aligned} & 0 \\ & 0 \\ & \frac{1}{0} \\ & 0 \\ & 0 \\ & \hline \mathbf{4} \\ & 0 \\ & 0 \end{aligned}$
Voltage ramp start	X				X	X	x
Torque control start		X			X	X	x
Current limit start	X				X	X	x
Voltage ramp with current limit	X				X	X	X
Pump control			X		X		
Analog input				X	X		
Direct on line start					X		

By using different parameter sets for start and stop, it is possible to combine all start and stop functions.

4.7 Special condition

4.7.1 Small motor or low load

The minimum load current for the soft starter is 10% of the rated current of the soft starter. Except for the MSE-017 there the min. current is 2 A . Example MSE-210, rated current $=210 \mathrm{~A}$. Min. Current 21 A . Please note that this is "min. load current" and not min. rated motor current.

4.7.2 Ambient temperature below $0^{\circ} \mathrm{C}$

For ambient temperatures below $0^{\circ} \mathrm{C}$ e.g. an electrical heater must be installed in the cabinet. The soft starter can also be mounted in some other place, due to that the distance between the motor and the soft starter is not critical.

4.7.3 Phase compensation capacitor

If a phase compensation capacitor is to be used, it must be connected at the inlet of the soft starter, not between the motor and the soft starter.

4.7.4 Pole-changing contactor and two speed motor

The switching device must be connected between the output of the soft starter and the motor.

4.7.5 Shielded motor cable

It is not necessary to use shielded wires together with soft starters. This is due to the very low radiated enmissions.

NOTE! The soft starter should be wired with shlelded control cable to fulfill EMC regulations acc. to $\$ 1.5$, page 6.

4.7.6 Slip ring motors

Slip ring motors can not be used together with the soft starter. Unless the motor is rewinded (as a squirrel cage motor). Or keep the resistors in, please contact your supplier.

4.7.7 Pump control with soft starter and frequency inverter together

It is possible e.g. in a pump station with two or more pumps to use one frequency inverter on one pump and soft starters on each of the other pumps. The flow of the pumps can then be controlled by one common control unit.

4.7.8 Starting with counter clockwise rotating loads

It is possible to start a motor clockwise, even if the load and motor is rotating counter clockwise e.g. fans. Depending on the speed and the load "in the wrong direction" the current can be very high.

4.7.9 Running motors in parallel

When starting and running motors in parallel the total amount of the motor current nust be equal or lower than the connected soft starter. Please note that it is not possible to make individual settings for each motor. The start ramp can only be set for an average starting ramp for all the connected motors. This applies that the start time may differ from motor to motor. This is also even if the motors are mechanically linked, depending on the load etc.

4.7.10 How to calculate heat dissipation in cabinets

See chapter 12. page 74 "Technical Data", "Power loss at rated motor load $\left(\mathrm{I}_{\mathrm{N}}\right)$ ", "Power consumption control card" and "Power consumption fan". For further calculations please contact your local supplier of cabinets, e.g. Rittal.

4.7.11 Insulation test on motor

When testing the motor with high voltage e.g. insulation test the soft starter must be disconnected from the motor. This is due to the fact that the thyristors will be seriously damage by the high peak voltage.

4.7.12 Operation above 1000 m

All ratings are stated at 1000 m over sea level.
If a MSF is placed for example at 3000 m it must be derated unless that the ambient temperature is lower than 40 C and compensate for this higher pressure.

To get information about motors and drives at higher altitudes please contact your supplier to get technical information nr 151.

4.7.13 Reversing

Motor reversing is always possible. See Fig. 31 on page 34 for the advised connection of the reverse contactors.

At the moment that the mains voltage is switched on, the phase sequence is monitored by the control board. This information is used for the Phase Reverse Alarm (menu 88 , see $\S 7.22$, page 56).

However if this alarm is not used (factory default), it is also possible to have the phase reversal contactors in the input of the soft starter.

5. OPERATION OF THE SOFT STARTER

Fig. 12 MSF soft starter models.

5.1 General description of user interface

WARNING! Never operate the soft starter with removed front cover.

To obtain the required operation, a number of parameters must be set in the soft starter.

Setting/configuration is done either from the builtin keyboard or by a computer/control system through the serial interface or bus (option). Controlling the motor i.e. start/stop, selection of parameter set, is done either from the keyboard, through the remote control inputs or through the serial interface (option).

Setting

WARNING! Make sure that all safety measures have been taken before switching on the supply.

Switch on the supply (normally 1×230 V), all segments in the display will light up for a few seconds. Then the display will show menu 001. An illuminated display indicates there is supply voltage on the PCB.

Check that you have voltage on the mains contactor or on the thyristors. To be able to use all extended functions and optimize of the performance, program the motor data.

5.2 PPU unit

Fig. 13 PPU unit.
The programming and presentation unit (PPU) is a build-in operator panel with two light emitting diodes, three + four seven-segment LED-displays and a keyboard.

5.3 LED display

The two light emitting diodes indicates start/stop and running motor/machine. When a start command is given either from the PPU, through the serial interface (option) or through the remote control inputs, the start/stop-LED will be illuminated.

At a stop conmand the start/stop-LED will switch off. When the motor is running, the running-LED is flashing during ramp up and down and is illuminated continuously at full motor voltage.

5.4 The Menu Structure

The menus are organised in a simple one level structure with the possibility to limit the number of menus that are reachable by setting the value in menu 007 to "oFF" (factory setting). With this setting only the basic menus $001,002,003,004,005,006$ and 007 can be reached.

This to simplify the setting when only voltage start/ stop ramps are used.

If menu 007 is in "on" and menu 008 "ofF" it is possible to reach all viewing menus and alarm hists as well.

Fig. 14 LED indication at different operation situation.

Fig. 15 Mernu structure.

5.5 The keys

The function of the keyboard are based on a few simple rules. At power up menu 001 is shown automatically. Use the "NEXT \rightarrow " and "PREV \leftarrow "keys to move between menus. To scroll through menu numbers, press and hold either the "NEXT \rightarrow " or the "PREV $\leftarrow "$ key. The "+" and "-" keys are used to increase respectively decrease the value of setting. The value is flashing during setting. The "ENTER \leftarrow " key confirms the setting just made, and the value will go from flashing to stable. The "START/STOP" key is only used to start and stop the motor/machine. The Ω and Θ keys are only used for JOG from the keyboard. Please note one has to select enable in menu 103 or 104 , see $\S 7.25$, page 61 .

Table 5 The keys

Start/stop motor operation.	START
STOP	
Display previous menu.	PREV
Display next menu.	
Decrease value of setting.	
Increase value of setting.	
Confirm setting just made.	
Alarm reset.	
JOG Reverse	
JOG Forward	

Table 6 Control modes

6. INSTALLATION AND CONNECTION

Mounting, wiring and setting the device into operation must be carried out by trained personnel (electricians specialised in heavy current technology):

- In accordance with the local safety regulations of the electricity supply company.
- In accordance with DIN VDE 0100 for setting up heavy current plants.
Care must be taken to ensure that personnel do not come into contact with live circuit components.

WARNING! Never operate the soft starter with removed front cover.

6.1 Installation of the soft starter in a cabinet

When installing the soft starter:

- Ensure that the cabinet will be sufficiently ventilated, after the installation.
- Keep the minimum free space, see the tables on page 25.
- Ensure that air can flow freely from the bottom to the top.

NOTE! When Instaling the soft starter, make sure it does not come into contact with live components. The heat generated must be dispersed via the cooling fins to prevent damage to the thyristors (free circulation of alr).

MSF-017 to MSF-835 soft starters are all delivered as enclosed versions with front opening. The units have bottom entry for cables etc. see Fig. 25 on page 29 and Fig. 27 on page 31. MSF-1000 and MSF-1400 are delivered as open chassis.

NOTE! The soft starter should be wired with shielded control cable to fulfill EMC regulations acc. to $\S 1.5$, page 6.

NOTE! For UL-approval use $75^{\circ} \mathrm{C}$ Copper wire only.
MSF-017 to MSF-250

Fig. 16 MSF-017 to MSF-250 dimensions.

Fig. 17 Hole pattern for MSF-017 to MSF-250 (backside view).

Fig. 18 Hole pattern for MSF-170 to MSF-250 with upper mounting bracket instead of DIN-rail.

MSF-017 to MSF-250

Table 7 MSF-017 to MSF-250.

MSF model	Class	Connection	Conv./ Fan	Dimension HxWxD (mm)	Hole dist. w1 (mm)	Hole dist. h1 (mm)	Diam./ screw	Weight (kg)
-017, -030	IP 20	Busbars	Convection	$320 \times 126 \times 260$	78.5	265	5.5/M5	6.7
$\begin{aligned} & -045,-060, \\ & -075,-085 \end{aligned}$	IP 20	Busbars	Fan	$320 \times 126 \times 260$	78.5	265	5.5/M5	6.9
-110, -145	IP 20	Busbars	Fan	$400 \times 176 \times 260$	128.5	345	5.5/M5	12.0
-170, -210, -250	IP 20	Busbars	Fan	$500 \times 260 \times 260$	208.5	445	5.5/M5	20

Table 8 MSF-017 to MSF-250

MSF model	Minimum free space (mm):			Dimension Connection busbars Cu	Tightening torque for bolt (Nm)		
	above 1)	below	at side		Cable	PE-cable	Supply and PE
-017, -030, -045	100	100	0	15x4 (M6), PE (M6)	8	8	0.6
-060, -075, -085	100	100	0	15×4 (M8), PE (M6)	12	8	0.6
-110,-145	100	100	0	20×4 (M10), PE (M8)	20	12	0.6
-170, -210, -250	100	100	0	30×4 (M10), PE (M8)	20	12	0.6
1) Above: wall-soft starter or soft starter-soft starter							

MSF-310 to MSF-1400

Table 9 MSF-310 to MSF-1400 see Fig. 20 on page 26.

MSF model	Class	Connection	Conv./ Fan	Dimension HxWxD (mm)	Hole dist. w1 (mm)	Hole dist. h1 (mm)	Diam./ screw	Weight (kg)
-310	IP 20	Busbars	Fan	$532 \times 547 \times 278$	460	450	$8.5 / \mathrm{M} 8$	42
$-370,-450$	IP 20	Busbars	Fan	$532 \times 547 \times 278$	460	450	$8.5 / \mathrm{M} 8$	46
-570	IP 20	Busbars	Fan	$687 \times 640 \times 302$	550	600	$8.5 / \mathrm{M} 8$	64
-710	IP 20	Busbars	Fan	$687 \times 640 \times 302$	550	600	$8.5 / \mathrm{M} 8$	78
-835	IP 20	Busbars	Fan	$687 \times 640 \times 302$	550	600	$8.5 / \mathrm{M} 8$	80
$-1000,-1400$	IP00	Busbar	Fan	$900 \times 875 \times 336$		Fig. 23	$8.5 / \mathrm{M} 8$	175

Table 10 MSF-310 to MSF-1400.

MSF model	Minimum free space (mm):			Dimension Connection, busbars AI	Tightening torque for bolt (Nm)		
	above 1)	below	at side		Cable	PE-cable	Supply and PE
-310, -370, -450	100	100	0	40x8 (M12)	50	12	0.6
-570, -710, -835	100	100	0	40×10 (M12)	50	12	0.6
-1000, -1400	100	100	100	75×10 (M12)	50	12	0.6

Fig. 19 MSF - 310 to MSF - 835.

Fig. 21 Busbar distances MSF - 310 to MSF - 835.

Table 11 Busbar distances

MSF model	Dist. h1 (mm)	Dist. w1 (mm)	Dist. w2 (mm)	Dist. w3 (mm)
-310 to -450	104	33	206	379
-570 to -835	129	35	239.5	444
$-1000-1400$		55	322.5	590.5

Fig. 20 Hole pattern for screw attachntent, MSF-310 to . MSF-835. Hole distance (mm).

Fig. 22 MSF-1000 to - 1400

Fig. 23 Hole pattern busbar MSF-1000 to - 1400.

6.2 Connections

Fig. 24 Connection of MSF-017 to MSF-085.

Connection of MSF-017 to MSF-085

Device connections

1. Protective earth, $\underset{\bar{x}}{\perp}$ (PE), Mains supply, Motor (on the right and left inside of the cabinet)
2. Protective earth, $\stackrel{\perp}{=}(\mathrm{PE})$, Control voltage
3. Control voltage connection 01, 02
4. Mains supply L1, L2, L3
5. Motor power supply T1, T2, T3
6. Current transformers (possible to mount outside for bypass see $\int 7.12$, page 43)
7. Mounting of EMC gland for control cables

Fig. 25 Connection of MSF-110 to MSF-145.

Connection of MSF-110 to MSF-145

Device connections

1. Protective earth, $\stackrel{\perp}{=}$ (PE), Mains supply, Motor (on the left inside of the cabinet)
2. Protective earth $\stackrel{\perp}{=}$ (PE), Control voltage
3. Control voltage connection $\mathbf{0 1}, 02$
4. Mains supply L1, L2, L3
5. Motor power supply T1, T2, T3
6. Current transformers (possible to mount outside for bypass see $\S 7.12$, page 43)
7. Mounting of EMC gland for control cables

Fig. 26 Connection of MSF-170 to MSF-250

Connection of MSF-170 to MSF-250

Device connections

1. Protective earth, $\stackrel{\perp}{\perp}(\mathrm{PE})$, Mains supply, Motor (on the left inside of the cabinet)
2. Protective earth $\stackrel{\perp}{\perp}$ (PE), Control voltage
3. Control voltage connection 01,02
4. Mains supply L1, L2, L3
5. Motor power supply T1, T2, T3
6. Current transformers (possible to mount outside for bypass see $₫ 7.12$, page 43)
7. Mounting of EMC gland for control cables

Fig. 27 Connection of MSF-170 to MSF-1400.

Connection of MSF-310 to MSF-1400

Device connections

1. Protective earth, $\stackrel{\perp}{=}$ (PE), Mains supply and

Motor
2. Protective earth, $\underset{=}{\perp}$ (PE), Control voltage
3. Control voltage connection 01,02
4. Mains supply L1, L2, L3
5. Motor power supply T1, T2, T3
6. Current transformers (possible to mount outside for bypass see $\S 7.12$, page 43)
7. Mounting of EMC gland for control cables

6.3 Connection and setting on the PCB control card

Fig. 28 Connections on the $P C B$, control card.
Table 12 PCB Terminals

Terminal	Function	Electrical characteristics
01	Supply voltage	$100-240$ VAC $\pm 10 \% / 380-500$ VAC $\pm 10 \%$
02		
PE	Gnd	$\stackrel{1}{\underline{1}}$
11	Digital inputs for start/stop and reset.	$0-3 \mathrm{~V}$-> $0 ; 8-27 \mathrm{~V} \rightarrow 1$. Max. 37 V for 10 sec . Impedance to $0 \mathrm{VDC}: 2.2 \mathrm{k} \Omega$.
12		
13	Supply/control voltage to PCB terminal 11 and 12, $10 \mathrm{k} \Omega$ potentiometer, etc.	+12 VDC $\pm 5 \%$. Max. current from +12 VDC: 50 mA . Short circuit proof.
14	Remote analogue input control, $0-10 \mathrm{~V}$, $2-10 \mathrm{~V}, 0-20 \mathrm{~mA}$ and 4.20 mA /digital input.	Impedance to terminal 15 (0 VDC) voltage signal: $125 \mathrm{k} \Omega$, current signal: 100Ω.
15	GND (common)	0 VDC
16	Digital inputs for selection of parameter set.	0.3 V -> 0; 8-27 V-> 1. Max. 37 V for 10 sec . Impedance to 0 VDC: $2.2 \mathrm{k} \Omega$.
17		
18	Supply/control voltage to PCB terminal 16 and 17, $10 \mathrm{k} \Omega$ potentiometer, etc.	+12 VDC $\pm 5 \%$. Max. current from $+12 \mathrm{VDC}=50 \mathrm{~mA}$. Short circuit proof.
19	Remote analogue output control	Analogue Output contact: 0-10V, 2-10V; min load impedance 700Ω $0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$; max load impedance 750Ω
21	Programmable relay K1. Factory setting is "Operation" indication by closing terminal 21-22.	1-pole closing contact, 250 VAC 8 A or 24 VDC 8 A resistive, $250 \mathrm{VAC}, 3 \mathrm{~A}$ inductive.
22		
23	Programmable relay K2. Factory setting is "Full voltage" indication by closing terminal 23-24.	1-pole closing contact, 250 VAC 8 A or 24 VDC 8A resistive, 250 VAC, 3 A inductive.
24		
31	Alarm relay K3, closed to 33 at alarm.	1-pole change over contact, 250 VAC 8 A or 24 VDC 8 A resistive, $250 \mathrm{VAC}, 3 \mathrm{~A}$ inductive.
32	Alarm relay K3, opened at alarm.	
33	Alarm relay K3, common terminal.	
69-70	PTC Thermistor input	Alarm level $2.4 \mathrm{k} \Omega$ Switch back level $2.2 \mathrm{k} \Omega$
71-72*	Clickson thermistor	Controlling soft starter cooling fine temperature MSF-310-MSF-1400
73-74*	NTC thermistor	Temperature measuring of soft starter cooling fine
75	Current transformer input, cable S1 (blue)	Connection of L1 or T1 phase current transformer
76	Current transformer input, cable S1 (blue)	Connection of L3, T3 phase (MSF 017-MSF 250) or L2, T2 phase (MSF 310 - MSF 1400)
77	Current transformer input, cable S2 (brown)	Common connection for terminal 75 and 76
78*	Fan connection	24 VDC
79*	Fan connection	0 VDC

*Internal connection, no customer use.

6.4 Minimum wiring

Fig. 29 Wiring circuit, "Minimum wiring".
The figure above shows the "minimum wiring". See $\$ 6.1$, page 24 , for tightening torque for bolts etc.

1. Connect Protective Earth (PE) to earth screw marked $\stackrel{\perp}{=}$ (PE).
2. Connect the soft starter between the 3 -phase mains supply and the motor. On the soft starter the mains side is marked L1, L2 and L3 and the motor side with T1, T2 and T3.
3. Connect the control voltage ($100-240 \mathrm{VAC}$) for the control card at terminal 01 and 02 .
4. Connect relay K1 (terminals 21 and 22) to the control circuit.
5. Connect PCB terminal 12 and 13 (PCB terminal 11-12 must be linked) to, e.g. a 2 -position switch (on/oFF) or a PLC, etc., to obtain control of soft start/stop. (For start/stop command from keyboard menu 006 must be set to 01).
6. Ensure the installation complies with the appropriate local regulations.

NOTE! The soft starter should be wired with shielded control cable to fulfill EMC regulations acc. to § 1.5, page 6.

NOTE! If local regulations say that a mains contactor should be used, the K1 then controls It. Always use standard commerclal, slow blow fuses, e.g. type gl, gG to protect the wiring and prevent short circulting. To protect the thyilstors agalnst shortcircult currents, superfast semiconductor fuses can be used if preferred. The normal guarantee is valid even if superfast semiconductor fuses are not used. All slgnal Inputs and outputs are galvanically insulated from the malns supply.

6.5 Wiring examples

Fig. 30 gives an wiring example with the following functions.

- Analogue input control, see $\S 7.7$, page 40
- Parameter set selection, see $\S 7.20$, page 54
- Analogue output, see $\S 7.18$, page 52
- PTC input, see $\S 7.21$, page 55

For more information see $\S 6.3$, page 32 .

Fig. 30 Analogue input control, parameter set, analogue output and PTC input.

Fig. 31 Forward/reverse wiring circuit.

7. FUNCTIONAL DESCRIPTION SET-UP MENU

This chapter describes all the parameters and functions in numerical order as they appear in the MSF Table 13 gives an overview of the menus, see also Chapter 13. page 79 (set-up menu list).

Table 13 Sct-нр Memu overvicu

	Menu number	Parameter group		Menu numbers	See §
Basic functions	001-008	Basic	Ramp up/down parameters	001-005	7.1
			Start/Stop/Reset command	006	7.2
			Menu Expansion	007-008	7.3
Extended functions	011-199	Voltage control dual ramp		011-014	7.4
		Torque control parameters		016-018	7.5
		Main functions		020-025	7.6-7.10
		Additional functions		030-036	7.11-7.14
		Slow speed and Jog functions		$\begin{aligned} & \text { 037-040, 57-58, } \\ & 103-104 \end{aligned}$	$\begin{aligned} & 7.15,7.19 \\ & 7.25 \end{aligned}$
		Motor Data Setting		041-046	7.16
		Outputs	Relays	051-052	7.17
			Analogue output	054-056	7.18
		Parameter set selection		057-058	7.19
				061	7.20
			Motor protection	071-075	7.21
			Main protection	081-088	7.22
			Application protection	089-099	7.23
			Resume alarms	101, 102	7.24
		Auto retur	enu	105	7.26
		Factory		199	7.28
View functions	201-915	Main view		201-208	7.29
		RMS current per phase		211-213	7.29
		RMS voltage per phase		214-216	7.29
		Keyboard lock status		221	7.30
		Alarm list		901-915	7.31

7.1 Ramp up/down parameters

Fig. 32 Menu numbers for start/stop ramps, initial voltage at start and step down voltage at stop.

Determine the starting time for the motor/machine. When setting the ramp times for starting and stopping, initial voltage at start and step down voltage at stop, proceed as follow:

Set the initial voltage. Normally the factory setting, 30% of U_{n}, is a suitable choice.

7.1.1 RMS current [005]

NOTE! This is the same read-out as tunction 201, see § 7.28, page 63.

| | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | | Setting of step down voltage |
| :--- |
| stop ramp 1 |$|$| Default: | 100% |
| :--- | :--- |
| Range: | $100-40 \%$ of U_{n} |
| Step down voltage at stop can be used to stop
 smoothly. | |

7.2 Start/stop/reset command

Start/stop of the motor and reset of alarm is done either from the keyboard, through the remote control inputs or through the serial interface (option). The remote control inputs start/stop/reset (PCB terminals 11,12 and 13) can be connected for 2 -wire or 3 -wire control.

$0.6{ }^{\circ}$	
	2
Default:	2
Range:	1,2,3
1	START/STOP/RESET command via the keyboard. - Press the "START/STOP" key on the keyboard to start and stop the soft starter. - Press "ENTER/RESET" key to reset a trip condition.
2	Via Remote control. START/STOP/ RESET commands. The following control methods are possible: - 2 -wire start/stop with automatic reset, see §7.2.1, page 37 . - 2-wire start/stop with separate reset, see §7.2.2, page 37. 3-wire start/stop with automatic reset at start, see § 7.2.3, page 37. WARNING! The motor will start if terminals 11, 12, 13 Is in start position.
3	START/STOP/RESET commands via serial interface option. Read the operating instruction supplied with this option.

NOTE! A reset via the keyboard will not start or stop the motor.

NOTE! Factory default setting is 2, remote control.
To start and stop from the keyboard, the "START/ STOP" key is used.

To reset from the keyboard, the "ENTER $\longleftarrow /$ RESET" key is used. A reset can be given both when the motor is running and when the motor is stopped. A reset from the keyboard will not start or stop the motor.

7.2.1 2-wire start/stop with automatic reset at start

Closing PCB terminals 12 and 13 , and a jumper between terminal 11 and 12 , will give a start command. Opening the terminals will give a stop. If PCB terminals 12 and 13 is closed at power up a start command is given (automatic start at power up). When a start command is given there will automatically be a reset.

7.2.2 2-wire start/stop with separate reset

Closing PCB terminals 11,12 and 13 will give a start and opening the terminals 12 and 13 will give a stop. If PCB terminals 12 and 13 are closed at power up a start command is given (automatic start at power up). When PCB terminals 11 and 13 are opened and closed again a reset is given. A reset can be given both when the motor is running and stopped and doesn't affect the start/stop.

7.2.3 3-wire start/stop with automatic reset at start.

PCB terminal 12 and 13 are normally closed and PCB terminal 11 and 13 are normally open. A start command is given by momentarily closing PCB terminal 11 and 13. To stop, PCB terminal 12 and 13 are momentarily opened.

When a start command is given there will automatically be a reset. There will not be an automatic start at power up.

7.3 Menu expansion setting.

In order to use the viewing menus and/or the extended functions menu 007 must be set to "On", then one reach read out of the viewing menus 201915. To be able to set any extended functions in the menus 011-199 menu 008 must be set to "on" as well.

$008{ }_{0}^{\circ}$			Selecting of extended functions
0	F	F	
Default:		ofF	
Range:		ofF, on	
OFF		Only view function 201-915 are visi ble.	
on		All the function menus are visible	

NOTE! Menu 007 must be "on".

7.4 Voltage control dual ramp

To achieve even smoother ramps at start and or stop, a dual ramp can be used.

Fig. 33 Menu numbers for dual voltage ramp at start/stop, initial voltage at start and step down-voltage at stop.

The settings are carried out by beginning with the settings in menus 001-004 and 007-008 and proceed with the following steps:

0 1 2\quad Setting of start ramp 2			
	\mathbf{O}	F	F
Default:	ofF		
Range:	oFF, 1-60 sec		
oFF	Start ramp 2 disabled		
$\mathbf{1 - 6 0}$	Set the start ramp 2 time. A dual voltage ramp is active.		

7.5 Torque control parameters

See also $\S 7.10$, page 42 and chapter 4 . page 13 for more information on the Torque control setting.

7.6 Current limit (Main Function)

The Current Limit function is used to limit the current drawn when starting ($150-500 \%$ of In). This means that current limit is only achieved during set start-up time.

Two kinds of current limit starts are available.

- Voltage ramp with a limited current.

If current is below set current limit, this start will act exactly as a voltage ramp start.

- Current limit start.

The soft starter will control the current up to set current linit immediately at start, and keep it there until the start is completed or the set start-up time expires.
See Fig. 34 Current limit.
NOTE! Make sure that nominal motor current in menu 042 is correctly Inserted.

7.6.1 Voltage ramp with current limit

The setrings are carried out in three steps:

1. Estimate starting-time for the motor/machine and select that time in menu 002 (see $\$ 7.1$, page 36).
2. Estimate the initial voltage and select this voltage in menu 001 (see $\$ 7.1$, page 36).
3. Set the current limit to a suitable value e.g. 300% of In in menu 020.

NOTE! Only possible when Voltage Ramp mode is enabled. Menus 021-025 must be "oFF".

Fig. 34 Current limit

7.6.2 Current limit

The settings are carried out in two steps:

1. Estimate starting time for the motor/machine and select that time in menu 002 (see $\S 7.1$, page 36).
2. Set the current limit to a suitable value e.g. 300% of In in menu 021.

0	2	1
	0	0
	Current limit at start	
Default:	oFF	
Range:	oFF, 150 - 500\% In	
ofF	Current limit mode disabled. Voltage Ramp enabled.	
$\mathbf{1 5 0 - 5 0 0}$	Current limit level in current limit mode.	

NOTE! Only possible when Voltage Ramp mode Is enabled. Menus 020, 022-025 must be "oFF".

NOTE! Even though the current Ilmit can be set as low as 150\% of the nominal motor current value, this minimum value cannot be used generally. Considerations must be given to the starting torque and the motor before setting the approprlate current limit. "Real start time" can be longer or shorter than the set values depending on the load conditions. This applies to both current limit methods.

Fig. 35 Current limit
If the starting time is exceeded and the soft starter is still operating at current level, an alarm will be activated. It is possible to let the soft starter to either stop operation or to continue. Note that the current will rise uncontrolled if the operation continues (see $\mathbb{}$ 7.24.2, page 61).

7.7 Pump control (Main Function)

By choosing pump control you will automatically get a stop ramp set to 15 sec . The optimising parameters for this main function are start and stop time; initial torque at start and end torque at start and stop. End torque at stop is used to let go of the pump when it's no longer producing pressure/flow, which can vary on different pumps. See Fig. 36.

Fig. 36 Purnp control

Pump application

The pump application is using Torque ramps for quadratic load. This gives lowest possible current and linear start and stop ramps. Related menus are 2, 4 (see $\S 7.1$, page 36), 16,17 and 18 (see $\S 7.5$, page 39).

NOTE! Only possible when Voltage Ramp mode is enabled. Menu 020-021, 023-025 must be "oFF".

7.8 Analogue Input Control (Main Function)

Soft starting and soft stopping can also be controlled via the Analogue Input Control ($0-10 \mathrm{~V}, 2-10 \mathrm{~V}, 0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$). This control makes it possible to connect optional ramp generators or regulators.

After the start command, the motor voltage is controlled through the remote analogue input.

WARNING! The remote analogue control may not be used for continuous speed regulation of standard motors. With thls type of operation the increase In the temperature of the motor must be taken Into consideration.

To install the analogue input control, proceed by:

1. Connect the ramp generator or regulator to terminal $14(+)$ and $15(-)$.

Fig. 37. Wiring for analogue input.
2. Set Jumper J1 on the PCB control card to voltage (U) or current control (I) signal position, see Fig. 38 and Fig. 24 on page 28. Factory setting is voltage (U).

Fig. 38 Setting voltage or current for analogue input.

NOTE! Only possible when Voltage Ramp mode is enabled. Menu 020-022, 024, 025 must be "ofF"

7.9 Full voltage start, D.O.L. (Main Function)

The motor can be accelerated as if it was connected directly to the mains. For this rype of operation:

Check whether the motor can accelerate the required load (D.O.L.-start, Direct On Line start). This function can be used even with shorted thyristors.

NOTE! Only possible when Voltage Ramp mode is enabled. Menu 020-023, 025 must be "ofF".

Fig. 39 Full voltage start.

7.10 Torque control (Main function)

This main function can be used to make a start according to a pre-defined torque reference curve. Two different load characteristics, linear and square, are possible to select.

At start/stop the torque controller will follow the selected characteristic.

A torque start/stop behaviour can be seen in Fig. 40.

A perfect start and stop with torque ramps have a good linearity of current. To optimise this, use the setting of initial torque (menu 16) and end torque (menu 18). See also $\$ 7.5$, page 39 .

Example:

Default for initial torque is 10% so if starting a more heavy load this will result in a small current peak in beginning of ramp. By increasing this value to 30/ 70% the current peak will not appear.

The end torque is increased mainly if the application has a high inertial load, like planers, saws and centrifuges. A current peak will appear in the end of ramp because the load is pushing the speed more or less by itself. By increasing this level to 150-250\% the current will be linear and low.

NOTE! Torque control mode is only posslble when Voltage Ramp mode is enabled (menu 020-024 are "oFF").

Fig. 40 Torque control at start/stop.

Fig. 41 Current and speed in torque control.

7.11 Torque boost

The Torque Booster enables a high torque to be obtained by providing a high current during $0.1-2 \mathrm{sec}$ at start. This enables a soft start of the motor even if the break away torque is high at start. For example in crushing mills applications etc.

When the torque booster function has finished, starting continues according to the selected start mode.

Fig. 42 The principle of the Torque Booster when starting the motor in voltage ramp mode.

See $\S 4.6$, page 19 , which main function that can be used with the torque boost.

NOTE! Check whether the motor can accelerate the load with "Torque booster", without any harmfut mechanical stress.

7.12 Bypass

In cases of high ambient temperatures or other reason it may sometimes be necessary to use a by-pass contactor to minimize the power loss at nominal speed (see Technical Data). By using the built-in Full Voltage Relay function an external contactor can be used to Bypass the soft starter when operating at nominal speed.

Bypass contactor can also be used if soft stop is required. Normally a Bypass contactor is not necessary as the device is designed for continues running conditions, see Fig. 29 on page 33 for wiring example.

NOTE! If one like to use the alarm functions, the extended functions or the viewing functions the 2-pcs current transformers must be mounted outside the soft start as shown In Flg. 44 and Fig. 45 on page 45. For this purpose an optional extension cable for the current transformers is available. Code No 01-2020-00.

$0 \mid 32$			Setting of Bypass
0	F	F	
Default:		OFF	
Range:		oFF, on	
oFF		Bypass disabled	
on		Byp Pro func tac	s enabled. am either relay K1 or on 2 to control the , see menu $51 / 52$.

今
CAUTION! If the current transformers are not mounted as in Fig. 43 on page 44 and $\S 6.2$, page 28, the alarm and viewing functions will not work. Do not forget to set menu 032 to $\mathbf{O N}$, otherwise there will be an F12 alarm and at the stop command will be a freewheelling stop.

For further information see chapter 6.2 page 28 .

Fig. 43 Bypass wiring example MSF 310-1400.

Fig. 44 Curremt transformer position when Bypass MSF-017 to MSF-250.

Fig. 45 Current transformer position when Bypass MSF-310 to MSF-1400.

7.13 Power Factor Control

During operation, the soft starter continuously monitors the load on the motor. Particularly when idling or when only partially loaded, it is sometimes desirable to improve the power factor. If Power factor control (PFC) is selected, the soft starter reduces the motor voltage when the load is lower. Power consumption is reduced and the degree of efficiency improved.

0 3 3 0			
	0	F	Setting of PFC
Default:	oFF		
Range:	oFF, on		
oFF	PFC disabled		
on	PFC enabled. The Full voltage relay function does not work.		

NOTE! If the PFC is used the EMC-directive is not fulfilled.

7.14 Brake functions

There are two built in braking methods for applications were the normal stop ramp is not enough.

- Dynamic DC-brake

Increases the braking torque by decreasing speed.

- Soft brake

Gives a high torque at the start of the braking and then also increasing torque by decreasing speed.

In both methods the MSF detects when the motor is standing still, so rotating in wrong direction is avoided.

Dynamic Vector Brake

- Possible to stop motors with high inertia loads from close to synchronous speed.
- At 70% of the nominal speed a DC-brake is activated until the motor is standing still or the selected Braking Time has expired (see menu 34, next page).
- No contactor needed.
- For extra safery, the soft starter has a digital input signal for monitoring standstill so that at real motor standstill will stop the output voltage immediately (see $\$ 7.19$, page 53).

Soft brake

- Even very high inertia loads can be stopped
- The Soft brake is a controlled reversing of the motor as the MSF measures the speed during braking.
- Two contactors are needed which can be placed on the in- or output of the soft starter. On the input the first contactor is connected to relay K 1 which is also used as a mains contactor.
- At 30% of the nominal speed a DC-brake is activated until the motor is standing still or the selected Braking Time has expired (menu 34, next page).
- For extra safety, the soft starter has a digital input signal for monitoring standstill. So that the output voltage is stopped immediately (see menu 57-58, § 7.19, page 53).

See Fig. 47 on page 47 for the following set-up sequence:

- Soft brake is activated if menu $36=2$ and menu 34 has a time selected (see next page).
- Menu 51 and 52 are automatically set to 5 and 4 to get the correct relay functions on K 1 and K 2 (see $§$ 7.17, page 51).
- Relay K1 should be used to connect a contactor for supply L1, L2, L3 to MSF or motor.
- Relay K2 is used to connect phase shifting contactor to change L1, L2 and L3 to MSF or motor.
- At start K1 is activated and connects L1, L2, L3 then the motor starts. At stop K1 opens and disconnects L1, L2, and L3 and after 1s K2 connects with the other phase sequence and the braking of the motor is active.

NOTE! Soft brake uses both programmable relays. For other functlons, see also the function table in chapter 7. page 35.

NOTE! For several start/stops it Is recommend to use the PTC input.

WARNING! If the Soft Brake function has been selected once and after that the Bypass function is selected, then the relay functions on K1 and K2 remain in the Soft Brake functionality. Therefore It Is necessary to change the relay functlons In menu 51-52 manually to the Bypass functions (see $\$ 7.17$, page 51) or reset to default In menu 199 (see $\$ 7.28$, page 63) and select the Bypass function again.

Nom. speed
03-F121

Fig. 46 Braking time

Fig. 47 Soft brake wiring example.

7.15 Slow speed and Jog functions

The soft starter is able to run the motor at a fixed slow speed for a limited period of time.

The slow speed will be about 14% of the full speed in the forward direction and 9% in the reverse direction.

The following functions are possible:

- Slow speed controlled by an external signal.

The digital input is used to run at slow speed at a start or stop conmmand for a selected number of pulses (edges) generated by an external sensor (photo cell, micro switch, etc.). See $\$ 7.19$, page 53 for more instructions.

- Slow Speed during a selected time period.

The slow speed will be active after a stop command for a selected time period. See $\S 7.19$, page 53 for more instructions.

- Slow Speed using the "JOG"-commands.

The slow Speed can be activated via the JOG keys on the keyboard or externally via the analogue input. See $\S 7.25$, page 61 for more instructions.

7.15.1 Slow speed controlled by an external signal.

With these setcing it is possible to have an external pulse or edge signal controlling the time that the Slow Speed is active either after a Start command or a Stop command or at both commands. The following menu's are involved:

Menu	Function	See page
57	Digital input selection	page 53
58	Pulse selection	page 53
37	Slow speed torque	page 49
38	Slow speed time at start	page 49
39	Slow speed time at stop	page 49
40	DC-Brake at slow speed	page 49

Installation is as follows:

1. Set the analogue input selection for Slow Speed operation. Menu 57=2. See $\$ 7.19$, page 53. See Fig. 37 on page 41 for a wiring example.
2. Select in menu 38 (see $\oint 7.15 .2$, page 49) the Slow Speed at Start time. This time will now be the absolute maximum time for Slow Speed to be active after a start conmmand, in case the external signal will not appear.
3. Select in menu 39 (see $\$ 7.15 .2$, page 49) the Slow Speed at Stop time. This time will now be the absolute maximum time for Slow Speed to be active after a stop command, in case the external signal will not appear.
4. Select in menu 57 (see $\S 7.19$, page 53) the number of edges to be ignored by the Slow Speed input, before a start or stop is executed at slow speed. The edges are generated by an external sensor (photo cell, micro switch, etc.).

The Slow Speed torque (menu 37) and DC-Brake after Slow Speed (menu 40) can be selected if needed. (see $\$ 7.15 .4$, page 49).

When the number of edges exceeds or the time expire, a start according to selected main function is made.

At stop, the motor will ramp down (if selected) and DC brake (if selected) before a slow speed forward at stop will begin. Slow speed will last as long as the number of edges on the external input is below parameter value in menu 036 and the max duration time doesn't expires. When the number of edges exceeds or the time expire, a stop is made.

In Fig. 48 on page 48 the selected number of edges are 4. It is recommended to select DC-brake (se $\S 7.14$, page 46) before a slow speed at stop if it is a high inertia load. See Fig. 29 on page 33 for wiring diagram. In case one use DC-brake, see $\S 7.15 .4$, page 49 .

Fig. 48 Slow speed controlled b γ an external signal.
This additional function can be used together with most of the main functions (see $\oint 4.6$, page 19).

| 03 7 0
 Slow speed torque
 1 | 0 |
| :--- | :--- | :--- |
| Default: | 10 |
| Range: | $10-100$ |
| Select the magnitude of the slow speed torque. | |

7.15.2 Slow speed during a selected time

It is possible to have a slow speed in forward direction before a start and after a stop. The duration of the slow speed is selectable in menus 038 and 039.

It is recommended to select DC brake (see $\S 7.14$, page 46) before a slow speed at stop if it is a high inertia load. This slow speed function is possible in all control modes, keyboard, remote and serial communication.

| 0 3 0
 0 | |
| :--- | :--- | :--- |
| O | |
| | Flow speed time at stop |

Fig. 49 Slou speed at start/stop during a selected tinue.
The Slow speed torque (menu 37) and the DC-Brake after Slow speed (menu $40, \S 7.15 .4$, page 49) can be selected if needed.

7.15.3 Jog Functions

The Jog commands can be used to let the motor run at a Slow speed (forward or reverse) as long as the Jog command is active.

The Jog commands can be activated in 2 different ways:

- Jog keys

The Jog-Forward and Jog-reverse keys on the control panel. The keys can be programmed separate for each function. See $\S 7.25$, page 61 for more instructions

- External Jog command

The external command is given via terminal 14 at the digital input. Only 1 function (forward or reverse) can be progranmed to the digital input at the time. See $\S 7.19$, page 53 for more instructions.

7.15.4 DC-brake after slow speed at stop [040]

A DC-brake after a slow speed at stop is possible to have, i.e. for a high inertia load or for a precise stop.

The current is controlled and the reference value for the normal DC-brake function is used (see §7.15.4, page 49).
The duracion for the DC-brake is possible to select.
This DC-brake function is not applied when the "JOG Θ " and "JOG Ω " keys are used.

| O 4 0
 0 | |
| :--- | :--- | :--- | :--- |
| 0 DC-Brake at slow speed
 0 F | |
| Default: | oFF |
| Range: | oFF, 1-60 |
| oFF | DC-brake after slow speed at stop
 disabled. |
| $\mathbf{1 - 6 0}$ | DC-brake duration time after slow
 speed at stop. |

7.16 Motor data setting

The first step in the settings is to set menu 007 and 008 to "on" to be able to reach the menus 041-046 and enter the motor data.

NOTE! The default factory settings are for a standard 4-pole motor acc. to the nominal current and power of the soft starter. The soft starter will run even If no specific motor data is selected, but the performance will not be optimal.

Make sure the soft starters maximum voltage rating is suitable for chosen motor voltage.

7.17 Programmable relay K1 and K2

The soft starter has three built-in auxiliary relays, K3 (change over contacts), is always used as an alarm relay. The other two relays, K1 and K2 (closing contacts), are programmable.

K1 and K2 can be set to either "Operation", "Full Voltage" or "Pre-alarm" indication. If DC-brake is chosen the relay K 2 will be dedicated to this function.

Fig. 50 Start/stop sequence and relay furction "Operation" and "Full voltage".

| 0 1 0

 Setting of K1 indication
 Default: 1
 Range: $1,2,3,4,5$
 $\mathbf{1}$ K1 is set for "Operation"
 $\mathbf{2}$ K1 is set for "Full Voltage"
 $\mathbf{3}$ K1 is set for "Power pre-alarm"
 $\mathbf{4}$ No function
 $\mathbf{5}$ K1 is set for "Run" \quad |
| :--- | :--- | :--- |

0 5 2 0		
	2	
		Setting of K2 indication
Default:	2	
Range:	$1,2,3,4,5$	
$\mathbf{1}$	K2 is set for "Operation"	
$\mathbf{2}$	K2 is set for "Full Voltage"	
$\mathbf{3}$	K2 is set for "Power pre-alarm"	
$\mathbf{4}$	K2 is set for "Softbrake"	
$\mathbf{5}$	K2 is set for "Run"	

WARNING! If the Soft Brake functlon has been selected once and after that the Bypass function is selected, then the relay functions on K1 and K2 remaln in the Soft Brake functionality. Therefore it Is necessary to change the relay functlons in menu $51-52$ manually to the Bypass functlons (see § 7.12, page 43) or reset to default in menu 199 (see § 7.28, page 63) and select the Bypass function again.

7.18 Analogue output

The soft starter can present current, voltage and power on an analogue output terminal, for connection to a recording instrument or a PLC. The output can be configured in 4 different ways, $0-10 \mathrm{~V}$,
$2-10 \mathrm{~V}, 0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$. To install the instrument proceed as follows:

1. Connect the instrument to terminal 19 (+) and $15(-)$.

Fig. 51 Wiring for analogue output.
2. Set Jumper J2 on the PCB board to voltage (U) or current (I) signal position. Factory setting is voltage (U). See Fig. 52 on page 52 and Fig. 24 on page 28.

4. Choose a read-out value in menu 055

5. Set analogue output gain to adjust the range of chosen analogue output value in menu 056.

Example on settings:

Set value	$\mathbf{I}_{\text {scale }}$	$\mathbf{U}_{\text {scale }}$	$\mathbf{P}_{\text {scale }}$
100%	$0-5 \times I_{n}$	$0-720 \mathrm{~V}$	$0-2 \times P_{\mathrm{n}}$
50%	$0-2.5 \times I_{n}$	$0-360 \mathrm{~V}$	$0-P_{\mathrm{n}}$

Fig. 52 Setting of currem or voltage output.
3. Set the parameter in menu 054.

0 5 4 0			
	0	F	F
Default:	oFF		
Range:	oFF, 1, 2		
oFF	Analogue output ouput is disabled		
$\mathbf{1}$	Analogue output is set to $0-10 \mathrm{~V} / 0-20 \mathrm{~mA}$		
$\mathbf{2}$	Analogue output is set to $0-10 \mathrm{~V} / 4-20 \mathrm{~mA}$		

7.19 Digital input selection

The analogue input can be used as a digital input. This is programmed in Menu 57. There are 4 different functions:

- Rotation sensor input for braking functions. See $\$ 7.14$, page 46.
- Slow speed external controlled. See $\$ 7.15 .1$, page 48.
- Jog functions forward or reverse enabled. See \S 7.25 , page 61.

Fig. 53 shows how to set the input for voltage or current control, with jumper J1 the control board. The default setting for $J 1$ is voltage control.

Fig. 53 Setting of J1 for current or voltage control.
Fig. 54 shows a wiring example for the analogue input as it is used for digital input.

Fig. 54 Wiring for slow speed external input.
NOTE! If the Main Function Analogue control Is programmed (see $\S 7.8$, page 41) the analogue input can not be used for digltal signal input. The menu 57 is then automatlcally set to OFF.

$0.57{ }_{0}^{\circ}$			Digital input selection
0	F	F	
Default:		oFF	
Range:		oFF	
ofF		No	gital input control
1		Rot	ion sensor for brake functions
2			speed function
3		Jog	rward command
4		Jog	verse command

NOTE! Jog forward, reverse has to be enabled, see § 7.25, page 61.

Depending on the selection made in menu 57, menu 58 is used to program the number of the edges. The edges can be generated by an external sensor (photo cell, micro switch etc.).

0	5	8	0
			Digital input pulses
			1
Default:	1		
Range:	$1-100$		
If Menu $57=1$. A positive or negative edge at analogue input from a rotation sensor will give a signal to stop the braking voltage. If Menu 57=2 The number of edges to be ignored by the slow speed input, before a start or stop is executed at slow speed.			

7.20 Parameter Set

Parameter Set, an important function which can be handy when using one soft starter to switch in and start different motors, or working under variable load conditions. For example; starting and stopping conveyor belts with different weight on the goods from time to time.

For sets of parameters can be controlled either from the keyboard, the external control inputs or the serial interface (option). Up to 51 different parameters can be set for each Parameter Set.

Fig. 55 Parmmeter overview
When 'Parameter set' in menu 061 is set to 0 (external selection), only parameters in menu 006 (Control mode) and 061 (Parameter set) can be changed. All other parameters are not allowed to change.

It is possible to change parameter set at stop and at full voltage running.

Parameter set

Default:	$\mathbf{1}$
Range:	$0, \mathbf{1 , 2 , 3 , 4}$
$\mathbf{0}$	Parameter set are selected by the external input 16 and 17 (see below).
$\mathbf{1 , 2 , 3 , 4}$	Selection of parameter set 1-4.

Fig. 56 Connection of external control inputs.

Parameter Set	PS1 (16-18)	PS2 (17-18)
1	Open	Open
2	Closed	Open
3	Open	Closed
4	Closed	Closed

7.21 Motor protection, overload (F2 alarm)

In many cases it is convenient to have a complete starter. The soft starter have a possibility to use either an input PTC signal from the motor, an internal thermal model of the motor for thermal protection or both together at the same time. Slight overload for long time and several overloads of short duration will be detected with both methods.

NOTE! Open terminals will glve an F2 alarm Immedlately. Make sure the PTC Is always connected or the terminals are shorted.

NOTE! The Internal motor thermal protection will still generate an alarm if it is not selected off.

0			Internal motor thermal protection
	1	0	
Default:		10	
Range:		oFF	40 sec
oFF		Inte	al motor protection is disabled.
2-40		Sele acc - Ch prop pa - If th lev - Th mu ca - Us in	ion of the thermal curve ding to Fig. 57 k that menu 042 is set to the motor current (see § 7.16, 50). current exceeds the 100% an F2 alarm is activated. motor model thermal capacity cool down to 95% before reset e accepted. thermal capacity in menu 073 7.21, page 55.

NOTE! If 'Bypass' is used check that the current transformers are placed and connected correctly (see Flg. 43 on page 44).

CAUTION! Used thermal capacity is set to 0 if the control board loses its supply (terminal 01 and 02). Thls means that the internal thermal model starts with a 'cold' motor, which perhaps In reallty Is not the case. Thls means that the motor can be overheated.

Fig. 57 The thermal curve

7.22 Mains protection

| O\|8|4 ${ }_{0}^{\circ}$ | | | Response delay over voltage alarm |
| :---: | :---: | :---: | :---: |
| 0 | F | F | |
| Default: | | OFF | |
| Range: | | oFF, 1-60 sec | |
| ofF | | Overvoltage alarm is disabled | |
| 1-60 | | Set the response delay time for over voltage alarm F9. | |

$085{ }_{0}^{\circ}$

Under voltage alarm

Default:	85
Range:	$75-100 \mathrm{U}_{\mathrm{n}}$
Inser	

Insert limit in \% of nominal motor voltage. Min voltage of the 3 input phases is compared with the selected value. This is a category 2 alarm.

$\left.\begin{array}{|l|l|l|}\hline & \mathbf{O} & \mathbf{F} \\ \hline\end{array} \mathbf{F} \quad \begin{array}{l}\text { Response delay under } \\ \text { voltage alarm }\end{array}\right]$.

NOTE! The actual phase sequence can be vlewed In menu 87.

7.23 Application protection (load monitor)

7.23.1 Load monitor max and min/protection (F6 and F7 alarms)

MSF has a built in load monitor based on the output shaftpower. This is a unique and important function which enables protection of machines and processes driven by the motor connected to the soft starter. Both a Min and Max limit is possible to select.

In combination with the pre-alarm function, see $\$ 7.23 .2$, page 58 , this create a powerful protection. An auto set function is also included for an automatic setting of the alarm limits. A start-up delay time can be selected to avoid undesired alarms at start-up, see Fig. 58 on page 60.

NOTE! The load monltor alarms are all disabled during a stop ramp.

088	9	0
	 Auto set power limits n Default: no Range: no, YES no Auto set is disabled YES Auto set is activated if ENTER is pressed.	

0	9	0
	0	
		0
		0
Default:	-	
Range:	$0-200 \%$	
Measured output shaftpower in \% of nominal motor power.		

NOTE! System must be in full voltage running before an auto set is permitted.

The actual power is regarded as 1.00 xPact .
The set levels are:

Power max alarm limit[092]:	$1.15 \times \mathrm{xP}$ actual
Power max pre-alarm limit[094]:	$1.10 \times \mathrm{xP}$ actual
Power min pre-alarm limit[096]:	0.90 xP actual
Power min alarm limit[098]:	$0.85 \times \mathrm{x}$ actual

A successful auto set shows a message 'Set' for 3 s and if something goes wrong a message 'no' will be showed.

Start delay power limits

Default:	10 sec
Range:	$1-250 \mathrm{sec}$
From	

From start command during selected delay time, all power load monitor alarms and pre-alarms are disabled.

Insert limit in \% of nominal motor power. The actual power in \% of nominal motor power, could be read out in menu 090. If output shaft power exceeds selected limit, an F6-alarm occurs after the response delay time. The 'Auto set' function in menu 089, affect this limit even if the alarm is set "oFF" in menu 093. This is a category 1 alarm.

| 0 9 3
 0 |
| :--- | :--- | :--- |
| 0 Response delay max alarm
 O F
 Default: oFF
 Range: oFF, 0.1-25.0 sec
 oFF Max Alarm is disabled.
 $\mathbf{0 . 1 - 2 5 . 0}$ Sets the response delay of the Max
 Alarm level. |

7.23.2 Pre-alarm

It could be useful to know if the load is changing towards a load alarm limit. It is possible to insert both a Max and Min pre-alarm limit based on the motor output shaft power. If the load exceeds one of these limits, a pre-alarm condition occurs.

It should be noted that it is not normal alarms. They will not be inserted in the alarm list, not activating the alarm relay output, not displayed on the display and they will not stop operation. But it is possible to activate relay K 1 or K 2 if a pre-alarm condition occurs. To have pre-alarm status on any of these relays, select value 3 in menu 051 or 052 (see $§ 7.17$, page 51).

A start-up delay time can be selected in menu 091 to avoid undesired pre-alarms at start-up. Note that this time is also shared with power Max and Min alarms.

NOTE! The pre-alarm status is always avallable on the serlal communication.

Insert limit in \% of nominal motor power. The actual power in \% of nominal motor power, could be read out in menu 090. If output shaft power exceeds selected limit, a pre-alarm occurs after the response delay time. The 'Auto set' function in menu 089, affect selected limit even if the pre-alarm is set "oFF" in menu 095.

0	9	6	0

| 0 9 9 0

 Min alarm response delay
 Default: oFF
 Range: oFF, 0.1-25.0 sec
 oFF Min Alarm is disabled
 $\mathbf{0 . 1 - 2 5 . 0}$ Sets the response delay of the Min
 Alarm level. The Min alarm is disa-
 bled during a stop ramp down. |
| :--- | :--- | :--- | :--- |

7.24 Resume alarms

7.24.1 Phase input failure F1

- Multiple phase failure.

Shorter failure than 100 ms is ignored. If failure duration time is between 100 ms and 2 s , operation is temporary stopped and a soft start is made if the failure disappears before 2 s . If failure duration time is longer than 2 s , an F1 alarm is given in cat. 2.

- Single phase failure.

During start up (acceleration) the behaviour is like multiple phase failure below. When full voltage running there is a possibility to select the behaviour.

1\|010			Run at single phase loss
	n	0	
Default:		no	
Range:			
no			tarter trips if a single phase detected. Alarm F1 (category appear after 2 sec .
YES			tarter continues to run after a phase loss. F1 appears after 2 sec . loose phase is reconnect the is reset automatically. ning on 2 phases, a stop comwill give a Direct on line stop wheel)

7.24.2 Run at current limit time-out F4

In modes 'Current limit at start' and 'Voltage ramp with current limit at start' an alarm is activated if still operating at current limit level when selected ramp time exceeds. If an alarm occurs there is a possibility to select the behaviour.

10\|2 ${ }_{0}^{\circ}$			Run at current limit time-out
	n	0	
Default:		no	
Range:			
no			arter trips if the current limit out is exceeded. Alarm F4 (cate) appears.
YES		Sof cur - Al - Th a V - R R R	arter continues to run after the limit time-out has exceeded: F4 appears urrent is no longer controlled he soft starters ramps up to full ge with a 6 s ramp time. the alarm with either ENTER/ T key or by giving a stop com-

7.25 Slow speed with JOG

Slow speed with "JOG" is possible from the "JOG" keys, but also from terminals, see menu 57 page 53 and serial comm. The "JOG" is ignored if the soft starter is running. The slow speed "JOG" function has to be enabled for both forward and reverse directions in menus 103 and 104, see below.

NOTE! The enable functions is for all control modes.

Fig. 59 The 2 Jog keys.

7.26 Automatic return menu

Often it is desirable to have a specific menu on the display during operation, i.e. RMS current or power consumption. The Automatic return menu function gives the possibility to select any menu in the menu system.

The menu selected will come up on the display after 60 sec. if no keyboard activity. The alarm messages (F1-F16) have a priority over menu 105 (as they have for all menus).

7.27 Communication option, related Parameters

The following parameters have to be set-up:

- Unit address.
- Baud rate.
- Parity
- Behaviour when contact broken.

Setting up the communication parameter must be made in local 'Keyboard control' mode. See $\S 7.2$, page 37.

Serial comm. broken alarm

If control mode is 'Serial comm. control' and no contact is established or contact is broken the Soft starter consider the contact to be broken after 15 sec , the soft starter can act in three different ways:

1 Continue without any action at all.
2 Stop and alarm after 15 sec .
3 Continue and alarm after 15 sec .
If an alarm occurs, it is automatically reset if the communication is re-established. It is also possible to reset the alarm from the soft starter keyboard.

1	1	4

7.28 Reset to factory setting [199]

When selecting reset to factory settings:

- All parameters in all parameter sets will have default factory settings.
- Menu 001 will appear on the display.
- Note that the alarm list, the power consumption and the operation time will not have default settings.

NOTE! Reset to factory settings is not allowed at run.

7.29 View operation

General

The soft start includes as standard a numerous metering functions which eliminates the need of additional rransducers and meters.

Measured values

- Current RMS 3-phase current and per phase
- Voltage RMS 3-phase voltage and per phase
- Output shaft power /torque $\mathrm{kW} / \mathrm{Nm}$
- Power factor
- Power consumption in kWh
- Operation tine in hours

Viewing of the measured values

After setting motor data and extended functions one can set menu 008 in oFF and will then automatically move to menu 201, the first menu viewing the measured values and thus eliminate to scroll through menu 011 to menu 199.

NOTE! This is the same read-out as menu 005 see § 7.1.1, page 36.

NOTE! The power factor vlewing will not work at bypass even If the current transformers are mounted outside the soft start.

2	0	5	0		
0.	0	0	0	\quad	Total power consumption
:---					
Default:					
Range:					
View the total power consumption.					

$206{ }^{\circ}$			Reset of power consumption
	n	0	
Default:		no	
Range:		no, YES	
no		No reset of power consumtion.	
YES		Reset power consumption in menu 205 to 0.000.	

$2017{ }^{\circ}$

$208{ }^{\circ}$

		0	0

21110		RMS current in phase LT
	0.0	
Default:		
Range:	0.0	999Amp
View the current in phase L1.		

$212{ }_{\circ}^{\circ}$

RMS current in phase L2

Default:	-
Range:	$0.0 \cdot 9999$ Amp
View the current in phase L2.	

7.30 Keyboard lock

The keyboard can be locked to prohibit operation and parameter setting by an unauthorised. Lock keyboard by pressing both keys "NEXT \rightarrow " and "ENTER " for at least 2 sec . The message '- Loc' will display when locked. To unlock keyboard press the same 2 keys "NEXT \rightarrow " and "ENTER \longleftarrow " for at least 2 sec. The message 'unlo' will display when unlocked.

In locked mode it is possible to view all parameters and read-out, but it is forbidden to set parameters and to operate the soft starter from the keyboard.

The message '-Loc' will display if trying to set a parameter or operate the soft starter in locked mode.

The key lock status can be read out in menu 221.

2 2 1		
		Locked keyboard info
		n

7.31 Alarm list

The alarm list is generated automatically. It shows the latest 15 alarms ($\mathrm{F} 1-\mathrm{F} 16$). The alarm list can be useful when tracing a failure in the soft starter or its control circuit. Press key "NEXT \rightarrow " or "PREV \leftarrow " to reach the alarm list in menus 901-915 (menu 007 has to be ON).

8. PROTECTION AND ALARM

The soft starter is equipped with a protection system for the motor, the machine and for the soft starter itself.
Three categories of alarm are available:

Category 1

Alarm that stops the motor and need a separate reset before a new start can be accepted.

Category 2

Alarm that stops the motor and accepts a new start conmand without any separate reset.

Category 3

Alarm that continues to run the motor.
All alarm, except pre-alarm, will activate the alarm relay output K3, flash a red fault number on the display and it will also be placed in the alarm list. As long as the alarm is active, the display is locked in the alarm indication.

The relay output K 3 can be used in the control circuit for actions needed when alarm occurs.

If more than one alarm is active, it is the last alarm that is presented on the display.

8.1 Alarm description

8.1.1 Alarm with stop and requiring a separate reset

Operation will stop for a category 1 alarm. A separate reset is needed before a new start command is accepted. It is possible to reset from keyboard (pushing "ENTER/RESET") regardless of selected control mode. It is also possible to reset the alarm from the actual control mode (i.e. if control mode is serial communication, a reset is possible to do from serial communication).

A reset is accepted first when the alarm source goes back to normal.

When a reset is made, the alarm relay output K 3 is deactivated, the alarm indication on the display disappear and the original menu shows.

After a reset is made the system is ready for a new start command.

8.1.2 Alarm with stop and requiring only a new start command

Operation will stop for a category 2 alarm. A restart can be done and at the same time the alarm relay output K3 is deactivated, the alarm indication on the display disappear and the original menu shows.

It is still possible to reset the alarm in the same way as for category 1 alarms (see 8.1.1), if a start is not required at the time.

8.1.3 Alarm with continue run

Operation will continue run for a category 3 alarm. Some different reset behaviour is possible (see remarks for the specific alarms in $\S 8.2$, page 67).

- Automatic reset when the alarm source goes back to normal.
- Automatic reset when a stop command is given.
- Manual reset during run.

When the reset occurs, the alarm relay output K3 is deactivated, the alarm indication on the display disappear and the original menu shows.

8.2 Alarm overview

Display indication	Protective function	Alarm category	Remark
F1	Phase input failure.	Cat 3. Run with auto reset.	Single phase failure when full voltage running if menu 101 'Run at phase loss' = YES. If the fault phase comes back, an automatic reset is made.
		Cat 2. Stop with reset in start.	Multiple phase failure or single phase failure when not full voltage running or if menu 101 ' Run at phase loss' = no.
F2	Motor protection, overload.	Cat 1. Stop with manual reset.	If menu 071 'Motor PTC input' $=$ YES, cool down the motor. If menu 071 'Motor PTC input' = no, the internal model has to 'cool' down.
F3	Soft start overheated	Cat 1. Stop with manual reset.	If not cooled down, a reset will not be accepted.
F4	Full speed not reached at set current limit and start time.	If menu 102 'Run at current limit time-out' = no. Cat 2. Stop with reset in start.	The current limit start is not completed.
		If menu 102 'Run at current limit time-out' = YES. Cat 3. Run with manual reset.	When start time expired, a 6 sec ramp is used to reach full voltage, without control of the current. Reset the alarm with either a manual reset or a stop command.
F5	Locked rotor.	Cat 1. Stop with manual reset.	Motor and/or machine protection.
F6	Above max power limit.	Cat 1. Stop with manual reset.	Machine protection.
F7	Below min power limit.	Cat 1. Stop with manual reset.	Machine protection.
F8	Voltage unbalance.	Cat 2. Stop with reset in start.	Motor protection.
F9	Over voltage.	Cat 2. Stop with reset in start.	Motor protection.
F10	Under voltage.	Cat 2. Stop with reset in start.	Motor protection.
F11	Starts / hour exceeded.	Cat 2. Stop with reset in start.	Motor and/or machine protection.
F12	Shorted thyristor.	Cat 3. Run with manual reset.	When stop command comes, the stop will be a 'Direct On Line' stop, and the soft starter will be resetted. After this fault it is possible to start only in 'Direct On Line' mode. One or more thyristors probably damaged.
F13	Open thyristor.	Cat 1. Stop with manual reset.	One or more thyristors probably damaged.
F14	Motor terminal open.	Cat 1. Stop with manual reset.	Motor not correctly connected.
F15	Serial communication broken.	If menu 114 Serial comm. contact broken =1. Cat 2. Stop with reset in start.	Serial communication broken will stop operation. Run from keyboard if necessary.
		If menu 114 Serial comm. contact broken $=2$. Cat 3 . Run with auto reset.	Serial communication broken will not stop operation. Stop from keyboard if necessary.
F16	Phase reversal alarm.	Cat 1. Stop with manual reset.	Incorrect phase order on main voltage input.

9. TROUBLE SHOOTING

9.1 Fault, cause and solution

Observation	Fault indication	Cause	Solution
The display is not illuminated.	None	No control voltage.	Switch on the control voltage.
The motor does not run.	F1 (Phase input failure)	Fuse defective.	Renew the fuse.
		No mains supply.	Switch the main supply on.
	F2 (Motor protection, overload)	Perhaps PTC connection. Perhaps incorrect nominal motor current inserted (menu 042).	Check the PTC input if PTC protection is used. If internal protection is used, perhaps an other class could be used (menu 072). Cool down the motor and make a reset.
	F3 (Soft start overheated)	Ambient temperature to high. soft starter duty cycle exceeded. Perhaps fan failure.	Check ventilation of cabinet. Check the size of the cabinet. Clean the cooling fins. If the fan(s) is not working correct, contact your local MSF sales outlet.
	F4 (Full speed not reached at set current limit and start time)	Current limit parameters are perhaps not matched to the load and motor.	Increase the starting time and/or the current limit level.
	F5 (Locked rotor)	Something stuck in the machine or perhaps motor bearing failure.	Check the machine and motor bearings. Perhaps the alarm delay time can be set longer (menu 075).
	F6 (Above max power limit)	Overload	Over load. Check the machine. Perhaps the alarm delay time can be set longer (menu 093).
	F7 (Below min power limit)	Underload	Under load. Check the machine. Perhaps the alarm delay time can be set longer (menu 099).
	F8 (Voltage unbalance)	Main supply voltage unbalance.	Check mains supply.
	$\begin{aligned} & \text { F9 } \\ & \text { (Over voltage) } \end{aligned}$	Main supply over voltage.	Check mains supply.
	$\begin{aligned} & \text { F10 } \\ & \text { (Under voltage) } \end{aligned}$	Main supply under voltage.	Check mains supply.
	F11 (Starts / hour exceeded)	Number of starts exceeded according to menu 074.	Wait and make a new start. Perhaps the number of starts / hour could be increased in menu 074.
	F13 (Open thyristor)	Perhaps a damaged thyristor.	Make a reset and a restart. If the same alarm appears immediately, contact your local MSF sales outlet.
	F14 (Motor terminal open)	Open motor contact, cable or motor winding.	If the fault is not found, reset the alarm and inspect the alarm list. If alarm F12 is found, a thyristor is probably shorted. Make a restart. If alarm F14 appears immediately, contact your local MSF sales outlet.

Observation	Fault indication	Cause	Solution
The motor does not run.	F15 (Serial communication broken)	Serial communication broken.	Make a reset and try to establish contact. Check contacts, cables and option board. Verify - System address (menu 111). - Baudrate (menu 112). - Parity (menu 113). If the fault is not found, run the motor with keyboard control if urgent (set menu 006 to "1"). See also manual for serial communica tion.
	F16 (Phase reversal)	Incorrect phase sequence on main supply.	Switch L2 and L3 input phases.
	\ldots	Start command comes perhaps from incorrect control source. (I.e. start from keyboard when remote control is selected).	Give start command from correct source (menu 006).
	-Loc	System in keyboard lock.	Unlock keyboard by pressing the keys 'NEXT' and 'ENTER' for at least 3 sec .
The motor is running but an alarm is given.	F1 (Phase input failure)	Failure in one phase. Perhaps fuse defective.	Check fuses and mains supply. Deselect 'Run at single phase input failure' in menu 101, if stop is desired at single phase loss.
	F4 (Full speed not reached at set current limit and start time)	Current limit parameters are perhaps not matched to the load and motor.	Increase the starting time and/or the current limit level. Deselect 'Run at current limit time-out' in menu 102, if stop is desired at current limit time-out.
	F12 (Shorted thyristor)	Perhaps a damaged thyristor.	When stop command is given, a free wheel stop is made. Make a reset and a restart. If alarm F14 appears immediately, contact your local MSF sales outlet. If it is urgent to start the motor, set soft starter in 'Direct On Line' (menu 024). It is possible to start in this mode.
		By pass contactor is used but menu 032 'Bypass' is not set to "on".	Set menu 032 'Bypass' to "on".
	F15 (Serial communication broken)	Serial communication broken.	Make a reset and try to establish contact. Check contacts, cables and option board. Verify - System address (menu 111). - Baudrate (menu 112). - Parity (menu 113). If the fault is not found, run the motor with keyboard control if urgent, see also manual for serial communication.

Observation	Fault indication	Cause	Solution
The motor jerks etc.	When starting, motor reaches full speed but it jerks or vibrates.	If 'Torque control' or 'Pump control' is selected, it is necessary to input motor data into the system.	Input nominal motor data in menus 041-046. Select the proper load characteristic in menu 025. Select a correct initial- and end torque at start in menus 016 and 017. If 'Bypass' is selected, check that the current transformers are correct connected.
		Starting time too short.	Increase starting time.
		Starting voltage incorrectly set.	Adjust starting voltage.
		Motor too small in relation to rated current of soft starter.	Use a smaller model of the soft starter.
		Motor too large in relation to load of soft starter.	Use larger model of soft starter.
		Starting voltage not set correctly	Readjust the start ramp.
			Select the current limit function.
	Starting or stopping time too long, soft does not work.	Ramp times not set correctly.	Readjust the start and/or stop ramp time.
		Motor too large or too small in relation to load.	Change to another motor size.
The monitor function does not work.	No alarm or pre-alarm	It is necessary to input nominal motor data for this function. incorrect alarm levels.	Input nominal motor data in menus 041-046. Adjust alarm levels in menus 091-099. If 'Bypass' is selected, check that the current transformers are correct connected.
Unexplainable alarm.	F5, F6, F7, F8, F9, F10	Alarm delay time is to short.	Adjust the response delay times for the alarms in menus 075, 082, 084, 086, 093 and 099.
The system seems locked in an alarm.	F2 (Motor protection, overload)	PTC input terminal could be open. Motor could still be to warm. If internal motor protection is used, the cooling in the internal model take some time.	PTC input terminal should be short circuit if not used. Wait until motor PTC gives an OK (not overheated) signal. Wait until the internal cooling is done. Try to reset the alarm after a while.
	F3 (Soft start overheated)	Ambient temperature to high. Perhaps fan failure.	Check that cables from power part are connected in terminals 073, 074, 071 and 072. MSF-017 to MSF-145 should have a short circuit between 071 and 072 . Check also that the fan(s) is rotating.
Parameter will not be accepted.	-...	If the menu number is one of 020-025, only one can bee selected. In other words only one main mode is possible at a time.	Deselect the other main mode before selecting the new one.
		If menu 061, 'Parameter set' is set to " 0 ", the system is in a remote parameter selection mode. It is now impossible to change most of the parameters.	Set the menu 061, 'Parameter set' to a value between "1" - "4" and then it is possible to change any parameter.
		During acceleration, decelera tion, slow speed, DC brake and Power factor control mode, it is impossible to change parameters.	Set parameters during stop or full voltage running.
		If control source is serial comm., it is impossible to change parameters from keyboard and vice versa.	Change parameters from the actual control source.
		Some menus include only read out values and not parameters.	Read-out values can not be altered. In table 13, page 35, read-out menus has '--' in the factory setting column.
	-Loc	Keyboard is locked.	Unlock keyboard by pressing the keys 'NEXT' and 'ENTER' for at least 3 sec .

10. MAINTENANCE

In general the soft starter is maintenance free. There are however some things which should be checked regularly. Especially if the surroundings are dusty the unit should be cleaned regularly.

WARNING! Do not touch parts Inside the enclosure of the unit when the control and motor voltage is switched on.

Regular maintenance

- Check that nothing in the soft starter has been damaged by vibration (loose screws or connections).
- Check external wiring, connections and control signals. Tighten terminal screws and busbar bolts if necessary.
- Check that PCB boards, thyristors and cooling fin are free from dust. Clean with compressed air if necessary. Make sure the PCB boards and thyristors are undamaged.
- Check for signs of overheating (changes in colour on PCB boards, oxidation of solder points etc.). Check that the temperature is within permissible limits.
- Check that the cooling fan/s permit free air flow. Clean any external air filters if necessary.

In the event of fault or if a fault cannot be cured by using the fault-tracing table in chapter 9. page 68.

11. OPTIONS

The following option are available. Please contact your supplier for more detailed information.

11.1 Serial communication

For serial communication the MODBUS RTU (RS232/RS485) option card is available order number: 01-1733-00.

Fig. 60 Option RS232/485

11.2 Fleld bus systems

Various option cards are available for the following bus systems:

- PROFIBUS DP order number: 01-1734-01
- Device NET, order number:

01-1736-01

- LONWORKS:

01-1737-01

- FIP IO:

01-1738-01

- INTERBUS-S:

01-1735-01
Each system has his own card. The option is delivered with an instruction manual containing the all details for the set-up of the card and the protocol for prograniming.

Fig. 61 Option Profilus

11.3 External PPU.

The external PPU option is used to move the PPU (keyboard) from the soft starter to the front of a panel door or control cabinet.

The maximum distance between the soft starter and the external PPU is 3 m .
The option can be factory mounted (01-2138-01) or it can be built in later ($01-2138-00$). For both versions instruction /data sheet are available.

Fig. 62 Shows an example of the External PPU after it has been built in.

11.3.1 Cable kit for external current transformers

This kit is used for the bypass function, to connect the external current transformers more easy, order number: 01-2020-00.

Fig. 63 Cable kit

11.4 Terminal clamp

Data: Single cables, Cu or Al

Cables

MSF type Cu Cable
Bolt for connection to busbar
Dimensions in mm
Order No. single
Data: Parallel cables, Cu or Al
Cables
MSF type and Cu Cable
Bolt for connection to busbar Dimensions in num
Order No. parallel
$95-300 \mathrm{~mm}^{2}$
310
M10
$33 \times 84 \times 47 \mathrm{~mm}$
9350
$2 \mathrm{x} 95-300 \mathrm{~mm}^{2}$
310 to -835
M10
35x87x65
9351

Fig. 64 The terninal clamp.

12. TECHNICALDATA

3x200-525 V 50/60 Hz Model	MSF-017		MSF-030		MSF-045		MSF-060	
Soft starter rating according to AC35a, see chapter 4. page 13	$\begin{gathered} \text { 5.0-30:50-10 } \\ \text { heavy } \end{gathered}$	$\left\|\begin{array}{c} \text { 3.0-30:50-10 } \\ \text { nomal/light } \end{array}\right\|$	$\begin{gathered} 5.0-30: 50-10 \\ \text { heavy } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { 3.0-30:50-10 } \\ \text { normal/light } \end{array}$	$\begin{array}{\|c\|} \hline 5.0-30: 50-10 \\ \text { heavy } \end{array}$	$\begin{aligned} & \text { 3.0-30:50-10 } \\ & \text { normal/light } \end{aligned}$	$\begin{gathered} \text { 5.0-30:50-10 } \\ \text { heavy } \end{gathered}$	$\begin{gathered} \text { 3.0-30:50-10 } \\ \text { normal/light } \end{gathered}$
Rated current of soft starter (A)	17	22	30	37	45	60	60	72
Recommended motor size (kW) for 400 V	7.5	11	15	18.5	22	30	30	37
Recommended motor size (kW) for 525 V	11	15	18.5	22	30	37	37	45
Order number: supply voltage ($100-240 \mathrm{~V}$)	01-1301-01		01-1302-01		01-1303-01		01-1304-01	
Order number: supply voltage ($380-500 \mathrm{~V}$)	01-1301-02		01-1302-02		01-1303-02		01-1304-02	
$3 \times 200-690 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ Model	MSF017		MSF-030		MSF045		MSF-060	
Rated current of soft starter (A)	17	22	30	37	45	60	60	72
Motor power for 690 V	15	18.5	22	30	37	55	55	75*
Order number: supply voltage (100-240V)	01-1321-01		01-1322-01		01-1323-01		01-1324-01	
Order number: supply voltage ($380-500 \mathrm{~V}$)	01-1321.02		01-1322-02		01-1323-02		01-1324-02	
Electrical Data								
Recommended wiring fuse (A) 1)	25/50	32	35/80	50	50/125	80	63/160	100
Semi-conductor fuses, if required	80 A		125 A		160 A		200 A	
Power loss at rated motor load (W)	50	70	90	120	140	180	180	215
Power consumption control card	20 Va		20 VA		25 VA		25 VA	
Mechanical Data								
Oimensions in mm $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$	$320 \times 126 \times 260$		$320 \times 126 \times 260$		320×126×260		320×126×260	
Mounting position (Vertical/Horizontal)	Vertical		Vertical		Vert. or Horiz.		Vert. or Horiz.	
Weight (kg)	6.7		6.7		6.9		6.9	
Connection busbars Cu, (bolt)	15x 4 (M6)		15x4 (M6)		15x4 (M6)		15x4 (M8)	
Cooling system	Convection		Convection		Fan		Fan	
General Electrical Data								
Number of fully controlled phases	3							
Voltage tolerance control	Control +/. 10\%							
Voltage tolerance motor	Motor 200-525 +/. 10\%/200-690 + 5\%, -10\%							
Recommended fuse for control card (A)	Max 10 A							
Frequency	$50 / 60 \mathrm{~Hz}$							
Frequency tolerance	+/-10\%							
Relay contacts	$3 \times 8 \mathrm{~A}, 250 \mathrm{~V}$ resistive load, 3A 250 VAC inductive ($\mathrm{PF}=0.4$)							
Type of protection/Insulation								
Type of casing protection	IP 20							
Other General Data								
Ambient temperatures								
In operation	$0.40{ }^{\circ} \mathrm{C}$							
Max.e.g. at 80\% IN	$50^{\circ} \mathrm{C}$							
In storage	$(-25) \cdot(+70){ }^{\circ} \mathrm{C}$							
Relative air humidity	95\%, non-condensing							
Max. altitude without derating	(See separate: Technical information 151) 1000 m							
Norms/Standards, Conform to:	IEC 947-4-2, EN 292, EN 60204-1. UL508							
EMC, Emission	EN 50081-2. (EN 50081-1 with bypass contactor)							
EMC, Immunity	EN 50082-2							
1) Recommended wiring fuses for: $\begin{aligned} & \text { Heavy (first column): ramp/direct start } \\ & \text { Normal/Light (second column): ramp start }\end{aligned}$								
NOTE! Short circult withstand MSF017-060 5000 rms A when used with K5 or RK5 fuses.								

2-pole motor

$3 \times 200-525 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ Model	MSF-075		MSF-085		MSF-110		MSF-145	
Soft starter rating according to AC35a, see chapter 4. page 13	$\begin{array}{\|c\|} 5.0-30: 50-10 \\ \text { heavy } \end{array}$	$\begin{aligned} & \text { 3.0-30:50-10 } \\ & \text { normal/light } \end{aligned}$	$\begin{gathered} 5.0-30: 50-10 \\ \text { heavy } \end{gathered}$	$\left\lvert\, \begin{gathered} 3.0-30: 50-10 \\ \text { normal/light } \end{gathered}\right.$	$\begin{gathered} \text { 5.0-30:50-10 } \\ \text { heavy } \end{gathered}$	$\left\|\begin{array}{l} 3.0-30: 50-10 \\ \text { normal/light } \end{array}\right\|$	$\begin{gathered} 5.0-30: 50-10 \\ \text { heavy } \end{gathered}$	$\left\|\begin{array}{c} \text { 3.0-30:50-10 } \\ \text { normal/light } \end{array}\right\|$
Rated current of soft starter (A)	75	85	85	96	110	134	145	156
Recommended motor size (kW) for 400 V	37	45	45	55*	55	75	75	
Recommended motor size (kW) for 525 V	45	55	55	75*	75	90	90	110
Order number for supply voltage ($100-240 \mathrm{~V}$)	01-1305-01		01.1306.01		01-1307.01		01-1308-01	
Order number for supply voltage ($380-550 \mathrm{~V}$)	01-1305-02		01-1306-02		01-1307-02		01-1308-02	
3x200-690 V 50/60 Hz Model	MSF-075		MSF-085		MSF-110		MSF-145	
Rated current of soft starter (A)	75	85	85	90	110	134	145	156
Motor power for 690V	55	75	75	90	90	110	132	160*
Order number for supply voltage (100-240 V)	01-1325-01		01-1326-01		01-1327-01		01-1328-01	
Order number for supply voltage ($380-550 \mathrm{~V}$)	01-1325-02		01-1326.02		01-1327-02		01-1328-02	
Electrical Data								
Recommended wiring fuse (A) $\quad 1$)	80/200	100	100/250	125	125/315	180	160/400	200
Semi-conductor fuses, if required	250 A		315 A		350 A		450 A	
Power loss at rated motor load (W)	230	260	260	290	330	400	440	470
Power consumption control card	25 VA		25 VA		25 VA		25 VA	
Mechanical Data								
Dimensions in mm HxW×D	320×126× 260		320×126x 260		$400 \times 176 \times 260$		$400 \times 176 \times 260$	
Mounting position (Vertical/Horizontal)	Vert. or Horiz.							
Weight (kg)	6.9		6.9		12		12	
Connection, busbars Cu , (bolt)	15x4 (M8)		15x 4 (M8)		20x 4 (M10)		20×4 (M10)	
Cooling system	Fan		Fan		Fan		Fan	
General Electrical Data								
Number of fully controlled phases	3							
Voltage tolerance control	Control +/-10\%							
Voltage tolerance motor	Motor 200-525 +/-10\%/200-690 + 5\%, -10\%							
Recommended fuse for control card (A)	Max 10 A							
Frequency	$50 / 60 \mathrm{~Hz}$							
Frequency tolerance	+/-10\%							
Relay contacts	$8 \mathrm{~A}, 250 \mathrm{~V}$ resistive load. $3 \mathrm{~A}, 250 \mathrm{~V}$ inductive load ($\mathrm{PF}=0.4$)							
Type of protection/Insulation								
Type of casing protection	IP 20							
Other General Data								
Ambient temperatures In operation	$0.40^{\circ} \mathrm{C}$							
Max.e.g. at $80 \% I_{N}$	$50^{\circ} \mathrm{C}$							
In storage	(-25) - +7 70) ${ }^{\circ} \mathrm{C}$							
Relative air humidity	95\%, non-condensing							
Max. altitude without derating	(See separate: Technical information 151) 1000 m							
Norms/Standards, Conform to:	IEC 947-4-2, EN 292, EN 60204-1, UL508							
EMC, Emission	EN 50081-2, (EN 50081-1 with bypass contactor)							
EMC, Immunity	EN 50082-2							
1) Recommended wiring fuses for: $\begin{aligned} & \text { Heavy (first column): ramp/direct start } \\ & \text { Normal/Light (second column): ramp start }\end{aligned}$								
NOTE! Short circult withstand MSF075-145 $\mathbf{1 0 0 0 0} \mathbf{~ r m s ~ A ~ w h e n ~ u s e d ~ w i t h ~ K 5 ~ o r ~ R K 5 ~ t u s e s . ~}$								

* 2-pole motor

$3 \times 200-525 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ Model	MSF-170		MSF-210		MSF-250		MSF310		MSF370	
Soft starter rating according to AC35a, see chapter 4. page 13	$\begin{aligned} & \text { 5.0-30: } \\ & 50-10 \\ & \text { heavy } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { 3.0-30: } \\ 50-10 \\ \text { normal/light } \end{array}$	$\begin{aligned} & \text { 5.0-30: } \\ & 50-10 \\ & \text { heavy } \end{aligned}$	$\begin{array}{\|c\|} \hline 3.0-30: \\ 50-10 \\ \text { normal/light } \end{array}$	$\begin{aligned} & \text { 5.0-30: } \\ & 50-10 \\ & \text { heavy } \end{aligned}$	$\begin{array}{\|c\|} \hline 3.0-30: \\ 50-10 \\ \text { normal/light } \end{array}$	$\begin{aligned} & 5: 0-30: \\ & 50-10 \\ & \text { he avy } \end{aligned}$	$\begin{array}{\|c\|} \text { 3.0-30: } \\ \text { 50-10 } \\ \text { normal/light } \end{array}$	$\begin{aligned} & 5.0-30: \\ & 50-10 \\ & \text { heavy } \end{aligned}$	$\begin{array}{\|c\|} \text { 3.0-30: } \\ 50-10 \\ \text { normal/light } \end{array}$
Rated current of soft starter (A)	170	210	210	250	250	262	310	370	370	450
Recommended motor size (kW) for 400 V	90	110	110	132	132	160*	160	200	200	250
Recommended motor size (kW) for 525 V	110	132	132	160	160	200*	200	250	250	315
Order no. for supply voltage (100-240V)	01-1309-11		01-1310-11		01.1311.11		01-1312-01		01-1313-01	
Order no. for supply voltage ($380-550 \mathrm{~V}$)	01-1309-12		01-1310-12		01-1311-12		01-1312-02		01-1313-02	
$3 \times 200-690$ V 50/60 Hz Model	MSF-170		MSF-210		MSF-250		MSF310		MSF370	
Rated current of soft starter (A)	170	210	210	250	250	262	310	370	370	450
Motor power for 690 V	160	200	200	250	250	250	315	355	355	400
Order no. for supply voltage (100-240V)	01.1329-01		01-1330-01		01-1331-01		01-1332-01		01-1333-01	
Order no. for supply voltage ($380-550 \mathrm{~V}$)	01-1329-02		01-1330-02		01-1331-02		01-1332-02		01-1333-02	
Electrical Data										
Recommended wiring fuse (A) 1)	200/400	200	250/400	315	250/500	315	315/630	400	400/80	500
Semi-conductor fuses, if required	700 A		700 A		700 A		800 A.		1000 A	
Power loss at rated motor load (W)	510	630	630	750	750 W		930	1100	1100	1535
Power consumption control card	35 VA		35 VA			35 VA	35 VA		35 VA	
Mechanlcal Data										
Dimensions mm HxW×D incl. brackets	500×260×260		$500 \times 260 \times 260$		500x 260×260		$532 \times 547 \times 278$		$532 \times 547 \times 278$	
Mounting position (Vertical/Horizontal)	Vert. or Horiz.									
Weight (kg)	20		20				42		46	
Connection. Busbars AI/Cu (bolt)	30×4 (M10)		30×4 (M10)		30×4 (M10)		40×8 (M12)		40×8 (M12)	
Cooling system	Fan									
General Electrical Data										
Number of fully controlled phases	3									
Voltage tolerance control	Control +/-10\%									
Voltage tolerance motor	Motor $200-525+/ \cdot 10 \% / 200-690+5 \%,-10 \%$									
Recommended fuse for control card (A)	Max 10 A									
Frequency	$50 / 60 \mathrm{~Hz}$									
Frequency tolerance	+/-10\%									
Relay contacts	$8 \mathrm{~A}, 250 \mathrm{~V}$ resistive load, 3A, 250 V inductive load ($\mathrm{PF}=0.4$)									
Type of protection/insulation										
Type of casing protection	IP 20									
Other General Data										
Ambient temperatures In operation	$0.40^{\circ} \mathrm{C}$									
Max.e.g. at $80 \% \mathrm{I}_{\mathrm{N}}$	$50^{\circ} \mathrm{C}$									
In storage	$(-25) \cdot(+70){ }^{\circ} \mathrm{C}$									
Relative air humidity	95\%, non-condensing									
Max. altitude without derating	(See separate: Technical information 151) 1000 m									
Norms/Standards, Conform to:	IEC 947-4-2, EN 292, EN 60204-1, (UL508, only MSF-170 to MSF-250)									
EMC, Emission	EN 50081-2, (EN 50081-1 with bypass contactor)									
EMC, Immunity	EN 50082.2									
1) Recommended wiring fuses for: $\begin{aligned} & \text { Heavy (first column): ramp/direct start } \\ & \text { Normal/ }\end{aligned}$										
NOTE! Short circuit withstand MSF170-2	18000	ms \mathbf{A} when us	sed with	or RK5 fuses.						

* 2 -pole motor

$3 \times 200-525 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ Model	MSF-450		MSF-570		MSF-710		MSF-835		MSF-1000		MSF-1400	
Soft starter rating according to AC35a, see chapter 4. page 13	$\begin{aligned} & 5.0-30: \\ & 50-10 \\ & \text { heavy } \end{aligned}$	$\begin{gathered} 3.0-30: \\ 50-10 \end{gathered}$ normal/ llght	$\begin{aligned} & \text { 5.0-30: } \\ & 50-10 \\ & \text { heavy } \end{aligned}$	$\begin{gathered} 3.0-30: \\ 50-10 \end{gathered}$ normal/ Ilght	$\begin{aligned} & 5.0-30: \\ & 50-10 \\ & \text { heavy } \end{aligned}$	$\begin{aligned} & 3.0-30: \\ & 50-10 \end{aligned}$ normal/ light	$\begin{aligned} & \text { 5.0-30: } \\ & \text { 50-10 } \\ & \text { heavy } \end{aligned}$	3.0-30: normal/	$\begin{aligned} & \text { 5.0-30: } \\ & \text { 50-10 } \\ & \text { heary } \end{aligned}$	3.0-30: $50-10$ normal/	$\begin{aligned} & \text { 5.0-30: } \\ & 50-10 \\ & \text { heavy } \end{aligned}$	$\begin{gathered} 3.0-30: \\ 50-10 \\ \text { normal/ } \\ \text { light } \end{gathered}$
Rated current of soft starter (A)	450	549	570	710	710	835	835	960	1000	1125	1400	1650
Recommended motor size (kW) for 400 V	250	315	315	400	400	450	450	560	560	630	800	930
Recommended motor size (kW) for 525 V	315	400	400	500	500	560	600	630	660	710	1000	1250
Order no. for supply voltage ($100-240 \mathrm{~V}$)	01-1341-01		01-1315-01		01-1316-01		01-1317-01		01-1318-01		01-1319-01	
Order no. for supply voltage ($380-550 \mathrm{~V}$)	01-1314-02		01-1315-02		01-1316-02		01-1317-02		01-1318-02		01-131902	
$3 \times 200-690 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ Model	MSF-450		MSF570		MSF-710		MSF-835		MSF-1000		MSF-1400	
Rated current of soft starter (A)	450	549	570	640	710	835	835	880	1000	1125	1400	1524
Motor power for 690 V	400	560	560	630	710	800	800		1000	1120	1400	1600
Order no. for supply voltage ($100-240 \mathrm{~V}$)	01-1334-01		01-1335-01		01-1336-01		01.1337.01		01-1338-01		01-133901	
Order no. for supply voltage ($380-550 \mathrm{~V}$)	01-1334-02		01-1335-02		01-1336-02		01-1337-02		01-1338-02		01-1339-02	
Electrical Data												
Recommended wiring fuse (A 1)	500/1 k	630	630/1 k	800	800/1 k	1 k	$1 \mathrm{k} / 1.2 \mathrm{k}$	1 k	1k/1.4 k	1.2 k	1.4 k/1.8 k	1.8 k
Semi-conductor fuses, if required	$1250 \mathrm{~A}$		1250 A		1800 A		2500 A		3200 A		4000 A	
Power loss at rated motor load (W)	1400	1730	1700	2100	2100	2500	2500	2875	3000	3375	4200	4950
Power consumption control card	35 VA											
Mechanical Data												
Dimensions mm HxW $\times \mathrm{D}$ incl. brackets	$532 \times 547 \times 278$		687×640×302		687×640×302		687×640×302		$900 \times 875 \times 336$		900×875×336	
Mounting position (Vertical/Horizontal)	Vert. or Horiz.											
Weight (kg)	46		64		78		80		175		175	
Connection, Busbars Al (bolt)	40x8 (M12)		40×10 (M12)		40×10(M12)		40×10 (M12)		75×10 (M12)		75×10 (M12)	
Cooling system	Fan											
General Electrical Data												
Number of fully controlled phases	3											
Voltage tolerance control	Control +/. 10\%											
Voltage tolerance motor	Motor 200-525 +/-10\%/200-690 + 5\%, -10\%											
Recommended fuse for control card (A)	Max 10 A											
Frequency	$50 / 60 \mathrm{~Hz}$											
Frequency tolerance	+/-10\%											
Relay contacts	$8 \mathrm{~A}, 250 \mathrm{~V}$ resistive load, 3A, 250 V inductive load ($\mathrm{PF}=0.4$)											
Type of protection/Insulation												
Type of casing protection	IP 20								IPOO			
Other General Data												
Åmbient temperatures In operation	0.40 ${ }^{\circ} \mathrm{C}$											
Max.e.g. at $80 \% \mathrm{I}_{\mathrm{N}}$	$50^{\circ} \mathrm{C}$											
In storage	$(-25)-(+70)^{\circ} \mathrm{C}$											
Relative air humidity	95\%, non-condensing											
Max. altitude without derating	(See separate: Technical information 151) 1000 m											
Norms/Standards, Conform to:	IEC 947-4-2, EN 292, EN 60204-1											
EMC, Emission	EN 50081-2, (EN 50081-1 with bypass contactor)											
EMC, Immunity	EN 50082-2											
1) Recommended wiring fuses for:	Heavy (first column): ramp/direct start Normal/Light (second column): ramp start											

Semi-conductor fuses

Always use standard commercial fuses to protect the wiring and prevent short circuiting. To protect the thyristors against short-circuit currents, superfast semiconductor fuses can be used if preferred (e.g. Bussmann type FWP or similar, see table below).

The normal guarantee is valid even if superfast semiconductor fuses are not used.

Type	A	FWP Bussmann fuse
	I't (fuse) \times 1000	
MSF-017	80	2.4
MSF-030	125	7.3
MSF-045	150	11.7
MSF-060	200	22
MSF-075	250	42.5
MSF-085	300	71.2
MSF-110	350	95.6
MSF-145	450	137
MSF-170B	700	300
MSF-210B	700	300
MSF-250B	800	450
MSF-310	800	450
MSF-370	1000	600
MSF-450	1200	2100
MSF-570	1400	2700
MSF-710	1800	5300
MSF-835	2000	
MSF-1000	2500	
MSF-1400	3500	

13. SET-UP MENU LIST

Menu number	Function/Parameter	Range	Par.set	Factory setting	Value	Page
001	Initial voltage at start	25-90\% of U	1-4	30		page 36
002	Start time ramp 1	1.60 sec	1.4	10		page 36
003	Step down voltage at stop	100-40\% U	1-4	100		page 36
004	Stop time ramp 1	oFF, $2-120 \mathrm{sec}$	1-4	oFF		page 36
005	Current	0.0.9999 Amp	-	-		page 36
006	Control mode	1, 2, 3	1.4	2		page 37
007	Extended functions \& metering	oFF, on	$\underline{-}$	oFF		page 38
008	Extended functions	oFF, on	$\underline{\square}$	oFF		page 38
011	Initial voltage start ramp 2	30-90\% U	1.4	90		page 38
012	Start time ramp 2	oFF, 1-60 sec	1-4	OFF		page 38
013	Step down voltage stop ramp 2	100-40\% U	1-4	40		page 38
014	Stop time ramp 2	oFF, 2-120 sec	1-4	oFF		page 38
016	Initial torque at start	0-250\% Tn	1.4	10		page 39
017	End torque at start	50-250\% Tn	1-4	150		page 39
018	End torque at stop	0-100\% Tn	1-4	0		page 39
020	Voltage ramp with current limit at start	oFF, 150-500\% In_{n}	1-4	oFF		page 39
021	Current limit at start	oFF, 150-500\% In_{n}	1-4	oFF		page 40
022	Pump control	oFF, on	1-4	oFF		page 40
023	Remote analogue control	oFF, 1, 2	1-4	oFF		page 41
024	Full voltage start D.O.L	oFF, on	1-4	OFF		page 41
025	Torque control	oFF, 1, 2	1-4	oFF		page 42
030	Torque boost active time	oFF, $0.1-2.0 \mathrm{sec}$	1-4	oFF		page 43
031	Torque boost current limit	300-700\% In_{n}	1-4	300		page 43
032	Bypass	oFF, on	1-4	oFF		page 43
033	Power Factor Control PFC	ofF, on	1-4	OFF		page 46
034	Brake active time	oFF, 1-120 sec	1-4	OFF		page 47
035	Braking strength	100-500\%	1-4	100		page 47
036	Braking methods	1, 2	1-4	1		page 47
037	Slow speed torque	10-100	1-4	10		page 49
038	Slow speed time at start	oFF, 1-60 sec	1.4	oFF		page 49
039	Slow speed time at stop	oFF, 1-60 sec	1-4	oFF		page 49
040	DC-Brake at slow speed	oFF, 1-60 sec	1-4	oFF		page 49
041	Nominal motor voltage	200-700 V	1-4	400		page 50
042	Nominal motor current	$25-150 \% I_{\text {nsoft }} \text { in }$ Amp	$1 \cdot 4$	$I_{\text {nsoft }}$ in A mp		page 50
043	Nominal motor power	$25-300 \%$ of $P_{\text {nsoft }}$ in kW	1-4	$\mathrm{P}_{\text {nsoft }}$ in kW		page 50
044	Nominal speed	500-3600 rpm	1-4	$\mathrm{N}_{\text {nsoft }}$ in rpm		page 50
045	Nominal power factor	0.50-1.00	1-4	0.86		page 50
046	Nominal frequency	$50,60 \mathrm{~Hz}$	\square	50		page 50

Menu number	Function/Parameter	Range	Par.set	Factory setting	Value	Page
051	Programmable relay K1	1, 2, 3, (4), 5		1		page 51
052	Programmable relay K2	1, 2, 3, 4, 5	\cdots	2		page 51
054	Analogue output	OFF, 1, 2	1-4	oFF		page 52
055	Analogue output value	1, 2, 3	1-4	1		page 52
056	Scaling analogue output	5-150\%	1.4	100		page 52
057	Digital input selection	oFF, 1, 2, 3, 4	1-4	oFF		page 53
058	Digital input pulses	1-100	1-4	1		page 53
061	Parameter set	0, 1, 2, 3, 4	\cdots	1		page 54
071	Motor PTC input	no, YES	------	no		page 55
072	Internal motor thermal protection class	oFF, 2 - 40 sec	-------	10		page 55
073	Used thermal capacity	0.150\%	-	-----		page 55
074	Starts per hour limitation	oFF, 1-99/hour	1-4	oFF		page 55
075	Locked rotor alarm	oFF, 1.0-10.0 sec	1-4	oFF		page 55
081	Voltage unbalance alarm	2-25\% Un	1-4	10		page 56
082	Response delay voltage unbalance alarm	oFF, 1-60 sec	1-4	oFF		page 56
083	Over voltage alarm	100-150\% Un	1-4	115		page 56
084	Response delay over voltage alarm	oFF, 1-60 sec	1-4	oFF		page 56
085	Under voltage alarm	$75-100 \% U_{n}$	1-4	85		page 57
086	Response delay under voltage alarm	oFF, 1.60 sec	1-4	OFF		page 57
087	Phase sequence	L123, L321	\cdots	----		page 57
088	Phase reversal alarm	oFF, on	-	oFF		page 57
089	Auto set power limits	no, YES	$\cdots-$	no		page 57
090	Output shaft power	0.0-200.0\% Pn	------	-		page 57
091	Start delay power limits	1-250 sec	1-4	10		page 58
092	Max power alarm limit	5-200\% Pn	1-4	115		page 58
093	Max alarm response delay	oFF, $0.1-25.0 \mathrm{sec}$	1-4	oFF		page 58
094	Max power pre-alarm limit	5-200\% Pn	1-4	110		page 58
095	Max pre-alarm response delay	ofF, 0.1-25.0 sec	1-4	oFF		page 58
096	Min pre-alarm power limit	$5 \cdot 200 \% \mathrm{Pn}$	1-4	90		page 58
097	Min pre-alarm response delay	oFF, $0.1-25.0 \mathrm{sec}$	1-4	oFF		page 59
098	Min power alarm limit	$5 \cdot 200 \% \mathrm{Pn}$	1-4	85		page 59
099	Min alarm response delay	oFF, $0.1-25.0 \mathrm{sec}$	1-4	oFF		page 59
101	Run at single phase input failure	no, YES	1-4	no		page 61
102	Run at current limit time-out	no, YES	1-4	no		page 61
103	Jog forward enable	oFF, on	1-4	OFF		page 61
104	Jog reverse enable	oFF, on	1-4	oFF		page 61
105	Automatic return menu	OFF, 1-999	-	oFF		page 62
111	Serial comm. unit address	1-247	-	1		page 62
112	Serial comm. baudrate	2.4-38.4 kBaud	-	9.6		page 62

Menu number	Function/Parameter	Range	Par.set	Factory setting	Value	Page
113	Serial comm. parity	0,1	-	0		page 62
114	Serial comm. contact broken	oFF, 1, 2	-	1		page 62
199	Reset to factory settings	no, YES	\cdots	no		page 63
201	Current	0.0-9999 Amp	$\underline{\square}$	-----		page 63
202	Line main voltage	0-720V	-	------		page 63
203	Output shaft power	-9999-9999 kW	-	---------		page 63
204	Power factor	0.00-1.00	- -	\square		page 63
205	Power consumption	0.000-2000 MWh	-	\cdots		page 63
206	Reset power consumption	no, YES	--	no		page 64
207	Shaft torque	-9999.9999 Nm	-	-		page 64
208	Operation time	Hours	- .-.-	\cdots		page 64
211	Current phase L1	0.0-9999 Amp	-	---		page 64
212	Current phase L2	0.0-9999 Amp	-------	$\underline{-}$		page 64
213	Current phase L3	0.0-9999 Amp	-	-		page 64
214	Line main voltage L1-L2	0.720 V	-	\cdots		page 64
215	Line main voltage L1-L3	0.720 V	-	-----		page 64
216	Line main voltage L2-L3	0-720V	\cdots	-		page 64
221	Locked keyboard info	no, YES	---3	no		page 65
901	Alarm list, Latest error	F1 - F16	--------	---		page 65
902-915	Alarm list, Older error in chronological order	F1-F16	\cdots	$\cdots-\cdots$		page 65

Explanation of units:
U Input line voltage
Un Nominal motor voltage.
In Nominal motor current.
Pn Nominal motor power.
Nn Nominal motor speed.
Tn Nominal shaft torque.
Insoft Nominal current soft starter.
Pnsoft Nominal power soft starter.
Nnsoft Nominal speed soft starter.
Calculation shaft torque

$$
T_{n}=\frac{P_{n}}{\left(\frac{N_{n}}{60} \times 2 \pi\right)}
$$

NOTE! The six main functions for motor control, menus 020-025, can only be selected one at a time.
Numerics
2-wire start/stop 37
3-wire start/stop 37
A
Above max power limit 67
Alarm category 67
Alarm list 65
Alarm reset 23
Ambient temperatures. $10,20,74,75$,77
analogue control 32
Analogue input 32, 41
Analogue output 32, 52
Analogue output gain 52
Analogue output value 52
Auto set power linits 57
automatic reset 37
Automatic return menu 62
B
Basic parameter setting 10
Below min power limit 67
Brake method 47
Braking Strenght 47
Braking time 46
Busbars 25, 26
Bypass 43
Bypass contactor 44
C
Cabinet 24
Checklist 10
Clickson thermistor 32
Combination matrix 19
Complaint 7
Confirm setting 23
Connections 28, 32
Control mode 23, 37
Control voltage 32
control voltage 33
Control voltage connection 28, 31
Cooling fins 24
cos phi 50
Current 63
Current in phase L1 64
Current in phase L2 64
Current in phase L3 64
Current limit 39
Current limit time-out 61
Current transformer 45
D
D.O.L start 41
DC-brake 46
DC-Brake at slow speed 49
Decrease value 23
Decrease value of setting 23
Device connections 28, 31
different operation situation 22
Digital inputs 32
Dimension 25, 74
DIN VDE 0100 24
Direct On Line start 41
Dismantling 2
Display next window 23
Display previous window 23
Dual voltage ramp 38
E
Electrical characteristic 32
Electrical Data $74,75,76,77$
EMC $74,75,76,77$
Emergency 2
End torque 39
F
Factory settings 63
Features 9
Forward/reverse 34
Free circulation of air 24
frequency 50
Frequency inverter 20
Front cover 21
Full speed not reached 67
Full voltage 51
Full voltage start 41
Function 79
G
General Data 74
General description 21
H
Heat dissipation 20
High ambient temperatures 43
I
Increase value 23
Increase value of setting 23
Initial torque 39
Initial voltage at start ramp 1 36
Initial voltage at start ramp 2 38
INSPECTION AT DELIVERY 7
Installation 24
Insulation test 20
J
JOG Forward 23, 61
JOG fwd/rev 23
JOG Reverse 23, 61
Jumper J1 41
Jumper J? 52
KKeyboard23
Keyboard lock 23, 65
keys 23
L
LED display 22
Live circuit components 24
Load monitor 57
Locked rotor 67
Low load 20
M
Main functions 81
Mains contactor 10
Mains supply 28, 31
Mains voltage 10
MAINTENANCE 71
Matrix 19
Max power alarm linit 58
Max power pre-alarm limit 58
Max pre-alarm response delay 58
Mechanical Data $.74,75,76,77$
Menu
001 36
002 11, 36
003 36
004 11, 36
005 12, 36
006 12, 37
007 38
008 38
011 38
012 38
013 38

051 51	Motor current 50	Q
052 51	Motor data 50	Quick Set-up 10
054 52	Motor power 50	
055 52	Motor power supply 28, 31	R
056 52	Motor protection, overload 55, 67	Rating plate 10
057 53	Motor shaft torque 64	Recyclable material 2
058 53	Motor speed 50	Regular maintenance 71
061 54	Motor terminal open 67	Relay K1 32, 51
071 55	Motor voltage 50	Relay K2 32
072 55	MOUNTING 24	Relay K3 32
073 56	MOUNTING/WIRING 24	Remote 23
074 56		Reset 23
075 56	N	
081 56	Next .. 23	Response delay max alarm 58
082 56	Nominal frequency 11	RMS current 36,63
083 56	Nominal motor cos phi 11	RMS main voltage 63
084 56	Nominal motor current 11	Rotating loads 20
085 57	Nominal motor power 11	Ruvring motors 20
086 57	Nominal motor speed 11	Running-LED 22
087 57	Nomis/Standards 74, 75, 76, 77	
088 57	NTC rhermistor 32	S
089 57		
090 57	0	Safety measures
091 58	Open thyristor 67	Scrapping 2
092 58	Operation 51	Selection of control mode 12
093 58	Operation time63, 64	Semiconductor fuses 33, 78
094 ... 58	Operation/Set-up 23	Serial conm. 23
095 .. 58	Operator panel 21	Serial communication broken 67
096 .. 59	Output motor shaftpower 63	Shaftpower 57, 63
098 ... 59	Output shaftpower 57, 63	Shielded motor cable 20
099 ... 59	Over voltage 56, 67	Shorted thyristor 67
101 ... 61		Simple soft start and soft stop 10
102 .. 61	P	Slip ring motors 20
103 .. 61	Parallel 20	Slow blow fuses 33
104 ... 61	Parallel cables 73	Slow speed time at start 49
	Parameter 79	Slow speed time at stop 49
199 ... 63	Parameter Set 32, 54	Slow speed torque 48
201 63	PFC ... 46	Small motor 20
202 ... 63	Phase compensation capacitor 20	Softbrake 51
203 .. 63	Phase input failure 67	Sofistart overheated 67
	Phase loss 61	Spare parts 2
205 ... 63	Phase reversal alarm 67	standard commercial fuses 78
206 .. 64	Phase sequence 57	St:undard wiring 10, 33
207 .. 64	Pole-changing contactor 20	Standards 6
208 64	Potentiometer 32	Start command 22
211 .. 64	Power consumption 63	Start delay power limits 58
212 ... 64	Power factor 63	Start ramp 1 36
213 ... 64	Power Factor Control 46	Start ramp 2 38
214 ... 64	Power loss 10	Start the motor 12
15 ... 64	PPU unit 21	Start time ramp 1 11
216 .. 64	Pre-alarm 51, 58	Start/Stop 12, 23
221 ... 23,65	Prevent damage to the thyristors 24	Start/stop combination 19
901 ... 65	Previous 23	Start/stop/reset from keyboard 12
RMS current read-out 12	Programmable relay 51	Start/stop-LED 22
Mernu expansion 38	Progranming and presentation unit	Starting 12
Menu Structure 22	(PPU) 21	STAR TING/OPERATING 79
Min alanu response delay 59	protection/insulation ... 74, 75, 76, 77	Starts per hour 67
Min power alarm limit 59	Protective earth 28, 31	Stars per hour limitation 56
Min power pre-alam linit 59	PTC 55	Step down voltage in stop ramp 2 .. 38
Min pre-alarm response delay 59	PTC Thernustor input 32	Step down voltage stop ramp $1 \ldots \ldots .36$
Minimum free space \qquad 24, 25 Motor	Pump control 40	Stop ramp 1

Stop ramp time 2 38
Stop time ramp 1 11
storage 7
Supply voltage 32, 74
switch 2
Switch the device off 2
Switch-off procedures 2
T
TECHNICAL DATA 74
Terminal 32
Terminal clamp 78
Terminals 32
Thermal capacity 56
Thermal protection 55
Tightening torque 25
Torque boost active time 43
Torque boost current limit 43
Torque booster 43
Torque control 42
Trained personnel 2, 10
Transport 7
TROUBLESHOOTING 68
Two speed motor 20
U
Under voltage 57, 67
Unpacking 7
v
VIEW OPERATION 63
Voltage 63
Voltage unbalance 56, 67
w
Weight 74
Wiring circuit 33
Wiring example 34

REPRESENTATION

ADL Co.
P.O. Box 47

125040 MOSCOW
Russia
Tel. 00007-095268 7423
Fax 00007-095268 0348
rouslan@adiserv.aha.ru
Airtronik drives
Alte Landstrasse 384
CH 8708 Männendorf/ ZH
Schweiz
Tel. +4119207406
Fax. +4119203689
airtronik_ch@hotmail.com
AUTOMATECH Sp.zo.o
ul. Ry zowa 84
PL-02482 OPACZ-KOLONIA
Poland
Tel. 0048-22-723 0662
Fax 0048-22-7230606
b.kolodziejczyk@automatech.it.pl

Cyclect Holdings Pte Ltd
33 Tuas View Crescent
Singapore 637654
Singapore
Phone: +65 2656833
Fax: +65 2640897
info@cyclect.com.sg
Elpro Drive, S. R. O.
ul. Miru 3
CZ 73961 TRINEC
Tjeckien Republic
Tel. 00420W 659434661
Fax 00420W 659325864
agorgol@elprocz.cz
Emotron AB
Box 22225
SE-250 24 HELSINGBORG

Sweden

Tel. +46 42169900
Fax +46 42169949
info@emotron.com
Emotron Antriebssysteme GmbH
Goethestrasse 6
38855 WERNIGERODE

Germany

Tel. 0049-3943 92050
Fax 0049-3943 92055
info@emotron-as.de
Emotron B.V.
P.O. Box 132

5531 NX BLADEL
Holland
Tel. 0031-497 389222
Fax 0031-497 386275
info@emotron.n!

Emotron EHFI SA
Aribau 229
ES-08021 BARCELONA
Spain
Tel. 0034932091499
Fax 0034-93 2091245
emotron@emotron.es

Emotron Inc
3440 Granite Circle
TOLEDO, OH 43617
USA
Tel. 001- (419) $841-7774$
Fax 001- (419) 843-5816
paul.hackett@usa-motron.com

Emsby
27 Rodwell Street
QUE - 4108 ARCHERFIELD
Australia
Tel. 0061-7 32742566
Fax 0061-7 32742387
dkirkegaard@emsby.com

Energopro GM
52321 Chicherin St
220029 Minsk
Belarus
Tel:+375 172394079, +375 172394218 ,
+375 172345293
Fax: +375 172394949
energopro@tut.by
Esquire Engineering sdn bhd
13, JIn Jurutera U1/23, Seksyen U1
Hicom-Glenmarie Industrial Park
40000 Shah Alam SELANGOR
Malaysia
Tel. 0060-3 5191958
Fax 0060-35191960
barry_h@tm.net.my
HEDTEC OY
P.O.B 110

SF-00201 HELSINGFORS
Finland
Tel. 00358-9682881
Fax 00358-9674918
kaj.nyberg@hedengren.fi
Ingeniōr Ivar Pettersen AS
Postboks 166
N3001 DRAMMEN
Norway
Tel. 0047-32 212121
Fax 0047-32 212199
lars.hennum@pettersen.no
Jolly Electrical Pvt Ltd
S-09, "ARIES" Complex,
87, Sampatrao Colony,
B.P.C Road,

Vadodara 390007
India
Tel: +91-265 233 4634/231 0990
Fax: +91-265 2335492
jolly@wilnetonline.net
K.K. EमFi

2-18-4 Hagoromocho
1900021 Tachakawa
J- TOKYO
Japan
Tel. 0081-42 5288820
Fax 0081-42 5288821
sato.hiroyuki@el-fi.co.jp
MAS for Eng. \& Trad
From Tahreer St
12, aAbee Ema ma St
DOKKI GIZA
Egypt
Tel. 0020-2 3357947
Fax 0020-23357948

Mohamad Eid Kari
Marjeh -square, Euphorat st. Dagestani
Bld. 1st. FI. POB 31203
DAMASKUS
Syria
Tel. 00963-11 2223867
Fax 00963-11 2245425

Pardis International
Golbarg W. Kerman
S. Rahmati E. No. 202

TEHERAN
Iran
Tel. 0098-217838571
Fax 0098-217838571
mehraban@irtp.com
SAEG Controls S.A.C
Av. 6 de Agosto 1137
Jesus Maria - LIMA
Peru
Tel: +5113320049
Fax: +5113320606
fkatayama@saeg.com
Saftronics (PTY) LTD
27 Heronmere Road
P 0 Box 38045
2016 BOOYSENS
South Africa
Tel. 0027-11 4341345
Fax 0027-11434 1359
rann@pixie.co.za
TENSON Engineering Ltd
Room 908, Nan Fung Commercial Center
19 LAM LOK St
KOWLOON BAY
Hong Kong
Tel. +852 27580878
Fax +852 27595335
sammy@tenson.com.hk
Variadores S.A.
Avenida 37 (Ciudad de Quito) \# 82-05
Bogota, D.C. Colombia
Tel: +5716357288
Fax: +5716113872
ventas@variadores.com.co
WELLFORD CHILE S.A.
ENCALA 103645
Madrid No 1602 - Santiago
SANTIAGO
Chile
Tel. 0056-2 5562655
Fax 0056-2 5563528
encala@hotmail.com
Voltampere s.a.
2nd kIm Lagada-Redina
GR-57200 THESSALONIK
Greece
Tel. 0030-394 26188
Fax 0030-394 26189
automation@voltampere.g
osolenTED กit:

Emotron AB
Mörsaregatan 12
SE-250 24 Helsinghorg, Sweden
Tel: +46 42169900
Fax: +46 42169949
E-mail: info@emotron.com
Internet: www.emotron.com

QUICK INSTALLATION CARD - MSF

Fig. 1 Standard wiring.

Fig. 2 Connections on the PCB, control card.

Table $1 \quad P C B$ Terminals

Terminal	Function	Electrical characterstics
01	Supply voltage	$\begin{aligned} & 100-240 \mathrm{VAC} \pm 10 \% / 380-500 \mathrm{VAC} \\ & \pm 10 \% \end{aligned}$
02		
PE	Gnd	$\stackrel{1}{=}$
11	Digital inputs for start/stop and reset.	$0-3 \mathrm{~V} \rightarrow->0 ; 8-27 \mathrm{~V} \rightarrow \mathrm{C}$ 1. Max. 37 V for 10 sec . impedance to $0 \mathrm{VDC}: 2.2 \mathrm{k} \Omega$
12		
13	Supply/control voltage to PCB terminal 11 and $12,10 \mathrm{k} \Omega$ potentiometer, etc.	+12 VDC $\pm 5 \%$. Max. current from +12 VDC: 50mA. Short circuit proof.
14	Remote analogue input control, $0-10 \mathrm{~V}, 2-10 \mathrm{~V}, 0-20 \mathrm{~mA}$ and 4-20 $\mathrm{mA} /$ digital input.	Impedance to terminal 15 (0 VDC) voltage signal: $125 \mathrm{k} \Omega$, current sig. nal: 100Ω
15	GND (common)	0 VDC
16	Digital inputs for selection of parameter set.	$0-3 \mathrm{~V}->0 ; 8-27 \mathrm{~V} \rightarrow 1$. Max. 37 V for 10 s . Impedance to $0 \mathrm{VDC}: 2.2 \mathrm{k} \Omega$
17		
18	Supply/control voltage to PCB terminal 16 and $17,10 \mathrm{k} \Omega$ potentiometer, etc.	+12 VDC $\pm 5 \%$. Max. current from $+12 \mathrm{VDC}=50 \mathrm{~mA}$. Short circuit proof.
19	Remote analogue output control	Analogue Output contact: 0-10V, 2-10V; min load impedance $700 \Omega 0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$;max load impedance 750Ω
21	Programmable relay K1. Factory setting is "Operation" indication by closing terminal 21-22.	1-pole closing contact, 250 VAC 8 A or 24 VDC 8 A resistive, 250 VAC, 3A inductive.
22		
23	Programmable relay K2. Factory setting is "Full voltage" indication by closing terminal 23-24.	1 -pole closing contact, 250 VAC 8A or 24 VDC 8 A resistive, 250 VAC, 3 A inductive.
24		
31	Alarm relay K3, closed to 33 at alarm.	1-pole change over contact, 250 VAC 8 A or 24 VDC $8 A$ resistive. 250 VAC, 3A inductive.
32	Alarm relay K3, opened at alarm.	
33	Alarm relay K3, common terminal.	
69.70	PTC Thermistor input	Alarm level $2.4 \mathrm{k} \Omega$ Switch back level $2.2 \mathrm{k} \Omega$.
71-72*	Clickson thermistor	Controlling soft starter cooling fine temperature MSF-170-MSF-835
73-74*	NTC thermistor	Temperature measuring of soft starter cooling fine
75	Current transformer input. cable S1 (blue)	Connection of L1 or T1 phase current transformer
76	Current transformer input, cable S1 (blue)	Connection of L3, T3 phase (MSF 017 - MSF 250) or L2, T2 phase (MSF 310 - MSF 1400)
77	Current transformer input, cable S2 (brown)	Common connection for terminal 75 and 76
78*	Fan connection	24 VDC
79*	Fan connection	O VDC

*Internal connection, no customer use.

Fig. 3 Menu structure.

Menu nt.	Function/Parameter	Range	Par. set	Factory setting	Page
001	Initial voltage at start	25.90\% of U	1-4	30	page 36
002	Start time ramp 1	1.60 s	1-4	10	page 36
003	Step down voltage at stop	100.40\% U	1.4	100	page 36
004	Stop time ramp 1	ofF, 2-120 s	1.4	OFF	page 36
005	Current	$0.0 \cdot 9999$ Amp	-	-	page 36
006	Control mode	1, 2, 3	1.4	2	page 37
007	Extended functions \& meter. ing	ofF, on	-	oFF	page 38
008	Extended functions	ofF, on	-	OFF	page 38
011	Initial voltage start ramp 2	30.90\% U	1.4	90	page 38
012	Start time ramp 2	ofF, 1.60 s	1.4	ofF	page 38
013	Step down voltage stop ramp 2	100-40\% U	1 - 4	40	page 38
014	Stop time ramp 2	oFF, 2-120 s	1-4	oFF	page 38
016	Initial torque at start	0.250\% Tn	1-4	10	page 39
017	End torque at start	50-250\% Tn	1.4	150	page 39
018	End torque at stop	0-100\% Tn	1.4	0	page 39
020	Voltage ramp with current limit at start	$\begin{gathered} \hline \text { OFF, } 150 . \\ 500 \% I_{n} \end{gathered}$	1 - 4	ofF	page 39
021	Current limit at start	$\begin{aligned} & \text { off, } 150 . \\ & \left.500 \%\right\|_{n} \end{aligned}$	1.4	oFF	page 40
022	Pump control	ofF, on	1.4	ofF	page 40
023	Remote analogue control	ofF, 1. 2	1.4	ofF	page 41
024	Full voltage start D.O.L	oFF, on	1.4	oFF	page 41
025	Torque control	oFF, 1, 2	1-4	OFF	page 42
030	Torque boost active time	OFF, 0.1-2.0 s	1.4	ofF	page 43
031	Torque boost current limit	$300 \cdot 700 \% \mathrm{In}_{\mathrm{n}}$	1.4	300	page 43
032	Bypass	ofF. on	1.4	ofF	page 43
033	Power Factor Control PFC	ofF, on	1.4	OFF	page 46
034	8raking time	OFF, 1-120 s	1.4	oFF	page 47
035	Braking strength	100-500\%	1.4	100	page 47
036	Braking methods	1, 2	1.4	1	page 47
037	Slow speed torque	$10 \cdot 100$	1.4	10	page 49
038	Slow speed time at start	ofF. 1-60 s	1.4	OFF	page 49
039	Slow speed time at stop	OFF, 1.60 s	1-4	OFF	page 49
040	DC-Brake at slow speed	OFF, 1.60 s	1.4	OFF	page 49
041	Nominal motor voltage	$200 \cdot 700 \mathrm{~V}$	1.4	400	page 50
042	Nominal motor current	$\begin{aligned} & 25-150 \% I_{\text {nsoft }} \\ & \text { in Amp } \end{aligned}$	1.4	$\begin{gathered} \mathrm{I}_{\text {Insoft }} \text { in } \\ \text { Amp } \end{gathered}$	page 50
043	Nominal motor power	$\begin{aligned} & 25 \cdot 300 \% \text { of } \\ & \mathrm{P}_{\text {nsott }} \mathrm{in} \mathrm{~kW} \end{aligned}$	1 - 4	$P_{\text {nsoft }} \text { in }$	page 50
044	Nominal speed	$500 \cdot 3600 \mathrm{rpm}$	1 - 4	$\begin{aligned} & \mathrm{N}_{\text {nsoft }} \\ & \text { in rpm } \end{aligned}$	page 50
045	Nominal power factor	$0.50 \cdot 1.00$	1.4	0.86	page 50
046	Nominal frequency	$50,60 \mathrm{~Hz}$		50	page 50
051	Programmable relay K1	1, 2, 3, (4), 5		1	page 51
052	Programmable relay K2	1, 2, 3, 4, 5	-	2	page 51
054	Analogue output	off, 1, 2	1.4	OFF	page 52
055	Analogue output value	1, 2. 3	1.4	1	page 52
056	Scaling analogue output	5-150\%	1-4	100	page 52
057	Digital input selection	OFF, 1, 2, 3, 4	1-4	OFF	page 53
058	Digital input pulses	1-100	1-4	1	page 53
061	Parameter set	0, 1, 2, 3, 4	-	1	page 54
071	Motor PTC input	no, YES	-	no	page 55
072	Internal motor thermal protection class	oFF, 2-40 sec	-	10	page 55
073	Used thermal capacity	0.150\%		-	page 55
074	Starts per hour limitation	oFF. 1-99/hour	1 -4	oFF	page 55

Menu nf	Function/Parameter	Range	Par. set	Factory setting	Page
075	Locked rotor alarm	OFF, 1.0-10.0 s	1.4	oFF	page 55
081	Voltage unbalance alarm	$2 \cdot 25 \% U_{n}$	1.4	10	page
082	Response delay voltage unbalance alarm	oFF, 1-60 sec	1-4	oFF	page 5
083	Over voltage alarm	$100 \cdot 150 \% U_{n}$	1.4	115	page 56
084	Response delay over voltage alarm	OFF, 1-60 sec	1.4	OFF	page 56
085	Under voltage alarm	75-100\% Un	1.4	85	page 57
086	Response delay under volt age alarm	oFF, 1-60 sec	1.4	oFF	page 57
087	Phase sequence	L123, L321		-	page 57
088	Phase reversal alarm	ofF, on		oFF	page 57
089	Auto set power limits	no, YES		no	page 57
090	Output shaft power	0.0-200.0\% Pn			page 57
091	Start delay power limits	1.250 sec	1-4	10	page 58
092	Max power alarm limit	5.200\% Pn	1.4	115	page 58
093	Max alarm response delay	ofF, 0.1-25.0 s	1.4	ofF	page 58
094	Max power pre-alarm limit	5-200\% Pn	1.4	110	page 58
095	Max pre-alarm response delay	oFF, 0.1-25.0 s	1.4	oFF	page 58
096	Min pre-alarm power limit	5-200\% Pn	1.4	90	page 58
097	Min pre-alarm response delay	off, 0.1-25.0 s	1.4	oFF	page 59
098	Min power alarm limit	5-200\%Pn	1.4	85	page
099	Min alarm response delay	ofF, 0.1-25.0 s	1.4	oFF	page 59
101	Run at single phase input failure	no, YES	1.4	no	page 61
102	Run at current limit time-out	no, YES	1-4	no	page 61
103	Jog forward enable	oFF, on	1.4	oFF	page 61
104	Jog reverse enable	oFF, on	1-4	oFF	page 61
105	Automatic return menu	oFF, 1-999		oFF	page 62
111	Serial comm. unit address	1-247		1	page 62
112	Serial comm. baudrate	$\begin{gathered} 2.4-38.4 \\ \text { kBaud } \end{gathered}$		9.6	page 62
113	Serial comm. parity	0, 1		0	page 62
114	Serial comm. contact broken	oFF, 1, 2		1	page 62
199	Reset to factory settings	no, YES		no	page 63
201	Current	0.0-9999 Amp			page 63
202	Line main voltage	0.720 V		-	page 63
203	Output shaft power	-9999-9999 kW			pag 6
204	Power factor	$0.00 \cdot 1.00$		-	page
205	Power consumption	$\begin{gathered} 0.000-2000 \\ \mathrm{MWh} \end{gathered}$		-	page 63
206	Reset power consumption	no, YES		no	page 64
207	Shaft torque	-9999-9999Nm			page 64
208	Operation time	Hours		-	page 64
211	Current phase L1	0.0-9999 Amp		-	page 64
212	Current phase L2	$0.0-9999$ Amp		-	page 64
213	Current phase L3	$0.0 \cdot 9999 \mathrm{Amp}$		-	page 64
214	Line main voltage L1-L2	0.720 V		-	page 64
215	Line main voltage L1-L3	0.720 V		-	page 64
216	Line main voltage L2-13	0.720 V		-	page 64
221	Locked keyboard info	no, YES	-	no	page 65
901	Alarm list, Latest error	F1-F16		-	page 65
$\begin{aligned} & 902 \\ & 915 \\ & \hline \end{aligned}$	Alarm list, Older error in chronological order	F1-F16			page 65

PARAMETER SET LIST-MSF

		Factory setting	Parameter Sets			
			1	2	3	4
001	Initial voltage at start	30				
002	Start time ramp 1	10				
003	Step down voltage at stop	100				
004	Stop time ramp 1	OFF				
005	Current	-		-	$\underline{\square}$	-
006	Control mode	2				
007	Extended functions \& metering	OFF		Common for all parameter sets		
008	Extended functions	ofF		Common for all parameter sets		
011	Initial voltage start ramp 2	90				
012	Start time ramp 2	OFF				
013	Step down voltage stop ramp 2	40				
014	Stop time ramp 2	oFF				
016	Initial torque at start	10				
017	End torque at start	150				
018	End torque at stop	0				
020	Voltage ramp with current limit at start	OFF				
021	Current limit at start	OFF				
022	Pump control	OFF				
023	Remote analogue control	oFF				
024	Full voltage start D.0.L	OFF				
025	Torque control	ofF				
030	Torque boost active time	oFF				
031	Torque boost current limit	300				
032	Bypass	OFF				
033	Power Factor Control PFC	oFF				
034	Braking time	OFF				
035	Braking strength	100				
036	Braking methods	1				
037	Slow speed torque	10				
038	Slow speed time at start	OFF				
039	Slow speed time at stop	OFF				
040	DC-Brake at slow speed	oFF				
041	Nominal motor voltage	400				
042	Nominal motor current	$I_{\text {nsoft }}$ in Amp				
043	Nominal motor power	$\rho_{\text {nsot }}$ in kW				
044	Nominal speed	$\mathrm{N}_{\text {nsoft }}$ in cpm				
045	Nominal power factor	0.86				
046	Nominal frequency	50		Common for all parameter sets		
051	Programmable relay K1	1		Common for all parameter sets		
052	Programmable relay K2	2		Common for all parameter sets		
054	Analogue output	ofF				
055	Analogue output value	1				
056	Scaling analogue output	100				
057	Digital input selection	oFF				
058	Analogue input pulses	1				
061	Parameter set	1	-	- - -	---	-

MODEL G306 - GRAPHIC COLOR LCD OPERATOR INTERFACE TERMINAL WITH QVGA DISPLAY AND TOUCHSCREEN

FOR USE IN HAZARDOUS LOCATIONS:
Class I, Division 2, Groups A, B, C, and D Class II, Division 2, Groups F and G Class III, Division 2

- CONFIGURED USING CRIMSON SOFTWARE (VERSION 2.0 OR LATER)
- UP TO 5 RS-232/422/485 COMMUNICATIONS PORTS (2 RS-232 AND 1 RS-422/485 ON BOARD, 1 RS-232 AND 1 RS422/485 ON OPTIONAL COMMUNICATIONS CARD)
- 10 BASE T/100 BASE-TX ETHERNET PORT TO NETWORK UNITS AND HOST WEB PAGES
- USB PORT TO DOWNLOAD THE UNIT'S CONFIGURATION FROM A PC OR FOR DATA TRANSFERS TO A PC
- UNIT'S CONFIGURATION IS STORED IN NON-VOLATILE MEMORY (4 MBYTE FLASH)
- COMPACTFLASH ${ }^{\circledR}$ SOCKET TO INCREASE MEMORY CAPACITY
- 5.7-INCH STN PASSIVE MATRIX 256 COLOR QVGA 320×240 PIXEL LCD
- 5-BUTTON KEYPAD FOR ON-SCREEN MENUS
- THREE FRONT PANEL LED INDICATORS
- POWER UNIT FROM 24 VDC $\pm 20 \%$ SUPPLY
- resistive analog touchscreen

GENERAL DESCRIPTION

The G306 Operator Interface Terminal combines unique capabilitics normally expected from high-end units with a very affordable price. It is built around a high performance core with integrated functionality. This core allows the G306 to perform many of the normal features of the Paradigm range of Operator Interfaces while improving and adding new features.

The G306 is able to communicate with many different types of hardware using high-speed RS232/422/485 communications ports and Ethernet 10 Base T/100 Base-TX communications. In addition, the G306 features USB for fast downloads of configuration files and access to trending and data logging. A CompactFlash socket is provided so that Flash cards can be used to collect your trending and data logging information as well as to store larger configuration files.

In addition to accessing and controlling of external resources, the G306 allows a user to casily view and enter information. Users can enter data through the touchscreen and/or front panel 5-button keypad.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the manual or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment conneeted to it. If equipment is used in a manner not specificd by the manufacturer, the protection provided by the equipment may be impaired.

Do not use the controller to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the controller.

The protective conductor terminal is bonded to conductive parts of the equipment for safcty purposes and must be connected to an external protective carthing system.

WARNING - EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION 2/CLASS H, DIVISION 2/CLASS III, DIVISION 2

CAUTION: Risk Of Danger. Read complete instructions prior to installation and operation of the unit.

CONTENTS OF PACKAGE

- G306 Operator Interface.
- Panel gasket.
- Template for pancl cutout.
- Hardware packet for mounting unit into pancl.
- Terminal block for connceting power.

ORDERING INFORMATION

MODEL NO.	DESCRIPTION	PART NUMBER
G306	Operator Interface for indoor applications, textured finish with embossed keys	G306C000
G3CF	$64 \mathrm{MB} \mathrm{CompactFlash} \mathrm{Card}{ }^{5}$	G3CF064M
	256 MB CompactFlash Card ${ }^{5}$	G3CF256M
	512 MB CompactFlash Card ${ }^{5}$	G3CF512M
G3RS	RS232/485 Optional Communications Cards	G3RS0000
G3CN	CANopen Optional Communications Cards	G3CN0000
PSDR7	DIN Rail Power Supply	PSDR7000
SFCRM2	Crimson $2.0{ }^{2}$	SFCRM200
CBL	RS-232 Programming Cable	CBLPROG0
	USB Cable	CBLUSB00
	Communications Cables ${ }^{1}$	CBLxxxxx
DR	DIN Rail Mountable Adapter Products ${ }^{3}$	DRxxxxxx
	Replacement Battery ${ }^{4}$	BAL3R004
G3FILM	Protective Films	G3FILM06

1 Contact your Red Lion distributor or visit our website for complete selection.
2 Use this part number to purchase Crimson on CD with a printed manual, USB cable, and RS-232 cable. Otherwise, download for free from www.redlion.nct.
${ }^{3}$ Red Lion offers RJ modular jack adapters. Refer to the DR literature for complete details.
${ }^{4}$ Battery type is lithium coin type CR2025.
${ }^{5}$ Industrial grade two million write cycles.

[^0]
SPECIFICATIONS

I. POWER REQUIREMENTS:

Must use Class 2 or SELV rated power supply.
Power connection via removable three position terminal block.
Supply Voltage: $\quad+24$ VDC $\pm 20 \%$
Typical Power ${ }^{1}$: $\quad 8 \mathrm{~W}$
Maximum Power ${ }^{2}$: 14 W
Notes:

1. Typical power with +24 VDC, RS232/485 communications, Ethernet communicalions, CompactFlash card installed, and display at full brightness.
2. Maximum power indicates the most power that can be drawn from the G306. Refer to "Power Supply, Requirements" under "Installing and Powering the G306."
3. The G306's circuit common is not connected to the enclosure of the unit. See "Connecting to Earth Ground" in the section "Installing and Powering the G306.'
4. Read "Power Supply Requirements" in the section "Installing and Powering the G306" for additional power supply information.
BATTERY: Lithium coin cell. Typical lifetime of 10 ycars.
5. LCD DISPLAY:

SIZE	5.7- -nch
TYPE	STN
COLORS	256
PIXELS	320×240
BRIGHTNESS	$165 \mathrm{~cd} / \mathrm{m}^{2}$
BACKLIGHT*	$20,000 \mathrm{HR}$ TYP.

*Lifetime at room temperature. Refer to "Display" in "Software/Unit Operation"
4. 5-KEY KEYPAD: for on-screen menus.
5. TOUCHSCREEN: Resistive analog
6. MEMORY:

On Board User Memory: 4 Mbyte of non-volatile Flash memory.
Memory Card: CompactFlash Type II slot for Type I and Type II CompactFlash cards.
7. COMMUNICATIONS:

USB Port: Adheres to USB specification 1.1. Device only using Type B connection.

WARNING - DO NOT CONNECT OR DISCONNECT CABLES WHILE POWER IS APPLIED UNLESS AREA IS KNOWN TO BE NON-HAZARDOUS. USB PORT IS FOR SYSTEM SET-UP AND dIAGNOSTICS AND IS NOT INTENDED FOR PERMANENT CONNECTION.

Serial Ports: Format and Baud Rates for each port are individually software programmable up to 115,200 baud.
PGM Port: RS232 port via RJ12.
COMMS Ports: RS422/485 port via RJ45, and RS232 port via RJI2.
DH485 TXEN: Transmit enable; open collector, $\mathrm{V}_{\mathrm{OH}}=15 \mathrm{VDC}$, $\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V} @ 25 \mathrm{~mA}$ max.
Note: For additional information on the communications or signal common and connections to earth ground please see the "Connecting to Earth Ground" in the section "Installing and Powering the G306."
Ethernet Port: 10 BASE-T / 100 BASE-TX
RJ45 jack is wired as a NIC (Network Interface Card).
Isolation from Ethernct network to G3 operator interface: 1500 Vrms
8. ENVIRONMENTAL CONDITIONS:

Operating Temperature Range: 0 to $50^{\circ} \mathrm{C}$
Storage Temperature Range: -20 to $70^{\circ} \mathrm{C}$
Operating and Storage Humidity: 80% maximum relative humidity (noncondensing) from 0 to $50^{\circ} \mathrm{C}$.
Vibration: Operational 5 to $8 \mathrm{~Hz}, 0.8^{\prime \prime}$ (p-p), 8 to 500 Hz , in X, Y, Z direction, duration: 1 hour, 3 g .
Shock: Opcrational $40 \mathrm{~g}, 9 \mathrm{mscc}$ in 3 directions.
Altitude: Up to 2000 meters.
9. CERTIFICATIONS AND COMPLIANCES:

SAFETY
UL Recognized Component, File \#E179259, UL61010-1, CSA 22.2 No.61010-1 Recognized to U.S. and Canadian requirements under the Component Recognition Program of Underwriters Laboratories, Inc.
UL Listcd, File \#E211967, UL61010-1, UL1604, CSA 22.2 No. 61010.1, CSA 22.2 No. 213-M1987
LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards
Type 4X Enclosure rating (Face only), UL50
IECEE CB Scheme Test Certificate \#US/9737/UL, CB Scheme Test Report \#E179259-V01-S04 Issued by Underwriters Laboratorics Inc. IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use, Part 1.
IP66 Enclosure rating (Face only), IEC 529
ELECTROMAGNETIC COMPATIBILITY
Emissions and Immunity to EN 61326: Electrical Equipment for Measurement, Control and Laboratory use.
Immunity to Industrial Locations:

Electrostatic discharge	EN 61000-4-2	Criterion A 4 kV contact discharge 8 kV air discharge
Electromagnetic RF ficlds	EN 61000-4-3	Critcrion A $10 \mathrm{~V} / \mathrm{m}$
Fast transients (burst)	EN 61000-4-4	Critcrion A 2 kV power 1 kV signal
Surge	EN 61000-4-5	Critcrion A $1 \mathrm{kV} \text { L-L, }$ 2 kV L\&N-E power
RF conducted interference	EN 61000-4-6	Criterion A $3 \mathrm{~V} / \mathrm{mms}$
Emissions:		
Emissions	EN 55011	Class A

Note:

1. Criterion A: Normal operation within specified limits.
2. CONSTRUCTION: Steel rear metal enclosure with NEMA 4XIIP66 aluminum front plate for indoor use only when correctly fitted with the gasket provided. Installation Category II, Pollution Degree 2.
II. MOUNTING REQUIREMENTS: Maximum panel thickness is $0.25^{\prime \prime}$ (6.3 mm). For NEMA 4X/IP66 sealing, a steel panel with a minimum thickness of $0.125^{\prime \prime}$ (3.17 mm) is recommended.
Maximum Mounting Stud Torque: 17 inch-pounds ($1.92 \mathrm{~N}-\mathrm{m}$)
3. WEIGHT: $3.0 \mathrm{lbs}(1.36 \mathrm{Kg})$

DIMENSIONS In inches (mm)

INSTALLING AND PowEring THE G306

MOUNTING INSTRUCTIONS

This operator interface is designed for through-panel mounting. A panel culout diagram and a template are provided. Care should be taken to remove any loose material from the mounting cut-out to prevent that material from falling into the operator interface during installation. A gasket is provided to enable sealing to NEMA 4X/IP66 specification. Install the ten kep nuts provided and tighten evenly for uniform gasket compression.

Note: Tightening the kep muts beyond a maximum of 17 inch-pounds (1.92 N . m) may cause damage to the from ponel.

Each G306 has a chassis ground terminal on the back of the unit. Your unit should be connected to earth ground (protective carth).

The chassis ground is not connected to signal common of the unit. Maintaining isolation between earth ground and signal common is not required to operate your unit. But, other equipment connected to this unit may require isolation between signal common and carth ground. To maintain isolation between signal common and earth ground care must be taken when connecrions are made to the unit. For example, a power supply with isolation between its signal common and carth ground must be used. Also, plugging in a USB cable may conncet signal common and earth ground.'

1. USB's shield may be connected to earth ground at the host. USB's shield in turn may also be connected to signal common.

POWER SUPPLY REQUIREMENTS

The G306 requires a 24 VDC power supply. Your unit may draw considerably less than the maximum rated power depending upon the options being used. As additional features are used your unit will draw inereasing amounts of power. Items that could cause inereases in current are additional communications, optional communications card, CompactFlash card, and other features programmed through Crimson.

In any case, it is very important that the power supply is mounted correctly if the unit is to operate reliably. Please take care to obscrve the following points:

- The power supply must be mounted close to the unit, with usually not more than 6 feet (1.8 m) of cable between the supply and the operator interface. Ideally, the shortest length possible should be used.
- The wire used to connect the operator interface's power supply should be at least 22-gage wire. If a longer cable nun is used, a heavier gage wire should be used. The routing of the cable should be kept away from large contactors: inverters, and other devices which may generate significant electrical noise.
- A power supply with a Class 2 or SELV rating is to be used. A Class 2 or SELV power supply provides isolation to accessible circuits from hazardous voltage levels generated by a mains power supply due to single faults. SELV is an acronym for "safcty extra-low voltage." Safety extra-low voltage circuits shall exhibit voltages safe to touch both under normal operating conditions and after a single fault, such as a breakdown of a layer of basic insulation or after the failure of a single component has occurred.

COMMUNICATING WITH THE G306

CONFIGURING A G306

The G306 is configured using Crimson sofivare. Crimson is available as a free download from Red Lion's website, or it can be purchased on CD. Updates to Crimson for new features and drivers are posted on the website as they become available. By configuring the G306 using the latest version of Crimson, you are assured that your unit has the most up to date feature sel. Crimson software can configure the G306 through the RS232 PGM port, USB port, or Compact Flash.

The USB port is comnceted using a standard USB cable with a Type B connector. The driver needed to use the USB port will be installed with Crinnson.

The RS232 PGM port uses a programming cable made by Red Lion to connect to the DB9 COM port of your computer. If you choose to make your own cable, usc the "G306 Port Pin Out Diagram" for wiring information.

The CompactFlash can be uscd to program a G3 by placing a conliguration file and firmware on the CompactFlash eard. The card is then insened into the target G3 and powered. Refer to the Crimson literature for more information on the proper names and locations of the files.

USB, DATA TRANSFERS FROM THE COMPACTFLASH CARD

WARNING - DO NOT CONNECT OR DISCONNECT CABLES WHILE POWER IS APPLIED UNLESS AREA IS KNOWN TO BE NON-HAZARDOUS. USB PORT IS FOR SYSTEM SET-UP AND DIAGNOSTICS ANO IS NOT INTENDED FOR PERMANENT CONNECTION.
In order to transfer data from the CompactFlash card via the USB port, a driver must be installed on your computer. This driver is installed with Crimson and is located in the folder C:IProgram Files\Red Lion Controls\Crimson 2.00Device after Crimson is installed. This may have already been accomplished if your G306 was configured using the USB port.

Once the driver is installed, connect the G306 to your PC with a USB cable, and follow "Mounting the CompactFlash" instructions in the Crimson 2 uscr manual.

CABLES AND DRIVERS

Red Lion has a wide range of cables and drivers for use with many different communication types. A list of these drivers and cables along with pin outs is available from Red Lion's website. New cables and drivers are added on a regular basis. If making your own cable, refer to the "G306 Port Pin Outs" for wiring information.

ETHERNET COMMUNICATIONS

Ethemet communications can be established at either 10 BASE-T or 100 BASE-TX. The G306 unit's RJ45 jack is wired as a NIC (Network Interface Card). For example, when wiring to a hub or switch use a straight-through cable, but when connecting to another NIC use a crossover cable.

The Ethemet connector contains two LEDs. A ycllow LED in the upper right, and a bi-color greenvamber LED in the upper lefl. The LEDs represent the foilowing statuses:

LED COLOR	DESCRIPTION
YELLOW solid	Link esfablished.
YELLOW flashing	Data being transferred.
GREEN	10 BASE-T Communications
AMBER	100 BASE-TX Communications

On the rear of each unit is a unique 12 -digit MAC address and a block for marking the unit with an IP address. Refer to the Crimson manual and Red Lion's website for additional information on Ethernet communications.

RS232 PORTS

The G306 has two RS232 ports. There is the PGM port and the COMMS port. Although only one of these ports can be used for programming, both ports can be used for communications with a PLC.

The RS232 ports can be used for cither master or slave protocols with any G306 conliguration.

Examples of RS232 communications could involve another Red Lion product or a PC. By using a cable with RJ12 ends on it, and a twist in the cable, RS232 communications with another G3 product or the Modular Controiler can be established. Red Lion part numbers for cables with a twist in them are CBLPROGO ${ }^{\prime}, \mathrm{CBLRLC} 01^{2}$, or CBLRC02 ${ }^{3}$.

G3 RS232 to a PC

Connections			
G3: RJ12	Name	PC: D89	Name
4	COMM	1	DCD
5	Tx	2	Rx
2	Rx	3	Tx
	N/C	4	DTR
3	COM	5	GND
	N/C	6	OSR
1	CTS	7	RTS
6	RTS	8	CTS
	N/C	9	RI

${ }^{1}$ CBLPROG0 can also be used to communicate with cither a PC or an ICM5.
${ }^{2}$ DB9 adapier not included, 1 root long.
${ }^{3}$ DB9 adapter not included, 10 feet long.

G306 PORT PIN OUTS

RS422/485 COMMS PORT

The G306 has one RS422/485 port. This port can be configured to act as cither RS422 or RS485.

Note: All Red Lion devices connect A to A and B to B, except for Paradigm devices. Refer to unwwredlion.net for additional information.

Examples of RS485 2-Wire Connections

> G3 to Red Lion RJ11 (CBLRLC00)
> DLC, IAMS, ITMS, PAXCDC4C

Connections			
G3: RJ45	Name	RLC: RJ11	Name
5	TxEN	2	TxEN
6	COM	3	COM
1	TxB	5	B-
2	TxA	4	A+

G3 to Modular Controller (CBLRLC05)

Connections			
G3	Name	Modular Controller	Name
1,4	TxB	1,4	TxB
4,1	R×B	4,1	R×B
2,3	T×A	2,3	T×A
3,2	R×A	3,2	R×A
5	TxEN	5	TxEN
6	COM	6	COM
7	TxB	7	TxB
8	T×A	8	T×A

DH485 COMMUNICATIONS

The G306's RS422/485 COMMS port can also be used for Allen Bradley DH485 communications.

WARNING: DO NOT use a standard DH485 cable to connect this port to Allen Bradley equipment. A cable and wiring diagram are available from Red Lion.

G3 to AB SLC 500 (CBLAB003)

Connections			
RJ45: RLC	Name	RJ45: A-B	Name
1	T×B	1	A
2	T×A	2	B
3,8	R×A	-	24 V
4,7	R×B	-	COMM
5	TxEN	5	TxEN
6	COMM	4	SHIELD
4,7	TxB	-	COMM
3,8	T×A	-	$24 V$

Software/Unit Operation

CRIMSON SOFTWARE

Crimson software is availabic as a free download from Red Lion's website or it can be purchased on a CD, sec "Ordering Information" for part number. The latest version of the software is always available from the website, and updating your copy is free.

DISPLAY

This operator interface uses a liquid crystal display (LCD) Cor displaying text and graphics. The display utilizes a cold cathode fluorescent tube (CCFL) for lighting the display. The CCFL tubes can be dimmed for low light conditions.

These CCFL tubes have a limited lifetime. Backlight lifetime is based upon the amount of time the display is tumed on at full intensity. Turning the backlight off when the display is not in use can extend the lifetime of your backlight. This can be accomplished through the Crimson software when configuring your unit.

FRONT PANEL LEDS

There are three front panel LEDs. Shown below is the default status of the LEDs.

LED	INDICATION
FLASHING	Unit is in the boot loader, no valid configuration is loaded. ${ }^{1}$
STEADY	Unit is powered and running an application.
OFF	No CompactFlash card is present.
STEADY	Valid CompactFlash card present.
FLASHING RAPIDLY	CompactFlash card being checked.
FLICKERING	Unit is writing to the CompactFlash, either because it is storing data, or because the PC connected via the USB port has locked the drive. ${ }^{2}$
FLASHING SLOWLY	Incorrectly formatted CompactFlash card present.
FLASHING	A tag is in an alarm state.
STEADY	Valid configuration is loaded and there are no alarms present.

1. The operator interface is shipped without a configuration. After downloading a configuration, if the light remains in the flashing state continuously, try cycling power. If the LED still continues to flash, try downloading a configuration again.
2. Do not turn off power to the unit while this light is flickering. The unit writes data in two minute intervals. Later Mierosoft operating systems will not lock the drive unless they need to write data; Windows 98 may lock the drive any time it is mounted, thereby interfering with logging. Refer to "Mounting the CompaetFlash" in the Crimson 2 User Manual.

TOUCHSCREEN

This operator interface utilizes a resistive analog touchsereen for user input. The unit will only produce an audible tone (beep) when a touch on an active touchsereen cell is sensed. The touchscreen is fully functional as soon as the operator interface is initialized, and can be operated with gloved hands.

KEYPAD

The G306 keypad consists of five keys that can be used for on-screen menus.

TROUBLESHOOTING YOUR G306

If for any reason you have trouble operating, connceting, or simply have questions concerning your new G306, contact Red Lion's technical support. For contact information, refer to the back page of this bulletin for phone and fax numbers.

EMAIL: techsupport@redlion.nct
Web Site: http://www.redlion.nct

BATTERY \& TIME KEEPING

WARNING - EXPLOSION HAZARD - THE AREA MUST BE KNOWN TO BE NON-HAZARDOUS BEFORE SERVICING/ REPLACING THE UNIT AND BEFORE INSTALLING OR REMOVING I/O WIRING AND BATTERY.

WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN DISCONNECTED AND THE AREA IS KNOWN TO BE NON-HAZARDOUS.

A battery is used to keep time when the unit is without power. Typical accuracy of the G306 time keeping is less than one minute per month drift. The battery of a G306 unit does not affect the unit's memory, all configurations and data is stored in non-volatile memory

CAUTION: RISK OF ELECTRIC SHOCK

The inverter board, attached to the mounting plate, supplies the high voltage to operate the backlight. Touching the inverter board may result in injury to personnel.

CAUTION: The circuil board contains static sensitive components. Before handling the operator interface without the rear cover attached, discharge static charges from your body by touching a grounded barc metal object. Ideally, handle the operator interface at a static controlled clean workstation. Also, do not touch the surface areas of the circuit board. Dirt, oil, or other contaminants may adverscly affect circuit operation.

To change the battery of a G306, remove power, cabling, and then the rear cover of the unit. To remove the cover, remove the four serews designated by the arrows on the rear of the unit. Then, by lifting the top side, hinge the cover, thus providing clcarance for the connectors on the bottom side of the PCB as shown in the illustration below. Install in the reverse manner.

Remove the oid battery* from the holder and replace with the new battery. Replace the rear cover, cables, and re-apply power. Using Crimson or the unit's keypad, enter the concet time and date.

* Please note that the old battery must be disposed of in a manner that complies with your local waste regulations. Also, the battery must not be disposed of in fire, or in a manner whereby it may be damaged and its contents come into contact with human skin.

The battery used by the G306 is a lithium ope CR2025.

Optional Features and Accessories

OPTIONAL COMMUNICATION CARD

Red Lion offers optional communication cards for ficldbus communications. These communication cards will allow your G306 to communicate with many of the popular fieldbus protocols.

Red Lion is also offering a communications card for additional RS232 and RS422/485 communications. Visit Red Lion's website for information and availability of these cards.

CUSTOM LOGO

Each G3 operator interface has an embossed area containing the Red Lion logo. Red Lion can provide custom logos to apply to this area. Contact your distributor for additional information and pricing.

COMPACTFLASH SOCKET

CompactFlash socket is a Type II socket that can accept either Type I or II cards. Use cards with a minimum of 4Mbytes with the G306's CompactFlash socket. Cards are available at most computer and office supply retailers.

CompactFlash can be used for configuration transfers, larger configurations, data logging, and trending.

the CompactFlash card while
power is applied. Refer to
"Front Panel LEDs."

Information stored on a CompactFlash card by a G306 can be read by a card reader attached to a PC. This information is stored in 1BM (Windows ${ }^{\text {D }}$) PC compatible FATI 6 file format.

NOTE

For reliable operation in all of our products, Red Lion recommends the use of SanDisk ${ }^{\circledR}$ and SimpleTech brands of CompactFlash cards.

Industrial grade versions that provide up to two million write/crase cycles minimum are available from Red Lion.

LIMITED WARRANTY

The Company warrants the products it manufactures against defects in materials and workmanship for a period limited to two years from the date of shipment, provided the products have been stored, handled, installed, and used under proper conditions. The Company's liability under this limited warranty shall extend only to the repair or replacement of a defective product, at The Company's option. The Company disclaims all liability for any affirmation, promise or representation with respect to the products. The customer agrees 10 hold Red Lion Controls harmless from, defend, and indemnify RLC against damages, claims, and expenses arising out of subsequent sales of RLC products or products containing components manufactured by RLC and based upon personal injuries, deaths, properry damage, lost profits, and other matters which Buyer, its employecs, or sub-contractors are or may be to any extent liable, including without linitation penalties imposed by the Consumer Product Safery Act (P.L. 92-573) and liability imposed upon any person pursuant to the Magnuson-Moss Warranty Act (P.L. 93-637), as now in effect or as amended hereafter.
No warranties expressed or implied are created with respect to The Company's products except those expressly contained herein. The Customer acknowledges the disclaimers and limitations contained herein and relies on no other warranties or affimations.

Red Lion Controls
20 Willow Springs Circle
York PA 17402
$\mathrm{Tel}+1$ (717) 767-6511
Fax +1 (717) 764-0839

Red Lion Controls BV Basicweg 11b
NL - 3821 BR Amersfoort
$\mathrm{Tel}+31$ (0) 334723225
Fax +31 (0) 334893793

Red Lion Controls AP
31, Kaki Bukit Road 3, \#06-04/05 TechLink

Singapore 417818
Tel +65 6744-6613
Fax +65 6743-3360

TC－900DR USER GUIDE

41 Aster Avenue Carrum Downs 3201 Australia Tel： 61397750505 Fax： 61397750606 www．trio．com．au

GĘNERAL

The Trio DataCom TC－900DR is a full duplex 900 MHz Radio featuring a fully integrated 4800／9600 bps data radio modem and antenna diplexer．Configuration of the unit is fully programmable，with parameters held in non volatile memory（NVRAM）．All configúration parameters are accessible using the TC－DRPROG installation package， consisting of a programming lèad，manual and software which will run on a PC under Windows $95 / 98 / \mathrm{NT}$ ．It is essential that each unit is programmed to suit individual requirements prior to operation．For detailed information refer to the TC－900DR Handbook．

DATA CONNECTION

The data connection is via a DB9 connector labeled＇Port A＇ （shown below），which is wired as a DCE．

Iser Serial＂Port A＂Pin Assignment．

EXTERNAL VIEW OF｀PORT A
NOTE：Pin 6 and pin 9 provide a dual function which depends on the mode that the TC－900DR is operating in．

		OM	PIN NO，\＆FUNCTION
R1		OM	I．DATA CARRIER DETECT（DCD）
RI／GER	（9）	DTR	2．RECEIVE DATA OUTPUT（RXD）
CTS			3．TRANSMIT DATA IN（TXD）
		TXD	4．DATA TERMINAL READY（DTR）
RTS			5．COMMON（COM）
		R×D	6．PROGRAM PIN（PGM）
$D S R / \overline{P G M}$			7．REQUEST TO SEND（RTS）
	（1）	$D C D$	8．CLEAR TO SEND（CTS）
			9．BIT ERROR RATE PIN（BER）

User Serial＂Port B＂Pin Assignment．

ort B can be used as a secondary data steam （independent of Port A ）once configured by the programmer．Port B also has one connection that may be of use for installation．This connection（Pin 9）is Receive Signal Strength Indicator（RSSI）output． $0-5 \mathrm{~V}$ where 1.5 V typicaily indicates $-1 \uparrow \overline{0} \mathrm{~d} \overline{\mathrm{~B}} \mathrm{~m}$ and every 0.5 V increase indicates an improvement of＂ 10 dBm ．
EXTERNAL VIEW OF ${ }^{\prime}$ PORT B＇

PIN NO．\＆FUNCTION
1．DATA CARRIER DETECT（DCD）
2．RECEIVE DATA O／P（RXD）
3．TRANSMIT DATA O／P（TXD）
4．UNUSED
5．COMMON
6．DATA SET RECEIVE（DSR）
7．UNUSED
8．UNUSED
9．RECEIVE SIGNAL STRENGTH
ROTE：Port B Pin 9 output has a high impedance of around 50K OHMS and loading will decrease accuracy of the RSSI measurement．

POWER CONNECTIONS

The power required is 13.8 VDC nominal，at $600 \mathrm{~mA}(\mathrm{Tx})$ nominal．If the POWER LED indicator is not illuminated once power is applied，check the internal 1 Amp fuse fitted within the unit．

The auxiliary conector is primarily for use with the optional audio handset．The connections to this auxiliary 6 pin RJ11 connector are as follows：

PIN NUMBER	FUNCTION	External view
1	8 VOLTS	of socket
2	AUDIO OUT	$]^{\text {Top }}$
3	GROUND	
4	MIC INPUT／SENSE	
5	GROUND	كـ山ルبا
6	MANUAL PTT	$6 \quad 1$

The optional audio handset is recommended as an aid in checking installations for radio path viability．This audio handset will only function when fitted prior to applying power to the unit．
The modem upon－power up will check the presence of the handset and will inhibit data being transmitted so that voice communications can be established．

Once the path tests have been conducted the audio handsets MUST be REMOVED and the unit powered up with the handset removed before data communication can commence．

USER INDICATIONS

The TC－900DR provides 4 LED＇s that show status information to the user－POWER，RXSIG，SYNC，and TXMIT indications．
The POWER is indicated by a green LED and simply signifies that power has been applied to the unit．
The RXSIG LED（yellow）indicates the level of RSSI signal from the radio IF strip，compared to a threshold level set in the configuration data programmed by the user．If the signal is above the threshold，then the LED indicator is turned on．

In all operation modes except＂Programmer mode＂，the SYNC LED（yellow）indicates when the modem has detected a valid data stream．The SYNC LED is activated， when the modem detects a valid HDLC flag sequence，and remains active until an invalid sequence of seven or more consecutive＂ 1 ＂bits is detected．

The SYNC LED will not be turned on if the RSSI signal strength（as indicated by the RXSIG LED）is below the minimum threshold．This prevents false SYNC detection from noise．
The TXMIT LED（red）indicator is connected directly to the modem＇s PTT output transistor．Whenever the radio is transmitting，this TXMIT LED indicator will be on．

SPECIAL MODES OF OPERATION

Part of the power-up/reset initialisation phase of the TC-900DR are tests to determine if the modem should enter one of 3 "special operation" modes. In these modes the TC-900DR won't operate in its standard run mode.

- Programmer mode.
- Bit error rate test mode.
- Handset mode.

These modes are only entered if the required setup conditions are present at power up. An error mode of operation can also be entered into, if during normal operation, an error condition occurs.

PROGRAMMER MODE

CABLE - Pins 2, 3, 4, 5 straight through with Pin 6 on the DB9 connector of Port A, connected to pin 5 . When the modem is powered up with this fitted, the controller senses this and attempts to enter "Programmer mode" and the "SYNC" LED will flash approx. once per second. (Note, the TC-DRPROG programming software and lead has the required connections). Failure to supply the correct password in time, will cause the modem to abandon the "Programmer mode" attempt, and go on with it's normal power-up procedure.

BIT ERROR RATE TEST MODE

Pin 9 of the DB9 connector of Port A, is normally the Ring Indicate output line. However, if this pin is driven positive (connecting it to pin 6 [DSR] and pin 7 [RTS]), then the modem's data transmitter ând receiver will enter the BER; test mode. This will activate the RF transmitter, and generate a scrambled bit pattern which should be decoded "at a receiver as a constant logic "1" level in the unscrambled data. Any errors in the decoded bitstream, will be " 0 ", and the receiver portion of the modem in this mode, will activate the SYNC LED every time it sees a "0" bit.
Note: As the TC-900DR is full duplex this test can operate in both directions simultaneously.

Every error bit detected, will activate the SYNC LED. For error rates of 1 in 10^{3} and above, the SYNC LED will be ON most of the time. A $1 \mathrm{in} .10^{4}$ error rate will show the SYNC LED active for approximately 10% of the time. This function provides a crude indication of Bit Error Rate for installation purposes. Note: Error count messages ($E T: X X X X$) for every 10,000 bits are presented to Port A for the user. If pin 9 ceases to be driven positive, then the BER Test mode is terminated, and the modem restarts it's initialisation phase.

HANDSET MODE

The modem tests for the presence of a handset plugged into the handset auxiliary port at power up. If a handset is. plugged in, the modem will not generate a data stream. However, it will continue to indicate received RF signal strength. The handset has a PTT button, and this signal is connected across the modem's PTT output. Thus the handset PTT switch will not activate the TXMIT LED. It is essential to remove the handset from the unit and reapply power to the unit in order to return to normal operation.

ERROR INDICATION MODES

There are 3 error conditions that cause the RXSIG \& SYNC LEDs to be used for error indications and not their normal purpose. Two are fatal conditions, that cause the modem to restart after the duration of the error indication phase.

TRANSMIT POWER LOW

While the modem activates the radio transmiter, it ${ }^{*} / \alpha$ periodically checks the transmit power. If the power measurement is less than a threshold set in the non-vciame memory, then the RXSIG and SYNC LEDs äre made to alternate, approximately 4 times per second. The TXMIT LED will also be on during this process. This indication condition will persist for the duration of the transmission. As soon as the transmission is discontinued, the error indication will cease, and the two LEDs revert to their normal function. Factory set to 100 milliWatts.

NVRAM READ ERROR

The DFM4-9DR modem accesses the non-volatile memory äs part of it's initialisation phase, to read programming configuration data. If the communication protocol with the device is violated, or the non-volatile memory CRC checksum is found to be incorrect, then the modem indicates this by flashing the RXSIG and SYNC LEDs twice alternately. That is, one LED operates ON and OFF twice, then the other. A total of five cycles of this occurs, then the modem restarts initialisation.

SYNTHESISER LOCK DETECT ERROR

If at any time during normal operation, BER mode, or handset mode, the TBB206 frequency synthesiser indicates an out of lock condition, the modem enters an error indication mode for a short time before restarting.
One LED is turned ON (θ), the LEDs are swapped, then both turned OFF (©). Then the latter LED ON again, swap
LEDS, and then OFF. This will give the appearance of a sweeping motion between the LEDs. The following tabie shows all error condition displays.

TxPPRErr		NVRAM:Err		SYNTH Err	
RXSIG	SYNC	RXSIG	SYNC	RXSIG	SYNC
0	\bullet	0	\bullet	0	\bullet
\bullet	0	\bullet	\bullet	\bullet	0
\bullet	\bullet	0	\bullet	\bullet	\bullet
\bullet	0	\bullet	\bullet	\bullet	0
\bullet	\bullet	\bullet	0	0	\bullet
\bullet	0	\bullet	\bullet	\bullet	\bullet
0	\bullet	\bullet	0		repeat
\bullet	0	\bullet	\bullet		

continue repeat

MOUNTING AND ANTENNA CONŃECTION:

The. T.C-900DR should be mounted in a cool, dry, vibration free environment, whilst providing easy access to screws and connections. There are 4 mounting holes on the unit. The antenna should be an external yagi antenna but can be a ground independent dipole mounted via a feeder to the antenna connector (SMA type) for short range applications. However the whole radio modem should be clear of the associated data equipment to prevent mutual interference.

ASSEMBLY OF POWER LEAD

A small plastic bag containing a molex connector (M5557-2R) and two pins (M5556-TL) is provided in the packing box.
The pins are designed to take 18-24 (AWG) wire size with insulation range $1.3-3.10 \mathrm{~mm}$.
Please take care when crimping the pins.
09/03

Technical Information

Waterpilot FMX167

Hydrostatic Level Measurement
 Reliable and rugged level probe with ceramic measuring cell Compact device for level measurement in fresh water, wastewater and saltwater

Table of contents

Function and system design 3
Device selection 3
Measuring principle 4
Measuring system 5
Input 7
Measured variable 7
Measuring range 7
Input signal 7
Output 7
Output signal 7
Load 7
Power supply 8
Electrical connection 8
Supply voltage 9
Cable specifications 9
Power consumption 9
Current consumption 9
Residual ripple 9
Performance characteristics. 10
Reference operating conditions 10
Maximum measured error 10
Long-term stability 10
Influence of medium temperature on the hydrostatic level measurement of FMX167 10
Wamm-up period 10
Rise time 10
Settling time 10
Installation 11
lastallation instuccions 11
Environment 12
Ambient temperature range 12
Storage temperature 12
Degree of protecrion 12
Electromagnetic compatibility (EMC) 12
Overvoltage protection 12
Process 12
Medium temperature range 12
Medium temperature limits 13
Mechanical construction 13
Dimensions of level probe 13
Dimensions of suspension clamp 14
Dimensions of extension cable mounting screws 14
Dimensions of the terminal box IP $60 /$ IP 67 with filter 15
Dimensions of temperature transmitter TMT181 15
Weight 15
Material 16
Extension cable 16
Terminals 16
Certificates and approvals 17
CE approval 17
Ex approval, type of protection 17
Drinking water approval
(for FMX 167 with $\mathrm{d}_{0}=22 \mathrm{~mm}(0.87 \mathrm{in})$) 17
Marine approval 17
External standards and guidelines 17
Registered trademarks 17
Ordering information 18
FMX 167 18
Accessories 19
Suspension clamp 19
Terminal box 19
Additional weight (for FMX167 with $\mathrm{C}_{0}=22 \mathrm{~mm}(0.87 \mathrm{in})$ and $\left.\mathrm{d}_{\mathrm{O}}=29 \mathrm{~mm}(1.15 \mathrm{in})\right\}$ 19
Temperature transmitter 19
Extension cable mounting screw 19
Terminals 19
Test adapter (for FMX1 67 with $\mathrm{d}_{\mathrm{O}}=22 \mathrm{~mm}(0.87 \mathrm{in}$) and $\left.\mathrm{d}_{\mathrm{O}}=29 \mathrm{~mm}(1.15 \mathrm{in})\right)$ 20
Documentation 20
Field of Activities 20
Tecbnical Information 20
Operating Instructions 20
Safety Instructions 20
Installation/Control Drawings 20

Function and system design

Device selection

Waterpilot FMX167			
Field of application	Hydrostatic level measurement in deep wells e.g. drinking water	Hydrostatic level measurement in wastewater	Hydrostatic level measurement in saltwater
Process connection	- Suspension clamp - Extension cable mounting screw with G1 1/2 A or 11/2 NPT thread		
Outer diameter	$22 \mathrm{~mm}(0.87 \mathrm{in})$	42 mm (1.66 in)	Max. 29 mm (1.15 in)
Seals	- FKM Viton - EPDM ${ }^{1}$	- FKM Viton	- FKM Viton - EPDM
Measuring ranges	- Nine fixed pressure measuring ranges in bar, $\mathrm{mH}_{2} \mathrm{O}$, psi and $\mathrm{ftH}_{2} \mathrm{O}$, from $0 . . .0 .1$ bar to $0 . . .20$ bar $\left(0 . . .1 \mathrm{mH}_{2} \mathrm{O}\right.$ to $0 . . .200 \mathrm{mH}_{2} \mathrm{O}$ / $0 . .1 .5 \mathrm{psi}$ to $0 . . .300 \mathrm{psi} / 0 \ldots . .3 \mathrm{ftH}_{2} \mathrm{O}$ to $0 \ldots 00 \mathrm{ftH}_{2} \mathrm{O}$) - Customer-specific measuring ranges; factory-calibrated		- Seven fixed pressure measuring ranges in bar, $\mathrm{mH}_{2} \mathrm{O}$, psi and $\mathrm{ftH}_{2} \mathrm{O}$, from $0 . . .0 .1$ bar to $0 . . .4$ bar ($0 \ldots$... $\mathrm{mH}_{2} \mathrm{O}$ to $0 \ldots 40 \mathrm{mH}_{2} \mathrm{O}$ / $0 . . .1 .5 \mathrm{psi}$ to $0 . . .60 \mathrm{psi} /$ $0 . . .3 \mathrm{ftH}_{2} \mathrm{O}$ to $\left.0 . . .150 \mathrm{ftH} \mathrm{O}_{2} \mathrm{O}\right)$ - Customer-specific measuring ranges; factory-calibrated
Overioad	Up to 40 bar (580 psi)		Up to 25 bar (362 psi)
Process temperature	$-10 \ldots+70^{\circ} \mathrm{C}\left(-14 \ldots+158^{\circ} \mathrm{F}\right)$		$0 \ldots+50^{\circ} \mathrm{C}\left(+32 \ldots+122^{\circ} \mathrm{F}\right)$
Ambient temperature range	$-10 \ldots+70^{\circ} \mathrm{C}\left(-14 \ldots+158^{\circ} \mathrm{F}\right)$		$0 \ldots+50^{\circ} \mathrm{C}\left(+32 \ldots+122^{\circ} \mathrm{F}\right)$
Maximum measured error	$\pm 0.2 \%$ of upper range value (URV)		
Supply voltage	10.. 30 V DC		
Output	$4 \ldots 20 \mathrm{~mA}$		
Options	- Drinking water approval - Integrated Pt 100 temperature sensor - Integrated Pt 100 temperature sensor and temperature transmitter TMT1 81 ($4 . . .20 \mathrm{~mA}$)	- Integrated Pt 100 temperature sensor - Integrated Pt 100 temperature sensor and temperature transmitter TMT181 (4... 20 mA)	- Integrated Pt 100 temperature sensor - Integrated Pt 100 temperature sensor and temperature transmitter TMT181 ($4 . . .20 \mathrm{~mA}$)
Specialties	Integrated overvoltage protection - Large selection of approvals, includin - High-precision, long-term stable and	ATEX II $2 \mathrm{G}, \mathrm{FM}$ and CSA ugged ceramic measuring cell	

[^1]
Measuring principle

The ceramic measuring cell is dry, i.e. pressure acts directly on the rugged ceramic diaphragm of Waterpilot FMX167 and causes it to move by max. 0.005 mm .
The effects of air pressure on the liquid surface are transferred via a pressure compensation tube through the extension cable to the rear of the ceramic diaphragm and compensated. Pressure-dependent changes in capacitance caused by diaphragm movement are measured at the electrodes of the ceramic carrier. The electronics convert the movement into a pressure-proportional signal which is linear to the medium level.

FMX167 measuring principle

1 Ceramic measuring cell
2 Pressure compensation cube
h Level height
p Total pressure $=$ hydrostatic pressure + atmospheric pressure
ρ Medium density
g Gravitational acceleration
phydr. Hydrostatic pressure
patm Atmospheric pressure

Temperature measurement with optional Pt 100

Endress+Hauser offers an optional 4-wire Pt 100 resistance thermometer for Waterpilot FMX167 to measure level and temperature simultaneously. The Pt 100 belongs to Accuracy Class B to DIN EN 60751.

Temperature measurement with optional Pt 100 and temperature transmitter TMT181
To convert the Pt 100 signal to a $4 \ldots 20 \mathrm{~mA}$ signal, Endress+Hauser also offers the TMT1 81 temperature transmitter.

The complete standard measuring system consists of Waterpilot FMX167 and a transmitter power supply unit with supply voltage of $10 \ldots 30 \mathrm{~V}$ DC.

Example for other measuring point solutions with transmitter and possible evaluation units from Endress+Hauser:

Application examples with FMX107
OP Overvoltage protection e.g. HAW from Endress + Hauser

1. Simple cost-effective measuring point solution: Power supply of Waterpilot in hazardous and nonbazardous areas using RN 221 N active barrier.
Power supply and additional control of two consumers, e.g. pumps, via limit switch RTA421 with onsite display.
2. Power supply, onsite display, two switch outputs and a signal adaptation (turn down) are integrated in evaluation devices RMA421 (for mounting on hat rails) and RIA250 (for panel mounting). The evaluation unit RMA42l also has a trend recognition function, e.g. optimizing pump control in stormwater overflow basins. This function detects and evaluates changes in a measurable value within a specific time period.
3. If several pumps are used, pump life can be prolonged by alternate switching. With alternating pump control, the pump which was out of service for the longest period of time is switched on. The evaluation units RIA4S0 (for panel mounting) and RMA422 (for mounting on hat rails) offer this function as well as several others.
4. State-of-the-art recording technology with monitor recorders from Endress+Hauser, e.g. Ecograph, Memograph or hardcopy recorders such as Alphalog for documenting, monitoring, visualizing and archiving.

Application examples with FMXI 67 with Pt 100
OP Overvoltage protection e.g. HAW from Endress + Hauser
5. If you want to measure, display and evaluate temperature as well as level, e.g. to monitor temperature in fresh water to detect temperature limits for germ formation, you have the following options: The optional temperature transmitter can convert the Pt 100 signal into a 4 ... 20 mA signal and transfer it to any customary evaluation unit. Evaluation devices RMA421, RIA250 and RIA450 also offer a direct input for the Pt 100 signal.
6. If you want to detect and evaluate level and temperature with one device, choose the evaluation unit RMA422 with two inputs. It even includes the mathematical operation for linking the input signals.

Input

Measured variable	FMX167 + Pt 100 (optional) - Hydrostatic pressure of a liquid - Pt 100: Temperature of a liquid	Temperature transmitter (optional) - Temperature
Measuring range	- Nine fixed pressure measuring ranges in bar, $\mathrm{mH}_{2} \mathrm{O}$, psi and $\mathrm{ftH}_{2} \mathrm{O}$; \rightarrow Page 18, "Ordering information" Section - Customer-specific measuring ranges; factory-calibrated - Temperature measurement from $-10 \ldots+70^{\circ} \mathrm{C}\left(+14 \ldots+158^{\circ} \mathrm{F}\right)$ (optional with Pt 100)	
Inpat signal	FMX167 + Pt 100 (optional) - Change in capacitance - Pt 100: Change in resistance	Temperature transmitter (optional) - Pt 100 resistance signal, 4-wire

Output

Output signal	FMX167 + Pt 100 (optional) - FMXI67: $4 . . .20 \mathrm{~mA}$ for hydrostatic pressure measured value, two-wire - Pt 100: Temperature-dependent resistance of Pt 100	Temperature transmitter (optional) 4... 20 mA for temperature measured value, twowire
Load	FMX167 + Pt 100 (optional)	Temperature transmitter (optional)
	$R_{t o 1} \leq \frac{U_{b}-10 \mathrm{~V}}{0.0225 \mathrm{~A}}-2 \cdot 0.09 \frac{\mathrm{~S}}{\mathrm{~m}} \cdot 1-R_{\mathrm{add}}$	$R_{t o t} \leq \frac{U_{b}-8 \mathrm{~V}}{0.025 \mathrm{~A}}-R_{\mathrm{add}}$

Rtot $=$ Max. load resistance β /
Radd $=$ Additional resistances such as resistance of evaluating device and/or display instrument, line resistance $\$$ /
$U b=$ Supply voltage M
$1=$ Simple length of extension cable (m] (cable resistance per wire $\leq 0.09 / / \mathrm{m}$)

Load chart FMXI07 for estimating load resistance. Subtract the additional resistances, e.g. resistance of extension cable, from the calculated value as shown in the equation.

Load chart temperature transmitter for estimating load resistance. Subtract the additional resistances from the calculated value as shown in the equation.

Power supply

Electrical connection

Note!

- When using the measuring device in hazardous areas, national standards and regulations as well as the Safety Instructions (XAs) or Installation or Control Drawings (ZDs) have to be observed. \rightarrow See also Page 20, "Safety Instructions" and "Installation/Control Drawings" Sections.
- Reverse polarity protection is integrated in the Waterpilot FMX167 and in the temperature transmitter TMT181. Changing the polarities has no impact on operation.
- The cable must end in a dry room or in a proper terminal box. For installation outside, use the terminal box (IP 66/1P 67) with a GORE-TEX ${ }^{\otimes}$ filter from Endress+Hauser. The terminal box can be ordered using the order code of FMX167 \rightarrow see Page 18, "Ordering information" Section) or an accessory (order number: 52006252).

Waterpilot FMX167, standard

FMX167 electrical connection, versions "7" or "3" for Feature 70 "Additional options" in the order code $(\rightarrow$ see Page 18).

Waterpilot FMX167 with Pt 100

FMX107 electrical connection with Pt 100, versions " 1 " or " 4 " for Feature 70 "Additional options" in the order code \rightarrow see Page 18).

Waterpilot FMX 167 with Pt 100 and TMT181 temperature transmitter ($4 . . .20 \mathrm{~mA}$)

FMX107 with Pt 100 and TMT181 temperature transmilter ($4 \ldots 20 \mathrm{~mA}$), version "5" for Feature 70 in the order code $(\rightarrow$ see Page 18$)$.

1 Not for FMX167 with outer diameter $=29 \mathrm{~mm}(1.15 \mathrm{in})$
Wire colors: $\mathrm{RD}=$ red, $\mathrm{BK}=$ black, $\mathrm{WH}=$ white, $\mathrm{YE}=$ yellow, $\mathrm{BU}=$ blue, $\mathrm{BR}=$ brown

Waterpilot

Supply voitage	Note! - When using the measuring device in hazardous areas, national standards and regulations as well as the safery instructions (XAs) or Installation or Control Drawings (ZDs) have to be observed. \rightarrow See also Page 20, "Safety Instructions" and "Installation/Control Drawings" Sections.	
	FMX167 + Pt 100 (optional) - FMX167: 10... 30 V DC - Pt 100: $10 \ldots . .30$ V DC	Temperature transmidter (optional) - 8... 35 VDC
Cable specifications	FMX 167 + Pt 100 (optional) - Commercially available instrument cable - Terninais, terminal housing FMX167: $0.08 \ldots 2.5 \mathrm{~mm}^{2}$ - If the Pt 100 signal is directiy connected to a display and/or evaluation unit, we recommend the use of a shielded cable.	Temperature transmitter (optional) - Commercially available instrument cable - Terminals, terminal housing FMX167: $0.08 \ldots 2.5 \mathrm{~mm}^{2}$ - Connection, transmitter: Max. $1.75 \mathrm{~mm}^{2}$
Power consumption	FMX167 + Pt 100 (optional) $\leq 0.675 \mathrm{~W}$ at 30 V DC	Temperature transmitter (optional) $\leq 0.875 \mathrm{~W} \text { at } 35 \mathrm{VDC}$
Current consumption	FMX167 + Pt 100 (optional) - Max. current consumption: $\leq 22.5 \mathrm{~mA}$ Min. current consumption: $\geq 3.5 \mathrm{~mA}$ - Pt 100: $\leq 0.6 \mathrm{~mA}$	Temperature transmilter (optional) - Max. current consumption: $\leq 25 \mathrm{~mA}$ Min. current consumption: $\geq 3.5 \mathrm{~mA}$ - Pt 100 via temperarure transmitter: $\leq 0.6 \mathrm{~mA}$
Residual ripple	FMX 167 + Pt 100 (optional) No effect for $4 . . .20 \mathrm{~mA}$ signal up to $\pm 5 \%$ residual ripple within permissible range	Temperature transmitter (optional) $\mathrm{U}_{\mathrm{ss}} \geq 5 \mathrm{~V} \text { at } \mathrm{U}_{\mathrm{B}} \geq 13 \mathrm{~V}, \mathrm{f}_{\text {max. }}=1 \mathrm{kHz}$

Performance characteristics

Installation

Installation instructions

Installation examples, here shown with $F M X 107$ with an outer diameter $=22 \mathrm{~mm}(0.87 \mathrm{in})$
1 Extension cable mounting screw can be ordered via order code or as an accessory, \rightarrow see Page 14 and 19
2 Terminal housing can be ordered via order code or as an accessory, \rightarrow see Page 15 and 19
3 Extension cable bending radius $>120 \mathrm{~mm}(4.72 \mathrm{in})$
4 Suspension clamp can be ordered via order code or as an accessory, \rightarrow see Page 14 and 19
5 Extension cable up to 300 m (384 ft), for max. length \rightarrow see Page 10, "Extension cable" Section
0 Guide tube for FMX107 with outer diameter $=22 \mathrm{~mm}(0.87 \mathrm{in})$ internal diameter $>23 \mathrm{~mm}(0.91 \mathrm{in}$)
7 Additional weight can be ordered as an accessory for FMXI 67 with outer diameter $=22 \mathrm{~mm}(0.87 \mathrm{in})$ and $29 \mathrm{~mm}(1.15 \mathrm{in}), \rightarrow$ see Page 19
8 Protection cap

Note!

- A sideways movement of the level probe can lead to measuring errors. Therefore install the probe at a point free from flow and turbulence, or use a guide tube. The internal diameter of the guide tube should be at least $1 \mathrm{~mm}(0.04 \mathrm{in})$ bigger than the outer diameter of the selected FMX107.
- The cable must end in a dry room or in a proper terminal box. The terminal box from Endress+Hauser provides optimum humidity and climatic protection and is suitable for outdoor installation.

Environment

Ambient temperature range	FMX167 + Pt 100 (optional) - FMX167 with outer diameter $=22 \mathrm{~mm}(0.87 \mathrm{in})$ and 42 mm (1.66 in): $-10 \ldots+70^{\circ} \mathrm{C}\left(+14 \ldots+158^{\circ} \mathrm{F}\right)$ ($=$ medium temperature) - FMX167 with outer diameter $=29 \mathrm{~mm}(1.15 \mathrm{in}): 0 \ldots+50^{\circ} \mathrm{C}\left(+32 \ldots+122^{\circ} \mathrm{F}\right)$ ($=$ medium temperature)	Temperature transmitter (optional) $-40 \ldots+85^{\circ} \mathrm{C}\left(-40 \ldots+185^{\circ} \mathrm{F}\right)$

Storage temperature	FMX167 + Pt 100 (optional) $-40 \ldots+80^{\circ} \mathrm{C}\left(-40 \ldots+185^{\circ} \mathrm{F}\right)$	Temperature transmitter (optional) $-40 \ldots+100^{\circ} \mathrm{C}\left(-40 \ldots+212^{\circ} \mathrm{F}\right)$
Degree of protection	FMX167 + Pt 100 (optional) - IP 68 , permanently hermetically sealed - Optional terminal box: IP 66/IP 67	Temperature transmitter (optional) - IP 00, moisture condensation permissible - When mounted in the optional terminal boxes: IP 60/IP67

Electromagnetic compatibility (EMC)	FMX167 + Pt 100 (optional) - Interference emission to EN 01326 Class B equipment, interference immunity to EN 61326 Appendix A (Industrial) - Maximum deviation: < 0.5% of span	Temperature transmitter (optional) - Interference emission to EN 61326 Class B equipment, interference immunity to EN 61326 Appendix A (Industrial)
Overvoltage protection	FMX167 + Pt 100 (optional) Integrated overvoltage protection to EN 61000-4-5 $\leq 1.2 \mathrm{kV}$ Install overvoltage protection $\geq 1.2 \mathrm{kV}$, external if necessary	Temperature transmitter (optional) Install overvoltage protection, external if necessary.

Process

Medium temperature range	FMX167 + Pt 100 (optional)	Temperature transmitter (optional)
	- FMX167 with outer diameter	
	$=22 \mathrm{~mm}(0.87 \mathrm{in})$ and $42 \mathrm{~mm}(1.60 \mathrm{in}):$	$-40 \ldots+85^{\circ} \mathrm{C}\left(-40 \ldots+185^{\circ} \mathrm{C}\right)(=$ ambient temperature),
install temperature transmitter outside medium.		

FMX167 + Pt 100 (optional)

- FMX167 with outer diameter
$=22 \mathrm{~mm}(0.87 \mathrm{in})$ and $42 \mathrm{~mm}(1.00 \mathrm{in})$:
$-20 \ldots+70^{\circ} \mathrm{C}\left(-4 \ldots+158^{\circ} \mathrm{F}\right)$
- FMX167 with outer diameter
$=29 \mathrm{~mm}(1.15 \mathrm{in}): 0 \ldots+50^{\circ} \mathrm{C}\left(+32 \ldots+122^{\circ} \mathrm{F}\right)$
(You may operate the FMXI 67 in this temperature range. The specification can then be exceeded, e.g. measuring accuracy).

Mechanical construction

Dimensions of level probe

Versions of FMXIO7

I FMX107, version " A " or " D " for Feature 30 "Probe tube" in the order code $(\rightarrow$ see Page 18)
2 FMX167, version "B" for Feature 30 "Probe tube" in the order code $(\rightarrow$ see Page 18)
3 FMX107, version "C" for Feature 30 "Probe tube" in the order code $(\rightarrow$ see Page 18)
4 Pressure compensation tube
5 Extension cable
o Protection cap

Dimensions of suspension
clamp

Suspension clamp, version 2 for Feature 20 "Connection" in the order code $(\rightarrow$ see Page 18)

Dimensions of extension cable

 mounting screws

Extension cable mounting screws
1 Extension cable mounting screw G I I/2 A, version "3" for Feature 20 "Connection" in the order code $(\rightarrow$ see Page 18)
2 Extension cable mounting screw I I/2 NPT, version "4" for Feature 20 "Connection" in the order code (\rightarrow see Page 18)

Dimensions of the terminal box IP 66/IP 67 with filter

Terminal box

Version "3", "4" or "5" for Feature 70 "Additional options" in the order code $(\rightarrow$ see Page 18)
1 Dummy plug M 20x1.5
2 GORE-TEX filter
3 Terminals for $0.08 \ldots .2 .5 \mathrm{~mm}^{2}$

Dimensions of temperature transmitter TMT181

Semperature transmitter $T M T 181(4 \ldots 20 \mathrm{~mA})$
Version "5" for Feature 70 "Additional options" in the order code \rightarrow see Page 18). The temperature transmitter can be used in non-hazardous areas and for $E E x \cap A$.

Weight	- Level probe, outer diameter $=22 \mathrm{~mm}(0.87 \mathrm{in}): 290 \mathrm{~g}$
	- Level probe, outer diameter $=42 \mathrm{~mm}(1.06 \mathrm{in}): 1150 \mathrm{~g}$
	- Level probe, outer diameter $=29 \mathrm{~mm}(1.15 \mathrm{in}): 340 \mathrm{~g}$
	- Extension cable PE: $52 \mathrm{~g} / \mathrm{m}$
	- Extension cable FEP: $108 \mathrm{~g} / \mathrm{m}$
- Suspension clamp: 170 g	
	- Extension cable mounting screw G $11 / 2 \mathrm{~A}: 770 \mathrm{~g}$
	- Extension cable mounting $\operatorname{screw~} 11 / 2 \mathrm{NPT}: 724 \mathrm{~g}$
- Terminal box: 235 g	
	- Temperature transmitter: 40 g
	- Additional weight: 300 g

Material	Level probe - Level probe, outer diameter $=22 \mathrm{~mm}(0,87 \mathrm{in}): 1.4435$ (AISI 316L) - Level probe, outer diameter $=42 \mathrm{~mm}$ (1.66 in): 1.4435 (AISI 316L) - Level probe, outer diameter $=29 \mathrm{~mm}$ (1.15 in): - Level probe: 1.4435 (AISI 316L) - Sensor sleeve: PPS (polyphenylene sulfide) - Heat-shrink sleeve/cover: Polyolefin Metal does not come into contact with the medium. - Process ceramic: $\mathrm{Al}_{2} \mathrm{O}_{3}$ aluminium oxide ceramic - Seal (internal): EPDM or Viton - Protective cap: PE-HD (high-density polyethylene) - Extension cable insulation: Either PE (polyethylene) or FEP (fluorinated ethylene propylene). For more information, see the next Section - "Extension cable" - Suspension clamp: 1.4404 (AISI 316L) and glass fiber reinforced PA (polyamide) - Extension cable mounting screw G $11 / 2$ A: 1.4301 (AISI 304) - Extension cable mounting screw $11 / 2$ NPT: 1.4301 (AISI 304) - Terminal box: PC (polycarbonate) - Temperature transmitter: Housing PC (polycarbonate)
Extension cable	Structure of PE extension cable - Slip-resistant extension cable with strain-relief members made of Dynemo; shielded using aluminium-coated film; insulated with polyethylene (PE), black; copper wires, twisted - Pressure compensation tube with Tefion filter
	Structure of FEP extension cable - Slip-resistant extension cable; shielded using galvanized steel wire netting; insulated with fluorinated ethylene propylene (FEP), black; copper wires, twisted - Pressure compensation tube with Teflon filter
	Cross-section of PE and FEP extension cable - Total outer diameter: $8.0 \mathrm{~mm} \pm 0.25 \mathrm{~mm}(0.315$ inch ± 0.0098 inch) - FMX167: $3 \times 0.227 \mathrm{~mm}^{2}+$ pressure compensation tube with Teflon filter - FMX167 with Pt 100 (optional): $7 \times 0.227 \mathrm{~mm}^{2}+$ pressure compensation tube with Teflon filter - Pressure compensation tube with Teflon filter: Outer diameter $=2.5 \mathrm{~mm}(0.098 \mathrm{inch})$, internal diameter $=1.5 \mathrm{~mm}(0.059 \mathrm{inch})$
	Cable resistance of PE and FEP extension cable - Cable resistance per wire: $\leq 0.09 \Omega / \mathrm{m}$
	Cable length of PE and FEP extension cable - Max. free suspended length (mechanical stability under load): 950 m (39370 inch) - Please also refer to Page 7, "Load" Section. - When using the measuring device in hazardous areas, national standards and regulations as well as the safety instructions (XAs) or Installation or Control Drawings (ZDs) have to be observed. \rightarrow See also Page 20, "Safety Instructions" and "Installation/Control Drawings" Sections.
	Further technical data of PE and FEP extension cable - Minimum bending radius: 120 mm (4.72 inch) - Tensile strength: Min. 950 N - Cable extraction force: $\geq 450 \mathrm{~N}$ (The extension cable could be extracted from the level probe at a tensile force of $\geq 450 \mathrm{~N}$.) - Resistance to UV light - PE: Approved for use with drinking water
Terminals	- 3 standard terminals in terminal box - 4-terminal strip can be ordered as accessory, Order No. 52008938 Wire cross-section $0.08 \ldots 2.5 \mathrm{~mm}^{2}$

Certificates and approvals

CE approval	By attaching the CE symbol, Endress+Hauser confirms that the instrument fulfills all the requirements of the relevant $E C$ directives.
Ex approval, type of protection	- ATEX II 2 G EExia IIC To ${ }^{1}$ - ATEX II 3 G EExnA II To - FM: IS, Class I, Division 1, Groups A-D ${ }^{\prime}$ - CSA: IS, Class I, Division 1, Groups A-D
	1 Only for Waterpilot FMX167 without Pt 100
	Waterpilot FMX167 with outer diameter $=22 \mathrm{~mm}(0.87 \mathrm{in})$ is only suitable for use in hazardous areas with the FKM Viton seal.
	All explosion protection data are contained in separate explosion protection documentation which you can also request. Explosion protection documents are supplied as standard for all devices approved for use in explosion hazardous areas. \rightarrow See also Page 20, "Safety Instructions" and "Installation/Control Drawings" Sections.
Drinking water approval (for FMX167 with $\mathrm{d}_{\mathrm{O}}=22 \mathrm{~mm}(0.87 \mathrm{in})$)	- KTW certificate - NSF 61 approval - ACS approval
Marine approval	- GL approval - ABS approval
External standards and guidelines	DIN EN 60770 (IEC 60770): Transmitters for use in industrial-control systems Part 1: Methods for performance evaluation
	DIN 16080: Electrical pressure measuring instruments, pressure sensors, pressure transmitters, pressure measuring instruments, concepts, specifications on data sheets
	EN 61326 (IEC 61326-1): Electrical equipment for measurement, control and laboratory use - EMC requirements
Registered trademarks	GORE-TEX ${ }^{\oplus}$ Registered trademark of W.L. Gore \& Associates, Inc., USA

Ordering information

FMX167

\rightarrow Ordering information for FMX167 continued on next page.

FMX167 (continued)

Accessories

Suspension clamp	- Endress + Hauser offers a suspension clamp for simple FMX 167 mounting. \rightarrow See also Page 14. - Material: 1.4404 (AISI 310L) and glass fiber reinforced PA (polyamide) - Order number: 52006151
Terminal box	- Terminal box IP $60 /$ IP 67 with GORE-TEX ${ }^{\otimes}$ filter incl. 3 mounted terminals. The terminal box is also suitable for installing a temperature transmitter (Order No. 52008794) or for four additional terminals (Order No. 52008938). \rightarrow See also Page 15. - Order number: 52006152

Additional weight (for FMX167 with $\mathrm{d}_{\mathrm{O}}=22 \mathrm{~mm}(0.87 \mathrm{in})$ and $d_{0}=29 \mathrm{~mm}(1.15 \mathrm{in})$)

- To prevent sideways movement leading to measuring errors or to ensure that the device lowers into a guide tube, Endress+Hauser provides additional weights.
You can screw several weights together. The weights are then attached directly to the FMX167. For FMXI 67 with outer diameter $=29 \mathrm{~mm}(1.15 \mathrm{in})$, a maximum of 5 weights may be screwed on to FMX167.
- Material: 1.4435 (AISI 316L)
- Weight: 300 g
- Order number: 52000153

Temperature transmitter	- Temperature transmitter, 2 -wire, preset for measuring range from $-20 \ldots+80^{\circ} \mathrm{C}\left(-4 \ldots+176^{\circ} \mathrm{F}\right)$. This setting offers an easily displayable temperature range of 100 K . Note that the Pt 100 resistance thermometer is designed for a temperature range of $-10 \ldots+70^{\circ} \mathrm{C}\left(+14 \ldots+158^{\circ} \mathrm{F}\right) . \rightarrow$ See also Page 15. - Order number: 52008794
Extension cable mounting screw	- Endress+Hauser offers extension cable mounting screws to simplify the installation of the FMX167 and to close the measuring open. \rightarrow See also Page 14. - Material: 1.4301 (AISI 304) - Order number for extension cable mounting screw with G $11 / 2$ A thread: 52008264 - Order number for extension cable mounting screw with 1 1/2 NPT thread: 52009311
Terminals	- Four terminals in strip for FMX 167 terminal box, suitable for wire cross-section of $0.08 \ldots 2.5 \mathrm{~mm}^{2}$ - Order number: 52008939

Test adapter
(for FMX167 with
$\mathrm{d}_{\mathrm{o}}=22 \mathrm{~mm}(0.87 \mathrm{in})$ and $\mathrm{d}_{\mathrm{o}}=29 \mathrm{~mm}(1.15 \mathrm{in})$)

Test adapter
A Connection suitable for level probe FMXI67
B Connection compressed air hose, internal diameter, quick hose gland 4 mm (0.157 in)

- Endress+Hauser offers a test adapter to simplify the function test of level probes.
- Note the maximum pressure for the compressed air hose and the maximum level probe overload. \rightarrow See also Page 18.
- The maximum pressure for the supplied quick hose gland is 10 bar (145 psi).
- Adapter material: 1.4301 (AISI 304)
- Quick hose gland material: Anodized aluminium
- Adapter weight: 39 g
- Order number: 52011868

Documentation

Field of Activities	- Pressure Measurement: FA004P/00/en - Recording Technology: FA014R/09/de - System Components: FA016K/09/en
Technical Information	- Temperature Head Transmitter iTEMP PCP TMT181: T1070R/09/en
Operating Instructions	- Waterpilot FMX167: BA231P/00/en
Safety Instructions	- ATEX II 2 G EEx ia IIC To: XA131P/00/a3 - ATEX II 3 G EEx nA II T6: XA132P/00/a3
Installation/ Control Drawings	- FM IS Class I, Div. I, Groups A - D: ZD063P/00/en - CSA IS Class I, Div. 1, Groups A - D: ZD064P/00/en
Drinking water approval	- SD126P/00/a3

International Head Quarter

Endress+Hauser
$\mathrm{GmbH}+\mathrm{Co}$. KG
Instruments international
Colmarer Str. 6
79576 Weil am Rhein
Deutschland
Tel. +49762197502
Fax +497621975345
www.endress.com
info@ii.endress.com

Operating Instructions

 VEGABAR 744 ... 20 mA HART

Contents

1 About this document

1.1 Function . 5
1.2 Target group . 5
1.3 Symbolism used . 5

2 For your safety
2.1 Authorised personnel. 6
2.2 Appropriate use. 6
2.3 Warning about misuse 6
2.4 General safety instructions 6
2.5 Safety approval markings and safety tips 7
2.6 CE conformity . 7
2.7 Fulfilling NAMUR recommendations 7
2.8 Safety instructions for Ex areas 8
2.9 Environmental instructions 8

3 Product description
3.1 Configuration. 9
3.2 Principle of operation . 10
3.3 Operation . 10
3.4 Packaging, transport and storage 11

4 Mounting
4.1 General instructions . 12
4.2 Mounting steps . 13

5 Connecting to power supply
5.1 Preparing the connection 14
5.2 Connection procedure 16
5.3 Wiring plan . 17

6 Set up
6.1 Setup steps without VEGADIS 12. 19
6.2 Setup steps with VEGADIS 12 19

7 Setup with PACTware ${ }^{\text {TM }}$
7.1 Connect the PC with VEGACONNECT 3 22
7.2 Connect the PC with VEGACONNECT $4 \ldots . .23$
7.3 Parameter adjustment with PACTware ${ }^{\text {TM }}$. 24
7.4 Parameter adjustment with AMS ${ }^{\top M}$ and PDM .. 24
7.5 Saving the parameter adjustment data 24

2

VEGABAR 74-4... $20 \mathrm{~mA} / \mathrm{HART}$
8 Maintenance and fault rectification
8.1 Maintenance 25
8.2 Fault clearance 25
8.3 Instrument repair 26
9 Dismounting
9.1 Dismounting steps 27
9.2 Disposal 27
10 Supplement
10.1 Technical data 28
10.2 Dimensions 35
10.3 Industrial property rights. 41
10.4 Trademark 41

Supplementary documentation

Information:
Depending on the ordered version, supplementary documentation belongs to the scope of delivery. You find this documentation in chapter "Product description".

Instructions manuals for accessories and replacement parts

Tip:
To ensure reliable setup and operation of your VEGABAR 74, we offer accessories and replacement parts. The associated documents are:

- Supplementary instructions manual 32036 "Welded socket and seals"
- Operating instructions manual 32798 "Breather housing VEGABOX 02"
- Operating instructions manual 20591 "Extemal indicating and adjustment unit VEGADIS 12°

1 About this document

1．1 Function

This operating instructions manual provides all the information you need for mounting，connection and setup as well as important instructions for maintenance and fault rectification． Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device

1．2 Target group

This operating instructions manual is directed to trained personnel．The contents of this manual should be made available to these personnel and put into practice by them．

1．3 Symbolism used

Information，tip，note
－This symbol indicates helpful additional information．
Caution：If this warning is ignored，faults or malfunc－
tions can result．
Warning：If this warning is ignored，injury to persons and／or serious damage to the instrument can result．
Danger：If this warning is ignored，serious injury to persons and／or destruction of the instrument can result．

Ex applications

This symbol indicates special instructions for Ex applications
－List
The dot set in front indicates a list with no implied sequence．
$\rightarrow \quad$ Action
This arrow indicates a single action．
1 Sequence
Numbers set in front indicate successive steps in a procedure．

2 For your safety

2.1 Authorised personnel

All operations described in this operating instructions manual must be carried out only by trained specialist personnel authorised by the operator.
During work on and with the device the required personal protection equipment must always be worn.

2.2 Appropriate use

VEGABAR 74 is a pressure transmitter for measurement of gauge pressure, absolute pressure and vacuum.

You can find detailed information on the application range in chapter "Product description".

Operational reliability is ensured only if the instrument is properly used according to the specifications in the operating instructions manual as well as possible supplementary instructions.
Due to safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden.

2.3 Warning about misuse

Inappropriate or incorrect use of the instrument can give rise to application-specific hazards, e.g. vessel overfill or damage to system components through incorrect mounting or adjustment.

2.4 General safety instructions

This is a high-tech instrument requiring the strict observance of standard regulations and guidelines. The user must take note of the safety instructions in this operating instructions manual, the country-specific installation standards as well as all prevailing safety regulations and accident prevention rules.
The instrument must only be operated in a technically flawless and reliable condition. The operator is responsible for troublefree operation of the instrument.

During the entire duration of use, the user is obliged to determine the compliance of the required occupational safety measures with the current valid rules and regulations and also take note of new regulations.

2.5 Safety approval markings and safety tips

The safety approval markings and safety tips on the device must be observed.

2.6 CE conformity

VEGABAR 74 is in CE conformity with EMC (89/336/EWG), fulfils NAMUR recommendation NE 21 and is in CE conformity with LVD (73/23/EWG).

Conformity has been judged according to the following standards:

- EMC:
- Emission EN 61326: 2004 (class B)
- Susceptibility EN 61326: 2004 including supplement A
- LVD: EN 61010-1: 2001

VEGABAR 74 is not subject to the pressure device guideline.1)

2.7 Fulfilling NAMUR recommendations

VEGABAR 74 fulfills the following NAMUR recommendations:

- NE 21 (interference resistane and emitted interference)
- NE 43 (signal level for failure information)
- NE 53 (compatibility sensor and indicating/adjustment components)
VEGA instruments are generally upward and downward compatible:
- Sensor software to DTM VEGABAR 74 HART
- DTM VEGABAR 74 for adjustment software PACTware ${ }^{\text {TM }}$

The parameter adjustment of the basic sensor functions is independent of the software version. The range of available functions depends on the respective software version of the individual components.

The software version of VEGABAR 74 HART can be read out via PACTware ${ }^{\text {TM }}$.

1) Due to the flush diaphragm, no own pressure compartment is formed.

For your safety

You can view all software histories on our website www.vega. com. Make use of this advantage and get registered for update information via e-mail.

2.8 Safety instructions for Ex areas

Please note the Ex-specific safety information for installation and operation in Ex areas. These safety instructions are part of the operating instructions manual and come with the Exapproved instruments.

2.9 Environmental instructions

Protection of the environment is one of our most important duties. That is why we have introduced an environment management system with the goal of continuously improving company environmental protection. The environment management system is certified according to DIN EN ISO 14001.
Please help us fulfil this obligation by observing the environmental instructions in this manual:

- Chapter "Packaging, transport and storage"
- Chapter "Disposal"

3 Product description

3.1 Configuration

Scope of delivery

Components

The scope of delivery encompasses:

- VEGABAR 74 pressure transmitter
- Documentation
- this operating instructions manual
- Test certificate for pressure transmitters
- Ex-specific "Safety instructions" (with Ex-versions)
- if necessary, further certificates

VEGABAR 74 consists of the following components:

- Process fitting with measuring cell
- Housing with electronics
- Connection cable (direct cable outlet)

The components are available in different versions.

Fig. 1: Example of a VEGABAR 74 with process fitting G11/2 A
1 Connection cable
2 Housing with electronics
Process fitting with measuring cell

Area of application

Functional principle

Supply

3.2 Principle of operation

VEGABAR 74 is a pressure transmitter for use in the paper, food processing and pharmaceutical industry. Thanks to the high protection class IP 68/IP 69 K it is particularly suitable for use in humid environment. Depending on the version, it is used for level, gauge pressure, absolute pressure or vacuum measurements. Measured products are gases, vapours and liquids, also with abrasive contents.

The sensor element is the CERTEC ${ }^{(18}$ measuring cell with flush, abrasion resistant ceramic diaphragm. The hydrostatic pressure of the medium or the process pressure causes a capacitance change in the measuring cell via the diaphragm. This change is converted into an appropriate output signal and outputted as measured value.
The CERTEC ${ }^{(1)}$ measuring cell is also equipped with a temperature sensor. The temperature value can be processed via the signal output.

Two-wire electronics $4 \ldots 20 \mathrm{~mA} / \mathrm{HART}$ for power supply and measured value transmission over the same cable.

The supply voltage range can differ depending on the instrument version.

The data for power supply are stated in chapter "Technical data" in the "Supplement".

3.3 Operation

VEGABAR $744 \ldots 20 \mathrm{~mA} H$ ART can be adjusted with different adjustment media:

- with external adjustmentindication VEGADIS 12
- an adjustment software according to FDT/DTM standard, e.g. PACTware ${ }^{\text {TM }}$ and PC
- with a HART handheld

The kind of adjustment and the adjustment options depend on the selected adjustment component. The entered parameters are generally saved in the respecitive sensor, when adjusting with PACTware ${ }^{\text {rM }}$ and PC optionally also in the PC.

3.4 Packaging, transport and storage

Packaging	Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test according to DIN EN 24180.
	The packaging of standard instruments consists of environ- ment-friendly, recyclable cardboard. For special versions, PE foam or PE foil is also used. Dispose of the packaging material via specialised recycling companies.
Transport	Transport must be carried out under consideration of the notes on the transport packaging. Nonobservance of these instruc- tions can cause damage to the device.
Transport inspection	The delivery must be checked for completeness and possible transit damage immediately at receipt. Ascertained transit damage or concealed defects must be appropriately dealt with.
Storage	Up to the time of installation, the packages must be left closed and stored according to the orientation and storage markings on the outside.
Unless otherwise indicated, the packages must be stored only	

- Not in the open
- Dry and dust free
- Not exposed to corrosive media
- Protected against solar radiation
- Avoiding mechanical shock and vibration

Storage and transport temperature

- Storage and transport temperature see "Supplement Technical data - Ambient conditions"
- Relative humidity 20 ... 85%

4 Mounting

4.1 General instructions

Make sure that the wetted parts of VEGABAR 74, especially the seal and process fitting, are suitable for the existing process conditions such as pressure, temperature etc. as well as the chemical properties of the medium.
You can find the specifications in chapter "Technical data" in the "Supplement".

Higher process temperatures often mean also higher ambient temperatures. Make sure that the upper temperature limits stated in chapter "Technical data" for the environment of the electronics housing and connection cable are not exceeded.

Fig. 2: Temperature ranges
1 Process temperature
2 Ambient temperatura

- The connection cable has a capillary for atmospheric pressure compensation
\rightarrow Lead the cable end into a dry space or into a suitable terminal housing.

Information:

VEGA recommends the breather housing VEGABOX 02 or the indication/adjustment VEGADIS 12. Both contain terminals and a ventilation filter for pressure compensation. For mounting outdoors, a suitable protective cover is available.

4．2 Mounting steps

Sealing／Screwing in threaded Seal the thread with teflon，hemp or a similar resistant seal versions material on the process fitting thread $11 / 2$ NPT．
\rightarrow Screw VEGABAR 74 into the welded socket．Tighten the hexagon on the process fitting with a suitable wrench． Wrench size，see chapter＂Dimensions＂．

Sealing／Screwing in flange versions

Seal the flange connections according to DIN／ANSI with a suitable，resistant seal and mount VEGABAR 74 with suitable screws．

Sealing／Screwing in hygienic fittings

Use the seal suitable for the respective process fitting．You can find the components in the line of VEGA accessories in the supplementary instructions manual＂Welded socket and seals＂．

5 Connecting to power supply

5.1 Preparing the connection

Note safety instructions

Take note of safety instructions for Ex applications

Select power supply

Selecting connection cable
28432-EN-070718

Always keep in mind the following safety instructions:

- Connect only in the complete absence of line voltage
- If overvoltage surges are expected, versions with integrated overvoltage arresters should be used or external overvoltage arresters should be installed

Tip:

We recommend the version of VEGABAR 74 with integrated overvoltage arrester or VEGA type ÜSB62-36G.X as external overvoltage arreaster.

In hazardous areas you should take note of the appropriate regulations, conformity and type approval certificates of the sensors and power supply units.

Power supply and current signal are carried on the same twowire cable. The voltage supply range can differ depending on the instrument version.

The data for power supply are stated in chapter "Technical data" in the "Supplement".

Provide a reliable separation of the supply circuit from the mains circuits according to DIN VDE 0106 part 101.
VEGA power supply units VEGATRENN 149AEx, VEGASTAB 690, VEGADIS 371 as well as all VEGAMETs meet this requirement. When using one of these instruments, protection class III is ensured for VEGABAR 74.

Bear in mind the following factors regarding supply voltage:

- Output voltage of the power supply unit can be lower under nominal load (with a sensor current of 20.5 mA or 22 mA in case of fault message)
- Influence of additional instruments in the circuit (see load values in chapter "Technical data")
VEGABAR 74 is connected with standard two-wire cable without screen. An outer cable diameter of 5 ... 9 mm ensures the seal effect of the cable gland when connecting via VEGABOX 02 or VEGADIS 12. If electromagnetic interference is expected which is above the test values of EN 61326 for

industrial areas，screened cable should be used．For HART multidrop operation we recommend as standard practice the use of screened cable．

Fig．3：Connection of VEGABAR 74
1 Direct connection
2 Connection via VEGABOX 02 or VEGADIS 12

Cable screening and ground－ ing

Select connection cable for Ex applica－ tions

If screened cable is necessary，connect the cable screen on both ends to ground potential．In the VEGABOX 02 or VEGADIS 12，the screen must be connected directly to the internal ground terminal．The ground terminal on the outside of the housing must be connected to the potential equalisation （low impedance）．

If potential equalisation currents are expected，the connection on the processing side must be made via a ceramic capacitor （e．g． $1 \mathrm{nF}, 1500 \mathrm{~V}$ ）．The low frequency potential equalisation currents are thus suppressed，but the protective effect against high frequency interference signals remains．

Take note of the corresponding installation regulations for Ex applications．In particular，make sure that no potential equal－ isation currents flow over the cable screen．In case of grounding on both sides this can be achieved by the use of a capacitor or a separate potential equalisation．

Connecting to power supply

5.2 Connection procedure

Direct connection
Proceed as follows:
1 Wire the connection cable up to the connection compartment. The bending radius must be at least $25 \mathrm{~mm} .{ }^{2}$)
2 Connect the wire ends to the screw terminals according to the wiring plan

Via VEGABOX 01 or VEGADIS 12

Proceed as follows:
1 Snap connection housing onto the carrier rail or screw it to the mounting plate
2 Loosen the cover screws and remove the cover
3 Insert the cable through the cable entry into the connection housing housing
4 Loosen the screws with a screwdriver
5 Insert the wire ends into the open terminals according to the wiring plan
6 Tighten the screws with a screwdriver
7 Check the hold of the wires in the terminals by lightly pulling on them
8 Tighten the compression nut of the cable entry. The seal ring must completely encircle the cable
9 Connect the supply cable according to steps 3 to 8
10 Screw the housing cover back on
The electrical connection is finished.
2) The connection cable is already preconfectioned. After shortening the cable, fasten the type plate with support again to the cable.

5.3 Wiring plan

Direct connection

Fig. 4: Wire assignment, connection cable
1 brown (+): to power supply or to the processing system
2 blue (-): to power supply or to the processing system
3 yellow: is only required with VEGADIS 12, otherwise connect to minus or with VEGABOX 01 to terminal ${ }^{33}$)
4 Screen
5 Breather capillaries with filter element
Connection via VEGABOX 02

Fig. 5: Terminal assignment VEGABAR 74
1 To power supply or the processing system
2 Screant

Wire number	Wire colour/Polarity	VEGABAR 74 terminal
1	brown $(+)$	1
2	blue $(-)$	2
3	Yellow	2
	Screen	Ground

3) For customer-specific versions already connected with blue (-) when being shipped
4) Connect screen to ground terminal. Connect ground terminal on the outside of the housing as prescribed. The two terminals are galvanically connected.

Fig. 6: Terminal assignment, VEGADIS 12
1 To power supply or the processing system Control instrument (4 ... 20 mA measurement) Screenf
Breather capillanies
Suspension cable

Wire number	Wire colour/Polarity	Terminal VEGADIS 12
1	brown $(+)$	1
2	blue $(-)$	2
3	Yellow	3

28432-EN-070718
5) Connect screen to ground terminal. Connect ground terminal on the outside of the housing as prescribed. The two terminals are galvanically connected

6 Set up

6．1 Setup steps without VEGADIS 12

After mounting and electrical connection，VEGABAR 74 is ready for operation．
\rightarrow Switch on voltage
The electronics now carries out a self－check for approx． 2 seconds．Then VEGABAR 74 delivers a current of $4 \ldots 20 \mathrm{~mA}$ according to the actual level．

6．2 Setup steps with VEGADIS 12

Adjustment volume
－zero－measuring range begin
－span－measuring range end
－ti－Integration time

Adjustment system

Adjustment steps，adjustment
Proceed as follows for adjustment with VEGADIS 12：
1 Open housing cover
2 Connect hand multimeter to terminals 10 and 12
3 Meas．range begin：Set rotary switch to＂zero＂

4 Empty the vessel or reduce process pressure
5 Set a current of 4 mA with the $[+]$ and $[-]$ keys
6 Meas. range end: Set rotary switch to "span"
7 Fill the vessel or increase process pressure
8 Set a current of 20 mA with the $[+]$ and $[-]$ keys
9 Operation: Set rotary switch to "OPERATE"
10 Close housing cover
The adjustment data are effective, the output current $4 \ldots 20 \mathrm{~mA}$ corresponds to the actual level.

Adjustment steps, integration time

Proceed as follows for the adjustment of the integration time with VEGADIS 12:
1 Open housing cover
2 Set rotary switch to "tt"
3 By pushing the [-] key 10 -times, make sure that the integration time is set to 0 sec.
4 For every 1 sec . requested integration time, push the [+] key once.
5 The integration time is the time required by the output current signal to reach 90% of the actual height after a sudden level change.
6 Set rotary switch to "OPERATE"
7 Close housing cover
Adjustment steps, scaling The display outputs the current $4 \ldots 20 \mathrm{~mA}$ as bar graph and digital value.

With 4 mA no segment of the bar graph appears, with 20 mA all segments appear. This assignment is fix.
You can scale the digital value to any value between -9999 .. +9999 via the adjustment module.
Proceed as follows for scaling the indication of VEGADIS 12:
1 Open housing cover
2 Initial value: Set rotary switch to "zero"
3 Set the requested value, e.g. 0 with the $[+]$ and $[-]$ keys
4 Final value: Set the rotary switch to "span"
5 Set the requested value, e.g. 1000 with the [+] and [-$]$ keys
6 Decimal point: Set the rotary switch to "point"
7 With the $[+]$ and $[-]$ keys you can adjust the requested value, e.g. 8888 (no decimal point)

8 Set rotary switch to "OPERATE"

9 Close housing cover

The adjustment data are effective, the output current $4 \ldots 20 \mathrm{~mA}$ corresponds to the actual level.

7 Setup with PACTware ${ }^{\text {TM }}$

7.1 Connect the PC with VEGACONNECT 3

Connecting the PC to the signal cable

Fig. 8: Connecting the PC to the signal cable
1 RS232 connection (with VEGACONNECT 3) or USB connection (with VEGACONNECT 4)
2 VEGABAR 74
3 HART adapter cable
4 HART resistance 250 Ohm (optional depending on the processing)

Necessary components:

- VEGABAR 74
- PC with PACTware ${ }^{\text {TM }}$ and suitable VEGA DTM
- VEGACONNECT 3 or 4 with HART adapter cable (art. no. 2.25397)
- HART resistance approx. 250 Ohm
- Power supply unit

Note:
With power supply units with integrated HART resistance (internal resistance approx. 250 Ohm), an additional external resistance is not necessary (e.g. VEGATRENN 149A, VEGADIS 371, VEGAMET 381/624/625, VEGASCAN 693). In such cases, VEGACONNECT 3 can be connected parallel to the $4 . .20 \mathrm{~mA}$ cable.

7．2 Connect the PC with VEGACONNECT 4

Fig．9：Connecting the PC via HART to the signal cable
1 VEGABAR 74
2 HART resistance 250 Ohm（optional depending on the processing）
3 Connection cable with 2 mm pins and terminals
4 Processing system／PLCNoltage supply

Necessary components：

－Vegabar 74
－PC with PACTware ${ }^{\text {TM }}$ and suitable VEGA DTM
－VEGACONNECT 4
－HART resistance 250 Ohm（optional depending on the processing）
－Power supply unit or processing system

Note：

With power supply units with integrated HART resistance （internal resistance approx． 250 Ohm ），an additional external resistance is not necessary．This applies，e．g．to the VEGA instruments VEGATRENN 149A，VEGADIS 371，VEGAMET 381）．Also usual Ex separators are most of the time equipped with a sufficient current limitation resistor．In such cases， VEGACONNECT 4 can be connected parallel to the $4 \ldots 20 \mathrm{~mA}$ cable．

Sotup with PACTwarg ${ }^{\text {TM }}$

7.3 Parameter adjustment with PACTware ${ }^{\text {TM }}$

Further setup steps are described in the operating instructions manual "DTM Collection/PACTware ${ }^{\text {TM }}$ " attached to each CD and which can also be downloaded from our homepage. A detailed description is available in the online help of PACTware ${ }^{T M}$ and the VEGA DTMs.

Note:

Keep in mind that for setup of VEGABAR 74, DTM-Collection in the actual version must be used.

All currently available VEGA DTMs are provided in the DTM Collection on CD and can be obtained from the responsible VEGA agency for a token fee. This CD includes also the up-todate PACTware ${ }^{\text {TM }}$ version. The basic version of this DTM Collection incl. PACTware ${ }^{\text {TM }}$ is also available as a free-ofcharge download from the internet.

Go via www.vega.com and "Downloads" to the item "Sofware".

7.4 Parameter adjustment with AMS ${ }^{\text {TM }}$ and PDM

For VEGA sensors, instrument descriptions for the adjustment programs AMS ${ }^{\text {M }}$ and PDM are available as DD or EDD. The instrument descriptions are already implemented in the current versions of AMS ${ }^{\text {TM }}$ and PDM. For older versions of AMS $^{\text {TM }}$ and PDM, a free-of-charge download is available via internet.

Go via www.vega.com and "Downloads" to the item "Sofware".

7.5 Saving the parameter adjustment data

It is recommended to document or save the parameter adjustment data. They are hence available for multiple use or service purposes.

The VEGA DTM Collection and PACTware ${ }^{T M}$ in the licensed, professional version provide suitable tools for systematic project documentation and storage.

8 Maintenance and fault rectification

8.1 Maintenance

When used as directed in normal operation, VEGABAR 74 is completely maintenance free.

8.2 Fault clearance

Reaction in case of faliures	The operator of the system is responsible for taken suitable measures to remove interferences.
Causes of malfunction	VEGABAR 74 offers maximum reliability. Nevertheless faults can occur during operation. These may be caused by the following, e.g.: - Sensor - Process - Supply - Signal processing
Fault rectification	The first measures to be taken are to check the output signals as well as to evaluate the error messages via the indicating and adjustment module. The procedure is described below. Further comprehensive diagnostics can be carried out on a PC with the software PACTware ${ }^{\text {TM }}$ and the suitable DTM. in many cases, the causes can be determined in this way and faults can be rectified.
24 hour service hotline	However, if these measures are not successful, call the VEGA service hotline in urgent cases under the phone no. +49 1805 858550.
	The hotline is available to you 7 days a week round-the-clock Since we offer this service world-wide, the support is only available in the English language. The service is free of charge, only the standard telephone costs will be charged.
Checking the 4 ... 20 mA signal	Connect a handheld multimeter in the suitable measuring range according to the wiring plan.
	? $4 \ldots 20 \mathrm{~mA}$ signal not stable - Level fluctuations \rightarrow Adjust integration time via PACTware ${ }^{\text {TM }}$ - no atmospheric pressure compensation \rightarrow Check the capillaries and cut them clean

\rightarrow Check the pressure compensation in the housing and clean the filter element, if necessary
? $4 \ldots 20 \mathrm{~mA}$ signal missing

- Wrong connection to power supply
\rightarrow Check connection according to chapter "Connection steps" and if necessary, correct according to chapter "Wiring plan"
- No voltage supply
\rightarrow Check cables for breaks; repair if necessary
- supply voltage too low or load resistance too high
\rightarrow Check, adapt if necessary
? Current signal $3.6 \mathrm{~mA} ; 22 \mathrm{~mA}$
- electronics module or measuring cell defective
\rightarrow Exchange instrument or return instrument for repair
In Ex applications, the regulations for the wiring of intrinsically safe circuits must be observed.

Reaction after fault rectification

Depending on the failure reason and measures taken, the steps described in chapter "Set up" must be carried out again, if necessary.

8.3 Instrument repair

If a repair is necessary, please proceed as follows:
You can download a return form (23 KB) from the Internet on our homepage www.vega.com under: "Downloads - Forms and certificates-Repair form".
By doing this you help us carry out the repair quickly and without having to call back for needed information.

- Print and fill out one form per instrument
- Clean the instrument and pack it damage-proof
- Attach the completed form and, if need be, also a safety data sheet outside on the packaging
- Please ask the agency serving you for the address of your return shipment. You can find the respective agency on our website www.vega.com under: "Company - VEGA worldwide"

9 Dismounting

9.1 Dismounting steps

Warning:

Before dismounting, be aware of dangerous process conditions such as e.g. pressure in the vessel, high temperatures, corrosive or toxic products etc.

Take note of chapters "Mounting" and "Connecting to power supply" and carry out the listed steps in reverse order

9.2 Disposal

The instrument consists of materials which can be recycled by specialised recycling companies. We use recyclable materials and have designed the electronics to be easily separable.

WEEE directive 2002/96/EG

This instrument is not subject to the WEEE directive 2002/96/ EG and the respective national laws (in Germany, e.g. ElektroG). Pass the instrument directly on to a specialised recycling company and do not use the municipal collecting points. These may be used only for privately used products according to the WEEE directive.
Correct disposal avoids negative effects to persons and environment and ensures recycling of useful raw materials.
Materials: see chapter "Technical data"
If you cannot dispose of the instrument properly, please contact us about disposal methods or return.

10 Supplement

10.1 Technical data

General data

Manufacturer	VEGA Grieshaber KG, D-77761 Schiltach
Type name	VEGABAR 74
Parameter, pressure	Gauge pressure, absolute pressure, vacuum
Measuring principle	Ceramic-capacitive, dry measuring cell
Communication interlace	None

Materials and weights

Material 316L corresponds to 1.4404 or 1.4435
Materials, wetted parts

- Process fitting 316L
- Diaphragm sapphire ceramic ${ }^{\text {(}} 99.9 \%$ oxide ceramic)
- Seal FKM (e.g. Viton), Kalrez 6375, EPDM, Chem-
- Seal process fitting thread G1⁄2 A, Klingersil C-4400 G11/2A
Materials, non-wetted parts
- Housing 316L
- Ground terminal 316Ti/316L
- Connection cable PUR, FEP, PE
- type label support on cable

Weight
PE-HART
$0.8 \ldots 8 \mathrm{~kg}(1.8 \ldots 17.6 \mathrm{lbs})$, depending on process fitting

Output variable	
Output signal	$4 \ldots 20 \mathrm{mAlHART}$
Failure signal	$22 \mathrm{~mA}(3.6 \mathrm{~mA})$, adjustable
Max. output current	22.5 mA
Damping (63\% of the input variable)	$0 \ldots 10 \mathrm{~s}$, adjustable
Step response or adjustment time	$70 \mathrm{~ms}(\mathrm{ti}: 0 \mathrm{~s}, 0 \ldots 63 \%)$
Fulfilled NAMUR recommendations	NE 43
Additional output parameter - temperature	
Processing is made via HART-Multidrop	

Range

Resolution

$$
-50 \ldots+150^{\circ} \mathrm{C}\left(-58 \ldots+302^{\circ} \mathrm{F}\right)
$$

$1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$
Accuracy

- in the range of $0 \ldots+100^{\circ} \mathrm{C}$
$\pm 3 \mathrm{~K}$
$\left(+32 \ldots+212^{\circ} \mathrm{F}\right)$
- in the range of $-50 \ldots 0^{\circ} \mathrm{C}$
typ. $\pm 4 \mathrm{~K}$
$\left(-58 \ldots+32^{\circ} \mathrm{F}\right)$ and $+100 \ldots+150^{\circ} \mathrm{C}$
$\left(+212 \ldots+302{ }^{\circ} \mathrm{F}\right.$)

Input variable

Adjustment
Zero adjustable $\quad-20 \ldots+95 \%$ of the nominal measuring range
Span adjustable $\quad 3.3 \ldots+120 \%$ of the nominal measuring range
Recommended max. turn down 10:1
Nominal measuring ranges and overload resistance

Nominal range	Overioad, max. pressure)	Overload, min. pressure
Gauge pressure		
$0 \ldots 0.1 \mathrm{bar} / 0 \ldots 10 \mathrm{kPa}$	$15 \mathrm{bar} / 1500 \mathrm{kPa}$	-0.2 bar/ 20 kPa
$0 \ldots 0.2 \mathrm{bar} / 0 . .20 \mathrm{kPa}$	20 bar/2000 kPa	-0.4 bar/-40 kPa
0 ... $0.4 \mathrm{bar} / 0 \ldots 40 \mathrm{kPa}$	$30 \mathrm{bar} / 3000 \mathrm{kPa}$	-0.8 bar/-80 kPa
0 ... 1 bar/0 ... 100 kPa	35 bar/3500 kPa	-1 bar/-100 kPa
0 ... 2.5 bar/0 ... 250 kPa	$50 \mathrm{bar} / 5000 \mathrm{kPa}$	-1 bar/-100 kPa
0 ... 5 bar/0 ... 500 kPa	65 bar/6500 kPa	-1 bar/ 100 kPa
$0 \ldots 10 \mathrm{bar} / 0 . .1000 \mathrm{kPa}$	$90 \mathrm{bar} / 9000 \mathrm{kPa}$	-1 bar/-100 kPa
0 ... 25 bar/0 .. 2500 kPa	$130 \mathrm{bar} / 13000 \mathrm{kPa}$	-1 bar/-100 kPa
$0 \ldots 60$ bar/0 ... 6000 kPa	$200 \mathrm{bar} / 20000 \mathrm{kPa}$	-1 bar/-100 kPa
-1... 0 bar/-100 ... 0 kPa	$35 \mathrm{bar} / 3500 \mathrm{kPa}$	-1 bar/ 100 kPa
$-1 . .11 .5$ bar/-100 .. 150 kPa	$50 \mathrm{bar} / 5000 \mathrm{kPa}$	-1 bar/-100 kPa
-1 ... 5 bar/-100 .. 500 kPa	$65 \mathrm{bar} / 6500 \mathrm{kPa}$	-1 bar/-100 kPa
-1 ... 10 bar/-100 ... 1000 kPa	90 bar/9000 kPa	-1 bar/-100 kPa
-1 ... 25 bar/-100 ... 2500 kPa	$130 \mathrm{bar} / 13000 \mathrm{kPa}$	-1 bar $/ 100 \mathrm{kPa}$
-1 ... 60 bar/-100 ... 6000 kPa	$300 \mathrm{bar} / 30000 \mathrm{kPa}$	-1 bar/-100 kPa
-0.05 ... $0.05 \mathrm{bar} /-5 \ldots 5 \mathrm{kPa}$	$15 \mathrm{bar} / 1500 \mathrm{kPa}$	-0.2 bar/ 20 kPa
$-0.1 \ldots 0.1 \mathrm{bar} /-10 \ldots 10 \mathrm{kPa}$	$20 \mathrm{bar} / 2000 \mathrm{kPa}$	-0.4 bar $/-40 \mathrm{kPa}$

a) Limited to 200 bar according to the pressure device directive.

Nominal range	Overload, max. pres- sure6)	Overload, min. pressure
$-0.2 \ldots 0.2$ bar/-20 $\ldots 20 \mathrm{kPa}$	$30 \mathrm{bar} / 3000 \mathrm{kPa}$	$-0.8 \mathrm{bar} /-80 \mathrm{kPa}$
$-0.5 \ldots 0.5$ bar/ $50 \ldots 50 \mathrm{kPa}$	$35 \mathrm{bar} / 3500 \mathrm{kPa}$	$-1 \mathrm{bar} / 100 \mathrm{kPa}$
Absolute pressure	$15 \mathrm{bar} / 1500 \mathrm{kPa}$	
$0 \ldots 0.1 \mathrm{bar} / 0 \ldots 10 \mathrm{kPa}$	$35 \mathrm{bar} / 3500 \mathrm{kPa}$	
$0 \ldots 1 \mathrm{bar} / 0 \ldots 100 \mathrm{kPa}$	$50 \mathrm{bar} / 5000 \mathrm{kPa}$	
$0 \ldots 2.5 \mathrm{bar} / 0 \ldots 250 \mathrm{kPa}$	$65 \mathrm{bar} / 6500 \mathrm{kPa}$	
$0 \ldots 5 \mathrm{bar} / 0 \ldots 500 \mathrm{kPa}$	$90 \mathrm{bar} / 9000 \mathrm{kPa}$	
$0 \ldots 10 \mathrm{bar} / 0 \ldots 1000 \mathrm{kPa}$	$130 \mathrm{bar} / 13000 \mathrm{kPa}$	
$0 \ldots 25 \mathrm{bar} / 0 \ldots 2500 \mathrm{kPa}$	$200 \mathrm{bar} / 20000 \mathrm{kPa}$	
$0 \ldots 60 \mathrm{bar} / 0 \ldots 6000 \mathrm{kPa}$	$\ldots .2$	

Reference conditions and influencing variables (similar to DIN EN 60770-1)

Reference conditions according to DIN EN 61298-1

- Temperature
$+15 \ldots+25^{\circ} \mathrm{C}\left(+59 \ldots+77^{\circ} \mathrm{F}\right)$
- Relative humidity
$45 \ldots 75 \%$
- Air pressure

860 ... $1060 \mathrm{mbar} / 86 \ldots 106 \mathrm{kPa}$ (12.5 ... 15.4 psi)

Determination of characteristics
Limit point adjustment according to IEC 61298-2
Characteristics
linear
upright, diaphragm points downward $<0.2 \mathrm{mbar} / 20 \mathrm{~Pa}(0.003 \mathrm{psi})$

Deviation determined according to the limit point method according to IEC 607707)

Applies to digital HART interface as well as to analogue current output $4 \ldots 20 \mathrm{~mA}$. Specifications refer to the set span. Turn down (TD) $=$ nominal measuring range/set span.
Deviation

- Turn down 1:1 up to 5:1 <0.075 \%
- Turn down up to $10: 1 \quad<0.015 \% \times$ TD

Deviation with absolutely flush process fittings EV, FT

- Turn down 1:1 up to 5:1
$\stackrel{\infty}{\lambda}$ - Turn down up to $10: 1$
<0.05 \%
$<0.01 \% \times$ TD
π Incl. non-linearity, hysteresis and non-repeatability.

Deviation with absolute pressure measuring range 0.1 bar

- Turn down 1:1 up to 5:1
$<0.25 \% \times$ TD
- Turn down up to 10:1
$<0.05 \% \times$ TD

Influence of the product or ambient temperature

Applies to digital HART interface as well as to analogue current output $4 \ldots 20 \mathrm{~mA}$.
Specifications refer to the set span. Turn down $(T D)=$ nominal measuring range/set span.

Average temperature coefficient of the zero signal

In the compensated temperature range of $0 \ldots+100^{\circ} \mathrm{C}\left(+212^{\circ} \mathrm{F}\right)$, reference temperature $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$:

Average temperature coefficient of the zero signal

- Turn down 1:1
<0.05 \%/10 K
- Turn down 1:1 up to 5:1 <0.1 \%/10 K
- Turn down up to $10: 1 \quad<0.15 \% / 10 \mathrm{~K}$

Outside the compensated temperature range:
Average temperature coefficient of the zero signal

- Turn down 1:1 typ. $<0.05 \% / 10 \mathrm{~K}$

Thermal change of the current output
Applies also to the analogue $4 \ldots 20 \mathrm{~mA}$ current output and refers to the set span.
Thermal change, current output
$<0.15 \%$ at $-40 \ldots+80^{\circ} \mathrm{C}\left(-40 \ldots+176{ }^{\circ} \mathrm{F}\right)$

Long-term stability (similar to DIN 16086, DINV 19259-1 and IEC 60770-1)

Applies to digital HART interface as well as to analogue current output $4 \ldots 20 \mathrm{~mA}$. Specifications refer to the set span. Turn down (TD) $=$ nominal measuring range/set span.
Long-term dritt of the zero signal $<(0.1 \% \times$ TD $) / 1$ year

Total deviation (similar to DIN 16086)

The total deviation (max. practical deviation) is the sum of basic accuracy and long-term stability:
$F_{\text {total }}=F_{\text {pert }}+F_{\text {stab }}$
$F_{\text {perl }}=\sqrt{ }\left(\left(F_{T}\right)^{2}+\left(F_{\text {KI }}\right)^{2}\right)$
With

- $F_{\text {total }}$: Total deviation
- Fperi: Basic accuracy
- $\mathrm{F}_{\text {slab: }}$ Long-term dritt
- F_{T} : Temperature coefficient (influence of medium or ambient temperature)
- $F_{\text {Ki: }}$ Deviation

Ambient conditions

Ambient, storage and transport temperature

- Connection cable PE
$-40 \ldots+60^{\circ} \mathrm{C}\left(-40 \ldots+140^{\circ} \mathrm{F}\right)$
- Connection cable PUR, FEP $-40 \ldots+85^{\circ} \mathrm{C}\left(-40 \ldots+185^{\circ} \mathrm{F}\right)$

Process conditions

The specifications of the pressure stage are used as an overview. The specifications on the type plate are applicable.
Pressure stage, process fitting

- Thread 316L

PN 60

- Thread Alu
- Hygienic fittings 316L
- Flange 316L, flange with extension 316L

PN 25
PN 10, PN 16, PN 25, PN 40
PN 40 or $150 \mathrm{lbs}, 300 \mathrm{lbs}$

Product temperature depending on the measuring cell seal

- FKM (e.g. Viton) $\quad-20 \ldots+100^{\circ} \mathrm{C}\left(-4 \ldots+212^{\circ} \mathrm{F}\right)$
- EPDM $-40 \ldots+100^{\circ} \mathrm{C}\left(-40 \ldots+212^{\circ} \mathrm{F}\right), 1 \mathrm{~h}: 140^{\circ} \mathrm{C} /$
- Kalrez 6375 (FFKM)
$284^{\circ} \mathrm{F}$ cleaning temperature
$-10 \ldots+100^{\circ} \mathrm{C}\left(+14 \ldots+212^{\circ} \mathrm{F}\right)$
- Chemraz 535

Vibration resistance
$-30 \ldots+100^{\circ} \mathrm{C}\left(-22 \ldots+212^{\circ} \mathrm{F}\right)$
mechanical vibrations with 4 g and $5 \ldots 100 \mathrm{~Hz}^{8}$)
Shock resistance
Acceleration $100 \mathrm{~g} / 6 \mathrm{~ms}^{9}$)

Electromechanical data

Connection cable

- Configuration
- Wire cross-section
- wire resistance
- Standard length

28432-EN-070718
four wires, one suspension cable, one breather capillary, screen braiding, metal foil, mantle
$0.5 \mathrm{~mm}^{2}$ (AWG no. 20)
$<0.036 \mathrm{Ohm} / \mathrm{m}(0.011 \mathrm{Ohm} / \mathrm{t})$
6 m (19.685 ft)
$200 \mathrm{~m}(656.168 \mathrm{ft})$
8) Tested according to the regulations of German Lloyd, GL directive 2.
-) Tested according to EN 60068-2-27.

VEGABAR 74-4... $20 \mathrm{~mA} / \mathrm{HART}$

- Min. bending radius at $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F} \quad 25 \mathrm{~mm}$ (0.985 in)
- Diameter
approx. 8 mm (0.315 in)
- Colour - standard PE

Black

- Colour - standard PUR

Blue

- Colour - Ex-version

Blue

Voltage supply

Supply voltage

- Non-Ex instrument
$12 \ldots 36$ V DC
- EEx ia instrument
$12 . . .29 \vee D C$
Permissible residual ripple
- $<100 \mathrm{~Hz}$
$\mathrm{U}_{\mathrm{ss}}<1 \mathrm{~V}$
- 100 Hz ... 10 kHz
$U_{\text {ss }}<10 \mathrm{mV}$
Load
see diagram

Fig. 10: Voltage diagram VEGABAR 74
1 HART load
2 Voltage limit Ex instrument
3 Voltage limit non-Ex instrument
4 Voltage supply
Load in conjunction with VEGADIS 12
see diagram

도웉

Fig. 11: Voltage diagram VEGABAR 74 with VEGADIS 12
1 HART load
2 Voltage limit Ex instrument
3 Voltage limit non-Ex instrument
4 Voltage supply

Integrated overvoltage protection	
Nominal leakage current $(8 / 20 \mu \mathrm{~s})$	10 kA
Min. response time	$<25 \mathrm{~ns}$
Electrical protective measures	
Protection	IP $68(25$ bar)/IP 69K
Overvoltage category	III
Protection class	III
Approvals ${ }^{10)}$	
ATEX ia	ATEX II 1G EEx ia IIC T6; ATEX II 2G
Ship approvals	EEx ia IIC T6
Others	WL, LRS, ABS, CCS, RINA, DNV

10.2 Dimensions

VEGABAR 74 - threaded fitting

Flg. 12: VEGABAR 74 threaded fitting: $G V=G 1 / 2$ A manometer connection $E N 837, G 1=G 1 / 2$ A inner $G 1 / 4 A, G G=G 11 / 2 A$, $G N=11 / 2 N P, G M=G 11 / 2$ A $70 \mathrm{~mm}, G R=1 / 2 N P T$ inner $1 / 4 \mathrm{NPT}$

VEGABAR 74 - hygienic fitting 1

CA

LA

TB

faRB

Fig. 13: VEGABAR 74 hygienic fitting: $C C=$ Tri-Clamp $11 / 2^{\prime \prime}, C A=T r$-Clamp $2^{*}, L A=$ hygienic fitting with compression nut F40, TA = Tuchenhagen Varivert DN 32,TB = Tuchenhagen Varivent DN 25, RARB = bolting DN 40/DN 50 according to DIN 11851
28432-EN-070718

VEGABAR 74 -hygienic fitting 2

Flg. 14: VEGABAR $74 \mathrm{KA} / \mathrm{KH}=$ cone $D N 40, A A=D R D, S D / S E=$ Anderson 3^{*} long/short fitting

VEGABAR 74 - flange connection

$E A, F B, F E, F Q, F H, F I$

(1)	DN	PN	0	b	k	12	${ }^{4} 4$	f	AL	± 5
EA	40	40	$5{ }^{20 / 32^{\circ}}$	${ }^{43} \mathrm{Sa}_{0}{ }^{\circ}$	$421 \mathrm{~V}_{4}{ }^{\circ}$	$4 \times 8.45 / \mathrm{ma}^{\circ}$	$315 / 32^{\circ}$	$1 /{ }^{1}$		-
FB	50	40	$61 / 2^{\circ}$	$253_{3}{ }^{\text {a }}$	$459 / 40^{\circ}$	$4 \times 0155_{\text {ce }}{ }^{\circ}$	$41 / \mathrm{m}^{\circ}$	$1 / 0^{\circ}$		
FE	80	40	$7 \%_{0^{\circ}}$	15, 6°	${ }^{61} 1 / \mathrm{m}^{\circ}$		5 $2 / 16^{\circ}$	$1 / 8$		
(2)		tos	0	b	k	${ }^{1}$	${ }^{14}$	1	RL	d5
FQ	1 ${ }^{\text {\% }}$	150	5 "		$314 / 88^{6}$	$4 \times 05 / 8$	$2{ }^{1 / 6}$	$1{ }^{18}$		
FH	${ }^{*}$	1	$6^{\prime \prime}$	$3 / 4$.	43/4"	$4 \times 0.55_{5}$	$3 \mathrm{~s} / \mathrm{s}^{\circ}$	10°		
FI	3°	150	$71 / 2^{*}$	$3 / 4$	6	$4 \times 05 / 6^{\prime \prime}$	6	$1 / 8^{*}$		
(3)	ON	PN	D	b	k	${ }^{2}$	${ }^{\text {d4 }}$	1	RL	
TV	50	40	61/2	$2 / 4$.	459	$4 \times 8.48 \mathrm{coc}^{-1}$	/4/4/4*	$1 / 8$	(4)	$11 / 2^{\circ}$
TS	80	40	77/8 ${ }^{\circ}$	${ }^{15} 11^{\circ}$	16196	日xo $9156{ }_{60}$	$5 \eta_{16}$	$1 / \%^{\circ}$		$11 / 2^{\circ}$

Fig. 15: VEGABAR 74 - flange connection
1 Flange connection according to DIN 2501
2 Flange fitting according to ANSI B16.5
3 Flange with extension
Order-spocific

VEGABAR 74 - threaded fitting for paper industry

BABB

Fig. 16: VEGABAR 74 - connection for paper industry: $B A B B=M 44 \times 1.25$

VEGABAR 74 - extension fitting for paper industry

Fig. 17: VEGABAA 74 - extension fitting for paper industry. EV/FT = absolutely flush for pulper (EV 2-times flaftened), EG = 28432-EN-070718 extension for ball valve fitting ($L=$ order-specific)

10．3 Industrial property rights

VEGA product lines are global protected by industrial property rights．
Further information see http：／／www．vega．com
Only in U．S．A．：Further information see patent label at the sensor housing．
VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte． Nähere Informationen unter http：／／www．vega．com

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle
Pour plus d＇informations，on pourra se reférer au site http：／／www．vega．com
VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial．
Para mayor información revise la pagina web http：／／www．vega．com
Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеппектуапьную собственность．
Дапьнейшую информацию смотрите на сайте http：／／www．vega．com．
VEGA絮列产品在全球享有知识产权保护。
进一步偪密谓多见网站〈http：／／www．vega．com＞。

10．4 Trademark

All brands used as well as trade and company names are property of their lawful proprietor／originator．
$40 \quad$ VEGABAR $74-4 \ldots 20 \mathrm{mAHART}$

VE ${ }^{\text {F }}$ A

VEGA Grieshaber KG
Am Hohenstein 113
77761 Schiltach
Germany
Phone +49 7836 50-0
Fax +49 7836 50-201
E-mail: info@de.vega.com
www.vega.com

All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing.
© VEGA Grieshaber KG, Schiltach/Germany 2007

Subject to change without prior notice
28432-EN-070718

CERTIFICATE
 OF TEST

Project:- PUMP STATION SP152 NUDGEE ROAD

Client:- BRISBANE CITY COUNCIL

"Whelan Electrical Services Pty Ltd certify that the electrical installation, to the extent it is effected by the electrical work, has been tested to ensure it is electrically safe and is in accordance with the requirements of the wiring rules and any other standard applying to the electrical installation under the Electrical Safety Regulation 2002"

Signed:-

SP152 Nudgee Road SEWAGE PUMP STATION EMOTRON SOFT-STARTER PARAMETERS

MENU No.	FUNCTION	RANGE	VALUE	FACTORY	PAGE
0001 䍂	Initial Voltage @ Start Ramp 1	25-90\% U_{n}	30	30	36
\% 002	Start Time Ramp 1	$1-60 \mathrm{sec}$	10	10	36
003.	Step Down Voltage @ Stop Ramp1	$100-40 \% \mathrm{U}_{\mathrm{n}}$	100	100	36
5, 004,	Stop Time Ramp 1	Off, 2-120 sec	3	Off	36
V005.	RMS Current	0.0-9999 Amp	--	--	36
, 006 ,	Control Mode	-1,2, 3	2	2	37
007	Extended Functions	Off, On	On	Off	38
008	Extended Functions	Off, On	On	Off	38
011	Initial Voltage @ Start Ramp 2	30-90\% Un	90	90	38
012	Start Time Ramp 2	Off, 1-60 sec	Off	Off	38
013	Step Down Voltage @ Stop Ramp2	100-40\% Un	40	40	38
014	Stop Time Ramp 2	Off, 2-120 sec	Off	Off	38
016	Initial Torque @ Start	0-250\% $\mathrm{T}_{\text {n }}$	10	10	39
017	End Torque @ Start	50-250\% T_{n}	150	150	39
018	End Torque @ Stop	0-100\% T_{n}	0	0	39
020	Voltage Ramp w Current Limit	Off, 150-500\% $\mathrm{I}_{\text {n }}$	Off	Off	39
5021	Current Limit @ Start	Off, 150-500\% I_{n}	Off	Off	40
6022	Setting of Pump Control	Off, On	Off	Off	40
- 023 ,	Remote Analogue Control	Off, 1,2	Off	Off	41
0224	Full Voltage Start DOL	Off, On	Off	Off	41
- 2025	Torque Control	Off, 1, 2	Off	Off	42
030	Torque Boost Active Time	Off, 0.1-2sec	Off	Off	43
031	Torque Boost Current Limit	$300-700 \% I_{n}$	300	300	43
-032,	Setting Of Bypass	Off, On	On	Off	43
033	Power Factor Control	Off, On	Off	Off	46
034	Braking Time	Off, 1-120sec	Off	Off	46
035	Braking Strength	100-500\%	100	100	47
036	Braking Method	1, 2	1	1	47
037	Slow Speed Torque	10-100	10	10	48
038	Slow Speed Time @ Start	Off, 1-60sec	Off	Off	49
039	Slow Speed Time @ Stop	Off, 1-60sec	Off	Off	49
040	DC-Brake at Slow Speed	Off, 1-60sec	Off	Off	49
	Nominal Motor Voltage	200-700 V	415	400	50
W042	Nominal Motor Current	25\%-150\% Insoft	14	softstarter current	50
043 过	Nominal Motor Power	25\%-300\% Pnsoft	7.5	softstarter power	50
- 044 ,	Nominal Motor Speed	500-3600rpm	1430	softstarter speed	50
045.	Nominal Motor Cos phi	0.50-1.0	0.86	0.86	50
, 046	Nominal Motor Frequency	$50 / 60 \mathrm{~Hz}$	50	50	50
-5051/4	Setting Relay K1	1, 2, 3, 4, 5	1	1	51
- 052 z	Setting Relay K2	1, 2, 3, 4, 5	2	2	51
054	Analogue Output	Off, 1, 2	Off	Off	52
055	Analogue Output Value	1, 2, 3	1	1	52
056	Analogue Output Gain	5-150\%	100	100	52
057	Digital Input Selection	Off, 1-4	Off	Off	53
058	Digital Input Pulses	1-100	1	1	53
061	Parameter Set	0, 1, 2, 3, 4	1	1	54

HENU No.	FUNCTION	RANGE	VALUE	FACTORY	PAGE
700714	Motor PTC Input	No, Yes	Yes	No	55
34072,	Internal Motor Thermal Prot.	Off, 2-40 sec	10	10	55
073	Used Thermal Capacity	0-150\%	--	--	56
074	Starts per Hour Limitation	Off, 1-99/Hr	Off	Off	56
075	Locked Rotor Alarm	Off, 1.0-10.0 sec	Off	Off	56
081	Voltage Unbalance Alarm	2-25\% U ${ }_{n}$	10	10	56
082	Resp. Delay Volt Unbal Alarm	Off, 1-60 sec	Off	Off	56
083	Over Voltage Alarm	$100-150 \% \mathrm{Un}_{\mathrm{n}}$	115	115	56
084	Resp Delay Over Voitage Alarm	Off, 1-60 sec	Off	Off	56
085	Under Voltage Alarm	75-100 Un_{n}	85	85	57
086	Resp Delay Under Volt Alarm	Off, 1-60 sec	Off	Off	57
087	Phase Sequence	L123, L321			57
088	Phase Reversal Alarm	Off, On	Off	Off	57
089	Auto Set Power Limits	No, Yes	No	No	57
090	Output Shaftpower \%	0-200\%	0	0	57
091	Start Delay Power Limits	$1-250 \mathrm{sec}$	10	10	58
092	Max Power Alarm Limit	5-200\% P_{n}	115	115	58
093	Resp Delay Max Alarm	Off, 0.1-25.0 sec	Off	Off	58
094	Max Power Pre-Alarm Limit	5-200\% P_{n}	110	110	58
095	Max Pre-Alarm Resp Delay	Off, 0.1-25.0 sec	Off	Off	58
096	Min Power Pre-Alarm Limit	5-200\% P_{n}	90	90	59
097	Min Pre-Alarm Resp Delay	Off, 0.1-25.0 sec	Off	Off	59
098	Min Power Alarm Limit	5-200\% P_{n}	85	85	59
099	Min Alarm Resp Delay	Off, 0.1-25.0 sec	Off	Off	59
101	Run @ Single Phase Loss	No, Yes	No	No	61
102	Run @ Current Limit Time-out	No, Yes	No	No	61
103	Jog Forward Enable	Off, On	Off	Off	61
104	Jog Reverse Enable	Off, On	Off	Off	61
105	Automatic Return Menu	Off, 1-999	Off	Off	62
- 11,	Serial Comm Unit Address	1-247	Pmp1 $=1$ Pmp2 2	1.	62
2 1212	Serial Comm Baudrate	2.4-38.4 kiBaud	9.6	9.6	62
, 113.	Serial Comm Parity	0, 1	1	0	62
20144,	Serial Comm Contact Interrupt	Off, 1, 2	Off	1	62
199	Reset to Factory Settings	No, Yes	No	No	63
201	RMS Current	0-9999 Amp	--	--	63
202	RMS Main Voltage	0-720 V	--	--	63
203	Output Motor Shaftpower	-9999-9999kW	\cdots	--	63
204	Power Factor	0.0-1	--	--	63
205	Total Power Consumption	0.0-2000MWh	--	--	63
206	Reset Power Comsumption	No, Yes	No	No	64
207	Motor Shaft Torque	-9999-9999Nm	--	--	64
208	Operation Time	Hours	--	--	64
211	RMS Current in Phase L1	0.0-9999 Amp	--	--	64
212	RMS Current in Phase L2	0.0-9999 Amp	--	--	64
213	RMS Current in Phase L3	0.0-9999 Amp	--	--	64
214	Main Voltage L1-L2	$0-720 \mathrm{~V}$	--	--	64
215	Main Voltage L1-L3	0.720 V	--	--	64
216	Main Voltage L2-L3	0.720 V	--	--	64
6\%22173	Locked Keyboard Info	No, Yes	Yes	No	65

FIR001 FACTORY INSPECTION REPORT - SWITCHBOARDS

PROJECT: SP152 NU DGNE RO

PROJECT No:

	stor: P. Hague	Legend: Acc=Accept Rej=Reject		N/A= Not Applicable		
$\begin{gathered} \text { Item } \\ \text { No. } \end{gathered}$	Activity Description		Inspection Results			$\begin{gathered} \text { Date } \\ \text { Accepted } \\ \hline \end{gathered}$
		Comments	Acc	Rej	N/A	
1	Dimension's Correct as per Contract Drawing		\checkmark			22-8
2	Material//Finish as per Specification		\checkmark			,
3	Unauthorised Modifications		\checkmark			,
4	Bolts Fitted / Tight		\checkmark			,
5	IP Rating as per Specifications		\checkmark			
6	Panel Layout as per Drawings	Some lexis to be mosew	\checkmark			\wedge
7	Labelling - Wording, Size, Fixing, Material, Level	Somemissing	\checkmark			4-9
8	Enclosure Free of Debris		\checkmark			22-8
9	Components Fitted are as Specified		\checkmark			\because
10	Main Switches/Circuit Breakers/Fuses Sizes OK		\checkmark			.
11	Thermal Overioads Appropriately Set				-	
12	CT. Ratios are as Specified				-	
13	Metering Fuses Fed off Line Side Main Sw \& CT's				-	
14	Equip Fed from Line Side is Appropriately Labelled	AOD. Pr $R_{i}=9$.	\checkmark			1
15	Neutral \& Earth Connections not in CT Section.				\cdots	\cdots
	All Neutral Connections are Accessible		$\sqrt{ }$			"
17	MEN Connections Provided	To be Providen	\checkmark			4-9
18	Earth Bar/Earth Connections. Fitted \& OK		\checkmark			22-8
19	Check Phasing of Circuits		\checkmark			-
20	Cores Ferruled \& Numbered		\checkmark			\cdots
21	Colour Coding of Wiring as per Spec.		\checkmark			n
22	Terminals Identified per Owg. and Spares Provided	Nor Prestomm	\checkmark			\%-9
23	Indicators Fitted with Correct Coloured Bezels					
24	Selector Switches Engraved Correctly		\checkmark			22-8
25	Main Switches Lockable/Defeatable as per Spec.		\checkmark			4
26	Terminals \& Busbar Connections Tight		\checkmark			-
27	Busbars appropriately shielded		\checkmark			\cdots
28	Check internal access \& routes for field cabling		\checkmark			n
29	Check Operation of Mech \& Key Interlocks				-	
30	Check Operation and Orientation of Door Handles		\checkmark			4
31	Circuit Breakers Isolate Stated Circuits		\checkmark			n
32	ELCB's Tested		\checkmark			\cdots
33	Test Sheets Provided for Insulation Tests	Dono- supplies in Manuas	\checkmark			"
	Test.Sheels Provided for Earth Continuity Tests	$\cdots \cdots$	\swarrow			n
งo	"As Built"'Drawings Marked Up		\checkmark			
36	Legend, Drawings \& Log Book Holder Provided		\checkmark			1
37	Laytop Support Tray Provided		\checkmark			n
38	Sunshields Fitled with PP56. Maintained		\checkmark			
39	Door Locks as Required		\checkmark			
40	110 Tested to PLC Terminals	BY whthean	\checkmark			
41	Manual Functions Tested		\checkmark			
42	Outlets fitted to Sw/Bd as required		\checkmark			
43	Surge Diverter earthed to adjacent stud.		\cdots			
44	Switchboard Lights Function OK		\checkmark			
45	Adequate access to RTU comms plugs		\checkmark			
46	No Split Gland Plates		\checkmark			
47	N / L \& E/L have adequate bolts for main N \& E		\checkmark			
48	Aerial Support is Adjustable		\checkmark			
49	Check cable access dimensions		\checkmark			
50						
51						
Special Notes:						

SP152 NUDGEE RD SEWAGE PUMP STATION EMOTRON SOFT-STARTER PARAMETERS

MENU No.	FUNCTION	RANGE	VALUE	FACTORY	PAGE
	Initial Voltage @ Start Ramp 1	25-90\% Un_{n}	30	30	36
	Start Time Ramp 1	$1-60 \mathrm{sec}$	10	10	36
	Step Down Voltage @ Stop Ramp1	$100-40 \% \mathrm{Un}_{\mathrm{n}}$	100	100	36
	Stop Time Ramp 1	Off, 2-120 sec	310	Off	36
	RMS Current	0.0-9999 Amp	-	-	36
	Control Mode	1, 2, 3	2	2	37
007	Extended Functions	Off, On	On	Off	38
008	Extended Functions	Off, On	On	Off	38
011	Initial Voltage @ Start Ramp 2	30-90\% Un	90	90	38
012	Start Time Ramp 2	Off, 1-60 sec	Off	Off	38
013	Step Dowñ Voltage @ Stop Ramp2	100-40\% Un	40	40	38
014	Stop Time Ramp 2	Off, 2-120 sec	Off	Off	38
016	Initial Torque @ Start	0-250\% T_{n}	10	10	39
017	End Torque @ Start	$50-250 \% T_{n}$	150	150	39
018	End Torque @ Stop	0-100\% T_{n}	0	0	39
	Voltage Ramp w Current Limit	Off, 150-500\% $\mathrm{I}_{\text {n }}$	Off	Off	39
	Current Limit @ Start	Off, $150-500 \% \mathrm{I}_{\mathrm{n}}$	Off	Off	40
	Setting of Pump Control	Off, On	Offon	Off	40
	Remote Analogue Control	Off, 1, 2	Off	Off	41
	Full Voltage Start DOL	Off, On	Off	Off	41
	Torque Control	Off, 1,2	Off	Off	42
030	Torque Boost Active Time	Off, $0.1-2 \mathrm{sec}$	Off	Off	43
031	Torque Boost Current Limit	300-700\% In_{n}	300	300	43
	Setting Of Bypass	Off, On	On	Off	43
033	Power Factor Control	Off, On	Off	Off	46
034	Braking Time	Off; 1-120sec	Off	Off	46
035	Braking Strength	100-500\%	100	100	47
036	Braking Method	1.2	1	1	47
037	Slow Speed Torque	10-100	10	10	48
038	Slow Speed Time @ Start	Off, 1-60sec	Off	Off	49
039	Slow Speed Time @ Stop	Off, 1-60sec	Off	Off	49
040	DC-Brake at Slow Speed	Off 1 -60sec	Off	Off	49
	Nominal Motor Voltage	200-700V	400.415	400	50
	Nominal Motor Current	25\%-150\% Insoft	14514	softstarter current	50
	Nominal Motor Power	25\%-300\% Pnsoft	757.5	softstarter power	50
	Nominal Motor Speed	500-3600rpm	1480	softstarter speed	50
	Nominal Motor Cos phi	0.50-1.0	0.86	0.86	50
	Nominal Motor Frequency	50160 Hz	50	50	50
	Setting Relay K1	1, 2, 3, 4, 5	1	1	51
	Setting Relay K 2	1, 2, 3, 4, 5	2	2	51
054	Analogue Output	Off, 1, 2	Off	Off	52
055	Analogue Output Value	1, 2, 3	1	1	52
056	Analogue Output Gain	5-150\%	100	100	52
057	Digital Input Selection	Off, 1-4	Off	Off	53
058	Digital Input Pulses	1-100	1	1	53
061	Parameter Set	0, 1, 2, 3, 4	1	1	54

-.

WHELAN ELECTRICAL SERVICES PTY LTD
ACN. 062697063

Form 001 - Inspection \& Test Plan - Switchboards
Page No. 1

Lospection Test Plan - Quality Program AS $85-1823$	
Client: RRISANE GTY COUNCIL	DWGN:- 0023
Prjet:- SIB RTPLACEMENS	Cossiltans:-
Date:- $20 / 08 / 07$	Job N:- NVO GEE RD
Irm:- S/b cuticlat	Contract $8 W 70407-06107$
Tentocation: YANDINA	Buill By:- C/T + V.E.S.
Eleet Insp. By:- 31 Date: 11	Audited By: S.FM22EMC

Notes:

WHELAA EIECCTRICAMSERVICES PTY LTD ACN. 06269063

Form 001. Inspection \& Test Plan - Swritchboards

QUALITY FORM

0720
Page No. 2

[ssue Date - 1801/96
Revision No 4
QUAETIY RORM

- TESTS -					
POWER OFY	PASS	EAAIL	POWER ON	PASS	FAII
RARTE CONTINUTTY			Pimp Coctoller	?	
IL G.P.O:	7		Plase Fail	\checkmark	
${ }^{2}$. Cabinet	71		Thermistors	了	
3. Hiliged Panels	//		Cretosats	M/A	
4. Teminals	7		Mamal Operation	\checkmark	
distuation			Atro Operation:		
1. G.P.O.'s			Dury Selection	N/A	
2 Motor Ciruits			Oules	\square	
			RCD.'s	7	
			Voltureter		
			Olast Conatrols	7	
			Pump 1. Power C/B	7	
			Pump 1, Conitol C/B	7	
* DO NOT MEGGER THERMISTORS **			Pump 2, Poner Cra	\cdots	
			Pump 2. Cantrol CB	7	
			Common Control Cre	7	
difrcts:				Siga:	Date:
Job CM Main Sw Main Eqbar				$\begin{aligned} & 8 f \\ & 18 \end{aligned}$	$\begin{aligned} & 20 / 0867 \\ & 29 / 8107 \end{aligned}$

Noter

C.SAFM 3 A	L-ae Dato - 1801986	Bevision No 4	QUALITY PORM

SSM085

STANDARD ELECTRICAL SPECIFICATION

STANDARD FIXED SPEED SEWAGE PUMPING STATION

F.A.T.

FACTORY ACCEPTANCE TEST TEST DOCUMENT

Site ID and Name	SP152 Nudgee Rd
Test Date	$22^{\circ 0} / \quad$ Aug 2007
Test Location	Whelan's - Yandina
Electrical Inspector	Peter. Hague
RTU Programmer (NCS)	Gerard Andecon
Electricians	Whelan:

Note: Printed copies of this document should be verified for currency against the published electronic copy.

1 Preliminary Checks

ELECTRICAL INSPECTION

Confirm Electrical Inspector has completed checklist "CA-17a" prior to commencement of

POINT TO POINT
Peter Hague - Electrical Inspector. \square
Task
Ensure that the Switchboard Manufacturer has completed a full point to point check on all switchboard wiring. (The switchboard manufacturer should provide a complete set of drawings with the circuits 'highlighted' as they are checked as proof that the test has been completed). These drawings should be

Outcome
OK 区

made during Site Acceptance Testing).

CONFIRM STANDARD OPTIONS FOR THE SITE

Ensure that the standard options that are detailed in the the Site Specific Funtional Specification are also detailed in the site drawings and are enabled in the RTU database (check in the INIT Block)

NB SPIS2 Database not available from Logica CMG.

Switchboard Electrically Inspected by
Switchboard Programmed and Factory Tested by

.SP Reliability Improvement Project SSM085 Standard Fixed Speed Sewage Pumping Station: Factory Acceptance Test Document

2 TESTING PROCEDURE
NB Initial level range is $O-6 M$ probe POWER UP THE BOARD
Task Cannot source O-4M probe. Check that the board powers up OK (Power Supplies and Switchboard Lights tum on). OK Ell

PROGRAM THE RTU

PROGRAM THE DISPLAY PANEL

BACKUP COMMUNICATION

(OPTION I)

Switchboard Electrically Inspected by
\qquad
Signature:
Date: \qquad
Switchboard Programmed and Factory Tested by
Name:-... G Anderson Date: $22|\$| 0$?
Signature:

| Doc Id: | 005905 | Active Date: | 21 May 2007-Ver 1.02 |
| :--- | :--- | :---: | :--- |\quad Brisbane Water Confidential

SP Reliability Improvement Project SSM085 Standard Fixed Speed Sewage Pumping Station: Factory Acceptance Test Document

MOTOR STARTER

Task	Outcome
Check that the motor starter is programmed and able to start the each pump	Pump 1 -OK 区 Pump 2 -OK

MODBUS

Task	Outcome
Confirm that the modbus link from the RTU to the Soft Starters and the Display Panel is operating correctly	OK

BATTERY

Task	Outcome
Check that the battery is connected and charging (i.e. 24V across the terminals).	OK $\boxed{ }$
Check that the RTU is running off battery when the mains supply is isolated.	OK $\boxed{ }$

POINT TO POINT

Task	Outcome
Using the Physical I-O Spreadsheet check each individual physical I-O Wired to the RTU from beginning to end. ie press the actual button and watch the I-O change in Isagraf. Output lights and relays activate Inject $4-20 \mathrm{~mA}$ into the Analog Inputs The I-O spreadsheet should be ticked and signed by the test and atteched to this FAT Test Document. Also confirm that the display panel is showing the correct information during each point to point check	

HARD WIRED EMERGENCY PUMPING MODE FUNCTIONALITY CHECK

NB Set to 80% of RTU coded surah pumping time so that hard wired cit t therefore "such Pumping Mode Active DII" times out before RTU + No Pumps fail to Stop alarm is
Switchboard Programmed and Factory Tested by generated in RTU.
Name:

Date:
Name:
 Date:22|8107

Signature:
Signature:
GAnders
Doc Id: $005905 \quad$ Active Date: 21 May 2007-Ver 1.02

Printed: 21/08/2007 Owner: Alex Witthof
Note: Printed copies of this document should be verified for currency against the published electronic copy.

SPI52
SP Reliability Improvement Project SSM085 Standard Fixed Speed Sewage Pumping Station；Factory Acceptance Test Document

（OPTION E）NO SUMP PUMP	
Task N／A	Outcome
Activate the stop electrode input to simulate a level above the stop level－The sump pump should still be off at this stage	OK
Activate the start electrode input to simulate a level above the start level－The sump pump should now start	OKロ
De－activate the start electrode－the pump should keep running	OK口
De－activate the stop electrode－the pump should stop	OK
Activate the Alarm level electrode	
Confirm operation of relay and input to RTU	OK口
Activate the Trip level electrode This will stop all sewer pumps from running in local，remote（via Software）or under the control of the Emergency Pumping Circuit Circuit（Via the sewer pump interupt relays）． Confirm this by trying to start the sewer pumps in all 3 modes．	Pump 1－OK \square Pump 2－OK
Confirm that the each sewer pump can still be run under the control of that pumps Emergency Start Switch	Pump 1－OKロ Pump 2－OK

NTERLOCKING（OPTION O）NO INTERLOCKING	
Task N／A	Outcome
For a fully interlocked site	
Ensure that the 2 pumps can not run either from a RTU command，Émergency Pumping Circuit or the Emergecy Pumping Mode Switch	OK
For a generator only interlocked site	
Ensure that 2 pumps can run simultaneously when the station is poweted by Energex． （From the RTU，Emergency Pumping Circuit and the Emergecy Pumping Mode Switch）	OK
Ensure that the 2 pumps can not run either from a RTU command，Emergency Pumping Circuit or the Emergecy Pumping Mode Switch while the stations is powered from the Generator	OK
Pump Faulted Scenario	
Ensure that if pump 1 is faulted，pump 2 can still start both via the RTU and the Emergency Pumping Circuit．	OK
Ensure that if pump 2 is faulted，pump 1 can still start both via the RTU and the Emergency Pumping Circuit．	OKロ

GENERATOR FUNCTIONALITY N｜A（OPTION F）NO GENERATOR

Task	Outcome
Ensure all Inteposing Relays are wired as per the drawigns	OKロ

CATHODIC PROTECTION N｜A（OPTIONK）NO CP

Task	Outcome
Ensure all CP Circuit has been wired as per the drawigns	OK \square

F, AT.
22/23 Aug 07

REVISION CONTROL

SP[$x x x$] [SITE NAME]
Physical I.O. Spreadsheet

Version	Date	Author	Comment
0.00	18-01-2006	Alex Withoft	Initial Version developed from SP068 Tufnell Rd
0.10	07-02-2006	Alex Withoft	Re-arranged Digital Outputs \& Combined Wet Well High and Surcharge Signal test into Wet Well Signal Test
0.20	10-02-2006	Alex Withoft	Removed Pump 3 and added Generator Tags. Also added "OPTION" Comments
0.30	19-04-2006	Alex Withoft	Modified 10 allocation to match standard drawings, updated formatting
0.40	10-05-2006	Alex Withoft	Modified Bearing Temperatur to Motor Temperature (ie Winding OR Bearing Temp Fault).
0.50	16-06-2006	Alex Withoft	Modified Formatting
0.60	18-07-2006	Alex Withoft	Added Valve Pit Level Probe
0.70	11-12-2006	Alex Witthoft	Added Battery OK OI
0.80	18-12-2006	Alex Withoft	Modification after review by Peter Hague (To match updated standard drawings)
0.90	19-12-2006	Alex Withoft	Added Options forumlas
0.92	10-07-2007	Alex Withoft	Added Options T, U\&V
0.93	07-08-2007	Alex Withoft	Merged Option B \& C into B(now motor protection fault) - moved option D to C (reflux), added new Option D (Upstream manhole)

$$
\begin{aligned}
\text { RTU powertiox P/S } & P B 251-24 C M-T-C C \\
& 251-2161 \times 1
\end{aligned}
$$

* Check Red Lion display of HI/SurchImn (Check) Electrode Test Fall inputs (appears to trigger the * Correct the position of Wet well Level AII on the Red Lion Display (should be AlI 1 not 4 !)
* Red Lion display of Pump 2 Amps/ KW not correct (RTU displays correct values).
* Analog I/P 1. When Om (opencet) Logica A/I moving from 1 to 65
* Red Lion display of Pressure AlI appears wrong
* Red Lion does not display RTi Mains Fail. I Energex Mains Fail. Add to Overview Page
* RTU Powerbox P/S does not praide battery fault alarm. + does not power RTU when Energex off Battriy replaced.
fee. you need to cycle 240 V before battery secormected

2 OF
Brisbane City Council Confidential
21/082007

* Label for Transfer Switch off.: "Generator Transf Switch in Normal Supply Position"

SITE ACCEPTANCE TESTED 星:
Date $/ 1$

SITE ACCEPTANCE TESTED BY:
Date 11

		SP[xxx] [SITE NAME] Physical I.O. Spreadsheet	Analog Input Card 1				.					
1/0 \#	MITS Tag	Description	4 mA	20mA	Term. \#	Wire \#	Schem	Term	0	Comment	FĀT	SAT
0	wwllrawSlgnal	Wet well level raw signal			1478148	A $100+$, $1100-$	07	12	\bigcirc	\checkmark	0	\square
1	preirawSlgnal	Delivery prossure raw signal			149 \& 150	A101+, A101-	07	12	U	\checkmark	0	0
2	est1rawSignal	Emergency storage level raw signal			151 \& 152	Al02+,A102-	07	12	G		0	0
3	ult1rawSignal	Ultrasonic Wet Well level raw signal			153 \& 154	Al03+, Al03-	07	12	S		0	\square
4					155 \& 156	A104+,A104	07	12	\wedge			
5					157 \& 158	A105+, Al05-	07	12	\wedge			
6	cpricurrent	Cathodic protection rectifier current			159 \& 160	A106+,A108-	07	12	K		0	\square
7	fiwlrawSignal	Delivery flow raw signal			161 \& 162	A107+, A107-	07	12	H		\square	0

factory acceptance tested by: G.Anderson Date 23,8,07

SITE ACCEPTANCE TESTED BY:
Date $\quad 11$

SP152 NUDGEE ROAD SEWAGE PUMPING STATION

SITE COVER SHEET

ELECTRICAL DRAWINGS INDEX							
DWG N° ．	TITLE	SHEET	REVISIONS				
486／5／7－0023－000	SITE COVER SHEET	00	P1				
486／5／7－0023－001	POWER DISTRIBUTION SCHEMATIC DIAGRAM	01	P1	A			
486／5／7－0023－002	PUMP 01 SCHEMATIC DIAGRAM	02	P1	A			
486／5／7－0023－003	PUMP 02 SCHEMATIC DIAGRAM	03	P1	A			
486／5／7－0023－004	RESERVED（SUMP PUMP）	04					
486／5／7－0023－005	RESERVED（GEEERATORCONTROL）	05					
488／5／7－0023－006	COMMON CONTROLS SCHEMA TiC DIAGRAM	06	P1	A			
488／5／7－0023－0．07	COMMON RTU $/ /$ S SHEMATIC DIAGRAM	07	P1	A			
486／5／7－0023－008	RTU POWER DIISRIBUTION SCHEMATIC DIAGRAM	08	$P^{\text {P1 }}$	A			
486／5／7－0023－009	RTU Digital inputs termina tion diagram	09	${ }^{\text {P1 }}$	A			
486／5／7－0023－010	RTU DIGIIAL INPUTS TERMINATION DIAGRAM	10	P1	A			
486／5／7－0023－011	RTU DIGITAL OUTPUTS TERMINATION DIAGRAM	11	P1	A			
486／5／7－0023－012	RTU ANALOGS \＆MISCELLANEOUS TERMINA TION DIAGRAM	12	P1	A			
486／5／7－0023－013	RESERVED（IOMMON CONTROLS TEPMINA TION DAA GRAM）	13					
486／5／7－0023－014	EQUIPMENT LIST	14	P1	A			
486／5／7－0023－015	CABLE SCHEDULE	15	P1	A			
486／5／7－0023－016	SWITCHBOARD LABEL SCHEDULE	16	P1	A			
486／5／7－0023－017	SWITCHBOARD CONS TRUC TION OETAILS	17	P1	A			
486／5／7－0023－018	SWITCHBOARD CONSTRUCTION DETAILS	18	P1	A			
486／5／7－0023－019	RAG Reduction tuae for the hyoros tatic level probe	19	P1	A			
486／5／7－0023－020	RESERVED（LATHODIC PROTECTION UNTT）	20					
486／5／7－0023－021	RESERVED（IFELD DISCONNECTION BOXI	21					
486／5／7－0023－022	SWITCHBdARD GENERAL ARRANGEMENT－Dovele sided	22	P1	A			
486／5／7－0023－023	SLAB \＆CONDUIT DETALL	23	P_{1}	A			
			－				

STANDARD VARIABLES	
DESCRIPTION	Values
CT METERING ISOLATOR	not APPLICBIE
NORMAL SUPPLY MAIN SWITCH	
GENERATOR SUPPLY MAIN SWITCH	ima
PUMP1 CIRCUIT GREAKER	xhtrume
PUMP2 CIRCUIT PREAKER	xhtruns
DRY WELL SUMP PUMP CIRCUIT BREAKER	Her APPLICBLE
PUMP SOFT．STARTER SIZE	mes－m7．
PUMP RATING	IStuy m
PUMP LIIE CONTACTOR	${ }^{\text {C17．30 }}$
PUMP BYPASS CONTACTOR	at－38
SUMP PUMP RATING	Mot APPLICBLE
SUMP PUMP CONTACTOR \＆TOL	mot Appliable
PUMP SOCKET OUTLET＋INCLINE SLEEVE	0537361897.5514051
PUMP INLET PLUG＋HANDLE	
WET WELL LEVEL TRANSMITTER	Pritb， 12 \％rus
EMERGENCY STORAGE WELL LEVEL TRANSMITTER	нот APplCabile
DELIVERY PRESSURE TRANSMITTER	
WET WELL ULT TRASONIC LEVEL SENSOR	not APPLCABIE
FLOWMETER RANGE	not APPLCABLE
RADID	
EMERGENCY PUMPING TIME	6weet
No of SINGLE POINT PROBES	？
incoming malis supply cable	$16 \mathrm{ma}^{2}$
MAIN EARTHING CABLE	$6 \mathrm{~mm}{ }^{1}$
INCOMING GENERATOR SUPPLY CABLE	Hot APPILCABLE
PUMP MOTOR SUPPLY CABLE	Exsting

STANDARD DESIGN OPTIONS		
OPTION	DESCRIPTION	FITTED
－		No
－	WOWOUAL PUMP M	No
＋		N
0		No
I		N0
＋	STATHN	W
$\underline{6}$	STA THONEMERGETNEY－STORAGE LEVEL SENSOR	W ${ }^{\text {W0 }}$
－11	STATHONOELWERY FL OWMETER	W ${ }^{-1}$
$+$	Baekur chtheationtions	N ${ }^{\text {W0 }}$
J	PUMP CONNECTION \Via De－contactors）	YES［柬
－	Cat Hote rerection	No
L	MOTOR THERMISTORS（Via De－contactors）	YES
－	OOU	N0
\cdots		函 N0
－0		No
\bigcirc	WET WEtL WASHER	＊${ }^{\text {No }}$
\bigcirc	VA Ve	区 No
R	TELEMETRY RAOIO	YES ${ }^{\text {ma }}$
s	WET Wet Ul－masome ievel senson	－${ }^{\text {ck }}$
T	DOUBLE SIDED SWITCHEOARD	YES \times
U	DELIVERY PRESSURE TRANSMITTER	YES

Sheet 00 FOR CONSTRUCTION

					OReFEO	P．rague	SWE		71.107				Sif 152 NUDGEE ROAD sewage pump station	SITTE，COVER SHEET	Sture mo 0	
A 00.07	ISSUEDFOR CONSTRUCTION	H．	Aw．		DPaFIMG CHEX	A．withort		RPEOM，			date				Breseme water	
1.07	ISSUEO FOR TENDER	P．H．			Cob fle	57－002350＿A	toy Am		7，107		${ }^{18,107}$				486／5／7－0023－000	A
Nol	AMENOMENT	Dose	1 Pa	Retemene amemss $^{\text {a }}$	B．c．flueno．		dessin arex	R．PEQ．No．	oate	CILENT PLEGCATE－－						

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manua

$$
\underset{145}{0}
$$

Sheet 07
FOR CONSTRUCTION

Sire 152 NUDGEE ROAD SEWAGE PUMP STATION
\square SOMMON RTU IIO

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual

LEGEND:	
(??	cable loentifier
c-	disconnect plug
\varnothing	switcheoard control terminal
$\square 5$	fuse terminal
$\square 5$	Disconnect link terminal

NOTES
LALL WIEES 8 CABLE CORES ARE FERRULED
WTH LRAFOPLAST ST2000 COMPATBLE LABELING. 2. ALL FUSES ARE 500mA EXCEPT WHERE NOTED
Sheet 11
FOR CONSTRUCTION

 \qquad
STE 152 NUDGEE ROAD
SEWAGE PUMP STATION
TME DIGITAL OUTPUTS TERMINATION DIAGRAM

[^2]

SP152 Nudgee Road Nudgee SPS Pump Station Switchboard Replacement OM Manual

$$
\begin{array}{l|l|l|l|l|l}
0 & \ddots & 0 & 0
\end{array}
$$

[^0]: CompactFlash is a registered trademark of CompactFlash Association

[^1]: 1) Recommended for drinking water applications, not suitable for use in hazardous areas
[^2]:

